diff --git a/mlair/data_handler/data_handler_wrf_chem.py b/mlair/data_handler/data_handler_wrf_chem.py
index c89442c0b4e19a0f523c89c31e3d7abd3c58065b..902d55ffe069dcc4937e644de5d7e6f72195ef65 100644
--- a/mlair/data_handler/data_handler_wrf_chem.py
+++ b/mlair/data_handler/data_handler_wrf_chem.py
@@ -311,18 +311,6 @@ class SingleGridColumnWrfChemDataLoader(BaseWrfChemDataLoader):
         self._nearest_coords = None
         self.external_coords_file = external_coords_file
 
-        # self.open_data()
-        #
-        # if self.physical_t_coord_name != self.time_dim_name:
-        #     self.assign_coords(
-        #         {self.physical_t_coord_name: (self.time_dim_name, self._data[self.physical_t_coord_name].values)})
-        #
-        # self._set_dims_as_coords()
-        # if external_coords_file is not None:
-        #     self._apply_external_coordinates()
-        # self.apply_staged_transormation()
-        # self.rechunk_data(self.rechunk_values)
-        # self._set_geoinfos()
         logging.debug("SingleGridColumnWrfChemDataLoader Initialised")
 
     def __enter__(self):
@@ -344,7 +332,6 @@ class SingleGridColumnWrfChemDataLoader(BaseWrfChemDataLoader):
         self.data.close()
         gc.collect()
 
-    @TimeTrackingWrapper
     def _set_geoinfos(self):
         # identify nearest coords
         self._set_nearest_icoords(dim=[self.logical_x_coord_name, self.logical_y_coord_name])
@@ -505,24 +492,18 @@ class DataHandlerSingleGridColumn(DataHandlerSingleStation):
         except ValueError as e:
             raise ValueError(f"Pass an iterable with two items; (station, path)")
         lat, lon = self.coord_str2coords(station)
-        with TimeTracking(name="Initialise loader (sgcWRFdh)"):
-            # preprocess_fkt_for_loader = self.preprocess_fkt_for_loader()
-
-            loader = SingleGridColumnWrfChemDataLoader((lat, lon),
-                                                       data_path=path,
-                                                       external_coords_file=self.external_coords_file,
-                                                       time_dim_name=self.time_dim,
-                                                       rechunk_values=self.rechunk_values,
-                                                       variables=self.variables,
-                                                       z_coord_selector=self._joint_z_coord_selector,
-                                                       start_time=self.start,
-                                                       end_time=self.end,
-
-                                                       # preprocess_open_mfdataset=preprocess_fkt_for_loader,
-                                                       )
+        loader = SingleGridColumnWrfChemDataLoader((lat, lon),
+                                                   data_path=path,
+                                                   external_coords_file=self.external_coords_file,
+                                                   time_dim_name=self.time_dim,
+                                                   rechunk_values=self.rechunk_values,
+                                                   variables=self.variables,
+                                                   z_coord_selector=self._joint_z_coord_selector,
+                                                   start_time=self.start,
+                                                   end_time=self.end,
+                                                   )
         self.__loader = loader
 
-    @TimeTrackingWrapper
     def load_data(self, path, station, statistics_per_var, sampling, station_type=None, network=None,
                   store_data_locally=False, data_origin: Dict = None, start=None, end=None):
 
@@ -540,11 +521,9 @@ class DataHandlerSingleGridColumn(DataHandlerSingleStation):
             # transpose dataarray: set first three fixed and keep remaining as is
             data = data.transpose(self.iter_dim, self.time_dim, self.target_dim, ...)
 
-            with ProgressBar(), TimeTracking(name="DataHandlerSingleGridColumn.load_data: compute data for slice_prep"):
+            with ProgressBar(), TimeTracking(name=f"{self.station}: compute data for slice_prep"):
                 data = dask.compute(self._slice_prep(data, start=start, end=end))[0]
-            # ToDo
-            # data should somehow look like this:
-            # < xarray.DataArray(Stations: 1, datetime: 7670, variables: 9) (From DataHandlerSingleStation)
+            # ToDo add metadata
             meta = None
 
         return data, meta
@@ -581,13 +560,6 @@ class DataHandlerSingleGridColumn(DataHandlerSingleStation):
         """
         return self.label.squeeze([self.iter_dim, self.target_dim]).transpose(self.time_dim, self.window_dim, ...).copy()
 
-    # def set_inputs_and_targets(self):
-    #     # inputs = self._data.sel({self.target_dim: helpers.to_list(self.variables)})
-    #     # targets = self._data.sel(
-    #     #     {self.target_dim: helpers.to_list(self.target_var)})  # ToDo: is it right to expand this dim??
-    #     # self.input_data = inputs
-    #     # self.target_data = targets
-    #     raise NotImplementedError
     @TimeTrackingWrapper
     def make_samples(self):
         self.make_history_window(self.target_dim, self.window_history_size, self.time_dim)
@@ -643,22 +615,6 @@ class DataHandlerSingleGridColumn(DataHandlerSingleStation):
         """
         return all(self._transformation)
 
-    # @TimeTrackingWrapper
-    # def setup_samples(self):
-    #     """
-    #     Setup samples. This method prepares and creates samples X, and labels Y.
-    #     """
-    #     data, self.meta = self.load_data(self.path, self.station, self.statistics_per_var, self.sampling,
-    #                                      self.station_type, self.network, self.store_data_locally, self.data_origin,
-    #                                      self.start, self.end)
-    #     self._data = self.interpolate(data, dim=self.time_dim, method=self.interpolation_method,
-    #                                   limit=self.interpolation_limit)
-    #     # self.set_inputs_and_targets()
-    #     # if self.do_transformation is True:
-    #     #     self.call_transform()
-    #     # self.make_samples()
-    #     raise NotImplementedError
-
 
 class DataHandlerWRF(DefaultDataHandler):
     """Data handler using DataHandlerSingleGridColumn."""
@@ -766,23 +722,14 @@ class DataHandlerSectorGrid(DataHandlerSingleGridColumn):
                                                                                    drop=True).values
                         sector_history.loc[{self.time_dim: time_index_of_sector}] = sec_data_history.sel(
                             {self.time_dim: time_index_of_sector}).values
-                        # sector_history = xr.where(sector_allocation.squeeze() == sect,
-                        #                           sec_data_history.sel({self.time_dim: sector_history[self.time_dim]}),
-                        #                           sector_history * 1.)
-
 
             sector_history = sector_history.assign_coords({self.target_dim: sector_history_var_names})
-                # with ProgressBar():
-                #     logging.info(f"compute `sector_history' for modify_history")
-                #     sector_history = sector_history.compute()
-
             combined_history = xr.concat([self.history, sector_history], dim=self.target_dim)
 
             return combined_history
         else:
             return self.history
 
-    @TimeTrackingWrapper
     def get_section_data_from_circle(self, grid_data, loader, sect, compute=True):
         sec_data = grid_data.where(
             self.windsector.is_in_sector(sect, loader.geo_infos.bearing.drop('points').squeeze()))
@@ -820,29 +767,20 @@ class DataHandlerSectorGrid(DataHandlerSingleGridColumn):
         else:
             return grid_data
 
-    @TimeTrackingWrapper
-    def apply_aggregation_method_on_sector_data(self, data, loader):
+    @staticmethod
+    def apply_aggregation_method_on_sector_data(data, loader):
         data = data.mean(dim=(loader.logical_x_coord_name, loader.logical_y_coord_name))
         return data
 
-    @TimeTrackingWrapper
     def compute_wind_dir_of_interest(self):
         wind_dir_of_intrest = self.history.sel({self.target_dim: self.wind_dir_name, self.window_dim: 0})
         return wind_dir_of_intrest
 
-    @TimeTrackingWrapper
     def get_applied_transdormation_on_wind_sector_edges(self):
         ws_edges = self._get_left_and_right_wind_sector_edges(return_as='xr.da', dim=self.wind_sector_edge_dim_name)
         ws_edges = self.apply_transformation_on_data(ws_edges)
         return ws_edges
 
-    # def set_inputs_and_targets(self):
-    #     inputs = self._data.sel({self.target_dim: helpers.to_list(self.variables) + helpers.to_list(self.sector_dim_name)})
-    #     targets = self._data.sel(
-    #         {self.target_dim: helpers.to_list(self.target_var)})  # ToDo: is it right to expand this dim??
-    #     self.input_data = inputs
-    #     self.target_data = targets
-
 
 class DataHandlerMainSectWRF(DefaultDataHandler):
     """Data handler using DataHandlerSectorGrid."""