A rg onne

NATIONAL LABORATORY

Fast Error-Bounded HPC Data Compressor (sz-1.2)
User Guide (Version 1.2)

Mathematics and Computer Science (MCS)
Argonne National Laboratry

Contact: Sheng Di (sdil@anl.gov)

Aug., 2016
Table of Contents
TADIE OF CONTENTS ..ottt b ettt b bttt e 1
O =Y T e [T o T o) o SR 1
2. HOW 10 INSTAII SZ ...t 2
T O U T o] L] 7= PO PR PRSP PROP 3
B0 A O] 1 4] o =53] [o PSSR 3
KT L Toto] 4] o1 =11 (o] o S 4
4. Application Programming INterface (API) ..o 4
4.1 Compression/Decompression by C INTErfacesccovvvveveeieiene e 5
4.2 Compression/Decompression by Fortran INterfaces..........ccocvevvveveiienienieenenese e 7
B TOSE CABSES ..ot E bR R Rt n e r e e 10
LI =T =TT Y o T T E=3 (0 PSS 1
7. Q&A and Trouble SNOOLING ..ccvcveccce e ens 12

1. Brief description

® SZ (short for Squeeze) is an error-bounded HPC in-situ data compressor for significantly
reducing the data sizes, which can be leveraged to improve the checkpoint/restart
performance and post-processing efficiency for HPC executions.

® SZ can be used to compress different types of data (single-precision and double-precision)
and any shapes of the array. Current version supports up to five dimensions. Higher
dimensions can also be extended easily.

® SZisvery easy to use. It supports three programming languages: Fortran, C and Java.

® SZ supports many different architectures, including x86_32bits (denoted by linux_x86 in the
Makefile), x86_64bits (denoted by linux_x64 in the Makefile), ARM (denoted by linux_arm),
SOLARIS (denoted by solaris), IBM BlueGene series (denoted by pps).

Argon neA

NATIONAL LABORATORY

SZ allows setting the compression error bound based on absolute error bound and/or
relative error bound, by using sz.config (which can be found in the directory example) or by
passing arguments through programming interfaces.

B Absolute error bound (namely absErrBound in the configuration file sz.config): It is to
limit the (de)compression errors to be within an absolute error. For example,
absErrBound=0.0001 means the decompressed value must be in [V-0.0001,V+0.0001],
where V is the original true value.

B Relative error bound (called relBoundRatio in the configuration file sz.config): It is to
limit the (de)compression errors by considering the global data value range size (i.e.,
taking into account the range size (max_value - min_value)). For example, suppose
relBoundRatio is set to 0.01, and the data set is {100,101,102,103,104,...,110}. That is,
the maximum value is 110 and minimum value is 100. So, the global value range size
is 110-100=10, and the error bound will actually be 10*0.01=0.1, from the perspective
of "relBoundRatio".

Users can set the real compression error bound based on only absErrorBound,
relBoundRatio, or a kind of combination of them. Two types of combinations are provided:
AND, OR. ABS_AND_REL means that both of the two bounds (absErrorBound and
relBoundRatio) will be considered in the compression. ABS_OR_REL means that the
compression error is satisfied as long as one type of bound is met.

If there are many variables to be compressed, we recommend to compress them using
batch-compression way. Specifically, there are two steps in the batch-compression: (1)
register/add variables, and (2) perform the compression. Please reference the description
of SZ_batchAddVar() and SZ_batch_compress(). An example code
(testfloat_batch_compress.c) can also be found in example/ directory.

Users are allowed to set the endian type of the data in the sz.config. Please check the
comments of this file in the example/ directory.

2. How to install SZ

The SZ software can be downloaded from http://collab.mcs.anl.gov/display/ESR/SZ

Perform the following three simple steps to finish the installation:
configure --prefix=[INSTALL_DIR]

make

make install

Then, you'll find all the executables in [INSTALL_DIR]/bin and .a and .so libraries in

[INSTALL_DIR]/lib

Argon ne3

NATIONAL LABORATORY

3. Quick Start

The testing cases can be found in [SZ_Package]/example

You can use "make clean;make" to recompile all the example codes, or compile them by the
customized Makefile.bk as follows:

make -f Makefile.bk

(Makefile.bk allows you to compile your customized source codes.)

3.1 Compression

Testing commands:

Run “./testdouble_compress sz.config testdouble 8 8 128.dat 8 8 128" to compress
the data testdouble_8 8 128.dat.

Run “/testdouble_compress sz.config testdouble 8 8 8 128.dat 8 8 8 128" to
compress the data testdouble_8 8 8 128.dat.

Run “./testfloat_compress sz.config testfloat 8 8 128.dat 8 8 128" to compress the
data testfloat 8 8 128.dat

Remark:

testdouble_8 8 128.dat and testdouble_8_8 8 128.dat are two binary testing files, which
contain a 3d array (128X8X8) and a 4d array (128X8X8X8) respectively. Their data values
are shown in the two plain text files, testdouble_8_8_128.txt and testdouble_8_8 8 128.txt.
These two data files are from FLASH_BIlast2 and FLASH_MacLaurin respectively (the two
test data are both extracted at time step 100). The compressed data files to be generated

are named testdouble_8_8 128.dat.sz and testdouble_8_8_8_128.dat.sz respectively.

Jtestfloat_compress.c is an example to show how to compress single-precision data. Use
testfloat_8 8 128.dat as the input when testing the compression of single-precision data.

sz.config is the configuration file. The key settings are errorBoundMode, absErrBound, and

relBoundRatio, which are described below.

® absErrBound refers to the absolute error bound, which is to limit the (de)compression
errors to be within an absolute error. For example, absErrBound=0.0001 means the
decompressed value must be in [V-0.0001,V+0.0001], where V is the original true
value.

® relBoundRatio refers to relative bound ratio, which is to limit the (de)compression
errors by considering the global data value range size (i.e., taking into account the
range size (max_value - min_value)). For example, suppose relBoundRatio is set to
0.01, and the data set is {100,101,102,103,104,...,110}. In this case, the maximum
value is 110 and the minimum is 110. So, the global value range size is 110-100=10,
and the error bound will be 10*0.01=0.1, from the perspective of "relBoundRatio".

Argon ne3

NATIONAL LABORATORY

® errorBoundMode is to define a combination of the above two types of error bounds.

There are four types of values: ABS, REL, ABS_AND_REL, ABS OR_REL,.

B ABS takes only "absolute error bound" into account. That is, relative bound ratio
will be ignored.

B REL takes only "relative bound ratio" into account. That is, absolute error bound
will be ignored.

B ABS_AND_REL takes both of the two bounds into account. The compression
errors will be limited using both absErrBound and relBoundRatio*rangesize. That
is, the two bounds must be both met.

B ABS_OR_REL takes both of the two bounds into account. The compression errors
will be limited using either absErrBound or relBoundRatio*rangesize. That is, only
one bound is required to be met.

sz.config is the configuration file used to set the compression environment. Please read
the comment in the file to understand the parameters.

3.2 Decompression

Testing commands:

Jtestdouble_decompress sz.config testdouble_8 8 128.dat.sz
Jtestdouble_decompress sz.config testdouble_ 8 8 8 128.dat.sz
Jtestfloat_decompress sz.config testfloat 8 8 128.dat.sz

Remark:

® Unlike compression, you don't have to provide the error bound information (such as
errBoundMode, absErrBound, and relBoundRatio), when performing the data
decompression, because such information is stored in the compressed data stream.

® The output files of the test decompress.c are .out files, i.e,
testdouble_8 8 128.dat.sz.out and testdouble 8 8 8 128.dat.sz.out respectively.
You can compare .txt file and .out file for checking the compression errors for each data
point. For instance, compare testdouble_ 8 8 8 128.txt and
testdouble_8 8 8 128.dat.sz.out.

4. Application Programming Interface (API)

Programming interfaces are provided in two programming languages — C and Fortran
(SZ-0.x versions also provided Java interfaces). The usage methods of the interfaces are
quite similar across different programming languages, with only a few differences. For
example, In C interface, a dataType (either SZ_FLOAT or SZ DOUBLE) is required, while
Fortran interface does not require this argument because of the function overloading
feature.

Argon nea

NATIONAL LABORATORY

4.1 Compression/Decompression by C Interfaces

There are three key interfaces for compression/decompression in C.

(1)
(2)

3)

Initialize the compressor by calling SZ_Init();

Compress the data (a floating-point array) by SZ_compress(), or decompress the data
by SZ_decompress();

Finalize the compressor by SZ_Finalize() if the compressor won't be used any more.

Interfaces:

(@)

(b)

SZ_Init
Initialize the SZ compressor. SZ_Init() just needs to be called only once before
performing multiple compressions for different variables (data arrays).
Synopsis: void SZ_Init(char *configFilePath);
Input:
configFilePath the configuration file path (such as example/sz.config)
Return: 1 (failure) or 0 (success)
SZ _compress
Compress the floating-point data array. Two types of interfaces are provided, as shown
below. For the first one, the three important control parameters (errBoundMode,
absErrBound, and relBoundRatio) will be given by the configuration file sz.config. For
the second one, the three control parameters will be passed using arguments, so in this
case, the parameter settings in the sz.config will be ignored.
There are three compression interfaces with different arguments, as listed below. The
user just needs to choose one of them in compressing data.
Synopsis:
char *SZ_compress(int dataType, void *data, int *outSize, int r5, int r4, int r3, int r2,
int rl);
char *SZ_compress_args(int dataType, void *data, int *outSize,
int errBoundMode, double absErrBound, double relBoundRatio,
intr5,intrd, intr3,int r2,int rl);
int SZ_compress_args2(int dataType, void *data, char* compressed_bytes,
int *outSize,
int errBoundMode, double absErrBound, double relBoundRatio,
intr5,intrd, intr3,int r2,int rl);

Input:
dataType the indicator that indicates the data type
(two options: either SZ_FLOAT or SZ_DOUBLE)
data the variable that contains the data to be compressed.

(Current version only supports “double precision” data)
compressed_bytes the address that contains the compressed bytes

Argon nea

NATIONAL LABORATORY

outSize
r5
r4
r3
r2
rl

the data stream size (in bytes) after compression.
size of dimension 5
size of dimension 4
size of dimension 3
size of dimension 2
size of dimension 1

Return: Compressed data stream (in the form of bytes)

Usage tips: The dimension of the variable is determined based on the five dimension
parameters (r5, r4, r3, r2, and rl). For instance, if the variable is a 2D array (M X N),
then r5=0, r4=0, r3=0, r2=M, and r1=N. If the variable to protect is a 4D array, then only
r5 is set to 0. (See test_compress.c for details).

(c) SZ_decompress

Decompress/recover the data. Two options, as listed below.

Synopsis:

void *SZ_decompress(int dataType, char *bytes, int byteLength,

intr5,intr4,intr3,int r2,int rl);

int SZ_decompress_args(int dataType, char *bytes, int byteLength,

Input:
dataType

bytes
byteLength

void* decompressed_array,
intr5,intr4,intr3,intr2,intrl);

the indicator to indicate the data type

(either SZ_FLOAT or SZ_DOUBLE)

the compressed data stream to be decompressed
length of the compressed data stream

decompressed_array the address to store decompressed data

r5
r4
r3
r2
rl

size of dimension 5
size of dimension 4
size of dimension 3
size of dimension 2
size of dimension 1

Return: the recovered data array decompressed from the compressed bytes.

(d) SZ_batchAddVar

Register/add a variable (denoted by var) to be compressed with other variables

together in a batch way.

Synopsis:

void SZ_batchAddVar(char* varName, int dataType, void* var,
intr5,intr4,intr3,intr2,intrl,
int errBoundMode, double absErrBound, double relBoundRatio);

(e) SZ_batchDelVar

Deregister/delete a variable (denoted by var) from the list of registered variables, that
are to be compressed with other variables together in a batch way.

Synopsis:

int SZ_batchDelVar(char* varName);

Argon ne3

NATIONAL LABORATORY

Input:
varName the name of variable used in the registration.
Return: 0: success or 1: no corresponding variable is found based on varName.
(f) SZ_batch_compress
Compress the data in a batch way: all of the registered variable data will be
compressed together (The benefit is improvement of compression factor).

Synopsis:
char* SZ_batch_compress(int *outSize);
Input:
outSize the data stream size (in bytes) after compression.

Return: the compressed stream.
(g) SZ_batch_decompress
Decompress the batch-compressed stream.
Synopsis:
SZ VarSet* SZ_batch_decompress (char* compressedStream,
int compressedLength);
Input:
compressedStream the compressed stream
compressedLength the length of the compressed stream (in byte)
Return: The data structure containing the decompressed data with multiple variables.
See VarSet.h for more details. The global SZ VarSet is defined in sz.h: SZ_VarSet*
Sz_varset.
h-SZ Finalize-
Release the memory and compression environment.
This function is deprecated in sz 1.0 or later versions.
Synopsis: int SZ_Finalize();
Input: none.
Return: none.

4.2 Compression/Decompression by Fortran Interfaces

Interfaces:

(@) SZ_Init
Initialize the SZ compressor. SZ_Init() just needs to be called only once before
performing multiple compressions for different variables (data arrays).
Synopsis: SZ_Init(configFilePath, ierr);

Input:
configFilePath configuration file path (e.g., sz.config)
CHARACTER(len=32) :: configFilePath
Output:
ierr successful (0) or failed (1)

INTEGER(Kind=4) :: ierr

Argon nea

NATIONAL LABORATORY

(b) SZ_Compress
Compress the floating-point data array. Two types of interfaces are provided, as shown
below. For the first one, the three important control parameters (errBoundMode,
absErrBound, and relBoundRatio) will be given by the configuration file sz.config. For
the second one, the three control parameters will be passed using arguments, so in this
case, the parameter settings in the sz.config will be ignored.

Synopsis A:
SZ _compress(data, bytes, outSize);

Input:

Output:

data

bytes

outsize

Synopsis B:
SZ_Compress (data, bytes, outSize,

Input:

Output:

data

the data array to be compressed

(the data here is a floating-point data array with up to 5
dimensions. For example, “REAL(KIND=8), DIMENSION(:,:,:) ::
data” indicates a 3D double-precision array, where data refers to
the array variable.)

the byte stream generated after the compression
INTEGER(kind=1), DIMENSIONJ(:), allocatable :: bytes
the size (in bytes) of the byte stream

INTEGER(kind=4) :: QutSize

errBoundMode, absErrBound, relBoundRatio);

the data array to be compressed

(the data here is a floating-point data array with up to 5
dimensions. For example, “REAL(KIND=8), DIMENSION(:,:,:) ::
data” indicates a 3D double-precision array, where data refers to
the array variable.)

errBoundMode the error bound mode.

Four options: ABS, REL, ABS_AND_REL, ABS_OR_REL
INTEGER(kind=4) :: ErrBoundMode

absErrBound absolute error bound

REAL(kind=4 or 8) :: absErrBound

relBoundRatio relative bound ratio

bytes

outsize

REAL(kind=4 or 8) :: relBoundRatio
(Details about error bound mode, absolute error bound, and
relative bound ratio can be found in Section 3.1)

the byte stream generated after the compression
INTEGER(kind=1), DIMENSIONJ(:), allocatable :: bytes
the size (in bytes) of the byte stream

INTEGER(kind=4) :: QutSize

Argon nea

NATIONAL LABORATORY

(c) SZ_Decompress

Decompress/recover the data

Synopsis:
SZ Decompress(bytes, data, [r1,r2,...])
Input:
bytes the compressed data stream to be decompressed
INTEGER(kind=1), DIMENSION(:) :: Bytes
data length of the compressed data stream
REAL(KIND=4 or 8), DIMENSIONC(:,:,...:,:), allocatable :: data
rl size of dimension 1
r2 size of dimension 2
r3 size of dimension 3
r4 size of dimension 4
r5 size of dimension 5

INTEGER(kind=4) :: r1[, r2,r3, r4, r5]
Usage tips: SZ_Decompress supports the decompression of the array with at most 5
dimensions. The dimension sizes (such as rl, r2,) are supposed to be provided. For
example, in order to decompress a binary stream whose original data is a 3D array
(r3=10,r2=8,r1=8), the function is like “SZ_Decompress(bytes, data, 8, 8, 10).

(d) SZ_BatchAddVar

Register/add a data variable (denoted by var) to be compressed with other variables

together in a batch way.
Synopsis:

void SZ_batchAddVar(varName, var,
errBoundMode, absErrBound, relBoundRatio);

varName

var

errBoundMode

absErrBound

relBoundRatio

(e) SZ_BatchDelVar

the name of the variable to be registered/added
CHARACTER(len=128) :: varName

the variable/data to be registered/added

the error bound mode.

Four options: ABS, REL, ABS_AND_REL, ABS_OR_REL
INTEGER(kind=4) :: ErrBoundMode

absolute error bound

REAL(kind=4 or 8) :: absErrBound

relative bound ratio

REAL(kind=4 or 8) :: relBoundRatio

(Details about error bound mode, absolute error bound, and
relative bound ratio can be found in Section 3.1.

Deregister/delete a variable (denoted by var) from the list of registered variables, that
are to be compressed with other variables together in a batch way.

Synopsis:

void SZ_batchDelVar(varName, ierr);

Input:

Argon nea

NATIONAL LABORATORY

varName the name of variable used in the registration.
CHARACTER(len=128) :: varName
Output:
ierr the output status (0: success or 1: no variable found)
INTEGER(kind=4) :: ErrBoundMode
Return: 0: success or 1: no corresponding variable is found based on varName.
(f) SZ_Batch_Compress
Compress the data in a batch way: all of the registered variable data will be
compressed together (The benefit is improvement of compression factor).
Synopsis:
void SZ_Batch_Compress(bytes, outSize)

Output:
bytes the byte stream generated after the compression
INTEGER(kind=1), DIMENSIONJ(:), allocatable :: bytes
outsize the size (in bytes) of the byte stream

(g) SZ_Batch_Decompress
Decompress the batch-compressed stream.
Synopsis:
void SZ_Batch_Decompress(bytes, outSize)
Output:
bytes the compressed data stream to be decompressed
INTEGER(kind=1), DIMENSION(:) :: Bytes
outsize the size of the decompressed data stream
INTEGER(kind=4) :: OutSize
(h)—SZFinalize
Release the memory and compression environment
Synopsis: SZ Finalize();
Input: none.
Return: none.

5 Test cases

example/testdouble _compress.c
example/testdouble _decompress.c
example/testfloat_compress.c
example/testfloat_decompress.c
example/testfloat_batch_compress.c
example/testdouble batch_compress.c
example/testdouble_compress.f90
example/testdouble/decompress.fo90

10

Argon ne3

NATIONAL LABORATORY

6. Version history

The latest version (version 1.2) is the recommended one.

Version New features
SZ 0.2-0.4 Compression ratio is the same as SZ 0.5. The key difference is different
implementation ways, such that SZ 0.5 is much faster than SZ 0.2-0.4.
SZ 0.5.1 Support version checking
SZ 0.5.2 finer compression granularity for unpredictable data, and also remove redundant
Java storage bytes
SZ0.5.3 Integrate with the dynamic segmentation support
SZ 0.5.4 Gzip_mode: defaut --> fast_mode ; Support reserved value
SZ 0.5.5 runtime memory is shrinked (by changing int xxx to byte xxx in the codes)
The bug that writing decompressed data may encounter exceptions is fixed.
Memory leaking bug for ppc architecture is fixed.
SZ 0.5.6 improve compression ratio for some cases (when the values in some
segementation are always the same, this segment will be merged forward)
SZ 0.5.7 improve the decompression speed for some cases
SZ 0.5.8 Refine the leading-zero granularity (change it from byte to bits based on the
distribution). For example, in SZ0.5.7, the leading-zero is always in bytes, 0, 1, 2, or 3. In
SZ70.5.8 The leading-zero part could be XXXX XXXX XX XX XX XX XXXX XXxX (where each x
means a bit in the leading-zero part)
SZ 0.5.9 optimize the offset by using simple right-shifting method. Experiments show that
this cannot improve compression ratio actually, because simple right-shifting actually make
each data be multiplied by 2"{-k}, where k is # right-shifting bits. The pros is to save bits
because of more leading-zero bytes, but the cons is much more required bits to save. A
good solution is SZ 0.5.10!
SZ0.5.10 optimze the offset by using the optimized formula of computing the
median_value based on optimized right-shifting method. Anyway, SZ0.5.10 improves
compression ratio a lot for hard-to-compress datasets. (Hard-to-compress datasets refer to
the cases whose compression ratios are usually very limited)
SZ0.5.11 In a very few cases, SZ 0.5.10 cannot guarantee the error-bounds to a certain
user-specified level. For example, when absolute error bound = 1E-6, the maximum
decompression error may be 0.01(>>1E-6) because of the huge value range even in the
optimized segments such that the normalized data cannot reach the required precision
even stoaring all of the 64 or 32 mantissa bits. SZ 0.5.11 fixed the problem well, with
degraded compression ratio less than 1%.
SZ70.5.12 A parameter setting called "offset” is added to the configuration file sz.config.
The value of offset is an integer in [1,7]. Generally, we recommend offset=2 or 3, while we
also find that some other settings (such as offset=7) may lead to better compression ratios
in some cases. How to automize/optimize the selection of offset value would be the future
work. In addition, the compression speed is improved, by replacing java List by array

11

Argon ne3

NATIONAL LABORATORY

implementation in the code.

SZ 0.5.13 Compression performance is improved, by replacing some class instances in
the source code by primitive data type implementation.

SZ0.5.14 fixed a design bug, which improves the compression ratio further.

SZ0.5.15 improved the compression ratio for single-precision data compression, by
tuning the offset.

The version 0.x were all coded in Java, and C/Fortran interfaces were provided by using JNI
and C/Fortran wrapper. SZ 1.0 is coded in C purely.

SZ1.0 Pure C version. In this version, the users don't need to install JDK and make
the relative configurations any more. It provides dataEndienType in the sz.config file,
so it can be used to compress the data file which was generated on different endian-type
systems.

Sz1.1 batch_compression function is added to this version. Compression
performance is improved slightly due to for(;;) being replaced by memcpy() somewhere.
SzZ1.2 The compression ratio is improved by 30%-50% in most of datasets

(especially for relatively-hard-to-compress ones), and the compression time is reduced by
about 10%, compared to SZ1.1.

7. Q&A and Trouble shooting

1. Do | need to call SZ_init() every time | compress a variable in the program?
Answer: No. In the progress, SZ_init() just needs to be called once at the beginning, and
thereafter you can always compress different variables using the
compression/decompression functions on demand, until SZ_finalize() is called.

2. If lwant to use SZ_compress_args() function and specify the errorBoundMode and
bounds at run time instead of using the sz.config, do | need to call SZ_init()?
Answer: It depends. In fact, sz.config has some important parameter settings, e.g.,
data_endian_type (little or big). You can also set these parameters manually in your code or
use the default setting. Please check sz.h and conf.c for details. We highly recommend to
use sz.config to initialize the compression environment, because some critical parameters
such as dataEndianType may be random numbers without such an initialization.

3. How to deal with “Error: The input file or data stream is not in SZ format!”?
Answer: This error is because the input file or data stream used to be decompressed is
probably not the byte steam compressed/generated by the SZ. Please use the compressed

file (such as data.sz) in the decompression.

<END>

12

