{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Get Dataset from request\n", "\n", "This cell imports all required packages and sets up the logging as well as the required information for the requests to the TOAR-DB." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from datetime import datetime as dt\n", "from pathlib import Path\n", "\n", "import pandas as pd\n", "import numpy as np\n", "\n", "from toargridding.grids import RegularGrid\n", "from toargridding.toar_rest_client import (\n", " AnalysisServiceDownload,\n", " STATION_LAT,\n", " STATION_LON,\n", ")\n", "from toargridding.metadata import Metadata, TimeSample, AnalysisRequestResult, Coordinates\n", "from toargridding.variables import Coordinate\n", "\n", "from toargridding.contributors import contributions_manager_by_id\n", "\n", "import logging\n", "from toargridding.defaultLogging import toargridding_defaultLogging\n", "#setup of logging\n", "logger = toargridding_defaultLogging()\n", "logger.addShellLogger(logging.DEBUG)\n", "logger.logExceptions()\n", "\n", "endpoint = \"https://toar-data.fz-juelich.de/api/v2/analysis/statistics/\"\n", "#starts in directory [path/to/toargridding]/tests\n", "#maybe adopt the toargridding_base_path for your machine.\n", "toargridding_base_path = Path(\".\")\n", "cache_dir = toargridding_base_path / \"cache\"\n", "data_download_dir = toargridding_base_path / \"results\"\n", "\n", "cache_dir.mkdir(exist_ok=True)\n", "data_download_dir.mkdir(exist_ok=True)\n", "analysis_service = AnalysisServiceDownload(endpoint, cache_dir, data_download_dir, use_downloaded=True)\n", "my_grid = RegularGrid(1.9, 2.5)\n", "\n", "time = TimeSample(dt(2016,1,1), dt(2016,2,28), \"daily\")\n", "metadata = Metadata.construct(\"mole_fraction_of_ozone_in_air\", time, \"mean\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the next step we want to download the data and store them to disc. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# this cell can runs longer than 30minutes\n", "data = analysis_service.get_data(metadata)\n", "\n", "# create contributors endpoint and write result to metadata\n", "contrib = contributions_manager_by_id(metadata.get_id(), data_download_dir)\n", "contrib.extract_contributors_from_data_frame(data.stations_data)\n", "metadata.contributors_metadata_field = contrib.setup_contributors_endpoint_for_metadata()\n", "ds = my_grid.as_xarray(data)\n", "#store dataset\n", "ds.to_netcdf(data_download_dir / f\"{metadata.get_id()}_by_names_inline_{my_grid.get_id()}.nc\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Visual inspection\n", "We now clean the station metadata. Therefore we remove all stations which have invalid coordinates" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "#calculation of coordinates for plotting\n", "#especially separation of coordinates with results and without results.\n", "\n", "import cartopy.crs as ccrs\n", "import matplotlib.pyplot as plt\n", "import matplotlib.ticker as mticker\n", "\n", "mean_data = ds[\"mean\"]\n", "clean_coords = data.stations_coords\n", "all_na = data.stations_data.isna().all(axis=1)\n", "clean_coords = all_na.to_frame().join(clean_coords)[[\"latitude\", \"longitude\"]]\n", "all_na_coords = clean_coords[all_na]\n", "not_na_coords = clean_coords[~all_na]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the next step we prepare a function for plotting the gridded data to a world map. The flag *discrete* influences the creation of the color bar. The *plot_stations* flag allows including the station positions into the map." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import matplotlib as mpl\n", "\n", "#definition of plotting function\n", "\n", "def plot_cells(data, stations, na_stations, discrete=True, plot_stations=False):\n", " fig = plt.figure(figsize=(9, 18))\n", "\n", " ax = plt.axes(projection=ccrs.PlateCarree())\n", " ax.coastlines()\n", " gl = ax.gridlines(draw_labels=True)\n", " gl.top_labels = False\n", " gl.left_labels = False\n", " gl.xlocator = mticker.FixedLocator(data.longitude.values)\n", " gl.ylocator = mticker.FixedLocator(data.latitude.values)\n", "\n", " cmap = mpl.cm.viridis\n", "\n", " if discrete:\n", " print(np.unique(data.values))\n", " bounds = np.arange(8)\n", " norm = mpl.colors.BoundaryNorm(bounds, cmap.N, extend=\"both\")\n", " ticks = np.arange(bounds.size + 1)[:-1] + 0.5\n", " ticklables = bounds\n", " \n", " im = plt.pcolormesh(\n", " data.longitude,\n", " data.latitude,\n", " data,\n", " transform=ccrs.PlateCarree(),\n", " cmap=cmap,\n", " shading=\"nearest\",\n", " norm=norm,\n", " )\n", " cb = fig.colorbar(im, ax=ax, shrink=0.2, aspect=25)\n", " cb.set_ticks(ticks)\n", " cb.set_ticklabels(ticklables)\n", " im = plt.pcolormesh(\n", " data.longitude,\n", " data.latitude,\n", " data,\n", " transform=ccrs.PlateCarree(),\n", " cmap=cmap,\n", " shading=\"nearest\",\n", " norm=norm,\n", " )\n", " else:\n", " im = plt.pcolormesh(\n", " data.longitude,\n", " data.latitude,\n", " data,\n", " transform=ccrs.PlateCarree(),\n", " cmap=cmap,\n", " shading=\"nearest\",\n", " )\n", "\n", " cb = fig.colorbar(im, ax=ax, shrink=0.2, aspect=25)\n", " \n", "\n", " if plot_stations:\n", " plt.scatter(na_stations[\"longitude\"], na_stations[\"latitude\"], s=1, c=\"k\")\n", " plt.scatter(stations[\"longitude\"], stations[\"latitude\"], s=1, c=\"r\")\n", "\n", " plt.tight_layout()\n", "\n", " plt.title(f\"global ozon at {data.time.values} {data.time.units}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we do the actual plotting. We select a single time from the dataset. To obtain two maps: 1) the mean ozone concentration per grid point and second the number of stations contributing to a grid point." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#example visualization for two time points\n", "print(not_na_coords)\n", "timestep = 2\n", "time = ds.time[timestep]\n", "data = ds.sel(time=time)\n", "\n", "plot_cells(data[\"mean\"], not_na_coords, all_na_coords, discrete=False, plot_stations=True)\n", "plt.show()\n", "\n", "plot_cells(data[\"n\"], not_na_coords, all_na_coords, discrete=True)\n", "plt.show()\n", "\n", "n_observations = ds[\"n\"].sum([\"latitude\", \"longitude\"])\n", "plt.plot(ds.time, n_observations)\n", "print(np.unique(ds[\"n\"]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Last but not least: We print the data and metadata of the dataset. Especially a look into the metadata can be interesting." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(data)" ] } ], "metadata": { "kernelspec": { "display_name": "toargridding-g-KQ1Hyq-py3.10", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7" } }, "nbformat": 4, "nbformat_minor": 2 }