diff --git a/src/model_modules/flatten.py b/src/model_modules/flatten.py index bbe92472ebb48e7486dede099dc098a161f51695..efb0e977d1a1500599e04b29f09c4f2d19cada4c 100644 --- a/src/model_modules/flatten.py +++ b/src/model_modules/flatten.py @@ -1,33 +1,82 @@ __author__ = "Felix Kleinert, Lukas Leufen" __date__ = '2019-12-02' -from typing import Callable +from typing import Union, Callable import keras -def flatten_tail(input_X: keras.layers, name: str, bound_weight: bool = False, dropout_rate: float = 0.0, - window_lead_time: int = 4, activation: Callable = keras.activations.relu, - reduction_filter: int = 64, first_dense: int = 64): +def get_activation(input_to_activate: keras.layers, activation: Union[Callable, str], **kwargs): + """ + Apply activation on a given input layer. - X_in = keras.layers.Conv2D(reduction_filter, (1, 1), padding='same', name='{}_Conv_1x1'.format(name))(input_X) + This helper function is able to handle advanced keras activations as well as strings for standard activations + + :param input_to_activate: + :param activation: + :param kwargs: + :return: + """ + if isinstance(activation, str): + act = keras.layers.Activation(activation, **kwargs)(input_to_activate) + else: + act = activation(**kwargs)(input_to_activate) + return act - X_in = activation(name='{}_conv_act'.format(name))(X_in) - X_in = keras.layers.Flatten(name='{}'.format(name))(X_in) +def flatten_tail(input_x: keras.layers, inner_neurons: int, activation: Union[Callable, str], + output_neurons: int, output_activation: Union[Callable, str], + reduction_filter: int = None, + name: str = None, + bound_weight: bool = False, + dropout_rate: float = None, + kernel_regularizer: keras.regularizers = None + ): + """ + Flatten output of convolutional layers - X_in = keras.layers.Dropout(dropout_rate, name='{}_Dropout_1'.format(name))(X_in) - X_in = keras.layers.Dense(first_dense, kernel_regularizer=keras.regularizers.l2(0.01), - name='{}_Dense_1'.format(name))(X_in) + :param input_x: + :param output_neurons: + :param output_activation: + :param name: + :param bound_weight: + :param dropout_rate: + :param activation: + :param reduction_filter: + :param inner_neurons: + :param kernel_regularizer: + + :return: + """ + # compression layer + if reduction_filter is None: + x_in = input_x + else: + x_in = keras.layers.Conv2D(reduction_filter, (1, 1), name=f'{name}_Conv_1x1')(input_x) + x_in = get_activation(x_in, activation, name=f'{name}_conv_act') + # if isinstance(activation, str): + # x_in = keras.layers.Activation(activation, ) + # else: + # x_in = activation(name='{}_conv_act'.format(name))(x_in) + + x_in = keras.layers.Flatten(name='{}'.format(name))(x_in) + + if dropout_rate is not None: + x_in = keras.layers.Dropout(dropout_rate, name=f'{name}_Dropout_1')(x_in) + x_in = keras.layers.Dense(inner_neurons, kernel_regularizer=kernel_regularizer, + name=f'{name}_inner_Dense')(x_in) if bound_weight: - X_in = keras.layers.Activation('tanh')(X_in) + x_in = keras.layers.Activation('tanh')(x_in) else: - try: - X_in = activation(name='{}_act'.format(name))(X_in) - except: - X_in = activation()(X_in) - - X_in = keras.layers.Dropout(dropout_rate, name='{}_Dropout_2'.format(name))(X_in) - out = keras.layers.Dense(window_lead_time, activation='linear', kernel_regularizer=keras.regularizers.l2(0.01), - name='{}_Dense_2'.format(name))(X_in) + x_in = get_activation(x_in, activation, name=f'{name}_act') + # try: + # x_in = activation(name='{}_act'.format(name))(x_in) + # except: + # x_in = activation()(x_in) + + if dropout_rate is not None: + x_in = keras.layers.Dropout(dropout_rate, name='{}_Dropout_2'.format(name))(x_in) + out = keras.layers.Dense(output_neurons, kernel_regularizer=kernel_regularizer, + name=f'{name}_out_Dense')(x_in) + out = get_activation(out, output_activation, name=f'{name}_final_act') return out diff --git a/src/model_modules/model_class.py b/src/model_modules/model_class.py index d6dcea179bcfa8a6ec41518db34b186e30d908fc..d11862cfcc7ac8a2aa5e9508838018116cbc6a74 100644 --- a/src/model_modules/model_class.py +++ b/src/model_modules/model_class.py @@ -378,8 +378,14 @@ class MyTowerModel(AbstractModelClass): batch_normalisation=True) ############################################# - out_main = flatten_tail(X_in, 'Main', activation=activation, bound_weight=True, dropout_rate=self.dropout_rate, - reduction_filter=64, first_dense=64, window_lead_time=self.window_lead_time) + # out_main = flatten_tail(X_in, 'Main', activation=activation, bound_weight=True, dropout_rate=self.dropout_rate, + # reduction_filter=64, inner_neurons=64, output_neurons=self.window_lead_time) + + out_main = flatten_tail(X_in, inner_neurons=64, activation=activation, output_neurons=self.window_lead_time, + output_activation='linear', reduction_filter=64, + name='Main', bound_weight=True, dropout_rate=self.dropout_rate, + kernel_regularizer=self.regularizer + ) self.model = keras.Model(inputs=X_input, outputs=[out_main]) @@ -498,8 +504,13 @@ class MyPaperModel(AbstractModelClass): regularizer=self.regularizer, batch_normalisation=True, padding=self.padding) - out_minor1 = flatten_tail(X_in, 'minor_1', False, self.dropout_rate, self.window_lead_time, - self.activation, 32, 64) + # out_minor1 = flatten_tail(X_in, 'minor_1', False, self.dropout_rate, self.window_lead_time, + # self.activation, 32, 64) + out_minor1 = flatten_tail(X_in, inner_neurons=64, activation=activation, output_neurons=self.window_lead_time, + output_activation='linear', reduction_filter=32, + name='minor_1', bound_weight=False, dropout_rate=self.dropout_rate, + kernel_regularizer=self.regularizer + ) X_in = keras.layers.Dropout(self.dropout_rate)(X_in) @@ -512,8 +523,11 @@ class MyPaperModel(AbstractModelClass): # batch_normalisation=True) ############################################# - out_main = flatten_tail(X_in, 'Main', activation=activation, bound_weight=False, dropout_rate=self.dropout_rate, - reduction_filter=64 * 2, first_dense=64 * 2, window_lead_time=self.window_lead_time) + out_main = flatten_tail(X_in, inner_neurons=64 * 2, activation=activation, output_neurons=self.window_lead_time, + output_activation='linear', reduction_filter=64 * 2, + name='Main', bound_weight=False, dropout_rate=self.dropout_rate, + kernel_regularizer=self.regularizer + ) self.model = keras.Model(inputs=X_input, outputs=[out_minor1, out_main]) diff --git a/test/test_modules/test_training.py b/test/test_modules/test_training.py index 31c673f05d055eb7c4ee76318711de030d97d480..d3127de1afe0c1691b72dca0408e428fb5944bf4 100644 --- a/test/test_modules/test_training.py +++ b/test/test_modules/test_training.py @@ -28,11 +28,19 @@ def my_test_model(activation, window_history_size, channels, dropout_rate, add_m X_input = keras.layers.Input(shape=(window_history_size + 1, 1, channels)) X_in = inception_model.inception_block(X_input, conv_settings_dict1, pool_settings_dict1) if add_minor_branch: - out = [flatten_tail(X_in, 'Minor_1', activation=activation)] + # out = [flatten_tail(X_in, 'Minor_1', activation=activation)] + out = [flatten_tail(X_in, inner_neurons=64, activation=activation, output_neurons=4, + output_activation='linear', reduction_filter=64, + name='Minor_1', dropout_rate=dropout_rate, + )] else: out = [] X_in = keras.layers.Dropout(dropout_rate)(X_in) - out.append(flatten_tail(X_in, 'Main', activation=activation)) + # out.append(flatten_tail(X_in, 'Main', activation=activation)) + out.append(flatten_tail(X_in, inner_neurons=64, activation=activation, output_neurons=4, + output_activation='linear', reduction_filter=64, + name='Main', dropout_rate=dropout_rate, + )) return keras.Model(inputs=X_input, outputs=out)