
1© 2023 The MathWorks, Inc.

WORKSHOP: Parallel Computing with MATLAB (Part II)

Raymond Norris

Application Engineer

November 2023

4

Agenda

▪ Part I – Parallel Computing with MATLAB on the Desktop

– Parallel Computing Toolbox

– MATLAB Online

▪ Part II – Scaling MATLAB to JUWELS

– MATLAB Parallel Server

– Jupyter

5

Agenda

▪ Part I – Parallel Computing with MATLAB on the Desktop

– Parallel Computing Toolbox

– MATLAB Online

▪ Part II – Scaling MATLAB to JUWELS

– MATLAB Parallel Server

– Jupyter

6

Overview

▪ How to configure MATLAB to submit multi-node jobs to the HPC cluster

▪ The job submission workflow

▪ Ways to tune job submissions to the HPC cluster

▪ How to optimize job submissions

▪ Troubleshooting job submission techniques

▪ Submitting interactive and batch jobs

7

A few notes about today’s workshop…

▪ The workflow and examples are about process, not performance

▪ Cluster documentation

– https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers

▪ MATLAB User Guide

– https://www.fz-juelich.de/en/ias/jsc/services/user-support/software-tools/matlab

▪ Requirements

❑ Account on JUWELS cluster

https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers
https://www.fz-juelich.de/en/ias/jsc/services/user-support/software-tools/matlab

8

Accessing and running MATLAB on HPC compute nodes

▪ Two options

– SSH

▪ Command line interface

▪ Useful for either low-bandwidth or automation

– Jupyter

▪ Graphical interface

9

User Portal: JuDoor

▪ https://judoor.fz-juelich.de/login

https://judoor.fz-juelich.de/login

10

Launching a JupyterLab (1)

11

Launching a JupyterLab (2)

12

JupyterLab – MATLAB

13

JupyterLab – Shell terminal

14

Ways to run MATLAB

▪ Interactively

– run serial code

– with a parallel pool (parpool)

– with batch jobs (batch)

▪ Noninteractive

– write a Slurm job script (sbatch)

15

MATLAB job submitters

▪ parpool

– Single session

– Synchronous execution

– Seamlessly runs parfor,

parfeval, and spmd

https://www.mathworks.com/help/parallel-computing/parpool.html

▪ batch

– Multiple submissions

– Non-blocking

– Calls top-level function or script

– Requires API to extract results

https://www.mathworks.com/help/parallel-computing/batch.html

https://www.mathworks.com/help/parallel-computing/parpool.html

16

Interactively: with a parallel pool
parpool

17

Parallel MATLAB – Single Node

18

Profiles

“How does MATLAB know about

JUWELS?”

19

Discover Cluster (1)

20

Discover Cluster (2)

21

Discover Cluster (3)

22

New JUWELS profile

23

JUWELS cluster

Minimum

required

26

Parallel MATLAB – Multi-node

▪ To run a multi-node MATLAB job, MATLAB will generate and submit a new

Slurm job

– Executed during any “job launcher”

▪ parpool, batch, createJob

– True regardless if we’re running MATLAB desktop or via an Slurm job script

▪ Need to use the new JUWELS profile

MATLAB “outer job”

Parallel “inner job”

27

Where is the scaling (1)?
If there are 16x

more workers than a

local pool, why did

it take the same

amount of time?

28

Where is the scaling (2)?
How can I run 80 and

100 iteration

(separately), and

both take the same

amount of time?

29

How big of a Pool can or should we run? . . .

30

JupyterLab – Shell terminal

31

Download workshop files

32

Change directories to workshop

33

Exercise: Calculate 𝜋

34

Calculate 𝜋

35

Calculate 𝜋

36

Running on a local node

37

Running across multiple nodes

38

GPUs

39

Launching a JupyterLab on a GPU (1)

40

Launching a JupyterLab on a GPU (2)

41

Tesla V100

42

Example: calc_mandelbrot (1)

43

Example: calc_mandelbrot (2)

>> mandelbrot_example

44

Example: calc_mandelbrot (3)

47

FFT benchmarking

48

oom: Out of memory

49

2 GB matrix

Why did the GPU

code run two orders

of magnitude faster

the second time?

50

Interactively: with a batch job
batch

51

Exercise: “Hello, World!”

If no profile is supplied to parcluster, use the default profile

#SBATCH …

module load matlab

matlab …

52

Exercise: “Hello, World!”

job variable

job submitter

function to call

number of expected outputs from the function

inputs to the function

If no profile is supplied to parcluster, use the default profile

53

Fetching results

54

How should you start a local parallel pool?

▪ Call parpool from the Command Window

▪ Have MATLAB automatically start a parallel pool if it hasn’t already started

▪ From the lower lefthand corner

55

Where should you start a parallel pool?

X

“What will happen

the next time you run

this code?”

56

Then how do I tell the cluster my job needs a parallel pool?...

57

Exercise: Submit calc_pi job

“If my Pool is size 8, why am I requesting 9 tasks?”

58

Fetch the results

“Where’s the

output?”

59

What can get returned from running a job?

▪ Function output

▪ Diary

▪ Saved files

60

Example

61

Job submission

62

Fetch output

“Where’s A?”

63

Diary

64

Fetch the diary from calc_pi

65

Save files

“Where does RESULTS

get written to?”

66

“Who needs threads?...”

67

Single threaded vs multi-threaded

68

Tuning jobs . . .

69

Other settable job properties (1)

70

Other settable job properties (2)

▪ BudgetName

▪ Constraint

▪ EmailAddress

▪ GPUCard

▪ GPUsPerNode

▪ Partition

▪ ProcsPerNode

▪ Reservation

▪ WallTime

71

batchsim: Can I only run MATLAB? What about Simulink?

72

Submitting scripts, instead of functions

73

“I’ll pass all the variables in

your local workspace to all

of the workers. Then I’ll pass

everything the workers

generate and pass it back to

your local workspace.”

Loading variables to local workspace

“If we cleared z, then why

does who display it?

And I didn’t
need temp!

75

The cost of transferring unnecessary data

76

willRun: When will my job run?

77

When has my job run and finished?

78

Retrieving past jobs

79

Keep cluster files minimal: delete jobs

▪ As a good practice, delete jobs you no longer need

80

Debugging and Troubleshooting

81

Example: Errored jobs (1)

82

Example: Errored jobs (2)

Fetch outputs, even with no outputs returned, to get the error message

83

Example: Errored submissions (3)

84

Logfile: Single core job

85

Logfile: Multi-core job

86

Scheduler ID

87

Designing Robust Code

88

From Coding to Cluster

89

90

Run it locally

91

Run it on the cluster

92

Run it on the cluster

93

From Coding to Cluster (2)

94

Running bulk jobs

95

Noninteractively: write a Slurm job script
sbatch

96

Submitting “locally” vs “multi-node”

97

Submit single-node job

matlab-single-node.slurm

Remember: Add MATLAB to the system path

98

Single-node job (1)

99

Single-node job (2)

100

Submit multi-node job
If we’re running a

multi-node job, why

did we only request

1 core? Why are we

asking for more

walltime for a

multi-node job?

matlab-multi-node.slurm

101

Multi-node job (1)

102

Multi-node pool of workers (2)

104

Wait! What about JURECA and JUSUF?

▪ Also supported, just need to “Discover” them as well . . .

105

Summary

▪ Use JupyterLabs to connect to JUWELS

▪ Prototype running on interactive compute node

▪ Create JUWELS profile by discovering cluster

▪ Toggle between local (single node) and JUWELS (multi-node) profiles

▪ Tune your job with AdditionalProperties

▪ Submit large scale from interactive session or Slurm job

▪ Tips, tricks and best practices for job submission and troubleshooting

▪ Contact IT Service Desk to get started

– sc@fz-juelich.de

– Who would be interested in 1-1 Coaching?

mailto:sc@fz-juelich.de

	Slide 1: WORKSHOP: Parallel Computing with MATLAB (Part II)
	Slide 4: Agenda
	Slide 5: Agenda
	Slide 6: Overview
	Slide 7: A few notes about today’s workshop…
	Slide 8: Accessing and running MATLAB on HPC compute nodes
	Slide 9: User Portal: JuDoor
	Slide 10: Launching a JupyterLab (1)
	Slide 11: Launching a JupyterLab (2)
	Slide 12: JupyterLab – MATLAB
	Slide 13: JupyterLab – Shell terminal
	Slide 14: Ways to run MATLAB
	Slide 15: MATLAB job submitters
	Slide 16: Interactively: with a parallel pool parpool
	Slide 17: Parallel MATLAB – Single Node
	Slide 18: Profiles
	Slide 19: Discover Cluster (1)
	Slide 20: Discover Cluster (2)
	Slide 21: Discover Cluster (3)
	Slide 22: New JUWELS profile
	Slide 23: JUWELS cluster
	Slide 26: Parallel MATLAB – Multi-node
	Slide 27: Where is the scaling (1)?
	Slide 28: Where is the scaling (2)?
	Slide 29: How big of a Pool can or should we run? . . .
	Slide 30: JupyterLab – Shell terminal
	Slide 31: Download workshop files
	Slide 32: Change directories to workshop
	Slide 33: Exercise: Calculate pi
	Slide 34: Calculate pi
	Slide 35: Calculate pi
	Slide 36: Running on a local node
	Slide 37: Running across multiple nodes
	Slide 38: GPUs
	Slide 39: Launching a JupyterLab on a GPU (1)
	Slide 40: Launching a JupyterLab on a GPU (2)
	Slide 41: Tesla V100
	Slide 42: Example: calc_mandelbrot (1)
	Slide 43: Example: calc_mandelbrot (2)
	Slide 44: Example: calc_mandelbrot (3)
	Slide 47: FFT benchmarking
	Slide 48: oom: Out of memory
	Slide 49: 2 GB matrix
	Slide 50: Interactively: with a batch job batch
	Slide 51: Exercise: “Hello, World!”
	Slide 52: Exercise: “Hello, World!”
	Slide 53: Fetching results
	Slide 54: How should you start a local parallel pool?
	Slide 55: Where should you start a parallel pool?
	Slide 56: Then how do I tell the cluster my job needs a parallel pool?...
	Slide 57: Exercise: Submit calc_pi job
	Slide 58: Fetch the results
	Slide 59: What can get returned from running a job?
	Slide 60: Example
	Slide 61: Job submission
	Slide 62: Fetch output
	Slide 63: Diary
	Slide 64: Fetch the diary from calc_pi
	Slide 65: Save files
	Slide 66: “Who needs threads?...”
	Slide 67: Single threaded vs multi-threaded
	Slide 68: Tuning jobs . . .
	Slide 69: Other settable job properties (1)
	Slide 70: Other settable job properties (2)
	Slide 71: batchsim: Can I only run MATLAB? What about Simulink?
	Slide 72: Submitting scripts, instead of functions
	Slide 73: Loading variables to local workspace
	Slide 75: The cost of transferring unnecessary data
	Slide 76: willRun: When will my job run?
	Slide 77: When has my job run and finished?
	Slide 78: Retrieving past jobs
	Slide 79: Keep cluster files minimal: delete jobs
	Slide 80: Debugging and Troubleshooting
	Slide 81: Example: Errored jobs (1)
	Slide 82: Example: Errored jobs (2)
	Slide 83: Example: Errored submissions (3)
	Slide 84: Logfile: Single core job
	Slide 85: Logfile: Multi-core job
	Slide 86: Scheduler ID
	Slide 87: Designing Robust Code
	Slide 88: From Coding to Cluster
	Slide 89
	Slide 90: Run it locally
	Slide 91: Run it on the cluster
	Slide 92: Run it on the cluster
	Slide 93: From Coding to Cluster (2)
	Slide 94: Running bulk jobs
	Slide 95: Noninteractively: write a Slurm job script sbatch
	Slide 96: Submitting “locally” vs “multi-node”
	Slide 97: Submit single-node job
	Slide 98: Single-node job (1)
	Slide 99: Single-node job (2)
	Slide 100: Submit multi-node job
	Slide 101: Multi-node job (1)
	Slide 102: Multi-node pool of workers (2)
	Slide 104: Wait! What about JURECA and JUSUF?
	Slide 105: Summary
	Slide 107

