diff --git a/mlair/plotting/postprocessing_plotting.py b/mlair/plotting/postprocessing_plotting.py index 55f74a1e943ad7ab3c56ebaa74e8ca038e3ced69..bf73f1858aba4749cb9e949c6f3d7df48536083c 100644 --- a/mlair/plotting/postprocessing_plotting.py +++ b/mlair/plotting/postprocessing_plotting.py @@ -146,8 +146,10 @@ class PlotOversamplingContingency(AbstractPlotClass): logging.info(f"{station}: load pred") predictions = [forecast_file.sel(type=self._model_name)] logging.info(f"{station}: load comp") - competitors = [self._load_competitors(station, [comp]).sel(type=comp) for comp in self._comp_names] - predictions.extend(competitors) + for comp in self._comp_names: + c = self._load_competitors(station, [comp]) + if c is not None: + predictions.append(c.sel(type=comp)) logging.info(f"itearate over thresholds") for threshold in range(self._min_threshold, self._max_threshold): for i, pred in enumerate(predictions): diff --git a/run_with_oversampling.py b/run_with_oversampling.py index 0effa8c5dafd645de18dc24a59d70728cf4f52fa..39cf7e12d6375cffbbdd9ea832be937c00c65c67 100644 --- a/run_with_oversampling.py +++ b/run_with_oversampling.py @@ -31,7 +31,7 @@ def main(parser_args): model=IntelliO3_ts_architecture, oversampling_method="bin_oversampling", evaluate_bootstraps=False, # plot_list=["PlotCompetitiveSkillScore"], competitors=["IntelliO3"], - competitor_path=os.path.join(os.getcwd(), "data", "comp_test"), + competitor_path="/p/project/deepacf/intelliaq/gramlich1/mlair/competitors/o3", window_lead_time=1, oversampling_bins=10, oversampling_rates_cap=100, **parser_args.__dict__) workflow.run()