diff --git a/src/toargridding/grids.py b/src/toargridding/grids.py
index afc47ed16d1b371f3b629506eb52840642991854..1bd176ffe3692f546d3c2e2bd5f943673d60eefd 100644
--- a/src/toargridding/grids.py
+++ b/src/toargridding/grids.py
@@ -105,12 +105,8 @@ class RegularGrid(GridDefinition):
         super().__init__()
         # TODO make sure only sensible resolutions
 
-        self.lat = Coordinate.from_resolution(
-            Coordinates.latitude, lat_resolution, min=-90, max=90, wraps=False
-        )
-        self.lon = Coordinate.from_resolution(
-            Coordinates.longitude, lon_resolution, min=-180, max=180, wraps=True
-        )
+        self.lat = Coordinate.from_resolution(Coordinates.latitude, lat_resolution, min=-90, max=90, wraps=False)
+        self.lon = Coordinate.from_resolution(Coordinates.longitude, lon_resolution, min=-180, max=180, wraps=True)
         spatial_shape = (self.lon.size, self.lat.size)
         spatial_size = self.lon.size * self.lat.size
         self.dims = [
@@ -119,9 +115,7 @@ class RegularGrid(GridDefinition):
             Coordinates.longitude.name,
         ]
 
-        self._as_xy_index = np.dstack(
-            np.meshgrid(range(self.lat.size), range(self.lon.size))
-        ).reshape(-1, 2)
+        self._as_xy_index = np.dstack(np.meshgrid(range(self.lat.size), range(self.lon.size))).reshape(-1, 2)
         self._as_i_index = np.arange(spatial_size).reshape(spatial_shape).T
 
     @property
@@ -141,17 +135,13 @@ class RegularGrid(GridDefinition):
             results of the request, including data, station coordinates and metadata of request
         """
 
-        data_grouped_by_cell = self.group_data_by_cell(
-            data.stations_data, data.stations_coords
-        )
+        data_grouped_by_cell = self.group_data_by_cell(data.stations_data, data.stations_coords)
         cell_statistics = self.get_cell_statistics(data_grouped_by_cell)
         dataset = self.create_dataset(cell_statistics, data.metadata)
 
         return dataset
 
-    def group_data_by_cell(
-        self, data: pd.DataFrame, coords: pd.DataFrame
-    ) -> DataFrameGroupBy:
+    def group_data_by_cell(self, data: pd.DataFrame, coords: pd.DataFrame) -> DataFrameGroupBy:
         """grouping of stations into cells
 
         This function converts the lat/lon coordinates of the stations into cell indices and groups stations belonging to one cell.
@@ -167,9 +157,7 @@ class RegularGrid(GridDefinition):
         cell_indices = self.as_cell_index(coords)
 
         # will convert cell_indices to float as some nans ar present
-        data_with_indices = data.join(
-            cell_indices.to_frame(GridDefinition.cell_index_name), how="outer"
-        )
+        data_with_indices = data.join(cell_indices.to_frame(GridDefinition.cell_index_name), how="outer")
 
         return data_with_indices.groupby(GridDefinition.cell_index_name)
 
@@ -192,9 +180,7 @@ class RegularGrid(GridDefinition):
 
         return stats
 
-    def create_dataset(
-        self, cell_statistics: dict[str, pd.DataFrame], metadata: Metadata
-    ) -> xr.Dataset:
+    def create_dataset(self, cell_statistics: dict[str, pd.DataFrame], metadata: Metadata) -> xr.Dataset:
         """creation of data set and filling with results from the gridding
 
         Parameters:
@@ -216,9 +202,7 @@ class RegularGrid(GridDefinition):
 
         gridded_ds = self.get_empty_grid(time, metadata)
         for variable, aggregated_data in cell_statistics.items():
-            data_array_dict = self.get_data_array_dict(
-                time, aggregated_data, variable, metadata
-            )
+            data_array_dict = self.get_data_array_dict(time, aggregated_data, variable, metadata)
             gridded_ds = gridded_ds.assign(data_array_dict)
 
         return gridded_ds
@@ -248,9 +232,7 @@ class RegularGrid(GridDefinition):
         gridded_variable = Variable.from_data(gridded_data, variable, metadata)
         return {variable.name: gridded_variable.as_data_array(self.dims)}
 
-    def create_gridded_data(
-        self, time: Coordinate, grouped_timeseries: pd.DataFrame
-    ) -> np.array:
+    def create_gridded_data(self, time: Coordinate, grouped_timeseries: pd.DataFrame) -> np.array:
         """converts the available cell data to a full lat/lon-temporal data cube.
 
         Parameters:
@@ -268,9 +250,7 @@ class RegularGrid(GridDefinition):
         values[...] = self.fill_value
 
         index = self._as_xy_index[grouped_timeseries.index.astype(int)]
-        values[:, index.T[0], index.T[1]] = grouped_timeseries.values.reshape(
-            -1, time.size
-        ).T
+        values[:, index.T[0], index.T[1]] = grouped_timeseries.values.reshape(-1, time.size).T
 
         return values
 
@@ -278,17 +258,13 @@ class RegularGrid(GridDefinition):
         """converts coordinates of stations into x and y indices of the regular grid"""
 
         id_x = self.coord_to_index(coords[self.lat.name], self.lat.min, self.lat.step)
-        id_y = self.coord_to_index(
-            coords[self.lon.name], self.lon.min, self.lon.step, len(self.lon.data)
-        )
+        id_y = self.coord_to_index(coords[self.lon.name], self.lon.min, self.lon.step, len(self.lon.data))
 
         id_i = self._as_i_index[id_x, id_y]
 
         return pd.Series(id_i, index=id_x.index)
 
-    def coord_to_index(
-        self, coord: pd.Series, x0_axis: float, d_axis: float, maxBin4Wrap: int = None
-    ) -> np.array:
+    def coord_to_index(self, coord: pd.Series, x0_axis: float, d_axis: float, maxBin4Wrap: int = None) -> np.array:
         """converts a coordinate into a bin index on one axis
 
         Parameters:
@@ -308,9 +284,7 @@ class RegularGrid(GridDefinition):
             ids[ids < 0] += maxBin4Wrap
         return ids
 
-    def get_empty_grid(
-        self, time: Variable, metadata: Metadata
-    ) -> xr.Dataset:  # TODO make CF-compliant => docs
+    def get_empty_grid(self, time: Variable, metadata: Metadata) -> xr.Dataset:  # TODO make CF-compliant => docs
         """creation of an empty dataset without data
 
         Sets up a dataset with its three axis: time, longitude and latitude.