import keras import pytest from src.helpers import PyTestRegex from src.model_modules.advanced_paddings import ReflectionPadding2D, SymmetricPadding2D from src.model_modules.inception_model import InceptionModelBase class TestInceptionModelBase: @pytest.fixture def base(self): return InceptionModelBase() @pytest.fixture def input_x(self): return keras.Input(shape=(32, 32, 3)) @staticmethod def step_in(element, depth=1): for _ in range(depth): element = element.input._keras_history[0] return element def test_init(self, base): assert base.number_of_blocks == 0 assert base.part_of_block == 0 assert base.ord_base == 96 assert base.act_number == 0 def test_block_part_name(self, base): assert base.block_part_name() == chr(96) base.part_of_block += 1 assert base.block_part_name() == 'a' def test_create_conv_tower_3x3(self, base, input_x): opts = {'input_x': input_x, 'reduction_filter': 64, 'tower_filter': 32, 'tower_kernel': (3, 3), 'padding': 'SymPad2D'} tower = base.create_conv_tower(**opts) # check last element of tower (activation) assert base.part_of_block == 1 assert tower.name == 'Block_0a_act_2/Relu:0' act_layer = tower._keras_history[0] assert isinstance(act_layer, keras.layers.advanced_activations.ReLU) assert act_layer.name == "Block_0a_act_2" # check previous element of tower (conv2D) conv_layer = self.step_in(act_layer) assert isinstance(conv_layer, keras.layers.Conv2D) assert conv_layer.filters == 32 assert conv_layer.padding == 'valid' assert conv_layer.kernel_size == (3, 3) assert conv_layer.strides == (1, 1) assert conv_layer.name == "Block_0a_3x3" # check previous element of tower (padding) pad_layer = self.step_in(conv_layer) assert isinstance(pad_layer, SymmetricPadding2D) assert pad_layer.padding == ((1, 1), (1, 1)) assert pad_layer.name == 'Block_0a_Pad' # check previous element of tower (activation) act_layer2 = self.step_in(pad_layer) assert isinstance(act_layer2, keras.layers.advanced_activations.ReLU) assert act_layer2.name == "Block_0a_act_1" # check previous element of tower (conv2D) conv_layer2 = self.step_in(act_layer2) assert isinstance(conv_layer2, keras.layers.Conv2D) assert conv_layer2.filters == 64 assert conv_layer2.kernel_size == (1, 1) assert conv_layer2.padding == 'valid' assert conv_layer2.name == 'Block_0a_1x1' assert conv_layer2.input._keras_shape == (None, 32, 32, 3) def test_create_conv_tower_3x3_batch_norm(self, base, input_x): # import keras opts = {'input_x': input_x, 'reduction_filter': 64, 'tower_filter': 32, 'tower_kernel': (3, 3), 'padding': 'SymPad2D', 'batch_normalisation': True} tower = base.create_conv_tower(**opts) # check last element of tower (activation) assert base.part_of_block == 1 # assert tower.name == 'Block_0a_act_2/Relu:0' assert tower.name == 'Block_0a_act_2_1/Relu:0' act_layer = tower._keras_history[0] assert isinstance(act_layer, keras.layers.advanced_activations.ReLU) assert act_layer.name == "Block_0a_act_2" # check previous element of tower (batch_normal) batch_layer = self.step_in(act_layer) assert isinstance(batch_layer, keras.layers.BatchNormalization) assert batch_layer.name == 'Block_0a_BN' # check previous element of tower (conv2D) conv_layer = self.step_in(batch_layer) assert isinstance(conv_layer, keras.layers.Conv2D) assert conv_layer.filters == 32 assert conv_layer.padding == 'valid' assert conv_layer.kernel_size == (3, 3) assert conv_layer.strides == (1, 1) assert conv_layer.name == "Block_0a_3x3" # check previous element of tower (padding) pad_layer = self.step_in(conv_layer) assert isinstance(pad_layer, SymmetricPadding2D) assert pad_layer.padding == ((1, 1), (1, 1)) assert pad_layer.name == 'Block_0a_Pad' # check previous element of tower (activation) act_layer2 = self.step_in(pad_layer) assert isinstance(act_layer2, keras.layers.advanced_activations.ReLU) assert act_layer2.name == "Block_0a_act_1" # check previous element of tower (conv2D) conv_layer2 = self.step_in(act_layer2) assert isinstance(conv_layer2, keras.layers.Conv2D) assert conv_layer2.filters == 64 assert conv_layer2.kernel_size == (1, 1) assert conv_layer2.padding == 'valid' assert conv_layer2.name == 'Block_0a_1x1' assert conv_layer2.input._keras_shape == (None, 32, 32, 3) def test_create_conv_tower_3x3_activation(self, base, input_x): opts = {'input_x': input_x, 'reduction_filter': 64, 'tower_filter': 32, 'tower_kernel': (3, 3)} # create tower with standard activation function tower = base.create_conv_tower(activation='tanh', **opts) assert tower.name == 'Block_0a_act_2_tanh/Tanh:0' act_layer = tower._keras_history[0] assert isinstance(act_layer, keras.layers.core.Activation) assert act_layer.name == "Block_0a_act_2_tanh" # create tower with activation function class tower = base.create_conv_tower(activation=keras.layers.LeakyReLU, **opts) assert tower.name == 'Block_0b_act_2/LeakyRelu:0' act_layer = tower._keras_history[0] assert isinstance(act_layer, keras.layers.advanced_activations.LeakyReLU) assert act_layer.name == "Block_0b_act_2" def test_create_conv_tower_1x1(self, base, input_x): opts = {'input_x': input_x, 'reduction_filter': 64, 'tower_filter': 32, 'tower_kernel': (1, 1)} tower = base.create_conv_tower(**opts) # check last element of tower (activation) assert base.part_of_block == 1 assert tower.name == 'Block_0a_act_1_2/Relu:0' act_layer = tower._keras_history[0] assert isinstance(act_layer, keras.layers.advanced_activations.ReLU) assert act_layer.name == "Block_0a_act_1" # check previous element of tower (conv2D) conv_layer = self.step_in(act_layer) assert isinstance(conv_layer, keras.layers.Conv2D) assert conv_layer.filters == 32 assert conv_layer.padding == 'valid' assert conv_layer.kernel_size == (1, 1) assert conv_layer.strides == (1, 1) assert conv_layer.name == "Block_0a_1x1" assert conv_layer.input._keras_shape == (None, 32, 32, 3) def test_create_conv_towers(self, base, input_x): opts = {'input_x': input_x, 'reduction_filter': 64, 'tower_filter': 32, 'tower_kernel': (3, 3)} _ = base.create_conv_tower(**opts) tower = base.create_conv_tower(**opts) assert base.part_of_block == 2 assert tower.name == 'Block_0b_act_2_1/Relu:0' def test_create_pool_tower(self, base, input_x): opts = {'input_x': input_x, 'pool_kernel': (3, 3), 'tower_filter': 32} tower = base.create_pool_tower(**opts) # check last element of tower (activation) assert base.part_of_block == 1 assert tower.name == 'Block_0a_act_1_4/Relu:0' act_layer = tower._keras_history[0] assert isinstance(act_layer, keras.layers.advanced_activations.ReLU) assert act_layer.name == "Block_0a_act_1" # check previous element of tower (conv2D) conv_layer = self.step_in(act_layer) assert isinstance(conv_layer, keras.layers.Conv2D) assert conv_layer.filters == 32 assert conv_layer.padding == 'valid' assert conv_layer.kernel_size == (1, 1) assert conv_layer.strides == (1, 1) assert conv_layer.name == "Block_0a_1x1" # check previous element of tower (maxpool) pool_layer = self.step_in(conv_layer) assert isinstance(pool_layer, keras.layers.pooling.MaxPooling2D) assert pool_layer.name == "Block_0a_MaxPool" assert pool_layer.pool_size == (3, 3) assert pool_layer.padding == 'valid' # check previous element of tower(padding) pad_layer = self.step_in(pool_layer) assert isinstance(pad_layer, keras.layers.convolutional.ZeroPadding2D) assert pad_layer.name == "Block_0a_Pad" assert pad_layer.padding == ((1, 1), (1, 1)) # check avg pool tower opts = {'input_x': input_x, 'pool_kernel': (3, 3), 'tower_filter': 32} tower = base.create_pool_tower(max_pooling=False, **opts) pool_layer = self.step_in(tower._keras_history[0], depth=2) assert isinstance(pool_layer, keras.layers.pooling.AveragePooling2D) assert pool_layer.name == "Block_0b_AvgPool" assert pool_layer.pool_size == (3, 3) assert pool_layer.padding == 'valid' def test_inception_block(self, base, input_x): conv = {'tower_1': {'reduction_filter': 64, 'tower_kernel': (3, 3), 'tower_filter': 64, }, 'tower_2': {'reduction_filter': 64, 'tower_kernel': (5, 5), 'tower_filter': 64, 'activation': 'tanh', 'padding': 'SymPad2D', }, } pool = {'pool_kernel': (3, 3), 'tower_filter': 64, 'padding': ReflectionPadding2D} opts = {'input_x': input_x, 'tower_conv_parts': conv, 'tower_pool_parts': pool} block = base.inception_block(**opts) assert base.number_of_blocks == 1 concatenated = block._keras_history[0].input assert len(concatenated) == 4 block_1a, block_1b, block_pool1, block_pool2 = concatenated # keras_name_part_split assert block_1a.name == PyTestRegex(r'Block_1a_act_2(_\d*)?/Relu:0') assert block_1b.name == PyTestRegex(r'Block_1b_act_2_tanh(_\d*)?/Tanh:0') assert block_pool1.name == PyTestRegex(r'Block_1c_act_1(_\d*)?/Relu:0') assert block_pool2.name == PyTestRegex(r'Block_1d_act_1(_\d*)?/Relu:0') assert self.step_in(block_1a._keras_history[0]).name == "Block_1a_3x3" assert self.step_in(block_1b._keras_history[0]).name == "Block_1b_5x5" assert self.step_in(block_1a._keras_history[0], depth=2).name == 'Block_1a_Pad' assert isinstance(self.step_in(block_1a._keras_history[0], depth=2), keras.layers.ZeroPadding2D) assert self.step_in(block_1b._keras_history[0], depth=2).name == 'Block_1b_Pad' assert isinstance(self.step_in(block_1b._keras_history[0], depth=2), SymmetricPadding2D) # pooling assert isinstance(self.step_in(block_pool1._keras_history[0], depth=2), keras.layers.pooling.MaxPooling2D) assert self.step_in(block_pool1._keras_history[0], depth=3).name == 'Block_1c_Pad' assert isinstance(self.step_in(block_pool1._keras_history[0], depth=3), ReflectionPadding2D) assert isinstance(self.step_in(block_pool2._keras_history[0], depth=2), keras.layers.pooling.AveragePooling2D) assert self.step_in(block_pool2._keras_history[0], depth=3).name == 'Block_1d_Pad' assert isinstance(self.step_in(block_pool2._keras_history[0], depth=3), ReflectionPadding2D) # check naming of concat layer assert block.name == PyTestRegex('Block_1_Co(_\d*)?/concat:0') assert block._keras_history[0].name == 'Block_1_Co' assert isinstance(block._keras_history[0], keras.layers.merge.Concatenate) # next block opts['input_x'] = block opts['tower_pool_parts']['max_pooling'] = True block = base.inception_block(**opts) assert base.number_of_blocks == 2 concatenated = block._keras_history[0].input assert len(concatenated) == 3 block_2a, block_2b, block_pool = concatenated assert block_2a.name == PyTestRegex(r'Block_2a_act_2(_\d*)?/Relu:0') assert block_2b.name == PyTestRegex(r'Block_2b_act_2_tanh(_\d*)?/Tanh:0') assert block_pool.name == PyTestRegex(r'Block_2c_act_1(_\d*)?/Relu:0') assert self.step_in(block_2a._keras_history[0]).name == "Block_2a_3x3" assert self.step_in(block_2a._keras_history[0], depth=2).name == "Block_2a_Pad" assert isinstance(self.step_in(block_2a._keras_history[0], depth=2), keras.layers.ZeroPadding2D) # block 2b assert self.step_in(block_2b._keras_history[0]).name == "Block_2b_5x5" assert self.step_in(block_2b._keras_history[0], depth=2).name == "Block_2b_Pad" assert isinstance(self.step_in(block_2b._keras_history[0], depth=2), SymmetricPadding2D) # block pool assert isinstance(self.step_in(block_pool._keras_history[0], depth=2), keras.layers.pooling.MaxPooling2D) assert self.step_in(block_pool._keras_history[0], depth=3).name == 'Block_2c_Pad' assert isinstance(self.step_in(block_pool._keras_history[0], depth=3), ReflectionPadding2D) # check naming of concat layer assert block.name == PyTestRegex(r'Block_2_Co(_\d*)?/concat:0') assert block._keras_history[0].name == 'Block_2_Co' assert isinstance(block._keras_history[0], keras.layers.merge.Concatenate) def test_inception_block_invalid_batchnorm(self, base, input_x): conv = {'tower_1': {'reduction_filter': 64, 'tower_kernel': (3, 3), 'tower_filter': 64, }, 'tower_2': {'reduction_filter': 64, 'tower_kernel': (5, 5), 'tower_filter': 64, 'activation': 'tanh', 'padding': 'SymPad2D', }, } pool = {'pool_kernel': (3, 3), 'tower_filter': 64, 'padding': ReflectionPadding2D, 'max_pooling': 'yes'} opts = {'input_x': input_x, 'tower_conv_parts': conv, 'tower_pool_parts': pool, } with pytest.raises(AttributeError) as einfo: block = base.inception_block(**opts) assert "max_pooling has to be either a bool or empty. Given was: yes" in str(einfo.value) def test_batch_normalisation(self, base, input_x): base.part_of_block += 1 bn = base.batch_normalisation(input_x)._keras_history[0] assert isinstance(bn, keras.layers.normalization.BatchNormalization) assert bn.name == "Block_0a_BN"