diff --git a/tests/quality_controll.ipynb b/tests/quality_controll.ipynb index dda989fe5c25049b57ca700dd70351bafc76d4f2..cc93285e02bf8e40d0fe2d8c8fb355774ed5ce0b 100644 --- a/tests/quality_controll.ipynb +++ b/tests/quality_controll.ipynb @@ -14,14 +14,14 @@ "outputs": [], "source": [ "from datetime import datetime as dt\n", + "from pathlib import Path\n", "\n", "import pandas as pd\n", "import numpy as np\n", "\n", "from toargridding.grids import RegularGrid\n", "from toargridding.toar_rest_client import (\n", - " AnalysisService,\n", - " COORDS,\n", + " AnalysisServiceDownload,\n", " STATION_LAT,\n", " STATION_LON,\n", ")\n", @@ -30,10 +30,14 @@ "\n", "\n", "endpoint = \"https://toar-data.fz-juelich.de/api/v2/analysis/statistics/\"\n", - "analysis_service = AnalysisService(endpoint)\n", - "my_grid = RegularGrid(10, 10)\n", + "toargridding_base_path = Path(\"/home/simon/Projects/toar/toargridding/\")\n", + "cache_dir = toargridding_base_path / \"tests\" / \"results\"\n", + "data_download_dir = toargridding_base_path / \"tests\" / \"data\"\n", "\n", - "time = TimeSample(dt(2009,12,31), dt(2011,1,1), \"daily\")\n", + "analysis_service = AnalysisServiceDownload(endpoint, cache_dir, data_download_dir)\n", + "my_grid = RegularGrid(1.9, 2.5)\n", + "\n", + "time = TimeSample(dt(2016,1,1), dt(2016,12,31), \"daily\")\n", "metadata = Metadata.construct(\"mole_fraction_of_ozone_in_air\", \"mean\", time)\n", "\n", "with open(\"data/daily_2010-01-01_2011-01-01.zip\", \"r+b\") as sample_file:\n", @@ -46,11 +50,7 @@ "metadata": {}, "outputs": [], "source": [ - "timeseries, timeseries_metadata = analysis_service.load_data(response_content, metadata)\n", - "coords = analysis_service.get_clean_coords(timeseries_metadata)\n", - "timeseries = analysis_service.get_clean_timeseries(timeseries, metadata)\n", - "data = AnalysisRequestResult(timeseries, coords, metadata)\n", - "\n", + "data = analysis_service.get_data(metadata)\n", "ds = my_grid.as_xarray(data)" ] }, @@ -157,7 +157,7 @@ "metadata": {}, "outputs": [], "source": [ - "timestep = 50\n", + "timestep = 2\n", "time = ds.time[timestep]\n", "data = ds.sel(time=time)\n", "\n", @@ -171,6 +171,13 @@ "plt.plot(ds.time, n_observations)\n", "print(np.unique(ds[\"n\"]))" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -189,7 +196,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.6" + "version": "3.11.8" } }, "nbformat": 4,