__author__ = "Lukas Leufen, Felix Kleinert" __date__ = '2019-12-11' import logging import os import numpy as np import pandas as pd import xarray as xr import keras from src.run_modules.run_environment import RunEnvironment from src.data_handling.data_distributor import Distributor from src.data_handling.data_generator import DataGenerator from src.model_modules.linear_model import OrdinaryLeastSquaredModel from src import statistics from src.plotting.postprocessing_plotting import plot_conditional_quantiles from src.plotting.postprocessing_plotting import PlotMonthlySummary, PlotStationMap, PlotClimatologicalSkillScore, \ PlotCompetitiveSkillScore, PlotTimeSeries from src.datastore import NameNotFoundInDataStore from src.helpers import TimeTracking class PostProcessing(RunEnvironment): def __init__(self): super().__init__() self.model: keras.Model = self._load_model() self.ols_model = None self.batch_size: int = self.data_store.get_default("batch_size", "general.model", 64) self.test_data: DataGenerator = self.data_store.get("generator", "general.test") self.test_data_distributed = Distributor(self.test_data, self.model, self.batch_size) self.train_data: DataGenerator = self.data_store.get("generator", "general.train") self.train_val_data: DataGenerator = self.data_store.get("generator", "general.train_val") self.plot_path: str = self.data_store.get("plot_path", "general") self.skill_scores = None self._run() def _run(self): with TimeTracking(): self.train_ols_model() logging.info("take a look on the next reported time measure. If this increases a lot, one should think to " "skip make_prediction() whenever it is possible to save time.") with TimeTracking(): self.make_prediction() logging.info("take a look on the next reported time measure. If this increases a lot, one should think to " "skip make_prediction() whenever it is possible to save time.") self.skill_scores = self.calculate_skill_scores() self.plot() def _load_model(self): try: model = self.data_store.get("best_model", "general") except NameNotFoundInDataStore: logging.info("no model saved in data store. trying to load model from experiment") path = self.data_store.get("experiment_path", "general") name = f"{self.data_store.get('experiment_name', 'general')}_my_model.h5" model_name = os.path.join(path, name) model = keras.models.load_model(model_name) return model def plot(self): logging.debug("Run plotting routines...") path = self.data_store.get("forecast_path", "general") target_var = self.data_store.get("target_var", "general") plot_conditional_quantiles(self.test_data.stations, pred_name="CNN", ref_name="orig", forecast_path=path, plot_name_affix="cali-ref", plot_folder=self.plot_path) plot_conditional_quantiles(self.test_data.stations, pred_name="orig", ref_name="CNN", forecast_path=path, plot_name_affix="like-bas", plot_folder=self.plot_path) PlotStationMap(generators={'b': self.test_data}, plot_folder=self.plot_path) PlotMonthlySummary(self.test_data.stations, path, r"forecasts_%s_test.nc", target_var, plot_folder=self.plot_path) PlotClimatologicalSkillScore(self.skill_scores[1], plot_folder=self.plot_path, model_setup="CNN") PlotClimatologicalSkillScore(self.skill_scores[1], plot_folder=self.plot_path, score_only=False, extra_name_tag="all_terms_", model_setup="CNN") PlotCompetitiveSkillScore(self.skill_scores[0], plot_folder=self.plot_path, model_setup="CNN") PlotTimeSeries(self.test_data.stations, path, r"forecasts_%s_test.nc", plot_folder=self.plot_path) def calculate_test_score(self): test_score = self.model.evaluate_generator(generator=self.test_data_distributed.distribute_on_batches(), use_multiprocessing=False, verbose=0, steps=1) logging.info(f"test score = {test_score}") self._save_test_score(test_score) def _save_test_score(self, score): path = self.data_store.get("experiment_path", "general") with open(os.path.join(path, "test_scores.txt")) as f: for index, item in enumerate(score): f.write(f"{self.model.metrics[index]}, {item}\n") def train_ols_model(self): self.ols_model = OrdinaryLeastSquaredModel(self.train_data) def make_prediction(self, freq="1D"): logging.debug("start make_prediction") for i, _ in enumerate(self.test_data): data = self.test_data.get_data_generator(i) nn_prediction, persistence_prediction, ols_prediction = self._create_empty_prediction_arrays(data, count=3) input_data = data.get_transposed_history() # get scaling parameters mean, std, transformation_method = data.get_transformation_information(variable='o3') # nn forecast nn_prediction = self._create_nn_forecast(input_data, nn_prediction, mean, std, transformation_method) # persistence persistence_prediction = self._create_persistence_forecast(input_data, persistence_prediction, mean, std, transformation_method) # ols ols_prediction = self._create_ols_forecast(input_data, ols_prediction, mean, std, transformation_method) # orig pred orig_pred = self._create_orig_forecast(data, None, mean, std, transformation_method) # merge all predictions full_index = self.create_fullindex(data.data.indexes['datetime'], freq) all_predictions = self.create_forecast_arrays(full_index, list(data.label.indexes['window']), CNN=nn_prediction, persi=persistence_prediction, orig=orig_pred, OLS=ols_prediction) # save all forecasts locally path = self.data_store.get("forecast_path", "general") file = os.path.join(path, f"forecasts_{data.station[0]}_test.nc") all_predictions.to_netcdf(file) @staticmethod def _create_orig_forecast(data, _, mean, std, transformation_method): return statistics.apply_inverse_transformation(data.label.copy(), mean, std, transformation_method) def _create_ols_forecast(self, input_data, ols_prediction, mean, std, transformation_method): tmp_ols = self.ols_model.predict(input_data) tmp_ols = statistics.apply_inverse_transformation(tmp_ols, mean, std, transformation_method) ols_prediction.values = np.swapaxes(np.expand_dims(tmp_ols, axis=1), 2, 0) return ols_prediction def _create_persistence_forecast(self, input_data, persistence_prediction, mean, std, transformation_method): tmp_persi = input_data.sel({'window': 0, 'variables': 'o3'}) tmp_persi = statistics.apply_inverse_transformation(tmp_persi, mean, std, transformation_method) window_lead_time = self.data_store.get("window_lead_time", "general") persistence_prediction.values = np.expand_dims(np.tile(tmp_persi.squeeze('Stations'), (window_lead_time, 1)), axis=1) return persistence_prediction def _create_nn_forecast(self, input_data, nn_prediction, mean, std, transformation_method): """ create the nn forecast for given input data. Inverse transformation is applied to the forecast to get the output in the original space. Furthermore, only the output of the main branch is returned (not all minor branches, if the network has multiple output branches). The main branch is defined to be the last entry of all outputs. :param input_data: :param nn_prediction: :param mean: :param std: :param transformation_method: :return: """ tmp_nn = self.model.predict(input_data) tmp_nn = statistics.apply_inverse_transformation(tmp_nn, mean, std, transformation_method) if tmp_nn.ndim == 3: nn_prediction.values = np.swapaxes(np.expand_dims(tmp_nn[-1, ...], axis=1), 2, 0) elif tmp_nn.ndim == 2: nn_prediction.values = np.swapaxes(np.expand_dims(tmp_nn, axis=1), 2, 0) else: raise NotImplementedError(f"Number of dimension of model output must be 2 or 3, but not {tmp_nn.dims}.") return nn_prediction @staticmethod def _create_empty_prediction_arrays(generator, count=1): return [generator.label.copy() for _ in range(count)] @staticmethod def create_fullindex(df, freq): # Diese Funkton erstellt ein leeres df, mit Index der Frequenz frequ zwischen dem ersten und dem letzten Datum in df # param: df as pandas dataframe # param: freq as string # return: index as pandas dataframe if isinstance(df, pd.DataFrame): earliest = df.index[0] latest = df.index[-1] elif isinstance(df, xr.DataArray): earliest = df.index[0].values latest = df.index[-1].values elif isinstance(df, pd.DatetimeIndex): earliest = df[0] latest = df[-1] else: raise AttributeError(f"unknown array type. Only pandas dataframes, xarray dataarrays and pandas datetimes " f"are supported. Given type is {type(df)}.") index = pd.DataFrame(index=pd.date_range(earliest, latest, freq=freq)) return index @staticmethod def create_forecast_arrays(index, ahead_names, **kwargs): """ This function combines different forecast types into one xarray. :param index: as index; index for forecasts (e.g. time) :param ahead_names: as list of str/int: names of ahead values (e.g. hours or days) :param kwargs: as xarrays; data of forecasts :return: xarray of dimension 3: index, ahead_names, # predictions """ keys = list(kwargs.keys()) res = xr.DataArray(np.full((len(index.index), len(ahead_names), len(keys)), np.nan), coords=[index.index, ahead_names, keys], dims=['index', 'ahead', 'type']) for k, v in kwargs.items(): try: match_index = np.stack(set(res.index.values) & set(v.index.values)) res.loc[match_index, :, k] = v.loc[match_index] except AttributeError: # v is xarray type and has no attribute .index match_index = np.stack(set(res.index.values) & set(v.indexes['datetime'].values)) res.loc[match_index, :, k] = v.sel({'datetime': match_index}).squeeze('Stations').transpose() return res def _get_external_data(self, station): try: data = self.train_val_data.get_data_generator(station) mean, std, transformation_method = data.get_transformation_information(variable='o3') external_data = self._create_orig_forecast(data, None, mean, std, transformation_method) external_data = external_data.squeeze("Stations").sel(window=1).drop(["window", "Stations", "variables"]) return external_data.rename({'datetime': 'index'}) except KeyError: return None def calculate_skill_scores(self): path = self.data_store.get("forecast_path", "general") window_lead_time = self.data_store.get("window_lead_time", "general") skill_score_competitive = {} skill_score_climatological = {} for station in self.test_data.stations: file = os.path.join(path, f"forecasts_{station}_test.nc") data = xr.open_dataarray(file) skill_score = statistics.SkillScores(data) external_data = self._get_external_data(station) skill_score_competitive[station] = skill_score.skill_scores(window_lead_time) skill_score_climatological[station] = skill_score.climatological_skill_scores(external_data, window_lead_time) return skill_score_competitive, skill_score_climatological