__author__ = "Lukas Leufen" __date__ = '2020-06-29' import argparse from mlair.workflows import DefaultWorkflowHPC from mlair.helpers import remove_items from mlair.configuration.defaults import DEFAULT_PLOT_LIST from mlair.model_modules.model_class import IntelliO3_ts_architecture import os def load_stations(external_station_list=None): import json if external_station_list is None: external_station_list = 'supplement/station_list_north_german_plain_rural.json' try: filename = external_station_list with open(filename, 'r') as jfile: stations = json.load(jfile) except FileNotFoundError: stations = None return stations def main(parser_args): plots = remove_items(DEFAULT_PLOT_LIST, "PlotConditionalQuantiles") workflow = DefaultWorkflowHPC(#stations=load_stations('supplement/German_background_stations.json'), stations=["DEBW013", "DEBW087", "DEBW107", "DEBW076"], epochs=1, train_model=True, create_new_model=True, network="UBA", #model=IntelliO3_ts_architecture, oversampling_method="bin_oversampling", evaluate_bootstraps=False, plot_list=["PlotOversamplingContingency"], competitors=["intellitest"], #competitor_path="/p/project/deepacf/intelliaq/gramlich1/mlair/competitors/o3", window_lead_time=1, oversampling_bins=2, oversampling_rates_cap=2, **parser_args.__dict__) workflow.run() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--experiment_date', metavar='--exp_date', type=str, default="testrun", help="set experiment date as string") args = parser.parse_args() main(args)