__author__ = "Felix Kleinert" __date__ = '2022-08-05' import argparse from mlair.workflows import DefaultWorkflow # from mlair.model_modules.recurrent_networks import RNN as chosen_model from mlair.helpers import remove_items from mlair.configuration.defaults import DEFAULT_PLOT_LIST from mlair.model_modules.probability_models import ProbTestModel4, MyUnetProb, ProbTestModel2, ProbTestModelMixture import os import tensorflow as tf def load_stations(case=0): import json cases = { 0: 'supplement/station_list_north_german_plain_rural.json', 1: 'supplement/station_list_north_german_plain.json', 2: 'supplement/German_background_stations.json', } try: filename = cases[case] with open(filename, 'r') as jfile: stations = json.load(jfile) except FileNotFoundError: stations = None return stations def main(parser_args): # tf.compat.v1.disable_v2_behavior() plots = remove_items(DEFAULT_PLOT_LIST, ["PlotConditionalQuantiles", "PlotPeriodogram"]) stats_per_var = {'o3': 'dma8eu', 'relhum': 'average_values', 'temp': 'maximum', 'u': 'average_values', 'v': 'average_values', 'no': 'dma8eu', 'no2': 'dma8eu', 'cloudcover': 'average_values', 'pblheight': 'maximum'} workflow = DefaultWorkflow( # stations=load_stations(), #stations=["DEBW087","DEBW013", "DEBW107", "DEBW076"], stations=load_stations(2), model=MyUnetProb, window_lead_time=4, window_history_size=6, epochs=100, batch_size=1024, train_model=False, create_new_model=True, network="UBA", evaluate_feature_importance=False, # plot_list=["PlotCompetitiveSkillScore"], # competitors=["test_model", "test_model2"], competitor_path=os.path.join(os.getcwd(), "data", "comp_test"), variables=list(stats_per_var.keys()), statistics_per_var=stats_per_var, target_var="o3", target_var_unit="ppb", **parser_args.__dict__, start_script=__file__) workflow.run() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--experiment_date', metavar='--exp_date', type=str, default="testrun", help="set experiment date as string") args = parser.parse_args() main(args)