import logging from typing import Any, Tuple, Dict, List from src.data_generator import DataGenerator from src.helpers import TimeTracking from src.modules.run_environment import RunEnvironment from src.datastore import NameNotFoundInDataStore, NameNotFoundInScope from src.join import EmptyQueryResult DEFAULT_ARGS_LIST = ["data_path", "network", "stations", "variables", "interpolate_dim", "target_dim", "target_var"] DEFAULT_KWARGS_LIST = ["limit_nan_fill", "window_history", "window_lead_time", "statistics_per_var", "station_type"] class PreProcessing(RunEnvironment): """ Pre-process your data by using this class. It includes time tracking and uses the experiment setup to look for data and stores it if not already in local disk. Further, it provides this data as a generator and checks for valid stations (in this context: valid=data available). Finally, it splits the data into valid training, validation and testing subsets. """ def __init__(self): # create run framework super().__init__() # self._run() def _create_args_dict(self, arg_list, scope="general"): args = {} for arg in arg_list: try: args[arg] = self.data_store.get(arg, scope) except (NameNotFoundInDataStore, NameNotFoundInScope): pass return args def _run(self): args = self._create_args_dict(DEFAULT_ARGS_LIST) kwargs = self._create_args_dict(DEFAULT_KWARGS_LIST) valid_stations = self.check_valid_stations(args, kwargs, self.data_store.get("stations", "general")) self.data_store.put("stations", valid_stations, "general") self.split_train_val_test() def split_train_val_test(self): fraction_of_training = self.data_store.get("fraction_of_training", "general") stations = self.data_store.get("stations", "general") train_index, val_index, test_index = self.split_set_indices(len(stations), fraction_of_training) for (ind, scope) in zip([train_index, val_index, test_index], ["train", "val", "test"]): self.create_set_split(ind, scope) @staticmethod def split_set_indices(total_length: int, fraction: float) -> Tuple[slice, slice, slice]: """ create the training, validation and test subset slice indices for given total_length. The test data consists on (1-fraction) of total_length (fraction*len:end). Train and validation data therefore are made from fraction of total_length (0:fraction*len). Train and validation data is split by the factor 0.8 for train and 0.2 for validation. :param total_length: list with all objects to split :param fraction: ratio between test and union of train/val data :return: slices for each subset in the order: train, val, test """ pos_test_split = int(total_length * fraction) train_index = slice(0, int(pos_test_split * 0.8)) val_index = slice(int(pos_test_split * 0.8), pos_test_split) test_index = slice(pos_test_split, total_length) return train_index, val_index, test_index def create_set_split(self, index_list, set_name): scope = f"general.{set_name}" args = self._create_args_dict(DEFAULT_ARGS_LIST, scope) kwargs = self._create_args_dict(DEFAULT_KWARGS_LIST, scope) stations = args["stations"] if self.data_store.get("use_all_stations_on_all_data_sets", scope): set_stations = stations else: set_stations = stations[index_list] logging.debug(f"{set_name.capitalize()} stations (len={len(set_stations)}): {set_stations}") set_stations = self.check_valid_stations(args, kwargs, set_stations) self.data_store.put("stations", set_stations, scope) set_args = self._create_args_dict(DEFAULT_ARGS_LIST, scope) data_set = DataGenerator(**set_args, **kwargs) self.data_store.put("generator", data_set, scope) @staticmethod def check_valid_stations(args: Dict, kwargs: Dict, all_stations: List[str]): """ Check if all given stations in `all_stations` are valid. Valid means, that there is data available for the given time range (is included in `kwargs`). The shape and the loading time are logged in debug mode. :param args: Dictionary with required parameters for DataGenerator class (`data_path`, `network`, `stations`, `variables`, `interpolate_dim`, `target_dim`, `target_var`). :param kwargs: positional parameters for the DataGenerator class (e.g. `start`, `interpolate_method`, `window_lead_time`). :param all_stations: All stations to check. :return: Corrected list containing only valid station IDs. """ t_outer = TimeTracking() t_inner = TimeTracking(start=False) logging.info("check valid stations started") valid_stations = [] # all required arguments of the DataGenerator can be found in args, positional arguments in args and kwargs data_gen = DataGenerator(**args, **kwargs) for station in all_stations: t_inner.run() try: (history, label) = data_gen[station] valid_stations.append(station) logging.debug(f"{station}: history_shape = {history.shape}") logging.debug(f"{station}: loading time = {t_inner}") except (AttributeError, EmptyQueryResult): continue logging.info(f"run for {t_outer} to check {len(all_stations)} station(s). Found {len(valid_stations)}/" f"{len(all_stations)} valid stations.") return valid_stations