From f9ce4697e1289e838b6c77ed5a66ee0324faed40 Mon Sep 17 00:00:00 2001 From: "v.gramlich1" <v.gramlichfz-juelich.de> Date: Tue, 17 Aug 2021 12:09:23 +0200 Subject: [PATCH] remove logging from postprocessing_plotting.py, minor_tail_loss=MSE --- mlair/plotting/postprocessing_plotting.py | 8 -------- 1 file changed, 8 deletions(-) diff --git a/mlair/plotting/postprocessing_plotting.py b/mlair/plotting/postprocessing_plotting.py index 668e3794..4b41c497 100644 --- a/mlair/plotting/postprocessing_plotting.py +++ b/mlair/plotting/postprocessing_plotting.py @@ -139,9 +139,7 @@ class PlotOversamplingContingency(AbstractPlotClass): def _min_max_threshold(self): min_threshold = 0 max_threshold = 0 - logging.info("min_max thresholds") for station in self._stations: - logging.info(f"{station}") file = os.path.join(self._file_path, self._file_name % station) forecast_file = xr.open_dataarray(file) obs = forecast_file.sel(type=self._obs_name) @@ -159,17 +157,12 @@ class PlotOversamplingContingency(AbstractPlotClass): for station in self._stations: file = os.path.join(self._file_path, self._file_name % station) forecast_file = xr.open_dataarray(file) - logging.info(f"{station}: load obs") obs = forecast_file.sel(type=self._obs_name) - logging.info(f"{station}: load pred") predictions = [forecast_file.sel(type=self._model_name)] - logging.info(f"{station}: load comp, comp_list:{self._comp_names}") for comp in self._comp_names: c = self._load_competitors(station, [comp]) if c is not None: - logging.info(f"{station}: {comp} is not None") predictions.append(c.sel(type=comp)) - logging.info(f"itearate over thresholds") for threshold in range(self._min_threshold, self._max_threshold): for pred in predictions: ta, fa, fb, tb = self._single_contingency(obs, pred, threshold) @@ -177,7 +170,6 @@ class PlotOversamplingContingency(AbstractPlotClass): contingency_array.loc[dict(thresholds=threshold, contingency_cell="fa", type=pred.type.values)] = fa + 1 contingency_array.loc[dict(thresholds=threshold, contingency_cell="fb", type=pred.type.values)] = fb + 1 contingency_array.loc[dict(thresholds=threshold, contingency_cell="tb", type=pred.type.values)] = tb + 1 - logging.info(f"{station}: finished") return contingency_array def _single_contingency(self, obs, pred, threshold): -- GitLab