
1© 2023 The MathWorks, Inc.

Workshop: Parallel Computing with MATLAB

October 24, 2023

Dr. Mihaela Jarema

Academia Group

mjarema@mathworks.com

2

Agenda

▪ Part I – Parallel Computing with MATLAB on the Desktop

– Parallel Computing Toolbox

– MATLAB Online

▪ Part II – Parallel Computing with MATLAB on the JSC Cluster (6.11.2023)

– MATLAB Parallel Server

3

Why use parallel computing?

Save time with parallel computing by carrying out computationally

and data-intensive problems in parallel (simultaneously)

▪ distribute your tasks to be executed in parallel

▪ distribute your data to solve big data problems

on your compute cores and GPUs, or scaled up to clusters and

cloud computing

4

Why use parallel computing with MATLAB?

Save time with parallel computing by carrying out computationally

and data-intensive problems in parallel (simultaneously)

▪ distribute your tasks to be executed in parallel

▪ distribute your data to solve big data problems

on your compute cores and GPUs, or scaled up to clusters and

cloud computing with minimal code changes, so you can focus on

your research use case.

Core 3

Core 1 Core 2

Core 4

CPU with 4 cores

6

! Before going parallel, make sure you optimize your serial code for

best performance

• Use the Code Analyzer to automatically check your code for

coding (and performance) problems.

Elapsed time is 0.091058 seconds.

Elapsed time is 0.018484 seconds.

! Preallocating the maximum amount of space required for

the array instead of letting MATLAB repeatedly reallocate

memory for the growing array is about 5 times faster!

7

! Before going parallel, make sure you optimize your serial code for

best performance

• Use the Profiler to find the code that runs slowest and

evaluate possible performance improvements.

! Use vectorization (matrix and vector

operations) instead of for-loops!

8

! Before going parallel, make sure you optimize your serial code for

best performance with efficient programming practices

Try using functions instead of scripts. Functions are generally faster.

Pre-allocate memory instead of letting arrays be resized dynamically.

Create a new variable rather than assigning data of a different type to an existing variable.

Vectorize – Use matrix and vector operations instead of for-loops.

Avoid printing too much data on the screen, reuse existing graphics handles.

Place independent operations outside loops to avoid redundant computations.

Techniques to improve performance

https://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html

9

! Before going parallel, make sure you optimize your serial code for

best performance with efficient programming practices

(Advanced) Replace code with MEX functions

Techniques for accelerating MATLAB algorithms and applications

http://www.mathworks.com/discovery/matlab-acceleration.html

10

Scaling MATLAB applications and Simulink simulations

Automatic parallel support in toolboxes

Common programming constructs

Advanced programming constructs

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

11

Take advantage of your multicore and multiprocessor computers
automatically

with no programming effort

using built-in multithreading
just by setting a flag/preference
* with Parallel Computing Toolbox

12

Scaling MATLAB applications and Simulink simulations

Automatic parallel support in toolboxes

Common programming constructs
(parfor, parfeval, parsim, …)

Advanced programming constructs

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

13

Scale further with parallel computing

Core 3

Core 1 Core 2

Core 4

MATLAB Desktop

CPU with 4 cores

14

Run multiple iterations by utilizing multiple CPU cores

MATLAB Client
(your MATLAB session) MATLAB Workers

(MATLAB computational engines

that run in the background

without a graphical desktop)

Parallel pool

15

Explicit parallelism using parfor (parallel for-loop)

MATLAB

Workers

▪ Run iterations in parallel

▪ Examples: parameter sweeps, Monte Carlo simulations

Time
Time

16

Explicit parallelism using parfor

MATLAB

Workers

a = zeros(5, 1);

b = pi;

for i = 1:5

a(i) = i + b;

end

disp(a)

a = zeros(5, 1);

b = pi;

parfor i = 1:5

a(i) = i + b;

end

disp(a)

17

Hands-On Exercise: Convert a simple for to parfor

18

Step 1: Create a free MathWorks account with your @fz-juelich.de email

address

mathworks.com/mwaccount/register

https://www.mathworks.com/mwaccount/register

19

Setup: Step 2 – Copy materials via MATLAB Drive

https://drive.matlab.com/sharing/8281b8fd-b766-4bbb-b3aa-2da63bcd037e

Click Add to my Files and select Copy Folder.
For use on your MATLAB Desktop, click Download Shared Folder instead.

https://drive.matlab.com/sharing/8281b8fd-b766-4bbb-b3aa-2da63bcd037e

20

Setup: Step 3 – Activate the workshop license and launch MATLAB Online

mathworks.com/licensecenter/classroom/4200902/

https://www.mathworks.com/licensecenter/classroom/4200902/

21

Common problems when you try to convert for-loops to parfor-

loops

! Noninteger loop variables

! Nested parallel loops

! Dependent loop body

22

Use Code Analyzer to fix problems when converting for-loops to

parfor-loops

! parfor-loop iterations have no guaranteed order and one loop iteration cannot depend on a
previous iteration → You might need to modify your code to use parfor!

23

Hands-On Exercise: Convert for-loops into parfor-loops

24

Consider parallel overhead* in deciding when to use parfor

parfor can be useful ☺

▪ for-loops with loop iterations that take

long to execute

▪ for-loops with many loop iterations that

take a short time, e.g., parameter sweep

parfor might not be useful 

▪ for-loops with loop iterations that

take a short time to execute

* Parallel overhead: time required for communication, coordination, and data transfer from client to workers and back.

Check

for ways to improve parfor performance.

mathworks.com/help/parallel-computing/improve-parfor-performance.html

https://www.mathworks.com/help/parallel-computing/improve-parfor-performance.html

27

Run code in parallel

Synchronously with parfor

▪ You wait for your loop to complete to

obtain your results

▪ Your MATLAB client is blocked from

running any new computations

▪ You cannot break out of loop early

Asynchronously with parfeval*

▪ You can obtain intermediate

results

▪ Your MATLAB client is free to

pursue other computations

▪ You can break out of loop early

for idx = 1:10

f(idx) = parfeval(@magic,1,idx);

end

for idx = 1:10

[completedIdx,value] = fetchNext(f);

magicResults{completedIdx} = value;

end

* Runs function on parallel workers

28

Execute functions in parallel asynchronously using parfeval

Asynchronous execution on parallel workers

MATLAB

Workers

for idx = 1:10

f(idx) = parfeval(@magic,1,idx);

end

for idx = 1:10

[completedIdx,value] = fetchNext(f);

magicResults{completedIdx} = value;

end

fetchNext

Outputs

29

Hands-On Exercise: Use parfeval to run functions in the

background

30

Execute additional code as parfor/parfeval iterations complete

▪ Send data or messages from parallel

workers back to the MATLAB client

▪ Retrieve intermediate values and track

computation progress

function a = parforWaitbar

D = parallel.pool.DataQueue;

h = waitbar(0, 'Please wait ...');

afterEach(D, @nUpdateWaitbar)

N = 200;

p = 1;

parfor i = 1:N

a(i) = max(abs(eig(rand(400))));

send(D, i)

end

function nUpdateWaitbar(~)

waitbar(p/N, h)

p = p + 1;

end

end

31

Hands-On Exercise: Use parfeval to run functions in the

background

32

Run multiple simulations in parallel with parsim

▪ Run independent Simulink

simulations in parallel using
the parsim function

Workers

Time Time

33

Scaling MATLAB applications and Simulink simulations

Automatic parallel support in toolboxes

Common programming constructs

Advanced programming constructs
(spmd,etc.)

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

34

Using NVIDIA GPUs with the Parallel Computing Toolbox

MATLAB client

or Worker

GPU cores

Device Memory

35

Leverage your GPU to accelerate your MATLAB code

▪ Ideal Problems

– massively parallel and/or

vectorized operations

– computationally intensive

▪ 500+ GPU-supported

functions

▪ Use gpuArray and

gather to transfer data

between CPU and GPU

MATLAB GPU Computing

https://www.mathworks.com/discovery/matlab-gpu.html

36

Hands-On Exercise: Offload computations to your GPU

37

GPU

Multi-core CPU

Parallel computing on your desktop, clusters, and clouds

MATLAB Parallel Server

GPU

Multi-core CPU

▪ Prototype on the desktop

▪ Integrate with infrastructure

▪ Access directly through MATLAB

MATLAB

Parallel Computing Toolbox

38

Scale to clusters and clouds

With MATLAB Parallel Server, you can…

▪ Change hardware with minimal code change

▪ Submit to on-premise or cloud clusters

▪ Support cross-platform submission

– Windows client to Linux cluster

39

Interactive parallel computing
Leverage cluster resources in MATLAB

>> parpool('cluster', 3);

>> myscript

MATLAB

Parallel Computing Toolbox

a = zeros(5, 1);

b = pi;

parfor i = 1:5

a(i) = i + b;

end

myscript.m:

41

batch simplifies offloading computations
Submit MATLAB jobs to the cluster

>> job = batch('myscript','Pool',3);

pool

parfor

worker

MATLAB

Parallel Computing Toolbox

42

Hands-On Exercise: Use batch to offload serial and parallel

computations

43

batch simplifies offloading simulations
Submit Simulink jobs to the cluster

job = batchsim(in,'Pool',3);

pool

parsim

worker

MATLAB

Parallel Computing Toolbox

44

Big Data Workflows

ACCESS DATA

More data and collections

of files than fit in memory

DEVELOP & PROTOTYPE ON THE DESKTOP

Adapt traditional processing tools or

learn new tools to work with Big Data

SCALE PROBLEM SIZE

To traditional clusters and Big

Data systems like Hadoop

45

tall arrays

▪ Data type designed for data that doesn’t fit into memory

▪ Lots of observations (hence “tall”)

▪ Looks like a normal MATLAB array

– Supports numeric types, tables, datetimes, strings, etc.

– Supports several hundred functions for basic math, stats, indexing, etc.

– Statistics and Machine Learning Toolbox support

(clustering, classification, etc.)

Working with tall arrays

https://www.mathworks.com/help/matlab/tall-arrays.html

46

Hands-On Exercise: Use tall arrays for Big Data

47

distributed arrays

▪ Distribute large matrices across workers running on a cluster

▪ Support includes matrix manipulation, linear algebra, and signal processing

▪ Several hundred MATLAB functions overloaded for distributed arrays

11 26 41

12 27 42

13 28 43

15 30 45

16 31 46

17 32 47

20 35 50

21 36 51

22 37 52

MATLAB Parallel Server

MATLAB

Parallel Computing Toolbox

Working with distributed arrays

https://www.mathworks.com/help/parallel-computing/distributed-arrays.html?s_tid=CRUX_lftnav

49

Further Resources

▪ MATLAB Documentation

– MATLAB → Software Development Tools → Performance and Memory

– Parallel Computing Toolbox

▪ Parallel and GPU Computing Tutorials

– https://www.mathworks.com/videos/series/parallel-and-gpu-computing-tutorials-

97719.html

▪ Parallel Computing with MATLAB

– https://www.mathworks.com/solutions/parallel-computing.html

http://www.mathworks.com/help/matlab/performance-and-memory.html
https://www.mathworks.com/help/parallel-computing/index.html
http://www.mathworks.com/help/distcomp/index.html
https://www.mathworks.com/videos/series/parallel-and-gpu-computing-tutorials-97719.html
https://www.mathworks.com/videos/series/parallel-and-gpu-computing-tutorials-97719.html
https://www.mathworks.com/solutions/parallel-computing.html

50

Choose your solution to accelerate your code

Top 5 MATLAB Acceleration
Techniques

1. Adopt Efficient (Serial) Programming
Practices

2. Leverage Existing Optimized Algorithms

3. Use Parallel Computing including GPUs

4. Use Parallel Computing

5. Generate C Code from MATLAB Code

6. All of the Above

	Slide 1: Workshop: Parallel Computing with MATLAB
	Slide 2: Agenda
	Slide 3: Why use parallel computing?
	Slide 4: Why use parallel computing with MATLAB?
	Slide 6: ! Before going parallel, make sure you optimize your serial code for best performance
	Slide 7: ! Before going parallel, make sure you optimize your serial code for best performance
	Slide 8: ! Before going parallel, make sure you optimize your serial code for best performance with efficient programming practices
	Slide 9: ! Before going parallel, make sure you optimize your serial code for best performance with efficient programming practices
	Slide 10: Scaling MATLAB applications and Simulink simulations
	Slide 11: Take advantage of your multicore and multiprocessor computers automatically
	Slide 12: Scaling MATLAB applications and Simulink simulations
	Slide 13: Scale further with parallel computing
	Slide 14: Run multiple iterations by utilizing multiple CPU cores
	Slide 15: Explicit parallelism using parfor (parallel for-loop)
	Slide 16: Explicit parallelism using parfor
	Slide 17: Hands-On Exercise: Convert a simple for to parfor
	Slide 18: Step 1: Create a free MathWorks account with your @fz-juelich.de email address
	Slide 19: Setup: Step 2 – Copy materials via MATLAB Drive
	Slide 20: Setup: Step 3 – Activate the workshop license and launch MATLAB Online
	Slide 21: Common problems when you try to convert for-loops to parfor-loops
	Slide 22: Use Code Analyzer to fix problems when converting for-loops to parfor-loops
	Slide 23: Hands-On Exercise: Convert for-loops into parfor-loops
	Slide 24: Consider parallel overhead* in deciding when to use parfor
	Slide 27: Run code in parallel
	Slide 28: Execute functions in parallel asynchronously using parfeval
	Slide 29: Hands-On Exercise: Use parfeval to run functions in the background
	Slide 30: Execute additional code as parfor/parfeval iterations complete
	Slide 31: Hands-On Exercise: Use parfeval to run functions in the background
	Slide 32: Run multiple simulations in parallel with parsim
	Slide 33: Scaling MATLAB applications and Simulink simulations
	Slide 34: Using NVIDIA GPUs with the Parallel Computing Toolbox
	Slide 35: Leverage your GPU to accelerate your MATLAB code​
	Slide 36: Hands-On Exercise: Offload computations to your GPU
	Slide 37: Parallel computing on your desktop, clusters, and clouds
	Slide 38: Scale to clusters and clouds
	Slide 39: Interactive parallel computing Leverage cluster resources in MATLAB
	Slide 41: batch simplifies offloading computations Submit MATLAB jobs to the cluster
	Slide 42: Hands-On Exercise: Use batch to offload serial and parallel computations
	Slide 43: batch simplifies offloading simulations Submit Simulink jobs to the cluster
	Slide 44: Big Data Workflows
	Slide 45: tall arrays
	Slide 46: Hands-On Exercise: Use tall arrays for Big Data
	Slide 47: distributed arrays
	Slide 49: Further Resources
	Slide 50: Choose your solution to accelerate your code

