__author__ = "Lukas Leufen" __date__ = '2020-06-29' import argparse from mlair.workflows import DefaultWorkflow from mlair.helpers import remove_items from mlair.configuration.defaults import DEFAULT_PLOT_LIST from mlair.model_modules.model_class import IntelliO3_ts_architecture, IntelliO3_ts_architecture_finetune_all_dense, \ IntelliO3_ts_architecture_finetune_outputs, IntelliO3_ts_architecture_finetune_main_output import os def load_stations(): import json try: filename = 'supplement/station_list_north_german_plain_rural.json' with open(filename, 'r') as jfile: stations = json.load(jfile) except FileNotFoundError: stations = None return stations def main(parser_args): plots = remove_items(DEFAULT_PLOT_LIST, "PlotConditionalQuantiles") workflow = DefaultWorkflow( # stations=load_stations(), stations=["DEBW087", "DEBW013", "DEBW107", "DEBW076"], #stations=["DEBW013", "DEBW087"], epochs=1, external_weights="/home/vincentgramlich/mlair/data/weights/testrun_network_daily_model-best.h5", train_model=True, create_new_model=True, network="UBA", model=IntelliO3_ts_architecture_finetune_all_dense, window_lead_time=1, #oversampling_method="bin_oversampling", oversampling_bins=10, oversampling_rates_cap=100, window_lead_time=2, evaluate_bootstraps=False, plot_list=["PlotContingency"], competitors=["withoutfinetuning"], competitor_path=os.path.join(os.getcwd(), "data", "competitors", "o3"), **parser_args.__dict__, start_script=__file__) workflow.run() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--experiment_date', metavar='--exp_date', type=str, default="testrun", help="set experiment date as string") args = parser.parse_args() main(args)