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Agenda

▪ Part I – Parallel Computing with MATLAB on the Desktop

– Parallel Computing Toolbox

– MATLAB Online

▪ Part II – Scaling MATLAB to JUWELS

– MATLAB Parallel Server

– Jupyter
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Overview

▪ How to configure MATLAB to submit multi-node jobs to the HPC cluster

▪ The job submission workflow

▪ Ways to tune job submissions to the HPC cluster

▪ How to optimize job submissions

▪ Troubleshooting job submission techniques

▪ Submitting interactive and batch jobs
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A few notes about today’s workshop…

▪ The workflow and examples are about process, not performance

▪ Cluster documentation

– https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers

▪ MATLAB User Guide

– https://www.fz-juelich.de/en/ias/jsc/services/user-support/software-tools/matlab

▪ Requirements

❑ Account on JUWELS cluster

https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers
https://www.fz-juelich.de/en/ias/jsc/services/user-support/software-tools/matlab
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Accessing and running MATLAB on HPC compute nodes

▪ Two options

– SSH

▪ Command line interface

▪ Useful for either low-bandwidth or automation

– Jupyter

▪ Graphical interface
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User Portal: JuDoor

▪ https://judoor.fz-juelich.de/login

https://judoor.fz-juelich.de/login
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Launching a JupyterLab (1)
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Launching a JupyterLab (2)
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JupyterLab – MATLAB
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JupyterLab – Shell terminal
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Ways to run MATLAB

▪ Interactively

– run serial code

– with a parallel pool (parpool)

– with batch jobs (batch)

▪ Noninteractive

– write a Slurm job script (sbatch)
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MATLAB job submitters

▪ parpool

– Single session

– Synchronous execution

– Seamlessly runs parfor, 

parfeval, and spmd

https://www.mathworks.com/help/parallel-computing/parpool.html

▪ batch

– Multiple submissions

– Non-blocking

– Calls top-level function or script

– Requires API to extract results

https://www.mathworks.com/help/parallel-computing/batch.html

https://www.mathworks.com/help/parallel-computing/parpool.html
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Interactively: with a parallel pool
parpool
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Parallel MATLAB – Single Node
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Profiles

“How does MATLAB know about 

JUWELS?”
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Discover Cluster (1)
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Discover Cluster (2)
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Discover Cluster (3)
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New JUWELS profile
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JUWELS cluster

Minimum

required
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Parallel MATLAB – Multi-node

▪ To run a multi-node MATLAB job, MATLAB will generate and submit a new 

Slurm job

– Executed during any “job launcher”

▪ parpool, batch, createJob

– True regardless if we’re running MATLAB desktop or via an Slurm job script

▪ Need to use the new JUWELS profile

MATLAB “outer job”

Parallel “inner job”
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Where is the scaling (1)?
If there are 16x 

more workers than a 

local pool, why did 

it take the same 

amount of time?
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Where is the scaling (2)?
How can I run 80 and 

100 iteration 

(separately), and 

both take the same 

amount of time?



29

How big of a Pool can or should we run? . . .
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JupyterLab – Shell terminal
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Download workshop files
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Change directories to workshop
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Exercise: Calculate 𝜋 
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Calculate 𝜋 
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Calculate 𝜋
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Running on a local node
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Running across multiple nodes



38

GPUs
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Launching a JupyterLab on a GPU (1)
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Launching a JupyterLab on a GPU (2)
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Tesla V100
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Example: calc_mandelbrot (1)
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Example: calc_mandelbrot (2)

>> mandelbrot_example
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Example: calc_mandelbrot (3)



47

FFT benchmarking
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oom: Out of memory
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2 GB matrix

Why did the GPU 

code run two orders 

of magnitude faster 

the second time?
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Interactively: with a batch job
batch
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Exercise: “Hello, World!”

If no profile is supplied to parcluster, use the default profile

#SBATCH …

module load matlab

matlab …
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Exercise: “Hello, World!”

job variable 

job submitter

function to call

number of expected outputs from the function

inputs to the function

If no profile is supplied to parcluster, use the default profile
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Fetching results
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How should you start a local parallel pool?

▪ Call parpool from the Command Window

▪ Have MATLAB automatically start a parallel pool if it hasn’t already started

▪ From the lower lefthand corner
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Where should you start a parallel pool?

X

“What will happen 

the next time you run 

this code?”
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Then how do I tell the cluster my job needs a parallel pool?...
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Exercise: Submit calc_pi job

“If my Pool is size 8, why am I requesting 9 tasks?”
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Fetch the results

“Where’s the 

output?”
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What can get returned from running a job?

▪ Function output

▪ Diary

▪ Saved files
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Example
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Job submission
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Fetch output

“Where’s A?”
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Diary
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Fetch the diary from calc_pi
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Save files

“Where does RESULTS 

get written to?”
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“Who needs threads?...”
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Single threaded vs multi-threaded



68

Tuning jobs . . .
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Other settable job properties (1)
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Other settable job properties (2)

▪ BudgetName

▪ Constraint

▪ EmailAddress

▪ GPUCard

▪ GPUsPerNode

▪ Partition

▪ ProcsPerNode

▪ Reservation

▪ WallTime
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batchsim: Can I only run MATLAB?  What about Simulink?
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Submitting scripts, instead of functions
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“I’ll pass all the variables in

your local workspace to all

of the workers.  Then I’ll pass

everything the workers 

generate and pass it back to 

your local workspace.”

Loading variables to local workspace

“If we cleared z, then why

does who display it? 

And I didn’t 
need temp!
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The cost of transferring unnecessary data
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willRun: When will my job run?
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When has my job run and finished?
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Retrieving past jobs
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Keep cluster files minimal: delete jobs

▪ As a good practice, delete jobs you no longer need
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Debugging and Troubleshooting
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Example: Errored jobs (1)
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Example: Errored jobs (2)

Fetch outputs, even with no outputs returned, to get the error message



83

Example: Errored submissions (3)
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Logfile: Single core job
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Logfile: Multi-core job
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Scheduler ID
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Designing Robust Code
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From Coding to Cluster
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Run it locally
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Run it on the cluster
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Run it on the cluster
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From Coding to Cluster (2)
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Running bulk jobs
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Noninteractively: write a Slurm job script
sbatch
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Submitting “locally” vs “multi-node”
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Submit single-node job

matlab-single-node.slurm

Remember: Add MATLAB to the system path
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Single-node job (1)
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Single-node job (2)
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Submit multi-node job
If we’re running a 

multi-node job, why 

did we only request 

1 core? Why are we 

asking for more 

walltime for a 

multi-node job?

matlab-multi-node.slurm
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Multi-node job (1)
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Multi-node pool of workers (2)
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Wait!  What about JURECA and JUSUF?

▪ Also supported, just need to “Discover” them as well . . .
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Summary

▪ Use JupyterLabs to connect to JUWELS

▪ Prototype running on interactive compute node

▪ Create JUWELS profile by discovering cluster

▪ Toggle between local (single node) and JUWELS (multi-node) profiles

▪ Tune your job with AdditionalProperties

▪ Submit large scale from interactive session or Slurm job

▪ Tips, tricks and best practices for job submission and troubleshooting

▪ Contact IT Service Desk to get started

– sc@fz-juelich.de

– Who would be interested in 1-1 Coaching?

mailto:sc@fz-juelich.de
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