diff --git a/mlair/data_handler/data_handler_mixed_sampling.py b/mlair/data_handler/data_handler_mixed_sampling.py index c56499dc543fb3805b02a7353aa32598703d9ec3..c62e18f2b69c5cc33d1bd86f5f288b61f53cdaf3 100644 --- a/mlair/data_handler/data_handler_mixed_sampling.py +++ b/mlair/data_handler/data_handler_mixed_sampling.py @@ -218,7 +218,7 @@ class DataHandlerSeparationOfScalesSingleStation(DataHandlerMixedSamplingWithFil res_filter.append(data_filter.shift({dim: -w * delta})) res_filter = xr.concat(res_filter, dim=window_array).chunk() res.append(res_filter) - res = xr.concat(res, dim="filter") + res = xr.concat(res, dim="filter").compute() return res def estimate_filter_width(self): diff --git a/mlair/helpers/statistics.py b/mlair/helpers/statistics.py index 0b73bc27bf5621b4e6fb88bbd449d4002cd7f9ba..a8ba9795404e9f18a5ddb7449995fdc5a93eb409 100644 --- a/mlair/helpers/statistics.py +++ b/mlair/helpers/statistics.py @@ -669,8 +669,9 @@ class KolmogorovZurbenkoFilterMovingWindow(KolmogorovZurbenkoBaseClass): self.filter_dim: wl} iter_vars = df_itr.coords["variables"].values for var in iter_vars: - df_itr_var = df_itr.sel(variables=[var]).chunk() + df_itr_var = df_itr.sel(variables=[var]) for _ in np.arange(0, itr): + df_itr_var = df_itr_var.chunk() rolling = df_itr_var.rolling(**kwargs) if self.method == "median": df_mv_avg_tmp = rolling.median()