diff --git a/mlair/plotting/postprocessing_plotting.py b/mlair/plotting/postprocessing_plotting.py
index fe658b093b54a5321774fd6d5c613def994aa61c..ecba8a4e0a3369fbb170a7427ef81365d531bc3b 100644
--- a/mlair/plotting/postprocessing_plotting.py
+++ b/mlair/plotting/postprocessing_plotting.py
@@ -81,6 +81,8 @@ class PlotMonthlySummary(AbstractPlotClass):
             data_nn = data.sel(type=self._model_name).squeeze()
             if len(data_nn.shape) > 1:
                 data_nn = data_nn.assign_coords(ahead=[f"{days}d" for days in data_nn.coords["ahead"].values])
+            else:
+                data_nn.coords["ahead"].values = str(data_nn.coords["ahead"].values) + "d"
 
             data_obs = data.sel(type="obs", ahead=1).squeeze()
             data_obs.coords["ahead"] = "obs"
diff --git a/mlair/run_modules/post_processing.py b/mlair/run_modules/post_processing.py
index 2c6a35394749d623aa8c942f58af244be0e21003..f3909fde29b466af1bf64124ab1d57873ae70d18 100644
--- a/mlair/run_modules/post_processing.py
+++ b/mlair/run_modules/post_processing.py
@@ -564,7 +564,14 @@ class PostProcessing(RunEnvironment):
         """
         tmp_ols = self.ols_model.predict(input_data)
         target_shape = ols_prediction.values.shape
-        ols_prediction.values = np.swapaxes(tmp_ols, 2, 0) if target_shape != tmp_ols.shape else tmp_ols
+        if target_shape != tmp_ols.shape:
+            if len(target_shape)==2:
+                new_values = np.swapaxes(tmp_ols,1,0)
+            else:
+                new_values = np.swapaxes(tmp_ols, 2, 0)
+        else:
+            new_values = tmp_ols
+        ols_prediction.values = new_values
         if not normalised:
             ols_prediction = transformation_func(ols_prediction, "target", inverse=True)
         return ols_prediction