diff --git a/mlair/run_modules/post_processing.py b/mlair/run_modules/post_processing.py index 452e2d6d2996249051f14d1eeb1323e2d2f00d6e..4149f9a1b3aa74139a35dc6e8ba85de88f06725c 100644 --- a/mlair/run_modules/post_processing.py +++ b/mlair/run_modules/post_processing.py @@ -113,17 +113,6 @@ class PostProcessing(RunEnvironment): self.make_prediction(self.test_data) self.make_prediction(self.train_val_data) - # load upstream wind sector for test_data - try: - self.load_upstream_wind_sector(name_of_set="test") - self.skill_score_per_sector = self.calculate_error_metrics_based_on_upstream_wind_dir() - except Exception as e: - logging.info(f"Can not process upsstream wind sectors due to: {e}") - if self.skill_score_per_sector is not None: - path_sector_skill_scores = os.path.join(self.data_store.get("experiment_path"), - f"data/skill_scores_per_sector_test.nc") - self.skill_score_per_sector.to_netcdf(path_sector_skill_scores) - # calculate error metrics on test data self.calculate_test_score() @@ -150,6 +139,19 @@ class PostProcessing(RunEnvironment): self.report_error_metrics({self.forecast_indicator: skill_score_climatological}) self.report_error_metrics({"skill_score": skill_score_competitive}) + # load upstream wind sector for test_data + try: + cometitor_names = remove_items(self.model_and_competitor_name_list, self.model_display_name) + self.load_upstream_wind_sector(name_of_set="test") + self.skill_score_per_sector = self.calculate_error_metrics_based_on_upstream_wind_dir( + ref_name=cometitor_names) + except Exception as e: + logging.info(f"Can not process upsstream wind sectors due to: {e}") + if self.skill_score_per_sector is not None: + path_sector_skill_scores = os.path.join(self.data_store.get("experiment_path"), + f"data/skill_scores_per_sector_test.nc") + self.skill_score_per_sector.to_netcdf(path_sector_skill_scores) + # plotting self.plot()