import keras import pytest from keras.callbacks import ModelCheckpoint, History import mock import os import json import shutil import logging import glob from src.inception_model import InceptionModelBase from src.flatten import flatten_tail from src.modules.training import Training from src.modules.run_environment import RunEnvironment from src.data_handling.data_distributor import Distributor from src.data_handling.data_generator import DataGenerator from src.helpers import LearningRateDecay, PyTestRegex def my_test_model(activation, window_history_size, channels, dropout_rate, add_minor_branch=False): inception_model = InceptionModelBase() conv_settings_dict1 = { 'tower_1': {'reduction_filter': 8, 'tower_filter': 8 * 2, 'tower_kernel': (3, 1), 'activation': activation}, 'tower_2': {'reduction_filter': 8, 'tower_filter': 8 * 2, 'tower_kernel': (5, 1), 'activation': activation}, } pool_settings_dict1 = {'pool_kernel': (3, 1), 'tower_filter': 8 * 2, 'activation': activation} X_input = keras.layers.Input(shape=(window_history_size + 1, 1, channels)) X_in = inception_model.inception_block(X_input, conv_settings_dict1, pool_settings_dict1) if add_minor_branch: out = [flatten_tail(X_in, 'Minor_1', activation=activation)] else: out = [] X_in = keras.layers.Dropout(dropout_rate)(X_in) out.append(flatten_tail(X_in, 'Main', activation=activation)) return keras.Model(inputs=X_input, outputs=out) class TestTraining: @pytest.fixture def init_without_run(self, path, model, checkpoint): obj = object.__new__(Training) super(Training, obj).__init__() obj.model = model obj.train_set = None obj.val_set = None obj.test_set = None obj.batch_size = 256 obj.epochs = 2 obj.checkpoint = checkpoint obj.lr_sc = LearningRateDecay() obj.experiment_name = "TestExperiment" obj.data_store.put("generator", mock.MagicMock(return_value="mock_train_gen"), "general.train") obj.data_store.put("generator", mock.MagicMock(return_value="mock_val_gen"), "general.val") obj.data_store.put("generator", mock.MagicMock(return_value="mock_test_gen"), "general.test") os.makedirs(path) obj.data_store.put("experiment_path", path, "general") obj.data_store.put("experiment_name", "TestExperiment", "general") path_plot = os.path.join(path, "plots") os.makedirs(path_plot) obj.data_store.put("plot_path", path_plot, "general") yield obj if os.path.exists(path): shutil.rmtree(path) RunEnvironment().__del__() @pytest.fixture def learning_rate(self): return {"lr": [0.01, 0.0094]} @pytest.fixture def init_with_lr(self, init_without_run, learning_rate): init_without_run.lr_sc.lr = learning_rate return init_without_run @pytest.fixture def history(self): h = History() h.epoch = [0, 1] h.history = {'val_loss': [0.5586272982587484, 0.45712877659670287], 'val_mean_squared_error': [0.5586272982587484, 0.45712877659670287], 'val_mean_absolute_error': [0.595368885413389, 0.530547587585537], 'loss': [0.6795708956961347, 0.45963566494176616], 'mean_squared_error': [0.6795708956961347, 0.45963566494176616], 'mean_absolute_error': [0.6523177288928538, 0.5363963260296364]} return h @pytest.fixture def path(self): return os.path.join(os.path.dirname(__file__), "TestExperiment") @pytest.fixture def generator(self, path): return DataGenerator(os.path.join(os.path.dirname(__file__), 'data'), 'AIRBASE', ['DEBW107'], ['o3', 'temp'], 'datetime', 'variables', 'o3', statistics_per_var={'o3': 'dma8eu', 'temp': 'maximum'}) @pytest.fixture def model(self): return my_test_model(keras.layers.PReLU, 7, 2, 0.1, False) @pytest.fixture def checkpoint(self, path): return ModelCheckpoint(os.path.join(path, "model_checkpoint"), monitor='val_loss', save_best_only=True) @pytest.fixture def ready_to_train(self, generator, init_without_run): init_without_run.train_set = Distributor(generator, init_without_run.model, init_without_run.batch_size) init_without_run.val_set = Distributor(generator, init_without_run.model, init_without_run.batch_size) init_without_run.model.compile(optimizer=keras.optimizers.SGD(), loss=keras.losses.mean_absolute_error) return init_without_run @pytest.fixture def ready_to_run(self, generator, init_without_run): obj = init_without_run obj.data_store.put("generator", generator, "general.train") obj.data_store.put("generator", generator, "general.val") obj.data_store.put("generator", generator, "general.test") obj.model.compile(optimizer=keras.optimizers.SGD(), loss=keras.losses.mean_absolute_error) return obj @pytest.fixture def ready_to_init(self, generator, model, checkpoint, path): os.makedirs(path) obj = RunEnvironment() obj.data_store.put("generator", generator, "general.train") obj.data_store.put("generator", generator, "general.val") obj.data_store.put("generator", generator, "general.test") model.compile(optimizer=keras.optimizers.SGD(), loss=keras.losses.mean_absolute_error) obj.data_store.put("model", model, "general.model") obj.data_store.put("batch_size", 256, "general.model") obj.data_store.put("epochs", 2, "general.model") obj.data_store.put("checkpoint", checkpoint, "general.model") obj.data_store.put("lr_decay", LearningRateDecay(), "general.model") obj.data_store.put("experiment_name", "TestExperiment", "general") obj.data_store.put("experiment_path", path, "general") path_plot = os.path.join(path, "plots") os.makedirs(path_plot) obj.data_store.put("plot_path", path_plot, "general") yield obj if os.path.exists(path): shutil.rmtree(path) def test_init(self, ready_to_init): assert isinstance(Training(), Training) # just test, if nothing fails def test_run(self, ready_to_run): assert ready_to_run._run() is None # just test, if nothing fails def test_make_predict_function(self, init_without_run): assert hasattr(init_without_run.model, "predict_function") is False init_without_run.make_predict_function() assert hasattr(init_without_run.model, "predict_function") def test_set_gen(self, init_without_run): assert init_without_run.train_set is None init_without_run._set_gen("train") assert isinstance(init_without_run.train_set, Distributor) assert init_without_run.train_set.generator.return_value == "mock_train_gen" def test_set_generators(self, init_without_run): sets = ["train", "val", "test"] assert all([getattr(init_without_run, f"{obj}_set") is None for obj in sets]) init_without_run.set_generators() assert not all([getattr(init_without_run, f"{obj}_set") is None for obj in sets]) assert all([getattr(init_without_run, f"{obj}_set").generator.return_value == f"mock_{obj}_gen" for obj in sets]) def test_train(self, ready_to_train, path): assert not hasattr(ready_to_train.model, "history") assert len(glob.glob(os.path.join(path, "plots", "TestExperiment_history_*.pdf"))) == 0 ready_to_train.train() assert list(ready_to_train.model.history.history.keys()) == ["val_loss", "loss"] assert ready_to_train.model.history.epoch == [0, 1] assert len(glob.glob(os.path.join(path, "plots", "TestExperiment_history_*.pdf"))) == 2 def test_save_model(self, init_without_run, path, caplog): caplog.set_level(logging.DEBUG) model_name = "TestExperiment_my_model.h5" assert model_name not in os.listdir(path) init_without_run.save_model() assert caplog.record_tuples[0] == ("root", 10, PyTestRegex(f"save best model to {os.path.join(path, model_name)}")) assert model_name in os.listdir(path) def test_load_best_model_no_weights(self, init_without_run, caplog): caplog.set_level(logging.DEBUG) init_without_run.load_best_model("notExisting") assert caplog.record_tuples[0] == ("root", 10, PyTestRegex("load best model: notExisting")) assert caplog.record_tuples[1] == ("root", 20, PyTestRegex("no weights to reload...")) def test_save_callbacks_history_created(self, init_without_run, history, path): init_without_run.save_callbacks(history) assert "history.json" in os.listdir(path) def test_save_callbacks_lr_created(self, init_with_lr, history, path): init_with_lr.save_callbacks(history) assert "history_lr.json" in os.listdir(path) def test_save_callbacks_inspect_history(self, init_without_run, history, path): init_without_run.save_callbacks(history) with open(os.path.join(path, "history.json")) as jfile: hist = json.load(jfile) assert hist == history.history def test_save_callbacks_inspect_lr(self, init_with_lr, history, path): init_with_lr.save_callbacks(history) with open(os.path.join(path, "history_lr.json")) as jfile: lr = json.load(jfile) assert lr == init_with_lr.lr_sc.lr def test_create_monitoring_plots(self, init_without_run, learning_rate, history, path): assert len(glob.glob(os.path.join(path, "plots", "TestExperiment_history_*.pdf"))) == 0 init_without_run.create_monitoring_plots(history, learning_rate) assert len(glob.glob(os.path.join(path, "plots", "TestExperiment_history_*.pdf"))) == 2