diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index eacbe3e26323e0a0bf1579cba53e2e12ecfd27c0..4a59b5b91edbe7a918a80884cf9e38a5d70a8826 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -21,6 +21,7 @@ version: artifacts: name: pages when: always + expire_in: 1 week paths: - badges/ @@ -54,6 +55,7 @@ tests (from scratch): artifacts: name: pages when: always + expire_in: 1 week paths: - badges/ - test_results/ @@ -107,6 +109,7 @@ tests: artifacts: name: pages when: always + expire_in: 1 week paths: - badges/ - test_results/ @@ -131,6 +134,7 @@ coverage: artifacts: name: pages when: always + expire_in: 1 week paths: - badges/ - coverage/ @@ -155,6 +159,7 @@ sphinx docs: artifacts: name: pages when: always + expire_in: 1 week paths: - badges/ - webpage/ @@ -189,6 +194,7 @@ pages: artifacts: name: pages when: always + expire_in: 1 week paths: - public - badges/ diff --git a/mlair/helpers/logger.py b/mlair/helpers/logger.py index 51ecde41192cb3a2838e443c3c338c5ac4e29b4d..d960ee6f0b0f1f3b76662817cd1bbf5f68772084 100644 --- a/mlair/helpers/logger.py +++ b/mlair/helpers/logger.py @@ -19,6 +19,10 @@ class Logger: # define shared logger format self.formatter = '%(asctime)s - %(levelname)s: %(message)s [%(filename)s:%(funcName)s:%(lineno)s]' + # assure defaults + level_stream = level_stream or logging.INFO + level_file = level_file or logging.DEBUG + # set log path self.log_file = self.setup_logging_path(log_path) # set root logger as file handler diff --git a/mlair/model_modules/recurrent_networks.py b/mlair/model_modules/recurrent_networks.py index 6ec920c1cde08c0d2fc6064528eea800fbdde2a7..e909ae7696bdf90d4e9a95e020b75a97e15dfd50 100644 --- a/mlair/model_modules/recurrent_networks.py +++ b/mlair/model_modules/recurrent_networks.py @@ -33,7 +33,7 @@ class RNN(AbstractModelClass): # pragma: no cover def __init__(self, input_shape: list, output_shape: list, activation="relu", activation_output="linear", activation_rnn="tanh", dropout_rnn=0, optimizer="adam", n_layer=1, n_hidden=10, regularizer=None, dropout=None, layer_configuration=None, - batch_normalization=False, rnn_type="lstm", add_dense_layer=False, **kwargs): + batch_normalization=False, rnn_type="lstm", add_dense_layer=False, dense_layer_configuration=None, **kwargs): """ Sets model and loss depending on the given arguments. @@ -64,6 +64,15 @@ class RNN(AbstractModelClass): # pragma: no cover is added if set to false. (Default false) :param rnn_type: define which kind of recurrent network should be applied. Chose from either lstm or gru. All units will be of this kind. (Default lstm) + :param add_dense_layer: set True to use additional dense layers between last recurrent layer and output layer. + If no further specification is made on the exact dense_layer_configuration, a single layer as added with n + neurons where n is equal to min(n_previous_layer, n_output**2). If set to False, the output layer directly + follows after the last recurrent layer. + :param dense_layer_configuration: specify the number of dense layers and the number of neurons given as list + where each element corresponds to the number of neurons to add. The position / length of the list specifies + the number of layers to add. The last layer is followed by the output layer. In case a value is given for + the number of neurons that is less than the number of output neurons, the addition of dense layers is + stopped immediately. """ assert len(input_shape) == 1 @@ -80,6 +89,7 @@ class RNN(AbstractModelClass): # pragma: no cover self.optimizer = self._set_optimizer(optimizer.lower(), **kwargs) self.bn = batch_normalization self.add_dense_layer = add_dense_layer + self.dense_layer_configuration = dense_layer_configuration or [] self.layer_configuration = (n_layer, n_hidden) if layer_configuration is None else layer_configuration self.RNN = self._rnn.get(rnn_type.lower()) self._update_model_name(rnn_type) @@ -119,9 +129,22 @@ class RNN(AbstractModelClass): # pragma: no cover x_in = self.dropout(self.dropout_rate)(x_in) if self.add_dense_layer is True: - x_in = keras.layers.Dense(min(self._output_shape ** 2, conf[-1]), name=f"Dense_{len(conf) + 1}", - kernel_initializer=self.kernel_initializer, )(x_in) - x_in = self.activation(name=f"{self.activation_name}_{len(conf) + 1}")(x_in) + if len(self.dense_layer_configuration) == 0: + x_in = keras.layers.Dense(min(self._output_shape ** 2, conf[-1]), name=f"Dense_{len(conf) + 1}", + kernel_initializer=self.kernel_initializer, )(x_in) + x_in = self.activation(name=f"{self.activation_name}_{len(conf) + 1}")(x_in) + if self.dropout is not None: + x_in = self.dropout(self.dropout_rate)(x_in) + else: + for layer, n_hidden in enumerate(self.dense_layer_configuration): + if n_hidden < self._output_shape: + break + x_in = keras.layers.Dense(n_hidden, name=f"Dense_{len(conf) + layer + 1}", + kernel_initializer=self.kernel_initializer, )(x_in) + x_in = self.activation(name=f"{self.activation_name}_{len(conf) + layer + 1}")(x_in) + if self.dropout is not None: + x_in = self.dropout(self.dropout_rate)(x_in) + x_in = keras.layers.Dense(self._output_shape)(x_in) out = self.activation_output(name=f"{self.activation_output_name}_output")(x_in) self.model = keras.Model(inputs=x_input, outputs=[out]) diff --git a/mlair/run_modules/run_environment.py b/mlair/run_modules/run_environment.py index 5414b21cb0cb26674c699a02c22400959e11f1aa..df34345b4fb67e764f6e4d8d6570a5fafb762304 100644 --- a/mlair/run_modules/run_environment.py +++ b/mlair/run_modules/run_environment.py @@ -92,12 +92,12 @@ class RunEnvironment(object): logger = None tracker_list = [] - def __init__(self, name=None): + def __init__(self, name=None, log_level_stream=None): """Start time tracking automatically and logs as info.""" if RunEnvironment.data_store is None: RunEnvironment.data_store = DataStoreObject() if RunEnvironment.logger is None: - RunEnvironment.logger = Logger() + RunEnvironment.logger = Logger(level_stream=log_level_stream) self._name = name if name is not None else self.__class__.__name__ self.time = TimeTracking(name=name) logging.info(f"{self._name} started") diff --git a/mlair/workflows/abstract_workflow.py b/mlair/workflows/abstract_workflow.py index c969aa35ebca60aa749a294bcaa5de727407a461..adb718b7a45dfbec60f88765b5a9f869c177b73b 100644 --- a/mlair/workflows/abstract_workflow.py +++ b/mlair/workflows/abstract_workflow.py @@ -13,9 +13,10 @@ class Workflow: method is sufficient. It must be taken care for inter-stage dependencies, this workflow class only handles the execution but not the dependencies (workflow would probably fail in this case).""" - def __init__(self, name=None): + def __init__(self, name=None, log_level_stream=None): self._registry_kwargs = {} self._registry = [] + self._log_level_stream = log_level_stream self._name = name if name is not None else self.__class__.__name__ def add(self, stage, **kwargs): @@ -25,6 +26,6 @@ class Workflow: def run(self): """Run workflow embedded in a run environment and according to the stage's ordering.""" - with RunEnvironment(name=self._name): + with RunEnvironment(name=self._name, log_level_stream=self._log_level_stream): for pos, stage in enumerate(self._registry): stage(**self._registry_kwargs[pos]) diff --git a/mlair/workflows/default_workflow.py b/mlair/workflows/default_workflow.py index 961979cb774e928bda96d4cd1a3a7b0f8565e968..3c75d9809f59ed8e5e970ba1b2c3245adbc0459e 100644 --- a/mlair/workflows/default_workflow.py +++ b/mlair/workflows/default_workflow.py @@ -36,8 +36,9 @@ class DefaultWorkflow(Workflow): batch_size=None, epochs=None, data_handler=None, + log_level_stream=None, **kwargs): - super().__init__() + super().__init__(log_level_stream=log_level_stream) # extract all given kwargs arguments params = remove_items(inspect.getfullargspec(self.__init__).args, "self")