From 3e0aca3313c9f4e87a85b87045c51430b6441dbd Mon Sep 17 00:00:00 2001 From: Karim Mache <k.mache@fz-juelich.de> Date: Sat, 29 Mar 2025 01:01:13 +0100 Subject: [PATCH] Add image --- .history/README_20250329010042.md | 46 +++++++++++++++++++++++++++++++ .history/README_20250329010106.md | 45 ++++++++++++++++++++++++++++++ README.md | 3 +- 3 files changed, 92 insertions(+), 2 deletions(-) create mode 100644 .history/README_20250329010042.md create mode 100644 .history/README_20250329010106.md diff --git a/.history/README_20250329010042.md b/.history/README_20250329010042.md new file mode 100644 index 0000000..65c3662 --- /dev/null +++ b/.history/README_20250329010042.md @@ -0,0 +1,46 @@ +## TOAR-classifier v2: A data-driven classification tool for global air quality stations +This study develops a machine learning approach to classify 23,974 air quality monitoring stations in the TOAR database as urban, suburban, or rural using K-means clustering and an ensemble of supervised classifiers. The proposed method outperforms existing classifications, improving suburban accuracy and providing a more reliable foundation for air quality assessments. +<img src="./figures/toar_classifier_v2.png" alt="My image" with="200"> + +### Files +- `data` is the folder containing all the data used in this work, including the predictions of station categories from the Machine Learning (ML) model. +- `figures` contains all the figures. +- `TOAR-classifier_v2.ipynb` is the notebook containing the code. +- `requirements.txt` contains all the necessary packages. + +### Run the Code + +**Note:** This has been tested on Ubuntu 24.04. + +1. Install Python 3 if not already installed (most Linux systems have Python pre-installed). +2. Install Jupyter Notebook: + - `pip install notebook` (for Jupyter Notebook) or + - `pip install jupyterlab` (for JupyterLab). +3. clone the project by running the following command + - `git clone https://gitlab.jsc.fz-juelich.de/esde/toar-public/ml_toar_station_classification.git` +4. Change directory to ml_toar_station_classification + - `cd ml_toar_station_classification` +5. Creat virtual environment + - `python -m venv TOAR-classifier_v2` # feel free to change the virtual environment as convenient +6. Activate the created venv + - `python -m ipykernel install --user --name=TOAR-classifier_v2 --display-name "Python (TOAR-classifier_v2)"` +#### Install required package +1. open jupyter notebook, `jupyter-notebook` and select kernel `TOAR-classifier_v2` + +2. Install all the required packages for the project by uncommenting the first cell in the notebook and running the cell + +Run the code cell by cell. + + +### Citation + +If you use this please cite + +@article{Mache2025TOARClassifier, + author = {Ramiyou Karim Mache and Sabine Schröder and Michael Langguth and Ankit Patnala and Martin G. Schultz}, + title = {TOAR-classifier v2: A data-driven classification tool for global air quality stations}, + year = {2025}, + note = {Correspondence: Ramiyou Karim Mache (k.mache@fz-juelich.de)}, + url = {} +} + diff --git a/.history/README_20250329010106.md b/.history/README_20250329010106.md new file mode 100644 index 0000000..56e7c3a --- /dev/null +++ b/.history/README_20250329010106.md @@ -0,0 +1,45 @@ +## TOAR-classifier v2: A data-driven classification tool for global air quality stations +This study develops a machine learning approach to classify 23,974 air quality monitoring stations in the TOAR database as urban, suburban, or rural using K-means clustering and an ensemble of supervised classifiers. The proposed method outperforms existing classifications, improving suburban accuracy and providing a more reliable foundation for air quality assessments. +<img src="./figures/toar_classifier_v2.png" alt="My image" with="200"> + +### Files +- `data` is the folder containing all the data used in this work, including the predictions of station categories from the Machine Learning (ML) model. +- `figures` contains all the figures. +- `TOAR-classifier_v2.ipynb` is the notebook containing the code. +- `requirements.txt` contains all the necessary packages. + +### Run the Code + +**Note:** This has been tested on Ubuntu 24.04. + +1. Install Python 3 if not already installed (most Linux systems have Python pre-installed). +2. Install Jupyter Notebook: + - `pip install notebook` (for Jupyter Notebook) or + - `pip install jupyterlab` (for JupyterLab). +3. clone the project by running the following command + - `git clone https://gitlab.jsc.fz-juelich.de/esde/toar-public/ml_toar_station_classification.git` +4. Change directory to ml_toar_station_classification + - `cd ml_toar_station_classification` +5. Creat virtual environment + - `python -m venv TOAR-classifier_v2` # feel free to change the virtual environment as convenient +6. Activate the created venv + - `python -m ipykernel install --user --name=TOAR-classifier_v2 --display-name "Python (TOAR-classifier_v2)"` +#### Install required package +1. open jupyter notebook, `jupyter-notebook` and select kernel `TOAR-classifier_v2` +2. Install all the required packages for the project by uncommenting the first cell in the notebook and running the cell + +Run the code cell by cell. + + +### Citation + +If you use this please cite + +@article{Mache2025TOARClassifier, + author = {Ramiyou Karim Mache and Sabine Schröder and Michael Langguth and Ankit Patnala and Martin G. Schultz}, + title = {TOAR-classifier v2: A data-driven classification tool for global air quality stations}, + year = {2025}, + note = {Correspondence: Ramiyou Karim Mache (k.mache@fz-juelich.de)}, + url = {} +} + diff --git a/README.md b/README.md index 504f879..56e7c3a 100644 --- a/README.md +++ b/README.md @@ -16,7 +16,7 @@ This study develops a machine learning approach to classify 23,974 air quality m 2. Install Jupyter Notebook: - `pip install notebook` (for Jupyter Notebook) or - `pip install jupyterlab` (for JupyterLab). -3. clone the project by running the following +3. clone the project by running the following command - `git clone https://gitlab.jsc.fz-juelich.de/esde/toar-public/ml_toar_station_classification.git` 4. Change directory to ml_toar_station_classification - `cd ml_toar_station_classification` @@ -26,7 +26,6 @@ This study develops a machine learning approach to classify 23,974 air quality m - `python -m ipykernel install --user --name=TOAR-classifier_v2 --display-name "Python (TOAR-classifier_v2)"` #### Install required package 1. open jupyter notebook, `jupyter-notebook` and select kernel `TOAR-classifier_v2` - 2. Install all the required packages for the project by uncommenting the first cell in the notebook and running the cell Run the code cell by cell. -- GitLab