diff --git a/mlair/helpers/data_sources/data_loader.py b/mlair/helpers/data_sources/data_loader.py
index 7131c6b3fa4f340715c53e94163ce3e67ec40003..e906acac28d29871d3cef2ec377d1ca2da3ae1cf 100644
--- a/mlair/helpers/data_sources/data_loader.py
+++ b/mlair/helpers/data_sources/data_loader.py
@@ -85,6 +85,36 @@ class EmptyQueryResult(Exception):
     pass
 
 
+def get_data_with_query(opts: Dict, headers: Dict, as_json: bool = True, max_retries=5, timeout_base=60) -> bytes:
+    """
+    Download data from statistics rest api. This API is based on three steps: (1) post query and retrieve job id, (2)
+    read status of id until finished, (3) download data with job id.
+    """
+    url = create_url(**opts)
+    response_error = None
+    for retry in range(max_retries + 1):
+        time.sleep(random.random())
+        try:
+            timeout = timeout_base * (2 ** retry)
+            logging.info(f"connect (retry={retry}, timeout={timeout}) {url}")
+            start_time = time.time()
+            with TimeTracking(name=url):
+                session = retries_session(max_retries=0)
+                response = session.get(url, headers=headers, timeout=(5, 5))  # timeout=(open, read)
+                while (time.time() - start_time) < timeout:
+                    response = requests.get(response.json()["status"], timeout=(5, 5))
+                    if response.history:
+                        break
+                    time.sleep(2)
+                return response.content
+        except Exception as e:
+            time.sleep(retry)
+            logging.debug(f"There was an error for request {url}: {e}")
+            response_error = e
+        if retry + 1 >= max_retries:
+            raise EmptyQueryResult(f"There was an RetryError for request {url}: {response_error}")
+
+
 def get_data(opts: Dict, headers: Dict, as_json: bool = True, max_retries=5, timeout_base=60) -> Union[Dict, List, str]:
     """
     Download join data using requests framework.
diff --git a/mlair/helpers/data_sources/toar_data_v2.py b/mlair/helpers/data_sources/toar_data_v2.py
index 5d1cacc604f4288e48d12a72f8a24ba0d8b21fd1..3f2bc79d2bf3143452b30305692dd00f550ed930 100644
--- a/mlair/helpers/data_sources/toar_data_v2.py
+++ b/mlair/helpers/data_sources/toar_data_v2.py
@@ -10,10 +10,12 @@ from io import StringIO
 import pandas as pd
 import pytz
 from timezonefinder import TimezoneFinder
+from io import BytesIO
+import zipfile
 
 from mlair.configuration.toar_data_v2_settings import toar_data_v2_settings
 from mlair.helpers import to_list
-from mlair.helpers.data_sources.data_loader import EmptyQueryResult, get_data, correct_stat_name
+from mlair.helpers.data_sources.data_loader import EmptyQueryResult, get_data, correct_stat_name, get_data_with_query
 
 str_or_none = Union[str, None]
 
@@ -120,9 +122,9 @@ def prepare_meta(meta, sampling, stat_var, var):
     for m in meta:
         opts = {}
         if sampling == "daily":
-            opts["timeseries_id"] = m.pop("id")
+            opts["id"] = m.pop("id")
             m["id"] = None
-            opts["names"] = stat_var[var]
+            opts["statistics"] = stat_var[var]
             opts["sampling"] = sampling
         out.append(([m], opts))
     return out
@@ -167,17 +169,32 @@ def load_timeseries_data(timeseries_meta, url_base, opts, headers, sampling):
         series_id = meta["id"]
         # opts = {"base": url_base, "service": f"data/timeseries/{series_id}"}
         opts = {"base": url_base, "service": f"data/timeseries", "param_id": series_id, "format": "csv", **opts}
-        if sampling != "hourly":
+        if sampling == "hourly":
+            res = get_data(opts, headers, as_json=False)
+            data = extract_timeseries_data(res, "string")
+        else:
             opts["service"] = None
-        res = get_data(opts, headers, as_json=False)
-        data = pd.read_csv(StringIO(res), comment="#", index_col="datetime", parse_dates=True,
-                           infer_datetime_format=True)
+            opts["format"] = None
+            res = get_data_with_query(opts, headers, as_json=False)
+            data = extract_timeseries_data(res, "bytes")
         if len(data.index) > 0:
-            data = data[correct_stat_name(opts.get("names", "value"))].rename(meta["variable"]["name"])
+            data = data[correct_stat_name(opts.get("statistics", "value"))].rename(meta["variable"]["name"])
             coll.append(data)
     return coll
 
 
+def extract_timeseries_data(result, result_format):
+    if result_format == "string":
+        return pd.read_csv(StringIO(result), comment="#", index_col="datetime", parse_dates=True,
+                    infer_datetime_format=True)
+    elif result_format == "bytes":
+        with zipfile.ZipFile(BytesIO(result)) as file:
+            return pd.read_csv(BytesIO(file.read(file.filelist[0].filename)), comment="#", index_col="datetime",
+                               parse_dates=True)
+    else:
+        raise ValueError(f"Unknown result format given: {result_format}")
+
+
 def load_station_information(station_name: List[str], url_base: str, headers: Dict):
     # opts = {"base": url_base, "service": f"stationmeta/{station_name[0]}"}
     opts = {"base": url_base, "service": f"stationmeta", "param_id": station_name[0]}