diff --git a/.history/README_20250328221727.md b/.history/README_20250328221727.md
new file mode 100644
index 0000000000000000000000000000000000000000..96a095ab61658eb94550df4246dc321be7ebba62
--- /dev/null
+++ b/.history/README_20250328221727.md
@@ -0,0 +1,3 @@
+## TOAR-classifier v2: A data-driven classification tool for global air quality stations
+
+<img src="./figures/toar_classifier_v2.png" alt="My image" with="100">
diff --git a/.history/README_20250328221948.md b/.history/README_20250328221948.md
new file mode 100644
index 0000000000000000000000000000000000000000..00262eec684fc0d9b12d86255893f2594038f431
--- /dev/null
+++ b/.history/README_20250328221948.md
@@ -0,0 +1,3 @@
+## TOAR-classifier v2: A data-driven classification tool for global air quality stations
+This study develops a machine learning approach to classify 23,974 air quality monitoring stations in the TOAR database as urban, suburban, or rural using K-means clustering and an ensemble of supervised classifiers. The proposed method outperforms existing classifications, improving suburban accuracy and providing a more reliable foundation for air quality assessments.
+<img src="./figures/toar_classifier_v2.png" alt="My image" with="100">
diff --git a/.history/README_20250328221958.md b/.history/README_20250328221958.md
new file mode 100644
index 0000000000000000000000000000000000000000..00262eec684fc0d9b12d86255893f2594038f431
--- /dev/null
+++ b/.history/README_20250328221958.md
@@ -0,0 +1,3 @@
+## TOAR-classifier v2: A data-driven classification tool for global air quality stations
+This study develops a machine learning approach to classify 23,974 air quality monitoring stations in the TOAR database as urban, suburban, or rural using K-means clustering and an ensemble of supervised classifiers. The proposed method outperforms existing classifications, improving suburban accuracy and providing a more reliable foundation for air quality assessments.
+<img src="./figures/toar_classifier_v2.png" alt="My image" with="100">
diff --git a/.history/README_20250328222004.md b/.history/README_20250328222004.md
new file mode 100644
index 0000000000000000000000000000000000000000..e5ed8e9d0ee98f0a1f3f6b74fa0d48baad2e23bb
--- /dev/null
+++ b/.history/README_20250328222004.md
@@ -0,0 +1,4 @@
+## TOAR-classifier v2: A data-driven classification tool for global air quality stations
+This study develops a machine learning approach to classify 23,974 air quality monitoring stations in the TOAR database as urban, suburban, or rural using K-means clustering and an ensemble of supervised classifiers. The proposed method outperforms existing classifications, improving suburban accuracy and providing a more reliable foundation for air quality assessments.
+<img src="./figures/toar_classifier_v2.png" alt="My image" with="100">
+
diff --git a/.history/README_20250328222021.md b/.history/README_20250328222021.md
new file mode 100644
index 0000000000000000000000000000000000000000..10ccc5df0f4b1f753566ab8e8203c1d830e4a0f3
--- /dev/null
+++ b/.history/README_20250328222021.md
@@ -0,0 +1,4 @@
+## TOAR-classifier v2: A data-driven classification tool for global air quality stations
+This study develops a machine learning approach to classify 23,974 air quality monitoring stations in the TOAR database as urban, suburban, or rural using K-means clustering and an ensemble of supervised classifiers. The proposed method outperforms existing classifications, improving suburban accuracy and providing a more reliable foundation for air quality assessments.
+<img src="./figures/toar_classifier_v2.png" alt="My image" with=100>
+
diff --git a/README.md b/README.md
index ae43e667a936bfa45637a7a9d24d33c028317f72..10ccc5df0f4b1f753566ab8e8203c1d830e4a0f3 100644
--- a/README.md
+++ b/README.md
@@ -1,2 +1,4 @@
 ## TOAR-classifier v2: A data-driven classification tool for global air quality stations
-<img src="./figures/toar_classifier_v2.png" alt="My image" with="100">
+This study develops a machine learning approach to classify 23,974 air quality monitoring stations in the TOAR database as urban, suburban, or rural using K-means clustering and an ensemble of supervised classifiers. The proposed method outperforms existing classifications, improving suburban accuracy and providing a more reliable foundation for air quality assessments.
+<img src="./figures/toar_classifier_v2.png" alt="My image" with=100>
+