diff --git a/Examples_from_manuscript.ipynb b/Examples_from_manuscript.ipynb index 5c89cd9a47ebefb564c3ffced7c7af97366e4477..dd258554a16874a62b81e8d69d0088c1ede15deb 100644 --- a/Examples_from_manuscript.ipynb +++ b/Examples_from_manuscript.ipynb @@ -105,12 +105,12 @@ "metadata": {}, "outputs": [], "source": [ - "# Figure 5\n", "import keras\n", "from keras.losses import mean_squared_error as mse\n", "from keras.layers import PReLU, Input, Conv2D, Flatten, Dropout, Dense\n", "\n", "from mlair.model_modules import AbstractModelClass\n", + "from mlair.workflows import DefaultWorkflow\n", "\n", "class MyCustomisedModel(AbstractModelClass):\n", "\n", @@ -129,14 +129,14 @@ " self.set_custom_objects(loss=self.compile_options['loss'])\n", "\n", " def set_model(self):\n", - " x_input = Input(shape=self.shape_inputs)\n", + " x_input = Input(shape=self._input_shape)\n", " x_in = Conv2D(4, (1, 1))(x_input)\n", " x_in = PReLU()(x_in)\n", " x_in = Flatten()(x_in)\n", " x_in = Dropout(0.1)(x_in)\n", " x_in = Dense(16)(x_in)\n", " x_in = PReLU()(x_in)\n", - " x_in = Dense(self.shape_outputs)(x_in)\n", + " x_in = Dense(self._output_shape)(x_in)\n", " out = PReLU()(x_in)\n", " self.model = keras.Model(inputs=x_input, outputs=[out])\n", "\n", @@ -144,7 +144,11 @@ " self.initial_lr = 1e-2\n", " self.optimizer = keras.optimizers.SGD(lr=self.initial_lr, momentum=0.9)\n", " self.loss = mse\n", - " self.compile_options = {\"metrics\": [\"mse\", \"mae\"]}\n" + " self.compile_options = {\"metrics\": [\"mse\", \"mae\"]}\n", + "\n", + "# Make use of MyCustomisedModel within the DefaultWorkflow\n", + "workflow = DefaultWorkflow(model=MyCustomisedModel, epochs=2)\n", + "workflow.run()\n" ] }, {