{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from datetime import datetime as dt\n",
    "from collections import namedtuple\n",
    "from pathlib import Path\n",
    "\n",
    "from toargridding.toar_rest_client import AnalysisService\n",
    "from toargridding.grids import RegularGrid\n",
    "from toargridding.gridding import get_gridded_toar_data\n",
    "from toargridding.metadata import TimeSample"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "Config = namedtuple(\"Config\", [\"grid\", \"time\", \"variables\", \"stats\"])\n",
    "\n",
    "valid_data = Config(\n",
    "    RegularGrid(1.9, 2.5),\n",
    "    TimeSample(dt(2014,1,1), dt(2019,12,31), sampling=\"daily\"),\n",
    "    [\"mole_fraction_of_ozone_in_air\"],\n",
    "    [\"mean\"]# [\"dma8epax\"], # enable when finished\n",
    ")\n",
    "missing_data = Config(\n",
    "    RegularGrid(1.9, 2.5),\n",
    "    TimeSample(dt(2000,1,1), dt(2013,12,31), sampling=\"daily\"),\n",
    "    [\"mole_fraction_of_ozone_in_air\"],\n",
    "    [\"dma8epax\"],\n",
    ")\n",
    "\n",
    "configs = {\n",
    "    \"tabish_ansari\": valid_data\n",
    "}\n",
    "\n",
    "config = configs[\"tabish_ansari\"]\n",
    "config.grid"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stats_endpoint = \"https://toar-data.fz-juelich.de/api/v2/analysis/statistics/\"\n",
    "result_basepath = Path(\"results\")\n",
    "analysis_service = AnalysisService(stats_endpoint, result_basepath)\n",
    "\n",
    "for person, config in configs.items():\n",
    "    datasets, metadatas = get_gridded_toar_data(\n",
    "        analysis_service=analysis_service,\n",
    "        grid=config.grid,\n",
    "        time=config.time,\n",
    "        variables=config.variables,\n",
    "        stats=config.stats\n",
    "    )\n",
    "\n",
    "    for dataset, metadata in zip(datasets, metadatas):\n",
    "        dataset.to_netcdf(result_basepath / metadata.get_id())"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "toargridding-8RVrxzmn-py3.11",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}