From c8080c7dd246badaa4e53364ea2bb327b12b0175 Mon Sep 17 00:00:00 2001 From: leufen1 <l.leufen@fz-juelich.de> Date: Thu, 15 Jun 2023 13:02:23 +0200 Subject: [PATCH] IFS data loader work with filter approach --- .../data_handler_single_station.py | 2 +- .../data_handler/data_handler_with_filter.py | 7 +--- mlair/helpers/filter.py | 34 +++++++++++++++---- mlair/plotting/data_insight_plotting.py | 15 ++++++++ 4 files changed, 44 insertions(+), 14 deletions(-) diff --git a/mlair/data_handler/data_handler_single_station.py b/mlair/data_handler/data_handler_single_station.py index 552123f3..e60456c2 100644 --- a/mlair/data_handler/data_handler_single_station.py +++ b/mlair/data_handler/data_handler_single_station.py @@ -313,7 +313,7 @@ class DataHandlerSingleStation(AbstractDataHandler): self.target_data = targets def make_samples(self): - self.make_history_window(self.target_dim, self.window_history_size, self.time_dim) #todo stopped here + self.make_history_window(self.target_dim, self.window_history_size, self.time_dim) self.make_labels(self.target_dim, self.target_var, self.time_dim, self.window_lead_time) self.make_observation(self.target_dim, self.target_var, self.time_dim) self.remove_nan(self.time_dim) diff --git a/mlair/data_handler/data_handler_with_filter.py b/mlair/data_handler/data_handler_with_filter.py index 4ec25a83..21c45991 100644 --- a/mlair/data_handler/data_handler_with_filter.py +++ b/mlair/data_handler/data_handler_with_filter.py @@ -460,12 +460,7 @@ class DataHandlerClimateFirFilterSingleStation(DataHandlerFirFilterSingleStation :param window: this parameter is not used in the inherited method :param dim_name_of_shift: Dimension along shift will be applied """ - data = self.input_data # TODO has to be refactored as window_history_offset must be included in filter calc - sampling = {"daily": "D", "hourly": "h"}.get(to_list(self.sampling)[0]) - data.coords[dim_name_of_shift] = data.coords[dim_name_of_shift] - np.timedelta64(self.window_history_offset, - sampling) - data.coords[self.window_dim] = data.coords[self.window_dim] + self.window_history_offset - self.history = data + self.history = self.input_data # from matplotlib import pyplot as plt # d = self.load_and_interpolate(0) # data.sel(datetime="2007-07-07 00:00").sum("filter").plot() diff --git a/mlair/helpers/filter.py b/mlair/helpers/filter.py index 370c8b75..bc115988 100644 --- a/mlair/helpers/filter.py +++ b/mlair/helpers/filter.py @@ -594,7 +594,6 @@ class ClimateFIRFilter(FIRFilter): forecasts_tmp.coords[time_dim] = forecasts_tmp.coords[time_dim] + delta forecasts_tmp.coords[new_dim] = forecasts_tmp.coords[new_dim] + offset - lead_time history = history.combine_first(forecasts_tmp) - print(lead_time) # history.plot() if lead_time >= forecast_delta - 1: # stop when all gaps are filled break @@ -651,10 +650,12 @@ class ClimateFIRFilter(FIRFilter): def create_visualization(self, filtered, data, filter_input_data, plot_dates, time_dim, new_dim, sampling, extend_length_history, extend_length_future, minimum_length, h, - variable_name, extend_length_opts=None, extend_end=None): # pragma: no cover + variable_name, extend_length_opts=None, extend_end=None, offset=None, forecast=None): # pragma: no cover + plot_data = [] extend_end = 0 if extend_end is None else extend_end extend_length_opts = 0 if extend_length_opts is None else extend_length_opts + offset = 0 if offset is None else offset for t0 in set(plot_dates).intersection(filtered.coords[time_dim].values): try: td_type = {"1d": "D", "1H": "h"}.get(sampling) @@ -668,14 +669,32 @@ class ClimateFIRFilter(FIRFilter): new_dim).sel({time_dim: t0}) else: tmp_filter_data = None + filter_input = filter_input_data.sel({time_dim: t0, new_dim: slice(None, extend_length_future)}) valid_start = int(filtered[new_dim].min()) + int((len(h) + 1) / 2) valid_end = min(extend_length_opts + extend_end + 1, int(filtered[new_dim].max()) - int((len(h) + 1) / 2)) valid_range = range(valid_start, valid_end) - plot_data.append({"t0": t0, + # if forecast is not None: + # forecast_deltas = (t0 - forecast.coords[time_dim]) / np.timedelta64(1, "h") + 12 + # minimal_forecast_delta = int(forecast_deltas[forecast_deltas >= 0][-1]) + # init_time = forecast.coords[time_dim][forecast_deltas >= 0][-1] + # forecast_end = min(extend_end, extend_length_opts) + # f = forecast.sel({time_dim: init_time, new_dim: slice(None, forecast_end)}) + # f.coords[time_dim] = t0 + # f.coords[new_dim] = f.coords[new_dim] - minimal_forecast_delta + offset + # else: + # f = None + # correct all data for offset + def correct_data_for_offset(d): + d = d.__deepcopy__() + d.coords[time_dim] = d.coords[time_dim] + np.timedelta64(int(offset), td_type) + d.coords[new_dim] = d.coords[new_dim] - offset + return d + plot_data.append({"t0": t0 + np.timedelta64(int(offset), td_type), "var": variable_name, - "filter_input": filter_input_data.sel({time_dim: t0}), - "filter_input_nc": tmp_filter_data, - "valid_range": valid_range, + "filter_input": correct_data_for_offset(filter_input), + "filter_input_nc": correct_data_for_offset(tmp_filter_data), + "valid_range": range(valid_range.start - offset, valid_range.stop - offset), + # "forecast": f, "time_range": data.sel( {time_dim: slice(t_minus, t_plus - np.timedelta64(1, td_type))}).coords[ time_dim].values, @@ -833,9 +852,10 @@ class ClimateFIRFilter(FIRFilter): filt_input_coll.append(trimmed) # visualization + plot_dates = [filt.coords[time_dim][49].values] plot_data.extend(self.create_visualization(filt, d, filter_input_data, plot_dates, time_dim, new_dim, sampling, extend_length_history, extend_length_future, - minimum_length, h, var, extend_opts, extend_end)) + minimum_length, h, var, extend_opts, extend_end, offset, f)) # collect all filter results coll.append(xr.concat(filt_coll, time_dim)) diff --git a/mlair/plotting/data_insight_plotting.py b/mlair/plotting/data_insight_plotting.py index ee5aea4a..76e7aadc 100644 --- a/mlair/plotting/data_insight_plotting.py +++ b/mlair/plotting/data_insight_plotting.py @@ -1093,6 +1093,9 @@ class PlotClimateFirFilter(AbstractPlotClass): # pragma: no cover # clim apriori self._plot_apriori(ax, time_axis, filter_input, new_dim, ifilter, offset=1) + # get ax lims + ylims = ax.get_ylim() + # clim filter response residuum_estimated = self._plot_clim_filter(ax, time_axis, filter_input, new_dim, h, output_dtypes=filter_input.dtype) @@ -1103,6 +1106,7 @@ class PlotClimateFirFilter(AbstractPlotClass): # pragma: no cover # set title, legend, and save plot xlims = self._set_xlim(ax, t0, filter_order, valid_range, td_type, time_axis) + ax.set_ylim(ylims) plt.title(f"Input of ClimFilter ({str(var)})") plt.legend() @@ -1118,6 +1122,7 @@ class PlotClimateFirFilter(AbstractPlotClass): # pragma: no cover self._plot_series(ax, time_axis, residuum_true.values.flatten(), style="ideal") self._plot_series(ax, time_axis, residuum_estimated.values.flatten(), style="clim") ax.set_xlim(xlims) + self._set_ylim_by_valid_range(ax, residuum_true, residuum_estimated, new_dim, valid_range) plt.title(f"Residuum of ClimFilter ({str(var)})") plt.legend(loc="upper left") fig.autofmt_xdate() @@ -1129,6 +1134,16 @@ class PlotClimateFirFilter(AbstractPlotClass): # pragma: no cover logging.info(f"Could not create plot because of:\n{sys.exc_info()[0]}\n{sys.exc_info()[1]}\n{sys.exc_info()[2]}") pass + @staticmethod + def _set_ylim_by_valid_range(ax, a, b, dim, valid_range): + ymax = max(a.sel({dim: valid_range}).max(), + b.sel({dim: valid_range}).max()) + ymin = min(a.sel({dim: valid_range}).min(), + b.sel({dim: valid_range}).min()) + ymax = 1.1 * ymax if ymax > 0 else 0.9 * ymax + ymin = 0.9 * ymin if ymin > 0 else 1.1 * ymin + ax.set_ylim((ymin, ymax)) + def _set_xlim(self, ax, t0, order, valid_range, td_type, time_axis): """ Set xlims -- GitLab