diff --git a/Introduction-to-Pandas--master.ipynb b/Introduction-to-Pandas--master.ipynb index d40d3b71282802f67e55a3ce6fbf414103095743..580180d4a511817670b926f90c5003f840eaccc3 100644 --- a/Introduction-to-Pandas--master.ipynb +++ b/Introduction-to-Pandas--master.ipynb @@ -174,7 +174,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 7, "metadata": { "slideshow": { "slide_type": "fragment" @@ -187,7 +187,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 8, "metadata": { "exercise": "task", "slideshow": { @@ -201,7 +201,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 9, "metadata": { "slideshow": { "slide_type": "-" @@ -214,7 +214,7 @@ "'1.4.2'" ] }, - "execution_count": 3, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -225,7 +225,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 10, "metadata": { "slideshow": { "slide_type": "fragment" @@ -338,7 +338,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 11, "metadata": { "slideshow": { "slide_type": "fragment" @@ -351,7 +351,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 12, "metadata": { "slideshow": { "slide_type": "fragment" @@ -441,7 +441,7 @@ "9 60" ] }, - "execution_count": 6, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -452,7 +452,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 13, "metadata": { "slideshow": { "slide_type": "fragment" @@ -507,7 +507,7 @@ "2 56" ] }, - "execution_count": 7, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -530,7 +530,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 14, "metadata": { "slideshow": { "slide_type": "fragment" @@ -555,7 +555,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 15, "metadata": { "slideshow": { "slide_type": "fragment" @@ -620,7 +620,7 @@ "3 Waters 57" ] }, - "execution_count": 8, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -644,7 +644,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -653,7 +653,7 @@ "Index(['Name', 'Age'], dtype='object')" ] }, - "execution_count": 9, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -676,7 +676,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -685,7 +685,7 @@ "RangeIndex(start=0, stop=10, step=1)" ] }, - "execution_count": 10, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -708,7 +708,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 18, "metadata": { "slideshow": { "slide_type": "fragment" @@ -803,7 +803,7 @@ "Hall 60" ] }, - "execution_count": 11, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -826,7 +826,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 19, "metadata": { "slideshow": { "slide_type": "fragment" @@ -906,7 +906,7 @@ "max 60.000000" ] }, - "execution_count": 12, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -917,7 +917,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 20, "metadata": { "slideshow": { "slide_type": "fragment" @@ -980,7 +980,7 @@ "Age 41 56 56 57 39 59 43 56 38 60" ] }, - "execution_count": 13, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -991,7 +991,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 21, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1006,7 +1006,7 @@ " dtype='object', name='Name')" ] }, - "execution_count": 14, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -1028,7 +1028,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 22, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1088,7 +1088,7 @@ "Rivers 112" ] }, - "execution_count": 15, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -1099,7 +1099,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 23, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1158,7 +1158,7 @@ "2 RiversRivers 112" ] }, - "execution_count": 16, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -1169,7 +1169,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 24, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1229,7 +1229,7 @@ "Rivers 28.0" ] }, - "execution_count": 17, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -1240,7 +1240,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 25, "metadata": { "slideshow": { "slide_type": "subslide" @@ -1300,7 +1300,7 @@ "Rivers 3136" ] }, - "execution_count": 18, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -1311,7 +1311,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 26, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1382,7 +1382,7 @@ "Rice 1521" ] }, - "execution_count": 19, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -1397,7 +1397,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 27, "metadata": { "slideshow": { "slide_type": "skip" @@ -1410,7 +1410,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 28, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1481,7 +1481,7 @@ "Rice 1521" ] }, - "execution_count": 21, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -1504,7 +1504,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 29, "metadata": { "tags": [] }, @@ -1597,7 +1597,7 @@ "Hall True" ] }, - "execution_count": 22, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -1608,7 +1608,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 30, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1679,7 +1679,7 @@ "Rice True" ] }, - "execution_count": 23, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -1727,7 +1727,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 31, "metadata": { "exercise": "task", "slideshow": { @@ -1746,7 +1746,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 32, "metadata": { "exercise": "solution", "slideshow": { @@ -1816,7 +1816,7 @@ "Favourite Color violet gray " ] }, - "execution_count": 25, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -1844,7 +1844,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -1929,7 +1929,7 @@ "4 1.2 2018-02-26 -0.718282 entries Same" ] }, - "execution_count": 26, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -1947,7 +1947,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 34, "metadata": { "slideshow": { "slide_type": "fragment" @@ -2036,7 +2036,7 @@ "1 1.2 2018-02-26 1.718282 column Same" ] }, - "execution_count": 27, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -2047,7 +2047,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 35, "metadata": { "slideshow": { "slide_type": "subslide" @@ -2109,7 +2109,7 @@ "4 1.2 2018-02-26 -0.72 entries Same" ] }, - "execution_count": 28, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -2120,7 +2120,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 36, "metadata": { "slideshow": { "slide_type": "fragment" @@ -2131,7 +2131,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_62318/1325867503.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n", + "/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_67517/1325867503.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n", " df_demo.round(2).sum()\n" ] }, @@ -2144,7 +2144,7 @@ "dtype: object" ] }, - "execution_count": 31, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -2155,7 +2155,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 37, "metadata": { "slideshow": { "slide_type": "fragment" @@ -2184,7 +2184,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_62318/3396683912.py:1: FutureWarning: In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `Styler.to_latex` for formatting and rendering. The arguments signature may therefore change. It is recommended instead to use `DataFrame.style.to_latex` which also contains additional functionality.\n", + "/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_67517/3396683912.py:1: FutureWarning: In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `Styler.to_latex` for formatting and rendering. The arguments signature may therefore change. It is recommended instead to use `DataFrame.style.to_latex` which also contains additional functionality.\n", " print(df_demo.round(2).to_latex())\n" ] } @@ -2222,7 +2222,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 38, "metadata": { "slideshow": { "slide_type": "fragment" @@ -2305,7 +2305,7 @@ "Walt Malcolm David Kelley False" ] }, - "execution_count": 33, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -2335,7 +2335,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 39, "metadata": { "exercise": "task" }, @@ -2363,7 +2363,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 40, "metadata": { "exercise": "solution", "slideshow": { @@ -2587,7 +2587,7 @@ "[5 rows x 21 columns]" ] }, - "execution_count": 35, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -2657,7 +2657,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 41, "metadata": {}, "outputs": [ { @@ -2724,7 +2724,7 @@ "2 1.2 2018-02-26 -1.304068 has Same" ] }, - "execution_count": 36, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -2735,7 +2735,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 42, "metadata": { "slideshow": { "slide_type": "fragment" @@ -2754,7 +2754,7 @@ "Name: C, dtype: float64" ] }, - "execution_count": 37, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -2777,7 +2777,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 43, "metadata": { "tags": [] }, @@ -2793,7 +2793,7 @@ "Name: C, dtype: float64" ] }, - "execution_count": 38, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -2824,7 +2824,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 44, "metadata": { "slideshow": { "slide_type": "fragment" @@ -2895,7 +2895,7 @@ "4 1.2 -0.718282" ] }, - "execution_count": 39, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -2919,7 +2919,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -2977,7 +2977,7 @@ "2 1.2 2018-02-26 -1.304068 has Same" ] }, - "execution_count": 40, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -2988,7 +2988,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 46, "metadata": { "slideshow": { "slide_type": "fragment" @@ -3051,7 +3051,7 @@ "3 1.2 2018-02-26 0.986231 entries Same" ] }, - "execution_count": 41, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -3073,7 +3073,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -3131,7 +3131,7 @@ "2 1.2 2018-02-26 -1.304068 has Same" ] }, - "execution_count": 42, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -3142,7 +3142,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 48, "metadata": {}, "outputs": [ { @@ -3200,7 +3200,7 @@ "4 1.2 2018-02-26 -0.718282 entries Same" ] }, - "execution_count": 43, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -3227,7 +3227,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 49, "metadata": { "tags": [] }, @@ -3287,7 +3287,7 @@ "2 1.2 2018-02-26 -1.304068 has Same" ] }, - "execution_count": 44, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -3310,7 +3310,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -3359,7 +3359,7 @@ "2 1.2 -1.304068" ] }, - "execution_count": 45, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -3383,7 +3383,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 51, "metadata": { "slideshow": { "slide_type": "fragment" @@ -3474,7 +3474,7 @@ "entries 1.2 2018-02-26 -0.718282 Same" ] }, - "execution_count": 46, + "execution_count": 51, "metadata": {}, "output_type": "execute_result" } @@ -3486,7 +3486,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -3549,7 +3549,7 @@ "entries 1.2 2018-02-26 -0.718282 Same" ] }, - "execution_count": 47, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -3560,7 +3560,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 53, "metadata": { "slideshow": { "slide_type": "fragment" @@ -3626,7 +3626,7 @@ "entries 1.2 -0.718282" ] }, - "execution_count": 48, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -3656,7 +3656,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 54, "metadata": {}, "outputs": [ { @@ -3714,7 +3714,7 @@ "3 1.2 2018-02-26 0.986231 entries Same" ] }, - "execution_count": 49, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -3725,7 +3725,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 55, "metadata": {}, "outputs": [ { @@ -3739,7 +3739,7 @@ "Name: C, dtype: bool" ] }, - "execution_count": 50, + "execution_count": 55, "metadata": {}, "output_type": "execute_result" } @@ -3750,7 +3750,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 56, "metadata": { "slideshow": { "slide_type": "fragment" @@ -3803,7 +3803,7 @@ "4 1.2 2018-02-26 -0.718282 entries Same" ] }, - "execution_count": 51, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -3833,7 +3833,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 57, "metadata": { "slideshow": { "slide_type": "fragment" @@ -3904,7 +3904,7 @@ "2 1.2 2018-02-26 -1.304068 has Same" ] }, - "execution_count": 52, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -3915,7 +3915,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 58, "metadata": { "slideshow": { "slide_type": "fragment" @@ -3991,7 +3991,7 @@ "2 1.2 2018-02-26 -1.304068 has Same -2.504068" ] }, - "execution_count": 53, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -4016,7 +4016,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 59, "metadata": { "slideshow": { "slide_type": "fragment" @@ -4096,7 +4096,7 @@ "2 1.2 2018-02-26 -1.304068 has Same 1.700594 -2.504068" ] }, - "execution_count": 54, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } @@ -4108,11 +4108,16 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 60, "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, "slideshow": { "slide_type": "subslide" - } + }, + "tags": [] }, "outputs": [ { @@ -4187,7 +4192,7 @@ "4 1.2 2018-02-26 -0.718282 entries Same 0.515929 -1.918282" ] }, - "execution_count": 55, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } @@ -4198,18 +4203,19 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 69, "metadata": { "slideshow": { - "slide_type": "fragment" - } + "slide_type": "subslide" + }, + "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_62318/2974913581.py:1: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", + "/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_67517/363555535.py:1: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", " df_demo.append(\n" ] }, @@ -4318,7 +4324,7 @@ "5 1.3 2018-02-27 -0.777000 has it? Same NaN 23.000000" ] }, - "execution_count": 63, + "execution_count": 69, "metadata": {}, "output_type": "execute_result" } @@ -4327,7 +4333,27 @@ "df_demo.append(\n", " {\"A\": 1.3, \"B\": pd.Timestamp(\"2018-02-27\"), \"C\": -0.777, \"D\": \"has it?\", \"E\": \"Same\", \"F\": 23},\n", " ignore_index=True\n", - ") # TODO: Fix me" + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + }, + "tags": [] + }, + "source": [ + "`.append()` seems to be deprecated; one needs to use something like the following in thef future:\n", + "```python\n", + "pd.concat(\n", + " [\n", + " df_demo, \n", + " pd.DataFrame({\"A\": 1.3, \"B\": pd.Timestamp(\"2018-02-27\"), \"C\": -0.777, \"D\": \"has it?\", \"E\": \"Same\", \"F\": 23}, index=[0])\n", + " ], ignore_index=True\n", + ")\n", + "```" ] }, { @@ -7322,10 +7348,10 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.2" + "version": "3.10.4" }, "toc-autonumbering": false, - "toc-showcode": true, + "toc-showcode": false, "toc-showmarkdowntxt": false, "toc-showtags": true }, diff --git a/Introduction-to-Pandas--slides.html b/Introduction-to-Pandas--slides.html index b34a4ab7f5ba25c8d3b639b449e87c0a62605e18..c29907e8ae5b8711833abe1f36a9339d101c79fb 100644 --- a/Introduction-to-Pandas--slides.html +++ b/Introduction-to-Pandas--slides.html @@ -14800,7 +14800,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">pandas</span> @@ -14816,7 +14816,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [8]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span> @@ -14832,7 +14832,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [3]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [9]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">pd</span><span class="o">.</span><span class="n">__version__</span> @@ -14853,7 +14853,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[3]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[9]:</div> @@ -14873,7 +14873,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [4]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [10]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="o">%</span><span class="k">pdoc</span> pd @@ -15005,7 +15005,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [5]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [11]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">ages</span> <span class="o">=</span> <span class="p">[</span><span class="mi">41</span><span class="p">,</span> <span class="mi">56</span><span class="p">,</span> <span class="mi">56</span><span class="p">,</span> <span class="mi">57</span><span class="p">,</span> <span class="mi">39</span><span class="p">,</span> <span class="mi">59</span><span class="p">,</span> <span class="mi">43</span><span class="p">,</span> <span class="mi">56</span><span class="p">,</span> <span class="mi">38</span><span class="p">,</span> <span class="mi">60</span><span class="p">]</span> @@ -15021,7 +15021,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [6]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [12]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">ages</span><span class="p">)</span> @@ -15042,7 +15042,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[6]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[12]:</div> @@ -15125,7 +15125,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [13]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_ages</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">ages</span><span class="p">)</span> @@ -15147,7 +15147,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[7]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[13]:</div> @@ -15216,7 +15216,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [14]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="p">{</span> @@ -15259,7 +15259,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [8]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [15]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_sample</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> @@ -15281,7 +15281,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[8]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[15]:</div> @@ -15360,7 +15360,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [9]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [16]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_sample</span><span class="o">.</span><span class="n">columns</span> @@ -15381,7 +15381,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[9]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[16]:</div> @@ -15416,7 +15416,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [10]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [17]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_sample</span><span class="o">.</span><span class="n">index</span> @@ -15437,7 +15437,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[10]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[17]:</div> @@ -15472,7 +15472,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [11]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [18]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_sample</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">"Name"</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> @@ -15494,7 +15494,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[11]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[18]:</div> @@ -15595,7 +15595,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [12]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [19]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_sample</span><span class="o">.</span><span class="n">describe</span><span class="p">()</span> @@ -15616,7 +15616,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[12]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[19]:</div> @@ -15691,7 +15691,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [13]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [20]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_sample</span><span class="o">.</span><span class="n">T</span> @@ -15712,7 +15712,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[13]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[20]:</div> @@ -15777,7 +15777,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [14]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [21]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_sample</span><span class="o">.</span><span class="n">T</span><span class="o">.</span><span class="n">columns</span> @@ -15798,7 +15798,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[14]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[21]:</div> @@ -15834,7 +15834,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [15]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [22]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_sample</span><span class="o">.</span><span class="n">multiply</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">head</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span> @@ -15855,7 +15855,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[15]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[22]:</div> @@ -15914,7 +15914,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [16]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [23]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_sample</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">multiply</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">head</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span> @@ -15935,7 +15935,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[16]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[23]:</div> @@ -15994,7 +15994,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [17]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [24]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="p">(</span><span class="n">df_sample</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">head</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span> @@ -16015,7 +16015,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[17]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[24]:</div> @@ -16074,7 +16074,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [18]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [25]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="p">(</span><span class="n">df_sample</span> <span class="o">*</span> <span class="n">df_sample</span><span class="p">)</span><span class="o">.</span><span class="n">head</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span> @@ -16095,7 +16095,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[18]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[25]:</div> @@ -16154,7 +16154,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [19]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [26]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">mysquare</span><span class="p">(</span><span class="n">number</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> @@ -16179,7 +16179,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[19]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[26]:</div> @@ -16246,7 +16246,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [21]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [28]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_sample</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">square</span><span class="p">)</span><span class="o">.</span><span class="n">head</span><span class="p">()</span> @@ -16267,7 +16267,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[21]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[28]:</div> @@ -16346,7 +16346,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [22]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [29]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_sample</span> <span class="o">></span> <span class="mi">40</span> @@ -16367,7 +16367,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[22]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[29]:</div> @@ -16454,7 +16454,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [23]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [30]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_sample</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">mysquare</span><span class="p">)</span><span class="o">.</span><span class="n">head</span><span class="p">()</span> <span class="o">==</span> <span class="n">df_sample</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">x</span><span class="o">*</span><span class="n">x</span><span class="p">)</span><span class="o">.</span><span class="n">head</span><span class="p">()</span> @@ -16475,7 +16475,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[23]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[30]:</div> @@ -16565,7 +16565,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [24]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [31]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">happy_dinos</span> <span class="o">=</span> <span class="p">{</span> @@ -16586,7 +16586,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [25]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [32]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">happy_dinos</span> <span class="o">=</span> <span class="p">{</span> @@ -16613,7 +16613,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[25]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[32]:</div> @@ -16690,7 +16690,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [26]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [33]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span> @@ -16718,7 +16718,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[26]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[33]:</div> @@ -16805,7 +16805,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [27]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [34]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="o">.</span><span class="n">sort_values</span><span class="p">(</span><span class="s2">"C"</span><span class="p">)</span> @@ -16826,7 +16826,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[27]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[34]:</div> @@ -16913,7 +16913,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [28]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [35]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">tail</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span> @@ -16934,7 +16934,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[28]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[35]:</div> @@ -16997,7 +16997,7 @@ div.jp-OutputPrompt { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [31]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [36]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span> @@ -17022,7 +17022,7 @@ div.jp-OutputPrompt { <div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr"> -<pre>/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_62318/1325867503.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. +<pre>/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_67517/1325867503.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. df_demo.round(2).sum() </pre> </div> @@ -17031,7 +17031,7 @@ div.jp-OutputPrompt { <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[31]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[36]:</div> @@ -17054,7 +17054,7 @@ dtype: object</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [32]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [37]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="n">df_demo</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">to_latex</span><span class="p">())</span> @@ -17102,7 +17102,7 @@ dtype: object</pre> <div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr"> -<pre>/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_62318/3396683912.py:1: FutureWarning: In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `Styler.to_latex` for formatting and rendering. The arguments signature may therefore change. It is recommended instead to use `DataFrame.style.to_latex` which also contains additional functionality. +<pre>/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_67517/3396683912.py:1: FutureWarning: In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `Styler.to_latex` for formatting and rendering. The arguments signature may therefore change. It is recommended instead to use `DataFrame.style.to_latex` which also contains additional functionality. print(df_demo.round(2).to_latex()) </pre> </div> @@ -17142,7 +17142,7 @@ dtype: object</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [33]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [38]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">pd</span><span class="o">.</span><span class="n">read_json</span><span class="p">(</span><span class="s2">"data-lost.json"</span><span class="p">)</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">"Character"</span><span class="p">)</span><span class="o">.</span><span class="n">sort_index</span><span class="p">()</span> @@ -17163,7 +17163,7 @@ dtype: object</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[33]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[38]:</div> @@ -17261,7 +17261,7 @@ dtype: object</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [34]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [39]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="o">!</span>head data-nest.csv @@ -17309,7 +17309,7 @@ dtype: object</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [35]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [40]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">"data-nest.csv"</span><span class="p">)</span> @@ -17331,7 +17331,7 @@ dtype: object</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[35]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[40]:</div> @@ -17577,7 +17577,7 @@ dtype: object</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [36]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [41]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="o">.</span><span class="n">head</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span> @@ -17598,7 +17598,7 @@ dtype: object</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[36]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[41]:</div> @@ -17669,7 +17669,7 @@ dtype: object</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [37]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [42]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="p">[</span><span class="s1">'C'</span><span class="p">]</span> @@ -17690,7 +17690,7 @@ dtype: object</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[37]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[42]:</div> @@ -17729,7 +17729,7 @@ Name: C, dtype: float64</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [38]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [43]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="o">.</span><span class="n">C</span> @@ -17750,7 +17750,7 @@ Name: C, dtype: float64</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[38]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[43]:</div> @@ -17805,7 +17805,7 @@ Name: C, dtype: float64</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [39]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [44]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">my_slice</span> <span class="o">=</span> <span class="p">[</span><span class="s1">'A'</span><span class="p">,</span> <span class="s1">'C'</span><span class="p">]</span> @@ -17827,7 +17827,7 @@ Name: C, dtype: float64</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[39]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[44]:</div> @@ -17911,7 +17911,7 @@ Name: C, dtype: float64</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [40]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [45]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="mi">3</span><span class="p">]</span> @@ -17932,7 +17932,7 @@ Name: C, dtype: float64</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[40]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[45]:</div> @@ -17995,7 +17995,7 @@ Name: C, dtype: float64</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [41]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [46]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="mi">6</span><span class="p">:</span><span class="mi">2</span><span class="p">]</span> @@ -18016,7 +18016,7 @@ Name: C, dtype: float64</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[41]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[46]:</div> @@ -18093,7 +18093,7 @@ Name: C, dtype: float64</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [42]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [47]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="mi">3</span><span class="p">]</span> @@ -18114,7 +18114,7 @@ Name: C, dtype: float64</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[42]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[47]:</div> @@ -18177,7 +18177,7 @@ Name: C, dtype: float64</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [43]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [48]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="o">.</span><span class="n">sort_values</span><span class="p">(</span><span class="s2">"C"</span><span class="p">)[</span><span class="mi">1</span><span class="p">:</span><span class="mi">3</span><span class="p">]</span> @@ -18198,7 +18198,7 @@ Name: C, dtype: float64</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[43]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[48]:</div> @@ -18275,7 +18275,7 @@ Name: C, dtype: float64</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [44]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [49]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="mi">3</span><span class="p">]</span> @@ -18296,7 +18296,7 @@ Name: C, dtype: float64</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[44]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[49]:</div> @@ -18373,7 +18373,7 @@ Name: C, dtype: float64</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [45]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [50]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="mi">3</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">]]</span> @@ -18394,7 +18394,7 @@ Name: C, dtype: float64</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[45]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[50]:</div> @@ -18464,7 +18464,7 @@ Name: C, dtype: float64</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [46]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [51]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo_indexed</span> <span class="o">=</span> <span class="n">df_demo</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">"D"</span><span class="p">)</span> @@ -18486,7 +18486,7 @@ Name: C, dtype: float64</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[46]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[51]:</div> @@ -18574,7 +18574,7 @@ Name: C, dtype: float64</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [47]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [52]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo_indexed</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="s2">"entries"</span><span class="p">]</span> @@ -18595,7 +18595,7 @@ Name: C, dtype: float64</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[47]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[52]:</div> @@ -18662,7 +18662,7 @@ Name: C, dtype: float64</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [48]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [53]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo_indexed</span><span class="o">.</span><span class="n">loc</span><span class="p">[[</span><span class="s2">"has"</span><span class="p">,</span> <span class="s2">"entries"</span><span class="p">],</span> <span class="p">[</span><span class="s2">"A"</span><span class="p">,</span> <span class="s2">"C"</span><span class="p">]]</span> @@ -18683,7 +18683,7 @@ Name: C, dtype: float64</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[48]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[53]:</div> @@ -18772,7 +18772,7 @@ Name: C, dtype: float64</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [49]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [54]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="p">[</span><span class="n">df_demo</span><span class="p">[</span><span class="s2">"C"</span><span class="p">]</span> <span class="o">></span> <span class="mi">0</span><span class="p">]</span> @@ -18793,7 +18793,7 @@ Name: C, dtype: float64</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[49]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[54]:</div> @@ -18856,7 +18856,7 @@ Name: C, dtype: float64</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [50]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [55]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="p">[</span><span class="s2">"C"</span><span class="p">]</span> <span class="o">></span> <span class="mi">0</span> @@ -18877,7 +18877,7 @@ Name: C, dtype: float64</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[50]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[55]:</div> @@ -18902,7 +18902,7 @@ Name: C, dtype: bool</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [51]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [56]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="p">[(</span><span class="n">df_demo</span><span class="p">[</span><span class="s2">"C"</span><span class="p">]</span> <span class="o"><</span> <span class="mi">0</span><span class="p">)</span> <span class="o">&</span> <span class="p">(</span><span class="n">df_demo</span><span class="p">[</span><span class="s2">"D"</span><span class="p">]</span> <span class="o">==</span> <span class="s2">"entries"</span><span class="p">)]</span> @@ -18923,7 +18923,7 @@ Name: C, dtype: bool</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[51]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[56]:</div> @@ -19000,7 +19000,7 @@ Name: C, dtype: bool</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [52]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [57]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="o">.</span><span class="n">head</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span> @@ -19021,7 +19021,7 @@ Name: C, dtype: bool</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[52]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[57]:</div> @@ -19092,7 +19092,7 @@ Name: C, dtype: bool</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [53]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [58]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="p">[</span><span class="s2">"F"</span><span class="p">]</span> <span class="o">=</span> <span class="n">df_demo</span><span class="p">[</span><span class="s2">"C"</span><span class="p">]</span> <span class="o">-</span> <span class="n">df_demo</span><span class="p">[</span><span class="s2">"A"</span><span class="p">]</span> @@ -19114,7 +19114,7 @@ Name: C, dtype: bool</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[53]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[58]:</div> @@ -19204,7 +19204,7 @@ Name: C, dtype: bool</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [54]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [59]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="n">df_demo</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="s2">"E2"</span><span class="p">,</span> <span class="n">df_demo</span><span class="p">[</span><span class="s2">"C"</span><span class="p">]</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span> @@ -19226,7 +19226,7 @@ Name: C, dtype: bool</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[54]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[59]:</div> @@ -19305,7 +19305,7 @@ Name: C, dtype: bool</pre> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [55]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [60]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="o">.</span><span class="n">tail</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span> @@ -19326,7 +19326,7 @@ Name: C, dtype: bool</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[55]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[60]:</div> @@ -19400,18 +19400,18 @@ Name: C, dtype: bool</pre> </div> -</div><div class="fragment"><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +</div></section><section><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> <div class="jp-Cell-inputWrapper"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [63]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [69]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="CodeMirror cm-s-jupyter"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_demo</span><span class="o">.</span><span class="n">append</span><span class="p">(</span> <span class="p">{</span><span class="s2">"A"</span><span class="p">:</span> <span class="mf">1.3</span><span class="p">,</span> <span class="s2">"B"</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Timestamp</span><span class="p">(</span><span class="s2">"2018-02-27"</span><span class="p">),</span> <span class="s2">"C"</span><span class="p">:</span> <span class="o">-</span><span class="mf">0.777</span><span class="p">,</span> <span class="s2">"D"</span><span class="p">:</span> <span class="s2">"has it?"</span><span class="p">,</span> <span class="s2">"E"</span><span class="p">:</span> <span class="s2">"Same"</span><span class="p">,</span> <span class="s2">"F"</span><span class="p">:</span> <span class="mi">23</span><span class="p">},</span> <span class="n">ignore_index</span><span class="o">=</span><span class="kc">True</span> -<span class="p">)</span> <span class="c1"># TODO: Fix me</span> +<span class="p">)</span> </pre></div> </div> @@ -19433,7 +19433,7 @@ Name: C, dtype: bool</pre> <div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr"> -<pre>/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_62318/2974913581.py:1: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead. +<pre>/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_67517/363555535.py:1: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead. df_demo.append( </pre> </div> @@ -19442,7 +19442,7 @@ Name: C, dtype: bool</pre> <div class="jp-OutputArea-child"> - <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[63]:</div> + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[69]:</div> @@ -19546,6 +19546,25 @@ Name: C, dtype: bool</pre> </div> +</div><div class="fragment"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> +<div class="jp-Cell-inputWrapper"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<p><code>.append()</code> seems to be deprecated; one needs to use something like the following in thef future:</p> +<div class="highlight"><pre><span></span><span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">(</span> + <span class="p">[</span> + <span class="n">df_demo</span><span class="p">,</span> + <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s2">"A"</span><span class="p">:</span> <span class="mf">1.3</span><span class="p">,</span> <span class="s2">"B"</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Timestamp</span><span class="p">(</span><span class="s2">"2018-02-27"</span><span class="p">),</span> <span class="s2">"C"</span><span class="p">:</span> <span class="o">-</span><span class="mf">0.777</span><span class="p">,</span> <span class="s2">"D"</span><span class="p">:</span> <span class="s2">"has it?"</span><span class="p">,</span> <span class="s2">"E"</span><span class="p">:</span> <span class="s2">"Same"</span><span class="p">,</span> <span class="s2">"F"</span><span class="p">:</span> <span class="mi">23</span><span class="p">},</span> <span class="n">index</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> + <span class="p">],</span> <span class="n">ignore_index</span><span class="o">=</span><span class="kc">True</span> +<span class="p">)</span> +</pre></div> + +</div> +</div> +</div> </div></div></section><section> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper"> diff --git a/Introduction-to-Pandas--slides.ipynb b/Introduction-to-Pandas--slides.ipynb index 0d318a3a4123ec619424d1133dcdd804010e7564..ac333c1c51eff0fa61d51eb9af6f0dff054993c3 100644 --- a/Introduction-to-Pandas--slides.ipynb +++ b/Introduction-to-Pandas--slides.ipynb @@ -150,7 +150,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 7, "metadata": { "slideshow": { "slide_type": "fragment" @@ -163,7 +163,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 8, "metadata": { "exercise": "task", "slideshow": { @@ -177,7 +177,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 9, "metadata": { "slideshow": { "slide_type": "-" @@ -190,7 +190,7 @@ "'1.4.2'" ] }, - "execution_count": 3, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -201,7 +201,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 10, "metadata": { "slideshow": { "slide_type": "fragment" @@ -314,7 +314,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 11, "metadata": { "slideshow": { "slide_type": "fragment" @@ -327,7 +327,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 12, "metadata": { "slideshow": { "slide_type": "fragment" @@ -417,7 +417,7 @@ "9 60" ] }, - "execution_count": 6, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -428,7 +428,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 13, "metadata": { "slideshow": { "slide_type": "fragment" @@ -483,7 +483,7 @@ "2 56" ] }, - "execution_count": 7, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -506,7 +506,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 14, "metadata": { "slideshow": { "slide_type": "fragment" @@ -531,7 +531,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 15, "metadata": { "slideshow": { "slide_type": "fragment" @@ -596,7 +596,7 @@ "3 Waters 57" ] }, - "execution_count": 8, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -620,7 +620,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -629,7 +629,7 @@ "Index(['Name', 'Age'], dtype='object')" ] }, - "execution_count": 9, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -652,7 +652,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -661,7 +661,7 @@ "RangeIndex(start=0, stop=10, step=1)" ] }, - "execution_count": 10, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -684,7 +684,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 18, "metadata": { "slideshow": { "slide_type": "fragment" @@ -779,7 +779,7 @@ "Hall 60" ] }, - "execution_count": 11, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -802,7 +802,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 19, "metadata": { "slideshow": { "slide_type": "fragment" @@ -882,7 +882,7 @@ "max 60.000000" ] }, - "execution_count": 12, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -893,7 +893,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 20, "metadata": { "slideshow": { "slide_type": "fragment" @@ -956,7 +956,7 @@ "Age 41 56 56 57 39 59 43 56 38 60" ] }, - "execution_count": 13, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -967,7 +967,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 21, "metadata": { "slideshow": { "slide_type": "fragment" @@ -982,7 +982,7 @@ " dtype='object', name='Name')" ] }, - "execution_count": 14, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -1004,7 +1004,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 22, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1064,7 +1064,7 @@ "Rivers 112" ] }, - "execution_count": 15, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -1075,7 +1075,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 23, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1134,7 +1134,7 @@ "2 RiversRivers 112" ] }, - "execution_count": 16, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -1145,7 +1145,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 24, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1205,7 +1205,7 @@ "Rivers 28.0" ] }, - "execution_count": 17, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -1216,7 +1216,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 25, "metadata": { "slideshow": { "slide_type": "subslide" @@ -1276,7 +1276,7 @@ "Rivers 3136" ] }, - "execution_count": 18, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -1287,7 +1287,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 26, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1358,7 +1358,7 @@ "Rice 1521" ] }, - "execution_count": 19, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -1373,7 +1373,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 27, "metadata": { "slideshow": { "slide_type": "skip" @@ -1386,7 +1386,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 28, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1457,7 +1457,7 @@ "Rice 1521" ] }, - "execution_count": 21, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -1480,7 +1480,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 29, "metadata": { "tags": [] }, @@ -1573,7 +1573,7 @@ "Hall True" ] }, - "execution_count": 22, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -1584,7 +1584,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 30, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1655,7 +1655,7 @@ "Rice True" ] }, - "execution_count": 23, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -1687,7 +1687,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 31, "metadata": { "exercise": "task", "slideshow": { @@ -1706,7 +1706,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 32, "metadata": { "exercise": "solution", "slideshow": { @@ -1776,7 +1776,7 @@ "Favourite Color violet gray " ] }, - "execution_count": 25, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -1804,7 +1804,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -1889,7 +1889,7 @@ "4 1.2 2018-02-26 -0.718282 entries Same" ] }, - "execution_count": 26, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -1907,7 +1907,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 34, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1996,7 +1996,7 @@ "1 1.2 2018-02-26 1.718282 column Same" ] }, - "execution_count": 27, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -2007,7 +2007,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 35, "metadata": { "slideshow": { "slide_type": "subslide" @@ -2069,7 +2069,7 @@ "4 1.2 2018-02-26 -0.72 entries Same" ] }, - "execution_count": 28, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -2080,7 +2080,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 36, "metadata": { "slideshow": { "slide_type": "fragment" @@ -2091,7 +2091,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_62318/1325867503.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n", + "/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_67517/1325867503.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n", " df_demo.round(2).sum()\n" ] }, @@ -2104,7 +2104,7 @@ "dtype: object" ] }, - "execution_count": 31, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -2115,7 +2115,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 37, "metadata": { "slideshow": { "slide_type": "fragment" @@ -2144,7 +2144,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_62318/3396683912.py:1: FutureWarning: In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `Styler.to_latex` for formatting and rendering. The arguments signature may therefore change. It is recommended instead to use `DataFrame.style.to_latex` which also contains additional functionality.\n", + "/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_67517/3396683912.py:1: FutureWarning: In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `Styler.to_latex` for formatting and rendering. The arguments signature may therefore change. It is recommended instead to use `DataFrame.style.to_latex` which also contains additional functionality.\n", " print(df_demo.round(2).to_latex())\n" ] } @@ -2182,7 +2182,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 38, "metadata": { "slideshow": { "slide_type": "fragment" @@ -2265,7 +2265,7 @@ "Walt Malcolm David Kelley False" ] }, - "execution_count": 33, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -2295,7 +2295,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 39, "metadata": { "exercise": "task" }, @@ -2323,7 +2323,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 40, "metadata": { "exercise": "solution", "slideshow": { @@ -2547,7 +2547,7 @@ "[5 rows x 21 columns]" ] }, - "execution_count": 35, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -2617,7 +2617,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 41, "metadata": {}, "outputs": [ { @@ -2684,7 +2684,7 @@ "2 1.2 2018-02-26 -1.304068 has Same" ] }, - "execution_count": 36, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -2695,7 +2695,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 42, "metadata": { "slideshow": { "slide_type": "fragment" @@ -2714,7 +2714,7 @@ "Name: C, dtype: float64" ] }, - "execution_count": 37, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -2737,7 +2737,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 43, "metadata": { "tags": [] }, @@ -2753,7 +2753,7 @@ "Name: C, dtype: float64" ] }, - "execution_count": 38, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -2784,7 +2784,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 44, "metadata": { "slideshow": { "slide_type": "fragment" @@ -2855,7 +2855,7 @@ "4 1.2 -0.718282" ] }, - "execution_count": 39, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -2879,7 +2879,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -2937,7 +2937,7 @@ "2 1.2 2018-02-26 -1.304068 has Same" ] }, - "execution_count": 40, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -2948,7 +2948,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 46, "metadata": { "slideshow": { "slide_type": "fragment" @@ -3011,7 +3011,7 @@ "3 1.2 2018-02-26 0.986231 entries Same" ] }, - "execution_count": 41, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -3033,7 +3033,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -3091,7 +3091,7 @@ "2 1.2 2018-02-26 -1.304068 has Same" ] }, - "execution_count": 42, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -3102,7 +3102,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 48, "metadata": {}, "outputs": [ { @@ -3160,7 +3160,7 @@ "4 1.2 2018-02-26 -0.718282 entries Same" ] }, - "execution_count": 43, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -3187,7 +3187,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 49, "metadata": { "tags": [] }, @@ -3247,7 +3247,7 @@ "2 1.2 2018-02-26 -1.304068 has Same" ] }, - "execution_count": 44, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -3270,7 +3270,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -3319,7 +3319,7 @@ "2 1.2 -1.304068" ] }, - "execution_count": 45, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -3343,7 +3343,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 51, "metadata": { "slideshow": { "slide_type": "fragment" @@ -3434,7 +3434,7 @@ "entries 1.2 2018-02-26 -0.718282 Same" ] }, - "execution_count": 46, + "execution_count": 51, "metadata": {}, "output_type": "execute_result" } @@ -3446,7 +3446,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -3509,7 +3509,7 @@ "entries 1.2 2018-02-26 -0.718282 Same" ] }, - "execution_count": 47, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -3520,7 +3520,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 53, "metadata": { "slideshow": { "slide_type": "fragment" @@ -3586,7 +3586,7 @@ "entries 1.2 -0.718282" ] }, - "execution_count": 48, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -3616,7 +3616,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 54, "metadata": {}, "outputs": [ { @@ -3674,7 +3674,7 @@ "3 1.2 2018-02-26 0.986231 entries Same" ] }, - "execution_count": 49, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -3685,7 +3685,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 55, "metadata": {}, "outputs": [ { @@ -3699,7 +3699,7 @@ "Name: C, dtype: bool" ] }, - "execution_count": 50, + "execution_count": 55, "metadata": {}, "output_type": "execute_result" } @@ -3710,7 +3710,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 56, "metadata": { "slideshow": { "slide_type": "fragment" @@ -3763,7 +3763,7 @@ "4 1.2 2018-02-26 -0.718282 entries Same" ] }, - "execution_count": 51, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -3793,7 +3793,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 57, "metadata": { "slideshow": { "slide_type": "fragment" @@ -3864,7 +3864,7 @@ "2 1.2 2018-02-26 -1.304068 has Same" ] }, - "execution_count": 52, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -3875,7 +3875,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 58, "metadata": { "slideshow": { "slide_type": "fragment" @@ -3951,7 +3951,7 @@ "2 1.2 2018-02-26 -1.304068 has Same -2.504068" ] }, - "execution_count": 53, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -3976,7 +3976,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 59, "metadata": { "slideshow": { "slide_type": "fragment" @@ -4056,7 +4056,7 @@ "2 1.2 2018-02-26 -1.304068 has Same 1.700594 -2.504068" ] }, - "execution_count": 54, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } @@ -4068,11 +4068,16 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 60, "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, "slideshow": { "slide_type": "subslide" - } + }, + "tags": [] }, "outputs": [ { @@ -4147,7 +4152,7 @@ "4 1.2 2018-02-26 -0.718282 entries Same 0.515929 -1.918282" ] }, - "execution_count": 55, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } @@ -4158,18 +4163,19 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 69, "metadata": { "slideshow": { - "slide_type": "fragment" - } + "slide_type": "subslide" + }, + "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_62318/2974913581.py:1: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", + "/var/folders/f5/swf8tg5j5r7bqbwftt3zn6b00000gn/T/ipykernel_67517/363555535.py:1: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", " df_demo.append(\n" ] }, @@ -4278,7 +4284,7 @@ "5 1.3 2018-02-27 -0.777000 has it? Same NaN 23.000000" ] }, - "execution_count": 63, + "execution_count": 69, "metadata": {}, "output_type": "execute_result" } @@ -4287,7 +4293,27 @@ "df_demo.append(\n", " {\"A\": 1.3, \"B\": pd.Timestamp(\"2018-02-27\"), \"C\": -0.777, \"D\": \"has it?\", \"E\": \"Same\", \"F\": 23},\n", " ignore_index=True\n", - ") # TODO: Fix me" + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + }, + "tags": [] + }, + "source": [ + "`.append()` seems to be deprecated; one needs to use something like the following in thef future:\n", + "```python\n", + "pd.concat(\n", + " [\n", + " df_demo, \n", + " pd.DataFrame({\"A\": 1.3, \"B\": pd.Timestamp(\"2018-02-27\"), \"C\": -0.777, \"D\": \"has it?\", \"E\": \"Same\", \"F\": 23}, index=[0])\n", + " ], ignore_index=True\n", + ")\n", + "```" ] }, { @@ -7282,10 +7308,10 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.2" + "version": "3.10.4" }, "toc-autonumbering": false, - "toc-showcode": true, + "toc-showcode": false, "toc-showmarkdowntxt": false, "toc-showtags": true }, diff --git a/Introduction-to-Pandas--solution.ipynb b/Introduction-to-Pandas--solution.ipynb index dd553efdb4cc9bcd2a1282c0d283ee41439d5f3c..70ad75c1cb769afa9cc558ebe1d901b4e8a2d8a5 100644 --- a/Introduction-to-Pandas--solution.ipynb +++ b/Introduction-to-Pandas--solution.ipynb @@ -51,7 +51,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 8, "metadata": { "exercise": "task", "slideshow": { @@ -102,7 +102,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 31, "metadata": { "exercise": "task", "slideshow": { @@ -121,7 +121,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 32, "metadata": { "exercise": "solution", "slideshow": { @@ -191,7 +191,7 @@ "Favourite Color violet gray " ] }, - "execution_count": 25, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -227,7 +227,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 39, "metadata": { "exercise": "task" }, @@ -255,7 +255,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 40, "metadata": { "exercise": "solution", "slideshow": { @@ -479,7 +479,7 @@ "[5 rows x 21 columns]" ] }, - "execution_count": 35, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -1253,10 +1253,10 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.2" + "version": "3.10.4" }, "toc-autonumbering": false, - "toc-showcode": true, + "toc-showcode": false, "toc-showmarkdowntxt": false, "toc-showtags": true }, diff --git a/Introduction-to-Pandas--tasks.ipynb b/Introduction-to-Pandas--tasks.ipynb index 7a901d76b9b3e0a077b41edd6da28e8237581929..cdfe751753a6858dd889361ca2ecdbf1f222752c 100644 --- a/Introduction-to-Pandas--tasks.ipynb +++ b/Introduction-to-Pandas--tasks.ipynb @@ -51,7 +51,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 8, "metadata": { "exercise": "task", "slideshow": { @@ -102,7 +102,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 31, "metadata": { "exercise": "task", "slideshow": { @@ -140,7 +140,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 39, "metadata": { "exercise": "task" }, @@ -333,10 +333,10 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.2" + "version": "3.10.4" }, "toc-autonumbering": false, - "toc-showcode": true, + "toc-showcode": false, "toc-showmarkdowntxt": false, "toc-showtags": true }, diff --git a/custom.css b/custom.css index 3311bd7cf6972d42d66ecceba5380328089f2646..f5dbb4d43bca70a46fed2185f887ac7c572d3a86 100644 --- a/custom.css +++ b/custom.css @@ -11,3 +11,12 @@ span.task { right: 10px; top: 10px; } + +.jp-RenderedText[data-mime-type="application/vnd.jupyter.stderr"] { + font-size: 1.2rem; +} + +.reveal .jp-RenderedHTMLCommon pre { + box-shadow: initial; + /*border-left: 3px solid rgba(0, 0, 0, 0.15);*/ +} \ No newline at end of file diff --git a/fzj-reveal.js b/fzj-reveal.js index 6eabaeb69aa35c1872c7039639de9e1b9f55e8ec..157ad1f57942c70b22386ed8b8add17575574656 160000 --- a/fzj-reveal.js +++ b/fzj-reveal.js @@ -1 +1 @@ -Subproject commit 6eabaeb69aa35c1872c7039639de9e1b9f55e8ec +Subproject commit 157ad1f57942c70b22386ed8b8add17575574656