From cdececdfa04eab620908ebfb605874e034b9b3c5 Mon Sep 17 00:00:00 2001 From: Andreas Herten <a.herten@fz-juelich.de> Date: Tue, 26 Feb 2019 12:56:29 +0100 Subject: [PATCH] Slight changes --- .gitlab-ci.yml | 3 ++ ...oduction-to-Pandas--JURECA--solution.ipynb | 2 +- Introduction-to-Pandas--JURECA--tasks.ipynb | 2 +- Introduction-to-Pandas--master.ipynb | 31 +++++++++++------- Introduction-to-Pandas--slides.html | 27 ++++++++------- Introduction-to-Pandas--slides.ipynb | 2 +- Introduction-to-Pandas--slides.pdf | Bin 4141707 -> 4151817 bytes Introduction-to-Pandas--solution.ipynb | 2 +- Introduction-to-Pandas--tasks.ipynb | 2 +- 9 files changed, 42 insertions(+), 29 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index d5b185f..3f50a5f 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -1,3 +1,6 @@ +job: + cache: {} + pages: tags: - linux diff --git a/Introduction-to-Pandas--JURECA--solution.ipynb b/Introduction-to-Pandas--JURECA--solution.ipynb index 12ce7a4..b6c5f92 100644 --- a/Introduction-to-Pandas--JURECA--solution.ipynb +++ b/Introduction-to-Pandas--JURECA--solution.ipynb @@ -1 +1 @@ -{"cells": [{"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["# *Introduction to* Data Analysis and Plotting with Pandas\n", "## JSC Tutorial\n", "\n", "Andreas Herten, Forschungszentrum J\u00fclich, 26 February 2019"]}, {"cell_type": "markdown", "metadata": {"exercise": "onlysolution", "slideshow": {"slide_type": "skip"}}, "source": ["**Version: Solutions**"]}, {"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["## Outline\n", "\n", "* [Task 1](#task1)\n", "* [Task 2](#task2)\n", "* [Task 3](#task3)\n", "* [Task 4](#task4)\n", "* [Task 5](#task5)\n", "* [Task 6](#task6)\n", "* [Task 7](#task7)\n", "* [Bonus Task](#taskb)"]}, {"cell_type": "code", "execution_count": 2, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import pandas as pd"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 1\n", "<a name=\"task1\"></a>\n", "\n", "* Create data frame with\n", " - 10 names of dinosaurs, \n", " - their favourite prime number, \n", " - and their favourite color\n", "* Play around with the frame\n", "* Tell me on poll when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "nopresentation", "slideshow": {"slide_type": "skip"}}, "source": ["Jupyter Notebook 101:\n", "\n", "* Execute cell: `shift+enter`\n", "* New cell in front of current cell: `a`\n", "* New cell after current cell: `b`"]}, {"cell_type": "code", "execution_count": 21, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [],\n", " \"Favourite Prime\": [],\n", " \"Favourite Color\": []\n", "}\n", "#df_dinos = "]}, {"cell_type": "code", "execution_count": 22, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>Dinosaur Name</th>\n", " <th>Aegyptosaurus</th>\n", " <th>Tyrannosaurus</th>\n", " <th>Panoplosaurus</th>\n", " <th>Isisaurus</th>\n", " <th>Triceratops</th>\n", " <th>Velociraptor</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Favourite Prime</th>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>15</td>\n", " <td>16</td>\n", " <td>23</td>\n", " <td>42</td>\n", " </tr>\n", " <tr>\n", " <th>Favourite Color</th>\n", " <td>blue</td>\n", " <td>white</td>\n", " <td>blue</td>\n", " <td>purple</td>\n", " <td>violet</td>\n", " <td>gray</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": ["Dinosaur Name Aegyptosaurus Tyrannosaurus Panoplosaurus Isisaurus \\\n", "Favourite Prime 4 8 15 16 \n", "Favourite Color blue white blue purple \n", "\n", "Dinosaur Name Triceratops Velociraptor \n", "Favourite Prime 23 42 \n", "Favourite Color violet gray "]}, "execution_count": 22, "metadata": {}, "output_type": "execute_result"}], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [\"Aegyptosaurus\", \"Tyrannosaurus\", \"Panoplosaurus\", \"Isisaurus\", \"Triceratops\", \"Velociraptor\"],\n", " \"Favourite Prime\": [\"4\", \"8\", \"15\", \"16\", \"23\", \"42\"],\n", " \"Favourite Color\": [\"blue\", \"white\", \"blue\", \"purple\", \"violet\", \"gray\"]\n", "}\n", "df_dinos = pd.DataFrame(happy_dinos).set_index(\"Dinosaur Name\")\n", "df_dinos.T"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 2\n", "<a name=\"task2\"></a>\n", "\n", "* Read in `nest-data.csv` to `DataFrame`; call it `df`\n", "* Get to know it and play a bit with it\n", "* Tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 30, "metadata": {"exercise": "task"}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["id,Nodes,Tasks/Node,Threads/Task,Runtime Program / s,Scale,Plastic,Avg. Neuron Build Time / s,Min. Edge Build Time / s,Max. Edge Build Time / s,Min. Init. Time / s,Max. Init. Time / s,Presim. Time / s,Sim. Time / s,Virt. Memory (Sum) / kB,Local Spike Counter (Sum),Average Rate (Sum),Number of Neurons,Number of Connections,Min. Delay,Max. Delay\n", "5,1,2,4,420.42,10,true,0.29,88.12,88.18,1.14,1.20,17.26,311.52,46560664.00,825499,7.48,112500,1265738500,1.5,1.5\n", "5,1,4,4,200.84,10,true,0.15,46.03,46.34,0.70,1.01,7.87,142.97,46903088.00,802865,7.03,112500,1265738500,1.5,1.5\n"]}], "source": ["!cat nest-data.csv | head -3"]}, {"cell_type": "code", "execution_count": 31, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>Nodes</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>...</th>\n", " <th>Max. Init. Time / s</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>420.42</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>88.18</td>\n", " <td>...</td>\n", " <td>1.20</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " <td>46560664.0</td>\n", " <td>825499</td>\n", " <td>7.48</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>200.84</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>46.03</td>\n", " <td>46.34</td>\n", " <td>...</td>\n", " <td>1.01</td>\n", " <td>7.87</td>\n", " <td>142.97</td>\n", " <td>46903088.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>8</td>\n", " <td>202.15</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>48.48</td>\n", " <td>...</td>\n", " <td>1.20</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " <td>47699384.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>89.57</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>20.41</td>\n", " <td>23.21</td>\n", " <td>...</td>\n", " <td>3.04</td>\n", " <td>3.19</td>\n", " <td>60.31</td>\n", " <td>46813040.0</td>\n", " <td>821491</td>\n", " <td>7.23</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>164.16</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.20</td>\n", " <td>40.03</td>\n", " <td>41.09</td>\n", " <td>...</td>\n", " <td>1.58</td>\n", " <td>6.08</td>\n", " <td>114.88</td>\n", " <td>46937216.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 21 columns</p>\n", "</div>"], "text/plain": [" id Nodes Tasks/Node Threads/Task Runtime Program / s Scale Plastic \\\n", "0 5 1 2 4 420.42 10 True \n", "1 5 1 4 4 200.84 10 True \n", "2 5 1 2 8 202.15 10 True \n", "3 5 1 4 8 89.57 10 True \n", "4 5 2 2 4 164.16 10 True \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "0 0.29 88.12 \n", "1 0.15 46.03 \n", "2 0.28 47.98 \n", "3 0.15 20.41 \n", "4 0.20 40.03 \n", "\n", " Max. Edge Build Time / s ... Max. Init. Time / s Presim. Time / s \\\n", "0 88.18 ... 1.20 17.26 \n", "1 46.34 ... 1.01 7.87 \n", "2 48.48 ... 1.20 7.95 \n", "3 23.21 ... 3.04 3.19 \n", "4 41.09 ... 1.58 6.08 \n", "\n", " Sim. Time / s Virt. Memory (Sum) / kB Local Spike Counter (Sum) \\\n", "0 311.52 46560664.0 825499 \n", "1 142.97 46903088.0 802865 \n", "2 142.81 47699384.0 802865 \n", "3 60.31 46813040.0 821491 \n", "4 114.88 46937216.0 802865 \n", "\n", " Average Rate (Sum) Number of Neurons Number of Connections Min. Delay \\\n", "0 7.48 112500 1265738500 1.5 \n", "1 7.03 112500 1265738500 1.5 \n", "2 7.03 112500 1265738500 1.5 \n", "3 7.23 112500 1265738500 1.5 \n", "4 7.03 112500 1265738500 1.5 \n", "\n", " Max. Delay \n", "0 1.5 \n", "1 1.5 \n", "2 1.5 \n", "3 1.5 \n", "4 1.5 \n", "\n", "[5 rows x 21 columns]"]}, "execution_count": 31, "metadata": {}, "output_type": "execute_result"}], "source": ["df = pd.read_csv(\"nest-data.csv\")\n", "df.head()"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "subslide"}}, "source": ["## Task 3\n", "<a name=\"task3\"></a>\n", "\n", "* Add a column to the Nest data frame called `Virtual Processes` which is the total number of threads across all nodes (i.e. the product of threads per task and tasks per node and nodes)\n", "* Remember to tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 54, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>Nodes</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>...</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " <th>Virtual Processes</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>420.42</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>88.18</td>\n", " <td>...</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " <td>46560664.0</td>\n", " <td>825499</td>\n", " <td>7.48</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>8</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>200.84</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>46.03</td>\n", " <td>46.34</td>\n", " <td>...</td>\n", " <td>7.87</td>\n", " <td>142.97</td>\n", " <td>46903088.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>8</td>\n", " <td>202.15</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>48.48</td>\n", " <td>...</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " <td>47699384.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>89.57</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>20.41</td>\n", " <td>23.21</td>\n", " <td>...</td>\n", " <td>3.19</td>\n", " <td>60.31</td>\n", " <td>46813040.0</td>\n", " <td>821491</td>\n", " <td>7.23</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>32</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>164.16</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.20</td>\n", " <td>40.03</td>\n", " <td>41.09</td>\n", " <td>...</td>\n", " <td>6.08</td>\n", " <td>114.88</td>\n", " <td>46937216.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 22 columns</p>\n", "</div>"], "text/plain": [" id Nodes Tasks/Node Threads/Task Runtime Program / s Scale Plastic \\\n", "0 5 1 2 4 420.42 10 True \n", "1 5 1 4 4 200.84 10 True \n", "2 5 1 2 8 202.15 10 True \n", "3 5 1 4 8 89.57 10 True \n", "4 5 2 2 4 164.16 10 True \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "0 0.29 88.12 \n", "1 0.15 46.03 \n", "2 0.28 47.98 \n", "3 0.15 20.41 \n", "4 0.20 40.03 \n", "\n", " Max. Edge Build Time / s ... Presim. Time / s Sim. Time / s \\\n", "0 88.18 ... 17.26 311.52 \n", "1 46.34 ... 7.87 142.97 \n", "2 48.48 ... 7.95 142.81 \n", "3 23.21 ... 3.19 60.31 \n", "4 41.09 ... 6.08 114.88 \n", "\n", " Virt. Memory (Sum) / kB Local Spike Counter (Sum) Average Rate (Sum) \\\n", "0 46560664.0 825499 7.48 \n", "1 46903088.0 802865 7.03 \n", "2 47699384.0 802865 7.03 \n", "3 46813040.0 821491 7.23 \n", "4 46937216.0 802865 7.03 \n", "\n", " Number of Neurons Number of Connections Min. Delay Max. Delay \\\n", "0 112500 1265738500 1.5 1.5 \n", "1 112500 1265738500 1.5 1.5 \n", "2 112500 1265738500 1.5 1.5 \n", "3 112500 1265738500 1.5 1.5 \n", "4 112500 1265738500 1.5 1.5 \n", "\n", " Virtual Processes \n", "0 8 \n", "1 16 \n", "2 16 \n", "3 32 \n", "4 16 \n", "\n", "[5 rows x 22 columns]"]}, "execution_count": 54, "metadata": {}, "output_type": "execute_result"}], "source": ["df[\"Virtual Processes\"] = df[\"Nodes\"] * df[\"Tasks/Node\"] * df[\"Threads/Task\"]\n", "df.head()"]}, {"cell_type": "code", "execution_count": 55, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"text/plain": ["Index(['id', 'Nodes', 'Tasks/Node', 'Threads/Task', 'Runtime Program / s',\n", " 'Scale', 'Plastic', 'Avg. Neuron Build Time / s',\n", " 'Min. Edge Build Time / s', 'Max. Edge Build Time / s',\n", " 'Min. Init. Time / s', 'Max. Init. Time / s', 'Presim. Time / s',\n", " 'Sim. Time / s', 'Virt. Memory (Sum) / kB', 'Local Spike Counter (Sum)',\n", " 'Average Rate (Sum)', 'Number of Neurons', 'Number of Connections',\n", " 'Min. Delay', 'Max. Delay', 'Virtual Processes'],\n", " dtype='object')"]}, "execution_count": 55, "metadata": {}, "output_type": "execute_result"}], "source": ["df.columns"]}, {"cell_type": "code", "execution_count": 56, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import matplotlib.pyplot as plt\n", "%matplotlib inline"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 4\n", "<a name=\"task4\"></a>\n", "\n", "* Sort the data frame by the virtual proccesses\n", "* Plot `\"Presim. Time / s\"` and `\"Sim. Time / s\"` of our data frame `df` as a function of the virtual processes\n", "* Use a dashed, red line for `\"Presim. Time / s\"`, a blue line for `\"Sim. Time / s\"` (see [API description](https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot))\n", "* Don't forget to label your axes and to add a legend\n", "* Submit when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 61, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["df.sort_values([\"Virtual Processes\", \"Nodes\", \"Tasks/Node\", \"Threads/Task\"], inplace=True)"]}, {"cell_type": "code", "execution_count": 62, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VdW5//HPQwgJCIqSaJHBgOIAgoFGxOKQioiiFfWK0ksVbr1X2+rtVaut3taK/sSrVdFarcNVXmC1WpwqdWSoQ/WqGChaBJSoKFCUQUAZJfD8/lj7kJPknOSQ5OScJN/367Vfe5+19vDs7OQ8WXtY29wdERGRurTJdAAiItI8KGGIiEhKlDBERCQlShgiIpISJQwREUmJEoaIiKRECUNERFKihCEiIilRwhARkZS0zXQADVFQUOBFRUWZDkNEpFmZO3fuGncv3N3lmnXCKCoqoqysLNNhiIg0K2b2aX2W0ykpERFJiRKGiIikRAlDRERS0qyvYYhI49u+fTvLly9n69atmQ5FGig/P5/u3buTm5vbKOtTwhCRKpYvX06nTp0oKirCzDIdjtSTu7N27VqWL19Or169GmWdOiUlIlVs3bqVLl26KFk0c2ZGly5dGrWlqIQhIjUoWbQMjX0cW2XCWLAAfvlLWLs205GIiDQfrTJhLFkCN94In32W6UhEJJGcnByKi4s5/PDDGT16NJs3b27wOu+9914eeuihBq/n4osvpri4mL59+9K+fXuKi4spLi7miSee4Ne//jWzZs1q8DYSuemmm3jkkUfSsu5UtcqL3gUFYbx6dWbjEJHE2rdvz/z58wEYO3Ys9957L5dffvmuenfH3WnTJvX/eX/0ox81Smx33303AEuXLuW0007bFSfA2Wef3SjbSOSll15i2rRpaVt/KlplC6Mw6kFFCUMk+x177LGUl5ezdOlSDjnkEM4//3wOP/xwli1bxowZMzj66KMZNGgQo0ePZuPGjQBcddVV9O3blwEDBnDFFVcAMGHCBG699VYASktLueyyyygpKeGwww7jnXfe4ayzzqJPnz786le/qnes48eP54knngBC10VXX301xcXFlJSUMG/ePEaMGMGBBx7Ivffeu2uZW265hSOPPJIBAwZw7bXXJlzvV199xTfffENhYdXun1599dVdLZyBAwfy9ddf1zv2VLTKFkbsZ75mTWbjEGkWSktrlp1zDvzkJ7B5M4wcWbN+/PgwrFkD1f/rfuWVlDddUVHBCy+8wMknnwzAkiVLmDp1KkOGDGHNmjXccMMNzJo1iz322IObb76ZSZMmcfHFF/P000+zePFizIz169cnXHe7du0oKyvjt7/9LaNGjWLu3Lnss88+HHjggVx22WV06dIl5TiT6dmzJ/Pnz+eyyy5j/PjxvPHGG2zdupXDDz+cH/3oR8yYMYMlS5YwZ84c3J3TTz+d1157jeOOO67KembNmsWwYcNqrP/WW2/l7rvvZujQoWzcuJH8/PwGx1ybtLUwzCzfzOaY2btm9r6ZXReV9zKzt82s3Mz+ZGbtovK86HN5VF+Urtj23htyctTCEMlWW7Zs2fWfec+ePbngggsAOOCAAxgyZAgAb731FgsXLmTo0KEUFxczdepUPv30U/baay/y8/O54IILeOqpp+jQoUPCbZx++ukA9O/fn379+tG1a1fy8vLo3bs3y5Yta5T9iN/GUUcdRadOnSgsLCQvL4/169czY8YMZsyYwcCBAxk0aBCLFy9myZIlNdbz4osvcsopp9QoHzp0KJdffjl33nkn69evp23b9LYB0rn2bcAJ7r7RzHKB183sBeBy4HZ3f8zM7gUuAO6Jxuvc/SAzGwPcDJybjsDatIEuXZQwRFJSW4ugQ4fa6wsKdqtFERN/DSPeHnvssWva3Rk+fDiPPvpojfnmzJnD7NmzeeKJJ7jrrrv461//WmOevLw8ANq0abNrOva5oqJit2NOpK5tuDtXX301F110Ua3rmTNnDvfcc0+N8quuuopTTz2V559/nqFDh/LSSy9x6KGHNkrsiaStheHBxuhjbjQ4cALwRFQ+FTgjmh4VfSaqH2ZpvBm8oEAJQ6Q5GzJkCG+88Qbl5eUAbNq0iQ8//JCNGzeyYcMGRo4cye233867776b4UiTGzFiBJMnT9517WXFihWsWrWqyjzvv/8+hx56KDk5OTWW/+ijj+jfvz+/+MUvOPLII1m8eHFa401r+8XMcoC5wEHA3cBHwHp3j6Xv5UC3aLobsAzA3SvMbAPQBUjLlYbCQiUMkeassLCQKVOm8P3vf59t27YBcMMNN9CpUydGjRrF1q1bcXcmTZpU722MHDmSBx54gP3337+xwq7ipJNOYtGiRRx99NEAdOzYkYcffph999131zzx13Cqu+OOO3j55Zdp06YN/fr1S3jaqjGZu6d1AwBm1hl4GrgGmOLuB0XlPYAX3P1wM1sAnOzuy6O6j4Cj3H1NtXVdCFwI0LNnz29/+mm93gPC6NHhAb5Fi+q7VyIt06JFizjssMMyHYZEhg8fzkMPPUTXrl3rtXyi42lmc929ZHfX1SS31br7euBl4Gigs5nFWjbdgRXR9AqgB0BUvxdQ41lsd7/f3UvcvaT6LWa7Qy0MEWkOZs6cWe9k0djSeZdUYdSywMzaA8OBRYTEEbvPbhzwTDQ9PfpMVP9XT2Pzp6AAvvwSduxI1xZERFqWdF7D6ApMja5jtAGmufuzZrYQeMzMbgD+DjwYzf8g8AczKwe+BMakMTYKC8E99CcVd7pQRESSSFvCcPf3gIEJyj8GBico3wqMTlc81cU/vKeEISJSt1bZNQioexARkd2lhKGEISKSklabMNRjrUj2mjhxIv369WPAgAEUFxfz9ttvA/Dv//7vLFy4sMHrP+qooyguLqZnz54UFhbu6sBv6dKljBw5Mmn/Uw11yimnsHz58rSsuym0ys4HQQlDJFu9+eabPPvss8ybN4+8vDzWrFnDN998A8ADDzzQKNuIJaApU6ZQVlbGXXfdtavu+eefb5RtVLdlyxbWrl1L9+7d07L+ptBqWxjt2sFee6nHWpFss3LlSgoKCnb1vVRQULDrSevS0lLKysqA8FT0lVdeSb9+/TjxxBOZM2cOpaWl9O7dm+nTp9d7+0VFRaxZs4alS5dy6KGHMn78eA4++GDGjh3LrFmzGDp0KH369GHOnDlA6JLkhz/8IYMHD2bgwIE888wzCdf7yiuvUJqg598777xzV1fsY8ak9ebQBmu1LQzQw3sidbn0UkjQB2CDFBfDHXckrz/ppJO4/vrrOfjggznxxBM599xzOf7442vMt2nTJk444QRuueUWzjzzTH71q18xc+ZMFi5cyLhx43b1FNsQ5eXlPP7440yePJkjjzySP/7xj7z++utMnz6dG2+8kT//+c9MnDiRE044gcmTJ7N+/XoGDx7MiSeeWKWjRAhdfJxxxhk1tnHTTTfxySef7OrBNpu12hYGqANCkWzUsWNH5s6dy/33309hYSHnnnsuU6ZMqTFfu3btdvWx1L9/f44//nhyc3Pp378/S5cubZRYevXqRf/+/Xf11TRs2DDMrMo2ZsyYwU033URxcTGlpaVs3bqVzxK8//mNN97gmGOOqVE+YMAAxo4dy8MPP5z27skbKrujS7PCQqhnV1QirUJtLYF0ysnJobS0lNLSUvr378/UqVMZP358lXlyc3OJdWgd3314Oronr20b7s6TTz7JIYccknQ9H3/8MT169KBdu3Y16p577jlee+01/vKXvzBx4kT+8Y9/ZG3iaNUtjMJCXcMQyTYffPBBlZcIzZ8/nwMOOCCDEdVuxIgR/O53vyPWk9Hf//73GvMk63F2586dLFu2jO9+97vcfPPNbNiwYVdX59mo1SeM1atDFyEikh02btzIuHHjdl0IXrhwIRMmTKjXuv75z38yMtErZBvRNddcw/bt2xkwYAD9+vXjmmuuqTHPiy++mDBh7Nixgx/84Af079+fgQMH8tOf/pTOnTunNd6GaJLuzdOlpKTEY3dM1Mdtt8EVV8D69eGOKRFR9+aNbdu2bQwdOpSGfFc1RLPr3jxb6VkMEUm3vLy8jCWLxtaqE4a6BxERSZ0SBrrwLVJdcz5VLZUa+zgqYaAWhki8/Px81q5dq6TRzLk7a9euJT8/v9HWmZ03+zYRJQyRmrp3787y5ctZrT+MZi8/P79R+65q1QmjQwfIz1fCEImXm5tLr169Mh2GZKFWfUrKTA/viYikqlUnDFAHhCIiqVLCUMIQEUlJq08Y6rFWRCQ1rT5hqIUhIpIaJYxC2LQJtmzJdCQiItktbQnDzHqY2ctmttDM3jez/4rKJ5jZCjObHw0j45a52szKzewDMxuRrtji6WlvEZHUpPM5jArgZ+4+z8w6AXPNbGZUd7u73xo/s5n1BcYA/YD9gVlmdrC770hjjFUe3uvRI51bEhFp3tLWwnD3le4+L5r+GlgEdKtlkVHAY+6+zd0/AcqBwemKL0Y91oqIpKZJrmGYWREwEHg7KrrEzN4zs8lmtndU1g1YFrfYchIkGDO70MzKzKysMbou0CkpEZHUpD1hmFlH4EngUnf/CrgHOBAoBlYCt+3O+tz9fncvcfeSwti3fQOoPykRkdSkNWGYWS4hWTzi7k8BuPsX7r7D3XcC/0vlaacVQPxVhO5RWVp17gw5OUoYIiJ1SeddUgY8CCxy90lx5V3jZjsTWBBNTwfGmFmemfUC+gBz0hVfTJs20KWLEoaISF3SeZfUUOA84B9mNj8q+2/g+2ZWDDiwFLgIwN3fN7NpwELCHVYXp/sOqRg9vCciUre0JQx3fx2wBFXP17LMRGBiumJKRj3WiojUrdU/6Q1qYYiIpEIJAyUMEZFUKGEQHt778kuoqMh0JCIi2UsJg8pnMb78MrNxiIhkMyUM9PCeiEgqlDBQwhARSYUSBuqAUEQkFUoYqIUhIpIKJQwqWxh6eE9EJDklDCA3N3RCqBaGiEhyShgRPbwnIlI7JYxIQYEShohIbZQwIuqAUESkdkoYEZ2SEhGpnRJGJNbCcM90JCIi2UkJI1JQANu3w4YNmY5ERCQ7KWFE9PCeiEjtlDAisYShC98iIokpYUTUwhARqZ0SRkQJQ0SkdkoYEfVYKyJSOyWMyB57QPv2uoYhIpJM2hKGmfUws5fNbKGZvW9m/xWV72NmM81sSTTeOyo3M7vTzMrN7D0zG5Su2JLRw3siIsmls4VRAfzM3fsCQ4CLzawvcBUw2937ALOjzwCnAH2i4ULgnjTGlpAShohIcmlLGO6+0t3nRdNfA4uAbsAoYGo021TgjGh6FPCQB28Bnc2sa7riS0QJQ0QkuSa5hmFmRcBA4G1gP3dfGVV9DuwXTXcDlsUttjwqazLqsVZEJLm0Jwwz6wg8CVzq7l/F17m7A7vVe5OZXWhmZWZWtrqRv93VY62ISHJpTRhmlktIFo+4+1NR8RexU03ReFVUvgLoEbd496isCne/391L3L2kMPbwRCMpLIRNm2DLlkZdrYhIi5DOu6QMeBBY5O6T4qqmA+Oi6XHAM3Hl50d3Sw0BNsSdumoSenhPRCS5tmlc91DgPOAfZjY/Kvtv4CZgmpldAHwKnBPVPQ+MBMqBzcC/pTG2hOIf3uvZs6m3LiKS3dKWMNz9dcCSVA9LML8DF6crnlSohSEikpye9I6jHmtFRJJTwoijFoaISHJKGHE6d4acHCUMEZFElDDimOnhPRGRZJQwqtHDeyIiidWZMMzsN2a2p5nlmtlsM1ttZj9oiuAyQf1JiYgklkoL46SoS4/TgKXAQcCV6Qwqk5QwREQSSyVhxJ7VOBV43N03pDGejNM1DBGRxFJJGM+a2WLg28BsMysEtqY3rMwpLIR162D79kxHIiKSXepMGO5+FfAdoMTdtxO67RiV7sAyJfYsxpdfZjYOEZFsk9JdUu7+pbvviKY3ufvn6Q0rc/TwnohIYrqttholDBGRxJImjOhdFq1OfI+1IiJSqbbeat80s+XAi8CL7r60aULKLHVAKCKSWNKE4e4l0bu4TwbuMLNuwOvAC8Cr7r6tSSJsYl26hLFaGCIiVdV6DcPdl7r7ve5+BuFOqb8AJwJ/M7PnmiLAppabC3vvrYQhIlJdyi9Qim6p/Ws0ELU4WiQ9vCciUlO975Jy9xWNGUg2UfcgIiI16bbaBNRjrYhITSknDDPrkM5AsolaGCIiNaXSvfl3zGwhsDj6fISZ/T7tkWVQrIXhnulIRESyRyotjNuBEcBaAHd/FzgunUFlWkEBVFTA+vWZjkREJHuk2pfUsmpFO9IQS9bQw3siIjWlkjCWmdl3AI/euncFsKiuhcxsspmtMrMFcWUTzGyFmc2PhpFxdVebWbmZfWBmI+q1N41E/UmJiNSUSsL4EXAx0A1YARRHn+syhfCUeHW3u3txNDwPYGZ9gTFAv2iZ35tZTgrbSAslDBGRmup8cM/d1wBjd3fF7v5a1LVIKkYBj0XdjXxiZuXAYODN3d1uY1AHhCIiNdWZMMysF/CfQFH8/O5+ej23eYmZnQ+UAT9z93WE1stbcfMsj8oyQi0MEZGaUuka5M/Ag4R+pHY2cHv3AP8P8Gh8G/DD3VmBmV0IXAjQs2fPBoaTWIcOYdBFbxGRSqkkjK3ufmdjbMzdv4hNm9n/As9GH1cAPeJm7R6VJVrH/cD9ACUlJWl7UkIP74mIVJXKRe/fmtm1Zna0mQ2KDfXZmJl1jft4JhC7g2o6MMbM8qJTYH2AOfXZRmNRwhARqSqVFkZ/4DzgBCpPSXn0OSkzexQoBQqiFzFdC5SaWXG0/FLgIgB3f9/MpgELgQrg4tg7xDNl/vzw8J6IiATmdfR/Ed2x1Nfdv2makFJXUlLiZWVlaVm3WRirexARaWnMbK67l+zucqmckloAdN79kJq3MWOge/dMRyEikj1SOSXVGVhsZu8Au17L2oDbapuFtm2hXbtMRyEikj1SSRjXpj0KERHJeqk86f1qUwQiIiLZLWnCMLPX3f0YM/uacFfTrirA3X3PtEcnIiJZo7YWxh4A7t6piWIREZEsVttdUrqhVEREdqmthbGvmV2erNLdJ6UhHhERyVK1JYwcoCPhmoWIiLRytSWMle5+fZNFIiIiWa22axhqWYiIyC61JYxhTRaFiIhkvaQJw92/bMpAREQku6XS+aCIiIgShoiIpEYJQ0REUqKEUYuKCr1ASUQkRgkjiSOOgM8+g4kTMx2JiEh2SOV9GK3S5ZfDe+/BNdfA3nvDxRdnOiIRkcxSwkiiTRt48EHYsAEuuQQ6d4axYzMdlYhI5uiUVC1yc+FPf4LSUhg3Dp59NtMRiYhkjhJGHfLz4ZlnoLgYRo+G117LdEQiIpmhhJGCPfeEF16AoiL43vdg3rxMRyQi0vTSljDMbLKZrTKzBXFl+5jZTDNbEo33jsrNzO40s3Ize8/MBqUrrvoqLIQZM8K1jJNPhg8+yHREIiJNK50tjCnAydXKrgJmu3sfYHb0GeAUoE80XAjck8a46q1HD5g5M0wPHx5uuxURaS3SljDc/TWgegeGo4Cp0fRU4Iy48oc8eAvobGZd0xVbQxx8MLz0Urh7avhwWLUq0xGJiDSNpr6GsZ+7r4ymPwf2i6a7Acvi5lselWWlgQPDHVPl5XDnnZmORkSkaWTsore7O7DbHW+Y2YVmVmZmZatXr05DZKk59ljo2BE2bcpYCCIiTaqpE8YXsVNN0Th2QmcF0CNuvu5RWQ3ufr+7l7h7SWFhYVqDFRGRSk2dMKYD46LpccAzceXnR3dLDQE2xJ26EhGRLJC2rkHM7FGgFCgws+XAtcBNwDQzuwD4FDgnmv15YCRQDmwG/i1dcYmISP2kLWG4+/eTVNV4V3h0PUPd+4mIZDE96S0iIilRwhARkZQoYYiISEqUMEREJCVKGCIikhIlDBERSYkShoiIpEQJQ0REUqKEISIiKVHCEBGRlChhiIhISpQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDRERSooTRQCtWwFdfZToKEZH0U8JogAMPhMcfh4ICGDYMbrsNFi0C90xHJiLS+JQwGuDtt+HVV+Gyy2DVKrjiCujbNySSSy6B55+HLVsyHaWISOMwb8b/DpeUlHhZWVmmw9jls8/ghRdCopg1CzZvho4dYd486NMn09GJiARmNtfdS3Z3ObUwGlHPnnDRRfDMM7B2Lfzud7BxIyxblunIREQaTgkjTfLzYcCATEchItJ4lDBERCQlbTOxUTNbCnwN7AAq3L3EzPYB/gQUAUuBc9x9XSbiExGRmjLZwviuuxfHXXi5Cpjt7n2A2dFnERHJEtl0SmoUMDWangqckcFYRESkmkwlDAdmmNlcM7swKtvP3VdG058D+yVa0MwuNLMyMytbvXp1U8QqIiJk6BoGcIy7rzCzfYGZZrY4vtLd3cwSPiDi7vcD90N4DiP9oYqICGSoheHuK6LxKuBpYDDwhZl1BYjGqzIRm4iIJNbkCcPM9jCzTrFp4CRgATAdGBfNNg54pqljExGR5DJxSmo/4Gkzi23/j+7+opm9A0wzswuAT4FzMhBbo+rUKYzvuw+GDIEOHTIbj4hIQzR5wnD3j4EjEpSvBYY1dTzpVFwM118P114LixfDU0+FjglFRJqjbLqttsUxg2uugeeeC/1JlZSEjglFRJojJYwmcMopUFYGRUVw2mlw3XWwc2emoxIR2T1KGE2kd2944w047zyYMAFOPx3WpdjxyZw58MknaQ1PRKROmXoOo1Xq0AGmTIGjjoJLLw2nqJ5+umavttu2wccfQ3k5LFkCP/tZKG/Gry4RkRZACaOJmcFPfgIDB8LZZ4e7py6/PLQ2liwJw2ef6ZSViGQfJYwMOfro8Ca+c8+FiROhc+fwVr7vfAfOPz9Mx4YhQ0JrREQkk5QwMmi//eDll+Grr2DPPUPrQ0QkWylhZJgZ7LVXpqMQEamb7pJqJnbs0EVvEckstTCagXbtYNo0mD4dunaFb30rDLHp6mX77gu5uZmOWkRaGiWMZmDKFHj1Vfj8c1i5Mow//DCUffllzfnNoKCgZmIZNChcZBcRqQ8ljGagpCT5XVLbtsEXX4QkEp9QqieXlSvhm29g1CjIz2/a+EWkZVDCaOby8qBnzzDU5je/gV/8Am64Adq2DYnmm2/COH66qAjOPBMGD9ZdWyJSlRJGKxFLKBMnhnFubkg27dpVjtu1gyefhJtvhu7d4ayz4F/+BYYOhZyczMUuItnBvBnfelNSUuJlZWX1W3jxYujYMXwzthKbN4cv/nbtkrce1q2DZ58NieOll2Dr1nAR/YwzQvL47nd1QV2kuTOzue6+248Dt86E4Q7HHAPvvw933hl6BNT5lxo2bgzdsT/5ZOiifdOmkGxGjQqJo0MHaN8+jOOnq4/z8/XjFckmShi766OPYPx4eP318A14333h0WtJaMuWkDRGj67f8u3bV00kZ58NN97YuDGKSGqUMOpjxw644w745S/D6amXX4b+/RsvwBZox47Q0tiyJZziio3jp+saT54c1vX731deO4m/jhI/JCqPL8vNVetFZHfVN2G07oveOTmh7/BTTgm3ER1ySCh317dQEjk5od+rPfes/zr22gtuvz302tsYcnNrTzpt24Z5qg+x8k6dYJ99wrD33pXT8Z87ddKvhEjrbmEksn49jBgRXsQ9cmTjrluAkI/XrYPt2ytv6Y0fEpU1pLyiImyr+lBREeq//jo8ALltW/KYc3KSJ5T/+z9YuDCc0ezYEfbYo/7j9u3DNZ+8vDCu7QYFkfpSC6OxrFkTzpucempIGhMmZDqiFscsfNlmmy1bQuKIDevWJf/8+echSaxbBxs2hOWPOy7cKLBpUxivXVv186ZN9XvPSX5+1SQSP6RStrvLbdsGU6dWttwStd7qOlVY22fdot18KWFUd9BB4QXcgweHO6j22Qd++tNQV1YWvh06dgznKDp1Crfl6l/AFqF9e+jWLQy7o6IijNvW8dfkHm5Tjk8g1cdbtyYetm1LXv7VV7BqVfJ5s+0kQps2u59k6pOYEp2abNMmJKzqQ2OVt/Svgqw7JWVmJwO/BXKAB9z9pmTzpuWUVMzNN8PVV4dOmP75z1D2ve+FhxSqz/fzn6cnBpEGcg+n35IlnWSJqGPH0O9YbPnaTv9VL6vrc2PNE/u8fXumf8pVpTMhxZePHh1u9KyPFnFKysxygLuB4cBy4B0zm+7uC5s8mF/8Aq68Mvz1xEyaFJLD11+HYdo06NIl/It3+umVRzM2Pv98GDMmnJvQAwmSAWaV/2HXd/m8vDBkq/ikliypbNsWTgfu2FFzaKzyxlxXovLq+/D1103/s86qhAEMBsrd/WMAM3sMGAU0fcKA8MXfoUPl59g7U2NiXb/GTmLHruLGjvjmzaG8tBQWLAh/tZ07h2H4cLjrrlD/85+HHgQrKsKyFRWhP47LLgv1ZmG44YbKz2edFe7q+vhjePzxyphiCemcc0LHUB98AH/5CyxdGk6p/eQnIZmdfno4pfbBB+EBxjZtqia8E04I3xKffALLl1fWVVSE8iOPDNv58MNQHx87hNYYwN/+BuXloTw2T14e/Md/hJ/Rxo01Y4+dU4j/GcbXx+6n3bmzakKPiZ1/2LkzfFtUl5sb9mXHjqr/nsZ+zrFzFzt3Vp7PidU1JOHHt+bNwvpjFzXi69q2rayP32/9s5FQfFLs2DHT0bRw7p41A3A24TRU7PN5wF3J5v/2t7/tzcJDD7nfeKP7z3/ufuGF7uec43799ZX1RxzhXlTkfuCB7occ4t63r/uVV1bWh6+TqsOTT4a6F15IXD9jRqifNi1x/ccfh/obb0xcv2pVqL/66sT1O3aE+osuqlnXvn1l7GPH1qzfd99Q9/nnidf9m9+E+iVLEtf//vehft68xPV/+EOof/XVxPV//nOof+65xPWzZ4f6Rx9NXP/226H+gQfc27Rxz8mpOixaFOonTUq8/LJlof666xLXr18f6q+4InF9RUWo//GPq26/bVv3vfaq/NmPG+eel+eenx+G9u3D71nMmDHunTqFYc89wzBwYGX96ae777135bBXSsZRAAAKN0lEQVTPPu7HH19ZP3y4e0FB1eG00yrrhw4Nxzp++Nd/rawfOND9W98KQ9euYbjoosr6Qw5x33//MHTrFoYrrqisP+AA9x49qg7XXRfqNm0K9fFDUZH7bbeF+tWr3Xv1qjncd1+o/+QT9969aw4PPxzq33/f/aCDag6x3605c9z79Kk5zJwZ6l95Jexf9eHNNyt/Nw89tObw3nuh/sMPvSGAMq/Hd3S2tTDqZGYXAhcC9Kyri9Zscd55tdfPn197/c6dlf8Je/SfaOwK6/Dhlf+Fx+qg8hzCmWeGtqt7uAMs9l9trA+tCy4Id4TF2rqxcefOlfXDhlW2g1evrqyD0Ar6/vdDPPFDzKRJocfDnJya9R07wm231Yz9uOPCuEsXuOWWmvVDhoTx/vuHa0jVDRwYxkVF8D//U7P+sMPC+JBDKutjX8cAvXuHcf/+cP31Vb+uofKq+BFHhOtcseVjLYAuXSrj/PWvw3R8KyH2EEtpaVh/9RZE7NiddFLlv8zx24/Nd/LJlbebxerjO/o6+eTK3gti9fH/gp94YnhZSmy97uFFKvH1BxxQWRe/7xB+L+Jb3AAHHlg5PXx4zQdh+/WrWr9+fdVjO2hQ5fRJJ4Vb1+Lr45cfNqzmFf1YPDk54ecbE5uvqCiMc3ND90DVxfavfXv4zndq1sd+nh06hBtjqosd+44dE7+TIPa306kTFBfXrI8dn86dYcCAmvXt24dxhs4RZtVFbzM7Gpjg7iOiz1cDuHuCv/o0X/QWEWmh6nvRO9ve6f0O0MfMeplZO2AMMD3DMYmICFl20dvdK8zsEuAlwm21k939/QyHJSIiZFnCAHD354HnMx2HiIhUlW2npEREJEspYYiISEqUMEREJCVKGCIikhIlDBERSUlWPbi3u8xsNfBpkuoCYE0ThtNUtF/NT0vdN+1X8xPbtwPcvXB3F27WCaM2ZlZWnycZs532q/lpqfum/Wp+GrpvOiUlIiIpUcIQEZGUtOSEcX+mA0gT7Vfz01L3TfvV/DRo31rsNQwREWlcLbmFISIijajFJQwzO9nMPjCzcjO7KtPxNJSZLTWzf5jZfDMri8r2MbOZZrYkGu+d6TjrYmaTzWyVmS2IK0u4HxbcGR3D98xsUPI1Z1aS/ZpgZiuiYzbfzEbG1V0d7dcHZjYiM1HXzcx6mNnLZrbQzN43s/+KylvCMUu2b836uJlZvpnNMbN3o/26LirvZWZvR/H/KXp1BGaWF30uj+qL6txIfV7Tl60DoUv0j4DeQDvgXaBvpuNq4D4tBQqqlf0GuCqavgq4OdNxprAfxwGDgAV17QcwEngBMGAI8Ham49/N/ZoAXJFg3r7R72Qe0Cv6Xc3J9D4k2a+uwKBouhPwYRR/SzhmyfatWR+36GffMZrOBd6OjsU0YExUfi/w42j6J8C90fQY4E91baOltTAGA+Xu/rG7fwM8BozKcEzpMAqYGk1PBc7IYCwpcffXgC+rFSfbj1HAQx68BXQ2s65NE+nuSbJfyYwCHnP3be7+CVBO+J3NOu6+0t3nRdNfA4uAbrSMY5Zs35JpFsct+tlvjD7mRoMDJwBPROXVj1nsWD4BDDOLvf83sZaWMLoBy+I+L6f2X4TmwIEZZjY3ep85wH7uvjKa/hzYLzOhNViy/WgJx/GS6NTM5LhThs1yv6JTFQMJ/7G2qGNWbd+gmR83M8sxs/nAKmAmoTW03t0rolniY9+1X1H9BqBLbetvaQmjJTrG3QcBpwAXm9lx8ZUe2pPN/la3lrIfkXuAA4FiYCVwW2bDqT8z6wg8CVzq7l/F1zX3Y5Zg35r9cXP3He5eDHQntIIObcz1t7SEsQLoEfe5e1TWbLn7imi8Cnia8EvwRay5H41XZS7CBkm2H836OLr7F9Ef7k7gf6k8fdGs9svMcglfqI+4+1NRcYs4Zon2raUcNwB3Xw+8DBxNOD0Ye7tqfOy79iuq3wtYW9t6W1rCeAfoE90V0I5wIWd6hmOqNzPbw8w6xaaBk4AFhH0aF802DngmMxE2WLL9mA6cH915MwTYEHcaJOtVO3d/JuGYQdivMdHdKb2APsCcpo4vFdG57AeBRe4+Ka6q2R+zZPvW3I+bmRWaWedouj0wnHB95mXg7Gi26scsdizPBv4atRqTy/SV/TTcKTCScNfDR8AvMx1PA/elN+HujHeB92P7QzjPOBtYAswC9sl0rCnsy6OEZv52wnnUC5LtB+Fuj7ujY/gPoCTT8e/mfv0hivu96I+ya9z8v4z26wPglEzHX8t+HUM43fQeMD8aRraQY5Zs35r1cQMGAH+P4l8A/Doq701IcOXA40BeVJ4ffS6P6nvXtQ096S0iIilpaaekREQkTZQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDmr2o59ER1couNbN7zGx/M3siyXJFZvavDdz2K2ZW4x3JUfkHUc+hb5jZIQ3Zjkg2UMKQluBRwkOa8cYAj7r7P9397OoLRE+2FgENShh1GOvuRxA6eLslQQw5ady2SKNTwpCW4Ang1Lh+/ouA/YG/Ra2IBVH5eDObbmZ/JTx8dhNwbPTug8ui+rtiKzWzZ82sNJq+x8zK4t8zsBteAw6K1rPUzG42s3nAaDMrNrO3og7vnrbK90scZGazohbKPDM7MCq/0szeieaPve9gDzN7Lpp3gZmdG5XfZOGdD++Z2a31+cGKxGtb9ywi2c3dvzSzOYQOGp8htC6mubsn6K15EDAgWqaU8P6D0yAklFo288tomRxgtpkNcPf3Ugzxe4QniGPWeuhQEjN7D/hPd3/VzK4HrgUuBR4BbnL3p80sH2hjZicRuqUYTHiyenrUGWUh8E93PzVa515m1oXQvcWh0c+hc4qxiiSlFoa0FPGnpcZEnxOZ6e6pvr8i3jlRq+DvQD/CS3Xq8kjU1fRQ4Iq48j9B+GIHOrv7q1H5VOC4qP+wbu7+NIC7b3X3zYS+xE6KYphH6Im0DyEZDY9aLse6+wZCV9VbgQfN7Cxgcz32WaQKtTCkpXgGuN3Cq0E7uPvcJPNtqmUdFVT9JyofwisuCV/4R7r7OjObEqurw1h3L9vNGGpjwP+4+301KsJ+jwRuMLPZ7n69mQ0GhhE6lruE8CIdkXpTC0NaBA9vGnsZmEzy1kV1XxNe0RmzFCg2szZm1oPK7q33JHzJbzCz/Qinvhoj5g3AOjM7Nio6D3jVw1vglpvZGbDr3csdgJeAH1p4jwNm1s3M9jWz/YHN7v4w4eL6oGievdz9eeAy4IjGiFlaN7UwpCV5lPDOkOp3TCXzHrDDzN4FpgB3AJ8ACwndQsde4/mumf0dWEx4Q9kbjRjzOODeKCF8DPxbVH4ecF90XWM7MNrdZ5jZYcCb0bWZjcAPCBfUbzGzndG8PyYkwmei6x8GXN6IMUsrpd5qRUQkJTolJSIiKVHCEBGRlChhiIhISpQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDRERS8v8BI85P8OPxUh8AAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, ax = plt.subplots()\n", "ax.plot(df[\"Virtual Processes\"], df[\"Presim. Time / s\"], linestyle=\"dashed\", color=\"red\")\n", "ax.plot(df[\"Virtual Processes\"], df[\"Sim. Time / s\"], \"-b\")\n", "ax.set_xlabel(\"Virtual Process\")\n", "ax.set_ylabel(\"Time / s\")\n", "ax.legend();"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 5\n", "<a name=\"task5\"></a>\n", "\n", "Use the NEST data frame `df` to:\n", "\n", "1. Make the virtual processes the index of the data frame (`.set_index()`)\n", "2. Plot `\"Presim. Program / s\"` and `\"Sim. Time / s`\" individually\n", "3. Plot them onto one common canvas!\n", "4. Make them have the same line colors and styles as before\n", "5. Add a legend, add missing labels\n", "\n", "* Done? Tell me! [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 68, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [], "source": ["df.set_index(\"Virtual Processes\", inplace=True)"]}, {"cell_type": "code", "execution_count": 69, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAADTCAYAAAC7p6aqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3X+cXHV97/HXe2Z2Nz93k8CSZJdoKqT8CiWlC7VXpVArAlqxrdVwey229lJ9YFtsvb22fdxWbXsv9ofeVixIKwV7KdWrptKKCkUU5UJliUASfoNBsgnJQshufu/uzOf+cc4kk81MdrMzmV95Px+Pfcw53/M953znHMe8+Z7vOUcRgZmZmZkdW5lGN8DMzMzseODQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdZBrdAPKOfHEE2P58uWNboaZmZnZlB566KGXIqJ3qnpNGbqWL1/O4OBgo5thZmZmNiVJz0+n3pShS9JNwFuBbRGxMi37PHBaWmUBsCMiVpVZdyOwE8gDExExMK3Wm5mZmbWZ6fR03QxcB3yuWBAR7ypOS/orYOQI618UES/NtIFmZmZm7WDK0BUR90paXm6ZJAHvBH6mts0yMzMzay/V3r34BmBrRDxdYXkAd0p6SNJVR9qQpKskDUoaHB4errJZZmZmZs2l2tB1BXDbEZa/PiLOBS4FrpZ0QaWKEXFjRAxExMD8BYuqbJaZmZlZc5lx6JKUA34B+HylOhExlH5uA9YA509n27vH8jNtlpmZmVlTqqan62eBJyJiU7mFkuZKml+cBi4G1k9nw/scuszMzKzNTBm6JN0G3A+cJmmTpPemi1Yz6dKipD5Jd6Szi4HvSnoE+B7w1Yj4+nQatWfcocvMzMzaiyKi0W04zKylK2LkhSfoymUb3RQzMzOzI5L00HSeRdqU714M4OmtuxrdDDMzM7OaacrQBbB+6EjPWzUzMzNrLU0ZujIS6xy6zMzMrI00Zeia3ZFl/ebRRjfDzMzMrGaaM3R1Znl8yyjj+UKjm2JmZmZWE80ZujqyjE0UeHbYg+nNzMysPTRn6OpMHhWxbpPHdZmZmVl7aMrQ1ZXLMKczywaP6zIzM7M20ZShC+DMpd1+bISZmZm1jaYNXSv7e3hsyyj5QvM9Md/MzMzsaDV16NozlucHL3kwvZmZmbW+Jg5d3QCsH/K4LjMzM2t9TRu6Tu2dR1cu43FdZmZm1hamDF2SbpK0TdL6krKPSBqS9HD6d1mFdS+R9KSkZyR9+GgalstmOGNpN+s3O3SZmZlZ65tOT9fNwCVlyj8ZEavSvzsmL5SUBT4NXAqcCVwh6cyjadzK/m42DI1S8GB6MzMza3FThq6IuBfYPoNtnw88ExHPRcQY8M/A5UezgZV9PezcP8EPt++Zwe7NzMzMmkc1Y7o+IOnR9PLjwjLL+4EXSuY3pWVlSbpK0qCkweHhYSC5gxHwJUYzMzNreTMNXdcDpwCrgC3AX1XbkIi4MSIGImKgt7cXgB9dPJ+OrHwHo5mZmbW8GYWuiNgaEfmIKAB/R3IpcbIhYFnJ/Mlp2bR15jKctmQ+G9zTZWZmZi1uRqFL0tKS2Z8H1pep9iCwQtKPSOoEVgO3H+2+Vvb1sG5ohAgPpjczM7PWNZ1HRtwG3A+cJmmTpPcCfy5pnaRHgYuAD6Z1+yTdARARE8AHgG8AjwNfiIgNR9vAs/p72LFnnKEde492VTMzM7OmkZuqQkRcUab4sxXqbgYuK5m/AzjscRJH4+ziYPqhUU5eOKeaTZmZmZk1TNM+kb7o9CXzyWbkcV1mZmbW0po+dM3qyLLipHms8+uAzMzMrIU1fegCOKuvh/UeTG9mZmYtrCVC18r+bl7aNca2nfsb3RQzMzOzGWmJ0HVwML0vMZqZmVlraonQdcbSbiQ8rsvMzMxaVkuErrldOV5z4ly/DsjMzMxaVkuELkhefu3HRpiZmVmrapnQdXZ/D1tG9vHSLg+mNzMzs9bTMqHrrL5kMP2Gzb7EaGZmZq2nZULXmX3dgO9gNDMzs9bUMqGrZ3YHrz5hjkOXmZmZtaSWCV2QDKZf78H0ZmZm1oKmDF2SbpK0TdL6krK/kPSEpEclrZG0oMK6GyWtk/SwpMFqG7uyr4cXtu9lZM94tZsyMzMzq6vp9HTdDFwyqewuYGVE/BjwFPD7R1j/oohYFREDM2viQSv703Fd7u0yMzOzFjNl6IqIe4Htk8rujIiJdPYB4ORj0LbDrOzz64DMzMysNdViTNevAV+rsCyAOyU9JOmqI21E0lWSBiUNDg8Pl62zcG4n/Qtms96PjTAzM7MWU1XokvSHwARwa4Uqr4+Ic4FLgaslXVBpWxFxY0QMRMRAb29vxX2u7O9mg3u6zMzMrMXMOHRJeg/wVuCXIyLK1YmIofRzG7AGOH+m+yta2dfDcy/tZuc+D6Y3MzOz1jGj0CXpEuD3gLdFxJ4KdeZKml+cBi4G1perezRW9ifjuh7zJUYzMzNrIdN5ZMRtwP3AaZI2SXovcB0wH7grfRzEDWndPkl3pKsuBr4r6RHge8BXI+Lr1Ta4GLo8rsvMzMxaSW6qChFxRZniz1aouxm4LJ1+DjinqtaV0Tu/i8XdXR7XZWZmZi2lpZ5IX7Syr4d1Dl1mZmbWQloydJ3V38Ozw7vYMzYxdWUzMzOzJtCSoevs/h4KAY9v2dnoppiZmZlNS0uGruLrgDb4dUBmZmbWIloydC3pnsUJcztZt8mhy8zMzFpDS4YuSZzV3+PHRpiZmVnLaMnQBXB2fzdPb93JvvF8o5tiZmZmNqWWDV0r+3qYKARPbfVgejMzM2t+rRu6ik+mH/IlRjMzM2t+LRu6Tl44m57ZHX5IqpmZmbWElg1dkljZ3+3HRpiZmVlLaNnQBcm4rie27GQ8X2h0U8zMzMyOaFqhS9JNkrZJWl9StkjSXZKeTj8XVlj3yrTO05KurFXDIXkd0Fi+wNNbd9Vys2ZmZmY1N92erpuBSyaVfRi4OyJWAHen84eQtAj4Y+AngfOBP64UzmZiZV/yZPr1HtdlZmZmTW5aoSsi7gW2Tyq+HLglnb4FeHuZVd8M3BUR2yPiFeAuDg9vM7b8hLnM68qx3uO6zMzMrMlVM6ZrcURsSadfBBaXqdMPvFAyvyktO4ykqyQNShocHh6eVgMyGXFmX7d7uszMzKzp1WQgfUQEEFVu48aIGIiIgd7e3mmvt7Kvh8e2jJIvVLV7MzMzs2OqmtC1VdJSgPRzW5k6Q8CykvmT07KaWdnfzb7xAs8OezC9mZmZNa9qQtftQPFuxCuBr5Sp8w3gYkkL0wH0F6dlNXPwyfS+xGhmZmbNa7qPjLgNuB84TdImSe8FrgXeJOlp4GfTeSQNSPp7gIjYDvwJ8GD697G0rGZO6Z3HrI6MXwdkZmZmTS03nUoRcUWFRW8sU3cQ+PWS+ZuAm2bUumnIZsSZS7t9B6OZmZk1tZZ+In3Ryv4eHts8SsGD6c3MzKxJtUfo6uth1/4JNr68u9FNMTMzMyurPUJXcTD9Zo/rMjMzs+bUFqFrxeJ5dGYzbPAdjGZmZtak2iJ0dWQznL50vgfTm5mZWdNqi9AFcFZfD+uHRkkejm9mZmbWXNomdJ3d38PI3nE2vbK30U0xMzMzO0zbhK6V/d2An0xvZmZmzaltQtePLp5PLiOP6zIzM7Om1Daha1ZHlhWL57POrwMyMzOzJtQ2oQvg7P5uNgyNeDC9mZmZNZ22Cl0r+3t4efcYL47ua3RTzMzMzA7RVqHr1JPmAfDcsF8HZGZmZs1lxqFL0mmSHi75G5V0zaQ6F0oaKanzR9U3ubLObPJ1Cr68aGZmZk0mN9MVI+JJYBWApCwwBKwpU/U7EfHWme7HzMzMrB3U6vLiG4FnI+L5Gm3PzMzMrK3UKnStBm6rsOynJD0i6WuSzqq0AUlXSRqUNDg8PFyjZpmZmZk1h6pDl6RO4G3A/y2zeC3w6og4B/gU8C+VthMRN0bEQEQM9Pb2VtssMzMzs6ZSi56uS4G1EbF18oKIGI2IXen0HUCHpBNrsE8zMzOzllKL0HUFFS4tSloiSen0+en+Xq7BPs3MzMxayozvXgSQNBd4E/AbJWXvA4iIG4B3AO+XNAHsBVaHHxdvZmZmx6GqQldE7AZOmFR2Q8n0dcB11ezDzMzMrB201RPpzczMzJqVQ5eZmZlZHTh0mZmZmdWBQ5eZmZlZHTh0mZmZmdWBQ5eZmZlZHbRV6MpkBMBf3vkUn3/wh4zuG29wi8zMzMwSbRW6zu7v4fcuOY3RveP89y+t47w//Xd+87bvc8+T25jIFxrdPDMzMzuOqRkfED8wMBCDg4MzXj8iePiFHXx57RD/+uhmduwZ58R5Xbx9VR+/cO7JnNnXXcPWmpmZ2fFM0kMRMTBlvXYMXaX2T+S554lhvrx2E/c8uY3xfHD6kvn84rknc/mqPk7qnlWT/ZiZmdnxyaGrjFd2j/Fvj27mS2uHePiFHWQEr1/Ryy+e28/FZy5hdme25vs0MzOz9ubQNYVnh3exZu0Qa74/xNCOvczrynHpyiW887xlnLd80THdt5mZmbUPh65pKhSC723czpfXbuKOdS+ya/8Ed33wAlYsnl+X/ZuZmVlrm27oqvruRUkbJa2T9LCkw5KSEn8j6RlJj0o6t9p91lImI177mhP483ecw1+vXgXA7rF8g1tlZmZm7SZXo+1cFBEvVVh2KbAi/ftJ4Pr0s+lkpEY3wczMzNpUPZ7TdTnwuUg8ACyQtLQO+zUzMzNrGrUIXQHcKekhSVeVWd4PvFAyvyktO4SkqyQNShocHh6uQbPMzMzMmkctQtfrI+JcksuIV0u6YCYbiYgbI2IgIgZ6e3tr0CwzMzOz5lF16IqIofRzG7AGOH9SlSFgWcn8yWmZmZmZ2XGjqtAlaa6k+cVp4GJg/aRqtwO/kt7F+FpgJCK2VLNfMzMzs1ZT7d2Li4E1Su76ywH/FBFfl/Q+gIi4AbgDuAx4BtgD/GqV+zQzMzNrOVWFroh4DjinTPkNJdMBXF3NfszMzMxaXT0eGWFmZmZ23HPoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoKiN5tJiZmZlZ7VT7RPq2ks0IgHfccD8L53SwYE4ni+Z0smBOB4vmdrJwbicL53SwcE5n8je3Mymf00H3rA4y6fpmZmZmkzl0lfjJ1yziT96+kq0j+9i+Z4wde8bYvnuM51/ew8Mv7OCVPWOM58v3gmUEPbM72LF3nPUfeTNzu3xozczM7CAngxJduSzvfu2rKy6PCHaP5XlldxLGXtmT/G3fPc6OPWN86pvPAPDNJ7bxc+f01avZZmZm1gIcuo6CJOZ15ZjXlWPZojmHLS+Grlf2jNW7aWZmZtbkPJC+hj52+VkAvO7UExvcEjMzM2s2Mw5dkpZJukfSY5I2SPrtMnUulDQi6eH074+qa25z65nd0egmmJmZWZOq5vLiBPC7EbFW0nzgIUl3RcRjk+p9JyLeWsV+zMzMzFrejHu6ImJLRKxNp3cCjwP9tWqYmZmZWTupyZguScuBHwf+o8zin5L0iKSvSTrrCNu4StKgpMHh4eFaNKthRveON7oJZmZm1mSqDl2S5gFfAq6JiNFJi9cCr46Ic4BPAf9SaTsRcWNEDETEQG9vb7XNaoiTF84hmxHv+swDfPhLj/Lc8K5GN8nMzMyaRFWhS1IHSeC6NSK+PHl5RIxGxK50+g6gQ1Lb3tr3E69eyLc+dCGrz1/Gmu8P8cZPfJurb13L+qGRRjfNzMzMGkwzfc+gJAG3ANsj4poKdZYAWyMiJJ0PfJGk5+uIOx0YGIjBwcEZtatZDO/czz/c9wP+8f7n2bl/gjesOJH3X3gKP/WaE0gOnZmZmbUDSQ9FxMCU9aoIXa8HvgOsAwpp8R8ArwKIiBskfQB4P8mdjnuB34mI/zfVttshdBWN7hvn1gd+yGe/+wNe2rWfVcsW8P4LT+FNZyz2uxrNzMzawDEPXcdSO4Wuon3jeb740CY+c++zvLB9L6eeNI/3/fQpXL6qj46sn1FrZmbWqhy6mtREvsBX123h+m89yxMv7qSvZxb/9YLXsPq8VzG7MzutbUQEO/aMs3XnPl4c2cfW0X1sHd3PZ779LLvH8jz7Py8j6140MzOzuphu6PK7F+ssl81w+ap+3nZOH996cpi//dYzfPRfH+NT33yG9/yn5aw+bxl7x/NJmNq5n60j+3hxtBisitP7GZsoVNzHvvE8c7t8as3MzJqJ/2VuEElcdPpJXHT6STy4cTvXf+tZPnHXU3zirqcOqzurI8OS7lks7p7Fjy9byJKeZHpxd9eB8pO6u/iH+zZy7deeIOOB+mZmZk3HoasJnLd8Eee9ZxGPbxnl3qeGWTS3k8Xdsw6Eq+5ZuaO64/GprTuZ25UjmxFZiUwGMhLZjA58ZiWUgeyk8ozw3ZVmZmbHgENXEzljaTdnLO2e8fqzcsmA/Ms/fV9V7ZBIw1oSworTB8KaRDZzaHlG4gcv7QZg47VvqWr/zW7/RHL5d/OOfbw4upfNO/axZWQvL47s522r+njbOX2NbqKZmTUhh6428s7zlrF0wWzG8wXyhaAQQb4AhQgKhSBf/CwEhSBdfrC8EJSsl5RHWlYsP7DNQ9YL8sGB0PXrtzxI9+wOumd10DP74F/37EPne2Z3MKsj01Q9a2MTBbaO7mPLSBKktozsY8uOvWweKQarfby0a+yw9RbM6WDP/jwQDl1mZlaWQ1cbmdOZ481nLWnY/left4zrvvkMm3fs4/EtOxndO87O/RNHXKczm6F7du5AIFswu4NFc7s4YV4ni+Ymfycc+Oxi0bxO5nZmZxTUJvIFtu7cz5Ydew+Eqs07kjtAt4wkweqlXfuZfENv96wcS3tms3TBLM7uX0BfT3Lpt2/BbJam03M6c7zlb75z1G0yM7Pjh0OX1czrTj2R15166Fue8oVg575xRvYe+je6d2LS/Dij+8YZ3rWfJ1/cycu7x9hf4Q7NzlzmQBA7GMqSoNY9K8eiuV0He6lKgtW2nfsoTApU87pyLO2ZxdIFszl9STdLF8yir2d2GqpmsaRnNvN8J6iZmdWA/zWxYyqbEQvmdLJgTudRrRcR7BnLs333GC/vHmP77v28vGuM7bvHSsqSz40v7+blXWPsGcsfso3ZHdkDIeoNK05kadoztTTtpVrSM4vuWR21/LpmZmYVOXRZU5LE3K4cc7tyLFs0Z1rr/PDlPTw7vCvppeqZTffso7vrs1obNo+yYfMo//jA82SU3DFavBu0OJ2R0IGy8nVUYZ3MUdRJpqeuc9h2qe54ZbMilxGd2Yxfc2VmNolDl7WNV50wh1edML2Adiz9j39Z3+gmNIWMoCOboTObIZcVHdlM+idy6XTngenDl3dmM+QyoiOXoSOTLi+ZLq7XmcuQyyT7iAjG88mNHxOFIF8oMFEIJvKHzufT+YlCctPJRLrOeLFOyTYmJs3nC3HgZpXSsnwhyGZELg2eHen3zmWS71E8Bsl0+j3TdndkDh6j4jZKy8qukxXZTHI8ctnJ2ymtl2yzuKzctrMZNdUNLWbtyqHLrEae+bNL2bF3nIjk8mjxDtFCehdooaRsqjox6bNSncO3e+g+yu+7fDvykwe8HaUguat1LJ+ElPF8gfFCgfGJZHqiUGBsIgkx4/lDp8fzwa79EwfWO2Qb6edEOj2Wr/w2hqkUA0bx80DIySjtpTsYQnJpqMmly7s6MswpWd5Rsrz4OJXSkJZ85zS4pd9n18TEocvS71Rc50BZ+lnlKTkqHZMCYi5bPtAdLD8Y7HKZJBAe2puafmZKe1or9/AWg1/FXuKMDj7OZvJ+yqx7oAc3c+R9ZzNT9yxnMlP1PB/8DkdaPrlN5Y5XsRfb2pNDl1mN5LIZTpzX1ehmtL2IYm9TpKHuYDArBqhcaZgq+Wy1f8wKheQ7TuST3rjxkkCXLxRD66HLSkNbMdAVj1fpskrrHOwZLFRY5+D0nokJJkq2HRwa9POF0tBf5j8k0uX5Csub8NXAdVEMYtkKoaw0BKqknkjmVRrgSKYplpVsH0qDXulyTZpPy8rUP2QbHBocS/d1aFlxOMPBtomDQyeK9ZlcVtK2yfXLbiM9mJlJy8ptQxw69KO0naXbUHHoxqT601VV6JJ0CfDXQBb4+4i4dtLyLuBzwE8ALwPvioiN1ezTzI5vUrEnBmYzvZfEt6pMRnRlshyvN9CW9ubmy/XaFg4PdPni8ikC35SBsOQ5hVP1GBf3d6TlceB5icX9TOqVLhy6bn6K5aXtLH6XgAO916UBuDhNaQ83xXaVr1967EvrHzgelPTIl9QPgkKhTFmUzpeum9RnclnaNjj03FTcRgCT9lXPnuLpmvFPWVIW+DTwJmAT8KCk2yPisZJq7wVeiYhTJa0GPg68q5oGm5nZ8eFAjwvyZRmbscnDNYLi0IpJgRCIwuFlBwPrwXUPDs9IypZ/fHptqeZ/x+cDz0TEcwCS/hm4HCgNXZcDH0mnvwhcJ0kRx2unsZmZmdVTcgkWqPLu7FrIVLFuP/BCyfymtKxsnYiYAEaAE8ptTNJVkgYlDQ4PD1fRLDMzM7PmU03oqqmIuDEiBiJioLe3t9HNMTMzM6upakLXELCsZP7ktKxsHUk5oIdkQL2ZmZnZcaWa0PUgsELSj0jqBFYDt0+qcztwZTr9DuCbHs9lZmZmx6MZD6SPiAlJHwC+QfLIiJsiYoOkjwGDEXE78FngHyU9A2wnCWZmZmZmxx01Y8eTpGHg+Ua3o02cCLzU6EbYAT4fzcXno3n4XDQXn4+j8+qImHJAelOGLqsdSYMRMdDodljC56O5+Hw0D5+L5uLzcWw0zd2LZmZmZu3MocvMzMysDhy62t+NjW6AHcLno7n4fDQPn4vm4vNxDHhMl5mZmVkduKfLzMzMrA4cuszMzMzqwKGrzUjaKGmdpIclDaZliyTdJenp9HNho9vZriTdJGmbpPUlZWWPvxJ/I+kZSY9KOrdxLW8/Fc7FRyQNpb+PhyVdVrLs99Nz8aSkNzem1e1L0jJJ90h6TNIGSb+dlvv3UWdHOBf+fRxjDl3t6aKIWFXyjJUPA3dHxArg7nTejo2bgUsmlVU6/pcCK9K/q4Dr69TG48XNHH4uAD6Z/j5WRcQdAJLOJHljxlnpOn8rKVu3lh4fJoDfjYgzgdcCV6fH3b+P+qt0LsC/j2PKoev4cDlwSzp9C/D2BralrUXEvSSvvCpV6fhfDnwuEg8ACyQtrU9L21+Fc1HJ5cA/R8T+iPgB8Axw/jFr3HEoIrZExNp0eifwONCPfx91d4RzUYl/HzXi0NV+ArhT0kOSrkrLFkfElnT6RWBxY5p23Kp0/PuBF0rqbeLI/8dntfGB9HLVTSWX2n0u6kjScuDHgf/Av4+GmnQuwL+PY8qhq/28PiLOJemav1rSBaULI3lGiJ8T0iA+/g13PXAKsArYAvxVY5tz/JE0D/gScE1EjJYu8++jvsqcC/8+jjGHrjYTEUPp5zZgDUkX8NZit3z6ua1xLTwuVTr+Q8Cyknonp2V2jETE1ojIR0QB+DsOXiLxuagDSR0k/8jfGhFfTov9+2iAcufCv49jz6GrjUiaK2l+cRq4GFgP3A5cmVa7EvhKY1p43Kp0/G8HfiW9S+u1wEjJZRY7BiaNCfp5kt8HJOditaQuST9CMnj7e/VuXzuTJOCzwOMR8YmSRf591Fmlc+Hfx7GXa3QDrKYWA2uS3xM54J8i4uuSHgS+IOm9wPPAOxvYxrYm6TbgQuBESZuAPwaupfzxvwO4jGRQ6h7gV+ve4DZW4VxcKGkVySWsjcBvAETEBklfAB4jubPr6ojIN6Ldbex1wLuBdZIeTsv+AP8+GqHSubjCv49jy68BMjMzM6sDX140MzMzqwOHLjMzM7M6cOgyMzMzqwOHLjMzM7M6cOgyMzMzqwOHLjOriqR7JL15Utk1kq6X1CfpixXWWy7pP1e5729JGqhQ/qSkRyTdJ+m0avZjZlYLDl1mVq3bgNWTylYDt0XE5oh4x+QVJOWA5UBVoWsKvxwR55C8RPkvyrQhewz3bWZ2GIcuM6vWF4G3SOqEAy/Q7QO+k/ZmrU/L3yPpdknfBO4meSjmGyQ9LOmD6fLrihuV9G+SLkynr5c0KGmDpI8eZfvuBU5Nt7NR0sclrQV+SdIqSQ+kL/hdU3zBr6RTJf172lO2VtIpafl/k/RgWv+jadlcSV9N666X9K60/FpJj6V1/zIt65X0pXQbD0p6XVr+0+lxeFjS94tvljCz9uIn0ptZVSJiu6Tvkbxk/SskvVxfiIhI345Q6lzgx9J1LgQ+FBFvhSSUHWE3f5iukwXulvRjEfHoNJv4c8C6kvmX05fCI+lR4Dcj4tuSPkby1PprgFuBayNijaRZQEbSxSSvPzkfEHC7khfK9wKbI+It6TZ7JJ1A8hqV09PjsCDd918Dn4yI70p6FfAN4AzgQyRP+b5PyUuI903zu5lZC3FPl5nVQuklxtXpfDl3RcT2GWz/nWnv1PeBs4Azp7HOrekrTl5HEmqKPg9JOAIWRMS30/JbgAvSXqb+iFgDEBH7ImIPybtML07bsBY4nSSErQPelPagvSEiRoARkuD0WUm/QPIaG4CfBa5L23U70J2GrPuAT0j6rbRNE0d7gMys+bmny8xq4SvAJyWdC8yJiIcq1Nt9hG1McOh/CM4CSF+w+yHgvIh4RdLNxWVT+OWIGDzKNhyJgP8VEZ85bEHyvS8D/lTS3RHxMUnnA28E3gF8APgZku/32oiY3JN1raSvptu4T9KbI+KJGbbTzJqUe7rMrGoRsQu4B7iJyr1ck+0ESscubQRWScpIWkZyGQ+gmyQojUhaTHIZsxZtHgFekfSGtOjdwLcjYiewSdLbASR1SZpDcinw19KeKST1SzpJUh+wJyL+D8mA/XPTOj0RcQfwQeCcdB93Ar9ZbEP6cmEknRIR6yLi48CDJL1oZtZm3NNlZrVyG7CGw+9krORRIC/pEeBm4H9AKxUnAAAAsElEQVQDPwAeAx4nuYRHRDwi6fvAE8ALJJfiauVK4IY0VD0H/Gpa/m7gM+k4r3HglyLiTklnAPenY9V2Af+FZJD+X0gqpHXfTxImv5KOBxPwO+l2fwv4dDqWLEcyyP99wDWSLgIKwAbgazX8jmbWJBQRjW6DmZmZWdvz5UUzMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOvj/r1L+SfYYynAAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 720x216 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Presim. Time / s\"].plot(figsize=(10, 3));"]}, {"cell_type": "code", "execution_count": 70, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAADTCAYAAACyTAbQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuQXGd55/Hv0z0zuljSyLbGsjQSyPiKJcCwinEwBGPuJFnDFrAmWeIkZJ1kTQIBdheyVZuQCllTCXiTTeKNCS4cQgyuAGVtMBfHmGsCeGyMrQuOhS/YkmzJli3J1m1m+tk/zulRazSjmdFMq7tH309VV59+z3vOeacPLf943/ecE5mJJEmSZlal1Q2QJEmajQxZkiRJTWDIkiRJagJDliRJUhMYsiRJkprAkCVJktQEhixJkqQmMGRJkiQ1gSFLkiSpCbpa3QCAJUuW5KpVq1rdDEmSpAndeeedT2Rm30T12iJkrVq1ioGBgVY3Q5IkaUIR8fBk6jlcKEmS1ASGLEmSpCYwZEmSJDWBIUuSJKkJ2iJkbXl6X6ubIEmSNKPaImTtfPYgzx4YanUzJEmSZkxbhCyATdt2t7oJkiRJM6ZtQtb6Lbta3QRJkqQZM2HIioi5EfGDiPhRRGyIiA+X5WdExPcjYnNEfC4iesryOeXnzeX6VRMdo6sSrN9qT5YkSZo9JtOTdQC4NDNfBFwAvCEiLgI+ClyTmWcBTwHvKuu/C3iqLL+mrHdU87qr9mRJkqRZZcKQlYVnyo/d5SuBS4F/LMtvAN5cLl9WfqZc/+qIiKMdY15Plfu3P8P+weEpNl+SJKk9TWpOVkRUI+JuYDtwK/AT4OnMrF8S+CjQXy73A48AlOt3AaeOsc8rI2IgIgYO7nuW4Vpy32N7pvfXSJIktYlJhazMHM7MC4AVwIXAedM9cGZel5lrM3Pt0lNPBmD9VocMJUnS7DClqwsz82ngduBngcUR0VWuWgFsKZe3ACsByvW9wJNH229PV4Xeed2s3+Lkd0mSNDtM5urCvohYXC7PA14LbKIIW28tq10B3Fwurys/U67/embmRMdZ07+IDfZkSZKkWWIyPVnLgNsj4h7gDuDWzPwn4L8D74uIzRRzrj5Z1v8kcGpZ/j7gg5NpyJrlvfx42x4Gh2tT/RskSZLaTtdEFTLzHuDFY5Q/QDE/a3T5fuBtU23I6v5eDg7XuP/xZzh/+aKpbi5JktRW2uaO72vKYOXkd0mSNBu0TchadepJnNTjTUklSdLs0DYhq1IJVi/vNWRJkqRZoW1CFsDq/kVs3Lab4dqEFyNKkiS1tbYKWWuW97J/sMYDO56ZuLIkSVIba6+Q1d8LOPldkiR1vrYKWWf2ncScrop3fpckSR2vrUJWV7XC85ctcvK7JEnqeG0VsqB4vM7GrbupOfldkiR1sPYLWct72XNgiJ/u3NvqpkiSJB2z9gtZTn6XJEmzQNuFrHOWLqS7Gk5+lyRJHa3tQlZPV4VzT1/IBnuyJElSB2u7kAXFvKz1W3aR6eR3SZLUmdoyZK3u7+WpvYNs3bW/1U2RJEk6JhOGrIhYGRG3R8TGiNgQEe8py/8wIrZExN3l600N23woIjZHxH0R8fqpNmrN8kUA3i9LkiR1rK5J1BkC3p+Zd0XEQuDOiLi1XHdNZv5ZY+WIOB+4HFgNLAf+OSLOyczhyTbq+csWUa0EG7bs4vWrT5/sZpIkSW1jwp6szNyWmXeVy3uATUD/UTa5DPhsZh7IzAeBzcCFU2nU3O4qZ/UtYP1WrzCUJEmdaUpzsiJiFfBi4Ptl0bsj4p6IuD4iTi7L+oFHGjZ7lDFCWURcGREDETGwY8eOI461ut/H60iSpM416ZAVEQuAzwPvzczdwLXAmcAFwDbgY1M5cGZel5lrM3NtX1/fEevXLO9l+54DbN/t5HdJktR5JhWyIqKbImB9JjO/AJCZj2fmcGbWgE9waEhwC7CyYfMVZdmU1O/8vsEhQ0mS1IEmc3VhAJ8ENmXmxxvKlzVUewuwvlxeB1weEXMi4gzgbOAHU23Y+eUVhvc6ZChJkjrQZK4uvBh4J3BvRNxdlv0+8I6IuABI4CHgNwEyc0NE3ARspLgy8aqpXFlYt2BOF89bcpLzsiRJUkeaMGRl5neAGGPVLUfZ5iPAR6bRLqC4KeldDz813d1IkiQdd215x/e6NcsXseXpfex89mCrmyJJkjQl7R2yRia/O2QoSZI6S1uHrNUjj9fxCkNJktRZ2jpkLZ7fw4qT57HenixJktRh2jpkQXFT0g1eYShJkjpM24esF6zo5aEn97J7/2CrmyJJkjRpbR+y6vOyNnrnd0mS1EE6IGQVVxh6U1JJktRJ2j5k9S2cw+mL5voMQ0mS1FHaPmQBrOlfZE+WJEnqKB0RslYv7+UnO55h78GhVjdFkiRpUjoiZK3p76WWsGnbnlY3RZIkaVI6JGQVVxj6eB1JktQpOiJknb5oLqee1OO8LEmS1DE6ImRFBKv7e32GoSRJ6hgThqyIWBkRt0fExojYEBHvKctPiYhbI+L+8v3ksjwi4i8iYnNE3BMRL5mJhq5Zvoh/e3wPB4aGZ2J3kiRJTTWZnqwh4P2ZeT5wEXBVRJwPfBC4LTPPBm4rPwO8ETi7fF0JXDsTDV3T38tQLbnvMSe/S5Kk9jdhyMrMbZl5V7m8B9gE9AOXATeU1W4A3lwuXwb8XRa+ByyOiGXTbeiakTu/O2QoSZLa35TmZEXEKuDFwPeBpZm5rVz1GLC0XO4HHmnY7NGybPS+royIgYgY2LFjx4THXnnKPBbO7WK9VxhKkqQOMOmQFRELgM8D783Mw7qTMjOBnMqBM/O6zFybmWv7+vomc3zWLO9lg1cYSpKkDjCpkBUR3RQB6zOZ+YWy+PH6MGD5vr0s3wKsbNh8RVk2bWv6F7HpsT0MDtdmYneSJElNM5mrCwP4JLApMz/esGodcEW5fAVwc0P5r5RXGV4E7GoYVpyWNf29HByqsXn7MzOxO0mSpKaZTE/WxcA7gUsj4u7y9SbgauC1EXE/8JryM8AtwAPAZuATwH+ZqcauHpn87pChJElqb10TVcjM7wAxzupXj1E/gaum2a4xnbHkJOb3VNmwdTdva8YBJEmSZkhH3PG9rloJVi9fZE+WJElqex0VsqAYMty4bTfDtSldzChJknRcdVzIWtPfy96Dwzz4xLOtbookSdK4OjBkLQJggzcllSRJbazjQtZZfQuY01VxXpYkSWprHReyuqoVzlu2yGcYSpKkttZxIQtgzfJFrN+6i+JuEZIkSe2nM0NWfy979g/xyM59rW6KJEnSmDozZNXv/O7kd0mS1KY6MmSdc/oCuirh5HdJktS2OjJkzemqcs7Shazf6uR3SZLUnjoyZEFxv6wNW5z8LkmS2lMHh6xennz2INt27W91UyRJko7QsSFrdX3yu/OyJElSG+rYkPX8ZQupBM7LkiRJbWnCkBUR10fE9ohY31D2hxGxJSLuLl9valj3oYjYHBH3RcTrm9Xw+T1dnNm3gA32ZEmSpDY0mZ6sTwFvGKP8msy8oHzdAhAR5wOXA6vLbf46Iqoz1djR1vT3eq8sSZLUliYMWZn5LWDnJPd3GfDZzDyQmQ8Cm4ELp9G+o1q9fBGP7z7A9j1OfpckSe1lOnOy3h0R95TDiSeXZf3AIw11Hi3LjhARV0bEQEQM7Nix45gasKa/mPy+wXlZkiSpzRxryLoWOBO4ANgGfGyqO8jM6zJzbWau7evrO6ZGrF6+CMB5WZIkqe0cU8jKzMczczgza8AnODQkuAVY2VB1RVnWFAvndtO/eB7fe2Cyo5mSJEnHxzGFrIhY1vDxLUD9ysN1wOURMScizgDOBn4wvSYe3Zan9/GdzU808xCSJElT1jVRhYi4EbgEWBIRjwJ/AFwSERcACTwE/CZAZm6IiJuAjcAQcFVmDjen6YVXntPHN//t2OZ0SZIkNcuEISsz3zFG8SePUv8jwEem06ipWNY7l6WL5hyvw0mSJE1Kx97xXZIkqZ0ZsiRJkprAkCVJktQEhixJkqQmMGRJkiQ1gSFLkiSpCQxZkiRJTWDIkiRJagJDliRJUhMYsiRJkppgVoSsA0M1nnzmQKubIUmSNKLjQ9Z5py/k6b2DvOzqr/OhL9zL5u17Wt0kSZKkiR8Q3e5+9eIzuPisJVz/3Qf5/F2PcuMPfsqrzu3jP7/iefzsmacSEa1uoiRJOgFFZra6DaxduzYHBgamvZ8nnjnAZ773Uz79vYd44pmDPH/ZIn7j5Wfwiy9aTk9Xx3faSZKkNhARd2bm2gnrzaaQVbd/cJib797C3377Qe7f/gynLZzDFS9bxS+/9Dksnt8zY8eRJEknnhkLWRFxPfALwPbMXFOWnQJ8DlgFPAS8PTOfimJs7s+BNwF7gV/NzLsmasRMh6y6zORb9z/B3377Ab59/xPM667y1n+3gl9/+RmcseSkGT+eJEma/SYbsiYzhvYp4A2jyj4I3JaZZwO3lZ8B3gicXb6uBK6dbIObISJ45Tl9fPpdL+Ur730Fv/iiZXzujke49GPf4DduGOD7DzxJO/TkSZKk2WdSw4URsQr4p4aerPuASzJzW0QsA76RmedGxN+UyzeOrne0/TerJ2ss2/fs5+//9WE+/b2HeWrvIC/o7+UDrz+XV57Td1yOL0mSOttM9mSNZWlDcHoMWFou9wOPNNR7tCwbq4FXRsRARAzs2LHjGJsxdactnMv7Xncu//qhV/Mnb3kBj+/ez598adNxO74kSToxTPuSuyy6wqY85paZ12Xm2sxc29d3/HuR5nZX+aWXPoefWXUKww4ZSpKkGXasIevxcpiQ8n17Wb4FWNlQb0VZJkmSdEI51pC1DriiXL4CuLmh/FeicBGwa6L5WJIkSbPRhHd8j4gbgUuAJRHxKPAHwNXATRHxLuBh4O1l9Vsobt+wmeIWDr/WhDZLkiS1vQlDVma+Y5xVrx6jbgJXTbdRkiRJnc5nzUiSJDWBIUuSJKkJDFmSJElNYMiSJElqAkOWJElSExiyJEmSmsCQJUmS1ASGLEmSpCYwZEmSJDWBIUuSJKkJDFlALZPiiUCSJEkzY8JnF8523dXggR3Pcv7//CrLF8+l/+T59C+ex4qT59G/eB79J89j+eJ5LF04h66qmVSSJE3OCR+y3v+6c3nhisVseXofW57ax5an97F+yy52PnvwsHrVSnD6orn0nzyPFYuL4NVfBrEXrVxM77zuFv0FkiSpHZ3wIWvlKfP59ZefcUT53oNDbH16f0P42jsSwr7/4E627dpHrRxhfMXZS/j0u156nFsuSZLa2QkfssYzv6eLs05bwFmnLRhz/dBwjcd27+fd//BDnjkwdJxbJ0mS2p2TjI5RV7XCipPns3CuOVWSJB1pWgkhIh4C9gDDwFBmro2IU4DPAauAh4C3Z+ZT02umJElSZ5mJnqxXZeYFmbm2/PxB4LbMPBu4rfwsSZJ0QmnGcOFlwA3l8g3Am5twDEmSpLY23ZCVwNci4s6IuLIsW5qZ28rlx4ClY20YEVdGxEBEDOzYsWOazZAkSWov0521/fLM3BIRpwG3RsSPG1dmZkbEmLdSz8zrgOsA1q5d6+3WJUnSrDKtnqzM3FK+bwe+CFwIPB4RywDK9+3TbWQ7q0Rw32N7+J83r+dffvIEQ8O1VjdJkiS1gWMOWRFxUkQsrC8DrwPWA+uAK8pqVwA3T7eR7ew9rzmbV57Tx00Dj/BLn/g+F/7JbXzoC/fwzX/bwaCBS5KkE1Yc64ORI+J5FL1XUAw7/kNmfiQiTgVuAp4DPExxC4edR9vX2rVrc2Bg4Jja0S72HhziG/ft4MvrH+Prmx7n2YPD9M7r5jXPX8ob15zOy89ewtzuaqubKUmSpiki7my4q8L49Y41ZM2k2RCyGu0fHObb9z/Bl9dv49aNj7Nn/xAL5nRx6Xmn8cY1p3PJuacxr2dmAtfGrbtZNK+LFSfPn5H9SZKko5tsyPJ25U0wt7vKa89fymvPX8rBoRr/8pMn+Mr6x/jqhsdY96OtzOuucsm5fbzxBcu49LzTWDCnOA2Zyf7BGnv2D7J7/yC79w+xZ/9Q8Xlf8T7yuXz/503FlLeHrv75Vv7JkiRpFENWk/V0Vbjk3NO45NzT+OM3r+EHD+7klvXb+OqGx/ny+sfo6apw+qK5IwFqqHb0nsVKwMK53Syc28Wiud0jZZIkqb0Yso6jrmqFl521hJedtYQP//s13PnwU3xl/WM88cwBFs3rOiw81d9Hl8/vqRJxKFW95uPf5NylC1v4V0mSpLEYslqkWgkuPOMULjzjlFY3RZIkNYEhaxbYtG03H/vafcztrjKvu8q8nrHf5zYsz++pMqerclivmCRJmjmGrA734pWL+dK92/jL2zdzLBeKHh7CKszrqTK/u4u5PVXmdVdG1tcD3PyeI8PaxWctYWE5P0ySJBW8hcMskZkcGKqxf3CYfYPD7Ds49vv+keXayOe9B4fYd/DIbcfa11gT83/n0rN4/+vObcFfLUnS8ectHE4wEcHcckhwcROPMzhchrMyeL36Y9/k/3x9M9+4bwfDtaSWOfJeSw4t15Lhsqy+PFxLSFiycA4rT5nPc0+Zz3NOmV8sn1osnzTH/4lKkjqT/wXTlHRXK3RXKyO3j7jy557Hhq27qVaCShTPcqxWgkoliuWgYbleTlk/iIDtew7w0yf38qNHnmbXvsHDjrdkQQ8ry/D13DKAPeeU+Tz31JM4beEcKt6/QpLUpgxZmpb/9obzZnR/u/YO8tOde/npzr08vPNZHimX73z4Kf7fj7bSOFrZ01Whb8Eczjt9IS9csZiuahHcuipF0Ouqlu+VoFqpHCo/bP0Y5ZXKYdtXY/T+KiP1u6sVerqm9Zx1SdIsZchSW+md380L5vfyghW9R6wbHK6x9el9PPxkEbwe2PEs13/3QbY8vY/bfry9Ba2Frkrw+d9+GS9a2cxBWklSJ3Liu2aFWi0ZqhXzvIZqtfI9R5Unw7UaQ7VkaLix7PBthofHKW94DdWSjVt38/m7HgWKqzSrlWL4sz4UWrwaPlcohkwbhk3r9UaGW8ues3r9+rqoD72W21Yb1h+qc/j+qw3rizocduxqlPstP0dDm+tDuSOfyzZUGo5R/1t7uir0lD16c7qq5Xvxaiyrl3eV+5KkTuXEd51QKpWgZ2R+1sw8fHsiw7Xk7KULeGrvQWq1QxP9M0dN8i/XFRcDZFmn4aKAHLtOLWFouFZ8zuIK0nrIy6Q8Ro557OEah9rRsO/GbYcneIRTs0RAT7UewqqjAlmlIZBVG8LbkYHthz99im279jOvu0pXNehuGObtrhZhrqtaDO/W1xefg65q5bBtuqtlWeXQ+u6GbUf2UV8u6zQOM9fDbrUC1UplJAhXK4cPO1fKbUbql8FX0uxjyJKOUbUS/NYrz2x1M6alVkuSQ+EuR4Je8Z61huA3en0Z+AaHaxwYqr+GOThU42D5+eBQjYPDNQ4MDpfvxeeDQ4e2OdiwXf3z/sEau/YNHrGvxn3WvercPobKdgzVauwbLHogh8oeyaHhGoPDh3olB4fLsnJdi7LmEboqh3opR4JZ5VAvZFelcqg3dJx6E+2jWs5PrDb0mtbnMjbuo1pp7DEdHSSLELnu7i1F0GwIk2P24Db2tFaO3rM6cpFMQ8/soZ7cht7esXqCG/czxkU29WPW9zV2mw4d49DFOhy+ruG7GqtXuBpBHNZrfXibdGIxZEknsPo/+lU66x//Wi05OFwb6VGa7r6GyqHhwfowckMIqw8vD5bLw2W9oTK41bJYrpU9iEUvYY3h2uG3K6m/6j2K9eHsem/jUMPycBluh8bbT8M2jevqbRmq1TgwVPSATqYtw437qO+3oUf1aC563inUakWv65E9uHl4KB/pfYXRPbiNt3up1XtqG24HM1scLYAeCmtjTyWoB796/QgIivVEUL6V7+U0AIqCQ+uK4BcU21PWjbJt0bAfqE8lOFT/8OUjj3nY+lHHZFR5ZWT7KNtx6O9p3D+jyxv2Q8Pfedgxx2lLZeRYh7e9UomR/cVYbWn4Huv7mIymhayIeAPw5xRjN3+bmVc361iSTiyVSjC3MjPDwvWh5h68SnQsI8PUZThqDGOL53cfl/l1mYcPc48eLh9zuL0e5LIcRq+NCnONQ+y1Qz21hw/jM27wGz30njlWOw5tP/o+gaOH+hu3OXqbDu0n698NUCunFBTfFySHep6Lz5A1SGrkcFk+UrdYqDVsN7LNyPZ5eFl928P207DtGOVFWD58P7WGuowub6hL+bk2at/trikhKyKqwF8BrwUeBe6IiHWZubEZx5MkNUeUQ4qtHPao90pUCLqPz5RLdZDRYe2IwDdGsGOc8iyTXuN+Rvad9ePBcz86ubY163dzIbA5Mx8AiIjPApcBhixJkjRj6ldf04bTHprVP94PPNLw+dGybEREXBkRAxExsGPHjiY1Q5IkqTVaNgkhM6/LzLWZubavr69VzZAkSWqKZoWsLcDKhs8ryjJJkqQTQrNC1h3A2RFxRkT0AJcD65p0LEmSpLbTlInvmTkUEe8GvkpxC4frM3NDM44lSZLUjtri2YURsQN4uNXtmEWWAE+0uhEa4floH56L9uL5aB+ei6l5bmZOOKG8LUKWZlZEDEzmwZU6Pjwf7cNz0V48H+3Dc9Ec3uJYkiSpCQxZkiRJTWDImp2ua3UDdBjPR/vwXLQXz0f78Fw0gXOyJEmSmsCeLEmSpCYwZEmSJDWBIavDRcRDEXFvRNwdEQNl2SkRcWtE3F++n9zqds5WEXF9RGyPiPUNZWN+/1H4i4jYHBH3RMRLWtfy2Wmc8/GHEbGl/I3cHRFvalj3ofJ83BcRr29Nq2eniFgZEbdHxMaI2BAR7ynL/X20wFHOh7+PJjJkzQ6vyswLGu5x8kHgtsw8G7it/Kzm+BTwhlFl433/bwTOLl9XAtcepzaeSD7FkecD4JryN3JBZt4CEBHnUzzya3W5zV9HRPW4tXT2GwLen5nnAxcBV5Xfub+P1hjvfIC/j6YxZM1OlwE3lMs3AG9uYVtmtcz8FrBzVPF43/9lwN9l4XvA4ohYdnxaemIY53yM5zLgs5l5IDMfBDYDFzatcSeYzNyWmXeVy3uATUA//j5a4ijnYzz+PmaAIavzJfC1iLgzIq4sy5Zm5rZy+TFgaWuadsIa7/vvBx5pqPcoR/9HTjPn3eUQ1PUNw+eej+MkIlYBLwa+j7+Plht1PsDfR9MYsjrfyzPzJRRd7VdFxM81rsziHh3ep6NF/P7bwrXAmcAFwDbgY61tzoklIhYAnwfem5m7G9f5+zj+xjgf/j6ayJDV4TJzS/m+HfgiRXfu4/Vu9vJ9e+taeEIa7/vfAqxsqLeiLFMTZebjmTmcmTXgExwa8vB8NFlEdFP8B/0zmfmFstjfR4uMdT78fTSXIauDRcRJEbGwvgy8DlgPrAOuKKtdAdzcmhaesMb7/tcBv1JeRXURsKth2ERNMmpez1sofiNQnI/LI2JORJxBMeH6B8e7fbNVRATwSWBTZn68YZW/jxYY73z4+2iurlY3QNOyFPhi8duhC/iHzPxKRNwB3BQR7wIeBt7ewjbOahFxI3AJsCQiHgX+ALiasb//W4A3UUwg3Qv82nFv8Cw3zvm4JCIuoBiWegj4TYDM3BARNwEbKa68uiozh1vR7lnqYuCdwL0RcXdZ9vv4+2iV8c7HO/x9NI+P1ZEkSWoChwslSZKawJAlSZLUBIYsSZKkJjBkSZIkNYEhS5IkqQkMWZKmJCJuj4jXjyp7b0RcGxHLI+Ifx9luVUT80jSP/Y2IWDtO+X0R8aOI+G5EnDud40jSTDBkSZqqG4HLR5VdDtyYmVsz862jN4iILmAVMK2QNYFfzswXUTx0+E/HaEO1iceWpCMYsiRN1T8CPx8RPTDysNnlwLfL3qr1ZfmvRsS6iPg6cBvFTShfERF3R8Tvlev/sr7TiPiniLikXL42IgYiYkNEfHiK7fsWcFa5n4ci4qMRcRfwtoi4ICK+Vz4M94v1h+FGxFkR8c9lT9hdEXFmWf5fI+KOsv6Hy7KTIuJLZd31EfEfy/KrI2JjWffPyrK+iPh8uY87IuLisvyV5fdwd0T8sP7kBkmzi3d8lzQlmbkzIn5A8VDymyl6sW7KzCyfPtDoJcALy20uAT6Qmb8ARQg7ymH+R7lNFbgtIl6YmfdMsom/CNzb8PnJ8iHqRMQ9wO9k5jcj4o8o7gj/XuAzwNWZ+cWImAtUIuJ1FI8SuRAIYF0UD2DvA7Zm5s+X++yNiFMpHklyXvk9LC6P/efANZn5nYh4DvBV4PnAByjuoP3dKB7Yu3+Sf5ukDmJPlqRj0ThkeHn5eSy3ZubOY9j/28vepx8Cq4HzJ7HNZ8rHhVxMEWLqPgdFGAIWZ+Y3y/IbgJ8re5H6M/OLAJm5PzP3UjwL9HVlG+4CzqMIXfcCry17yF6RmbuAXRRB6ZMR8R8oHgsD8BrgL8t2rQMWlaHqu8DHI+J3yzYNTfULktT+7MmSdCxuBq6JiJcA8zPzznHqPXuUfQxx+P/RmwtQPoz2A8DPZOZTEfGp+roJ/HJmDkyxDUcTwP/KzL85YkXxd78J+OOIuC0z/ygiLgReDbwVeDdwKcXfd1Fmju6pujoivlTu47sR8frM/PExtlNSm7InS9KUZeYzwO3A9YzfizXaHqBx7tFDwAURUYmIlRTDcgCLKILRrohYSjEsORNt3gU8FRGvKIveCXwzM/cAj0bEmwEiYk5EzKcY2vv1sueJiOiPiNMiYjmwNzP/nmKC/UvKOr2ZeQvwe8CLymN8DfidehvKB/ESEWdm5r2Z+VHgDopeMkmzjD1Zko7VjcAXOfJKw/HcAwxHxI+ATwH/G3gQ2AhsohiSIzN/FBE/BH4MPEIxtDZTrgD+bxmiHgB+rSx/J/A35TytQeBtmfm1iHg+8K/lXLNngP9EMan+TyOiVtb9bYrweHM5nyuA95X7/V3gr8q5YF0Uk/J/C3hvRLwKqAEbgC/P4N8oqU1EZra6DZIkSbOOw4WSJElNYMiSJElqAkOWJElSExiyJEmSmsByDSdqAAAAGUlEQVSQJUmS1ASGLEmSpCYwZEmSJDXB/wf2YrBLjrhXigAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 720x216 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Sim. Time / s\"].plot(figsize=(10, 3));"]}, {"cell_type": "code", "execution_count": 71, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHvdJREFUeJzt3XuUnHWd5/H3p6+5dCCBdLIhQRIgjMIKgW0ZZhFEkYu4GtxVJl4go+zEmQUVR52jssdBHM/gemHG0WVE4QguooiwicgoGFFGVoEGQwj3DIRDYkiCQCD3vnz3j+dXSXWnuru6qypV/eTzOqdOPfV7flX1fbqSz/PUr56LIgIzM8uvpnoXYGZmteWgNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnXUu8CAKZPnx5z586tdxlmZuPKAw888EJEdI7UryGCfu7cuXR3d9e7DDOzcUXSs+X089CNmVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnXGEH/6vP1rsDMLLcaI+i3bABfu9bMrCYaI+ijH3ZsrncVZma51BhBD7B1U70rMDPLpcYJ+i0b612BmVkujRj0kiZIuk/SQ5IekfT51D5P0r2SVkv6oaS21N6eHq9O8+eWVclWB72ZWS2Us0W/E3hLRBwHLADOlnQS8CXgyog4EngJuDD1vxB4KbVfmfqNbIuHbszMamHEoI/MlvSwNd0CeAtwc2q/Djg3TS9Mj0nzT5ek4d9F3qI3M6uRssboJTVLWgFsBO4E/h14OSJ6U5e1wOw0PRt4DiDN3wwcPHwVLf4x1sysRsoK+ojoi4gFwBzgROC1lb6xpCWSuiV19wYeujEzq5FR7XUTES8DdwF/BkyVVLhC1RxgXZpeBxwKkOYfCPyxxGtdHRFdEdHV0jbBQzdmZjVSzl43nZKmpumJwBnAY2SB/+7UbTGwNE0vS49J838ZMcJhr02t3r3SzKxGyrlm7CzgOknNZCuGmyLiNkmPAj+Q9PfA74FrUv9rgO9JWg28CCwa8R2aPUZvZlYrIwZ9RKwEji/R/jTZeP3g9h3Ae0ZVRVML9LwCO7dAe8eonmpmZsNrjCNjm1qze4/Tm5lVXWMEfXP6YrH1hfrWYWaWQ40R9E0p6P2DrJlZ1TVI0HvoxsysVhoj6AtDNz5oysys6hoj6BFMnOYtejOzGmiQoAcmz/AYvZlZDTRQ0Hf6oCkzsxponKDvcNCbmdVC4wT95Bn+MdbMrAYaJ+g7OmHnZujZUe9KzMxypXGCfvKM7N7DN2ZmVdU4Qd9RCHrveWNmVk2NE/SFLXqP05uZVVUDBf307N5DN2ZmVdU4Qe+hGzOzmmicoG+dCG1TPHRjZlZljRP0kA6a8ha9mVk1NVbQ+3w3ZmZV11hB79MgmJlVXWMFvbfozcyqrsGCvhO2vwh9vfWuxMwsNxor6Ds6s/ttvki4mVm1jBj0kg6VdJekRyU9Iuljqf0ySeskrUi3c4qe8xlJqyU9IemssqvZfXSsh2/MzKqlpYw+vcAnIuJBSVOAByTdmeZdGRFfKe4s6WhgEXAMcAjwC0lHRUTfiO/kg6bMzKpuxC36iFgfEQ+m6VeBx4DZwzxlIfCDiNgZEc8Aq4ETy6pmchq68UFTZmZVM6oxeklzgeOBe1PTxZJWSrpW0rTUNht4ruhpaymxYpC0RFK3pO5Nm1Kwe4vezKzqyg56SR3Aj4FLIuIV4CrgCGABsB746mjeOCKujoiuiOjq7Exb8m0d0DLRY/RmZlVUVtBLaiUL+Rsi4haAiNgQEX0R0Q98mz3DM+uAQ4uePie1lfNG6SLh3uvGzKxaytnrRsA1wGMR8bWi9llF3d4FrErTy4BFktolzQPmA/eVXZHPd2NmVlXl7HVzMnA+8LCkFants8B7JS0AAlgDfBggIh6RdBPwKNkeOxeVtcdNweQZsHlt2d3NzGx4IwZ9RPwGUIlZtw/znC8CXxxTRR2d8IcHx/RUMzPbW2MdGQvZFv3WF6C/v96VmJnlQuMFfccMiL7snDdmZlaxxgv63QdN+QdZM7NqaNyg93npzcyqovGCfvfRsQ56M7NqaLyg99CNmVlVNV7QT5wGTa0+aMrMrEoaL+gLp0HwGSzNzKqi8YIefBoEM7Mqasyg90XCzcyqpkGD3mewNDOrlsYM+sLQTUS9KzEzG/caM+gnz4C+XbBjc70rMTMb9xoz6H3QlJlZ1TRm0PugKTOzqmnMoPdFws3MqqYxg35yCnofNGVmVrHGDPpJB4GaPEZvZlYFjRn0Tc0w6WAP3ZiZVUFjBj2ko2O9RW9mVqnGDXqf78bMrCoaN+h9vhszs6oYMeglHSrpLkmPSnpE0sdS+0GS7pT0VLqfltol6euSVktaKemEMVXWMcM/xpqZVUE5W/S9wCci4mjgJOAiSUcDnwaWR8R8YHl6DPA2YH66LQGuGlNlkzuhZxvs3DKmp5uZWWbEoI+I9RHxYJp+FXgMmA0sBK5L3a4Dzk3TC4HrI/M7YKqkWaOuzBcJNzOrilGN0UuaCxwP3AvMjIj1adbzwMw0PRt4ruhpa1Pb6Ph8N2ZmVVF20EvqAH4MXBIRrxTPi4gARnVOYUlLJHVL6t60qUSY+3w3ZmZVUVbQS2olC/kbIuKW1LyhMCST7guJvA44tOjpc1LbABFxdUR0RURXZ2fn3m/q892YmVVFOXvdCLgGeCwivlY0axmwOE0vBpYWtV+Q9r45CdhcNMRTvt1b9B66MTOrREsZfU4GzgcelrQitX0WuAK4SdKFwLPAeWne7cA5wGpgG/DBMVXW3AoTp3mL3sysQiMGfUT8BtAQs08v0T+AiyqsK+ODpszMKta4R8aCLxJuZlYFjR30Pt+NmVnFGjvofQZLM7OKNXbQd3TCzs3Qs6PelZiZjVuNHfSTfXSsmVmlGjvofdCUmVnFGjvofZFwM7OKNXjQT8/uPXRjZjZmjR30HroxM6tYYwd960Rom+KhGzOzCjR20IMPmjIzq1DjB73Pd2NmVpHGD/qOTv8Ya2ZWgcYPem/Rm5lVZBwEfSdsfxH6eutdiZnZuNT4Qd+RrjS1zacrNjMbi8YP+t1Hx3r4xsxsLBo/6H3QlJlZRRo/6H2RcDOzijR+0HuL3sysIo0f9G0d0DLRY/RmZmPU+EEv+SLhZmYVaPygB5/vxsysAiMGvaRrJW2UtKqo7TJJ6yStSLdziuZ9RtJqSU9IOqsqVfoi4WZmY1bOFv13gbNLtF8ZEQvS7XYASUcDi4Bj0nP+t6Tmiqv0Fr2Z2ZiNGPQRcTfwYpmvtxD4QUTsjIhngNXAiRXUl5k8Ixuj7++v+KXMzPY3lYzRXyxpZRramZbaZgPPFfVZm9oq0zEDoi87542ZmY3KWIP+KuAIYAGwHvjqaF9A0hJJ3ZK6N20aYfx990FTHr4xMxutMQV9RGyIiL6I6Ae+zZ7hmXXAoUVd56S2Uq9xdUR0RURXZ2fn8G9YCHqfl97MbNTGFPSSZhU9fBdQ2CNnGbBIUrukecB84L7KSqTo6FgHvZnZaLWM1EHSjcBpwHRJa4G/A06TtAAIYA3wYYCIeETSTcCjQC9wUUT0VVxlYYv+6bvg9e+u+OXMzPYnioh610BXV1d0d3cP3SECPj81m75s874pysyswUl6ICK6Ruo3Po6MlbL7N/5NfeswMxuHxkfQA6gZNH7KNTNrFE5OM7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzo2voO/vqXcFZmbjzvgJ+lnHwr1Xw9O/qnclZmbjyvgJ+vf9CA46HL7/57D6F/Wuxsxs3Bg/Qd/RCYt/AtPnw43vhSd+Vu+KzMzGhfET9ACTD4YLlsHMY+CHH4DHbqt3RWZmDW98BT3ApIPggqVwyAL40WJ45NZ6V2Rm1tDGX9ADTDgQPnALzHkD3PwhWPmjeldkZtawRgx6SddK2ihpVVHbQZLulPRUup+W2iXp65JWS1op6YSaVT7hAHj/zXDYyXDrEljx/Zq9lZnZeFbOFv13gbMHtX0aWB4R84Hl6THA24D56bYEuKo6ZQ6hvQPedxPMOxX+7/+AB66r6duZmY1HIwZ9RNwNvDioeSFQSNXrgHOL2q+PzO+AqZJmVavYktomwXt/CEe+FX7yUbj/OzV9OzOz8WasY/QzI2J9mn4emJmmZwPPFfVbm9pqq3UCLLohC/vb/xZ2vFLztzQzGy8q/jE2IgKI0T5P0hJJ3ZK6N23aVGkZ0NIOR50N0Qd9uyp/PTOznBhr0G8oDMmk+42pfR1waFG/OaltLxFxdUR0RURXZ2fnGMswM7ORjDXolwGL0/RiYGlR+wVp75uTgM1FQzxmZlYHLSN1kHQjcBowXdJa4O+AK4CbJF0IPAucl7rfDpwDrAa2AR+sQc1mZjYKIwZ9RLx3iFmnl+gbwEWVFmVmZtUzPo+MNTOzsjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLuXwG/YZHoL+v3lWYmTWEEa8wNa5MPQwQXP9OmHAgzD0FDj8tux18JEh1Lc/MrB7yFfRHnQmffBKeuRue/hU8/Wt4/LZs3pRDUui/Cea9CQ6YVcdCzcz2nXwFPUDHDHj9u7NbBLz0zJ7Qf/Jn8ND3s35v+Z9w6qfqWqqZ2b6Qv6AvJsFBh2e3rg9Bfz9seBhueA9sfLze1ZmZ7RP5/DF2KE1NMOs4aOuodyVmZvvM/hX0Zmb7oYqGbiStAV4F+oDeiOiSdBDwQ2AusAY4LyJeqqxMMzMbq2ps0b85IhZERFd6/GlgeUTMB5anx2ZmVie1GLpZCFyXpq8Dzq3Be5iZWZkqDfoA7pD0gKQlqW1mRKxP088DM0s9UdISSd2Sujdt2lRhGWZmNpRKd698Y0SskzQDuFPSgH0WIyIkRaknRsTVwNUAXV1dJfuYmVnlKtqij4h16X4jcCtwIrBB0iyAdL+x0iLNzGzsxhz0kiZLmlKYBs4EVgHLgMWp22JgaaVFmpnZ2FUydDMTuFXZicJagO9HxM8k3Q/cJOlC4FngvMrLrLL2jux8OM/8G8w7pd7VmJnV1JiDPiKeBo4r0f5H4PRKiqq5d/4z3PwhuO4d8MZL4LTPQktbvasyM6uJ/fPI2FnHwYfvhhPOh99cCdeeCS+srndVZmY1sX8GPUDb5GzL/rzvwYvPwLdOgQevz854aWaWI/tv0Bcc/U746/8Hc7pg2Ufgpgtg24vlP3/TE/D8qtrVZ2ZWoXyfprhcB86G85fCb/8Zln8B1nbDu/4lu0jJYDtegZefhZfWwEvPwh2XZu2Xbd6nJZuZlctBX9DUBCd/DOadCj/+73D9QnjDhdkpjYuDffsotvbNzBqAg36wQ47Pfqj92Wfg/u9AUytMfQ1MOyybN/UwmDY3ezxtbrb3zs5X6121mdmQHPSltE2Gd34dzrgc2qdAU3O9KzIzGzMH/XAmTq13BWZmFfNeN9XQ35ddj9bMrAF5i75SzW3whwfhC9Nh8nSY3Fl0P6NouhM6OvdMt06sd+Vmtp9w0FfqzC/C4W+GrRth6ybY+kJ2/9Ia2LIJeraWfl5bR1oJzBi4cjjsP8ORjX0GCTMbXxz0lZp+ZHYbyq6tKfzTCmDrprRSKHr88rOwrjubXnEDfOLxoV/PzGyUHPS11jY5u007bOS+t30cuq+Fu78CfT3Qtwv6e/ZM9+1K0z3wH/4jHHU2zDgasjOImpmV5KBvJFNfk93/8gvZfVNL9htAc2u6T9MR8MgtsPxyOGAOHHVmFvpzT4G2SfWr38wakqIBTuJ1yJHHxOOrVnDAhNZ6l1J/O7dkYd7Umh2tO5RX1sNTd8CTP4enf5X9FtAyITuyd/6ZcNRZe1YcZpZLkh6IiK4R+zVC0LfPmh/HXXwVn3vH0bz99bOQhyJGp3cnrPlNCv6fZT8EAzS3w+mfy7byWyZCS3u2t0/LhOzWOiFrb51Q1DYx++bgz8Cs4Y2roD/m2ONj3l9+nVXrXuFNR3Vy+cJjOOzgyfUua3yKgBeegl9eDo/9ZIwvoqIVwYRsBTFlFrz/R9mRwmbWEMZV0Hd1dcW9993P9b9dw1fveJKevn4+8pYj+ctTD6e9xacfGLPendCzLd1vh94d2a1nB/RuL7/9kaWwczP8pw9mF23Z/ZtBGmLa/TtCmt7920IbNKfppta9nzfc0JSZjWjcBX13dzcAz2/ewRdue5SfPryeIzon88V3vZ6TDj+4zhXu5567D645o/qvq+a9VwgDVh4t2UqjqTXdN6f5hbb0uK0DJhyY3SZOhQlT9zwuvvkgNcuZcRv0BXc9sZHPLV3Fcy9u57+dMIfPnvNaDu5or1OFxq6t2Vb+7l09e9Kun7ugr3fP7p8DdgftGdSvaF5/0XMKzy/53N69b3096bQTqc+uLbBjc/btYzjN7aVXAIXbPf8Ikw6G9gOyXWJbJ0LrpOzWNmng43LaCsNeze3ZNYmb27MVk3//sCoZ90EPsH1XH9+46ymuvvtpJrW18L0LT+TYOT7RmA2hZ0cW+ANuL6fb4PbNsP3lgf36e7NvEkcvzFZqhZVbz7Z0K2rr2znGIpW9R8uEPeG/1337MH0K80r1GTyvfU97oW3zc9meWi3tew+n7R56G669jGG65jaf8XUfyUXQFzy14VXOuPJu/nTeQZz+uhlMamthUlvz7vvJ7c1MbM2mp09pp6PdhwfYKEVkv020Tiivf19v9nvGrm0DVwQ921Lb1uz1endm31B6d2Yrh73aiuftGqJP8bx0399b2fI2tVT+GsPSECuAoVYMLXuvRIb6DWjI9kGvo6ZshaPmoumm7HFT057pAfMG9StrXnP2La0O39TKDfqaJaKks4F/ApqB70TEFWN9rfkzp3DMIQdw7zMvcu8zw1/hqaO9hfsvfSsT27xFYaMglR/ykEJqSv32QurvG3olULySKF7BFNoOmgeHn5adcbV4CK3UcNq+at+1pbz+/T31+XuXQ6VWHmklUO7Ko6mw0ii1cioxr0w1CXpJzcA3gTOAtcD9kpZFxKNjfc2ffvQU+vqDbbt62b6rj627+ti2q5dtu/rYtquP7bt6uePRDdzy4DoWfft3tDc3ZX9fieYmIUFzk2iS+OXjG5kzbSI//cgpdExoobnJY6Y2zjQ1p6OgKzgSuqkJmtqyoZ/xIqLM33d2QfRnK8Toh0j3/cXTZc7r78vet+S8/kGvMdK84vcqNS9K1FV43A99g+oqU6226E8EVkfE0wCSfgAsBMYc9JAF9ZQJrUwZ4gjaIzo7eHlbDzt7+7KNlQh6+/vZ1Qd9/UFE0J9Gqta+tJ3jLr8DgEltzUyZ0EJHe0t6/RamTGhhUltL9nePoLc/6O8P+vqDvkj3/cGvn9wEwKfO+pO96in+JidUom1g30f/8Aovb+/hHccekv0flIpuoHTfJA2Yv3tFJtHUtKd/X3/Q1tK0u9a+ovoLy7N7uYqWacC8CHr7gvbWJt5x3CEMXiUOPrit1Cqz1DdalehZ6TdfaeDfWbvbs9bC61d6QF5huLMw6hmD2wfXNaiOQn3VqGW/I+0ZrsHH2vBX5f37qVXQzwaeK3q8FvjTGr3XbvNnTuHav3jDiP2e3PAqK557mVd39LJlRy+v7ujJpnf28sqOHrbs7GX95h1s29mLUpBm3wZI0000N2XBWvDlnz9RteX41RObqvZa1XTpravqXULVDV4hwN6Bva9+xtod/kW1FK8Ydq8mBvQrTJdewe3uPvCpe6+gh9gAKdl3iLpL9Rg8b6TnDt4AGO75I60kh5o9ZPsoNj6GeuehairZWqXXLkfdfrWUtARYAvCa1+zbc7IcNXMKR82szthqRNDTVwiGKGov1bdoukTf/ghe2tqze7ov9nwL6Y/Y/S2lf0BbNl34xtKX5m3b2UtfBBNammluFs0SLU3ZFv+Ae4mWNL+wQhtwk9iys5czrrybvx30rWXwMsZe27JD/B1K/h1L9Ss/YQf8bSMGbG1H7HmtbHrPk4rDPIi9vnnt/q9VInizx6X7Fx4PrqN4uQbXUk6/AfNKfKPY+1vGwNcppXiHjMFdRvqM954/9LzBr77Xc0fxXqOtc8gnDtM81I4qQ/2rHPLvW4XXLjUjCJYP1X+Qmux1I+nPgMsi4qz0+DMAEfEPpfqPtNeNmZntrdy9bmp1DPr9wHxJ8yS1AYuAZTV6LzMzG0ZNhm4iolfSxcDPyXavvDYiHqnFe5mZ2fBqNkYfEbcDt9fq9c3MrDw+faCZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeVcQ5ymWNIm4Nl611EF04EX6l3EPuTlzTcvb+M7LCI6R+rUEEGfF5K6yzlKLS+8vPnm5c0PD92YmeWcg97MLOcc9NV1db0L2Me8vPnm5c0Jj9GbmeWct+jNzHLOQV8BSWskPSxphaTu1HaQpDslPZXup9W7zrGSdK2kjZJWFbWVXD5lvi5ptaSVkk6oX+VjM8TyXiZpXfqMV0g6p2jeZ9LyPiHprPpUPTaSDpV0l6RHJT0i6WOpPZef7zDLm8vPdy+RrmLk2+hvwBpg+qC2/wV8Ok1/GvhSveusYPlOBU4AVo20fMA5wL+SXWTpJODeetdfpeW9DPhkib5HAw8B7cA84N+B5novwyiWdRZwQpqeAjyZlimXn+8wy5vLz3fwzVv01bcQuC5NXwecW8daKhIRdwMvDmoeavkWAtdH5nfAVEmz9k2l1THE8g5lIfCDiNgZEc8Aq4ETa1ZclUXE+oh4ME2/CjxGdq3nXH6+wyzvUMb15zuYg74yAdwh6YF0DVyAmRGxPk0/D8ysT2k1M9Tylbog/HD/kcaTi9NwxbVFQ3G5WV5Jc4HjgXvZDz7fQcsLOf98wUFfqTdGxAnA24CLJJ1aPDOy74C53a0p78uXXAUcASwA1gNfrW851SWpA/gxcElEvFI8L4+fb4nlzfXnW+Cgr0BErEv3G4Fbyb7abSh8pU33G+tXYU0MtXzrgEOL+s1JbeNaRGyIiL6I6Ae+zZ6v7+N+eSW1koXeDRFxS2rO7edbannz/PkWc9CPkaTJkqYUpoEzgVVkF0FfnLotBpbWp8KaGWr5lgEXpL0zTgI2Fw0BjFuDxqHfRfYZQ7a8iyS1S5oHzAfu29f1jZUkAdcAj0XE14pm5fLzHWp58/r57qXevwaP1xtwONmv8g8BjwCXpvaDgeXAU8AvgIPqXWsFy3gj2dfZHrIxyguHWj6yvTG+SbZ3wsNAV73rr9Lyfi8tz0qy//yzivpfmpb3CeBt9a5/lMv6RrJhmZXAinQ7J6+f7zDLm8vPd/DNR8aameWch27MzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRWF+lMgmcNartE0lWSDpF08xDPmyvpfRW+968k7XVt0NT+hKSHJN0j6U8qeR+zRuGgt3q5EVg0qG0RcGNE/CEi3j34CZJagLlARUE/gvdHxHFkJ/T6cokammv43mY14aC3erkZeLukNth9oqlDgH9LW+2rUvtfSFom6ZdkB/JcAZySzh3+8TT/G4UXlXSbpNPS9FWSutP5xz8/yvruBo5Mr7NG0pckPQi8R9ICSb9LJ8K6teic7UdK+kX6RvCgpCNS+6ck3Z/6fz61TZb009R3laQ/T+1XpHOmr5T0ldTWKenH6TXul3Ryan9T0XnUf184UttssJZ6F2D7p4h4UdJ9ZCeEW0q2NX9TRER2tPoAJwDHpuecRnb+8P8C2YpgmLe5ND2nGVgu6diIWFlmie8gO2Ky4I+RncAOSSuBj0TEryVdDvwdcAlwA3BFRNwqaQLQJOlMssPnTyQ7unRZOvldJ/CHiHh7es0DJR1Mdhj+a9PfYWp6738CroyI30h6DfBz4HXAJ4GLIuKedLKuHWUum+1nvEVv9VQ8fLMoPS7lzogo9zzxxc5LW+G/B44hu5jESG6QtAI4mSxIC34IWSADUyPi16n9OuDUtDU9OyJuBYiIHRGxjewcSGemGh4EXksW/A8DZ6RvCqdExGZgM1lYXyPpvwLb0nu8FfhGqmsZcEAK9nuAr0n6aKqpd7R/INs/eIve6mkpcKWyy9JNiogHhui3dZjX6GXgBssEgHQiqk8Cb4iIlyR9tzBvBO+PiO5R1jAcAf8QEd/aa0a23OcAfy9peURcLulE4HTg3cDFwFvIlu+kiBi8xX6FpJ+m17hH0lkR8fgY67Qc8xa91U1EbAHuAq5l6K35wV4luxRcwRpggaQmSYey5zSzB5CF82ZJM8mGiKpR82bgJUmnpKbzgV9HdtWitZLOBUhnPZxENszyobQFjqTZkmZIOgTYFhH/h+xH3xNSnwMj4nbg48Bx6T3uAD5SqEHSgnR/REQ8HBFfAu4n+7Zgthdv0Vu93Uh2Lv/Be+AMZSXQJ+kh4LvAPwLPAI+SXR6ucLm4hyT9Hnic7EpB91Sx5sXAv6Qgfxr4YGo/H/hWGrfvAd4TEXdIeh3w2/TbwxbgA2Q/9H5ZUn/q+9dkK7ClaXxfwN+k1/0o8M3020AL2Q/FfwVcIunNQD/ZGVT/tYrLaDnis1eameWch27MzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzv1/xWTkwD2+JnsAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Presim. Time / s\"].plot();\n", "df[\"Sim. Time / s\"].plot();"]}, {"cell_type": "code", "execution_count": 72, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmcFNW5//HPMzvMjKIwcEFEUEEFwYGMiMEFN1CSiOYXI14TMZprcn9m05h7NZvGaC5ejSbGXL1GeYlxSRQ14I7gwpWfigNBZVOI4mUQZVGQbWCW5/dHVQ89Mz0zPdPd09M93/frVa+uPnWq6qlp6KfPqapT5u6IiIg0lZPuAEREpGtSghARkZiUIEREJCYlCBERiUkJQkREYlKCEBGRmJQgREQkJiUIERGJSQlCRERiykt3AIno06ePDx48ON1hiIhklMWLF29297K26mV0ghg8eDCVlZXpDkNEJKOY2Yfx1FMXk4iIxKQEISIiMSlBiIhITBl9DkJEkq+mpoaqqiqqq6vTHYokqKioiIEDB5Kfn9+h9ZUgRKSRqqoqSktLGTx4MGaW7nCkg9ydLVu2UFVVxZAhQzq0DXUxiUgj1dXV9O7dW8khw5kZvXv3TqglqAQhIs0oOWSHRD/HzE4Q2z9OdwQiIlkrsxPEjk9Az9QWyTq5ubmUl5dz9NFHc95557Fr166Et3nXXXdx//33J7ydyy+/nPLycoYPH06PHj0oLy+nvLycWbNm8ctf/pJ58+YlvI9Ypk+fzoMPPpiSbbfEPIO/YCsG5HrlP7ZAj17pDkUka6xcuZKjjjoqrTGUlJSwY8cOAC688EK+8IUvcOWVVzYsd3fcnZyc9P3GXbt2LV/+8pdZtmxZp+zvlFNO4ZFHHqGsrM0RMhqJ9Xma2WJ3r2hr3cxuQQDs3JTuCEQkhU488UTWrFnD2rVrOeKII7jooos4+uijWbduHXPnzuX4449nzJgxnHfeeQ1J5eqrr2b48OGMGjWKq666CoDrrruOW265BYAJEyZwxRVXUFFRwVFHHcWbb77JV7/6VYYOHcrPf/7zDsd68cUXM2vWLCAYCuiaa66hvLyciooKlixZwqRJkzjssMO46667Gta5+eabOfbYYxk1ahTXXnttzO1+/vnn7N27t1lyeOWVVxpaMKNHj2b79u0djj2WzL/MdcdG6DM03VGIZKVfPbmcFR99ntRtDh+wH9d+ZURcdWtra3n22Wc588wzAVi9ejUzZ85k3LhxbN68mRtuuIF58+ZRXFzMTTfdxK233srll1/OE088wapVqzAztm7dGnPbBQUFVFZW8vvf/54pU6awePFiDjzwQA477DCuuOIKevfunfCxDho0iKVLl3LFFVdw8cUXs3DhQqqrqzn66KP57ne/y9y5c1m9ejWLFi3C3Tn77LNZsGABJ510UqPtzJs3j9NOO63Z9m+55Rb++Mc/Mn78eHbs2EFRUVHCMUdLWQvCzIrMbJGZvWVmy83sV2H5EDN7w8zWmNlfzawgLC8M368Jlw+Oa0c7N6bqEEQkTXbv3t3wy3vQoEFceumlABxyyCGMGzcOgNdff50VK1Ywfvx4ysvLmTlzJh9++CH7778/RUVFXHrppTz++OP07Nkz5j7OPvtsAEaOHMmIESPo378/hYWFHHrooaxbty4pxxG9j+OOO47S0lLKysooLCxk69atzJ07l7lz5zJ69GjGjBnDqlWrWL16dbPtPPfcc5x11lnNysePH8+VV17J7bffztatW8nLS+5v/lS2IPYAp7r7DjPLB141s2eBK4Hb3P0vZnYXcClwZ/j6mbsfbmZTgZuA89vcyw51MYmkSry/9JOtR48eLF26tFl5cXFxw7y7c8YZZ/Dwww83q7do0SLmz5/PrFmzuOOOO3jxxReb1SksLAQgJyenYT7yvra2NhmH0eY+3J1rrrmG73znO61uZ9GiRdx5553Nyq+++mq+9KUv8cwzzzB+/Hief/55jjzyyKTEDilsQXhgR/g2P5wcOBWYFZbPBM4J56eE7wmXn2ZtXsRrakGIdFPjxo1j4cKFrFmzBoCdO3fy3nvvsWPHDrZt28bkyZO57bbbeOutt9IcacsmTZrEjBkzGs6drF+/no0bG3+nLV++nCOPPJLc3Nxm6//jH/9g5MiR/Pu//zvHHnssq1atSmp8KT0HYWa5wGLgcOCPwD+Are4eSc9VwEHh/EHAOgB3rzWzbUBvYHOLO8jJ00lqkW6qrKyM++67jwsuuIA9e/YAcMMNN1BaWsqUKVOorq7G3bn11ls7vI/Jkydzzz33MGDAgGSF3cjEiRNZuXIlxx9/PBBcvfXAAw/Qt2/fhjrR52Ca+t3vfsdLL71ETk4OI0aMiNkNlYhOuczVzHoBTwC/AO5z98PD8oOBZ939aDNbBpzp7lXhsn8Ax7n75ibbugy4DOCYAYVfWHrLV+GCh1J+DCLdRVe4zFX2OeOMM7j//vvp379/h9bv8pe5uvtW4CXgeKCXmUVaLgOB9eH8euBggHD5/sCWGNu6290r3L0ir6BIXUwiktVeeOGFDieHRKXyKqaysOWAmfUAzgBWEiSKr4XVpgGzw/k54XvC5S96W82bnPzgMlcREUm6VJ6D6A/MDM9D5ACPuPtTZrYC+IuZ3QD8Hbg3rH8v8GczWwN8Ckxtcw+5OgchIpIqKUsQ7v42MDpG+fvA2Bjl1cB57dpJTh7UfA57dkBhSUdDFRGRGDJ7qI2c8ClJOg8hIpJ0mZ0gcsMG0M6Wr4QVEZGOyewEkRMmCJ2oFskqN954IyNGjGDUqFGUl5fzxhtvAPDtb3+bFStWJLz94447jvLycgYNGkRZWVnDgHdr165l8uTJLY7flKizzjqLqqqqlGw7FTJ7sD51MYlknddee42nnnqKJUuWUFhYyObNm9m7dy8A99xzT1L2EUk49913H5WVldxxxx0Ny5555pmk7KOp3bt3s2XLFgYOHJiS7adCZrcgIl1MGo9JJGts2LCBPn36NIxd1KdPn4Y7mSdMmEBlZSUQ3HX8k5/8hBEjRnD66aezaNEiJkyYwKGHHsqcOXM6vP/BgwezefNm1q5dy5FHHsnFF1/MsGHDuPDCC5k3bx7jx49n6NChLFq0CAiG+LjkkksYO3Yso0ePZvbs2TG3+/LLLzNhwoRm5bfffnvD0ORTp7Z98WZnyuwWBAY9DlALQiRVnr0aPn4nudv8p5Fw1vQWF0+cOJHrr7+eYcOGcfrpp3P++edz8sknN6u3c+dOTj31VG6++WbOPfdcfv7zn/PCCy+wYsUKpk2b1jCSaiLWrFnDo48+yowZMzj22GN56KGHePXVV5kzZw6/+c1v+Nvf/saNN97IqaeeyowZM9i6dStjx47l9NNPbzSwIARDZpxzzjnN9jF9+nQ++OCDhhFeu5LMbkEAFPfVOQiRLFJSUsLixYu5++67KSsr4/zzz+e+++5rVq+goKBhjKKRI0dy8sknk5+fz8iRI1m7dm1SYhkyZAgjR45sGOvotNNOw8wa7WPu3LlMnz6d8vJyJkyYQHV1Nf/7v//bbFsLFy7khBNOaFY+atQoLrzwQh544IGkD9edqK4VTUcUl+lmOZFUaeWXfirl5uYyYcIEJkyYwMiRI5k5cyYXX3xxozr5+flEBnyOHk47FcN1t7YPd+exxx7jiCOOaHE777//PgcffDAFBQXNlj399NMsWLCAJ598khtvvJF33nmnyySKzG9BlChBiGSTd999t9FDc5YuXcohhxySxohaN2nSJP7whz8QGRno73//e7M6LY3IWl9fz7p16zjllFO46aab2LZtW8PQ311B5ieI4r46SS2SRXbs2MG0adMaTtyuWLGC6667rkPb+uijj5g8eXJyA2ziF7/4BTU1NYwaNYoRI0bwi1/8olmd5557LmaCqKur4xvf+AYjR45k9OjR/OAHP6BXr14pjbc9OmW471SpqKjwylvPhxdvgJ99AvnJfR6rSHek4b6Ta8+ePYwfP77h6qvO1uWH+06p4vDBGupmEpEuqLCwMG3JIVGZnyBKIglCVzKJiCRT5ieISAtC5yFEkiaTu55ln0Q/xyxIEH2CV3UxiSRFUVERW7ZsUZLIcO7Oli1bKCrq+LnZrnGxbSLUxSSSVAMHDqSqqopNm/SjK9MVFRUlNPZT5ieI/B5QUKouJpEkyc/PZ8iQIekOQ7qAzO9igvBmObUgRESSKTsShMZjEhFJuuxIEBpuQ0Qk6bIjQagFISKSdFmSIMpg96dQl5wRHEVEJFsSRElZ8Lprc3rjEBHJIilLEGZ2sJm9ZGYrzGy5mf0wLL/OzNab2dJwmhy1zjVmtsbM3jWzSXHvrOFuanUziYgkSyrvg6gFfuzuS8ysFFhsZi+Ey25z91uiK5vZcGAqMAIYAMwzs2HuXtfmnnSznIhI0qWsBeHuG9x9STi/HVgJHNTKKlOAv7j7Hnf/AFgDjI1rZ8VhF5NulhMRSZpOOQdhZoOB0cAbYdH3zOxtM5thZgeEZQcB66JWqyJGQjGzy8ys0swqG4YCUAtCRCTpUp4gzKwEeAz4kbt/DtwJHAaUAxuA37Zne+5+t7tXuHtFWVnYcigogbweOgchIpJEKU0QZpZPkBwedPfHAdz9E3evc/d64E/s60ZaDxwctfrAsCyeHQXdTDt1FZOISLKk8iomA+4FVrr7rVHl/aOqnQssC+fnAFPNrNDMhgBDgUVx71DjMYmIJFUqr2IaD3wTeMfMloZlPwUuMLNywIG1wHcA3H25mT0CrCC4AuryuK5giijuC9uqkhe9iEg3l7IE4e6vAhZj0TOtrHMjcGOHdlhSBh8t6dCqIiLSXHbcSQ1BC2LnZqivT3ckIiJZIXsSRElf8LpgTCYREUlY9iSIhpvldKJaRCQZsi9B6LkQIiJJkT0JouFuaiUIEZFkyJ4EoS4mEZGkyp4E0eMAyMnXzXIiIkmSPQkiMtyGRnQVEUmK7EkQoOE2RESSKLsSRHFfnYMQEUmSLEsQGtFVRCRZsitBRLqY3NMdiYhIxsuuBFHcF+r2QvW2dEciIpLxsitB6GY5EZGkya4EoZvlRESSJrsSREMLQglCRCRR2ZUgisMEoZvlREQSll0JoueBYDk6ByEikgTZlSBycqFnb3UxiYgkQXYlCAjvplYLQkQkUdmXIDQek4hIUmRfgtB4TCIiSZGyBGFmB5vZS2a2wsyWm9kPw/IDzewFM1sdvh4QlpuZ3W5ma8zsbTMb06Edl/TVSWoRkSRIZQuiFvixuw8HxgGXm9lw4GpgvrsPBeaH7wHOAoaG02XAnR3aa3EZ1OyCPTsSDF9EpHtLWYJw9w3uviSc3w6sBA4CpgAzw2ozgXPC+SnA/R54HehlZv3bvePI3dRqRYiIJKRTzkGY2WBgNPAG0M/dN4SLPgb6hfMHAeuiVqsKy9pH4zGJiCRFyhOEmZUAjwE/cvfPo5e5uwPtGpvbzC4zs0ozq9y0KUYS0HhMIiJJkdIEYWb5BMnhQXd/PCz+JNJ1FL5GvsnXAwdHrT4wLGvE3e929wp3rygrK2u+U43HJCKSFKm8ismAe4GV7n5r1KI5wLRwfhowO6r8ovBqpnHAtqiuqPg1tCDUxSQikoi8FG57PPBN4B0zWxqW/RSYDjxiZpcCHwJfD5c9A0wG1gC7gG91aK+5+dDjALUgREQSlLIE4e6vAtbC4tNi1Hfg8qTsXDfLiYgkLPvupIagm2nn5nRHISKS0bIzQWg8JhGRhGVngtCIriIiCcvOBFFSBnu2QU11uiMREclY2ZkginU3tYhIotpMEGb2n2a2n5nlm9l8M9tkZt/ojOA6TDfLiYgkLJ4WxMRwiIwvA2uBw4GfpDKohEVaEDoPISLSYfEkiMi9El8CHnX3bSmMJzmK+wSv6mISEemweG6Ue8rMVgG7gX81szKga5/9VReTiEjC2mxBuPvVwBeBCnevIRgGY0qqA0tIfg8oKFUXk4hIAuIaasPdP42a3wnsTFlEyaKb5UREEpKdl7mCxmMSEUlQiwkifJZD5iop00lqEZEEtNaCeM3M/mZm3w0fGZpZ1IIQEUlIi+cg3L0iTAxnAr8zs4OAV4FngVfcfU+nRNhRxWWw+1Ooq4XcVD72QkQkO7V6DsLd17r7Xe5+DsGVTE8CpwP/Y2ZPd0aAHVYSPllul4b9FhHpiLh/WoeXuL4YToQtiq6r4W7qjVD6T+mNRUQkA3X4KiZ3X5/MQJJON8uJiCQkiy9zDbuYdLOciEiHxJ0gzKxnKgNJOrUgREQSEs9w3180sxXAqvD9MWb2XymPLFEFJZDXQ5e6ioh0UDwtiNuAScAWAHd/CzgplUElhVnQzbRTVzGJiHREXF1M7r6uSVFdCmJJPo3HJCLSYfEkiHVm9kXAw6fKXQWsbGslM5thZhvNbFlU2XVmtt7MlobT5Khl15jZGjN718wmdehomiruq5PUIiIdFE+C+C5wOXAQsB4oD9+35T6Cu7Cbus3dy8PpGQAzGw5MBUaE6/yXmeXGsY/WqQUhItJhbd4o5+6bgQvbu2F3X9COMZymAH8Jh+/4wMzWAGOB19q730aK+wbnIOrrISd7r+gVEUmFNhOEmQ0Bvg8Mjq7v7md3cJ/fM7OLgErgx+7+GUHr5PWoOlVhWWJK+oLXBWMyRR5DKiIicYlnqI2/AfcSjMNUn+D+7gR+DXj4+lvgkvZswMwuAy4DGDRoUOuVG26W26gEISLSTvEkiGp3vz0ZO3P3TyLzZvYn4Knw7Xrg4KiqA8OyWNu4G7gboKKiwlvdYSRB6LkQIiLtFk/H/O/N7FozO97MxkSmjuzMzPpHvT0XiFzhNAeYamaFYZfWUGBRR/bRSMPd1EoQIiLtFU8LYiTwTeBU9nUxefi+RWb2MDAB6GNmVcC1wAQzKw/XXwt8B8Ddl5vZI8AKoBa43N0Tv9ci0oJ4/yUY+bWENyci0p2Ye+u9NOEVRcPdfW/nhBS/iooKr6ysbLmCO/yqVzB/3bbOCUpEpIszs8XuXtFWvXi6mJYBvRIPKQ3MgtcTrkxvHCIiGSieLqZewCozexNoeMxoApe5di7LBdM9ECIi7RVPgrg25VGIiEiXE8+d1K90RiAiItK1tJggzOxVdz/BzLYTXHXUsAhwd98v5dGJiEjatNaCKAZw99JOikVERLqQ1s7etn79q4iIZLXWWhB9zazF60Pd/dYUxCMiIl1EawkiFyghOOcgIiLdTGsJYoO7X99pkYiISJfS2jkItRxERLqx1hLEaZ0WhYiIdDktJgh3/7QzAxERka5FgxSJiEhMShAiIhKTEoSIiMTUPRJEfU26IxARyTjZnyD6j4I37ob3X053JCIiGSX7E8Q/PwoHHgoPnQ9r5qU7GhGRjJH9CaKkDKY9CX2GwsMXwLvPpTsiEZGMkP0JAqC4N1w0B/qNgL9+A1Y+le6IRES6vO6RIAB6HggXzYYB5fDoNFj+RLojEhHp0rpPggAo2h++8TgMPBZmXQJvP5ruiEREuqyUJQgzm2FmG81sWVTZgWb2gpmtDl8PCMvNzG43szVm9raZjUlVXBTtBxfOgkPGwxOXwdKHUrYrEZFMlsoWxH3AmU3Krgbmu/tQYH74HuAsYGg4XQbcmcK4oLAE/vkRGHIS/O3/wuKZKd2diEgmSlmCcPcFQNMB/6YAkW/jmcA5UeX3e+B1oJeZ9U9VbAAU9IQL/gqHnw5P/gDevCeluxMRyTSdfQ6in7tvCOc/BvqF8wcB66LqVYVlqZVfBFMfDJLEM/8G1Z+nfJciIpkibSep3d0Bb+96ZnaZmVWaWeWmTZsSDySvEIadCV4HdXsT356ISJbo7ATxSaTrKHzdGJavBw6OqjcwLGvG3e929wp3rygrK0tpsCIi3VlnJ4g5wLRwfhowO6r8ovBqpnHAtqiuKBERSYO8VG3YzB4GJgB9zKwKuBaYDjxiZpcCHwJfD6s/A0wG1gC7gG+lKi4REYlPyhKEu1/QwqJmz7oOz0dcnqpYRESk/brXndQiIhI3JQgREYlJCUJERGJSghARkZiUIEREJCYlCBERiUkJQkREYlKCEBGRmJQgREQkJiUIERGJSQlCRERiUoIQEZGYlCBERCQmJQgREYlJCUJERGJSghARkZiUIKJ9shzq69IdhYhIl5CyJ8pllF6HAAb3nw1F+8PgE+HQCcHU+3AwS2t4IiLpoAQBMGwiXPUefLAA3n8Z3n8FVj0VLCsdECaLk2HIybBf/zQGKiLSeZQgIkr6wsivBZM7fPbBvmTx3nPw1kNBvVN/Dif9JK2hioh0BiWIWMzgwEODqeISqK+HT96BB8+DjavSHZ2ISKfQSep45ORA/2OgoCTdkYiIdBolCBERiSktXUxmthbYDtQBte5eYWYHAn8FBgNrga+7+2fpiE9ERNLbgjjF3cvdvSJ8fzUw392HAvPD9yIikiZdqYtpCjAznJ8JnJPGWEREur10JQgH5prZYjO7LCzr5+4bwvmPgX6xVjSzy8ys0swqN23a1Bmxioh0S+m6zPUEd19vZn2BF8ys0bWj7u5m5rFWdPe7gbsBKioqYtYREZHEpaUF4e7rw9eNwBPAWOATM+sPEL5uTEdsIiIS6PQEYWbFZlYamQcmAsuAOcC0sNo0YHZnxyYiIvuko4upH/CEBQPg5QEPuftzZvYm8IiZXQp8CHw9DbG1rrAkGK/pg/+BISemOxoRkZTq9ATh7u8Dx8Qo3wKc1tnxtMvZf4BZl8DMr8AJP4IJP4W8gnRHJSKSEl3pMteur/8x8J0FMOab8OptMGMibF6T7qhERFJCCaK9CoqDlsTX/wyffgD/fSIsuT8YAVZEJIsoQXTU8LPhX/8fDKyAOd+HRy6CXZ/Gv/6md+HjZamLT0QkQRruOxH7HwTfnA2v/QHm/xqqKuHcu4KHCzVV/Tls/RA+WwuffQhzfxaUX7etU0MWEYmXEkSicnJg/A9hyEnw2Lfh/ilw7KXB0ODRCWF3O1oXIiJdgBJEsgwYHZzAfu4aePMeyMmHXoPggEOCZb0OgQMGB+8PGBxcDbVne7qjFhFpkRJEMhUUw9m3wxnXQ2Ep5OSmOyIRkQ5TgkiFHr3SHYGISMJ0FVM61dcFz7sWEemC1IJIl9wC+GgJ/LoPFPeB4rKo175R82VQUrZvPr9HuiMXkW5CCSJdJt4Ih54COzfCzk2wc3Pw+tla2LEJanbGXq+gJEwefRsnlUO+CId37ZFKRCSzKEGkS5/Dg6kle3eGSSNMHDs3hckk6v3WD2F9ZTC/9EH48aqWtyci0k5KEF1VQXEwHXBI23WfugIqZ8CCW6CuBur2Qn3Nvvm6veF8DfzT0TDsTOg7HIIRdUVEYlKCyAa9BgWvL/46eM3JC85x5OaHr+G8Oyx/HOZfD/sNhGETg2Qx+EQo6Jm++EWkSzLP4EHmBhw+wlctW8p+RfnpDiX99uwIkkBOfnB3d0s+3wCr58J7z8P7LwfnOvKKgjvBh06EYZP2JRwRyUpmttjdK9qsl8kJorD/UD/me3fyy68M50sj+2PqMmmf2j2w9tUwYTwXnCAHyC2E034ZtCryekBeYXD1VF5RMOUXBeX5RVFlPYKWij4DkS6vWySIEaNG+5B/uZ1l6z/n5GFlXD9lBIf0Lk53WJnJHTavhhevh5VPdnAjFpVAioLEUtofLnw0uLNcRLqEbpEgKioq/I1Fb3L/a2v57dz3qKmr5/unHs6/nHQohXka5qLDavdAza7wdTfUVgdTTTXU7o6/fPls2LMNvvCt4GFLDedEwq6whvMk4XzDuZMCyA3nc/Kbr9daF5qItKnbJIjKykoAPt5Wza+fWsHT72zgsLJibjx3JOMO7Z3mCLu5dYvg3jOSv13LbZ5IGiWdvCDZ5OSHr7nh8khZ+L6gBIr2D6YevaCo17730ZNuTpQs0+0SRMRL727kl7OXse7T3fyfMQP56eQj6V1SmKYIhb07g1ZFwyW3NeEluHuhrnbfZbiNLsutaVIvall91DqR9WOuW9t8qqsJhzcJ6+zdAdXbgtZOa3ILYyeOyLTwd9CzNxTuF1yanN8D8nsGU0HPxu/jKYt0z+UWBs88zy0MEprO70iSdNsEAbB7bx13vLSauxe8T8+CPP586VhGDdQAetKCmuogUTSatoZT0/JtsHtr43r1tUHLZfiUIBlGkmLNrnCKKqvb08EgLdhHXtG+pNHstbCVOpFlseo0XVa4rzxStm1dcOVbXmHzbr+GLsLWyuPoTswt0AjInaRbJ4iI1Z9s54zbFnDckAM57ai+9CzIo2dBbsNrcWEuPfKD+T6lhZQU6rYQaSf34NxLflF89etqg/M1e3c1TiA1u8KyncH2avcELaLaPUFSaVYWvWxvC3Wil4Wv9bWJHW9OXuLbaJW1kDhaSih5zZNPS+e4Wixvsh3LCRKV5UbN5wTvc3L2zTda1qReXMtyg1ZhGlqG8SaILveNaGZnAr8HcoF73H16R7c1tF8pIwbsxxsffMobH7T+RLeSwjze/Nnp9CjQLxhpB7P4kwOEX26l6buqq76u5eQRnVyiE1Ok7MAhcOiEYATi6K6+WN1+nVW+d0d89etr0vP3jofFSjph8og36eREkk2spBZjWZy6VIIws1zgj8AZQBXwppnNcfcVHd3m0z84kbp6Z9feWnbvrWPn3jp27a1l1946du2tY/feWuau+ITHl6xn6p9epzA3J/hczMjNMcwgN8fIMePFVRsZeEAPnv7+iZQU5ZGboz5hyTA5ueFd8wncOZ+TAzkFQRdVpnCP8/zVXvD6IJF6PXj4Wh89H+ey+rpgvzGX1TfZRlvLovcVa5nHiCvyvh7qmsQVpy6VIICxwBp3fx/AzP4CTAE6nCAg+IIvLcqntIU7rg8rK2Hrrhr21NYFP47cqa2vZ28d1NU77k592BNX9dlujrl+LgA9C3IpLcqjpDAv3H4epUV59CzICz4vd2rrnfp6p67eqfPwtd555b1NAPxk0hHN4olucRoWo6xx3RUffc7W3TV8ZdSA4P+uWdQEFr7mmDVa3pAAzcjJ2Ve/rt4pyMtpiLUuKv7I8TQcV9QxNVrmTm2dU5ifw1eOGUDTVNr0psZYqTZWy9t7RxCtAAAJPElEQVRi1Ey0hW7W+O9sDeVBaWT7id6IGenOjfTqetPypnE1iSMSXzJi6XbM9nUroXul+G58/366WoI4CFgX9b4KOC7VOx3ar5QZFx/bZr33PtnO0nVb2V5dy47qWrZX1wTze2r5vLqGHXtq2bCtml17arHwCzhofRDO55CbE3whR9z8/LtJO46X392UtG0l08+eWJbuEJKuaSKB5l/0nXV6ryFpRMUSnVAa0kujepH52ImxoXrjVZsn9hZ+uMSs20LcsWo0XdbWuk1/OLS2flvJtaXFLZa340dLS3tuKaaYpUnadjy6WoJok5ldBlwGMGhQ544ZNKxfKcP6Jafv2N2pqYt8oXhUeay6UfMx6ta789nOmob5Ot/X6ql3b2gV1TcqC+YjLaS6cNmuPbXUuVOUl0turpFrRl5O0MJo9GpGXrg8kggbTWbs2FPLGbct4N+atJKaHqM3++3cwt8h5t8xVr34v5kb/W3dG/26d9+3rWB+30rRScDxZi29hv+SMb6wg/ex60feN40j+riaxhJPvUbLYrRgmrdqGm8nlugLXJpWaeszbr685WVNt95s3Xbsq71xtrhiK8UtXfjT0r/KFv++Sdh2rAWOM7+l+k10qauYzOx44Dp3nxS+vwbA3f8jVv22rmISEZHm4r2KqauNWfAmMNTMhphZATAVmJPmmEREuqUu1cXk7rVm9j3geYLLXGe4+/I0hyUi0i11qQQB4O7PAM+kOw4Rke6uq3UxiYhIF6EEISIiMSlBiIhITEoQIiISkxKEiIjE1KVulGsvM9sEfJjuOJKgD7A53UF0Ih1vdtPxdn2HuHtZW5UyOkFkCzOrjOeuxmyh481uOt7soS4mERGJSQlCRERiUoLoGu5OdwCdTMeb3XS8WULnIEREJCa1IEREJCYliDQws7Vm9o6ZLTWzyrDsQDN7wcxWh68HpDvOjjKzGWa20cyWRZXFPD4L3G5ma8zsbTMbk77IO6aF473OzNaHn/FSM5scteya8HjfNbNJ6Ym6Y8zsYDN7ycxWmNlyM/thWJ6Vn28rx5uVn28zHj59TFPnTcBaoE+Tsv8Erg7nrwZuSnecCRzfScAYYFlbxwdMBp4leKjaOOCNdMefpOO9DrgqRt3hwFtAITAE+AeQm+5jaMex9gfGhPOlwHvhMWXl59vK8Wbl59t0Ugui65gCzAznZwLnpDGWhLj7AuDTJsUtHd8U4H4PvA70MrP+nRNpcrRwvC2ZAvzF3fe4+wfAGmBsyoJLMnff4O5LwvntwEqCZ8ln5efbyvG2JKM/36aUINLDgblmtjh8xjZAP3ffEM5/DPRLT2gp09LxHQSsi6pXRev/ATPJ98JulRlRXYZZc7xmNhgYDbxBN/h8mxwvZPnnC0oQ6XKCu48BzgIuN7OTohd60FbN2svLsv34QncChwHlwAbgt+kNJ7nMrAR4DPiRu38evSwbP98Yx5vVn2+EEkQauPv68HUj8ARBE/STSNM7fN2YvghToqXjWw8cHFVvYFiW0dz9E3evc/d64E/s62bI+OM1s3yCL8sH3f3xsDhrP99Yx5vNn280JYhOZmbFZlYamQcmAsuAOcC0sNo0YHZ6IkyZlo5vDnBReLXLOGBbVFdFxmrSz34uwWcMwfFONbNCMxsCDAUWdXZ8HWVmBtwLrHT3W6MWZeXn29LxZuvn20y6z5J3twk4lOAqh7eA5cDPwvLewHxgNTAPODDdsSZwjA8TNLtrCPpgL23p+AiubvkjwdUe7wAV6Y4/Scf75/B43ib40ugfVf9n4fG+C5yV7vjbeawnEHQfvQ0sDafJ2fr5tnK8Wfn5Np10J7WIiMSkLiYREYlJCUJERGJSghARkZiUIEREJCYlCBERiUkJQjJKOLLmpCZlPzKzO81sgJnNamG9wWb2zwnu+2Uza/bs4bD8XTN7y8wWmtkRiexHpKtQgpBM8zAwtUnZVOBhd//I3b/WdAUzywMGAwkliDZc6O7HEAxUd3OMGHJTuG+RlFCCkEwzC/iSmRVAwwBqA4D/CVsJy8Lyi81sjpm9SHAD13TgxHDs/ivC5XdENmpmT5nZhHD+TjOrDMf//1U741sAHB5uZ62Z3WRmS4DzzKzczF4PB3h7IuqZCYeb2bywBbLEzA4Ly39iZm+G9X8VlhWb2dNh3WVmdn5YPj18ZsHbZnZLWFZmZo+F23jTzMaH5SdHPcfg75E7+0Waykt3ACLt4e6fmtkigoEOZxO0Hh5xdw9GRWhkDDAqXGcCwfj9X4YggbSym5+F6+QC881slLu/HWeIXyG4wzZiiwcDM2JmbwPfd/dXzOx64FrgR8CDwHR3f8LMioAcM5tIMEzDWIK7keeEgzqWAR+5+5fCbe5vZr0Jhns4Mvw79Ar3/XvgNnd/1cwGAc8DRwFXAZe7+8JwELrqOI9Nuhm1ICQTRXczTQ3fx/KCu8f7nIZoXw9/9f8dGEHwEJi2PGhmS4HxBF/AEX+F4Isc6OXur4TlM4GTwl/vB7n7EwDuXu3uuwjG6JoYxrAEOJIgYbwDnBG2TE50923ANoIv+XvN7KvArnAfpwN3hHHNAfYLE8JC4FYz+0EYU217/0DSPagFIZloNnCbBY+v7Onui1uot7OVbdTS+AdSEUA4wNpVwLHu/pmZ3RdZ1oYL3b2ynTG0xoD/cPf/brYgOO7JwA1mNt/drzezscBpwNeA7wGnEhzfOHdv2kKYbmZPh9tYaGaT3H1VB+OULKYWhGQcd98BvATMoOXWQ1PbCR4ZGbEWKDezHDM7mH3DNe9H8KW+zcz6EXRlJSPmbcBnZnZiWPRN4BUPnlJWZWbnAISjgPYk6A66JPzFj5kdZGZ9zWwAsMvdHyA4GT4mrLO/uz8DXAEcE+5jLvD9SAxmVh6+Hubu77j7TcCbBK0TkWbUgpBM9TDBszSaXtHUkreBOjN7C7gP+B3wAbCC4DGSkcdKvmVmfwdWETwZbGESY54G3BUmgPeBb4Xl3wT+OzwvUQOc5+5zzewo4LXw3MoO4BsEJ8BvNrP6sO6/EiS+2eH5CwOuDLf7A+CP4bmPPIIT6N8FfmRmpwD1BCMKP5vEY5QsotFcRUQkJnUxiYhITEoQIiISkxKEiIjEpAQhIiIxKUGIiEhMShAiIhKTEoSIiMSkBCEiIjH9fy/Jv8wSJryMAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["ax = df[[\"Presim. Time / s\", \"Sim. Time / s\"]].plot();\n", "ax.set_ylabel(\"Time / s\");"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 6\n", "<a name=\"task6\"></a>\n", "\n", "* To your `df` NEST data frame, add a column with the unaccounted time (`Unaccounted Time / s`), which is the difference of program runtime, average neuron build time, minimal edge build time, minimal initialization time, presimulation time, and simulation time. \n", "(*I know this is technically not super correct, but it will do for our example.*)\n", "* Plot a stacked bar plot of all these columns (except for program runtime) over the virtual processes\n", "* Remember: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 92, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["cols = [\n", " 'Avg. Neuron Build Time / s', \n", " 'Min. Edge Build Time / s', \n", " 'Min. Init. Time / s', \n", " 'Presim. Time / s', \n", " 'Sim. Time / s'\n", "]\n", "df[\"Unaccounted Time / s\"] = df['Runtime Program / s']\n", "for entry in cols:\n", " df[\"Unaccounted Time / s\"] = df[\"Unaccounted Time / s\"] - df[entry]"]}, {"cell_type": "code", "execution_count": 93, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Runtime Program / s</th>\n", " <th>Unaccounted Time / s</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Min. Init. Time / s</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " </tr>\n", " <tr>\n", " <th>Virtual Processes</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>8</th>\n", " <td>420.42</td>\n", " <td>2.09</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>1.14</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>202.15</td>\n", " <td>2.43</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>0.70</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Runtime Program / s Unaccounted Time / s \\\n", "Virtual Processes \n", "8 420.42 2.09 \n", "16 202.15 2.43 \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "Virtual Processes \n", "8 0.29 88.12 \n", "16 0.28 47.98 \n", "\n", " Min. Init. Time / s Presim. Time / s Sim. Time / s \n", "Virtual Processes \n", "8 1.14 17.26 311.52 \n", "16 0.70 7.95 142.81 "]}, "execution_count": 93, "metadata": {}, "output_type": "execute_result"}], "source": ["df[[\"Runtime Program / s\", \"Unaccounted Time / s\", *cols]].head(2)"]}, {"cell_type": "code", "execution_count": 94, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAEXCAYAAAC9NcJWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8TPf+x/HXTCYJsYSSiK262KqKFEWpXK6tCKqqWqXUEm3DrSpqV0qoqEt10dqKqrVUVWmv3upPI7VUbcW1t7ZsUkksSSYzvz/U1AgyiZMxiffz8ejjIWe+530+ZzL3cT858z3na7Lb7XZEREREROSWzHe6ABERERGRvECNs4iIiIiIC9Q4i4iIiIi4QI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAvUOIuIiIiIuECNs4iIiIiIC9Q4i4iIiIi4QI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAssd7qA6yUmXsBms99yTIkShUlISLntYxmVY2SWJ9ZkZJZqcm+Op2apJvdnqSb3Z6km92epJvdn5dWazGYTxYsXyna2xzXONps9y8b56jijjmeU/FyTkVmqyb05npqlmtyfpZrcn6Wa3J+lmtyfld9rupamaoiIiIiIuECNs4iIiIiIC9Q4i4iIiIi4wOPmOIuIiEjekJFhJTExDqs17bZyYmPN2Gy2267HqBwjszyxJiOzPL0mi8WH4sUD8PIypuVV4ywiIiI5kpgYR4ECfhQqFITJZMpxjsVixmq9/YbJqBwjszyxJiOzPLkmu93OhQtJJCbGUbJkaQMq1FQNERERySGrNY1ChYreVtMskltMJhOFChW97W9ErqXGWURERHJMTbN4MqM/n5qqISIiIoYoUrQgBXyNby0up1pJTrpkeK5Idnl84+xf1AcfX99M2wMCijj+nZaayvkk4y7Di4iISPYV8LUQOuhLw3O/mtqe5CzGnDlzmv79w1ix4iun7Y0a1WHz5u2G15RbvvzyC/z8/GjevJXL+3TqFMp7782idOkyjm3Dhr3BmTOnuXTpIufOJVC2bHkAXn65P3v27KJatYd5/PEnDK19w4Z1pKSk8PTTnQ3N9SQe3zj7+Poyc1jPW44Jj5gHqHEWERGRvG3v3t0EB9e+7ZyIiEgAfvllO3PnfszMmR87XqtXr4GhN/VdFR0dRe/e/QzN9DQe3ziLiIiI3K51677i55+jSEpK4vTpU9StW5833ngTq9XK1KmTOHr0COfOnePeeyswceI7WCx+LF36GatXr8TLy4vHH3+CV14ZwNmzZ5g48S0SE89RoEABhg4dRcWKlfj66zUsWbIIk8lElSoPMXDgEPz8/Khf/1HHFe91675i584djBgxlk6dQmnZsjVbt27h0qXLjBz5FsnJSWze/CM7dmyjRImSVKpUmSlTJhITE4PZbOaVV/rz6KN1SUo6z7hxo4iNjeG++x4gLS17Fw8nTBhL7dp1qFnzUYYNe4MyZcpy9OhhqlR5iODg2nzzzVqSk5OYODGS++67n/379zFjxrukpl7G378YgwcPp0yZsk6ZNpuNs2dPU7ZsOaftS5Ys4ptvvsZsNvHQQw8zZMiI2/tF3mG6OVBERETuCnv27GbChHf49NMlREX9H0eOHGbv3t1YLN7MmjWPpUtXkZp6mS1bfmLfvr2sWrWCTz5ZwPz5n3Pw4AEOHNjP1KmTCAlpysKFy3jppb58+ukcjhw5zIIFc5k582MWLFhKgQIFmTfvkyzr8ff355NPFtChQ0cWLpxL3br1aNSoMb1796NevQZMnx5JmzbtmDt3EZMmvcvkyRO4ePECs2d/ROXKVVmwYCkdOz7DuXMJOX5Pjhw5RI8evVi8eCUHDvzG2bNnmDVrHs2atWTNmi9IT09n0qS3GTNmAnPnfkaXLi8wefKETDn79/9G1aoPO22zWq0sWjSfOXMWMmfOIsxmM3FxsTmu1RPoirOIiIjkeSZT5muBdrvd6akKjzxSAz+/QgCUKVOWpKTzBAfXpmhRf1auXMbvvx/n5Mk/uHTpEr/++gsNGz5B4cKFAZg+/QMAfv31F8aOvdI4NmjQiAYNGrFy5VIaNnwCf/9iALRr9xQREW9lWXO9eo8D8MADFdm06b+ZXt++fSsnTpxg9uxZwJVG9NSpk+zcuYOxYycCUKvWo5mu/mbHPfeUoHLlqgAEBARSu3ZdAIKCSrNz52n++OMEp0+f5M03X3fsc+HChUw50dE/Ub/+407bLBYL1avXoHfv7jzxRAgdOz5DQEBgjmv1BGqcRUREJM8rWrQIFy6kOG1LTDxHkSJFHT/7+Dg/bMBut7N58yZmz57FM890oXXrdvz555/Y7XYsFucWKT4+Dl/fAk4r0Nntdo4fP4bNZr+uGjsZGRlO40wmE1ar1WmUj4+P05jrZWTYmDHjQ4oW9f/rfBIoWrQYJpPJaYU9Ly+vG70lLvH29nb6+fqsjAwbZcqUZf78xX/9nEFi4rlMOb/++gsvvNAj0/aIiKns27eH6OgoBg0awOjR4w2Zw32naKqGiIiI5Hl+foUoX/5efvhho2PbmjWrqFPnsVvut337Vpo2bUabNu0oUaIEu3btxGbLoGbNYKKjo7h48SJWq5WxY0dw4MBv1KoVzH/+8+1f+/7MO+9MIDi4Nps3/0hS0vm/jrua4OA6ABQrVoxjx4781aT/mOV5eHl5OZru2rXr8MUXywE4duwoL7zwLKmpl6lT5zG+/fYbAPbv38epUyez+W65rkKF+0hKSmLXrp0AfP31GsaOdZ6n/Oeff1KwoB++1z0FLTExka5dO/HAAxXp3bsfdevW48iRQ7lWqzu4fMV58uTJJCYmMmnSJPbv38/IkSNJSUmhTp06vPXWW1gsFk6fPs3gwYNJSEjg/vvvJzIykkKFCuVm/SIiIuIhLqda+Wpq+1zJdcXYsW8zefJE5s2bjdWazoMPVuL114fecp/Q0Kd4660R/Pe//8Hb24eHH67O6dOn6dChIx07dqZfv57YbHZCQppQt2497r23ApMnv82qVSv+ujlwJPff/wDduvUkPLwvVquVKlUeYvDgYQC88soAhgwZyD33lKBGjVqcP//nLeupU+cxZs36gMKFCzNw4BDeeWcCL77YBbvdzpgx4/HzK0SvXmFMmPAWL7zQmQoVKtzWVI2s+Pj4MH78JKZPjyQtLQ0/v0KMHOk8DWXr1i3Uq1c/077FixenffuO9OnTHV/fApQqFUTr1qG5Vqs7mOw3+m7gOlu2bGHgwIH84x//YNKkSbRt25a3336bWrVqMXz4cKpXr87zzz9PWFgY7dq1o02bNrz//vtcvHiRwYMHZ6ughIQUp688AgKKuPQ4uri4rJ7wmFlAQJEc7ZebWZ5Yk5FZqsm9OZ6apZrcn6Wa3J91N9S0Z89egoIq3HaWUY9GM/IRa/m5JiOz8kJNZ8+eyPQ5NZtNlChRONvZWU7V+PPPP5k2bRr9+l15Lt+pU6e4fPkytWrVAqBjx46sX7+e9PR0tm3bRsuWLZ22i4iIiIjkB1lO1Rg9ejQDBw7kzJkzAMTGxhIQEOB4PSAggJiYGBITEylcuLBjMv3V7dmVk+7/yvGKZD3IwP1yM8sTazIySzW5N8dTs1ST+7NUk/uz8ntNZrMZi8WY26U8LcfILE+sycgsT6/JbDYb9rm/ZeO8fPlySpcuTYMGDfjiiy+AG9/1aTKZbro9u240VcMVmqqRN7JUk3tzPDVLNbk/SzW5P+tuqMlms3nU1/15YdpAfsvKCzXZbLZMn/ucTtW4ZeO8bt064uLiaN++PefPn+fixYuYTCbi4+MdY+Li4ggMDOSee+4hJSWFjIwMvLy8HNtFRERERPKDW14PnzdvHmvXruXLL79kwIABNG3alIiICHx9fdmxYwcAq1evpnHjxnh7e1OnTh3WrVvntF1EREREJD/I0USSyMhIIiIiePLJJ7l06RLdu3cHYMyYMSxbtozWrVuzfft2XnvtNUOLFRERERG5U1x+jnPHjh3p2LEjAFWrVmXFihWZxpQtW5aFCxcaV52IiIjkGcX9fbBctzqfEaxpqSSeTzM8VyS7tOS2iIiIGMLi48vRCU8bnvvAiJWA643z0aOH6d69C2+/PZl//OOfhtbSqFEdhgwZQbt2Tzm2hYf35aWX+vLoo3UMPVZ2deoUSoECBbBYvLFarQQFBTFixFsUL178pvts3ryJAwf207t3Pzp1CuW992ZRunQZpzE3Or+pUyezZ88urNZ0Tp78g/vuewCAZ57pQnr6ld9Vhw6dDD2/Xbt+ZfPmTbz66r8Mzc0ONc4iIiKSr3z99Vf84x//ZPXqlYY3zgAff/wB9eo1oFSpIMOzb9eUKdMdje/06VP5/PMFvPLKzRvNRo1CaNQoJNvHGTToyoqMsbFneeWVPsyfvzhnBWdDdPRP1K//eK4f51bUOIuIiEi+YbVa+fbbb3j//U94+eWXOHXqJMeOHWHNmlW8886/AVi5cil//PE74eEDmTJlIrt3/0pAQCAmk4kXX+yV5ZXjZ57pwuTJb/PuuzMzvfbNN2tZvvxzbDY7VapUZciQYXh5edOoUR02b94OwLp1X7Fz5w5GjBhLp06hVKtWnUOHDvLBB7OJitrMkiWLMJlMVKnyEAMHDsHPz4/27VvSpEkzdu3aiZeXhXHjIm651LbNZuPixQuOK8Fz5swCoFevMAA6dGjDe+/NYufOHY5arkpLS2Py5PEcOLCfoKAyWS4Tfr1rj9WuXUsaNnyCXbt2UqJESZ566hlWrFhCXFwsw4ePITi4NidP/kFkZARJSUn4+voycOBgKleumil3z55dvPRSX6dt3367nsWLF2A2mylTpgyjRo3HYimYrXqzw7gnVouIiIjcYVu2bCYoKIh7763AE0/8gy+/XEn9+g05ePAASUlJAPznPxto0eJJVq9eweXLl1i8eCXDh49h//7fXDpG164vcv78edasWeW0/ejRI3z11Wo+/HAu8+cvpnjxe/jss6zv/apf/3E+//wLzp07x4IFc5k582MWLFhKgQIFmTfvEwASEhKoW/cx5s1bTM2awaxcueyGWYMH/4sePZ7nqadas23bzzRp0sylc7rWihVLAfjssxW89tobnDp1KtsZV507l8Djjzdi8eKVAPz443/54IPZvPRSX5Yt+xyACRPG8MorA1iwYDFDhoxgzJjhmXISEuIpUqQo3t7eTts/+eRDpk2bydy5i7j33vv4/ffjOa7VFbriLCIiIvnGunVf0axZSwD++c/mvPXWKPr0eYWQkCZs2vQ9devW4/z581SrVp1PP51DaOhTmEwmgoJKU7t2XZeOYbFYGDFiDAMGvEy9eg0c23fu3M7Jk38QFtYTAKs1nSpVMl85vV61atUB+PXXHTRs+AT+/sUAaNfuKSIi3nKMuzpN4YEHHmTXrp03zLp2qsbKlcsYNCicRYuWu3ReV/366w7atbvyQIjy5e/lkUdqZGv/69Wv3xCAoKDS1KhRC4BSpYJITk7i4sWL7N//GxMnjsNkArsdLl26xPnzfzreB4Cff97i9F5f1bDhE7z8ci+eeOIfhIQ0pVKlKrdVa1bUOIuIiEi+cO7cObZs+YkDB/azfPkS7HY7yclJ/PDDRlq0aM3s2R+SnJxE8+atADCbvbDbc7ZS3QMPVHRM2bgqI8NG06bNeO21wQB/LRz392rIdrsdk8mE1Wp1yvL1vfIkkmtXTv5rDzIyMpzGWa22m67YfL2WLVszbdo7nD9/PtM+GRnWW+xpcnpfvLy8sjzWrVx7lfj6LJvNho+PL/PnL3as+BcbG0PRov5O46Kjo244V/u1197g8OH2bNmymfHjR/HSS31p06btbdV7K5qqISIiIvnC+vXrqF37MVatWseKFV+xcuVaund/iS+//ILq1R8hPj6eDRvW0aLFkwDUrVuP//znW+x2O/HxcezcuQOTyeTy8a5O2di3bw8AwcG1+fHHH0hMPIfdbmfq1AiWLPkMgGLFinHs2BHsdjubN/94w7zg4Nps3vwjSUnnAVizZjXBwTl/UseOHVsJDCxFsWLF8PcvxrFjRwH47be9TqtAX69Oncf47rsN2Gw2zp49w549u3NcQ1YKFy5MuXLl2bDhygJ627ZF8+qrzvOYMzIyiIuLJSjI+WZMq9VKly5PUaxYMbp160mrVm343/8O5lqtoCvOIiIiYhBrWupfj44zPtcVX3+9hj59XnHa1rHjMyxevIATJ47zz3825+eft1C2bDngylSIQ4f+R/fuz1KiREmCgko7rv5269aFKVOmU7JkwE2Pd3XKRq9e3QCoVKkyPXv2YcCAftjtdipVqkL37lembfTrF86QIQO5554S1KhR64Y33FWsWIlu3XoSHt4Xq9VKlSoPMXjwMJfO/arBg/+FxeKNzZaBt7cPb701EYBmzVqwadP3vPDCM1SpUpXKlW8+paFjx2c4duwIXbt2IiioNA888GC2asiuMWPeZsqUiSxevACLxZtx4yY6/QGzb98eHn74kUz7WSwWevUK47XXXsHXtwCFCxdh5MixuVqrye7KtX43SkhIcfqqIiCgCDOH9bzlPuER84iLS872sQICiuRov9zM8sSajMxSTe7N8dQs1eT+LNXk/qy7oaY9e/YSFFThtrOufkXv7pyoqM3Y7XYaNnyClJQUevbsypw5Cyha1P+O1ZTXsvJCTWfPnsj0OTWbTZQoUTj72bddnYiIiEgedN999zN+/Gg++eRDAHr3Dss0t1bkWmqcRURE5K5UpkxZPvxwzp0uQ/IQ3RwoIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gLNcRYRERFDFCnmSwFvH8NzL6enkfyna4+kE8lNLjXO06dPZ8OGDZhMJjp16kTPnj0ZNmwYO3bsoGDBggCEh4fTvHlzoqKiiIiIIDU1lSeffJKBAwfm6gmIiIiIZyjg7UPnpS8bnrvs2Q9J5taN85kzp3nmmXa0a/cUQ4aMcGw/dOggPXt2ZfjwMbRuHUqPHs8zf/7ibNdw5sxpnnuuI/fd94DT9tDQDjz9dGenbevWfcXOnTsYMWJsto9zrQkTxrJjxzaKFvXHbrfh7e3NwIFDefjh6jfdJz4+jkmTxhMZOYMJE8YSHFyb1q1DncbMmTMLs9lEz55/LzTy9ddrWL58CQDHjx+lXLnyWCzePPJITdq0CWX16pW8+eao2zqf66WlpfH66+HMnPmxobm5KcvGeevWrURHR7NmzRqsViutW7cmJCSEvXv3smjRIgIDAx1jL1++zPDhw1m4cCGlS5cmLCyMTZs2ERISkqsnISIiIuLvX4yff95CRkaGY2nnjRu/o1ix4o4xOWmarypZMuC29s+J3r37ORrfn37axL///Q6ffLLgpuNLlgwgMnJGto/Tpk072rRpB0CnTqFMmTKd0qXLOF5/881q2c7Myq5dv1Cr1qOG5+amLBvnxx57jAULFmCxWIiJiSEjIwNfX19Onz7NqFGjOH36NM2bNyc8PJzdu3dToUIFypcvD0BoaCjr169X4ywiIiK5rmDBglSqVJldu3by6KNXlqreujWaOnUec4xp1KgOmzdvZ86cWcTHx/HHH78TE3OWtm3b8+KLvXJ87PXrv+bTT+dQqFBhgoKCKFjQD4AdO7YzdepkvLy8ePjhGhw/fpSZMz/m5Mk/iIyMICnpPL6+BRg4cDCVK1e95TFSUlIoXrwEAL/8sp25cz92XK29enU5OLg2/fuHsWLFV077Ll68gDVrVuHvX4wiRYrc8qr19a49Vnh4XypXrsL27VtJTU1l0KChLF36OceOHeHZZ5/n2We7cvHiRd59dzJHjx7BZrPRtWt3mjdvlSk3OjqKJk2aOW07fPgQ77wzgYyMDHx8fBg+fAzly9/rcq25zaWpGt7e3syYMYO5c+fSqlUrMjIyqF+/PuPGjcPPz4+wsDBWrFiBn58fAQF/L00ZGBhITExMtgrKySoucGUFI3ful5tZnliTkVmqyb05npqlmtyfpZrcn5XfazKbzVgs7nnOQFbH8fK68vqVpaU38thjj/Hbb/uoVKkSdvuVleKuZlgsZsxmE0eOHGbWrDkkJyfTqVM7OnfuQpEif78/1x7Ty8tMfHwcPXs+73TcMWPG4+9fjA8/fI8FCz7H39+fQYMG4OdXCMjgrbdGMXXqdCpVqsy7707BZLpSx4QJY3njjaFUqVKVY8eOMnToIJYtW+WUbTKZmDNnFsuXf86lS5eIiTnLlCnTsFjMeHmZHVlXx5rNJsf7YLGYHdsOHTrA11+vYcGCzzGZTPTu/WKW76mX19+/22uPdTVz8eLlzJ49i3ffncyiRUtJTEyke/fn6Nq1GwsXzuWhh6oxdux4LlxIoU+fntSoUcOx1PlVv/22jwEDBjpqBli+fDFdu3bjn/9sznffbeDAgb3cf/99t/zd38i152Y2mw373Lt8c+CAAQPo06cP/fr1Y8uWLbz//vuO17p168bq1atp1SrzXxPXrjXuihstue0KLbmdN7JUk3tzPDVLNbk/SzW5P+tuqMlmsxm23HJWsjpORsaV1xs0aMRHH31AWpqVb7/dQJMmzdm48VtsNrsjw2q1YbPZCQ6ujcnkRdGixShSpCjnzydRsGAhIPOyzRkZNkqWDGDevMxTNf773/9Qvfoj+PtfmRLSvPmT7NixjYMHD1G8eHHuv78iVquNJ58M5X//iyQpKYX9+/cxfvxYR8bFixdJSDiHv38xxza73U6vXmGOqRpHjvyPl1/uw/z5i8nIsGG3/31Odrsdm83ueB+sVptj27Zt26hfvyE+PgUAaNKkGXb7rX93GRl/v37tsex2O4899jhWq43AwCAefvgRLBZfAgKCSE5Oxmq1sXXrz6SmXuarr74E4NKlSxw6dJhSpf6e+nHmzGkCA0tht5scx7FYzNSv35DIyMlERf3E448/QdOmTbP9Gbv+d2ez2TJ97nNtye0jR46QlpbGQw89RMGCBWnRogXr1q2jWLFitGzZErjyy7JYLJQqVYr4+HjHvrGxsU5zoEVERERyk59fISpWrMTu3b/yyy/b6NcvnI0bv73hWB+fv58AYjKZsNvtNxyXFZPJ5HTR7+r8arPZfMNMm82Gj4+v03zp2NiYLJf7rlKlKmXLluXgwf1O87YBrFbrLeuz2/9uJL28vG7rDx6L5e/20csrcytps2UwatR4qlS5MvXk3LmETOcWHR1F/fqPZ9q3SZNmVK9eg59++j+WL/+c6OifGDp0ZI5rNVqW36+cPHmSkSNHkpaWRlpaGhs3bqRu3bpMnDiR8+fPk56eztKlS2nevDk1a9bk2LFjnDhxgoyMDNauXUvjxo3dcR4iIiIiADRt2oyPPppJlSrVnJq83FKjRi1++20PcXGx2Gw2vv/+OwDuu+9+kpKSOHLkMADffbcek8lE4cKFKVeuPBs2rANg27ZoXn21703zrzpz5jRnzpymYsXK+PsX4/TpU6SmppKUdJ5du3bedL86deoSFbWZlJQUUlNT+fHH/xpw1jf36KN1Wb16BQDx8fG8+OJzxMScdRqzdesW6tVrkGnf0aOH8dtv++jQ4Wl69+7HwYMHcrXW7Mry0xQSEsKuXbvo0KEDXl5etGjRgvDwcIoXL85zzz2H1WqlRYsWtG3bFoBJkybRv39/UlNTCQkJueH0DREREcl/LqensezZD3MlNzsaNmzMpEnj6d27X7aPFR8fxxtv/ItFi5bc8LUePZznONeqFcxrrw3+679XKFCgIPfddz9w5R6xsWPf5u23R2Mymbn33gr4+voCMGbM20yZMpHFixdgsXgzbtzEG05vnT37I5Yt+xyAtLRUXn31NcfNcg0aNKRbt86ULl2GmjWDb3pOlSpV4ZlnnqN37+4UKVKEUqVKZ/t9yY6XXurD1KmT6datMzabjVdeGeA0vzktLY3k5GTuuadEpn27devJ5Mlv8+mns/Hy8qJ/f896rLHJntPvJXLJjeY4zxzW85b7hEfM0xznPJKlmtyb46lZqsn9WarJ/Vl3Q0179uwlKKjCbWddPyf1TucYlWWz2Zg1ayY9evShYMGCLFmyiLi4uBw3g552fkbmGJl1fc7ZsycyfU5zbY6ziIiIiGSf2WzG39+fPn26Y7F4U7p0acMXERH3UuMsIiIikku6d+/J88+/eKfLEIO45+GLIiIiIiJ5nBpnEREREREXqHEWEREREXGBGmcRERERERfo5kARERExRPEiPlgK+Bqea72cSmJy9p7lLJIb1DiLiIiIISwFfPmp/dOG5zb8ciVk0TifOXOaZ55pR7t2TzFkyAjH9kOHDtKzZ1eGDx9D69ah9OjxvNNS19nRqFEdNm/eftPX4+PjmDRpPJGRM9i8+UdOnvydF17oftPxw4a9wZkzp7l06SLnziVQtmx5AF5+uT979uyiatWHaNQoJEe13syGDetISUnh2We7GJp7t1DjLCIiIvmCv38xfv55CxkZGXh5eQGwceN3FCtW3DEmp02zK0qWDCAycgYABw/uz3J8REQkAL/8sp25cz9m5syPHa/daDlqI0RHR+VoRUW5Qo2ziIiI5AsFCxakUqXK7Nq1k0cfrQPA1q3R1KnzmGPM1avGc+bMIj4+jj/++J2YmLO0bdueF1/s5dJxfvllOwsXzqNAgQIcP36MBx+syJgxE4iPj6N//zCmTJnOl19+AUDZsmVo1So02+cyYcJYgoNrExxcm2HD3qBMmbIcPXqYKlUeIji4Nt98s5bk5CQmTozkvvvuZ//+fcyY8S6pqZfx9y/G4MHDKVOmrFOmzWbj7NnTTstfAyxZsohvvvkas9nEQw897HTFXpzp5kARERHJN5o0ac5//7sRgP3791GxYiW8vb1vOPbw4UNMm/Y+H388n0WLPiU52fXlyPfu3c3AgUP47LMVxMSc5eeftzheu//+B2jfviPt23ekbdv2t3dCwJEjh+jRoxfLlq3iwIHfOHv2DLNmzaNZs5asWfMF6enpTJr0NmPGTGDu3M/o0uUFJk+ekCln//7fqFr1YadtVquVRYvmM2fOQubMWYTZbCYuLva2a86vdMVZRERE8o1GjZ7gk08+xGazsXHjdzRt2pyNG7+94dgxBRekAAAgAElEQVRHH62Dt7c3xYvfQ9GiRblwIYUiRYq4dJz773+QwMBSAFSocD/JyUmGncP17rmnBJUrV8VsNhMQEEjt2nUBCAoqzc6dp/njjxOcPn2SN9983bHPhQsXMuVER/9E/fqPO22zWCxUr16D3r2788QTIXTs+AwBAYG5di55nRpnERERyTf8/ApRsWIldu/+lV9+2Ua/fuE3bZx9fHwc/zaZTNjtdpePczv7Ztf1V8yvzt++KiPDRpkyZR3ztzMyMkhMPJcp59dff+GFF3pk2h4RMZV9+/YQHR3FoEEDGD16PMHBtY07gXxEUzVEREQkX2natBkffTSTKlWqYbHcmWuEXl5eZGRkuOVYFSrcR1JSErt27QTg66/XMHas8zzlP//8k4IF/fD1dX5cYGJiIl27duKBByrSu3c/6tatx5Ejh9xSd16kK84iIiJiCOvl1CuPjsuF3Oxo2LAxkyaNz9HTI+Lj43jjjX+xaNGSbO97rVq1HmXChLGULFmSatWqM3v2R44nbhjNx8eH8eMnMX16JGlpafj5FWLkyLecxmzduoV69epn2rd48eK0b9+RPn264+tbgFKlgmjdOvs3M94tTPbc/G4hBxISUrDZ/i4pIKAIM4f1vOU+4RHziItzfUL/tdk52S83szyxJiOzVJN7czw1SzW5P0s1uT/rbqhpz569BAVVuO0si8WM1WrzmBwjszyxJiOz8kJNZ8+eyPQ5NZtNlChRONvZLk3VmD59Oq1bt6ZNmzbMmzcPgKioKEJDQ2nRogXTpk1zjN2/fz9PP/00LVu2ZMSIEVit1mwXJSIiIiLiabJsnLdu3Up0dDRr1qxh5cqVLFy4kAMHDjB8+HA++OAD1q1bx969e9m0aRMAgwcPZtSoUWzYsAG73c6yZcty/SRERERERHJblo3zY489xoIFC7BYLCQkJJCRkUFSUhIVKlSgfPnyWCwWQkNDWb9+PadOneLy5cvUqlULgI4dO7J+/fpcPwkRERERkdzm0s2B3t7ezJgxg7lz59KqVStiY2MJCAhwvB4YGEhMTEym7QEBAcTExGSroJzMN7lyLNeeu2jUfrmZ5Yk1GZmlmtyb46lZqsn9WarJ/Vn5vSaz2YzFYswDujwtx8gsT6zJyCxPr+nK86+N+dy7/FSNAQMG0KdPH/r168fx48czvX6zZxiaTKZsFXSjmwNdoZsD80aWanJvjqdmqSb3Z6km92fdDTXZbDaPusEsL9yolt+y8kJNNpst0+c+pzcHZtk4HzlyhLS0NB566CEKFixIixYtWL9+vdPDt2NjYwkMDKRUqVLEx8c7tsfFxREYqNVnRERE7gb+RQvi42v8k27TUq2cT7pkeK5IdmX56T558iQzZszg888/B2Djxo106dKFd955hxMnTlCuXDnWrl3L008/TdmyZfH19WXHjh3Url2b1atX07hx41w/CREREbnzfHwtjBu01vDc0VPbZjnmzJnTPPdcR+677wFMJkhPt1KyZEmGDx/jWBo7p2bP/oiqVR+iUaOQHGccOXKY8eNHAxATc5aCBQtStKg/3t7efPLJp/To8bxj5T8jvf56f8aNi6Bw4ZxNhRVnWTbOISEh7Nq1iw4dOuDl5UWLFi1o06YN99xzD/379yc1NZWQkBBatWoFQGRkJCNHjuTChQtUq1aN7t275/pJiIiIiJQsGeDUfH700UymTZtCRETkbeXmZCGV6z34YEVHbRMmjCU4uLbTQiO50TRfvHgRmy1DTbOBXPo+ZcCAAQwYMMBpW4MGDVizZk2msVWrVmXFihXGVCciIiKSQzVrBrN5848AdOoUSrVq1Tl06CAffDCb6Ogoli//HJvNTpUqVXn99aF4eXkREfEWR48ewWQy0aFDJ9q1e8rR6AYH12bYsDcoU6YsR48epkqVhwgOrs0336wlOTmJiRMjue+++3NUa6NGddi8eTtz5swiJuYshw8f4s8/E+nT52V27NjGb7/tpVKlyowdOxGTycTChfP573+/IyPDRr169Xn55QGZ7iv75Zdt1K5d12nbhQspjB07gnPnErDb4aWX+tzWlfS7jXG3QYqIiIh4CKvVyvfff8cjj9R0bKtf/3E+//wLEhMT+eqr1Xz44Vzmz19M8eL38PnnC9mzZxdJSUnMm7eY9977kD17dmXKPXLkED169GLx4pUcOPAbZ8+eYdaseTRr1pI1a74wpPajR4/w8cfzGTVqHBER4+ja9UUWLFjKwYMHOHz4ENHRURw8uJ9PPlnAvHmfERcXx7fffpMpJzo6ivr1H3fa9uOPPxAUVIZPP13M6NHj2bXrV0NqvlsYP4NfRERE5A6Ij4+jR4/nAUhPT+Ohhx7m5ZfDHa9Xq1YdgJ07t3Py5B+EhfUEwGpNp3Llqjz1VCd+//0Er78eTsOGjXj55f6ZjnHPPSWoXLkqAAEBgY4rukFBpdm587Qh51G3bj0sFgtBQaUpUaIk99//gON4yclJbN++ld9+20uvXt0ASE29TKlSQZlyDh8+RMWKlZ22Va9eg1mz3ichIY769RvSo0cvQ2q+W6hxFhERkXzh+jnO1/P19QUgI8NG06bNeO21wcCVucAZGRkUKVKEhQuXsW3bz/z8cxQvvfQCCxc6r4Ds7e3t9PO1TxkzisXyd3t2o3ybLYPOnZ+jS5cXAEhOTs407vjxY9x7b4VM0zfKl7+XxYtXsG1bND/+uIklSxbx2Wcrsv344LuVpmqIiIjIXSU4uDY//vgDiYnnsNvtTJ0awbJli9m8eRPjxo3i8ccb8frrgylYsCCxsdlbyM0dHn20Lhs2rOPixYtYrVaGDRvEDz9sdBoTHf0T9es3zLTvypVLmTNnFv/8Z3MGDXqTxMREUlJS3FV6nqcrziIiImKItFSrS4+Oy0mukSpVqkzPnn0YMKAfdrudSpWq8MILPfDy8uK//91It26d8fHxJSSkKQ8+WDHb+bNnf0TJkiXp0KGToXVf1ahRYw4f/h99+/bAZsugXr3HefJJ5/d927atjB07IdO+rVq1YezYEXTt2hkvLy9eeqkvRYoYt5pkfmey32i5vzvoRisHzhzW85b7hEfM08qBeSRLNbk3x1OzVJP7s1ST+7Puhpr27NlLUFCF2866m1axy29ZeaGms2dPZPqc5nTlQE3VEBERERFxgRpnEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF+g5ziIiImII/6I++Py1Op+R0lJTOZ+UZniuSHapcRYRERFD+Pj6Zrn2Qk6ER8wDsm6cv//+P8yfP5eMjAzsdhutWrXh+ee7A/DGGwN4881RlCwZkOM6vv56DcuXLwHg+PGjlCtXHovFm0ceqUmbNqGsXr2SN98cleP8G0lLS+P118OZOfNjQ3MlZ9Q4i4iISJ4XFxfLjBnvMmfOIvz9i3Hx4kXCw/ty770VaNQohMjIGbd9jDZt2tGmTTsAOnUKZcqU6ZQuXcbx+ptvVrvtY1xv165fqFXrUcNzJWdcapxnzpzJN998A0BISAhDhgxh2LBh7Nixg4IFCwIQHh5O8+bNiYqKIiIigtTUVJ588kkGDhyYe9WLiIiIAH/++SdWq5XLly/j7w9+fn6MHDkWH58rU0c6dQrlvfdmsXPnDqKiNhMfH0dsbAydOz9HTEwMv/yyjaJF/YmMnIFvDqab/PLLdubO/ZiZMz8mPLwvlStXYfv2raSlpfKvfw1mxYqlHDt2hGeffZ5nn+3KxYsXeffdyRw9egSbzUbXrt1p3rxVptzo6CiaNGnmtO3w4UO8884EMjIy8PHxYfjwMZQvf2/O3jjJliwb56ioKDZv3syqVaswmUz07t2b7777jr1797Jo0SICAwMdYy9fvszw4cNZuHAhpUuXJiwsjE2bNhESEpKrJyEiIiJ3t0qVKvPEE/+gc+f2VK5cheDgOjRv3opy5cpnGrt//z4WLFhCcnIynTqFMnXqe/zrX4Po3z+MrVu38MQT/zCkpgULljJ//if8+99T+PTTJfz5ZyI9elxpnD/9dA5VqjzEyJFvceFCCv36vUS1atUpW7acU8Zvv+3llVf+5bRt2bLFdOnyAk2bNmPjxm/Zt2+PGmc3yfKpGgEBAbz55pv4+Pjg7e3Ngw8+yOnTpzl9+jSjRo0iNDSUGTNmYLPZ2L17NxUqVKB8+fJYLBZCQ0NZv369O85DRERE7nJDhw5nxYqv6NChEzExZwgL68mmTd9nGvfIIzUpVKgwQUGlAahduy4AQUGlSU5ONqSW+vUbOjIffvgRChQoQFBQaVJSruRv376VL79cSY8ez/Pqq325fPkyx44ddco4c+Y0gYFBeHl5OW1v0KAh06a9Q0TEOCwW7xteqZbckeUV50qVKjn+ffz4cdatW8fixYvZunUr48aNw8/Pj7CwMFasWIGfnx8BAX9Pug8MDCQmJiZ3KhcRERH5S1TUZlJTL9GkSXPHXOQ1a1axdu2XhIQ0dRrr7e3t9LPFYvwtX9dmXt/4AthsGYwaNZ4qVaoCcO5cAkWL+juNiY6Oon79xzPt26RJM6pXr8FPP/0fy5d/TnT0TwwdOtLgM5AbcfmTcujQIcLCwhg6dCgPPPAA77//vuO1bt26sXr1alq1yvwXj8lkylZBJUoUztb4qwICirh1v9zM8sSajMxSTe7N8dQs1eT+LNXk/qz8XpPZbMZicc+SEFkdp1Chgvz731N4+OFHKFOmDHa7nd9/P0aVKlUd+3p5mTGbTZhMJqe8q/82mUyYzX+/ltUxvbzMTtlXc00mk9NrNzpenTqP8eWXKxk+fBTx8XG8+OJzfPLJPKepJdu2RTN06IhM+44YMZTmzVvSqdMzPPjgA/z731Nz9Hsw6ndn5GcgN2oym82Gfe5dapx37NjBgAEDGD58OG3atOHgwYMcP36cli1bAmC327FYLJQqVYr4+HjHfrGxsU5zoF2RkJCCzWZ3/OzqicbFZf+rlYCAIjnaLzezPLEmI7NUk3tzPDVLNbk/SzW5P+tuqMlms2G12hzb0lJT/3p0nLHSUlOdjnMjNWvWplevvgwaNACr1QpAvXoNePHF3o59MzJs2Gx27Ha7U97Vf9vtdmy2K68NHvwvevUKo2rVmz8pIyPD5pR9Nddutzu9dqPj9ejRm6lTJ/Pcc52w2Wy88soAgoLKOsalpaWRlJSEv39xxzaLxYzVauOFF3oyefLbzJ37CV5eXoSHD8zy/bne1azbZVSOkVnX59hstkyfe7PZlKOLtVk2zmfOnOHVV19l2rRpNGjQALjyAZg4cSL169fHz8+PpUuX8tRTT1GzZk2OHTvGiRMnKFeuHGvXruXpp5/OdlEiIiKS91xZpCT7C5UY1TC1aRNKy5ZtbvjaihVfAVC6dBlatw51bN+8ebvj3yNGjHX8e9q0925Z09W8qx59tA6PPloHwOmZy23btqNVq7aZjleoUGFGjx5/03wfH5+bPru5UqXKzJ694Kb7Su7JsnGeM2cOqampTJo0ybGtS5cu9O3bl+eeew6r1UqLFi1o2/bKh2LSpEn079+f1NRUQkJCbjh9Q0REREQkr8mycR45ciQjR954wnnXrl0zbWvQoAFr1qy5/cpERERERDyIe2b0i4iISL5kt9uzHiRyhxj9+VTjLCIiIjlisfhw4UKSmmfxSHa7nQsXkrBYfAzLNP7BhSIiInJXKF48gMTEOFJS/rytHLPZjM12+zcHGpVjZJYn1mRklqfXZLH4ULx4QBZ7uE6Ns4iIiOSIl5eFkiVL33aOpz5uL7/WZGRWfq/pepqqISIiIiLiAjXOIiIiIiIuUOMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLlDjLCIiIiLiAjXOIiIiIiIuUOMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLnCpcZ45cyZt2rShTZs2vPPOOwBERUURGhpKixYtmDZtmmPs/v37efrpp2nZsiUjRozAarXmTuUiIiIiIm6UZeMcFRXF5s2bWbVqFatXr2bfvn2sXbuW4cOH88EHH7Bu3Tr27t3Lpk2bABg8eDCjRo1iw4YN2O12li1blusnISIiIiKS27JsnAMCAnjzzTfx8fHB29ubBx98kOPHj1OhQgXKly+PxWIhNDSU9evXc+rUKS5fvkytWrUA6NixI+vXr8/1k3CFf1EfAgKKOP0HZNrmX9TnDlcqIiIiIp7IktWASpUqOf59/Phx1q1bR7du3QgICHBsDwwMJCYmhtjYWKftAQEBxMTEZKugEiUKZ2v838cqkuWYmcN6ZjkmPGIeAQG+txxjTU/H4u19yxpuNsYVrpxLXs5STe7N8dQs1eT+LNXk/izV5P4s1eT+rPxe07WybJyvOnToEGFhYQwdOhSLxcKxY8ecXjeZTNjt9kz7mUymbBWUkJCCzfZ3jqsnHheXfMvXs/MGupKVVRMeHjEvy5ybZedkv7ySpZrcm+OpWarJ/Vmqyf1Zqsn9WarJ/Vl5tSaz2ZSji7Uu3Ry4Y8cOevTowaBBg3jqqacoVaoU8fHxjtdjY2MJDAzMtD0uLo7AwMBsFyUiIiIi4mmybJzPnDnDq6++SmRkJG3atAGgZs2aHDt2jBMnTpCRkcHatWtp3LgxZcuWxdfXlx07dgCwevVqGjdunLtnICIiIiLiBllO1ZgzZw6pqalMmjTJsa1Lly5MmjSJ/v37k5qaSkhICK1atQIgMjKSkSNHcuHCBapVq0b37t1zr3oRERERETfJsnEeOXIkI0eOvOFra9asybStatWqrFix4vYrExERERHxIFo5UERERETEBWqcRURERERcoMZZRERERMQFapxFRERERFygxllERERExAVqnEVEREREXKDGWURERETEBWqcRURERERcoMZZRERERMQFapxFRERERFygxllERERExAVqnEVEREREXGC50wXc7fyL+uDj6+u0LSCgiNPPaampnE9Kc2dZIiIiInIdNc53mI+vLzOH9bzlmPCIeYAaZxEREZE7SVM1RERERERcoMZZRERERMQFLjfOKSkptG3blpMnTwIwbNgwWrRoQfv27Wnfvj3fffcdAFFRUYSGhtKiRQumTZuWO1WLiIiIiLiZS3Ocd+3axciRIzl+/Lhj2969e1m0aBGBgYGObZcvX2b48OEsXLiQ0qVLExYWxqZNmwgJCTG8cBERERERd3LpivOyZcsYM2aMo0m+ePEip0+fZtSoUYSGhjJjxgxsNhu7d++mQoUKlC9fHovFQmhoKOvXr8/VExARERERcQeXrjhPmDDB6eeEhATq16/PuHHj8PPzIywsjBUrVuDn50dAQIBjXGBgIDExMdkqqESJwtkaf9X1j3C7HUZleUJNnlBDbuUYmaWa3J+lmtyfpZrcn6Wa3J+lmtyfld9rulaOHkdXvnx53n//fcfP3bp1Y/Xq1bRq1SrTWJPJlK3shIQUbDa742dXTzwuLvmWr2fnDTQqK6sco7NulJ2T/XIzSzW5N8dTs1ST+7NUk/uzVJP7s1ST+7Pyak1msylHF2tz9FSNgwcPsmHDBsfPdrsdi8VCqVKliI+Pd2yPjY11mgMtIiIiIpJX5ahxttvtTJw4kfPnz5Oens7SpUtp3rw5NWvW5NixY5w4cYKMjAzWrl1L48aNja5ZRERERMTtcjRVo2rVqvTt25fnnnsOq9VKixYtaNu2LQCTJk2if//+pKamEhIScsPpG2K8Gy3dDVq+W0RERMQo2Wqcv//+e8e/u3btSteuXTONadCgAWvWrLn9yiRbXFm6G7R8t4iIiEhOaeVAEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF6hxFhERERFxgRpnEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF6hxFhERERFxgRpnEREREREXqHEWEREREXGB5U4XkBVrehrhEfOyHCMiIiIikptcbpxTUlLo0qULH330EeXKlSMqKoqIiAhSU1N58sknGThwIAD79+9n5MiRpKSkUKdOHd566y0slpz35xZvH8YNWnvLMaOntgVSc3wMEREREZGsuDRVY9euXTz33HMcP34cgMuXLzN8+HA++OAD1q1bx969e9m0aRMAgwcPZtSoUWzYsAG73c6yZctyrXgREREREXdxqXFetmwZY8aMITAwEIDdu3dToUIFypcvj8ViITQ0lPXr13Pq1CkuX75MrVq1AOjYsSPr16/PvepFRERERNzEpTkUEyZMcPo5NjaWgIAAx8+BgYHExMRk2h4QEEBMTEy2CipRonC2xv99rCI52i83szyxptvJys/vi2pyf5Zqcn+WanJ/lmpyf5Zqcn9Wfq/pWjmafGy32zNtM5lMN92eHQkJKdhsf+e4euJxccm3fD07b6BRWVnlGJll5PndLD8n++VWjpFZqsn9WarJ/Vmqyf1Zqsn9WarJ/Vl5tSaz2ZSji7U5apxLlSpFfHy84+fY2FgCAwMzbY+Li3NM75C8w7+oDz6+vpm2X9ucp6Wmcj5JTzMRERGRu0eOGueaNWty7NgxTpw4Qbly5Vi7di1PP/00ZcuWxdfXlx07dlC7dm1Wr15N48aNja5ZcpmPry8zh/W85ZgrjwhU4ywiIiJ3jxw1zr6+vkyaNIn+/fuTmppKSEgIrVq1AiAyMpKRI0dy4cIFqlWrRvfu3Q0tWERERETkTshW4/z99987/t2gQQPWrFmTaUzVqlVZsWLF7Vf2l/T0jL+e03zrMSIiIiIiucnjVw709vai89KXbzlm2bMfuqkayQ5X5kqD5kuLiIhI3uDxjbPkXa7MlQbNlxYREZG8waUFUERERERE7nZqnEVEREREXKCpGpIn6NnSIiIicqepcZY8wchnS9+oCdcNiyIiIpIVNc5y19ECLyIiIpITmuMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLtDNgSI5pCXFRURE7i5qnEVySEuKi4iI3F00VUNERERExAV3zRVna3raX1f+sh4nIiIiInK9u6Zxtnj7MG7Q2izHjZ7aFki95RhXmnA14JLXaZlzERERZ7fVOHfv3p2EhAQslisx48aN4/fff+fDDz8kPT2dHj160LVrV0MK9SSuNOGuNOAiRjPyhkWtsCgiIuIsx42z3W7n6NGj/PDDD47GOSYmhoEDB/LFF1/g4+NDly5dqFevHhUrVjSsYBG5Od2wKCIiknty3DgfPXoUk8lEnz59SEhIoHPnzhQqVIj69etTrFgxAFq2bMn69esJDw83rOCcSk+z/nUVOOtxIiIiIiLXy3HjnJSURIMGDRg7diyXL1+me/fuPPnkkwQEBDjGBAYGsnv37mzllihROEf1XP9V9PUy0ly7umbGlmVWenpGlk14enpGljng+nxpV7JcZVSWajIuy5qejsXb+5b73GhMbtaU2zme+LvyxJqMzFJN7s9STe7PUk3uz8rvNV0rx41zcHAwwcHBAPj5+dGpUyciIiLo16+f0ziTyZSt3ISEFGw2u+NnV088Li75lq8HBBSh89KXs8xZ9uyHhmS5knM1y5X50q7U5CqjsvJiTUZmGX1+rswnzqvv+Y2yc7JfbmZ5Yk1GZqkm92epJvdnqSb3Z+XVmsxmU44u1ua4cd6+fTvp6ek0aNAAuDLnuWzZssTHxzvGxMbGEhgYmNNDiEg+caObFnNyw6JWaxQRkTspx41zcnIyM2bMYMmSJaSnp7Nq1SqmTJnC4MGDOXfuHAULFuTbb79l/PjxRtab77gy91rzriWvM+oJHbr5UURE7qQcN85NmjRh165ddOjQAZvNxvPPP0/t2rUZOHAg3bt3Jz09nU6dOlGjRg0j6813zHabIWO0wItI9hh1FVxERO4et/Uc59dee43XXnvNaVtoaCihoaG3VdTdxMvXx6X50lk9E9rIBV5E7gZ6TrWIiGTXXbNyoIhIbtC8axGRu4ca53zClUfkXR0nIsbRvGsRkbuHGud8wtvby+XH7YmIZ3Ll6rW7r1zrirqIyN/UOEsmri7KIiLGMnLetVE3P+qKuojI39Q4SyZ2u9mQMXrSh8ido5sfRUSMp8ZZMjHqEXl60oeIXEuPABSRvE6Ns2Ri1CPyjLxh0cjpI5qKInJnGHUV3Mh51544r1xEPJcaZ8k1Rt6waMfLkDHg2pVwV66CayqKyJ1h5LxrT5xXrhsyRTyXGmfJE1xpwl19YogrV8JduQruaqPu6jgjGNnM68q8SPZ44tLymh4jYiw1znLXMaoJ98RHABrZzBt5lV9E7gxNjxExlhpnEQ9g1NVdI5t5I6/yG3V+mh4jcmdoesztZekqf/6hxlnEA1i8jbkh01O5+wq3K+M0FUUk7/PE6TGeeJVfjKPGWURynSdOjzGqUc/v88p1lV/kzvDUxYfu9ivqapxF5K5kVDPvyrcFf2fd+hsDI6+6G9WEG3l+njhlxxP/WBExmpHzyu/2xZXUOIuIeAgj55V74vQfT5yy44l/rOT3Pww8sab8zhOb3bw6FUWNs4iIuIUnTtkx8o8VU9YLqro0xhO/xTCymdcfK/rDAPLuYxdzpXH+6quv+PDDD0lPT6dHjx507do1Nw4jHi7Nmu7S/+GkWdPdUI2ISO4yatVVI3nilCRP/GYlv/+x4omr7xp5fu68om544xwTE8O0adP44osv8PHxoUuXLtSrV4+KFSsafahsMbKJcyXL1WbQqKw0a5qL5+e+v3J9LN6EDvoyy3FfTW0PXM79giRbjPycG8UTP+eeWJOI3Dme+MeKkVO3jMrKq09JMtntdrshSX9ZtWoV27ZtY+LEiQC8//772O12wsPDXdo/MfECNtvfJRXx98XH4n3LfdKs6SSfv/UvqESJwvR6+9ssjz9nZAsSElJuO8uVHCOzihf1weztk+XxbOlpJJZQ2ZgAABiSSURBVGbxVYUnvudG1WRklis5Rma5uyYjP+dGnZ8nfs49sSYjs/L751zved6tycgsTzw/T6zJyKw7fX5ms4nixQtlefzrGd44z5o1i4sXLzJw4EAAli9fzu7duxk/fryRhxERERERcSuz0YE36sNNJpPRhxERERERcSvDG+dSpUoRHx/v+Dk2NpbAwECjDyMiIiIi4laGN86PP/44W7Zs4dy5c1y6dIlvv/2Wxo0bG30YERERERG3MvypGqVKlWLgwIF0796d9PR0OnXqRI0aNYw+jIiIiIiIWxl+c6CIiIiISH5k+FQNEREREZH8SI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAvUOIuIiIiIuMDwx9EZbcuWLRQoUIDg4GDmzp3L1q1bqV69On379sXHx+dOlyciIiIidwmvsWPHjr3TRdzMO++8wxdffMEPP/zATz/9RExMDJ07d2bfvn388MMPNG3a9E6XKLdgtVpZuHAh69evp0CBApQpU8bx2nvvvUe9evXcmuOpNYl4Kn3ORSQvSkxMpGDBgrmS7dFTNf7v//6PJUuWsHjxYn7++WciIyMJCQlh7Nix7N69O1tZVquVJUuWkJCQQFpaGjNnziQsLIwZM2aQmpp6R7KMrOl6r7/++m3tb0TW6NGj2b9/P4GBgQwZMoSPPvrI8dr333/v9hxPrclms7FkyRJefPFFWrVqRevWrenRowdz584lPT3d5ZyUlBSmT5/OrFmzOH/+PGFhYQQHB9O9e3dOnTqVrZqMyvLEmozOup4n/G/PqCxP/JwbmZWcnMzUqVM5e/YsSUlJDBs2jLZt2zJ06FDOnTuXrZqMyvLEmozOyisuXrzokVn5waVLl4iMjKRZs2Y88sgj1KxZk+bNmzN+/HiSk5OzlXXmzBkGDx7M6NGj+eOPPwgNDaV169Y0b96cAwcOGF67Ry+A0rZtWz777DMuXrxIq1at+OGHHyhe/P/bu/e4nu89gOOvRNJxzbSZHi7nMM3CkNpxKYyU7uVUIuKRU0dzOS7lEnKkYmZum0c0nFy21FJoPWyKTYXK8XBbbpHZyi3XdO/3OX84/R5M7Pfju/od+zz/WX1//V69f79VPr/6/j6/NpSVleHu7k5qaqrGrVmzZgEQGhrK+vXrn2o+ePCATz75pN5bSnV8fX3R09N76tiZM2cwNzcHIDY2VtObpmjL2dmZPXv2AHDnzh38/Pxwd3fHz88PV1dXkpKS6rWjqzMtXLgQlUqFm5sbJiYmANy8eZPk5GT1DxdNBAYG0qVLF8rKyjhy5AhjxozBy8uLAwcOsHv3bjZv3qzxTEq1dHEmJVu6+r2nVEsXv86VbPn7+9OjRw/+/ve/s2TJEkxNTXF0dCQtLY3s7GxiYmI0nkmpli7OpHRLpVKxa9cuUlNTuXHjBo0aNcLExARra2t8fX1p0qSJRp2SkhK++OILDA0N8fb2Jjg4mOzsbHr27ElkZCQdOnTQeKa6uLm5sXv37ldqvEpLqfsJHi8uly5dyvXr1xk+fDgBAQHo6+sDEBAQQHR0dL12goKCeO+993B3d6ddu3YA3Lp1i6SkJI4fP86mTZs0vm3jx4/H1taW0tJStm7dSlhYGLa2thw/fpxPPvmEnTt3atzSiNBhSUlJwtLSUvTv319s27ZNuLq6iuXLlwtXV1exadMmrVqOjo7qt52cnIRKpVK/b29v3yAtpTrbt28X1tbWIjExURw7dkwcPXpUjBgxQhw7dkwcO3ZM447SLUdHR/Ho0SP1+9evXxdDhw4Ve/bsEa6urvXe0dWZRo4c+dzLRo0apXHHxcVF/fagQYOeuszZ2VmrmZRq6eJMSrZ09XtPqZYufp0r2Xry/7WTk9NTlz3587k+W7o4k9Kt0NBQMX/+fJGTkyOuXr0qrl69KnJyckRoaKiYNWuWxp2AgAARFRUlFi9eLGxtbcWWLVtEaWmp2LNnj5g4caJWM5mbmwszMzNhZmYmunfvrv5v7dsN0VLqfhJCCD8/P5GQkCBOnz4tAgIChL+/v6iqqhJCPP3zsL46L1rjODg4aNz59ecdPHjwU5dp+2+DJnT6VA0XFxe+//57Dh48yLhx44iKiqJt27bMnj0bf39/rVpGRkZcvHgRgI4dO1JUVATAjRs3tH6SoVItpTpjx47liy++ICEhgcLCQqysrPjTn/6EpaUllpaWGneUbo0bNw43NzeOHDkCwJtvvklMTAyrVq0iPz+/3ju6OlPz5s3rPPXoxIkTGBkZadxp3LgxGRkZpKam8ujRI86cOQNAQUGBVvMo2dLFmZRs6er3nlItX1/fZ77ON23a1KBf50q2WrZsSWZmJgA9evTgxx9/BOD8+fMYGhpqNZNSLV2cSelWTk4Oy5Ytw8LCgo4dO9KxY0csLCxYunQpeXl5GneuX79OSEgIYWFhlJaW4ufnR7NmzXBycqK4uFirmeLi4nj//fdZs2YN586dIy8vDzMzM/XbDdFS6n4CuHfvHh4eHpibm7NhwwZatGjBnDlztGoo2TE2NiY1NRWVSqU+JoQgJSWFNm3aaNVq3rw5X331FTExMdTU1HDw4EEA/vOf/9C0aVOtZ/stOn2qhpJOnDjB1KlT6du3L82aNSMzM5PevXtz9uxZlixZgo2NTb23lJwJoLKyklWrVlFYWEh+fj4pKSlaXf/3aF25cgVDQ0Pat29PfHw858+fp2fPnty9exc/P7967+jiTHl5eQQHB1NRUaH+k9Xt27cxMDDg448/xszMTKPO2bNniYiIQKVSMXfuXBYsWIChoSHXr18nIiICa2trjWdSqqWLMyndAt383lOiFR4ejouLC2+88Qbt27dXH3/06BHx8fEN8nWuZOvy5ctMmTIFIyMj2rVrR3Z2Np06deLOnTusX7+eXr16aTyTUi1dnEnp1ujRo1m0aNEz1zlx4gQRERHEx8dr3JkxYwYPHz5kwYIFxMbGYm5uTkFBAdOnTyc5OVnjmQDKy8uJioqioqKC0NBQxo0b99KnaijRUup+qm1FRkbSrVs3AKqqqvD396dTp06cOHGCvXv31munqKiIJUuWkJOTQ4sWLYDH59H379+fRYsWPfVE5N/yyy+/sGbNGlQqFdOnTyckJITLly9jaGjIunXr6Nmzp8YtTfxhFs7w+HyorKwsrl69Sk1NDW+88QaDBg3irbfearCWUp0DBw5QVFSEjY0NP//8M/v27SMiIoK4uDi8vLwapLV161a2bduGSqXigw8+oKioiBEjRpCenk6fPn346KOP6rWjqzPVKiws5ObNmwghiI+PJyIiQuvGkyoqKpg8eTKfffaZ+gdTQ7d0caZXbR0+fJjevXvTsmVL4uPjOXHiBP369cPDw0PrOXStZWFhQdu2bZk1axa2trZaz/BrR44coXHjxjRp0oSMjAyys7OxtLR8qe1FlWp9++236t2bAN555x2WLFlCnz59tJpHyZYuzqRkq64HPrdu3aJp06ZaPfD58ccfWbZsWZ0PgCMjIxk8eLBWc9VKT09nw4YN3L9/n2+//falGkq0XnQ/rVy5ku7du2vcOn78OHPmzOGf//wnTk5OwOMnLM6ePZuDBw9q/BtspTq1qquruXv3LkIIjI2NadxYmV2S79y5g7GxsSKtX/vDLJwLCwtfeLk2j26UainVWblyJWfOnOEvf/kLqamphISE4OLiAmj/hAQlW05OTiQkJHD79m0cHR05evQoTZs2pbKyktGjR6ufdFRfHV2dad68ec8cS09PV2+3GBkZWa+d130mJVvLli0jLy+PTz/9lJ07d3Lq1Ck+/PBDfvjhB0xNTQkNDdV4Jl1subq6snLlSsLCwqioqGDixIkMGzZM6z/Nw+PtRXNzc6mursbU1JRGjRrh5uZGeno6NTU1hIeH13srOjqakydPMmjQINLT07GwsMDQ0JCEhATGjx+Pp6enxjMp1dLFmZRu1XrylwVvvvmmVv8O16WiooILFy7QqVMnWrZs+UqtW7ducejQIf72t7+9UkeJlpL3U1VV1TNPKszLy+Pdd99tkM6TZs6cyapVq7S+XnV1NUlJSTRr1gxbW1uioqLUTxINDg6mdevWLz1TXXT+BVCUEhAQQEFBASYmJtQ+VtDT00MIgZ6eHmlpafXeUqrz/fffs3v3bho3boyvry+TJk3CwMAAe3t7tH1cpGRLpVJhYGBAhw4dmDRp0lPnGtXU1NR7R1dnat26NUlJSQQGBqp/2B89elTr81p/3RFCvFRHyZYuzqRkKzMzk71796Kvr8/BgwfZtWsXBgYGeHl54ejo+H/f0tPTo2vXrmzfvp2srCzi4uJYtmwZnTt35q233tJqN6LDhw+TnJxMZWUlNjY2ZGRk0KRJE6ytrdUPzuu79c0337B7924aNWqEh4cHkydPJjY2Fg8PDzw9PbVaDCrV0sWZlG5VV1ezY8cOioqK+PDDD+nfv7/6snXr1jF16lStO8OHD8fCwkL9Z3ltOnVp164dR44cUWTh/LKt6upqEhISGDFiBD169GDjxo2cPn1a/SJw2py/q1KpiI2NJS0tjVu3btGkSRM6duyIg4MDo0aNqvfO83b+GT9+PKDdLkKhoaGUlpZSWVnJtm3b6NWrF59++ikHDhxg0aJFrF27VuOWJv4wC+cvv/wSHx8fFi9eTL9+/XSipVSndqEN0LlzZ6Kjo5k4cSLGxsbPfGHWZ8vW1pZx48YRGxur/gF27tw5QkNDsbe3r/eOrs4UEhKCtbU1q1evZubMmVhZWfHvf/8bNze3V+7ExsZq3VGypYszKdkyNDSkuLgYExMT2rZtS2lpKQYGBpSVlWn9J0ddbD35YHnAgAEMGDCAqqoqzp8/z7Vr17SaSQjBw4cPKS0tpby8nJKSEtq0aUN5ebnW+zgr1aqoqKC8vBwjIyPKy8u5d+8e8PiJ240aaffceaVaujiT0q1FixahUql45513CAkJwdPTk8DAQODxX340XfA+2QkODn7pDii7kFOqFRISAsDIkSNZvnw5paWl+Pj4cOjQIebPn6/VA9eoqCj1+cj79+/HzMyM9u3bExsby5UrVwgKCqrXjp2dHRs3bmTGjBl06NABIQQLFy58qdMcz549y969e6mpqcHGxoavvvoKgK5du2r9oFwjiu/TocNOnjwpQkNDdaqlRGfdunVizJgx4uTJk+pjubm54oMPPhB9+/ZtsJYQQmRnZz/1fn5+vjh06FCDdXR1JiGEuHv3rpg2bZqIiorSenun36Pzus+kRCstLU0MHjxYREVFifDwcOHo6CiWLVsm7O3txddff/1/39q1a5dWn/dFlNxeVKlWdHS0cHZ2FitWrBDOzs5iy5Yt4ueffxYuLi7i888/12ompVq6OJPSrSe3sysuLhZOTk5iy5YtQgjttjRTqiOE7m4HWetVt9F98r6qqakR3t7eQgghKioqXri94+/VEUKIixcvCh8fH7F7924hhNB6i8tazs7O4vLly+LkyZOiV69e4tq1a0KIx18T2m51qYk/1ML5dZaVlSUuXbr01LHCwkIRHh7eoC1Je7t27dJ6D9Lfs6NkSxdnetXWTz/9JDZv3iwWL14sQkNDxerVq5964Pk6tJRSVlYmSkpKhBBCnDt3TsTExIiMjIwGbWVlZYmYmBiRlZUlhBCipKREnDt37qVmUqqlizMp2dLF/fSFUG4hp1TL09NTXLhwQQghRFBQkPjll1+EEI9vp7YPDEaNGiVu376tvn7tPCUlJVrtm6xUp1ZFRYWIjIwUU6dOfelF7uHDh4WNjY0YPHiw+O6774SdnZ2YNm2aGDp0qPr+V9If5smBkiRJkiQ1vLi4ODZv3kxYWBh//etfAcjPz8ff35/i4uI69+j+PTtP0qXtIJXcsjYxMZE1a9bQp08fTp48yaxZs+jZsycTJkxg6tSpGu+2o1QHlN8NrLCwkCFDhmBkZERubi7dunUjNzdX69ZvkQtnSZIkSZLqVUFBAQYGBk/tEFFSUkJCQoJW+4Mr1fm1zMxMUlJSXnlb0FdtKbmN7pUrVzh//jxmZmZ07tyZyspKSktLtd51QomO0ruBnT17lj//+c+v3NKEXDhLkiRJklRvdG1LV11tvc4zOTk5qXfwKigoYNKkScyZMwd7e3tcXV1JSkrSqKN0SxN/mF01JEmSJElqeHVtxVrrVbd0fZnO81qvy5a1z2vVaoj7XOjobmCafkJJkiRJkqR68fDhQ+Hk5CRyc3N1oqOrrdd5Jl3eDey36IeFhYUpvxyXJEmSJEl6loGBAe+99x6JiYnqV+tsyI6utl7nmSwtLXn77bdp06aN+qWx3377bRwcHCgvL8fa2rpBWpqQ5zhLkiRJkiRJkga0e7kfSZIkSZIkSfqDkgtnSZIkSZIkSdKAXDhLkiQBvr6+REdHP3N88+bNBAYGcvr0aaZNm1bndU+dOsWiRYte6fMPGzaM06dP1znXsGHDcHFxwdXVFQcHB0JCQigrK3ulzydJkiRpTy6cJUmSgLFjx5KYmPjM8V27djFu3Dh69uzJ2rVr67zupUuXuHHjxu82W3BwMMnJySQlJbFv3z7KysqeO4skSZL0+5ELZ0mSJGD48OGUlpaSm5urPpadnY0QgoEDB3Ls2DEcHR0BmDt3LoGBgTg4ODB//nzWrl1Lbm4u8+bNe+rjgKfev337NlOmTMHLy4thw4bh6+tLcXGxVnPq6elhZWXF5cuXATA3N2f69OmMHDmS06dPk5ubi6enJ05OTri7u/PDDz+orxsdHY2dnR2Ojo4EBQXx8OFDAOLj43F3d8fV1RU/Pz/y8/MByM3NZfTo0bi7u+Pu7s7+/ftfeLyyspKIiAjc3NxwdnZm7ty5lJSUALBz506cnZ3x8PDAx8eHS5cuaXW7JUmSdIFcOEuSJAGNGzfGy8uLhIQE9bG4uDh8fHzq3ES/vLxc/TK606ZNw8LCgsjIyBd+jpSUFN5//33i4uJIS0vD0NCQ5ORkrea8f/8+qampWFlZAVBVVcXQoUPZv38/pqamTJs2jQULFrB3716WL1/OnDlzuHbtGmlpaSQmJhIXF8e+ffswNTVl+/btZGdnk5SUxI4dO0hKSsLf35+pU6cCsG7dOiZOnEhiYiIREREcPXr0hcc3btyIvr4+iYmJ7NmzBxMTE1auXElNTQ0RERHExMTw9ddf4+npyfHjx7W63ZIkSbpAvnKgJEnS/3h6euLg4EBJSQnV1dVkZGTwvK3u+/Xrp3V/woQJ5ObmsmXLFgoKCrh48SK9e/f+zeutWLGCDRs2qF+pa+jQoYwfP159uYWFBfD4XOuOHTuqm926daNv375kZ2eTl5eHnZ0drVq1AmDevHnq9tWrV/H29lb37t+/z71797C3t+df//oX6enpDBgwgJkzZwI89/ihQ4d4+PAhWVlZwONFfdu2bdHX18fOzg5vb2+GDBnCwIEDcXJy0vr+kyRJamhy4SxJkvQ/JiYmDBgwgG+++YbS0lJGjhxJixYt6vxYIyOjOo/XviRuraqqKvXbH3/8MadOncLDwwMrKyuqq6ufednaugQHB2NnZ/fcy2tnUalUz1wmhKC6uhp9ff2nfnP+4MEDHjx4gEqlwsXFhTlz5qgbN2/epFWrVnh7ezN06FAyMzM5fPgw69evZ8+ePc89rlKpmD9/PjY2NgA8evSIiooKAFauXMmFCxfIyspi06ZNJCQksGHDht+87ZIkSbpEnqohSZL0BB8fH/bu3UtSUhJjx47V6Dr6+vpUV1cDYGxsTGFhIcXFxQghOHDggPrjMjIymDBhAq6urrRt25asrCxqamoUm713795cuXKFU6dOAXDx4kVycnKwtLRkwIABfPfdd+pzjtetW8fWrVsZOHAgKSkp3Lx5E4Avv/ySCRMmAODt7U1eXh7u7u4sXbqUBw8ecP/+/eceHzRoEDt27KCyshKVSsXChQtZtWoVd+7cwcbGhtatW+Pn58eMGTM4f/68YrdbkiSpvsjfOEuSJD3BysqK8PBwWrVqRffu3TW6Tp8+fVi9ejVBQUF89tlneHt74+HhQbt27RgyZIj644KCglixYgWff/45+vr69O3bl59++kmx2Y2NjVmzZg1Lly6lvLwcPT09IiMj6dKlC126dOHSpUuMGTMGgK5du7J06VKaN2/O5MmTmTRpEnp6ejRv3pz169ejp6fH7NmziYiIYPXq1TRq1IiPPvoIU1PT5x6fMmUKy5cvx83NjZqaGt59913mzp1L8+bN+cc//oGfnx+Ghobo6+sTHh6u2O2WJEmqL/IltyVJkiRJkiRJA/JUDUmSJEmSJEnSgFw4S5IkSZIkSZIG5MJZkiRJkiRJkjQgF86SJEmSJEmSpAG5cJYkSZIkSZIkDciFsyRJkiRJkiRpQC6cJUmSJEmSJEkD/wWuO0zueGt2dQAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[[\"Unaccounted Time / s\", *cols]].plot(kind=\"bar\", stacked=True, figsize=(12, 4));"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 7\n", "<a name=\"task7\"></a>\n", "\n", "* Create a pivot table based on the NEST `df` data frame\n", "* Let the `x` axis show the number of nodes; display the values of the simulation time `\"Sim. Time / s\"` for the tasks per node and threas per task configurations\n", "* Please plot a bar plot\n", "* Done? [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 101, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAELCAYAAAAiFru1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4U1X+x/F30tCNFlFIi5aCyCI6M4KCQAGpOlhEqGUVBEFEAZVFcGOx7FvFKoIs4wKiCEjZyg4qKAIVWZyBYQZRBgpFoKUFutC9ye+PzkT7KzRpSZeUz+t5fJ7k3pNzv8kB/OTm3HMNVqvVioiIiIiIXJexvAsQEREREanoFJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7TOVdwP93+fJVLBZreZdRKmrU8CEpKa28y5AS0Ni5No2fa9P4uS6NnWurzONnNBq49daqxXpNhQvNFou10oZmoFK/t8pOY+faNH6uTePnujR2rk3j9ztNzxARERERsUOhWURERETEjgo3PUNERERuXnl5uVy+fJHc3OzyLuWml5BgxGKxlHcZN8RkcufWW824ud145FVoFhERkQrj8uWLeHp6U7VqLQwGQ3mXc1MzmYzk5rpuaLZarVy9msLlyxepWfP2G+5P0zNERESkwsjNzaZq1WoKzHLDDAYDVatWc9qvFgrNIiIiUqEoMIuzOPPPkkKziIiIiIgdN/WcZt9qXnh6FP0RZGblkpqSUUYViYiIiEhFdFOHZk8PE6GvrS+yzcZ3w0gto3pERESksPfff4d//OPvAMTGnuT22+/Aw8MTgA8/XGx77IiNG6OJidnNzJnvFquGQYOe5f335/PMM0/RvHkL3nprkm3f0aP/ZOrU8axcGV2sPvv06c7o0eNp0qSpQ+1//PEHFi78AIBLl5KwWPKoWdMPgGefHcju3bto3PgennqqT7HqKKlXXx1Ohw4d6dDhiSLbRUUtJyMjg2+/3QFARkY6Fy9epE6dugC0bBnESy8NL/bxBw8ewLPPPk+bNg8Vv/gSuKlDs4iIiFR8I0e+YXvco0coEydOo3Hje8vs+BcunMfXtxpVq/oAsGPHV7Rq1Zq//jWkzGqA/HDZsmUQAB99tICMjAxeeeU12/7du3eVaT2O2rPneyZMmMqzzz4PwIEDPzJ//hyWLFlezpUVj0KziIiIuKwNG9axcWM0ubk5pKSk0L//QMLCupGYeJGpUyeSmpoMQJs27Xj++SEFXrtjx1d89NECIiPn4uXldd3233//HQ89FGx73aBBLxMZGcGf/vQXatUqvJTZokUf8u233+Dm5kadOncyatQb3HZbDU6ePMHMmVPJzs7mzjvvJDMz0/aaw4f/wd/+9gFZWZkYjW48//xggoLaFvvzOHz47+zY8TWXL1+ifv2GTJw4DZPJRIcOwQQFteE//znBlCkzcXMzMWfOu6SmpmCxWOjVqw8dO3YmLy+PuXPf5dixf5OefhWAMWMm8Oc//4WEhHimT5/EpUtJ1Kp1O1euXLId96OPFrBnzy6qVHHnlluqEx4+idtuq0FKSjI5OdnUrGkusu6rV9N4552ZnDv3G8nJV6hWrRqTJs0gIKA2O3Z8xRdfLMFodMPNzY0RI17lz3++z/banJwcJkwYg69vNUaPDsfNza3Yn5sjHLoQcM6cOTzxxBN06tSJTz/9FICYmBhCQ0MJCQlh9uzZtrbHjh2je/fudOjQgbfeeovc3NxSKVxERERublevprFly0befXcun366nAkTptmmL6xfv5a6deuyePEy5s37mNjYU7YQCLBt22Y++2wRH3zwIYGBdYpsv3fv9wVCc/PmDxIa2oXJk8PJy8srUNOGDes4dOgAn3yylM8++5LAwDpEREwFYNKkt+jWrSeffbaCrl17cvFiAgDJyVeIiJjCxInTWbx4GTNmvMOsWTNISIgv9meSlJTE3LkLWb58DefPn2P37u8AyMrKIjj4UVasWEu9evWZMGEMw4aNZPHiL/jggw9ZuvRTfv753xw9+k+uXLnC3/62mC+/XEP79h1YtuwzACIjI2jS5H6WLo1i+PBRnD4dC8C5c7+xbt1qFi36gkWLltKsWXP+/e9//fez203r1vanT+zdu5uaNc189NESVq6Mpl69+kRHrwHggw9mM27cRBYtWsqzzz7P3//+k+112dlZjB37GnfcUZuxYyeUWmAGB84079+/n3379rFhwwZyc3N54oknCAoKYty4cSxdupTbb7+dIUOGsGvXLoKDg3njjTeYNm0aTZs2Zdy4cURFRdGnT9nMrREREZGbR9WqPsyc+S579+4mLu4Mv/56nIyMdABatmzN6NEjOX/+HM2bt2Do0Ffw9q4K5M9BjonZw6hRb+Dn519k+5SUZLKzswqdKR08+GVefHEgS5Z8QsuWrW3b9+2LoVOnJ/H0zJ9n3bPn03Tr9gSXLiVx+nQsISEdAWja9AHq1r0TgH/+8zBJSUmMGfOqrR+DwcDJk/+x1eeodu0ets3xrlfvLi5fvmzb16TJ/QDExp7i3LnfmD59km1fTk4Ov/xynCef7Er16tVZv34t586d5dChg1SrVg2Agwf38+qrbwJQp86d3H9/MwD8/Py58856DBzYl1at2hAU1IYHHmgO5E8ZGTToJbt1h4R0JDCwDqtWfclvv8Vx5Mhhmjd/EIC//jWE119/hdatH+LBB1vSq9fvufL9998hKyuLCROmlvpShXZDc4sWLfj8888xmUzEx8eTl5dHSkoKdevWJTAwEIDQ0FC2bdtGgwYNyMzMpGnT/Ant3bp1Y+7cuQrNIiIi4nQXLpzn5ZdfICysG02a3E9w8KPs378PgD//+S+sWrWBAwf289NPB3jhhf68/Xb+L+O33HILEyZMZdKkcbRq1ZZatWpdt31c3OlrTpMwmUxMnDiNQYP628I4gNVa8A56VquFvLw8W6CzWq22ff87K5qXZ6F+/fosXLjYtu/ixQRuvfW2Yn8mJtPv0S7/mL8fz8vLGwCLJY9q1W4pMKc4KSkRHx9fdu/+jvnz59CrV1+Cgx8hICDQdgGfwXDt+k0mEwsWfMKxY//i4MH9zJ49ixYtghg8+GXOn/+NevXuslv3ypXL+Prr7XTt2oOQkI54eXmTkpI/VWb48FF06dKdAwd+ZOPGdaxYsZSPP84/+x0a2pXU1BTeeWcmU6dGFPvzKg6HpmdUqVKFuXPn0qlTJ4KCgkhISMBs/v0bl5+fH/Hx8YW2m81m4uOL/9OCiIiIiD3Hjv2LGjVq0L//QFq2DGLv3u+xWPJD6/z5c1i6dAnBwY8wcuQb1KlTl7NnzwAQGFiHBx9sSZcuPZgxYxJWq/W67Xfv/o62bYOvefzAwDoMH/4qH3+8wLatRYsgNm/eYJuvvGrVl9x/fzNuvfU26tdvwObNG2y1x8aeAuAvf7mPU6dOceTIPwA4fvxnnn66G5cuJZXK53bnnXdhNBr55pvtQP6Xj379enHixK8cOPAjDz30MF279qBx43vYvXsXFkv+FJSWLVuzYcM6AM6fP8c//vGTrd5nn+1NvXr16d9/ID17Pm3rq3nzlg7V9OOP++jcOYxOnZ6kdu1AYmL2YLFYyM7Oplu3TlitVrp168krr7xObOxJ27SYe+75Ey+9NIJffvmZbds2O/ujKsDhCwFHjBjBoEGDePHFF4mNjS2032AwFPj28cftxVGjhk+x2pcFs9m3QvYlZUtj59o0fq5N4+e6ijt2CQlGTKaiz+m5ueW3adv2IbZu3USfPt3x8vLiT3/6C76+1bhw4Tf69HmGKVMm0L9/L6pUqUKjRo0JCenAli2bMBgMmExGBg0azHPP9SMqavk12z/88MOsXLmMRo0aXvP4AGFhXThwYB8///xvTCYj3bv3IDExgUGD+mOxWKhTpy4TJ07FZDIybVoE06ZNZu3aKAID61CnTl3c3Az4+ZmZOXMW8+bNJjs7G6vVypQpM7jjjtvJy8tjwIC+jB8/mUaN7rbVYDQaMBop8FkZDPnb/7ft/z83mYz//c+Td96ZzfvvR7J06afk5uby8svDadLkPnx9qzJx4ls8+2xv3NzcaNLkfnbv/g43NwOjR49j2rRJPPNMT/z8/GnU6G6MRgN/+tO9PPzwo7zwQj+8vLzw9PTktddGExX1JZ07P1loPN3cjBgMBWt/9tkBzJo1kw0b1mI0Grn33nv57bezeHt7MmLEKMLD38RkqoKbm5Hw8El4eFTBYAA3NwM+Pt6MHz+ZN98cRfPmzQtdnGk0Gp3yb4jBeq2k+wf/+c9/yM7O5p577gFg2bJlbNu2DTc3N5YsWQJAdHQ0P/74I8OGDWPAgAF8/fXXABw8eJC5c+fy+eefO1xQUlIaFkuRJTmN2ezr0DrNFy86Z6Vms9nXaX1J2dLYuTaNn2vT+LmukozdhQunqVWrbilV5JoWLJhLhw5PUL9+gzI9rslkJDfXYr9hBXetP1NGo6HYJ2rtTs84e/Ys4eHhZGdnk52dzY4dO+jduzenTp3i9OnT5OXlsWnTJtq1a0dAQAAeHh4cOnQIyA/T7dq1K1ZBIiIiIpLParUSGFinzAOzFGZ3ekZwcDCHDx+mS5cuuLm5ERISQqdOnbjtttsYPnz4f5cwCebxxx8HIDIykvDwcK5evcq9995L//79S/1NiIiIiFRGBoOB0NAu5V2G4OCc5hEjRjBixIgC24KCgtiwYUOhto0bN2b16tXOqU5EREREpAJwaPUMEREREZGbmUKziIiIiIgdDi85JyIiIiK/863mhaeH86NUZlYuqSkZTu9XboxCs4iIiEgJeHqY7C5dWxIb3w3DkYX68vLyGD9+DBMmTCUtLY0ZMyZz6VISRqOBoUNH0qzZgw4dLzx8NPXq3cXzzw8hPT2dadMmMnVqhN31sm82+jREREREXFB09GpatGiFp6cnCxbMoU2btixZspxJk6YzeXK47a55Rdm0aT0//XTQ9tzb25vmzVuwfv3a0izdJSk0i4iIiLgYq9XK6tUrad++AwDBwY/w2GMdAQgICCQ7O4uMjKKneJw9G8fWrZsIC+tWYHv79iFERa245p2eb2YKzSIiIiIu5sSJX/Dx8cHHJ/+udsHBj1KtWjUAVqxYSsOGd9v2XUtubi4REVN5/fWxmEwFZ+tWq3YL3t5enDjxa+m9ARek0CwiIiLiYuLi4jCb/Qttj4pazvr16wgPn1zk6xcv/ojg4EepV++ua+7397+duLgzTqm1stCFgCIiIiIuxmg04ObmVmDbggVziInZy/z5H+HnVzhQ/9F33+2gShV3Nm/ewKVLSQB4eXnRp0/+nZxNJhMGg6F0indRCs0iIiIiLiYgoDYXLpy3PY+KWs5PPx1i4cJF+Pr62n398uVrbI8XLfoQwBaYAc6fP0ft2oFOrNj1KTSLiIiIlEBmVi4b3w0rlX7tadCgEcnJV0hLS6Nq1aosXvwxVatWZfjwIbY2kZFzSEy8yCef/I3IyLkOHz81NZW0tDQaNmxEbq6lRO+hMlJoFhERESmB1JQMh9ZTLg0Gg4GePZ9m+/bNdO/ei23bvr1muxo1amI2+xXZ1/PPDynwfOvWTfTs2dtptVYWuhBQRERExAV17dqDAwd+JDMz87ptEhLiCQnp6HCf6enpHDy4v9AydKIzzSIiIiIuyWQyERHxXpFt/P1r4e9fy+E+vb29mTVr9o2WVinpTLOIiIiIiB0KzSIiIiIidig0i4iIiIjYodAsIiIiImKHLgQUERERKYFbb3HH5O7h9H5zs7O4nJxtt11eXh7jx49hwoSppKWlMWPGZC5dSsJoNDB06EiaNXuwyNcvX/45W7ZsBKBz5zB6936G9PR0pk2byNSpEZhMOrf6RwrNIiIiIiVgcvfg5PTuTu/3rrfWAPZDc3T0alq0aIWnpyezZk2nTZu2dO/eizNnYhk2bAjr1m0pdKvt/zl7No5161bzxRdRWCxWnnmmJ23bBlO7diDNm7dg/fq1PPVULye/M9emrxAiIiIiLsZqtbJ69Urat+8AQHDwIzz2WP56zAEBgWRnZ5GRkXHd11ssFnJycsjKyiYnJxur1YrJlH8utX37EKKiVmC1Wkv/jbgQnWkWERERcTEnTvyCj48PPj4+AAQHP2rbt2LFUho2vNu271rq1KlL+/Yd6NEjFKvVSmhoGLVq3Q5AtWq34O3txYkTv1KvXoPSfSMuRGeaRURERFxMXFwcZrN/oe1RUctZv34d4eGTi3z9vn0xHD9+jOjorURHb+HYsX+zY8fXtv3+/rcTF3fG6XW7MoVmERERERdjNBoKzVdesGAOGzZEM3/+R3bvArh3724efvhRvL29qVrVh/btO/CPf/xk228ymTAYDKVSu6tyKDTPmzePTp060alTJ2bNmgXA2LFjCQkJISwsjLCwML7+Ov/bSUxMDKGhoYSEhDB7tm7DKCIiIuJsAQG1uXDhvO15VNRyfvrpEAsXLsLPr/AZ6P+vQYOG7N27h7y8PHJzc/nxxxjuuede2/7z589Ru3ZgqdTuquzOaY6JiWHPnj2sW7cOg8HACy+8wNdff83Ro0f54osv8PPzs7XNzMxk3LhxLF26lNtvv50hQ4awa9cugoODS/VNiIiIiNxMGjRoRHLyFdLS0qhatSqLF39M1apVGT58iK1NZOQcEhMv8sknfyMycm6B14eGduHMmVj69XsKNzc3goLa0rFjZwBSU1NJS0ujYcNG5OZayvR9VWR2Q7PZbGbMmDG4u7sDUL9+fc6dO8e5c+cYP348586d47HHHmPYsGEcOXKEunXrEhiY/80kNDSUbdu2KTSLiIhIpZObnfXf5eGc3689BoOBnj2fZvv2zXTv3ott2769ZrsaNWpiNvsV2m40Ghk+/FWGD3+10L6tWzfRs2fv4hdeydkNzQ0bNrQ9jo2NZcuWLSxfvpz9+/czZcoUvL29GTJkCKtXr8bb2xuz2Wxr7+fnR3x8fOlULiIiIlKO8m9AYn895dLStWsPwsPfpFOnMDw9Pa/ZJiEhnpCQjg73mZ6ezsGD+5kx4x1nlVlpOLzk3K+//sqQIUMYPXo0d911F/Pnz7ft69evH9HR0Tz++OOFXlfcSeQ1alx/eZTyYjb7Vsi+pGxp7Fybxs+1afxcV3HHLiHBqDvROchkcicy8v0i2wQE3EFAwB0O91mtmg/vvTfnD8dw/bEwGo1O+TfEodB86NAhRowYwbhx4+jUqRPHjx8nNjaWDh3yF9T+34LY/v7+JCYm2l6XkJBQYM6zI5KS0rBYymYxbUc/wIsXU512PGf1JWVLY+faNH6uTePnukoydhaLRfNoKwiTyVgpxsJisRT6c2g0Gop9otbu14fz588zdOhQIiMj6dSpE5AfkmfMmEFycjI5OTmsXLmSxx57jCZNmnDq1ClOnz5NXl4emzZtol27dsUqSERERESkorF7pnnRokVkZWURERFh29a7d28GDx7M008/TW5uLiEhIXTunH/FZUREBMOHDycrK4vg4OBrTtkQEREREXEldkNzeHg44eHh19zXt2/fQtuCgoLYsGHDjVcmIiIiIlJBOHwhoIiIiIj8zre6B55V3J3eb2ZONqlX7C87J2VLoVlERESkBDyruPPUypec3m9Ur4WkYj805+XlMX78GCZMmEpaWhozZkzm0qUkjEYDQ4eOpFmzB+32cfFiAi+80I/167fbti1e/BE7d36DwQBBQW14+eVXSE9PZ9q0iUydGlHo9t03C9dfR0RERETkJhQdvZoWLVrh6enJggVzaNOmLUuWLGfSpOlMnhxOXl5eka//4Yc9DB/+IklJSbZtBw78yIED+/j002UsXbqC48d/Zteub/H29qZ58xasX7+2tN9WhaXQLCIiIuJirFYrq1evpH37/OV/g4Mf4bHH8m9iEhAQSHZ2FhkZGUX2sWnTembMmFVgW40aNRk6dBRVqlTBZKpC3bp3Eh9/AYD27UOIilqB1Vo2SwNXNJqeISIiIuJiTpz4BR8fH3x88tcaDg5+1LZvxYqlNGx4t23f9UyfXviuf3fdVd/2+MyZM+zc+TULFy4GoFq1W/D29uLEiV9p2LCRM96GS9GZZhEREREXExcXh9nsX2h7VNRy1q9fR3j45Bvq/+TJ/zBixEsMHTqSwMA6tu3+/rdz9uyZG+rbVelMs4iIiIiLMRoNhS7IW7BgDjExe5k//yP8/AoHakcdOfIPwsNHM2rU6zzyyGMF9plMJozGm/Ocq0KziIiIiIsJCKjNhQvnbc+jopbz00+HWLhwEb6+viXuNz7+AuPGvc7kyTNp2bJlodtonz9/joCAwBL378oUmkVERERKIDMnm6heC0ulX3saNGhEcvIV0tLSqFq1KosXf0zVqlUZPnyIrU1k5BwSEy/yySd/IzJyrkPHXrHiC7Kysvngg9nMmwdWK3Tp0o0uXXqQmppKWloaDRo0LPF7c2UKzSIiIiIlkHoly6H1lEuDwWCgZ8+n2b59M92792Lbtm+v2a5GjZqYzX5F9rVnz0Hb45EjX2fkyNcBMJmMBc40b926iZ49ezuhetd0c05KEREREXFxXbv24MCBH8nMzLxum4SEeEJCOt7wsdLT0zl4cD9hYd1uuC9XpTPNIiIiIi7IZDIREfFekW38/Wvh71/rho/l7e3NrFmzb7gfV6YzzSIiIiIidig0i4iIiIjYodAsIiIiImKHQrOIiIiIiB0KzSIiIiIlcKuvO2azr9P/u9XX3aHj5+XlMW7cGwVWz0hPv8pTT4Xx008Hi3hlQfPnz2H69EkAWCwWxo59nfT09GJ9FjcDrZ4hIiIiUgImTw/2hnV3er9t1q+BVPs3OImOXk2LFq3w9PS0bXvvvVmkpqY6fKyDB/ezdetGgoLaAmA0GnnyyS4sWfIxI0aMKn7xlZjONIuIiIi4GKvVyurVK2nfvoNt244dX+Ht7U39+g0c6iMlJZmPPlpAv37PFdjeokUQu3Z9y9WraU6t2dUpNIuIiIi4mBMnfsHHxwcfHx8ALly4QFTUCoYOfcXhPmbNmsHgwS/j61utwHY3Nzfq12/IoUOOT/G4GSg0i4iIiLiYuLg4zGZ/IH8eckTEFEaNehMPD087r8y3cWM0/v7+NG/e4pr7a9WqRVzcGafVWxloTrOIiIiIizEaDbi5uQFw+nQsZ86cJiJiKgC//RbH229PY/TocB54oPk1X79jx1ckJSUyYEAfUlKSycjIYO7cdxkx4jUg/26DBoPOrf6RQrOIiIiIiwkIqM2FC+cBqFfvLtau3WzbN2zYYAYOHHzdwAzw/vsLbI+3bNnI3/9+yBaYAc6dO0fTpg+UQuWuS18hRERERFxMgwaNSE6+Qlpa0RfrJSZeZMCAPsXqOy8vj19++ZkWLa49deNmpTPNIiIiIiWQm5mVvzxcKfRrj8FgoGfPp9m+fTPdu/cqsG/evI9sj2vWNHP33Y2L7OuJJ0J54olQ2/OYmN0EBz+Kp6cXubmWYlZfeTkUmufNm8fWrVsBCA4O5s033yQmJoaZM2eSlZVFx44dGTUqfy2/Y8eOER4eTlpaGs2bN2fy5MmYTMrmIiIiUrlcTs12aD3l0tK1aw/Cw9+kU6ewAms1/1FGRgatWz/kcJ8Wi4VNm9YzYcJUZ5VZadidnhETE8OePXtYt24d0dHR/Otf/2LTpk2MGzeOBQsWsGXLFo4ePcquXbsAeOONNxg/fjzbt2/HarUSFRVV6m9CRERE5GZjMpmIiHjvuoEZwMvLi+DgRxzu02g08vbbs6la1ccZJVYqdkOz2WxmzJgxuLu7U6VKFerXr09sbCx169YlMDAQk8lEaGgo27Zt47fffiMzM5OmTZsC0K1bN7Zt21bqb0JEREREpDTZnTfRsGFD2+PY2Fi2bNlCv379MJvNtu1+fn7Ex8eTkJBQYLvZbCY+Pr5YBdWoUfG+2ZjNvhWyLylbGjvXpvFzbRo/11XcsUtIMGIyaZ2CiqIyjIXRaHTKvyEOTzb+9ddfGTJkCKNHj8ZkMnHq1KkC+w0GA1artdDrDAZDsQpKSkrDYincT2lw9AO8eNHxe7jbO56z+pKypbFzbRo/16bxc10lGTuLxaKLzyoIk8lYKcbCYrEU+nNoNBqKfaLWoa8Phw4dYsCAAbz22mt07doVf39/EhMTbfsTEhLw8/MrtP3ixYv4+fkVqyARERERkYrG7pnm8+fPM3ToUGbPnk1QUBAATZo04dSpU5w+fZratWuzadMmunfvTkBAAB4eHhw6dIhmzZoRHR1Nu3btSv1NiIiIiJS1W6p54e7h/BXCsrNySU7JcHq/cmPsjvSiRYvIysoiIiLCtq13795EREQwfPhwsrKyCA4O5vHHHwcgMjKS8PBwrl69yr333kv//v1Lr3oRERGRcuLuYWLKa5uc3u+Edzs71C4vL4/x48cwYcJU2woa6elXGTCgD2PGjC/yjoAA27dvYenSJQC0atWaYcNGYrFYeOutNxk/fgrVqlW868zKk93QHB4eTnh4+DX3bdiwodC2xo0bs3r16huvTERERESuKzp6NS1atCqw5Nx7780iNdX+PPLMzEzefz+SFSvW4uPjw0svPc+BAz/y4IMtefLJLixZ8jEjRowqzfJdjutfEikiIiJyk7FaraxevZL27TvYtu3Y8RXe3t7Ur9/A7ustljysVguZmRnk5eWSl5eLh4cHAC1aBLFr17dcvVr0LbpvNgrNIiIiIi7mxIlf8PHxwccnfwrFhQsXiIpawdChrzj0em/vqrzwwov06dODLl2eoFatO/jLX5oA4ObmRv36DTl06GCp1e+KFJpFREREXExcXBxmsz+Qv6RaRMQURo16Ew+P698d8I9OnPiVzZs3sGbNRtav34bRaGTFiqW2/bVq1SIu7kyp1O6qFJpFREREXIzRaMDNzQ2A06djOXPmNBERUxkwoA/Hjx/j7ben8dNP1z9TvH//DzRr1oJbb70Nd3d3nngilL///ZBtv8lkwmBQTPwj56+TIiIiIiKlKiCgNhe5VgL8AAAXkklEQVQunAegXr27WLt2s23fsGGDGThwcJGrZzRo0IgFC+aSkZGBp6cne/d+T+PG99r2nzt3jqZNHyi9N+CCFJpFRERESiA7K9fh5eGK2689DRo0Ijn5CmlpabZ5zdeSmHiR119/hSVLlhfY3qJFK3755Weef/4ZTCYT99zzJ555ZgCQv5TdL7/8zKRJU27ofVQ2Cs0iIiIiJVCeNyAxGAz07Pk027dvpnv3XgX2zZv3ke1xzZpm7r678TX7eOaZAbag/EcxMbsJDn4UT0+vSnEbbWfRZBURERERF9S1aw8OHPiRzMzM67bJyMigdeuHHO7TYrGwadN6Bgx43hklVio60ywiIiLigkwmExER7xXZxsvLi+DgRxzu02g08vbbs2+0tEpJZ5pFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFRERESuCWau6Yzb5O/++Wau4OHT8vL49x494osHpGevpVnnoqrMi7Af7R1atp9Ov3FOfPn7NtW79+Lf36PUXfvk8xY8ZkcnJysFgsjB37Ounp6cX7kCoRrZ4hIiIiUgLuHh7MG/uc0/sdNvNTINtuu+jo1bRo0QpPT0/btvfem0VqaqpDx/nXv44ya9Y04uLO2LadOXOaFSuWsmjRUqpV82Xy5AmsXRtFr159efLJLixZ8jEvv/xKsd9TZaAzzSIiIiIuxmq1snr1Stq372DbtmPHV3h7e1O/fgOH+ti4cR2vvjqamjXNtm3u7u689toYqlb1wWAwcNddDYiPvwBAixZB7Nr1LVevpjn3zbgIhWYRERERF3PixC/4+PjYbqF94cIFoqJWMHSo42eBx4wZT5Mm9xfYVqvW7Tz4YEsALl++zNq1UbRtGwyAm5sb9es3dHjqR2Wj0CwiIiLiYuLi4jCb/YH8u/hFRExh1Kg38fDwtPNKx1y8mMCwYUPo3DmMBx5obtteq1Yt4uLinHIMV6PQLCIiIuJijEYDbm5uAJw+HcuZM6eJiJjKgAF9OH78GG+/Pa3EZ4RPn47lpZee54knQhkw4IUC+0wmE0aj4Ybrd0W6EFBERETExQQE1ObChfMA1Kt3F2vXbrbtGzZsMAMHDi5whthR6elXGTVqKEOGDKVTp87k5loK7D937hz33df0xop3UTrTLCIiIuJiGjRoRHLyFdLSir4oLzHxIgMG9HG4340bo7l8+RIrVnxBv369GTCgD5988jcgf4m7X375mebNW95Q7a5KZ5pFRERESiA7K+u/y8M5v197DAYDPXs+zfbtm+nevVeBffPmfWR7XLOmmbvvblxkX6tXb7Q97tWrL7169QXAZDIWONMcE7Ob4OBHCyxxdzNRaBYREREpgeSUbBxZT7m0dO3ag/DwN+nUKey6QTYjI4PWrR+64WNZLBY2bVrPhAlTb7gvV6XQLCIiIuKCTCYTERHvFdnGy8uL4OBHbvhYRqORt9+efcP9uDKH5zSnpaXRuXNnzp49C8DYsWMJCQkhLCyMsLAwvv76awBiYmIIDQ0lJCSE2bNv7g9XRERERCoHh840Hz58mPDwcGJjY23bjh49yhdffIGfn59tW2ZmJuPGjWPp0qXcfvvtDBkyhF27dhEcHOz0wkVERKRyslqtGAw357Jm4lxWq9VpfTl0pjkqKoqJEyfaAnJ6ejrnzp1j/PjxhIaGMnfuXCwWC0eOHKFu3boEBgZiMpkIDQ1l27ZtTitWREREKjeTyZ2rV1OcGnbk5mS1Wrl6NQWTyd0p/Tl0pnn69OkFniclJdGqVSumTJmCt7c3Q4YMYfXq1Xh7e2M2/37/cj8/P+Lj44tVUI0aPsVqXxbMZt8K2ZeULY2da9P4uTaNn+sq7thVr+5JXFwcFy+eLaWK5Gbi5eVJgwb1qFKlyg33VaILAQMDA5k/f77teb9+/YiOjubxxx8v1La4P68kJaVhsZTNt0tH/yJfvJjqtOM5qy8pWxo716bxc20aP9dV0rHz9TXjq+9J5a6y/N27ciUTyCywzWg0FPtEbYlubnL8+HG2b99ue261WjGZTPj7+5OYmGjbnpCQUGDOs4iIiIiIKypRaLZarcyYMYPk5GRycnJYuXIljz32GE2aNOHUqVOcPn2avLw8Nm3aRLt27Zxds4iIiIhImSrR9IzGjRszePBgnn76aXJzcwkJCaFz584AREREMHz4cLKysggODr7mlA0REREREVdSrNC8c+dO2+O+ffvSt2/fQm2CgoLYsGHDjVdWQVhysx2a+5ybncXl5KLvCmTJtt9XbmYWl1PL7+5CIiIiIlKY7ghoh9Hkzsnp3e22u+utNdi7labR3Z29YUX31Wb9GlBoFhEREalQSjSnWURERETkZqLQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2GEq7wJESsq3mheeHkX/Ec7MyiU1JaOMKhIREZHKSqFZXJanh4nQ19YX2Wbju2GkllE9IiIiUnlpeoaIiIiIiB0KzSIiIiIidig0i4iIiIjYodAsIiIiImKHQ6E5LS2Nzp07c/bsWQBiYmIIDQ0lJCSE2bNn29odO3aM7t2706FDB9566y1yc3NLp2oRERERkTJkNzQfPnyYp59+mtjYWAAyMzMZN24cCxYsYMuWLRw9epRdu3YB8MYbbzB+/Hi2b9+O1WolKiqqVIsXERERESkLdkNzVFQUEydOxM/PD4AjR45Qt25dAgMDMZlMhIaGsm3bNn777TcyMzNp2rQpAN26dWPbtm2lW72IiIiISBmwu07z9OnTCzxPSEjAbDbbnvv5+REfH19ou9lsJj4+3omlVmzZeTmYzb7lXYaIiIiIlIJi39zEarUW2mYwGK67vbhq1PAp9msqAne3Kjy18qUi20T1WuhQXwrfzuWsz1Pj4to0fq5N4+e6NHauTeP3u2KHZn9/fxITE23PExIS8PPzK7T94sWLtikdxZGUlIbFUjiAl4aK+gfh4kXdw84Rjo6fMz5Ps9lX4+LCNH6uTePnujR2rq0yj5/RaCj2idpiLznXpEkTTp06xenTp8nLy2PTpk20a9eOgIAAPDw8OHToEADR0dG0a9euuN2LiIiIiFQ4xT7T7OHhQUREBMOHDycrK4vg4GAef/xxACIjIwkPD+fq1avce++99O/f3+kFi4iIiIiUNYdD886dO22Pg4KC2LBhQ6E2jRs3ZvXq1c6pTERERESkgtAdAUVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxw1TeBYjIzce3mheeHkX/85OZlUtqSkYZVSQiIlI0hWYRKXOeHiZCX1tfZJuN74aRWkb1iIiI2KPpGSIiIiIiduhMcwWTm5OH2exbZJvsrFyS9bO1iIiISJlRaK5gTFXcmPLapiLbTHi3cxlVIyIiIiKg6RkiIiIiInbd0Jnm/v37k5SUhMmU382UKVM4c+YMCxcuJCcnhwEDBtC3b1+nFCoiIiIiUl5KHJqtVisnT57ku+++s4Xm+Ph4Ro0axdq1a3F3d6d37960bNmSBg0aOK1gEREREZGyVuLQfPLkSQwGA4MGDSIpKYmnnnqKqlWr0qpVK6pXrw5Ahw4d2LZtG8OGDXNawSLFYcnNtnthZW52FpeTs4vuJ9t+PwC5mVlcTi26LxEREXE9JQ7NKSkpBAUFMWnSJDIzM+nfvz8dO3bEbDbb2vj5+XHkyBGnFCpSEkaTOyendy+yzV1vrQGKDrpGd3f2hhXdD0Cb9WtAoVlERKTSKXFovv/++7n//vsB8Pb2pkePHsycOZMXX3yxQDuDwVCsfmvU8ClpSTcVR856iuOc+XlqbJxH4yL/o/FzXRo716bx+12JQ/PBgwfJyckhKCgIyJ/jHBAQQGJioq1NQkICfn5+xeo3KSkNi8Va0rKKxZX/IFy8qHulOXP87H2exTmWxsY+Rz9PZ32WZrOvxsWFafxcl8bOtVXm8TMaDcU+UVviJedSU1OZNWsWWVlZpKWlsW7dOt555x1++OEHLl26REZGBl999RXt2rUr6SFERERERCqEEp9pfuSRRzh8+DBdunTBYrHQp08fmjVrxqhRo+jfvz85OTn06NGD++67z5n1ioiIiIiUuRtap3nkyJGMHDmywLbQ0FBCQ0NvqCgREam4fKt54elR9P8+MrNySU3JKKOKRERKn26jLSIixeLpYSL0tfVFttn4bhiVcyakiNysdBttERERERE7FJpFREREROxQaBYRERERsUNzmuWml52X49JrdouIiEjpU2h2Qbk5joW87KwsklN0S2d73N2q8NTKl4psE9VrYRlVIyIiIhWRQrMLMlWpwryxz9ltN2zmp4BCs4iI5HNkuUDQkoEi16LQLCIicpNwZLlA0JKBItei0CwiFZIlN9uhaUi52VlcTtYvKiIiUroUmkWkQjKa3Dk5vbvddne9tQZ705As2fYDeG5mFpdTFb5FROTaFJpFpNIzuruzN6zoAN5m/RpQaBYRketQaBYRERFxAY5cyKmLOEuPQrOIiIiIC3DkQk5dxFl6FJpFnCg3J8/u3NnsrFySdRZARETEpSg0iziRqYobU17bVGSbCe92LqNqbg66o2PF5MjqJ1r5RERciUKziLg03dGxYnJk9RNHVj4BrX4iIhWDQrOIiFRoWv1ERCoChWYREREpQNNrRApTaBYpY7k59ufgZmdlkZyi/xmJSPlw1vQaR6bWgKbXiGtQaBYpY6YqVZg39rki2wyb+SmOzPUU53Fk5RPQ6ifOpIs4Kz9HptaAptc4kyO/EoB+KSgJhWYRERxb+QS0+okzOXIRJ+hCTpHicORXAnDeLwU3068ECs0iIuLytEZ62dMvBa7N0fHTRbi/U2gWESkGzUmvmLRGetlz5nKP+tJT9rRcZ/EpNIuIFIPmpLsuR77wgL70lAd96XFdN9MXHoVmERG5KTjyhQf0paei0q88FdPN9IWnVELzxo0bWbhwITk5OQwYMIC+ffuWxmFERETkJqFfeVxXZfmVx+mhOT4+ntmzZ7N27Vrc3d3p3bs3LVu2pEGDBs4+lIiIiIhUcJXlVx6nh+aYmBhatWpF9erVAejQoQPbtm1j2LBhDr3eaDQ4u6Qi+d3qZbeN6RazQ32ZvW+z28bDz35ftzhQk2/1Gg7VVNafZ1lz1vg5a+zAeeOnsauYf/dA4wdl+3cP9G+nMzkydqB/OysqV/23s6L93SvJcQxWq9XqzCI+/PBD0tPTGTVqFACrVq3iyJEjTJ061ZmHEREREREpM0Znd3itDG4wVO5vfSIiIiJSuTk9NPv7+5OYmGh7npCQgJ+fn7MPIyIiIiJSZpwemlu3bs0PP/zApUuXyMjI4KuvvqJdu3bOPoyIiIiISJlx+oWA/v7+jBo1iv79+5OTk0OPHj247777nH0YEREREZEy4/QLAUVEREREKhunT88QEREREalsFJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFruGbb75h6dKlnDlzpsD2lStXllNFUhyxsbHEx8cDsGrVKqZNm8aWLVvKuSopiYiIiPIuQRx05MgR2+MffviBiIgIIiMjOXz4cDlWJY7avXs3KSkpAERHRzNlyhTWrFlTzlVVLFpyTuT/iYyM5OjRo9SvX5+tW7cyevRowsLCAOjatSvr1q0r5wqlKEuWLGHp0qVYLBZatWrF+fPneeyxx9i5cycPPPAAQ4cOLe8S5TrGjh1baNvOnTt59NFHAZg5c2ZZlyTF8L9/H5ctW8aXX35J9+7dAVi3bh09e/bkmWeeKecK5XqmT5/OsWPHmD17NsuWLeOf//wnf/3rX/n++++pXbs24eHh5V1iheD0m5tIvnPnzhW5/4477iijSqS4du3axbp16zCZTPTr14+BAwfi7u5Ox44d0XfMim/NmjVs2bKFxMREOnfuzL59+/Dw8KBnz5706NFDobkCq169OtHR0bz44otUq1YNgH379tGiRYtyrkyKIyoqis8//5xbb70VgB49etCjRw+F5gps7969bNy4ETc3N7777juioqJwd3enV69edO7cubzLqzAUmkvJkCFDiI2Nxc/Pr1DQMhgM7Nixo5wqE3usVisGgwGAO++8kw8//JDnnnuO2267zbZdKi6LxYK7uzsBAQEMHDgQDw8P2768vLxyrEzsGT16NO3ateP999/n1VdfpWXLlnz22Wd07dq1vEsTB+Tm5mKxWKhRowbe3t627e7u7hiNmg1akXl6epKUlISfnx81atQgPT0dd3d3MjIyMJkUFf9H0zNKSVpaGn369GHixIk0a9asvMuRYpg3bx4xMTGMGTPGdgv4Q4cOMWzYMLKzszl06FA5VyhFmTNnDvv37+fzzz/Hzc0NgJ9//pnw8HAefvhhhg0bVs4Vij1Xrlxh4sSJ3HHHHezZs4eNGzeWd0nigP79+3Pq1CkMBgOtW7cmIiKCH374gXfeeYeHH36YESNGlHeJch07d+5k0qRJdOrUidzcXPbt20dQUBB79uzhhRdeoFu3buVdYoWg0FyKjhw5wqpVq5g6dWp5lyLF9MMPP+Dn50f9+vVt286fP8/ixYt56623yrEyccSBAwd48MEHbc9PnjxJXFwcwcHB5ViVFNeqVavYunUrixcvLu9SpBhOnjxJSkoKTZs25dChQ6SmpvLwww+Xd1liR1xcHN988w2nT58mLy+PmjVr8sgjj9hOHolCs4iIiIiIXZpkJCIiIiJih0KziIiIiIgdCs0iIuXo7Nmz3H333axatarA9kWLFjFmzBiH+7l06RJ33323s8sTEZH/UmgWESlnRqORt99+m1OnTpV3KSIich1afE9EpJx5enry3HPP8dprr/Hll1/i7u5u25eamsrkyZP5+eefMRgMPPTQQ7z66quYTCa++uorZs+ejZeXF3/+858L9Llq1SpWrFiBxWKhevXqjB8/nvr163Pw4EEiIiKwWCxA/pryHTp0KNP3KyLiinSmWUSkAnjppZfw8vJi9uzZBbZPmzaN6tWrs3HjRtasWcPx48dZvHgxiYmJjBs3jg8++IC1a9cSEBBge83+/fuJjo5m2bJlREdH88ILLzB8+HAAPvjgA5577jnWrl3LjBkz2LdvX5m+TxERV6UzzSIiFYDRaOSdd96ha9eutG3b1rb9+++/Z8WKFRgMBtzd3enduzefffYZdevWpVGjRjRo0ACAXr168d577wHw3Xffcfr0aXr37m3rJzk5mStXrtCxY0emTJnCzp07ad26Na+++mrZvlERERel0CwiUkHccccdTJo0idGjR9OlSxcA2zSK/7FYLOTm5mIwGPjjMvt/vNWtxWIhLCyMN954w/Y8ISGBW265hd69e/PII4+wd+9edu/ezbx589iwYQO+vr5l8A5FRFyXpmeIiFQgHTt2pF27dnz22WcAtG3blmXLlmG1WsnOziYqKorWrVvTvHlzTpw4wc8//wzA2rVrbX20adOGzZs3k5CQAMCKFSt49tlnAejduzfHjh2jW7duTJ06lZSUFJKTk8v4XYqIuB6daRYRqWDCw8M5dOiQ7fG0adMIDQ0lJyeHhx56iBdffBF3d3ciIyN5/fXXqVKlSoHbhj/00EMMGjSIgQMHYjAY8PHxYd68eRgMBl5//XVmzJjB+++/j9FoZNiwYdSuXbu83qqIiMvQbbRFREREROzQ9AwRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMSO/wPgkCk9ZX0M6wAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df.pivot_table(\n", " index=[\"Nodes\"],\n", " columns=[\"Tasks/Node\", \"Threads/Task\"],\n", " values=\"Sim. Time / s\",\n", ").plot(kind=\"bar\", figsize=(12, 4));"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "source": ["<a name=\"taskb\"></a>\n", "\n", "* Bonus task\n", " - Use `Sim. Time / s` and `Presim. Time / s` as values to show\n", " - Show a stack of those two values inside the pivot table"]}, {"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["<span class=\"feedback\">Tell me what you think about this tutorial! <a href=\"mailto:a.herten@fz-juelich.de\">a.herten@fz-juelich.de</a></span>"]}], "metadata": {"kernelspec": {"display_name": "JSC Pandas Tutorial", "language": "python", "name": "pandas"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2"}}, "nbformat": 4, "nbformat_minor": 2} +{"cells": [{"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["# *Introduction to* Data Analysis and Plotting with Pandas\n", "## JSC Tutorial\n", "\n", "Andreas Herten, Forschungszentrum J\u00fclich, 26 February 2019"]}, {"cell_type": "markdown", "metadata": {"exercise": "onlysolution", "slideshow": {"slide_type": "skip"}}, "source": ["**Version: Solutions**"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "source": ["## Task Outline\n", "\n", "* [Task 1](#task1)\n", "* [Task 2](#task2)\n", "* [Task 3](#task3)\n", "* [Task 4](#task4)\n", "* [Task 5](#task5)\n", "* [Task 6](#task6)\n", "* [Task 7](#task7)\n", "* [Bonus Task](#taskb)"]}, {"cell_type": "code", "execution_count": 2, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import pandas as pd"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 1\n", "<a name=\"task1\"></a>\n", "\n", "* Create data frame with\n", " - 10 names of dinosaurs, \n", " - their favourite prime number, \n", " - and their favourite color\n", "* Play around with the frame\n", "* Tell me on poll when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "nopresentation", "slideshow": {"slide_type": "skip"}}, "source": ["Jupyter Notebook 101:\n", "\n", "* Execute cell: `shift+enter`\n", "* New cell in front of current cell: `a`\n", "* New cell after current cell: `b`"]}, {"cell_type": "code", "execution_count": 21, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [],\n", " \"Favourite Prime\": [],\n", " \"Favourite Color\": []\n", "}\n", "#df_dinos = "]}, {"cell_type": "code", "execution_count": 22, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>Dinosaur Name</th>\n", " <th>Aegyptosaurus</th>\n", " <th>Tyrannosaurus</th>\n", " <th>Panoplosaurus</th>\n", " <th>Isisaurus</th>\n", " <th>Triceratops</th>\n", " <th>Velociraptor</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Favourite Prime</th>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>15</td>\n", " <td>16</td>\n", " <td>23</td>\n", " <td>42</td>\n", " </tr>\n", " <tr>\n", " <th>Favourite Color</th>\n", " <td>blue</td>\n", " <td>white</td>\n", " <td>blue</td>\n", " <td>purple</td>\n", " <td>violet</td>\n", " <td>gray</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": ["Dinosaur Name Aegyptosaurus Tyrannosaurus Panoplosaurus Isisaurus \\\n", "Favourite Prime 4 8 15 16 \n", "Favourite Color blue white blue purple \n", "\n", "Dinosaur Name Triceratops Velociraptor \n", "Favourite Prime 23 42 \n", "Favourite Color violet gray "]}, "execution_count": 22, "metadata": {}, "output_type": "execute_result"}], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [\"Aegyptosaurus\", \"Tyrannosaurus\", \"Panoplosaurus\", \"Isisaurus\", \"Triceratops\", \"Velociraptor\"],\n", " \"Favourite Prime\": [\"4\", \"8\", \"15\", \"16\", \"23\", \"42\"],\n", " \"Favourite Color\": [\"blue\", \"white\", \"blue\", \"purple\", \"violet\", \"gray\"]\n", "}\n", "df_dinos = pd.DataFrame(happy_dinos).set_index(\"Dinosaur Name\")\n", "df_dinos.T"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 2\n", "<a name=\"task2\"></a>\n", "\n", "* Read in `nest-data.csv` to `DataFrame`; call it `df` \n", " *Data was produced with [JUBE](http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html), Pandas works **very** well together with JUBE*\n", "* Get to know it and play a bit with it\n", "* Tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 30, "metadata": {"exercise": "task"}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["id,Nodes,Tasks/Node,Threads/Task,Runtime Program / s,Scale,Plastic,Avg. Neuron Build Time / s,Min. Edge Build Time / s,Max. Edge Build Time / s,Min. Init. Time / s,Max. Init. Time / s,Presim. Time / s,Sim. Time / s,Virt. Memory (Sum) / kB,Local Spike Counter (Sum),Average Rate (Sum),Number of Neurons,Number of Connections,Min. Delay,Max. Delay\n", "5,1,2,4,420.42,10,true,0.29,88.12,88.18,1.14,1.20,17.26,311.52,46560664.00,825499,7.48,112500,1265738500,1.5,1.5\n", "5,1,4,4,200.84,10,true,0.15,46.03,46.34,0.70,1.01,7.87,142.97,46903088.00,802865,7.03,112500,1265738500,1.5,1.5\n"]}], "source": ["!cat nest-data.csv | head -3"]}, {"cell_type": "code", "execution_count": 31, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>Nodes</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>...</th>\n", " <th>Max. Init. Time / s</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>420.42</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>88.18</td>\n", " <td>...</td>\n", " <td>1.20</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " <td>46560664.0</td>\n", " <td>825499</td>\n", " <td>7.48</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>200.84</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>46.03</td>\n", " <td>46.34</td>\n", " <td>...</td>\n", " <td>1.01</td>\n", " <td>7.87</td>\n", " <td>142.97</td>\n", " <td>46903088.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>8</td>\n", " <td>202.15</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>48.48</td>\n", " <td>...</td>\n", " <td>1.20</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " <td>47699384.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>89.57</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>20.41</td>\n", " <td>23.21</td>\n", " <td>...</td>\n", " <td>3.04</td>\n", " <td>3.19</td>\n", " <td>60.31</td>\n", " <td>46813040.0</td>\n", " <td>821491</td>\n", " <td>7.23</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>164.16</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.20</td>\n", " <td>40.03</td>\n", " <td>41.09</td>\n", " <td>...</td>\n", " <td>1.58</td>\n", " <td>6.08</td>\n", " <td>114.88</td>\n", " <td>46937216.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 21 columns</p>\n", "</div>"], "text/plain": [" id Nodes Tasks/Node Threads/Task Runtime Program / s Scale Plastic \\\n", "0 5 1 2 4 420.42 10 True \n", "1 5 1 4 4 200.84 10 True \n", "2 5 1 2 8 202.15 10 True \n", "3 5 1 4 8 89.57 10 True \n", "4 5 2 2 4 164.16 10 True \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "0 0.29 88.12 \n", "1 0.15 46.03 \n", "2 0.28 47.98 \n", "3 0.15 20.41 \n", "4 0.20 40.03 \n", "\n", " Max. Edge Build Time / s ... Max. Init. Time / s Presim. Time / s \\\n", "0 88.18 ... 1.20 17.26 \n", "1 46.34 ... 1.01 7.87 \n", "2 48.48 ... 1.20 7.95 \n", "3 23.21 ... 3.04 3.19 \n", "4 41.09 ... 1.58 6.08 \n", "\n", " Sim. Time / s Virt. Memory (Sum) / kB Local Spike Counter (Sum) \\\n", "0 311.52 46560664.0 825499 \n", "1 142.97 46903088.0 802865 \n", "2 142.81 47699384.0 802865 \n", "3 60.31 46813040.0 821491 \n", "4 114.88 46937216.0 802865 \n", "\n", " Average Rate (Sum) Number of Neurons Number of Connections Min. Delay \\\n", "0 7.48 112500 1265738500 1.5 \n", "1 7.03 112500 1265738500 1.5 \n", "2 7.03 112500 1265738500 1.5 \n", "3 7.23 112500 1265738500 1.5 \n", "4 7.03 112500 1265738500 1.5 \n", "\n", " Max. Delay \n", "0 1.5 \n", "1 1.5 \n", "2 1.5 \n", "3 1.5 \n", "4 1.5 \n", "\n", "[5 rows x 21 columns]"]}, "execution_count": 31, "metadata": {}, "output_type": "execute_result"}], "source": ["df = pd.read_csv(\"nest-data.csv\")\n", "df.head()"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "subslide"}}, "source": ["## Task 3\n", "<a name=\"task3\"></a>\n", "\n", "* Add a column to the Nest data frame called `Virtual Processes` which is the total number of threads across all nodes (i.e. the product of threads per task and tasks per node and nodes)\n", "* Remember to tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 54, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>Nodes</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>...</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " <th>Virtual Processes</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>420.42</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>88.18</td>\n", " <td>...</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " <td>46560664.0</td>\n", " <td>825499</td>\n", " <td>7.48</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>8</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>200.84</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>46.03</td>\n", " <td>46.34</td>\n", " <td>...</td>\n", " <td>7.87</td>\n", " <td>142.97</td>\n", " <td>46903088.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>8</td>\n", " <td>202.15</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>48.48</td>\n", " <td>...</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " <td>47699384.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>89.57</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>20.41</td>\n", " <td>23.21</td>\n", " <td>...</td>\n", " <td>3.19</td>\n", " <td>60.31</td>\n", " <td>46813040.0</td>\n", " <td>821491</td>\n", " <td>7.23</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>32</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>164.16</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.20</td>\n", " <td>40.03</td>\n", " <td>41.09</td>\n", " <td>...</td>\n", " <td>6.08</td>\n", " <td>114.88</td>\n", " <td>46937216.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 22 columns</p>\n", "</div>"], "text/plain": [" id Nodes Tasks/Node Threads/Task Runtime Program / s Scale Plastic \\\n", "0 5 1 2 4 420.42 10 True \n", "1 5 1 4 4 200.84 10 True \n", "2 5 1 2 8 202.15 10 True \n", "3 5 1 4 8 89.57 10 True \n", "4 5 2 2 4 164.16 10 True \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "0 0.29 88.12 \n", "1 0.15 46.03 \n", "2 0.28 47.98 \n", "3 0.15 20.41 \n", "4 0.20 40.03 \n", "\n", " Max. Edge Build Time / s ... Presim. Time / s Sim. Time / s \\\n", "0 88.18 ... 17.26 311.52 \n", "1 46.34 ... 7.87 142.97 \n", "2 48.48 ... 7.95 142.81 \n", "3 23.21 ... 3.19 60.31 \n", "4 41.09 ... 6.08 114.88 \n", "\n", " Virt. Memory (Sum) / kB Local Spike Counter (Sum) Average Rate (Sum) \\\n", "0 46560664.0 825499 7.48 \n", "1 46903088.0 802865 7.03 \n", "2 47699384.0 802865 7.03 \n", "3 46813040.0 821491 7.23 \n", "4 46937216.0 802865 7.03 \n", "\n", " Number of Neurons Number of Connections Min. Delay Max. Delay \\\n", "0 112500 1265738500 1.5 1.5 \n", "1 112500 1265738500 1.5 1.5 \n", "2 112500 1265738500 1.5 1.5 \n", "3 112500 1265738500 1.5 1.5 \n", "4 112500 1265738500 1.5 1.5 \n", "\n", " Virtual Processes \n", "0 8 \n", "1 16 \n", "2 16 \n", "3 32 \n", "4 16 \n", "\n", "[5 rows x 22 columns]"]}, "execution_count": 54, "metadata": {}, "output_type": "execute_result"}], "source": ["df[\"Virtual Processes\"] = df[\"Nodes\"] * df[\"Tasks/Node\"] * df[\"Threads/Task\"]\n", "df.head()"]}, {"cell_type": "code", "execution_count": 55, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"text/plain": ["Index(['id', 'Nodes', 'Tasks/Node', 'Threads/Task', 'Runtime Program / s',\n", " 'Scale', 'Plastic', 'Avg. Neuron Build Time / s',\n", " 'Min. Edge Build Time / s', 'Max. Edge Build Time / s',\n", " 'Min. Init. Time / s', 'Max. Init. Time / s', 'Presim. Time / s',\n", " 'Sim. Time / s', 'Virt. Memory (Sum) / kB', 'Local Spike Counter (Sum)',\n", " 'Average Rate (Sum)', 'Number of Neurons', 'Number of Connections',\n", " 'Min. Delay', 'Max. Delay', 'Virtual Processes'],\n", " dtype='object')"]}, "execution_count": 55, "metadata": {}, "output_type": "execute_result"}], "source": ["df.columns"]}, {"cell_type": "code", "execution_count": 56, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import matplotlib.pyplot as plt\n", "%matplotlib inline"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 4\n", "<a name=\"task4\"></a>\n", "\n", "* Sort the data frame by the virtual proccesses\n", "* Plot `\"Presim. Time / s\"` and `\"Sim. Time / s\"` of our data frame `df` as a function of the virtual processes\n", "* Use a dashed, red line for `\"Presim. Time / s\"`, a blue line for `\"Sim. Time / s\"` (see [API description](https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot))\n", "* Don't forget to label your axes and to add a legend\n", "* Submit when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 61, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["df.sort_values([\"Virtual Processes\", \"Nodes\", \"Tasks/Node\", \"Threads/Task\"], inplace=True)"]}, {"cell_type": "code", "execution_count": 62, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VdW5//HPQwgJCIqSaJHBgOIAgoFGxOKQioiiFfWK0ksVbr1X2+rtVaut3taK/sSrVdFarcNVXmC1WpwqdWSoQ/WqGChaBJSoKFCUQUAZJfD8/lj7kJPknOSQ5OScJN/367Vfe5+19vDs7OQ8WXtY29wdERGRurTJdAAiItI8KGGIiEhKlDBERCQlShgiIpISJQwREUmJEoaIiKRECUNERFKihCEiIilRwhARkZS0zXQADVFQUOBFRUWZDkNEpFmZO3fuGncv3N3lmnXCKCoqoqysLNNhiIg0K2b2aX2W0ykpERFJiRKGiIikRAlDRERS0qyvYYhI49u+fTvLly9n69atmQ5FGig/P5/u3buTm5vbKOtTwhCRKpYvX06nTp0oKirCzDIdjtSTu7N27VqWL19Or169GmWdOiUlIlVs3bqVLl26KFk0c2ZGly5dGrWlqIQhIjUoWbQMjX0cW2XCWLAAfvlLWLs205GIiDQfrTJhLFkCN94In32W6UhEJJGcnByKi4s5/PDDGT16NJs3b27wOu+9914eeuihBq/n4osvpri4mL59+9K+fXuKi4spLi7miSee4Ne//jWzZs1q8DYSuemmm3jkkUfSsu5UtcqL3gUFYbx6dWbjEJHE2rdvz/z58wEYO3Ys9957L5dffvmuenfH3WnTJvX/eX/0ox81Smx33303AEuXLuW0007bFSfA2Wef3SjbSOSll15i2rRpaVt/KlplC6Mw6kFFCUMk+x177LGUl5ezdOlSDjnkEM4//3wOP/xwli1bxowZMzj66KMZNGgQo0ePZuPGjQBcddVV9O3blwEDBnDFFVcAMGHCBG699VYASktLueyyyygpKeGwww7jnXfe4ayzzqJPnz786le/qnes48eP54knngBC10VXX301xcXFlJSUMG/ePEaMGMGBBx7Ivffeu2uZW265hSOPPJIBAwZw7bXXJlzvV199xTfffENhYdXun1599dVdLZyBAwfy9ddf1zv2VLTKFkbsZ75mTWbjEGkWSktrlp1zDvzkJ7B5M4wcWbN+/PgwrFkD1f/rfuWVlDddUVHBCy+8wMknnwzAkiVLmDp1KkOGDGHNmjXccMMNzJo1iz322IObb76ZSZMmcfHFF/P000+zePFizIz169cnXHe7du0oKyvjt7/9LaNGjWLu3Lnss88+HHjggVx22WV06dIl5TiT6dmzJ/Pnz+eyyy5j/PjxvPHGG2zdupXDDz+cH/3oR8yYMYMlS5YwZ84c3J3TTz+d1157jeOOO67KembNmsWwYcNqrP/WW2/l7rvvZujQoWzcuJH8/PwGx1ybtLUwzCzfzOaY2btm9r6ZXReV9zKzt82s3Mz+ZGbtovK86HN5VF+Urtj23htyctTCEMlWW7Zs2fWfec+ePbngggsAOOCAAxgyZAgAb731FgsXLmTo0KEUFxczdepUPv30U/baay/y8/O54IILeOqpp+jQoUPCbZx++ukA9O/fn379+tG1a1fy8vLo3bs3y5Yta5T9iN/GUUcdRadOnSgsLCQvL4/169czY8YMZsyYwcCBAxk0aBCLFy9myZIlNdbz4osvcsopp9QoHzp0KJdffjl33nkn69evp23b9LYB0rn2bcAJ7r7RzHKB183sBeBy4HZ3f8zM7gUuAO6Jxuvc/SAzGwPcDJybjsDatIEuXZQwRFJSW4ugQ4fa6wsKdqtFERN/DSPeHnvssWva3Rk+fDiPPvpojfnmzJnD7NmzeeKJJ7jrrrv461//WmOevLw8ANq0abNrOva5oqJit2NOpK5tuDtXX301F110Ua3rmTNnDvfcc0+N8quuuopTTz2V559/nqFDh/LSSy9x6KGHNkrsiaStheHBxuhjbjQ4cALwRFQ+FTgjmh4VfSaqH2ZpvBm8oEAJQ6Q5GzJkCG+88Qbl5eUAbNq0iQ8//JCNGzeyYcMGRo4cye233867776b4UiTGzFiBJMnT9517WXFihWsWrWqyjzvv/8+hx56KDk5OTWW/+ijj+jfvz+/+MUvOPLII1m8eHFa401r+8XMcoC5wEHA3cBHwHp3j6Xv5UC3aLobsAzA3SvMbAPQBUjLlYbCQiUMkeassLCQKVOm8P3vf59t27YBcMMNN9CpUydGjRrF1q1bcXcmTZpU722MHDmSBx54gP3337+xwq7ipJNOYtGiRRx99NEAdOzYkYcffph999131zzx13Cqu+OOO3j55Zdp06YN/fr1S3jaqjGZu6d1AwBm1hl4GrgGmOLuB0XlPYAX3P1wM1sAnOzuy6O6j4Cj3H1NtXVdCFwI0LNnz29/+mm93gPC6NHhAb5Fi+q7VyIt06JFizjssMMyHYZEhg8fzkMPPUTXrl3rtXyi42lmc929ZHfX1SS31br7euBl4Gigs5nFWjbdgRXR9AqgB0BUvxdQ41lsd7/f3UvcvaT6LWa7Qy0MEWkOZs6cWe9k0djSeZdUYdSywMzaA8OBRYTEEbvPbhzwTDQ9PfpMVP9XT2Pzp6AAvvwSduxI1xZERFqWdF7D6ApMja5jtAGmufuzZrYQeMzMbgD+DjwYzf8g8AczKwe+BMakMTYKC8E99CcVd7pQRESSSFvCcPf3gIEJyj8GBico3wqMTlc81cU/vKeEISJSt1bZNQioexARkd2lhKGEISKSklabMNRjrUj2mjhxIv369WPAgAEUFxfz9ttvA/Dv//7vLFy4sMHrP+qooyguLqZnz54UFhbu6sBv6dKljBw5Mmn/Uw11yimnsHz58rSsuym0ys4HQQlDJFu9+eabPPvss8ybN4+8vDzWrFnDN998A8ADDzzQKNuIJaApU6ZQVlbGXXfdtavu+eefb5RtVLdlyxbWrl1L9+7d07L+ptBqWxjt2sFee6nHWpFss3LlSgoKCnb1vVRQULDrSevS0lLKysqA8FT0lVdeSb9+/TjxxBOZM2cOpaWl9O7dm+nTp9d7+0VFRaxZs4alS5dy6KGHMn78eA4++GDGjh3LrFmzGDp0KH369GHOnDlA6JLkhz/8IYMHD2bgwIE888wzCdf7yiuvUJqg598777xzV1fsY8ak9ebQBmu1LQzQw3sidbn0UkjQB2CDFBfDHXckrz/ppJO4/vrrOfjggznxxBM599xzOf7442vMt2nTJk444QRuueUWzjzzTH71q18xc+ZMFi5cyLhx43b1FNsQ5eXlPP7440yePJkjjzySP/7xj7z++utMnz6dG2+8kT//+c9MnDiRE044gcmTJ7N+/XoGDx7MiSeeWKWjRAhdfJxxxhk1tnHTTTfxySef7OrBNpu12hYGqANCkWzUsWNH5s6dy/33309hYSHnnnsuU6ZMqTFfu3btdvWx1L9/f44//nhyc3Pp378/S5cubZRYevXqRf/+/Xf11TRs2DDMrMo2ZsyYwU033URxcTGlpaVs3bqVzxK8//mNN97gmGOOqVE+YMAAxo4dy8MPP5z27skbKrujS7PCQqhnV1QirUJtLYF0ysnJobS0lNLSUvr378/UqVMZP358lXlyc3OJdWgd3314Oronr20b7s6TTz7JIYccknQ9H3/8MT169KBdu3Y16p577jlee+01/vKXvzBx4kT+8Y9/ZG3iaNUtjMJCXcMQyTYffPBBlZcIzZ8/nwMOOCCDEdVuxIgR/O53vyPWk9Hf//73GvMk63F2586dLFu2jO9+97vcfPPNbNiwYVdX59mo1SeM1atDFyEikh02btzIuHHjdl0IXrhwIRMmTKjXuv75z38yMtErZBvRNddcw/bt2xkwYAD9+vXjmmuuqTHPiy++mDBh7Nixgx/84Af079+fgQMH8tOf/pTOnTunNd6GaJLuzdOlpKTEY3dM1Mdtt8EVV8D69eGOKRFR9+aNbdu2bQwdOpSGfFc1RLPr3jxb6VkMEUm3vLy8jCWLxtaqE4a6BxERSZ0SBrrwLVJdcz5VLZUa+zgqYaAWhki8/Px81q5dq6TRzLk7a9euJT8/v9HWmZ03+zYRJQyRmrp3787y5ctZrT+MZi8/P79R+65q1QmjQwfIz1fCEImXm5tLr169Mh2GZKFWfUrKTA/viYikqlUnDFAHhCIiqVLCUMIQEUlJq08Y6rFWRCQ1rT5hqIUhIpIaJYxC2LQJtmzJdCQiItktbQnDzHqY2ctmttDM3jez/4rKJ5jZCjObHw0j45a52szKzewDMxuRrtji6WlvEZHUpPM5jArgZ+4+z8w6AXPNbGZUd7u73xo/s5n1BcYA/YD9gVlmdrC770hjjFUe3uvRI51bEhFp3tLWwnD3le4+L5r+GlgEdKtlkVHAY+6+zd0/AcqBwemKL0Y91oqIpKZJrmGYWREwEHg7KrrEzN4zs8lmtndU1g1YFrfYchIkGDO70MzKzKysMbou0CkpEZHUpD1hmFlH4EngUnf/CrgHOBAoBlYCt+3O+tz9fncvcfeSwti3fQOoPykRkdSkNWGYWS4hWTzi7k8BuPsX7r7D3XcC/0vlaacVQPxVhO5RWVp17gw5OUoYIiJ1SeddUgY8CCxy90lx5V3jZjsTWBBNTwfGmFmemfUC+gBz0hVfTJs20KWLEoaISF3SeZfUUOA84B9mNj8q+2/g+2ZWDDiwFLgIwN3fN7NpwELCHVYXp/sOqRg9vCciUre0JQx3fx2wBFXP17LMRGBiumJKRj3WiojUrdU/6Q1qYYiIpEIJAyUMEZFUKGEQHt778kuoqMh0JCIi2UsJg8pnMb78MrNxiIhkMyUM9PCeiEgqlDBQwhARSYUSBuqAUEQkFUoYqIUhIpIKJQwqWxh6eE9EJDklDCA3N3RCqBaGiEhyShgRPbwnIlI7JYxIQYEShohIbZQwIuqAUESkdkoYEZ2SEhGpnRJGJNbCcM90JCIi2UkJI1JQANu3w4YNmY5ERCQ7KWFE9PCeiEjtlDAisYShC98iIokpYUTUwhARqZ0SRkQJQ0SkdkoYEfVYKyJSOyWMyB57QPv2uoYhIpJM2hKGmfUws5fNbKGZvW9m/xWV72NmM81sSTTeOyo3M7vTzMrN7D0zG5Su2JLRw3siIsmls4VRAfzM3fsCQ4CLzawvcBUw2937ALOjzwCnAH2i4ULgnjTGlpAShohIcmlLGO6+0t3nRdNfA4uAbsAoYGo021TgjGh6FPCQB28Bnc2sa7riS0QJQ0QkuSa5hmFmRcBA4G1gP3dfGVV9DuwXTXcDlsUttjwqazLqsVZEJLm0Jwwz6wg8CVzq7l/F17m7A7vVe5OZXWhmZWZWtrqRv93VY62ISHJpTRhmlktIFo+4+1NR8RexU03ReFVUvgLoEbd496isCne/391L3L2kMPbwRCMpLIRNm2DLlkZdrYhIi5DOu6QMeBBY5O6T4qqmA+Oi6XHAM3Hl50d3Sw0BNsSdumoSenhPRCS5tmlc91DgPOAfZjY/Kvtv4CZgmpldAHwKnBPVPQ+MBMqBzcC/pTG2hOIf3uvZs6m3LiKS3dKWMNz9dcCSVA9LML8DF6crnlSohSEikpye9I6jHmtFRJJTwoijFoaISHJKGHE6d4acHCUMEZFElDDimOnhPRGRZJQwqtHDeyIiidWZMMzsN2a2p5nlmtlsM1ttZj9oiuAyQf1JiYgklkoL46SoS4/TgKXAQcCV6Qwqk5QwREQSSyVhxJ7VOBV43N03pDGejNM1DBGRxFJJGM+a2WLg28BsMysEtqY3rMwpLIR162D79kxHIiKSXepMGO5+FfAdoMTdtxO67RiV7sAyJfYsxpdfZjYOEZFsk9JdUu7+pbvviKY3ufvn6Q0rc/TwnohIYrqttholDBGRxJImjOhdFq1OfI+1IiJSqbbeat80s+XAi8CL7r60aULKLHVAKCKSWNKE4e4l0bu4TwbuMLNuwOvAC8Cr7r6tSSJsYl26hLFaGCIiVdV6DcPdl7r7ve5+BuFOqb8AJwJ/M7PnmiLAppabC3vvrYQhIlJdyi9Qim6p/Ws0ELU4WiQ9vCciUlO975Jy9xWNGUg2UfcgIiI16bbaBNRjrYhITSknDDPrkM5AsolaGCIiNaXSvfl3zGwhsDj6fISZ/T7tkWVQrIXhnulIRESyRyotjNuBEcBaAHd/FzgunUFlWkEBVFTA+vWZjkREJHuk2pfUsmpFO9IQS9bQw3siIjWlkjCWmdl3AI/euncFsKiuhcxsspmtMrMFcWUTzGyFmc2PhpFxdVebWbmZfWBmI+q1N41E/UmJiNSUSsL4EXAx0A1YARRHn+syhfCUeHW3u3txNDwPYGZ9gTFAv2iZ35tZTgrbSAslDBGRmup8cM/d1wBjd3fF7v5a1LVIKkYBj0XdjXxiZuXAYODN3d1uY1AHhCIiNdWZMMysF/CfQFH8/O5+ej23eYmZnQ+UAT9z93WE1stbcfMsj8oyQi0MEZGaUuka5M/Ag4R+pHY2cHv3AP8P8Gh8G/DD3VmBmV0IXAjQs2fPBoaTWIcOYdBFbxGRSqkkjK3ufmdjbMzdv4hNm9n/As9GH1cAPeJm7R6VJVrH/cD9ACUlJWl7UkIP74mIVJXKRe/fmtm1Zna0mQ2KDfXZmJl1jft4JhC7g2o6MMbM8qJTYH2AOfXZRmNRwhARqSqVFkZ/4DzgBCpPSXn0OSkzexQoBQqiFzFdC5SaWXG0/FLgIgB3f9/MpgELgQrg4tg7xDNl/vzw8J6IiATmdfR/Ed2x1Nfdv2makFJXUlLiZWVlaVm3WRirexARaWnMbK67l+zucqmckloAdN79kJq3MWOge/dMRyEikj1SOSXVGVhsZu8Au17L2oDbapuFtm2hXbtMRyEikj1SSRjXpj0KERHJeqk86f1qUwQiIiLZLWnCMLPX3f0YM/uacFfTrirA3X3PtEcnIiJZo7YWxh4A7t6piWIREZEsVttdUrqhVEREdqmthbGvmV2erNLdJ6UhHhERyVK1JYwcoCPhmoWIiLRytSWMle5+fZNFIiIiWa22axhqWYiIyC61JYxhTRaFiIhkvaQJw92/bMpAREQku6XS+aCIiIgShoiIpEYJQ0REUqKEUYuKCr1ASUQkRgkjiSOOgM8+g4kTMx2JiEh2SOV9GK3S5ZfDe+/BNdfA3nvDxRdnOiIRkcxSwkiiTRt48EHYsAEuuQQ6d4axYzMdlYhI5uiUVC1yc+FPf4LSUhg3Dp59NtMRiYhkjhJGHfLz4ZlnoLgYRo+G117LdEQiIpmhhJGCPfeEF16AoiL43vdg3rxMRyQi0vTSljDMbLKZrTKzBXFl+5jZTDNbEo33jsrNzO40s3Ize8/MBqUrrvoqLIQZM8K1jJNPhg8+yHREIiJNK50tjCnAydXKrgJmu3sfYHb0GeAUoE80XAjck8a46q1HD5g5M0wPHx5uuxURaS3SljDc/TWgegeGo4Cp0fRU4Iy48oc8eAvobGZd0xVbQxx8MLz0Urh7avhwWLUq0xGJiDSNpr6GsZ+7r4ymPwf2i6a7Acvi5lselWWlgQPDHVPl5XDnnZmORkSkaWTsore7O7DbHW+Y2YVmVmZmZatXr05DZKk59ljo2BE2bcpYCCIiTaqpE8YXsVNN0Th2QmcF0CNuvu5RWQ3ufr+7l7h7SWFhYVqDFRGRSk2dMKYD46LpccAzceXnR3dLDQE2xJ26EhGRLJC2rkHM7FGgFCgws+XAtcBNwDQzuwD4FDgnmv15YCRQDmwG/i1dcYmISP2kLWG4+/eTVNV4V3h0PUPd+4mIZDE96S0iIilRwhARkZQoYYiISEqUMEREJCVKGCIikhIlDBERSYkShoiIpEQJQ0REUqKEISIiKVHCEBGRlChhiIhISpQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDRERSooTRQCtWwFdfZToKEZH0U8JogAMPhMcfh4ICGDYMbrsNFi0C90xHJiLS+JQwGuDtt+HVV+Gyy2DVKrjiCujbNySSSy6B55+HLVsyHaWISOMwb8b/DpeUlHhZWVmmw9jls8/ghRdCopg1CzZvho4dYd486NMn09GJiARmNtfdS3Z3ObUwGlHPnnDRRfDMM7B2Lfzud7BxIyxblunIREQaTgkjTfLzYcCATEchItJ4lDBERCQlbTOxUTNbCnwN7AAq3L3EzPYB/gQUAUuBc9x9XSbiExGRmjLZwviuuxfHXXi5Cpjt7n2A2dFnERHJEtl0SmoUMDWangqckcFYRESkmkwlDAdmmNlcM7swKtvP3VdG058D+yVa0MwuNLMyMytbvXp1U8QqIiJk6BoGcIy7rzCzfYGZZrY4vtLd3cwSPiDi7vcD90N4DiP9oYqICGSoheHuK6LxKuBpYDDwhZl1BYjGqzIRm4iIJNbkCcPM9jCzTrFp4CRgATAdGBfNNg54pqljExGR5DJxSmo/4Gkzi23/j+7+opm9A0wzswuAT4FzMhBbo+rUKYzvuw+GDIEOHTIbj4hIQzR5wnD3j4EjEpSvBYY1dTzpVFwM118P114LixfDU0+FjglFRJqjbLqttsUxg2uugeeeC/1JlZSEjglFRJojJYwmcMopUFYGRUVw2mlw3XWwc2emoxIR2T1KGE2kd2944w047zyYMAFOPx3WpdjxyZw58MknaQ1PRKROmXoOo1Xq0AGmTIGjjoJLLw2nqJ5+umavttu2wccfQ3k5LFkCP/tZKG/Gry4RkRZACaOJmcFPfgIDB8LZZ4e7py6/PLQ2liwJw2ef6ZSViGQfJYwMOfro8Ca+c8+FiROhc+fwVr7vfAfOPz9Mx4YhQ0JrREQkk5QwMmi//eDll+Grr2DPPUPrQ0QkWylhZJgZ7LVXpqMQEamb7pJqJnbs0EVvEckstTCagXbtYNo0mD4dunaFb30rDLHp6mX77gu5uZmOWkRaGiWMZmDKFHj1Vfj8c1i5Mow//DCUffllzfnNoKCgZmIZNChcZBcRqQ8ljGagpCT5XVLbtsEXX4QkEp9QqieXlSvhm29g1CjIz2/a+EWkZVDCaOby8qBnzzDU5je/gV/8Am64Adq2DYnmm2/COH66qAjOPBMGD9ZdWyJSlRJGKxFLKBMnhnFubkg27dpVjtu1gyefhJtvhu7d4ayz4F/+BYYOhZyczMUuItnBvBnfelNSUuJlZWX1W3jxYujYMXwzthKbN4cv/nbtkrce1q2DZ58NieOll2Dr1nAR/YwzQvL47nd1QV2kuTOzue6+248Dt86E4Q7HHAPvvw933hl6BNT5lxo2bgzdsT/5ZOiifdOmkGxGjQqJo0MHaN8+jOOnq4/z8/XjFckmShi766OPYPx4eP318A14333h0WtJaMuWkDRGj67f8u3bV00kZ58NN97YuDGKSGqUMOpjxw644w745S/D6amXX4b+/RsvwBZox47Q0tiyJZziio3jp+saT54c1vX731deO4m/jhI/JCqPL8vNVetFZHfVN2G07oveOTmh7/BTTgm3ER1ySCh317dQEjk5od+rPfes/zr22gtuvz302tsYcnNrTzpt24Z5qg+x8k6dYJ99wrD33pXT8Z87ddKvhEjrbmEksn49jBgRXsQ9cmTjrluAkI/XrYPt2ytv6Y0fEpU1pLyiImyr+lBREeq//jo8ALltW/KYc3KSJ5T/+z9YuDCc0ezYEfbYo/7j9u3DNZ+8vDCu7QYFkfpSC6OxrFkTzpucempIGhMmZDqiFscsfNlmmy1bQuKIDevWJf/8+echSaxbBxs2hOWPOy7cKLBpUxivXVv186ZN9XvPSX5+1SQSP6RStrvLbdsGU6dWttwStd7qOlVY22fdot18KWFUd9BB4QXcgweHO6j22Qd++tNQV1YWvh06dgznKDp1Crfl6l/AFqF9e+jWLQy7o6IijNvW8dfkHm5Tjk8g1cdbtyYetm1LXv7VV7BqVfJ5s+0kQps2u59k6pOYEp2abNMmJKzqQ2OVt/Svgqw7JWVmJwO/BXKAB9z9pmTzpuWUVMzNN8PVV4dOmP75z1D2ve+FhxSqz/fzn6cnBpEGcg+n35IlnWSJqGPH0O9YbPnaTv9VL6vrc2PNE/u8fXumf8pVpTMhxZePHh1u9KyPFnFKysxygLuB4cBy4B0zm+7uC5s8mF/8Aq68Mvz1xEyaFJLD11+HYdo06NIl/It3+umVRzM2Pv98GDMmnJvQAwmSAWaV/2HXd/m8vDBkq/ikliypbNsWTgfu2FFzaKzyxlxXovLq+/D1103/s86qhAEMBsrd/WMAM3sMGAU0fcKA8MXfoUPl59g7U2NiXb/GTmLHruLGjvjmzaG8tBQWLAh/tZ07h2H4cLjrrlD/85+HHgQrKsKyFRWhP47LLgv1ZmG44YbKz2edFe7q+vhjePzxyphiCemcc0LHUB98AH/5CyxdGk6p/eQnIZmdfno4pfbBB+EBxjZtqia8E04I3xKffALLl1fWVVSE8iOPDNv58MNQHx87hNYYwN/+BuXloTw2T14e/Md/hJ/Rxo01Y4+dU4j/GcbXx+6n3bmzakKPiZ1/2LkzfFtUl5sb9mXHjqr/nsZ+zrFzFzt3Vp7PidU1JOHHt+bNwvpjFzXi69q2rayP32/9s5FQfFLs2DHT0bRw7p41A3A24TRU7PN5wF3J5v/2t7/tzcJDD7nfeKP7z3/ufuGF7uec43799ZX1RxzhXlTkfuCB7occ4t63r/uVV1bWh6+TqsOTT4a6F15IXD9jRqifNi1x/ccfh/obb0xcv2pVqL/66sT1O3aE+osuqlnXvn1l7GPH1qzfd99Q9/nnidf9m9+E+iVLEtf//vehft68xPV/+EOof/XVxPV//nOof+65xPWzZ4f6Rx9NXP/226H+gQfc27Rxz8mpOixaFOonTUq8/LJlof666xLXr18f6q+4InF9RUWo//GPq26/bVv3vfaq/NmPG+eel+eenx+G9u3D71nMmDHunTqFYc89wzBwYGX96ae777135bBXSsZRAAAKN0lEQVTPPu7HH19ZP3y4e0FB1eG00yrrhw4Nxzp++Nd/rawfOND9W98KQ9euYbjoosr6Qw5x33//MHTrFoYrrqisP+AA9x49qg7XXRfqNm0K9fFDUZH7bbeF+tWr3Xv1qjncd1+o/+QT9969aw4PPxzq33/f/aCDag6x3605c9z79Kk5zJwZ6l95Jexf9eHNNyt/Nw89tObw3nuh/sMPvSGAMq/Hd3S2tTDqZGYXAhcC9Kyri9Zscd55tdfPn197/c6dlf8Je/SfaOwK6/Dhlf+Fx+qg8hzCmWeGtqt7uAMs9l9trA+tCy4Id4TF2rqxcefOlfXDhlW2g1evrqyD0Ar6/vdDPPFDzKRJocfDnJya9R07wm231Yz9uOPCuEsXuOWWmvVDhoTx/vuHa0jVDRwYxkVF8D//U7P+sMPC+JBDKutjX8cAvXuHcf/+cP31Vb+uofKq+BFHhOtcseVjLYAuXSrj/PWvw3R8KyH2EEtpaVh/9RZE7NiddFLlv8zx24/Nd/LJlbebxerjO/o6+eTK3gti9fH/gp94YnhZSmy97uFFKvH1BxxQWRe/7xB+L+Jb3AAHHlg5PXx4zQdh+/WrWr9+fdVjO2hQ5fRJJ4Vb1+Lr45cfNqzmFf1YPDk54ecbE5uvqCiMc3ND90DVxfavfXv4zndq1sd+nh06hBtjqosd+44dE7+TIPa306kTFBfXrI8dn86dYcCAmvXt24dxhs4RZtVFbzM7Gpjg7iOiz1cDuHuCv/o0X/QWEWmh6nvRO9ve6f0O0MfMeplZO2AMMD3DMYmICFl20dvdK8zsEuAlwm21k939/QyHJSIiZFnCAHD354HnMx2HiIhUlW2npEREJEspYYiISEqUMEREJCVKGCIikhIlDBERSUlWPbi3u8xsNfBpkuoCYE0ThtNUtF/NT0vdN+1X8xPbtwPcvXB3F27WCaM2ZlZWnycZs532q/lpqfum/Wp+GrpvOiUlIiIpUcIQEZGUtOSEcX+mA0gT7Vfz01L3TfvV/DRo31rsNQwREWlcLbmFISIijajFJQwzO9nMPjCzcjO7KtPxNJSZLTWzf5jZfDMri8r2MbOZZrYkGu+d6TjrYmaTzWyVmS2IK0u4HxbcGR3D98xsUPI1Z1aS/ZpgZiuiYzbfzEbG1V0d7dcHZjYiM1HXzcx6mNnLZrbQzN43s/+KylvCMUu2b836uJlZvpnNMbN3o/26LirvZWZvR/H/KXp1BGaWF30uj+qL6txIfV7Tl60DoUv0j4DeQDvgXaBvpuNq4D4tBQqqlf0GuCqavgq4OdNxprAfxwGDgAV17QcwEngBMGAI8Ham49/N/ZoAXJFg3r7R72Qe0Cv6Xc3J9D4k2a+uwKBouhPwYRR/SzhmyfatWR+36GffMZrOBd6OjsU0YExUfi/w42j6J8C90fQY4E91baOltTAGA+Xu/rG7fwM8BozKcEzpMAqYGk1PBc7IYCwpcffXgC+rFSfbj1HAQx68BXQ2s65NE+nuSbJfyYwCHnP3be7+CVBO+J3NOu6+0t3nRdNfA4uAbrSMY5Zs35JpFsct+tlvjD7mRoMDJwBPROXVj1nsWD4BDDOLvf83sZaWMLoBy+I+L6f2X4TmwIEZZjY3ep85wH7uvjKa/hzYLzOhNViy/WgJx/GS6NTM5LhThs1yv6JTFQMJ/7G2qGNWbd+gmR83M8sxs/nAKmAmoTW03t0rolniY9+1X1H9BqBLbetvaQmjJTrG3QcBpwAXm9lx8ZUe2pPN/la3lrIfkXuAA4FiYCVwW2bDqT8z6wg8CVzq7l/F1zX3Y5Zg35r9cXP3He5eDHQntIIObcz1t7SEsQLoEfe5e1TWbLn7imi8Cnia8EvwRay5H41XZS7CBkm2H836OLr7F9Ef7k7gf6k8fdGs9svMcglfqI+4+1NRcYs4Zon2raUcNwB3Xw+8DBxNOD0Ye7tqfOy79iuq3wtYW9t6W1rCeAfoE90V0I5wIWd6hmOqNzPbw8w6xaaBk4AFhH0aF802DngmMxE2WLL9mA6cH915MwTYEHcaJOtVO3d/JuGYQdivMdHdKb2APsCcpo4vFdG57AeBRe4+Ka6q2R+zZPvW3I+bmRWaWedouj0wnHB95mXg7Gi26scsdizPBv4atRqTy/SV/TTcKTCScNfDR8AvMx1PA/elN+HujHeB92P7QzjPOBtYAswC9sl0rCnsy6OEZv52wnnUC5LtB+Fuj7ujY/gPoCTT8e/mfv0hivu96I+ya9z8v4z26wPglEzHX8t+HUM43fQeMD8aRraQY5Zs35r1cQMGAH+P4l8A/Doq701IcOXA40BeVJ4ffS6P6nvXtQ096S0iIilpaaekREQkTZQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDmr2o59ER1couNbN7zGx/M3siyXJFZvavDdz2K2ZW4x3JUfkHUc+hb5jZIQ3Zjkg2UMKQluBRwkOa8cYAj7r7P9397OoLRE+2FgENShh1GOvuRxA6eLslQQw5ady2SKNTwpCW4Ang1Lh+/ouA/YG/Ra2IBVH5eDObbmZ/JTx8dhNwbPTug8ui+rtiKzWzZ82sNJq+x8zK4t8zsBteAw6K1rPUzG42s3nAaDMrNrO3og7vnrbK90scZGazohbKPDM7MCq/0szeieaPve9gDzN7Lpp3gZmdG5XfZOGdD++Z2a31+cGKxGtb9ywi2c3dvzSzOYQOGp8htC6mubsn6K15EDAgWqaU8P6D0yAklFo288tomRxgtpkNcPf3Ugzxe4QniGPWeuhQEjN7D/hPd3/VzK4HrgUuBR4BbnL3p80sH2hjZicRuqUYTHiyenrUGWUh8E93PzVa515m1oXQvcWh0c+hc4qxiiSlFoa0FPGnpcZEnxOZ6e6pvr8i3jlRq+DvQD/CS3Xq8kjU1fRQ4Iq48j9B+GIHOrv7q1H5VOC4qP+wbu7+NIC7b3X3zYS+xE6KYphH6Im0DyEZDY9aLse6+wZCV9VbgQfN7Cxgcz32WaQKtTCkpXgGuN3Cq0E7uPvcJPNtqmUdFVT9JyofwisuCV/4R7r7OjObEqurw1h3L9vNGGpjwP+4+301KsJ+jwRuMLPZ7n69mQ0GhhE6lruE8CIdkXpTC0NaBA9vGnsZmEzy1kV1XxNe0RmzFCg2szZm1oPK7q33JHzJbzCz/Qinvhoj5g3AOjM7Nio6D3jVw1vglpvZGbDr3csdgJeAH1p4jwNm1s3M9jWz/YHN7v4w4eL6oGievdz9eeAy4IjGiFlaN7UwpCV5lPDOkOp3TCXzHrDDzN4FpgB3AJ8ACwndQsde4/mumf0dWEx4Q9kbjRjzOODeKCF8DPxbVH4ecF90XWM7MNrdZ5jZYcCb0bWZjcAPCBfUbzGzndG8PyYkwmei6x8GXN6IMUsrpd5qRUQkJTolJSIiKVHCEBGRlChhiIhISpQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDRERS8v8BI85P8OPxUh8AAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, ax = plt.subplots()\n", "ax.plot(df[\"Virtual Processes\"], df[\"Presim. Time / s\"], linestyle=\"dashed\", color=\"red\")\n", "ax.plot(df[\"Virtual Processes\"], df[\"Sim. Time / s\"], \"-b\")\n", "ax.set_xlabel(\"Virtual Process\")\n", "ax.set_ylabel(\"Time / s\")\n", "ax.legend();"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 5\n", "<a name=\"task5\"></a>\n", "\n", "Use the NEST data frame `df` to:\n", "\n", "1. Make the virtual processes the index of the data frame (`.set_index()`)\n", "2. Plot `\"Presim. Program / s\"` and `\"Sim. Time / s`\" individually\n", "3. Plot them onto one common canvas!\n", "4. Make them have the same line colors and styles as before\n", "5. Add a legend, add missing labels\n", "\n", "* Done? Tell me! [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 68, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [], "source": ["df.set_index(\"Virtual Processes\", inplace=True)"]}, {"cell_type": "code", "execution_count": 69, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAADTCAYAAAC7p6aqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3X+cXHV97/HXe2Z2Nz93k8CSZJdoKqT8CiWlC7VXpVArAlqxrdVwey229lJ9YFtsvb22fdxWbXsv9ofeVixIKwV7KdWrptKKCkUU5UJliUASfoNBsgnJQshufu/uzOf+cc4kk81MdrMzmV95Px+Pfcw53/M953znHMe8+Z7vOUcRgZmZmZkdW5lGN8DMzMzseODQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdZBrdAPKOfHEE2P58uWNboaZmZnZlB566KGXIqJ3qnpNGbqWL1/O4OBgo5thZmZmNiVJz0+n3pShS9JNwFuBbRGxMi37PHBaWmUBsCMiVpVZdyOwE8gDExExMK3Wm5mZmbWZ6fR03QxcB3yuWBAR7ypOS/orYOQI618UES/NtIFmZmZm7WDK0BUR90paXm6ZJAHvBH6mts0yMzMzay/V3r34BmBrRDxdYXkAd0p6SNJVR9qQpKskDUoaHB4errJZZmZmZs2l2tB1BXDbEZa/PiLOBS4FrpZ0QaWKEXFjRAxExMD8BYuqbJaZmZlZc5lx6JKUA34B+HylOhExlH5uA9YA509n27vH8jNtlpmZmVlTqqan62eBJyJiU7mFkuZKml+cBi4G1k9nw/scuszMzKzNTBm6JN0G3A+cJmmTpPemi1Yz6dKipD5Jd6Szi4HvSnoE+B7w1Yj4+nQatWfcocvMzMzaiyKi0W04zKylK2LkhSfoymUb3RQzMzOzI5L00HSeRdqU714M4OmtuxrdDDMzM7OaacrQBbB+6EjPWzUzMzNrLU0ZujIS6xy6zMzMrI00Zeia3ZFl/ebRRjfDzMzMrGaaM3R1Znl8yyjj+UKjm2JmZmZWE80ZujqyjE0UeHbYg+nNzMysPTRn6OpMHhWxbpPHdZmZmVl7aMrQ1ZXLMKczywaP6zIzM7M20ZShC+DMpd1+bISZmZm1jaYNXSv7e3hsyyj5QvM9Md/MzMzsaDV16NozlucHL3kwvZmZmbW+Jg5d3QCsH/K4LjMzM2t9TRu6Tu2dR1cu43FdZmZm1hamDF2SbpK0TdL6krKPSBqS9HD6d1mFdS+R9KSkZyR9+GgalstmOGNpN+s3O3SZmZlZ65tOT9fNwCVlyj8ZEavSvzsmL5SUBT4NXAqcCVwh6cyjadzK/m42DI1S8GB6MzMza3FThq6IuBfYPoNtnw88ExHPRcQY8M/A5UezgZV9PezcP8EPt++Zwe7NzMzMmkc1Y7o+IOnR9PLjwjLL+4EXSuY3pWVlSbpK0qCkweHhYSC5gxHwJUYzMzNreTMNXdcDpwCrgC3AX1XbkIi4MSIGImKgt7cXgB9dPJ+OrHwHo5mZmbW8GYWuiNgaEfmIKAB/R3IpcbIhYFnJ/Mlp2bR15jKctmQ+G9zTZWZmZi1uRqFL0tKS2Z8H1pep9iCwQtKPSOoEVgO3H+2+Vvb1sG5ohAgPpjczM7PWNZ1HRtwG3A+cJmmTpPcCfy5pnaRHgYuAD6Z1+yTdARARE8AHgG8AjwNfiIgNR9vAs/p72LFnnKEde492VTMzM7OmkZuqQkRcUab4sxXqbgYuK5m/AzjscRJH4+ziYPqhUU5eOKeaTZmZmZk1TNM+kb7o9CXzyWbkcV1mZmbW0po+dM3qyLLipHms8+uAzMzMrIU1fegCOKuvh/UeTG9mZmYtrCVC18r+bl7aNca2nfsb3RQzMzOzGWmJ0HVwML0vMZqZmVlraonQdcbSbiQ8rsvMzMxaVkuErrldOV5z4ly/DsjMzMxaVkuELkhefu3HRpiZmVmrapnQdXZ/D1tG9vHSLg+mNzMzs9bTMqHrrL5kMP2Gzb7EaGZmZq2nZULXmX3dgO9gNDMzs9bUMqGrZ3YHrz5hjkOXmZmZtaSWCV2QDKZf78H0ZmZm1oKmDF2SbpK0TdL6krK/kPSEpEclrZG0oMK6GyWtk/SwpMFqG7uyr4cXtu9lZM94tZsyMzMzq6vp9HTdDFwyqewuYGVE/BjwFPD7R1j/oohYFREDM2viQSv703Fd7u0yMzOzFjNl6IqIe4Htk8rujIiJdPYB4ORj0LbDrOzz64DMzMysNdViTNevAV+rsCyAOyU9JOmqI21E0lWSBiUNDg8Pl62zcG4n/Qtms96PjTAzM7MWU1XokvSHwARwa4Uqr4+Ic4FLgaslXVBpWxFxY0QMRMRAb29vxX2u7O9mg3u6zMzMrMXMOHRJeg/wVuCXIyLK1YmIofRzG7AGOH+m+yta2dfDcy/tZuc+D6Y3MzOz1jGj0CXpEuD3gLdFxJ4KdeZKml+cBi4G1perezRW9ifjuh7zJUYzMzNrIdN5ZMRtwP3AaZI2SXovcB0wH7grfRzEDWndPkl3pKsuBr4r6RHge8BXI+Lr1Ta4GLo8rsvMzMxaSW6qChFxRZniz1aouxm4LJ1+DjinqtaV0Tu/i8XdXR7XZWZmZi2lpZ5IX7Syr4d1Dl1mZmbWQloydJ3V38Ozw7vYMzYxdWUzMzOzJtCSoevs/h4KAY9v2dnoppiZmZlNS0uGruLrgDb4dUBmZmbWIloydC3pnsUJcztZt8mhy8zMzFpDS4YuSZzV3+PHRpiZmVnLaMnQBXB2fzdPb93JvvF8o5tiZmZmNqWWDV0r+3qYKARPbfVgejMzM2t+rRu6ik+mH/IlRjMzM2t+LRu6Tl44m57ZHX5IqpmZmbWElg1dkljZ3+3HRpiZmVlLaNnQBcm4rie27GQ8X2h0U8zMzMyOaFqhS9JNkrZJWl9StkjSXZKeTj8XVlj3yrTO05KurFXDIXkd0Fi+wNNbd9Vys2ZmZmY1N92erpuBSyaVfRi4OyJWAHen84eQtAj4Y+AngfOBP64UzmZiZV/yZPr1HtdlZmZmTW5aoSsi7gW2Tyq+HLglnb4FeHuZVd8M3BUR2yPiFeAuDg9vM7b8hLnM68qx3uO6zMzMrMlVM6ZrcURsSadfBBaXqdMPvFAyvyktO4ykqyQNShocHh6eVgMyGXFmX7d7uszMzKzp1WQgfUQEEFVu48aIGIiIgd7e3mmvt7Kvh8e2jJIvVLV7MzMzs2OqmtC1VdJSgPRzW5k6Q8CykvmT07KaWdnfzb7xAs8OezC9mZmZNa9qQtftQPFuxCuBr5Sp8w3gYkkL0wH0F6dlNXPwyfS+xGhmZmbNa7qPjLgNuB84TdImSe8FrgXeJOlp4GfTeSQNSPp7gIjYDvwJ8GD697G0rGZO6Z3HrI6MXwdkZmZmTS03nUoRcUWFRW8sU3cQ+PWS+ZuAm2bUumnIZsSZS7t9B6OZmZk1tZZ+In3Ryv4eHts8SsGD6c3MzKxJtUfo6uth1/4JNr68u9FNMTMzMyurPUJXcTD9Zo/rMjMzs+bUFqFrxeJ5dGYzbPAdjGZmZtak2iJ0dWQznL50vgfTm5mZWdNqi9AFcFZfD+uHRkkejm9mZmbWXNomdJ3d38PI3nE2vbK30U0xMzMzO0zbhK6V/d2An0xvZmZmzaltQtePLp5PLiOP6zIzM7Om1Daha1ZHlhWL57POrwMyMzOzJtQ2oQvg7P5uNgyNeDC9mZmZNZ22Cl0r+3t4efcYL47ua3RTzMzMzA7RVqHr1JPmAfDcsF8HZGZmZs1lxqFL0mmSHi75G5V0zaQ6F0oaKanzR9U3ubLObPJ1Cr68aGZmZk0mN9MVI+JJYBWApCwwBKwpU/U7EfHWme7HzMzMrB3U6vLiG4FnI+L5Gm3PzMzMrK3UKnStBm6rsOynJD0i6WuSzqq0AUlXSRqUNDg8PFyjZpmZmZk1h6pDl6RO4G3A/y2zeC3w6og4B/gU8C+VthMRN0bEQEQM9Pb2VtssMzMzs6ZSi56uS4G1EbF18oKIGI2IXen0HUCHpBNrsE8zMzOzllKL0HUFFS4tSloiSen0+en+Xq7BPs3MzMxayozvXgSQNBd4E/AbJWXvA4iIG4B3AO+XNAHsBVaHHxdvZmZmx6GqQldE7AZOmFR2Q8n0dcB11ezDzMzMrB201RPpzczMzJqVQ5eZmZlZHTh0mZmZmdWBQ5eZmZlZHTh0mZmZmdWBQ5eZmZlZHbRV6MpkBMBf3vkUn3/wh4zuG29wi8zMzMwSbRW6zu7v4fcuOY3RveP89y+t47w//Xd+87bvc8+T25jIFxrdPDMzMzuOqRkfED8wMBCDg4MzXj8iePiFHXx57RD/+uhmduwZ58R5Xbx9VR+/cO7JnNnXXcPWmpmZ2fFM0kMRMTBlvXYMXaX2T+S554lhvrx2E/c8uY3xfHD6kvn84rknc/mqPk7qnlWT/ZiZmdnxyaGrjFd2j/Fvj27mS2uHePiFHWQEr1/Ryy+e28/FZy5hdme25vs0MzOz9ubQNYVnh3exZu0Qa74/xNCOvczrynHpyiW887xlnLd80THdt5mZmbUPh65pKhSC723czpfXbuKOdS+ya/8Ed33wAlYsnl+X/ZuZmVlrm27oqvruRUkbJa2T9LCkw5KSEn8j6RlJj0o6t9p91lImI177mhP483ecw1+vXgXA7rF8g1tlZmZm7SZXo+1cFBEvVVh2KbAi/ftJ4Pr0s+lkpEY3wczMzNpUPZ7TdTnwuUg8ACyQtLQO+zUzMzNrGrUIXQHcKekhSVeVWd4PvFAyvyktO4SkqyQNShocHh6uQbPMzMzMmkctQtfrI+JcksuIV0u6YCYbiYgbI2IgIgZ6e3tr0CwzMzOz5lF16IqIofRzG7AGOH9SlSFgWcn8yWmZmZmZ2XGjqtAlaa6k+cVp4GJg/aRqtwO/kt7F+FpgJCK2VLNfMzMzs1ZT7d2Li4E1Su76ywH/FBFfl/Q+gIi4AbgDuAx4BtgD/GqV+zQzMzNrOVWFroh4DjinTPkNJdMBXF3NfszMzMxaXT0eGWFmZmZ23HPoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoKiN5tJiZmZlZ7VT7RPq2ks0IgHfccD8L53SwYE4ni+Z0smBOB4vmdrJwbicL53SwcE5n8je3Mymf00H3rA4y6fpmZmZmkzl0lfjJ1yziT96+kq0j+9i+Z4wde8bYvnuM51/ew8Mv7OCVPWOM58v3gmUEPbM72LF3nPUfeTNzu3xozczM7CAngxJduSzvfu2rKy6PCHaP5XlldxLGXtmT/G3fPc6OPWN86pvPAPDNJ7bxc+f01avZZmZm1gIcuo6CJOZ15ZjXlWPZojmHLS+Grlf2jNW7aWZmZtbkPJC+hj52+VkAvO7UExvcEjMzM2s2Mw5dkpZJukfSY5I2SPrtMnUulDQi6eH074+qa25z65nd0egmmJmZWZOq5vLiBPC7EbFW0nzgIUl3RcRjk+p9JyLeWsV+zMzMzFrejHu6ImJLRKxNp3cCjwP9tWqYmZmZWTupyZguScuBHwf+o8zin5L0iKSvSTrrCNu4StKgpMHh4eFaNKthRveON7oJZmZm1mSqDl2S5gFfAq6JiNFJi9cCr46Ic4BPAf9SaTsRcWNEDETEQG9vb7XNaoiTF84hmxHv+swDfPhLj/Lc8K5GN8nMzMyaRFWhS1IHSeC6NSK+PHl5RIxGxK50+g6gQ1Lb3tr3E69eyLc+dCGrz1/Gmu8P8cZPfJurb13L+qGRRjfNzMzMGkwzfc+gJAG3ANsj4poKdZYAWyMiJJ0PfJGk5+uIOx0YGIjBwcEZtatZDO/czz/c9wP+8f7n2bl/gjesOJH3X3gKP/WaE0gOnZmZmbUDSQ9FxMCU9aoIXa8HvgOsAwpp8R8ArwKIiBskfQB4P8mdjnuB34mI/zfVttshdBWN7hvn1gd+yGe/+wNe2rWfVcsW8P4LT+FNZyz2uxrNzMzawDEPXcdSO4Wuon3jeb740CY+c++zvLB9L6eeNI/3/fQpXL6qj46sn1FrZmbWqhy6mtREvsBX123h+m89yxMv7qSvZxb/9YLXsPq8VzG7MzutbUQEO/aMs3XnPl4c2cfW0X1sHd3PZ779LLvH8jz7Py8j6140MzOzuphu6PK7F+ssl81w+ap+3nZOH996cpi//dYzfPRfH+NT33yG9/yn5aw+bxl7x/NJmNq5n60j+3hxtBisitP7GZsoVNzHvvE8c7t8as3MzJqJ/2VuEElcdPpJXHT6STy4cTvXf+tZPnHXU3zirqcOqzurI8OS7lks7p7Fjy9byJKeZHpxd9eB8pO6u/iH+zZy7deeIOOB+mZmZk3HoasJnLd8Eee9ZxGPbxnl3qeGWTS3k8Xdsw6Eq+5ZuaO64/GprTuZ25UjmxFZiUwGMhLZjA58ZiWUgeyk8ozw3ZVmZmbHgENXEzljaTdnLO2e8fqzcsmA/Ms/fV9V7ZBIw1oSworTB8KaRDZzaHlG4gcv7QZg47VvqWr/zW7/RHL5d/OOfbw4upfNO/axZWQvL47s522r+njbOX2NbqKZmTUhh6428s7zlrF0wWzG8wXyhaAQQb4AhQgKhSBf/CwEhSBdfrC8EJSsl5RHWlYsP7DNQ9YL8sGB0PXrtzxI9+wOumd10DP74F/37EPne2Z3MKsj01Q9a2MTBbaO7mPLSBKktozsY8uOvWweKQarfby0a+yw9RbM6WDP/jwQDl1mZlaWQ1cbmdOZ481nLWnY/left4zrvvkMm3fs4/EtOxndO87O/RNHXKczm6F7du5AIFswu4NFc7s4YV4ni+Ymfycc+Oxi0bxO5nZmZxTUJvIFtu7cz5Ydew+Eqs07kjtAt4wkweqlXfuZfENv96wcS3tms3TBLM7uX0BfT3Lpt2/BbJam03M6c7zlb75z1G0yM7Pjh0OX1czrTj2R15166Fue8oVg575xRvYe+je6d2LS/Dij+8YZ3rWfJ1/cycu7x9hf4Q7NzlzmQBA7GMqSoNY9K8eiuV0He6lKgtW2nfsoTApU87pyLO2ZxdIFszl9STdLF8yir2d2GqpmsaRnNvN8J6iZmdWA/zWxYyqbEQvmdLJgTudRrRcR7BnLs333GC/vHmP77v28vGuM7bvHSsqSz40v7+blXWPsGcsfso3ZHdkDIeoNK05kadoztTTtpVrSM4vuWR21/LpmZmYVOXRZU5LE3K4cc7tyLFs0Z1rr/PDlPTw7vCvppeqZTffso7vrs1obNo+yYfMo//jA82SU3DFavBu0OJ2R0IGy8nVUYZ3MUdRJpqeuc9h2qe54ZbMilxGd2Yxfc2VmNolDl7WNV50wh1edML2Adiz9j39Z3+gmNIWMoCOboTObIZcVHdlM+idy6XTngenDl3dmM+QyoiOXoSOTLi+ZLq7XmcuQyyT7iAjG88mNHxOFIF8oMFEIJvKHzufT+YlCctPJRLrOeLFOyTYmJs3nC3HgZpXSsnwhyGZELg2eHen3zmWS71E8Bsl0+j3TdndkDh6j4jZKy8qukxXZTHI8ctnJ2ymtl2yzuKzctrMZNdUNLWbtyqHLrEae+bNL2bF3nIjk8mjxDtFCehdooaRsqjox6bNSncO3e+g+yu+7fDvykwe8HaUguat1LJ+ElPF8gfFCgfGJZHqiUGBsIgkx4/lDp8fzwa79EwfWO2Qb6edEOj2Wr/w2hqkUA0bx80DIySjtpTsYQnJpqMmly7s6MswpWd5Rsrz4OJXSkJZ85zS4pd9n18TEocvS71Rc50BZ+lnlKTkqHZMCYi5bPtAdLD8Y7HKZJBAe2puafmZKe1or9/AWg1/FXuKMDj7OZvJ+yqx7oAc3c+R9ZzNT9yxnMlP1PB/8DkdaPrlN5Y5XsRfb2pNDl1mN5LIZTpzX1ehmtL2IYm9TpKHuYDArBqhcaZgq+Wy1f8wKheQ7TuST3rjxkkCXLxRD66HLSkNbMdAVj1fpskrrHOwZLFRY5+D0nokJJkq2HRwa9POF0tBf5j8k0uX5Csub8NXAdVEMYtkKoaw0BKqknkjmVRrgSKYplpVsH0qDXulyTZpPy8rUP2QbHBocS/d1aFlxOMPBtomDQyeK9ZlcVtK2yfXLbiM9mJlJy8ptQxw69KO0naXbUHHoxqT601VV6JJ0CfDXQBb4+4i4dtLyLuBzwE8ALwPvioiN1ezTzI5vUrEnBmYzvZfEt6pMRnRlshyvN9CW9ubmy/XaFg4PdPni8ikC35SBsOQ5hVP1GBf3d6TlceB5icX9TOqVLhy6bn6K5aXtLH6XgAO916UBuDhNaQ83xXaVr1967EvrHzgelPTIl9QPgkKhTFmUzpeum9RnclnaNjj03FTcRgCT9lXPnuLpmvFPWVIW+DTwJmAT8KCk2yPisZJq7wVeiYhTJa0GPg68q5oGm5nZ8eFAjwvyZRmbscnDNYLi0IpJgRCIwuFlBwPrwXUPDs9IypZ/fHptqeZ/x+cDz0TEcwCS/hm4HCgNXZcDH0mnvwhcJ0kRx2unsZmZmdVTcgkWqPLu7FrIVLFuP/BCyfymtKxsnYiYAEaAE8ptTNJVkgYlDQ4PD1fRLDMzM7PmU03oqqmIuDEiBiJioLe3t9HNMTMzM6upakLXELCsZP7ktKxsHUk5oIdkQL2ZmZnZcaWa0PUgsELSj0jqBFYDt0+qcztwZTr9DuCbHs9lZmZmx6MZD6SPiAlJHwC+QfLIiJsiYoOkjwGDEXE78FngHyU9A2wnCWZmZmZmxx01Y8eTpGHg+Ua3o02cCLzU6EbYAT4fzcXno3n4XDQXn4+j8+qImHJAelOGLqsdSYMRMdDodljC56O5+Hw0D5+L5uLzcWw0zd2LZmZmZu3MocvMzMysDhy62t+NjW6AHcLno7n4fDQPn4vm4vNxDHhMl5mZmVkduKfLzMzMrA4cuszMzMzqwKGrzUjaKGmdpIclDaZliyTdJenp9HNho9vZriTdJGmbpPUlZWWPvxJ/I+kZSY9KOrdxLW8/Fc7FRyQNpb+PhyVdVrLs99Nz8aSkNzem1e1L0jJJ90h6TNIGSb+dlvv3UWdHOBf+fRxjDl3t6aKIWFXyjJUPA3dHxArg7nTejo2bgUsmlVU6/pcCK9K/q4Dr69TG48XNHH4uAD6Z/j5WRcQdAJLOJHljxlnpOn8rKVu3lh4fJoDfjYgzgdcCV6fH3b+P+qt0LsC/j2PKoev4cDlwSzp9C/D2BralrUXEvSSvvCpV6fhfDnwuEg8ACyQtrU9L21+Fc1HJ5cA/R8T+iPgB8Axw/jFr3HEoIrZExNp0eifwONCPfx91d4RzUYl/HzXi0NV+ArhT0kOSrkrLFkfElnT6RWBxY5p23Kp0/PuBF0rqbeLI/8dntfGB9HLVTSWX2n0u6kjScuDHgf/Av4+GmnQuwL+PY8qhq/28PiLOJemav1rSBaULI3lGiJ8T0iA+/g13PXAKsArYAvxVY5tz/JE0D/gScE1EjJYu8++jvsqcC/8+jjGHrjYTEUPp5zZgDUkX8NZit3z6ua1xLTwuVTr+Q8Cyknonp2V2jETE1ojIR0QB+DsOXiLxuagDSR0k/8jfGhFfTov9+2iAcufCv49jz6GrjUiaK2l+cRq4GFgP3A5cmVa7EvhKY1p43Kp0/G8HfiW9S+u1wEjJZRY7BiaNCfp5kt8HJOditaQuST9CMnj7e/VuXzuTJOCzwOMR8YmSRf591Fmlc+Hfx7GXa3QDrKYWA2uS3xM54J8i4uuSHgS+IOm9wPPAOxvYxrYm6TbgQuBESZuAPwaupfzxvwO4jGRQ6h7gV+ve4DZW4VxcKGkVySWsjcBvAETEBklfAB4jubPr6ojIN6Ldbex1wLuBdZIeTsv+AP8+GqHSubjCv49jy68BMjMzM6sDX140MzMzqwOHLjMzM7M6cOgyMzMzqwOHLjMzM7M6cOgyMzMzqwOHLjOriqR7JL15Utk1kq6X1CfpixXWWy7pP1e5729JGqhQ/qSkRyTdJ+m0avZjZlYLDl1mVq3bgNWTylYDt0XE5oh4x+QVJOWA5UBVoWsKvxwR55C8RPkvyrQhewz3bWZ2GIcuM6vWF4G3SOqEAy/Q7QO+k/ZmrU/L3yPpdknfBO4meSjmGyQ9LOmD6fLrihuV9G+SLkynr5c0KGmDpI8eZfvuBU5Nt7NR0sclrQV+SdIqSQ+kL/hdU3zBr6RTJf172lO2VtIpafl/k/RgWv+jadlcSV9N666X9K60/FpJj6V1/zIt65X0pXQbD0p6XVr+0+lxeFjS94tvljCz9uIn0ptZVSJiu6Tvkbxk/SskvVxfiIhI345Q6lzgx9J1LgQ+FBFvhSSUHWE3f5iukwXulvRjEfHoNJv4c8C6kvmX05fCI+lR4Dcj4tuSPkby1PprgFuBayNijaRZQEbSxSSvPzkfEHC7khfK9wKbI+It6TZ7JJ1A8hqV09PjsCDd918Dn4yI70p6FfAN4AzgQyRP+b5PyUuI903zu5lZC3FPl5nVQuklxtXpfDl3RcT2GWz/nWnv1PeBs4Azp7HOrekrTl5HEmqKPg9JOAIWRMS30/JbgAvSXqb+iFgDEBH7ImIPybtML07bsBY4nSSErQPelPagvSEiRoARkuD0WUm/QPIaG4CfBa5L23U70J2GrPuAT0j6rbRNE0d7gMys+bmny8xq4SvAJyWdC8yJiIcq1Nt9hG1McOh/CM4CSF+w+yHgvIh4RdLNxWVT+OWIGDzKNhyJgP8VEZ85bEHyvS8D/lTS3RHxMUnnA28E3gF8APgZku/32oiY3JN1raSvptu4T9KbI+KJGbbTzJqUe7rMrGoRsQu4B7iJyr1ck+0ESscubQRWScpIWkZyGQ+gmyQojUhaTHIZsxZtHgFekfSGtOjdwLcjYiewSdLbASR1SZpDcinw19KeKST1SzpJUh+wJyL+D8mA/XPTOj0RcQfwQeCcdB93Ar9ZbEP6cmEknRIR6yLi48CDJL1oZtZm3NNlZrVyG7CGw+9krORRIC/pEeBm4H9AKxUnAAAAsElEQVQDPwAeAx4nuYRHRDwi6fvAE8ALJJfiauVK4IY0VD0H/Gpa/m7gM+k4r3HglyLiTklnAPenY9V2Af+FZJD+X0gqpHXfTxImv5KOBxPwO+l2fwv4dDqWLEcyyP99wDWSLgIKwAbgazX8jmbWJBQRjW6DmZmZWdvz5UUzMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOvj/r1L+SfYYynAAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 720x216 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Presim. Time / s\"].plot(figsize=(10, 3));"]}, {"cell_type": "code", "execution_count": 70, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAADTCAYAAACyTAbQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuQXGd55/Hv0z0zuljSyLbGsjQSyPiKJcCwinEwBGPuJFnDFrAmWeIkZJ1kTQIBdheyVZuQCllTCXiTTeKNCS4cQgyuAGVtMBfHmGsCeGyMrQuOhS/YkmzJli3J1m1m+tk/zulRazSjmdFMq7tH309VV59+z3vOeacPLf943/ecE5mJJEmSZlal1Q2QJEmajQxZkiRJTWDIkiRJagJDliRJUhMYsiRJkprAkCVJktQEhixJkqQmMGRJkiQ1gSFLkiSpCbpa3QCAJUuW5KpVq1rdDEmSpAndeeedT2Rm30T12iJkrVq1ioGBgVY3Q5IkaUIR8fBk6jlcKEmS1ASGLEmSpCYwZEmSJDWBIUuSJKkJ2iJkbXl6X6ubIEmSNKPaImTtfPYgzx4YanUzJEmSZkxbhCyATdt2t7oJkiRJM6ZtQtb6Lbta3QRJkqQZM2HIioi5EfGDiPhRRGyIiA+X5WdExPcjYnNEfC4iesryOeXnzeX6VRMdo6sSrN9qT5YkSZo9JtOTdQC4NDNfBFwAvCEiLgI+ClyTmWcBTwHvKuu/C3iqLL+mrHdU87qr9mRJkqRZZcKQlYVnyo/d5SuBS4F/LMtvAN5cLl9WfqZc/+qIiKMdY15Plfu3P8P+weEpNl+SJKk9TWpOVkRUI+JuYDtwK/AT4OnMrF8S+CjQXy73A48AlOt3AaeOsc8rI2IgIgYO7nuW4Vpy32N7pvfXSJIktYlJhazMHM7MC4AVwIXAedM9cGZel5lrM3Pt0lNPBmD9VocMJUnS7DClqwsz82ngduBngcUR0VWuWgFsKZe3ACsByvW9wJNH229PV4Xeed2s3+Lkd0mSNDtM5urCvohYXC7PA14LbKIIW28tq10B3Fwurys/U67/embmRMdZ07+IDfZkSZKkWWIyPVnLgNsj4h7gDuDWzPwn4L8D74uIzRRzrj5Z1v8kcGpZ/j7gg5NpyJrlvfx42x4Gh2tT/RskSZLaTtdEFTLzHuDFY5Q/QDE/a3T5fuBtU23I6v5eDg7XuP/xZzh/+aKpbi5JktRW2uaO72vKYOXkd0mSNBu0TchadepJnNTjTUklSdLs0DYhq1IJVi/vNWRJkqRZoW1CFsDq/kVs3Lab4dqEFyNKkiS1tbYKWWuW97J/sMYDO56ZuLIkSVIba6+Q1d8LOPldkiR1vrYKWWf2ncScrop3fpckSR2vrUJWV7XC85ctcvK7JEnqeG0VsqB4vM7GrbupOfldkiR1sPYLWct72XNgiJ/u3NvqpkiSJB2z9gtZTn6XJEmzQNuFrHOWLqS7Gk5+lyRJHa3tQlZPV4VzT1/IBnuyJElSB2u7kAXFvKz1W3aR6eR3SZLUmdoyZK3u7+WpvYNs3bW/1U2RJEk6JhOGrIhYGRG3R8TGiNgQEe8py/8wIrZExN3l600N23woIjZHxH0R8fqpNmrN8kUA3i9LkiR1rK5J1BkC3p+Zd0XEQuDOiLi1XHdNZv5ZY+WIOB+4HFgNLAf+OSLOyczhyTbq+csWUa0EG7bs4vWrT5/sZpIkSW1jwp6szNyWmXeVy3uATUD/UTa5DPhsZh7IzAeBzcCFU2nU3O4qZ/UtYP1WrzCUJEmdaUpzsiJiFfBi4Ptl0bsj4p6IuD4iTi7L+oFHGjZ7lDFCWURcGREDETGwY8eOI461ut/H60iSpM416ZAVEQuAzwPvzczdwLXAmcAFwDbgY1M5cGZel5lrM3NtX1/fEevXLO9l+54DbN/t5HdJktR5JhWyIqKbImB9JjO/AJCZj2fmcGbWgE9waEhwC7CyYfMVZdmU1O/8vsEhQ0mS1IEmc3VhAJ8ENmXmxxvKlzVUewuwvlxeB1weEXMi4gzgbOAHU23Y+eUVhvc6ZChJkjrQZK4uvBh4J3BvRNxdlv0+8I6IuABI4CHgNwEyc0NE3ARspLgy8aqpXFlYt2BOF89bcpLzsiRJUkeaMGRl5neAGGPVLUfZ5iPAR6bRLqC4KeldDz813d1IkiQdd215x/e6NcsXseXpfex89mCrmyJJkjQl7R2yRia/O2QoSZI6S1uHrNUjj9fxCkNJktRZ2jpkLZ7fw4qT57HenixJktRh2jpkQXFT0g1eYShJkjpM24esF6zo5aEn97J7/2CrmyJJkjRpbR+y6vOyNnrnd0mS1EE6IGQVVxh6U1JJktRJ2j5k9S2cw+mL5voMQ0mS1FHaPmQBrOlfZE+WJEnqKB0RslYv7+UnO55h78GhVjdFkiRpUjoiZK3p76WWsGnbnlY3RZIkaVI6JGQVVxj6eB1JktQpOiJknb5oLqee1OO8LEmS1DE6ImRFBKv7e32GoSRJ6hgThqyIWBkRt0fExojYEBHvKctPiYhbI+L+8v3ksjwi4i8iYnNE3BMRL5mJhq5Zvoh/e3wPB4aGZ2J3kiRJTTWZnqwh4P2ZeT5wEXBVRJwPfBC4LTPPBm4rPwO8ETi7fF0JXDsTDV3T38tQLbnvMSe/S5Kk9jdhyMrMbZl5V7m8B9gE9AOXATeU1W4A3lwuXwb8XRa+ByyOiGXTbeiakTu/O2QoSZLa35TmZEXEKuDFwPeBpZm5rVz1GLC0XO4HHmnY7NGybPS+royIgYgY2LFjx4THXnnKPBbO7WK9VxhKkqQOMOmQFRELgM8D783Mw7qTMjOBnMqBM/O6zFybmWv7+vomc3zWLO9lg1cYSpKkDjCpkBUR3RQB6zOZ+YWy+PH6MGD5vr0s3wKsbNh8RVk2bWv6F7HpsT0MDtdmYneSJElNM5mrCwP4JLApMz/esGodcEW5fAVwc0P5r5RXGV4E7GoYVpyWNf29HByqsXn7MzOxO0mSpKaZTE/WxcA7gUsj4u7y9SbgauC1EXE/8JryM8AtwAPAZuATwH+ZqcauHpn87pChJElqb10TVcjM7wAxzupXj1E/gaum2a4xnbHkJOb3VNmwdTdva8YBJEmSZkhH3PG9rloJVi9fZE+WJElqex0VsqAYMty4bTfDtSldzChJknRcdVzIWtPfy96Dwzz4xLOtbookSdK4OjBkLQJggzcllSRJbazjQtZZfQuY01VxXpYkSWprHReyuqoVzlu2yGcYSpKkttZxIQtgzfJFrN+6i+JuEZIkSe2nM0NWfy979g/xyM59rW6KJEnSmDozZNXv/O7kd0mS1KY6MmSdc/oCuirh5HdJktS2OjJkzemqcs7Shazf6uR3SZLUnjoyZEFxv6wNW5z8LkmS2lMHh6xennz2INt27W91UyRJko7QsSFrdX3yu/OyJElSG+rYkPX8ZQupBM7LkiRJbWnCkBUR10fE9ohY31D2hxGxJSLuLl9valj3oYjYHBH3RcTrm9Xw+T1dnNm3gA32ZEmSpDY0mZ6sTwFvGKP8msy8oHzdAhAR5wOXA6vLbf46Iqoz1djR1vT3eq8sSZLUliYMWZn5LWDnJPd3GfDZzDyQmQ8Cm4ELp9G+o1q9fBGP7z7A9j1OfpckSe1lOnOy3h0R95TDiSeXZf3AIw11Hi3LjhARV0bEQEQM7Nix45gasKa/mPy+wXlZkiSpzRxryLoWOBO4ANgGfGyqO8jM6zJzbWau7evrO6ZGrF6+CMB5WZIkqe0cU8jKzMczczgza8AnODQkuAVY2VB1RVnWFAvndtO/eB7fe2Cyo5mSJEnHxzGFrIhY1vDxLUD9ysN1wOURMScizgDOBn4wvSYe3Zan9/GdzU808xCSJElT1jVRhYi4EbgEWBIRjwJ/AFwSERcACTwE/CZAZm6IiJuAjcAQcFVmDjen6YVXntPHN//t2OZ0SZIkNcuEISsz3zFG8SePUv8jwEem06ipWNY7l6WL5hyvw0mSJE1Kx97xXZIkqZ0ZsiRJkprAkCVJktQEhixJkqQmMGRJkiQ1gSFLkiSpCQxZkiRJTWDIkiRJagJDliRJUhMYsiRJkppgVoSsA0M1nnzmQKubIUmSNKLjQ9Z5py/k6b2DvOzqr/OhL9zL5u17Wt0kSZKkiR8Q3e5+9eIzuPisJVz/3Qf5/F2PcuMPfsqrzu3jP7/iefzsmacSEa1uoiRJOgFFZra6DaxduzYHBgamvZ8nnjnAZ773Uz79vYd44pmDPH/ZIn7j5Wfwiy9aTk9Xx3faSZKkNhARd2bm2gnrzaaQVbd/cJib797C3377Qe7f/gynLZzDFS9bxS+/9Dksnt8zY8eRJEknnhkLWRFxPfALwPbMXFOWnQJ8DlgFPAS8PTOfimJs7s+BNwF7gV/NzLsmasRMh6y6zORb9z/B3377Ab59/xPM667y1n+3gl9/+RmcseSkGT+eJEma/SYbsiYzhvYp4A2jyj4I3JaZZwO3lZ8B3gicXb6uBK6dbIObISJ45Tl9fPpdL+Ur730Fv/iiZXzujke49GPf4DduGOD7DzxJO/TkSZKk2WdSw4URsQr4p4aerPuASzJzW0QsA76RmedGxN+UyzeOrne0/TerJ2ss2/fs5+//9WE+/b2HeWrvIC/o7+UDrz+XV57Td1yOL0mSOttM9mSNZWlDcHoMWFou9wOPNNR7tCwbq4FXRsRARAzs2LHjGJsxdactnMv7Xncu//qhV/Mnb3kBj+/ez598adNxO74kSToxTPuSuyy6wqY85paZ12Xm2sxc29d3/HuR5nZX+aWXPoefWXUKww4ZSpKkGXasIevxcpiQ8n17Wb4FWNlQb0VZJkmSdEI51pC1DriiXL4CuLmh/FeicBGwa6L5WJIkSbPRhHd8j4gbgUuAJRHxKPAHwNXATRHxLuBh4O1l9Vsobt+wmeIWDr/WhDZLkiS1vQlDVma+Y5xVrx6jbgJXTbdRkiRJnc5nzUiSJDWBIUuSJKkJDFmSJElNYMiSJElqAkOWJElSExiyJEmSmsCQJUmS1ASGLEmSpCYwZEmSJDWBIUuSJKkJDFlALZPiiUCSJEkzY8JnF8523dXggR3Pcv7//CrLF8+l/+T59C+ex4qT59G/eB79J89j+eJ5LF04h66qmVSSJE3OCR+y3v+6c3nhisVseXofW57ax5an97F+yy52PnvwsHrVSnD6orn0nzyPFYuL4NVfBrEXrVxM77zuFv0FkiSpHZ3wIWvlKfP59ZefcUT53oNDbH16f0P42jsSwr7/4E627dpHrRxhfMXZS/j0u156nFsuSZLa2QkfssYzv6eLs05bwFmnLRhz/dBwjcd27+fd//BDnjkwdJxbJ0mS2p2TjI5RV7XCipPns3CuOVWSJB1pWgkhIh4C9gDDwFBmro2IU4DPAauAh4C3Z+ZT02umJElSZ5mJnqxXZeYFmbm2/PxB4LbMPBu4rfwsSZJ0QmnGcOFlwA3l8g3Am5twDEmSpLY23ZCVwNci4s6IuLIsW5qZ28rlx4ClY20YEVdGxEBEDOzYsWOazZAkSWov0521/fLM3BIRpwG3RsSPG1dmZkbEmLdSz8zrgOsA1q5d6+3WJUnSrDKtnqzM3FK+bwe+CFwIPB4RywDK9+3TbWQ7q0Rw32N7+J83r+dffvIEQ8O1VjdJkiS1gWMOWRFxUkQsrC8DrwPWA+uAK8pqVwA3T7eR7ew9rzmbV57Tx00Dj/BLn/g+F/7JbXzoC/fwzX/bwaCBS5KkE1Yc64ORI+J5FL1XUAw7/kNmfiQiTgVuAp4DPExxC4edR9vX2rVrc2Bg4Jja0S72HhziG/ft4MvrH+Prmx7n2YPD9M7r5jXPX8ob15zOy89ewtzuaqubKUmSpiki7my4q8L49Y41ZM2k2RCyGu0fHObb9z/Bl9dv49aNj7Nn/xAL5nRx6Xmn8cY1p3PJuacxr2dmAtfGrbtZNK+LFSfPn5H9SZKko5tsyPJ25U0wt7vKa89fymvPX8rBoRr/8pMn+Mr6x/jqhsdY96OtzOuucsm5fbzxBcu49LzTWDCnOA2Zyf7BGnv2D7J7/yC79w+xZ/9Q8Xlf8T7yuXz/503FlLeHrv75Vv7JkiRpFENWk/V0Vbjk3NO45NzT+OM3r+EHD+7klvXb+OqGx/ny+sfo6apw+qK5IwFqqHb0nsVKwMK53Syc28Wiud0jZZIkqb0Yso6jrmqFl521hJedtYQP//s13PnwU3xl/WM88cwBFs3rOiw81d9Hl8/vqRJxKFW95uPf5NylC1v4V0mSpLEYslqkWgkuPOMULjzjlFY3RZIkNYEhaxbYtG03H/vafcztrjKvu8q8nrHf5zYsz++pMqerclivmCRJmjmGrA734pWL+dK92/jL2zdzLBeKHh7CKszrqTK/u4u5PVXmdVdG1tcD3PyeI8PaxWctYWE5P0ySJBW8hcMskZkcGKqxf3CYfYPD7Ds49vv+keXayOe9B4fYd/DIbcfa11gT83/n0rN4/+vObcFfLUnS8ectHE4wEcHcckhwcROPMzhchrMyeL36Y9/k/3x9M9+4bwfDtaSWOfJeSw4t15Lhsqy+PFxLSFiycA4rT5nPc0+Zz3NOmV8sn1osnzTH/4lKkjqT/wXTlHRXK3RXKyO3j7jy557Hhq27qVaCShTPcqxWgkoliuWgYbleTlk/iIDtew7w0yf38qNHnmbXvsHDjrdkQQ8ry/D13DKAPeeU+Tz31JM4beEcKt6/QpLUpgxZmpb/9obzZnR/u/YO8tOde/npzr08vPNZHimX73z4Kf7fj7bSOFrZ01Whb8Eczjt9IS9csZiuahHcuipF0Ouqlu+VoFqpHCo/bP0Y5ZXKYdtXY/T+KiP1u6sVerqm9Zx1SdIsZchSW+md380L5vfyghW9R6wbHK6x9el9PPxkEbwe2PEs13/3QbY8vY/bfry9Ba2Frkrw+d9+GS9a2cxBWklSJ3Liu2aFWi0ZqhXzvIZqtfI9R5Unw7UaQ7VkaLix7PBthofHKW94DdWSjVt38/m7HgWKqzSrlWL4sz4UWrwaPlcohkwbhk3r9UaGW8ues3r9+rqoD72W21Yb1h+qc/j+qw3rizocduxqlPstP0dDm+tDuSOfyzZUGo5R/1t7uir0lD16c7qq5Xvxaiyrl3eV+5KkTuXEd51QKpWgZ2R+1sw8fHsiw7Xk7KULeGrvQWq1QxP9M0dN8i/XFRcDZFmn4aKAHLtOLWFouFZ8zuIK0nrIy6Q8Ro557OEah9rRsO/GbYcneIRTs0RAT7UewqqjAlmlIZBVG8LbkYHthz99im279jOvu0pXNehuGObtrhZhrqtaDO/W1xefg65q5bBtuqtlWeXQ+u6GbUf2UV8u6zQOM9fDbrUC1UplJAhXK4cPO1fKbUbql8FX0uxjyJKOUbUS/NYrz2x1M6alVkuSQ+EuR4Je8Z61huA3en0Z+AaHaxwYqr+GOThU42D5+eBQjYPDNQ4MDpfvxeeDQ4e2OdiwXf3z/sEau/YNHrGvxn3WvercPobKdgzVauwbLHogh8oeyaHhGoPDh3olB4fLsnJdi7LmEboqh3opR4JZ5VAvZFelcqg3dJx6E+2jWs5PrDb0mtbnMjbuo1pp7DEdHSSLELnu7i1F0GwIk2P24Db2tFaO3rM6cpFMQ8/soZ7cht7esXqCG/czxkU29WPW9zV2mw4d49DFOhy+ruG7GqtXuBpBHNZrfXibdGIxZEknsPo/+lU66x//Wi05OFwb6VGa7r6GyqHhwfowckMIqw8vD5bLw2W9oTK41bJYrpU9iEUvYY3h2uG3K6m/6j2K9eHsem/jUMPycBluh8bbT8M2jevqbRmq1TgwVPSATqYtw437qO+3oUf1aC563inUakWv65E9uHl4KB/pfYXRPbiNt3up1XtqG24HM1scLYAeCmtjTyWoB796/QgIivVEUL6V7+U0AIqCQ+uK4BcU21PWjbJt0bAfqE8lOFT/8OUjj3nY+lHHZFR5ZWT7KNtx6O9p3D+jyxv2Q8Pfedgxx2lLZeRYh7e9UomR/cVYbWn4Huv7mIymhayIeAPw5xRjN3+bmVc361iSTiyVSjC3MjPDwvWh5h68SnQsI8PUZThqDGOL53cfl/l1mYcPc48eLh9zuL0e5LIcRq+NCnONQ+y1Qz21hw/jM27wGz30njlWOw5tP/o+gaOH+hu3OXqbDu0n698NUCunFBTfFySHep6Lz5A1SGrkcFk+UrdYqDVsN7LNyPZ5eFl928P207DtGOVFWD58P7WGuowub6hL+bk2at/trikhKyKqwF8BrwUeBe6IiHWZubEZx5MkNUeUQ4qtHPao90pUCLqPz5RLdZDRYe2IwDdGsGOc8iyTXuN+Rvad9ePBcz86ubY163dzIbA5Mx8AiIjPApcBhixJkjRj6ldf04bTHprVP94PPNLw+dGybEREXBkRAxExsGPHjiY1Q5IkqTVaNgkhM6/LzLWZubavr69VzZAkSWqKZoWsLcDKhs8ryjJJkqQTQrNC1h3A2RFxRkT0AJcD65p0LEmSpLbTlInvmTkUEe8GvkpxC4frM3NDM44lSZLUjtri2YURsQN4uNXtmEWWAE+0uhEa4floH56L9uL5aB+ei6l5bmZOOKG8LUKWZlZEDEzmwZU6Pjwf7cNz0V48H+3Dc9Ec3uJYkiSpCQxZkiRJTWDImp2ua3UDdBjPR/vwXLQXz0f78Fw0gXOyJEmSmsCeLEmSpCYwZEmSJDWBIavDRcRDEXFvRNwdEQNl2SkRcWtE3F++n9zqds5WEXF9RGyPiPUNZWN+/1H4i4jYHBH3RMRLWtfy2Wmc8/GHEbGl/I3cHRFvalj3ofJ83BcRr29Nq2eniFgZEbdHxMaI2BAR7ynL/X20wFHOh7+PJjJkzQ6vyswLGu5x8kHgtsw8G7it/Kzm+BTwhlFl433/bwTOLl9XAtcepzaeSD7FkecD4JryN3JBZt4CEBHnUzzya3W5zV9HRPW4tXT2GwLen5nnAxcBV5Xfub+P1hjvfIC/j6YxZM1OlwE3lMs3AG9uYVtmtcz8FrBzVPF43/9lwN9l4XvA4ohYdnxaemIY53yM5zLgs5l5IDMfBDYDFzatcSeYzNyWmXeVy3uATUA//j5a4ijnYzz+PmaAIavzJfC1iLgzIq4sy5Zm5rZy+TFgaWuadsIa7/vvBx5pqPcoR/9HTjPn3eUQ1PUNw+eej+MkIlYBLwa+j7+Plht1PsDfR9MYsjrfyzPzJRRd7VdFxM81rsziHh3ep6NF/P7bwrXAmcAFwDbgY61tzoklIhYAnwfem5m7G9f5+zj+xjgf/j6ayJDV4TJzS/m+HfgiRXfu4/Vu9vJ9e+taeEIa7/vfAqxsqLeiLFMTZebjmTmcmTXgExwa8vB8NFlEdFP8B/0zmfmFstjfR4uMdT78fTSXIauDRcRJEbGwvgy8DlgPrAOuKKtdAdzcmhaesMb7/tcBv1JeRXURsKth2ERNMmpez1sofiNQnI/LI2JORJxBMeH6B8e7fbNVRATwSWBTZn68YZW/jxYY73z4+2iurlY3QNOyFPhi8duhC/iHzPxKRNwB3BQR7wIeBt7ewjbOahFxI3AJsCQiHgX+ALiasb//W4A3UUwg3Qv82nFv8Cw3zvm4JCIuoBiWegj4TYDM3BARNwEbKa68uiozh1vR7lnqYuCdwL0RcXdZ9vv4+2iV8c7HO/x9NI+P1ZEkSWoChwslSZKawJAlSZLUBIYsSZKkJjBkSZIkNYEhS5IkqQkMWZKmJCJuj4jXjyp7b0RcGxHLI+Ifx9luVUT80jSP/Y2IWDtO+X0R8aOI+G5EnDud40jSTDBkSZqqG4HLR5VdDtyYmVsz862jN4iILmAVMK2QNYFfzswXUTx0+E/HaEO1iceWpCMYsiRN1T8CPx8RPTDysNnlwLfL3qr1ZfmvRsS6iPg6cBvFTShfERF3R8Tvlev/sr7TiPiniLikXL42IgYiYkNEfHiK7fsWcFa5n4ci4qMRcRfwtoi4ICK+Vz4M94v1h+FGxFkR8c9lT9hdEXFmWf5fI+KOsv6Hy7KTIuJLZd31EfEfy/KrI2JjWffPyrK+iPh8uY87IuLisvyV5fdwd0T8sP7kBkmzi3d8lzQlmbkzIn5A8VDymyl6sW7KzCyfPtDoJcALy20uAT6Qmb8ARQg7ymH+R7lNFbgtIl6YmfdMsom/CNzb8PnJ8iHqRMQ9wO9k5jcj4o8o7gj/XuAzwNWZ+cWImAtUIuJ1FI8SuRAIYF0UD2DvA7Zm5s+X++yNiFMpHklyXvk9LC6P/efANZn5nYh4DvBV4PnAByjuoP3dKB7Yu3+Sf5ukDmJPlqRj0ThkeHn5eSy3ZubOY9j/28vepx8Cq4HzJ7HNZ8rHhVxMEWLqPgdFGAIWZ+Y3y/IbgJ8re5H6M/OLAJm5PzP3UjwL9HVlG+4CzqMIXfcCry17yF6RmbuAXRRB6ZMR8R8oHgsD8BrgL8t2rQMWlaHqu8DHI+J3yzYNTfULktT+7MmSdCxuBq6JiJcA8zPzznHqPXuUfQxx+P/RmwtQPoz2A8DPZOZTEfGp+roJ/HJmDkyxDUcTwP/KzL85YkXxd78J+OOIuC0z/ygiLgReDbwVeDdwKcXfd1Fmju6pujoivlTu47sR8frM/PExtlNSm7InS9KUZeYzwO3A9YzfizXaHqBx7tFDwAURUYmIlRTDcgCLKILRrohYSjEsORNt3gU8FRGvKIveCXwzM/cAj0bEmwEiYk5EzKcY2vv1sueJiOiPiNMiYjmwNzP/nmKC/UvKOr2ZeQvwe8CLymN8DfidehvKB/ESEWdm5r2Z+VHgDopeMkmzjD1Zko7VjcAXOfJKw/HcAwxHxI+ATwH/G3gQ2AhsohiSIzN/FBE/BH4MPEIxtDZTrgD+bxmiHgB+rSx/J/A35TytQeBtmfm1iHg+8K/lXLNngP9EMan+TyOiVtb9bYrweHM5nyuA95X7/V3gr8q5YF0Uk/J/C3hvRLwKqAEbgC/P4N8oqU1EZra6DZIkSbOOw4WSJElNYMiSJElqAkOWJElSExiyJEmSmsByDSdqAAAAGUlEQVSQJUmS1ASGLEmSpCYwZEmSJDXB/wf2YrBLjrhXigAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 720x216 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Sim. Time / s\"].plot(figsize=(10, 3));"]}, {"cell_type": "code", "execution_count": 71, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHvdJREFUeJzt3XuUnHWd5/H3p6+5dCCBdLIhQRIgjMIKgW0ZZhFEkYu4GtxVJl4go+zEmQUVR52jssdBHM/gemHG0WVE4QguooiwicgoGFFGVoEGQwj3DIRDYkiCQCD3vnz3j+dXSXWnuru6qypV/eTzOqdOPfV7flX1fbqSz/PUr56LIgIzM8uvpnoXYGZmteWgNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnXUu8CAKZPnx5z586tdxlmZuPKAw888EJEdI7UryGCfu7cuXR3d9e7DDOzcUXSs+X089CNmVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnXGEH/6vP1rsDMLLcaI+i3bABfu9bMrCYaI+ijH3ZsrncVZma51BhBD7B1U70rMDPLpcYJ+i0b612BmVkujRj0kiZIuk/SQ5IekfT51D5P0r2SVkv6oaS21N6eHq9O8+eWVclWB72ZWS2Us0W/E3hLRBwHLADOlnQS8CXgyog4EngJuDD1vxB4KbVfmfqNbIuHbszMamHEoI/MlvSwNd0CeAtwc2q/Djg3TS9Mj0nzT5ek4d9F3qI3M6uRssboJTVLWgFsBO4E/h14OSJ6U5e1wOw0PRt4DiDN3wwcPHwVLf4x1sysRsoK+ojoi4gFwBzgROC1lb6xpCWSuiV19wYeujEzq5FR7XUTES8DdwF/BkyVVLhC1RxgXZpeBxwKkOYfCPyxxGtdHRFdEdHV0jbBQzdmZjVSzl43nZKmpumJwBnAY2SB/+7UbTGwNE0vS49J838ZMcJhr02t3r3SzKxGyrlm7CzgOknNZCuGmyLiNkmPAj+Q9PfA74FrUv9rgO9JWg28CCwa8R2aPUZvZlYrIwZ9RKwEji/R/jTZeP3g9h3Ae0ZVRVML9LwCO7dAe8eonmpmZsNrjCNjm1qze4/Tm5lVXWMEfXP6YrH1hfrWYWaWQ40R9E0p6P2DrJlZ1TVI0HvoxsysVhoj6AtDNz5oysys6hoj6BFMnOYtejOzGmiQoAcmz/AYvZlZDTRQ0Hf6oCkzsxponKDvcNCbmdVC4wT95Bn+MdbMrAYaJ+g7OmHnZujZUe9KzMxypXGCfvKM7N7DN2ZmVdU4Qd9RCHrveWNmVk2NE/SFLXqP05uZVVUDBf307N5DN2ZmVdU4Qe+hGzOzmmicoG+dCG1TPHRjZlZljRP0kA6a8ha9mVk1NVbQ+3w3ZmZV11hB79MgmJlVXWMFvbfozcyqrsGCvhO2vwh9vfWuxMwsNxor6Ds6s/ttvki4mVm1jBj0kg6VdJekRyU9Iuljqf0ySeskrUi3c4qe8xlJqyU9IemssqvZfXSsh2/MzKqlpYw+vcAnIuJBSVOAByTdmeZdGRFfKe4s6WhgEXAMcAjwC0lHRUTfiO/kg6bMzKpuxC36iFgfEQ+m6VeBx4DZwzxlIfCDiNgZEc8Aq4ETy6pmchq68UFTZmZVM6oxeklzgeOBe1PTxZJWSrpW0rTUNht4ruhpaymxYpC0RFK3pO5Nm1Kwe4vezKzqyg56SR3Aj4FLIuIV4CrgCGABsB746mjeOCKujoiuiOjq7Exb8m0d0DLRY/RmZlVUVtBLaiUL+Rsi4haAiNgQEX0R0Q98mz3DM+uAQ4uePie1lfNG6SLh3uvGzKxaytnrRsA1wGMR8bWi9llF3d4FrErTy4BFktolzQPmA/eVXZHPd2NmVlXl7HVzMnA+8LCkFants8B7JS0AAlgDfBggIh6RdBPwKNkeOxeVtcdNweQZsHlt2d3NzGx4IwZ9RPwGUIlZtw/znC8CXxxTRR2d8IcHx/RUMzPbW2MdGQvZFv3WF6C/v96VmJnlQuMFfccMiL7snDdmZlaxxgv63QdN+QdZM7NqaNyg93npzcyqovGCfvfRsQ56M7NqaLyg99CNmVlVNV7QT5wGTa0+aMrMrEoaL+gLp0HwGSzNzKqi8YIefBoEM7Mqasyg90XCzcyqpkGD3mewNDOrlsYM+sLQTUS9KzEzG/caM+gnz4C+XbBjc70rMTMb9xoz6H3QlJlZ1TRm0PugKTOzqmnMoPdFws3MqqYxg35yCnofNGVmVrHGDPpJB4GaPEZvZlYFjRn0Tc0w6WAP3ZiZVUFjBj2ko2O9RW9mVqnGDXqf78bMrCoaN+h9vhszs6oYMeglHSrpLkmPSnpE0sdS+0GS7pT0VLqfltol6euSVktaKemEMVXWMcM/xpqZVUE5W/S9wCci4mjgJOAiSUcDnwaWR8R8YHl6DPA2YH66LQGuGlNlkzuhZxvs3DKmp5uZWWbEoI+I9RHxYJp+FXgMmA0sBK5L3a4Dzk3TC4HrI/M7YKqkWaOuzBcJNzOrilGN0UuaCxwP3AvMjIj1adbzwMw0PRt4ruhpa1Pb6Ph8N2ZmVVF20EvqAH4MXBIRrxTPi4gARnVOYUlLJHVL6t60qUSY+3w3ZmZVUVbQS2olC/kbIuKW1LyhMCST7guJvA44tOjpc1LbABFxdUR0RURXZ2fn3m/q892YmVVFOXvdCLgGeCwivlY0axmwOE0vBpYWtV+Q9r45CdhcNMRTvt1b9B66MTOrREsZfU4GzgcelrQitX0WuAK4SdKFwLPAeWne7cA5wGpgG/DBMVXW3AoTp3mL3sysQiMGfUT8BtAQs08v0T+AiyqsK+ODpszMKta4R8aCLxJuZlYFjR30Pt+NmVnFGjvofQZLM7OKNXbQd3TCzs3Qs6PelZiZjVuNHfSTfXSsmVmlGjvofdCUmVnFGjvofZFwM7OKNXjQT8/uPXRjZjZmjR30HroxM6tYYwd960Rom+KhGzOzCjR20IMPmjIzq1DjB73Pd2NmVpHGD/qOTv8Ya2ZWgcYPem/Rm5lVZBwEfSdsfxH6eutdiZnZuNT4Qd+RrjS1zacrNjMbi8YP+t1Hx3r4xsxsLBo/6H3QlJlZRRo/6H2RcDOzijR+0HuL3sysIo0f9G0d0DLRY/RmZmPU+EEv+SLhZmYVaPygB5/vxsysAiMGvaRrJW2UtKqo7TJJ6yStSLdziuZ9RtJqSU9IOqsqVfoi4WZmY1bOFv13gbNLtF8ZEQvS7XYASUcDi4Bj0nP+t6Tmiqv0Fr2Z2ZiNGPQRcTfwYpmvtxD4QUTsjIhngNXAiRXUl5k8Ixuj7++v+KXMzPY3lYzRXyxpZRramZbaZgPPFfVZm9oq0zEDoi87542ZmY3KWIP+KuAIYAGwHvjqaF9A0hJJ3ZK6N20aYfx990FTHr4xMxutMQV9RGyIiL6I6Ae+zZ7hmXXAoUVd56S2Uq9xdUR0RURXZ2fn8G9YCHqfl97MbNTGFPSSZhU9fBdQ2CNnGbBIUrukecB84L7KSqTo6FgHvZnZaLWM1EHSjcBpwHRJa4G/A06TtAAIYA3wYYCIeETSTcCjQC9wUUT0VVxlYYv+6bvg9e+u+OXMzPYnioh610BXV1d0d3cP3SECPj81m75s874pysyswUl6ICK6Ruo3Po6MlbL7N/5NfeswMxuHxkfQA6gZNH7KNTNrFE5OM7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzo2voO/vqXcFZmbjzvgJ+lnHwr1Xw9O/qnclZmbjyvgJ+vf9CA46HL7/57D6F/Wuxsxs3Bg/Qd/RCYt/AtPnw43vhSd+Vu+KzMzGhfET9ACTD4YLlsHMY+CHH4DHbqt3RWZmDW98BT3ApIPggqVwyAL40WJ45NZ6V2Rm1tDGX9ADTDgQPnALzHkD3PwhWPmjeldkZtawRgx6SddK2ihpVVHbQZLulPRUup+W2iXp65JWS1op6YSaVT7hAHj/zXDYyXDrEljx/Zq9lZnZeFbOFv13gbMHtX0aWB4R84Hl6THA24D56bYEuKo6ZQ6hvQPedxPMOxX+7/+AB66r6duZmY1HIwZ9RNwNvDioeSFQSNXrgHOL2q+PzO+AqZJmVavYktomwXt/CEe+FX7yUbj/OzV9OzOz8WasY/QzI2J9mn4emJmmZwPPFfVbm9pqq3UCLLohC/vb/xZ2vFLztzQzGy8q/jE2IgKI0T5P0hJJ3ZK6N23aVGkZ0NIOR50N0Qd9uyp/PTOznBhr0G8oDMmk+42pfR1waFG/OaltLxFxdUR0RURXZ2fnGMswM7ORjDXolwGL0/RiYGlR+wVp75uTgM1FQzxmZlYHLSN1kHQjcBowXdJa4O+AK4CbJF0IPAucl7rfDpwDrAa2AR+sQc1mZjYKIwZ9RLx3iFmnl+gbwEWVFmVmZtUzPo+MNTOzsjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLuXwG/YZHoL+v3lWYmTWEEa8wNa5MPQwQXP9OmHAgzD0FDj8tux18JEh1Lc/MrB7yFfRHnQmffBKeuRue/hU8/Wt4/LZs3pRDUui/Cea9CQ6YVcdCzcz2nXwFPUDHDHj9u7NbBLz0zJ7Qf/Jn8ND3s35v+Z9w6qfqWqqZ2b6Qv6AvJsFBh2e3rg9Bfz9seBhueA9sfLze1ZmZ7RP5/DF2KE1NMOs4aOuodyVmZvvM/hX0Zmb7oYqGbiStAV4F+oDeiOiSdBDwQ2AusAY4LyJeqqxMMzMbq2ps0b85IhZERFd6/GlgeUTMB5anx2ZmVie1GLpZCFyXpq8Dzq3Be5iZWZkqDfoA7pD0gKQlqW1mRKxP088DM0s9UdISSd2Sujdt2lRhGWZmNpRKd698Y0SskzQDuFPSgH0WIyIkRaknRsTVwNUAXV1dJfuYmVnlKtqij4h16X4jcCtwIrBB0iyAdL+x0iLNzGzsxhz0kiZLmlKYBs4EVgHLgMWp22JgaaVFmpnZ2FUydDMTuFXZicJagO9HxM8k3Q/cJOlC4FngvMrLrLL2jux8OM/8G8w7pd7VmJnV1JiDPiKeBo4r0f5H4PRKiqq5d/4z3PwhuO4d8MZL4LTPQktbvasyM6uJ/fPI2FnHwYfvhhPOh99cCdeeCS+srndVZmY1sX8GPUDb5GzL/rzvwYvPwLdOgQevz854aWaWI/tv0Bcc/U746/8Hc7pg2Ufgpgtg24vlP3/TE/D8qtrVZ2ZWoXyfprhcB86G85fCb/8Zln8B1nbDu/4lu0jJYDtegZefhZfWwEvPwh2XZu2Xbd6nJZuZlctBX9DUBCd/DOadCj/+73D9QnjDhdkpjYuDffsotvbNzBqAg36wQ47Pfqj92Wfg/u9AUytMfQ1MOyybN/UwmDY3ezxtbrb3zs5X6121mdmQHPSltE2Gd34dzrgc2qdAU3O9KzIzGzMH/XAmTq13BWZmFfNeN9XQ35ddj9bMrAF5i75SzW3whwfhC9Nh8nSY3Fl0P6NouhM6OvdMt06sd+Vmtp9w0FfqzC/C4W+GrRth6ybY+kJ2/9Ia2LIJeraWfl5bR1oJzBi4cjjsP8ORjX0GCTMbXxz0lZp+ZHYbyq6tKfzTCmDrprRSKHr88rOwrjubXnEDfOLxoV/PzGyUHPS11jY5u007bOS+t30cuq+Fu78CfT3Qtwv6e/ZM9+1K0z3wH/4jHHU2zDgasjOImpmV5KBvJFNfk93/8gvZfVNL9htAc2u6T9MR8MgtsPxyOGAOHHVmFvpzT4G2SfWr38wakqIBTuJ1yJHHxOOrVnDAhNZ6l1J/O7dkYd7Umh2tO5RX1sNTd8CTP4enf5X9FtAyITuyd/6ZcNRZe1YcZpZLkh6IiK4R+zVC0LfPmh/HXXwVn3vH0bz99bOQhyJGp3cnrPlNCv6fZT8EAzS3w+mfy7byWyZCS3u2t0/LhOzWOiFrb51Q1DYx++bgz8Cs4Y2roD/m2ONj3l9+nVXrXuFNR3Vy+cJjOOzgyfUua3yKgBeegl9eDo/9ZIwvoqIVwYRsBTFlFrz/R9mRwmbWEMZV0Hd1dcW9993P9b9dw1fveJKevn4+8pYj+ctTD6e9xacfGLPendCzLd1vh94d2a1nB/RuL7/9kaWwczP8pw9mF23Z/ZtBGmLa/TtCmt7920IbNKfppta9nzfc0JSZjWjcBX13dzcAz2/ewRdue5SfPryeIzon88V3vZ6TDj+4zhXu5567D645o/qvq+a9VwgDVh4t2UqjqTXdN6f5hbb0uK0DJhyY3SZOhQlT9zwuvvkgNcuZcRv0BXc9sZHPLV3Fcy9u57+dMIfPnvNaDu5or1OFxq6t2Vb+7l09e9Kun7ugr3fP7p8DdgftGdSvaF5/0XMKzy/53N69b3096bQTqc+uLbBjc/btYzjN7aVXAIXbPf8Ikw6G9gOyXWJbJ0LrpOzWNmng43LaCsNeze3ZNYmb27MVk3//sCoZ90EPsH1XH9+46ymuvvtpJrW18L0LT+TYOT7RmA2hZ0cW+ANuL6fb4PbNsP3lgf36e7NvEkcvzFZqhZVbz7Z0K2rr2znGIpW9R8uEPeG/1337MH0K80r1GTyvfU97oW3zc9meWi3tew+n7R56G669jGG65jaf8XUfyUXQFzy14VXOuPJu/nTeQZz+uhlMamthUlvz7vvJ7c1MbM2mp09pp6PdhwfYKEVkv020Tiivf19v9nvGrm0DVwQ921Lb1uz1endm31B6d2Yrh73aiuftGqJP8bx0399b2fI2tVT+GsPSECuAoVYMLXuvRIb6DWjI9kGvo6ZshaPmoumm7HFT057pAfMG9StrXnP2La0O39TKDfqaJaKks4F/ApqB70TEFWN9rfkzp3DMIQdw7zMvcu8zw1/hqaO9hfsvfSsT27xFYaMglR/ykEJqSv32QurvG3olULySKF7BFNoOmgeHn5adcbV4CK3UcNq+at+1pbz+/T31+XuXQ6VWHmklUO7Ko6mw0ii1cioxr0w1CXpJzcA3gTOAtcD9kpZFxKNjfc2ffvQU+vqDbbt62b6rj627+ti2q5dtu/rYtquP7bt6uePRDdzy4DoWfft3tDc3ZX9fieYmIUFzk2iS+OXjG5kzbSI//cgpdExoobnJY6Y2zjQ1p6OgKzgSuqkJmtqyoZ/xIqLM33d2QfRnK8Toh0j3/cXTZc7r78vet+S8/kGvMdK84vcqNS9K1FV43A99g+oqU6226E8EVkfE0wCSfgAsBMYc9JAF9ZQJrUwZ4gjaIzo7eHlbDzt7+7KNlQh6+/vZ1Qd9/UFE0J9Gqta+tJ3jLr8DgEltzUyZ0EJHe0t6/RamTGhhUltL9nePoLc/6O8P+vqDvkj3/cGvn9wEwKfO+pO96in+JidUom1g30f/8Aovb+/hHccekv0flIpuoHTfJA2Yv3tFJtHUtKd/X3/Q1tK0u9a+ovoLy7N7uYqWacC8CHr7gvbWJt5x3CEMXiUOPrit1Cqz1DdalehZ6TdfaeDfWbvbs9bC61d6QF5huLMw6hmD2wfXNaiOQn3VqGW/I+0ZrsHH2vBX5f37qVXQzwaeK3q8FvjTGr3XbvNnTuHav3jDiP2e3PAqK557mVd39LJlRy+v7ujJpnf28sqOHrbs7GX95h1s29mLUpBm3wZI0000N2XBWvDlnz9RteX41RObqvZa1XTpravqXULVDV4hwN6Bva9+xtod/kW1FK8Ydq8mBvQrTJdewe3uPvCpe6+gh9gAKdl3iLpL9Rg8b6TnDt4AGO75I60kh5o9ZPsoNj6GeuehairZWqXXLkfdfrWUtARYAvCa1+zbc7IcNXMKR82szthqRNDTVwiGKGov1bdoukTf/ghe2tqze7ov9nwL6Y/Y/S2lf0BbNl34xtKX5m3b2UtfBBNammluFs0SLU3ZFv+Ae4mWNL+wQhtwk9iys5czrrybvx30rWXwMsZe27JD/B1K/h1L9Ss/YQf8bSMGbG1H7HmtbHrPk4rDPIi9vnnt/q9VInizx6X7Fx4PrqN4uQbXUk6/AfNKfKPY+1vGwNcppXiHjMFdRvqM954/9LzBr77Xc0fxXqOtc8gnDtM81I4qQ/2rHPLvW4XXLjUjCJYP1X+Qmux1I+nPgMsi4qz0+DMAEfEPpfqPtNeNmZntrdy9bmp1DPr9wHxJ8yS1AYuAZTV6LzMzG0ZNhm4iolfSxcDPyXavvDYiHqnFe5mZ2fBqNkYfEbcDt9fq9c3MrDw+faCZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeVcQ5ymWNIm4Nl611EF04EX6l3EPuTlzTcvb+M7LCI6R+rUEEGfF5K6yzlKLS+8vPnm5c0PD92YmeWcg97MLOcc9NV1db0L2Me8vPnm5c0Jj9GbmeWct+jNzHLOQV8BSWskPSxphaTu1HaQpDslPZXup9W7zrGSdK2kjZJWFbWVXD5lvi5ptaSVkk6oX+VjM8TyXiZpXfqMV0g6p2jeZ9LyPiHprPpUPTaSDpV0l6RHJT0i6WOpPZef7zDLm8vPdy+RrmLk2+hvwBpg+qC2/wV8Ok1/GvhSveusYPlOBU4AVo20fMA5wL+SXWTpJODeetdfpeW9DPhkib5HAw8B7cA84N+B5novwyiWdRZwQpqeAjyZlimXn+8wy5vLz3fwzVv01bcQuC5NXwecW8daKhIRdwMvDmoeavkWAtdH5nfAVEmz9k2l1THE8g5lIfCDiNgZEc8Aq4ETa1ZclUXE+oh4ME2/CjxGdq3nXH6+wyzvUMb15zuYg74yAdwh6YF0DVyAmRGxPk0/D8ysT2k1M9Tylbog/HD/kcaTi9NwxbVFQ3G5WV5Jc4HjgXvZDz7fQcsLOf98wUFfqTdGxAnA24CLJJ1aPDOy74C53a0p78uXXAUcASwA1gNfrW851SWpA/gxcElEvFI8L4+fb4nlzfXnW+Cgr0BErEv3G4Fbyb7abSh8pU33G+tXYU0MtXzrgEOL+s1JbeNaRGyIiL6I6Ae+zZ6v7+N+eSW1koXeDRFxS2rO7edbannz/PkWc9CPkaTJkqYUpoEzgVVkF0FfnLotBpbWp8KaGWr5lgEXpL0zTgI2Fw0BjFuDxqHfRfYZQ7a8iyS1S5oHzAfu29f1jZUkAdcAj0XE14pm5fLzHWp58/r57qXevwaP1xtwONmv8g8BjwCXpvaDgeXAU8AvgIPqXWsFy3gj2dfZHrIxyguHWj6yvTG+SbZ3wsNAV73rr9Lyfi8tz0qy//yzivpfmpb3CeBt9a5/lMv6RrJhmZXAinQ7J6+f7zDLm8vPd/DNR8aameWch27MzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRWF+lMgmcNartE0lWSDpF08xDPmyvpfRW+968k7XVt0NT+hKSHJN0j6U8qeR+zRuGgt3q5EVg0qG0RcGNE/CEi3j34CZJagLlARUE/gvdHxHFkJ/T6cokammv43mY14aC3erkZeLukNth9oqlDgH9LW+2rUvtfSFom6ZdkB/JcAZySzh3+8TT/G4UXlXSbpNPS9FWSutP5xz8/yvruBo5Mr7NG0pckPQi8R9ICSb9LJ8K6teic7UdK+kX6RvCgpCNS+6ck3Z/6fz61TZb009R3laQ/T+1XpHOmr5T0ldTWKenH6TXul3Ryan9T0XnUf184UttssJZ6F2D7p4h4UdJ9ZCeEW0q2NX9TRER2tPoAJwDHpuecRnb+8P8C2YpgmLe5ND2nGVgu6diIWFlmie8gO2Ky4I+RncAOSSuBj0TEryVdDvwdcAlwA3BFRNwqaQLQJOlMssPnTyQ7unRZOvldJ/CHiHh7es0DJR1Mdhj+a9PfYWp6738CroyI30h6DfBz4HXAJ4GLIuKedLKuHWUum+1nvEVv9VQ8fLMoPS7lzogo9zzxxc5LW+G/B44hu5jESG6QtAI4mSxIC34IWSADUyPi16n9OuDUtDU9OyJuBYiIHRGxjewcSGemGh4EXksW/A8DZ6RvCqdExGZgM1lYXyPpvwLb0nu8FfhGqmsZcEAK9nuAr0n6aKqpd7R/INs/eIve6mkpcKWyy9JNiogHhui3dZjX6GXgBssEgHQiqk8Cb4iIlyR9tzBvBO+PiO5R1jAcAf8QEd/aa0a23OcAfy9peURcLulE4HTg3cDFwFvIlu+kiBi8xX6FpJ+m17hH0lkR8fgY67Qc8xa91U1EbAHuAq5l6K35wV4luxRcwRpggaQmSYey5zSzB5CF82ZJM8mGiKpR82bgJUmnpKbzgV9HdtWitZLOBUhnPZxENszyobQFjqTZkmZIOgTYFhH/h+xH3xNSnwMj4nbg48Bx6T3uAD5SqEHSgnR/REQ8HBFfAu4n+7Zgthdv0Vu93Uh2Lv/Be+AMZSXQJ+kh4LvAPwLPAI+SXR6ucLm4hyT9Hnic7EpB91Sx5sXAv6Qgfxr4YGo/H/hWGrfvAd4TEXdIeh3w2/TbwxbgA2Q/9H5ZUn/q+9dkK7ClaXxfwN+k1/0o8M3020AL2Q/FfwVcIunNQD/ZGVT/tYrLaDnis1eameWch27MzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzv1/xWTkwD2+JnsAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Presim. Time / s\"].plot();\n", "df[\"Sim. Time / s\"].plot();"]}, {"cell_type": "code", "execution_count": 72, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmcFNW5//HPMzvMjKIwcEFEUEEFwYGMiMEFN1CSiOYXI14TMZprcn9m05h7NZvGaC5ejSbGXL1GeYlxSRQ14I7gwpWfigNBZVOI4mUQZVGQbWCW5/dHVQ89Mz0zPdPd09M93/frVa+uPnWq6qlp6KfPqapT5u6IiIg0lZPuAEREpGtSghARkZiUIEREJCYlCBERiUkJQkREYlKCEBGRmJQgREQkJiUIERGJSQlCRERiykt3AIno06ePDx48ON1hiIhklMWLF29297K26mV0ghg8eDCVlZXpDkNEJKOY2Yfx1FMXk4iIxKQEISIiMSlBiIhITBl9DkJEkq+mpoaqqiqqq6vTHYokqKioiIEDB5Kfn9+h9ZUgRKSRqqoqSktLGTx4MGaW7nCkg9ydLVu2UFVVxZAhQzq0DXUxiUgj1dXV9O7dW8khw5kZvXv3TqglqAQhIs0oOWSHRD/HzE4Q2z9OdwQiIlkrsxPEjk9Az9QWyTq5ubmUl5dz9NFHc95557Fr166Et3nXXXdx//33J7ydyy+/nPLycoYPH06PHj0oLy+nvLycWbNm8ctf/pJ58+YlvI9Ypk+fzoMPPpiSbbfEPIO/YCsG5HrlP7ZAj17pDkUka6xcuZKjjjoqrTGUlJSwY8cOAC688EK+8IUvcOWVVzYsd3fcnZyc9P3GXbt2LV/+8pdZtmxZp+zvlFNO4ZFHHqGsrM0RMhqJ9Xma2WJ3r2hr3cxuQQDs3JTuCEQkhU488UTWrFnD2rVrOeKII7jooos4+uijWbduHXPnzuX4449nzJgxnHfeeQ1J5eqrr2b48OGMGjWKq666CoDrrruOW265BYAJEyZwxRVXUFFRwVFHHcWbb77JV7/6VYYOHcrPf/7zDsd68cUXM2vWLCAYCuiaa66hvLyciooKlixZwqRJkzjssMO46667Gta5+eabOfbYYxk1ahTXXnttzO1+/vnn7N27t1lyeOWVVxpaMKNHj2b79u0djj2WzL/MdcdG6DM03VGIZKVfPbmcFR99ntRtDh+wH9d+ZURcdWtra3n22Wc588wzAVi9ejUzZ85k3LhxbN68mRtuuIF58+ZRXFzMTTfdxK233srll1/OE088wapVqzAztm7dGnPbBQUFVFZW8vvf/54pU6awePFiDjzwQA477DCuuOIKevfunfCxDho0iKVLl3LFFVdw8cUXs3DhQqqrqzn66KP57ne/y9y5c1m9ejWLFi3C3Tn77LNZsGABJ510UqPtzJs3j9NOO63Z9m+55Rb++Mc/Mn78eHbs2EFRUVHCMUdLWQvCzIrMbJGZvWVmy83sV2H5EDN7w8zWmNlfzawgLC8M368Jlw+Oa0c7N6bqEEQkTXbv3t3wy3vQoEFceumlABxyyCGMGzcOgNdff50VK1Ywfvx4ysvLmTlzJh9++CH7778/RUVFXHrppTz++OP07Nkz5j7OPvtsAEaOHMmIESPo378/hYWFHHrooaxbty4pxxG9j+OOO47S0lLKysooLCxk69atzJ07l7lz5zJ69GjGjBnDqlWrWL16dbPtPPfcc5x11lnNysePH8+VV17J7bffztatW8nLS+5v/lS2IPYAp7r7DjPLB141s2eBK4Hb3P0vZnYXcClwZ/j6mbsfbmZTgZuA89vcyw51MYmkSry/9JOtR48eLF26tFl5cXFxw7y7c8YZZ/Dwww83q7do0SLmz5/PrFmzuOOOO3jxxReb1SksLAQgJyenYT7yvra2NhmH0eY+3J1rrrmG73znO61uZ9GiRdx5553Nyq+++mq+9KUv8cwzzzB+/Hief/55jjzyyKTEDilsQXhgR/g2P5wcOBWYFZbPBM4J56eE7wmXn2ZtXsRrakGIdFPjxo1j4cKFrFmzBoCdO3fy3nvvsWPHDrZt28bkyZO57bbbeOutt9IcacsmTZrEjBkzGs6drF+/no0bG3+nLV++nCOPPJLc3Nxm6//jH/9g5MiR/Pu//zvHHnssq1atSmp8KT0HYWa5wGLgcOCPwD+Are4eSc9VwEHh/EHAOgB3rzWzbUBvYHOLO8jJ00lqkW6qrKyM++67jwsuuIA9e/YAcMMNN1BaWsqUKVOorq7G3bn11ls7vI/Jkydzzz33MGDAgGSF3cjEiRNZuXIlxx9/PBBcvfXAAw/Qt2/fhjrR52Ca+t3vfsdLL71ETk4OI0aMiNkNlYhOuczVzHoBTwC/AO5z98PD8oOBZ939aDNbBpzp7lXhsn8Ax7n75ibbugy4DOCYAYVfWHrLV+GCh1J+DCLdRVe4zFX2OeOMM7j//vvp379/h9bv8pe5uvtW4CXgeKCXmUVaLgOB9eH8euBggHD5/sCWGNu6290r3L0ir6BIXUwiktVeeOGFDieHRKXyKqaysOWAmfUAzgBWEiSKr4XVpgGzw/k54XvC5S96W82bnPzgMlcREUm6VJ6D6A/MDM9D5ACPuPtTZrYC+IuZ3QD8Hbg3rH8v8GczWwN8Ckxtcw+5OgchIpIqKUsQ7v42MDpG+fvA2Bjl1cB57dpJTh7UfA57dkBhSUdDFRGRGDJ7qI2c8ClJOg8hIpJ0mZ0gcsMG0M6Wr4QVEZGOyewEkRMmCJ2oFskqN954IyNGjGDUqFGUl5fzxhtvAPDtb3+bFStWJLz94447jvLycgYNGkRZWVnDgHdr165l8uTJLY7flKizzjqLqqqqlGw7FTJ7sD51MYlknddee42nnnqKJUuWUFhYyObNm9m7dy8A99xzT1L2EUk49913H5WVldxxxx0Ny5555pmk7KOp3bt3s2XLFgYOHJiS7adCZrcgIl1MGo9JJGts2LCBPn36NIxd1KdPn4Y7mSdMmEBlZSUQ3HX8k5/8hBEjRnD66aezaNEiJkyYwKGHHsqcOXM6vP/BgwezefNm1q5dy5FHHsnFF1/MsGHDuPDCC5k3bx7jx49n6NChLFq0CAiG+LjkkksYO3Yso0ePZvbs2TG3+/LLLzNhwoRm5bfffnvD0ORTp7Z98WZnyuwWBAY9DlALQiRVnr0aPn4nudv8p5Fw1vQWF0+cOJHrr7+eYcOGcfrpp3P++edz8sknN6u3c+dOTj31VG6++WbOPfdcfv7zn/PCCy+wYsUKpk2b1jCSaiLWrFnDo48+yowZMzj22GN56KGHePXVV5kzZw6/+c1v+Nvf/saNN97IqaeeyowZM9i6dStjx47l9NNPbzSwIARDZpxzzjnN9jF9+nQ++OCDhhFeu5LMbkEAFPfVOQiRLFJSUsLixYu5++67KSsr4/zzz+e+++5rVq+goKBhjKKRI0dy8sknk5+fz8iRI1m7dm1SYhkyZAgjR45sGOvotNNOw8wa7WPu3LlMnz6d8vJyJkyYQHV1Nf/7v//bbFsLFy7khBNOaFY+atQoLrzwQh544IGkD9edqK4VTUcUl+lmOZFUaeWXfirl5uYyYcIEJkyYwMiRI5k5cyYXX3xxozr5+flEBnyOHk47FcN1t7YPd+exxx7jiCOOaHE777//PgcffDAFBQXNlj399NMsWLCAJ598khtvvJF33nmnyySKzG9BlChBiGSTd999t9FDc5YuXcohhxySxohaN2nSJP7whz8QGRno73//e7M6LY3IWl9fz7p16zjllFO46aab2LZtW8PQ311B5ieI4r46SS2SRXbs2MG0adMaTtyuWLGC6667rkPb+uijj5g8eXJyA2ziF7/4BTU1NYwaNYoRI0bwi1/8olmd5557LmaCqKur4xvf+AYjR45k9OjR/OAHP6BXr14pjbc9OmW471SpqKjwylvPhxdvgJ99AvnJfR6rSHek4b6Ta8+ePYwfP77h6qvO1uWH+06p4vDBGupmEpEuqLCwMG3JIVGZnyBKIglCVzKJiCRT5ieISAtC5yFEkiaTu55ln0Q/xyxIEH2CV3UxiSRFUVERW7ZsUZLIcO7Oli1bKCrq+LnZrnGxbSLUxSSSVAMHDqSqqopNm/SjK9MVFRUlNPZT5ieI/B5QUKouJpEkyc/PZ8iQIekOQ7qAzO9igvBmObUgRESSKTsShMZjEhFJuuxIEBpuQ0Qk6bIjQagFISKSdFmSIMpg96dQl5wRHEVEJFsSRElZ8Lprc3rjEBHJIilLEGZ2sJm9ZGYrzGy5mf0wLL/OzNab2dJwmhy1zjVmtsbM3jWzSXHvrOFuanUziYgkSyrvg6gFfuzuS8ysFFhsZi+Ey25z91uiK5vZcGAqMAIYAMwzs2HuXtfmnnSznIhI0qWsBeHuG9x9STi/HVgJHNTKKlOAv7j7Hnf/AFgDjI1rZ8VhF5NulhMRSZpOOQdhZoOB0cAbYdH3zOxtM5thZgeEZQcB66JWqyJGQjGzy8ys0swqG4YCUAtCRCTpUp4gzKwEeAz4kbt/DtwJHAaUAxuA37Zne+5+t7tXuHtFWVnYcigogbweOgchIpJEKU0QZpZPkBwedPfHAdz9E3evc/d64E/s60ZaDxwctfrAsCyeHQXdTDt1FZOISLKk8iomA+4FVrr7rVHl/aOqnQssC+fnAFPNrNDMhgBDgUVx71DjMYmIJFUqr2IaD3wTeMfMloZlPwUuMLNywIG1wHcA3H25mT0CrCC4AuryuK5giijuC9uqkhe9iEg3l7IE4e6vAhZj0TOtrHMjcGOHdlhSBh8t6dCqIiLSXHbcSQ1BC2LnZqivT3ckIiJZIXsSRElf8LpgTCYREUlY9iSIhpvldKJaRCQZsi9B6LkQIiJJkT0JouFuaiUIEZFkyJ4EoS4mEZGkyp4E0eMAyMnXzXIiIkmSPQkiMtyGRnQVEUmK7EkQoOE2RESSKLsSRHFfnYMQEUmSLEsQGtFVRCRZsitBRLqY3NMdiYhIxsuuBFHcF+r2QvW2dEciIpLxsitB6GY5EZGkya4EoZvlRESSJrsSREMLQglCRCRR2ZUgisMEoZvlREQSll0JoueBYDk6ByEikgTZlSBycqFnb3UxiYgkQXYlCAjvplYLQkQkUdmXIDQek4hIUmRfgtB4TCIiSZGyBGFmB5vZS2a2wsyWm9kPw/IDzewFM1sdvh4QlpuZ3W5ma8zsbTMb06Edl/TVSWoRkSRIZQuiFvixuw8HxgGXm9lw4GpgvrsPBeaH7wHOAoaG02XAnR3aa3EZ1OyCPTsSDF9EpHtLWYJw9w3uviSc3w6sBA4CpgAzw2ozgXPC+SnA/R54HehlZv3bvePI3dRqRYiIJKRTzkGY2WBgNPAG0M/dN4SLPgb6hfMHAeuiVqsKy9pH4zGJiCRFyhOEmZUAjwE/cvfPo5e5uwPtGpvbzC4zs0ozq9y0KUYS0HhMIiJJkdIEYWb5BMnhQXd/PCz+JNJ1FL5GvsnXAwdHrT4wLGvE3e929wp3rygrK2u+U43HJCKSFKm8ismAe4GV7n5r1KI5wLRwfhowO6r8ovBqpnHAtqiuqPg1tCDUxSQikoi8FG57PPBN4B0zWxqW/RSYDjxiZpcCHwJfD5c9A0wG1gC7gG91aK+5+dDjALUgREQSlLIE4e6vAtbC4tNi1Hfg8qTsXDfLiYgkLPvupIagm2nn5nRHISKS0bIzQWg8JhGRhGVngtCIriIiCcvOBFFSBnu2QU11uiMREclY2ZkginU3tYhIotpMEGb2n2a2n5nlm9l8M9tkZt/ojOA6TDfLiYgkLJ4WxMRwiIwvA2uBw4GfpDKohEVaEDoPISLSYfEkiMi9El8CHnX3bSmMJzmK+wSv6mISEemweG6Ue8rMVgG7gX81szKga5/9VReTiEjC2mxBuPvVwBeBCnevIRgGY0qqA0tIfg8oKFUXk4hIAuIaasPdP42a3wnsTFlEyaKb5UREEpKdl7mCxmMSEUlQiwkifJZD5iop00lqEZEEtNaCeM3M/mZm3w0fGZpZ1IIQEUlIi+cg3L0iTAxnAr8zs4OAV4FngVfcfU+nRNhRxWWw+1Ooq4XcVD72QkQkO7V6DsLd17r7Xe5+DsGVTE8CpwP/Y2ZPd0aAHVYSPllul4b9FhHpiLh/WoeXuL4YToQtiq6r4W7qjVD6T+mNRUQkA3X4KiZ3X5/MQJJON8uJiCQkiy9zDbuYdLOciEiHxJ0gzKxnKgNJOrUgREQSEs9w3180sxXAqvD9MWb2XymPLFEFJZDXQ5e6ioh0UDwtiNuAScAWAHd/CzgplUElhVnQzbRTVzGJiHREXF1M7r6uSVFdCmJJPo3HJCLSYfEkiHVm9kXAw6fKXQWsbGslM5thZhvNbFlU2XVmtt7MlobT5Khl15jZGjN718wmdehomiruq5PUIiIdFE+C+C5wOXAQsB4oD9+35T6Cu7Cbus3dy8PpGQAzGw5MBUaE6/yXmeXGsY/WqQUhItJhbd4o5+6bgQvbu2F3X9COMZymAH8Jh+/4wMzWAGOB19q730aK+wbnIOrrISd7r+gVEUmFNhOEmQ0Bvg8Mjq7v7md3cJ/fM7OLgErgx+7+GUHr5PWoOlVhWWJK+oLXBWMyRR5DKiIicYlnqI2/AfcSjMNUn+D+7gR+DXj4+lvgkvZswMwuAy4DGDRoUOuVG26W26gEISLSTvEkiGp3vz0ZO3P3TyLzZvYn4Knw7Xrg4KiqA8OyWNu4G7gboKKiwlvdYSRB6LkQIiLtFk/H/O/N7FozO97MxkSmjuzMzPpHvT0XiFzhNAeYamaFYZfWUGBRR/bRSMPd1EoQIiLtFU8LYiTwTeBU9nUxefi+RWb2MDAB6GNmVcC1wAQzKw/XXwt8B8Ddl5vZI8AKoBa43N0Tv9ci0oJ4/yUY+bWENyci0p2Ye+u9NOEVRcPdfW/nhBS/iooKr6ysbLmCO/yqVzB/3bbOCUpEpIszs8XuXtFWvXi6mJYBvRIPKQ3MgtcTrkxvHCIiGSieLqZewCozexNoeMxoApe5di7LBdM9ECIi7RVPgrg25VGIiEiXE8+d1K90RiAiItK1tJggzOxVdz/BzLYTXHXUsAhwd98v5dGJiEjatNaCKAZw99JOikVERLqQ1s7etn79q4iIZLXWWhB9zazF60Pd/dYUxCMiIl1EawkiFyghOOcgIiLdTGsJYoO7X99pkYiISJfS2jkItRxERLqx1hLEaZ0WhYiIdDktJgh3/7QzAxERka5FgxSJiEhMShAiIhKTEoSIiMTUPRJEfU26IxARyTjZnyD6j4I37ob3X053JCIiGSX7E8Q/PwoHHgoPnQ9r5qU7GhGRjJH9CaKkDKY9CX2GwsMXwLvPpTsiEZGMkP0JAqC4N1w0B/qNgL9+A1Y+le6IRES6vO6RIAB6HggXzYYB5fDoNFj+RLojEhHp0rpPggAo2h++8TgMPBZmXQJvP5ruiEREuqyUJQgzm2FmG81sWVTZgWb2gpmtDl8PCMvNzG43szVm9raZjUlVXBTtBxfOgkPGwxOXwdKHUrYrEZFMlsoWxH3AmU3Krgbmu/tQYH74HuAsYGg4XQbcmcK4oLAE/vkRGHIS/O3/wuKZKd2diEgmSlmCcPcFQNMB/6YAkW/jmcA5UeX3e+B1oJeZ9U9VbAAU9IQL/gqHnw5P/gDevCeluxMRyTSdfQ6in7tvCOc/BvqF8wcB66LqVYVlqZVfBFMfDJLEM/8G1Z+nfJciIpkibSep3d0Bb+96ZnaZmVWaWeWmTZsSDySvEIadCV4HdXsT356ISJbo7ATxSaTrKHzdGJavBw6OqjcwLGvG3e929wp3rygrK0tpsCIi3VlnJ4g5wLRwfhowO6r8ovBqpnHAtqiuKBERSYO8VG3YzB4GJgB9zKwKuBaYDjxiZpcCHwJfD6s/A0wG1gC7gG+lKi4REYlPyhKEu1/QwqJmz7oOz0dcnqpYRESk/brXndQiIhI3JQgREYlJCUJERGJSghARkZiUIEREJCYlCBERiUkJQkREYlKCEBGRmJQgREQkJiUIERGJSQlCRERiUoIQEZGYlCBERCQmJQgREYlJCUJERGJSghARkZiUIKJ9shzq69IdhYhIl5CyJ8pllF6HAAb3nw1F+8PgE+HQCcHU+3AwS2t4IiLpoAQBMGwiXPUefLAA3n8Z3n8FVj0VLCsdECaLk2HIybBf/zQGKiLSeZQgIkr6wsivBZM7fPbBvmTx3nPw1kNBvVN/Dif9JK2hioh0BiWIWMzgwEODqeISqK+HT96BB8+DjavSHZ2ISKfQSep45ORA/2OgoCTdkYiIdBolCBERiSktXUxmthbYDtQBte5eYWYHAn8FBgNrga+7+2fpiE9ERNLbgjjF3cvdvSJ8fzUw392HAvPD9yIikiZdqYtpCjAznJ8JnJPGWEREur10JQgH5prZYjO7LCzr5+4bwvmPgX6xVjSzy8ys0swqN23a1Bmxioh0S+m6zPUEd19vZn2BF8ys0bWj7u5m5rFWdPe7gbsBKioqYtYREZHEpaUF4e7rw9eNwBPAWOATM+sPEL5uTEdsIiIS6PQEYWbFZlYamQcmAsuAOcC0sNo0YHZnxyYiIvuko4upH/CEBQPg5QEPuftzZvYm8IiZXQp8CHw9DbG1rrAkGK/pg/+BISemOxoRkZTq9ATh7u8Dx8Qo3wKc1tnxtMvZf4BZl8DMr8AJP4IJP4W8gnRHJSKSEl3pMteur/8x8J0FMOab8OptMGMibF6T7qhERFJCCaK9CoqDlsTX/wyffgD/fSIsuT8YAVZEJIsoQXTU8LPhX/8fDKyAOd+HRy6CXZ/Gv/6md+HjZamLT0QkQRruOxH7HwTfnA2v/QHm/xqqKuHcu4KHCzVV/Tls/RA+WwuffQhzfxaUX7etU0MWEYmXEkSicnJg/A9hyEnw2Lfh/ilw7KXB0ODRCWF3O1oXIiJdgBJEsgwYHZzAfu4aePMeyMmHXoPggEOCZb0OgQMGB+8PGBxcDbVne7qjFhFpkRJEMhUUw9m3wxnXQ2Ep5OSmOyIRkQ5TgkiFHr3SHYGISMJ0FVM61dcFz7sWEemC1IJIl9wC+GgJ/LoPFPeB4rKo175R82VQUrZvPr9HuiMXkW5CCSJdJt4Ih54COzfCzk2wc3Pw+tla2LEJanbGXq+gJEwefRsnlUO+CId37ZFKRCSzKEGkS5/Dg6kle3eGSSNMHDs3hckk6v3WD2F9ZTC/9EH48aqWtyci0k5KEF1VQXEwHXBI23WfugIqZ8CCW6CuBur2Qn3Nvvm6veF8DfzT0TDsTOg7HIIRdUVEYlKCyAa9BgWvL/46eM3JC85x5OaHr+G8Oyx/HOZfD/sNhGETg2Qx+EQo6Jm++EWkSzLP4EHmBhw+wlctW8p+RfnpDiX99uwIkkBOfnB3d0s+3wCr58J7z8P7LwfnOvKKgjvBh06EYZP2JRwRyUpmttjdK9qsl8kJorD/UD/me3fyy68M50sj+2PqMmmf2j2w9tUwYTwXnCAHyC2E034ZtCryekBeYXD1VF5RMOUXBeX5RVFlPYKWij4DkS6vWySIEaNG+5B/uZ1l6z/n5GFlXD9lBIf0Lk53WJnJHTavhhevh5VPdnAjFpVAioLEUtofLnw0uLNcRLqEbpEgKioq/I1Fb3L/a2v57dz3qKmr5/unHs6/nHQohXka5qLDavdAza7wdTfUVgdTTTXU7o6/fPls2LMNvvCt4GFLDedEwq6whvMk4XzDuZMCyA3nc/Kbr9daF5qItKnbJIjKykoAPt5Wza+fWsHT72zgsLJibjx3JOMO7Z3mCLu5dYvg3jOSv13LbZ5IGiWdvCDZ5OSHr7nh8khZ+L6gBIr2D6YevaCo17730ZNuTpQs0+0SRMRL727kl7OXse7T3fyfMQP56eQj6V1SmKYIhb07g1ZFwyW3NeEluHuhrnbfZbiNLsutaVIvall91DqR9WOuW9t8qqsJhzcJ6+zdAdXbgtZOa3ILYyeOyLTwd9CzNxTuF1yanN8D8nsGU0HPxu/jKYt0z+UWBs88zy0MEprO70iSdNsEAbB7bx13vLSauxe8T8+CPP586VhGDdQAetKCmuogUTSatoZT0/JtsHtr43r1tUHLZfiUIBlGkmLNrnCKKqvb08EgLdhHXtG+pNHstbCVOpFlseo0XVa4rzxStm1dcOVbXmHzbr+GLsLWyuPoTswt0AjInaRbJ4iI1Z9s54zbFnDckAM57ai+9CzIo2dBbsNrcWEuPfKD+T6lhZQU6rYQaSf34NxLflF89etqg/M1e3c1TiA1u8KyncH2avcELaLaPUFSaVYWvWxvC3Wil4Wv9bWJHW9OXuLbaJW1kDhaSih5zZNPS+e4Wixvsh3LCRKV5UbN5wTvc3L2zTda1qReXMtyg1ZhGlqG8SaILveNaGZnAr8HcoF73H16R7c1tF8pIwbsxxsffMobH7T+RLeSwjze/Nnp9CjQLxhpB7P4kwOEX26l6buqq76u5eQRnVyiE1Ok7MAhcOiEYATi6K6+WN1+nVW+d0d89etr0vP3jofFSjph8og36eREkk2spBZjWZy6VIIws1zgj8AZQBXwppnNcfcVHd3m0z84kbp6Z9feWnbvrWPn3jp27a1l1946du2tY/feWuau+ITHl6xn6p9epzA3J/hczMjNMcwgN8fIMePFVRsZeEAPnv7+iZQU5ZGboz5hyTA5ueFd8wncOZ+TAzkFQRdVpnCP8/zVXvD6IJF6PXj4Wh89H+ey+rpgvzGX1TfZRlvLovcVa5nHiCvyvh7qmsQVpy6VIICxwBp3fx/AzP4CTAE6nCAg+IIvLcqntIU7rg8rK2Hrrhr21NYFP47cqa2vZ28d1NU77k592BNX9dlujrl+LgA9C3IpLcqjpDAv3H4epUV59CzICz4vd2rrnfp6p67eqfPwtd555b1NAPxk0hHN4olucRoWo6xx3RUffc7W3TV8ZdSA4P+uWdQEFr7mmDVa3pAAzcjJ2Ve/rt4pyMtpiLUuKv7I8TQcV9QxNVrmTm2dU5ifw1eOGUDTVNr0psZYqTZWy9t7RxCtAAAJPElEQVRi1Ey0hW7W+O9sDeVBaWT7id6IGenOjfTqetPypnE1iSMSXzJi6XbM9nUroXul+G58/366WoI4CFgX9b4KOC7VOx3ar5QZFx/bZr33PtnO0nVb2V5dy47qWrZX1wTze2r5vLqGHXtq2bCtml17arHwCzhofRDO55CbE3whR9z8/LtJO46X392UtG0l08+eWJbuEJKuaSKB5l/0nXV6ryFpRMUSnVAa0kujepH52ImxoXrjVZsn9hZ+uMSs20LcsWo0XdbWuk1/OLS2flvJtaXFLZa340dLS3tuKaaYpUnadjy6WoJok5ldBlwGMGhQ544ZNKxfKcP6Jafv2N2pqYt8oXhUeay6UfMx6ta789nOmob5Ot/X6ql3b2gV1TcqC+YjLaS6cNmuPbXUuVOUl0turpFrRl5O0MJo9GpGXrg8kggbTWbs2FPLGbct4N+atJKaHqM3++3cwt8h5t8xVr34v5kb/W3dG/26d9+3rWB+30rRScDxZi29hv+SMb6wg/ex60feN40j+riaxhJPvUbLYrRgmrdqGm8nlugLXJpWaeszbr685WVNt95s3Xbsq71xtrhiK8UtXfjT0r/KFv++Sdh2rAWOM7+l+k10qauYzOx44Dp3nxS+vwbA3f8jVv22rmISEZHm4r2KqauNWfAmMNTMhphZATAVmJPmmEREuqUu1cXk7rVm9j3geYLLXGe4+/I0hyUi0i11qQQB4O7PAM+kOw4Rke6uq3UxiYhIF6EEISIiMSlBiIhITEoQIiISkxKEiIjE1KVulGsvM9sEfJjuOJKgD7A53UF0Ih1vdtPxdn2HuHtZW5UyOkFkCzOrjOeuxmyh481uOt7soS4mERGJSQlCRERiUoLoGu5OdwCdTMeb3XS8WULnIEREJCa1IEREJCYliDQws7Vm9o6ZLTWzyrDsQDN7wcxWh68HpDvOjjKzGWa20cyWRZXFPD4L3G5ma8zsbTMbk77IO6aF473OzNaHn/FSM5scteya8HjfNbNJ6Ym6Y8zsYDN7ycxWmNlyM/thWJ6Vn28rx5uVn28zHj59TFPnTcBaoE+Tsv8Erg7nrwZuSnecCRzfScAYYFlbxwdMBp4leKjaOOCNdMefpOO9DrgqRt3hwFtAITAE+AeQm+5jaMex9gfGhPOlwHvhMWXl59vK8Wbl59t0Ugui65gCzAznZwLnpDGWhLj7AuDTJsUtHd8U4H4PvA70MrP+nRNpcrRwvC2ZAvzF3fe4+wfAGmBsyoJLMnff4O5LwvntwEqCZ8ln5efbyvG2JKM/36aUINLDgblmtjh8xjZAP3ffEM5/DPRLT2gp09LxHQSsi6pXRev/ATPJ98JulRlRXYZZc7xmNhgYDbxBN/h8mxwvZPnnC0oQ6XKCu48BzgIuN7OTohd60FbN2svLsv34QncChwHlwAbgt+kNJ7nMrAR4DPiRu38evSwbP98Yx5vVn2+EEkQauPv68HUj8ARBE/STSNM7fN2YvghToqXjWw8cHFVvYFiW0dz9E3evc/d64E/s62bI+OM1s3yCL8sH3f3xsDhrP99Yx5vNn280JYhOZmbFZlYamQcmAsuAOcC0sNo0YHZ6IkyZlo5vDnBReLXLOGBbVFdFxmrSz34uwWcMwfFONbNCMxsCDAUWdXZ8HWVmBtwLrHT3W6MWZeXn29LxZuvn20y6z5J3twk4lOAqh7eA5cDPwvLewHxgNTAPODDdsSZwjA8TNLtrCPpgL23p+AiubvkjwdUe7wAV6Y4/Scf75/B43ib40ugfVf9n4fG+C5yV7vjbeawnEHQfvQ0sDafJ2fr5tnK8Wfn5Np10J7WIiMSkLiYREYlJCUJERGJSghARkZiUIEREJCYlCBERiUkJQjJKOLLmpCZlPzKzO81sgJnNamG9wWb2zwnu+2Uza/bs4bD8XTN7y8wWmtkRiexHpKtQgpBM8zAwtUnZVOBhd//I3b/WdAUzywMGAwkliDZc6O7HEAxUd3OMGHJTuG+RlFCCkEwzC/iSmRVAwwBqA4D/CVsJy8Lyi81sjpm9SHAD13TgxHDs/ivC5XdENmpmT5nZhHD+TjOrDMf//1U741sAHB5uZ62Z3WRmS4DzzKzczF4PB3h7IuqZCYeb2bywBbLEzA4Ly39iZm+G9X8VlhWb2dNh3WVmdn5YPj18ZsHbZnZLWFZmZo+F23jTzMaH5SdHPcfg75E7+0Waykt3ACLt4e6fmtkigoEOZxO0Hh5xdw9GRWhkDDAqXGcCwfj9X4YggbSym5+F6+QC881slLu/HWeIXyG4wzZiiwcDM2JmbwPfd/dXzOx64FrgR8CDwHR3f8LMioAcM5tIMEzDWIK7keeEgzqWAR+5+5fCbe5vZr0Jhns4Mvw79Ar3/XvgNnd/1cwGAc8DRwFXAZe7+8JwELrqOI9Nuhm1ICQTRXczTQ3fx/KCu8f7nIZoXw9/9f8dGEHwEJi2PGhmS4HxBF/AEX+F4Isc6OXur4TlM4GTwl/vB7n7EwDuXu3uuwjG6JoYxrAEOJIgYbwDnBG2TE50923ANoIv+XvN7KvArnAfpwN3hHHNAfYLE8JC4FYz+0EYU217/0DSPagFIZloNnCbBY+v7Onui1uot7OVbdTS+AdSEUA4wNpVwLHu/pmZ3RdZ1oYL3b2ynTG0xoD/cPf/brYgOO7JwA1mNt/drzezscBpwNeA7wGnEhzfOHdv2kKYbmZPh9tYaGaT3H1VB+OULKYWhGQcd98BvATMoOXWQ1PbCR4ZGbEWKDezHDM7mH3DNe9H8KW+zcz6EXRlJSPmbcBnZnZiWPRN4BUPnlJWZWbnAISjgPYk6A66JPzFj5kdZGZ9zWwAsMvdHyA4GT4mrLO/uz8DXAEcE+5jLvD9SAxmVh6+Hubu77j7TcCbBK0TkWbUgpBM9TDBszSaXtHUkreBOjN7C7gP+B3wAbCC4DGSkcdKvmVmfwdWETwZbGESY54G3BUmgPeBb4Xl3wT+OzwvUQOc5+5zzewo4LXw3MoO4BsEJ8BvNrP6sO6/EiS+2eH5CwOuDLf7A+CP4bmPPIIT6N8FfmRmpwD1BCMKP5vEY5QsotFcRUQkJnUxiYhITEoQIiISkxKEiIjEpAQhIiIxKUGIiEhMShAiIhKTEoSIiMSkBCEiIjH9fy/Jv8wSJryMAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["ax = df[[\"Presim. Time / s\", \"Sim. Time / s\"]].plot();\n", "ax.set_ylabel(\"Time / s\");"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 6\n", "<a name=\"task6\"></a>\n", "\n", "* To your `df` NEST data frame, add a column with the unaccounted time (`Unaccounted Time / s`), which is the difference of program runtime, average neuron build time, minimal edge build time, minimal initialization time, presimulation time, and simulation time. \n", "(*I know this is technically not super correct, but it will do for our example.*)\n", "* Plot a stacked bar plot of all these columns (except for program runtime) over the virtual processes\n", "* Remember: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 92, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["cols = [\n", " 'Avg. Neuron Build Time / s', \n", " 'Min. Edge Build Time / s', \n", " 'Min. Init. Time / s', \n", " 'Presim. Time / s', \n", " 'Sim. Time / s'\n", "]\n", "df[\"Unaccounted Time / s\"] = df['Runtime Program / s']\n", "for entry in cols:\n", " df[\"Unaccounted Time / s\"] = df[\"Unaccounted Time / s\"] - df[entry]"]}, {"cell_type": "code", "execution_count": 93, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Runtime Program / s</th>\n", " <th>Unaccounted Time / s</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Min. Init. Time / s</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " </tr>\n", " <tr>\n", " <th>Virtual Processes</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>8</th>\n", " <td>420.42</td>\n", " <td>2.09</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>1.14</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>202.15</td>\n", " <td>2.43</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>0.70</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Runtime Program / s Unaccounted Time / s \\\n", "Virtual Processes \n", "8 420.42 2.09 \n", "16 202.15 2.43 \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "Virtual Processes \n", "8 0.29 88.12 \n", "16 0.28 47.98 \n", "\n", " Min. Init. Time / s Presim. Time / s Sim. Time / s \n", "Virtual Processes \n", "8 1.14 17.26 311.52 \n", "16 0.70 7.95 142.81 "]}, "execution_count": 93, "metadata": {}, "output_type": "execute_result"}], "source": ["df[[\"Runtime Program / s\", \"Unaccounted Time / s\", *cols]].head(2)"]}, {"cell_type": "code", "execution_count": 94, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAEXCAYAAAC9NcJWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8TPf+x/HXTCYJsYSSiK262KqKFEWpXK6tCKqqWqXUEm3DrSpqV0qoqEt10dqKqrVUVWmv3upPI7VUbcW1t7ZsUkksSSYzvz/U1AgyiZMxiffz8ejjIWe+530+ZzL3cT858z3na7Lb7XZEREREROSWzHe6ABERERGRvECNs4iIiIiIC9Q4i4iIiIi4QI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAvUOIuIiIiIuECNs4iIiIiIC9Q4i4iIiIi4QI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAssd7qA6yUmXsBms99yTIkShUlISLntYxmVY2SWJ9ZkZJZqcm+Op2apJvdnqSb3Z6km92epJvdn5dWazGYTxYsXyna2xzXONps9y8b56jijjmeU/FyTkVmqyb05npqlmtyfpZrcn6Wa3J+lmtyfld9rupamaoiIiIiIuECNs4iIiIiIC9Q4i4iIiIi4wOPmOIuIiEjekJFhJTExDqs17bZyYmPN2Gy2267HqBwjszyxJiOzPL0mi8WH4sUD8PIypuVV4ywiIiI5kpgYR4ECfhQqFITJZMpxjsVixmq9/YbJqBwjszyxJiOzPLkmu93OhQtJJCbGUbJkaQMq1FQNERERySGrNY1ChYreVtMskltMJhOFChW97W9ErqXGWURERHJMTbN4MqM/n5qqISIiIoYoUrQgBXyNby0up1pJTrpkeK5Idnl84+xf1AcfX99M2wMCijj+nZaayvkk4y7Di4iISPYV8LUQOuhLw3O/mtqe5CzGnDlzmv79w1ix4iun7Y0a1WHz5u2G15RbvvzyC/z8/GjevJXL+3TqFMp7782idOkyjm3Dhr3BmTOnuXTpIufOJVC2bHkAXn65P3v27KJatYd5/PEnDK19w4Z1pKSk8PTTnQ3N9SQe3zj7+Poyc1jPW44Jj5gHqHEWERGRvG3v3t0EB9e+7ZyIiEgAfvllO3PnfszMmR87XqtXr4GhN/VdFR0dRe/e/QzN9DQe3ziLiIiI3K51677i55+jSEpK4vTpU9StW5833ngTq9XK1KmTOHr0COfOnePeeyswceI7WCx+LF36GatXr8TLy4vHH3+CV14ZwNmzZ5g48S0SE89RoEABhg4dRcWKlfj66zUsWbIIk8lElSoPMXDgEPz8/Khf/1HHFe91675i584djBgxlk6dQmnZsjVbt27h0qXLjBz5FsnJSWze/CM7dmyjRImSVKpUmSlTJhITE4PZbOaVV/rz6KN1SUo6z7hxo4iNjeG++x4gLS17Fw8nTBhL7dp1qFnzUYYNe4MyZcpy9OhhqlR5iODg2nzzzVqSk5OYODGS++67n/379zFjxrukpl7G378YgwcPp0yZsk6ZNpuNs2dPU7ZsOaftS5Ys4ptvvsZsNvHQQw8zZMiI2/tF3mG6OVBERETuCnv27GbChHf49NMlREX9H0eOHGbv3t1YLN7MmjWPpUtXkZp6mS1bfmLfvr2sWrWCTz5ZwPz5n3Pw4AEOHNjP1KmTCAlpysKFy3jppb58+ukcjhw5zIIFc5k582MWLFhKgQIFmTfvkyzr8ff355NPFtChQ0cWLpxL3br1aNSoMb1796NevQZMnx5JmzbtmDt3EZMmvcvkyRO4ePECs2d/ROXKVVmwYCkdOz7DuXMJOX5Pjhw5RI8evVi8eCUHDvzG2bNnmDVrHs2atWTNmi9IT09n0qS3GTNmAnPnfkaXLi8wefKETDn79/9G1aoPO22zWq0sWjSfOXMWMmfOIsxmM3FxsTmu1RPoirOIiIjkeSZT5muBdrvd6akKjzxSAz+/QgCUKVOWpKTzBAfXpmhRf1auXMbvvx/n5Mk/uHTpEr/++gsNGz5B4cKFAZg+/QMAfv31F8aOvdI4NmjQiAYNGrFy5VIaNnwCf/9iALRr9xQREW9lWXO9eo8D8MADFdm06b+ZXt++fSsnTpxg9uxZwJVG9NSpk+zcuYOxYycCUKvWo5mu/mbHPfeUoHLlqgAEBARSu3ZdAIKCSrNz52n++OMEp0+f5M03X3fsc+HChUw50dE/Ub/+407bLBYL1avXoHfv7jzxRAgdOz5DQEBgjmv1BGqcRUREJM8rWrQIFy6kOG1LTDxHkSJFHT/7+Dg/bMBut7N58yZmz57FM890oXXrdvz555/Y7XYsFucWKT4+Dl/fAk4r0Nntdo4fP4bNZr+uGjsZGRlO40wmE1ar1WmUj4+P05jrZWTYmDHjQ4oW9f/rfBIoWrQYJpPJaYU9Ly+vG70lLvH29nb6+fqsjAwbZcqUZf78xX/9nEFi4rlMOb/++gsvvNAj0/aIiKns27eH6OgoBg0awOjR4w2Zw32naKqGiIiI5Hl+foUoX/5efvhho2PbmjWrqFPnsVvut337Vpo2bUabNu0oUaIEu3btxGbLoGbNYKKjo7h48SJWq5WxY0dw4MBv1KoVzH/+8+1f+/7MO+9MIDi4Nps3/0hS0vm/jrua4OA6ABQrVoxjx4781aT/mOV5eHl5OZru2rXr8MUXywE4duwoL7zwLKmpl6lT5zG+/fYbAPbv38epUyez+W65rkKF+0hKSmLXrp0AfP31GsaOdZ6n/Oeff1KwoB++1z0FLTExka5dO/HAAxXp3bsfdevW48iRQ7lWqzu4fMV58uTJJCYmMmnSJPbv38/IkSNJSUmhTp06vPXWW1gsFk6fPs3gwYNJSEjg/vvvJzIykkKFCuVm/SIiIuIhLqda+Wpq+1zJdcXYsW8zefJE5s2bjdWazoMPVuL114fecp/Q0Kd4660R/Pe//8Hb24eHH67O6dOn6dChIx07dqZfv57YbHZCQppQt2497r23ApMnv82qVSv+ujlwJPff/wDduvUkPLwvVquVKlUeYvDgYQC88soAhgwZyD33lKBGjVqcP//nLeupU+cxZs36gMKFCzNw4BDeeWcCL77YBbvdzpgx4/HzK0SvXmFMmPAWL7zQmQoVKtzWVI2s+Pj4MH78JKZPjyQtLQ0/v0KMHOk8DWXr1i3Uq1c/077FixenffuO9OnTHV/fApQqFUTr1qG5Vqs7mOw3+m7gOlu2bGHgwIH84x//YNKkSbRt25a3336bWrVqMXz4cKpXr87zzz9PWFgY7dq1o02bNrz//vtcvHiRwYMHZ6ughIQUp688AgKKuPQ4uri4rJ7wmFlAQJEc7ZebWZ5Yk5FZqsm9OZ6apZrcn6Wa3J91N9S0Z89egoIq3HaWUY9GM/IRa/m5JiOz8kJNZ8+eyPQ5NZtNlChRONvZWU7V+PPPP5k2bRr9+l15Lt+pU6e4fPkytWrVAqBjx46sX7+e9PR0tm3bRsuWLZ22i4iIiIjkB1lO1Rg9ejQDBw7kzJkzAMTGxhIQEOB4PSAggJiYGBITEylcuLBjMv3V7dmVk+7/yvGKZD3IwP1yM8sTazIySzW5N8dTs1ST+7NUk/uz8ntNZrMZi8WY26U8LcfILE+sycgsT6/JbDYb9rm/ZeO8fPlySpcuTYMGDfjiiy+AG9/1aTKZbro9u240VcMVmqqRN7JUk3tzPDVLNbk/SzW5P+tuqMlms3nU1/15YdpAfsvKCzXZbLZMn/ucTtW4ZeO8bt064uLiaN++PefPn+fixYuYTCbi4+MdY+Li4ggMDOSee+4hJSWFjIwMvLy8HNtFRERERPKDW14PnzdvHmvXruXLL79kwIABNG3alIiICHx9fdmxYwcAq1evpnHjxnh7e1OnTh3WrVvntF1EREREJD/I0USSyMhIIiIiePLJJ7l06RLdu3cHYMyYMSxbtozWrVuzfft2XnvtNUOLFRERERG5U1x+jnPHjh3p2LEjAFWrVmXFihWZxpQtW5aFCxcaV52IiIjkGcX9fbBctzqfEaxpqSSeTzM8VyS7tOS2iIiIGMLi48vRCU8bnvvAiJWA643z0aOH6d69C2+/PZl//OOfhtbSqFEdhgwZQbt2Tzm2hYf35aWX+vLoo3UMPVZ2deoUSoECBbBYvLFarQQFBTFixFsUL178pvts3ryJAwf207t3Pzp1CuW992ZRunQZpzE3Or+pUyezZ88urNZ0Tp78g/vuewCAZ57pQnr6ld9Vhw6dDD2/Xbt+ZfPmTbz66r8Mzc0ONc4iIiKSr3z99Vf84x//ZPXqlYY3zgAff/wB9eo1oFSpIMOzb9eUKdMdje/06VP5/PMFvPLKzRvNRo1CaNQoJNvHGTToyoqMsbFneeWVPsyfvzhnBWdDdPRP1K//eK4f51bUOIuIiEi+YbVa+fbbb3j//U94+eWXOHXqJMeOHWHNmlW8886/AVi5cil//PE74eEDmTJlIrt3/0pAQCAmk4kXX+yV5ZXjZ57pwuTJb/PuuzMzvfbNN2tZvvxzbDY7VapUZciQYXh5edOoUR02b94OwLp1X7Fz5w5GjBhLp06hVKtWnUOHDvLBB7OJitrMkiWLMJlMVKnyEAMHDsHPz4/27VvSpEkzdu3aiZeXhXHjIm651LbNZuPixQuOK8Fz5swCoFevMAA6dGjDe+/NYufOHY5arkpLS2Py5PEcOLCfoKAyWS4Tfr1rj9WuXUsaNnyCXbt2UqJESZ566hlWrFhCXFwsw4ePITi4NidP/kFkZARJSUn4+voycOBgKleumil3z55dvPRSX6dt3367nsWLF2A2mylTpgyjRo3HYimYrXqzw7gnVouIiIjcYVu2bCYoKIh7763AE0/8gy+/XEn9+g05ePAASUlJAPznPxto0eJJVq9eweXLl1i8eCXDh49h//7fXDpG164vcv78edasWeW0/ejRI3z11Wo+/HAu8+cvpnjxe/jss6zv/apf/3E+//wLzp07x4IFc5k582MWLFhKgQIFmTfvEwASEhKoW/cx5s1bTM2awaxcueyGWYMH/4sePZ7nqadas23bzzRp0sylc7rWihVLAfjssxW89tobnDp1KtsZV507l8Djjzdi8eKVAPz443/54IPZvPRSX5Yt+xyACRPG8MorA1iwYDFDhoxgzJjhmXISEuIpUqQo3t7eTts/+eRDpk2bydy5i7j33vv4/ffjOa7VFbriLCIiIvnGunVf0axZSwD++c/mvPXWKPr0eYWQkCZs2vQ9devW4/z581SrVp1PP51DaOhTmEwmgoJKU7t2XZeOYbFYGDFiDAMGvEy9eg0c23fu3M7Jk38QFtYTAKs1nSpVMl85vV61atUB+PXXHTRs+AT+/sUAaNfuKSIi3nKMuzpN4YEHHmTXrp03zLp2qsbKlcsYNCicRYuWu3ReV/366w7atbvyQIjy5e/lkUdqZGv/69Wv3xCAoKDS1KhRC4BSpYJITk7i4sWL7N//GxMnjsNkArsdLl26xPnzfzreB4Cff97i9F5f1bDhE7z8ci+eeOIfhIQ0pVKlKrdVa1bUOIuIiEi+cO7cObZs+YkDB/azfPkS7HY7yclJ/PDDRlq0aM3s2R+SnJxE8+atADCbvbDbc7ZS3QMPVHRM2bgqI8NG06bNeO21wQB/LRz392rIdrsdk8mE1Wp1yvL1vfIkkmtXTv5rDzIyMpzGWa22m67YfL2WLVszbdo7nD9/PtM+GRnWW+xpcnpfvLy8sjzWrVx7lfj6LJvNho+PL/PnL3as+BcbG0PRov5O46Kjo244V/u1197g8OH2bNmymfHjR/HSS31p06btbdV7K5qqISIiIvnC+vXrqF37MVatWseKFV+xcuVaund/iS+//ILq1R8hPj6eDRvW0aLFkwDUrVuP//znW+x2O/HxcezcuQOTyeTy8a5O2di3bw8AwcG1+fHHH0hMPIfdbmfq1AiWLPkMgGLFinHs2BHsdjubN/94w7zg4Nps3vwjSUnnAVizZjXBwTl/UseOHVsJDCxFsWLF8PcvxrFjRwH47be9TqtAX69Oncf47rsN2Gw2zp49w549u3NcQ1YKFy5MuXLl2bDhygJ627ZF8+qrzvOYMzIyiIuLJSjI+WZMq9VKly5PUaxYMbp160mrVm343/8O5lqtoCvOIiIiYhBrWupfj44zPtcVX3+9hj59XnHa1rHjMyxevIATJ47zz3825+eft1C2bDngylSIQ4f+R/fuz1KiREmCgko7rv5269aFKVOmU7JkwE2Pd3XKRq9e3QCoVKkyPXv2YcCAftjtdipVqkL37lembfTrF86QIQO5554S1KhR64Y33FWsWIlu3XoSHt4Xq9VKlSoPMXjwMJfO/arBg/+FxeKNzZaBt7cPb701EYBmzVqwadP3vPDCM1SpUpXKlW8+paFjx2c4duwIXbt2IiioNA888GC2asiuMWPeZsqUiSxevACLxZtx4yY6/QGzb98eHn74kUz7WSwWevUK47XXXsHXtwCFCxdh5MixuVqrye7KtX43SkhIcfqqIiCgCDOH9bzlPuER84iLS872sQICiuRov9zM8sSajMxSTe7N8dQs1eT+LNXk/qy7oaY9e/YSFFThtrOufkXv7pyoqM3Y7XYaNnyClJQUevbsypw5Cyha1P+O1ZTXsvJCTWfPnsj0OTWbTZQoUTj72bddnYiIiEgedN999zN+/Gg++eRDAHr3Dss0t1bkWmqcRURE5K5UpkxZPvxwzp0uQ/IQ3RwoIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gLNcRYRERFDFCnmSwFvH8NzL6enkfyna4+kE8lNLjXO06dPZ8OGDZhMJjp16kTPnj0ZNmwYO3bsoGDBggCEh4fTvHlzoqKiiIiIIDU1lSeffJKBAwfm6gmIiIiIZyjg7UPnpS8bnrvs2Q9J5taN85kzp3nmmXa0a/cUQ4aMcGw/dOggPXt2ZfjwMbRuHUqPHs8zf/7ibNdw5sxpnnuuI/fd94DT9tDQDjz9dGenbevWfcXOnTsYMWJsto9zrQkTxrJjxzaKFvXHbrfh7e3NwIFDefjh6jfdJz4+jkmTxhMZOYMJE8YSHFyb1q1DncbMmTMLs9lEz55/LzTy9ddrWL58CQDHjx+lXLnyWCzePPJITdq0CWX16pW8+eao2zqf66WlpfH66+HMnPmxobm5KcvGeevWrURHR7NmzRqsViutW7cmJCSEvXv3smjRIgIDAx1jL1++zPDhw1m4cCGlS5cmLCyMTZs2ERISkqsnISIiIuLvX4yff95CRkaGY2nnjRu/o1ix4o4xOWmarypZMuC29s+J3r37ORrfn37axL///Q6ffLLgpuNLlgwgMnJGto/Tpk072rRpB0CnTqFMmTKd0qXLOF5/881q2c7Myq5dv1Cr1qOG5+amLBvnxx57jAULFmCxWIiJiSEjIwNfX19Onz7NqFGjOH36NM2bNyc8PJzdu3dToUIFypcvD0BoaCjr169X4ywiIiK5rmDBglSqVJldu3by6KNXlqreujWaOnUec4xp1KgOmzdvZ86cWcTHx/HHH78TE3OWtm3b8+KLvXJ87PXrv+bTT+dQqFBhgoKCKFjQD4AdO7YzdepkvLy8ePjhGhw/fpSZMz/m5Mk/iIyMICnpPL6+BRg4cDCVK1e95TFSUlIoXrwEAL/8sp25cz92XK29enU5OLg2/fuHsWLFV077Ll68gDVrVuHvX4wiRYrc8qr19a49Vnh4XypXrsL27VtJTU1l0KChLF36OceOHeHZZ5/n2We7cvHiRd59dzJHjx7BZrPRtWt3mjdvlSk3OjqKJk2aOW07fPgQ77wzgYyMDHx8fBg+fAzly9/rcq25zaWpGt7e3syYMYO5c+fSqlUrMjIyqF+/PuPGjcPPz4+wsDBWrFiBn58fAQF/L00ZGBhITExMtgrKySoucGUFI3ful5tZnliTkVmqyb05npqlmtyfpZrcn5XfazKbzVgs7nnOQFbH8fK68vqVpaU38thjj/Hbb/uoVKkSdvuVleKuZlgsZsxmE0eOHGbWrDkkJyfTqVM7OnfuQpEif78/1x7Ty8tMfHwcPXs+73TcMWPG4+9fjA8/fI8FCz7H39+fQYMG4OdXCMjgrbdGMXXqdCpVqsy7707BZLpSx4QJY3njjaFUqVKVY8eOMnToIJYtW+WUbTKZmDNnFsuXf86lS5eIiTnLlCnTsFjMeHmZHVlXx5rNJsf7YLGYHdsOHTrA11+vYcGCzzGZTPTu/WKW76mX19+/22uPdTVz8eLlzJ49i3ffncyiRUtJTEyke/fn6Nq1GwsXzuWhh6oxdux4LlxIoU+fntSoUcOx1PlVv/22jwEDBjpqBli+fDFdu3bjn/9sznffbeDAgb3cf/99t/zd38i152Y2mw373Lt8c+CAAQPo06cP/fr1Y8uWLbz//vuO17p168bq1atp1SrzXxPXrjXuihstue0KLbmdN7JUk3tzPDVLNbk/SzW5P+tuqMlmsxm23HJWsjpORsaV1xs0aMRHH31AWpqVb7/dQJMmzdm48VtsNrsjw2q1YbPZCQ6ujcnkRdGixShSpCjnzydRsGAhIPOyzRkZNkqWDGDevMxTNf773/9Qvfoj+PtfmRLSvPmT7NixjYMHD1G8eHHuv78iVquNJ58M5X//iyQpKYX9+/cxfvxYR8bFixdJSDiHv38xxza73U6vXmGOqRpHjvyPl1/uw/z5i8nIsGG3/31Odrsdm83ueB+sVptj27Zt26hfvyE+PgUAaNKkGXb7rX93GRl/v37tsex2O4899jhWq43AwCAefvgRLBZfAgKCSE5Oxmq1sXXrz6SmXuarr74E4NKlSxw6dJhSpf6e+nHmzGkCA0tht5scx7FYzNSv35DIyMlERf3E448/QdOmTbP9Gbv+d2ez2TJ97nNtye0jR46QlpbGQw89RMGCBWnRogXr1q2jWLFitGzZErjyy7JYLJQqVYr4+HjHvrGxsU5zoEVERERyk59fISpWrMTu3b/yyy/b6NcvnI0bv73hWB+fv58AYjKZsNvtNxyXFZPJ5HTR7+r8arPZfMNMm82Gj4+v03zp2NiYLJf7rlKlKmXLluXgwf1O87YBrFbrLeuz2/9uJL28vG7rDx6L5e/20csrcytps2UwatR4qlS5MvXk3LmETOcWHR1F/fqPZ9q3SZNmVK9eg59++j+WL/+c6OifGDp0ZI5rNVqW36+cPHmSkSNHkpaWRlpaGhs3bqRu3bpMnDiR8+fPk56eztKlS2nevDk1a9bk2LFjnDhxgoyMDNauXUvjxo3dcR4iIiIiADRt2oyPPppJlSrVnJq83FKjRi1++20PcXGx2Gw2vv/+OwDuu+9+kpKSOHLkMADffbcek8lE4cKFKVeuPBs2rANg27ZoXn21703zrzpz5jRnzpymYsXK+PsX4/TpU6SmppKUdJ5du3bedL86deoSFbWZlJQUUlNT+fHH/xpw1jf36KN1Wb16BQDx8fG8+OJzxMScdRqzdesW6tVrkGnf0aOH8dtv++jQ4Wl69+7HwYMHcrXW7Mry0xQSEsKuXbvo0KEDXl5etGjRgvDwcIoXL85zzz2H1WqlRYsWtG3bFoBJkybRv39/UlNTCQkJueH0DREREcl/LqensezZD3MlNzsaNmzMpEnj6d27X7aPFR8fxxtv/ItFi5bc8LUePZznONeqFcxrrw3+679XKFCgIPfddz9w5R6xsWPf5u23R2Mymbn33gr4+voCMGbM20yZMpHFixdgsXgzbtzEG05vnT37I5Yt+xyAtLRUXn31NcfNcg0aNKRbt86ULl2GmjWDb3pOlSpV4ZlnnqN37+4UKVKEUqVKZ/t9yY6XXurD1KmT6datMzabjVdeGeA0vzktLY3k5GTuuadEpn27devJ5Mlv8+mns/Hy8qJ/f896rLHJntPvJXLJjeY4zxzW85b7hEfM0xznPJKlmtyb46lZqsn9WarJ/Vl3Q0179uwlKKjCbWddPyf1TucYlWWz2Zg1ayY9evShYMGCLFmyiLi4uBw3g552fkbmGJl1fc7ZsycyfU5zbY6ziIiIiGSf2WzG39+fPn26Y7F4U7p0acMXERH3UuMsIiIikku6d+/J88+/eKfLEIO45+GLIiIiIiJ5nBpnEREREREXqHEWEREREXGBGmcRERERERfo5kARERExRPEiPlgK+Bqea72cSmJy9p7lLJIb1DiLiIiIISwFfPmp/dOG5zb8ciVk0TifOXOaZ55pR7t2TzFkyAjH9kOHDtKzZ1eGDx9D69ah9OjxvNNS19nRqFEdNm/eftPX4+PjmDRpPJGRM9i8+UdOnvydF17oftPxw4a9wZkzp7l06SLnziVQtmx5AF5+uT979uyiatWHaNQoJEe13syGDetISUnh2We7GJp7t1DjLCIiIvmCv38xfv55CxkZGXh5eQGwceN3FCtW3DEmp02zK0qWDCAycgYABw/uz3J8REQkAL/8sp25cz9m5syPHa/daDlqI0RHR+VoRUW5Qo2ziIiI5AsFCxakUqXK7Nq1k0cfrQPA1q3R1KnzmGPM1avGc+bMIj4+jj/++J2YmLO0bdueF1/s5dJxfvllOwsXzqNAgQIcP36MBx+syJgxE4iPj6N//zCmTJnOl19+AUDZsmVo1So02+cyYcJYgoNrExxcm2HD3qBMmbIcPXqYKlUeIji4Nt98s5bk5CQmTozkvvvuZ//+fcyY8S6pqZfx9y/G4MHDKVOmrFOmzWbj7NnTTstfAyxZsohvvvkas9nEQw897HTFXpzp5kARERHJN5o0ac5//7sRgP3791GxYiW8vb1vOPbw4UNMm/Y+H388n0WLPiU52fXlyPfu3c3AgUP47LMVxMSc5eeftzheu//+B2jfviPt23ekbdv2t3dCwJEjh+jRoxfLlq3iwIHfOHv2DLNmzaNZs5asWfMF6enpTJr0NmPGTGDu3M/o0uUFJk+ekCln//7fqFr1YadtVquVRYvmM2fOQubMWYTZbCYuLva2a86vdMVZRERE8o1GjZ7gk08+xGazsXHjdzRt2pyNG7+94dgxBRekAAAgAElEQVRHH62Dt7c3xYvfQ9GiRblwIYUiRYq4dJz773+QwMBSAFSocD/JyUmGncP17rmnBJUrV8VsNhMQEEjt2nUBCAoqzc6dp/njjxOcPn2SN9983bHPhQsXMuVER/9E/fqPO22zWCxUr16D3r2788QTIXTs+AwBAYG5di55nRpnERERyTf8/ApRsWIldu/+lV9+2Ua/fuE3bZx9fHwc/zaZTNjtdpePczv7Ztf1V8yvzt++KiPDRpkyZR3ztzMyMkhMPJcp59dff+GFF3pk2h4RMZV9+/YQHR3FoEEDGD16PMHBtY07gXxEUzVEREQkX2natBkffTSTKlWqYbHcmWuEXl5eZGRkuOVYFSrcR1JSErt27QTg66/XMHas8zzlP//8k4IF/fD1dX5cYGJiIl27duKBByrSu3c/6tatx5Ejh9xSd16kK84iIiJiCOvl1CuPjsuF3Oxo2LAxkyaNz9HTI+Lj43jjjX+xaNGSbO97rVq1HmXChLGULFmSatWqM3v2R44nbhjNx8eH8eMnMX16JGlpafj5FWLkyLecxmzduoV69epn2rd48eK0b9+RPn264+tbgFKlgmjdOvs3M94tTPbc/G4hBxISUrDZ/i4pIKAIM4f1vOU+4RHziItzfUL/tdk52S83szyxJiOzVJN7czw1SzW5P0s1uT/rbqhpz569BAVVuO0si8WM1WrzmBwjszyxJiOz8kJNZ8+eyPQ5NZtNlChRONvZLk3VmD59Oq1bt6ZNmzbMmzcPgKioKEJDQ2nRogXTpk1zjN2/fz9PP/00LVu2ZMSIEVit1mwXJSIiIiLiabJsnLdu3Up0dDRr1qxh5cqVLFy4kAMHDjB8+HA++OAD1q1bx969e9m0aRMAgwcPZtSoUWzYsAG73c6yZcty/SRERERERHJblo3zY489xoIFC7BYLCQkJJCRkUFSUhIVKlSgfPnyWCwWQkNDWb9+PadOneLy5cvUqlULgI4dO7J+/fpcPwkRERERkdzm0s2B3t7ezJgxg7lz59KqVStiY2MJCAhwvB4YGEhMTEym7QEBAcTExGSroJzMN7lyLNeeu2jUfrmZ5Yk1GZmlmtyb46lZqsn9WarJ/Vn5vSaz2YzFYswDujwtx8gsT6zJyCxPr+nK86+N+dy7/FSNAQMG0KdPH/r168fx48czvX6zZxiaTKZsFXSjmwNdoZsD80aWanJvjqdmqSb3Z6km92fdDTXZbDaPusEsL9yolt+y8kJNNpst0+c+pzcHZtk4HzlyhLS0NB566CEKFixIixYtWL9+vdPDt2NjYwkMDKRUqVLEx8c7tsfFxREYqNVnRERE7gb+RQvi42v8k27TUq2cT7pkeK5IdmX56T558iQzZszg888/B2Djxo106dKFd955hxMnTlCuXDnWrl3L008/TdmyZfH19WXHjh3Url2b1atX07hx41w/CREREbnzfHwtjBu01vDc0VPbZjnmzJnTPPdcR+677wFMJkhPt1KyZEmGDx/jWBo7p2bP/oiqVR+iUaOQHGccOXKY8eNHAxATc5aCBQtStKg/3t7efPLJp/To8bxj5T8jvf56f8aNi6Bw4ZxNhRVnWTbOISEh7Nq1iw4dOuDl5UWLFi1o06YN99xzD/379yc1NZWQkBBatWoFQGRkJCNHjuTChQtUq1aN7t275/pJiIiIiJQsGeDUfH700UymTZtCRETkbeXmZCGV6z34YEVHbRMmjCU4uLbTQiO50TRfvHgRmy1DTbOBXPo+ZcCAAQwYMMBpW4MGDVizZk2msVWrVmXFihXGVCciIiKSQzVrBrN5848AdOoUSrVq1Tl06CAffDCb6Ogoli//HJvNTpUqVXn99aF4eXkREfEWR48ewWQy0aFDJ9q1e8rR6AYH12bYsDcoU6YsR48epkqVhwgOrs0336wlOTmJiRMjue+++3NUa6NGddi8eTtz5swiJuYshw8f4s8/E+nT52V27NjGb7/tpVKlyowdOxGTycTChfP573+/IyPDRr169Xn55QGZ7iv75Zdt1K5d12nbhQspjB07gnPnErDb4aWX+tzWlfS7jXG3QYqIiIh4CKvVyvfff8cjj9R0bKtf/3E+//wLEhMT+eqr1Xz44Vzmz19M8eL38PnnC9mzZxdJSUnMm7eY9977kD17dmXKPXLkED169GLx4pUcOPAbZ8+eYdaseTRr1pI1a74wpPajR4/w8cfzGTVqHBER4+ja9UUWLFjKwYMHOHz4ENHRURw8uJ9PPlnAvHmfERcXx7fffpMpJzo6ivr1H3fa9uOPPxAUVIZPP13M6NHj2bXrV0NqvlsYP4NfRERE5A6Ij4+jR4/nAUhPT+Ohhx7m5ZfDHa9Xq1YdgJ07t3Py5B+EhfUEwGpNp3Llqjz1VCd+//0Er78eTsOGjXj55f6ZjnHPPSWoXLkqAAEBgY4rukFBpdm587Qh51G3bj0sFgtBQaUpUaIk99//gON4yclJbN++ld9+20uvXt0ASE29TKlSQZlyDh8+RMWKlZ22Va9eg1mz3ichIY769RvSo0cvQ2q+W6hxFhERkXzh+jnO1/P19QUgI8NG06bNeO21wcCVucAZGRkUKVKEhQuXsW3bz/z8cxQvvfQCCxc6r4Ds7e3t9PO1TxkzisXyd3t2o3ybLYPOnZ+jS5cXAEhOTs407vjxY9x7b4VM0zfKl7+XxYtXsG1bND/+uIklSxbx2Wcrsv344LuVpmqIiIjIXSU4uDY//vgDiYnnsNvtTJ0awbJli9m8eRPjxo3i8ccb8frrgylYsCCxsdlbyM0dHn20Lhs2rOPixYtYrVaGDRvEDz9sdBoTHf0T9es3zLTvypVLmTNnFv/8Z3MGDXqTxMREUlJS3FV6nqcrziIiImKItFSrS4+Oy0mukSpVqkzPnn0YMKAfdrudSpWq8MILPfDy8uK//91It26d8fHxJSSkKQ8+WDHb+bNnf0TJkiXp0KGToXVf1ahRYw4f/h99+/bAZsugXr3HefJJ5/d927atjB07IdO+rVq1YezYEXTt2hkvLy9eeqkvRYoYt5pkfmey32i5vzvoRisHzhzW85b7hEfM08qBeSRLNbk3x1OzVJP7s1ST+7Puhpr27NlLUFCF2866m1axy29ZeaGms2dPZPqc5nTlQE3VEBERERFxgRpnEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF+g5ziIiImII/6I++Py1Op+R0lJTOZ+UZniuSHapcRYRERFD+Pj6Zrn2Qk6ER8wDsm6cv//+P8yfP5eMjAzsdhutWrXh+ee7A/DGGwN4881RlCwZkOM6vv56DcuXLwHg+PGjlCtXHovFm0ceqUmbNqGsXr2SN98cleP8G0lLS+P118OZOfNjQ3MlZ9Q4i4iISJ4XFxfLjBnvMmfOIvz9i3Hx4kXCw/ty770VaNQohMjIGbd9jDZt2tGmTTsAOnUKZcqU6ZQuXcbx+ptvVrvtY1xv165fqFXrUcNzJWdcapxnzpzJN998A0BISAhDhgxh2LBh7Nixg4IFCwIQHh5O8+bNiYqKIiIigtTUVJ588kkGDhyYe9WLiIiIAH/++SdWq5XLly/j7w9+fn6MHDkWH58rU0c6dQrlvfdmsXPnDqKiNhMfH0dsbAydOz9HTEwMv/yyjaJF/YmMnIFvDqab/PLLdubO/ZiZMz8mPLwvlStXYfv2raSlpfKvfw1mxYqlHDt2hGeffZ5nn+3KxYsXeffdyRw9egSbzUbXrt1p3rxVptzo6CiaNGnmtO3w4UO8884EMjIy8PHxYfjwMZQvf2/O3jjJliwb56ioKDZv3syqVaswmUz07t2b7777jr1797Jo0SICAwMdYy9fvszw4cNZuHAhpUuXJiwsjE2bNhESEpKrJyEiIiJ3t0qVKvPEE/+gc+f2VK5cheDgOjRv3opy5cpnGrt//z4WLFhCcnIynTqFMnXqe/zrX4Po3z+MrVu38MQT/zCkpgULljJ//if8+99T+PTTJfz5ZyI9elxpnD/9dA5VqjzEyJFvceFCCv36vUS1atUpW7acU8Zvv+3llVf+5bRt2bLFdOnyAk2bNmPjxm/Zt2+PGmc3yfKpGgEBAbz55pv4+Pjg7e3Ngw8+yOnTpzl9+jSjRo0iNDSUGTNmYLPZ2L17NxUqVKB8+fJYLBZCQ0NZv369O85DRERE7nJDhw5nxYqv6NChEzExZwgL68mmTd9nGvfIIzUpVKgwQUGlAahduy4AQUGlSU5ONqSW+vUbOjIffvgRChQoQFBQaVJSruRv376VL79cSY8ez/Pqq325fPkyx44ddco4c+Y0gYFBeHl5OW1v0KAh06a9Q0TEOCwW7xteqZbckeUV50qVKjn+ffz4cdatW8fixYvZunUr48aNw8/Pj7CwMFasWIGfnx8BAX9Pug8MDCQmJiZ3KhcRERH5S1TUZlJTL9GkSXPHXOQ1a1axdu2XhIQ0dRrr7e3t9LPFYvwtX9dmXt/4AthsGYwaNZ4qVaoCcO5cAkWL+juNiY6Oon79xzPt26RJM6pXr8FPP/0fy5d/TnT0TwwdOtLgM5AbcfmTcujQIcLCwhg6dCgPPPAA77//vuO1bt26sXr1alq1yvwXj8lkylZBJUoUztb4qwICirh1v9zM8sSajMxSTe7N8dQs1eT+LNXk/qz8XpPZbMZicc+SEFkdp1Chgvz731N4+OFHKFOmDHa7nd9/P0aVKlUd+3p5mTGbTZhMJqe8q/82mUyYzX+/ltUxvbzMTtlXc00mk9NrNzpenTqP8eWXKxk+fBTx8XG8+OJzfPLJPKepJdu2RTN06IhM+44YMZTmzVvSqdMzPPjgA/z731Nz9Hsw6ndn5GcgN2oym82Gfe5dapx37NjBgAEDGD58OG3atOHgwYMcP36cli1bAmC327FYLJQqVYr4+HjHfrGxsU5zoF2RkJCCzWZ3/OzqicbFZf+rlYCAIjnaLzezPLEmI7NUk3tzPDVLNbk/SzW5P+tuqMlms2G12hzb0lJT/3p0nLHSUlOdjnMjNWvWplevvgwaNACr1QpAvXoNePHF3o59MzJs2Gx27Ha7U97Vf9vtdmy2K68NHvwvevUKo2rVmz8pIyPD5pR9Nddutzu9dqPj9ejRm6lTJ/Pcc52w2Wy88soAgoLKOsalpaWRlJSEv39xxzaLxYzVauOFF3oyefLbzJ37CV5eXoSHD8zy/bne1azbZVSOkVnX59hstkyfe7PZlKOLtVk2zmfOnOHVV19l2rRpNGjQALjyAZg4cSL169fHz8+PpUuX8tRTT1GzZk2OHTvGiRMnKFeuHGvXruXpp5/OdlEiIiKS91xZpCT7C5UY1TC1aRNKy5ZtbvjaihVfAVC6dBlatw51bN+8ebvj3yNGjHX8e9q0925Z09W8qx59tA6PPloHwOmZy23btqNVq7aZjleoUGFGjx5/03wfH5+bPru5UqXKzJ694Kb7Su7JsnGeM2cOqampTJo0ybGtS5cu9O3bl+eeew6r1UqLFi1o2/bKh2LSpEn079+f1NRUQkJCbjh9Q0REREQkr8mycR45ciQjR954wnnXrl0zbWvQoAFr1qy5/cpERERERDyIe2b0i4iISL5kt9uzHiRyhxj9+VTjLCIiIjlisfhw4UKSmmfxSHa7nQsXkrBYfAzLNP7BhSIiInJXKF48gMTEOFJS/rytHLPZjM12+zcHGpVjZJYn1mRklqfXZLH4ULx4QBZ7uE6Ns4iIiOSIl5eFkiVL33aOpz5uL7/WZGRWfq/pepqqISIiIiLiAjXOIiIiIiIuUOMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLlDjLCIiIiLiAjXOIiIiIiIuUOMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLnCpcZ45cyZt2rShTZs2vPPOOwBERUURGhpKixYtmDZtmmPs/v37efrpp2nZsiUjRozAarXmTuUiIiIiIm6UZeMcFRXF5s2bWbVqFatXr2bfvn2sXbuW4cOH88EHH7Bu3Tr27t3Lpk2bABg8eDCjRo1iw4YN2O12li1blusnISIiIiKS27JsnAMCAnjzzTfx8fHB29ubBx98kOPHj1OhQgXKly+PxWIhNDSU9evXc+rUKS5fvkytWrUA6NixI+vXr8/1k3CFf1EfAgKKOP0HZNrmX9TnDlcqIiIiIp7IktWASpUqOf59/Phx1q1bR7du3QgICHBsDwwMJCYmhtjYWKftAQEBxMTEZKugEiUKZ2v838cqkuWYmcN6ZjkmPGIeAQG+txxjTU/H4u19yxpuNsYVrpxLXs5STe7N8dQs1eT+LNXk/izV5P4s1eT+rPxe07WybJyvOnToEGFhYQwdOhSLxcKxY8ecXjeZTNjt9kz7mUymbBWUkJCCzfZ3jqsnHheXfMvXs/MGupKVVRMeHjEvy5ybZedkv7ySpZrcm+OpWarJ/Vmqyf1Zqsn9WarJ/Vl5tSaz2ZSji7Uu3Ry4Y8cOevTowaBBg3jqqacoVaoU8fHxjtdjY2MJDAzMtD0uLo7AwMBsFyUiIiIi4mmybJzPnDnDq6++SmRkJG3atAGgZs2aHDt2jBMnTpCRkcHatWtp3LgxZcuWxdfXlx07dgCwevVqGjdunLtnICIiIiLiBllO1ZgzZw6pqalMmjTJsa1Lly5MmjSJ/v37k5qaSkhICK1atQIgMjKSkSNHcuHCBapVq0b37t1zr3oRERERETfJsnEeOXIkI0eOvOFra9asybStatWqrFix4vYrExERERHxIFo5UERERETEBWqcRURERERcoMZZRERERMQFapxFRERERFygxllERERExAVqnEVEREREXKDGWURERETEBWqcRURERERcoMZZRERERMQFapxFRERERFygxllERERExAVqnEVEREREXGC50wXc7fyL+uDj6+u0LSCgiNPPaampnE9Kc2dZIiIiInIdNc53mI+vLzOH9bzlmPCIeYAaZxEREZE7SVM1RERERERcoMZZRERERMQFLjfOKSkptG3blpMnTwIwbNgwWrRoQfv27Wnfvj3fffcdAFFRUYSGhtKiRQumTZuWO1WLiIiIiLiZS3Ocd+3axciRIzl+/Lhj2969e1m0aBGBgYGObZcvX2b48OEsXLiQ0qVLExYWxqZNmwgJCTG8cBERERERd3LpivOyZcsYM2aMo0m+ePEip0+fZtSoUYSGhjJjxgxsNhu7d++mQoUKlC9fHovFQmhoKOvXr8/VExARERERcQeXrjhPmDDB6eeEhATq16/PuHHj8PPzIywsjBUrVuDn50dAQIBjXGBgIDExMdkqqESJwtkaf9X1j3C7HUZleUJNnlBDbuUYmaWa3J+lmtyfpZrcn6Wa3J+lmtyfld9rulaOHkdXvnx53n//fcfP3bp1Y/Xq1bRq1SrTWJPJlK3shIQUbDa742dXTzwuLvmWr2fnDTQqK6sco7NulJ2T/XIzSzW5N8dTs1ST+7NUk/uzVJP7s1ST+7Pyak1msylHF2tz9FSNgwcPsmHDBsfPdrsdi8VCqVKliI+Pd2yPjY11mgMtIiIiIpJX5ahxttvtTJw4kfPnz5Oens7SpUtp3rw5NWvW5NixY5w4cYKMjAzWrl1L48aNja5ZRERERMTtcjRVo2rVqvTt25fnnnsOq9VKixYtaNu2LQCTJk2if//+pKamEhIScsPpG2K8Gy3dDVq+W0RERMQo2Wqcv//+e8e/u3btSteuXTONadCgAWvWrLn9yiRbXFm6G7R8t4iIiEhOaeVAEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF6hxFhERERFxgRpnEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF6hxFhERERFxgRpnEREREREXqHEWEREREXGB5U4XkBVrehrhEfOyHCMiIiIikptcbpxTUlLo0qULH330EeXKlSMqKoqIiAhSU1N58sknGThwIAD79+9n5MiRpKSkUKdOHd566y0slpz35xZvH8YNWnvLMaOntgVSc3wMEREREZGsuDRVY9euXTz33HMcP34cgMuXLzN8+HA++OAD1q1bx969e9m0aRMAgwcPZtSoUWzYsAG73c6yZctyrXgREREREXdxqXFetmwZY8aMITAwEIDdu3dToUIFypcvj8ViITQ0lPXr13Pq1CkuX75MrVq1AOjYsSPr16/PvepFRERERNzEpTkUEyZMcPo5NjaWgIAAx8+BgYHExMRk2h4QEEBMTEy2CipRonC2xv99rCI52i83szyxptvJys/vi2pyf5Zqcn+WanJ/lmpyf5Zqcn9Wfq/pWjmafGy32zNtM5lMN92eHQkJKdhsf+e4euJxccm3fD07b6BRWVnlGJll5PndLD8n++VWjpFZqsn9WarJ/Vmqyf1Zqsn9WarJ/Vl5tSaz2ZSji7U5apxLlSpFfHy84+fY2FgCAwMzbY+Li3NM75C8w7+oDz6+vpm2X9ucp6Wmcj5JTzMRERGRu0eOGueaNWty7NgxTpw4Qbly5Vi7di1PP/00ZcuWxdfXlx07dlC7dm1Wr15N48aNja5ZcpmPry8zh/W85ZgrjwhU4ywiIiJ3jxw1zr6+vkyaNIn+/fuTmppKSEgIrVq1AiAyMpKRI0dy4cIFqlWrRvfu3Q0tWERERETkTshW4/z99987/t2gQQPWrFmTaUzVqlVZsWLF7Vf2l/T0jL+e03zrMSIiIiIiucnjVw709vai89KXbzlm2bMfuqkayQ5X5kqD5kuLiIhI3uDxjbPkXa7MlQbNlxYREZG8waUFUERERERE7nZqnEVEREREXKCpGpIn6NnSIiIicqepcZY8wchnS9+oCdcNiyIiIpIVNc5y19ECLyIiIpITmuMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLtDNgSI5pCXFRURE7i5qnEVySEuKi4iI3F00VUNERERExAV3zRVna3raX1f+sh4nIiIiInK9u6Zxtnj7MG7Q2izHjZ7aFki95RhXmnA14JLXaZlzERERZ7fVOHfv3p2EhAQslisx48aN4/fff+fDDz8kPT2dHj160LVrV0MK9SSuNOGuNOAiRjPyhkWtsCgiIuIsx42z3W7n6NGj/PDDD47GOSYmhoEDB/LFF1/g4+NDly5dqFevHhUrVjSsYBG5Od2wKCIiknty3DgfPXoUk8lEnz59SEhIoHPnzhQqVIj69etTrFgxAFq2bMn69esJDw83rOCcSk+z/nUVOOtxIiIiIiLXy3HjnJSURIMGDRg7diyXL1+me/fuPPnkkwQEBDjGBAYGsnv37mzllihROEf1XP9V9PUy0ly7umbGlmVWenpGlk14enpGljng+nxpV7JcZVSWajIuy5qejsXb+5b73GhMbtaU2zme+LvyxJqMzFJN7s9STe7PUk3uz8rvNV0rx41zcHAwwcHBAPj5+dGpUyciIiLo16+f0ziTyZSt3ISEFGw2u+NnV088Li75lq8HBBSh89KXs8xZ9uyHhmS5knM1y5X50q7U5CqjsvJiTUZmGX1+rswnzqvv+Y2yc7JfbmZ5Yk1GZqkm92epJvdnqSb3Z+XVmsxmU44u1ua4cd6+fTvp6ek0aNAAuDLnuWzZssTHxzvGxMbGEhgYmNNDiEg+caObFnNyw6JWaxQRkTspx41zcnIyM2bMYMmSJaSnp7Nq1SqmTJnC4MGDOXfuHAULFuTbb79l/PjxRtab77gy91rzriWvM+oJHbr5UURE7qQcN85NmjRh165ddOjQAZvNxvPPP0/t2rUZOHAg3bt3Jz09nU6dOlGjRg0j6813zHabIWO0wItI9hh1FVxERO4et/Uc59dee43XXnvNaVtoaCihoaG3VdTdxMvXx6X50lk9E9rIBV5E7gZ6TrWIiGTXXbNyoIhIbtC8axGRu4ca53zClUfkXR0nIsbRvGsRkbuHGud8wtvby+XH7YmIZ3Ll6rW7r1zrirqIyN/UOEsmri7KIiLGMnLetVE3P+qKuojI39Q4SyZ2u9mQMXrSh8ido5sfRUSMp8ZZMjHqEXl60oeIXEuPABSRvE6Ns2Ri1CPyjLxh0cjpI5qKInJnGHUV3Mh51544r1xEPJcaZ8k1Rt6waMfLkDHg2pVwV66CayqKyJ1h5LxrT5xXrhsyRTyXGmfJE1xpwl19YogrV8JduQruaqPu6jgjGNnM68q8SPZ44tLymh4jYiw1znLXMaoJ98RHABrZzBt5lV9E7gxNjxExlhpnEQ9g1NVdI5t5I6/yG3V+mh4jcmdoesztZekqf/6hxlnEA1i8jbkh01O5+wq3K+M0FUUk7/PE6TGeeJVfjKPGWURynSdOjzGqUc/v88p1lV/kzvDUxYfu9ivqapxF5K5kVDPvyrcFf2fd+hsDI6+6G9WEG3l+njhlxxP/WBExmpHzyu/2xZXUOIuIeAgj55V74vQfT5yy44l/rOT3Pww8sab8zhOb3bw6FUWNs4iIuIUnTtkx8o8VU9YLqro0xhO/xTCymdcfK/rDAPLuYxdzpXH+6quv+PDDD0lPT6dHjx507do1Nw4jHi7Nmu7S/+GkWdPdUI2ISO4yatVVI3nilCRP/GYlv/+x4omr7xp5fu68om544xwTE8O0adP44osv8PHxoUuXLtSrV4+KFSsafahsMbKJcyXL1WbQqKw0a5qL5+e+v3J9LN6EDvoyy3FfTW0PXM79giRbjPycG8UTP+eeWJOI3Dme+MeKkVO3jMrKq09JMtntdrshSX9ZtWoV27ZtY+LEiQC8//772O12wsPDXdo/MfECNtvfJRXx98XH4n3LfdKs6SSfv/UvqESJwvR6+9ssjz9nZAsSElJuO8uVHCOzihf1weztk+XxbOlpJJZQ2ZgAABiSSURBVGbxVYUnvudG1WRklis5Rma5uyYjP+dGnZ8nfs49sSYjs/L751zved6tycgsTzw/T6zJyKw7fX5ms4nixQtlefzrGd44z5o1i4sXLzJw4EAAli9fzu7duxk/fryRhxERERERcSuz0YE36sNNJpPRhxERERERcSvDG+dSpUoRHx/v+Dk2NpbAwECjDyMiIiIi4laGN86PP/44W7Zs4dy5c1y6dIlvv/2Wxo0bG30YERERERG3MvypGqVKlWLgwIF0796d9PR0OnXqRI0aNYw+jIiIiIiIWxl+c6CIiIiISH5k+FQNEREREZH8SI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAvUOIuIiIiIuMDwx9EZbcuWLRQoUIDg4GDmzp3L1q1bqV69On379sXHx+dOlyciIiIidwmvsWPHjr3TRdzMO++8wxdffMEPP/zATz/9RExMDJ07d2bfvn388MMPNG3a9E6XKLdgtVpZuHAh69evp0CBApQpU8bx2nvvvUe9evXcmuOpNYl4Kn3ORSQvSkxMpGDBgrmS7dFTNf7v//6PJUuWsHjxYn7++WciIyMJCQlh7Nix7N69O1tZVquVJUuWkJCQQFpaGjNnziQsLIwZM2aQmpp6R7KMrOl6r7/++m3tb0TW6NGj2b9/P4GBgQwZMoSPPvrI8dr333/v9hxPrclms7FkyRJefPFFWrVqRevWrenRowdz584lPT3d5ZyUlBSmT5/OrFmzOH/+PGFhYQQHB9O9e3dOnTqVrZqMyvLEmozOup4n/G/PqCxP/JwbmZWcnMzUqVM5e/YsSUlJDBs2jLZt2zJ06FDOnTuXrZqMyvLEmozOyisuXrzokVn5waVLl4iMjKRZs2Y88sgj1KxZk+bNmzN+/HiSk5OzlXXmzBkGDx7M6NGj+eOPPwgNDaV169Y0b96cAwcOGF67Ry+A0rZtWz777DMuXrxIq1at+OGHHyhe/P/bu/e4nu89gOOvRNJxzbSZHi7nMM3CkNpxKYyU7uVUIuKRU0dzOS7lEnKkYmZum0c0nFy21FJoPWyKTYXK8XBbbpHZyi3XdO/3OX84/R5M7Pfju/od+zz/WX1//V69f79VPr/6/j6/NpSVleHu7k5qaqrGrVmzZgEQGhrK+vXrn2o+ePCATz75pN5bSnV8fX3R09N76tiZM2cwNzcHIDY2VtObpmjL2dmZPXv2AHDnzh38/Pxwd3fHz88PV1dXkpKS6rWjqzMtXLgQlUqFm5sbJiYmANy8eZPk5GT1DxdNBAYG0qVLF8rKyjhy5AhjxozBy8uLAwcOsHv3bjZv3qzxTEq1dHEmJVu6+r2nVEsXv86VbPn7+9OjRw/+/ve/s2TJEkxNTXF0dCQtLY3s7GxiYmI0nkmpli7OpHRLpVKxa9cuUlNTuXHjBo0aNcLExARra2t8fX1p0qSJRp2SkhK++OILDA0N8fb2Jjg4mOzsbHr27ElkZCQdOnTQeKa6uLm5sXv37ldqvEpLqfsJHi8uly5dyvXr1xk+fDgBAQHo6+sDEBAQQHR0dL12goKCeO+993B3d6ddu3YA3Lp1i6SkJI4fP86mTZs0vm3jx4/H1taW0tJStm7dSlhYGLa2thw/fpxPPvmEnTt3atzSiNBhSUlJwtLSUvTv319s27ZNuLq6iuXLlwtXV1exadMmrVqOjo7qt52cnIRKpVK/b29v3yAtpTrbt28X1tbWIjExURw7dkwcPXpUjBgxQhw7dkwcO3ZM447SLUdHR/Ho0SP1+9evXxdDhw4Ve/bsEa6urvXe0dWZRo4c+dzLRo0apXHHxcVF/fagQYOeuszZ2VmrmZRq6eJMSrZ09XtPqZYufp0r2Xry/7WTk9NTlz3587k+W7o4k9Kt0NBQMX/+fJGTkyOuXr0qrl69KnJyckRoaKiYNWuWxp2AgAARFRUlFi9eLGxtbcWWLVtEaWmp2LNnj5g4caJWM5mbmwszMzNhZmYmunfvrv5v7dsN0VLqfhJCCD8/P5GQkCBOnz4tAgIChL+/v6iqqhJCPP3zsL46L1rjODg4aNz59ecdPHjwU5dp+2+DJnT6VA0XFxe+//57Dh48yLhx44iKiqJt27bMnj0bf39/rVpGRkZcvHgRgI4dO1JUVATAjRs3tH6SoVItpTpjx47liy++ICEhgcLCQqysrPjTn/6EpaUllpaWGneUbo0bNw43NzeOHDkCwJtvvklMTAyrVq0iPz+/3ju6OlPz5s3rPPXoxIkTGBkZadxp3LgxGRkZpKam8ujRI86cOQNAQUGBVvMo2dLFmZRs6er3nlItX1/fZ77ON23a1KBf50q2WrZsSWZmJgA9evTgxx9/BOD8+fMYGhpqNZNSLV2cSelWTk4Oy5Ytw8LCgo4dO9KxY0csLCxYunQpeXl5GneuX79OSEgIYWFhlJaW4ufnR7NmzXBycqK4uFirmeLi4nj//fdZs2YN586dIy8vDzMzM/XbDdFS6n4CuHfvHh4eHpibm7NhwwZatGjBnDlztGoo2TE2NiY1NRWVSqU+JoQgJSWFNm3aaNVq3rw5X331FTExMdTU1HDw4EEA/vOf/9C0aVOtZ/stOn2qhpJOnDjB1KlT6du3L82aNSMzM5PevXtz9uxZlixZgo2NTb23lJwJoLKyklWrVlFYWEh+fj4pKSlaXf/3aF25cgVDQ0Pat29PfHw858+fp2fPnty9exc/P7967+jiTHl5eQQHB1NRUaH+k9Xt27cxMDDg448/xszMTKPO2bNniYiIQKVSMXfuXBYsWIChoSHXr18nIiICa2trjWdSqqWLMyndAt383lOiFR4ejouLC2+88Qbt27dXH3/06BHx8fEN8nWuZOvy5ctMmTIFIyMj2rVrR3Z2Np06deLOnTusX7+eXr16aTyTUi1dnEnp1ujRo1m0aNEz1zlx4gQRERHEx8dr3JkxYwYPHz5kwYIFxMbGYm5uTkFBAdOnTyc5OVnjmQDKy8uJioqioqKC0NBQxo0b99KnaijRUup+qm1FRkbSrVs3AKqqqvD396dTp06cOHGCvXv31munqKiIJUuWkJOTQ4sWLYDH59H379+fRYsWPfVE5N/yyy+/sGbNGlQqFdOnTyckJITLly9jaGjIunXr6Nmzp8YtTfxhFs7w+HyorKwsrl69Sk1NDW+88QaDBg3irbfearCWUp0DBw5QVFSEjY0NP//8M/v27SMiIoK4uDi8vLwapLV161a2bduGSqXigw8+oKioiBEjRpCenk6fPn346KOP6rWjqzPVKiws5ObNmwghiI+PJyIiQuvGkyoqKpg8eTKfffaZ+gdTQ7d0caZXbR0+fJjevXvTsmVL4uPjOXHiBP369cPDw0PrOXStZWFhQdu2bZk1axa2trZaz/BrR44coXHjxjRp0oSMjAyys7OxtLR8qe1FlWp9++236t2bAN555x2WLFlCnz59tJpHyZYuzqRkq64HPrdu3aJp06ZaPfD58ccfWbZsWZ0PgCMjIxk8eLBWc9VKT09nw4YN3L9/n2+//falGkq0XnQ/rVy5ku7du2vcOn78OHPmzOGf//wnTk5OwOMnLM6ePZuDBw9q/BtspTq1qquruXv3LkIIjI2NadxYmV2S79y5g7GxsSKtX/vDLJwLCwtfeLk2j26UainVWblyJWfOnOEvf/kLqamphISE4OLiAmj/hAQlW05OTiQkJHD79m0cHR05evQoTZs2pbKyktGjR6ufdFRfHV2dad68ec8cS09PV2+3GBkZWa+d130mJVvLli0jLy+PTz/9lJ07d3Lq1Ck+/PBDfvjhB0xNTQkNDdV4Jl1subq6snLlSsLCwqioqGDixIkMGzZM6z/Nw+PtRXNzc6mursbU1JRGjRrh5uZGeno6NTU1hIeH13srOjqakydPMmjQINLT07GwsMDQ0JCEhATGjx+Pp6enxjMp1dLFmZRu1XrylwVvvvmmVv8O16WiooILFy7QqVMnWrZs+UqtW7ducejQIf72t7+9UkeJlpL3U1VV1TNPKszLy+Pdd99tkM6TZs6cyapVq7S+XnV1NUlJSTRr1gxbW1uioqLUTxINDg6mdevWLz1TXXT+BVCUEhAQQEFBASYmJtQ+VtDT00MIgZ6eHmlpafXeUqrz/fffs3v3bho3boyvry+TJk3CwMAAe3t7tH1cpGRLpVJhYGBAhw4dmDRp0lPnGtXU1NR7R1dnat26NUlJSQQGBqp/2B89elTr81p/3RFCvFRHyZYuzqRkKzMzk71796Kvr8/BgwfZtWsXBgYGeHl54ejo+H/f0tPTo2vXrmzfvp2srCzi4uJYtmwZnTt35q233tJqN6LDhw+TnJxMZWUlNjY2ZGRk0KRJE6ytrdUPzuu79c0337B7924aNWqEh4cHkydPJjY2Fg8PDzw9PbVaDCrV0sWZlG5VV1ezY8cOioqK+PDDD+nfv7/6snXr1jF16lStO8OHD8fCwkL9Z3ltOnVp164dR44cUWTh/LKt6upqEhISGDFiBD169GDjxo2cPn1a/SJw2py/q1KpiI2NJS0tjVu3btGkSRM6duyIg4MDo0aNqvfO83b+GT9+PKDdLkKhoaGUlpZSWVnJtm3b6NWrF59++ikHDhxg0aJFrF27VuOWJv4wC+cvv/wSHx8fFi9eTL9+/XSipVSndqEN0LlzZ6Kjo5k4cSLGxsbPfGHWZ8vW1pZx48YRGxur/gF27tw5QkNDsbe3r/eOrs4UEhKCtbU1q1evZubMmVhZWfHvf/8bNze3V+7ExsZq3VGypYszKdkyNDSkuLgYExMT2rZtS2lpKQYGBpSVlWn9J0ddbD35YHnAgAEMGDCAqqoqzp8/z7Vr17SaSQjBw4cPKS0tpby8nJKSEtq0aUN5ebnW+zgr1aqoqKC8vBwjIyPKy8u5d+8e8PiJ240aaffceaVaujiT0q1FixahUql45513CAkJwdPTk8DAQODxX340XfA+2QkODn7pDii7kFOqFRISAsDIkSNZvnw5paWl+Pj4cOjQIebPn6/VA9eoqCj1+cj79+/HzMyM9u3bExsby5UrVwgKCqrXjp2dHRs3bmTGjBl06NABIQQLFy58qdMcz549y969e6mpqcHGxoavvvoKgK5du2r9oFwjiu/TocNOnjwpQkNDdaqlRGfdunVizJgx4uTJk+pjubm54oMPPhB9+/ZtsJYQQmRnZz/1fn5+vjh06FCDdXR1JiGEuHv3rpg2bZqIiorSenun36Pzus+kRCstLU0MHjxYREVFifDwcOHo6CiWLVsm7O3txddff/1/39q1a5dWn/dFlNxeVKlWdHS0cHZ2FitWrBDOzs5iy5Yt4ueffxYuLi7i888/12ompVq6OJPSrSe3sysuLhZOTk5iy5YtQgjttjRTqiOE7m4HWetVt9F98r6qqakR3t7eQgghKioqXri94+/VEUKIixcvCh8fH7F7924hhNB6i8tazs7O4vLly+LkyZOiV69e4tq1a0KIx18T2m51qYk/1ML5dZaVlSUuXbr01LHCwkIRHh7eoC1Je7t27dJ6D9Lfs6NkSxdnetXWTz/9JDZv3iwWL14sQkNDxerVq5964Pk6tJRSVlYmSkpKhBBCnDt3TsTExIiMjIwGbWVlZYmYmBiRlZUlhBCipKREnDt37qVmUqqlizMp2dLF/fSFUG4hp1TL09NTXLhwQQghRFBQkPjll1+EEI9vp7YPDEaNGiVu376tvn7tPCUlJVrtm6xUp1ZFRYWIjIwUU6dOfelF7uHDh4WNjY0YPHiw+O6774SdnZ2YNm2aGDp0qPr+V9If5smBkiRJkiQ1vLi4ODZv3kxYWBh//etfAcjPz8ff35/i4uI69+j+PTtP0qXtIJXcsjYxMZE1a9bQp08fTp48yaxZs+jZsycTJkxg6tSpGu+2o1QHlN8NrLCwkCFDhmBkZERubi7dunUjNzdX69ZvkQtnSZIkSZLqVUFBAQYGBk/tEFFSUkJCQoJW+4Mr1fm1zMxMUlJSXnlb0FdtKbmN7pUrVzh//jxmZmZ07tyZyspKSktLtd51QomO0ruBnT17lj//+c+v3NKEXDhLkiRJklRvdG1LV11tvc4zOTk5qXfwKigoYNKkScyZMwd7e3tcXV1JSkrSqKN0SxN/mF01JEmSJElqeHVtxVrrVbd0fZnO81qvy5a1z2vVaoj7XOjobmCafkJJkiRJkqR68fDhQ+Hk5CRyc3N1oqOrrdd5Jl3eDey36IeFhYUpvxyXJEmSJEl6loGBAe+99x6JiYnqV+tsyI6utl7nmSwtLXn77bdp06aN+qWx3377bRwcHCgvL8fa2rpBWpqQ5zhLkiRJkiRJkga0e7kfSZIkSZIkSfqDkgtnSZIkSZIkSdKAXDhLkiQBvr6+REdHP3N88+bNBAYGcvr0aaZNm1bndU+dOsWiRYte6fMPGzaM06dP1znXsGHDcHFxwdXVFQcHB0JCQigrK3ulzydJkiRpTy6cJUmSgLFjx5KYmPjM8V27djFu3Dh69uzJ2rVr67zupUuXuHHjxu82W3BwMMnJySQlJbFv3z7KysqeO4skSZL0+5ELZ0mSJGD48OGUlpaSm5urPpadnY0QgoEDB3Ls2DEcHR0BmDt3LoGBgTg4ODB//nzWrl1Lbm4u8+bNe+rjgKfev337NlOmTMHLy4thw4bh6+tLcXGxVnPq6elhZWXF5cuXATA3N2f69OmMHDmS06dPk5ubi6enJ05OTri7u/PDDz+orxsdHY2dnR2Ojo4EBQXx8OFDAOLj43F3d8fV1RU/Pz/y8/MByM3NZfTo0bi7u+Pu7s7+/ftfeLyyspKIiAjc3NxwdnZm7ty5lJSUALBz506cnZ3x8PDAx8eHS5cuaXW7JUmSdIFcOEuSJAGNGzfGy8uLhIQE9bG4uDh8fHzq3ES/vLxc/TK606ZNw8LCgsjIyBd+jpSUFN5//33i4uJIS0vD0NCQ5ORkrea8f/8+qampWFlZAVBVVcXQoUPZv38/pqamTJs2jQULFrB3716WL1/OnDlzuHbtGmlpaSQmJhIXF8e+ffswNTVl+/btZGdnk5SUxI4dO0hKSsLf35+pU6cCsG7dOiZOnEhiYiIREREcPXr0hcc3btyIvr4+iYmJ7NmzBxMTE1auXElNTQ0RERHExMTw9ddf4+npyfHjx7W63ZIkSbpAvnKgJEnS/3h6euLg4EBJSQnV1dVkZGTwvK3u+/Xrp3V/woQJ5ObmsmXLFgoKCrh48SK9e/f+zeutWLGCDRs2qF+pa+jQoYwfP159uYWFBfD4XOuOHTuqm926daNv375kZ2eTl5eHnZ0drVq1AmDevHnq9tWrV/H29lb37t+/z71797C3t+df//oX6enpDBgwgJkzZwI89/ihQ4d4+PAhWVlZwONFfdu2bdHX18fOzg5vb2+GDBnCwIEDcXJy0vr+kyRJamhy4SxJkvQ/JiYmDBgwgG+++YbS0lJGjhxJixYt6vxYIyOjOo/XviRuraqqKvXbH3/8MadOncLDwwMrKyuqq6ufednaugQHB2NnZ/fcy2tnUalUz1wmhKC6uhp9ff2nfnP+4MEDHjx4gEqlwsXFhTlz5qgbN2/epFWrVnh7ezN06FAyMzM5fPgw69evZ8+ePc89rlKpmD9/PjY2NgA8evSIiooKAFauXMmFCxfIyspi06ZNJCQksGHDht+87ZIkSbpEnqohSZL0BB8fH/bu3UtSUhJjx47V6Dr6+vpUV1cDYGxsTGFhIcXFxQghOHDggPrjMjIymDBhAq6urrRt25asrCxqamoUm713795cuXKFU6dOAXDx4kVycnKwtLRkwIABfPfdd+pzjtetW8fWrVsZOHAgKSkp3Lx5E4Avv/ySCRMmAODt7U1eXh7u7u4sXbqUBw8ecP/+/eceHzRoEDt27KCyshKVSsXChQtZtWoVd+7cwcbGhtatW+Pn58eMGTM4f/68YrdbkiSpvsjfOEuSJD3BysqK8PBwWrVqRffu3TW6Tp8+fVi9ejVBQUF89tlneHt74+HhQbt27RgyZIj644KCglixYgWff/45+vr69O3bl59++kmx2Y2NjVmzZg1Lly6lvLwcPT09IiMj6dKlC126dOHSpUuMGTMGgK5du7J06VKaN2/O5MmTmTRpEnp6ejRv3pz169ejp6fH7NmziYiIYPXq1TRq1IiPPvoIU1PT5x6fMmUKy5cvx83NjZqaGt59913mzp1L8+bN+cc//oGfnx+Ghobo6+sTHh6u2O2WJEmqL/IltyVJkiRJkiRJA/JUDUmSJEmSJEnSgFw4S5IkSZIkSZIG5MJZkiRJkiRJkjQgF86SJEmSJEmSpAG5cJYkSZIkSZIkDciFsyRJkiRJkiRpQC6cJUmSJEmSJEkD/wWuO0zueGt2dQAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[[\"Unaccounted Time / s\", *cols]].plot(kind=\"bar\", stacked=True, figsize=(12, 4));"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 7\n", "<a name=\"task7\"></a>\n", "\n", "* Create a pivot table based on the NEST `df` data frame\n", "* Let the `x` axis show the number of nodes; display the values of the simulation time `\"Sim. Time / s\"` for the tasks per node and threas per task configurations\n", "* Please plot a bar plot\n", "* Done? [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 101, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAELCAYAAAAiFru1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4U1X+x/F30tCNFlFIi5aCyCI6M4KCQAGpOlhEqGUVBEFEAZVFcGOx7FvFKoIs4wKiCEjZyg4qKAIVWZyBYQZRBgpFoKUFutC9ye+PzkT7KzRpSZeUz+t5fJ7k3pNzv8kB/OTm3HMNVqvVioiIiIiIXJexvAsQEREREanoFJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7TOVdwP93+fJVLBZreZdRKmrU8CEpKa28y5AS0Ni5No2fa9P4uS6NnWurzONnNBq49daqxXpNhQvNFou10oZmoFK/t8pOY+faNH6uTePnujR2rk3j9ztNzxARERERsUOhWURERETEjgo3PUNERERuXnl5uVy+fJHc3OzyLuWml5BgxGKxlHcZN8RkcufWW824ud145FVoFhERkQrj8uWLeHp6U7VqLQwGQ3mXc1MzmYzk5rpuaLZarVy9msLlyxepWfP2G+5P0zNERESkwsjNzaZq1WoKzHLDDAYDVatWc9qvFgrNIiIiUqEoMIuzOPPPkkKziIiIiIgdN/WcZt9qXnh6FP0RZGblkpqSUUYViYiIiEhFdFOHZk8PE6GvrS+yzcZ3w0gto3pERESksPfff4d//OPvAMTGnuT22+/Aw8MTgA8/XGx77IiNG6OJidnNzJnvFquGQYOe5f335/PMM0/RvHkL3nprkm3f0aP/ZOrU8axcGV2sPvv06c7o0eNp0qSpQ+1//PEHFi78AIBLl5KwWPKoWdMPgGefHcju3bto3PgennqqT7HqKKlXXx1Ohw4d6dDhiSLbRUUtJyMjg2+/3QFARkY6Fy9epE6dugC0bBnESy8NL/bxBw8ewLPPPk+bNg8Vv/gSuKlDs4iIiFR8I0e+YXvco0coEydOo3Hje8vs+BcunMfXtxpVq/oAsGPHV7Rq1Zq//jWkzGqA/HDZsmUQAB99tICMjAxeeeU12/7du3eVaT2O2rPneyZMmMqzzz4PwIEDPzJ//hyWLFlezpUVj0KziIiIuKwNG9axcWM0ubk5pKSk0L//QMLCupGYeJGpUyeSmpoMQJs27Xj++SEFXrtjx1d89NECIiPn4uXldd3233//HQ89FGx73aBBLxMZGcGf/vQXatUqvJTZokUf8u233+Dm5kadOncyatQb3HZbDU6ePMHMmVPJzs7mzjvvJDMz0/aaw4f/wd/+9gFZWZkYjW48//xggoLaFvvzOHz47+zY8TWXL1+ifv2GTJw4DZPJRIcOwQQFteE//znBlCkzcXMzMWfOu6SmpmCxWOjVqw8dO3YmLy+PuXPf5dixf5OefhWAMWMm8Oc//4WEhHimT5/EpUtJ1Kp1O1euXLId96OPFrBnzy6qVHHnlluqEx4+idtuq0FKSjI5OdnUrGkusu6rV9N4552ZnDv3G8nJV6hWrRqTJs0gIKA2O3Z8xRdfLMFodMPNzY0RI17lz3++z/banJwcJkwYg69vNUaPDsfNza3Yn5sjHLoQcM6cOTzxxBN06tSJTz/9FICYmBhCQ0MJCQlh9uzZtrbHjh2je/fudOjQgbfeeovc3NxSKVxERERublevprFly0befXcun366nAkTptmmL6xfv5a6deuyePEy5s37mNjYU7YQCLBt22Y++2wRH3zwIYGBdYpsv3fv9wVCc/PmDxIa2oXJk8PJy8srUNOGDes4dOgAn3yylM8++5LAwDpEREwFYNKkt+jWrSeffbaCrl17cvFiAgDJyVeIiJjCxInTWbx4GTNmvMOsWTNISIgv9meSlJTE3LkLWb58DefPn2P37u8AyMrKIjj4UVasWEu9evWZMGEMw4aNZPHiL/jggw9ZuvRTfv753xw9+k+uXLnC3/62mC+/XEP79h1YtuwzACIjI2jS5H6WLo1i+PBRnD4dC8C5c7+xbt1qFi36gkWLltKsWXP+/e9//fez203r1vanT+zdu5uaNc189NESVq6Mpl69+kRHrwHggw9mM27cRBYtWsqzzz7P3//+k+112dlZjB37GnfcUZuxYyeUWmAGB84079+/n3379rFhwwZyc3N54oknCAoKYty4cSxdupTbb7+dIUOGsGvXLoKDg3njjTeYNm0aTZs2Zdy4cURFRdGnT9nMrREREZGbR9WqPsyc+S579+4mLu4Mv/56nIyMdABatmzN6NEjOX/+HM2bt2Do0Ffw9q4K5M9BjonZw6hRb+Dn519k+5SUZLKzswqdKR08+GVefHEgS5Z8QsuWrW3b9+2LoVOnJ/H0zJ9n3bPn03Tr9gSXLiVx+nQsISEdAWja9AHq1r0TgH/+8zBJSUmMGfOqrR+DwcDJk/+x1eeodu0ets3xrlfvLi5fvmzb16TJ/QDExp7i3LnfmD59km1fTk4Ov/xynCef7Er16tVZv34t586d5dChg1SrVg2Agwf38+qrbwJQp86d3H9/MwD8/Py58856DBzYl1at2hAU1IYHHmgO5E8ZGTToJbt1h4R0JDCwDqtWfclvv8Vx5Mhhmjd/EIC//jWE119/hdatH+LBB1vSq9fvufL9998hKyuLCROmlvpShXZDc4sWLfj8888xmUzEx8eTl5dHSkoKdevWJTAwEIDQ0FC2bdtGgwYNyMzMpGnT/Ant3bp1Y+7cuQrNIiIi4nQXLpzn5ZdfICysG02a3E9w8KPs378PgD//+S+sWrWBAwf289NPB3jhhf68/Xb+L+O33HILEyZMZdKkcbRq1ZZatWpdt31c3OlrTpMwmUxMnDiNQYP628I4gNVa8A56VquFvLw8W6CzWq22ff87K5qXZ6F+/fosXLjYtu/ixQRuvfW2Yn8mJtPv0S7/mL8fz8vLGwCLJY9q1W4pMKc4KSkRHx9fdu/+jvnz59CrV1+Cgx8hICDQdgGfwXDt+k0mEwsWfMKxY//i4MH9zJ49ixYtghg8+GXOn/+NevXuslv3ypXL+Prr7XTt2oOQkI54eXmTkpI/VWb48FF06dKdAwd+ZOPGdaxYsZSPP84/+x0a2pXU1BTeeWcmU6dGFPvzKg6HpmdUqVKFuXPn0qlTJ4KCgkhISMBs/v0bl5+fH/Hx8YW2m81m4uOL/9OCiIiIiD3Hjv2LGjVq0L//QFq2DGLv3u+xWPJD6/z5c1i6dAnBwY8wcuQb1KlTl7NnzwAQGFiHBx9sSZcuPZgxYxJWq/W67Xfv/o62bYOvefzAwDoMH/4qH3+8wLatRYsgNm/eYJuvvGrVl9x/fzNuvfU26tdvwObNG2y1x8aeAuAvf7mPU6dOceTIPwA4fvxnnn66G5cuJZXK53bnnXdhNBr55pvtQP6Xj379enHixK8cOPAjDz30MF279qBx43vYvXsXFkv+FJSWLVuzYcM6AM6fP8c//vGTrd5nn+1NvXr16d9/ID17Pm3rq3nzlg7V9OOP++jcOYxOnZ6kdu1AYmL2YLFYyM7Oplu3TlitVrp168krr7xObOxJ27SYe+75Ey+9NIJffvmZbds2O/ujKsDhCwFHjBjBoEGDePHFF4mNjS2032AwFPj28cftxVGjhk+x2pcFs9m3QvYlZUtj59o0fq5N4+e6ijt2CQlGTKaiz+m5ueW3adv2IbZu3USfPt3x8vLiT3/6C76+1bhw4Tf69HmGKVMm0L9/L6pUqUKjRo0JCenAli2bMBgMmExGBg0azHPP9SMqavk12z/88MOsXLmMRo0aXvP4AGFhXThwYB8///xvTCYj3bv3IDExgUGD+mOxWKhTpy4TJ07FZDIybVoE06ZNZu3aKAID61CnTl3c3Az4+ZmZOXMW8+bNJjs7G6vVypQpM7jjjtvJy8tjwIC+jB8/mUaN7rbVYDQaMBop8FkZDPnb/7ft/z83mYz//c+Td96ZzfvvR7J06afk5uby8svDadLkPnx9qzJx4ls8+2xv3NzcaNLkfnbv/g43NwOjR49j2rRJPPNMT/z8/GnU6G6MRgN/+tO9PPzwo7zwQj+8vLzw9PTktddGExX1JZ07P1loPN3cjBgMBWt/9tkBzJo1kw0b1mI0Grn33nv57bezeHt7MmLEKMLD38RkqoKbm5Hw8El4eFTBYAA3NwM+Pt6MHz+ZN98cRfPmzQtdnGk0Gp3yb4jBeq2k+wf/+c9/yM7O5p577gFg2bJlbNu2DTc3N5YsWQJAdHQ0P/74I8OGDWPAgAF8/fXXABw8eJC5c+fy+eefO1xQUlIaFkuRJTmN2ezr0DrNFy86Z6Vms9nXaX1J2dLYuTaNn2vT+LmukozdhQunqVWrbilV5JoWLJhLhw5PUL9+gzI9rslkJDfXYr9hBXetP1NGo6HYJ2rtTs84e/Ys4eHhZGdnk52dzY4dO+jduzenTp3i9OnT5OXlsWnTJtq1a0dAQAAeHh4cOnQIyA/T7dq1K1ZBIiIiIpLParUSGFinzAOzFGZ3ekZwcDCHDx+mS5cuuLm5ERISQqdOnbjtttsYPnz4f5cwCebxxx8HIDIykvDwcK5evcq9995L//79S/1NiIiIiFRGBoOB0NAu5V2G4OCc5hEjRjBixIgC24KCgtiwYUOhto0bN2b16tXOqU5EREREpAJwaPUMEREREZGbmUKziIiIiIgdDi85JyIiIiK/863mhaeH86NUZlYuqSkZTu9XboxCs4iIiEgJeHqY7C5dWxIb3w3DkYX68vLyGD9+DBMmTCUtLY0ZMyZz6VISRqOBoUNH0qzZgw4dLzx8NPXq3cXzzw8hPT2dadMmMnVqhN31sm82+jREREREXFB09GpatGiFp6cnCxbMoU2btixZspxJk6YzeXK47a55Rdm0aT0//XTQ9tzb25vmzVuwfv3a0izdJSk0i4iIiLgYq9XK6tUrad++AwDBwY/w2GMdAQgICCQ7O4uMjKKneJw9G8fWrZsIC+tWYHv79iFERa245p2eb2YKzSIiIiIu5sSJX/Dx8cHHJ/+udsHBj1KtWjUAVqxYSsOGd9v2XUtubi4REVN5/fWxmEwFZ+tWq3YL3t5enDjxa+m9ARek0CwiIiLiYuLi4jCb/Qttj4pazvr16wgPn1zk6xcv/ojg4EepV++ua+7397+duLgzTqm1stCFgCIiIiIuxmg04ObmVmDbggVziInZy/z5H+HnVzhQ/9F33+2gShV3Nm/ewKVLSQB4eXnRp0/+nZxNJhMGg6F0indRCs0iIiIiLiYgoDYXLpy3PY+KWs5PPx1i4cJF+Pr62n398uVrbI8XLfoQwBaYAc6fP0ft2oFOrNj1KTSLiIiIlEBmVi4b3w0rlX7tadCgEcnJV0hLS6Nq1aosXvwxVatWZfjwIbY2kZFzSEy8yCef/I3IyLkOHz81NZW0tDQaNmxEbq6lRO+hMlJoFhERESmB1JQMh9ZTLg0Gg4GePZ9m+/bNdO/ei23bvr1muxo1amI2+xXZ1/PPDynwfOvWTfTs2dtptVYWuhBQRERExAV17dqDAwd+JDMz87ptEhLiCQnp6HCf6enpHDy4v9AydKIzzSIiIiIuyWQyERHxXpFt/P1r4e9fy+E+vb29mTVr9o2WVinpTLOIiIiIiB0KzSIiIiIidig0i4iIiIjYodAsIiIiImKHLgQUERERKYFbb3HH5O7h9H5zs7O4nJxtt11eXh7jx49hwoSppKWlMWPGZC5dSsJoNDB06EiaNXuwyNcvX/45W7ZsBKBz5zB6936G9PR0pk2byNSpEZhMOrf6RwrNIiIiIiVgcvfg5PTuTu/3rrfWAPZDc3T0alq0aIWnpyezZk2nTZu2dO/eizNnYhk2bAjr1m0pdKvt/zl7No5161bzxRdRWCxWnnmmJ23bBlO7diDNm7dg/fq1PPVULye/M9emrxAiIiIiLsZqtbJ69Urat+8AQHDwIzz2WP56zAEBgWRnZ5GRkXHd11ssFnJycsjKyiYnJxur1YrJlH8utX37EKKiVmC1Wkv/jbgQnWkWERERcTEnTvyCj48PPj4+AAQHP2rbt2LFUho2vNu271rq1KlL+/Yd6NEjFKvVSmhoGLVq3Q5AtWq34O3txYkTv1KvXoPSfSMuRGeaRURERFxMXFwcZrN/oe1RUctZv34d4eGTi3z9vn0xHD9+jOjorURHb+HYsX+zY8fXtv3+/rcTF3fG6XW7MoVmERERERdjNBoKzVdesGAOGzZEM3/+R3bvArh3724efvhRvL29qVrVh/btO/CPf/xk228ymTAYDKVSu6tyKDTPmzePTp060alTJ2bNmgXA2LFjCQkJISwsjLCwML7+Ov/bSUxMDKGhoYSEhDB7tm7DKCIiIuJsAQG1uXDhvO15VNRyfvrpEAsXLsLPr/AZ6P+vQYOG7N27h7y8PHJzc/nxxxjuuede2/7z589Ru3ZgqdTuquzOaY6JiWHPnj2sW7cOg8HACy+8wNdff83Ro0f54osv8PPzs7XNzMxk3LhxLF26lNtvv50hQ4awa9cugoODS/VNiIiIiNxMGjRoRHLyFdLS0qhatSqLF39M1apVGT58iK1NZOQcEhMv8sknfyMycm6B14eGduHMmVj69XsKNzc3goLa0rFjZwBSU1NJS0ujYcNG5OZayvR9VWR2Q7PZbGbMmDG4u7sDUL9+fc6dO8e5c+cYP348586d47HHHmPYsGEcOXKEunXrEhiY/80kNDSUbdu2KTSLiIhIpZObnfXf5eGc3689BoOBnj2fZvv2zXTv3ott2769ZrsaNWpiNvsV2m40Ghk+/FWGD3+10L6tWzfRs2fv4hdeydkNzQ0bNrQ9jo2NZcuWLSxfvpz9+/czZcoUvL29GTJkCKtXr8bb2xuz2Wxr7+fnR3x8fOlULiIiIlKO8m9AYn895dLStWsPwsPfpFOnMDw9Pa/ZJiEhnpCQjg73mZ6ezsGD+5kx4x1nlVlpOLzk3K+//sqQIUMYPXo0d911F/Pnz7ft69evH9HR0Tz++OOFXlfcSeQ1alx/eZTyYjb7Vsi+pGxp7Fybxs+1afxcV3HHLiHBqDvROchkcicy8v0i2wQE3EFAwB0O91mtmg/vvTfnD8dw/bEwGo1O+TfEodB86NAhRowYwbhx4+jUqRPHjx8nNjaWDh3yF9T+34LY/v7+JCYm2l6XkJBQYM6zI5KS0rBYymYxbUc/wIsXU512PGf1JWVLY+faNH6uTePnukoydhaLRfNoKwiTyVgpxsJisRT6c2g0Gop9otbu14fz588zdOhQIiMj6dSpE5AfkmfMmEFycjI5OTmsXLmSxx57jCZNmnDq1ClOnz5NXl4emzZtol27dsUqSERERESkorF7pnnRokVkZWURERFh29a7d28GDx7M008/TW5uLiEhIXTunH/FZUREBMOHDycrK4vg4OBrTtkQEREREXEldkNzeHg44eHh19zXt2/fQtuCgoLYsGHDjVcmIiIiIlJBOHwhoIiIiIj8zre6B55V3J3eb2ZONqlX7C87J2VLoVlERESkBDyruPPUypec3m9Ur4WkYj805+XlMX78GCZMmEpaWhozZkzm0qUkjEYDQ4eOpFmzB+32cfFiAi+80I/167fbti1e/BE7d36DwQBBQW14+eVXSE9PZ9q0iUydGlHo9t03C9dfR0RERETkJhQdvZoWLVrh6enJggVzaNOmLUuWLGfSpOlMnhxOXl5eka//4Yc9DB/+IklJSbZtBw78yIED+/j002UsXbqC48d/Zteub/H29qZ58xasX7+2tN9WhaXQLCIiIuJirFYrq1evpH37/OV/g4Mf4bHH8m9iEhAQSHZ2FhkZGUX2sWnTembMmFVgW40aNRk6dBRVqlTBZKpC3bp3Eh9/AYD27UOIilqB1Vo2SwNXNJqeISIiIuJiTpz4BR8fH3x88tcaDg5+1LZvxYqlNGx4t23f9UyfXviuf3fdVd/2+MyZM+zc+TULFy4GoFq1W/D29uLEiV9p2LCRM96GS9GZZhEREREXExcXh9nsX2h7VNRy1q9fR3j45Bvq/+TJ/zBixEsMHTqSwMA6tu3+/rdz9uyZG+rbVelMs4iIiIiLMRoNhS7IW7BgDjExe5k//yP8/AoHakcdOfIPwsNHM2rU6zzyyGMF9plMJozGm/Ocq0KziIiIiIsJCKjNhQvnbc+jopbz00+HWLhwEb6+viXuNz7+AuPGvc7kyTNp2bJlodtonz9/joCAwBL378oUmkVERERKIDMnm6heC0ulX3saNGhEcvIV0tLSqFq1KosXf0zVqlUZPnyIrU1k5BwSEy/yySd/IzJyrkPHXrHiC7Kysvngg9nMmwdWK3Tp0o0uXXqQmppKWloaDRo0LPF7c2UKzSIiIiIlkHoly6H1lEuDwWCgZ8+n2b59M92792Lbtm+v2a5GjZqYzX5F9rVnz0Hb45EjX2fkyNcBMJmMBc40b926iZ49ezuhetd0c05KEREREXFxXbv24MCBH8nMzLxum4SEeEJCOt7wsdLT0zl4cD9hYd1uuC9XpTPNIiIiIi7IZDIREfFekW38/Wvh71/rho/l7e3NrFmzb7gfV6YzzSIiIiIidig0i4iIiIjYodAsIiIiImKHQrOIiIiIiB0KzSIiIiIlcKuvO2azr9P/u9XX3aHj5+XlMW7cGwVWz0hPv8pTT4Xx008Hi3hlQfPnz2H69EkAWCwWxo59nfT09GJ9FjcDrZ4hIiIiUgImTw/2hnV3er9t1q+BVPs3OImOXk2LFq3w9PS0bXvvvVmkpqY6fKyDB/ezdetGgoLaAmA0GnnyyS4sWfIxI0aMKn7xlZjONIuIiIi4GKvVyurVK2nfvoNt244dX+Ht7U39+g0c6iMlJZmPPlpAv37PFdjeokUQu3Z9y9WraU6t2dUpNIuIiIi4mBMnfsHHxwcfHx8ALly4QFTUCoYOfcXhPmbNmsHgwS/j61utwHY3Nzfq12/IoUOOT/G4GSg0i4iIiLiYuLg4zGZ/IH8eckTEFEaNehMPD087r8y3cWM0/v7+NG/e4pr7a9WqRVzcGafVWxloTrOIiIiIizEaDbi5uQFw+nQsZ86cJiJiKgC//RbH229PY/TocB54oPk1X79jx1ckJSUyYEAfUlKSycjIYO7cdxkx4jUg/26DBoPOrf6RQrOIiIiIiwkIqM2FC+cBqFfvLtau3WzbN2zYYAYOHHzdwAzw/vsLbI+3bNnI3/9+yBaYAc6dO0fTpg+UQuWuS18hRERERFxMgwaNSE6+Qlpa0RfrJSZeZMCAPsXqOy8vj19++ZkWLa49deNmpTPNIiIiIiWQm5mVvzxcKfRrj8FgoGfPp9m+fTPdu/cqsG/evI9sj2vWNHP33Y2L7OuJJ0J54olQ2/OYmN0EBz+Kp6cXubmWYlZfeTkUmufNm8fWrVsBCA4O5s033yQmJoaZM2eSlZVFx44dGTUqfy2/Y8eOER4eTlpaGs2bN2fy5MmYTMrmIiIiUrlcTs12aD3l0tK1aw/Cw9+kU6ewAms1/1FGRgatWz/kcJ8Wi4VNm9YzYcJUZ5VZadidnhETE8OePXtYt24d0dHR/Otf/2LTpk2MGzeOBQsWsGXLFo4ePcquXbsAeOONNxg/fjzbt2/HarUSFRVV6m9CRERE5GZjMpmIiHjvuoEZwMvLi+DgRxzu02g08vbbs6la1ccZJVYqdkOz2WxmzJgxuLu7U6VKFerXr09sbCx169YlMDAQk8lEaGgo27Zt47fffiMzM5OmTZsC0K1bN7Zt21bqb0JEREREpDTZnTfRsGFD2+PY2Fi2bNlCv379MJvNtu1+fn7Ex8eTkJBQYLvZbCY+Pr5YBdWoUfG+2ZjNvhWyLylbGjvXpvFzbRo/11XcsUtIMGIyaZ2CiqIyjIXRaHTKvyEOTzb+9ddfGTJkCKNHj8ZkMnHq1KkC+w0GA1artdDrDAZDsQpKSkrDYincT2lw9AO8eNHxe7jbO56z+pKypbFzbRo/16bxc10lGTuLxaKLzyoIk8lYKcbCYrEU+nNoNBqKfaLWoa8Phw4dYsCAAbz22mt07doVf39/EhMTbfsTEhLw8/MrtP3ixYv4+fkVqyARERERkYrG7pnm8+fPM3ToUGbPnk1QUBAATZo04dSpU5w+fZratWuzadMmunfvTkBAAB4eHhw6dIhmzZoRHR1Nu3btSv1NiIiIiJS1W6p54e7h/BXCsrNySU7JcHq/cmPsjvSiRYvIysoiIiLCtq13795EREQwfPhwsrKyCA4O5vHHHwcgMjKS8PBwrl69yr333kv//v1Lr3oRERGRcuLuYWLKa5uc3u+Edzs71C4vL4/x48cwYcJU2woa6elXGTCgD2PGjC/yjoAA27dvYenSJQC0atWaYcNGYrFYeOutNxk/fgrVqlW868zKk93QHB4eTnh4+DX3bdiwodC2xo0bs3r16huvTERERESuKzp6NS1atCqw5Nx7780iNdX+PPLMzEzefz+SFSvW4uPjw0svPc+BAz/y4IMtefLJLixZ8jEjRowqzfJdjutfEikiIiJyk7FaraxevZL27TvYtu3Y8RXe3t7Ur9/A7ustljysVguZmRnk5eWSl5eLh4cHAC1aBLFr17dcvVr0LbpvNgrNIiIiIi7mxIlf8PHxwccnfwrFhQsXiIpawdChrzj0em/vqrzwwov06dODLl2eoFatO/jLX5oA4ObmRv36DTl06GCp1e+KFJpFREREXExcXBxmsz+Qv6RaRMQURo16Ew+P698d8I9OnPiVzZs3sGbNRtav34bRaGTFiqW2/bVq1SIu7kyp1O6qFJpFREREXIzRaMDNzQ2A06djOXPmNBERUxkwoA/Hjx/j7ben8dNP1z9TvH//DzRr1oJbb70Nd3d3nngilL///ZBtv8lkwmBQTPwj56+TIiIiIiKlKiCgNhe5VgL8AAAXkklEQVQunAegXr27WLt2s23fsGGDGThwcJGrZzRo0IgFC+aSkZGBp6cne/d+T+PG99r2nzt3jqZNHyi9N+CCFJpFRERESiA7K9fh5eGK2689DRo0Ijn5CmlpabZ5zdeSmHiR119/hSVLlhfY3qJFK3755Weef/4ZTCYT99zzJ555ZgCQv5TdL7/8zKRJU27ofVQ2Cs0iIiIiJVCeNyAxGAz07Pk027dvpnv3XgX2zZv3ke1xzZpm7r678TX7eOaZAbag/EcxMbsJDn4UT0+vSnEbbWfRZBURERERF9S1aw8OHPiRzMzM67bJyMigdeuHHO7TYrGwadN6Bgx43hklVio60ywiIiLigkwmExER7xXZxsvLi+DgRxzu02g08vbbs2+0tEpJZ5pFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFRERESuCWau6Yzb5O/++Wau4OHT8vL49x494osHpGevpVnnoqrMi7Af7R1atp9Ov3FOfPn7NtW79+Lf36PUXfvk8xY8ZkcnJysFgsjB37Ounp6cX7kCoRrZ4hIiIiUgLuHh7MG/uc0/sdNvNTINtuu+jo1bRo0QpPT0/btvfem0VqaqpDx/nXv44ya9Y04uLO2LadOXOaFSuWsmjRUqpV82Xy5AmsXRtFr159efLJLixZ8jEvv/xKsd9TZaAzzSIiIiIuxmq1snr1Stq372DbtmPHV3h7e1O/fgOH+ti4cR2vvjqamjXNtm3u7u689toYqlb1wWAwcNddDYiPvwBAixZB7Nr1LVevpjn3zbgIhWYRERERF3PixC/4+PjYbqF94cIFoqJWMHSo42eBx4wZT5Mm9xfYVqvW7Tz4YEsALl++zNq1UbRtGwyAm5sb9es3dHjqR2Wj0CwiIiLiYuLi4jCb/YH8u/hFRExh1Kg38fDwtPNKx1y8mMCwYUPo3DmMBx5obtteq1Yt4uLinHIMV6PQLCIiIuJijEYDbm5uAJw+HcuZM6eJiJjKgAF9OH78GG+/Pa3EZ4RPn47lpZee54knQhkw4IUC+0wmE0aj4Ybrd0W6EFBERETExQQE1ObChfMA1Kt3F2vXbrbtGzZsMAMHDi5whthR6elXGTVqKEOGDKVTp87k5loK7D937hz33df0xop3UTrTLCIiIuJiGjRoRHLyFdLSir4oLzHxIgMG9HG4340bo7l8+RIrVnxBv369GTCgD5988jcgf4m7X375mebNW95Q7a5KZ5pFRERESiA7K+u/y8M5v197DAYDPXs+zfbtm+nevVeBffPmfWR7XLOmmbvvblxkX6tXb7Q97tWrL7169QXAZDIWONMcE7Ob4OBHCyxxdzNRaBYREREpgeSUbBxZT7m0dO3ag/DwN+nUKey6QTYjI4PWrR+64WNZLBY2bVrPhAlTb7gvV6XQLCIiIuKCTCYTERHvFdnGy8uL4OBHbvhYRqORt9+efcP9uDKH5zSnpaXRuXNnzp49C8DYsWMJCQkhLCyMsLAwvv76awBiYmIIDQ0lJCSE2bNv7g9XRERERCoHh840Hz58mPDwcGJjY23bjh49yhdffIGfn59tW2ZmJuPGjWPp0qXcfvvtDBkyhF27dhEcHOz0wkVERKRyslqtGAw357Jm4lxWq9VpfTl0pjkqKoqJEyfaAnJ6ejrnzp1j/PjxhIaGMnfuXCwWC0eOHKFu3boEBgZiMpkIDQ1l27ZtTitWREREKjeTyZ2rV1OcGnbk5mS1Wrl6NQWTyd0p/Tl0pnn69OkFniclJdGqVSumTJmCt7c3Q4YMYfXq1Xh7e2M2/37/cj8/P+Lj44tVUI0aPsVqXxbMZt8K2ZeULY2da9P4uTaNn+sq7thVr+5JXFwcFy+eLaWK5Gbi5eVJgwb1qFKlyg33VaILAQMDA5k/f77teb9+/YiOjubxxx8v1La4P68kJaVhsZTNt0tH/yJfvJjqtOM5qy8pWxo716bxc20aP9dV0rHz9TXjq+9J5a6y/N27ciUTyCywzWg0FPtEbYlubnL8+HG2b99ue261WjGZTPj7+5OYmGjbnpCQUGDOs4iIiIiIKypRaLZarcyYMYPk5GRycnJYuXIljz32GE2aNOHUqVOcPn2avLw8Nm3aRLt27Zxds4iIiIhImSrR9IzGjRszePBgnn76aXJzcwkJCaFz584AREREMHz4cLKysggODr7mlA0REREREVdSrNC8c+dO2+O+ffvSt2/fQm2CgoLYsGHDjVdWQVhysx2a+5ybncXl5KLvCmTJtt9XbmYWl1PL7+5CIiIiIlKY7ghoh9Hkzsnp3e22u+utNdi7labR3Z29YUX31Wb9GlBoFhEREalQSjSnWURERETkZqLQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2GEq7wJESsq3mheeHkX/Ec7MyiU1JaOMKhIREZHKSqFZXJanh4nQ19YX2Wbju2GkllE9IiIiUnlpeoaIiIiIiB0KzSIiIiIidig0i4iIiIjYodAsIiIiImKHQ6E5LS2Nzp07c/bsWQBiYmIIDQ0lJCSE2bNn29odO3aM7t2706FDB9566y1yc3NLp2oRERERkTJkNzQfPnyYp59+mtjYWAAyMzMZN24cCxYsYMuWLRw9epRdu3YB8MYbbzB+/Hi2b9+O1WolKiqqVIsXERERESkLdkNzVFQUEydOxM/PD4AjR45Qt25dAgMDMZlMhIaGsm3bNn777TcyMzNp2rQpAN26dWPbtm2lW72IiIiISBmwu07z9OnTCzxPSEjAbDbbnvv5+REfH19ou9lsJj4+3omlVmzZeTmYzb7lXYaIiIiIlIJi39zEarUW2mYwGK67vbhq1PAp9msqAne3Kjy18qUi20T1WuhQXwrfzuWsz1Pj4to0fq5N4+e6NHauTeP3u2KHZn9/fxITE23PExIS8PPzK7T94sWLtikdxZGUlIbFUjiAl4aK+gfh4kXdw84Rjo6fMz5Ps9lX4+LCNH6uTePnujR2rq0yj5/RaCj2idpiLznXpEkTTp06xenTp8nLy2PTpk20a9eOgIAAPDw8OHToEADR0dG0a9euuN2LiIiIiFQ4xT7T7OHhQUREBMOHDycrK4vg4GAef/xxACIjIwkPD+fq1avce++99O/f3+kFi4iIiIiUNYdD886dO22Pg4KC2LBhQ6E2jRs3ZvXq1c6pTERERESkgtAdAUVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxw1TeBYjIzce3mheeHkX/85OZlUtqSkYZVSQiIlI0hWYRKXOeHiZCX1tfZJuN74aRWkb1iIiI2KPpGSIiIiIiduhMcwWTm5OH2exbZJvsrFyS9bO1iIiISJlRaK5gTFXcmPLapiLbTHi3cxlVIyIiIiKg6RkiIiIiInbd0Jnm/v37k5SUhMmU382UKVM4c+YMCxcuJCcnhwEDBtC3b1+nFCoiIiIiUl5KHJqtVisnT57ku+++s4Xm+Ph4Ro0axdq1a3F3d6d37960bNmSBg0aOK1gEREREZGyVuLQfPLkSQwGA4MGDSIpKYmnnnqKqlWr0qpVK6pXrw5Ahw4d2LZtG8OGDXNawSLFYcnNtnthZW52FpeTs4vuJ9t+PwC5mVlcTi26LxEREXE9JQ7NKSkpBAUFMWnSJDIzM+nfvz8dO3bEbDbb2vj5+XHkyBGnFCpSEkaTOyendy+yzV1vrQGKDrpGd3f2hhXdD0Cb9WtAoVlERKTSKXFovv/++7n//vsB8Pb2pkePHsycOZMXX3yxQDuDwVCsfmvU8ClpSTcVR856iuOc+XlqbJxH4yL/o/FzXRo716bx+12JQ/PBgwfJyckhKCgIyJ/jHBAQQGJioq1NQkICfn5+xeo3KSkNi8Va0rKKxZX/IFy8qHulOXP87H2exTmWxsY+Rz9PZ32WZrOvxsWFafxcl8bOtVXm8TMaDcU+UVviJedSU1OZNWsWWVlZpKWlsW7dOt555x1++OEHLl26REZGBl999RXt2rUr6SFERERERCqEEp9pfuSRRzh8+DBdunTBYrHQp08fmjVrxqhRo+jfvz85OTn06NGD++67z5n1ioiIiIiUuRtap3nkyJGMHDmywLbQ0FBCQ0NvqCgREam4fKt54elR9P8+MrNySU3JKKOKRERKn26jLSIixeLpYSL0tfVFttn4bhiVcyakiNysdBttERERERE7FJpFREREROxQaBYRERERsUNzmuWml52X49JrdouIiEjpU2h2Qbk5joW87KwsklN0S2d73N2q8NTKl4psE9VrYRlVIyIiIhWRQrMLMlWpwryxz9ltN2zmp4BCs4iI5HNkuUDQkoEi16LQLCIicpNwZLlA0JKBItei0CwiFZIlN9uhaUi52VlcTtYvKiIiUroUmkWkQjKa3Dk5vbvddne9tQZ705As2fYDeG5mFpdTFb5FROTaFJpFpNIzuruzN6zoAN5m/RpQaBYRketQaBYRERFxAY5cyKmLOEuPQrOIiIiIC3DkQk5dxFl6FJpFnCg3J8/u3NnsrFySdRZARETEpSg0iziRqYobU17bVGSbCe92LqNqbg66o2PF5MjqJ1r5RERciUKziLg03dGxYnJk9RNHVj4BrX4iIhWDQrOIiFRoWv1ERCoChWYREREpQNNrRApTaBYpY7k59ufgZmdlkZyi/xmJSPlw1vQaR6bWgKbXiGtQaBYpY6YqVZg39rki2wyb+SmOzPUU53Fk5RPQ6ifOpIs4Kz9HptaAptc4kyO/EoB+KSgJhWYRERxb+QS0+okzOXIRJ+hCTpHicORXAnDeLwU3068ECs0iIuLytEZ62dMvBa7N0fHTRbi/U2gWESkGzUmvmLRGetlz5nKP+tJT9rRcZ/EpNIuIFIPmpLsuR77wgL70lAd96XFdN9MXHoVmERG5KTjyhQf0paei0q88FdPN9IWnVELzxo0bWbhwITk5OQwYMIC+ffuWxmFERETkJqFfeVxXZfmVx+mhOT4+ntmzZ7N27Vrc3d3p3bs3LVu2pEGDBs4+lIiIiIhUcJXlVx6nh+aYmBhatWpF9erVAejQoQPbtm1j2LBhDr3eaDQ4u6Qi+d3qZbeN6RazQ32ZvW+z28bDz35ftzhQk2/1Gg7VVNafZ1lz1vg5a+zAeeOnsauYf/dA4wdl+3cP9G+nMzkydqB/OysqV/23s6L93SvJcQxWq9XqzCI+/PBD0tPTGTVqFACrVq3iyJEjTJ061ZmHEREREREpM0Znd3itDG4wVO5vfSIiIiJSuTk9NPv7+5OYmGh7npCQgJ+fn7MPIyIiIiJSZpwemlu3bs0PP/zApUuXyMjI4KuvvqJdu3bOPoyIiIiISJlx+oWA/v7+jBo1iv79+5OTk0OPHj247777nH0YEREREZEy4/QLAUVEREREKhunT88QEREREalsFJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFruGbb75h6dKlnDlzpsD2lStXllNFUhyxsbHEx8cDsGrVKqZNm8aWLVvKuSopiYiIiPIuQRx05MgR2+MffviBiIgIIiMjOXz4cDlWJY7avXs3KSkpAERHRzNlyhTWrFlTzlVVLFpyTuT/iYyM5OjRo9SvX5+tW7cyevRowsLCAOjatSvr1q0r5wqlKEuWLGHp0qVYLBZatWrF+fPneeyxx9i5cycPPPAAQ4cOLe8S5TrGjh1baNvOnTt59NFHAZg5c2ZZlyTF8L9/H5ctW8aXX35J9+7dAVi3bh09e/bkmWeeKecK5XqmT5/OsWPHmD17NsuWLeOf//wnf/3rX/n++++pXbs24eHh5V1iheD0m5tIvnPnzhW5/4477iijSqS4du3axbp16zCZTPTr14+BAwfi7u5Ox44d0XfMim/NmjVs2bKFxMREOnfuzL59+/Dw8KBnz5706NFDobkCq169OtHR0bz44otUq1YNgH379tGiRYtyrkyKIyoqis8//5xbb70VgB49etCjRw+F5gps7969bNy4ETc3N7777juioqJwd3enV69edO7cubzLqzAUmkvJkCFDiI2Nxc/Pr1DQMhgM7Nixo5wqE3usVisGgwGAO++8kw8//JDnnnuO2267zbZdKi6LxYK7uzsBAQEMHDgQDw8P2768vLxyrEzsGT16NO3ateP999/n1VdfpWXLlnz22Wd07dq1vEsTB+Tm5mKxWKhRowbe3t627e7u7hiNmg1akXl6epKUlISfnx81atQgPT0dd3d3MjIyMJkUFf9H0zNKSVpaGn369GHixIk0a9asvMuRYpg3bx4xMTGMGTPGdgv4Q4cOMWzYMLKzszl06FA5VyhFmTNnDvv37+fzzz/Hzc0NgJ9//pnw8HAefvhhhg0bVs4Vij1Xrlxh4sSJ3HHHHezZs4eNGzeWd0nigP79+3Pq1CkMBgOtW7cmIiKCH374gXfeeYeHH36YESNGlHeJch07d+5k0qRJdOrUidzcXPbt20dQUBB79uzhhRdeoFu3buVdYoWg0FyKjhw5wqpVq5g6dWp5lyLF9MMPP+Dn50f9+vVt286fP8/ixYt56623yrEyccSBAwd48MEHbc9PnjxJXFwcwcHB5ViVFNeqVavYunUrixcvLu9SpBhOnjxJSkoKTZs25dChQ6SmpvLwww+Xd1liR1xcHN988w2nT58mLy+PmjVr8sgjj9hOHolCs4iIiIiIXZpkJCIiIiJih0KziIiIiIgdCs0iIuXo7Nmz3H333axatarA9kWLFjFmzBiH+7l06RJ33323s8sTEZH/UmgWESlnRqORt99+m1OnTpV3KSIich1afE9EpJx5enry3HPP8dprr/Hll1/i7u5u25eamsrkyZP5+eefMRgMPPTQQ7z66quYTCa++uorZs+ejZeXF3/+858L9Llq1SpWrFiBxWKhevXqjB8/nvr163Pw4EEiIiKwWCxA/pryHTp0KNP3KyLiinSmWUSkAnjppZfw8vJi9uzZBbZPmzaN6tWrs3HjRtasWcPx48dZvHgxiYmJjBs3jg8++IC1a9cSEBBge83+/fuJjo5m2bJlREdH88ILLzB8+HAAPvjgA5577jnWrl3LjBkz2LdvX5m+TxERV6UzzSIiFYDRaOSdd96ha9eutG3b1rb9+++/Z8WKFRgMBtzd3enduzefffYZdevWpVGjRjRo0ACAXr168d577wHw3Xffcfr0aXr37m3rJzk5mStXrtCxY0emTJnCzp07ad26Na+++mrZvlERERel0CwiUkHccccdTJo0idGjR9OlSxcA2zSK/7FYLOTm5mIwGPjjMvt/vNWtxWIhLCyMN954w/Y8ISGBW265hd69e/PII4+wd+9edu/ezbx589iwYQO+vr5l8A5FRFyXpmeIiFQgHTt2pF27dnz22WcAtG3blmXLlmG1WsnOziYqKorWrVvTvHlzTpw4wc8//wzA2rVrbX20adOGzZs3k5CQAMCKFSt49tlnAejduzfHjh2jW7duTJ06lZSUFJKTk8v4XYqIuB6daRYRqWDCw8M5dOiQ7fG0adMIDQ0lJyeHhx56iBdffBF3d3ciIyN5/fXXqVKlSoHbhj/00EMMGjSIgQMHYjAY8PHxYd68eRgMBl5//XVmzJjB+++/j9FoZNiwYdSuXbu83qqIiMvQbbRFREREROzQ9AwRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMSO/wPgkCk9ZX0M6wAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df.pivot_table(\n", " index=[\"Nodes\"],\n", " columns=[\"Tasks/Node\", \"Threads/Task\"],\n", " values=\"Sim. Time / s\",\n", ").plot(kind=\"bar\", figsize=(12, 4));"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "source": ["<a name=\"taskb\"></a>\n", "\n", "* Bonus task\n", " - Use `Sim. Time / s` and `Presim. Time / s` as values to show\n", " - Show a stack of those two values inside the pivot table"]}, {"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["<span class=\"feedback\">Tell me what you think about this tutorial! <a href=\"mailto:a.herten@fz-juelich.de\">a.herten@fz-juelich.de</a></span>"]}], "metadata": {"kernelspec": {"display_name": "JSC Pandas Tutorial", "language": "python", "name": "pandas"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2"}}, "nbformat": 4, "nbformat_minor": 2} diff --git a/Introduction-to-Pandas--JURECA--tasks.ipynb b/Introduction-to-Pandas--JURECA--tasks.ipynb index 64f35b9..33bcb0b 100644 --- a/Introduction-to-Pandas--JURECA--tasks.ipynb +++ b/Introduction-to-Pandas--JURECA--tasks.ipynb @@ -1 +1 @@ -{"cells": [{"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["# *Introduction to* Data Analysis and Plotting with Pandas\n", "## JSC Tutorial\n", "\n", "Andreas Herten, Forschungszentrum J\u00fclich, 26 February 2019"]}, {"cell_type": "markdown", "metadata": {"exercise": "onlytask", "slideshow": {"slide_type": "skip"}}, "source": ["**Version: Tasks**"]}, {"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["## Outline\n", "\n", "* [Task 1](#task1)\n", "* [Task 2](#task2)\n", "* [Task 3](#task3)\n", "* [Task 4](#task4)\n", "* [Task 5](#task5)\n", "* [Task 6](#task6)\n", "* [Task 7](#task7)\n", "* [Bonus Task](#taskb)"]}, {"cell_type": "code", "execution_count": 2, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import pandas as pd"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 1\n", "<a name=\"task1\"></a>\n", "\n", "* Create data frame with\n", " - 10 names of dinosaurs, \n", " - their favourite prime number, \n", " - and their favourite color\n", "* Play around with the frame\n", "* Tell me on poll when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "nopresentation", "slideshow": {"slide_type": "skip"}}, "source": ["Jupyter Notebook 101:\n", "\n", "* Execute cell: `shift+enter`\n", "* New cell in front of current cell: `a`\n", "* New cell after current cell: `b`"]}, {"cell_type": "code", "execution_count": 21, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [],\n", " \"Favourite Prime\": [],\n", " \"Favourite Color\": []\n", "}\n", "#df_dinos = "]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 2\n", "<a name=\"task2\"></a>\n", "\n", "* Read in `nest-data.csv` to `DataFrame`; call it `df`\n", "* Get to know it and play a bit with it\n", "* Tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 30, "metadata": {"exercise": "task"}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["id,Nodes,Tasks/Node,Threads/Task,Runtime Program / s,Scale,Plastic,Avg. Neuron Build Time / s,Min. Edge Build Time / s,Max. Edge Build Time / s,Min. Init. Time / s,Max. Init. Time / s,Presim. Time / s,Sim. Time / s,Virt. Memory (Sum) / kB,Local Spike Counter (Sum),Average Rate (Sum),Number of Neurons,Number of Connections,Min. Delay,Max. Delay\n", "5,1,2,4,420.42,10,true,0.29,88.12,88.18,1.14,1.20,17.26,311.52,46560664.00,825499,7.48,112500,1265738500,1.5,1.5\n", "5,1,4,4,200.84,10,true,0.15,46.03,46.34,0.70,1.01,7.87,142.97,46903088.00,802865,7.03,112500,1265738500,1.5,1.5\n"]}], "source": ["!cat nest-data.csv | head -3"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "subslide"}}, "source": ["## Task 3\n", "<a name=\"task3\"></a>\n", "\n", "* Add a column to the Nest data frame called `Virtual Processes` which is the total number of threads across all nodes (i.e. the product of threads per task and tasks per node and nodes)\n", "* Remember to tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 56, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import matplotlib.pyplot as plt\n", "%matplotlib inline"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 4\n", "<a name=\"task4\"></a>\n", "\n", "* Sort the data frame by the virtual proccesses\n", "* Plot `\"Presim. Time / s\"` and `\"Sim. Time / s\"` of our data frame `df` as a function of the virtual processes\n", "* Use a dashed, red line for `\"Presim. Time / s\"`, a blue line for `\"Sim. Time / s\"` (see [API description](https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot))\n", "* Don't forget to label your axes and to add a legend\n", "* Submit when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 5\n", "<a name=\"task5\"></a>\n", "\n", "Use the NEST data frame `df` to:\n", "\n", "1. Make the virtual processes the index of the data frame (`.set_index()`)\n", "2. Plot `\"Presim. Program / s\"` and `\"Sim. Time / s`\" individually\n", "3. Plot them onto one common canvas!\n", "4. Make them have the same line colors and styles as before\n", "5. Add a legend, add missing labels\n", "\n", "* Done? Tell me! [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 6\n", "<a name=\"task6\"></a>\n", "\n", "* To your `df` NEST data frame, add a column with the unaccounted time (`Unaccounted Time / s`), which is the difference of program runtime, average neuron build time, minimal edge build time, minimal initialization time, presimulation time, and simulation time. \n", "(*I know this is technically not super correct, but it will do for our example.*)\n", "* Plot a stacked bar plot of all these columns (except for program runtime) over the virtual processes\n", "* Remember: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 7\n", "<a name=\"task7\"></a>\n", "\n", "* Create a pivot table based on the NEST `df` data frame\n", "* Let the `x` axis show the number of nodes; display the values of the simulation time `\"Sim. Time / s\"` for the tasks per node and threas per task configurations\n", "* Please plot a bar plot\n", "* Done? [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "source": ["<a name=\"taskb\"></a>\n", "\n", "* Bonus task\n", " - Use `Sim. Time / s` and `Presim. Time / s` as values to show\n", " - Show a stack of those two values inside the pivot table"]}, {"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["<span class=\"feedback\">Tell me what you think about this tutorial! <a href=\"mailto:a.herten@fz-juelich.de\">a.herten@fz-juelich.de</a></span>"]}], "metadata": {"kernelspec": {"display_name": "JSC Pandas Tutorial", "language": "python", "name": "pandas"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2"}}, "nbformat": 4, "nbformat_minor": 2} +{"cells": [{"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["# *Introduction to* Data Analysis and Plotting with Pandas\n", "## JSC Tutorial\n", "\n", "Andreas Herten, Forschungszentrum J\u00fclich, 26 February 2019"]}, {"cell_type": "markdown", "metadata": {"exercise": "onlytask", "slideshow": {"slide_type": "skip"}}, "source": ["**Version: Tasks**"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "source": ["## Task Outline\n", "\n", "* [Task 1](#task1)\n", "* [Task 2](#task2)\n", "* [Task 3](#task3)\n", "* [Task 4](#task4)\n", "* [Task 5](#task5)\n", "* [Task 6](#task6)\n", "* [Task 7](#task7)\n", "* [Bonus Task](#taskb)"]}, {"cell_type": "code", "execution_count": 2, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import pandas as pd"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 1\n", "<a name=\"task1\"></a>\n", "\n", "* Create data frame with\n", " - 10 names of dinosaurs, \n", " - their favourite prime number, \n", " - and their favourite color\n", "* Play around with the frame\n", "* Tell me on poll when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "nopresentation", "slideshow": {"slide_type": "skip"}}, "source": ["Jupyter Notebook 101:\n", "\n", "* Execute cell: `shift+enter`\n", "* New cell in front of current cell: `a`\n", "* New cell after current cell: `b`"]}, {"cell_type": "code", "execution_count": 21, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [],\n", " \"Favourite Prime\": [],\n", " \"Favourite Color\": []\n", "}\n", "#df_dinos = "]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 2\n", "<a name=\"task2\"></a>\n", "\n", "* Read in `nest-data.csv` to `DataFrame`; call it `df` \n", " *Data was produced with [JUBE](http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html), Pandas works **very** well together with JUBE*\n", "* Get to know it and play a bit with it\n", "* Tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 30, "metadata": {"exercise": "task"}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["id,Nodes,Tasks/Node,Threads/Task,Runtime Program / s,Scale,Plastic,Avg. Neuron Build Time / s,Min. Edge Build Time / s,Max. Edge Build Time / s,Min. Init. Time / s,Max. Init. Time / s,Presim. Time / s,Sim. Time / s,Virt. Memory (Sum) / kB,Local Spike Counter (Sum),Average Rate (Sum),Number of Neurons,Number of Connections,Min. Delay,Max. Delay\n", "5,1,2,4,420.42,10,true,0.29,88.12,88.18,1.14,1.20,17.26,311.52,46560664.00,825499,7.48,112500,1265738500,1.5,1.5\n", "5,1,4,4,200.84,10,true,0.15,46.03,46.34,0.70,1.01,7.87,142.97,46903088.00,802865,7.03,112500,1265738500,1.5,1.5\n"]}], "source": ["!cat nest-data.csv | head -3"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "subslide"}}, "source": ["## Task 3\n", "<a name=\"task3\"></a>\n", "\n", "* Add a column to the Nest data frame called `Virtual Processes` which is the total number of threads across all nodes (i.e. the product of threads per task and tasks per node and nodes)\n", "* Remember to tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 56, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import matplotlib.pyplot as plt\n", "%matplotlib inline"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 4\n", "<a name=\"task4\"></a>\n", "\n", "* Sort the data frame by the virtual proccesses\n", "* Plot `\"Presim. Time / s\"` and `\"Sim. Time / s\"` of our data frame `df` as a function of the virtual processes\n", "* Use a dashed, red line for `\"Presim. Time / s\"`, a blue line for `\"Sim. Time / s\"` (see [API description](https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot))\n", "* Don't forget to label your axes and to add a legend\n", "* Submit when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 5\n", "<a name=\"task5\"></a>\n", "\n", "Use the NEST data frame `df` to:\n", "\n", "1. Make the virtual processes the index of the data frame (`.set_index()`)\n", "2. Plot `\"Presim. Program / s\"` and `\"Sim. Time / s`\" individually\n", "3. Plot them onto one common canvas!\n", "4. Make them have the same line colors and styles as before\n", "5. Add a legend, add missing labels\n", "\n", "* Done? Tell me! [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 6\n", "<a name=\"task6\"></a>\n", "\n", "* To your `df` NEST data frame, add a column with the unaccounted time (`Unaccounted Time / s`), which is the difference of program runtime, average neuron build time, minimal edge build time, minimal initialization time, presimulation time, and simulation time. \n", "(*I know this is technically not super correct, but it will do for our example.*)\n", "* Plot a stacked bar plot of all these columns (except for program runtime) over the virtual processes\n", "* Remember: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 7\n", "<a name=\"task7\"></a>\n", "\n", "* Create a pivot table based on the NEST `df` data frame\n", "* Let the `x` axis show the number of nodes; display the values of the simulation time `\"Sim. Time / s\"` for the tasks per node and threas per task configurations\n", "* Please plot a bar plot\n", "* Done? [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "source": ["<a name=\"taskb\"></a>\n", "\n", "* Bonus task\n", " - Use `Sim. Time / s` and `Presim. Time / s` as values to show\n", " - Show a stack of those two values inside the pivot table"]}, {"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["<span class=\"feedback\">Tell me what you think about this tutorial! <a href=\"mailto:a.herten@fz-juelich.de\">a.herten@fz-juelich.de</a></span>"]}], "metadata": {"kernelspec": {"display_name": "JSC Pandas Tutorial", "language": "python", "name": "pandas"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2"}}, "nbformat": 4, "nbformat_minor": 2} diff --git a/Introduction-to-Pandas--master.ipynb b/Introduction-to-Pandas--master.ipynb index cf0751f..8d353e3 100644 --- a/Introduction-to-Pandas--master.ipynb +++ b/Introduction-to-Pandas--master.ipynb @@ -61,16 +61,21 @@ "* I like Python\n", "* I like plotting data\n", "* I like sharing\n", - "* I think Pandas is awesome and you should use it too" + "* I think Pandas is awesome and you should use it too\n", + "\n", + "<span style=\"color: #023d6b\"><em>Motto: <strong>»Pandas as early as possible!«</strong></em></span>" ] }, { "cell_type": "markdown", "metadata": { - "exercise": "task" + "exercise": "task", + "slideshow": { + "slide_type": "fragment" + } }, "source": [ - "## Outline\n", + "## Task Outline\n", "\n", "* [Task 1](#task1)\n", "* [Task 2](#task2)\n", @@ -294,7 +299,7 @@ " - Linear: `Series`\n", " - Multi Dimension: `DataFrame`\n", "* `Series` is *only* special case of `DataFrame`\n", - "* → Talk about `DataFrame`s, mention some special `Series` cases" + "* → Talk about `DataFrame`s as the more general case" ] }, { @@ -2053,7 +2058,8 @@ "## Task 2\n", "<a name=\"task2\"></a>\n", "\n", - "* Read in `nest-data.csv` to `DataFrame`; call it `df`\n", + "* Read in `nest-data.csv` to `DataFrame`; call it `df` \n", + " *Data was produced with [JUBE](http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html), Pandas works **very** well together with JUBE*\n", "* Get to know it and play a bit with it\n", "* Tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)" ] @@ -2472,7 +2478,7 @@ }, "source": [ "* Select more than one column by providing list `[]` to slice operator `[]`\n", - "* *You usually end up forgett one of the brackets…*\n", + "* *You usually end up forgetting one of the brackets…*\n", "* Example: Select list of columns `A` and `C`, `[\"A\", \"C\"]` from `df_demo`" ] }, @@ -3223,8 +3229,8 @@ "* Add new columns with `frame[\"new col\"] = something` or `.insert()`\n", "* Add new rows with `frame.append()`\n", "* Combine data frames\n", - " - Concat: Combine several data frames along an axis\n", - " - Merge: Combine data frames on basis of common columns; database-style\n", + " - *Concat*: Combine several data frames along an axis\n", + " - *Merge*: Combine data frames on basis of common columns; database-style\n", " - (Join)\n", " - See user guide [on merging](https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html)" ] @@ -5195,7 +5201,7 @@ "* Powerful API shortcuts for plotting of statistical data\n", "* Manipulate color palettes\n", "* Works well together with Pandas\n", - "* Also: New clever defaults for Matplotlib\n", + "* Also: New, well-looking defaults for Matplotlib (IMHO)\n", "* → https://seaborn.pydata.org/" ] }, @@ -5353,7 +5359,7 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 107, "metadata": { "slideshow": { "slide_type": "-" @@ -5362,7 +5368,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuQ3FWd9/H3+f1+3T3XzC3dPTPhGkBwfUBxYwluPURWUIZcYBFYkK0groAUkFQElhBcF+LGIBe5LmzJspVngZUSkbDsJsgSC3w0VglZNMFYkEcEQ2Yy98y9b7/fef74dfd0z/RMpid9nf6+qmKY7p6eczJmPjm371Faa40QQgiRI0axGyCEEGJhkWARQgiRUxIsQgghckqCRQghRE5JsAghhMgpCRYhhBA5JcEihBAipyRYhBBC5JQEixBCiJySYBFCCJFTEixCCCFySoJFCCFETkmwCCGEyCmr2A0otMHBMRznyAWdW1rq6O8fLUCLSkul9hsqt++V2m+o3L7Ptd+GoWhqqs36/SsuWBxHzylYEq+tRJXab6jcvldqv6Fy+57PfstUmBBCiJySYBFCCJFTEixCCCFySoJFCCFETkmwCCGEyCkJFiGEEDklwSKEECKnKjBYKnPPuhBCFErFBcuw1sRUsVshhBALV8UFS9TRDMZijKLREjBCCJFzFRcsAFrDeMxmIGYTViDTY0IIkTsVGSwJttYMRWMclukxIYTImYoOloSI7cj0mBBC5EjFVTeeSWJ6LKwUdZaJ1jI9JoQQ8yHBMkVieqwqGiOmwJJ8EUKIrMhU2Awi2t09NibTY0IIkRUJllloDWOye0wIIbIiwTIHsntMCCHmrmTWWJ5//nmeeeaZ5McfffQRF110Ed/+9reTjz322GO88MILLFq0CIDLL7+cq666qmBtjNgOg45DjWlSoxRKBjBCCDFNyQTLZZddxmWXXQbA/v37ufHGG7npppvSXvPOO+/w/e9/nzPPPLMYTQQmp8dC8d1jPgkXIYRIUzLBkuquu+5i/fr1NDc3pz3+zjvv8OSTT3LgwAE+85nPcPvtt+Pz+YrSxsT0mNc0qDUUXhSpO5R/Fwqxc3ycftumxTT5Qk0Nn6iqKkpbhRCikEpujWXXrl2EQiE6OjrSHh8bG+PjH/84t99+Oy+++CLDw8M8/vjjRWrlpIjtcDhqM+w42AqUckPl+dFRhh2HGqUYdhyeHx3ld6FQsZsrhBB5p3SJnQRcu3YtX/ziF1m5cuWsr9u3bx8bN25k27ZtWb1/dziCfTQNnIUCvErxzKE+eiMxNJP7yMKOQ6PH4u9PXJKnry6EEKWhpKbCIpEIb775Jvfcc8+05zo7O9m1axeXXnopAFprLCv75g8NTRC1nSO+rqm5lsGBsazfH+C90QmaTZMa0yCqNWFHoxyHrliY3t6Reb1nofj99SXfxnyp1L5Xar+hcvs+134bhqKlpS7r9y+pqbB3332XE044gZqammnPVVVVcd9993HgwAG01jz77LOcf/75RWjlkdUZBgO2TW80RsjRVBkGdZbJsZ6SynEhhMiLkgqWAwcO0NramvbYtddey969e2lubmbTpk3ccMMNXHDBBWitueaaa4rU0tmdXVWFjXt6f9y26Y5G6Y3GOMPnY1Q7RBTYyp0mU3IuRgixwJTcGku+vdczlPepMID94TC/CoU4bNs0miZnV1VxSsoONgUYSmEZCo9yfxm4c5PF/I5U6tQAVG7fK7XfULl9z/dUmMzN5MkpPl9akEylcbcs27YmHH/MUG7Y+AwDjwIPbthUVvQLIcqdBEsJcTQ4WhNz3H1rhlJ4DYXHMPACpgSMEKIMSLCUMEdrQrYmZDsowDTc0YxXKSyQ0YwQoiRJsJQJDcQcdzQzhjtt5jEMvDKaEUKUGAmWMuVoCNsO4ZTRjFcpvIaBBxnNCCGKR4JlAUiOZtCM207aaMaDO5oxlASNEKIwJFgWoKmjGZWyCcDSGkvJbjMhRP5IsCxwGrf8TeomAKXATEybKYWJrNEIIXJHgqXCuEHj7jiLxrc1KwUG7qimKmYTQ2OiZPpMCDEvEiwCrcFGM2FrRmybwzEbFa8K4FUKKz6qKXZVACFEeZBgEdMkps8itiYSfyxRFcCj4ms1yKYAIURmEixiTpJVAdBMpGwK8KTUOjMBEwkaISqdBIuYl8SoJpyh1pk3ZVRjyKhGiIojwSJyJnVUQ3xUY8RHNZZSWFJYU4iKIMEi8ia1gjOQ3OpsKIVPKayUtRohxMIhwSIKJnWrc3JUE9/q7JEDnEIsGBIsoqgSW51tOcApxIJRUsGyZs0a+vv7sSy3WZs2beKTn/xk8vldu3axZcsWwuEwHR0drF+/vlhNFXmS6QCnoeJlaWSrsxBloWSCRWvN+++/z+uvv54MllShUIiNGzfy9NNP09bWxvXXX88bb7zB8uXLs/o6zw0Pg6NpNk2aDcP93TSpUQolF9CXJCeeNhNTtjonDnDKVmchSkvJBMv777+PUoprr72W/v5+Lr/8cv7mb/4m+fyePXs4/vjjOfbYYwFYtWoVr7zyStbB0mvb9EZj0x73KZUWNMda4ItGaTZNqiV0SspsBzinbnWW75oQhVcywTI8PMzZZ5/NXXfdRSgUYs2aNZx44on8xV/8BQA9PT34/f7k6wOBAN3d3Vl/nc831fNhKEJvJEZfNMqI7QAQ1pou26bLdqdfmJhIfk61oVjs8eD3Wiz2WPg9HhZ73d9rTOMoel2amppri92Eo6YBG+J31CgsZSS3Pc/G768vSPtKTaX2Gyq37/nsd8kEy5lnnsmZZ54JQE1NDZdeeilvvPFGMlh0hjmO+YwiTsfiNI8BHvfjsNYM2PbkL8dhwLY5rB1G46Ez4WgOhCMcCEemvV+1Uslptab4aKcl/nGVUX6h09Rcy+DAWLGbkXOpW50TZWlMrTHj02hau3/RentHit3UgqvUfkPl9n2u/TYMRUtLXdbvXzLB8tZbbxGNRjn77LMBN0hS11qCwSB9fX3Jj3t6eggEAkf9dX1K0WZZtE1Z12lqrqWrb4RBx6E/JXgG48EzHg+6Ca05GItxMMN71yRCZ8p6TrNh4CvD0ClnU7c6T6TsQEuETVUsRkS5lZ1lF5oQ81cywTIyMsIjjzzCc889RzQa5cUXX+Tuu+9OPv/JT36SP/7xj3z44Yccc8wx/Od//idf/vKX89qmKsOgzTCmhQ7AhOMkQ2dwymhnIh4641ozHovxUWz6mk7tTKFjmnhlPacgpobNiO1wOGq7u9CYrBjgiZ+rMbUbRLJBQIjZlUywnHvuufz2t7/l4osvxnEcvvKVr3DmmWdy0UUX8YMf/IBgMMg999zDzTffTDgcZvny5VxwwQVFa2+1YVBtGLTPEDoDtk1//PeBRPg4DqH4T6UxrRmLxTiQIXTq4qHTlCF4JHTyz9EAkxUDYPLOGitedDNxlYDUQhNiOqUzLV4sYO/1DBGNr53MJh9rDVprJuJrOonQSR3thOfwraifJXQ8OQidhbrGMhfZ9j1123MybLTGiIcOlEfgVOo6A1Ru3ytmjaUSKKWoUYoaw+CYKc9prRlP2UgwNXgS2wZGtGYkFuPDDCOdRYZB05RptUTwHGk3lMhepm3PiXUbFR/dWICR2P6c8gvKI3SEmA8JlhKhlKJWKWoNg2M9nrTntNaMpe5eS5liG7BtovHXDTsOw46TMXQaEoET/70pZSebhE7uJNZtElNpYYD4CFlCR1QKCZYyoJSiTinqDIPjMoTOaOpIJ2Xn2oBtk4iYIcdhyHH449T3ZjJ0mgyDY5RNVcROfmxK6OTMnEInPqVmAaZhYODuUpO1HFFOJFjKnFKKeqWoNwyOzxA6I44zbYST+NjG/WF32HE47Lg/4HaHw5PvzfSRTuJXo4ROTiVDR2tsjhA6SmEqJaEjSpYEywKmlGKRabLINDkhQ+gMZwidIaXpi8Smhc77U98baJxyNic1dAwJnZzJGDpxqWdxTAkdUSIkWCqUUooG06TBNDkxJXSammvp7x91QyfDes6g4+Dg/rAbjJ/l+UM0mvbeBm7otGTYvdYgoZNTU8/izCd0hMg1CRYxjaEUjaZJo2mydMpzjtYMzRA6h+Oh44D7nOPAlNAxgcYMlQgSoSPFPnNnLqGjlEJFooxpB8MwMBOhg2wkEPMnwSKyYihFU3wkctKU5xytOZwaNin/fdhxkoUh++ObDDKFTlOG9Zxmw2CRhE5OpU6vhbVmzHZk95rIGQkWkTNGSpmaqeypoZMSPEMpodNn2/RlCB2LmUOnXkInp+a6Zdo0FB6Ij3TcfxhI6AiQYBEFYipFS7zy81S21mlbpKeGDkCM+F06M4TOTHXX6uQunZyaGjoRmDF0ElumJXQqjwSLKDpTKRabJoszhE5M62SdtanBM5wSOj22TU/iLp0UHiZDpym+oSDxca2ETk7NN3QM3OBRUuRzwZBgESXNUgq/ZeHP8Fx0ltAZiYdOFOi2bbozhI435dbQJtPkWEtTFY3JVdV5cDShYxC/DVRCp2xIsIiy5VGKgGWR6VaeaIYSOIm6ayPxn04RrTlk2xzKcGvo1KuqU6fZ5Krq3Jpf6EzuXquEkc7vQiF2jo/Tb9u0mCZfqKnhE1VVxW7WjCRYxILkUYqgZRHMcK1BZIa6a4e1M/NV1Smqpox0mk2TlkToyAVuOTXX0DHioWMlRjrxKtMLYaTzu1CI50dHsXAvDxx2HJ4fHQXIebgk/qy0co8N2Gp+f3ASLKLieJWi1bJozXBr6KH+0WnTaomRzlj8p1NIazptm84MoZO4qjq1ynQ5X1VdyqaGThQyh44ieTjUUiotdMrBzvFxLEjexeQF0Jqd4+NHDJbUgXVqYIQch4jSaBS21jhau0HiaBwNGo3WYJkGrfNoswSLEClmuqoa3L+MqVdVp+5ky+aq6kyhI1dV51Za6GiIknJpG5OhQyTKiHYw48Fjao1SqqRuC+23bepTKicoNLUowloTU+75MZRC44aGjgeFBmyd+Nh9L437uBONcTg6/R9GuVJSwfLYY4+xY8cOAJYvX87f/d3fTXv+hRdeYNGiRQBcfvnlXHXVVQVvp6hMs11VHZql2Oe0q6ozvPfUq6qbUtZ2fLKek1OpoRPVmomUi/9mGukUMnQS7+0odyv+ST4vQ46DIl5FQUNYO1Qrg8FoLNmnUlIywbJr1y5+8Ytf8OKLL6KU4utf/zr//d//zfnnn598zTvvvMP3v/99zjzzzCK2VIjpqgyD9hmuqh5PTKdlCJ5srqpOvUdHrqrOj7mOdKaGTur02lyLfirlXoPtxEcdtnKnpaKOxnZ0cjrqJNPilfA4Ju4P7BjuYeL/XeMruUBJKJlg8fv9bNiwAa/XC8BJJ51EZ2dn2mveeecdnnzySQ4cOMBnPvMZbr/9dnw+XzGaK8Sc1RgGNYbBkimPz/Wq6lGtGY3F+FOG0Mn3VdVi0lxCh3joeJRyg0bFd67FP99OTlFpYo4bHIkAmSkkTon/jPtVKMRh26bRNDm7qir5eCkqmWA55ZRTkv/9wQcfsH37dp577rnkY2NjY3z84x/n9ttvZ8mSJWzYsIHHH3+c9evXF6O5Qhy1bK+qHkwZ7chV1aUlNXQcDbEcjyVO8flKOkimUlqXwvLUpP3793P99ddz880381d/9Vczvm7fvn1s3LiRbdu2ZfX+3eEI+VuyEiL/tNaM2g690Sh9kRi90Rh90Si9kRh90RiRI/yVVkCDZeL3WCz2ePB7LRZ7LPxeDy2WhSW19EWcCQR93qw/r2RGLAC7d+9m7dq1bNy4kRUrVqQ919nZya5du7j00ksB9y+XlWE++0iGhiaIpizWzaSpuZbBgbGs37/cVWq/ofz63gQ0oTjF8IDPA77pV1VPPasTI36BW8zmcMxm/0Q47T2nXlWdOtpZiFdVl9v3PFfm2m+PaRAMlHGwdHV1ceONN/Lggw9y9tlnT3u+qqqK++67j89+9rMcc8wxPPvss2kL+0KI+V1VPaSgLxKdDJ2Uq6rT3hv3ArdMVablqmqRqmSC5amnniIcDnPPPfckH7viiiv42c9+xtq1azn99NPZtGkTN9xwA9FolE9/+tNcc801RWyxEOVlpquqm5prGUjcGpph59qgbSevqk7cGipXVYvZlNwaS7691zMkU2GzqNR+Q+X2/Uj9drQ+4lXVs0lcVZ1pE0Gxr6qW7/nsPKbBxwINWb9/yYxYhMjG/nC4rLZfljO5qlpkS4JFlJ394TCvjLsHxqqUYtRxeGV8HEDCpcDkqmqRiQSLKDu/CoUwIXkA0AOgNb8KhSRYSsh8rqoenBI6clV1eZJgEWXnsG1TNeUHhxV/XJSHbK6qTi2Hk9itJldVlzYJFlF2Gk2TUcchdTNtLP64KH/zuap60HEYmsdV1ceak7eGylXVuSPBIsrO2VVV7pqK1mlF+c4u4Rv1RG7k/KrqUCj5+VOvqm5JGe3IVdXZkWARZacci/KJ/JvPVdWDWjMcD5lpV1WnSFxVnXqdQfLWUAmdaSRYRFkqt6J8orhmuqq6qbmW7pRbQwenjHZG48f85npV9dTRTqVeVS3BIoSoKKlnoPzjoywzPZzi8027qhrcQJGrqrMnwSKEqBhTz0ANx2xeCbu7yjKNgLO5qjp1xFPpV1VLsAghKsa0M1BKYccfz3ZqNd9XVWe6vK1crqqWYBFCVIxCnYGa7arqiRlK4GS6qvqjMr2qWoJFiByQ2mXloRTOQFUbBkuOcFX1tNCJRQkrd3ps1quqgaZohJaxUVoG+1h86CAtf3qfpkgYde16qK3LfweRYBHiqEntsvIx9QxUROuSOQM101XV0T+8R+i1lwlV1zLY2MxhXxWHq2sYPuZ4Bn1VDFheIvGR0Qgw4vHyp8ZmaGyGEz8GZ58LQH0oRHPMptk0WaJsqiN23q6qlmAR4ihJ7bLyMfUMlN8yWeYr0dGl48DQIHrny9SMDFE/2E/rH/djRkKolIvYNDBWU0tf02L6m1rcX4F2+psX01+3iGh8NDaCYiQW48NYjLfD6TeHLjKMjHXXAkb6ZXFzJcEixFGS2mXlJfUMVEncx+I4MNCH0dOF6jmE6umK/zqEikaYKfI0QKAVHWilOtDOkkAb7f4g2h8Ej3ud8ExXVQ+h6Y3fGgow7DgMOw4fTJle83ssHg02Zt0lCRYhjlIpzNuLMmDbqP7elOCIh0dvNyoWnfHTtFI4VVU4NXXYVdXYHq9bxqh+EbVfuXbWLznTVdWJW0MzXVWdOKszfQVn7koqWF5++WWeeOIJotEoX/3qV7nqqqvSnv/973/Pt771LUZHR1m2bBl33303VoZdF0IUktQuE2liMVRf95TRRxeqrwc1yyhWWxb4g+hgO06gDR1oQwdaiRw+TPhn/4UyLfB4IBpF2zF8n11+VM2c6apqcEc6w47DxDyXXkrmp3J3dzcPPvggP/nJT/B6vVxxxRV89rOf5eSTT06+5rbbbuMf//Ef+dSnPsXGjRv50Y9+xFe+8pUitloIqV1WsaIRNyy6p4xA+nvS1kCm0h6vO4UVbHMDxN+KE2iD5sWQ4WCkx98KhkHkzf+LPjyIamzC95n/jeekj+Wta0opGkyTxeb8DmqWTLDs2rWLs846i8ZGdz7vS1/6Eq+88go33XQTAAcPHiQUCvGpT30KgEsuuYRHHnlEgkWUBKldtoBFwqjeQ6juKSOQgT5U/NxJJtpXhQ60QrAdJ74W4gTaoaEpY4DMxnPSx/IaJLlWMsHS09OD3z9ZDDsQCLBnz54Zn/f7/XR3dxe0jUJMpYgvooqyEf3De8l//Uf9fvjU2e4P7dDEtMVzo6cLNdg/6/vp6pqUAGmLh0gbLGqEEjmwWGglEyw6Q/KnlqI+0vNz1dBQzVz36jQ112b9/gtBpfYboDnedwP37g9TqWR4OFqjcS+iSn9O4wAxRzMev1a33FTK93zi3X1MvPYfeGwb045h/L/3MH+3B49pwujI7J9cW4fRtgSjfQmqrR2jrR2j/RhY1FCWZfPn8j2f7/aTkgmWYDDIW2+9lfy4p6eHQCCQ9nxfX1/y497e3rTn52poaIKoPfP8Z0JJbEMsgoXcbxX/HwUoFKahsADTMDCBlqZaDg+OYWgwlBsm0Qwp4eBeGJXxaygYdxzCdvkEzIL9no+NTo4+urswerrgw/dpnGUHFoCuX+QunAfdBXTHHx+B1NVPf7ENDI7np/15NNfvucc0CAa8Wb9/yQTL5z73OR599FEGBgaorq7m1Vdf5Tvf+U7y+SVLluDz+di9ezd//ud/zrZt2zjnnHOK2GJRihTuD3eFwkgER3x0YWiNoVQyOAC0JjmXVWUamDrl8XkwNTQYBmHDYNS2iTnlEi9lSmsYHY6HR3zqKvFrbHTWT3W8XpyaWuyqGmJK4bnor9H+NqipjNFbPpVMsASDQdavX8+aNWuIRqNceumlnHHGGVx77bWsXbuW008/nfvvv59vfetbjI2N8Wd/9mesWbOm2M0WBZYWHGpyusqdltKYKAzcqSxICQgd/+yjDI650Bq8QLNhMm5oxm0byZejpDUMH06OPNLWQiZmHzHopmZ0sB0daCN88EOitoPj9aFNE8s0iE2EoK4O6/iTZ30fMXdKZ1q8SHHo0CHGx8dZunQpDz74IGNjYxiGwS233IKvDHfBvNczJFNhsyh2v6cGh5kSHEZKcCjtvi6XAeH319Pbe4R59nlwFIyW8PRYsb/naeJlTJLh0d05uY03HJrx07RS0NTiBkhwcvpK+4PgmzxPFP3De4Rfezl5JsRwbOxIBN95q8pq19XRymYq7GOBhqzff9YRy549e7j++uu54447WLp0KTt27GD16tX8z//8D88++yxf+9rXsv6CorIlgoMpIw5DKUxIjjaMqcGRGHGkyOeoI5eM5PSYYtR2ZHoM3AAZ7J+cuupOnEI/hIqEZ/w0bRjQ7Ee3pq9/pJYxmY0bHquSu8Isvx8rsStM5MyswfLwww/z4IMPctZZZwFQW1vLTTfdRGdnJ2vXrpVgEdNMDQ5TuescRnyB3Ii/JrlAnhYc6colOObCnR5TNBkmIRPGYrHKmB6zbdRA7+TUVeIw4ZHKmJgmLA7ET5/HDxIGWtGLA2DNrzBiQuqZkJIarS0gswbLgQMHkqECk1t+29vbCYdn/leFWLgmd1YpVGLEweTOKkNrVMoCeaUEx1wpoFqD17IYdxxCJTo9lrVYzD1xnjr6SJYxmbnqlDYTZUzaUsqYtKFb/CC11srWrMHimVI/5tlnn53xObFwpK5zmEY8OKbsrDL15Nmv1J1VhVogL3emdkuV+wzFmO0QLZfhSzQar4OVugYylzImHvC3olvbk2VMdKAN3dQiAbIAzRostbW1HDp0iNbW1uTHAF1dXVRXV+e/dSIvZtuS22RZKI+FOXVLLhR0Z1UlSEyPeZLTYzZOqfyhRiLuekdqDazuLndaa7YyJl4fOhg/he6P18Pyt7mXTmVZxkSUr1mD5bLLLuOWW27hkUceoaWlBYChoSHuuOMOrrzyyoI0UGRvpi25xpF2VmmoNg1GJTgKanJ6zCz89Fg4hP1BN8b+95PTV0Z3JxwemD1AqqrRwTaIB4cTdEchNDRVbBkTMemIwXLgwAG+8IUvcNJJJ6GU4v3332fNmjWsXLmyUG0UU6QGh1LpZzmmLpAvlJ1VlSAxPVYVnx6L5HJ6bGI85RR6/CBh7yHU4QHCwEwT27qmNnkCfbIabxvUL5IAETM64gHJb37zm1x99dW8/fbbAJxxxhnzKqUi5u7otuSmk+AoL1qDB0WDYRI2YTTb6bFkGZP46CMRJsNDs3/duvr4GZBWtH9yFxa19RIgImtzOnnf0tLCeeedl++2VJRM6xyW7KwScQqoik+PjWlNKGZPfvu1htGR5Agk7ST6EQop6kUNyUOE2t+KE2yj4ZSlHI7I+ofInZIp6bJQTd1h5cHdmmto7U5dpY46ZGeVSKG1hqHDVHd3YfV0Ej7Uhe7udBfRJ2Y/e6EbmyensAKtyZ1YVNdMe62qqwU5yyFySIIlR1IDxDLcsupWhu25kwEi4SFcWmv04QHs7k6c7q7J33u6IDSRfJ0ifYVssoxJaiXe6WVMhCg0CZYszRQgZkrlXAmQyhP9/V7Cb/wUZ6APo3kxvuVfwvPx09Neox0HPdifHiA98QCZ7cCxUhiLA5jBdsxgGyrYTjjQSqjZ715zK0SJkWCZhaHcy8Q8KRc7JQIkcaRLAkREf7+XiW3/jrIsVE0tzvBhxl94Gu+yz6E8nuTow+k5BNHIzG9kmBj+eIAE2jCC7RjBNgx/EDWljIkXqI4Xt4zMoaiqEIVU8cGSGIEYKmX0oRTNHgvLsjDIfEBQskNoO4bT10vov34M4RB6wkHHohB1a2BFdv5X5k80LcxAEDPYjpEaIC0BlDX3v5KWhkalCHssRmM2tvyLRpSIigsWUylM05hcA4HkFt7UAKkyDEYkQASgY1Gcnm7snvQ1EKevB5xZLrpWCrP9WMxgmxscwSUYgVaMZj8qZ2VMFL7E4UqtmZC7X0QJqLhgaTINbDsxZzX5uPxdFE44jH3wT9PWQJy+ntnnNw0D5fWhqmtQXi8YJk4siqpvoO6G2wrSdqWhFkVVvLhlxNE4Wsv/r0VRVFywyGyB0OEQds8hnO7OydFHdxdDg32z/h9EVVVjBNtS1kDcaaxY10FCL/0QLAttedx1FNum6vMXFLBXLlNDvTLQJsTQRAFHaxzc69ljjiN/B0TelUyw7N69m+9+97vEYjEaGxv57ne/y5IlS9Je09nZyYoVKzjuuOMAWLx4MU899VQxmiuKbE67sCbG3UXz7i7s7i6cnk7s7i70YP+s761qajFb21PWQNowAm2oRY2oDKfQvU0tKKXS2lOVoT2FpHBP8HsgeXJeKYgaBmPxBX/JF5EvR7yauFD+8i//kscff5zTTjuNH//4x+zcuZMnnngi7TU//elP+eUvf8mmTZvm/XX6+0dx5jAJna9raktdOfQ7dRcWHi86HEKHw3hP/3MwVHwXVid66PCs76Pq6pNbeI1gO00fO4kRXyOqrj5jgCwcmrBSjMVsYlpX9GVXldr3ol5NXCiaooJVAAAT9UlEQVSRSIR169Zx2mmnAXDqqafyzDPPTHvd3r17ee+997jkkkuoq6vjzjvv5NRTTy10c0URaK3RYyM43V1M/Mdz6IlxtGO7O7Di94BEdv0s4+eqRY2YrW2YgTbMVncBXQXaMGrr015X469nrMRDNTfSF/wXcoSK4iiZEUuC4zjccMMNnH766dx0001pzz366KP4/X6uuOIK3njjDb7zne+wfft2vF45JLZQaK2xhw4T6fyIyMGPiBw86P5350GcI9TBwrKoOe0TeNrb8S45Fu+SY/C2LcGM3yMkMgs7DqMxm3Bp/SgQJcAEgr7sf74WPFh27NjBli1b0h5bunQpW7duJRKJsGHDBoaGhvjnf/7nI95SuXr1au69997kSGcuZCpsdoXqt9YaPTSYsgOry11M7+mCifGZP1Ep8HoxPF5UdTWYlrsLKxLGaGii7hu3zrtNlfw97+sbIQyM2jaxCtqvLFNhsyubqbCOjg46OjqmPT42NsYNN9xAY2MjTzzxRMZQefrpp1m5ciVNTU2A+8PJyuJAmSg87Tjow/3x4OjCPnQwyzImbZOn0ANtGIFWYn94j4lt/w7KcIMlGgHHwbf8S4Xr2ALj3mYJzYbJuKEZl/Mw4iiUzE/l2267jeOPP55NmzbNuHD65ptvEgqFuPbaa/n1r3+N4zgsXbq0wC0VmWjHwenvTS6cT54DOVIZE8MNkNYl6QHiD6JmGLG6u62+UlK7sBaSmvh5mFHHISy7x8Q8lESw7Nu3j507d3LyySdz8cUXAxAIBHjyySf54Q9/SE9PD+vWrePOO+9kw4YNvPTSS/h8Ph544AEMuUe7oLQdcwPkUGfaFl6n9xDEYjN/omli+luTO7DcAGnFWBzMqoxJgufjp0uQ5JGhocEwCBuKUdupqOkxcfRKbvE+32SNZXaJfutYFKevJ+UAYTxA+rrBnqWMieXBDLa6o4/WdoxAPEBaAjksY5Iflf49n4kGQgrGsr3NsgzIGsvsymaNRZQWHY3g9ByKHyTspOtwLxN/OoDT35PcxpuR15s8A5I4SKgCbRjNi1EyilxQFFCd2J7sOIRkekwcgQRLhUgtY+L0TO7CcgbSy5hMW073VbkB0joZIEagDdXYLAFSYUwNiwyDKkMxZrv1yITIRIJlgdGhifQtvHMtY1Jdg9naTs2xxxFt8k8GSEPTAj+FLrKhtVsqpsEwCZvu9JiU6xdTSbCUKWd8zF37SCyex9dA9NDgrJ/nljFpiy+ix8u4B9pQ9Q0opSp2nUFkRwFVU8r1S76IBAmWEueMjkwunCdDpAs9MjTr56lFDSlrIG0YgXZ3DaSuftbPEyIbhoa6lO3JcpulAAmWkqC1Ro8MpV0ilVhM12Ojs36u0diEEWx3q/EmKvH621A1UsZEFI7cZilSSbDkSaay7tZp/ytexqQrvoA+uZVXz1bGBDCaF2MGWt0iisG2+BRWO6qqukA9EuJI5DZL4ZJgyYPIvj1M/OQZt2qs1tgH/8T4/3kcDJW8Dz0jpdwASdwFEmxHxQ8VKq+vUM0X4qik3mY5Kne/VCQJlqOgHQdnoG9yC++h+O8H/wSZroVNnCtMlDFJuQtksoyJVGoWC4OpoUEpIh6r4opbVjoJljnQth2vg9WZfh/6kcqYKIXy+VC+KvD60LZN7TU3zbuMiRDlR+HV0GxKcctKIj/djsA5PMDoY1tmv43QstxLpOKjj+i+37prJl5f8gyIjoQxmlowW5fM/D5CLFRailtWEgmWI9DhEHo4vrXX402pg7XEXfvwt2G0+NNOoRvtx7lX50YjaI8XohF0LEaVlHUXFS5R3DJiGIzI9NiCJcFyBGawnfo7vwd2DNXYMqcyJlLWXYiZuaf3ockwCZkwFovJ9NgCI8EyB0ZDU9afI2XdhZjdZHFLS4pbLjBSRVAIUVSJ4pYNHhOPIXXpFgIZsQghis69GlnhSU6PLby7XypJyQTLtm3buP/++2lpaQHg85//POvXr097zfDwMLfeeisHDhygubmZhx56CL/fX4zmCiHyIDE95rNMxrQmFLNleqwMlUyw7N27lw0bNrBy5coZX/PQQw+xbNkyfvCDH7Bt2zY2b97MQw89VMBWCiEKwdBQj6LaMhnVWopblpmSWWPZu3cv27ZtY/Xq1dx6660MDU2v3vv666+zatUqAFauXMnPf/5zorOVSBFClDULRaMyaPBYmHIvUNkomWDx+/3cfPPNvPTSS7S1tbFp06Zpr+np6UlOfVmWRV1dHQMDA4VuqhCiwHwami2TWstE1vdLX8Gnwnbs2MGWLVvSHlu6dClbt25Nfvz1r3+d8847b07vZ2R5PW5LS92cX+v3V+bdJZXab6jcvpdTv8OOw0jMJpKjxf2m5sq8YmIu/Tbn+d4FD5aOjg46OjrSHhsZGWHr1q189atfBdz7SawMtbQCgQB9fX20trYSi8UYHR2lsbExq6/f3z+KM4fTWJV6k2Kl9hsqt+/l2W+NVorRmE3sKAKmqbmWwYGxHLarPMy13x7TIBjIvjBuSUyF1dTU8C//8i/89re/BeCZZ57h/PPPn/a65cuXs23bNgC2b9/OsmXL8Hg8BW2rEKIUuMUtmyyTOpkeKzklsSvMNE0eeugh7rrrLkKhECeccAL33nsvAA8//DCBQIArr7ySdevWsWHDBlasWEF9fT33339/kVsuhCgmFS9u6bMsxqS4ZclQWlfWKSSZCptdpfYbKrfvC6XfSkEYsrr7RabCZucxDT4WaMj6/UtiKkwIIY6W1rh3vxgyPVZsEixCiAWnBkWTZVFlGki+FJ4EixBiQTLjd780eEwsGb4UlASLEGLBcqfHFE2GSb3HwpDT+wUhwSKEWPASxS2bLZNqy5TpsTwrie3GQghRCGnFLR0pbJkvMmIRQlQcC0WjYbLINKW4ZR5IsAghKladZSaLW0q+5I4EixCioikNtfHtyT5TfiTmgvwpCiEEYGloUIoGj4Ulw5ejIov3QgiRpPBp8Fom41ozYdvMsTqMSCEjFiGEmCJ1ekxO72dPgkUIIWYweXrfktP7WZBgEUKIWUhxy+xJsAghxBzVoGiW6bEjkmARQogsGFLc8ogkWIQQIktS3HJ2JbHduL+/n6997WvJj0dGRhgcHOTtt99Oe11nZycrVqzguOOOA2Dx4sU89dRTBW2rEEIkJIpbei2TccchJFcjAyUSLC0tLbz00ksAOI7D1Vdfzfr166e9bu/evaxatYpNmzYVuolCCDEjU8Miw6DKUIzZDpEKP/xSclNhL7zwAtXV1axatWrac3v37uW9997jkksuYc2aNbz77rtFaKEQQkynNXi0osEwWeSxKrq4ZUkFi23bPPHEE9xyyy0Zn/f5fFx88cX85Cc/4W//9m+58cYbiUQiBW6lEELMTAFVGposk5oKLW6ptNYFHbPt2LGDLVu2pD22dOlStm7dyuuvv87TTz8953WT1atXc++993Laaaflo6lCCHHUwo7DSMwmUtgftTlhAkGfN+vPK/gaS0dHBx0dHRmfe+2117jwwgtn/Nynn36alStX0tTUBIDWGsvKrgv9/aM4c5j/9Pvr6e0dyeq9F4JK7TdUbt8rtd9QyL5rHKUYjdnYJRAwTc21DA6MHfF1HtMgGMg+WEpqKuw3v/kNy5Ytm/H5N998kx//+McA/PrXv8ZxHJYuXVqo5gkhxDy5xS0Td78s9OMvJbErLOHAgQO0tramPfbDH/6Qnp4e1q1bx5133smGDRt46aWX8Pl8PPDAAxhGSWWjEELMKFHcssqyGHUcIgt0e3LB11iKTabCZlep/YbK7Xul9huK3XdNRClGbZtYgbcnZzMV9rFAQ9bvL//cF0KIolALtrilBIsQQhTZQituKcEihBAlIFHcsnEB3P0iwSKEECXCPb1P2Re3lGARQogSkyhu2WSZVJfh9JgEixBClKhEcctGj4mnjKbHJFiEEKKEJYpbNpbR9JgEixBClIHE9FizZVJtmSU9PSbBIoQQZcTQUI+iyTLxmqX5I7w0WyWEEGJWFopGZdBQgne/lFStMCGEENnxJa5G1poJ26YULq+UEYsQQpS5RHHLJsvCVwLbkyVYhBBigTA1NChFg8fCKuL0mASLEEIsKG5xyyareMUtJViEEGIBUtotbtlUhOKWEixCCLGAmfHilg0FLG5ZtGB5+OGHefTRR5MfDw8Pc91119HR0cFVV11Fb2/vtM/RWvO9732PCy64gAsvvJDdu3cXsslCCFGWtMadHovf/ZLveCl4sIyMjLBx40b+9V//Ne3xhx56iGXLlrFjxw4uu+wyNm/ePO1zf/rTn/KHP/yB7du380//9E9s2LCBWCxWqKYLIURZU7jTY4s9nrwWtyx4sOzcuZMTTjiBa665Ju3x119/nVWrVgGwcuVKfv7znxONRtNe88Ybb3DhhRdiGAYnnngi7e3tvP322wVruxBCLAQeQ7HIMGjIU3HLggfLxRdfzHXXXYdpmmmP9/T04Pf7AbAsi7q6OgYGBqa9JhAIJD/2+/0cOnQo/40WQogFxp0ey09xy7ydvN+xYwdbtmxJe2zp0qVs3bp1zu9hGOm5p/X0I6VTX3MkLS11c36t31+f1XsvFJXab6jcvldqv6Fy+z613zFHM2LbhByHxE9ac/qnzUnegqWjo4OOjo45vz4QCNDX10drayuxWIzR0VEaGxvTXhMMBtMW9Xt7e9NGMHPR3z+KM4eaB35/Pb29I1m990JQqf2Gyu17pfYbKrfvs/dbM+Y4RByNxzQIBrxZv3/JbDdevnw527ZtA2D79u0sW7YMj8eT9ppzzjmHl19+Gdu2+fDDD/nggw84/fTTi9FcIYRYkCzc6bGjKW5ZMkUo161bx4YNG1ixYgX19fXcf//9gLvY/7Of/YzNmzdzwQUXsGfPHlavXg3A5s2bqaqqKmazhRBiQfJpqJpnWX6lMy1cLGAyFTa7Su03VG7fK7XfULl9n2u/DUNltS6d/Lz5NEoIIYSYiQSLEEKInJJgEUIIkVMSLEIIIXJKgkUIIUROSbAIIYTIKQkWIYQQOVUyByQLxciikmc2r11IKrXfULl9r9R+Q+X2fS79nu+fTcUdkBRCCJFfMhUmhBAipyRYhBBC5JQEixBCiJySYBFCCJFTEixCCCFySoJFCCFETkmwCCGEyCkJFiGEEDklwSKEECKnJFhm8NZbb3HJJZewatUqvvGNbzA0NFTsJhXM7t27+fKXv8xFF13E1VdfzcGDB4vdpIJ6+OGHefTRR4vdjIJ4+eWXufDCCzn//PN59tlni92cghodHWXlypV89NFHxW5KwTz22GOsWLGCFStWcO+99+bvC2mR0Xnnnaf379+vtdb6vvvu0w888ECRW1Q45557rv7973+vtdb6+eef19/4xjeK3KLCGB4e1nfccYc+44wz9COPPFLs5uTdoUOH9LnnnqsHBwf12NiYXrVqVfL/8wvdb37zG71y5Ur9iU98Qh84cKDYzSmIX/7yl/qv//qvdTgc1pFIRK9Zs0a/+uqreflaMmKZwfbt2zn55JOJRqN0d3ezaNGiYjepICKRCOvWreO0004D4NRTT6Wrq6vIrSqMnTt3csIJJ3DNNdcUuykFsWvXLs466ywaGxupqanhS1/6Eq+88kqxm1UQP/rRj/iHf/gHAoFAsZtSMH6/nw0bNuD1evF4PJx00kl0dnbm5WtVXHXjufJ4PLz77rtcc801WJbFN7/5zWI3qSC8Xi8XXXQRAI7j8Nhjj3HeeecVuVWFcfHFFwNUzDRYT08Pfr8/+XEgEGDPnj1FbFHhbN68udhNKLhTTjkl+d8ffPAB27dv57nnnsvL16r4YNmxYwdbtmxJe2zp0qVs3bqVU089lV27dvHcc8+xfv36vH0TimW2vkciETZs2EAsFuP6668vUgvzY7Z+VxKdobC5UpVZQr6S7N+/n+uvv57bb7+dE044IS9fo+KDpaOjg46OjrTHwuEwr732WvJf6qtXr+Z73/teMZqXV5n6DjA2NsYNN9xAY2MjTzzxBB6Ppwity5+Z+l1pgsEgb731VvLjnp6eipoaqkS7d+9m7dq1bNy4kRUrVuTt68gaSwaWZXH33XfzzjvvAO6/cD/96U8XuVWFc9ttt3H88cfz8MMP4/V6i90ckSef+9zn+NWvfsXAwAATExO8+uqrnHPOOcVulsiTrq4ubrzxRu6///68hgrIiCUj0zR58MEH+fa3v41t2wSDwYqZk923bx87d+7k5JNPTq45BAIBnnzyySK3TORaMBhk/fr1rFmzhmg0yqWXXsoZZ5xR7GaJPHnqqacIh8Pcc889yceuuOIKrrzyypx/LblBUgghRE7JVJgQQoickmARQgiRUxIsQgghckqCRQghRE5JsAghhMgp2W4sRJHYts2//du/8fLLL2PbNtFolHPPPZd169bJ+SFR1mS7sRBF8vd///cMDQ2xefNm6uvrGR8f59Zbb6W2tpb77ruv2M0TYt4kWIQoggMHDrBq1Sp+8YtfUFdXl3y8t7eXt99+my9+8YtFbJ0QR0fWWIQogn379nHyySenhQq4pc0lVES5k2ARoggMw8BxnGI3Q4i8kGARogjOOOMM3n//fUZHR9Me7+7u5rrrriMUChWpZUIcPQkWIYogGAyyatUqNm7cmAyX0dFR7rrrLhobG6mqqipyC4WYP1m8F6JIYrEYjz/+OK+++iqmaRKJRDjvvPO4+eabZbuxKGsSLEIIIXJKpsKEEELklASLEEKInJJgEUIIkVMSLEIIIXJKgkUIIUROSbAIIYTIKQkWIYQQOSXBIoQQIqf+P4qmgjGgf4IMAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmUXHWd///n595bVb0mvaSquhOWGEBwHFCceATn/GAYWdIkHRgEh2VOFEfE/FhiVCQGRyFOBAFlHZgjwxzOAF85oBIOfhNkjAf8avwdgUEJwg/yYzPQnd7T3dXdtd37+f1RS1dVVy+VVFfdqno/zmmSrq0/n3RTr/5s76u01hohhBCiSIxyN0AIIUR1kWARQghRVBIsQgghikqCRQghRFFJsAghhCgqCRYhhBBFJcEihBCiqCRYhBBCFFXZgiUUCrFu3Tref/99APbs2UN3dzdnn302d9xxR97n9PT0cNlll7FmzRo2btzIxMREKZsshBBiAcoSLH/605+45JJLePfddwEIh8Ns3bqV++67j507d/Lqq6/y/PPPz3jeTTfdxKWXXsozzzzDX//1X3PfffeVuOVCCCHmU5Zgefzxx/nud79LIBAA4JVXXuHoo4/myCOPxLIsuru7eeaZZ7KeE4vFeOGFFzjnnHMAuOCCC2Y8RgghRPlZ5fii27dvz/q8v78fv9+f/jwQCNDX15f1mJGREZqamrCsRJP9fv+MxwghhCg/Vyze56uDqZQq+DFCCCHKrywjllzBYJDBwcH05/39/elpspS2tjZCoRC2bWOaJgMDAzMesxAjIxM4zvwFndvbmxgaChX8+pWuVvsNtdv3Wu031G7fF9pvw1C0tjYW/PquCJaPfexjvPPOO7z33nscccQR/OIXv+Czn/1s1mM8Hg+rV69m586ddHd3s2PHDk477bSCv5bj6AUFS+qxtahW+w212/da7TfUbt8Xs9+umArz+XzccsstXHPNNZx77rmsWrWKNWvWAHDDDTewe/duAL773e/y+OOPc+655/Liiy/y1a9+tZzNFkIIkYeqtQt9DQ2FFpTUfn8zAwPjJWiRu9Rqv6F2+16r/Yba7ftC+20Yivb2poJf3xUjFiGEENVDgkUIIURRSbAIIYQoKgkWIYQQRSXBIoQQoqhqLlhqagucEEKUQc0Fy5jjEFUaqQYjhBCLwxUn70sprjXhuIPPNGg0DEwZwgghRFHVXLBAYjosbDtEHYc606RBKQwJGCGEKIqamwrL5GiYjNsMx22mlKy/CCFEMdR0sKQ4WjMeizPi2EQVsv4ihBCHoSanwmYTdzSjThyfabDEccrdHCGEqEgyYsmRWn8ZisWZQKNl9CKEEAWRYJmFBibiNiNxm4hK3SKEEGI+EizziGvNaCzOQa2Jy+hFCCHmJcGyQFHbYSQeJyTTY0IIMSfXLN4/8cQTPPLII+nP33//fc477zy+853vpG+79957+dnPfsaSJUsA+NznPsdll11Wsjbq5PbkiFI0WiY+DZIxQgiRzTXBctFFF3HRRRcBsG/fPq666iquvvrqrMe8+uqr/OhHP+Lkk08uRxPTbK0Zi8XxGopG08CLorauwymEELNzTbBkuvHGG9m8eTNtbW1Zt7/66qs88MAD7N+/n09+8pNcf/31+Hy+MrUSoo4m5tjUJcvDZJ7e/3M4zO7JSYZsm3bT5DMNDXy0rq5sbRVCiFJx3RrLnj17CIfDdHV1Zd0+MTHBRz7yEa6//nqefPJJxsbGuO+++8rUymkamLKdrNP7fw6HeSIUYsxxaFCKMcfhiVCIP4fD5W6uEEIsOqW1uyZxrr32Ws4++2zWrVs35+Nee+01tm7dyo4dOwp6/b5IFPtwGjgPC8VP+gbpj8YAld6kHHEcWjwW//KhFYv41YUQovxcNRUWjUZ54YUXuOWWW2bc19PTw549e7jwwgsB0FpjWYU3f3R0ipg9/6n61rZGRoYnCn59gDdDU7RbJnWGIuI4RByN0preeISBgfFDes1S8fubXd/GxVKrfa/VfkPt9n2h/TYMRXt7U8Gv76qpsDfeeIOVK1fS0NAw4766ujpuu+029u/fj9aaRx99lLPOOqsMrZxfk2EwFLcZjMWJA82WSaNpcITHU+6mCSHEonNVsOzfv5+Ojo6s26644gr27t1LW1sb27ZtY+PGjaxZswatNZdffnmZWjq3U+vqsIGI1oTiNj3RGMO2wyd8PibR2FLoUghRxVy3xrLY3uwfXfSpMIB9kQi/D4c5aNu0mCan1tVxXHIHm1LgNQzqDAMviXR3y3ehVqcGoHb7Xqv9htrt+2JPhblqjaWaHOfzpYMkl9YQsR0itoOhwFAKj1JYhoGpNZZSmLgnbIQQohASLGXm6MT1YOJosB0UiRGNSoaNJxk2HqVcNbIRQojZSLC4jCYZHlpjowlnhI1lGPgMAw9gScAIIVxKgqUCpMImajtEk0FjKIXPUHgNAwtk6kwI4RoSLBVIk6hXNmlrJpPrNDKaEUK4hQRLFXDyjGa8hsJnGJiAKUEjhCghCZYqkxrNTNmaqeRoRqHwGApLqfSOM1Mn1m1k+kwIUWwSLFXO0QAa255OkMRmAIWhmN7mjMZE4WgtgSOEOCwSLDUosRlA42jS25whOYKJxhh3nMRaTXKrs6GUjHCEEAsmwSLStE6ETsx2iEH2uRoUVuZ0mtaYcrZGCJGHBIuYU/pcTXI6LZK8PRU4hpoOm9T6jaHBkNGNEDVLgkUcklTgpKsGJOVbv7GSt5sSOELUBAkWUVRzrd8oFGYycMzk+o0p6zdCVB0JFlESifWbRODEMgIntR3aNJKFOJXCSAUOEjZCVCIJFlFWmduho8nbMjcMZJ6/MUiUrpENA0K4mwSLcJ3cDQMpmRsGPEphyoYBIVxJgkVUjPk2DJiKxOgm48CnrN8IUXquCpYNGzYwNDSEZSWatW3bNj72sY+l79+zZw8333wzkUiErq4uNm/eXK6mChfJ3DAQy9kwYKTWbyC9YUAOfAqxuFwTLFpr3n77bZ577rl0sGQKh8Ns3bqVhx9+mM7OTq688kqef/55Tj/99IK+ztPj4xga2kyTNsOgzTRZYhgYchH6qqM12JnrN/Mc+IxLORshisI1wfL222+jlOKKK65gaGiIz33uc/zTP/1T+v5XXnmFo48+miOPPBKA7u5unnnmmYKD5d14nIFYPOs2E2hJBk27adJmmhw1aeKxbZYaBkpCp2rMdeCTaIwx25YDn0IcJtcEy9jYGKeeeio33ngj4XCYDRs28KEPfYi//du/BaC/vx+/359+fCAQoK+vr+Cvc5LPx7sohm2bg46TqAYMDNk2Q7bNvlgs8cCJCSAROq05oZP6fImETtXQyY+4Iwc+hThcrgmWk08+mZNPPhmAhoYGLrzwQp5//vl0sOg8//ceypv6+s527OTf41ozHIszGIszEI0l/ozFGYzGGInb6dAZtG0GbRtSoZNkKcUyj8Uyj4Xfa7HM48HvsVjmtVhqmhUbOq1tjeVuQtkU0nebxM9g6vyNmR7pHNrPZjn5/c3lbkLZ1GrfF7PfrgmWF198kVgsxqmnngokgiRzrSUYDDI4OJj+vL+/n0AgUPDXGR2dIpZc3AXwAJ1AJyZYJlg+qIfmlgbeGRpn2LanPxyHYdtm1Ek8P641B6IxDkRjMJH9dSyS6zgZazmpjyalXPvG09rWyMjwxPwPrEKH2/fc9RtPhUyn+f3NDAyMl7sZZVGrfV9ovw1D0d7eVPDruyZYxsfHufvuu3nssceIxWI8+eST3HTTTen7P/axj/HOO+/w3nvvccQRR/CLX/yCz372s4vWHstQLDNNlpnmjPviWjOSETSZwTOWCh2g37bpt+0Zz/eSnF7LEzyNLg4dMbe5C3Ymdqd5mb4cgVSHFtXKNcFyxhln8Kc//Ynzzz8fx3G49NJLOfnkkznvvPP48Y9/TDAY5JZbbuGaa64hEolw+umns2bNmrK01VIKv2Xhz3NfLBU6ucHjOIwnQycK9Nk2fflCR6nsEU7G3xskdCpSeju0rWdcjiB12NPKqZ0mRCVTOt/iRRV7s380aypsNosxJRTTesa0WuojtIBvgy8ndFpNk/bk5/VFCh2ZCitf3+csZbOIU2m1Oh0Etdv3mpkKqwUepQhaFsE853SieUJnJCd0IlrTa9v05hnp1ClFa85aTjp0DGPR+yYO36ylbDIPemas28iuNOFWEiwu4VWKDsuiI0/oRDJCJ3dtZyL5rhKeI3TqlUpvkU6HTvLzOgkd15tx0JPsumne3Kk0JGxEeUmwVACfUnRaFp35KhI4DiM5azmpv08m312mtGYqHqcnz2vXK5W1lnOkB3zxuISOy82om5ZZVSBjC7QnYypNqgqIUpFgqXB1hkGnYcwaOsOOw1DGtFoqeKYyQueDeJwPUk+amko/vyEVOnm2TPtkE4HrpKfStMZm5lRaqoSNJ2MqTb6NYjFIsFSxOsNguWGwPE/oTKVGNjmjnRHHYSq5e21Saybjcd6Px2c8v3GO0PHKu5WrZE6lzdgCrcCKxQkrsGQLtCgSCZYaVW8YrDAMVuTc3trWyAeD43l3rg07DpHkO86E1kzE4+zPEzpNmaGTEzweCR1XyKwIPek4jMXi+bdAZ1x+QIiFkmARMzQYBg2GwRE5t2utmZxty7TjEE2GTkhrQvE4f8kTOs2Gkb1lOlmDrVVCp+zyrdvA9OWjM7dAu72agCgvCRaxYEopGpWi0TA40uPJuk9rzcQc53RSVdbGkwdF38sTOksyQqc1Z7RjSeiUjZNvCzSJn4fc0jVy6WgBEiyiSJRSNClFk2FwVJ7QCSVDZyRZRTrzrE4qdMaSJXHezRM6S1OBk1OVoFVCpyxSU2nRWbZA51YTsJCwqSUSLGLRKaVoVopmw+DoOUIn32gnFTGjjsOo4/BO7mszS+gkPzcldEpmzi3QJa4mIMpLgkWU1XyhM57cMp0veGwSb2YHHYeDzswyPZmhk7tzrUVCpyQKrSZgyXmbqiDBIlxLKcUS02SJabIyT+iMzRI6I3lC5+3c1wZacqbVjpow8No2LXKp6kU3ezWBxBboGYU5kbCpJBIsoiIppVhqmiw1TT6UEzpOKnTybCIYcRwcEqEzkjy381bqAm6Tk0Bi8bklZ4STGvEsldBZNJlboGM5U2lG5uWilcLQGkMp2ZnmUhIsouoYStFimrSYJqty7nO0ZjQndFIbCg4mQ8eBxH2OM+OqoQbMWMtJhc4SCZ2im7Fuk6SS/1EkLhtd7aHz53CY3ZOTDNk27abJZxoa+Ghd3aJ8rdRUpFZgH+KPswSLqClGsiBnq2lyTM59S1obeHdwfMa0Wmqko0mEzpDjMJQndEygJRk07TnBs8Qw5Fo6RZRctkGTGOHMFzqpy0arVHWBZOhUgj+HwzwRCmGRKLM05jg8EQoBLDhcUj96qcCIOg5xRfpn2tYaR2tswHZ04nFoLNOg8Ov0SrAIkWZmVAzIZWvNwYygyZxiO5gMHRsYSo5+9uWEjkXiqqGtGaHTKqGzKAoJHSMaY4JUKRudqKnmsg0Euycn8ZColmEqaEAR1w7/TzjMCfWJYHF0otGpEbfWOjGtmPzccXR69KfR2LE4I7HMf5n8DvXfQIJFiAUwlaI9ebmBXLbWWRWmMy9tMJoMnTgwYNsM2PaMkU4qdNoyRjup0GmW0Cmq3NAJa81EfPpSEyrPSCczdEq1RVqpxMFURyVGGH7LJE4iJOLJdajeeIzheJxUOhTSJF3g4wvlqmC599572bVrFwCnn3463/zmN2fc/7Of/YwlS5YA8LnPfY7LLrus5O0UIpOpFMtMk2V5QieeHOnk2y49mtwinRU6OTwwowpB6qNJLlVddHqWkQ5M71ozFOmptVTRTpJTbJrp0UNqmik1ekg8d/rxmetxWmscpbC1xtaamJNog9Ya29H0OHZWyaOY1jQZhmtGVblcEyx79uzht7/9LU8++SRKKb70pS/x3//935x11lnpx7z66qv86Ec/4uSTTy5jS4VYOGue0Mm9cFsqeMaSoRMD+m2b/jyh4yUjdHKCp1FCp+gyd63Fma4UnaIyHjeffN+Z2Z73qbo6npmcBK2xSPwiYgOnLtLifTG4Jlj8fj9btmzB6/UCcMwxx9DTk31pqldffZUHHniA/fv388lPfpLrr78en89XjuYKcdgspfBbFv4898VSoZOn2Od4MnSiQJ9t05cvdJTKHuFk/L1BQmdRFDoVtVDHJd/jfh8Oc9C2aTFNTq2rS9/uRkpr9w2m3n33XS6++GIee+wxVq5cCcDExARf/epX+fa3v82KFSvYsmULK1asYPPmzQW9dl8kysz/DYWoHBHHYSgWZzAWZyAaZzAWYyAWZzAaZyxPyOSqMxTLPB78HotlXotlHgu/x8Myr0WjrOmIDCYQ9HkLfp7rgmXfvn1ceeWVXHPNNfzDP/zDrI977bXX2Lp1Kzt27Cjo9d/sHyVmzyz/kau1rZGR4YmCXrsa1Gq/oTr6Hp2lwvSIbRNawP/qdbkjnYzRTn0VXqq6Gr7nh2Kh/faYBh8OLC349V0zFQbw0ksvce2117J161bWrl2bdV9PTw979uzhwgsvBBJznVaeKyMKUcu8StFhWXTk+X8jMkuxz4PaIZT8ZSusNT22TU+ekU99cjt25gHR9mTw1FVh6IhD55p35t7eXq666iruuOMOTj311Bn319XVcdttt/GpT32KI444gkcffTRrYV8IMTefUnRaFp05odPa1kjv4DgjjpO4pEHyQGgqgCaTI50prfkgHueDPK/dkDx42pYndHwSOjXHNcHy4IMPEolEuOWWW9K3XXzxxfz617/m2muv5cQTT2Tbtm1s3LiRWCzGJz7xCS6//PIytliI6lFnGHQaxozQAZhK1lTLN9qZSobOpNZMzhI6janQybNl2ifrOVXJdWssi03WWOZWKf3eF4kUfZdMpfS92A6n31OzFPscdhzCC3hracyodpAbPN4ShI58z+dWFWssQizEvkiEZyYnMUksNoccJ7HPH1y9BbMa1RsGKwyDFTm3a62ZSq3p5AmdSDJ0JrRmIh5nf56rhjbNEToeGem4mgSLqDi/D4cxIf3m4gHQmt+HwxIsLqGUokEpGgyDI3Lu01ozOcvutWHHIZoMnZDWhOJx/pIndJoNI+85nVYJHVeQYBEV56BtU5fz5mElbxfup5SiUSkaDYMj81zAbSLjcOhQzmgnVWVtPHlQ9L08obMkN3QydrJZEjolIcEiKk6LaRJyHDLfkuLJ20VlU0rRpBRNs4ROaJYt08O2TSpixpIlcd7NEzqpS1WnguaokMIbj9MqoVNUEiyi4pxagbWTxOFTStGsFM2GwdF5Qmc8eXG21IXbMq+nk4qYUcdh1HF4J/XE5NqcYjp0MqfVUiFkSugURIJFVJxKrJ0kFpdSiiWmyRLTZOUcoZMa3Qwlz+qMODZxnajdddBxOOg4vJ372uRcqtow0qHTIqGTlwSLqEjH+XwSJGJB5gqdpa0N/GVwPH/o2DY2idAZSZ7leSvnWjqKxKWq853TaanhS1VLsAghakrmGSj/ZIjVpofjfD4+lBM6jtaMzXJOZ8RxEtdagcR9eULHIGekkxE8S6s8dCRYhBA1I/cM1Fjc5plIIhByR8CGUrSYJi2myaqc13G0ZnSW0DmYDB2H6dDJvWqoAVk11zJDZ0kVhI4EixCiZsw4A6UUdvL2QqZWjWSZmlbT5Jic+5zcq4Zm/P1g8lLVDjDkOAzlCR0TZtRdSwXPkgq5rIEEixCiZpTiDJSRUTEgl50ROrlXD02Fjg0M2jaDtj1n6LTnnNNxU+hIsAhRBItRu0wUX7nPQJlK0Z6s/JzL1jpd7DP36qEHbRuSo6vZQsciMb3WHovSNjFO+/Ag7Qc+YNlf3qJZQ/yL10BdfUn6KcEixGGS2mWVI/cMVFRr15yBMpVimWmyLCd0Ym+9ycSv/zfjzS2MLG3lYH0DI/UNjC0/khGvj1HTAqWIAwOOw4BpwZLWxMfK4+CUv8MTi9IWmqA1FqfNMDjS1PhicdpMk6ZFuFS1BIsQh0lql1WO3DNQfstktc/Fo8vwFPZzu2gcH2PJwWGO+v8imNEwZsZoJWZaDLe0MdzSxlBrO4Otyxhq9zPUtoyxhqbEYzxe+oC+aDT5uuH0870wvV16xpbpQwscCRYhDpPULqssmWegXFM2f3IC1d+b+Ojrxeg/kPj72EHmijzd1IwZ6GBZcDntgQ6O8XegA53QtASUIpZRdy1rPQfNaDzx8xkF+mybvjw/r8u9Hn4UbCm4OxIsQhymcs/biwqhNUyMo/oPJMMjGST9B1ChsTmf6ng8OA2N2PWNOF4vMaWwm5bQ8E9Xzvk8j1IELItAnquG9g2F8obOsG0TSlaYjh3i5bpcFSxPP/00999/P7FYjC984QtcdtllWfe//vrrfPvb3yYUCrF69Wpuuukmue69KDupXSayaA3jo6j+Xoy+ZHCkQmRy7tGRXtqKDnYmPvwdOMFOoqEJIv/nv1GmBR4PxGJoO47v1DMOq5lepQhaFsE876HRZLHP8CEuvbjmXbmvr4877riDn//853i9Xi6++GI+9alPceyxx6Yfc9111/Gv//qvfPzjH2fr1q08/vjjXHrppWVstRBSu6xmaQ2jI6j+A4nRR1/PdIiEp2Z/mlLQ2o4OdKKDHWh/J06gE+0P5t215QHw1RF94f+gD46gWlrxffL/wnPMhxeta16l6LAsPKZxSM93TbDs2bOHU045hZaWxHzeOeecwzPPPMPVV18NwAcffEA4HObjH/84ABdccAF33323BItwBaldVsUcBw4OTa97JKeyVH8vKhqZ9WlaKWhbhu5Yjg4kwyPQiV4WBK+3oCZ4jvnwogZJsbkmWPr7+/H7/enPA4EAr7zyyqz3+/1++vr6StpGIXIpQCnSJTjizqHNSYvSib31Zvq3/5jfDx8/NfGm7Tio4cHkyCNjCmvgACrnzEgmbRiwLJCYvgp04vg70YGORIDk1B+rFa4JFp1nkShzb/V89y/U0qX1LHSvTmtbY8GvXw1qtd+Q6Hvqp8pEYanEz5nWOl100AQsQ2GqxIcn+aejNRO2w4Rt45SvC4ekVr7nU2+8xuSvf4FlO5hOHOOdtzD/3z/jrauDgwchPnuAYFmoQAfG8hUYnStQncsTfwaCqApc613I9/xQt5+45l8jGAzy4osvpj/v7+8nEAhk3T84OJj+fGBgIOv+hRodnSJmz/+/vWu2IZZYtfc7NcIAhaHAUgoTMAyDZa0NjI5MYgBKg6HAzvh9RqnE823NnL+cKAVhrQnHbSph/FK13/N4DDXYn97Cq/oPoPe9RkskzIxfSUPj6b9qywP+IDrYiRPsRPuTU1htyyDfTr+xCDD7lJgbLfR77jENgoHCpu3ARcHy6U9/mnvuuYfh4WHq6+t59tln+d73vpe+f8WKFfh8Pl566SX+5m/+hh07dnDaaaeVscXCzQwFCoVhKCwSp5otpTC0RimFkQyO9EBYQ4NpMpGRBLmD5IXuvDQ0NKOotxLbkKMyPba4olHUYN/0ukfqY2gANcc3TRtGYgtvXQO2ZWGdvR4n2Akt7WAc2qK1SHBNsASDQTZv3syGDRuIxWJceOGFnHTSSVxxxRVce+21nHjiidx+++18+9vfZmJigr/6q79iw4YN5W62KDOlwEgGiAewDAND68Q0lU7cnxkeoEgNIw5xi/6CWShaDJOwCRNxG3uxv2C1i4Qztu4m/jT6e2FkaO4AqatDB5dDoJNI/wHiWmP7fDimhWWZxKfC0NRE40dOKmFnqpvS+RYvMhw4cIDJyUlWrVrFHXfcwcTEBIZh8PWvfx1fBe6CebN/VKbC5uDWfqvkCMRUiUNfpmFgojHJM/o4RH5/MwMD4/M/8BA4Cia1ZsqF02Ou+55PTWad/TBSQXJweM6n6foGdHB51hkQ7e+EJUtT85/E3nqTyK+eTp8JMRwbOxrFd2Z3Re26OlyFTIV9OLC04Nefc8TyyiuvcOWVV/Ktb32LVatWsWvXLtavX8///M//8Oijj/LFL36x4C8oxFwyA8RSCmu2AEmNPpLcPhgwNDShqJPpsWkToRmjj0QZk9E5n6Ybm6cPEQY6kmdAOqGpOR0gs0mER3d6V5jl92OldoWJopkzWO666y7uuOMOTjnlFAAaGxu5+uqr6enp4dprr5VgEYcssYieHSBW8nazggNkPjU3PaY1hMbTAWJkroGE5h4d6ual6I7kwnmgEyeQOExIY9NhNSnzTIjrRmtVYs5g2b9/fzpUYHrL7/Lly4lEKmsXhCiPVIAYySmsxAgksY1x5ghkWrW/39Zp8Fqma6fHCqY1jI1mjzz6e1F9B1BT85QxaWlNTGEFMkcgHVDfUKLGi2KbM1g8OYd7Hn300VnvE7VtrgDJWkSvsQCZS0VOj6XKmGQWUUztxoqEZ39aqoxJZh2s5EFCfFJTrdrMGSyNjY0cOHCAjo6O9OcAvb291NeX5kpkwl0yT5qnDgamz4LU8AjkcGROj4XiNo4b/rFSZUz6DmRv4e0/MH8Zk3b/9Cn0wyhjIirXnMFy0UUX8fWvf527776b9vZ2AEZHR/nWt77FJZdcUpIGivLIDBAr42NGgEBWiLjhPbFSpabHJkp5uNK2cQ70Yux7u/AyJv5gxvTV8kQZk/ZAzZYxEdPmDZb9+/fzmc98hmOOOQalFG+//TYbNmxg3bp1pWqjWES5AdJkGGiPhUFyHQQJkFJKHa6ss0wmijk9Fo8nDgxmrX/0ogb7CdtxZosCbVoQCGaPPlIBItebEbOY94Dk1772NT7/+c/z8ssvA3DSSScdUikVUV6pAFHJKSwrOY2VXkgnERZLPBaRzAApT3NrngfFUsMkUuj0WCyWOIWeOfroTwSIcmY/v6UtDwQ60B3LcZJXIdSBTnRruwSIKNiCTt63t7dz5plnLnZbRBGkAwSFx5g9QIDsEUjJWyrmo5hjeiwaTUxXZa599PWihucpY+L1oYMdkDECaT5uFaOqXsqYiKJxTUkXUZjMALGMjDUQrTGSQSIBUvl0OIwz0Iuvrxejr4dYXw8c6IGDw/P0Tt5BAAAXAElEQVSUMalHBzuTAdKRDhGWts44RGi0NYKc5RBFJMHicvMFiDFjK2+iFpYESGXRU5PYfT04fb2JP/sPYPf1oHPKmOSeK9cNjekdWDozQJqXzggQIUpFgsUlMgPENKbXQVIFFWcLEJCFdDeIvb6XyPO/xBkexGhbhu/0c/B85MQZj3MmxqfDo68Xu68Xp78HPU8ZE9W8BDO4HDPYiRFcjgp2MuXvIFrXkNjiK4SLSLCUWL4AMTOnsCRAKk7s9b1M7fhfKMtCNTTijB1k8ueP4Dv1dJSvHqevJx0kemLuMiZqaStmsDP5sRwj2Inyd2LkKWPiAWIqcXGxijhcKWqGBMsimREggDlbSXcJkIqktUaPHSS86+cQjaAjYXQslrgKoeMQ2fXkrM81WtvTAWIEV2AEOzD8nagCy5h49CHuHhNiEUmwFMGCrwkiAVKRtOOgDw4npq36erD7U38egPDUnM812v2YHcsxA8kprEAnZqADVcQyJjN2j9m2/GyJspJgKcCCrwkiAVKRtONgD/bjpIKjLyNA5ihjAqC8PlR9fSIwTBMdj0PTEpr/72+WqPWZV660mHIcIo6DzJCJcpBgySN1bXNPag2kSq4JIhK0beMMDWSPPvp6GRs4kJjKmo1hYvqDGB2d6RGIEejEHhog/PTjYFlojxdiUbRtU39GV+k6lcHS0KwMGiyDsNY4WmND4k9Hy45BsehcEywvvfQS3//+94nH47S0tPD973+fFStWZD2mp6eHtWvXctRRRwGwbNkyHnzwwUP+mnNdEyTo9eAxTQkQl1rILiwdj+MM9mVs4U3uwho4ALY9+4tbFqa/A7MjsXhuBBIBYizzJ648mMPsPAJlWlntqZtlV1gpmRoaUaBUeudx1JTFfrH45r00can8/d//Pffddx8nnHACP/3pT9m9ezf3339/1mN++ctf8rvf/Y5t27Yd8tf5y+AYoLBInEKf7bK2i3mZWjerhH5n7sLC40VHI+hIBO/Jn0JZVnILby/OYD84cwSIx4sZ7EjuvlpOy7GrCNW1YLQtQ1VxGRMNRNT0hcZq+WJXtdr3sl6auFSi0SibNm3ihBNOAOD444/nkUcemfG4vXv38uabb3LBBRfQ1NTEDTfcwPHHH1/Q12pUBk7Ob2vuiFYxHx2N4PQfYOoXj6PDU2jHSezAiscBiD7/y/xP9PnSZ0DM5PSVEehEtbajMsqYNPmbmXJ5qBZDarHfl1zsl1MwothcM2JJcRyHjRs3cuKJJ3L11Vdn3XfPPffg9/u5+OKLef755/ne977Hzp078cp1HqqKMzVJtLeH6AfvJz56PiDa8z7xwYG5n2gY1K06Fu/yI/CuWIFn+RF4l6/AamtHySHCWUUch/G4TdRdbwXCBUwg6Cv8/bXkwbJr1y5uvvnmrNtWrVrFQw89RDQaZcuWLYyOjvLv//7v816lcv369dx6663pkc5CDA2FZoxY8qmEKaHFUMp+68mJrMXz1J96dGTuJ1rW9C4sjxcMAycWQzUvpXnjdYfcntr+no8RUYpQcnqsVshU2NwqZiqsq6uLrq6Zu2UmJibYuHEjLS0t3H///XlD5eGHH2bdunW0trYCiQNqluWK2TwxByc0Ph0e/YWUMVmKmdyBZXYkprBUoBN7/3tM7fhfYFqJ64XEomDb1P3dmhL1qBopfMmzMJNaM2XbslVZHDLXvCtfd911HH300Wzbtm3WaYsXXniBcDjMFVdcwR/+8Accx2HVqlUlbqnIR2uNHh/D6U+NPlL1sHrQE6E5n2u0tGIEl2MGOqbLmASWYzQ05n/8R04ELnXdLqxqoJI7yeosi5DjELUd2Z4sCuaKYHnttdfYvXs3xx57LOeffz4AgUCABx54gJ/85Cf09/ezadMmbrjhBrZs2cJTTz2Fz+fjhz/8IYZcQ6KktNbo0ZGM0UeiBpbT14OempzzuekyJh3LE1t4g50Y/o6Cy5gAeD5yogTJIjI1LFWKqMciZNvEZfgiCuC6xfvFJmssc0v1e9YyJn29EAnP/gJKJcqYBJdjBjswAstRgQ7MQGdRy5gshlr/ns9lEs1kFU6PyRrL3CpmjUW4i3YcnOHBdGj0jQ4w+Ze/JAIkFp39iYaBsSyQDJDUQcJODH8wsaAuqkpDxvRYRKbHxDwkWGqEtuPJMia9idHHgWQp94ED6XMgADMqYpnJMibpMyDJEFkWTBxQFDXD0LDUMIgYipDtyPSYmJW8M1QZHY/hDPZnrX3Yfb04g33zlzEJdFJ/1JHEWwLTI5D2/GVMRG3SGrwoWg2TsJk4vS+l+kUueceoUDoWxRnom3ElwkQZE2f2J3q96e27qVPoKtCZKGNiGDW7ziAKo4D61PZkxyEs02MigwSLy+lIGLv/AE7GddCd/l6coYG5a9H46tIL6GZwRXIE0oFqyS5jIsThMDUsMQzqDCXFLUWaBItL6KnJ5M6r6dGH3deLHhma83mqvmF69JGavgp0opa2ShkTURJag4fpK1lO1NjpfTGTBMsima2su56cyAqOhZYxUU3NySms5KVsAx2JAGleKgEiXCHzSpap0/uSL7VJgmURxF7fy+TPH0lUjdUau2c/k/91P3g8MM8hQtW8NH2I0Ax2ovzJC0o1NZek7UIcLkNDU87pfVFbJFgOQ6KMyWhG+ZLEVl773bfAsWcuZsanr044XcYkuw7WbGVMhKg0loYWpYh4rJorblnrJFgWYLqMScYOrORp9PlGIHi9GL46qKsDx6H+0isSp9Dr6kvTeCHKSopb1iIJlnk4oweZuO9WnOE5rgWSLmOSOEQY2/c6OjwFHm96B5aORlAtrVhHSdFMUXukuGVtkWCZh54M4YwMJj5JlzHpnN7C6+9IbOPNKGNirExeOlfF0B4vxKLoeJy6088pUy+EcAcpblkbJFjmYXYeQdM3/xXisQWXMfFIWXch5qDwamgzTCaN6ixuWeskWBbAXBYo+DlS1l2I+Ulxy+okR7CFEGWVKm7Z4rGwDDmTVQ0kWIQQZac1eDS0GibNHgtDDv1WNNdMhe3YsYPbb7+d9vZ2AP7u7/6OzZs3Zz1mbGyMb3zjG+zfv5+2tjbuvPNO/H5/OZorhFgEUtyyOrgmWPbu3cuWLVtYt27drI+58847Wb16NT/+8Y/ZsWMH27dv58477yxhK4UQpZBZ3DJkO8Rkdb+iuGYqbO/evezYsYP169fzjW98g9HR0RmPee655+ju7gZg3bp1/OY3vyEWi814nBCi8iWmxxQthskSmR6rKK4JFr/fzzXXXMNTTz1FZ2cn27Ztm/GY/v7+9NSXZVk0NTUxPDxc6qYKIUooVdyyzTJpsEwkX9yv5FNhu3bt4uabb866bdWqVTz00EPpz7/0pS9x5plnLuj1jAKvLdLe3rTgx/r9tVn4sVb7DbXb90rqd8R2GLdtokWqPdbaVpv1+RbSb/MQX7vkwdLV1UVXV1fWbePj4zz00EN84QtfABK1uaw8BxEDgQCDg4N0dHQQj8cJhUK0tLQU9PWHhkI4C5ivrdUrKdZqv6F2+16Z/dY4Sh12ccvWtkZGhieK2K7KsNB+e0yDYMA77+NyuWIqrKGhgf/4j//gT3/6EwCPPPIIZ5111ozHnX766ezYsQOAnTt3snr1ajweT0nbKoRwg0RxyzbLpNEykeMv7uKKXWGmaXLnnXdy4403Eg6HWblyJbfeeisAd911F4FAgEsuuYRNmzaxZcsW1q5dS3NzM7fffnuZWy6EKCcpbulOSuvaukiCTIXNrVb7DbXb9+rptyaqVEHFLWUqbG4e0+DDgaUFv74rpsKEEOLwJYpbtpomTTI9VlYSLEKIqqJ0orhlm2VRZxpIvpSeBIsQoipJccvykWARQlStmcUty92i2iDBIoSoeqnilq2WRb1Mjy06V2w3FkKIUkgVt/QZignbKXdzqpaMWIQQNUVr8CaLWzabphS3XAQSLEKImqSAZsucLm5Z7gZVEQkWIURNMzQ0oWi1TLymvCUWg/wrCiEEYKFoUQZLPRamTI8dFlm8F0KIDL7UpZG1Zsq2kYtXFk5GLEIIkSNV3LLVsvDJ9uSCSbAIIcQsTA1LlWKpnN4viASLEELMSYpbFkqCRQghFiBV3LJVilvOS4JFCCEKYEpxy3lJsAghRIEyi1vK9NhMrthuPDQ0xBe/+MX05+Pj44yMjPDyyy9nPa6np4e1a9dy1FFHAbBs2TIefPDBkrZVCCFSFInpMZ9lMek4hOXSyIBLgqW9vZ2nnnoKAMdx+PznP8/mzZtnPG7v3r10d3ezbdu2UjdRCCFmlVvcMlbjh19cNxX2s5/9jPr6erq7u2fct3fvXt58800uuOACNmzYwBtvvFGGFgohxExZxS09Vk0Xt3RVsNi2zf3338/Xv/71vPf7fD7OP/98fv7zn/PP//zPXHXVVUSj0RK3UgghZpe69kubZVJfo8Utlda6pGO2Xbt2cfPNN2fdtmrVKh566CGee+45Hn744QWvm6xfv55bb72VE044YTGaKoQQhy1iO4zbNtHSvtUWhQkEfd6Cn1fyNZauri66urry3verX/2Kc889d9bnPvzww6xbt47W1lYAtNZYVmFdGBoK4Sxg/tPvb2ZgYLyg164GtdpvqN2+12q/obR9dxSE4ja2CwKmta2RkeGJeR/nMQ2CgcKDxVVTYX/84x9ZvXr1rPe/8MIL/PSnPwXgD3/4A47jsGrVqlI1TwghDpkvOT3WWAPbk12xKyxl//79dHR0ZN32k5/8hP7+fjZt2sQNN9zAli1beOqpp/D5fPzwhz/EMFyVjUIIMatUccs6yyLkOESrdHtyyddYyk2mwuZWq/2G2u17rfYbyt13TVQpQnGbeInfhguZCvtwYGnBry+/7gshRFkki1ta1Xd6X4JFCCHKqBqLW0qwCCGEC6SKW1bDtV8kWIQQwiUSp/crv7ilBIsQQrhMqrhlq2VRX4HTYxIsQgjhUqnilks9Jp4KGr646hyLEEKIbFqDF4XHMAmbMBG3cVx+SkRGLEIIUQEqqbilBIsQQlQQQ0MzilbLxGu68y3cna0SQggxJwtFi0psTzZddu0XWWMRQogK5tPgtUwmtWbStnHD8ouMWIQQosKlilu2WhY+F2xPlmARQogqYWlYqhRLPBZWGafHZCpMCCGqisqaHpuybRZQ0L2oZMQihBBVKHN6rNTFLSVYhBCiipWjuGXZguWuu+7innvuSX8+NjbGl7/8Zbq6urjssssYGBiY8RytNT/4wQ9Ys2YN5557Li+99FIpmyyEEBUpVdyyLVnccrHjpeTBMj4+ztatW/nP//zPrNvvvPNOVq9eza5du7jooovYvn37jOf+8pe/5K233mLnzp3827/9G1u2bCEej5eq6UIIUfEaULR7Fnd6rOTBsnv3blauXMnll1+edftzzz1Hd3c3AOvWreM3v/kNsVgs6zHPP/885557LoZh8KEPfYjly5fz8ssvl6ztQghRDbyGkZweMxdleqzkwXL++efz5S9/GdM0s27v7+/H7/cDYFkWTU1NDA8Pz3hMIBBIf+73+zlw4MDiN1oIIapMYnpM0WqYNHssjCJuT1607ca7du3i5ptvzrpt1apVPPTQQwt+DcPIzj2d50hp7mPm097etODH+v3NBb12tajVfkPt9r1W+w212/fcfscdzbhtE3YcUu+05synLciiBUtXVxddXV0LfnwgEGBwcJCOjg7i8TihUIiWlpasxwSDwaxF/YGBgawRzEIMDYVwFrCp2+9vZmBgvKDXrga12m+o3b7Xar+hdvs+V781mgnHIepoPKZBMOAt+PVds9349NNPZ8eOHQDs3LmT1atX4/F4sh5z2mmn8fTTT2PbNu+99x7vvvsuJ554YjmaK4QQVcmDosUwWXIYxS1dc/J+06ZNbNmyhbVr19Lc3Mztt98OJBb7f/3rX7N9+3bWrFnDK6+8wvr16wHYvn07dXV15Wy2EEJUpToN9YdYll/pfAsXVUymwuZWq/2G2u17rfYbarfvC+23YaiC1qXTzzuURgkhhBCzkWARQghRVBIsQgghikqCRQghRFFJsAghhCgqCRYhhBBFJcEihBCiqFxzQLJUjAIqeRby2GpSq/2G2u17rfYbarfvC+n3of7b1NwBSSGEEItLpsKEEEIUlQSLEEKIopJgEUIIUVQSLEIIIYpKgkUIIURRSbAIIYQoKgkWIYQQRSXBIoQQoqgkWIQQQhSVBMssXnzxRS644AK6u7v5yle+wujoaLmbVDIvvfQSn/3sZznvvPP4/Oc/zwcffFDuJpXUXXfdxT333FPuZpTE008/zbnnnstZZ53Fo48+Wu7mlFQoFGLdunW8//775W5Kydx7772sXbuWtWvXcuutty7eF9IirzPPPFPv27dPa631bbfdpn/4wx+WuUWlc8YZZ+jXX39da631E088ob/yla+UuUWlMTY2pr/1rW/pk046Sd99993lbs6iO3DggD7jjDP0yMiInpiY0N3d3emf+Wr3xz/+Ua9bt05/9KMf1fv37y93c0rid7/7nf7Hf/xHHYlEdDQa1Rs2bNDPPvvsonwtGbHMYufOnRx77LHEYjH6+vpYsmRJuZtUEtFolE2bNnHCCScAcPzxx9Pb21vmVpXG7t27WblyJZdffnm5m1ISe/bs4ZRTTqGlpYWGhgbOOeccnnnmmXI3qyQef/xxvvvd7xIIBMrdlJLx+/1s2bIFr9eLx+PhmGOOoaenZ1G+Vs1VN14oj8fDG2+8weWXX45lWXzta18rd5NKwuv1ct555wHgOA733nsvZ555ZplbVRrnn38+QM1Mg/X39+P3+9OfBwIBXnnllTK2qHS2b99e7iaU3HHHHZf++7vvvsvOnTt57LHHFuVr1Xyw7Nq1i5tvvjnrtlWrVvHQQw9x/PHHs2fPHh577DE2b968aN+Ecpmr79FolC1bthCPx7nyyivL1MLFMVe/a4nOU9hcqdosIV9L9u3bx5VXXsn111/PypUrF+Vr1HywdHV10dXVlXVbJBLhV7/6Vfo39fXr1/ODH/ygHM1bVPn6DjAxMcHGjRtpaWnh/vvvx+PxlKF1i2e2fteaYDDIiy++mP68v7+/pqaGatFLL73Etddey9atW1m7du2ifR1ZY8nDsixuuukmXn31VSDxG+4nPvGJMreqdK677jqOPvpo7rrrLrxeb7mbIxbJpz/9aX7/+98zPDzM1NQUzz77LKeddlq5myUWSW9vL1dddRW33377ooYKyIglL9M0ueOOO/jOd76DbdsEg8GamZN97bXX2L17N8cee2x6zSEQCPDAAw+UuWWi2ILBIJs3b2bDhg3EYjEuvPBCTjrppHI3SyySBx98kEgkwi233JK+7eKLL+aSSy4p+teSK0gKIYQoKpkKE0IIUVQSLEIIIYpKgkUIIURRSbAIIYQoKgkWIYQQRSXbjYUoE9u2+a//+i+efvppbNsmFotxxhlnsGnTJjk/JCqabDcWokz+5V/+hdHRUbZv305zczOTk5N84xvfoLGxkdtuu63czRPikEmwCFEG+/fvp7u7m9/+9rc0NTWlbx8YGODll1/m7LPPLmPrhDg8ssYiRBm89tprHHvssVmhAonS5hIqotJJsAhRBoZh4DhOuZshxKKQYBGiDE466STefvttQqFQ1u19fX18+ctfJhwOl6llQhw+CRYhyiAYDNLd3c3WrVvT4RIKhbjxxhtpaWmhrq6uzC0U4tDJ4r0QZRKPx7nvvvt49tlnMU2TaDTKmWeeyTXXXCPbjUVFk2ARQghRVDIVJoQQoqgkWIQQQhSVBIsQQoiikmARQghRVBIsQgghikqCRQghRFFJsAghhCgqCRYhhBBF9f8D+UoghLnMZTEAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] @@ -5385,7 +5391,7 @@ } }, "source": [ - "* A joint plot combines two plots into one\n", + "* A *joint plot* combines two plots relating to distribution of values into one\n", "* Very handy for showing a fuller picture of two-dimensionally scattered variables" ] }, @@ -6442,6 +6448,7 @@ "* Plot frames\n", " - Together with Matplotlib, Seaborn, others\n", "* Pivot tables are next level greatness\n", + "* Remember: *Pandas as early as possible!*\n", "* Thanks for being here! 😍" ] }, diff --git a/Introduction-to-Pandas--slides.html b/Introduction-to-Pandas--slides.html index cb19cee..7ed4b2f 100644 --- a/Introduction-to-Pandas--slides.html +++ b/Introduction-to-Pandas--slides.html @@ -13460,14 +13460,15 @@ a.anchor-link { <li>I like sharing</li> <li>I think Pandas is awesome and you should use it too</li> </ul> +<p><span style="color: #023d6b"><em>Motto: <strong>»Pandas as early as possible!«</strong></em></span></p> </div> </div> -</div> +</div><div class="fragment"> <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt"> </div><div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> -<h2 id="Outline">Outline<a class="anchor-link" href="#Outline">¶</a></h2><ul> +<h2 id="Task-Outline">Task Outline<a class="anchor-link" href="#Task-Outline">¶</a></h2><ul> <li><a href="#task1">Task 1</a></li> <li><a href="#task2">Task 2</a></li> <li><a href="#task3">Task 3</a></li> @@ -13480,7 +13481,7 @@ a.anchor-link { </div> </div> -</div></section></section><section><section> +</div></div></section></section><section><section> <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt"> </div><div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> @@ -13695,7 +13696,7 @@ and download the Notebooks with the <em>JSC Pandas Tutorial Kernel</em></li> </ul> </li> <li><code>Series</code> is <em>only</em> special case of <code>DataFrame</code></li> -<li>→ Talk about <code>DataFrame</code>s, mention some special <code>Series</code> cases</li> +<li>→ Talk about <code>DataFrame</code>s as the more general case</li> </ul> </div> @@ -15451,7 +15452,8 @@ dtype: object</pre> <div class="text_cell_render border-box-sizing rendered_html"> <h2 id="Task-2">Task 2<a class="anchor-link" href="#Task-2">¶</a></h2><p><a name="task2"></a></p> <ul> -<li>Read in <code>nest-data.csv</code> to <code>DataFrame</code>; call it <code>df</code></li> +<li>Read in <code>nest-data.csv</code> to <code>DataFrame</code>; call it <code>df</code><br> +<em>Data was produced with <a href="http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html">JUBE</a>, Pandas works <strong>very</strong> well together with JUBE</em></li> <li>Get to know it and play a bit with it</li> <li>Tell me when you're done: <a href="https://pollev.com/aherten538">pollev.com/aherten538</a></li> </ul> @@ -15856,7 +15858,7 @@ Name: C, dtype: float64</pre> <div class="text_cell_render border-box-sizing rendered_html"> <ul> <li>Select more than one column by providing list <code>[]</code> to slice operator <code>[]</code></li> -<li><em>You usually end up forgett one of the brackets…</em></li> +<li><em>You usually end up forgetting one of the brackets…</em></li> <li>Example: Select list of columns <code>A</code> and <code>C</code>, <code>["A", "C"]</code> from <code>df_demo</code></li> </ul> @@ -16631,8 +16633,8 @@ Name: C, dtype: float64</pre> <li>Add new columns with <code>frame["new col"] = something</code> or <code>.insert()</code></li> <li>Add new rows with <code>frame.append()</code></li> <li>Combine data frames<ul> -<li>Concat: Combine several data frames along an axis</li> -<li>Merge: Combine data frames on basis of common columns; database-style</li> +<li><em>Concat</em>: Combine several data frames along an axis</li> +<li><em>Merge</em>: Combine data frames on basis of common columns; database-style</li> <li>(Join)</li> <li>See user guide <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html">on merging</a></li> </ul> @@ -18835,7 +18837,7 @@ Name: C, dtype: float64</pre> <li>Powerful API shortcuts for plotting of statistical data</li> <li>Manipulate color palettes</li> <li>Works well together with Pandas</li> -<li>Also: New clever defaults for Matplotlib</li> +<li>Also: New, well-looking defaults for Matplotlib (IMHO)</li> <li>→ <a href="https://seaborn.pydata.org/">https://seaborn.pydata.org/</a></li> </ul> @@ -19050,7 +19052,7 @@ Name: C, dtype: float64</pre> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> -<div class="prompt input_prompt">In [89]:</div> +<div class="prompt input_prompt">In [107]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span></span><span class="k">with</span> <span class="n">sns</span><span class="o">.</span><span class="n">color_palette</span><span class="p">(</span><span class="s2">"hls"</span><span class="p">,</span> <span class="mi">2</span><span class="p">):</span> @@ -19074,7 +19076,7 @@ Name: C, dtype: float64</pre> <div class="output_png output_subarea "> -<img src=" +<img src=" " > </div> @@ -19089,7 +19091,7 @@ Name: C, dtype: float64</pre> </div><div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> <ul> -<li>A joint plot combines two plots into one</li> +<li>A <em>joint plot</em> combines two plots relating to distribution of values into one</li> <li>Very handy for showing a fuller picture of two-dimensionally scattered variables</li> </ul> @@ -20073,6 +20075,7 @@ Name: C, dtype: float64</pre> </ul> </li> <li>Pivot tables are next level greatness</li> +<li>Remember: <em>Pandas as early as possible!</em></li> <li>Thanks for being here! 😍</li> </ul> diff --git a/Introduction-to-Pandas--slides.ipynb b/Introduction-to-Pandas--slides.ipynb index 86a7a7b..6c639aa 100644 --- a/Introduction-to-Pandas--slides.ipynb +++ b/Introduction-to-Pandas--slides.ipynb @@ -1 +1 @@ -{"cells": [{"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["# *Introduction to* Data Analysis and Plotting with Pandas\n", "## JSC Tutorial\n", "\n", "Andreas Herten, Forschungszentrum J\u00fclich, 26 February 2019"]}, {"cell_type": "markdown", "metadata": {"exercise": "onlypresentation", "slideshow": {"slide_type": "skip"}}, "source": ["**Version: Slides**"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## My Motivation\n", "\n", "* I like Python\n", "* I like plotting data\n", "* I like sharing\n", "* I think Pandas is awesome and you should use it too"]}, {"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["## Outline\n", "\n", "* [Task 1](#task1)\n", "* [Task 2](#task2)\n", "* [Task 3](#task3)\n", "* [Task 4](#task4)\n", "* [Task 5](#task5)\n", "* [Task 6](#task6)\n", "* [Task 7](#task7)\n", "* [Bonus Task](#taskb)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Tutorial Setup\n", "\n", "* 60 minutes (we might do this again for some advanced stuff if you want to)\n", "* Alternating between lecture and hands-on\n", "* Please give status of hands-ons via **[pollev.com/aherten538](https://pollev.com/aherten538)**"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["* Please open Jupyter Notebook of this session\n", " - \u2026\u00a0either on your **local machine** (`pip install --user pandas seaborn`)\n", " - \u2026 or on the **JSC Jupyter service** at https://jupyter-jsc.fz-juelich.de/\n", " - Either `pip install --user pandas seaborn` before launching a Notebook\n", " - Or \n", " ```bash\n", " mkdir -p ~/.local/share/jupyter/kernels/\n", " ln -s $PROJECT_cjsc/herten1/pandas ~/.local/share/jupyter/kernels/\n", " ```\n", " and download the Notebooks with the *JSC Pandas Tutorial Kernel*\n", "* Tell me when you're done on **[pollev.com/aherten538](https://pollev.com/aherten538)**"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## About Pandas\n", "\n", "<img style=\"float: right; max-width: 200px;\" width=\"200px\" src=\"img/adorable-animal-animal-photography-1661535.jpg\" />\n", "\n", "* Python package (Python 2, Python 3)\n", "* For data analysis\n", "* With data structures (multi-dimensional table; time series), operations\n", "* Name from \u00bb**Pan**el **Da**ta\u00ab\u00a0(multi-dimensional time series in economics)\n", "* Since 2008\n", "* https://pandas.pydata.org/\n", "* Install [via PyPI](https://pypi.org/project/pandas/): `pip install pandas`"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Pandas Cohabitation\n", "\n", "* Pandas works great together with other established Python tools\n", " * [Jupyter Notebooks](https://jupyter.org/)\n", " * Plotting with [`matplotlib`](https://matplotlib.org/)\n", " * Modelling with [`statsmodels`](https://www.statsmodels.org/stable/index.html), [`scikit-learn`](https://scikit-learn.org/)\n", " * Nicer plots with [`seaborn`](https://seaborn.pydata.org/), [`altair`](https://altair-viz.github.io/), [`plotly`](https://plot.ly/)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## First Steps"]}, {"cell_type": "code", "execution_count": 1, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import pandas"]}, {"cell_type": "code", "execution_count": 2, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import pandas as pd"]}, {"cell_type": "code", "execution_count": 3, "metadata": {"slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"text/plain": ["'0.24.1'"]}, "execution_count": 3, "metadata": {}, "output_type": "execute_result"}], "source": ["pd.__version__"]}, {"cell_type": "code", "execution_count": 4, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/plain": ["\u001b[0;31mClass docstring:\u001b[0m\n", " pandas - a powerful data analysis and manipulation library for Python\n", " =====================================================================\n", " \n", " **pandas** is a Python package providing fast, flexible, and expressive data\n", " structures designed to make working with \"relational\" or \"labeled\" data both\n", " easy and intuitive. It aims to be the fundamental high-level building block for\n", " doing practical, **real world** data analysis in Python. Additionally, it has\n", " the broader goal of becoming **the most powerful and flexible open source data\n", " analysis / manipulation tool available in any language**. It is already well on\n", " its way toward this goal.\n", " \n", " Main Features\n", " -------------\n", " Here are just a few of the things that pandas does well:\n", " \n", " - Easy handling of missing data in floating point as well as non-floating\n", " point data.\n", " - Size mutability: columns can be inserted and deleted from DataFrame and\n", " higher dimensional objects\n", " - Automatic and explicit data alignment: objects can be explicitly aligned\n", " to a set of labels, or the user can simply ignore the labels and let\n", " `Series`, `DataFrame`, etc. automatically align the data for you in\n", " computations.\n", " - Powerful, flexible group by functionality to perform split-apply-combine\n", " operations on data sets, for both aggregating and transforming data.\n", " - Make it easy to convert ragged, differently-indexed data in other Python\n", " and NumPy data structures into DataFrame objects.\n", " - Intelligent label-based slicing, fancy indexing, and subsetting of large\n", " data sets.\n", " - Intuitive merging and joining data sets.\n", " - Flexible reshaping and pivoting of data sets.\n", " - Hierarchical labeling of axes (possible to have multiple labels per tick).\n", " - Robust IO tools for loading data from flat files (CSV and delimited),\n", " Excel files, databases, and saving/loading data from the ultrafast HDF5\n", " format.\n", " - Time series-specific functionality: date range generation and frequency\n", " conversion, moving window statistics, moving window linear regressions,\n", " date shifting and lagging, etc."]}, "metadata": {}, "output_type": "display_data"}], "source": ["%pdoc pd"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## DataFrames\n", "### It's all about DataFrames\n", "\n", "* Main data containers of Pandas\n", " - Linear: `Series`\n", " - Multi Dimension: `DataFrame`\n", "* `Series` is *only* special case of `DataFrame`\n", "* \u2192 Talk about `DataFrame`s, mention some special `Series` cases"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## DataFrames\n", "### Construction\n", "\n", "* To show features of `DataFrame`, let's construct one!\n", "* Many construction possibilities\n", " - From lists, dictionaries, `numpy` objects\n", " - From CSV, HDF5, JSON, Excel, HTML, fixed-width files\n", " - From pickled Pandas data\n", " - From clipboard\n", " - *From Feather, Parquest, SAS, SQL, Google BigQuery, STATA*"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## DataFrames\n", "\n", "### Examples, finally"]}, {"cell_type": "code", "execution_count": 5, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["ages = [41, 56, 56, 57, 39, 59, 43, 56, 38, 60]"]}, {"cell_type": "code", "execution_count": 6, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>41</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>57</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>39</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>59</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>43</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>38</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>60</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" 0\n", "0 41\n", "1 56\n", "2 56\n", "3 57\n", "4 39\n", "5 59\n", "6 43\n", "7 56\n", "8 38\n", "9 60"]}, "execution_count": 6, "metadata": {}, "output_type": "execute_result"}], "source": ["pd.DataFrame(ages)"]}, {"cell_type": "code", "execution_count": 7, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>41</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>56</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" 0\n", "0 41\n", "1 56\n", "2 56"]}, "execution_count": 7, "metadata": {}, "output_type": "execute_result"}], "source": ["df_ages = pd.DataFrame(ages)\n", "df_ages.head(3)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Let's add names to ages; put everything into a `dict()`"]}, {"cell_type": "code", "execution_count": 8, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["{'Names': ['Liu', 'Rowland', 'Rivers', 'Waters', 'Rice', 'Fields', 'Kerr', 'Romero', 'Davis', 'Hall'], 'Ages': [41, 56, 56, 57, 39, 59, 43, 56, 38, 60]}\n"]}], "source": ["data = {\n", " \"Names\": [\"Liu\", \"Rowland\", \"Rivers\", \"Waters\", \"Rice\", \"Fields\", \"Kerr\", \"Romero\", \"Davis\", \"Hall\"],\n", " \"Ages\": ages\n", "}\n", "print(data)"]}, {"cell_type": "code", "execution_count": 9, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Names</th>\n", " <th>Ages</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Liu</td>\n", " <td>41</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Rowland</td>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Rivers</td>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Waters</td>\n", " <td>57</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Names Ages\n", "0 Liu 41\n", "1 Rowland 56\n", "2 Rivers 56\n", "3 Waters 57"]}, "execution_count": 9, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample = pd.DataFrame(data)\n", "df_sample.head(4)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["* Two columns now; one for names, one for ages"]}, {"cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [{"data": {"text/plain": ["Index(['Names', 'Ages'], dtype='object')"]}, "execution_count": 10, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.columns"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* `DataFrame` always have indexes; auto-generated or custom"]}, {"cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [{"data": {"text/plain": ["RangeIndex(start=0, stop=10, step=1)"]}, "execution_count": 11, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.index"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["* Make `Names` be index with `.set_index()`\n", "* `inplace=True` will modifiy the parent frame (*I don't like it*)"]}, {"cell_type": "code", "execution_count": 12, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Ages</th>\n", " </tr>\n", " <tr>\n", " <th>Names</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Liu</th>\n", " <td>41</td>\n", " </tr>\n", " <tr>\n", " <th>Rowland</th>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>Rivers</th>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>Waters</th>\n", " <td>57</td>\n", " </tr>\n", " <tr>\n", " <th>Rice</th>\n", " <td>39</td>\n", " </tr>\n", " <tr>\n", " <th>Fields</th>\n", " <td>59</td>\n", " </tr>\n", " <tr>\n", " <th>Kerr</th>\n", " <td>43</td>\n", " </tr>\n", " <tr>\n", " <th>Romero</th>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>Davis</th>\n", " <td>38</td>\n", " </tr>\n", " <tr>\n", " <th>Hall</th>\n", " <td>60</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Ages\n", "Names \n", "Liu 41\n", "Rowland 56\n", "Rivers 56\n", "Waters 57\n", "Rice 39\n", "Fields 59\n", "Kerr 43\n", "Romero 56\n", "Davis 38\n", "Hall 60"]}, "execution_count": 12, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.set_index(\"Names\", inplace=True)\n", "df_sample"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Some more operations"]}, {"cell_type": "code", "execution_count": 13, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Ages</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td>10.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>50.500000</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>9.009255</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>38.000000</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>41.500000</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>56.000000</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>56.750000</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>60.000000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Ages\n", "count 10.000000\n", "mean 50.500000\n", "std 9.009255\n", "min 38.000000\n", "25% 41.500000\n", "50% 56.000000\n", "75% 56.750000\n", "max 60.000000"]}, "execution_count": 13, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.describe()"]}, {"cell_type": "code", "execution_count": 14, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>Names</th>\n", " <th>Liu</th>\n", " <th>Rowland</th>\n", " <th>Rivers</th>\n", " <th>Waters</th>\n", " <th>Rice</th>\n", " <th>Fields</th>\n", " <th>Kerr</th>\n", " <th>Romero</th>\n", " <th>Davis</th>\n", " <th>Hall</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Ages</th>\n", " <td>41</td>\n", " <td>56</td>\n", " <td>56</td>\n", " <td>57</td>\n", " <td>39</td>\n", " <td>59</td>\n", " <td>43</td>\n", " <td>56</td>\n", " <td>38</td>\n", " <td>60</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": ["Names Liu Rowland Rivers Waters Rice Fields Kerr Romero Davis Hall\n", "Ages 41 56 56 57 39 59 43 56 38 60"]}, "execution_count": 14, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.T"]}, {"cell_type": "code", "execution_count": 15, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/plain": ["Index(['Liu', 'Rowland', 'Rivers', 'Waters', 'Rice', 'Fields', 'Kerr',\n", " 'Romero', 'Davis', 'Hall'],\n", " dtype='object', name='Names')"]}, "execution_count": 15, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.T.columns"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Also: Arithmetic operations"]}, {"cell_type": "code", "execution_count": 16, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Ages</th>\n", " </tr>\n", " <tr>\n", " <th>Names</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Liu</th>\n", " <td>82</td>\n", " </tr>\n", " <tr>\n", " <th>Rowland</th>\n", " <td>112</td>\n", " </tr>\n", " <tr>\n", " <th>Rivers</th>\n", " <td>112</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Ages\n", "Names \n", "Liu 82\n", "Rowland 112\n", "Rivers 112"]}, "execution_count": 16, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.multiply(2).head(3)"]}, {"cell_type": "code", "execution_count": 17, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Names</th>\n", " <th>Ages</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>LiuLiu</td>\n", " <td>82</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>RowlandRowland</td>\n", " <td>112</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>RiversRivers</td>\n", " <td>112</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Names Ages\n", "0 LiuLiu 82\n", "1 RowlandRowland 112\n", "2 RiversRivers 112"]}, "execution_count": 17, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.reset_index().multiply(2).head(3)"]}, {"cell_type": "code", "execution_count": 18, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Ages</th>\n", " </tr>\n", " <tr>\n", " <th>Names</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Liu</th>\n", " <td>20.5</td>\n", " </tr>\n", " <tr>\n", " <th>Rowland</th>\n", " <td>28.0</td>\n", " </tr>\n", " <tr>\n", " <th>Rivers</th>\n", " <td>28.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Ages\n", "Names \n", "Liu 20.5\n", "Rowland 28.0\n", "Rivers 28.0"]}, "execution_count": 18, "metadata": {}, "output_type": "execute_result"}], "source": ["(df_sample / 2).head(3)"]}, {"cell_type": "code", "execution_count": 19, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Ages</th>\n", " </tr>\n", " <tr>\n", " <th>Names</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Liu</th>\n", " <td>1681</td>\n", " </tr>\n", " <tr>\n", " <th>Rowland</th>\n", " <td>3136</td>\n", " </tr>\n", " <tr>\n", " <th>Rivers</th>\n", " <td>3136</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Ages\n", "Names \n", "Liu 1681\n", "Rowland 3136\n", "Rivers 3136"]}, "execution_count": 19, "metadata": {}, "output_type": "execute_result"}], "source": ["(df_sample * df_sample).head(3)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["Logical operations allowed as well"]}, {"cell_type": "code", "execution_count": 20, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Ages</th>\n", " </tr>\n", " <tr>\n", " <th>Names</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Liu</th>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Rowland</th>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Rivers</th>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Waters</th>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Rice</th>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>Fields</th>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Kerr</th>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Romero</th>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Davis</th>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>Hall</th>\n", " <td>True</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Ages\n", "Names \n", "Liu True\n", "Rowland True\n", "Rivers True\n", "Waters True\n", "Rice False\n", "Fields True\n", "Kerr True\n", "Romero True\n", "Davis False\n", "Hall True"]}, "execution_count": 20, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample > 40"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 1\n", "<a name=\"task1\"></a>\n", "\n", "* Create data frame with\n", " - 10 names of dinosaurs, \n", " - their favourite prime number, \n", " - and their favourite color\n", "* Play around with the frame\n", "* Tell me on poll when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 21, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [],\n", " \"Favourite Prime\": [],\n", " \"Favourite Color\": []\n", "}\n", "#df_dinos = "]}, {"cell_type": "code", "execution_count": 22, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>Dinosaur Name</th>\n", " <th>Aegyptosaurus</th>\n", " <th>Tyrannosaurus</th>\n", " <th>Panoplosaurus</th>\n", " <th>Isisaurus</th>\n", " <th>Triceratops</th>\n", " <th>Velociraptor</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Favourite Prime</th>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>15</td>\n", " <td>16</td>\n", " <td>23</td>\n", " <td>42</td>\n", " </tr>\n", " <tr>\n", " <th>Favourite Color</th>\n", " <td>blue</td>\n", " <td>white</td>\n", " <td>blue</td>\n", " <td>purple</td>\n", " <td>violet</td>\n", " <td>gray</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": ["Dinosaur Name Aegyptosaurus Tyrannosaurus Panoplosaurus Isisaurus \\\n", "Favourite Prime 4 8 15 16 \n", "Favourite Color blue white blue purple \n", "\n", "Dinosaur Name Triceratops Velociraptor \n", "Favourite Prime 23 42 \n", "Favourite Color violet gray "]}, "execution_count": 22, "metadata": {}, "output_type": "execute_result"}], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [\"Aegyptosaurus\", \"Tyrannosaurus\", \"Panoplosaurus\", \"Isisaurus\", \"Triceratops\", \"Velociraptor\"],\n", " \"Favourite Prime\": [\"4\", \"8\", \"15\", \"16\", \"23\", \"42\"],\n", " \"Favourite Color\": [\"blue\", \"white\", \"blue\", \"purple\", \"violet\", \"gray\"]\n", "}\n", "df_dinos = pd.DataFrame(happy_dinos).set_index(\"Dinosaur Name\")\n", "df_dinos.T"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["Some more `DataFrame` examples"]}, {"cell_type": "code", "execution_count": 23, "metadata": {"slideshow": {"slide_type": "skip"}}, "outputs": [], "source": ["import numpy as np"]}, {"cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-2.718282</td>\n", " <td>This</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "0 1.2 2018-02-26 -2.718282 This Same\n", "1 1.2 2018-02-26 1.718282 column Same\n", "2 1.2 2018-02-26 -1.304068 has Same\n", "3 1.2 2018-02-26 0.986231 entries Same\n", "4 1.2 2018-02-26 -0.718282 entries Same"]}, "execution_count": 24, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo = pd.DataFrame({\n", " \"A\": 1.2,\n", " \"B\": pd.Timestamp('20180226'),\n", " \"C\": [(-1)**i * np.sqrt(i) + np.e * (-1)**(i-1) for i in range(5)],\n", " \"D\": pd.Categorical([\"This\", \"column\", \"has\", \"entries\", \"entries\"]),\n", " \"E\": \"Same\"\n", "})\n", "df_demo"]}, {"cell_type": "code", "execution_count": 25, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-2.718282</td>\n", " <td>This</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "0 1.2 2018-02-26 -2.718282 This Same\n", "2 1.2 2018-02-26 -1.304068 has Same\n", "4 1.2 2018-02-26 -0.718282 entries Same\n", "3 1.2 2018-02-26 0.986231 entries Same\n", "1 1.2 2018-02-26 1.718282 column Same"]}, "execution_count": 25, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.sort_values(\"C\")"]}, {"cell_type": "code", "execution_count": 26, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.99</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.72</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "3 1.2 2018-02-26 0.99 entries Same\n", "4 1.2 2018-02-26 -0.72 entries Same"]}, "execution_count": 26, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.round(2).tail(2)"]}, {"cell_type": "code", "execution_count": 27, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/plain": ["A 6\n", "C -2.03\n", "D Thiscolumnhasentriesentries\n", "E SameSameSameSameSame\n", "dtype: object"]}, "execution_count": 27, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.round(2).sum()"]}, {"cell_type": "code", "execution_count": 28, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["\\begin{tabular}{lrlrll}\n", "\\toprule\n", "{} & A & B & C & D & E \\\\\n", "\\midrule\n", "0 & 1.2 & 2018-02-26 & -2.72 & This & Same \\\\\n", "1 & 1.2 & 2018-02-26 & 1.72 & column & Same \\\\\n", "2 & 1.2 & 2018-02-26 & -1.30 & has & Same \\\\\n", "3 & 1.2 & 2018-02-26 & 0.99 & entries & Same \\\\\n", "4 & 1.2 & 2018-02-26 & -0.72 & entries & Same \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "\n"]}], "source": ["print(df_demo.round(2).to_latex())"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Reading External Data\n", "\n", "(Links to documentation)\n", "* [`.read_json()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json)\n", "* [`.read_csv()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv)\n", "* [`.read_hdf5()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_hdf.html#pandas.read_hdf)\n", "* [`.read_excel()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html#pandas.read_excel)\n", "\n", "Example:\n", "\n", "```json\n", "{\n", " \"Character\": [\"Sawyer\", \"\u2026\", \"Walt\"],\n", " \"Actor\": [\"Josh Holloway\", \"\u2026\", \"Malcolm David Kelley\"],\n", " \"Main Cast\": [true, \"\u2026\", false]\n", "}\n", "```"]}, {"cell_type": "code", "execution_count": 29, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Actor</th>\n", " <th>Main Cast</th>\n", " </tr>\n", " <tr>\n", " <th>Character</th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Hurley</th>\n", " <td>Jorge Garcia</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Jack</th>\n", " <td>Matthew Fox</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Kate</th>\n", " <td>Evangeline Lilly</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Locke</th>\n", " <td>Terry O'Quinn</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Sawyer</th>\n", " <td>Josh Holloway</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Walt</th>\n", " <td>Malcolm David Kelley</td>\n", " <td>False</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Actor Main Cast\n", "Character \n", "Hurley Jorge Garcia True\n", "Jack Matthew Fox True\n", "Kate Evangeline Lilly True\n", "Locke Terry O'Quinn True\n", "Sawyer Josh Holloway True\n", "Walt Malcolm David Kelley False"]}, "execution_count": 29, "metadata": {}, "output_type": "execute_result"}], "source": ["pd.read_json(\"lost.json\").set_index(\"Character\").sort_index()"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 2\n", "<a name=\"task2\"></a>\n", "\n", "* Read in `nest-data.csv` to `DataFrame`; call it `df`\n", "* Get to know it and play a bit with it\n", "* Tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 30, "metadata": {"exercise": "task"}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["id,Nodes,Tasks/Node,Threads/Task,Runtime Program / s,Scale,Plastic,Avg. Neuron Build Time / s,Min. Edge Build Time / s,Max. Edge Build Time / s,Min. Init. Time / s,Max. Init. Time / s,Presim. Time / s,Sim. Time / s,Virt. Memory (Sum) / kB,Local Spike Counter (Sum),Average Rate (Sum),Number of Neurons,Number of Connections,Min. Delay,Max. Delay\n", "5,1,2,4,420.42,10,true,0.29,88.12,88.18,1.14,1.20,17.26,311.52,46560664.00,825499,7.48,112500,1265738500,1.5,1.5\n", "5,1,4,4,200.84,10,true,0.15,46.03,46.34,0.70,1.01,7.87,142.97,46903088.00,802865,7.03,112500,1265738500,1.5,1.5\n"]}], "source": ["!cat nest-data.csv | head -3"]}, {"cell_type": "code", "execution_count": 31, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>Nodes</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>...</th>\n", " <th>Max. Init. Time / s</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>420.42</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>88.18</td>\n", " <td>...</td>\n", " <td>1.20</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " <td>46560664.0</td>\n", " <td>825499</td>\n", " <td>7.48</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>200.84</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>46.03</td>\n", " <td>46.34</td>\n", " <td>...</td>\n", " <td>1.01</td>\n", " <td>7.87</td>\n", " <td>142.97</td>\n", " <td>46903088.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>8</td>\n", " <td>202.15</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>48.48</td>\n", " <td>...</td>\n", " <td>1.20</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " <td>47699384.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>89.57</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>20.41</td>\n", " <td>23.21</td>\n", " <td>...</td>\n", " <td>3.04</td>\n", " <td>3.19</td>\n", " <td>60.31</td>\n", " <td>46813040.0</td>\n", " <td>821491</td>\n", " <td>7.23</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>164.16</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.20</td>\n", " <td>40.03</td>\n", " <td>41.09</td>\n", " <td>...</td>\n", " <td>1.58</td>\n", " <td>6.08</td>\n", " <td>114.88</td>\n", " <td>46937216.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 21 columns</p>\n", "</div>"], "text/plain": [" id Nodes Tasks/Node Threads/Task Runtime Program / s Scale Plastic \\\n", "0 5 1 2 4 420.42 10 True \n", "1 5 1 4 4 200.84 10 True \n", "2 5 1 2 8 202.15 10 True \n", "3 5 1 4 8 89.57 10 True \n", "4 5 2 2 4 164.16 10 True \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "0 0.29 88.12 \n", "1 0.15 46.03 \n", "2 0.28 47.98 \n", "3 0.15 20.41 \n", "4 0.20 40.03 \n", "\n", " Max. Edge Build Time / s ... Max. Init. Time / s Presim. Time / s \\\n", "0 88.18 ... 1.20 17.26 \n", "1 46.34 ... 1.01 7.87 \n", "2 48.48 ... 1.20 7.95 \n", "3 23.21 ... 3.04 3.19 \n", "4 41.09 ... 1.58 6.08 \n", "\n", " Sim. Time / s Virt. Memory (Sum) / kB Local Spike Counter (Sum) \\\n", "0 311.52 46560664.0 825499 \n", "1 142.97 46903088.0 802865 \n", "2 142.81 47699384.0 802865 \n", "3 60.31 46813040.0 821491 \n", "4 114.88 46937216.0 802865 \n", "\n", " Average Rate (Sum) Number of Neurons Number of Connections Min. Delay \\\n", "0 7.48 112500 1265738500 1.5 \n", "1 7.03 112500 1265738500 1.5 \n", "2 7.03 112500 1265738500 1.5 \n", "3 7.23 112500 1265738500 1.5 \n", "4 7.03 112500 1265738500 1.5 \n", "\n", " Max. Delay \n", "0 1.5 \n", "1 1.5 \n", "2 1.5 \n", "3 1.5 \n", "4 1.5 \n", "\n", "[5 rows x 21 columns]"]}, "execution_count": 31, "metadata": {}, "output_type": "execute_result"}], "source": ["df = pd.read_csv(\"nest-data.csv\")\n", "df.head()"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Read CSV Options\n", "\n", "* See also full [API documentation](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html)\n", "* Important parameters\n", " - `sep`: Set separator (for example `:` instead of `,`)\n", " - `header`: Specify info about headers for columns; able to use multi-index for columns!\n", " - `names`: Alternative to `header` \u2013\u00a0provide your own column titles\n", " - `usecols`: Don't read whole set of columns, but only these; works with any list (`range(0:20:2)`)\u2026\n", " - `skiprows`: Don't read in these rows\n", " - `na_values`: What string(s) to recognize as `N/A` values (which will be ignored during operations on data frame)\n", " - `parse_dates`: Try to parse dates in CSV; different behaviours as to provided data structure; optionally used together with `date_parser`\n", " - `compression`: Treat input file as compressed file (\"infer\", \"gzip\", \"zip\", \u2026)\n", " - `decimal`: Decimal point divider \u2013\u00a0for German data\u2026\n", " \n", "```python\n", "pandas.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='\"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)\n", "```"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Slicing of Data Frames\n", "\n", "### Slicing Columns\n", "\n", "* Use square-bracket operators to slice data frame: `[]`\n", " * Use column name to select column\n", " * Also: Slice horizontally\n", "* Example: Select only columnn `C` from `df_demo`"]}, {"cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-2.718282</td>\n", " <td>This</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "0 1.2 2018-02-26 -2.718282 This Same\n", "1 1.2 2018-02-26 1.718282 column Same\n", "2 1.2 2018-02-26 -1.304068 has Same"]}, "execution_count": 32, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.head(3)"]}, {"cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [{"data": {"text/plain": ["0 -2.718282\n", "1 1.718282\n", "2 -1.304068\n", "3 0.986231\n", "4 -0.718282\n", "Name: C, dtype: float64"]}, "execution_count": 33, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo[\"C\"]"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Select more than one column by providing list `[]` to slice operator `[]`\n", "* *You usually end up forgett one of the brackets\u2026*\n", "* Example: Select list of columns `A` and `C`, `[\"A\", \"C\"]` from `df_demo`"]}, {"cell_type": "code", "execution_count": 34, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>C</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.2</td>\n", " <td>-2.718282</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>1.718282</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>-1.304068</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>0.986231</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>-0.718282</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A C\n", "0 1.2 -2.718282\n", "1 1.2 1.718282\n", "2 1.2 -1.304068\n", "3 1.2 0.986231\n", "4 1.2 -0.718282"]}, "execution_count": 34, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo[[\"A\", \"C\"]]"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["## Slicing of Data Frames\n", "\n", "### Slicing rows\n", "\n", "* Use numberical values to slice into rows\n", "* Use ranges just like with Python lists"]}, {"cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "1 1.2 2018-02-26 1.718282 column Same\n", "2 1.2 2018-02-26 -1.304068 has Same"]}, "execution_count": 35, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo[1:3]"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["* Get a certain range as **per the current sort structure**"]}, {"cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "1 1.2 2018-02-26 1.718282 column Same\n", "2 1.2 2018-02-26 -1.304068 has Same"]}, "execution_count": 36, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.iloc[1:3]"]}, {"cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "1 1.2 2018-02-26 1.718282 column Same\n", "3 1.2 2018-02-26 0.986231 entries Same"]}, "execution_count": 37, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.iloc[1:6:2]"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Attention: `.iloc[]` location might change after re-sorting!"]}, {"cell_type": "code", "execution_count": 38, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "2 1.2 2018-02-26 -1.304068 has Same\n", "4 1.2 2018-02-26 -0.718282 entries Same"]}, "execution_count": 38, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.sort_values(\"C\").iloc[1:3]"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* One more row-slicing option: `.loc[]`\n", "* See the difference with a *proper* index (and not the auto-generated default index from before)"]}, {"cell_type": "code", "execution_count": 39, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>E</th>\n", " </tr>\n", " <tr>\n", " <th>D</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>This</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-2.718282</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>column</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>has</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>entries</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>entries</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C E\n", "D \n", "This 1.2 2018-02-26 -2.718282 Same\n", "column 1.2 2018-02-26 1.718282 Same\n", "has 1.2 2018-02-26 -1.304068 Same\n", "entries 1.2 2018-02-26 0.986231 Same\n", "entries 1.2 2018-02-26 -0.718282 Same"]}, "execution_count": 39, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo_indexed = df_demo.set_index(\"D\")\n", "df_demo_indexed"]}, {"cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>E</th>\n", " </tr>\n", " <tr>\n", " <th>D</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>entries</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>entries</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C E\n", "D \n", "entries 1.2 2018-02-26 0.986231 Same\n", "entries 1.2 2018-02-26 -0.718282 Same"]}, "execution_count": 40, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo_indexed.loc[\"entries\"]"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["### Advanced Slicing: Logical Slicing\n", "\n"]}, {"cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "1 1.2 2018-02-26 1.718282 column Same\n", "3 1.2 2018-02-26 0.986231 entries Same"]}, "execution_count": 41, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo[df_demo[\"C\"] > 0]"]}, {"cell_type": "code", "execution_count": 42, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "4 1.2 2018-02-26 -0.718282 entries Same"]}, "execution_count": 42, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo[(df_demo[\"C\"] < 0) & (df_demo[\"D\"] == \"entries\")]"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Adding to Existing Data Frame\n", "\n", "* Add new columns with `frame[\"new col\"] = something` or `.insert()`\n", "* Add new rows with `frame.append()`\n", "* Combine data frames\n", " - Concat: Combine several data frames along an axis\n", " - Merge: Combine data frames on basis of common columns; database-style\n", " - (Join)\n", " - See user guide [on merging](https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html)"]}, {"cell_type": "code", "execution_count": 43, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-2.718282</td>\n", " <td>This</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "0 1.2 2018-02-26 -2.718282 This Same\n", "1 1.2 2018-02-26 1.718282 column Same\n", "2 1.2 2018-02-26 -1.304068 has Same"]}, "execution_count": 43, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.head(3)"]}, {"cell_type": "code", "execution_count": 44, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " <th>F</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-2.718282</td>\n", " <td>This</td>\n", " <td>Same</td>\n", " <td>-3.918282</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " <td>0.518282</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " <td>-2.504068</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E F\n", "0 1.2 2018-02-26 -2.718282 This Same -3.918282\n", "1 1.2 2018-02-26 1.718282 column Same 0.518282\n", "2 1.2 2018-02-26 -1.304068 has Same -2.504068"]}, "execution_count": 44, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo[\"F\"] = df_demo[\"C\"] - df_demo[\"A\"]\n", "df_demo.head(3)"]}, {"cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": ["df_demo.insert(len(df_demo) + 1, \"G\", df_demo[\"C\"] ** 2)"]}, {"cell_type": "code", "execution_count": 46, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " <th>F</th>\n", " <th>G</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " <td>-2.504068</td>\n", " <td>1.700594</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " <td>-0.213769</td>\n", " <td>0.972652</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " <td>-1.918282</td>\n", " <td>0.515929</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E F G\n", "2 1.2 2018-02-26 -1.304068 has Same -2.504068 1.700594\n", "3 1.2 2018-02-26 0.986231 entries Same -0.213769 0.972652\n", "4 1.2 2018-02-26 -0.718282 entries Same -1.918282 0.515929"]}, "execution_count": 46, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.tail(3)"]}, {"cell_type": "code", "execution_count": 47, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " <th>F</th>\n", " <th>G</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-2.718282</td>\n", " <td>This</td>\n", " <td>Same</td>\n", " <td>-3.918282</td>\n", " <td>7.389056</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " <td>0.518282</td>\n", " <td>2.952492</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " <td>-2.504068</td>\n", " <td>1.700594</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " <td>-0.213769</td>\n", " <td>0.972652</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " <td>-1.918282</td>\n", " <td>0.515929</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>1.3</td>\n", " <td>2018-02-27</td>\n", " <td>-0.777000</td>\n", " <td>has it?</td>\n", " <td>Same</td>\n", " <td>23.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E F G\n", "0 1.2 2018-02-26 -2.718282 This Same -3.918282 7.389056\n", "1 1.2 2018-02-26 1.718282 column Same 0.518282 2.952492\n", "2 1.2 2018-02-26 -1.304068 has Same -2.504068 1.700594\n", "3 1.2 2018-02-26 0.986231 entries Same -0.213769 0.972652\n", "4 1.2 2018-02-26 -0.718282 entries Same -1.918282 0.515929\n", "5 1.3 2018-02-27 -0.777000 has it? Same 23.000000 NaN"]}, "execution_count": 47, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.append(\n", " {\"A\": 1.3, \"B\": pd.Timestamp(\"2018-02-27\"), \"C\": -0.777, \"D\": \"has it?\", \"E\": \"Same\", \"F\": 23},\n", " ignore_index=True\n", ")"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["## Combining Frames\n", "\n", "* First, create some simpler data frame to show `.concat()` and `.merge()`"]}, {"cell_type": "code", "execution_count": 48, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Key</th>\n", " <th>Value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>First</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Second</td>\n", " <td>1</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Key Value\n", "0 First 1\n", "1 Second 1"]}, "execution_count": 48, "metadata": {}, "output_type": "execute_result"}], "source": ["df_1 = pd.DataFrame({\"Key\": [\"First\", \"Second\"], \"Value\": [1, 1]})\n", "df_1"]}, {"cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Key</th>\n", " <th>Value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>First</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Second</td>\n", " <td>2</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Key Value\n", "0 First 2\n", "1 Second 2"]}, "execution_count": 49, "metadata": {}, "output_type": "execute_result"}], "source": ["df_2 = pd.DataFrame({\"Key\": [\"First\", \"Second\"], \"Value\": [2, 2]})\n", "df_2"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Concatenate list of data frame vertically (`axis=0`)"]}, {"cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Key</th>\n", " <th>Value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>First</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Second</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>0</th>\n", " <td>First</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Second</td>\n", " <td>2</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Key Value\n", "0 First 1\n", "1 Second 1\n", "0 First 2\n", "1 Second 2"]}, "execution_count": 50, "metadata": {}, "output_type": "execute_result"}], "source": ["pd.concat([df_1, df_2])"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["* Same, but re-index"]}, {"cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Key</th>\n", " <th>Value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>First</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Second</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>First</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Second</td>\n", " <td>2</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Key Value\n", "0 First 1\n", "1 Second 1\n", "2 First 2\n", "3 Second 2"]}, "execution_count": 51, "metadata": {}, "output_type": "execute_result"}], "source": ["pd.concat([df_1, df_2], ignore_index=True)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Concat, but horizontally"]}, {"cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Key</th>\n", " <th>Value</th>\n", " <th>Key</th>\n", " <th>Value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>First</td>\n", " <td>1</td>\n", " <td>First</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Second</td>\n", " <td>1</td>\n", " <td>Second</td>\n", " <td>2</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Key Value Key Value\n", "0 First 1 First 2\n", "1 Second 1 Second 2"]}, "execution_count": 52, "metadata": {}, "output_type": "execute_result"}], "source": ["pd.concat([df_1, df_2], axis=1)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["* Merge on common column"]}, {"cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Key</th>\n", " <th>Value_x</th>\n", " <th>Value_y</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>First</td>\n", " <td>1</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Second</td>\n", " <td>1</td>\n", " <td>2</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Key Value_x Value_y\n", "0 First 1 2\n", "1 Second 1 2"]}, "execution_count": 53, "metadata": {}, "output_type": "execute_result"}], "source": ["pd.merge(df_1, df_2, on=\"Key\")"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "subslide"}}, "source": ["## Task 3\n", "<a name=\"task3\"></a>\n", "\n", "* Add a column to the Nest data frame called `Virtual Processes` which is the total number of threads across all nodes (i.e. the product of threads per task and tasks per node and nodes)\n", "* Remember to tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 54, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>Nodes</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>...</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " <th>Virtual Processes</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>420.42</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>88.18</td>\n", " <td>...</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " <td>46560664.0</td>\n", " <td>825499</td>\n", " <td>7.48</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>8</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>200.84</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>46.03</td>\n", " <td>46.34</td>\n", " <td>...</td>\n", " <td>7.87</td>\n", " <td>142.97</td>\n", " <td>46903088.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>8</td>\n", " <td>202.15</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>48.48</td>\n", " <td>...</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " <td>47699384.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>89.57</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>20.41</td>\n", " <td>23.21</td>\n", " <td>...</td>\n", " <td>3.19</td>\n", " <td>60.31</td>\n", " <td>46813040.0</td>\n", " <td>821491</td>\n", " <td>7.23</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>32</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>164.16</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.20</td>\n", " <td>40.03</td>\n", " <td>41.09</td>\n", " <td>...</td>\n", " <td>6.08</td>\n", " <td>114.88</td>\n", " <td>46937216.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 22 columns</p>\n", "</div>"], "text/plain": [" id Nodes Tasks/Node Threads/Task Runtime Program / s Scale Plastic \\\n", "0 5 1 2 4 420.42 10 True \n", "1 5 1 4 4 200.84 10 True \n", "2 5 1 2 8 202.15 10 True \n", "3 5 1 4 8 89.57 10 True \n", "4 5 2 2 4 164.16 10 True \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "0 0.29 88.12 \n", "1 0.15 46.03 \n", "2 0.28 47.98 \n", "3 0.15 20.41 \n", "4 0.20 40.03 \n", "\n", " Max. Edge Build Time / s ... Presim. Time / s Sim. Time / s \\\n", "0 88.18 ... 17.26 311.52 \n", "1 46.34 ... 7.87 142.97 \n", "2 48.48 ... 7.95 142.81 \n", "3 23.21 ... 3.19 60.31 \n", "4 41.09 ... 6.08 114.88 \n", "\n", " Virt. Memory (Sum) / kB Local Spike Counter (Sum) Average Rate (Sum) \\\n", "0 46560664.0 825499 7.48 \n", "1 46903088.0 802865 7.03 \n", "2 47699384.0 802865 7.03 \n", "3 46813040.0 821491 7.23 \n", "4 46937216.0 802865 7.03 \n", "\n", " Number of Neurons Number of Connections Min. Delay Max. Delay \\\n", "0 112500 1265738500 1.5 1.5 \n", "1 112500 1265738500 1.5 1.5 \n", "2 112500 1265738500 1.5 1.5 \n", "3 112500 1265738500 1.5 1.5 \n", "4 112500 1265738500 1.5 1.5 \n", "\n", " Virtual Processes \n", "0 8 \n", "1 16 \n", "2 16 \n", "3 32 \n", "4 16 \n", "\n", "[5 rows x 22 columns]"]}, "execution_count": 54, "metadata": {}, "output_type": "execute_result"}], "source": ["df[\"Virtual Processes\"] = df[\"Nodes\"] * df[\"Tasks/Node\"] * df[\"Threads/Task\"]\n", "df.head()"]}, {"cell_type": "code", "execution_count": 55, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"text/plain": ["Index(['id', 'Nodes', 'Tasks/Node', 'Threads/Task', 'Runtime Program / s',\n", " 'Scale', 'Plastic', 'Avg. Neuron Build Time / s',\n", " 'Min. Edge Build Time / s', 'Max. Edge Build Time / s',\n", " 'Min. Init. Time / s', 'Max. Init. Time / s', 'Presim. Time / s',\n", " 'Sim. Time / s', 'Virt. Memory (Sum) / kB', 'Local Spike Counter (Sum)',\n", " 'Average Rate (Sum)', 'Number of Neurons', 'Number of Connections',\n", " 'Min. Delay', 'Max. Delay', 'Virtual Processes'],\n", " dtype='object')"]}, "execution_count": 55, "metadata": {}, "output_type": "execute_result"}], "source": ["df.columns"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Aside: Plotting without Pandas\n", "\n", "### Matplotlib 101\n", "\n", "* Matplotlib: de-facto standard for plotting in Python\n", "* Main interface: `pyplot`; provides MATLAB-like interface\n", "* Better: Use object-oriented API with `Figure` and `Axis`\n", "* Great integration into Jupyter Notebooks\n", "* Since v. 3: Only support for Python 3\n", "* \u2192 https://matplotlib.org/"]}, {"cell_type": "code", "execution_count": 56, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import matplotlib.pyplot as plt\n", "%matplotlib inline"]}, {"cell_type": "code", "execution_count": 57, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [], "source": ["x = np.linspace(0, 2*np.pi, 400)\n", "y = np.sin(x**2)"]}, {"cell_type": "code", "execution_count": 58, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXmUZWV57/99zjzXXNVzdTc0k8w2YKISg6h4kysmGkXjT4zmkvyMuStzNMkv8RJzlxnW1Xsz3ASVKw4RkAxgwhUBNaKAdKvM0HbTY3VX11x15vn5/bH3e+p09Rn28O6hut7PWr2oOkPtt6DZ3/NM34eYGQqFQqFQyCLg9QEUCoVCcW6hhEWhUCgUUlHColAoFAqpKGFRKBQKhVSUsCgUCoVCKkpYFAqFQiEVJSwKhUsQ0eeJ6BP6168nogNtzx0lohsdum7Xn732HAqFDJSwKDY8RMREdP6axz5ORF9y6prM/BgzXyj757aLl5fnUGxslLAoFAqFQipKWBSKPhDRKBH9GxEtE9EiET1GRAH9uS1E9E9ENEdER4jovxr8mW8goqkuz12s/6z3mLkGEd0G4BcB/B4R5Ynoa21PX0lEzxLRChHdQ0SxTucgot8nopNElCOiA0T0RkP/khSKNkJeH0ChWAf8NoApAGP6968BwLq4fA3A/QDeA2AbgEeI6AAzP2TlQkR0NYB/BfBhZv43M9dg5juI6CcBTDHzH6350e8CcBOAMoDvAfgAgL9fc+0LAXwEwDXMfIqIdgIIWvk9FBsbFbEoFP2pAdgMYJKZa3pdggFcA2CMmW9n5iozHwbwGQC3WLzO6wE8AOD9zPxv+mOyrvG/mPkUMy9CE6orO7ymASAK4BIiCjPzUWZ+xdqvotjIKGFRKLQbanjNY2FoggIAfwngEIBvENFhIvqo/vgkgC16imyZiJYB/AGACYvn+FUAjzPzt9sek3WN021fFwGk1r6AmQ8B+A0AHwcwS0R3E9EWk9dRKJSwKBQAjgPYueaxXQCOAQAz55j5t5l5N4C3AfgtvfZwAsARZh5s+5Nm5v9k8Ry/CmAHEX2q7TGz17BlV87M/8jMr4MmaAzgz+38PMXGRAmLQgHcA+CPiGgbEQX0mY//DOA+ACCinyWi84mIAKxAi3CaAJ4CkNML3nEiChLRpUR0jcVz5KDVQa4nok/qj5m9xgyA3VYuTkQXEtENRBSFVospQfs9FQpTKGFRKIDbATwO4LsAlgD8BYBfZObn9ef3AHgEQB7AEwD+jpm/xcwNAD8LrV5xBMA8gM8CGLB6EGZeBvAmAG8loj+1cI3PQauRLBPRv5q8fBTAJ/VrnAYwDuBj5n8LxUaH1KIvhUKhUMhERSwKhUKhkIoSFoVCoVBIRQmLQqFQKKSihEWhUCgUUtmQli6jo6O8c+dOr4+hUCgU64of/OAH88w81u91G1JYdu7cif3793t9DIVCoVhXENExI69TqTCFQqFQSEUJi0KhUCikooRFoVAoFFJRwqJQKBQKqShhUSgUCoVUfCEsRHQnEc0S0fNdnici+l9EdEhfr3p123O3EtFB/c+t7p1aoVAoFJ3whbAA+Dw0u/BuvBWaw+weALcB+N8AQETDAP4EwHUArgXwJ0Q05OhJFQqFQtETXwgLM38HwGKPl9wM4Aus8SSAQSLaDOAtAB5m5kVmXgLwMHoLlMIEJxaL+OKTx/DXjx7E1545hWK17vWRfM2h2Ry++OQxLOQrXh/FFI0m4xsvnMazU8teH6VFpd7AvftOIFuu9X+xAzz+yjyOzhdcu96JxSJemcs7eo2ppSL+/dlpR68hWC8DkluhbdITTOmPdXv8LIjoNmjRDnbs2OHMKc8RitU6/uLrB3DXE0fRvlVhOBnBn958KX7m8s2enc2vPDu1jHf878dRazD+5psH8dBvXI/BRMTrYxniLx86gL//j1cQDwfxjd+8HtuHE14fCR9/4AV85akTeOSlGdzx/r2uXnsmW8Z7P/N9AMBTf/BGjGdijl7v5dNZ3PTpxxAOEn78ibdC2ycnn3f/w5M4uVzCZVt/GjtGnP1v7IuIxQ2Y+Q5m3svMe8fG+joSbFhms2W87W++h88/fhTvf80k/uN334ADn7gJ99z2GuwYTuDX/vGH+Nx3j3h9TF/BzPjoPz2HkWQUd35gL+bzVfzVNw54fSxDZMs1fPGJo7hs6wDqzaYv/tsuF6u4e5/2efEbL87gsMOf5NfyhSeOtr6+/+lTjl/vX354EgBQazCeP5l15BrHFgo4uVwCANz/9ElHrtHOehGWkwC2t32/TX+s2+MKC8zlKrjlM0/i1HIJX/rQdfhvN1+KyZEkoqEgrts9gnt/5Sfw1ks34U//7UV8/fnTXh/XNzx1ZBEvTmfxm2/agxsumsA7rt6Kf/7hSeQr/k8dfuOFGRSqDdx+86vwUxeM4+EXZ+D18r8nXlkAM/AX77wcAPDk4V5Zcmeuf+3OYWwdjOPpE86nB58/tYKtg3EQAY++POPINX50XPs9hpMRfP0F5//fXS/C8gCA9+vdYa8BsMLM0wAeAvBmIhrSi/Zv1h9TmKTWaOLDX/4BppfLuOuD1+J1e0bPek0kFMCnb7kSV2wfxO/e9wzmcuurluAU9+w/gXQshLddoWVh333NDhSrDTzoUj7bDk8eXsBQIowrtg3iLa+awMnlEl6cduZTs1G+e2geyUgQP3fVVoylo/j+kQXXrt1sMg6czuGSLRlctWPQcWFh1qKU6y8Yw67RJA6czjlynaMLBRABd9/2Gtz7Kz/hyDXa8YWwENFXoO0Sv5CIpojoQ0T0q0T0q/pLHgRwGMAhAJ8B8GEAYOZFAH8KYJ/+53b9MYVJ/vKhA9h3dAmffMdluGbncNfXRUNBfOpdV6Bca+DPv/6yiyf0J40m41svz+LGiycQjwQBAFfvGMSWgZhjnz5l8uThBVy3awSBAOE1u0cArH669YrnTq7giu2DCAcDuHbnMH5wbMm1a08tlVCoNnDRpjSu3D6Ik8slRz9ATS2VsFKq4dKtGUwOJ3BsoejIdY4tFLE5E8MFE2kko86X1n1RvGfm9/R5ngH8Wpfn7gRwpxPn2ig8dWQRd3znMH7xuh24+cqOvQ9nsHsshQ+9bjf+/j9ewXuu3YFXT27cDu8fHV/CUrGGN1483nqMiHD9BWP492enUW80EQr64vPbWZxeKWNqqYQPvnYXAGDbUByDiTCem1rx7EzMjFdm83jnq7cBAM4fT+HB56dRrjUQCwcdv76I1i7enMFisQpAq0+MpaOOXO/ogtZ5dt5YCj8ezmH/0SUws/QC/rGFAiZHklJ/Zi/8+Tde4RrlWgMf++dnsW0ojj/8mYsNv+/Xbzgfo6koPv3Ijx08nf/53qEFEAGvP//MhpDX7xlDrlLHMx7epPvx0mntJvqqLRkAmiBetnUAz5307szTK2UUqg2cP54CAOweS4J59QbsNIfntUaB88dT2D4UB6BFFU4xvVIGAGwZiGP7cAK5Sh1LRfkt1scWitg56l63nxKWDc5nvnMYr8wV8Gc/dxkSEeMBbDIawi+9diceOziPF095m5P3kv3HFnHRpgwGEuEzHr9mpxbF/ei4e2kcs4h8/kWbMq3HLt06gB/P5FCtNz0506FZ7cZ+ni4s541p/zw8546wnFouYTARRjIawrYh7UY8teRMegrQokYAGM9EWxHF8UW51ytW61goVFu/jxsoYdnALOQr+Pv/eAVvvmQCP3WB+Rbs9103iUQkiM88dtiB0/mfeqOJHx5baolIO+OZmGtdRVY5cDqHzQOxM0Tx/LEU6k3GCQdvpr0QQ4IiYtk1qt1sj7g0rDi9XMbmAS1SiYWDGE1FcWLR2YhlJBlBLBzE9mHtuickC8tCXkvpjTuUzuuEEpYNzF9/8xBKtQZ+76aLLL1/IBHGu6/Zjq89c2pDdogdmMmhUG10rTFduX3Q80J4Lw6czuHCTekzHts1pt/IXYoQ1jK1VEI8HMRYSrsJJqMhTGSirgnLqZUytgysDkRuG4pjatk5kZ1eKWHzoHa98bT2z3nJzg3i542k3BvYVcKyQTm+UMSXv38M775me+vToRXee+0O1JuMB55xfpDMbzyv1yIu3zbY8fnLtw3g5HIJy3oR2E8wM44uFLB79Mz/9rtdjhDWcmq5hC2DsTOK11sG462UkTvXj7e+3z6ccLTGcnqljE0Z7XqD8TCCAZIuLCJiGUmqiEXhMP/j4QMIBgi/ceMFtn7Onok0Lt82gH/+4ZSkk60fnju5gnQ0hMkuFigXbdZqFy87NJtgh7l8BcVqA5NrrD0GExEMJyM47KmwxM94bPNADKdWnLu5C4rVOlZKtVYEAQAT6Shms85F49MrZWwa0G74gQBhOBlpCYEsFgoqYlG4wNH5Ah545hRu/YmdmJDgg/TzV23FC6eyePn0xiriP38yi0u2ZBAIdG4NvVhPM73s8cBhJ8S8xFphAbS6xpF5d21UBCeXy9i6Rlg2ZbSIxWlHgFPLqx1agtF0FKVaAwUHXBSq9SZWSrVWCgwARlNRB1JhKmJRuMAdjx1GKBjAh163S8rPe9uVWxEOEv7lRxvHTad9QrsbY+kohhJhHJjxX8SyKixnzzZsG4q3fKXcpFxrYD5f6RixFKsNZMvOWuSIOuF4ZvUGPKrXemTf7AG0UqRDydVIYjQVaQmBLBYLVSQjwdYArxsoYdlgzGbLuG//FN756m3SXFuHkxG8ZvcIvvGC9z5TbnFyuYRSrYE94+muryEiXLgp7ZhNhx2OLxQQIJwVHQDaY6dXymg03f1vKeooZwmLnppyus4iUkZCTLSvtZu+E8IiBjCHE+3CEm2dQxYL+QpGUu5FK4ASlg3H5753BPVmE79y/W6pP/fNl0zgyHzB8Z0SfuHQmrbYbuwaTTlm02GH44tFbB6IIxI6+xawZTCOWoNd7/QTw4KbB878wCO+n3a4zrJa5D7zRg8Aczn5DRiLBRGxrLZ7jyQjmJd8rYVC1dX6CqCEZUORK9fw5SeP42cu3yLd3uHGSyYAaDbnG4FX9EG+PX2EZedIAguFqmcLq7pxqkMtQyAedzsdNqdHBWvnLUQdcCbrbMQyn68gQDhjj46wcnEiYlkqaH8n2msfoqYjc6neQr56RlTkBkpYNhD3/WAK+UodvyypttLO5oE4Lts6gIc3iLAcnMljJBk5Iz/eCSHgx+b9FbWcWtHaejuxdcgjYdEjpLW+XKt1DmfbtufzVQwnIwi2NWMMJ51PhbVHLOJ6MjvDsuUaBuLh/i+UiBKWDUKzyfjiE8dw5fZBXLG989yFXd50yQSePrHsyP+EfuPQXL5lO9KL1uS4S15XRmg0GadXymfVMgTi8ZMOzm90Yi5XQThIZ90EY+EgUtGQ43+vFvKVszqnwsEAhpMRhyIWXVjaognxu6+U5EW42VINGSUsCid47NA8Ds8X8IGf3OnYNX7qgjEwA987NO/YNfwAM+PQbN7QYOkOfcblmEdzIZ2Yz1dQbzI2dxGWVDSEdDTkeOppLXO5CsZS0Y7Ovk50S62lWy1ixIHZEkCrsaRjIYTb3K+FsGQlCUuzychV6sjE3DWyV8KyQfjC40cxmorgrZdtcuwal24dQCYWwuOH3FvM5AXz+SpWSjWcP9ZfWOKRIDZlYjjqowK+SHFt7ZIKA7R01JzLkedcvtLVnn40FcW8w80E3bqnBhNhLDvgOLxUrLZSXwLZEUu+WgczVMSikM/xhSK+eWAW7712B6Ih53rZgwHCT5w3gu8emj+n246FA++eCWNWODtHE67Zvhthell0X3WOWACtiOx2V9h8rruwjKQi0ttw17KQr57RESYYiEewLDE1JVgsVM9oFNCupQmArOuJyGfDCgsR3UREB4joEBF9tMPznyKip/U/Pyai5bbnGm3PPeDuyf3PF588iiAR3nvdpOPXet35ozi5XPJli60sRKvxeQYiFgDYOZLEMR8Ji0hxbeoxxzSWdj5CWEvfiMXBVFi90USuUsdg4uwb8FAi7IjfW7ZcP6ueJK4vK2LJlrTuskzMXWHxxQZJIgoC+FsAbwIwBWAfET3AzC+K1zDzb7a9/tcBXNX2I0rMfKVb511PlKoN3LPvBN5y6SZsGpAzENmL154/CgD43ivz2Dnq3sY6Nzm+UEA0FOh5Y25nciSJ+XwVuXINaZf/B+/EXF4rkne6iQrGUlF8x0VhaTYZC/nKGcOJ7YykolgqVh3byCmm+jt1TzmVCsuVa9i2ps4VDwcRDpI0YVlpRSwbs8ZyLYBDzHyYmasA7gZwc4/XvwfAV1w52TrnweemkS3X8T4XohVA64LaPBDD46+cu3WWE4slbB9OdPUIW8sufXOfX6K42Wz3IrlgLB1FrlJHqdpw5UzZcg1NPrND6ozzpCJgXm3RlX59/QbcWVgiKNUaKNfk/rvIletIrymqE2ldcdIiFn1+yu2IxS/CshXAibbvp/THzoKIJgHsAvDNtodjRLSfiJ4kord3ed9t+mv2z83NyTq377ln3wnsHEngNbuHXbkeEeGancPYf3TxnK2zHF8strq9jLBdf63sBU5W6ZVyEjg5GNiJTlPo7QzrbcBiqFA2Kz2FRX4LMADkOwgLoNVD5KXCuv9eTuIXYTHDLQDuY+b2jw+TzLwXwHsBfJqIzlv7Jma+g5n3MvPesTHz2xLXI6/M5fHU0UW8+5odPT+dymbvziHMZCuO7rHwCmbGCZPCItxyT7m0U6Qfcz2K5ALx/KxL6TCx531tMVvQKmo7FLGs9ChyD8Yj+rXlCUut0USp1uiYGh2Ih6W1G4sU30aNWE4C2N72/Tb9sU7cgjVpMGY+qf/zMIBv48z6y4bl3n0nEAoQ3vHqjsGfY+yd1KKj/ccWXb2uGywXa8hV6q0oxAiDiTBi4QBOeeAY3AlDwtLyyHJHWFpOv12ERUQNTnRnAb0jliH92ksSRS2v3/A7RSxSU2H6z0lt0DmWfQD2ENEuIopAE4+zuruI6CIAQwCeaHtsiIii+tejAF4L4MW1791oVOtN/NMPp/DGi8fP2PfgBhduSiMdDWH/0SVXr+sGx/V0lpmIhYiwZTDuuImiEeqNJhYKlZZwdEP4dbk1yyIilqEuDQVOTKS300tYBoSoSYxYci1h6RyxyKyxpKOhM2xq3MAXXWHMXCeijwB4CEAQwJ3M/AIR3Q5gPzMLkbkFwN18ZvL+YgD/QERNaEL5yfZuso3KN1+ewXy+iluu2eH6tYMBwlWTQ+e0sGwf7j4D0oktA/HWIikvWSxUwQyM9eloG05GQORBxNLFe61V53CgOwvoXeQW6TmZaThxvU4RSyoaakU0dilU6khG3b/N+0JYAICZHwTw4JrH/njN9x/v8L7HAVzm6OHWIV956gQ2ZWK4/gJv6knXTA7hfzzyY6wUa61PfOcCLWEZMh6xAJr1+3cOet80Imom/SKWUDCAkWTENWFZKlYRChDSXW6CKf1T93LJuRpLJBhALHx2EkfYoeQkLhprRSwdft9UNIS8pI2V+Urd9TQY4J9UmEIiJ5dL+M7BObxr7zbXQ2DB1ZNDYAaemVru/+J1xNRSEaOpiOlPgVsG45jNVVCtNx06mTFEaqtfjQXQhhLdE5YaBhPhrk0mRITBuDPzJMCqUWOn6ycjIRBpcyeyEMLRKRWWioZQqTdRa9j/u5KvNDyJWJSwnIN8db/Wuf0Le7f3eaVzXLp1AADw7DkmLMcXi6YK94ItgzEwO79TpB9z2c47Tzrhpl/YcvFse5O1DCTCjhbvB7oMEQYChFQkJHU1cq5HKkwIQUFC1FKo1JGKureSWKCE5Ryj0WR8df8UXnf+qKUboCwG4mHsHk3imakVz87gBGZnWATCl2va45ZjMxGLm7YuS4Va18K9YDAedq7GUqr39NNKx+Slp4D24n3nVBgAKdfLl+tIRlTEorDJdw/N4+RyCe++xrtoRXD5toFzKmJpNBmnlsvYNmSucA+s7jjxujNsLldBOhZCLNz/U+yYbkTpxqDrkoGIZTARcbTG0muIMB0LS02FrUYsZ19zNWKxP+mvaiwKKdyz7ziGEmG8SV8V7CWXbxvETLbiefpHFnO5ChpN7ukK3A2xrdHrzjAjMyyCsVQU1UZTagqoG0vFqqGIxakaSz9hSTkQsURDAURCZ9+Ck3rqSsb1CtV6KwJyEyUs5xAL+QoefnEGP3/1Nkft8Y1yxXatzvLMiXMjajmlRxvdVvr2IhEJYSAe9nxIUizTMoITbbadYGYsFWtdhyMFMq1O1tI/YglJ7QrLlutdDUllpcKY2bN2YyUs5xD/+vQp1BqMd3lYtG/nks0DCAYIz54jdRYje0x64Ychydlc2XDEsjpx7szNXFCqNVCtNw2kwsLIleuoS+iWaqfZZOTKtZ62J6moXGHRnK67tFbH5BTvtc4yVhGLwjrMjHv3ncAV2wdx4aa018cBoG1P3DOewnMnzxFhERGLVWEZiHmeClvIV7ta069FDCuK3exO0W/qXjAo1vZKTs3lq3U0ubdRo1ZjkXfdfKWzASWAVrHdbsQihCkZUV1hCos8M7WCAzM5vNsn0Yrgki0ZvDSd9foYUji1XEYiErS822I8E3XN1LET1bq2zGrtOtxuiNSUTI+sTgjhMlK8B+Sn5kSnWS9hycRCkov33YUlJandWBT/Ux7sAFLCco5w7/4TiIUD+NkrNnt9lDO4ZHMGs7mKa/brTjK9UsLmgZhlp+ixdAwLhYr0VI5RhEAYFxZ3UmGiIN/vXAMOGVH2cjYWiKFFWQOuuXIN6Wjn68maYxERj5pjUViiVG3ga0+fwn+6bLPr9tj9uHhzBgDOiajl1Eq51TZshfF0FMzAgsOppW6InSdGhSUTCyNAbqTChLOxsVSY7FmWlk9Yj0hURBeyOsN6RSyRUACRYAA5ScKiivcKSzz43DRylbpvivbtnEvCMr1cMryOuBNi2n026030tmRSWAIBwmAi4nwqrGgyFSZ5lsXIMizRwSUrHZbr0RUGaAV8+6kwJSwKG9y7X9sSed0ud7ZEmmE4GcGmTAwvTee8PootqvUm5vIVbLYTseiiNJvzpoC/YFJYAOf2vbcjtkIOGoxYZJ+nl2W+ICXRiLLR5L6Di8lo0PaAZKEqUmFKWBQmOTpfwPePLOIX9m53dUukGS7enF73EctsrgxmrbPLKuMub2Vcy1KfZVqdGE5EWik0p8iWa0hGgggHe9+OMh4KS1qisIgbfqaXsETsD2QWq5owxQ24LMhGCcs65979JxAg4B1Xb/P6KF25eHMGh2bzqNTtW1R4hfD4shOxiDZfr1Jhrb3yJtYYuJEKE87C/QgGCJlYSPqQZK5cBxF6emqJQruMVFgvnzBBKmo/FVYSwqLajRVmqDe0LZFvuHAcm2x8knaaizdnUG8yDs7kvT6KZcTEvJ2IJRIKYDgZ8SwVtlioYiAeRqhPZNDOkAupsF6F7LUMJMLS243zFc2oMdBjxYTM4n0vnzBBUsJOllJNE5bERhYWIrqJiA4Q0SEi+miH5z9ARHNE9LT+55fbnruViA7qf2519+Te8Z2Dc5jJVnxZtG/nXCjgy4hYAC0d5lUqbLFQxYiJ+gqg1WMWi1VHjSizfabe28lIHlQExJbF3jdfmakwoxGLrFRYzAN7J19skCSiIIC/BfAmAFMA9hHRAx1WDN/DzB9Z895hAH8CYC8ABvAD/b3n3l7cNdy7bwojyQhuuGjc66P0ZNdoErFwYF0X8KeXS0jHQrYLoWMeCstSsdp19W83BhMRVOtNlGoNJByyX8+WaxhPG4sEZXt2AdogYb/OqdXivf3ozUgbsJxUWB2xcKBnJOYUfolYrgVwiJkPM3MVwN0Abjb43rcAeJiZF3UxeRjATQ6d0zfM5yt45KUZ/PzVWzs6pPqJYIBw4ab1PYF/aqVs2cqlnfF0DHMeuT0v5KumCvcAMJx0fkjSTCosHQu35k5kka/0dwCOhoKIhOzPlgCrtY9eNZ1kNGS7K6xYde7DQD/8ckfaCuBE2/dT+mNreQcRPUtE9xGRyP8Yei8R3UZE+4lo/9yc97vH7fIvPzyJetM/hpP9uGRzGi9OZ13Z7eEE0yslKXWs8Yy2ldGLfw9LRfOpMDE74uSQZLZkPBWWlmwGCeipMAM3YFnXFpFIr9pHKhpEvlJHs2n970mp1vCkIwzwj7AY4WsAdjLz5dCikrvMvJmZ72Dmvcy8d2xszJEDugUz4+59x3HVjkHsmfCH4WQ/LphIY6VUc23VrWyml8uW7PLXMp6OotZgx21S1sLM2pZGk8LitF8YM5uMWOR6dgF68d5AilNWGs5IUV2cp1izHrWUqg1PCveAf4TlJID2j97b9MdaMPMCM4u70mcBvNroe881vn9kEa/MFfDea3d4fRTD7BnXBPDQOuwMK9caWChULdvltyNqCW53huUrdVQbTQvFe2dTYaVaA/UmG2o3BrRUWL5Slxrxacuw+t+A07Ew8hJETaS4eomZDL+wYrXhSasx4B9h2QdgDxHtIqIIgFsAPND+AiJqd1d8G4CX9K8fAvBmIhoioiEAb9YfO2f58vePIxML4Wcv3+L1UQyzZyIFADg4u/6E5bToCJOUCgPcn2UR0+1Wivfa+52JWIx0SLWTjoXQ5NWOJxkYKd4D8nayFKva3Ey0R21URnuzl6kwX3SFMXOdiD4CTRCCAO5k5heI6HYA+5n5AQD/lYjeBqAOYBHAB/T3LhLRn0ITJwC4nZkXXf8lXGI+X8HXn5/G+14z6dmnESuMp6NIx0I4OLv+OsNarcYSIhaxvXHO5c6wRT2VZbrGEhcRizPCIny6DNdYWp5d8jYjGinea9cO4dhC0fb1itUGkpFQT6cMUfOxE7GUqg2Mpsz995aFL4QFAJj5QQAPrnnsj9u+/hiAj3V5750A7nT0gD7hq/unUGswfvG69ZMGAwAiwp7x1LockhRpq00DxhZk9WJE/x/daZuUtSwWNCEzG7GEggGkYyHHhiSzJiOW9rZfGc0UtYZmhW8oYpG0975YrfetfYjz5G1ESMVqHfGI/Q9DVvBLKkxhgGaT8Y9PHcN1u4Zx/vj6KNq3c8FEGofWYSpMpK3GDM5a9CIVDSHH2k6wAAAgAElEQVQSCri+n2ZRT4UNm2w3BjQPLad2za9a1huNWEL6++R0hplxAM5IanUuVPoX1WXsvS/XmoiHN3a7scIAjx2ax4nFEt73mkmvj2KJ88dTWChUsbDOOsNmc2XEwoGepoFGISKMpaKYz7sbsQgblMGk+X09TgqLqFkYn7yXuxfFzDKsZDSIYrVhu3HAyHyJcAIQhpXWrtM/MnIKJSzriC89eQwjyQje8qpNXh/FEqI1er1FLTPZCsbT1jdHrmUkFcFCwV1xXS7WEAwQ0hbqEgPxcKsWIpvVGovxAUlA3l4UIx1agkQkhEaTUbG5RdLIDX81YrHepKC6whR9mV4p4dGXZvCua7b7ftK+G3vG12dn2GyujImM/fqKYCQZwYLLEctSsYrBeNiSOGZi/kmFiRuurCFJM1sWk/pN2m5HWrHaQKLP9YQglCxGLE1dANWApKInX3nqBBjAe65ZX0X7djYPxJCMBNddxDKrRyyyGElFXU8HLpdqrZ3xZnE6FRYOUs/W23bSEj27gNUai5GusISE2RJAi1iSfSIJkSqzKmJeOhsDSljWBZV6A//4/WN4wwVj2DGS8Po4liEinD+RXnctx7O5Smv+RAYjqQjmC846Bq9lpVhrtQ6bZSAh359LIOxcjEZSWpuuvW6pdlrFewOWLkmbN/vVa/ZPUQUDhEgo0PIVM0vRw10sgBKWdcHXnpnGfL6KD71ut9dHsc16azkuVOrIV+pSI5bRZBTVelNaAdoIyyXzBpSCgXgY5VrTkUVtZuxcACAQIKSiIWldYXkTEYsoqMvYk2JEyBKRoGURK9e82x4JKGHxPcyMO797BBdMpPDa80e8Po5t9oynMJurYMVlryyrCIt7qTUWfZbFzTrLctF6KkwU1p1Ih2XLxrZHtiPTiHK13dhIV5iIWOxdu1Ax1q2VCFsXFvG+je5urOjC948s4sXpLD742l2+3WlvBmHtcmhufaTDZnSLe9k1FgCudoZpqTBrEYu48WdL8iMssxELoHWGSauxVM10hektwDY6tURXmZEbfjwSbEUeZhHip2osio7c+d0jGEqE8farOm0RWH+cN6YJyytzBY9PYgxHIhZ9+t2tWZZao4lcpY5BG8V7wKGIxYRlvkDmsq98pY5QwFjzwGqNxd5sCWAsQkpEQpavJYr3MZUKU6zl+EIRD780g1+8btKzvyCy2ToYRzhIODK/ToTFgYhlVEQsLgmLmBWxKiyrEYt8YbEWscixVgHEWuLevl2CRGto0d5sCWCsqB63UWMpVVVXmKILd37vCIJE+H9+Yn1O2nciFAxgx3ACR9ZRxBINBZCJy8tVDydFjcWdVNiyLggDVrvChLA40BlmZt+9ICUxFWbUgBJYLfDbtbIHjHWhJSLBVuRh9TpKWBRnsJCv4J59J/C2K7dgIiPv07If2DWaWjcRy0y2jPFMVGp9KxLS7GEWXDKiFAaSgza6wgD5qbB6o4litWG+eC8xFaZFLMZuvrFQEERA0YawCFEyErHY6QpTqTBFRz7/+FGU6w18+A3neX0U6eweS+LIQsHW2lW3mM1WMCExDSYYTUVdM6JcKek+YRYjFhFRyO7kM7uLRSBXWIztYgG0VudEOGgrFSZu+EYilng4ZHmORaXCFGeRK9fw+ceP4qZXbVqXLsb92DWaRLXexKmVktdH6ctMrix1OFIwmoq6VmNZjVisCUskFEA8HJSeCmvZuZhMhWViYVQbTcsdU+2YSYUB2vS9neJ9a9+9oeJ90PK1VLuxDhHdREQHiOgQEX20w/O/RUQvEtGzRPQoEU22Pdcgoqf1Pw+sfe9644tPHkOuXMeH33C+10dxhF2jSQDA4XVQZ5mTbOciGElFXItYWsJisd0YcMbWxWrEIsNSXlCo1A1FD4JkJGir3dhM7cNW8V4XXaNWObLxhbAQURDA3wJ4K4BLALyHiC5Z87IfAdjLzJcDuA/AX7Q9V2LmK/U/b3Pl0A5RqjbwuceO4PoLxnDZtgGvj+MIu8c0YfF7naVYrSNXqTsSsWgOxy5FLKUaiMzfwNvJxEPShaXlbGyhxgLIMaIUXWFGSdqMWMwU7+PhICr1JhoWUsalah3xcBCBgDezb74QFgDXAjjEzIeZuQrgbgA3t7+Amb/FzGIv6JMAtrl8Rle4d/8JLBSq+MhPn5vRCqCt501FQ74XFrHgy4kay0gyiqViFfWGPQt2I6wUqxiIh23dZDTrfLkDkma3RwpkWudrqTDjdYhkxF6rsxAlo8V7AJY6w7SdL96NKPhFWLYCONH2/ZT+WDc+BOD/tn0fI6L9RPQkEb290xuI6Db9Nfvn5ubsn9gByrUG/u7bh3DNziFcu2vY6+M4BhFh12gSh30uLK2pe0dqLBEwA0suWNssl6wbUAqcSIVZrbHISoUxMwpV48V7QKuN2DGhbO1/MdhuDFgbyCxVG57OvvlFWAxDRO8DsBfAX7Y9PMnMewG8F8CnieisVipmvoOZ9zLz3rGxMZdOa44vPnEMM9kKfufNF3p9FMfZNZrEkXl/m1GuTt07UWNxz9ZF8wmzXl8BnNnJYnZ7pEBEOHYdjkWayVQqLBKyNcdSqtZBBMTC/W+9cV18rHSGlWoqYgGAkwC2t32/TX/sDIjoRgB/COBtzNz6P5KZT+r/PAzg2wCucvKwTpAr1/B33z6E6y8Yw3W717/ZZD92jSYxtVRyxDFXFqs+YQ7UWJLuGVHKiFgycfnW+aLGkvKoeG/G2VhgZ7YE0Kb2E+GgsUl/G4vFVCpMYx+APUS0i4giAG4BcEZ3FxFdBeAfoInKbNvjQ0QU1b8eBfBaAC+6dnJJfO67R7BUrOF3N0C0AmgFfGbNtsavzOUqiIQClifWeyEiFjc6w5aLVcutxoKBeBi5ct1SIbkbuXId6WgIQZO1n5Skvferzsbmivd2J+/7bY8UxG0Ii0qFAWDmOoCPAHgIwEsA7mXmF4jodiISXV5/CSAF4Ktr2oovBrCfiJ4B8C0An2TmdSUss7kyPvvYEbz10k3nbCfYWkTLsZ/NKGeyZYyn5U7dC0ZdtM5ftrHkSyA6t2RZqQBajcVKp5qs9cSrEYuJ4r1eY7G6pM3IvntBIizWE6+/VJg30zMdYOYHATy45rE/bvv6xi7vexzAZc6ezln+6qEDqNQb+L2bLvL6KK4hhMXPnWGzuYpjdjqZWBihADleY2k0Gdmy/RrLQJt1vlVrmLXkLOxiAbTZjHCQJEQsxi3zBYlICHXd+t5KRFCoNAwPLSZsuClrAubdtllfRCwbmeemVvDVH0zhl167q3Wz3QikY2GMpaO+LuCLiMUJAgHCcDKC+ZyzEUuuXAOzdTsXgRN+YdmSeWdjQOsqTEVDtov3ZvbdC5I20lMAUKr133cviNtoNy5V+68/dhIlLB7CzPhvX3sBw4kIPnLDuTu30g2tM2xjRiyA5nLs9JCkXTsXgRNbJLVUmLVzpSRY51sq3tt0ODay7751LTs1llrDs7XEgBIWT/nXp09i/7El/M5bLjTdcnkusNvHwlKqNpAr1zHmUMQCaNP3iw6nwpZt7mIRiLXGMjvD8hVrEQsApKJh2zUWK8X7VGs9sXVzSKMWMqorTGGahXwFt3/tRVy9YxDv2ru9/xvOQXaNJjGfrzqymdAuszmt1djJiGUkGcWi4xGL9vMHbPiEae+XnwqzsuRLkI6GkK/YO0vegrC01hNbtHUpmCjet1JhJq8l1h+rVNgG5PZ/exH5Sh2ffMflptstzxX8XMCf0e1cnKqxAO6kwlYkRSwt63xJwsLMyHmcCludgjfTFWYvFaa1Gxu7XiQYQDBApiMW4fqsUmEbjG++PIP7nz6FX/vp83HBxLlni28UYUZ51IfC4k7EEkGuXEe17pxf2KqzsT1hSUSCCAVI2nriSr2JWoNtpMIkFO+rdcTCAYSCxm+DrYjFosNxsWrcTZlI2/9iVli83h4JKGFxnblcBb9337O4cCKN//ccXOJlhm1DCRABx3w4JOlKxKLPsjiZDhPCYnfIk4ik+oW1LPNNpKHakVW8N1O4B1Y9vqy0ADeajHLNXIoqHgmanmMRr497tIsFUMLiKs0m47fufRq5ch1//d6rEA1594nCD8TCQWzKxHBswZ8RSyQYsJ1C6kXL1sXBAv5yqYp0NGTqU3k3MlKFRfs5VlNh6aj9LZJmLfOBtlSYpYK6XtMxccO3sve+pFJhG4vPPHYYjx2cxx//50s2dAqsncmRBI4t+i9imc1WMObQ1L1A2Lo4GbGsFGsYTMoRR80vTI51vtUlX4JUNIRKvWkrjWh2yRegTd4D1vber0YSZiKWkIVUmL6lUqXCzn2+fWAWf/71l/HWSzfhvdfu8Po4vmFyOOnLVNhsrowJB+zy2xlOupAKK9VsbY5sx5FUmI3iPWC9iA5YS4XFQkEQWYtYxHuSJixktIjF3O9oRcBko4TFBQ7O5PDr//gjXLgpg7/6hSsc/RS83pgcTWA+X5GyZlYmMw6tJG7HDYdjGQaUgkwsJK14L1qFzd7YBTIcjguVhqmbPKA5JiTCQUuCthpJOOumrFJhG4CZbBkfvGsfYpEgPnfrXtM53XOdyWGtM8xvLsezWecjlkwsjKDDfmHLpZo0d2Zti6QcYbG6PVIgYz2xlRoLoE3fW/PvMt+tFQ+bL96vi64wIvLvwgyfc3qljFvueBKL+So++/692DIY9/pIvmNyRDPK81MBv1xrIFuuY9zBVmNA+/Q7lIg4X2ORFbHoO1msOvu2Y3XJlyAV1d5nJ2KxkgrTrh2y1G4sohzHI5Z1kgpTeRsLnFwu4ZY7nsBcroIvfOhaXLF90Osj+ZIdQlh8VMCfdaHVWDCSjDiWCmNmqTWWTCyMWkNrmbWL6Aozm4oSrO5ksR5BWY5YIkHL64LF+41ipXgvUmFmBEw2Rq4sb7PPBuFHx5fwX77wA1RqDdz1wWvx6skhr4/kWzKxMIaTEV8V8GdyYte9sxELIPzCnBGWfEVbzCUvYtFuF9lyzfan4XxZszax2gZtdydLs2l+371AW09so3hv4oavpcLM/Y5CiNZFjYWI/iepqnNPmk3GHd95Be/6hyeQiATxzx/+SSUqBpgcSfgqFSYiFqdrLIDWGeaUsMgajhSItJWMOosdnzCgbe+9VWsV/VO9mSVfgkTUasRSb73f8LUiQRRr5haLlap1EAGxsHcldDNXzgF4gIiSAEBEbyGi78k6CBHdREQHiOgQEX20w/NRIrpHf/77RLSz7bmP6Y8fIKK3yDqTGX5wbBE/93ffw39/8GXccNE47v+112KPmlUxxORwwlcRi7BzcborDNBTYQ4Li6zFXGIplwyH41zFuk8Y0NYVZjFiseJsLEhGrE39FyylwoJg1ixwjCIs872MAwz/W2XmPyKi9wL4NhFVAeQBnCUAViCiIIC/BfAmAFMA9hHRA2tWDH8IwBIzn09EtwD4cwDvJqJLANwC4FUAtgB4hIguYGbHmw5WijU8+vIM7t53Ak8dWcREJopPv/tK3HzlFtVSbILJkSTuf+YUKvWGL9wIZrIVhIOEIQen7gXDyShWSjXUGk2EJUzHt7Nc0gRLViqsfYukXXJla4VzQSKizZNYjVis7GIRiPXEZilW9EjCxN/xdut8oxsri1Vvd7EAJoSFiN4I4L8AKADYDOCDzHxA0jmuBXCImQ/r17obwM0A2oXlZgAf17++D8Df6Km5mwHczcwVAEeI6JD+856QdLYW8/kK/uT+F5At13ByqYQjCwUwA1sH4/ijn7kY77l2h2ontsDkSALMwNRSCeeNpbw+DmZzZYynY658OBB+YUuFqvSajiwDSoFY9iUlYrGZChNbJK3WWFoRi4UCdyISsjjHot3wAybczFeFpd4aqO2H19sjAXM77/8QwP/HzN8lossA3ENEv8XM35Rwjq0ATrR9PwXgum6vYeY6Ea0AGNEff3LNe7euvQAR3QbgNgDYscPa5HuACC+fzmIgHsaeiRRuvnIrrr9gFFdsGzT1l0VxJqLl+PhC0R/Ckq1g3IX6CtDuF+aAsOi1kAGJ7caAHOv8XLmGrTbb77WdLPYiFkupMD1iYWZTHz4KVeP77gXCSNLMLIvXS74Ac6mwG9q+fo6I3grgnwD8pBMHkw0z3wHgDgDYu3evpU634WQEj/72G2QeSwEtFQYAR31SwJ/NlVu7YpxmxEFbl5XWki85wiIiDD8U7wHd4dhyxCKK99YilnqTUW00TaVui9W66fbqRNj8Fkmv1xIDNuZYmHkawBslneMkgPY1itv0xzq+hohCAAYALBh8r8LHjCQjSEaCvingz2Sd3XXfzkhqNWKRzXKxhkQkKK1uFQ0FEQsHpBhRWh1ObCdlI2JZLd6b/3cjFoMVTbYcW6l9WFlP7IdUmBFh+RIR/QERTa59gplLks6xD8AeItpFRBFoxfgH1rzmAQC36l+/E8A3WevBewDALXrX2C4AewA8JelcChcgIkyOJH3RclyuNbBSqrkmLMNJLeW2kJdv66INR8ptQMjE7Nu61BtNFKsNW11hAJCKhZHzpHhvrdVZi1jMpsL09cQmjCiLtbqnw5GAgVQYM7+fiDZB68DaAeA5AF9lZml3Ab1m8hEADwEIAriTmV8gotsB7GfmBwB8DsAX9eL8IjTxgf66e6EV+usAfs2NjjCFXCZHEjgwk/P6GK5O3QNaYT1AzqTClos1DEhqNRYIWxc7iBuy3VRYOhrCySVrUa6tduOoWPZlPmIxK2SJiPlrldZLVxgznwbwPwGAiC4C8BtEFAfwbWZ+RMZBmPlBAA+ueeyP274uA/iFLu/9MwB/JuMcCm/YMZLAIy/NoNFkBD1shJhxYSVxO8IvzIlU2EqpKj1i0Ywo7aXC7O5iEdhNhRFZM2oU7zEdsVQapj+wnMupsLWcAjAD4PUA/oSI1kXxXuFvdo4kUWswpldkZVetMZN1V1gA3dbFAb+wZYkGlIJMLGQ7YpEmLDaK9/lKA8lIyFJL+WrEYu7aBRP77gWtVJiZrrCa911hpoSFiN4M4LsANgH4ADO/npkfd+Rkig3F5PBqy7GXuJ0KA5yzdVkuOSAsEpZ92V1LLEhFQyhUG2g0zTd5agaU1m6+QhzM+oVZiSQ2SsSyH5qgfIKZjzhxIMXGZHJUtBx7KywzLuy6X8tIMip9JwszY6VYw4AkZ2OBjOK9rIhFvL9gwbcrb6GQLmitJ7YSsVjYWAnAsBFlo8mo1Jvro8YiYOZFaIVzhUIqmzIxRIIBHFv0tjNMDEe6ackz7IBfWKnWQLXRdCBiCSFbrpseDmzHTkdWO+1+YWb3uhRstDsLcTAzfd9oausGzN7wAwFCPGzcQmbVMn99RSwKhSMEA4Ttw3Ecm/c4YsmWXa2vAJqwLBdrqDfs7zkRyLZzEWRiYTSabMkrSyAtFWbD4bhQMV/vELRSYSaHFgFrczPa3nuDwtJa8uVtu7ESFoVvmBxJer7wa8aFlcRrEUOSS0U5a3+Bdmdj+TUWwJ5fmN21xAI7O1nyFWu7WADNjj5A5iKWooXtkYJ4xPh64pIPdrEASlgUPmLHcALHFwpSVt9aZTZbccUuv50RfUhSZgF/uWXnIr/GAthzOM6V64gEA4bderthZyeLlgqzdn0iMr3sy84eejPriYs1IWBKWBQKAMDOkQQK1QbmHVrV249itY5cpe6aAaVguGVEKa+AL6KfoaT8ORbAXsSSr9RaaSw7tPbeW4hYrK4lFiSiQVMRi2gwsBaxhFqLyfrhh333gBIWhY8QZpTHPSrgtzZHuh2xCL8wiYIqdrEMSZ+8t29EKcOAErC3996uV1kyGjLVjWYrYgkHW6m0fqhUmEKxBmGff9SjAr4Xw5HAasQiNxUmdy2xQKTC7MyySBMWizWWeqOJSr1pK2JJmtzJIoTFavHecCrMhoDJRAmLwjdsG0ogQPCsgD+Tc2/XfTtDiQiI5DocLxWqiIeDtusYa2kV720JSw3pqH3BS1k0gxS1EVvCEg2a6gqzU7xPREPGu8JUu7FCcSaRUACbB+I47pHL8awescheuNWPYIAwGA9jUXKNxYnVyq2dLDas83PlupQaSzBASESCpmssOT11ZrV4D1iPWCynwgym3UQqTPYHCrMoYVH4ip2jCc+m72eyZcTCgdYKXjcZSUWld4UNSq6vAEA4GEAiEvRFjQWwZkQpJ2IJmZrlKdoq3gcN736xcx2ZKGFR+Aov97LM6K3Gbk7dC4aTEcnF+5r0jjBBJmbPOj9XrpmelO9GKhYyvZNFxuR/0nRXmM1241rDUBt+qda0fB2ZKGFR+IrJ4QSWijUpe9XNMptzfzhSMCLZ1mWpWMWg5BkWQSYesjzHwszIV+RFLOmoeYfjggxhsZgKs9KtlYyG0NBXIfejVNXWAURD3t7albAofEWr5diDdJjmE+ZufUUg2+HYCct8wYCNZV/FagNNtu8TJkjFrKTCrC/5EiSi2mxJ06CzcrFSRyISRMDCriEhRkam78X6Yy+i7nY8FxYiGiaih4nooP7PoQ6vuZKIniCiF4joWSJ6d9tznyeiI0T0tP7nSnd/A4VMdo7qLccepMNmsmXXZ1gEI8kIlopVSxbwa2k2GcvFqvQZFkEmZt06f9XZWFIqzELEIiUVFgmCGYa7tezsSDFjnV/ywS4WwAfCAuCjAB5l5j0AHtW/X0sRwPuZ+VUAbgLwaSIabHv+d5n5Sv3P084fWeEUO/S9LG7XWfKVOgrVhnepsFQUzKtWLHbIVeposnyfMIGd9cSrBpSyivdh0xGLnBqLOct+LWKxdr14xLhNvx92sQD+EJabAdylf30XgLevfQEz/5iZD+pfnwIwC2DMtRMqXCMRCWEiE8Uxl1NhXg1HCmQOSQpxcqIrDNC3SFqssYhCu4x2Y0ATqJxJkZORChODjkb9wgpV65FE0sTee5EK8xo/CMsEM0/rX58GMNHrxUR0LYAIgFfaHv4zPUX2KSLq+JGTiG4jov1EtH9ubk7KwRXOoHWGeSMsbvuECUZafmH2haXlE+ZgxJIr1wzXF9oRqTBZLd2i3diMcWmuUkckFEDERoF7dYuk8fkSt1JhXlvmAy4JCxE9QkTPd/hzc/vrWPvb0fVvCBFtBvBFAL/EzKJF4mMALgJwDYBhAL/f6b3MfAcz72XmvWNjKtjxM5PDCddrLKsriT2KWCT6hS05HrGE0WRrmxtl7WIRpGIhNE3UOgDNtDJts3nA7LIvK9sjBWb23peqDSQ2SsTCzDcy86Ud/twPYEYXDCEcs51+BhFlAPw7gD9k5ifbfvY0a1QA/B8A1zr/GymcZOdoErO5iunVr3aYzYlUmDcRy2oqzP70vUiFORexWJ++l7WWWNC+RdIodp2NgVVhMbzZ0UaKKhExXs8p1uqqxqLzAIBb9a9vBXD/2hcQUQTAvwD4AjPft+Y5IUoErT7zvKOnVTiOMKN0Mx02k60gEQlKa4M1i+jgkpEKW13y5UzEMmDDL0wIgKx/z0KgzAxJ2nU2BrSuMPGzjGAnYjGTCiuq4n2LTwJ4ExEdBHCj/j2IaC8RfVZ/zbsAXA/gAx3air9MRM8BeA7AKIBPuHt8hWx26rMsbnaGiZXEXvX/h4MBDCbCUor3S8UaiOQ7GwtWl32ZF5ZcWTub1bXAa7ESseQr9r3KViMWo11h9mssRlJhZZ+kwjyv8jDzAoA3dnh8P4Bf1r/+EoAvdXn/DY4eUOE6OzyIWLTNkd6kwQTDkqbvl4tVZGJhBC0M4xlBOBxbmWXJlrVowcqgYCesOBznK3XbtbTV4r1xO3vrwmKiK6ymIhaFoiOZWBgjyYirZpQzubJnU/eCkWQEC3n7NRannI0FrYjFYo1Flk8YsNq2bGYnS75sPxWWaLUb979uo8n64KK1a8bCARBpdi39UKkwhaIHO0YSrqXCmBnTK2VsHvBWWGTZuiwXqxhwqL4C2Nsima/UpNaxxF4XcxFLw3bxPhzU2pWN7GSxuyOFiJAI99//0mgyqvUmEmHPE1FKWBT+ZKeLsyyLhSqq9aYPhEWOdf6ywxGLEAYr0/cyLfOBtvXEJs6Sr9SknCEZMeZw3FryZUPM4pH+Nv1+WfIFKGFR+JTJkQROrZRQNjGfYJXpFa3VePNA3PFr9ULzC7M2eNjOkoM+YQAQCgaQilqbvpctLGIC3mjEUm80Ua41pTQPGN17v2ohY/2Gn4gE+6bCRCNBTAmLQtGZnSNJMANTS85HLaeWSwDgecQykoqg0WTbKwOcdDYWZGIhixFLDSmJNZZoKIhIKGC43VgU22VYyhi1zm8tFrMhZkb23per+i4WH3SFKWFR+BIxy3J03nlhOa3buWwe9DoVZn+WpVpvIl+pOxqxALoRpcWusIG43BqAmZ0s+ar96EGQjPa/2QNyTC+NCIuInpISfje7KGFR+JLWLMuiGxFLGeEgYTTpbbvxiH59O51hItpxPGKx4HDMrEVjsudrzOxkWR3QtH+GpMG1yFL2v0RCfWdm/LKWGFDCovApg4kw0rGQK51h0yslbBqISZutsIoMh2OnnY0F2k4Wkwu2qg00miy13Rgwt5MlX9HEUFYqzMgu+tVIwk7xvn/EkhcpN4/cI9pRwqLwJUSEnSNJV2ZZppfL2JzxtnAPaDUWwF4qzGlnY4G2nthcxCKiKekRS9T43ntx85WRCktEg6aK93aaFhKRYF+jzWJFpcIUir5MujTLMp0teV5fAVb9wuxELEstA0pnI5aBuPktklmHhCUdMxGxyEyFGS7ey0qF9aux2G8SkIUSFoVv2TmSxNRSCbVGs/+LLdJsMk6vlD1vNQaASCiATCxkS1hWis7cvNcyGI8gX6mb+m/jZMRi2AxS4qd6rd3YSPFeny+x0a2ViARbEUk3VmssKmJRKLoyOZJAo8k4uVRy7BrzhQpqDcYWH0QsgLaieN5G8b4VsSSdjVhEc4CZdJgQloyHxQtJ18QAAB9uSURBVHuRMktLiViCqNabfcW1UKkjGQnaquElIkEUa42eC83yEiIjWShhUfiWnaPOd4ad1ocjN3nsEyawa+uyVKwhHKSWrbtTCGERNR0jOBexhE2nwmRFLAD6FvBl7H+JR4JgBir17iJWrDQQDBCiNjZjysL7EygUXZgcFi7HztVZTi1rwrJl0PtUGGBfWBYLFQwnI47b/4uus5WS8bNmHYpY0rEQqo0mKnVjHVqxcAChoP1bX2vqv08BX87+l/4Ox4VqHYlI0LPVD+0oYVH4lrF0FPFw0NEhyekVf0zdC0ZsWucv5KuteRgnGdTFYdlExJItabtY7K4FXku65RfWP2rJSXA2FqxGLL2vKytiET+rG8VKwxeFe8AHwkJEw0T0MBEd1P851OV1jbYlXw+0Pb6LiL5PRIeI6B5926TiHICIMDmSwFEHI5bplTIioUBrhsRrRlIRLBWqPXPpvVgoVFtty04iUmFmhGWlVEMmFpY+L2RmJ0tBQvQgEDfxftctVBq2U2+tZV89Wo7z1XrLzt9rPBcWAB8F8Cgz7wHwqP59J0rMfKX+521tj/85gE8x8/kAlgB8yNnjKtxk91gSh+fyjv18YZfvh/QBoDkc15tsyeARABYKFYy4IJKDce0ayyaL9xnJdi7AqrAY2ckiY3ukwOjee5mpsN4RS11FLG3cDOAu/eu7oO2tN4S+5/4GAPdZeb/C/+weTeHEUgnVHkVLO0wvl3yTBgPQEoX5grXOsMV8FcMupMLSsRACtDrpbwQn7FyANut8AxFLvizv5pswuPfezr57gXh/r42Vhar9yEgWfhCWCWae1r8+DWCiy+tiRLSfiJ4kIiEeIwCWmVn8l50CsLXTm4noNv39++fm5qQdXuEsu8eSaDQZxx3qDJteKWOLD2ZYBHZsXcq1BgrVhiupsECAMBAPm6uxlOuOCEtr2ZfRiEVSKizVilicr7EYSfcVq/6JWFw5BRE9AmBTh6f+sP0bZmYi6pZcnmTmk0S0G8A3ieg5ACtGz8DMdwC4AwD27t1rb+GFwjV2j6UAAIfn8jh/PCX1ZzeajJls2RdT94KWw3HevLCIor8bqTBA6wwzmwqbyMj9bwiYi1iy5Rou3JSWct3V9cTOp8LSBn7HQqWBxOgGEhZmvrHbc0Q0Q0SbmXmaiDYDmO3yM07q/zxMRN8GcBWAfwIwSEQhPWrZBuCk9F9A4Rm7x7RZlsPz8gv48/kK6k3GJh9FLCLasBKxCFfkkZQ7Ls1axOKDVJiosRgRFolnMFL3kLVYTEQ8vTZlikFMP+CHVNgDAG7Vv74VwP1rX0BEQ0QU1b8eBfBaAC+y1jrzLQDv7PV+xfolEwtjNBV1pIA/pU/0b/VhxLJoocYiIha3OtwGE+b8wkRXmGyMths3m4xcpY6MpOK9NjPSW1haS75s1j7E+3tZyBSrDV9Y5gP+EJZPAngTER0EcKP+PYhoLxF9Vn/NxQD2E9Ez0ITkk8z8ov7c7wP4LSI6BK3m8jlXT69wHK0zTH7EIrZTbh9KSP/ZVomGgkhHQ5i3kApb1N8z6kKNBdBmWZYMRizlWgPVelP6cCQAREMBhALUssTvRq5SB7O8AU0i0lY09xC01cVi9m74rU2ZXa7FzChU61Jcm2Xgubwx8wKAN3Z4fD+AX9a/fhzAZV3efxjAtU6eUeEt540l8dALM9J/rohYtvlIWABgOGVt+n5Bj3Lci1gihov3TjkbA/oN3oDDsROT/5lYuGebswxnY0E6GuoqnuVaE8xAwgc+YYA/IhaFoie7R1NYLFRN5fONcGKxiNFUpDXV7Be06XtrqbBIKCCt66kfgwntplo34HDslE+YwMhOlpYJpsR0XDoW6rlJU8ZaYkGyx0KzlgGlT/4uK2FR+J5duhnlK5LTYVNLJd9FKwAwno5hNmtBWPJVjLjgEyYQti69UkECp5yNBUa2SAoBkClumXi4p8OzzIhFWw/Qucbip7XEgBIWxTqg1RkmuYB/YqmI7cP+E5aJTBQz2bLp9y26ZOciEEaURuosTkcs6Vio7+T9aipM3s03Ewv3FFaZ+1+09QCdRUxWk4AslLAofM/24QRCAZLactxoMk4tl7BtyD+txoLxTAzZch3lPqto17KQr7gydS8YMOEX5rSwaDf43ucQNjlSI5ZYCLmeqTCxCllWjaWziImIxQ+7WAAlLIp1QDgYwI6RhNSIZSZbRq3BvuoIE4ynNXEwmw5bKFQx6qKZ5pAJ63yxt2Uo4YywDCT6uwA4kY5zMxVmpMaiUmEKhQl2j6ZwRGLEckK3iNk+7L+IZUJfOjaTM5cOW8hXXXVpNmOdv1SoIhggR+ZYAE3k+jV3ZMuabX9K4s03E9OaBprNzmYeMov3WiqsW41FpcIUCtOcN57E0fmioQ4kI5zwaasx0CYsJuospWoDpVoDw67WWDSRMNIavVCoYigh3zK/dZZ4GIVqo6dZadYB2/50LAzm7su+CpU6QpK2OvZqN25FRipiUSiMc8F4GtVGU9qa4qmlIojgm1337UxktFTYjIlU2Kwe3Yyn3ft9MrEwQgEyJCxis6VTDCaFjX/3szhh2y9+XrfGAWFAKaNTLxkNoVxrotbhw5WIWBKq3VihMI4wDvzx6ZyUn3disYRNmRiiIX/8j9jOQDyMSCjQEgsjCBESouQGgQBhOBkxZJi5VKi1ajJOINJyKz3Sck64K4vUXrc6S84BN+VOFjJ5ibUcGShhUawLzh9PgQg4MCNHWI4vFnzZagxok+Tj6aip4r1Im4k0mluMpKKGhjkXChVHW6GHWq3P3YXFCa8y0QjQTViypbq0ZoFeLs7Fah1BSSk3GfjjFApFH2LhIHaOJPFjScJyZL6A3frgpR+ZyMRM1Vhmc3rE4mIqDNB8yeYMRCyLBWcbC1ZXJXc/i0xnY4EwwOw2y5It16SZXqZ77GQpVBq6KaY/NqEqYVGsGy6YSOFlCamwbLmG+XwVO30sLONpc0OSs9kyoqGAI6t/ezGairbs+rvRaDKWSzUMO5kKMzBTo93knUmFdZtlyZZq0iKWVev8zhGLXwr3gBIWxTriwok0js4XTA8OruWo3ra8y8fCMpGJtaIQI8xkyxjPRF3/xDpioMayXKyC2VlzTOEC4H7xvk+NpVyXJmYiFdbJE61QabQWj/kBJSyKdcMFm9JoMvCKzUHJI+tAWMYzUeTK9b5rbwUz2YrraTBAq7GUao2e5xSWL8MOLiBLRoIIB6lrjaVSb6Bca3qTCpMkZukexXsnojE7KGFRrBsunNA7w2zWWY7MF0AE7PBp8R5YrZUYLeDP5MquF+6B1Y2XvaIW8ZyTqTAiwkC8u42/sHORbYIZDgYQDwc7psKaTUa+Ij9i6ZQKy5brLZHzA0pYFOuGnaNJhIOEA6ftRyxbBuKIhf2TOliLEInTBussc9kKxl1sNRaM6VHIXI86y6JLmy2HEt1XJTvhbCzIxEMt4WpH9mKxZI/ifa4sr5YjA8+FhYiGiehhIjqo/3Oow2t+moiebvtTJqK36899noiOtD13pfu/hcINwsEAzhtL2Y5Yjs4XWo7JfmWzPrh5arnU97WFSh25St3V4UiBkYhlUb/ZO+28PNjDLyzrwC4WQbqLAaa4pqxIQhTnOw1jZkvyIiMZeC4sAD4K4FFm3gPgUf37M2DmbzHzlcx8JYAbABQBfKPtJb8rnmfmp105tcITLphI44CNzjBmxuH5AnaO+FtYtg5qHmYnl/oLS6vV2IOIZUSPWHp1homVyYMOGVAKBhMRLHcpoju5DybTZdmXeEzWDT8YICQjwR41FpUKa+dmAHfpX98F4O19Xv9OAP+XmeV4eyjWFRduSuPkcqmnVXkvFgtV5Mp1XxfuAW1uZzQVba1P7oVXw5GA1hUGaF5g3VgoVJGOhhx3ORiMd0+Frdr2y7/5ZuKd1xOv1nXkXVMzojzzWuWa5pGmUmFnMsHM0/rXpwFM9Hn9LQC+suaxPyOiZ4noU0TU8WMbEd1GRPuJaP/c3JzNIyu8YrWAb63OIrZQ7vJ5KgwAtg7FcdJAKszLiCUWDiIVDWGuR2v0UrHqijlmr1TYki58TtjKpGOdrfNlRyyAVmdZ224sRG3DRSxE9AgRPd/hz83tr2NmBtDZf1r7OZsBXAbgobaHPwbgIgDXABgG8Pud3svMdzDzXmbeOzY2ZvdXUnjExVsyAIAXT61Yev+B01kAqwLlZ7YNGhQWPWIZ9yBiAbTp+14Ry2Kh6qhPmGAwEUGp1ug457RYqIJodd5FJloq7OyIxYnlZukOO1mEgKV9VGNxReKY+cZuzxHRDBFtZuZpXThme/yodwH4F2ZufTxoi3YqRPR/APyOlEMrfMmWgRhGkhE8d9KasLx8Ood0LITNA/5zNV7LtqE4Hn5pBs0m97R6n8mWEQsHWnMObjPSZ/p+sVDFJhdET9RwVkq1szr+FnRxCzpg2y+WfTHzGQOqrShJYjdcJh5uCZagFbG47LrQCz+kwh4AcKv+9a0A7u/x2vdgTRpMFyOQ9l/07QCed+CMCp9ARLh06wCenbIaseRw0aa0bzyVerF1KI5qvYn5PiaPp5bL2DIQ9+x36jd9v1ioSr25dmPViPLsszjpVZaJhVFvcsu6XrBUrCESDCAp0cp+MBE5S1ic7Hizih+E5ZMA3kREBwHcqH8PItpLRJ8VLyKinQC2A/iPNe//MhE9B+A5AKMAPuHCmRUectnWARyczZu2dmFmHJjJtSz4/Y7oDOtXwJ9aLmHrkHebMEdSUcx3iViaTcZcrtJat+wkvTZaLjgoLMPJzgvPlgpVDCbCUgV/MB4+SzhFxOKnVJjnwsLMC8z8Rmbew8w3MvOi/vh+Zv7lttcdZeatzNxc8/4bmPkyZr6Umd/HzPIWoyt8yWXbBtBoMl6czpp636mVMnLlOi7clHHoZHIR2y37tRyfXCq2RMgLxtJRLBarHRdQLRarqDfZlY614R4zNYuFaquDTfp1k9HWNdpZKsoXs6GElgprX4XcahJQqTCFwjqXbR0AADxvss4iCvcXrZeIRY9CehXwy7UG5vNVbPMwYtk8EAMzOppmnl4RrdDORywtF4AOC9KcTIWJn9tJWGQ3LQwmImDGGXMzIkJzwlXAKkpYFOuOzQMxjKYipusswnL/gnXQEQZoGwMH4uGeEYtIk3mZCtukN0KcXjn7nK2VyS5ELEOJCEIBOsteptFkLBWdi1i6zfJotSW5N3vRoNButrlYqCAWDiChbPMVCusQES7bOoBnTiybet+B0zlsGYj56pNdP7YOxjG11H0WWEQzWwe9M9QUHXbTK2dHCmJlshtdYYEAYTQVPWumxmnbfpGCW1ojLMtF+euYxc9rHwRdLDi768YKSlgU65K9O4dxcDZ/VvqhF89NreCSLeujviLYMZzAscXuwnJ8QRv43D7sZSpMu/bpDsIiHhtzoXgvrrM2JSe+H3PISy0dDSEcpDMilqYeJckWs04LzdwaQDWDEhbFuuTaXcMAgH1HFw29fqlQxeH5Aq6ePMvj1NfsHkvi+EKxY2EcAI7MFxELBzzZxSLIxEJIRIIdI5bZXBmjqQjCQXduNWPpsyMWYXmzacAZcSMiDCcjWGxrC8+V62iy/IHMTgvNFlwaQDWDEhbFuuTybQOIhALYd8SYsPzoxBIA4Ood601YUqg3GSe6RC1HFzRDzV4DlE5DRNg0EMN0hxrLqWV398SMdUiFCWFx0v15OBk9I3oWs0ey6zpDosZSaItYHGxMsIoSFsW6JBoK4srtg3jKYMTyw2PLCAYIl28bcPhkchFmmYd1j7O1HJ0v+MJQc+tgvGOTwYmloqsL1cYz2kxNo60d9/SK8FJzTlhGkhHMt7U5z6w4YwyaiYURoDM70JzseLOKEhbFuuW6XcN4/uRKx8VHa/nh8SVcvDntq84ZI5ynm2Uenj97PKveaOL4YhE7fSAsnWpBzSZjaqmE7a4KSwxNxhlRy+lsGSPJCCIh525345loy7MN0DZ6AvLbrAMB0utI2s+v1BvIV+qqeK9QyOLaXcNocv86S73RxNMnlvHqdZYGA7Sc+mgq2tHN+fhiEfUm+yJimRxJYLlYw0pbUXkuX0G1/v+3d//BUdd3HsefryTEhJAQE2gIv8FGBHQUQSri0drqHbWdoj2d6lnr9Dw9ncOr13Puete5uzrT6VzH02tnzrmbnnq1o61n0Q5a689qtdc7BbTyM4CAP8hPIhBDICFA3vfH97PJgkvIht397sL7McNk95vvfvf9hWHf+/n1/vQzJYdToRPreZJn0rV39WZ9uvPEseW07xtsKWWzlVRXVTYw2y7RJZaLkjnp8MTiCtaCaTWUjSri5cah6pbClvZ9HOg7UnAD9wmz6ytpTFFlILEuZ3YeVBKYWhMlt/f3DHbZJcaFctlimRKqFSSXwWnv6mVClhdo1leXcaTfBloS7V29VJ5RMrCdcCZ9orJsYNxod5bGck6WJxZXsMpLi1nSMJ6XGtuJdlxI7XfbPgQGZ5IVmjn1VbzT3v2xmWGbW7soEjTUjYkpskHTaqMP9Pd3D7YUPoghsaRqsTR39lCf5ZI3E8OU65bOwcRSl6UK2nVVg1OqE+83Ic+qdXticQXtijl1tH7Uy4bm49cNe3VrB7PqKgfWWxSa2fVV9B3pZ3vH0d1hjW37mDl+zMdKxMchkVje+3CwxfLuh/spLlJOy80cu/Pm3v19dB44xMwsdxdOGFgkGr1vW1dv1srY1FWVsWd/HwcPH6E5JNA4Ky+k4onFFbTPza6jSPDipraUv9/Xe4jV7+7l07MKd3O3cydFXV3rdh5dwmZTS1fe1D0bXVrClJryge45gMbWfcwcV5H1LYmPNfnM8oHEsiMkumyPQ008ZpFo20e9WVtblEhYu7oO0tzZQ2lJEeMqcr976FA8sbiCVlNRyoJpNTy7oS1ld9gLG9vpO9LP0nMnxBBdZpw1fgxnjh511NTqpr0HaO7sYX4ejRvNrR97VMXpzW1dnFOf+/GfGeMq2LYrat0lWlDZnjlXVV5CRWkxTXt76D54mNaPepmZpe2vExMR2rt6ae7sYVJ1eazrmFLxxOIK3lXzJvHOrm7e+uDjtcNWrm1hUnU586ZUxxBZZkhiwfQaViUtBk3MhMuncaM5E6t4b/d+ug8epqv3EE17e2JpUc2pr6Ktq5fd3QcHuuMSg/rZIomGuko2t3UNJLWGLBU7nVEbJaztHd007+2JdcuE4/HE4gresgsmMuaMEh763btHHd/e0c1rWzu4Zv7kgtgxcigXz6zlgz0HBr6B/9/23VSWlXBOHswIS5g7sQqzaDuD9aHy9JwYWixzQz24jS1dNLZ2Ma12dFbXsCTMmVjFppYutrZH3YENn8jOpIqpNaMZXVpMY+s+mjyxpCbpWkkbJfVLWjDEeUslbZG0TdK3ko7PkPRGOP7fkvJr3p3LuoozSvjaomk8s66VjS2D4xD3v7yN0uIivnrxtBijy4xEV97Ta1voPXSEZze0cfnsuqzs4T5SF82oYVSxeGXzLl7evIvS4qJYWlRzJ0bVFd7e2ckb7+5h0czanLzv7PoqunoP8+rWDkpLirJWcaCoSMyaUMlzG9rYvb8vLwurxp5YiPao/zLw2vFOkFQM3A98HpgDXC9pTvj194F/NbNPAnuBm7MbrstHty6ZSW1FKX/9+Fo6D/Tx3IY2nvx9M7csmZGzyrrZNKm6nIXTa3hs9U5+tuoD9vUe5up5k+IO6yhVZaO4eGYtv1zXynMb2rj4rNqsrOM4kbGjR3HOhErue3Er3QcPs/iT43LyvomW0jPrWjlv0lhKslh4c3bo7gO4tCE395eO2BOLmTWa2ZYTnLYQ2GZmO8ysD3gMWKaof+OzwIpw3sPAVdmL1uWr6tGl3PeVC9jRsZ9Pfe/X3PbIm1wwpZrllzXEHVrG3PVHs2ju7OHupzdx0fQzc/aBmY7rF06lubOH5s4e/mThlNji+Pri6QOPF5+Vm7+n8ydXDyxUvOmS6UOffJKuPLd+4HG2p1KPRKEUTpoE7Ex63gR8CqgFOs3scNLxlF/jJN0K3AowderU7EXqYvPps8ez4vZF/HxNE3VVZ3DTJdMpL41/jUemLJxRw49unM+Gli5uvHhaXnWDJVx5Xj3/cu35HDrSz9KkD79cu3reZHbv72Pp3AmMHZ2bjd2Ki8SK2y/h6bUtXJnlWYiXNozjidsvAcjL8UMNtWI5Y28ivQSk+pv+tpmtDOf8BrjLzNakeP01wFIz+7Pw/EaixPId4PXQDYakKcCzZnbuUPEsWLDA1qz52Ns455wbgqQ3zey4Y+EJOWmxmNnlJ3mJZiC5XT05HNsNVEsqCa2WxHHnnHMxiX2MZZhWAw1hBlgpcB3wlEXNrVeAa8J5NwErY4rROecceZBYJF0tqQlYBDwj6flwfKKkXwGE1shy4HmgEXjczDaGS/wt8E1J24jGXB7M9T0455wblJMxlnzjYyzOOZe+4Y6xxN5icc45d2rxxOKccy6jPLE455zLKE8szjnnMuq0HLyX1AG8fxKXGAd8mKFw4lDo8UPh34PHH79Cv4c44p9mZifcNe+0TCwnS9Ka4cyMyFeFHj8U/j14/PEr9HvI5/i9K8w551xGeWJxzjmXUZ5YRuZHcQdwkgo9fij8e/D441fo95C38fsYi3POuYzyFotzzrmM8sTinHMuozyxpEHSUklbJG2T9K2440mXpIck7ZK0Ie5YRkLSFEmvSNokaaOkb8QdU7oklUlaJWltuIe7445pJCQVS/q9pF/GHUu6JL0nab2ktyUVZDVaSdWSVkjaLKlR0qK4Y0rmYyzDJKkY2ApcQbQF8mrgejPbFGtgaZC0BOgGfnKiXTbzkaR6oN7M3pJUCbwJXFVg/wYCKsysW9Io4H+Ab5jZ6zGHlhZJ3wQWAFVm9sW440mHpPeABWZWsIsjJT0M/NbMHgh7VI02s86440rwFsvwLQS2mdkOM+sDHgOWxRxTWszsNWBP3HGMlJm1mtlb4fE+or15JsUbVXos0h2ejgp/CurbnaTJwBeAB+KO5XQkaSywhLD3lJn15VNSAU8s6ZgE7Ex63kSBfaidSiRNB+YBb8QbSfpCN9LbwC7gRTMrtHv4AfA3QH/cgYyQAS9IelPSrXEHMwIzgA7gv0J35AOSKuIOKpknFldwJI0BngDuNLOuuONJl5kdMbMLgMnAQkkF0y0p6YvALjN7M+5YTsKlZnYh8HngL0IXcSEpAS4E/t3M5gH7gbwa8/XEMnzNwJSk55PDMZdDYVziCeBRM3sy7nhORui+eAVYGncsaVgMfCmMUzwGfFbSI/GGlB4zaw4/dwG/IOrmLiRNQFNSS3cFUaLJG55Yhm810CBpRhgsuw54KuaYTith4PtBoNHM7os7npGQNF5SdXhcTjQZZHO8UQ2fmf2dmU02s+lE/wdeNrOvxhzWsEmqCBM/CN1HfwgU1CxJM2sDdkqaFQ59DsirCSwlcQdQKMzssKTlwPNAMfCQmW2MOay0SPoZ8BlgnKQm4J/M7MF4o0rLYuBGYH0YowD4ezP7VYwxpaseeDjMMiwCHjezgpuyW8DqgF9E31EoAX5qZs/FG9KI3AE8Gr7k7gC+HnM8R/Hpxs455zLKu8Kcc85llCcW55xzGeWJxTnnXEZ5YnHOOZdRnlicc85llCcWd1qTZJLuTXp+l6TvZOjaP5Z0TSaulQuS/jfuGNypwROLO90dBL4saVzcgSSTlPM1ZmZ2Sa7f052aPLG4091hor3D/+rYXxzb4pDUHX5+RtKrklZK2iHpnyXdEPZZWS/prKTLXC5pjaStoc5WogjlPZJWS1on6c+TrvtbSU8Bm8Iq8WfC3i0bJH0lRYy3hOuslfSEpNHh+FmSXg/xfDcp9jGSfi3prfC7ZUnXSr6/3yTt9/FoqHrg3LB4YnEO7gduCOXIh+t84DZgNlE1gLPNbCFRKfk7ks6bTlSL6gvAf0gqA24GPjKzi4CLgFskzQjnX0i0P8vZRDXEWszs/LB/TqoV4k+a2UVmdj7RNgI3h+M/BH5oZucR1ZZK6AWuDkUYLwPuPU7SmAfcCcwBZhJVPXBuWDyxuNNeqJD8E+Av03jZ6rA/zEFgO/BCOL6eKJkkPG5m/Wb2DlHpjXOI6lN9LZSleQOoBRrC+avM7N2ka10h6fuS/sDMPkoRx7mhlbMeuAGYG44vAn4eHv806XwB35O0DniJaOuHuhTXXWVmTWbWD7x9zD05NyRPLM5FfkD0bT95X4vDhP8jkoqA0qTfHUx63J/0vJ+ja/AdWzPJiD7c7zCzC8KfGWaWSEz7B04020rUglkPfFfSP6aI+8fA8tAyuRsoO8F93gCMB+aH0v3tx3lN8v0dwesKujR4YnEOMLM9wOMMdiUBvAfMD4+/RLTbY7qulVQUxl1mAluICpneHrYAQNLZqTZqkjQROGBmjwD3kLo0eiXQGq51Q9Lx14E/Do+vSzo+lmg/lUOSLgOmjeCenBuSfwtxbtC9wPKk5/8JrJS0lmh8Y3/KVw3tA2AVUAXcZma9kh4g6lp6K4xvdABXpXjtecA9kvqBQ8DtKc75B6LutI7wszIcvxN4RNK3Q+yJbrRHgadD19kaCqhkvyscXt3YuVNQmB3WY2Ym6TrgejNbdqLXOZcJ3mJx7tQ0H/i30CLqBP405njcacRbLM455zLKB++dc85llCcW55xzGeWJxTnnXEZ5YnHOOZdRnlicc85l1P8DAeaXvjs3NJ4AAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, ax = plt.subplots()\n", "ax.plot(x, y)\n", "ax.set_title('Use like this')\n", "ax.set_xlabel(\"Numbers again\");\n", "ax.set_ylabel(\"$\\sqrt{x}$\");"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Plot multiple lines into one canvas\n", "* Call `ax.plot()` multiple times"]}, {"cell_type": "code", "execution_count": 59, "metadata": {"slideshow": {"slide_type": "-"}}, "outputs": [], "source": ["y2 = y/np.exp(y*1.5)"]}, {"cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEICAYAAABLdt/UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXd8XFeZ979niqZIGnXJKpZlW+41sWPHTieFNBIgEEqADSxtgV3KsrzAwr68LMsuS9llWcpm6aFtgECyEEgjjcRJ3Hu31XsfTS/n/ePekWV5+tw7M3Lu9/PRx5bmzj1nRqPffe7vPOd5hJQSAwMDA4OLB1OhJ2BgYGBgoC2GsBsYGBhcZBjCbmBgYHCRYQi7gYGBwUWGIewGBgYGFxmGsBsYGBhcZBjC/gpHCPE5IcRPkjx+WAhxrcZj/lAI8QUtz6kFQog2IYQUQlgKPRcDg1wwPsAXOUKI6VnfOoEAEFG/f1+q50sp1+gxr3QRQkhgmZTyVCHnYWAwnzAi9oscKWVZ7AvoAl4z62c/LfT8DAwMtMcQdgOAEiHEj4UQbtV62Rx7QAjRIYS4Qf3/FiHELiHElBBiUAjxtXgnE0JcK4ToEUJ8Wggxop7jnkSDCyHeI4Q4JYQYE0I8LIRoUn/+rHrIfiHEtBDiTXGee68Q4nkhxL8JISaEEGeEENvVn3cLIYaEEH8x6/jbhBB71dfQLYT4XJJ53aXOfa36/eVCiBfUcfbPtqjU8c6o7+HZRK9Xtb4eSPJ+rxJCPK2OcVgIcUeS+SUcUwjxLiHEUSHEuBDiUSHEolmPSSHE+4UQJ9VxvimEEOpj7UKIZ4QQk+rv7n9mPW+lEOJx9fd0XAhxd6K5GRQYKaXx9Qr5AjqAG+b87HOAH7gVMAP/DLwY7znADuDt6v/LgMsTjHMtEAa+BtiAawAPsEJ9/IfAF9T/vwoYAS5Vj/0G8Oysc0mgPclrulcd653q/L+AcmfyTfV8NwFuoGzW3NahBDXrgUHgtepjbep4FvV8p2JjA83AqPo+mYAb1e/rgFJgatbrawTWJJhvwvcbsKpjfhooUd8bd+y8c86TcEzgTvU8q9TX8hnghTnv6e+ASqAVGAZuVh/7OfD36mu0A1fOGq9bfV8swCXq7211oT/XxteFX0bEbgDwZynlI1LKCHA/sCHBcSGgXQhRK6WcllK+mOK8n5VSBqSUzwC/B+JFePcA35dS7pFSBoBPAduEEG0ZzP+slPIH6vz/B1gIfF4d+zEgCLQDSCmfllIelFJGpZQHUITsmjnn+wjwd8C18py3/zbgEfV9ikopHwd2oQg0QBRYK4RwSCn7pZSHk8w30ft9OcoF81+klEEp5Z9QBPgtCc6TaMz3A/8spTwqpQwDXwQ2zo7a1TEmpJRdwFPARvXnIWAR0CSl9Esp/6z+/HagQ32fw1LKvcCvgTcmeZ0GBcIQdgOAgVn/9wL2BJkhfwksB44JIXYKIW5Pcs5xKaVn1vedQFOc45rUxwCQUk6jRMLN6U4eJeqO4VPPM/dnZQBCiK1CiKeEEMNCiEkUEaydc76/A74ppeyZ9bNFwBtV62JCCDEBXAk0qq/zTeq5+oUQvxdCrEwy30TvdxPQLaWMznq8kzjvRYoxFwFfnzXPMUDMOc/cOZSp//+EeuzLqhX0rlnn3Drn9d8DLEjyOg0KhCHsBmkjpTwppXwLUA98CfiVEKI0weFVcx5rBfriHNeHIhoAqM+pAXq1mfUF/Ax4GFgopawAvoMiZLO5CfiMEOKuWT/rBu6XUlbO+iqVUv4LgJTyUSnljSiWyDHgv7OYWx+wUAgx+++ylQTvRZIxu4H3zZmrQ0r5QqoJSCkHpJTvkVI2oWRNfUsI0a6e85k55yyTUv5VFq/TQGcMYTdIGyHE24QQdWpEOaH+OJrkKf9PCFEihLgK5Vb+l3GO+TnwTiHERiGEDcU2eElK2aE+Pggs0eYVAFAOjEkp/UKILcBb4xxzGLgZ+OasxcufAK8RQrxaCGEWQtjVReIWIUSDEOJO9aIUAKZJ/r4k4iWU6PkTQgirujj7GuAXcw9MMeZ3gE8JIdaox1YIIdKyTIQQbxRCtKjfjqP48VEUS2i5EOLt6tysQojLhBCrsnidBjpjCLtBJtwMHBZKbvzXgTdLKX0Jjh1AEYY+4KfA+6WUx+YeJKV8Avgsil/bDywF3jzrkM8BP1Jv/7XIwvgA8HkhhBv4B+CBeAdJKfejXIz+Wwhxi5SyG2VR8tMoi43dKJaNSf36GMprHUPx7DOOZKWUQRQhvwVlYfJbwDvivW/JxpRS/gbljuoXQogp4JB6znS4DHhJ/R0/DHxYSnlGSulGuZN5szrmgDqGLdPXaaA/Qkqj0YaBtqiR5k+klC2pjjUwMNAeI2I3MDAwuMgwhN3AwMDgIsOwYgwMDAwuMoyI3cDAwOAioyDVHWtra2VbW1shhjYwMDCYt+zevXtESlmX6riCCHtbWxu7du0qxNAGBgYG8xYhRGfqowwrxsDAwOCiwxB2AwMDg4sMQ9gNDAwMLjIMYTcwMDC4yDCE3cDAwOAiQxNhF0J8XygtyA5pcT4DAwMDg+zRKmL/IUrlPwMDAwODAqNJHruU8tkMW5kZJMEXjHCgZ4ITQ9NM+UIALHDZ2bCwgqV1Zah9hw1m0TXq5bEjA9isZm5du4CasvlTTfbZE8OcHJrm1nULaKxwFHo6RKOSJ48N4Q2GuXVdI1Zzfh3bgUk/jx4e4JZ1C6gvt+s+Xt+Ej2dODHPb+kZcdqsuY0Sjkgf39rJpURWLaxP1ptEOzWrFqML+Oynl2gSPvxd4L0Bra+umzs608uxfMUgp+fOpEX68o5NnTwwTCMfv07Cw2sHbL1/EW7a0Uq7Th3C+8ZMXO/ncw4cJR5XPcrndwrfv2cSVy+Z2vCs+vvTHY3z76dMAlNksPPC+baxuchV0Tv/yh2N85xllTreta+Q/33pJ3oKJkekAt379OYbcARa47Dz+sat1/ZxPekNc99WnGfMEubK9lh+/awsmk/av9R8eOsSPd3RSbrfwmw9sp72+PKvzCCF2Syk3pzoub5diKeV9UsrNUsrNdXUpd8S+YpBS8viRQW75+nO8/Xsvs7drgrdsaeV7f7GZHZ96Fce/cDNHP38zT3zsGr74unU0Vzr44iPHuOFrz/DIwf5CT7/gPLSvl8/89hBXL6/j+U++ij9+5CqaKx385Y92crR/qtDTS8ozJ4b59tOnedPmhfzxI1dRZrPwoZ/vIRTJpvmSNhzqneQ7z5zmzZct5KM3LOf3B/t5/Mhg6idqxH8/e4aR6QCfe81qBt1+vqVe9PTivudOM+4N8vpLm/nzqRFeOD2q+RjjniC/eLmbzYuqaKyw4w/p//s1smIKSMeIh3f+cCfv+fEugpEo//qG9Tz/yev43B1ruH5VA40VDmwWM44SM+31Zbx1ayu/eO82HvzAdmrLbHzgp3v4vw8dKqgQFJKhKT+ffvAgW9qq+c7bNtFc6WDlAhf3/+VWKhxWPvKLfUX73kgp+edHjrK4tpT/d+caVi5w8Y+vXcuZYQ+/3NWT+gQ68f0/n8VZYuZTt67ig9ctpbnSwQ+e78jL2IFwhJ+91MVt65u494rF3LiqgV/t7iES1acCrZSS3+7t47oV9Xzxdesot1t4cI/27/3/HugjGIny+TvX8scPX83a5grNx5iLIewFQErJL17u4pavP8eujnE+c9sqHv3I1dy9eSE2iznl8y9treKhD17Bu69czI92dPKeH+/CH4rkYebFxb/84RihiORf37CeEsu5j3JduY3P37mW44NufvZSVwFnmJhnTgxzbMDNh65rx25Vfuc3rKpnXXMFP3zhLIUop+32h/jdgX7esKmFCocVi9nEPZe3suPMKJ2jHt3H33F6FHcgzOsuaQLgjo1NDLsDvHRG+yga4NiAm94JHzetbsBuNXPL2gU8fnRQ8wvJ86dGaK12srrJpYvNEw+t0h1/DuwAVggheoQQf6nFeS9G3P4QH/jpHj754EEuXVTJEx+7hndftSTjBSqL2cRnbl/NF1+3jqePD/Pe+3cTTODLX4zs7Rrnwb29vOfqxbTFWYx69ZoGtiyu5ltPnyrKi97/7OymurSE12xomvmZEIK3Xd7KicFp9nSN531OTx0fJhiJcsesOb1mvfL/fNgxjx0ZpLTEzPalytrI9SsbKDGbeObksC7jPXtCOe+rVtYDsG1pDW5/mOMDbs3GkFKyq2OczW1Vmp0zHTQRdinlW6SUjVJKq5SyRUr5PS3Oe7HRMeLh9d96gceODPKpW1Zy/7u2sqAit1X/t25t5Ut3rePZE8P8/W8OFiTSKwTffvo0lU4rH7i2Pe7jQgj++lXtDE4F+N2B4lqLmPAGeeLoIK/d2HzenQbAbeubKLGYCjLnRw8PUFtm49LWcyK0sNrJ8oYynjiqv7C/eGaUrUtqZu5gHCVmNiys4MUzY7qMt6drnEU1Tupdyt/glsU1ALx8Vrs7hLMjHkY9QS5rq9bsnOlgWDF54rmTw9z5zecZng5w/7u28L5rlmp2W/amy1r58PXL+OXuHr773FlNzlnMdI56ePzoIPdsbaXUljhj98r2WhbXlvLAzu48zi41Tx4dIhSR3LGx6YLHymwWrl5Wxx8PDeT1Ih2NSl44NcI1y+su+Fxet6Ke3Z3j+IL63fmMTAc4M+y5QAC3Lq7hUO8k04Gw5mPu657gkoWVM983VzpornSwu2tCszEO9k4CsHHWOPnAEPY88OCeHu79wU4WuOw8/MEr2d6ufRreR25Yxs1rFvClPx5jX7d2H8xi5IcvdGAxCd6xrS3pcUII7t68kJc7xjg9PJ2fyaXBY0cGWOCysz7BItpNqxvon/RzYjB/cz4+6GbcG2L70poLHtu6pJpQRLK3Wz97aFeHcu4ti8+3LC5bXE0kKjnQo+1nun/Sx+BU4ALBXd3k0jSb6sSgG4tJsLSuTLNzpoMh7Drzw+fP8rEH9rN1cTW//sB2WmucuowjhOBLd62nwWXnb36+F48OEU4x4A9F+NWuHm5b10iDK7WNddemZswmUTRReygS5c8nR7h+VX3CO7bt7Yq4vnB6JG/z2qGm+W2LI+ybFlUjBLx8Vh9LBOBg7wQWk7ggY2StmtN/uFfb1NVj/YqPPne8VY0uzgxPa7Yuc3zAzZK60gssN70xhF0npJT8x5Mn+dz/HuHG1Q18/97LKEtiG2hBhdPKv795I93jXr7y2HFdxyoUjx8ZxB0Ic/fmhWkdX19u57oV9fx2Xy9RndLmMuFAzwSeYIQrk9y1tVQ5aa126pJTnYj9PRM0Vthpqrxw52uFw8qKhnL2aGhRzOVYv5uldWUXZIXVlNloqrDPWBpacWpIuRtqrz8/kl61oJyoVCJtLTg+6GZ5Q3abkXLBEHYdiEYlX/j9Ub72+Alef2kz377n0pkFIb25rK2at21dxA9f6GBvATIr9OY3e3tprLBz+ZILI8tE3LpuAYNTAc3FIRteOKWIdar5b19aw0tnRnXL4Z7LwZ5J1iXJr17TVMGRvkndfP9jA25WNsYXwDXNFRzSQdhry0qodJac9/NVjcodQiyizwVvMEz3mI8VhrDPf8KRKJ/49QG+9+ez3Lu9ja+8YQOWPNfa+MTNK2got/PZhw4VRZSqFSPTAZ45McydG5szWnh+1cp6zCbBY0cGdJxderxwepTVjS6qSkuSHrdtaQ1T/jBH+vTfPTvpC3FmxMOGJAt8a5pcjEwHGXIHdBm/d8LHygXxSymsWlBOx6hH07TV08PTLInje7dUObCaBWc1yNvvHPUCsLhO/9owczGEXUMC4Qgf+tlefrW7hw9fv4z/+5rVeduQMJtyu5X/c8sKDvVO8fD+vryPrxePHOwnEpW87pLmjJ5X6Sxh6+JqHjucv63x8fCHIuzuGueK9tR3G9uW5M9nP6xGw8kjdtXr7tP+rieWN54oYl9aX0ZUnhPKXJFScmp4+gIbBpT9IQurnJpsyIqdo63GEPZ5iycQ5t0/2sUfDw/wD7ev5qM3Li9oFcY7NzSzttnFlx89XpQbdLLh0cMDLK0rZcWCzG9tb1rdwMmhac4UMDtmd+c4wXB0ZgNOMupddtpqnHnZqHQgDWFfrdMiJsDxAeWcqxJE7LGMEq0ym8Y8QSa8oYSZKotqnHSM5H4R6VAvRIt0SphIhiHsGjDhDfK2773E86dG+PIb1vOuKxcXekqYTIJP37qK3glf3mp96MmkL8RLZ8a4cfWCrJ5//aoGQNldWSh2dowhBGnvQlzfUsmBHv3XBQ70TLCw2pHUHiq3W1lU4+SwDtbQ0QE3FQ4rDa74pZaXqFbG6SFthD3RwmmMRTWldI56cl5P6BjxUFtWUpAqrIaw58jQlJ83/deLHO6d4lv3bOKNaWZr5IPtS2u5YVU933rqFJNqXff5ytPHhwhHJTeubsjq+QurnSyuLeX5U/lLIZzL3q4JlteXp/2Hvr6lgv5JP0Nuv67zOtAzyfqW1Bto1jS5ONyv/YXmWP8UKxeUJ7zDdZZYaK50aBaxnxpOLuyLa0vxBCMMT+e2ntAx6mFRAWwYMIQ9J7rHvLzxv3bQPe7l+/dexs1rs4sm9eRjN67AHQjz4xc6Cj2VnHjs8CC1ZbbzdgpmyhXtNbx4ZrQgNXWiUansdGxNf/6xxcwD3fpF7ZO+ED3jvhkPPRlrmiroHvNpGiRIKTk+4GZlCnttSV0pp4e1KUR2esiDw2qmMcE+iJh1kqun3zPuo6WqMI1TDGHPkmMDU9z17ReY8Ib4ybu3Fm1Th9VNLm5YVc/3nj87bzctBcIRnj4+xI2rE2/qSYcr2+vwBiMFSQM9O+ph0hfKSNjXNLkwCTTfdTmbU0PKwuXyNBo/rFZTAbUskjU8HcATjMTNUJnN0royTg9Pa5JuqWTElCb8LMUWOztGsr+QRKOSwSl/3H0B+cAQ9izY2THG3d/ZgRDwwPu2nVc0qRj54HXtTHhD/PSl+dm1asfpUTzBSNY2TIxtS2swCQpix+xTN/dcksFnxVliYXlDOft19NlPqmUL0tlEE7MutCzP0JXmAmN7fRneYISBqdxtqe5xb9LxmqscmE0ip4h9ZDpAKCJpyrHIX7YYwp4hTxwZ5G3ffYnaMhu//qvtWWVo5JtLWqu4alkt9z17dl5myDx+ZBDnrHKu2VLhsLK+pZLnCiDse7vHKbdZaM+wZsj6lgoO9EzotjHoxOA0dqspLcugqdKBzWLSbBETZmeOJPeiZzJjhnKzY6SU9I77aKlKLOxWs/J+5JLL3jvhAyhYD1tD2DPgV7t7eN9PdrNiQTm/fP+2pB+OYuOD17UzMh3g1zp0iNETKSVPHx/myvZaTXbvbltaw8GeSbzB/NpSe7sm2LCwMmMraX1LJePe0IxQaM3JITft9WVpzctsEiypK5tZfNSCzlEPZpOgOYVlsbReEf6YdZQtw9MBAuFoygtZm5oZky39k8qdhWHFFDFSSr7x5Ek+/sv9bFtSw8/eczk1ZfFTs4qVrYurWdvs4gfPd8yrmu1nRjz0Tvi4erk2fXK3tFUTVhcy84U/FOH4gJv1LZm3RFulbtrRYot7PE4OTqflr8dYWleqqRXTOeqludKRskhWXZkNZ4mZrrHcLnA948rzUwn7ohpnTlZMn3ohbqo0rJiixB+K8NH/2cdXHz/B6y5p5nv3bta9mJceCCF45/bFnBqa5rmThUv5y5RYl5url2kj7JcuqkII2Hk2fwuoJwbdhKMy6QagRMS87+MaFaWazaQvxMCUn2UZ1DJpry+jZ9ynmaXXOepJawOPEIKFVU66xnLLVOlVhb25MvmYzZUO3P4wU/7sMoD6Jvw4rGYqHPnPYQdD2JMy7A7w1v9+kd/u6+PvXr2Cr929Ia2epMXK7RsaqS2z8YPn508zjudOjtBW49Ss3HGsUuGuTv1K0M7lkLpbM5smxuV2KwurHZrWCI8RszWWJcjnjsfSujKkhDMapR52jCZfyJzNwmonPeO5pyCCskCajJiF0j+R3WJt/6SPxkp7wXafG8KegIM9k7z2m89zpH+Kb91zKR+8rr2gJQK0wGYx8/bLF/HU8eGiajyRiEA4wo7To5rZMDEua6tmT+c44Uh+8tkP9U3isluyzmle0eDimIYphjEyyYiJEcuM0cJnn/AGmfSF0q6lsrDaQdeYNycrsWfcS5XTmvKuOybsfVmubfRN+lOuG+iJIexzkFJy/4ud3PXtF5BS8sD7tnHrusZCT0sz7rm8lRKzift3FH/q4+7OcXyhCFdpZMPEuGxxNZ5ghKM6+dZzOdw7ydrmiqwDg1WN5Zwd0ba6IWSWERNjcW0pQmizvT/mYbdWpxmxVznxBiOMeYJZj9mTIiMmRkyUs1207p/w0VigVEeA+WcW64jbH+Izvz3EQ/v6uGZ5Hf/+po3Jy6tKCb5x8AxDyAvhAIR8EA2D2QrmEvXLChYHlDjBqn5ZbKDHHUDID4Ep8E9BYFL5vnwBVLaC2UptmY1b1i3gwT09/J+bV+IoKV5r6dkTI1hMQunqE/LD0GEIepT3r6oNnDWp30Mpwd0PY2dARqF+DZeptVp2doyxLosFzUwIRaIcHXBz7/Y25bPSfwCsDqhbAfYkY3vHYPg4OGtY2VBOJCo5NTSdlZ2TiJmMGM+gMlZlK1QuAlOceM83DkNHsde0s7DKqUnE3qFmnSwpC8LZ56B2mfJZnct4J0x2s7hcCbC6x31ZJy/0jHtZUV8KPbvBUgL1q8E0628gEoK+fdTZq7CYRFYRezAcZXg6wKLSCHS+ANVL4r8uHTGEXWXH6VE+/sv99E/6+Nsbl/PB69rPpYCFAzBwEPr2wsgJ5Wv0NLgHIJrl9mphAmvp+WIf+39J6fnfW9UII+SDsE/5N+iBgPuciPsnlf9HEkQzJWWw+Gq4/K94y5Y1PLSvj0cO9nPXppbs5p8Hnjs5zOZWF2U7vgo7/lN5fbMpKVMEvqoNKlqUi6XJooji9KAiCGNnlPcshjDTuOleFle+mp0dY7oXbDs1NE0wHOV238Pwla9CZFb9kYpWaFyvzN9iU+Y93gFDR2H6XO34axbfjI03c2zAra2wD07z0eod8O+vP/e5cVRB6zZlTiYzTHTDwAHlfQQwWbmn6m/57fCVOY/fNeplkzjO0p+9/9zvtnIRLLoCnNVKwNS1Aya6ALiyrIml4qN0jXmzag4tpaR/wsN94ovw3ZfU11sNS6+DioUwfAw6d0BgEjPwwdJ30zmR+d364JSfejnGvfs/Bi+pv8eaZdB2pfKebn2/chHTkVe8sHuDYb7y6Am+//xZFteW8sv3b2dTSzn0vASnnoAzT0P//nMffJtL+aUs2g7ljcqVuLROEWOLDSx2MFkVwY8ElQggHICwX4nqg14IedR/vYpAz/55yKf8gc89BlSRd6hfTrCVK1Fr9RJlXnaX+m+F8mVzKXNyD0DvLjj6O/jRa9i67NVsrHkbP3u5q2iFfdgd4GjfBI+1/ACefhJW3QHr3qj8wQemYfwsjJ2FiU4YPQVnnlHe72hYEafyBVC5EJZcCzVLlPdImODY7+Hl+/h62XHedfYjSCl1XTs51DvJLaaXWH/w67D8ZuWPOhyAoSNKsNC/H04/pVx8HFXKBWrpq6B+FdSthP79lD31BT5XEuZY/wrN5jXpC1HpPsEbQv8Gi6+EKz6sXAh7d0H3y8r7GQ2Dqwka1sAlb4P6NbDjP3l351f4RXgh0eiVOZV46Bxx83XbdxDOGrjruzByUhHyU09AcFr5fC/cAts+BGUNWH73ET5t+RnHxl6V1XijniCvjz7O0qmX4LrPKHcoZ55S3n/PENQuh9V3QPsNsOfH/PXpH/K+sRsyHqdvwsffWn6JPTQJr/svmB6Cjufg4K8UYV95myHseiGl5I+HBvjH3x2hb9LPX26p5xNLOrC99BH42VOKjSFM0LwZtr4PWrZA8yblg57vRVQpcx9z41vgpn+Cl+9D/OkL/NB2nBs7P8HxgXVFuXv2+VMjvMf8e9pHnlTmvf1D2px4ybVQuYj1j/09VwfX0jG6ncW1+lXgO9o7xmetP0U2bkTcfb9y+w+w4ubzD0z0O15+E3hHuPul+/h4z9uB1ZrM69TQNH9leZioxYn5DT9QLpgAm9+ZfE4Na+DrG3mHfJhB91057axs6HuCFgbhxvth+auVryS/ZzF6iuv/9I/s6zsCtGc8Xs+4jzvNz+OuXEn51R9XXtuGNykPzn2ttcuxfHsb68ceA27JaJz+8Ulebd6Jp/02XBverPzwir/R5u84TV6Ri6dH+6d4x/df5iM/fZFbzC+zZ+VP+ezRO7D99t1KxLDmTrj7x/CJs/Dux+GmLyhX8orm/Is6aDem1a58wN7xWypCQ/x3ydd44MXT2pxbY/YdPspHrb9Grrwdtn1Q25Nv+yD+2nX8jeU37D2rb3121+nf0SRGENf9/TlRj0ey3/H2vwEEGwd/o9m8OvuGuNG0G/+K154T9XTmVLmQ8YU3crN5J2dyXEBdNfU80+YKJYJNh/WKCNcO78hqvKH+bjaJk/jbb73wtV1wAVvNkHMZlwVfyrjvrOh8kQrhxbbutcnH0JFXlLCfGnLz4ftf5Kvf+Hfe3P15DpV+gM96/4Xq4Zdh41vh3t/Dx47CHd+A1XeCI/sSsUXNou2I136bjaZT1O/7etHVj5FSsuzMD7ESRtz0Be3/IISg5LqP02YaZOrIY9qeexaRqGTt5FNMWuth2Y3Zn6iimf7qLWyL7GRYo56j0dN/wikCOC+9O+PnWpZfT6MYY6TzUNbjewJh1kcOM1i16fzFy2RULmTU0kCre19WY0a7XsQkJM7Vr07r+KnqdawUnQxNZbaAah05DIBtyRUZz1ErLnphj0Ylzx3r49++/S32fuOt/OOp1/Hdkq9yi/0w1g1vhHc8BB87Brd99dzixiuBNa9lePFruVc+zFM7Xi70bM7jRO8wt0eepLfp1VCtz+KmacUteEQpzT1/0OX8AB39I1zBfoaab8j54hRqu5blpl7Onj6uydxKh/YQxIK5dUvGz61Yo1ykrJ3PZj1+b+dpWk3D+Jsuz+h5A5WXsjZ8mHA482DEPKIogvDzAAAgAElEQVS8d6XNa9M6PtqwlmoxzXBfR0bjlE6dYUJUJL4TygOaCLsQ4mYhxHEhxCkhxCe1OGeunO7q5ZFffJs/fvENrP75Fj46+CnuKNmNbe1r4J5fY/q7k3DHfyieq/mVudRQ+9ovEhVmnC98udBTOY+eHQ9SIbyUXn6vfoNYbHTWv4qtwReZ8urToWjw8NM4RBDbqptTH5yCynU3AeA78aeczwXQOH2YPlu7srieIaKqjUnhwjl+LOvx3Wd3AWBvy+zCEqxbS52YZHCwP+Mxy9xnGDLVgS29nbaOlg0AeLv3ZzROta+ToZLWjOenJTkrmhDCDHwTuBHoAXYKIR6WUh7J9dyZMDzUR8e+Z/GefZHKoZdZHT7GUhFhWpQx3nINru1vwbb8RsVnNgBAVDRzovn1bO95gM4zx1m0RLusi1woO/sIY6KSmrU52BdpYG5/Fa7B/2X3gR1suvw6zc8f7NwJQOPaq3M+V9WiDfgpwTSYvf0Rwx8IsDxyimMNr6Uty3MM2duo9mZfmiIwdAqA+sVrMnqevb4djsJo93GamzPL6Kr1nWXI1kZ9msdXLt4IgBw6mtE4zZFuTldek9FztEaLUHULcEpKeQZACPEL4E5Ac2E/9NxDypU+OI0IejD7xyj39lAX7qOOSeqAiBR0lSzl2JJ7ad5yJ9XLr6DsFRqRp0PzzR/D/N1f0P3kf7FoydcKPR38gQArPbs4U3st1TrbYi2X3ADPg/vY06CDsLtG99FtbmFhqQaNWExmeq1tuKZO5Hyqvo4TLBEBREN6lkQ8vK6lLBp4jEAojM2a+d+XaeIMk5RRUZWuzCpUtijBh2fgJHB92s+T0QgtkR72u9K/QyivrGUaB3Iq/bsDz+Qo1UxxrGJJ2s/RAy0UrxnonvV9D7B17kFCiPcC7wVobc3uNsWz/7dsG3mQqBR4sTMtyhgtaeRM1VWcqmmnevk22tZtZ7Ejdf9GA4Xahcs55NxEe+9DhENfwmItTDW6GCd2P8V64cGyMr0FrlworW2l19RI2YD2awxSShb5j9FRtR2t2ptPuFawZORpopEoJnP2Lupw11GWABUtK7OfTN1KKgd/w9neLha3ZS5ipe5OBi1NZLrdqm7hcgAio2cyet74yADVIqhsgMrkeaZqrN7BtI8f6e+kFLBWFbapfd5CWSnlfcB9AJs3b86qis+6e/8dn/gP7I5SykwmyoDiax89/4isfysLXvoYu154lM3X3F7QuYwdeRqAJZtz96XTGs+1mgXjB4hEJeYcNtvMpa+vh2Ym6ajPzGpIhmxYQ9Xo/9Lb00HzouwjQt/ASQAal2Q/t7Lm1XAIRjoOZyXsNaFe+svXZ/w8i72UYVGNZTKzWkfD/V1UA47qpoyeN11Sh9OffkrsxHAfi4Cy6sIqkxaLp71wXlDSov5Mc5xlFThKyxHxalkYZM3qa95AACsTux8s9FRwDu6ix7yQ0qrc+pumi6lxPS1imJOd2naW6j55AIDKRdoJu6tF2ZzU15Gjyzl2Gi92HFWZidxs6luWAjA5lHkxOb/fT0N0mFBFZtFzjDFrE2W+zCRmYkgxFVx1mfnyQUc9FZH0+xd4xvoAqKpvzmgcrdFCIXcCy4QQi4UQJcCbgYc1OK9BnrA6K+iq3MrKyWcY1qBZcLaMun0sDx5hsu7SvI1Zv2wzAJ1HtbVjJruVXOaW9g2anbOpTbEhJvpz21TmnO5i2JrbDuryOiWWC4xmfkHs7+/GLCT2quzEL+ioxRnKrFGKVxXc2gWZ2cDRsgXUyXGm02y44Z8cAqC6vrClOnIWdillGPgQ8ChwFHhASnk41/Ma5JeK9bfRIkZ48vkXCjaHvfv3Uik8lLdvy9uYte2bAPB0ZrfpJRGR4ZMEsWKrbdPsnGV1Sk5/cLgj63NEo5LqYD/e0hw9YLsLn3CAuy/jpw73xaLn7IRdlNZRKSeYDqTftzY8oSyAltdmNqalogmbCDGQZnplxD1EBBMl5TUZjaM1mngaUspHpJTLpZRLpZT/pMU5DfJL/UalHsbQvj8UrCdq3zElPbB5ZWabVnJBlC/AJ5zI0VOanrfUfZZRW4u2G96sdibMNVimurI+Rd+kj1rGMbly7zHgttZh86W/sBhjfFixUWobsru4lLjqqRbTdI9k0FVqeggvDqVYXwY4a5QLwdhAepaTyTuCW7gKvtHRMKsNFKoXM+1sYaV3N3u68tcPNIaUkkjfASKYMDesyt/AQjBdtoiaQC9Dbm1sqCG3n/rIIMFy7TepTDuacAX6CIaz6/50tn+USuHBWZ27BxwsXUBVZJRJX2alq2O2SHltdh5/abVyURoYSN9nt/qHmLJmHkVX1iljTY6kdwGzBUbwWDVIb80RQ9gNZrAtvZLNphP8z8vZR4TZcnp4mtbQadxlS/K+icxcs4Q2McCezglNzne4b4omMYKtRnthl5WttDA806QiU/p7lcizsiH3uZlcTSwQY5wdyWwuoUlFJEVZdgvklXXKBWF8MD1hl1JSGhzFb6vNfKwqpXuXe3I0rXGcoXGCtsKVEohhCLvBDNa27VQLN4cO7sGTgX+pBc+dHGGFqRtr87q8jgvgal5JixhmX4c2lR5PdPZRIbxUNmpf58ZRvZB6McHxLJtbjw0qF+2yDL3meNhrWqhngrPDmc1FeAbxmdRGMllQWqWkEk6NDaQ4UmHCG8Il3UhH5hG72akUAvRNpRb2CW+ISjlFNItxtMYQdoNztCqLlmsiR/n9gcxrceTCC0e7aREjlDZpU288Eyy1S7GIKD1ns699MpuBbiVrxV6TXTpfMirqm7GJEB292f1+PCNKlCs0aNXmqmnEKiL0DQyl/ZxgOIo9MIq/JAfxK1WiaN9EesLeM+7DJbxYS7Oo1qq2LwxOp7Yn+yZ9lAtfduNojCHsBueoaUfaXFzp7OaBXd2pj9cITyDM0Fk1kUrnzjJxqVIEeHrwLIEsqgbOZWpIraFSof3uQ6tLEeTB/ux+P9EpNYulPPfFU0upIs5DQ+lfZLrHvdQyScSRuS0yQ6ny3MhUendYPeNeyvFiL8/CIrEpu9gjvtQ2Xd+EnzJ82MsMYTcoJkwmROMGttm72NU5zikNOtGnw/OnRlgoVb+0dnlexjwPl2JL1MlhDvVmZ3HEmPSGKJlWxbNCh1zmMqW2ytRI5vnjE94gzuAIUWFRen3mikNZJJwcTT8zpmPEQ6WYxlKeg7DbK4lixuQbTasJRu+omzLhp6wii9dsMhMwl2IOTBGKJF+wHhifwiGCOMuNxVODYqPpEuq8J7GbIvwyT1H7U8eHWGUdQCKgemlexjwPl7IY18gYuzvHcjrV4b5JFogx5bVkuTiYlFJF2KPuIbzBzNZBTg97qGGKkK0atNi9rdYb904Mp50ie3bEQ7nw4sgmeo5hMhGyluKUHgbT2FA3PKpE9vay7MYMl1RQLrwMTCYfa3RM+ew4y42I3aDYaNyAiAR562Ivv97TmzJKyRUpJU8eHWKzaxxR0VKYssoWG5TWsdwxye7O3FI993ZPUMck0lmrT51/9WJRy0TGd1QnB91UCg+iVKOsDTXqd0SmGEhzx3LHqIdK4cGWpcjGkCXllAsvXWPelMeOjqiWjT3TkmPqWPYKXHjonUjeSWl8XFlgNdkLX4TQEHaD86lXFi9f1zLNyHSAp46lvzCWDYf7phhyB1hiHVe6xhcKVzNLbZPs7pzIaYPWvu4JFtmmMZVlVo42bRxVSGGmVkxybMCd0VOPDbipMU1jLdMoa0ON2KvENGeH00t57Byeogxfzm0nTfYKyvGlJexT47kJu9lRiUt46R1PLuwT4+rdnq3wzeENYTc4n5qlIMyssfZTV27jgV3aFseay5NHhxACqkODuiw2pk1FC41ilJHpAN1jmfW4jCGlZF/3BM3W6RkvXHNMJiirp9E8xZG+zNYDjg1MUW/xIhwaecD2CiSCKjHN6TRz2YdHRmaemwuW0gpcwkd3CmEPRaL43OM5jVlSVoULb8qI3T2pjmMIu0HRYbFB9RJMo8d5/aXNPHV8iCEdC4P96dggl7aUY57uh8oCCrurmfKgcneyuys7n71v0s+wO0ANE/oJOyBKa1lk83C4bzLt50gpOTbgpkpMa9eL02QGewW1Jk9aEbs/FDmXD56jsJvsFVSb/Skj9r4JH07pyWlMs6OSSlPyiN0TCBP1qxdam2HFGBQjdStg+Dh3b15IJCr59R5dqjDTO+Fjf88kdy4RICOFjdjLGzAH3dTYoln77Pu6JgBJaWh0JtdaFxxV1Fv9HO6bIppGVgjA4FSACW+Q0sjUTDaLFghnNc02H2dHUvv9XWNeyslNZGewleMy+egcTS7sHaNeXMKb25j2ClzCS89E4rG6x72KxQRQkl5PVT0xhN3gQupWwuhpllaVcFlbFb/c1a1LYbA/HFTyn29sCig/KGTErmabXN0UZXeWpQX2dY9TZQlgigT0yYiJ4aiiUkzjDUY4m2ZpgaMDUzgIYJYhbVIdZ+ZSTb3Vy5k0rJgzw9OzRDbHzBGbizK8Ka2YrlEPrpmLSZaRtK0cp/TSkeSupHvMR5nwzRxfaAxhN7iQupVKBD12mjduXsiZEQ+7cswWiccjB/tZ3eiiUaqLWxUFXDxVrZMtdRGOD0zhTrP+9mz2dE2wvT583vl0wVGFM6IsnB7qTc+OOdbvpgo1qtbKigFwVFJtUgQ2VWGyYwNKVg6Qe8Rud+GIehj1BJhK8rvqGPVSbfYp6aclWQpuiRMTktGpKfyh+BvYusdmReyGsBsUJXVKw2CGj3HbukZKS8z84mVtc9r7J33s6Zrg1nULYFI9tx4betJFFeJ1lQGikoztGG8wzIGeCbYtUO9sdLZizIEJSiyCw2kuoB4bmGK5KzzzfM2wlVOKn6gkpd99fMDN4lJ1DhpYMWYZxkYoadpn56iHJnsYYSvPPnffqtS0ccjEnn7XmJdqi7oWZVgxBkVJ7TJAwPBxSm0WXntJM/+7v49hd0CzIWK1aG5Z1wgTXYoVUogc9hiqFbO81EuJxcSfT6bfDg1gT+cEoYhkY40a0Tl1LARlr0REQ2xsKEk7Yj/aP8Waqpiwaxix28qxR5Uo/ORg8vTL4wNuFpfH5pC7FQNQji/puJ2jXmpt4YzrsJ+HKuxOApxJYMf0jHtZYA8pdwVF0Lqz8DMwKD6sDqhqg2GlKNa7rlxMMBLl/h0dmg3xq909bGipYGldmRKxF9Jfh5kIu8Q/ypa2ap49mVmlxxfPjGI2CdrLVVtAy6h4Luq5N9UrVkyqBdTpQJiTQ9OsrlIvOrmK6mxKyrGEPZhNye8e/KEIHaMeWhwhEKbco1o14q+1+jg+ED9ij0YlnWNeqq2hGXHOCrUKpUMEEpZL7hrzUl8SBFvho3UwhN0gEdVLYEwpZrW0rowbVtVz/4ud+IK5F8k63KdsrnnDJtV6megubEYMgKVEWdCbHuKqZbWcGJxOuYV8Ni+eGWVdcwX2kBpBa+ljz0UV9kvqJFP+MKeGk2ek7O+eQEpod6keeK42yGxs5YjgNCvqHBxMcvdwcnCaqIQFtqDiQefQbzU2LsDKasHJofgRe++Ej2A4SoUlmHWJYACsSrTf5JRx0zqllHSP+ai0RnK7gGiIIewG8alaBBPn2oG9+6oljHtD/HpP7huWfrW7hxKziddsaIJoFCZ7CrvrNEZZA0wPctUyJXpPN2r3BsPs75ng8iU14B0Dk1Vfn1UV9vU1SqT+8tnkefd71Y5YraXqRVnLPGtVYDc1KrZQouypYwNKNF9tDWnz3qivYUWF5EQCKyYm+C5zaEacs0K9KCx2EbepyKgniC8UUcdxZD+OhhjCbhCfykXgGwd108XWxdWsa67ge38+m1ZFvUT4QxEe2tfH9avqqXSWgGcYIoHCR+yglIP1jrKqsZzaMhvPnkhP2Hd1jBOKSLYuqQbfmBKt5xqRJkMV9gaLl7pyG7s6kgv7nq4J2uvLcKheuKYXHVXY19dbGPUEE9aMOT7gxmYxUWYK5OZ3x1DP0eZScvTjteeLWTROchxTvSgschE3vTS2eFtmCLtB0aPWKI9F7UII3n/NUs6OePjf/Zl3po/x8L4+xjxB3r5NPf+02ixBg+bKOeOsBu8YQgiuW1HHM8eHE6a3zebJo4PYrSYuX6xG7FouTsZDFXbhn2BLWzU7OxJn8Egp2ds1zqWtlRBwa7+4pwr76hrlQnawJ74dc3zQzbKGMkxBj6bCvlC9RsVbQD056Kaxwo4l7M3NilGf21IqGXYHLkiFPRkTdlMYLAVMAJiFIewG8alUhXf8nB1zy9oFrFxQzr8/cYJwFlUfpZR8//mzrFxQzrYlatbItFpkTM8NPeniUCNu4Lb1jbgDYZ5LkR0jpeSxI4NcvawOR4kZfBP6+utwziP3TXBZWxW9E76EdUw6Rr2Me0Nc0loFgansN+kkQrVElrqimET8vHopJYd6J1nd6IKgR5s7BjUybnIqn8MTgxeuMxwbcLOsoRxCntysGNU3b1TH6hg5P+Xx5KCbcpsFq/QbHrtBkVN5fsQOYDIJ/vamFXSMevnV7sy99hdOj3JswM27rlyMiFkV02qTBj039KSLsxq8oyAlV7TXUuGw8vsDye9ODvVO0T/p56Y1aqs535i+GTGgRKvCBMFpNrcpF5GdCXz2mE1zaWuVYqtpvXlGPZ894qG9vizuAurZEQ/j3hCbFlVBcFqbiF0V0EpriNIS84yHH8MfinBi0M3aJhcEc43Ylfk2OhRhPzpnrBODbtobyhAhn2HFGBQ5zmolspoVsQPcsKqeS1sr+cpjx+P6momQUvK1x09QX27jjg1N5x6IReylxSDsNRANQ8CN1Wzi5jULeOLoUFI75rEjA5gEXL9Snb83D8IuhCKo/ilWNbqodFoTLvQ+d3KE2jIby+rLFCtGc2FXo++Am40LK9nTNXHBGkxss9elrVXaReyq2JpCXta1VLCv+/wyEEf6pwhHJRsWVipj5hJJq8+tLglTZrOcd1cipeT4gJsVDeUQ8hvCblDkCKFE7ROdc34s+Pydaxn1BPm3x0+kfbrHjwyyu3Ocj9ywHLvVfO6B6SHF980lotKKmDc+y46ZDoR58mj8mvRSSn5/sJ/L2qqpKi0BKc8tnuqNzQUBN2aT4NrldTx9fPgCQY1EJc+dHObq5bWYTEIVdq2tGPVCEZxm+9JaJn0hjvafH9Hu7BjDZbcoexa08tjNJSDMEPKxaVEVR/qmzkvF3a8K/cYWF4R9uV1MrA5AYAp5Wd3kOu+upFO1ujYsrISQ1xB2g3lA1aILInaAtc0V3LO1lR/v6GBniowMUG6Lv/THYyypLeXuzXPKBkwPFocNA+cE2auUlr2ivZbmSgc/fenC9wBgZ8c4Z4Y93BXLxw/7IRLMvcBVOtjKFc8cuH5VA2Oe4AXZMbs7xxn3hrh2hfr+BvSzYgi42bZUWTd5/tS5dQkpJc+eGOHKZerFJTitTcQuhBJJh7xsWlRFOCrZ33Muat/VMU5jhZ0Gu7oWlEvgMGus9c0VHOmbmqmLs7dbuRu5pLUSQj7DYzeYB8Qi9ji5yf/n5pUsrHby4Z/vZcIbTHqaLz96nNPDHj77mtVYzHM+ctNDxbFwCufKAHiVP1azSXDP5a28cHo07qLgD184S7nNwu3r1YyeWD3ufLRGUyN2gFetrMdZYuY3e88vr/zbfb04rOZzNpEeVkzJOWFvcNlZ1ejisSPnmlsfG3AzMOXn2uX1yp4FrSJ2UMQ66GHTomosJsHTxxU7KhyJ8tzJYa5aVqtE0ZC74KpjXba4mkA4yh51b8DerglKS8wsqytT7gwuhqwYIcQbhRCHhRBRIcRmrSZlUCRULVL+MDwXZoaU26184y2XMDwd4H33707YWPlPxwb53p/P8o5ti7huRZzIvJgidsf5ETvA2y5fhMtu4cuPHj9v883R/ikeOTjAX2xvw1mi9jZVhTYvjRZmReylNgu3rWvkdwf6mfQq6x5uf4jf7e/jpjUNlNpmzU/LXaeg9HW12Gde++3rG9ndOU7PuCKoD+3rU+yilXWK8CG1E3Y1iq5wWNm6pJrHjyips3u7J5jyh7lmeb1yhwC5j6mOtX1pDRaT4JkTwzP9ercuqVHKIcvoRWPFHAJeDzyrwVwMio04mTGzWd9SyVfeuIGdHWO88wc7GfOcH7k/dWyID/50L6sbXXz61lXxxyiqiP18jx3AZbfyN9cv45kTwzyoNhwJhqN88sGDVDmt/OWVi889P6BG9XkT9nO52++8YjHTgTD/9expAH7wfAdT/vC5+UUjisjpUVJWFT2AOzY0YRLw/T934AtG+OWubm5YVU99uV2J1kG7eiolpUrGC/DqNQs4Pexhd+cYP3+pC2eJmauW1848nrOwl5RC0EO53crmtioeOdjPnq4Jeid83LquUbFhoGismJzaqEspjwLnUtcMLi5cavbKVOKUvzs3NgPwd788wPVffZq7Ny+kscLOS2fH+MOhAVY3uvjRu7acv2AaI+RXxLBYInZ7JSCUHbezeOcVi3nsyCCffPAAJwbd7O+ZYH/3BP/51kuURdMYebVizhf21U0uXn9JM9955jSeQJifvtTFresWsL5F9fv1vJuYJbALq528YVML97/YwfOnRhjzBnn3VUuU42aiZ42E3eqYuaDcdWkLX3/iJPd+fyfuQJh3XtGGy26dZcVoE7ED3Lt9Me//yW7u+vYLlNks3Li6AULqXW0hK5TOIidhzwQhxHuB9wK0thZBXRCD1MSE3d2f9LA7NzazvKGcrzx6nO/9+SzhqKTKaeVD17XzwevalY078fDENicVibCbTDNphLMxmwTf/YvNfPyB/fzXs2dw2S38613ruX190/nPnxHPPDRaiDPPL7xuLSOeID/a0cnlS6r5l7vWn3tQK0siHlansglI5ZO3rOL0sIeDPZN8/KYVXKbm2s9E7BpbMaDYUf/0unX83a/2s2FhJX/9qmVzxswxkrY6lEAEuGl1A6/Z0MQfD/Xzxdevo8JhBa9GXr5GpBR2IcQTwII4D/29lPKhdAeSUt4H3AewefNm7fusGWiPs1YpaJUkYo+xqtHF9+69DH8ogtsfpqa0RMmCSEYx7TqNYXOB/8KFUpfdyn3v2IwnEMZqNlFiieNiBvLYzNheoXjWkRCYrQA4Syz8+F1b8ATC53z1GFrbILMpcZ6zPIDq0hJ+/VfbCUWiWGcvlmst7CWlyr4BlZvXLuDaFXWUmE3nPntaLZ5a7DNrLyaT4BtvuYRIdCPm2Dhh/7njioCUwi6lvCEfEzEoQkwmKF+QMmKfjd1qjm+7xKOYdp3GsFecE+g4XCCYs8m3FQPKXcKcvPm4c9TaBpmNtfScgM7+8dwMKM2tmPPvFIALP3sxwc11UdNig/D5jWbMswOXIvPYjXRHg+SUN6YVsWfFjLAXUcRujx+xp0XMism2t2YmzBb2dIhFy3oIj5oKmJIZ8dMoc8TqOHfORMTE2GLLbSyLXc3qScDMncFFkBUjhHidEKIH2Ab8XgjxqDbTMigaXI0ZRewZMVNOQMf+oJlir8hB2KeU6NWch6WrGWFPr+epZtkh8UhHYGHGo8aikfjNWrRNiFYWicV+QcR+HiGN7gw0Iidhl1L+RkrZIqW0SSkbpJSv1mpiBkVCeRO4B/Q59/SgsilI9YiLApsrfbGci38yPzYMnBPodCJlKIgVcwGxiFerzJE4VsyFY2oVsdvOXSTicTFF7AavAFyNiij4sxS7ZHhG9G36nA05Rew67OxMhDVTYdd44XI26VoxMyKrkbCXOJWibeEkO5+1ititjuQRe5EtnhrCbpCc8vRSHrPCN65/U4pMsbuUi1iCFm9JCUzlJyMGzgl0OpEyaJf2F49ZaYdJidk1WolfzNJJFknHxNisQcSezG4yhN1gXhHrbKTHAqpvQv8St5lic4GMpB8Jz8avQyOLRMxYMRkKe64bdRLNJexXdrcmQ2vxi9krqSJpc0nuXaMsduVzEYlfOmPmriFXy0cjDGE3SE65Kux6ROz+IhT2WC2VbHz2vFoxauSdymOOEfIoAmcpSX1s1nNJYyHTZNFucTl2gUgVsWtxIZm5iCQYKxK7M9Dh/c0CQ9gNkpNGWYGs8Y0XobCrEXc2PnterRhVTDOJ2PXw1zOZS8ivXUYMzBL2FBG7FlH0jO2TYCytFmk1whB2g+RYHUoNFa0j9nBQWZQtOmFXI/ZsFov9U9pXT0xENounetgwkP7dg1YiGyNVFA15jNhVK8aI2A3mDa4mmNJY2P1qUwRHHppSZIItJuwZRuzRiCJs+bJizBZFRNK1YrTqNRoPa5oRe1jj1nF5jdhT2D7hgNrVqTgKIhrCbpCa8gUwrXEue6yCYtFF7KqVkqnHns86MTGsziKxYtLM0Alp3Iii2CL2XDNvNMQQdoPUlNbBdPxmyVlTtMKeZcSezzoxMUrS3BgEygVA94g9jc1Cmgp7OounGkXs1hSpleGAPgvTWWIIu0FqSuvAM5xdbnciilXYbVkunuazZG8MtflDWuhqxaiil7Jui0/beuVppTtqHbEnGCsSKBp/HQxhN0iHsnrljzK2LV0LilXYrQ6lVPF8sWIy2aCkV+XBVNFsjJA//xF7yKetx57o4hUOGsJuMM8oVcvqxop2aUGxCrsQ2VV4LJQVk67HHvLps+sU0hPY2OO6eOxFErEXSaojGMJukA5lavVFj4Y+u28chCm/EW662CsyT3ecsWLylO4I6RXBihHy6hexp4pmY4T9GlsxefTYU40VCRmLpwbzDL0idntl7lu99SBBF6WkzDSyzqfHnkFWTMinX+VBaxpphzDPI/YUr9FYPDWYd8Q6HHk0FvZis2Fi2LMo3VsIKybdcrnRiGIV6Baxxzz2FBF7ITz2vEXsRrqjwXzDWQsIbVMei1rYsyjdG3ArdVDyWd2vxJneglF8QDwAAB91SURBVLZW7eESERPOUCqPXa889nx67Ea6o8HFgtmi9NV8pUTstiw89qBHaWKRz52H6S6ezpTL1UnYhVA7DKUS9oC2HrvJrGQwFUXEHjAidoN5SGm99ounxSrsKRpaxyUm7PnEWqoISqpyufno7pNK2KVUUw81nkOylnVSqtkqGnrsie5KwkEjYjeYh5TWvoKsGJdicSSqvR0PPTcAJaIkzR2fWjeRjkeqvqeRICC1TwlM1rJOy4qLJpNitUWSbVAyInaD+UZZvXZWTDSieNjFKuyxyDvdVEJQI3adFicTkW4d9Blh13F+qSJ2vXz+ZBG71o09zLbEbfjCQSOP3WAeUlqvXcQeW5gsWmFXI+9ABjttQ978WzHpNrTOR8SeSthDGovszLh5ithj50kasRtWjMF8o6wOgu7Um1DSoVh3ncaI5aJn0h6vEFZM2hF7Hjx2qz15VoxePUGTXVD0aMWX8O7AiNgN5iNablIqdmGfiYTd6T9Hz7K4iUi7c1E+InZHmlaMHhF7qq5GWlkxJecaaswlEgCzVZtxNMAQdoP0mNmkpIEdU/TCrloqmVgxhRD2WEekdDoXgb4euzWVFRNLuSxExK6hFRPvIiKl2mjDiNgN5hultcq/rwRht6nCnpEVU4B0x5k7iyKwYiyprBiNo+eZcfMZsdviR+zRMLpk/OSAIewG6eFUhd07lvu5il3YYwKdbpliKZVj9YyI45Hx4qneWTFJ1l/COtlBeY3YS+JfRIqs3ykYwm6QLs4a5V/vaO7nigl7vho/Z0qmwh72g4wWcPE0lbCrEbue5Q6sjjQjdj3y2Ascsev12nIgJ2EXQnxZCHFMCHFACPEbIUSRdSY20IySUuWD7R3J/Vy+cWXbvtmS+7n0INN0x5gVkncrJsPFUz2FPVna4XlzMCL2fJBrxP44sFZKuR44AXwq9ykZFCVCKFG7VhG7o0ijdZgVsWfQdg4KuHiaThNph74lkosyK0aHDUrx8tgvtohdSvmYlDK27/pFoCX3KRkULc4a7Tz2YvXXQRFAa2n6VkzsApBvYTdblCgxHY9dz4VTUPPYk3nshchj13qDUkn8naczEftFIuxzeBfwh0QPCiHeK4TYJYTYNTysccd7g/xQqmXEXsTCDopIB9LMY58R9jxbMZBe39OQT/+FXYsDZCRxfR1dd57ms6RAnIvIzAVkHlkxQognhBCH4nzdOeuYvwfCwE8TnUdKeZ+UcrOUcnNdXZ02szfIL84a8GjksRe7sNvKsrBi8pwVA+mV7g15tbdA5jJTrzxRs2ed89iljDOmHiUF4kXs6jhFFLGnXL2SUt6Q7HEhxL3A7cD1UsZ7dw0uGjTz2CeKX9hL5oEVExsznQ1Kulsx6vlD/vjtAfXMY0cqPUfnRsyaR+wJFk9j9sx8itiTIYS4GfgEcIeUMs3miwbzFmcN+CcyK2c7FynnR8ReUp5BxF5gKyatiF1vKyZFI4qQT4lotV7ATTZuWONIeh5F7Lm+y/8JlAOPCyH2CSG+o8GcDIqVWC57LA89GwJuxYstdmG3laXvsYcKHbGn47HnKWJP2jpOBzsoWXu8sF+JsrW6mCTy82ci9uIR9pwSiaWU7VpNxGAeMHuTUlmW6yTFvus0xnyxYqwOxdpKRsh77nenFzN9T5N47Hr4/Kkidi0vJrF0RynPb4E4E7EbRcAM5iMzwp7DAuq8EfZMFk/V4/JdUgBSdy4CNY9d78XTFBF7yK9TxB4T9gQRu5ZRdMxDj4TmjHPxWTEGryS0KCswn4Q97Z2n0+oGILO+c4pHWumOfv0vOtYUHntYL2GPWTF5itjhwk1KkYts8dTgFcYrSdhtZYpgp5PoVYiSvTGsjvQabejtsVtmZcXEI+zX2YrJR8Qeu4jMWUC9yDcoGVzsvJKEvaQMkKlFEwos7M70rBjdhT1FHrtedlBeI/aYFTPnIlKEi6eGsBukj6UEbK7cygrMVHYs8npx6ZbEjR1TiFRHSB2xS6kuXOptxcQ89iSVFnX12OMJu14R+1wrJuaxG1aMwXzFWZ3b7lPfuCIyeu+EzJXYJpt0Uh4LbcVEwxcu6MXQq/jWXGICmzQrRoe7hqTpjnpF7HOsmIutCJjBK5Bcd5/Oh12nkFlN9kJbMZA4as9Hkw1IvUEpHNBH+IoiYr/4yvYavNLIWdjnwa5TyMKKKWDEDokj5Xy0xYNzdwQJ5+HTvhY7pBGxazjmTFZMnIjdXHJ+bnuBMYTdIDOctbl77PNB2GesmHQi9mkjYrek8tj1zopJFLFrGEXHzjV3rEiwqDJiwBB2g0xxVmsQsRf5winMitiL3YpJFbHr1Gt0LiaTWiQrkceucx57opZ1euSxz714hQNFlcMOhrAbZIqzRqmNkirFLhHzJWKfdx57CmHXe+dpbIxEeey67zyNM24koK3vbUmweBoJGBG7wTwnl1z2+VLZEZQNSpDaY49GlCi1kOmOkMSKiXnseSh3kKibUTSqiF8hioDlJWIPGhG7wTwnF2EP+ZQ/8Pkg7DGhTuWxx4TzlW7FgOKhJ4qcY49rjckMJmsCjz2ocVaMOv+4Ebsh7AbzmdJa5d9shH2+7DoFpVKf2QbBFHnshazsCGksnuYzYk9QkGzGDtLp4hLPApJSvyJg8SJ2w4oxmNfEInbPRS7soJbuTWHFzFR2LNKIPV8blECtV56sJ6hO4mexXbjNPxoGpLZjJiwCZiyeGsx3crFi5puw29Ko8DjT77RYI/Y8pTuCcpGJK+w620HxvP3Y91pG0jMR+1wrJmRE7AbzHHslCNMrQ9hLylNnxRTciimSDUqQOCsm9jO9MnPidTbSo8dqoojdSHc0mPeYTIowZ9NsY94JexpdlArZ7xRmlctNle6Yj8VTR/w8dq2bSs8lngU0I+xapjsmKttrpDsaXAw4a7LbfTrfhH0+WDFmi5KRkcyKsdi1byIdD4stfsSut88fN2LX4WJiMoMwxy/ba0TsBvOebOvF+MYVESpEC7lsSGvxtMDpjpC8PV4+2uLFsCSI2PXeJBXPY4/oVCM93kXEiNgNLgqcNeei70yIbU4qomJJSZkPHjskb48X8ubvQmq1Jy7GBXn22HVYPAUlMLmgCJjG+fIaYAi7QeZkWy9mvuw6jRFrj5eMQlsxkDpiz8fCKah57MWSFZPviN2wYgzmOzErJp1+oLOZb8JeUpqGx+5RsoTyZXfEI1l7vFAeuifNzMOeYPE0D3nscxc0Zzx2rSP2eHcHRsRucDHgrFFuR9MpkDUb30Txt8SbTUkZREMXisZsYm3xCmkvJbNiwr78dauyOJTPRTRy/s/zsfM0YVaMxq/dUhJ/g5IRsRvMexzVyr+Z2jHzLmJPo8JjIWuxxygaKyZBY+lCZMXo1YfUPOfuQEr9ukPlgCHsBpmT7e5T/zxpixcjVuExWd/TkLcIhL1YFk9jOfUJhF0vu8qcLI9d54g9VrrAiNgN5j0zwp5BLntYtW7mk7CXpFG6N+gpfPpm0UTssdroc+YS8gNCP/FLuvNU68XTOZk/YZ3uDHIkJ2EXQvyjEOKAEGKfEOIxIUSTVhMzKGKcMSsmA2H3Tyj/zofuSTHSsmI8hdt1GiPV4mk+dp1CkohdzaXXax0iWa0YzRdP56Q76pUvnyO5RuxfllKul1JuBH4H/IMGczIodrKxYubbrlNIz4opGo89yc7TQkfs4YC+C7gWO8gIRMLnjwn6pzvGhP1iitillFOzvi0FMsx/M5iX2CuUrdUXu7CnY8UEikXYi8CKiY0z1xbR+64h3qLtzOKpzhG73qmcWWLJ9QRCiH8C3gFMAtclOe69wHsBWltbcx3WoJAIkfkmpfko7OlG7LZisGK8SobGbLtD/v/2zjU2zjK74//j8VziGTsmjh0IDtjltoQFJciLoOyipSwLFFpqFaG2AqRGCFXqVkRddbUFKWg/IO2Hqu23Sgi2ISo0kL2o7WqbbVeLRKuKJlyCIA5L2SzZOJvEjhPbcXyZsef0w/M+M6/Hc/Fc3ucyOT8peu3xeN4zjn3e//t/znMOm1081Yq99CITddVI4U5hqfh/YVyxu5XYayp2IvoZEX1c5t+jAMDMzzPzNgCvAfhGpddh5peYeYSZR/r7+1v3DgQ71NsvxsfEnuhWx5oee7eZeCpRUMrlKkPYXB17xTgivmvQyXulZFGzo1M17molsWQFxe6WFVNTsTPz19b5Wq8B+AmAF5qKSPCDejs8+pjYayl2Zkc89kCRZ+dXJ9DCVn5Tij1IsKWKPdfiEXWVzhu+oCxHNTw7UaLYI7J8mqTZqpgbQp8+CuCT5sIRvKFrE7BQZ2KnDiDZE11MraYzqTzVSoo9Nw9w3gErRlejlCygmhxkDRR99HIVKkY89pKEG8XFJFYyhq/Qk8YzxV6D7xLRTQDyAE4A+LPmQxK8oKsPOHlo/c9fuKDaCZjoC95KEpnKil33kbFe7lhh2IbJsXhA0fJZ47EvAskI7aqCxx5W7IvRqOjOxOqdp44q9qYSOzP/YasCETwj3AhsPfXJvrUT0FQbtqGVfJRJaz1UmnuqPzfZjx0or9jTEa6rlVPsUS3YasWuf++j6iLZJJ7JJ8EZNmxS26mXZms/F/A3sVfrye5Cy17AfcWeW4z24lJWsUeU2DuTyn7LBzXzUfWkaRJJ7EJj1LtJydfEnuz2wIqppNgd8thNVMUYUeyJ1edytI5dErvQGPX2i/E2sVfx2J2xYmopdkOJvaNDJb6yi6cm6thLNihF4rHr0srs6mMs3vpzNYEkdqExLhfFnqgyRUknfGcUe2lin1/9dRN0ptb2islFXBUTc0CxO7Z4KoldaIx6GoGtLAOLM34m9mR3lcXToNWA8+WOBqc7dZaZorS8YKiOvTSxR1HHHrym9tbbtAmYcLlSj2LXm5P09/hENY/d+cVTC4o9XqLYV5bVQmOkHrvhxVOgWA3Tjk3AhMuYZLfasr2uxB6oeq3yfUJbMeXmuxYWT2177BUWTwuTiwx57ICyXMKKPeohG0AFxR6Rr68T+IosngrtCNH6+8Xo53ip2DMAuHyHx+xFlbBiTffSa47OJACqvHhqqh87sFaxRzXJKEzZxdNstIunotiFtqXuxO6hYk9WaQS2NGd/4RRQF9ly4/Fy80BH3OyFZ41iN+Dzx+IAyJ5ijyXsDjMvgyR2oXHW2wjMZ8WubZZyPnv2kn1/XVOuJ3tuwfzYvlLFrj+O8q6BaO0UpeVsRIunJbZPVHcGTSKJXWic9fZk18l/g4+KvUqHx+yc/Rp2TbnxeCaHbGgqeuwRJ7/SPunLi9E05oqV1LEvLznXAAyQxC40Q7ofuDRZ+3nzUyrxJCwPfW6EanNPly66YcUA5cfjWUnsyRKP3dACbmeyeC7moLtjRG17gZBij2gjVJNIYhcaJ92vKl5WctWfN3/eT7UOFBV5uVp2F6YnacpaMfPmE3t8w2rlXFjANajYo1zQXKPYs6LYhTZDd+y7dK768+an/Fw4BUKJvZLH7kpiL7d4akOxl2xQKlTFRK3YU6EFzQhLLEWxC21PZkAdL01Uf978lJ8Lp0DIiimT2F2pigEcWjzdUGLFGNr9GlbsUbbSLbQvCN5jbtHszt51IoldaJy0Tuw1fPaF8/4m9sLiqYdWTNSzRstRqthzBjYoFc4bnCvKBdvSJmDLEbckbhBJ7ELjpDer41yNxO6zFRPvUiP9Sq2YwrxTVxJ7BSvGdNKJb1AtBFaCfuWm2hp0ptZ67FG89zVNwCSxC+3GeqyYlZxqAOarYicqP2zDlXmnmoqLp4atmMIu0IViDIDZqhh9jGLxtJxiN31XtA4ksQuNk8ioRbG5Kond5wZgmnLj8XSLAVcUeyJdwWM3rCZ1YtcWjE7sUW/kiiVXq+hwLK2ko1Pdwelz5SLuNd8gktiFxiECMjVq2ec9bgCmSWTWLp660otdU66O3UbVTrxEsWfnAYpF30tllWLXVkwE5yQqzj0FgpbE7il2y92LiuRyOYyPj2NxcbH2kx0jlUphcHAQ8bhbU1SMkB6okdiDnam+1rED5Vv3FqYnOZTY87liXXV+RSV604ldJ7mwYo93Rd9LJeyxR91RsjNRvHgsLzlZFeNMYh8fH0d3dzeGhoZAjjXUqQYzY2pqCuPj4xgeHrYdjnnS/cDMeOWv+9wnRlPOinFl3qkmEWpW1rnJ3hCQeEmnxdy8mR3HZTcoRWSRhBV71IO6G8QZK2ZxcRF9fX1eJXUAICL09fV5eafREjL91RdP2yKxV1PsjvSKKe1pk7V04SkdaJ01tPu1rGKPKLF3JkOK3ULl0TpwJrED8C6pa3yNuyWkB9TO03y+/Nd9HrKhSW1UlT1hCh67I90dS3va2Lqj0Io9F6qKiRv4GZX12KNS7Aml2PN5dXcgVTFC25EZAHilmMBLmZtUNoGDv/zrJtULLE6vfkwn+lSv+XjKUbqRytYaQKliN9WvRrcUYAZygQ0V1Xm17WOqc2UDSGIXmkNvUqq0gDp3tljv7iupXpWgtBIEQol9o52YSil47JatmFLFnjXlsYc2DmUjLrGMJZRSLyR290SLJHahOXRbgUq17HMTQGaLuXiiYEOgysN2zOK0+gN35U6ktAvlkqVB23pDlF68NbVJKjwer6DYI3rvHij2llTFENE3AfwNgH5mrtHqrzbf+bejGPvNbPOBhdi+tQcv/N4tFb++Z88ebNq0Cbt37wYAPP/88xgYGMCzzz7b0jjajkyNfjFzZ4EtlX/uXqDtlsVptVgMAAvT6nFX1lfWLJ7qqhjDi7ulowRNJ/bcgnrvHZ3RtdPVil3flbhycQ/RtGInom0Avg7g182HY49du3Zh3759AIB8Po/9+/fjiSeesByVB3RfqY4XT5f/ejsodm23LIR89sWZopJ3gdLF06ylDVSJkguMqQ6T+ry5+cD+ifBOpTOl3peJQd0N0grF/ncAvgXgX1rwWgBQVVlHxdDQEPr6+vDBBx/g7Nmz2LlzJ/r6PC7RM0WyR/1Rzf5m7ddyC8DSjP8e+4aQYtcsTrvjrwNrrZhCywPDVkxnUqnlbCgOEx67fp9LF5UVE2UlTiINTJ8o7q5tt8RORI8COMXMH7ZDyd/TTz+NvXv34syZM9i1a5ftcPyACOjZCsyeWvs17btrVe8rqTIe+8J0cdCIC8TiauOMVuq2yh2Jgrr/sBVjwKrQVlT2UvRDxhMZdQ69u9bHnadE9DMA5f4ynwfwHJQNUxMiegbAMwBwzTXX1BGiOUZHR7Fnzx7kcjm8/vrrtsPxh+6ryiv2ubPq2DZWzIXiY4vTwOYb7MRTifAO2eycUq0dFuojdDfMleWgztvAXUN4523UlTiJtDqPw1UxNRM7M3+t3ONEdCuAYQBarQ8CeJ+I7mDmM2Ve5yUALwHAyMgINxN0VCQSCdx7773o7e1FLBazHY4/9FwN/OrttY/rZO97Yi9rxcy4ZcUAq3fIZufsbZ5KZgJLRJcdmrZiIt4UlUgrxd6OVTHM/BGAgnlKRJ8DGGlFVYwt8vk83nnnHRw4cMB2KH7Rs1UtnuZXgI7QBVHbMxsH7cTVKjqTSpVpKyafDxK7Q4unwOq+8UsWpzslMioOU73YgRIrZg7o2hztufLLxd+HdqyKaRfGxsZw/fXX47777sMNNzh2i+06PVep3afaetHMjCvltOEKO3G1kq5NxRbE2YtqyIZLVTFAUSkDwNKsWti2GYeOxUQcWrEbsWKCi4ge4t5ui6dhmHmoVa9lg+3bt+P48eO2w/CT3mvVcfqkUu+amZPAxqvdqfVuhvTm4mKw9tpdu2ClNhbvkmyOI0xkgJlTxfJQE3c2iZBiN2HFAMC8u4ldFLvQPFcMqeOFz1c/PnPKfxtGkx4odrHUCd61tYOuPmA+uOjMn7fXAz8ZWEImL4C6KmjpYvTrC/q1LwZ3qK705A8hiV1ono3bABBw4VerH58ZVwur7UBmoDi0u1Dt41h9ftcmpSKZVVM2m4p9aa642GzKskoGZYimrJjZU0BH3Pxc2XUgiV1onnhKWTBhxZ5bVAp34zZrYbWUdDACkLmY2NOuJfbNqlJjadbuAPFkt1qHMGnFAEpJL86oLo8mrJiZk+puxEGrURK70BquGFqd2M8H6xV919mIpvVkBtTouYULgXKnYmdLV9CJfOozdbRmxWTU4rJuM2FKsSe6ixfdqDcoAeqO1LUF9ABJ7FU4cuQI7rrrLtxyyy247bbb8MYbb9gOyV2uGAamfln8/Nyn6ujaJp5GSYeanc2dVUk05tiMW32hOfd/6mjTigGA6V+rj039nBLpYjO6qDcoAark0bWS1wBJ7FXo6urCvn37cPToURw8eBC7d+/G9PR07W+8HBn4grJedAnYVJBc+q63F1Mr0V0d5ybcbWymFbtO7LaqdvTaw+QvzCa+ZAa4cEJ9HOV5w20aXKuMCnBmmPUq/v3bwJmPWvuaV94KPPTdil+u1bZ369atGBgYwOTkJHp73bxKW2XLF9Xx7MfAb31VJZeeQXdGxzWLTuQXz7g7PKRgxVhW7D1BJdTEUWDAYEO/RLrYmCvKaqzw77RYMW5Tq23voUOHkM1mcd11beIZt5orb1XHMx+r48RY+9gwgLKaqEMlzdlTqj+Oa5QqdluLp3ovg+lNXN2hPRRRVmOFq2ActWLcVOxVlHVUVGvbe/r0aTz55JN49dVX0WGjqZIPpDcrVXv6Q1WZcPYocM9f2Y6qdcRTKrmf+B+1KLhlu+2I1pLaqMrvJsbURchW98nMgGrdm182208nLCSi7Cja0aF20y7NihXjA+Xa9s7OzuLhhx/Giy++iDvvvNNyhI4z9BXglz9XyY/zwLV3246otQzcDHzyY/WxvkNxCSJ1wTn9IdB/s70eJh0xpWTnz5ndoBZO7B0RN/Eb2A6cfEesGB8YHR3FwYMHcfjwYTzwwAPIZrMYHR3FU089hccee8x2eO7zhd9Vf8w/fU4px8Ev2Y6otfTfVPx4i4OJHQCu+W11tH3h0dvtb3zQ3Dn7DFp/W3eqY7iVs0NIYg+h2/Y+/vjjiMViePPNN/H2229j79692LFjB3bs2IEjR47YDtNdrr9fVQycPw6M7DLTrtUkOkldMQykHZ2u1X+jOmYsDwHR/YOGvmzunOE+RVHzpafV8aaHzJ2zDojZfGv0kZERfvfdd1c9duzYMdx8883GYwmTz+dx++2348CBA3V3eHQhfieY/BQ48hrwlW8CKUvdBaNkbkK1J+5xcPEUUNvp33pR/fxtVcUAqhf/wgXzg8yPvK5KbLfdYfa8hiCi95h5pNbzxGMPGBsbwyOPPILR0VFp29sM/TcC93/HdhTR4WKZY5hEF/DAi7ajUOrZpILW7PgT8+d0EEnsAdK2VxCEdsEpj92GLdQKfI1bEIT2xJnEnkqlMDU15V2SZGZMTU0hlXKv2b4gCJcnzlgxg4ODGB8fx+TkpO1Q6iaVSmFwsE0GSgiC4D3OJPZ4PI7h4WHbYQiCIHiPM1aMIAiC0BoksQuCILQZktgFQRDaDCs7T4loEsCJBr99M4BzLQzHBr6/B4nfPr6/B9/jB+y8h2uZuWa/CCuJvRmI6N31bKl1Gd/fg8RvH9/fg+/xA26/B7FiBEEQ2gxJ7IIgCG2Gj4n9JdsBtADf34PEbx/f34Pv8QMOvwfvPHZBEAShOj4qdkEQBKEKktgFQRDaDK8SOxE9SES/IKLPiOjbtuOpFyL6HhFNENHHtmNpBCLaRkRvEdEYER0lomdtx1QPRJQiokNE9GEQv5cTQYgoRkQfENGPbcfSCET0ORF9RERHiOjd2t/hFkTUS0TfJ6JPiOgYEd1lO6ZSvPHYiSgG4FMA9wMYB3AYwB8z85jVwOqAiO4BMAdgHzN/0XY89UJEVwG4ipnfJ6JuAO8B+ANf/g+IiACkmXmOiOIA/hvAs8z8juXQ6oKI/hLACIAeZn7Edjz1QkSfAxhhZi83KBHRqwD+i5lfJqIEgC5mnrYdVxifFPsdAD5j5uPMnAWwH8CjlmOqC2Z+G8B523E0CjOfZub3g48vAjgG4Gq7Ua0fVswFn8aDf34omwAiGgTwMICXbcdyOUJEGwHcA+AVAGDmrGtJHfArsV8N4GTo83F4lFTaDSIaArATwP/ajaQ+AhvjCIAJAP/JzF7FD+DvAXwLQN52IE3AAP6DiN4jomdsB1MnwwAmAfxjYIe9TERp20GV4lNiFxyBiDIAfgBgNzPP2o6nHph5hZl3ABgEcAcReWOJEdEjACaY+T3bsTTJl5n5dgAPAfjzwKL0hU4AtwP4B2beCeASAOfW+3xK7KcAbAt9Phg8Jhgk8KZ/AOA1Zv6h7XgaJbh9fgvAg7ZjqYO7Afx+4FHvB/A7RPRPdkOqH2Y+FRwnAPwIymb1hXEA46E7ve9DJXqn8CmxHwZwAxENBwsWfwTgXy3HdFkRLD6+AuAYM/+t7XjqhYj6iag3+HgD1EL8J3ajWj/M/NfMPMjMQ1C//z9n5icsh1UXRJQOFt4RWBhfB+BNlRgznwFwkohuCh66D4BzxQPOjMarBTMvE9E3APwUQAzA95j5qOWw6oKI/hnAVwFsJqJxAC8w8yt2o6qLuwE8CeCjwKcGgOeY+ScWY6qHqwC8GlRYdQB4k5m9LBn0mC0AfqQ0AjoBvM7MB+2GVDd/AeC1QGAeB/CnluNZgzfljoIgCML68MmKEQRBENaBJHZBEIQ2QxK7IAhCmyGJXRAEoc2QxC4IgtBmSGIXBEFoMySxC4IgtBn/DyZRp+XbjVp9AAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, ax = plt.subplots()\n", "ax.plot(x, y, label=\"y\")\n", "ax.plot(x, y2, label=\"y2\")\n", "ax.legend()\n", "ax.set_title(\"This plot makes no sense\");"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 4\n", "<a name=\"task4\"></a>\n", "\n", "* Sort the data frame by the virtual proccesses\n", "* Plot `\"Presim. Time / s\"` and `\"Sim. Time / s\"` of our data frame `df` as a function of the virtual processes\n", "* Use a dashed, red line for `\"Presim. Time / s\"`, a blue line for `\"Sim. Time / s\"` (see [API description](https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot))\n", "* Don't forget to label your axes and to add a legend\n", "* Submit when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 61, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["df.sort_values([\"Virtual Processes\", \"Nodes\", \"Tasks/Node\", \"Threads/Task\"], inplace=True)"]}, {"cell_type": "code", "execution_count": 62, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VdW5//HPQwgJCIqSaJHBgOIAgoFGxOKQioiiFfWK0ksVbr1X2+rtVaut3taK/sSrVdFarcNVXmC1WpwqdWSoQ/WqGChaBJSoKFCUQUAZJfD8/lj7kJPknOSQ5OScJN/367Vfe5+19vDs7OQ8WXtY29wdERGRurTJdAAiItI8KGGIiEhKlDBERCQlShgiIpISJQwREUmJEoaIiKRECUNERFKihCEiIilRwhARkZS0zXQADVFQUOBFRUWZDkNEpFmZO3fuGncv3N3lmnXCKCoqoqysLNNhiIg0K2b2aX2W0ykpERFJiRKGiIikRAlDRERS0qyvYYhI49u+fTvLly9n69atmQ5FGig/P5/u3buTm5vbKOtTwhCRKpYvX06nTp0oKirCzDIdjtSTu7N27VqWL19Or169GmWdOiUlIlVs3bqVLl26KFk0c2ZGly5dGrWlqIQhIjUoWbQMjX0cW2XCWLAAfvlLWLs205GIiDQfrTJhLFkCN94In32W6UhEJJGcnByKi4s5/PDDGT16NJs3b27wOu+9914eeuihBq/n4osvpri4mL59+9K+fXuKi4spLi7miSee4Ne//jWzZs1q8DYSuemmm3jkkUfSsu5UtcqL3gUFYbx6dWbjEJHE2rdvz/z58wEYO3Ys9957L5dffvmuenfH3WnTJvX/eX/0ox81Smx33303AEuXLuW0007bFSfA2Wef3SjbSOSll15i2rRpaVt/KlplC6Mw6kFFCUMk+x177LGUl5ezdOlSDjnkEM4//3wOP/xwli1bxowZMzj66KMZNGgQo0ePZuPGjQBcddVV9O3blwEDBnDFFVcAMGHCBG699VYASktLueyyyygpKeGwww7jnXfe4ayzzqJPnz786le/qnes48eP54knngBC10VXX301xcXFlJSUMG/ePEaMGMGBBx7Ivffeu2uZW265hSOPPJIBAwZw7bXXJlzvV199xTfffENhYdXun1599dVdLZyBAwfy9ddf1zv2VLTKFkbsZ75mTWbjEGkWSktrlp1zDvzkJ7B5M4wcWbN+/PgwrFkD1f/rfuWVlDddUVHBCy+8wMknnwzAkiVLmDp1KkOGDGHNmjXccMMNzJo1iz322IObb76ZSZMmcfHFF/P000+zePFizIz169cnXHe7du0oKyvjt7/9LaNGjWLu3Lnss88+HHjggVx22WV06dIl5TiT6dmzJ/Pnz+eyyy5j/PjxvPHGG2zdupXDDz+cH/3oR8yYMYMlS5YwZ84c3J3TTz+d1157jeOOO67KembNmsWwYcNqrP/WW2/l7rvvZujQoWzcuJH8/PwGx1ybtLUwzCzfzOaY2btm9r6ZXReV9zKzt82s3Mz+ZGbtovK86HN5VF+Urtj23htyctTCEMlWW7Zs2fWfec+ePbngggsAOOCAAxgyZAgAb731FgsXLmTo0KEUFxczdepUPv30U/baay/y8/O54IILeOqpp+jQoUPCbZx++ukA9O/fn379+tG1a1fy8vLo3bs3y5Yta5T9iN/GUUcdRadOnSgsLCQvL4/169czY8YMZsyYwcCBAxk0aBCLFy9myZIlNdbz4osvcsopp9QoHzp0KJdffjl33nkn69evp23b9LYB0rn2bcAJ7r7RzHKB183sBeBy4HZ3f8zM7gUuAO6Jxuvc/SAzGwPcDJybjsDatIEuXZQwRFJSW4ugQ4fa6wsKdqtFERN/DSPeHnvssWva3Rk+fDiPPvpojfnmzJnD7NmzeeKJJ7jrrrv461//WmOevLw8ANq0abNrOva5oqJit2NOpK5tuDtXX301F110Ua3rmTNnDvfcc0+N8quuuopTTz2V559/nqFDh/LSSy9x6KGHNkrsiaStheHBxuhjbjQ4cALwRFQ+FTgjmh4VfSaqH2ZpvBm8oEAJQ6Q5GzJkCG+88Qbl5eUAbNq0iQ8//JCNGzeyYcMGRo4cye233867776b4UiTGzFiBJMnT9517WXFihWsWrWqyjzvv/8+hx56KDk5OTWW/+ijj+jfvz+/+MUvOPLII1m8eHFa401r+8XMcoC5wEHA3cBHwHp3j6Xv5UC3aLobsAzA3SvMbAPQBUjLlYbCQiUMkeassLCQKVOm8P3vf59t27YBcMMNN9CpUydGjRrF1q1bcXcmTZpU722MHDmSBx54gP3337+xwq7ipJNOYtGiRRx99NEAdOzYkYcffph999131zzx13Cqu+OOO3j55Zdp06YN/fr1S3jaqjGZu6d1AwBm1hl4GrgGmOLuB0XlPYAX3P1wM1sAnOzuy6O6j4Cj3H1NtXVdCFwI0LNnz29/+mm93gPC6NHhAb5Fi+q7VyIt06JFizjssMMyHYZEhg8fzkMPPUTXrl3rtXyi42lmc929ZHfX1SS31br7euBl4Gigs5nFWjbdgRXR9AqgB0BUvxdQ41lsd7/f3UvcvaT6LWa7Qy0MEWkOZs6cWe9k0djSeZdUYdSywMzaA8OBRYTEEbvPbhzwTDQ9PfpMVP9XT2Pzp6AAvvwSduxI1xZERFqWdF7D6ApMja5jtAGmufuzZrYQeMzMbgD+DjwYzf8g8AczKwe+BMakMTYKC8E99CcVd7pQRESSSFvCcPf3gIEJyj8GBico3wqMTlc81cU/vKeEISJSt1bZNQioexARkd2lhKGEISKSklabMNRjrUj2mjhxIv369WPAgAEUFxfz9ttvA/Dv//7vLFy4sMHrP+qooyguLqZnz54UFhbu6sBv6dKljBw5Mmn/Uw11yimnsHz58rSsuym0ys4HQQlDJFu9+eabPPvss8ybN4+8vDzWrFnDN998A8ADDzzQKNuIJaApU6ZQVlbGXXfdtavu+eefb5RtVLdlyxbWrl1L9+7d07L+ptBqWxjt2sFee6nHWpFss3LlSgoKCnb1vVRQULDrSevS0lLKysqA8FT0lVdeSb9+/TjxxBOZM2cOpaWl9O7dm+nTp9d7+0VFRaxZs4alS5dy6KGHMn78eA4++GDGjh3LrFmzGDp0KH369GHOnDlA6JLkhz/8IYMHD2bgwIE888wzCdf7yiuvUJqg598777xzV1fsY8ak9ebQBmu1LQzQw3sidbn0UkjQB2CDFBfDHXckrz/ppJO4/vrrOfjggznxxBM599xzOf7442vMt2nTJk444QRuueUWzjzzTH71q18xc+ZMFi5cyLhx43b1FNsQ5eXlPP7440yePJkjjzySP/7xj7z++utMnz6dG2+8kT//+c9MnDiRE044gcmTJ7N+/XoGDx7MiSeeWKWjRAhdfJxxxhk1tnHTTTfxySef7OrBNpu12hYGqANCkWzUsWNH5s6dy/33309hYSHnnnsuU6ZMqTFfu3btdvWx1L9/f44//nhyc3Pp378/S5cubZRYevXqRf/+/Xf11TRs2DDMrMo2ZsyYwU033URxcTGlpaVs3bqVzxK8//mNN97gmGOOqVE+YMAAxo4dy8MPP5z27skbKrujS7PCQqhnV1QirUJtLYF0ysnJobS0lNLSUvr378/UqVMZP358lXlyc3OJdWgd3314Oronr20b7s6TTz7JIYccknQ9H3/8MT169KBdu3Y16p577jlee+01/vKXvzBx4kT+8Y9/ZG3iaNUtjMJCXcMQyTYffPBBlZcIzZ8/nwMOOCCDEdVuxIgR/O53vyPWk9Hf//73GvMk63F2586dLFu2jO9+97vcfPPNbNiwYVdX59mo1SeM1atDFyEikh02btzIuHHjdl0IXrhwIRMmTKjXuv75z38yMtErZBvRNddcw/bt2xkwYAD9+vXjmmuuqTHPiy++mDBh7Nixgx/84Af079+fgQMH8tOf/pTOnTunNd6GaJLuzdOlpKTEY3dM1Mdtt8EVV8D69eGOKRFR9+aNbdu2bQwdOpSGfFc1RLPr3jxb6VkMEUm3vLy8jCWLxtaqE4a6BxERSZ0SBrrwLVJdcz5VLZUa+zgqYaAWhki8/Px81q5dq6TRzLk7a9euJT8/v9HWmZ03+zYRJQyRmrp3787y5ctZrT+MZi8/P79R+65q1QmjQwfIz1fCEImXm5tLr169Mh2GZKFWfUrKTA/viYikqlUnDFAHhCIiqVLCUMIQEUlJq08Y6rFWRCQ1rT5hqIUhIpIaJYxC2LQJtmzJdCQiItktbQnDzHqY2ctmttDM3jez/4rKJ5jZCjObHw0j45a52szKzewDMxuRrtji6WlvEZHUpPM5jArgZ+4+z8w6AXPNbGZUd7u73xo/s5n1BcYA/YD9gVlmdrC770hjjFUe3uvRI51bEhFp3tLWwnD3le4+L5r+GlgEdKtlkVHAY+6+zd0/AcqBwemKL0Y91oqIpKZJrmGYWREwEHg7KrrEzN4zs8lmtndU1g1YFrfYchIkGDO70MzKzKysMbou0CkpEZHUpD1hmFlH4EngUnf/CrgHOBAoBlYCt+3O+tz9fncvcfeSwti3fQOoPykRkdSkNWGYWS4hWTzi7k8BuPsX7r7D3XcC/0vlaacVQPxVhO5RWVp17gw5OUoYIiJ1SeddUgY8CCxy90lx5V3jZjsTWBBNTwfGmFmemfUC+gBz0hVfTJs20KWLEoaISF3SeZfUUOA84B9mNj8q+2/g+2ZWDDiwFLgIwN3fN7NpwELCHVYXp/sOqRg9vCciUre0JQx3fx2wBFXP17LMRGBiumJKRj3WiojUrdU/6Q1qYYiIpEIJAyUMEZFUKGEQHt778kuoqMh0JCIi2UsJg8pnMb78MrNxiIhkMyUM9PCeiEgqlDBQwhARSYUSBuqAUEQkFUoYqIUhIpIKJQwqWxh6eE9EJDklDCA3N3RCqBaGiEhyShgRPbwnIlI7JYxIQYEShohIbZQwIuqAUESkdkoYEZ2SEhGpnRJGJNbCcM90JCIi2UkJI1JQANu3w4YNmY5ERCQ7KWFE9PCeiEjtlDAisYShC98iIokpYUTUwhARqZ0SRkQJQ0SkdkoYEfVYKyJSOyWMyB57QPv2uoYhIpJM2hKGmfUws5fNbKGZvW9m/xWV72NmM81sSTTeOyo3M7vTzMrN7D0zG5Su2JLRw3siIsmls4VRAfzM3fsCQ4CLzawvcBUw2937ALOjzwCnAH2i4ULgnjTGlpAShohIcmlLGO6+0t3nRdNfA4uAbsAoYGo021TgjGh6FPCQB28Bnc2sa7riS0QJQ0QkuSa5hmFmRcBA4G1gP3dfGVV9DuwXTXcDlsUttjwqazLqsVZEJLm0Jwwz6wg8CVzq7l/F17m7A7vVe5OZXWhmZWZWtrqRv93VY62ISHJpTRhmlktIFo+4+1NR8RexU03ReFVUvgLoEbd496isCne/391L3L2kMPbwRCMpLIRNm2DLlkZdrYhIi5DOu6QMeBBY5O6T4qqmA+Oi6XHAM3Hl50d3Sw0BNsSdumoSenhPRCS5tmlc91DgPOAfZjY/Kvtv4CZgmpldAHwKnBPVPQ+MBMqBzcC/pTG2hOIf3uvZs6m3LiKS3dKWMNz9dcCSVA9LML8DF6crnlSohSEikpye9I6jHmtFRJJTwoijFoaISHJKGHE6d4acHCUMEZFElDDimOnhPRGRZJQwqtHDeyIiidWZMMzsN2a2p5nlmtlsM1ttZj9oiuAyQf1JiYgklkoL46SoS4/TgKXAQcCV6Qwqk5QwREQSSyVhxJ7VOBV43N03pDGejNM1DBGRxFJJGM+a2WLg28BsMysEtqY3rMwpLIR162D79kxHIiKSXepMGO5+FfAdoMTdtxO67RiV7sAyJfYsxpdfZjYOEZFsk9JdUu7+pbvviKY3ufvn6Q0rc/TwnohIYrqttholDBGRxJImjOhdFq1OfI+1IiJSqbbeat80s+XAi8CL7r60aULKLHVAKCKSWNKE4e4l0bu4TwbuMLNuwOvAC8Cr7r6tSSJsYl26hLFaGCIiVdV6DcPdl7r7ve5+BuFOqb8AJwJ/M7PnmiLAppabC3vvrYQhIlJdyi9Qim6p/Ws0ELU4WiQ9vCciUlO975Jy9xWNGUg2UfcgIiI16bbaBNRjrYhITSknDDPrkM5AsolaGCIiNaXSvfl3zGwhsDj6fISZ/T7tkWVQrIXhnulIRESyRyotjNuBEcBaAHd/FzgunUFlWkEBVFTA+vWZjkREJHuk2pfUsmpFO9IQS9bQw3siIjWlkjCWmdl3AI/euncFsKiuhcxsspmtMrMFcWUTzGyFmc2PhpFxdVebWbmZfWBmI+q1N41E/UmJiNSUSsL4EXAx0A1YARRHn+syhfCUeHW3u3txNDwPYGZ9gTFAv2iZ35tZTgrbSAslDBGRmup8cM/d1wBjd3fF7v5a1LVIKkYBj0XdjXxiZuXAYODN3d1uY1AHhCIiNdWZMMysF/CfQFH8/O5+ej23eYmZnQ+UAT9z93WE1stbcfMsj8oyQi0MEZGaUuka5M/Ag4R+pHY2cHv3AP8P8Gh8G/DD3VmBmV0IXAjQs2fPBoaTWIcOYdBFbxGRSqkkjK3ufmdjbMzdv4hNm9n/As9GH1cAPeJm7R6VJVrH/cD9ACUlJWl7UkIP74mIVJXKRe/fmtm1Zna0mQ2KDfXZmJl1jft4JhC7g2o6MMbM8qJTYH2AOfXZRmNRwhARqSqVFkZ/4DzgBCpPSXn0OSkzexQoBQqiFzFdC5SaWXG0/FLgIgB3f9/MpgELgQrg4tg7xDNl/vzw8J6IiATmdfR/Ed2x1Nfdv2makFJXUlLiZWVlaVm3WRirexARaWnMbK67l+zucqmckloAdN79kJq3MWOge/dMRyEikj1SOSXVGVhsZu8Au17L2oDbapuFtm2hXbtMRyEikj1SSRjXpj0KERHJeqk86f1qUwQiIiLZLWnCMLPX3f0YM/uacFfTrirA3X3PtEcnIiJZo7YWxh4A7t6piWIREZEsVttdUrqhVEREdqmthbGvmV2erNLdJ6UhHhERyVK1JYwcoCPhmoWIiLRytSWMle5+fZNFIiIiWa22axhqWYiIyC61JYxhTRaFiIhkvaQJw92/bMpAREQku6XS+aCIiIgShoiIpEYJQ0REUqKEUYuKCr1ASUQkRgkjiSOOgM8+g4kTMx2JiEh2SOV9GK3S5ZfDe+/BNdfA3nvDxRdnOiIRkcxSwkiiTRt48EHYsAEuuQQ6d4axYzMdlYhI5uiUVC1yc+FPf4LSUhg3Dp59NtMRiYhkjhJGHfLz4ZlnoLgYRo+G117LdEQiIpmhhJGCPfeEF16AoiL43vdg3rxMRyQi0vTSljDMbLKZrTKzBXFl+5jZTDNbEo33jsrNzO40s3Ize8/MBqUrrvoqLIQZM8K1jJNPhg8+yHREIiJNK50tjCnAydXKrgJmu3sfYHb0GeAUoE80XAjck8a46q1HD5g5M0wPHx5uuxURaS3SljDc/TWgegeGo4Cp0fRU4Iy48oc8eAvobGZd0xVbQxx8MLz0Urh7avhwWLUq0xGJiDSNpr6GsZ+7r4ymPwf2i6a7Acvi5lselWWlgQPDHVPl5XDnnZmORkSkaWTsore7O7DbHW+Y2YVmVmZmZatXr05DZKk59ljo2BE2bcpYCCIiTaqpE8YXsVNN0Th2QmcF0CNuvu5RWQ3ufr+7l7h7SWFhYVqDFRGRSk2dMKYD46LpccAzceXnR3dLDQE2xJ26EhGRLJC2rkHM7FGgFCgws+XAtcBNwDQzuwD4FDgnmv15YCRQDmwG/i1dcYmISP2kLWG4+/eTVNV4V3h0PUPd+4mIZDE96S0iIilRwhARkZQoYYiISEqUMEREJCVKGCIikhIlDBERSYkShoiIpEQJQ0REUqKEISIiKVHCEBGRlChhiIhISpQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDRERSooTRQCtWwFdfZToKEZH0U8JogAMPhMcfh4ICGDYMbrsNFi0C90xHJiLS+JQwGuDtt+HVV+Gyy2DVKrjiCujbNySSSy6B55+HLVsyHaWISOMwb8b/DpeUlHhZWVmmw9jls8/ghRdCopg1CzZvho4dYd486NMn09GJiARmNtfdS3Z3ObUwGlHPnnDRRfDMM7B2Lfzud7BxIyxblunIREQaTgkjTfLzYcCATEchItJ4lDBERCQlbTOxUTNbCnwN7AAq3L3EzPYB/gQUAUuBc9x9XSbiExGRmjLZwviuuxfHXXi5Cpjt7n2A2dFnERHJEtl0SmoUMDWangqckcFYRESkmkwlDAdmmNlcM7swKtvP3VdG058D+yVa0MwuNLMyMytbvXp1U8QqIiJk6BoGcIy7rzCzfYGZZrY4vtLd3cwSPiDi7vcD90N4DiP9oYqICGSoheHuK6LxKuBpYDDwhZl1BYjGqzIRm4iIJNbkCcPM9jCzTrFp4CRgATAdGBfNNg54pqljExGR5DJxSmo/4Gkzi23/j+7+opm9A0wzswuAT4FzMhBbo+rUKYzvuw+GDIEOHTIbj4hIQzR5wnD3j4EjEpSvBYY1dTzpVFwM118P114LixfDU0+FjglFRJqjbLqttsUxg2uugeeeC/1JlZSEjglFRJojJYwmcMopUFYGRUVw2mlw3XWwc2emoxIR2T1KGE2kd2944w047zyYMAFOPx3WpdjxyZw58MknaQ1PRKROmXoOo1Xq0AGmTIGjjoJLLw2nqJ5+umavttu2wccfQ3k5LFkCP/tZKG/Gry4RkRZACaOJmcFPfgIDB8LZZ4e7py6/PLQ2liwJw2ef6ZSViGQfJYwMOfro8Ca+c8+FiROhc+fwVr7vfAfOPz9Mx4YhQ0JrREQkk5QwMmi//eDll+Grr2DPPUPrQ0QkWylhZJgZ7LVXpqMQEamb7pJqJnbs0EVvEckstTCagXbtYNo0mD4dunaFb30rDLHp6mX77gu5uZmOWkRaGiWMZmDKFHj1Vfj8c1i5Mow//DCUffllzfnNoKCgZmIZNChcZBcRqQ8ljGagpCT5XVLbtsEXX4QkEp9QqieXlSvhm29g1CjIz2/a+EWkZVDCaOby8qBnzzDU5je/gV/8Am64Adq2DYnmm2/COH66qAjOPBMGD9ZdWyJSlRJGKxFLKBMnhnFubkg27dpVjtu1gyefhJtvhu7d4ayz4F/+BYYOhZyczMUuItnBvBnfelNSUuJlZWX1W3jxYujYMXwzthKbN4cv/nbtkrce1q2DZ58NieOll2Dr1nAR/YwzQvL47nd1QV2kuTOzue6+248Dt86E4Q7HHAPvvw933hl6BNT5lxo2bgzdsT/5ZOiifdOmkGxGjQqJo0MHaN8+jOOnq4/z8/XjFckmShi766OPYPx4eP318A14333h0WtJaMuWkDRGj67f8u3bV00kZ58NN97YuDGKSGqUMOpjxw644w745S/D6amXX4b+/RsvwBZox47Q0tiyJZziio3jp+saT54c1vX731deO4m/jhI/JCqPL8vNVetFZHfVN2G07oveOTmh7/BTTgm3ER1ySCh317dQEjk5od+rPfes/zr22gtuvz302tsYcnNrTzpt24Z5qg+x8k6dYJ99wrD33pXT8Z87ddKvhEjrbmEksn49jBgRXsQ9cmTjrluAkI/XrYPt2ytv6Y0fEpU1pLyiImyr+lBREeq//jo8ALltW/KYc3KSJ5T/+z9YuDCc0ezYEfbYo/7j9u3DNZ+8vDCu7QYFkfpSC6OxrFkTzpucempIGhMmZDqiFscsfNlmmy1bQuKIDevWJf/8+echSaxbBxs2hOWPOy7cKLBpUxivXVv186ZN9XvPSX5+1SQSP6RStrvLbdsGU6dWttwStd7qOlVY22fdot18KWFUd9BB4QXcgweHO6j22Qd++tNQV1YWvh06dgznKDp1Crfl6l/AFqF9e+jWLQy7o6IijNvW8dfkHm5Tjk8g1cdbtyYetm1LXv7VV7BqVfJ5s+0kQps2u59k6pOYEp2abNMmJKzqQ2OVt/Svgqw7JWVmJwO/BXKAB9z9pmTzpuWUVMzNN8PVV4dOmP75z1D2ve+FhxSqz/fzn6cnBpEGcg+n35IlnWSJqGPH0O9YbPnaTv9VL6vrc2PNE/u8fXumf8pVpTMhxZePHh1u9KyPFnFKysxygLuB4cBy4B0zm+7uC5s8mF/8Aq68Mvz1xEyaFJLD11+HYdo06NIl/It3+umVRzM2Pv98GDMmnJvQAwmSAWaV/2HXd/m8vDBkq/ikliypbNsWTgfu2FFzaKzyxlxXovLq+/D1103/s86qhAEMBsrd/WMAM3sMGAU0fcKA8MXfoUPl59g7U2NiXb/GTmLHruLGjvjmzaG8tBQWLAh/tZ07h2H4cLjrrlD/85+HHgQrKsKyFRWhP47LLgv1ZmG44YbKz2edFe7q+vhjePzxyphiCemcc0LHUB98AH/5CyxdGk6p/eQnIZmdfno4pfbBB+EBxjZtqia8E04I3xKffALLl1fWVVSE8iOPDNv58MNQHx87hNYYwN/+BuXloTw2T14e/Md/hJ/Rxo01Y4+dU4j/GcbXx+6n3bmzakKPiZ1/2LkzfFtUl5sb9mXHjqr/nsZ+zrFzFzt3Vp7PidU1JOHHt+bNwvpjFzXi69q2rayP32/9s5FQfFLs2DHT0bRw7p41A3A24TRU7PN5wF3J5v/2t7/tzcJDD7nfeKP7z3/ufuGF7uec43799ZX1RxzhXlTkfuCB7occ4t63r/uVV1bWh6+TqsOTT4a6F15IXD9jRqifNi1x/ccfh/obb0xcv2pVqL/66sT1O3aE+osuqlnXvn1l7GPH1qzfd99Q9/nnidf9m9+E+iVLEtf//vehft68xPV/+EOof/XVxPV//nOof+65xPWzZ4f6Rx9NXP/226H+gQfc27Rxz8mpOixaFOonTUq8/LJlof666xLXr18f6q+4InF9RUWo//GPq26/bVv3vfaq/NmPG+eel+eenx+G9u3D71nMmDHunTqFYc89wzBwYGX96ae777135bBXSsZRAAAKN0lEQVTPPu7HH19ZP3y4e0FB1eG00yrrhw4Nxzp++Nd/rawfOND9W98KQ9euYbjoosr6Qw5x33//MHTrFoYrrqisP+AA9x49qg7XXRfqNm0K9fFDUZH7bbeF+tWr3Xv1qjncd1+o/+QT9969aw4PPxzq33/f/aCDag6x3605c9z79Kk5zJwZ6l95Jexf9eHNNyt/Nw89tObw3nuh/sMPvSGAMq/Hd3S2tTDqZGYXAhcC9Kyri9Zscd55tdfPn197/c6dlf8Je/SfaOwK6/Dhlf+Fx+qg8hzCmWeGtqt7uAMs9l9trA+tCy4Id4TF2rqxcefOlfXDhlW2g1evrqyD0Ar6/vdDPPFDzKRJocfDnJya9R07wm231Yz9uOPCuEsXuOWWmvVDhoTx/vuHa0jVDRwYxkVF8D//U7P+sMPC+JBDKutjX8cAvXuHcf/+cP31Vb+uofKq+BFHhOtcseVjLYAuXSrj/PWvw3R8KyH2EEtpaVh/9RZE7NiddFLlv8zx24/Nd/LJlbebxerjO/o6+eTK3gti9fH/gp94YnhZSmy97uFFKvH1BxxQWRe/7xB+L+Jb3AAHHlg5PXx4zQdh+/WrWr9+fdVjO2hQ5fRJJ4Vb1+Lr45cfNqzmFf1YPDk54ecbE5uvqCiMc3ND90DVxfavfXv4zndq1sd+nh06hBtjqosd+44dE7+TIPa306kTFBfXrI8dn86dYcCAmvXt24dxhs4RZtVFbzM7Gpjg7iOiz1cDuHuCv/o0X/QWEWmh6nvRO9ve6f0O0MfMeplZO2AMMD3DMYmICFl20dvdK8zsEuAlwm21k939/QyHJSIiZFnCAHD354HnMx2HiIhUlW2npEREJEspYYiISEqUMEREJCVKGCIikhIlDBERSUlWPbi3u8xsNfBpkuoCYE0ThtNUtF/NT0vdN+1X8xPbtwPcvXB3F27WCaM2ZlZWnycZs532q/lpqfum/Wp+GrpvOiUlIiIpUcIQEZGUtOSEcX+mA0gT7Vfz01L3TfvV/DRo31rsNQwREWlcLbmFISIijajFJQwzO9nMPjCzcjO7KtPxNJSZLTWzf5jZfDMri8r2MbOZZrYkGu+d6TjrYmaTzWyVmS2IK0u4HxbcGR3D98xsUPI1Z1aS/ZpgZiuiYzbfzEbG1V0d7dcHZjYiM1HXzcx6mNnLZrbQzN43s/+KylvCMUu2b836uJlZvpnNMbN3o/26LirvZWZvR/H/KXp1BGaWF30uj+qL6txIfV7Tl60DoUv0j4DeQDvgXaBvpuNq4D4tBQqqlf0GuCqavgq4OdNxprAfxwGDgAV17QcwEngBMGAI8Ham49/N/ZoAXJFg3r7R72Qe0Cv6Xc3J9D4k2a+uwKBouhPwYRR/SzhmyfatWR+36GffMZrOBd6OjsU0YExUfi/w42j6J8C90fQY4E91baOltTAGA+Xu/rG7fwM8BozKcEzpMAqYGk1PBc7IYCwpcffXgC+rFSfbj1HAQx68BXQ2s65NE+nuSbJfyYwCHnP3be7+CVBO+J3NOu6+0t3nRdNfA4uAbrSMY5Zs35JpFsct+tlvjD7mRoMDJwBPROXVj1nsWD4BDDOLvf83sZaWMLoBy+I+L6f2X4TmwIEZZjY3ep85wH7uvjKa/hzYLzOhNViy/WgJx/GS6NTM5LhThs1yv6JTFQMJ/7G2qGNWbd+gmR83M8sxs/nAKmAmoTW03t0rolniY9+1X1H9BqBLbetvaQmjJTrG3QcBpwAXm9lx8ZUe2pPN/la3lrIfkXuAA4FiYCVwW2bDqT8z6wg8CVzq7l/F1zX3Y5Zg35r9cXP3He5eDHQntIIObcz1t7SEsQLoEfe5e1TWbLn7imi8Cnia8EvwRay5H41XZS7CBkm2H836OLr7F9Ef7k7gf6k8fdGs9svMcglfqI+4+1NRcYs4Zon2raUcNwB3Xw+8DBxNOD0Ye7tqfOy79iuq3wtYW9t6W1rCeAfoE90V0I5wIWd6hmOqNzPbw8w6xaaBk4AFhH0aF802DngmMxE2WLL9mA6cH915MwTYEHcaJOtVO3d/JuGYQdivMdHdKb2APsCcpo4vFdG57AeBRe4+Ka6q2R+zZPvW3I+bmRWaWedouj0wnHB95mXg7Gi26scsdizPBv4atRqTy/SV/TTcKTCScNfDR8AvMx1PA/elN+HujHeB92P7QzjPOBtYAswC9sl0rCnsy6OEZv52wnnUC5LtB+Fuj7ujY/gPoCTT8e/mfv0hivu96I+ya9z8v4z26wPglEzHX8t+HUM43fQeMD8aRraQY5Zs35r1cQMGAH+P4l8A/Doq701IcOXA40BeVJ4ffS6P6nvXtQ096S0iIilpaaekREQkTZQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDmr2o59ER1couNbN7zGx/M3siyXJFZvavDdz2K2ZW4x3JUfkHUc+hb5jZIQ3Zjkg2UMKQluBRwkOa8cYAj7r7P9397OoLRE+2FgENShh1GOvuRxA6eLslQQw5ady2SKNTwpCW4Ang1Lh+/ouA/YG/Ra2IBVH5eDObbmZ/JTx8dhNwbPTug8ui+rtiKzWzZ82sNJq+x8zK4t8zsBteAw6K1rPUzG42s3nAaDMrNrO3og7vnrbK90scZGazohbKPDM7MCq/0szeieaPve9gDzN7Lpp3gZmdG5XfZOGdD++Z2a31+cGKxGtb9ywi2c3dvzSzOYQOGp8htC6mubsn6K15EDAgWqaU8P6D0yAklFo288tomRxgtpkNcPf3Ugzxe4QniGPWeuhQEjN7D/hPd3/VzK4HrgUuBR4BbnL3p80sH2hjZicRuqUYTHiyenrUGWUh8E93PzVa515m1oXQvcWh0c+hc4qxiiSlFoa0FPGnpcZEnxOZ6e6pvr8i3jlRq+DvQD/CS3Xq8kjU1fRQ4Iq48j9B+GIHOrv7q1H5VOC4qP+wbu7+NIC7b3X3zYS+xE6KYphH6Im0DyEZDY9aLse6+wZCV9VbgQfN7Cxgcz32WaQKtTCkpXgGuN3Cq0E7uPvcJPNtqmUdFVT9JyofwisuCV/4R7r7OjObEqurw1h3L9vNGGpjwP+4+301KsJ+jwRuMLPZ7n69mQ0GhhE6lruE8CIdkXpTC0NaBA9vGnsZmEzy1kV1XxNe0RmzFCg2szZm1oPK7q33JHzJbzCz/Qinvhoj5g3AOjM7Nio6D3jVw1vglpvZGbDr3csdgJeAH1p4jwNm1s3M9jWz/YHN7v4w4eL6oGievdz9eeAy4IjGiFlaN7UwpCV5lPDOkOp3TCXzHrDDzN4FpgB3AJ8ACwndQsde4/mumf0dWEx4Q9kbjRjzOODeKCF8DPxbVH4ecF90XWM7MNrdZ5jZYcCb0bWZjcAPCBfUbzGzndG8PyYkwmei6x8GXN6IMUsrpd5qRUQkJTolJSIiKVHCEBGRlChhiIhISpQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDRERS8v8BI85P8OPxUh8AAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, ax = plt.subplots()\n", "ax.plot(df[\"Virtual Processes\"], df[\"Presim. Time / s\"], linestyle=\"dashed\", color=\"red\")\n", "ax.plot(df[\"Virtual Processes\"], df[\"Sim. Time / s\"], \"-b\")\n", "ax.set_xlabel(\"Virtual Process\")\n", "ax.set_ylabel(\"Time / s\")\n", "ax.legend();"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Plotting with Pandas\n", "\n", "* Each data frame hast a `.plot()` function (see [API](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.html))\n", "* Plots with Matplotlib\n", "* Important API options:\n", " - `kind`: `line` (default), `bar[h]`, `hist`, `box`, `kde`, `scatter`, `hexbin`\n", " - `subplots`: Make a sub-plot for each column (good together with `sharex`, `sharey`)\n", " - `figsize`\n", " - `grid`: Add a grid to plot (use Matplotlib options)\n", " - `style`: Line style per column (accepts list or dict)\n", " - `logx`, `logy`, `loglog`: Logarithmic plots\n", " - `xticks`, `yticks`: Use values for ticks\n", " - `xlim`, `ylim`: Limits of axes\n", " - `yerr`, `xerr`: Add uncertainty to data points\n", " - `stacked`: Stack a bar plot\n", " - `secondary_y`: Use a secondary `y` axis for this plot\n", " - Labeling\n", " * `title`: Add title to plot (Use a list of strings if `subplots=True`)\n", " * `legend`: Add a legend\n", " * `table`: If `true`, add table of data under plot\n", " - `**kwds`: Every non-parsed keyword is passed through to Matplotlib's plotting methods"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Either slice and plot\u2026"]}, {"cell_type": "code", "execution_count": 63, "metadata": {"slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAACPCAYAAAAiN3VfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xlc1Ne9//HXAQQXEFRAYRBBwB0VtFHjErXN0tiYQJIm3dLeprFtkjbpctMlvb8mvb1tb3tvmjYmzU3btE2bJjYJxuxb1agxmijgvjCgKAPIvq8zc35/QGxqMUEFZmDez8fDxwOcL3w/Hr/wfc8553uOsdYiIiIiIn0vyNcFiIiIiAxVCloiIiIi/URBS0RERKSfKGiJiIiI9BMFLREREZF+oqAlIiIi0k8UtERERET6iYKWiIiISD9R0BIRERHpJyG+OGl0dLRNSkryxalFREREzsnu3burrLUx5/O1PglaSUlJ7Nq1yxenFhERETknxpji8/1aDR2KiIiI9BMFLREREZF+oqAlfmtnUTX//tQeXj94Cq/X+rocERGRc+aTOVoiH6TT4+X+N47y0OZCgo3hqd0lTJsQwW0rUrkyPY7gIOPrEkVERHpFPVriV4oqm7j2N9t5cFMh189LYPd/XMovb5hDp8fL157I49L73uSpXSfp9Hh9XaqIiMiHMtYO/JDM/PnzrZ46lPez1vLkuyf50fMHCQ0J4mfZ6Xw8Pe70616v5ZUD5azd6ORgWQOOqBF8ZXkK189LYPiwYB9WLiIiQ50xZre1dv55fa2ClvhaTXMH33lmL68fPMXi1HH87/VzmRA5vMdjrbVsOlLBAxud5J2oIzYijDXLJvPpBYmMDNVIuIiI9D0FLRm0thyt5FtP7aG+pZN/v3wqNy9JJqgXc7CstbxdWM0DG528XVTN2FGhfHFxEjddnMTo4cMGoHIREQkUCloy6LR1evjvVw7zh7eOkxYbzq9uzGBG/Ojz+l67i2tYu9HJpiOVRAwP4fOLkvjikmTGjgrt46pFRCQQKWjJoHK4vIE7nsjnyKlGPr9oEt+7cnqfzLPa76rnwU1OXjlQzvCQYD67MJFblk4mdnTPw5AiIiK9oaAlg4LXa/nj9uP87JXDjB4ewi+um8OKabF9fp6CU408tLmQDfkuQoKDuGH+RL58yWQSxozs83OJiMjQp6Alfq+ioY1vPbWHrQVVfHRaLP993Wyiw8P69ZzF1c08/GYhT+8uwVrIynDw1eUpTI4J79fziojI0KKgJX7t1QPlfPeZvbR2evjBqhl8ZkEixgzcoqOlda08sqWIJ945QafHy6rZ8dy2IoVpE85vTpiIiAQWBS3xSy0dbv7zhYM88c5JZsaP5lc3ZpAa67vepMrGdn6/7Rh/fvs4zR0eLp0xnttXpDJnYpTPahIREf+noCV+Z8/JOu5cl8/x6ma+vCyFb146hdAQ/9iIoK6lgz9uP84f3jpOfWsnS9Oi+drKNC5KHuvr0kRExA8paInf8HgtD79ZyC9fP0pMRBj3fXIui1LG+bqsHjW1u/nLjmJ+t7WIqqYOLkoay+0rU1maFj2gQ5siIuLffB60jDGPAp8AKqy1sz7seAWtoamktoVvrtvDO8drWDU7jp9ck07kSP9fPLS1w8OT757gkS1FlNW3MTshkttXpPKx6eN7tXiqiIgMbf4QtJYBTcBjClqBaUO+ix88ux9r4d7VM8nOdAy6XqF2t4ecXBe/2VzIiZoWpk2I4NYVqaxKjyNYgUtEJGD5PGh1F5EEvKCgFVga2jr5j2f3syG/lHmTxnD/DXOZOHZwr1fl9nh5fm8pD24qxFnRRHL0KL66PIWsDAfDgv1jnpmInL8T1S28e7yG2QmRpMaGD7o3hTLwBkXQMsasAdYAJCYmzisuLu6T84rvvHOshm+sy6e8oY2vr0zjthUphAyhIOL1Wl49UM7aTU4OlDbgiBrBV5ancP28hD5ZyV5EBk59aycv7SsjJ7eEd4/Xnv778aPDWJoWw9K0aJakRjOun9f3k8FpUASt91OP1uDW6fFy/xtH+c3mQhLGjOT+G+eSmTjG12X1G2stm49U8sDGAnJP1BEbEcYtSyfz6QWJjAoL8XV5InIWnR4vW45WkpPr4vVDp+hwe5kcM4prMxO4ZEoM+131bC2oYpuzivrWTgBmxo9maVoMy9KimZc0hrAQvakSBS0ZQMeqmrnzyTz2lNRz/bwEfrh6JuEBEjastbxdVM3ajU62F1YzZuQwbl6SzOcWJRE5wv8n/YsEAmst+10NPJNbwvN7Sqlu7mDMyGGsnhNPdmYCsxMi/2Wo0OO17HPVs62gki0FVeQW1+L2WoYPC2JB8jiWpkWzNC2GKeM1zBioFLSk31lrWffuSe59/iChIUH8NDudK9PjfF2Wz+wuruXBTU42Hq4gIiyEz1+cxBeXJDN2VKivSxMJSKV1rTyb7yIn14WzoonQ4CA+Oj2W7O7eq3NZx6+p3c3Oomq2FlSxpaCSospmAGIj/jHMuDg1mpgIDTMGCp8HLWPME8ByIBo4BfzQWvv7sx2voDW41DR38N1n9vLawVNcnDKO//3kHOIiR/i6LL+w31XPQ5udvLy/nOEhwXxmQSK3LJvM+NHDfV2ayJDX1O7mlf3l5OSW8HZRNdbC/EljyMp08In0+D5bXsZV13q6t+stZxV1LV3DjDPiRp/u7ZqfNEZzN4cwnwetc6WgNXhsOVrJt5/aQ21LB3ddPo2blyRrbakeOCsaeWhTIRv2lBJsDJ/8SAJfXpYy6J/AFPE3Hq/lLWcV6/NcvLK/nNZOD4ljR5KV4SArw0FS9Kh+P/+B0q65XVsLKtldXEunxxIWEsSCyeNYmhrN0inRTB0foWHGIURBS/pcW6eHn79yhEffOkZqbDi/unEuM+MjfV2W3ztR3cJv3izk6d0nsRauyXBw6/IUJsf4bo9HkaHgcHkDObkuNuS7ONXQzujhIayaHc+1mQ7mTRrjs1DT3O5m57FqthztmlTvrGgCICYi7HToWpwaTWyEerkHMwUt6VNHyhu548k8Dpc3ctOiSXzv49MZEaou8XNRVt/KI1uKeOKdE7S7vaxKj+O2FalMjxvt69JEBo2Kxjaeyy8lJ9fFwbIGQoIMy6fGkp3pYOW0WL8cqiuta2VbQRVbnVVsK6iktnuYcdqECJZN6Zrf9ZGksX5Zu5ydgpb0Ca/X8sftx/nZK4cZPTyEX1w3hxXTYn1d1qBW1dTO77cd47Htx2nu8PCx6eO5fWUqcydG+bo0Eb/U2uHhtYPlrM9zseVoJV4LcxIiycpwcNWc+EG1zpXXazlQ2sBWZyVbj1axq7jm9DDjRcljT8/vmjZBw4z+TkFLLlhFQxvffnovW45WsnJaLD+/bjbRg+gXmr+ra+ngj9uP84e3jlPf2snStGhuX5HKgsn+ueG2yEDyei07j9WQk1vCy/vLaWp3Ex85nGsyHGRnOkiNjfB1iX2ipcPNzmM1bD3aNb+roHuYMTo8rDt0dS2aGquHafyOgpZckNcOlPPdnH20dLi5e9UMPrsgUe+u+klTu5u/7Cjmd1uLqGrq4CNJY7h9ZRrL0qLV5hJwnBVNrM8r4dm8Ulx1rYwKDebK9DiyMh0sTB435B+8Ka9vY2tBJVu7n2asbu4AuoYZl6ZFsyQthouSxmrqhh9Q0JLz0tLh5j9fOMQT75xgZvxofnXj3CHzztHftXV6ePKdE/zfliLK6ttId0Ry+8pULp0+fsjfXCSw1TR38PyeUnLyXOw5WUeQgaVpMWRnOrhsxoSADRVer+VgWUP3SvWVvHuslg6Pl9CQIC5KGsuS7h6v6RNG63eEDyhoyTnbW1LHnU/mc6y6mTXLJvOtS6ee04J+0jc63F5yckv4zZuFFFe3MHV8BLeuSOETs+MJ1i9TGSLa3R42HqrgmVwXm49U4PZapseNJjvDwdVz4zVU1oPWDg87j3UtmrqtoIojpxoBiA4PZXFq9OmFU7Vm38BQ0JJe83gtD79ZyC9fP0pMRBj/+8k5XJwS7euyAp7b4+WFvWWs3eTEWdFEcvQovnpJCtdkOBSAZVCy1pJ7opZncl28uLeM+tZOYiLCuGZuPFkZCcyI1xO45+JUQ1t36Kpkm7OKqqauYcYp48NPh64FyeMCtkewvyloSa+46lr5xrp83jlWw6r0OH6Sld5nKydL3/B6La8dLOeBjU4OlDbgiBrBVy6ZzPXzJ+pxcBkUTlS3kJNXwvo8F8XVLQwfFsTlMyeQnZnA4pRxhATrjcOF8noth8obupaRKKjineM1dLi9hAYHMT9pzOngNSNOw4x9RUFLPtSGfBc/eHY/Xq/l3qtncW2mQ5Ov/Zi1ls1HK1m70cnu4lpiIsK4ZWkyn1kwiVEBsom3DB71rZ28uLeM9XklvHu8FmNg0eRxZGU4+Hh6XMBsPO8rrR0e3j1ec3pi/eHyrmHGcaPeG2bsGmqcEKlhxvOloCVn1dDWyQ83HGB9novMxCh+ecNcJo3r3y0qpO9Ya9lRVMPaTQW85awmauQwbl6czE0XJxE5Qr2R4judHi9vHqlkfZ6L1w+dosPtJSVmFNmZCVyT4cARpf1QfaWioY1tzqrubYKqqGpqByAt9n3DjJPHMjJUAbi3FLSkR+8er+HOJ/Mpb2jjaytTuX1FqrrtB7HcE7U8uNHJ3w9XEBEWwk0XT+KLi5MH1QKOMrhZa9nnqicn18Xze0qpbu5g7KhQVs+JJzvTQbojUj3lfsZay+HyxtO9Xe8cq6G9e5hx3qQxLJ0SzdLUGGbGa5jxgyhoyT/p9Hj59d8LeHCTk4QxI/nlDXOZN2mMr8uSPnKgtJ6HNhXy0v4yhocE8+kFiaxZNllPH0m/Ka1rZX2ei/V5LpwVTYQGB3HpjPFkZTi4ZGoMw/QGbtBo63xvmLGrt+tQWQMAY98bZkyNZklaNPHqkfwnPg9axpgrgF8BwcDvrLU/+6DjFbT6z7GqZu5cl8+ek3VcNy+Be1bP1PyIIcpZ0chDmwvZkF9KsDFcPz+Br1ySwsSxI31dmgwBTe1uXt5Xxvo8F28XVWMtfCRpDFkZCaxKj9ODNENERWMbb71vmLGysWuYMTU2nCWp0Syb0vU0Y6DPDfVp0DLGBANHgUuBEuBd4FPW2oNn+xoFrb5nreVvu05y7/MHGRYcxE+y0lk1O87XZckAOFHdwsNbCnl6Vwkea7lmroNbV6SQEhPu69JkkPF4LducVeTklvDqgXLaOr1MGjeSrAwHWRkOze8c4qy1HDnVyLaCKrYUVLGzqJp2t5dhwYbMxDGnN8WeGR8ZcOv8+TpoLQLusdZe3v359wCstT8929coaPWt2uYOvpuzl1cPnGLR5HHcd8Mc4iLV7RtoyuvbeGRLEX99p5h2t5cr0+O4fUUq0+O0XpF8sENlDeTklrAhv5SKxnZGDw/hqu55V5mJYzTvKkC1dXrYXVzLloKuTbEPdg8zRo0cxuLUaJZ1bxMUCA8++DpoXQdcYa39UvfnnwMWWGtvP+O4NcAagMTExHnFxcUXdF7psq2gim89lU9NcwffvmwqtyydrAmNAa6qqZ1Htx3jsbeLaWp387Hpsdy2IpWMRM3Tk3+oaGhjQ37XVjiHyhoICTKsmBZLdoaDldNjCQvRum3yzyob29leWMWW7k2xK7qHGSfHjGLZ6acZxw3J6SqDImi9n3q0Llxbp4dfvHqE3287RmpsOPffMJdZjkhflyV+pL6lkz9uP84fth+jrqWTJanR3L4ylQXJY9VDEaBaOzy8drCcZ3JdbCuoxGthzsQosjMcXDUnnrGjQn1dogwS1loKKprYcrTracadx6pp6/QSEmTInDTmdG9XumNoDDP6Omhp6HCAHT3VyNefyONweSOfWziJ7185XdsuyFk1tbt5fEcxv916jKqmdj6SNIbbVqRyyZQYBa4A4PVadhyrJifXxcv7ymju8OCIGkFWhoNrMhykxmoun1y4tk4PucW1bOneFHu/q2uYMXLEMJZ0P8m4NC2ahDGD82EdXwetELomw38UcNE1Gf7T1toDZ/saBa3zY63lT9uP85OXDzN6eAg/v242K6eN93VZMki0dXpY9+5JHn6zkLL6NtIdkdy2IpXLZozXcPMQ5KxoIie3hGfzXJTWtxEeFsKV6RPIykhgQfJY/Z9Lv6puamebs+r0NkHlDW0ATI4e1R26Ylg4eSwRwwfH06v+sLzDlcD9dC3v8Ki19r8+6HgFrXNX0djGvz+1lzePVrJiagw/v24OMRFaqFLOXYfby/q8Eh7aXEhxdQtTxodz24pUVqXHaUHbQa66qZ3n95SyPs/FnpJ6ggwsmxJDVoaDy2ZMUM+3+IS1FmdFU/cSEpXsKKqhtdNDSJAhIzHq9Gr1sxOi/HaY0edB61wpaJ2b1w+e4jvP7KW53c0PVk3nswsnachHLpjb4+XFfWWs3eikoKKJpHEj+eryFLIyEggNUeAaLNo6PWw8XEFOrovNRypwey0z4kaTnelg9Zx4YrWQrfiZdreH3OK606vV7y+tx1oYPTyke2/GruDlT2sCKmgNUS0dbn784iH+uvMEM+JG86sb55I2PsLXZckQ4/VaXjt4irWbCtjvaiA+cjhfWZ7CJ+dPZPgw9YD4I2stu4tryclz8cKeUhra3MRGhHFN93pXWtJDBpOa5o7uRVO7gldZfdcwY9K4kadD16KUcT4dZlTQGoL2ldRzx7o8jlU1s2bpZL552RQ9bi39ylrLm0crWbvRya7iWqLDw1izLJnPLJgU8KtC+4vi6mZycl08m++iuLqFEcOCuXzmeLIzE1icGu23wy4ivWWtpbCy+XTo2lFUTUuHh+AgQ8bErmHGJWnRzEmIHNCpDgpaQ4jHa/m/LYXc99pRosPDuO+Tc7g4NdrXZUkAsday81gNazc62easImrkML64OJnPX5xE5IjBMXF1KKlv6eSFfaWsz3Wxq7gWY+DilHFkZSRwxawJQ3LNIpH3dLi95J6oZWtBJdsKqtjr6hpmjBgewuKUrqcZl6XFkDiuf4cZFbSGCFddK99cl8/OYzWsSo/jv7JmETVS69qI7+SdqOXBTU7eOFRBeFgINy2axM1LkhkXrgcx+lOH28ubRytZn1fCGwcr6PB4SY0NJzvTwTVzHdrwVwJWbXMHbxV2Pc245Wglpd3DjJPGjWRpWjRLUmO4OHUco/t4mFFBawh4bk8pd6/fh9druffqWVyb6dCEd/EbB0sbeHCzk5f2lREWEsSnL5rEmmWTmRCpidZ9xVrL3pJ6cnJLeH5vGTXNHYwbFcpVc+K5NjOBWY7R+p0g8j7WWoqqmtl6tJJtzireLqymuXuYce7EqNObYs9JiLrgYUYFrUGssa2TH244QE6ei4zEKO6/Ya42bhW/5axo4jebC3k230WwMVw3P4GvXpLiV08HDTauulaezXORk1tCYWUzoSFBXDpjPNkZDpZNiWGYltwQ6ZUOt5e8E7Vsc3Ztir23pK5rmDEshEUp41g6JYZladHndY9V0Bqkdh2v4c51+ZTWtfK1lWl8bWWq1jGSQeFkTQsPv1nIU7tK8FjL1XPjuXV5qlYZ76XGtk5e3l/O+lwXbxdVA3BR0liyMh1cmR6nuXAifaCupYPthdVsLahky9EqXHWtAEwcO4KlaV2ha1FKdK9+3hS0BplOj5cH/l7A2k1OHGNGcP8NGcybpA1/ZfApr2/jkS1F/PWdYtrdXq6cFcdtK1KZEa/lBc7k9njZ5qwiJ9fFawfLaev0kjRuJNmZCWRlONQrKNKPrLUcr245Hbp2FFXT1O4myHTt9/le8JozMarHXmQFrUHkeFUzd6zLZ8/JOq7NTOCe1TMGzRYEImdT1dTOo9uO8djbxTS1u/nY9FhuW5FKRqLeQBwsbSAnt4QNe0qpbGwncsQwrpoTR1ZGApmJUZp3JeIDnR4v+Sfr2Hq08vQwo9dC+HvDjN3bBCWNG4kxRkFrMLDW8tSuEu55/gAhQYafZKfzidnxvi5LpE/Vt3Typ7eP8+hbx6hr6WRJajS3rUhl4eSxARUoTjW0sSHfRU6ui8PljQwLNqyYGkt2poMV02K1Jp6In6lv6WR7Ydfcrq0FlZTUdg0zJozpGmb82bWzFbT8WW1zB9/L2ccrB8pZOHks931yrh7PliGtud3N4zuLeWTLMaqa2pk/aQy3rUxl+ZSYIRu4WjrcvHbgFDl5LrYVVOK1MHdiFNdmOvjE7HjGjNJSLSKDgbWW4u5hxq0FXU8z7v/RFQpa/mpbQRXfeiqfmuYOvn3ZVG5ZOpkgrd4sAaKt08Pfdp3k4c2FlNa3McsxmttXpHHZjPFD4ufA67XsKKomJ8/Fy/vKaO7w4Iga0bXeVYaDlBg9HCAy2HV6vISGBCto+Zt2t4f/efUIv916jMkxo/j1jRnMckT6uiwRn+hwe3k2z8VDm50cr25hyvhwbluRyqr0uEH5pK2zopFncl1syHNRWt9GeFgIV6ZPIDszgYuSxg6JECki/+CzOVrGmOuBe4DpwEXW2l6lp6EetI6eauSOJ/M5VNbAZxcmcveVMxgRqjkZIm6Plxf3lfHgJidHTzUxadxIbl2eQlZGAqEh/h24qpvaeW5PKevzXOwtqSc4yLAsLZqszAQunT5eP+MiQ5gvg9Z0wAv8H/DtQA9a1lr+tP04P335MOFhIfz8utl8dPp4X5cl4ne8Xsvrh06xdqOTfa564iOH8+VLUrjhIxMZPsx/Aktbp4e/H6pgfV4Jm49U4vZaZsaPJivDweq58cRGaGV8kUDg86cOjTGbCfCgVdHYxl1P72XzkUqWT43hF9fNISZC+8GJfBBrLW8ereTBTU7ePV5LdHgYtyxN5jMLJ/lss2RrLbuKa8nJLeGFvWU0trkZPzqMa+Y6yMp0MG2C1ggTCTQXErS07XsfeOPgKb7zzF6a2t386OqZfG7hpCH7ZJVIXzLGsHxqLMunxrKzqJq1m5z89OXDPLS5kC8uTuYLFycROXJg1pk7XtVMTp6LZ/NcnKhpYcSwYD4+awJZmQ4uTokmWPOuROQ8fGiPljHmDWBCDy/dba3d0H3MZj6kR8sYswZYA5CYmDivuLj4fGv2G60dHn784kEe33mC6XGj+fWNc0kbH+HrskQGtfyTdazd6OSNQ6cIDwvhc4smcfOSZKLD+76HuK6lgxf2lrE+z8Xu4lqMgcUp0WRlOLhi1gRG+ahXTUT8i4YOfWC/q56vP5lHUWUza5ZN5luXTdEihCJ96FBZAw9ucvLivjLCQoL41EWJfHlZChMiL2xeVIfby+YjFazPc/H3QxV0eLykxYaTnZnANRnxxEVqjTsR+WcaOhxAHq/lkS1F3Pf6EcaNCuPxLy1gcWq0r8sSGXKmx41m7acz+UZlEw9tKuSxt4t5fMcJrp2XwFcvSSFxXO/3BrTWsqeknvW5JTy3p5Talk6iw0P57MJJZGc6mBk/WsP9ItIvLvSpwyzgASAGqAPyrbWXf9jXDdYerdK6Vr6xLp+dx2r4+KwJ/DQ7naiRWu1ZZCCcrGnh4TcLeWpXCR5ruXpOPLeuSCE19uzD9SW1LWzIL+WZ3BKKKpsJDQnishnjyc50sDQtpsfNY0VEzuTzocNzNRiD1vN7Srl7/T7cXss9q2dy/bwEvQMW8YFTDW08sqWIv+48QZvbw5Wz4rh1RQoz47sWBG5s6+TlfeXk5JWwo6gGgIuSx5Kd4eDj6XFEjtAm7iJybhS0+lFjWyc/3HCAnDwXcydGcf8Nc0mKHuXrskQCXnVTO4++dYzHthfT2O5m5bRYwsNCePVAOe1uL8nRo8jO6NoKZ+LY3g8zioicSUGrn+wuruHOdfm4alu5fWUaX1uZqqEGET9T39rJY9uP8+hbx/BaWD0nnqxMBxkTo9TrLCJ9QkGrj7k9Xn690cnajQXER43g/hvmMj9prK/LEpEP4PZ4AQbl3oki4t/01GEfOl7VzJ3r8sk/WUd2poN7V88kYrjmdIj4OwUsEfFHClrdrLU8tbuEe547QEiQ4YFPZXDVnHhflyUiIiKDmIIWXatDfy9nHy/vL2dB8lh+ecNc4qO0aKGIiIhcmIAPWm85q/jW3/ZQ3dzOd66Yxpplk7WnmYiIiPSJgA1a7W4P//PqEX679RiTY0bxu88vZpYj0tdliYiIyBASkEGr4FQjX38yn0NlDXxmQSI/WDWDEaHap1BERET6VkAFLWstj71dzE9eOkR4WAi/u2k+H5sx3tdliYiIyBAVMEGrsrGdu57ew6YjlVwyJYZfXD+b2Ijhvi5LREREhrCACFp/P3SKu57eS2O7m3tXz+SmRZO0YrSIiIj0uyEdtFo7PPzXSwf5y44TTJsQwRNrFjJlfISvyxIREZEAcUFByxjzC+AqoAMoBP7NWlvXF4VdqP2ueu54Mo/CymZuWZrMty+fSliIJryLiIjIwLnQPSteB2ZZa2cDR4HvXXhJF8brtTz8ZiFZD71FU7ubv9y8gLtXzVDIEhERkQF3QT1a1trX3vfpDuC6CyvnwpTWtfLNv+Wzo6iGK2ZO4KfZ6YwZFerLkkRERCSA9eUcrS8C6/rw+52TF/aW8v2cfbi9lp9fO5vr5ydowruIiIj41IcGLWPMG8CEHl6621q7ofuYuwE38PgHfJ81wBqAxMTE8yq2J41tndzz3EGeyS1hzsQofnXDXJKiR/XZ9xcRERE5Xx8atKy1H/ug140xXwA+AXzUWms/4Ps8AjwCMH/+/LMedy52F9dw57p8XLWtfH1lKl/7aBrDgi902pmIiIhI37jQpw6vAO4CLrHWtvRNSR/O7fHywEYnD2wsID5qBH/78iLmJ40dqNOLiIiI9MqFztFaC4QBr3fPh9phrf3KBVf1AYqrm7lzXT55J+rIznBwz9UzGT18WH+eUkREROS8XOhTh6l9VUgvzsXTu0u457kDBAUZfv2pDFbPiR+o04uIiIics0GxMnxdSwffX7+Pl/aVsyB5LPfdMBdH1AhflyUiIiLygfw+aG13VvHNv+2hqqmdu66YypeXpRAcpGUbRERExP/5bdBqd3u477WjPLK1iOToUay/aTHpCZG+LktERESk1/wyaDkrGvn6E/kd7vK/AAAGKElEQVQcLGvgMwsSuXvVdEaG+mWpIiIiImflV+nFWstfdhTz4xcPMSoshN/eNJ9LZ4z3dVkiIiIi58VvglZlYzvfeWYvGw9XcMmUGH5x/WxiI4b7uiwRERGR8+YXQWvj4VPc9fReGtrc3HPVDD5/cZL2KRQREZFBz6dBq7XDw09eOsSfdxQzbUIEj39pIVMnRPiyJBEREZE+47OgdaC0njuezMdZ0cSXliTz7cunMnxYsK/KEREREelzPglalU3tXPPgW4wZGcqfb76IpWkxvihDREREpF/5JGiV17fxhWmx/Cx7NmNGhfqiBBEREZF+55OglRA1goc/O08T3kVERGRIC/LFSceMClXIEhERkSHPJ0FLREREJBAoaImIiIj0EwUtERERkX5irLUDf1JjGoEjA35i/xcNVPm6CD+jNumZ2qVnapeeqV3+ldqkZ2qXnk211p7Xiuq+WrD0iLV2vo/O7beMMbvULv9MbdIztUvP1C49U7v8K7VJz9QuPTPG7Drfr9XQoYiIiEg/UdASERER6Se+ClqP+Oi8/k7t8q/UJj1Tu/RM7dIztcu/Upv0TO3Ss/NuF59MhhcREREJBBo6FBEREekn/Rq0jDFXGGOOGGOcxpjv9vB6mDFmXffrO40xSf1Zjz/oRZt8wRhTaYzJ7/7zJV/UOdCMMY8aYyqMMfvP8roxxvy6u932GmMyB7rGgdaLNllujKl/37Xy/wa6Rl8wxkw0xmwyxhw0xhwwxtzRwzEBdb30sk0C7noxxgw3xrxjjNnT3S739nBMIN6HetMuAXkvAjDGBBtj8owxL/Tw2rlfL9bafvkDBAOFwGQgFNgDzDjjmFuBh7s/vhFY11/1+MOfXrbJF4C1vq7VB22zDMgE9p/l9SuBlwEDLAR2+rpmP2iT5cALvq7TB+0SB2R2fxwBHO3h5yigrpdetknAXS/d///h3R8PA3YCC884JqDuQ+fQLgF5L+r+t38T+GtPPy/nc730Z4/WRYDTWltkre0AngSuPuOYq4E/dX/8NPBRM7R3m+5NmwQka+0WoOYDDrkaeMx22QFEGWPiBqY63+hFmwQka22ZtTa3++NG4BDgOOOwgLpeetkmAaf7/7+p+9Nh3X/OnJgcaPeh3rZLQDLGJACrgN+d5ZBzvl76M2g5gJPv+7yEf/3BP32MtdYN1APj+rEmX+tNmwBc2z3c8bQxZuLAlOb3ett2gWZRd/f/y8aYmb4uZqB1d9tn0PWO/P0C9nr5gDaBALxeuoeB8oEK4HVr7VmvlQC5DwG9ahcIzHvR/cBdgPcsr5/z9aLJ8P7neSDJWjsbeJ1/JGeRM+UCk6y1c4AHgGd9XM+AMsaEA88Ad1prG3xdjz/4kDYJyOvFWuux1s4FEoCLjDGzfF2TP+hFuwTcvcgY8wmgwlq7uy+/b38GLRfw/gSc0P13PR5jjAkBIoHqfqzJ1z60Tay11dba9u5PfwfMG6Da/F1vrqeAYq1teK/731r7EjDMGBPt47IGhDFmGF2B4nFrbU4PhwTc9fJhbRLI1wuAtbYO2ARcccZLgXYf+idna5cAvRctBlYbY47TNbVnpTHmL2ccc87XS38GrXeBNGNMsjEmlK5JY8+dccxzwOe7P74O2Gi7Z5gNUR/aJmfMI1lN11wL6Wqnm7qfJlsI1Ftry3xdlC8ZYya8NzfAGHMRXT/PQ/4G0f1v/j1wyFp731kOC6jrpTdtEojXizEmxhgT1f3xCOBS4PAZhwXafahX7RKI9yJr7festQnW2iS67s8brbWfPeOwc75e+m1TaWut2xhzO/AqXU/bPWqtPWCM+RGwy1r7HF2/GP5sjHHSNen3xv6qxx/0sk2+boxZDbjpapMv+KzgAWSMeYKup6KijTElwA/pmqCJtfZh4CW6niRzAi3Av/mm0oHTiza5DviqMcYNtAI3DvUbRLfFwOeAfd1zTAC+DyRCwF4vvWmTQLxe4oA/GWOC6QqWf7PWvhDI96FuvWmXgLwX9eRCrxetDC8iIiLSTzQZXkRERKSfKGiJiIiI9BMFLREREZF+oqAlIiIi0k8UtERERET6iYKWiIiISD9R0BIRERHpJwpaIiIiIv3k/wMm96i5KbrjYAAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 720x144 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[\"C\"].plot(figsize=(10, 2));"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["* \u2026 or plot and select"]}, {"cell_type": "code", "execution_count": 64, "metadata": {"slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAACPCAYAAAAiN3VfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl81NW9//HXyQ4kJJA9E0JCEvYQEij7FqpWoSKJC7ZabWulVm2ltddq7e9Xvbe37W1vrVVcSqttba2gEMS1LgVkX7OxJ5OEQCb7vi8zc+4fE6nSAAEy+U4yn+fjweORMN/M98Phm3zfOed8z1Faa4QQQgghRP/zMLoAIYQQQoihSoKWEEIIIYSTSNASQgghhHASCVpCCCGEEE4iQUsIIYQQwkkkaAkhhBBCOIkELSGEEEIIJ5GgJYQQQgjhJBK0hBBCCCGcxMuIk4aEhOjY2FgjTi2EEEIIcVkOHz5co7UOvZKvNSRoxcbGcujQISNOLYQQQghxWZRSJVf6tTJ0KIQQQgjhJBK0hBBCCCGcRIKWcFn7i2r5jzdy+eh4JXa7NrocIYQQ4rIZMkdLiIvpttl5+uN8nt9eiKdSvHG4lIkRATyQlsCypEg8PZTRJQohhLgM3d3dlJaW0tHRYXQpF+Xn50d0dDTe3t799p4StIRLKapuYc2GHPJKG7ltZjSPL5/M1pOVrN1q5ruvZfPbj/L5zpJ4VqaY8PaUDlkhhBgMSktLCQgIIDY2FqVc85dlrTW1tbWUlpYSFxfXb+8rdyrhErTWvHbgDMuf2UVJbRsv3JHKr25JJnCYN+kp0Xz0/cU8f0cqft6e/MfGPJb8ejt/3VdCR7fN6NKFEEJcQkdHB8HBwS4bsgCUUgQHB/d7r5v0aAnD1bV28aNNeXx0vJL5CcH85tbpRAT6fe4YDw/FsqRIbpgawbZTVTy71cz/e/Moz/6zgNWLxvHV2TEM95HLWQghXJUrh6xPOaNGuTMJQ+3Ir+bhN3JpbOvm8WWTuGdBHB4XmYOllGLpxHDSJoSxt7CWZ7ea+dm7J3h+eyHfnB/LXfNiGenXf2PrQgghxNWQoCUM0dFt43/+cZI/7T5NYpg/f/nGLCZHjezz1yulmJcQwryEEA6X1LF2q5n//TCf3+8o4u65sXxzQRyjR/g48V8ghBBisKmoqGDNmjUcPHiQoKAgwsPDefrppxk/frzTzilBSwy4kxVNPPRaDqcqm7l77lgeWzYJP2/PK36/GWNH86dvzOKopZHntpl5bruZl3YVc+ecGO5dOI6wkX6XfhMhhBBDmtaa9PR07r77btavXw9Abm4ulZWVErTE0GC3a/685zS//MdJRvp58aevf4G0iWH99v5TTYG8cOcMCiqbeX57IS/tKuYve0tYNXMM3148juhRw/vtXEIIIQaXbdu24e3tzX333Xfu75KTk51+XglaYkBUNXXw8Bu57Cyo4YsTw/ifW6YR4u/rlHMlhgfw21XTWXNNIi9+Usj6g2d47cAZ0lNMfGdJPONC/Z1yXiGEEJf25NvHOF7W1K/vOTlqJD+9ccpFjzl69CgzZszo1/P2hQQt4XQfHKvg0U15tHfb+NnKqdwxO2ZAnj4ZGzyCX2RM47tLE1m3o4jXDpxhU1Ypy6dF8UBaPBMj+j4nTAghhLgSErSE07R1Wfmvd47z2oGzTIkaye9uTyEhbOB7k6KChvHEiik8kJbAS7uK+eve07ydW8a1k8N5MC2B5DFBA16TEEK4q0v1PDnLlClT2Lhx44CfVxYsFU6Re7aB5c/sYv3Bs9y3OJ7N9883JGR9VmiAL4/eMJHdjy5lzTWJHCiu46bndvO1l/ZzoLjO0NqEEEI419KlS+ns7GTdunXn/i4vL4+dO3c69bwStES/stk1z20zc/MLe+jotvH3b83h0Rsm4uPlOpda0HAf1lwznt2PLuXRGyZyoryJ236/l9te3MuO/Gq0lg2shRBiqFFKsXnzZj7++GPi4+OZMmUKjz32GBEREc49b3/cVJRSLwNfBqq01lMvdfzMmTP1oUOHrvq8wrWU1rfxgw25HDhdx/Jpkfx8ZRKBw11/8dD2LhvrD55h3Y4iyhs7mBYdyINpCVwzKfyii6cKIYTomxMnTjBp0iSjy+iT3mpVSh3WWs+8kvfrrzlafwbWAq/00/uJQWZLjoWfvHkUreE3tyaTkWoaFNstAAzz8eQb8+P46uwYMrMsvLC9kNV/PczEiADuT0tgeVIknhK4hBBCXIF+Gc/RWu8AZJKLG2rq6Oah9dk8tD6H8eEBvP/QQm6eET1oQtZn+Xp58pVZMWx9eDG/XZWM1a753mvZXPPUJ7x+6CzdNrvRJQoh+sGZ2jY2HS6loLJZpgoIpxuwpw6VUquB1QAxMTEDdVrhRAeK6/j+hhwqmjr4/jXjeSAtHi9P15mLdaW8PD1IT4nmpmQTHxyrYO02M49szON3Hxdw35J4bp0RfVUr2QshBl5jezfvHSknM6uUg6frz/19+EhfFiaGsjAxhAUJIQQ7aX0/4ViZ3dV/CXdG8O6XOVoASqlY4B2ZozX0ddvsPP1xPi9sLyR61HCevn06qTGjjC7LabTWbD9VzbNbC8g600BYgC/3LhzHV2fHMMJXVkgRwlV12+zsyK8mM8vCRycq6bLaGRc6gptTo1k8PpSjlkZ2FtSwy1xDY3s3AFOiRrIwMZRFiSHMiB2Fr5f8UtUfiouLCQgIIDg42GXDltaa2tpampubiYuL+9xrVzNHS4KWuCzFNa2sWZ9Nbmkjt86I5qcrpuDvJmFDa83eolrWbjWzp7CWUcO9uWdBHF+bG0vgMNef9C+EO9Bac9TSxKasUt7OLaO2tYtRw71ZkRxFRmo006ID/+1Gb7Nrjlga2VVQzY6CGrJK6rHaNX7eHsyOC2ZhYggLE0MZH+7vsiHB1XV3d1NaWkpHR4fRpVyUn58f0dHReHt//me6BC3hdFprNhw8y5NvH8fHy4NfZCSxLCnS6LIMc7iknue2mdl6sooAXy/unhfLNxfEMXqEj9GlCeGWyhraeTPHQmaWBXNVCz6eHnxxUhgZPb1Xl7PETEunlf1FtewsqGFHQTVF1a0AhAX8a5hxfkIIoQEyzOguDA9aSqnXgCVACFAJ/FRr/dKFjpegNbjUtXbx6KY8Pjxeybz4YH5zWzKRgcOMLsslHLU08vx2M+8frcDPy5M7Zsdw76JxhI/0M7o0IYa8lk4r/zhaQWZWKXuLatEaZo4dRXqqiS8nRfXb8jKWhvZzvV27zTU0tDmGGSdHjjzX2zUzdpTM3RzCDA9al0uC1uCxI7+aH76RS31bF498aSL3LIiTtaV6Ya5q5vlthWzJLcNTKW77QjTfXhTPmNHDjS5NiCHFZtfsNtewOdvCP45W0N5tI2b0cNJTTKSnmIgNGeH08x8rc8zt2llQzeGSerptGl8vD2aPC2ZhQggLx4cwITxAhhmHEAlaot91dNv41T9O8fLuYhLC/Pnd7dOZEhVodFku70xtGy98UsjGw2fRGlammLh/STzjQo3dfkiIwe5kRROZWRa25FiobOpkpJ8Xy6dFcXOqiRljRxkWalo7rewvrmVHvmNSvbmqBXBs+fVp6JqfEEJYgPRyD2YStES/OlXRzEPrszlZ0cxdc8fy2A2TGOYjXeKXo7yxnXU7injtwBk6rXaWJ0XyQFoCkyJHGl2aEINGVXMHb+WUkZll4Xh5E14eiiUTwshINbF0YphLDtWVNbSzq6CGneYadhVUU98zzDgxIoBF4x3zu74QO9olaxcXJkFL9Au7XfPnPaf55T9OMtLPi1/fkkzaxDCjyxrUalo6eWlXMa/sOU1rl41rJoXz4NIEpo8JMro0IVxSe5eND49XsDnbwo78auwakqMDSU8xcWNy1KBa58pu1xwra2KnuZqd+TUcKqk7N8w4K270ufldEyNkmNHVSdASV62qqYMfbsxjR341SyeG8atbphEyiH6gubqGti7+vOc0f9p9msb2bhYmhvBgWgKzxwUbXZoQhrPbNfuL68jMKuX9oxW0dFqJCvRjZYqJjFQTCWEBRpfYL9q6rOwvrmNnvmN+V0HPMGOIv29P6HIsmhomD9O4HAla4qp8eKyCRzOP0NZl5fHlk7lzdoz8duUkLZ1W/ravhD/uLKKmpYsvxI7iwaWJLEoMkTYXbsdc1cLm7FLezC7D0tDOCB9PliVFkp5qYk5c8JB/8KaisYOdBdXs7Hmasba1C3AMMy5MDGFBYiizYkfL1A0XIEFLXJG2Liv/9c4JXjtwhilRI/nd7dOHzG+Orq6j28b6A2f4/Y4iyhs7SDIF8uDSBK6dFD7kby7CvdW1dvF2bhmZ2RZyzzbgoWBhYigZqSaumxzhtqHCbtccL2/qWam+moPF9XTZ7Ph4eTArdjQLenq8JkWMlJ8RBpCgJS5bXmkDa9bnUFzbyupF43j42gmXtaCf6B9dVjuZWaW88EkhJbVtTAgP4P60eL48LQpP+WEqhohOq42tJ6rYlGVh+6kqrHbNpMiRZKSYuGl6lAyV9aK9y8b+YseiqbsKajhV2QxAiL8P8xNCzi2cKmv2DQwJWqLPbHbNi58U8tuP8gkN8OU3tyUzLz7E6LLcntVm5528ctZuM2OuaiEuZATfWRzPyhSTBGAxKGmtyTpTz6YsC+/mldPY3k1ogC8rp0eRnhLN5Ch5AvdyVDZ19ISuanaZa6hpcQwzjg/3Pxe6ZscFu22PoLNJ0BJ9Ymlo5/sbcjhQXMfypEh+np7Ubysni/5ht2s+PF7Bs1vNHCtrwhQ0jPsWj+PWmWPkcXAxKJypbSMzu5TN2RZKatvw8/bgS1MiyEiNZn58MF6e8ovD1bLbNScqmhzLSBTUcOB0HV1WOz6eHsyMHXUueE2OlGHG/iJBS1zSlhwLP3nzKHa75smbpnJzqkkmX7swrTXb86tZu9XM4ZJ6QgN8uXdhHHfMHssIN9nEWwweje3dvJtXzubsUg6erkcpmDsumPQUEzckRbrNxvNGae+ycfB03bmJ9ScrHMOMwSM+HWZ0DDVGBMow45WSoCUuqKmjm59uOcbmbAupMUH8dtV0xgY7d4sK0X+01uwrqmPttgJ2m2sJGu7NPfPjuGteLIHDpDdSGKfbZueTU9Vszrbw0YlKuqx24kNHkJEazcoUE6Yg2Q/VKFVNHewy1/RsE1RDTUsnAIlhnxlmHDea4T4SgPtKgpbo1cHTdaxZn0NFUwffXZrAg2kJ0m0/iGWdqee5rWb+ebKKAF8v7po3lm/OjxtUCziKwU1rzRFLI5lZFt7OLaO2tYvRI3xYkRxFRqqJJFOg9JS7GK01Jyuaz/V2HSiuo7NnmHHG2FEsHB/CwoRQpkTJMOPFSNASn9Nts/PMPwt4bpuZ6FHD+e2q6cwYO8roskQ/OVbWyPPbCnnvaDl+Xp58dXYMqxeNk6ePhNOUNbSzOdvC5mwL5qoWfDw9uHZyOOkpJhZPCMVbfoEbNDq6Px1mdPR2nShvAmD0p8OMCSEsSAwhSnokP8fwoKWUuh74HeAJ/FFr/cuLHS9By3mKa1pZsyGH3LMN3DIjmidWTJH5EUOUuaqZ57cXsiWnDE+luHVmNPctjmfM6OFGlyaGgJZOK+8fKWdztoW9RbVoDV+IHUV6SjTLkyLlQZohoqq5g92fGWasbnYMMyaE+bMgIYRF4x1PM7r73FBDg5ZSyhPIB64FSoGDwFe01scv9DUStPqf1prXD53lybeP4+3pwc/Tk1g+LdLossQAOFPbxos7Ctl4qBSb1qycbuL+tHjiQ/2NLk0MMja7Zpe5hsysUj44VkFHt52xwcNJTzGRnmKS+Z1DnNaaU5XN7CqoYUdBDfuLaum02vH2VKTGjDq3KfaUqEC3W+fP6KA1F3hCa/2lns8fA9Ba/+JCXyNBq3/Vt3bxaGYeHxyrZO64YJ5alUxkoHT7upuKxg7W7Sji7wdK6LTaWZYUyYNpCUyKlPWKxMWdKG8iM6uULTllVDV3MtLPixt75l2lxoySeVduqqPbxuGSenYUODbFPt4zzBg03Jv5CSEs6tkmyB0efDA6aN0CXK+1/lbP518DZmutHzzvuNXAaoCYmJgZJSUlV3Ve4bCroIaH38ihrrWLH143gXsXjpMJjW6upqWTl3cV88reElo6rVwzKYwH0hJIiZF5euJfqpo62JLj2ArnRHkTXh6KtIlhZKSYWDopDF8vWbdNfF51cyd7CmvY0bMpdlXPMOO40BEsOvc0Y/CQnK4yKILWZ0mP1tXr6Lbx6w9O8dKuYhLC/Hl61XSmmgKNLku4kMa2bv685zR/2lNMQ1s3CxJCeHBpArPjRksPhZtq77Lx4fEKNmVZ2FVQjV1D8pggMlJM3JgcxegRPkaXKAYJrTUFVS3syHc8zbi/uJaObjteHorUsaPO9XYlmYbGMKPRQUuGDgdYfmUz33stm5MVzXxtzlh+vGySbLsgLqil08qr+0r4w85ialo6+ULsKB5IS2Dx+FAJXG7AbtfsK64lM8vC+0fKae2yYQoaRnqKiZUpJhLCZC6fuHod3TaySurZ0bMp9lGLY5gxcJg3C3qeZFyYGEL0qMH5sI7RQcsLx2T4LwIWHJPhv6q1Pnahr5GgdWW01vxlz2l+/v5JRvp58atbprF0YrjRZYlBoqPbxoaDZ3nxk0LKGztIMgXyQFoC100Ol+HmIchc1UJmVilvZlsoa+zA39eLZUkRpKdEMztutPyfC6eqbelkl7nm3DZBFU0dAIwLGdETukKZM240AX6D4+lVV1jeYRnwNI7lHV7WWv/3xY6XoHX5qpo7+I838vgkv5q0CaH86pZkQgNkoUpx+bqsdjZnl/L89kJKatsYH+7PA2kJLE+KlAVtB7nalk7ezi1jc7aF3NJGPBQsGh9KeoqJ6yZHSM+3MITWGnNVS88SEtXsK6qjvduGl4ciJSbo3Gr106KDXHaY0fCgdbkkaF2ej45X8qNNebR2WvnJ8kncOWesDPmIq2a12Xn3SDlrt5opqGohNng431kST3pKND5eErgGi45uG1tPVpGZZWH7qSqsds3kyJFkpJpYkRxFmCxkK1xMp9VGVknDudXqj5Y1ojWM9PPq2ZvREbxcaU1ACVpDVFuXlZ+9e4K/7z/D5MiR/O726SSGBxhdlhhi7HbNh8crWbutgKOWJqIC/bhvSTy3zRyDn7f0gLgirTWHS+rJzLbwTm4ZTR1WwgJ8Wdmz3pUs6SEGk7rWrp5FUx3Bq7zRMcwYGzz8XOiaGx9s6DCjBK0h6EhpIw9tyKa4ppXVC8fxg+vGy+PWwqm01nySX83arWYOldQT4u/L6kVx3DF7rNuvCu0qSmpbycyy8GaOhZLaNoZ5e/KlKeFkpEYzPyHEZYddhOgrrTWF1a3nQte+olraumx4eihSxjiGGRckhpAcHTigUx0kaA0hNrvm9zsKeerDfEL8fXnqtmTmJYQYXZZwI1pr9hfXsXarmV3mGoKGe/PN+XHcPS+WwGGDY+LqUNLY1s07R8rYnGXhUEk9SsG8+GDSU6K5fmrEkFyzSIhPdVntZJ2pZ2dBNbsKasizOIYZA/y8mB/veJpxUWIoMcHOHWaUoDVEWBra+cGGHPYX17E8KZL/Tp9K0HBZ10YYJ/tMPc9tM/PxiSr8fb24a+5Y7lkQR7C/PIjhTF1WO5/kV7M5u5SPj1fRZbOTEOZPRqqJldNNsuGvcFv1rV3sLnQ8zbgjv5qynmHGscHDWZgYwoKEUOYlBDOyn4cZJWgNAW/llvH45iPY7Zonb5rKzakmmfAuXMbxsiae227mvSPl+Hp58NVZY1m9aBwRgTLRur9orckrbSQzq5S388qpa+0ieIQPNyZHcXNqNFNNI+VnghCfobWmqKaVnfnV7DLXsLewltaeYcbpY4LObYqdHB101cOMErQGseaObn665RiZ2RZSYoJ4etV02bhVuCxzVQsvbC/kzRwLnkpxy8xovrM43qWeDhpsLA3tvJltITOrlMLqVny8PLh2cjgZKSYWjQ/FW5bcEKJPuqx2ss/Us8vs2BQ7r7TBMczo68Xc+GAWjg9lUWLIFd1jJWgNUodO17FmQw5lDe18d2ki312aIOsYiUHhbF0bL35SyBuHSrFpzU3To7h/SYKsMt5HzR3dvH+0gs1ZFvYW1QIwK3Y06akmliVFylw4IfpBQ1sXewpr2VlQzY78GiwN7QCMGT2MhYmO0DU3PqRP328StAaZbpudZ/9ZwNptZkyjhvH0qhRmjJUNf8XgU9HYwbodRfz9QAmdVjvLpkbyQFoCk6NkeYHzWW12dplryMyy8OHxCjq67cQGDycjNZr0FJP0CgrhRFprTte2nQtd+4pqaem04qEc+31+GrySxwT12ossQWsQOV3TykMbcsg928DNqdE8sWLyoNmCQIgLqWnp5OVdxbyyt4SWTivXTArjgbQEUmLkF4jjZU1kZpWyJbeM6uZOAod5c2NyJOkp0aTGBMm8KyEM0G2zk3O2gZ351eeGGe0a/D8dZuzZJig2eDhKKQlag4HWmjcOlfLE28fw8lD8PCOJL0+LMrosIfpVY1s3f9l7mpd3F9PQ1s2ChBAeSEtgzrjRbhUoKps62JJjITPLwsmKZrw9FWkTwshINZE2MUzWxBPCxTS2dbOn0DG3a2dBNaX1jmHG6FGOYcZf3jxNgpYrq2/t4rHMI/zjWAVzxo3mqdumy+PZYkhr7bTy6v4S1u0opqalk5ljR/HA0gSWjA8dsoGrrcvKh8cqycy2sKugGruG6WOCuDnVxJenRTFqhCzVIsRgoLWmpGeYcWeB42nGo/95vQQtV7WroIaH38ihrrWLH143gXsXjsNDVm8WbqKj28brh87y4vZCyho7mGoayYNpiVw3OXxIfB/Y7Zp9RbVkZlt4/0g5rV02TEHDHOtdpZiID5WHA4QY7Lptdny8PCVouZpOq43//eAUf9hZzLjQETxzewpTTYFGlyWEIbqsdt7MtvD8djOna9sYH+7PA2kJLE+KHJRP2pqrmtmUZWFLtoWyxg78fb1YlhRBRmo0s2JHD4kQKYT4F8PmaCmlbgWeACYBs7TWfUpPQz1o5Vc289D6HE6UN3HnnBgeXzaZYT4yJ0MIq83Ou0fKeW6bmfzKFsYGD+f+JfGkp0Tj4+Xagau2pZO3csvYnG0hr7QRTw/FosQQ0lOjuXZSuHyPCzGEGRm0JgF24PfAD909aGmt+cue0/zi/ZP4+3rxq1um8cVJ4UaXJYTLsds1H52oZO1WM0csjUQF+vHtxfGs+sIY/LxdJ7B0dNv454kqNmeXsv1UNVa7ZkrUSNJTTKyYHkVYgKyML4Q7MPypQ6XUdtw8aFU1d/DIxjy2n6pmyYRQfn1LMqEBsh+cEBejteaT/Gqe22bm4Ol6Qvx9uXdhHHfMGWvYZslaaw6V1JOZVco7eeU0d1gJH+nLyukm0lNNTIyQNcKEcDdXE7Rk2/d+8PHxSn60KY+WTiv/edMUvjZn7JB9skqI/qSUYsmEMJZMCGN/US1rt5n5xfsneX57Id+cH8fX58USOHxg1pk7XdNKZraFN7MtnKlrY5i3JzdMjSA91cS8+BA8Zd6VEOIKXLJHSyn1MRDRy0uPa6239ByznUv0aCmlVgOrAWJiYmaUlJRcac0uo73Lxs/ePc6r+88wKXIkz9w+ncTwAKPLEmJQyznbwNqtZj4+UYm/rxdfmzuWexbEEeLf/z3EDW1dvJNXzuZsC4dL6lEK5seHkJ5i4vqpEYwwqFdNCOFaZOjQAEctjXxvfTZF1a2sXjSOh68bL4sQCtGPTpQ38dw2M+8eKcfXy4OvzIrh24viiQi8unlRXVY7209VsTnbwj9PVNFls5MY5k9GajQrU6KIDJQ17oQQnydDhwPIZtes21HEUx+dIniEL69+azbzE0KMLkuIIWdS5EjWfjWV71e38Py2Ql7ZW8Kr+85w84xovrM4npjgvu8NqLUmt7SRzVmlvJVbRn1bNyH+Ptw5ZywZqSamRI2U4X4hhFNc7VOH6cCzQCjQAORorb90qa8brD1aZQ3tfH9DDvuL67hhagS/yEgiaLis9izEQDhb18aLnxTyxqFSbFpzU3IU96fFkxB24eH60vo2tuSUsSmrlKLqVny8PLhucjgZqSYWJob2unmsEEKcz/Chw8s1GIPW27llPL75CFa75okVU7h1RrT8BiyEASqbOli3o4i/7z9Dh9XGsqmR3J8Wz5Qox4LAzR3dvH+kgszsUvYV1QEwK240GSkmbkiKJHCYbOIuhLg8ErScqLmjm59uOUZmtoXpY4J4etV0YkNGGF2WEG6vtqWTl3cX88qeEpo7rSydGIa/rxcfHKug02onLmQEGSmOrXDGjO77MKMQQpxPgpaTHC6pY82GHCz17Ty4NJHvLk2QoQYhXExjezev7DnNy7uLsWtYkRxFeqqJlDFB0usshOgXErT6mdVm55mtZtZuLSAqaBhPr5rOzNjRRpclhLgIq80OMCj3ThRCuDZ56rAfna5pZc2GHHLONpCRauLJFVMI8JM5HUK4OglYQghXJEGrh9aaNw6X8sRbx/DyUDz7lRRuTI4yuiwhhBBCDGIStHCsDv1Y5hHeP1rB7LjR/HbVdKKCZNFCIYQQQlwdtw9au801PPx6LrWtnfzo+omsXjRO9jQTQgghRL9w26DVabXxvx+c4g87ixkXOoI/3j2fqaZAo8sSQgghxBDilkGroLKZ763P4UR5E3fMjuEnyyczzEf2KRRCCCFE/3KroKW15pW9Jfz8vRP4+3rxx7tmcs3kcKPLEkIIIcQQ5TZBq7q5k0c25rLtVDWLx4fy61unERbgZ3RZQgghhBjC3CJo/fNEJY9szKO508qTK6Zw19yxsmK0EEIIIZxuSAet9i4b//3ecf627wwTIwJ4bfUcxocHGF2WEEIIIdzEVQUtpdSvgRuBLqAQ+IbWuqE/CrtaRy2NPLQ+m8LqVu5dGMcPvzQBXy+Z8C6EEEKIgXO1e1Z8BEzVWk8D8oHHrr6kq2O3a178pJD053fT0mnlb/fM5vHlkyVkCSGEEGLAXVWPltb6w898ug+45erKuTplDe384PUc9hXVcf0AkAIjAAAH3klEQVSUCH6RkcSoET5GliSEEEIIN9afc7S+CWzox/e7LO/klfHjzCNY7Zpf3TyNW2dGy4R3IYQQQhjqkkFLKfUxENHLS49rrbf0HPM4YAVevcj7rAZWA8TExFxRsb1p7ujmibeOsymrlOQxQfxu1XRiQ0b02/sLIYQQQlypSwYtrfU1F3tdKfV14MvAF7XW+iLvsw5YBzBz5swLHnc5DpfUsWZDDpb6dr63NIHvfjERb8+rnXYmhBBCCNE/rvapw+uBR4DFWuu2/inp0qw2O89uNfPs1gKigobx+rfnMjN29ECdXgghhBCiT652jtZawBf4qGc+1D6t9X1XXdVFlNS2smZDDtlnGshIMfHETVMY6eftzFMKIYQQQlyRq33qMKG/CunDudh4uJQn3jqGh4fima+ksCI5aqBOL4QQQghx2QbFyvANbV38ePMR3jtSwey40Ty1ajqmoGFGlyWEEEIIcVEuH7T2mGv4weu51LR08sj1E/j2ong8PWTZBiGEEEK4PpcNWp1WG099mM+6nUXEhYxg813zSYoONLosIYQQQog+c8mgZa5q5nuv5XC8vIk7Zsfw+PJJDPdxyVKFEEIIIS7IpdKL1pq/7SvhZ++eYISvF3+4aybXTg43uiwhhBBCiCviMkGrurmTH23KY+vJKhaPD+XXt04jLMDP6LKEEEIIIa6YSwStrScreWRjHk0dVp64cTJ3z4uVfQqFEEIIMegZGrTau2z8/L0T/HVfCRMjAnj1W3OYEBFgZElCCCGEEP3GsKB1rKyRh9bnYK5q4VsL4vjhlybg5+1pVDlCCCGEEP3OkKBV3dLJyud2M2q4D3+9ZxYLE0ONKEMIIYQQwqkMCVoVjR18fWIYv8yYxqgRPkaUIIQQQgjhdIYEreigYbx45wyZ8C6EEEKIIc3DiJOOGuEjIUsIIYQQQ54hQUsIIYQQwh1I0BJCCCGEcBIJWkIIIYQQTqK01gN/UqWagVMDfmLXFwLUGF2Ei5E26Z20S++kXXon7fLvpE16J+3Suwla6ytaUd2oBUtPaa1nGnRul6WUOiTt8nnSJr2TdumdtEvvpF3+nbRJ76RdeqeUOnSlXytDh0IIIYQQTiJBSwghhBDCSYwKWusMOq+rk3b5d9ImvZN26Z20S++kXf6dtEnvpF16d8XtYshkeCGEEEIIdyBDh0IIIYQQTuLUoKWUul4pdUopZVZKPdrL675KqQ09r+9XSsU6sx5X0Ic2+bpSqlopldPz51tG1DnQlFIvK6WqlFJHL/C6Uko909NueUqp1IGucaD1oU2WKKUaP3Ot/P+BrtEISqkxSqltSqnjSqljSqmHejnGra6XPraJ210vSik/pdQBpVRuT7s82csx7ngf6ku7uOW9CEAp5amUylZKvdPLa5d/vWitnfIH8AQKgXGAD5ALTD7vmPuBF3s+vh3Y4Kx6XOFPH9vk68Bao2s1oG0WAanA0Qu8vgx4H1DAHGC/0TW7QJssAd4xuk4D2iUSSO35OADI7+X7yK2ulz62idtdLz3///49H3sD+4E55x3jVvehy2gXt7wX9fzbfwD8vbfvlyu5XpzZozULMGuti7TWXcB64KbzjrkJ+EvPxxuBL6qhvdt0X9rELWmtdwB1FznkJuAV7bAPCFJKRQ5MdcboQ5u4Ja11udY6q+fjZuAEYDrvMLe6XvrYJm6n5/+/pedT754/509Mdrf7UF/bxS0ppaKB5cAfL3DIZV8vzgxaJuDsZz4v5d+/8c8do7W2Ao1AsBNrMlpf2gTg5p7hjo1KqTEDU5rL62vbuZu5Pd3/7yulphhdzEDr6bZPwfEb+We57fVykTYBN7xeeoaBcoAq4COt9QWvFTe5DwF9ahdwz3vR08AjgP0Cr1/29SKT4V3P20Cs1noa8BH/Ss5CnC8LGKu1TgaeBd40uJ4BpZTyBzYBa7TWTUbX4wou0SZueb1orW1a6+lANDBLKTXV6JpcQR/axe3uRUqpLwNVWuvD/fm+zgxaFuCzCTi65+96PUYp5QUEArVOrMlol2wTrXWt1rqz59M/AjMGqDZX15frya1orZs+7f7XWr8HeCulQgwua0AopbxxBIpXtdaZvRzidtfLpdrEna8XAK11A7ANuP68l9ztPvQ5F2oXN70XzQdWKKVO45jas1Qp9bfzjrns68WZQesgkKiUilNK+eCYNPbWece8Bdzd8/EtwFbdM8NsiLpkm5w3j2QFjrkWwtFOd/U8TTYHaNRalxtdlJGUUhGfzg1QSs3C8f085G8QPf/ml4ATWuunLnCYW10vfWkTd7xelFKhSqmgno+HAdcCJ887zN3uQ31qF3e8F2mtH9NaR2utY3Hcn7dqre8877DLvl6ctqm01tqqlHoQ+ADH03Yva62PKaX+EziktX4Lxw+GvyqlzDgm/d7urHpcQR/b5HtKqRWAFUebfN2wggeQUuo1HE9FhSilSoGf4pigidb6ReA9HE+SmYE24BvGVDpw+tAmtwDfUUpZgXbg9qF+g+gxH/gacKRnjgnAj4EYcNvrpS9t4o7XSyTwF6WUJ45g+brW+h13vg/16Eu7uOW9qDdXe73IyvBCCCGEEE4ik+GFEEIIIZxEgpYQQgghhJNI0BJCCCGEcBIJWkIIIYQQTiJBSwghhBDCSSRoCSGEEEI4iQQtIYQQQggnkaAlhBBCCOEk/wcFCo81otnLcAAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 720x144 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo.plot(y=\"C\", figsize=(10, 2));"]}, {"cell_type": "markdown", "metadata": {}, "source": ["* I prefer slicing first, as it allows for further operations on the sliced data frame"]}, {"cell_type": "code", "execution_count": 65, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD4CAYAAAD4k815AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAACTlJREFUeJzt3X+oZ3ldx/HXe3dQEqL+mCFtp+sNlGILibyshH9kZDQykRUEbkGY4vyTZPRHbS4R/REM9Ef/FMRQawTlQsGyC7u1rVlKP9lZEXVdM4sRV7BWlEQUbd13f8yVuy7jzuz9nr7nzvv7ePwz3HO+fM6bw53nPfec73emujsAzHHL2gMAsCxhBxhG2AGGEXaAYYQdYBhhBxhG2AGGEXaAYYQdYJhTaxz09OnTvb+/v8ahAW5ajz322Ge7+8z1XrdK2Pf393P58uU1Dg1w06qqT97I69yKARhG2AGGEXaAYYQdYBhhBxhG2AGGEXaAYYQdYJhVPqDEsvbvenDtEXLl4vm1RwAOuWIHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gmEXCXlX3VNV/V9VHllgPgONb6or9T5KcW2gtADawSNi7+/1JPrfEWgBs5tS2DlRVF5JcSJK9vb1tHRZ21v5dD649Qq5cPL/2CDtpaw9Pu/tSdx9098GZM2e2dViAneNdMQDDCDvAMEu93fHdSf45yfdU1ZNV9dYl1gXghVvk4Wl337nEOgBszq0YgGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYZpGwV9W5qvq3qvpEVd21xJoAHM/GYa+qW5P8QZI3JLk9yZ1Vdfum6wJwPEtcsd+R5BPd/Z/d/dUk9yZ54wLrAnAMpxZY47Ykn3rW108mec1zX1RVF5JcSJK9vb2ND7p/14Mbr7GpKxfPrz1CkpMzx0ng++LISZnjJNi174utPTzt7kvdfdDdB2fOnNnWYQF2zhJh/3SS73rW12cPtwGwgiXC/miSV1bVd1fVi5K8KckDC6wLwDFsfI+9u5+uqrcneTjJrUnu6e7HN54MgGNZ4uFpuvuhJA8tsRYAm/HJU4BhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gmFNrDwDw/+3KxfNrj7BVrtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhtko7FX1s1X1eFU9U1UHSw0FwPFtesX+kSQ/k+T9C8wCwAI2+rdiuvuJJKmqZaYBYGNbu8deVReq6nJVXX7qqae2dViAnXPdK/aqek+Sl15j193dff+NHqi7LyW5lCQHBwd9wxMC8IJcN+zd/fptDALAMrzdEWCYTd/u+NNV9WSSH0ryYFU9vMxYABzXpu+KuS/JfQvNAsAC3IoBGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gmI0+oAQnzZWL59ceAVbnih1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGGajsFfV71bVx6rqQ1V1X1V9+1KDAXA8m16xP5Lk+7v7VUk+nuQ3Nh8JgE1sFPbu/pvufvrwy39JcnbzkQDYxJL32N+S5K8WXA+AYzh1vRdU1XuSvPQau+7u7vsPX3N3kqeT/NnzrHMhyYUk2dvbO9awAFzfdcPe3a9/vv1V9eYkP5HkR7u7n2edS0kuJcnBwcE3fR0Am7lu2J9PVZ1L8mtJfri7v7TMSABsYtN77L+f5FuTPFJVH6yqP1xgJgA2sNEVe3e/YqlBAFiGT54CDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awp9Ye4LiuXDy/9ggAJ5IrdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYap7t7+QaueSvLJrR/4G51O8tmVZzgpnIsjzsUR5+LISTkXL+/uM9d70SphPwmq6nJ3H6w9x0ngXBxxLo44F0dutnPhVgzAMMIOMMwuh/3S2gOcIM7FEefiiHNx5KY6Fzt7jx1gql2+YgcYSdgBhhF2gGFu2v9B6YWqqu9N8sYktx1u+nSSB7r7ifWmgpOjqu5I0t39aFXdnuRcko9190Mrj7a6qvrT7v6Ftee4UTvx8LSqfj3JnUnuTfLk4eazSd6U5N7uvrjWbKzr8Af+bUn+tbu/+Kzt57r7r9ebbLuq6reSvCFXL/YeSfKaJH+X5MeSPNzdv7PieFtVVQ88d1OSH0ny3iTp7p/c+lAv0K6E/eNJvq+7//c521+U5PHufuU6k508VfWL3f2utefYhqr65SS/lOSJJD+Q5B3dff/hvg909w+uOd82VdWHc/UcvDjJZ5Kc7e4vVNW35OoPvVetOuAWVdUHknw0yR8l6VwN+7tz9UIw3f2+9aa7Mbtyj/2ZJN95je0vO9zHkd9ee4AteluSV3f3TyV5XZLfrKp3HO6r1aZax9Pd/bXu/lKS/+juLyRJd385u/d35CDJY0nuTvI/3f33Sb7c3e+7GaKe7M499l9J8rdV9e9JPnW4bS/JK5K8fbWpVlJVH/pmu5J8xzZnWdktX7/90t1Xqup1Sf6yql6e3Qv7V6vqJYdhf/XXN1bVt2XHwt7dzyT5var6i8M//ys3WSt34lZMklTVLUnuyDc+PH20u7+23lTrOPxG/fEkn3/uriT/1N3X+u1mnKp6b5Jf7e4PPmvbqST3JPn57r51teG2rKpe3N1fucb200le1t0fXmGsE6Gqzid5bXe/c+1ZbtTOhJ0jVfXHSd7V3f9wjX1/3t0/t8JYW1dVZ3P1FsRnrrHvtd39jyuMBRsTdoBhduXhKcDOEHaAYYQdYBhhBxjm/wBdj80waBTiTgAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[\"C\"].plot(kind=\"bar\");"]}, {"cell_type": "markdown", "metadata": {}, "source": ["* There are pseudo-sub-functions for each of the plot `kind`s\n", "* I prefer to just call `.plot(kind=\"smthng\")`"]}, {"cell_type": "code", "execution_count": 66, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD4CAYAAAD4k815AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAACTlJREFUeJzt3X+oZ3ldx/HXe3dQEqL+mCFtp+sNlGILibyshH9kZDQykRUEbkGY4vyTZPRHbS4R/REM9Ef/FMRQawTlQsGyC7u1rVlKP9lZEXVdM4sRV7BWlEQUbd13f8yVuy7jzuz9nr7nzvv7ePwz3HO+fM6bw53nPfec73emujsAzHHL2gMAsCxhBxhG2AGGEXaAYYQdYBhhBxhG2AGGEXaAYYQdYJhTaxz09OnTvb+/v8ahAW5ajz322Ge7+8z1XrdK2Pf393P58uU1Dg1w06qqT97I69yKARhG2AGGEXaAYYQdYBhhBxhG2AGGEXaAYYQdYJhVPqDEsvbvenDtEXLl4vm1RwAOuWIHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gmEXCXlX3VNV/V9VHllgPgONb6or9T5KcW2gtADawSNi7+/1JPrfEWgBs5tS2DlRVF5JcSJK9vb1tHRZ21v5dD649Qq5cPL/2CDtpaw9Pu/tSdx9098GZM2e2dViAneNdMQDDCDvAMEu93fHdSf45yfdU1ZNV9dYl1gXghVvk4Wl337nEOgBszq0YgGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYZpGwV9W5qvq3qvpEVd21xJoAHM/GYa+qW5P8QZI3JLk9yZ1Vdfum6wJwPEtcsd+R5BPd/Z/d/dUk9yZ54wLrAnAMpxZY47Ykn3rW108mec1zX1RVF5JcSJK9vb2ND7p/14Mbr7GpKxfPrz1CkpMzx0ng++LISZnjJNi174utPTzt7kvdfdDdB2fOnNnWYQF2zhJh/3SS73rW12cPtwGwgiXC/miSV1bVd1fVi5K8KckDC6wLwDFsfI+9u5+uqrcneTjJrUnu6e7HN54MgGNZ4uFpuvuhJA8tsRYAm/HJU4BhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gmFNrDwDw/+3KxfNrj7BVrtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhtko7FX1s1X1eFU9U1UHSw0FwPFtesX+kSQ/k+T9C8wCwAI2+rdiuvuJJKmqZaYBYGNbu8deVReq6nJVXX7qqae2dViAnXPdK/aqek+Sl15j193dff+NHqi7LyW5lCQHBwd9wxMC8IJcN+zd/fptDALAMrzdEWCYTd/u+NNV9WSSH0ryYFU9vMxYABzXpu+KuS/JfQvNAsAC3IoBGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gmI0+oAQnzZWL59ceAVbnih1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGGajsFfV71bVx6rqQ1V1X1V9+1KDAXA8m16xP5Lk+7v7VUk+nuQ3Nh8JgE1sFPbu/pvufvrwy39JcnbzkQDYxJL32N+S5K8WXA+AYzh1vRdU1XuSvPQau+7u7vsPX3N3kqeT/NnzrHMhyYUk2dvbO9awAFzfdcPe3a9/vv1V9eYkP5HkR7u7n2edS0kuJcnBwcE3fR0Am7lu2J9PVZ1L8mtJfri7v7TMSABsYtN77L+f5FuTPFJVH6yqP1xgJgA2sNEVe3e/YqlBAFiGT54CDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awp9Ye4LiuXDy/9ggAJ5IrdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYap7t7+QaueSvLJrR/4G51O8tmVZzgpnIsjzsUR5+LISTkXL+/uM9d70SphPwmq6nJ3H6w9x0ngXBxxLo44F0dutnPhVgzAMMIOMMwuh/3S2gOcIM7FEefiiHNx5KY6Fzt7jx1gql2+YgcYSdgBhhF2gGFu2v9B6YWqqu9N8sYktx1u+nSSB7r7ifWmgpOjqu5I0t39aFXdnuRcko9190Mrj7a6qvrT7v6Ftee4UTvx8LSqfj3JnUnuTfLk4eazSd6U5N7uvrjWbKzr8Af+bUn+tbu/+Kzt57r7r9ebbLuq6reSvCFXL/YeSfKaJH+X5MeSPNzdv7PieFtVVQ88d1OSH0ny3iTp7p/c+lAv0K6E/eNJvq+7//c521+U5PHufuU6k508VfWL3f2utefYhqr65SS/lOSJJD+Q5B3dff/hvg909w+uOd82VdWHc/UcvDjJZ5Kc7e4vVNW35OoPvVetOuAWVdUHknw0yR8l6VwN+7tz9UIw3f2+9aa7Mbtyj/2ZJN95je0vO9zHkd9ee4AteluSV3f3TyV5XZLfrKp3HO6r1aZax9Pd/bXu/lKS/+juLyRJd385u/d35CDJY0nuTvI/3f33Sb7c3e+7GaKe7M499l9J8rdV9e9JPnW4bS/JK5K8fbWpVlJVH/pmu5J8xzZnWdktX7/90t1Xqup1Sf6yql6e3Qv7V6vqJYdhf/XXN1bVt2XHwt7dzyT5var6i8M//ys3WSt34lZMklTVLUnuyDc+PH20u7+23lTrOPxG/fEkn3/uriT/1N3X+u1mnKp6b5Jf7e4PPmvbqST3JPn57r51teG2rKpe3N1fucb200le1t0fXmGsE6Gqzid5bXe/c+1ZbtTOhJ0jVfXHSd7V3f9wjX1/3t0/t8JYW1dVZ3P1FsRnrrHvtd39jyuMBRsTdoBhduXhKcDOEHaAYYQdYBhhBxjm/wBdj80waBTiTgAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[\"C\"].plot.bar();"]}, {"cell_type": "code", "execution_count": 67, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAEFCAYAAADzK2HGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFoBJREFUeJzt3X+w3XWd3/HnSwhkqyhuuMuPJJewCFLSXUBuo6zdliKO/FpYWpyGbRe0OhmtjDrjbBd0Bi2dncHpjC4OztKM0gXqEinqmkpWBhQqzo4sgeU3IpGi3Cw/QnDBFIJE3v3jfqN3r+fe+w3nm3PO3TwfM2fu98fnfN5vMic3r/nyOd9vqgpJkiRJc3vNsBuQJEmSFgKDsyRJktSCwVmSJElqweAsSZIktWBwliRJklowOEuSJEktGJwlqQ9JPpXkf85x/oEkJ+7inL+b5OG+mxugJO9J8t1h9yFJu5PBWZLmkGTbtNcrSV6ctv/v53t/Va2sqlt3pWZV3VZVb37VTbeU5PVJ/jTJj5v/nh82+wfs5rq3Jnn/7qwhSbuDwVmS5lBVr9v5An4M/N60Y18adn+vVpJ9gG8BK4FTgNcDJwBbgVVDbE2SRpbBWZL6t0+Sq5P8tFmaMbHzRJLHkpzcbK9KsjHJ80meSvKZXpMlOTHJ5LT9P06yuZn/4STvmOV9pyf522b+x5N8ao6ezwPGgbOr6sGqeqWqnq6q/1pVG2aZv5J8OMmjSZ5J8t+S9Px3JMnvJLkjyXPNz99pjv8J8LvA5c1V7svn6FGSRorBWZL6dyawDtgfWA/MFgYvAy6rqtcDhwPXzTdxkjcDFwD/vKr2A94FPDbL8P/HVCDeHzgd+GCS359l7MnAN6tq23w9zHA2MAG8BTgL+I89ev514Abgc8AS4DPADUmWVNUngNuAC5qr9hfsYn1JGhqDsyT177tVtaGqfg5cAxwzy7iXgTclOaCqtlXV91rM/XNgX+DoJIuq6rGq+mGvgVV1a1Xd11w9vhe4FvhXs8y7BHiiRf2ZPl1Vz1bVj4E/Bc7tMeZ04JGquqaqdlTVtcD3gd97FfUkaWQYnCWpf09O234BWJxk7x7j3gccCXy/Wb5wxnwTV9Um4KPAp4Cnk6xLckivsUnemuSWJFuSPAd8AJjti35bgYPnq9/D49O2fwT06uWQ5hwzxi59FfUkaWQYnCVpQKrqkao6F/gN4NPA9Ule2+J9f1FV/wI4FKjmvb38BVNLRZZX1RuAK4DMMvZm4F1t6s+wfNr2OPB3Pcb8XdMrM8ZubrZrF2tK0kgwOEvSgCT5D0nGquoV4O+bw6/M8543Jzkpyb7AduDFOd6zH/BsVW1Psgr4gzmmvoapq8dfSXJUktckWZLk40lOm+N9f5TkjUmWAx8BvtxjzAbgyCR/kGTvJP8OOBr4RnP+KeA356ghSSPJ4CxJg3MK8ECSbUx9UXB1Vb04z3v2BS4FnmFqSchvABfNMvY/AZck+SlwMXN8+bCqXmLqC4LfB24Cngf+hqmlHbfP0c/XgTuBu5n6AuAXe8y9FTgD+BhTS0L+M3BGVT3TDLkMOCfJT5J8bo5akjRSUuX/MZMkzS9JAUc0664laY/jFWdJkiSphb6Dc5LFSf4myT3Njf//S48x+yb5cpJNSW5PsqLfupIkSdIgdXHF+SXgpKo6BjgWOCXJ22aMeR/wk6p6E/BZZv9GuCRpRFVVXKYhaU/Wd3CuKTufPLWoec1cOH0WcFWzfT3wjiSz3SJJkiRJGjmdrHFOsleSu4GngZuqauY3spfS3DS/qnYAzzH11CpJkiRpQej1ZKtd1jxm9tgk+wNfS/LPqur+XZ0nyRpgDcBrX/va44866qgu2pMkSZJmdeeddz5TVWPzjeskOO9UVX+f5Bam7lU6PThvZuppU5PNY2jfwNS9PWe+fy2wFmBiYqI2btzYZXuSJEnSr0jyozbjurirxlhzpZkkvwa8k6kb6k+3Hji/2T4H+HZ5A2lJkiQtIF1ccT4YuCrJXkwF8euq6htJLgE2VtV6pp4sdU2STcCzwOoO6kqSJEkD03dwrqp7geN6HL942vZ24N391pIkSZKGpdM1zpIkSdrzvPzyy0xOTrJ9+/ZhtzKnxYsXs2zZMhYtWvSq3m9wliRJUl8mJyfZb7/9WLFiBaP6qI6qYuvWrUxOTnLYYYe9qjk6uY+zJEmS9lzbt29nyZIlIxuaAZKwZMmSvq6KG5wlSZLUt1EOzTv126PBWZIkSf8oPPnkk6xevZrDDz+c448/ntNOO40f/OAHnc3vGmdJkiR1asWFN3Q632OXnj7vmKri7LPP5vzzz2fdunUA3HPPPTz11FMceeSRnfRhcJYkSdKCd8stt7Bo0SI+8IEP/OLYMccc02kNl2pIkiRpwbv//vs5/vjjd2sNg7MkSZLUgsFZkiRJC97KlSu58847d2sNg7MkSZIWvJNOOomXXnqJtWvX/uLYvffey2233dZZDYOzJEmSFrwkfO1rX+Pmm2/m8MMPZ+XKlVx00UUcdNBBndXwrhqSJEnqVJvbx+0OhxxyCNddd91um98rzpIkSVILBmdJkiSpBYOzJEmS1ILBWZIkSX2rqmG3MK9+ezQ4S5IkqS+LFy9m69atIx2eq4qtW7eyePHiVz1H33fVSLIcuBo4EChgbVVdNmPMicDXgf/bHPpqVV3Sb21JkiQN37Jly5icnGTLli3DbmVOixcvZtmyZa/6/V3cjm4H8LGquivJfsCdSW6qqgdnjLutqs7ooJ4kSZJGyKJFizjssMOG3cZu1/dSjap6oqruarZ/CjwELO13XkmSJGmUdLrGOckK4Djg9h6nT0hyT5K/SrKyy7qSJEnS7tbZkwOTvA74CvDRqnp+xum7gEOraluS04C/BI7oMccaYA3A+Ph4V61JkiRJfevkinOSRUyF5i9V1Vdnnq+q56tqW7O9AViU5IAe49ZW1URVTYyNjXXRmiRJktSJvoNzkgBfBB6qqs/MMuagZhxJVjV1t/ZbW5IkSRqULpZqvB34Q+C+JHc3xz4OjANU1RXAOcAHk+wAXgRW1yjf6E+SJEmaoe/gXFXfBTLPmMuBy/utJUmSJA2LTw6UJEmSWjA4S5IkSS0YnCVJkqQWDM6SJElSCwZnSZIkqQWDsyRJktSCwVmSJElqweAsSZIktWBwliRJklowOEuSJEktGJwlSZKkFgzOkiRJUgsGZ0mSJKkFg7MkSZLUgsFZkiRJasHgLEmSJLVgcJYkSZJaMDhLkiRJLRicJUmSpBb6Ds5Jlie5JcmDSR5I8pEeY5Lkc0k2Jbk3yVv6rStJkiQN0t4dzLED+FhV3ZVkP+DOJDdV1YPTxpwKHNG83gr8WfNTkiRJWhD6vuJcVU9U1V3N9k+Bh4ClM4adBVxdU74H7J/k4H5rS5IkSYPS6RrnJCuA44DbZ5xaCjw+bX+SXw3XJFmTZGOSjVu2bOmyNUmSJKkvnQXnJK8DvgJ8tKqefzVzVNXaqpqoqomxsbGuWpMkSZL61klwTrKIqdD8par6ao8hm4Hl0/aXNcckSZKkBaGLu2oE+CLwUFV9ZpZh64HzmrtrvA14rqqe6Le2JEmSNChd3FXj7cAfAvclubs59nFgHKCqrgA2AKcBm4AXgPd2UFeSJEkamL6Dc1V9F8g8Ywr4UL+1JEmSpGHxyYGSJElSCwZnSZIkqQWDsyRJktSCwVmSJElqweAsSZIktWBwliRJklowOEuSJEktGJwlSZKkFgzOkiRJUgsGZ0mSJKmFvh+5Le2JVlx4w7BbGBmPXXr6sFuQJGkgvOIsSZIktWBwliRJklowOEuSJEktGJwlSZKkFgzOkiRJUgsGZ0mSJKkFg7MkSZLUQifBOcmVSZ5Ocv8s509M8lySu5vXxV3UlSRJkgalqweg/DlwOXD1HGNuq6ozOqonSZIkDVQnV5yr6jvAs13MJUmSJI2iQa5xPiHJPUn+KsnKAdaVJEmS+tbVUo353AUcWlXbkpwG/CVwxMxBSdYAawDGx8cH1JokSZI0v4Fcca6q56tqW7O9AViU5IAe49ZW1URVTYyNjQ2iNUmSJKmVgQTnJAclSbO9qqm7dRC1JUmSpC50slQjybXAicABSSaBTwKLAKrqCuAc4INJdgAvAqurqrqoLUmSJA1CJ8G5qs6d5/zlTN2uTpIkSVqQfHKgJEmS1ILBWZIkSWrB4CxJkiS1YHCWJEmSWjA4S5IkSS0YnCVJkqQWDM6SJElSCwZnSZIkqQWDsyRJktSCwVmSJElqweAsSZIktWBwliRJklowOEuSJEktGJwlSZKkFgzOkiRJUgsGZ0mSJKkFg7MkSZLUgsFZkiRJaqGT4JzkyiRPJ7l/lvNJ8rkkm5Lcm+QtXdSVJEmSBqWrK85/Dpwyx/lTgSOa1xrgzzqqK0mSJA1EJ8G5qr4DPDvHkLOAq2vK94D9kxzcRW1JkiRpEAa1xnkp8Pi0/cnmmCRJkrQg7D3sBqZLsoappRyMj48PuRtJkvq34sIbht3CyHjs0tOH3YLUl0Fdcd4MLJ+2v6w59g9U1dqqmqiqibGxsQG1JkmSJM1vUMF5PXBec3eNtwHPVdUTA6otSZIk9a2TpRpJrgVOBA5IMgl8ElgEUFVXABuA04BNwAvAe7uoK0mSJA1KJ8G5qs6d53wBH+qiliRJkjQMPjlQkiRJasHgLEmSJLVgcJYkSZJaMDhLkiRJLRicJUmSpBYMzpIkSVILBmdJkiSpBYOzJEmS1ILBWZIkSWrB4CxJkiS1YHCWJEmSWjA4S5IkSS0YnCVJkqQWDM6SJElSCwZnSZIkqQWDsyRJktSCwVmSJElqweAsSZIktdBJcE5ySpKHk2xKcmGP8+9JsiXJ3c3r/V3UlSRJkgZl734nSLIX8HngncAkcEeS9VX14IyhX66qC/qtJ0mSJA1DF1ecVwGbqurRqvoZsA44q4N5JUmSpJHRRXBeCjw+bX+yOTbTv01yb5LrkyzvoK4kSZI0MIP6cuD/BlZU1W8DNwFX9RqUZE2SjUk2btmyZUCtSZIkSfPrIjhvBqZfQV7WHPuFqtpaVS81u18Aju81UVWtraqJqpoYGxvroDVJkiSpG10E5zuAI5IclmQfYDWwfvqAJAdP2z0TeKiDupIkSdLA9H1XjarakeQC4EZgL+DKqnogySXAxqpaD3w4yZnADuBZ4D391pUkSZIGqe/gDFBVG4ANM45dPG37IuCiLmpJkiRJw+CTAyVJkqQWDM6SJElSCwZnSZIkqQWDsyRJktSCwVmSJElqweAsSZIktWBwliRJklowOEuSJEktGJwlSZKkFgzOkiRJUgsGZ0mSJKkFg7MkSZLUgsFZkiRJasHgLEmSJLVgcJYkSZJaMDhLkiRJLRicJUmSpBYMzpIkSVILnQTnJKckeTjJpiQX9ji/b5IvN+dvT7Kii7qSJEnSoPQdnJPsBXweOBU4Gjg3ydEzhr0P+ElVvQn4LPDpfutKkiRJg9TFFedVwKaqerSqfgasA86aMeYs4Kpm+3rgHUnSQW1JkiRpILoIzkuBx6ftTzbHeo6pqh3Ac8CSDmpLkiRJA7H3sBuYLskaYA3A+Pj4kLuZsuLCG4bdwsh47NLTh93CyPDPQr34++KX/DvyS/5ZqBd/X/zSQvo70sUV583A8mn7y5pjPcck2Rt4A7B15kRVtbaqJqpqYmxsrIPWJEmSpG50EZzvAI5IcliSfYDVwPoZY9YD5zfb5wDfrqrqoLYkSZI0EH0v1aiqHUkuAG4E9gKurKoHklwCbKyq9cAXgWuSbAKeZSpcS5IkSQtGJ2ucq2oDsGHGsYunbW8H3t1FLUmSJGkYfHKgJEmS1ILBWZIkSWrB4CxJkiS1YHCWJEmSWjA4S5IkSS0YnCVJkqQWDM6SJElSCwZnSZIkqQWDsyRJktSCwVmSJElqweAsSZIktWBwliRJklowOEuSJEktGJwlSZKkFgzOkiRJUgsGZ0mSJKkFg7MkSZLUgsFZkiRJaqGv4Jzk15PclOSR5ucbZxn38yR3N6/1/dSUJEmShqHfK84XAt+qqiOAbzX7vbxYVcc2rzP7rClJkiQNXL/B+Szgqmb7KuD3+5xPkiRJGkn9BucDq+qJZvtJ4MBZxi1OsjHJ95IYriVJkrTg7D3fgCQ3Awf1OPWJ6TtVVUlqlmkOrarNSX4T+HaS+6rqhz1qrQHWAIyPj8/bvCRJkjQo8wbnqjp5tnNJnkpycFU9keRg4OlZ5tjc/Hw0ya3AccCvBOeqWgusBZiYmJgthEuSJEkD1+9SjfXA+c32+cDXZw5I8sYk+zbbBwBvBx7ss64kSZI0UP0G50uBdyZ5BDi52SfJRJIvNGP+KbAxyT3ALcClVWVwliRJ0oIy71KNuVTVVuAdPY5vBN7fbP818Fv91JEkSZKGzScHSpIkSS0YnCVJkqQWDM6SJElSCwZnSZIkqQWDsyRJktSCwVmSJElqweAsSZIktdDXfZwlSZK06x679PRht6BXwSvOkiRJUgsGZ0mSJKkFg7MkSZLUgsFZkiRJasHgLEmSJLVgcJYkSZJaMDhLkiRJLRicJUmSpBYMzpIkSVILBmdJkiSpBYOzJEmS1EJfwTnJu5M8kOSVJBNzjDslycNJNiW5sJ+akiRJ0jD0e8X5fuDfAN+ZbUCSvYDPA6cCRwPnJjm6z7qSJEnSQO3dz5ur6iGAJHMNWwVsqqpHm7HrgLOAB/upLUmSJA1SX8G5paXA49P2J4G39hqYZA2wptndluTh3dzbQnEA8Mywm8inh92BZhiJz4VGzkh8Lvx9MXJG4nOhkePn4pcObTNo3uCc5GbgoB6nPlFVX9/VruZSVWuBtV3O+Y9Bko1VNesacu2Z/FyoFz8X6sXPhXrxc7Hr5g3OVXVynzU2A8un7S9rjkmSJEkLxiBuR3cHcESSw5LsA6wG1g+griRJktSZfm9Hd3aSSeAE4IYkNzbHD0myAaCqdgAXADcCDwHXVdUD/bW9x3H5inrxc6Fe/FyoFz8X6sXPxS5KVQ27B0mSJGnk+eRASZIkqQWDsyRJktSCwVmSJElqYRAPQNEuSnIUU09XXNoc2gys3/mkRknaqfl9sRS4vaq2TTt+SlV9c3idaZiSrAKqqu5IcjRwCvD9qtow5NY0QpJcXVXnDbuPhcQvB46YJH8MnAusY+opizB17+vVwLqqunRYvWk0JXlvVf2PYfehwUvyYeBDTN2x6FjgIzsfTJXkrqp6yzD703Ak+SRwKlMXx25i6mm9twDvBG6sqj8ZYnsakiQzbwUc4F8D3waoqjMH3tQCZHAeMUl+AKysqpdnHN8HeKCqjhhOZxpVSX5cVePD7kODl+Q+4ISq2pZkBXA9cE1VXZbkb6vquKE2qKFoPhfHAvsCTwLLqur5JL/G1P+Z+O2hNqihSHIX8CDwBaCYCs7XMnVhjqr6P8PrbuFwqcboeQU4BPjRjOMHN+e0B0py72yngAMH2YtGymt2Ls+oqseSnAhcn+RQpj4b2jPtqKqfAy8k+WFVPQ9QVS8m8d+RPdcE8BHgE8AfVdXdSV40MO8ag/Po+SjwrSSPAI83x8aBNzH1IBntmQ4E3gX8ZMbxAH89+HY0Ip5KcmxV3Q3QXHk+A7gS+K3htqYh+lmSf1JVLwDH7zyY5A14AWaPVVWvAJ9N8r+an09hDtxl/oGNmKr6ZpIjgVX8wy8H3tFcQdCe6RvA63YGpOmS3Dr4djQizgN2TD/QPK31vCT/fTgtaQT8y6p6CX4RlnZaBJw/nJY0KqpqEnh3ktOB54fdz0LjGmdJkiSpBe/jLEmSJLVgcJYkSZJaMDhLkiRJLRicJUmSpBYMzpIkSVIL/x/a8co4bUSYsAAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[\"C\"].plot(kind=\"bar\", legend=True, figsize=(12, 4), ylim=(-1, 3), title=\"This is a C plot\");"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 5\n", "<a name=\"task5\"></a>\n", "\n", "Use the NEST data frame `df` to:\n", "\n", "1. Make the virtual processes the index of the data frame (`.set_index()`)\n", "2. Plot `\"Presim. Program / s\"` and `\"Sim. Time / s`\" individually\n", "3. Plot them onto one common canvas!\n", "4. Make them have the same line colors and styles as before\n", "5. Add a legend, add missing labels\n", "\n", "* Done? Tell me! [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 68, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [], "source": ["df.set_index(\"Virtual Processes\", inplace=True)"]}, {"cell_type": "code", "execution_count": 69, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAADTCAYAAAC7p6aqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3X+cXHV97/HXe2Z2Nz93k8CSZJdoKqT8CiWlC7VXpVArAlqxrdVwey229lJ9YFtsvb22fdxWbXsv9ofeVixIKwV7KdWrptKKCkUU5UJliUASfoNBsgnJQshufu/uzOf+cc4kk81MdrMzmV95Px+Pfcw53/M953znHMe8+Z7vOUcRgZmZmZkdW5lGN8DMzMzseODQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdZBrdAPKOfHEE2P58uWNboaZmZnZlB566KGXIqJ3qnpNGbqWL1/O4OBgo5thZmZmNiVJz0+n3pShS9JNwFuBbRGxMi37PHBaWmUBsCMiVpVZdyOwE8gDExExMK3Wm5mZmbWZ6fR03QxcB3yuWBAR7ypOS/orYOQI618UES/NtIFmZmZm7WDK0BUR90paXm6ZJAHvBH6mts0yMzMzay/V3r34BmBrRDxdYXkAd0p6SNJVR9qQpKskDUoaHB4errJZZmZmZs2l2tB1BXDbEZa/PiLOBS4FrpZ0QaWKEXFjRAxExMD8BYuqbJaZmZlZc5lx6JKUA34B+HylOhExlH5uA9YA509n27vH8jNtlpmZmVlTqqan62eBJyJiU7mFkuZKml+cBi4G1k9nw/scuszMzKzNTBm6JN0G3A+cJmmTpPemi1Yz6dKipD5Jd6Szi4HvSnoE+B7w1Yj4+nQatWfcocvMzMzaiyKi0W04zKylK2LkhSfoymUb3RQzMzOzI5L00HSeRdqU714M4OmtuxrdDDMzM7OaacrQBbB+6EjPWzUzMzNrLU0ZujIS6xy6zMzMrI00Zeia3ZFl/ebRRjfDzMzMrGaaM3R1Znl8yyjj+UKjm2JmZmZWE80ZujqyjE0UeHbYg+nNzMysPTRn6OpMHhWxbpPHdZmZmVl7aMrQ1ZXLMKczywaP6zIzM7M20ZShC+DMpd1+bISZmZm1jaYNXSv7e3hsyyj5QvM9Md/MzMzsaDV16NozlucHL3kwvZmZmbW+Jg5d3QCsH/K4LjMzM2t9TRu6Tu2dR1cu43FdZmZm1hamDF2SbpK0TdL6krKPSBqS9HD6d1mFdS+R9KSkZyR9+GgalstmOGNpN+s3O3SZmZlZ65tOT9fNwCVlyj8ZEavSvzsmL5SUBT4NXAqcCVwh6cyjadzK/m42DI1S8GB6MzMza3FThq6IuBfYPoNtnw88ExHPRcQY8M/A5UezgZV9PezcP8EPt++Zwe7NzMzMmkc1Y7o+IOnR9PLjwjLL+4EXSuY3pWVlSbpK0qCkweHhYSC5gxHwJUYzMzNreTMNXdcDpwCrgC3AX1XbkIi4MSIGImKgt7cXgB9dPJ+OrHwHo5mZmbW8GYWuiNgaEfmIKAB/R3IpcbIhYFnJ/Mlp2bR15jKctmQ+G9zTZWZmZi1uRqFL0tKS2Z8H1pep9iCwQtKPSOoEVgO3H+2+Vvb1sG5ohAgPpjczM7PWNZ1HRtwG3A+cJmmTpPcCfy5pnaRHgYuAD6Z1+yTdARARE8AHgG8AjwNfiIgNR9vAs/p72LFnnKEde492VTMzM7OmkZuqQkRcUab4sxXqbgYuK5m/AzjscRJH4+ziYPqhUU5eOKeaTZmZmZk1TNM+kb7o9CXzyWbkcV1mZmbW0po+dM3qyLLipHms8+uAzMzMrIU1fegCOKuvh/UeTG9mZmYtrCVC18r+bl7aNca2nfsb3RQzMzOzGWmJ0HVwML0vMZqZmVlraonQdcbSbiQ8rsvMzMxaVkuErrldOV5z4ly/DsjMzMxaVkuELkhefu3HRpiZmVmrapnQdXZ/D1tG9vHSLg+mNzMzs9bTMqHrrL5kMP2Gzb7EaGZmZq2nZULXmX3dgO9gNDMzs9bUMqGrZ3YHrz5hjkOXmZmZtaSWCV2QDKZf78H0ZmZm1oKmDF2SbpK0TdL6krK/kPSEpEclrZG0oMK6GyWtk/SwpMFqG7uyr4cXtu9lZM94tZsyMzMzq6vp9HTdDFwyqewuYGVE/BjwFPD7R1j/oohYFREDM2viQSv703Fd7u0yMzOzFjNl6IqIe4Htk8rujIiJdPYB4ORj0LbDrOzz64DMzMysNdViTNevAV+rsCyAOyU9JOmqI21E0lWSBiUNDg8Pl62zcG4n/Qtms96PjTAzM7MWU1XokvSHwARwa4Uqr4+Ic4FLgaslXVBpWxFxY0QMRMRAb29vxX2u7O9mg3u6zMzMrMXMOHRJeg/wVuCXIyLK1YmIofRzG7AGOH+m+yta2dfDcy/tZuc+D6Y3MzOz1jGj0CXpEuD3gLdFxJ4KdeZKml+cBi4G1perezRW9ifjuh7zJUYzMzNrIdN5ZMRtwP3AaZI2SXovcB0wH7grfRzEDWndPkl3pKsuBr4r6RHge8BXI+Lr1Ta4GLo8rsvMzMxaSW6qChFxRZniz1aouxm4LJ1+DjinqtaV0Tu/i8XdXR7XZWZmZi2lpZ5IX7Syr4d1Dl1mZmbWQloydJ3V38Ozw7vYMzYxdWUzMzOzJtCSoevs/h4KAY9v2dnoppiZmZlNS0uGruLrgDb4dUBmZmbWIloydC3pnsUJcztZt8mhy8zMzFpDS4YuSZzV3+PHRpiZmVnLaMnQBXB2fzdPb93JvvF8o5tiZmZmNqWWDV0r+3qYKARPbfVgejMzM2t+rRu6ik+mH/IlRjMzM2t+LRu6Tl44m57ZHX5IqpmZmbWElg1dkljZ3+3HRpiZmVlLaNnQBcm4rie27GQ8X2h0U8zMzMyOaFqhS9JNkrZJWl9StkjSXZKeTj8XVlj3yrTO05KurFXDIXkd0Fi+wNNbd9Vys2ZmZmY1N92erpuBSyaVfRi4OyJWAHen84eQtAj4Y+AngfOBP64UzmZiZV/yZPr1HtdlZmZmTW5aoSsi7gW2Tyq+HLglnb4FeHuZVd8M3BUR2yPiFeAuDg9vM7b8hLnM68qx3uO6zMzMrMlVM6ZrcURsSadfBBaXqdMPvFAyvyktO4ykqyQNShocHh6eVgMyGXFmX7d7uszMzKzp1WQgfUQEEFVu48aIGIiIgd7e3mmvt7Kvh8e2jJIvVLV7MzMzs2OqmtC1VdJSgPRzW5k6Q8CykvmT07KaWdnfzb7xAs8OezC9mZmZNa9qQtftQPFuxCuBr5Sp8w3gYkkL0wH0F6dlNXPwyfS+xGhmZmbNa7qPjLgNuB84TdImSe8FrgXeJOlp4GfTeSQNSPp7gIjYDvwJ8GD697G0rGZO6Z3HrI6MXwdkZmZmTS03nUoRcUWFRW8sU3cQ+PWS+ZuAm2bUumnIZsSZS7t9B6OZmZk1tZZ+In3Ryv4eHts8SsGD6c3MzKxJtUfo6uth1/4JNr68u9FNMTMzMyurPUJXcTD9Zo/rMjMzs+bUFqFrxeJ5dGYzbPAdjGZmZtak2iJ0dWQznL50vgfTm5mZWdNqi9AFcFZfD+uHRkkejm9mZmbWXNomdJ3d38PI3nE2vbK30U0xMzMzO0zbhK6V/d2An0xvZmZmzaltQtePLp5PLiOP6zIzM7Om1Daha1ZHlhWL57POrwMyMzOzJtQ2oQvg7P5uNgyNeDC9mZmZNZ22Cl0r+3t4efcYL47ua3RTzMzMzA7RVqHr1JPmAfDcsF8HZGZmZs1lxqFL0mmSHi75G5V0zaQ6F0oaKanzR9U3ubLObPJ1Cr68aGZmZk0mN9MVI+JJYBWApCwwBKwpU/U7EfHWme7HzMzMrB3U6vLiG4FnI+L5Gm3PzMzMrK3UKnStBm6rsOynJD0i6WuSzqq0AUlXSRqUNDg8PFyjZpmZmZk1h6pDl6RO4G3A/y2zeC3w6og4B/gU8C+VthMRN0bEQEQM9Pb2VtssMzMzs6ZSi56uS4G1EbF18oKIGI2IXen0HUCHpBNrsE8zMzOzllKL0HUFFS4tSloiSen0+en+Xq7BPs3MzMxayozvXgSQNBd4E/AbJWXvA4iIG4B3AO+XNAHsBVaHHxdvZmZmx6GqQldE7AZOmFR2Q8n0dcB11ezDzMzMrB201RPpzczMzJqVQ5eZmZlZHTh0mZmZmdWBQ5eZmZlZHTh0mZmZmdWBQ5eZmZlZHbRV6MpkBMBf3vkUn3/wh4zuG29wi8zMzMwSbRW6zu7v4fcuOY3RveP89y+t47w//Xd+87bvc8+T25jIFxrdPDMzMzuOqRkfED8wMBCDg4MzXj8iePiFHXx57RD/+uhmduwZ58R5Xbx9VR+/cO7JnNnXXcPWmpmZ2fFM0kMRMTBlvXYMXaX2T+S554lhvrx2E/c8uY3xfHD6kvn84rknc/mqPk7qnlWT/ZiZmdnxyaGrjFd2j/Fvj27mS2uHePiFHWQEr1/Ryy+e28/FZy5hdme25vs0MzOz9ubQNYVnh3exZu0Qa74/xNCOvczrynHpyiW887xlnLd80THdt5mZmbUPh65pKhSC723czpfXbuKOdS+ya/8Ed33wAlYsnl+X/ZuZmVlrm27oqvruRUkbJa2T9LCkw5KSEn8j6RlJj0o6t9p91lImI177mhP483ecw1+vXgXA7rF8g1tlZmZm7SZXo+1cFBEvVVh2KbAi/ftJ4Pr0s+lkpEY3wczMzNpUPZ7TdTnwuUg8ACyQtLQO+zUzMzNrGrUIXQHcKekhSVeVWd4PvFAyvyktO4SkqyQNShocHh6uQbPMzMzMmkctQtfrI+JcksuIV0u6YCYbiYgbI2IgIgZ6e3tr0CwzMzOz5lF16IqIofRzG7AGOH9SlSFgWcn8yWmZmZmZ2XGjqtAlaa6k+cVp4GJg/aRqtwO/kt7F+FpgJCK2VLNfMzMzs1ZT7d2Li4E1Su76ywH/FBFfl/Q+gIi4AbgDuAx4BtgD/GqV+zQzMzNrOVWFroh4DjinTPkNJdMBXF3NfszMzMxaXT0eGWFmZmZ23HPoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoKiN5tJiZmZlZ7VT7RPq2ks0IgHfccD8L53SwYE4ni+Z0smBOB4vmdrJwbicL53SwcE5n8je3Mymf00H3rA4y6fpmZmZmkzl0lfjJ1yziT96+kq0j+9i+Z4wde8bYvnuM51/ew8Mv7OCVPWOM58v3gmUEPbM72LF3nPUfeTNzu3xozczM7CAngxJduSzvfu2rKy6PCHaP5XlldxLGXtmT/G3fPc6OPWN86pvPAPDNJ7bxc+f01avZZmZm1gIcuo6CJOZ15ZjXlWPZojmHLS+Grlf2jNW7aWZmZtbkPJC+hj52+VkAvO7UExvcEjMzM2s2Mw5dkpZJukfSY5I2SPrtMnUulDQi6eH074+qa25z65nd0egmmJmZWZOq5vLiBPC7EbFW0nzgIUl3RcRjk+p9JyLeWsV+zMzMzFrejHu6ImJLRKxNp3cCjwP9tWqYmZmZWTupyZguScuBHwf+o8zin5L0iKSvSTrrCNu4StKgpMHh4eFaNKthRveON7oJZmZm1mSqDl2S5gFfAq6JiNFJi9cCr46Ic4BPAf9SaTsRcWNEDETEQG9vb7XNaoiTF84hmxHv+swDfPhLj/Lc8K5GN8nMzMyaRFWhS1IHSeC6NSK+PHl5RIxGxK50+g6gQ1Lb3tr3E69eyLc+dCGrz1/Gmu8P8cZPfJurb13L+qGRRjfNzMzMGkwzfc+gJAG3ANsj4poKdZYAWyMiJJ0PfJGk5+uIOx0YGIjBwcEZtatZDO/czz/c9wP+8f7n2bl/gjesOJH3X3gKP/WaE0gOnZmZmbUDSQ9FxMCU9aoIXa8HvgOsAwpp8R8ArwKIiBskfQB4P8mdjnuB34mI/zfVttshdBWN7hvn1gd+yGe/+wNe2rWfVcsW8P4LT+FNZyz2uxrNzMzawDEPXcdSO4Wuon3jeb740CY+c++zvLB9L6eeNI/3/fQpXL6qj46sn1FrZmbWqhy6mtREvsBX123h+m89yxMv7qSvZxb/9YLXsPq8VzG7MzutbUQEO/aMs3XnPl4c2cfW0X1sHd3PZ779LLvH8jz7Py8j6140MzOzuphu6PK7F+ssl81w+ap+3nZOH996cpi//dYzfPRfH+NT33yG9/yn5aw+bxl7x/NJmNq5n60j+3hxtBisitP7GZsoVNzHvvE8c7t8as3MzJqJ/2VuEElcdPpJXHT6STy4cTvXf+tZPnHXU3zirqcOqzurI8OS7lks7p7Fjy9byJKeZHpxd9eB8pO6u/iH+zZy7deeIOOB+mZmZk3HoasJnLd8Eee9ZxGPbxnl3qeGWTS3k8Xdsw6Eq+5ZuaO64/GprTuZ25UjmxFZiUwGMhLZjA58ZiWUgeyk8ozw3ZVmZmbHgENXEzljaTdnLO2e8fqzcsmA/Ms/fV9V7ZBIw1oSworTB8KaRDZzaHlG4gcv7QZg47VvqWr/zW7/RHL5d/OOfbw4upfNO/axZWQvL47s522r+njbOX2NbqKZmTUhh6428s7zlrF0wWzG8wXyhaAQQb4AhQgKhSBf/CwEhSBdfrC8EJSsl5RHWlYsP7DNQ9YL8sGB0PXrtzxI9+wOumd10DP74F/37EPne2Z3MKsj01Q9a2MTBbaO7mPLSBKktozsY8uOvWweKQarfby0a+yw9RbM6WDP/jwQDl1mZlaWQ1cbmdOZ481nLWnY/left4zrvvkMm3fs4/EtOxndO87O/RNHXKczm6F7du5AIFswu4NFc7s4YV4ni+Ymfycc+Oxi0bxO5nZmZxTUJvIFtu7cz5Ydew+Eqs07kjtAt4wkweqlXfuZfENv96wcS3tms3TBLM7uX0BfT3Lpt2/BbJam03M6c7zlb75z1G0yM7Pjh0OX1czrTj2R15166Fue8oVg575xRvYe+je6d2LS/Dij+8YZ3rWfJ1/cycu7x9hf4Q7NzlzmQBA7GMqSoNY9K8eiuV0He6lKgtW2nfsoTApU87pyLO2ZxdIFszl9STdLF8yir2d2GqpmsaRnNvN8J6iZmdWA/zWxYyqbEQvmdLJgTudRrRcR7BnLs333GC/vHmP77v28vGuM7bvHSsqSz40v7+blXWPsGcsfso3ZHdkDIeoNK05kadoztTTtpVrSM4vuWR21/LpmZmYVOXRZU5LE3K4cc7tyLFs0Z1rr/PDlPTw7vCvppeqZTffso7vrs1obNo+yYfMo//jA82SU3DFavBu0OJ2R0IGy8nVUYZ3MUdRJpqeuc9h2qe54ZbMilxGd2Yxfc2VmNolDl7WNV50wh1edML2Adiz9j39Z3+gmNIWMoCOboTObIZcVHdlM+idy6XTngenDl3dmM+QyoiOXoSOTLi+ZLq7XmcuQyyT7iAjG88mNHxOFIF8oMFEIJvKHzufT+YlCctPJRLrOeLFOyTYmJs3nC3HgZpXSsnwhyGZELg2eHen3zmWS71E8Bsl0+j3TdndkDh6j4jZKy8qukxXZTHI8ctnJ2ymtl2yzuKzctrMZNdUNLWbtyqHLrEae+bNL2bF3nIjk8mjxDtFCehdooaRsqjox6bNSncO3e+g+yu+7fDvykwe8HaUguat1LJ+ElPF8gfFCgfGJZHqiUGBsIgkx4/lDp8fzwa79EwfWO2Qb6edEOj2Wr/w2hqkUA0bx80DIySjtpTsYQnJpqMmly7s6MswpWd5Rsrz4OJXSkJZ85zS4pd9n18TEocvS71Rc50BZ+lnlKTkqHZMCYi5bPtAdLD8Y7HKZJBAe2puafmZKe1or9/AWg1/FXuKMDj7OZvJ+yqx7oAc3c+R9ZzNT9yxnMlP1PB/8DkdaPrlN5Y5XsRfb2pNDl1mN5LIZTpzX1ehmtL2IYm9TpKHuYDArBqhcaZgq+Wy1f8wKheQ7TuST3rjxkkCXLxRD66HLSkNbMdAVj1fpskrrHOwZLFRY5+D0nokJJkq2HRwa9POF0tBf5j8k0uX5Csub8NXAdVEMYtkKoaw0BKqknkjmVRrgSKYplpVsH0qDXulyTZpPy8rUP2QbHBocS/d1aFlxOMPBtomDQyeK9ZlcVtK2yfXLbiM9mJlJy8ptQxw69KO0naXbUHHoxqT601VV6JJ0CfDXQBb4+4i4dtLyLuBzwE8ALwPvioiN1ezTzI5vUrEnBmYzvZfEt6pMRnRlshyvN9CW9ubmy/XaFg4PdPni8ikC35SBsOQ5hVP1GBf3d6TlceB5icX9TOqVLhy6bn6K5aXtLH6XgAO916UBuDhNaQ83xXaVr1967EvrHzgelPTIl9QPgkKhTFmUzpeum9RnclnaNjj03FTcRgCT9lXPnuLpmvFPWVIW+DTwJmAT8KCk2yPisZJq7wVeiYhTJa0GPg68q5oGm5nZ8eFAjwvyZRmbscnDNYLi0IpJgRCIwuFlBwPrwXUPDs9IypZ/fHptqeZ/x+cDz0TEcwCS/hm4HCgNXZcDH0mnvwhcJ0kRx2unsZmZmdVTcgkWqPLu7FrIVLFuP/BCyfymtKxsnYiYAEaAE8ptTNJVkgYlDQ4PD1fRLDMzM7PmU03oqqmIuDEiBiJioLe3t9HNMTMzM6upakLXELCsZP7ktKxsHUk5oIdkQL2ZmZnZcaWa0PUgsELSj0jqBFYDt0+qcztwZTr9DuCbHs9lZmZmx6MZD6SPiAlJHwC+QfLIiJsiYoOkjwGDEXE78FngHyU9A2wnCWZmZmZmxx01Y8eTpGHg+Ua3o02cCLzU6EbYAT4fzcXno3n4XDQXn4+j8+qImHJAelOGLqsdSYMRMdDodljC56O5+Hw0D5+L5uLzcWw0zd2LZmZmZu3MocvMzMysDhy62t+NjW6AHcLno7n4fDQPn4vm4vNxDHhMl5mZmVkduKfLzMzMrA4cuszMzMzqwKGrzUjaKGmdpIclDaZliyTdJenp9HNho9vZriTdJGmbpPUlZWWPvxJ/I+kZSY9KOrdxLW8/Fc7FRyQNpb+PhyVdVrLs99Nz8aSkNzem1e1L0jJJ90h6TNIGSb+dlvv3UWdHOBf+fRxjDl3t6aKIWFXyjJUPA3dHxArg7nTejo2bgUsmlVU6/pcCK9K/q4Dr69TG48XNHH4uAD6Z/j5WRcQdAJLOJHljxlnpOn8rKVu3lh4fJoDfjYgzgdcCV6fH3b+P+qt0LsC/j2PKoev4cDlwSzp9C/D2BralrUXEvSSvvCpV6fhfDnwuEg8ACyQtrU9L21+Fc1HJ5cA/R8T+iPgB8Axw/jFr3HEoIrZExNp0eifwONCPfx91d4RzUYl/HzXi0NV+ArhT0kOSrkrLFkfElnT6RWBxY5p23Kp0/PuBF0rqbeLI/8dntfGB9HLVTSWX2n0u6kjScuDHgf/Av4+GmnQuwL+PY8qhq/28PiLOJemav1rSBaULI3lGiJ8T0iA+/g13PXAKsArYAvxVY5tz/JE0D/gScE1EjJYu8++jvsqcC/8+jjGHrjYTEUPp5zZgDUkX8NZit3z6ua1xLTwuVTr+Q8Cyknonp2V2jETE1ojIR0QB+DsOXiLxuagDSR0k/8jfGhFfTov9+2iAcufCv49jz6GrjUiaK2l+cRq4GFgP3A5cmVa7EvhKY1p43Kp0/G8HfiW9S+u1wEjJZRY7BiaNCfp5kt8HJOditaQuST9CMnj7e/VuXzuTJOCzwOMR8YmSRf591Fmlc+Hfx7GXa3QDrKYWA2uS3xM54J8i4uuSHgS+IOm9wPPAOxvYxrYm6TbgQuBESZuAPwaupfzxvwO4jGRQ6h7gV+ve4DZW4VxcKGkVySWsjcBvAETEBklfAB4jubPr6ojIN6Ldbex1wLuBdZIeTsv+AP8+GqHSubjCv49jy68BMjMzM6sDX140MzMzqwOHLjMzM7M6cOgyMzMzqwOHLjMzM7M6cOgyMzMzqwOHLjOriqR7JL15Utk1kq6X1CfpixXWWy7pP1e5729JGqhQ/qSkRyTdJ+m0avZjZlYLDl1mVq3bgNWTylYDt0XE5oh4x+QVJOWA5UBVoWsKvxwR55C8RPkvyrQhewz3bWZ2GIcuM6vWF4G3SOqEAy/Q7QO+k/ZmrU/L3yPpdknfBO4meSjmGyQ9LOmD6fLrihuV9G+SLkynr5c0KGmDpI8eZfvuBU5Nt7NR0sclrQV+SdIqSQ+kL/hdU3zBr6RTJf172lO2VtIpafl/k/RgWv+jadlcSV9N666X9K60/FpJj6V1/zIt65X0pXQbD0p6XVr+0+lxeFjS94tvljCz9uIn0ptZVSJiu6Tvkbxk/SskvVxfiIhI345Q6lzgx9J1LgQ+FBFvhSSUHWE3f5iukwXulvRjEfHoNJv4c8C6kvmX05fCI+lR4Dcj4tuSPkby1PprgFuBayNijaRZQEbSxSSvPzkfEHC7khfK9wKbI+It6TZ7JJ1A8hqV09PjsCDd918Dn4yI70p6FfAN4AzgQyRP+b5PyUuI903zu5lZC3FPl5nVQuklxtXpfDl3RcT2GWz/nWnv1PeBs4Azp7HOrekrTl5HEmqKPg9JOAIWRMS30/JbgAvSXqb+iFgDEBH7ImIPybtML07bsBY4nSSErQPelPagvSEiRoARkuD0WUm/QPIaG4CfBa5L23U70J2GrPuAT0j6rbRNE0d7gMys+bmny8xq4SvAJyWdC8yJiIcq1Nt9hG1McOh/CM4CSF+w+yHgvIh4RdLNxWVT+OWIGDzKNhyJgP8VEZ85bEHyvS8D/lTS3RHxMUnnA28E3gF8APgZku/32oiY3JN1raSvptu4T9KbI+KJGbbTzJqUe7rMrGoRsQu4B7iJyr1ck+0ESscubQRWScpIWkZyGQ+gmyQojUhaTHIZsxZtHgFekfSGtOjdwLcjYiewSdLbASR1SZpDcinw19KeKST1SzpJUh+wJyL+D8mA/XPTOj0RcQfwQeCcdB93Ar9ZbEP6cmEknRIR6yLi48CDJL1oZtZm3NNlZrVyG7CGw+9krORRIC/pEeBm4H9AKxUnAAAAsElEQVQDPwAeAx4nuYRHRDwi6fvAE8ALJJfiauVK4IY0VD0H/Gpa/m7gM+k4r3HglyLiTklnAPenY9V2Af+FZJD+X0gqpHXfTxImv5KOBxPwO+l2fwv4dDqWLEcyyP99wDWSLgIKwAbgazX8jmbWJBQRjW6DmZmZWdvz5UUzMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOvj/r1L+SfYYynAAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 720x216 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Presim. Time / s\"].plot(figsize=(10, 3));"]}, {"cell_type": "code", "execution_count": 70, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAADTCAYAAACyTAbQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuQXGd55/Hv0z0zuljSyLbGsjQSyPiKJcCwinEwBGPuJFnDFrAmWeIkZJ1kTQIBdheyVZuQCllTCXiTTeKNCS4cQgyuAGVtMBfHmGsCeGyMrQuOhS/YkmzJli3J1m1m+tk/zulRazSjmdFMq7tH309VV59+z3vOeacPLf943/ecE5mJJEmSZlal1Q2QJEmajQxZkiRJTWDIkiRJagJDliRJUhMYsiRJkprAkCVJktQEhixJkqQmMGRJkiQ1gSFLkiSpCbpa3QCAJUuW5KpVq1rdDEmSpAndeeedT2Rm30T12iJkrVq1ioGBgVY3Q5IkaUIR8fBk6jlcKEmS1ASGLEmSpCYwZEmSJDWBIUuSJKkJ2iJkbXl6X6ubIEmSNKPaImTtfPYgzx4YanUzJEmSZkxbhCyATdt2t7oJkiRJM6ZtQtb6Lbta3QRJkqQZM2HIioi5EfGDiPhRRGyIiA+X5WdExPcjYnNEfC4iesryOeXnzeX6VRMdo6sSrN9qT5YkSZo9JtOTdQC4NDNfBFwAvCEiLgI+ClyTmWcBTwHvKuu/C3iqLL+mrHdU87qr9mRJkqRZZcKQlYVnyo/d5SuBS4F/LMtvAN5cLl9WfqZc/+qIiKMdY15Plfu3P8P+weEpNl+SJKk9TWpOVkRUI+JuYDtwK/AT4OnMrF8S+CjQXy73A48AlOt3AaeOsc8rI2IgIgYO7nuW4Vpy32N7pvfXSJIktYlJhazMHM7MC4AVwIXAedM9cGZel5lrM3Pt0lNPBmD9VocMJUnS7DClqwsz82ngduBngcUR0VWuWgFsKZe3ACsByvW9wJNH229PV4Xeed2s3+Lkd0mSNDtM5urCvohYXC7PA14LbKIIW28tq10B3Fwurys/U67/embmRMdZ07+IDfZkSZKkWWIyPVnLgNsj4h7gDuDWzPwn4L8D74uIzRRzrj5Z1v8kcGpZ/j7gg5NpyJrlvfx42x4Gh2tT/RskSZLaTtdEFTLzHuDFY5Q/QDE/a3T5fuBtU23I6v5eDg7XuP/xZzh/+aKpbi5JktRW2uaO72vKYOXkd0mSNBu0TchadepJnNTjTUklSdLs0DYhq1IJVi/vNWRJkqRZoW1CFsDq/kVs3Lab4dqEFyNKkiS1tbYKWWuW97J/sMYDO56ZuLIkSVIba6+Q1d8LOPldkiR1vrYKWWf2ncScrop3fpckSR2vrUJWV7XC85ctcvK7JEnqeG0VsqB4vM7GrbupOfldkiR1sPYLWct72XNgiJ/u3NvqpkiSJB2z9gtZTn6XJEmzQNuFrHOWLqS7Gk5+lyRJHa3tQlZPV4VzT1/IBnuyJElSB2u7kAXFvKz1W3aR6eR3SZLUmdoyZK3u7+WpvYNs3bW/1U2RJEk6JhOGrIhYGRG3R8TGiNgQEe8py/8wIrZExN3l600N23woIjZHxH0R8fqpNmrN8kUA3i9LkiR1rK5J1BkC3p+Zd0XEQuDOiLi1XHdNZv5ZY+WIOB+4HFgNLAf+OSLOyczhyTbq+csWUa0EG7bs4vWrT5/sZpIkSW1jwp6szNyWmXeVy3uATUD/UTa5DPhsZh7IzAeBzcCFU2nU3O4qZ/UtYP1WrzCUJEmdaUpzsiJiFfBi4Ptl0bsj4p6IuD4iTi7L+oFHGjZ7lDFCWURcGREDETGwY8eOI461ut/H60iSpM416ZAVEQuAzwPvzczdwLXAmcAFwDbgY1M5cGZel5lrM3NtX1/fEevXLO9l+54DbN/t5HdJktR5JhWyIqKbImB9JjO/AJCZj2fmcGbWgE9waEhwC7CyYfMVZdmU1O/8vsEhQ0mS1IEmc3VhAJ8ENmXmxxvKlzVUewuwvlxeB1weEXMi4gzgbOAHU23Y+eUVhvc6ZChJkjrQZK4uvBh4J3BvRNxdlv0+8I6IuABI4CHgNwEyc0NE3ARspLgy8aqpXFlYt2BOF89bcpLzsiRJUkeaMGRl5neAGGPVLUfZ5iPAR6bRLqC4KeldDz813d1IkiQdd215x/e6NcsXseXpfex89mCrmyJJkjQl7R2yRia/O2QoSZI6S1uHrNUjj9fxCkNJktRZ2jpkLZ7fw4qT57HenixJktRh2jpkQXFT0g1eYShJkjpM24esF6zo5aEn97J7/2CrmyJJkjRpbR+y6vOyNnrnd0mS1EE6IGQVVxh6U1JJktRJ2j5k9S2cw+mL5voMQ0mS1FHaPmQBrOlfZE+WJEnqKB0RslYv7+UnO55h78GhVjdFkiRpUjoiZK3p76WWsGnbnlY3RZIkaVI6JGQVVxj6eB1JktQpOiJknb5oLqee1OO8LEmS1DE6ImRFBKv7e32GoSRJ6hgThqyIWBkRt0fExojYEBHvKctPiYhbI+L+8v3ksjwi4i8iYnNE3BMRL5mJhq5Zvoh/e3wPB4aGZ2J3kiRJTTWZnqwh4P2ZeT5wEXBVRJwPfBC4LTPPBm4rPwO8ETi7fF0JXDsTDV3T38tQLbnvMSe/S5Kk9jdhyMrMbZl5V7m8B9gE9AOXATeU1W4A3lwuXwb8XRa+ByyOiGXTbeiakTu/O2QoSZLa35TmZEXEKuDFwPeBpZm5rVz1GLC0XO4HHmnY7NGybPS+royIgYgY2LFjx4THXnnKPBbO7WK9VxhKkqQOMOmQFRELgM8D783Mw7qTMjOBnMqBM/O6zFybmWv7+vomc3zWLO9lg1cYSpKkDjCpkBUR3RQB6zOZ+YWy+PH6MGD5vr0s3wKsbNh8RVk2bWv6F7HpsT0MDtdmYneSJElNM5mrCwP4JLApMz/esGodcEW5fAVwc0P5r5RXGV4E7GoYVpyWNf29HByqsXn7MzOxO0mSpKaZTE/WxcA7gUsj4u7y9SbgauC1EXE/8JryM8AtwAPAZuATwH+ZqcauHpn87pChJElqb10TVcjM7wAxzupXj1E/gaum2a4xnbHkJOb3VNmwdTdva8YBJEmSZkhH3PG9rloJVi9fZE+WJElqex0VsqAYMty4bTfDtSldzChJknRcdVzIWtPfy96Dwzz4xLOtbookSdK4OjBkLQJggzcllSRJbazjQtZZfQuY01VxXpYkSWprHReyuqoVzlu2yGcYSpKkttZxIQtgzfJFrN+6i+JuEZIkSe2nM0NWfy979g/xyM59rW6KJEnSmDozZNXv/O7kd0mS1KY6MmSdc/oCuirh5HdJktS2OjJkzemqcs7Shazf6uR3SZLUnjoyZEFxv6wNW5z8LkmS2lMHh6xennz2INt27W91UyRJko7QsSFrdX3yu/OyJElSG+rYkPX8ZQupBM7LkiRJbWnCkBUR10fE9ohY31D2hxGxJSLuLl9valj3oYjYHBH3RcTrm9Xw+T1dnNm3gA32ZEmSpDY0mZ6sTwFvGKP8msy8oHzdAhAR5wOXA6vLbf46Iqoz1djR1vT3eq8sSZLUliYMWZn5LWDnJPd3GfDZzDyQmQ8Cm4ELp9G+o1q9fBGP7z7A9j1OfpckSe1lOnOy3h0R95TDiSeXZf3AIw11Hi3LjhARV0bEQEQM7Nix45gasKa/mPy+wXlZkiSpzRxryLoWOBO4ANgGfGyqO8jM6zJzbWau7evrO6ZGrF6+CMB5WZIkqe0cU8jKzMczczgza8AnODQkuAVY2VB1RVnWFAvndtO/eB7fe2Cyo5mSJEnHxzGFrIhY1vDxLUD9ysN1wOURMScizgDOBn4wvSYe3Zan9/GdzU808xCSJElT1jVRhYi4EbgEWBIRjwJ/AFwSERcACTwE/CZAZm6IiJuAjcAQcFVmDjen6YVXntPHN//t2OZ0SZIkNcuEISsz3zFG8SePUv8jwEem06ipWNY7l6WL5hyvw0mSJE1Kx97xXZIkqZ0ZsiRJkprAkCVJktQEhixJkqQmMGRJkiQ1gSFLkiSpCQxZkiRJTWDIkiRJagJDliRJUhMYsiRJkppgVoSsA0M1nnzmQKubIUmSNKLjQ9Z5py/k6b2DvOzqr/OhL9zL5u17Wt0kSZKkiR8Q3e5+9eIzuPisJVz/3Qf5/F2PcuMPfsqrzu3jP7/iefzsmacSEa1uoiRJOgFFZra6DaxduzYHBgamvZ8nnjnAZ773Uz79vYd44pmDPH/ZIn7j5Wfwiy9aTk9Xx3faSZKkNhARd2bm2gnrzaaQVbd/cJib797C3377Qe7f/gynLZzDFS9bxS+/9Dksnt8zY8eRJEknnhkLWRFxPfALwPbMXFOWnQJ8DlgFPAS8PTOfimJs7s+BNwF7gV/NzLsmasRMh6y6zORb9z/B3377Ab59/xPM667y1n+3gl9/+RmcseSkGT+eJEma/SYbsiYzhvYp4A2jyj4I3JaZZwO3lZ8B3gicXb6uBK6dbIObISJ45Tl9fPpdL+Ur730Fv/iiZXzujke49GPf4DduGOD7DzxJO/TkSZKk2WdSw4URsQr4p4aerPuASzJzW0QsA76RmedGxN+UyzeOrne0/TerJ2ss2/fs5+//9WE+/b2HeWrvIC/o7+UDrz+XV57Td1yOL0mSOttM9mSNZWlDcHoMWFou9wOPNNR7tCwbq4FXRsRARAzs2LHjGJsxdactnMv7Xncu//qhV/Mnb3kBj+/ez598adNxO74kSToxTPuSuyy6wqY85paZ12Xm2sxc29d3/HuR5nZX+aWXPoefWXUKww4ZSpKkGXasIevxcpiQ8n17Wb4FWNlQb0VZJkmSdEI51pC1DriiXL4CuLmh/FeicBGwa6L5WJIkSbPRhHd8j4gbgUuAJRHxKPAHwNXATRHxLuBh4O1l9Vsobt+wmeIWDr/WhDZLkiS1vQlDVma+Y5xVrx6jbgJXTbdRkiRJnc5nzUiSJDWBIUuSJKkJDFmSJElNYMiSJElqAkOWJElSExiyJEmSmsCQJUmS1ASGLEmSpCYwZEmSJDWBIUuSJKkJDFlALZPiiUCSJEkzY8JnF8523dXggR3Pcv7//CrLF8+l/+T59C+ex4qT59G/eB79J89j+eJ5LF04h66qmVSSJE3OCR+y3v+6c3nhisVseXofW57ax5an97F+yy52PnvwsHrVSnD6orn0nzyPFYuL4NVfBrEXrVxM77zuFv0FkiSpHZ3wIWvlKfP59ZefcUT53oNDbH16f0P42jsSwr7/4E627dpHrRxhfMXZS/j0u156nFsuSZLa2QkfssYzv6eLs05bwFmnLRhz/dBwjcd27+fd//BDnjkwdJxbJ0mS2p2TjI5RV7XCipPns3CuOVWSJB1pWgkhIh4C9gDDwFBmro2IU4DPAauAh4C3Z+ZT02umJElSZ5mJnqxXZeYFmbm2/PxB4LbMPBu4rfwsSZJ0QmnGcOFlwA3l8g3Am5twDEmSpLY23ZCVwNci4s6IuLIsW5qZ28rlx4ClY20YEVdGxEBEDOzYsWOazZAkSWov0521/fLM3BIRpwG3RsSPG1dmZkbEmLdSz8zrgOsA1q5d6+3WJUnSrDKtnqzM3FK+bwe+CFwIPB4RywDK9+3TbWQ7q0Rw32N7+J83r+dffvIEQ8O1VjdJkiS1gWMOWRFxUkQsrC8DrwPWA+uAK8pqVwA3T7eR7ew9rzmbV57Tx00Dj/BLn/g+F/7JbXzoC/fwzX/bwaCBS5KkE1Yc64ORI+J5FL1XUAw7/kNmfiQiTgVuAp4DPExxC4edR9vX2rVrc2Bg4Jja0S72HhziG/ft4MvrH+Prmx7n2YPD9M7r5jXPX8ob15zOy89ewtzuaqubKUmSpiki7my4q8L49Y41ZM2k2RCyGu0fHObb9z/Bl9dv49aNj7Nn/xAL5nRx6Xmn8cY1p3PJuacxr2dmAtfGrbtZNK+LFSfPn5H9SZKko5tsyPJ25U0wt7vKa89fymvPX8rBoRr/8pMn+Mr6x/jqhsdY96OtzOuucsm5fbzxBcu49LzTWDCnOA2Zyf7BGnv2D7J7/yC79w+xZ/9Q8Xlf8T7yuXz/503FlLeHrv75Vv7JkiRpFENWk/V0Vbjk3NO45NzT+OM3r+EHD+7klvXb+OqGx/ny+sfo6apw+qK5IwFqqHb0nsVKwMK53Syc28Wiud0jZZIkqb0Yso6jrmqFl521hJedtYQP//s13PnwU3xl/WM88cwBFs3rOiw81d9Hl8/vqRJxKFW95uPf5NylC1v4V0mSpLEYslqkWgkuPOMULjzjlFY3RZIkNYEhaxbYtG03H/vafcztrjKvu8q8nrHf5zYsz++pMqerclivmCRJmjmGrA734pWL+dK92/jL2zdzLBeKHh7CKszrqTK/u4u5PVXmdVdG1tcD3PyeI8PaxWctYWE5P0ySJBW8hcMskZkcGKqxf3CYfYPD7Ds49vv+keXayOe9B4fYd/DIbcfa11gT83/n0rN4/+vObcFfLUnS8ectHE4wEcHcckhwcROPMzhchrMyeL36Y9/k/3x9M9+4bwfDtaSWOfJeSw4t15Lhsqy+PFxLSFiycA4rT5nPc0+Zz3NOmV8sn1osnzTH/4lKkjqT/wXTlHRXK3RXKyO3j7jy557Hhq27qVaCShTPcqxWgkoliuWgYbleTlk/iIDtew7w0yf38qNHnmbXvsHDjrdkQQ8ry/D13DKAPeeU+Tz31JM4beEcKt6/QpLUpgxZmpb/9obzZnR/u/YO8tOde/npzr08vPNZHimX73z4Kf7fj7bSOFrZ01Whb8Eczjt9IS9csZiuahHcuipF0Ouqlu+VoFqpHCo/bP0Y5ZXKYdtXY/T+KiP1u6sVerqm9Zx1SdIsZchSW+md380L5vfyghW9R6wbHK6x9el9PPxkEbwe2PEs13/3QbY8vY/bfry9Ba2Frkrw+d9+GS9a2cxBWklSJ3Liu2aFWi0ZqhXzvIZqtfI9R5Unw7UaQ7VkaLix7PBthofHKW94DdWSjVt38/m7HgWKqzSrlWL4sz4UWrwaPlcohkwbhk3r9UaGW8ues3r9+rqoD72W21Yb1h+qc/j+qw3rizocduxqlPstP0dDm+tDuSOfyzZUGo5R/1t7uir0lD16c7qq5Xvxaiyrl3eV+5KkTuXEd51QKpWgZ2R+1sw8fHsiw7Xk7KULeGrvQWq1QxP9M0dN8i/XFRcDZFmn4aKAHLtOLWFouFZ8zuIK0nrIy6Q8Ro557OEah9rRsO/GbYcneIRTs0RAT7UewqqjAlmlIZBVG8LbkYHthz99im279jOvu0pXNehuGObtrhZhrqtaDO/W1xefg65q5bBtuqtlWeXQ+u6GbUf2UV8u6zQOM9fDbrUC1UplJAhXK4cPO1fKbUbql8FX0uxjyJKOUbUS/NYrz2x1M6alVkuSQ+EuR4Je8Z61huA3en0Z+AaHaxwYqr+GOThU42D5+eBQjYPDNQ4MDpfvxeeDQ4e2OdiwXf3z/sEau/YNHrGvxn3WvercPobKdgzVauwbLHogh8oeyaHhGoPDh3olB4fLsnJdi7LmEboqh3opR4JZ5VAvZFelcqg3dJx6E+2jWs5PrDb0mtbnMjbuo1pp7DEdHSSLELnu7i1F0GwIk2P24Db2tFaO3rM6cpFMQ8/soZ7cht7esXqCG/czxkU29WPW9zV2mw4d49DFOhy+ruG7GqtXuBpBHNZrfXibdGIxZEknsPo/+lU66x//Wi05OFwb6VGa7r6GyqHhwfowckMIqw8vD5bLw2W9oTK41bJYrpU9iEUvYY3h2uG3K6m/6j2K9eHsem/jUMPycBluh8bbT8M2jevqbRmq1TgwVPSATqYtw437qO+3oUf1aC563inUakWv65E9uHl4KB/pfYXRPbiNt3up1XtqG24HM1scLYAeCmtjTyWoB796/QgIivVEUL6V7+U0AIqCQ+uK4BcU21PWjbJt0bAfqE8lOFT/8OUjj3nY+lHHZFR5ZWT7KNtx6O9p3D+jyxv2Q8Pfedgxx2lLZeRYh7e9UomR/cVYbWn4Huv7mIymhayIeAPw5xRjN3+bmVc361iSTiyVSjC3MjPDwvWh5h68SnQsI8PUZThqDGOL53cfl/l1mYcPc48eLh9zuL0e5LIcRq+NCnONQ+y1Qz21hw/jM27wGz30njlWOw5tP/o+gaOH+hu3OXqbDu0n698NUCunFBTfFySHep6Lz5A1SGrkcFk+UrdYqDVsN7LNyPZ5eFl928P207DtGOVFWD58P7WGuowub6hL+bk2at/trikhKyKqwF8BrwUeBe6IiHWZubEZx5MkNUeUQ4qtHPao90pUCLqPz5RLdZDRYe2IwDdGsGOc8iyTXuN+Rvad9ePBcz86ubY163dzIbA5Mx8AiIjPApcBhixJkjRj6ldf04bTHprVP94PPNLw+dGybEREXBkRAxExsGPHjiY1Q5IkqTVaNgkhM6/LzLWZubavr69VzZAkSWqKZoWsLcDKhs8ryjJJkqQTQrNC1h3A2RFxRkT0AJcD65p0LEmSpLbTlInvmTkUEe8GvkpxC4frM3NDM44lSZLUjtri2YURsQN4uNXtmEWWAE+0uhEa4floH56L9uL5aB+ei6l5bmZOOKG8LUKWZlZEDEzmwZU6Pjwf7cNz0V48H+3Dc9Ec3uJYkiSpCQxZkiRJTWDImp2ua3UDdBjPR/vwXLQXz0f78Fw0gXOyJEmSmsCeLEmSpCYwZEmSJDWBIavDRcRDEXFvRNwdEQNl2SkRcWtE3F++n9zqds5WEXF9RGyPiPUNZWN+/1H4i4jYHBH3RMRLWtfy2Wmc8/GHEbGl/I3cHRFvalj3ofJ83BcRr29Nq2eniFgZEbdHxMaI2BAR7ynL/X20wFHOh7+PJjJkzQ6vyswLGu5x8kHgtsw8G7it/Kzm+BTwhlFl433/bwTOLl9XAtcepzaeSD7FkecD4JryN3JBZt4CEBHnUzzya3W5zV9HRPW4tXT2GwLen5nnAxcBV5Xfub+P1hjvfIC/j6YxZM1OlwE3lMs3AG9uYVtmtcz8FrBzVPF43/9lwN9l4XvA4ohYdnxaemIY53yM5zLgs5l5IDMfBDYDFzatcSeYzNyWmXeVy3uATUA//j5a4ijnYzz+PmaAIavzJfC1iLgzIq4sy5Zm5rZy+TFgaWuadsIa7/vvBx5pqPcoR/9HTjPn3eUQ1PUNw+eej+MkIlYBLwa+j7+Plht1PsDfR9MYsjrfyzPzJRRd7VdFxM81rsziHh3ep6NF/P7bwrXAmcAFwDbgY61tzoklIhYAnwfem5m7G9f5+zj+xjgf/j6ayJDV4TJzS/m+HfgiRXfu4/Vu9vJ9e+taeEIa7/vfAqxsqLeiLFMTZebjmTmcmTXgExwa8vB8NFlEdFP8B/0zmfmFstjfR4uMdT78fTSXIauDRcRJEbGwvgy8DlgPrAOuKKtdAdzcmhaesMb7/tcBv1JeRXURsKth2ERNMmpez1sofiNQnI/LI2JORJxBMeH6B8e7fbNVRATwSWBTZn68YZW/jxYY73z4+2iurlY3QNOyFPhi8duhC/iHzPxKRNwB3BQR7wIeBt7ewjbOahFxI3AJsCQiHgX+ALiasb//W4A3UUwg3Qv82nFv8Cw3zvm4JCIuoBiWegj4TYDM3BARNwEbKa68uiozh1vR7lnqYuCdwL0RcXdZ9vv4+2iV8c7HO/x9NI+P1ZEkSWoChwslSZKawJAlSZLUBIYsSZKkJjBkSZIkNYEhS5IkqQkMWZKmJCJuj4jXjyp7b0RcGxHLI+Ifx9luVUT80jSP/Y2IWDtO+X0R8aOI+G5EnDud40jSTDBkSZqqG4HLR5VdDtyYmVsz862jN4iILmAVMK2QNYFfzswXUTx0+E/HaEO1iceWpCMYsiRN1T8CPx8RPTDysNnlwLfL3qr1ZfmvRsS6iPg6cBvFTShfERF3R8Tvlev/sr7TiPiniLikXL42IgYiYkNEfHiK7fsWcFa5n4ci4qMRcRfwtoi4ICK+Vz4M94v1h+FGxFkR8c9lT9hdEXFmWf5fI+KOsv6Hy7KTIuJLZd31EfEfy/KrI2JjWffPyrK+iPh8uY87IuLisvyV5fdwd0T8sP7kBkmzi3d8lzQlmbkzIn5A8VDymyl6sW7KzCyfPtDoJcALy20uAT6Qmb8ARQg7ymH+R7lNFbgtIl6YmfdMsom/CNzb8PnJ8iHqRMQ9wO9k5jcj4o8o7gj/XuAzwNWZ+cWImAtUIuJ1FI8SuRAIYF0UD2DvA7Zm5s+X++yNiFMpHklyXvk9LC6P/efANZn5nYh4DvBV4PnAByjuoP3dKB7Yu3+Sf5ukDmJPlqRj0ThkeHn5eSy3ZubOY9j/28vepx8Cq4HzJ7HNZ8rHhVxMEWLqPgdFGAIWZ+Y3y/IbgJ8re5H6M/OLAJm5PzP3UjwL9HVlG+4CzqMIXfcCry17yF6RmbuAXRRB6ZMR8R8oHgsD8BrgL8t2rQMWlaHqu8DHI+J3yzYNTfULktT+7MmSdCxuBq6JiJcA8zPzznHqPXuUfQxx+P/RmwtQPoz2A8DPZOZTEfGp+roJ/HJmDkyxDUcTwP/KzL85YkXxd78J+OOIuC0z/ygiLgReDbwVeDdwKcXfd1Fmju6pujoivlTu47sR8frM/PExtlNSm7InS9KUZeYzwO3A9YzfizXaHqBx7tFDwAURUYmIlRTDcgCLKILRrohYSjEsORNt3gU8FRGvKIveCXwzM/cAj0bEmwEiYk5EzKcY2vv1sueJiOiPiNMiYjmwNzP/nmKC/UvKOr2ZeQvwe8CLymN8DfidehvKB/ESEWdm5r2Z+VHgDopeMkmzjD1Zko7VjcAXOfJKw/HcAwxHxI+ATwH/G3gQ2AhsohiSIzN/FBE/BH4MPEIxtDZTrgD+bxmiHgB+rSx/J/A35TytQeBtmfm1iHg+8K/lXLNngP9EMan+TyOiVtb9bYrweHM5nyuA95X7/V3gr8q5YF0Uk/J/C3hvRLwKqAEbgC/P4N8oqU1EZra6DZIkSbOOw4WSJElNYMiSJElqAkOWJElSExiyJEmSmsByDSdqAAAAGUlEQVSQJUmS1ASGLEmSpCYwZEmSJDXB/wf2YrBLjrhXigAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 720x216 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Sim. Time / s\"].plot(figsize=(10, 3));"]}, {"cell_type": "code", "execution_count": 71, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHvdJREFUeJzt3XuUnHWd5/H3p6+5dCCBdLIhQRIgjMIKgW0ZZhFEkYu4GtxVJl4go+zEmQUVR52jssdBHM/gemHG0WVE4QguooiwicgoGFFGVoEGQwj3DIRDYkiCQCD3vnz3j+dXSXWnuru6qypV/eTzOqdOPfV7flX1fbqSz/PUr56LIgIzM8uvpnoXYGZmteWgNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnXUu8CAKZPnx5z586tdxlmZuPKAw888EJEdI7UryGCfu7cuXR3d9e7DDOzcUXSs+X089CNmVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnXGEH/6vP1rsDMLLcaI+i3bABfu9bMrCYaI+ijH3ZsrncVZma51BhBD7B1U70rMDPLpcYJ+i0b612BmVkujRj0kiZIuk/SQ5IekfT51D5P0r2SVkv6oaS21N6eHq9O8+eWVclWB72ZWS2Us0W/E3hLRBwHLADOlnQS8CXgyog4EngJuDD1vxB4KbVfmfqNbIuHbszMamHEoI/MlvSwNd0CeAtwc2q/Djg3TS9Mj0nzT5ek4d9F3qI3M6uRssboJTVLWgFsBO4E/h14OSJ6U5e1wOw0PRt4DiDN3wwcPHwVLf4x1sysRsoK+ojoi4gFwBzgROC1lb6xpCWSuiV19wYeujEzq5FR7XUTES8DdwF/BkyVVLhC1RxgXZpeBxwKkOYfCPyxxGtdHRFdEdHV0jbBQzdmZjVSzl43nZKmpumJwBnAY2SB/+7UbTGwNE0vS49J838ZMcJhr02t3r3SzKxGyrlm7CzgOknNZCuGmyLiNkmPAj+Q9PfA74FrUv9rgO9JWg28CCwa8R2aPUZvZlYrIwZ9RKwEji/R/jTZeP3g9h3Ae0ZVRVML9LwCO7dAe8eonmpmZsNrjCNjm1qze4/Tm5lVXWMEfXP6YrH1hfrWYWaWQ40R9E0p6P2DrJlZ1TVI0HvoxsysVhoj6AtDNz5oysys6hoj6BFMnOYtejOzGmiQoAcmz/AYvZlZDTRQ0Hf6oCkzsxponKDvcNCbmdVC4wT95Bn+MdbMrAYaJ+g7OmHnZujZUe9KzMxypXGCfvKM7N7DN2ZmVdU4Qd9RCHrveWNmVk2NE/SFLXqP05uZVVUDBf307N5DN2ZmVdU4Qe+hGzOzmmicoG+dCG1TPHRjZlZljRP0kA6a8ha9mVk1NVbQ+3w3ZmZV11hB79MgmJlVXWMFvbfozcyqrsGCvhO2vwh9vfWuxMwsNxor6Ds6s/ttvki4mVm1jBj0kg6VdJekRyU9Iuljqf0ySeskrUi3c4qe8xlJqyU9IemssqvZfXSsh2/MzKqlpYw+vcAnIuJBSVOAByTdmeZdGRFfKe4s6WhgEXAMcAjwC0lHRUTfiO/kg6bMzKpuxC36iFgfEQ+m6VeBx4DZwzxlIfCDiNgZEc8Aq4ETy6pmchq68UFTZmZVM6oxeklzgeOBe1PTxZJWSrpW0rTUNht4ruhpaymxYpC0RFK3pO5Nm1Kwe4vezKzqyg56SR3Aj4FLIuIV4CrgCGABsB746mjeOCKujoiuiOjq7Exb8m0d0DLRY/RmZlVUVtBLaiUL+Rsi4haAiNgQEX0R0Q98mz3DM+uAQ4uePie1lfNG6SLh3uvGzKxaytnrRsA1wGMR8bWi9llF3d4FrErTy4BFktolzQPmA/eVXZHPd2NmVlXl7HVzMnA+8LCkFants8B7JS0AAlgDfBggIh6RdBPwKNkeOxeVtcdNweQZsHlt2d3NzGx4IwZ9RPwGUIlZtw/znC8CXxxTRR2d8IcHx/RUMzPbW2MdGQvZFv3WF6C/v96VmJnlQuMFfccMiL7snDdmZlaxxgv63QdN+QdZM7NqaNyg93npzcyqovGCfvfRsQ56M7NqaLyg99CNmVlVNV7QT5wGTa0+aMrMrEoaL+gLp0HwGSzNzKqi8YIefBoEM7Mqasyg90XCzcyqpkGD3mewNDOrlsYM+sLQTUS9KzEzG/caM+gnz4C+XbBjc70rMTMb9xoz6H3QlJlZ1TRm0PugKTOzqmnMoPdFws3MqqYxg35yCnofNGVmVrHGDPpJB4GaPEZvZlYFjRn0Tc0w6WAP3ZiZVUFjBj2ko2O9RW9mVqnGDXqf78bMrCoaN+h9vhszs6oYMeglHSrpLkmPSnpE0sdS+0GS7pT0VLqfltol6euSVktaKemEMVXWMcM/xpqZVUE5W/S9wCci4mjgJOAiSUcDnwaWR8R8YHl6DPA2YH66LQGuGlNlkzuhZxvs3DKmp5uZWWbEoI+I9RHxYJp+FXgMmA0sBK5L3a4Dzk3TC4HrI/M7YKqkWaOuzBcJNzOrilGN0UuaCxwP3AvMjIj1adbzwMw0PRt4ruhpa1Pb6Ph8N2ZmVVF20EvqAH4MXBIRrxTPi4gARnVOYUlLJHVL6t60qUSY+3w3ZmZVUVbQS2olC/kbIuKW1LyhMCST7guJvA44tOjpc1LbABFxdUR0RURXZ2fn3m/q892YmVVFOXvdCLgGeCwivlY0axmwOE0vBpYWtV+Q9r45CdhcNMRTvt1b9B66MTOrREsZfU4GzgcelrQitX0WuAK4SdKFwLPAeWne7cA5wGpgG/DBMVXW3AoTp3mL3sysQiMGfUT8BtAQs08v0T+AiyqsK+ODpszMKta4R8aCLxJuZlYFjR30Pt+NmVnFGjvofQZLM7OKNXbQd3TCzs3Qs6PelZiZjVuNHfSTfXSsmVmlGjvofdCUmVnFGjvofZFwM7OKNXjQT8/uPXRjZjZmjR30HroxM6tYYwd960Rom+KhGzOzCjR20IMPmjIzq1DjB73Pd2NmVpHGD/qOTv8Ya2ZWgcYPem/Rm5lVZBwEfSdsfxH6eutdiZnZuNT4Qd+RrjS1zacrNjMbi8YP+t1Hx3r4xsxsLBo/6H3QlJlZRRo/6H2RcDOzijR+0HuL3sysIo0f9G0d0DLRY/RmZmPU+EEv+SLhZmYVaPygB5/vxsysAiMGvaRrJW2UtKqo7TJJ6yStSLdziuZ9RtJqSU9IOqsqVfoi4WZmY1bOFv13gbNLtF8ZEQvS7XYASUcDi4Bj0nP+t6Tmiqv0Fr2Z2ZiNGPQRcTfwYpmvtxD4QUTsjIhngNXAiRXUl5k8Ixuj7++v+KXMzPY3lYzRXyxpZRramZbaZgPPFfVZm9oq0zEDoi87542ZmY3KWIP+KuAIYAGwHvjqaF9A0hJJ3ZK6N20aYfx990FTHr4xMxutMQV9RGyIiL6I6Ae+zZ7hmXXAoUVd56S2Uq9xdUR0RURXZ2fn8G9YCHqfl97MbNTGFPSSZhU9fBdQ2CNnGbBIUrukecB84L7KSqTo6FgHvZnZaLWM1EHSjcBpwHRJa4G/A06TtAAIYA3wYYCIeETSTcCjQC9wUUT0VVxlYYv+6bvg9e+u+OXMzPYnioh610BXV1d0d3cP3SECPj81m75s874pysyswUl6ICK6Ruo3Po6MlbL7N/5NfeswMxuHxkfQA6gZNH7KNTNrFE5OM7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzo2voO/vqXcFZmbjzvgJ+lnHwr1Xw9O/qnclZmbjyvgJ+vf9CA46HL7/57D6F/Wuxsxs3Bg/Qd/RCYt/AtPnw43vhSd+Vu+KzMzGhfET9ACTD4YLlsHMY+CHH4DHbqt3RWZmDW98BT3ApIPggqVwyAL40WJ45NZ6V2Rm1tDGX9ADTDgQPnALzHkD3PwhWPmjeldkZtawRgx6SddK2ihpVVHbQZLulPRUup+W2iXp65JWS1op6YSaVT7hAHj/zXDYyXDrEljx/Zq9lZnZeFbOFv13gbMHtX0aWB4R84Hl6THA24D56bYEuKo6ZQ6hvQPedxPMOxX+7/+AB66r6duZmY1HIwZ9RNwNvDioeSFQSNXrgHOL2q+PzO+AqZJmVavYktomwXt/CEe+FX7yUbj/OzV9OzOz8WasY/QzI2J9mn4emJmmZwPPFfVbm9pqq3UCLLohC/vb/xZ2vFLztzQzGy8q/jE2IgKI0T5P0hJJ3ZK6N23aVGkZ0NIOR50N0Qd9uyp/PTOznBhr0G8oDMmk+42pfR1waFG/OaltLxFxdUR0RURXZ2fnGMswM7ORjDXolwGL0/RiYGlR+wVp75uTgM1FQzxmZlYHLSN1kHQjcBowXdJa4O+AK4CbJF0IPAucl7rfDpwDrAa2AR+sQc1mZjYKIwZ9RLx3iFmnl+gbwEWVFmVmZtUzPo+MNTOzsjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLuXwG/YZHoL+v3lWYmTWEEa8wNa5MPQwQXP9OmHAgzD0FDj8tux18JEh1Lc/MrB7yFfRHnQmffBKeuRue/hU8/Wt4/LZs3pRDUui/Cea9CQ6YVcdCzcz2nXwFPUDHDHj9u7NbBLz0zJ7Qf/Jn8ND3s35v+Z9w6qfqWqqZ2b6Qv6AvJsFBh2e3rg9Bfz9seBhueA9sfLze1ZmZ7RP5/DF2KE1NMOs4aOuodyVmZvvM/hX0Zmb7oYqGbiStAV4F+oDeiOiSdBDwQ2AusAY4LyJeqqxMMzMbq2ps0b85IhZERFd6/GlgeUTMB5anx2ZmVie1GLpZCFyXpq8Dzq3Be5iZWZkqDfoA7pD0gKQlqW1mRKxP088DM0s9UdISSd2Sujdt2lRhGWZmNpRKd698Y0SskzQDuFPSgH0WIyIkRaknRsTVwNUAXV1dJfuYmVnlKtqij4h16X4jcCtwIrBB0iyAdL+x0iLNzGzsxhz0kiZLmlKYBs4EVgHLgMWp22JgaaVFmpnZ2FUydDMTuFXZicJagO9HxM8k3Q/cJOlC4FngvMrLrLL2jux8OM/8G8w7pd7VmJnV1JiDPiKeBo4r0f5H4PRKiqq5d/4z3PwhuO4d8MZL4LTPQktbvasyM6uJ/fPI2FnHwYfvhhPOh99cCdeeCS+srndVZmY1sX8GPUDb5GzL/rzvwYvPwLdOgQevz854aWaWI/tv0Bcc/U746/8Hc7pg2Ufgpgtg24vlP3/TE/D8qtrVZ2ZWoXyfprhcB86G85fCb/8Zln8B1nbDu/4lu0jJYDtegZefhZfWwEvPwh2XZu2Xbd6nJZuZlctBX9DUBCd/DOadCj/+73D9QnjDhdkpjYuDffsotvbNzBqAg36wQ47Pfqj92Wfg/u9AUytMfQ1MOyybN/UwmDY3ezxtbrb3zs5X6121mdmQHPSltE2Gd34dzrgc2qdAU3O9KzIzGzMH/XAmTq13BWZmFfNeN9XQ35ddj9bMrAF5i75SzW3whwfhC9Nh8nSY3Fl0P6NouhM6OvdMt06sd+Vmtp9w0FfqzC/C4W+GrRth6ybY+kJ2/9Ia2LIJeraWfl5bR1oJzBi4cjjsP8ORjX0GCTMbXxz0lZp+ZHYbyq6tKfzTCmDrprRSKHr88rOwrjubXnEDfOLxoV/PzGyUHPS11jY5u007bOS+t30cuq+Fu78CfT3Qtwv6e/ZM9+1K0z3wH/4jHHU2zDgasjOImpmV5KBvJFNfk93/8gvZfVNL9htAc2u6T9MR8MgtsPxyOGAOHHVmFvpzT4G2SfWr38wakqIBTuJ1yJHHxOOrVnDAhNZ6l1J/O7dkYd7Umh2tO5RX1sNTd8CTP4enf5X9FtAyITuyd/6ZcNRZe1YcZpZLkh6IiK4R+zVC0LfPmh/HXXwVn3vH0bz99bOQhyJGp3cnrPlNCv6fZT8EAzS3w+mfy7byWyZCS3u2t0/LhOzWOiFrb51Q1DYx++bgz8Cs4Y2roD/m2ONj3l9+nVXrXuFNR3Vy+cJjOOzgyfUua3yKgBeegl9eDo/9ZIwvoqIVwYRsBTFlFrz/R9mRwmbWEMZV0Hd1dcW9993P9b9dw1fveJKevn4+8pYj+ctTD6e9xacfGLPendCzLd1vh94d2a1nB/RuL7/9kaWwczP8pw9mF23Z/ZtBGmLa/TtCmt7920IbNKfppta9nzfc0JSZjWjcBX13dzcAz2/ewRdue5SfPryeIzon88V3vZ6TDj+4zhXu5567D645o/qvq+a9VwgDVh4t2UqjqTXdN6f5hbb0uK0DJhyY3SZOhQlT9zwuvvkgNcuZcRv0BXc9sZHPLV3Fcy9u57+dMIfPnvNaDu5or1OFxq6t2Vb+7l09e9Kun7ugr3fP7p8DdgftGdSvaF5/0XMKzy/53N69b3096bQTqc+uLbBjc/btYzjN7aVXAIXbPf8Ikw6G9gOyXWJbJ0LrpOzWNmng43LaCsNeze3ZNYmb27MVk3//sCoZ90EPsH1XH9+46ymuvvtpJrW18L0LT+TYOT7RmA2hZ0cW+ANuL6fb4PbNsP3lgf36e7NvEkcvzFZqhZVbz7Z0K2rr2znGIpW9R8uEPeG/1337MH0K80r1GTyvfU97oW3zc9meWi3tew+n7R56G669jGG65jaf8XUfyUXQFzy14VXOuPJu/nTeQZz+uhlMamthUlvz7vvJ7c1MbM2mp09pp6PdhwfYKEVkv020Tiivf19v9nvGrm0DVwQ921Lb1uz1endm31B6d2Yrh73aiuftGqJP8bx0399b2fI2tVT+GsPSECuAoVYMLXuvRIb6DWjI9kGvo6ZshaPmoumm7HFT057pAfMG9StrXnP2La0O39TKDfqaJaKks4F/ApqB70TEFWN9rfkzp3DMIQdw7zMvcu8zw1/hqaO9hfsvfSsT27xFYaMglR/ykEJqSv32QurvG3olULySKF7BFNoOmgeHn5adcbV4CK3UcNq+at+1pbz+/T31+XuXQ6VWHmklUO7Ko6mw0ii1cioxr0w1CXpJzcA3gTOAtcD9kpZFxKNjfc2ffvQU+vqDbbt62b6rj627+ti2q5dtu/rYtquP7bt6uePRDdzy4DoWfft3tDc3ZX9fieYmIUFzk2iS+OXjG5kzbSI//cgpdExoobnJY6Y2zjQ1p6OgKzgSuqkJmtqyoZ/xIqLM33d2QfRnK8Toh0j3/cXTZc7r78vet+S8/kGvMdK84vcqNS9K1FV43A99g+oqU6226E8EVkfE0wCSfgAsBMYc9JAF9ZQJrUwZ4gjaIzo7eHlbDzt7+7KNlQh6+/vZ1Qd9/UFE0J9Gqta+tJ3jLr8DgEltzUyZ0EJHe0t6/RamTGhhUltL9nePoLc/6O8P+vqDvkj3/cGvn9wEwKfO+pO96in+JidUom1g30f/8Aovb+/hHccekv0flIpuoHTfJA2Yv3tFJtHUtKd/X3/Q1tK0u9a+ovoLy7N7uYqWacC8CHr7gvbWJt5x3CEMXiUOPrit1Cqz1DdalehZ6TdfaeDfWbvbs9bC61d6QF5huLMw6hmD2wfXNaiOQn3VqGW/I+0ZrsHH2vBX5f37qVXQzwaeK3q8FvjTGr3XbvNnTuHav3jDiP2e3PAqK557mVd39LJlRy+v7ujJpnf28sqOHrbs7GX95h1s29mLUpBm3wZI0000N2XBWvDlnz9RteX41RObqvZa1XTpravqXULVDV4hwN6Bva9+xtod/kW1FK8Ydq8mBvQrTJdewe3uPvCpe6+gh9gAKdl3iLpL9Rg8b6TnDt4AGO75I60kh5o9ZPsoNj6GeuehairZWqXXLkfdfrWUtARYAvCa1+zbc7IcNXMKR82szthqRNDTVwiGKGov1bdoukTf/ghe2tqze7ov9nwL6Y/Y/S2lf0BbNl34xtKX5m3b2UtfBBNammluFs0SLU3ZFv+Ae4mWNL+wQhtwk9iys5czrrybvx30rWXwMsZe27JD/B1K/h1L9Ss/YQf8bSMGbG1H7HmtbHrPk4rDPIi9vnnt/q9VInizx6X7Fx4PrqN4uQbXUk6/AfNKfKPY+1vGwNcppXiHjMFdRvqM954/9LzBr77Xc0fxXqOtc8gnDtM81I4qQ/2rHPLvW4XXLjUjCJYP1X+Qmux1I+nPgMsi4qz0+DMAEfEPpfqPtNeNmZntrdy9bmp1DPr9wHxJ8yS1AYuAZTV6LzMzG0ZNhm4iolfSxcDPyXavvDYiHqnFe5mZ2fBqNkYfEbcDt9fq9c3MrDw+faCZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeVcQ5ymWNIm4Nl611EF04EX6l3EPuTlzTcvb+M7LCI6R+rUEEGfF5K6yzlKLS+8vPnm5c0PD92YmeWcg97MLOcc9NV1db0L2Me8vPnm5c0Jj9GbmeWct+jNzHLOQV8BSWskPSxphaTu1HaQpDslPZXup9W7zrGSdK2kjZJWFbWVXD5lvi5ptaSVkk6oX+VjM8TyXiZpXfqMV0g6p2jeZ9LyPiHprPpUPTaSDpV0l6RHJT0i6WOpPZef7zDLm8vPdy+RrmLk2+hvwBpg+qC2/wV8Ok1/GvhSveusYPlOBU4AVo20fMA5wL+SXWTpJODeetdfpeW9DPhkib5HAw8B7cA84N+B5novwyiWdRZwQpqeAjyZlimXn+8wy5vLz3fwzVv01bcQuC5NXwecW8daKhIRdwMvDmoeavkWAtdH5nfAVEmz9k2l1THE8g5lIfCDiNgZEc8Aq4ETa1ZclUXE+oh4ME2/CjxGdq3nXH6+wyzvUMb15zuYg74yAdwh6YF0DVyAmRGxPk0/D8ysT2k1M9Tylbog/HD/kcaTi9NwxbVFQ3G5WV5Jc4HjgXvZDz7fQcsLOf98wUFfqTdGxAnA24CLJJ1aPDOy74C53a0p78uXXAUcASwA1gNfrW851SWpA/gxcElEvFI8L4+fb4nlzfXnW+Cgr0BErEv3G4Fbyb7abSh8pU33G+tXYU0MtXzrgEOL+s1JbeNaRGyIiL6I6Ae+zZ6v7+N+eSW1koXeDRFxS2rO7edbannz/PkWc9CPkaTJkqYUpoEzgVVkF0FfnLotBpbWp8KaGWr5lgEXpL0zTgI2Fw0BjFuDxqHfRfYZQ7a8iyS1S5oHzAfu29f1jZUkAdcAj0XE14pm5fLzHWp58/r57qXevwaP1xtwONmv8g8BjwCXpvaDgeXAU8AvgIPqXWsFy3gj2dfZHrIxyguHWj6yvTG+SbZ3wsNAV73rr9Lyfi8tz0qy//yzivpfmpb3CeBt9a5/lMv6RrJhmZXAinQ7J6+f7zDLm8vPd/DNR8aameWch27MzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRWF+lMgmcNartE0lWSDpF08xDPmyvpfRW+968k7XVt0NT+hKSHJN0j6U8qeR+zRuGgt3q5EVg0qG0RcGNE/CEi3j34CZJagLlARUE/gvdHxHFkJ/T6cokammv43mY14aC3erkZeLukNth9oqlDgH9LW+2rUvtfSFom6ZdkB/JcAZySzh3+8TT/G4UXlXSbpNPS9FWSutP5xz8/yvruBo5Mr7NG0pckPQi8R9ICSb9LJ8K6teic7UdK+kX6RvCgpCNS+6ck3Z/6fz61TZb009R3laQ/T+1XpHOmr5T0ldTWKenH6TXul3Ryan9T0XnUf184UttssJZ6F2D7p4h4UdJ9ZCeEW0q2NX9TRER2tPoAJwDHpuecRnb+8P8C2YpgmLe5ND2nGVgu6diIWFlmie8gO2Ky4I+RncAOSSuBj0TEryVdDvwdcAlwA3BFRNwqaQLQJOlMssPnTyQ7unRZOvldJ/CHiHh7es0DJR1Mdhj+a9PfYWp6738CroyI30h6DfBz4HXAJ4GLIuKedLKuHWUum+1nvEVv9VQ8fLMoPS7lzogo9zzxxc5LW+G/B44hu5jESG6QtAI4mSxIC34IWSADUyPi16n9OuDUtDU9OyJuBYiIHRGxjewcSGemGh4EXksW/A8DZ6RvCqdExGZgM1lYXyPpvwLb0nu8FfhGqmsZcEAK9nuAr0n6aKqpd7R/INs/eIve6mkpcKWyy9JNiogHhui3dZjX6GXgBssEgHQiqk8Cb4iIlyR9tzBvBO+PiO5R1jAcAf8QEd/aa0a23OcAfy9peURcLulE4HTg3cDFwFvIlu+kiBi8xX6FpJ+m17hH0lkR8fgY67Qc8xa91U1EbAHuAq5l6K35wV4luxRcwRpggaQmSYey5zSzB5CF82ZJM8mGiKpR82bgJUmnpKbzgV9HdtWitZLOBUhnPZxENszyobQFjqTZkmZIOgTYFhH/h+xH3xNSnwMj4nbg48Bx6T3uAD5SqEHSgnR/REQ8HBFfAu4n+7Zgthdv0Vu93Uh2Lv/Be+AMZSXQJ+kh4LvAPwLPAI+SXR6ucLm4hyT9Hnic7EpB91Sx5sXAv6Qgfxr4YGo/H/hWGrfvAd4TEXdIeh3w2/TbwxbgA2Q/9H5ZUn/q+9dkK7ClaXxfwN+k1/0o8M3020AL2Q/FfwVcIunNQD/ZGVT/tYrLaDnis1eameWch27MzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzv1/xWTkwD2+JnsAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Presim. Time / s\"].plot();\n", "df[\"Sim. Time / s\"].plot();"]}, {"cell_type": "code", "execution_count": 72, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmcFNW5//HPMzvMjKIwcEFEUEEFwYGMiMEFN1CSiOYXI14TMZprcn9m05h7NZvGaC5ejSbGXL1GeYlxSRQ14I7gwpWfigNBZVOI4mUQZVGQbWCW5/dHVQ89Mz0zPdPd09M93/frVa+uPnWq6qlp6KfPqapT5u6IiIg0lZPuAEREpGtSghARkZiUIEREJCYlCBERiUkJQkREYlKCEBGRmJQgREQkJiUIERGJSQlCRERiykt3AIno06ePDx48ON1hiIhklMWLF29297K26mV0ghg8eDCVlZXpDkNEJKOY2Yfx1FMXk4iIxKQEISIiMSlBiIhITBl9DkJEkq+mpoaqqiqqq6vTHYokqKioiIEDB5Kfn9+h9ZUgRKSRqqoqSktLGTx4MGaW7nCkg9ydLVu2UFVVxZAhQzq0DXUxiUgj1dXV9O7dW8khw5kZvXv3TqglqAQhIs0oOWSHRD/HzE4Q2z9OdwQiIlkrsxPEjk9Az9QWyTq5ubmUl5dz9NFHc95557Fr166Et3nXXXdx//33J7ydyy+/nPLycoYPH06PHj0oLy+nvLycWbNm8ctf/pJ58+YlvI9Ypk+fzoMPPpiSbbfEPIO/YCsG5HrlP7ZAj17pDkUka6xcuZKjjjoqrTGUlJSwY8cOAC688EK+8IUvcOWVVzYsd3fcnZyc9P3GXbt2LV/+8pdZtmxZp+zvlFNO4ZFHHqGsrM0RMhqJ9Xma2WJ3r2hr3cxuQQDs3JTuCEQkhU488UTWrFnD2rVrOeKII7jooos4+uijWbduHXPnzuX4449nzJgxnHfeeQ1J5eqrr2b48OGMGjWKq666CoDrrruOW265BYAJEyZwxRVXUFFRwVFHHcWbb77JV7/6VYYOHcrPf/7zDsd68cUXM2vWLCAYCuiaa66hvLyciooKlixZwqRJkzjssMO46667Gta5+eabOfbYYxk1ahTXXnttzO1+/vnn7N27t1lyeOWVVxpaMKNHj2b79u0djj2WzL/MdcdG6DM03VGIZKVfPbmcFR99ntRtDh+wH9d+ZURcdWtra3n22Wc588wzAVi9ejUzZ85k3LhxbN68mRtuuIF58+ZRXFzMTTfdxK233srll1/OE088wapVqzAztm7dGnPbBQUFVFZW8vvf/54pU6awePFiDjzwQA477DCuuOIKevfunfCxDho0iKVLl3LFFVdw8cUXs3DhQqqrqzn66KP57ne/y9y5c1m9ejWLFi3C3Tn77LNZsGABJ510UqPtzJs3j9NOO63Z9m+55Rb++Mc/Mn78eHbs2EFRUVHCMUdLWQvCzIrMbJGZvWVmy83sV2H5EDN7w8zWmNlfzawgLC8M368Jlw+Oa0c7N6bqEEQkTXbv3t3wy3vQoEFceumlABxyyCGMGzcOgNdff50VK1Ywfvx4ysvLmTlzJh9++CH7778/RUVFXHrppTz++OP07Nkz5j7OPvtsAEaOHMmIESPo378/hYWFHHrooaxbty4pxxG9j+OOO47S0lLKysooLCxk69atzJ07l7lz5zJ69GjGjBnDqlWrWL16dbPtPPfcc5x11lnNysePH8+VV17J7bffztatW8nLS+5v/lS2IPYAp7r7DjPLB141s2eBK4Hb3P0vZnYXcClwZ/j6mbsfbmZTgZuA89vcyw51MYmkSry/9JOtR48eLF26tFl5cXFxw7y7c8YZZ/Dwww83q7do0SLmz5/PrFmzuOOOO3jxxReb1SksLAQgJyenYT7yvra2NhmH0eY+3J1rrrmG73znO61uZ9GiRdx5553Nyq+++mq+9KUv8cwzzzB+/Hief/55jjzyyKTEDilsQXhgR/g2P5wcOBWYFZbPBM4J56eE7wmXn2ZtXsRrakGIdFPjxo1j4cKFrFmzBoCdO3fy3nvvsWPHDrZt28bkyZO57bbbeOutt9IcacsmTZrEjBkzGs6drF+/no0bG3+nLV++nCOPPJLc3Nxm6//jH/9g5MiR/Pu//zvHHnssq1atSmp8KT0HYWa5wGLgcOCPwD+Are4eSc9VwEHh/EHAOgB3rzWzbUBvYHOLO8jJ00lqkW6qrKyM++67jwsuuIA9e/YAcMMNN1BaWsqUKVOorq7G3bn11ls7vI/Jkydzzz33MGDAgGSF3cjEiRNZuXIlxx9/PBBcvfXAAw/Qt2/fhjrR52Ca+t3vfsdLL71ETk4OI0aMiNkNlYhOuczVzHoBTwC/AO5z98PD8oOBZ939aDNbBpzp7lXhsn8Ax7n75ibbugy4DOCYAYVfWHrLV+GCh1J+DCLdRVe4zFX2OeOMM7j//vvp379/h9bv8pe5uvtW4CXgeKCXmUVaLgOB9eH8euBggHD5/sCWGNu6290r3L0ir6BIXUwiktVeeOGFDieHRKXyKqaysOWAmfUAzgBWEiSKr4XVpgGzw/k54XvC5S96W82bnPzgMlcREUm6VJ6D6A/MDM9D5ACPuPtTZrYC+IuZ3QD8Hbg3rH8v8GczWwN8Ckxtcw+5OgchIpIqKUsQ7v42MDpG+fvA2Bjl1cB57dpJTh7UfA57dkBhSUdDFRGRGDJ7qI2c8ClJOg8hIpJ0mZ0gcsMG0M6Wr4QVEZGOyewEkRMmCJ2oFskqN954IyNGjGDUqFGUl5fzxhtvAPDtb3+bFStWJLz94447jvLycgYNGkRZWVnDgHdr165l8uTJLY7flKizzjqLqqqqlGw7FTJ7sD51MYlknddee42nnnqKJUuWUFhYyObNm9m7dy8A99xzT1L2EUk49913H5WVldxxxx0Ny5555pmk7KOp3bt3s2XLFgYOHJiS7adCZrcgIl1MGo9JJGts2LCBPn36NIxd1KdPn4Y7mSdMmEBlZSUQ3HX8k5/8hBEjRnD66aezaNEiJkyYwKGHHsqcOXM6vP/BgwezefNm1q5dy5FHHsnFF1/MsGHDuPDCC5k3bx7jx49n6NChLFq0CAiG+LjkkksYO3Yso0ePZvbs2TG3+/LLLzNhwoRm5bfffnvD0ORTp7Z98WZnyuwWBAY9DlALQiRVnr0aPn4nudv8p5Fw1vQWF0+cOJHrr7+eYcOGcfrpp3P++edz8sknN6u3c+dOTj31VG6++WbOPfdcfv7zn/PCCy+wYsUKpk2b1jCSaiLWrFnDo48+yowZMzj22GN56KGHePXVV5kzZw6/+c1v+Nvf/saNN97IqaeeyowZM9i6dStjx47l9NNPbzSwIARDZpxzzjnN9jF9+nQ++OCDhhFeu5LMbkEAFPfVOQiRLFJSUsLixYu5++67KSsr4/zzz+e+++5rVq+goKBhjKKRI0dy8sknk5+fz8iRI1m7dm1SYhkyZAgjR45sGOvotNNOw8wa7WPu3LlMnz6d8vJyJkyYQHV1Nf/7v//bbFsLFy7khBNOaFY+atQoLrzwQh544IGkD9edqK4VTUcUl+lmOZFUaeWXfirl5uYyYcIEJkyYwMiRI5k5cyYXX3xxozr5+flEBnyOHk47FcN1t7YPd+exxx7jiCOOaHE777//PgcffDAFBQXNlj399NMsWLCAJ598khtvvJF33nmnyySKzG9BlChBiGSTd999t9FDc5YuXcohhxySxohaN2nSJP7whz8QGRno73//e7M6LY3IWl9fz7p16zjllFO46aab2LZtW8PQ311B5ieI4r46SS2SRXbs2MG0adMaTtyuWLGC6667rkPb+uijj5g8eXJyA2ziF7/4BTU1NYwaNYoRI0bwi1/8olmd5557LmaCqKur4xvf+AYjR45k9OjR/OAHP6BXr14pjbc9OmW471SpqKjwylvPhxdvgJ99AvnJfR6rSHek4b6Ta8+ePYwfP77h6qvO1uWH+06p4vDBGupmEpEuqLCwMG3JIVGZnyBKIglCVzKJiCRT5ieISAtC5yFEkiaTu55ln0Q/xyxIEH2CV3UxiSRFUVERW7ZsUZLIcO7Oli1bKCrq+LnZrnGxbSLUxSSSVAMHDqSqqopNm/SjK9MVFRUlNPZT5ieI/B5QUKouJpEkyc/PZ8iQIekOQ7qAzO9igvBmObUgRESSKTsShMZjEhFJuuxIEBpuQ0Qk6bIjQagFISKSdFmSIMpg96dQl5wRHEVEJFsSRElZ8Lprc3rjEBHJIilLEGZ2sJm9ZGYrzGy5mf0wLL/OzNab2dJwmhy1zjVmtsbM3jWzSXHvrOFuanUziYgkSyrvg6gFfuzuS8ysFFhsZi+Ey25z91uiK5vZcGAqMAIYAMwzs2HuXtfmnnSznIhI0qWsBeHuG9x9STi/HVgJHNTKKlOAv7j7Hnf/AFgDjI1rZ8VhF5NulhMRSZpOOQdhZoOB0cAbYdH3zOxtM5thZgeEZQcB66JWqyJGQjGzy8ys0swqG4YCUAtCRCTpUp4gzKwEeAz4kbt/DtwJHAaUAxuA37Zne+5+t7tXuHtFWVnYcigogbweOgchIpJEKU0QZpZPkBwedPfHAdz9E3evc/d64E/s60ZaDxwctfrAsCyeHQXdTDt1FZOISLKk8iomA+4FVrr7rVHl/aOqnQssC+fnAFPNrNDMhgBDgUVx71DjMYmIJFUqr2IaD3wTeMfMloZlPwUuMLNywIG1wHcA3H25mT0CrCC4AuryuK5giijuC9uqkhe9iEg3l7IE4e6vAhZj0TOtrHMjcGOHdlhSBh8t6dCqIiLSXHbcSQ1BC2LnZqivT3ckIiJZIXsSRElf8LpgTCYREUlY9iSIhpvldKJaRCQZsi9B6LkQIiJJkT0JouFuaiUIEZFkyJ4EoS4mEZGkyp4E0eMAyMnXzXIiIkmSPQkiMtyGRnQVEUmK7EkQoOE2RESSKLsSRHFfnYMQEUmSLEsQGtFVRCRZsitBRLqY3NMdiYhIxsuuBFHcF+r2QvW2dEciIpLxsitB6GY5EZGkya4EoZvlRESSJrsSREMLQglCRCRR2ZUgisMEoZvlREQSll0JoueBYDk6ByEikgTZlSBycqFnb3UxiYgkQXYlCAjvplYLQkQkUdmXIDQek4hIUmRfgtB4TCIiSZGyBGFmB5vZS2a2wsyWm9kPw/IDzewFM1sdvh4QlpuZ3W5ma8zsbTMb06Edl/TVSWoRkSRIZQuiFvixuw8HxgGXm9lw4GpgvrsPBeaH7wHOAoaG02XAnR3aa3EZ1OyCPTsSDF9EpHtLWYJw9w3uviSc3w6sBA4CpgAzw2ozgXPC+SnA/R54HehlZv3bvePI3dRqRYiIJKRTzkGY2WBgNPAG0M/dN4SLPgb6hfMHAeuiVqsKy9pH4zGJiCRFyhOEmZUAjwE/cvfPo5e5uwPtGpvbzC4zs0ozq9y0KUYS0HhMIiJJkdIEYWb5BMnhQXd/PCz+JNJ1FL5GvsnXAwdHrT4wLGvE3e929wp3rygrK2u+U43HJCKSFKm8ismAe4GV7n5r1KI5wLRwfhowO6r8ovBqpnHAtqiuqPg1tCDUxSQikoi8FG57PPBN4B0zWxqW/RSYDjxiZpcCHwJfD5c9A0wG1gC7gG91aK+5+dDjALUgREQSlLIE4e6vAtbC4tNi1Hfg8qTsXDfLiYgkLPvupIagm2nn5nRHISKS0bIzQWg8JhGRhGVngtCIriIiCcvOBFFSBnu2QU11uiMREclY2ZkginU3tYhIotpMEGb2n2a2n5nlm9l8M9tkZt/ojOA6TDfLiYgkLJ4WxMRwiIwvA2uBw4GfpDKohEVaEDoPISLSYfEkiMi9El8CHnX3bSmMJzmK+wSv6mISEemweG6Ue8rMVgG7gX81szKga5/9VReTiEjC2mxBuPvVwBeBCnevIRgGY0qqA0tIfg8oKFUXk4hIAuIaasPdP42a3wnsTFlEyaKb5UREEpKdl7mCxmMSEUlQiwkifJZD5iop00lqEZEEtNaCeM3M/mZm3w0fGZpZ1IIQEUlIi+cg3L0iTAxnAr8zs4OAV4FngVfcfU+nRNhRxWWw+1Ooq4XcVD72QkQkO7V6DsLd17r7Xe5+DsGVTE8CpwP/Y2ZPd0aAHVYSPllul4b9FhHpiLh/WoeXuL4YToQtiq6r4W7qjVD6T+mNRUQkA3X4KiZ3X5/MQJJON8uJiCQkiy9zDbuYdLOciEiHxJ0gzKxnKgNJOrUgREQSEs9w3180sxXAqvD9MWb2XymPLFEFJZDXQ5e6ioh0UDwtiNuAScAWAHd/CzgplUElhVnQzbRTVzGJiHREXF1M7r6uSVFdCmJJPo3HJCLSYfEkiHVm9kXAw6fKXQWsbGslM5thZhvNbFlU2XVmtt7MlobT5Khl15jZGjN718wmdehomiruq5PUIiIdFE+C+C5wOXAQsB4oD9+35T6Cu7Cbus3dy8PpGQAzGw5MBUaE6/yXmeXGsY/WqQUhItJhbd4o5+6bgQvbu2F3X9COMZymAH8Jh+/4wMzWAGOB19q730aK+wbnIOrrISd7r+gVEUmFNhOEmQ0Bvg8Mjq7v7md3cJ/fM7OLgErgx+7+GUHr5PWoOlVhWWJK+oLXBWMyRR5DKiIicYlnqI2/AfcSjMNUn+D+7gR+DXj4+lvgkvZswMwuAy4DGDRoUOuVG26W26gEISLSTvEkiGp3vz0ZO3P3TyLzZvYn4Knw7Xrg4KiqA8OyWNu4G7gboKKiwlvdYSRB6LkQIiLtFk/H/O/N7FozO97MxkSmjuzMzPpHvT0XiFzhNAeYamaFYZfWUGBRR/bRSMPd1EoQIiLtFU8LYiTwTeBU9nUxefi+RWb2MDAB6GNmVcC1wAQzKw/XXwt8B8Ddl5vZI8AKoBa43N0Tv9ci0oJ4/yUY+bWENyci0p2Ye+u9NOEVRcPdfW/nhBS/iooKr6ysbLmCO/yqVzB/3bbOCUpEpIszs8XuXtFWvXi6mJYBvRIPKQ3MgtcTrkxvHCIiGSieLqZewCozexNoeMxoApe5di7LBdM9ECIi7RVPgrg25VGIiEiXE8+d1K90RiAiItK1tJggzOxVdz/BzLYTXHXUsAhwd98v5dGJiEjatNaCKAZw99JOikVERLqQ1s7etn79q4iIZLXWWhB9zazF60Pd/dYUxCMiIl1EawkiFyghOOcgIiLdTGsJYoO7X99pkYiISJfS2jkItRxERLqx1hLEaZ0WhYiIdDktJgh3/7QzAxERka5FgxSJiEhMShAiIhKTEoSIiMTUPRJEfU26IxARyTjZnyD6j4I37ob3X053JCIiGSX7E8Q/PwoHHgoPnQ9r5qU7GhGRjJH9CaKkDKY9CX2GwsMXwLvPpTsiEZGMkP0JAqC4N1w0B/qNgL9+A1Y+le6IRES6vO6RIAB6HggXzYYB5fDoNFj+RLojEhHp0rpPggAo2h++8TgMPBZmXQJvP5ruiEREuqyUJQgzm2FmG81sWVTZgWb2gpmtDl8PCMvNzG43szVm9raZjUlVXBTtBxfOgkPGwxOXwdKHUrYrEZFMlsoWxH3AmU3Krgbmu/tQYH74HuAsYGg4XQbcmcK4oLAE/vkRGHIS/O3/wuKZKd2diEgmSlmCcPcFQNMB/6YAkW/jmcA5UeX3e+B1oJeZ9U9VbAAU9IQL/gqHnw5P/gDevCeluxMRyTSdfQ6in7tvCOc/BvqF8wcB66LqVYVlqZVfBFMfDJLEM/8G1Z+nfJciIpkibSep3d0Bb+96ZnaZmVWaWeWmTZsSDySvEIadCV4HdXsT356ISJbo7ATxSaTrKHzdGJavBw6OqjcwLGvG3e929wp3rygrK0tpsCIi3VlnJ4g5wLRwfhowO6r8ovBqpnHAtqiuKBERSYO8VG3YzB4GJgB9zKwKuBaYDjxiZpcCHwJfD6s/A0wG1gC7gG+lKi4REYlPyhKEu1/QwqJmz7oOz0dcnqpYRESk/brXndQiIhI3JQgREYlJCUJERGJSghARkZiUIEREJCYlCBERiUkJQkREYlKCEBGRmJQgREQkJiUIERGJSQlCRERiUoIQEZGYlCBERCQmJQgREYlJCUJERGJSghARkZiUIKJ9shzq69IdhYhIl5CyJ8pllF6HAAb3nw1F+8PgE+HQCcHU+3AwS2t4IiLpoAQBMGwiXPUefLAA3n8Z3n8FVj0VLCsdECaLk2HIybBf/zQGKiLSeZQgIkr6wsivBZM7fPbBvmTx3nPw1kNBvVN/Dif9JK2hioh0BiWIWMzgwEODqeISqK+HT96BB8+DjavSHZ2ISKfQSep45ORA/2OgoCTdkYiIdBolCBERiSktXUxmthbYDtQBte5eYWYHAn8FBgNrga+7+2fpiE9ERNLbgjjF3cvdvSJ8fzUw392HAvPD9yIikiZdqYtpCjAznJ8JnJPGWEREur10JQgH5prZYjO7LCzr5+4bwvmPgX6xVjSzy8ys0swqN23a1Bmxioh0S+m6zPUEd19vZn2BF8ys0bWj7u5m5rFWdPe7gbsBKioqYtYREZHEpaUF4e7rw9eNwBPAWOATM+sPEL5uTEdsIiIS6PQEYWbFZlYamQcmAsuAOcC0sNo0YHZnxyYiIvuko4upH/CEBQPg5QEPuftzZvYm8IiZXQp8CHw9DbG1rrAkGK/pg/+BISemOxoRkZTq9ATh7u8Dx8Qo3wKc1tnxtMvZf4BZl8DMr8AJP4IJP4W8gnRHJSKSEl3pMteur/8x8J0FMOab8OptMGMibF6T7qhERFJCCaK9CoqDlsTX/wyffgD/fSIsuT8YAVZEJIsoQXTU8LPhX/8fDKyAOd+HRy6CXZ/Gv/6md+HjZamLT0QkQRruOxH7HwTfnA2v/QHm/xqqKuHcu4KHCzVV/Tls/RA+WwuffQhzfxaUX7etU0MWEYmXEkSicnJg/A9hyEnw2Lfh/ilw7KXB0ODRCWF3O1oXIiJdgBJEsgwYHZzAfu4aePMeyMmHXoPggEOCZb0OgQMGB+8PGBxcDbVne7qjFhFpkRJEMhUUw9m3wxnXQ2Ep5OSmOyIRkQ5TgkiFHr3SHYGISMJ0FVM61dcFz7sWEemC1IJIl9wC+GgJ/LoPFPeB4rKo175R82VQUrZvPr9HuiMXkW5CCSJdJt4Ih54COzfCzk2wc3Pw+tla2LEJanbGXq+gJEwefRsnlUO+CId37ZFKRCSzKEGkS5/Dg6kle3eGSSNMHDs3hckk6v3WD2F9ZTC/9EH48aqWtyci0k5KEF1VQXEwHXBI23WfugIqZ8CCW6CuBur2Qn3Nvvm6veF8DfzT0TDsTOg7HIIRdUVEYlKCyAa9BgWvL/46eM3JC85x5OaHr+G8Oyx/HOZfD/sNhGETg2Qx+EQo6Jm++EWkSzLP4EHmBhw+wlctW8p+RfnpDiX99uwIkkBOfnB3d0s+3wCr58J7z8P7LwfnOvKKgjvBh06EYZP2JRwRyUpmttjdK9qsl8kJorD/UD/me3fyy68M50sj+2PqMmmf2j2w9tUwYTwXnCAHyC2E034ZtCryekBeYXD1VF5RMOUXBeX5RVFlPYKWij4DkS6vWySIEaNG+5B/uZ1l6z/n5GFlXD9lBIf0Lk53WJnJHTavhhevh5VPdnAjFpVAioLEUtofLnw0uLNcRLqEbpEgKioq/I1Fb3L/a2v57dz3qKmr5/unHs6/nHQohXka5qLDavdAza7wdTfUVgdTTTXU7o6/fPls2LMNvvCt4GFLDedEwq6whvMk4XzDuZMCyA3nc/Kbr9daF5qItKnbJIjKykoAPt5Wza+fWsHT72zgsLJibjx3JOMO7Z3mCLu5dYvg3jOSv13LbZ5IGiWdvCDZ5OSHr7nh8khZ+L6gBIr2D6YevaCo17730ZNuTpQs0+0SRMRL727kl7OXse7T3fyfMQP56eQj6V1SmKYIhb07g1ZFwyW3NeEluHuhrnbfZbiNLsutaVIvall91DqR9WOuW9t8qqsJhzcJ6+zdAdXbgtZOa3ILYyeOyLTwd9CzNxTuF1yanN8D8nsGU0HPxu/jKYt0z+UWBs88zy0MEprO70iSdNsEAbB7bx13vLSauxe8T8+CPP586VhGDdQAetKCmuogUTSatoZT0/JtsHtr43r1tUHLZfiUIBlGkmLNrnCKKqvb08EgLdhHXtG+pNHstbCVOpFlseo0XVa4rzxStm1dcOVbXmHzbr+GLsLWyuPoTswt0AjInaRbJ4iI1Z9s54zbFnDckAM57ai+9CzIo2dBbsNrcWEuPfKD+T6lhZQU6rYQaSf34NxLflF89etqg/M1e3c1TiA1u8KyncH2avcELaLaPUFSaVYWvWxvC3Wil4Wv9bWJHW9OXuLbaJW1kDhaSih5zZNPS+e4Wixvsh3LCRKV5UbN5wTvc3L2zTda1qReXMtyg1ZhGlqG8SaILveNaGZnAr8HcoF73H16R7c1tF8pIwbsxxsffMobH7T+RLeSwjze/Nnp9CjQLxhpB7P4kwOEX26l6buqq76u5eQRnVyiE1Ok7MAhcOiEYATi6K6+WN1+nVW+d0d89etr0vP3jofFSjph8og36eREkk2spBZjWZy6VIIws1zgj8AZQBXwppnNcfcVHd3m0z84kbp6Z9feWnbvrWPn3jp27a1l1946du2tY/feWuau+ITHl6xn6p9epzA3J/hczMjNMcwgN8fIMePFVRsZeEAPnv7+iZQU5ZGboz5hyTA5ueFd8wncOZ+TAzkFQRdVpnCP8/zVXvD6IJF6PXj4Wh89H+ey+rpgvzGX1TfZRlvLovcVa5nHiCvyvh7qmsQVpy6VIICxwBp3fx/AzP4CTAE6nCAg+IIvLcqntIU7rg8rK2Hrrhr21NYFP47cqa2vZ28d1NU77k592BNX9dlujrl+LgA9C3IpLcqjpDAv3H4epUV59CzICz4vd2rrnfp6p67eqfPwtd555b1NAPxk0hHN4olucRoWo6xx3RUffc7W3TV8ZdSA4P+uWdQEFr7mmDVa3pAAzcjJ2Ve/rt4pyMtpiLUuKv7I8TQcV9QxNVrmTm2dU5ifw1eOGUDTVNr0psZYqTZWy9t7RxCtAAAJPElEQVRi1Ey0hW7W+O9sDeVBaWT7id6IGenOjfTqetPypnE1iSMSXzJi6XbM9nUroXul+G58/366WoI4CFgX9b4KOC7VOx3ar5QZFx/bZr33PtnO0nVb2V5dy47qWrZX1wTze2r5vLqGHXtq2bCtml17arHwCzhofRDO55CbE3whR9z8/LtJO46X392UtG0l08+eWJbuEJKuaSKB5l/0nXV6ryFpRMUSnVAa0kujepH52ImxoXrjVZsn9hZ+uMSs20LcsWo0XdbWuk1/OLS2flvJtaXFLZa340dLS3tuKaaYpUnadjy6WoJok5ldBlwGMGhQ544ZNKxfKcP6Jafv2N2pqYt8oXhUeay6UfMx6ta789nOmob5Ot/X6ql3b2gV1TcqC+YjLaS6cNmuPbXUuVOUl0turpFrRl5O0MJo9GpGXrg8kggbTWbs2FPLGbct4N+atJKaHqM3++3cwt8h5t8xVr34v5kb/W3dG/26d9+3rWB+30rRScDxZi29hv+SMb6wg/ex60feN40j+riaxhJPvUbLYrRgmrdqGm8nlugLXJpWaeszbr685WVNt95s3Xbsq71xtrhiK8UtXfjT0r/KFv++Sdh2rAWOM7+l+k10qauYzOx44Dp3nxS+vwbA3f8jVv22rmISEZHm4r2KqauNWfAmMNTMhphZATAVmJPmmEREuqUu1cXk7rVm9j3geYLLXGe4+/I0hyUi0i11qQQB4O7PAM+kOw4Rke6uq3UxiYhIF6EEISIiMSlBiIhITEoQIiISkxKEiIjE1KVulGsvM9sEfJjuOJKgD7A53UF0Ih1vdtPxdn2HuHtZW5UyOkFkCzOrjOeuxmyh481uOt7soS4mERGJSQlCRERiUoLoGu5OdwCdTMeb3XS8WULnIEREJCa1IEREJCYliDQws7Vm9o6ZLTWzyrDsQDN7wcxWh68HpDvOjjKzGWa20cyWRZXFPD4L3G5ma8zsbTMbk77IO6aF473OzNaHn/FSM5scteya8HjfNbNJ6Ym6Y8zsYDN7ycxWmNlyM/thWJ6Vn28rx5uVn28zHj59TFPnTcBaoE+Tsv8Erg7nrwZuSnecCRzfScAYYFlbxwdMBp4leKjaOOCNdMefpOO9DrgqRt3hwFtAITAE+AeQm+5jaMex9gfGhPOlwHvhMWXl59vK8Wbl59t0Ugui65gCzAznZwLnpDGWhLj7AuDTJsUtHd8U4H4PvA70MrP+nRNpcrRwvC2ZAvzF3fe4+wfAGmBsyoJLMnff4O5LwvntwEqCZ8ln5efbyvG2JKM/36aUINLDgblmtjh8xjZAP3ffEM5/DPRLT2gp09LxHQSsi6pXRev/ATPJ98JulRlRXYZZc7xmNhgYDbxBN/h8mxwvZPnnC0oQ6XKCu48BzgIuN7OTohd60FbN2svLsv34QncChwHlwAbgt+kNJ7nMrAR4DPiRu38evSwbP98Yx5vVn2+EEkQauPv68HUj8ARBE/STSNM7fN2YvghToqXjWw8cHFVvYFiW0dz9E3evc/d64E/s62bI+OM1s3yCL8sH3f3xsDhrP99Yx5vNn280JYhOZmbFZlYamQcmAsuAOcC0sNo0YHZ6IkyZlo5vDnBReLXLOGBbVFdFxmrSz34uwWcMwfFONbNCMxsCDAUWdXZ8HWVmBtwLrHT3W6MWZeXn29LxZuvn20y6z5J3twk4lOAqh7eA5cDPwvLewHxgNTAPODDdsSZwjA8TNLtrCPpgL23p+AiubvkjwdUe7wAV6Y4/Scf75/B43ib40ugfVf9n4fG+C5yV7vjbeawnEHQfvQ0sDafJ2fr5tnK8Wfn5Np10J7WIiMSkLiYREYlJCUJERGJSghARkZiUIEREJCYlCBERiUkJQjJKOLLmpCZlPzKzO81sgJnNamG9wWb2zwnu+2Uza/bs4bD8XTN7y8wWmtkRiexHpKtQgpBM8zAwtUnZVOBhd//I3b/WdAUzywMGAwkliDZc6O7HEAxUd3OMGHJTuG+RlFCCkEwzC/iSmRVAwwBqA4D/CVsJy8Lyi81sjpm9SHAD13TgxHDs/ivC5XdENmpmT5nZhHD+TjOrDMf//1U741sAHB5uZ62Z3WRmS4DzzKzczF4PB3h7IuqZCYeb2bywBbLEzA4Ly39iZm+G9X8VlhWb2dNh3WVmdn5YPj18ZsHbZnZLWFZmZo+F23jTzMaH5SdHPcfg75E7+0Waykt3ACLt4e6fmtkigoEOZxO0Hh5xdw9GRWhkDDAqXGcCwfj9X4YggbSym5+F6+QC881slLu/HWeIXyG4wzZiiwcDM2JmbwPfd/dXzOx64FrgR8CDwHR3f8LMioAcM5tIMEzDWIK7keeEgzqWAR+5+5fCbe5vZr0Jhns4Mvw79Ar3/XvgNnd/1cwGAc8DRwFXAZe7+8JwELrqOI9Nuhm1ICQTRXczTQ3fx/KCu8f7nIZoXw9/9f8dGEHwEJi2PGhmS4HxBF/AEX+F4Isc6OXur4TlM4GTwl/vB7n7EwDuXu3uuwjG6JoYxrAEOJIgYbwDnBG2TE50923ANoIv+XvN7KvArnAfpwN3hHHNAfYLE8JC4FYz+0EYU217/0DSPagFIZloNnCbBY+v7Onui1uot7OVbdTS+AdSEUA4wNpVwLHu/pmZ3RdZ1oYL3b2ynTG0xoD/cPf/brYgOO7JwA1mNt/drzezscBpwNeA7wGnEhzfOHdv2kKYbmZPh9tYaGaT3H1VB+OULKYWhGQcd98BvATMoOXWQ1PbCR4ZGbEWKDezHDM7mH3DNe9H8KW+zcz6EXRlJSPmbcBnZnZiWPRN4BUPnlJWZWbnAISjgPYk6A66JPzFj5kdZGZ9zWwAsMvdHyA4GT4mrLO/uz8DXAEcE+5jLvD9SAxmVh6+Hubu77j7TcCbBK0TkWbUgpBM9TDBszSaXtHUkreBOjN7C7gP+B3wAbCC4DGSkcdKvmVmfwdWETwZbGESY54G3BUmgPeBb4Xl3wT+OzwvUQOc5+5zzewo4LXw3MoO4BsEJ8BvNrP6sO6/EiS+2eH5CwOuDLf7A+CP4bmPPIIT6N8FfmRmpwD1BCMKP5vEY5QsotFcRUQkJnUxiYhITEoQIiISkxKEiIjEpAQhIiIxKUGIiEhMShAiIhKTEoSIiMSkBCEiIjH9fy/Jv8wSJryMAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["ax = df[[\"Presim. Time / s\", \"Sim. Time / s\"]].plot();\n", "ax.set_ylabel(\"Time / s\");"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## More Plotting with Pandas\n", "### Our first proper Pandas plot\n"]}, {"cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XucFOWd7/HPb+4wgyIwsCDKRUEFwYGMiAcv4w2UJKI5MeKaCNGsyR4To67Z1WiiMbqLR6OJ0aNrlBcYL4miBlRUBC+snCgOiMpNQcVlEOWioFwG5vLbP6pm6JnpYXqme+ie4vt+vfrV1U89VfWrafjV009VPWXujoiIRFdWugMQEZH2pUQvIhJxSvQiIhGnRC8iEnFK9CIiEadELyIScUr0IiIRp0QvIhJxSvQiIhGXk+4AAHr06OH9+/dPdxgiIh3KokWLNrl7cUv1MiLR9+/fn/Ly8nSHISLSoZjZJ4nUU9eNiEjEKdGLiEScEr2ISMRlRB+9iKReVVUVFRUVVFZWpjsUSVJBQQF9+/YlNze3Tcsr0YtEVEVFBV26dKF///6YWbrDkTZydzZv3kxFRQUDBgxo0zrUdSMSUZWVlXTv3l1JvoMzM7p3757ULzMlepEIU5KPhmS/x8xI9F9/lu4IREQiKzMS/bbPQc+uFYmc7OxsSkpKOProoznvvPPYsWNH0uu87777eOihh5Jez2WXXUZJSQlDhgyhU6dOlJSUUFJSwowZM/j1r3/N3Llzk95GPFOmTOGRRx5pl3U3xzLh4eClfbK9/MPN0KlrukMRiYwVK1Zw1FFHpTWGoqIitm3bBsCFF17IN77xDa666qr6+e6Ou5OVlb4255o1a/jWt77F0qVL98n2TjnlFB5//HGKi1scuaCBeN+nmS1y99KWls2MFj3A9o3pjkBE2tGJJ57I6tWrWbNmDUcccQQXXXQRRx99NGvXrmXOnDkcf/zxjBw5kvPOO6/+4HDNNdcwZMgQhg8fztVXXw3AjTfeyO233w5AWVkZV155JaWlpRx11FG89dZbfOc732HQoEFcf/31bY518uTJzJgxAwiGaLn22mspKSmhtLSUxYsXM27cOA477DDuu++++mVuu+02jj32WIYPH84NN9wQd71fffUVu3fvbpLkX3vttfpfFCNGjODrr79uc+zxZM7llds2QI9B6Y5CJJJ+88wyln/6VUrXOaTPAdzw7aEJ1a2urub555/nzDPPBGDVqlVMnz6d0aNHs2nTJm6++Wbmzp1LYWEht956K3fccQeXXXYZTz/9NCtXrsTM2LJlS9x15+XlUV5ezh/+8AcmTJjAokWL6NatG4cddhhXXnkl3bt3T3pfDz30UJYsWcKVV17J5MmTWbBgAZWVlRx99NH85Cc/Yc6cOaxatYqFCxfi7px99tnMnz+fk046qcF65s6dy2mnndZk/bfffjv33HMPY8aMYdu2bRQUFCQdc6wWW/RmVmBmC83sHTNbZma/CcsHmNmbZrbazP5qZnlheX74eXU4v39CkWzfkMRuiEgm2rlzZ31L+NBDD+WSSy4BoF+/fowePRqAN954g+XLlzNmzBhKSkqYPn06n3zyCQceeCAFBQVccsklPPXUU3Tu3DnuNs4++2wAhg0bxtChQ+nduzf5+fkMHDiQtWvXpmQ/Yrdx3HHH0aVLF4qLi8nPz2fLli3MmTOHOXPmMGLECEaOHMnKlStZtWpVk/W88MILnHXWWU3Kx4wZw1VXXcVdd93Fli1byMlJbRs8kbXtAk51921mlgu8bmbPA1cBd7r7X8zsPuAS4N7w/Ut3P9zMJgK3Aue3uJVt6roRaS+JtrxTrVOnTixZsqRJeWFhYf20u3PGGWfw2GOPNam3cOFC5s2bx4wZM7j77rt5+eWXm9TJz88HICsrq3667nN1dXUqdqPFbbg71157LT/+8Y/3up6FCxdy7733Nim/5ppr+OY3v8ns2bMZM2YML774IkceeWRKYocEWvQe2BZ+zA1fDpwKzAjLpwPnhNMTws+E80+zFi8CNbXoRfZTo0ePZsGCBaxevRqA7du388EHH7Bt2za2bt3K+PHjufPOO3nnnXfSHGnzxo0bx9SpU+vPLaxbt44NGxrmtGXLlnHkkUeSnZ3dZPkPP/yQYcOG8W//9m8ce+yxrFy5MqXxJfT7wMyygUXA4cA9wIfAFnevO1xWAAeH0wcDawHcvdrMtgLdgU3NbiArRydjRfZTxcXFTJs2jQsuuIBdu3YBcPPNN9OlSxcmTJhAZWUl7s4dd9zR5m2MHz+eBx54gD59+qQq7AbGjh3LihUrOP7444HgaqOHH36Ynj171teJPUfR2O9//3teeeUVsrKyGDp0aNzunWS06vJKM+sKPA38Cpjm7oeH5YcAz7v70Wa2FDjT3SvCeR8Cx7n7pkbruhS4FOCYPvnfWHL7d+CCR1OxTyJCZlxeKXucccYZPPTQQ/Tu3btNy++zyyvdfQvwCnA80NXM6n4R9AXWhdPrgEPCIHKAA4HNcdZ1v7uXuntpTl6Bum5EJNJeeumlNif5ZCVy1U1x2JLHzDoBZwArCBL+d8Nqk4CZ4fSs8DPh/Je9pZ8NWbnB5ZUiIpJyifTR9wamh/30WcDj7v6smS0H/mJmNwNvAw+G9R8E/mxmq4EvgIktbiFbffQiIu2lxUTv7u8CI+KUfwSMilNeCZzXqiiycqDqK9i1DfKLWrWoiIjsXWYMgZAVPjVF/fQiIimXGYk+O/xhsb35KzBFRKRtMiPRZ4WJXidkRSLllltuYejQoQwfPpySkhLefPNNAH70ox+xfPnypNd/3HHHUVJSwqGHHkpxcXH9wGBr1qxh/PjxzY6Pk6yzzjqLioqKdll3e8iMQc3UdSMSOX//+9959tlnWbx4Mfn5+WzatIndu3cD8MADD6RkG3UHjmnTplFeXs7dd99dP2/27Nkp2UZjO3fuZPPmzfTt27dd1t8eMqNFX9d1o/FuRCJj/fr19OjRo35smB49etTfmVpWVkZ5eTkQ3EX6i1/8gqFDh3L66aezcOFCysrKGDhwILNmzWrz9vv378+mTZtYs2YNRx55JJMnT2bw4MFceOGFzJ07lzFjxjBo0CAWLlwIBEMvXHzxxYwaNYoRI0Ywc+bMuOt99dVXKSsra1J+11131Q+pPHFiyxcb7kuZ0aLHoNNBatGLtJfnr4HP3kvtOv9hGJw1pdnZY8eO5aabbmLw4MGcfvrpnH/++Zx88slN6m3fvp1TTz2V2267jXPPPZfrr7+el156ieXLlzNp0qT6kSOTsXr1ap544gmmTp3Ksccey6OPPsrrr7/OrFmz+Pd//3f+9re/ccstt3DqqacydepUtmzZwqhRozj99NMbDMAGwVAG55xzTpNtTJkyhY8//rh+RMtMkhkteoDCnuqjF4mQoqIiFi1axP33309xcTHnn38+06ZNa1IvLy+vfgyYYcOGcfLJJ5Obm8uwYcNYs2ZNSmIZMGAAw4YNqx9L5rTTTsPMGmxjzpw5TJkyhZKSEsrKyqisrOS///u/m6xrwYIFnHDCCU3Khw8fzoUXXsjDDz+c8mGGk5U50RQW66Ypkfayl5Z3e8rOzqasrIyysjKGDRvG9OnTmTx5coM6ubm51A1wGzsMcHsMM7y3bbg7Tz75JEcccUSz6/noo4845JBDyMvLazLvueeeY/78+TzzzDPccsstvPfeexmT8DOnRV+kRC8SJe+//36Dh28sWbKEfv36pTGivRs3bhx//OMfqRux5e23325Sp7kRKGtra1m7di2nnHIKt956K1u3bq0fsjgTZE6iL+ypk7EiEbJt2zYmTZpUf4Jy+fLl3HjjjW1a16effsr48eNTG2Ajv/rVr6iqqmL48OEMHTqUX/3qV03qvPDCC3ETfU1NDd///vcZNmwYI0aM4PLLL6dr167tGm9rtGqY4vZSWlrq5XecDy/fDNd9DrmpfV6iyP5IwxSn1q5duxgzZkz91UL72j4bprhdFYYD9Kv7RkQyUH5+ftqSfLIyJ9EX1SV6XXkjIpJKmZPo61r06qcXSZlM6JqV5CX7PWZQou8RvKvrRiQlCgoK2Lx5s5J9B+fubN68mYKCtp+7zIyLPEFdNyIp1rdvXyoqKti4UY2njq6goCCpsXUyJ9HndoK8Luq6EUmR3NxcBgwYkO4wJANkTtcNhDdNqUUvIpJKmZXoNd6NiEjKZVai1zAIIiIpl1mJXi16EZGUy7BEXww7v4Ca1IxYJyIimZboi4qD9x16SLiISKq0mOjN7BAze8XMlpvZMjP7eVh+o5mtM7Ml4Wt8zDLXmtlqM3vfzMYlHE393bHqvhERSZVErqOvBv7F3RebWRdgkZm9FM67091vj61sZkOAicBQoA8w18wGu3tNi1vSTVMiIinXYove3de7++Jw+mtgBXDwXhaZAPzF3Xe5+8fAamBUQtEUhl03umlKRCRlWtVHb2b9gRHAm2HRT83sXTObamYHhWUHA2tjFqsgzoHBzC41s3IzK6+/RVstehGRlEs40ZtZEfAkcIW7fwXcCxwGlADrgd+1ZsPufr+7l7p7aXFx2JLPK4KcTuqjFxFJoYQSvZnlEiT5R9z9KQB3/9zda9y9FvgTe7pn1gGHxCzeNyxLZEPhQ8J11Y2ISKokctWNAQ8CK9z9jpjy3jHVzgWWhtOzgIlmlm9mA4BBwMKEI9J4NyIiKZXIVTdjgB8A75nZkrDsl8AFZlYCOLAG+DGAuy8zs8eB5QRX7FyW0BU3dQp7wtaKhKuLiMjetZjo3f11wOLMmr2XZW4BbmlTREXF8OniNi0qIiJNZdadsRC06LdvgtradEciIhIJmZfoi3qC1wRj3oiISNIyL9HX3zSlE7IiIqmQuYle49KLiKRE5iX6+rtjlehFRFIh8xK9um5ERFIq8xJ9p4MgK1c3TYmIpEjmJfq6YRA0gqWISEpkXqIHDYMgIpJCmZno9ZBwEZGUydBErxEsRURSJTMTfV3XjXu6IxER6fAyM9EX9oSa3VC5Nd2RiIh0eJmZ6HXTlIhIymRmotdNUyIiKZOZiV4PCRcRSZnMTPSFYaLXTVMiIknLzETfuRtYlvroRURSIDMTfVY2dO6urhsRkRTIzEQP4d2xatGLiCQrcxO9xrsREUmJzE30Gu9GRCQlWkz0ZnaImb1iZsvNbJmZ/Tws72ZmL5nZqvD9oLDczOwuM1ttZu+a2cg2RVbUUydjRURSIJEWfTXwL+4+BBgNXGZmQ4BrgHnuPgiYF34GOAsYFL4uBe5tU2SFxVC1A3Zta9PiIiISaDHRu/t6d18cTn8NrAAOBiYA08Nq04FzwukJwEMeeAPoama9Wx2ZHhIuIpISreqjN7P+wAjgTaCXu68PZ30G9AqnDwbWxixWEZa1jsa7ERFJiYQTvZkVAU8CV7j7V7Hz3N2BVo0pbGaXmlm5mZVv3BgnmWu8GxGRlEgo0ZtZLkGSf8TdnwqLP6/rkgnf6zLyOuCQmMX7hmUNuPv97l7q7qXFxcVNN6rxbkREUiKRq24MeBBY4e53xMyaBUwKpycBM2PKLwqvvhkNbI3p4klcfYteXTciIsnISaDOGOAHwHtmtiQs+yUwBXjczC4BPgG+F86bDYwHVgM7gB+2KbLsXOh0kFr0IiJJajHRu/vrgDUz+7Q49R24LMm4ArppSkQkaZl7ZyzoIeEiIimQ2Yle492IiCQtsxO9RrAUEUlaZif6omLYtRWqKtMdiYhIh5XZib5Qd8eKiCQrsxO9bpoSEUlaZid6PSRcRCRpGZ7oewTv6roREWmzzE706roREUlaZif63E6Q10VdNyIiScjsRA+6aUpEJEmZn+g13o2ISFIyP9EXFetkrIhIEjI/0atFLyKSlA6Q6Ith5xdQU53uSEREOqTMT/RF4ZOmdmi4YhGRtsj8RF9/d6y6b0RE2iLzE71umhIRSUrmJ3o9JFxEJCmZn+jVohcRSUrmJ/q8IsjppD56EZE2yvxEb6aHhIuIJCHzEz1ovBsRkSS0mOjNbKqZbTCzpTFlN5rZOjNbEr7Gx8y71sxWm9n7ZjYuJVHqIeEiIm2WSIt+GnBmnPI73b0kfM0GMLMhwERgaLjM/zOz7KSjVIteRKTNWkz07j4f+CLB9U0A/uLuu9z9Y2A1MCqJ+AKFPYM++trapFclIrK/SaaP/qdm9m7YtXNQWHYwsDamTkVYlpyinuA1wZg3IiLSKm1N9PcChwElwHrgd61dgZldamblZla+cWML/e/1N02p+0ZEpLXalOjd/XN3r3H3WuBP7OmeWQccElO1b1gWbx33u3upu5cWFxfvfYN1iV7j0ouItFqbEr2Z9Y75eC5Qd0XOLGCimeWb2QBgELAwuRCJuTtWiV5EpLVyWqpgZo8BZUAPM6sAbgDKzKwEcGAN8GMAd19mZo8Dy4Fq4DJ3r0k6yroW/UevwLDvJr06EZH9ibl7umOgtLTUy8vLm6/gDr/pGkzfuHXfBCUikuHMbJG7l7ZUr2PcGWsWvJ9wVXrjEBHpgDpGogewbLCOE66ISKZQ5hQRiTglehGRiFOiFxGJOCV6EZGIU6IXEYk4JXoRkYhTohcRiTglehGRiFOiFxGJOCV6EZGIU6IXEYk4JXoRkYhTohcRiTglehGRiOtYib62Kt0RiIh0OB0n0fceDm/eDx+9mu5IREQ6lI6T6P/xCeg2EB49H1bPTXc0IiIdRsdJ9EXFMOkZ6DEIHrsA3n8h3RGJiHQIHSfRAxR2h4tmQa+h8Nfvw4pn0x2RiEjG61iJHqBzN7hoJvQpgScmwbKn0x2RiEhG63iJHqDgQPj+U9D3WJhxMbz7RLojEhHJWC0mejObamYbzGxpTFk3M3vJzFaF7weF5WZmd5nZajN718xGtlvkBQfAhTOg3xh4+lJY8mi7bUpEpCNLpEU/DTizUdk1wDx3HwTMCz8DnAUMCl+XAvemJsxm5BfBPz4OA06Cv/0fWDS9XTcnItIRtZjo3X0+8EWj4glAXVadDpwTU/6QB94AuppZ71QFG1deZ7jgr3D46fDM5fDWA+26ORGRjqatffS93H19OP0Z0CucPhhYG1OvIixrX7kFMPGRINnP/leo/KrdNyki0lEkfTLW3R3w1i5nZpeaWbmZlW/cuDHZMCAnHwafCV4DNbuTX5+ISES0NdF/XtclE75vCMvXAYfE1OsbljXh7ve7e6m7lxYXF7cxDBERaUlbE/0sYFI4PQmYGVN+UXj1zWhga0wXj4iIpEFOSxXM7DGgDOhhZhXADcAU4HEzuwT4BPheWH02MB5YDewAftgOMYuISCu0mOjd/YJmZp0Wp64DlyUblIiIpE7HvDNWREQSpkQvIhJxSvQiIhGnRC8iEnFK9CIiEadELyIScUr0IiIRp0QvIhJxSvQiIhGnRC8iEnFK9CIiEadELyIScUr0IiIRp0QvIhJxSvQiIhGnRC8iEnHRTPSfL4PamnRHISKSEVp8wlSH0rUfYPDQ2VBwIPQ/EQaWBa/uh4NZWsMTEUmHaCX6wWPh6g/g4/nw0avw0Wuw8tlgXpc+YdI/GQacDAf0TmOgIiL7TrQSPUBRTxj23eDlDl9+vCfpf/ACvPNoUO/U6+GkX6Q1VBGRfSF6iT6WGXQbGLxKL4baWvj8PXjkPNiwMt3RiYjsE9E8GducrCzofQzkFaU7EhGRfWb/SvQiIvuhpLpuzGwN8DVQA1S7e6mZdQP+CvQH1gDfc/cvkwtTRETaKhUt+lPcvcTdS8PP1wDz3H0QMC/8LCIiadIeXTcTgOnh9HTgnHbYhoiIJCjZRO/AHDNbZGaXhmW93H19OP0Z0CvegmZ2qZmVm1n5xo0bkwxDRESak+zllSe4+zoz6wm8ZGYNrll0dzczj7egu98P3A9QWloat46IiCQvqRa9u68L3zcATwOjgM/NrDdA+L4h2SBFRKTt2pzozazQzLrUTQNjgaXALGBSWG0SMDPZIEVEpO2S6brpBTxtwUBhOcCj7v6Cmb0FPG5mlwCfAN9LPswUyy8KxsP5+L9gwInpjkZEpF21OdG7+0fAMXHKNwOnJRNUuzv7jzDjYpj+bTjhCij7JeTkpTsqEZF2sX/eGdv7GPjxfBj5A3j9Tpg6FjatTndUIiLtYv9M9AB5hUHL/nt/hi8+hv88ERY/FIx4KSISIftvoq8z5Gz45/8PfUth1s/g8YtgxxeJL7/xffhsafvFJyKSpGgPU5yoAw+GH8yEv/8R5v0WKsrh3PuCh5Q0VvkVbPkEvlwDX34Cc64Lym/cuk9DFhFJlBJ9nawsGPNzGHASPPkjeGgCHHtJMKRxbGLf2YrWvohIBlCib6zPiOBE7QvXwlsPQFYudD0UDuoXzOvaDw7qH3w+qH9w9c6ur9MdtYhIs5To48krhLPvgjNugvwukJWd7ohERNpMiX5vOnVNdwQiIknTVTepUFsTPI9WRCQDqUWfrOw8+HQx/LYHFPaAwuKY954x08VQVLxnOrdTuiMXkf2EEn2yxt4CA0+B7Rtg+0bYvil4/3INbNsIVdvjL5dXFB4EejY8OPT7X3B4Zo8gISIdixJ9snocHryas3t7mPzDA8D2jeFBIebzlk9gXXkwveQR+JeVza9PRKSVlOjbW15h8DqoX8t1n70SyqfC/NuhpgpqdkNt1Z7pmt3hdBX8w9Ew+EzoOQSCEURFROJSos8kXQ8N3l/+bfCelROcA8jODd/DaXdY9hTMuwkO6AuDxwZJv/+JkNc5ffGLSEYyz4BBvPocPtRXLl3CAQW56Q4l/XZtC5J5Vm5wt25zvloPq+bABy/CR68G5wJyCoI7eweNhcHj9hw4RCSSzGyRu5e2WC8TEn1+70F+zE/v5dffHsI3h/XG1BXROtW7YM3rYeJ/ITgRDJCdD6f9Omjl53SCnPzgap+cguCVWxCU5xbElHUKfjnoOxDJeB0q0Q8dPsIH/NNdLF33FScPLuamCUPp170w3WF1TO6waRW8fBOseKaNK7GYA0FBcIDo0hsufCK4U1hEMkKHSvSlpaX+5sK3eOjva/jdnA+oqqnlZ6cezj+dNJD8HA0/0GbVu6BqR/i+E6org1dVJVTvTLx82UzYtRW+8cPgoS315wzCLqb68wjhdP25hTzIDqezcpsut7euKRFpUYdL9OXl5QB8trWS3z67nOfeW89hxYXccu4wRg/snuYI93NrF8KDZ6R+vZbd9IDQ4OCRExw0snLD9+xwfl1Z+DmvCAoODF6dukJB1z2fY1+6SU0ipsMm+jqvvL+BX89cytovdvK/R/bll+OPpHtRfpoiFHZvD1r59Zd6VoWXfu6Gmuo9l382uBy0qlG9mHm1McvULR932eqmr5qqcNiJsM7ubVC5Nfj1sTfZ+fEPAHWvBb+Hzt0h/4DgktjcTpDbOXjldW74OZGyum6v7PzgmcTZ+cGBSec/JEU6fKIH2Lm7hrtfWcX98z+ic14Of75kFMP7aqAxaUZVZZDwG7y2hK/G5Vth55aG9Wqrg18SQyYEB7W6g1vVjvAVU1azq41BWrCNnII9yb/Je/5e6tTNi1en8bz8PeV1ZVvXBldq5eQ37U6r73rbW3kC3XTZeRrxdR+JRKKvs+rzrznjzvkcN6Abpx3Vk855OXTOy65/L8zPplNuMN2jSz5F+bo9QFrJPTg3kVuQWP2a6uB8xu4dDQ8EVTvCsu3B+qp3Bb9QqncFB4cmZbHzdjdTJ3Ze+F5bndz+ZuUkv469smYOAM0dGHKaHkSaOwfUbHmj9VhWcMCx7JjprOBzVtae6QbzGtVLaF528CstDb/UEk307ZYRzexM4A9ANvCAu09p67oG9erC0D4H8ObHX/Dmx3t/wlNRfg5vXXc6nfLUopBWMEs8yUOYpLqk7yqk2prmDwKxB4nYA0xdWbcBMLAsGHE1tgstXnfavirfvS2x+rVV6fl7J8LiHTzCg0CiB4+suoNGvINTnHkJapdEb2bZwD3AGUAF8JaZzXL35W1d53OXn0hNrbNjdzU7d9ewfXcNO3ZXs2N3DTt217BzdzVzln/OU4vXMfFPb5CfnRX8fc3IzjLMIDvLyDLj5ZUb6HtQJ5772YkUFeSQnaU+U+lgsrLDu6CTuBM6Kwuy8oKun47CPcHzO7vBa4MDoteCh++1sdMJzqutCbYbd15to3W0NC92W/HmeZy46j7XQk2juBLUXi36UcBqd/8IwMz+AkwA2pzoIUjUXQpy6dLMHbSHFRexZUcVu6prgsaKO9W1teyugZpax92pDXuqKr7cyTE3zQGgc142XQpyKMrPCdefQ5eCHDrn5QR/d3eqa53aWqem1qnx8L3Wee2DjQD8YtwRTeKJ/SVnWJyyhnWXf/oVW3ZW8e3hfYL/g2YxL7DwPcuswfz6A5kZWVl76tfUOnk5WfWx1sTEX7c/9fsVs08N5rlTXePk52bx7WP60PiQ2PjmtniHzHi/aC1OzWR/+Zo1/DtbfXlQWrf+ZG/Iq+vurOv19MbljeNqFEddfKmIZb9jtqe7Bt1rw08S+/fTXon+YGBtzOcK4Lh22la9Qb26MHXysS3W++Dzr1mydgtfV1azrbKaryurguld1XxVWcW2XdWs31rJjl3VWJhIg18DhNNZZGcFibXObS++n7L9ePX9jSlbVypd9/TSdIeQco0PCNA0Ye+r01j1yT8mltgDQ/1hokG9uun4B7j66g0XbXqAbqYBErduM3HHq9F4XkvLNm4A7G35lg6Szc1utrwVjY/mttxcTHFLU7TuRKTtrKWZXQpcCnDooft2TJbBvbowuFdq+lbdnaqausTgMeXx6sZMx6lb686X26vqp2t8z6+QWvf6Xym1DcqC6bpfLDXhvB27qqlxpyAnm+xsI9uMnKygxd/g3YyccH7dAa3By4xtu6o54875/GujXy2N99GbtGWb+TvE/TvGq5d4hm3wt3Vv0Np237OuYHrPQrHJ3PEmv7zq/2vFSbzB5/j16z43jiN2vxrHkki9BvPi/KJo+iuj4Xriib0go3GVlr7jpvObn9d47U2WbcW2Whtnswvupbi5C1Wa+1fZ7N83BeuON8Nx5jVXv5F2uerGzI4HbnT3ceHnawHc/T/i1W/pqhuZ4ojVAAAHSUlEQVQREWkq0atu2use9LeAQWY2wMzygInArHbaloiI7EW7dN24e7WZ/RR4keDyyqnuvqw9tiUiInvXbn307j4bmN1e6xcRkcRo+EARkYhTohcRiTglehGRiFOiFxGJOCV6EZGIy4hhis1sI/BJuuNIgR7ApnQHsQ9pf6NN+5v5+rl7cUuVMiLRR4WZlSdyl1pUaH+jTfsbHeq6ERGJOCV6EZGIU6JPrfvTHcA+pv2NNu1vRKiPXkQk4tSiFxGJOCX6JJjZGjN7z8yWmFl5WNbNzF4ys1Xh+0HpjrOtzGyqmW0ws6UxZXH3zwJ3mdlqM3vXzEamL/K2aWZ/bzSzdeF3vMTMxsfMuzbc3/fNbFx6om4bMzvEzF4xs+VmtszMfh6WR/L73cv+RvL7bcLDpxjp1foXsAbo0ajs/wLXhNPXALemO84k9u8kYCSwtKX9A8YDzxM8ZGk08Ga640/R/t4IXB2n7hDgHSAfGAB8CGSnex9asa+9gZHhdBfgg3CfIvn97mV/I/n9Nn6pRZ96E4Dp4fR04Jw0xpIUd58PfNGouLn9mwA85IE3gK5m1nvfRJoazexvcyYAf3H3Xe7+MbAaGNVuwaWYu69398Xh9NfACoJnPUfy+93L/janQ3+/jSnRJ8eBOWa2KHwGLkAvd18fTn8G9EpPaO2muf2L90D4vf1H6kh+GnZXTI3piovM/ppZf2AE8Cb7wffbaH8h4t8vKNEn6wR3HwmcBVxmZifFzvTgN2BkL2uK+v6F7gUOA0qA9cDv0htOaplZEfAkcIW7fxU7L4rfb5z9jfT3W0eJPgnuvi583wA8TfDT7vO6n7Th+4b0Rdgumtu/dcAhMfX6hmUdmrt/7u417l4L/Ik9P987/P6aWS5B0nvE3Z8KiyP7/cbb3yh/v7GU6NvIzArNrEvdNDAWWErwEPRJYbVJwMz0RNhumtu/WcBF4dUZo4GtMV0AHVajfuhzCb5jCPZ3opnlm9kAYBCwcF/H11ZmZsCDwAp3vyNmViS/3+b2N6rfbxPpPhvcUV/AQIKz8u8Ay4DrwvLuwDxgFTAX6JbuWJPYx8cIfs5WEfRRXtLc/hFcjXEPwdUJ7wGl6Y4/Rfv753B/3iX4z987pv514f6+D5yV7vhbua8nEHTLvAssCV/jo/r97mV/I/n9Nn7pzlgRkYhT142ISMQp0YuIRJwSvYhIxCnRi4hEnBK9iEjEKdFLWoQjCY5rVHaFmd1rZn3MbEYzy/U3s39MctuvmlmTZ4OG5e+b2TtmtsDMjkhmOyKZQole0uUxYGKjsonAY+7+qbt/t/ECZpYD9AeSSvQtuNDdjyEY0Ou2ODFkt+O2RdqFEr2kywzgm2aWB/UDTfUB/itstS8Nyyeb2Swze5ngRp4pwInh2OFXhvPvrlupmT1rZmXh9L1mVh6OP/6bVsY3Hzg8XM8aM7vVzBYD55lZiZm9EQ6E9XTMmO2Hm9nc8BfBYjM7LCz/hZm9Fdb/TVhWaGbPhXWXmtn5YfmUcMz0d83s9rCs2MyeDNfxlpmNCctPjhlH/e26O7VFGstJdwCyf3L3L8xsIcGAcDMJWvOPu7sHd6s3MBIYHi5TRjB++LcgOBDsZTPXhctkA/PMbLi7v5tgiN8muGOyzmYPBrDDzN4Ffubur5nZTcANwBXAI8AUd3/azAqALDMbS3D7/CiCu0tnhYPfFQOfuvs3w3UeaGbdCW7DPzL8O3QNt/0H4E53f93MDgVeBI4CrgYuc/cF4WBdlQnum+xn1KKXdIrtvpkYfo7nJXdPdJz4WN8LW+FvA0MJHibRkkfMbAkwhiCR1vkrBAkZ6Orur4Xl04GTwtb0we7+NIC7V7r7DoIxkMaGMSwGjiRI/O8BZ4S/FE50963AVoJk/aCZfQfYEW7jdODuMK5ZwAFhYl8A3GFml4cxVbf2DyT7B7XoJZ1mAnda8Fi6zu6+qJl62/eyjmoaNlgKAMKBqK4GjnX3L81sWt28Flzo7uWtjGFvDPgPd//PJjOC/R4P3Gxm89z9JjMbBZwGfBf4KXAqwf6NdvfGLfYpZvZcuI4FZjbO3Ve2MU6JMLXoJW3cfRvwCjCV5lvzjX1N8Ci4OmuAEjPLMrND2DPM7AEEyXmrmfUi6CJKRcxbgS/N7MSw6AfAax48tajCzM4BCEc97EzQzXJx2ALHzA42s55m1gfY4e4PE5z0HRnWOdDdZwNXAseE25gD/KwuBjMrCd8Pc/f33P1W4C2CXwsiTahFL+n2GMFY/o2vwGnOu0CNmb0DTAN+D3wMLCd4PFzd4+LeMbO3gZUETwpakMKYJwH3hYn8I+CHYfkPgP8M++2rgPPcfY6ZHQX8PTz3sA34PsGJ3tvMrDas+88EB7CZYf++AVeF670cuCc8N5BDcKL4J8AVZnYKUEswgurzKdxHiRCNXikiEnHquhERiTglehGRiFOiFxGJOCV6EZGIU6IXEYk4JXoRkYhTohcRiTglehGRiPsfs6fe+jOJc14AAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[[\"Presim. Time / s\", \"Sim. Time / s\"]].plot();"]}, {"cell_type": "markdown", "metadata": {}, "source": ["* **That's why I think Pandas is great!**\n", "* It has great defaults to quickly plot data\n", "* Plotting functionality is very versatile\n", "* Before plotting, data can be *massaged* within data frames, if needed"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## More Plotting with Pandas\n", "### Some versatility"]}, {"cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD4CAYAAAD4k815AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAADSNJREFUeJzt3W+MXHW9x/HPh1JcjI3kbisIS5010CC4gHZFE5AryNV6uREbntQ/uGpig1GhuSaCNkZ9YFIk0T64JmZjMd5Et0G0LYlcFWwlVCN227QdoIj/tnaJxWUxcBvbQsvXBztlS912lzln58x+5/1KCOw5s+d8Mxne/fXMP0eEAAB5nFb1AACAchF2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJnF7FSRcuXBi1Wq2KUwPAnLV9+/anI2LRdLerJOy1Wk3Dw8NVnBoA5izbe2dyOy7FAEAyhB0AkiHsAJBMJdfYAaAKL7zwgkZHR3Xo0KGqRzmlrq4u9fT0aP78+U39PmEH0DFGR0e1YMEC1Wo12a56nClFhMbHxzU6Oqre3t6mjsGlGAAd49ChQ+ru7m7bqEuSbXV3dxf6WwVhB9BR2jnqxxSdkbADQDJcY0+g73t9VY+g+kC96hGAV6x2+09KPd7ImutndLuNGzdq+fLl2rNnjy666KJSZ5BYsQNAyw0NDemqq67S0NDQrByfsANACx04cEBbt27VunXrtH79+lk5B2EHgBbatGmTli1bpiVLlqi7u1vbt28v/RyEHQBaaGhoSCtWrJAkrVixYlYux/DkKQC0yDPPPKPNmzerXq/Lto4ePSrbuvPOO0t9GSYrdgBokXvuuUc33XST9u7dq5GREe3bt0+9vb166KGHSj0PK3YAHWumL08sy9DQkG677baXbbvxxhs1NDSkq6++urTzEHYAaJEtW7b8y7Zbbrml9PNwKQYAkmHFnkD9z3+pegQAbYQVOwAkQ9gBIBnCDgDJEHYASIYnTwF0rq+8tuTjPTvtTfbv369Vq1Zp27ZtOuuss3T22Wdr7dq1WrJkSWljEHYAaJGI0PLlyzUwMPDSJzvu2rVLTz31FGEHgLloy5Ytmj9/vm6++eaXtl122WWln4dr7ADQIo888oiWLl066+ch7ACQDGEHgBa55JJLZuWLNU5E2AGgRa699lodPnxYg4ODL23bvXs3H9sLAKWZwcsTy2RbGzZs0KpVq3THHXeoq6tLtVpNa9euLfU8hB0AWujcc8/V3XffPavnIOxAVmW/+aapGVq7IsaEwtfYbZ9ve4vtx2w/avvWMgYDADSnjBX7EUmfi4gdthdI2m77/oh4rIRjAwBeocIr9oj4a0TsaPz3/0vaI+m8oscFADSn1Jc72q5Jeoukh6fYt9L2sO3hsbGxMk8LADhOaWG3/RpJP5K0KiKeO3F/RAxGRH9E9C9atKis0wIATlDKq2Jsz9dE1L8fET8u45gAMNv6vtdX6vHqA/VpbzNv3jz19U2ed+PGjarVaqXOUTjsti1pnaQ9EfGN4iMBQF5nnnmmdu7cOavnKONSzJWSbpJ0re2djX/+s4TjAgCaUHjFHhFbJbmEWQAgvYMHD+ryyy+XJPX29mrDhg2ln4N3ngJAC82VSzEAgDZC2AEgGS7FAOhYM3l54lzEih0AWujAgQOzfg7CDgDJEHYASIawA+goEVH1CNMqOiNhB9Axurq6ND4+3tZxjwiNj4+rq6ur6WPwqhgAHaOnp0ejo6Nq948O7+rqUk9PT9O/P2fDXrv9J1WPoJE111c9giSpdugHVY+gkaoHaOBxMYnHxaROe1xwKQYAkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBIhrADQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGRKCbvtZbZ/Z/sPtm8v45gAgOYUDrvteZK+Jel9ki6W9EHbFxc9LgCgOWWs2K+Q9IeI+FNEPC9pvaQbSjguAKAJp5dwjPMk7Tvu51FJbz/xRrZXSlopSYsXLy580pGuDxU+RnHPVj2AJGlkzfVVj9A2eFxMWvCmdrgq2h6PzU57XLTsydOIGIyI/ojoX7RoUatOCwAdp4ywPynp/ON+7mlsAwBUoIywb5N0oe1e22dIWiHp3hKOCwBoQuFr7BFxxPZnJP1M0jxJd0XEo4UnAwA0pYwnTxUR90m6r4xjAShHfaBe9QioCO88BYBkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQTClvUAKAdtbXW/wTZYtq5dvFWLEDQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDJ8Vg1Q67TNBgKmwYgeAZAg7ACRD2AEgGcIOAMkQdgBIhrADQDKEHQCSIewAkAxhB4BkCoXd9p22H7e92/YG22eVNRgAoDlFV+z3S3pzRFwq6QlJXyg+EgCgiEJhj4ifR8SRxo+/kdRTfCQAQBFlXmP/hKT/K/F4AIAmTPvpjrYfkHTOFLtWR8Smxm1WSzoi6funOM5KSSslafHi6j+BDwCymjbsEXHdqfbb/pik/5L07oiIUxxnUNKgJPX395/0dgCAYgp9HrvtZZI+L+nfI+If5YwEACii6DX2/5G0QNL9tnfa/nYJMwEACii0Yo+IC8oaBABQDt55CgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRT6HXsADAX1AfqVY/QUqzYASCZObti7+ut/hMiO2sNAGCuYMUOAMkQdgBIhrADQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkpmzX2YNTKU+wFeMA6Ws2G1/znbYXljG8QAAzSscdtvnS3qPpL8UHwcAUFQZK/ZvSvq8pCjhWACAggqF3fYNkp6MiF0zuO1K28O2h8fGxoqcFgBwCtM+eWr7AUnnTLFrtaQvauIyzLQiYlDSoCT19/ezugeAWTJt2CPiuqm22+6T1Ctpl21J6pG0w/YVEbG/1CkBADPW9MsdI6Iu6XXHfrY9Iqk/Ip4uYS4AQJN4gxIAJFPaG5QiolbWsQAAzWPFDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBIhrADQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAqH3fZnbT9u+1HbXy9jKABA804v8su2r5F0g6TLIuKw7deVMxYAoFlFV+yfkrQmIg5LUkT8rfhIAIAiioZ9iaR32n7Y9oO233ayG9peaXvY9vDY2FjB0wIATmbaSzG2H5B0zhS7Vjd+/98kvUPS2yTdbfuNEREn3jgiBiUNSlJ/f/+/7AcAlGPasEfEdSfbZ/tTkn7cCPlvbb8oaaEkluQAUJGil2I2SrpGkmwvkXSGpKeLDgUAaF6hV8VIukvSXbYfkfS8pIGpLsMAAFqnUNgj4nlJHylpFgBACXjnKQAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJBM0TcoVaY+UK96BABoS6zYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAk4yq+8Mj2mKS9LT/xyy0UX+N3DPfFJO6LSdwXk9rlvnhDRCya7kaVhL0d2B6OiP6q52gH3BeTuC8mcV9Mmmv3BZdiACAZwg4AyXRy2AerHqCNcF9M4r6YxH0xaU7dFx17jR0AsurkFTsApETYASAZwg4AyczZb1B6pWxfJOkGSec1Nj0p6d6I2FPdVED7sH2FpIiIbbYvlrRM0uMRcV/Fo1XO9v9GxEernmOmOuLJU9u3SfqgpPWSRhubeyStkLQ+ItZUNRuq1fgD/zxJD0fEgeO2L4uIn1Y3WWvZ/rKk92lisXe/pLdL2iLpPyT9LCK+VuF4LWX73hM3SbpG0mZJioj3t3yoV6hTwv6EpEsi4oUTtp8h6dGIuLCaydqP7Y9HxHernqMVbN8i6dOS9ki6XNKtEbGpsW9HRLy1yvlayXZdE/fBqyTtl9QTEc/ZPlMTf+hdWumALWR7h6THJH1HUmgi7EOaWAgqIh6sbrqZ6ZRr7C9KOneK7a9v7MOkr1Y9QAt9UtLSiPiApHdJ+pLtWxv7XNlU1TgSEUcj4h+S/hgRz0lSRBxU5/0/0i9pu6TVkp6NiF9KOhgRD86FqEudc419laRf2P69pH2NbYslXSDpM5VNVRHbu0+2S9LZrZylYqcdu/wSESO23yXpHttvUOeF/Xnbr26EfemxjbZfqw4Le0S8KOmbtn/Y+PdTmmOt7IhLMZJk+zRJV+jlT55ui4ij1U1VjcYD9b2S/n7iLkm/joip/naTju3Nkv47InYet+10SXdJ+nBEzKtsuBaz/aqIODzF9oWSXh8R9QrGagu2r5d0ZUR8sepZZqpjwo5JttdJ+m5EbJ1i3w8i4kMVjNVytns0cQli/xT7royIX1UwFlAYYQeAZDrlyVMA6BiEHQCSIewAkAxhB4Bk/gkPuxYtgwxTmAAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[[\"A\", \"C\", \"F\"]].plot(kind=\"bar\", stacked=True);"]}, {"cell_type": "code", "execution_count": 75, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD4CAYAAAD4k815AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAADM5JREFUeJzt3W9sXXUdx/HPh1EoxgViN/6WeWt0QXCCrqIJiIJophhx4clQccbEBSPCoomgi5EnJiCJ7oEmphESTbQLIttIRBHcJGAirls2Cgz/pnMlDktJwMVtsPH1Qe9wzLJ29/x6T++371dCoOfenvPNSfPuj3Nvz3VECACQxwl1DwAAKIuwA0AyhB0AkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBI5sQ6DrpgwYJoNBp1HBoAOtbWrVufi4iFUz2vlrA3Gg0NDQ3VcWgA6Fi2d03neVyKAYBkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQTC1/oATMKbeeWvcE03PrC3VPgEIqr9htn2t7s+2nbD9p+6YSgwEAWlNixX5Q0lcjYpvt+ZK22n4wIp4qsG8AwHGqvGKPiH9GxLbmf/9b0k5J51TdLwCgNUVfPLXdkPQuSY9N8tgq20O2h8bGxkoeFgBwhGJht/1GSb+QtDoiXjz68YgYiIj+iOhfuHDKu04CAFpUJOy2uzQR9Z9GxL0l9gkAaE2Jd8VY0p2SdkbEd6uPBACoosSK/RJJ10m6wvb25j8fK7BfAEALKr/dMSIeleQCswAACuCWAgCQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRD2AEgmRKfeTorNG75Zd0jTMvIbVfVPcK0dML57Jhzuf9ndY8wLSN1DzBNnfCzKdX788mKHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBIpkjYbS+z/Sfbf7V9S4l9AgBaUznstudJ+oGkj0o6X9K1ts+vul8AQGtKrNgvlvTXiPh7RLwkaZ2kqwvsFwDQghML7OMcSbuP+HpU0nuPfpLtVZJWSdKiRYsKHPa1Rro/VXyfM+OFugeYls44n51xLue/vVOuTl5V9wDT0hk/m1KdP59te/E0IgYioj8i+hcuXNiuwwLAnFMi7M9IOveIr3ub2wAANSgR9i2S3ma7z/ZJklZIuq/AfgEALah8jT0iDtq+QdIDkuZJuisinqw8GQCgJSVePFVE3C/p/hL7ArIZXjlc9wiYY/jLUwBIhrADQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMkVuKQAA7bKkr/znOcyEOm8kwYodAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACTDTcAwqU640VKdN1kCZjNW7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRTKey277D9tO3Hba+3fVqpwQAAram6Yn9Q0jsi4p2S/izp69VHAgBUUSnsEfGbiDjY/PIPknqrjwQAqKLkNfbPS/pVwf0BAFow5f3YbT8k6cxJHloTERubz1kj6aCknx5jP6skrZKkRYtm/72+AaBTTRn2iLjyWI/b/pykj0v6UETEMfYzIGlAkvr7+1/3eQCAaip9gpLtZZK+JukDEfGfMiMBAKqoeo39+5LmS3rQ9nbbPywwEwCggkor9oh4a6lBAABl8JenAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBIhrADQDKEHQCSIewAkEylvzwFgHYbXjlc9wizHit2AEgmzYp9SV9n3OOdtQaAmcaKHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBI5sS6B8DsNLxyuO4RALSoyIrd9ldth+0FJfYHAGhd5bDbPlfSRyT9o/o4AICqSqzYvyfpa5KiwL4AABVVCrvtqyU9ExE7pvHcVbaHbA+NjY1VOSwA4BimfPHU9kOSzpzkoTWSvqGJyzBTiogBSQOS1N/fz+oeAGbIlGGPiCsn2257iaQ+STtsS1KvpG22L46IPUWnBABMW8tvd4yIYUmnH/7a9oik/oh4rsBcAIAW8QdKAJBMsT9QiohGqX0BAFrHih0AkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBIhrADQDKEHQCSIewAkAyfeQpgznj55Zc1Ojqq/fv31z3KMXV3d6u3t1ddXV0tfT9hBzBnjI6Oav78+Wo0GmrebnzWiQiNj49rdHRUfX19Le2DSzEA5oz9+/erp6dn1kZdkmyrp6en0v9VEHYAc8psjvphVWck7ACQDNfYAcxZjVt+WXR/I7ddNa3nbdiwQcuXL9fOnTt13nnnFZ1BYsUOAG03ODioSy+9VIODgzOyf8IOAG20d+9ePfroo7rzzju1bt26GTkGYQeANtq4caOWLVumxYsXq6enR1u3bi1+DMIOAG00ODioFStWSJJWrFgxI5djePEUANrk+eef16ZNmzQ8PCzbOnTokGzrjjvuKPo2TFbsANAm99xzj6677jrt2rVLIyMj2r17t/r6+vTII48UPQ4rdgBz1nTfnljK4OCgbr755tdsu+aaazQ4OKjLLrus2HEIOwC0yebNm/9v24033lj8OFyKAYBkCDsAJEPYASAZwg4AyRB2AEiGsANAMrzdEcDcdeuphff3wpRP2bNnj1avXq0tW7botNNO0xlnnKG1a9dq8eLFxcYg7ADQJhGh5cuXa+XKla/e2XHHjh169tlnCTsAdKLNmzerq6tL119//avbLrzwwuLH4Ro7ALTJE088oaVLl874cQg7ACRD2AGgTS644IIZ+WCNo1UOu+0v237a9pO2v1NiKADI6IorrtCBAwc0MDDw6rbHH398dt221/blkq6WdGFEHLB9epmxAKANpvH2xJJsa/369Vq9erVuv/12dXd3q9FoaO3atUWPU/VdMV+UdFtEHJCkiPhX9ZEAIK+zzz5bd99994weo+qlmMWS3m/7MdsP237P6z3R9irbQ7aHxsbGKh4WAPB6plyx235I0pmTPLSm+f1vkvQ+Se+RdLftt0REHP3kiBiQNCBJ/f39//c4AKCMKcMeEVe+3mO2vyjp3mbI/2j7FUkLJLEkB4CaVL0Us0HS5ZJke7GkkyQ9V3UoAEDrqr54epeku2w/IeklSSsnuwwDAGifSmGPiJckfabQLACAArgJGIA5a8mPlxTd3/DK4SmfM2/ePC1Z8r/jbtiwQY1Go+gchB0A2uiUU07R9u3bZ/QY3CsGAJJhxQ4AbbRv3z5ddNFFkqS+vj6tX7+++DEIOwC0EZdiAADHjbADQDJcigEwZ03n7YmdiBU7ALTR3r17Z/wYaVbsWX/zAsDxYsUOAMkQdgBzSifcp7DqjIQdwJzR3d2t8fHxWR33iND4+Li6u7tb3keaa+wAMJXe3l6Njo5qtn88Z3d3t3p7e1v+fsIOYM7o6upSX19f3WPMOC7FAEAyhB0AkiHsAJCM63h12PaYpF1tP/DxWyA+nLskzmc5nMuyOuV8vjkiFk71pFrC3ilsD0VEf91zZMH5LIdzWVa288mlGABIhrADQDKE/dgG6h4gGc5nOZzLslKdT66xA0AyrNgBIBnCDgDJEHYASIabgDXZPk/S1ZLOaW56RtJ9EbGzvqmACbYvlhQRscX2+ZKWSXo6Iu6vebSOZ/snEfHZuucoiRdPJdm+WdK1ktZJGm1u7pW0QtK6iLitrtk6VfMX5TmSHouIvUdsXxYRv65vss5j+1uSPqqJhdiDkt4rabOkD0t6ICK+XeN4HcX2fUdvknS5pE2SFBGfaPtQM4CwS7L9Z0kXRMTLR20/SdKTEfG2eibrTLZvlPQlSTslXSTppojY2HxsW0S8u875Oo3tYU2cx5Ml7ZHUGxEv2j5FE78431nrgB3E9jZJT0n6kaTQRNgHNbGIU0Q8XN905XCNfcIrks6eZPtZzcdwfL4gaWlEfFLSByV90/ZNzcdc21Sd62BEHIqI/0j6W0S8KEkRsU/8fB6vfklbJa2R9EJE/E7Svoh4OEvUJa6xH7Za0m9t/0XS7ua2RZLeKumG2qbqXCccvvwSESO2PyjpHttvFmFvxUu239AM+9LDG22fKsJ+XCLiFUnfs/3z5r+fVcIOcimmyfYJki7Wa1883RIRh+qbqjPZ3iTpKxGx/YhtJ0q6S9KnI2JebcN1INsnR8SBSbYvkHRWRAzXMFYKtq+SdElEfKPuWUoi7CjOdq8mLh/smeSxSyLi9zWMBcwZhB0AkuHFUwBIhrADQDKEHQCSIewAkMx/AdYN8qMClUETAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[df_demo[\"F\"] < 0][[\"A\", \"C\", \"F\"]].plot(kind=\"bar\", stacked=True);"]}, {"cell_type": "code", "execution_count": 76, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAEVCAYAAAACQTb4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGn9JREFUeJzt3X2QXPWV3vHn8Xhwy5GAZNTBiJbckxhiy2iRyxN2N7COza63JPNm4spGbMDsbrZUThVllODCYGd3ISmXX9jyajehKjWxHRPAwyrYAhuUABtEjOIYM0NhvSDYYEcyLQxuhvAihwFJnPzRLSLLI/Wdnnv79vz6+6maqrndt+99RqegTv3q1+c6IgQAAACk6i1lBwAAAACKRMMLAACApNHwAgAAIGk0vAAAAEgaDS8AAACSRsMLAACApNHwAsAc2X7Q9h92+dnrbd+adyYAwLHR8AIYWLbPtf092y/ZfsH2/7D998vOdZjtPbZ/q+wcALDQvbXsAABQBtsnSrpb0j+XtEnSCZJ+Q9JrZeYCAOSPFV4Ag+oMSYqIiYg4FBGvRsR9EbH96G0Htuu2w/aRiwR/1/YPbL9s+y7bf+uoc9fbfsb2T21/6lghbF9ke5ftF9tbJd7Tfv0WSSskfcf2ftvX2K7YvtX2dPv8R2yfUsi/DgAkhIYXwKD6a0mHbN9se63tvznHz39c0h9IOlXSQUl/cdT7H5J0uqTflvTp2bYm2D5D0oSkDZKqkrao1eCeEBGXS/qJpAsjYnFEfEnSFZJOkrRc0oikT0h6dY65AWDg0PACGEgR8bKkcyWFpP8gqWn723NYMb0lInZGxM8l/ZGk37E9dMT7N0TEzyNih6T/KOnSWa7xTyTdExH3R8QBSX8qaZGkf3CMex5Qq9F9V3tVeqr9dwAAjoOGF8DAiojdEfF7EVGTdKakZZI2Zvz400f8vlfSsKSlx3l/2SzXWNZ+73CeN9qfO+0Y97xF0r2Sbm9vl/iS7eGMeQFgYNHwAoCkiHhC0tfVanx/LuntR7z9jlk+svyI31eotfr6/HHef2aWazwj6Z2HD2y7/bl9h2MdlfFARNwQESvVWgW+QK2tFQCA46DhBTCQbL/b9tW2a+3j5WptO/i+pMckfcD2CtsnSbpulktcZnul7bdL+teS7oiIQ0e8/0e23277vZJ+X9JfznKNTZLOt/2b7ZXaq9WaEvG99vvPSfo7R2T+kO1V7a0TL6vVZL/R9T8CAAwIGl4Ag+oVSb8q6WHbP1er0d0p6eqIuF+tBnW7pCm1xpcd7Ra1VoSflVSR9Mmj3v/vkp6S9N8k/WlE3Hf0BSLiSUmXSfq3aq0OX6jWl9Reb5/yeUn/qj2R4VNqrTTfoVazu7t9j1u6+eMBYJA4IjqfBQDIxHZd0v+WNBwRB8tNAwCQWOEFAABA4mh4AQAAkDS2NAAAACBprPACQMnajxT+P7bfVnYWAEgRDS8AlKj9JbffUGvm7kWlhgGARNHwAkC5Pq7WSLSvS7qi3CgAkCb28AJAiWw/JenLkh5Wq/GtRcRz5aYCgLSwwgsAJbF9rlqPFt4UEVOSfiTpd8tNBQDpoeEFgPJcIem+iHi+ffwNsa0BAHLHlgYAKIHtRWo9lnhI0v72y2+TdLKk1RHxw7KyAUBqWOEFgHJ8VNIhSSslrW7/vEfSQ2p9kQ0AkBNWeAGgBLb/q6RdEXH1Ua//jqS/UOvLawdLCQcAiaHhBQAAQNLY0gAAAICk0fACAAAgaTS8AAAASBoNLwAAAJL21iIuunTp0qjX60VcGgAAAJAkTU1NPR8R1U7nFdLw1ut1TU5OFnFpAAAAQJJke2+W89jSAAAAgKTR8AIAACBphWxpAAAAC0/92nvKjoAFas8Xzi87wnFlbnhtD0malLQvIi6Y640OHDigRqOhmZmZuX60ZyqVimq1moaHh8uOAgAAgJzMZYX3Kkm7JZ3YzY0ajYaWLFmier0u291colARoenpaTUaDY2OjpYdBwAAADnJtIfXdk3S+ZK+0u2NZmZmNDIy0pfNriTZ1sjISF+vQAMAAGDusn5pbaOkayS9cawTbK+3PWl7stlsHuucuSfsoX7PBwAAgLnr2PDavkDSzyJi6njnRcR4RIxFxFi12nH+LwAAANATWfbwniPpItsfkVSRdKLtWyPisvncOO9vgmb9duCdd96pSy65RLt379a73/3uXDMAAACg/3Rc4Y2I6yKiFhF1SeskPTDfZrdMExMTOvfcczUxMVF2FAAAAPTAQM3h3b9/v7Zt26atW7fqwgsv1A033FB2JAAA+ka/z1IFujWnJ61FxIPdzODtF3fddZfWrFmjM844QyMjI5qaOu62ZAAAACRgoB4tPDExoXXr1kmS1q1bx7YGAACAATAwWxpeeOEFPfDAA9qxY4ds69ChQ7KtG2+8kXFkAAAACRuYFd477rhDl19+ufbu3as9e/bo6aef1ujoqB566KGyowEAAKBApa3w9npj/MTEhD796U//wmsf+9jHNDExoQ984AM9zQIAAIDeGZgtDVu3bv2l1z75yU+WkAQAAAC9NDBbGgAAADCYBmaFFwAAHF/eT0HF4Oj3Gc4dV3htV2z/wPYPbe+y3fXTGiKi24/2RL/nAwAAwNxl2dLwmqTzIuIsSaslrbH9a3O9UaVS0fT0dN82lRGh6elpVSqVsqMAAAAgRx23NESrQ93fPhxu/8y5a63Vamo0Gmo2m3P9aM9UKhXVarWyYwAAACBHmfbw2h6SNCXpXZJuioiHZzlnvaT1krRixYpfusbw8LBGR0fnFRYAAACYq0xTGiLiUESsllSTdLbtM2c5ZzwixiJirFqt5p0TAAAA6MqcxpJFxIuStkpaU0wcAAAAIF9ZpjRUbZ/c/n2RpA9LeqLoYAAAAEAesuzhPVXSze19vG+RtCki7i42FgAA6LV+n6UKdCvLlIbtkt7XgywAAABA7ni0MAAAAJJGwwsAAICk0fACAAAgaTS8AAAASBoNLwAAAJJGwwsAAICkZZnDCwAABkD92nvKjoAFqt9nOGd50tpy21ttP257l+2rehEMAAAAyEOWFd6Dkq6OiEdtL5E0Zfv+iHi84GwAAADAvHVc4Y2In0bEo+3fX5G0W9JpRQcDAAAA8jCnL63Zrqv1mOGHZ3lvve1J25PNZjOfdAAAAMA8ZW54bS+W9E1JGyLi5aPfj4jxiBiLiLFqtZpnRgAAAKBrmRpe28NqNbu3RcS3io0EAAAA5CfLlAZL+qqk3RHx5eIjAQAAAPnJMqXhHEmXS9ph+7H2a5+JiC3FxQIAAL3W77NUgW51bHgjYpsk9yALAAAAkDseLQwAAICk0fACAAAgaTS8AAAASBoNLwAAAJJGwwsAAICk0fACAAAgaVnm8AIAgAFQv/aesiNgger3Gc5ZHy28xvaTtp+yfW3RoQAAAIC8ZHm08JCkmyStlbRS0qW2VxYdDAAAAMhDlhXesyU9FRE/jojXJd0u6eJiYwEAAAD5yNLwnibp6SOOG+3XfoHt9bYnbU82m8288gEAAADzktuUhogYj4ixiBirVqt5XRYAAACYlywN7z5Jy484rrVfAwAAAPpelob3EUmn2x61fYKkdZK+XWwsAAAAIB8d5/BGxEHbV0q6V9KQpK9FxK7CkwEAgJ7q91mqQLcyPXgiIrZI2lJwFgAAACB3PFoYAAAASaPhBYCSfeMb39DY2JgWL16sU089VWvXrtW2bdvKjgUAyXBE5H9Ruylpb46XXCHpJzleD/2D2qaL2mZziqR3qPX/zJclhaQTJS1Ra+55P6K26aK26Uq1tu+MiI7zcAtpePNmu5nlj8HCQ23TRW07s32SWmMefz8i/nPZebKitumituka9NoulC0NL5YdAIWhtumitp39uqSKpM1lB5kjapsuapuuga7tQml4Xyo7AApDbdNFbTsbkfR8RBwsO8gcUdt0Udt0DXRtF0rDO152ABSG2qaL2nY2LWmp7UwjIvsItU0XtU3XQNd2QezhBYAUtffwPiPpioi4o+w8AJCqhbLCCwDJiYiXJP2xpJtsf9T2220P215r+0tl5wOAVLDCCwAls/1PJf0LSe+R9IqkKUmfi4jvlRoMABJBwwsAAICksaUBAAAASaPhBQAAQNJoeAEAAJA0Gl4AAAAkrZBh50uXLo16vV7EpQEAAABJ0tTU1PMRUe10XiENb71e1+TkZBGXBgAAACRJtvdmOY8tDQAAAEgaDS8AAACSVsiWBgAACnf9SWUnSM/1L5WdAChE5obX9pCkSUn7IuKC4iIBAACgFw4cOKBGo6GZmZmyoxxXpVJRrVbT8PBwV5+fywrvVZJ2SzqxqzsBAACgrzQaDS1ZskT1el22y44zq4jQ9PS0Go2GRkdHu7pGpj28tmuSzpf0la7uAgAAgL4zMzOjkZGRvm12Jcm2RkZG5rUKnfVLaxslXSPpjeOEWW970vZks9nsOhAAAAB6p5+b3cPmm7Fjw2v7Akk/i4ip450XEeMRMRYRY9Vqx/m/AAAAQE9k2cN7jqSLbH9EUkXSibZvjYjLio0GAACAnsp7+knGyR/PPvusNmzYoEceeUQnn3yyTjnlFG3cuFFnnHFGLjE6rvBGxHURUYuIuqR1kh6g2QUAAEAeIkKXXHKJPvjBD+pHP/qRpqam9PnPf17PPfdcbvdgDi8AYGFiZiyQhK1bt2p4eFif+MQn3nztrLPOyvUec2p4I+JBSQ/mmgAAAAADa+fOnXr/+99f6D14tDAAAACSRsMLAACA0rz3ve/V1NRxh4HNGw0vAAAASnPeeefptdde0/j4+Juvbd++XQ899FBu9+BLawAAAGgp4cugtrV582Zt2LBBX/ziF1WpVFSv17Vx48bc7kHDCwAAgFItW7ZMmzZtKuz6bGkAAABA0ljhBQAALXk/ZQvlY161pAwrvLYrtn9g+4e2d9m+oRfBAAAAULyIKDtCR/PNmGVLw2uSzouIsyStlrTG9q/N664AAAAoXaVS0fT0dF83vRGh6elpVSqVrq/RcUtDtP4F9rcPh9s//fuvAgAAgExqtZoajYaazWbZUY6rUqmoVqt1/flMe3htD0makvQuSTdFxMOznLNe0npJWrFiRdeBAAAA0BvDw8MaHR0tO0bhMk1piIhDEbFaUk3S2bbPnOWc8YgYi4ixarWad04AAACgK3MaSxYRL0raKmlNMXEAAACAfGWZ0lC1fXL790WSPizpiaKDAQAAAHnIsof3VEk3t/fxvkXSpoi4u9hYAACg55jZikRlmdKwXdL7epAFAAAAyB2PFgYAAEDSaHgBAACQNBpeAAAAJI2GFwAAAEmj4QUAAEDSaHgBAACQtCxzeAEAZbr+pLITYFAwhxeJyvKkteW2t9p+3PYu21f1IhgAAACQhywrvAclXR0Rj9peImnK9v0R8XjB2QAAAIB567jCGxE/jYhH27+/Imm3pNOKDgYAAADkYU5fWrNdV+sxww/P8t5625O2J5vNZj7pAAAAgHnK3PDaXizpm5I2RMTLR78fEeMRMRYRY9VqNc+MAAAAQNcyNby2h9Vqdm+LiG8VGwkAAADIT5YpDZb0VUm7I+LLxUcCAAAA8pNlSsM5ki6XtMP2Y+3XPhMRW4qLBQB4E7NRAWBeOja8EbFNknuQBQAAAMgdjxYGAABA0mh4AQAAkDQaXgAAACSNhhcAAABJo+EFAABA0mh4AQAAkLQsc3iB9F1/UtkJAKB8zHxGorI+WniN7SdtP2X72qJDAQAAAHnJ8mjhIUk3SVoraaWkS22vLDoYAAAAkIcsK7xnS3oqIn4cEa9Lul3SxcXGAgAAAPKRpeE9TdLTRxw32q/9AtvrbU/anmw2m3nlAwAAAOYltykNETEeEWMRMVatVvO6LAAAADAvWRrefZKWH3Fca78GAAAA9L0sDe8jkk63PWr7BEnrJH272FgAAABAPjrO4Y2Ig7avlHSvpCFJX4uIXYUnA3qJ2ZMAACQr04MnImKLpC0FZwEAAAByx6OFAaBE9XpdixYt0uLFi9/8eeaZZ8qOBQBJoeEFgJJ95zvf0f79+9/8WbZsWdmRACApjoj8L2o3Je3N8ZIrJP0kx+uhf1DbdFHbbFZJ2iPplZJzzAW1TRe1TVeqtX1nRHSch1tIw5s3280sfwwWHmqbLmqbje09kv4wIv6q7CxZUdt0Udt0DXptF8qWhhfLDoDCUNt0Udvs7rT9YvvnzrLDZEBt00Vt0zXQtc00paEPMDMqXdQ2XdQ2u48upBVeUduUUdt0DXRtF8oK73jZAVAYapsuapsuapsuapuuga7tgtjDCwCpWoh7eAFgoVkoK7wAAABAV1jhBQAAQNJY4QUAAEDSaHgBAACQNBpeAAAAJI2GFwAAAEmj4QUAAEDSCnnS2tKlS6NerxdxaQAAAECSNDU19XxEVDudV0jDW6/XNTk5WcSlAQAAAEmS7b1ZzmNLAwAAAJJGwwsAAICkZd7SYHtI0qSkfRFxQXGRAAySVTevKjsCgLYdV+woOwJQiLns4b1K0m5JJxaUBQAAAD124MABNRoNzczMlB3lmCqVimq1moaHh7v6fKaG13ZN0vmSPifpX3Z1JwAAAPSdRqOhJUuWqF6vy3bZcX5JRGh6elqNRkOjo6NdXSPrHt6Nkq6R9EZXdwEAAEBfmpmZ0cjISF82u5JkWyMjI/Nage7Y8Nq+QNLPImKqw3nrbU/anmw2m10HAgAAQG/1a7N72HzzZVnhPUfSRbb3SLpd0nm2bz36pIgYj4ixiBirVjvO/wUAAAAkSUNDQ1q9evWbP3v27Mn1+h338EbEdZKukyTbH5T0qYi4LNcUAAAA6At5T8/JMv1j0aJFeuyxx3K975GYwwsAAICkzenRwhHxoKQHC0kCYCAx9xMA8Oqrr2r16tWSpNHRUW3evDnX68+p4QUAAADyxpYGAAAAYB5oeAEAAJA0Gl4AAAAkjT28AAAAeFMZXybev39/oddnhRcAAABJo+EFAABA0jpuabBdkfRdSW9rn39HRPxJ0cEAAMD/l/fTr2bDXGykKsse3tcknRcR+20PS9pm+79ExPcLzgYAAIAeiAjZLjvGMUXEvD7fcUtDtBzeSTzc/pnfXQEAANAXKpWKpqen591UFiUiND09rUql0vU1Mk1psD0kaUrSuyTdFBEPd31HAAAA9I1araZGo6Fms1l2lGOqVCqq1Wpdfz5TwxsRhySttn2ypM22z4yInUeeY3u9pPWStGLFiq4DAQAAoHeGh4c1OjpadoxCzWlKQ0S8KGmrpDWzvDceEWMRMVatVvPKBwAAAMxLx4bXdrW9sivbiyR9WNITRQcDAAAA8pBlS8Opkm5u7+N9i6RNEXF3sbEAAACAfHRseCNiu6T39SALAAA4BmbkAt3jSWsAAABIGg0vAAAAkkbDCwAAgKTR8AIAACBpNLwAAABIGg0vAAAAkkbDCwAAgKR1nMNre7mk/yTpFEkhaTwi/rzoYEBqVt28quwIAHBczPpFqrI8ae2gpKsj4lHbSyRN2b4/Ih4vOBsAAAAwbx23NETETyPi0fbvr0jaLem0ooMBAAAAeZjTHl7bdbUeM/xwEWEAAACAvGVueG0vlvRNSRsi4uVZ3l9ve9L2ZLPZzDMjAAAA0LVMDa/tYbWa3dsi4luznRMR4xExFhFj1Wo1z4wAAABA1zo2vLYt6auSdkfEl4uPBAAAAOQnywrvOZIul3Se7cfaPx8pOBcAAACQi45jySJimyT3IAuQNOZbAgBQDp60BgAAgKTR8AIAACBpNLwAAABIGg0vAAAAkkbDCwAAgKTR8AIAACBpNLwAAABIWsc5vJJke42kP5c0JOkrEfGFQlN1adXNq8qOAADAgsW8cKQqy6OFhyTdJGmtpJWSLrW9suhgAAAAQB6ybGk4W9JTEfHjiHhd0u2SLi42FgAAAJCPLA3vaZKePuK40X4NAAAA6Hu5fWnN9nrbk7Ynm81mXpcFAAAA5iVLw7tP0vIjjmvt135BRIxHxFhEjFWr1bzyAQAAAPOSpeF9RNLptkdtnyBpnaRvFxsLAAAAyEfHsWQRcdD2lZLuVWss2dciYlfhyQAAAIAcZJrDGxFbJG0pOMu8MT8QAAAAR+NJawAAAEgaDS8AAACSRsMLAACApDki8r+o3ZS0N8dLrpD0kxyvh/5BbdNFbdNFbdNFbdOVam3fGREd5+EW0vDmzXYzyx+DhYfapovapovapovapmvQa7tQtjS8WHYAFIbapovapovapovapmuga7tQGt6Xyg6AwlDbdFHbdFHbdFHbdA10bRdKwztedgAUhtqmi9qmi9qmi9qma6BruyD28AIAAADdWigrvAAAAEBXFlzDa/tq22F7adlZkA/b/8b2dtuP2b7P9rKyMyEftm+0/US7vpttn1x2JuTD9j+2vcv2G7bHys6D+bO9xvaTtp+yfW3ZeZAP21+z/TPbO8vOUqYF1fDaXi7pt5XmHLlBdmNE/EpErJZ0t6Q/LjsQcnO/pDMj4lck/bWk60rOg/zslPSPJH237CCYP9tDkm6StFbSSkmX2l5Zbirk5OuS1pQdomwLquGV9GeSrpHExuOERMTLRxz+DVHfZETEfRFxsH34fUm1MvMgPxGxOyKeLDsHcnO2pKci4scR8bqk2yVdXHIm5CAivivphbJzlO2tZQfIyvbFkvZFxA9tlx0HObP9OUkfV2tsyodKjoNi/IGkvyw7BIBZnSbp6SOOG5J+taQsQO76quG1/VeS3jHLW5+V9Bm1tjNgATpebSPiroj4rKTP2r5O0pWS/qSnAdG1TrVtn/NZSQcl3dbLbJifLLUFgIWgrxreiPit2V63vUrSqKTDq7s1SY/aPjsinu1hRHTpWLWdxW2StoiGd8HoVFvbvyfpAkm/GcxBXFDm8N8tFr59kpYfcVxrvwYkoa8a3mOJiB2S/vbhY9t7JI1FxPOlhUJubJ8eEf+rfXixpCfKzIP82F6j1r77fxgR/7fsPACO6RFJp9seVavRXSfpd8uNBORnoX1pDWn6gu2dtrertW3lqrIDITf/TtISSfe3x879+7IDIR+2L7HdkPTrku6xfW/ZmdC99pdLr5R0r6TdkjZFxK5yUyEPtick/U9Jf892w/Y/KztTGXjSGgAAAJLGCi8AAACSRsMLAACApNHwAgAAIGk0vAAAAEgaDS8AAACSRsMLAACApNHwAgAAIGk0vAAAAEja/wNzWxNXvLU5iQAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 3 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[df_demo[\"F\"] < 0][[\"A\", \"C\", \"F\"]]\\\n", " .plot(kind=\"barh\", subplots=True, sharex=True, title=\"Subplots\", figsize=(12, 4));"]}, {"cell_type": "code", "execution_count": 77, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAugAAAF8CAYAAACdRU5YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XeYldW1+PHvAkSaFSEWVOyK2BETOxbsYu8aNYZLvLabaDTxl2vU602i5mrUGCW2RJFIVMTYsMUoVsCKithAAQUFFQFpw/79sYeAOMwMnJl5z8x8P89znnPect53DQzDmn3WXjtSSkiSJEkqDy2KDkCSJEnSQibokiRJUhkxQZckSZLKiAm6JEmSVEZM0CVJkqQyYoIuSZIklRETdEmSJKmMmKBLkiRJZcQEXZIkSSojJuiSJElSGWlVdADVadGiRWrbtm3RYUiSJKkJmzlzZkoplc3AdVkn6G3btmXGjBlFhyFJkqQmLCK+KTqGRZXNbwqSJEmSTNAlSZKksmKCLkmSJJWRsq5BlyRJ0pLNnTuX8ePHM2vWrKJDaRTatGlDly5dWG655YoOpVom6JIkSY3U+PHjWWGFFejatSsRUXQ4ZS2lxJQpUxg/fjzrrbde0eFUyxIXSZKkRmrWrFl07NjR5LwWIoKOHTs2ik8bTNAlSZIaMZPz2mssf1Ym6JIkSSrJfffdR0QwevToJZ7zzTffsNtuu1FRUVHl8R133LHG+3Tt2pXPP//8O/ufeuopnnvuuX9vX3fdddxyyy21iLw8maBLkiQ1J598ArvtBp9+WmeXHDhwIDvvvDMDBw5c4jm33HILhx12GC1btvzW/nnz5gF8K8FeWosn6KeeeirXXnvtMl+vaCbokiSpXg0YAF27QosW+XnAgKIjauYuvRSGDYNLLqmTy02fPp1hw4Zx880387e//W2J5w0YMIA+ffoAOaHeZZddOPjgg+nWrRsAHTp0AGD+/PmcfvrpbLrppuy9997sv//+3H333f++zrXXXsu2227LFltswejRoxk7diw33HADV111FVtvvTXPPPMM7dq1o2vXrrz00kt18jVGxC0RMTkiRi3h+PER8XpEvBERz0XEVoscWzki7o6I0RHxdkT8oKb72cVFkiTVmwEDoG9fmDkzb48bl7cBjj++uLiapHPOgVdfXfLxZ56B+fMXbv/pT/nRogXsskvV79l6a7j66mpvO2TIEPbdd1823nhjOnbsyMiRI9luu+2+dc6cOXP44IMP6Nq167/3vfzyy4waNeo7HVXuvfdexo4dy1tvvcXkyZPZbLPNOPXUU/99fLXVVuPll1/m+uuv58orr+Smm26iX79+dOjQgXPPPfff5/Xo0YNnnnmGnj17Vht/Ld0GXAf8dQnHPwR2Syl9ERH7Af2BHSqP/QF4JKV0RES0BtrVdDNH0CVJUr258MKFyfkCM2fm/WpgPXtC5845IYf83Lkz7LBD9e+rwcCBAznmmGMAOOaYY6osc/n8889ZeeWVFwunZ5XtDocNG8aRRx5JixYtWH311enVq9e3jh922GEAbLfddowdO3aJcXXu3JmJEycu7ZdTpZTS08DUao4/l1L6onLzBaALQESsBOwK3Fx53pyU0pc13c8RdEmSVG8++mjp9qsENYx0A/CTn0D//tCmDcyZA4cfDtdfv8y3nDp1Kk8++SRvvPEGEUFFRQURwRVXXPGtjilt27b9TnvD9u3bL9M9l19+eQBatmz57/r1qsyaNYu2bdvW9rKtImLEItv9U0r9lylA+BHwcOXr9YDPgFsry15GAmenlGZUdwFH0CVJUr3p3Lnq/eus07BxqNKkSdCvH7zwQn4ucaLo3XffzYknnsi4ceMYO3YsH3/8Meuttx7PPPPMt85bZZVVqKioqFUP8p122ol77rmH+fPnM2nSJJ566qka37PCCivw9ddff2vfmDFj6N69e22/lHkppR6LPJYpOY+IXuQE/fzKXa2AbYE/pZS2AWYAF9R0HRN0SZJUL0aNgmnToKrW0zvsACk1fEzN3r33wh//CFttlZ/vvbekyw0cOJBDDz30W/sOP/zwKstcevfuzbBhw2q85uGHH06XLl3o1q0bJ5xwAttuuy0rrbRSte856KCDGDx48L8niQI8++yz7L333kvx1ZQmIrYEbgL6pJSmVO4eD4xPKb1YuX03OWGv/lqpjP91tG/fPs2YUe0nAJIkqQyNGwcL2lqfd16uvvjoI+jSBdZaKw/gHnss3HQTtKtxypyW5O2332azzTYrOoxaefnll7nqqqu4/fbbazx3+vTpdOjQgSlTptCzZ0+effZZVl999Vrf65VXXuH//u//qrxXVX9mETEzpVRtzU1EdAUeSCl9Z1g+ItYBngROSik9t9ixZ4DTUkrvRMSvgfYppfOqu5c16JIkqc6tsAJssw389rfQvXtuMLJASnn/hRfCO+/AfffB2msXF6saxrbbbkuvXr2oqKj4Ti/0xR144IF8+eWXzJkzh1/96ldLlZxDnpR66aWXlhLut0TEQGB3YLWIGA9cBCwHkFK6AfhvoCNwfWXt/byUUo/Kt58JDKjs4PIBcEqN93MEXZIk1ZXp06FVqzwHsSYPPACnnw5Dh0IjGQQuO41pBL1cLOsIekOyBl2SJNWJ2bPhkEOgT5/a1ZcfeCC8+25OzlOCWswFlJoFE3RJklSyigo48UR44om8AFFVE0OrUtkxj3vvhV694IwzYO7c+otTagxM0CVJUklSgrPOgr//Ha64Ak46aemvccghcO65ubHIPvvA55/XfZxSY2GCLkmSSnL55Xmtm/POy0n2smjZMif3f/0rPPccbL89vP563cYpNRZ2cZEkSSU58ECYMgV+97vSr3XiibDJJnDEEfDxx7DllqVfU/WrZcuWbLHFFv/evu++++jatWtxATUBjqBLkqRl8vbbubxl883zKHpt685r0rNnbr94wAF5+/nnYf78url2czdgAHTtCi1a5OcBA0q/Ztu2bXn11Vf//TA5L50JuiRJWmpPPJEXo7zuuvq5ftu2+fmNN2DnnfOI+mIruWspDRgAffvmRaRSys99+9ZNkq66ZR90SZK0VEaOhN13zyOwTz8Nq6xSf/dKCa65Bn72s9yOccgQWH/9+rtfY7N4T+/dd//uOUcdlfvNr7NOLhtaXMeOeVLu55/nX4QWVZvWl4uWuKy33noMHjy49l9AARpDH3Rr0CVJUq2NGQP77ZeTuqFD6zc5h1w2c/bZuYzmqKPy5NG//x322KN+79sUjR9f9f4pU0q77oISF9UdE3RJklQrc+bA/vvn148+Cmuu2XD33msvGD48L4I0YoQJ+pJUN+K9zjq5rGVx666bn1dbzcWiyoUJuiRJqpXWreH3v4cuXWDjjRv+/htsAC+9tLA+/bXXYNNNFy52pOpddlmuOZ85c+G+du3yfpUXJ4lKkqRqzZwJ//pXft2nD2y3XXGxtGuXy16+/DKvPNqrF3z6aXHxNCbHHw/9++cR84j83L9/3q/yYoIuSZKWaO5cOPpo6N276gmGRVl5ZbjxxjyK3qNHLntRzY4/HsaOzW0rx46tm+R8+vTppV9E31JSgh4Rq0bEYxHxbuVzlVNFIqIiIl6tfNxfyj0lSVLDSCmXRDzwAFx9Nay9dtERfduRR8Kzz0KrVrDLLrYLVNNR6gj6BcATKaWNgCcqt6vyTUpp68rHwSXeU5IkNYALLoDbboOLL4af/KToaKq29dZ58ugOO8DDD+dfKqTGrtRJon2A3Stf/wV4Cji/xGtKkqSCPf54Xh30P/8TfvWroqOpXqdO8NhjUFGRa6vHjs0lMCuvXHRk0rIpdQT9eymlTypffwp8bwnntYmIERHxQkQcUuI9JUlSPdtzTxg0CP7wh5z0lrvlloM2bXJtdZ8+eUT9nXeKjqphlPOik+WmsfxZ1ZigR8TjETGqikefRc9L+Ste0le9bkqpB3AccHVEbFDN/fpWJvMj5s2btzRfiyRJKtHQofD22zkpP/JIaNmy6IiWTosWcN118MUX0LMnPPRQ0RHVrzZt2jBlypRGk3gWKaXElClTaNOmTdGh1ChK+QuNiHeA3VNKn0TEGsBTKaVNanjPbcADKaW7a7p++/bt04wZM5Y5PkmSVHvDhsHee8Nuu8EjjxQdTWnGjYNDDsldXn77WzjvvMbxScDSmjt3LuPHj2fWrFlFh9IotGnThi5durDccst9a39EzEwptS8orO8oNUG/ApiSUvptRFwArJpS+vli56wCzEwpzY6I1YDngT4ppbdqur4JuiRJDeONN2DXXaFz55yod+pUdESlmzkTTj0V3n8/f00uaKQlaWoJekdgELAOMA44KqU0NSJ6AP1SSqdFxI7AjcB8cknN1Smlm2tzfRN0SZLq39ixsOOOeYT52Weha9eiI6o7KcG0abDSSvDVV/l1ubWLVPGaVIJe30zQJUmqf6eeCoMHwzPPQPfuRUdTf449Fv75T7jnHthpp6KjUTkxQV8KJuiSJNW/b76B996DLbYoOpL69dZbucPLuHFw/fVw2mlFR6RyUW4JeqltFiVJUiM0ezacfz58+SW0bdv0k3OAbt3gpZegVy/48Y/hzDNh7tyio5K+ywRdkqRmpqICTjwxL0T0z38WHU3DWmUVePBB+OlPc6nLlClFRyR9lyUukiQ1IynBGWfkEo8rr4Sf/azoiIozZQp07Jh/YfnwQ9hww6IjUlEscZEkSYW55JKcnP/85807OYecnAP85jew9dZ5oqxUDkzQJUlqJr76Cm65BU45JS/eo+zUU3P3msMOg4svhvnzi45IzZ0lLpIkNSOffgqrrQatWhUdSXmZNQv69YO//AUOPRT++lfo0KHoqNRQLHGRJEkN6vHH4ayzcq316qubnFelTRu49Va46ioYOhRGjy46IjVnjqBLktSEjRiR2wqut15e7n7FFYuOqPxNngydO+fXH3wA669fbDyqf46gS5KkBjFmDOy3Xy5peeQRk/PaWpCcDx4Mm2wC112Xu99IDcUEXZKkJmjCBOjdGyLg0UdhzTWLjqjx2XPP/AvOmWfmhY1mzy46IjUXJuiSJDVB77yTJz4+/DBstFHR0TROK64I990HF14IN98Me+wBkyYVHZWaA2vQJUlqQlLKo+YAM2dCu3bFxtNUDBqU21PefDMcc0zR0aiulVsNugm6JElNxNy5cMQRcMAB0Ldv0dE0PRMnLiwV+ugjWGedYuNR3Sm3BN0SF0mSmoD58+G00+D++11op74sSM7feCNPHj3//Ny6UqprJuiSJDUB55+fF9e5+OK84I7qzyabwMknw+WXw0EHwZdfFh2RmhoTdEmSGrkrroArr4T//E/41a+Kjqbpa90a/vSn/HjsMfj+9/OkXKmumKBLktTIVVTkiYvXXLNwgqjqX79+8MQTMGVK/vRCqitOEpUkqZGaNSsvUQ/f7t6ihjVxInzve9CyZX69xhr+XTQ2NU0SjYhbgAOBySml7lUcPx44Hwjga+AnKaXXFjneEhgBTEgpHVhTPI6gS5LUCA0blpegHz48b5sQFmfNNXNyPmUK9OwJJ54I33xTdFSqY7cB+1Zz/ENgt5TSFsClQP/Fjp8NvF3bm5mgS5LUyLzxRp6cuOKK0LVr0dFogVVXhZ/8BAYMgF12gfHji45IdSWl9DQwtZrjz6WUvqjcfAHosuBYRHQBDgBuqu39TNAlSWpExo6FffaB9u1h6FDo1KnoiLRARF51dMgQGDMGevSA554rOioV4EfAw4tsXw38HKh1A1QTdEmSGonPP4fevXPt+dChsO66RUekqhx8MLzwAnToAL/7XdHRqJZaRcSIRR7LtNRXRPQiJ+jnV24vqFsfuVTBLMvNJUlSw1thBdhxx7xK6OabFx2NqtOtG7z0ErSoHAqdMgVWWglamXmVq3kppR6lXCAitiSXseyXUppSuXsn4OCI2B9oA6wYEXeklE6o9lp2cZEkqbzNng0zZuQaZzU+8+bBzjvnsqRBg6Bjx6Ij0uJq6uJSeU5X4IEldHFZB3gSOCmlVGVhU0TsDpxrFxdJkhq5igo44YQ86XDWrKKj0bJo1SpPHh02DLbfPk/yVeMSEQOB54FNImJ8RPwoIvpFxIJ1e/8b6AhcHxGvRsSIku7nCLokSeUpJTj9dLjhBvj97+GnPy06IpXixRfh0ENh2jS4/fb8WuWhNiPoDckEXZKkMvXrX8PFF8P558Nvf1t0NKoLEyfmxPyrr+D116F166IjEpigLxUTdElSc/WXv8DJJ8Mpp8DNN7sQUVMyaxZMngzrrJNfz5uXO76oOOWWoFuDLklSGdpnHzj3XOjf3+S8qWnTJifnkEuYdtoJPvyw2JhUXkzQJUkqI2+8kUdUV18drrjCtnxN3THHwEcf5cmj//xn0dGoXJSUoEfEkRHxZkTMj4gl9o6MiH0j4p2IeC8iLijlnpIkNVXDh8MPfgAX+D9ls9G7d+6X3rkz7L03/PGPeXKwmreSatAjYjPysqU3kvs6fqelTES0BMYAewPjgeHAsSmlt2q6vjXokqTm4p13cq/sDh3y8vBrrFF0RGpI06bB8cfDM8/A22/799/Qyq0GvaQPzlJKbwNE9cVxPYH3UkofVJ77N6APUGOCLklSczBhQq45b9ECHn3U5Kw5WnFFuO8+GDMm//2nlDu9rLxy0ZGpCA1Rg74W8PEi2+Mr90mS1OylBEccAVOnwsMPw0YbFR2RitKyJWy2WX599dWwxRYwcmSxMakYNSboEfF4RIyq4tGnPgKKiL4RMSIiRsybN68+biFJUtmIgD/8AYYMgW23LToalYvddsvfGzvvDH/7W9HRqKHVWOKSUtqrxHtMANZeZLtL5b4l3a8/0B9yDXqJ95YkqSzNnZtHzA8+GHr2LDoalZttt4URI+Dww+HYY+G11+B//iePsqvpa4gSl+HARhGxXkS0Bo4B7m+A+0qSVJbmz4fTToM+fXISJlWlc2d44gn4j/+A3/3O75XmpNQ2i4dGxHjgB8CDETG0cv+aEfEQQEppHnAGMBR4GxiUUnqztLAlSWq8zj8f/vpXuOQS6LHEJsUStG4NN9wAr7wCO+yQ9339dbExqf6V1GaxvtlmUZLU1FxxBfz853DGGXDNNa4SqqXz6KO55GXAANh336KjaTrKrc2iK4lKktRA3norj54fc0yeGGpyrqW18cbQpQsccED+Za+Mx1lVAkfQJUlqQEOHQq9euXRBWhYzZsDJJ8Pdd8MJJ0D//tC2bdFRNW6OoEuS1MwMGwZPPZVf77OPyblK0749DBoEl14Kd9yRX6tpcQRdkqR69PrrsOuusO668PLLtslT3RoxArbbLpdLzZiRk3ctPUfQJUlqJj78ME/ka98e7r/f5Fx1r0ePnJyPGQMbbAC33lp0RKoLJuiSJNWDyZOhd2+YNSt33lh33aIjUlO22mqwxRZw6qlwzjngYuyNmwm6JEn14E9/ggkT4IEHYPPNi45GTd2qq+aVac85J3cI2ndfmDKl6Ki0rKxBlySpHsyfn9sqdu9edCRqbm67La8+evbZcPnlRUfTOJRbDboJuiRJdaSiIvc5P+MM6Nq16GjUnL38MnTrBm3awDff2IaxJuWWoFviIklSHUgpJ+a//z088kjR0ai523bbnJx/+WV+fckl+VMdNQ4m6JIk1YGLL4Ybbsgj6P36FR2NlC2/fO70ctFFcNRRMH160RGpNkzQJUkq0R//mBP0U0+F3/ym6Gikhdq2hb/+Fa68EgYPhp12grFji45KNbEGXZKkEsybBzvuCGusAffcA61aFR2RVLWhQ+Hoo3OS/uCDRUdTXsqtBt0EXZKkEn39dU7MnYincjdmTF44a621YPZsaN06L3TU3JVbgm6JiyRJy2D4cDjyyLy8+gormJyrcdh445ycV1TAIYfkdoxz5hQdlRZngi5J0lIaPRr22w9Gjsyj51JjtM028Oc/w5575pVvVT5M0CVJWgrjx8M++0DLlrmmd/XVi45IWnotW8L//i8MHJh/0ezRA155peiotIA16JIk1dLUqbDrrvDRR/DUU7m/tNTYvfxyLndZfnl4++3mOdG53GrQm+FfgSRJy2bixFzSMmSIybmajm23zXMqPv00J+cVFXl/y5bFxtWcOYIuSVIN5s+HFpVFobNn55FGqan6+c/zSPodd8BKKxUdTcMotxF0a9AlSarG/Plw8sl5hdCUTM7V9HXtCo88At//Prz7btHRNE8m6JIkLUFKcN55cPvtuZWi/aLVHJx+Ojz2GHz2GfTsmSdDq2FZ4iJJ0hJcfnkeOT/zTPjDH0zQ1byMHQt9+sB77+XXnToVHVH9KbcSFxN0SZKqcMst8KMfwbHH5lrcFn7mrGZo+nQYMQJ23z1vz5vXNLu8lFuC7o8bSZKq0L49HHQQ3Habybmarw4dFibnt98OO+0EEyYUGlKz4I8cSZIWMX16fj766NxOsXXrYuORysWKK8Jbb8H228MLLxQdTdNmgi5JUqXXX4f114f778/b1pxLC/XpA88/D23bwm675U+XVD9M0CVJAj78EPbZJ4+Yb7110dFI5al7d3jpJdhlFzjllFyf3hxExC0RMTkiRi3h+PER8XpEvBERz0XEVpX7146If0bEWxHxZkScXav7OUlUktTcTZ6ca2unTIFhw6Bbt6IjksrbvHnw0ENw8MF5u6Kica88WtMk0YjYFZgO/DWl1L2K4zsCb6eUvoiI/YBfp5R2iIg1gDVSSi9HxArASOCQlNJb1cXjCLokqVmbMQP22y9PfHvwQZNzqTZatVqYnL/4Imy1Fbz5ZrEx1aeU0tPA1GqOP5dS+qJy8wWgS+X+T1JKL1e+/hp4G1irpvuZoEuSmrV27XJpyz33wA9+UHQ0UuM0ZUpeeXTIkKIjKQs/Ah5efGdEdAW2AV6s6QIlJegRcWRlPc38iOhRzXljK2tyXo2IZlKtJEkqZxUVMH58ngj6v/+bR9ElLb0ddoDhw2HTTeGQQ+B//ievwtvItIqIEYs8+i7LRSKiFzlBP3+x/R2Ae4BzUkrTagxmWW6+iFHAYcCNtTi3V0rp8xLvJ0lSyVKC//xPGDwYRo1q2iskSg2hSxd4+mn48Y/hV7+Crl3hhBOKjmqpzEspLXGwuTYiYkvgJmC/lNKURfYvR07OB6SU7q3NtUpK0FNKb1feuJTLSJLUoC66CG68ES64wORcqitt2+bFjA4+GA4/PO+bP795LPQVEesA9wInppTGLLI/gJvJE0j/r7bXa6g/sgQ8GhEjl/UjA0mS6sK118Kll8Kpp+bSFkl1JwKOOip3dJk4EbbZJo+sN3YRMRB4HtgkIsZHxI8iol9E9Ks85b+BjsD1i5V07wScCOxRuf/ViNi/pvvVOIIeEY8Dq1dx6MKUUm2nAuycUpoQEZ2BxyJidOVs2Kru1xfoC9Da5dskSXXo4Yfh7LPzgis33uhCRFJ9mjkTZs+GPffMvxj361fze8pVSunYGo6fBpxWxf5hwFL/pKmTPugR8RRwbkqpxgmgEfFrYHpK6cqazrUPuiSpLs2YAZddlmtk27YtOhqp6fvqKzjuuNwz/T/+A665Ji8GVm5q6oPe0Oq9xCUi2lc2Zici2gO9yZNLJUlqEKNGwddfQ/v2uazF5FxqGCutBPffn+d73HgjXHxx0RE1DqW2WTw0IsYDPwAejIihlfvXjIiHKk/7HjAsIl4DXgIeTCk9Usp9JUmqrdGjYffdc825pIbXsiX85je5a9LPf573NcI2jA2qTkpc6oslLpKkUowfDzvtBLNmwbPPwoYbFh2RpG++gf33zzXpRx9ddDRZsytxkSSpCFOn5hVCv/gCHnnE5FwqFzNnwty5cMwxcOGFuRWjvs0EXZLUJPXtC++9l+tft9mm6GgkLdCxIzz5JJx2Wp4TcsghMK3GtTWbF0tcJElN0tix8NZb+aN0SeUnJbj++tz69KCDco16UcqtxMUEXZLUZMyfD3/7W/7ovDmsXig1Bf/8J6y1Fmy8cU7ai1ifoNwSdH98SZKahJTg3HPh+ONzWYukxqFXr4XJ+SmnwFVX2eXFBF2S1CRcfnn+j/3MM/NKoZIalzlzYPp0+OlP4eSTc/el5soEXZLU6N18c14I5dhj4eqri/mIXFJpll8eBg3Kixn99a+w224wcWLRURXDGnRJUqM2eTKstx7svDP84x/luYy4pKUzeDCceCKsuy68/npe7Kg+lVsNugm6JKnRe+EF6N4dOnQoOhJJdeWNN+Czz2CPPer/XiboS8EEXZK0JK+/DqNGwXHHFR2JpPp2xRXwySd5rkmrVnV//XJL0K1BlyQ1Oh9+mFcJveACcBxHavomTsyTwPffP68O3NSZoEuSGpVJk6B3b5g9Gx55BNqXzZiXpPpy1VVw003w1FPQs2dehKwpM0GXJDUa06bBfvvBhAnw4IPQrVvREUlqKD/6UU7Qv/4adtqpaY+k10MVjyRJ9WPw4Dxx7P774Qc/KDoaSQ1txx1hxAh4+mlYZZWio6k/ThKVJDUqY8bkVQcl6eGHc8/0m24qrdzNSaKSJC2FlOD88+Gll/K2ybmkBd57D+66K6+DMG5c0dHUHRN0SVJZu+ii3FrtoYeKjkRSuTnzzDwf5cMPYfvtc+lLU2CJiySpbF17LZx1Vp4c9uc/Q0TREUkqR++8AwcfDB98ACNHwpZbLt37y63ExQRdklSW/va3vAhRnz7w97/Xz+IkkpqOL7/M9ehnnrn0v8yXW4JuiYskqeykBPfcA7vsAgMHmpxLqtnKK+dP3CJg9Og8ov7ZZ0VHtWxM0CVJZSciJ+YPPABt2hQdjaTGZswYeOwx6NEDXn216GiWngm6JKlsjB4Ne+0Fn3ySR81XWKHoiCQ1RgcfDMOGwfz5uXf6oEFFR7R0TNAlSWVh/Hjo3RtGjYKZM4uORlJjt912MHw4bLMNHH003Htv0RHVnlV9kqTCTZ0K++wDX32Vl/LeYIOiI5LUFKy+Ojz5JFx1Fey/f9HR1J4j6JKkQs2YAQceCO+/D0OG5NEuSaoryy8PF1yQ57N88QUcckhe4KicmaBLkgr11Vfw9ddw552w++5FRyOpKXv/fXieUSNFAAAgAElEQVTmGejZM08iLVf2QZckFWL+/NxOsWVLmDfPVoqSGsYHH+T1Fd56C449NifsH33UnpRmlM1SaCbokqQGlxL89KcwYUIeOTc5l9SQpk+HXr1gxIgFe8orQbfERZLU4H73O7j6alhzzTyCLkkNqUMHmDy56CiWzBF0SVKDuvlmOO00OO44uP12aOFQkaQCtGiRP83LHEGXJDVTQ4ZA376w775w660m55KKs846RUewZCX9aIyIKyJidES8HhGDI2LlJZy3b0S8ExHvRcQFpdxTktR4deyYFyO6+25o3broaCQ1Z5ddBu3aFR1F1UoqcYmI3sCTKaV5EfE7gJTS+Yud0xIYA+wNjAeGA8emlN6q6fqWuEhS0/Dll7BylUM4klScAQPgwgth3LgmVOKSUno0pTSvcvMFoEsVp/UE3kspfZBSmgP8DehTyn0lSY3HBx9At27wxz8WHYkkfdvxx8PYsQAzZxYcyrfUZfXfqcDDVexfC/h4ke3xlfskSU3cpEm5pGX27NzSTJJUsxo7z0bE48DqVRy6MKU0pPKcC4F5wIBSA4qIvkBfgNYWKEpSo/XVV3ky6CefwBNP5FF0SVLNakzQU0p7VXc8Ik4GDgT2TFUXtE8A1l5ku0vlviXdrz/QH3INek3xSZLKT0UFHHIIjBoF//gHfP/7RUckSY1HqV1c9gV+DhycUlpS7c5wYKOIWC8iWgPHAPeXcl9JUnlr2TIvoX3bbXkUXZIas4i4JSImR8SoJRw/vrKr4RsR8VxEbLXIsaXuZlhqDfp1wArAYxHxakTcUBnImhHxEEDlJNIzgKHA28CglNKbtbn4urNmwaeflhiiJDUTn3wCu+1W6M/NlOC99/Lrvn3zBCwJKIvvT6lKn3zCJtCmhrNuA6obbvgQ2C2ltAVwKZXVIJXdDP8I7Ad0A46NiBoL/krt4rJhSmntlNLWlY9+lfsnppT2X+S8h1JKG6eUNkgpXVbb67ebPx8uuaSUECWp+bj0Uhg2rNCfm//937DllvD224WFoHJVBt+fUpUuvZQONeTEKaWnganVHH8upfRF5eainQ2XqZthSX3Q61uPiDRiwUaLFrDLLkWGI0nl6ZlnYP787+5v4J+b4yfk0fM1VoeNN4GyaSisYpXJ96f0HYt8b/YARqRU7Y+tiOgKPJBS6l7DeecCm6aUTouII4B9U0qnVR47EdghpXRGddeocZJo4Vq0gNVWgw02KDoSSSpPPXvmZuOff57/syng5+akyTk5X60jbLyxybkWUQbfn1KVFvvejIgRixztX9m4ZKlERC/gR8DOpYRW1gn6v8f2Dz8crr++yFAkqbz95CfQvz+0aQNz5jToz82RI3OXlp12g0cegaipklPNT4Hfn1K1Kr83E5BS6lHKpSJiS+AmYL+U0pTK3UvVzXCBulyoqM592KYN9OvnhBJJqsmkSfnn5QsvNPjPza23hosvhiFDcv4lfUeB359StSq/N9+GWaVcJiLWAe4FTkwpjVnk0DJ1MyzrGvT27dunGTNmFB2GJKkK77wDHTrAWq4NLamRi4iZKaX21RwfCOwOrAZMAi4ClgNIKd0QETcBhwPjKt8yb8GIfETsD1wNtARuqU3DFBN0SdJSGz8edtwR1lwTnn8ewqJzSY1YTQl6QyvrGnRJUvmZMgV694avvoL77zc5l6S6ZoIuSaq1GTPgwANz44NHHsn155KkumWCLkmqtV/+El56Ce6+G3bfvehoJKlpsgZdklRrX34JTz8NBx9cdCSSVHfKrQa9rNssSpKKlxLcdhvMmgUrr2xyLkn1zQRdklSt3/0OTjkFbrqp6EgkqXkwQZckLdFNN8EvfgHHHQenn150NJLUPJigS5KqdN998B//AfvsA7feCi38H0OSGoSTRCVJ3zFrFmy4IXTpAk88Ae3LZuqUJNW9cpskaptFSdJ3tGkDjz8OnTqZnEtSQ/MDS0nSv33wAVxxRe7csumm0LFj0RFJUvNjiYskCYBJk2CnneCLL+CNN2DNNYuOSJIahiUukqSy89VXsO++8Mkn8OSTJueSVCQTdElq5mbNgkMOgVGj4IEHYIcdio5Ikpo3a9AlqZl79tn8+MtfcktFSVKxrEGXJDF2LHTtWnQUklSMcqtBdwRdkpqpSy7JixGBybkklRMTdElqhq65Bi66CIYOLToSSdLiTNAlqZm58044+2w47DC47rqio5EkLc4EXZKakaFD4Yc/hN13hwEDoGXLoiOSJC3OBF2SmpEnn4Tu3XPteZs2RUcjSaqKXVwkqRlICSLy84wZ0KFD0RFJUvmwi4skqUF9/DHsuGNeiCjC5FySyp0riUpSEzZlCvTuDRMnwrx5RUcjSaoNE3RJaqJmzIADDoAPP8yTQ7feuuiIJEm1YYIuSU3QnDlw+OEwfDjccw/stlvREUmSaqukBD0irgAOAuYA7wOnpJS+rOK8scDXQAUwL6XUo5T7SpKqN3s2zJ0LN94IhxxSdDSSpKVR6iTRx4DuKaUtgTHAL6o5t1dKaWuTc0mqewMGQNeu0KIFrLsu3H8/PPYYnHZa0ZFJkpZWSQl6SunRlNKCaUcvAF1KD0mStDQGDIC+fWHcuNxG8aOP4Mc/hoEDi45MkrQs6qwPekT8A7grpXRHFcc+BL4AEnBjSql/NdfpC/QFaN269XazZ8+uk/gkqalae20YP/67+9ddF8aObfBwJKnRKbc+6DUm6BHxOLB6FYcuTCkNqTznQqAHcFiq4oIRsVZKaUJEdCaXxZyZUnq6puBcqEiSqrZg4aF334WNN676nAiYP79h45KkxqjcEvQaJ4mmlPaq7nhEnAwcCOxZVXJeeY0Jlc+TI2Iw0BOoMUGXJC309de5tnzQIFhnHbj2WthwQ1hpJfjqq++ev846DR+jJKl0JdWgR8S+wM+Bg1NKM5dwTvuIWGHBa6A3MKqU+0pSc/LAA3DYYdCpE5xwAowcCautlo9FwB//CO3affs97drBZZc1fKySpNKV2sXlOmAF4LGIeDUibgCIiDUj4qHKc74HDIuI14CXgAdTSo+UeF9JarJmzoQhQxaWpzz8MDz/fJ4I+swzeRLoRRctPP/446F//1xzHpGf+/fP+yVJjU+dTRKtD9agS2ouZs2CRx7J5Sv3359XAX32WdhxR5g2Ddq3h5Yti45SkpqmRleDLkmqX6++mlf6nDYNOnaE446Do4+Gnj3z8RVXLDY+SVLDMkGXpAY0dy488UQeKd9sMzjvvPx83HF5xc899oDllis6SklSkUzQJakBPPVUXlDo3nth6tQ8Kn7mmfnY8svDn/5UaHiSpDJigi5J9aCiIndbWVCmcu218OijcPDBuXyld29o06bYGCVJ5clJopJUR+bPzxM777oL7r4bJk2C99+H9deHCRNg1VWhbduio5QkLa7cJomW2mZRkgS88AKsvTbsuivcfDPsvHNO1NdYIx9fay2Tc0lqrCLiloiYHBFVruUTEZtGxPMRMTsizl3s2H9FxJsRMSoiBkZEjZ+fmqBL0lJKCYYPh3PPhTvvzPs22iiXs9x5J0yenEfQjzrKpFySmojbgH2rOT4VOAu4ctGdEbFW5f4eKaXuQEvgmJpuZg26JNXSK6/kUfFBg+DDD3O3lXMrx0k6doTBg4uNT5JUP1JKT0dE12qOTwYmR8QBVRxuBbSNiLlAO2BiTfczQZekJUgJxo2Drl3z9hlnwEsvwV57wa9+ldsirrJKoSFKkspYSmlCRFwJfAR8AzyaUnq0pveZoEvSYt56a+FI+fvv58meq6wC/fvD6qvn0XJJUpPSKiJGLLLdP6XUv9SLRsQqQB9gPeBL4O8RcUJK6Y5qgyn1xpLUVDzzDPzkJ/Dmm9CiRV7d85xzFi4ctPnmxcYnSao381JKPerhunsBH6aUPgOIiHuBHQETdEmqynvv5VHy738/r+D5ve/lVojXXQeHH55HyyVJKsFHwPcjoh25xGVPYET1b7EPuqRmZuzYnJTfdRe8/HLe9//+H1x6aaFhSZIKVFMf9IgYCOwOrAZMAi4ClgNIKd0QEauTE+8VgfnAdKBbSmlaRFwMHA3MA14BTkspza42HhN0SU3dtGmw4op50udGG+W68p4984qeRxwB66xTdISSpCKV20JFlrhIapImTMi9yO+6C8aMgU8+ybXkt9ySE/IFnVkkSSo3JuiSmpR//Su3QBw2LI+Yb7UV/PSnMHt2TtB33bXoCCVJqp4JuqRG7bPP4J57YMcdYcstIQKmToWLL4Yjj4RNNy06QkmSlo4JuqRGZ8qUvGrnXXfBP/8JFRU5Id9yS9hlFxg1qugIJUladibokhqFefOgVaucjG+2WR4532ADOP/8PNlziy3yeRHFxilJUqlM0CWVrWnTYMiQ3BZx7Fh4/XVo2RL++MecnG+zjQm5JKnpMUGXVHaGDYMrr4RHHsmTO7t0gaOOyq/btMm15ZIkNVUm6JIKN2MGPPRQXtFz7bVh4kQYPhz69cvlKzvsAC1aFB2lJEkNw4WKJBXim2/g4Ydz+co//gEzZ+ZR85/9LNebt2hhUi5JahguVCSp2Zs1K5etTJ0Kq60GJ52US1gW9Chv5U8mSVIz5n+DkurVnDnw+ON5pHzqVLj//lxH/qtfweabQ69eJuSSJC3K/xYl1YsXX4T+/XO/8i++gJVXhsMPz20SW7aEc84pOkJJksqTFZ6S6sS8efDEE/Dll3n7xRfh7rvhwAPhgQdg0iS46aacnEuSpCVzkqikZVZRkVsi3nUX3HMPTJ4Mt9wCp5ySJ322aJHLWSRJKmdOEpXUJEydCt27wyefQLt2eaT86KNhv/3y8Xbtio1PkqTGygRdUo1SyiUrd92VR82vuQZWXRWOPTb3KD/gAGhfNuMOkiQ1bibokpbotdfgjjtyB5aPPoLWrfNEz5QgAn7/+6IjlCSp6Sl5kmhEXBoRr0fEqxHxaESsuYTzfhgR71Y+fljqfSXVvZTglVdg7ty8fddd8Ic/wBZbwF/+kmvM77wzJ+eSJKl+lDxJNCJWTClNq3x9FtAtpdRvsXNWBUYAPYAEjAS2Syl9Ud21nSQq1b+UYNSonIwPGgTvvgsPPZRryT/7LPcoX2WVoqOUJKn+NLlJoguS80rtyQn44vYBHkspTQWIiMeAfYGBpd5f0rIbPx723htGj84dV3r1gvPOy3XlAJ06FRufJEnNUZ3UoEfEZcBJwFdArypOWQv4eJHt8ZX7qrpWX6AvQOvWresiPEmVxozJo+Rt28LPfgZrrplX8zzrrFxb3rlz0RFKkqRaJegR8TiwehWHLkwpDUkpXQhcGBG/AM4ALlrWgFJK/YH+kEtclvU6krIPPlhYvvLqq3nfEUfk5xYt8mJCkiSpfNQqQU8p7VXL6w0AHuK7CfoEYPdFtrsAT9XympKW0scfQ5cueTLn//wP3HorfP/7cNVVOTnv0qXoCCVJ0pLUxSTRjVJK71a+PhPYLaV0xGLnrEqeGLpt5a6XyZNEp1Z3bSeJSrX38cd5NPyuu3LP8pdfhm22ySPoLVvCuusWHaEkSeWpyU0SBX4bEZsA84FxQD+AiOgB9EspnZZSmhoRlwLDK99zSU3JuaTaef99+OEP4dln8/Y228BvfgNrrJG311+/uNgkSdLSK3kEvT45gi5916RJcM89ufXhscfCjBmw555w0EFw5JGw8cZFRyhJUuNSbiPoJuhSI/D553Dvvbl85amnYP783HXFCZ6SJJXOBH0pmKCrOZs+HTp0yK8PPBAefDCPjh99NBx1FHTvXmx8kiQ1FSboS8EEXc3NV1/BffflloiPP54neK61FowcmSd6brVV7swiSZLqTrkl6HWyUJGk0rzzTl7Bc+hQmDMnd1w555yFyfh22xUbnyRJajgm6FIBpk+HBx6ATp3yBM8VVoDXX4czzsglLNtv70i5JEnNlQm61EBmzsx15IMG5edvvoFjjskJ+pprwocfmpRLkiQTdKleVVTk2nGA3r1zr/LvfQ9OPTVP9Nx554XnmpxLkiRwkqhU52bPhkcfzS0RH38c3nsvd2MZOhSWWw52221h0i5JkornJFGpiRo9Gn7729yF5auv8kJChx22sF3iPvsUHaEkSWoMTNClZTRvHjz5ZC5Z2Wqr3H3lvvvg0ENz+cqee0Lr1kVHKUmSGhtLXKSlUFEB//pXLl+59968wudpp8Gf/wwp5SR9+eWLjlKSJC0NS1ykRmyHHfKiQe3bw0EH5ZaIC0pXIkzOJUlS6UzQpSrMnw/PP59bIj77LLz4Yp7YedZZ0K4d7L9/fpYkSaprJujSIt59F264ISfm48fnEfH99oMvvoDVVoOTTio6QkmS1NS1KDoAqUgp5ZKVcePy9gcfwLXXwjbbwO23w+TJMHhwTs4lSZIaggm6mp2U4LXX4Je/hI02gh494E9/ysf23DMn5fffDyecACuuWGyskiSpeBFxS0RMjohRSzi+aUQ8HxGzI+LcxY6tHBF3R8ToiHg7In5Q0/0scVGzkhJsv30eNW/ZMifkv/gFHHJIPt6qFay8crExSpKksnMbcB3w1yUcnwqcBRxSxbE/AI+klI6IiNZAjbPYTNDVpI0enevJR43KzxF58aAf/zg/d+pUdISSJKncpZSejoiu1RyfDEyOiAMW3R8RKwG7AidXnjcHmFPT/UzQ1eSMGwcDBuRe5a+/npPyXXdduKLnL39ZdISSJKmZWA/4DLg1IrYCRgJnp5SqXejHGnQ1CR98AFOn5tf/+hdceCGssAJcc03uxvLUUzk5lyRJqkKriBixyKNvXV0X2Bb4U0ppG2AGcEFt3iQ1SuPGwd//nkfKR4yAq66Cc87JpSt77AFduhQdoSRJaiTmpZR61MN1xwPjU0ovVm7fjQm6mqK5c6FXr7yAEOQuLJdfDocfnrc7dHC0XJIkFS+l9GlEfBwRm6SU3gH2BN6q6X2RUqr/6JZR+/bt04wZ1ZboqBn45BO4+2746CO44oq87yc/gXXWgaOOgg02KDY+SZLUuEXEzJRS+2qODwR2B1YDJgEXAcsBpJRuiIjVgRHAisB8YDrQLaU0LSK2Bm4CWgMfAKeklL6oNh4TdJWjyZPhnnty+crTT+f2iFtvDS+9BMstV3R0kiSpKakpQW9oThJV2fj8c/jmm/z6L3+B00+HSZPgv/8b3nwTXnnF5FySJDV9jqCrUF98AYMH5x7ljz8Od9wBxxyTR9AnTYLu3XObREmSpPpSbiPoThJVIaZPz4n4o4/mSZ/rrQfnnQfbbpuPd+6cH5IkSc2NCboaxNdfwz/+kctYzjoL2reHefPg7LPzRM8ePRwplyRJAktcVI9mzIAHH8wTPR96CGbNgm7dYNQok3FJklQ+yq3ExUmiqlPffAMVFfn1r38NRx8Nzz0Hp50GzzwDb7xhci5JklQdR9BVslmzYOjQPNHz/vvzo1cveO89GD8edtkFWrYsOkpJkqSqldsIekk16BFxKdCH3JB9MnBySmliFedVAG9Ubn6UUjq4lPuqPEyZAv/1XzBkCEybBquuCsceu3By54Yb5ockSZJqr6QR9IhYMaU0rfL1WeQVk/pVcd70lNJSL77uCHp5mTsXnnwyJ+NHHpkneW6+Oey0Uy5l2WMP+5RLkqTGp0mNoC9Iziu1B8q3XkbLZN48eOqpXL5y77151HzLLXOC3qoVjB5tTbkkSVJdKrnNYkRcBpwEfAX0WsJpbSJiBDAP+G1K6b5qrtcX6AvQunXrUsPTMqioWFgzfvrp8Oc/Q4cO0KdPbom4zz4LzzU5lyRJqls1lrhExOPA6lUcujClNGSR834BtEkpXVTFNdZKKU2IiPWBJ4E9U0rv1xScJS4NZ/58ePbZ3BLx7rtzKUu3bjB8eJ7oue++0LZt0VFKkiTVvUZX4pJS2quW1xoAPAR8J0FPKU2ofP4gIp4CtgFqTNBV/yZPht/8Bv7+d5gwAdq0gQMOyAk7wPbb54ckSZIaRkl90CNio0U2+wCjqzhnlYhYvvL1asBOwFul3FfLLiV46SX417/ydps2cOutOQm/80747LM8gt69e7FxSpIkNVel1qD/NiI2IbdZHAf0A4iIHkC/lNJpwGbAjRExn/wLwW9TSiboDSgleOWVXL4yaBCMHQs77phLWlZcET79NCfqkiRJKp4LFTUDJ50Et9+eu67stVduidinD6yyStGRSZIkFa/catBN0JuYN9/Mo+T33AP//Cd06gQPPQQTJ8Khh0LHjkVHKEmSVF7KLUEvuc2iijd5MtxwQ07M33wztz7cffdcT96pE+y/f9ERSpIkqbYcQW+k3nsPZs3KkznHjYP111+4oufhh8PqVTXGlCRJ0nc4gq5l9uGHuR3iXXfByy/DwQfDkCGw7rp5omenTkVHKEmSpFKZoDcSJ5wAAwbk1z17wpVXwpFHLjxuci5JktQ0mKCXoYkT80j5Aw/AP/6RWyDusQdssQUcdRSst17REUqSJKm+mKCXiSlT4G9/y+Urw4bl3uVbbgkffwwbbQSnnlp0hJIkSWoIJa0kqtJ89hmMH59fv/8+nHFGTtR//Wt4+2147bWcnEuSJKn5sItLA5s6Fe69N7dEfPJJOO203CIxpZyUd+tWdISSJEnNi11cmrEf/hDuvBPmzYMNN4QLLoBjjsnHIkzOJUmSZIJeb6ZNyy0Qn3wSbrklJ+Abbgg/+1me6LnNNnmfJEmStChLXOrQ9Om568pdd8Ejj8Ds2bD22vDcc9ClS9HRSZIkqSrlVuLiJNESzZgBX36ZXz/5JBx3HAwfDv365cR87FiTc0mSJNWeCfoy+OabPNHz6KOhc2e4+uq8f5994Omnc2vEq6+GH/wAWvgnLEmSpKVgDfpSSCl3XRk0KJezdOoEJ50E++2Xjy+/POyyS7ExSpIkqXEzQa/GnDnw+OPw0ku5N/mCSZ3HHJNHz3ffHVr5JyhJkqQ65CTRxcydm2vJBw2CwYPhiy9g5ZXhgw9glVUaNBRJkiQ1ACeJlqF583LHFYC//AX23Rf+/nc48MDclWXSJJNzSZIkNYxmW6BRUQHDhuWWiPfcAxdfnDuvHHpori3fZx9o06boKCVJktTcNLsEvaICfvrTPEL+ySfQtm0eKV+wimfHjtCnT7ExSpIkqflq8gl6SvDiizBqVO7A0rIlvPFGboF41FE5OW9fNhVHkiRJau6a5CTRlGDkyFy+MmgQfPQRrLACTJ6cy1ZSWtiRRZIkSc2bk0TrSUowf35+fdVVsP32ebGg7t3zxM+PPlpYU25yLkmSpHLVqEtcUsqlK4MG5dHyyy+HQw7Jj5VXzs+rrlp0lJIkSVLtNcoR9Nmz88JBm28OW24J//u/sO66sOKK+fj668Opp5qcS5IkqXQRcUtETI6IUUs4vmlEPB8RsyPi3CqOt4yIVyLigdrcr6wT9JkzoWtXGDAAxoyBhx7K+1u3hjvugM6d4frrczeWxx6DPfYoNFxJkiQ1TbcB+1ZzfCpwFnDlEo6fDbxd25uVfYnLuHFw4om5nKVTp5yML+jE0rZt0dFJkiSpqUspPR0RXas5PhmYHBEHLH4sIroABwCXAT+tzf3KegR9gZTySp6vvJKTczA5lyRJUqNwNfBzYH5t39AoEnSAL7+EtdYqOgpJkiQ1Qa0iYsQij751cdGIOBCYnFIauVTB1MXNG8I66xQdgSRJkpqoeSmlHvVw3Z2AgyNif6ANsGJE3JFSOqG6NzWKEfR27eCyy4qOQpIkSaq9lNIvUkpdUkpdgWOAJ2tKzqEOE/SI+FlEpIhYbQnHfxgR71Y+fljb6667LvTvD8cfX1eRSpIkSbUXEQOB54FNImJ8RPwoIvpFRL/K46tHxHjyJND/V3nOist8v5RSXQS9NnATsCmwXUrp88WOrwqMAHoACRhZed4X1V23ffv2acaMGSXHJ0mSJC1JRMxMKbUvOo4F6moE/Sry7NQlZfv7AI+llKZWJuWPUX0vSUmSJKlZKjlBj4g+wISU0mvVnLYW8PEi2+Mr90mSJElaRK26uETE48DqVRy6EPgl0LuuAqpsa9MXoHXr1nV1WUmSJKlRqFWCnlLaq6r9EbEFsB7wWkQAdAFejoieKaVPFzl1ArD7IttdgKeWcK/+QH/INei1iU+SJElqKupkkui/LxYxFuixhEmiI4FtK3e9TJ4kOrW66zlJVJIkSfWtqU4S/Y6I6BERNwFUJuKXAsMrH5fUlJxLkiRJzVGdjqDXNUfQJUmSVN+azQi6JEmSpKX3/9u796ioyv1/4O8tiAReMhUPDCqCXOaOGIpKiJri/XhLIQ01yC5maoH6OydPeU5laol5Y7XKPIkGZ5UpHDFNhThoGIKgpihojDKgCCoq9xn4/P7A2V8mmMFOnGbUz2utWYvZt+dh78/z2c/svecZ7qAzxhhjjDFmRbiDzhhjjDHGmBWx6mfQBUGw3sqxx5ogCLDmtsMeXxybzJpxfDJrRkSCpetg8EDjoFsSN+Tf7+DBg1iyZAkaGhoQGRmJlStXWrpKDz0+yfx+RUVFCA8PR2lpKQRBwMKFC7FkyRJLV+uhx7HZPmpraxEUFIS6ujro9XrMnDkTq1evtnS1Hnocn+2noaEBTz/9NCQSCfbv32/p6jz07v+ej9Ww+ivo1ly/h0FDQwO8vLxw+PBhuLq6wt/fH/Hx8ZDJZJau2kONTzK/37Vr13Dt2jX4+fnh3r17GDRoEPbt28ex+TtxbLYPIkJVVRU6d+4MnU6HwMBAfPLJJwgICLB01R5qHJ/tZ8OGDcjKysLdu3e5g94O7sem1fTS+Rn0R1xmZiYGDBgAd3d32NnZITQ0FImJiZauFmNwdnaGn1/Tb5d16dIFUqkUxcXFFq4VY00EQUDnzp0BADqdDjqdzuqusLHHl1arRXJyMiIjIy1dFfY/wh30R1xxcTH69Okjvnd1deVOELM6Go0GOTk5GDJkiDbKJKkAABzlSURBVKWrwpiooaEBvr6+cHJywpgxYzg+mdVYunQp1q1bhw4duBv3qOIjyxizqMrKSsyYMQMbN25E165dLV0dxkQ2NjbIzc2FVqtFZmYmfv75Z0tXiTHs378fTk5OGDRokKWrwv6HuIP+iJNIJCgqKhLfa7VaSCQSC9aIsf+j0+kwY8YMzJkzB9OnT7d0dRhr1ZNPPomRI0fi4MGDlq4KYzh+/DiSkpLg5uaG0NBQpKSkYO7cuZauFmtnFu+gC4IwThCEi4IgXBIEgYcXaWf+/v4oKChAYWEh6uvrkZCQgClTpli6WoyBiBAREQGpVIo333zT0tVhzEhZWRkqKioAADU1NTh8+DB8fHwsXCvGgDVr1kCr1UKj0SAhIQGjRo3Crl27LF2tR4YgCJ0EQfjX/X7pT4IguFmiHhbtoAuCYANgK4DxAGQAwgRB4CEc2pGtrS22bNmCkJAQSKVSzJo1C3K53NLVYgzHjx9HXFwcUlJS4OvrC19fXxw4cMDS1WIMQNMoQyNHjoRKpYK/vz/GjBmDSZMmWbpajLH/vQgAt4loAIAYAGstUQmLDrMoCMJQAO8SUcj99/8PAIhozf33PMwis0o8VBizVhybzJpxfDJrZRhmURCEQ2jqm2YIgmAL4DqAXn90h9TSj7hIABQ1e6+9P40xxhhjjLE/mtg3JSI9gDsAevzRlbB0B50xxhhjjDHWjK2lCn7iiSeuA+gNAIIgRDSfJwjCIgCwt7fnH4ZgVoljk1krjk1mzTg+mbWyt7dvvP9nMYA+ALT3H3HpBuDmH10fi11Br62t7U1EICLs3bsXAJCXlwfDNCJCbW2t0Xt+8cvwWrBgAXr16gW5XN7q/F27dkGpVEKhUGDo0KHIzc1t1/I5Nvll7mXJ+OTY5Je5F+dOflnzy8K509AnTgIw7/7fMwGkENEf/sUJq3jEJT4+HoGBgYiPj7d0VdhDYv78+WbHJO7fvz/S0tJw9uxZrFq1CgsXLvwDa8cedxyfzFpxbDJrZiXxuR1AD0EQLgF4E4BFhgC32CguhhFaKisr4e3tjdTUVEyePBkXL15svgwsVT9m/TQaDSZNmtTmr/vdvn0bCoUCxcXF7VY2xyZri6Xik2OTtYVzJ7NmFs6dVvP8lcWvoCcmJmLcuHHw8vJCjx49kJ2dbekqsUfM9u3bMX78eEtXg7FWcXwya8WxyazZox6fFvuSqEF8fDyWLFkCAAgNDUV8fDwGDRpk4VqxR0Vqaiq2b9+OY8eOWboqjLXA8cmsFccms2aPQ3xatIN+69YtpKSk4OzZsxAEAQ0NDRAEAevXr+dvebPf7cyZM4iMjMR3332HHj3+8CFMGTOL45NZK45NZs0el/i06CMu33zzDV544QVcuXIFGo0GRUVF6N+/P9LT0y1ZLfYIuHr1KqZPn464uDh4eXlZujqMGeH4ZNaKY5NZs8cpPi36JdHg4GCsWLEC48aNE6dv2rQJeXl5iI2N5S+TMJPCwsLwww8/oLy8HL1798bq1auh0+kAAK+88goiIyOxZ88e9OvXDwBga2uLrKysdiufY5OZY8n45Nhk5nDuZNbMCnKn1Ty+YfFRXNpYhhsys0ocm8xacWwya8bxyayVtXXQLT6KC2OMMcYYY+z/cAedMcYYY4wxK2KxUVzs7e0bBUEw+wHB3t6eR3NhVoljk1krjk1mzTg+mbWyt7dvtHQdmrPYFfTa2toORIQOHTpArVaLr8LCQhARiAi1tbXi3w/Ta9++fVAqlVCr1Rg0aBDS09NbXS4hIQFKpRIymQzLly8Xp6elpWHgwIGwsbHB119/bbROdHQ0ZDIZfHx8sHjxYjQ2NqKqqgoTJkyAt7c3ZDIZVqxYIS5/5coVBAcHw9fXF0qlEsnJySAilJeXIzg4GI6Ojli0aJFRGV999RUUCgWUSiVCQkJQVlYGIkJUVBS8vb2hVCoxdepU3L59G0SE+vp6hIeHQ6FQwMfHBx988IHR9vR6PXx9fTFx4kRx2rx58+Dm5iYe95ycHBARbt26halTp0KpVMLf3x9nz54V1/nuu+/g5eUFDw8PrFmzpsX+XLx4MRwdHcX3O3bsQM+ePcUyPvvss3Y7xg9rbJp67dq1C0qlEgqFAkOHDkVubm6ry5k6bo2NjVi8eDE8PDygVCqRnZ1ttN6dO3cgkUiMYi0rKwsKhQIeHh5iLBvmbdq0SYzn6Ohos3F29epVBAcHQyqVQiaTYePGjUZlt7YtIsLp06cREBAAmUwGhUKBmpoas/XKycnBkCFDxHb9008/gYiQmpqKrl27ivtk9erVYhkbN26EXC6HTCZDTEyMOP2dd96Bi4uLuI6hXT5KsdlWTBCR2dxlKg9qNBoMHDgQarUaMpkMsbGxICLcvXvX6FzSo0cPLFmyRFzvX//6lxgjYWFh4vTWciqR6fy8dOlSsQxPT09069ZNnLd8+XLI5XLI5XIkJCSI0zdv3gwPDw8AEPNpW/vI1LaOHDki/v/Dhw9HQUEBiAixsbFQKBTi9HPnzoGI8P3338PPzw8KhQJ+fn44evTof90GH6X4/K2vvLw8BAQEwM7ODuvXrze53NGjRzFw4EDI5XKEh4dDp9O1uf6GDRsgk8kgl8sRGhoq5qLnn38eXl5ekMvlWLBgAerr60FEqKiowKRJk6BSqSCTyfDFF1+I2woJCUG3bt2Mzrfm4ubjjz+GVCqFUqnEqFGjoNFo2mwbhtfkyZMhl8vF96byWl1dHebPnw+FQgGVSoXU1NQHikEiwkcffWTUbszl23aITet6qsRSwd5UNJGjoyOZYljmYXPv3j1qbGwkIqLTp0+Tt7d3i2XKy8upT58+dOPGDSIiCg8PpyNHjhARUWFhIZ0+fZpeeOEF+vrrr8V1jh8/TsOGDSO9Xk96vZ4CAgIoNTWVqqqqKCUlhYiI6urqKDAwkA4cOEBERC+99BJt27aNiIjOnTtH/fr1IyKiyspKSk9Pp9jYWFq0aJFYhk6no169elFZWRkREUVHR9M777xDRESHDh0inU5HRETLly+n5cuXExHR7t27afbs2UREVFVVRf369aPCwkJxmx9//DGFhYXRxIkTxWnz5s0z+t8MoqKi6N133yUiory8PBo1ahQREen1enJ3d6fLly9TXV0dqVQqOnfunLjeyZMnae7cuUbxtGPHDqP/rT09rLFpyvHjx+nWrVtERHTgwAEaPHhwq8uZOm7Jyck0btw4amxspIyMjBbrv/HGGxQWFmZ0PPz9/SkjI4MaGxtp3LhxYsympKTQ6NGjqba2loiISktLich0nJWUlFB2djYREd29e5c8PT3F2DC1LZ1OR0qlknJzc4moqT3q9Xqz9RozZoz4d3JyMo0YMYKIiFJTU41i2+Ds2bMkl8upqqqKdDodjR49mgoKCoiI6J133qH169e3uo9/L2uJzbZigojM5i5TebCurk48nvfu3aN+/fpRcXFxi237+flRWloaERHl5+eTr6+vGOOGODCVU83l5+Y2bdpECxYsICKi/fv307PPPks6nY4qKyvp6aefpjt37hAR0alTp6iwsJD69esn5lZz+8jctjw9Pen8+fNERLR161aaN28eEZE4n4goMTGRQkJCxLIN++fs2bPk4uIiLvdb22B7sJb4/K1KS0spMzOT/vKXv5hsuw0NDeTq6koXL14kIqJVq1bR559/bnZ9rVZLbm5uVF1dTUREzz33HO3YsYOImuKjsbGRGhsbKTQ0VDyXv//+++L598aNG9S9e3eqq6sjIqIjR45QUlJSi5xkKm5SUlKoqqqKiIi2bdtGs2bNIiLTbcNgz549FBYWRnK5XJxmKq9t2bKF5s+fL+4HPz8/amhoICLTMUhEdPXqVRo7diz17dtXbDem8m17uB+bFv8waHhZ16eFR0Tnzp3FW3hVVVWt3s775Zdf4OnpiV69egEAnn32WezZswcA4ObmBpVKhQ4djA+PIAiora1FfX096urqoNPp0Lt3bzg4OGDkyJEAADs7O/j5+UGr1Yrr3L17FwBw584duLi4AAAcHR0RGBgIe3t7ozIMgVFVVQWipqtShnXGjh0LW9ump6ICAgKMyqiqqoJer0dNTQ3s7OzQtWtXAIBWq0VycjIiIyMfaN+dP38eo0aNAgD4+PhAo9GgtLQUmZmZGDBgANzd3WFnZ4fQ0FAkJiYCABoaGhAdHY1169Y9UBmspWHDhqF79+4AjI/tg0pMTER4eDgEQUBAQAAqKipw7do1AEB2djZKS0sxduxYcflr167h7t27CAgIgCAICA8Px759+wAAsbGxWLlyJTp16gQAcHJyAmA6zpydneHn5wcA6NKlC6RSKYqLi81u6/vvv4dKpYJarQYA9OjRAzY2NmbrZaotmZKXl4chQ4bAwcEBtra2GDFiBL799tvftF8fZuZiwsBc7jKVB+3s7MTjWVdXh8bGlnel8/PzcePGDTzzzDMAgM8++wyLFi0SY7x5TLWWU83l5+bi4+MRFhYGoCl3BQUFwdbWFo6OjlCpVDh48CAAYODAgXBzc3vgfWRuW6bi0JBzAePzzsCBA8Vl5HI5ampqUFdX91+1wceZk5MT/P390bFjR5PL3Lx5E3Z2duL43GPGjBHjxtz6hpym1+tRXV0tHq8JEyZAEAQIgoDBgwcbnXPv3bsHIkJlZSWeeuop8dw8evRodOnSpUUZpuJm5MiRcHBwANDyvN5a2wCAyspKbNiwAW+//fYD7bvm53UnJyc8+eSTyMrKMhuDALBs2TKsW7fusX0kyuId9JqaGvj6+sLX1xfTpk2zdHXazd69e+Hj44OJEyfiiy++aDF/wIABuHjxIjQaDfR6Pfbt24eioiKz2xw6dChGjhwJZ2dnODs7IyQkBFKp1GiZiooK/Pvf/8bo0aMBAO+++y527doFV1dXTJgwAZs3bzZbRseOHREbGwulUgkXFxecP38eERERLZb74osvMH78eADAzJkz4ejoCGdnZ/Tt2xdRUVF46qmnAABLly7FunXrWpxkAeCvf/0rVCoVli1bhrq6OgCAWq0WOzGZmZm4cuUKtFotiouL0adPH3FdV1dXsRO2ZcsWTJkyBc7Ozi3K2LNnD1QqFWbOnNnm/mVNtm/fLh7b1rR23Ewdn8bGRrz11lvibUqD4uJiuLq6tlgeaOpcpaenY8iQIRgxYgROnjwJwHycGWg0GvFRFHPbys/PhyAICAkJgZ+fn/jhzly9Nm7ciOjoaPTp0wdRUVFYs2aNuFxGRgbUajXGjx+Pc+fOAQAUCgXS09Nx8+ZNVFdX48CBA0YxuGXLFqhUKrz44ou4ffu26QPykDLXZlvz69xlTlFREVQqFfr06YMVK1a0+LCUkJCA2bNniyf2/Px85OfnY/jw4QgICBA7u6Zy6oPk5ytXrqCwsFDseKjVahw8eBDV1dUoLy9HampqmznH1D4yt63PP/8cEyZMgKurK+Li4rBy5Upx/a1bt8LDwwPLly/Hpk2bWpS3Z88e+Pn5oVOnTv9VG2Tm9ezZE3q9XhyX+5tvvmkzBiQSCaKiotC3b184OzujW7duRhczAECn0yEuLk78zZjXX38deXl5cHFxgVKpxCeffNLqObY5c3Fj0Dz3m+tvrFq1Cm+99ZbYsW+utbymVquRlJQEvV6PwsJCZGdno6ioyGwMJiYmQiKRiBdRmmst3z6KLN5Bf+KJJ5Cbm4vc3Fzs3bvX0tVpN9OmTcOFCxewb98+rFq1qsX87t27IzY2FrNnz8YzzzwDNzc32NjYmN3mpUuXkJeXJ3ZYU1JSjH51Va/XIywsDG+88Qbc3d0BNF3hmT9/PrRaLQ4cOIAXXnih1StOBjqdDrGxscjJyUFJSQlUKpVRRwQA3n//fdja2mLOnDkAmjrSNjY2KCkpQWFhIT7++GP88ssv2L9/P5ycnDBo0KAW5axZswYXLlzAyZMncevWLaxduxYAsHLlSlRUVMDX1xebN28Wn0E1paSkBF9//TUWL17cYt7kyZOh0Whw5swZjBkzBvPmzTOzdxkApKamYvv27eLx+DVTx82Ubdu2iSeFB6XX63Hr1i2cOHEC69evx6xZs0BEJuPMoLKyEjNmzMDGjRvFq4mmtqXX63Hs2DHs3r0bx44dw969e3H06FGz9YqNjUVMTAyKiooQExMjfnD18/PDlStXcPr0aSxevBhTp04FAEilUqxYsQJjx47FuHHj4OvrK8byq6++isuXLyM3NxfOzs546623Hnj/PIpay13m9OnTB2fOnMGlS5fw5ZdforS01Gh+QkKCeGXbsP2CggL88MMPiI+Px0svvYSKigqTOfVB8nNCQgJmzpwpTh87diwmTJiAYcOGISwsDEOHDm0zp5tiblsxMTE4cOAAtFotFixYgDfffFNcb9GiRbh8+TLWrl2L9957z2ib586dw4oVK/Dpp5+2Wb6pdsPMEwQBCQkJWLZsGQYPHowuXbq0GQO3b99GYmIiCgsLUVJSgqqqKuzatctomddeew1BQUHiHaFDhw7B19cXJSUlyM3Nxeuvvy5eHTfFXNwAwK5du5CVlYXo6GgApvsbubm5uHz5cqsXVE3ltRdffBGurq54+umnsXTpUgwbNszsfqmursYHH3yAv//97y3mmcq3jyKLd9AfFVu3bhXvBJSUlIjTg4KC8Msvv6C8vLzFOpMnT8ZPP/2EjIwMeHt7t/mztXv37kVAQAA6d+6Mzp07Y/z48cjIyBDnL1y4EJ6enli6dKk4bfv27Zg1axaApk/EtbW1rdbFIDc3FwDg4eEBQRAwa9Ys/Pjjj+L8f/7zn9i/fz92794tXp366quvMG7cOHTs2BFOTk4YPnw4srKycPz4cSQlJcHNzQ2hoaFISUnB3LlzAQDOzs4QBAGdOnXCggULkJmZCaDpNu2OHTuQm5uLnTt3oqysDO7u7pBIJEZXIrRaLSQSCXJycnDp0iUMGDAAbm5uqK6uxoABAwA0PbZguEUbGRmJ7Oxss/v3cfPrmD1z5gwiIyORmJiIHj16tLqOqeNm6vhkZGRgy5YtcHNzQ1RUFHbu3ImVK1dCIpEYPUZjWB5ouooyffp08bZuhw4dUF5ebjLOgKYPljNmzMCcOXMwffp0cbumtuXq6oqgoCD07NkTDg4OmDBhAk6dOmW2Xl9++aW47eeee84oZjt37gyg6Za0TqcT21hERASys7Pxn//8B927dxfbeO/evWFjY4MOHTrgpZdeErf1sGseU87Ozq3GRGtay10PwsXFRbxTYXD69Gno9XqjCwOurq6YMmUKOnbsiP79+8PLywsFBQVmc2pb+fnXHwKAprtLubm5OHz4MIiozZxuqt2Y2lZZWRlOnz4t3iGaPXu2UX42CA0NNXpUQKvVYtq0adi5c6f4ZdX/pg0+bkyd180ZOnQo0tPTkZmZiaCgoDZj4MiRI+jfvz969eqFjh07Yvr06UbHdPXq1SgrK8OGDRvEaTt27BCPz4ABA9C/f39cuHDBZBltxc2RI0fw/vvvIykpSTxnmmobGRkZyMrKgpubGwIDA5Gfn4/g4GAApvOara0tYmJikJubi8TERFRUVMDLy8tkDF6+fBmFhYVQq9Vwc3ODVquFn58frl+/bjbfPmq4g95OFi1aJN4JqK6uFq82nDp1CnV1da12eG7cuAGg6RP0tm3b2nxOu2/fvkhLS4Ner4dOp0NaWpp4y+ntt9/GnTt3sHHjxhbrGK4M5uXloba2VnyusjUSiQTnz59HWVkZAODw4cNiGQcPHsS6deuQlJRkdGurb9++SElJAdD07OOJEyfg4+ODNWvWQKvVQqPRICEhAaNGjRKvDBieRSVqGvVGoVAAaLrNXV9fD6DpllxQUBC6du0Kf39/FBQUoLCwEPX19UhISMCUKVMwceJEXL9+HRqNBhqNBg4ODrh06ZJRGQCQlJTU4nGgx13zmNXr9Zg+fTri4uLMnlBMHbcpU6Zg586dICKcOHEC3bp1g7OzM3bv3o2rV69Co9Hgo48+Qnh4OD788EM4Ozuja9euOHHiBIgIO3fuxJ///GcAwNSpU5Gamgqg6VZ7fX09evbsaTLOiAgRERGQSqUtrgqZ2lZISAjOnj2L6upq6PV6pKWlQSaTma2Xi4sL0tLSAAApKSnw9PQEAFy/fl1s75mZmWhsbBTbu6GNX716Fd9++y2ef/55o/0INJ0IDfvxYdc8pqZOndpqTPyaqdxlilarRU1NDYCm3Hns2DF4e3uL85s/F24wdepU/PDDDwCA8vJy5Ofnw93d3WxONZefL1y4gNu3b2Po0KHitIaGBty8eRMAcObMGZw5c6bFowq/ZqrdmNpW9+7dcefOHeTn5wMwzs8FBQXidpOTk8X4rKiowMSJE/Hhhx9i+PDh4jL/TRt83DSP57a+c2JgiJu6ujqsXbsWr7zyitnl+/btixMnToj9hqNHj4rH9PPPP8ehQ4cQHx9v9AhL8/N6aWkpLl68aPbOk7m4ycnJwcsvv4ykpCSj7xqYahuvvvoqSkpKoNFocOzYMXh5eYlty1Req66uRlVVlVi2ra2t2XyrVCpx48YN8bzu6uqKU6dO4U9/+pPZfPvIsdS3U/EIj+Ly4YcfkkwmI7VaTQEBAZSeni7OU6vV4t+hoaEklUpJKpVSfHy8OD0zM5MkEgk5ODjQU089RTKZjIiaRjJZuHAh+fj4kFQqpWXLlhERUVFREQEgHx8fUqvVpFar6bPPPiOippFbhg0bRiqVitRqNR06dEgsp1+/ftS9e3dydHQkiUQijnwRGxtLPj4+pFQqadKkSVReXk5ERB4eHuTq6iqW8fLLLxNR00gKM2fOJJlMRlKplNatW9din/z6m9cjR44khUJBcrmc5syZQ/fu3SMioh9//JE8PT3Jy8uLpk2bJo66QNT0jXZPT09yd3en9957r9V93zyeVq5cSTKZjFQqFQUHB1NeXp7pg/YbPayxaUpERAQ9+eST4rEdNGiQOG/8+PHiKBCmjltjYyO99tpr5O7uTgqFgk6ePNmijF+PqnPy5EmSy+Xk7u5OixYtEkc+qqurozlz5pBcLqeBAwfS0aNHich0nKWnpxMAUiqVYv2Tk5PNbouIKC4ujmQyGcnlcoqOjm6zXunp6eTn50cqlYoGDx5MWVlZRES0efNmMc6GDBlCx48fF7cVGBhIUqmUVCqV0Sggc+fOJYVCQUqlkiZPnkwlJSW/+ZiZYi2xaS4mDHnQXO4ylQe///57UiqVpFKpSKlU0qeffmpUbv/+/Vu09cbGRlq2bBlJpVJSKBRivjWVU4lM52eiptEqVqxYYTStpqZGXH7IkCGUk5Mjzvvkk09IIpGQjY0NOTs7U0REhNl9ZG5b3377LSkUClKpVDRixAi6fPkyETWNlGQ47wQHB9PPP/9MRET/+Mc/yMHBQdy/arVaHJXlt7bB9mAt8flbXbt2jSQSCXXp0oW6detGEolEHDmneY6MiooiHx8f8vLyopiYmAda/29/+xt5e3uTXC6nuXPniqPn2NjYkLu7u3jcVq9eTURExcXFNGbMGDEXx8XFieUEBgZSz549yd7eniQSCR08eJCITMfN6NGjycnJSSxj8uTJRGS+bRgUFhYajeJiKq8VFhaSl5cX+fj40OjRo0mj0YjrmIrB5pqPfmQu3/5esLJRXASy0HNlgiBQW2ULgsDPvTGrxLHJrBXHJrNmHJ/MWt2PTasZMoYfcWGMMcYYY8yKcAedMcYYY4wxK2JrqYLt7e1LBUHo3cYyjYIg8IcIZnU4Npm14thk1ozjk1kre3v70raX+uNY7Bl0xhhjjDHGWEv8KZYxxhhjjDErwh10xhhjjDHGrAh30BljjDHGGLMi3EFnjDHGGGPMinAHnTHGGGOMMSvy/wF8KXzILNgUzAAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x432 with 2 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[df_demo[\"F\"] < 0][[\"A\", \"F\"]]\\\n", " .plot(\n", " style=[\"-*r\", \"--ob\"], \n", " secondary_y=\"A\", \n", " figsize=(12, 6),\n", " table=True\n", " );"]}, {"cell_type": "code", "execution_count": 78, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAF1CAYAAAAjssYlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8VNXBxvHfSUhI2HfZCTuiVgREZV9EEHFDKYgoigrY2lp99RVarbS11da21lfbijsiIoooKrgAArK4Ae7KvssOsoSQ/bx/nIEEJOtM5sxMnu/nk08yd2bufTIJ4cnJuecaay0iIiIiIhK8ON8BRERERERihcq1iIiIiEiIqFyLiIiIiISIyrWIiIiISIioXIuIiIiIhIjKtYiIiIhIiKhci4gAxpjexphtpXzuE8aY+0rxvFRjTIvSHDOcjDETjTEvBrmPa40x7xdyf6lffxGRSFLBdwARiX7GmE3AaUAOkAUsA8ZZa7d6zJQCbAQSrLXZZXksa+24Uj6vSqizRCpr7VRg6rHbxhgLtLbWrvOXSkQk9DRyLSKhcmmgLDYAdgGPec4jp2CM0aBKPqd6PfQaiUgwVK5FJKSstenADKD9sW3GmIXGmJvz3b7BGLMk3+2LjDGrjTEHjTH/McYsyv/4whhjuhhjlhtjDhljdhlj/hm468PA+wOB6Re9jDH7jTFn5XtuPWNMmjGm7in229AY85oxZo8xZqMx5teFZHjeGPNA4OM6xpi3jTEHAsdbbIw55c9aY4w1xrQKfFzbGPNW4PP4zBjzwEmvkTXGjDPGrA3s+9/GGBO4L84Yc68xZrMxZrcx5gVjTPXAfSmB595kjNkCfBDYfr4xZllgX18aY3rnO1bzwNfgsDFmLlCnkM99kTHmqsDH3QLHuiRwu58x5ovAx8e/5saYY1+bLwNfm2H59vc/gc9hhzHmxgKOOdQYs+KkbXcaY2YFPq5ojPm7MWZL4HviCWNMcuC+3saYbcaYe4wxO4HnTrWtoM9XRKQoKtciElLGmErAMODjYj6+Dq6MTwBqA6uBrvnubxoogE0L2MWjwKPW2mpAS+CVwPaegfc1rLVVrLWLgJeBkfmeew0w31q756RMccBbwJdAI6Af8BtjzIBifEr/A2wD6uKmyvwWsMV43r+BI0B9YFTg7WSDgXOBnwE/B47luSHw1gdoAVQBHj/pub2A04EBxphGwGzgAaAWcBfwWr5fMl4CVuBK9Z8KyHLMIqB3vmNsIO+17xW4/wTW2mP3nx342kwP3K4PVMe95jcB/zbG1DzFMd8EmhtjTs+37TrghcDHDwFtgA5Aq8D+fp/vsfUDn3czYEwh20RESkzlWkRC5Q1jzAHgINAfeLiYzxsEfGutnRmYG/1/wM5jd1prt1hra1hrtxTw/CyglTGmjrU21VpbWKmfDFxzbMQXV8imnOJx5wJ1rbV/tNZmWms3AE8Bw4vx+WThpsY0s9ZmWWsXW2sLLdfGmHjgKuB+a22atfa7QNaTPWStPRB4LRbgyiPAtcA/rbUbrLWpuF9Uhp80vWGitfaItfYo7heMOdbaOdbaXGvtXGA5MCjwS8y5wH3W2gxr7Ye4XzQKsghXosGV6gfz3T5luS5EFvDHwOs2B0gF2p78IGttBjA98HlgjDkDSAHeDnxtxwB3WGv3W2sPA3/hxK9dLu61zgi8HgVtExEpMZVrEQmVK6y1NYAk4DZgkTGmfjGe1xA4fuJjoIiWZNWIm3CjlKsC0ykGF/RAa+0nQBrQ2xjTDjeq+eYpHtoMaBgYMT8Q+KXht7iR6KI8DKwD3jfGbDDGjC/Gc+riTjDPfwLoqU4G3Znv4zTcCDW413Bzvvs2B/aXP2/+/TUDhp70+XXH/VLQEPjRWnvkpP0V5COgjTHmNFzZfwFoEviLRBfypucUx76TTj7N/zmebDIwIlCmrwNeCZTuukAlYEW+z+3dwPZj9gSmL1HENhGREtNJGyISUtbaHGCmMWYSrrDNwE13qJTvYflL9w6g8bEbgbLUmGKy1q7FjUbHAUOAGcaY2hQ8FWMybsRzJzCjgEK1FdhorW1d3Bz58hzGTQ35H2PMmcAHxpjPrLXzC3naHiAb93mvCWxrUoLDbscV5mOaBva3i7zXMv/rsRWYYq295eQdGWOaATWNMZXzFeymFPB6WmvTAvOfbwe+sdZmGmOWAXcC6621e0vweRSbtfZjY0wm0AMYEXgD2AscBc6w1v5Q0NOLuU1EpMQ0ci0iIWWcy4GawPeBzV8AQ4wxlYw7ge+mfE+ZDZxljLkiMI3hl5xYvos63khjTF1rbS5wILA5F1dYc3FzkPN7EbgSV7Bf4NQ+BQ4HTnBLNsbEG2PONMacW4w8g40xrQK/JBzELU+YW9hzjv1CAkwMvEbtgOuLOlY+04A7AiciVsFNg5heyBKELwKXGmMGBD63pMBJfY2ttZtxU0T+YIxJNMZ0By4t4viLCPy1InB74Um3T2UXP/3alNQLuLnlWdbaJQCB74OngEeMMfUAjDGNijlfXkQkaCrXIhIqbxljUoFDwJ+BUdbabwP3PQJk4grVZPKtdxwY2RwK/A3Yh1tlZDmQAcdPaEwt5ITGgcC3gWM/Cgy31h611qYFciwNTA84P3C8rcBK3Ejl4lPtMFB2B+OmOWzEjYY+jTvZriitgXm4+cIfAf+x1i4oxvNuC+x/J24e+DQCr0ExPBt4zoeBvOnArwp6cOA1uBw31WUPbiT7bvL+TxgBnAfsB+6n4F9CjlkEVCVvCsjJt09lIjA58LX5eRH7L8gU4EzcLwv53YObmvOxMeYQ7uvxk7nbIiJlwRRxno2ISFgFpndsA64tZiktzTGeBbZba+8ti/2HgjHmr0B9a21hK3WUa4Hl9XYDHQPTg0REvNOcaxHxLvAn+09wc2XvBgzFXMqvFMdKwc3NPqcs9l9agakgicDXuNU6bgKKtdZ3OXYr8JmKtYhEEpVrEYkEF+DWVk4EvsOtPBLy5dCMMX8C7gAetNZuDPX+g1QVNxWkIW76zD+AWV4TRTBjzCbcL2FXeI4iInICTQsREREREQkRndAoIiIiIhIiKtciIiIiIiHiZc51XFycTU5O9nFoERERESlH0tLSrLU2bAPKXsp1cnIyR44cKfqBIiIiIiJBMMaE/AT5wmhaiIiIiIhIiKhci4iIiIiEiMq1iIiIiEiI6CIyIiIiIhEmKyuLbdu2kZ6e7jtK1EhKSqJx48YkJCR4zaFyLSIiIhJhtm3bRtWqVUlJScEY4ztOxLPWsm/fPrZt20bz5s29ZtG0EBEREZEIk56eTu3atVWsi8kYQ+3atUs90m+MiTfGfG6MeTvYLCrXIiIiIhFIxbpkgny9bge+D0UOlWsREREROaU33ngDYwyrVq0q8DFHjx6lV69e5OTknPL+rl27FnmclJQU9u7d+5PtCxcuZNmyZcdvP/744zz77LPFSF58xpjGwCXA06HYX0jKtTFmoDFmtTFmnTFmfCj2KSIiIiLF1/mBuaSMn03nB+aGbJ/Tpk2je/fuTJs2rcDHPPvsswwZMoT4+PgTtmdnZwOcUI5L6uRyPXr0aB577LGS7qaCMWZ5vrcxJ93/L+B/gdxSB80n6HJtjIkH/g1cDLQHrjHGtA92vyIiIiJSfHtTM094H6zU1FSWLFnCM888w8svv1zg46ZOncrll18OuDLco0cPLrvsMtq3d3WwSpUqAOTm5vKLX/yCdu3a0b9/fwYNGsSMGTOO7+exxx6jY8eOnHXWWaxatYpNmzbxxBNP8Mgjj9ChQwcWL15MpUqVSElJ4dNPPy3Jp5Jtre2c7+3JY3cYYwYDu621K0qyw8KEYrWQLsA6a+0GAGPMy8DlwHch2LeIiIhIufaHt77lu+2HCrx/5eYfycq1GMACBkgZP5uEOEPHZjVP+Zz2Datx/6VnFHrcWbNmMXDgQNq0aUPt2rVZsWIFnTp1OuExmZmZbNiwgZSUlLw8K1fyzTff/GTVjpkzZ7Jp0ya+++47du/ezemnn87o0aOP31+nTh1WrlzJf/7zH/7+97/z9NNPM27cOKpUqcJdd911/HGdO3dm8eLFdOnSpdD8xdQNuMwYMwhIAqoZY1601o4s7Q5DMS2kEbA13+1tgW0nMMaMOTYcf+zPBCIiIiISnKxcC7hinf/9se2lNW3aNIYPHw7A8OHDTzk1ZO/evdSoUeOEbV26dDnlcnhLlixh6NChxMXFUb9+ffr06XPC/UOGDAGgU6dObNq0qcBc9erVY/v27SX9dE7JWjvBWtvYWpsCDAc+CKZYQxjXuQ4MwT8JULFBa5syfvbx+27v15o7+rcJVxQREREJxoIHYdFDBd/fazz0mRC+PDGuqBHmzg/MZW9qJokV4sjMzj3+vk6VRKaPvaBUx9y/fz8ffPABX3/9NcYYcnJyMMbw8MMPn7AqR3Jy8k+Wv6tcuXKpjlmxYkUA4uPjKWwgNj09neTk5FIdIxxCUa5/AJrku904sK1AJjuDTQ9dEoJDi4iISNj1mZBXnp8L/H9+4+yCHy9lavm9/QE3FQQgMzs36J41Y8YMrrvuOiZNmnR8W69evVi8eDE9e/Y8vq1mzZrk5OSQnp5OUlJSofvs1q0bkydPZtSoUezZs4eFCxcyYsSIQp9TtWpVDh06cUrMmjVr6NatWyk+q8JZaxcCC4PdTyimhXwGtDbGNDfGJOKG1N8MwX5FREREpJjqVEk84X0wpk2bxpVXXnnCtquuuuqUU0MuuugilixZUuQ+r7rqKho3bkz79u0ZOXIkHTt2pHr16oU+59JLL+X1118/fkIjwNKlS+nfv38JPpvwMtYGNx8HIDAJ/F9APPCstfbPhT0+qW5Tm75nS9DHFREREc80cl0mvv/+e04//XTfMYpl5cqVPPLII0yZMqXIx6amplKlShX27dtHly5dWLp0KfXr1y/2sT7//HP++c9/FnisU71uxpg0a23p5qqUQkjmXFtr5wBzQrEvEREREYkeHTt2pE+fPuTk5PxkreuTDR48mAMHDpCZmcl9991XomIN7gTKP/3pT8HELXNhO6FRRERERGJT/iX1CrNw4cKgjhPJ00GO0eXPRURERERCROVaRERERCREVK5FREREREJE5VpEREREJER0QqOIiIiI/ER8fDxnnXXW8dtvvPEGKSkp/gJFCZVrERERkVjwcGs4shsq14O71wa9u+TkZL744osQBCtfNC1ERERESm/rJ7B5iSt24teR3Se+Fy80ci0iIiKll5vl3qvQlZ13xsPOrwu+f+snga+DAax7P7E6xCVAk/NO/Zz6Z8HFDxV62KNHj9KhQwcAmjdvzuuvv16q+OWNyrWIiIiU3LEpCMfEJ7pCF6IpCVICx37BwZ74/vj20tG0kNJRuRYREZGSO3mkOifz1NsleEWMMB//RSe+IuRk5L2vXA9unB2ejHKcyrWIiIiUjLWQUAmy0vJtDExJSEiG7EyokOgrXflz7C8FE6u79zkZMPGgvzzlnE5oFBERkeKzFub+3hXrTjfmvwO6jIGso/BMf9i33lvEcqtyvRPfixcq1yIiIlI81sL798Ky/4PON8El/3QnzYErdIMehmFT4cdNMKkXfD3Da9xy5+61bsQ6RHPeU1NTQ7Kf8kblWkRERIpmLbw7AT563I1QX/IPiItzq1E0655X6E4fDOOWwGlnwGs3waxfQuYRv9lFwkjlWkRERApnLbxzD3zyXzjvVrj4b2BMwY+v0QRumA097oLPp8KTfWDXt+HLK+KRyrWIiIgULDcX5twFn06CC26DgQ8WXqyPia8A/e6D69+A9APwVF/47BlX1EVimMq1iIiInFpuLsy+Ez57Grr+Gi56oHjFOr8Wvd00kWbd3L5eHQVHD5RF2phj9YtIiUTK66VyLSIiIj+Vmwtv3w4rnoPud0D/P5a8WB9TpR5cO8PtY9VseKIHbP0stHljTFJSEvv27YuYwhjprLXs27ePpKQk31G0zrWIiIicJDcX3voVfP6imzfd997SF+tj4uKg2+3QtCu8NhqeGwh973Mj4nEa6ztZ48aN2bZtG3v27PEdJWokJSXRuHFj3zFUrkVERCSf3ByYdRt8+RL0ugd6Twi+WOfX5FwYuxje+jXMux82LoIrJ7nRbTkuISGB5s2b+44hpaBfFUVERMTJzYE3bnXFuvcE6PPb0BbrY5JrwNDJMPgR2LwM/tsN1i8I/XFEPFC5FhEREcjJhplj4Kvp0Ode6D2+bI9nDHQeDbd8AMk1YcqVMO8PkJNVtscVKWMq1yIiIuVdTjbMvAW+mQH9fg+97g7fsU87A8YsgHNGwpJ/wvOXwIEt4Tu+SIgZH2ehJtVtatP36B+OiIiIdzlZ7kqK382CC/8A3X9T9HMWPAiLHir4/l7joc+Ekmf5ega89Rt3guNlj0P7y0q+D5GTGGPSrLWVw3Y8lWsREZFyKjvTrdzx/VtuDeuuv/KdCPZvgBmjYfvncO7NcNGfIcH/8moSvcJdrjUtREREpDzKzoRXb3DFesBfIqNYA9RqAaPfd1eD/OxpeLof7FnjO5VIsalci4iIlDfZGfDK9bB6Ngz8K1zwS9+JTlQhEQb8GUa8Cod3wJO94POpunS6RAWVaxERkfIkKx2mXwdr3oFBf4fzx/lOVLA2F7lLpzfqBLN+Aa+PhYzDvlOJFErlWkREpLzISofp18La9+CSf0KXW3wnKlq1hnD9LOjzO/j6VZjUE7Z/4TuVSIFUrkVERMqDrKPw8jWwbh4M/hece5PvRMUXFw+9/hdGve1+QXimP3z8hKaJSERSuRYREYl1mWkwbbi7CuJlj0HnG30nKp2UbnDrUmjZD969B6ZdA2n7facSOYHKtYiISCzLPALThsGGRXD5v6Hj9b4TBadSLbhmGgx8yI3CP9HdXUJdJEKoXIuIiMSqzCPw0jDYuBiu+C+cc63vRKFhDJx/K9w8FypUdFd1XPQ3yM3xnUxE5VpERCQmZaTCi1fD5qUw5EnocI3vRKHX8BwY+yGceTUs+DO8cDkc2uE7lZRzKtciIiKxJuMwvHgVbP0YhjwFP/u570Rlp2JV98vD5f+BH1bAE91g7VzfqaQcU7kWERGJJemHYMoQ2PYZXPUMnHW170Rlzxg35WXMIqjaAKZeDe/9zl2FUiTMVK5FRERiRfpBeHEIbF8JVz8LZw7xnSi86raBm+fBuTfDR4/DswNg/0bfqaScUbkWERGJBUcPwJQrYfvnMPR5OOMK34n8SEiGS/4BP58C+9e7i85885rvVFKOqFyLiIhEu6M/wpQrYMdX8PMX4PRLfSfyr/1lMHYx1G0HM0bDm792632LlDGVaxERkWiWtt+tkrHrWxg2Bdpd4jtR5KjZDG6cA93vhJUvwFN9YNd3vlNJjFO5FhERiVZp++GFy2D39zBsKrS92HeiyBOfABfeD9fNhLR9rmCveF6XTpcyo3ItIiISjY7shcmXwp41MHwatLnId6LI1rIvjFsKTS+At26HGTe6E0ClXDPGJBljPjXGfGmM+dYY84dg96lyLSIiEm1S97hivW+duxR46wt9J4oOVU+DkTOh3/3w3ZvwRA/YtsJ3KvErA+hrrT0b6AAMNMacH8wOVa5FRESiSepumDzYLTF3zcvQqp/vRNElLg563Amj33VTQ569CJb+H+Tm+k4mHlgnNXAzIfAW1JwhlWsREZFocXgXPD8YftwMI6ZDyz6+E0WvJl1g3Idunvrc++Cloe4vAlLuGGPijTFfALuBudbaT4LZn8q1iIhINDi0A56/BA5uhZEzoEUv34miX3JNtx72Jf+AjYvhie6wYZHvVBJ6FYwxy/O9jcl/p7U2x1rbAWgMdDHGnBnMwYz1cLZsUt2mNn3PlrAfV0REJCod2u5GrA/vdMW6WVffiWLPzm/cSY5710LPu6DXeIiv4DuVhIAxJs1aW7mYj/09kGat/Xtpj6eRaxERkUh28Ac3Yp26yy0np2JdNuqfCWMWQodr4cOH3bz2A1t9p5IyZoypa4ypEfg4GegPrApmnyrXIiIikerAVnh+kJsLfN3r0DSoRQykKImV4Yp/w5CnYOfXbprI92/7TiVlqwGwwBjzFfAZbs51UF90TQsRERGJRAe2uKkgR390xbpxZ9+Jypd96900kR1fQpex0P+PkJDkO5WUQkmmhYSCRq5FREQizY+b4LlLIP0AXP+GirUPtVvCTXPh/F/Ap5PgmQth7zrfqSQKqFyLiIhEkv0b3Yh1xiG4fhY06uQ7UflVoSIMfBCume7mvk/qCV++7DuVRDiVaxERkUixb707eTEzFUa9CQ3P8Z1IANoOhHFLoGEHeH0svD4OMlKLfp6USyrXIiIikWDfejdinXUURr0FDc72nUjyq97IfV16jYevpsOTvWDHV75TSQRSuRYREfFt71p4bhDkZLgCV/8s34nkVOLioc8EuP5NyDwCT/eDT550l1EXCVC5FhER8WnPajcVJDcbRr3t1luWyNa8B4xbCi36wDt3w/SRkLbfdyqJECrXIiIivuxe5aaCWAs3zIbT2vtOJMVVuTaMmA4D/gJr3oMnesCWj32nkgigci0iIuLDru/ciLUxrljXa+c7kZSUMXDBL+Gm9yE+wU3t+fBhyM3xnUw8UrkWEREJt53fuMtrx1VwxbpuG9+JJBiNOsLYD+GMK+CDB2DKlXB4p+9U4onKtYiISDjt+AomXwrxFeHGOVCnte9EEgpJ1eCqZ+Cyx2Hrp/DfbrB2nu9U4oHKtYiISLhs/wJeuAwSkuGGt91VACV2GAMdr4MxC6FKPZh6Fcz9PeRk+U4mYaRyLSIiEg7bP3fFOrGKmwqiYh276rWDWz6AzqNh6aPw7EB3SXspF4Iq18aYocaYb40xucaYzqEKJSIiElN+WAGTL4eK1V2xrtXcdyIpawnJMPgRGPq8W8f8iR7w7eu+U0kYBDty/Q0wBPgwBFlERERiz7bl8MIVkFwDbpwNNZv5TiThdMaVMO5DqNMGXr0B3vqNuwqnxKygyrW19ntr7epQhREREYkpWz91xbpSLTdiXaOp70TiQ80UGP0udPsNrHgOnurr1jiXmKQ51yIiImVhy8duSbYqdeGGOVCjie9E4lN8AvT/A4x8DVJ3w5O9YeULunR6DCqyXBtj5hljvjnF2+UlOZAxZowxZrkxZrnVN5KIiMSyzctgyhCoWt+NWFdv5DuRRIpWF8KtS6FJF3jzV/DaTZB+yHcqCSETiqJrjFkI3GWtXV6cxyfVbWrT92wJ+rgiIiIRZ9MSmPpzqNbQLbdXtb7vRBKJcnNgySOw4C/urxpXP+cuRiMhZ4xJs9ZWDtfxNC1EREQkVDZ+CFOHQvXGbsRaxVoKEhcPPe9yFxLKyYZnLoJlj0Nuru9kEqRgl+K70hizDbgAmG2MeS80sURERKLMhoVuxLpGs8CI9Wm+E0k0aHo+jFsMbQbA+7+DacPgyF7fqSQIIZkWUlKaFiIiIjFl3Xx4eQTUagnXz3InMYqUhLXw2dPw3m+hUm0Y8hQ07+E7VUzQtBAREZFosnYeTLsGareCUW+pWEvpGANdboGb50NiZZh8qZuPnZPtO5mUkEauRUQi1CNz1/Do/LUF3n97v9bc0b9NGBPJT6x5H6ZfC3XbwvVvuvWsRYKVkQpz7oYvX4Jm3dwotlacKbVwj1yrXIuIRIFhkz4CYPrYCzwnkeNWvwuvXAf1Tofr3lCxltD78mV4+06okAhX/BfaXuw7UVTStBAREZFIt2o2TB8Jp53h5lirWEtZOHs4jP0QqjeBacPhnfGQneE7lRRB5VpERKQkvn8LXrkeGvzMjVgn1/SdSGJZnVZw8zw4bxx88l94pj/sW+87lRRC5VpERKS4vpsFr94ADc+B616H5Bq+E0l5UKEiXPxXGD4NDmyBST3hq1d8p5ICqFyLiIgUxzcz4dUboVEnGDkTkqr7TiTlTbtBMG4J1D8LZt4Cb/wCMo/4TiUnUbkWEREpytcz4LWboUkXGPkaJFXznUjKq+qNYdTb0PN/4YuXYFIv2Pm171SSj8q1iIhIYb56xY0SNj0frp0BFav6TiTlXXwF6Ps7GPUmZByGp/rBp0+5C9GIdyrXIiIiBfnyZXh9rFtr+NpXoWIV34lE8jTv6aaJNO8Jc+5yS0Me/dF3qnJP5VpERORUPp8Kr4+DlO4w4hV31TyRSFOlrvv+vOgBWP0OPNEDtnziO1W5pnItIiJyspVTYNYvoUUvuGY6JFbynUikYHFx0PVXMPp9MHHw3MWw+B+Qm+s7Wbmkci0iIpLfiufhzdugZR+45mUVa4kejTvBuMXQ/jKY/0d48Uo4vMt3qnJH5VpEROSYz56Bt26HVv3dmsIJyb4TiZRMUnW4+jm49P/c9JAnusG6+b5TlSsq1yIiIuBWW5h9J7QeAMOnQkKS70QipWMMdBoFYxZApTrw4hCYNxFysnwnKxdUrkVERD6Z5FZbaHMxDJvirognEu3qnQ63fACdboAlj7i52D9u9p0q5qlci4hI+fbRf+Cd/4V2g+HnL6hYS2xJrASXPgpXPwt7VsOkHvDdLN+pYprKtYiIlF/LHoP3JsDpl8LQ56FCou9EImXjzKtg7IdQqyW8cj28fSdkHfWdKiZV8B1ARETEiyX/gnn3Q/sr4KqnIT7Bd6Ko8cjcNTw6f22B99/erzV39G8TxkRSLLWaw+j34IM/ul8st37iRrTrtvWdLKYY6+FSmUl1m9r0PVvCflwRkWg1bNJHAEwfe4HnJDFi8T/cUmVnDIEhT7nLSUup6HszSq2d664+mnUUBj0MHa51J0LGIGNMmrU2bFeB0rQQEREpXxY97Ir1WUNVrKX8at0fxi2FRp3cBZNm3gIZh32nigkq1yIiUn4sfAgWPAA/GwZXTlKxlvKtWgO4fhb0uRe+eQ0m9YTtn/tOFfVUrkVEJPZZCwv+AgsfhLNHwBX/hbh436lE/IuLh153ww2zITsDnu7vVtDxMG04Vqhci4hIbLMWPngAFv0VOoyEyx9XsRY5WbOuMG6Jmy7y3gSYNhyO7POdKiqpXIuISOyyFub/ARb/HTpeD5c9pmItUpBKtWD4S3Dx32D9B/BEd9i01HeqqKPutKpJAAAgAElEQVRyLSIisclamPt7d2W6TjfC4EchTv/tiRTKGDhvLNw0FxKSYfJgWPhXyM3xnaxMGGOaGGMWGGO+M8Z8a4y5Pdh96qeMiIjEHmvh/Xth2f9B55vgkn+qWIuURMMOMHaRW1Vn4V9g8mVwaLvvVGUhG/gfa2174Hzgl8aY9sHsUD9pREQktlgL706Ajx6HLmPgkn+oWIuURsWqMORJdwLw9pVumsia93ynCilr7Q5r7crAx4eB74FGwexTP21ERCR2WAvv3AOf/BfOu9XNHY3RC2OIhE2HEe7S6VUbwks/h/d+B9mZvlOVRAVjzPJ8b2NO9SBjTApwDvBJUAcL5skiIiIRIzcX5twFy5+BC26Dix5QsRYJlTqt4eZ5MPc+91ehzUvdpdNrtfCdrDiyrbWdC3uAMaYK8BrwG2vtoWAOppFrERGJfrm5MPsOV6y7/lrFWqQsJCS5S6UPmwr7N8ITPeHrGb5TBc0Yk4Ar1lOttTOD3Z/KtYiIRLfcXHj7dljxPHS/A/r/UcVapCydPtitiX3aGfDaTTDrNsg84jtVqRhjDPAM8L219p+h2KfKtYiIRK/cHHjzV7DyBehxF/S7X8VaJBxqNHFXdexxF3z+IjzZB3Z96ztVaXQDrgP6GmO+CLwNCmaHmnMtIiLRKTcHZv0SvpwGvcZD7/Eq1iLhFF8B+t0HzXvAzDHwVF8Y8BfoPNrrv8VH5q7h0flrj99OrN+qUkGPtdYuAUIaViPXIiISfXJz4I1bXbHu/VvoM0HFWsSXFr3dNJFm3WD2nfDqKDh6wFucO/q3YdNDl7DpoUs4r3ktMneuSwvn8VWuRUQkuuRku1Gyr6ZD33uh9z2+E4lIlXpw7Qx3zsOq2fBED9j6me9UXqhci4hI9MjJhpm3wDcz3Pzqnnf7TiQix8TFQbfb4cZ33USL5wbCkn+5k47LEZVrERGJDjlZ8Npo+HamGx3rcafvRCJyKk3OhbGLod0lMO9+mHoVpO72nSpsVK5FRCTyZWfCjBvhu1lw0Z/d6JiIRK7kGjB0Mgx+BDYvc5dOX7/Ad6qwULkWEZHIlp0Jr94A378FAx6Errf5TiQixWGMWznklg8gqQZMuRLm/9FN74phKtciIhK5sjPgleth9Wy4+G9wwS98JxKRkjrtDBizAM4ZCYv/Ac8PggNbfacqMyrXIiISmbLSYfp1sOYdGPR3OG+s70QiUlqJleHyx+GqZ2DXd/BEN/fXqBikci0iIpEnKx2mXwtr33NzNrvc4juRiITCWVfDuA+hVguYPhJm3+X+vccQlWsREYksWUfh5Wtg3Ty49FE3Z1NEYketFjD6fbjgNvjsKXj6Qti7tujnRQmVaxERiRyZaTBtuFtV4LLHodMNvhOJSFmokAgD/gwjXoFDP8CkXvDFS75ThYTKtYiIRIbMIzBtGGxYBFf8Bzpe5zuRiJS1NgPg1qXQ8Bx441aYORYyDvtOFRSVaxER8S/zCLw0DDYtgSufgA4jfCcSkXCp1hBGvQm9fwtfv+JGsXd86TtVqalci4iIXxmp8OLVsHkpXPkknD3cdyIRCbe4eOh9D4x6y5138fSF8PETYG3J97XgQZhY3b1tWkKlBCqFPnDBVK5FRMSfjMPw4lWw9RMY8hT8bKjvRCLiU0p3GLcEWvaFd++Bl0dA2v6S7aPPBJh40L0lVScti7SyCXtqKtciIuJH+iGYMgS2fQZXP+OW6BIRqVwbrnkZBj4Ea+e6S6dvXuY7VbGpXIuISPilH4QXh8D2lTD0OTjjSt+JRCSSGAPn3wo3z4X4RHj+Elj0MOTm+E5WJJVrEREJr6MHYMqVsP1zGPo8tL/cdyIRiVQNz4GxH8KZV8GCB+CFy+HQDt+pCqVyLSIi4XP0R5hyBez4Cn4+BU6/1HciEYl0SdXcORmX/wd+WOGmiayd6ztVgVSuRUQkPNL2u1GnXd/CsBeh3SDfiUQkWhgD51wLYxZB1fow9Wp4/17IzvSd7CdUrkVEpOyl7YcXLoPdq2DYVGg70HciEYlGddvAzfPg3Jth2WPw3EDYv9F3qhOoXIuISNk6shcmXwp71sA1L0Gbi3wnEpFolpAMl/zDTS3btw4m9YRvZvpOdZzKtYiIlJ3UPa5Y71sHI16GVhf6TiQisaL9ZTB2MdRtBzNuhDd/DZlhXdL6lFSuRUSkbKTuhsmD3Z9sR0x3F4UQEQmlms3gxjnQ/U5Y+QI81Rd2f+81ksq1iIiE3uFd8PxgOLAFrn0FWvT2nUhEYlV8Alx4P1w3E9L2wpN9YMXz7tLpGYd0+XMREYlyh3a4Cz4c3AbXvgrNe/pOJCLlQcu+MG4pND0f3rrdTRWxNuwxVK5FRCR0Dm13xfrwDhg5A1K6+04kIuVJ1dNg5ExIrAzfvu4lQgUvRxURkdhz8Ac3xzp1D4x8zY0eiYiEW1wcZB7xd3hvRxYRkdhxYCs8P8gV6+tmqliLiF+V63k7tMq1iIgE58AWNxUkbT9c/wY06eI7kYiUd3evhYkHvRw6qHJtjHnYGLPKGPOVMeZ1Y0yNUAUTEZEo8OMmeO4SSD/ginXjzr4TiYjkMSbshwx25HoucKa19mfAGmBC8JFERCQq7N/oltvLOATXz4JGnXwnEhE5UcVqpGUR1ivLBFWurbXvW2uzAzc/BhoHH0lERCLevvVuKkhmKox6Exqe4zuRiEhECOWc69HAOwXdaYwZY4xZboxZbj2sOSgiIiGyb70bsc46CqPeggZn+04kIhIxilyKzxgzD6h/irt+Z62dFXjM74BsYGpB+7HWPgk8CZBUt6natYhINNq71hXr3CxXrOuf6TuRiEhEKXLk2lp7obX2zFO8HSvWNwCDgWttMYekbYWKdH5gblDBRUTKk5Wbf+STjfv9/uzcs9pNBcnNhlFvq1gLECHfmyIFWHm0Pon1W4X18udBXUTGGDMQ+F+gl7W2RJPF96ZmBnNoEZFyJSvXjV14+9m5exVMvtR9fMNsqNfOTw6JON6/N0UKkUV82I9pgpn/bIxZB1QE9gU2fWytHVfU8yo2aG0bjvoXFkiIM3RsVrPUGUREYtnKzT8eLy8ABsL/szMrDXZ+7Y5e/yxISA7PcSWiRcT3pkgB8r4/LTsm30HGjrVhW5MvqJFra22rUj838D7/P0wRETnRyT8jw/6zM/MI7PoGFWs5mffvTZFC5H0fhn+d66DKdTASK8SRmZ1LnSqJTB97ga8YIiIRrfMDc9mbmnl8VDCsPzt3fAUvjICaSXDD21C7ZdkeT6KK1+9NkSLkfX+G/5e9oKaFlFbFBq1tg1H/YtNDl4T92CIi0Shl/OzjH4flZ+f2L2DKFZBQya0KomItBQj796ZICaSMn82Oyb8J67SQUK5zXSJ1qiT6OrSISNRJiHP/L4TlZ+f2z+GFyyCxijt5UcVaChHW702R4ljwIEysDhOrk0B20Y8PMS8j10l1m9r0PVvCflwRkWg1bNJHAGX/5/YfVsALV0JSdTcVpGazsj2eRL2wfW+KlMKwSR/xyriuadbayuE6prc51yIiEmG2LYcpV0JyTVesazT1nUhEJOp4mxYiIiIRZOun8MIVUKmWmwqiYi0iUioq1yIi5d2Wj92IdZW6cMMcqNHEdyIRkbAxxjxrjNltjPkmFPtTuRYRKc82L4MpQ6BqfTdiXb2R70QiIuH2PDAwVDtTuRYRKa82LYEXr4ZqDV2xrtbQdyIRkbCz1n4I7A/V/lSuRUTKo40fwtShUL2xK9ZV6/tOJCISE7RaiIhIebNhIbw0HGqmwKg3oUo934lERMpSBWPM8ny3n7TWPllmByurHYuISARaNx9eHgG1WsL1s9xJjCIisS3bWts5XAdTuRYRKS/WznPFuk5ruP5NqFzbdyIRkZijOdciIuXBmvfh5WugbhsY9ZaKtYhIgDFmGvAR0NYYs80Yc1Mw+9PItYhIrFv9LrxyHdQ7Ha57w10oRkREALDWXhPK/WnkWkQklq2aDdNHwmlnujnWKtYiImVKI9ciIpFqwYOw6CH3cca97v3EfNc56DUe+kwo+PnfvwWv3gANOsDI1yC5RplFFRERR+VaRCRS9ZmQV57/EFg16v6DxXvud7NgxmhoeI4r1knVyyajiIicQNNCRERizTcz4dUboVEnGDlTxVpEJIxUrkVEYsnXM+C1m6FJl8CIdTXfiUREyhWVaxGRWPHVKzDzFmh6Plw7AypW9Z1IRKTcUbkWEYkFX74Mr4+FZt3g2lehYhXfiUREyiWVaxGRaPf5VHh9HKT0gBGvQGJl34lERMotlWsRkWi2cgrM+iW06A0jpkNiJd+JRETKNZVrEZFoteJ5ePM2aNkXrpkGCcm+E4mIlHsq1yIi0eizZ+Ct26H1RTD8JRVrEZEIoXItIhJtPn0KZt8JbQbCsBchIcl3IhERCdAVGkVEokHGIbAW/tIIMlOh7SAY+jxUqOg7mYiI5KORaxGRaGCte5+ZCu0Gw9DJKtYiIhFI5VpEJJI93Bom5rt8uYmDVW/DI2f4yyQiIgXStBARkUj04yZY/Q4c2X3idpvr3p+8XUREIoLKtYhIJMjNhe2fw+o5rlTv/tZtN/Fgc/IeF18RcjKgcj0/OUVEpFAq1yIivmQdhQ2LXKFe8y6k7nJlullXGPAXtxpI7ZbusRMedu9zMmDiQX+ZRUSkUCrXIiLhlLrHFenV78D6DyD7KCRWgVYXuhVAWveHSrV++jxj3EmNGrEWEYloKtciImXJWti7Jm+6x9ZPAQvVGsM5I6HtxZDSveiVPypWc+/vXlvmkUVEpPRUrkVEQi0nG7Z+7Mr06jmwf4Pb3uBs6D3eFer6P3Oj0SIiElNUrkVEQiHjMKyb7wr12vfg6I8QnwjNe8IFv3Tzp6s39p1SRETKmMq1iEhpHdwWGJ1+BzYthpxMSK4JrQdAu0HQsi9UrOo7pYiIhJHKtYhIcVkLO79yZXrVbPcxQK0W0GWMOyGxyXkQrx+tIiK+PDJ3DY/Ozzs/JbF+q0rhPL7+BxARKUx2hhuVPjZCfegHwLgSfeEfXKGu01rzp0VEIsQd/dtwR/82x2+bvw5OC+fxVa5FRE6Wth/Wvu9ORlw3HzJTIaGSm+bR57du2keVur5TiohIBFK5FhEB2Lc+b3R6y0fuqohV6sNZV7vR6eY9ISHZd0oREYlwKtciUj7l5sC25XnrT+9d7bafdib0uNMtl9fgHIiL85tTRESiisq1iJQfmUdg/QJXpte8C2l7Ia4CNOsGnUdD24FQM8V3ShERiWIq1yIS2w7vzLvc+IaFkJ0OFau7y4y3vdhddjy5hu+UIiISI1SuRSS2WAu7v8ub7vHDCre9RlPodKMr1M26QnyC35zFseBBWPSQ+zjjXvd+YvW8+3uNhz4Twp9LREQKpHItItEvJws2LwsU6jlwYIvb3qgT9L3XnZBYr330LZfXZ0JeeZ70kXs/9qC/PCIiUiSVaxGJTkcPwLp5gcuNz4WMg1AhCVr0hh7/4y43XrW+75QiIlLOqFyLSPT4cXNgubw5sHkp5GZDpTpw+qXucuMtekNiZd8pRUSkHFO5FpHIlZsLOz4PXG58Duz+1m2v0xYuuM1N92jcGeLi/eYUEREJULkWkciSdRQ2fhiYP/0upO4EEwdNL4CL/uxOSKzd0ndKERGRU1K5FhH/UvfA2vfcCPX6DyArDRKrQKt+bnS69UVQqZbvlCIiIkVSuRaR8LMW9q7NWy5v6yeAhWqNoMMINzqd0gMqVPSdVEREpERUrkUkPHKyXYk+Vqj3r3fb6/8Met0TuNz42dG3XJ5IOfTI3DU8On/tCdtSxs8+/vHt/VpzR/824Y4lEhFUrkWk7GQcdtM8Vr8Da96Do/shLgGa94Tzb3WFunpj3ylFpITu6N9G5VmkACrXIhJaB3+ANe+4Qr3xQ8jJhOSa0HqAK9Mt+0JSNd8pRUREyoTKtYgEx1rY+XXe1RF3fOm212wOXca4Qt3kfIjXjxsREYl9+t9OREouOwM2LQlc0OUdOLQNMNCkC1w40a3wUaeN5k+LiEi5o3ItIsWTtt9dZnz1HFg3HzIPQ4VkN82j93h3ufEqdX2nFBER8UrlWkQKtn9D3tURt3wENgeqnAZnDnGj0y16QUKy75QiIiIRQ+VaRPLk5sAPK/KWy9uzym2vdwZ0v8MV6obnQFyc35wiIiIRSuVapLzLTIMNC1yhXvMeHNkDJh5SukGnG9x0j1rNfacUEREpE8aYgcCjQDzwtLX2oWD2p3ItUh4d3gVr3nWj0xsWQHY6VKwGrfu70elW/dzyeSIiIjHMGBMP/BvoD2wDPjPGvGmt/a60+wyqXBtj/gRcDuQCu4EbrLXbg9mniJQBa2H393nTPX5Y7rZXb+pGp9teDE27QoVErzFFRETCrAuwzlq7AcAY8zKu2/op18DD1tr7AmF+DfweGBfkPkUkFHKyYPOywHJ5c+DAZre9YUfoc68r1KedoeXyREQk1lUwxizPd/tJa+2TgY8bAVvz3bcNOC+ogwXzZGvtoXw3KwM2mP2JSJDSD8K6ea5Qr33f3Y6vCC16uxMS2wyEag18pxQREQmnbGtt53AdLOg518aYPwPXAweBPoU8bgwwBiCxduNgDysix/y4OTB/eo67sEtuNlSqDe0G511uPLGy75QiIiKR6AegSb7bjQPbSs1YW/hgszFmHlD/FHf9zlo7K9/jJgBJ1tr7izpoUt2mNn3PlpJmFRGA3FzY8UXe/Old37jtddq4Mt12EDQ+F+Li/eaUkBo26SMApo+9wHMSEZHoYoxJs9aecpTJGFMBWAP0w5Xqz4AR1tpvS3u8IkeurbUXFnNfU4E5QJHlWkRKKCsdNn4YWC7vXTi8A0wcNDkf+v8pcLnxVr5TioiIRBVrbbYx5jbgPdxSfM8GU6wh+NVCWltr1wZuXg6sCmZ/IpLPkb1u3enVc2D9Asg6AgmV3TJ5bQdB64ugcm3fKUVERKKatXYOboA4JIqcFlLok415DWiLW4pvMzDOWlvkPBVNCxEpwN61rkyvmgNbPwEsVG2YN90jpTskJPlOKWHyyNw1PDp/bYH3396vNXf0bxPGRCIi0aewaSFlcrxgynVpqVyLBOTmuBJ9bP70vnVue/2zXJluezE06KDl8kREREop3OVaV2gUCbeMVFj/gSvTa96Fo/shLgGa94Dzxrnl8mo0KXo/IiIiEnFUrkXC4dD2wMVc3oGNiyAnE5JqQJsBgeXy+kFSNd8pRUREJEgq1yJlwVrY+XXe1RF3fOG210yBc28JXG78fIhP8BpTREREQkvlWiRUsjNh85K8EeqDWwHj1pzud7+bQ123reZPi4iIxDCVa5FgpO0PXG58DqydB5mHoUIytOwDve5x0z6q1POdUkRERMJE5VqkpPZvyBud3rwMbA5UrgdnXulGp5v3gsRKvlOKiIiIByrXIkXJzYUfVuQtl7fne7e9Xnvo/htXqBt2hLg4vzlFRETEO5VrkVPJTIMNCwOXG38PjuwGEw/NukLHB90JibWa+04pIiIiEUblWuSY1N1u3elVc2DDAshOh4rVoNWFgcuNXwjJNX2nFBERkQimci3ll7WwZ1XedI9tywEL1ZtAx1FudLpZN6iQ6DupiIiIRAmVaylfcrJgy0d560//uMltb3gO9PmtK9Snnanl8kRERKRUVK4l9qUfhHXzXaFe+z6kH4D4itCiF3S73V1uvFpD3ylFREQkBqhcS2w6sAVWv+tGpzctgdwsSK7l5k63vRha9oWKVXynFBERkRijci2xwVrY/nne+tO7vnbba7eG8291pbpJF4iL95tTREREYprKtUSvrHTYtDjvhMTDO8DEQZPzoP+f3Ah1nda+U4qIiEg5onIt0eXIPlj7nivU6z6ArCOQUBla9Q0sl3cRVK7jO6WIiIiUUyrXEvn2rssbnd76MdhcqNoAzh7mCnVKD0hI8p1SREREROVaIlBuDmz9NK9Q71vrtp92FvS4C9oNggYdtFyeiIiIRByVa4kMGanuqoir5rhpH2n7IC4BUrpDlzHQdiDUaOo7pYiIiEihVK7Fn0M7YE1gdY8NiyAnA5KqQ+sB7mTEVv3cbREREZEooXIt4WMt7Pom7+qI2z9322s0g3NvcoW66QUQn+A3p4iIiEgpqVxL2crOhM1L89afPrgFMNC4M/T7vTshsW47zZ8WERGRmKByLaF39EdYOy+wXN48yDgEFZKhZR/odbeb9lH1NN8pRUREREJO5VpCY//GvOkem5eBzYHKdaH95W50ukVvSKzkO6WIiIhImVK5ltLJzYXtK/OWy9v9ndte93Todrsr1I06QVyc35wiIiIiYaRyLcWXmQYbFwUK9btwZDeYeGjWFQY86JbLq9XCd0oRERERb1SupXCpu2HNu250ev0CyD4KiVWh9YVudLrVhVCplu+UIiIiIhFB5VpOZC3sWZ033WPbZ4CFao2h43Vuubxm3aFCou+kIiIiIhFH5VogJxu2fJR3QuKPG932Bh2g9wRXqOufpeXyRERERIqgcl1epR+C9fNdoV7zHqQfgPhEaN4Luv4K2gyE6o18pxQRERGJKirX5cmBrYH503Ng42LIzYLkWm5kuu3F0LIvVKzqO6WIiIhI1FK5jmXWwo4v8qZ77Pzaba/VEs4f505IbNwF4vVtICIiIhIKalWxJjvDjUofOyHx8HbAQNPzof8fXaGu09p3ShEREZGYpHIdC47sg7Xvu0K9/gPITIWESm6aR9t7oc0AqFzHd0oRERGRmKdyHa32rc8bnd7yEdhcqFIfzhrqRqeb94SEJN8pRURERMoVletokZvj1pw+Vqj3rnHbTzsTetzlTkhs0EGXGxcRERHxSOU6kmUecVdFXD3HrfKRtg/iKkBKdzj3ZrdcXs1mvlOKiIiISIDKdaQ5tCPvcuMbFkJOBiRVh9YXudHpVhe62yIiIiIScVSufbMWdn2bt1ze9pVue41m0Hk0tBsETS+A+AS/OUVERESkSCrXPuRkwealeYX6wBa3vVFn6HufOyGx3um63LiIiIhIlFG5DpejB2DdPFem186DjINQIQla9HEnJLYZAFXr+04pIiIiIkFQuS5LP27KG53evAxys6FSHWh/qRudbtEHEiv5TikiIiIiIaJyHUq5ubD987zl8nZ/67bXbQddf+UKdaNOEBfvN6eIiIiIlAmV62BlHYUNi/KWy0vdBSYOmnaFi/7sVvio3dJ3ShEREREpIWPMUGAicDrQxVq7vKjnqFyXRuqevOXy1n8A2UchsYpbJq/tIGjdHyrV8p1SRERERILzDTAEmFTcJ6hcF4e17oqIx6Z7bP0UsFCtMZwz0o1Op3SHChV9JxURERGRELHWfg9gSrCCm59ybXNhYr4LofQaD30meIlSoJxs2Ppx3gmJ+ze47Q3Oht7jXaGu/zMtlyciIiIix/kbuZ540NuhC5RxGNbND8yffg/SD0B8IjTvCRf80l1uvHpj3ylFREREpPgqGGPyz5V+0lr75LEbxph5wKnWQ/6dtXZWiQ9WioCx5eC2wOj0O7BpMeRkQnJNV6TbDYKWfaFiVd8pRURERKR0sq21nQu601p7YSgPVv7KtbWw8ytYNceNUO/8ym2v1QK6jHEnJDY5D+LL30sjIiIiIsEx1tqwHzSpTmObvndb+A6YneFGpY+NUB/6ATCuRLe92BXqOq01f1pEREQkxhhj0qy1lUv53CuBx4C6wAHgC2vtgEKfE7PlOm0/rH3fjU6vmw+ZqZBQyU3zaHsxtB4AVeqWbQYRERER8SqYcl0asTX3Yd/6vNHpLR+BzYEq9eGsq93odPOekJDsO6WIiIiIxKjoLte5ObBted7603tXu+2nnQk97nQj1A3Ogbg4vzlFREREpFyIvnKdeQTWL3Bles27kLYX4ipAs27QeTS0HQg1U3ynFBEREZFyKDrK9eGdeZcb37AQstOhYnV3mfG2F7vLjifX8J1SRERERMq5yCzX1sLu7/Kme/ywwm2v0RQ63egKdbOuEJ/gN6eIiIiISD6RU65zsmDzskChngMHtrjtjTpB33vdCYn12mu5PBERERGJWP7K9cOt4bbPYN08Nzq9di5kHIQKSf/f3r3F2lWVYRh+P9oCtaIYi5FQtIBcGM9KqoaYNHgIKrYXktgLD3hMTIjVoAQx8XRnNGo8REOQAGoUA8RUhBgMJOoFSKlUBDw0hmgJWgUsUkhN6e/FmtRms3f33GWsNbuW75Ps7MMc7fzzZXSPv2uNOSecuh5ed8HoKYnHzfc0SkmSJOnIM1xzvWcXfPE02L8PnrYaXvi20ePGT10PR0/sVoSSJElSMwNuC8mosV75LPj4H+GoZcOVIkmSJDUw4A2guydDPvaQjbUkSZJmwnDN9bJjRp9XPWewEiRJkqSWmmwLSXIB8CXghKr6Z68/9Phe+OzuFqeXJEmSjghP+ZXrJCcDbwL+sqQ/6CvWkiRJmjEttoV8BbiQA5uoe/rEnxqcWpIkSTpyPKXmOslG4L6q2t5j7IeSbE2ydWlduCRJkjQdFt1zneTnwHxPcvkUcDGjLSGLqqpLgEsAjl29xv5akiRJM2fR5rqq3jDfz5O8BDgF2J7RI8nXANuSrKuqvzWtUpIkSZoCh323kKq6EzhwVWKSe4Ezet8tRJIkSZoxAz5ERpIkSZotzR5/XlVrW/1dkiRJ0jTylWtJkiSpEZtrSZIkqRGba0mSJKmRZnuul6JWrGTtRT898P3m0/7Oxz74viFKkSRJkppJ1eSf57Jq1aras2fPxM8rSZKk/y9JHq2qVZM6n9tCJEmSpEZsriVJkqRGbK4lSZKkRmyuJUmSpEZsriVJkqRGbK4lSZKkRmyuJUmSpEZsriVJkqRGbK4lSZKkRmyuJUmSpEZsriVJkqRGbK4lSZKkRmyuJUmSpEZSVZM/abIfeGziJ55dy4F9QxcxI56T8tsAAAStSURBVMyyLfNsyzzbMcu2zLMt82xrZVVN7AXl5ZM60RzbquqMgc49c5JsNc82zLIt82zLPNsxy7bMsy3zbCvJ1kmez20hkiRJUiM215IkSVIjQzXXlwx03lllnu2YZVvm2ZZ5tmOWbZlnW+bZ1kTzHOSCRkmSJGkWuS1EkiRJamSszXWSs5P8IcmOJBfNc/yYJFd1x29Nsnac9UyzHlmel+QfSe7oPj4wRJ3TIsllSXYl+d0Cx5Pka13ev03yyknXOC16ZLk+ye6D5uanJ13jNElycpKbk9yd5K4km+cZ4/zsoWeWzs+ekhyb5NdJtnd5fm6eMa7rPfXM07V9CZIsS/KbJNfNc2xic3Nst+JLsgz4JvBGYCdwW5ItVXX3QcPeDzxUVS9Isgn4AvCOcdU0rXpmCXBVVZ0/8QKn0+XAN4ArFzj+ZuD07uPVwLe6z3qyyzl0lgC/rKpzJlPO1NsHXFBV25IcB9ye5MY5/96dn/30yRKcn33tBc6qqkeSrAB+leSGqrrloDGu6/31yRNc25diM3AP8Ix5jk1sbo7zlet1wI6q+nNV/Qf4IbBxzpiNwBXd11cDr0+SMdY0rfpkqSWoql8ADx5iyEbgyhq5BTg+yYmTqW669MhSS1BV91fVtu7rfzNaKE6aM8z52UPPLNVTN98e6b5d0X3MvXDLdb2nnnmqpyRrgLcCly4wZGJzc5zN9UnAXw/6fidP/qV2YExV7QN2A88eY03Tqk+WAG/v3iK+OsnJkyltZvXNXP28tnvr84YkLxq6mGnRvW35CuDWOYecn0t0iCzB+dlb97b7HcAu4MaqWnBuuq4vrkee4Nre11eBC4H9Cxyf2Nz0gsbZ8RNgbVW9FLiR//3vTBraNuD5VfUy4OvAjweuZyokeTpwDfDRqnp46Hqm2SJZOj+XoKoer6qXA2uAdUlePHRN06xHnq7tPSQ5B9hVVbcPXQuMt7m+Dzj4f1hrup/NOybJcuCZwANjrGlaLZplVT1QVXu7by8FXjWh2mZVn/mrHqrq4Sfe+qyq64EVSVYPXNYRrdt/eQ3w/aq6dp4hzs+eFsvS+Xl4qupfwM3A2XMOua4fhoXydG3v7UxgQ5J7GW2dPSvJ9+aMmdjcHGdzfRtwepJTkhwNbAK2zBmzBXhP9/W5wE3ljbfns2iWc/ZbbmC0t1CHbwvw7u6uDK8BdlfV/UMXNY2SPPeJfW1J1jH6veNiu4Auq+8A91TVlxcY5vzsoU+Wzs/+kpyQ5Pju65WMLrL//Zxhrus99cnTtb2fqvpkVa2pqrWMeqSbquqdc4ZNbG6O7W4hVbUvyfnAz4BlwGVVdVeSzwNbq2oLo196302yg9EFUZvGVc8065nlR5JsYHR1/IPAeYMVPAWS/ABYD6xOshP4DKOLSaiqbwPXA28BdgCPAu8dptIjX48szwU+nGQf8BiwycX2kM4E3gXc2e3FBLgYeB44P5eoT5bOz/5OBK7o7mB1FPCjqrrOdf2w9cnTtf0pGGpu+oRGSZIkqREvaJQkSZIasbmWJEmSGrG5liRJkhqxuZYkSZIasbmWJEmSGrG5liRJkhqxuZYkSZIasbmWJEmSGvkvPOs8Pzwt1xsAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 864x432 with 2 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[df_demo[\"F\"] < 0][[\"A\", \"F\"]]\\\n", " .plot(\n", " style=[\"-*r\", \"--ob\"], \n", " secondary_y=\"A\", \n", " figsize=(12, 6),\n", " yerr={\n", " \"A\": df_demo[df_demo[\"F\"] < 0][\"C\"], \n", " \"F\": 0.2\n", " }, \n", " capsize=4,\n", " title=\"Bug: style is ignored with yerr\",\n", " marker=\"P\"\n", " ); "]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Combine Pandas with Matplotlib\n", "\n", "* Pandas shortcuts very handy\n", "* But sometimes, one needs to access underlying Matplotlib functionality\n", "* No problemo!\n", "* **Option 1**: Pandas always returns axis\n", " - Use this to manipulate the canvas\n", " - Get underlying `figure` with `ax.get_figure()` (for `fig.savefig()`)\n", "* **Option 2**: Create figure and axes with Matplotlib, use when drawing\n", " - `.plot()`: Use `ax` option"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["### Option 1: Pandas Returns Axis"]}, {"cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAEVCAYAAAA4vUvOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Wd4VNX+9vHvSiGh995CC71D6KCoCAg2OopUwQaiWFDPsfzP8ajYQLBQFBFRiqKoCAqK9A4JNfQeeiAhhNRZzwvieTgYJG2yk5n7c11cJtl79r5nOZP5Za+yjbUWEREREcl6Pk4HEBEREfFUKrRERERE3ESFloiIiIibqNASERERcRMVWiIiIiJuokJLRERExE1UaIl4GWPMq8aYL/9m+05jzC1ZcJ4XjTHT/mb7IGPMqgwee5ExZmDG04mIZA8/pwOISNYyxsRc820+IB5ITvl+xM0eb62tm4Fz3gJ8aa2tcM1x/nPN9iDgEOBvrU1K7/FTydgls8dwkjHmVaC6tfZBp7OIiHvpipaIh7HWFvjzH3AU6H7Nz2Y5nc+bGWP0x62Il1GhJeKd8hhjvjDGXErpKmz25wZjzGFjzO0pX4cYYzYZY6KNMaeNMe9dfyBjTH5gEVDOGBOT8q/cdV2UK1L+ezFle6tUjlPLGLPEGBNpjNljjOl9o/DGmD+MMcNSvq5ujFlujIkyxpwzxsy5wWMCjTFfGmPOG2MuGmM2GmNKX/+cU77/b3ZjTJAxxhpjhhtjIowxJ40xz1yzr48xZqwx5kDKsecaY4pd99ihxpijwO83ek4i4plUaIl4p7uB2UAR4Adg0g32mwBMsNYWAqoBc6/fwVp7GegCRFxz5Sziut3ap/y3SMr2tdduTCnWlgBfAaWAvsBHxpg6aXgu/wJ+BYoCFYCJN9hvIFAYqAgUBx4BrqTh+H+6FagBdAKev6YwGwncC3QAygEXgA+ve2wHoDZwZzrOJyIeQIWWiHdaZa392VqbDMwEGt5gv0SgujGmhLU2xlq7zk15ugGHrbXTrbVJ1tqtwLdArzQ8NhGoDJSz1sZZa280wD6RqwVWdWttsrV2s7U2Oh0ZX7PWXrbWbgemA/1Sfv4I8JK19ri1Nh54Feh5XTfhqymPTU9hJyIeQIWWiHc6dc3XsUDgDcYPDQWCgfCUrrZubspTGWiR0qV30RhzEXgAKJOGxz4HGGBDSjfokBvsNxP4BZid0gU4zhjjn46Mx675+ghXr179mf27a3Lv5urkg9I3eKyIeBENzBSRG7LW7gP6GWN8gPuBb4wxxVO6C/9n15sd6ibbjwHLrbV3ZCDjKeBhAGNMW2CpMWaFtXb/dfslAq8Br6XMgvwZ2AN8Clzm6gzNP6VW4FUEwlO+rgT82T16DBhirV19/QNSzgPXPX9r7atpeW4ikvvpipaI3JAx5kFjTElrrQu4mPJjVyq7ngaKG2MK3+BQZ1MeV/UG238Cgo0xA4wx/in/mhtjaqchYy9jzJ/LSlzgalHzl4zGmFuNMfWNMb5ANFe7Ev/cLxTom3LeZkDPVE71T2NMPmNMXWAw8Oeg+0+A140xlVPOU9IYc8/NcouId1ChJSJ/pzOwM2VtrglA39TGGVlrw4GvgYMpXWjlrtseC7wOrE7Z3vK67Ze4Osi8L1evFJ0C3gIC0pCxObA+JeMPwJPW2oOp7FcG+IarRdZuYDlXuxMB/snVwf4XuHrV66tUHr8c2A/8Brxjrf015ecTUs77qzHmErAOaPF3gW+2mKuIeA5j7c2u6IuIeK+sXmxVRLyLrmiJiIiIuIkKLRERERE3UaElIo66wSrsWTIj+voV3zPCWnvYWmvUbSgiGaFCS0QyJbVixhgzyBhzo4VD3ZXjc2PMv7PznKlkyHRhJyKeRYWWiMhNZNUVNhHxPiq0RMTtUm4y/a0x5qwx5pAxZlQ6HvdDyo2m9xtjHr7BfsO5upL8cyk3rf7xms2NjDHbUm46PccYE3jN47oZY0JTlpxYY4xpcM22w8aY540x24DLxhi/jD4PEfFeKrRExK1SVpX/EQgDygO3AaONMWm5wfJs4DhXb3fTE/iPMabj9TtZa6cAs4BxKTet7n7N5t5cXQ+sCtAAGJSSqzHwGTCCq/dAnAz8YIy5du2ufsBdXL35tisTz0NEvJQKLRHJCt9fd5/Cj67Z1hwoaa39P2ttQspiolO5ujjpDRljKgJtgOdTbhYdCkwDHkpntg+stRHW2kiuFkqNUn4+HJhsrV2fcpPpGUA80PK6xx5LWaQ1Q89DRLybxh2ISFa411q79M9vjDGDgGEp31YGyqUUYH/yBVbe5JjlgMiUVeP/dARols5s199A+9qbQQ80xoy8Znuea7bD/94MOqPPQ0S8mAotEXG3Y8Aha22NdD4uAihmjCl4TbFVCThxg/3Te5uLY8Dr1trX/2afa4950+dhrQ1KZwYR8XDqOhQRd9sAXEoZWJ7XGONrjKlnjGn+dw+y1h4D1gBvGGMCUwaqDwW+vMFDTnPjm1anZirwiDGmhbkqvzHmLmNMwax8HiLi3VRoiYhbWWuTgW5cHRt1CDjH1bFWhdPw8H5AEFevbn0HvHJtF+V1PgXqpIwT+z4NuTYBDwOTuHoz6f2kDJTP6PMwxuw0xtxys3OLiPfQTaVFRERE3ERXtERERETcRIWWiIiIiJuo0BIRERFxExVaIiIiIm7iyDpaJUqUsEFBQU6cWkRERCRdNm/efM5aWzIjj3Wk0AoKCmLTpk1OnFpEREQkXYwxRzL6WHUdioiIiLiJCi0RERERN1GhJSIiIuImKrRERERE3ESFloiIiIibqNASERERcRMVWiIiIiJuokJLcqxLcYl8tf4oVxKSnY4iIiKSISq0JEey1vLidzt48bvtDJq+gZj4JKcjiYiIpJsKLcmRvg89wY9hEdxeuxSbjlzgoU/XE3Ul0elYIiIi6aJCS3KcY5GxvPz9TppVLsrkAc34sH9jtp+I4oFp67hwOcHpeCIiImmmQktylGSXZczcMCzwfp9G+PoYOtcry+QBTdl7OoZ+U9dx9lK80zFFRETSRIWW5CifLD/AhsOR/N89dalYLN9/f96xVmk+G9icw+cv03fKWk5FxTmYUkREJG1UaEmOse34Rd5fspduDcpyX+Pyf9netkYJvhjSglNRcfSZspbjF2IdSCkiIpJ2KrQkR4hNSGL07FBKFgzg9XvrY4xJdb+QKsWYOawFkZcT6DN5HUfOX87mpCIiImmnQktyhH8v3M2h85d5t3dDCufz/9t9m1QqytcPtyQ2IYlen6xl/5mYbEopIiKSPiq0xHFLd53mq/VHGd6uKq2rlUjTY+qVL8zs4a1wWUvfKWsJPxXt5pQiIiLpp0JLHHX2UjzPf7uNOmUL8XSn4HQ9tmaZgswZ0Qo/Hx/6TlnH9uNRbkopIiKSMSq0xDHWWp77JoyY+CQm9G1EgJ9vuo9RrWQB5o5oRf48fvSfto7NRy64IamIiEjGqNASx3y57gjL9pzlxa61qVG6YIaPU6l4PuY+0ori+fPw0KfrWXfwfBamFBERyTgVWuKI/Wcu8e+Fu+kQXJKHWlXO9PHKF8nLnBGtKFM4kEHTN7Bi79ksSCkiIpI5KrQk2yUkuXhydij5A/x4u1eDGy7lkF6lCwUyZ0QrgornZ9iMTfy2+3SWHFdERCSjVGhJtntvyV52RkTz5v31KVUwMEuPXaJAALOHt6RW2YKMmLmZRdtPZunxRURE0kOFlmSrtQfOM3nFAfqFVKRT3TJuOUeRfHn4clgLGlYswhNfb2VB6Am3nEdERORmVGhJtomKTWTM3FCCiufnn93quPVchQL9+WJICM2DijJ6TihzNx5z6/lERERSo0JLss0/F+zg9KV4xvdpRL48fm4/X/4AP6YPCqFt9RI89+02vlh72O3nFBERuZYKLckW3289wQ9hEYy+rQYNKxbJtvPmzePLtIHNuL12KV5esJOpKw5m27lFRERUaInbHYuM5Z/f76BZ5aI8dmv1bD9/gJ8vHz3QlLvql+X1n3cz8bd92Z5BRES8k/v7b8SrJbssY+aGYYH3+zTC1ydrlnJIrzx+Pimrz/vw7pK9xCe5GNMpOMuWlhAREUmNCi1xq0+WH2DD4Uje7dWQisXyOZrFz9eHd3o1JI+fD5OW7ScuMZmX7qqtYktERNxGhZa4zbbjF3l/yV7ualCW+5uUdzoOAD4+hv/cV58APx+mrTpEfJKL1+6ui49DV9pERMSzqdASt4hNSGL07FBKFgzgP/fWz1FXjXx8DK/eXZdAf18mrzhIXGIyb/Zo4Fi3poiIeC4VWuIWry/czaHzl5k1tAWF8/k7HecvjDGM7VKLAH9fPvhtHwnJLt7t1RA/X80PERGRrKNCS7Lc0l2nmbX+KMPbV6V19RJOx7khYwxP3xFMoL8P4xbvIT7RxQf9GpPHT8WWiIhkDX2iSJY6eyme57/dRu2yhRjTKdjpOGny2C3V+We3OizeeYpHvtxMXGKy05FERMRDqNCSLGOt5blvwoiJT0pZSsHX6UhpNrRtFf59bz1+Dz/DsBmbiE1IcjqSiIh4ABVakmW+XHeEZXvO8kKXWgSXLuh0nHR7sGVl3u7ZgDUHzjHos43ExKvYEhGRzMmSQssY85kx5owxZkdWHE9yn/1nLvHvhbvpEFySga2DnI6TYb2aVWR838ZsPnqBAZ+uJ+pKotORREQkF8uqK1qfA52z6FiSyyQkuRg9J5T8AX683bNBjlrKISPubliOD/s3YceJKB6Yto4LlxOcjiQiIrlUlhRa1toVQGRWHEtyn/eW7GXHiWjevL8+pQoFOh0nS3SuV4YpA5qx93QMfaes4+yleKcjiYhILpRtY7SMMcONMZuMMZvOnj2bXacVN1t38DyTVxygX0hFOtUt43ScLHVrrVJMH9Sco5Gx9JmyllNRcU5HEpFMstYyd9MxOo9fwYw1h0lIcjkdSTxcthVa1top1tpm1tpmJUuWzK7TihtFXUnk6TmhVC6Wj3/cVcfpOG7RpnoJZgwJ4Ux0PL0nr+X4hVinI4lIBl2KS+TJ2aE89802Ii8n8MoPO7nj/eUs3HYSa63T8cRDadahZNg/v9/B6UvxjO/bmPwBnrv2bUiVYswcGsLF2AR6f7KWw+cuOx1JRNIp7NhF7vpgFQu3n+SZTsGsfeE2pg9uTqCfL49/tYV7P1rDuoPnnY4pHkiFlmTIgtAT/BAWwejbatCoYhGn47hd40pF+erhllxJTKb35LXsP3PJ6UgikgYul2XKigP0+HgNyS7LnOEteaJjDXx9DLfWLMXPT7bj7Z4NOBMdR98p6xj6+Ub2ntb7W7KOyYrLpcaYr4FbgBLAaeAVa+2nN9q/WbNmdtOmTZk+rzjj+IVYuoxfSXCZgswZ3tKr7g+49/Ql+k9dj7WWL4e1oHbZQk5HEpEbOBcTz9Nzw1ix9yyd65bhrR4Nbnjv1bjEZKavPsxHf+zncnwSPZtW4Ok7alKmsGdM8JHMMcZsttY2y9BjneiXVqGVeyW7LP2mrGPXyWgWPdmOisXyOR0p2x08G0P/qeuJS0rmiyEhNKjg+Vf0RHKbVfvO8dTcUKKuJPJytzo80KJSmpaeuXA5gQ+X7eeLtUfw8YEhbarwyC3VKBSYeoEm3iEzhZb3XIqQLDF5xQE2HI7ktbvremWRBVC1ZAHmjmhFgQA/Hpi6ns1HtLKJSE6RmOzircXhDPhsPYXz+vPDE214sGXlNK/vVzR/Hv7RrQ6/jelA57pl+OiPA3QYt4zPVh0iPkn3QZX00xUtSbPtx6O476PV3Fm3DJP6N871C5NmVsTFK/Sfuo4zl+L5dGBzWlUr7nQkEa92LDKWUbO3svXoRfqFVOTlbnXJmydz91zdcSKKNxbtZvX+81Qslpdn76xFt/pl8fHx7t9/3kZdh+J2VxKSuWviSmLjk1k8uh1F8uVxOlKOcCY6jgemredoZCxTH2pG+2AtXSLihIXbTjJ2/jaw8EaP+nRrUC7Ljm2tZcW+c7y5KJzdJ6OpX74wL3SpRevqJbLsHJKzqetQ3O71n3dx8Oxl3uvdUEXWNUoVCmT28JZULVmAYTM2sXTXaacjiXiVKwnJvDB/G49/tYVqJQvw85PtsrTIAjDG0CG4JAtHtuW93g2JvJxA/2nrGTR9A+GnorP0XOJ5VGjJTf22+zRfrjvKw+2q6C+4VBQvEMDXD7egdtmCPPLlZhZuO+l0JBGvsOfUJe6etIrZG4/x6C3VmPdIK7eOHfXxMdzfpAK/jenAi11rseXIBbpMWMmYuWFEXLzitvNK7qauQ/lbZy/F03n8CkoVCuT7x1sT4Je58Q6eLDoukcHTN7L16AXe7d2Q+xpXcDqSiEey1jJr/VH+9dMuCgb6836fhrSrkf3d9hdjE/jojwN8vuYwAIPbBPHYLdUpnFczFD2NxmiJW1hrGTpjE6v2n+OnkW0JLl3Q6Ug53uX4JIbN2MS6Q+d547769A2p5HQkEY8SFZvI2PnbWLTjFO2DS/Jur4aULBjgaKbjF2J579e9fBd6gkKB/ozsWJ0BrSrrD1MPojFa4hZfrj/K7+FneKFLLRVZaZQ/wI/pg5vTvkZJxs7fzhdrDzsdScRjbDocSdcPVrJk12le7FqLzwc1d7zIAqhQNB/v9WnEwpHtaFixCP9euJuO7yzn+60ncLl0D0Vvp0JLUrX/TAyvL9xF++CSDGod5HScXCXQ35cpDzXljjqleXnBTqasOOB0JJFcLdllmfT7PvpMWYevj+GbR1szvH21HLfEQp1yhfhiSAhfDm1BkXz+jJ4TSvdJq1i175zT0cRB6jqUv0hIcnH/x6s5ceEKv4xuT6lCugVFRiQmuxg9J5SF207y9B3BjOxY3evXHhNJr9PRcYyeHcrag+e5u2E5Xr+vHgVzwSrtLpflx20RvP3LHo5fuEK7GiUY26UWdcsVdjqaZEBmug79sjqM5H7vL93LjhPRTB7QVEVWJvj7+jChTyMCfH14b8le4hKTefbOmiq2RNLo9/DTPDNvG1cSkhnXswG9mlbINe8fHx/DPY3K07leGWauPcKkZfvpNnEV9zYqz5hOwVQo6p131vBGKrTkf6w7eJ5Plh+gb/OK3Fm3jNNxcj0/Xx/e6dWQAH9fPvrjAHGJLv7ZrXau+bAQcUJ8UjLjFu/h01WHqFWmIJP6N6F6qQJOx8qQAD9fhrWrSq9mFfn4jwNMX32IhdtOMrB1ZR6/tbrWJfQC6jqU/4q6kkjXCSvx9zUsHNWO/AGqw7OKtZbXftzF52sO80CLSvzrnno5bnyJSE5w6NxlRn69hR0nohnYqjIvdK1NoL/nzN6LuHiF95fs5ZstxykY4Mfjt1ZnYOsgj3qOnkhdh5IlXl6wg1PRcXzzSCsVWVnMGMMr3esQ6O/LJ8sPEJ/k4q0eDfBVsSXyX99tPc4/vtuBn68PUwY0pZMHXlUvVyQvb/dqyNB2VXhrUThvLApnxprDjOlUk3sbl9fvBA+kT1MBYEHoCRaERvD0HcE0rlTU6TgeyRjD851rEujvw/il+0hIcvFu74b4+2ryr3i3y/FJ/HPBDuZvOUFIUDHG921EuSJ5nY7lVrXKFGL64BDWHLh6D8Ux88KYuvIgY7vUokNwSQ0v8CDqOhSOX4ily4SVBJcuyJzhLfHTB7/bffzHAd5aHM6ddUszsV8T8vipzcU77TgRxcivt3Lk/GWe6FiDUR2re93vIJfLsnD7Sd7+ZQ9HI2NpU704L3SpTb3ymqGYU2jBUsmwZJfl6blhWAvv927kdb/gnPLoLdV4pXsdftl5mhEzNxGXmOx0JJFsZa3ls1WHuP+jNVxJSOarh1vy9B3BXvk7yMfH0L1hOZY+3YFXutdh98lLdJu4iidnb+VYZKzT8SST1HXo5SavOMCGQ5G806shlYprunF2GtymCgF+vrz0/XaGztjI1IeakS+P3pLi+SIvJ/DsvDB+Cz/D7bVLMa5nQ4rl1+y7PH4+DG5ThR5NKzB5+QE+XXWIRdtP8WDLyozsWJ2iaqNcSV2HXmzHiSju/XA1neqW5sP+TTQmwCHfbj7Os9+E0axyMT4d1CxXLMYoklFrD5xn9JytXLicyAtdazGodZB+99zAqag43l+yl3mbj5E/jx+P3lqNIW2qaIaiA3RTaUm3KwnJ3DVxJbHxySwe3U5ruTjsx7AIRs8JpX75wswYEkLhvCq2xLMkJbv44Ld9TFy2nyrF8/NBv8Yag5RGe09fYtzicJbuPkOZQoE83SmYHk0qaIZiNtIYLUm313/excGzl3m3d0MVWTlA94bl+OiBJuyMiKL/1HVEXk5wOpJIljlx8Qr9pq7jg9/306NJBX4c2VZFVjoEly7ItIHNmTO8JaULB/LcN9voOmEly8LP4MTFEkkfFVpe6Pfw03y57ijD2lahTfUSTseRFHfWLcPUh5qx/0wMfaes5cylOKcjiWTa4h2n6DphJbsiohnfpxHv9GqodfoyqEXV4nz/WGs+eqAJ8UnJDP58I/2mriPs2EWno8nfUNehlzkXE0/n8SsoUSCABU+0IcBPff05zZr95xg6YxNlCwcy6+EWlC3s2esJiWeKS0zm9YW7mbnuCPXLF2Ziv8YElcjvdCyPkZjs4usNR5mwdB/nLydwV4OyPHdnTSoXVxu7g8ZoSZpYaxk6YxOr9p/jxyfaUrNMQacjyQ1sOhzJoOkbKZrfn6+GtaRiMc0Ildxj/5lLPPHVVsJPXeLhdlV49s5aWivOTS7FJTJ1xUGmrjxEksvFAy2uzlAsXiDA6WgeRWO0JE1mrT/K7+FnGNu5loqsHK5ZUDG+HNaCqNhE+kxey6Fzl52OJHJT1lpmbzhKt4mrOHspnumDm/PSXXVUZLlRwUB/nu5Uk+XP3kLPphWZue4IHd7+g0m/7+NKgtbnywl0RctL7D8TQ7eJK2keVIwZg0N0Q+NcYmdEFAM+3YCfj2HWsBbUKK0CWXKm6LhEXpy/nZ+2naRN9eK837sRpQoFOh3L6+w/E8O4xeH8uus0pQsF8NTtwfRsWsErF4LNSuo6lL+VkOTi/o9Xc+LCFRaPbk9p/fLLVfaevsQD09aT7LJ8ObQFdcoVcjqSyP/YevQCo2ZvJeJiHE/fEcwjHapp6QGHbTocyX9+3s2WoxepUaoAz3Wuxe21S2nNsgxS16H8rfFL97LjRDRv3N9ARVYuFFy6IHNHtCLAz0czjCRHcbksH/9xgF6frMXlgrkjWvL4rdVVZOUAzYKK8e2jrfnkwaYkuywPf7GJPpPXsfXoBaejeR0VWh5u/cHzfLz8AH2aVaRzvTJOx5EMqlIiP3NHtKJQXj8enLaeTYcjnY4kXu7MpTgGTt/AW4vD6VS3ND8/2Y6mlYs5HUuuYYyhc70y/PJUe/59bz0OnrvMfR+t4bFZmzXuMxup69CDRccl0mX8Svx8DT+Paqe1azzAyagr9J+6ntPRcXw6sDmtqhV3OpJ4oRV7z/L03FAuxSXxSve69AupqC6pXOByfBJTVx5kyoqDJCS56N+iEqNuq0EJzVC8KXUdSqpe/n4Hp6LjGN+nkYosD1G2cF7mDG9J+SJ5GTR9A8v3nnU6kniRxGQXbyzazUOfbaBY/jz88ERb+reopCIrl8gf4Mfo24NZ/uyt9A2pyKz1R+kwbhkTlu7jcnyS0/E8lgotD7Ug9ATfh0YwqmMNGlcq6nQcyUKlCgUye3hLqpUswMMzNvHrzlNORxIvcPR8LD0/Wcvk5Qfp36ISCx7XWny5VcmCAfz73voseao97YNL8v7SvXR4+w9mrT9CUrLL6XgeR12HHujExSt0Hr+CGqUKMHdEK03r9VBRsYk8NH0DO09EMaFvY+5qUNbpSOKhfgyL4MX528HAWz0a0LW+XmueZPORC7y5aDcbD1+gasn8PN+5Fp3qlNaVymuo61D+K9lleXpOKC6XZXyfxiqyPFjhfP58OTSExpWKMPLrLczfctzpSOJhYhOSeP6bbYz8eis1Shfg51HtVGR5oKaVizJ3RCumDGiKAUbM3EzPT9ay+Ygm3WQFfQp7mCkrDrL+UCSv3l2XSsV12xZPVzDQnxlDQmhZtThj5oXx9YajTkcSD7H7ZDTdJ65i7uZjPHZLNeaMaKVbQXkwYwyd6pbhl9HteeP++hyNjKXHx2sZMXMTB87GOB0vV8uSQssY09kYs8cYs98YMzYrjinpt+NEFO8t2UPX+mXo2bSC03Ekm+TL48dng5rTIbgkL8zfzuerDzkdSXIxay0z1x7mng9XEx2XxJdDW/Bc51r46+q4V/Dz9aFfSCWWP3sLY+4IZvX+83R6fwUvfredM5finI6XK2V6jJYxxhfYC9wBHAc2Av2stbtu9BiN0cp6VxKS6TZxJTHxSSx+sj1F8+dxOpJks/ikZEZ+tZVfd51mbJdaPNKhmtORJJe5GJvA899u45edp7mlZkne6dVQU/+93LmYeCb+to9Z64+Sx8+HYe2qMrx9VQp42Ux2p8dohQD7rbUHrbUJwGzgniw4rqTDf37ezYGzl3m3VyMVWV4qwM+XDx9oQveG5XhzUTgTlu7DickukjttPBxJ1wkr+T38DC91rc1nA5uryBJKFAjgtXvqsfTpDtxasxQf/LaPW95exsy1h0nUDMU0yYpCqzxw7Jrvj6f8TLLJsvAzzFx3hGFtq9C2Rgmn44iD/H19GN+nET2aVOD9pXsZ98seFVvyt5Jdlg9+20efyWvx9/Ph20db83D7qrrxvPyPoBL5+fCBJnz/eBuqlSzAPxfspNP7K1i0/aR+x9xEtl37M8YMB4YDVKpUKbtO6/HOxcTz7Ddh1CpTkGfurOl0HMkBfH0Mb/dsQIC/Dx//cYC4xGRe7lZHU7XlL05FxTF6zlbWHYzknkbl+Pe99SgY6O90LMnBGlUswuzhLVm25wxvLgrn0VlbaFypCC90qU1IFd2CKTVZUWidACpe832FlJ/9D2vtFGAKXB2jlQXn9XrWWp7/ZhvRcUnMGtaSQH9fpyNJDuHjY3j93noE+PkwffVh4pNc/PueerpKIf/12+7TPDMvjLhEF2/3bEDPphVUjEuaGGPoWKs0HYJL8e3m47xNRC1SAAAfhUlEQVS7ZA+9J6/l9tqlGdulJtVLaSHba2VFobURqGGMqcLVAqsv0D8Ljis38dWGo/wWfoaXu9XRCs3yF8YYXu5Wh0B/Xz7+4wDxiS7G9WyAr4otrxaflMybi8KZvvowdcoWYmL/xlQrWcDpWJIL+foYejevSPeG5fhs9SE++eMAnd5fQZ/mFRl9ezClCwU6HTFHyHShZa1NMsY8AfwC+AKfWWt3ZjqZ/K0DZ2P410+7aFejBINaBzkdR3IoYwzP3VmTvP6+vLdkL/FJybzfp5Gm6nupg2djGPn1VnZGRDOodRBju9TSlXDJtLx5fHn81ur0C6nExN/38eW6I3y39QTD2lZlRIeqXt8drVvw5EIJSS56fLyG4xdiWTy6vf5qkDSZvPwAbywKp1Od0kzs35gAP33AepNvNx/nnwt2kMfPh7d7NuSOOqWdjiQe6uj5WN75dQ8/hEVQLH8eRnWsTv8Wlcnjl3v/wHN6eQfJZhN+28v2E1G8cX99FVmSZiM6VOPV7nX4dddpRszcTFxistORJBvExCfx1JxQxswLo175wix6sp2KLHGrSsXz8UG/xvzwRBtqli7Iqz/u4o73l/PTtgivnKGoQiuX2XAoko/+OEDvZhXoXE/3HJP0GdSmCm/cX5/le88y5PONxCYkOR1J3Gj78Si6fbCSBaEneOr2YL5+uCVlC+d1OpZ4iQYVivDVwy2YPrg5ef19eeKrrdz74WrWHjjvdLRspa7DXCQ6LpEu41fi52v4eVQ78nvZyrySdeZvOc4z88JoWrkonw1q7vVjKDyNy2X5bPUh3locTokCAYzv04gWVYs7HUu8WLLLMn/Lcd5bspeTUXF0rFWK5zvXyjUTuTLTdahCKxd5ak4oP4RFMO+RVjSpVNTpOJLLLdx2kidnb6Vu+cJ8MTiEwvlUbHmC8zHxPDMvjGV7znJHndKM69FAd4uQHCMuMZnP1xzmw2X7uRyfRM+mFXjqjuAcf6VVhZYX+CEsglFfb2X07TUYfXuw03HEQyzZdZrHZ22heqkCzBwaQnHdciVXW7P/HKPnhHLxSiL/uKs2A1pW1tpYkiNduJzAh8v288XaIxgDQ9pW4dFbqlEoh15dV6Hl4U5cvELn8SuoUaoAc0e0wk9T8yULLd97luFfbKJSsXzMergFpQpqgkVuk5Ts4v2le/nojwNUKZGfSf2aUKdcIadjidzUschY3v11D9+HRlA0nz9PdKzBgy0r5bhZ0Sq0PFiyy9J/6jp2nIji5yfbUbl4fqcjiQdac+Acw2ZsokyhQGY93CLHX8aX/+/4hVienB3K5iMX6N2sAq/eXZd8eTR+U3KXHSeieGtxOCv3naNisbw806km3RuUyzF3s9DyDh5s6sqDrD8UySt311WRJW7TuloJvhgSwtlL8fSevJZjkbFOR5I0WLT9JF0nrGTPqUtM6NuIcT0bqsiSXKle+cLMHNqCL4aEUCDAnydnh3LPh6tZs/+c09EyTYVWDrbjRBTv/rqHLvXK0KtpBafjiIdrFlSMWQ+3IPpKEr0nr+Xg2RinI8kNxCUm8+J323l01haqlMjPwlFtuadReadjiWRa++CSLBzZlvf7NCTycgL9p61n4Gcb2H0y2uloGaauwxzqSkIy3SauJCY+icVPttesIck2uyKiGfDpenx8DF8Na0GN0rlj+rW32Hv6EiO/2sqe05cY0b4qYzrVzNUrbovcSFxiMjPXHmHSsv1ExyVyf+MKPN0pmPJFsn9og7oOPdAbi3Zz4Oxl3unVUEWWZKs65Qoxe3hLDNBnyjp2RkQ5HUkAay1frT/K3ZNWcS4mnhlDQniha20VWeKxAv19ebh9VVY8eyvD21Xlx20R3PrOH7yxaDdRsYlOx0szvUNzoGXhZ/hi7RGGtq1CuxolnY4jXqhG6YLMGdGKQD8f+k1ZR9ixi05H8mpRVxJ54qutvPjddppVLsaiJ9vRIVi/G8Q7FM7nzwtda7PsmVvo3qAcU1YcpP3by5i64mCuuJWYug5zmHMx8XQev4ISBQL4/vE2BPrnrCmu4l2ORcbSf9o6LlxOZPrg5jQPKuZ0JK+z+cgFRn29lVPRcYzpFMwj7avlmJlYIk7YFRHNW4vDWb73LOWL5OWZO4O5p2F5t74v1HXoIay1jP12G9FxSYzv20hFljiuYrF8zB3RilIFA3jo0w0eMQMot3C5LB8u20/vyWsxBuY90orHbqmuIku8Xp1yhZgxJIRZw1pQNL8/T80Jo9vEVazcd9bpaKlSoZWDfLXhKEt3n+H5zrWoVUaLDUrOULZwXmaPaEnFYnkZ/PlG/thzxulIHu9MdBwDPlvP27/soXPdMiwc1U633RK5TpvqJfjh8bZM6NuI6LhEBny6gQGfrmfHiZw1rlRdhznEgbMx3PXBSpoHFWPG4BD91So5TuTlBAZ8up69py/xYf8mdKpbxulIHumPPWcYMzeMywlJvNK9Ln2bV9RtdERuIj4pmS/XHWXi7/u4GJvIfY3LM6ZTMBWK5suS42tl+FwuMdlFj4/XcDQyll9Gt6d0Id0CRXKmqNhEBk7fwI4TUYzv24huDco5HcljJCS5ePuXcKauPETN0gWZ1L+xltYQSaeoK4l8svwAn606hLXwUKvKPNGxOkXyZW72vsZo5XLjl+5l2/Eo3ry/voosydEK5/Nn5tAQGlcqwqivt/Lt5uNOR/IIh89dpucna5i68hAPtKjEgifaqMgSyYDCef15vnMt/nj2Fu5pVI5PVx+i/bhlfLL8gGMzFHVFy2EbDkXSZ8paejWtwLieDZ2OI5ImsQlJPPzFJlbvP89/7qtP/xaVnI6Uay0IPcFL3+3Ax8BbPRrQpX5ZpyOJeIzwU9G8tSicZXvOUq5wIE93qsl9jcvjm87hOeo6zKWi4xLpMn4lfr6GhaPaUSBA9yiT3CMuMZlHv9zMsj1neaV7HQa3qeJ0pFwlNiGJVxbsZN7m4zStXJQJfRtl2XgSEflfaw+c581Fuwk7HkWtMgUZ26UWHYJLpnn8o7oOc6lXFuzkVHQc7/dppCJLcp1Af18mD2jGnXVL89qPu/j4jwNOR8o1dkZE0W3iKr7Zcpwnbq3OnOEtVWSJuFGrasX5/vE2TOrfmNiEZAZN38gD09az/bj7Zyiq0HLID2ERfLf1BCM7Vte0bcm18vj5MKl/E7o3LMdbi8MZv3QvTlwlzy2stcxYc5j7PlxDTFwSs4a24Jk7a+Lnq1/FIu5mjKFbg3IsfboDr3avQ/ipS3SftIpRX2/lWGSs286ryygOiLh4hX98t53GlYrwxK3VnY4jkin+vj6M79OIAD8fxi/dR1yii+c719SSBNe5cDmB577dxpJdp7m1Zkne6dWQ4gUCnI4l4nXy+PkwqE0VejStwOTlB5m26iCLdpxkQMsgnuhYnWJZfH9hFVrZLNlleXpuKMkuy/g+jfSXrHgEXx/DuB4NCPT3+e/snle611GxlWL9wfOMnhPKuZh4/nFXbYa2raK2EXFYwUB/nrmzJg+2rMz4pXv5fM0h5m06xiO3VGNImyrkzZM1d2dRoZXNpq08yLqDkYzr2YDKxfM7HUcky/j4GP51Tz0C/Hz5dNUh4pNcvH5vPa9efDfZZZn4+z4++G0flYrlY/6jbahfobDTsUTkGmUKB/JmjwYMbVuFtxbv4e1f9jBz7RGeviOYHk0rpHuG4vVUaGWjHSeieOfXq7fU6NW0gtNxRLKcMYZ/3FWbQH8fPlx2gPikZMb1aOCVV25PRl3hydmhbDgUyf2Ny/N/99bTpBeRHKxG6YJMG9iMDYci+c/Pu3nu221MW3WQsV1qZeq4etdnkysJyYyeE0qx/Hl44/766jYQj2WM4dk7axHo58u7S/YSn+RifJ9G+HtRsbVk12me/SaMhCQX7/ZqSA/9YSWSa4RUKcZ3j7Vm0Y5TjFsczpDPM7cclQqtbPLmot3sPxPDzKEhFM3igXYiOdHI22oQ4O/Df34OJyHJxaT+jQnwy5oxDzlVXGIyby4K5/M1h6lbrhAT+zWmaskCTscSkXQyxtC1flnuqFOa2RuO8tBbGT+W9/yJ6aBle84wY+0RhrSpQrsaJZ2OI5Jthrevxmt312XJrtMM/2KzY7fAyA4HzsZw30dr+HzNYYa0qcL8x1qryBLJ5fx9fRjQKihTx9AVLTc7FxPPs/O2UatMQZ7rXNPpOCLZbmDrIAL9fRg7fzuDp29k2sBm5PegsUrWWuZtPs4rC3YS6O/DpwObcVvt0k7HEpEcwnN+2+VA1lrGfrud6CuJfDkshEB/z+42EbmRPs0rkcfPhzFzwxj42QY+G9ycQoH+TsfKtEtxifzj+x0sCI2gZdVijO/TmDKFdWN4Efn/1HXoRl9vOMbS3ad5rnNNapUp5HQcEUfd17gCk/o3IfTYRQZMW8/F2ASnI2VK2LGLdJu4ih/DInj6jmBmDWupIktE/kKFlpscPBvDv37aRdvqJRiim+2KANC1flk+ebApu09eot/U9ZyPiXc6Urq5XJYpKw7Q4+M1JCa5mDOiFaNuq5HptXZExDOp0HKDxGQXo+eEEuDvw7u9G3r1go0i17u9TmmmDWzGoXMx9JmyjjPRcU5HSrNzMfEM/nwj//k5nI61SvHzk+1oHlTM6VgikoOp0HKDCUv3se14FG/cV5/ShdSVIHK99sEl+XxwCBEXr9B78loiLl5xOtJNrdp3ji4TVrL24Hn+dU9dJg9oSpF8WqpFRP6eCq0stvFwJB/9sZ9eTSvQpX5Zp+OI5FgtqxZn5tAQzsck0HvyWo5FxjodKVWJyS7eWhzOgM/WUzivPwseb8OAVkFadFhE0iRThZYxppcxZqcxxmWMaZZVoXKr6LhERs8OpULRfLxyd12n44jkeE0rF2PWwy24FJdEr0/WcvBsjNOR/sexyFh6T17Lx38coHfTivzwRBtql9XEFhFJu8xe0doB3A+syIIsud6rC3ZyKjqO9/s00j3NRNKoQYUizB7eksRkF70nr2Pv6UtORwJg4baTdP1gJftPxzCxX2Pe6tmAfHn0vhaR9MlUoWWt3W2t3ZNVYXKzH8MimL/1BE/cWp2mlYs6HUckV6ldthBzRrTEx0DfKevYcSLKsSxXEpJ5Yf42Hv9qC1VLFmDhqHZ0b1jOsTwikrtl2xgtY8xwY8wmY8yms2fPZtdps0XExSu89N12GlUswsiO1Z2OI5IrVS9VkLkjWpHX35f+U9ex9eiFbM+w59Ql7p60iq83HGNEh6p880grKhXPl+05RMRz3LTQMsYsNcbsSOXfPek5kbV2irW2mbW2WcmSnnO/P5fLMmZuGEkuy/g+jfDz1fwCkYwKKpGfOSNaUiRfHgZ8uoGNhyOz5bzWWr5cd4S7J63iQmwCXwwJ4YUutfHX+1lEMummAw6stbdnR5DcaurKg6w9eJ5xPRoQVCK/03FEcr0KRfMxd0Qr+k9bx0OfbmDawGa0qV7CbeeLik1k7PxtLNpxinY1SvBe70aULBjgtvOJiHfRn2uZsDMiind+3UPnumXo1ayC03FEPEaZwoHMGd6KSsXyMfjzjSzbc8Yt59l0OJKuH6xkya7TjO1SixmDQ1RkiUiWyuzyDvcZY44DrYCFxphfsiZWzheXmMyTs0Mpmi8Pb9xfX2vqiGSxkgUD+Hp4S4JLF2D4F5tYvONUlh072WWZ9Ps++kxZh48PzHukFY90qKa7OIhIlsvsrMPvrLUVrLUB1trS1to7sypYTvfGz7vZfyaGd3s3pGh+rQ4t4g7F8udh1rCW1CtfmMe/2sIPYRGZPubp6DgenLaed37dS5d6ZVg4qh2NK2mmsIi4hxaFyYBle84wY+0RhrSpQrsanjOwXyQnKpzXn5lDWzDk842Mnr2VhCQXPZtmrKv+9/DTPDNvG7EJSbzVoz69m1XU1WgRcSuN0Uqn8zHxPDtvGzVLF+S5zjWdjiPiFQoE+DFjcAitq5XgmXlhzFp/JF2Pj09K5l8/7WLI55soVTCAn0a2pU/zSiqyRMTtdEUrHay1PP/tdqKvJDJzaAiB/r5ORxLxGnnz+DJtYDMem7WFl77bQXyiiyFtq9z0cYfOXWbk11vYcSKah1pV5sWutfXeFZFso0IrHWZvPMbS3af5x121db8zEQcE+vvyyYNNeXL2Vv7vp13EJSXz2C03XiT4u63H+cd3O/Dz9eGTB5vSuV6ZbEwrIqJCK80Ono3h/37cRdvqJRjS5uZ/RYuIe+Tx82Fiv8aMmRfGuMV7iEt08dTtNf6nG/ByfBL/XLCD+VtO0DyoKOP7NqZ8kbwOphYRb6VCKw0Sk108NSeUAH8f3unVUFPARRzm5+vDe70bEeDnwwe/7SM+MZmxXWphjGHHiShGfr2Vw+cvM+q2GozqWF13bBARx6jQSoMPfttH2PEoPnqgCWUKBzodR0QAXx/Dm/c3II+fD5NXHCQ+yUWlYvl4c1E4RfP789WwlrSqVtzpmCLi5VRo3cTGw5F8uGw/PZtWoGv9sk7HEZFr+PgY/nVPPQL9fJm26hAAt9Uqxdu9GlJM69uJSA6gQutvRMcl8tScUCoUzcerd9d1Oo6IpMIYw0t31aZC0bz4+/nQP0TLNohIzqFC62+8+sNOIi5eYd4jrSkQoKYSyamMMQzSJBURyYE0QvQGftoWwfwtJ3iiYw2aVtbtOURERCT9VGilIuLiFV6cv51GFYswquON1+gRERER+TsqtK7jclnGzA0jyWUZ36eRpoWLiIhIhqmKuM60VQdZe/A8r3SvQ1CJ/E7HERERkVxMhdY1dkZE8fYve7izbml6N6vodBwRERHJ5VRopYhLTGb07FCK5svDG/c30PRwERERyTStWZDizUXh7DsTwxdDQrTQoYiIiGQJXdEC/thzhs/XHGZwmyDaB5d0Oo6IiIh4CK8vtM7HxPPsN9sILl2A5zvXcjqOiIiIeBCv7jq01jJ2/naiYhP5YkgIgf6+TkcSERERD+LVV7RmbzzGkl2nea5zTWqXLeR0HBEREfEwXltoHTp3mf/7cRdtqhdniO6RJiIiIm7glYVWYrKL0bO3ksfPh3d6NcTHR0s5iIiISNbzyjFaH/y2j7DjUXz0QBPKFs7rdBwRERHxUF53RWvT4Ug+XLafnk0r0LV+WafjiIiIiAfzqkLrUlwio+eEUr5oXl7pXsfpOCIiIuLhvKrr8JUfdhJx8QrzHmlFwUB/p+OIiIiIh/OaK1o/bYtg/pYTPNGxBk0rF3M6joiIiHgBryi0TkZd4aXvdtCwYhFGdqzudBwRERHxEh5faLlcljFzw0hMdjGhTyP8fT3+KYuIiEgO4fFVx6erDrHmwHle6V6HoBL5nY4jIiIiXsSjC61dEdG8/cseOtUpTe9mFZ2OIyIiIl7GYwutuMRknpy9lSL5/HmzRwOM0ervIiIikr08dnmHNxeFs+9MDDOGhFAsfx6n44iIiIgX8sgrWsv3nuXzNYcZ1DqIDsElnY4jIiIiXsrjCq3zMfE8My+M4NIFGNulltNxRERExItlqtAyxrxtjAk3xmwzxnxnjCmSVcEywlrLC/O3ExWbyPg+jQn093UyjoiIiHi5zF7RWgLUs9Y2APYCL2Q+UsbN2XiMX3ed5tk7a1KnXCEno4iIiIhkrtCy1v5qrU1K+XYdUCHzkTLm0LnLvPbjLtpUL87QtlWciiEiIiLyX1k5RmsIsOhGG40xw40xm4wxm86ePZuFp4XEZBej54SSx8+Hd3o1xMdHSzmIiIiI8266vIMxZilQJpVNL1lrF6Ts8xKQBMy60XGstVOAKQDNmjWzGUp7AxN/20fYsYt82L8JZQvnzcpDi4iIiGTYTQsta+3tf7fdGDMI6AbcZq3N0gIqLTYfiWTSsv30aFKBuxqUze7Ti4iIiNxQphYsNcZ0Bp4DOlhrY7MmUtpdiktk9JxQyhfNy6t318nu04uIiIj8rcyO0ZoEFASWGGNCjTGfZEGmNHv1h12cuHCF93s3omCgf3aeWkREROSmMnVFy1pbPauCpNfCbSf5dstxRnWsTrOgYk7FEBEREbmhXLky/MmoK7z43XYaVizCyNtqOB1HREREJFW5rtByuSzPzAsjMdnF+D6N8PfNdU9BREREvESuq1I+W32I1fvP83K3OlQpkd/pOCIiIiI3lKsKrV0R0YxbvIdOdUrTp3lFp+OIiIiI/K1cU2jFJSYzes5WCufz580eDTBGq7+LiIhIzpapWYfZ6a3F4ew9HcOMISEUy5/H6TgiIiIiN5Urrmit2HuW6asPM6h1EB2CSzodR0RERCRNcnyhFXk5gTHzwgguXYCxXWo5HUdEREQkzXJ016G1lrHfbiMqNpEZg0MI9Pd1OpKIiIhImuXoK1pzNx3j112nefbOmtQpV8jpOCIiIiLpkmMLrUPnLvPaj7toXa04Q9tWcTqOiIiISLrlyEIrMdnF6Dmh+Pv68G7vhvj4aCkHERERyX1y5Bitib/vJ+zYRT7s34SyhfM6HUdEREQkQ3LcFa3NRyKZ9Ps+7m9SnrsalHU6joiIiEiG5ahCKyY+idFzQilfNC+v3V3X6TgiIiIimZKjug5f/WEnJy5cYe6IVhQM9Hc6joiIiEim5JgrWj9vP8k3m4/z+K3VaRZUzOk4IiIiIpmWIwqtU1FxvDB/Ow0rFmHUbTWcjiMiIiKSJRwvtFwuy5h5oSQkuRjfpxH+vo5HEhEREckSjlc1n60+xOr953m5ex2qlMjvdBwRERGRLONoobX7ZDTjFu/hjjql6du8opNRRERERLKcY4VWXGIyo2eHUjifP2/1aIAxWv1dREREPItjyzu8tTicPacv8fng5hTLn8epGCIiIiJu48gVrZi4JKavPsyg1kHcUrOUExFERERE3M6RQuvYhVhqlCrA2C61nDi9iIiISLZwpNBKdlnG921EoL+vE6cXERERyRaOFFplCgdSt1xhJ04tIiIikm0cKbRKFAhw4rQiIiIi2crxBUtFREREPJUKLRERERE3UaElIiIi4iYqtERERETcRIWWiIiIiJuo0BIRERFxExVaIiIiIm6iQktERETETYy1NvtPaswlYE+2nzjnKwGcczpEDqM2SZ3aJXVql9SpXf5KbZI6tUvqalprC2bkgX5ZnSSN9lhrmzl07hzLGLNJ7fK/1CapU7ukTu2SOrXLX6lNUqd2SZ0xZlNGH6uuQxERERE3UaElIiIi4iZOFVpTHDpvTqd2+Su1SerULqlTu6RO7fJXapPUqV1Sl+F2cWQwvIiIiIg3UNehiIiIiJu4tdAyxnQ2xuwxxuw3xoxNZXuAMWZOyvb1xpggd+bJCdLQJoOMMWeNMaEp/4Y5kTO7GWM+M8acMcbsuMF2Y4z5IKXdthljmmR3xuyWhja5xRgTdc1r5eXszugEY0xFY8wyY8wuY8xOY8yTqezjVa+XNLaJ171ejDGBxpgNxpiwlHZ5LZV9vPFzKC3t4pWfRQDGGF9jzFZjzE+pbEv/68Va65Z/gC9wAKgK5AHCgDrX7fMY8EnK132BOe7KkxP+pbFNBgGTnM7qQNu0B5oAO26wvSuwCDBAS2C905lzQJvcAvzkdE4H2qUs0CTl64LA3lTeR171ekljm3jd6yXl/3+BlK/9gfVAy+v28arPoXS0i1d+FqU896eBr1J7v2Tk9eLOK1ohwH5r7UFrbQIwG7jnun3uAWakfP0NcJsxxrgxk9PS0iZeyVq7Aoj8m13uAb6wV60DihhjymZPOmekoU28krX2pLV2S8rXl4DdQPnrdvOq10sa28TrpPz/j0n51j/l3/UDk73tcyit7eKVjDEVgLuAaTfYJd2vF3cWWuWBY9d8f5y/vvH/u4+1NgmIAoq7MZPT0tImAD1Suju+McZUzJ5oOV5a287btEq5/L/IGFPX6TDZLeWyfWOu/kV+La99vfxNm4AXvl5SuoFCgTPAEmvtDV8rXvI5BKSpXcA7P4vGA88BrhtsT/frRYPhc54fgSBrbQNgCf+/cha53hagsrW2ITAR+N7hPNnKGFMA+BYYba2NdjpPTnCTNvHK14u1Ntla2wioAIQYY+o5nSknSEO7eN1nkTGmG3DGWrs5K4/rzkLrBHBtBVwh5Wep7mOM8QMKA+fdmMlpN20Ta+15a218yrfTgKbZlC2nS8vryatYa6P/vPxvrf0Z8DfGlHA4VrYwxvhztaCYZa2dn8ouXvd6uVmbePPrBcBaexFYBnS+bpO3fQ79jxu1i5d+FrUB7jbGHObq0J6Oxpgvr9sn3a8XdxZaG4Eaxpgqxpg8XB009sN1+/wADEz5uifwu00ZYeahbtom140juZurYy3kajs9lDKbrCUQZa096XQoJxljyvw5NsAYE8LV97PHf0CkPOdPgd3W2vdusJtXvV7S0ibe+HoxxpQ0xhRJ+TovcAcQft1u3vY5lKZ28cbPImvtC9baCtbaIK5+Pv9urX3wut3S/Xpx202lrbVJxpgngF+4OtvuM2vtTmPM/wGbrLU/cPUXw0xjzH6uDvrt6648OUEa22SUMeZuIImrbTLIscDZyBjzNVdnRZUwxhwHXuHqAE2stZ8AP3N1Jtl+IBYY7EzS7JOGNukJPGqMSQKuAH09/QMiRRtgALA9ZYwJwItAJfDa10ta2sQbXy9lgRnGGF+uFpZzrbU/efPnUIq0tItXfhalJrOvF60MLyIiIuImGgwvIiIi4iYqtERERETcRIWWiIiIiJuo0BIRERFxExVaIiIiIm6iQktERETETVRoiYiIiLiJCi0RERERN/l/BW2hczEEZ7MAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 720x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["ax = df_demo[\"C\"].plot(figsize=(10, 4))\n", "ax.set_title(\"Hello there!\");\n", "fig = ax.get_figure()\n", "fig.suptitle(\"This title is super!\");"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["### Option 2: Draw on Matplotlib Axes"]}, {"cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAEVCAYAAAA4vUvOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Wd4VNX+9vHvSiGh995CC71D6KCoCAg2OopUwQaiWFDPsfzP8ajYQLBQFBFRiqKoCAqK9A4JNfQeeiAhhNRZzwvieTgYJG2yk5n7c11cJtl79r5nOZP5Za+yjbUWEREREcl6Pk4HEBEREfFUKrRERERE3ESFloiIiIibqNASERERcRMVWiIiIiJuokJLRERExE1UaIl4GWPMq8aYL/9m+05jzC1ZcJ4XjTHT/mb7IGPMqgwee5ExZmDG04mIZA8/pwOISNYyxsRc820+IB5ITvl+xM0eb62tm4Fz3gJ8aa2tcM1x/nPN9iDgEOBvrU1K7/FTydgls8dwkjHmVaC6tfZBp7OIiHvpipaIh7HWFvjzH3AU6H7Nz2Y5nc+bGWP0x62Il1GhJeKd8hhjvjDGXErpKmz25wZjzGFjzO0pX4cYYzYZY6KNMaeNMe9dfyBjTH5gEVDOGBOT8q/cdV2UK1L+ezFle6tUjlPLGLPEGBNpjNljjOl9o/DGmD+MMcNSvq5ujFlujIkyxpwzxsy5wWMCjTFfGmPOG2MuGmM2GmNKX/+cU77/b3ZjTJAxxhpjhhtjIowxJ40xz1yzr48xZqwx5kDKsecaY4pd99ihxpijwO83ek4i4plUaIl4p7uB2UAR4Adg0g32mwBMsNYWAqoBc6/fwVp7GegCRFxz5Sziut3ap/y3SMr2tdduTCnWlgBfAaWAvsBHxpg6aXgu/wJ+BYoCFYCJN9hvIFAYqAgUBx4BrqTh+H+6FagBdAKev6YwGwncC3QAygEXgA+ve2wHoDZwZzrOJyIeQIWWiHdaZa392VqbDMwEGt5gv0SgujGmhLU2xlq7zk15ugGHrbXTrbVJ1tqtwLdArzQ8NhGoDJSz1sZZa280wD6RqwVWdWttsrV2s7U2Oh0ZX7PWXrbWbgemA/1Sfv4I8JK19ri1Nh54Feh5XTfhqymPTU9hJyIeQIWWiHc6dc3XsUDgDcYPDQWCgfCUrrZubspTGWiR0qV30RhzEXgAKJOGxz4HGGBDSjfokBvsNxP4BZid0gU4zhjjn46Mx675+ghXr179mf27a3Lv5urkg9I3eKyIeBENzBSRG7LW7gP6GWN8gPuBb4wxxVO6C/9n15sd6ibbjwHLrbV3ZCDjKeBhAGNMW2CpMWaFtXb/dfslAq8Br6XMgvwZ2AN8Clzm6gzNP6VW4FUEwlO+rgT82T16DBhirV19/QNSzgPXPX9r7atpeW4ikvvpipaI3JAx5kFjTElrrQu4mPJjVyq7ngaKG2MK3+BQZ1MeV/UG238Cgo0xA4wx/in/mhtjaqchYy9jzJ/LSlzgalHzl4zGmFuNMfWNMb5ANFe7Ev/cLxTom3LeZkDPVE71T2NMPmNMXWAw8Oeg+0+A140xlVPOU9IYc8/NcouId1ChJSJ/pzOwM2VtrglA39TGGVlrw4GvgYMpXWjlrtseC7wOrE7Z3vK67Ze4Osi8L1evFJ0C3gIC0pCxObA+JeMPwJPW2oOp7FcG+IarRdZuYDlXuxMB/snVwf4XuHrV66tUHr8c2A/8Brxjrf015ecTUs77qzHmErAOaPF3gW+2mKuIeA5j7c2u6IuIeK+sXmxVRLyLrmiJiIiIuIkKLRERERE3UaElIo66wSrsWTIj+voV3zPCWnvYWmvUbSgiGaFCS0QyJbVixhgzyBhzo4VD3ZXjc2PMv7PznKlkyHRhJyKeRYWWiMhNZNUVNhHxPiq0RMTtUm4y/a0x5qwx5pAxZlQ6HvdDyo2m9xtjHr7BfsO5upL8cyk3rf7xms2NjDHbUm46PccYE3jN47oZY0JTlpxYY4xpcM22w8aY540x24DLxhi/jD4PEfFeKrRExK1SVpX/EQgDygO3AaONMWm5wfJs4DhXb3fTE/iPMabj9TtZa6cAs4BxKTet7n7N5t5cXQ+sCtAAGJSSqzHwGTCCq/dAnAz8YIy5du2ufsBdXL35tisTz0NEvJQKLRHJCt9fd5/Cj67Z1hwoaa39P2ttQspiolO5ujjpDRljKgJtgOdTbhYdCkwDHkpntg+stRHW2kiuFkqNUn4+HJhsrV2fcpPpGUA80PK6xx5LWaQ1Q89DRLybxh2ISFa411q79M9vjDGDgGEp31YGyqUUYH/yBVbe5JjlgMiUVeP/dARols5s199A+9qbQQ80xoy8Znuea7bD/94MOqPPQ0S8mAotEXG3Y8Aha22NdD4uAihmjCl4TbFVCThxg/3Te5uLY8Dr1trX/2afa4950+dhrQ1KZwYR8XDqOhQRd9sAXEoZWJ7XGONrjKlnjGn+dw+y1h4D1gBvGGMCUwaqDwW+vMFDTnPjm1anZirwiDGmhbkqvzHmLmNMwax8HiLi3VRoiYhbWWuTgW5cHRt1CDjH1bFWhdPw8H5AEFevbn0HvHJtF+V1PgXqpIwT+z4NuTYBDwOTuHoz6f2kDJTP6PMwxuw0xtxys3OLiPfQTaVFRERE3ERXtERERETcRIWWiIiIiJuo0BIRERFxExVaIiIiIm7iyDpaJUqUsEFBQU6cWkRERCRdNm/efM5aWzIjj3Wk0AoKCmLTpk1OnFpEREQkXYwxRzL6WHUdioiIiLiJCi0RERERN1GhJSIiIuImKrRERERE3ESFloiIiIibqNASERERcRMVWiIiIiJuokJLcqxLcYl8tf4oVxKSnY4iIiKSISq0JEey1vLidzt48bvtDJq+gZj4JKcjiYiIpJsKLcmRvg89wY9hEdxeuxSbjlzgoU/XE3Ul0elYIiIi6aJCS3KcY5GxvPz9TppVLsrkAc34sH9jtp+I4oFp67hwOcHpeCIiImmmQktylGSXZczcMCzwfp9G+PoYOtcry+QBTdl7OoZ+U9dx9lK80zFFRETSRIWW5CifLD/AhsOR/N89dalYLN9/f96xVmk+G9icw+cv03fKWk5FxTmYUkREJG1UaEmOse34Rd5fspduDcpyX+Pyf9netkYJvhjSglNRcfSZspbjF2IdSCkiIpJ2KrQkR4hNSGL07FBKFgzg9XvrY4xJdb+QKsWYOawFkZcT6DN5HUfOX87mpCIiImmnQktyhH8v3M2h85d5t3dDCufz/9t9m1QqytcPtyQ2IYlen6xl/5mYbEopIiKSPiq0xHFLd53mq/VHGd6uKq2rlUjTY+qVL8zs4a1wWUvfKWsJPxXt5pQiIiLpp0JLHHX2UjzPf7uNOmUL8XSn4HQ9tmaZgswZ0Qo/Hx/6TlnH9uNRbkopIiKSMSq0xDHWWp77JoyY+CQm9G1EgJ9vuo9RrWQB5o5oRf48fvSfto7NRy64IamIiEjGqNASx3y57gjL9pzlxa61qVG6YIaPU6l4PuY+0ori+fPw0KfrWXfwfBamFBERyTgVWuKI/Wcu8e+Fu+kQXJKHWlXO9PHKF8nLnBGtKFM4kEHTN7Bi79ksSCkiIpI5KrQk2yUkuXhydij5A/x4u1eDGy7lkF6lCwUyZ0QrgornZ9iMTfy2+3SWHFdERCSjVGhJtntvyV52RkTz5v31KVUwMEuPXaJAALOHt6RW2YKMmLmZRdtPZunxRURE0kOFlmSrtQfOM3nFAfqFVKRT3TJuOUeRfHn4clgLGlYswhNfb2VB6Am3nEdERORmVGhJtomKTWTM3FCCiufnn93quPVchQL9+WJICM2DijJ6TihzNx5z6/lERERSo0JLss0/F+zg9KV4xvdpRL48fm4/X/4AP6YPCqFt9RI89+02vlh72O3nFBERuZYKLckW3289wQ9hEYy+rQYNKxbJtvPmzePLtIHNuL12KV5esJOpKw5m27lFRERUaInbHYuM5Z/f76BZ5aI8dmv1bD9/gJ8vHz3QlLvql+X1n3cz8bd92Z5BRES8k/v7b8SrJbssY+aGYYH3+zTC1ydrlnJIrzx+Pimrz/vw7pK9xCe5GNMpOMuWlhAREUmNCi1xq0+WH2DD4Uje7dWQisXyOZrFz9eHd3o1JI+fD5OW7ScuMZmX7qqtYktERNxGhZa4zbbjF3l/yV7ualCW+5uUdzoOAD4+hv/cV58APx+mrTpEfJKL1+6ui49DV9pERMSzqdASt4hNSGL07FBKFgzgP/fWz1FXjXx8DK/eXZdAf18mrzhIXGIyb/Zo4Fi3poiIeC4VWuIWry/czaHzl5k1tAWF8/k7HecvjDGM7VKLAH9fPvhtHwnJLt7t1RA/X80PERGRrKNCS7Lc0l2nmbX+KMPbV6V19RJOx7khYwxP3xFMoL8P4xbvIT7RxQf9GpPHT8WWiIhkDX2iSJY6eyme57/dRu2yhRjTKdjpOGny2C3V+We3OizeeYpHvtxMXGKy05FERMRDqNCSLGOt5blvwoiJT0pZSsHX6UhpNrRtFf59bz1+Dz/DsBmbiE1IcjqSiIh4ABVakmW+XHeEZXvO8kKXWgSXLuh0nHR7sGVl3u7ZgDUHzjHos43ExKvYEhGRzMmSQssY85kx5owxZkdWHE9yn/1nLvHvhbvpEFySga2DnI6TYb2aVWR838ZsPnqBAZ+uJ+pKotORREQkF8uqK1qfA52z6FiSyyQkuRg9J5T8AX683bNBjlrKISPubliOD/s3YceJKB6Yto4LlxOcjiQiIrlUlhRa1toVQGRWHEtyn/eW7GXHiWjevL8+pQoFOh0nS3SuV4YpA5qx93QMfaes4+yleKcjiYhILpRtY7SMMcONMZuMMZvOnj2bXacVN1t38DyTVxygX0hFOtUt43ScLHVrrVJMH9Sco5Gx9JmyllNRcU5HEpFMstYyd9MxOo9fwYw1h0lIcjkdSTxcthVa1top1tpm1tpmJUuWzK7TihtFXUnk6TmhVC6Wj3/cVcfpOG7RpnoJZgwJ4Ux0PL0nr+X4hVinI4lIBl2KS+TJ2aE89802Ii8n8MoPO7nj/eUs3HYSa63T8cRDadahZNg/v9/B6UvxjO/bmPwBnrv2bUiVYswcGsLF2AR6f7KWw+cuOx1JRNIp7NhF7vpgFQu3n+SZTsGsfeE2pg9uTqCfL49/tYV7P1rDuoPnnY4pHkiFlmTIgtAT/BAWwejbatCoYhGn47hd40pF+erhllxJTKb35LXsP3PJ6UgikgYul2XKigP0+HgNyS7LnOEteaJjDXx9DLfWLMXPT7bj7Z4NOBMdR98p6xj6+Ub2ntb7W7KOyYrLpcaYr4FbgBLAaeAVa+2nN9q/WbNmdtOmTZk+rzjj+IVYuoxfSXCZgswZ3tKr7g+49/Ql+k9dj7WWL4e1oHbZQk5HEpEbOBcTz9Nzw1ix9yyd65bhrR4Nbnjv1bjEZKavPsxHf+zncnwSPZtW4Ok7alKmsGdM8JHMMcZsttY2y9BjneiXVqGVeyW7LP2mrGPXyWgWPdmOisXyOR0p2x08G0P/qeuJS0rmiyEhNKjg+Vf0RHKbVfvO8dTcUKKuJPJytzo80KJSmpaeuXA5gQ+X7eeLtUfw8YEhbarwyC3VKBSYeoEm3iEzhZb3XIqQLDF5xQE2HI7ktbvremWRBVC1ZAHmjmhFgQA/Hpi6ns1HtLKJSE6RmOzircXhDPhsPYXz+vPDE214sGXlNK/vVzR/Hv7RrQ6/jelA57pl+OiPA3QYt4zPVh0iPkn3QZX00xUtSbPtx6O476PV3Fm3DJP6N871C5NmVsTFK/Sfuo4zl+L5dGBzWlUr7nQkEa92LDKWUbO3svXoRfqFVOTlbnXJmydz91zdcSKKNxbtZvX+81Qslpdn76xFt/pl8fHx7t9/3kZdh+J2VxKSuWviSmLjk1k8uh1F8uVxOlKOcCY6jgemredoZCxTH2pG+2AtXSLihIXbTjJ2/jaw8EaP+nRrUC7Ljm2tZcW+c7y5KJzdJ6OpX74wL3SpRevqJbLsHJKzqetQ3O71n3dx8Oxl3uvdUEXWNUoVCmT28JZULVmAYTM2sXTXaacjiXiVKwnJvDB/G49/tYVqJQvw85PtsrTIAjDG0CG4JAtHtuW93g2JvJxA/2nrGTR9A+GnorP0XOJ5VGjJTf22+zRfrjvKw+2q6C+4VBQvEMDXD7egdtmCPPLlZhZuO+l0JBGvsOfUJe6etIrZG4/x6C3VmPdIK7eOHfXxMdzfpAK/jenAi11rseXIBbpMWMmYuWFEXLzitvNK7qauQ/lbZy/F03n8CkoVCuT7x1sT4Je58Q6eLDoukcHTN7L16AXe7d2Q+xpXcDqSiEey1jJr/VH+9dMuCgb6836fhrSrkf3d9hdjE/jojwN8vuYwAIPbBPHYLdUpnFczFD2NxmiJW1hrGTpjE6v2n+OnkW0JLl3Q6Ug53uX4JIbN2MS6Q+d547769A2p5HQkEY8SFZvI2PnbWLTjFO2DS/Jur4aULBjgaKbjF2J579e9fBd6gkKB/ozsWJ0BrSrrD1MPojFa4hZfrj/K7+FneKFLLRVZaZQ/wI/pg5vTvkZJxs7fzhdrDzsdScRjbDocSdcPVrJk12le7FqLzwc1d7zIAqhQNB/v9WnEwpHtaFixCP9euJuO7yzn+60ncLl0D0Vvp0JLUrX/TAyvL9xF++CSDGod5HScXCXQ35cpDzXljjqleXnBTqasOOB0JJFcLdllmfT7PvpMWYevj+GbR1szvH21HLfEQp1yhfhiSAhfDm1BkXz+jJ4TSvdJq1i175zT0cRB6jqUv0hIcnH/x6s5ceEKv4xuT6lCugVFRiQmuxg9J5SF207y9B3BjOxY3evXHhNJr9PRcYyeHcrag+e5u2E5Xr+vHgVzwSrtLpflx20RvP3LHo5fuEK7GiUY26UWdcsVdjqaZEBmug79sjqM5H7vL93LjhPRTB7QVEVWJvj7+jChTyMCfH14b8le4hKTefbOmiq2RNLo9/DTPDNvG1cSkhnXswG9mlbINe8fHx/DPY3K07leGWauPcKkZfvpNnEV9zYqz5hOwVQo6p131vBGKrTkf6w7eJ5Plh+gb/OK3Fm3jNNxcj0/Xx/e6dWQAH9fPvrjAHGJLv7ZrXau+bAQcUJ8UjLjFu/h01WHqFWmIJP6N6F6qQJOx8qQAD9fhrWrSq9mFfn4jwNMX32IhdtOMrB1ZR6/tbrWJfQC6jqU/4q6kkjXCSvx9zUsHNWO/AGqw7OKtZbXftzF52sO80CLSvzrnno5bnyJSE5w6NxlRn69hR0nohnYqjIvdK1NoL/nzN6LuHiF95fs5ZstxykY4Mfjt1ZnYOsgj3qOnkhdh5IlXl6wg1PRcXzzSCsVWVnMGMMr3esQ6O/LJ8sPEJ/k4q0eDfBVsSXyX99tPc4/vtuBn68PUwY0pZMHXlUvVyQvb/dqyNB2VXhrUThvLApnxprDjOlUk3sbl9fvBA+kT1MBYEHoCRaERvD0HcE0rlTU6TgeyRjD851rEujvw/il+0hIcvFu74b4+2ryr3i3y/FJ/HPBDuZvOUFIUDHG921EuSJ5nY7lVrXKFGL64BDWHLh6D8Ux88KYuvIgY7vUokNwSQ0v8CDqOhSOX4ily4SVBJcuyJzhLfHTB7/bffzHAd5aHM6ddUszsV8T8vipzcU77TgRxcivt3Lk/GWe6FiDUR2re93vIJfLsnD7Sd7+ZQ9HI2NpU704L3SpTb3ymqGYU2jBUsmwZJfl6blhWAvv927kdb/gnPLoLdV4pXsdftl5mhEzNxGXmOx0JJFsZa3ls1WHuP+jNVxJSOarh1vy9B3BXvk7yMfH0L1hOZY+3YFXutdh98lLdJu4iidnb+VYZKzT8SST1HXo5SavOMCGQ5G806shlYprunF2GtymCgF+vrz0/XaGztjI1IeakS+P3pLi+SIvJ/DsvDB+Cz/D7bVLMa5nQ4rl1+y7PH4+DG5ThR5NKzB5+QE+XXWIRdtP8WDLyozsWJ2iaqNcSV2HXmzHiSju/XA1neqW5sP+TTQmwCHfbj7Os9+E0axyMT4d1CxXLMYoklFrD5xn9JytXLicyAtdazGodZB+99zAqag43l+yl3mbj5E/jx+P3lqNIW2qaIaiA3RTaUm3KwnJ3DVxJbHxySwe3U5ruTjsx7AIRs8JpX75wswYEkLhvCq2xLMkJbv44Ld9TFy2nyrF8/NBv8Yag5RGe09fYtzicJbuPkOZQoE83SmYHk0qaIZiNtIYLUm313/excGzl3m3d0MVWTlA94bl+OiBJuyMiKL/1HVEXk5wOpJIljlx8Qr9pq7jg9/306NJBX4c2VZFVjoEly7ItIHNmTO8JaULB/LcN9voOmEly8LP4MTFEkkfFVpe6Pfw03y57ijD2lahTfUSTseRFHfWLcPUh5qx/0wMfaes5cylOKcjiWTa4h2n6DphJbsiohnfpxHv9GqodfoyqEXV4nz/WGs+eqAJ8UnJDP58I/2mriPs2EWno8nfUNehlzkXE0/n8SsoUSCABU+0IcBPff05zZr95xg6YxNlCwcy6+EWlC3s2esJiWeKS0zm9YW7mbnuCPXLF2Ziv8YElcjvdCyPkZjs4usNR5mwdB/nLydwV4OyPHdnTSoXVxu7g8ZoSZpYaxk6YxOr9p/jxyfaUrNMQacjyQ1sOhzJoOkbKZrfn6+GtaRiMc0Ildxj/5lLPPHVVsJPXeLhdlV49s5aWivOTS7FJTJ1xUGmrjxEksvFAy2uzlAsXiDA6WgeRWO0JE1mrT/K7+FnGNu5loqsHK5ZUDG+HNaCqNhE+kxey6Fzl52OJHJT1lpmbzhKt4mrOHspnumDm/PSXXVUZLlRwUB/nu5Uk+XP3kLPphWZue4IHd7+g0m/7+NKgtbnywl0RctL7D8TQ7eJK2keVIwZg0N0Q+NcYmdEFAM+3YCfj2HWsBbUKK0CWXKm6LhEXpy/nZ+2naRN9eK837sRpQoFOh3L6+w/E8O4xeH8uus0pQsF8NTtwfRsWsErF4LNSuo6lL+VkOTi/o9Xc+LCFRaPbk9p/fLLVfaevsQD09aT7LJ8ObQFdcoVcjqSyP/YevQCo2ZvJeJiHE/fEcwjHapp6QGHbTocyX9+3s2WoxepUaoAz3Wuxe21S2nNsgxS16H8rfFL97LjRDRv3N9ARVYuFFy6IHNHtCLAz0czjCRHcbksH/9xgF6frMXlgrkjWvL4rdVVZOUAzYKK8e2jrfnkwaYkuywPf7GJPpPXsfXoBaejeR0VWh5u/cHzfLz8AH2aVaRzvTJOx5EMqlIiP3NHtKJQXj8enLaeTYcjnY4kXu7MpTgGTt/AW4vD6VS3ND8/2Y6mlYs5HUuuYYyhc70y/PJUe/59bz0OnrvMfR+t4bFZmzXuMxup69CDRccl0mX8Svx8DT+Paqe1azzAyagr9J+6ntPRcXw6sDmtqhV3OpJ4oRV7z/L03FAuxSXxSve69AupqC6pXOByfBJTVx5kyoqDJCS56N+iEqNuq0EJzVC8KXUdSqpe/n4Hp6LjGN+nkYosD1G2cF7mDG9J+SJ5GTR9A8v3nnU6kniRxGQXbyzazUOfbaBY/jz88ERb+reopCIrl8gf4Mfo24NZ/uyt9A2pyKz1R+kwbhkTlu7jcnyS0/E8lgotD7Ug9ATfh0YwqmMNGlcq6nQcyUKlCgUye3hLqpUswMMzNvHrzlNORxIvcPR8LD0/Wcvk5Qfp36ISCx7XWny5VcmCAfz73voseao97YNL8v7SvXR4+w9mrT9CUrLL6XgeR12HHujExSt0Hr+CGqUKMHdEK03r9VBRsYk8NH0DO09EMaFvY+5qUNbpSOKhfgyL4MX528HAWz0a0LW+XmueZPORC7y5aDcbD1+gasn8PN+5Fp3qlNaVymuo61D+K9lleXpOKC6XZXyfxiqyPFjhfP58OTSExpWKMPLrLczfctzpSOJhYhOSeP6bbYz8eis1Shfg51HtVGR5oKaVizJ3RCumDGiKAUbM3EzPT9ay+Ygm3WQFfQp7mCkrDrL+UCSv3l2XSsV12xZPVzDQnxlDQmhZtThj5oXx9YajTkcSD7H7ZDTdJ65i7uZjPHZLNeaMaKVbQXkwYwyd6pbhl9HteeP++hyNjKXHx2sZMXMTB87GOB0vV8uSQssY09kYs8cYs98YMzYrjinpt+NEFO8t2UPX+mXo2bSC03Ekm+TL48dng5rTIbgkL8zfzuerDzkdSXIxay0z1x7mng9XEx2XxJdDW/Bc51r46+q4V/Dz9aFfSCWWP3sLY+4IZvX+83R6fwUvfredM5finI6XK2V6jJYxxhfYC9wBHAc2Av2stbtu9BiN0cp6VxKS6TZxJTHxSSx+sj1F8+dxOpJks/ikZEZ+tZVfd51mbJdaPNKhmtORJJe5GJvA899u45edp7mlZkne6dVQU/+93LmYeCb+to9Z64+Sx8+HYe2qMrx9VQp42Ux2p8dohQD7rbUHrbUJwGzgniw4rqTDf37ezYGzl3m3VyMVWV4qwM+XDx9oQveG5XhzUTgTlu7DickukjttPBxJ1wkr+T38DC91rc1nA5uryBJKFAjgtXvqsfTpDtxasxQf/LaPW95exsy1h0nUDMU0yYpCqzxw7Jrvj6f8TLLJsvAzzFx3hGFtq9C2Rgmn44iD/H19GN+nET2aVOD9pXsZ98seFVvyt5Jdlg9+20efyWvx9/Ph20db83D7qrrxvPyPoBL5+fCBJnz/eBuqlSzAPxfspNP7K1i0/aR+x9xEtl37M8YMB4YDVKpUKbtO6/HOxcTz7Ddh1CpTkGfurOl0HMkBfH0Mb/dsQIC/Dx//cYC4xGRe7lZHU7XlL05FxTF6zlbWHYzknkbl+Pe99SgY6O90LMnBGlUswuzhLVm25wxvLgrn0VlbaFypCC90qU1IFd2CKTVZUWidACpe832FlJ/9D2vtFGAKXB2jlQXn9XrWWp7/ZhvRcUnMGtaSQH9fpyNJDuHjY3j93noE+PkwffVh4pNc/PueerpKIf/12+7TPDMvjLhEF2/3bEDPphVUjEuaGGPoWKs0HYJL8e3m47xNRC1SAAAfhUlEQVS7ZA+9J6/l9tqlGdulJtVLaSHba2VFobURqGGMqcLVAqsv0D8Ljis38dWGo/wWfoaXu9XRCs3yF8YYXu5Wh0B/Xz7+4wDxiS7G9WyAr4otrxaflMybi8KZvvowdcoWYmL/xlQrWcDpWJIL+foYejevSPeG5fhs9SE++eMAnd5fQZ/mFRl9ezClCwU6HTFHyHShZa1NMsY8AfwC+AKfWWt3ZjqZ/K0DZ2P410+7aFejBINaBzkdR3IoYwzP3VmTvP6+vLdkL/FJybzfp5Gm6nupg2djGPn1VnZGRDOodRBju9TSlXDJtLx5fHn81ur0C6nExN/38eW6I3y39QTD2lZlRIeqXt8drVvw5EIJSS56fLyG4xdiWTy6vf5qkDSZvPwAbywKp1Od0kzs35gAP33AepNvNx/nnwt2kMfPh7d7NuSOOqWdjiQe6uj5WN75dQ8/hEVQLH8eRnWsTv8Wlcnjl3v/wHN6eQfJZhN+28v2E1G8cX99FVmSZiM6VOPV7nX4dddpRszcTFxistORJBvExCfx1JxQxswLo175wix6sp2KLHGrSsXz8UG/xvzwRBtqli7Iqz/u4o73l/PTtgivnKGoQiuX2XAoko/+OEDvZhXoXE/3HJP0GdSmCm/cX5/le88y5PONxCYkOR1J3Gj78Si6fbCSBaEneOr2YL5+uCVlC+d1OpZ4iQYVivDVwy2YPrg5ef19eeKrrdz74WrWHjjvdLRspa7DXCQ6LpEu41fi52v4eVQ78nvZyrySdeZvOc4z88JoWrkonw1q7vVjKDyNy2X5bPUh3locTokCAYzv04gWVYs7HUu8WLLLMn/Lcd5bspeTUXF0rFWK5zvXyjUTuTLTdahCKxd5ak4oP4RFMO+RVjSpVNTpOJLLLdx2kidnb6Vu+cJ8MTiEwvlUbHmC8zHxPDMvjGV7znJHndKM69FAd4uQHCMuMZnP1xzmw2X7uRyfRM+mFXjqjuAcf6VVhZYX+CEsglFfb2X07TUYfXuw03HEQyzZdZrHZ22heqkCzBwaQnHdciVXW7P/HKPnhHLxSiL/uKs2A1pW1tpYkiNduJzAh8v288XaIxgDQ9pW4dFbqlEoh15dV6Hl4U5cvELn8SuoUaoAc0e0wk9T8yULLd97luFfbKJSsXzMergFpQpqgkVuk5Ts4v2le/nojwNUKZGfSf2aUKdcIadjidzUschY3v11D9+HRlA0nz9PdKzBgy0r5bhZ0Sq0PFiyy9J/6jp2nIji5yfbUbl4fqcjiQdac+Acw2ZsokyhQGY93CLHX8aX/+/4hVienB3K5iMX6N2sAq/eXZd8eTR+U3KXHSeieGtxOCv3naNisbw806km3RuUyzF3s9DyDh5s6sqDrD8UySt311WRJW7TuloJvhgSwtlL8fSevJZjkbFOR5I0WLT9JF0nrGTPqUtM6NuIcT0bqsiSXKle+cLMHNqCL4aEUCDAnydnh3LPh6tZs/+c09EyTYVWDrbjRBTv/rqHLvXK0KtpBafjiIdrFlSMWQ+3IPpKEr0nr+Xg2RinI8kNxCUm8+J323l01haqlMjPwlFtuadReadjiWRa++CSLBzZlvf7NCTycgL9p61n4Gcb2H0y2uloGaauwxzqSkIy3SauJCY+icVPttesIck2uyKiGfDpenx8DF8Na0GN0rlj+rW32Hv6EiO/2sqe05cY0b4qYzrVzNUrbovcSFxiMjPXHmHSsv1ExyVyf+MKPN0pmPJFsn9og7oOPdAbi3Zz4Oxl3unVUEWWZKs65Qoxe3hLDNBnyjp2RkQ5HUkAay1frT/K3ZNWcS4mnhlDQniha20VWeKxAv19ebh9VVY8eyvD21Xlx20R3PrOH7yxaDdRsYlOx0szvUNzoGXhZ/hi7RGGtq1CuxolnY4jXqhG6YLMGdGKQD8f+k1ZR9ixi05H8mpRVxJ54qutvPjddppVLsaiJ9vRIVi/G8Q7FM7nzwtda7PsmVvo3qAcU1YcpP3by5i64mCuuJWYug5zmHMx8XQev4ISBQL4/vE2BPrnrCmu4l2ORcbSf9o6LlxOZPrg5jQPKuZ0JK+z+cgFRn29lVPRcYzpFMwj7avlmJlYIk7YFRHNW4vDWb73LOWL5OWZO4O5p2F5t74v1HXoIay1jP12G9FxSYzv20hFljiuYrF8zB3RilIFA3jo0w0eMQMot3C5LB8u20/vyWsxBuY90orHbqmuIku8Xp1yhZgxJIRZw1pQNL8/T80Jo9vEVazcd9bpaKlSoZWDfLXhKEt3n+H5zrWoVUaLDUrOULZwXmaPaEnFYnkZ/PlG/thzxulIHu9MdBwDPlvP27/soXPdMiwc1U633RK5TpvqJfjh8bZM6NuI6LhEBny6gQGfrmfHiZw1rlRdhznEgbMx3PXBSpoHFWPG4BD91So5TuTlBAZ8up69py/xYf8mdKpbxulIHumPPWcYMzeMywlJvNK9Ln2bV9RtdERuIj4pmS/XHWXi7/u4GJvIfY3LM6ZTMBWK5suS42tl+FwuMdlFj4/XcDQyll9Gt6d0Id0CRXKmqNhEBk7fwI4TUYzv24huDco5HcljJCS5ePuXcKauPETN0gWZ1L+xltYQSaeoK4l8svwAn606hLXwUKvKPNGxOkXyZW72vsZo5XLjl+5l2/Eo3ry/voosydEK5/Nn5tAQGlcqwqivt/Lt5uNOR/IIh89dpucna5i68hAPtKjEgifaqMgSyYDCef15vnMt/nj2Fu5pVI5PVx+i/bhlfLL8gGMzFHVFy2EbDkXSZ8paejWtwLieDZ2OI5ImsQlJPPzFJlbvP89/7qtP/xaVnI6Uay0IPcFL3+3Ax8BbPRrQpX5ZpyOJeIzwU9G8tSicZXvOUq5wIE93qsl9jcvjm87hOeo6zKWi4xLpMn4lfr6GhaPaUSBA9yiT3CMuMZlHv9zMsj1neaV7HQa3qeJ0pFwlNiGJVxbsZN7m4zStXJQJfRtl2XgSEflfaw+c581Fuwk7HkWtMgUZ26UWHYJLpnn8o7oOc6lXFuzkVHQc7/dppCJLcp1Af18mD2jGnXVL89qPu/j4jwNOR8o1dkZE0W3iKr7Zcpwnbq3OnOEtVWSJuFGrasX5/vE2TOrfmNiEZAZN38gD09az/bj7Zyiq0HLID2ERfLf1BCM7Vte0bcm18vj5MKl/E7o3LMdbi8MZv3QvTlwlzy2stcxYc5j7PlxDTFwSs4a24Jk7a+Lnq1/FIu5mjKFbg3IsfboDr3avQ/ipS3SftIpRX2/lWGSs286ryygOiLh4hX98t53GlYrwxK3VnY4jkin+vj6M79OIAD8fxi/dR1yii+c719SSBNe5cDmB577dxpJdp7m1Zkne6dWQ4gUCnI4l4nXy+PkwqE0VejStwOTlB5m26iCLdpxkQMsgnuhYnWJZfH9hFVrZLNlleXpuKMkuy/g+jfSXrHgEXx/DuB4NCPT3+e/snle611GxlWL9wfOMnhPKuZh4/nFXbYa2raK2EXFYwUB/nrmzJg+2rMz4pXv5fM0h5m06xiO3VGNImyrkzZM1d2dRoZXNpq08yLqDkYzr2YDKxfM7HUcky/j4GP51Tz0C/Hz5dNUh4pNcvH5vPa9efDfZZZn4+z4++G0flYrlY/6jbahfobDTsUTkGmUKB/JmjwYMbVuFtxbv4e1f9jBz7RGeviOYHk0rpHuG4vVUaGWjHSeieOfXq7fU6NW0gtNxRLKcMYZ/3FWbQH8fPlx2gPikZMb1aOCVV25PRl3hydmhbDgUyf2Ny/N/99bTpBeRHKxG6YJMG9iMDYci+c/Pu3nu221MW3WQsV1qZeq4etdnkysJyYyeE0qx/Hl44/766jYQj2WM4dk7axHo58u7S/YSn+RifJ9G+HtRsbVk12me/SaMhCQX7/ZqSA/9YSWSa4RUKcZ3j7Vm0Y5TjFsczpDPM7cclQqtbPLmot3sPxPDzKEhFM3igXYiOdHI22oQ4O/Df34OJyHJxaT+jQnwy5oxDzlVXGIyby4K5/M1h6lbrhAT+zWmaskCTscSkXQyxtC1flnuqFOa2RuO8tBbGT+W9/yJ6aBle84wY+0RhrSpQrsaJZ2OI5Jthrevxmt312XJrtMM/2KzY7fAyA4HzsZw30dr+HzNYYa0qcL8x1qryBLJ5fx9fRjQKihTx9AVLTc7FxPPs/O2UatMQZ7rXNPpOCLZbmDrIAL9fRg7fzuDp29k2sBm5PegsUrWWuZtPs4rC3YS6O/DpwObcVvt0k7HEpEcwnN+2+VA1lrGfrud6CuJfDkshEB/z+42EbmRPs0rkcfPhzFzwxj42QY+G9ycQoH+TsfKtEtxifzj+x0sCI2gZdVijO/TmDKFdWN4Efn/1HXoRl9vOMbS3ad5rnNNapUp5HQcEUfd17gCk/o3IfTYRQZMW8/F2ASnI2VK2LGLdJu4ih/DInj6jmBmDWupIktE/kKFlpscPBvDv37aRdvqJRiim+2KANC1flk+ebApu09eot/U9ZyPiXc6Urq5XJYpKw7Q4+M1JCa5mDOiFaNuq5HptXZExDOp0HKDxGQXo+eEEuDvw7u9G3r1go0i17u9TmmmDWzGoXMx9JmyjjPRcU5HSrNzMfEM/nwj//k5nI61SvHzk+1oHlTM6VgikoOp0HKDCUv3se14FG/cV5/ShdSVIHK99sEl+XxwCBEXr9B78loiLl5xOtJNrdp3ji4TVrL24Hn+dU9dJg9oSpF8WqpFRP6eCq0stvFwJB/9sZ9eTSvQpX5Zp+OI5FgtqxZn5tAQzsck0HvyWo5FxjodKVWJyS7eWhzOgM/WUzivPwseb8OAVkFadFhE0iRThZYxppcxZqcxxmWMaZZVoXKr6LhERs8OpULRfLxyd12n44jkeE0rF2PWwy24FJdEr0/WcvBsjNOR/sexyFh6T17Lx38coHfTivzwRBtql9XEFhFJu8xe0doB3A+syIIsud6rC3ZyKjqO9/s00j3NRNKoQYUizB7eksRkF70nr2Pv6UtORwJg4baTdP1gJftPxzCxX2Pe6tmAfHn0vhaR9MlUoWWt3W2t3ZNVYXKzH8MimL/1BE/cWp2mlYs6HUckV6ldthBzRrTEx0DfKevYcSLKsSxXEpJ5Yf42Hv9qC1VLFmDhqHZ0b1jOsTwikrtl2xgtY8xwY8wmY8yms2fPZtdps0XExSu89N12GlUswsiO1Z2OI5IrVS9VkLkjWpHX35f+U9ex9eiFbM+w59Ql7p60iq83HGNEh6p880grKhXPl+05RMRz3LTQMsYsNcbsSOXfPek5kbV2irW2mbW2WcmSnnO/P5fLMmZuGEkuy/g+jfDz1fwCkYwKKpGfOSNaUiRfHgZ8uoGNhyOz5bzWWr5cd4S7J63iQmwCXwwJ4YUutfHX+1lEMummAw6stbdnR5DcaurKg6w9eJ5xPRoQVCK/03FEcr0KRfMxd0Qr+k9bx0OfbmDawGa0qV7CbeeLik1k7PxtLNpxinY1SvBe70aULBjgtvOJiHfRn2uZsDMiind+3UPnumXo1ayC03FEPEaZwoHMGd6KSsXyMfjzjSzbc8Yt59l0OJKuH6xkya7TjO1SixmDQ1RkiUiWyuzyDvcZY44DrYCFxphfsiZWzheXmMyTs0Mpmi8Pb9xfX2vqiGSxkgUD+Hp4S4JLF2D4F5tYvONUlh072WWZ9Ps++kxZh48PzHukFY90qKa7OIhIlsvsrMPvrLUVrLUB1trS1to7sypYTvfGz7vZfyaGd3s3pGh+rQ4t4g7F8udh1rCW1CtfmMe/2sIPYRGZPubp6DgenLaed37dS5d6ZVg4qh2NK2mmsIi4hxaFyYBle84wY+0RhrSpQrsanjOwXyQnKpzXn5lDWzDk842Mnr2VhCQXPZtmrKv+9/DTPDNvG7EJSbzVoz69m1XU1WgRcSuN0Uqn8zHxPDtvGzVLF+S5zjWdjiPiFQoE+DFjcAitq5XgmXlhzFp/JF2Pj09K5l8/7WLI55soVTCAn0a2pU/zSiqyRMTtdEUrHay1PP/tdqKvJDJzaAiB/r5ORxLxGnnz+DJtYDMem7WFl77bQXyiiyFtq9z0cYfOXWbk11vYcSKah1pV5sWutfXeFZFso0IrHWZvPMbS3af5x121db8zEQcE+vvyyYNNeXL2Vv7vp13EJSXz2C03XiT4u63H+cd3O/Dz9eGTB5vSuV6ZbEwrIqJCK80Ono3h/37cRdvqJRjS5uZ/RYuIe+Tx82Fiv8aMmRfGuMV7iEt08dTtNf6nG/ByfBL/XLCD+VtO0DyoKOP7NqZ8kbwOphYRb6VCKw0Sk108NSeUAH8f3unVUFPARRzm5+vDe70bEeDnwwe/7SM+MZmxXWphjGHHiShGfr2Vw+cvM+q2GozqWF13bBARx6jQSoMPfttH2PEoPnqgCWUKBzodR0QAXx/Dm/c3II+fD5NXHCQ+yUWlYvl4c1E4RfP789WwlrSqVtzpmCLi5VRo3cTGw5F8uGw/PZtWoGv9sk7HEZFr+PgY/nVPPQL9fJm26hAAt9Uqxdu9GlJM69uJSA6gQutvRMcl8tScUCoUzcerd9d1Oo6IpMIYw0t31aZC0bz4+/nQP0TLNohIzqFC62+8+sNOIi5eYd4jrSkQoKYSyamMMQzSJBURyYE0QvQGftoWwfwtJ3iiYw2aVtbtOURERCT9VGilIuLiFV6cv51GFYswquON1+gRERER+TsqtK7jclnGzA0jyWUZ36eRpoWLiIhIhqmKuM60VQdZe/A8r3SvQ1CJ/E7HERERkVxMhdY1dkZE8fYve7izbml6N6vodBwRERHJ5VRopYhLTGb07FCK5svDG/c30PRwERERyTStWZDizUXh7DsTwxdDQrTQoYiIiGQJXdEC/thzhs/XHGZwmyDaB5d0Oo6IiIh4CK8vtM7HxPPsN9sILl2A5zvXcjqOiIiIeBCv7jq01jJ2/naiYhP5YkgIgf6+TkcSERERD+LVV7RmbzzGkl2nea5zTWqXLeR0HBEREfEwXltoHTp3mf/7cRdtqhdniO6RJiIiIm7glYVWYrKL0bO3ksfPh3d6NcTHR0s5iIiISNbzyjFaH/y2j7DjUXz0QBPKFs7rdBwRERHxUF53RWvT4Ug+XLafnk0r0LV+WafjiIiIiAfzqkLrUlwio+eEUr5oXl7pXsfpOCIiIuLhvKrr8JUfdhJx8QrzHmlFwUB/p+OIiIiIh/OaK1o/bYtg/pYTPNGxBk0rF3M6joiIiHgBryi0TkZd4aXvdtCwYhFGdqzudBwRERHxEh5faLlcljFzw0hMdjGhTyP8fT3+KYuIiEgO4fFVx6erDrHmwHle6V6HoBL5nY4jIiIiXsSjC61dEdG8/cseOtUpTe9mFZ2OIyIiIl7GYwutuMRknpy9lSL5/HmzRwOM0ervIiIikr08dnmHNxeFs+9MDDOGhFAsfx6n44iIiIgX8sgrWsv3nuXzNYcZ1DqIDsElnY4jIiIiXsrjCq3zMfE8My+M4NIFGNulltNxRERExItlqtAyxrxtjAk3xmwzxnxnjCmSVcEywlrLC/O3ExWbyPg+jQn093UyjoiIiHi5zF7RWgLUs9Y2APYCL2Q+UsbN2XiMX3ed5tk7a1KnXCEno4iIiIhkrtCy1v5qrU1K+XYdUCHzkTLm0LnLvPbjLtpUL87QtlWciiEiIiLyX1k5RmsIsOhGG40xw40xm4wxm86ePZuFp4XEZBej54SSx8+Hd3o1xMdHSzmIiIiI8266vIMxZilQJpVNL1lrF6Ts8xKQBMy60XGstVOAKQDNmjWzGUp7AxN/20fYsYt82L8JZQvnzcpDi4iIiGTYTQsta+3tf7fdGDMI6AbcZq3N0gIqLTYfiWTSsv30aFKBuxqUze7Ti4iIiNxQphYsNcZ0Bp4DOlhrY7MmUtpdiktk9JxQyhfNy6t318nu04uIiIj8rcyO0ZoEFASWGGNCjTGfZEGmNHv1h12cuHCF93s3omCgf3aeWkREROSmMnVFy1pbPauCpNfCbSf5dstxRnWsTrOgYk7FEBEREbmhXLky/MmoK7z43XYaVizCyNtqOB1HREREJFW5rtByuSzPzAsjMdnF+D6N8PfNdU9BREREvESuq1I+W32I1fvP83K3OlQpkd/pOCIiIiI3lKsKrV0R0YxbvIdOdUrTp3lFp+OIiIiI/K1cU2jFJSYzes5WCufz580eDTBGq7+LiIhIzpapWYfZ6a3F4ew9HcOMISEUy5/H6TgiIiIiN5Urrmit2HuW6asPM6h1EB2CSzodR0RERCRNcnyhFXk5gTHzwgguXYCxXWo5HUdEREQkzXJ016G1lrHfbiMqNpEZg0MI9Pd1OpKIiIhImuXoK1pzNx3j112nefbOmtQpV8jpOCIiIiLpkmMLrUPnLvPaj7toXa04Q9tWcTqOiIiISLrlyEIrMdnF6Dmh+Pv68G7vhvj4aCkHERERyX1y5Bitib/vJ+zYRT7s34SyhfM6HUdEREQkQ3LcFa3NRyKZ9Ps+7m9SnrsalHU6joiIiEiG5ahCKyY+idFzQilfNC+v3V3X6TgiIiIimZKjug5f/WEnJy5cYe6IVhQM9Hc6joiIiEim5JgrWj9vP8k3m4/z+K3VaRZUzOk4IiIiIpmWIwqtU1FxvDB/Ow0rFmHUbTWcjiMiIiKSJRwvtFwuy5h5oSQkuRjfpxH+vo5HEhEREckSjlc1n60+xOr953m5ex2qlMjvdBwRERGRLONoobX7ZDTjFu/hjjql6du8opNRRERERLKcY4VWXGIyo2eHUjifP2/1aIAxWv1dREREPItjyzu8tTicPacv8fng5hTLn8epGCIiIiJu48gVrZi4JKavPsyg1kHcUrOUExFERERE3M6RQuvYhVhqlCrA2C61nDi9iIiISLZwpNBKdlnG921EoL+vE6cXERERyRaOFFplCgdSt1xhJ04tIiIikm0cKbRKFAhw4rQiIiIi2crxBUtFREREPJUKLRERERE3UaElIiIi4iYqtERERETcRIWWiIiIiJuo0BIRERFxExVaIiIiIm6iQktERETETYy1NvtPaswlYE+2nzjnKwGcczpEDqM2SZ3aJXVql9SpXf5KbZI6tUvqalprC2bkgX5ZnSSN9lhrmzl07hzLGLNJ7fK/1CapU7ukTu2SOrXLX6lNUqd2SZ0xZlNGH6uuQxERERE3UaElIiIi4iZOFVpTHDpvTqd2+Su1SerULqlTu6RO7fJXapPUqV1Sl+F2cWQwvIiIiIg3UNehiIiIiJu4tdAyxnQ2xuwxxuw3xoxNZXuAMWZOyvb1xpggd+bJCdLQJoOMMWeNMaEp/4Y5kTO7GWM+M8acMcbsuMF2Y4z5IKXdthljmmR3xuyWhja5xRgTdc1r5eXszugEY0xFY8wyY8wuY8xOY8yTqezjVa+XNLaJ171ejDGBxpgNxpiwlHZ5LZV9vPFzKC3t4pWfRQDGGF9jzFZjzE+pbEv/68Va65Z/gC9wAKgK5AHCgDrX7fMY8EnK132BOe7KkxP+pbFNBgGTnM7qQNu0B5oAO26wvSuwCDBAS2C905lzQJvcAvzkdE4H2qUs0CTl64LA3lTeR171ekljm3jd6yXl/3+BlK/9gfVAy+v28arPoXS0i1d+FqU896eBr1J7v2Tk9eLOK1ohwH5r7UFrbQIwG7jnun3uAWakfP0NcJsxxrgxk9PS0iZeyVq7Aoj8m13uAb6wV60DihhjymZPOmekoU28krX2pLV2S8rXl4DdQPnrdvOq10sa28TrpPz/j0n51j/l3/UDk73tcyit7eKVjDEVgLuAaTfYJd2vF3cWWuWBY9d8f5y/vvH/u4+1NgmIAoq7MZPT0tImAD1Suju+McZUzJ5oOV5a287btEq5/L/IGFPX6TDZLeWyfWOu/kV+La99vfxNm4AXvl5SuoFCgTPAEmvtDV8rXvI5BKSpXcA7P4vGA88BrhtsT/frRYPhc54fgSBrbQNgCf+/cha53hagsrW2ITAR+N7hPNnKGFMA+BYYba2NdjpPTnCTNvHK14u1Ntla2wioAIQYY+o5nSknSEO7eN1nkTGmG3DGWrs5K4/rzkLrBHBtBVwh5Wep7mOM8QMKA+fdmMlpN20Ta+15a218yrfTgKbZlC2nS8vryatYa6P/vPxvrf0Z8DfGlHA4VrYwxvhztaCYZa2dn8ouXvd6uVmbePPrBcBaexFYBnS+bpO3fQ79jxu1i5d+FrUB7jbGHObq0J6Oxpgvr9sn3a8XdxZaG4Eaxpgqxpg8XB009sN1+/wADEz5uifwu00ZYeahbtom140juZurYy3kajs9lDKbrCUQZa096XQoJxljyvw5NsAYE8LV97PHf0CkPOdPgd3W2vdusJtXvV7S0ibe+HoxxpQ0xhRJ+TovcAcQft1u3vY5lKZ28cbPImvtC9baCtbaIK5+Pv9urX3wut3S/Xpx202lrbVJxpgngF+4OtvuM2vtTmPM/wGbrLU/cPUXw0xjzH6uDvrt6648OUEa22SUMeZuIImrbTLIscDZyBjzNVdnRZUwxhwHXuHqAE2stZ8AP3N1Jtl+IBYY7EzS7JOGNukJPGqMSQKuAH09/QMiRRtgALA9ZYwJwItAJfDa10ta2sQbXy9lgRnGGF+uFpZzrbU/efPnUIq0tItXfhalJrOvF60MLyIiIuImGgwvIiIi4iYqtERERETcRIWWiIiIiJuo0BIRERFxExVaIiIiIm6iQktERETETVRoiYiIiLiJCi0RERERN/l/BW2hczEEZ7MAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 720x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, ax = plt.subplots(figsize=(10, 4))\n", "df_demo[\"C\"].plot(ax=ax)\n", "ax.set_title(\"Hello there!\");\n", "fig.suptitle(\"This title is super!\");"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* We can also get fancy!"]}, {"cell_type": "code", "execution_count": 81, "metadata": {"slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAD8CAYAAACFHTnaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd4lFXaBvD7TEkmvRJa6CSsNCkWEOtaVwUsq4sioihYYD+ajeK6UlRUQFcQBJRiVxQ7i+IquiqwgFQVQokhtFQy6ZOZOd8fJ0iMgZR5Z86U+3dduQQyec/tkByeOXPe8wgpJYiIiIiI6CST7gBERERERP6GRTIRERERUS0skomIiIiIamGRTERERERUC4tkIiIiIqJaWCQTEREREdXicZEshGgjhPhKCPGTEGKXEGKsEcGIiIiIiHQRnp6TLIRoCaCllHKLECIGwGYA10kpfzIiIBERERGRr3m8kiylPCKl3FL962IAPwNo7el1iYiIiIh0sRh5MSFEewC9AWyo43OjADwIIN5msyV369bNyKGJiHxi8+bNeVLKZrpzeBvnbCIKFk2dtz3ebvHbhYSIBrAOwEwp5fune+xZZ50lN23aZMi4RES+JITYLKU8S3cOX+KcTUSBrKnztiGnWwghrADeA/B6fQUyEREREZG/M+J0CwHgZQA/SynneB6JiIiIiEgvI1aSBwAYBuDPQoit1R9XG3BdIiIiIiItPL5xT0r5XwDCgCxEFAKqqqqQnZ2NiooK3VFOy2azITU1FVarVXcUIiLtAmHuNnreNvR0CyKi+mRnZyMmJgbt27eH2q3lf6SUyM/PR3Z2Njp06KA7DhGRdv4+d3tj3mZbaiLyqYqKCiQlJfnlJHuCEAJJSUl+vWJCRORL/j53e2PeZpFMRD7nr5NsTYGQkYjIl/x9XjQ6H4tkP7dlC/Dtt7pTEBEREYUWFsl+rKICGDgQuPxyYPt23WmIgsvRo0cxZMgQdOrUCX379sXVV1+NPXv26I5FRESnYDab0atXr98+MjMzvToeb9zzY0uXAocPA9HRwC23AJs2ARERulMRBT4pJa6//noMHz4cb731FgBg27ZtOHbsGNLT0zWnIyKiukRERGDr1q0+G48ryX7K4QCefBLo3x94/33gp5+ABx7QnYooOHz11VewWq249957f/uzM888ExdccIHGVERE5E+4kuynVqwADh4EFi1S2y0mTgRmzwauvBIYNEh3OiJjjBsHGL0o0KsX8Nxzp3/Mzp070bdvX2MHJiIKETsLZ8Du+MnQa8aGdUX3hKmnfUx5eTl69eoFAOjQoQNWrVplaIbaWCT7IadTrSKfdZYqigFg5kzgP/8BRoxQ+5NbtdKbkYiIiMiXfL3dgkWyH3rjDWD/fmDuXODEaSbh4cCbbwJ9+gDDhwNr1gAmbpahAFffiq+3dOvWDStXrtQzOBFRgKtvxTdYsMzyMy6XWjU+80x1skVNXboAzz8PrF0LzJmjJx9RMPjzn/+MyspKLFq06Lc/2759O77leYtERFSNRbKfeecdYM8eYOrUk6vINd11F3DDDcDkycDmzb7PRxQMhBBYtWoV1q5di06dOqFbt26YNGkSWrRooTsaERH5CW638CNut1pF7tpVFcJ1EQJYvBjo2RO49VbVbCQqyrc5iYJBq1at8M477+iOQUREDVRSUuLT8biS7EdWrQJ27VKryKfbb5yYCLz2GpCRoU4HICIiIiJjsUj2E1ICM2YA6enAzTfX//iLLwYmTQKWLAF4/xERERGRsVgk+4lPPlHnxU6eDJjNDfuaf/4TOOccYORIdaYyUaCQUuqOUK9AyEhE5Ev+Pi8anY9Fsh+QEpg2DejQQe0zbiirVR0X53QCt92mTsYg8nc2mw35+fl+PdlKKZGfnw+bzaY7ChGRX/D3udsb8zZv3PMDa9YAmzapG/Ks1sZ9badOwPz56uzkWbPUSjSRP0tNTUV2djZyc3N1Rzktm82G1NRU3TGIiPxCIMzdRs/bLJI1kxKYPh1o2xa4/famXWPYMODf/wb+8Q/g0kuBc881NiORkaxWKzp06KA7BhERNUIozt3cbqHZV18B338PPPwwEBbWtGsIASxYALRpo7Zr2O3GZiQiIiIKNSySNZs+HWjZEhgxwrPrxMWpY+EyM4ExYwyJRkRERBSyWCRr9O23wNdfAw89BBixz3zAALXl4tVX1Q19RERERNQ0LJI1mj4dSEkBRo0y7ppTpqhi+b77gAMHjLsuERERUShhkazJhg3AF18ADzwAREYad12LBXj9dbVPeehQdTwcERERETUOi2RNpk8HkpLUiq/R2rUDFi4EfvhBjUNEREREjcMiWYMtW4BPPwXGjweio70zxpAh6uzkGTPU3mciIiIiajhDimQhxCtCiBwhxE4jrhfspk8H4uO9fwrFCy+oLn633QYcP+7dsYiIiIiCiVErycsAXGXQtYLa9u3ABx8AY8eqY9u8KSZGnXJx+DBwzz2qcQkRERER1c+QIllK+Q2AAiOuFexmzlTF69ixvhnvnHPUyvU77wDLl/tmTCIiIqJA57M9yUKIUUKIDCFEblZWlq+G9Ss//wy8+67aZpGQ4LtxH3wQuPhiNW5Ghu/GJf/38svAwIFAiP5I0mlwziaiUOezIllKuUhKmSalbNa2bVtfDetXnngCiIhQN+z5ktmsGoyEham21Q6Hb8cn/7R8OXD33cAnnwB9+wJffqk7EfkTztlEFOp4uoWPZGSo/cH33Qc0a+b78VNTgSVLgE2bgMce8/345F9WrlSt0C+/HNi2TTW1ueIKYNYs7l0nIiICWCT7zJNPqpXcBx7Ql+GGG1R3v1mzgP/8R18O0mv1avWOQv/+wKpVQM+eqrnNjTcCjzwC/PWvgN2uOyUREZFeRh0B9yaAHwB0EUJkCyHuMuK6wSIzU213GDUKaNFCb5Y5c4D0dGDYMCA/X28W8r1169SLpR491FndUVHqz6OjgbffBp59FvjwQ+Dcc9UeeiIiolBl1OkWt0gpW0oprVLKVCnly0ZcN1g89RRgMgEPPaQ7iSqK3nwTyM1V+1H51nro2LgRuPZadXb2v//9xyMIhQAmTgTWrlUvoM45B3jvPT1ZiYiIdON2Cy87eBB45RW1/7N1a91plN69VeH+wQfA4sW605Av7NgBXHWV2nu8du3p98VffLHqCtmtm9p68dBDgNPps6hERER+gUWylz39tFqtfeQR3Ul+b9w4daPWuHF8Wz3YZWSoG/QiI1WB3KpV/V+Tmqq2Ztx7L/DMM8CVV6p3H4iIiEIFi2QvOnJErdQOHw60a6c7ze+ZTOoIsOho4JZbgMpK3YnIG7KygEsvBVwuVSB36NDwrw0PBxYsAJYuBb77Th0T97//eS8rERGRP2GR7EXPPqvepp40SXeSurVoobaCbNvmvxmp6Y4eVQWy3Q58/jnwpz817Tp33KGKZJMJOP98btEhIqLQwCLZS3JzgYUL1VFbnTrpTnNq116rOvHNnatu5qLgUFCgttMcOaKOfOvd27Pr9e0LbN4MXHSROqXl7ruBigpjshIREfkjFsleMmcOUF4OTJ6sO0n9nn4a6N5drRjm5OhOQ54qLlY36e3Zo45z69/fmOsmJamCe/Jk1c76ggvYzpqIiIIXi2QvyM8H5s0Dbr656W9x+1JEhDoW7vhx4M47eSxcICsrAwYOVKdTvPuu2m5hJLMZmDlTnYyyZw/Qp4/a60xERBRsWCR7wfPPAyUlwNSpupM0XPfuag/1Z5+pAp8Cj8Ohjmz75hvVvGbgQO+NNXiwuomveXN18sVTT/HFFRERBRcWyQYrKgL+9S/V1ax7d91pGmf0aOCaa4AHH1Tn6lLgcDqBoUPVdohFi9SJJd6Wnq7aWf/1r+rGzxtvZDtrIiIKHiySDfbCC6pQDqRV5BOEUMd9JSSoIqu8XHciagi3Gxg5Eli5Uu2Fv/tu340dHQ289RYwezbw0UeqSx/P3SYiomDAItlAxcXqlIhrr/X8NAFdmjVT5yfv2qVWlMm/SQmMHQssWwY8/jgwfrzvMwgBTJig9iYXFrKdNYW2Kncxciu+1x2DiAzAItlAL76ojt569FHdSTxzxRXAxInA/PnAxx/rTkOnM3Wq2kM+caL+77uLL1bHxLGdNYWyHQWPYX3O7ThcxjM1iQIdi2SDlJaqt5yvvFKtpAW6mTOBXr3UaReHD+tOQ3V56ingiSfUucXPPKNWdHVjO2sKZSVVmThU9glMsGJ7wRSUOzl5EgUyFskGWbRIFQO6V/OMEh6ujoUrK1Nttd1u3Ymopnnz1M1yt96q3sHwhwL5hNrtrPv0ATZu1J2KyPv22hfAJMLQv/lrcMsq/Jj/AKR06Y5FRE3EItkAFRVq1eySS4ABA3SnMc6f/qSOs1u7Vu21Jv+wfDnw97+rY9iWLVNnF/ujO+4Avv9e5bvgArazpuBW6sxCdukHaBc9BInhfdEj4Z/Ir9yIvfaXdEcjoiZikWyAl19W7X+DZRW5prvvVsfZTZqkGlSQXitXAiNGAJddpk6VsFp1Jzq9Pn3UPuWLL2Y7awpue4tegoAZnWNGAgBSo65Hq8hrsLvoeRRWbtWcjoiagkWyhyor1d7QAQNUIRBshFArgCkp6li40lLdiULX6tVqe0W/fqrjnc2mO1HDJCWpJjVTppxsZ/3rr7pTERmnzHkYB0vfR9vom2CzNAcACCHQM3E6bObm2JI/HlXuYs0piaixWCR7aPlyIDsb+Mc//GtfqJESE1UHt4wMYNw43WlC07p1JxvUfPopEBWlO1HjmM3AjBkn21n37ct21hQ89tkXAQA6xd7zuz+3mmLRO2kOypyHsLNwmo5oROQBFskeqKoCnnxSnWZx+eW603jXJZcAjzwCLFnCM3B9beNGdfZ2hw7AmjVAfLzuRE3HdtYUbCqcx5BV8g7aRN2ASEurP3w+yXYW0mNHI7t0FbJLP9KQkIiaikWyB15/HcjMVHuRg3UVuabHHwfOPlt1dzt4UHea0LBjB3DVVWq7y9q1qtlLoGM7awome4sXQ8KFznH3nPIxaXGjkRDWBzsK/oEyJydPokDBIrmJXC51Rm3v3sA11+hO4xtWK/DGG2oFfdgw9RyQ92RkqHcoIiNVgdzqj4tUAYvtrCkYVLry8WvJW2gdNRhRlranfJxJWNAneTYAYEveBLglu+wQBQIWyU309tuqiJk6NTRWkU/o3Fmd0btuHTBrlu40wSsrC7j0UvVCZO1atdUi2NTVznrlSt2piBpun/1luKUDabH31fvYSEsb9EycjkLHj8gomu+DdETkKRbJTeB2q5uQuncHrrtOdxrfu/12YMgQdbPihg260wSfo0dVgWy3A59/rs6rDmYn2ll37w7cdBPbWVNgcLgKkVnyGlpHXoNoa8NexbaOGojUqOuxxz4f+RWbvJyQiDzFIrkJ3ntPvTU8dSpgCsFnUAjVUS01VR1JVsyTjQxTUABccYU6d3v1arWdJxSkpgJffw3cd59qzHPFFUBOju5URKe2v3gZXLK8QavINfVIeAyRltb4MX8CqtzcjE/kz0KwxPPMiVXkLl3UjUehKj7+5I2LY8boThMciovVTXp79gAffgj07687kW+Fh6sW20uXqk59ffuynTX5pyq3HQeKl6NlxJWICUtv1NdaTNHokzQXFa5j2F4wFZLHuxD5LRbJjfTxx8D27aoxgr+2A/aVAQPUyR4rVqgb+qjpysqAgQNVV8N331XbLUJV7XbWixbxmDjyLweKl8MpS5AWN7pJX58Q3gtd4sbicNlnyC593+B0RGQUQ4pkIcRVQojdQoi9QohHjLimP5ISmD4d6NRJdZ8jteXkvPPU2+QHDuhOE5gcDvWuxDffqKYtAwfqTqRfzXbW99zDdtbkP6rcxdhfvAzNIy5FXNgZTb5O59h7kBR+DnYUPo7SqkzjAhKRYTwukoUQZgDzAfwFQFcAtwghunp6XX+0erX6h3vyZMBi0Z3GP1gsatsFANx2G2+4aiynExg6VH1vLVrEF1811Wxn/corbGdN/iGz+HVUuYuQHuvZPjMhzOid9CxMworN+ePhlg6DEhKRUYxYST4HwF4p5X4ppQPAWwAGG3Bdv3JiFbldO3VGMJ3Uvj3w0kvqLfIZM3SnCRxut2rMsnIlMGeOWi2l32M7a/InTncZ9he/jBTbRYgP7+Hx9SIsrdAzcSaKHDuwu+h5AxISkZGMKJJbA6jZQii7+s+CypdfAuvXq9bMVqvuNP5nyBB1NNz06cB//6s7jf+TEhg7Fli2THUyHD9edyL/dqKddYsWbGdN+vxa8gYc7sIm70WuS6vIq9A26mbstS9CXsUPhl2XiDznsxv3hBCjhBAZQojcrKwsXw1rmOnTgdatgTvv1J3Ef82bp1aVhw4Fjh/Xnca/TZminq+JE9XNj1S/9HT1QvWmm9jO2hcCfc42mstdgX32JUgOPw+J4X0MvXa3hKmIsrTHj/kPwOEqNPTaRNR0RhTJhwC0qfH71Oo/+x0p5SIpZZqUslnbtqdu3+mP1q1TN1U99JA6porqFhMDvPkmcPgwcO+9XOk7lSefVB+jRqkzgUOpY6OnoqPV99icOSfbWf/0k+5UwSmQ52xvyCp9B5XuPENXkU+wmCLRJ3kuKl0F2FYwhcfCEfkJI4rk/wFIE0J0EEKEARgC4CMDrus3pk8HmjdX+0fp9M45B5g2TbXtXrFCdxr/M2+euvHz1lvVmcAskBtPCLU95csvT7azfvdd3akomLlkJfbaX0Ji+NlItp3rlTHiw7rjjPiJOFr+ObJK3/bKGETUOB4XyVJKJ4AxANYA+BnAO1LKXZ5e11/88IP6x/jBB4GICN1pAsNDD6mju0aPBvbu1Z3GfyxfDvz972p/7bJlPGfbUxddpE6b6dEDuPlm9TPK01XIGw6WvI8K1zGkx3m3c1LHmBFItg3AzsIZKK7i5EmkmyF7kqWUn0kp06WUnaSUM424pr+YPh1ITlbbB6hhzGZ13m9YmDrSzMGTjbByJTBiBHDZZcBbb/HmT6PUbGf97LNsZ03Gc8sq7LUvREJYLySHn+fVsYQwoXfSM7CICGzJGw+XrPTqeER0euy4dxqbNqnzaydMAKKidKcJLKmpwOLF6jl87DHdafRavVptr+jXTx1lZrPpThRcTrSzXrZMvfPDdtZkpOzSD1DuOoS0uDEQPtgfZTOn4MzEp2Cv+hm/HJ/t9fGI6NRYJJ/GjBlAQoLaNkCNd+ONah/3rFnAV1/pTqPHunXADTcA3bsDn37KF1veNHy4OqvbYmE7azKGWzqRYV+AuLDuSLFd5LNxW0ReivbRt2F/8SvIKf/GZ+OS/7M7dmNz3ljYHb/ojhISWCSfwrZtwIcfAuPGAbGxutMErrlz1dFdw4YB+fm60/jWxo3AtdcCHToAa9YA8fG6EwW/3r3VuxeXXMJ21uS5w2WfoMyZhbTY0T5ZRa6pa/wjiLGmYWv+Q6h0hdjkSXUqqTqA9TnDcbjsU3x77K/ILv1Qd6SgxyL5FGbMUMXx//2f7iSBLSpKHdmVk6NWlUNlZW/HDuCqq4BmzYAvvlD/Jd9ISlKr9lOnqnbW55/PdtbUeFK6kFG0ADHWLmgRcanPxzebbOiT9Byq3HZszX+Yx8KFuDLnIfyQczskXOif8hriw3rgx/yJ2FkwHW5ZpTte0GKRXIeffgLee0+dRMDVP8/17q3OBV61Su1TDnYZGcDll6vTUL78UjWhId8ym9VNtx9+qP4++vZVL1aIGupw2b9R4tyH9LjREELPP5WxYV3QNeER5FR8jcySV7VkIP0qXLlYn3M7nO4S9EtZhmRbP/RPWYGOMXfiQMly/JAzDBUu3rHsDSyS6zBzJhAZqbZakDHGj1eF47hxwM8/607jPVlZwKWXAi4XsHat2mpB+gwadLKd9VVXqRdrXJCj+kjpRoZ9PqItndAy4iqtWdpHD0OK7WL8VPgU7I7dWrOQ7zlchVifMxwVrlycm/Iy4sK6AQBMwopuCVPQJ2kuihy78M3R61BQuVlz2uDDIrmWPXvUEV3336+OfiNjmEzqnOCoKHXSQ2UQnmx09KgqkO124PPPgTPO0J2IgN+3s548Wd1IyXbWdDpHy9eiuGoP0uLu17aKfIIQAr2SZsFqisWW/HFwubnJPlRUuYuxIfculFZl4uxmC+tsh946aiDOb74SFhGB748NxYHiFdyaYyAWybU88YQ6UmriRN1Jgk/LlsDSpcDWrapYCSYFBeqM3iNHgM8+U1tMyH/UbGf98cfA2WeznTXVTUqJPUXzEGVph1aR1+iOAwAINyehV9LTKK7KwE/Hn9Idh3zA6S7HxtxRKHLsQt/kF9DMduozumPDuuCCFquQEnEhdhZOw4/5D8DpLvdh2uDFIrmG/fuB115Td8U3b647TXC69lp1pN6cOerEh2BQXKzeyt+zR+2BPc+7/QaoiWq2sz5+nO2sqW45FV/DXvUTOsfeB5Ow6I7zm5SIC9Ex5k5klryGo2Vf6o5DXuSWDmzKG42Cyk3onfQsWkTWf+Oo1RSLs5MXokvceBwq+wjfHbsJpVW8Y9lTLJJreOopdcbqgw/qThLcnnkG6NZNnWsb6N3RysqAgQOBLVtUwXWp72+Cp0a66CL198V21lTbiVXkCHMqUqMG647zB3+KfwCx1jOwreAR3qgVpNzSiS1545Fb8Q16Js5A66iBDf5aIUxIjxuNc5stQbnrCL49ej2OlX/tvbAhgEVytaws1bHrrruAVq10pwluERHqre/jx1Wr5kDdPuVwAH/9K/DNN6oN98CGz2WkWevWqtHL/feznTWdlFvxXxx3bENa3L0wCf/rHW8W4eiTPBdOWY4f8x+ElG7dkchAUrqxrWAyjpSvQdf4yWgX/bcmXScl4iJc2OIDRFhaY2PuSOwu+he/V5qIRXK1p59W/334Yb05QkWPHqo4+fRTYP583Wkaz+kEhg5VLacXLQJuuUV3ImqssDD1vVeznfWGDbpTkS5SSmTY58NmboHUqOt1xzmlGGtndE+YiryK77C/+BXdccggUkrsLJyG7NL30SVuLDrFjvDoepGWNji/+btIjboOe4r+hY2598DhLjIobehgkQzg8GFgyRL19n/btrrThI7Ro4FrrgEeeEA13wgUbrfq5LZypdpbfffduhORJ2q2s77wQuCllwL33Q1quvzKDSio3ITOsaNgFuG645xW26i/oUXEFfj5+Gwcd+zUHYcM8EvRbGSWvIaOMXchLXaMIdc0m2zolfg0eiT8E7kV/8W3R69nO+tGYpEMtUfW6QQmTdKdJLQIoTqixcerldjyALgZV0pg7Fh1nN3jj6sbwSjw1Wxnfe+9attVIHw/knEyiuYj3NQMbaNu1h2lXkIInJk4E+HmRGzJGw+nu0x3JPJARtEC7LUvRNvoIega/4ihLdCFEGgfcxvOa/463LKS7awbKeSL5JwctXJ0221Ax46604SelBRVcO7aFRg3TE6ZAsybp44IfPRR3WnISDXbWS9dynbWoaSgcjPyKn9Ap9iRMJtsuuM0SJg5Ab2TnkWpMxO7CmfqjkNNdKB4BX4pmo3WkYPQM+FxQwvkmhLD++CCFh+wnXUjhXyRPHu2amwRbOf2BpIrrwQmTFD7Qz/5RHeaU3vySfUxapR698FLcxlpVLOd9d69bGcdKvYUzUOYKRHtogPr5oJkW390jh2FrNK3cbjs37rjUCMdLHkPOwunoXnEZeiVNAtCmL06ns3cjO2sGymki+S8PFWY/e1vqisX6fPEE0CvXsCdd6qGHP5m3jz1QurWW4EXX2SBHOwGDVLbL1q2ZDvrYFdYuQ25Fd+iU+xdsJgidMdptC5xYxEX1gPbC6ag3HlYdxxqoMNlq7G1YBKSbQPQN/l5n52mcrKd9XOqnfWRwWxnfRohXSQ/9xxQWqreQie9wsOBN95Qfx/Dh6ub4/zF8uXA3/8ODB6sTkIwe/fFPvmJtDTVzvrmm9nOOphl2OfDaopH++ihuqM0iUmEoU/SXLhlFX7MfwBSunRHonocK/8aW/ImICGsF85OXqDlRtHWUdfi/ObvwWKKYjvr0wjZIvn4ceCFF9Q5t9266U5DAHDGGeqFyxdfAHPn6k6jrFypznK+7DLgrbcAq/8dnUpeFBWlXrzNnXuynTUFjyLHLhwr/w86xtwBiylad5wmi7a2R4+Ex5BfuRF77S/pjkOnkVexAZvyRiPGmoZzU5bAYorUliU2LL26nfVF1e2sJ7KddS0hWyT/619qVWjqVN1JqKaRI4Hrr1cnjfz4o94sq1er7RX9+gEffADYAuN+HjKYEMC4cSfbWVPw2FP0IiwiBh1ibtcdxWOpUTegVeQ12F30PAort+qOQ3UorNyGjbmjEGlORb+UpbCaYnVHgtUUg7OTF6BL3AQcKvuY7axrCcki2W5XK5aDBgFnnqk7DdUkBLB4sTr14pZb1PYLHdatU2+vd++uTjyIitKTg/zHiXbWFBzsjj04Wr4GHWKG+0Wx4ikhBHomTofN3Bxb8sfD6S7RHYlqsDt2Y0PuCISbE9E/ZQXCzUm6I/1GtbO+n+2s6xCSRfKLLwKFhTzCy18lJak2z3v26DmHeONG4NprgQ4dgDVr1DnORIBqZ03BIcP+IswiCh1j7tAdxTBWUyx6J81BmfMQdhQ+rjsOVSupOoD1OcNhFjb0T1kBm6W57kh1YjvrPwq5Irm0VB37dtVVwFln6U5Dp3LJJapF+OLFwHvv+W7cHTvU90azZmpvdLNmvhubiHyjpGo/Dpd9ig4xQxFmDq5XwUm2s5Aeez+yS1fhUOnHuuOEvDLnYfyQczskXOiXsgKRlja6I53WyXbW17OdNUKwSF64UB399o9/6E5C9Zk2Td0oNXIkcPCg98fLyAAuvxyIiFD7T7lqSBScMuwLYBLh6Bhzl+4oXpEWNwYJYb2xveBRlDmzdccJWRWuXKzPGQanuwT9UpYhxtpJd6QGUe2sZ6FHwuPV7ayvC9l21iFVJJeXqyYQl14K9O+vOw3Vx2pVJws4HMDttwMuL55slJWlvi9cLmDtWrXVgoiCT2nVrzhU+hHaR9/qV/tCjWQSFvTvGLcYAAAgAElEQVRJngMA2JI3AW7p1Jwo9Dhcx7E+ZzgqXLk4N+VlxIUF1jFaqp310Op21o6QbWcdUkXykiXAsWPcixxIOndWjTy+/hp4+mnvjHH0qCqQ7Xbg88/VUXREFJz22hdCwIxOsXfrjuJVkZY26JE4DYWOLcgomq87TkipchdjQ+4IlFZl4uxmC5EY3kd3pCZLDO+DC1t8iISwntXtrKfBLR26Y/mMR0WyEOImIcQuIYRbCOHXO3wrK4FZs4ALLlB3qVPgGD5cdUV89FFgwwZjr11QAFxxhery99lnQO/exl6fiPxHmfMQDpauQtvov8FmTtEdx+tSowYhNfI67LHPR37FJt1xQoLTXY6NuaNQ5NiFvskvoJntPN2RPBZuTka/lOXoGDMCB0pW4PsQamft6UryTgA3APjGgCxetXQpcOgQV5EDkRBqL3nr1urc4uJiY65rt6ub9HbvBj78EDgv8OcyIjoN1WhDoHPsSN1RfKZ74mOItLTGj/kTUOVmy0hvcksHNueNQUHlJvROehYtIi/VHckwqp31ZPRJeg52x0/45sjgkHjh5VGRLKX8WUq526gw3lJVBTz1lGoKcdllutNQU8THA6+/DmRmqhbRniorAwYOVOfevvuu2m5BRMGr3HkUB0veRZvoGxFhaaU7js9YTTHokzQXFa5j2F7wKFsPe4lbOrElbzxyKtahZ+IMtI4aqDuSV9RsZ/1Dzm1B3846JPYkv/oq8OuvahVZCN1pqKnOP1/9HS5fDrz5ZtOv43CoduTffqu+NwYNMi4jEfmnffbFkJBIi71XdxSfSwjvhS5xY3G47FNkl67SHSfoSOnGtoLJOFK+Bl3jJ6Nd9N90R/KqUGpnXW+RLIRYK4TYWcfH4MYMJIQYJYTIEELkZmVlNT1xIzmdwBNPAH37An/5i8+GJS+ZOlVti7j3XrWq3FhOp9qysXo18NJLqqsfEf2RrjnbGypcufi19C2kRl2HSEuq7jhadI69B0nh52BH4T9RWpWpO07QkFJiZ+E0ZJe+jy5xY9EpdoTuSD4RKu2s6y2SpZSXSSm71/HRqLNApJSLpJRpUspmbdu2bXriRnrrLWDfPlVccRU58FkswGuvqV8PHaqK3oZyu4G771bNSebMUecvE1HddM3Z3rDf/jLcsiokV5FPEMKM3knPwgQLNuePD6kTCrzpl6LZyCx5DR1j7kJa7BjdcXzqZDvrl1HuOlrdzvor3bEMFdTbLVwuYMYMoEcPvqUeTDp0UDfyff+9+vttCCmBsWPVVo1//lNPu2si8r1KVwEyS95A68hrEWVtrzuOVhGWVuiZNBNFjh3YXfS87jgBL6NoAfbaF6Jt9BB0jX8EIkRX4lIiLsSFLVYhwpKq2lkffz5o2ll7egTc9UKIbAD9AXwqhFhjTCxjrFypTi549FHAFNQvB0LPLbeoBiPTpwPffVf/46dMUectT5zIbotEoWR/8VK4ZDnS4u7XHcUvtIr8C9pG3Yy99kXIq/hBd5yAdaB4BX4pmo3WkYPQM+HxkC2QT1DtrN9BatQN2GN/ARtzRwVFO2tPT7dYJaVMlVKGSymbSymvNCqYp9xutcp4xhnAjTfqTkPeMG8e0L692nZx/PipH/fkk+pj1CjVcTHE5zKikOFwHUdm8Qq0ivwLYqyddcfxG90SpiLK0h4/5j8Ah6tQd5yAc7DkPewsnIbmEZehV9IsCGHWHckv/L6d9Xf49uh1KHL8rDuWR4J2ffXDD4GdO9UKIleRg1NMjGpbnZ2tbuSr6xSaefOAyZPVzXovvsgCmSiUHCheDqcsRVrsaN1R/IrFFIk+yXNR6SrAtoIpQX2El9EOl63G1oJJSLYNQN/k52ESVt2R/Ertdtb/PXYTsks/0B2ryYKyfJRSvQ3fubPq1EbB69xzgWnTgLffBlas+P3nli9XZyoPHgwsWwaY+WKfKGRUuYtxoHg5WkRcjtiwLrrj+J34sO44I34ijpZ/jqzSt3XHCQjHyr/GlrwJSAjrhbOTF8AswnVH8lu/b2f9QMC2sw7KIvnTT4Eff1QriBaL7jTkbQ8/rFqNjxkD7N2r/mzlSmDECNU85q23ACtf7BOFlMziV1El7UiL4yryqXSMGYFk2wDsLJyB4qp9uuP4tbyKDdiUNxox1jScm7IEFlOk7kh+LxjaWQddkXxiFbl9e+C223SnIV8wm1VTEKtVbav46CP13379gA8+AGw23QmJyJec7lLsK16KFNvFiA/rrjuO3xLChN5Jz8AiIrAlbxxcslJ3JL9UWLkNG3NHIdKcin4pS2E1xeqOFDBOtrN+HnbHzwHXzjroiuQvvgA2bgQmTeLqYShp0wZYvBj43//U9oru3dU7ClFRupMRka9llryBKnch0rmKXC+bOQVnJj4Je9XP+OX4bN1x/I7dsRsbckcg3JSIfinLEW5O0h0pILWOugYXNF/5Wzvr/cXLA2IvfFAVySdWkVNTgeHDdachX7vxRmDCBOCcc4A1a4D4eN2JiMjXnO5y7LMvQbJtABLCe+uOExBaRF6G9tFDsb/4FeSUf6M7jt8oqTqA9TnDYRY29G++AhGWFrojBbSY39pZX4xdhdOr21mX6Y51WkFVJK9bB/z3v2qPajj304ek2bOBDRuAZs10JyEiHbJK3obDnY/0EOt+5qmu8ZMQbe2MrfkPodKVrzuOdmXOw/gh53ZIuNAvZTkiLW10RwoKqp31i7+1s/7vsZv8uk16UBXJ06YBLVoAd92lOwkREfmaS1ZiX/FiJIWfgyTb2brjBBSzyYa+Sc+hym3H1vxHAuKtcG+pcOVifc4wON0l6JeyjGdsG6xmO+sK1zF8c/R6HCv/j+5YdQqaIvm774CvvgIeegiIiNCdhoiIfO1gyUpUuI4hLY6ryE0RG/YndE14BDkVXyGz5FXdcbRwuI5jfc5wVLhycW7Ky4gL66Y7UtA60c460tIGG3NH+WU766ApkqdPV2+x33OP7iRERORrbulAhn0hEsL6IDm8v+44Aat99DCk2C7GT4VPwe7YrTuOT1W5i7EhdwRKqzJxdrOFSAzvoztS0DvRzrpN1I1+2c46KIrkjRvVjVoTJwKRPLqQiCjkHCxdhQrXEaTHjYZga80mE0KgV9IsWE2x2JI/Di53he5IPuF0l2Nj7igUOXahb/ILaGY7T3ekkGE22XBm4lPokTDN79pZB0WRPGMGkJgI3H+/7iRERORrbunEXvtCxIX1QDPbhbrjBLxwcxJ6Jc1CcVUGfjo+S3ccr3NLBzbnjUFB5Sb0TnoWLSIv1R0p5Kh21rdiQPM3/KqddcAXyT/+CHz8MTBuHBATozsNERH52qHSj1HmPIj0WK4iGyUl4iJ0jLkTmSWv+u1NVUZwSye25I1HTsU69EycgdZRA3VHCmkJ4b1/1856R8HjWttZB3yRPGMGEBcH/P3vupMQEZGvSelChv1FxFrPQPMIrgAa6U/xDyDWega25j8ccO2EG0JKN7YVTMaR8jXoGj8Z7aL/pjsS4UQ76xXoGDMCmSWv4vtjt6HCeUxLloAuknfuBN5/H/i//2PjCCKiUHS47DOUOg8gjXuRDWcW4eiTPAdOWY4f8x/0u5MHPCGlxM7C6cgufR9d4saiU+wI3ZGoBpOwnGxnXfULvjl6HfIr/uf7HD4f0UAzZwLR0WqrBRERhRYp3ciwv4gYaxpaRlyhO05QirGmoVv8FORVfIf9xa/ojmOYX4pmI7PkVXSMuQtpbDzjt37fznqYz9tZB2yRvHs38PbbwOjR6qY9IiIKLUfKP0dxVQbSYu+HEAH7z5nfaxc9BC0iLsfPx2ejyLFLdxyPZRQtwF77QrSNHoKu8Y/wHQg/p7OddcDOKk88AdhswIQJupMQEZGvSSmRUTQfUZYOaBV5te44QU0IgTMTn0C4ORGb88b7rEDxhgPFK/BL0Wy0jhyEngmPs0AOECfaWf/Jx+2sA7JI3rcPeP114L77gJQU3WmIiMjXjpX/B/aqn5EWex+EMOuOE/TCzAnonfQsSp0HsKtwpu44TXKw5H3sLJyG5hGXoVfSLH7fBBghTEjzcTvrgCySn3wSsFiABx7QnYSIiHxNSok99nmINLfhkV0+lGzrj86xI5FV+jYOl/1bd5xGOVy2GlsLHkGybQD6Jj8Pk7DqjkRNpNpZf1CjnfVzXrupNOCK5F9/BZYvB0aOBFq21J2GiIh8LbfiGxQ5dqBz3L0sdnysS9w4xIX1wPaCKSh3HtYdp0GOlX+NLXkTkBDWC2cnL4BZhOuORB6KtKTWaGc9DxtzR8LhOm74OAFXJM+aBQgBPPSQ7iRERORrUkrsKZqPCHMrtIm6XneckGMSYeiTNBduWVV9LJxLd6TTyqvYgE15oxFjTcO5KUtgMUXqjkQG+X076+/x7dHrUeT4ydAxAqpIPnQIePll4M47gTZtdKchIiJfy69cj0LHFnSOHQWTCNMdJyRFW9uje8I/kF+5AXvti3THOaXCym3YmDsKkeZU9EtZCqspVnckMtjv2llDtbM+WLrKsOsHVJH89NOA2w1MmqQ7CRER6bCnaB7CzSloE32T7ighrU3UjWgVeTV2Fz2HwsqtuuP8gd2xGxtyRyDclIh+KcsRbk7SHYm86GQ76zOxNf9Bw9pZB0yRfPQosGgRMGwY0L697jRERORr+RX/Q37lBnSOGcl9pZoJIdAjcTps5ubYkj8eTneJ7ki/Kak6gPU5w2EWNvRvvgIRlha6I5EPeKOddcAUybNnAw4HMHmy7iRERKTDHvs8hJmS0DZ6iO4oBCDMFIfeSbNR5jyEHYXTdMcBAJQ5D+OHnNsh4UK/lOWItHBvZigxup21R0WyEOIZIcQvQojtQohVQoh4T653Knl5wIIFwC23AJ07e2MEIiLyZ4WVW5FX8R06xd4NiylCdxyqlmQ7G+mx9yO79H0cKv1Ya5YKVy7W5wyD012CfinLEGNlwRCqarezbipPV5K/ANBdStkTwB4AXtktPHcuUFYGTJnijasTEZG/21M0H1ZTAtpH36o7CtWSFjcGCWG9sb3gUZQ5s7VkcLiOY33OcFS4cnFuysuIC+umJQf5jxPtrNtG39zka3hUJEspP5dSOqt/ux5AqifXq0tBAfDCC8BNNwFnnGH01YmIyN8dd+xETsVX6BhzJyymKN1xqBaTsKBP8hwAElvyJsD9W1ngG1XuYmzIHYHSqgM4u9lCJIb38en45L+sphj0TGz6ViAj9ySPALDawOsBAP71L6C4GJg61egrExFRIMgomg+riEWHmKa/bUreFWlpgx6J01Ho2IKMovk+G9fpLsfG3FEocuxC3+QX0Mx2ns/GpuBXb5EshFgrhNhZx8fgGo+ZAsAJ4PXTXGeUECJDCJGblZXVoHB2O/D888B11wE9ejToS4iIyABNmbO9we74BUfLv0CHmOGwmmK05aD6pUYNQmrkddhjn4+Cys1eH88tHdicNwYFlZvQO+lZtIi8zOtjUmipt0iWUl4mpexex8eHACCEuAPAtQCGSinlaa6zSEqZJqVs1rZt2waFmzcPOH6cq8hERL7WlDnbGzLsL8IiotAh9g5tGajhuic+hkhLa2zJm4Aqt91r47ilE1vyxiOnYh16Jk5H66iBXhuLQpenp1tcBeAhAIOklGXGRFJKSoA5c4Crrwb69jXyykREFAiKq/bicNlqtI8ZhjBTnO441ABWUwz6JM1Fhesothc8itOsnTWZlG5sK5iMI+Vr0DV+MtrxSEDyEk/3JM8DEAPgCyHEViHEQgMyAVBHvuXnA48+atQViYgokGQULYBZ2NAx5k7dUagREsJ7IT1uLA6XfYpsA1sEA4CUEjsLpyO79H2kx/0fOsWOMPT6RDVZPPliKaVXDiEsKwOefRa4/HKgXz9vjEBERP6spCoTh8o+RseYO9lSOAClxd6D3IpvsaPwn0gM74Moa3tDrvtL0WxklryKjjF3IT3274Zck+hU/LLj3uLFQE4OV5GJiELVXvtCmIQVnWLv1h2FmkAIM/okzYYJFmzJnwC3rPL4mhlFC7DXvhBto4ega/wjEEIYkJTo1PyuSK6oAJ5+GrjoIuCCC3SnISIiXytzZiO79AO0ixoCm7mZ7jjURBGWVuiZNBPHHduxu+h5j651oHgFfimajdaRg9Az4XEWyOQTflckL10KHD7MVWQiolC11/4SBAQ6xY7UHYU81CryL2gbdRP22l9CXsUPTbrGwZL3sbNwGppHXIZeSbMghNnglER186si2eEAnnwSOO884M9/1p2GiIh8rdx5GFklK9Em+iZEWFrojkMG6JYwFVGW9vgx/wE4XIWN+trDZauxteARJNsGoG/y8zAJq5dSEv2RXxXJK1YABw+qVWS+k0JEFHr22hcDkOgce4/uKGQQiykKfZLnotJVgG0FUxt8LNyx8nXYkjcBCWG9cHbyAphFuJeTEv2e3xTJTqdaRT7rLODKK3WnISIiX6tw5SCr5G20iboekZbWuuOQgeLDuuOM+Ik4Wr4GWaVv1/v4vIoN2JR3P2KsaTg3ZQkspkgfpCT6Pb8pkt94A9i/n6vIREShap99CSRc6Bx7r+4o5AUdY0Yg2TYAOwtnoLhq3ykfV1i5DRtzRyHSnIp+KUthNcX6MCXRSX5RJLtcwMyZwJlnAgPZWZKIKORUuvLxa8mbaB05EFHWdrrjkBcIYULvxKdhFhHYkjcOLln5h8fYHbuxIXcEwk2J6JeynGdkk1Z+USS/8w6wZw9XkYmIQtX+4lfgkhXoHHef7ijkRTZLc/RKfBL2qp/xy/HZv/tcSVUm1ucMh1nY0L/5Ct64SdppL5LdbrWK3K0bcP31utMQEZGvOVzHcaD4NbSKvBox1k6645CXtYi8DO2jh2J/8SvIKf8WAFDmPIwfcoZBwoV+KcsRaWmjOSWRHxTJq1YBu3YBU6YAJu1piIjI1/YXL4NLliItdrTuKOQjXeMnIdraGVvzH4TdsRvrc4bB6S5Bv5RliLF21h2PCIDmIllKYMYMID0duPlmnUmIiEiHKncxDhQvR4uIKxEblq47DvmI2WRD36TnUOW245ujg1DhysW5KS8jLqyb7mhEv9FaJH/yCbB1KzB5MmBmAx0iopBzoHgFnLIY6XH3645CPhYb9id0S5gCs4jE2c0WIjG8j+5IRL9j0TWwlMC0aUDHjsCtt+pKQUREujjdJdhfvBTNbZdwBTFEtY8ZinbRQ9hqmvyStiJ5zRpg0yZg8WLAyi6TREQhJ7PkDVS5jyMtbozuKKQRC2TyV9q2W0yfDrRtC9x+u64ERESki9Ndhn32JWhmuwAJ4WfqjkNE9AdaVpKLi4HNm4H584GwMB0JiIhIp19L3oLDXYB0riITkZ/SspJ8+DDQsiUwYoSO0YmISCeXrMS+4iVICu+HxPC+uuMQEdVJS5FcUgI8/DBgs+kYnYiIdMoqeQeVrhykx/FcZCLyX1qKZIsFGDlSx8hERKSTS1Zir/0lJIT3RVJ4P91xiIhOSUuR3Lo1EBmpY2QiItIpu3QVKlxHkR47BkII3XGIiE5JS5GcnKxjVCIi0sktq5BRtBDxYWeime183XGIiE5La8c9IiIKHYdKP0K5KxvpcaO5ikxEfo9FMhEReZ2ULmTYFyDW2hUptkt0xyEiqheLZCIi8rpDZZ+i1JnJVWQiChgskomIyKukdCOjaD5irOloEXG57jhERA3CIpmIiLzqSPm/UeLch7TY0RCC/+wQUWDwaLYSQkwXQmwXQmwVQnwuhGhlVDAiIgp8ahX5RURZOqJV5FW64xARNZinL+mfkVL2lFL2AvAJgH8YkImIiILEsfIvYa/6BWlx90EIs+44REQN5lGRLKW01/htFADpWRwiIgoWUkrssc9HpKUtWkcO1B2HiKhRPN4cJoSYKYQ4CGAoTrOSLIQYJYTIEELkZmVleTosERF5kRFzdk7FOhQ5diIt9l6YhMXghERE3lVvkSyEWCuE2FnHx2AAkFJOkVK2AfA6gDGnuo6UcpGUMk1K2axt27bG/R8QEZHhPJ2zpZTIKJqHCHNrpEZd54WERETeVe9LeynlZQ281usAPgPwmEeJiIgo4OVVfo9Cx1b0SJgGkwjTHYeIqNE8Pd0ircZvBwP4xbM4REQUDPYUzYPN3Bxtom/UHYWIqEk83ST2lBCiCwA3gF8B3Ot5JCIiCmR5FRtQUPk/dEt4FGYRrjsOEVGTeFQkSym5REBERL+TUTQf4aZktIv6m+4oRERNxtZHRERkmILKLcir/B6dYu+G2WTTHYeIqMlYJBMRkWEyiuYjzJSAdtG36o5CROQRFslERGSI45U7kFOxDh1jRsBiitQdh4jIIyySiYjIEHvs82E1xaF9zG26oxAReYxFMhEReazI8TOOla9Fh5jhsJpidMchIvIYi2QiIvJYRtF8WEQ0OsQM1x2FiMgQLJKJiMgjxVUZOFK+Bh1ibkeYKU53HCIiQ7BIJiIij2QULYBZRKBDzB26oxARGYZFMhERNVlJ1QEcKvsE7aOHItycqDsOEZFhWCQTEVGTZdgXwCTC0Cn2Lt1RiIgMxSKZiIiapNSZhUOlH6Jd9BCEm5N1xyEiMhSLZCIiapK9RS9BwIzOMSN1RyEiMhyLZCIiarQy52EcLH0fbaNvgs3SXHccIiLDsUgmIqJG22dfBADoFHuP5iRERN7BIpmIiBqlwnkMWSXvoE3U9Yi0tNIdh4jIK1gkExFRo+wtXgwJFzrH3as7ChGR17BIJiKiBqt05ePXkrfQOmowoixtdcchIvIaFslERNRg++wvwy0dSIu9T3cUIiKvYpFMREQNUukqQGbJa2gdeQ2irR10xyEi8ioWyURE1CAHipfBJcu4ikxEIYFFMhER1avKbceB4hVoGXEVYsLSdcchIvI6FslERFSvA8XL4ZQlSIsbrTsKEZFPsEgmIqLTknBjf/EyNI+4FHFhZ+iOQ0TkExbdAYiIyL85XPmocluRHjtGdxQiIp/hSjIREZ1WpSsPzWwXIj68h+4oREQ+wyKZiIhOS8KF9DiuIhNRaDGkSBZCTBRCSCFEshHXIyIi/2E1xSMxvI/uGEREPuVxkSyEaAPgCgBZnschIiJ/E2lJ1R2BiMjnjFhJngvgIQDSgGsREREREWnnUZEshBgM4JCUclsDHjtKCJEhhMjNyuKiMxGRP+OcTUShrt4j4IQQawG0qONTUwBMhtpqUS8p5SIAiwDgrLPO4qozEZEf45xNRKGu3iJZSnlZXX8uhOgBoAOAbUIIAEgFsEUIcY6U8qihKYmIiIiIfKjJzUSklDsApJz4vRAiE8BZUso8A3IREREREWnDc5KJiIiIiGoxrC21lLK9UdciIiIiItKJK8lERERERLUIKX1/07IQohjAbp8PXL9kAP64p5q5Goe5Goe5GqeLlDJGdwhf4pzdaMzVOMzVOP6aC/DfbE2atw3bbtFIu6WUZ2ka+5SEEJuYq+GYq3GYq3H8OZfuDBpwzm4E5moc5mocf80F+G+2ps7b3G5BRERERFQLi2QiIiIiolp0FcmLNI1bH+ZqHOZqHOZqHObyH/76/8xcjcNcjcNcjeev2ZqUS8uNe0RERERE/ozbLYiIiIiIamGRTERERERUi1eLZCHEVUKI3UKIvUKIR+r4fLgQ4u3qz28QQrT3Zp5G5LpDCJErhNha/XG3DzK9IoTIEULsPMXnhRDiX9WZtwsh+ng7UwNzXSyEKKrxXP3DR7naCCG+EkL8JITYJYQYW8djfP6cNTCXz58zIYRNCLFRCLGtOtfjdTzG5z+PDczl85/HGmObhRA/CiE+qeNzWuYvb+Kc3ahMnLMbl4tzduNycc5uWj5j52wppVc+AJgB7APQEUAYgG0AutZ6zP0AFlb/egiAt72Vp5G57gAwz9tZao15IYA+AHae4vNXA1gNQADoB2CDn+S6GMAnvnyuqsdtCaBP9a9jAOyp4+/R589ZA3P5/Dmrfg6iq39tBbABQL9aj9Hx89iQXD7/eawx9gQAb9T196Xj+fLy/yvn7Mbl4pzduFycsxuXi3N20/IZOmd7cyX5HAB7pZT7pZQOAG8BGFzrMYMBLK/+9UoAlwohhBczNTSXz0kpvwFQcJqHDAawQirrAcQLIVr6QS4tpJRHpJRbqn9dDOBnAK1rPcznz1kDc/lc9XNQUv1ba/VH7bt2ff7z2MBcWgghUgFcA2DJKR6iY/7yJs7ZjcA5u3E4ZzcO5+zG88ac7c0iuTWAgzV+n40/fuP99hgppRNAEYAkL2ZqaC4AuLH67Z6VQog2Xs7UEA3NrUP/6rdeVgshuvl68Oq3THpDvaKtSetzdppcgIbnrPptqK0AcgB8IaU85fPlw5/HhuQC9Pw8PgfgIQDuU3xey/PlRZyzjcU5+xQ4Zzc4D+fsxjF8zuaNe3X7GEB7KWVPAF/g5CsP+qMtANpJKc8E8AKAD3w5uBAiGsB7AMZJKe2+HPt06sml5TmTUrqklL0ApAI4RwjR3Rfj1qcBuXz+8yiEuBZAjpRys7fHIkNwzm44ztl14JzdcKE0Z3uzSD4EoOarh9TqP6vzMUIIC4A4APlezNSgXFLKfCllZfVvlwDo6+VMDdGQ59PnpJT2E2+9SCk/A2AVQiT7YmwhhBVqUntdSvl+HQ/R8pzVl0vnc1Y95nEAXwG4qtandPw81ptL08/jAACDhBCZUG/v/1kI8Vqtx2h9vryAc7axOGfXwjm7aThnN4hX5mxvFsn/A5AmhOgghAiD2iT9Ua3HfARgePWv/wrgP1JKb+9tqTdXrT1Qg6D2KOn2EYDbhdIPQJGU8ojuUEKIFif29AghzoH6nvL6D2n1mC8D+FlKOecUD/P5c9aQXDqeMyFEMyFEfPWvIwBcDuCXWg/z+c9jQ3Lp+HmUUk6SUqZKKdtDzRH/kVLeVuthOuYvb+KcbSzO2b8fl3N243JxzgmrNlQAAAD/SURBVG4Eb83ZFsOTVpNSOoUQYwCsgbo7+RUp5S4hxDQAm6SUH0F9Y74qhNgLdaPBEG/laWSu/xNCDALgrM51h7dzCSHehLqDNlkIkQ3gMagN8ZBSLgTwGdSdv3sBlAG409uZGpjrrwDuE0I4AZQDGOKjQmEAgGEAdlTvjQKAyQDa1sim4zlrSC4dz1lLAMuFEGaoCf4dKeUnun8eG5jL5z+Pp+IHz5fXcM5uHM7ZjcY5u3E4ZxvA0+eLbamJiIiIiGrhjXtERERERLWwSCYiIiIiqoVFMhERERFRLSySiYiIiIhqYZFMRERERFQLi2QiIiIiolpYJBMRERER1fL/kNtHWR2VbcgAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 864x288 with 2 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True, figsize=(12, 4))\n", "for ax, column, color in zip([ax1, ax2], [\"C\", \"F\"], [\"blue\", \"#b2e123\"]):\n", " df_demo[column].plot(ax=ax, legend=True, color=color)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Aside: Seaborn\n", "\n", "* Python package on top of Matplotlib\n", "* Powerful API shortcuts for plotting of statistical data\n", "* Manipulate color palettes\n", "* Works well together with Pandas\n", "* Also: New clever defaults for Matplotlib\n", "* \u2192 https://seaborn.pydata.org/"]}, {"cell_type": "code", "execution_count": 82, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import seaborn as sns\n", "sns.set()"]}, {"cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEBCAYAAAB2RW6SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VOW9B/Dv2WZLQhJCQlgDYQ0BZF/CGvYtonKtWiwubbHuta1Xir3tfVqpVtt6wa3VW0UtbmgVUTYTFiGEfZMkBAhrEiAhJCHLzJztvX/E5oos2WbmPTPz+zxP/3DO5LzfvoQvZ+ac8x6BMcZACCEkZIm8AxBCCPEvKnpCCAlxVPSEEBLiqOgJISTEUdETQkiIo6InhJAQR0VPCCEhjoqeEEJCHBU9IYSEOCp6QggJcVT0hBAS4qjoCSEkxFHRE0JIiJN5DVxRUQvTtPbCmXFxkSgvr+Edo1GU07eCIWcwZAQopy+JooDY2IgW/Sy3ojdNZvmiBxAUGQHK6WvBkDMYMgKU0wroqxtCCAlxVPSEEBLiqOgJISTEUdETQkiIo6InhJAQR0VPCCEhjoo+iDHGUPfFn3Bx7eu8oxBCLIyKPogZF47BKMnH5X3roZfk845DCLEoKvogph3OBGwuyDHt4dn6Npih8Y5ECLEgKvogZdZWQD+5F0rf8Wg3cyFY1XmoB77kHYsQYkFU9EFKy98MMBO2fpPgSh4EucdIqPu/gFl5nnc0QojFUNEHIWbo0PI3Qeo6EGKbBACAffRdgKzAs+1tMBa6a3YQQpqPij4I6Sd3g7kvw5Y6peE10RUD+4jbYZTkQz+ewzEdIcRqqOiDkHo4E0J0IqTOqVe8rqRMhJjQA96c98E81l5ylRASOFT0QcYoOwmztBC21MkQhCv/+ARBhGPcvWDeWnh3reSUkBBiNVT0QUbNzQJkO5TeY665XYrrAmXANGhHtkA/fyzA6QghVkRFH0RM92XohTug9B4Dwea67vvsQ2+FEBkH79a3wUw9gAkJIVZERR9EtIKvAUOHkjr5hu8TFDscY+6GWVEE9dD6AKUjhFgVFX2QYKYBLXcjpE79IMV2avT9ctJgyN2GQt27CublsgAkJIRYFRV9kNBPHwCrvdTo0fx32dPmA6IIT/a7dG09IWGMij5IaLmZECLjIHcd1OSfESPbwj7sNhhnD0E/uduP6QghVkZFHwSMS8UwSvKh9JsEQZSa9bNK6hSI7ZLg3f4emFrnp4SEECujog8CWl4WIMlQ+o5v9s8K4rfX1rur4N39iR/SEUKsjore4phaB+1oNuQeoyE6olq0Dym+O5R+k6HlboRResLHCQkhVkdFb3FawTZA98LWv+knYa/FPnweBFd0/br1puGjdISQYEBFb2GMmVDzsiC27wmpXbdW7UuwOWFPmw+z/DS03EzfBCSEBAUqegszig6DVV24YpXK1pC7D4PUZSC8u/8Fs6bcJ/skhFgfFb2FqblZEJzRkLsP88n+BEGAY+yPAMbg3b7CJ/skhFgfFb1FmZdLYZw5BCVlIgRJ9tl+xah42IbeAv3UPuin9vtsv4QQ6xIYp1sml7y5AxWXvTyGbjLFJkFT+Zy4TPNuxQD9IN513os6MfKG721uTpEZuN39AWzw4n3n3dAFW2vjNgnP+WyOYMgZDBkByulLsW3sePr+US36WTqityCZaeir5+GE1KPRkm8JU5CwxT4JUawGI9SdPt8/IcRauB3Rl5fXwDStvf5KfHwUysqqAz6umr8Z3q3L4bz5aciJvRp9f0tzer5eDq3ga7hu+29IcV1bErVZeM1ncwVDzmDICFBOXxJFAXFxLTvwoyN6i2GMQcvNhBjXFVL7nn4dyz7ydgiOSHi2LgczTb+ORQjhh4reYoxzBTAvFcGWOgWCIPh1LMEeAfuoO2GWnoB2ZLNfxyKE8ENFbzFabiZgj4Dcs2UnXZpL7jkaUqdUeHeuhFlXGZAxCSGB1eqir6mpwZw5c1BUVOSLPGHNrLkE/dQ+KH3GQ5ADcyVMw7X1pgbv9vcCMiYhJLBaVfQHDx7EXXfdhVOnTvkoTnjT8jcBjMGWOimg44rRibANzoB+Yhf0s98EdGxCiP+1qug/+ugj/O53v0NCQoKv8oQtZmjQ8jdDThoEMSo+4OPbbpoFMToRnm3vgOlqwMcnhPhPq4p+yZIlGDbMN7fnhzu9cBeYpxqKj9a1aS5BUmAfdw9YdRnUfZ9zyUBCC1PrUHfyID3G0gJ8d299M7X0etBAi49v2RrwzVX8xWYocR2ROGhki6628UnO+BEoPTMRNYfWIWHEFNjiu7R+n98fIkDz2VrBkNPKGZmhoeSfz+F80RG0GT4LcVPvgyBY+9oPK89na3Ererph6v8ZpSfgLTkGe9rduHixptk/78ucbNA8oGA3zn3+KpwZi3z6lzMYbkoBgiOnlTMyxuD9+i1oRUfg7DEYl3evQd2lcjgm/tSn6zb5kpXn89/ohqkgp+ZmAooDSu8xvKNAdETBMfIOGOePQi/YxjsOCUJabia0gq9hG5yBxDuehm3E7dALd8K97kUw1c07XliioufMdF+GXrgLSu8xEGxO3nEAAHKfcZASe8Oz80OY7su845AgohflwpvzPuSkwbANuxWCIMA+aDYcE34MoyQfdV8+T79THPik6Ddu3IjOnTv7YldhR8vfDJg6lNTWPSrQlwRBgH3cPYDmgXfHh7zjkCBhVl2AO+tViDEd4UhfeMXXfkqfcXBOewzmpWLUfb4E5uUyjknDDx3Rc8RMA1r+JkidUiHFdOQd5wpSbCfYbpoF/Vg29JJ83nGIxTHVDff6pRAgwDn98Wt+OpWTBsE1+0kwTw3qVj0Do/wMh6ThiYqeI/3UPrDaCp89KtDXbIMzILRJqH+guKHxjkMsipkm3Bv/BrPqAhxTH4bY5vr3gUiJveC6eTEgSqj7/FnoJUcCmDR8UdFzpOVmQohqB6nrTbyjXJMg2+AYuwCs6jzUA2t4xyEWpe75BMaZg7CPmQ+5Y0qj75diO8E192mIEbFwr/0ztJN7ApAyvFHRc2JcOgvjXAFs/SZBEK37xyB37g+5x0ioB1bDrDrPOw6xGO14DtQDX0JJSYetX9OX7hAj4+C6eTHEuCR4Ml+BmrfJjymJdRsmxGmHswBJgdJnPO8ojbKPvguQlPrlEeguR/Ito/QEPFvehNShD+xp85v984IjEq7Z/wmp8wB4t70N795V9PvlJ1T0HDBvLbTj26H0HA3BYf07hEVXDOwjbodRnAf9eA7vOMQCzLpKuDcsg+CKhmPKwy2+EUpQ7HBOfwxyrzFQ934Kb/a79BAcP6Ci50Ar2AboqqUuqWyMkjIRYkIyvDs+APM0/+5dEjqYrsK9YRmY6oZz2uMQnW1atT9BlOGY+BMoA2dCy9sIT9ardPLfx6joA4wxE2peFqTE3pDaJfGO02SCIMIx7l4wTw28u1byjkM4YYzBs3U5zNITcKQvhBTnm/WQBEGAY9QdsI+6E/rJPXCv/SvdRetDVPQBZpz9BuxyaVAdzf+bFNcVyoBp0I5sgX7+GO84hAPtm3XQj22HbditULoP9fn+bQNnwJG+EMa5o6hb/Sw99cxHqOgDTM3NhOCKgeyHvySBYB96C4TIOHi3vg1m6rzjkADSzxyCd+dHkJOHwzb4Zr+No/RKg3PG4zCrzqNu1RKYVRf8Nla4oKIPILPqPIyz30BJSYcgWnMVv8YIigOOMXfDrCiCemg97zgkQIzKErizXoPYtgscE37i9wfXy10GwjXnKUB1o+7zJTAunvLreKGOij6A1NyNgChBSZnAO0qryEmDIXcbCnXvKlqzJAwwby3c65dBkOT65Q0Ue0DGlRJ6wDl3MSApqFv9HPTivICMG4qo6AOEaR5oBVshJw+H6IrhHafV7GnzAVGEJ/tduvY5hDHTgDvrNbDqMjimPQoxMi6g40sxHeGa+xuIke3gXvtXaIW7Ajp+qKCiDxDt2HZAc1t2XZvmEiPbwj7sVhhnD0GnW9hDlnfnRzCKDsM+dgHkxN5cMogRsXDd/GtICcnwZL1W//wG0ixU9AHAGIOWmwWxXTeICT14x/EZJXUKxLgkeLevAFPreMchPqYVbIX2zXooqVNg68v360bBHgHnrF9BThoEb/Y/4d39CX2SbAYq+gAwzh2BWVEMW+pkv5/ECiRBlOAYdw9YXRW8uz/hHYf4kHHhODxb34bUqV/9EhgWIMg2OKY+AqXPeKj7V8O7dTmYafCOFRSo6ANAO5wJwR4JucdI3lF8TkpIhpI6CVruRhilJ3jHIT5g1lyqX94gsi2ckx+CIEq8IzUQRAn28ffBNjgD2pEt8GS+AqarvGNZHhW9n5k15dBP74OSMgGCbOMdxy/sw+dBcEXXr1tPR1hBjene+uUNdBXOaY9bci0mQRBgHz4P9rT50E/th3vNn8G8tbxjWRoVvZ9p3y6/qqSkc07iP4LNBXvafJjlp6HRibKgxRiDZ8ubMC+ehnPSA5DaduId6YZs/afCMekBGKWF9XfR1lbwjmRZVPR+xHQV2pEtkJOGQIxqxzuOX8ndh0HqMhDePZ/CrLnEOw5pAfXAl9ALd8I2Yh7kpMG84zSJ0nMUnDN+AbP6IupWPQOzkp6ZcC1U9H6kn9gF5qkOynVtmksQBDjG/ggwTXi3r+AdhzSTfmo/1N2fQO4xCrabZvOO0yxy51S45iwCdLX+Llo6V3QVKno/YYxBPZwJMbYjpCY8Xi0UiFHxsA2dC/3UXuin9/OOQ5rIuFQM96a/Q2yXBMeE+4PyyjApvhtcc58GFAfqvvgT9KLDvCNZChW9n5ilhTAvnoKSOiUo/+K0lG3gdIixneHJ/ieY5uUdhzSCeWrgXv8/EGQ7nNMeC+oLBsToxPpn0UYnwL32RWj0kJwGVPR+ouZmAYoTSq803lECShDl+mvra8rh3fsp7zjkBpipw535ClhtBZzTHoUY2ZZ3pFYTXTFwZfwaUmJPeDb+Heo3tPAeQEXvF2ZdJfQTu6D0GQtBcfCOE3BSYi8ofSdA+2YDjPIzvOOQ6/DmvA+jJB+O8fdCat+TdxyfEWwuOGf+EnK3ofDmvA/vzo/C/i5aKno/0I5sAUwDtn6hfxL2euwjbofgiIRn63J6BqgFqfmboeVmQRk4A0rvsbzj+Jwg2+CY8jCUlIlQD66BZ8s/wvoeDyp6H2OmDi1vE6TO/SHGJPKOw43giIR91J0wS09AO7KZdxzyHfq5Ani3vQupywDYR/yAdxy/EUQR9rH3wDZkLvSj2769ESw8zxtR0fuYfnIfWF0lbP1DY5XK1pB7jobUKRXeXSvpkXAWYVZfhOerlyG0iYdz0s8giKFdAYIgwD7sVtjHLoBx5hDqvnwhLB9uH9p/yhxouZkQouIhdR7IOwp3DdfWGxq8Oe/zjhP2mOaBe/1SMFOHa/rjEOwRvCMFjK3fJDimPASz7BTqVv8x7G7qo6L3IaP8DIzzR+tXqQzxI6WmEqMTYRuUAb1wJ+pOHOAdJ2wxZsKz+X9hVhTBOfkhiDEdeEcKOCV5OJyzfgmzpgJ1q56BUVHCO1LAUBv5kJabCUg2KH3G8Y5iKbZBsyBGJ+Li2tdppUFO1H2fQz+5B/aRd0DuMoB3HG7kjilwZSwCTL3+LtoLx3lHCggqeh9hnhpox3ZA6TU6rD4SN4UgKbCPuwd65QWo+1fzjhN2tJN7oO79DHLvMVAGTOcdhzupXRJcc38DwR6Bui+eh34m9D9pUtH7iFawFTBUKCHyqEBfkzumIHJA/aVuRkUx7zhhwyg/A8+m1yEm9IBj7D1hdZf2jYhtEuC6+WmIsR3gXr8M1Yc2847kV1T0PsBME2reRkgd+kCK68I7jmXFTV4AKA54t74Nxujaen8z3ZfhXr+0/jF80x4N6uUN/EF0RcM1ZxGkjn1RtvolqAfX8I7kN1T0PmCcPQhWXUZH842QIqLhGHkHjPNHoRds4x0npDFDr3/6kvsynNMeg+iK4R3JkgSbE84ZTyCi3xh4d34Ez44PQvIghIreB9TcLAgRsZC7Bcca3jzJfcZBSuwNz84PYbov844Tkhhj8Gb/E8a5Ajgm/BhSfHfekSxNkBQk3PJzKKlToB1aB8+mN8BMnXcsn2pV0a9evRqzZs3C1KlTsWJFeK5Bblaeg1F0GEpKOgRR5h3H8gRBgH3cPYDmgXfnh7zjhCQtbyO0I5thGzQHSs9RvOMEBUEQYU+bD9vwedCP59TfbxBCq6+2uOgvXLiAF198Ee+99x5WrVqFDz/8EMePh8elSt+l5mYBogwlZSLvKEFDiu0E28CZ0I9mQy/J5x0npOjFefBuXwGp6yDYht/GO05QEQQB9sEZsI+/D0bRYdR98SeYnmresXyixUW/fft2jBo1CjExMXC5XJg+fTrWrVvny2yWx1Q3tKPbICcPh+hswztOULENuRlCVHz9iVlD4x0nJJiXS+HOfAViTCKckx6AINA3sy1h6zsBjqmPwrx0Fu5VS2BWX+QdqdVa/F1DaWkp4uPjG/47ISEBhw4davLPx8VZ7+ny1xIfH3XdbVV7tqFG8yBh7Fw4bvC+QLhRTiv5bs662Q/g/AfPQDmWhdhxt3NMdbVgmM/vZjS9bhR/+hJEQUCnu56GEpvAMdmVgmEuge/ljJ8Ad/t4XPjoWXhW/xEd7vov2BK68gvXSi0u+mut79yca3TLy2tgmtZeIzo+PgplZdf+6MYYQ93OLyHGd0e1LRHV13lfINwop5VclbNNT8jJI1CR/THUDoMgRltjtc9gmM/vZmTMhGfDS9AvFsM561eo1CMAi+QPhrkErpPT2QWOjF/DveYvKHr7aThn/BxyYm8+AQGIotDiA+QWf7Zr3749Ll78/480paWlSEiwzlGEvxkl+TArz8FGl1S2ij3th4CowLPtnbB/OERLqXs+hX56P+yjfwi5Uz/ecUKK1LYLXHN/A9HZBu4vX4B+Kjifhdziok9LS0NOTg4uXboEt9uNDRs2YPz48b7MZmna4a8gOKIgJw/nHSWoia4Y2EfeDqM4Dzo947PZtMKdUPevhtJ3ApTU8H3QjT+JUe3gnPs0xLZd4P5qGdQjW3hHarZWHdE/8cQTWLBgAW655RbMmTMHAweGx9K8ZnUZ9DMHoPSdQHcb+oCSMhFiQjK8Oz4A89byjhM0jLJT8Gz+B6TE3rCP+REtb+BHoiMKrjn/Wf98ha/fgnf/F0H1CbRVF35nZGQgIyPDV1mChpa3CYAApV867yghQRBEOMbdi7p//Te8O1fCMf5e3pEsT6+pgHvDMgjOKDimPgJBons4/E1QHHBO/zk8W/4BdffHYO4q2EffFRRXN1k/ocUwXYV6ZAvkbkMgRsbxjhMypLiuUAZMg3ZkM4zzx3jHsTRmaLjw8Qtg3pr65Q3o0t6AESQZjvSfQhkwHdrhr+DZ+PeguDyYir6Z9MKdgLeWvg/1A/vQWyBEtIVn69shdwu6rzDG4Nn6NrzFBXBM/Cmkdkm8I4UdQRBhH3UnbCN+AL1wJ9zr/gdMdfOOdUNU9M3AGIN6OBNibGdIHfryjhNyBMUBx5gfwawognpoA+84lqQd3gD96DbEjPsBFLoQgBtBEGAfNAuOiT+BUZJffxethdduoqJvBvPCcZjlp6GkTqYTX34idxsMudsQqHs/g1ldxjuOpehFh+Hd8QHkbkMtd4NZuFJ6j4Vz+mMwK0pQt2oJzMvW/J2lom8GNTcTsDmh9ErjHSWk2dPmA6IIz7Z3g+rKBn8yK8/DnfkqxNhOcKT/NChOAIYLuesguOb8J5i3pv5ZtOVneEe6Cv22NJFZVwn9xB4ofcZDUOy844Q0MTIO9mG3wjh7CPrJPbzjcMfUOrjX/w8EUYJz+uMQFAfvSOR7pPY94bp5MSBKqPv8WeglR3hHugIVfRNp+ZsBZsLWbxLvKGFBSZ0CMS4J3u0rLH+iy5+YacKd9TeYl8vgmPIwxKj4xn+IcCHFdoJr7tMQI2LhXvtnaBY6SKGibwJm6NDyNkHqMgBidHveccKCIEpwjLsHrK4K3t2f8I7DjXfXShhnD8E+5m7IHekCAKsTI+PgunkxxHbd4Ml8BWreRt6RAFDRN4l+cg+Yu4rWtQkwKSEZSuokaLlZMMpO8o4TcNrRbGiH1kLpNwk2ujkvaAiOSLhmPwmpy0B4t70D797PuJ9roqJvAjU3E0Kb9pC69OcdJezYh8+D4IqGZ+tyMNPgHSdgjNJCeLa+BalD3/qF30hQEWQ7nNMehdx7DNS9n8Gb/S6Yye9ZtFT0jTAunoJ54ThsqZPoSgcOBJsL9rQfwrx4GlpuFu84AWHWVsC94SUIrlg4pj5Mj6gMUoIowzHhJ7DdNAta3kZ4sl4F01UuWai5GqHlZgGyDUrvsbyjhC25+/D6j8F7/gWz5hLvOH7FdBXuDcvANA+c0x+H6AiOh3aQaxMEAfaRP4B91F3QT+6Be+1fwdS6gOegor8Bo64a2vEdUHqNgWCP4B0nbAmCAMeYHwGmCe/20H0IPWMMnq/fgll2Eo70hZDaduYdifiIbeB0ONIXwjh/DHWrn4NZVxnQ8anob6D6YBZgaLSujQWIbeJhGzoX+qm90E8H58MfGqMeXAv9eA5sw26D0m0I7zjEx5ReaXDO+DnMqgv1d9FWXQjY2FT018FME5f3roPUMYWOrCzCNnA6xNjO8GT/E0zz8o7jU/qZA1B3rYScPAK2weG39He4kLsMgGvOU4DqRt3nS2BcPBWQcanor0M/cwB6VRkdzVuIIMr119bXlMO791PecXzGqCiBO+tvEOO6wjHxx7SOUoiTEpLhmvs0ICmoW/0c9OI8v49JRX8dWm4WpDbtICcN5h2FfIeU2AtK3wnQvtlgyTVFmot5auBevxSCbINz+mMQZFpeIxyIMR3qn0Ub1Q7utX+BVrjLv+P5de9ByqgogVGcizZDpkMQJd5xyPfYR9wOwR5Rv24943dtcmsx04A76zWwmotwTn2UHmQTZsSIWLgyfg0poQc8Wa9BPZzpv7H8tucgpuVmAZKMNoPoaxsrEhyRsI++C2ZpYf0aREHKu+MDGMW5cIy9B1JiL95xCAeCPQLOWb+CnDQI3u3/hHf3J365i5aK/nuY6oZ2LBtyj5GQIqJ5xyHXIfccDalTP3h3rQz4pWq+oB7ZAu3wV1D6T4PSdzzvOIQjQbbBMfURKH3HQ92/Gt6tb/n8LnAq+u/Rjm4DNA+ta2Nx9dfWLwB0Dd6c93nHaRb9/DF4t70DqVMq7KPu4B2HWIAgSrCPuw+2wRnQjnwNT+YrPr2Llor+OxgzoeZmQUxIhhTfnXcc0ggxJhG2wXOgF+6EXnSYd5wmMWvK4fnqJQiR7eCc8hCdAyINBEGAffg82NPmQz+1H+41fwbz1vpk31T032EU54FVnaej+SBiGzQbQnRi/YlZTuuINBXTvHCvXwqma/UPEKG7rck12PpPhWPygzBKC1G3+lmYtRWt3icV/XeohzMhONtApocuBw1BUuqvra8ug7p/Ne8418UYg2fL/8IsPwvn5J9Biu3IOxKxMKXHCDhn/hJm9UXUrXoGZuW5Vu2Piv5b5uVSGGcOQkmZCEFSeMchzSB3TIHcawzUg2tgVJTwjnNN6v7V0E/shn3k7ZC73sQ7DgkCcqd+cGUsAgytfsmEVtw3QkX/LTVvIyAIUFLoAQ/ByD7qDkBxwLvtbe4Pefg+7eReqHv+BbnnaCgDZ/KOQ4KI1K4bXDc/DdiccGf9rcX7oaIHwHQvtIKtkLsPhRgRyzsOaQHR2Qb2kT+Aca4A+tFtvOM0MC6dhWfT6xDjk+EYfx8tb0CaTYxuX/8s2pgOLd+HD/MELe34DsBbC4VOwgY1pc84SIm94d3xIUxPNe84MD3V9csb2JxwTnsUgmzjHYkEKdEVA+e0R1v+8z7MEpQYY9ByMyG27QIpsTfvOKQVBEGEfew9YKob3h0fcs3CTB2er14Gq6uEc9pj9EmRcBX2RW+cPwqz/CyU/lPoY3UIkNp2gu2mmdCPboNeks8th3f7ezDOFcAx/n5ICcncchACUNHXr2tjc0HpOYp3FOIjtiEZEKLi4d36NpihBXx8NW8jtLyNsN00C0qvtICPT8j3hXXRm7UV0E/uhdJ3PC0PG0IE2Q7H2AUwq85DPbgmoGPrJUfgzV4BqctA2Ib/R0DHJuR6wrrotfxNADNh6zeJdxTiY3KXAZCTR0Ddvxpm1fmAjGleLoPnq5chRifAOflnEMSw/utFLCRsfxOZoUHL3wyp60CIbRJ4xyF+YE/7ISAq8Gx71+/X1jPNA/eGpWDMrF/ewOby63iENEfYFr1+YjeY+zJs/afyjkL8RHTFwD7iP2AU50Iv3OG3cRgz4dn0BsyKYjinPAQxOtFvYxHSEq0u+qVLl+Kll17yRZaAUnOzIEQnQurUj3cU4kdKSjrE+GR4c9732UqA36fuXQX91F7YR90FuXN/v4xBSGu0uOirq6uxePFivPnmm77MExBG2UmYpYWwpU6GIITth5qwIIhi/aJnnhp4d630+f61E7ug7lsFpc84KPTpkFhUi1suKysL3bp1w3333efLPAGh5mYCigNK77G8o5AAkNolQek/FVr+Zhjnj/lsv8bF0/Bs+l+I7XvCPnYB3YdBLKvFRX/LLbdg4cKFkKTgenCC6b4MvXAnlF5pEGxO3nFIgNiH3Qohom39uvWm3ur9mXVV9csbOCLhnPoorXhKLE1u7A1r167Fs88+e8VrycnJWL58easGjouLbNXPt1RF9leoNXS0HzcXtnZRjb4/Pr7x91gB5WxMFGpnLcSFlc/BdmILYkbfcsN33ygnMzSUrHkO8Nag44IlsHfo7OuwTUJ/5r4VLDlbotGinzlzJmbO9P3SquXlNTDNwC4ny0wDtbvXQurUD1UsGii78cJX8fFRKGvkPVZAOZsoti/kbkNwacuH8LYfCDEq/ppvu1FOxhi8X78FregIHJMfxGU5vtHfI3/gPpdNRDl9RxSFFh8gh9WZSP30AbDaS1BSJ/OOQjixp80HRBGe7H+26Np6LTcTWsHXsA3OgNJjpB8SEuJ7YVX0Wm4mhMg4yF0H845c9PEBAAAQNElEQVRCOBEj42AfeiuMMwehn9zTrJ/Vi3LhzXkfctJg2Ibd6qeEhPheo1/dNObRR1u+RnIgGZeKYZTkwzbidro1Pcwp/adAO5YN7/YVkDv3b9JJebPqAtxZr0KM6QBH+kK6LJcElbD5bdVyMwFJga3vBN5RCGeCKMEx7l6wuip49/yr0fcz1Q33+qUA8O3yBnS1FgkuYVH0zFsL7Vg25B6jIDj4XO1DrEVKSIbSbxK0w5kwyk5e933MNOHe+DeYVefhnPoIrYtEglJYFL12NBvQVdj600lY8v/sI+ZBcEXDs3U5mGlc8z3qnk9gnDkIe9p8yB1TApyQEN8I+aJnzISamwWxfU9I7brxjkMsRLC5YE/7IcyLp+sfQPM92vEcqAe+hJIyEQotZU2CWMgXvVF0GOzyBdjowd/kGuTuwyF1GQjvnn/BrLnU8LpRegKeLW9C6tAH9rS7aXkDEtRCvujVw5kQnNGQuw/jHYVYkCAIcIz5EWCa8G5fAQDQqyvg3rAMgrMNHFMehiC1+uI0QrgK6aI3qy7AOPsNlJSJ9JeVXJfYJh62oTdDP7UX2onduPDxn8BUN5zTfw7R2YZ3PEJaLaTbT83bCAgilJSJvKMQi7MNnAH9WA48ma8CYHBMfQRSXBfesQjxiZA9omeaF1rBVsjJwyBGxPKOQyxOEGXYx90LiBJiJ9wFhb7qIyEkZI/oteM5gFoHhU7CkiaSE3sh8p6XEdsx3vILXBHSHCF5RM8Yg3Y4E2JcEqT2PXnHIUFEUBy8IxDicyFZ9Ma5ApgVRd8+KpAuiyOEhLeQLHotNxOwR0DuOYp3FEII4S7kit6sKYd+ah9sfSdAkG284xBCCHchV/Ra/mYADEq/dN5RCCHEEkKq6JmuQsvfDLnroOs+Jo4QQsJNSBW9fmI3mKeaLqkkhJDvCKmiV3OzIMZ0gNSpH+8ohBBiGSFT9EbpCZhlJ6DQJZWEEHKFkCl6NTcTUBxQeo3hHYUQQiwlJIredF+GXrgLSu+x9DxPQgj5npAoei1/M2DqUFLpKUCEEPJ9QV/0zDSg5W+C1CkVUkxH3nEIIcRygr7o9VP7wGorYOtPl1QSQsi1BH3Ra7mZEKLaQepyE+8ohBBiSUFd9Eb5WRjnCmDrNxmCGNT/VwghxG+Cuh213CxAUqD0Gcc7CiGEWFbQFj3z1kI7vh1Kz9EQHJG84xBCiGUFbdFrBVsBXYWSOpl3FEIIsbSgLHrGTKi5WZASe0Nql8Q7DiGEWFpQFr1x9hBYdRmtUkkIIU0QlEWv5mZBcMVA7j6EdxRCCLG8oCt6s+o8jLPfQElJhyDKvOMQQojlBV3Rq7lZgChBSZnAOwohhASFoCp6pnmgFWyDnDwcoiuGdxxCCAkKQVX02rHtgOaGjU7CEkJIk7W46Pfu3Yt58+Zh7ty5uOeee1BcXOzLXFdhjEHLzYTYrhvEhB5+HYsQQkJJi4v+ySefxJIlS7Bq1SpkZGTgmWee8WWuqxjnjsCsKIGNHhVICCHN0qKiV1UVjz/+OPr27QsA6NOnD86dO+fTYN+nHc6EYI+E3GOkX8chhJBQIzDGWGt2YJomHnzwQQwYMACPPPKIr3JdQa8qw5lXHkLM6Llom363X8YghJBQ1eiF6GvXrsWzzz57xWvJyclYvnw5VFXFokWLoOs6HnjggWYNXF5eA9Ns2r8x3l2rATBoSWNQVlbdrHFaIz4+KqDjtRTl9K1gyBkMGQHK6UuiKCAurmULODZa9DNnzsTMmTOver22thYPPvggYmJi8Nprr0FRlBYFaAzTVWj5WyAnDYEY1c4vYxBCSChr8a2lTz75JJKSkvD73//erydH9RO7wLw1tEolIaRZDENHRUUZdF1t9L2lpSJM0wxAqsaJogSnMxKRkdE+69YWFX1eXh6ysrLQs2dP3HLLLQCAhIQEvPHGGz4J9W+MMaiHMyHGdoTUMcWn+yaEhLaKijI4HC5ERCQ2WpiyLELX+Rc9YwyGoaO6uhIVFWVo2zbBJ/ttUdH369cPBQUFPglwI2ZpIcyLp2Afu4AuqSSENIuuq00qeSsRBAGyrCAmJg4XLhT5bL+WvjNWzc0EFCeUXmm8oxBCglAwlfx3CYIIoFUXRF7BskVv1lVCP7EbSp+xEBQH7ziEEOITJ04cx9ixw7B5c1bAxrRs0WtHtgCmAVs/OglLCAkdX365GhMnTsZnn30SsDEtWfTM1KHlbYLUZQDEmETecQghxCd0XceGDWuxcOFDOHasAMXFvvse/kYs+eQO/eQ+sLpK2MbfyzsKISQEZH9zDtsOXX+ZFkEAWrpGwNiBHTBmQIcmvTcnZxsSExPRtWsSxo2biFWrPsFDDz3esoGbwZJH9FpuJoSoeEidB/KOQgghPrNmzWpMmTIdADB58lSsWfMFNE3z+7iWO6I3Lp6Gcf4o7KPuhCBa8t8hQkiQGTPgxkfdgbiOvqLiEnJysnHkSD5WrvwAjDFUV1/G5s1ZmDp1hl/HtlzRa3lZgGyD0mcc7yiEEOIz69evwdChI/CXvyxreO0f//g7Vq36l9+L3lKHzMxTA+3YDig90yDYI3jHIYQQn1mzZjVuvfU/rnjttttuR35+Lk6fPuXXsS11RK8VbAUMlda1IYSEnHfe+fCq12Jj2yIrK9vvY1vmiJ6ZJtS8LEgd+kCK68I7DiGEhAzLFL1x9iBY9UUo9OBvQgjxKcsUvXo4E0JELORug3lHIYSQkGKJojcqS2AU50JJSYcgWuq0ASGEBD1LFL2WuxEQZSgpE3lHIYSQkMO96JnqhnZ0G+Tk4RCdbXjHIYSQkMO96LVj2YDmga3/VN5RCCEkJHH9QpwxBi03C2J8d0gJyTyjEEKI39XW1uBvf3sFBw7shSTJiIqKwiOPPIE+ffr6dVyuR/RGcR7MynOw0SWVhJAQZ5omfvWrx9GmTRu89dZ7WL78Pdx330/xq189hqqqSr+OzfWIXsvNhOCIgpw8nGcMQgjxu3379uDixYv48Y8fgPjtgo1DhgzD4sW/hWn6d0E1bkVv1l6CfuYAbDfNhiDbeMUghIQB7Wg2tIKvr7tdEASwFi5Ir/QZD6X3mEbfd/RoAVJS+jWU/L+NHj22ReM2B7evbvRjOQAEKP3SeUUghJCAEcWW/2PSWtyO6LXCnZC7DYEYGccrAiEkTCi9x9zwqDsQ69H37dsPn376MRhjEASh4fW///0VDB8+EkOGDPPb2PxOxqp1tK4NISRs3HTTYMTGtsWbb74OwzAAADt35mDNms/RrVt3v47N7YhejO4AqUMfXsMTQkhACYKA5577K1566S9YsOAOyLKM6OgYvPDCUrRt699vNrgVvdwr7YqPL4QQEupiYmLwX//1h4CPy+2rG7n7UF5DE0JIWOFW9HRJJSGEBAb3tW4IIYT4FxU9ISRk8bpuvbUYMwH47hwmFT0hJCTJsg21tZeDquwZY9B1DZWVF2GzOXy2X3qcEyEkJMXGxqOiogw1NY0vGCaKot/Xm2kqUZTgdEYiMjLaZ/ukoieEhCRJktGuXYcmvTc+PgplZdV+TsQPfXVDCCEhjoqeEEJCHL8lEMTguCuWcvoW5fSdYMgIUE5faU0+gQXTKWlCCCHNRl/dEEJIiKOiJ4SQEEdFTwghIY6KnhBCQhwVPSGEhDgqekIICXFU9IQQEuKo6AkhJMRR0RNCSIjza9GvXr0as2bNwtSpU7FixYqrtufn52PevHmYPn06nn76aei67s8419VYzpdffhnp6emYO3cu5s6de833BEJNTQ3mzJmDoqKiq7ZZZS6BG+e0yly+/PLLmD17NmbPno3nn3/+qu1Wmc/GclplPpcuXYpZs2Zh9uzZeOutt67abpX5bCynVeYTAP70pz9h0aJFV71eUlKC+fPnY8aMGXjwwQdRW1vb+M6Yn5w/f56lp6eziooKVltbyzIyMtixY8eueM/s2bPZ/v37GWOM/frXv2YrVqzwV5xW5XzggQfYvn37Ap7tuw4cOMDmzJnDUlNT2dmzZ6/aboW5ZKzxnFaYy+zsbHbHHXcwr9fLVFVlCxYsYBs2bLjiPVaYz6bktMJ87ty5k915551M0zTmdrtZeno6KywsvOI9VpjPpuS0wnwyxtj27dvZyJEj2VNPPXXVtoULF7IvvviCMcbYyy+/zJ5//vlG9+e3I/rt27dj1KhRiImJgcvlwvTp07Fu3bqG7cXFxfB4PBg0aBAA4Lbbbrtie6A0lhMADh8+jDfeeAMZGRn4/e9/D6/XG/CcH330EX73u98hISHhqm1WmUvgxjkBa8xlfHw8Fi1aBJvNBkVR0KNHD5SUlDRst8p8NpYTsMZ8jhgxAu+88w5kWUZ5eTkMw4DL5WrYbpX5bCwnYI35rKysxIsvvoif/exnV23TNA27d+/G9OnTATR9Lv1W9KWlpYiPj2/474SEBFy4cOG62+Pj46/YHiiN5aytrUVKSgqeeuopfPrpp7h8+TJeffXVgOdcsmQJhg0bds1tVplL4MY5rTKXvXr1aiidU6dOYc2aNZgwYULDdqvMZ2M5rTKfAKAoCpYtW4bZs2dj9OjRaN++fcM2q8wncOOcVpnP3/72t3jiiSfQpk2bq7ZVVFQgMjISsly/8HBT59JvRc+usSimIAhN3h4ojeWIiIjAG2+8gaSkJMiyjPvvvx9btmwJZMRGWWUuG2O1uTx27Bjuv/9+PPXUU+jWrVvD61abz+vltNp8PvbYY8jJycG5c+fw0UcfNbxutfm8Xk4rzOfKlSvRoUMHjB49+prbWzqXfiv69u3b4+LFiw3/XVpaesXH+e9vLysru+7HfX9qLGdJSQk+/vjjhv9mjDX8a2oVVpnLxlhpLvfu3Yt7770Xv/zlL3Hrrbdesc1K83mjnFaZz8LCQuTn5wMAnE4npk2bhoKCgobtVpnPxnJaYT7XrFmD7OxszJ07F8uWLcPGjRvxxz/+sWF727ZtUVNTA8MwADR9Lv1W9GlpacjJycGlS5fgdruxYcMGjB8/vmF7p06dYLfbsXfvXgDAZ599dsX2QGksp8PhwAsvvICzZ8+CMYYVK1Zg6tSpAc95I1aZy8ZYZS7PnTuHhx9+GH/+858xe/bsq7ZbZT4by2mV+SwqKsJvfvMbqKoKVVWRlZWFoUOHNmy3ynw2ltMK8/nWW2/hiy++wKpVq/DYY49h0qRJWLx4ccN2RVEwbNgwrFmzBkAz5rL154ev7/PPP2ezZ89m06ZNY6+//jpjjLGf/OQn7NChQ4wxxvLz89m8efPYjBkz2C9+8Qvm9Xr9GafFOdetW9ewfdGiRdxyMsZYenp6w9UsVpzLf7teTivM5R/+8Ac2aNAgdvPNNzf877333rPcfDYlpxXmkzHGli5dymbOnMnmzJnDli1bxhiz5u9nYzmtMp+MMfbJJ580XHWzePFilpmZyRhjrKioiN19991s5syZ7P7772eVlZWN7oueMEUIISGO7owlhJAQR0VPCCEhjoqeEEJCHBU9IYSEOCp6QggJcVT0hBAS4qjoCSEkxFHRE0JIiPs/JT1Y7YZkUfYAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[[\"A\", \"C\"]].plot();"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["### Seaborn Color Palette Example"]}, {"cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAABQCAYAAADiBIpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAAr1JREFUeJzt2cGLjGEAx/GHBkOZtbZ1VE5ObhQXF+XfkAMpykVWOEopF3HYTA7+Bc5Srty4K0fTYEaxu229LlJ+N9M+PWP6fC7P6alfvb31rWdX13VdAQDgj92tBwAAzBuBBAAQBBIAQBBIAABBIAEABIEEABAEEgBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAoTfrxZuP35TxZGMnt8yNZ3fPl09PrrSeUc3Ra+vl6ss7rWdUcfHFuJwcrpd3lxbz+50crpdH9161nlHN9bvnyvMHN1rPqObC2sPy8enb1jOqOXb5VBkOh61nVHH6+KicOHu7vH9zv/WUKk6cvV1uvf7QekYVy/09Ze3M8X++N3MgjScb5fPXn7Nen3vbk1HrCVWNfnxpPaGKzc+jv85FNFng/66UUr5/G7eeUNX2dLP1hKqm02nrCVVsbXz961xE459brSfMFU9sAABBIAEABIEEABAEEgBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAQSABAASBBAAQBBIAQBBIAABBIAEABIEEABAEEgBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAQSABAASBBAAQBBIAQBBIAABBIAEABIEEABAEEgBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAQSABAASBBAAQBBIAQBBIAABBIAEABIEEABAEEgBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAQSABAASBBAAQBBIAQBBIAABBIAEABIEEABB6s15cWerv5I6501tabT2hqtUDh1tPqGLfke73ubjfb2l5f+sJVR08tNJ6QlW9wb7WE6oaDAatJ1Sxt7/5+1xuvKSelf17W0+oYrm/Z6Z7u7qu63Z4CwDAf80TGwBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAQSABAASBBAAQBBIAQBBIAABBIAEABIEEABB+AfAGVV2++a/SAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 720x72 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["sns.palplot(sns.color_palette())"]}, {"cell_type": "code", "execution_count": 85, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAABQCAYAAADiBIpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAAplJREFUeJzt2TGKE3EYxuFvZRQJihpIZzGd9R5CLDyEF4g3EAvZSrByLmDtCcTKE1jbTWEX2VUUER0Yq1i8nWGHyQ7P06T6s+8HS/hBTsZxHAsAgH+uzT0AAODYCCQAgCCQAACCQAIACAIJACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAjNoQ8/nz2v4eL8MrccjfZVV/277dwzJtM+6upDv8z73lfVWdvVs4Xed9Z2te3fzD1jMl37pLaf+rlnTKZ70Nb2dT/3jMl0T9t6ue3nnjGJh1V12rX1caH3nXZt9du3c8+YRLNe1f0Xj///3aF/cLg4r+HL7tDnR2/4udzbqqp+Dcu8b5/s5wu9r6pqN3yfe8Kkdn+GuSdMavdt2fd93S3zvt/7z4XeV1U17H7MPeGo+IkNACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAEJz8MN768vccXSa1WbuCZO62Szzvv1/5Xqh91VVbZrbc0+Y1Ob6wV9LV8LmzrLvu7tZ5n039p8Lva+qqtncmnvCJJr16qB3J+M4jpe8BQDgSvMTGwBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAQSABAASBBAAQBBIAQBBIAABBIAEABIEEABD+AsYQTZBcSEeRAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 720x72 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["sns.palplot(sns.color_palette(\"hls\", 10))"]}, {"cell_type": "code", "execution_count": 86, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAABHYAAABQCAYAAAB8i/K4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAABBlJREFUeJzt27+OVVUYxuEXQRqIhAQNkgl7V1qpN2C8BazUC9BKbbT1LoyVVlbGSm+BeANipdXahIB/JjEYaDB4LA6hJZ7Mcs238jzNamYn71dN5hc4s9vtdgEAAACgnOdGDwAAAADgMMIOAAAAQFHCDgAAAEBRwg4AAABAUcIOAAAAQFHCDgAAAEBRwg4AAABAUcIOAAAAQFHCDgAAAEBRwg4AAABAUcIOAAAAQFHCDgAAAEBR5w7+8pM3k+M7JzjlFPm6JV+to1f0835LfllHr+ji7ivJtbTczTp6ShfX0vLNpLclyXtp+WDi+75My6sT3/dzWta8O3pGJ2+l5cOs+WL0kC72t/00ekY3La9l/XX0in7a1WT9dvSKfto7yfrR6BWd3EzarWR9ffSQPtqt5O119Ip+vmvJ5+voFf183JIf19Er+nmjJVn/HD2jk5tJu5Gs348e0ke7kayfjl7Rx9Hl5IfP/vNnh4ed4zvJb9vBn596f018W5L8Ped9j5++c96XJA8mvi1Jfp/8vm36+2b96/l+kmR78s5oy6PRE7raHj/7ZyrbHoxe0Nf2x+gFndzeP9vtsTN6ujf3r73cn/y+R5Pfl+2f0Qs6ebh/todjZ/S0HY9ecKr4r1gAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFnTv4yytHJzjjFHphGb2gr+fnvO/s03fO+5Lk4sS3JclLk9+3TH/f1dETOrmUJFmevDNacn70hK6Ws8/+mcqWi6MX9LW8OHpBJ9f3z3J97IyeXp77114uTX7f+cnvyzLrv3O4sH+WC2Nn9LRcGb2gj6PLB312Zrfb7U54CgAAAAD/g1kTJQAAAMD0hB0AAACAooQdAAAAgKKEHQAAAICihB0AAACAooQdAAAAgKKEHQAAAICihB0AAACAooQdAAAAgKKEHQAAAICihB0AAACAooQdAAAAgKL+BVCMY5TLW1IBAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 1440x72 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["sns.palplot(sns.color_palette(\"hsv\", 20))"]}, {"cell_type": "code", "execution_count": 87, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAABQCAYAAADiBIpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAArVJREFUeJzt2T1LFVAAxvHjWyRKiCBkCDW4FThW0BRCU04S1NdoaKqhra2Ghr5ALtHiJElTkI2u0RJcMhpEQrnhS7ctuM/WxcOxy++3nOnAMx3+cEZ6vV6vAADw12jrAQAAZ41AAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAMD7oxXeff5Tu0clpbjkzVq7Ol1vP3reeUc2HR7fLZudV6xlVvNh6W9ZXN8rdN3daT6lifXWjHK+9bj2jmvH7D8rO9ZutZ1Qz/+lj+b31tPWMakZvPCnl+ZXWM6rYvrZZlpYXy/bml9ZTqlhaXiyP7621nlHFzNxUefhy5Z/vDRxI3aOTcnA4nIFUSimdvW7rCVV1j3+2nlDFzsG3vnMo7e+3XlDVSafTekJdv3ZbL6hr72vrBVUcdo/6zmG0+32435Z/5YsNACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAML4oBcnJ8ZOc8eZszAz2XpCVZPjF1pPqGJ+6lLfOZSmp1svqGpsYaH1hLrOz7ZeUNfM5dYLqjg3OdF3DqPZi8P5tszMTQ10b6TX6/VOeQsAwH/NFxsAQBBIAABBIAEABIEEABAEEgBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAQSABAASBBAAQ/gBg1VC50SDDXAAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 720x72 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["sns.palplot(sns.color_palette(\"Paired\", 10))"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["### Seaborn Plot Examples\n", "\n", "* Most of the time, I use a regression plot from Seaborn"]}, {"cell_type": "code", "execution_count": 88, "metadata": {"slideshow": {"slide_type": "skip"}}, "outputs": [], "source": ["import warnings\n", "warnings.simplefilter(action='ignore', category=FutureWarning)"]}, {"cell_type": "code", "execution_count": 89, "metadata": {"slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuQ3FWd9/H3+f1+3T3XzC3dPTPhGkBwfUBxYwluPURWUIZcYBFYkK0groAUkFQElhBcF+LGIBe5LmzJspVngZUSkbDsJsgSC3w0VglZNMFYkEcEQ2Yy98y9b7/fef74dfd0z/RMpid9nf6+qmKY7p6eczJmPjm371Faa40QQgiRI0axGyCEEGJhkWARQgiRUxIsQgghckqCRQghRE5JsAghhMgpCRYhhBA5JcEihBAipyRYhBBC5JQEixBCiJySYBFCCJFTEixCCCFySoJFCCFETkmwCCGEyCmr2A0otMHBMRznyAWdW1rq6O8fLUCLSkul9hsqt++V2m+o3L7Ptd+GoWhqqs36/SsuWBxHzylYEq+tRJXab6jcvldqv6Fy+57PfstUmBBCiJySYBFCCJFTEixCCCFySoJFCCFETkmwCCGEyCkJFiGEEDklwSKEECKnKjBYKnPPuhBCFErFBcuw1sRUsVshhBALV8UFS9TRDMZijKLREjBCCJFzFRcsAFrDeMxmIGYTViDTY0IIkTsVGSwJttYMRWMclukxIYTImYoOloSI7cj0mBBC5EjFVTeeSWJ6LKwUdZaJ1jI9JoQQ8yHBMkVieqwqGiOmwJJ8EUKIrMhU2Awi2t09NibTY0IIkRUJllloDWOye0wIIbIiwTIHsntMCCHmrmTWWJ5//nmeeeaZ5McfffQRF110Ed/+9reTjz322GO88MILLFq0CIDLL7+cq666qmBtjNgOg45DjWlSoxRKBjBCCDFNyQTLZZddxmWXXQbA/v37ufHGG7npppvSXvPOO+/w/e9/nzPPPLMYTQQmp8dC8d1jPgkXIYRIUzLBkuquu+5i/fr1NDc3pz3+zjvv8OSTT3LgwAE+85nPcPvtt+Pz+YrSxsT0mNc0qDUUXhSpO5R/Fwqxc3ycftumxTT5Qk0Nn6iqKkpbhRCikEpujWXXrl2EQiE6OjrSHh8bG+PjH/84t99+Oy+++CLDw8M8/vjjRWrlpIjtcDhqM+w42AqUckPl+dFRhh2HGqUYdhyeHx3ld6FQsZsrhBB5p3SJnQRcu3YtX/ziF1m5cuWsr9u3bx8bN25k27ZtWb1/dziCfTQNnIUCvErxzKE+eiMxNJP7yMKOQ6PH4u9PXJKnry6EEKWhpKbCIpEIb775Jvfcc8+05zo7O9m1axeXXnopAFprLCv75g8NTRC1nSO+rqm5lsGBsazfH+C90QmaTZMa0yCqNWFHoxyHrliY3t6Reb1nofj99SXfxnyp1L5Xar+hcvs+134bhqKlpS7r9y+pqbB3332XE044gZqammnPVVVVcd9993HgwAG01jz77LOcf/75RWjlkdUZBgO2TW80RsjRVBkGdZbJsZ6SynEhhMiLkgqWAwcO0NramvbYtddey969e2lubmbTpk3ccMMNXHDBBWitueaaa4rU0tmdXVWFjXt6f9y26Y5G6Y3GOMPnY1Q7RBTYyp0mU3IuRgixwJTcGku+vdczlPepMID94TC/CoU4bNs0miZnV1VxSsoONgUYSmEZCo9yfxm4c5PF/I5U6tQAVG7fK7XfULl9z/dUmMzN5MkpPl9akEylcbcs27YmHH/MUG7Y+AwDjwIPbthUVvQLIcqdBEsJcTQ4WhNz3H1rhlJ4DYXHMPACpgSMEKIMSLCUMEdrQrYmZDsowDTc0YxXKSyQ0YwQoiRJsJQJDcQcdzQzhjtt5jEMvDKaEUKUGAmWMuVoCNsO4ZTRjFcpvIaBBxnNCCGKR4JlAUiOZtCM207aaMaDO5oxlASNEKIwJFgWoKmjGZWyCcDSGkvJbjMhRP5IsCxwGrf8TeomAKXATEybKYWJrNEIIXJHgqXCuEHj7jiLxrc1KwUG7qimKmYTQ2OiZPpMCDEvEiwCrcFGM2FrRmybwzEbFa8K4FUKKz6qKXZVACFEeZBgEdMkps8itiYSfyxRFcCj4ms1yKYAIURmEixiTpJVAdBMpGwK8KTUOjMBEwkaISqdBIuYl8SoJpyh1pk3ZVRjyKhGiIojwSJyJnVUQ3xUY8RHNZZSWFJYU4iKIMEi8ia1gjOQ3OpsKIVPKayUtRohxMIhwSIKJnWrc3JUE9/q7JEDnEIsGBIsoqgSW51tOcApxIJRUsGyZs0a+vv7sSy3WZs2beKTn/xk8vldu3axZcsWwuEwHR0drF+/vlhNFXmS6QCnoeJlaWSrsxBloWSCRWvN+++/z+uvv54MllShUIiNGzfy9NNP09bWxvXXX88bb7zB8uXLs/o6zw0Pg6NpNk2aDcP93TSpUQolF9CXJCeeNhNTtjonDnDKVmchSkvJBMv777+PUoprr72W/v5+Lr/8cv7mb/4m+fyePXs4/vjjOfbYYwFYtWoVr7zyStbB0mvb9EZj0x73KZUWNMda4ItGaTZNqiV0SspsBzinbnWW75oQhVcywTI8PMzZZ5/NXXfdRSgUYs2aNZx44on8xV/8BQA9PT34/f7k6wOBAN3d3Vl/nc831fNhKEJvJEZfNMqI7QAQ1pou26bLdqdfmJhIfk61oVjs8eD3Wiz2WPg9HhZ73d9rTOMoel2amppri92Eo6YBG+J31CgsZSS3Pc/G768vSPtKTaX2Gyq37/nsd8kEy5lnnsmZZ54JQE1NDZdeeilvvPFGMlh0hjmO+YwiTsfiNI8BHvfjsNYM2PbkL8dhwLY5rB1G46Ez4WgOhCMcCEemvV+1Uslptab4aKcl/nGVUX6h09Rcy+DAWLGbkXOpW50TZWlMrTHj02hau3/RentHit3UgqvUfkPl9n2u/TYMRUtLXdbvXzLB8tZbbxGNRjn77LMBN0hS11qCwSB9fX3Jj3t6eggEAkf9dX1K0WZZtE1Z12lqrqWrb4RBx6E/JXgG48EzHg+6Ca05GItxMMN71yRCZ8p6TrNh4CvD0ClnU7c6T6TsQEuETVUsRkS5lZ1lF5oQ81cywTIyMsIjjzzCc889RzQa5cUXX+Tuu+9OPv/JT36SP/7xj3z44Yccc8wx/Od//idf/vKX89qmKsOgzTCmhQ7AhOMkQ2dwymhnIh4641ozHovxUWz6mk7tTKFjmnhlPacgpobNiO1wOGq7u9CYrBjgiZ+rMbUbRLJBQIjZlUywnHvuufz2t7/l4osvxnEcvvKVr3DmmWdy0UUX8YMf/IBgMMg999zDzTffTDgcZvny5VxwwQVFa2+1YVBtGLTPEDoDtk1//PeBRPg4DqH4T6UxrRmLxTiQIXTq4qHTlCF4JHTyz9EAkxUDYPLOGitedDNxlYDUQhNiOqUzLV4sYO/1DBGNr53MJh9rDVprJuJrOonQSR3thOfwraifJXQ8OQidhbrGMhfZ9j1123MybLTGiIcOlEfgVOo6A1Ru3ytmjaUSKKWoUYoaw+CYKc9prRlP2UgwNXgS2wZGtGYkFuPDDCOdRYZB05RptUTwHGk3lMhepm3PiXUbFR/dWICR2P6c8gvKI3SEmA8JlhKhlKJWKWoNg2M9nrTntNaMpe5eS5liG7BtovHXDTsOw46TMXQaEoET/70pZSebhE7uJNZtElNpYYD4CFlCR1QKCZYyoJSiTinqDIPjMoTOaOpIJ2Xn2oBtk4iYIcdhyHH449T3ZjJ0mgyDY5RNVcROfmxK6OTMnEInPqVmAaZhYODuUpO1HFFOJFjKnFKKeqWoNwyOzxA6I44zbYST+NjG/WF32HE47Lg/4HaHw5PvzfSRTuJXo4ROTiVDR2tsjhA6SmEqJaEjSpYEywKmlGKRabLINDkhQ+gMZwidIaXpi8Smhc77U98baJxyNic1dAwJnZzJGDpxqWdxTAkdUSIkWCqUUooG06TBNDkxJXSammvp7x91QyfDes6g4+Dg/rAbjJ/l+UM0mvbeBm7otGTYvdYgoZNTU8/izCd0hMg1CRYxjaEUjaZJo2mydMpzjtYMzRA6h+Oh44D7nOPAlNAxgcYMlQgSoSPFPnNnLqGjlEJFooxpB8MwMBOhg2wkEPMnwSKyYihFU3wkctKU5xytOZwaNin/fdhxkoUh++ObDDKFTlOG9Zxmw2CRhE5OpU6vhbVmzHZk95rIGQkWkTNGSpmaqeypoZMSPEMpodNn2/RlCB2LmUOnXkInp+a6Zdo0FB6Ij3TcfxhI6AiQYBEFYipFS7zy81S21mlbpKeGDkCM+F06M4TOTHXX6uQunZyaGjoRmDF0ElumJXQqjwSLKDpTKRabJoszhE5M62SdtanBM5wSOj22TU/iLp0UHiZDpym+oSDxca2ETk7NN3QM3OBRUuRzwZBgESXNUgq/ZeHP8Fx0ltAZiYdOFOi2bbozhI435dbQJtPkWEtTFY3JVdV5cDShYxC/DVRCp2xIsIiy5VGKgGWR6VaeaIYSOIm6ayPxn04RrTlk2xzKcGvo1KuqU6fZ5Krq3Jpf6EzuXquEkc7vQiF2jo/Tb9u0mCZfqKnhE1VVxW7WjCRYxILkUYqgZRHMcK1BZIa6a4e1M/NV1Smqpox0mk2TlkToyAVuOTXX0DHioWMlRjrxKtMLYaTzu1CI50dHsXAvDxx2HJ4fHQXIebgk/qy0co8N2Gp+f3ASLKLieJWi1bJozXBr6KH+0WnTaomRzlj8p1NIazptm84MoZO4qjq1ynQ5X1VdyqaGThQyh44ieTjUUiotdMrBzvFxLEjexeQF0Jqd4+NHDJbUgXVqYIQch4jSaBS21jhau0HiaBwNGo3WYJkGrfNoswSLEClmuqoa3L+MqVdVp+5ky+aq6kyhI1dV51Za6GiIknJpG5OhQyTKiHYw48Fjao1SqqRuC+23bepTKicoNLUowloTU+75MZRC44aGjgeFBmyd+Nh9L437uBONcTg6/R9GuVJSwfLYY4+xY8cOAJYvX87f/d3fTXv+hRdeYNGiRQBcfvnlXHXVVQVvp6hMs11VHZql2Oe0q6ozvPfUq6qbUtZ2fLKek1OpoRPVmomUi/9mGukUMnQS7+0odyv+ST4vQ46DIl5FQUNYO1Qrg8FoLNmnUlIywbJr1y5+8Ytf8OKLL6KU4utf/zr//d//zfnnn598zTvvvMP3v/99zjzzzCK2VIjpqgyD9hmuqh5PTKdlCJ5srqpOvUdHrqrOj7mOdKaGTur02lyLfirlXoPtxEcdtnKnpaKOxnZ0cjrqJNPilfA4Ju4P7BjuYeL/XeMruUBJKJlg8fv9bNiwAa/XC8BJJ51EZ2dn2mveeecdnnzySQ4cOMBnPvMZbr/9dnw+XzGaK8Sc1RgGNYbBkimPz/Wq6lGtGY3F+FOG0Mn3VdVi0lxCh3joeJRyg0bFd67FP99OTlFpYo4bHIkAmSkkTon/jPtVKMRh26bRNDm7qir5eCkqmWA55ZRTkv/9wQcfsH37dp577rnkY2NjY3z84x/n9ttvZ8mSJWzYsIHHH3+c9evXF6O5Qhy1bK+qHkwZ7chV1aUlNXQcDbEcjyVO8flKOkimUlqXwvLUpP3793P99ddz880381d/9Vczvm7fvn1s3LiRbdu2ZfX+3eEI+VuyEiL/tNaM2g690Sh9kRi90Rh90Si9kRh90RiRI/yVVkCDZeL3WCz2ePB7LRZ7LPxeDy2WhSW19EWcCQR93qw/r2RGLAC7d+9m7dq1bNy4kRUrVqQ919nZya5du7j00ksB9y+XlWE++0iGhiaIpizWzaSpuZbBgbGs37/cVWq/ofz63gQ0oTjF8IDPA77pV1VPPasTI36BW8zmcMxm/0Q47T2nXlWdOtpZiFdVl9v3PFfm2m+PaRAMlHGwdHV1ceONN/Lggw9y9tlnT3u+qqqK++67j89+9rMcc8wxPPvss2kL+0KI+V1VPaSgLxKdDJ2Uq6rT3hv3ArdMVablqmqRqmSC5amnniIcDnPPPfckH7viiiv42c9+xtq1azn99NPZtGkTN9xwA9FolE9/+tNcc801RWyxEOVlpquqm5prGUjcGpph59qgbSevqk7cGipXVYvZlNwaS7691zMkU2GzqNR+Q+X2/Uj9drQ+4lXVs0lcVZ1pE0Gxr6qW7/nsPKbBxwINWb9/yYxYhMjG/nC4rLZfljO5qlpkS4JFlJ394TCvjLsHxqqUYtRxeGV8HEDCpcDkqmqRiQSLKDu/CoUwIXkA0AOgNb8KhSRYSsh8rqoenBI6clV1eZJgEWXnsG1TNeUHhxV/XJSHbK6qTi2Hk9itJldVlzYJFlF2Gk2TUcchdTNtLP64KH/zuap60HEYmsdV1ceak7eGylXVuSPBIsrO2VVV7pqK1mlF+c4u4Rv1RG7k/KrqUCj5+VOvqm5JGe3IVdXZkWARZacci/KJ/JvPVdWDWjMcD5lpV1WnSFxVnXqdQfLWUAmdaSRYRFkqt6J8orhmuqq6qbmW7pRbQwenjHZG48f85npV9dTRTqVeVS3BIoSoKKlnoPzjoywzPZzi8027qhrcQJGrqrMnwSKEqBhTz0ANx2xeCbu7yjKNgLO5qjp1xFPpV1VLsAghKsa0M1BKYccfz3ZqNd9XVWe6vK1crqqWYBFCVIxCnYGa7arqiRlK4GS6qvqjMr2qWoJFiByQ2mXloRTOQFUbBkuOcFX1tNCJRQkrd3ps1quqgaZohJaxUVoG+1h86CAtf3qfpkgYde16qK3LfweRYBHiqEntsvIx9QxUROuSOQM101XV0T+8R+i1lwlV1zLY2MxhXxWHq2sYPuZ4Bn1VDFheIvGR0Qgw4vHyp8ZmaGyGEz8GZ58LQH0oRHPMptk0WaJsqiN23q6qlmAR4ihJ7bLyMfUMlN8yWeYr0dGl48DQIHrny9SMDFE/2E/rH/djRkKolIvYNDBWU0tf02L6m1rcX4F2+psX01+3iGh8NDaCYiQW48NYjLfD6TeHLjKMjHXXAkb6ZXFzJcEixFGS2mXlJfUMVEncx+I4MNCH0dOF6jmE6umK/zqEikaYKfI0QKAVHWilOtDOkkAb7f4g2h8Ej3ud8ExXVQ+h6Y3fGgow7DgMOw4fTJle83ssHg02Zt0lCRYhjlIpzNuLMmDbqP7elOCIh0dvNyoWnfHTtFI4VVU4NXXYVdXYHq9bxqh+EbVfuXbWLznTVdWJW0MzXVWdOKszfQVn7koqWF5++WWeeOIJotEoX/3qV7nqqqvSnv/973/Pt771LUZHR1m2bBl33303VoZdF0IUktQuE2liMVRf95TRRxeqrwc1yyhWWxb4g+hgO06gDR1oQwdaiRw+TPhn/4UyLfB4IBpF2zF8n11+VM2c6apqcEc6w47DxDyXXkrmp3J3dzcPPvggP/nJT/B6vVxxxRV89rOf5eSTT06+5rbbbuMf//Ef+dSnPsXGjRv50Y9+xFe+8pUitloIqV1WsaIRNyy6p4xA+nvS1kCm0h6vO4UVbHMDxN+KE2iD5sWQ4WCkx98KhkHkzf+LPjyIamzC95n/jeekj+Wta0opGkyTxeb8DmqWTLDs2rWLs846i8ZGdz7vS1/6Eq+88go33XQTAAcPHiQUCvGpT30KgEsuuYRHHnlEgkWUBKldtoBFwqjeQ6juKSOQgT5U/NxJJtpXhQ60QrAdJ74W4gTaoaEpY4DMxnPSx/IaJLlWMsHS09OD3z9ZDDsQCLBnz54Zn/f7/XR3dxe0jUJMpYgvooqyEf3De8l//Uf9fvjU2e4P7dDEtMVzo6cLNdg/6/vp6pqUAGmLh0gbLGqEEjmwWGglEyw6Q/KnlqI+0vNz1dBQzVz36jQ112b9/gtBpfYboDnedwP37g9TqWR4OFqjcS+iSn9O4wAxRzMev1a33FTK93zi3X1MvPYfeGwb045h/L/3MH+3B49pwujI7J9cW4fRtgSjfQmqrR2jrR2j/RhY1FCWZfPn8j2f7/aTkgmWYDDIW2+9lfy4p6eHQCCQ9nxfX1/y497e3rTn52poaIKoPfP8Z0JJbEMsgoXcbxX/HwUoFKahsADTMDCBlqZaDg+OYWgwlBsm0Qwp4eBeGJXxaygYdxzCdvkEzIL9no+NTo4+urswerrgw/dpnGUHFoCuX+QunAfdBXTHHx+B1NVPf7ENDI7np/15NNfvucc0CAa8Wb9/yQTL5z73OR599FEGBgaorq7m1Vdf5Tvf+U7y+SVLluDz+di9ezd//ud/zrZt2zjnnHOK2GJRihTuD3eFwkgER3x0YWiNoVQyOAC0JjmXVWUamDrl8XkwNTQYBmHDYNS2iTnlEi9lSmsYHY6HR3zqKvFrbHTWT3W8XpyaWuyqGmJK4bnor9H+NqipjNFbPpVMsASDQdavX8+aNWuIRqNceumlnHHGGVx77bWsXbuW008/nfvvv59vfetbjI2N8Wd/9mesWbOm2M0WBZYWHGpyusqdltKYKAzcqSxICQgd/+yjDI650Bq8QLNhMm5oxm0byZejpDUMH06OPNLWQiZmHzHopmZ0sB0daCN88EOitoPj9aFNE8s0iE2EoK4O6/iTZ30fMXdKZ1q8SHHo0CHGx8dZunQpDz74IGNjYxiGwS233IKvDHfBvNczJFNhsyh2v6cGh5kSHEZKcCjtvi6XAeH319Pbe4R59nlwFIyW8PRYsb/naeJlTJLh0d05uY03HJrx07RS0NTiBkhwcvpK+4PgmzxPFP3De4Rfezl5JsRwbOxIBN95q8pq19XRymYq7GOBhqzff9YRy549e7j++uu54447WLp0KTt27GD16tX8z//8D88++yxf+9rXsv6CorIlgoMpIw5DKUxIjjaMqcGRGHGkyOeoI5eM5PSYYtR2ZHoM3AAZ7J+cuupOnEI/hIqEZ/w0bRjQ7Ee3pq9/pJYxmY0bHquSu8Isvx8rsStM5MyswfLwww/z4IMPctZZZwFQW1vLTTfdRGdnJ2vXrpVgEdNMDQ5TuescRnyB3Ii/JrlAnhYc6colOObCnR5TNBkmIRPGYrHKmB6zbdRA7+TUVeIw4ZHKmJgmLA7ET5/HDxIGWtGLA2DNrzBiQuqZkJIarS0gswbLgQMHkqECk1t+29vbCYdn/leFWLgmd1YpVGLEweTOKkNrVMoCeaUEx1wpoFqD17IYdxxCJTo9lrVYzD1xnjr6SJYxmbnqlDYTZUzaUsqYtKFb/CC11srWrMHimVI/5tlnn53xObFwpK5zmEY8OKbsrDL15Nmv1J1VhVogL3emdkuV+wzFmO0QLZfhSzQar4OVugYylzImHvC3olvbk2VMdKAN3dQiAbIAzRostbW1HDp0iNbW1uTHAF1dXVRXV+e/dSIvZtuS22RZKI+FOXVLLhR0Z1UlSEyPeZLTYzZOqfyhRiLuekdqDazuLndaa7YyJl4fOhg/he6P18Pyt7mXTmVZxkSUr1mD5bLLLuOWW27hkUceoaWlBYChoSHuuOMOrrzyyoI0UGRvpi25xpF2VmmoNg1GJTgKanJ6zCz89Fg4hP1BN8b+95PTV0Z3JxwemD1AqqrRwTaIB4cTdEchNDRVbBkTMemIwXLgwAG+8IUvcNJJJ6GU4v3332fNmjWsXLmyUG0UU6QGh1LpZzmmLpAvlJ1VlSAxPVYVnx6L5HJ6bGI85RR6/CBh7yHU4QHCwEwT27qmNnkCfbIabxvUL5IAETM64gHJb37zm1x99dW8/fbbAJxxxhnzKqUi5u7otuSmk+AoL1qDB0WDYRI2YTTb6bFkGZP46CMRJsNDs3/duvr4GZBWtH9yFxa19RIgImtzOnnf0tLCeeedl++2VJRM6xyW7KwScQqoik+PjWlNKGZPfvu1htGR5Agk7ST6EQop6kUNyUOE2t+KE2yj4ZSlHI7I+ofInZIp6bJQTd1h5cHdmmto7U5dpY46ZGeVSKG1hqHDVHd3YfV0Ej7Uhe7udBfRJ2Y/e6EbmyensAKtyZ1YVNdMe62qqwU5yyFySIIlR1IDxDLcsupWhu25kwEi4SFcWmv04QHs7k6c7q7J33u6IDSRfJ0ifYVssoxJaiXe6WVMhCg0CZYszRQgZkrlXAmQyhP9/V7Cb/wUZ6APo3kxvuVfwvPx09Neox0HPdifHiA98QCZ7cCxUhiLA5jBdsxgGyrYTjjQSqjZ715zK0SJkWCZhaHcy8Q8KRc7JQIkcaRLAkREf7+XiW3/jrIsVE0tzvBhxl94Gu+yz6E8nuTow+k5BNHIzG9kmBj+eIAE2jCC7RjBNgx/EDWljIkXqI4Xt4zMoaiqEIVU8cGSGIEYKmX0oRTNHgvLsjDIfEBQskNoO4bT10vov34M4RB6wkHHohB1a2BFdv5X5k80LcxAEDPYjpEaIC0BlDX3v5KWhkalCHssRmM2tvyLRpSIigsWUylM05hcA4HkFt7UAKkyDEYkQASgY1Gcnm7snvQ1EKevB5xZLrpWCrP9WMxgmxscwSUYgVaMZj8qZ2VMFL7E4UqtmZC7X0QJqLhgaTINbDsxZzX5uPxdFE44jH3wT9PWQJy+ntnnNw0D5fWhqmtQXi8YJk4siqpvoO6G2wrSdqWhFkVVvLhlxNE4Wsv/r0VRVFywyGyB0OEQds8hnO7OydFHdxdDg32z/h9EVVVjBNtS1kDcaaxY10FCL/0QLAttedx1FNum6vMXFLBXLlNDvTLQJsTQRAFHaxzc69ljjiN/B0TelUyw7N69m+9+97vEYjEaGxv57ne/y5IlS9Je09nZyYoVKzjuuOMAWLx4MU899VQxmiuKbE67sCbG3UXz7i7s7i6cnk7s7i70YP+s761qajFb21PWQNowAm2oRY2oDKfQvU0tKKXS2lOVoT2FpHBP8HsgeXJeKYgaBmPxBX/JF5EvR7yauFD+8i//kscff5zTTjuNH//4x+zcuZMnnngi7TU//elP+eUvf8mmTZvm/XX6+0dx5jAJna9raktdOfQ7dRcWHi86HEKHw3hP/3MwVHwXVid66PCs76Pq6pNbeI1gO00fO4kRXyOqrj5jgCwcmrBSjMVsYlpX9GVXldr3ol5NXCiaooJVAAAT9UlEQVSRSIR169Zx2mmnAXDqqafyzDPPTHvd3r17ee+997jkkkuoq6vjzjvv5NRTTy10c0URaK3RYyM43V1M/Mdz6IlxtGO7O7Di94BEdv0s4+eqRY2YrW2YgTbMVncBXQXaMGrr015X469nrMRDNTfSF/wXcoSK4iiZEUuC4zjccMMNnH766dx0001pzz366KP4/X6uuOIK3njjDb7zne+wfft2vF45JLZQaK2xhw4T6fyIyMGPiBw86P5350GcI9TBwrKoOe0TeNrb8S45Fu+SY/C2LcGM3yMkMgs7DqMxm3Bp/SgQJcAEgr7sf74WPFh27NjBli1b0h5bunQpW7duJRKJsGHDBoaGhvjnf/7nI95SuXr1au69997kSGcuZCpsdoXqt9YaPTSYsgOry11M7+mCifGZP1Ep8HoxPF5UdTWYlrsLKxLGaGii7hu3zrtNlfw97+sbIQyM2jaxCtqvLFNhsyubqbCOjg46OjqmPT42NsYNN9xAY2MjTzzxRMZQefrpp1m5ciVNTU2A+8PJyuJAmSg87Tjow/3x4OjCPnQwyzImbZOn0ANtGIFWYn94j4lt/w7KcIMlGgHHwbf8S4Xr2ALj3mYJzYbJuKEZl/Mw4iiUzE/l2267jeOPP55NmzbNuHD65ptvEgqFuPbaa/n1r3+N4zgsXbq0wC0VmWjHwenvTS6cT54DOVIZE8MNkNYl6QHiD6JmGLG6u62+UlK7sBaSmvh5mFHHISy7x8Q8lESw7Nu3j507d3LyySdz8cUXAxAIBHjyySf54Q9/SE9PD+vWrePOO+9kw4YNvPTSS/h8Ph544AEMuUe7oLQdcwPkUGfaFl6n9xDEYjN/omli+luTO7DcAGnFWBzMqoxJgufjp0uQ5JGhocEwCBuKUdupqOkxcfRKbvE+32SNZXaJfutYFKevJ+UAYTxA+rrBnqWMieXBDLa6o4/WdoxAPEBaAjksY5Iflf49n4kGQgrGsr3NsgzIGsvsymaNRZQWHY3g9ByKHyTspOtwLxN/OoDT35PcxpuR15s8A5I4SKgCbRjNi1EyilxQFFCd2J7sOIRkekwcgQRLhUgtY+L0TO7CcgbSy5hMW073VbkB0joZIEagDdXYLAFSYUwNiwyDKkMxZrv1yITIRIJlgdGhifQtvHMtY1Jdg9naTs2xxxFt8k8GSEPTAj+FLrKhtVsqpsEwCZvu9JiU6xdTSbCUKWd8zF37SCyex9dA9NDgrJ/nljFpiy+ix8u4B9pQ9Q0opSp2nUFkRwFVU8r1S76IBAmWEueMjkwunCdDpAs9MjTr56lFDSlrIG0YgXZ3DaSuftbPEyIbhoa6lO3JcpulAAmWkqC1Ro8MpV0ilVhM12Ojs36u0diEEWx3q/EmKvH621A1UsZEFI7cZilSSbDkSaay7tZp/ytexqQrvoA+uZVXz1bGBDCaF2MGWt0iisG2+BRWO6qqukA9EuJI5DZL4ZJgyYPIvj1M/OQZt2qs1tgH/8T4/3kcDJW8Dz0jpdwASdwFEmxHxQ8VKq+vUM0X4qik3mY5Kne/VCQJlqOgHQdnoG9yC++h+O8H/wSZroVNnCtMlDFJuQtksoyJVGoWC4OpoUEpIh6r4opbVjoJljnQth2vg9WZfh/6kcqYKIXy+VC+KvD60LZN7TU3zbuMiRDlR+HV0GxKcctKIj/djsA5PMDoY1tmv43QstxLpOKjj+i+37prJl5f8gyIjoQxmlowW5fM/D5CLFRailtWEgmWI9DhEHo4vrXX402pg7XEXfvwt2G0+NNOoRvtx7lX50YjaI8XohF0LEaVlHUXFS5R3DJiGIzI9NiCJcFyBGawnfo7vwd2DNXYMqcyJlLWXYiZuaf3ockwCZkwFovJ9NgCI8EyB0ZDU9afI2XdhZjdZHFLS4pbLjBSRVAIUVSJ4pYNHhOPIXXpFgIZsQghis69GlnhSU6PLby7XypJyQTLtm3buP/++2lpaQHg85//POvXr097zfDwMLfeeisHDhygubmZhx56CL/fX4zmCiHyIDE95rNMxrQmFLNleqwMlUyw7N27lw0bNrBy5coZX/PQQw+xbNkyfvCDH7Bt2zY2b97MQw89VMBWCiEKwdBQj6LaMhnVWopblpmSWWPZu3cv27ZtY/Xq1dx6660MDU2v3vv666+zatUqAFauXMnPf/5zorOVSBFClDULRaMyaPBYmHIvUNkomWDx+/3cfPPNvPTSS7S1tbFp06Zpr+np6UlOfVmWRV1dHQMDA4VuqhCiwHwami2TWstE1vdLX8Gnwnbs2MGWLVvSHlu6dClbt25Nfvz1r3+d8847b07vZ2R5PW5LS92cX+v3V+bdJZXab6jcvpdTv8OOw0jMJpKjxf2m5sq8YmIu/Tbn+d4FD5aOjg46OjrSHhsZGWHr1q189atfBdz7SawMtbQCgQB9fX20trYSi8UYHR2lsbExq6/f3z+KM4fTWJV6k2Kl9hsqt+/l2W+NVorRmE3sKAKmqbmWwYGxHLarPMy13x7TIBjIvjBuSUyF1dTU8C//8i/89re/BeCZZ57h/PPPn/a65cuXs23bNgC2b9/OsmXL8Hg8BW2rEKIUuMUtmyyTOpkeKzklsSvMNE0eeugh7rrrLkKhECeccAL33nsvAA8//DCBQIArr7ySdevWsWHDBlasWEF9fT33339/kVsuhCgmFS9u6bMsxqS4ZclQWlfWKSSZCptdpfYbKrfvC6XfSkEYsrr7RabCZucxDT4WaMj6/UtiKkwIIY6W1rh3vxgyPVZsEixCiAWnBkWTZVFlGki+FJ4EixBiQTLjd780eEwsGb4UlASLEGLBcqfHFE2GSb3HwpDT+wUhwSKEWPASxS2bLZNqy5TpsTwrie3GQghRCGnFLR0pbJkvMmIRQlQcC0WjYbLINKW4ZR5IsAghKladZSaLW0q+5I4EixCioikNtfHtyT5TfiTmgvwpCiEEYGloUIoGj4Ulw5ejIov3QgiRpPBp8Fom41ozYdvMsTqMSCEjFiGEmCJ1ekxO72dPgkUIIWYweXrfktP7WZBgEUKIWUhxy+xJsAghxBzVoGiW6bEjkmARQogsGFLc8ogkWIQQIktS3HJ2JbHduL+/n6997WvJj0dGRhgcHOTtt99Oe11nZycrVqzguOOOA2Dx4sU89dRTBW2rEEIkJIpbei2TccchJFcjAyUSLC0tLbz00ksAOI7D1Vdfzfr166e9bu/evaxatYpNmzYVuolCCDEjU8Miw6DKUIzZDpEKP/xSclNhL7zwAtXV1axatWrac3v37uW9997jkksuYc2aNbz77rtFaKEQQkynNXi0osEwWeSxKrq4ZUkFi23bPPHEE9xyyy0Zn/f5fFx88cX85Cc/4W//9m+58cYbiUQiBW6lEELMTAFVGposk5oKLW6ptNYFHbPt2LGDLVu2pD22dOlStm7dyuuvv87TTz8953WT1atXc++993Laaaflo6lCCHHUwo7DSMwmUtgftTlhAkGfN+vPK/gaS0dHBx0dHRmfe+2117jwwgtn/Nynn36alStX0tTUBIDWGsvKrgv9/aM4c5j/9Pvr6e0dyeq9F4JK7TdUbt8rtd9QyL5rHKUYjdnYJRAwTc21DA6MHfF1HtMgGMg+WEpqKuw3v/kNy5Ytm/H5N998kx//+McA/PrXv8ZxHJYuXVqo5gkhxDy5xS0Td78s9OMvJbErLOHAgQO0tramPfbDH/6Qnp4e1q1bx5133smGDRt46aWX8Pl8PPDAAxhGSWWjEELMKFHcssqyGHUcIgt0e3LB11iKTabCZlep/YbK7Xul9huK3XdNRClGbZtYgbcnZzMV9rFAQ9bvL//cF0KIolALtrilBIsQQhTZQituKcEihBAlIFHcsnEB3P0iwSKEECXCPb1P2Re3lGARQogSkyhu2WSZVJfh9JgEixBClKhEcctGj4mnjKbHJFiEEKKEJYpbNpbR9JgEixBClIHE9FizZVJtmSU9PSbBIoQQZcTQUI+iyTLxmqX5I7w0WyWEEGJWFopGZdBQgne/lFStMCGEENnxJa5G1poJ26YULq+UEYsQQpS5RHHLJsvCVwLbkyVYhBBigTA1NChFg8fCKuL0mASLEEIsKG5xyyareMUtJViEEGIBUtotbtlUhOKWEixCCLGAmfHilg0FLG5ZtGB5+OGHefTRR5MfDw8Pc91119HR0cFVV11Fb2/vtM/RWvO9732PCy64gAsvvJDdu3cXsslCCFGWtMadHovf/ZLveCl4sIyMjLBx40b+9V//Ne3xhx56iGXLlrFjxw4uu+wyNm/ePO1zf/rTn/KHP/yB7du380//9E9s2LCBWCxWqKYLIURZU7jTY4s9nrwWtyx4sOzcuZMTTjiBa665Ju3x119/nVWrVgGwcuVKfv7znxONRtNe88Ybb3DhhRdiGAYnnngi7e3tvP322wVruxBCLAQeQ7HIMGjIU3HLggfLxRdfzHXXXYdpmmmP9/T04Pf7AbAsi7q6OgYGBqa9JhAIJD/2+/0cOnQo/40WQogFxp0ey09xy7ydvN+xYwdbtmxJe2zp0qVs3bp1zu9hGOm5p/X0I6VTX3MkLS11c36t31+f1XsvFJXab6jcvldqv6Fy+z613zFHM2LbhByHxE9ac/qnzUnegqWjo4OOjo45vz4QCNDX10drayuxWIzR0VEaGxvTXhMMBtMW9Xt7e9NGMHPR3z+KM4eaB35/Pb29I1m990JQqf2Gyu17pfYbKrfvs/dbM+Y4RByNxzQIBrxZv3/JbDdevnw527ZtA2D79u0sW7YMj8eT9ppzzjmHl19+Gdu2+fDDD/nggw84/fTTi9FcIYRYkCzc6bGjKW5ZMkUo161bx4YNG1ixYgX19fXcf//9gLvY/7Of/YzNmzdzwQUXsGfPHlavXg3A5s2bqaqqKmazhRBiQfJpqJpnWX6lMy1cLGAyFTa7Su03VG7fK7XfULl9n2u/DUNltS6d/Lz5NEoIIYSYiQSLEEKInJJgEUIIkVMSLEIIIXJKgkUIIUROSbAIIYTIKQkWIYQQOVUyByQLxciikmc2r11IKrXfULl9r9R+Q+X2fS79nu+fTcUdkBRCCJFfMhUmhBAipyRYhBBC5JQEixBCiJySYBFCCJFTEixCCCFySoJFCCFETkmwCCGEyCkJFiGEEDklwSKEECKnJFhm8NZbb3HJJZewatUqvvGNbzA0NFTsJhXM7t27+fKXv8xFF13E1VdfzcGDB4vdpIJ6+OGHefTRR4vdjIJ4+eWXufDCCzn//PN59tlni92cghodHWXlypV89NFHxW5KwTz22GOsWLGCFStWcO+99+bvC2mR0Xnnnaf379+vtdb6vvvu0w888ECRW1Q45557rv7973+vtdb6+eef19/4xjeK3KLCGB4e1nfccYc+44wz9COPPFLs5uTdoUOH9LnnnqsHBwf12NiYXrVqVfL/8wvdb37zG71y5Ur9iU98Qh84cKDYzSmIX/7yl/qv//qvdTgc1pFIRK9Zs0a/+uqreflaMmKZwfbt2zn55JOJRqN0d3ezaNGiYjepICKRCOvWreO0004D4NRTT6Wrq6vIrSqMnTt3csIJJ3DNNdcUuykFsWvXLs466ywaGxupqanhS1/6Eq+88kqxm1UQP/rRj/iHf/gHAoFAsZtSMH6/nw0bNuD1evF4PJx00kl0dnbm5WtVXHXjufJ4PLz77rtcc801WJbFN7/5zWI3qSC8Xi8XXXQRAI7j8Nhjj3HeeecVuVWFcfHFFwNUzDRYT08Pfr8/+XEgEGDPnj1FbFHhbN68udhNKLhTTjkl+d8ffPAB27dv57nnnsvL16r4YNmxYwdbtmxJe2zp0qVs3bqVU089lV27dvHcc8+xfv36vH0TimW2vkciETZs2EAsFuP6668vUgvzY7Z+VxKdobC5UpVZQr6S7N+/n+uvv57bb7+dE044IS9fo+KDpaOjg46OjrTHwuEwr732WvJf6qtXr+Z73/teMZqXV5n6DjA2NsYNN9xAY2MjTzzxBB6Ppwity5+Z+l1pgsEgb731VvLjnp6eipoaqkS7d+9m7dq1bNy4kRUrVuTt68gaSwaWZXH33XfzzjvvAO6/cD/96U8XuVWFc9ttt3H88cfz8MMP4/V6i90ckSef+9zn+NWvfsXAwAATExO8+uqrnHPOOcVulsiTrq4ubrzxRu6///68hgrIiCUj0zR58MEH+fa3v41t2wSDwYqZk923bx87d+7k5JNPTq45BAIBnnzyySK3TORaMBhk/fr1rFmzhmg0yqWXXsoZZ5xR7GaJPHnqqacIh8Pcc889yceuuOIKrrzyypx/LblBUgghRE7JVJgQQoickmARQgiRUxIsQgghckqCRQghRE5JsAghhMgp2W4sRJHYts2//du/8fLLL2PbNtFolHPPPZd169bJ+SFR1mS7sRBF8vd///cMDQ2xefNm6uvrGR8f59Zbb6W2tpb77ruv2M0TYt4kWIQoggMHDrBq1Sp+8YtfUFdXl3y8t7eXt99+my9+8YtFbJ0QR0fWWIQogn379nHyySenhQq4pc0lVES5k2ARoggMw8BxnGI3Q4i8kGARogjOOOMM3n//fUZHR9Me7+7u5rrrriMUChWpZUIcPQkWIYogGAyyatUqNm7cmAyX0dFR7rrrLhobG6mqqipyC4WYP1m8F6JIYrEYjz/+OK+++iqmaRKJRDjvvPO4+eabZbuxKGsSLEIIIXJKpsKEEELklASLEEKInJJgEUIIkVMSLEIIIXJKgkUIIUROSbAIIYTIKQkWIYQQOSXBIoQQIqf+P4qmgjGgf4IMAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["with sns.color_palette(\"hls\", 2):\n", " sns.regplot(x=\"C\", y=\"F\", data=df_demo);\n", " sns.regplot(x=\"C\", y=\"G\", data=df_demo);"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* A joint plot combines two plots into one\n", "* Very handy for showing a fuller picture of two-dimensionally scattered variables"]}, {"cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [], "source": ["x, y = np.random.multivariate_normal([0, 0], [[1, -.5], [-.5, 1]], size=300).T"]}, {"cell_type": "code", "execution_count": 91, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGkCAYAAACYZZpxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd8XOd54PvfKXOmYtABEgTB3otYRFHFktUtW45sy866JXGc3ZvmbPLx7sbJevPJ3uzd3STyTXzXm2xucuPETtwty44seWX1RlESO0SJvYHoHRhMO/X+cTBDgARIEBhgMMTz/Xxk0iDmnJcgcJ553/d5n0fxPM9DCCGEKAK12AMQQgixcEkQEkIIUTQShIQQQhSNBCEhhBBFI0FICCFE0UgQEkIIUTQShIQQQhSNBCEhhBBFI0FICCFE0UgQEkIIUTQShIQQQhSNBCEhhBBFoxfjpj09iYJcp7IywsBAqiDXmqn5NBaQ8VzNfBoLyHiuZj6NBa49ntrasjkczY2hpGdCuq4Vewh582ksIOO5mvk0FpDxXM18GgvMv/HcCIoyExJiLtkuZC07//+9/hSprH2VV1wSDOjoJf1WTYj5TYKQmBOJlElyig/+y800EGQtm33HuvL/vywWIjGSmdJrd22oRw/Kj4kQs0V+usScSGfGB4LrcXkg8DyPoaRJImUxkrZIZSyyloNpuZi2i2U72I6HZbuYtkM6a9PRl8KyXWzHxQOypoPjeriul7+mrqnouoqhq0TDAcrCAQK6ysZlVVSWBQvxZRBCXEaCkJjXXNejpStBa/cIp1uHaO9L0jOYxrTca75WUxWMgEpA03A9D11T0DWVoKETDSlomoqmKgAogO2OBi7LobV7hIzpcOhULwC1FSHWN1Vy8/o6NiyrRNdkjU6IQpAgJOYdz/PoGUxzriPBhc4EGdMBoDoeZGldGZuWV1FbEaY8ahALB4iEdEKGRkDXRoOOP6NRFT/AJLPTW46zbJeG2ihtXSOcbB1i/4keXmvuIBYOsGt9HffubGRJTXR2vghCLBAShMS84boe5zsTHD3bx+CIiaYqNNbFuHv7ErasqKIqHprT8QR0leWL4mxaVsWDt/hB6ei5PvYd6+a15g5eOtTGpuWVfGB3E5uWV6GMBj0hxNRJEBJF53keF7pGOHSyh0TKojxmcPvmRSxbVEZAV7l5fR3ReZAcENBVtq+pZfuaWj6VMnn1cDsvHmzlL79/hDWN5XzszpWsX1ZZ7GEKUVKK/5MtFrREyuSt97pp701SWRbk7u0NLK2LjZtVKKoy7cw6gNHcg2mZ7N6apnLPzkbu3NbA3qOd/PytFh777iE2LKvkY+9fyeLqqKR3CzEFEoREUXiex8mLg+w/3oOiwK71daxrqkBVr1zSyloOR072TPteN62tnfZrp3LvkKHx4duXcaJlkCNn+vjTfz7AuqUVfP7hDdSWh6d9byEWAglCYs6ZlsPed7u40JmgoSbK7ZvriYQCxR7WjGiaysYVVaxcEufwqV5OtAzyX7+5n0/fv4bdG+plv0iISUgQEnNqcCTLSwfbGElb7Fhbw6YVN9aGfsjQuXXTItYsreDo2X7+7sn3ePVIB5+8bzU1k8yKJqvgIMt5YiGQICTmTGdfipcPtaGqCh+4ZSl1lZFiD2nWVMdD/M4ntvLDF05x6GQv/+2b+9mxtpZ1TRVXBN3JUsalWoNYCOQ7XMyJve908Pz+i5RFDO7b2UgsUtrLb1Ohqgrrl1XSWBdj79FO3j7WzYWuBHdsXrwg/v5CTIVM9sWse+FAK3//5FHqKiN88NamBfcAjoUD3H9zI7dtrqd/KMtP95znTNsQnjeDtD0hbhAyExKz6pm3WvjBS6fZtqaWTSsq0NSF+b5HURTWNFawuCrK6+90sOedTi52j3DrpkVIBxqxkC3MJ4KYE0+9cZ4fvHSam9fX8Vsf37pgA9BYsUiAB29Zyo61NbR2j/DUnvO0dhemyaMQpUieCmJWPPNWC0+8epbbNtXzG49slIKfY6iKwuaV1Xzw1mXomsK/vHqWAyd68hW9hVhI5MkgCu6FA6384KXT3LKhjn/98EaZAU2iujzEw7cvZ+OKKt49188zb7WQSJnFHpYQc0qeDqKgXjvSzrefO8n2NTX8mw9vnLACgrgkoKvcs3Mpd21rYChp8tQbFzjXMVzsYQkxZyQIiYLZf7ybbzxznM0rqvjNj2yWJbjrsHxRGb9w+3IqYgavHengjXc6yVpOsYclxKyTp4QoiHfP9/N3P32XVQ3lfOFjWwjIUf/rFosE+MAtTWxZWcXptiG+8p2DtHRJ0oK4scmTQszY2fZh/upH77CoKsLv/eJWgoZW7CGVLFVV2L62lgd2NZLOOvzXf9rP8/svypkiccOSICRmpK03yVd/cJh4NMC/++Q2oiVeiHS+WFwd5T/+8k42La/iO8+f4n883sywJC2IG5AEITFltuu3ys79d7FnhL/43iE0VeW3P7aFQEAb9+dj/5P9jesXCwf43U9s5TP3r+G98/385394m3fP9xd7WEIUlFRMEFOWtWz2HesCIJ21+flbLWRMhw/sXsq5juGrZnXdvGnxXA3zhqIoCvffvJS1Syv42yff5S++d5iHdjfx6F0rJfFD3BDku1hct6zl8Pz+VpIZm3t3LqGyLFTsId3wmurL+ONf3cXd2xp45q0W/vs/H6BrIFXsYQkxYxKExHWxbJcX9rcyNGJy9/YlN3Q7hvkmGND4lYfW84WPbaFnMM3/+Y/72PNOR7GHJcSMSBASU2baDi8dbKNvOMNd2xazpDZa7CEtSDvX1fInv3YLy+rL+PrTx/j7p94jY17ZFE+IUiBBSEyJaTn8f//yLp39KW7fvIimeqn9XExV8RBf+vR2HrljOXuPdvJfvrFfzhSJkiRBSFxT1nL42o+aOdEyyO2bF7FqSXmxh7QgKKoyabZhMmuTthweuKWJL3x8C6mMzX/7pwM8f6CVZNbGdos9eiGmRrLjxFVlTJv/+aN3OH5hgM8+uFZqwc2hrOVw5GTPlD73A7uX8lpzB9957iRvv9fFbz26mcpocJZHKMTMyUxITCqRMvnKdw9zvGWAf/3hDezetKjYQxKTCAd17r+5MV/y56vfP0LvYLrYwxLimiQIiQn1DWX4028dpLVnhN/52BZu3yznfOY7VfFL/ty7Ywl9Q2n+yzf3c0wOt4p5ToKQuMK5jmH+2z/vZyhp8u8/uY3ta2uLPSRxHRrrYvyHT+8gHjX4v79/mGffbpHac2LekiAkxtnzTgd/+q2DaKrKf/zsDtYurSj2kMQ01FWG+U+/vJPta2r53oun+YefHcOSbAUxD0liggD8Q6g/fPk0z+9vZX1TBb/10c2URYxiD0vMQDio89sf28yTr5/jyT3n6exP8Tsf20J5TBIWxPwhMyFBW88I/9c39/P8/lbu39nIv/vkNglANwhVUfjonSv57Y9u5mL3CP/lm/s53ymdW8X8ITOhBcx2XJ7f38oTr54lEtT4vU9s5abVNcUeliiA3BmjnA0rqvjiv9rG3z35Ln/6zwf57AfWsnNd3YSvDUnLCDGHJAgtUCdaBvjWcydp60mybXUNn/vgesqjMvu5UUx2xuj+mxt55XA73/jZcfYd62b7mporzn69f2cTchpMzBUJQgtMW2+Sf3n9HPuPd1MdD/FvH93CtjU1KIo8dhaCcFDngV1L2Xesm3fP9dM35NcBDBnyKBDFId95C0Rbb5Kf7T3Pm+92YRgaj9yxnA/euoxgQFpxLzSaqnDrpnpqykO8+V4XT71xgbtuaqCuMlzsoYkFSILQDcz1PN4718+z+y5y9Fw/hq7ywC1N3LNjCbFwANv1sLNTr77sylGTG8rqxnIqy4K8cridn7/dwk2ra9i8sqrYwxILjAShEmO7fofTqxkayfLUmy28eqiV3qEM8YjBw7cv431bG4iEAhw43jWte98kh1ZvONXlIT58+zLefK+Lw6d66ehNsnlVLXVxSeMWc0OCUIkZ22J7LNNyaOka4VzHMJ19KTxgUVWE921dzLJFMTRV5dj5fgkk4gpGQOPOrYtpqI6y71g3f/x3e/nonSt5YFcjmiqnOMTskiBUwkzL4WL3CBc6E7T3pnA9j7JIgC2rqtmyphYNWT8TU6MoCqsby1lcE+FMW4IfvHSaN9/r5JP3rGbDclmiE7NHglCJ6R/OcOzCABe7R+jqT+F5EAnprGuqYPniMmrKQyiKQlksSGIkU+zhihITDQX4nV+8iQPvdfKDF0/xle8dZvPKKj5+1yqWLZJGhqLwJAjNc5btcrptiKNn+2g+00dbbxKA8qjBpuVVLK2P5QOPEIWgKAq71texbXU1Lxxo46k3zvMn39jHhmWVfOCWJjavrEKV7zdRIBKE5hnbcbnQleDkxUGOXxjkxMUBTMtFUxXWLq3glo31uK5HeUwOlorZFdA1HtrdxF03LeaVw+08f6CV/+eHR6gpD3Hrpnpu3biIhpposYcpSpwEoSJyPY/ewXQ+oeBs+zDnOxNkLQfwEwvu3NLAxhWVrG+qJBzUSWYnTkwQYrZEQgE+eOsyHti1lP0nutnzTidP773AU29coL4qwublVWxcUcnqJeVSc1BcNwlCs8y0HIaSJv3DGfoTWXoG03T1p+jsT9PelyRr+gFHUxWa6mO8b8ti1jZVsLaxXKodi6KwHRdzkvNjW1bVsGVVDcNJk0Onenjv/ACvNbfzwsFWAKriQZYvitNQE2VRVZj6ygiVZUHKY4Zk2okJSRACXNfDtB1My8W0HSzbzf/etF2ssR+33dE/9//MtBxMywFNZWg4Qzprk846JDMWibSVDzJjVZYFqa0Ic+vGehpqojTURllSEyOgj/8hTU7wIJADo2K2ZS2H/VOYbUeCOjevq2X7mmp6BjP0DmXoG8pwsTvB4VO9uGMa6SkKlEUMYuEA0ZBONBQgZGiEgjrBgEowoGEENAxdxQhoBHQVQ9eo7UuRTmYJ6BpGQMXQVQK6RjDg/6priuyHlriiBKHLCyZORSpj89Te82Sz/kPdAwKGimk6eB54noeHH1A8z8N1PVzPX/JyHA/H9XBcF9txcVx/w992XBzHxZnmk10B9NwPhaER0BRiEYOaCo2gofs/bGGdWNigPGoQjxqUxwx0TeOdM7356yTTNicvDk7pnhtWVBEJBa75eeGgjmNf+Xm6pk7p9ROZ2WuVotx3otdP9rUp9L2n+tob4d+qLBJkZUM54B9qti2HgUSW/uEMwymTRNIimTFJZRxSWZuMaTMwkiU7kMYafYM3HfmfQU1F01V0VUHXVDRNQVP8XxVVQVf8hAtVVUDxW1zkkityMUxB8Qu3KrBzXR0bl1dOeM/pPL/E5BRP+v4KIYQoElmkFUIIUTQShIQQQhSNBCEhhBBFI0FICCFE0UgQEkIIUTQShIQQQhSNBCEhhBBFI0FICCFE0UgQEkIIUTQShIQQQhRN0QqY9vWN4M6wGmdlZYSBgVSBRjQz82ksIOO5mvk0FpDxXM18Ggtcezy1tdfXfbYQz8H55Hr//lDiMyFd14o9hLz5NBaQ8VzNfBoLyHiuZj6NBebfeG4EJR2EhBBClDYJQkIIIYpGgpAQQoiikSAkhBCiaCQICSGEKBoJQkIIIYpGgpAQQoiikSAkhBCiaCQICSGEKBoJQkIIIYpGgpAQQoiikSAkhBCiaCQICSGEKBoJQkIIIYpGgpAQQoiiKUgQ+vM//3P+8A//sBCXEkIIsYDMOAjt3buXH//4x4UYixBCiAVmRkFocHCQr371q/zmb/5mocYjhBBiAZlREPrjP/5jvvjFLxKPxws1HiGEEAuIPt0X/vCHP2Tx4sXcdtttPPHEE9f9+urq2HRvPU5tbVlBrlMI82ksIOO5mvk0FpDxXM18GgsUdjyFeg6WMsXzPG86L/z85z9PT08PmqYxNDREKpXiox/9KF/+8pen9Pq+vhFcd1q3zqutLaOnJzGjaxTKfBoLyHiuZj6NBWQ8VzOfxgLXHs/1BqhCPAfnk+kE6GnPhP7xH/8x//snnniCt99+e8oBSAghhAA5JySEEKKIpj0TGuvRRx/l0UcfLcSlhBBCLCAyExJCCFE0EoSEEEIUjQQhIYQQRSNBSAghRNFIEBJCCFE0EoSEEEIUjQQhIYQQRSNBSAghisR13WIPoegkCAkhRJFkLQlCEoSEEKJIMqZd7CEUnQQhIYQokqwpMyEJQkIIUSRpmQlJEBJCiGLJWk6xh1B0EoSEEKJI0lmZCUkQEkKIIpE9IQlCQghRNLIcJ0FICCGKRlK0JQgJIUTRmLYsxxWkvbconuYzvTzzVgu9QxlqykM8tLuJratqij0sIcQUWBKEJAgV20yCSPOZXr793Ek0TSUS0hlMmnz7uZMA3FdbNpvDFkIUgGXLnpAsxxVRLogMJs1xQaT5TO+UXv/MWy1omkowoKEoCsGAhqapPPNWyyyPXAhRCKbUjpMgVEwzDSK9QxkMffw/oaGr9A5lZmO4QogCy9oOC31FToJQEc00iNSUh67Y2DRtl5ryUMHGKISYPYOJLFlrYWfISRAqopkGkYd2N+E4LlnLwfM8spaD47g8tLtpNoYrhCgw1/WKPYSikyBURDMNIltX1fDZB9ZSETVIZWwqogaffWCtZMcJUSJcT4KQZMcVUS5YzCTFeuuqGgk6QpQoiUEShIpOgogQC5esxslynBBCFI0sx0kQEkKIopHEBAlCQghRNK4jQUiCkBBCFIntLfCTqhQxCDkyDRVCLHDOQi+XQBGD0HDSZCRj4SHBSAixMLkemAu8sV3RgpDreoykLPqGMqPdBSUYCSEWnmRGyvYUle14DCayDI6Y2K5MTYUQC4u1wCtpFz0IgT8HypgO/UNZWaITQiwoQ8lssYdQVPMiCOW43ugS3bAs0QkhFob+4YXdemVeBaEc2760ROfIEp0Q4galaQq9gws7CM3b2nG5JTrTcomGdaKhQLGHJIQQBVVTHqa9L1nsYRTVvJwJjeV6HomURd9wGtNyUZRij0gIIQqjriJMW48EoZJg2R4DIxmGkqYU/RNC3BDqqsL0DWdIZqxiD6Vo5u1y3EQ8D1IZm6zpEIsE8CQYlbTmM70z6qUkRKlbUhsD4Fz7MJtXVhd5NMVRMjOhsRzXY2jEpHcwgy3lf0pS85levv3cSQaTJpGQzmDS5NvPnaT5TG+xhybEnGmsjaIAp9uGij2UoinJIJRj2g79Qwt7KluqnnmrBU1TCQY0FEUhGNDQNJVn3mop9tCEmDPBgM6S2hinWiUIlaxxiQu2JC6Uit6hDIY+/tvP0FV6hxZ2uqpYeDYur+RU69CCrSFX8kEox7I9BhKSuFAqaspDmJdVEDZtl5ryUJFGJERxbFxeie24C3ZJrqQSE64ll7hgmg6xqEEooAI3xtToRtvEf2h3E99+7iRZ/BmQabs4jstDu5uKPTQh5tTapRVoqsLRs/1sXF5V7OHMuaLNhA6e7MF2Zqcagu3eWBUXbsRN/K2ravjsA2upiBqkMjYVUYPPPrC2pAOrENdNVXA8WNNYzuHTvSSz9rj/FkK7oaLNhJ7bf5Gn3jjP+7c3cPO6OnSt8PEwYzqYtks0HCBi6CW7XzR2Ex8gGNDIjn68lB/aW1fVlPT4hZipIyd7SGUsyiIGx1sGefHARcoiRv7Pd22oRw/eUAtWVyjaTEhVFYaSJk++fp6/+N5h3j7WNSszI9f1SCRN+hOZkk1ckE18IW5sjXVRAC52jxR5JHOvaEHo//iFjdy8rhZVgaGkyU9eO8dffv8w+453z8oSmmW7JZu4IJv4QtzYyiIGFTFjQQahos3zKqJBHn3/Kt6/fQkvHWzj8KkeBkdMfvzqWV451MY9O5awbU0tmlq4qcvYigvRSICwoZdE2oJs4s8fN1qCiJg/ltbFOHq2n4zpEDK0Yg9nzhR9sbE6HuITd6/i7u0NfjA63Ut/IsuPXjnLS4fauHdHIzetriloMHJcj+ERk0zAIRYOEAyozOfJUe4hJw+/S4oRDHIJIpqmjksQARb0v4UojKX1Zbxztp+2nhFWLSkv9nDmTNGDUE5NeZhfvGc1d4/OjI6c7qV/OMvjL5/hpUNt3Lejka2rqlELGIxMy2HAdggH/VYRhQx0hSab+Jc0n+nlH54+RsZ0/DcUSZN/ePoYv/bwhln9Gt2oCSJifqiOB4kEdS52L6wgNO8Oq9ZWhPlX967m937xJrauqkYB+oYy/OCl0/yPx49w5HQvbgHrxeWW6PqGMySz9ryeEQnf4y+dJpmxcT0PVfGrZiQzNo+/dHpW7ysJImI2KYrC0voYbT3JWTu+Mh/NuyCUU1cZ5lP3reF3P7GVzSv9A1w9gxm+/+JpvvajZprP9BU0weBSFl0a03JKMotuoegayKAooCoKiqKM/up/fDZJgoiYbUvrYjiuR2dfqthDmTPzZjluMvVVET5z/1o6+pK8eKCNd8/30z2Q5nsvnOLV5nbuvqmBjSuqUAsUNfy+RVmChkZZOICmzts4PS3T3UuZXxvynj9jHfNP7nmgKLM7jZUEETHb6qsiBDSVi90jNNbFij2cOTHvg1DO4uoon31wLe29SV482Mp75wdo70nynedPsbg6wn07G9mwrBKlAMHI8yCTHW0tHtKJhHSUksiju7rpbqxP53WXB61PPrieZTWRgvw96qsidPQlcT0FVQHbcXE9QFV47DsHZy1ASoKImG2aqtBQG6W1Z2TB9EsrmSCU01AT5ZceXEdbb5LXmjtoPt1LR1+Kbz17koaaKPftbGR9U0VBgpHr+hW606ZNWdggWOK16Ka7sX69r5soaP3tE8186r7VBXlgf+LuVfzDz46TydpYtosHKApUxYMFyVi72qxPEkTEbFtaF+VCZ4K+4YWx11iya01LaqL89idu4rc/upl1SysAaO9N8s8/P8H/+slRjrcMFOydhG1fqkVXyk30pruxfr2vm6hXkK4rBesVtHVVDb/2ofWsbIijayqGrlJbESYSCsy4L9GNWKdPlJaGmhgK0NqdLPZQ5kTJzYQu11gX43MfXM/F7gTP72/lVOsQbT1J/umZEzTWRrn/5qWsaSyf8czIY7QWnZUhEtaJhQKF+QvMoZryEINJMz+jgaltrF/v63qHMkRC47+1ggGtoFlkuRnJl/7mDX+5dMy/70wy1iQNW8ylDSuqrsiE01WVAye66RvOEAyU/CP6mmY0E/qrv/orHn74YR5++GEee+yxQo1pWpbWlfH5D23gNz+yidWjOfatPUm+8b+P8//+y7ucah0syMzI9TxGck30rNKqRffQ7iYcxyVrOXieR9ZyprSxfr2vmyiLLGs5s5JFVuiMNUnDFnPp2Ll+jpzsGfefqsDOtXW09SQZStz433fTDkJvvPEGr7/+Oj/+8Y/5yU9+wrvvvstzzz1XyLFNS1N9Gb/28AZ+/ZGNrGyIA35RwH/82XH+7qfvcaZtqCDByM+i82vROSWyRDfd9gnX+7qJgpZtewXPIms+08tIyqS7P0VHb5JUxppyYJ2MpGGL+WDbGv9n6/DpG38ZeNpzvdraWv7wD/8Qw/DLjq9atYr29vaCDWymli+K828+vJGz7cO8cOAi5zoSXOhM8PWnj7F8cRn371yaD1LTNa4WXSzIZVnD89J0N9av53UTZZEVMjsOxic/VMWDDCct+oYyNNRE+dS90+9LNJ/TsOdXmryYTYuqItRXRTh8qof7djYWezizSvEKMC04f/48n/rUp/je977H8uXLp/Sarr7knG3ye57HiQsDPPX6WU63Xmqhu66pkg/fuYI1SysLcp+AplIWDRAOlt5+Uan58t/sYWA4Tci49D4qY9pUxsP899+6Y0bX3n+siydePk13f4q6qgiP3r2amzfUz3TIMx7T3z7RjK77iR652eVvPLq16GMT0/fKwVbSWXvcx3asq6OuKsI3nnqXn7xyhm/9yUPExvQYutHMeNfr1KlT/MZv/AZ/8Ad/MOUABDA0lCZrOTO6d1VVlP7+qWWQ1MWDfP6D6znTNszzBy7S0jXCiZYBTnx7gNVLyrlvZyPLFpXNaCxdPQm6e5kXtehqa8vo6UkU7f6XK/R4OnpGiIR0rDFLZ6qi0NEzcs37XGssy2oifPETW8d9bDa/llP52nz/2eOggKaq2I7n/6o4fP/Z4wWdYU51PHNlPo0Frj2e2trre4aMJLOkMta4j6VSWXoch41NFfzI9Xj+zfPcsWXxtMY716737w8zDEIHDhzgd3/3d/nyl7/Mww8/fF2vjYR0HMed05RnRVFY3VjOqiVxTrUO8cKBVi52j3C6bYjTbUOsaSzn/psbWVo3+RfyRMsArx1pZyCRpbIsyJ03NbCu6dJMqlTbRZSa6Wb6laqJMg4lYeLGtnxRGdXxIPuOd5dMEJqOaQehjo4OvvCFL/DVr36V22677bpfHw7qBAMaGcshnbExbWfOiocqisLapRWsaSzn5MVBnj/QSltPklOtQ5xqHWLd0gruu7mRxtrxZTNOtAzw5J5zaJpKKKgznLZ4cs85HgFuq4qO+9xSaxdRagq5d1MKey0LLegK/zl1y4Z6nt13kUTKHNf2+0Yy7ey4r3/962SzWf7sz/6Mj3zkI3zkIx/hu9/97nVfJxTQqIoHqY6HiYYDBW3VcC2KorCuqZLf/uhmfvkD62io9pc1Tlwc5H/9+Cj/9Mxx2novLfe9dqQdTVMxdP8QpqH7ByNfOzJ5QoZpOfmOrqWSRVcKppvpd7lSOZw63fR6Udpu3bQIx/XYd7y72EOZNdOeCf3RH/0Rf/RHf1SQQXge6JpCWThANKSTtRxSGRvbcedk9qAoChuWVbK+qYJjFwZ44UArHX0pjrcMcrxlkA3LKrlvZyMDiSyh4PgvWUBTGUhkr3r93BJdxnSIyRJdwRSihE6pHE6VunUL09K6GI21Ufa808G9O27MLLl5dxxXVRTChk7Y0DFtl3TW318pZNuGySiKwsblVaxfVsl75wd48UArnf0pjl0Y4NiFASJBHU+xiYzJfrMcl8qy4JSu7+aW6HSbWMSY9SW6UlhmKrZS2muRunUL0503NfDd509xoTMxo+Sp+WreBaGEtFUnAAAgAElEQVSxDF3F0A2csDe6d2RhO7MfjFRFYfOKKjYur+Tdc/28cKCV7oE0qaxNKuvPauIRAxRwHJc7b2q4ruubtstAIjOrWXT7j3Xlz9EoCpxtH+ZrjzfTUB3hE/dMr5DojRjUZK9FzHe3b17E4y+f4ZUj7fzKonXFHk7BzesglKOpCtGgTiSoY44mMmTtmaV3T4WqKGxZWc2mFVUcPdvHCwda6RnMYFouvUMZoiGd+29uHJcdN1WznUX3xMun0TQV1/VGlwsVVFWhezAzrSrT020DcbXrzYeANp8PpwoBEA0FuGV9HXuPdvLx968kWoJ1K6+mJIJQjoK/Zh8yNCzHJRTUGVSVgrb7noiqKGxdVcPmFdU0n+3jxQOt9A5lSGZsnnz9POc7E3zsnjUY04gil2fRXV63bLq6+lOEAirdA2nA77vjef79clWmr+ehX8i9k0IHtJmQvZZrmy9vGG5EExUwVVSF5GUHWN+3rYE9Rzt5bn8rD+xaOu7PggGdAj02iqKkglCO5/mVZivjIaysSdZySWVsrFlO81ZVhW2ra9iysprm0728eLCNvuEMR0730Xymj22ra7hnxxJqysPXfW3TchiwHcJBnVg4MONOsfVVEXoGUtiOm7+WB+i6Oq09j0Luncy3ZADZa5ncfHrDcCM6dq7/isOqk1lcHeG5fRcpi4xfwt+1oR49WJKPcqBEg9BYCgqhgEYooGLaHhnTz0KbzdmRpipsX1vL1tU1HDndy4sHWulPZDl0qpcjp3vZtqaWe3YsoTp+ffsKuSU603SIRQ1CM2ii9+jdq/lfjx9GVRQc10NR/CAUjwSmtedRyL2T2UgGkHfrs2O+vWFYyDatqOL5/a2caR1ibVNFsYdTMCU8ibucgqGrxCMGNeUh4lEDXZ/dRGhNVdixtpYvfvImfvmDG6gsC+J6cPBkD1/9/mGeeOUMA9MoxW67fhO9gYQ5rUSM5jO9PPHyaTKmg6L47SdURaEyZqBp6rT2PAp5TqXQlapL5axPKZLWFvPH4uoINeUhms/24bjutV9QIkp+JjQRVVGIBHXCQR3LckllLUzLnbU0b01VueOmBtY0lHHoZA8vHWpjcMRk/4keDp7sZee6Wu7evmTKqdw5WcvBHE4TCQWIhXWUKcyKcg/koKFRWRbEtF1SaYt41CBjOlREjWnNEgqxd5KbrbT3JkmbDtGQTjxqzDgZQN6tzx7JHpw/FEVh25qafPPO9dNIiJqPbsgglKMARkAlaASxbTdfImi26tXpmsquDfVsX1vLgRM9vHyojaGkyb7j3Rw82ZMPRhWxqQcjz4Nk2iJr+meLrrVEl3sghwydoZEswykLy3axHY9ff2TjjB7KM9k7GZsyXlEWREtZjKQsHNdjSU10Rstnbb1JTMvFdlx0XSUeCRAO6vJuvQAke3B+WVwdoa4yTPPpPlY1lBMo5YyEUTd0EMrxPNA0laimEgkGMO1Lad6zMTnSNZXdG+vZua6Wfce7eeVQG8Mpi7ePdXPgRA+71tfx/u1LKI9OvRaU7XgMJbJkDG10Y/LKb77mM72caRvG9Tz6hzJYjoumKmgKZC27qBvKuZTx3DvqeNQgaGhURA2+9Jkd075u85leMllndMnRP7fVn8hSZrssqipsdemFSLIH5xdFUbh5fS0/29vC0bN9bF9bW+whzdiCCEJjKcqlNG/bccmYszc70jWV2zYt4uZ1dew73sUrh9pJpC3efK+L/Se62bW+nvdvayA+xWDkARnTwbRdouEAkeCls0W5ZThF8T8xt+fieR4oKgFdnVZqdqHkUsbHKsTewjNvtRCLBEikTLzRVHTH9UhmbB7a3TRhwsJ90yg3v5BJ9uD8UlMeZsXiMt47P8CaxtJPUFhwQSjH8/y9nGjInx1ZtkMqa8/K3lFAV7l982J2ra/n7WNdvHK4nZG0xd53O9l3vIvdG+q5a1vDlKvkuq5HImmSNR3KIgECo8Elt9TVP5wZ87mgaR7xaLBoG8rNZ3pJpi36Bi0CukY8ahAO6gXZW+gdyqCp/jtEy3ZRAE2F8Gizu4nSi8vLIxP24JEMO1Eqdqyt5WL3CG8d6+LuHUuKPZwZWbBBaCxFASOgERydHWVHkxkcxyvocl1AV7ljy2J2bajjrfe6ePVwO8mMzZ6jnbx9rJvdm+q566YGYuHANfsWgX+2qH/YIRLy065DAQ0PqIqH6B3M4Hpe/v+Hg35h2LneUM7N0EKGSsb0A0XfUJp4NIiuKTPeWwgFVDr60ygKBDQFD/8NRjwSmDRh4YmXT1/RtE7Ow4hSEg0H2La6hv0nejhyupc7NpduvyEJQmPkZkeRoOqXCLLdWTl3ZOgad25tYPeGet58t4tXj7STytq83tzBW+91sW5pBRe7EwQC2hV9iy4PRLnEhWhIxwXs0WW4+uoI3f1JNFUlZGhzWvr/ydfP8uy+VjKmDSiEgxqLa6KoipJPlMiaDp+bYaIEQH79Eb9Gnv+mwQVFmfQ8Und/6orLSIadKDXrl1VytmOYH750hptW1RALl2Y5n9JPrZhFuXNHtRUhKsqCBAMaMyxkMP76AY27tjXw+5/ezoO7lvop5bbL0XP9DCUtMlk/cWIqfYt2rK2lqz+J43mUxwzCQZVo2KCuIjSjfjvX68nXz/LkG+fJWg6aquB6/v5M31CGSCjAoqoIjbVRIiG9IGPJmA5V8RC65t9L1xSq4iEypjPpeaS6CRIW5DyMKDWqqnDbpkWMpC3++ecn/P3fEiQzoSnIVWUIz1IyQ9DQuHv7Em7dVM/eo108v/8iHjCStkhmLKIhv8/S1foW5WZIrx1pp2skxcqlFTx65yo2Lq+a0diud5/k2X2tKCj5siKK4i9pDo2Y+QSMQp4zyZ1jqR8TWLLWpfNQE6UXP3r36kmvI+dhRCmpLg/x8G3L+Ome82xbXcNtmxcVe0jXTYLQdbg8mcG0/eZ7ZoEqeocMnXt2LOHUxQG6hzKkszaeNxqM0hblMYN01iY8SZ2odU2V+WBUVRVleDBFxnIIjXmwTkUu8LT1Jslk/UZ8ZZHAlPZJMqY9rq6VpirYjufvT3lewc+ZXO0cy0TpxeubKnji5dN09IyMC6pyHkYUw0QFTK9XOBDg+IUBvvXcCVY2xMe9ISsFEoSmaWyqt2UXtqL3+7cv4ck95wgZQUzLIZm28YDBEZOvfPcQd2xZzB1bFhEyrv7Plyv/EwxolEUMdG3qFRc0Tc1nCiZSJgFd9ZMbuPo+ScjwEyByt1IVBVXxQFFIZeyCZ51d6xzL2PTisdUkJks+kOw4MZeup4DpZHZtqOfXf2ETf/KNffzVE+/wn35l5zWfDfNJ6Yx0nvJbk4+v6J0enR1Nd4l2XVMlj0A+O66pPkY8anDi4iAZ0+GFA628cbSDO7Ys5vbN1w5G11P+Z+wGvV+BGzwUhpMm4aB+zX2SB3c18uQb53FcUBVwPUCBTz2wlvu3z04q6dXOsYxdTkxlbIKGRrnh772NTT6AqQUgSeMW81F1eYjf+Mgm/vL7h/nHnx3nNz+yCaWQG9izSIJQAY3dO7JG944y09w7Gru0lpPMWLze3MHeo52ksw7P729lzzud3Ll1MbdtXjRuP+NyUy3/MzajTNf9YqeqQn7J4Fr7JI+8byVAPjsuZOg8uKuRTz+4np6exFX/zoV+wF+edt2fyJK1bEKjwRT8pbf23uSU0rMljVvMZ5uWV/GJu1fxw5fOsKQ2yiN3rCj2kKZEgtAsyPU7ioVUogU8CBsNBfjALU3csWUxrze3s/fdLtJZm2f3XeT1dzq4a2sDt26qx7hKMLpW+Z+xG/TxSID+RBbH9bPOpprm/cj7VuaD0VRN9QF/PYHq8rTrgK5i2y6DiSx1lX7PJ3O0rl5ktLp4VyKLbfvljh5/6fS4a0sat5jvHrqlibaeJD957RxVZSHet3X+nx+SIDTLxh+E9VsgpLIWtj39YBQLB3ho9zLet7WBV4+089a7XaQyNs+83cJrze3cta2BD94xeRDIl/+xXCJhnWjo0hLd2A36cFCnzHZJZmyCAW3aFbinYioP+OudiVx+TigXVM3RdhS55ANNU7Bth4ERE4XcMqJHe1+K5jO9+WtPtQ+SLNmJYlEUhV/94HoGR7J885njVJQZbF5RXexhXZUEoTniZ9YVtsVELBzgQ7cu486ti3n1cDtvHesimbH532+2sOedTt63ZTGVZQZ7j3ZOWHnB9TxGUhaZrE1ZxCAYUK/YoF9UFZmTh+hUHvDXOxO5PO06Egpg2S6W441LknjmrRbOtg+PBqDRLrQe6Joy7tpTSeOWJTtRbLqm8oWPbeFPv3WQv37iKP/+k9tY3Vhe7GFNSoJQEYxrMeG4pGewdwRQFjF4+Pbl3HlTA68cbmff8S6GkyY/e/MCigKRkE5ZODBp5QXbGc2iMzRiEaMoBSsnesAnUhZZ0+FLf/MGNeUhWroSOK43ujyoEo8ahAxt0kSJidKuA7rK731q2xW14772eLO/kZtLpsCjPBYcd+2ppHHLkp2YD8JBnX/3yZv4s28f5Ks/PMzvf3o7yxfFiz2sCUnFhCLKnTuKhQLUVIRnXJUhHjX4hTuW8+8/uY3372jM3yOZtukezGBZLqqqTFh5IbdE1z+UIZG28KvOzZ3LO7cOJ02GklmMgD+j6BpIk8o6WLaLqvhnj/qHMyRS1qSJEltX1fDZB9ZSETXGVY0AeOw7B/nS37zBY985CEBDTTRf4SFXdUHT1HHXnux6Y4OLVF4Q80VFLMjvf2o7kWCAv/jeYVq7R4o9pAnJTGgeyWfW2R5p0yadtad17qg8FuTTD67j8PEuf+lp9DpDSRNVVfxqD46Lrl35HsT1PD+LzrKJh/2eP4WsBjLZfsnly4BZ0yEeMSgfbQCYztoo+LMU1/Pyvx9JWXzuoXXXvM8vPegHi+YzvfztE80wOkPMLZfdsXkRe452omnqVQ+rXmuWKJUXxHxSXR7i9z+znT//9kG+8r1D/P6nt9NYGyv2sMaRmdA8k9uLKAsH8jXrjGnOjqrLQ0TCOnWVYSKjVRZc1yOVdfjL7x9m37GuSXvV27bHwEiWwRETp0DliXL7JYNJc1wAaD7TC/gP+C99ZgeP/dbt6JpCOmvT1jNCV38K03bRNT99QtNU3NHzWaGgdkVQuNp9nnmrBV1XRmec/q+apnK8ZfCas5ypuHxGN5eFY4WYSF1FmC99eju6pvLYdw5xcZ7NiGQmNI+NO3c0OjvKZO0pB4U7b2rgyT3nQFMpjxkEDZVkxsayXQZHTH782jlePtzOPduXsH1tzRXp2p7nz0Cyll+6J2zoVznmem2T7Zc8/vKZK0rrpEcrl+fK/niuh6OAYWj5jqm5GnFTvU/uHuUxA9u59DXMLZcVYi9MKi+I+ai+KsKXPrOdx75ziK989xD/4VPbaKqfH80dJQiVgLGzo1hYn3JVhssrL1SWBXnkjhXUVIR56WAbh0/1MJDI8sSrZ3n5UBv37FjCtjW142q/gT97Gh4xyQT8JnonWgb42d4L1/2QnSgDznFcuvsz1FVF8rOWp/e2oChePgkByC+/hQ3tmjXoxt4nlbEYTlnYtkvfYIb6qvBohe9LAbfQy2XSiVTMR/WVEf7gM9t57Lu5QLSdZYuKH4gkCJWY3OzobNuQH1xGTAxd4eb1daxdWnnF509UeQHgE3ev4p7tS3jxYCuHT/fSn8jyo1fO8vKhdu7dsYSbVtegXhaMTMvhrXf7eP1oJ+CniI9NQYarzwAm2i8ZGjHRL5u12K6L5/nndTzPT5oYrf5DMm2RTNvUV4b41Jgkg7H3zN3HcVz6E9n87E1RYDhp+rMkQ5vTQqVydkhMpBAFTBVVIZm1p/S50YjBv/34Vr72eDOPffcQv/PxLVOaEQUDOvosbd4oXpGaUPT1jcy42Gdtbdk1S8HMlbkcy7izKEEdTVPQVZW7tzfQVF+G5/lVtPv7k1O6Xs9gmhcPttJ8ui+fE1dTHuLenY1sXVk9Lhj9/U/fZThtUVkWIhoOkDVtBhNZNNWvqHD5xn5uX6W2towX3jyXH3fuc7r7U1TFg0TDl5bVWjoTePjLZI7rMvZntLbCz1pzHHfSZILcx4dGzNEzWH7ju6p4CFVVCBoa4YA2ZwFh7L/XZF+b+fJ9DAv352oqrjWe2trrm1k8/dqZGRcwnY6RlMWz+y6StRwe2NVITXn4qp+/a0M90Umq9491vX9/kJlQSRq755FbshqxLPYe7WT7mjrSpn1diQy1FWE+ee8a7t6+hBcPtHH0bB+9Qxl+8OJpXjrYxr07lrBlVTWqojCQyBIK6iTTFumMTSwSoL4ywrmOIcKhwIT7MAAvPN5MR8+IX7NuTEVtXYErikeMNku1HZfL36cMJLJUxUPYjseTey6A4pfjiUcCREIBspBPMvjrJ97B8zz/z6NBwkEdz/PIZB3+8+d2TffLf93k7JCYb2KRAA/espRn377I8/taeeCWpVTHi5PBKUGoBE20txLQVVp7kvm9o8rKCHbWIjWajj2V+e5gIksybVIW1nE8SGZsegbTfP/F07x0qI37djZSETNIZGwMXcMdPc8z6HmEDD8Lr28wTe+wX39N11QGE5lx7RNM28WxHd63ZRHHWwYZSvlj9AOPh6aqqIpCKKiRvmyJwQ+sfiB0XT9AaQpkTYce00HXslTEjHySwaol5QwmTX9PK2nSP5xBVRQappGiOpPltKmW+xFiLsXCfiD6+VstPLfvIh+4pYnKsuCcj0NStEvQZG2rx26u65pK2NCpjgepLAsRCer5kjQTOdEywJN7zjGctohGDMIhnbKITlO9/8DuHkjz3edPMThiks7YZC17NEHAIWvagEd7bxLH82u0GbqC7bhkTb9AaMjQ8ynRtuPx9JstDCZNQsbobM7xcFz/7+G4HhnTwQMC2qXGE5qq+BW9bRdQUBTGLdU5jsdAwhytEO6nS6cyNn1DaUzLwXb8hIaWrmGefP1s/nXNZ3rHHV7NpYyP/fOrpZYX4t9LiGLIBSJdVXlu30WGRibv3jxbZCZUgq6vC6iCoSsYukE07JGxHNJZC8fxxs2OXjvSPrpn4S8Z5X7VVYXfeXQLLxxo5diFAQZGTAAs2yWgO9RVhLhrm98n6NvPncR1PeJRg6ryMMm0RSJlkspYVI8+cNNZfw/Jw595ZcyJu9I6rn8g1XY9FBU8l9G0ai/318pNnvK83P+OCbZ+Svulz9FUQFF4+s0Wli+O58d9ea238x3DHG8ZzPch8is3BIDJU8snmx1J11Yxn5VFDB7YtZSfv93C8/tb+eCty66Yuc8mCUIlaLpnUTRVIRrUiQb9ZbGMaZMZPY+T2+sZK6CpDCSyNNRE+eUPrKOtZ4QXDrRyvGUQ03YxbZes7QezdU0VBAMapu2QSJlkLIeGqghlEYPBEX/ZKZ216R/O5DPdxp7VmUg4qJG1XPy2er7cK0IBjazloGp+wMpl01XFQ2RMJz97megwrqYo2K7H4y+dpj/hj3XsvtJQ1ubpvS1UV4SIhHQGEhmytkJAvxSIJkotH1uo9PLluzs2L8oHNcmOE/NNeczgvp2N/PztFl440MoHdi/NvxGdbRKEStRMz6IYuoqhG8RGZ0dN9TG6BjPjDqNajjtujXhJbYxfeWg9F7v9YHTy4iDtvUn+6ecnRpfK/MyzeNR/TcbyA10kGCAc1Ojqs/IzF0Xxg8bVpE3/HJSi+GmouUBh2S6JlHXFod1YOICmqVREjXwyQEDXcEwnl+uA64Hq+evQ7X0pFMUPSrl0boB01sH13DF9iPwW7sMpKx+EJkotz82OHn/pNO19KfTRQ8KDSZM9RzunVYFBiLlSXR7i/dv8YxsvH2rn/p2NVxzTmA2yJ7TAqYpCxNC5f9dSymMG8WiAkKFh2X65mTtvarjiNUvrYvzqB9fzoVub0DX/m9RxPSzHZSRtM5DI4Lru6GFajy0rqwCVaNigujxEZcxAGS0WejW5P1YVfy+oPGoQCQXQNWXCqhEjaYtU2uKh3U35QqLxqJEPQLlrenig+PtmAV3Dww+gCjCcsrAuq6sXjxqAh2W7+VI8tuMSjwbG3d9xXNp7k3QPZlBVBddjNInCQ9PUfKagEPPVktoot21aRGdfigMneubknjITWuDGLhuFDA1DV1AUlZUNcbatrmH5ovik9bSPXxigoiwIHgynTEzLX/pKZx1MK0NtRYgP7V7O+mVVVFVFeeybb+MADbVRBoczdA6ksZ2J94RyArqKN3rWZzhpEg7qDCctfwajXgqAnucHmHjUb0VRU+4nPoSDOuUxg6ER018GVPylh4HhLJXlQRRFoX84g+v5Qcga7aqam/GAXxY/Hg2SNZ2rppbnZkeO66Eq/r1czx93XWVYsuFESVjdWM5AIsuxCwNUlwdZ2TC7vYgkCC1glzdgM22XbNoZt2xk2u5oNpxzxcwlt4+kKAo15X45nETSzGe4dfaneeVIB4GARlVVNF/LLp2xqSrzv7lHUibdAyky5gR7N6pCRcwYrXrgz0RysxAFf19JURTU/GzMzSc6jE0GiEcNFEVhJGURCmo01JYRNnRs1yMY0KiKhxhOmli2Syig8+CuRvYc7SRrOflEAl1T+NwjG6/o8jpsOqQyFrbjH6qNRwJkRxMPcl1abceVbDhRUnauq6V/OMPeo11Uls3u960EoQVsKocoDV0lWGZgO/4DPj2m+V5lWZDhtJXfwHRdf7lKHW1pnjEdLnQm+PpTx3j1SAd3b2vgkTtW8NqRdrr6U9RUhPjw7ct5YX8rI2mTvuGsf0B1zFLb2D0YD6iIGuiqQvdAekxLBz/F2wNSGXtcS+7cLK++MsznHlp3RfWGLBAyNFQ1OK6KAcCz+1rJmDYhww9MlyccAAwls4BCQNMAh2TGIhYOMOL4HXNzHXUlG06UElVVuGtbAz/dc57Xmzu4Z0cjzNIRIglCC9hUD1Hmmu9FQyrRUMBP887YrFlazgv728b198ktd6mqgq75y1rdA2lOXRzk1MVBVjbEuX/X0nFdHhUF4mVBKuMhkmmbZMaibyiNpip4nr+fUh671FrhydfP8tM3LozuC10KWH7wU69IsZ4oG23rqhrOdwxPGmj2HO0kHjOo0f0zPntG6+XlygRFQjqdfSkUFKriQSKhAKmMRf9wlnTWIRLUGEnb+eKzd2xeJEkJoqSEgzq3b17Eiwfb+NneC3zm/jWzch8JQgvYdBuw5QqoXugaYWl9jN4hv8Mp+Blq4aA/e1EUhWhQ4/MfWs8rRzo42zbE2fZh/u7J91i9pJz7djaybFEZuzfW8+Sec5THgn4TO8UjYxrEw3p+DyYXRPIBImqQSJn5NG9Vhep4yE+xHsmOS7Hu7E/x1z8+StjQaKiJ8skH1zM0lJow0CxfHJ90hvjsvlbiMSP/cdv1cF2P3sEMQcMiHjWoLDPoH85ip10Co8FT09T8tSUQibEKUcB0Nt20tpZU1uaF/RfZurqaFYsnbhE+kwKnEoQWsGsdorxaqZqn3jjPYNKkLGKwoiFOz0CaZNrCtC8lGgQ0lcERM98XKBbSsRyXrOVyum2I021DrGks5/6bG/PLdG3dCZbWx/j4XavYuLzqijHnAkQkpBGPGrT1+A26/I/5wW9sinUqY5FIW+D5/YcGkyZ/+0QzuspVew5NNEPMmDY1+qVDt56bPx6bbzdeFjEIGfq4YAVIrTgxoWPn+otSwPR6rFgc58jpPr75s2N86LZlKBNUXtm1oR59CgVOJyJBaAG72qHXy5MWLj+MmXtQm5aDaTkMpyxChkpZ1CAWNkhnLVJZByOg8eSecxgBjbKogWk7BEyHYECnbzjDqdYhTrUOsW5pBQ/duizfelhRIJG2iIbGlxu6PEDomoplu6OlfHyW489CAL8z7OhsyR2duRgBla6+NItrIuO+HrmlyJryEF0DadLZS23Qw0GdkOEnbwQDGsOjrdJzlR0UvHy78XDQbxMx0bWFKDUBXWXnulpeb+4YfeNYUdDrSxBa4CY79HqtpIWxPXuGUxam6ZBMQ0A3iYV1YhEDI6BhWjaO5+VrxgUDfjZdWUjnQ7et44X9F2nvS3Hi4iAnLg6yvqmS1Y1x3jvXn6/W8MCuJrasrEZRrlxCjEeN0f0jNd/sLpdinc76XWTH6h/OUFMRBrx8QMnJLUWub6rgZOsgCv75JMt2Me0su9fXcbp9mCxg2Y6fmaf655hy7caNgEpDTXRay5xCzFcrFpdxomWQQyd7Wb4oTqCAzYXksKqYUO6wZ04qYzEwnOXkxUEe+85B1jdVkEr7G/GO46Kq/jkb14WO3hSu4/KRO5YTDOgsqYkSDQfyM5rcMt2GZZV84dEt/NKDa1lc7c9KjrcM8NQbFzjXkWBwxOTkxUH+/un3ePuYnzL94duX4Tp+qrbneaiqQjRsUFcRIpWxqYgaPDx6iHYwcWUxRs+DgeEs9VURnDHXyVpOfinyeMsg8YiBrqt+cNFV4hGDgRGTzz6wloqoMXqAVqE6HmJJbYzGuhiV8SBLaqI8tLtp0mvnjC2a+uW/2TPlYqhCFIOiKOxcV0vGdDjVOljQa8tMSExo7IwjlbH8kjaePzXPlaHJpWG7+Z49flZcRdTgod1NPL33Auc7EgR0hSV1MWoqw5imzeBINl8OSFEUNi6vYv2ySt47188PXjyN7Xr5nDfL8bBTFj957RzLFsVZVB3jlx9axwv7W2ntSVJTHuJT966+Yja3fHGcrz3ePO5jHv7BVtdz+MTdq4CJlyK/9exJ4lGD8tilZcBk2uRM2zDfevYkNeUhHr5tWT5T7vJ249eq7Xf5UufAcHrcUmchSCdXUWh1lWHqq8K8e26AdU0VaGph5jAShMSExiYtDCetfHHq8lgwvzTXN5hmcU103Eal5/ktHXIP2fJYgIGEydm2YarjQaIRg7JIgAdvafJL24xu7quKwuaV1Xz/hZp8GacAACAASURBVFPjyuww+vvugTRd/SnqqyLUlIf5lQ+sJxYx8mWDJnbpSmOvaehq/oE8NjA881YL33r2ZL4HU3nMD5SpjMVAwhxd5tPzQfhqRUmvVtvv8qXO0OhSZaESF661nyfEdG1ZWc3z+1s535Fg1ZLCVFKQICQmNPbdfHd/ioCuUh7zu5NCrvW2R2dfCsf1Rpes/AKituMRGX3IuqMlbCzHo2cwgxHQ+Mgdq9i6qgbX8/sGpbIW9mgNHEVRUBUv36YhV2jbA772eDNbVlVz745G6irDZIfThIM60VAgX8IHLj2Ex4ay3O8UyKeQX/75uYe243qjh1D9PaehERPwqCgL5Xsi5Tq4fukzO8Zd57HvHLzm7KNQTe4mm+1IJ1cxWxZXRyiLBDjTNixBSMy+3AOrpWuEjOUwlDTxPI9IKMBw0kRRlNFWCaNVqIezREM6mqZg6Gq+dYPf0whs10+TzlEVhUhQJxz0s+xSGZtF1WFae1JXjEVV/MOwzWf6eOdMHysWlzGUNBkayRI0dKriQRT8oDGYyKJpqj/TuqxdhKJAeZkx7mOXP7T9gqXka8V5nkdVPJQPwHBl0Lie2cfVzmdNdRntaveTTq5itiiKwqqGOIdP9zGS9quDzJQkJohJ5R50QUNDwcO2/XYHQyNZkhmbeNSgujycz5TRVIV41GBJTRTTdhlOmjCaYeZ5fiuGiapJKzBawy3InVsbqK0Ij3vgg5/M8L4ti6iKB/GAsx0Jv8yP67chv9idpHc4S8ZySZsunuuOWybM/U5R4FKvVt/lSRgAZZEAkZDOY791O6uWlKNp4/88MdqWPNeN9fGXTqNpKq7r0T2Qprs/Re9Qhv/5o3eu6NZ6eeJCxrRxHJf1TRV8+7mTdPanSKQsTrYO8dc/PjquC2zO2MCZm53lvrbSyVXMphUN/oHVls5EQa4nQUhMKvegGxdsPA/TcgkbGmWRAOGgTn1VhCW1MRZVR8iYTr6tdsZ08sU7Lcclazp09ac43zk84f08Dw6d6iWVsYiE/OuWRfzWDe7oXtMX/9U2aid5mKYyNuc7hnFcl4Duj8+vCu4vx+Wa3g0msvnMtD/++lskUiZtPSN09adIZ21g/EN7fVMFfYMZWrsTdPYl6RtKM5TMjnZb9Wch7X2p0WzBDKbl4I5W9XZcj66B9Lh24FtX1eSz7FIZm8p4mM8+sJbjLYN+r6S0heO6aIp/tunpvS1XZM9NFDhzs52pZOcJMV1lo/u6XQPpglxPluPEpMYu64RHl808z8uX0rnqWRjP8x/+l7U78DzImC6//pWX+PBty3jkfSuvuGfG9A/ABnSNSFCjPOoHt2TGQlOVq5Y5sR0vH7AqYkFqK8OkMw4jGYuKWBDLdkllLAaTGooCHX1JXNefIVm2S99Qmng0iK4pPLS7KV8mKBrWSWcdLMfFtGzCQS2fuBAMaOiaSiJt+eeVxuxFKfjVFSrKguP2ZMYmLtTWltHTk+Bbz/7/7b15dFz1le/7PWOdGlQqzZJtZGN5kLGRjXGwzRCbMQYzNcOFNH1puu9KBzp5yWXdl4TOWyu9OumQhKxcXiCJO53XCasTaDrQ7gQa8HVwgIANBs8Yz7KNbM1jzVVnfH/86pSrSiWpSir5aNiftbISS1Xn7HPsnO/Zv9/e330C8aSRct9m2ZrAMXfw3P2c0e7/eCfvEkSh1Fa4ca4nAsuy8jooFAOJEDEioz3omhsDeO39NpgWcxSwh81tWtuIbbvb4HFL4HkOQxE177F1w8Iru86ieyCGwYiaflgqEg8hNfBON0yEYiaCMeacUOX34Ge/O4yENrrXViiqwS0L4Hmgqy+GQJkLC+f4oeomzndHUOaV4JIEdIeTaZE0LeZ6YFlsL8ge2/DUC/vSlkDlzMwB53vCyNXBcp+M3qEEkDqGjSAw0SxkT6a6XMFAOInMgj+7CTb3u2NZLk108i5BjEZNwI3W9hAicQ1lHnnsL4wCiRAxIiM96JobA8Oyg0hcw+Z1F/psOI5NOh0VC/jgaA/qKj3pZa1YQofAA4YOmOkHuoV4Usfxc0PwKiJ8bhF+r4xITEU0oec9dFw1oOomFs0LIJ7U0DsYx7xaH+bVeuF2iYjE9fSymY3Ac7DAhAMAnnphH06cGxpWGSgKPLQcFWL7M3w6XvY5ZugjClxBezKb1jaiteMw89pLFWIAFjyKPOy7lO3MDKa6gelIKIqIDz7pRmNdGRbNC8AljV9KSISIERnpQXfBRPRCdpDUDBxrG8KdYG/0pztCwLCOn2xsAbA383XDBM+x4oYqiUf3YAIcZ6Gu0oueQTbaQdNNBCMqOABejwyfR0Y0riGa0GBZbN9HFHgosoBQTMPxc6y72yXxGAwlYJgWXLKAgM+F/mAckTgTMY5jS2CGaUHVjHTlmSQK0A0TA6FEukLOo0iIxLWsoXeGYeLWtY3Yebgrva/DBMmE2+UqaE+mpakam9c14rX322CYdoYppzPMfJ/PFR1qUp1eTAcD03wMRVgLQzypwztO41IbEiFiVPI96H6z/cSoJcCb1jbimZcPgedHXisWbPNPDukyblsE+oIJzKvxotwnpx+kz7x8KKsXyAL7nijwCPgkVPqZGsZVHWWKhL+8dRn+a9dZ7Dnew5bYNBNtPVGIAnN88HtluCQRXrfMBEXV05mHblxw2PZ7JQyEkzBNC72D8ZRXHI81S6uzlhHth709CiLRFYKqsd2hpGpgQ56hePb3bqwpS1/XndcuTB+jWCGhJlXiYmEv0Ufj+VciioFEiCiasYoSWpqqMafKg56hBASeuShkLntl7WNagF3GDbDPAswhob7Kk36QigJrjmXLVFZqoB3SY7V5npWAexQRG1bOgSTy6A/GUel3QdMtRGIqTIt9Xo+bEHk27lsQ2cyfcq+ERNKABeaEbVeeeRQJqmYgGGVvq6IgwO0ScKojlDWF1cb+sy0GdqaUbyiefW3l5R7Mz3D0Hu9+TmbZdjypp0aWG/jnV47gbzJGkxPERLGdTkphZEol2kTRFFICfN/1i1Duk1FT4b6wFyOzfRO7L2j9ZbUpQbJSQsXESuCZ0GT2v/i9MiywYgXduLD575J4ROIaBoIJCByHW69qxFWX1SNQ5oJhWnDLInxuCbWVHvg9clrsglEN4FjHkGFYEHge1QEFdZVuzK/3ZfXZJDXmzO2SBdRXeVDuc+Xtd7IZqYdn+0fn8/5869unSvL3Ypdt203CumGB5zgkUsuLZJJKlAr7JVASJi4hE8qEXn31VWzZsgWapuGRRx7BQw89NOGAiKlPIZviuZ9pqPHhvg1Nw97Gz/V8gJ6hRNr6xzQNWBbLiNp7IxAFHmUelo1U+FzoD7G1aI4D/B4JgTIFSc1AwCtnWegokoBKvwLVMKHrFqIJDT6PBEniwHE8YnENsaTO9oD0JKJxDfWVbtxw5SUYDCfw0bFeDIQSiCd06La/nWmlepikUavdChmKl/nznoFYSfZy7Aw1s0nYTJnO2qJJ2RBRChIqcz7J/Xc+HsZ9hO7ubjz99NPYunUrZFnGgw8+iLVr12LRokUTDopwjkIfhoUsGeXrhcnlvusXZS1ddfRFoRtsEivPcdANtkfEcxxqKtzpfSF7Sa9rIAZdN9E/lMCh1r6smDasmoNfvX4UPM+lrIFMaJqJhzc3o8or4/1PuvDuoU7EkzqSmonO/jj2HOtBW08YYipj8bolROMaYnENlmUxN3GwPSN7+TH3nikSn3dWUeZQvMzlMlHg8cvXj8GjiBPay7GrGTXdSPvuWQA4zoKuG2TbQ5QM21vRHsEyEcYtQrt27cK6desQCLApe5/73Oewbds2fPnLX55wUIQzXOyNbfvhnVANGIYOUeBSc3rsRtfU+GwLAMcG44kiD8MwYZoWglEt7aLNcRgW69nOECJxlu0EIyrKvDJqKjxwSQJcsoCNV8zFuuV1eGXnWRw61QdVN/Hx6QEAgM8tIaHpEDjAo8ioqfRA1VijazCiotwnp5tZc+9ZLKGnu3TtPaFYQodbZlkPl3IP5zkOSBVjROMqFFnIMkgdKXMZ6UXB/uzP/vNwejnR3pMbDKtoqHSX/O+QmJ0EIypEgUN1+cT/TY17Qa+npwc1NTXpP9fW1qK7u3vCARHOMZofWamxH95DURUVZS64ZCHdc8RzzCjRtFjGkVnH4PdIsJDpxMBseQJl2fs0h1r78NoH7H/LIg+e5xGNaxgMJ/DuwXZUlrGRFOd6Ivi0K4SA35VlxhiJM2dvVbMQjibROxQHYKGizIWKMhkPf27pMMdq+555FNbHZNvyiMw8D1LKaNU02Z4Wz3OoTM1VArjUMhrSMefLXDLvW+aLQqYlUG2FGwLPStXZzJdUqfwEO9sJwqZnMI55Nb5RK2ALZdyZkJXrxwIUZd9QVeUb76mzqMkob3WaqRQLUHw8AxEVZW4x6+9RFDgMRtQxj7XnaDe2vn0qPfPnno2LsGZZ3Yjx7Hj5EFyyAEUWEU3oCMc0WEiNcEiZvdVWeuBVRJzrDgPg0k2josCjs585bUsij0CZC16FWQoNRlR82hfDL/7raHq0N89xKRcG5i/3aWcYc+ewDH7re6dRX+VBUjUR5rVhDbYWmPu3wAMcz6EvmIBL4vHu4W74ytyIawZ8ipj1gBcFDpG4jh9+dQMA4JtbdgIcoMgiACntIiEK7HqY4LGCC7vaKKHqaKjxDbvvmfcNQGqwoI4d+ztw47pLAQCqYaGmwoNgRIWmm6n7pkAzrIL/TUylf8tTKRagtPH4vC4IojD2B6cQ8aSOvmACV7fMKcm9GLcI1dXVYc+ePek/9/T0oLa2tuDv9/dH0mV+42WkfQYnmEqxAOOLp9InDyu9TmoGKnzyqMfKXJJSJB69gzH87OUDWSXMufF09kbgUURouonBEHvj5wHoVuq93bIwEIzDshQWD8chEmel0xaY+PjcUnrsgqazaj1J4PCzlw8gkdTSrbKaYUJM9SFpuoHaSk86luNnB1HpZ5lYOKaml89yMUwL/UMJ1iTr4nG6fQhb/uMAKspcEEWBuWEnDRimNeyeZV5rLKHBSGVChsH2hQI+V6oZF1A1I938euMVc4bd98xj2fAch87eSPqz9t9jbcWFpZJC/h5tptK/5akUCzB2PMU+lCPR5LRrVmWN6MDief5h92I8ojRuEbr66qvx7LPPYmBgAG63G9u3b8d3vvOd8R6OmAKM5UeWSea+RCyhwyUL8CiFD1HL7DWynRJMC5BlAX6PhFBUg6azqrcHb2DFLpn7IOuW1WLn4a5hrgUix6edDlTNSC/bsWIH1mh6z8ZFw+IYCichSwJqKhTEEgbCMRW6MfwlyQIQjOlQJAuabqBvKAFRZEUKNQE3EhpzDm9uDKQH3MUSOuJJZhOkZRzTAtAfjCNQpsCbWsKzzWFHKggZ0zi2yL9HgiiW1vYgPIqIxtrSZIQTyoQef/xxPPzww9A0Dffddx9aWlpKEhThDIX6keVuxg+Ek0hqOiSRz5q8Olo1VuaDkjljsxTI75HgUdiE1tyy69w48jkL2G4Ofq/MnBhSWYcFtgezeV0j1iyrS7/BZVaUGYaJcEyFV5FQW+GGrpsYiiTh97kwGExAcYmpIXfMmw5gWZvAAR19MXT0xVDhc2HV4iocbRuCqpvwKiISqp62B8qEjahg5a5fuH1ZQcUfYwlMvmKPOdVesu8hSkI4pqKzP4aVi6pKsh8ETLBP6I477sAdd9xRkkCIqUEhpde5k0glkYeeGmJni1DupNCBiIrKVEVZ5jm27W5DLK7BtAx4FTYuotD5N/lirS5vw1Aqjkq/ki6DdkliXtcA+8///MoRJFKZUyzBsjC3S0R9lReKS0QoosKtiJBEPssZ3AIQVy8sjUXiKt450IEKvwu1FR64ZBdiSR1JNTsLApiAzavxIqmZBQvEaC8KmS8HFWWuLIEiAZqaTCcDU5Hn8ep7p8FxwL0bF03ItDTruCU5CjGryG3G9HuYvxrrT7Gy3Lbth2KZe3jJd6aIlMp4MzNTUGQBPM/MQ/NZ7GSes7JMRiiuI5HUU7ZArELOJQuQRB7NjQH0BpMYCo3ea6OnMq+hcBIuSQTPa1B1E1UBN1TNRCSmpvecNMNC31AcHM/j61t2pa8buCAyiiwAloWEZuYtx84k9+WgkGVRwlmmk4Fp8/wKvHuwE59prsW8am/JjksiRBRN7r6ER5Gg6Waqj+bCnka+8uWRHoqldIR2icyBG7BQV+nBgzcsyRK7HS8fwqcdQcRVI70Xo+omYFko80gYDCchChzKfS5wHCudvuPqBdj2wacQeC+CURWRuAaew7C5QvYelGEiPQAwGGEuBh6XiECZK+1PF0/qiCUNVJVL6XLrX752FOA4eBQxPXQP4FBRJo/ZtzWSUwM1qRKl4M0956HqBu669tKSHpdEiCj6YZ9vX0ISeTxya3PW98Zy2x4rpsx9p+7BOH669TAUl4C5I+xxZH6nodoDNVUxl/t7lywgqRmphlc2k8g0mUuD3yPhv9/Xkr4fAe+FJcTfbD8Bn0dCTUCBzyMhElMRjo3sItw9EEsPsrAsIJrQEU0VcdiVfbG4hkq/C6rGnBQGUvemosyF7nASHMcDsBCO66ivlEfNbAopWiCI8RCJa3j3QAfWL69HQ1XpsiCARGjWU6xLQjEb3xN5KOY6QodjKiwLUDVzxBjHWo6yf6/IYsqAkS2daboJSWDTXDtS/UeZBRH2dccSOgbDzEKIFziUeWQoLgmhiApVM1LGqxlzkkboQEja48sF5uAd8LkQT+qIp0q8TctC90AMCdVIzTkC9NQS3mgiTlVxxGRgWRY+PNINjgPuvq60WRBALtqznmJcEnJdDvw+GS5ZGDFzGs1t+1BrH556YR++vmUXnnph3zCHZ9sRGkCWIadumCPGmPkdm8yHdubvRYGHmbGUxhp0OYh5jmtftyzxMC22l5NUTQwEE4jEVATKXKgqV8ClmmK9ioh7NyxEWYYDQy5iyronoRroGWSC43WLqA4oUGQRumFbFyE9qgIYXcRbmqpxzYp6hCIqzvdEEIqouGZFPe0HEROirTuC871R3Hb1gpLY9ORCmdAsp5h9BFuwDMNEdzgJXWcjDl5+69SIJqf29wYjKipS1XEAxsy+Ruoj4nkO3QMxaLqB/qF4lmnpWJmX/XtZEuD3yuhR4wCY2YE90K7c50JHXzTd46NIPHqDCeiGCUkU2OC91MaPmRqW1xeMo9wjoWluOSSRx+olNVjaWIE/7j0Pv1dCOKoNmy/rdolY01yD/Sf7kFANluFFkojENHgVCYqfRySmIxzXYJoWdN3EuZ4IBJ7DumX5m8IPtfZh5+Eu+H0yqkUlPcdoQYOfhIgYFwlVx4dHu1FR5sLGK+ZOyjkoE5rlVJcrwxwCRnrb7gsmoOsGBsJJGCmPN3sJa6RZNS1N1fj6n6/G//f/3Iyv//nqEf3WcjObzCzKnsJqWhaM1DwhjuPAcVyWb9pYc47s3ydUHYosZJifchAFDpV+BbEEe/CfOB9EMJJEe18MSY3dH91gw/Qy2yOYLxwwFFFx69pG/M//thJrmmvB8xwqylyQJQEVfhckkcvywAvFNBw41Y/LFlTC73UhkdThd0vMXshk95jjgLpKNyr9CmRJgCRw8Lkl7Dzclfd+X0zvP2LmY1kWdn3chaRq4prL67MmG5cSEqFZTiED6myqyxWEoswOh0+JwEhLWLnsOdqdXn5rbQ9B1w3Ekzq6B2Jo741gMJRAR180/fmWpmo8dPMSBLwyXJIAnmcPcXZONja73CdnPWQzvxNL6Ah45azSbPv3FX43Ygkd9RVu+L0yaivcqK1wQ9UMRBN6ugFVM6x0BmOYbG+Gw4W9HtsujuPY8t4bu9vAgYNXkVDld+G2q+czlwaeuQ1XBRT4vRIWzvGnxponsfPjLrS2ByEKPK5paUBdhRuCKKDCp8CjSOgPJaBqOqoDCpYtqERdpRuimP9+j7UcSRDFcOzTIZzvjeLK5hpU+ievuIWW42Y5hbokAEywnnn5EBOCnCWs0R50h1r78OKOUwDHhmCFoioGUsPpeJ5Pzw0yLSNreS23j+inWw/DtCw2aTXlrGBZVta5x2q2bWmqxo3rLk07JmRWBqqamRYURvYiGpv2eqEM284ELQB+r5QVh8DzuHJJLfqHEnjnYCd6B+MQeA7XttTjhisvwYdHuvDqrk9Zhmda6A0m8JvtJ7B8QQUGwuw4ksBD00zomglZEjAQSsKjiKir8CAUSQ67NqqOI0pFz2Ace4/3YF6tD82NgUk9F4kQUZBLgv25OdVe9AzGYVoWRIGH3+sCz3MIpIxE87FtdxtEkUuNFWBjF3oG2X6MADbSGxzgVcQRy49bmqrRNNdf8oesfe1M5D5OV8sJApclOJLAgRd4mBbrJxIFDlZq1ITfc8FmKJODp/rw5t7z8HkkLF9YiWBUxb6TvZhb48P7n3TBstjSnj2awrKAw2cGUe6VwQOIJzS4RAGyzKeKFZgrRX/IQG25G+G4BrdLgCTwsCyqjiNKQzSh4e397fC6JVyzor6o6QjjgUSIyGKsnqH7NjZlTUIt5EHXF0yg3CenDUHdLjH9gDctQBTZg9ztEgv2myvlQ9aufmPVbcwtQTcs8PwFEbLnFRmGiWtW1GPn4a70PQhFVQxFVMTiGp56YV/6ntl7NKYJDEWSqcmpPuw51oP+YDJVfs2q5IyMeIKpuUJ1FW6sXFyBg6d6oeqspFsz2DWvaa5lE18TGtp6Ith/ogdd/TF4ZAFGamTFRJwniNmJbph4e18HdMPELVddApc8+WMmSISINIX0DBWzfGdTXa4gktAg8DxiCQ2hmAYrNWOt0u+CR2GlzEnNGDWrGc+5C8EWi3KfjIFwMi1EpsnMVQM+GZaFrMZVANj+0XnEkmwPyetmbgiZ9yyz8tCygGhcB8+xPaKaCgVDERVJ1Rixn6h7MI7uwTgqylzQNBODwQQ4jkNVuSv9mR17zuHtAx0AgIDPBZ9bhKYaGGsPuVQ2ScTMwbIs7Py4C/2hBK5fPRcBn2vsL5UAEiEiTaHeY4Uu39lsWtuIF3ecQkRNIhzXsoZ8DoSSsCwLoiiM27R0NPI9bG/MmXliiwWXuu5QTAN0Vhb+pXtW5HVmsEuhDdOCbphIqAYSKjM9te9Zvj2auMrGU7hdIlv6U9jo8UwTS4FnBRCyJCKW1DEYvrD/I3DMeeGVnWdwZW8Eb+/vgJla1usPJtAXBDwuEX6fBEHk8fuU4eTlC6uz4r+YY9yJkXHawFTk+fQLyyvvncGnXWHcfd2luHHNJcM+WyrD0mExTMpRiWnJZHmPtTRVo7zcgx/+eg8bcy0K6WF0Q+EkghENTXPdY76NF/v2bj9sdcNCLMFGe7e2h9ATSuKmjJ6HTLHwKKzgIakxsRjLKFRPlapbqfHcbpeYvmd/ccuSvMuHzY0B7DnWg+7BODwu1qCaSBoIRdkSnV2B55J43LB6Pl57/9OMKj0LkbgOt0vAuwc7WaFG6ili1/LFkjqSmg5RYGXouw53QeA5/OGj82jvi45r/hMxOThtYPqZZXXwukS8c6Adf/joHDZeMRd3XL1g0veBMiERItJMZnXVmmV18CjsgZv5D1yRBcQS+jCbnFzG8/a+bXcbdMNCOMYcFwSeh2FaeHnHSdT6XenvFbvXlCnWosine6bsN1r7nuVbPmxuDKT3k6r8LvSHkogndfg8MhqqPYjGmUWRkOozOnJ2IG3dY5oX6vXiSbaLJPBMmHJ7ONhelIWkYeLw6QG0dYdR5pExr8aH051BROJqUfOfiJnLodZ+/Pr/nMDlC6vw0M2LL6oAASRCRAaTXV1VjMjlZj2RmFr0mAI21VSDbfkDIOV8bWV9z/7vl99uRWcfc62uqxhZeDOvwx5jYZisYi63zyp3+fCpF/alr8NuKu0PJhCKqkiqOvxeGTUBN5KagetWzsEr752BIHAwTUAUWEl4philV3JyNpZ8KcsgVshgQTNYBpVQDciSAJ9bhmEy41lNN6mUe5ZyrjuMLb87jHm1Xjx61/J0BevFhJpViTRjNXtOlEIbYzM96uysp6M/Bl03sj431tt7dbmSXi6zscCG8OX7XlIzUBVwo6HaA91ClhvDSNfhdokoc0vgeeZQMNY9y20o9aSmuAopL7mhsAqvS8Rf37YMK5uqUR1QUtmKldYZW27EjAvL1CC3zEROTU2LFQQOUqr3STeY60T3YBSxVIm3x82WEKmUe3YRiWv4p999Ap9bxP+8f2U6K77YUCZEZFHsxn+xxwbGrm7LVyAhCjxCUQ1e94VenLHe3jetbURreyhttcN8s1klW+73ihkIl3sd9ZWegqvL8mWDoshj8bzyPEuSFu689lJsfec0BJ7tOdmZj1cR4VZERGIaDNOClmG9ZIFDOKqitsKN61bOwbsHOxCKa5BFdk63S4JuWNA0E+e7I6itcGPz+vlY2liRLkknZjaqbuCPe89DMwx87fNXXrRKuHyQCBEXlXzTVH+z/USWIOUrkCj3yegPJpDUjIKXCluaqrF5fSNe+6ANhmlBEvhUc6cw7HvFFmUUI9aZS4uKLCAW19LHZ8P0MMJ1cFi+oAoAsPNQJ459OohoQofPI8HtYsttPg/gd0u4/sp52LHnPM52hZFQWcZYAw6yJLBlvZ1noALpXiNR4HDPZxdhaWNF+mz2MD9XaqlOTDXBEjML07Lw7sFOBKMq/vbPLsfcGp+j8ZAIEY4wWqFBvmxBEHjMqfbC55aK6m2589qFWNDgz8q+HrilGfOrPVmfy3fOcExDUjWyRm8XmyXmXqeqmwDHQeQuNJTa8YxU/bd8QRWWL6jCd3+9B5coIkJRLZ35SAKPwXASTXPKsfAOP1o7Qtix5zw+7Q7jTGcIv3j1CBsRDgCWAUHgUJfKkDIFyEY3LEQSGoaCSbgkgVX7SbRqP5PYe6wX7b1RZvOSOAAAIABJREFUrL2sDs3zh/8buNiQCBGOMNry10gFEpljuoshN2upqSlLe8fZ5J4zHNMQjCbh98hZInm2M4RjbUN5hTCfiORep2GYSCR1xBMamuaWY9PaRqxZVocdH5wZs/pPSi1JVpS5kFANhGMqVN1ERRlbSuE4DovmlqNpjh+n2oP4r51n0RtMpDMjSeQh8dyIApSJaVmIqzoSqg5B5OB2SVAknrKjac7pjhCOfjqI5vkBLJ1kT7hCIREiiqJUnfajLX/l7rkosgCR41PLdm2T1t3vkgR0D8QAMN84v0dGeWqt3CUJCCZ1vPZ+G6oCyjChAPLPSEqoRlokYgmNjWgA6063P1Ne7iloT8oWSlUzEPDJKC9zYTCUwHUr52RdB8dxWDwvAJ9bRFKXEE8a0HQz/Z/fvnUKj9y6DJfUjr0MYwHQdQthXUWU4yBLPDwuibKjachgOIH3D3ehrsKNNUvzz6RyAhIhomBK2Wk/Vrl2prHoZHf3Z56jodoLVTfRMxBLzxuyiScNmJaZVygA5BURw9Ch6uw7oZiWminEQRL59Ge2vn2qoD2pTHHuHUqgvtKNh25egjlVXiRVY9jgvKGICq8iwZtqvg3H2DJePGlgy+8OY+klAdy4Zh7mFbgnYFpsEmxSNSCK7O9DkQVkT0oipiKqbuDt/R2QJR6fXTUnPal3KkAiRBRMMRVkY1FoT1IpzzkShVbjaYaZLnW2yRSKfCIiChwr5wag6yZMk9XomRaHroEYytwiegZiBfdQ5S+IsJDQTESiKvSMWu2KMle6Kk6RRbgkAZGEhmTSgKqbOH5uCMfPDaG5sQI3rZmHOdXegu6XBeY0HoyoiPAc3IoItyzQUt0U5sMjPYjENdxy1SWOlWKPBOXURMGUcmhaoT1JF2NQW75zMNfv7J4mgefSZqs2tlCMNKF2TrU3fZ2WdWFInmVaSKoG+oJJmJZZ1HDB4XBQJAGV5Qq8binty3fdyjkwDBOqzo6pGSZEnsODNy7CX9yyBPWVrDjjWNsgfrL1Y/xm+3F09kdHOc9wDNNCJKahP5jEYCiJZE4vF+E8ZztDON0RwuULq1BX4Rn7CxeZqSWJxJSm1LY+hZQ5T4aV0J6j3fj37cfS+1qKxKeXzGzyVeOtW1aLnYe7RiwTHymzs6/zW/+yG+290WHLZoOpAX8P3bxkQvttPMehzC1BkQWEYxqWNlbgTgDvHuzAYDiJijJXVlFC8/wKHDkzgDf3nkfPYBxHzg7iyNlBXLG0Btdd3pAWqUIwLQsJzUBCMyDyHFwuEW5ZhCRylB2NwmQamIo8j3A0iZffasWC+jL89e2XDbN3mixT0mJwPgJi2uDE0LRSnzN3yutQVEUsoacHB41VjZdb7p0rFKP9LpHaS7HLqzmOjYqwLPa9r//56pIsMUoCn6qg03HZgsoRK+F4jsOKhVW47NJKHD49gB17z6N3KI79x3tx4HgvViysxA1Xziv67Vk3LeipWUeSKMDtYhZF/EX2JJsOTKaB6WeW1eE/3zkNzTDxxTuXw++Wxv6SA5AIEQUzWfN8LuY5t+1ug2YYiMR16LoJUeThlgX4PHJBPUijZW9jZXbV5QoGwklIApc2iTQtQBK5kpuHcgDc9j5QXEM8qY+YkfAch5amKqy4tBIfn+7H2wc60D0Qw8enB3D49AAub6rCDVfOQ23AXVQMlgWomgFVM8DzHNwuVsggCVwqQmIyOXiqD3tP9OLeDQtRV0RWe7EhESKKYjJtfS7GOdv7oogndQApM1PDRDhuwjAt3LexKS12dsVbKa9109pGtHYchmlaEDjb782C1y0XvLxYbIk8z3Hwe2QosohIXIOqsT2b422DeZfpVi6qxoY1jXjro0/xx33t6A8mcKi1Hx+f7sfKpmrcsHouqosUIwAwTSs9CVYUeLgVES5RSI9JJ0qLppt45b0zmFfjw+eumtqegCRCxEWn0AfpZEz/NAxWHCBwdrE021xXNQO/fO0oEqoBw7QQiqr45WtH8debl+UdajeeuFqaqrF5XSNee78tbYvjUWRIQmHmoRMpV5dFHpVlLsRVHftP9OKVnWcgCDwUl4hQXMMrO8/gTgBLGyvA8xyuWFyDlqZqHDzVhz/uO4+BUBIHTvXhYGsfVi2qxg2r56FqHPtylsUekFpEZaavqeU6SRIoNyohH5/ux1CE2fKIwtSuPyMRIi4qhT5IJ6s/iI1bAEykZvSkspGkZiGpZW4QWwjHTGz53WGUeeS02AD5m1ILjatQG6F8jFWuXog4umURB0/1oa7Sg4RqQNVMyKIAFayAIXP/SOA5rF5Sg5WLqnHgZC/+uK8dg+Ek9p/sw8FTfbhicQ2uXz0Xlf7xFYmYJnNliKs6RJ6DotjLdVTqPRFCURVHzgziqmW1WDS33OlwxoREiLioFNr3M1n9QXOqvegNJhCNa9ANlo2IgohInC3RcWB9MHbBUlIzUZchNi5JmHBchdgI5WO0htZ8ov3L147C75WRUI0sUTrTGUagTEbA50o3sdoedPkQeA5XLq3FqsXV2H+CZUZDERV7T/Ri/8k+rF5SjetXz0VF2fgrFvVUqXc01dfkUcS06zdRHHuP94LngTuvvdTpUAqCRIiYNDLfzBtqfLjxijkFu1Xnfi6W0BCKaugZiOGpF/aNe2lu09pGvLjjFAJlrnQlXP9Q9rltIbL/N8dxabHpHoihIaeps9i+pdyMpdBMaLRy9XweddEEG2JXX+XJaxCr6RbcLgHVATcGwwm45dEf+gLPY00zE6O9x3vx9v52BKMq9hzvxb4TfbhyKcuMJjIWwLLYXKekZjBHbw85ehdDV38M53oiuGJxddpyaqoztRcLiWlL7mC6wVAcz//hBBRZyNvUmbsxn9n8aXuu6QabBGo/UPMNnBuLlqZqfPGelqwmWcVlV2xhWA+PKPKIJ3V0D8TQOxhLjQvPLqktpm8p38C+n289VNC1jNbQmttwG4pp4DjWv2OLqCDwaYNY+zixhI7ewRgknsPt1yxAIVXUosBj7WV1+F8PrsKd1y5AuVeGaVn46FgPfvTiAfz+vTMIRvJnVcWgGxYi8VQjbDgJVTOH/f0QF7D/DryKiMsWOO+OXSiUCRGTQu6buSIJ0A0LsKy0jc1ofT+Z/UGhqAZYrK+m3Oca1xJYblaWmUk99cI+dA3EEIqpWaOzATY8biCUADM15cDzFoJR9oAt80hF9y3lW2Y0TLOgaxmtXL26vC0rS9LtUQ8ZwjSSQWzmcXTDgljgMpgo8Fh3WT2uXFKLPcd68PaBdoRjGnYf6caeYz34zLJabFw1F36vPPbBRsH2rGN9Vhw8LtaQS31H2ZxuD2EwnMS1LQ0QpngxQiYkQsSkMNKyWyyh4y9uGdsZIPNB2TMQgyTyKPe50r5XxSyB5e6X2FmZfR5b8PwemTlOGyYAC4okIpZg/TUcx6rqKv0KNN1EUmU2PpkFC0+9sG/YNeUuvbX3RdOu2jYuSSj4WkYqV89t6hV4DoZpZglAPoPYXESBw7nuEN7YeRrtfVHIAo9rxxj9IIk81q+ox5rmWnx4tBvvHOhAJK7hg0+YGF21rA4bVs1BmWdiYgQwR++QriISZ31H5MrA0HQT+0/2obpcwaUNZU6HUxQkQsSkMNr+RaF9P/bnnnph34Sse0bKyuzsY6TMAAB+uvUwAGbj4/dI8CgSLMtCLKHjqceuBjByJd/ZzhB2Hu7K+nkiaSDEq1nr9UmNFQ5MpCQ99xpqAwpCcR08z8GyrIIzNttRguc5VJTJsMBh+0esZ2qsGUSSyOOayxvwmWW1+PBID9450I5oQseuw1348Gg31l5Wh8+uLI0YZfYduVKFDLO5zPvI2QHEkzo2rGpIN0JPF0iEiEkh9808oerjttuZiHXPodY+tLYHYVoWJFGA3ytDEuW8YxLyPfCb5vrHFMCRKvm2f3Qefp+c9XOfR0IkrkFxiVnjvZsbA3j+DyfSoxYGwkm0dhzG5nWNuPPahQXdp9xrGI+obdvdBlHkIPA8InEdksgjUKbg0Ol+NDdWFLQnI4sCrm1pwFXLavHBkW786WAHYgkdOz/uwodHerBueR2uWzkHvhLYyFgWLnjWicxgVpllFkGxhIZPzgxgfp0PtVPQoHQsSISISSH3zdyujhvvZNTMYxX6QLUzFI5jE290w8JAKAFB4GFZVkGZVCECONLSY0LVUS1mn6PMI8EwTAS8clZ13L9vPwZNNxGOs5lDAsfe9l97vw0LGvwlmShbCH3BRMpBnMmNpptQNQORqIpAmQvhuApdL2ztS5YEfHblHKy9rA4ffNKFdw92IpbU8e6hTuw+0o11y+tx3coGeJXSeJrpuoWQPV7CJbIm2CleVTceA1OR55HpQ/rrbccAAI9sXobq8gtuFlPBnLQQpkeUxLQk8yFYaC9MIccqFDtDKffJqYmmFiwLGAgm4PdKBWVShQjgSEuPiiwOc+e2xzt8/c9Xp39WU1OGn750APGkAQ5Iv8ULHAouWigV1eUKIgkNAn9hY1vVmWi6JAEuyY1oUkc0rqVmI42NSxKwYdVcrLusHu9/0oV3D3UgnjTwp4Md+OBIF65eXo9rW+YME/LxMnypbupOgh2PgelnltXBm9obPdMZwodHe3DbuvmYXzu99oJsSISIGYudoXApEQjFNDZYzrLyzi4aidEE8FBrHyJxLTWJlYffK0EUBRiGiVs+M4+NfsDYy4i2uWnmMFfDtGCawIlzQxPqjSoGu49K5/KPqwAAr4sNsYsmdMQSWsGZhksWsPGKuVi3vA67DnfhvUOdSKgG3j7Qgfc/6cbVl9fj2ssbSjZ0zV6qS6aW6twzbKnOtCy88OYJ+L0yNq+f73Q444ZEiJixZGYoHoUVFSQ1AzUVnpI8zDMLEqrKFQQjKgZCScyp8uDBlMiNNfrBJtfc1DAtGKYFngMkUZiUseb5aGmqRnm5J2veUr6Y7dlFbllEJKay3qUCz6HIIm5YPQ/rl9dj58ed2Pkxm9H01r52vH+4C1evqMc1pRQjAJpuQctcqpMFSOLUXqobi/cPd6G1PYT/sXnZlJuWWgzTN3KCGIOR9nPu2bioJMfPKkhICV1SM+DzyOmHdjGVgJnmpqbJvO04noPfK03KWPORWLOsriAHB4CVdAfKZCQ1s6j9IgBwu0TctOYSXHN5A977uBO7Pu5CQjXwx33t2HW4C9e2NGDzdU3jvYy8ZC7VSWl7IH7aZUfxpI6X327FpQ1+rF9R73Q4E4JEiJixjLSfs2ZZ3YT2p+yqsxPnhlIVd1J67PdERo9nmpuW+tiTC3NkkCWFLdHFdZhFpBhul4ib11yCa1Y04L1DHdj1CROjN/ecZ2J0eQPWL6+HawxboWLInXWkyAIUWRw25n2q8urOswhGVfxf97ZMOwHNhUSImNGUev6RvQSnG1ba56x3yEC510CgTJnw6PFie6MmY9zFeOHAwacwN4NITEvZCxX+fY8i4parGnFNSwPePdiJ9z/pQiyhY/tH5/DeoU5ct7IB65bXZ92TUmCarO8rntQhChzcLpZ5TtVZR10DMfxhzzlc19KAhXP8ToczYUiEiEkjn4GpUw/IUrFtd1vKP47NwzFSFWLBqAae5yEKXEnGnRdSGj5Z4y4misiz8eJJ1UA4zoxSi8GrsMrFa1sa8NHxXry99zxiSR3/58NzePdQJzasnIO1y+tK7rLNZh1Z0HQVPMdBlnh4XFOrCdayLPzHW6fgkgTcu7G0S5VOMT1yT2LaMZKB6XhMR6cSfcFEqqSWg8BzEDPK2ZKqUVTV3Wi0NFXjmhX1CEVUnO+JIBRRcc2K+vSxD7X24Z9fOYL+EDP3jCf1LJNSp7Es1idUWeaG3yuD54t/jPvcEu69YTH+78+vwjWX10MUOMQSOt7Y3YYf/tsBvHeoE6puTEL0F/zqBsJJ9A/FEUlo0M3i+nkmg3M9ERxrG8Ld110KfwmcJ6YClAkRk8JYVjnTlepyBYPhRLqPhuc4iAIbc+BRxHEbquZmiYda+7DzcBf8PhnVIlvm23m4Cwsa2PLL8384gaSmQ+A4GIaJgdQsILdLnFL7RhwHeFwiXJKAaEJDPKkXvcRV5pGxef0CXLdyDv50oAMfHu1GNK7h9Q8+xbsHO/DZVXNw1bK6LLPWUpI560iQWPGJS+LBXeT8SDdM7DnWi4YqD65fPfeinnsyIREiJoVC5wZNNzatbURreyhdPm2B/cftEooe5zCSoSow+lA/gHnZSSITdj41siEU0yAI/IT2pAqJfTx7UALPodwrw+0S0/tFxeL3yLj9aiZG7xxox0dHexCOa3jt/U/xp4Md2LhqLtY0106aGFkWoBkmhsJJR4oZjpwZQCSu4a82L8tqJp7ukAgRk8JoBqZThfE8UFuaqrF5fSNe+6ANhmlBEnhmDyPy4x7nkC9LHEvEPYoIv1fGQCgB02Lv5Fpq36i5MZDX0XuiTHQPyrIASWD7RQnNQCSmpu2BiqHcK+POay7FZ1fOwTsHOrDnWA/CMQ2v7jqLdw52YOOqOVjTXAtxEscZjFTMMFnEEhoOnxlAY50PSy4JTNp5nGDmyCkxpcgdwDYRA9PJIN9wuUL3rO68diG+9GcrsGReOco8EuorPUXtBeUOoAOGZ4mZQ/1sbBG3f+d2iaj0KxAFDqZlQZEEXLOiHjsPd43rusYiUzxzB+UViyIJqCpX4PNI4y4xDvhcuOvaS/G/HlyFq5bVguc4hKIqXtl5Fj968QB2H+ku2petWOxihlBURX8ogXB04sP88rHvRB9ME7hyac2kHN9JKBMiJoVSGphOBqMtdxUzZmI8FJIljlUdZ/9OkQXwvAuGYeKhm5dM+LpGo9RLrHZJt1sWEI5rSKrFlXTbBHwu3H3dQmxYNQdv7e/AvuO9CEZV/P69M3jnQDuuXz0Pq5dUT/oSlmlaKNBOL81IBqaZJqVt3WGc7gjhpjWX4IYrL5k2xqSFMrOuhphSlNLAtNQ4uWdVyJiLQoxT8/3uN9tPTNp1TdYSq8DzqPC5kFTNVEn3+LKXijIF93x2ITaumoO39rVj/8leDEVU/OefTuPt/e24YfVcrFpcA2EclXqTxUgGprZJqWVZ+K+dZ+FzS/iz6y6d1vY8IzHzroggCsDJPatCs8TRsq2RfjeZ1zWRuU5jwUq6eVRKCuKqjmhMS/dgFUulX8G9G5uw8Yq5+OO+8zhwqg+D4ST+453TeGt/O25YPQ8rF1VPKTEaiU/ODuDop4P4/E2LZ6QAASRCxCxlMh+ohRQ8TFaWOJnXNd65TsXAAfDIIhRJQCQ1W2m8VJUruP/6Rdh4xVy8ta8dB0/1YSCUxMtvt6Yyo3loaaoaVw/TxcCyLLz8diuqyxVsXDVzSrJzIREiZiWT9UAtpIIsV6QeuKW5YMPQsZhsoSi1DZLNSMLt87sQCSfGVdJtUxNw47/dsAgbV8/FH/eex8et/egLJvDbt07hrf3nccPqebh84dQTo/0n+9DWHcH/2Lxs0srOpwIkQsSsZTIeqGMVBuQTqZ9vPYQHb1w05YVishhNuG9cd+mFku6oCn2cS3QAUBtw48EbF+P61DLdx6cH0DuUwL//8VR6mW7FwsopYQhqWRZeee8MaivcWLe8zulwJpWZK68E4QBjlV/nK3MWRW5KWO04RSGl34okoCowsZJum7pKDz5/0xJ85b4WLL+0EgDQMxjHiztO4tmXD+Hw6f6iXMAng8OnB9DWE8EdVy+YUY2p+aBMiCBKyFiFAfmq8lySMO2dJCZCoZWKpSrptrH7uzr7o9ix9zyOnB1E92AcL7x5EvWVHtx45TxctqACnAOZ0Zt7zqG6XJnxWRBAmRBBlJTcJt2kZmQVBuRrQk1qxpRykrjYjNaYmw+7pLvCp5Rkr6Shyou/uGUpvnTP5Vg2vwIAG5fw/B9O4KdbP8bRswOwLmJm1DsYx+mOEG7+zCUzPgsCSIQIoqS0NFXjoZuXIOCVEUvoCHjlLDeFfCIVjeuIxFR8fcsuPPXCvmnvNF4sYwl3PtIl3X4Ffp9cknLrudVe/PfPLcXf/tkKLG1k1jgd/TH8evsJ/Ow/D+NY2+BFEaNPzg7A4xJxXUvDpJ9rKjDu5bi9e/fiySefhK7rCAQCePLJJzF37swtIySIQhmrvwe4UL2myAISlgXdwpSaCXQxmUhFX25J93hcunOZV+PDX25qxrmeCHbsPYcT54Jo74viX7cdx58OdmLDygYsuSQwKct0sYSGcz0R3HjlPCjy7NgtGfdVfu1rX8PPfvYzNDc34+WXX8Y//uM/YsuWLaWMjSBmJJki9dQL+wAO6WWXUtrsTCcmWtHHcxz8HhmKLCIS16BOoKTb5pJaHx65dRnausN4c895nGoP4mxnCGc7Q7ik1oeb1szDornlJRWjE+eCsCzgmstnRxYEjHM5TlVVfPWrX0VzczMAYOnSpejs7CxpYAQxG+gLJoa5L8+EkRdOIYvMpdvvG98gvXw01pXhrzcvwxfvXI7m1J7RuZ4IfvX6MfzzK0fQ2h4syTKdaVo4eT6IudVeVAfcEz7edIGzJnj3TNPEY489hssvvxxf/vKXSxUXQcwKvrllJwZD8ayll4Sqo8LvxpOPXeNgZNMfTTcQimhIaHpJj3uybRCvvncaJ9qG0j9bfEkAt1+7EFc216Lc5yr4WOe6Q9ANC6LA40TbIP7fF/fjb+9twbWr5qJshkxOHYsxReiNN97A9773vayfLVy4EM899xxUVcUTTzyBYDCIf/qnf4IkSQWfuL8/AnMCjWfA1DLFnEqxAFMjnrGmhzrFVLg3Noda+/DijlMAl22zU6ox4eNhKt2ficbCcUgZoyah6RPPViorvRgYiAIAWjuCeHPPeXzadSG+3/zDpqJE6LV3WxFLaPjMsjr8etsxHDk7iP/95WsmdRbSZFJTU1b0d8bcE7r11ltx6623Dvt5NBrFY489hkAggC1bthQlQMTMp5DpoQS7F+XlHvz79mNFb8oXOpRvvNNQZwLpKjrRjZiqIxrXJvzya9M0pxwL7/CjtT2EN/eeQ1t3ZNzHSqg69p/sw3UtDdNWgMbLhAoT5s+fj29/+9uONHMRU5tCpocSjDXL6or2jit0yulEp6HOFDgO8LpEKBLPGl2TBkohRRzHYdG8cjTN9eNs1/gztsOnB6DpJq5aNvObU3MZl+QeOXIEO3bswL59+3D33Xfjrrvuwhe+8IVSx0ZMYwqZHkqMn0KnnJZyGupMwG50DZS5IAqle3nmOA6XNvjH/f39J3oR8MlYNK+8ZDFNF8aVCV122WU4fvx4qWMhZhBOzuuZDRRqdePk8L6pimWxUni5XEE0oSMW1x31itMNE0fPDuKzK+dMCfPUi83sWnwkLhq5XfD5pocS46dQq5tiLXFmE7YXXaVfGVYmfzHp6o9BM0ysWjx7lkczIREiJoVc+5oKv9vRiq+ZRqFWN+OxxJltiAKHijKZLdE5MFPofG8ELknAkksCF/3cU4HZ4QtBOMJkTQ8lCre6uRjTUGcGHJTMJbqENmH7n0Lp6IthSWNgRg+uGw0SIYKYphRqdTPdhtw5Cc9xKHNLcKW86Eph/zMasbiGSFzD0lmaBQG0HEcQBDGMybD/yUdvMA6AOS7MVigTIgiCyIPt0O0SBUQTzKG71PSFkpAlHg1VxfWJzSRIhAiCIEZB4DmUe5lDd6kLFwZDCdSUu2d1wz8txxEEQYyBZbEluuoKD8q8pVuiC0dVtCyqgkuavfkAiRBBEESBCDwHr0tEtd8FxSVgolJkAVg8N4BZWhgHgESIIAiiaPhM+x9xYlI0p8ZboqimJ7M3ByQIgpgAafsf6YL9T7FIEj/r3StIhAiCICaAbf+jyGLRpqhVfves9IvLhJbjCIIgSoDIc/C6i5uGWuUvfADeTIVEiCAIwiECRUxhnamQCBEEQTiE31tc5jQTIREiCIJwCJ9C2/IkQgRBEA5R7B7STIREiCAIwiEUmR7BdAcIgiAcYjbb9diQCBEEQTiEJNEjmO4AQRCEQ8xm92wbEiGCIAiHMC/WDPEpDIkQQRCEQ0zi0NZpA4kQQRCEQ9ByHIkQQRCEY5AEkQgRBEEQDkIiRBAE4RBUlkAiRBAE4RgWVceRCBEEQTgFaRCJEEEQBOEgZFxEELOEQ6192La7DX3BBKrLFWxa24iWpmqnwyJmOSRCBDELONTah+f/cAKCwMOjiBiKqnj+DycAgITIQWg1jpbjCGJWsG13GwSBh0sSwHEcXJIAQeCxbXeb06HNaqhPiESIIGYFfcEEZDH7/+6yyKMvmHAoIgIAZBrlQCJEELOB6nIFqm5m/UzVTVSXKw5FRACASE9gEiGCmA1sWtsIwzCR1AxYloWkZsAwTGxa2+h0aLMagRxMqTCBIGYDdvEBVcdNLcjAlESIIGYNLU3VJDpTDJ4yIVqOIwiCcAraEyIRIgiCcAxajiMRIgiCcAwSIRIhgiAIwkFIhAiCIAjHIBEiCIIgHINEiCAIgnAMEiGCIAjCMUiECIIgCMcgESIIgiAcg0SIIAiCcAwSIYIgCMIxSIQIgiAIxyARIgiCIByDRIggCIJwDBIhgiAIwjFIhAiCIAjHIBEiCIIgHINEiCAIgnAMEiGCIAjCMUiECIIgCMcgESIIgiAcY8IidOTIEaxYsaIUsRAEQRCzjAmJUDwex7e//W1omlaqeAiCIIhZxIRE6Pvf/z4eeeSREoVCEARBzDbGLUI7duxAIpHApk2bShkPQRAEMYvgLMuyRvvAG2+8ge9973tZP1u4cCEikQiee+45+Hw+LF26FMePH5/UQAmCIIiZx5gilI+XXnoJP//5z+H1egEAx44dQ3NzM55//nn4fL6CjtHfH4FpFn3qLGpqytDbG57QMUrFVIoFoHhGYyrFAlA8ozGVYgHGjqempqyo45XiOTiVKPb6AUAcz4nuv/9+3H///ek/L126FL+Ak5BwAAAGI0lEQVT//e/HcyiCIAhiFkN9QgRBEIRjlESEaD+IIAiCGA+UCREEQRCOQSJEEARBOAaJEEEQBOEYJEIEQRCEY5AIEQRBEI5BIkQQBEE4BokQQRAE4RgkQgRBEIRjkAgRBEEQjkEiRBAEQTjGuAxMSwHPc1PqOKVgKsUCUDyjMZViASie0ZhKsQBTL57pzrhGORAEQRBEKaDlOIIgCMIxSIQIgiAIxyARIgiCIByDRIggCIJwDBIhgiAIwjFIhAiCIAjHIBEiCIIgHINEiCAIgnAMEiGCIAjCMWaECB05cgQrVqxwOgzs2bMH99xzD+644w48+uijCAaDjsWyd+9e3Hvvvbjrrrvwl3/5l2hvb3cslkx+/OMf49lnn3Xs/K+++ipuu+023HzzzXj++ecdi8MmEong9ttvx/nz550OBT/5yU+wefNmbN68GU899ZTT4eDHP/4xbrvtNmzevBm/+tWvnA4HAPCDH/wATzzxhNNhzCysaU4sFrMeeOABa8mSJU6HYt10003WyZMnLcuyrB/+8IfWj370I8diuf76662jR49almVZL730kvXoo486FotlWVYoFLL+7u/+zmppabGeeeYZR2Lo6uqyrr/+emtwcNCKRqPWHXfckf77coIDBw5Yt99+u7V8+XLr3LlzjsVhWZa1c+dO64EHHrCSyaSlqqr18MMPW9u3b3csnt27d1sPPvigpWmaFY/Hreuvv95qbW11LB7Lsqxdu3ZZa9eutb7xjW84GsdMY9pnQt///vfxyCOPOB0GAOD111/HokWLoGkauru74ff7HYlDVVV89atfRXNzMwBg6dKl6OzsdCQWmx07dmDBggX4q7/6K8di2LVrF9atW4dAIACPx4PPfe5z2LZtm2Px/Pa3v8Xf//3fo7a21rEYbGpqavDEE09AlmVIkoSmpiZ0dHQ4Fs9VV12Ff/3Xf4Uoiujv74dhGPB4PI7FMzQ0hKeffhqPPvqoYzHMVKa1CO3YsQOJRAKbNm1yOhQAgCRJOH78ODZs2IDdu3dj8+bNjsQhyzLuuusuAIBpmvjJT36Cm266yZFYbO6++278zd/8DQRBcCyGnp4e1NTUpP9cW1uL7u5ux+L57ne/izVr1jh2/kwWL16MVatWAQDOnj2L119/HRs2bHA0JkmS8Mwzz2Dz5s1Yv3496urqHIvlW9/6Fh5//HHHXixnMo6NciiGN954A9/73veyfrZw4UJEIhE899xzUyae5557DkuXLsWuXbvw4osv4vHHH8eLL77oWCyqquKJJ56Aruv44he/OKlxFBKP01h5DOM5jmz5Mzl58iS++MUv4hvf+AYWLFjgdDj4yle+gi984Qt49NFH8dvf/hYPPPDARY/hpZdeQkNDA9avX4+tW7de9PPPdKaFCN1666249dZbs3720ksv4ec//zkeeuih9M/uuusuPP/88/D5fBc9nmQyiTfffDOdcdx55534wQ9+MKlxjBQLAESjUTz22GMIBALYsmULJEma9FhGi2cqUFdXhz179qT/3NPTMyWWwqYKe/fuxVe+8hV885vfdCyLt2ltbYWqqli2bBncbjduueUWHD9+3JFYXn/9dfT29uKuu+5CMBhELBbDk08+iW9+85uOxDPTmBYilI/7778f999/f/rPS5cuxe9//3vH4hFFEf/wD/+A+vp6rFixAm+88QZWr17tWDxf+9rXMH/+fHz729+mt/0UV199NZ599lkMDAzA7XZj+/bt+M53vuN0WFOCzs5OfOlLX8LTTz+N9evXOx0Ozp8/j2eeeQb/9m//BoAtvd97772OxJJZmbd161Z8+OGHJEAlZNqK0FRDEAQ8/fTT+Na3vgXDMFBXV4fvfve7jsRy5MgR7NixA4sWLcLdd98NgO1//OIXv3AknqlCXV0dHn/8cTz88MPQNA333XcfWlpanA5rSvAv//IvSCaT+P73v5/+2YMPPojPf/7zjsSzYcMGHDx4EHfffTcEQcAtt9zieHZGTA40WZUgCIJwjGldHUcQBEFMb0iECIIgCMcgESIIgiAcg0SIIAiCcAwSIYIgCMIxSIQIgiAIxyARIgiCIByDRIggCIJwjP8fWSaTuOAvUsYAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x432 with 3 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["sns.jointplot(x=x, y=y, kind=\"reg\");"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 6\n", "<a name=\"task6\"></a>\n", "\n", "* To your `df` NEST data frame, add a column with the unaccounted time (`Unaccounted Time / s`), which is the difference of program runtime, average neuron build time, minimal edge build time, minimal initialization time, presimulation time, and simulation time. \n", "(*I know this is technically not super correct, but it will do for our example.*)\n", "* Plot a stacked bar plot of all these columns (except for program runtime) over the virtual processes\n", "* Remember: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 92, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["cols = [\n", " 'Avg. Neuron Build Time / s', \n", " 'Min. Edge Build Time / s', \n", " 'Min. Init. Time / s', \n", " 'Presim. Time / s', \n", " 'Sim. Time / s'\n", "]\n", "df[\"Unaccounted Time / s\"] = df['Runtime Program / s']\n", "for entry in cols:\n", " df[\"Unaccounted Time / s\"] = df[\"Unaccounted Time / s\"] - df[entry]"]}, {"cell_type": "code", "execution_count": 93, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Runtime Program / s</th>\n", " <th>Unaccounted Time / s</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Min. Init. Time / s</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " </tr>\n", " <tr>\n", " <th>Virtual Processes</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>8</th>\n", " <td>420.42</td>\n", " <td>2.09</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>1.14</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>202.15</td>\n", " <td>2.43</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>0.70</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Runtime Program / s Unaccounted Time / s \\\n", "Virtual Processes \n", "8 420.42 2.09 \n", "16 202.15 2.43 \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "Virtual Processes \n", "8 0.29 88.12 \n", "16 0.28 47.98 \n", "\n", " Min. Init. Time / s Presim. Time / s Sim. Time / s \n", "Virtual Processes \n", "8 1.14 17.26 311.52 \n", "16 0.70 7.95 142.81 "]}, "execution_count": 93, "metadata": {}, "output_type": "execute_result"}], "source": ["df[[\"Runtime Program / s\", \"Unaccounted Time / s\", *cols]].head(2)"]}, {"cell_type": "code", "execution_count": 94, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAEXCAYAAAC9NcJWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8TPf+x/HXTCYJsYSSiK262KqKFEWpXK6tCKqqWqXUEm3DrSpqV0qoqEt10dqKqrVUVWmv3upPI7VUbcW1t7ZsUkksSSYzvz/U1AgyiZMxiffz8ejjIWe+530+ZzL3cT858z3na7Lb7XZEREREROSWzHe6ABERERGRvECNs4iIiIiIC9Q4i4iIiIi4QI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAvUOIuIiIiIuECNs4iIiIiIC9Q4i4iIiIi4QI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAssd7qA6yUmXsBms99yTIkShUlISLntYxmVY2SWJ9ZkZJZqcm+Op2apJvdnqSb3Z6km92epJvdn5dWazGYTxYsXyna2xzXONps9y8b56jijjmeU/FyTkVmqyb05npqlmtyfpZrcn6Wa3J+lmtyfld9rupamaoiIiIiIuECNs4iIiIiIC9Q4i4iIiIi4wOPmOIuIiEjekJFhJTExDqs17bZyYmPN2Gy2267HqBwjszyxJiOzPL0mi8WH4sUD8PIypuVV4ywiIiI5kpgYR4ECfhQqFITJZMpxjsVixmq9/YbJqBwjszyxJiOzPLkmu93OhQtJJCbGUbJkaQMq1FQNERERySGrNY1ChYreVtMskltMJhOFChW97W9ErqXGWURERHJMTbN4MqM/n5qqISIiIoYoUrQgBXyNby0up1pJTrpkeK5Idnl84+xf1AcfX99M2wMCijj+nZaayvkk4y7Di4iISPYV8LUQOuhLw3O/mtqe5CzGnDlzmv79w1ix4iun7Y0a1WHz5u2G15RbvvzyC/z8/GjevJXL+3TqFMp7782idOkyjm3Dhr3BmTOnuXTpIufOJVC2bHkAXn65P3v27KJatYd5/PEnDK19w4Z1pKSk8PTTnQ3N9SQe3zj7+Poyc1jPW44Jj5gHqHEWERGRvG3v3t0EB9e+7ZyIiEgAfvllO3PnfszMmR87XqtXr4GhN/VdFR0dRe/e/QzN9DQe3ziLiIiI3K51677i55+jSEpK4vTpU9StW5833ngTq9XK1KmTOHr0COfOnePeeyswceI7WCx+LF36GatXr8TLy4vHH3+CV14ZwNmzZ5g48S0SE89RoEABhg4dRcWKlfj66zUsWbIIk8lElSoPMXDgEPz8/Khf/1HHFe91675i584djBgxlk6dQmnZsjVbt27h0qXLjBz5FsnJSWze/CM7dmyjRImSVKpUmSlTJhITE4PZbOaVV/rz6KN1SUo6z7hxo4iNjeG++x4gLS17Fw8nTBhL7dp1qFnzUYYNe4MyZcpy9OhhqlR5iODg2nzzzVqSk5OYODGS++67n/379zFjxrukpl7G378YgwcPp0yZsk6ZNpuNs2dPU7ZsOaftS5Ys4ptvvsZsNvHQQw8zZMiI2/tF3mG6OVBERETuCnv27GbChHf49NMlREX9H0eOHGbv3t1YLN7MmjWPpUtXkZp6mS1bfmLfvr2sWrWCTz5ZwPz5n3Pw4AEOHNjP1KmTCAlpysKFy3jppb58+ukcjhw5zIIFc5k582MWLFhKgQIFmTfvkyzr8ff355NPFtChQ0cWLpxL3br1aNSoMb1796NevQZMnx5JmzbtmDt3EZMmvcvkyRO4ePECs2d/ROXKVVmwYCkdOz7DuXMJOX5Pjhw5RI8evVi8eCUHDvzG2bNnmDVrHs2atWTNmi9IT09n0qS3GTNmAnPnfkaXLi8wefKETDn79/9G1aoPO22zWq0sWjSfOXMWMmfOIsxmM3FxsTmu1RPoirOIiIjkeSZT5muBdrvd6akKjzxSAz+/QgCUKVOWpKTzBAfXpmhRf1auXMbvvx/n5Mk/uHTpEr/++gsNGz5B4cKFAZg+/QMAfv31F8aOvdI4NmjQiAYNGrFy5VIaNnwCf/9iALRr9xQREW9lWXO9eo8D8MADFdm06b+ZXt++fSsnTpxg9uxZwJVG9NSpk+zcuYOxYycCUKvWo5mu/mbHPfeUoHLlqgAEBARSu3ZdAIKCSrNz52n++OMEp0+f5M03X3fsc+HChUw50dE/Ub/+407bLBYL1avXoHfv7jzxRAgdOz5DQEBgjmv1BGqcRUREJM8rWrQIFy6kOG1LTDxHkSJFHT/7+Dg/bMBut7N58yZmz57FM890oXXrdvz555/Y7XYsFucWKT4+Dl/fAk4r0Nntdo4fP4bNZr+uGjsZGRlO40wmE1ar1WmUj4+P05jrZWTYmDHjQ4oW9f/rfBIoWrQYJpPJaYU9Ly+vG70lLvH29nb6+fqsjAwbZcqUZf78xX/9nEFi4rlMOb/++gsvvNAj0/aIiKns27eH6OgoBg0awOjR4w2Zw32naKqGiIiI5Hl+foUoX/5efvhho2PbmjWrqFPnsVvut337Vpo2bUabNu0oUaIEu3btxGbLoGbNYKKjo7h48SJWq5WxY0dw4MBv1KoVzH/+8+1f+/7MO+9MIDi4Nps3/0hS0vm/jrua4OA6ABQrVoxjx4781aT/mOV5eHl5OZru2rXr8MUXywE4duwoL7zwLKmpl6lT5zG+/fYbAPbv38epUyez+W65rkKF+0hKSmLXrp0AfP31GsaOdZ6n/Oeff1KwoB++1z0FLTExka5dO/HAAxXp3bsfdevW48iRQ7lWqzu4fMV58uTJJCYmMmnSJPbv38/IkSNJSUmhTp06vPXWW1gsFk6fPs3gwYNJSEjg/vvvJzIykkKFCuVm/SIiIuIhLqda+Wpq+1zJdcXYsW8zefJE5s2bjdWazoMPVuL114fecp/Q0Kd4660R/Pe//8Hb24eHH67O6dOn6dChIx07dqZfv57YbHZCQppQt2497r23ApMnv82qVSv+ujlwJPff/wDduvUkPLwvVquVKlUeYvDgYQC88soAhgwZyD33lKBGjVqcP//nLeupU+cxZs36gMKFCzNw4BDeeWcCL77YBbvdzpgx4/HzK0SvXmFMmPAWL7zQmQoVKtzWVI2s+Pj4MH78JKZPjyQtLQ0/v0KMHOk8DWXr1i3Uq1c/077FixenffuO9OnTHV/fApQqFUTr1qG5Vqs7mOw3+m7gOlu2bGHgwIH84x//YNKkSbRt25a3336bWrVqMXz4cKpXr87zzz9PWFgY7dq1o02bNrz//vtcvHiRwYMHZ6ughIQUp688AgKKuPQ4uri4rJ7wmFlAQJEc7ZebWZ5Yk5FZqsm9OZ6apZrcn6Wa3J91N9S0Z89egoIq3HaWUY9GM/IRa/m5JiOz8kJNZ8+eyPQ5NZtNlChRONvZWU7V+PPPP5k2bRr9+l15Lt+pU6e4fPkytWrVAqBjx46sX7+e9PR0tm3bRsuWLZ22i4iIiIjkB1lO1Rg9ejQDBw7kzJkzAMTGxhIQEOB4PSAggJiYGBITEylcuLBjMv3V7dmVk+7/yvGKZD3IwP1yM8sTazIySzW5N8dTs1ST+7NUk/uz8ntNZrMZi8WY26U8LcfILE+sycgsT6/JbDYb9rm/ZeO8fPlySpcuTYMGDfjiiy+AG9/1aTKZbro9u240VcMVmqqRN7JUk3tzPDVLNbk/SzW5P+tuqMlms3nU1/15YdpAfsvKCzXZbLZMn/ucTtW4ZeO8bt064uLiaN++PefPn+fixYuYTCbi4+MdY+Li4ggMDOSee+4hJSWFjIwMvLy8HNtFRERERPKDW14PnzdvHmvXruXLL79kwIABNG3alIiICHx9fdmxYwcAq1evpnHjxnh7e1OnTh3WrVvntF1EREREJD/I0USSyMhIIiIiePLJJ7l06RLdu3cHYMyYMSxbtozWrVuzfft2XnvtNUOLFRERERG5U1x+jnPHjh3p2LEjAFWrVmXFihWZxpQtW5aFCxcaV52IiIjkGcX9fbBctzqfEaxpqSSeTzM8VyS7tOS2iIiIGMLi48vRCU8bnvvAiJWA643z0aOH6d69C2+/PZl//OOfhtbSqFEdhgwZQbt2Tzm2hYf35aWX+vLoo3UMPVZ2deoUSoECBbBYvLFarQQFBTFixFsUL178pvts3ryJAwf207t3Pzp1CuW992ZRunQZpzE3Or+pUyezZ88urNZ0Tp78g/vuewCAZ57pQnr6ld9Vhw6dDD2/Xbt+ZfPmTbz66r8Mzc0ONc4iIiKSr3z99Vf84x//ZPXqlYY3zgAff/wB9eo1oFSpIMOzb9eUKdMdje/06VP5/PMFvPLKzRvNRo1CaNQoJNvHGTToyoqMsbFneeWVPsyfvzhnBWdDdPRP1K//eK4f51bUOIuIiEi+YbVa+fbbb3j//U94+eWXOHXqJMeOHWHNmlW8886/AVi5cil//PE74eEDmTJlIrt3/0pAQCAmk4kXX+yV5ZXjZ57pwuTJb/PuuzMzvfbNN2tZvvxzbDY7VapUZciQYXh5edOoUR02b94OwLp1X7Fz5w5GjBhLp06hVKtWnUOHDvLBB7OJitrMkiWLMJlMVKnyEAMHDsHPz4/27VvSpEkzdu3aiZeXhXHjIm651LbNZuPixQuOK8Fz5swCoFevMAA6dGjDe+/NYufOHY5arkpLS2Py5PEcOLCfoKAyWS4Tfr1rj9WuXUsaNnyCXbt2UqJESZ566hlWrFhCXFwsw4ePITi4NidP/kFkZARJSUn4+voycOBgKleumil3z55dvPRSX6dt3367nsWLF2A2mylTpgyjRo3HYimYrXqzw7gnVouIiIjcYVu2bCYoKIh7763AE0/8gy+/XEn9+g05ePAASUlJAPznPxto0eJJVq9eweXLl1i8eCXDh49h//7fXDpG164vcv78edasWeW0/ejRI3z11Wo+/HAu8+cvpnjxe/jss6zv/apf/3E+//wLzp07x4IFc5k582MWLFhKgQIFmTfvEwASEhKoW/cx5s1bTM2awaxcueyGWYMH/4sePZ7nqadas23bzzRp0sylc7rWihVLAfjssxW89tobnDp1KtsZV507l8Djjzdi8eKVAPz443/54IPZvPRSX5Yt+xyACRPG8MorA1iwYDFDhoxgzJjhmXISEuIpUqQo3t7eTts/+eRDpk2bydy5i7j33vv4/ffjOa7VFbriLCIiIvnGunVf0axZSwD++c/mvPXWKPr0eYWQkCZs2vQ9devW4/z581SrVp1PP51DaOhTmEwmgoJKU7t2XZeOYbFYGDFiDAMGvEy9eg0c23fu3M7Jk38QFtYTAKs1nSpVMl85vV61atUB+PXXHTRs+AT+/sUAaNfuKSIi3nKMuzpN4YEHHmTXrp03zLp2qsbKlcsYNCicRYuWu3ReV/366w7atbvyQIjy5e/lkUdqZGv/69Wv3xCAoKDS1KhRC4BSpYJITk7i4sWL7N//GxMnjsNkArsdLl26xPnzfzreB4Cff97i9F5f1bDhE7z8ci+eeOIfhIQ0pVKlKrdVa1bUOIuIiEi+cO7cObZs+YkDB/azfPkS7HY7yclJ/PDDRlq0aM3s2R+SnJxE8+atADCbvbDbc7ZS3QMPVHRM2bgqI8NG06bNeO21wQB/LRz392rIdrsdk8mE1Wp1yvL1vfIkkmtXTv5rDzIyMpzGWa22m67YfL2WLVszbdo7nD9/PtM+GRnWW+xpcnpfvLy8sjzWrVx7lfj6LJvNho+PL/PnL3as+BcbG0PRov5O46Kjo244V/u1197g8OH2bNmymfHjR/HSS31p06btbdV7K5qqISIiIvnC+vXrqF37MVatWseKFV+xcuVaund/iS+//ILq1R8hPj6eDRvW0aLFkwDUrVuP//znW+x2O/HxcezcuQOTyeTy8a5O2di3bw8AwcG1+fHHH0hMPIfdbmfq1AiWLPkMgGLFinHs2BHsdjubN/94w7zg4Nps3vwjSUnnAVizZjXBwTl/UseOHVsJDCxFsWLF8PcvxrFjRwH47be9TqtAX69Oncf47rsN2Gw2zp49w549u3NcQ1YKFy5MuXLl2bDhygJ627ZF8+qrzvOYMzIyiIuLJSjI+WZMq9VKly5PUaxYMbp160mrVm343/8O5lqtoCvOIiIiYhBrWupfj44zPtcVX3+9hj59XnHa1rHjMyxevIATJ47zz3825+eft1C2bDngylSIQ4f+R/fuz1KiREmCgko7rv5269aFKVOmU7JkwE2Pd3XKRq9e3QCoVKkyPXv2YcCAftjtdipVqkL37lembfTrF86QIQO5554S1KhR64Y33FWsWIlu3XoSHt4Xq9VKlSoPMXjwMJfO/arBg/+FxeKNzZaBt7cPb701EYBmzVqwadP3vPDCM1SpUpXKlW8+paFjx2c4duwIXbt2IiioNA888GC2asiuMWPeZsqUiSxevACLxZtx4yY6/QGzb98eHn74kUz7WSwWevUK47XXXsHXtwCFCxdh5MixuVqrye7KtX43SkhIcfqqIiCgCDOH9bzlPuER84iLS872sQICiuRov9zM8sSajMxSTe7N8dQs1eT+LNXk/qy7oaY9e/YSFFThtrOufkXv7pyoqM3Y7XYaNnyClJQUevbsypw5Cyha1P+O1ZTXsvJCTWfPnsj0OTWbTZQoUTj72bddnYiIiEgedN999zN+/Gg++eRDAHr3Dss0t1bkWmqcRURE5K5UpkxZPvxwzp0uQ/IQ3RwoIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gLNcRYRERFDFCnmSwFvH8NzL6enkfyna4+kE8lNLjXO06dPZ8OGDZhMJjp16kTPnj0ZNmwYO3bsoGDBggCEh4fTvHlzoqKiiIiIIDU1lSeffJKBAwfm6gmIiIiIZyjg7UPnpS8bnrvs2Q9J5taN85kzp3nmmXa0a/cUQ4aMcGw/dOggPXt2ZfjwMbRuHUqPHs8zf/7ibNdw5sxpnnuuI/fd94DT9tDQDjz9dGenbevWfcXOnTsYMWJsto9zrQkTxrJjxzaKFvXHbrfh7e3NwIFDefjh6jfdJz4+jkmTxhMZOYMJE8YSHFyb1q1DncbMmTMLs9lEz55/LzTy9ddrWL58CQDHjx+lXLnyWCzePPJITdq0CWX16pW8+eao2zqf66WlpfH66+HMnPmxobm5KcvGeevWrURHR7NmzRqsViutW7cmJCSEvXv3smjRIgIDAx1jL1++zPDhw1m4cCGlS5cmLCyMTZs2ERISkqsnISIiIuLvX4yff95CRkaGY2nnjRu/o1ix4o4xOWmarypZMuC29s+J3r37ORrfn37axL///Q6ffLLgpuNLlgwgMnJGto/Tpk072rRpB0CnTqFMmTKd0qXLOF5/881q2c7Myq5dv1Cr1qOG5+amLBvnxx57jAULFmCxWIiJiSEjIwNfX19Onz7NqFGjOH36NM2bNyc8PJzdu3dToUIFypcvD0BoaCjr169X4ywiIiK5rmDBglSqVJldu3by6KNXlqreujWaOnUec4xp1KgOmzdvZ86cWcTHx/HHH78TE3OWtm3b8+KLvXJ87PXrv+bTT+dQqFBhgoKCKFjQD4AdO7YzdepkvLy8ePjhGhw/fpSZMz/m5Mk/iIyMICnpPL6+BRg4cDCVK1e95TFSUlIoXrwEAL/8sp25cz92XK29enU5OLg2/fuHsWLFV077Ll68gDVrVuHvX4wiRYrc8qr19a49Vnh4XypXrsL27VtJTU1l0KChLF36OceOHeHZZ5/n2We7cvHiRd59dzJHjx7BZrPRtWt3mjdvlSk3OjqKJk2aOW07fPgQ77wzgYyMDHx8fBg+fAzly9/rcq25zaWpGt7e3syYMYO5c+fSqlUrMjIyqF+/PuPGjcPPz4+wsDBWrFiBn58fAQF/L00ZGBhITExMtgrKySoucGUFI3ful5tZnliTkVmqyb05npqlmtyfpZrcn5XfazKbzVgs7nnOQFbH8fK68vqVpaU38thjj/Hbb/uoVKkSdvuVleKuZlgsZsxmE0eOHGbWrDkkJyfTqVM7OnfuQpEif78/1x7Ty8tMfHwcPXs+73TcMWPG4+9fjA8/fI8FCz7H39+fQYMG4OdXCMjgrbdGMXXqdCpVqsy7707BZLpSx4QJY3njjaFUqVKVY8eOMnToIJYtW+WUbTKZmDNnFsuXf86lS5eIiTnLlCnTsFjMeHmZHVlXx5rNJsf7YLGYHdsOHTrA11+vYcGCzzGZTPTu/WKW76mX19+/22uPdTVz8eLlzJ49i3ffncyiRUtJTEyke/fn6Nq1GwsXzuWhh6oxdux4LlxIoU+fntSoUcOx1PlVv/22jwEDBjpqBli+fDFdu3bjn/9sznffbeDAgb3cf/99t/zd38i152Y2mw373Lt8c+CAAQPo06cP/fr1Y8uWLbz//vuO17p168bq1atp1SrzXxPXrjXuihstue0KLbmdN7JUk3tzPDVLNbk/SzW5P+tuqMlmsxm23HJWsjpORsaV1xs0aMRHH31AWpqVb7/dQJMmzdm48VtsNrsjw2q1YbPZCQ6ujcnkRdGixShSpCjnzydRsGAhIPOyzRkZNkqWDGDevMxTNf773/9Qvfoj+PtfmRLSvPmT7NixjYMHD1G8eHHuv78iVquNJ58M5X//iyQpKYX9+/cxfvxYR8bFixdJSDiHv38xxza73U6vXmGOqRpHjvyPl1/uw/z5i8nIsGG3/31Odrsdm83ueB+sVptj27Zt26hfvyE+PgUAaNKkGXb7rX93GRl/v37tsex2O4899jhWq43AwCAefvgRLBZfAgKCSE5Oxmq1sXXrz6SmXuarr74E4NKlSxw6dJhSpf6e+nHmzGkCA0tht5scx7FYzNSv35DIyMlERf3E448/QdOmTbP9Gbv+d2ez2TJ97nNtye0jR46QlpbGQw89RMGCBWnRogXr1q2jWLFitGzZErjyy7JYLJQqVYr4+HjHvrGxsU5zoEVERERyk59fISpWrMTu3b/yyy/b6NcvnI0bv73hWB+fv58AYjKZsNvtNxyXFZPJ5HTR7+r8arPZfMNMm82Gj4+v03zp2NiYLJf7rlKlKmXLluXgwf1O87YBrFbrLeuz2/9uJL28vG7rDx6L5e/20csrcytps2UwatR4qlS5MvXk3LmETOcWHR1F/fqPZ9q3SZNmVK9eg59++j+WL/+c6OifGDp0ZI5rNVqW36+cPHmSkSNHkpaWRlpaGhs3bqRu3bpMnDiR8+fPk56eztKlS2nevDk1a9bk2LFjnDhxgoyMDNauXUvjxo3dcR4iIiIiADRt2oyPPppJlSrVnJq83FKjRi1++20PcXGx2Gw2vv/+OwDuu+9+kpKSOHLkMADffbcek8lE4cKFKVeuPBs2rANg27ZoXn21703zrzpz5jRnzpymYsXK+PsX4/TpU6SmppKUdJ5du3bedL86deoSFbWZlJQUUlNT+fHH/xpw1jf36KN1Wb16BQDx8fG8+OJzxMScdRqzdesW6tVrkGnf0aOH8dtv++jQ4Wl69+7HwYMHcrXW7Mry0xQSEsKuXbvo0KEDXl5etGjRgvDwcIoXL85zzz2H1WqlRYsWtG3bFoBJkybRv39/UlNTCQkJueH0DREREcl/LqensezZD3MlNzsaNmzMpEnj6d27X7aPFR8fxxtv/ItFi5bc8LUePZznONeqFcxrrw3+679XKFCgIPfddz9w5R6xsWPf5u23R2Mymbn33gr4+voCMGbM20yZMpHFixdgsXgzbtzEG05vnT37I5Yt+xyAtLRUXn31NcfNcg0aNKRbt86ULl2GmjWDb3pOlSpV4ZlnnqN37+4UKVKEUqVKZ/t9yY6XXurD1KmT6datMzabjVdeGeA0vzktLY3k5GTuuadEpn27devJ5Mlv8+mns/Hy8qJ/f896rLHJntPvJXLJjeY4zxzW85b7hEfM0xznPJKlmtyb46lZqsn9WarJ/Vl3Q0179uwlKKjCbWddPyf1TucYlWWz2Zg1ayY9evShYMGCLFmyiLi4uBw3g552fkbmGJl1fc7ZsycyfU5zbY6ziIiIiGSf2WzG39+fPn26Y7F4U7p0acMXERH3UuMsIiIikku6d+/J88+/eKfLEIO45+GLIiIiIiJ5nBpnEREREREXqHEWEREREXGBGmcRERERERfo5kARERExRPEiPlgK+Bqea72cSmJy9p7lLJIb1DiLiIiIISwFfPmp/dOG5zb8ciVk0TifOXOaZ55pR7t2TzFkyAjH9kOHDtKzZ1eGDx9D69ah9OjxvNNS19nRqFEdNm/eftPX4+PjmDRpPJGRM9i8+UdOnvydF17oftPxw4a9wZkzp7l06SLnziVQtmx5AF5+uT979uyiatWHaNQoJEe13syGDetISUnh2We7GJp7t1DjLCIiIvmCv38xfv55CxkZGXh5eQGwceN3FCtW3DEmp02zK0qWDCAycgYABw/uz3J8REQkAL/8sp25cz9m5syPHa/daDlqI0RHR+VoRUW5Qo2ziIiI5AsFCxakUqXK7Nq1k0cfrQPA1q3R1KnzmGPM1avGc+bMIj4+jj/++J2YmLO0bdueF1/s5dJxfvllOwsXzqNAgQIcP36MBx+syJgxE4iPj6N//zCmTJnOl19+AUDZsmVo1So02+cyYcJYgoNrExxcm2HD3qBMmbIcPXqYKlUeIji4Nt98s5bk5CQmTozkvvvuZ//+fcyY8S6pqZfx9y/G4MHDKVOmrFOmzWbj7NnTTstfAyxZsohvvvkas9nEQw897HTFXpzp5kARERHJN5o0ac5//7sRgP3791GxYiW8vb1vOPbw4UNMm/Y+H388n0WLPiU52fXlyPfu3c3AgUP47LMVxMSc5eeftzheu//+B2jfviPt23ekbdv2t3dCwJEjh+jRoxfLlq3iwIHfOHv2DLNmzaNZs5asWfMF6enpTJr0NmPGTGDu3M/o0uUFJk+ekCln//7fqFr1YadtVquVRYvmM2fOQubMWYTZbCYuLva2a86vdMVZRERE8o1GjZ7gk08+xGazsXHjdzRt2pyNG7+94dgxBRekAAAgAElEQVRHH62Dt7c3xYvfQ9GiRblwIYUiRYq4dJz773+QwMBSAFSocD/JyUmGncP17rmnBJUrV8VsNhMQEEjt2nUBCAoqzc6dp/njjxOcPn2SN9983bHPhQsXMuVER/9E/fqPO22zWCxUr16D3r2788QTIXTs+AwBAYG5di55nRpnERERyTf8/ApRsWIldu/+lV9+2Ua/fuE3bZx9fHwc/zaZTNjtdpePczv7Ztf1V8yvzt++KiPDRpkyZR3ztzMyMkhMPJcp59dff+GFF3pk2h4RMZV9+/YQHR3FoEEDGD16PMHBtY07gXxEUzVEREQkX2natBkffTSTKlWqYbHcmWuEXl5eZGRkuOVYFSrcR1JSErt27QTg66/XMHas8zzlP//8k4IF/fD1dX5cYGJiIl27duKBByrSu3c/6tatx5Ejh9xSd16kK84iIiJiCOvl1CuPjsuF3Oxo2LAxkyaNz9HTI+Lj43jjjX+xaNGSbO97rVq1HmXChLGULFmSatWqM3v2R44nbhjNx8eH8eMnMX16JGlpafj5FWLkyLecxmzduoV69epn2rd48eK0b9+RPn264+tbgFKlgmjdOvs3M94tTPbc/G4hBxISUrDZ/i4pIKAIM4f1vOU+4RHziItzfUL/tdk52S83szyxJiOzVJN7czw1SzW5P0s1uT/rbqhpz569BAVVuO0si8WM1WrzmBwjszyxJiOz8kJNZ8+eyPQ5NZtNlChRONvZLk3VmD59Oq1bt6ZNmzbMmzcPgKioKEJDQ2nRogXTpk1zjN2/fz9PP/00LVu2ZMSIEVit1mwXJSIiIiLiabJsnLdu3Up0dDRr1qxh5cqVLFy4kAMHDjB8+HA++OAD1q1bx969e9m0aRMAgwcPZtSoUWzYsAG73c6yZcty/SRERERERHJblo3zY489xoIFC7BYLCQkJJCRkUFSUhIVKlSgfPnyWCwWQkNDWb9+PadOneLy5cvUqlULgI4dO7J+/fpcPwkRERERkdzm0s2B3t7ezJgxg7lz59KqVStiY2MJCAhwvB4YGEhMTEym7QEBAcTExGSroJzMN7lyLNeeu2jUfrmZ5Yk1GZmlmtyb46lZqsn9WarJ/Vn5vSaz2YzFYswDujwtx8gsT6zJyCxPr+nK86+N+dy7/FSNAQMG0KdPH/r168fx48czvX6zZxiaTKZsFXSjmwNdoZsD80aWanJvjqdmqSb3Z6km92fdDTXZbDaPusEsL9yolt+y8kJNNpst0+c+pzcHZtk4HzlyhLS0NB566CEKFixIixYtWL9+vdPDt2NjYwkMDKRUqVLEx8c7tsfFxREYqNVnRERE7gb+RQvi42v8k27TUq2cT7pkeK5IdmX56T558iQzZszg888/B2Djxo106dKFd955hxMnTlCuXDnWrl3L008/TdmyZfH19WXHjh3Url2b1atX07hx41w/CREREbnzfHwtjBu01vDc0VPbZjnmzJnTPPdcR+677wFMJkhPt1KyZEmGDx/jWBo7p2bP/oiqVR+iUaOQHGccOXKY8eNHAxATc5aCBQtStKg/3t7efPLJp/To8bxj5T8jvf56f8aNi6Bw4ZxNhRVnWTbOISEh7Nq1iw4dOuDl5UWLFi1o06YN99xzD/379yc1NZWQkBBatWoFQGRkJCNHjuTChQtUq1aN7t275/pJiIiIiJQsGeDUfH700UymTZtCRETkbeXmZCGV6z34YEVHbRMmjCU4uLbTQiO50TRfvHgRmy1DTbOBXPo+ZcCAAQwYMMBpW4MGDVizZk2msVWrVmXFihXGVCciIiKSQzVrBrN5848AdOoUSrVq1Tl06CAffDCb6Ogoli//HJvNTpUqVXn99aF4eXkREfEWR48ewWQy0aFDJ9q1e8rR6AYH12bYsDcoU6YsR48epkqVhwgOrs0336wlOTmJiRMjue+++3NUa6NGddi8eTtz5swiJuYshw8f4s8/E+nT52V27NjGb7/tpVKlyowdOxGTycTChfP573+/IyPDRr169Xn55QGZ7iv75Zdt1K5d12nbhQspjB07gnPnErDb4aWX+tzWlfS7jXG3QYqIiIh4CKvVyvfff8cjj9R0bKtf/3E+//wLEhMT+eqr1Xz44Vzmz19M8eL38PnnC9mzZxdJSUnMm7eY9977kD17dmXKPXLkED169GLx4pUcOPAbZ8+eYdaseTRr1pI1a74wpPajR4/w8cfzGTVqHBER4+ja9UUWLFjKwYMHOHz4ENHRURw8uJ9PPlnAvHmfERcXx7fffpMpJzo6ivr1H3fa9uOPPxAUVIZPP13M6NHj2bXrV0NqvlsYP4NfRERE5A6Ij4+jR4/nAUhPT+Ohhx7m5ZfDHa9Xq1YdgJ07t3Py5B+EhfUEwGpNp3Llqjz1VCd+//0Er78eTsOGjXj55f6ZjnHPPSWoXLkqAAEBgY4rukFBpdm587Qh51G3bj0sFgtBQaUpUaIk99//gON4yclJbN++ld9+20uvXt0ASE29TKlSQZlyDh8+RMWKlZ22Va9eg1mz3ichIY769RvSo0cvQ2q+W6hxFhERkXzh+jnO1/P19QUgI8NG06bNeO21wcCVucAZGRkUKVKEhQuXsW3bz/z8cxQvvfQCCxc6r4Ds7e3t9PO1TxkzisXyd3t2o3ybLYPOnZ+jS5cXAEhOTs407vjxY9x7b4VM0zfKl7+XxYtXsG1bND/+uIklSxbx2Wcrsv344LuVpmqIiIjIXSU4uDY//vgDiYnnsNvtTJ0awbJli9m8eRPjxo3i8ccb8frrgylYsCCxsdlbyM0dHn20Lhs2rOPixYtYrVaGDRvEDz9sdBoTHf0T9es3zLTvypVLmTNnFv/8Z3MGDXqTxMREUlJS3FV6nqcrziIiImKItFSrS4+Oy0mukSpVqkzPnn0YMKAfdrudSpWq8MILPfDy8uK//91It26d8fHxJSSkKQ8+WDHb+bNnf0TJkiXp0KGToXVf1ahRYw4f/h99+/bAZsugXr3HefJJ5/d927atjB07IdO+rVq1YezYEXTt2hkvLy9eeqkvRYoYt5pkfmey32i5vzvoRisHzhzW85b7hEfM08qBeSRLNbk3x1OzVJP7s1ST+7Puhpr27NlLUFCF2866m1axy29ZeaGms2dPZPqc5nTlQE3VEBERERFxgRpnEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF+g5ziIiImII/6I++Py1Op+R0lJTOZ+UZniuSHapcRYRERFD+Pj6Zrn2Qk6ER8wDsm6cv//+P8yfP5eMjAzsdhutWrXh+ee7A/DGGwN4881RlCwZkOM6vv56DcuXLwHg+PGjlCtXHovFm0ceqUmbNqGsXr2SN98cleP8G0lLS+P118OZOfNjQ3MlZ9Q4i4iISJ4XFxfLjBnvMmfOIvz9i3Hx4kXCw/ty770VaNQohMjIGbd9jDZt2tGmTTsAOnUKZcqU6ZQuXcbx+ptvVrvtY1xv165fqFXrUcNzJWdcapxnzpzJN998A0BISAhDhgxh2LBh7Nixg4IFCwIQHh5O8+bNiYqKIiIigtTUVJ588kkGDhyYe9WLiIiIAH/++SdWq5XLly/j7w9+fn6MHDkWH58rU0c6dQrlvfdmsXPnDqKiNhMfH0dsbAydOz9HTEwMv/yyjaJF/YmMnIFvDqab/PLLdubO/ZiZMz8mPLwvlStXYfv2raSlpfKvfw1mxYqlHDt2hGeffZ5nn+3KxYsXeffdyRw9egSbzUbXrt1p3rxVptzo6CiaNGnmtO3w4UO8884EMjIy8PHxYfjwMZQvf2/O3jjJliwb56ioKDZv3syqVaswmUz07t2b7777jr1797Jo0SICAwMdYy9fvszw4cNZuHAhpUuXJiwsjE2bNhESEpKrJyEiIiJ3t0qVKvPEE/+gc+f2VK5cheDgOjRv3opy5cpnGrt//z4WLFhCcnIynTqFMnXqe/zrX4Po3z+MrVu38MQT/zCkpgULljJ//if8+99T+PTTJfz5ZyI9elxpnD/9dA5VqjzEyJFvceFCCv36vUS1atUpW7acU8Zvv+3llVf+5bRt2bLFdOnyAk2bNmPjxm/Zt2+PGmc3yfKpGgEBAbz55pv4+Pjg7e3Ngw8+yOnTpzl9+jSjRo0iNDSUGTNmYLPZ2L17NxUqVKB8+fJYLBZCQ0NZv369O85DRERE7nJDhw5nxYqv6NChEzExZwgL68mmTd9nGvfIIzUpVKgwQUGlAahduy4AQUGlSU5ONqSW+vUbOjIffvgRChQoQFBQaVJSruRv376VL79cSY8ez/Pqq325fPkyx44ddco4c+Y0gYFBeHl5OW1v0KAh06a9Q0TEOCwW7xteqZbckeUV50qVKjn+ffz4cdatW8fixYvZunUr48aNw8/Pj7CwMFasWIGfnx8BAX9Pug8MDCQmJiZ3KhcRERH5S1TUZlJTL9GkSXPHXOQ1a1axdu2XhIQ0dRrr7e3t9LPFYvwtX9dmXt/4AthsGYwaNZ4qVaoCcO5cAkWL+juNiY6Oon79xzPt26RJM6pXr8FPP/0fy5d/TnT0TwwdOtLgM5AbcfmTcujQIcLCwhg6dCgPPPAA77//vuO1bt26sXr1alq1yvwXj8lkylZBJUoUztb4qwICirh1v9zM8sSajMxSTe7N8dQs1eT+LNXk/qz8XpPZbMZicc+SEFkdp1Chgvz731N4+OFHKFOmDHa7nd9/P0aVKlUd+3p5mTGbTZhMJqe8q/82mUyYzX+/ltUxvbzMTtlXc00mk9NrNzpenTqP8eWXKxk+fBTx8XG8+OJzfPLJPKepJdu2RTN06IhM+44YMZTmzVvSqdMzPPjgA/z731Nz9Hsw6ndn5GcgN2oym82Gfe5dapx37NjBgAEDGD58OG3atOHgwYMcP36cli1bAmC327FYLJQqVYr4+HjHfrGxsU5zoF2RkJCCzWZ3/OzqicbFZf+rlYCAIjnaLzezPLEmI7NUk3tzPDVLNbk/SzW5P+tuqMlms2G12hzb0lJT/3p0nLHSUlOdjnMjNWvWplevvgwaNACr1QpAvXoNePHF3o59MzJs2Gx27Ha7U97Vf9vtdmy2K68NHvwvevUKo2rVmz8pIyPD5pR9Nddutzu9dqPj9ejRm6lTJ/Pcc52w2Wy88soAgoLKOsalpaWRlJSEv39xxzaLxYzVauOFF3oyefLbzJ37CV5eXoSHD8zy/bne1azbZVSOkVnX59hstkyfe7PZlKOLtVk2zmfOnOHVV19l2rRpNGjQALjyAZg4cSL169fHz8+PpUuX8tRTT1GzZk2OHTvGiRMnKFeuHGvXruXpp5/OdlEiIiKS91xZpCT7C5UY1TC1aRNKy5ZtbvjaihVfAVC6dBlatw51bN+8ebvj3yNGjHX8e9q0925Z09W8qx59tA6PPloHwOmZy23btqNVq7aZjleoUGFGjx5/03wfH5+bPru5UqXKzJ694Kb7Su7JsnGeM2cOqampTJo0ybGtS5cu9O3bl+eeew6r1UqLFi1o2/bKh2LSpEn079+f1NRUQkJCbjh9Q0REREQkr8mycR45ciQjR954wnnXrl0zbWvQoAFr1qy5/cpERERERDyIe2b0i4iISL5kt9uzHiRyhxj9+VTjLCIiIjlisfhw4UKSmmfxSHa7nQsXkrBYfAzLNP7BhSIiInJXKF48gMTEOFJS/rytHLPZjM12+zcHGpVjZJYn1mRklqfXZLH4ULx4QBZ7uE6Ns4iIiOSIl5eFkiVL33aOpz5uL7/WZGRWfq/pepqqISIiIiLiAjXOIiIiIiIuUOMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLlDjLCIiIiLiAjXOIiIiIiIuUOMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLnCpcZ45cyZt2rShTZs2vPPOOwBERUURGhpKixYtmDZtmmPs/v37efrpp2nZsiUjRozAarXmTuUiIiIiIm6UZeMcFRXF5s2bWbVqFatXr2bfvn2sXbuW4cOH88EHH7Bu3Tr27t3Lpk2bABg8eDCjRo1iw4YN2O12li1blusnISIiIiKS27JsnAMCAnjzzTfx8fHB29ubBx98kOPHj1OhQgXKly+PxWIhNDSU9evXc+rUKS5fvkytWrUA6NixI+vXr8/1k3CFf1EfAgKKOP0HZNrmX9TnDlcqIiIiIp7IktWASpUqOf59/Phx1q1bR7du3QgICHBsDwwMJCYmhtjYWKftAQEBxMTEZKugEiUKZ2v838cqkuWYmcN6ZjkmPGIeAQG+txxjTU/H4u19yxpuNsYVrpxLXs5STe7N8dQs1eT+LNXk/izV5P4s1eT+rPxe07WybJyvOnToEGFhYQwdOhSLxcKxY8ecXjeZTNjt9kz7mUymbBWUkJCCzfZ3jqsnHheXfMvXs/MGupKVVRMeHjEvy5ybZedkv7ySpZrcm+OpWarJ/Vmqyf1Zqsn9WarJ/Vl5tSaz2ZSji7Uu3Ry4Y8cOevTowaBBg3jqqacoVaoU8fHxjtdjY2MJDAzMtD0uLo7AwMBsFyUiIiIi4mmybJzPnDnDq6++SmRkJG3atAGgZs2aHDt2jBMnTpCRkcHatWtp3LgxZcuWxdfXlx07dgCwevVqGjdunLtnICIiIiLiBllO1ZgzZw6pqalMmjTJsa1Lly5MmjSJ/v37k5qaSkhICK1atQIgMjKSkSNHcuHCBapVq0b37t1zr3oRERERETfJsnEeOXIkI0eOvOFra9asybStatWqrFix4vYrExERERHxIFo5UERERETEBWqcRURERERcoMZZRERERMQFapxFRERERFygxllERERExAVqnEVEREREXKDGWURERETEBWqcRURERERcoMZZRERERMQFapxFRERERFygxllERERExAVqnEVEREREXGC50wXc7fyL+uDj6+u0LSCgiNPPaampnE9Kc2dZIiIiInIdNc53mI+vLzOH9bzlmPCIeYAaZxEREZE7SVM1RERERERcoMZZRERERMQFLjfOKSkptG3blpMnTwIwbNgwWrRoQfv27Wnfvj3fffcdAFFRUYSGhtKiRQumTZuWO1WLiIiIiLiZS3Ocd+3axciRIzl+/Lhj2969e1m0aBGBgYGObZcvX2b48OEsXLiQ0qVLExYWxqZNmwgJCTG8cBERERERd3LpivOyZcsYM2aMo0m+ePEip0+fZtSoUYSGhjJjxgxsNhu7d++mQoUKlC9fHovFQmhoKOvXr8/VExARERERcQeXrjhPmDDB6eeEhATq16/PuHHj8PPzIywsjBUrVuDn50dAQIBjXGBgIDExMdkqqESJwtkaf9X1j3C7HUZleUJNnlBDbuUYmaWa3J+lmtyfpZrcn6Wa3J+lmtyfld9rulaOHkdXvnx53n//fcfP3bp1Y/Xq1bRq1SrTWJPJlK3shIQUbDa742dXTzwuLvmWr2fnDTQqK6sco7NulJ2T/XIzSzW5N8dTs1ST+7NUk/uzVJP7s1ST+7Pyak1msylHF2tz9FSNgwcPsmHDBsfPdrsdi8VCqVKliI+Pd2yPjY11mgMtIiIiIpJX5ahxttvtTJw4kfPnz5Oens7SpUtp3rw5NWvW5NixY5w4cYKMjAzWrl1L48aNja5ZRERERMTtcjRVo2rVqvTt25fnnnsOq9VKixYtaNu2LQCTJk2if//+pKamEhIScsPpG2K8Gy3dDVq+W0RERMQo2Wqcv//+e8e/u3btSteuXTONadCgAWvWrLn9yiRbXFm6G7R8t4iIiEhOaeVAEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF6hxFhERERFxgRpnEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF6hxFhERERFxgRpnEREREREXqHEWEREREXGB5U4XkBVrehrhEfOyHCMiIiIikptcbpxTUlLo0qULH330EeXKlSMqKoqIiAhSU1N58sknGThwIAD79+9n5MiRpKSkUKdOHd566y0slpz35xZvH8YNWnvLMaOntgVSc3wMEREREZGsuDRVY9euXTz33HMcP34cgMuXLzN8+HA++OAD1q1bx969e9m0aRMAgwcPZtSoUWzYsAG73c6yZctyrXgREREREXdxqXFetmwZY8aMITAwEIDdu3dToUIFypcvj8ViITQ0lPXr13Pq1CkuX75MrVq1AOjYsSPr16/PvepFRERERNzEpTkUEyZMcPo5NjaWgIAAx8+BgYHExMRk2h4QEEBMTEy2CipRonC2xv99rCI52i83szyxptvJys/vi2pyf5Zqcn+WanJ/lmpyf5Zqcn9Wfq/pWjmafGy32zNtM5lMN92eHQkJKdhsf+e4euJxccm3fD07b6BRWVnlGJll5PndLD8n++VWjpFZqsn9WarJ/Vmqyf1Zqsn9WarJ/Vl5tSaz2ZSji7U5apxLlSpFfHy84+fY2FgCAwMzbY+Li3NM75C8w7+oDz6+vpm2X9ucp6Wmcj5JTzMRERGRu0eOGueaNWty7NgxTpw4Qbly5Vi7di1PP/00ZcuWxdfXlx07dlC7dm1Wr15N48aNja5ZcpmPry8zh/W85ZgrjwhU4ywiIiJ3jxw1zr6+vkyaNIn+/fuTmppKSEgIrVq1AiAyMpKRI0dy4cIFqlWrRvfu3Q0tWERERETkTshW4/z99987/t2gQQPWrFmTaUzVqlVZsWLF7Vf2l/T0jL+e03zrMSIiIiIiucnjVw709vai89KXbzlm2bMfuqkayQ5X5kqD5kuLiIhI3uDxjbPkXa7MlQbNlxYREZG8waUFUERERERE7nZqnEVEREREXKCpGpIn6NnSIiIicqepcZY8wchnS9+oCdcNiyIiIpIVNc5y19ECLyIiIpITmuMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLtDNgSI5pCXFRURE7i5qnEVySEuKi4iI3F00VUNERERExAV3zRVna3raX1f+sh4nIiIiInK9u6Zxtnj7MG7Q2izHjZ7aFki95RhXmnA14JLXaZlzERERZ7fVOHfv3p2EhAQslisx48aN4/fff+fDDz8kPT2dHj160LVrV0MK9SSuNOGuNOAiRjPyhkWtsCgiIuIsx42z3W7n6NGj/PDDD47GOSYmhoEDB/LFF1/g4+NDly5dqFevHhUrVjSsYBG5Od2wKCIiknty3DgfPXoUk8lEnz59SEhIoHPnzhQqVIj69etTrFgxAFq2bMn69esJDw83rOCcSk+z/nUVOOtxIiIiIiLXy3HjnJSURIMGDRg7diyXL1+me/fuPPnkkwQEBDjGBAYGsnv37mzllihROEf1XP9V9PUy0ly7umbGlmVWenpGlk14enpGljng+nxpV7JcZVSWajIuy5qejsXb+5b73GhMbtaU2zme+LvyxJqMzFJN7s9STe7PUk3uz8rvNV0rx41zcHAwwcHBAPj5+dGpUyciIiLo16+f0ziTyZSt3ISEFGw2u+NnV088Li75lq8HBBSh89KXs8xZ9uyHhmS5knM1y5X50q7U5CqjsvJiTUZmGX1+rswnzqvv+Y2yc7JfbmZ5Yk1GZqkm92epJvdnqSb3Z+XVmsxmU44u1ua4cd6+fTvp6ek0aNAAuDLnuWzZssTHxzvGxMbGEhgYmNNDiEg+caObFnNyw6JWaxQRkTspx41zcnIyM2bMYMmSJaSnp7Nq1SqmTJnC4MGDOXfuHAULFuTbb79l/PjxRtab77gy91rzriWvM+oJHbr5UURE7qQcN85NmjRh165ddOjQAZvNxvPPP0/t2rUZOHAg3bt3Jz09nU6dOlGjRg0j6813zHabIWO0wItI9hh1FVxERO4et/Uc59dee43XXnvNaVtoaCihoaG3VdTdxMvXx6X50lk9E9rIBV5E7gZ6TrWIiGTXXbNyoIhIbtC8axGRu4ca53zClUfkXR0nIsbRvGsRkbuHGud8wtvby+XH7YmIZ3Ll6rW7r1zrirqIyN/UOEsmri7KIiLGMnLetVE3P+qKuojI39Q4SyZ2u9mQMXrSh8ido5sfRUSMp8ZZMjHqEXl60oeIXEuPABSRvE6Ns2Ri1CPyjLxh0cjpI5qKInJnGHUV3Mh51544r1xEPJcaZ8k1Rt6waMfLkDHg2pVwV66CayqKyJ1h5LxrT5xXrhsyRTyXGmfJE1xpwl19YogrV8JduQruaqPu6jgjGNnM68q8SPZ44tLymh4jYiw1znLXMaoJ98RHABrZzBt5lV9E7gxNjxExlhpnEQ9g1NVdI5t5I6/yG3V+mh4jcmdoesztZekqf/6hxlnEA1i8jbkh01O5+wq3K+M0FUUk7/PE6TGeeJVfjKPGWURynSdOjzGqUc/v88p1lV/kzvDUxYfu9ivqapxF5K5kVDPvyrcFf2fd+hsDI6+6G9WEG3l+njhlxxP/WBExmpHzyu/2xZXUOIuIeAgj55V74vQfT5yy44l/rOT3Pww8sab8zhOb3bw6FUWNs4iIuIUnTtkx8o8VU9YLqro0xhO/xTCymdcfK/rDAPLuYxdzpXH+6quv+PDDD0lPT6dHjx507do1Nw4jHi7Nmu7S/+GkWdPdUI2ISO4yatVVI3nilCRP/GYlv/+x4omr7xp5fu68om544xwTE8O0adP44osv8PHxoUuXLtSrV4+KFSsafahsMbKJcyXL1WbQqKw0a5qL5+e+v3J9LN6EDvoyy3FfTW0PXM79giRbjPycG8UTP+eeWJOI3Dme+MeKkVO3jMrKq09JMtntdrshSX9ZtWoV27ZtY+LEiQC8//772O12wsPDXdo/MfECNtvfJRXx98XH4n3LfdKs6SSfv/UvqESJwvR6+9ssjz9nZAsSElJuO8uVHCOzihf1weztk+XxbOlpJJZQ2ZgAABiSSURBVGbxVYUnvudG1WRklis5Rma5uyYjP+dGnZ8nfs49sSYjs/L751zved6tycgsTzw/T6zJyKw7fX5ms4nixQtlefzrGd44z5o1i4sXLzJw4EAAli9fzu7duxk/fryRhxERERERcSuz0YE36sNNJpPRhxERERERcSvDG+dSpUoRHx/v+Dk2NpbAwECjDyMiIiIi4laGN86PP/44W7Zs4dy5c1y6dIlvv/2Wxo0bG30YERERERG3MvypGqVKlWLgwIF0796d9PR0OnXqRI0aNYw+jIiIiIiIWxl+c6CIiIiISH5k+FQNEREREZH8SI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAvUOIuIiIiIuMDwx9EZbcuWLRQoUIDg4GDmzp3L1q1bqV69On379sXHx+dOlyciIiIidwmvsWPHjr3TRdzMO++8wxdffMEPP/zATz/9RExMDJ07d2bfvn388MMPNG3a9E6XKLdgtVpZuHAh69evp0CBApQpU8bx2nvvvUe9evXcmuOpNYl4Kn3ORSQvSkxMpGDBgrmS7dFTNf7v//6PJUuWsHjxYn7++WciIyMJCQlh7Nix7N69O1tZVquVJUuWkJCQQFpaGjNnziQsLIwZM2aQmpp6R7KMrOl6r7/++m3tb0TW6NGj2b9/P4GBgQwZMoSPPvrI8dr333/v9hxPrclms7FkyRJefPFFWrVqRevWrenRowdz584lPT3d5ZyUlBSmT5/OrFmzOH/+PGFhYQQHB9O9e3dOnTqVrZqMyvLEmozOup4n/G/PqCxP/JwbmZWcnMzUqVM5e/YsSUlJDBs2jLZt2zJ06FDOnTuXrZqMyvLEmozOyisuXrzokVn5waVLl4iMjKRZs2Y88sgj1KxZk+bNmzN+/HiSk5OzlXXmzBkGDx7M6NGj+eOPPwgNDaV169Y0b96cAwcOGF67Ry+A0rZtWz777DMuXrxIq1at+OGHHyhe/P/bu/e4nu89gOOvRNJxzbSZHi7nMM3CkNpxKYyU7uVUIuKRU0dzOS7lEnKkYmZum0c0nFy21FJoPWyKTYXK8XBbbpHZyi3XdO/3OX84/R5M7Pfju/od+zz/WX1//V69f79VPr/6/j6/NpSVleHu7k5qaqrGrVmzZgEQGhrK+vXrn2o+ePCATz75pN5bSnV8fX3R09N76tiZM2cwNzcHIDY2VtObpmjL2dmZPXv2AHDnzh38/Pxwd3fHz88PV1dXkpKS6rWjqzMtXLgQlUqFm5sbJiYmANy8eZPk5GT1DxdNBAYG0qVLF8rKyjhy5AhjxozBy8uLAwcOsHv3bjZv3qzxTEq1dHEmJVu6+r2nVEsXv86VbPn7+9OjRw/+/ve/s2TJEkxNTXF0dCQtLY3s7GxiYmI0nkmpli7OpHRLpVKxa9cuUlNTuXHjBo0aNcLExARra2t8fX1p0qSJRp2SkhK++OILDA0N8fb2Jjg4mOzsbHr27ElkZCQdOnTQeKa6uLm5sXv37ldqvEpLqfsJHi8uly5dyvXr1xk+fDgBAQHo6+sDEBAQQHR0dL12goKCeO+993B3d6ddu3YA3Lp1i6SkJI4fP86mTZs0vm3jx4/H1taW0tJStm7dSlhYGLa2thw/fpxPPvmEnTt3atzSiNBhSUlJwtLSUvTv319s27ZNuLq6iuXLlwtXV1exadMmrVqOjo7qt52cnIRKpVK/b29v3yAtpTrbt28X1tbWIjExURw7dkwcPXpUjBgxQhw7dkwcO3ZM447SLUdHR/Ho0SP1+9evXxdDhw4Ve/bsEa6urvXe0dWZRo4c+dzLRo0apXHHxcVF/fagQYOeuszZ2VmrmZRq6eJMSrZ09XtPqZYufp0r2Xry/7WTk9NTlz3587k+W7o4k9Kt0NBQMX/+fJGTkyOuXr0qrl69KnJyckRoaKiYNWuWxp2AgAARFRUlFi9eLGxtbcWWLVtEaWmp2LNnj5g4caJWM5mbmwszMzNhZmYmunfvrv5v7dsN0VLqfhJCCD8/P5GQkCBOnz4tAgIChL+/v6iqqhJCPP3zsL46L1rjODg4aNz59ecdPHjwU5dp+2+DJnT6VA0XFxe+//57Dh48yLhx44iKiqJt27bMnj0bf39/rVpGRkZcvHgRgI4dO1JUVATAjRs3tH6SoVItpTpjx47liy++ICEhgcLCQqysrPjTn/6EpaUllpaWGneUbo0bNw43NzeOHDkCwJtvvklMTAyrVq0iPz+/3ju6OlPz5s3rPPXoxIkTGBkZadxp3LgxGRkZpKam8ujRI86cOQNAQUGBVvMo2dLFmZRs6er3nlItX1/fZ77ON23a1KBf50q2WrZsSWZmJgA9evTgxx9/BOD8+fMYGhpqNZNSLV2cSelWTk4Oy5Ytw8LCgo4dO9KxY0csLCxYunQpeXl5GneuX79OSEgIYWFhlJaW4ufnR7NmzXBycqK4uFirmeLi4nj//fdZs2YN586dIy8vDzMzM/XbDdFS6n4CuHfvHh4eHpibm7NhwwZatGjBnDlztGoo2TE2NiY1NRWVSqU+JoQgJSWFNm3aaNVq3rw5X331FTExMdTU1HDw4EEA/vOf/9C0aVOtZ/stOn2qhpJOnDjB1KlT6du3L82aNSMzM5PevXtz9uxZlixZgo2NTb23lJwJoLKyklWrVlFYWEh+fj4pKSlaXf/3aF25cgVDQ0Pat29PfHw858+fp2fPnty9exc/P7967+jiTHl5eQQHB1NRUaH+k9Xt27cxMDDg448/xszMTKPO2bNniYiIQKVSMXfuXBYsWIChoSHXr18nIiICa2trjWdSqqWLMyndAt383lOiFR4ejouLC2+88Qbt27dXH3/06BHx8fEN8nWuZOvy5ctMmTIFIyMj2rVrR3Z2Np06deLOnTusX7+eXr16aTyTUi1dnEnp1ujRo1m0aNEz1zlx4gQRERHEx8dr3JkxYwYPHz5kwYIFxMbGYm5uTkFBAdOnTyc5OVnjmQDKy8uJioqioqKC0NBQxo0b99KnaijRUup+qm1FRkbSrVs3AKqqqvD396dTp06cOHGCvXv31munqKiIJUuWkJOTQ4sWLYDH59H379+fRYsWPfVE5N/yyy+/sGbNGlQqFdOnTyckJITLly9jaGjIunXr6Nmzp8YtTfxhFs7w+HyorKwsrl69Sk1NDW+88QaDBg3irbfearCWUp0DBw5QVFSEjY0NP//8M/v27SMiIoK4uDi8vLwapLV161a2bduGSqXigw8+oKioiBEjRpCenk6fPn346KOP6rWjqzPVKiws5ObNmwghiI+PJyIiQuvGkyoqKpg8eTKfffaZ+gdTQ7d0caZXbR0+fJjevXvTsmVL4uPjOXHiBP369cPDw0PrOXStZWFhQdu2bZk1axa2trZaz/BrR44coXHjxjRp0oSMjAyys7OxtLR8qe1FlWp9++236t2bAN555x2WLFlCnz59tJpHyZYuzqRkq64HPrdu3aJp06ZaPfD58ccfWbZsWZ0PgCMjIxk8eLBWc9VKT09nw4YN3L9/n2+//falGkq0XnQ/rVy5ku7du2vcOn78OHPmzOGf//wnTk5OwOMnLM6ePZuDBw9q/BtspTq1qquruXv3LkIIjI2NadxYmV2S79y5g7GxsSKtX/vDLJwLCwtfeLk2j26UainVWblyJWfOnOEvf/kLqamphISE4OLiAmj/hAQlW05OTiQkJHD79m0cHR05evQoTZs2pbKyktGjR6ufdFRfHV2dad68ec8cS09PV2+3GBkZWa+d130mJVvLli0jLy+PTz/9lJ07d3Lq1Ck+/PBDfvjhB0xNTQkNDdV4Jl1subq6snLlSsLCwqioqGDixIkMGzZM6z/Nw+PtRXNzc6mursbU1JRGjRrh5uZGeno6NTU1hIeH13srOjqakydPMmjQINLT07GwsMDQ0JCEhATGjx+Pp6enxjMp1dLFmZRu1XrylwVvvvmmVv8O16WiooILFy7QqVMnWrZs+UqtW7ducejQIf72t7+9UkeJlpL3U1VV1TNPKszLy+Pdd99tkM6TZs6cyapVq7S+XnV1NUlJSTRr1gxbW1uioqLUTxINDg6mdevWLz1TXXT+BVCUEhAQQEFBASYmJtQ+VtDT00MIgZ6eHmlpafXeUqrz/fffs3v3bho3boyvry+TJk3CwMAAe3t7tH1cpGRLpVJhYGBAhw4dmDRp0lPnGtXU1NR7R1dnat26NUlJSQQGBqp/2B89elTr81p/3RFCvFRHyZYuzqRkKzMzk71796Kvr8/BgwfZtWsXBgYGeHl54ejo+H/f0tPTo2vXrmzfvp2srCzi4uJYtmwZnTt35q233tJqN6LDhw+TnJxMZWUlNjY2ZGRk0KRJE6ytrdUPzuu79c0337B7924aNWqEh4cHkydPJjY2Fg8PDzw9PbVaDCrV0sWZlG5VV1ezY8cOioqK+PDDD+nfv7/6snXr1jF16lStO8OHD8fCwkL9Z3ltOnVp164dR44cUWTh/LKt6upqEhISGDFiBD169GDjxo2cPn1a/SJw2py/q1KpiI2NJS0tjVu3btGkSRM6duyIg4MDo0aNqvfO83b+GT9+PKDdLkKhoaGUlpZSWVnJtm3b6NWrF59++ikHDhxg0aJFrF27VuOWJv4wC+cvv/wSHx8fFi9eTL9+/XSipVSndqEN0LlzZ6Kjo5k4cSLGxsbPfGHWZ8vW1pZx48YRGxur/gF27tw5QkNDsbe3r/eOrs4UEhKCtbU1q1evZubMmVhZWfHvf/8bNze3V+7ExsZq3VGypYszKdkyNDSkuLgYExMT2rZtS2lpKQYGBpSVlWn9J0ddbD35YHnAgAEMGDCAqqoqzp8/z7Vr17SaSQjBw4cPKS0tpby8nJKSEtq0aUN5ebnW+zgr1aqoqKC8vBwjIyPKy8u5d+8e8PiJ240aaffceaVaujiT0q1FixahUql45513CAkJwdPTk8DAQODxX340XfA+2QkODn7pDii7kFOqFRISAsDIkSNZvnw5paWl+Pj4cOjQIebPn6/VA9eoqCj1+cj79+/HzMyM9u3bExsby5UrVwgKCqrXjp2dHRs3bmTGjBl06NABIQQLFy58qdMcz549y969e6mpqcHGxoavvvoKgK5du2r9oFwjiu/TocNOnjwpQkNDdaqlRGfdunVizJgx4uTJk+pjubm54oMPPhB9+/ZtsJYQQmRnZz/1fn5+vjh06FCDdXR1JiGEuHv3rpg2bZqIiorSenun36Pzus+kRCstLU0MHjxYREVFifDwcOHo6CiWLVsm7O3txddff/1/39q1a5dWn/dFlNxeVKlWdHS0cHZ2FitWrBDOzs5iy5Yt4ueffxYuLi7i888/12ompVq6OJPSrSe3sysuLhZOTk5iy5YtQgjttjRTqiOE7m4HWetVt9F98r6qqakR3t7eQgghKioqXri94+/VEUKIixcvCh8fH7F7924hhNB6i8tazs7O4vLly+LkyZOiV69e4tq1a0KIx18T2m51qYk/1ML5dZaVlSUuXbr01LHCwkIRHh7eoC1Je7t27dJ6D9Lfs6NkSxdnetXWTz/9JDZv3iwWL14sQkNDxerVq5964Pk6tJRSVlYmSkpKhBBCnDt3TsTExIiMjIwGbWVlZYmYmBiRlZUlhBCipKREnDt37qVmUqqlizMp2dLF/fSFUG4hp1TL09NTXLhwQQghRFBQkPjll1+EEI9vp7YPDEaNGiVu376tvn7tPCUlJVrtm6xUp1ZFRYWIjIwUU6dOfelF7uHDh4WNjY0YPHiw+O6774SdnZ2YNm2aGDp0qPr+V9If5smBkiRJkiQ1vLi4ODZv3kxYWBh//etfAcjPz8ff35/i4uI69+j+PTtP0qXtIJXcsjYxMZE1a9bQp08fTp48yaxZs+jZsycTJkxg6tSpGu+2o1QHlN8NrLCwkCFDhmBkZERubi7dunUjNzdX69ZvkQtnSZIkSZLqVUFBAQYGBk/tEFFSUkJCQoJW+4Mr1fm1zMxMUlJSXnlb0FdtKbmN7pUrVzh//jxmZmZ07tyZyspKSktLtd51QomO0ruBnT17lj//+c+v3NKEXDhLkiRJklRvdG1LV11tvc4zOTk5qXfwKigoYNKkScyZMwd7e3tcXV1JSkrSqKN0SxN/mF01JEmSJElqeHVtxVrrVbd0fZnO81qvy5a1z2vVaoj7XOjobmCafkJJkiRJkqR68fDhQ+Hk5CRyc3N1oqOrrdd5Jl3eDey36IeFhYUpvxyXJEmSJEl6loGBAe+99x6JiYnqV+tsyI6utl7nmSwtLXn77bdp06aN+qWx3377bRwcHCgvL8fa2rpBWpqQ5zhLkiRJkiRJkga0e7kfSZIkSZIkSfqDkgtnSZIkSZIkSdKAXDhLkiQBvr6+REdHP3N88+bNBAYGcvr0aaZNm1bndU+dOsWiRYte6fMPGzaM06dP1znXsGHDcHFxwdXVFQcHB0JCQigrK3ulzydJkiRpTy6cJUmSgLFjx5KYmPjM8V27djFu3Dh69uzJ2rVr67zupUuXuHHjxu82W3BwMMnJySQlJbFv3z7KysqeO4skSZL0+5ELZ0mSJGD48OGUlpaSm5urPpadnY0QgoEDB3Ls2DEcHR0BmDt3LoGBgTg4ODB//nzWrl1Lbm4u8+bNe+rjgKfev337NlOmTMHLy4thw4bh6+tLcXGxVnPq6elhZWXF5cuXATA3N2f69OmMHDmS06dPk5ubi6enJ05OTri7u/PDDz+orxsdHY2dnR2Ojo4EBQXx8OFDAOLj43F3d8fV1RU/Pz/y8/MByM3NZfTo0bi7u+Pu7s7+/ftfeLyyspKIiAjc3NxwdnZm7ty5lJSUALBz506cnZ3x8PDAx8eHS5cuaXW7JUmSdIFcOEuSJAGNGzfGy8uLhIQE9bG4uDh8fHzq3ES/vLxc/TK606ZNw8LCgsjIyBd+jpSUFN5//33i4uJIS0vD0NCQ5ORkrea8f/8+qampWFlZAVBVVcXQoUPZv38/pqamTJs2jQULFrB3716WL1/OnDlzuHbtGmlpaSQmJhIXF8e+ffswNTVl+/btZGdnk5SUxI4dO0hKSsLf35+pU6cCsG7dOiZOnEhiYiIREREcPXr0hcc3btyIvr4+iYmJ7NmzBxMTE1auXElNTQ0RERHExMTw9ddf4+npyfHjx7W63ZIkSbpAvnKgJEnS/3h6euLg4EBJSQnV1dVkZGTwvK3u+/Xrp3V/woQJ5ObmsmXLFgoKCrh48SK9e/f+zeutWLGCDRs2qF+pa+jQoYwfP159uYWFBfD4XOuOHTuqm926daNv375kZ2eTl5eHnZ0drVq1AmDevHnq9tWrV/H29lb37t+/z71797C3t+df//oX6enpDBgwgJkzZwI89/ihQ4d4+PAhWVlZwONFfdu2bdHX18fOzg5vb2+GDBnCwIEDcXJy0vr+kyRJamhy4SxJkvQ/JiYmDBgwgG+++YbS0lJGjhxJixYt6vxYIyOjOo/XviRuraqqKvXbH3/8MadOncLDwwMrKyuqq6ufednaugQHB2NnZ/fcy2tnUalUz1wmhKC6uhp9ff2nfnP+4MEDHjx4gEqlwsXFhTlz5qgbN2/epFWrVnh7ezN06FAyMzM5fPgw69evZ8+ePc89rlKpmD9/PjY2NgA8evSIiooKAFauXMmFCxfIyspi06ZNJCQksGHDht+87ZIkSbpEnqohSZL0BB8fH/bu3UtSUhJjx47V6Dr6+vpUV1cDYGxsTGFhIcXFxQghOHDggPrjMjIymDBhAq6urrRt25asrCxqamoUm713795cuXKFU6dOAXDx4kVycnKwtLRkwIABfPfdd+pzjtetW8fWrVsZOHAgKSkp3Lx5E4Avv/ySCRMmAODt7U1eXh7u7u4sXbqUBw8ecP/+/eceHzRoEDt27KCyshKVSsXChQtZtWoVd+7cwcbGhtatW+Pn58eMGTM4f/68YrdbkiSpvsjfOEuSJD3BysqK8PBwWrVqRffu3TW6Tp8+fVi9ejVBQUF89tlneHt74+HhQbt27RgyZIj644KCglixYgWff/45+vr69O3bl59++kmx2Y2NjVmzZg1Lly6lvLwcPT09IiMj6dKlC126dOHSpUuMGTMGgK5du7J06VKaN2/O5MmTmTRpEnp6ejRv3pz169ejp6fH7NmziYiIYPXq1TRq1IiPPvoIU1PT5x6fMmUKy5cvx83NjZqaGt59913mzp1L8+bN+cc//oGfnx+Ghobo6+sTHh6u2O2WJEmqL/IltyVJkiRJkiRJA/JUDUmSJEmSJEnSgFw4S5IkSZIkSZIG5MJZkiRJkiRJkjQgF86SJEmSJEmSpAG5cJYkSZIkSZIkDciFsyRJkiRJkiRpQC6cJUmSJEmSJEkD/wWuO0zueGt2dQAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[[\"Unaccounted Time / s\", *cols]].plot(kind=\"bar\", stacked=True, figsize=(12, 4));"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Make it relative to the total program run time\n", "* **Slight complication**: Our virtual processes as indexes are not unique; we need to find new unique indexes\n", "* Let's use a multi index!"]}, {"cell_type": "code", "execution_count": 95, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th>id</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>Min. Init. Time / s</th>\n", " <th>Max. Init. Time / s</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " <th>Unaccounted Time / s</th>\n", " </tr>\n", " <tr>\n", " <th>Nodes</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th rowspan=\"3\" valign=\"top\">1</th>\n", " <th rowspan=\"2\" valign=\"top\">2</th>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>420.42</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>88.18</td>\n", " <td>1.14</td>\n", " <td>1.20</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " <td>46560664.0</td>\n", " <td>825499</td>\n", " <td>7.48</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>2.09</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>5</td>\n", " <td>202.15</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>48.48</td>\n", " <td>0.70</td>\n", " <td>1.20</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " <td>47699384.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>2.43</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>200.84</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>46.03</td>\n", " <td>46.34</td>\n", " <td>0.70</td>\n", " <td>1.01</td>\n", " <td>7.87</td>\n", " <td>142.97</td>\n", " <td>46903088.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>3.12</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <th>2</th>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>164.16</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.20</td>\n", " <td>40.03</td>\n", " <td>41.09</td>\n", " <td>0.52</td>\n", " <td>1.58</td>\n", " <td>6.08</td>\n", " <td>114.88</td>\n", " <td>46937216.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>2.45</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <th>2</th>\n", " <th>12</th>\n", " <td>6</td>\n", " <td>141.70</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.30</td>\n", " <td>32.93</td>\n", " <td>33.26</td>\n", " <td>0.62</td>\n", " <td>0.95</td>\n", " <td>5.41</td>\n", " <td>100.16</td>\n", " <td>50148824.0</td>\n", " <td>813743</td>\n", " <td>7.27</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>2.28</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" id Runtime Program / s Scale Plastic \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 5 420.42 10 True \n", " 8 5 202.15 10 True \n", " 4 4 5 200.84 10 True \n", "2 2 4 5 164.16 10 True \n", "1 2 12 6 141.70 10 True \n", "\n", " Avg. Neuron Build Time / s \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 0.29 \n", " 8 0.28 \n", " 4 4 0.15 \n", "2 2 4 0.20 \n", "1 2 12 0.30 \n", "\n", " Min. Edge Build Time / s \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 88.12 \n", " 8 47.98 \n", " 4 4 46.03 \n", "2 2 4 40.03 \n", "1 2 12 32.93 \n", "\n", " Max. Edge Build Time / s Min. Init. Time / s \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 88.18 1.14 \n", " 8 48.48 0.70 \n", " 4 4 46.34 0.70 \n", "2 2 4 41.09 0.52 \n", "1 2 12 33.26 0.62 \n", "\n", " Max. Init. Time / s Presim. Time / s \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 1.20 17.26 \n", " 8 1.20 7.95 \n", " 4 4 1.01 7.87 \n", "2 2 4 1.58 6.08 \n", "1 2 12 0.95 5.41 \n", "\n", " Sim. Time / s Virt. Memory (Sum) / kB \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 311.52 46560664.0 \n", " 8 142.81 47699384.0 \n", " 4 4 142.97 46903088.0 \n", "2 2 4 114.88 46937216.0 \n", "1 2 12 100.16 50148824.0 \n", "\n", " Local Spike Counter (Sum) Average Rate (Sum) \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 825499 7.48 \n", " 8 802865 7.03 \n", " 4 4 802865 7.03 \n", "2 2 4 802865 7.03 \n", "1 2 12 813743 7.27 \n", "\n", " Number of Neurons Number of Connections \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 112500 1265738500 \n", " 8 112500 1265738500 \n", " 4 4 112500 1265738500 \n", "2 2 4 112500 1265738500 \n", "1 2 12 112500 1265738500 \n", "\n", " Min. Delay Max. Delay Unaccounted Time / s \n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 1.5 1.5 2.09 \n", " 8 1.5 1.5 2.43 \n", " 4 4 1.5 1.5 3.12 \n", "2 2 4 1.5 1.5 2.45 \n", "1 2 12 1.5 1.5 2.28 "]}, "execution_count": 95, "metadata": {}, "output_type": "execute_result"}], "source": ["df_multind = df.set_index([\"Nodes\", \"Tasks/Node\", \"Threads/Task\"])\n", "df_multind.head()"]}, {"cell_type": "code", "execution_count": 96, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzoAAAGmCAYAAAC0ivGlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl4TGf/x/H3JJNEEBEklmgtRSxJiKX2eiyljwqeUpRSa1ttKK1aat/3Wkvty2OnaumCX1utqqralaqtSqjELtGQZeb3hyfDSCITMpKZfF7X1evKnHOf7/09J4meb+77nNtgNpvNiIiIiIiIOBGXjE5AREREREQkvanQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaejQkdEJBMICAggNDSUZs2a0bx5cxo1akSLFi04cuRIqse2b9+eLVu2PLLN+fPn6dGjBwARERG0adMmXfLu2bMnzZo1o1mzZlbn0L59+3Tt52G//PILwcHBlr5DQ0Np3bo1P/zwg6XNwIED2bVr1yPjDBo0iN9++y3ZfYnHh4eHExISkuYcv//+e6ZNmwbAt99+y6hRo9IcQ0REHp8xoxMQEZF7lixZQp48eSyfFyxYwKhRo1i9evUTx7548SJ//vknAPnz52fVqlVPHBNg+vTplq8DAgKSnEN69ZOcZ599lo0bN1o+Hz9+nC5dujBr1izKly/P6NGjU42xa9cuWrduney+xOPDw8MfK78jR45w8+ZNAOrXr0/9+vUfK46IiDweFToiIplQfHw8f//9N97e3pZts2fPZtu2bZhMJvz9/Rk6dCj58+e3Ou7TTz/lm2++4e7du8TExNCvXz/q1avHoEGDiIiIoEuXLgwfPpzQ0FD27dtH3bp1mTlzJkFBQQD07t2bKlWq0LZtW5v6e5Tw8HBCQ0M5cOAAM2bM4Ny5c5w/f57IyEiCg4OpWbMmGzZsIDw8nA8//JAmTZrYfJ7JKV26NO3bt2fx4sVMmTKF9u3b065dOxo0aMDIkSPZv38/bm5uFC5cmLFjxzJ37lwiIyPp06cPEyZMYNKkSXh7e3PmzBlee+01tm3bRrt27QgMDMRkMjFw4ECOHj2K0Whk0KBBVKhQgRkzZnD9+nWGDBkCYPncrFkzVq1aRUJCAl5eXhQpUoStW7cyZ84cLl26xLBhw7hw4QJms5nmzZvTtWtXwsPD6dixI3Xq1OHQoUPcvHmT3r1707hxY5uvuYiI3KepayIimcQbb7xB06ZNqVWrFo0aNQJg7NixAGzYsIETJ06wdu1aNm7cSJ06dRg0aJDV8RcuXGDXrl0sW7aMzZs307t3b6ZPn46rqyujRo3i2WefZcGCBZb2Li4utGjRgs8//xyAmzdvsmvXLkJDQ23qL6327dvHvHnz+Oqrr9i1axenT59m+fLlDB48mBkzZth8no9SunRpTpw4YbXt4MGD7Nmzh02bNrF+/XqeeeYZ/vjjD3r37o2fnx+TJk2ifPnyAOTKlYuvvvqK9u3bW8W4c+eOpTB777336NWrF7GxsSnmUb58edq0aUPjxo3p3bu31b4+ffpQtWpVNm/ezMqVK9m0aRNffvklcG+KYa1atVi3bh19+vRh4sSJNp+7iIhY04iOiEgmkTjt69ixY3Tr1o2QkBDy5s0LwPbt2zly5AgtWrQAwGQyERMTY3W8v78/48ePZ/Pmzfz1118cOnSI27dvP7LPFi1a0LJlS/r3788XX3xB3bp18fLysqm/tKpRowZeXl4A+Pn5Ubt2beDeFLQbN27YfJ6PYjAYyJYtm9W2UqVK4erqyquvvmopIoODg5M9vnLlysluz5Url2VkpXbt2pjNZs6cOWNzXon++ecf9u/fz8KFCwHw8vLilVdeYceOHZQvXx43Nzfq1KkDQNmyZS3XRURE0k6FjohIJlO2bFkGDBjAoEGDKF++PIULF8ZkMtG1a1fatm0LQGxsrOX5j0RHjx7lnXfeoWPHjtSsWZMqVaowfPjwR/bl7+9P2bJl+f7771m/fj0fffQRgE39pZW7u7vVZ6Mx6f+CnrTfI0eOUKpUKattuXLlYuPGjezfv5/du3fTq1cvOnToQMeOHZMcnz179mTjurhYT4Awm824ublhMBgwm82W7XFxcY/Mz2QyWbVP3BYfHw+Am5ubpS+DwfDIWCIi8miauiYikgk1adKEChUqMGbMGADLdKbo6GgApk2bRt++fa2O+fXXXwkMDKRTp048//zzfPvttyQkJADg6uqa4k14q1atmDdvHnfu3KFSpUo292cPT9Lv4cOHWblyJW+88YbV9u3bt9OxY0dCQkLo0aMHzZs35/jx48C965JYZDzKjRs32L59OwDfffcdHh4eFClSBB8fH44ePYrZbOaff/5h586dlmOSi50zZ07Kly/P8uXLAYiKimLDhg3UqFHDpnMUERHbaURHRCSTGjx4ME2bNuXHH3/k1VdfJSIiglatWmEwGChYsCDjxo2zat+kSRO2bdtG48aNcXNzo3r16ty8eZPo6GhKliyJq6srLVu2ZMqUKVbH1atXj+HDh9OtWzfLNlv6s4e09Hvu3DmaNWsG3BtxyZkzJ5MmTaJ06dJW7V544QV27NhBkyZNyJ49O97e3owcORKABg0a0Lt371Rf/Zw3b162bdvG1KlT8fT0ZMaMGRiNRsv3p2HDhuTPn5+QkBDLiE316tXp0aMHbm5ulCtXzhJr0qRJjBgxgvXr1xMbG0toaCivvPIKFy5ceOzrJiIiSRnMD4+hi4iIiIiIODhNXRMREREREaejQkdERERERJyOCh0REREREXE6KnRERERERMTpqNARERERERGno0JHREREREScTqZYR+f69duYTKm/5Tpv3pxcvRqd7v3bI64j5epocR0pV3vFdaRc7RXXkXJ1tLiOlKu94jpSrvaK60i5OlpcR8rVXnEdKVd7xXWkXDM6rouLAR+fHGmOnSkKHZPJbFOhk9jWXjk4QkzFtV9MR4vrSLnaK64j5epocR0pV3vFdaRc7RXXkXJ1tLiOlKu94jpSrvaK60i5OmJcTV0TERERERGno0JHREREREScTqaYuiYiIiIi9hcTc5vo6BskJMTbfExkpAsmkyld87BHTEeL60i5Pr24Btzds+Hj44vBYHji2Cp0RERERLKAmJjbREVdJ3duX9zc3G2+kTQaXYiPT98bXHvEdLS4jpTr04prNpu4ceMK0dE38fLK/cSxNXVNREREJAuIjr5B7ty+uLt7pMtfy0XSm8HggpeXDzEx6fN2NxU6IiIiIllAQkI8bm7uGZ2GyCO5uhoxmRLSJZYKHREREZEsQiM5ktml58+ontERERERyaK8cnmSzSP9bwfv3I0n6lZMivsvXrzIO+90Y926zVbba9WqzM6de9M9H3vZuHE92bNn58UXX7L5mJYtQ5kxYw7PPFPYsm3AgD78/fdFYmL+4dq1q/j7PwNA9+49OHLkEKVLl6FWrTrpmvvWrV8RHR1Nixat0jVuZqJCR0RERCSLyuZhJPSDjeked/PkZkSle9TM57ffDhMSUumJ44wdOwmA/fv3snDhXGbOnGvZV7Vq9SeOn5zdu3fRtevbdomdWdhc6ERHR9OmTRs+/fRTChcubLXv999/Z9CgQURHR1O5cmWGDx+O0agaSkRERETS7quvNvPLL7u4desWFy9eoEqVavTp05/4+HgmTx7HmTOnuXbtGs8+W4QxYybg4ZGN1auXs3HjelxcXKhRozbvvNOTS5f+ZsyY4Vy/fo1s2bLRr99gSpQoyZdfbmLVqmUYDAYCAsrQu3dfsmfPbjWi9NVXmzlwYB8DBw6jefOXadSoMXv2/ExMzB0GDRpOVNQtdu7cwb59v5I3bz5KlizFxIljiIiIwMXFhbfeepcqVapy69ZNRowYTGRkBEWLFic2NjZN12L06GGEhFQiJKQSAwb0oVAhf86cOUVAQBlCQirx9ddfEBV1izFjJlG0aDGOHTvKlCmTuHv3Dt7eufnww48oVMjfKqbJZOLSpYv4+1vf069atYyvv/4SFxcDZcqUo2/fgU/2jcxgNj2jc+jQIV577TXOnj2b7P4PP/yQwYMHs3XrVsxmM2vWrEnPHEVEREQkizly5DCjR09gyZJV7Nr1I6dPn+K33w5jNLoxZ84iVq/+nLt37/Dzzz9x7NhvfP75OhYuXMrixSv544/jHD/+O5Mnj6NOnXr8979r6Nz5TZYsWcDp06dYunQhM2fOZenS1WTL5smiRfNSzcfb25t585bSvPkr/Pe/C6lSpSq1ar1A165vU7VqdaZNm8TLLzdl4cJljBv3MRMnjuGff24zf/6nlCpVmqVLV/PKK69y7drVx74mp0+fpGPHLqxY8RnHjx/j0qW/mTNnEQ0aNGLTpvXExcUxZswIhg4dzcKFy2nT5nXGjx+dJM7vvx+jdOlyVtvi4+NZtmwxCxb8lwULluHi4sLly5GPnWtmYNOwy5o1axg6dCh9+/ZNsu/ChQvcuXOHChUqAPDKK68wffp02rZtm76ZioiIiIhTcHFJ+sC52Wy2ehA9KCiY7NlzAFCokD+3bt0kJKQSuXJ589lnazh37izh4eeJiYnh4MED1KxZm5w5vYiPNzFt2iwADh7cz7Bh9270q1evRfXqtfjss9XUrFkbb+9767Q0bfofxo4dnmrOVavWAKB48RL88MP2JPv37t3DX3/9xfz5c4B7hcOFC+EcOLCPYcPGAFChQsUkoytpkSdPXkqVKg2Ar68flSpVAaBAgYIcOHCR8+f/4sKFcPr3f99yzO3bt5PE2b37J6pVq2G1zWg0EhgYTNeuHahduw6vvPIqvr5+j51rZmBToTN6dNJKMFFkZCS+vr6Wz76+vkRERKQpibx5cybZFh8Xh9HNLcl2X18vm9ol51Ft7RH34ZiZIe7Tvgb2ivu0rq2uga5BWuPqdyxtcXUNdA3SGle/Y2mL+2C7yEgXjMan98LdxL4eLmAAvLxycft2tFU+V69excsrF0ajCy4uBjw8sln2GwwGXFwM7Nr1I/PmzaZ169cIDW3KrVs3MRjAw8PN0ofR6MLly5fJli0bRqMRV1cDRqMLZrOZs2f/BO4VWomxXV0NJCQkWH02GAyYTAkYDPfbeXrey8fV1bpdYiyTycQnn8zB29sbgMuXL5MnTx5cXFwwGMyWOPdycrHk+iBXVxerPh88d1dXF9zc3Kyuibu70XK9DAYDBsO9onDZslUAJCQkcO3aNcv5J16jQ4cO0LFj5yT9T5w4hSNHDrN79y4++KAnw4ePpmLF+88gPdw+ue9tSh7V9uG4LgZDsr8jafXED9KYzeYk29L6WrirV6Mxmazj+Pp6MXNAp1SPDRu7iMuXbXvczdaYzhzXkXLNDHEdKVd7xXWkXDNDXEfKNTPEdaRc7RXXkXLNDHEdKdfMEPfBmCaTyS4r26cksS+j0YXI8LNJ9hfIn58N61ZSo9q9h+1XrV1DlSrPEx9vwmQyYzabLTHMZjMJCSb27NlN3boNeOmlUK5fv8q+fb8SUOI5nitWjLVrVvKflxvj7u7OoOFDad3yVcoElOabb7bRpMl/+PXX3SxcOI8PPujP6tUr6NChC7lyefP55+sJCalMfLyJ3Llzs/fnHTz7zLN8+39b8PLyIjL8LKaEeK5eCsdoiuXG5UvE3b3zvwLEhbi4eOLjTVSsWJm1a1fTsWNX/vzzDGFh3Vi7dhOVKlVh69avyJ3dg5OnThIeft4S62E3Ll+yunaJ524y3Tv/B/fduwc3EBl+lqjrV7jzTzTZjQZuXL/G9m1fUa5sWbb+3//xw487GDNiJH6FixIfb+LGjRtky+aJq6ubVT/Xr1/n3Xe7snjxcgrk8eavP09zcO9uCvvlTfF7nBjTFin9HCTLxWD1u+DiYkh2YCTVPtN8xEPy58/PlStXLJ8vX76Mn59jD3OJiIiIiH2937MXs+fOYdXaNcTHx1O0SBEGDRn5yGNCQ//D8OED2b79G9zd3QkoWYrIyEga1m/Ayy81pu/AAZhMZqpXrUqF4PL4F/Jn7qKFrFu39n8vIxhEsWLFad++E2FhbxIfH09AQBk+/HAAAO+805ORY8eQO3duypYuw62oRxeelSs/z5w5s8iZMye9e/dlwoTRvPFGG8xmM4MGjSB79hx06fIWY8YM591e71HY35/8fvnT7Ro+zM3NjX4ffMi8RQuIjY0je3ZPeoX1tGqzZ8/PVK1aLcmxPj4+NGv2Cp06vY7R1QXffPmoV7ee3XJ9Gp640PH398fDw4N9+/ZRqVIlNmzYwAsvvJAeuYmIiIiIHd25G8/myc3sEjc1/oUKMWqY9bMxuXP7EB9vonHjUBo3DrVsf/B1y0uXrgaSjhC8/O9/8/K//20VzzdfPqZNm5Vk1CE0tDmhoc2T5NS0aXOqVayQZPv82XMsXwcFBhIUGAhAgwaNaNCgkWXfhAlTkxybI0dOxo+fbNNoRlBgIPVfamKV78CBwyxfP7ju0MyZcy3XoH7detT/X1FSOiCAyeMmpNhHw4b/TnFf69btaNeuve0jL5ncYxc63bp1o2fPngQFBTFp0iQGDRrE7du3KVu2LB06dEjPHEVERETEDqJuxVjWu0nL1KK0TFkSyShpKnS+++47y9fz5t1/DV/p0qVZt25d+mUlIiIiIiLyBJ7eqzdERERERESeEhU6IiIiIiLidFToiIiIiIiI01GhIyIiIiIiTkeFjoiIiIiIOJ0nXkdHRERERByTj7c7RneP+599yqVL3PjYu1y/GWtT27/O/UWP93vTv8+HNG9ZNF36T9S05Sv07z+IJk3ur5kTFvYmnTu/ScWKldO1r7Tq2v0tPDw8MBqNxMcn4OfrS6+wHvgVTvmYnTt/4Pjx3+na9W1atgxl1qx5SW7mPxoymNdatbas9QPw6by5nDxzhri4OMLDz1O0aHEAXn21DXFx975PzZu3TNfzO3ToIDt3/sC7776XrnHTQoWOiIiISBZldPfgzOgW6R63+MDPANsKnW+2f0eNatX5ettWmrd8Ld1zmTPnE6pUqUb+/AXSPfaTGvLRIPL7+QEwb9EC1m/aSL9y5VNsX6tWHWrVqpPmft7u9iZ+hYty/nw4PXq8xeLFKx47Z1vt3v0T1arVsHs/j6JCR0REREQyREJCAt/v2MG4kaPpO3AA4eHnOXXqFJs2fc6ECVMB+Oyz1Zw/f46wsN5MnDiGw4cP4uvrh4uLgf80CbUauUhOq1avMX78KD7+eGaSfV9//QVr167EZDITEFCavn0HAPdGgjatWw/At9u/48jRo/QK60HX7m9RqmRJ/jx7lnnzl/LjjztYtWoZBoOBgIAy9O7dl+zZs9OsWSP+9a/6HD58EFdXI2PGjH/kTbfJZCIm5g7PFM4HwIIFcwDo0uUtAFq2DGXGjDkcOLCPAwf2MXDgMMuxcXFxzJg9i1OnT+Hn68etqFs2XftED/bVtGkjatV6gX1795DHx4d/N3qJL776kivXrtLr3R4ElivHxb//Zva8OURFRZHTy5tevfpQqlTpJHGPHDlE585vWm374ccdrN+4ARcXF/L7+fF+z164u7unKd+00DM6IiIiIpIhft23Dz9fX/wLFaLa88/z+eefUa1aTf744zi3bt27Yf/mm600bPhvNmxYx507MaxY8RkffTSUY8eO2dRH+/YduXnzJps2fW61/cyZ02zevIHZsxeyePEKfHzysHz5f1ONVymkIrOnz+TatassXbqQmTPnsnTparJl82TRonkAXL16lUqVnmfRohWULx/C2rWrk401Yswo3uvzPp3f6sbBQwepVT3tIyBffPUlALOmzeDNLl24FBGR5hiJrl27Sq1atZk9fQYAu/f8wrhRo3mtVWs2fbkZgKkzp9Px9Q5MnTiZAQMGMXToR0niXL16BS+vXLi5uVltX7ZyJcMHD2HKhEkU9i9M+IULj52rLTSiIyIiIiIZ4tvt3/FCzdoA1KpRk6kzZ9C1a3fq1KnLDz98R5UqVbl58yZlywayZMkCQkP/g8FgoECBglSp8rxNfRiNRgYOHErPnt2pWrW6ZfuBA3sJDz/PW291AiA+Po6AgKQjEw8rVbLU/47fR82atfH2zg1A06b/YezY4ZZ2iX0VL/4chw8fSDbWg1PXvvz6a4aOGsHadZtsOq9ER44e5aWGDQEoVLAQpUsFpOn4h1WvXpPrERfw9fWlbOl718Mvny/R0beJiYnh1OnTTJ91b3TM6OZOTEwMN2/esFwHgF9++dnqWid6vnJl+g0cSLXnn6d6tWoUL1bsiXJNjQodEREREXnqbty8wb4D+zl1+hSbv/oCs9nMrVtRfP/9tzRs2Jj582cTFXWLF198CQAXF1fMZtNj9VW8eAlefbUN48ePsmxLSDBRr14DevX6EIB//vkHg8FMzM2rAJjNZgwGA/HxCVaxEqdamUzmh3oxk5Bwv62Hx72XPBgMBswPN03Gv154gTkL5nHz5o3/HXP/oPj4+BSPMxgMVrm4urqm3tkjPDgK83Ask8mEm5sb0yZ9DIBf4aJcvPg3uXJ5W7XbvXsX77yT9CUE3Tp3oUG9+uzdv4+Pp0/jtVatqftC2p85spWmromIiIjIU/f9jh0EBwaxaO585s+ew4JP59KxY2c2blxPYGAQV65cYevWr2jY8N8AVKlSlW++2YbZbObKlcvs378Xg8Fgc3/t2r3BzZs3OXr0CAAhIZXYseN7rl+/htlsZvLksaxatRyAXLlyce78OcxmM3v2/ppsvIoVK7Fz5w5u3boJwKZNGwgJefw3uR06coR8+fKRO7cP3t65+fPPMwAcO/YbV69eSfG48sHB7Ni5A5PJROTlSI7/cfyxc0hNjhw5KFSwINt3/ADAL7/s5t13rZ/DSUhI4PLlSAoUsH75Q3x8PG+FvUuuXLl49ZUW1KvzL8787xztRSM6IiIiIllUfOzd/70hLf3jpubb7d/Rvm07q20tWrRi2bIl/PXXWerXf5FffvkZf/9771tu2vQ/nDx5gg4dWpM3bz4KFChoGV15r8/7DPloEHnz5Emxv8QpbF26tAegZMlSdOrUjZ4938ZsNlOyZAAdOnTi5uW/6dDudUaOHUPu3LkpW7oMt6KiksQrWbIU7dt3IizsTeLj4wkIKMOHHw6w+RrBvWd0jEbjvZESoxsf9nofgAYNGvLDD9/x+uuvEhBQmpIlU56O1rjRS5w7d453e/XEN58vzz77bJpySKsP3uvFrDlzWL9hA57ZszNixBirgvPo0SOUKxeU5Dij0UjbNm0YMmIYHu4e5MiRg15hPeyaqwodERERkSzq3lo3914DbTS6EBl+1qbj/AoXJT7+8aaRJZrx8dQk2/LkycO33/4EQKdO3ejUqZtl3549u6lV6wX69RtIdHQ0nTu3o+D/Rg0Sp1I9LPHNaYmKFy/B9u0/Wz6HhjYnNPT+GjtG473JTg3rN6Bh/QZJ4s2fPcfq88PHJ9q5c6/l68aNQ2natFmSa/twrAd5e+dm+vRPk2wvWLAQjRuHArBu3WbL9yys+zspxnr4+HXrNlttS3yz28N5P1iEBAUGWt5uV9i/MGNGjASS/zkIDq5AcHCFZPuvU6s2dWrVtinX9KBCR0REREQyvaJFizFy5BDmzZsNQLdub+Pl5ZXBWUlmpkJHRERERDK9QoX8mT17geVzWkagJGvSywhERERERMTpqNARERERERGno0JHREREREScjgodERERERFxOnoZgYiIiEgW5ZXbg2xu7pbPPj7l0iXunbhYom6kvJZORGQk3d55m0Yvvsi7b3W3bD9x4g86dHiNjz4aSuPGoXTs2JbFi1ekuf+IyEi69wzjmcKFMbq5Yzbf2x4a2pwWLVpZtf3qq80cOLCPgQOHpbmfB40ePYx9+34lVy5vzGYTRqMb77/fj3LlAlM85uq1a8ycPYuhAwcxdeYMgsqV47X2na3aLFhw7zXUD74G+ssvN7F27SoMBvjzzzMULFAAo9FImYDS1K9bjy3/t5Ue3d99ovN5WFxcHENHjrC8WtoRqNARERERyaKyubnTanX31Bum0ZrWs4ni0YuGenl5sf/AARISEnB1dQXgm2+2kTu3j6XN4xQ5ifL4+DBt0sfpsuaPrbp2fduyzs2OHd8zdeoE5s1bmmL7vHnyMHTgoDT38/LLTXn55aYYjS40DW3EkI8Gkd/Pz7K/ZIkSaU8+Fb8dO0q5smXTPa49qdARERERkafOM1s2ihUtxtHfjxEcGATAL7/8TOXKz1va1KpVmZ0797JgwRyuXLnM+fPniIi4RJMmzejSpVtKoVO1ZcuXLFmygBw5clKgQAE8PbMDsG/fXiaMH4WLiyulA0px/nw4Y0aM5OLffzN73hyioqLw8PDgzc5d8Stc9JF93L4djY9PXkvc2Z9Ms4yGJI7eBJYLZODQwUkWD12xYimbNn2Ot3duvLy8KFPG9pG2I7/9xso1qxkzYiQfDRlM8WLFOHTkMAkmE++99yHr1q3mzz9P07p1W1q3bsc///zDxx+P58yZ05hMJjp06EiFsqWTxN1/4AA1q9ew2nby5AnGjh1FQkIC7u7ufPTRUJ555lmbc7U3FToiIiIikiFq1ajBrp9/JjgwiJOnTlKiRElMJnOybU+dOsmsWfOJjo6iVavmtGrV5pGxr12/znt93reaujZ48Ai8vb2ZPXs6ixatIFcub/r27YWnZ3bi4+MZPnwwA/v2o1jRosxbeH/Nnqkzp/NWl248V7w4586fZ+zE8Xz2Qr0kfc6f/ylr1qzkzp0YIiIuMW7cx2m+Jr//fowvv9zEwoXLMRgMvP12pzQVOsmZ8fFUNm3ZytSpE1myZBU3blynY8d7hc6SJQsICCjDoEHDuX07mu7du9D/gw8okL+AVYw/Tp6gY/sOVttWrVpOmzavU69eA779dhtHjx5RoSMiIiIiUqVyFZatXInJZOLHn36iQYOGbNu2Ndm2FStWxs3NDR+fPOTKlYvo6ChcHxE7palr27d/Q2BgMHny3Bttadjw3+zb9yunT5/Cx8eHYkWLAtCgXj3mLVxITEwMp06fZvqsmZYYMXfucPPmDXLkyGXV54MwojjCAAAgAElEQVRT106cOE5Y2Ftpnn63f/9eqlWrSfbs90aZ6tZtQEJCQppiPKhSSEUAChQoSLlyQWTLlo0CBQoSHR0FwN69e7h79w5ffrnp3rnFxHDu/HmrQiciMhLffL6WKYaJataszcSJ4/jll13UqFGbf/2r/mPnaQ8qdEREREQkQ2T39KRY0SIcO/47h387Qp9+g1IsdNzd7780wWAwWEZp0spgMFiNGiXevLu4uGBOJqjJZMLNzY1pk+6Pzly5eoVcubxJSEg5iVKlSuPv788ff/xO3rx5MXO/bUJ8/KMyxGy+X5i5uro+UaFjNN6/3X+4UAEwmRIYPHgkAQH3pqvdvHmdu1HXrdrsO7CfSiEhSY6tV68BZcoE8tNPP7J27Up27/6Jfv3S/syRvej10iIiIiKSYWrWqMnSZcso8VwJq5tyewkOrsCxY0e4fDkSk8nEd9/9HwBFixbj1q1bnP3rLwB++PFHDAYDOXLkoFDBgmzf8QMABw4dZMDgwan2c+nS3/z990VKlChF7ty5iYiIIDY2lqioKI4e/z3F46pUeZ5du3YSHR3N3bt32bFjezqcdcoqVqzChg3rALhy5Qqvv96ay1euWLU5cPAgIRWSFjoDB/bj2LGjNG/egq5d3+aPP47bNde00oiOiIiIiGSY5ytVZsasT2jX5rU0H3v12jVGjBllNdqSKLlndCpUCKFXrw//9987ZMvmSdGixQBwc3Nj2LBRjB83ChcXA/6F/C2jSB+814tZc+awfsMG3IxG+r7/PgaDAbAe0Ul8Rgfg7t07vPtuL5555lmMRhcqV6xEWO/38PP1o1zpMimeU6lSAbz66mt07doBLy8v8ucvmObrkhadO3dj8uTxtG/fCpPJRFjYexQscH/aWlxcHLdv38Ynd+4kx3bs2IXRo0ewZMl8XF1d6dGjt11zTSsVOiIiIiJZ1J24WNa0nm2XuI+S38/P8qYxT09P1q1YZdn34Ho2O3fuBazXkAFYt24zRqMLRlNsskVOfj8/1q9aA5Ds66Xr1m1A3boNrLaZTCZ+/PEHxo8aTbZs2diweRNXr10FoLB/4VTXj0ltHZ533no72e2J16FXWA/LthYtWiVZ7yclD7+xLSgwkKDAe2v3PJhzkyZNeemlJpbPidc2R46cDBlyv53R6EJk+FnLZzc3txTPvWTJUsyfn/LrszOaCh0RERGRLCrqxl3LejcP3+A+ytNcm+ZpcXFxwdvbmw/698VoNOLn60ePd9J30U15ulToiIiIiIgAHTp04qV6dTM6DUknehmBiIiIiIg4HRU6IiIiIiLidFToiIiIiIiI01GhIyIiIiIiTkeFjoiIiIiIOB29dU1EREQki/LxcseYzeP+Z59y6RI3/s5drkelvJZORGQk3d55m0Yvvsi7b3W3bD9x4g86dHiNjz4aSuPGoXTs2JbFi1c8Vg5NW77CpnXrU9x/5cplxo0byaRJ09m5cwfh4ed4/fUOKbYfM2EcEZGRxNy5w40bN3jmmWcxm6F79x4cOXKI0qXLUKtWncfKNSVbt35FdHS0zWvqiDUVOiIiIiJZlDGbBz81a5HucWtu/AweUegAeHl5sf/AARISEnB1dQXgm2+2kTu3j6XN4xY5tsiXz5dJk6YD8Mcfv6fa/qO+/QE48ttvrFyzmvkL/2tZS6hq1ep2yXH37l107Zr8QqOSOhU6IiIiIvLUeWbLRrGixTj6+zGCA4MA+OWXn6lc+XlLm1q1KrNz514WLJjDlSuXOX/+HBERl2jSpBldunSzqZ99+/ayePECsmXLxtmzf/LccyUYOnQ0V65cpkePt5g4cRobN94b+fH3L8TzFcqn+VxGjx5GSEglQkIqMWBAHwoV8ufMmVMEBJQhJKQSW7Z8wfVr1/iobz+eKVyYk6dOMn/xIu7evUsur1y889bbFMif3yqmyWTi0qWL+PsXttq+atUyvv76S1xcDJQrF0jn119Pc75ZhZ7REREREZEMUatGDXb9/DMAJ0+dpESJkri5uSXb9tSpk0yZ8glz5y5m2bIlREVF2dzPb78dpnfvvixfvo6IiEv88svPln3FihWnWbNXaNbsFZo0afZkJwScPn2Sjh27sGLFZxw/foxLl/5m/vwlvFCrFlv/bxtxcXHMmD2LPu/1ZurEyTRv2pRPPp2dJM7vvx+jdGnrqYTx8fEsW7aYBQv+y4IFyzAYXLh69eoT5+ysNKIjIiIiIhmiSuUqLFu5EpPJxI8//USDBg3Ztm1rsm0rVqyMm5sbPj55yJUrF9HRUbja2E+xYs/h53dvxKRIkWJERd1KpzNIKk+evJQqVRoAX18/KlWqAoCfry9HIiO5+PdFLkVEMGr8WMsx//wTkyTO7t0/Ua1aDattRqORwMBgunbtQO3adWjZshVeHrqdT4mujIiIiIhkiOyenhQrWoRjx3/n8G9H6NNvUIqFjru7u+Vrg8GA2Wx7P0mPTcPBafTwiFTi80eJTCYT+f3yM23SxwAkJCRw4+bNJHEOHtzP6693TLJ97NjJHD16hN27d9GrVxi9w3oQWC59XiLhbDR1TUREREQyTM0aNVm6bBklniuB0Zgxf4N3dXUlISHhqfRV2L8w0dFRHD12DIBvvvuOyVOnWLW5ceMGnp7Z8fDwsNp+/fp12rVrSfHiJeja9W2qVq3G2b/OPpW8HZFGdERERESyqPg7d++9Ic0OcW31fKXKzJj1Ce3avJbmfq5eu8aIMaMsoyOPq0KFiowePYx8+fLh75ePFatXMXTgoCeKmRI3Nzf6ffAh8xYtIDY2juzZPekV1tOqzZ49P1O1arUkx/r4+NCs2St069YBD49sFCxYkHqtW9slT2egQkdEREQki7oeFWt5DbTR6EJk+FmbjvMrXNTyauXHkd/Pj/mz5wDg6enJuhWrLPsGDhxm+Xrnzr0AdOnyltXx69Ztxmh0wWiKTbHISVxDp1KlypQvPzfZ+OvWbQbuFTpr126yXINHFTlBgYEEBQZabUsuJsDMmff7rV+3HvXr1gOgdEAAk8dNSLGPhg3/neK+1q3b0bp1OyBt37OsSFPXRERERETE6ajQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaej10uLiIiIZFHeuTxx97h/O+jjUy5d4sbejefmrZgU90dERtK9ZxjPFC4MGIiPjydPHh9GjhpPnjy+T9T38lUrKfHcc1St8vxjxzj7119MmTENgMtXrpAtWza8cubEzejGpHHjea/P+6xctf6J8kzO0FEjmDhpGtmy5Uj32FmRCh0RERGRLMrdw8iID75I97hDJjdJtU0eHx+rNXCWLF/G5MkTGD164hP1/TgLjz6saJEiltymzpxBULlyljVwgCdeoDQ5MTExmEwmcub0eqI1iuQ+mwqdzZs3M3v2bOLi4ujYsSPt2rWz2n/06FGGDBlCXFwcBQsWZOLEieTKlcsuCYuIiIiI8wksU5alK1cA0LJlKGXLBnLy5B/MmjWf3bt3sXbtSkwmMwEBpXn//X6AkY+nT+Ovc+cAaNzoJRq9+KKlMAksF8iYCeN4tkgxTp8+RUBAGUJCKvH1118QFXWLMWMmUbRoscfKtWnLV9i9ez8LFswhIuISp06d5MaN63Tr1p19+37l2LHfKFGiFMOHj8FgMLB06SK2fP0FJpOJkAohdHy9PQaDwSrm4d+OEBwYZLXt9u1ohg0byNWrVwHo3LkbtWrVeaycs6JUn9GJiIhgypQprFixgo0bN7J69WpOnTpl1Wb06NH07NmTTZs2UaxYMRYsWGC3hEVERETEucTHx/Pjrp8IDi5v2VatWg1WrlzP9evX2bx5A7NnL2Tx4hX4+ORh5cr/cvjwYaKjo5g2aTIjhw7j9z+OJ4l79q+/6Ny5GytWfMbx48e4dOlv5sxZRIMGjdi0KX2mnp05c5q5cxczePAIxo4dQbt2b7B06WpOnDjOqVMn2b17F8eP/87kcROYOnEy165e5fsfdySJs+/AASqFVLTatmPH9xQoUIiFC5cxZMhIDh06mC45ZxWpjujs2rWLatWqkTt3bgAaNWrEli1bCAsLs7QxmUzcvn0buDfs5u3tbad0RURERMQZXLt+nff6vA9AXFwcJUuU5J13elr2ly0bCMCBA3sJDz/PW291AiA+Po5SpUrz6qutCL94kaEjR1CpYkXeeL19kj58cucmIKA08fEmfH39qFSpCgAFChTkwIGL6XIeVapUxWg0UqBAQfLmzUexYsUByJfPl6ioW+zdu4ejR3/j/X4fAhAbG0s+36TPIZ09e5ZiRYtabQsMDGbOnE+4ciWS6tVr0bFjl3TJOatItdCJjIzE94Fvhp+fH4cPH7Zq079/fzp16sSYMWPw9PRkzZo16Z+piIiIiDiNh5/RAfD29rY8n+Lh4QFAQoKJevUa0KvXvULhn3/+ISEhAW9vbz6ZMo2Dhw6x98A+evftw8wp06ziGY3Wt7qurq7pfh4P9pFcfJMpgdat29LghVoARN++jauL9aSq8+Hh+Pv7J5nO9swzz7JixTp27/6Zn37awapVy1i+fF2SdpK8VAsds9mcZNuDF/fOnTsMHDiQJUuWEBwczKJFi+jXrx9z5861OYm8eXPa3DY5vr5eT3S84j7dmI4W15FytVdcR8rV0eI6Uq72iutIudorriPl6mhxHSlXe8VNjBkZ6YLR+PRWFnncvhKPc3W9l2+VKlX44INldO7cDR8fHz7+eBz+/oUJCCjDhvVr6PdBHyqGhHD4yBGuXLmSYkyDwWCJ6eJiwGAwPPH1cHExWOK7urpY5Z/YX5UqzzNv3qfUrFIJd3d3xowfR/26da1ebrDvwH6raWuJMdauXcWFCxfo1esDatWqRfPmjblz5x+8vB7v58Qe3397/Uylx+9CqoVO/vz52bt3r+VzZGQkfn5+ls8nTpzAw8OD4OBgAFq3bs20adOSxHmUq1ejMZmsC6q0nNzly1E2tUvrBXPGuI6Ua2aJ60i52iuuI+Wa0XEdKdfMEteRcrVXXEfKNaPjOlKumSVuYkyTyfRU3+aV2Fdab4QTj0tIuJdvsWIl6NSpG++++yZms5mSJQNo2/YNPDyMfP3FBsJ6v4ebmxvVqlajaJEiKcY0m82WmCaTGbPZTHy8ifnzPyVfvnw0b94yzbkm3r/Gx5tISDBZ5Z/YX/XqtTl58iR9BvTHZDJRMaQC9f5V1yrOwUOH6NP7/STXoGHDxgwbNpC2bV/FaDTSqdObeHrmeOJr+yj2iPk4cR/8XXBxMTzWwEiqhU6NGjWYMWMG165dw9PTk23btjFy5EjL/iJFinDp0iXOnDlD8eLF+fbbbwkKCnpERBERERHJDGLvxtv0KujHifso+f38mD97Tor7163bbPU5NLQ5oaHNrbYZjS707vlekmN7hfWwfP1gHzNn3p9t1LhxKI0bhwLQtevbj8z1wXiJNq279yKDLl3esmwrWLCQVd4P9te5c1eaNGyQYh/DBg1OdnuOHDmZODFtAwhyn00jOr1796ZDhw7ExcXRsmVLgoOD6datGz179iQoKIixY8fSq1cvzGYzefPmZcyYMU8jdxERERF5Ag8u6mk0uhAZftam4/wKF9VaL5Lp2bSOTmhoKKGhoVbb5s2bZ/m6Tp061Kmjd3qLiIiIiEjm8PSeSBMREREREXlKVOiIiIiIiIjTUaEjIiIiIiJOR4WOiIiIiIg4HRU6IiIiIiLidGx665qIiIiIOB/vXO64e3hYPvv4lEuXuLF373LzVuwj2/z08y7Wfb6ehIQEzGYzdev8i7ff7QVAnz496d9/MPny+T52Dt989y2bv/oSo5s7f/55hsKFn8FodCMoqDwvvxzKhg2f0b9/8uvXPK7Y2Fjefz/Mag0dyTgqdERERESyKHcPD2YO6JTuccPGLgJSLnSuXr3KwiWLmTJxMrm8vIiJieGjoYMpGxRCjRq1mTRp+hPn0KBefRrUq49f4aI0b/4yEydOo2DBQpb9/fuXfeI+Hnbo0H4qVKiY7nHl8ajQEREREZGn6lbULRISErh79y54eeHp6UmvsB4UeKYYAC1bhjJjxhwOHNjHrl07uXLlMpGREbRq9RoRERHs3/8r3t65+ahPH9zd3dPc//79e1m4cC4zZ84lLOxNSpUKYO/ePcTG3qVLh45s/upLzoWfp9nLoTQLDSUmJoZP58/j3PlzmEwmXmn+H15tUzRJ3N27d1G3bgOrbadOnWTixNHcjYnBzd2N994No9ADBZfYj57REREREZGnqljRYjxf5XnefLc7H/Tvy+L/LsVkMvHMM88mafv770eZPHk6s2bNZ+bMqVSrVoMlS1YBsP/gwXTLaenS1bz00svMWTifAR/2ZdzIUaxatwaANZ+to0Tx55gyYRJjR4xi7WfruHAhPEmMY8d+o0wZ6+l/a9asoG3b9nw8YSJN/t2YP06cSLec5dE0oiMiIiIiT907b75F6xYtOXDoIAcOHuTDjwYwfPhoateua9UuKKg8OXLkJEeOnABUqlQFgAIFCnL7dnS65FKtWk1LzICSpfDw8MDP14/bt28DcOjwYe7G3uWb7d8CcOfuXc6cOU3+/PdHZv7++yJ+fgVwdXW1il29ek0mTRpPpZAQqlSqRI1q1dMlZ0mdCh0REREReap+3beXO3fuULtmLcuzNFv/7//YvHljkkLHzc3N6rPRmP63rw/GfLhQAUgwmXi/53s8V/w5AK7fuMFzpa1Hbnbv3kW1ajWSHFu3bgPKl6/Ali8+Z9OXX7Bv/37Cur+TzmcgydHUNRERERF5qjw8PFi6fDkRkZEAmM1mzoefp1SpgAzOLHnBQYF8vXUrANeuX6PnB725dOmSVZs9e36matWkozVDhgzg2LHfeKlhI9q1eY3Tf555KjmLRnREREREsqzYu3f/94a09I/7KMGBQbRp1YqRY0eTkJAAQEj5CnTp8uZj9Td89Cjatm5DyRIlHuv41Lz2amtmz5tLWO/3MJlMdGzfgcKFnyE+3gTce610VFQUefLkTXJs+/admDBhFHfvxODq6kqXN9L/LXeSPBU6IiIiIlnUvbVu7r0G2mh0ITL8rE3H+RUuarnJf1z1/1WX+v9KOk0tPt7EunWbAShYsBCNG4da9u/cudfy9ZAhwy35Dh046JF9JcZLVLFiZSpWrAxgteZNkyZNeb5CsOXzpnXrAciePTsfvNcrxfju7u4prp1TsmQpFi1aZvO1lfSjqWsiIiIiIuJ0VOiIiIiIiIjTUaEjIiIikkWYzeaMTkHkkdLzZ1SFjoiIiEgW4OpqJC4uNqPTEHkkM2A0Jn3F9+NQoSMiIiKSBeTMmZsbNy4TG3tXIzuSKZnNZmLu3MbHxydd4umtayIiIiJZgKdnDgBu3rxCQkJ8kv0uLi5E3bpqU6z4iwZMJtveupbRcR0p18wQNyNzNZvN3Lp8kQqVq3D16m2b4j6KCh0RERGRLMLTM4el4HmYr68XMwfYtsZL2NhFXL4cZVPbjI7rSLlmhriZIddG/3nNpnap0dQ1ERERERFxOip0RERERETE6ajQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaejQkdERERERJyOCh0REREREXE6KnRERERERMTpqNARERERERGno0JHREREREScjgodERERERFxOip0RERERETE6ajQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaejQkdERERERJyOCh0REREREXE6KnRERERERMTpqNARERERERGno0JHREREREScjgodERERERFxOip0RERERETE6ajQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaejQkdERERERJyOTYXO5s2bady4MS+++CLLly9Psv/MmTO0b9+epk2b0qVLF27evJnuiYqIiIiIiNgq1UInIiKCKVOmsGLFCjZu3Mjq1as5deqUZb/ZbKZ79+5069aNTZs2UaZMGebOnWvXpEVERERERB4l1UJn165dVKtWjdy5c5M9e3YaNWrEli1bLPuPHj1K9uzZeeGFFwB4++23adeunf0yFhERERERSUWqhU5kZCS+vr6Wz35+fkRERFg+nzt3jnz58tGvXz9CQ0MZOnQo2bNnt0+2IiIiIiIiNjCm1sBsNifZZjAYLF/Hx8ezZ88eli1bRlBQEFOnTmXcuHGMGzfO5iTy5s1pc9vk+Pp6PdHxivt0YzpaXEfK1V5xHSlXR4vrSLnaK64j5WqvuI6Uq6PFdaRc7RXXkXK1V1xHytXR4mbmXFMtdPLnz8/evXstnyMjI/Hz83sgCV+KFClCUFAQAE2aNKFnz55pSuLq1WhMJuuCKi0nd/lylE3t0nrBnDGuI+WaWeI6Uq72iutIuWZ0XEfKNbPEdaRc7RXXkXLN6LiOlGtmietIudorriPlmtFxM2OuLi6GxxoYSXXqWo0aNfj555+5du0aMTExbNu2zfI8DkBISAjXrl3j+PHjAHz33XeUK1cuzYmIiIiIiIikF5tGdHr37k2HDh2Ii4ujZcuWBAcH061bN3r27ElQUBCffPIJgwYNIiYmhgIFCjBhwoSnkbuIiIiIiEiyUi10AEJDQwkNDbXaNm/ePMvX5cuXZ926dembmYiIiIiIyGOyacFQERERERERR6JCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaejQkdERERERJyOCh0REREREXE6KnRERERERMTpqNARERERERGno0JHREREREScjgodERERERFxOip0RERERETE6ajQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaejQkdERERERJyOCh0REREREXE6KnRERERERMTpqNARERERERGno0JHREREREScjgodERERERFxOip0RERERETE6ajQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaejQkdERERERJyOCh0REREREXE6KnRERERERMTpqNARERERERGno0JHREREREScjgodERERERFxOip0RERERETE6ajQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOkYMzoBEREREXFe8XGxhI1dZHNbkfSiQkdERERE7Mbo5s6ID76wqe2QyU2Au/ZNSLIMTV0TERERERGnoxEdEREREREBnGuqoQodEREREREBnGuqoaauiYiIiIiI09GIjoiIiIiDsXV6UWafWiRiTyp0REREsjhnmpOfVdg6vSizTy0SsScVOiIiIlmcM83JFxFJpEJHRERERMSONGqaMddAhY6IiIg4DN0wOp64uIT/jQTa1tYZadQ0Y66BCh0RERFxGLphdDxubq60Wt3dprZrWs+2czaSlajQERERERFBI4bOxqZCZ/PmzcyePZu4uDg6duxIu3btkm33/fffM2LECL777rt0TVJERERExN40YghxsfG2TzWMjbdzNk8m1UInIiKCKVOmsH79etzd3WnTpg1Vq1alRIkSVu2uXLnC+PHj7ZaoiIiII7HHOif6a7PIfVpLyD5czCa7tM0IqRY6u3btolq1auTOnRuARo0asWXLFsLCwqzaDRo0iLCwMCZPnmyfTEVERByIPdY50V+bHY+9ilNb/+qe2f/i/iS0lpB9uHq4p/GZqsx7bVMtdCIjI/H19bV89vPz4/Dhw1Ztli5dStmyZSlfvnz6ZygiImJHGiWxH0e6tvbK1V7Fqa1/SU/LX9wd6fslYotUCx2z2Zxkm8FgsHx94sQJtm3bxuLFi7l06dJjJZE3b87HOi6Rr6/XEx2vuE83pqPFdaRc7RXXkXJ1tLiOlKu94maGXNNyI+rr6/64KaUoM1wDe8V1pGub0blC2vK15a/ua1rPTlOujnYNMjKm4tovZnrFTbXQyZ8/P3v37rV8joyMxM/Pz/J5y5YtXL58mRYtWhAXF0dkZCRt27ZlxYoVNidx9Wo0JpN1QZWWk7t8Ocqmdmm9YM4Y15FyzSxxHSlXe8V1pFwzOq4j5ZpZ4jpSrvaK60i5ZnRcR8o1s8R1pFztFdeRcs3ouJkxVxcXw2MNjKRa6NSoUYMZM2Zw7do1PD092bZtGyNHjrTs79mzJz179gQgPDycDh06pKnIEREREbGVM70RSrIOe/3cOtJ0w4z43bVpRKd379506NCBuLg4WrZsSXBwMN26daNnz54EBQWlSyIiIiIiqXGmN0JJ1uHmbuSnZi1saltz42c2x3WkF5TY6xo8ik3r6ISGhhIaGmq1bd68eUnaFS5cWGvoiIiIXvsqduNMb4SSrCPhbqzNN+8Jd53z38WMuAY2FToiIiJpode+OhZNBxOxLxXoGXMNVOiISKbnSHOQxX70c2C/gkTTwcQRaS0hSY0KHRFJN462DoU4Fkf7ObDHTZi9ChL9tdl+NFpmP/ZYS0jfL+eiQkdE0o2j3Yjag6ONOjhavvaQ0aMkKkicm0bL7MfW34e0/C7o++VcVOiISJZlj5t8Ryv2HC1fe8joURIVJJmDvQpeRypONZrhWN8vSZ0KHRHJshzpJl8jL/ajGxsB/SUfdA3E+ajQERFxAI5UlIkkcqQRAhW8ugbifFToiGRRWudEROwtIxYIFBFJpEJHJIvSOiciYm9aJFHEvhxp1DQjqNARERERu9BUKBH70nNVj6ZCR0Qyvbi4BNv/YhWXYOdsREREMgf9MeHRVOiIZHJ62xa4ubmm8R9yyWj2WCxTUzRERCQtVOiIZHKO9LYtjbzoZjyRPRbL1BQNERFJCxU6IpJuNPLieDfjGb1IYlqmUmiKhoiIpIUKHRHJsuxxk2+vm3F7FY6gN74AACAASURBVCSOVpiJiIjYSoWOpAs9RyKOyJFu8u2Vq0ZJRETEWanQkXThSM+RgBbLBPs8LO5oHOkm35FyFRERyQxU6EiWZI/FMh1tVMseD4uLiIiIZBYqdCRTc6TiwdFGtezxsLiIiIhIZqFCRzI1RyseRERERCRzcMnoBERERERERNKbCh0REREREXE6mromksnZa/0UEREREWemER2RTM6R1noRERERySw0oiOSyWn9FBEREZG004iOiIiIiIg4HY3oZGKOtIaMniMRERERkcxEhU4m5khryDjacyS2FmYqykREREQcU5YqdBxphMRe7HUNHO05EluLrcxQlImIyP+3d+fhMZ7t//jfiYiqLrbgg/JRKkqpx07EUvsSEpRYgtS+pQ9iT33sQj1NK2rfY01IBKWIoE1DQrWPpYmtlgRNEEs2sl3fP/zMTyxZZuaaua/J+3UcPQ6Z5czZa84zmSv3PedNRJR/BWqjo9IREllUW4P09My8nxKXnpnnuHndmOVnU8bT94iIiIi0o0BtdGThkSJ5ChculM8jReaj2ul7RERERJaMGx0jUO0oCcmh2ul7RERERJaM46WJiIiIiMjicKNDREREREQWhxsdIiIiIiKyONzoEBERERGRxeFGh4iIiIiILA6nrmkYr8tCRERERKQfHtHRMF6XhYiIiIhIP5o9opPXi3Ba8gU4eV0WIiIiIiL9aHajk9eLcObnApw8FYxrQEREREQFQ4E6dY2ngnENiIiIiKhg0OwRHRlknQqm0lESng5HRERERAVBgTqiIwuPkhARERERaUuBOqIjC4+SEBERERFpC4/oEBERERGRxeFGh4iIiIiILA43OkREREREZHG40SEiIiIiIovDjQ4REREREVkcbnSIiIiIiMjiaHa8dF4vwmnuC3ASEREREZH2aPaITl4vrMkLcBIRERER0avydERn3759WLFiBdLT0zF48GD0798/2/0hISHw9fWFEAIVK1bEwoUL8eGHHxqUWF4vwskLcBIRERER0atyPaITFxcHHx8fbNu2DcHBwdi5cyeuXr2quz8pKQmzZs3C6tWrsXfvXtjb28PX11dq0kRERERERDnJdaMTHh6OJk2aoHjx4nj33XfRoUMH/Pzzz7r709PTMWvWLJQtWxYAYG9vj7t378rLmIiIiIiIKBe5bnTi4+NhZ2en+7pMmTKIi4vTfV2iRAm0bdsWAPD06VOsXr1a9zUREREREZE55PoZHSHEa7dZWVm9dltiYiJGjx6NGjVqwMXFJV9JlCr1Xr4e/yo7u/cNej7jmjamanFVylVWXJVyVS2uSrnKiqtSrrLiqpSranFVylVWXJVylRVXpVxVi6vlXHPd6JQtWxZnzpzRfR0fH48yZcpke0x8fDyGDBmCJk2aYPr06flO4sGDJGRlZd9Q5ed/7t69xDw9Lr8LZolxVcpVK3FVylVWXJVyNXdclXLVSlyVcpUVV6VczR1XpVy1ElelXGXFVSlXc8fVYq7W1lZ6HRjJ9dS1Zs2a4eTJk0hISEBqaioOHz6MFi1a6O7PzMzEyJEj0alTJ8yYMeONR3uIiIiIiIhMKU9HdMaPH4+BAwciPT0dvXr1Qp06dTBs2DB4eHjgn3/+wV9//YXMzEwcOnQIAPDZZ59h/vz50pMnIiIiIiJ6kzxdR8fJyQlOTk7ZbluzZg0AoHbt2oiOjjZ+ZkRERERERHrK9dQ1IiIiIiIi1XCjQ0REREREFocbHSIiIiIisjjc6BARERERkcXhRoeIiIiIiCwONzpERERERGRxuNEhIiIiIiKLw40OERERERFZHG50iIiIiIjI4nCjQ0REREREFocbHSIiIiIisjjc6BARERERkcXhRoeIiIiIiCwONzpERERERGRxuNEhIiIiIiKLw40OERERERFZHG50iIiIiIjI4nCjQ0REREREFocbHSIiIiIisjjc6BARERERkcWxMXcCRERERESkDWkZafDvsyLPj9UybnSIiIiIiAgAYGtji7/n98zTYz+esRvAM7kJGYCnrhERERERkcXhER0iIiIiIgIAZKWn/X9HavL2WC3jRoeIiIhIMXn9HIXWP0NB2mNd2BZOE4Pz9Nh9/+kOLZ+6xo0OERERkWLy+jkKLXyGwpI+3E5q4UaHiIiISDF5Pb0oP6cWydqQqPThdm7KLAs3OkRERESKyevpRfk5tUjWhkSlz3yotCkDuDHLDTc6RERERCRtQ6LSZz5U2pQB6m3MTI0bHSIiIiJSakMiC9dAHnMcfeJGh4iIiIhIQSodgTLH0SdudIiIiIiIFMQjUDnjRoeIiIiISCIODTAPbnSIiIhICr65I3qOQwPMc5odNzpEREQkBd/cEdEL5jjNjhsdIiIikkKlD0oTycReMA9udIiICjCeWiRPXtdWC+sqqw74QWmSSaUeYy+YBzc6REQFmI2Q81jK+2lb+TllS9aGhKeYkYpk9BhZFm50SNP412YiufhXRnnyeqpKfk5TkbUh4Wk1pCIZPUaWhRsd0jT+tZmIZDP3aVta2ECqtOHlH8DoBZV6jMyDGx3SNJV++RKRmlQ6bYtHXtR6vQBuzIjMiRsdItI8ld4opGWk5yPXdMnZUF6otHngH3/kvV6yfs7wzAQi8+FGh4g0T6U3CrY2hfP5RvSp3IQoV9w8qEXW6yXrSBHri8h8uNEhIs3jGwUikk2lI3tElDfc6BCR0ah0ihkR0cv4BxUiy2Nt7gSIyHKodIoZERERWTYe0SEio+FfROkFGVcs5xFDIiLKD250iIjI6GRcsZxHDImIKD+40SEqoGT8xV01Kh0hUClXQM4Vy3nEkIiI8oMbHSKNk3Vdlrz+xduS/zKu0hEClXIFeMVyIiIyP250qEBS6WiGrOuy8I2oWkcIVMqViIhIC7jRKWBknf6i2tXgZRzNUO3UIiIiIiJLxo2OEch6ky8jrqzTX1S7GryMoxmqnVpEREREZMnytNHZt28fVqxYgfT0dAwePBj9+/fPdn9UVBS8vLyQlJSEBg0aYPbs2bCx0d4eStaGRNabfBlxefqLPFxbIiIiIu3IdTcSFxcHHx8fBAYGwtbWFq6urmjcuDGqVaume8ykSZMwb9481K1bF9OnT4e/vz/69esnNXF9qHbUgYiIiIiI9JPrRic8PBxNmjRB8eLFAQAdOnTAzz//jLFjxwIAbt++jadPn6Ju3boAgB49emDp0qUGb3RU+rA4ERERERFpS64bnfj4eNjZ2em+LlOmDM6dO/fW++3s7BAXF5evJKytrV5PLB8fFn/T89+mTImieX6spcZVKVctxFUpV1lxVcpVC3FVylULcVXKVVZclXLVQlyVctVCXJVylRVXpVy1EFdruebne7zMSgiR45Zi5cqVSE1Nxfjx4wEAAQEBOH/+PObMmQMAOHv2LL799lts374dAHDz5k2MGDECP//8s14JERERERERGco6tweULVsW9+/f130dHx+PMmXKvPX+e/fuZbufiIiIiIjI1HLd6DRr1gwnT55EQkICUlNTcfjwYbRo0UJ3f4UKFVCkSBH8/vvvAIA9e/Zku5+IiIiIiMjUcj11DXg+XnrVqlVIT09Hr169MGzYMAwbNgweHh6oXbs2oqOj4eXlheTkZNSsWRMLFy6Era2tKfInIiIiIiJ6TZ42OkRERERERCrJ9dQ1IiIiIiIi1XCjQ0REREREFocbHSIiIiIisjjc6BARERERkcXhRoeIiIiIiCwONzpERERERGRxbMydQE5iYmJw/Phx3Lx5E1ZWVqhcuTJat26NChUqaC5uZGQkQkNDcePGDVhbW6Ny5cpo06YNGjRooLlcVYur2trKyFfWGiQnJyMiIiLbGjRr1gxFihQxKK6MfFWqWUCtupWVq4y46enp2L9//2txv/jiC3Tp0gWFCxfWK66sOpDVYwW9DmTGVWltZdSXrB5T6fWSEVfWugLqra2sfN9Ek9fRiY+Px4IFC3Dnzh3Uq1cP5cuXh42NDWJjY3H69GlUqFABU6dORbly5cweNyoqCgsWLEDJkiXRoEGDbDEjIiLw4MEDTJ8+HbVq1TJ7rqrFVW1tZeQraw1SU1OxbNkyHDlyBPb29tniRkVFoV27dhg9ejSKFStm9jVQqWZlrYGsfGXlKivu8ePHsWLFCtSvX18Xt3DhwoiNjcWpU6dw+vRpjBo1Cm3atMlzTFl1IKvHWAfsMUBefcnoMZVeL1lxZawroN7ayso3R0KDJk+eLK5cufLW+6OiooSnp6cm4np7e4uEhIS33n///n2xYMGCfMUUQq01kBVXtbWVka+sNRgzZow4ceKEyMzMfO2+zMxMERISIkaNGpXvuDLyValmhVCrbmXlKivuhg0bRFpa2lvvf/bsmVi/fn2+YsqqA1k9xjpgjwkhr75k9JhKr5esuDLWVQj11lZWvjnR5BEdIpJLCAErKyuDH0NkbikpKXj33XfNncZr2GMkkynr6+HDhyhRooTBcYjMQZlhBBMmTDA4RkZGBnbt2oX9+/cjPT0dc+bMgZOTE6ZNm4ZHjx4ZIcvnBgwYYLRYLzPGGiQmJmL+/PkYN24cgoODs933zTffGBz/ZYbmm5SUhB9++AGrVq3C48ePMWLECPzrX//CwIEDcfv2bb3jmqoOADm1YIyYb/rl5+3tnetjcnP37l2MHj0aPXr0wPLly5GZmam7b8SIEflPFPJqVvU6ALTbY7Livkn//v0Ner6s+rKyssLJkyfxxx9/AADWrVuHkSNHYtmyZUhLS9M9xhgMrQMZfQvIqwNZ+ar0HiEzMxObNm2Ct7c3Tp8+ne0+X19fAPr/DJ80aRJmzpyJmJgYODk5oXPnzmjXrh2io6P1ylXW66XS74bo6Gh0794djRs3xvTp05GUlKS7z8XFRe9cZfWYrLWVVQs50eQRHTc3t9ca9MKFC/jss88AAJs3b9Yr7tSpU5GSkoK0tDQ8evQIderUQe/evXH06FFcvHgRS5cuzXfMN51PGRcXh7JlywIAjh49qleustZg7NixqF69Ouzt7bF69WrUrFkTc+fOBfC82YKCgjST78iRI1GlShWkpqbi5MmT6Nu3L/r06YOQkBAEBQVh/fr1euUqow4AObUgq76mTZv22m2hoaH44osvAAALFy7UK667uzu6du0Ke3t7LFu2DJmZmVixYgVsbGzg7OyMPXv25DumrJpVqQ4AtXpMVtzatWsjIyMDwP//1+oXv8KsrKwQFRWV75iy6mvx4sU4c+YMMjIyULFiRVhZWaFHjx4IDQ1FZmYm5s2bp1dcGXUgo28BeXUgK1+V3iNMnz4dWVlZqF69OrZs2YLevXtj5MiRAAyr24EDB6J9+/ZISUnBxo0bMWvWLLRv3x6///47/vOf/2Dbtm35jinr9VLpd4Orqyv+/e9/w97eHj/88APOnTsHPz8/FCtWTJM9JmttZdVCjox6IpyRbNmyRbRo0UIEBgaKiIgIcerUKdGuXTsREREhIiIi9I7btWtXIYQQGRkZwsHBIdt93bp10yvmsWPHRKdOncRPP/0kYmNjRUxMjOjcubOIjY0VsbGxeucqaw26d++u+3dqaqpwc3MTCxcufO0+LeT7cj7NmzfPdp++r5cQcupACDm1IKu+vL29RZMmTcTGjRtFYGCgCAwMFK1atdL9W1/Ozs66f2dlZYnx48eLf//730II/etLVs2qVAdCqNVjsuJevHhRuLq6ikOHDr3xe+lDZn1lZmaK1NRU0ahRI935+VlZWcLJyUnvuDLqQEbfvvpcY9aBrHxVeo/wcg09ePBAODk5iQ0bNgghjPeaOTo6ZrtP3zUwRX1p/XfDq/l4e3sLNzc3kZaWpskek7W2smohJ5o8da1///5Yt24ddu3ahTt37qBx48YoVqwYGjVqhEaNGukd19raGtevX8fFixeRmJiI2NhYAEBCQoLur4T51apVK/j5+WHv3r0ICgpC+fLlYWtriwoVKhg0fk/WGgDAvXv3AADvvPMOfvzxR4SHh2PlypUGnUYhI18bGxuEhYXh4MGDSE5OxoULFwAAN27c0DtPQE4dAHJqQVZ9TZkyBd999x0OHDiA8uXLw8XFBR9++CFcXFwMOoxeqFAhXLlyBcDzv7AvWrQICQkJmDlzZrZD1Pklo2ZVqgNArR6TFbdmzZrYsGEDwsPDMW3aNCQnJxvl9C8Z9SWEQGJiIh4+fIinT5/qTlV5+vQp0tPT9Y4row5k9a2sOpCVr0rvEYQQSElJAQCULFkSa9aswebNm7Fv3z6D6va9997Djh07sHbtWmRmZuLYsWMAgLNnz+o9slrW6wWo87uhWLFiOHHihO4I9JQpU2BnZ4dx48YhNTVV71xl9RggZ21l1sJbSdk+GcmzZ8/EwoULxbhx40Tnzp0Njvfrr7+Kli1bCkdHR3HkyBHRsWNH4eHhIVq3bi2CgoIMjr9582YxYMAA0aFDB4NjvWDsNThy5Iho3ry5CAkJ0d0WHx8vXFxcxKeffmpwfGPme/HiRdGvXz/h6uoq/vzzT9GlSxfRs2dP4eDgIH755Re948quAyHk1IKMmA8fPhQeHh7C29tb91csQ5w5c0a0bt1a7N27V3dbcnKyGDVqlKhRo4ZeMWXVrKp1oEKPyYr7sqNHj4pevXqJdu3aGRRHVn3t2bNHNGrUSDRs2FD4+fkJZ2dnsWjRIuHs7CzWrFljUM5CGLcOZPStEPLqQFa+Kr1H2LFjh2jfvr0IDw/X3Xb16lXRqlUrUbt2bb3jxsbGikmTJomJEyeKW7duib59+4rGjRuLli1binPnzukVU9brpdLvhqtXr4q+fftme35GRoaYN2+eqFmzpt65yuoxWWsrqxZyoumNzgthYWFi2rRpRo977949cfDgQXH16lWjxbx06ZJYunSp0eK9YMw1SExMFA8fPsx2W2Zmpjhy5IhR4gsh5zV7+vSpOHfunHj8+LFR48qoAyHk1IKs+vL39xfu7u5Gi/fs2bPXbvvrr7/0jmeKmlWpDoRQq8dk9q6/v7/BcWTVV2pqqkhKShJCCBEdHS3Wrl0rwsLCDIr5KmPWgbH79lXGrgPZ+Wr9PcL169fF7du3s92WmJioO4XNWB48eGCUODJeL5V/N7xgrPUVwrg9JnNtZffuyzQ5jICIiIiIiMgQNuZOgEzr1TGUr2rYsKGJMiFLlNvEFGdn53zHZM2STKwvOX0rk2r5ynDnzp0c7y9fvryJMsmdrNdLpd5dtmxZjvePHTvWRJnkjay1NUfvcqNTwPz444/4888/UadOHbx6MM/KykrvsdVEAHDq1CkcOnQIHTt2fOP9+vwQY82STKwvOX0rk2r5yjBixAjcuHEDZcqUeWPd6ju2WgZZr5dKvZuZmYmNGzfC3d0d1taanAOWjay1NUvvSjkhTqL4+HjdOc9aj3vhwgUp53QakmtaWppwdXXN9gEz2QrK2uZERr6y1sBQI0aMEAEBAUaLZyk1K4RadSsrV1lxQ0NDxfHjx3VjnPPKHPUliyF1YOy+zY2hdWDqfLXWY4mJicLJyUmcOXPGqDnlRN8eE0LO66Xa74bp06eL1atXGzmjtzOkvmSural7t9CsWbNmGX/7JE///v1x584dPHr0CNWrV9d0XC8vLwBATEwM7O3tjRITMCzXQoUKoX79+ggNDUWzZs2MllNOCsra5kRGvrLWwNnZGRcuXEBWVhY+/vjjfD+/UaNGOHfuHOrVq2eUfCylZgG16lZWrrLirlu3DpUqVcK1a9dQrVq1PD/PHPVlaI+9jSF1YOy+zY2hdWDqfLXWY7a2tqhVqxYCAwN1F3qWTd8eA+S8Xqr9bmjcuDHi4uJQo0YNSdllZ0h9yVxbU/cuhxEQUTbx8fEoU6YMUlNTUbRoUXOnQ2Rx2GNERKah2RMFo6KiEBoaisTExGy3v7h4ldbivmz9+vVGiWOKXI2Ja/s6Y+QbEhICPz8/3Lp1K9vtO3fuNChuQkICLl26hKysrGy3v7hIWEF4A6ZSHQBq9Zisun2Vt7e3UeMZk6l6bP/+/UaJYwrGqi9ZVOoxU9Fyj5kKe0xdmhxGsGnTJvj7++Ojjz7CN998gyVLlqBp06YAgKVLl6J169aaifumSRo7duzQXbFY30kastZAFq6tnHyXLFmCCxcuoGrVqlixYgWmTJmC7t2762L36dNHr1wPHDiAhQsXonjx4khLS4Ovr6/uMLyXlxeCgoL0iqsSlepAVr6ycpVVt9OmTXvtttDQUDx+/BgAsHDhQr3iyiCrx940tWjp0qW6K7Zr6YP4supLFpV6TBaVekwW9phl0eRGZ9euXdi1axeKFi2Ks2fPwsPDA99//z0aNGjw2vQHc8e9fPkyIiMj4erqChsb4y2nrDWQhWsrJ98TJ04gKCgINjY2cHNzw1dffQVbW1t06tTJoFxXrlyJ4OBglCxZEgcOHMCQIUOwYcMGVKtWTZP1JYNKdSArX1m5yqrb4sWLY8+ePRg5ciQ++OADAM+n+DRq1MhYqRuNrB7bsWMHbty4ke1Nd3JyMiIiIgBo602YrPqSRaUek0WlHpOFPWZhTDb2IB+6du2a7euIiAjh4OAgLl26JJydnTUXNyAgQPTv31833aJ79+56x3pBVq45MWSaCNf2OWPn26VLF5GRkaH7+vLly8LBwUGcOnXKoFydnJyyfX3gwAHRunVr8c8//0irLxnTtrRYs0KoVbcycpVVt0IIER4eLnr37i1OnTolhDBOvm9jSH3J6rGMjAzx/fffizFjxuiuqC5zDQztWxn1lRND8lWpx2QyZY9pcRKlqXvMkGl2Qpi+vlSbSqrJqWuXL19GcHAwPvnkE5QsWRIVKlRAxYoVMX78eDx58gRDhw7VVNyaNWuifv36mDlzJlJSUvDXX3/B1dVVr1iyc82JIdNEuLZy8k1ISMDSpUvxySefoGzZsihVqhQ+//xzeHh4ICEhASNGjNArbkREBM6dO4eqVavivffewyeffAJra2vMnDkTiYmJ+Oqrr/TO+W1kTNvSYs0CatWtjFxl1S0AfPTRR2jXrh18fX1x7tw53Lx5E/369TMo37cxpL5k9Zi1tTWaNGmCsmXLYvr06ShdurTuL7oyGNq3MuorJ4bkq1KP5cTQqX6m7DEtTqI0dY8ZMs0OMH19qTaVVJNHdDIzM4W/v7/473//m+32//73v2LUqFGai/tCRkaG+O6770THjh0NjiU7V2Pj2mZnzHzDw8Nf+yvHnTt3xLx58/SOmZycLHx8fER4eHi2248cOSK6deumd1yVqFYHKvWYEHLq9lX+/v7C3d3daPGMyRQ9lpiYKCZNmiQcHR2NEk8mY9eXDKr12NvExcUJIYRISUkxOJaWe8wU2GPq43jpAigqKgp3795Fw4YN8f777+tuP3bsmOaGHJD61q9fb/ARItYsyaR6fSUnJ6NYsWJGjWmMvpUpJCQEd+/eRcuWLVGpUiXd7Tt37tR72IVqEhIScO/ePd3RwhcuXryIWrVqmTGz3BmrvkzVuzJ6zNvbG1OnTjVqTJn279+Prl27Gj2u7J813OgUMC9PlTl//ny2qTIuLi4FYtoWyfO2CTAvDqPrMwGGNUsysb7k9K1ML0/1O3jwYLapfgXlNctpqp/W1kBWfanUu2+bZvfiYq9am2b3tslzHh4eAPQfyGCOnzUc0VDAqDbNjdQiYwIMa5ZkYn2pN7lJ1lQ/lag0OVOlSZSyqDbNTtbkObP8rDHXOXNkHuaY5kYFi7EnwLBmSSbW13MqTQaTOdVPFeaYnGkIlSZRymLKaXaGkjl5ztQ/azQ5dS0nw4cPx+nTp/H++++jfPnymo6rxVzNMc2toKytqeMaOlnnbby8vBAWFob/+Z//QalSpfL9fGNPgLGUmlUtrqxcZdWtvnHNUV+G9piMuKae3GRIfcmc6icjXxkxzTE505DeVWkSZU4M6TFTTrMDDKsvmZPnTP2zRrkjOufPnxdCCHH37l3Nx9ViruaY5lZQ1tbUcY05WedlR48eFWlpaSIqKsqgOMaaAGMpNataXFm5yqpbfeOao76M1WMy4ppqcpOh9WWKqX4v01qPmWNypjF6V6VJlG9irN41xTQ7Y9WsrMlzpvpZw2EEGiaEQHJyMt57771st9+7dw92dnZmyipvnjx5gpiYGHz88ccoWrSoudN5jay1NcVrFhkZadTzejMyMnDt2jXY2NigatWqRourGlk1KytuUlISrl+/jipVqrxWb/lhqp8zxq5b2XGNSVaPqda7Wv+98Cpj9ZjsmLKp0GOyqNZjMutLxuQ5k5C6jSK9nTx5Ujg4OIiGDRuKgQMHin/++Ud3nxbPPY2KihJ9+vQRI0aMEGFhYaJp06aiZ8+eolWrVuLs2bPmTi8bWWsrI25kZORr/7Vv3173b30NGTJECCHEpUuXRNu2bUX37t2Fk5OT6Nq1q7h8+bLecVUiq2ZlxQ0LCxMtWrQQV69eFadOnRIODg6iV69ewsHBQRw/flyvmLJ6QVbdyoorg6weU6l3Vfq9IIScHpMRUyaVekwWlXpMtfoyB01udAYNGiTc3Nze+p+W4srK1cXFRfz9998iMzNTrFq1SrRt21Z32FiLH2Dr06eP+OWXX8TWrVtFnTp1dId1r1y5Inr37q1XTNXWVkbctm3bikaNGgk3NzcxYMAAMWDAAFG3bl0xYMAAg9bgxZvYQYMGZfthGBERIXr16qV3XJXIqFmZcbt27SquXLmi+x7R0dFCCCFu3br12ody80pWL8iqW1lxZZDVYyr1rqxekEVGj8mIKZNKPSaLSj2mWn2ZgybnSA4bNgwTJkzA/PnzdWP4tBpXVq5ZWVmoUqUKgOcfKLO1tcWQIUOwfft2WFlZGe37GEtqaiocHR0BAH5+fqhRowYAoFq1anj69KleMVVbWxlxg4KCMHfuXLz//vuYPHkybG1t4ezsDD8/P73zfFliYiJaP/dWrAAAEttJREFUtmyp+7pRo0Z6v16qkVGzMuPa2NigWrVqAID09HTY29sDeP4BV6HnGciyekFW3cruBxlk9ZgKvSurF2SR0WMyYsqkYo/JokKPqVZf5qDJqWuVKlVCoUKF8Oeff8LNzQ0VKlTI9p+W4srKNSQkBImJiahSpQqKFCmCunXrIjY2FsuXL8fDhw8xaNAgvWO/jSETOg4fPoy0tDTUqlULAwYMAACkpKRg69atuH//vu5ibvmh2trKiGtra4t27dohKSkJs2bNQs2aNREaGmrwhJLFixfjzp07ePToEbKyslCrVi08fvwYW7duxYMHD/R6vXKjtalFMmpWZtyrV69i7969+N///V988MEHOHLkCEqWLInNmzfj3XffRbt27fIdU1YvyKpbWXHfxpD6ktVjpu5dLfZYTgyZDCajx2TEzI0hk8FU6jFZcU3dY1qr2dzImhopqxY0eeqaEEJkZWXpDsdpPa6MmPHx8cLT01McOXIk2+0bNmwQDRs2NOr3esGQCR1xcXFi6tSp2W47fvy4+Prrr0V8fLzeOam0trJfs9u3bwt3d3fRqlUrg2PduXNHHDp0SCxZskT4+voKIYTw8/MT48aNy/Y5DWPS2tQiWTUrK25aWpr48ccfRdeuXUWdOnVErVq1RKtWrcTs2bNFYmKiXjFN8XPGmHVrirgvM6S+ZPWYqXtXiz2W2/cUQr/JYDJ6TEbM3BhrMpjWe0xWXFP3mNZqNjeypkbKqgVNTl179uwZihQpYvBjTBFXpVxl4tqaZg2EEPj777+zTX/RSq4yCQmTwVSqA1lxTZWrrLo1VtyXGWsymEp1AKjVY29ijMlgKvXYy4w5GUylHnuVsSaOmaputVqzr5I5ec4kUwiNum0ykrFjx4qdO3e+cTeamJgotmzZIkaPHq2JuCrlKhPXlmsgi6zJYKqtLetLTlxZk8FUWgPVekzWZDCVekzWZDCVekzWxDEZa6BSzQohr77MMSVOk0d0srKysH37dvj5+eGDDz5AuXLlUKhQIdy+fRuPHj3CwIED4erqChub/M1SkBFXpVwBYPDgwcjKynrr/Zs3b85XPJn5qra2XAM59dWjRw/85z//QeXKlbF27VoEBARg69atKFOmDJydnbFnz558xwTUW1vWl5y4rq6uGDNmDGJiYrBo0SLs3LkTNWrUwNWrVzFjxgzs3LkzXznKzFVWXNV6rF27dnjy5Ans7e11H7i+cOECPvvsM1hZWRWI32MuLi4ICgrC4MGD4e7urvvQfGRkJL799lsEBATkK57MfGX1mJOTE3x8fFCtWjW4urpi9uzZsLe3R0xMDEaPHo19+/bpFVfGGqhUs4C8+pL1muVEkxudl0VHR+PGjRuwtrZGpUqVdFNbtBhXhVx/++23HCeZGeOiYAV1bWXHVSFXGfX16hutjRs3Yvfu3di+fTvc3NwQFBSkd74vqLC2suOqlKsx43bv3h3BwcEAgE6dOuHgwYNvvE8LucqKq1qPJSUlvXEymL4bMtn5yoj54o1oz549sXv37mz3OTk5GeUNo9Z77MUaAHhtHbp27Yr9+/frFfdlxloD1WpWVn2Z4jV7leY3OmR869evx/Xr1zF37lxzp0IWyNj1NXToULRu3RrdunXD+++/D+D5VJzTp0/jwYMHCA0NNcr3oYLJ3d0dnTp1Qu/evXW3paSkwN/fH7/++ivWrVtnxuxMQ9UeO3DgADZv3oyZM2dixowZRtmQqaJevXpwcnLC5cuX4eLigt69e+Px48fYtWsXfvvtN6xfv97cKerI6rF58+bh0aNHGD58OCIjIxEXF4cuXbrgwIEDiIuLw6JFi4z1v2A0qtSsrPoyx2vGjU4BJITAtWvXdLPXiYzJ2PV17949LF68GB06dEDbtm11t2/cuBHLly9HZGSkUb4PFUzx8fHw8fHBwoULdbedOHECQUFBmDFjht4fxFeJyj12584deHl54fr16zh27Ji50zGZu3fv4vz58zh//jyKFCmCsWPHYsuWLYiMjMSMGTNQtmxZc6eoI6vH0tPTsWbNGhw8eBC3bt1CZmYm7Ozs0Lp1a0yYMEHeh9sNpELNyqovc7xm3OgUMKpN2yK1qDq1iAou1pd6a2CKyWBap9JrptoEQhlUq1lLes2sjRaJlODp6Ql/f38kJSW9dl9SUhK2bt2KCRMmmCEzsgQy6os1SzKxvtRbg1fztbKy0r1h1GK+Mqj0msnKVeU10HrNWtJrxiM6BYysCR1EgFpTi4gA1heg3hqolq8MKq2BShMIZVEpV8CyXjNudAowWZOAiADtTy0iehXrS701UC1fGVRaA61PIDQFlXIF1H/NuNEhIiIiIiKLw8/oEBERERGRxeFGh4iIiIiILA43OkREREREZHG0Md6BiEghsbGxaNOmDebNm4cvv/xSd/u6detw5coVeHt75ylOQkICmjZtikuXLhmc0+rVq/HTTz8BAG7duoUSJUrornLv6+uLSpUq5SteeHg4Fi1ahODg4Hw9b/To0Zg4cSK8vLxga2uLDRs2wNr6+d/U7t27h5YtW+Kvv/7KV8whQ4agW7du6N69e54ef+nSJUyePBkA8PjxYyQmJqJixYoAgJ49e+LBgwdISUnBjBkz8pWHvmbOnIly5cph9OjROT4uJCQEf/75JyIiIpCWlob09HRcv34d1atXBwDY29tj8eLF+f7+48ePR/369TFgwAC98iciUhU3OkREerC2tsaiRYvQoEEDVKlSxdzpYPjw4Rg+fDgAwM3NDf3790fHjh1NmsPTp09x9+5d3fUhzp49i7Vr1+ryMhV7e3vdBi0gIADHjh3D8uXLdff7+PiYNJ+8Onr0KPr06QNPT08AwM2bN9GzZ898bzaJiOg5bnSIiPTwzjvvwN3dHRMnTsSOHTtga2uruy8xMRGzZ89GdHQ0rKys4OjoiAkTJsDGxgaHDx+Gj48PihYtis8++yxbzICAAGzfvh1ZWVkoXrw4vvnmG1StWhVnzpyBt7c3srKyAAAjRoxAhw4d8pVvSEgI1qxZg/T0dCQkJKBnz54YN24ckpKSMG3aNNy6dQvW1taoXbs2Zs+ene25kZGRmDJlCnx8fFCtWrU3Pt7KygphYWFo1qyZ7nljxozBqlWr0KRJE9SpU+e1nLZt24Zt27bB2toadnZ2mDlzJipXrox//vkHU6ZMwYMHD1C+fHkkJCTonnPlyhXMnz8fT548QWZmJgYPHgwXF5d8rQUAXLt2DW5ubrh37x7s7Ozg4+OD0qVLo0WLFqhfvz6io6MxadIkfPrpp5gzZw7i4uKQnp4OJycn3cbtxx9/xLFjx/Ds2TOkpqZi2rRpaNOmDRITEzFjxgxcvnwZdnZ2sLa2Rrly5QAAW7Zsgb+/PwoXLox33nkHc+bMQdWqVZGZmYkLFy5gwYIFOeadkZGB+fPn48KFC0hKSoK1tTUWLlyIOnXq4OTJk1iyZAleDFMdM2YM2rRpo3uuEAJz5sxBTEwMfH19UbRo0XyvGxGRSvgZHSIiPY0aNQpFixZ97QjBvHnzULx4cezbtw+7d+/GpUuXsH79ety/fx/Tp0+Hr68vAgMDUaFCBd1zIiMjsWfPHmzduhV79uzB0KFDMW7cOADPTz1zd3dHYGAgFixYgFOnTuUrz6ysLGzcuBFLlixBYGAgtm/fjuXLl+Px48c4dOgQ0tLSEBwcjICAAGRkZCA2Nlb33PDwcHh5eWHVqlWoW7dujo8/evQo2rZtq3tutWrVMHHiRHh6eiI5OTlbTmFhYdi0aRM2b96MvXv3omPHjhg7diwAYNasWWjYsCH279+PqVOn4u+//wYApKen4+uvv8bUqVMRGBgIPz8/rFq1CufPn8/XegBATEwMli5dip9//hnvvvsudu/erbuvRo0aOHjwIL744gt4enrC1dUVgYGBCAgIwC+//ILDhw8jJiYGp0+fxtatW7Fv3z6MGzcOvr6+AIDvv/8exYoVw8GDB+Hj44Nr167p8vf29sbGjRuxe/du9OzZE2fPngXw/OjXv/71L1hZWeWY9++//44nT57A398fBw8eRMeOHbF27VoAwA8//IBRo0YhMDAQs2fPRkREhO55WVlZ8PLywqNHj7BixQpucoioQOARHSIiPVlbW+Pbb7+Fi4sLmjdvrrv9l19+wfbt22FlZQVbW1u4urpi06ZNqFy5MqpXr45q1aoBAPr06YPvvvsOAHD8+HHcvHkTrq6uujiPHz/Go0eP0KlTJ8yZMwehoaFo1qwZJkyYkO88V65ciePHjyM4OBhXr16FEAJPnz5Fw4YN8cMPP2DgwIFo1qwZhgwZgo8++ggxMTG4c+cORo0aBTc3N93nRN72+BdHJObPn5/te/fr1w9hYWGYO3cuJk6cqLv9119/RZcuXVCyZEkAwJdffokFCxbg7t27CA8PxzfffAMA+Pjjj9GoUSMAz4/CxMTEYMqUKbo4aWlpiIqKQu3atfO1Js2bN0eJEiUAPN/YPHjwQHdf/fr1AQBJSUk4e/YsvvvuO93rlJKSgqioKLRv3x4LFizA3r17cfPmTfzxxx9ISUkB8Hxz+OIoV+nSpXWbv8KFC6Ndu3b48ssv0apVKzRv3hwtW7YE8PyI28tHX96mcePGKFWqFLZt24Zbt24hIiICpUuXBgB07twZM2bMwKFDh+Dg4AAPDw/d81avXo2EhATs378fhQsXztdaERGpikd0iIgMUL58ecyaNQtTpkzBw4cPAUB3itkLWVlZyMjIgJWVFV6+RrONjU22x3Tv3h3BwcEIDg5GUFAQdu/ejQ8//BCurq7Yu3cvHBwcEBYWhm7duiExMTHPOSYlJcHFxQXR0dGoVasWpkyZgkKFCkEIgUqVKuHIkSMYOnQonjx5gkGDBuHIkSMAnr8x37BhAwICAnDhwgUAeOvj//jjD9StW1c3eOBl8+fPx2+//YYDBw5k+/99mRACQog3rlOhQoV0zylevLhujYKDg7Fz5848Dyl42ctr/+L7v1CsWDEAQGZmJoDnpxS+/P2GDRuG8+fPo2/fvkhOTkbz5s0xdOhQXYycXmcfHx8sX74cH330EVauXImvv/4aAHDq1Ck0bdo017wPHz6MMWPGwNraWrdpevG9Bg4ciODgYDRu3BihoaHo3r27bvPl4OCAiRMnYtq0abr/LyIiS8eNDhGRgTp16oQWLVpg06ZNAJ4fLdi6dSuEEEhLS4O/vz+aNWuGBg0a4OrVq4iOjgYABAYG6mI4ODjgp59+Qnx8PABg+/btGDRoEADA1dUVUVFR6NGjB+bOnYsnT57g8ePHec7v+vXrSE1Nxddff43WrVvj5MmTyMjIQGZmJvz8/PDNN9/A0dERkydPRpMmTXDlyhUAgJ2dHerVqwdPT09MmjQJT58+fevjczoiUaJECSxevFh3VOTFGv3000+6zWFAQADKlCmDihUrwtHREf7+/gCeT7g7ffo0gOenwllbW+umy92+fRtdu3bVraexffjhh6hVqxY2btwI4PkRtj59+uD48eOIjIzE559/jsGDB6Nhw4YICQnRbSAcHR2xa9cuZGVl4dGjRwgNDQUA3L9/H61atUKpUqUwePBgeHh4IDo6GpcuXULlypWzfc7rbcLCwtC+fXv07dsXtWrVwtGjR3Wbxh49euD69evo1asX5s6diwcPHiApKQkAULt2bbi7u+uO7hERFQQ8dY2IyAi8vLzw+++/6/49b948ODk5IT09HY6Ojhg5ciRsbW2xZMkSeHp6onDhwmjYsKHu+Y6Ojhg2bBi++uorWFlZ4b333sOyZctgZWUFT09PLFiwAN9//z2sra0xduxYVKxYEefPn4eXl1euU7lq1qyJ5s2bo1OnTvjggw9QuXJlfPzxx7h16xZcXFxw+vRpdOnSBe+88w4qVKiAAQMG6I7gAM9PKzt8+DC+/fZbjB8//o2Pd3Nzy/GUuqZNm8LNzQ3r168HALRs2RI3btyAm5sbhBAoWbIkVqxYASsrK8yaNQvTpk1D586dUa5cOXz66acAAFtbW6xYsQILFizAypUrkZGRgYkTJ+Lzzz8H8HwM9cCBA3WngxmDj48P5syZg3379iEtLQ3Ozs7o3Lkz4uPjERISgi5dusDGxgZNmzbFw4cPkZKSAg8PD/zf//0fOnXqhFKlSulO+ytdujSGDRsGNzc3FC1aFDY2NpgzZ85rn23KSf/+/TFp0iScOHEChQoVQr169XD8+HEAwOTJk3Wjza2treHp6YkyZcronvticEGvXr3QsmXL14ZhEBFZGivx8vF1IiJSyvDhw7F69Wpzp6EJ27ZtQ7ly5fDFF1+YOxUiItIAnrpGRKSouLg49OvXz9xpaIatrS1atGhh7jSIiEgjeESHiIiIiIgsDo/oEBERERGRxeFGh4iIiIiILA43OkREREREZHG40SEiIiIiIovDjQ4REREREVmc/weSdq4kXX+uWwAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 1008x432 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_multind[[\"Unaccounted Time / s\", *cols]]\\\n", " .divide(df_multind[\"Runtime Program / s\"], axis=\"index\")\\\n", " .plot(kind=\"bar\", stacked=True, figsize=(14, 6), title=\"Relative Time Distribution\");"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Next Level: Hierarchical Data\n", "\n", "* `MultiIndex` only a first level\n", "* More powerful:\n", " - Grouping: `.groupby()` ([API](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html))\n", " - Pivoting: `.pivot_table()` ([API](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot_table.html)); also `.pivot()` ([API](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot.html))"]}, {"cell_type": "code", "execution_count": 97, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>Min. Init. Time / s</th>\n", " <th>...</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " <th>Unaccounted Time / s</th>\n", " </tr>\n", " <tr>\n", " <th>Nodes</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>5.333333</td>\n", " <td>3.0</td>\n", " <td>8.0</td>\n", " <td>185.023333</td>\n", " <td>10.0</td>\n", " <td>True</td>\n", " <td>0.220000</td>\n", " <td>42.040000</td>\n", " <td>42.838333</td>\n", " <td>0.583333</td>\n", " <td>...</td>\n", " <td>7.226667</td>\n", " <td>132.061667</td>\n", " <td>4.806585e+07</td>\n", " <td>816298.000000</td>\n", " <td>7.215000</td>\n", " <td>112500.0</td>\n", " <td>1.265738e+09</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>2.891667</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>5.333333</td>\n", " <td>3.0</td>\n", " <td>8.0</td>\n", " <td>73.601667</td>\n", " <td>10.0</td>\n", " <td>True</td>\n", " <td>0.168333</td>\n", " <td>19.628333</td>\n", " <td>20.313333</td>\n", " <td>0.191667</td>\n", " <td>...</td>\n", " <td>2.725000</td>\n", " <td>48.901667</td>\n", " <td>4.975288e+07</td>\n", " <td>818151.000000</td>\n", " <td>7.210000</td>\n", " <td>112500.0</td>\n", " <td>1.265738e+09</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>1.986667</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5.333333</td>\n", " <td>3.0</td>\n", " <td>8.0</td>\n", " <td>43.990000</td>\n", " <td>10.0</td>\n", " <td>True</td>\n", " <td>0.138333</td>\n", " <td>12.810000</td>\n", " <td>13.305000</td>\n", " <td>0.135000</td>\n", " <td>...</td>\n", " <td>1.426667</td>\n", " <td>27.735000</td>\n", " <td>5.511165e+07</td>\n", " <td>820465.666667</td>\n", " <td>7.253333</td>\n", " <td>112500.0</td>\n", " <td>1.265738e+09</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>1.745000</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5.333333</td>\n", " <td>3.0</td>\n", " <td>8.0</td>\n", " <td>31.225000</td>\n", " <td>10.0</td>\n", " <td>True</td>\n", " <td>0.116667</td>\n", " <td>9.325000</td>\n", " <td>9.740000</td>\n", " <td>0.088333</td>\n", " <td>...</td>\n", " <td>1.066667</td>\n", " <td>19.353333</td>\n", " <td>5.325783e+07</td>\n", " <td>819558.166667</td>\n", " <td>7.288333</td>\n", " <td>112500.0</td>\n", " <td>1.265738e+09</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>1.275000</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>5.333333</td>\n", " <td>3.0</td>\n", " <td>8.0</td>\n", " <td>24.896667</td>\n", " <td>10.0</td>\n", " <td>True</td>\n", " <td>0.140000</td>\n", " <td>7.468333</td>\n", " <td>7.790000</td>\n", " <td>0.070000</td>\n", " <td>...</td>\n", " <td>0.771667</td>\n", " <td>14.950000</td>\n", " <td>6.075634e+07</td>\n", " <td>815307.666667</td>\n", " <td>7.225000</td>\n", " <td>112500.0</td>\n", " <td>1.265738e+09</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>1.496667</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>5.333333</td>\n", " <td>3.0</td>\n", " <td>8.0</td>\n", " <td>20.215000</td>\n", " <td>10.0</td>\n", " <td>True</td>\n", " <td>0.106667</td>\n", " <td>6.165000</td>\n", " <td>6.406667</td>\n", " <td>0.051667</td>\n", " <td>...</td>\n", " <td>0.630000</td>\n", " <td>12.271667</td>\n", " <td>6.060652e+07</td>\n", " <td>815456.333333</td>\n", " <td>7.201667</td>\n", " <td>112500.0</td>\n", " <td>1.265738e+09</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>0.990000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>6 rows \u00d7 21 columns</p>\n", "</div>"], "text/plain": [" id Tasks/Node Threads/Task Runtime Program / s Scale \\\n", "Nodes \n", "1 5.333333 3.0 8.0 185.023333 10.0 \n", "2 5.333333 3.0 8.0 73.601667 10.0 \n", "3 5.333333 3.0 8.0 43.990000 10.0 \n", "4 5.333333 3.0 8.0 31.225000 10.0 \n", "5 5.333333 3.0 8.0 24.896667 10.0 \n", "6 5.333333 3.0 8.0 20.215000 10.0 \n", "\n", " Plastic Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "Nodes \n", "1 True 0.220000 42.040000 \n", "2 True 0.168333 19.628333 \n", "3 True 0.138333 12.810000 \n", "4 True 0.116667 9.325000 \n", "5 True 0.140000 7.468333 \n", "6 True 0.106667 6.165000 \n", "\n", " Max. Edge Build Time / s Min. Init. Time / s ... Presim. Time / s \\\n", "Nodes ... \n", "1 42.838333 0.583333 ... 7.226667 \n", "2 20.313333 0.191667 ... 2.725000 \n", "3 13.305000 0.135000 ... 1.426667 \n", "4 9.740000 0.088333 ... 1.066667 \n", "5 7.790000 0.070000 ... 0.771667 \n", "6 6.406667 0.051667 ... 0.630000 \n", "\n", " Sim. Time / s Virt. Memory (Sum) / kB Local Spike Counter (Sum) \\\n", "Nodes \n", "1 132.061667 4.806585e+07 816298.000000 \n", "2 48.901667 4.975288e+07 818151.000000 \n", "3 27.735000 5.511165e+07 820465.666667 \n", "4 19.353333 5.325783e+07 819558.166667 \n", "5 14.950000 6.075634e+07 815307.666667 \n", "6 12.271667 6.060652e+07 815456.333333 \n", "\n", " Average Rate (Sum) Number of Neurons Number of Connections \\\n", "Nodes \n", "1 7.215000 112500.0 1.265738e+09 \n", "2 7.210000 112500.0 1.265738e+09 \n", "3 7.253333 112500.0 1.265738e+09 \n", "4 7.288333 112500.0 1.265738e+09 \n", "5 7.225000 112500.0 1.265738e+09 \n", "6 7.201667 112500.0 1.265738e+09 \n", "\n", " Min. Delay Max. Delay Unaccounted Time / s \n", "Nodes \n", "1 1.5 1.5 2.891667 \n", "2 1.5 1.5 1.986667 \n", "3 1.5 1.5 1.745000 \n", "4 1.5 1.5 1.275000 \n", "5 1.5 1.5 1.496667 \n", "6 1.5 1.5 0.990000 \n", "\n", "[6 rows x 21 columns]"]}, "execution_count": 97, "metadata": {}, "output_type": "execute_result"}], "source": ["df.groupby(\"Nodes\").mean()"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["### Pivoting\n", "\n", "* Combine categorically-similar columns\n", "* Creates hierarchical index\n", "* Respected during plotting!\n", "* A pivot table has three *layers*; if confused, think about these questions\n", " - `index`: \u00bbWhat's on the `x` axis?\u00ab\n", " - `values`: \u00bbWhat value do I want to plot?\u00ab\n", " - `columns`: \u00bbWhat categories do I want [to be in the legend]?\u00ab\n", "* All can be populated from base data frame\n", "* Might be aggregated, if needed"]}, {"cell_type": "code", "execution_count": 98, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [], "source": ["df_demo[\"H\"] = [(-1)**n for n in range(5)]"]}, {"cell_type": "code", "execution_count": 99, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>H</th>\n", " <th>-1</th>\n", " <th>1</th>\n", " </tr>\n", " <tr>\n", " <th>F</th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>-3.918282</th>\n", " <td>NaN</td>\n", " <td>7.389056</td>\n", " </tr>\n", " <tr>\n", " <th>-2.504068</th>\n", " <td>NaN</td>\n", " <td>1.700594</td>\n", " </tr>\n", " <tr>\n", " <th>-1.918282</th>\n", " <td>NaN</td>\n", " <td>0.515929</td>\n", " </tr>\n", " <tr>\n", " <th>-0.213769</th>\n", " <td>0.972652</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>0.518282</th>\n", " <td>2.952492</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": ["H -1 1\n", "F \n", "-3.918282 NaN 7.389056\n", "-2.504068 NaN 1.700594\n", "-1.918282 NaN 0.515929\n", "-0.213769 0.972652 NaN\n", " 0.518282 2.952492 NaN"]}, "execution_count": 99, "metadata": {}, "output_type": "execute_result"}], "source": ["df_pivot = df_demo.pivot_table(\n", " index=\"F\",\n", " values=\"G\",\n", " columns=\"H\"\n", ")\n", "df_pivot"]}, {"cell_type": "code", "execution_count": 100, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAEPCAYAAACwWiQoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl0VFWiNfB9a85EJiohgMyCzAmTIENEESWBhFHBARFQ6aZFsdVGGhv0tbQKtkrz6XttI4IiKEMQNPJEfCAhYBiDAQQEQSBAQgiESlLjvd8faXnyAlRVUlWn6tb+reVaJrl1z+ZY7lxO3UFSFEUBERGFNI3oAEREVH8scyIiFWCZExGpAMuciEgFWOZERCrAMiciUgGWORGRCrDMiYhUgGVORKQCLHMiIhVgmRMRqQDLnIhIBVjmREQqoPP3AOXllZBlMTdmTEyMRlmZRcjYNxKMmQDm8kYwZgKYy1vBmCsxMRrl5ZWIj4/y+rV+L3NZVoSV+a/jB5tgzAQwlzeCMRPAXN4Kxlx1zcRlFiIiFWCZExGpgN+XWYiI/EFRFJSXl8JutwLwfmmipEQDWZZ9H8wjEgwGE+LjzZAkySd7ZJkTUUiyWC5DkiQkJzeFJHm/yKDTaeB0iilzRZFx6dIFWCyXERMT55N9cpmFiEJSdbUFMTFxdSpy0SRJg5iYeFRX++5smtCbBSIiALLsglYbuosLWq0Osuzy2f78XuaKEnyn/hCROvhqvVkEX2f3e5m7ThX6ewgiIp/o168HLl26dM33cnPX44UXnhGUyHN+L3P7rrWQrVf8PQwRUVjz/zKLoxq2/GX+HoaIKKz5/dMDfce7UZ23DM7WvaFrnurv4YiI6mXatCeh0Wivfl1RcRlt2twqMJFn/F/mHe6G7eAWWPOWICqlLSRDpL+HJCKqswUL/gtxcf977ndu7nps3rxJYCLP+H2ZRdJoYRowEUrVJdh2fOrv4YiIwlJAzjPXJrWCvvN9cPy4Bc4zBwMxJBFRWHFb5itXrkR2dvbVf7p3745XXnnF64GMPUZAapAM63eLoThsdQpLRETX53bNfMyYMRgzZgwA4OjRo5g6dSr+8Ic/eD2QpDPAlD4R1ev/BtvO1TDd8aD3aYmI/Cgvb1et72VkDENGxjABabzj1TLLnDlzMH36dCQkJNRpMF1KO+g73AVH0Ua4zv9Up30QEVFtHpd5fn4+rFYrhgwZUq8Bjb3GQIqKh3XLB1Bcjnrti4iIakiKhzdPmTZtGgYPHoyhQ4fWe9CqY3txbsVfEdd3FBLu5HILEXnvwIGDaNy4uegY9VJcfBIdO3bwyb48Os/cbrdj586deO2117weoKzMUvuZdg3aQHdrX1zKz4E9uQu0Df3zH8RsjkFpaXDdSiAYMwHM5Y1gzASEXy5Zlut1P3KR9zP/lSzL18yN2RyDsjILEhOjvd6XR8sshw8fRosWLRAZ6bsLfkx9xkEyRdcst8hOn+2XiCgceVTmp06dQqNGjXw6sGSKhrHvI5DLTsJeuMGn+yYiCjceLbNkZGQgIyPD54PrW/WEs2UP2Pesha5lN2jjGvt8DCKicCD8SUPGvg8DOuO/l1vErl8REfnKsWM/4eGH7w/YeMLLXBMZB1OfByGf/wmOg8F/MxsiIne++uoL/PGPT8FqrQ7YmEHxAD3drXdAe2wHbAUroWuWCk0Ds+hIRBRCtv1wFnn7z3r1GkkCPDkxu1+XFPTtnOLxfi0WC/LytmDOnFfx17/O9ipTfQg/MgdqnoVn6j8BkDSwbv2Qzw0lopAVHR2NV1+dh+Rk35404k5QHJkDgCY6Ecbb74ctbykch7+D4bZ00ZGIKET07ezd0TMQHOeZ+1JQHJn/St/+TmhT2sG2YwXkynLRcYiIPPKvf/0nJkx4EBMmPIi8vC1CMgTNkTkASJIGpgGPoXLVS7DlLYVp8DRIkiQ6FhHRTU2ePAWTJ08RmiGojswBQBPbCMYeI+E8uRfOY9+LjkNEFBKCrswBQN95MDTmlrDlL4NcXSE6DhGR11JSGmPVqvUBGy8oy1zSaGFKnwTFXgVb/iei4xARBb2gLHMA0CY0hSFtGJzHdsB5cq/oOEREQS1oyxwADKlDoUloCuvWJVBslaLjEBEFraAuc0mrg2nARCjVl2H7/lPRcYiIglZQlzkAaJNaQd/5Pjh+/A7OMwdFxyEiCkpBX+YAYOwxAlJsMqzfLYbisImOQ0QUdEKizCWdoWa55UopbDtXiY5DRHRdlZUWPPLI/Th7tjjgY4dEmQOALqUd9B3ugqPoG7jOHRUdh4joGgcOFOH3v5+MU6d+ETJ+yJQ5ABh7jYEUnQDrdx9AcdpFxyEiumr9+hw8++yf0LChmFt4B9W9WdyRDBEw9Z+A6q/ehH3POhh7jRYdiYiCgOPINjgOf+fVayRJ8uh22/p2A6Bv29ftdjNmvOTV+L4WUkfmAKC7pTN0bfvCXpgL14WTouMQEQUFj47Mv/32WyxcuBBVVVXo168fZs2a5e9cN2XqPQ6Vp36AdcsiRI74CyRNSP0Fg4h8TN+2r0dHz78VdvczP3XqFGbPno13330X69evx8GDB7Fli5j79f5KMkXD2G885LJfYC/8SmgWIqJg4PaQduPGjcjIyECjRjWPQHrrrbdgNBr9HswdfcsecLbsAfvuz6Fr0R3a+MaiIxERCeP2yPzkyZNwuVyYNGkSsrKy8MknnyA2NjYQ2dwy9n0E0Btrzm6R1fPXJSIKXatWrUdKSuAPLt0embtcLuzatQsfffQRIiMj8fvf/x45OTkYOXKkRwMkJkbXO+SNxeDKvRNRuu4fMJ7citheQ2ttYTbH+HH8ugnGTABzeSMYMwHhlaukRAOdrn7ncNT39fWl0WhqzU1dO9NtmTds2BB9+vRBQkICAODuu+/G/v37PS7zsjILZNn96T91pSR3g/aWLij7n2WwJraHpkHS1Z+ZzTEoLb3it7HrIhgzAczljWDMBIRfLlmW6/UBZjB8ACrL8jVzYzbHoKzMUqdCd/traeDAgcjLy0NFRQVcLhe2bt2Kjh07ej2Qv0iSBFP/RwFJA+vWDz06b5SISG3clnnXrl0xefJkPPjgg8jIyEDjxo0xatSoQGTzmCY6Ecbb74frzEGvLxwgotAVygdvvs7u0Qnao0ePxujRwX21pb79nXAe+x627Sugu6ULNFHxoiMRkR/pdAZUVlYgKqoBJEkSHccriqKgsrICOp3BZ/tUzdU2kqSBacBEVK56CdatSxBx79OiIxGRH8XHm1FeXgqL5VKdXq/RaCALPAtOpzMgPt5393FRTZkDgCY2GcaeI2Db8Smcx74Hku4RHYmI/ESr1aFhw5Q6vz5YPzCuq5C7N4s7+k73QmNuBVv+MrgqL4uOQ0QUEKorc0mjgSl9EhR7FS58vUh0HCKigFBdmQOANqEJDGlZqDy4Dc4Te0XHISLyO1WWOQAYUjNhSGoGa94SKLZK0XGIiPxKtWUuaXUwZ06FUn0Zth2fio5DRORXqi1zADA2bgNDlyFwHP4OztMHRMchIvIbVZc5ABi6D4cUmwzr1sVQHFbRcYiI/EL1ZS7pDDANmAjlygXYdq4WHYeIyC9UX+YAoEtpB32Hu+Eo+gbOc0dFxyEi8rmwKHMAMPYaDSk6AbYti6A47aLjEBH5VNiUuWSIgGnAY5Avn4N9zzrRcYiIfCpsyhwAdE07Qde2H+yFuXBdOCE6DhGRz4RVmQOAqc84SKYYWLd8AEV2io5DROQTYVfmkjEKxn7jIZf9Avu+XNFxiIh8IuzKHAD0LbtD16on7HvWwVV+RnQcIqJ6C8syBwDjHQ8DeuO/l1vEPtSViKi+wrbMNZGxMN3xEOSSY3Ac2Cg6DhFRvYRtmQOArk0faG/pAtvO1ZArSkTHISKqM4/KfPz48cjMzER2djays7NRWFjo71wBIUkSTP0fBSQNrN8tDuknfRNReHP7DFBFUXD8+HFs3rwZOp2qHhkKANBEJ8J4+wOw5S2B48ctMLS/U3QkIiKvuT0yP378OCRJwuOPP46srCx8/PHHgcgVUPr26dCm3Abbjk8hWy6KjkNE5DVJcbO2sHfvXixfvhxz5syB1WrF+PHj8eKLL6Jv376ByhgQjvJzOP3P6Yho0RnJ978ISZJERyIi8pjbMv+/PvzwQxQXF2PmzJkebV9WZoEsi1mLNptjUFp6xePt7fs3wLZjBUx3PQl9mz5BkSlQmMtzwZgJYC5vBWMuszkGZWUWJCZGe/1at8ssu3btwvbt269+rSiKKtfOAUDfaTA0Sa1g27YMcnWF6DhERB5zW+ZXrlzBG2+8AZvNBovFgpycHNxzzz2ByBZwkkYD04BJUBzVsG1T32cDRKRebg+xBw4ciMLCQgwfPhyyLOPBBx9EWlpaILIJoU1oAkO3LNh35cBxojf0LbqJjkRE5JZH6yXPPPMMnnnmGX9nCRqG1Ew4j++CLW8pdCntIBmjREciIrqpsL4C9EYkjQ6m9ElQqitg27FCdBwiIrdY5jegNbeAoct9cBzeCufpItFxiIhuimV+E4buwyHFNqq51N9hFR2HiOiGWOY3IekMMKVPhGK5CFvBKtFxiIhuiGXuhq5RW+g73gXHgU1wnjsqOg4R0XWxzD1g7DUGUnQCbFsWQXHaRcchIqqFZe4BSW+CacBjkC+fg33P56LjEBHVwjL3kK5pJ+ja9oe98Cu4LpwQHYeI6Boscy+Y+oyFZIqBdcsiKLJTdBwioqtY5l6QjFEw9h8PuewU7PtyRcchIrqKZe4lfYvu0LXqBfuedXCVnxEdh4gIAMu8Tox9H4akN/17uUUWHYeIiGVeF5qIBjDe8SDkkuNwFG0UHYeIiGVeV7o2faBt1hW2nashV5SIjkNEYY5lXkeSJMHU71FAo625d4t3T98jIvIplnk9aKITYOz9AFzFh+D4cYvoOEQUxljm9aS/LR3axu1h27ECsuWi6DhEFKZY5vUkSRJMAx4DZBnWvCVcbiEiIVjmPqBpkARjz1Fw/VII50/bRcchojDEMvcRfad7oElqDVv+J5CrK0THIaIw43GZv/7665gxY4Y/s4Q0SaOpeZCFwwrbto9FxyGiMONRmW/fvh05OTn+zhLytPFNYOiWBefxAjhO7BYdh4jCiNsyv3TpEt566y1MmTIlEHlCniE1A5rEW2DbuhSKrVJ0HCIKE5Li5vSLadOmYdy4cTh79iwKCgrw2muvBSpbyLKdPY4zi/+E6M53ImnYVNFxiCgM6G72w5UrVyIlJQV9+vTBmjVr6jRAWZkFsizmdD2zOQalpVcCP7DODEPXIbDs+xKupt2ga9pJfCY3mMtzwZgJYC5vBWMuszkGZWUWJCZGe/3amy6z5ObmYtu2bcjOzsaCBQvw7bffYu7cuXUOGk4M3bKhiW1Uc6m/wyo6DhGp3E2PzBcvXnz139esWYOCggLMnDnT76HUQNIZYEyfhOp1c2ErWAlT30dERyIiFeN55n6ka3Qr9B3vhuPAJjjPHREdh4hUzOMyHzlyJD/8rANjr9GQYhrCuuUDKE676DhEpFI8MvczSW+Cqf8EKJfPwb57reg4RKRSLPMA0DXtBH27/rDv3wDb2WOi4xCRCrHMA8TYeyykiAYo/eL/QZGdouMQkcqwzANEMkbB2G887CUnYd+XKzoOEakMyzyA9C26IapDX9j3rIOr/IzoOESkIizzAGs4eBIkvQnWLYugyLLoOESkEizzANNGxcLY9yHIJcfhKNooOg4RqQTLXABd697QNusK287VkCtKRMchIhVgmQsgSRJM/ScAGm3NvVv43FAiqieWuSCaqHgYez8AV/EhOH7cIjoOEYU4lrlA+tvSoW3cHrYdKyBbLoqOQ0QhjGUukCRJMA14DFBkWPOWcLmFiOqMZS6YpkESjD1HwfVLIZw/bRcdh4hCFMs8COg73gNNchvY8j+BXF0hOg4RhSCWeRCQNBqYBkyE4rDCtu1j0XGIKASxzIOENr4xDN2y4DxeAMeJ3aLjEFGIYZkHEUNqBjSJzWDbuhSKrVJ0HCIKISzzICJpdDClT4JivQLr9hWi4xBRCGGZBxltw+YwdM2A88hWOE8XiY5DRCHCozJ/5513kJGRgczMTCxevNjfmcKeoVsWNHEpNZf6O6yi4xBRCHBb5gUFBdixYwfWrVuH1atX46OPPsLx48cDkS1sSTpDzdktlouwFawUHYeIQoDbMu/VqxeWLl0KnU6HsrIyuFwuREZGBiJbWNM2uhX6ToPgOLAJznNHRMchoiDn0TKLXq/HggULkJmZiT59+iA5OdnfuQiAsecoSDENYd3yARSnXXQcIgpikuLFDUGqq6sxZcoUZGRk4IEHHvBnLvq3qp8Lce6TVxDbZzgS73pEdBwi8rMfT17Ebc0TvH6dzt0Gx44dg91uR/v27REREYHBgwfj8OHDHg9QVmaBLIu5gZTZHIPS0itCxr4RrzNFt4K+3QBc3rEOjkap0JpbBEeuAAnGXMGYCWAubwVjrq1F5/Dltp+xaNZgr1/rdpnl9OnTmDVrFux2O+x2OzZt2oTu3bvXKSjVjbH3A5AiGtQ8N9TlFB2HiPxg465TWPzFQXRp3bBOr3db5unp6UhPT8fw4cMxatQopKWlITMzs06DUd1IxiiY+j0K+eIp2Au/FB2HiHxs894zWP7NUfTu1AjjBrWp0z7cLrMAwLRp0zBt2rQ6DUC+oWuRBl3r22Hfsw66Fj2gTWgiOhIR+UDe/rNY+t+H0aV1Il54pAcqLlfXaT+8AjSEGO94CJIhEtbvFkGRZdFxiKiedhw4h8W5h9ChRTymjugEvU5b532xzEOIJqIBjHc8BLnkOBxFX4uOQ0T1sOvHEvzri0Noe0scnhrVpV5FDrDMQ46u9e3QNkuFbecayJfPi45DRHWw7+gF/Ne6A2jVuAGeHtMFRn39ihxgmYccSZJg6v8ooNHW3LtF4XILUSgpOl6Gd9f+gFuSovHMmK4wGTz66NItlnkI0kTFw9hnLFxnf4Tj0BbRcYjIQ4dOluMfa35A48QoPPtAKiJNvilygGUesvTtBkDbpANs338K2VImOg4RuXHk1CW8s6oQSXEReHZsKqIj9D7dP8s8RNUstzwGKDKsW5fAi7syEFGAHSu+jLdXFiI+xoTnxqaiQaTB52OwzEOYpoEZxp6j4Tq1H86ftouOQ0TXcfLcFfz900LEROrxwrg0xEYb/TIOyzzE6TsOgia5Daz5yyBXXRYdh4h+43SJBfNX7EWkUYvnx6UhPsY/RQ6wzEOepNHANGAi4LDBlv+x6DhE9G/FFyoxb8Ve6HUaPD8uDQ1jI/w6HstcBbTxjWHong3n8Z1w/LxbdByisHf+YhXmrdgLSZLw/Lg0JMX7/4E+LHOVMHQdAk1iM9jylkKxVYqOQxS2Si9V443le+FyKXh+bCpSEqMCMi7LXCUkjQ6m9ElQrFdg3b5cdByisHSxwop5y/fCZnfhubGpaGKODtjYLHMV0TZsDkPXDDiP5MF56gfRcYjCyiWLDfOW70Wl1YE/jk1Fs+SYgI7PMlcZQ7csaOJSYN36IRR73W6lSUTeqai0Y97yvbhksWP6mFS0TGkQ8Awsc5WRdIaa5RbLRdgKVomOQ6R6lmoH5q/Yi7LLVjwzpgvaNI0VkoNlrkLa5DbQdxoEx8FNcJ71/HmtROSdKqsDb67Yh3MXq/HUqC5o1yxeWBaWuUoZe46GFGOG9bsPoDjtouMQqU61zYm/f1aI06UWTB3RCR1bJgjNwzJXKUlvhGnAY1Aun4d991rRcYhUxWZ34Z2VhThx9gqmZHdC1zZ1ewizL7HMVUzXpAP0tw2Aff9XcJX+LDoOkSrYHS4sWL0fR89cxhNZHdC9nVl0JAAelvnChQuRmZmJzMxMvPHGG/7ORD5k7D0WUkQsrFsWQXE5RcchCmkOp4yFOT/gx5PlmJTZHr3aJ4uOdJXbMs/Pz0deXh5ycnKwdu1aHDhwABs3bgxENvIByRAJU/9HIV88Dfu+L0XHIQpZTpeM99YWoej4RTw65Dbc0SlFdKRruC1zs9mMGTNmwGAwQK/Xo3Xr1iguLg5ENvIRXfM06Fr3hn3vOrgunhYdhyjkuGQZ/1x3APt+uoCH7mmLAV0bi45Ui9syv/XWW5GamgoAOHHiBHJzc5Genu73YORbxjsehGSIhHXLB1BkPjeUyFOyrGDRF4ew63ApHrirDe7u3lR0pOuSFA8fUXP06FE8+eSTeOqppzBixAh/5yI/sBzIQ8nat5Bw96OI650lOg5R0JNlBf/4bB++2fkLHhnSHvcPais60g159DTR3bt3Y9q0aZg5cyYyMzO9GqCszAJZFvNIM7M5BqWlV4SMfSMiMynmLtA1T8PFzZ/A1rADNLH/++FNMM4VEJy5gjETwFzecpdLURR89PURbN57Bll9W2Bg1xS//znM5hiUlVmQmOj9DbrcLrOcPXsWU6dOxfz5870ucgoukiTB2G88oNXVXEykcLmF6HoURcHyTUexee8ZDLm9GbL7tRQdyS23Zb5o0SLYbDa89tpryM7ORnZ2NpYv5y1WQ5UmKh7G3mPhOnsYjkObRcchCjqKomDVlmP4ZtdpDOrRFKPvbA1JkkTHcsvtMsusWbMwa9asQGShANG3GwDnsQLYvv8MumZdoYlOFB2JKGh8nvczvtrxC+5Ma4Jxd98aEkUO8ArQsCRJEkz9JwCKDOvWJfDwM3Ai1fty+wms23YCfTs3wsOD24ZMkQMs87ClaWCGsdcYuE7th/Novug4RMJ9XfALVm85jt4dkvHYkPbQhFCRAyzzsKbveDc0yW1g3f4JnFcuio5DJMym3aex4tuf0L2dGZOGtodGE1pFDrDMw5okaWBKnwg4HTizeAZc538SHYko4L4rLMayjUeQ2qYhnszqCK0mNGsxNFOTz2jjGiMyeyYkrRZV6/8Ge9FGrqFT2MgvOoslX/2ITq0S8LvhnaDThm4lhm5y8hltwxZoMnEetE07w5a/DNZv/xOKwyo6FpFfbd13Bou+PIR2zeLwhxGdodeFdh2GdnryGW1ENCLunQZDz9FwHi9AVc4rcJXzhmqkTnuOlGL+st1o0yQWT4/uCoNeKzpSvbHM6SpJ0sCYNhQRmS9AsVlQlfMyHD/tEB2LyKf2H7uA99YW4damcXhmTFcYDaFf5ADLnK5D17g9Ike+DG1iM1i//U9Yt33MB1uQKhw4cREL1xShqTkac57ogwijR7enCgksc7ouTVQ8Iob9CfrO98Jx4BtUrf8bZAtPX6TQdfiXcvxj1X40SojAH8emIjpCLzqST7HM6YYkjQ6mPuNgGjQVcvkZVK2ZDefpItGxiLz20+nLeHvlfiTGmvDc2DTVFTnAMicP6Fv1RNSI2ZAiGqA6903Y9nzOOy5SyPj5bAXeWrkPsdEGPDc2DQ2iDKIj+QXLnDyiiUtB5PC/QNemN+y7clC94W0oVovoWEQ39cv5K/j7p/sQZdLjhXFpiI8xio7kNyxz8pikN8I08AkY+42H68xBVK6ZDVfpz6JjEV3XmVIL5q/YB4Nei+fHpSGhgUl0JL9imZNXJEmCocNdiMyaCQCo+vxV2A/+D68apaBy7mIV5q3YB61Gwgvj0mCOixAdye9Y5lQn2qRWiBr5MrRN2sOWtwTWze9DcdpExyJCSXkV5i3fC0VR8Ny4NCQnRIqOFBAsc6ozyRSNiPumw9B9BJxHt6Mq5z8gXzonOhaFsQuXqzFv+V7YHS48NzYNTRpGiY4UMCxzqhdJ0sDYPRsRGX+EUnUJlTlz4Ph5l+hYFIbKr9gwf/k+VNlqivyWJO8fihzKWObkE7qmnRA56mVo4hvDunEhrNuXQ5F51SgFxmWLDfOW78XlKjuefaArmjeKER0p4Fjm5DOa6EREDpsJfce74fjhv1H9xRuQK8tFxyKVu1Jlx/wV+3DxihXTx3RF68axoiMJ4XGZWywWDB06FKdPn/ZnHgpxklYHU99HYLprClwXTtRcNVp8SHQsUilLtQNvrtiHkkvVeHpUF7S9JU50JGE8KvPCwkKMGzcOJ06c8HMcUgt9m96IHDEbkjEK1V++Adu+L3jVKPlUldWJtz7bh+KySvxhZGe0b5EgOpJQHpX5Z599htmzZyMpKcnfeUhFtPFNaq4abdkT9oJVsH79Dyi2StGxSAWsdifeXlmIX85b8LvhndC5VaLoSMJJihdXe9x1111YunQpmjZt6s9MpDKKoqBiVy7KvlkCXYOGSB71PIyNWoqORSHK6ZLxl//ajgM/l+GFh3ugb9fGoiMFBb/fzLeszAJZFnN1oNkcg9LSK0LGvpFgzAQEIFeLAYgcmoLqTe/izIcvwtT3EehvGyA+Vx0EYyYgfHJdsthw6nwFJme2R9vGdd93MM6X2RyDsjILEhO9P62SZ7NQwGgb3Vrz0ItGt8L63QewblkExWkXHYtCTFy0EW9O7YveHRuJjhJUWOYUUJqIBogY8hwMacPgOLwVVZ//FXJFiehYFGIkSRIdIeiwzCngJI0Gxp6jEHHfM5AtZahcMxuOE3tExyIKaV6V+bfffssPP8lndM1SETVyDjQNkmH9egFs338GRXaJjkUUknhkTkJpYsyIzJoJffs7YS/MRfWX8yBXXRYdiyjksMxJOElngKn/BJjufByukuM1V42eOyI6FlFIYZlT0NC37YvI4S8BOiOq178G+/4NfOgFkYdY5hRUtIm3IGrkbOiap8G2YwVK1syHYq8WHYso6LHMKehIhkiY7vkDjL0fQOXhAlTmzIHr4inRsYiCGsucgpIkSTB0GYKUh+cAdiuqcv4DjiPbRMciCloscwpqEc06InLUy9AmtYR18/uwbv2QV40SXQfLnIKeJjIOEZkvwNA1A45Dm1G1bi5ky0XRsYiCCsucQoKk0cJ4+/0wDZ4GueI8HEe55EL0W36/ayKRL+lbdIPu4XcAicchRL/FMqeQI+kMoiMQBR0e3hARqQDLnIhIBVjmREQqwDInIlIBljkRkQqwzImIVMDvpyZqNGKf1Sd6/OsJxkwAc3kjGDMBzOWtYMxV10ySwhtGExGFPC6zEBGpAMuciEgFWOZERCrAMideCc73AAAGzUlEQVQiUgGWORGRCrDMiYhUgGVORKQCLHMiIhVgmRMRqYBqnjS0a9cuzJ07Fw6HA02aNMHrr7+O2NjYa7YpLi5GZmYmmjVrBgBo2LAhFi1aJDyX3W7Hn//8ZxQVFcFkMmH+/Plo3bq1X3Pt3r0bc+fOhdPpRFxcHObOnYsmTZpcs02g58uTTCLm6lfvvPMONBoNnnrqqVo/E/He8iSXiPkqLi7G888/j7KyMrRs2RLz589HVFRUrW0CMV/r16/He++9B4fDgQkTJuChhx665ueHDh3CrFmzYLFY0KNHD7z88svQ6fxfi+5yLVy4EKtXr0aDBg0AAPfff3+tbWpRVGLQoEHK0aNHFUVRlHnz5ilvvvlmrW02bNigvPTSS0GX61//+tfVXAUFBcro0aP9nmvgwIHKoUOHFEVRlJUrVypTpkyptU2g58uTTCLmqqKiQnnxxReVLl26KAsWLLjuNiLeW57kEjFfTzzxhPLFF18oiqIoCxcuVN54441a2wRivs6dO6cMHDhQKS8vVyorK5Vhw4Zd/X/xV5mZmcrevXsVRVGUF198UVm2bJlfM3ma68knn1T27Nnj1X5Vs8ySm5uLNm3awOFw4Pz581d/o/3WDz/8gCNHjmDkyJEYP348Dh8+HBS5Nm/ejKysLABAz549UV5ejuLiYr9lstvtePrpp3HbbbcBANq1a4ezZ8/W2i6Q8+VppkDPFQBs2rQJLVq0wGOPPXbDbUS8tzzJFej5cjgc2LlzJ+69914AwMiRI7Fhw4Za2wVivvLz89G7d2/ExcUhMjIS99577zVZzpw5A6vVitTU1JtmDXQuACgqKsL777+PYcOG4ZVXXoHNZnO7X9WUuV6vx+HDh5Geno7vv/8emZmZtbYxGo0YPnw41qxZg0mTJmHq1Kmw2+3Cc5WUlMBsNl/92mw249y5c37LZDAYkJ2dDQCQZRkLFy7EoEGDam0XyPnyNFOg5woAhg8fjieeeAJarfaG24h4b3mSK9DzVV5ejujo6KtLFWazGefPn6+1XSDm6//+2ZOSkq7Jcr25uV5WX3OXq7KyEu3bt8ef/vQn5OTkoKKiAu+++67b/YbcmvlXX32Fv/3tb9d8r1WrVvjwww/Rrl075OfnY8WKFZg+fTpWrFhxzXa/XVNMT0/Hm2++iePHj189GhSV63o0Gt/8nr1ZLrvdjhkzZsDpdOLJJ5+s9Vp/zVd9Ml1PIObKHVHvrbrw53y1aNGi1naSVPuWrv6cr18p17kh7G+zuPu5v7gbNyoqCu+///7VrydOnIiZM2di+vTpN91vyJX5kCFDMGTIkGu+Z7PZ8M0331w9ksvKysLrr79e67UfffQRhg4divj4eAA1k+qrDzvqkyspKQmlpaVo3rw5AKC0tBRJSUl+ywXU/Pb/3e9+h7i4OLz33nvQ6/W1tvHXfNUnk4i58kSg31ueCvR8ORwO3H777XC5XNBqtTccz5/z9avk5GTs2rXr6tclJSXXZElOTsaFCxeufu3LualPruLiYuTn52P06NEAPJ8bVSyz6HQ6vPzyyygqKgJQc8TQrVu3Wtvt3LkTq1atAgAUFBRAlmW0atVKeK709HR8/vnnAGrOfjEajWjcuLHfcgHA888/j+bNm+Odd96BwWC47jaBni9PMomYK08Eeq48Fej50uv16NGjB3JzcwEAa9euxYABA2ptF4j5uuOOO7B9+3ZcvHgR1dXV+Prrr6/J0qRJExiNRuzevfumWX3NXS6TyYR58+bh1KlTUBQFy5Ytwz333ON+xz74cDYo7Ny5UxkxYoSSlZWlPP7448rZs2cVRVGUTz75RHn77bcVRan5FHnChAlKZmamMnLkyKtnTojOZbValRdeeEHJyMhQhg8frhQVFfk104EDB5S2bdsqGRkZSlZWlpKVlaVMnjy5Vq5AzpenmQI9V7+1YMGCa84aEf3e8iSXiPk6ffq08vDDDytDhgxRJk6cqFy6dKlWrkDN17p165TMzExl8ODByj//+U9FURRl8uTJyv79+xVFUZRDhw4po0aNUu677z7l2WefVWw2m19yeJtrw4YNV38+Y8YMj3LxSUNERCqgimUWIqJwxzInIlIBljkRkQqwzImIVIBlTkSkAiF30RBRfbRr1w5t27a95irITp064dVXXxWYiqj+WOYUdpYsWYKEhATRMYh8isssREQqwIuGKKxcb5nlgw8+QGJiosBURPXHZRYKO1xmITXiMgsRkQqwzImIVIBlTkSkAvwAlIhIBXhkTkSkAixzIiIVYJkTEakAy5yISAVY5kREKsAyJyJSAZY5EZEKsMyJiFTg/wMW5QNDIsf0iQAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_pivot.plot();"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 7\n", "<a name=\"task7\"></a>\n", "\n", "* Create a pivot table based on the NEST `df` data frame\n", "* Let the `x` axis show the number of nodes; display the values of the simulation time `\"Sim. Time / s\"` for the tasks per node and threas per task configurations\n", "* Please plot a bar plot\n", "* Done? [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 101, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAELCAYAAAAiFru1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4U1X+x/F30tCNFlFIi5aCyCI6M4KCQAGpOlhEqGUVBEFEAZVFcGOx7FvFKoIs4wKiCEjZyg4qKAIVWZyBYQZRBgpFoKUFutC9ye+PzkT7KzRpSZeUz+t5fJ7k3pNzv8kB/OTm3HMNVqvVioiIiIiIXJexvAsQEREREanoFJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7TOVdwP93+fJVLBZreZdRKmrU8CEpKa28y5AS0Ni5No2fa9P4uS6NnWurzONnNBq49daqxXpNhQvNFou10oZmoFK/t8pOY+faNH6uTePnujR2rk3j9ztNzxARERERsUOhWURERETEjgo3PUNERERuXnl5uVy+fJHc3OzyLuWml5BgxGKxlHcZN8RkcufWW824ud145FVoFhERkQrj8uWLeHp6U7VqLQwGQ3mXc1MzmYzk5rpuaLZarVy9msLlyxepWfP2G+5P0zNERESkwsjNzaZq1WoKzHLDDAYDVatWc9qvFgrNIiIiUqEoMIuzOPPPkkKziIiIiIgdN/WcZt9qXnh6FP0RZGblkpqSUUYViYiIiEhFdFOHZk8PE6GvrS+yzcZ3w0gto3pERESksPfff4d//OPvAMTGnuT22+/Aw8MTgA8/XGx77IiNG6OJidnNzJnvFquGQYOe5f335/PMM0/RvHkL3nprkm3f0aP/ZOrU8axcGV2sPvv06c7o0eNp0qSpQ+1//PEHFi78AIBLl5KwWPKoWdMPgGefHcju3bto3PgennqqT7HqKKlXXx1Ohw4d6dDhiSLbRUUtJyMjg2+/3QFARkY6Fy9epE6dugC0bBnESy8NL/bxBw8ewLPPPk+bNg8Vv/gSuKlDs4iIiFR8I0e+YXvco0coEydOo3Hje8vs+BcunMfXtxpVq/oAsGPHV7Rq1Zq//jWkzGqA/HDZsmUQAB99tICMjAxeeeU12/7du3eVaT2O2rPneyZMmMqzzz4PwIEDPzJ//hyWLFlezpUVj0KziIiIuKwNG9axcWM0ubk5pKSk0L//QMLCupGYeJGpUyeSmpoMQJs27Xj++SEFXrtjx1d89NECIiPn4uXldd3233//HQ89FGx73aBBLxMZGcGf/vQXatUqvJTZokUf8u233+Dm5kadOncyatQb3HZbDU6ePMHMmVPJzs7mzjvvJDMz0/aaw4f/wd/+9gFZWZkYjW48//xggoLaFvvzOHz47+zY8TWXL1+ifv2GTJw4DZPJRIcOwQQFteE//znBlCkzcXMzMWfOu6SmpmCxWOjVqw8dO3YmLy+PuXPf5dixf5OefhWAMWMm8Oc//4WEhHimT5/EpUtJ1Kp1O1euXLId96OPFrBnzy6qVHHnlluqEx4+idtuq0FKSjI5OdnUrGkusu6rV9N4552ZnDv3G8nJV6hWrRqTJs0gIKA2O3Z8xRdfLMFodMPNzY0RI17lz3++z/banJwcJkwYg69vNUaPDsfNza3Yn5sjHLoQcM6cOTzxxBN06tSJTz/9FICYmBhCQ0MJCQlh9uzZtrbHjh2je/fudOjQgbfeeovc3NxSKVxERERublevprFly0befXcun366nAkTptmmL6xfv5a6deuyePEy5s37mNjYU7YQCLBt22Y++2wRH3zwIYGBdYpsv3fv9wVCc/PmDxIa2oXJk8PJy8srUNOGDes4dOgAn3yylM8++5LAwDpEREwFYNKkt+jWrSeffbaCrl17cvFiAgDJyVeIiJjCxInTWbx4GTNmvMOsWTNISIgv9meSlJTE3LkLWb58DefPn2P37u8AyMrKIjj4UVasWEu9evWZMGEMw4aNZPHiL/jggw9ZuvRTfv753xw9+k+uXLnC3/62mC+/XEP79h1YtuwzACIjI2jS5H6WLo1i+PBRnD4dC8C5c7+xbt1qFi36gkWLltKsWXP+/e9//fez203r1vanT+zdu5uaNc189NESVq6Mpl69+kRHrwHggw9mM27cRBYtWsqzzz7P3//+k+112dlZjB37GnfcUZuxYyeUWmAGB84079+/n3379rFhwwZyc3N54oknCAoKYty4cSxdupTbb7+dIUOGsGvXLoKDg3njjTeYNm0aTZs2Zdy4cURFRdGnT9nMrREREZGbR9WqPsyc+S579+4mLu4Mv/56nIyMdABatmzN6NEjOX/+HM2bt2Do0Ffw9q4K5M9BjonZw6hRb+Dn519k+5SUZLKzswqdKR08+GVefHEgS5Z8QsuWrW3b9+2LoVOnJ/H0zJ9n3bPn03Tr9gSXLiVx+nQsISEdAWja9AHq1r0TgH/+8zBJSUmMGfOqrR+DwcDJk/+x1eeodu0ets3xrlfvLi5fvmzb16TJ/QDExp7i3LnfmD59km1fTk4Ov/xynCef7Er16tVZv34t586d5dChg1SrVg2Agwf38+qrbwJQp86d3H9/MwD8/Py58856DBzYl1at2hAU1IYHHmgO5E8ZGTToJbt1h4R0JDCwDqtWfclvv8Vx5Mhhmjd/EIC//jWE119/hdatH+LBB1vSq9fvufL9998hKyuLCROmlvpShXZDc4sWLfj8888xmUzEx8eTl5dHSkoKdevWJTAwEIDQ0FC2bdtGgwYNyMzMpGnT/Ant3bp1Y+7cuQrNIiIi4nQXLpzn5ZdfICysG02a3E9w8KPs378PgD//+S+sWrWBAwf289NPB3jhhf68/Xb+L+O33HILEyZMZdKkcbRq1ZZatWpdt31c3OlrTpMwmUxMnDiNQYP628I4gNVa8A56VquFvLw8W6CzWq22ff87K5qXZ6F+/fosXLjYtu/ixQRuvfW2Yn8mJtPv0S7/mL8fz8vLGwCLJY9q1W4pMKc4KSkRHx9fdu/+jvnz59CrV1+Cgx8hICDQdgGfwXDt+k0mEwsWfMKxY//i4MH9zJ49ixYtghg8+GXOn/+NevXuslv3ypXL+Prr7XTt2oOQkI54eXmTkpI/VWb48FF06dKdAwd+ZOPGdaxYsZSPP84/+x0a2pXU1BTeeWcmU6dGFPvzKg6HpmdUqVKFuXPn0qlTJ4KCgkhISMBs/v0bl5+fH/Hx8YW2m81m4uOL/9OCiIiIiD3Hjv2LGjVq0L//QFq2DGLv3u+xWPJD6/z5c1i6dAnBwY8wcuQb1KlTl7NnzwAQGFiHBx9sSZcuPZgxYxJWq/W67Xfv/o62bYOvefzAwDoMH/4qH3+8wLatRYsgNm/eYJuvvGrVl9x/fzNuvfU26tdvwObNG2y1x8aeAuAvf7mPU6dOceTIPwA4fvxnnn66G5cuJZXK53bnnXdhNBr55pvtQP6Xj379enHixK8cOPAjDz30MF279qBx43vYvXsXFkv+FJSWLVuzYcM6AM6fP8c//vGTrd5nn+1NvXr16d9/ID17Pm3rq3nzlg7V9OOP++jcOYxOnZ6kdu1AYmL2YLFYyM7Oplu3TlitVrp168krr7xObOxJ27SYe+75Ey+9NIJffvmZbds2O/ujKsDhCwFHjBjBoEGDePHFF4mNjS2032AwFPj28cftxVGjhk+x2pcFs9m3QvYlZUtj59o0fq5N4+e6ijt2CQlGTKaiz+m5ueW3adv2IbZu3USfPt3x8vLiT3/6C76+1bhw4Tf69HmGKVMm0L9/L6pUqUKjRo0JCenAli2bMBgMmExGBg0azHPP9SMqavk12z/88MOsXLmMRo0aXvP4AGFhXThwYB8///xvTCYj3bv3IDExgUGD+mOxWKhTpy4TJ07FZDIybVoE06ZNZu3aKAID61CnTl3c3Az4+ZmZOXMW8+bNJjs7G6vVypQpM7jjjtvJy8tjwIC+jB8/mUaN7rbVYDQaMBop8FkZDPnb/7ft/z83mYz//c+Td96ZzfvvR7J06afk5uby8svDadLkPnx9qzJx4ls8+2xv3NzcaNLkfnbv/g43NwOjR49j2rRJPPNMT/z8/GnU6G6MRgN/+tO9PPzwo7zwQj+8vLzw9PTktddGExX1JZ07P1loPN3cjBgMBWt/9tkBzJo1kw0b1mI0Grn33nv57bezeHt7MmLEKMLD38RkqoKbm5Hw8El4eFTBYAA3NwM+Pt6MHz+ZN98cRfPmzQtdnGk0Gp3yb4jBeq2k+wf/+c9/yM7O5p577gFg2bJlbNu2DTc3N5YsWQJAdHQ0P/74I8OGDWPAgAF8/fXXABw8eJC5c+fy+eefO1xQUlIaFkuRJTmN2ezr0DrNFy86Z6Vms9nXaX1J2dLYuTaNn2vT+LmukozdhQunqVWrbilV5JoWLJhLhw5PUL9+gzI9rslkJDfXYr9hBXetP1NGo6HYJ2rtTs84e/Ys4eHhZGdnk52dzY4dO+jduzenTp3i9OnT5OXlsWnTJtq1a0dAQAAeHh4cOnQIyA/T7dq1K1ZBIiIiIpLParUSGFinzAOzFGZ3ekZwcDCHDx+mS5cuuLm5ERISQqdOnbjtttsYPnz4f5cwCebxxx8HIDIykvDwcK5evcq9995L//79S/1NiIiIiFRGBoOB0NAu5V2G4OCc5hEjRjBixIgC24KCgtiwYUOhto0bN2b16tXOqU5EREREpAJwaPUMEREREZGbmUKziIiIiIgdDi85JyIiIiK/863mhaeH86NUZlYuqSkZTu9XboxCs4iIiEgJeHqY7C5dWxIb3w3DkYX68vLyGD9+DBMmTCUtLY0ZMyZz6VISRqOBoUNH0qzZgw4dLzx8NPXq3cXzzw8hPT2dadMmMnVqhN31sm82+jREREREXFB09GpatGiFp6cnCxbMoU2btixZspxJk6YzeXK47a55Rdm0aT0//XTQ9tzb25vmzVuwfv3a0izdJSk0i4iIiLgYq9XK6tUrad++AwDBwY/w2GMdAQgICCQ7O4uMjKKneJw9G8fWrZsIC+tWYHv79iFERa245p2eb2YKzSIiIiIu5sSJX/Dx8cHHJ/+udsHBj1KtWjUAVqxYSsOGd9v2XUtubi4REVN5/fWxmEwFZ+tWq3YL3t5enDjxa+m9ARek0CwiIiLiYuLi4jCb/Qttj4pazvr16wgPn1zk6xcv/ojg4EepV++ua+7397+duLgzTqm1stCFgCIiIiIuxmg04ObmVmDbggVziInZy/z5H+HnVzhQ/9F33+2gShV3Nm/ewKVLSQB4eXnRp0/+nZxNJhMGg6F0indRCs0iIiIiLiYgoDYXLpy3PY+KWs5PPx1i4cJF+Pr62n398uVrbI8XLfoQwBaYAc6fP0ft2oFOrNj1KTSLiIiIlEBmVi4b3w0rlX7tadCgEcnJV0hLS6Nq1aosXvwxVatWZfjwIbY2kZFzSEy8yCef/I3IyLkOHz81NZW0tDQaNmxEbq6lRO+hMlJoFhERESmB1JQMh9ZTLg0Gg4GePZ9m+/bNdO/ei23bvr1muxo1amI2+xXZ1/PPDynwfOvWTfTs2dtptVYWuhBQRERExAV17dqDAwd+JDMz87ptEhLiCQnp6HCf6enpHDy4v9AydKIzzSIiIiIuyWQyERHxXpFt/P1r4e9fy+E+vb29mTVr9o2WVinpTLOIiIiIiB0KzSIiIiIidig0i4iIiIjYodAsIiIiImKHLgQUERERKYFbb3HH5O7h9H5zs7O4nJxtt11eXh7jx49hwoSppKWlMWPGZC5dSsJoNDB06EiaNXuwyNcvX/45W7ZsBKBz5zB6936G9PR0pk2byNSpEZhMOrf6RwrNIiIiIiVgcvfg5PTuTu/3rrfWAPZDc3T0alq0aIWnpyezZk2nTZu2dO/eizNnYhk2bAjr1m0pdKvt/zl7No5161bzxRdRWCxWnnmmJ23bBlO7diDNm7dg/fq1PPVULye/M9emrxAiIiIiLsZqtbJ69Urat+8AQHDwIzz2WP56zAEBgWRnZ5GRkXHd11ssFnJycsjKyiYnJxur1YrJlH8utX37EKKiVmC1Wkv/jbgQnWkWERERcTEnTvyCj48PPj4+AAQHP2rbt2LFUho2vNu271rq1KlL+/Yd6NEjFKvVSmhoGLVq3Q5AtWq34O3txYkTv1KvXoPSfSMuRGeaRURERFxMXFwcZrN/oe1RUctZv34d4eGTi3z9vn0xHD9+jOjorURHb+HYsX+zY8fXtv3+/rcTF3fG6XW7MoVmERERERdjNBoKzVdesGAOGzZEM3/+R3bvArh3724efvhRvL29qVrVh/btO/CPf/xk228ymTAYDKVSu6tyKDTPmzePTp060alTJ2bNmgXA2LFjCQkJISwsjLCwML7+Ov/bSUxMDKGhoYSEhDB7tm7DKCIiIuJsAQG1uXDhvO15VNRyfvrpEAsXLsLPr/AZ6P+vQYOG7N27h7y8PHJzc/nxxxjuuede2/7z589Ru3ZgqdTuquzOaY6JiWHPnj2sW7cOg8HACy+8wNdff83Ro0f54osv8PPzs7XNzMxk3LhxLF26lNtvv50hQ4awa9cugoODS/VNiIiIiNxMGjRoRHLyFdLS0qhatSqLF39M1apVGT58iK1NZOQcEhMv8sknfyMycm6B14eGduHMmVj69XsKNzc3goLa0rFjZwBSU1NJS0ujYcNG5OZayvR9VWR2Q7PZbGbMmDG4u7sDUL9+fc6dO8e5c+cYP348586d47HHHmPYsGEcOXKEunXrEhiY/80kNDSUbdu2KTSLiIhIpZObnfXf5eGc3689BoOBnj2fZvv2zXTv3ott2769ZrsaNWpiNvsV2m40Ghk+/FWGD3+10L6tWzfRs2fv4hdeydkNzQ0bNrQ9jo2NZcuWLSxfvpz9+/czZcoUvL29GTJkCKtXr8bb2xuz2Wxr7+fnR3x8fOlULiIiIlKO8m9AYn895dLStWsPwsPfpFOnMDw9Pa/ZJiEhnpCQjg73mZ6ezsGD+5kx4x1nlVlpOLzk3K+//sqQIUMYPXo0d911F/Pnz7ft69evH9HR0Tz++OOFXlfcSeQ1alx/eZTyYjb7Vsi+pGxp7Fybxs+1afxcV3HHLiHBqDvROchkcicy8v0i2wQE3EFAwB0O91mtmg/vvTfnD8dw/bEwGo1O+TfEodB86NAhRowYwbhx4+jUqRPHjx8nNjaWDh3yF9T+34LY/v7+JCYm2l6XkJBQYM6zI5KS0rBYymYxbUc/wIsXU512PGf1JWVLY+faNH6uTePnukoydhaLRfNoKwiTyVgpxsJisRT6c2g0Gop9otbu14fz588zdOhQIiMj6dSpE5AfkmfMmEFycjI5OTmsXLmSxx57jCZNmnDq1ClOnz5NXl4emzZtol27dsUqSERERESkorF7pnnRokVkZWURERFh29a7d28GDx7M008/TW5uLiEhIXTunH/FZUREBMOHDycrK4vg4OBrTtkQEREREXEldkNzeHg44eHh19zXt2/fQtuCgoLYsGHDjVcmIiIiIlJBOHwhoIiIiIj8zre6B55V3J3eb2ZONqlX7C87J2VLoVlERESkBDyruPPUypec3m9Ur4WkYj805+XlMX78GCZMmEpaWhozZkzm0qUkjEYDQ4eOpFmzB+32cfFiAi+80I/167fbti1e/BE7d36DwQBBQW14+eVXSE9PZ9q0iUydGlHo9t03C9dfR0RERETkJhQdvZoWLVrh6enJggVzaNOmLUuWLGfSpOlMnhxOXl5eka//4Yc9DB/+IklJSbZtBw78yIED+/j002UsXbqC48d/Zteub/H29qZ58xasX7+2tN9WhaXQLCIiIuJirFYrq1evpH37/OV/g4Mf4bHH8m9iEhAQSHZ2FhkZGUX2sWnTembMmFVgW40aNRk6dBRVqlTBZKpC3bp3Eh9/AYD27UOIilqB1Vo2SwNXNJqeISIiIuJiTpz4BR8fH3x88tcaDg5+1LZvxYqlNGx4t23f9UyfXviuf3fdVd/2+MyZM+zc+TULFy4GoFq1W/D29uLEiV9p2LCRM96GS9GZZhEREREXExcXh9nsX2h7VNRy1q9fR3j45Bvq/+TJ/zBixEsMHTqSwMA6tu3+/rdz9uyZG+rbVelMs4iIiIiLMRoNhS7IW7BgDjExe5k//yP8/AoHakcdOfIPwsNHM2rU6zzyyGMF9plMJozGm/Ocq0KziIiIiIsJCKjNhQvnbc+jopbz00+HWLhwEb6+viXuNz7+AuPGvc7kyTNp2bJlodtonz9/joCAwBL378oUmkVERERKIDMnm6heC0ulX3saNGhEcvIV0tLSqFq1KosXf0zVqlUZPnyIrU1k5BwSEy/yySd/IzJyrkPHXrHiC7Kysvngg9nMmwdWK3Tp0o0uXXqQmppKWloaDRo0LPF7c2UKzSIiIiIlkHoly6H1lEuDwWCgZ8+n2b59M92792Lbtm+v2a5GjZqYzX5F9rVnz0Hb45EjX2fkyNcBMJmMBc40b926iZ49ezuhetd0c05KEREREXFxXbv24MCBH8nMzLxum4SEeEJCOt7wsdLT0zl4cD9hYd1uuC9XpTPNIiIiIi7IZDIREfFekW38/Wvh71/rho/l7e3NrFmzb7gfV6YzzSIiIiIidig0i4iIiIjYodAsIiIiImKHQrOIiIiIiB0KzSIiIiIlcKuvO2azr9P/u9XX3aHj5+XlMW7cGwVWz0hPv8pTT4Xx008Hi3hlQfPnz2H69EkAWCwWxo59nfT09GJ9FjcDrZ4hIiIiUgImTw/2hnV3er9t1q+BVPs3OImOXk2LFq3w9PS0bXvvvVmkpqY6fKyDB/ezdetGgoLaAmA0GnnyyS4sWfIxI0aMKn7xlZjONIuIiIi4GKvVyurVK2nfvoNt244dX+Ht7U39+g0c6iMlJZmPPlpAv37PFdjeokUQu3Z9y9WraU6t2dUpNIuIiIi4mBMnfsHHxwcfHx8ALly4QFTUCoYOfcXhPmbNmsHgwS/j61utwHY3Nzfq12/IoUOOT/G4GSg0i4iIiLiYuLg4zGZ/IH8eckTEFEaNehMPD087r8y3cWM0/v7+NG/e4pr7a9WqRVzcGafVWxloTrOIiIiIizEaDbi5uQFw+nQsZ86cJiJiKgC//RbH229PY/TocB54oPk1X79jx1ckJSUyYEAfUlKSycjIYO7cdxkx4jUg/26DBoPOrf6RQrOIiIiIiwkIqM2FC+cBqFfvLtau3WzbN2zYYAYOHHzdwAzw/vsLbI+3bNnI3/9+yBaYAc6dO0fTpg+UQuWuS18hRERERFxMgwaNSE6+Qlpa0RfrJSZeZMCAPsXqOy8vj19++ZkWLa49deNmpTPNIiIiIiWQm5mVvzxcKfRrj8FgoGfPp9m+fTPdu/cqsG/evI9sj2vWNHP33Y2L7OuJJ0J54olQ2/OYmN0EBz+Kp6cXubmWYlZfeTkUmufNm8fWrVsBCA4O5s033yQmJoaZM2eSlZVFx44dGTUqfy2/Y8eOER4eTlpaGs2bN2fy5MmYTMrmIiIiUrlcTs12aD3l0tK1aw/Cw9+kU6ewAms1/1FGRgatWz/kcJ8Wi4VNm9YzYcJUZ5VZadidnhETE8OePXtYt24d0dHR/Otf/2LTpk2MGzeOBQsWsGXLFo4ePcquXbsAeOONNxg/fjzbt2/HarUSFRVV6m9CRERE5GZjMpmIiHjvuoEZwMvLi+DgRxzu02g08vbbs6la1ccZJVYqdkOz2WxmzJgxuLu7U6VKFerXr09sbCx169YlMDAQk8lEaGgo27Zt47fffiMzM5OmTZsC0K1bN7Zt21bqb0JEREREpDTZnTfRsGFD2+PY2Fi2bNlCv379MJvNtu1+fn7Ex8eTkJBQYLvZbCY+Pr5YBdWoUfG+2ZjNvhWyLylbGjvXpvFzbRo/11XcsUtIMGIyaZ2CiqIyjIXRaHTKvyEOTzb+9ddfGTJkCKNHj8ZkMnHq1KkC+w0GA1artdDrDAZDsQpKSkrDYincT2lw9AO8eNHxe7jbO56z+pKypbFzbRo/16bxc10lGTuLxaKLzyoIk8lYKcbCYrEU+nNoNBqKfaLWoa8Phw4dYsCAAbz22mt07doVf39/EhMTbfsTEhLw8/MrtP3ixYv4+fkVqyARERERkYrG7pnm8+fPM3ToUGbPnk1QUBAATZo04dSpU5w+fZratWuzadMmunfvTkBAAB4eHhw6dIhmzZoRHR1Nu3btSv1NiIiIiJS1W6p54e7h/BXCsrNySU7JcHq/cmPsjvSiRYvIysoiIiLCtq13795EREQwfPhwsrKyCA4O5vHHHwcgMjKS8PBwrl69yr333kv//v1Lr3oRERGRcuLuYWLKa5uc3u+Edzs71C4vL4/x48cwYcJU2woa6elXGTCgD2PGjC/yjoAA27dvYenSJQC0atWaYcNGYrFYeOutNxk/fgrVqlW868zKk93QHB4eTnh4+DX3bdiwodC2xo0bs3r16huvTERERESuKzp6NS1atCqw5Nx7780iNdX+PPLMzEzefz+SFSvW4uPjw0svPc+BAz/y4IMtefLJLixZ8jEjRowqzfJdjutfEikiIiJyk7FaraxevZL27TvYtu3Y8RXe3t7Ur9/A7ustljysVguZmRnk5eWSl5eLh4cHAC1aBLFr17dcvVr0LbpvNgrNIiIiIi7mxIlf8PHxwccnfwrFhQsXiIpawdChrzj0em/vqrzwwov06dODLl2eoFatO/jLX5oA4ObmRv36DTl06GCp1e+KFJpFREREXExcXBxmsz+Qv6RaRMQURo16Ew+P698d8I9OnPiVzZs3sGbNRtav34bRaGTFiqW2/bVq1SIu7kyp1O6qFJpFREREXIzRaMDNzQ2A06djOXPmNBERUxkwoA/Hjx/j7ben8dNP1z9TvH//DzRr1oJbb70Nd3d3nngilL///ZBtv8lkwmBQTPwj56+TIiIiIiKlKiCgNhe5VgL8AAAXkklEQVQunAegXr27WLt2s23fsGGDGThwcJGrZzRo0IgFC+aSkZGBp6cne/d+T+PG99r2nzt3jqZNHyi9N+CCFJpFRERESiA7K9fh5eGK2689DRo0Ijn5CmlpabZ5zdeSmHiR119/hSVLlhfY3qJFK3755Weef/4ZTCYT99zzJ555ZgCQv5TdL7/8zKRJU27ofVQ2Cs0iIiIiJVCeNyAxGAz07Pk027dvpnv3XgX2zZv3ke1xzZpm7r678TX7eOaZAbag/EcxMbsJDn4UT0+vSnEbbWfRZBURERERF9S1aw8OHPiRzMzM67bJyMigdeuHHO7TYrGwadN6Bgx43hklVio60ywiIiLigkwmExER7xXZxsvLi+DgRxzu02g08vbbs2+0tEpJZ5pFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFRERESuCWau6Yzb5O/++Wau4OHT8vL49x494osHpGevpVnnoqrMi7Af7R1atp9Ov3FOfPn7NtW79+Lf36PUXfvk8xY8ZkcnJysFgsjB37Ounp6cX7kCoRrZ4hIiIiUgLuHh7MG/uc0/sdNvNTINtuu+jo1bRo0QpPT0/btvfem0VqaqpDx/nXv44ya9Y04uLO2LadOXOaFSuWsmjRUqpV82Xy5AmsXRtFr159efLJLixZ8jEvv/xKsd9TZaAzzSIiIiIuxmq1snr1Stq372DbtmPHV3h7e1O/fgOH+ti4cR2vvjqamjXNtm3u7u689toYqlb1wWAwcNddDYiPvwBAixZB7Nr1LVevpjn3zbgIhWYRERERF3PixC/4+PjYbqF94cIFoqJWMHSo42eBx4wZT5Mm9xfYVqvW7Tz4YEsALl++zNq1UbRtGwyAm5sb9es3dHjqR2Wj0CwiIiLiYuLi4jCb/YH8u/hFRExh1Kg38fDwtPNKx1y8mMCwYUPo3DmMBx5obtteq1Yt4uLinHIMV6PQLCIiIuJijEYDbm5uAJw+HcuZM6eJiJjKgAF9OH78GG+/Pa3EZ4RPn47lpZee54knQhkw4IUC+0wmE0aj4Ybrd0W6EFBERETExQQE1ObChfMA1Kt3F2vXbrbtGzZsMAMHDi5whthR6elXGTVqKEOGDKVTp87k5loK7D937hz33df0xop3UTrTLCIiIuJiGjRoRHLyFdLSir4oLzHxIgMG9HG4340bo7l8+RIrVnxBv369GTCgD5988jcgf4m7X375mebNW95Q7a5KZ5pFRERESiA7K+u/y8M5v197DAYDPXs+zfbtm+nevVeBffPmfWR7XLOmmbvvblxkX6tXb7Q97tWrL7169QXAZDIWONMcE7Ob4OBHCyxxdzNRaBYREREpgeSUbBxZT7m0dO3ag/DwN+nUKey6QTYjI4PWrR+64WNZLBY2bVrPhAlTb7gvV6XQLCIiIuKCTCYTERHvFdnGy8uL4OBHbvhYRqORt9+efcP9uDKH5zSnpaXRuXNnzp49C8DYsWMJCQkhLCyMsLAwvv76awBiYmIIDQ0lJCSE2bNv7g9XRERERCoHh840Hz58mPDwcGJjY23bjh49yhdffIGfn59tW2ZmJuPGjWPp0qXcfvvtDBkyhF27dhEcHOz0wkVERKRyslqtGAw357Jm4lxWq9VpfTl0pjkqKoqJEyfaAnJ6ejrnzp1j/PjxhIaGMnfuXCwWC0eOHKFu3boEBgZiMpkIDQ1l27ZtTitWREREKjeTyZ2rV1OcGnbk5mS1Wrl6NQWTyd0p/Tl0pnn69OkFniclJdGqVSumTJmCt7c3Q4YMYfXq1Xh7e2M2/37/cj8/P+Lj44tVUI0aPsVqXxbMZt8K2ZeULY2da9P4uTaNn+sq7thVr+5JXFwcFy+eLaWK5Gbi5eVJgwb1qFKlyg33VaILAQMDA5k/f77teb9+/YiOjubxxx8v1La4P68kJaVhsZTNt0tH/yJfvJjqtOM5qy8pWxo716bxc20aP9dV0rHz9TXjq+9J5a6y/N27ciUTyCywzWg0FPtEbYlubnL8+HG2b99ue261WjGZTPj7+5OYmGjbnpCQUGDOs4iIiIiIKypRaLZarcyYMYPk5GRycnJYuXIljz32GE2aNOHUqVOcPn2avLw8Nm3aRLt27Zxds4iIiIhImSrR9IzGjRszePBgnn76aXJzcwkJCaFz584AREREMHz4cLKysggODr7mlA0REREREVdSrNC8c+dO2+O+ffvSt2/fQm2CgoLYsGHDjVdWQVhysx2a+5ybncXl5KLvCmTJtt9XbmYWl1PL7+5CIiIiIlKY7ghoh9Hkzsnp3e22u+utNdi7labR3Z29YUX31Wb9GlBoFhEREalQSjSnWURERETkZqLQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2GEq7wJESsq3mheeHkX/Ec7MyiU1JaOMKhIREZHKSqFZXJanh4nQ19YX2Wbju2GkllE9IiIiUnlpeoaIiIiIiB0KzSIiIiIidig0i4iIiIjYodAsIiIiImKHQ6E5LS2Nzp07c/bsWQBiYmIIDQ0lJCSE2bNn29odO3aM7t2706FDB9566y1yc3NLp2oRERERkTJkNzQfPnyYp59+mtjYWAAyMzMZN24cCxYsYMuWLRw9epRdu3YB8MYbbzB+/Hi2b9+O1WolKiqqVIsXERERESkLdkNzVFQUEydOxM/PD4AjR45Qt25dAgMDMZlMhIaGsm3bNn777TcyMzNp2rQpAN26dWPbtm2lW72IiIiISBmwu07z9OnTCzxPSEjAbDbbnvv5+REfH19ou9lsJj4+3omlVmzZeTmYzb7lXYaIiIiIlIJi39zEarUW2mYwGK67vbhq1PAp9msqAne3Kjy18qUi20T1WuhQXwrfzuWsz1Pj4to0fq5N4+e6NHauTeP3u2KHZn9/fxITE23PExIS8PPzK7T94sWLtikdxZGUlIbFUjiAl4aK+gfh4kXdw84Rjo6fMz5Ps9lX4+LCNH6uTePnujR2rq0yj5/RaCj2idpiLznXpEkTTp06xenTp8nLy2PTpk20a9eOgIAAPDw8OHToEADR0dG0a9euuN2LiIiIiFQ4xT7T7OHhQUREBMOHDycrK4vg4GAef/xxACIjIwkPD+fq1avce++99O/f3+kFi4iIiIiUNYdD886dO22Pg4KC2LBhQ6E2jRs3ZvXq1c6pTERERESkgtAdAUVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxw1TeBYjIzce3mheeHkX/85OZlUtqSkYZVSQiIlI0hWYRKXOeHiZCX1tfZJuN74aRWkb1iIiI2KPpGSIiIiIiduhMcwWTm5OH2exbZJvsrFyS9bO1iIiISJlRaK5gTFXcmPLapiLbTHi3cxlVIyIiIiKg6RkiIiIiInbd0Jnm/v37k5SUhMmU382UKVM4c+YMCxcuJCcnhwEDBtC3b1+nFCoiIiIiUl5KHJqtVisnT57ku+++s4Xm+Ph4Ro0axdq1a3F3d6d37960bNmSBg0aOK1gEREREZGyVuLQfPLkSQwGA4MGDSIpKYmnnnqKqlWr0qpVK6pXrw5Ahw4d2LZtG8OGDXNawSLFYcnNtnthZW52FpeTs4vuJ9t+PwC5mVlcTi26LxEREXE9JQ7NKSkpBAUFMWnSJDIzM+nfvz8dO3bEbDbb2vj5+XHkyBGnFCpSEkaTOyendy+yzV1vrQGKDrpGd3f2hhXdD0Cb9WtAoVlERKTSKXFovv/++7n//vsB8Pb2pkePHsycOZMXX3yxQDuDwVCsfmvU8ClpSTcVR856iuOc+XlqbJxH4yL/o/FzXRo716bx+12JQ/PBgwfJyckhKCgIyJ/jHBAQQGJioq1NQkICfn5+xeo3KSkNi8Va0rKKxZX/IFy8qHulOXP87H2exTmWxsY+Rz9PZ32WZrOvxsWFafxcl8bOtVXm8TMaDcU+UVviJedSU1OZNWsWWVlZpKWlsW7dOt555x1++OEHLl26REZGBl999RXt2rUr6SFERERERCqEEp9pfuSRRzh8+DBdunTBYrHQp08fmjVrxqhRo+jfvz85OTn06NGD++67z5n1ioiIiIiUuRtap3nkyJGMHDmywLbQ0FBCQ0NvqCgREam4fKt54elR9P8+MrNySU3JKKOKRERKn26jLSIixeLpYSL0tfVFttn4bhiVcyakiNysdBttERERERE7FJpFREREROxQaBYRERERsUNzmuWml52X49JrdouIiEjpU2h2Qbk5joW87KwsklN0S2d73N2q8NTKl4psE9VrYRlVIyIiIhWRQrMLMlWpwryxz9ltN2zmp4BCs4iI5HNkuUDQkoEi16LQLCIicpNwZLlA0JKBItei0CwiFZIlN9uhaUi52VlcTtYvKiIiUroUmkWkQjKa3Dk5vbvddne9tQZ705As2fYDeG5mFpdTFb5FROTaFJpFpNIzuruzN6zoAN5m/RpQaBYRketQaBYRERFxAY5cyKmLOEuPQrOIiIiIC3DkQk5dxFl6FJpFnCg3J8/u3NnsrFySdRZARETEpSg0iziRqYobU17bVGSbCe92LqNqbg66o2PF5MjqJ1r5RERciUKziLg03dGxYnJk9RNHVj4BrX4iIhWDQrOIiFRoWv1ERCoChWYREREpQNNrRApTaBYpY7k59ufgZmdlkZyi/xmJSPlw1vQaR6bWgKbXiGtQaBYpY6YqVZg39rki2wyb+SmOzPUU53Fk5RPQ6ifOpIs4Kz9HptaAptc4kyO/EoB+KSgJhWYRERxb+QS0+okzOXIRJ+hCTpHicORXAnDeLwU3068ECs0iIuLytEZ62dMvBa7N0fHTRbi/U2gWESkGzUmvmLRGetlz5nKP+tJT9rRcZ/EpNIuIFIPmpLsuR77wgL70lAd96XFdN9MXHoVmERG5KTjyhQf0paei0q88FdPN9IWnVELzxo0bWbhwITk5OQwYMIC+ffuWxmFERETkJqFfeVxXZfmVx+mhOT4+ntmzZ7N27Vrc3d3p3bs3LVu2pEGDBs4+lIiIiIhUcJXlVx6nh+aYmBhatWpF9erVAejQoQPbtm1j2LBhDr3eaDQ4u6Qi+d3qZbeN6RazQ32ZvW+z28bDz35ftzhQk2/1Gg7VVNafZ1lz1vg5a+zAeeOnsauYf/dA4wdl+3cP9G+nMzkydqB/OysqV/23s6L93SvJcQxWq9XqzCI+/PBD0tPTGTVqFACrVq3iyJEjTJ061ZmHEREREREpM0Znd3itDG4wVO5vfSIiIiJSuTk9NPv7+5OYmGh7npCQgJ+fn7MPIyIiIiJSZpwemlu3bs0PP/zApUuXyMjI4KuvvqJdu3bOPoyIiIiISJlx+oWA/v7+jBo1iv79+5OTk0OPHj247777nH0YEREREZEy4/QLAUVEREREKhunT88QEREREalsFJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFruGbb75h6dKlnDlzpsD2lStXllNFUhyxsbHEx8cDsGrVKqZNm8aWLVvKuSopiYiIiPIuQRx05MgR2+MffviBiIgIIiMjOXz4cDlWJY7avXs3KSkpAERHRzNlyhTWrFlTzlVVLFpyTuT/iYyM5OjRo9SvX5+tW7cyevRowsLCAOjatSvr1q0r5wqlKEuWLGHp0qVYLBZatWrF+fPneeyxx9i5cycPPPAAQ4cOLe8S5TrGjh1baNvOnTt59NFHAZg5c2ZZlyTF8L9/H5ctW8aXX35J9+7dAVi3bh09e/bkmWeeKecK5XqmT5/OsWPHmD17NsuWLeOf//wnf/3rX/n++++pXbs24eHh5V1iheD0m5tIvnPnzhW5/4477iijSqS4du3axbp16zCZTPTr14+BAwfi7u5Ox44d0XfMim/NmjVs2bKFxMREOnfuzL59+/Dw8KBnz5706NFDobkCq169OtHR0bz44otUq1YNgH379tGiRYtyrkyKIyoqis8//5xbb70VgB49etCjRw+F5gps7969bNy4ETc3N7777juioqJwd3enV69edO7cubzLqzAUmkvJkCFDiI2Nxc/Pr1DQMhgM7Nixo5wqE3usVisGgwGAO++8kw8//JDnnnuO2267zbZdKi6LxYK7uzsBAQEMHDgQDw8P2768vLxyrEzsGT16NO3ateP999/n1VdfpWXLlnz22Wd07dq1vEsTB+Tm5mKxWKhRowbe3t627e7u7hiNmg1akXl6epKUlISfnx81atQgPT0dd3d3MjIyMJkUFf9H0zNKSVpaGn369GHixIk0a9asvMuRYpg3bx4xMTGMGTPGdgv4Q4cOMWzYMLKzszl06FA5VyhFmTNnDvv37+fzzz/Hzc0NgJ9//pnw8HAefvhhhg0bVs4Vij1Xrlxh4sSJ3HHHHezZs4eNGzeWd0nigP79+3Pq1CkMBgOtW7cmIiKCH374gXfeeYeHH36YESNGlHeJch07d+5k0qRJdOrUidzcXPbt20dQUBB79uzhhRdeoFu3buVdYoWg0FyKjhw5wqpVq5g6dWp5lyLF9MMPP+Dn50f9+vVt286fP8/ixYt56623yrEyccSBAwd48MEHbc9PnjxJXFwcwcHB5ViVFNeqVavYunUrixcvLu9SpBhOnjxJSkoKTZs25dChQ6SmpvLwww+Xd1liR1xcHN988w2nT58mLy+PmjVr8sgjj9hOHolCs4iIiIiIXZpkJCIiIiJih0KziIiIiIgdCs0iIuXo7Nmz3H333axatarA9kWLFjFmzBiH+7l06RJ33323s8sTEZH/UmgWESlnRqORt99+m1OnTpV3KSIich1afE9EpJx5enry3HPP8dprr/Hll1/i7u5u25eamsrkyZP5+eefMRgMPPTQQ7z66quYTCa++uorZs+ejZeXF3/+858L9Llq1SpWrFiBxWKhevXqjB8/nvr163Pw4EEiIiKwWCxA/pryHTp0KNP3KyLiinSmWUSkAnjppZfw8vJi9uzZBbZPmzaN6tWrs3HjRtasWcPx48dZvHgxiYmJjBs3jg8++IC1a9cSEBBge83+/fuJjo5m2bJlREdH88ILLzB8+HAAPvjgA5577jnWrl3LjBkz2LdvX5m+TxERV6UzzSIiFYDRaOSdd96ha9eutG3b1rb9+++/Z8WKFRgMBtzd3enduzefffYZdevWpVGjRjRo0ACAXr168d577wHw3Xffcfr0aXr37m3rJzk5mStXrtCxY0emTJnCzp07ad26Na+++mrZvlERERel0CwiUkHccccdTJo0idGjR9OlSxcA2zSK/7FYLOTm5mIwGPjjMvt/vNWtxWIhLCyMN954w/Y8ISGBW265hd69e/PII4+wd+9edu/ezbx589iwYQO+vr5l8A5FRFyXpmeIiFQgHTt2pF27dnz22WcAtG3blmXLlmG1WsnOziYqKorWrVvTvHlzTpw4wc8//wzA2rVrbX20adOGzZs3k5CQAMCKFSt49tlnAejduzfHjh2jW7duTJ06lZSUFJKTk8v4XYqIuB6daRYRqWDCw8M5dOiQ7fG0adMIDQ0lJyeHhx56iBdffBF3d3ciIyN5/fXXqVKlSoHbhj/00EMMGjSIgQMHYjAY8PHxYd68eRgMBl5//XVmzJjB+++/j9FoZNiwYdSuXbu83qqIiMvQbbRFREREROzQ9AwRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMSO/wPgkCk9ZX0M6wAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df.pivot_table(\n", " index=[\"Nodes\"],\n", " columns=[\"Tasks/Node\", \"Threads/Task\"],\n", " values=\"Sim. Time / s\",\n", ").plot(kind=\"bar\", figsize=(12, 4));"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "source": ["<a name=\"taskb\"></a>\n", "\n", "* Bonus task\n", " - Use `Sim. Time / s` and `Presim. Time / s` as values to show\n", " - Show a stack of those two values inside the pivot table"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## The End\n", "\n", "* Pandas works on data frames\n", "* Slice frames to your likings\n", "* Plot frames\n", " - Together with Matplotlib, Seaborn, others\n", "* Pivot tables are next level greatness\n", "* Thanks for being here! \ud83d\ude0d"]}, {"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["<span class=\"feedback\">Tell me what you think about this tutorial! <a href=\"mailto:a.herten@fz-juelich.de\">a.herten@fz-juelich.de</a></span>"]}], "metadata": {"kernelspec": {"display_name": "Python 3", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2"}}, "nbformat": 4, "nbformat_minor": 2} \ No newline at end of file +{"cells": [{"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["# *Introduction to* Data Analysis and Plotting with Pandas\n", "## JSC Tutorial\n", "\n", "Andreas Herten, Forschungszentrum J\u00fclich, 26 February 2019"]}, {"cell_type": "markdown", "metadata": {"exercise": "onlypresentation", "slideshow": {"slide_type": "skip"}}, "source": ["**Version: Slides**"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## My Motivation\n", "\n", "* I like Python\n", "* I like plotting data\n", "* I like sharing\n", "* I think Pandas is awesome and you should use it too\n", "\n", "<span style=\"color: #023d6b\"><em>Motto: <strong>\u00bbPandas as early as possible!\u00ab</strong></em></span>"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "source": ["## Task Outline\n", "\n", "* [Task 1](#task1)\n", "* [Task 2](#task2)\n", "* [Task 3](#task3)\n", "* [Task 4](#task4)\n", "* [Task 5](#task5)\n", "* [Task 6](#task6)\n", "* [Task 7](#task7)\n", "* [Bonus Task](#taskb)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Tutorial Setup\n", "\n", "* 60 minutes (we might do this again for some advanced stuff if you want to)\n", "* Alternating between lecture and hands-on\n", "* Please give status of hands-ons via **[pollev.com/aherten538](https://pollev.com/aherten538)**"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["* Please open Jupyter Notebook of this session\n", " - \u2026\u00a0either on your **local machine** (`pip install --user pandas seaborn`)\n", " - \u2026 or on the **JSC Jupyter service** at https://jupyter-jsc.fz-juelich.de/\n", " - Either `pip install --user pandas seaborn` before launching a Notebook\n", " - Or \n", " ```bash\n", " mkdir -p ~/.local/share/jupyter/kernels/\n", " ln -s $PROJECT_cjsc/herten1/pandas ~/.local/share/jupyter/kernels/\n", " ```\n", " and download the Notebooks with the *JSC Pandas Tutorial Kernel*\n", "* Tell me when you're done on **[pollev.com/aherten538](https://pollev.com/aherten538)**"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## About Pandas\n", "\n", "<img style=\"float: right; max-width: 200px;\" width=\"200px\" src=\"img/adorable-animal-animal-photography-1661535.jpg\" />\n", "\n", "* Python package (Python 2, Python 3)\n", "* For data analysis\n", "* With data structures (multi-dimensional table; time series), operations\n", "* Name from \u00bb**Pan**el **Da**ta\u00ab\u00a0(multi-dimensional time series in economics)\n", "* Since 2008\n", "* https://pandas.pydata.org/\n", "* Install [via PyPI](https://pypi.org/project/pandas/): `pip install pandas`"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Pandas Cohabitation\n", "\n", "* Pandas works great together with other established Python tools\n", " * [Jupyter Notebooks](https://jupyter.org/)\n", " * Plotting with [`matplotlib`](https://matplotlib.org/)\n", " * Modelling with [`statsmodels`](https://www.statsmodels.org/stable/index.html), [`scikit-learn`](https://scikit-learn.org/)\n", " * Nicer plots with [`seaborn`](https://seaborn.pydata.org/), [`altair`](https://altair-viz.github.io/), [`plotly`](https://plot.ly/)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## First Steps"]}, {"cell_type": "code", "execution_count": 1, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import pandas"]}, {"cell_type": "code", "execution_count": 2, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import pandas as pd"]}, {"cell_type": "code", "execution_count": 3, "metadata": {"slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"text/plain": ["'0.24.1'"]}, "execution_count": 3, "metadata": {}, "output_type": "execute_result"}], "source": ["pd.__version__"]}, {"cell_type": "code", "execution_count": 4, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/plain": ["\u001b[0;31mClass docstring:\u001b[0m\n", " pandas - a powerful data analysis and manipulation library for Python\n", " =====================================================================\n", " \n", " **pandas** is a Python package providing fast, flexible, and expressive data\n", " structures designed to make working with \"relational\" or \"labeled\" data both\n", " easy and intuitive. It aims to be the fundamental high-level building block for\n", " doing practical, **real world** data analysis in Python. Additionally, it has\n", " the broader goal of becoming **the most powerful and flexible open source data\n", " analysis / manipulation tool available in any language**. It is already well on\n", " its way toward this goal.\n", " \n", " Main Features\n", " -------------\n", " Here are just a few of the things that pandas does well:\n", " \n", " - Easy handling of missing data in floating point as well as non-floating\n", " point data.\n", " - Size mutability: columns can be inserted and deleted from DataFrame and\n", " higher dimensional objects\n", " - Automatic and explicit data alignment: objects can be explicitly aligned\n", " to a set of labels, or the user can simply ignore the labels and let\n", " `Series`, `DataFrame`, etc. automatically align the data for you in\n", " computations.\n", " - Powerful, flexible group by functionality to perform split-apply-combine\n", " operations on data sets, for both aggregating and transforming data.\n", " - Make it easy to convert ragged, differently-indexed data in other Python\n", " and NumPy data structures into DataFrame objects.\n", " - Intelligent label-based slicing, fancy indexing, and subsetting of large\n", " data sets.\n", " - Intuitive merging and joining data sets.\n", " - Flexible reshaping and pivoting of data sets.\n", " - Hierarchical labeling of axes (possible to have multiple labels per tick).\n", " - Robust IO tools for loading data from flat files (CSV and delimited),\n", " Excel files, databases, and saving/loading data from the ultrafast HDF5\n", " format.\n", " - Time series-specific functionality: date range generation and frequency\n", " conversion, moving window statistics, moving window linear regressions,\n", " date shifting and lagging, etc."]}, "metadata": {}, "output_type": "display_data"}], "source": ["%pdoc pd"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## DataFrames\n", "### It's all about DataFrames\n", "\n", "* Main data containers of Pandas\n", " - Linear: `Series`\n", " - Multi Dimension: `DataFrame`\n", "* `Series` is *only* special case of `DataFrame`\n", "* \u2192 Talk about `DataFrame`s as the more general case"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## DataFrames\n", "### Construction\n", "\n", "* To show features of `DataFrame`, let's construct one!\n", "* Many construction possibilities\n", " - From lists, dictionaries, `numpy` objects\n", " - From CSV, HDF5, JSON, Excel, HTML, fixed-width files\n", " - From pickled Pandas data\n", " - From clipboard\n", " - *From Feather, Parquest, SAS, SQL, Google BigQuery, STATA*"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## DataFrames\n", "\n", "### Examples, finally"]}, {"cell_type": "code", "execution_count": 5, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["ages = [41, 56, 56, 57, 39, 59, 43, 56, 38, 60]"]}, {"cell_type": "code", "execution_count": 6, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>41</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>57</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>39</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>59</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>43</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>38</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>60</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" 0\n", "0 41\n", "1 56\n", "2 56\n", "3 57\n", "4 39\n", "5 59\n", "6 43\n", "7 56\n", "8 38\n", "9 60"]}, "execution_count": 6, "metadata": {}, "output_type": "execute_result"}], "source": ["pd.DataFrame(ages)"]}, {"cell_type": "code", "execution_count": 7, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>41</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>56</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" 0\n", "0 41\n", "1 56\n", "2 56"]}, "execution_count": 7, "metadata": {}, "output_type": "execute_result"}], "source": ["df_ages = pd.DataFrame(ages)\n", "df_ages.head(3)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Let's add names to ages; put everything into a `dict()`"]}, {"cell_type": "code", "execution_count": 8, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["{'Names': ['Liu', 'Rowland', 'Rivers', 'Waters', 'Rice', 'Fields', 'Kerr', 'Romero', 'Davis', 'Hall'], 'Ages': [41, 56, 56, 57, 39, 59, 43, 56, 38, 60]}\n"]}], "source": ["data = {\n", " \"Names\": [\"Liu\", \"Rowland\", \"Rivers\", \"Waters\", \"Rice\", \"Fields\", \"Kerr\", \"Romero\", \"Davis\", \"Hall\"],\n", " \"Ages\": ages\n", "}\n", "print(data)"]}, {"cell_type": "code", "execution_count": 9, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Names</th>\n", " <th>Ages</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Liu</td>\n", " <td>41</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Rowland</td>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Rivers</td>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Waters</td>\n", " <td>57</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Names Ages\n", "0 Liu 41\n", "1 Rowland 56\n", "2 Rivers 56\n", "3 Waters 57"]}, "execution_count": 9, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample = pd.DataFrame(data)\n", "df_sample.head(4)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["* Two columns now; one for names, one for ages"]}, {"cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [{"data": {"text/plain": ["Index(['Names', 'Ages'], dtype='object')"]}, "execution_count": 10, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.columns"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* `DataFrame` always have indexes; auto-generated or custom"]}, {"cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [{"data": {"text/plain": ["RangeIndex(start=0, stop=10, step=1)"]}, "execution_count": 11, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.index"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["* Make `Names` be index with `.set_index()`\n", "* `inplace=True` will modifiy the parent frame (*I don't like it*)"]}, {"cell_type": "code", "execution_count": 12, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Ages</th>\n", " </tr>\n", " <tr>\n", " <th>Names</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Liu</th>\n", " <td>41</td>\n", " </tr>\n", " <tr>\n", " <th>Rowland</th>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>Rivers</th>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>Waters</th>\n", " <td>57</td>\n", " </tr>\n", " <tr>\n", " <th>Rice</th>\n", " <td>39</td>\n", " </tr>\n", " <tr>\n", " <th>Fields</th>\n", " <td>59</td>\n", " </tr>\n", " <tr>\n", " <th>Kerr</th>\n", " <td>43</td>\n", " </tr>\n", " <tr>\n", " <th>Romero</th>\n", " <td>56</td>\n", " </tr>\n", " <tr>\n", " <th>Davis</th>\n", " <td>38</td>\n", " </tr>\n", " <tr>\n", " <th>Hall</th>\n", " <td>60</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Ages\n", "Names \n", "Liu 41\n", "Rowland 56\n", "Rivers 56\n", "Waters 57\n", "Rice 39\n", "Fields 59\n", "Kerr 43\n", "Romero 56\n", "Davis 38\n", "Hall 60"]}, "execution_count": 12, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.set_index(\"Names\", inplace=True)\n", "df_sample"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Some more operations"]}, {"cell_type": "code", "execution_count": 13, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Ages</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td>10.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>50.500000</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>9.009255</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>38.000000</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>41.500000</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>56.000000</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>56.750000</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>60.000000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Ages\n", "count 10.000000\n", "mean 50.500000\n", "std 9.009255\n", "min 38.000000\n", "25% 41.500000\n", "50% 56.000000\n", "75% 56.750000\n", "max 60.000000"]}, "execution_count": 13, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.describe()"]}, {"cell_type": "code", "execution_count": 14, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>Names</th>\n", " <th>Liu</th>\n", " <th>Rowland</th>\n", " <th>Rivers</th>\n", " <th>Waters</th>\n", " <th>Rice</th>\n", " <th>Fields</th>\n", " <th>Kerr</th>\n", " <th>Romero</th>\n", " <th>Davis</th>\n", " <th>Hall</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Ages</th>\n", " <td>41</td>\n", " <td>56</td>\n", " <td>56</td>\n", " <td>57</td>\n", " <td>39</td>\n", " <td>59</td>\n", " <td>43</td>\n", " <td>56</td>\n", " <td>38</td>\n", " <td>60</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": ["Names Liu Rowland Rivers Waters Rice Fields Kerr Romero Davis Hall\n", "Ages 41 56 56 57 39 59 43 56 38 60"]}, "execution_count": 14, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.T"]}, {"cell_type": "code", "execution_count": 15, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/plain": ["Index(['Liu', 'Rowland', 'Rivers', 'Waters', 'Rice', 'Fields', 'Kerr',\n", " 'Romero', 'Davis', 'Hall'],\n", " dtype='object', name='Names')"]}, "execution_count": 15, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.T.columns"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Also: Arithmetic operations"]}, {"cell_type": "code", "execution_count": 16, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Ages</th>\n", " </tr>\n", " <tr>\n", " <th>Names</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Liu</th>\n", " <td>82</td>\n", " </tr>\n", " <tr>\n", " <th>Rowland</th>\n", " <td>112</td>\n", " </tr>\n", " <tr>\n", " <th>Rivers</th>\n", " <td>112</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Ages\n", "Names \n", "Liu 82\n", "Rowland 112\n", "Rivers 112"]}, "execution_count": 16, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.multiply(2).head(3)"]}, {"cell_type": "code", "execution_count": 17, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Names</th>\n", " <th>Ages</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>LiuLiu</td>\n", " <td>82</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>RowlandRowland</td>\n", " <td>112</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>RiversRivers</td>\n", " <td>112</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Names Ages\n", "0 LiuLiu 82\n", "1 RowlandRowland 112\n", "2 RiversRivers 112"]}, "execution_count": 17, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample.reset_index().multiply(2).head(3)"]}, {"cell_type": "code", "execution_count": 18, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Ages</th>\n", " </tr>\n", " <tr>\n", " <th>Names</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Liu</th>\n", " <td>20.5</td>\n", " </tr>\n", " <tr>\n", " <th>Rowland</th>\n", " <td>28.0</td>\n", " </tr>\n", " <tr>\n", " <th>Rivers</th>\n", " <td>28.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Ages\n", "Names \n", "Liu 20.5\n", "Rowland 28.0\n", "Rivers 28.0"]}, "execution_count": 18, "metadata": {}, "output_type": "execute_result"}], "source": ["(df_sample / 2).head(3)"]}, {"cell_type": "code", "execution_count": 19, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Ages</th>\n", " </tr>\n", " <tr>\n", " <th>Names</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Liu</th>\n", " <td>1681</td>\n", " </tr>\n", " <tr>\n", " <th>Rowland</th>\n", " <td>3136</td>\n", " </tr>\n", " <tr>\n", " <th>Rivers</th>\n", " <td>3136</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Ages\n", "Names \n", "Liu 1681\n", "Rowland 3136\n", "Rivers 3136"]}, "execution_count": 19, "metadata": {}, "output_type": "execute_result"}], "source": ["(df_sample * df_sample).head(3)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["Logical operations allowed as well"]}, {"cell_type": "code", "execution_count": 20, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Ages</th>\n", " </tr>\n", " <tr>\n", " <th>Names</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Liu</th>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Rowland</th>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Rivers</th>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Waters</th>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Rice</th>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>Fields</th>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Kerr</th>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Romero</th>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Davis</th>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>Hall</th>\n", " <td>True</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Ages\n", "Names \n", "Liu True\n", "Rowland True\n", "Rivers True\n", "Waters True\n", "Rice False\n", "Fields True\n", "Kerr True\n", "Romero True\n", "Davis False\n", "Hall True"]}, "execution_count": 20, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sample > 40"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 1\n", "<a name=\"task1\"></a>\n", "\n", "* Create data frame with\n", " - 10 names of dinosaurs, \n", " - their favourite prime number, \n", " - and their favourite color\n", "* Play around with the frame\n", "* Tell me on poll when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 21, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [],\n", " \"Favourite Prime\": [],\n", " \"Favourite Color\": []\n", "}\n", "#df_dinos = "]}, {"cell_type": "code", "execution_count": 22, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>Dinosaur Name</th>\n", " <th>Aegyptosaurus</th>\n", " <th>Tyrannosaurus</th>\n", " <th>Panoplosaurus</th>\n", " <th>Isisaurus</th>\n", " <th>Triceratops</th>\n", " <th>Velociraptor</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Favourite Prime</th>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>15</td>\n", " <td>16</td>\n", " <td>23</td>\n", " <td>42</td>\n", " </tr>\n", " <tr>\n", " <th>Favourite Color</th>\n", " <td>blue</td>\n", " <td>white</td>\n", " <td>blue</td>\n", " <td>purple</td>\n", " <td>violet</td>\n", " <td>gray</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": ["Dinosaur Name Aegyptosaurus Tyrannosaurus Panoplosaurus Isisaurus \\\n", "Favourite Prime 4 8 15 16 \n", "Favourite Color blue white blue purple \n", "\n", "Dinosaur Name Triceratops Velociraptor \n", "Favourite Prime 23 42 \n", "Favourite Color violet gray "]}, "execution_count": 22, "metadata": {}, "output_type": "execute_result"}], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [\"Aegyptosaurus\", \"Tyrannosaurus\", \"Panoplosaurus\", \"Isisaurus\", \"Triceratops\", \"Velociraptor\"],\n", " \"Favourite Prime\": [\"4\", \"8\", \"15\", \"16\", \"23\", \"42\"],\n", " \"Favourite Color\": [\"blue\", \"white\", \"blue\", \"purple\", \"violet\", \"gray\"]\n", "}\n", "df_dinos = pd.DataFrame(happy_dinos).set_index(\"Dinosaur Name\")\n", "df_dinos.T"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["Some more `DataFrame` examples"]}, {"cell_type": "code", "execution_count": 23, "metadata": {"slideshow": {"slide_type": "skip"}}, "outputs": [], "source": ["import numpy as np"]}, {"cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-2.718282</td>\n", " <td>This</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "0 1.2 2018-02-26 -2.718282 This Same\n", "1 1.2 2018-02-26 1.718282 column Same\n", "2 1.2 2018-02-26 -1.304068 has Same\n", "3 1.2 2018-02-26 0.986231 entries Same\n", "4 1.2 2018-02-26 -0.718282 entries Same"]}, "execution_count": 24, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo = pd.DataFrame({\n", " \"A\": 1.2,\n", " \"B\": pd.Timestamp('20180226'),\n", " \"C\": [(-1)**i * np.sqrt(i) + np.e * (-1)**(i-1) for i in range(5)],\n", " \"D\": pd.Categorical([\"This\", \"column\", \"has\", \"entries\", \"entries\"]),\n", " \"E\": \"Same\"\n", "})\n", "df_demo"]}, {"cell_type": "code", "execution_count": 25, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-2.718282</td>\n", " <td>This</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "0 1.2 2018-02-26 -2.718282 This Same\n", "2 1.2 2018-02-26 -1.304068 has Same\n", "4 1.2 2018-02-26 -0.718282 entries Same\n", "3 1.2 2018-02-26 0.986231 entries Same\n", "1 1.2 2018-02-26 1.718282 column Same"]}, "execution_count": 25, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.sort_values(\"C\")"]}, {"cell_type": "code", "execution_count": 26, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.99</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.72</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "3 1.2 2018-02-26 0.99 entries Same\n", "4 1.2 2018-02-26 -0.72 entries Same"]}, "execution_count": 26, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.round(2).tail(2)"]}, {"cell_type": "code", "execution_count": 27, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/plain": ["A 6\n", "C -2.03\n", "D Thiscolumnhasentriesentries\n", "E SameSameSameSameSame\n", "dtype: object"]}, "execution_count": 27, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.round(2).sum()"]}, {"cell_type": "code", "execution_count": 28, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["\\begin{tabular}{lrlrll}\n", "\\toprule\n", "{} & A & B & C & D & E \\\\\n", "\\midrule\n", "0 & 1.2 & 2018-02-26 & -2.72 & This & Same \\\\\n", "1 & 1.2 & 2018-02-26 & 1.72 & column & Same \\\\\n", "2 & 1.2 & 2018-02-26 & -1.30 & has & Same \\\\\n", "3 & 1.2 & 2018-02-26 & 0.99 & entries & Same \\\\\n", "4 & 1.2 & 2018-02-26 & -0.72 & entries & Same \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "\n"]}], "source": ["print(df_demo.round(2).to_latex())"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Reading External Data\n", "\n", "(Links to documentation)\n", "* [`.read_json()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json)\n", "* [`.read_csv()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv)\n", "* [`.read_hdf5()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_hdf.html#pandas.read_hdf)\n", "* [`.read_excel()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html#pandas.read_excel)\n", "\n", "Example:\n", "\n", "```json\n", "{\n", " \"Character\": [\"Sawyer\", \"\u2026\", \"Walt\"],\n", " \"Actor\": [\"Josh Holloway\", \"\u2026\", \"Malcolm David Kelley\"],\n", " \"Main Cast\": [true, \"\u2026\", false]\n", "}\n", "```"]}, {"cell_type": "code", "execution_count": 29, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Actor</th>\n", " <th>Main Cast</th>\n", " </tr>\n", " <tr>\n", " <th>Character</th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Hurley</th>\n", " <td>Jorge Garcia</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Jack</th>\n", " <td>Matthew Fox</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Kate</th>\n", " <td>Evangeline Lilly</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Locke</th>\n", " <td>Terry O'Quinn</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Sawyer</th>\n", " <td>Josh Holloway</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>Walt</th>\n", " <td>Malcolm David Kelley</td>\n", " <td>False</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Actor Main Cast\n", "Character \n", "Hurley Jorge Garcia True\n", "Jack Matthew Fox True\n", "Kate Evangeline Lilly True\n", "Locke Terry O'Quinn True\n", "Sawyer Josh Holloway True\n", "Walt Malcolm David Kelley False"]}, "execution_count": 29, "metadata": {}, "output_type": "execute_result"}], "source": ["pd.read_json(\"lost.json\").set_index(\"Character\").sort_index()"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 2\n", "<a name=\"task2\"></a>\n", "\n", "* Read in `nest-data.csv` to `DataFrame`; call it `df` \n", " *Data was produced with [JUBE](http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html), Pandas works **very** well together with JUBE*\n", "* Get to know it and play a bit with it\n", "* Tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 30, "metadata": {"exercise": "task"}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["id,Nodes,Tasks/Node,Threads/Task,Runtime Program / s,Scale,Plastic,Avg. Neuron Build Time / s,Min. Edge Build Time / s,Max. Edge Build Time / s,Min. Init. Time / s,Max. Init. Time / s,Presim. Time / s,Sim. Time / s,Virt. Memory (Sum) / kB,Local Spike Counter (Sum),Average Rate (Sum),Number of Neurons,Number of Connections,Min. Delay,Max. Delay\n", "5,1,2,4,420.42,10,true,0.29,88.12,88.18,1.14,1.20,17.26,311.52,46560664.00,825499,7.48,112500,1265738500,1.5,1.5\n", "5,1,4,4,200.84,10,true,0.15,46.03,46.34,0.70,1.01,7.87,142.97,46903088.00,802865,7.03,112500,1265738500,1.5,1.5\n"]}], "source": ["!cat nest-data.csv | head -3"]}, {"cell_type": "code", "execution_count": 31, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>Nodes</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>...</th>\n", " <th>Max. Init. Time / s</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>420.42</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>88.18</td>\n", " <td>...</td>\n", " <td>1.20</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " <td>46560664.0</td>\n", " <td>825499</td>\n", " <td>7.48</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>200.84</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>46.03</td>\n", " <td>46.34</td>\n", " <td>...</td>\n", " <td>1.01</td>\n", " <td>7.87</td>\n", " <td>142.97</td>\n", " <td>46903088.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>8</td>\n", " <td>202.15</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>48.48</td>\n", " <td>...</td>\n", " <td>1.20</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " <td>47699384.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>89.57</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>20.41</td>\n", " <td>23.21</td>\n", " <td>...</td>\n", " <td>3.04</td>\n", " <td>3.19</td>\n", " <td>60.31</td>\n", " <td>46813040.0</td>\n", " <td>821491</td>\n", " <td>7.23</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>164.16</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.20</td>\n", " <td>40.03</td>\n", " <td>41.09</td>\n", " <td>...</td>\n", " <td>1.58</td>\n", " <td>6.08</td>\n", " <td>114.88</td>\n", " <td>46937216.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 21 columns</p>\n", "</div>"], "text/plain": [" id Nodes Tasks/Node Threads/Task Runtime Program / s Scale Plastic \\\n", "0 5 1 2 4 420.42 10 True \n", "1 5 1 4 4 200.84 10 True \n", "2 5 1 2 8 202.15 10 True \n", "3 5 1 4 8 89.57 10 True \n", "4 5 2 2 4 164.16 10 True \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "0 0.29 88.12 \n", "1 0.15 46.03 \n", "2 0.28 47.98 \n", "3 0.15 20.41 \n", "4 0.20 40.03 \n", "\n", " Max. Edge Build Time / s ... Max. Init. Time / s Presim. Time / s \\\n", "0 88.18 ... 1.20 17.26 \n", "1 46.34 ... 1.01 7.87 \n", "2 48.48 ... 1.20 7.95 \n", "3 23.21 ... 3.04 3.19 \n", "4 41.09 ... 1.58 6.08 \n", "\n", " Sim. Time / s Virt. Memory (Sum) / kB Local Spike Counter (Sum) \\\n", "0 311.52 46560664.0 825499 \n", "1 142.97 46903088.0 802865 \n", "2 142.81 47699384.0 802865 \n", "3 60.31 46813040.0 821491 \n", "4 114.88 46937216.0 802865 \n", "\n", " Average Rate (Sum) Number of Neurons Number of Connections Min. Delay \\\n", "0 7.48 112500 1265738500 1.5 \n", "1 7.03 112500 1265738500 1.5 \n", "2 7.03 112500 1265738500 1.5 \n", "3 7.23 112500 1265738500 1.5 \n", "4 7.03 112500 1265738500 1.5 \n", "\n", " Max. Delay \n", "0 1.5 \n", "1 1.5 \n", "2 1.5 \n", "3 1.5 \n", "4 1.5 \n", "\n", "[5 rows x 21 columns]"]}, "execution_count": 31, "metadata": {}, "output_type": "execute_result"}], "source": ["df = pd.read_csv(\"nest-data.csv\")\n", "df.head()"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Read CSV Options\n", "\n", "* See also full [API documentation](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html)\n", "* Important parameters\n", " - `sep`: Set separator (for example `:` instead of `,`)\n", " - `header`: Specify info about headers for columns; able to use multi-index for columns!\n", " - `names`: Alternative to `header` \u2013\u00a0provide your own column titles\n", " - `usecols`: Don't read whole set of columns, but only these; works with any list (`range(0:20:2)`)\u2026\n", " - `skiprows`: Don't read in these rows\n", " - `na_values`: What string(s) to recognize as `N/A` values (which will be ignored during operations on data frame)\n", " - `parse_dates`: Try to parse dates in CSV; different behaviours as to provided data structure; optionally used together with `date_parser`\n", " - `compression`: Treat input file as compressed file (\"infer\", \"gzip\", \"zip\", \u2026)\n", " - `decimal`: Decimal point divider \u2013\u00a0for German data\u2026\n", " \n", "```python\n", "pandas.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='\"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)\n", "```"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Slicing of Data Frames\n", "\n", "### Slicing Columns\n", "\n", "* Use square-bracket operators to slice data frame: `[]`\n", " * Use column name to select column\n", " * Also: Slice horizontally\n", "* Example: Select only columnn `C` from `df_demo`"]}, {"cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-2.718282</td>\n", " <td>This</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "0 1.2 2018-02-26 -2.718282 This Same\n", "1 1.2 2018-02-26 1.718282 column Same\n", "2 1.2 2018-02-26 -1.304068 has Same"]}, "execution_count": 32, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.head(3)"]}, {"cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [{"data": {"text/plain": ["0 -2.718282\n", "1 1.718282\n", "2 -1.304068\n", "3 0.986231\n", "4 -0.718282\n", "Name: C, dtype: float64"]}, "execution_count": 33, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo[\"C\"]"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Select more than one column by providing list `[]` to slice operator `[]`\n", "* *You usually end up forgetting one of the brackets\u2026*\n", "* Example: Select list of columns `A` and `C`, `[\"A\", \"C\"]` from `df_demo`"]}, {"cell_type": "code", "execution_count": 34, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>C</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.2</td>\n", " <td>-2.718282</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>1.718282</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>-1.304068</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>0.986231</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>-0.718282</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A C\n", "0 1.2 -2.718282\n", "1 1.2 1.718282\n", "2 1.2 -1.304068\n", "3 1.2 0.986231\n", "4 1.2 -0.718282"]}, "execution_count": 34, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo[[\"A\", \"C\"]]"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["## Slicing of Data Frames\n", "\n", "### Slicing rows\n", "\n", "* Use numberical values to slice into rows\n", "* Use ranges just like with Python lists"]}, {"cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "1 1.2 2018-02-26 1.718282 column Same\n", "2 1.2 2018-02-26 -1.304068 has Same"]}, "execution_count": 35, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo[1:3]"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["* Get a certain range as **per the current sort structure**"]}, {"cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "1 1.2 2018-02-26 1.718282 column Same\n", "2 1.2 2018-02-26 -1.304068 has Same"]}, "execution_count": 36, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.iloc[1:3]"]}, {"cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "1 1.2 2018-02-26 1.718282 column Same\n", "3 1.2 2018-02-26 0.986231 entries Same"]}, "execution_count": 37, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.iloc[1:6:2]"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Attention: `.iloc[]` location might change after re-sorting!"]}, {"cell_type": "code", "execution_count": 38, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "2 1.2 2018-02-26 -1.304068 has Same\n", "4 1.2 2018-02-26 -0.718282 entries Same"]}, "execution_count": 38, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.sort_values(\"C\").iloc[1:3]"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* One more row-slicing option: `.loc[]`\n", "* See the difference with a *proper* index (and not the auto-generated default index from before)"]}, {"cell_type": "code", "execution_count": 39, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>E</th>\n", " </tr>\n", " <tr>\n", " <th>D</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>This</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-2.718282</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>column</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>has</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>entries</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>entries</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C E\n", "D \n", "This 1.2 2018-02-26 -2.718282 Same\n", "column 1.2 2018-02-26 1.718282 Same\n", "has 1.2 2018-02-26 -1.304068 Same\n", "entries 1.2 2018-02-26 0.986231 Same\n", "entries 1.2 2018-02-26 -0.718282 Same"]}, "execution_count": 39, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo_indexed = df_demo.set_index(\"D\")\n", "df_demo_indexed"]}, {"cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>E</th>\n", " </tr>\n", " <tr>\n", " <th>D</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>entries</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>entries</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C E\n", "D \n", "entries 1.2 2018-02-26 0.986231 Same\n", "entries 1.2 2018-02-26 -0.718282 Same"]}, "execution_count": 40, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo_indexed.loc[\"entries\"]"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["### Advanced Slicing: Logical Slicing\n", "\n"]}, {"cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "1 1.2 2018-02-26 1.718282 column Same\n", "3 1.2 2018-02-26 0.986231 entries Same"]}, "execution_count": 41, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo[df_demo[\"C\"] > 0]"]}, {"cell_type": "code", "execution_count": 42, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "4 1.2 2018-02-26 -0.718282 entries Same"]}, "execution_count": 42, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo[(df_demo[\"C\"] < 0) & (df_demo[\"D\"] == \"entries\")]"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Adding to Existing Data Frame\n", "\n", "* Add new columns with `frame[\"new col\"] = something` or `.insert()`\n", "* Add new rows with `frame.append()`\n", "* Combine data frames\n", " - *Concat*: Combine several data frames along an axis\n", " - *Merge*: Combine data frames on basis of common columns; database-style\n", " - (Join)\n", " - See user guide [on merging](https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html)"]}, {"cell_type": "code", "execution_count": 43, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-2.718282</td>\n", " <td>This</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E\n", "0 1.2 2018-02-26 -2.718282 This Same\n", "1 1.2 2018-02-26 1.718282 column Same\n", "2 1.2 2018-02-26 -1.304068 has Same"]}, "execution_count": 43, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.head(3)"]}, {"cell_type": "code", "execution_count": 44, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " <th>F</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-2.718282</td>\n", " <td>This</td>\n", " <td>Same</td>\n", " <td>-3.918282</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " <td>0.518282</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " <td>-2.504068</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E F\n", "0 1.2 2018-02-26 -2.718282 This Same -3.918282\n", "1 1.2 2018-02-26 1.718282 column Same 0.518282\n", "2 1.2 2018-02-26 -1.304068 has Same -2.504068"]}, "execution_count": 44, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo[\"F\"] = df_demo[\"C\"] - df_demo[\"A\"]\n", "df_demo.head(3)"]}, {"cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": ["df_demo.insert(len(df_demo) + 1, \"G\", df_demo[\"C\"] ** 2)"]}, {"cell_type": "code", "execution_count": 46, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " <th>F</th>\n", " <th>G</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " <td>-2.504068</td>\n", " <td>1.700594</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " <td>-0.213769</td>\n", " <td>0.972652</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " <td>-1.918282</td>\n", " <td>0.515929</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E F G\n", "2 1.2 2018-02-26 -1.304068 has Same -2.504068 1.700594\n", "3 1.2 2018-02-26 0.986231 entries Same -0.213769 0.972652\n", "4 1.2 2018-02-26 -0.718282 entries Same -1.918282 0.515929"]}, "execution_count": 46, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.tail(3)"]}, {"cell_type": "code", "execution_count": 47, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>A</th>\n", " <th>B</th>\n", " <th>C</th>\n", " <th>D</th>\n", " <th>E</th>\n", " <th>F</th>\n", " <th>G</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-2.718282</td>\n", " <td>This</td>\n", " <td>Same</td>\n", " <td>-3.918282</td>\n", " <td>7.389056</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>1.718282</td>\n", " <td>column</td>\n", " <td>Same</td>\n", " <td>0.518282</td>\n", " <td>2.952492</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-1.304068</td>\n", " <td>has</td>\n", " <td>Same</td>\n", " <td>-2.504068</td>\n", " <td>1.700594</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>0.986231</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " <td>-0.213769</td>\n", " <td>0.972652</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1.2</td>\n", " <td>2018-02-26</td>\n", " <td>-0.718282</td>\n", " <td>entries</td>\n", " <td>Same</td>\n", " <td>-1.918282</td>\n", " <td>0.515929</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>1.3</td>\n", " <td>2018-02-27</td>\n", " <td>-0.777000</td>\n", " <td>has it?</td>\n", " <td>Same</td>\n", " <td>23.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" A B C D E F G\n", "0 1.2 2018-02-26 -2.718282 This Same -3.918282 7.389056\n", "1 1.2 2018-02-26 1.718282 column Same 0.518282 2.952492\n", "2 1.2 2018-02-26 -1.304068 has Same -2.504068 1.700594\n", "3 1.2 2018-02-26 0.986231 entries Same -0.213769 0.972652\n", "4 1.2 2018-02-26 -0.718282 entries Same -1.918282 0.515929\n", "5 1.3 2018-02-27 -0.777000 has it? Same 23.000000 NaN"]}, "execution_count": 47, "metadata": {}, "output_type": "execute_result"}], "source": ["df_demo.append(\n", " {\"A\": 1.3, \"B\": pd.Timestamp(\"2018-02-27\"), \"C\": -0.777, \"D\": \"has it?\", \"E\": \"Same\", \"F\": 23},\n", " ignore_index=True\n", ")"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["## Combining Frames\n", "\n", "* First, create some simpler data frame to show `.concat()` and `.merge()`"]}, {"cell_type": "code", "execution_count": 48, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Key</th>\n", " <th>Value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>First</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Second</td>\n", " <td>1</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Key Value\n", "0 First 1\n", "1 Second 1"]}, "execution_count": 48, "metadata": {}, "output_type": "execute_result"}], "source": ["df_1 = pd.DataFrame({\"Key\": [\"First\", \"Second\"], \"Value\": [1, 1]})\n", "df_1"]}, {"cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Key</th>\n", " <th>Value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>First</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Second</td>\n", " <td>2</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Key Value\n", "0 First 2\n", "1 Second 2"]}, "execution_count": 49, "metadata": {}, "output_type": "execute_result"}], "source": ["df_2 = pd.DataFrame({\"Key\": [\"First\", \"Second\"], \"Value\": [2, 2]})\n", "df_2"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Concatenate list of data frame vertically (`axis=0`)"]}, {"cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Key</th>\n", " <th>Value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>First</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Second</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>0</th>\n", " <td>First</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Second</td>\n", " <td>2</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Key Value\n", "0 First 1\n", "1 Second 1\n", "0 First 2\n", "1 Second 2"]}, "execution_count": 50, "metadata": {}, "output_type": "execute_result"}], "source": ["pd.concat([df_1, df_2])"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["* Same, but re-index"]}, {"cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Key</th>\n", " <th>Value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>First</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Second</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>First</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Second</td>\n", " <td>2</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Key Value\n", "0 First 1\n", "1 Second 1\n", "2 First 2\n", "3 Second 2"]}, "execution_count": 51, "metadata": {}, "output_type": "execute_result"}], "source": ["pd.concat([df_1, df_2], ignore_index=True)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Concat, but horizontally"]}, {"cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Key</th>\n", " <th>Value</th>\n", " <th>Key</th>\n", " <th>Value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>First</td>\n", " <td>1</td>\n", " <td>First</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Second</td>\n", " <td>1</td>\n", " <td>Second</td>\n", " <td>2</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Key Value Key Value\n", "0 First 1 First 2\n", "1 Second 1 Second 2"]}, "execution_count": 52, "metadata": {}, "output_type": "execute_result"}], "source": ["pd.concat([df_1, df_2], axis=1)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["* Merge on common column"]}, {"cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Key</th>\n", " <th>Value_x</th>\n", " <th>Value_y</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>First</td>\n", " <td>1</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Second</td>\n", " <td>1</td>\n", " <td>2</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Key Value_x Value_y\n", "0 First 1 2\n", "1 Second 1 2"]}, "execution_count": 53, "metadata": {}, "output_type": "execute_result"}], "source": ["pd.merge(df_1, df_2, on=\"Key\")"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "subslide"}}, "source": ["## Task 3\n", "<a name=\"task3\"></a>\n", "\n", "* Add a column to the Nest data frame called `Virtual Processes` which is the total number of threads across all nodes (i.e. the product of threads per task and tasks per node and nodes)\n", "* Remember to tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 54, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>Nodes</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>...</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " <th>Virtual Processes</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>420.42</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>88.18</td>\n", " <td>...</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " <td>46560664.0</td>\n", " <td>825499</td>\n", " <td>7.48</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>8</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>200.84</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>46.03</td>\n", " <td>46.34</td>\n", " <td>...</td>\n", " <td>7.87</td>\n", " <td>142.97</td>\n", " <td>46903088.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>8</td>\n", " <td>202.15</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>48.48</td>\n", " <td>...</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " <td>47699384.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>89.57</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>20.41</td>\n", " <td>23.21</td>\n", " <td>...</td>\n", " <td>3.19</td>\n", " <td>60.31</td>\n", " <td>46813040.0</td>\n", " <td>821491</td>\n", " <td>7.23</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>32</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>164.16</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.20</td>\n", " <td>40.03</td>\n", " <td>41.09</td>\n", " <td>...</td>\n", " <td>6.08</td>\n", " <td>114.88</td>\n", " <td>46937216.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 22 columns</p>\n", "</div>"], "text/plain": [" id Nodes Tasks/Node Threads/Task Runtime Program / s Scale Plastic \\\n", "0 5 1 2 4 420.42 10 True \n", "1 5 1 4 4 200.84 10 True \n", "2 5 1 2 8 202.15 10 True \n", "3 5 1 4 8 89.57 10 True \n", "4 5 2 2 4 164.16 10 True \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "0 0.29 88.12 \n", "1 0.15 46.03 \n", "2 0.28 47.98 \n", "3 0.15 20.41 \n", "4 0.20 40.03 \n", "\n", " Max. Edge Build Time / s ... Presim. Time / s Sim. Time / s \\\n", "0 88.18 ... 17.26 311.52 \n", "1 46.34 ... 7.87 142.97 \n", "2 48.48 ... 7.95 142.81 \n", "3 23.21 ... 3.19 60.31 \n", "4 41.09 ... 6.08 114.88 \n", "\n", " Virt. Memory (Sum) / kB Local Spike Counter (Sum) Average Rate (Sum) \\\n", "0 46560664.0 825499 7.48 \n", "1 46903088.0 802865 7.03 \n", "2 47699384.0 802865 7.03 \n", "3 46813040.0 821491 7.23 \n", "4 46937216.0 802865 7.03 \n", "\n", " Number of Neurons Number of Connections Min. Delay Max. Delay \\\n", "0 112500 1265738500 1.5 1.5 \n", "1 112500 1265738500 1.5 1.5 \n", "2 112500 1265738500 1.5 1.5 \n", "3 112500 1265738500 1.5 1.5 \n", "4 112500 1265738500 1.5 1.5 \n", "\n", " Virtual Processes \n", "0 8 \n", "1 16 \n", "2 16 \n", "3 32 \n", "4 16 \n", "\n", "[5 rows x 22 columns]"]}, "execution_count": 54, "metadata": {}, "output_type": "execute_result"}], "source": ["df[\"Virtual Processes\"] = df[\"Nodes\"] * df[\"Tasks/Node\"] * df[\"Threads/Task\"]\n", "df.head()"]}, {"cell_type": "code", "execution_count": 55, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"text/plain": ["Index(['id', 'Nodes', 'Tasks/Node', 'Threads/Task', 'Runtime Program / s',\n", " 'Scale', 'Plastic', 'Avg. Neuron Build Time / s',\n", " 'Min. Edge Build Time / s', 'Max. Edge Build Time / s',\n", " 'Min. Init. Time / s', 'Max. Init. Time / s', 'Presim. Time / s',\n", " 'Sim. Time / s', 'Virt. Memory (Sum) / kB', 'Local Spike Counter (Sum)',\n", " 'Average Rate (Sum)', 'Number of Neurons', 'Number of Connections',\n", " 'Min. Delay', 'Max. Delay', 'Virtual Processes'],\n", " dtype='object')"]}, "execution_count": 55, "metadata": {}, "output_type": "execute_result"}], "source": ["df.columns"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Aside: Plotting without Pandas\n", "\n", "### Matplotlib 101\n", "\n", "* Matplotlib: de-facto standard for plotting in Python\n", "* Main interface: `pyplot`; provides MATLAB-like interface\n", "* Better: Use object-oriented API with `Figure` and `Axis`\n", "* Great integration into Jupyter Notebooks\n", "* Since v. 3: Only support for Python 3\n", "* \u2192 https://matplotlib.org/"]}, {"cell_type": "code", "execution_count": 56, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import matplotlib.pyplot as plt\n", "%matplotlib inline"]}, {"cell_type": "code", "execution_count": 57, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [], "source": ["x = np.linspace(0, 2*np.pi, 400)\n", "y = np.sin(x**2)"]}, {"cell_type": "code", "execution_count": 58, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXmUZWV57/99zjzXXNVzdTc0k8w2YKISg6h4kysmGkXjT4zmkvyMuStzNMkv8RJzlxnW1Xsz3ASVKw4RkAxgwhUBNaKAdKvM0HbTY3VX11x15vn5/bH3e+p09Rn28O6hut7PWr2oOkPtt6DZ3/NM34eYGQqFQqFQyCLg9QEUCoVCcW6hhEWhUCgUUlHColAoFAqpKGFRKBQKhVSUsCgUCoVCKkpYFAqFQiEVJSwKhUsQ0eeJ6BP6168nogNtzx0lohsdum7Xn732HAqFDJSwKDY8RMREdP6axz5ORF9y6prM/BgzXyj757aLl5fnUGxslLAoFAqFQipKWBSKPhDRKBH9GxEtE9EiET1GRAH9uS1E9E9ENEdER4jovxr8mW8goqkuz12s/6z3mLkGEd0G4BcB/B4R5Ynoa21PX0lEzxLRChHdQ0SxTucgot8nopNElCOiA0T0RkP/khSKNkJeH0ChWAf8NoApAGP6968BwLq4fA3A/QDeA2AbgEeI6AAzP2TlQkR0NYB/BfBhZv43M9dg5juI6CcBTDHzH6350e8CcBOAMoDvAfgAgL9fc+0LAXwEwDXMfIqIdgIIWvk9FBsbFbEoFP2pAdgMYJKZa3pdggFcA2CMmW9n5iozHwbwGQC3WLzO6wE8AOD9zPxv+mOyrvG/mPkUMy9CE6orO7ymASAK4BIiCjPzUWZ+xdqvotjIKGFRKLQbanjNY2FoggIAfwngEIBvENFhIvqo/vgkgC16imyZiJYB/AGACYvn+FUAjzPzt9sek3WN021fFwGk1r6AmQ8B+A0AHwcwS0R3E9EWk9dRKJSwKBQAjgPYueaxXQCOAQAz55j5t5l5N4C3AfgtvfZwAsARZh5s+5Nm5v9k8Ry/CmAHEX2q7TGz17BlV87M/8jMr4MmaAzgz+38PMXGRAmLQgHcA+CPiGgbEQX0mY//DOA+ACCinyWi84mIAKxAi3CaAJ4CkNML3nEiChLRpUR0jcVz5KDVQa4nok/qj5m9xgyA3VYuTkQXEtENRBSFVospQfs9FQpTKGFRKIDbATwO4LsAlgD8BYBfZObn9ef3AHgEQB7AEwD+jpm/xcwNAD8LrV5xBMA8gM8CGLB6EGZeBvAmAG8loj+1cI3PQauRLBPRv5q8fBTAJ/VrnAYwDuBj5n8LxUaH1KIvhUKhUMhERSwKhUKhkIoSFoVCoVBIRQmLQqFQKKSihEWhUCgUUtmQli6jo6O8c+dOr4+hUCgU64of/OAH88w81u91G1JYdu7cif3793t9DIVCoVhXENExI69TqTCFQqFQSEUJi0KhUCikooRFoVAoFFJRwqJQKBQKqShhUSgUCoVUfCEsRHQnEc0S0fNdnici+l9EdEhfr3p123O3EtFB/c+t7p1aoVAoFJ3whbAA+Dw0u/BuvBWaw+weALcB+N8AQETDAP4EwHUArgXwJ0Q05OhJFQqFQtETXwgLM38HwGKPl9wM4Aus8SSAQSLaDOAtAB5m5kVmXgLwMHoLlMIEJxaL+OKTx/DXjx7E1545hWK17vWRfM2h2Ry++OQxLOQrXh/FFI0m4xsvnMazU8teH6VFpd7AvftOIFuu9X+xAzz+yjyOzhdcu96JxSJemcs7eo2ppSL+/dlpR68hWC8DkluhbdITTOmPdXv8LIjoNmjRDnbs2OHMKc8RitU6/uLrB3DXE0fRvlVhOBnBn958KX7m8s2enc2vPDu1jHf878dRazD+5psH8dBvXI/BRMTrYxniLx86gL//j1cQDwfxjd+8HtuHE14fCR9/4AV85akTeOSlGdzx/r2uXnsmW8Z7P/N9AMBTf/BGjGdijl7v5dNZ3PTpxxAOEn78ibdC2ycnn3f/w5M4uVzCZVt/GjtGnP1v7IuIxQ2Y+Q5m3svMe8fG+joSbFhms2W87W++h88/fhTvf80k/uN334ADn7gJ99z2GuwYTuDX/vGH+Nx3j3h9TF/BzPjoPz2HkWQUd35gL+bzVfzVNw54fSxDZMs1fPGJo7hs6wDqzaYv/tsuF6u4e5/2efEbL87gsMOf5NfyhSeOtr6+/+lTjl/vX354EgBQazCeP5l15BrHFgo4uVwCANz/9ElHrtHOehGWkwC2t32/TX+s2+MKC8zlKrjlM0/i1HIJX/rQdfhvN1+KyZEkoqEgrts9gnt/5Sfw1ks34U//7UV8/fnTXh/XNzx1ZBEvTmfxm2/agxsumsA7rt6Kf/7hSeQr/k8dfuOFGRSqDdx+86vwUxeM4+EXZ+D18r8nXlkAM/AX77wcAPDk4V5Zcmeuf+3OYWwdjOPpE86nB58/tYKtg3EQAY++POPINX50XPs9hpMRfP0F5//fXS/C8gCA9+vdYa8BsMLM0wAeAvBmIhrSi/Zv1h9TmKTWaOLDX/4BppfLuOuD1+J1e0bPek0kFMCnb7kSV2wfxO/e9wzmcuurluAU9+w/gXQshLddoWVh333NDhSrDTzoUj7bDk8eXsBQIowrtg3iLa+awMnlEl6cduZTs1G+e2geyUgQP3fVVoylo/j+kQXXrt1sMg6czuGSLRlctWPQcWFh1qKU6y8Yw67RJA6czjlynaMLBRABd9/2Gtz7Kz/hyDXa8YWwENFXoO0Sv5CIpojoQ0T0q0T0q/pLHgRwGMAhAJ8B8GEAYOZFAH8KYJ/+53b9MYVJ/vKhA9h3dAmffMdluGbncNfXRUNBfOpdV6Bca+DPv/6yiyf0J40m41svz+LGiycQjwQBAFfvGMSWgZhjnz5l8uThBVy3awSBAOE1u0cArH669YrnTq7giu2DCAcDuHbnMH5wbMm1a08tlVCoNnDRpjSu3D6Ik8slRz9ATS2VsFKq4dKtGUwOJ3BsoejIdY4tFLE5E8MFE2kko86X1n1RvGfm9/R5ngH8Wpfn7gRwpxPn2ig8dWQRd3znMH7xuh24+cqOvQ9nsHsshQ+9bjf+/j9ewXuu3YFXT27cDu8fHV/CUrGGN1483nqMiHD9BWP492enUW80EQr64vPbWZxeKWNqqYQPvnYXAGDbUByDiTCem1rx7EzMjFdm83jnq7cBAM4fT+HB56dRrjUQCwcdv76I1i7enMFisQpAq0+MpaOOXO/ogtZ5dt5YCj8ezmH/0SUws/QC/rGFAiZHklJ/Zi/8+Tde4RrlWgMf++dnsW0ojj/8mYsNv+/Xbzgfo6koPv3Ijx08nf/53qEFEAGvP//MhpDX7xlDrlLHMx7epPvx0mntJvqqLRkAmiBetnUAz5307szTK2UUqg2cP54CAOweS4J59QbsNIfntUaB88dT2D4UB6BFFU4xvVIGAGwZiGP7cAK5Sh1LRfkt1scWitg56l63nxKWDc5nvnMYr8wV8Gc/dxkSEeMBbDIawi+9diceOziPF095m5P3kv3HFnHRpgwGEuEzHr9mpxbF/ei4e2kcs4h8/kWbMq3HLt06gB/P5FCtNz0506FZ7cZ+ni4s541p/zw8546wnFouYTARRjIawrYh7UY8teRMegrQokYAGM9EWxHF8UW51ytW61goVFu/jxsoYdnALOQr+Pv/eAVvvmQCP3WB+Rbs9103iUQkiM88dtiB0/mfeqOJHx5baolIO+OZmGtdRVY5cDqHzQOxM0Tx/LEU6k3GCQdvpr0QQ4IiYtk1qt1sj7g0rDi9XMbmAS1SiYWDGE1FcWLR2YhlJBlBLBzE9mHtuickC8tCXkvpjTuUzuuEEpYNzF9/8xBKtQZ+76aLLL1/IBHGu6/Zjq89c2pDdogdmMmhUG10rTFduX3Q80J4Lw6czuHCTekzHts1pt/IXYoQ1jK1VEI8HMRYSrsJJqMhTGSirgnLqZUytgysDkRuG4pjatk5kZ1eKWHzoHa98bT2z3nJzg3i542k3BvYVcKyQTm+UMSXv38M775me+vToRXee+0O1JuMB55xfpDMbzyv1yIu3zbY8fnLtw3g5HIJy3oR2E8wM44uFLB79Mz/9rtdjhDWcmq5hC2DsTOK11sG462UkTvXj7e+3z6ccLTGcnqljE0Z7XqD8TCCAZIuLCJiGUmqiEXhMP/j4QMIBgi/ceMFtn7Onok0Lt82gH/+4ZSkk60fnju5gnQ0hMkuFigXbdZqFy87NJtgh7l8BcVqA5NrrD0GExEMJyM47KmwxM94bPNADKdWnLu5C4rVOlZKtVYEAQAT6Shms85F49MrZWwa0G74gQBhOBlpCYEsFgoqYlG4wNH5Ah545hRu/YmdmJDgg/TzV23FC6eyePn0xiriP38yi0u2ZBAIdG4NvVhPM73s8cBhJ8S8xFphAbS6xpF5d21UBCeXy9i6Rlg2ZbSIxWlHgFPLqx1agtF0FKVaAwUHXBSq9SZWSrVWCgwARlNRB1JhKmJRuMAdjx1GKBjAh163S8rPe9uVWxEOEv7lRxvHTad9QrsbY+kohhJhHJjxX8SyKixnzzZsG4q3fKXcpFxrYD5f6RixFKsNZMvOWuSIOuF4ZvUGPKrXemTf7AG0UqRDydVIYjQVaQmBLBYLVSQjwdYArxsoYdlgzGbLuG//FN756m3SXFuHkxG8ZvcIvvGC9z5TbnFyuYRSrYE94+muryEiXLgp7ZhNhx2OLxQQIJwVHQDaY6dXymg03f1vKeooZwmLnppyus4iUkZCTLSvtZu+E8IiBjCHE+3CEm2dQxYL+QpGUu5FK4ASlg3H5753BPVmE79y/W6pP/fNl0zgyHzB8Z0SfuHQmrbYbuwaTTlm02GH44tFbB6IIxI6+xawZTCOWoNd7/QTw4KbB878wCO+n3a4zrJa5D7zRg8Aczn5DRiLBRGxrLZ7jyQjmJd8rYVC1dX6CqCEZUORK9fw5SeP42cu3yLd3uHGSyYAaDbnG4FX9EG+PX2EZedIAguFqmcLq7pxqkMtQyAedzsdNqdHBWvnLUQdcCbrbMQyn68gQDhjj46wcnEiYlkqaH8n2msfoqYjc6neQr56RlTkBkpYNhD3/WAK+UodvyypttLO5oE4Lts6gIc3iLAcnMljJBk5Iz/eCSHgx+b9FbWcWtHaejuxdcgjYdEjpLW+XKt1DmfbtufzVQwnIwi2NWMMJ51PhbVHLOJ6MjvDsuUaBuLh/i+UiBKWDUKzyfjiE8dw5fZBXLG989yFXd50yQSePrHsyP+EfuPQXL5lO9KL1uS4S15XRmg0GadXymfVMgTi8ZMOzm90Yi5XQThIZ90EY+EgUtGQ43+vFvKVszqnwsEAhpMRhyIWXVjaognxu6+U5EW42VINGSUsCid47NA8Ds8X8IGf3OnYNX7qgjEwA987NO/YNfwAM+PQbN7QYOkOfcblmEdzIZ2Yz1dQbzI2dxGWVDSEdDTkeOppLXO5CsZS0Y7Ovk50S62lWy1ixIHZEkCrsaRjIYTb3K+FsGQlCUuzychV6sjE3DWyV8KyQfjC40cxmorgrZdtcuwal24dQCYWwuOH3FvM5AXz+SpWSjWcP9ZfWOKRIDZlYjjqowK+SHFt7ZIKA7R01JzLkedcvtLVnn40FcW8w80E3bqnBhNhLDvgOLxUrLZSXwLZEUu+WgczVMSikM/xhSK+eWAW7712B6Ih53rZgwHCT5w3gu8emj+n246FA++eCWNWODtHE67Zvhthell0X3WOWACtiOx2V9h8rruwjKQi0ttw17KQr57RESYYiEewLDE1JVgsVM9oFNCupQmArOuJyGfDCgsR3UREB4joEBF9tMPznyKip/U/Pyai5bbnGm3PPeDuyf3PF588iiAR3nvdpOPXet35ozi5XPJli60sRKvxeQYiFgDYOZLEMR8Ji0hxbeoxxzSWdj5CWEvfiMXBVFi90USuUsdg4uwb8FAi7IjfW7ZcP6ueJK4vK2LJlrTuskzMXWHxxQZJIgoC+FsAbwIwBWAfET3AzC+K1zDzb7a9/tcBXNX2I0rMfKVb511PlKoN3LPvBN5y6SZsGpAzENmL154/CgD43ivz2Dnq3sY6Nzm+UEA0FOh5Y25nciSJ+XwVuXINaZf/B+/EXF4rkne6iQrGUlF8x0VhaTYZC/nKGcOJ7YykolgqVh3byCmm+jt1TzmVCsuVa9i2ps4VDwcRDpI0YVlpRSwbs8ZyLYBDzHyYmasA7gZwc4/XvwfAV1w52TrnweemkS3X8T4XohVA64LaPBDD46+cu3WWE4slbB9OdPUIW8sufXOfX6K42Wz3IrlgLB1FrlJHqdpw5UzZcg1NPrND6ozzpCJgXm3RlX59/QbcWVgiKNUaKNfk/rvIletIrymqE2ldcdIiFn1+yu2IxS/CshXAibbvp/THzoKIJgHsAvDNtodjRLSfiJ4kord3ed9t+mv2z83NyTq377ln3wnsHEngNbuHXbkeEeGancPYf3TxnK2zHF8strq9jLBdf63sBU5W6ZVyEjg5GNiJTlPo7QzrbcBiqFA2Kz2FRX4LMADkOwgLoNVD5KXCuv9eTuIXYTHDLQDuY+b2jw+TzLwXwHsBfJqIzlv7Jma+g5n3MvPesTHz2xLXI6/M5fHU0UW8+5odPT+dymbvziHMZCuO7rHwCmbGCZPCItxyT7m0U6Qfcz2K5ALx/KxL6TCx531tMVvQKmo7FLGs9ChyD8Yj+rXlCUut0USp1uiYGh2Ih6W1G4sU30aNWE4C2N72/Tb9sU7cgjVpMGY+qf/zMIBv48z6y4bl3n0nEAoQ3vHqjsGfY+yd1KKj/ccWXb2uGywXa8hV6q0oxAiDiTBi4QBOeeAY3AlDwtLyyHJHWFpOv12ERUQNTnRnAb0jliH92ksSRS2v3/A7RSxSU2H6z0lt0DmWfQD2ENEuIopAE4+zuruI6CIAQwCeaHtsiIii+tejAF4L4MW1791oVOtN/NMPp/DGi8fP2PfgBhduSiMdDWH/0SVXr+sGx/V0lpmIhYiwZTDuuImiEeqNJhYKlZZwdEP4dbk1yyIilqEuDQVOTKS300tYBoSoSYxYci1h6RyxyKyxpKOhM2xq3MAXXWHMXCeijwB4CEAQwJ3M/AIR3Q5gPzMLkbkFwN18ZvL+YgD/QERNaEL5yfZuso3KN1+ewXy+iluu2eH6tYMBwlWTQ+e0sGwf7j4D0oktA/HWIikvWSxUwQyM9eloG05GQORBxNLFe61V53CgOwvoXeQW6TmZaThxvU4RSyoaakU0dilU6khG3b/N+0JYAICZHwTw4JrH/njN9x/v8L7HAVzm6OHWIV956gQ2ZWK4/gJv6knXTA7hfzzyY6wUa61PfOcCLWEZMh6xAJr1+3cOet80Imom/SKWUDCAkWTENWFZKlYRChDSXW6CKf1T93LJuRpLJBhALHx2EkfYoeQkLhprRSwdft9UNIS8pI2V+Urd9TQY4J9UmEIiJ5dL+M7BObxr7zbXQ2DB1ZNDYAaemVru/+J1xNRSEaOpiOlPgVsG45jNVVCtNx06mTFEaqtfjQXQhhLdE5YaBhPhrk0mRITBuDPzJMCqUWOn6ycjIRBpcyeyEMLRKRWWioZQqTdRa9j/u5KvNDyJWJSwnIN8db/Wuf0Le7f3eaVzXLp1AADw7DkmLMcXi6YK94ItgzEwO79TpB9z2c47Tzrhpl/YcvFse5O1DCTCjhbvB7oMEQYChFQkJHU1cq5HKkwIQUFC1FKo1JGKureSWKCE5Ryj0WR8df8UXnf+qKUboCwG4mHsHk3imakVz87gBGZnWATCl2va45ZjMxGLm7YuS4Va18K9YDAedq7GUqr39NNKx+Slp4D24n3nVBgAKdfLl+tIRlTEorDJdw/N4+RyCe++xrtoRXD5toFzKmJpNBmnlsvYNmSucA+s7jjxujNsLldBOhZCLNz/U+yYbkTpxqDrkoGIZTARcbTG0muIMB0LS02FrUYsZ19zNWKxP+mvaiwKKdyz7ziGEmG8SV8V7CWXbxvETLbiefpHFnO5ChpN7ukK3A2xrdHrzjAjMyyCsVQU1UZTagqoG0vFqqGIxakaSz9hSTkQsURDAURCZ9+Ck3rqSsb1CtV6KwJyEyUs5xAL+QoefnEGP3/1Nkft8Y1yxXatzvLMiXMjajmlRxvdVvr2IhEJYSAe9nxIUizTMoITbbadYGYsFWtdhyMFMq1O1tI/YglJ7QrLlutdDUllpcKY2bN2YyUs5xD/+vQp1BqMd3lYtG/nks0DCAYIz54jdRYje0x64Ychydlc2XDEsjpx7szNXFCqNVCtNw2kwsLIleuoS+iWaqfZZOTKtZ62J6moXGHRnK67tFbH5BTvtc4yVhGLwjrMjHv3ncAV2wdx4aa018cBoG1P3DOewnMnzxFhERGLVWEZiHmeClvIV7ta069FDCuK3exO0W/qXjAo1vZKTs3lq3U0ubdRo1ZjkXfdfKWzASWAVrHdbsQihCkZUV1hCos8M7WCAzM5vNsn0Yrgki0ZvDSd9foYUji1XEYiErS822I8E3XN1LET1bq2zGrtOtxuiNSUTI+sTgjhMlK8B+Sn5kSnWS9hycRCkov33YUlJandWBT/Ux7sAFLCco5w7/4TiIUD+NkrNnt9lDO4ZHMGs7mKa/brTjK9UsLmgZhlp+ixdAwLhYr0VI5RhEAYFxZ3UmGiIN/vXAMOGVH2cjYWiKFFWQOuuXIN6Wjn68maYxERj5pjUViiVG3ga0+fwn+6bLPr9tj9uHhzBgDOiajl1Eq51TZshfF0FMzAgsOppW6InSdGhSUTCyNAbqTChLOxsVSY7FmWlk9Yj0hURBeyOsN6RSyRUACRYAA5ScKiivcKSzz43DRylbpvivbtnEvCMr1cMryOuBNi2n026030tmRSWAIBwmAi4nwqrGgyFSZ5lsXIMizRwSUrHZbr0RUGaAV8+6kwJSwKG9y7X9sSed0ud7ZEmmE4GcGmTAwvTee8PootqvUm5vIVbLYTseiiNJvzpoC/YFJYAOf2vbcjtkIOGoxYZJ+nl2W+ICXRiLLR5L6Di8lo0PaAZKEqUmFKWBQmOTpfwPePLOIX9m53dUukGS7enF73EctsrgxmrbPLKuMub2Vcy1KfZVqdGE5EWik0p8iWa0hGgggHe9+OMh4KS1qisIgbfqaXsETsD2QWq5owxQ24LMhGCcs65979JxAg4B1Xb/P6KF25eHMGh2bzqNTtW1R4hfD4shOxiDZfr1Jhrb3yJtYYuJEKE87C/QgGCJlYSPqQZK5cBxF6emqJQruMVFgvnzBBKmo/FVYSwqLajRVmqDe0LZFvuHAcm2x8knaaizdnUG8yDs7kvT6KZcTEvJ2IJRIKYDgZ8SwVtlioYiAeRqhPZNDOkAupsF6F7LUMJMLS243zFc2oMdBjxYTM4n0vnzBBUsJOllJNE5bERhYWIrqJiA4Q0SEi+miH5z9ARHNE9LT+55fbnruViA7qf2519+Te8Z2Dc5jJVnxZtG/nXCjgy4hYAC0d5lUqbLFQxYiJ+gqg1WMWi1VHjSizfabe28lIHlQExJbF3jdfmakwoxGLrFRYzAN7J19skCSiIIC/BfAmAFMA9hHRAx1WDN/DzB9Z895hAH8CYC8ABvAD/b3n3l7cNdy7bwojyQhuuGjc66P0ZNdoErFwYF0X8KeXS0jHQrYLoWMeCstSsdp19W83BhMRVOtNlGoNJByyX8+WaxhPG4sEZXt2AdogYb/OqdXivf3ozUgbsJxUWB2xcKBnJOYUfolYrgVwiJkPM3MVwN0Abjb43rcAeJiZF3UxeRjATQ6d0zfM5yt45KUZ/PzVWzs6pPqJYIBw4ab1PYF/aqVs2cqlnfF0DHMeuT0v5KumCvcAMJx0fkjSTCosHQu35k5kka/0dwCOhoKIhOzPlgCrtY9eNZ1kNGS7K6xYde7DQD/8ckfaCuBE2/dT+mNreQcRPUtE9xGRyP8Yei8R3UZE+4lo/9yc97vH7fIvPzyJetM/hpP9uGRzGi9OZ13Z7eEE0yslKXWs8Yy2ldGLfw9LRfOpMDE74uSQZLZkPBWWlmwGCeipMAM3YFnXFpFIr9pHKhpEvlJHs2n970mp1vCkIwzwj7AY4WsAdjLz5dCikrvMvJmZ72Dmvcy8d2xszJEDugUz4+59x3HVjkHsmfCH4WQ/LphIY6VUc23VrWyml8uW7PLXMp6OotZgx21S1sLM2pZGk8LitF8YM5uMWOR6dgF68d5AilNWGs5IUV2cp1izHrWUqg1PCveAf4TlJID2j97b9MdaMPMCM4u70mcBvNroe881vn9kEa/MFfDea3d4fRTD7BnXBPDQOuwMK9caWChULdvltyNqCW53huUrdVQbTQvFe2dTYaVaA/UmG2o3BrRUWL5Slxrxacuw+t+A07Ew8hJETaS4eomZDL+wYrXhSasx4B9h2QdgDxHtIqIIgFsAPND+AiJqd1d8G4CX9K8fAvBmIhoioiEAb9YfO2f58vePIxML4Wcv3+L1UQyzZyIFADg4u/6E5bToCJOUCgPcn2UR0+1Wivfa+52JWIx0SLWTjoXQ5NWOJxkYKd4D8nayFKva3Ey0R21URnuzl6kwX3SFMXOdiD4CTRCCAO5k5heI6HYA+5n5AQD/lYjeBqAOYBHAB/T3LhLRn0ITJwC4nZkXXf8lXGI+X8HXn5/G+14z6dmnESuMp6NIx0I4OLv+OsNarcYSIhaxvXHO5c6wRT2VZbrGEhcRizPCIny6DNdYWp5d8jYjGinea9cO4dhC0fb1itUGkpFQT6cMUfOxE7GUqg2Mpsz995aFL4QFAJj5QQAPrnnsj9u+/hiAj3V5750A7nT0gD7hq/unUGswfvG69ZMGAwAiwp7x1LockhRpq00DxhZk9WJE/x/daZuUtSwWNCEzG7GEggGkYyHHhiSzJiOW9rZfGc0UtYZmhW8oYpG0975YrfetfYjz5G1ESMVqHfGI/Q9DVvBLKkxhgGaT8Y9PHcN1u4Zx/vj6KNq3c8FEGofWYSpMpK3GDM5a9CIVDSHH2k6wAAAgAElEQVQSCri+n2ZRT4UNm2w3BjQPLad2za9a1huNWEL6++R0hplxAM5IanUuVPoX1WXsvS/XmoiHN3a7scIAjx2ax4nFEt73mkmvj2KJ88dTWChUsbDOOsNmc2XEwoGepoFGISKMpaKYz7sbsQgblMGk+X09TgqLqFkYn7yXuxfFzDKsZDSIYrVhu3HAyHyJcAIQhpXWrtM/MnIKJSzriC89eQwjyQje8qpNXh/FEqI1er1FLTPZCsbT1jdHrmUkFcFCwV1xXS7WEAwQ0hbqEgPxcKsWIpvVGovxAUlA3l4UIx1agkQkhEaTUbG5RdLIDX81YrHepKC6whR9mV4p4dGXZvCua7b7ftK+G3vG12dn2GyujImM/fqKYCQZwYLLEctSsYrBeNiSOGZi/kmFiRuurCFJM1sWk/pN2m5HWrHaQKLP9YQglCxGLE1dANWApKInX3nqBBjAe65ZX0X7djYPxJCMBNddxDKrRyyyGElFXU8HLpdqrZ3xZnE6FRYOUs/W23bSEj27gNUai5GusISE2RJAi1iSfSIJkSqzKmJeOhsDSljWBZV6A//4/WN4wwVj2DGS8Po4liEinD+RXnctx7O5Smv+RAYjqQjmC846Bq9lpVhrtQ6bZSAh359LIOxcjEZSWpuuvW6pdlrFewOWLkmbN/vVa/ZPUQUDhEgo0PIVM0vRw10sgBKWdcHXnpnGfL6KD71ut9dHsc16azkuVOrIV+pSI5bRZBTVelNaAdoIyyXzBpSCgXgY5VrTkUVtZuxcACAQIKSiIWldYXkTEYsoqMvYk2JEyBKRoGURK9e82x4JKGHxPcyMO797BBdMpPDa80e8Po5t9oynMJurYMVlryyrCIt7qTUWfZbFzTrLctF6KkwU1p1Ih2XLxrZHtiPTiHK13dhIV5iIWOxdu1Ax1q2VCFsXFvG+je5urOjC948s4sXpLD742l2+3WlvBmHtcmhufaTDZnSLe9k1FgCudoZpqTBrEYu48WdL8iMssxELoHWGSauxVM10hektwDY6tURXmZEbfjwSbEUeZhHip2osio7c+d0jGEqE8farOm0RWH+cN6YJyytzBY9PYgxHIhZ9+t2tWZZao4lcpY5BG8V7wKGIxYRlvkDmsq98pY5QwFjzwGqNxd5sCWAsQkpEQpavJYr3MZUKU6zl+EIRD780g1+8btKzvyCy2ToYRzhIODK/ToTFgYhlVEQsLgmLmBWxKiyrEYt8YbEWscixVgHEWuLevl2CRGto0d5sCWCsqB63UWMpVVVXmKILd37vCIJE+H9+Yn1O2nciFAxgx3ACR9ZRxBINBZCJy8tVDydFjcWdVNiyLggDVrvChLA40BlmZt+9ICUxFWbUgBJYLfDbtbIHjHWhJSLBVuRh9TpKWBRnsJCv4J59J/C2K7dgIiPv07If2DWaWjcRy0y2jPFMVGp9KxLS7GEWXDKiFAaSgza6wgD5qbB6o4litWG+eC8xFaZFLMZuvrFQEERA0YawCFEyErHY6QpTqTBFRz7/+FGU6w18+A3neX0U6eweS+LIQsHW2lW3mM1WMCExDSYYTUVdM6JcKek+YRYjFhFRyO7kM7uLRSBXWIztYgG0VudEOGgrFSZu+EYilng4ZHmORaXCFGeRK9fw+ceP4qZXbVqXLsb92DWaRLXexKmVktdH6ctMrix1OFIwmoq6VmNZjVisCUskFEA8HJSeCmvZuZhMhWViYVQbTcsdU+2YSYUB2vS9neJ9a9+9oeJ90PK1VLuxDhHdREQHiOgQEX20w/O/RUQvEtGzRPQoEU22Pdcgoqf1Pw+sfe9644tPHkOuXMeH33C+10dxhF2jSQDA4XVQZ5mTbOciGElFXItYWsJisd0YcMbWxWrEIsNSXlCo1A1FD4JkJGir3dhM7cNW8V4XXaNWObLxhbAQURDA3wJ4K4BLALyHiC5Z87IfAdjLzJcDuA/AX7Q9V2LmK/U/b3Pl0A5RqjbwuceO4PoLxnDZtgGvj+MIu8c0YfF7naVYrSNXqTsSsWgOxy5FLKUaiMzfwNvJxEPShaXlbGyhxgLIMaIUXWFGSdqMWMwU7+PhICr1JhoWUsalah3xcBCBgDezb74QFgDXAjjEzIeZuQrgbgA3t7+Amb/FzGIv6JMAtrl8Rle4d/8JLBSq+MhPn5vRCqCt501FQ74XFrHgy4kay0gyiqViFfWGPQt2I6wUqxiIh23dZDTrfLkDkma3RwpkWudrqTDjdYhkxF6rsxAlo8V7AJY6w7SdL96NKPhFWLYCONH2/ZT+WDc+BOD/tn0fI6L9RPQkEb290xuI6Db9Nfvn5ubsn9gByrUG/u7bh3DNziFcu2vY6+M4BhFh12gSh30uLK2pe0dqLBEwA0suWNssl6wbUAqcSIVZrbHISoUxMwpV48V7QKuN2DGhbO1/MdhuDFgbyCxVG57OvvlFWAxDRO8DsBfAX7Y9PMnMewG8F8CnieisVipmvoOZ9zLz3rGxMZdOa44vPnEMM9kKfufNF3p9FMfZNZrEkXl/m1GuTt07UWNxz9ZF8wmzXl8BnNnJYnZ7pEBEOHYdjkWayVQqLBKyNcdSqtZBBMTC/W+9cV18rHSGlWoqYgGAkwC2t32/TX/sDIjoRgB/COBtzNz6P5KZT+r/PAzg2wCucvKwTpAr1/B33z6E6y8Yw3W717/ZZD92jSYxtVRyxDFXFqs+YQ7UWJLuGVHKiFgycfnW+aLGkvKoeG/G2VhgZ7YE0Kb2E+GgsUl/G4vFVCpMYx+APUS0i4giAG4BcEZ3FxFdBeAfoInKbNvjQ0QU1b8eBfBaAC+6dnJJfO67R7BUrOF3N0C0AmgFfGbNtsavzOUqiIQClifWeyEiFjc6w5aLVcutxoKBeBi5ct1SIbkbuXId6WgIQZO1n5Skvferzsbmivd2J+/7bY8UxG0Ii0qFAWDmOoCPAHgIwEsA7mXmF4jodiISXV5/CSAF4Ktr2oovBrCfiJ4B8C0An2TmdSUss7kyPvvYEbz10k3nbCfYWkTLsZ/NKGeyZYyn5U7dC0ZdtM5ftrHkSyA6t2RZqQBajcVKp5qs9cSrEYuJ4r1eY7G6pM3IvntBIizWE6+/VJg30zMdYOYHATy45rE/bvv6xi7vexzAZc6ezln+6qEDqNQb+L2bLvL6KK4hhMXPnWGzuYpjdjqZWBihADleY2k0Gdmy/RrLQJt1vlVrmLXkLOxiAbTZjHCQJEQsxi3zBYlICHXd+t5KRFCoNAwPLSZsuClrAubdtllfRCwbmeemVvDVH0zhl167q3Wz3QikY2GMpaO+LuCLiMUJAgHCcDKC+ZyzEUuuXAOzdTsXgRN+YdmSeWdjQOsqTEVDtov3ZvbdC5I20lMAUKr133cviNtoNy5V+68/dhIlLB7CzPhvX3sBw4kIPnLDuTu30g2tM2xjRiyA5nLs9JCkXTsXgRNbJLVUmLVzpSRY51sq3tt0ODay7751LTs1llrDs7XEgBIWT/nXp09i/7El/M5bLjTdcnkusNvHwlKqNpAr1zHmUMQCaNP3iw6nwpZt7mIRiLXGMjvD8hVrEQsApKJh2zUWK8X7VGs9sXVzSKMWMqorTGGahXwFt3/tRVy9YxDv2ru9/xvOQXaNJjGfrzqymdAuszmt1djJiGUkGcWi4xGL9vMHbPiEae+XnwqzsuRLkI6GkK/YO0vegrC01hNbtHUpmCjet1JhJq8l1h+rVNgG5PZ/exH5Sh2ffMflptstzxX8XMCf0e1cnKqxAO6kwlYkRSwt63xJwsLMyHmcCludgjfTFWYvFaa1Gxu7XiQYQDBApiMW4fqsUmEbjG++PIP7nz6FX/vp83HBxLlni28UYUZ51IfC4k7EEkGuXEe17pxf2KqzsT1hSUSCCAVI2nriSr2JWoNtpMIkFO+rdcTCAYSCxm+DrYjFosNxsWrcTZlI2/9iVli83h4JKGFxnblcBb9337O4cCKN//ccXOJlhm1DCRABx3w4JOlKxKLPsjiZDhPCYnfIk4ik+oW1LPNNpKHakVW8N1O4B1Y9vqy0ADeajHLNXIoqHgmanmMRr497tIsFUMLiKs0m47fufRq5ch1//d6rEA1594nCD8TCQWzKxHBswZ8RSyQYsJ1C6kXL1sXBAv5yqYp0NGTqU3k3MlKFRfs5VlNh6aj9LZJmLfOBtlSYpYK6XtMxccO3sve+pFJhG4vPPHYYjx2cxx//50s2dAqsncmRBI4t+i9imc1WMObQ1L1A2Lo4GbGsFGsYTMoRR80vTI51vtUlX4JUNIRKvWkrjWh2yRegTd4D1vber0YSZiKWkIVUmL6lUqXCzn2+fWAWf/71l/HWSzfhvdfu8Po4vmFyOOnLVNhsrowJB+zy2xlOupAKK9VsbY5sx5FUmI3iPWC9iA5YS4XFQkEQWYtYxHuSJixktIjF3O9oRcBko4TFBQ7O5PDr//gjXLgpg7/6hSsc/RS83pgcTWA+X5GyZlYmMw6tJG7HDYdjGQaUgkwsJK14L1qFzd7YBTIcjguVhqmbPKA5JiTCQUuCthpJOOumrFJhG4CZbBkfvGsfYpEgPnfrXtM53XOdyWGtM8xvLsezWecjlkwsjKDDfmHLpZo0d2Zti6QcYbG6PVIgYz2xlRoLoE3fW/PvMt+tFQ+bL96vi64wIvLvwgyfc3qljFvueBKL+So++/692DIY9/pIvmNyRDPK81MBv1xrIFuuY9zBVmNA+/Q7lIg4X2ORFbHoO1msOvu2Y3XJlyAV1d5nJ2KxkgrTrh2y1G4sohzHI5Z1kgpTeRsLnFwu4ZY7nsBcroIvfOhaXLF90Osj+ZIdQlh8VMCfdaHVWDCSjDiWCmNmqTWWTCyMWkNrmbWL6Aozm4oSrO5ksR5BWY5YIkHL64LF+41ipXgvUmFmBEw2Rq4sb7PPBuFHx5fwX77wA1RqDdz1wWvx6skhr4/kWzKxMIaTEV8V8GdyYte9sxELIPzCnBGWfEVbzCUvYtFuF9lyzfan4XxZszax2gZtdydLs2l+371AW09so3hv4oavpcLM/Y5CiNZFjYWI/iepqnNPmk3GHd95Be/6hyeQiATxzx/+SSUqBpgcSfgqFSYiFqdrLIDWGeaUsMgajhSItJWMOosdnzCgbe+9VWsV/VO9mSVfgkTUasRSb73f8LUiQRRr5haLlap1EAGxsHcldDNXzgF4gIiSAEBEbyGi78k6CBHdREQHiOgQEX20w/NRIrpHf/77RLSz7bmP6Y8fIKK3yDqTGX5wbBE/93ffw39/8GXccNE47v+112KPmlUxxORwwlcRi7BzcborDNBTYQ4Li6zFXGIplwyH41zFuk8Y0NYVZjFiseJsLEhGrE39FyylwoJg1ixwjCIs872MAwz/W2XmPyKi9wL4NhFVAeQBnCUAViCiIIC/BfAmAFMA9hHRA2tWDH8IwBIzn09EtwD4cwDvJqJLANwC4FUAtgB4hIguYGbHmw5WijU8+vIM7t53Ak8dWcREJopPv/tK3HzlFtVSbILJkSTuf+YUKvWGL9wIZrIVhIOEIQen7gXDyShWSjXUGk2EJUzHt7Nc0gRLViqsfYukXXJla4VzQSKizZNYjVis7GIRiPXEZilW9EjCxN/xdut8oxsri1Vvd7EAJoSFiN4I4L8AKADYDOCDzHxA0jmuBXCImQ/r17obwM0A2oXlZgAf17++D8Df6Km5mwHczcwVAEeI6JD+856QdLYW8/kK/uT+F5At13ByqYQjCwUwA1sH4/ijn7kY77l2h2ontsDkSALMwNRSCeeNpbw+DmZzZYynY658OBB+YUuFqvSajiwDSoFY9iUlYrGZChNbJK3WWFoRi4UCdyISsjjHot3wAybczFeFpd4aqO2H19sjAXM77/8QwP/HzN8lossA3ENEv8XM35Rwjq0ATrR9PwXgum6vYeY6Ea0AGNEff3LNe7euvQAR3QbgNgDYscPa5HuACC+fzmIgHsaeiRRuvnIrrr9gFFdsGzT1l0VxJqLl+PhC0R/Ckq1g3IX6CtDuF+aAsOi1kAGJ7caAHOv8XLmGrTbb77WdLPYiFkupMD1iYWZTHz4KVeP77gXCSNLMLIvXS74Ac6mwG9q+fo6I3grgnwD8pBMHkw0z3wHgDgDYu3evpU634WQEj/72G2QeSwEtFQYAR31SwJ/NlVu7YpxmxEFbl5XWki85wiIiDD8U7wHd4dhyxCKK99YilnqTUW00TaVui9W66fbqRNj8Fkmv1xIDNuZYmHkawBslneMkgPY1itv0xzq+hohCAAYALBh8r8LHjCQjSEaCvingz2Sd3XXfzkhqNWKRzXKxhkQkKK1uFQ0FEQsHpBhRWh1ObCdlI2JZLd6b/3cjFoMVTbYcW6l9WFlP7IdUmBFh+RIR/QERTa59gplLks6xD8AeItpFRBFoxfgH1rzmAQC36l+/E8A3WevBewDALXrX2C4AewA8JelcChcgIkyOJH3RclyuNbBSqrkmLMNJLeW2kJdv66INR8ptQMjE7Nu61BtNFKsNW11hAJCKhZHzpHhvrdVZi1jMpsL09cQmjCiLtbqnw5GAgVQYM7+fiDZB68DaAeA5AF9lZml3Ab1m8hEADwEIAriTmV8gotsB7GfmBwB8DsAX9eL8IjTxgf66e6EV+usAfs2NjjCFXCZHEjgwk/P6GK5O3QNaYT1AzqTClos1DEhqNRYIWxc7iBuy3VRYOhrCySVrUa6tduOoWPZlPmIxK2SJiPlrldZLVxgznwbwPwGAiC4C8BtEFAfwbWZ+RMZBmPlBAA+ueeyP274uA/iFLu/9MwB/JuMcCm/YMZLAIy/NoNFkBD1shJhxYSVxO8IvzIlU2EqpKj1i0Ywo7aXC7O5iEdhNhRFZM2oU7zEdsVQapj+wnMupsLWcAjAD4PUA/oSI1kXxXuFvdo4kUWswpldkZVetMZN1V1gA3dbFAb+wZYkGlIJMLGQ7YpEmLDaK9/lKA8lIyFJL+WrEYu7aBRP77gWtVJiZrrCa911hpoSFiN4M4LsANgH4ADO/npkfd+Rkig3F5PBqy7GXuJ0KA5yzdVkuOSAsEpZ92V1LLEhFQyhUG2g0zTd5agaU1m6+QhzM+oVZiSQ2SsSyH5qgfIKZjzhxIMXGZHJUtBx7KywzLuy6X8tIMip9JwszY6VYw4AkZ2OBjOK9rIhFvL9gwbcrb6GQLmitJ7YSsVjYWAnAsBFlo8mo1Jvro8YiYOZFaIVzhUIqmzIxRIIBHFv0tjNMDEe6ackz7IBfWKnWQLXRdCBiCSFbrpseDmzHTkdWO+1+YWb3uhRstDsLcTAzfd9oausGzN7wAwFCPGzcQmbVMn99RSwKhSMEA4Ttw3Ecm/c4YsmWXa2vAJqwLBdrqDfs7zkRyLZzEWRiYTSabMkrSyAtFWbD4bhQMV/vELRSYSaHFgFrczPa3nuDwtJa8uVtu7ESFoVvmBxJer7wa8aFlcRrEUOSS0U5a3+Bdmdj+TUWwJ5fmN21xAI7O1nyFWu7WADNjj5A5iKWooXtkYJ4xPh64pIPdrEASlgUPmLHcALHFwpSVt9aZTZbccUuv50RfUhSZgF/uWXnIr/GAthzOM6V64gEA4bderthZyeLlgqzdn0iMr3sy84eejPriYs1IWBKWBQKAMDOkQQK1QbmHVrV249itY5cpe6aAaVguGVEKa+AL6KfoaT8ORbAXsSSr9RaaSw7tPbeW4hYrK4lFiSiQVMRi2gwsBaxhFqLyfrhh333gBIWhY8QZpTHPSrgtzZHuh2xCL8wiYIqdrEMSZ+8t29EKcOAErC3996uV1kyGjLVjWYrYgkHW6m0fqhUmEKxBmGff9SjAr4Xw5HAasQiNxUmdy2xQKTC7MyySBMWizWWeqOJSr1pK2JJmtzJIoTFavHecCrMhoDJRAmLwjdsG0ogQPCsgD+Tc2/XfTtDiQiI5DocLxWqiIeDtusYa2kV720JSw3pqH3BS1k0gxS1EVvCEg2a6gqzU7xPREPGu8JUu7FCcSaRUACbB+I47pHL8awescheuNWPYIAwGA9jUXKNxYnVyq2dLDas83PlupQaSzBASESCpmssOT11ZrV4D1iPWCynwgym3UQqTPYHCrMoYVH4ip2jCc+m72eyZcTCgdYKXjcZSUWld4UNSq6vAEA4GEAiEvRFjQWwZkQpJ2IJmZrlKdoq3gcN736xcx2ZKGFR+Aov97LM6K3Gbk7dC4aTEcnF+5r0jjBBJmbPOj9XrpmelO9GKhYyvZNFxuR/0nRXmM1241rDUBt+qda0fB2ZKGFR+IrJ4QSWijUpe9XNMptzfzhSMCLZ1mWpWMWg5BkWQSYesjzHwszIV+RFLOmoeYfjggxhsZgKs9KtlYyG0NBXIfejVNXWAURD3t7albAofEWr5diDdJjmE+ZufUUg2+HYCct8wYCNZV/FagNNtu8TJkjFrKTCrC/5EiSi2mxJ06CzcrFSRyISRMDCriEhRkam78X6Yy+i7nY8FxYiGiaih4nooP7PoQ6vuZKIniCiF4joWSJ6d9tznyeiI0T0tP7nSnd/A4VMdo7qLccepMNmsmXXZ1gEI8kIlopVSxbwa2k2GcvFqvQZFkEmZt06f9XZWFIqzELEIiUVFgmCGYa7tezsSDFjnV/ywS4WwAfCAuCjAB5l5j0AHtW/X0sRwPuZ+VUAbgLwaSIabHv+d5n5Sv3P084fWeEUO/S9LG7XWfKVOgrVhnepsFQUzKtWLHbIVeposnyfMIGd9cSrBpSyivdh0xGLnBqLOct+LWKxdr14xLhNvx92sQD+EJabAdylf30XgLevfQEz/5iZD+pfnwIwC2DMtRMqXCMRCWEiE8Uxl1NhXg1HCmQOSQpxcqIrDNC3SFqssYhCu4x2Y0ATqJxJkZORChODjkb9wgpV65FE0sTee5EK8xo/CMsEM0/rX58GMNHrxUR0LYAIgFfaHv4zPUX2KSLq+JGTiG4jov1EtH9ubk7KwRXOoHWGeSMsbvuECUZafmH2haXlE+ZgxJIr1wzXF9oRqTBZLd2i3diMcWmuUkckFEDERoF7dYuk8fkSt1JhXlvmAy4JCxE9QkTPd/hzc/vrWPvb0fVvCBFtBvBFAL/EzKJF4mMALgJwDYBhAL/f6b3MfAcz72XmvWNjKtjxM5PDCddrLKsriT2KWCT6hS05HrGE0WRrmxtl7WIRpGIhNE3UOgDNtDJts3nA7LIvK9sjBWb23peqDSQ2SsTCzDcy86Ud/twPYEYXDCEcs51+BhFlAPw7gD9k5ifbfvY0a1QA/B8A1zr/GymcZOdoErO5iunVr3aYzYlUmDcRy2oqzP70vUiFORexWJ++l7WWWNC+RdIodp2NgVVhMbzZ0UaKKhExXs8p1uqqxqLzAIBb9a9vBXD/2hcQUQTAvwD4AjPft+Y5IUoErT7zvKOnVTiOMKN0Mx02k60gEQlKa4M1i+jgkpEKW13y5UzEMmDDL0wIgKx/z0KgzAxJ2nU2BrSuMPGzjGAnYjGTCiuq4n2LTwJ4ExEdBHCj/j2IaC8RfVZ/zbsAXA/gAx3air9MRM8BeA7AKIBPuHt8hWx26rMsbnaGiZXEXvX/h4MBDCbCUor3S8UaiOQ7GwtWl32ZF5ZcWTub1bXAa7ESseQr9r3KViMWo11h9mssRlJhZZ+kwjyv8jDzAoA3dnh8P4Bf1r/+EoAvdXn/DY4eUOE6OzyIWLTNkd6kwQTDkqbvl4tVZGJhBC0M4xlBOBxbmWXJlrVowcqgYCesOBznK3XbtbTV4r1xO3vrwmKiK6ymIhaFoiOZWBgjyYirZpQzubJnU/eCkWQEC3n7NRannI0FrYjFYo1Flk8YsNq2bGYnS75sPxWWaLUb979uo8n64KK1a8bCARBpdi39UKkwhaIHO0YSrqXCmBnTK2VsHvBWWGTZuiwXqxhwqL4C2Nsima/UpNaxxF4XcxFLw3bxPhzU2pWN7GSxuyOFiJAI99//0mgyqvUmEmHPE1FKWBT+ZKeLsyyLhSqq9aYPhEWOdf6ywxGLEAYr0/cyLfOBtvXEJs6Sr9SknCEZMeZw3FryZUPM4pH+Nv1+WfIFKGFR+JTJkQROrZRQNjGfYJXpFa3VePNA3PFr9ULzC7M2eNjOkoM+YQAQCgaQilqbvpctLGIC3mjEUm80Ua41pTQPGN17v2ohY/2Gn4gE+6bCRCNBTAmLQtGZnSNJMANTS85HLaeWSwDgecQykoqg0WTbKwOcdDYWZGIhixFLDSmJNZZoKIhIKGC43VgU22VYyhi1zm8tFrMhZkb23per+i4WH3SFKWFR+BIxy3J03nlhOa3buWwe9DoVZn+WpVpvIl+pOxqxALoRpcWusIG43BqAmZ0s+ar96EGQjPa/2QNyTC+NCIuInpISfje7KGFR+JLWLMuiGxFLGeEgYTTpbbvxiH59O51hItpxPGKx4HDMrEVjsudrzOxkWR3QtH+GpMG1yFL2v0RCfWdm/LKWGFDCovApg4kw0rGQK51h0yslbBqISZutsIoMh2OnnY0F2k4Wkwu2qg00miy13Rgwt5MlX9HEUFYqzMgu+tVIwk7xvn/EkhcpN4/cI9pRwqLwJUSEnSNJV2ZZppfL2JzxtnAPaDUWwF4qzGlnY4G2nthcxCKiKekRS9T43ntx85WRCktEg6aK93aaFhKRYF+jzWJFpcIUir5MujTLMp0teV5fAVb9wuxELEstA0pnI5aBuPktklmHhCUdMxGxyEyFGS7ey0qF9aux2G8SkIUSFoVv2TmSxNRSCbVGs/+LLdJsMk6vlD1vNQaASCiATCxkS1hWis7cvNcyGI8gX6mb+m/jZMRi2AxS4qd6rd3YSPFeny+x0a2ViARbEUk3VmssKmJRKLoyOZJAo8k4uVRy7BrzhQpqDcYWH0QsgLaieN5G8b4VsSSdjVhEc4CZdJgQloyHxQtJ18QAAB9uSURBVHuRMktLiViCqNabfcW1UKkjGQnaquElIkEUa42eC83yEiIjWShhUfiWnaPOd4ad1ocjN3nsEyawa+uyVKwhHKSWrbtTCGERNR0jOBexhE2nwmRFLAD6FvBl7H+JR4JgBir17iJWrDQQDBCiNjZjysL7EygUXZgcFi7HztVZTi1rwrJl0PtUGGBfWBYLFQwnI47b/4uus5WS8bNmHYpY0rEQqo0mKnVjHVqxcAChoP1bX2vqv08BX87+l/4Ox4VqHYlI0LPVD+0oYVH4lrF0FPFw0NEhyekVf0zdC0ZsWucv5KuteRgnGdTFYdlExJItabtY7K4FXku65RfWP2rJSXA2FqxGLL2vKytiET+rG8VKwxeFe8AHwkJEw0T0MBEd1P851OV1jbYlXw+0Pb6LiL5PRIeI6B5926TiHICIMDmSwFEHI5bplTIioUBrhsRrRlIRLBWqPXPpvVgoVFtty04iUmFmhGWlVEMmFpY+L2RmJ0tBQvQgEDfxftctVBq2U2+tZV89Wo7z1XrLzt9rPBcWAB8F8Cgz7wHwqP59J0rMfKX+521tj/85gE8x8/kAlgB8yNnjKtxk91gSh+fyjv18YZfvh/QBoDkc15tsyeARABYKFYy4IJKDce0ayyaL9xnJdi7AqrAY2ckiY3ukwOjee5mpsN4RS11FLG3cDOAu/eu7oO2tN4S+5/4GAPdZeb/C/+weTeHEUgnVHkVLO0wvl3yTBgPQEoX5grXOsMV8FcMupMLSsRACtDrpbwQn7FyANut8AxFLvizv5pswuPfezr57gXh/r42Vhar9yEgWfhCWCWae1r8+DWCiy+tiRLSfiJ4kIiEeIwCWmVn8l50CsLXTm4noNv39++fm5qQdXuEsu8eSaDQZxx3qDJteKWOLD2ZYBHZsXcq1BgrVhiupsECAMBAPm6uxlOuOCEtr2ZfRiEVSKizVilicr7EYSfcVq/6JWFw5BRE9AmBTh6f+sP0bZmYi6pZcnmTmk0S0G8A3ieg5ACtGz8DMdwC4AwD27t1rb+GFwjV2j6UAAIfn8jh/PCX1ZzeajJls2RdT94KWw3HevLCIor8bqTBA6wwzmwqbyMj9bwiYi1iy5Rou3JSWct3V9cTOp8LSBn7HQqWBxOgGEhZmvrHbc0Q0Q0SbmXmaiDYDmO3yM07q/zxMRN8GcBWAfwIwSEQhPWrZBuCk9F9A4Rm7x7RZlsPz8gv48/kK6k3GJh9FLCLasBKxCFfkkZQ7Ls1axOKDVJiosRgRFolnMFL3kLVYTEQ8vTZlikFMP+CHVNgDAG7Vv74VwP1rX0BEQ0QU1b8eBfBaAC+y1jrzLQDv7PV+xfolEwtjNBV1pIA/pU/0b/VhxLJoocYiIha3OtwGE+b8wkRXmGyMths3m4xcpY6MpOK9NjPSW1haS75s1j7E+3tZyBSrDV9Y5gP+EJZPAngTER0EcKP+PYhoLxF9Vn/NxQD2E9Ez0ITkk8z8ov7c7wP4LSI6BK3m8jlXT69wHK0zTH7EIrZTbh9KSP/ZVomGgkhHQ5i3kApb1N8z6kKNBdBmWZYMRizlWgPVelP6cCQAREMBhALUssTvRq5SB7O8AU0i0lY09xC01cVi9m74rU2ZXa7FzChU61Jcm2Xgubwx8wKAN3Z4fD+AX9a/fhzAZV3efxjAtU6eUeEt540l8dALM9J/rohYtvlIWABgOGVt+n5Bj3Lci1gihov3TjkbA/oN3oDDsROT/5lYuGebswxnY0E6GuoqnuVaE8xAwgc+YYA/IhaFoie7R1NYLFRN5fONcGKxiNFUpDXV7Be06XtrqbBIKCCt66kfgwntplo34HDslE+YwMhOlpYJpsR0XDoW6rlJU8ZaYkGyx0KzlgGlT/4uK2FR+J5duhnlK5LTYVNLJd9FKwAwno5hNmtBWPJVjLjgEyYQti69UkECp5yNBUa2SAoBkClumXi4p8OzzIhFWw/Qucbip7XEgBIWxTqg1RkmuYB/YqmI7cP+E5aJTBQz2bLp9y26ZOciEEaURuosTkcs6Vio7+T9aipM3s03Ewv3FFaZ+1+09QCdRUxWk4AslLAofM/24QRCAZLactxoMk4tl7BtyD+txoLxTAzZch3lPqto17KQr7gydS8YMOEX5rSwaDf43ucQNjlSI5ZYCLmeqTCxCllWjaWziImIxQ+7WAAlLIp1QDgYwI6RhNSIZSZbRq3BvuoIE4ynNXEwmw5bKFQx6qKZ5pAJ63yxt2Uo4YywDCT6uwA4kY5zMxVmpMaiUmEKhQl2j6ZwRGLEckK3iNk+7L+IZUJfOjaTM5cOW8hXXXVpNmOdv1SoIhggR+ZYAE3k+jV3ZMuabX9K4s03E9OaBprNzmYeMov3WiqsW41FpcIUCtOcN57E0fmioQ4kI5zwaasx0CYsJuospWoDpVoDw67WWDSRMNIavVCoYigh3zK/dZZ4GIVqo6dZadYB2/50LAzm7su+CpU6QpK2OvZqN25FRipiUSiMc8F4GtVGU9qa4qmlIojgm1337UxktFTYjIlU2Kwe3Yyn3ft9MrEwQgEyJCxis6VTDCaFjX/3szhh2y9+XrfGAWFAKaNTLxkNoVxrotbhw5WIWBKq3VihMI4wDvzx6ZyUn3disYRNmRiiIX/8j9jOQDyMSCjQEgsjCBESouQGgQBhOBkxZJi5VKi1ajJOINJyKz3Sck64K4vUXrc6S84BN+VOFjJ5ibUcGShhUawLzh9PgQg4MCNHWI4vFnzZagxok+Tj6aip4r1Im4k0mluMpKKGhjkXChVHW6GHWq3P3YXFCa8y0QjQTViypbq0ZoFeLs7Fah1BSSk3GfjjFApFH2LhIHaOJPFjScJyZL6A3frgpR+ZyMRM1Vhmc3rE4mIqDNB8yeYMRCyLBWcbC1ZXJXc/i0xnY4EwwOw2y5It16SZXqZ77GQpVBq6KaY/NqEqYVGsGy6YSOFlCamwbLmG+XwVO30sLONpc0OSs9kyoqGAI6t/ezGairbs+rvRaDKWSzUMO5kKMzBTo93knUmFdZtlyZZq0iKWVev8zhGLXwr3gBIWxTriwok0js4XTA8OruWo3ra8y8fCMpGJtaIQI8xkyxjPRF3/xDpioMayXKyC2VlzTOEC4H7xvk+NpVyXJmYiFdbJE61QabQWj/kBJSyKdcMFm9JoMvCKzUHJI+tAWMYzUeTK9b5rbwUz2YrraTBAq7GUao2e5xSWL8MOLiBLRoIIB6lrjaVSb6Bca3qTCpMkZukexXsnojE7KGFRrBsunNA7w2zWWY7MF0AE7PBp8R5YrZUYLeDP5MquF+6B1Y2XvaIW8ZyTqTAiwkC8u42/sHORbYIZDgYQDwc7psKaTUa+Ij9i6ZQKy5brLZHzA0pYFOuGnaNJhIOEA6ftRyxbBuKIhf2TOliLEInTBussc9kKxl1sNRaM6VHIXI86y6JLmy2HEt1XJTvhbCzIxEMt4WpH9mKxZI/ifa4sr5YjA8+FhYiGiehhIjqo/3Oow2t+moiebvtTJqK36899noiOtD13pfu/hcINwsEAzhtL2Y5Yjs4XWo7JfmWzPrh5arnU97WFSh25St3V4UiBkYhlUb/ZO+28PNjDLyzrwC4WQbqLAaa4pqxIQhTnOw1jZkvyIiMZeC4sAD4K4FFm3gPgUf37M2DmbzHzlcx8JYAbABQBfKPtJb8rnmfmp105tcITLphI44CNzjBmxuH5AnaO+FtYtg5qHmYnl/oLS6vV2IOIZUSPWHp1homVyYMOGVAKBhMRLHcpoju5DybTZdmXeEzWDT8YICQjwR41FpUKa+dmAHfpX98F4O19Xv9OAP+XmeV4eyjWFRduSuPkcqmnVXkvFgtV5Mp1XxfuAW1uZzQVba1P7oVXw5GA1hUGaF5g3VgoVJGOhhx3ORiMd0+Frdr2y7/5ZuKd1xOv1nXkXVMzojzzWuWa5pGmUmFnMsHM0/rXpwFM9Hn9LQC+suaxPyOiZ4noU0TU8WMbEd1GRPuJaP/c3JzNIyu8YrWAb63OIrZQ7vJ5KgwAtg7FcdJAKszLiCUWDiIVDWGuR2v0UrHqijlmr1TYki58TtjKpGOdrfNlRyyAVmdZ224sRG3DRSxE9AgRPd/hz83tr2NmBtDZf1r7OZsBXAbgobaHPwbgIgDXABgG8Pud3svMdzDzXmbeOzY2ZvdXUnjExVsyAIAXT61Yev+B01kAqwLlZ7YNGhQWPWIZ9yBiAbTp+14Ry2Kh6qhPmGAwEUGp1ug457RYqIJodd5FJloq7OyIxYnlZukOO1mEgKV9VGNxReKY+cZuzxHRDBFtZuZpXThme/yodwH4F2ZufTxoi3YqRPR/APyOlEMrfMmWgRhGkhE8d9KasLx8Ood0LITNA/5zNV7LtqE4Hn5pBs0m97R6n8mWEQsHWnMObjPSZ/p+sVDFJhdET9RwVkq1szr+FnRxCzpg2y+WfTHzGQOqrShJYjdcJh5uCZagFbG47LrQCz+kwh4AcKv+9a0A7u/x2vdgTRpMFyOQ9l/07QCed+CMCp9ARLh06wCenbIaseRw0aa0bzyVerF1KI5qvYn5PiaPp5bL2DIQ9+x36jd9v1ioSr25dmPViPLsszjpVZaJhVFvcsu6XrBUrCESDCAp0cp+MBE5S1ic7Hizih+E5ZMA3kREBwHcqH8PItpLRJ8VLyKinQC2A/iPNe//MhE9B+A5AKMAPuHCmRUectnWARyczZu2dmFmHJjJtSz4/Y7oDOtXwJ9aLmHrkHebMEdSUcx3iViaTcZcrtJat+wkvTZaLjgoLMPJzgvPlgpVDCbCUgV/MB4+SzhFxOKnVJjnwsLMC8z8Rmbew8w3MvOi/vh+Zv7lttcdZeatzNxc8/4bmPkyZr6Umd/HzPIWoyt8yWXbBtBoMl6czpp636mVMnLlOi7clHHoZHIR2y37tRyfXCq2RMgLxtJRLBarHRdQLRarqDfZlY614R4zNYuFaquDTfp1k9HWNdpZKsoXs6GElgprX4XcahJQqTCFwjqXbR0AADxvss4iCvcXrZeIRY9CehXwy7UG5vNVbPMwYtk8EAMzOppmnl4RrdDORywtF4AOC9KcTIWJn9tJWGQ3LQwmImDGGXMzIkJzwlXAKkpYFOuOzQMxjKYipusswnL/gnXQEQZoGwMH4uGeEYtIk3mZCtukN0KcXjn7nK2VyS5ELEOJCEIBOsteptFkLBWdi1i6zfJotSW5N3vRoNButrlYqCAWDiChbPMVCusQES7bOoBnTiybet+B0zlsGYj56pNdP7YOxjG11H0WWEQzWwe9M9QUHXbTK2dHCmJlshtdYYEAYTQVPWumxmnbfpGCW1ojLMtF+euYxc9rHwRdLDi768YKSlgU65K9O4dxcDZ/VvqhF89NreCSLeujviLYMZzAscXuwnJ8QRv43D7sZSpMu/bpDsIiHhtzoXgvrrM2JSe+H3PISy0dDSEcpDMilqYeJckWs04LzdwaQDWDEhbFuuTaXcMAgH1HFw29fqlQxeH5Aq6ePMvj1NfsHkvi+EKxY2EcAI7MFxELBzzZxSLIxEJIRIIdI5bZXBmjqQjCQXduNWPpsyMWYXmzacAZcSMiDCcjWGxrC8+V62iy/IHMTgvNFlwaQDWDEhbFuuTybQOIhALYd8SYsPzoxBIA4Ood601YUqg3GSe6RC1HFzRDzV4DlE5DRNg0EMN0hxrLqWV398SMdUiFCWFx0v15OBk9I3oWs0ey6zpDosZSaItYHGxMsIoSFsW6JBoK4srtg3jKYMTyw2PLCAYIl28bcPhkchFmmYd1j7O1HJ0v+MJQc+tgvGOTwYmloqsL1cYz2kxNo60d9/SK8FJzTlhGkhHMt7U5z6w4YwyaiYURoDM70JzseLOKEhbFuuW6XcN4/uRKx8VHa/nh8SVcvDntq84ZI5ynm2Uenj97PKveaOL4YhE7fSAsnWpBzSZjaqmE7a4KSwxNxhlRy+lsGSPJCCIh525345loy7MN0DZ6AvLbrAMB0utI2s+v1BvIV+qqeK9QyOLaXcNocv86S73RxNMnlvHqdZYGA7Sc+mgq2tHN+fhiEfUm+yJimRxJYLlYw0pbUXkuX0G1/v+3d//BUdd3HsefryTEhJAQE2gIv8FGBHQUQSri0drqHbWdoj2d6lnr9Dw9ncOr13Puete5uzrT6VzH02tnzrmbnnq1o61n0Q5a689qtdc7BbTyM4CAP8hPIhBDICFA3vfH97PJgkvIht397sL7McNk95vvfvf9hWHf+/n1/vQzJYdToRPreZJn0rV39WZ9uvPEseW07xtsKWWzlVRXVTYw2y7RJZaLkjnp8MTiCtaCaTWUjSri5cah6pbClvZ9HOg7UnAD9wmz6ytpTFFlILEuZ3YeVBKYWhMlt/f3DHbZJcaFctlimRKqFSSXwWnv6mVClhdo1leXcaTfBloS7V29VJ5RMrCdcCZ9orJsYNxod5bGck6WJxZXsMpLi1nSMJ6XGtuJdlxI7XfbPgQGZ5IVmjn1VbzT3v2xmWGbW7soEjTUjYkpskHTaqMP9Pd3D7YUPoghsaRqsTR39lCf5ZI3E8OU65bOwcRSl6UK2nVVg1OqE+83Ic+qdXticQXtijl1tH7Uy4bm49cNe3VrB7PqKgfWWxSa2fVV9B3pZ3vH0d1hjW37mDl+zMdKxMchkVje+3CwxfLuh/spLlJOy80cu/Pm3v19dB44xMwsdxdOGFgkGr1vW1dv1srY1FWVsWd/HwcPH6E5JNA4Ky+k4onFFbTPza6jSPDipraUv9/Xe4jV7+7l07MKd3O3cydFXV3rdh5dwmZTS1fe1D0bXVrClJryge45gMbWfcwcV5H1LYmPNfnM8oHEsiMkumyPQ008ZpFo20e9WVtblEhYu7oO0tzZQ2lJEeMqcr976FA8sbiCVlNRyoJpNTy7oS1ld9gLG9vpO9LP0nMnxBBdZpw1fgxnjh511NTqpr0HaO7sYX4ejRvNrR97VMXpzW1dnFOf+/GfGeMq2LYrat0lWlDZnjlXVV5CRWkxTXt76D54mNaPepmZpe2vExMR2rt6ae7sYVJ1eazrmFLxxOIK3lXzJvHOrm7e+uDjtcNWrm1hUnU586ZUxxBZZkhiwfQaViUtBk3MhMuncaM5E6t4b/d+ug8epqv3EE17e2JpUc2pr6Ktq5fd3QcHuuMSg/rZIomGuko2t3UNJLWGLBU7nVEbJaztHd007+2JdcuE4/HE4gresgsmMuaMEh763btHHd/e0c1rWzu4Zv7kgtgxcigXz6zlgz0HBr6B/9/23VSWlXBOHswIS5g7sQqzaDuD9aHy9JwYWixzQz24jS1dNLZ2Ma12dFbXsCTMmVjFppYutrZH3YENn8jOpIqpNaMZXVpMY+s+mjyxpCbpWkkbJfVLWjDEeUslbZG0TdK3ko7PkPRGOP7fkvJr3p3LuoozSvjaomk8s66VjS2D4xD3v7yN0uIivnrxtBijy4xEV97Ta1voPXSEZze0cfnsuqzs4T5SF82oYVSxeGXzLl7evIvS4qJYWlRzJ0bVFd7e2ckb7+5h0czanLzv7PoqunoP8+rWDkpLirJWcaCoSMyaUMlzG9rYvb8vLwurxp5YiPao/zLw2vFOkFQM3A98HpgDXC9pTvj194F/NbNPAnuBm7MbrstHty6ZSW1FKX/9+Fo6D/Tx3IY2nvx9M7csmZGzyrrZNKm6nIXTa3hs9U5+tuoD9vUe5up5k+IO6yhVZaO4eGYtv1zXynMb2rj4rNqsrOM4kbGjR3HOhErue3Er3QcPs/iT43LyvomW0jPrWjlv0lhKslh4c3bo7gO4tCE395eO2BOLmTWa2ZYTnLYQ2GZmO8ysD3gMWKaof+OzwIpw3sPAVdmL1uWr6tGl3PeVC9jRsZ9Pfe/X3PbIm1wwpZrllzXEHVrG3PVHs2ju7OHupzdx0fQzc/aBmY7rF06lubOH5s4e/mThlNji+Pri6QOPF5+Vm7+n8ydXDyxUvOmS6UOffJKuPLd+4HG2p1KPRKEUTpoE7Ex63gR8CqgFOs3scNLxlF/jJN0K3AowderU7EXqYvPps8ez4vZF/HxNE3VVZ3DTJdMpL41/jUemLJxRw49unM+Gli5uvHhaXnWDJVx5Xj3/cu35HDrSz9KkD79cu3reZHbv72Pp3AmMHZ2bjd2Ki8SK2y/h6bUtXJnlWYiXNozjidsvAcjL8UMNtWI5Y28ivQSk+pv+tpmtDOf8BrjLzNakeP01wFIz+7Pw/EaixPId4PXQDYakKcCzZnbuUPEsWLDA1qz52Ns455wbgqQ3zey4Y+EJOWmxmNnlJ3mJZiC5XT05HNsNVEsqCa2WxHHnnHMxiX2MZZhWAw1hBlgpcB3wlEXNrVeAa8J5NwErY4rROecceZBYJF0tqQlYBDwj6flwfKKkXwGE1shy4HmgEXjczDaGS/wt8E1J24jGXB7M9T0455wblJMxlnzjYyzOOZe+4Y6xxN5icc45d2rxxOKccy6jPLE455zLKE8szjnnMuq0HLyX1AG8fxKXGAd8mKFw4lDo8UPh34PHH79Cv4c44p9mZifcNe+0TCwnS9Ka4cyMyFeFHj8U/j14/PEr9HvI5/i9K8w551xGeWJxzjmXUZ5YRuZHcQdwkgo9fij8e/D441fo95C38fsYi3POuYzyFotzzrmM8sTinHMuozyxpEHSUklbJG2T9K2440mXpIck7ZK0Ie5YRkLSFEmvSNokaaOkb8QdU7oklUlaJWltuIe7445pJCQVS/q9pF/GHUu6JL0nab2ktyUVZDVaSdWSVkjaLKlR0qK4Y0rmYyzDJKkY2ApcQbQF8mrgejPbFGtgaZC0BOgGfnKiXTbzkaR6oN7M3pJUCbwJXFVg/wYCKsysW9Io4H+Ab5jZ6zGHlhZJ3wQWAFVm9sW440mHpPeABWZWsIsjJT0M/NbMHgh7VI02s86440rwFsvwLQS2mdkOM+sDHgOWxRxTWszsNWBP3HGMlJm1mtlb4fE+or15JsUbVXos0h2ejgp/CurbnaTJwBeAB+KO5XQkaSywhLD3lJn15VNSAU8s6ZgE7Ex63kSBfaidSiRNB+YBb8QbSfpCN9LbwC7gRTMrtHv4AfA3QH/cgYyQAS9IelPSrXEHMwIzgA7gv0J35AOSKuIOKpknFldwJI0BngDuNLOuuONJl5kdMbMLgMnAQkkF0y0p6YvALjN7M+5YTsKlZnYh8HngL0IXcSEpAS4E/t3M5gH7gbwa8/XEMnzNwJSk55PDMZdDYVziCeBRM3sy7nhORui+eAVYGncsaVgMfCmMUzwGfFbSI/GGlB4zaw4/dwG/IOrmLiRNQFNSS3cFUaLJG55Yhm810CBpRhgsuw54KuaYTith4PtBoNHM7os7npGQNF5SdXhcTjQZZHO8UQ2fmf2dmU02s+lE/wdeNrOvxhzWsEmqCBM/CN1HfwgU1CxJM2sDdkqaFQ59DsirCSwlcQdQKMzssKTlwPNAMfCQmW2MOay0SPoZ8BlgnKQm4J/M7MF4o0rLYuBGYH0YowD4ezP7VYwxpaseeDjMMiwCHjezgpuyW8DqgF9E31EoAX5qZs/FG9KI3AE8Gr7k7gC+HnM8R/Hpxs455zLKu8Kcc85llCcW55xzGeWJxTnnXEZ5YnHOOZdRnlicc85llCcWd1qTZJLuTXp+l6TvZOjaP5Z0TSaulQuS/jfuGNypwROLO90dBL4saVzcgSSTlPM1ZmZ2Sa7f052aPLG4091hor3D/+rYXxzb4pDUHX5+RtKrklZK2iHpnyXdEPZZWS/prKTLXC5pjaStoc5WogjlPZJWS1on6c+TrvtbSU8Bm8Iq8WfC3i0bJH0lRYy3hOuslfSEpNHh+FmSXg/xfDcp9jGSfi3prfC7ZUnXSr6/3yTt9/FoqHrg3LB4YnEO7gduCOXIh+t84DZgNlE1gLPNbCFRKfk7ks6bTlSL6gvAf0gqA24GPjKzi4CLgFskzQjnX0i0P8vZRDXEWszs/LB/TqoV4k+a2UVmdj7RNgI3h+M/BH5oZucR1ZZK6AWuDkUYLwPuPU7SmAfcCcwBZhJVPXBuWDyxuNNeqJD8E+Av03jZ6rA/zEFgO/BCOL6eKJkkPG5m/Wb2DlHpjXOI6lN9LZSleQOoBRrC+avM7N2ka10h6fuS/sDMPkoRx7mhlbMeuAGYG44vAn4eHv806XwB35O0DniJaOuHuhTXXWVmTWbWD7x9zD05NyRPLM5FfkD0bT95X4vDhP8jkoqA0qTfHUx63J/0vJ+ja/AdWzPJiD7c7zCzC8KfGWaWSEz7B04020rUglkPfFfSP6aI+8fA8tAyuRsoO8F93gCMB+aH0v3tx3lN8v0dwesKujR4YnEOMLM9wOMMdiUBvAfMD4+/RLTbY7qulVQUxl1mAluICpneHrYAQNLZqTZqkjQROGBmjwD3kLo0eiXQGq51Q9Lx14E/Do+vSzo+lmg/lUOSLgOmjeCenBuSfwtxbtC9wPKk5/8JrJS0lmh8Y3/KVw3tA2AVUAXcZma9kh4g6lp6K4xvdABXpXjtecA9kvqBQ8DtKc75B6LutI7wszIcvxN4RNK3Q+yJbrRHgadD19kaCqhkvyscXt3YuVNQmB3WY2Ym6TrgejNbdqLXOZcJ3mJx7tQ0H/i30CLqBP405njcacRbLM455zLKB++dc85llCcW55xzGeWJxTnnXEZ5YnHOOZdRnlicc85l1P8DAeaXvjs3NJ4AAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, ax = plt.subplots()\n", "ax.plot(x, y)\n", "ax.set_title('Use like this')\n", "ax.set_xlabel(\"Numbers again\");\n", "ax.set_ylabel(\"$\\sqrt{x}$\");"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Plot multiple lines into one canvas\n", "* Call `ax.plot()` multiple times"]}, {"cell_type": "code", "execution_count": 59, "metadata": {"slideshow": {"slide_type": "-"}}, "outputs": [], "source": ["y2 = y/np.exp(y*1.5)"]}, {"cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEICAYAAABLdt/UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXd8XFeZ979niqZIGnXJKpZlW+41sWPHTieFNBIgEEqADSxtgV3KsrzAwr68LMsuS9llWcpm6aFtgECyEEgjjcRJ3Hu31XsfTS/n/ePekWV5+tw7M3Lu9/PRx5bmzj1nRqPffe7vPOd5hJQSAwMDA4OLB1OhJ2BgYGBgoC2GsBsYGBhcZBjCbmBgYHCRYQi7gYGBwUWGIewGBgYGFxmGsBsYGBhcZBjC/gpHCPE5IcRPkjx+WAhxrcZj/lAI8QUtz6kFQog2IYQUQlgKPRcDg1wwPsAXOUKI6VnfOoEAEFG/f1+q50sp1+gxr3QRQkhgmZTyVCHnYWAwnzAi9oscKWVZ7AvoAl4z62c/LfT8DAwMtMcQdgOAEiHEj4UQbtV62Rx7QAjRIYS4Qf3/FiHELiHElBBiUAjxtXgnE0JcK4ToEUJ8Wggxop7jnkSDCyHeI4Q4JYQYE0I8LIRoUn/+rHrIfiHEtBDiTXGee68Q4nkhxL8JISaEEGeEENvVn3cLIYaEEH8x6/jbhBB71dfQLYT4XJJ53aXOfa36/eVCiBfUcfbPtqjU8c6o7+HZRK9Xtb4eSPJ+rxJCPK2OcVgIcUeS+SUcUwjxLiHEUSHEuBDiUSHEolmPSSHE+4UQJ9VxvimEEOpj7UKIZ4QQk+rv7n9mPW+lEOJx9fd0XAhxd6K5GRQYKaXx9Qr5AjqAG+b87HOAH7gVMAP/DLwY7znADuDt6v/LgMsTjHMtEAa+BtiAawAPsEJ9/IfAF9T/vwoYAS5Vj/0G8Oysc0mgPclrulcd653q/L+AcmfyTfV8NwFuoGzW3NahBDXrgUHgtepjbep4FvV8p2JjA83AqPo+mYAb1e/rgFJgatbrawTWJJhvwvcbsKpjfhooUd8bd+y8c86TcEzgTvU8q9TX8hnghTnv6e+ASqAVGAZuVh/7OfD36mu0A1fOGq9bfV8swCXq7211oT/XxteFX0bEbgDwZynlI1LKCHA/sCHBcSGgXQhRK6WcllK+mOK8n5VSBqSUzwC/B+JFePcA35dS7pFSBoBPAduEEG0ZzP+slPIH6vz/B1gIfF4d+zEgCLQDSCmfllIelFJGpZQHUITsmjnn+wjwd8C18py3/zbgEfV9ikopHwd2oQg0QBRYK4RwSCn7pZSHk8w30ft9OcoF81+klEEp5Z9QBPgtCc6TaMz3A/8spTwqpQwDXwQ2zo7a1TEmpJRdwFPARvXnIWAR0CSl9Esp/6z+/HagQ32fw1LKvcCvgTcmeZ0GBcIQdgOAgVn/9wL2BJkhfwksB44JIXYKIW5Pcs5xKaVn1vedQFOc45rUxwCQUk6jRMLN6U4eJeqO4VPPM/dnZQBCiK1CiKeEEMNCiEkUEaydc76/A74ppeyZ9bNFwBtV62JCCDEBXAk0qq/zTeq5+oUQvxdCrEwy30TvdxPQLaWMznq8kzjvRYoxFwFfnzXPMUDMOc/cOZSp//+EeuzLqhX0rlnn3Drn9d8DLEjyOg0KhCHsBmkjpTwppXwLUA98CfiVEKI0weFVcx5rBfriHNeHIhoAqM+pAXq1mfUF/Ax4GFgopawAvoMiZLO5CfiMEOKuWT/rBu6XUlbO+iqVUv4LgJTyUSnljSiWyDHgv7OYWx+wUAgx+++ylQTvRZIxu4H3zZmrQ0r5QqoJSCkHpJTvkVI2oWRNfUsI0a6e85k55yyTUv5VFq/TQGcMYTdIGyHE24QQdWpEOaH+OJrkKf9PCFEihLgK5Vb+l3GO+TnwTiHERiGEDcU2eElK2aE+Pggs0eYVAFAOjEkp/UKILcBb4xxzGLgZ+OasxcufAK8RQrxaCGEWQtjVReIWIUSDEOJO9aIUAKZJ/r4k4iWU6PkTQgirujj7GuAXcw9MMeZ3gE8JIdaox1YIIdKyTIQQbxRCtKjfjqP48VEUS2i5EOLt6tysQojLhBCrsnidBjpjCLtBJtwMHBZKbvzXgTdLKX0Jjh1AEYY+4KfA+6WUx+YeJKV8Avgsil/bDywF3jzrkM8BP1Jv/7XIwvgA8HkhhBv4B+CBeAdJKfejXIz+Wwhxi5SyG2VR8tMoi43dKJaNSf36GMprHUPx7DOOZKWUQRQhvwVlYfJbwDvivW/JxpRS/gbljuoXQogp4JB6znS4DHhJ/R0/DHxYSnlGSulGuZN5szrmgDqGLdPXaaA/Qkqj0YaBtqiR5k+klC2pjjUwMNAeI2I3MDAwuMgwhN3AwMDgIsOwYgwMDAwuMoyI3cDAwOAioyDVHWtra2VbW1shhjYwMDCYt+zevXtESlmX6riCCHtbWxu7du0qxNAGBgYG8xYhRGfqowwrxsDAwOCiwxB2AwMDg4sMQ9gNDAwMLjIMYTcwMDC4yDCE3cDAwOAiQxNhF0J8XygtyA5pcT4DAwMDg+zRKmL/IUrlPwMDAwODAqNJHruU8tkMW5kZJMEXjHCgZ4ITQ9NM+UIALHDZ2bCwgqV1Zah9hw1m0TXq5bEjA9isZm5du4CasvlTTfbZE8OcHJrm1nULaKxwFHo6RKOSJ48N4Q2GuXVdI1Zzfh3bgUk/jx4e4JZ1C6gvt+s+Xt+Ej2dODHPb+kZcdqsuY0Sjkgf39rJpURWLaxP1ptEOzWrFqML+Oynl2gSPvxd4L0Bra+umzs608uxfMUgp+fOpEX68o5NnTwwTCMfv07Cw2sHbL1/EW7a0Uq7Th3C+8ZMXO/ncw4cJR5XPcrndwrfv2cSVy+Z2vCs+vvTHY3z76dMAlNksPPC+baxuchV0Tv/yh2N85xllTreta+Q/33pJ3oKJkekAt379OYbcARa47Dz+sat1/ZxPekNc99WnGfMEubK9lh+/awsmk/av9R8eOsSPd3RSbrfwmw9sp72+PKvzCCF2Syk3pzoub5diKeV9UsrNUsrNdXUpd8S+YpBS8viRQW75+nO8/Xsvs7drgrdsaeV7f7GZHZ96Fce/cDNHP38zT3zsGr74unU0Vzr44iPHuOFrz/DIwf5CT7/gPLSvl8/89hBXL6/j+U++ij9+5CqaKx385Y92crR/qtDTS8ozJ4b59tOnedPmhfzxI1dRZrPwoZ/vIRTJpvmSNhzqneQ7z5zmzZct5KM3LOf3B/t5/Mhg6idqxH8/e4aR6QCfe81qBt1+vqVe9PTivudOM+4N8vpLm/nzqRFeOD2q+RjjniC/eLmbzYuqaKyw4w/p//s1smIKSMeIh3f+cCfv+fEugpEo//qG9Tz/yev43B1ruH5VA40VDmwWM44SM+31Zbx1ayu/eO82HvzAdmrLbHzgp3v4vw8dKqgQFJKhKT+ffvAgW9qq+c7bNtFc6WDlAhf3/+VWKhxWPvKLfUX73kgp+edHjrK4tpT/d+caVi5w8Y+vXcuZYQ+/3NWT+gQ68f0/n8VZYuZTt67ig9ctpbnSwQ+e78jL2IFwhJ+91MVt65u494rF3LiqgV/t7iES1acCrZSS3+7t47oV9Xzxdesot1t4cI/27/3/HugjGIny+TvX8scPX83a5grNx5iLIewFQErJL17u4pavP8eujnE+c9sqHv3I1dy9eSE2iznl8y9treKhD17Bu69czI92dPKeH+/CH4rkYebFxb/84RihiORf37CeEsu5j3JduY3P37mW44NufvZSVwFnmJhnTgxzbMDNh65rx25Vfuc3rKpnXXMFP3zhLIUop+32h/jdgX7esKmFCocVi9nEPZe3suPMKJ2jHt3H33F6FHcgzOsuaQLgjo1NDLsDvHRG+yga4NiAm94JHzetbsBuNXPL2gU8fnRQ8wvJ86dGaK12srrJpYvNEw+t0h1/DuwAVggheoQQf6nFeS9G3P4QH/jpHj754EEuXVTJEx+7hndftSTjBSqL2cRnbl/NF1+3jqePD/Pe+3cTTODLX4zs7Rrnwb29vOfqxbTFWYx69ZoGtiyu5ltPnyrKi97/7OymurSE12xomvmZEIK3Xd7KicFp9nSN531OTx0fJhiJcsesOb1mvfL/fNgxjx0ZpLTEzPalytrI9SsbKDGbeObksC7jPXtCOe+rVtYDsG1pDW5/mOMDbs3GkFKyq2OczW1Vmp0zHTQRdinlW6SUjVJKq5SyRUr5PS3Oe7HRMeLh9d96gceODPKpW1Zy/7u2sqAit1X/t25t5Ut3rePZE8P8/W8OFiTSKwTffvo0lU4rH7i2Pe7jQgj++lXtDE4F+N2B4lqLmPAGeeLoIK/d2HzenQbAbeubKLGYCjLnRw8PUFtm49LWcyK0sNrJ8oYynjiqv7C/eGaUrUtqZu5gHCVmNiys4MUzY7qMt6drnEU1Tupdyt/glsU1ALx8Vrs7hLMjHkY9QS5rq9bsnOlgWDF54rmTw9z5zecZng5w/7u28L5rlmp2W/amy1r58PXL+OXuHr773FlNzlnMdI56ePzoIPdsbaXUljhj98r2WhbXlvLAzu48zi41Tx4dIhSR3LGx6YLHymwWrl5Wxx8PDeT1Ih2NSl44NcI1y+su+Fxet6Ke3Z3j+IL63fmMTAc4M+y5QAC3Lq7hUO8k04Gw5mPu657gkoWVM983VzpornSwu2tCszEO9k4CsHHWOPnAEPY88OCeHu79wU4WuOw8/MEr2d6ufRreR25Yxs1rFvClPx5jX7d2H8xi5IcvdGAxCd6xrS3pcUII7t68kJc7xjg9PJ2fyaXBY0cGWOCysz7BItpNqxvon/RzYjB/cz4+6GbcG2L70poLHtu6pJpQRLK3Wz97aFeHcu4ti8+3LC5bXE0kKjnQo+1nun/Sx+BU4ALBXd3k0jSb6sSgG4tJsLSuTLNzpoMh7Drzw+fP8rEH9rN1cTW//sB2WmucuowjhOBLd62nwWXnb36+F48OEU4x4A9F+NWuHm5b10iDK7WNddemZswmUTRReygS5c8nR7h+VX3CO7bt7Yq4vnB6JG/z2qGm+W2LI+ybFlUjBLx8Vh9LBOBg7wQWk7ggY2StmtN/uFfb1NVj/YqPPne8VY0uzgxPa7Yuc3zAzZK60gssN70xhF0npJT8x5Mn+dz/HuHG1Q18/97LKEtiG2hBhdPKv795I93jXr7y2HFdxyoUjx8ZxB0Ic/fmhWkdX19u57oV9fx2Xy9RndLmMuFAzwSeYIQrk9y1tVQ5aa126pJTnYj9PRM0Vthpqrxw52uFw8qKhnL2aGhRzOVYv5uldWUXZIXVlNloqrDPWBpacWpIuRtqrz8/kl61oJyoVCJtLTg+6GZ5Q3abkXLBEHYdiEYlX/j9Ub72+Alef2kz377n0pkFIb25rK2at21dxA9f6GBvATIr9OY3e3tprLBz+ZILI8tE3LpuAYNTAc3FIRteOKWIdar5b19aw0tnRnXL4Z7LwZ5J1iXJr17TVMGRvkndfP9jA25WNsYXwDXNFRzSQdhry0qodJac9/NVjcodQiyizwVvMEz3mI8VhrDPf8KRKJ/49QG+9+ez3Lu9ja+8YQOWPNfa+MTNK2got/PZhw4VRZSqFSPTAZ45McydG5szWnh+1cp6zCbBY0cGdJxderxwepTVjS6qSkuSHrdtaQ1T/jBH+vTfPTvpC3FmxMOGJAt8a5pcjEwHGXIHdBm/d8LHygXxSymsWlBOx6hH07TV08PTLInje7dUObCaBWc1yNvvHPUCsLhO/9owczGEXUMC4Qgf+tlefrW7hw9fv4z/+5rVeduQMJtyu5X/c8sKDvVO8fD+vryPrxePHOwnEpW87pLmjJ5X6Sxh6+JqHjucv63x8fCHIuzuGueK9tR3G9uW5M9nP6xGw8kjdtXr7tP+rieWN54oYl9aX0ZUnhPKXJFScmp4+gIbBpT9IQurnJpsyIqdo63GEPZ5iycQ5t0/2sUfDw/wD7ev5qM3Li9oFcY7NzSzttnFlx89XpQbdLLh0cMDLK0rZcWCzG9tb1rdwMmhac4UMDtmd+c4wXB0ZgNOMupddtpqnHnZqHQgDWFfrdMiJsDxAeWcqxJE7LGMEq0ym8Y8QSa8oYSZKotqnHSM5H4R6VAvRIt0SphIhiHsGjDhDfK2773E86dG+PIb1vOuKxcXekqYTIJP37qK3glf3mp96MmkL8RLZ8a4cfWCrJ5//aoGQNldWSh2dowhBGnvQlzfUsmBHv3XBQ70TLCw2pHUHiq3W1lU4+SwDtbQ0QE3FQ4rDa74pZaXqFbG6SFthD3RwmmMRTWldI56cl5P6BjxUFtWUpAqrIaw58jQlJ83/deLHO6d4lv3bOKNaWZr5IPtS2u5YVU933rqFJNqXff5ytPHhwhHJTeubsjq+QurnSyuLeX5U/lLIZzL3q4JlteXp/2Hvr6lgv5JP0Nuv67zOtAzyfqW1Bto1jS5ONyv/YXmWP8UKxeUJ7zDdZZYaK50aBaxnxpOLuyLa0vxBCMMT+e2ntAx6mFRAWwYMIQ9J7rHvLzxv3bQPe7l+/dexs1rs4sm9eRjN67AHQjz4xc6Cj2VnHjs8CC1ZbbzdgpmyhXtNbx4ZrQgNXWiUansdGxNf/6xxcwD3fpF7ZO+ED3jvhkPPRlrmiroHvNpGiRIKTk+4GZlCnttSV0pp4e1KUR2esiDw2qmMcE+iJh1kqun3zPuo6WqMI1TDGHPkmMDU9z17ReY8Ib4ybu3Fm1Th9VNLm5YVc/3nj87bzctBcIRnj4+xI2rE2/qSYcr2+vwBiMFSQM9O+ph0hfKSNjXNLkwCTTfdTmbU0PKwuXyNBo/rFZTAbUskjU8HcATjMTNUJnN0royTg9Pa5JuqWTElCb8LMUWOztGsr+QRKOSwSl/3H0B+cAQ9izY2THG3d/ZgRDwwPu2nVc0qRj54HXtTHhD/PSl+dm1asfpUTzBSNY2TIxtS2swCQpix+xTN/dcksFnxVliYXlDOft19NlPqmUL0tlEE7MutCzP0JXmAmN7fRneYISBqdxtqe5xb9LxmqscmE0ip4h9ZDpAKCJpyrHIX7YYwp4hTxwZ5G3ffYnaMhu//qvtWWVo5JtLWqu4alkt9z17dl5myDx+ZBDnrHKu2VLhsLK+pZLnCiDse7vHKbdZaM+wZsj6lgoO9EzotjHoxOA0dqspLcugqdKBzWLSbBETZmeOJPeiZzJjhnKzY6SU9I77aKlKLOxWs/J+5JLL3jvhAyhYD1tD2DPgV7t7eN9PdrNiQTm/fP+2pB+OYuOD17UzMh3g1zp0iNETKSVPHx/myvZaTXbvbltaw8GeSbzB/NpSe7sm2LCwMmMraX1LJePe0IxQaM3JITft9WVpzctsEiypK5tZfNSCzlEPZpOgOYVlsbReEf6YdZQtw9MBAuFoygtZm5oZky39k8qdhWHFFDFSSr7x5Ek+/sv9bFtSw8/eczk1ZfFTs4qVrYurWdvs4gfPd8yrmu1nRjz0Tvi4erk2fXK3tFUTVhcy84U/FOH4gJv1LZm3RFulbtrRYot7PE4OTqflr8dYWleqqRXTOeqludKRskhWXZkNZ4mZrrHcLnA948rzUwn7ohpnTlZMn3ohbqo0rJiixB+K8NH/2cdXHz/B6y5p5nv3bta9mJceCCF45/bFnBqa5rmThUv5y5RYl5url2kj7JcuqkII2Hk2fwuoJwbdhKMy6QagRMS87+MaFaWazaQvxMCUn2UZ1DJpry+jZ9ynmaXXOepJawOPEIKFVU66xnLLVOlVhb25MvmYzZUO3P4wU/7sMoD6Jvw4rGYqHPnPYQdD2JMy7A7w1v9+kd/u6+PvXr2Cr929Ia2epMXK7RsaqS2z8YPn508zjudOjtBW49Ss3HGsUuGuTv1K0M7lkLpbM5smxuV2KwurHZrWCI8RszWWJcjnjsfSujKkhDMapR52jCZfyJzNwmonPeO5pyCCskCajJiF0j+R3WJt/6SPxkp7wXafG8KegIM9k7z2m89zpH+Kb91zKR+8rr2gJQK0wGYx8/bLF/HU8eGiajyRiEA4wo7To5rZMDEua6tmT+c44Uh+8tkP9U3isluyzmle0eDimIYphjEyyYiJEcuM0cJnn/AGmfSF0q6lsrDaQdeYNycrsWfcS5XTmvKuOybsfVmubfRN+lOuG+iJIexzkFJy/4ud3PXtF5BS8sD7tnHrusZCT0sz7rm8lRKzift3FH/q4+7OcXyhCFdpZMPEuGxxNZ5ghKM6+dZzOdw7ydrmiqwDg1WN5Zwd0ba6IWSWERNjcW0pQmizvT/mYbdWpxmxVznxBiOMeYJZj9mTIiMmRkyUs1207p/w0VigVEeA+WcW64jbH+Izvz3EQ/v6uGZ5Hf/+po3Jy6tKCb5x8AxDyAvhAIR8EA2D2QrmEvXLChYHlDjBqn5ZbKDHHUDID4Ep8E9BYFL5vnwBVLaC2UptmY1b1i3gwT09/J+bV+IoKV5r6dkTI1hMQunqE/LD0GEIepT3r6oNnDWp30Mpwd0PY2dARqF+DZeptVp2doyxLosFzUwIRaIcHXBz7/Y25bPSfwCsDqhbAfYkY3vHYPg4OGtY2VBOJCo5NTSdlZ2TiJmMGM+gMlZlK1QuAlOceM83DkNHsde0s7DKqUnE3qFmnSwpC8LZ56B2mfJZnct4J0x2s7hcCbC6x31ZJy/0jHtZUV8KPbvBUgL1q8E0628gEoK+fdTZq7CYRFYRezAcZXg6wKLSCHS+ANVL4r8uHTGEXWXH6VE+/sv99E/6+Nsbl/PB69rPpYCFAzBwEPr2wsgJ5Wv0NLgHIJrl9mphAmvp+WIf+39J6fnfW9UII+SDsE/5N+iBgPuciPsnlf9HEkQzJWWw+Gq4/K94y5Y1PLSvj0cO9nPXppbs5p8Hnjs5zOZWF2U7vgo7/lN5fbMpKVMEvqoNKlqUi6XJooji9KAiCGNnlPcshjDTuOleFle+mp0dY7oXbDs1NE0wHOV238Pwla9CZFb9kYpWaFyvzN9iU+Y93gFDR2H6XO34axbfjI03c2zAra2wD07z0eod8O+vP/e5cVRB6zZlTiYzTHTDwAHlfQQwWbmn6m/57fCVOY/fNeplkzjO0p+9/9zvtnIRLLoCnNVKwNS1Aya6ALiyrIml4qN0jXmzag4tpaR/wsN94ovw3ZfU11sNS6+DioUwfAw6d0BgEjPwwdJ30zmR+d364JSfejnGvfs/Bi+pv8eaZdB2pfKebn2/chHTkVe8sHuDYb7y6Am+//xZFteW8sv3b2dTSzn0vASnnoAzT0P//nMffJtL+aUs2g7ljcqVuLROEWOLDSx2MFkVwY8ElQggHICwX4nqg14IedR/vYpAz/55yKf8gc89BlSRd6hfTrCVK1Fr9RJlXnaX+m+F8mVzKXNyD0DvLjj6O/jRa9i67NVsrHkbP3u5q2iFfdgd4GjfBI+1/ACefhJW3QHr3qj8wQemYfwsjJ2FiU4YPQVnnlHe72hYEafyBVC5EJZcCzVLlPdImODY7+Hl+/h62XHedfYjSCl1XTs51DvJLaaXWH/w67D8ZuWPOhyAoSNKsNC/H04/pVx8HFXKBWrpq6B+FdSthP79lD31BT5XEuZY/wrN5jXpC1HpPsEbQv8Gi6+EKz6sXAh7d0H3y8r7GQ2Dqwka1sAlb4P6NbDjP3l351f4RXgh0eiVOZV46Bxx83XbdxDOGrjruzByUhHyU09AcFr5fC/cAts+BGUNWH73ET5t+RnHxl6V1XijniCvjz7O0qmX4LrPKHcoZ55S3n/PENQuh9V3QPsNsOfH/PXpH/K+sRsyHqdvwsffWn6JPTQJr/svmB6Cjufg4K8UYV95myHseiGl5I+HBvjH3x2hb9LPX26p5xNLOrC99BH42VOKjSFM0LwZtr4PWrZA8yblg57vRVQpcx9z41vgpn+Cl+9D/OkL/NB2nBs7P8HxgXVFuXv2+VMjvMf8e9pHnlTmvf1D2px4ybVQuYj1j/09VwfX0jG6ncW1+lXgO9o7xmetP0U2bkTcfb9y+w+w4ubzD0z0O15+E3hHuPul+/h4z9uB1ZrM69TQNH9leZioxYn5DT9QLpgAm9+ZfE4Na+DrG3mHfJhB91057axs6HuCFgbhxvth+auVryS/ZzF6iuv/9I/s6zsCtGc8Xs+4jzvNz+OuXEn51R9XXtuGNykPzn2ttcuxfHsb68ceA27JaJz+8Ulebd6Jp/02XBverPzwir/R5u84TV6Ri6dH+6d4x/df5iM/fZFbzC+zZ+VP+ezRO7D99t1KxLDmTrj7x/CJs/Dux+GmLyhX8orm/Is6aDem1a58wN7xWypCQ/x3ydd44MXT2pxbY/YdPspHrb9Grrwdtn1Q25Nv+yD+2nX8jeU37D2rb3121+nf0SRGENf9/TlRj0ey3/H2vwEEGwd/o9m8OvuGuNG0G/+K154T9XTmVLmQ8YU3crN5J2dyXEBdNfU80+YKJYJNh/WKCNcO78hqvKH+bjaJk/jbb73wtV1wAVvNkHMZlwVfyrjvrOh8kQrhxbbutcnH0JFXlLCfGnLz4ftf5Kvf+Hfe3P15DpV+gM96/4Xq4Zdh41vh3t/Dx47CHd+A1XeCI/sSsUXNou2I136bjaZT1O/7etHVj5FSsuzMD7ESRtz0Be3/IISg5LqP02YaZOrIY9qeexaRqGTt5FNMWuth2Y3Zn6iimf7qLWyL7GRYo56j0dN/wikCOC+9O+PnWpZfT6MYY6TzUNbjewJh1kcOM1i16fzFy2RULmTU0kCre19WY0a7XsQkJM7Vr07r+KnqdawUnQxNZbaAah05DIBtyRUZz1ErLnphj0Ylzx3r49++/S32fuOt/OOp1/Hdkq9yi/0w1g1vhHc8BB87Brd99dzixiuBNa9lePFruVc+zFM7Xi70bM7jRO8wt0eepLfp1VCtz+KmacUteEQpzT1/0OX8AB39I1zBfoaab8j54hRqu5blpl7Onj6uydxKh/YQxIK5dUvGz61Yo1ykrJ3PZj1+b+dpWk3D+Jsuz+h5A5WXsjZ8mHA482DEPKIogvDzAAAgAElEQVS8d6XNa9M6PtqwlmoxzXBfR0bjlE6dYUJUJL4TygOaCLsQ4mYhxHEhxCkhxCe1OGeunO7q5ZFffJs/fvENrP75Fj46+CnuKNmNbe1r4J5fY/q7k3DHfyieq/mVudRQ+9ovEhVmnC98udBTOY+eHQ9SIbyUXn6vfoNYbHTWv4qtwReZ8urToWjw8NM4RBDbqptTH5yCynU3AeA78aeczwXQOH2YPlu7srieIaKqjUnhwjl+LOvx3Wd3AWBvy+zCEqxbS52YZHCwP+Mxy9xnGDLVgS29nbaOlg0AeLv3ZzROta+ToZLWjOenJTkrmhDCDHwTuBHoAXYKIR6WUh7J9dyZMDzUR8e+Z/GefZHKoZdZHT7GUhFhWpQx3nINru1vwbb8RsVnNgBAVDRzovn1bO95gM4zx1m0RLusi1woO/sIY6KSmrU52BdpYG5/Fa7B/2X3gR1suvw6zc8f7NwJQOPaq3M+V9WiDfgpwTSYvf0Rwx8IsDxyimMNr6Uty3MM2duo9mZfmiIwdAqA+sVrMnqevb4djsJo93GamzPL6Kr1nWXI1kZ9msdXLt4IgBw6mtE4zZFuTldek9FztEaLUHULcEpKeQZACPEL4E5Ac2E/9NxDypU+OI0IejD7xyj39lAX7qOOSeqAiBR0lSzl2JJ7ad5yJ9XLr6DsFRqRp0PzzR/D/N1f0P3kf7FoydcKPR38gQArPbs4U3st1TrbYi2X3ADPg/vY06CDsLtG99FtbmFhqQaNWExmeq1tuKZO5Hyqvo4TLBEBREN6lkQ8vK6lLBp4jEAojM2a+d+XaeIMk5RRUZWuzCpUtijBh2fgJHB92s+T0QgtkR72u9K/QyivrGUaB3Iq/bsDz+Qo1UxxrGJJ2s/RAy0UrxnonvV9D7B17kFCiPcC7wVobc3uNsWz/7dsG3mQqBR4sTMtyhgtaeRM1VWcqmmnevk22tZtZ7Ejdf9GA4Xahcs55NxEe+9DhENfwmItTDW6GCd2P8V64cGyMr0FrlworW2l19RI2YD2awxSShb5j9FRtR2t2ptPuFawZORpopEoJnP2Lupw11GWABUtK7OfTN1KKgd/w9neLha3ZS5ipe5OBi1NZLrdqm7hcgAio2cyet74yADVIqhsgMrkeaZqrN7BtI8f6e+kFLBWFbapfd5CWSnlfcB9AJs3b86qis+6e/8dn/gP7I5SykwmyoDiax89/4isfysLXvoYu154lM3X3F7QuYwdeRqAJZtz96XTGs+1mgXjB4hEJeYcNtvMpa+vh2Ym6ajPzGpIhmxYQ9Xo/9Lb00HzouwjQt/ASQAal2Q/t7Lm1XAIRjoOZyXsNaFe+svXZ/w8i72UYVGNZTKzWkfD/V1UA47qpoyeN11Sh9OffkrsxHAfi4Cy6sIqkxaLp71wXlDSov5Mc5xlFThKyxHxalkYZM3qa95AACsTux8s9FRwDu6ix7yQ0qrc+pumi6lxPS1imJOd2naW6j55AIDKRdoJu6tF2ZzU15Gjyzl2Gi92HFWZidxs6luWAjA5lHkxOb/fT0N0mFBFZtFzjDFrE2W+zCRmYkgxFVx1mfnyQUc9FZH0+xd4xvoAqKpvzmgcrdFCIXcCy4QQi4UQJcCbgYc1OK9BnrA6K+iq3MrKyWcY1qBZcLaMun0sDx5hsu7SvI1Zv2wzAJ1HtbVjJruVXOaW9g2anbOpTbEhJvpz21TmnO5i2JrbDuryOiWWC4xmfkHs7+/GLCT2quzEL+ioxRnKrFGKVxXc2gWZ2cDRsgXUyXGm02y44Z8cAqC6vrClOnIWdillGPgQ8ChwFHhASnk41/Ma5JeK9bfRIkZ48vkXCjaHvfv3Uik8lLdvy9uYte2bAPB0ZrfpJRGR4ZMEsWKrbdPsnGV1Sk5/cLgj63NEo5LqYD/e0hw9YLsLn3CAuy/jpw73xaLn7IRdlNZRKSeYDqTftzY8oSyAltdmNqalogmbCDGQZnplxD1EBBMl5TUZjaM1mngaUspHpJTLpZRLpZT/pMU5DfJL/UalHsbQvj8UrCdq3zElPbB5ZWabVnJBlC/AJ5zI0VOanrfUfZZRW4u2G96sdibMNVimurI+Rd+kj1rGMbly7zHgttZh86W/sBhjfFixUWobsru4lLjqqRbTdI9k0FVqeggvDqVYXwY4a5QLwdhAepaTyTuCW7gKvtHRMKsNFKoXM+1sYaV3N3u68tcPNIaUkkjfASKYMDesyt/AQjBdtoiaQC9Dbm1sqCG3n/rIIMFy7TepTDuacAX6CIaz6/50tn+USuHBWZ27BxwsXUBVZJRJX2alq2O2SHltdh5/abVyURoYSN9nt/qHmLJmHkVX1iljTY6kdwGzBUbwWDVIb80RQ9gNZrAtvZLNphP8z8vZR4TZcnp4mtbQadxlS/K+icxcs4Q2McCezglNzne4b4omMYKtRnthl5WttDA806QiU/p7lcizsiH3uZlcTSwQY5wdyWwuoUlFJEVZdgvklXXKBWF8MD1hl1JSGhzFb6vNfKwqpXuXe3I0rXGcoXGCtsKVEohhCLvBDNa27VQLN4cO7sGTgX+pBc+dHGGFqRtr87q8jgvgal5JixhmX4c2lR5PdPZRIbxUNmpf58ZRvZB6McHxLJtbjw0qF+2yDL3meNhrWqhngrPDmc1FeAbxmdRGMllQWqWkEk6NDaQ4UmHCG8Il3UhH5hG72akUAvRNpRb2CW+ISjlFNItxtMYQdoNztCqLlmsiR/n9gcxrceTCC0e7aREjlDZpU288Eyy1S7GIKD1ns699MpuBbiVrxV6TXTpfMirqm7GJEB292f1+PCNKlCs0aNXmqmnEKiL0DQyl/ZxgOIo9MIq/JAfxK1WiaN9EesLeM+7DJbxYS7Oo1qq2LwxOp7Yn+yZ9lAtfduNojCHsBueoaUfaXFzp7OaBXd2pj9cITyDM0Fk1kUrnzjJxqVIEeHrwLIEsqgbOZWpIraFSof3uQ6tLEeTB/ux+P9EpNYulPPfFU0upIs5DQ+lfZLrHvdQyScSRuS0yQ6ny3MhUendYPeNeyvFiL8/CIrEpu9gjvtQ2Xd+EnzJ82MsMYTcoJkwmROMGttm72NU5zikNOtGnw/OnRlgoVb+0dnlexjwPl2JL1MlhDvVmZ3HEmPSGKJlWxbNCh1zmMqW2ytRI5vnjE94gzuAIUWFRen3mikNZJJwcTT8zpmPEQ6WYxlKeg7DbK4lixuQbTasJRu+omzLhp6wii9dsMhMwl2IOTBGKJF+wHhifwiGCOMuNxVODYqPpEuq8J7GbIvwyT1H7U8eHWGUdQCKgemlexjwPl7IY18gYuzvHcjrV4b5JFogx5bVkuTiYlFJF2KPuIbzBzNZBTg97qGGKkK0atNi9rdYb904Mp50ie3bEQ7nw4sgmeo5hMhGyluKUHgbT2FA3PKpE9vay7MYMl1RQLrwMTCYfa3RM+ew4y42I3aDYaNyAiAR562Ivv97TmzJKyRUpJU8eHWKzaxxR0VKYssoWG5TWsdwxye7O3FI993ZPUMck0lmrT51/9WJRy0TGd1QnB91UCg+iVKOsDTXqd0SmGEhzx3LHqIdK4cGWpcjGkCXllAsvXWPelMeOjqiWjT3TkmPqWPYKXHjonUjeSWl8XFlgNdkLX4TQEHaD86lXFi9f1zLNyHSAp46lvzCWDYf7phhyB1hiHVe6xhcKVzNLbZPs7pzIaYPWvu4JFtmmMZVlVo42bRxVSGGmVkxybMCd0VOPDbipMU1jLdMoa0ON2KvENGeH00t57Byeogxfzm0nTfYKyvGlJexT47kJu9lRiUt46R1PLuwT4+rdnq3wzeENYTc4n5qlIMyssfZTV27jgV3aFseay5NHhxACqkODuiw2pk1FC41ilJHpAN1jmfW4jCGlZF/3BM3W6RkvXHNMJiirp9E8xZG+zNYDjg1MUW/xIhwaecD2CiSCKjHN6TRz2YdHRmaemwuW0gpcwkd3CmEPRaL43OM5jVlSVoULb8qI3T2pjmMIu0HRYbFB9RJMo8d5/aXNPHV8iCEdC4P96dggl7aUY57uh8oCCrurmfKgcneyuys7n71v0s+wO0ANE/oJOyBKa1lk83C4bzLt50gpOTbgpkpMa9eL02QGewW1Jk9aEbs/FDmXD56jsJvsFVSb/Skj9r4JH07pyWlMs6OSSlPyiN0TCBP1qxdam2HFGBQjdStg+Dh3b15IJCr59R5dqjDTO+Fjf88kdy4RICOFjdjLGzAH3dTYoln77Pu6JgBJaWh0JtdaFxxV1Fv9HO6bIppGVgjA4FSACW+Q0sjUTDaLFghnNc02H2dHUvv9XWNeyslNZGewleMy+egcTS7sHaNeXMKb25j2ClzCS89E4rG6x72KxQRQkl5PVT0xhN3gQupWwuhpllaVcFlbFb/c1a1LYbA/HFTyn29sCig/KGTErmabXN0UZXeWpQX2dY9TZQlgigT0yYiJ4aiiUkzjDUY4m2ZpgaMDUzgIYJYhbVIdZ+ZSTb3Vy5k0rJgzw9OzRDbHzBGbizK8Ka2YrlEPrpmLSZaRtK0cp/TSkeSupHvMR5nwzRxfaAxhN7iQupVKBD12mjduXsiZEQ+7cswWiccjB/tZ3eiiUaqLWxUFXDxVrZMtdRGOD0zhTrP+9mz2dE2wvT583vl0wVGFM6IsnB7qTc+OOdbvpgo1qtbKigFwVFJtUgQ2VWGyYwNKVg6Qe8Rud+GIehj1BJhK8rvqGPVSbfYp6aclWQpuiRMTktGpKfyh+BvYusdmReyGsBsUJXVKw2CGj3HbukZKS8z84mVtc9r7J33s6Zrg1nULYFI9tx4betJFFeJ1lQGikoztGG8wzIGeCbYtUO9sdLZizIEJSiyCw2kuoB4bmGK5KzzzfM2wlVOKn6gkpd99fMDN4lJ1DhpYMWYZxkYoadpn56iHJnsYYSvPPnffqtS0ccjEnn7XmJdqi7oWZVgxBkVJ7TJAwPBxSm0WXntJM/+7v49hd0CzIWK1aG5Z1wgTXYoVUogc9hiqFbO81EuJxcSfT6bfDg1gT+cEoYhkY40a0Tl1LARlr0REQ2xsKEk7Yj/aP8Waqpiwaxix28qxR5Uo/ORg8vTL4wNuFpfH5pC7FQNQji/puJ2jXmpt4YzrsJ+HKuxOApxJYMf0jHtZYA8pdwVF0Lqz8DMwKD6sDqhqg2GlKNa7rlxMMBLl/h0dmg3xq909bGipYGldmRKxF9Jfh5kIu8Q/ypa2ap49mVmlxxfPjGI2CdrLVVtAy6h4Luq5N9UrVkyqBdTpQJiTQ9OsrlIvOrmK6mxKyrGEPZhNye8e/KEIHaMeWhwhEKbco1o14q+1+jg+ED9ij0YlnWNeqq2hGXHOCrUKpUMEEpZL7hrzUl8SBFvho3UwhN0gEdVLYEwpZrW0rowbVtVz/4ud+IK5F8k63KdsrnnDJtV6megubEYMgKVEWdCbHuKqZbWcGJxOuYV8Ni+eGWVdcwX2kBpBa+ljz0UV9kvqJFP+MKeGk2ek7O+eQEpod6keeK42yGxs5YjgNCvqHBxMcvdwcnCaqIQFtqDiQefQbzU2LsDKasHJofgRe++Ej2A4SoUlmHWJYACsSrTf5JRx0zqllHSP+ai0RnK7gGiIIewG8alaBBPn2oG9+6oljHtD/HpP7huWfrW7hxKziddsaIJoFCZ7CrvrNEZZA0wPctUyJXpPN2r3BsPs75ng8iU14B0Dk1Vfn1UV9vU1SqT+8tnkefd71Y5YraXqRVnLPGtVYDc1KrZQouypYwNKNF9tDWnz3qivYUWF5EQCKyYm+C5zaEacs0K9KCx2EbepyKgniC8UUcdxZD+OhhjCbhCfykXgGwd108XWxdWsa67ge38+m1ZFvUT4QxEe2tfH9avqqXSWgGcYIoHCR+yglIP1jrKqsZzaMhvPnkhP2Hd1jBOKSLYuqQbfmBKt5xqRJkMV9gaLl7pyG7s6kgv7nq4J2uvLcKheuKYXHVXY19dbGPUEE9aMOT7gxmYxUWYK5OZ3x1DP0eZScvTjteeLWTROchxTvSgschE3vTS2eFtmCLtB0aPWKI9F7UII3n/NUs6OePjf/Zl3po/x8L4+xjxB3r5NPf+02ixBg+bKOeOsBu8YQgiuW1HHM8eHE6a3zebJo4PYrSYuX6xG7FouTsZDFXbhn2BLWzU7OxJn8Egp2ds1zqWtlRBwa7+4pwr76hrlQnawJ74dc3zQzbKGMkxBj6bCvlC9RsVbQD056Kaxwo4l7M3NilGf21IqGXYHLkiFPRkTdlMYLAVMAJiFIewG8alUhXf8nB1zy9oFrFxQzr8/cYJwFlUfpZR8//mzrFxQzrYlatbItFpkTM8NPeniUCNu4Lb1jbgDYZ5LkR0jpeSxI4NcvawOR4kZfBP6+utwziP3TXBZWxW9E76EdUw6Rr2Me0Nc0loFgansN+kkQrVElrqimET8vHopJYd6J1nd6IKgR5s7BjUybnIqn8MTgxeuMxwbcLOsoRxCntysGNU3b1TH6hg5P+Xx5KCbcpsFq/QbHrtBkVN5fsQOYDIJ/vamFXSMevnV7sy99hdOj3JswM27rlyMiFkV02qTBj039KSLsxq8oyAlV7TXUuGw8vsDye9ODvVO0T/p56Y1aqs535i+GTGgRKvCBMFpNrcpF5GdCXz2mE1zaWuVYqtpvXlGPZ894qG9vizuAurZEQ/j3hCbFlVBcFqbiF0V0EpriNIS84yHH8MfinBi0M3aJhcEc43Ylfk2OhRhPzpnrBODbtobyhAhn2HFGBQ5zmolspoVsQPcsKqeS1sr+cpjx+P6momQUvK1x09QX27jjg1N5x6IReylxSDsNRANQ8CN1Wzi5jULeOLoUFI75rEjA5gEXL9Snb83D8IuhCKo/ilWNbqodFoTLvQ+d3KE2jIby+rLFCtGc2FXo++Am40LK9nTNXHBGkxss9elrVXaReyq2JpCXta1VLCv+/wyEEf6pwhHJRsWVipj5hJJq8+tLglTZrOcd1cipeT4gJsVDeUQ8hvCblDkCKFE7ROdc34s+Pydaxn1BPm3x0+kfbrHjwyyu3Ocj9ywHLvVfO6B6SHF980lotKKmDc+y46ZDoR58mj8mvRSSn5/sJ/L2qqpKi0BKc8tnuqNzQUBN2aT4NrldTx9fPgCQY1EJc+dHObq5bWYTEIVdq2tGPVCEZxm+9JaJn0hjvafH9Hu7BjDZbcoexa08tjNJSDMEPKxaVEVR/qmzkvF3a8K/cYWF4R9uV1MrA5AYAp5Wd3kOu+upFO1ujYsrISQ1xB2g3lA1aILInaAtc0V3LO1lR/v6GBniowMUG6Lv/THYyypLeXuzXPKBkwPFocNA+cE2auUlr2ivZbmSgc/fenC9wBgZ8c4Z4Y93BXLxw/7IRLMvcBVOtjKFc8cuH5VA2Oe4AXZMbs7xxn3hrh2hfr+BvSzYgi42bZUWTd5/tS5dQkpJc+eGOHKZerFJTitTcQuhBJJh7xsWlRFOCrZ33Muat/VMU5jhZ0Gu7oWlEvgMGus9c0VHOmbmqmLs7dbuRu5pLUSQj7DYzeYB8Qi9ji5yf/n5pUsrHby4Z/vZcIbTHqaLz96nNPDHj77mtVYzHM+ctNDxbFwCufKAHiVP1azSXDP5a28cHo07qLgD184S7nNwu3r1YyeWD3ufLRGUyN2gFetrMdZYuY3e88vr/zbfb04rOZzNpEeVkzJOWFvcNlZ1ejisSPnmlsfG3AzMOXn2uX1yp4FrSJ2UMQ66GHTomosJsHTxxU7KhyJ8tzJYa5aVqtE0ZC74KpjXba4mkA4yh51b8DerglKS8wsqytT7gwuhqwYIcQbhRCHhRBRIcRmrSZlUCRULVL+MDwXZoaU26184y2XMDwd4H33707YWPlPxwb53p/P8o5ti7huRZzIvJgidsf5ETvA2y5fhMtu4cuPHj9v883R/ikeOTjAX2xvw1mi9jZVhTYvjRZmReylNgu3rWvkdwf6mfQq6x5uf4jf7e/jpjUNlNpmzU/LXaeg9HW12Gde++3rG9ndOU7PuCKoD+3rU+yilXWK8CG1E3Y1iq5wWNm6pJrHjyips3u7J5jyh7lmeb1yhwC5j6mOtX1pDRaT4JkTwzP9ercuqVHKIcvoRWPFHAJeDzyrwVwMio04mTGzWd9SyVfeuIGdHWO88wc7GfOcH7k/dWyID/50L6sbXXz61lXxxyiqiP18jx3AZbfyN9cv45kTwzyoNhwJhqN88sGDVDmt/OWVi889P6BG9XkT9nO52++8YjHTgTD/9expAH7wfAdT/vC5+UUjisjpUVJWFT2AOzY0YRLw/T934AtG+OWubm5YVU99uV2J1kG7eiolpUrGC/DqNQs4Pexhd+cYP3+pC2eJmauW1848nrOwl5RC0EO53crmtioeOdjPnq4Jeid83LquUbFhoGismJzaqEspjwLnUtcMLi5cavbKVOKUvzs3NgPwd788wPVffZq7Ny+kscLOS2fH+MOhAVY3uvjRu7acv2AaI+RXxLBYInZ7JSCUHbezeOcVi3nsyCCffPAAJwbd7O+ZYH/3BP/51kuURdMYebVizhf21U0uXn9JM9955jSeQJifvtTFresWsL5F9fv1vJuYJbALq528YVML97/YwfOnRhjzBnn3VUuU42aiZ42E3eqYuaDcdWkLX3/iJPd+fyfuQJh3XtGGy26dZcVoE7ED3Lt9Me//yW7u+vYLlNks3Li6AULqXW0hK5TOIidhzwQhxHuB9wK0thZBXRCD1MSE3d2f9LA7NzazvKGcrzx6nO/9+SzhqKTKaeVD17XzwevalY078fDENicVibCbTDNphLMxmwTf/YvNfPyB/fzXs2dw2S38613ruX190/nPnxHPPDRaiDPPL7xuLSOeID/a0cnlS6r5l7vWn3tQK0siHlansglI5ZO3rOL0sIeDPZN8/KYVXKbm2s9E7BpbMaDYUf/0unX83a/2s2FhJX/9qmVzxswxkrY6lEAEuGl1A6/Z0MQfD/Xzxdevo8JhBa9GXr5GpBR2IcQTwII4D/29lPKhdAeSUt4H3AewefNm7fusGWiPs1YpaJUkYo+xqtHF9+69DH8ogtsfpqa0RMmCSEYx7TqNYXOB/8KFUpfdyn3v2IwnEMZqNlFiieNiBvLYzNheoXjWkRCYrQA4Syz8+F1b8ATC53z1GFrbILMpcZ6zPIDq0hJ+/VfbCUWiWGcvlmst7CWlyr4BlZvXLuDaFXWUmE3nPntaLZ5a7DNrLyaT4BtvuYRIdCPm2Dhh/7njioCUwi6lvCEfEzEoQkwmKF+QMmKfjd1qjm+7xKOYdp3GsFecE+g4XCCYs8m3FQPKXcKcvPm4c9TaBpmNtfScgM7+8dwMKM2tmPPvFIALP3sxwc11UdNig/D5jWbMswOXIvPYjXRHg+SUN6YVsWfFjLAXUcRujx+xp0XMism2t2YmzBb2dIhFy3oIj5oKmJIZ8dMoc8TqOHfORMTE2GLLbSyLXc3qScDMncFFkBUjhHidEKIH2Ab8XgjxqDbTMigaXI0ZRewZMVNOQMf+oJlir8hB2KeU6NWch6WrGWFPr+epZtkh8UhHYGHGo8aikfjNWrRNiFYWicV+QcR+HiGN7gw0Iidhl1L+RkrZIqW0SSkbpJSv1mpiBkVCeRO4B/Q59/SgsilI9YiLApsrfbGci38yPzYMnBPodCJlKIgVcwGxiFerzJE4VsyFY2oVsdvOXSTicTFF7AavAFyNiij4sxS7ZHhG9G36nA05Rew67OxMhDVTYdd44XI26VoxMyKrkbCXOJWibeEkO5+1ititjuQRe5EtnhrCbpCc8vRSHrPCN65/U4pMsbuUi1iCFm9JCUzlJyMGzgl0OpEyaJf2F49ZaYdJidk1WolfzNJJFknHxNisQcSezG4yhN1gXhHrbKTHAqpvQv8St5lic4GMpB8Jz8avQyOLRMxYMRkKe64bdRLNJexXdrcmQ2vxi9krqSJpc0nuXaMsduVzEYlfOmPmriFXy0cjDGE3SE65Kux6ROz+IhT2WC2VbHz2vFoxauSdymOOEfIoAmcpSX1s1nNJYyHTZNFucTl2gUgVsWtxIZm5iCQYKxK7M9Dh/c0CQ9gNkpNGWYGs8Y0XobCrEXc2PnterRhVTDOJ2PXw1zOZS8ivXUYMzBL2FBG7FlH0jO2TYCytFmk1whB2g+RYHUoNFa0j9nBQWZQtOmFXI/ZsFov9U9pXT0xENounetgwkP7dg1YiGyNVFA15jNhVK8aI2A3mDa4mmNJY2P1qUwRHHppSZIItJuwZRuzRiCJs+bJizBZFRNK1YrTqNRoPa5oRe1jj1nF5jdhT2D7hgNrVqTgKIhrCbpCa8gUwrXEue6yCYtFF7KqVkqnHns86MTGsziKxYtLM0Alp3Iii2CL2XDNvNMQQdoPUlNbBdPxmyVlTtMKeZcSezzoxMUrS3BgEygVA94g9jc1Cmgp7OounGkXs1hSpleGAPgvTWWIIu0FqSuvAM5xdbnciilXYbVkunuazZG8MtflDWuhqxaiil7Jui0/beuVppTtqHbEnGCsSKBp/HQxhN0iHsnrljzK2LV0LilXYrQ6lVPF8sWIy2aCkV+XBVNFsjJA//xF7yKetx57o4hUOGsJuMM8oVcvqxop2aUGxCrsQ2VV4LJQVk67HHvLps+sU0hPY2OO6eOxFErEXSaojGMJukA5lavVFj4Y+u28chCm/EW662CsyT3ecsWLylO4I6RXBihHy6hexp4pmY4T9GlsxefTYU40VCRmLpwbzDL0idntl7lu99SBBF6WkzDSyzqfHnkFWTMinX+VBaxpphzDPI/YUr9FYPDWYd8Q6HHk0FvZis2Fi2LMo3VsIKybdcrnRiGIV6Baxxzz2FBF7ITz2vEXsRrqjwXzDWQsIbVMei1rYsyjdG3ArdVDyWd2vxJneglF8QDwAAB91SURBVLZW7eESERPOUCqPXa889nx67Ea6o8HFgtmi9NV8pUTstiw89qBHaWKRz52H6S6ezpTL1UnYhVA7DKUS9oC2HrvJrGQwFUXEHjAidoN5SGm99ounxSrsKRpaxyUm7PnEWqoISqpyufno7pNK2KVUUw81nkOylnVSqtkqGnrsie5KwkEjYjeYh5TWvoKsGJdicSSqvR0PPTcAJaIkzR2fWjeRjkeqvqeRICC1TwlM1rJOy4qLJpNitUWSbVAyInaD+UZZvXZWTDSieNjFKuyxyDvdVEJQI3adFicTkW4d9Blh13F+qSJ2vXz+ZBG71o09zLbEbfjCQSOP3WAeUlqvXcQeW5gsWmFXI+9ABjttQ978WzHpNrTOR8SeSthDGovszLh5ithj50kasRtWjMF8o6wOgu7Um1DSoVh3ncaI5aJn0h6vEFZM2hF7Hjx2qz15VoxePUGTXVD0aMWX8O7AiNgN5iNablIqdmGfiYTd6T9Hz7K4iUi7c1E+InZHmlaMHhF7qq5GWlkxJecaaswlEgCzVZtxNMAQdoP0mNmkpIEdU/TCrloqmVgxhRD2WEekdDoXgb4euzWVFRNLuSxExK6hFRPvIiKl2mjDiNgN5hultcq/rwRht6nCnpEVU4B0x5k7iyKwYiyprBiNo+eZcfMZsdviR+zRMLpk/OSAIewG6eFUhd07lvu5il3YYwKdbpliKZVj9YyI45Hx4qneWTFJ1l/COtlBeY3YS+JfRIqs3ykYwm6QLs4a5V/vaO7nigl7vho/Z0qmwh72g4wWcPE0lbCrEbue5Q6sjjQjdj3y2Ascsev12nIgJ2EXQnxZCHFMCHFACPEbIUSRdSY20IySUuWD7R3J/Vy+cWXbvtmS+7n0INN0x5gVkncrJsPFUz2FPVna4XlzMCL2fJBrxP44sFZKuR44AXwq9ykZFCVCKFG7VhG7o0ijdZgVsWfQdg4KuHiaThNph74lkosyK0aHDUrx8tgvtohdSvmYlDK27/pFoCX3KRkULc4a7Tz2YvXXQRFAa2n6VkzsApBvYTdblCgxHY9dz4VTUPPYk3nshchj13qDUkn8naczEftFIuxzeBfwh0QPCiHeK4TYJYTYNTysccd7g/xQqmXEXsTCDopIB9LMY58R9jxbMZBe39OQT/+FXYsDZCRxfR1dd57ms6RAnIvIzAVkHlkxQognhBCH4nzdOeuYvwfCwE8TnUdKeZ+UcrOUcnNdXZ02szfIL84a8GjksRe7sNvKsrBi8pwVA+mV7g15tbdA5jJTrzxRs2ed89iljDOmHiUF4kXs6jhFFLGnXL2SUt6Q7HEhxL3A7cD1UsZ7dw0uGjTz2CeKX9hL5oEVExsznQ1Kulsx6vlD/vjtAfXMY0cqPUfnRsyaR+wJFk9j9sx8itiTIYS4GfgEcIeUMs3miwbzFmcN+CcyK2c7FynnR8ReUp5BxF5gKyatiF1vKyZFI4qQT4lotV7ATTZuWONIeh5F7Lm+y/8JlAOPCyH2CSG+o8GcDIqVWC57LA89GwJuxYstdmG3laXvsYcKHbGn47HnKWJP2jpOBzsoWXu8sF+JsrW6mCTy82ci9uIR9pwSiaWU7VpNxGAeMHuTUlmW6yTFvus0xnyxYqwOxdpKRsh77nenFzN9T5N47Hr4/Kkidi0vJrF0RynPb4E4E7EbRcAM5iMzwp7DAuq8EfZMFk/V4/JdUgBSdy4CNY9d78XTFBF7yK9TxB4T9gQRu5ZRdMxDj4TmjHPxWTEGryS0KCswn4Q97Z2n0+oGILO+c4pHWumOfv0vOtYUHntYL2GPWTF5itjhwk1KkYts8dTgFcYrSdhtZYpgp5PoVYiSvTGsjvQabejtsVtmZcXEI+zX2YrJR8Qeu4jMWUC9yDcoGVzsvJKEvaQMkKlFEwos7M70rBjdhT1FHrtedlBeI/aYFTPnIlKEi6eGsBukj6UEbK7cygrMVHYs8npx6ZbEjR1TiFRHSB2xS6kuXOptxcQ89iSVFnX12OMJu14R+1wrJuaxG1aMwXzFWZ3b7lPfuCIyeu+EzJXYJpt0Uh4LbcVEwxcu6MXQq/jWXGICmzQrRoe7hqTpjnpF7HOsmIutCJjBK5Bcd5/Oh12nkFlN9kJbMZA4as9Hkw1IvUEpHNBH+IoiYr/4yvYavNLIWdjnwa5TyMKKKWDEDokj5Xy0xYNzdwQJ5+HTvhY7pBGxazjmTFZMnIjdXHJ+bnuBMYTdIDOctbl77PNB2GesmHQi9mkjYrek8tj1zopJFLFrGEXHzjV3rEiwqDJiwBB2g0xxVmsQsRf5winMitiL3YpJFbHr1Gt0LiaTWiQrkceucx57opZ1euSxz714hQNFlcMOhrAbZIqzRqmNkirFLhHzJWKfdx57CmHXe+dpbIxEeey67zyNM24koK3vbUmweBoJGBG7wTwnl1z2+VLZEZQNSpDaY49GlCi1kOmOkMSKiXnseSh3kKibUTSqiF8hioDlJWIPGhG7wTwnF2EP+ZQ/8Pkg7DGhTuWxx4TzlW7FgOKhJ4qcY49rjckMJmsCjz2ocVaMOv+4Ebsh7AbzmdJa5d9shH2+7DoFpVKf2QbBFHnshazsCGksnuYzYk9QkGzGDtLp4hLPApJSvyJg8SJ2w4oxmNfEInbPRS7soJbuTWHFzFR2LNKIPV8blECtV56sJ6hO4mexXbjNPxoGpLZjJiwCZiyeGsx3crFi5puw29Ko8DjT77RYI/Y8pTuCcpGJK+w620HxvP3Y91pG0jMR+1wrJmRE7AbzHHslCNMrQ9hLylNnxRTciimSDUqQOCsm9jO9MnPidTbSo8dqoojdSHc0mPeYTIowZ9NsY94JexpdlArZ7xRmlctNle6Yj8VTR/w8dq2bSs8lngU0I+xapjsmKttrpDsaXAw4a7LbfTrfhH0+WDFmi5KRkcyKsdi1byIdD4stfsSut88fN2LX4WJiMoMwxy/ba0TsBvOebOvF+MYVESpEC7lsSGvxtMDpjpC8PV4+2uLFsCSI2PXeJBXPY4/oVCM93kXEiNgNLgqcNeei70yIbU4qomJJSZkPHjskb48X8ubvQmq1Jy7GBXn22HVYPAUlMLmgCJjG+fIaYAi7QeZkWy9mvuw6jRFrj5eMQlsxkDpiz8fCKah57MWSFZPviN2wYgzmOzErJp1+oLOZb8JeUpqGx+5RsoTyZXfEI1l7vFAeuifNzMOeYPE0D3nscxc0Zzx2rSP2eHcHRsRucDHgrFFuR9MpkDUb30Txt8SbTUkZREMXisZsYm3xCmkvJbNiwr78dauyOJTPRTRy/s/zsfM0YVaMxq/dUhJ/g5IRsRvMexzVyr+Z2jHzLmJPo8JjIWuxxygaKyZBY+lCZMXo1YfUPOfuQEr9ukPlgCHsBpmT7e5T/zxpixcjVuExWd/TkLcIhL1YFk9jOfUJhF0vu8qcLI9d54g9VrrAiNgN5j0zwp5BLntYtW7mk7CXpFG6N+gpfPpm0UTssdroc+YS8gNCP/FLuvNU68XTOZk/YZ3uDHIkJ2EXQvyjEOKAEGKfEOIxIUSTVhMzKGKcMSsmA2H3Tyj/zofuSTHSsmI8hdt1GiPV4mk+dp1CkohdzaXXax0iWa0YzRdP56Q76pUvnyO5RuxfllKul1JuBH4H/IMGczIodrKxYubbrlNIz4opGo89yc7TQkfs4YC+C7gWO8gIRMLnjwn6pzvGhP1iitillFOzvi0FMsx/M5iX2CuUrdUXu7CnY8UEikXYi8CKiY0z1xbR+64h3qLtzOKpzhG73qmcWWLJ9QRCiH8C3gFMAtclOe69wHsBWltbcx3WoJAIkfkmpfko7OlG7LZisGK8SobGbLtD/v/2zjU2zjK74//j8VziGTsmjh0IDtjltoQFJciLoOyipSwLFFpqFaG2AqRGCFXqVkRddbUFKWg/IO2Hqu23Sgi2ISo0kL2o7WqbbVeLRKuKJlyCIA5L2SzZOJvEjhPbcXyZsef0w/M+M6/Hc/Fc3ucyOT8peu3xeN4zjn3e//t/znMOm1081Yq99CITddVI4U5hqfh/YVyxu5XYayp2IvoZEX1c5t+jAMDMzzPzNgCvAfhGpddh5peYeYSZR/r7+1v3DgQ71NsvxsfEnuhWx5oee7eZeCpRUMrlKkPYXB17xTgivmvQyXulZFGzo1M17molsWQFxe6WFVNTsTPz19b5Wq8B+AmAF5qKSPCDejs8+pjYayl2Zkc89kCRZ+dXJ9DCVn5Tij1IsKWKPdfiEXWVzhu+oCxHNTw7UaLYI7J8mqTZqpgbQp8+CuCT5sIRvKFrE7BQZ2KnDiDZE11MraYzqTzVSoo9Nw9w3gErRlejlCygmhxkDRR99HIVKkY89pKEG8XFJFYyhq/Qk8YzxV6D7xLRTQDyAE4A+LPmQxK8oKsPOHlo/c9fuKDaCZjoC95KEpnKil33kbFe7lhh2IbJsXhA0fJZ47EvAskI7aqCxx5W7IvRqOjOxOqdp44q9qYSOzP/YasCETwj3AhsPfXJvrUT0FQbtqGVfJRJaz1UmnuqPzfZjx0or9jTEa6rlVPsUS3YasWuf++j6iLZJJ7JJ8EZNmxS26mXZms/F/A3sVfrye5Cy17AfcWeW4z24lJWsUeU2DuTyn7LBzXzUfWkaRJJ7EJj1LtJydfEnuz2wIqppNgd8thNVMUYUeyJ1edytI5dErvQGPX2i/E2sVfx2J2xYmopdkOJvaNDJb6yi6cm6thLNihF4rHr0srs6mMs3vpzNYEkdqExLhfFnqgyRUknfGcUe2lin1/9dRN0ptb2islFXBUTc0CxO7Z4KoldaIx6GoGtLAOLM34m9mR3lcXToNWA8+WOBqc7dZaZorS8YKiOvTSxR1HHHrym9tbbtAmYcLlSj2LXm5P09/hENY/d+cVTC4o9XqLYV5bVQmOkHrvhxVOgWA3Tjk3AhMuYZLfasr2uxB6oeq3yfUJbMeXmuxYWT2177BUWTwuTiwx57ICyXMKKPeohG0AFxR6Rr68T+IosngrtCNH6+8Xo53ip2DMAuHyHx+xFlbBiTffSa47OJACqvHhqqh87sFaxRzXJKEzZxdNstIunotiFtqXuxO6hYk9WaQS2NGd/4RRQF9ly4/Fy80BH3OyFZ41iN+Dzx+IAyJ5ijyXsDjMvgyR2oXHW2wjMZ8WubZZyPnv2kn1/XVOuJ3tuwfzYvlLFrj+O8q6BaO0UpeVsRIunJbZPVHcGTSKJXWic9fZk18l/g4+KvUqHx+yc/Rp2TbnxeCaHbGgqeuwRJ7/SPunLi9E05oqV1LEvLznXAAyQxC40Q7ofuDRZ+3nzUyrxJCwPfW6EanNPly66YcUA5cfjWUnsyRKP3dACbmeyeC7moLtjRG17gZBij2gjVJNIYhcaJ92vKl5WctWfN3/eT7UOFBV5uVp2F6YnacpaMfPmE3t8w2rlXFjANajYo1zQXKPYs6LYhTZDd+y7dK768+an/Fw4BUKJvZLH7kpiL7d4akOxl2xQKlTFRK3YU6EFzQhLLEWxC21PZkAdL01Uf978lJ8Lp0DIiimT2F2pigEcWjzdUGLFGNr9GlbsUbbSLbQvCN5jbtHszt51IoldaJy0Tuw1fPaF8/4m9sLiqYdWTNSzRstRqthzBjYoFc4bnCvKBdvSJmDLEbckbhBJ7ELjpDer41yNxO6zFRPvUiP9Sq2YwrxTVxJ7BSvGdNKJb1AtBFaCfuWm2hp0ptZ67FG89zVNwCSxC+3GeqyYlZxqAOarYicqP2zDlXmnmoqLp4atmMIu0IViDIDZqhh9jGLxtJxiN31XtA4ksQuNk8ioRbG5Kond5wZgmnLj8XSLAVcUeyJdwWM3rCZ1YtcWjE7sUW/kiiVXq+hwLK2ko1Pdwelz5SLuNd8gktiFxiECMjVq2ec9bgCmSWTWLp660otdU66O3UbVTrxEsWfnAYpF30tllWLXVkwE5yQqzj0FgpbE7il2y92LiuRyOYyPj2NxcbH2kx0jlUphcHAQ8bhbU1SMkB6okdiDnam+1rED5Vv3FqYnOZTY87liXXV+RSV604ldJ7mwYo93Rd9LJeyxR91RsjNRvHgsLzlZFeNMYh8fH0d3dzeGhoZAjjXUqQYzY2pqCuPj4xgeHrYdjnnS/cDMeOWv+9wnRlPOinFl3qkmEWpW1rnJ3hCQeEmnxdy8mR3HZTcoRWSRhBV71IO6G8QZK2ZxcRF9fX1eJXUAICL09fV5eafREjL91RdP2yKxV1PsjvSKKe1pk7V04SkdaJ01tPu1rGKPKLF3JkOK3ULl0TpwJrED8C6pa3yNuyWkB9TO03y+/Nd9HrKhSW1UlT1hCh67I90dS3va2Lqj0Io9F6qKiRv4GZX12KNS7Aml2PN5dXcgVTFC25EZAHilmMBLmZtUNoGDv/zrJtULLE6vfkwn+lSv+XjKUbqRytYaQKliN9WvRrcUYAZygQ0V1Xm17WOqc2UDSGIXmkNvUqq0gDp3tljv7iupXpWgtBIEQol9o52YSil47JatmFLFnjXlsYc2DmUjLrGMJZRSLyR290SLJHahOXRbgUq17HMTQGaLuXiiYEOgysN2zOK0+gN35U6ktAvlkqVB23pDlF68NbVJKjwer6DYI3rvHij2llTFENE3AfwNgH5mrtHqrzbf+bejGPvNbPOBhdi+tQcv/N4tFb++Z88ebNq0Cbt37wYAPP/88xgYGMCzzz7b0jjajkyNfjFzZ4EtlX/uXqDtlsVptVgMAAvT6nFX1lfWLJ7qqhjDi7ulowRNJ/bcgnrvHZ3RtdPVil3flbhycQ/RtGInom0Avg7g182HY49du3Zh3759AIB8Po/9+/fjiSeesByVB3RfqY4XT5f/ejsodm23LIR89sWZopJ3gdLF06ylDVSJkguMqQ6T+ry5+cD+ifBOpTOl3peJQd0N0grF/ncAvgXgX1rwWgBQVVlHxdDQEPr6+vDBBx/g7Nmz2LlzJ/r6PC7RM0WyR/1Rzf5m7ddyC8DSjP8e+4aQYtcsTrvjrwNrrZhCywPDVkxnUqnlbCgOEx67fp9LF5UVE2UlTiINTJ8o7q5tt8RORI8COMXMH7ZDyd/TTz+NvXv34syZM9i1a5ftcPyACOjZCsyeWvs17btrVe8rqTIe+8J0cdCIC8TiauOMVuq2yh2Jgrr/sBVjwKrQVlT2UvRDxhMZdQ69u9bHnadE9DMA5f4ynwfwHJQNUxMiegbAMwBwzTXX1BGiOUZHR7Fnzx7kcjm8/vrrtsPxh+6ryiv2ubPq2DZWzIXiY4vTwOYb7MRTifAO2eycUq0dFuojdDfMleWgztvAXUN4523UlTiJtDqPw1UxNRM7M3+t3ONEdCuAYQBarQ8CeJ+I7mDmM2Ve5yUALwHAyMgINxN0VCQSCdx7773o7e1FLBazHY4/9FwN/OrttY/rZO97Yi9rxcy4ZcUAq3fIZufsbZ5KZgJLRJcdmrZiIt4UlUgrxd6OVTHM/BGAgnlKRJ8DGGlFVYwt8vk83nnnHRw4cMB2KH7Rs1UtnuZXgI7QBVHbMxsH7cTVKjqTSpVpKyafDxK7Q4unwOq+8UsWpzslMioOU73YgRIrZg7o2hztufLLxd+HdqyKaRfGxsZw/fXX47777sMNNzh2i+06PVep3afaetHMjCvltOEKO3G1kq5NxRbE2YtqyIZLVTFAUSkDwNKsWti2GYeOxUQcWrEbsWKCi4ge4t5ui6dhmHmoVa9lg+3bt+P48eO2w/CT3mvVcfqkUu+amZPAxqvdqfVuhvTm4mKw9tpdu2ClNhbvkmyOI0xkgJlTxfJQE3c2iZBiN2HFAMC8u4ldFLvQPFcMqeOFz1c/PnPKfxtGkx4odrHUCd61tYOuPmA+uOjMn7fXAz8ZWEImL4C6KmjpYvTrC/q1LwZ3qK705A8hiV1ono3bABBw4VerH58ZVwur7UBmoDi0u1Dt41h9ftcmpSKZVVM2m4p9aa642GzKskoGZYimrJjZU0BH3Pxc2XUgiV1onnhKWTBhxZ5bVAp34zZrYbWUdDACkLmY2NOuJfbNqlJjadbuAPFkt1qHMGnFAEpJL86oLo8mrJiZk+puxEGrURK70BquGFqd2M8H6xV919mIpvVkBtTouYULgXKnYmdLV9CJfOozdbRmxWTU4rJuM2FKsSe6ixfdqDcoAeqO1LUF9ABJ7FU4cuQI7rrrLtxyyy247bbb8MYbb9gOyV2uGAamfln8/Nyn6ujaJp5GSYeanc2dVUk05tiMW32hOfd/6mjTigGA6V+rj039nBLpYjO6qDcoAark0bWS1wBJ7FXo6urCvn37cPToURw8eBC7d+/G9PR07W+8HBn4grJedAnYVJBc+q63F1Mr0V0d5ybcbWymFbtO7LaqdvTaw+QvzCa+ZAa4cEJ9HOV5w20aXKuMCnBmmPUq/v3bwJmPWvuaV94KPPTdil+u1bZ369atGBgYwOTkJHp73bxKW2XLF9Xx7MfAb31VJZeeQXdGxzWLTuQXz7g7PKRgxVhW7D1BJdTEUWDAYEO/RLrYmCvKaqzw77RYMW5Tq23voUOHkM1mcd11beIZt5orb1XHMx+r48RY+9gwgLKaqEMlzdlTqj+Oa5QqdluLp3ovg+lNXN2hPRRRVmOFq2ActWLcVOxVlHVUVGvbe/r0aTz55JN49dVX0WGjqZIPpDcrVXv6Q1WZcPYocM9f2Y6qdcRTKrmf+B+1KLhlu+2I1pLaqMrvJsbURchW98nMgGrdm182208nLCSi7Cja0aF20y7NihXjA+Xa9s7OzuLhhx/Giy++iDvvvNNyhI4z9BXglz9XyY/zwLV3246otQzcDHzyY/WxvkNxCSJ1wTn9IdB/s70eJh0xpWTnz5ndoBZO7B0RN/Eb2A6cfEesGB8YHR3FwYMHcfjwYTzwwAPIZrMYHR3FU089hccee8x2eO7zhd9Vf8w/fU4px8Ev2Y6otfTfVPx4i4OJHQCu+W11tH3h0dvtb3zQ3Dn7DFp/W3eqY7iVs0NIYg+h2/Y+/vjjiMViePPNN/H2229j79692LFjB3bs2IEjR47YDtNdrr9fVQycPw6M7DLTrtUkOkldMQykHZ2u1X+jOmYsDwHR/YOGvmzunOE+RVHzpafV8aaHzJ2zDojZfGv0kZERfvfdd1c9duzYMdx8883GYwmTz+dx++2348CBA3V3eHQhfieY/BQ48hrwlW8CKUvdBaNkbkK1J+5xcPEUUNvp33pR/fxtVcUAqhf/wgXzg8yPvK5KbLfdYfa8hiCi95h5pNbzxGMPGBsbwyOPPILR0VFp29sM/TcC93/HdhTR4WKZY5hEF/DAi7ajUOrZpILW7PgT8+d0EEnsAdK2VxCEdsEpj92GLdQKfI1bEIT2xJnEnkqlMDU15V2SZGZMTU0hlXKv2b4gCJcnzlgxg4ODGB8fx+TkpO1Q6iaVSmFwsE0GSgiC4D3OJPZ4PI7h4WHbYQiCIHiPM1aMIAiC0BoksQuCILQZktgFQRDaDCs7T4loEsCJBr99M4BzLQzHBr6/B4nfPr6/B9/jB+y8h2uZuWa/CCuJvRmI6N31bKl1Gd/fg8RvH9/fg+/xA26/B7FiBEEQ2gxJ7IIgCG2Gj4n9JdsBtADf34PEbx/f34Pv8QMOvwfvPHZBEAShOj4qdkEQBKEKktgFQRDaDK8SOxE9SES/IKLPiOjbtuOpFyL6HhFNENHHtmNpBCLaRkRvEdEYER0lomdtx1QPRJQiokNE9GEQv5cTQYgoRkQfENGPbcfSCET0ORF9RERHiOjd2t/hFkTUS0TfJ6JPiOgYEd1lO6ZSvPHYiSgG4FMA9wMYB3AYwB8z85jVwOqAiO4BMAdgHzN/0XY89UJEVwG4ipnfJ6JuAO8B+ANf/g+IiACkmXmOiOIA/hvAs8z8juXQ6oKI/hLACIAeZn7Edjz1QkSfAxhhZi83KBHRqwD+i5lfJqIEgC5mnrYdVxifFPsdAD5j5uPMnAWwH8CjlmOqC2Z+G8B523E0CjOfZub3g48vAjgG4Gq7Ua0fVswFn8aDf34omwAiGgTwMICXbcdyOUJEGwHcA+AVAGDmrGtJHfArsV8N4GTo83F4lFTaDSIaArATwP/ajaQ+AhvjCIAJAP/JzF7FD+DvAXwLQN52IE3AAP6DiN4jomdsB1MnwwAmAfxjYIe9TERp20GV4lNiFxyBiDIAfgBgNzPP2o6nHph5hZl3ABgEcAcReWOJEdEjACaY+T3bsTTJl5n5dgAPAfjzwKL0hU4AtwP4B2beCeASAOfW+3xK7KcAbAt9Phg8Jhgk8KZ/AOA1Zv6h7XgaJbh9fgvAg7ZjqYO7Afx+4FHvB/A7RPRPdkOqH2Y+FRwnAPwIymb1hXEA46E7ve9DJXqn8CmxHwZwAxENBwsWfwTgXy3HdFkRLD6+AuAYM/+t7XjqhYj6iag3+HgD1EL8J3ajWj/M/NfMPMjMQ1C//z9n5icsh1UXRJQOFt4RWBhfB+BNlRgznwFwkohuCh66D4BzxQPOjMarBTMvE9E3APwUQAzA95j5qOWw6oKI/hnAVwFsJqJxAC8w8yt2o6qLuwE8CeCjwKcGgOeY+ScWY6qHqwC8GlRYdQB4k5m9LBn0mC0AfqQ0AjoBvM7MB+2GVDd/AeC1QGAeB/CnluNZgzfljoIgCML68MmKEQRBENaBJHZBEIQ2QxK7IAhCmyGJXRAEoc2QxC4IgtBmSGIXBEFoMySxC4IgtBn/DyZRp+XbjVp9AAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, ax = plt.subplots()\n", "ax.plot(x, y, label=\"y\")\n", "ax.plot(x, y2, label=\"y2\")\n", "ax.legend()\n", "ax.set_title(\"This plot makes no sense\");"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 4\n", "<a name=\"task4\"></a>\n", "\n", "* Sort the data frame by the virtual proccesses\n", "* Plot `\"Presim. Time / s\"` and `\"Sim. Time / s\"` of our data frame `df` as a function of the virtual processes\n", "* Use a dashed, red line for `\"Presim. Time / s\"`, a blue line for `\"Sim. Time / s\"` (see [API description](https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot))\n", "* Don't forget to label your axes and to add a legend\n", "* Submit when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 61, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["df.sort_values([\"Virtual Processes\", \"Nodes\", \"Tasks/Node\", \"Threads/Task\"], inplace=True)"]}, {"cell_type": "code", "execution_count": 62, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VdW5//HPQwgJCIqSaJHBgOIAgoFGxOKQioiiFfWK0ksVbr1X2+rtVaut3taK/sSrVdFarcNVXmC1WpwqdWSoQ/WqGChaBJSoKFCUQUAZJfD8/lj7kJPknOSQ5OScJN/367Vfe5+19vDs7OQ8WXtY29wdERGRurTJdAAiItI8KGGIiEhKlDBERCQlShgiIpISJQwREUmJEoaIiKRECUNERFKihCEiIilRwhARkZS0zXQADVFQUOBFRUWZDkNEpFmZO3fuGncv3N3lmnXCKCoqoqysLNNhiIg0K2b2aX2W0ykpERFJiRKGiIikRAlDRERS0qyvYYhI49u+fTvLly9n69atmQ5FGig/P5/u3buTm5vbKOtTwhCRKpYvX06nTp0oKirCzDIdjtSTu7N27VqWL19Or169GmWdOiUlIlVs3bqVLl26KFk0c2ZGly5dGrWlqIQhIjUoWbQMjX0cW2XCWLAAfvlLWLs205GIiDQfrTJhLFkCN94In32W6UhEJJGcnByKi4s5/PDDGT16NJs3b27wOu+9914eeuihBq/n4osvpri4mL59+9K+fXuKi4spLi7miSee4Ne//jWzZs1q8DYSuemmm3jkkUfSsu5UtcqL3gUFYbx6dWbjEJHE2rdvz/z58wEYO3Ys9957L5dffvmuenfH3WnTJvX/eX/0ox81Smx33303AEuXLuW0007bFSfA2Wef3SjbSOSll15i2rRpaVt/KlplC6Mw6kFFCUMk+x177LGUl5ezdOlSDjnkEM4//3wOP/xwli1bxowZMzj66KMZNGgQo0ePZuPGjQBcddVV9O3blwEDBnDFFVcAMGHCBG699VYASktLueyyyygpKeGwww7jnXfe4ayzzqJPnz786le/qnes48eP54knngBC10VXX301xcXFlJSUMG/ePEaMGMGBBx7Ivffeu2uZW265hSOPPJIBAwZw7bXXJlzvV199xTfffENhYdXun1599dVdLZyBAwfy9ddf1zv2VLTKFkbsZ75mTWbjEGkWSktrlp1zDvzkJ7B5M4wcWbN+/PgwrFkD1f/rfuWVlDddUVHBCy+8wMknnwzAkiVLmDp1KkOGDGHNmjXccMMNzJo1iz322IObb76ZSZMmcfHFF/P000+zePFizIz169cnXHe7du0oKyvjt7/9LaNGjWLu3Lnss88+HHjggVx22WV06dIl5TiT6dmzJ/Pnz+eyyy5j/PjxvPHGG2zdupXDDz+cH/3oR8yYMYMlS5YwZ84c3J3TTz+d1157jeOOO67KembNmsWwYcNqrP/WW2/l7rvvZujQoWzcuJH8/PwGx1ybtLUwzCzfzOaY2btm9r6ZXReV9zKzt82s3Mz+ZGbtovK86HN5VF+Urtj23htyctTCEMlWW7Zs2fWfec+ePbngggsAOOCAAxgyZAgAb731FgsXLmTo0KEUFxczdepUPv30U/baay/y8/O54IILeOqpp+jQoUPCbZx++ukA9O/fn379+tG1a1fy8vLo3bs3y5Yta5T9iN/GUUcdRadOnSgsLCQvL4/169czY8YMZsyYwcCBAxk0aBCLFy9myZIlNdbz4osvcsopp9QoHzp0KJdffjl33nkn69evp23b9LYB0rn2bcAJ7r7RzHKB183sBeBy4HZ3f8zM7gUuAO6Jxuvc/SAzGwPcDJybjsDatIEuXZQwRFJSW4ugQ4fa6wsKdqtFERN/DSPeHnvssWva3Rk+fDiPPvpojfnmzJnD7NmzeeKJJ7jrrrv461//WmOevLw8ANq0abNrOva5oqJit2NOpK5tuDtXX301F110Ua3rmTNnDvfcc0+N8quuuopTTz2V559/nqFDh/LSSy9x6KGHNkrsiaStheHBxuhjbjQ4cALwRFQ+FTgjmh4VfSaqH2ZpvBm8oEAJQ6Q5GzJkCG+88Qbl5eUAbNq0iQ8//JCNGzeyYcMGRo4cye233867776b4UiTGzFiBJMnT9517WXFihWsWrWqyjzvv/8+hx56KDk5OTWW/+ijj+jfvz+/+MUvOPLII1m8eHFa401r+8XMcoC5wEHA3cBHwHp3j6Xv5UC3aLobsAzA3SvMbAPQBUjLlYbCQiUMkeassLCQKVOm8P3vf59t27YBcMMNN9CpUydGjRrF1q1bcXcmTZpU722MHDmSBx54gP3337+xwq7ipJNOYtGiRRx99NEAdOzYkYcffph999131zzx13Cqu+OOO3j55Zdp06YN/fr1S3jaqjGZu6d1AwBm1hl4GrgGmOLuB0XlPYAX3P1wM1sAnOzuy6O6j4Cj3H1NtXVdCFwI0LNnz29/+mm93gPC6NHhAb5Fi+q7VyIt06JFizjssMMyHYZEhg8fzkMPPUTXrl3rtXyi42lmc929ZHfX1SS31br7euBl4Gigs5nFWjbdgRXR9AqgB0BUvxdQ41lsd7/f3UvcvaT6LWa7Qy0MEWkOZs6cWe9k0djSeZdUYdSywMzaA8OBRYTEEbvPbhzwTDQ9PfpMVP9XT2Pzp6AAvvwSduxI1xZERFqWdF7D6ApMja5jtAGmufuzZrYQeMzMbgD+DjwYzf8g8AczKwe+BMakMTYKC8E99CcVd7pQRESSSFvCcPf3gIEJyj8GBico3wqMTlc81cU/vKeEISJSt1bZNQioexARkd2lhKGEISKSklabMNRjrUj2mjhxIv369WPAgAEUFxfz9ttvA/Dv//7vLFy4sMHrP+qooyguLqZnz54UFhbu6sBv6dKljBw5Mmn/Uw11yimnsHz58rSsuym0ys4HQQlDJFu9+eabPPvss8ybN4+8vDzWrFnDN998A8ADDzzQKNuIJaApU6ZQVlbGXXfdtavu+eefb5RtVLdlyxbWrl1L9+7d07L+ptBqWxjt2sFee6nHWpFss3LlSgoKCnb1vVRQULDrSevS0lLKysqA8FT0lVdeSb9+/TjxxBOZM2cOpaWl9O7dm+nTp9d7+0VFRaxZs4alS5dy6KGHMn78eA4++GDGjh3LrFmzGDp0KH369GHOnDlA6JLkhz/8IYMHD2bgwIE888wzCdf7yiuvUJqg598777xzV1fsY8ak9ebQBmu1LQzQw3sidbn0UkjQB2CDFBfDHXckrz/ppJO4/vrrOfjggznxxBM599xzOf7442vMt2nTJk444QRuueUWzjzzTH71q18xc+ZMFi5cyLhx43b1FNsQ5eXlPP7440yePJkjjzySP/7xj7z++utMnz6dG2+8kT//+c9MnDiRE044gcmTJ7N+/XoGDx7MiSeeWKWjRAhdfJxxxhk1tnHTTTfxySef7OrBNpu12hYGqANCkWzUsWNH5s6dy/33309hYSHnnnsuU6ZMqTFfu3btdvWx1L9/f44//nhyc3Pp378/S5cubZRYevXqRf/+/Xf11TRs2DDMrMo2ZsyYwU033URxcTGlpaVs3bqVzxK8//mNN97gmGOOqVE+YMAAxo4dy8MPP5z27skbKrujS7PCQqhnV1QirUJtLYF0ysnJobS0lNLSUvr378/UqVMZP358lXlyc3OJdWgd3314Oronr20b7s6TTz7JIYccknQ9H3/8MT169KBdu3Y16p577jlee+01/vKXvzBx4kT+8Y9/ZG3iaNUtjMJCXcMQyTYffPBBlZcIzZ8/nwMOOCCDEdVuxIgR/O53vyPWk9Hf//73GvMk63F2586dLFu2jO9+97vcfPPNbNiwYVdX59mo1SeM1atDFyEikh02btzIuHHjdl0IXrhwIRMmTKjXuv75z38yMtErZBvRNddcw/bt2xkwYAD9+vXjmmuuqTHPiy++mDBh7Nixgx/84Af079+fgQMH8tOf/pTOnTunNd6GaJLuzdOlpKTEY3dM1Mdtt8EVV8D69eGOKRFR9+aNbdu2bQwdOpSGfFc1RLPr3jxb6VkMEUm3vLy8jCWLxtaqE4a6BxERSZ0SBrrwLVJdcz5VLZUa+zgqYaAWhki8/Px81q5dq6TRzLk7a9euJT8/v9HWmZ03+zYRJQyRmrp3787y5ctZrT+MZi8/P79R+65q1QmjQwfIz1fCEImXm5tLr169Mh2GZKFWfUrKTA/viYikqlUnDFAHhCIiqVLCUMIQEUlJq08Y6rFWRCQ1rT5hqIUhIpIaJYxC2LQJtmzJdCQiItktbQnDzHqY2ctmttDM3jez/4rKJ5jZCjObHw0j45a52szKzewDMxuRrtji6WlvEZHUpPM5jArgZ+4+z8w6AXPNbGZUd7u73xo/s5n1BcYA/YD9gVlmdrC770hjjFUe3uvRI51bEhFp3tLWwnD3le4+L5r+GlgEdKtlkVHAY+6+zd0/AcqBwemKL0Y91oqIpKZJrmGYWREwEHg7KrrEzN4zs8lmtndU1g1YFrfYchIkGDO70MzKzKysMbou0CkpEZHUpD1hmFlH4EngUnf/CrgHOBAoBlYCt+3O+tz9fncvcfeSwti3fQOoPykRkdSkNWGYWS4hWTzi7k8BuPsX7r7D3XcC/0vlaacVQPxVhO5RWVp17gw5OUoYIiJ1SeddUgY8CCxy90lx5V3jZjsTWBBNTwfGmFmemfUC+gBz0hVfTJs20KWLEoaISF3SeZfUUOA84B9mNj8q+2/g+2ZWDDiwFLgIwN3fN7NpwELCHVYXp/sOqRg9vCciUre0JQx3fx2wBFXP17LMRGBiumJKRj3WiojUrdU/6Q1qYYiIpEIJAyUMEZFUKGEQHt778kuoqMh0JCIi2UsJg8pnMb78MrNxiIhkMyUM9PCeiEgqlDBQwhARSYUSBuqAUEQkFUoYqIUhIpIKJQwqWxh6eE9EJDklDCA3N3RCqBaGiEhyShgRPbwnIlI7JYxIQYEShohIbZQwIuqAUESkdkoYEZ2SEhGpnRJGJNbCcM90JCIi2UkJI1JQANu3w4YNmY5ERCQ7KWFE9PCeiEjtlDAisYShC98iIokpYUTUwhARqZ0SRkQJQ0SkdkoYEfVYKyJSOyWMyB57QPv2uoYhIpJM2hKGmfUws5fNbKGZvW9m/xWV72NmM81sSTTeOyo3M7vTzMrN7D0zG5Su2JLRw3siIsmls4VRAfzM3fsCQ4CLzawvcBUw2937ALOjzwCnAH2i4ULgnjTGlpAShohIcmlLGO6+0t3nRdNfA4uAbsAoYGo021TgjGh6FPCQB28Bnc2sa7riS0QJQ0QkuSa5hmFmRcBA4G1gP3dfGVV9DuwXTXcDlsUttjwqazLqsVZEJLm0Jwwz6wg8CVzq7l/F17m7A7vVe5OZXWhmZWZWtrqRv93VY62ISHJpTRhmlktIFo+4+1NR8RexU03ReFVUvgLoEbd496isCne/391L3L2kMPbwRCMpLIRNm2DLlkZdrYhIi5DOu6QMeBBY5O6T4qqmA+Oi6XHAM3Hl50d3Sw0BNsSdumoSenhPRCS5tmlc91DgPOAfZjY/Kvtv4CZgmpldAHwKnBPVPQ+MBMqBzcC/pTG2hOIf3uvZs6m3LiKS3dKWMNz9dcCSVA9LML8DF6crnlSohSEikpye9I6jHmtFRJJTwoijFoaISHJKGHE6d4acHCUMEZFElDDimOnhPRGRZJQwqtHDeyIiidWZMMzsN2a2p5nlmtlsM1ttZj9oiuAyQf1JiYgklkoL46SoS4/TgKXAQcCV6Qwqk5QwREQSSyVhxJ7VOBV43N03pDGejNM1DBGRxFJJGM+a2WLg28BsMysEtqY3rMwpLIR162D79kxHIiKSXepMGO5+FfAdoMTdtxO67RiV7sAyJfYsxpdfZjYOEZFsk9JdUu7+pbvviKY3ufvn6Q0rc/TwnohIYrqttholDBGRxJImjOhdFq1OfI+1IiJSqbbeat80s+XAi8CL7r60aULKLHVAKCKSWNKE4e4l0bu4TwbuMLNuwOvAC8Cr7r6tSSJsYl26hLFaGCIiVdV6DcPdl7r7ve5+BuFOqb8AJwJ/M7PnmiLAppabC3vvrYQhIlJdyi9Qim6p/Ws0ELU4WiQ9vCciUlO975Jy9xWNGUg2UfcgIiI16bbaBNRjrYhITSknDDPrkM5AsolaGCIiNaXSvfl3zGwhsDj6fISZ/T7tkWVQrIXhnulIRESyRyotjNuBEcBaAHd/FzgunUFlWkEBVFTA+vWZjkREJHuk2pfUsmpFO9IQS9bQw3siIjWlkjCWmdl3AI/euncFsKiuhcxsspmtMrMFcWUTzGyFmc2PhpFxdVebWbmZfWBmI+q1N41E/UmJiNSUSsL4EXAx0A1YARRHn+syhfCUeHW3u3txNDwPYGZ9gTFAv2iZ35tZTgrbSAslDBGRmup8cM/d1wBjd3fF7v5a1LVIKkYBj0XdjXxiZuXAYODN3d1uY1AHhCIiNdWZMMysF/CfQFH8/O5+ej23eYmZnQ+UAT9z93WE1stbcfMsj8oyQi0MEZGaUuka5M/Ag4R+pHY2cHv3AP8P8Gh8G/DD3VmBmV0IXAjQs2fPBoaTWIcOYdBFbxGRSqkkjK3ufmdjbMzdv4hNm9n/As9GH1cAPeJm7R6VJVrH/cD9ACUlJWl7UkIP74mIVJXKRe/fmtm1Zna0mQ2KDfXZmJl1jft4JhC7g2o6MMbM8qJTYH2AOfXZRmNRwhARqSqVFkZ/4DzgBCpPSXn0OSkzexQoBQqiFzFdC5SaWXG0/FLgIgB3f9/MpgELgQrg4tg7xDNl/vzw8J6IiATmdfR/Ed2x1Nfdv2makFJXUlLiZWVlaVm3WRirexARaWnMbK67l+zucqmckloAdN79kJq3MWOge/dMRyEikj1SOSXVGVhsZu8Au17L2oDbapuFtm2hXbtMRyEikj1SSRjXpj0KERHJeqk86f1qUwQiIiLZLWnCMLPX3f0YM/uacFfTrirA3X3PtEcnIiJZo7YWxh4A7t6piWIREZEsVttdUrqhVEREdqmthbGvmV2erNLdJ6UhHhERyVK1JYwcoCPhmoWIiLRytSWMle5+fZNFIiIiWa22axhqWYiIyC61JYxhTRaFiIhkvaQJw92/bMpAREQku6XS+aCIiIgShoiIpEYJQ0REUqKEUYuKCr1ASUQkRgkjiSOOgM8+g4kTMx2JiEh2SOV9GK3S5ZfDe+/BNdfA3nvDxRdnOiIRkcxSwkiiTRt48EHYsAEuuQQ6d4axYzMdlYhI5uiUVC1yc+FPf4LSUhg3Dp59NtMRiYhkjhJGHfLz4ZlnoLgYRo+G117LdEQiIpmhhJGCPfeEF16AoiL43vdg3rxMRyQi0vTSljDMbLKZrTKzBXFl+5jZTDNbEo33jsrNzO40s3Ize8/MBqUrrvoqLIQZM8K1jJNPhg8+yHREIiJNK50tjCnAydXKrgJmu3sfYHb0GeAUoE80XAjck8a46q1HD5g5M0wPHx5uuxURaS3SljDc/TWgegeGo4Cp0fRU4Iy48oc8eAvobGZd0xVbQxx8MLz0Urh7avhwWLUq0xGJiDSNpr6GsZ+7r4ymPwf2i6a7Acvi5lselWWlgQPDHVPl5XDnnZmORkSkaWTsore7O7DbHW+Y2YVmVmZmZatXr05DZKk59ljo2BE2bcpYCCIiTaqpE8YXsVNN0Th2QmcF0CNuvu5RWQ3ufr+7l7h7SWFhYVqDFRGRSk2dMKYD46LpccAzceXnR3dLDQE2xJ26EhGRLJC2rkHM7FGgFCgws+XAtcBNwDQzuwD4FDgnmv15YCRQDmwG/i1dcYmISP2kLWG4+/eTVNV4V3h0PUPd+4mIZDE96S0iIilRwhARkZQoYYiISEqUMEREJCVKGCIikhIlDBERSYkShoiIpEQJQ0REUqKEISIiKVHCEBGRlChhiIhISpQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDRERSooTRQCtWwFdfZToKEZH0U8JogAMPhMcfh4ICGDYMbrsNFi0C90xHJiLS+JQwGuDtt+HVV+Gyy2DVKrjiCujbNySSSy6B55+HLVsyHaWISOMwb8b/DpeUlHhZWVmmw9jls8/ghRdCopg1CzZvho4dYd486NMn09GJiARmNtfdS3Z3ObUwGlHPnnDRRfDMM7B2Lfzud7BxIyxblunIREQaTgkjTfLzYcCATEchItJ4lDBERCQlbTOxUTNbCnwN7AAq3L3EzPYB/gQUAUuBc9x9XSbiExGRmjLZwviuuxfHXXi5Cpjt7n2A2dFnERHJEtl0SmoUMDWangqckcFYRESkmkwlDAdmmNlcM7swKtvP3VdG058D+yVa0MwuNLMyMytbvXp1U8QqIiJk6BoGcIy7rzCzfYGZZrY4vtLd3cwSPiDi7vcD90N4DiP9oYqICGSoheHuK6LxKuBpYDDwhZl1BYjGqzIRm4iIJNbkCcPM9jCzTrFp4CRgATAdGBfNNg54pqljExGR5DJxSmo/4Gkzi23/j+7+opm9A0wzswuAT4FzMhBbo+rUKYzvuw+GDIEOHTIbj4hIQzR5wnD3j4EjEpSvBYY1dTzpVFwM118P114LixfDU0+FjglFRJqjbLqttsUxg2uugeeeC/1JlZSEjglFRJojJYwmcMopUFYGRUVw2mlw3XWwc2emoxIR2T1KGE2kd2944w047zyYMAFOPx3WpdjxyZw58MknaQ1PRKROmXoOo1Xq0AGmTIGjjoJLLw2nqJ5+umavttu2wccfQ3k5LFkCP/tZKG/Gry4RkRZACaOJmcFPfgIDB8LZZ4e7py6/PLQ2liwJw2ef6ZSViGQfJYwMOfro8Ca+c8+FiROhc+fwVr7vfAfOPz9Mx4YhQ0JrREQkk5QwMmi//eDll+Grr2DPPUPrQ0QkWylhZJgZ7LVXpqMQEamb7pJqJnbs0EVvEckstTCagXbtYNo0mD4dunaFb30rDLHp6mX77gu5uZmOWkRaGiWMZmDKFHj1Vfj8c1i5Mow//DCUffllzfnNoKCgZmIZNChcZBcRqQ8ljGagpCT5XVLbtsEXX4QkEp9QqieXlSvhm29g1CjIz2/a+EWkZVDCaOby8qBnzzDU5je/gV/8Am64Adq2DYnmm2/COH66qAjOPBMGD9ZdWyJSlRJGKxFLKBMnhnFubkg27dpVjtu1gyefhJtvhu7d4ayz4F/+BYYOhZyczMUuItnBvBnfelNSUuJlZWX1W3jxYujYMXwzthKbN4cv/nbtkrce1q2DZ58NieOll2Dr1nAR/YwzQvL47nd1QV2kuTOzue6+248Dt86E4Q7HHAPvvw933hl6BNT5lxo2bgzdsT/5ZOiifdOmkGxGjQqJo0MHaN8+jOOnq4/z8/XjFckmShi766OPYPx4eP318A14333h0WtJaMuWkDRGj67f8u3bV00kZ58NN97YuDGKSGqUMOpjxw644w745S/D6amXX4b+/RsvwBZox47Q0tiyJZziio3jp+saT54c1vX731deO4m/jhI/JCqPL8vNVetFZHfVN2G07oveOTmh7/BTTgm3ER1ySCh317dQEjk5od+rPfes/zr22gtuvz302tsYcnNrTzpt24Z5qg+x8k6dYJ99wrD33pXT8Z87ddKvhEjrbmEksn49jBgRXsQ9cmTjrluAkI/XrYPt2ytv6Y0fEpU1pLyiImyr+lBREeq//jo8ALltW/KYc3KSJ5T/+z9YuDCc0ezYEfbYo/7j9u3DNZ+8vDCu7QYFkfpSC6OxrFkTzpucempIGhMmZDqiFscsfNlmmy1bQuKIDevWJf/8+echSaxbBxs2hOWPOy7cKLBpUxivXVv186ZN9XvPSX5+1SQSP6RStrvLbdsGU6dWttwStd7qOlVY22fdot18KWFUd9BB4QXcgweHO6j22Qd++tNQV1YWvh06dgznKDp1Crfl6l/AFqF9e+jWLQy7o6IijNvW8dfkHm5Tjk8g1cdbtyYetm1LXv7VV7BqVfJ5s+0kQps2u59k6pOYEp2abNMmJKzqQ2OVt/Svgqw7JWVmJwO/BXKAB9z9pmTzpuWUVMzNN8PVV4dOmP75z1D2ve+FhxSqz/fzn6cnBpEGcg+n35IlnWSJqGPH0O9YbPnaTv9VL6vrc2PNE/u8fXumf8pVpTMhxZePHh1u9KyPFnFKysxygLuB4cBy4B0zm+7uC5s8mF/8Aq68Mvz1xEyaFJLD11+HYdo06NIl/It3+umVRzM2Pv98GDMmnJvQAwmSAWaV/2HXd/m8vDBkq/ikliypbNsWTgfu2FFzaKzyxlxXovLq+/D1103/s86qhAEMBsrd/WMAM3sMGAU0fcKA8MXfoUPl59g7U2NiXb/GTmLHruLGjvjmzaG8tBQWLAh/tZ07h2H4cLjrrlD/85+HHgQrKsKyFRWhP47LLgv1ZmG44YbKz2edFe7q+vhjePzxyphiCemcc0LHUB98AH/5CyxdGk6p/eQnIZmdfno4pfbBB+EBxjZtqia8E04I3xKffALLl1fWVVSE8iOPDNv58MNQHx87hNYYwN/+BuXloTw2T14e/Md/hJ/Rxo01Y4+dU4j/GcbXx+6n3bmzakKPiZ1/2LkzfFtUl5sb9mXHjqr/nsZ+zrFzFzt3Vp7PidU1JOHHt+bNwvpjFzXi69q2rayP32/9s5FQfFLs2DHT0bRw7p41A3A24TRU7PN5wF3J5v/2t7/tzcJDD7nfeKP7z3/ufuGF7uec43799ZX1RxzhXlTkfuCB7occ4t63r/uVV1bWh6+TqsOTT4a6F15IXD9jRqifNi1x/ccfh/obb0xcv2pVqL/66sT1O3aE+osuqlnXvn1l7GPH1qzfd99Q9/nnidf9m9+E+iVLEtf//vehft68xPV/+EOof/XVxPV//nOof+65xPWzZ4f6Rx9NXP/226H+gQfc27Rxz8mpOixaFOonTUq8/LJlof666xLXr18f6q+4InF9RUWo//GPq26/bVv3vfaq/NmPG+eel+eenx+G9u3D71nMmDHunTqFYc89wzBwYGX96ae777135bBXSsZRAAAKN0lEQVTPPu7HH19ZP3y4e0FB1eG00yrrhw4Nxzp++Nd/rawfOND9W98KQ9euYbjoosr6Qw5x33//MHTrFoYrrqisP+AA9x49qg7XXRfqNm0K9fFDUZH7bbeF+tWr3Xv1qjncd1+o/+QT9969aw4PPxzq33/f/aCDag6x3605c9z79Kk5zJwZ6l95Jexf9eHNNyt/Nw89tObw3nuh/sMPvSGAMq/Hd3S2tTDqZGYXAhcC9Kyri9Zscd55tdfPn197/c6dlf8Je/SfaOwK6/Dhlf+Fx+qg8hzCmWeGtqt7uAMs9l9trA+tCy4Id4TF2rqxcefOlfXDhlW2g1evrqyD0Ar6/vdDPPFDzKRJocfDnJya9R07wm231Yz9uOPCuEsXuOWWmvVDhoTx/vuHa0jVDRwYxkVF8D//U7P+sMPC+JBDKutjX8cAvXuHcf/+cP31Vb+uofKq+BFHhOtcseVjLYAuXSrj/PWvw3R8KyH2EEtpaVh/9RZE7NiddFLlv8zx24/Nd/LJlbebxerjO/o6+eTK3gti9fH/gp94YnhZSmy97uFFKvH1BxxQWRe/7xB+L+Jb3AAHHlg5PXx4zQdh+/WrWr9+fdVjO2hQ5fRJJ4Vb1+Lr45cfNqzmFf1YPDk54ecbE5uvqCiMc3ND90DVxfavfXv4zndq1sd+nh06hBtjqosd+44dE7+TIPa306kTFBfXrI8dn86dYcCAmvXt24dxhs4RZtVFbzM7Gpjg7iOiz1cDuHuCv/o0X/QWEWmh6nvRO9ve6f0O0MfMeplZO2AMMD3DMYmICFl20dvdK8zsEuAlwm21k939/QyHJSIiZFnCAHD354HnMx2HiIhUlW2npEREJEspYYiISEqUMEREJCVKGCIikhIlDBERSUlWPbi3u8xsNfBpkuoCYE0ThtNUtF/NT0vdN+1X8xPbtwPcvXB3F27WCaM2ZlZWnycZs532q/lpqfum/Wp+GrpvOiUlIiIpUcIQEZGUtOSEcX+mA0gT7Vfz01L3TfvV/DRo31rsNQwREWlcLbmFISIijajFJQwzO9nMPjCzcjO7KtPxNJSZLTWzf5jZfDMri8r2MbOZZrYkGu+d6TjrYmaTzWyVmS2IK0u4HxbcGR3D98xsUPI1Z1aS/ZpgZiuiYzbfzEbG1V0d7dcHZjYiM1HXzcx6mNnLZrbQzN43s/+KylvCMUu2b836uJlZvpnNMbN3o/26LirvZWZvR/H/KXp1BGaWF30uj+qL6txIfV7Tl60DoUv0j4DeQDvgXaBvpuNq4D4tBQqqlf0GuCqavgq4OdNxprAfxwGDgAV17QcwEngBMGAI8Ham49/N/ZoAXJFg3r7R72Qe0Cv6Xc3J9D4k2a+uwKBouhPwYRR/SzhmyfatWR+36GffMZrOBd6OjsU0YExUfi/w42j6J8C90fQY4E91baOltTAGA+Xu/rG7fwM8BozKcEzpMAqYGk1PBc7IYCwpcffXgC+rFSfbj1HAQx68BXQ2s65NE+nuSbJfyYwCHnP3be7+CVBO+J3NOu6+0t3nRdNfA4uAbrSMY5Zs35JpFsct+tlvjD7mRoMDJwBPROXVj1nsWD4BDDOLvf83sZaWMLoBy+I+L6f2X4TmwIEZZjY3ep85wH7uvjKa/hzYLzOhNViy/WgJx/GS6NTM5LhThs1yv6JTFQMJ/7G2qGNWbd+gmR83M8sxs/nAKmAmoTW03t0rolniY9+1X1H9BqBLbetvaQmjJTrG3QcBpwAXm9lx8ZUe2pPN/la3lrIfkXuAA4FiYCVwW2bDqT8z6wg8CVzq7l/F1zX3Y5Zg35r9cXP3He5eDHQntIIObcz1t7SEsQLoEfe5e1TWbLn7imi8Cnia8EvwRay5H41XZS7CBkm2H836OLr7F9Ef7k7gf6k8fdGs9svMcglfqI+4+1NRcYs4Zon2raUcNwB3Xw+8DBxNOD0Ye7tqfOy79iuq3wtYW9t6W1rCeAfoE90V0I5wIWd6hmOqNzPbw8w6xaaBk4AFhH0aF802DngmMxE2WLL9mA6cH915MwTYEHcaJOtVO3d/JuGYQdivMdHdKb2APsCcpo4vFdG57AeBRe4+Ka6q2R+zZPvW3I+bmRWaWedouj0wnHB95mXg7Gi26scsdizPBv4atRqTy/SV/TTcKTCScNfDR8AvMx1PA/elN+HujHeB92P7QzjPOBtYAswC9sl0rCnsy6OEZv52wnnUC5LtB+Fuj7ujY/gPoCTT8e/mfv0hivu96I+ya9z8v4z26wPglEzHX8t+HUM43fQeMD8aRraQY5Zs35r1cQMGAH+P4l8A/Doq701IcOXA40BeVJ4ffS6P6nvXtQ096S0iIilpaaekREQkTZQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDmr2o59ER1couNbN7zGx/M3siyXJFZvavDdz2K2ZW4x3JUfkHUc+hb5jZIQ3Zjkg2UMKQluBRwkOa8cYAj7r7P9397OoLRE+2FgENShh1GOvuRxA6eLslQQw5ady2SKNTwpCW4Ang1Lh+/ouA/YG/Ra2IBVH5eDObbmZ/JTx8dhNwbPTug8ui+rtiKzWzZ82sNJq+x8zK4t8zsBteAw6K1rPUzG42s3nAaDMrNrO3og7vnrbK90scZGazohbKPDM7MCq/0szeieaPve9gDzN7Lpp3gZmdG5XfZOGdD++Z2a31+cGKxGtb9ywi2c3dvzSzOYQOGp8htC6mubsn6K15EDAgWqaU8P6D0yAklFo288tomRxgtpkNcPf3Ugzxe4QniGPWeuhQEjN7D/hPd3/VzK4HrgUuBR4BbnL3p80sH2hjZicRuqUYTHiyenrUGWUh8E93PzVa515m1oXQvcWh0c+hc4qxiiSlFoa0FPGnpcZEnxOZ6e6pvr8i3jlRq+DvQD/CS3Xq8kjU1fRQ4Iq48j9B+GIHOrv7q1H5VOC4qP+wbu7+NIC7b3X3zYS+xE6KYphH6Im0DyEZDY9aLse6+wZCV9VbgQfN7Cxgcz32WaQKtTCkpXgGuN3Cq0E7uPvcJPNtqmUdFVT9JyofwisuCV/4R7r7OjObEqurw1h3L9vNGGpjwP+4+301KsJ+jwRuMLPZ7n69mQ0GhhE6lruE8CIdkXpTC0NaBA9vGnsZmEzy1kV1XxNe0RmzFCg2szZm1oPK7q33JHzJbzCz/Qinvhoj5g3AOjM7Nio6D3jVw1vglpvZGbDr3csdgJeAH1p4jwNm1s3M9jWz/YHN7v4w4eL6oGievdz9eeAy4IjGiFlaN7UwpCV5lPDOkOp3TCXzHrDDzN4FpgB3AJ8ACwndQsde4/mumf0dWEx4Q9kbjRjzOODeKCF8DPxbVH4ecF90XWM7MNrdZ5jZYcCb0bWZjcAPCBfUbzGzndG8PyYkwmei6x8GXN6IMUsrpd5qRUQkJTolJSIiKVHCEBGRlChhiIhISpQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDRERS8v8BI85P8OPxUh8AAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, ax = plt.subplots()\n", "ax.plot(df[\"Virtual Processes\"], df[\"Presim. Time / s\"], linestyle=\"dashed\", color=\"red\")\n", "ax.plot(df[\"Virtual Processes\"], df[\"Sim. Time / s\"], \"-b\")\n", "ax.set_xlabel(\"Virtual Process\")\n", "ax.set_ylabel(\"Time / s\")\n", "ax.legend();"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Plotting with Pandas\n", "\n", "* Each data frame hast a `.plot()` function (see [API](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.html))\n", "* Plots with Matplotlib\n", "* Important API options:\n", " - `kind`: `line` (default), `bar[h]`, `hist`, `box`, `kde`, `scatter`, `hexbin`\n", " - `subplots`: Make a sub-plot for each column (good together with `sharex`, `sharey`)\n", " - `figsize`\n", " - `grid`: Add a grid to plot (use Matplotlib options)\n", " - `style`: Line style per column (accepts list or dict)\n", " - `logx`, `logy`, `loglog`: Logarithmic plots\n", " - `xticks`, `yticks`: Use values for ticks\n", " - `xlim`, `ylim`: Limits of axes\n", " - `yerr`, `xerr`: Add uncertainty to data points\n", " - `stacked`: Stack a bar plot\n", " - `secondary_y`: Use a secondary `y` axis for this plot\n", " - Labeling\n", " * `title`: Add title to plot (Use a list of strings if `subplots=True`)\n", " * `legend`: Add a legend\n", " * `table`: If `true`, add table of data under plot\n", " - `**kwds`: Every non-parsed keyword is passed through to Matplotlib's plotting methods"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Either slice and plot\u2026"]}, {"cell_type": "code", "execution_count": 63, "metadata": {"slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAACPCAYAAAAiN3VfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xlc1Ne9//HXAQQXEFRAYRBBwB0VtFHjErXN0tiYQJIm3dLeprFtkjbpctMlvb8mvb1tb3tvmjYmzU3btE2bJjYJxuxb1agxmijgvjCgKAPIvq8zc35/QGxqMUEFZmDez8fDxwOcL3w/Hr/wfc8553uOsdYiIiIiIn0vyNcFiIiIiAxVCloiIiIi/URBS0RERKSfKGiJiIiI9BMFLREREZF+oqAlIiIi0k8UtERERET6iYKWiIiISD9R0BIRERHpJyG+OGl0dLRNSkryxalFREREzsnu3burrLUx5/O1PglaSUlJ7Nq1yxenFhERETknxpji8/1aDR2KiIiI9BMFLREREZF+oqAlfmtnUTX//tQeXj94Cq/X+rocERGRc+aTOVoiH6TT4+X+N47y0OZCgo3hqd0lTJsQwW0rUrkyPY7gIOPrEkVERHpFPVriV4oqm7j2N9t5cFMh189LYPd/XMovb5hDp8fL157I49L73uSpXSfp9Hh9XaqIiMiHMtYO/JDM/PnzrZ46lPez1vLkuyf50fMHCQ0J4mfZ6Xw8Pe70616v5ZUD5azd6ORgWQOOqBF8ZXkK189LYPiwYB9WLiIiQ50xZre1dv55fa2ClvhaTXMH33lmL68fPMXi1HH87/VzmRA5vMdjrbVsOlLBAxud5J2oIzYijDXLJvPpBYmMDNVIuIiI9D0FLRm0thyt5FtP7aG+pZN/v3wqNy9JJqgXc7CstbxdWM0DG528XVTN2FGhfHFxEjddnMTo4cMGoHIREQkUCloy6LR1evjvVw7zh7eOkxYbzq9uzGBG/Ojz+l67i2tYu9HJpiOVRAwP4fOLkvjikmTGjgrt46pFRCQQKWjJoHK4vIE7nsjnyKlGPr9oEt+7cnqfzLPa76rnwU1OXjlQzvCQYD67MJFblk4mdnTPw5AiIiK9oaAlg4LXa/nj9uP87JXDjB4ewi+um8OKabF9fp6CU408tLmQDfkuQoKDuGH+RL58yWQSxozs83OJiMjQp6Alfq+ioY1vPbWHrQVVfHRaLP993Wyiw8P69ZzF1c08/GYhT+8uwVrIynDw1eUpTI4J79fziojI0KKgJX7t1QPlfPeZvbR2evjBqhl8ZkEixgzcoqOlda08sqWIJ945QafHy6rZ8dy2IoVpE85vTpiIiAQWBS3xSy0dbv7zhYM88c5JZsaP5lc3ZpAa67vepMrGdn6/7Rh/fvs4zR0eLp0xnttXpDJnYpTPahIREf+noCV+Z8/JOu5cl8/x6ma+vCyFb146hdAQ/9iIoK6lgz9uP84f3jpOfWsnS9Oi+drKNC5KHuvr0kRExA8paInf8HgtD79ZyC9fP0pMRBj3fXIui1LG+bqsHjW1u/nLjmJ+t7WIqqYOLkoay+0rU1maFj2gQ5siIuLffB60jDGPAp8AKqy1sz7seAWtoamktoVvrtvDO8drWDU7jp9ck07kSP9fPLS1w8OT757gkS1FlNW3MTshkttXpPKx6eN7tXiqiIgMbf4QtJYBTcBjClqBaUO+ix88ux9r4d7VM8nOdAy6XqF2t4ecXBe/2VzIiZoWpk2I4NYVqaxKjyNYgUtEJGD5PGh1F5EEvKCgFVga2jr5j2f3syG/lHmTxnD/DXOZOHZwr1fl9nh5fm8pD24qxFnRRHL0KL66PIWsDAfDgv1jnpmInL8T1S28e7yG2QmRpMaGD7o3hTLwBkXQMsasAdYAJCYmzisuLu6T84rvvHOshm+sy6e8oY2vr0zjthUphAyhIOL1Wl49UM7aTU4OlDbgiBrBV5ancP28hD5ZyV5EBk59aycv7SsjJ7eEd4/Xnv778aPDWJoWw9K0aJakRjOun9f3k8FpUASt91OP1uDW6fFy/xtH+c3mQhLGjOT+G+eSmTjG12X1G2stm49U8sDGAnJP1BEbEcYtSyfz6QWJjAoL8XV5InIWnR4vW45WkpPr4vVDp+hwe5kcM4prMxO4ZEoM+131bC2oYpuzivrWTgBmxo9maVoMy9KimZc0hrAQvakSBS0ZQMeqmrnzyTz2lNRz/bwEfrh6JuEBEjastbxdVM3ajU62F1YzZuQwbl6SzOcWJRE5wv8n/YsEAmst+10NPJNbwvN7Sqlu7mDMyGGsnhNPdmYCsxMi/2Wo0OO17HPVs62gki0FVeQW1+L2WoYPC2JB8jiWpkWzNC2GKeM1zBioFLSk31lrWffuSe59/iChIUH8NDudK9PjfF2Wz+wuruXBTU42Hq4gIiyEz1+cxBeXJDN2VKivSxMJSKV1rTyb7yIn14WzoonQ4CA+Oj2W7O7eq3NZx6+p3c3Oomq2FlSxpaCSospmAGIj/jHMuDg1mpgIDTMGCp8HLWPME8ByIBo4BfzQWvv7sx2voDW41DR38N1n9vLawVNcnDKO//3kHOIiR/i6LL+w31XPQ5udvLy/nOEhwXxmQSK3LJvM+NHDfV2ayJDX1O7mlf3l5OSW8HZRNdbC/EljyMp08In0+D5bXsZV13q6t+stZxV1LV3DjDPiRp/u7ZqfNEZzN4cwnwetc6WgNXhsOVrJt5/aQ21LB3ddPo2blyRrbakeOCsaeWhTIRv2lBJsDJ/8SAJfXpYy6J/AFPE3Hq/lLWcV6/NcvLK/nNZOD4ljR5KV4SArw0FS9Kh+P/+B0q65XVsLKtldXEunxxIWEsSCyeNYmhrN0inRTB0foWHGIURBS/pcW6eHn79yhEffOkZqbDi/unEuM+MjfV2W3ztR3cJv3izk6d0nsRauyXBw6/IUJsf4bo9HkaHgcHkDObkuNuS7ONXQzujhIayaHc+1mQ7mTRrjs1DT3O5m57FqthztmlTvrGgCICYi7HToWpwaTWyEerkHMwUt6VNHyhu548k8Dpc3ctOiSXzv49MZEaou8XNRVt/KI1uKeOKdE7S7vaxKj+O2FalMjxvt69JEBo2Kxjaeyy8lJ9fFwbIGQoIMy6fGkp3pYOW0WL8cqiuta2VbQRVbnVVsK6iktnuYcdqECJZN6Zrf9ZGksX5Zu5ydgpb0Ca/X8sftx/nZK4cZPTyEX1w3hxXTYn1d1qBW1dTO77cd47Htx2nu8PCx6eO5fWUqcydG+bo0Eb/U2uHhtYPlrM9zseVoJV4LcxIiycpwcNWc+EG1zpXXazlQ2sBWZyVbj1axq7jm9DDjRcljT8/vmjZBw4z+TkFLLlhFQxvffnovW45WsnJaLD+/bjbRg+gXmr+ra+ngj9uP84e3jlPf2snStGhuX5HKgsn+ueG2yEDyei07j9WQk1vCy/vLaWp3Ex85nGsyHGRnOkiNjfB1iX2ipcPNzmM1bD3aNb+roHuYMTo8rDt0dS2aGquHafyOgpZckNcOlPPdnH20dLi5e9UMPrsgUe+u+klTu5u/7Cjmd1uLqGrq4CNJY7h9ZRrL0qLV5hJwnBVNrM8r4dm8Ulx1rYwKDebK9DiyMh0sTB435B+8Ka9vY2tBJVu7n2asbu4AuoYZl6ZFsyQthouSxmrqhh9Q0JLz0tLh5j9fOMQT75xgZvxofnXj3CHzztHftXV6ePKdE/zfliLK6ttId0Ry+8pULp0+fsjfXCSw1TR38PyeUnLyXOw5WUeQgaVpMWRnOrhsxoSADRVer+VgWUP3SvWVvHuslg6Pl9CQIC5KGsuS7h6v6RNG63eEDyhoyTnbW1LHnU/mc6y6mTXLJvOtS6ee04J+0jc63F5yckv4zZuFFFe3MHV8BLeuSOETs+MJ1i9TGSLa3R42HqrgmVwXm49U4PZapseNJjvDwdVz4zVU1oPWDg87j3UtmrqtoIojpxoBiA4PZXFq9OmFU7Vm38BQ0JJe83gtD79ZyC9fP0pMRBj/+8k5XJwS7euyAp7b4+WFvWWs3eTEWdFEcvQovnpJCtdkOBSAZVCy1pJ7opZncl28uLeM+tZOYiLCuGZuPFkZCcyI1xO45+JUQ1t36Kpkm7OKqqauYcYp48NPh64FyeMCtkewvyloSa+46lr5xrp83jlWw6r0OH6Sld5nKydL3/B6La8dLOeBjU4OlDbgiBrBVy6ZzPXzJ+pxcBkUTlS3kJNXwvo8F8XVLQwfFsTlMyeQnZnA4pRxhATrjcOF8noth8obupaRKKjineM1dLi9hAYHMT9pzOngNSNOw4x9RUFLPtSGfBc/eHY/Xq/l3qtncW2mQ5Ov/Zi1ls1HK1m70cnu4lpiIsK4ZWkyn1kwiVEBsom3DB71rZ28uLeM9XklvHu8FmNg0eRxZGU4+Hh6XMBsPO8rrR0e3j1ec3pi/eHyrmHGcaPeG2bsGmqcEKlhxvOloCVn1dDWyQ83HGB9novMxCh+ecNcJo3r3y0qpO9Ya9lRVMPaTQW85awmauQwbl6czE0XJxE5Qr2R4judHi9vHqlkfZ6L1w+dosPtJSVmFNmZCVyT4cARpf1QfaWioY1tzqrubYKqqGpqByAt9n3DjJPHMjJUAbi3FLSkR+8er+HOJ/Mpb2jjaytTuX1FqrrtB7HcE7U8uNHJ3w9XEBEWwk0XT+KLi5MH1QKOMrhZa9nnqicn18Xze0qpbu5g7KhQVs+JJzvTQbojUj3lfsZay+HyxtO9Xe8cq6G9e5hx3qQxLJ0SzdLUGGbGa5jxgyhoyT/p9Hj59d8LeHCTk4QxI/nlDXOZN2mMr8uSPnKgtJ6HNhXy0v4yhocE8+kFiaxZNllPH0m/Ka1rZX2ei/V5LpwVTYQGB3HpjPFkZTi4ZGoMw/QGbtBo63xvmLGrt+tQWQMAY98bZkyNZklaNPHqkfwnPg9axpgrgF8BwcDvrLU/+6DjFbT6z7GqZu5cl8+ek3VcNy+Be1bP1PyIIcpZ0chDmwvZkF9KsDFcPz+Br1ySwsSxI31dmgwBTe1uXt5Xxvo8F28XVWMtfCRpDFkZCaxKj9ODNENERWMbb71vmLGysWuYMTU2nCWp0Syb0vU0Y6DPDfVp0DLGBANHgUuBEuBd4FPW2oNn+xoFrb5nreVvu05y7/MHGRYcxE+y0lk1O87XZckAOFHdwsNbCnl6Vwkea7lmroNbV6SQEhPu69JkkPF4LducVeTklvDqgXLaOr1MGjeSrAwHWRkOze8c4qy1HDnVyLaCKrYUVLGzqJp2t5dhwYbMxDGnN8WeGR8ZcOv8+TpoLQLusdZe3v359wCstT8929coaPWt2uYOvpuzl1cPnGLR5HHcd8Mc4iLV7RtoyuvbeGRLEX99p5h2t5cr0+O4fUUq0+O0XpF8sENlDeTklrAhv5SKxnZGDw/hqu55V5mJYzTvKkC1dXrYXVzLloKuTbEPdg8zRo0cxuLUaJZ1bxMUCA8++DpoXQdcYa39UvfnnwMWWGtvP+O4NcAagMTExHnFxcUXdF7psq2gim89lU9NcwffvmwqtyydrAmNAa6qqZ1Htx3jsbeLaWp387Hpsdy2IpWMRM3Tk3+oaGhjQ37XVjiHyhoICTKsmBZLdoaDldNjCQvRum3yzyob29leWMWW7k2xK7qHGSfHjGLZ6acZxw3J6SqDImi9n3q0Llxbp4dfvHqE3287RmpsOPffMJdZjkhflyV+pL6lkz9uP84fth+jrqWTJanR3L4ylQXJY9VDEaBaOzy8drCcZ3JdbCuoxGthzsQosjMcXDUnnrGjQn1dogwS1loKKprYcrTracadx6pp6/QSEmTInDTmdG9XumNoDDP6Omhp6HCAHT3VyNefyONweSOfWziJ7185XdsuyFk1tbt5fEcxv916jKqmdj6SNIbbVqRyyZQYBa4A4PVadhyrJifXxcv7ymju8OCIGkFWhoNrMhykxmoun1y4tk4PucW1bOneFHu/q2uYMXLEMJZ0P8m4NC2ahDGD82EdXwetELomw38UcNE1Gf7T1toDZ/saBa3zY63lT9uP85OXDzN6eAg/v242K6eN93VZMki0dXpY9+5JHn6zkLL6NtIdkdy2IpXLZozXcPMQ5KxoIie3hGfzXJTWtxEeFsKV6RPIykhgQfJY/Z9Lv6puamebs+r0NkHlDW0ATI4e1R26Ylg4eSwRwwfH06v+sLzDlcD9dC3v8Ki19r8+6HgFrXNX0djGvz+1lzePVrJiagw/v24OMRFaqFLOXYfby/q8Eh7aXEhxdQtTxodz24pUVqXHaUHbQa66qZ3n95SyPs/FnpJ6ggwsmxJDVoaDy2ZMUM+3+IS1FmdFU/cSEpXsKKqhtdNDSJAhIzHq9Gr1sxOi/HaY0edB61wpaJ2b1w+e4jvP7KW53c0PVk3nswsnachHLpjb4+XFfWWs3eikoKKJpHEj+eryFLIyEggNUeAaLNo6PWw8XEFOrovNRypwey0z4kaTnelg9Zx4YrWQrfiZdreH3OK606vV7y+tx1oYPTyke2/GruDlT2sCKmgNUS0dbn784iH+uvMEM+JG86sb55I2PsLXZckQ4/VaXjt4irWbCtjvaiA+cjhfWZ7CJ+dPZPgw9YD4I2stu4tryclz8cKeUhra3MRGhHFN93pXWtJDBpOa5o7uRVO7gldZfdcwY9K4kadD16KUcT4dZlTQGoL2ldRzx7o8jlU1s2bpZL552RQ9bi39ylrLm0crWbvRya7iWqLDw1izLJnPLJgU8KtC+4vi6mZycl08m++iuLqFEcOCuXzmeLIzE1icGu23wy4ivWWtpbCy+XTo2lFUTUuHh+AgQ8bErmHGJWnRzEmIHNCpDgpaQ4jHa/m/LYXc99pRosPDuO+Tc7g4NdrXZUkAsday81gNazc62easImrkML64OJnPX5xE5IjBMXF1KKlv6eSFfaWsz3Wxq7gWY+DilHFkZSRwxawJQ3LNIpH3dLi95J6oZWtBJdsKqtjr6hpmjBgewuKUrqcZl6XFkDiuf4cZFbSGCFddK99cl8/OYzWsSo/jv7JmETVS69qI7+SdqOXBTU7eOFRBeFgINy2axM1LkhkXrgcx+lOH28ubRytZn1fCGwcr6PB4SY0NJzvTwTVzHdrwVwJWbXMHbxV2Pc245Wglpd3DjJPGjWRpWjRLUmO4OHUco/t4mFFBawh4bk8pd6/fh9druffqWVyb6dCEd/EbB0sbeHCzk5f2lREWEsSnL5rEmmWTmRCpidZ9xVrL3pJ6cnJLeH5vGTXNHYwbFcpVc+K5NjOBWY7R+p0g8j7WWoqqmtl6tJJtzireLqymuXuYce7EqNObYs9JiLrgYUYFrUGssa2TH244QE6ei4zEKO6/Ya42bhW/5axo4jebC3k230WwMVw3P4GvXpLiV08HDTauulaezXORk1tCYWUzoSFBXDpjPNkZDpZNiWGYltwQ6ZUOt5e8E7Vsc3Ztir23pK5rmDEshEUp41g6JYZladHndY9V0Bqkdh2v4c51+ZTWtfK1lWl8bWWq1jGSQeFkTQsPv1nIU7tK8FjL1XPjuXV5qlYZ76XGtk5e3l/O+lwXbxdVA3BR0liyMh1cmR6nuXAifaCupYPthdVsLahky9EqXHWtAEwcO4KlaV2ha1FKdK9+3hS0BplOj5cH/l7A2k1OHGNGcP8NGcybpA1/ZfApr2/jkS1F/PWdYtrdXq6cFcdtK1KZEa/lBc7k9njZ5qwiJ9fFawfLaev0kjRuJNmZCWRlONQrKNKPrLUcr245Hbp2FFXT1O4myHTt9/le8JozMarHXmQFrUHkeFUzd6zLZ8/JOq7NTOCe1TMGzRYEImdT1dTOo9uO8djbxTS1u/nY9FhuW5FKRqLeQBwsbSAnt4QNe0qpbGwncsQwrpoTR1ZGApmJUZp3JeIDnR4v+Sfr2Hq08vQwo9dC+HvDjN3bBCWNG4kxRkFrMLDW8tSuEu55/gAhQYafZKfzidnxvi5LpE/Vt3Typ7eP8+hbx6hr6WRJajS3rUhl4eSxARUoTjW0sSHfRU6ui8PljQwLNqyYGkt2poMV02K1Jp6In6lv6WR7Ydfcrq0FlZTUdg0zJozpGmb82bWzFbT8WW1zB9/L2ccrB8pZOHks931yrh7PliGtud3N4zuLeWTLMaqa2pk/aQy3rUxl+ZSYIRu4WjrcvHbgFDl5LrYVVOK1MHdiFNdmOvjE7HjGjNJSLSKDgbWW4u5hxq0FXU8z7v/RFQpa/mpbQRXfeiqfmuYOvn3ZVG5ZOpkgrd4sAaKt08Pfdp3k4c2FlNa3McsxmttXpHHZjPFD4ufA67XsKKomJ8/Fy/vKaO7w4Iga0bXeVYaDlBg9HCAy2HV6vISGBCto+Zt2t4f/efUIv916jMkxo/j1jRnMckT6uiwRn+hwe3k2z8VDm50cr25hyvhwbluRyqr0uEH5pK2zopFncl1syHNRWt9GeFgIV6ZPIDszgYuSxg6JECki/+CzOVrGmOuBe4DpwEXW2l6lp6EetI6eauSOJ/M5VNbAZxcmcveVMxgRqjkZIm6Plxf3lfHgJidHTzUxadxIbl2eQlZGAqEh/h24qpvaeW5PKevzXOwtqSc4yLAsLZqszAQunT5eP+MiQ5gvg9Z0wAv8H/DtQA9a1lr+tP04P335MOFhIfz8utl8dPp4X5cl4ne8Xsvrh06xdqOTfa564iOH8+VLUrjhIxMZPsx/Aktbp4e/H6pgfV4Jm49U4vZaZsaPJivDweq58cRGaGV8kUDg86cOjTGbCfCgVdHYxl1P72XzkUqWT43hF9fNISZC+8GJfBBrLW8ereTBTU7ePV5LdHgYtyxN5jMLJ/lss2RrLbuKa8nJLeGFvWU0trkZPzqMa+Y6yMp0MG2C1ggTCTQXErS07XsfeOPgKb7zzF6a2t386OqZfG7hpCH7ZJVIXzLGsHxqLMunxrKzqJq1m5z89OXDPLS5kC8uTuYLFycROXJg1pk7XtVMTp6LZ/NcnKhpYcSwYD4+awJZmQ4uTokmWPOuROQ8fGiPljHmDWBCDy/dba3d0H3MZj6kR8sYswZYA5CYmDivuLj4fGv2G60dHn784kEe33mC6XGj+fWNc0kbH+HrskQGtfyTdazd6OSNQ6cIDwvhc4smcfOSZKLD+76HuK6lgxf2lrE+z8Xu4lqMgcUp0WRlOLhi1gRG+ahXTUT8i4YOfWC/q56vP5lHUWUza5ZN5luXTdEihCJ96FBZAw9ucvLivjLCQoL41EWJfHlZChMiL2xeVIfby+YjFazPc/H3QxV0eLykxYaTnZnANRnxxEVqjTsR+WcaOhxAHq/lkS1F3Pf6EcaNCuPxLy1gcWq0r8sSGXKmx41m7acz+UZlEw9tKuSxt4t5fMcJrp2XwFcvSSFxXO/3BrTWsqeknvW5JTy3p5Talk6iw0P57MJJZGc6mBk/WsP9ItIvLvSpwyzgASAGqAPyrbWXf9jXDdYerdK6Vr6xLp+dx2r4+KwJ/DQ7naiRWu1ZZCCcrGnh4TcLeWpXCR5ruXpOPLeuSCE19uzD9SW1LWzIL+WZ3BKKKpsJDQnishnjyc50sDQtpsfNY0VEzuTzocNzNRiD1vN7Srl7/T7cXss9q2dy/bwEvQMW8YFTDW08sqWIv+48QZvbw5Wz4rh1RQoz47sWBG5s6+TlfeXk5JWwo6gGgIuSx5Kd4eDj6XFEjtAm7iJybhS0+lFjWyc/3HCAnDwXcydGcf8Nc0mKHuXrskQCXnVTO4++dYzHthfT2O5m5bRYwsNCePVAOe1uL8nRo8jO6NoKZ+LY3g8zioicSUGrn+wuruHOdfm4alu5fWUaX1uZqqEGET9T39rJY9uP8+hbx/BaWD0nnqxMBxkTo9TrLCJ9QkGrj7k9Xn690cnajQXER43g/hvmMj9prK/LEpEP4PZ4AQbl3oki4t/01GEfOl7VzJ3r8sk/WUd2poN7V88kYrjmdIj4OwUsEfFHClrdrLU8tbuEe547QEiQ4YFPZXDVnHhflyUiIiKDmIIWXatDfy9nHy/vL2dB8lh+ecNc4qO0aKGIiIhcmIAPWm85q/jW3/ZQ3dzOd66Yxpplk7WnmYiIiPSJgA1a7W4P//PqEX679RiTY0bxu88vZpYj0tdliYiIyBASkEGr4FQjX38yn0NlDXxmQSI/WDWDEaHap1BERET6VkAFLWstj71dzE9eOkR4WAi/u2k+H5sx3tdliYiIyBAVMEGrsrGdu57ew6YjlVwyJYZfXD+b2Ijhvi5LREREhrCACFp/P3SKu57eS2O7m3tXz+SmRZO0YrSIiIj0uyEdtFo7PPzXSwf5y44TTJsQwRNrFjJlfISvyxIREZEAcUFByxjzC+AqoAMoBP7NWlvXF4VdqP2ueu54Mo/CymZuWZrMty+fSliIJryLiIjIwLnQPSteB2ZZa2cDR4HvXXhJF8brtTz8ZiFZD71FU7ubv9y8gLtXzVDIEhERkQF3QT1a1trX3vfpDuC6CyvnwpTWtfLNv+Wzo6iGK2ZO4KfZ6YwZFerLkkRERCSA9eUcrS8C6/rw+52TF/aW8v2cfbi9lp9fO5vr5ydowruIiIj41IcGLWPMG8CEHl6621q7ofuYuwE38PgHfJ81wBqAxMTE8yq2J41tndzz3EGeyS1hzsQofnXDXJKiR/XZ9xcRERE5Xx8atKy1H/ug140xXwA+AXzUWms/4Ps8AjwCMH/+/LMedy52F9dw57p8XLWtfH1lKl/7aBrDgi902pmIiIhI37jQpw6vAO4CLrHWtvRNSR/O7fHywEYnD2wsID5qBH/78iLmJ40dqNOLiIiI9MqFztFaC4QBr3fPh9phrf3KBVf1AYqrm7lzXT55J+rIznBwz9UzGT18WH+eUkREROS8XOhTh6l9VUgvzsXTu0u457kDBAUZfv2pDFbPiR+o04uIiIics0GxMnxdSwffX7+Pl/aVsyB5LPfdMBdH1AhflyUiIiLygfw+aG13VvHNv+2hqqmdu66YypeXpRAcpGUbRERExP/5bdBqd3u477WjPLK1iOToUay/aTHpCZG+LktERESk1/wyaDkrGvn6E/kd7vK/AAAGKElEQVQcLGvgMwsSuXvVdEaG+mWpIiIiImflV+nFWstfdhTz4xcPMSoshN/eNJ9LZ4z3dVkiIiIi58VvglZlYzvfeWYvGw9XcMmUGH5x/WxiI4b7uiwRERGR8+YXQWvj4VPc9fReGtrc3HPVDD5/cZL2KRQREZFBz6dBq7XDw09eOsSfdxQzbUIEj39pIVMnRPiyJBEREZE+47OgdaC0njuezMdZ0cSXliTz7cunMnxYsK/KEREREelzPglalU3tXPPgW4wZGcqfb76IpWkxvihDREREpF/5JGiV17fxhWmx/Cx7NmNGhfqiBBEREZF+55OglRA1goc/O08T3kVERGRIC/LFSceMClXIEhERkSHPJ0FLREREJBAoaImIiIj0EwUtERERkX5irLUDf1JjGoEjA35i/xcNVPm6CD+jNumZ2qVnapeeqV3+ldqkZ2qXnk211p7Xiuq+WrD0iLV2vo/O7beMMbvULv9MbdIztUvP1C49U7v8K7VJz9QuPTPG7Drfr9XQoYiIiEg/UdASERER6Se+ClqP+Oi8/k7t8q/UJj1Tu/RM7dIztcu/Upv0TO3Ss/NuF59MhhcREREJBBo6FBEREekn/Rq0jDFXGGOOGGOcxpjv9vB6mDFmXffrO40xSf1Zjz/oRZt8wRhTaYzJ7/7zJV/UOdCMMY8aYyqMMfvP8roxxvy6u932GmMyB7rGgdaLNllujKl/37Xy/wa6Rl8wxkw0xmwyxhw0xhwwxtzRwzEBdb30sk0C7noxxgw3xrxjjNnT3S739nBMIN6HetMuAXkvAjDGBBtj8owxL/Tw2rlfL9bafvkDBAOFwGQgFNgDzDjjmFuBh7s/vhFY11/1+MOfXrbJF4C1vq7VB22zDMgE9p/l9SuBlwEDLAR2+rpmP2iT5cALvq7TB+0SB2R2fxwBHO3h5yigrpdetknAXS/d///h3R8PA3YCC884JqDuQ+fQLgF5L+r+t38T+GtPPy/nc730Z4/WRYDTWltkre0AngSuPuOYq4E/dX/8NPBRM7R3m+5NmwQka+0WoOYDDrkaeMx22QFEGWPiBqY63+hFmwQka22ZtTa3++NG4BDgOOOwgLpeetkmAaf7/7+p+9Nh3X/OnJgcaPeh3rZLQDLGJACrgN+d5ZBzvl76M2g5gJPv+7yEf/3BP32MtdYN1APj+rEmX+tNmwBc2z3c8bQxZuLAlOb3ett2gWZRd/f/y8aYmb4uZqB1d9tn0PWO/P0C9nr5gDaBALxeuoeB8oEK4HVr7VmvlQC5DwG9ahcIzHvR/cBdgPcsr5/z9aLJ8P7neSDJWjsbeJ1/JGeRM+UCk6y1c4AHgGd9XM+AMsaEA88Ad1prG3xdjz/4kDYJyOvFWuux1s4FEoCLjDGzfF2TP+hFuwTcvcgY8wmgwlq7uy+/b38GLRfw/gSc0P13PR5jjAkBIoHqfqzJ1z60Tay11dba9u5PfwfMG6Da/F1vrqeAYq1teK/731r7EjDMGBPt47IGhDFmGF2B4nFrbU4PhwTc9fJhbRLI1wuAtbYO2ARcccZLgXYf+idna5cAvRctBlYbY47TNbVnpTHmL2ccc87XS38GrXeBNGNMsjEmlK5JY8+dccxzwOe7P74O2Gi7Z5gNUR/aJmfMI1lN11wL6Wqnm7qfJlsI1Ftry3xdlC8ZYya8NzfAGHMRXT/PQ/4G0f1v/j1wyFp731kOC6jrpTdtEojXizEmxhgT1f3xCOBS4PAZhwXafahX7RKI9yJr7festQnW2iS67s8brbWfPeOwc75e+m1TaWut2xhzO/AqXU/bPWqtPWCM+RGwy1r7HF2/GP5sjHHSNen3xv6qxx/0sk2+boxZDbjpapMv+KzgAWSMeYKup6KijTElwA/pmqCJtfZh4CW6niRzAi3Av/mm0oHTiza5DviqMcYNtAI3DvUbRLfFwOeAfd1zTAC+DyRCwF4vvWmTQLxe4oA/GWOC6QqWf7PWvhDI96FuvWmXgLwX9eRCrxetDC8iIiLSTzQZXkRERKSfKGiJiIiI9BMFLREREZF+oqAlIiIi0k8UtERERET6iYKWiIiISD9R0BIRERHpJwpaIiIiIv3k/wMm96i5KbrjYAAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 720x144 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[\"C\"].plot(figsize=(10, 2));"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "fragment"}}, "source": ["* \u2026 or plot and select"]}, {"cell_type": "code", "execution_count": 64, "metadata": {"slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAACPCAYAAAAiN3VfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl81NW9//HXyQ4kJJA9E0JCEvYQEij7FqpWoSKJC7ZabWulVm2ltddq7e9Xvbe37W1vrVVcSqttba2gEMS1LgVkX7OxJ5OEQCb7vi8zc+4fE6nSAAEy+U4yn+fjweORMN/M98Phm3zfOed8z1Faa4QQQgghRP/zMLoAIYQQQoihSoKWEEIIIYSTSNASQgghhHASCVpCCCGEEE4iQUsIIYQQwkkkaAkhhBBCOIkELSGEEEIIJ5GgJYQQQgjhJBK0hBBCCCGcxMuIk4aEhOjY2FgjTi2EEEIIcVkOHz5co7UOvZKvNSRoxcbGcujQISNOLYQQQghxWZRSJVf6tTJ0KIQQQgjhJBK0hBBCCCGcRIKWcFn7i2r5jzdy+eh4JXa7NrocIYQQ4rIZMkdLiIvpttl5+uN8nt9eiKdSvHG4lIkRATyQlsCypEg8PZTRJQohhLgM3d3dlJaW0tHRYXQpF+Xn50d0dDTe3t799p4StIRLKapuYc2GHPJKG7ltZjSPL5/M1pOVrN1q5ruvZfPbj/L5zpJ4VqaY8PaUDlkhhBgMSktLCQgIIDY2FqVc85dlrTW1tbWUlpYSFxfXb+8rdyrhErTWvHbgDMuf2UVJbRsv3JHKr25JJnCYN+kp0Xz0/cU8f0cqft6e/MfGPJb8ejt/3VdCR7fN6NKFEEJcQkdHB8HBwS4bsgCUUgQHB/d7r5v0aAnD1bV28aNNeXx0vJL5CcH85tbpRAT6fe4YDw/FsqRIbpgawbZTVTy71cz/e/Moz/6zgNWLxvHV2TEM95HLWQghXJUrh6xPOaNGuTMJQ+3Ir+bhN3JpbOvm8WWTuGdBHB4XmYOllGLpxHDSJoSxt7CWZ7ea+dm7J3h+eyHfnB/LXfNiGenXf2PrQgghxNWQoCUM0dFt43/+cZI/7T5NYpg/f/nGLCZHjezz1yulmJcQwryEEA6X1LF2q5n//TCf3+8o4u65sXxzQRyjR/g48V8ghBBisKmoqGDNmjUcPHiQoKAgwsPDefrppxk/frzTzilBSwy4kxVNPPRaDqcqm7l77lgeWzYJP2/PK36/GWNH86dvzOKopZHntpl5bruZl3YVc+ecGO5dOI6wkX6XfhMhhBBDmtaa9PR07r77btavXw9Abm4ulZWVErTE0GC3a/685zS//MdJRvp58aevf4G0iWH99v5TTYG8cOcMCiqbeX57IS/tKuYve0tYNXMM3148juhRw/vtXEIIIQaXbdu24e3tzX333Xfu75KTk51+XglaYkBUNXXw8Bu57Cyo4YsTw/ifW6YR4u/rlHMlhgfw21XTWXNNIi9+Usj6g2d47cAZ0lNMfGdJPONC/Z1yXiGEEJf25NvHOF7W1K/vOTlqJD+9ccpFjzl69CgzZszo1/P2hQQt4XQfHKvg0U15tHfb+NnKqdwxO2ZAnj4ZGzyCX2RM47tLE1m3o4jXDpxhU1Ypy6dF8UBaPBMj+j4nTAghhLgSErSE07R1Wfmvd47z2oGzTIkaye9uTyEhbOB7k6KChvHEiik8kJbAS7uK+eve07ydW8a1k8N5MC2B5DFBA16TEEK4q0v1PDnLlClT2Lhx44CfVxYsFU6Re7aB5c/sYv3Bs9y3OJ7N9883JGR9VmiAL4/eMJHdjy5lzTWJHCiu46bndvO1l/ZzoLjO0NqEEEI419KlS+ns7GTdunXn/i4vL4+dO3c69bwStES/stk1z20zc/MLe+jotvH3b83h0Rsm4uPlOpda0HAf1lwznt2PLuXRGyZyoryJ236/l9te3MuO/Gq0lg2shRBiqFFKsXnzZj7++GPi4+OZMmUKjz32GBEREc49b3/cVJRSLwNfBqq01lMvdfzMmTP1oUOHrvq8wrWU1rfxgw25HDhdx/Jpkfx8ZRKBw11/8dD2LhvrD55h3Y4iyhs7mBYdyINpCVwzKfyii6cKIYTomxMnTjBp0iSjy+iT3mpVSh3WWs+8kvfrrzlafwbWAq/00/uJQWZLjoWfvHkUreE3tyaTkWoaFNstAAzz8eQb8+P46uwYMrMsvLC9kNV/PczEiADuT0tgeVIknhK4hBBCXIF+Gc/RWu8AZJKLG2rq6Oah9dk8tD6H8eEBvP/QQm6eET1oQtZn+Xp58pVZMWx9eDG/XZWM1a753mvZXPPUJ7x+6CzdNrvRJQoh+sGZ2jY2HS6loLJZpgoIpxuwpw6VUquB1QAxMTEDdVrhRAeK6/j+hhwqmjr4/jXjeSAtHi9P15mLdaW8PD1IT4nmpmQTHxyrYO02M49szON3Hxdw35J4bp0RfVUr2QshBl5jezfvHSknM6uUg6frz/19+EhfFiaGsjAxhAUJIQQ7aX0/4ViZ3dV/CXdG8O6XOVoASqlY4B2ZozX0ddvsPP1xPi9sLyR61HCevn06qTGjjC7LabTWbD9VzbNbC8g600BYgC/3LhzHV2fHMMJXVkgRwlV12+zsyK8mM8vCRycq6bLaGRc6gptTo1k8PpSjlkZ2FtSwy1xDY3s3AFOiRrIwMZRFiSHMiB2Fr5f8UtUfiouLCQgIIDg42GXDltaa2tpampubiYuL+9xrVzNHS4KWuCzFNa2sWZ9Nbmkjt86I5qcrpuDvJmFDa83eolrWbjWzp7CWUcO9uWdBHF+bG0vgMNef9C+EO9Bac9TSxKasUt7OLaO2tYtRw71ZkRxFRmo006ID/+1Gb7Nrjlga2VVQzY6CGrJK6rHaNX7eHsyOC2ZhYggLE0MZH+7vsiHB1XV3d1NaWkpHR4fRpVyUn58f0dHReHt//me6BC3hdFprNhw8y5NvH8fHy4NfZCSxLCnS6LIMc7iknue2mdl6sooAXy/unhfLNxfEMXqEj9GlCeGWyhraeTPHQmaWBXNVCz6eHnxxUhgZPb1Xl7PETEunlf1FtewsqGFHQTVF1a0AhAX8a5hxfkIIoQEyzOguDA9aSqnXgCVACFAJ/FRr/dKFjpegNbjUtXbx6KY8Pjxeybz4YH5zWzKRgcOMLsslHLU08vx2M+8frcDPy5M7Zsdw76JxhI/0M7o0IYa8lk4r/zhaQWZWKXuLatEaZo4dRXqqiS8nRfXb8jKWhvZzvV27zTU0tDmGGSdHjjzX2zUzdpTM3RzCDA9al0uC1uCxI7+aH76RS31bF498aSL3LIiTtaV6Ya5q5vlthWzJLcNTKW77QjTfXhTPmNHDjS5NiCHFZtfsNtewOdvCP45W0N5tI2b0cNJTTKSnmIgNGeH08x8rc8zt2llQzeGSerptGl8vD2aPC2ZhQggLx4cwITxAhhmHEAlaot91dNv41T9O8fLuYhLC/Pnd7dOZEhVodFku70xtGy98UsjGw2fRGlammLh/STzjQo3dfkiIwe5kRROZWRa25FiobOpkpJ8Xy6dFcXOqiRljRxkWalo7rewvrmVHvmNSvbmqBXBs+fVp6JqfEEJYgPRyD2YStES/OlXRzEPrszlZ0cxdc8fy2A2TGOYjXeKXo7yxnXU7injtwBk6rXaWJ0XyQFoCkyJHGl2aEINGVXMHb+WUkZll4Xh5E14eiiUTwshINbF0YphLDtWVNbSzq6CGneYadhVUU98zzDgxIoBF4x3zu74QO9olaxcXJkFL9Au7XfPnPaf55T9OMtLPi1/fkkzaxDCjyxrUalo6eWlXMa/sOU1rl41rJoXz4NIEpo8JMro0IVxSe5eND49XsDnbwo78auwakqMDSU8xcWNy1KBa58pu1xwra2KnuZqd+TUcKqk7N8w4K270ufldEyNkmNHVSdASV62qqYMfbsxjR341SyeG8atbphEyiH6gubqGti7+vOc0f9p9msb2bhYmhvBgWgKzxwUbXZoQhrPbNfuL68jMKuX9oxW0dFqJCvRjZYqJjFQTCWEBRpfYL9q6rOwvrmNnvmN+V0HPMGOIv29P6HIsmhomD9O4HAla4qp8eKyCRzOP0NZl5fHlk7lzdoz8duUkLZ1W/ravhD/uLKKmpYsvxI7iwaWJLEoMkTYXbsdc1cLm7FLezC7D0tDOCB9PliVFkp5qYk5c8JB/8KaisYOdBdXs7Hmasba1C3AMMy5MDGFBYiizYkfL1A0XIEFLXJG2Liv/9c4JXjtwhilRI/nd7dOHzG+Orq6j28b6A2f4/Y4iyhs7SDIF8uDSBK6dFD7kby7CvdW1dvF2bhmZ2RZyzzbgoWBhYigZqSaumxzhtqHCbtccL2/qWam+moPF9XTZ7Ph4eTArdjQLenq8JkWMlJ8RBpCgJS5bXmkDa9bnUFzbyupF43j42gmXtaCf6B9dVjuZWaW88EkhJbVtTAgP4P60eL48LQpP+WEqhohOq42tJ6rYlGVh+6kqrHbNpMiRZKSYuGl6lAyV9aK9y8b+YseiqbsKajhV2QxAiL8P8xNCzi2cKmv2DQwJWqLPbHbNi58U8tuP8gkN8OU3tyUzLz7E6LLcntVm5528ctZuM2OuaiEuZATfWRzPyhSTBGAxKGmtyTpTz6YsC+/mldPY3k1ogC8rp0eRnhLN5Ch5AvdyVDZ19ISuanaZa6hpcQwzjg/3Pxe6ZscFu22PoLNJ0BJ9Ymlo5/sbcjhQXMfypEh+np7Ubysni/5ht2s+PF7Bs1vNHCtrwhQ0jPsWj+PWmWPkcXAxKJypbSMzu5TN2RZKatvw8/bgS1MiyEiNZn58MF6e8ovD1bLbNScqmhzLSBTUcOB0HV1WOz6eHsyMHXUueE2OlGHG/iJBS1zSlhwLP3nzKHa75smbpnJzqkkmX7swrTXb86tZu9XM4ZJ6QgN8uXdhHHfMHssIN9nEWwweje3dvJtXzubsUg6erkcpmDsumPQUEzckRbrNxvNGae+ycfB03bmJ9ScrHMOMwSM+HWZ0DDVGBMow45WSoCUuqKmjm59uOcbmbAupMUH8dtV0xgY7d4sK0X+01uwrqmPttgJ2m2sJGu7NPfPjuGteLIHDpDdSGKfbZueTU9Vszrbw0YlKuqx24kNHkJEazcoUE6Yg2Q/VKFVNHewy1/RsE1RDTUsnAIlhnxlmHDea4T4SgPtKgpbo1cHTdaxZn0NFUwffXZrAg2kJ0m0/iGWdqee5rWb+ebKKAF8v7po3lm/OjxtUCziKwU1rzRFLI5lZFt7OLaO2tYvRI3xYkRxFRqqJJFOg9JS7GK01Jyuaz/V2HSiuo7NnmHHG2FEsHB/CwoRQpkTJMOPFSNASn9Nts/PMPwt4bpuZ6FHD+e2q6cwYO8roskQ/OVbWyPPbCnnvaDl+Xp58dXYMqxeNk6ePhNOUNbSzOdvC5mwL5qoWfDw9uHZyOOkpJhZPCMVbfoEbNDq6Px1mdPR2nShvAmD0p8OMCSEsSAwhSnokP8fwoKWUuh74HeAJ/FFr/cuLHS9By3mKa1pZsyGH3LMN3DIjmidWTJH5EUOUuaqZ57cXsiWnDE+luHVmNPctjmfM6OFGlyaGgJZOK+8fKWdztoW9RbVoDV+IHUV6SjTLkyLlQZohoqq5g92fGWasbnYMMyaE+bMgIYRF4x1PM7r73FBDg5ZSyhPIB64FSoGDwFe01scv9DUStPqf1prXD53lybeP4+3pwc/Tk1g+LdLossQAOFPbxos7Ctl4qBSb1qycbuL+tHjiQ/2NLk0MMja7Zpe5hsysUj44VkFHt52xwcNJTzGRnmKS+Z1DnNaaU5XN7CqoYUdBDfuLaum02vH2VKTGjDq3KfaUqEC3W+fP6KA1F3hCa/2lns8fA9Ba/+JCXyNBq3/Vt3bxaGYeHxyrZO64YJ5alUxkoHT7upuKxg7W7Sji7wdK6LTaWZYUyYNpCUyKlPWKxMWdKG8iM6uULTllVDV3MtLPixt75l2lxoySeVduqqPbxuGSenYUODbFPt4zzBg03Jv5CSEs6tkmyB0efDA6aN0CXK+1/lbP518DZmutHzzvuNXAaoCYmJgZJSUlV3Ve4bCroIaH38ihrrWLH143gXsXjpMJjW6upqWTl3cV88reElo6rVwzKYwH0hJIiZF5euJfqpo62JLj2ArnRHkTXh6KtIlhZKSYWDopDF8vWbdNfF51cyd7CmvY0bMpdlXPMOO40BEsOvc0Y/CQnK4yKILWZ0mP1tXr6Lbx6w9O8dKuYhLC/Hl61XSmmgKNLku4kMa2bv685zR/2lNMQ1s3CxJCeHBpArPjRksPhZtq77Lx4fEKNmVZ2FVQjV1D8pggMlJM3JgcxegRPkaXKAYJrTUFVS3syHc8zbi/uJaObjteHorUsaPO9XYlmYbGMKPRQUuGDgdYfmUz33stm5MVzXxtzlh+vGySbLsgLqil08qr+0r4w85ialo6+ULsKB5IS2Dx+FAJXG7AbtfsK64lM8vC+0fKae2yYQoaRnqKiZUpJhLCZC6fuHod3TaySurZ0bMp9lGLY5gxcJg3C3qeZFyYGEL0qMH5sI7RQcsLx2T4LwIWHJPhv6q1Pnahr5GgdWW01vxlz2l+/v5JRvp58atbprF0YrjRZYlBoqPbxoaDZ3nxk0LKGztIMgXyQFoC100Ol+HmIchc1UJmVilvZlsoa+zA39eLZUkRpKdEMztutPyfC6eqbelkl7nm3DZBFU0dAIwLGdETukKZM240AX6D4+lVV1jeYRnwNI7lHV7WWv/3xY6XoHX5qpo7+I838vgkv5q0CaH86pZkQgNkoUpx+bqsdjZnl/L89kJKatsYH+7PA2kJLE+KlAVtB7nalk7ezi1jc7aF3NJGPBQsGh9KeoqJ6yZHSM+3MITWGnNVS88SEtXsK6qjvduGl4ciJSbo3Gr106KDXHaY0fCgdbkkaF2ej45X8qNNebR2WvnJ8kncOWesDPmIq2a12Xn3SDlrt5opqGohNng431kST3pKND5eErgGi45uG1tPVpGZZWH7qSqsds3kyJFkpJpYkRxFmCxkK1xMp9VGVknDudXqj5Y1ojWM9PPq2ZvREbxcaU1ACVpDVFuXlZ+9e4K/7z/D5MiR/O726SSGBxhdlhhi7HbNh8crWbutgKOWJqIC/bhvSTy3zRyDn7f0gLgirTWHS+rJzLbwTm4ZTR1WwgJ8Wdmz3pUs6SEGk7rWrp5FUx3Bq7zRMcwYGzz8XOiaGx9s6DCjBK0h6EhpIw9tyKa4ppXVC8fxg+vGy+PWwqm01nySX83arWYOldQT4u/L6kVx3DF7rNuvCu0qSmpbycyy8GaOhZLaNoZ5e/KlKeFkpEYzPyHEZYddhOgrrTWF1a3nQte+olraumx4eihSxjiGGRckhpAcHTigUx0kaA0hNrvm9zsKeerDfEL8fXnqtmTmJYQYXZZwI1pr9hfXsXarmV3mGoKGe/PN+XHcPS+WwGGDY+LqUNLY1s07R8rYnGXhUEk9SsG8+GDSU6K5fmrEkFyzSIhPdVntZJ2pZ2dBNbsKasizOIYZA/y8mB/veJpxUWIoMcHOHWaUoDVEWBra+cGGHPYX17E8KZL/Tp9K0HBZ10YYJ/tMPc9tM/PxiSr8fb24a+5Y7lkQR7C/PIjhTF1WO5/kV7M5u5SPj1fRZbOTEOZPRqqJldNNsuGvcFv1rV3sLnQ8zbgjv5qynmHGscHDWZgYwoKEUOYlBDOyn4cZJWgNAW/llvH45iPY7Zonb5rKzakmmfAuXMbxsiae227mvSPl+Hp58NVZY1m9aBwRgTLRur9orckrbSQzq5S388qpa+0ieIQPNyZHcXNqNFNNI+VnghCfobWmqKaVnfnV7DLXsLewltaeYcbpY4LObYqdHB101cOMErQGseaObn665RiZ2RZSYoJ4etV02bhVuCxzVQsvbC/kzRwLnkpxy8xovrM43qWeDhpsLA3tvJltITOrlMLqVny8PLh2cjgZKSYWjQ/FW5bcEKJPuqx2ss/Us8vs2BQ7r7TBMczo68Xc+GAWjg9lUWLIFd1jJWgNUodO17FmQw5lDe18d2ki312aIOsYiUHhbF0bL35SyBuHSrFpzU3To7h/SYKsMt5HzR3dvH+0gs1ZFvYW1QIwK3Y06akmliVFylw4IfpBQ1sXewpr2VlQzY78GiwN7QCMGT2MhYmO0DU3PqRP328StAaZbpudZ/9ZwNptZkyjhvH0qhRmjJUNf8XgU9HYwbodRfz9QAmdVjvLpkbyQFoCk6NkeYHzWW12dplryMyy8OHxCjq67cQGDycjNZr0FJP0CgrhRFprTte2nQtd+4pqaem04qEc+31+GrySxwT12ossQWsQOV3TykMbcsg928DNqdE8sWLyoNmCQIgLqWnp5OVdxbyyt4SWTivXTArjgbQEUmLkF4jjZU1kZpWyJbeM6uZOAod5c2NyJOkp0aTGBMm8KyEM0G2zk3O2gZ351eeGGe0a/D8dZuzZJig2eDhKKQlag4HWmjcOlfLE28fw8lD8PCOJL0+LMrosIfpVY1s3f9l7mpd3F9PQ1s2ChBAeSEtgzrjRbhUoKps62JJjITPLwsmKZrw9FWkTwshINZE2MUzWxBPCxTS2dbOn0DG3a2dBNaX1jmHG6FGOYcZf3jxNgpYrq2/t4rHMI/zjWAVzxo3mqdumy+PZYkhr7bTy6v4S1u0opqalk5ljR/HA0gSWjA8dsoGrrcvKh8cqycy2sKugGruG6WOCuDnVxJenRTFqhCzVIsRgoLWmpGeYcWeB42nGo/95vQQtV7WroIaH38ihrrWLH143gXsXjsNDVm8WbqKj28brh87y4vZCyho7mGoayYNpiVw3OXxIfB/Y7Zp9RbVkZlt4/0g5rV02TEHDHOtdpZiID5WHA4QY7Lptdny8PCVouZpOq43//eAUf9hZzLjQETxzewpTTYFGlyWEIbqsdt7MtvD8djOna9sYH+7PA2kJLE+KHJRP2pqrmtmUZWFLtoWyxg78fb1YlhRBRmo0s2JHD4kQKYT4F8PmaCmlbgWeACYBs7TWfUpPQz1o5Vc289D6HE6UN3HnnBgeXzaZYT4yJ0MIq83Ou0fKeW6bmfzKFsYGD+f+JfGkp0Tj4+Xagau2pZO3csvYnG0hr7QRTw/FosQQ0lOjuXZSuHyPCzGEGRm0JgF24PfAD909aGmt+cue0/zi/ZP4+3rxq1um8cVJ4UaXJYTLsds1H52oZO1WM0csjUQF+vHtxfGs+sIY/LxdJ7B0dNv454kqNmeXsv1UNVa7ZkrUSNJTTKyYHkVYgKyML4Q7MPypQ6XUdtw8aFU1d/DIxjy2n6pmyYRQfn1LMqEBsh+cEBejteaT/Gqe22bm4Ol6Qvx9uXdhHHfMGWvYZslaaw6V1JOZVco7eeU0d1gJH+nLyukm0lNNTIyQNcKEcDdXE7Rk2/d+8PHxSn60KY+WTiv/edMUvjZn7JB9skqI/qSUYsmEMJZMCGN/US1rt5n5xfsneX57Id+cH8fX58USOHxg1pk7XdNKZraFN7MtnKlrY5i3JzdMjSA91cS8+BA8Zd6VEOIKXLJHSyn1MRDRy0uPa6239ByznUv0aCmlVgOrAWJiYmaUlJRcac0uo73Lxs/ePc6r+88wKXIkz9w+ncTwAKPLEmJQyznbwNqtZj4+UYm/rxdfmzuWexbEEeLf/z3EDW1dvJNXzuZsC4dL6lEK5seHkJ5i4vqpEYwwqFdNCOFaZOjQAEctjXxvfTZF1a2sXjSOh68bL4sQCtGPTpQ38dw2M+8eKcfXy4OvzIrh24viiQi8unlRXVY7209VsTnbwj9PVNFls5MY5k9GajQrU6KIDJQ17oQQnydDhwPIZtes21HEUx+dIniEL69+azbzE0KMLkuIIWdS5EjWfjWV71e38Py2Ql7ZW8Kr+85w84xovrM4npjgvu8NqLUmt7SRzVmlvJVbRn1bNyH+Ptw5ZywZqSamRI2U4X4hhFNc7VOH6cCzQCjQAORorb90qa8brD1aZQ3tfH9DDvuL67hhagS/yEgiaLis9izEQDhb18aLnxTyxqFSbFpzU3IU96fFkxB24eH60vo2tuSUsSmrlKLqVny8PLhucjgZqSYWJob2unmsEEKcz/Chw8s1GIPW27llPL75CFa75okVU7h1RrT8BiyEASqbOli3o4i/7z9Dh9XGsqmR3J8Wz5Qox4LAzR3dvH+kgszsUvYV1QEwK240GSkmbkiKJHCYbOIuhLg8ErScqLmjm59uOUZmtoXpY4J4etV0YkNGGF2WEG6vtqWTl3cX88qeEpo7rSydGIa/rxcfHKug02onLmQEGSmOrXDGjO77MKMQQpxPgpaTHC6pY82GHCz17Ty4NJHvLk2QoQYhXExjezev7DnNy7uLsWtYkRxFeqqJlDFB0usshOgXErT6mdVm55mtZtZuLSAqaBhPr5rOzNjRRpclhLgIq80OMCj3ThRCuDZ56rAfna5pZc2GHHLONpCRauLJFVMI8JM5HUK4OglYQghXJEGrh9aaNw6X8sRbx/DyUDz7lRRuTI4yuiwhhBBCDGIStHCsDv1Y5hHeP1rB7LjR/HbVdKKCZNFCIYQQQlwdtw9au801PPx6LrWtnfzo+omsXjRO9jQTQgghRL9w26DVabXxvx+c4g87ixkXOoI/3j2fqaZAo8sSQgghxBDilkGroLKZ763P4UR5E3fMjuEnyyczzEf2KRRCCCFE/3KroKW15pW9Jfz8vRP4+3rxx7tmcs3kcKPLEkIIIcQQ5TZBq7q5k0c25rLtVDWLx4fy61unERbgZ3RZQgghhBjC3CJo/fNEJY9szKO508qTK6Zw19yxsmK0EEIIIZxuSAet9i4b//3ecf627wwTIwJ4bfUcxocHGF2WEEIIIdzEVQUtpdSvgRuBLqAQ+IbWuqE/CrtaRy2NPLQ+m8LqVu5dGMcPvzQBXy+Z8C6EEEKIgXO1e1Z8BEzVWk8D8oHHrr6kq2O3a178pJD053fT0mnlb/fM5vHlkyVkCSGEEGLAXVWPltb6w898ug+45erKuTplDe384PUc9hXVcf0AkAIjAAAH3klEQVSUCH6RkcSoET5GliSEEEIIN9afc7S+CWzox/e7LO/klfHjzCNY7Zpf3TyNW2dGy4R3IYQQQhjqkkFLKfUxENHLS49rrbf0HPM4YAVevcj7rAZWA8TExFxRsb1p7ujmibeOsymrlOQxQfxu1XRiQ0b02/sLIYQQQlypSwYtrfU1F3tdKfV14MvAF7XW+iLvsw5YBzBz5swLHnc5DpfUsWZDDpb6dr63NIHvfjERb8+rnXYmhBBCCNE/rvapw+uBR4DFWuu2/inp0qw2O89uNfPs1gKigobx+rfnMjN29ECdXgghhBCiT652jtZawBf4qGc+1D6t9X1XXdVFlNS2smZDDtlnGshIMfHETVMY6eftzFMKIYQQQlyRq33qMKG/CunDudh4uJQn3jqGh4fima+ksCI5aqBOL4QQQghx2QbFyvANbV38ePMR3jtSwey40Ty1ajqmoGFGlyWEEEIIcVEuH7T2mGv4weu51LR08sj1E/j2ong8PWTZBiGEEEK4PpcNWp1WG099mM+6nUXEhYxg813zSYoONLosIYQQQog+c8mgZa5q5nuv5XC8vIk7Zsfw+PJJDPdxyVKFEEIIIS7IpdKL1pq/7SvhZ++eYISvF3+4aybXTg43uiwhhBBCiCviMkGrurmTH23KY+vJKhaPD+XXt04jLMDP6LKEEEIIIa6YSwStrScreWRjHk0dVp64cTJ3z4uVfQqFEEIIMegZGrTau2z8/L0T/HVfCRMjAnj1W3OYEBFgZElCCCGEEP3GsKB1rKyRh9bnYK5q4VsL4vjhlybg5+1pVDlCCCGEEP3OkKBV3dLJyud2M2q4D3+9ZxYLE0ONKEMIIYQQwqkMCVoVjR18fWIYv8yYxqgRPkaUIIQQQgjhdIYEreigYbx45wyZ8C6EEEKIIc3DiJOOGuEjIUsIIYQQQ54hQUsIIYQQwh1I0BJCCCGEcBIJWkIIIYQQTqK01gN/UqWagVMDfmLXFwLUGF2Ei5E26Z20S++kXXon7fLvpE16J+3Suwla6ytaUd2oBUtPaa1nGnRul6WUOiTt8nnSJr2TdumdtEvvpF3+nbRJ76RdeqeUOnSlXytDh0IIIYQQTiJBSwghhBDCSYwKWusMOq+rk3b5d9ImvZN26Z20S++kXf6dtEnvpF16d8XtYshkeCGEEEIIdyBDh0IIIYQQTuLUoKWUul4pdUopZVZKPdrL675KqQ09r+9XSsU6sx5X0Ic2+bpSqlopldPz51tG1DnQlFIvK6WqlFJHL/C6Uko909NueUqp1IGucaD1oU2WKKUaP3Ot/P+BrtEISqkxSqltSqnjSqljSqmHejnGra6XPraJ210vSik/pdQBpVRuT7s82csx7ngf6ku7uOW9CEAp5amUylZKvdPLa5d/vWitnfIH8AQKgXGAD5ALTD7vmPuBF3s+vh3Y4Kx6XOFPH9vk68Bao2s1oG0WAanA0Qu8vgx4H1DAHGC/0TW7QJssAd4xuk4D2iUSSO35OADI7+X7yK2ulz62idtdLz3///49H3sD+4E55x3jVvehy2gXt7wX9fzbfwD8vbfvlyu5XpzZozULMGuti7TWXcB64KbzjrkJ+EvPxxuBL6qhvdt0X9rELWmtdwB1FznkJuAV7bAPCFJKRQ5MdcboQ5u4Ja11udY6q+fjZuAEYDrvMLe6XvrYJm6n5/+/pedT754/509Mdrf7UF/bxS0ppaKB5cAfL3DIZV8vzgxaJuDsZz4v5d+/8c8do7W2Ao1AsBNrMlpf2gTg5p7hjo1KqTEDU5rL62vbuZu5Pd3/7yulphhdzEDr6bZPwfEb+We57fVykTYBN7xeeoaBcoAq4COt9QWvFTe5DwF9ahdwz3vR08AjgP0Cr1/29SKT4V3P20Cs1noa8BH/Ss5CnC8LGKu1TgaeBd40uJ4BpZTyBzYBa7TWTUbX4wou0SZueb1orW1a6+lANDBLKTXV6JpcQR/axe3uRUqpLwNVWuvD/fm+zgxaFuCzCTi65+96PUYp5QUEArVOrMlol2wTrXWt1rqz59M/AjMGqDZX15frya1orZs+7f7XWr8HeCulQgwua0AopbxxBIpXtdaZvRzidtfLpdrEna8XAK11A7ANuP68l9ztPvQ5F2oXN70XzQdWKKVO45jas1Qp9bfzjrns68WZQesgkKiUilNK+eCYNPbWece8Bdzd8/EtwFbdM8NsiLpkm5w3j2QFjrkWwtFOd/U8TTYHaNRalxtdlJGUUhGfzg1QSs3C8f085G8QPf/ml4ATWuunLnCYW10vfWkTd7xelFKhSqmgno+HAdcCJ887zN3uQ31qF3e8F2mtH9NaR2utY3Hcn7dqre8877DLvl6ctqm01tqqlHoQ+ADH03Yva62PKaX+EziktX4Lxw+GvyqlzDgm/d7urHpcQR/b5HtKqRWAFUebfN2wggeQUuo1HE9FhSilSoGf4pigidb6ReA9HE+SmYE24BvGVDpw+tAmtwDfUUpZgXbg9qF+g+gxH/gacKRnjgnAj4EYcNvrpS9t4o7XSyTwF6WUJ45g+brW+h13vg/16Eu7uOW9qDdXe73IyvBCCCGEEE4ik+GFEEIIIZxEgpYQQgghhJNI0BJCCCGEcBIJWkIIIYQQTiJBSwghhBDCSSRoCSGEEEI4iQQtIYQQQggnkaAlhBBCCOEk/wcFCo81otnLcAAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 720x144 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo.plot(y=\"C\", figsize=(10, 2));"]}, {"cell_type": "markdown", "metadata": {}, "source": ["* I prefer slicing first, as it allows for further operations on the sliced data frame"]}, {"cell_type": "code", "execution_count": 65, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD4CAYAAAD4k815AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAACTlJREFUeJzt3X+oZ3ldx/HXe3dQEqL+mCFtp+sNlGILibyshH9kZDQykRUEbkGY4vyTZPRHbS4R/REM9Ef/FMRQawTlQsGyC7u1rVlKP9lZEXVdM4sRV7BWlEQUbd13f8yVuy7jzuz9nr7nzvv7ePwz3HO+fM6bw53nPfec73emujsAzHHL2gMAsCxhBxhG2AGGEXaAYYQdYBhhBxhG2AGGEXaAYYQdYJhTaxz09OnTvb+/v8ahAW5ajz322Ge7+8z1XrdK2Pf393P58uU1Dg1w06qqT97I69yKARhG2AGGEXaAYYQdYBhhBxhG2AGGEXaAYYQdYJhVPqDEsvbvenDtEXLl4vm1RwAOuWIHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gmEXCXlX3VNV/V9VHllgPgONb6or9T5KcW2gtADawSNi7+/1JPrfEWgBs5tS2DlRVF5JcSJK9vb1tHRZ21v5dD649Qq5cPL/2CDtpaw9Pu/tSdx9098GZM2e2dViAneNdMQDDCDvAMEu93fHdSf45yfdU1ZNV9dYl1gXghVvk4Wl337nEOgBszq0YgGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYZpGwV9W5qvq3qvpEVd21xJoAHM/GYa+qW5P8QZI3JLk9yZ1Vdfum6wJwPEtcsd+R5BPd/Z/d/dUk9yZ54wLrAnAMpxZY47Ykn3rW108mec1zX1RVF5JcSJK9vb2ND7p/14Mbr7GpKxfPrz1CkpMzx0ng++LISZnjJNi174utPTzt7kvdfdDdB2fOnNnWYQF2zhJh/3SS73rW12cPtwGwgiXC/miSV1bVd1fVi5K8KckDC6wLwDFsfI+9u5+uqrcneTjJrUnu6e7HN54MgGNZ4uFpuvuhJA8tsRYAm/HJU4BhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gmFNrDwDw/+3KxfNrj7BVrtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhtko7FX1s1X1eFU9U1UHSw0FwPFtesX+kSQ/k+T9C8wCwAI2+rdiuvuJJKmqZaYBYGNbu8deVReq6nJVXX7qqae2dViAnXPdK/aqek+Sl15j193dff+NHqi7LyW5lCQHBwd9wxMC8IJcN+zd/fptDALAMrzdEWCYTd/u+NNV9WSSH0ryYFU9vMxYABzXpu+KuS/JfQvNAsAC3IoBGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gmI0+oAQnzZWL59ceAVbnih1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGGajsFfV71bVx6rqQ1V1X1V9+1KDAXA8m16xP5Lk+7v7VUk+nuQ3Nh8JgE1sFPbu/pvufvrwy39JcnbzkQDYxJL32N+S5K8WXA+AYzh1vRdU1XuSvPQau+7u7vsPX3N3kqeT/NnzrHMhyYUk2dvbO9awAFzfdcPe3a9/vv1V9eYkP5HkR7u7n2edS0kuJcnBwcE3fR0Am7lu2J9PVZ1L8mtJfri7v7TMSABsYtN77L+f5FuTPFJVH6yqP1xgJgA2sNEVe3e/YqlBAFiGT54CDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awp9Ye4LiuXDy/9ggAJ5IrdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYap7t7+QaueSvLJrR/4G51O8tmVZzgpnIsjzsUR5+LISTkXL+/uM9d70SphPwmq6nJ3H6w9x0ngXBxxLo44F0dutnPhVgzAMMIOMMwuh/3S2gOcIM7FEefiiHNx5KY6Fzt7jx1gql2+YgcYSdgBhhF2gGFu2v9B6YWqqu9N8sYktx1u+nSSB7r7ifWmgpOjqu5I0t39aFXdnuRcko9190Mrj7a6qvrT7v6Ftee4UTvx8LSqfj3JnUnuTfLk4eazSd6U5N7uvrjWbKzr8Af+bUn+tbu/+Kzt57r7r9ebbLuq6reSvCFXL/YeSfKaJH+X5MeSPNzdv7PieFtVVQ88d1OSH0ny3iTp7p/c+lAv0K6E/eNJvq+7//c521+U5PHufuU6k508VfWL3f2utefYhqr65SS/lOSJJD+Q5B3dff/hvg909w+uOd82VdWHc/UcvDjJZ5Kc7e4vVNW35OoPvVetOuAWVdUHknw0yR8l6VwN+7tz9UIw3f2+9aa7Mbtyj/2ZJN95je0vO9zHkd9ee4AteluSV3f3TyV5XZLfrKp3HO6r1aZax9Pd/bXu/lKS/+juLyRJd385u/d35CDJY0nuTvI/3f33Sb7c3e+7GaKe7M499l9J8rdV9e9JPnW4bS/JK5K8fbWpVlJVH/pmu5J8xzZnWdktX7/90t1Xqup1Sf6yql6e3Qv7V6vqJYdhf/XXN1bVt2XHwt7dzyT5var6i8M//ys3WSt34lZMklTVLUnuyDc+PH20u7+23lTrOPxG/fEkn3/uriT/1N3X+u1mnKp6b5Jf7e4PPmvbqST3JPn57r51teG2rKpe3N1fucb200le1t0fXmGsE6Gqzid5bXe/c+1ZbtTOhJ0jVfXHSd7V3f9wjX1/3t0/t8JYW1dVZ3P1FsRnrrHvtd39jyuMBRsTdoBhduXhKcDOEHaAYYQdYBhhBxjm/wBdj80waBTiTgAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[\"C\"].plot(kind=\"bar\");"]}, {"cell_type": "markdown", "metadata": {}, "source": ["* There are pseudo-sub-functions for each of the plot `kind`s\n", "* I prefer to just call `.plot(kind=\"smthng\")`"]}, {"cell_type": "code", "execution_count": 66, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD4CAYAAAD4k815AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAACTlJREFUeJzt3X+oZ3ldx/HXe3dQEqL+mCFtp+sNlGILibyshH9kZDQykRUEbkGY4vyTZPRHbS4R/REM9Ef/FMRQawTlQsGyC7u1rVlKP9lZEXVdM4sRV7BWlEQUbd13f8yVuy7jzuz9nr7nzvv7ePwz3HO+fM6bw53nPfec73emujsAzHHL2gMAsCxhBxhG2AGGEXaAYYQdYBhhBxhG2AGGEXaAYYQdYJhTaxz09OnTvb+/v8ahAW5ajz322Ge7+8z1XrdK2Pf393P58uU1Dg1w06qqT97I69yKARhG2AGGEXaAYYQdYBhhBxhG2AGGEXaAYYQdYJhVPqDEsvbvenDtEXLl4vm1RwAOuWIHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gmEXCXlX3VNV/V9VHllgPgONb6or9T5KcW2gtADawSNi7+/1JPrfEWgBs5tS2DlRVF5JcSJK9vb1tHRZ21v5dD649Qq5cPL/2CDtpaw9Pu/tSdx9098GZM2e2dViAneNdMQDDCDvAMEu93fHdSf45yfdU1ZNV9dYl1gXghVvk4Wl337nEOgBszq0YgGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYZpGwV9W5qvq3qvpEVd21xJoAHM/GYa+qW5P8QZI3JLk9yZ1Vdfum6wJwPEtcsd+R5BPd/Z/d/dUk9yZ54wLrAnAMpxZY47Ykn3rW108mec1zX1RVF5JcSJK9vb2ND7p/14Mbr7GpKxfPrz1CkpMzx0ng++LISZnjJNi174utPTzt7kvdfdDdB2fOnNnWYQF2zhJh/3SS73rW12cPtwGwgiXC/miSV1bVd1fVi5K8KckDC6wLwDFsfI+9u5+uqrcneTjJrUnu6e7HN54MgGNZ4uFpuvuhJA8tsRYAm/HJU4BhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gmFNrDwDw/+3KxfNrj7BVrtgBhhF2gGGEHWAYYQcYRtgBhhF2gGGEHWAYYQcYRtgBhtko7FX1s1X1eFU9U1UHSw0FwPFtesX+kSQ/k+T9C8wCwAI2+rdiuvuJJKmqZaYBYGNbu8deVReq6nJVXX7qqae2dViAnXPdK/aqek+Sl15j193dff+NHqi7LyW5lCQHBwd9wxMC8IJcN+zd/fptDALAMrzdEWCYTd/u+NNV9WSSH0ryYFU9vMxYABzXpu+KuS/JfQvNAsAC3IoBGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gmI0+oAQnzZWL59ceAVbnih1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGGajsFfV71bVx6rqQ1V1X1V9+1KDAXA8m16xP5Lk+7v7VUk+nuQ3Nh8JgE1sFPbu/pvufvrwy39JcnbzkQDYxJL32N+S5K8WXA+AYzh1vRdU1XuSvPQau+7u7vsPX3N3kqeT/NnzrHMhyYUk2dvbO9awAFzfdcPe3a9/vv1V9eYkP5HkR7u7n2edS0kuJcnBwcE3fR0Am7lu2J9PVZ1L8mtJfri7v7TMSABsYtN77L+f5FuTPFJVH6yqP1xgJgA2sNEVe3e/YqlBAFiGT54CDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awwg4wjLADDCPsAMMIO8Awp9Ye4LiuXDy/9ggAJ5IrdoBhhB1gGGEHGEbYAYYRdoBhhB1gGGEHGEbYAYap7t7+QaueSvLJrR/4G51O8tmVZzgpnIsjzsUR5+LISTkXL+/uM9d70SphPwmq6nJ3H6w9x0ngXBxxLo44F0dutnPhVgzAMMIOMMwuh/3S2gOcIM7FEefiiHNx5KY6Fzt7jx1gql2+YgcYSdgBhhF2gGFu2v9B6YWqqu9N8sYktx1u+nSSB7r7ifWmgpOjqu5I0t39aFXdnuRcko9190Mrj7a6qvrT7v6Ftee4UTvx8LSqfj3JnUnuTfLk4eazSd6U5N7uvrjWbKzr8Af+bUn+tbu/+Kzt57r7r9ebbLuq6reSvCFXL/YeSfKaJH+X5MeSPNzdv7PieFtVVQ88d1OSH0ny3iTp7p/c+lAv0K6E/eNJvq+7//c521+U5PHufuU6k508VfWL3f2utefYhqr65SS/lOSJJD+Q5B3dff/hvg909w+uOd82VdWHc/UcvDjJZ5Kc7e4vVNW35OoPvVetOuAWVdUHknw0yR8l6VwN+7tz9UIw3f2+9aa7Mbtyj/2ZJN95je0vO9zHkd9ee4AteluSV3f3TyV5XZLfrKp3HO6r1aZax9Pd/bXu/lKS/+juLyRJd385u/d35CDJY0nuTvI/3f33Sb7c3e+7GaKe7M499l9J8rdV9e9JPnW4bS/JK5K8fbWpVlJVH/pmu5J8xzZnWdktX7/90t1Xqup1Sf6yql6e3Qv7V6vqJYdhf/XXN1bVt2XHwt7dzyT5var6i8M//ys3WSt34lZMklTVLUnuyDc+PH20u7+23lTrOPxG/fEkn3/uriT/1N3X+u1mnKp6b5Jf7e4PPmvbqST3JPn57r51teG2rKpe3N1fucb200le1t0fXmGsE6Gqzid5bXe/c+1ZbtTOhJ0jVfXHSd7V3f9wjX1/3t0/t8JYW1dVZ3P1FsRnrrHvtd39jyuMBRsTdoBhduXhKcDOEHaAYYQdYBhhBxjm/wBdj80waBTiTgAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[\"C\"].plot.bar();"]}, {"cell_type": "code", "execution_count": 67, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAEFCAYAAADzK2HGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFoBJREFUeJzt3X+w3XWd3/HnSwhkqyhuuMuPJJewCFLSXUBuo6zdliKO/FpYWpyGbRe0OhmtjDrjbBd0Bi2dncHpjC4OztKM0gXqEinqmkpWBhQqzo4sgeU3IpGi3Cw/QnDBFIJE3v3jfqN3r+fe+w3nm3PO3TwfM2fu98fnfN5vMic3r/nyOd9vqgpJkiRJc3vNsBuQJEmSFgKDsyRJktSCwVmSJElqweAsSZIktWBwliRJklowOEuSJEktGJwlqQ9JPpXkf85x/oEkJ+7inL+b5OG+mxugJO9J8t1h9yFJu5PBWZLmkGTbtNcrSV6ctv/v53t/Va2sqlt3pWZV3VZVb37VTbeU5PVJ/jTJj5v/nh82+wfs5rq3Jnn/7qwhSbuDwVmS5lBVr9v5An4M/N60Y18adn+vVpJ9gG8BK4FTgNcDJwBbgVVDbE2SRpbBWZL6t0+Sq5P8tFmaMbHzRJLHkpzcbK9KsjHJ80meSvKZXpMlOTHJ5LT9P06yuZn/4STvmOV9pyf522b+x5N8ao6ezwPGgbOr6sGqeqWqnq6q/1pVG2aZv5J8OMmjSZ5J8t+S9Px3JMnvJLkjyXPNz99pjv8J8LvA5c1V7svn6FGSRorBWZL6dyawDtgfWA/MFgYvAy6rqtcDhwPXzTdxkjcDFwD/vKr2A94FPDbL8P/HVCDeHzgd+GCS359l7MnAN6tq23w9zHA2MAG8BTgL+I89ev514Abgc8AS4DPADUmWVNUngNuAC5qr9hfsYn1JGhqDsyT177tVtaGqfg5cAxwzy7iXgTclOaCqtlXV91rM/XNgX+DoJIuq6rGq+mGvgVV1a1Xd11w9vhe4FvhXs8y7BHiiRf2ZPl1Vz1bVj4E/Bc7tMeZ04JGquqaqdlTVtcD3gd97FfUkaWQYnCWpf09O234BWJxk7x7j3gccCXy/Wb5wxnwTV9Um4KPAp4Cnk6xLckivsUnemuSWJFuSPAd8AJjti35bgYPnq9/D49O2fwT06uWQ5hwzxi59FfUkaWQYnCVpQKrqkao6F/gN4NPA9Ule2+J9f1FV/wI4FKjmvb38BVNLRZZX1RuAK4DMMvZm4F1t6s+wfNr2OPB3Pcb8XdMrM8ZubrZrF2tK0kgwOEvSgCT5D0nGquoV4O+bw6/M8543Jzkpyb7AduDFOd6zH/BsVW1Psgr4gzmmvoapq8dfSXJUktckWZLk40lOm+N9f5TkjUmWAx8BvtxjzAbgyCR/kGTvJP8OOBr4RnP+KeA356ghSSPJ4CxJg3MK8ECSbUx9UXB1Vb04z3v2BS4FnmFqSchvABfNMvY/AZck+SlwMXN8+bCqXmLqC4LfB24Cngf+hqmlHbfP0c/XgTuBu5n6AuAXe8y9FTgD+BhTS0L+M3BGVT3TDLkMOCfJT5J8bo5akjRSUuX/MZMkzS9JAUc0664laY/jFWdJkiSphb6Dc5LFSf4myT3Njf//S48x+yb5cpJNSW5PsqLfupIkSdIgdXHF+SXgpKo6BjgWOCXJ22aMeR/wk6p6E/BZZv9GuCRpRFVVXKYhaU/Wd3CuKTufPLWoec1cOH0WcFWzfT3wjiSz3SJJkiRJGjmdrHFOsleSu4GngZuqauY3spfS3DS/qnYAzzH11CpJkiRpQej1ZKtd1jxm9tgk+wNfS/LPqur+XZ0nyRpgDcBrX/va44866qgu2pMkSZJmdeeddz5TVWPzjeskOO9UVX+f5Bam7lU6PThvZuppU5PNY2jfwNS9PWe+fy2wFmBiYqI2btzYZXuSJEnSr0jyozbjurirxlhzpZkkvwa8k6kb6k+3Hji/2T4H+HZ5A2lJkiQtIF1ccT4YuCrJXkwF8euq6htJLgE2VtV6pp4sdU2STcCzwOoO6kqSJEkD03dwrqp7geN6HL942vZ24N391pIkSZKGpdM1zpIkSdrzvPzyy0xOTrJ9+/ZhtzKnxYsXs2zZMhYtWvSq3m9wliRJUl8mJyfZb7/9WLFiBaP6qI6qYuvWrUxOTnLYYYe9qjk6uY+zJEmS9lzbt29nyZIlIxuaAZKwZMmSvq6KG5wlSZLUt1EOzTv126PBWZIkSf8oPPnkk6xevZrDDz+c448/ntNOO40f/OAHnc3vGmdJkiR1asWFN3Q632OXnj7vmKri7LPP5vzzz2fdunUA3HPPPTz11FMceeSRnfRhcJYkSdKCd8stt7Bo0SI+8IEP/OLYMccc02kNl2pIkiRpwbv//vs5/vjjd2sNg7MkSZLUgsFZkiRJC97KlSu58847d2sNg7MkSZIWvJNOOomXXnqJtWvX/uLYvffey2233dZZDYOzJEmSFrwkfO1rX+Pmm2/m8MMPZ+XKlVx00UUcdNBBndXwrhqSJEnqVJvbx+0OhxxyCNddd91um98rzpIkSVILBmdJkiSpBYOzJEmS1ILBWZIkSX2rqmG3MK9+ezQ4S5IkqS+LFy9m69atIx2eq4qtW7eyePHiVz1H33fVSLIcuBo4EChgbVVdNmPMicDXgf/bHPpqVV3Sb21JkiQN37Jly5icnGTLli3DbmVOixcvZtmyZa/6/V3cjm4H8LGquivJfsCdSW6qqgdnjLutqs7ooJ4kSZJGyKJFizjssMOG3cZu1/dSjap6oqruarZ/CjwELO13XkmSJGmUdLrGOckK4Djg9h6nT0hyT5K/SrKyy7qSJEnS7tbZkwOTvA74CvDRqnp+xum7gEOraluS04C/BI7oMccaYA3A+Ph4V61JkiRJfevkinOSRUyF5i9V1Vdnnq+q56tqW7O9AViU5IAe49ZW1URVTYyNjXXRmiRJktSJvoNzkgBfBB6qqs/MMuagZhxJVjV1t/ZbW5IkSRqULpZqvB34Q+C+JHc3xz4OjANU1RXAOcAHk+wAXgRW1yjf6E+SJEmaoe/gXFXfBTLPmMuBy/utJUmSJA2LTw6UJEmSWjA4S5IkSS0YnCVJkqQWDM6SJElSCwZnSZIkqQWDsyRJktSCwVmSJElqweAsSZIktWBwliRJklowOEuSJEktGJwlSZKkFgzOkiRJUgsGZ0mSJKkFg7MkSZLUgsFZkiRJasHgLEmSJLVgcJYkSZJaMDhLkiRJLRicJUmSpBb6Ds5Jlie5JcmDSR5I8pEeY5Lkc0k2Jbk3yVv6rStJkiQN0t4dzLED+FhV3ZVkP+DOJDdV1YPTxpwKHNG83gr8WfNTkiRJWhD6vuJcVU9U1V3N9k+Bh4ClM4adBVxdU74H7J/k4H5rS5IkSYPS6RrnJCuA44DbZ5xaCjw+bX+SXw3XJFmTZGOSjVu2bOmyNUmSJKkvnQXnJK8DvgJ8tKqefzVzVNXaqpqoqomxsbGuWpMkSZL61klwTrKIqdD8par6ao8hm4Hl0/aXNcckSZKkBaGLu2oE+CLwUFV9ZpZh64HzmrtrvA14rqqe6Le2JEmSNChd3FXj7cAfAvclubs59nFgHKCqrgA2AKcBm4AXgPd2UFeSJEkamL6Dc1V9F8g8Ywr4UL+1JEmSpGHxyYGSJElSCwZnSZIkqQWDsyRJktSCwVmSJElqweAsSZIktWBwliRJklowOEuSJEktGJwlSZKkFgzOkiRJUgsGZ0mSJKmFvh+5Le2JVlx4w7BbGBmPXXr6sFuQJGkgvOIsSZIktWBwliRJklowOEuSJEktGJwlSZKkFgzOkiRJUgsGZ0mSJKkFg7MkSZLUQifBOcmVSZ5Ocv8s509M8lySu5vXxV3UlSRJkgalqweg/DlwOXD1HGNuq6ozOqonSZIkDVQnV5yr6jvAs13MJUmSJI2iQa5xPiHJPUn+KsnKAdaVJEmS+tbVUo353AUcWlXbkpwG/CVwxMxBSdYAawDGx8cH1JokSZI0v4Fcca6q56tqW7O9AViU5IAe49ZW1URVTYyNjQ2iNUmSJKmVgQTnJAclSbO9qqm7dRC1JUmSpC50slQjybXAicABSSaBTwKLAKrqCuAc4INJdgAvAqurqrqoLUmSJA1CJ8G5qs6d5/zlTN2uTpIkSVqQfHKgJEmS1ILBWZIkSWrB4CxJkiS1YHCWJEmSWjA4S5IkSS0YnCVJkqQWDM6SJElSCwZnSZIkqQWDsyRJktSCwVmSJElqweAsSZIktWBwliRJklowOEuSJEktGJwlSZKkFgzOkiRJUgsGZ0mSJKkFg7MkSZLUgsFZkiRJaqGT4JzkyiRPJ7l/lvNJ8rkkm5Lcm+QtXdSVJEmSBqWrK85/Dpwyx/lTgSOa1xrgzzqqK0mSJA1EJ8G5qr4DPDvHkLOAq2vK94D9kxzcRW1JkiRpEAa1xnkp8Pi0/cnmmCRJkrQg7D3sBqZLsoappRyMj48PuRtJkvq34sIbht3CyHjs0tOH3YLUl0Fdcd4MLJ+2v6w59g9U1dqqmqiqibGxsQG1JkmSJM1vUMF5PXBec3eNtwHPVdUTA6otSZIk9a2TpRpJrgVOBA5IMgl8ElgEUFVXABuA04BNwAvAe7uoK0mSJA1KJ8G5qs6d53wBH+qiliRJkjQMPjlQkiRJasHgLEmSJLVgcJYkSZJaMDhLkiRJLRicJUmSpBYMzpIkSVILBmdJkiSpBYOzJEmS1ILBWZIkSWrB4CxJkiS1YHCWJEmSWjA4S5IkSS0YnCVJkqQWDM6SJElSCwZnSZIkqQWDsyRJktSCwVmSJElqweAsSZIktdBJcE5ySpKHk2xKcmGP8+9JsiXJ3c3r/V3UlSRJkgZl734nSLIX8HngncAkcEeS9VX14IyhX66qC/qtJ0mSJA1DF1ecVwGbqurRqvoZsA44q4N5JUmSpJHRRXBeCjw+bX+yOTbTv01yb5LrkyzvoK4kSZI0MIP6cuD/BlZU1W8DNwFX9RqUZE2SjUk2btmyZUCtSZIkSfPrIjhvBqZfQV7WHPuFqtpaVS81u18Aju81UVWtraqJqpoYGxvroDVJkiSpG10E5zuAI5IclmQfYDWwfvqAJAdP2z0TeKiDupIkSdLA9H1XjarakeQC4EZgL+DKqnogySXAxqpaD3w4yZnADuBZ4D391pUkSZIGqe/gDFBVG4ANM45dPG37IuCiLmpJkiRJw+CTAyVJkqQWDM6SJElSCwZnSZIkqQWDsyRJktSCwVmSJElqweAsSZIktWBwliRJklowOEuSJEktGJwlSZKkFgzOkiRJUgsGZ0mSJKkFg7MkSZLUgsFZkiRJasHgLEmSJLVgcJYkSZJaMDhLkiRJLRicJUmSpBYMzpIkSVILnQTnJKckeTjJpiQX9ji/b5IvN+dvT7Kii7qSJEnSoPQdnJPsBXweOBU4Gjg3ydEzhr0P+ElVvQn4LPDpfutKkiRJg9TFFedVwKaqerSqfgasA86aMeYs4Kpm+3rgHUnSQW1JkiRpILoIzkuBx6ftTzbHeo6pqh3Ac8CSDmpLkiRJA7H3sBuYLskaYA3A+Pj4kLuZsuLCG4bdwsh47NLTh93CyPDPQr34++KX/DvyS/5ZqBd/X/zSQvo70sUV583A8mn7y5pjPcck2Rt4A7B15kRVtbaqJqpqYmxsrIPWJEmSpG50EZzvAI5IcliSfYDVwPoZY9YD5zfb5wDfrqrqoLYkSZI0EH0v1aiqHUkuAG4E9gKurKoHklwCbKyq9cAXgWuSbAKeZSpcS5IkSQtGJ2ucq2oDsGHGsYunbW8H3t1FLUmSJGkYfHKgJEmS1ILBWZIkSWrB4CxJkiS1YHCWJEmSWjA4S5IkSS0YnCVJkqQWDM6SJElSCwZnSZIkqQWDsyRJktSCwVmSJElqweAsSZIktWBwliRJklowOEuSJEktGJwlSZKkFgzOkiRJUgsGZ0mSJKkFg7MkSZLUgsFZkiRJaqGv4Jzk15PclOSR5ucbZxn38yR3N6/1/dSUJEmShqHfK84XAt+qqiOAbzX7vbxYVcc2rzP7rClJkiQNXL/B+Szgqmb7KuD3+5xPkiRJGkn9BucDq+qJZvtJ4MBZxi1OsjHJ95IYriVJkrTg7D3fgCQ3Awf1OPWJ6TtVVUlqlmkOrarNSX4T+HaS+6rqhz1qrQHWAIyPj8/bvCRJkjQo8wbnqjp5tnNJnkpycFU9keRg4OlZ5tjc/Hw0ya3AccCvBOeqWgusBZiYmJgthEuSJEkD1+9SjfXA+c32+cDXZw5I8sYk+zbbBwBvBx7ss64kSZI0UP0G50uBdyZ5BDi52SfJRJIvNGP+KbAxyT3ALcClVWVwliRJ0oIy71KNuVTVVuAdPY5vBN7fbP818Fv91JEkSZKGzScHSpIkSS0YnCVJkqQWDM6SJElSCwZnSZIkqQWDsyRJktSCwVmSJElqweAsSZIktdDXfZwlSZK06x679PRht6BXwSvOkiRJUgsGZ0mSJKkFg7MkSZLUgsFZkiRJasHgLEmSJLVgcJYkSZJaMDhLkiRJLRicJUmSpBYMzpIkSVILBmdJkiSpBYOzJEmS1EJfwTnJu5M8kOSVJBNzjDslycNJNiW5sJ+akiRJ0jD0e8X5fuDfAN+ZbUCSvYDPA6cCRwPnJjm6z7qSJEnSQO3dz5ur6iGAJHMNWwVsqqpHm7HrgLOAB/upLUmSJA1SX8G5paXA49P2J4G39hqYZA2wptndluTh3dzbQnEA8Mywm8inh92BZhiJz4VGzkh8Lvx9MXJG4nOhkePn4pcObTNo3uCc5GbgoB6nPlFVX9/VruZSVWuBtV3O+Y9Bko1VNesacu2Z/FyoFz8X6sXPhXrxc7Hr5g3OVXVynzU2A8un7S9rjkmSJEkLxiBuR3cHcESSw5LsA6wG1g+griRJktSZfm9Hd3aSSeAE4IYkNzbHD0myAaCqdgAXADcCDwHXVdUD/bW9x3H5inrxc6Fe/FyoFz8X6sXPxS5KVQ27B0mSJGnk+eRASZIkqQWDsyRJktSCwVmSJElqYRAPQNEuSnIUU09XXNoc2gys3/mkRknaqfl9sRS4vaq2TTt+SlV9c3idaZiSrAKqqu5IcjRwCvD9qtow5NY0QpJcXVXnDbuPhcQvB46YJH8MnAusY+opizB17+vVwLqqunRYvWk0JXlvVf2PYfehwUvyYeBDTN2x6FjgIzsfTJXkrqp6yzD703Ak+SRwKlMXx25i6mm9twDvBG6sqj8ZYnsakiQzbwUc4F8D3waoqjMH3tQCZHAeMUl+AKysqpdnHN8HeKCqjhhOZxpVSX5cVePD7kODl+Q+4ISq2pZkBXA9cE1VXZbkb6vquKE2qKFoPhfHAvsCTwLLqur5JL/G1P+Z+O2hNqihSHIX8CDwBaCYCs7XMnVhjqr6P8PrbuFwqcboeQU4BPjRjOMHN+e0B0py72yngAMH2YtGymt2Ls+oqseSnAhcn+RQpj4b2jPtqKqfAy8k+WFVPQ9QVS8m8d+RPdcE8BHgE8AfVdXdSV40MO8ag/Po+SjwrSSPAI83x8aBNzH1IBntmQ4E3gX8ZMbxAH89+HY0Ip5KcmxV3Q3QXHk+A7gS+K3htqYh+lmSf1JVLwDH7zyY5A14AWaPVVWvAJ9N8r+an09hDtxl/oGNmKr6ZpIjgVX8wy8H3tFcQdCe6RvA63YGpOmS3Dr4djQizgN2TD/QPK31vCT/fTgtaQT8y6p6CX4RlnZaBJw/nJY0KqpqEnh3ktOB54fdz0LjGmdJkiSpBe/jLEmSJLVgcJYkSZJaMDhLkiRJLRicJUmSpBYMzpIkSVIL/x/a8co4bUSYsAAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[\"C\"].plot(kind=\"bar\", legend=True, figsize=(12, 4), ylim=(-1, 3), title=\"This is a C plot\");"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 5\n", "<a name=\"task5\"></a>\n", "\n", "Use the NEST data frame `df` to:\n", "\n", "1. Make the virtual processes the index of the data frame (`.set_index()`)\n", "2. Plot `\"Presim. Program / s\"` and `\"Sim. Time / s`\" individually\n", "3. Plot them onto one common canvas!\n", "4. Make them have the same line colors and styles as before\n", "5. Add a legend, add missing labels\n", "\n", "* Done? Tell me! [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 68, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [], "source": ["df.set_index(\"Virtual Processes\", inplace=True)"]}, {"cell_type": "code", "execution_count": 69, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAADTCAYAAAC7p6aqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3X+cXHV97/HXe2Z2Nz93k8CSZJdoKqT8CiWlC7VXpVArAlqxrdVwey229lJ9YFtsvb22fdxWbXsv9ofeVixIKwV7KdWrptKKCkUU5UJliUASfoNBsgnJQshufu/uzOf+cc4kk81MdrMzmV95Px+Pfcw53/M953znHMe8+Z7vOUcRgZmZmZkdW5lGN8DMzMzseODQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdZBrdAPKOfHEE2P58uWNboaZmZnZlB566KGXIqJ3qnpNGbqWL1/O4OBgo5thZmZmNiVJz0+n3pShS9JNwFuBbRGxMi37PHBaWmUBsCMiVpVZdyOwE8gDExExMK3Wm5mZmbWZ6fR03QxcB3yuWBAR7ypOS/orYOQI618UES/NtIFmZmZm7WDK0BUR90paXm6ZJAHvBH6mts0yMzMzay/V3r34BmBrRDxdYXkAd0p6SNJVR9qQpKskDUoaHB4errJZZmZmZs2l2tB1BXDbEZa/PiLOBS4FrpZ0QaWKEXFjRAxExMD8BYuqbJaZmZlZc5lx6JKUA34B+HylOhExlH5uA9YA509n27vH8jNtlpmZmVlTqqan62eBJyJiU7mFkuZKml+cBi4G1k9nw/scuszMzKzNTBm6JN0G3A+cJmmTpPemi1Yz6dKipD5Jd6Szi4HvSnoE+B7w1Yj4+nQatWfcocvMzMzaiyKi0W04zKylK2LkhSfoymUb3RQzMzOzI5L00HSeRdqU714M4OmtuxrdDDMzM7OaacrQBbB+6EjPWzUzMzNrLU0ZujIS6xy6zMzMrI00Zeia3ZFl/ebRRjfDzMzMrGaaM3R1Znl8yyjj+UKjm2JmZmZWE80ZujqyjE0UeHbYg+nNzMysPTRn6OpMHhWxbpPHdZmZmVl7aMrQ1ZXLMKczywaP6zIzM7M20ZShC+DMpd1+bISZmZm1jaYNXSv7e3hsyyj5QvM9Md/MzMzsaDV16NozlucHL3kwvZmZmbW+Jg5d3QCsH/K4LjMzM2t9TRu6Tu2dR1cu43FdZmZm1hamDF2SbpK0TdL6krKPSBqS9HD6d1mFdS+R9KSkZyR9+GgalstmOGNpN+s3O3SZmZlZ65tOT9fNwCVlyj8ZEavSvzsmL5SUBT4NXAqcCVwh6cyjadzK/m42DI1S8GB6MzMza3FThq6IuBfYPoNtnw88ExHPRcQY8M/A5UezgZV9PezcP8EPt++Zwe7NzMzMmkc1Y7o+IOnR9PLjwjLL+4EXSuY3pWVlSbpK0qCkweHhYSC5gxHwJUYzMzNreTMNXdcDpwCrgC3AX1XbkIi4MSIGImKgt7cXgB9dPJ+OrHwHo5mZmbW8GYWuiNgaEfmIKAB/R3IpcbIhYFnJ/Mlp2bR15jKctmQ+G9zTZWZmZi1uRqFL0tKS2Z8H1pep9iCwQtKPSOoEVgO3H+2+Vvb1sG5ohAgPpjczM7PWNZ1HRtwG3A+cJmmTpPcCfy5pnaRHgYuAD6Z1+yTdARARE8AHgG8AjwNfiIgNR9vAs/p72LFnnKEde492VTMzM7OmkZuqQkRcUab4sxXqbgYuK5m/AzjscRJH4+ziYPqhUU5eOKeaTZmZmZk1TNM+kb7o9CXzyWbkcV1mZmbW0po+dM3qyLLipHms8+uAzMzMrIU1fegCOKuvh/UeTG9mZmYtrCVC18r+bl7aNca2nfsb3RQzMzOzGWmJ0HVwML0vMZqZmVlraonQdcbSbiQ8rsvMzMxaVkuErrldOV5z4ly/DsjMzMxaVkuELkhefu3HRpiZmVmrapnQdXZ/D1tG9vHSLg+mNzMzs9bTMqHrrL5kMP2Gzb7EaGZmZq2nZULXmX3dgO9gNDMzs9bUMqGrZ3YHrz5hjkOXmZmZtaSWCV2QDKZf78H0ZmZm1oKmDF2SbpK0TdL6krK/kPSEpEclrZG0oMK6GyWtk/SwpMFqG7uyr4cXtu9lZM94tZsyMzMzq6vp9HTdDFwyqewuYGVE/BjwFPD7R1j/oohYFREDM2viQSv703Fd7u0yMzOzFjNl6IqIe4Htk8rujIiJdPYB4ORj0LbDrOzz64DMzMysNdViTNevAV+rsCyAOyU9JOmqI21E0lWSBiUNDg8Pl62zcG4n/Qtms96PjTAzM7MWU1XokvSHwARwa4Uqr4+Ic4FLgaslXVBpWxFxY0QMRMRAb29vxX2u7O9mg3u6zMzMrMXMOHRJeg/wVuCXIyLK1YmIofRzG7AGOH+m+yta2dfDcy/tZuc+D6Y3MzOz1jGj0CXpEuD3gLdFxJ4KdeZKml+cBi4G1perezRW9ifjuh7zJUYzMzNrIdN5ZMRtwP3AaZI2SXovcB0wH7grfRzEDWndPkl3pKsuBr4r6RHge8BXI+Lr1Ta4GLo8rsvMzMxaSW6qChFxRZniz1aouxm4LJ1+DjinqtaV0Tu/i8XdXR7XZWZmZi2lpZ5IX7Syr4d1Dl1mZmbWQloydJ3V38Ozw7vYMzYxdWUzMzOzJtCSoevs/h4KAY9v2dnoppiZmZlNS0uGruLrgDb4dUBmZmbWIloydC3pnsUJcztZt8mhy8zMzFpDS4YuSZzV3+PHRpiZmVnLaMnQBXB2fzdPb93JvvF8o5tiZmZmNqWWDV0r+3qYKARPbfVgejMzM2t+rRu6ik+mH/IlRjMzM2t+LRu6Tl44m57ZHX5IqpmZmbWElg1dkljZ3+3HRpiZmVlLaNnQBcm4rie27GQ8X2h0U8zMzMyOaFqhS9JNkrZJWl9StkjSXZKeTj8XVlj3yrTO05KurFXDIXkd0Fi+wNNbd9Vys2ZmZmY1N92erpuBSyaVfRi4OyJWAHen84eQtAj4Y+AngfOBP64UzmZiZV/yZPr1HtdlZmZmTW5aoSsi7gW2Tyq+HLglnb4FeHuZVd8M3BUR2yPiFeAuDg9vM7b8hLnM68qx3uO6zMzMrMlVM6ZrcURsSadfBBaXqdMPvFAyvyktO4ykqyQNShocHh6eVgMyGXFmX7d7uszMzKzp1WQgfUQEEFVu48aIGIiIgd7e3mmvt7Kvh8e2jJIvVLV7MzMzs2OqmtC1VdJSgPRzW5k6Q8CykvmT07KaWdnfzb7xAs8OezC9mZmZNa9qQtftQPFuxCuBr5Sp8w3gYkkL0wH0F6dlNXPwyfS+xGhmZmbNa7qPjLgNuB84TdImSe8FrgXeJOlp4GfTeSQNSPp7gIjYDvwJ8GD697G0rGZO6Z3HrI6MXwdkZmZmTS03nUoRcUWFRW8sU3cQ+PWS+ZuAm2bUumnIZsSZS7t9B6OZmZk1tZZ+In3Ryv4eHts8SsGD6c3MzKxJtUfo6uth1/4JNr68u9FNMTMzMyurPUJXcTD9Zo/rMjMzs+bUFqFrxeJ5dGYzbPAdjGZmZtak2iJ0dWQznL50vgfTm5mZWdNqi9AFcFZfD+uHRkkejm9mZmbWXNomdJ3d38PI3nE2vbK30U0xMzMzO0zbhK6V/d2An0xvZmZmzaltQtePLp5PLiOP6zIzM7Om1Daha1ZHlhWL57POrwMyMzOzJtQ2oQvg7P5uNgyNeDC9mZmZNZ22Cl0r+3t4efcYL47ua3RTzMzMzA7RVqHr1JPmAfDcsF8HZGZmZs1lxqFL0mmSHi75G5V0zaQ6F0oaKanzR9U3ubLObPJ1Cr68aGZmZk0mN9MVI+JJYBWApCwwBKwpU/U7EfHWme7HzMzMrB3U6vLiG4FnI+L5Gm3PzMzMrK3UKnStBm6rsOynJD0i6WuSzqq0AUlXSRqUNDg8PFyjZpmZmZk1h6pDl6RO4G3A/y2zeC3w6og4B/gU8C+VthMRN0bEQEQM9Pb2VtssMzMzs6ZSi56uS4G1EbF18oKIGI2IXen0HUCHpBNrsE8zMzOzllKL0HUFFS4tSloiSen0+en+Xq7BPs3MzMxayozvXgSQNBd4E/AbJWXvA4iIG4B3AO+XNAHsBVaHHxdvZmZmx6GqQldE7AZOmFR2Q8n0dcB11ezDzMzMrB201RPpzczMzJqVQ5eZmZlZHTh0mZmZmdWBQ5eZmZlZHTh0mZmZmdWBQ5eZmZlZHbRV6MpkBMBf3vkUn3/wh4zuG29wi8zMzMwSbRW6zu7v4fcuOY3RveP89y+t47w//Xd+87bvc8+T25jIFxrdPDMzMzuOqRkfED8wMBCDg4MzXj8iePiFHXx57RD/+uhmduwZ58R5Xbx9VR+/cO7JnNnXXcPWmpmZ2fFM0kMRMTBlvXYMXaX2T+S554lhvrx2E/c8uY3xfHD6kvn84rknc/mqPk7qnlWT/ZiZmdnxyaGrjFd2j/Fvj27mS2uHePiFHWQEr1/Ryy+e28/FZy5hdme25vs0MzOz9ubQNYVnh3exZu0Qa74/xNCOvczrynHpyiW887xlnLd80THdt5mZmbUPh65pKhSC723czpfXbuKOdS+ya/8Ed33wAlYsnl+X/ZuZmVlrm27oqvruRUkbJa2T9LCkw5KSEn8j6RlJj0o6t9p91lImI177mhP483ecw1+vXgXA7rF8g1tlZmZm7SZXo+1cFBEvVVh2KbAi/ftJ4Pr0s+lkpEY3wczMzNpUPZ7TdTnwuUg8ACyQtLQO+zUzMzNrGrUIXQHcKekhSVeVWd4PvFAyvyktO4SkqyQNShocHh6uQbPMzMzMmkctQtfrI+JcksuIV0u6YCYbiYgbI2IgIgZ6e3tr0CwzMzOz5lF16IqIofRzG7AGOH9SlSFgWcn8yWmZmZmZ2XGjqtAlaa6k+cVp4GJg/aRqtwO/kt7F+FpgJCK2VLNfMzMzs1ZT7d2Li4E1Su76ywH/FBFfl/Q+gIi4AbgDuAx4BtgD/GqV+zQzMzNrOVWFroh4DjinTPkNJdMBXF3NfszMzMxaXT0eGWFmZmZ23HPoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoKiN5tJiZmZlZ7VT7RPq2ks0IgHfccD8L53SwYE4ni+Z0smBOB4vmdrJwbicL53SwcE5n8je3Mymf00H3rA4y6fpmZmZmkzl0lfjJ1yziT96+kq0j+9i+Z4wde8bYvnuM51/ew8Mv7OCVPWOM58v3gmUEPbM72LF3nPUfeTNzu3xozczM7CAngxJduSzvfu2rKy6PCHaP5XlldxLGXtmT/G3fPc6OPWN86pvPAPDNJ7bxc+f01avZZmZm1gIcuo6CJOZ15ZjXlWPZojmHLS+Grlf2jNW7aWZmZtbkPJC+hj52+VkAvO7UExvcEjMzM2s2Mw5dkpZJukfSY5I2SPrtMnUulDQi6eH074+qa25z65nd0egmmJmZWZOq5vLiBPC7EbFW0nzgIUl3RcRjk+p9JyLeWsV+zMzMzFrejHu6ImJLRKxNp3cCjwP9tWqYmZmZWTupyZguScuBHwf+o8zin5L0iKSvSTrrCNu4StKgpMHh4eFaNKthRveON7oJZmZm1mSqDl2S5gFfAq6JiNFJi9cCr46Ic4BPAf9SaTsRcWNEDETEQG9vb7XNaoiTF84hmxHv+swDfPhLj/Lc8K5GN8nMzMyaRFWhS1IHSeC6NSK+PHl5RIxGxK50+g6gQ1Lb3tr3E69eyLc+dCGrz1/Gmu8P8cZPfJurb13L+qGRRjfNzMzMGkwzfc+gJAG3ANsj4poKdZYAWyMiJJ0PfJGk5+uIOx0YGIjBwcEZtatZDO/czz/c9wP+8f7n2bl/gjesOJH3X3gKP/WaE0gOnZmZmbUDSQ9FxMCU9aoIXa8HvgOsAwpp8R8ArwKIiBskfQB4P8mdjnuB34mI/zfVttshdBWN7hvn1gd+yGe/+wNe2rWfVcsW8P4LT+FNZyz2uxrNzMzawDEPXcdSO4Wuon3jeb740CY+c++zvLB9L6eeNI/3/fQpXL6qj46sn1FrZmbWqhy6mtREvsBX123h+m89yxMv7qSvZxb/9YLXsPq8VzG7MzutbUQEO/aMs3XnPl4c2cfW0X1sHd3PZ779LLvH8jz7Py8j6140MzOzuphu6PK7F+ssl81w+ap+3nZOH996cpi//dYzfPRfH+NT33yG9/yn5aw+bxl7x/NJmNq5n60j+3hxtBisitP7GZsoVNzHvvE8c7t8as3MzJqJ/2VuEElcdPpJXHT6STy4cTvXf+tZPnHXU3zirqcOqzurI8OS7lks7p7Fjy9byJKeZHpxd9eB8pO6u/iH+zZy7deeIOOB+mZmZk3HoasJnLd8Eee9ZxGPbxnl3qeGWTS3k8Xdsw6Eq+5ZuaO64/GprTuZ25UjmxFZiUwGMhLZjA58ZiWUgeyk8ozw3ZVmZmbHgENXEzljaTdnLO2e8fqzcsmA/Ms/fV9V7ZBIw1oSworTB8KaRDZzaHlG4gcv7QZg47VvqWr/zW7/RHL5d/OOfbw4upfNO/axZWQvL47s522r+njbOX2NbqKZmTUhh6428s7zlrF0wWzG8wXyhaAQQb4AhQgKhSBf/CwEhSBdfrC8EJSsl5RHWlYsP7DNQ9YL8sGB0PXrtzxI9+wOumd10DP74F/37EPne2Z3MKsj01Q9a2MTBbaO7mPLSBKktozsY8uOvWweKQarfby0a+yw9RbM6WDP/jwQDl1mZlaWQ1cbmdOZ481nLWnY/left4zrvvkMm3fs4/EtOxndO87O/RNHXKczm6F7du5AIFswu4NFc7s4YV4ni+Ymfycc+Oxi0bxO5nZmZxTUJvIFtu7cz5Ydew+Eqs07kjtAt4wkweqlXfuZfENv96wcS3tms3TBLM7uX0BfT3Lpt2/BbJam03M6c7zlb75z1G0yM7Pjh0OX1czrTj2R15166Fue8oVg575xRvYe+je6d2LS/Dij+8YZ3rWfJ1/cycu7x9hf4Q7NzlzmQBA7GMqSoNY9K8eiuV0He6lKgtW2nfsoTApU87pyLO2ZxdIFszl9STdLF8yir2d2GqpmsaRnNvN8J6iZmdWA/zWxYyqbEQvmdLJgTudRrRcR7BnLs333GC/vHmP77v28vGuM7bvHSsqSz40v7+blXWPsGcsfso3ZHdkDIeoNK05kadoztTTtpVrSM4vuWR21/LpmZmYVOXRZU5LE3K4cc7tyLFs0Z1rr/PDlPTw7vCvppeqZTffso7vrs1obNo+yYfMo//jA82SU3DFavBu0OJ2R0IGy8nVUYZ3MUdRJpqeuc9h2qe54ZbMilxGd2Yxfc2VmNolDl7WNV50wh1edML2Adiz9j39Z3+gmNIWMoCOboTObIZcVHdlM+idy6XTngenDl3dmM+QyoiOXoSOTLi+ZLq7XmcuQyyT7iAjG88mNHxOFIF8oMFEIJvKHzufT+YlCctPJRLrOeLFOyTYmJs3nC3HgZpXSsnwhyGZELg2eHen3zmWS71E8Bsl0+j3TdndkDh6j4jZKy8qukxXZTHI8ctnJ2ymtl2yzuKzctrMZNdUNLWbtyqHLrEae+bNL2bF3nIjk8mjxDtFCehdooaRsqjox6bNSncO3e+g+yu+7fDvykwe8HaUguat1LJ+ElPF8gfFCgfGJZHqiUGBsIgkx4/lDp8fzwa79EwfWO2Qb6edEOj2Wr/w2hqkUA0bx80DIySjtpTsYQnJpqMmly7s6MswpWd5Rsrz4OJXSkJZ85zS4pd9n18TEocvS71Rc50BZ+lnlKTkqHZMCYi5bPtAdLD8Y7HKZJBAe2puafmZKe1or9/AWg1/FXuKMDj7OZvJ+yqx7oAc3c+R9ZzNT9yxnMlP1PB/8DkdaPrlN5Y5XsRfb2pNDl1mN5LIZTpzX1ehmtL2IYm9TpKHuYDArBqhcaZgq+Wy1f8wKheQ7TuST3rjxkkCXLxRD66HLSkNbMdAVj1fpskrrHOwZLFRY5+D0nokJJkq2HRwa9POF0tBf5j8k0uX5Csub8NXAdVEMYtkKoaw0BKqknkjmVRrgSKYplpVsH0qDXulyTZpPy8rUP2QbHBocS/d1aFlxOMPBtomDQyeK9ZlcVtK2yfXLbiM9mJlJy8ptQxw69KO0naXbUHHoxqT601VV6JJ0CfDXQBb4+4i4dtLyLuBzwE8ALwPvioiN1ezTzI5vUrEnBmYzvZfEt6pMRnRlshyvN9CW9ubmy/XaFg4PdPni8ikC35SBsOQ5hVP1GBf3d6TlceB5icX9TOqVLhy6bn6K5aXtLH6XgAO916UBuDhNaQ83xXaVr1967EvrHzgelPTIl9QPgkKhTFmUzpeum9RnclnaNjj03FTcRgCT9lXPnuLpmvFPWVIW+DTwJmAT8KCk2yPisZJq7wVeiYhTJa0GPg68q5oGm5nZ8eFAjwvyZRmbscnDNYLi0IpJgRCIwuFlBwPrwXUPDs9IypZ/fHptqeZ/x+cDz0TEcwCS/hm4HCgNXZcDH0mnvwhcJ0kRx2unsZmZmdVTcgkWqPLu7FrIVLFuP/BCyfymtKxsnYiYAEaAE8ptTNJVkgYlDQ4PD1fRLDMzM7PmU03oqqmIuDEiBiJioLe3t9HNMTMzM6upakLXELCsZP7ktKxsHUk5oIdkQL2ZmZnZcaWa0PUgsELSj0jqBFYDt0+qcztwZTr9DuCbHs9lZmZmx6MZD6SPiAlJHwC+QfLIiJsiYoOkjwGDEXE78FngHyU9A2wnCWZmZmZmxx01Y8eTpGHg+Ua3o02cCLzU6EbYAT4fzcXno3n4XDQXn4+j8+qImHJAelOGLqsdSYMRMdDodljC56O5+Hw0D5+L5uLzcWw0zd2LZmZmZu3MocvMzMysDhy62t+NjW6AHcLno7n4fDQPn4vm4vNxDHhMl5mZmVkduKfLzMzMrA4cuszMzMzqwKGrzUjaKGmdpIclDaZliyTdJenp9HNho9vZriTdJGmbpPUlZWWPvxJ/I+kZSY9KOrdxLW8/Fc7FRyQNpb+PhyVdVrLs99Nz8aSkNzem1e1L0jJJ90h6TNIGSb+dlvv3UWdHOBf+fRxjDl3t6aKIWFXyjJUPA3dHxArg7nTejo2bgUsmlVU6/pcCK9K/q4Dr69TG48XNHH4uAD6Z/j5WRcQdAJLOJHljxlnpOn8rKVu3lh4fJoDfjYgzgdcCV6fH3b+P+qt0LsC/j2PKoev4cDlwSzp9C/D2BralrUXEvSSvvCpV6fhfDnwuEg8ACyQtrU9L21+Fc1HJ5cA/R8T+iPgB8Axw/jFr3HEoIrZExNp0eifwONCPfx91d4RzUYl/HzXi0NV+ArhT0kOSrkrLFkfElnT6RWBxY5p23Kp0/PuBF0rqbeLI/8dntfGB9HLVTSWX2n0u6kjScuDHgf/Av4+GmnQuwL+PY8qhq/28PiLOJemav1rSBaULI3lGiJ8T0iA+/g13PXAKsArYAvxVY5tz/JE0D/gScE1EjJYu8++jvsqcC/8+jjGHrjYTEUPp5zZgDUkX8NZit3z6ua1xLTwuVTr+Q8Cyknonp2V2jETE1ojIR0QB+DsOXiLxuagDSR0k/8jfGhFfTov9+2iAcufCv49jz6GrjUiaK2l+cRq4GFgP3A5cmVa7EvhKY1p43Kp0/G8HfiW9S+u1wEjJZRY7BiaNCfp5kt8HJOditaQuST9CMnj7e/VuXzuTJOCzwOMR8YmSRf591Fmlc+Hfx7GXa3QDrKYWA2uS3xM54J8i4uuSHgS+IOm9wPPAOxvYxrYm6TbgQuBESZuAPwaupfzxvwO4jGRQ6h7gV+ve4DZW4VxcKGkVySWsjcBvAETEBklfAB4jubPr6ojIN6Ldbex1wLuBdZIeTsv+AP8+GqHSubjCv49jy68BMjMzM6sDX140MzMzqwOHLjMzM7M6cOgyMzMzqwOHLjMzM7M6cOgyMzMzqwOHLjOriqR7JL15Utk1kq6X1CfpixXWWy7pP1e5729JGqhQ/qSkRyTdJ+m0avZjZlYLDl1mVq3bgNWTylYDt0XE5oh4x+QVJOWA5UBVoWsKvxwR55C8RPkvyrQhewz3bWZ2GIcuM6vWF4G3SOqEAy/Q7QO+k/ZmrU/L3yPpdknfBO4meSjmGyQ9LOmD6fLrihuV9G+SLkynr5c0KGmDpI8eZfvuBU5Nt7NR0sclrQV+SdIqSQ+kL/hdU3zBr6RTJf172lO2VtIpafl/k/RgWv+jadlcSV9N666X9K60/FpJj6V1/zIt65X0pXQbD0p6XVr+0+lxeFjS94tvljCz9uIn0ptZVSJiu6Tvkbxk/SskvVxfiIhI345Q6lzgx9J1LgQ+FBFvhSSUHWE3f5iukwXulvRjEfHoNJv4c8C6kvmX05fCI+lR4Dcj4tuSPkby1PprgFuBayNijaRZQEbSxSSvPzkfEHC7khfK9wKbI+It6TZ7JJ1A8hqV09PjsCDd918Dn4yI70p6FfAN4AzgQyRP+b5PyUuI903zu5lZC3FPl5nVQuklxtXpfDl3RcT2GWz/nWnv1PeBs4Azp7HOrekrTl5HEmqKPg9JOAIWRMS30/JbgAvSXqb+iFgDEBH7ImIPybtML07bsBY4nSSErQPelPagvSEiRoARkuD0WUm/QPIaG4CfBa5L23U70J2GrPuAT0j6rbRNE0d7gMys+bmny8xq4SvAJyWdC8yJiIcq1Nt9hG1McOh/CM4CSF+w+yHgvIh4RdLNxWVT+OWIGDzKNhyJgP8VEZ85bEHyvS8D/lTS3RHxMUnnA28E3gF8APgZku/32oiY3JN1raSvptu4T9KbI+KJGbbTzJqUe7rMrGoRsQu4B7iJyr1ck+0ESscubQRWScpIWkZyGQ+gmyQojUhaTHIZsxZtHgFekfSGtOjdwLcjYiewSdLbASR1SZpDcinw19KeKST1SzpJUh+wJyL+D8mA/XPTOj0RcQfwQeCcdB93Ar9ZbEP6cmEknRIR6yLi48CDJL1oZtZm3NNlZrVyG7CGw+9krORRIC/pEeBm4H9AKxUnAAAAsElEQVQDPwAeAx4nuYRHRDwi6fvAE8ALJJfiauVK4IY0VD0H/Gpa/m7gM+k4r3HglyLiTklnAPenY9V2Af+FZJD+X0gqpHXfTxImv5KOBxPwO+l2fwv4dDqWLEcyyP99wDWSLgIKwAbgazX8jmbWJBQRjW6DmZmZWdvz5UUzMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOvj/r1L+SfYYynAAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 720x216 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Presim. Time / s\"].plot(figsize=(10, 3));"]}, {"cell_type": "code", "execution_count": 70, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAADTCAYAAACyTAbQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuQXGd55/Hv0z0zuljSyLbGsjQSyPiKJcCwinEwBGPuJFnDFrAmWeIkZJ1kTQIBdheyVZuQCllTCXiTTeKNCS4cQgyuAGVtMBfHmGsCeGyMrQuOhS/YkmzJli3J1m1m+tk/zulRazSjmdFMq7tH309VV59+z3vOeacPLf943/ecE5mJJEmSZlal1Q2QJEmajQxZkiRJTWDIkiRJagJDliRJUhMYsiRJkprAkCVJktQEhixJkqQmMGRJkiQ1gSFLkiSpCbpa3QCAJUuW5KpVq1rdDEmSpAndeeedT2Rm30T12iJkrVq1ioGBgVY3Q5IkaUIR8fBk6jlcKEmS1ASGLEmSpCYwZEmSJDWBIUuSJKkJ2iJkbXl6X6ubIEmSNKPaImTtfPYgzx4YanUzJEmSZkxbhCyATdt2t7oJkiRJM6ZtQtb6Lbta3QRJkqQZM2HIioi5EfGDiPhRRGyIiA+X5WdExPcjYnNEfC4iesryOeXnzeX6VRMdo6sSrN9qT5YkSZo9JtOTdQC4NDNfBFwAvCEiLgI+ClyTmWcBTwHvKuu/C3iqLL+mrHdU87qr9mRJkqRZZcKQlYVnyo/d5SuBS4F/LMtvAN5cLl9WfqZc/+qIiKMdY15Plfu3P8P+weEpNl+SJKk9TWpOVkRUI+JuYDtwK/AT4OnMrF8S+CjQXy73A48AlOt3AaeOsc8rI2IgIgYO7nuW4Vpy32N7pvfXSJIktYlJhazMHM7MC4AVwIXAedM9cGZel5lrM3Pt0lNPBmD9VocMJUnS7DClqwsz82ngduBngcUR0VWuWgFsKZe3ACsByvW9wJNH229PV4Xeed2s3+Lkd0mSNDtM5urCvohYXC7PA14LbKIIW28tq10B3Fwurys/U67/embmRMdZ07+IDfZkSZKkWWIyPVnLgNsj4h7gDuDWzPwn4L8D74uIzRRzrj5Z1v8kcGpZ/j7gg5NpyJrlvfx42x4Gh2tT/RskSZLaTtdEFTLzHuDFY5Q/QDE/a3T5fuBtU23I6v5eDg7XuP/xZzh/+aKpbi5JktRW2uaO72vKYOXkd0mSNBu0TchadepJnNTjTUklSdLs0DYhq1IJVi/vNWRJkqRZoW1CFsDq/kVs3Lab4dqEFyNKkiS1tbYKWWuW97J/sMYDO56ZuLIkSVIba6+Q1d8LOPldkiR1vrYKWWf2ncScrop3fpckSR2vrUJWV7XC85ctcvK7JEnqeG0VsqB4vM7GrbupOfldkiR1sPYLWct72XNgiJ/u3NvqpkiSJB2z9gtZTn6XJEmzQNuFrHOWLqS7Gk5+lyRJHa3tQlZPV4VzT1/IBnuyJElSB2u7kAXFvKz1W3aR6eR3SZLUmdoyZK3u7+WpvYNs3bW/1U2RJEk6JhOGrIhYGRG3R8TGiNgQEe8py/8wIrZExN3l600N23woIjZHxH0R8fqpNmrN8kUA3i9LkiR1rK5J1BkC3p+Zd0XEQuDOiLi1XHdNZv5ZY+WIOB+4HFgNLAf+OSLOyczhyTbq+csWUa0EG7bs4vWrT5/sZpIkSW1jwp6szNyWmXeVy3uATUD/UTa5DPhsZh7IzAeBzcCFU2nU3O4qZ/UtYP1WrzCUJEmdaUpzsiJiFfBi4Ptl0bsj4p6IuD4iTi7L+oFHGjZ7lDFCWURcGREDETGwY8eOI461ut/H60iSpM416ZAVEQuAzwPvzczdwLXAmcAFwDbgY1M5cGZel5lrM3NtX1/fEevXLO9l+54DbN/t5HdJktR5JhWyIqKbImB9JjO/AJCZj2fmcGbWgE9waEhwC7CyYfMVZdmU1O/8vsEhQ0mS1IEmc3VhAJ8ENmXmxxvKlzVUewuwvlxeB1weEXMi4gzgbOAHU23Y+eUVhvc6ZChJkjrQZK4uvBh4J3BvRNxdlv0+8I6IuABI4CHgNwEyc0NE3ARspLgy8aqpXFlYt2BOF89bcpLzsiRJUkeaMGRl5neAGGPVLUfZ5iPAR6bRLqC4KeldDz813d1IkiQdd215x/e6NcsXseXpfex89mCrmyJJkjQl7R2yRia/O2QoSZI6S1uHrNUjj9fxCkNJktRZ2jpkLZ7fw4qT57HenixJktRh2jpkQXFT0g1eYShJkjpM24esF6zo5aEn97J7/2CrmyJJkjRpbR+y6vOyNnrnd0mS1EE6IGQVVxh6U1JJktRJ2j5k9S2cw+mL5voMQ0mS1FHaPmQBrOlfZE+WJEnqKB0RslYv7+UnO55h78GhVjdFkiRpUjoiZK3p76WWsGnbnlY3RZIkaVI6JGQVVxj6eB1JktQpOiJknb5oLqee1OO8LEmS1DE6ImRFBKv7e32GoSRJ6hgThqyIWBkRt0fExojYEBHvKctPiYhbI+L+8v3ksjwi4i8iYnNE3BMRL5mJhq5Zvoh/e3wPB4aGZ2J3kiRJTTWZnqwh4P2ZeT5wEXBVRJwPfBC4LTPPBm4rPwO8ETi7fF0JXDsTDV3T38tQLbnvMSe/S5Kk9jdhyMrMbZl5V7m8B9gE9AOXATeU1W4A3lwuXwb8XRa+ByyOiGXTbeiakTu/O2QoSZLa35TmZEXEKuDFwPeBpZm5rVz1GLC0XO4HHmnY7NGybPS+royIgYgY2LFjx4THXnnKPBbO7WK9VxhKkqQOMOmQFRELgM8D783Mw7qTMjOBnMqBM/O6zFybmWv7+vomc3zWLO9lg1cYSpKkDjCpkBUR3RQB6zOZ+YWy+PH6MGD5vr0s3wKsbNh8RVk2bWv6F7HpsT0MDtdmYneSJElNM5mrCwP4JLApMz/esGodcEW5fAVwc0P5r5RXGV4E7GoYVpyWNf29HByqsXn7MzOxO0mSpKaZTE/WxcA7gUsj4u7y9SbgauC1EXE/8JryM8AtwAPAZuATwH+ZqcauHpn87pChJElqb10TVcjM7wAxzupXj1E/gaum2a4xnbHkJOb3VNmwdTdva8YBJEmSZkhH3PG9rloJVi9fZE+WJElqex0VsqAYMty4bTfDtSldzChJknRcdVzIWtPfy96Dwzz4xLOtbookSdK4OjBkLQJggzcllSRJbazjQtZZfQuY01VxXpYkSWprHReyuqoVzlu2yGcYSpKkttZxIQtgzfJFrN+6i+JuEZIkSe2nM0NWfy979g/xyM59rW6KJEnSmDozZNXv/O7kd0mS1KY6MmSdc/oCuirh5HdJktS2OjJkzemqcs7Shazf6uR3SZLUnjoyZEFxv6wNW5z8LkmS2lMHh6xennz2INt27W91UyRJko7QsSFrdX3yu/OyJElSG+rYkPX8ZQupBM7LkiRJbWnCkBUR10fE9ohY31D2hxGxJSLuLl9valj3oYjYHBH3RcTrm9Xw+T1dnNm3gA32ZEmSpDY0mZ6sTwFvGKP8msy8oHzdAhAR5wOXA6vLbf46Iqoz1djR1vT3eq8sSZLUliYMWZn5LWDnJPd3GfDZzDyQmQ8Cm4ELp9G+o1q9fBGP7z7A9j1OfpckSe1lOnOy3h0R95TDiSeXZf3AIw11Hi3LjhARV0bEQEQM7Nix45gasKa/mPy+wXlZkiSpzRxryLoWOBO4ANgGfGyqO8jM6zJzbWau7evrO6ZGrF6+CMB5WZIkqe0cU8jKzMczczgza8AnODQkuAVY2VB1RVnWFAvndtO/eB7fe2Cyo5mSJEnHxzGFrIhY1vDxLUD9ysN1wOURMScizgDOBn4wvSYe3Zan9/GdzU808xCSJElT1jVRhYi4EbgEWBIRjwJ/AFwSERcACTwE/CZAZm6IiJuAjcAQcFVmDjen6YVXntPHN//t2OZ0SZIkNcuEISsz3zFG8SePUv8jwEem06ipWNY7l6WL5hyvw0mSJE1Kx97xXZIkqZ0ZsiRJkprAkCVJktQEhixJkqQmMGRJkiQ1gSFLkiSpCQxZkiRJTWDIkiRJagJDliRJUhMYsiRJkppgVoSsA0M1nnzmQKubIUmSNKLjQ9Z5py/k6b2DvOzqr/OhL9zL5u17Wt0kSZKkiR8Q3e5+9eIzuPisJVz/3Qf5/F2PcuMPfsqrzu3jP7/iefzsmacSEa1uoiRJOgFFZra6DaxduzYHBgamvZ8nnjnAZ773Uz79vYd44pmDPH/ZIn7j5Wfwiy9aTk9Xx3faSZKkNhARd2bm2gnrzaaQVbd/cJib797C3377Qe7f/gynLZzDFS9bxS+/9Dksnt8zY8eRJEknnhkLWRFxPfALwPbMXFOWnQJ8DlgFPAS8PTOfimJs7s+BNwF7gV/NzLsmasRMh6y6zORb9z/B3377Ab59/xPM667y1n+3gl9/+RmcseSkGT+eJEma/SYbsiYzhvYp4A2jyj4I3JaZZwO3lZ8B3gicXb6uBK6dbIObISJ45Tl9fPpdL+Ur730Fv/iiZXzujke49GPf4DduGOD7DzxJO/TkSZKk2WdSw4URsQr4p4aerPuASzJzW0QsA76RmedGxN+UyzeOrne0/TerJ2ss2/fs5+//9WE+/b2HeWrvIC/o7+UDrz+XV57Td1yOL0mSOttM9mSNZWlDcHoMWFou9wOPNNR7tCwbq4FXRsRARAzs2LHjGJsxdactnMv7Xncu//qhV/Mnb3kBj+/ez598adNxO74kSToxTPuSuyy6wqY85paZ12Xm2sxc29d3/HuR5nZX+aWXPoefWXUKww4ZSpKkGXasIevxcpiQ8n17Wb4FWNlQb0VZJkmSdEI51pC1DriiXL4CuLmh/FeicBGwa6L5WJIkSbPRhHd8j4gbgUuAJRHxKPAHwNXATRHxLuBh4O1l9Vsobt+wmeIWDr/WhDZLkiS1vQlDVma+Y5xVrx6jbgJXTbdRkiRJnc5nzUiSJDWBIUuSJKkJDFmSJElNYMiSJElqAkOWJElSExiyJEmSmsCQJUmS1ASGLEmSpCYwZEmSJDWBIUuSJKkJDFlALZPiiUCSJEkzY8JnF8523dXggR3Pcv7//CrLF8+l/+T59C+ex4qT59G/eB79J89j+eJ5LF04h66qmVSSJE3OCR+y3v+6c3nhisVseXofW57ax5an97F+yy52PnvwsHrVSnD6orn0nzyPFYuL4NVfBrEXrVxM77zuFv0FkiSpHZ3wIWvlKfP59ZefcUT53oNDbH16f0P42jsSwr7/4E627dpHrRxhfMXZS/j0u156nFsuSZLa2QkfssYzv6eLs05bwFmnLRhz/dBwjcd27+fd//BDnjkwdJxbJ0mS2p2TjI5RV7XCipPns3CuOVWSJB1pWgkhIh4C9gDDwFBmro2IU4DPAauAh4C3Z+ZT02umJElSZ5mJnqxXZeYFmbm2/PxB4LbMPBu4rfwsSZJ0QmnGcOFlwA3l8g3Am5twDEmSpLY23ZCVwNci4s6IuLIsW5qZ28rlx4ClY20YEVdGxEBEDOzYsWOazZAkSWov0521/fLM3BIRpwG3RsSPG1dmZkbEmLdSz8zrgOsA1q5d6+3WJUnSrDKtnqzM3FK+bwe+CFwIPB4RywDK9+3TbWQ7q0Rw32N7+J83r+dffvIEQ8O1VjdJkiS1gWMOWRFxUkQsrC8DrwPWA+uAK8pqVwA3T7eR7ew9rzmbV57Tx00Dj/BLn/g+F/7JbXzoC/fwzX/bwaCBS5KkE1Yc64ORI+J5FL1XUAw7/kNmfiQiTgVuAp4DPExxC4edR9vX2rVrc2Bg4Jja0S72HhziG/ft4MvrH+Prmx7n2YPD9M7r5jXPX8ob15zOy89ewtzuaqubKUmSpiki7my4q8L49Y41ZM2k2RCyGu0fHObb9z/Bl9dv49aNj7Nn/xAL5nRx6Xmn8cY1p3PJuacxr2dmAtfGrbtZNK+LFSfPn5H9SZKko5tsyPJ25U0wt7vKa89fymvPX8rBoRr/8pMn+Mr6x/jqhsdY96OtzOuucsm5fbzxBcu49LzTWDCnOA2Zyf7BGnv2D7J7/yC79w+xZ/9Q8Xlf8T7yuXz/503FlLeHrv75Vv7JkiRpFENWk/V0Vbjk3NO45NzT+OM3r+EHD+7klvXb+OqGx/ny+sfo6apw+qK5IwFqqHb0nsVKwMK53Syc28Wiud0jZZIkqb0Yso6jrmqFl521hJedtYQP//s13PnwU3xl/WM88cwBFs3rOiw81d9Hl8/vqRJxKFW95uPf5NylC1v4V0mSpLEYslqkWgkuPOMULjzjlFY3RZIkNYEhaxbYtG03H/vafcztrjKvu8q8nrHf5zYsz++pMqerclivmCRJmjmGrA734pWL+dK92/jL2zdzLBeKHh7CKszrqTK/u4u5PVXmdVdG1tcD3PyeI8PaxWctYWE5P0ySJBW8hcMskZkcGKqxf3CYfYPD7Ds49vv+keXayOe9B4fYd/DIbcfa11gT83/n0rN4/+vObcFfLUnS8ectHE4wEcHcckhwcROPMzhchrMyeL36Y9/k/3x9M9+4bwfDtaSWOfJeSw4t15Lhsqy+PFxLSFiycA4rT5nPc0+Zz3NOmV8sn1osnzTH/4lKkjqT/wXTlHRXK3RXKyO3j7jy557Hhq27qVaCShTPcqxWgkoliuWgYbleTlk/iIDtew7w0yf38qNHnmbXvsHDjrdkQQ8ry/D13DKAPeeU+Tz31JM4beEcKt6/QpLUpgxZmpb/9obzZnR/u/YO8tOde/npzr08vPNZHimX73z4Kf7fj7bSOFrZ01Whb8Eczjt9IS9csZiuahHcuipF0Ouqlu+VoFqpHCo/bP0Y5ZXKYdtXY/T+KiP1u6sVerqm9Zx1SdIsZchSW+md380L5vfyghW9R6wbHK6x9el9PPxkEbwe2PEs13/3QbY8vY/bfry9Ba2Frkrw+d9+GS9a2cxBWklSJ3Liu2aFWi0ZqhXzvIZqtfI9R5Unw7UaQ7VkaLix7PBthofHKW94DdWSjVt38/m7HgWKqzSrlWL4sz4UWrwaPlcohkwbhk3r9UaGW8ues3r9+rqoD72W21Yb1h+qc/j+qw3rizocduxqlPstP0dDm+tDuSOfyzZUGo5R/1t7uir0lD16c7qq5Xvxaiyrl3eV+5KkTuXEd51QKpWgZ2R+1sw8fHsiw7Xk7KULeGrvQWq1QxP9M0dN8i/XFRcDZFmn4aKAHLtOLWFouFZ8zuIK0nrIy6Q8Ro557OEah9rRsO/GbYcneIRTs0RAT7UewqqjAlmlIZBVG8LbkYHthz99im279jOvu0pXNehuGObtrhZhrqtaDO/W1xefg65q5bBtuqtlWeXQ+u6GbUf2UV8u6zQOM9fDbrUC1UplJAhXK4cPO1fKbUbql8FX0uxjyJKOUbUS/NYrz2x1M6alVkuSQ+EuR4Je8Z61huA3en0Z+AaHaxwYqr+GOThU42D5+eBQjYPDNQ4MDpfvxeeDQ4e2OdiwXf3z/sEau/YNHrGvxn3WvercPobKdgzVauwbLHogh8oeyaHhGoPDh3olB4fLsnJdi7LmEboqh3opR4JZ5VAvZFelcqg3dJx6E+2jWs5PrDb0mtbnMjbuo1pp7DEdHSSLELnu7i1F0GwIk2P24Db2tFaO3rM6cpFMQ8/soZ7cht7esXqCG/czxkU29WPW9zV2mw4d49DFOhy+ruG7GqtXuBpBHNZrfXibdGIxZEknsPo/+lU66x//Wi05OFwb6VGa7r6GyqHhwfowckMIqw8vD5bLw2W9oTK41bJYrpU9iEUvYY3h2uG3K6m/6j2K9eHsem/jUMPycBluh8bbT8M2jevqbRmq1TgwVPSATqYtw437qO+3oUf1aC563inUakWv65E9uHl4KB/pfYXRPbiNt3up1XtqG24HM1scLYAeCmtjTyWoB796/QgIivVEUL6V7+U0AIqCQ+uK4BcU21PWjbJt0bAfqE8lOFT/8OUjj3nY+lHHZFR5ZWT7KNtx6O9p3D+jyxv2Q8Pfedgxx2lLZeRYh7e9UomR/cVYbWn4Huv7mIymhayIeAPw5xRjN3+bmVc361iSTiyVSjC3MjPDwvWh5h68SnQsI8PUZThqDGOL53cfl/l1mYcPc48eLh9zuL0e5LIcRq+NCnONQ+y1Qz21hw/jM27wGz30njlWOw5tP/o+gaOH+hu3OXqbDu0n698NUCunFBTfFySHep6Lz5A1SGrkcFk+UrdYqDVsN7LNyPZ5eFl928P207DtGOVFWD58P7WGuowub6hL+bk2at/trikhKyKqwF8BrwUeBe6IiHWZubEZx5MkNUeUQ4qtHPao90pUCLqPz5RLdZDRYe2IwDdGsGOc8iyTXuN+Rvad9ePBcz86ubY163dzIbA5Mx8AiIjPApcBhixJkjRj6ldf04bTHprVP94PPNLw+dGybEREXBkRAxExsGPHjiY1Q5IkqTVaNgkhM6/LzLWZubavr69VzZAkSWqKZoWsLcDKhs8ryjJJkqQTQrNC1h3A2RFxRkT0AJcD65p0LEmSpLbTlInvmTkUEe8GvkpxC4frM3NDM44lSZLUjtri2YURsQN4uNXtmEWWAE+0uhEa4floH56L9uL5aB+ei6l5bmZOOKG8LUKWZlZEDEzmwZU6Pjwf7cNz0V48H+3Dc9Ec3uJYkiSpCQxZkiRJTWDImp2ua3UDdBjPR/vwXLQXz0f78Fw0gXOyJEmSmsCeLEmSpCYwZEmSJDWBIavDRcRDEXFvRNwdEQNl2SkRcWtE3F++n9zqds5WEXF9RGyPiPUNZWN+/1H4i4jYHBH3RMRLWtfy2Wmc8/GHEbGl/I3cHRFvalj3ofJ83BcRr29Nq2eniFgZEbdHxMaI2BAR7ynL/X20wFHOh7+PJjJkzQ6vyswLGu5x8kHgtsw8G7it/Kzm+BTwhlFl433/bwTOLl9XAtcepzaeSD7FkecD4JryN3JBZt4CEBHnUzzya3W5zV9HRPW4tXT2GwLen5nnAxcBV5Xfub+P1hjvfIC/j6YxZM1OlwE3lMs3AG9uYVtmtcz8FrBzVPF43/9lwN9l4XvA4ohYdnxaemIY53yM5zLgs5l5IDMfBDYDFzatcSeYzNyWmXeVy3uATUA//j5a4ijnYzz+PmaAIavzJfC1iLgzIq4sy5Zm5rZy+TFgaWuadsIa7/vvBx5pqPcoR/9HTjPn3eUQ1PUNw+eej+MkIlYBLwa+j7+Plht1PsDfR9MYsjrfyzPzJRRd7VdFxM81rsziHh3ep6NF/P7bwrXAmcAFwDbgY61tzoklIhYAnwfem5m7G9f5+zj+xjgf/j6ayJDV4TJzS/m+HfgiRXfu4/Vu9vJ9e+taeEIa7/vfAqxsqLeiLFMTZebjmTmcmTXgExwa8vB8NFlEdFP8B/0zmfmFstjfR4uMdT78fTSXIauDRcRJEbGwvgy8DlgPrAOuKKtdAdzcmhaesMb7/tcBv1JeRXURsKth2ERNMmpez1sofiNQnI/LI2JORJxBMeH6B8e7fbNVRATwSWBTZn68YZW/jxYY73z4+2iurlY3QNOyFPhi8duhC/iHzPxKRNwB3BQR7wIeBt7ewjbOahFxI3AJsCQiHgX+ALiasb//W4A3UUwg3Qv82nFv8Cw3zvm4JCIuoBiWegj4TYDM3BARNwEbKa68uiozh1vR7lnqYuCdwL0RcXdZ9vv4+2iV8c7HO/x9NI+P1ZEkSWoChwslSZKawJAlSZLUBIYsSZKkJjBkSZIkNYEhS5IkqQkMWZKmJCJuj4jXjyp7b0RcGxHLI+Ifx9luVUT80jSP/Y2IWDtO+X0R8aOI+G5EnDud40jSTDBkSZqqG4HLR5VdDtyYmVsz862jN4iILmAVMK2QNYFfzswXUTx0+E/HaEO1iceWpCMYsiRN1T8CPx8RPTDysNnlwLfL3qr1ZfmvRsS6iPg6cBvFTShfERF3R8Tvlev/sr7TiPiniLikXL42IgYiYkNEfHiK7fsWcFa5n4ci4qMRcRfwtoi4ICK+Vz4M94v1h+FGxFkR8c9lT9hdEXFmWf5fI+KOsv6Hy7KTIuJLZd31EfEfy/KrI2JjWffPyrK+iPh8uY87IuLisvyV5fdwd0T8sP7kBkmzi3d8lzQlmbkzIn5A8VDymyl6sW7KzCyfPtDoJcALy20uAT6Qmb8ARQg7ymH+R7lNFbgtIl6YmfdMsom/CNzb8PnJ8iHqRMQ9wO9k5jcj4o8o7gj/XuAzwNWZ+cWImAtUIuJ1FI8SuRAIYF0UD2DvA7Zm5s+X++yNiFMpHklyXvk9LC6P/efANZn5nYh4DvBV4PnAByjuoP3dKB7Yu3+Sf5ukDmJPlqRj0ThkeHn5eSy3ZubOY9j/28vepx8Cq4HzJ7HNZ8rHhVxMEWLqPgdFGAIWZ+Y3y/IbgJ8re5H6M/OLAJm5PzP3UjwL9HVlG+4CzqMIXfcCry17yF6RmbuAXRRB6ZMR8R8oHgsD8BrgL8t2rQMWlaHqu8DHI+J3yzYNTfULktT+7MmSdCxuBq6JiJcA8zPzznHqPXuUfQxx+P/RmwtQPoz2A8DPZOZTEfGp+roJ/HJmDkyxDUcTwP/KzL85YkXxd78J+OOIuC0z/ygiLgReDbwVeDdwKcXfd1Fmju6pujoivlTu47sR8frM/PExtlNSm7InS9KUZeYzwO3A9YzfizXaHqBx7tFDwAURUYmIlRTDcgCLKILRrohYSjEsORNt3gU8FRGvKIveCXwzM/cAj0bEmwEiYk5EzKcY2vv1sueJiOiPiNMiYjmwNzP/nmKC/UvKOr2ZeQvwe8CLymN8DfidehvKB/ESEWdm5r2Z+VHgDopeMkmzjD1Zko7VjcAXOfJKw/HcAwxHxI+ATwH/G3gQ2AhsohiSIzN/FBE/BH4MPEIxtDZTrgD+bxmiHgB+rSx/J/A35TytQeBtmfm1iHg+8K/lXLNngP9EMan+TyOiVtb9bYrweHM5nyuA95X7/V3gr8q5YF0Uk/J/C3hvRLwKqAEbgC/P4N8oqU1EZra6DZIkSbOOw4WSJElNYMiSJElqAkOWJElSExiyJEmSmsByDSdqAAAAGUlEQVSQJUmS1ASGLEmSpCYwZEmSJDXB/wf2YrBLjrhXigAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 720x216 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Sim. Time / s\"].plot(figsize=(10, 3));"]}, {"cell_type": "code", "execution_count": 71, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHvdJREFUeJzt3XuUnHWd5/H3p6+5dCCBdLIhQRIgjMIKgW0ZZhFEkYu4GtxVJl4go+zEmQUVR52jssdBHM/gemHG0WVE4QguooiwicgoGFFGVoEGQwj3DIRDYkiCQCD3vnz3j+dXSXWnuru6qypV/eTzOqdOPfV7flX1fbqSz/PUr56LIgIzM8uvpnoXYGZmteWgNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnXUu8CAKZPnx5z586tdxlmZuPKAw888EJEdI7UryGCfu7cuXR3d9e7DDOzcUXSs+X089CNmVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnXGEH/6vP1rsDMLLcaI+i3bABfu9bMrCYaI+ijH3ZsrncVZma51BhBD7B1U70rMDPLpcYJ+i0b612BmVkujRj0kiZIuk/SQ5IekfT51D5P0r2SVkv6oaS21N6eHq9O8+eWVclWB72ZWS2Us0W/E3hLRBwHLADOlnQS8CXgyog4EngJuDD1vxB4KbVfmfqNbIuHbszMamHEoI/MlvSwNd0CeAtwc2q/Djg3TS9Mj0nzT5ek4d9F3qI3M6uRssboJTVLWgFsBO4E/h14OSJ6U5e1wOw0PRt4DiDN3wwcPHwVLf4x1sysRsoK+ojoi4gFwBzgROC1lb6xpCWSuiV19wYeujEzq5FR7XUTES8DdwF/BkyVVLhC1RxgXZpeBxwKkOYfCPyxxGtdHRFdEdHV0jbBQzdmZjVSzl43nZKmpumJwBnAY2SB/+7UbTGwNE0vS49J838ZMcJhr02t3r3SzKxGyrlm7CzgOknNZCuGmyLiNkmPAj+Q9PfA74FrUv9rgO9JWg28CCwa8R2aPUZvZlYrIwZ9RKwEji/R/jTZeP3g9h3Ae0ZVRVML9LwCO7dAe8eonmpmZsNrjCNjm1qze4/Tm5lVXWMEfXP6YrH1hfrWYWaWQ40R9E0p6P2DrJlZ1TVI0HvoxsysVhoj6AtDNz5oysys6hoj6BFMnOYtejOzGmiQoAcmz/AYvZlZDTRQ0Hf6oCkzsxponKDvcNCbmdVC4wT95Bn+MdbMrAYaJ+g7OmHnZujZUe9KzMxypXGCfvKM7N7DN2ZmVdU4Qd9RCHrveWNmVk2NE/SFLXqP05uZVVUDBf307N5DN2ZmVdU4Qe+hGzOzmmicoG+dCG1TPHRjZlZljRP0kA6a8ha9mVk1NVbQ+3w3ZmZV11hB79MgmJlVXWMFvbfozcyqrsGCvhO2vwh9vfWuxMwsNxor6Ds6s/ttvki4mVm1jBj0kg6VdJekRyU9Iuljqf0ySeskrUi3c4qe8xlJqyU9IemssqvZfXSsh2/MzKqlpYw+vcAnIuJBSVOAByTdmeZdGRFfKe4s6WhgEXAMcAjwC0lHRUTfiO/kg6bMzKpuxC36iFgfEQ+m6VeBx4DZwzxlIfCDiNgZEc8Aq4ETy6pmchq68UFTZmZVM6oxeklzgeOBe1PTxZJWSrpW0rTUNht4ruhpaymxYpC0RFK3pO5Nm1Kwe4vezKzqyg56SR3Aj4FLIuIV4CrgCGABsB746mjeOCKujoiuiOjq7Exb8m0d0DLRY/RmZlVUVtBLaiUL+Rsi4haAiNgQEX0R0Q98mz3DM+uAQ4uePie1lfNG6SLh3uvGzKxaytnrRsA1wGMR8bWi9llF3d4FrErTy4BFktolzQPmA/eVXZHPd2NmVlXl7HVzMnA+8LCkFants8B7JS0AAlgDfBggIh6RdBPwKNkeOxeVtcdNweQZsHlt2d3NzGx4IwZ9RPwGUIlZtw/znC8CXxxTRR2d8IcHx/RUMzPbW2MdGQvZFv3WF6C/v96VmJnlQuMFfccMiL7snDdmZlaxxgv63QdN+QdZM7NqaNyg93npzcyqovGCfvfRsQ56M7NqaLyg99CNmVlVNV7QT5wGTa0+aMrMrEoaL+gLp0HwGSzNzKqi8YIefBoEM7Mqasyg90XCzcyqpkGD3mewNDOrlsYM+sLQTUS9KzEzG/caM+gnz4C+XbBjc70rMTMb9xoz6H3QlJlZ1TRm0PugKTOzqmnMoPdFws3MqqYxg35yCnofNGVmVrHGDPpJB4GaPEZvZlYFjRn0Tc0w6WAP3ZiZVUFjBj2ko2O9RW9mVqnGDXqf78bMrCoaN+h9vhszs6oYMeglHSrpLkmPSnpE0sdS+0GS7pT0VLqfltol6euSVktaKemEMVXWMcM/xpqZVUE5W/S9wCci4mjgJOAiSUcDnwaWR8R8YHl6DPA2YH66LQGuGlNlkzuhZxvs3DKmp5uZWWbEoI+I9RHxYJp+FXgMmA0sBK5L3a4Dzk3TC4HrI/M7YKqkWaOuzBcJNzOrilGN0UuaCxwP3AvMjIj1adbzwMw0PRt4ruhpa1Pb6Ph8N2ZmVVF20EvqAH4MXBIRrxTPi4gARnVOYUlLJHVL6t60qUSY+3w3ZmZVUVbQS2olC/kbIuKW1LyhMCST7guJvA44tOjpc1LbABFxdUR0RURXZ2fn3m/q892YmVVFOXvdCLgGeCwivlY0axmwOE0vBpYWtV+Q9r45CdhcNMRTvt1b9B66MTOrREsZfU4GzgcelrQitX0WuAK4SdKFwLPAeWne7cA5wGpgG/DBMVXW3AoTp3mL3sysQiMGfUT8BtAQs08v0T+AiyqsK+ODpszMKta4R8aCLxJuZlYFjR30Pt+NmVnFGjvofQZLM7OKNXbQd3TCzs3Qs6PelZiZjVuNHfSTfXSsmVmlGjvofdCUmVnFGjvofZFwM7OKNXjQT8/uPXRjZjZmjR30HroxM6tYYwd960Rom+KhGzOzCjR20IMPmjIzq1DjB73Pd2NmVpHGD/qOTv8Ya2ZWgcYPem/Rm5lVZBwEfSdsfxH6eutdiZnZuNT4Qd+RrjS1zacrNjMbi8YP+t1Hx3r4xsxsLBo/6H3QlJlZRRo/6H2RcDOzijR+0HuL3sysIo0f9G0d0DLRY/RmZmPU+EEv+SLhZmYVaPygB5/vxsysAiMGvaRrJW2UtKqo7TJJ6yStSLdziuZ9RtJqSU9IOqsqVfoi4WZmY1bOFv13gbNLtF8ZEQvS7XYASUcDi4Bj0nP+t6Tmiqv0Fr2Z2ZiNGPQRcTfwYpmvtxD4QUTsjIhngNXAiRXUl5k8Ixuj7++v+KXMzPY3lYzRXyxpZRramZbaZgPPFfVZm9oq0zEDoi87542ZmY3KWIP+KuAIYAGwHvjqaF9A0hJJ3ZK6N20aYfx990FTHr4xMxutMQV9RGyIiL6I6Ae+zZ7hmXXAoUVd56S2Uq9xdUR0RURXZ2fn8G9YCHqfl97MbNTGFPSSZhU9fBdQ2CNnGbBIUrukecB84L7KSqTo6FgHvZnZaLWM1EHSjcBpwHRJa4G/A06TtAAIYA3wYYCIeETSTcCjQC9wUUT0VVxlYYv+6bvg9e+u+OXMzPYnioh610BXV1d0d3cP3SECPj81m75s874pysyswUl6ICK6Ruo3Po6MlbL7N/5NfeswMxuHxkfQA6gZNH7KNTNrFE5OM7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzo2voO/vqXcFZmbjzvgJ+lnHwr1Xw9O/qnclZmbjyvgJ+vf9CA46HL7/57D6F/Wuxsxs3Bg/Qd/RCYt/AtPnw43vhSd+Vu+KzMzGhfET9ACTD4YLlsHMY+CHH4DHbqt3RWZmDW98BT3ApIPggqVwyAL40WJ45NZ6V2Rm1tDGX9ADTDgQPnALzHkD3PwhWPmjeldkZtawRgx6SddK2ihpVVHbQZLulPRUup+W2iXp65JWS1op6YSaVT7hAHj/zXDYyXDrEljx/Zq9lZnZeFbOFv13gbMHtX0aWB4R84Hl6THA24D56bYEuKo6ZQ6hvQPedxPMOxX+7/+AB66r6duZmY1HIwZ9RNwNvDioeSFQSNXrgHOL2q+PzO+AqZJmVavYktomwXt/CEe+FX7yUbj/OzV9OzOz8WasY/QzI2J9mn4emJmmZwPPFfVbm9pqq3UCLLohC/vb/xZ2vFLztzQzGy8q/jE2IgKI0T5P0hJJ3ZK6N23aVGkZ0NIOR50N0Qd9uyp/PTOznBhr0G8oDMmk+42pfR1waFG/OaltLxFxdUR0RURXZ2fnGMswM7ORjDXolwGL0/RiYGlR+wVp75uTgM1FQzxmZlYHLSN1kHQjcBowXdJa4O+AK4CbJF0IPAucl7rfDpwDrAa2AR+sQc1mZjYKIwZ9RLx3iFmnl+gbwEWVFmVmZtUzPo+MNTOzsjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLuXwG/YZHoL+v3lWYmTWEEa8wNa5MPQwQXP9OmHAgzD0FDj8tux18JEh1Lc/MrB7yFfRHnQmffBKeuRue/hU8/Wt4/LZs3pRDUui/Cea9CQ6YVcdCzcz2nXwFPUDHDHj9u7NbBLz0zJ7Qf/Jn8ND3s35v+Z9w6qfqWqqZ2b6Qv6AvJsFBh2e3rg9Bfz9seBhueA9sfLze1ZmZ7RP5/DF2KE1NMOs4aOuodyVmZvvM/hX0Zmb7oYqGbiStAV4F+oDeiOiSdBDwQ2AusAY4LyJeqqxMMzMbq2ps0b85IhZERFd6/GlgeUTMB5anx2ZmVie1GLpZCFyXpq8Dzq3Be5iZWZkqDfoA7pD0gKQlqW1mRKxP088DM0s9UdISSd2Sujdt2lRhGWZmNpRKd698Y0SskzQDuFPSgH0WIyIkRaknRsTVwNUAXV1dJfuYmVnlKtqij4h16X4jcCtwIrBB0iyAdL+x0iLNzGzsxhz0kiZLmlKYBs4EVgHLgMWp22JgaaVFmpnZ2FUydDMTuFXZicJagO9HxM8k3Q/cJOlC4FngvMrLrLL2jux8OM/8G8w7pd7VmJnV1JiDPiKeBo4r0f5H4PRKiqq5d/4z3PwhuO4d8MZL4LTPQktbvasyM6uJ/fPI2FnHwYfvhhPOh99cCdeeCS+srndVZmY1sX8GPUDb5GzL/rzvwYvPwLdOgQevz854aWaWI/tv0Bcc/U746/8Hc7pg2Ufgpgtg24vlP3/TE/D8qtrVZ2ZWoXyfprhcB86G85fCb/8Zln8B1nbDu/4lu0jJYDtegZefhZfWwEvPwh2XZu2Xbd6nJZuZlctBX9DUBCd/DOadCj/+73D9QnjDhdkpjYuDffsotvbNzBqAg36wQ47Pfqj92Wfg/u9AUytMfQ1MOyybN/UwmDY3ezxtbrb3zs5X6121mdmQHPSltE2Gd34dzrgc2qdAU3O9KzIzGzMH/XAmTq13BWZmFfNeN9XQ35ddj9bMrAF5i75SzW3whwfhC9Nh8nSY3Fl0P6NouhM6OvdMt06sd+Vmtp9w0FfqzC/C4W+GrRth6ybY+kJ2/9Ia2LIJeraWfl5bR1oJzBi4cjjsP8ORjX0GCTMbXxz0lZp+ZHYbyq6tKfzTCmDrprRSKHr88rOwrjubXnEDfOLxoV/PzGyUHPS11jY5u007bOS+t30cuq+Fu78CfT3Qtwv6e/ZM9+1K0z3wH/4jHHU2zDgasjOImpmV5KBvJFNfk93/8gvZfVNL9htAc2u6T9MR8MgtsPxyOGAOHHVmFvpzT4G2SfWr38wakqIBTuJ1yJHHxOOrVnDAhNZ6l1J/O7dkYd7Umh2tO5RX1sNTd8CTP4enf5X9FtAyITuyd/6ZcNRZe1YcZpZLkh6IiK4R+zVC0LfPmh/HXXwVn3vH0bz99bOQhyJGp3cnrPlNCv6fZT8EAzS3w+mfy7byWyZCS3u2t0/LhOzWOiFrb51Q1DYx++bgz8Cs4Y2roD/m2ONj3l9+nVXrXuFNR3Vy+cJjOOzgyfUua3yKgBeegl9eDo/9ZIwvoqIVwYRsBTFlFrz/R9mRwmbWEMZV0Hd1dcW9993P9b9dw1fveJKevn4+8pYj+ctTD6e9xacfGLPendCzLd1vh94d2a1nB/RuL7/9kaWwczP8pw9mF23Z/ZtBGmLa/TtCmt7920IbNKfppta9nzfc0JSZjWjcBX13dzcAz2/ewRdue5SfPryeIzon88V3vZ6TDj+4zhXu5567D645o/qvq+a9VwgDVh4t2UqjqTXdN6f5hbb0uK0DJhyY3SZOhQlT9zwuvvkgNcuZcRv0BXc9sZHPLV3Fcy9u57+dMIfPnvNaDu5or1OFxq6t2Vb+7l09e9Kun7ugr3fP7p8DdgftGdSvaF5/0XMKzy/53N69b3096bQTqc+uLbBjc/btYzjN7aVXAIXbPf8Ikw6G9gOyXWJbJ0LrpOzWNmng43LaCsNeze3ZNYmb27MVk3//sCoZ90EPsH1XH9+46ymuvvtpJrW18L0LT+TYOT7RmA2hZ0cW+ANuL6fb4PbNsP3lgf36e7NvEkcvzFZqhZVbz7Z0K2rr2znGIpW9R8uEPeG/1337MH0K80r1GTyvfU97oW3zc9meWi3tew+n7R56G669jGG65jaf8XUfyUXQFzy14VXOuPJu/nTeQZz+uhlMamthUlvz7vvJ7c1MbM2mp09pp6PdhwfYKEVkv020Tiivf19v9nvGrm0DVwQ921Lb1uz1endm31B6d2Yrh73aiuftGqJP8bx0399b2fI2tVT+GsPSECuAoVYMLXuvRIb6DWjI9kGvo6ZshaPmoumm7HFT057pAfMG9StrXnP2La0O39TKDfqaJaKks4F/ApqB70TEFWN9rfkzp3DMIQdw7zMvcu8zw1/hqaO9hfsvfSsT27xFYaMglR/ykEJqSv32QurvG3olULySKF7BFNoOmgeHn5adcbV4CK3UcNq+at+1pbz+/T31+XuXQ6VWHmklUO7Ko6mw0ii1cioxr0w1CXpJzcA3gTOAtcD9kpZFxKNjfc2ffvQU+vqDbbt62b6rj627+ti2q5dtu/rYtquP7bt6uePRDdzy4DoWfft3tDc3ZX9fieYmIUFzk2iS+OXjG5kzbSI//cgpdExoobnJY6Y2zjQ1p6OgKzgSuqkJmtqyoZ/xIqLM33d2QfRnK8Toh0j3/cXTZc7r78vet+S8/kGvMdK84vcqNS9K1FV43A99g+oqU6226E8EVkfE0wCSfgAsBMYc9JAF9ZQJrUwZ4gjaIzo7eHlbDzt7+7KNlQh6+/vZ1Qd9/UFE0J9Gqta+tJ3jLr8DgEltzUyZ0EJHe0t6/RamTGhhUltL9nePoLc/6O8P+vqDvkj3/cGvn9wEwKfO+pO96in+JidUom1g30f/8Aovb+/hHccekv0flIpuoHTfJA2Yv3tFJtHUtKd/X3/Q1tK0u9a+ovoLy7N7uYqWacC8CHr7gvbWJt5x3CEMXiUOPrit1Cqz1DdalehZ6TdfaeDfWbvbs9bC61d6QF5huLMw6hmD2wfXNaiOQn3VqGW/I+0ZrsHH2vBX5f37qVXQzwaeK3q8FvjTGr3XbvNnTuHav3jDiP2e3PAqK557mVd39LJlRy+v7ujJpnf28sqOHrbs7GX95h1s29mLUpBm3wZI0000N2XBWvDlnz9RteX41RObqvZa1XTpravqXULVDV4hwN6Bva9+xtod/kW1FK8Ydq8mBvQrTJdewe3uPvCpe6+gh9gAKdl3iLpL9Rg8b6TnDt4AGO75I60kh5o9ZPsoNj6GeuehairZWqXXLkfdfrWUtARYAvCa1+zbc7IcNXMKR82szthqRNDTVwiGKGov1bdoukTf/ghe2tqze7ov9nwL6Y/Y/S2lf0BbNl34xtKX5m3b2UtfBBNammluFs0SLU3ZFv+Ae4mWNL+wQhtwk9iys5czrrybvx30rWXwMsZe27JD/B1K/h1L9Ss/YQf8bSMGbG1H7HmtbHrPk4rDPIi9vnnt/q9VInizx6X7Fx4PrqN4uQbXUk6/AfNKfKPY+1vGwNcppXiHjMFdRvqM954/9LzBr77Xc0fxXqOtc8gnDtM81I4qQ/2rHPLvW4XXLjUjCJYP1X+Qmux1I+nPgMsi4qz0+DMAEfEPpfqPtNeNmZntrdy9bmp1DPr9wHxJ8yS1AYuAZTV6LzMzG0ZNhm4iolfSxcDPyXavvDYiHqnFe5mZ2fBqNkYfEbcDt9fq9c3MrDw+faCZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeVcQ5ymWNIm4Nl611EF04EX6l3EPuTlzTcvb+M7LCI6R+rUEEGfF5K6yzlKLS+8vPnm5c0PD92YmeWcg97MLOcc9NV1db0L2Me8vPnm5c0Jj9GbmeWct+jNzHLOQV8BSWskPSxphaTu1HaQpDslPZXup9W7zrGSdK2kjZJWFbWVXD5lvi5ptaSVkk6oX+VjM8TyXiZpXfqMV0g6p2jeZ9LyPiHprPpUPTaSDpV0l6RHJT0i6WOpPZef7zDLm8vPdy+RrmLk2+hvwBpg+qC2/wV8Ok1/GvhSveusYPlOBU4AVo20fMA5wL+SXWTpJODeetdfpeW9DPhkib5HAw8B7cA84N+B5novwyiWdRZwQpqeAjyZlimXn+8wy5vLz3fwzVv01bcQuC5NXwecW8daKhIRdwMvDmoeavkWAtdH5nfAVEmz9k2l1THE8g5lIfCDiNgZEc8Aq4ETa1ZclUXE+oh4ME2/CjxGdq3nXH6+wyzvUMb15zuYg74yAdwh6YF0DVyAmRGxPk0/D8ysT2k1M9Tylbog/HD/kcaTi9NwxbVFQ3G5WV5Jc4HjgXvZDz7fQcsLOf98wUFfqTdGxAnA24CLJJ1aPDOy74C53a0p78uXXAUcASwA1gNfrW851SWpA/gxcElEvFI8L4+fb4nlzfXnW+Cgr0BErEv3G4Fbyb7abSh8pU33G+tXYU0MtXzrgEOL+s1JbeNaRGyIiL6I6Ae+zZ6v7+N+eSW1koXeDRFxS2rO7edbannz/PkWc9CPkaTJkqYUpoEzgVVkF0FfnLotBpbWp8KaGWr5lgEXpL0zTgI2Fw0BjFuDxqHfRfYZQ7a8iyS1S5oHzAfu29f1jZUkAdcAj0XE14pm5fLzHWp58/r57qXevwaP1xtwONmv8g8BjwCXpvaDgeXAU8AvgIPqXWsFy3gj2dfZHrIxyguHWj6yvTG+SbZ3wsNAV73rr9Lyfi8tz0qy//yzivpfmpb3CeBt9a5/lMv6RrJhmZXAinQ7J6+f7zDLm8vPd/DNR8aameWch27MzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRWF+lMgmcNartE0lWSDpF08xDPmyvpfRW+968k7XVt0NT+hKSHJN0j6U8qeR+zRuGgt3q5EVg0qG0RcGNE/CEi3j34CZJagLlARUE/gvdHxHFkJ/T6cokammv43mY14aC3erkZeLukNth9oqlDgH9LW+2rUvtfSFom6ZdkB/JcAZySzh3+8TT/G4UXlXSbpNPS9FWSutP5xz8/yvruBo5Mr7NG0pckPQi8R9ICSb9LJ8K6teic7UdK+kX6RvCgpCNS+6ck3Z/6fz61TZb009R3laQ/T+1XpHOmr5T0ldTWKenH6TXul3Ryan9T0XnUf184UttssJZ6F2D7p4h4UdJ9ZCeEW0q2NX9TRER2tPoAJwDHpuecRnb+8P8C2YpgmLe5ND2nGVgu6diIWFlmie8gO2Ky4I+RncAOSSuBj0TEryVdDvwdcAlwA3BFRNwqaQLQJOlMssPnTyQ7unRZOvldJ/CHiHh7es0DJR1Mdhj+a9PfYWp6738CroyI30h6DfBz4HXAJ4GLIuKedLKuHWUum+1nvEVv9VQ8fLMoPS7lzogo9zzxxc5LW+G/B44hu5jESG6QtAI4mSxIC34IWSADUyPi16n9OuDUtDU9OyJuBYiIHRGxjewcSGemGh4EXksW/A8DZ6RvCqdExGZgM1lYXyPpvwLb0nu8FfhGqmsZcEAK9nuAr0n6aKqpd7R/INs/eIve6mkpcKWyy9JNiogHhui3dZjX6GXgBssEgHQiqk8Cb4iIlyR9tzBvBO+PiO5R1jAcAf8QEd/aa0a23OcAfy9peURcLulE4HTg3cDFwFvIlu+kiBi8xX6FpJ+m17hH0lkR8fgY67Qc8xa91U1EbAHuAq5l6K35wV4luxRcwRpggaQmSYey5zSzB5CF82ZJM8mGiKpR82bgJUmnpKbzgV9HdtWitZLOBUhnPZxENszyobQFjqTZkmZIOgTYFhH/h+xH3xNSnwMj4nbg48Bx6T3uAD5SqEHSgnR/REQ8HBFfAu4n+7Zgthdv0Vu93Uh2Lv/Be+AMZSXQJ+kh4LvAPwLPAI+SXR6ucLm4hyT9Hnic7EpB91Sx5sXAv6Qgfxr4YGo/H/hWGrfvAd4TEXdIeh3w2/TbwxbgA2Q/9H5ZUn/q+9dkK7ClaXxfwN+k1/0o8M3020AL2Q/FfwVcIunNQD/ZGVT/tYrLaDnis1eameWch27MzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzv1/xWTkwD2+JnsAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Presim. Time / s\"].plot();\n", "df[\"Sim. Time / s\"].plot();"]}, {"cell_type": "code", "execution_count": 72, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmcFNW5//HPMzvMjKIwcEFEUEEFwYGMiMEFN1CSiOYXI14TMZprcn9m05h7NZvGaC5ejSbGXL1GeYlxSRQ14I7gwpWfigNBZVOI4mUQZVGQbWCW5/dHVQ89Mz0zPdPd09M93/frVa+uPnWq6qlp6KfPqapT5u6IiIg0lZPuAEREpGtSghARkZiUIEREJCYlCBERiUkJQkREYlKCEBGRmJQgREQkJiUIERGJSQlCRERiykt3AIno06ePDx48ON1hiIhklMWLF29297K26mV0ghg8eDCVlZXpDkNEJKOY2Yfx1FMXk4iIxKQEISIiMSlBiIhITBl9DkJEkq+mpoaqqiqqq6vTHYokqKioiIEDB5Kfn9+h9ZUgRKSRqqoqSktLGTx4MGaW7nCkg9ydLVu2UFVVxZAhQzq0DXUxiUgj1dXV9O7dW8khw5kZvXv3TqglqAQhIs0oOWSHRD/HzE4Q2z9OdwQiIlkrsxPEjk9Az9QWyTq5ubmUl5dz9NFHc95557Fr166Et3nXXXdx//33J7ydyy+/nPLycoYPH06PHj0oLy+nvLycWbNm8ctf/pJ58+YlvI9Ypk+fzoMPPpiSbbfEPIO/YCsG5HrlP7ZAj17pDkUka6xcuZKjjjoqrTGUlJSwY8cOAC688EK+8IUvcOWVVzYsd3fcnZyc9P3GXbt2LV/+8pdZtmxZp+zvlFNO4ZFHHqGsrM0RMhqJ9Xma2WJ3r2hr3cxuQQDs3JTuCEQkhU488UTWrFnD2rVrOeKII7jooos4+uijWbduHXPnzuX4449nzJgxnHfeeQ1J5eqrr2b48OGMGjWKq666CoDrrruOW265BYAJEyZwxRVXUFFRwVFHHcWbb77JV7/6VYYOHcrPf/7zDsd68cUXM2vWLCAYCuiaa66hvLyciooKlixZwqRJkzjssMO46667Gta5+eabOfbYYxk1ahTXXnttzO1+/vnn7N27t1lyeOWVVxpaMKNHj2b79u0djj2WzL/MdcdG6DM03VGIZKVfPbmcFR99ntRtDh+wH9d+ZURcdWtra3n22Wc588wzAVi9ejUzZ85k3LhxbN68mRtuuIF58+ZRXFzMTTfdxK233srll1/OE088wapVqzAztm7dGnPbBQUFVFZW8vvf/54pU6awePFiDjzwQA477DCuuOIKevfunfCxDho0iKVLl3LFFVdw8cUXs3DhQqqrqzn66KP57ne/y9y5c1m9ejWLFi3C3Tn77LNZsGABJ510UqPtzJs3j9NOO63Z9m+55Rb++Mc/Mn78eHbs2EFRUVHCMUdLWQvCzIrMbJGZvWVmy83sV2H5EDN7w8zWmNlfzawgLC8M368Jlw+Oa0c7N6bqEEQkTXbv3t3wy3vQoEFceumlABxyyCGMGzcOgNdff50VK1Ywfvx4ysvLmTlzJh9++CH7778/RUVFXHrppTz++OP07Nkz5j7OPvtsAEaOHMmIESPo378/hYWFHHrooaxbty4pxxG9j+OOO47S0lLKysooLCxk69atzJ07l7lz5zJ69GjGjBnDqlWrWL16dbPtPPfcc5x11lnNysePH8+VV17J7bffztatW8nLS+5v/lS2IPYAp7r7DjPLB141s2eBK4Hb3P0vZnYXcClwZ/j6mbsfbmZTgZuA89vcyw51MYmkSry/9JOtR48eLF26tFl5cXFxw7y7c8YZZ/Dwww83q7do0SLmz5/PrFmzuOOOO3jxxReb1SksLAQgJyenYT7yvra2NhmH0eY+3J1rrrmG73znO61uZ9GiRdx5553Nyq+++mq+9KUv8cwzzzB+/Hief/55jjzyyKTEDilsQXhgR/g2P5wcOBWYFZbPBM4J56eE7wmXn2ZtXsRrakGIdFPjxo1j4cKFrFmzBoCdO3fy3nvvsWPHDrZt28bkyZO57bbbeOutt9IcacsmTZrEjBkzGs6drF+/no0bG3+nLV++nCOPPJLc3Nxm6//jH/9g5MiR/Pu//zvHHnssq1atSmp8KT0HYWa5wGLgcOCPwD+Are4eSc9VwEHh/EHAOgB3rzWzbUBvYHOLO8jJ00lqkW6qrKyM++67jwsuuIA9e/YAcMMNN1BaWsqUKVOorq7G3bn11ls7vI/Jkydzzz33MGDAgGSF3cjEiRNZuXIlxx9/PBBcvfXAAw/Qt2/fhjrR52Ca+t3vfsdLL71ETk4OI0aMiNkNlYhOuczVzHoBTwC/AO5z98PD8oOBZ939aDNbBpzp7lXhsn8Ax7n75ibbugy4DOCYAYVfWHrLV+GCh1J+DCLdRVe4zFX2OeOMM7j//vvp379/h9bv8pe5uvtW4CXgeKCXmUVaLgOB9eH8euBggHD5/sCWGNu6290r3L0ir6BIXUwiktVeeOGFDieHRKXyKqaysOWAmfUAzgBWEiSKr4XVpgGzw/k54XvC5S96W82bnPzgMlcREUm6VJ6D6A/MDM9D5ACPuPtTZrYC+IuZ3QD8Hbg3rH8v8GczWwN8Ckxtcw+5OgchIpIqKUsQ7v42MDpG+fvA2Bjl1cB57dpJTh7UfA57dkBhSUdDFRGRGDJ7qI2c8ClJOg8hIpJ0mZ0gcsMG0M6Wr4QVEZGOyewEkRMmCJ2oFskqN954IyNGjGDUqFGUl5fzxhtvAPDtb3+bFStWJLz94447jvLycgYNGkRZWVnDgHdr165l8uTJLY7flKizzjqLqqqqlGw7FTJ7sD51MYlknddee42nnnqKJUuWUFhYyObNm9m7dy8A99xzT1L2EUk49913H5WVldxxxx0Ny5555pmk7KOp3bt3s2XLFgYOHJiS7adCZrcgIl1MGo9JJGts2LCBPn36NIxd1KdPn4Y7mSdMmEBlZSUQ3HX8k5/8hBEjRnD66aezaNEiJkyYwKGHHsqcOXM6vP/BgwezefNm1q5dy5FHHsnFF1/MsGHDuPDCC5k3bx7jx49n6NChLFq0CAiG+LjkkksYO3Yso0ePZvbs2TG3+/LLLzNhwoRm5bfffnvD0ORTp7Z98WZnyuwWBAY9DlALQiRVnr0aPn4nudv8p5Fw1vQWF0+cOJHrr7+eYcOGcfrpp3P++edz8sknN6u3c+dOTj31VG6++WbOPfdcfv7zn/PCCy+wYsUKpk2b1jCSaiLWrFnDo48+yowZMzj22GN56KGHePXVV5kzZw6/+c1v+Nvf/saNN97IqaeeyowZM9i6dStjx47l9NNPbzSwIARDZpxzzjnN9jF9+nQ++OCDhhFeu5LMbkEAFPfVOQiRLFJSUsLixYu5++67KSsr4/zzz+e+++5rVq+goKBhjKKRI0dy8sknk5+fz8iRI1m7dm1SYhkyZAgjR45sGOvotNNOw8wa7WPu3LlMnz6d8vJyJkyYQHV1Nf/7v//bbFsLFy7khBNOaFY+atQoLrzwQh544IGkD9edqK4VTUcUl+lmOZFUaeWXfirl5uYyYcIEJkyYwMiRI5k5cyYXX3xxozr5+flEBnyOHk47FcN1t7YPd+exxx7jiCOOaHE777//PgcffDAFBQXNlj399NMsWLCAJ598khtvvJF33nmnyySKzG9BlChBiGSTd999t9FDc5YuXcohhxySxohaN2nSJP7whz8QGRno73//e7M6LY3IWl9fz7p16zjllFO46aab2LZtW8PQ311B5ieI4r46SS2SRXbs2MG0adMaTtyuWLGC6667rkPb+uijj5g8eXJyA2ziF7/4BTU1NYwaNYoRI0bwi1/8olmd5557LmaCqKur4xvf+AYjR45k9OjR/OAHP6BXr14pjbc9OmW471SpqKjwylvPhxdvgJ99AvnJfR6rSHek4b6Ta8+ePYwfP77h6qvO1uWH+06p4vDBGupmEpEuqLCwMG3JIVGZnyBKIglCVzKJiCRT5ieISAtC5yFEkiaTu55ln0Q/xyxIEH2CV3UxiSRFUVERW7ZsUZLIcO7Oli1bKCrq+LnZrnGxbSLUxSSSVAMHDqSqqopNm/SjK9MVFRUlNPZT5ieI/B5QUKouJpEkyc/PZ8iQIekOQ7qAzO9igvBmObUgRESSKTsShMZjEhFJuuxIEBpuQ0Qk6bIjQagFISKSdFmSIMpg96dQl5wRHEVEJFsSRElZ8Lprc3rjEBHJIilLEGZ2sJm9ZGYrzGy5mf0wLL/OzNab2dJwmhy1zjVmtsbM3jWzSXHvrOFuanUziYgkSyrvg6gFfuzuS8ysFFhsZi+Ey25z91uiK5vZcGAqMAIYAMwzs2HuXtfmnnSznIhI0qWsBeHuG9x9STi/HVgJHNTKKlOAv7j7Hnf/AFgDjI1rZ8VhF5NulhMRSZpOOQdhZoOB0cAbYdH3zOxtM5thZgeEZQcB66JWqyJGQjGzy8ys0swqG4YCUAtCRCTpUp4gzKwEeAz4kbt/DtwJHAaUAxuA37Zne+5+t7tXuHtFWVnYcigogbweOgchIpJEKU0QZpZPkBwedPfHAdz9E3evc/d64E/s60ZaDxwctfrAsCyeHQXdTDt1FZOISLKk8iomA+4FVrr7rVHl/aOqnQssC+fnAFPNrNDMhgBDgUVx71DjMYmIJFUqr2IaD3wTeMfMloZlPwUuMLNywIG1wHcA3H25mT0CrCC4AuryuK5giijuC9uqkhe9iEg3l7IE4e6vAhZj0TOtrHMjcGOHdlhSBh8t6dCqIiLSXHbcSQ1BC2LnZqivT3ckIiJZIXsSRElf8LpgTCYREUlY9iSIhpvldKJaRCQZsi9B6LkQIiJJkT0JouFuaiUIEZFkyJ4EoS4mEZGkyp4E0eMAyMnXzXIiIkmSPQkiMtyGRnQVEUmK7EkQoOE2RESSKLsSRHFfnYMQEUmSLEsQGtFVRCRZsitBRLqY3NMdiYhIxsuuBFHcF+r2QvW2dEciIpLxsitB6GY5EZGkya4EoZvlRESSJrsSREMLQglCRCRR2ZUgisMEoZvlREQSll0JoueBYDk6ByEikgTZlSBycqFnb3UxiYgkQXYlCAjvplYLQkQkUdmXIDQek4hIUmRfgtB4TCIiSZGyBGFmB5vZS2a2wsyWm9kPw/IDzewFM1sdvh4QlpuZ3W5ma8zsbTMb06Edl/TVSWoRkSRIZQuiFvixuw8HxgGXm9lw4GpgvrsPBeaH7wHOAoaG02XAnR3aa3EZ1OyCPTsSDF9EpHtLWYJw9w3uviSc3w6sBA4CpgAzw2ozgXPC+SnA/R54HehlZv3bvePI3dRqRYiIJKRTzkGY2WBgNPAG0M/dN4SLPgb6hfMHAeuiVqsKy9pH4zGJiCRFyhOEmZUAjwE/cvfPo5e5uwPtGpvbzC4zs0ozq9y0KUYS0HhMIiJJkdIEYWb5BMnhQXd/PCz+JNJ1FL5GvsnXAwdHrT4wLGvE3e929wp3rygrK2u+U43HJCKSFKm8ismAe4GV7n5r1KI5wLRwfhowO6r8ovBqpnHAtqiuqPg1tCDUxSQikoi8FG57PPBN4B0zWxqW/RSYDjxiZpcCHwJfD5c9A0wG1gC7gG91aK+5+dDjALUgREQSlLIE4e6vAtbC4tNi1Hfg8qTsXDfLiYgkLPvupIagm2nn5nRHISKS0bIzQWg8JhGRhGVngtCIriIiCcvOBFFSBnu2QU11uiMREclY2ZkginU3tYhIotpMEGb2n2a2n5nlm9l8M9tkZt/ojOA6TDfLiYgkLJ4WxMRwiIwvA2uBw4GfpDKohEVaEDoPISLSYfEkiMi9El8CHnX3bSmMJzmK+wSv6mISEemweG6Ue8rMVgG7gX81szKga5/9VReTiEjC2mxBuPvVwBeBCnevIRgGY0qqA0tIfg8oKFUXk4hIAuIaasPdP42a3wnsTFlEyaKb5UREEpKdl7mCxmMSEUlQiwkifJZD5iop00lqEZEEtNaCeM3M/mZm3w0fGZpZ1IIQEUlIi+cg3L0iTAxnAr8zs4OAV4FngVfcfU+nRNhRxWWw+1Ooq4XcVD72QkQkO7V6DsLd17r7Xe5+DsGVTE8CpwP/Y2ZPd0aAHVYSPllul4b9FhHpiLh/WoeXuL4YToQtiq6r4W7qjVD6T+mNRUQkA3X4KiZ3X5/MQJJON8uJiCQkiy9zDbuYdLOciEiHxJ0gzKxnKgNJOrUgREQSEs9w3180sxXAqvD9MWb2XymPLFEFJZDXQ5e6ioh0UDwtiNuAScAWAHd/CzgplUElhVnQzbRTVzGJiHREXF1M7r6uSVFdCmJJPo3HJCLSYfEkiHVm9kXAw6fKXQWsbGslM5thZhvNbFlU2XVmtt7MlobT5Khl15jZGjN718wmdehomiruq5PUIiIdFE+C+C5wOXAQsB4oD9+35T6Cu7Cbus3dy8PpGQAzGw5MBUaE6/yXmeXGsY/WqQUhItJhbd4o5+6bgQvbu2F3X9COMZymAH8Jh+/4wMzWAGOB19q730aK+wbnIOrrISd7r+gVEUmFNhOEmQ0Bvg8Mjq7v7md3cJ/fM7OLgErgx+7+GUHr5PWoOlVhWWJK+oLXBWMyRR5DKiIicYlnqI2/AfcSjMNUn+D+7gR+DXj4+lvgkvZswMwuAy4DGDRoUOuVG26W26gEISLSTvEkiGp3vz0ZO3P3TyLzZvYn4Knw7Xrg4KiqA8OyWNu4G7gboKKiwlvdYSRB6LkQIiLtFk/H/O/N7FozO97MxkSmjuzMzPpHvT0XiFzhNAeYamaFYZfWUGBRR/bRSMPd1EoQIiLtFU8LYiTwTeBU9nUxefi+RWb2MDAB6GNmVcC1wAQzKw/XXwt8B8Ddl5vZI8AKoBa43N0Tv9ci0oJ4/yUY+bWENyci0p2Ye+u9NOEVRcPdfW/nhBS/iooKr6ysbLmCO/yqVzB/3bbOCUpEpIszs8XuXtFWvXi6mJYBvRIPKQ3MgtcTrkxvHCIiGSieLqZewCozexNoeMxoApe5di7LBdM9ECIi7RVPgrg25VGIiEiXE8+d1K90RiAiItK1tJggzOxVdz/BzLYTXHXUsAhwd98v5dGJiEjatNaCKAZw99JOikVERLqQ1s7etn79q4iIZLXWWhB9zazF60Pd/dYUxCMiIl1EawkiFyghOOcgIiLdTGsJYoO7X99pkYiISJfS2jkItRxERLqx1hLEaZ0WhYiIdDktJgh3/7QzAxERka5FgxSJiEhMShAiIhKTEoSIiMTUPRJEfU26IxARyTjZnyD6j4I37ob3X053JCIiGSX7E8Q/PwoHHgoPnQ9r5qU7GhGRjJH9CaKkDKY9CX2GwsMXwLvPpTsiEZGMkP0JAqC4N1w0B/qNgL9+A1Y+le6IRES6vO6RIAB6HggXzYYB5fDoNFj+RLojEhHp0rpPggAo2h++8TgMPBZmXQJvP5ruiEREuqyUJQgzm2FmG81sWVTZgWb2gpmtDl8PCMvNzG43szVm9raZjUlVXBTtBxfOgkPGwxOXwdKHUrYrEZFMlsoWxH3AmU3Krgbmu/tQYH74HuAsYGg4XQbcmcK4oLAE/vkRGHIS/O3/wuKZKd2diEgmSlmCcPcFQNMB/6YAkW/jmcA5UeX3e+B1oJeZ9U9VbAAU9IQL/gqHnw5P/gDevCeluxMRyTSdfQ6in7tvCOc/BvqF8wcB66LqVYVlqZVfBFMfDJLEM/8G1Z+nfJciIpkibSep3d0Bb+96ZnaZmVWaWeWmTZsSDySvEIadCV4HdXsT356ISJbo7ATxSaTrKHzdGJavBw6OqjcwLGvG3e929wp3rygrK0tpsCIi3VlnJ4g5wLRwfhowO6r8ovBqpnHAtqiuKBERSYO8VG3YzB4GJgB9zKwKuBaYDjxiZpcCHwJfD6s/A0wG1gC7gG+lKi4REYlPyhKEu1/QwqJmz7oOz0dcnqpYRESk/brXndQiIhI3JQgREYlJCUJERGJSghARkZiUIEREJCYlCBERiUkJQkREYlKCEBGRmJQgREQkJiUIERGJSQlCRERiUoIQEZGYlCBERCQmJQgREYlJCUJERGJSghARkZiUIKJ9shzq69IdhYhIl5CyJ8pllF6HAAb3nw1F+8PgE+HQCcHU+3AwS2t4IiLpoAQBMGwiXPUefLAA3n8Z3n8FVj0VLCsdECaLk2HIybBf/zQGKiLSeZQgIkr6wsivBZM7fPbBvmTx3nPw1kNBvVN/Dif9JK2hioh0BiWIWMzgwEODqeISqK+HT96BB8+DjavSHZ2ISKfQSep45ORA/2OgoCTdkYiIdBolCBERiSktXUxmthbYDtQBte5eYWYHAn8FBgNrga+7+2fpiE9ERNLbgjjF3cvdvSJ8fzUw392HAvPD9yIikiZdqYtpCjAznJ8JnJPGWEREur10JQgH5prZYjO7LCzr5+4bwvmPgX6xVjSzy8ys0swqN23a1Bmxioh0S+m6zPUEd19vZn2BF8ys0bWj7u5m5rFWdPe7gbsBKioqYtYREZHEpaUF4e7rw9eNwBPAWOATM+sPEL5uTEdsIiIS6PQEYWbFZlYamQcmAsuAOcC0sNo0YHZnxyYiIvuko4upH/CEBQPg5QEPuftzZvYm8IiZXQp8CHw9DbG1rrAkGK/pg/+BISemOxoRkZTq9ATh7u8Dx8Qo3wKc1tnxtMvZf4BZl8DMr8AJP4IJP4W8gnRHJSKSEl3pMteur/8x8J0FMOab8OptMGMibF6T7qhERFJCCaK9CoqDlsTX/wyffgD/fSIsuT8YAVZEJIsoQXTU8LPhX/8fDKyAOd+HRy6CXZ/Gv/6md+HjZamLT0QkQRruOxH7HwTfnA2v/QHm/xqqKuHcu4KHCzVV/Tls/RA+WwuffQhzfxaUX7etU0MWEYmXEkSicnJg/A9hyEnw2Lfh/ilw7KXB0ODRCWF3O1oXIiJdgBJEsgwYHZzAfu4aePMeyMmHXoPggEOCZb0OgQMGB+8PGBxcDbVne7qjFhFpkRJEMhUUw9m3wxnXQ2Ep5OSmOyIRkQ5TgkiFHr3SHYGISMJ0FVM61dcFz7sWEemC1IJIl9wC+GgJ/LoPFPeB4rKo175R82VQUrZvPr9HuiMXkW5CCSJdJt4Ih54COzfCzk2wc3Pw+tla2LEJanbGXq+gJEwefRsnlUO+CId37ZFKRCSzKEGkS5/Dg6kle3eGSSNMHDs3hckk6v3WD2F9ZTC/9EH48aqWtyci0k5KEF1VQXEwHXBI23WfugIqZ8CCW6CuBur2Qn3Nvvm6veF8DfzT0TDsTOg7HIIRdUVEYlKCyAa9BgWvL/46eM3JC85x5OaHr+G8Oyx/HOZfD/sNhGETg2Qx+EQo6Jm++EWkSzLP4EHmBhw+wlctW8p+RfnpDiX99uwIkkBOfnB3d0s+3wCr58J7z8P7LwfnOvKKgjvBh06EYZP2JRwRyUpmttjdK9qsl8kJorD/UD/me3fyy68M50sj+2PqMmmf2j2w9tUwYTwXnCAHyC2E034ZtCryekBeYXD1VF5RMOUXBeX5RVFlPYKWij4DkS6vWySIEaNG+5B/uZ1l6z/n5GFlXD9lBIf0Lk53WJnJHTavhhevh5VPdnAjFpVAioLEUtofLnw0uLNcRLqEbpEgKioq/I1Fb3L/a2v57dz3qKmr5/unHs6/nHQohXka5qLDavdAza7wdTfUVgdTTTXU7o6/fPls2LMNvvCt4GFLDedEwq6whvMk4XzDuZMCyA3nc/Kbr9daF5qItKnbJIjKykoAPt5Wza+fWsHT72zgsLJibjx3JOMO7Z3mCLu5dYvg3jOSv13LbZ5IGiWdvCDZ5OSHr7nh8khZ+L6gBIr2D6YevaCo17730ZNuTpQs0+0SRMRL727kl7OXse7T3fyfMQP56eQj6V1SmKYIhb07g1ZFwyW3NeEluHuhrnbfZbiNLsutaVIvall91DqR9WOuW9t8qqsJhzcJ6+zdAdXbgtZOa3ILYyeOyLTwd9CzNxTuF1yanN8D8nsGU0HPxu/jKYt0z+UWBs88zy0MEprO70iSdNsEAbB7bx13vLSauxe8T8+CPP586VhGDdQAetKCmuogUTSatoZT0/JtsHtr43r1tUHLZfiUIBlGkmLNrnCKKqvb08EgLdhHXtG+pNHstbCVOpFlseo0XVa4rzxStm1dcOVbXmHzbr+GLsLWyuPoTswt0AjInaRbJ4iI1Z9s54zbFnDckAM57ai+9CzIo2dBbsNrcWEuPfKD+T6lhZQU6rYQaSf34NxLflF89etqg/M1e3c1TiA1u8KyncH2avcELaLaPUFSaVYWvWxvC3Wil4Wv9bWJHW9OXuLbaJW1kDhaSih5zZNPS+e4Wixvsh3LCRKV5UbN5wTvc3L2zTda1qReXMtyg1ZhGlqG8SaILveNaGZnAr8HcoF73H16R7c1tF8pIwbsxxsffMobH7T+RLeSwjze/Nnp9CjQLxhpB7P4kwOEX26l6buqq76u5eQRnVyiE1Ok7MAhcOiEYATi6K6+WN1+nVW+d0d89etr0vP3jofFSjph8og36eREkk2spBZjWZy6VIIws1zgj8AZQBXwppnNcfcVHd3m0z84kbp6Z9feWnbvrWPn3jp27a1l1946du2tY/feWuau+ITHl6xn6p9epzA3J/hczMjNMcwgN8fIMePFVRsZeEAPnv7+iZQU5ZGboz5hyTA5ueFd8wncOZ+TAzkFQRdVpnCP8/zVXvD6IJF6PXj4Wh89H+ey+rpgvzGX1TfZRlvLovcVa5nHiCvyvh7qmsQVpy6VIICxwBp3fx/AzP4CTAE6nCAg+IIvLcqntIU7rg8rK2Hrrhr21NYFP47cqa2vZ28d1NU77k592BNX9dlujrl+LgA9C3IpLcqjpDAv3H4epUV59CzICz4vd2rrnfp6p67eqfPwtd555b1NAPxk0hHN4olucRoWo6xx3RUffc7W3TV8ZdSA4P+uWdQEFr7mmDVa3pAAzcjJ2Ve/rt4pyMtpiLUuKv7I8TQcV9QxNVrmTm2dU5ifw1eOGUDTVNr0psZYqTZWy9t7RxCtAAAJPElEQVRi1Ey0hW7W+O9sDeVBaWT7id6IGenOjfTqetPypnE1iSMSXzJi6XbM9nUroXul+G58/366WoI4CFgX9b4KOC7VOx3ar5QZFx/bZr33PtnO0nVb2V5dy47qWrZX1wTze2r5vLqGHXtq2bCtml17arHwCzhofRDO55CbE3whR9z8/LtJO46X392UtG0l08+eWJbuEJKuaSKB5l/0nXV6ryFpRMUSnVAa0kujepH52ImxoXrjVZsn9hZ+uMSs20LcsWo0XdbWuk1/OLS2flvJtaXFLZa340dLS3tuKaaYpUnadjy6WoJok5ldBlwGMGhQ544ZNKxfKcP6Jafv2N2pqYt8oXhUeay6UfMx6ta789nOmob5Ot/X6ql3b2gV1TcqC+YjLaS6cNmuPbXUuVOUl0turpFrRl5O0MJo9GpGXrg8kggbTWbs2FPLGbct4N+atJKaHqM3++3cwt8h5t8xVr34v5kb/W3dG/26d9+3rWB+30rRScDxZi29hv+SMb6wg/ex60feN40j+riaxhJPvUbLYrRgmrdqGm8nlugLXJpWaeszbr685WVNt95s3Xbsq71xtrhiK8UtXfjT0r/KFv++Sdh2rAWOM7+l+k10qauYzOx44Dp3nxS+vwbA3f8jVv22rmISEZHm4r2KqauNWfAmMNTMhphZATAVmJPmmEREuqUu1cXk7rVm9j3geYLLXGe4+/I0hyUi0i11qQQB4O7PAM+kOw4Rke6uq3UxiYhIF6EEISIiMSlBiIhITEoQIiISkxKEiIjE1KVulGsvM9sEfJjuOJKgD7A53UF0Ih1vdtPxdn2HuHtZW5UyOkFkCzOrjOeuxmyh481uOt7soS4mERGJSQlCRERiUoLoGu5OdwCdTMeb3XS8WULnIEREJCa1IEREJCYliDQws7Vm9o6ZLTWzyrDsQDN7wcxWh68HpDvOjjKzGWa20cyWRZXFPD4L3G5ma8zsbTMbk77IO6aF473OzNaHn/FSM5scteya8HjfNbNJ6Ym6Y8zsYDN7ycxWmNlyM/thWJ6Vn28rx5uVn28zHj59TFPnTcBaoE+Tsv8Erg7nrwZuSnecCRzfScAYYFlbxwdMBp4leKjaOOCNdMefpOO9DrgqRt3hwFtAITAE+AeQm+5jaMex9gfGhPOlwHvhMWXl59vK8Wbl59t0Ugui65gCzAznZwLnpDGWhLj7AuDTJsUtHd8U4H4PvA70MrP+nRNpcrRwvC2ZAvzF3fe4+wfAGmBsyoJLMnff4O5LwvntwEqCZ8ln5efbyvG2JKM/36aUINLDgblmtjh8xjZAP3ffEM5/DPRLT2gp09LxHQSsi6pXRev/ATPJ98JulRlRXYZZc7xmNhgYDbxBN/h8mxwvZPnnC0oQ6XKCu48BzgIuN7OTohd60FbN2svLsv34QncChwHlwAbgt+kNJ7nMrAR4DPiRu38evSwbP98Yx5vVn2+EEkQauPv68HUj8ARBE/STSNM7fN2YvghToqXjWw8cHFVvYFiW0dz9E3evc/d64E/s62bI+OM1s3yCL8sH3f3xsDhrP99Yx5vNn280JYhOZmbFZlYamQcmAsuAOcC0sNo0YHZ6IkyZlo5vDnBReLXLOGBbVFdFxmrSz34uwWcMwfFONbNCMxsCDAUWdXZ8HWVmBtwLrHT3W6MWZeXn29LxZuvn20y6z5J3twk4lOAqh7eA5cDPwvLewHxgNTAPODDdsSZwjA8TNLtrCPpgL23p+AiubvkjwdUe7wAV6Y4/Scf75/B43ib40ugfVf9n4fG+C5yV7vjbeawnEHQfvQ0sDafJ2fr5tnK8Wfn5Np10J7WIiMSkLiYREYlJCUJERGJSghARkZiUIEREJCYlCBERiUkJQjJKOLLmpCZlPzKzO81sgJnNamG9wWb2zwnu+2Uza/bs4bD8XTN7y8wWmtkRiexHpKtQgpBM8zAwtUnZVOBhd//I3b/WdAUzywMGAwkliDZc6O7HEAxUd3OMGHJTuG+RlFCCkEwzC/iSmRVAwwBqA4D/CVsJy8Lyi81sjpm9SHAD13TgxHDs/ivC5XdENmpmT5nZhHD+TjOrDMf//1U741sAHB5uZ62Z3WRmS4DzzKzczF4PB3h7IuqZCYeb2bywBbLEzA4Ly39iZm+G9X8VlhWb2dNh3WVmdn5YPj18ZsHbZnZLWFZmZo+F23jTzMaH5SdHPcfg75E7+0Waykt3ACLt4e6fmtkigoEOZxO0Hh5xdw9GRWhkDDAqXGcCwfj9X4YggbSym5+F6+QC881slLu/HWeIXyG4wzZiiwcDM2JmbwPfd/dXzOx64FrgR8CDwHR3f8LMioAcM5tIMEzDWIK7keeEgzqWAR+5+5fCbe5vZr0Jhns4Mvw79Ar3/XvgNnd/1cwGAc8DRwFXAZe7+8JwELrqOI9Nuhm1ICQTRXczTQ3fx/KCu8f7nIZoXw9/9f8dGEHwEJi2PGhmS4HxBF/AEX+F4Isc6OXur4TlM4GTwl/vB7n7EwDuXu3uuwjG6JoYxrAEOJIgYbwDnBG2TE50923ANoIv+XvN7KvArnAfpwN3hHHNAfYLE8JC4FYz+0EYU217/0DSPagFIZloNnCbBY+v7Onui1uot7OVbdTS+AdSEUA4wNpVwLHu/pmZ3RdZ1oYL3b2ynTG0xoD/cPf/brYgOO7JwA1mNt/drzezscBpwNeA7wGnEhzfOHdv2kKYbmZPh9tYaGaT3H1VB+OULKYWhGQcd98BvATMoOXWQ1PbCR4ZGbEWKDezHDM7mH3DNe9H8KW+zcz6EXRlJSPmbcBnZnZiWPRN4BUPnlJWZWbnAISjgPYk6A66JPzFj5kdZGZ9zWwAsMvdHyA4GT4mrLO/uz8DXAEcE+5jLvD9SAxmVh6+Hubu77j7TcCbBK0TkWbUgpBM9TDBszSaXtHUkreBOjN7C7gP+B3wAbCC4DGSkcdKvmVmfwdWETwZbGESY54G3BUmgPeBb4Xl3wT+OzwvUQOc5+5zzewo4LXw3MoO4BsEJ8BvNrP6sO6/EiS+2eH5CwOuDLf7A+CP4bmPPIIT6N8FfmRmpwD1BCMKP5vEY5QsotFcRUQkJnUxiYhITEoQIiISkxKEiIjEpAQhIiIxKUGIiEhMShAiIhKTEoSIiMSkBCEiIjH9fy/Jv8wSJryMAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["ax = df[[\"Presim. Time / s\", \"Sim. Time / s\"]].plot();\n", "ax.set_ylabel(\"Time / s\");"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## More Plotting with Pandas\n", "### Our first proper Pandas plot\n"]}, {"cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XucFOWd7/HPb+4wgyIwsCDKRUEFwYGMiAcv4w2UJKI5MeKaCNGsyR4To67Z1WiiMbqLR6OJ0aNrlBcYL4miBlRUBC+snCgOiMpNQcVlEOWioFwG5vLbP6pm6JnpYXqme+ie4vt+vfrV1U89VfWrafjV009VPWXujoiIRFdWugMQEZH2pUQvIhJxSvQiIhGnRC8iEnFK9CIiEadELyIScUr0IiIRp0QvIhJxSvQiIhGXk+4AAHr06OH9+/dPdxgiIh3KokWLNrl7cUv1MiLR9+/fn/Ly8nSHISLSoZjZJ4nUU9eNiEjEKdGLiEScEr2ISMRlRB+9iKReVVUVFRUVVFZWpjsUSVJBQQF9+/YlNze3Tcsr0YtEVEVFBV26dKF///6YWbrDkTZydzZv3kxFRQUDBgxo0zrUdSMSUZWVlXTv3l1JvoMzM7p3757ULzMlepEIU5KPhmS/x8xI9F9/lu4IREQiKzMS/bbPQc+uFYmc7OxsSkpKOProoznvvPPYsWNH0uu87777eOihh5Jez2WXXUZJSQlDhgyhU6dOlJSUUFJSwowZM/j1r3/N3Llzk95GPFOmTOGRRx5pl3U3xzLh4eClfbK9/MPN0KlrukMRiYwVK1Zw1FFHpTWGoqIitm3bBsCFF17IN77xDa666qr6+e6Ou5OVlb4255o1a/jWt77F0qVL98n2TjnlFB5//HGKi1scuaCBeN+nmS1y99KWls2MFj3A9o3pjkBE2tGJJ57I6tWrWbNmDUcccQQXXXQRRx99NGvXrmXOnDkcf/zxjBw5kvPOO6/+4HDNNdcwZMgQhg8fztVXXw3AjTfeyO233w5AWVkZV155JaWlpRx11FG89dZbfOc732HQoEFcf/31bY518uTJzJgxAwiGaLn22mspKSmhtLSUxYsXM27cOA477DDuu++++mVuu+02jj32WIYPH84NN9wQd71fffUVu3fvbpLkX3vttfpfFCNGjODrr79uc+zxZM7llds2QI9B6Y5CJJJ+88wyln/6VUrXOaTPAdzw7aEJ1a2urub555/nzDPPBGDVqlVMnz6d0aNHs2nTJm6++Wbmzp1LYWEht956K3fccQeXXXYZTz/9NCtXrsTM2LJlS9x15+XlUV5ezh/+8AcmTJjAokWL6NatG4cddhhXXnkl3bt3T3pfDz30UJYsWcKVV17J5MmTWbBgAZWVlRx99NH85Cc/Yc6cOaxatYqFCxfi7px99tnMnz+fk046qcF65s6dy2mnndZk/bfffjv33HMPY8aMYdu2bRQUFCQdc6wWW/RmVmBmC83sHTNbZma/CcsHmNmbZrbazP5qZnlheX74eXU4v39CkWzfkMRuiEgm2rlzZ31L+NBDD+WSSy4BoF+/fowePRqAN954g+XLlzNmzBhKSkqYPn06n3zyCQceeCAFBQVccsklPPXUU3Tu3DnuNs4++2wAhg0bxtChQ+nduzf5+fkMHDiQtWvXpmQ/Yrdx3HHH0aVLF4qLi8nPz2fLli3MmTOHOXPmMGLECEaOHMnKlStZtWpVk/W88MILnHXWWU3Kx4wZw1VXXcVdd93Fli1byMlJbRs8kbXtAk51921mlgu8bmbPA1cBd7r7X8zsPuAS4N7w/Ut3P9zMJgK3Aue3uJVt6roRaS+JtrxTrVOnTixZsqRJeWFhYf20u3PGGWfw2GOPNam3cOFC5s2bx4wZM7j77rt5+eWXm9TJz88HICsrq3667nN1dXUqdqPFbbg71157LT/+8Y/3up6FCxdy7733Nim/5ppr+OY3v8ns2bMZM2YML774IkceeWRKYocEWvQe2BZ+zA1fDpwKzAjLpwPnhNMTws+E80+zFi8CNbXoRfZTo0ePZsGCBaxevRqA7du388EHH7Bt2za2bt3K+PHjufPOO3nnnXfSHGnzxo0bx9SpU+vPLaxbt44NGxrmtGXLlnHkkUeSnZ3dZPkPP/yQYcOG8W//9m8ce+yxrFy5MqXxJfT7wMyygUXA4cA9wIfAFnevO1xWAAeH0wcDawHcvdrMtgLdgU3NbiArRydjRfZTxcXFTJs2jQsuuIBdu3YBcPPNN9OlSxcmTJhAZWUl7s4dd9zR5m2MHz+eBx54gD59+qQq7AbGjh3LihUrOP7444HgaqOHH36Ynj171teJPUfR2O9//3teeeUVsrKyGDp0aNzunWS06vJKM+sKPA38Cpjm7oeH5YcAz7v70Wa2FDjT3SvCeR8Cx7n7pkbruhS4FOCYPvnfWHL7d+CCR1OxTyJCZlxeKXucccYZPPTQQ/Tu3btNy++zyyvdfQvwCnA80NXM6n4R9AXWhdPrgEPCIHKAA4HNcdZ1v7uXuntpTl6Bum5EJNJeeumlNif5ZCVy1U1x2JLHzDoBZwArCBL+d8Nqk4CZ4fSs8DPh/Je9pZ8NWbnB5ZUiIpJyifTR9wamh/30WcDj7v6smS0H/mJmNwNvAw+G9R8E/mxmq4EvgIktbiFbffQiIu2lxUTv7u8CI+KUfwSMilNeCZzXqiiycqDqK9i1DfKLWrWoiIjsXWYMgZAVPjVF/fQiIimXGYk+O/xhsb35KzBFRKRtMiPRZ4WJXidkRSLllltuYejQoQwfPpySkhLefPNNAH70ox+xfPnypNd/3HHHUVJSwqGHHkpxcXH9wGBr1qxh/PjxzY6Pk6yzzjqLioqKdll3e8iMQc3UdSMSOX//+9959tlnWbx4Mfn5+WzatIndu3cD8MADD6RkG3UHjmnTplFeXs7dd99dP2/27Nkp2UZjO3fuZPPmzfTt27dd1t8eMqNFX9d1o/FuRCJj/fr19OjRo35smB49etTfmVpWVkZ5eTkQ3EX6i1/8gqFDh3L66aezcOFCysrKGDhwILNmzWrz9vv378+mTZtYs2YNRx55JJMnT2bw4MFceOGFzJ07lzFjxjBo0CAWLlwIBEMvXHzxxYwaNYoRI0Ywc+bMuOt99dVXKSsra1J+11131Q+pPHFiyxcb7kuZ0aLHoNNBatGLtJfnr4HP3kvtOv9hGJw1pdnZY8eO5aabbmLw4MGcfvrpnH/++Zx88slN6m3fvp1TTz2V2267jXPPPZfrr7+el156ieXLlzNp0qT6kSOTsXr1ap544gmmTp3Ksccey6OPPsrrr7/OrFmz+Pd//3f+9re/ccstt3DqqacydepUtmzZwqhRozj99NMbDMAGwVAG55xzTpNtTJkyhY8//rh+RMtMkhkteoDCnuqjF4mQoqIiFi1axP33309xcTHnn38+06ZNa1IvLy+vfgyYYcOGcfLJJ5Obm8uwYcNYs2ZNSmIZMGAAw4YNqx9L5rTTTsPMGmxjzpw5TJkyhZKSEsrKyqisrOS///u/m6xrwYIFnHDCCU3Khw8fzoUXXsjDDz+c8mGGk5U50RQW66Ypkfayl5Z3e8rOzqasrIyysjKGDRvG9OnTmTx5coM6ubm51A1wGzsMcHsMM7y3bbg7Tz75JEcccUSz6/noo4845JBDyMvLazLvueeeY/78+TzzzDPccsstvPfeexmT8DOnRV+kRC8SJe+//36Dh28sWbKEfv36pTGivRs3bhx//OMfqRux5e23325Sp7kRKGtra1m7di2nnHIKt956K1u3bq0fsjgTZE6iL+ypk7EiEbJt2zYmTZpUf4Jy+fLl3HjjjW1a16effsr48eNTG2Ajv/rVr6iqqmL48OEMHTqUX/3qV03qvPDCC3ETfU1NDd///vcZNmwYI0aM4PLLL6dr167tGm9rtGqY4vZSWlrq5XecDy/fDNd9DrmpfV6iyP5IwxSn1q5duxgzZkz91UL72j4bprhdFYYD9Kv7RkQyUH5+ftqSfLIyJ9EX1SV6XXkjIpJKmZPo61r06qcXSZlM6JqV5CX7PWZQou8RvKvrRiQlCgoK2Lx5s5J9B+fubN68mYKCtp+7zIyLPEFdNyIp1rdvXyoqKti4UY2njq6goCCpsXUyJ9HndoK8Luq6EUmR3NxcBgwYkO4wJANkTtcNhDdNqUUvIpJKmZXoNd6NiEjKZVai1zAIIiIpl1mJXi16EZGUy7BEXww7v4Ca1IxYJyIimZboi4qD9x16SLiISKq0mOjN7BAze8XMlpvZMjP7eVh+o5mtM7Ml4Wt8zDLXmtlqM3vfzMYlHE393bHqvhERSZVErqOvBv7F3RebWRdgkZm9FM67091vj61sZkOAicBQoA8w18wGu3tNi1vSTVMiIinXYove3de7++Jw+mtgBXDwXhaZAPzF3Xe5+8fAamBUQtEUhl03umlKRCRlWtVHb2b9gRHAm2HRT83sXTObamYHhWUHA2tjFqsgzoHBzC41s3IzK6+/RVstehGRlEs40ZtZEfAkcIW7fwXcCxwGlADrgd+1ZsPufr+7l7p7aXFx2JLPK4KcTuqjFxFJoYQSvZnlEiT5R9z9KQB3/9zda9y9FvgTe7pn1gGHxCzeNyxLZEPhQ8J11Y2ISKokctWNAQ8CK9z9jpjy3jHVzgWWhtOzgIlmlm9mA4BBwMKEI9J4NyIiKZXIVTdjgB8A75nZkrDsl8AFZlYCOLAG+DGAuy8zs8eB5QRX7FyW0BU3dQp7wtaKhKuLiMjetZjo3f11wOLMmr2XZW4BbmlTREXF8OniNi0qIiJNZdadsRC06LdvgtradEciIhIJmZfoi3qC1wRj3oiISNIyL9HX3zSlE7IiIqmQuYle49KLiKRE5iX6+rtjlehFRFIh8xK9um5ERFIq8xJ9p4MgK1c3TYmIpEjmJfq6YRA0gqWISEpkXqIHDYMgIpJCmZno9ZBwEZGUydBErxEsRURSJTMTfV3XjXu6IxER6fAyM9EX9oSa3VC5Nd2RiIh0eJmZ6HXTlIhIymRmotdNUyIiKZOZiV4PCRcRSZnMTPSFYaLXTVMiIknLzETfuRtYlvroRURSIDMTfVY2dO6urhsRkRTIzEQP4d2xatGLiCQrcxO9xrsREUmJzE30Gu9GRCQlWkz0ZnaImb1iZsvNbJmZ/Tws72ZmL5nZqvD9oLDczOwuM1ttZu+a2cg2RVbUUydjRURSIJEWfTXwL+4+BBgNXGZmQ4BrgHnuPgiYF34GOAsYFL4uBe5tU2SFxVC1A3Zta9PiIiISaDHRu/t6d18cTn8NrAAOBiYA08Nq04FzwukJwEMeeAPoama9Wx2ZHhIuIpISreqjN7P+wAjgTaCXu68PZ30G9AqnDwbWxixWEZa1jsa7ERFJiYQTvZkVAU8CV7j7V7Hz3N2BVo0pbGaXmlm5mZVv3BgnmWu8GxGRlEgo0ZtZLkGSf8TdnwqLP6/rkgnf6zLyOuCQmMX7hmUNuPv97l7q7qXFxcVNN6rxbkREUiKRq24MeBBY4e53xMyaBUwKpycBM2PKLwqvvhkNbI3p4klcfYteXTciIsnISaDOGOAHwHtmtiQs+yUwBXjczC4BPgG+F86bDYwHVgM7gB+2KbLsXOh0kFr0IiJJajHRu/vrgDUz+7Q49R24LMm4ArppSkQkaZl7ZyzoIeEiIimQ2Yle492IiCQtsxO9RrAUEUlaZif6omLYtRWqKtMdiYhIh5XZib5Qd8eKiCQrsxO9bpoSEUlaZid6PSRcRCRpGZ7oewTv6roREWmzzE706roREUlaZif63E6Q10VdNyIiScjsRA+6aUpEJEmZn+g13o2ISFIyP9EXFetkrIhIEjI/0atFLyKSlA6Q6Ith5xdQU53uSEREOqTMT/RF4ZOmdmi4YhGRtsj8RF9/d6y6b0RE2iLzE71umhIRSUrmJ3o9JFxEJCmZn+jVohcRSUrmJ/q8IsjppD56EZE2yvxEb6aHhIuIJCHzEz1ovBsRkSS0mOjNbKqZbTCzpTFlN5rZOjNbEr7Gx8y71sxWm9n7ZjYuJVHqIeEiIm2WSIt+GnBmnPI73b0kfM0GMLMhwERgaLjM/zOz7KSjVIteRKTNWkz07j4f+CLB9U0A/uLuu9z9Y2A1MCqJ+AKFPYM++trapFclIrK/SaaP/qdm9m7YtXNQWHYwsDamTkVYlpyinuA1wZg3IiLSKm1N9PcChwElwHrgd61dgZldamblZla+cWML/e/1N02p+0ZEpLXalOjd/XN3r3H3WuBP7OmeWQccElO1b1gWbx33u3upu5cWFxfvfYN1iV7j0ouItFqbEr2Z9Y75eC5Qd0XOLGCimeWb2QBgELAwuRCJuTtWiV5EpLVyWqpgZo8BZUAPM6sAbgDKzKwEcGAN8GMAd19mZo8Dy4Fq4DJ3r0k6yroW/UevwLDvJr06EZH9ibl7umOgtLTUy8vLm6/gDr/pGkzfuHXfBCUikuHMbJG7l7ZUr2PcGWsWvJ9wVXrjEBHpgDpGogewbLCOE66ISKZQ5hQRiTglehGRiFOiFxGJOCV6EZGIU6IXEYk4JXoRkYhTohcRiTglehGRiFOiFxGJOCV6EZGIU6IXEYk4JXoRkYhTohcRiTglehGRiOtYib62Kt0RiIh0OB0n0fceDm/eDx+9mu5IREQ6lI6T6P/xCeg2EB49H1bPTXc0IiIdRsdJ9EXFMOkZ6DEIHrsA3n8h3RGJiHQIHSfRAxR2h4tmQa+h8Nfvw4pn0x2RiEjG61iJHqBzN7hoJvQpgScmwbKn0x2RiEhG63iJHqDgQPj+U9D3WJhxMbz7RLojEhHJWC0mejObamYbzGxpTFk3M3vJzFaF7weF5WZmd5nZajN718xGtlvkBQfAhTOg3xh4+lJY8mi7bUpEpCNLpEU/DTizUdk1wDx3HwTMCz8DnAUMCl+XAvemJsxm5BfBPz4OA06Cv/0fWDS9XTcnItIRtZjo3X0+8EWj4glAXVadDpwTU/6QB94AuppZ71QFG1deZ7jgr3D46fDM5fDWA+26ORGRjqatffS93H19OP0Z0CucPhhYG1OvIixrX7kFMPGRINnP/leo/KrdNyki0lEkfTLW3R3w1i5nZpeaWbmZlW/cuDHZMCAnHwafCV4DNbuTX5+ISES0NdF/XtclE75vCMvXAYfE1OsbljXh7ve7e6m7lxYXF7cxDBERaUlbE/0sYFI4PQmYGVN+UXj1zWhga0wXj4iIpEFOSxXM7DGgDOhhZhXADcAU4HEzuwT4BPheWH02MB5YDewAftgOMYuISCu0mOjd/YJmZp0Wp64DlyUblIiIpE7HvDNWREQSpkQvIhJxSvQiIhGnRC8iEnFK9CIiEadELyIScUr0IiIRp0QvIhJxSvQiIhGnRC8iEnFK9CIiEadELyIScUr0IiIRp0QvIhJxSvQiIhGnRC8iEnHRTPSfL4PamnRHISKSEVp8wlSH0rUfYPDQ2VBwIPQ/EQaWBa/uh4NZWsMTEUmHaCX6wWPh6g/g4/nw0avw0Wuw8tlgXpc+YdI/GQacDAf0TmOgIiL7TrQSPUBRTxj23eDlDl9+vCfpf/ACvPNoUO/U6+GkX6Q1VBGRfSF6iT6WGXQbGLxKL4baWvj8PXjkPNiwMt3RiYjsE9E8GducrCzofQzkFaU7EhGRfWb/SvQiIvuhpLpuzGwN8DVQA1S7e6mZdQP+CvQH1gDfc/cvkwtTRETaKhUt+lPcvcTdS8PP1wDz3H0QMC/8LCIiadIeXTcTgOnh9HTgnHbYhoiIJCjZRO/AHDNbZGaXhmW93H19OP0Z0CvegmZ2qZmVm1n5xo0bkwxDRESak+zllSe4+zoz6wm8ZGYNrll0dzczj7egu98P3A9QWloat46IiCQvqRa9u68L3zcATwOjgM/NrDdA+L4h2SBFRKTt2pzozazQzLrUTQNjgaXALGBSWG0SMDPZIEVEpO2S6brpBTxtwUBhOcCj7v6Cmb0FPG5mlwCfAN9LPswUyy8KxsP5+L9gwInpjkZEpF21OdG7+0fAMXHKNwOnJRNUuzv7jzDjYpj+bTjhCij7JeTkpTsqEZF2sX/eGdv7GPjxfBj5A3j9Tpg6FjatTndUIiLtYv9M9AB5hUHL/nt/hi8+hv88ERY/FIx4KSISIftvoq8z5Gz45/8PfUth1s/g8YtgxxeJL7/xffhsafvFJyKSpGgPU5yoAw+GH8yEv/8R5v0WKsrh3PuCh5Q0VvkVbPkEvlwDX34Cc64Lym/cuk9DFhFJlBJ9nawsGPNzGHASPPkjeGgCHHtJMKRxbGLf2YrWvohIBlCib6zPiOBE7QvXwlsPQFYudD0UDuoXzOvaDw7qH3w+qH9w9c6ur9MdtYhIs5To48krhLPvgjNugvwukJWd7ohERNpMiX5vOnVNdwQiIknTVTepUFsTPI9WRCQDqUWfrOw8+HQx/LYHFPaAwuKY954x08VQVLxnOrdTuiMXkf2EEn2yxt4CA0+B7Rtg+0bYvil4/3INbNsIVdvjL5dXFB4EejY8OPT7X3B4Zo8gISIdixJ9snocHryas3t7mPzDA8D2jeFBIebzlk9gXXkwveQR+JeVza9PRKSVlOjbW15h8DqoX8t1n70SyqfC/NuhpgpqdkNt1Z7pmt3hdBX8w9Ew+EzoOQSCEURFROJSos8kXQ8N3l/+bfCelROcA8jODd/DaXdY9hTMuwkO6AuDxwZJv/+JkNc5ffGLSEYyz4BBvPocPtRXLl3CAQW56Q4l/XZtC5J5Vm5wt25zvloPq+bABy/CR68G5wJyCoI7eweNhcHj9hw4RCSSzGyRu5e2WC8TEn1+70F+zE/v5dffHsI3h/XG1BXROtW7YM3rYeJ/ITgRDJCdD6f9Omjl53SCnPzgap+cguCVWxCU5xbElHUKfjnoOxDJeB0q0Q8dPsIH/NNdLF33FScPLuamCUPp170w3WF1TO6waRW8fBOseKaNK7GYA0FBcIDo0hsufCK4U1hEMkKHSvSlpaX+5sK3eOjva/jdnA+oqqnlZ6cezj+dNJD8HA0/0GbVu6BqR/i+E6org1dVJVTvTLx82UzYtRW+8cPgoS315wzCLqb68wjhdP25hTzIDqezcpsut7euKRFpUYdL9OXl5QB8trWS3z67nOfeW89hxYXccu4wRg/snuYI93NrF8KDZ6R+vZbd9IDQ4OCRExw0snLD9+xwfl1Z+DmvCAoODF6dukJB1z2fY1+6SU0ipsMm+jqvvL+BX89cytovdvK/R/bll+OPpHtRfpoiFHZvD1r59Zd6VoWXfu6Gmuo9l382uBy0qlG9mHm1McvULR932eqmr5qqcNiJsM7ubVC5Nfj1sTfZ+fEPAHWvBb+Hzt0h/4DgktjcTpDbOXjldW74OZGyum6v7PzgmcTZ+cGBSec/JEU6fKIH2Lm7hrtfWcX98z+ic14Of75kFMP7aqAxaUZVZZDwG7y2hK/G5Vth55aG9Wqrg18SQyYEB7W6g1vVjvAVU1azq41BWrCNnII9yb/Je/5e6tTNi1en8bz8PeV1ZVvXBldq5eQ37U6r73rbW3kC3XTZeRrxdR+JRKKvs+rzrznjzvkcN6Abpx3Vk855OXTOy65/L8zPplNuMN2jSz5F+bo9QFrJPTg3kVuQWP2a6uB8xu4dDQ8EVTvCsu3B+qp3Bb9QqncFB4cmZbHzdjdTJ3Ze+F5bndz+ZuUkv469smYOAM0dGHKaHkSaOwfUbHmj9VhWcMCx7JjprOBzVtae6QbzGtVLaF528CstDb/UEk307ZYRzexM4A9ANvCAu09p67oG9erC0D4H8ObHX/Dmx3t/wlNRfg5vXXc6nfLUopBWMEs8yUOYpLqk7yqk2prmDwKxB4nYA0xdWbcBMLAsGHE1tgstXnfavirfvS2x+rVV6fl7J8LiHTzCg0CiB4+suoNGvINTnHkJapdEb2bZwD3AGUAF8JaZzXL35W1d53OXn0hNrbNjdzU7d9ewfXcNO3ZXs2N3DTt217BzdzVzln/OU4vXMfFPb5CfnRX8fc3IzjLMIDvLyDLj5ZUb6HtQJ5772YkUFeSQnaU+U+lgsrLDu6CTuBM6Kwuy8oKun47CPcHzO7vBa4MDoteCh++1sdMJzqutCbYbd15to3W0NC92W/HmeZy46j7XQk2juBLUXi36UcBqd/8IwMz+AkwA2pzoIUjUXQpy6dLMHbSHFRexZUcVu6prgsaKO9W1teyugZpax92pDXuqKr7cyTE3zQGgc142XQpyKMrPCdefQ5eCHDrn5QR/d3eqa53aWqem1qnx8L3Wee2DjQD8YtwRTeKJ/SVnWJyyhnWXf/oVW3ZW8e3hfYL/g2YxL7DwPcuswfz6A5kZWVl76tfUOnk5WfWx1sTEX7c/9fsVs08N5rlTXePk52bx7WP60PiQ2PjmtniHzHi/aC1OzWR/+Zo1/DtbfXlQWrf+ZG/Iq+vurOv19MbljeNqFEddfKmIZb9jtqe7Bt1rw08S+/fTXon+YGBtzOcK4Lh22la9Qb26MHXysS3W++Dzr1mydgtfV1azrbKaryurguld1XxVWcW2XdWs31rJjl3VWJhIg18DhNNZZGcFibXObS++n7L9ePX9jSlbVypd9/TSdIeQco0PCNA0Ye+r01j1yT8mltgDQ/1hokG9uun4B7j66g0XbXqAbqYBErduM3HHq9F4XkvLNm4A7G35lg6Szc1utrwVjY/mttxcTHFLU7TuRKTtrKWZXQpcCnDooft2TJbBvbowuFdq+lbdnaqausTgMeXx6sZMx6lb686X26vqp2t8z6+QWvf6Xym1DcqC6bpfLDXhvB27qqlxpyAnm+xsI9uMnKygxd/g3YyccH7dAa3By4xtu6o54875/GujXy2N99GbtGWb+TvE/TvGq5d4hm3wt3Vv0Np237OuYHrPQrHJ3PEmv7zq/2vFSbzB5/j16z43jiN2vxrHkki9BvPi/KJo+iuj4Xriib0go3GVlr7jpvObn9d47U2WbcW2Whtnswvupbi5C1Wa+1fZ7N83BeuON8Nx5jVXv5F2uerGzI4HbnT3ceHnawHc/T/i1W/pqhuZ4ojVAAAHSUlEQVQREWkq0atu2use9LeAQWY2wMzygInArHbaloiI7EW7dN24e7WZ/RR4keDyyqnuvqw9tiUiInvXbn307j4bmN1e6xcRkcRo+EARkYhTohcRiTglehGRiFOiFxGJOCV6EZGIy4hhis1sI/BJuuNIgR7ApnQHsQ9pf6NN+5v5+rl7cUuVMiLRR4WZlSdyl1pUaH+jTfsbHeq6ERGJOCV6EZGIU6JPrfvTHcA+pv2NNu1vRKiPXkQk4tSiFxGJOCX6JJjZGjN7z8yWmFl5WNbNzF4ys1Xh+0HpjrOtzGyqmW0ws6UxZXH3zwJ3mdlqM3vXzEamL/K2aWZ/bzSzdeF3vMTMxsfMuzbc3/fNbFx6om4bMzvEzF4xs+VmtszMfh6WR/L73cv+RvL7bcLDpxjp1foXsAbo0ajs/wLXhNPXALemO84k9u8kYCSwtKX9A8YDzxM8ZGk08Ga640/R/t4IXB2n7hDgHSAfGAB8CGSnex9asa+9gZHhdBfgg3CfIvn97mV/I/n9Nn6pRZ96E4Dp4fR04Jw0xpIUd58PfNGouLn9mwA85IE3gK5m1nvfRJoazexvcyYAf3H3Xe7+MbAaGNVuwaWYu69398Xh9NfACoJnPUfy+93L/janQ3+/jSnRJ8eBOWa2KHwGLkAvd18fTn8G9EpPaO2muf2L90D4vf1H6kh+GnZXTI3piovM/ppZf2AE8Cb7wffbaH8h4t8vKNEn6wR3HwmcBVxmZifFzvTgN2BkL2uK+v6F7gUOA0qA9cDv0htOaplZEfAkcIW7fxU7L4rfb5z9jfT3W0eJPgnuvi583wA8TfDT7vO6n7Th+4b0Rdgumtu/dcAhMfX6hmUdmrt/7u417l4L/Ik9P987/P6aWS5B0nvE3Z8KiyP7/cbb3yh/v7GU6NvIzArNrEvdNDAWWErwEPRJYbVJwMz0RNhumtu/WcBF4dUZo4GtMV0AHVajfuhzCb5jCPZ3opnlm9kAYBCwcF/H11ZmZsCDwAp3vyNmViS/3+b2N6rfbxPpPhvcUV/AQIKz8u8Ay4DrwvLuwDxgFTAX6JbuWJPYx8cIfs5WEfRRXtLc/hFcjXEPwdUJ7wGl6Y4/Rfv753B/3iX4z987pv514f6+D5yV7vhbua8nEHTLvAssCV/jo/r97mV/I/n9Nn7pzlgRkYhT142ISMQp0YuIRJwSvYhIxCnRi4hEnBK9iEjEKdFLWoQjCY5rVHaFmd1rZn3MbEYzy/U3s39MctuvmlmTZ4OG5e+b2TtmtsDMjkhmOyKZQole0uUxYGKjsonAY+7+qbt/t/ECZpYD9AeSSvQtuNDdjyEY0Ou2ODFkt+O2RdqFEr2kywzgm2aWB/UDTfUB/itstS8Nyyeb2Swze5ngRp4pwInh2OFXhvPvrlupmT1rZmXh9L1mVh6OP/6bVsY3Hzg8XM8aM7vVzBYD55lZiZm9EQ6E9XTMmO2Hm9nc8BfBYjM7LCz/hZm9Fdb/TVhWaGbPhXWXmtn5YfmUcMz0d83s9rCs2MyeDNfxlpmNCctPjhlH/e26O7VFGstJdwCyf3L3L8xsIcGAcDMJWvOPu7sHd6s3MBIYHi5TRjB++LcgOBDsZTPXhctkA/PMbLi7v5tgiN8muGOyzmYPBrDDzN4Ffubur5nZTcANwBXAI8AUd3/azAqALDMbS3D7/CiCu0tnhYPfFQOfuvs3w3UeaGbdCW7DPzL8O3QNt/0H4E53f93MDgVeBI4CrgYuc/cF4WBdlQnum+xn1KKXdIrtvpkYfo7nJXdPdJz4WN8LW+FvA0MJHibRkkfMbAkwhiCR1vkrBAkZ6Orur4Xl04GTwtb0we7+NIC7V7r7DoIxkMaGMSwGjiRI/O8BZ4S/FE50963AVoJk/aCZfQfYEW7jdODuMK5ZwAFhYl8A3GFml4cxVbf2DyT7B7XoJZ1mAnda8Fi6zu6+qJl62/eyjmoaNlgKAMKBqK4GjnX3L81sWt28Flzo7uWtjGFvDPgPd//PJjOC/R4P3Gxm89z9JjMbBZwGfBf4KXAqwf6NdvfGLfYpZvZcuI4FZjbO3Ve2MU6JMLXoJW3cfRvwCjCV5lvzjX1N8Ci4OmuAEjPLMrND2DPM7AEEyXmrmfUi6CJKRcxbgS/N7MSw6AfAax48tajCzM4BCEc97EzQzXJx2ALHzA42s55m1gfY4e4PE5z0HRnWOdDdZwNXAseE25gD/KwuBjMrCd8Pc/f33P1W4C2CXwsiTahFL+n2GMFY/o2vwGnOu0CNmb0DTAN+D3wMLCd4PFzd4+LeMbO3gZUETwpakMKYJwH3hYn8I+CHYfkPgP8M++2rgPPcfY6ZHQX8PTz3sA34PsGJ3tvMrDas+88EB7CZYf++AVeF670cuCc8N5BDcKL4J8AVZnYKUEswgurzKdxHiRCNXikiEnHquhERiTglehGRiFOiFxGJOCV6EZGIU6IXEYk4JXoRkYhTohcRiTglehGRiPsfs6fe+jOJc14AAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[[\"Presim. Time / s\", \"Sim. Time / s\"]].plot();"]}, {"cell_type": "markdown", "metadata": {}, "source": ["* **That's why I think Pandas is great!**\n", "* It has great defaults to quickly plot data\n", "* Plotting functionality is very versatile\n", "* Before plotting, data can be *massaged* within data frames, if needed"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## More Plotting with Pandas\n", "### Some versatility"]}, {"cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD4CAYAAAD4k815AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAADSNJREFUeJzt3W+MXHW9x/HPh1JcjI3kbisIS5010CC4gHZFE5AryNV6uREbntQ/uGpig1GhuSaCNkZ9YFIk0T64JmZjMd5Et0G0LYlcFWwlVCN227QdoIj/tnaJxWUxcBvbQsvXBztlS912lzln58x+5/1KCOw5s+d8Mxne/fXMP0eEAAB5nFb1AACAchF2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJnF7FSRcuXBi1Wq2KUwPAnLV9+/anI2LRdLerJOy1Wk3Dw8NVnBoA5izbe2dyOy7FAEAyhB0AkiHsAJBMJdfYAaAKL7zwgkZHR3Xo0KGqRzmlrq4u9fT0aP78+U39PmEH0DFGR0e1YMEC1Wo12a56nClFhMbHxzU6Oqre3t6mjsGlGAAd49ChQ+ru7m7bqEuSbXV3dxf6WwVhB9BR2jnqxxSdkbADQDJcY0+g73t9VY+g+kC96hGAV6x2+09KPd7ImutndLuNGzdq+fLl2rNnjy666KJSZ5BYsQNAyw0NDemqq67S0NDQrByfsANACx04cEBbt27VunXrtH79+lk5B2EHgBbatGmTli1bpiVLlqi7u1vbt28v/RyEHQBaaGhoSCtWrJAkrVixYlYux/DkKQC0yDPPPKPNmzerXq/Lto4ePSrbuvPOO0t9GSYrdgBokXvuuUc33XST9u7dq5GREe3bt0+9vb166KGHSj0PK3YAHWumL08sy9DQkG677baXbbvxxhs1NDSkq6++urTzEHYAaJEtW7b8y7Zbbrml9PNwKQYAkmHFnkD9z3+pegQAbYQVOwAkQ9gBIBnCDgDJEHYASIYnTwF0rq+8tuTjPTvtTfbv369Vq1Zp27ZtOuuss3T22Wdr7dq1WrJkSWljEHYAaJGI0PLlyzUwMPDSJzvu2rVLTz31FGEHgLloy5Ytmj9/vm6++eaXtl122WWln4dr7ADQIo888oiWLl066+ch7ACQDGEHgBa55JJLZuWLNU5E2AGgRa699lodPnxYg4ODL23bvXs3H9sLAKWZwcsTy2RbGzZs0KpVq3THHXeoq6tLtVpNa9euLfU8hB0AWujcc8/V3XffPavnIOxAVmW/+aapGVq7IsaEwtfYbZ9ve4vtx2w/avvWMgYDADSnjBX7EUmfi4gdthdI2m77/oh4rIRjAwBeocIr9oj4a0TsaPz3/0vaI+m8oscFADSn1Jc72q5Jeoukh6fYt9L2sO3hsbGxMk8LADhOaWG3/RpJP5K0KiKeO3F/RAxGRH9E9C9atKis0wIATlDKq2Jsz9dE1L8fET8u45gAMNv6vtdX6vHqA/VpbzNv3jz19U2ed+PGjarVaqXOUTjsti1pnaQ9EfGN4iMBQF5nnnmmdu7cOavnKONSzJWSbpJ0re2djX/+s4TjAgCaUHjFHhFbJbmEWQAgvYMHD+ryyy+XJPX29mrDhg2ln4N3ngJAC82VSzEAgDZC2AEgGS7FAOhYM3l54lzEih0AWujAgQOzfg7CDgDJEHYASIawA+goEVH1CNMqOiNhB9Axurq6ND4+3tZxjwiNj4+rq6ur6WPwqhgAHaOnp0ejo6Nq948O7+rqUk9PT9O/P2fDXrv9J1WPoJE111c9giSpdugHVY+gkaoHaOBxMYnHxaROe1xwKQYAkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBIhrADQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGRKCbvtZbZ/Z/sPtm8v45gAgOYUDrvteZK+Jel9ki6W9EHbFxc9LgCgOWWs2K+Q9IeI+FNEPC9pvaQbSjguAKAJp5dwjPMk7Tvu51FJbz/xRrZXSlopSYsXLy580pGuDxU+RnHPVj2AJGlkzfVVj9A2eFxMWvCmdrgq2h6PzU57XLTsydOIGIyI/ojoX7RoUatOCwAdp4ywPynp/ON+7mlsAwBUoIywb5N0oe1e22dIWiHp3hKOCwBoQuFr7BFxxPZnJP1M0jxJd0XEo4UnAwA0pYwnTxUR90m6r4xjAShHfaBe9QioCO88BYBkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQTClvUAKAdtbXW/wTZYtq5dvFWLEDQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDJ8Vg1Q67TNBgKmwYgeAZAg7ACRD2AEgGcIOAMkQdgBIhrADQDKEHQCSIewAkAxhB4BkCoXd9p22H7e92/YG22eVNRgAoDlFV+z3S3pzRFwq6QlJXyg+EgCgiEJhj4ifR8SRxo+/kdRTfCQAQBFlXmP/hKT/K/F4AIAmTPvpjrYfkHTOFLtWR8Smxm1WSzoi6funOM5KSSslafHi6j+BDwCymjbsEXHdqfbb/pik/5L07oiIUxxnUNKgJPX395/0dgCAYgp9HrvtZZI+L+nfI+If5YwEACii6DX2/5G0QNL9tnfa/nYJMwEACii0Yo+IC8oaBABQDt55CgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRT6HXsADAX1AfqVY/QUqzYASCZObti7+ut/hMiO2sNAGCuYMUOAMkQdgBIhrADQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkpmzX2YNTKU+wFeMA6Ws2G1/znbYXljG8QAAzSscdtvnS3qPpL8UHwcAUFQZK/ZvSvq8pCjhWACAggqF3fYNkp6MiF0zuO1K28O2h8fGxoqcFgBwCtM+eWr7AUnnTLFrtaQvauIyzLQiYlDSoCT19/ezugeAWTJt2CPiuqm22+6T1Ctpl21J6pG0w/YVEbG/1CkBADPW9MsdI6Iu6XXHfrY9Iqk/Ip4uYS4AQJN4gxIAJFPaG5QiolbWsQAAzWPFDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBIhrADQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAqH3fZnbT9u+1HbXy9jKABA804v8su2r5F0g6TLIuKw7deVMxYAoFlFV+yfkrQmIg5LUkT8rfhIAIAiioZ9iaR32n7Y9oO233ayG9peaXvY9vDY2FjB0wIATmbaSzG2H5B0zhS7Vjd+/98kvUPS2yTdbfuNEREn3jgiBiUNSlJ/f/+/7AcAlGPasEfEdSfbZ/tTkn7cCPlvbb8oaaEkluQAUJGil2I2SrpGkmwvkXSGpKeLDgUAaF6hV8VIukvSXbYfkfS8pIGpLsMAAFqnUNgj4nlJHylpFgBACXjnKQAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJBM0TcoVaY+UK96BABoS6zYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAk4yq+8Mj2mKS9LT/xyy0UX+N3DPfFJO6LSdwXk9rlvnhDRCya7kaVhL0d2B6OiP6q52gH3BeTuC8mcV9Mmmv3BZdiACAZwg4AyXRy2AerHqCNcF9M4r6YxH0xaU7dFx17jR0AsurkFTsApETYASAZwg4AyczZb1B6pWxfJOkGSec1Nj0p6d6I2FPdVED7sH2FpIiIbbYvlrRM0uMRcV/Fo1XO9v9GxEernmOmOuLJU9u3SfqgpPWSRhubeyStkLQ+ItZUNRuq1fgD/zxJD0fEgeO2L4uIn1Y3WWvZ/rKk92lisXe/pLdL2iLpPyT9LCK+VuF4LWX73hM3SbpG0mZJioj3t3yoV6hTwv6EpEsi4oUTtp8h6dGIuLCaydqP7Y9HxHernqMVbN8i6dOS9ki6XNKtEbGpsW9HRLy1yvlayXZdE/fBqyTtl9QTEc/ZPlMTf+hdWumALWR7h6THJH1HUmgi7EOaWAgqIh6sbrqZ6ZRr7C9KOneK7a9v7MOkr1Y9QAt9UtLSiPiApHdJ+pLtWxv7XNlU1TgSEUcj4h+S/hgRz0lSRBxU5/0/0i9pu6TVkp6NiF9KOhgRD86FqEudc419laRf2P69pH2NbYslXSDpM5VNVRHbu0+2S9LZrZylYqcdu/wSESO23yXpHttvUOeF/Xnbr26EfemxjbZfqw4Le0S8KOmbtn/Y+PdTmmOt7IhLMZJk+zRJV+jlT55ui4ij1U1VjcYD9b2S/n7iLkm/joip/naTju3Nkv47InYet+10SXdJ+nBEzKtsuBaz/aqIODzF9oWSXh8R9QrGagu2r5d0ZUR8sepZZqpjwo5JttdJ+m5EbJ1i3w8i4kMVjNVytns0cQli/xT7royIX1UwFlAYYQeAZDrlyVMA6BiEHQCSIewAkAxhB4Bk/gkPuxYtgwxTmAAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[[\"A\", \"C\", \"F\"]].plot(kind=\"bar\", stacked=True);"]}, {"cell_type": "code", "execution_count": 75, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD4CAYAAAD4k815AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAADM5JREFUeJzt3W9sXXUdx/HPh1EoxgViN/6WeWt0QXCCrqIJiIJophhx4clQccbEBSPCoomgi5EnJiCJ7oEmphESTbQLIttIRBHcJGAirls2Cgz/pnMlDktJwMVtsPH1Qe9wzLJ29/x6T++371dCoOfenvPNSfPuj3Nvz3VECACQxwl1DwAAKIuwA0AyhB0AkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBI5sQ6DrpgwYJoNBp1HBoAOtbWrVufi4iFUz2vlrA3Gg0NDQ3VcWgA6Fi2d03neVyKAYBkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQTC1/oATMKbeeWvcE03PrC3VPgEIqr9htn2t7s+2nbD9p+6YSgwEAWlNixX5Q0lcjYpvt+ZK22n4wIp4qsG8AwHGqvGKPiH9GxLbmf/9b0k5J51TdLwCgNUVfPLXdkPQuSY9N8tgq20O2h8bGxkoeFgBwhGJht/1GSb+QtDoiXjz68YgYiIj+iOhfuHDKu04CAFpUJOy2uzQR9Z9GxL0l9gkAaE2Jd8VY0p2SdkbEd6uPBACoosSK/RJJ10m6wvb25j8fK7BfAEALKr/dMSIeleQCswAACuCWAgCQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRD2AEgmRKfeTorNG75Zd0jTMvIbVfVPcK0dML57Jhzuf9ndY8wLSN1DzBNnfCzKdX788mKHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBIpkjYbS+z/Sfbf7V9S4l9AgBaUznstudJ+oGkj0o6X9K1ts+vul8AQGtKrNgvlvTXiPh7RLwkaZ2kqwvsFwDQghML7OMcSbuP+HpU0nuPfpLtVZJWSdKiRYsKHPa1Rro/VXyfM+OFugeYls44n51xLue/vVOuTl5V9wDT0hk/m1KdP59te/E0IgYioj8i+hcuXNiuwwLAnFMi7M9IOveIr3ub2wAANSgR9i2S3ma7z/ZJklZIuq/AfgEALah8jT0iDtq+QdIDkuZJuisinqw8GQCgJSVePFVE3C/p/hL7ArIZXjlc9wiYY/jLUwBIhrADQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMkVuKQAA7bKkr/znOcyEOm8kwYodAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACTDTcAwqU640VKdN1kCZjNW7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRTKey277D9tO3Hba+3fVqpwQAAram6Yn9Q0jsi4p2S/izp69VHAgBUUSnsEfGbiDjY/PIPknqrjwQAqKLkNfbPS/pVwf0BAFow5f3YbT8k6cxJHloTERubz1kj6aCknx5jP6skrZKkRYtm/72+AaBTTRn2iLjyWI/b/pykj0v6UETEMfYzIGlAkvr7+1/3eQCAaip9gpLtZZK+JukDEfGfMiMBAKqoeo39+5LmS3rQ9nbbPywwEwCggkor9oh4a6lBAABl8JenAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBIhrADQDKEHQCSIewAkEylvzwFgHYbXjlc9wizHit2AEgmzYp9SV9n3OOdtQaAmcaKHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBI5sS6B8DsNLxyuO4RALSoyIrd9ldth+0FJfYHAGhd5bDbPlfSRyT9o/o4AICqSqzYvyfpa5KiwL4AABVVCrvtqyU9ExE7pvHcVbaHbA+NjY1VOSwA4BimfPHU9kOSzpzkoTWSvqGJyzBTiogBSQOS1N/fz+oeAGbIlGGPiCsn2257iaQ+STtsS1KvpG22L46IPUWnBABMW8tvd4yIYUmnH/7a9oik/oh4rsBcAIAW8QdKAJBMsT9QiohGqX0BAFrHih0AkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBIhrADQDKEHQCSIewAkAyfeQpgznj55Zc1Ojqq/fv31z3KMXV3d6u3t1ddXV0tfT9hBzBnjI6Oav78+Wo0GmrebnzWiQiNj49rdHRUfX19Le2DSzEA5oz9+/erp6dn1kZdkmyrp6en0v9VEHYAc8psjvphVWck7ACQDNfYAcxZjVt+WXR/I7ddNa3nbdiwQcuXL9fOnTt13nnnFZ1BYsUOAG03ODioSy+9VIODgzOyf8IOAG20d+9ePfroo7rzzju1bt26GTkGYQeANtq4caOWLVumxYsXq6enR1u3bi1+DMIOAG00ODioFStWSJJWrFgxI5djePEUANrk+eef16ZNmzQ8PCzbOnTokGzrjjvuKPo2TFbsANAm99xzj6677jrt2rVLIyMj2r17t/r6+vTII48UPQ4rdgBz1nTfnljK4OCgbr755tdsu+aaazQ4OKjLLrus2HEIOwC0yebNm/9v24033lj8OFyKAYBkCDsAJEPYASAZwg4AyRB2AEiGsANAMrzdEcDcdeuphff3wpRP2bNnj1avXq0tW7botNNO0xlnnKG1a9dq8eLFxcYg7ADQJhGh5cuXa+XKla/e2XHHjh169tlnCTsAdKLNmzerq6tL119//avbLrzwwuLH4Ro7ALTJE088oaVLl874cQg7ACRD2AGgTS644IIZ+WCNo1UOu+0v237a9pO2v1NiKADI6IorrtCBAwc0MDDw6rbHH398dt221/blkq6WdGFEHLB9epmxAKANpvH2xJJsa/369Vq9erVuv/12dXd3q9FoaO3atUWPU/VdMV+UdFtEHJCkiPhX9ZEAIK+zzz5bd99994weo+qlmMWS3m/7MdsP237P6z3R9irbQ7aHxsbGKh4WAPB6plyx235I0pmTPLSm+f1vkvQ+Se+RdLftt0REHP3kiBiQNCBJ/f39//c4AKCMKcMeEVe+3mO2vyjp3mbI/2j7FUkLJLEkB4CaVL0Us0HS5ZJke7GkkyQ9V3UoAEDrqr54epeku2w/IeklSSsnuwwDAGifSmGPiJckfabQLACAArgJGIA5a8mPlxTd3/DK4SmfM2/ePC1Z8r/jbtiwQY1Go+gchB0A2uiUU07R9u3bZ/QY3CsGAJJhxQ4AbbRv3z5ddNFFkqS+vj6tX7+++DEIOwC0EZdiAADHjbADQDJcigEwZ03n7YmdiBU7ALTR3r17Z/wYaVbsWX/zAsDxYsUOAMkQdgBzSifcp7DqjIQdwJzR3d2t8fHxWR33iND4+Li6u7tb3keaa+wAMJXe3l6Njo5qtn88Z3d3t3p7e1v+fsIOYM7o6upSX19f3WPMOC7FAEAyhB0AkiHsAJCM63h12PaYpF1tP/DxWyA+nLskzmc5nMuyOuV8vjkiFk71pFrC3ilsD0VEf91zZMH5LIdzWVa288mlGABIhrADQDKE/dgG6h4gGc5nOZzLslKdT66xA0AyrNgBIBnCDgDJEHYASIabgDXZPk/S1ZLOaW56RtJ9EbGzvqmACbYvlhQRscX2+ZKWSXo6Iu6vebSOZ/snEfHZuucoiRdPJdm+WdK1ktZJGm1u7pW0QtK6iLitrtk6VfMX5TmSHouIvUdsXxYRv65vss5j+1uSPqqJhdiDkt4rabOkD0t6ICK+XeN4HcX2fUdvknS5pE2SFBGfaPtQM4CwS7L9Z0kXRMTLR20/SdKTEfG2eibrTLZvlPQlSTslXSTppojY2HxsW0S8u875Oo3tYU2cx5Ml7ZHUGxEv2j5FE78431nrgB3E9jZJT0n6kaTQRNgHNbGIU0Q8XN905XCNfcIrks6eZPtZzcdwfL4gaWlEfFLSByV90/ZNzcdc21Sd62BEHIqI/0j6W0S8KEkRsU/8fB6vfklbJa2R9EJE/E7Svoh4OEvUJa6xH7Za0m9t/0XS7ua2RZLeKumG2qbqXCccvvwSESO2PyjpHttvFmFvxUu239AM+9LDG22fKsJ+XCLiFUnfs/3z5r+fVcIOcimmyfYJki7Wa1883RIRh+qbqjPZ3iTpKxGx/YhtJ0q6S9KnI2JebcN1INsnR8SBSbYvkHRWRAzXMFYKtq+SdElEfKPuWUoi7CjOdq8mLh/smeSxSyLi9zWMBcwZhB0AkuHFUwBIhrADQDKEHQCSIewAkMx/AdYN8qMClUETAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[df_demo[\"F\"] < 0][[\"A\", \"C\", \"F\"]].plot(kind=\"bar\", stacked=True);"]}, {"cell_type": "code", "execution_count": 76, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAEVCAYAAAACQTb4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGn9JREFUeJzt3X2QXPWV3vHn8Xhwy5GAZNTBiJbckxhiy2iRyxN2N7COza63JPNm4spGbMDsbrZUThVllODCYGd3ISmXX9jyajehKjWxHRPAwyrYAhuUABtEjOIYM0NhvSDYYEcyLQxuhvAihwFJnPzRLSLLI/Wdnnv79vz6+6maqrndt+99RqegTv3q1+c6IgQAAACk6i1lBwAAAACKRMMLAACApNHwAgAAIGk0vAAAAEgaDS8AAACSRsMLAACApNHwAsAc2X7Q9h92+dnrbd+adyYAwLHR8AIYWLbPtf092y/ZfsH2/7D998vOdZjtPbZ/q+wcALDQvbXsAABQBtsnSrpb0j+XtEnSCZJ+Q9JrZeYCAOSPFV4Ag+oMSYqIiYg4FBGvRsR9EbH96G0Htuu2w/aRiwR/1/YPbL9s+y7bf+uoc9fbfsb2T21/6lghbF9ke5ftF9tbJd7Tfv0WSSskfcf2ftvX2K7YvtX2dPv8R2yfUsi/DgAkhIYXwKD6a0mHbN9se63tvznHz39c0h9IOlXSQUl/cdT7H5J0uqTflvTp2bYm2D5D0oSkDZKqkrao1eCeEBGXS/qJpAsjYnFEfEnSFZJOkrRc0oikT0h6dY65AWDg0PACGEgR8bKkcyWFpP8gqWn723NYMb0lInZGxM8l/ZGk37E9dMT7N0TEzyNih6T/KOnSWa7xTyTdExH3R8QBSX8qaZGkf3CMex5Qq9F9V3tVeqr9dwAAjoOGF8DAiojdEfF7EVGTdKakZZI2Zvz400f8vlfSsKSlx3l/2SzXWNZ+73CeN9qfO+0Y97xF0r2Sbm9vl/iS7eGMeQFgYNHwAoCkiHhC0tfVanx/LuntR7z9jlk+svyI31eotfr6/HHef2aWazwj6Z2HD2y7/bl9h2MdlfFARNwQESvVWgW+QK2tFQCA46DhBTCQbL/b9tW2a+3j5WptO/i+pMckfcD2CtsnSbpulktcZnul7bdL+teS7oiIQ0e8/0e23277vZJ+X9JfznKNTZLOt/2b7ZXaq9WaEvG99vvPSfo7R2T+kO1V7a0TL6vVZL/R9T8CAAwIGl4Ag+oVSb8q6WHbP1er0d0p6eqIuF+tBnW7pCm1xpcd7Ra1VoSflVSR9Mmj3v/vkp6S9N8k/WlE3Hf0BSLiSUmXSfq3aq0OX6jWl9Reb5/yeUn/qj2R4VNqrTTfoVazu7t9j1u6+eMBYJA4IjqfBQDIxHZd0v+WNBwRB8tNAwCQWOEFAABA4mh4AQAAkDS2NAAAACBprPACQMnajxT+P7bfVnYWAEgRDS8AlKj9JbffUGvm7kWlhgGARNHwAkC5Pq7WSLSvS7qi3CgAkCb28AJAiWw/JenLkh5Wq/GtRcRz5aYCgLSwwgsAJbF9rlqPFt4UEVOSfiTpd8tNBQDpoeEFgPJcIem+iHi+ffwNsa0BAHLHlgYAKIHtRWo9lnhI0v72y2+TdLKk1RHxw7KyAUBqWOEFgHJ8VNIhSSslrW7/vEfSQ2p9kQ0AkBNWeAGgBLb/q6RdEXH1Ua//jqS/UOvLawdLCQcAiaHhBQAAQNLY0gAAAICk0fACAAAgaTS8AAAASBoNLwAAAJL21iIuunTp0qjX60VcGgAAAJAkTU1NPR8R1U7nFdLw1ut1TU5OFnFpAAAAQJJke2+W89jSAAAAgKTR8AIAACBphWxpAAAAC0/92nvKjoAFas8Xzi87wnFlbnhtD0malLQvIi6Y640OHDigRqOhmZmZuX60ZyqVimq1moaHh8uOAgAAgJzMZYX3Kkm7JZ3YzY0ajYaWLFmier0u291colARoenpaTUaDY2OjpYdBwAAADnJtIfXdk3S+ZK+0u2NZmZmNDIy0pfNriTZ1sjISF+vQAMAAGDusn5pbaOkayS9cawTbK+3PWl7stlsHuucuSfsoX7PBwAAgLnr2PDavkDSzyJi6njnRcR4RIxFxFi12nH+LwAAANATWfbwniPpItsfkVSRdKLtWyPisvncOO9vgmb9duCdd96pSy65RLt379a73/3uXDMAAACg/3Rc4Y2I6yKiFhF1SeskPTDfZrdMExMTOvfcczUxMVF2FAAAAPTAQM3h3b9/v7Zt26atW7fqwgsv1A033FB2JAAA+ka/z1IFujWnJ61FxIPdzODtF3fddZfWrFmjM844QyMjI5qaOu62ZAAAACRgoB4tPDExoXXr1kmS1q1bx7YGAACAATAwWxpeeOEFPfDAA9qxY4ds69ChQ7KtG2+8kXFkAAAACRuYFd477rhDl19+ufbu3as9e/bo6aef1ujoqB566KGyowEAAKBApa3w9npj/MTEhD796U//wmsf+9jHNDExoQ984AM9zQIAAIDeGZgtDVu3bv2l1z75yU+WkAQAAAC9NDBbGgAAADCYBmaFFwAAHF/eT0HF4Oj3Gc4dV3htV2z/wPYPbe+y3fXTGiKi24/2RL/nAwAAwNxl2dLwmqTzIuIsSaslrbH9a3O9UaVS0fT0dN82lRGh6elpVSqVsqMAAAAgRx23NESrQ93fPhxu/8y5a63Vamo0Gmo2m3P9aM9UKhXVarWyYwAAACBHmfbw2h6SNCXpXZJuioiHZzlnvaT1krRixYpfusbw8LBGR0fnFRYAAACYq0xTGiLiUESsllSTdLbtM2c5ZzwixiJirFqt5p0TAAAA6MqcxpJFxIuStkpaU0wcAAAAIF9ZpjRUbZ/c/n2RpA9LeqLoYAAAAEAesuzhPVXSze19vG+RtCki7i42FgAA6LV+n6UKdCvLlIbtkt7XgywAAABA7ni0MAAAAJJGwwsAAICk0fACAAAgaTS8AAAASBoNLwAAAJJGwwsAAICkZZnDCwAABkD92nvKjoAFqt9nOGd50tpy21ttP257l+2rehEMAAAAyEOWFd6Dkq6OiEdtL5E0Zfv+iHi84GwAAADAvHVc4Y2In0bEo+3fX5G0W9JpRQcDAAAA8jCnL63Zrqv1mOGHZ3lvve1J25PNZjOfdAAAAMA8ZW54bS+W9E1JGyLi5aPfj4jxiBiLiLFqtZpnRgAAAKBrmRpe28NqNbu3RcS3io0EAAAA5CfLlAZL+qqk3RHx5eIjAQAAAPnJMqXhHEmXS9ph+7H2a5+JiC3FxQIAAL3W77NUgW51bHgjYpsk9yALAAAAkDseLQwAAICk0fACAAAgaTS8AAAASBoNLwAAAJJGwwsAAICk0fACAAAgaVnm8AIAgAFQv/aesiNgger3Gc5ZHy28xvaTtp+yfW3RoQAAAIC8ZHm08JCkmyStlbRS0qW2VxYdDAAAAMhDlhXesyU9FRE/jojXJd0u6eJiYwEAAAD5yNLwnibp6SOOG+3XfoHt9bYnbU82m8288gEAAADzktuUhogYj4ixiBirVqt5XRYAAACYlywN7z5Jy484rrVfAwAAAPpelob3EUmn2x61fYKkdZK+XWwsAAAAIB8d5/BGxEHbV0q6V9KQpK9FxK7CkwEAgJ7q91mqQLcyPXgiIrZI2lJwFgAAACB3PFoYAAAASaPhBYCSfeMb39DY2JgWL16sU089VWvXrtW2bdvKjgUAyXBE5H9Ruylpb46XXCHpJzleD/2D2qaL2mZziqR3qPX/zJclhaQTJS1Ra+55P6K26aK26Uq1tu+MiI7zcAtpePNmu5nlj8HCQ23TRW07s32SWmMefz8i/nPZebKitumituka9NoulC0NL5YdAIWhtumitp39uqSKpM1lB5kjapsuapuuga7tQml4Xyo7AApDbdNFbTsbkfR8RBwsO8gcUdt0Udt0DXRtF0rDO152ABSG2qaL2nY2LWmp7UwjIvsItU0XtU3XQNd2QezhBYAUtffwPiPpioi4o+w8AJCqhbLCCwDJiYiXJP2xpJtsf9T2220P215r+0tl5wOAVLDCCwAls/1PJf0LSe+R9IqkKUmfi4jvlRoMABJBwwsAAICksaUBAAAASaPhBQAAQNJoeAEAAJA0Gl4AAAAkrZBh50uXLo16vV7EpQEAAABJ0tTU1PMRUe10XiENb71e1+TkZBGXBgAAACRJtvdmOY8tDQAAAEgaDS8AAACSVsiWBgAACnf9SWUnSM/1L5WdAChE5obX9pCkSUn7IuKC4iIBAACgFw4cOKBGo6GZmZmyoxxXpVJRrVbT8PBwV5+fywrvVZJ2SzqxqzsBAACgrzQaDS1ZskT1el22y44zq4jQ9PS0Go2GRkdHu7pGpj28tmuSzpf0la7uAgAAgL4zMzOjkZGRvm12Jcm2RkZG5rUKnfVLaxslXSPpjeOEWW970vZks9nsOhAAAAB6p5+b3cPmm7Fjw2v7Akk/i4ip450XEeMRMRYRY9Vqx/m/AAAAQE9k2cN7jqSLbH9EUkXSibZvjYjLio0GAACAnsp7+knGyR/PPvusNmzYoEceeUQnn3yyTjnlFG3cuFFnnHFGLjE6rvBGxHURUYuIuqR1kh6g2QUAAEAeIkKXXHKJPvjBD+pHP/qRpqam9PnPf17PPfdcbvdgDi8AYGFiZiyQhK1bt2p4eFif+MQn3nztrLPOyvUec2p4I+JBSQ/mmgAAAAADa+fOnXr/+99f6D14tDAAAACSRsMLAACA0rz3ve/V1NRxh4HNGw0vAAAASnPeeefptdde0/j4+Juvbd++XQ899FBu9+BLawAAAGgp4cugtrV582Zt2LBBX/ziF1WpVFSv17Vx48bc7kHDCwAAgFItW7ZMmzZtKuz6bGkAAABA0ljhBQAALXk/ZQvlY161pAwrvLYrtn9g+4e2d9m+oRfBAAAAULyIKDtCR/PNmGVLw2uSzouIsyStlrTG9q/N664AAAAoXaVS0fT0dF83vRGh6elpVSqVrq/RcUtDtP4F9rcPh9s//fuvAgAAgExqtZoajYaazWbZUY6rUqmoVqt1/flMe3htD0makvQuSTdFxMOznLNe0npJWrFiRdeBAAAA0BvDw8MaHR0tO0bhMk1piIhDEbFaUk3S2bbPnOWc8YgYi4ixarWad04AAACgK3MaSxYRL0raKmlNMXEAAACAfGWZ0lC1fXL790WSPizpiaKDAQAAAHnIsof3VEk3t/fxvkXSpoi4u9hYAACg55jZikRlmdKwXdL7epAFAAAAyB2PFgYAAEDSaHgBAACQNBpeAAAAJI2GFwAAAEmj4QUAAEDSaHgBAACQtCxzeAEAZbr+pLITYFAwhxeJyvKkteW2t9p+3PYu21f1IhgAAACQhywrvAclXR0Rj9peImnK9v0R8XjB2QAAAIB567jCGxE/jYhH27+/Imm3pNOKDgYAAADkYU5fWrNdV+sxww/P8t5625O2J5vNZj7pAAAAgHnK3PDaXizpm5I2RMTLR78fEeMRMRYRY9VqNc+MAAAAQNcyNby2h9Vqdm+LiG8VGwkAAADIT5YpDZb0VUm7I+LLxUcCAAAA8pNlSsM5ki6XtMP2Y+3XPhMRW4qLBQB4E7NRAWBeOja8EbFNknuQBQAAAMgdjxYGAABA0mh4AQAAkDQaXgAAACSNhhcAAABJo+EFAABA0mh4AQAAkLQsc3iB9F1/UtkJAKB8zHxGorI+WniN7SdtP2X72qJDAQAAAHnJ8mjhIUk3SVoraaWkS22vLDoYAAAAkIcsK7xnS3oqIn4cEa9Lul3SxcXGAgAAAPKRpeE9TdLTRxw32q/9AtvrbU/anmw2m3nlAwAAAOYltykNETEeEWMRMVatVvO6LAAAADAvWRrefZKWH3Fca78GAAAA9L0sDe8jkk63PWr7BEnrJH272FgAAABAPjrO4Y2Ig7avlHSvpCFJX4uIXYUnA3qJ2ZMAACQr04MnImKLpC0FZwEAAAByx6OFAaBE9XpdixYt0uLFi9/8eeaZZ8qOBQBJoeEFgJJ95zvf0f79+9/8WbZsWdmRACApjoj8L2o3Je3N8ZIrJP0kx+uhf1DbdFHbbFZJ2iPplZJzzAW1TRe1TVeqtX1nRHSch1tIw5s3280sfwwWHmqbLmqbje09kv4wIv6q7CxZUdt0Udt0DXptF8qWhhfLDoDCUNt0Udvs7rT9YvvnzrLDZEBt00Vt0zXQtc00paEPMDMqXdQ2XdQ2u48upBVeUduUUdt0DXRtF8oK73jZAVAYapsuapsuapsuapuuga7tgtjDCwCpWoh7eAFgoVkoK7wAAABAV1jhBQAAQNJY4QUAAEDSaHgBAACQNBpeAAAAJI2GFwAAAEmj4QUAAEDSCnnS2tKlS6NerxdxaQAAAECSNDU19XxEVDudV0jDW6/XNTk5WcSlAQAAAEmS7b1ZzmNLAwAAAJJGwwsAAICkZd7SYHtI0qSkfRFxQXGRAAySVTevKjsCgLYdV+woOwJQiLns4b1K0m5JJxaUBQAAAD124MABNRoNzczMlB3lmCqVimq1moaHh7v6fKaG13ZN0vmSPifpX3Z1JwAAAPSdRqOhJUuWqF6vy3bZcX5JRGh6elqNRkOjo6NdXSPrHt6Nkq6R9EZXdwEAAEBfmpmZ0cjISF82u5JkWyMjI/Nage7Y8Nq+QNLPImKqw3nrbU/anmw2m10HAgAAQG/1a7N72HzzZVnhPUfSRbb3SLpd0nm2bz36pIgYj4ixiBirVjvO/wUAAAAkSUNDQ1q9evWbP3v27Mn1+h338EbEdZKukyTbH5T0qYi4LNcUAAAA6At5T8/JMv1j0aJFeuyxx3K975GYwwsAAICkzenRwhHxoKQHC0kCYCAx9xMA8Oqrr2r16tWSpNHRUW3evDnX68+p4QUAAADyxpYGAAAAYB5oeAEAAJA0Gl4AAAAkjT28AAAAeFMZXybev39/oddnhRcAAABJo+EFAABA0jpuabBdkfRdSW9rn39HRPxJ0cEAAMD/l/fTr2bDXGykKsse3tcknRcR+20PS9pm+79ExPcLzgYAAIAeiAjZLjvGMUXEvD7fcUtDtBzeSTzc/pnfXQEAANAXKpWKpqen591UFiUiND09rUql0vU1Mk1psD0kaUrSuyTdFBEPd31HAAAA9I1araZGo6Fms1l2lGOqVCqq1Wpdfz5TwxsRhySttn2ypM22z4yInUeeY3u9pPWStGLFiq4DAQAAoHeGh4c1OjpadoxCzWlKQ0S8KGmrpDWzvDceEWMRMVatVvPKBwAAAMxLx4bXdrW9sivbiyR9WNITRQcDAAAA8pBlS8Opkm5u7+N9i6RNEXF3sbEAAACAfHRseCNiu6T39SALAAA4BmbkAt3jSWsAAABIGg0vAAAAkkbDCwAAgKTR8AIAACBpNLwAAABIGg0vAAAAkkbDCwAAgKR1nMNre7mk/yTpFEkhaTwi/rzoYEBqVt28quwIAHBczPpFqrI8ae2gpKsj4lHbSyRN2b4/Ih4vOBsAAAAwbx23NETETyPi0fbvr0jaLem0ooMBAAAAeZjTHl7bdbUeM/xwEWEAAACAvGVueG0vlvRNSRsi4uVZ3l9ve9L2ZLPZzDMjAAAA0LVMDa/tYbWa3dsi4luznRMR4xExFhFj1Wo1z4wAAABA1zo2vLYt6auSdkfEl4uPBAAAAOQnywrvOZIul3Se7cfaPx8pOBcAAACQi45jySJimyT3IAuQNOZbAgBQDp60BgAAgKTR8AIAACBpNLwAAABIGg0vAAAAkkbDCwAAgKTR8AIAACBpNLwAAABIWsc5vJJke42kP5c0JOkrEfGFQlN1adXNq8qOAADAgsW8cKQqy6OFhyTdJGmtpJWSLrW9suhgAAAAQB6ybGk4W9JTEfHjiHhd0u2SLi42FgAAAJCPLA3vaZKePuK40X4NAAAA6Hu5fWnN9nrbk7Ynm81mXpcFAAAA5iVLw7tP0vIjjmvt135BRIxHxFhEjFWr1bzyAQAAAPOSpeF9RNLptkdtnyBpnaRvFxsLAAAAyEfHsWQRcdD2lZLuVWss2dciYlfhyQAAAIAcZJrDGxFbJG0pOMu8MT8QAAAAR+NJawAAAEgaDS8AAACSRsMLAACApDki8r+o3ZS0N8dLrpD0kxyvh/5BbdNFbdNFbdNFbdOVam3fGREd5+EW0vDmzXYzyx+DhYfapovapovapovapmvQa7tQtjS8WHYAFIbapovapovapovapmuga7tQGt6Xyg6AwlDbdFHbdFHbdFHbdA10bRdKwztedgAUhtqmi9qmi9qmi9qma6BruyD28AIAAADdWigrvAAAAEBXFlzDa/tq22F7adlZkA/b/8b2dtuP2b7P9rKyMyEftm+0/US7vpttn1x2JuTD9j+2vcv2G7bHys6D+bO9xvaTtp+yfW3ZeZAP21+z/TPbO8vOUqYF1fDaXi7pt5XmHLlBdmNE/EpErJZ0t6Q/LjsQcnO/pDMj4lck/bWk60rOg/zslPSPJH237CCYP9tDkm6StFbSSkmX2l5Zbirk5OuS1pQdomwLquGV9GeSrpHExuOERMTLRxz+DVHfZETEfRFxsH34fUm1MvMgPxGxOyKeLDsHcnO2pKci4scR8bqk2yVdXHIm5CAivivphbJzlO2tZQfIyvbFkvZFxA9tlx0HObP9OUkfV2tsyodKjoNi/IGkvyw7BIBZnSbp6SOOG5J+taQsQO76quG1/VeS3jHLW5+V9Bm1tjNgATpebSPiroj4rKTP2r5O0pWS/qSnAdG1TrVtn/NZSQcl3dbLbJifLLUFgIWgrxreiPit2V63vUrSqKTDq7s1SY/aPjsinu1hRHTpWLWdxW2StoiGd8HoVFvbvyfpAkm/GcxBXFDm8N8tFr59kpYfcVxrvwYkoa8a3mOJiB2S/vbhY9t7JI1FxPOlhUJubJ8eEf+rfXixpCfKzIP82F6j1r77fxgR/7fsPACO6RFJp9seVavRXSfpd8uNBORnoX1pDWn6gu2dtrertW3lqrIDITf/TtISSfe3x879+7IDIR+2L7HdkPTrku6xfW/ZmdC99pdLr5R0r6TdkjZFxK5yUyEPtick/U9Jf892w/Y/KztTGXjSGgAAAJLGCi8AAACSRsMLAACApNHwAgAAIGk0vAAAAEgaDS8AAACSRsMLAACApNHwAgAAIGk0vAAAAEja/wNzWxNXvLU5iQAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 3 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[df_demo[\"F\"] < 0][[\"A\", \"C\", \"F\"]]\\\n", " .plot(kind=\"barh\", subplots=True, sharex=True, title=\"Subplots\", figsize=(12, 4));"]}, {"cell_type": "code", "execution_count": 77, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAugAAAF8CAYAAACdRU5YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XeYldW1+PHvAkSaFSEWVOyK2BETOxbsYu8aNYZLvLabaDTxl2vU602i5mrUGCW2RJFIVMTYsMUoVsCKithAAQUFFQFpw/79sYeAOMwMnJl5z8x8P89znnPect53DQzDmn3WXjtSSkiSJEkqDy2KDkCSJEnSQibokiRJUhkxQZckSZLKiAm6JEmSVEZM0CVJkqQyYoIuSZIklRETdEmSJKmMmKBLkiRJZcQEXZIkSSojJuiSJElSGWlVdADVadGiRWrbtm3RYUiSJKkJmzlzZkoplc3AdVkn6G3btmXGjBlFhyFJkqQmLCK+KTqGRZXNbwqSJEmSTNAlSZKksmKCLkmSJJWRsq5BlyRJ0pLNnTuX8ePHM2vWrKJDaRTatGlDly5dWG655YoOpVom6JIkSY3U+PHjWWGFFejatSsRUXQ4ZS2lxJQpUxg/fjzrrbde0eFUyxIXSZKkRmrWrFl07NjR5LwWIoKOHTs2ik8bTNAlSZIaMZPz2mssf1Ym6JIkSSrJfffdR0QwevToJZ7zzTffsNtuu1FRUVHl8R133LHG+3Tt2pXPP//8O/ufeuopnnvuuX9vX3fdddxyyy21iLw8maBLkiQ1J598ArvtBp9+WmeXHDhwIDvvvDMDBw5c4jm33HILhx12GC1btvzW/nnz5gF8K8FeWosn6KeeeirXXnvtMl+vaCbokiSpXg0YAF27QosW+XnAgKIjauYuvRSGDYNLLqmTy02fPp1hw4Zx880387e//W2J5w0YMIA+ffoAOaHeZZddOPjgg+nWrRsAHTp0AGD+/PmcfvrpbLrppuy9997sv//+3H333f++zrXXXsu2227LFltswejRoxk7diw33HADV111FVtvvTXPPPMM7dq1o2vXrrz00kt18jVGxC0RMTkiRi3h+PER8XpEvBERz0XEVoscWzki7o6I0RHxdkT8oKb72cVFkiTVmwEDoG9fmDkzb48bl7cBjj++uLiapHPOgVdfXfLxZ56B+fMXbv/pT/nRogXsskvV79l6a7j66mpvO2TIEPbdd1823nhjOnbsyMiRI9luu+2+dc6cOXP44IMP6Nq167/3vfzyy4waNeo7HVXuvfdexo4dy1tvvcXkyZPZbLPNOPXUU/99fLXVVuPll1/m+uuv58orr+Smm26iX79+dOjQgXPPPfff5/Xo0YNnnnmGnj17Vht/Ld0GXAf8dQnHPwR2Syl9ERH7Af2BHSqP/QF4JKV0RES0BtrVdDNH0CVJUr258MKFyfkCM2fm/WpgPXtC5845IYf83Lkz7LBD9e+rwcCBAznmmGMAOOaYY6osc/n8889ZeeWVFwunZ5XtDocNG8aRRx5JixYtWH311enVq9e3jh922GEAbLfddowdO3aJcXXu3JmJEycu7ZdTpZTS08DUao4/l1L6onLzBaALQESsBOwK3Fx53pyU0pc13c8RdEmSVG8++mjp9qsENYx0A/CTn0D//tCmDcyZA4cfDtdfv8y3nDp1Kk8++SRvvPEGEUFFRQURwRVXXPGtjilt27b9TnvD9u3bL9M9l19+eQBatmz57/r1qsyaNYu2bdvW9rKtImLEItv9U0r9lylA+BHwcOXr9YDPgFsry15GAmenlGZUdwFH0CVJUr3p3Lnq/eus07BxqNKkSdCvH7zwQn4ucaLo3XffzYknnsi4ceMYO3YsH3/8Meuttx7PPPPMt85bZZVVqKioqFUP8p122ol77rmH+fPnM2nSJJ566qka37PCCivw9ddff2vfmDFj6N69e22/lHkppR6LPJYpOY+IXuQE/fzKXa2AbYE/pZS2AWYAF9R0HRN0SZJUL0aNgmnToKrW0zvsACk1fEzN3r33wh//CFttlZ/vvbekyw0cOJBDDz30W/sOP/zwKstcevfuzbBhw2q85uGHH06XLl3o1q0bJ5xwAttuuy0rrbRSte856KCDGDx48L8niQI8++yz7L333kvx1ZQmIrYEbgL6pJSmVO4eD4xPKb1YuX03OWGv/lqpjP91tG/fPs2YUe0nAJIkqQyNGwcL2lqfd16uvvjoI+jSBdZaKw/gHnss3HQTtKtxypyW5O2332azzTYrOoxaefnll7nqqqu4/fbbazx3+vTpdOjQgSlTptCzZ0+effZZVl999Vrf65VXXuH//u//qrxXVX9mETEzpVRtzU1EdAUeSCl9Z1g+ItYBngROSik9t9ixZ4DTUkrvRMSvgfYppfOqu5c16JIkqc6tsAJssw389rfQvXtuMLJASnn/hRfCO+/AfffB2msXF6saxrbbbkuvXr2oqKj4Ti/0xR144IF8+eWXzJkzh1/96ldLlZxDnpR66aWXlhLut0TEQGB3YLWIGA9cBCwHkFK6AfhvoCNwfWXt/byUUo/Kt58JDKjs4PIBcEqN93MEXZIk1ZXp06FVqzwHsSYPPACnnw5Dh0IjGQQuO41pBL1cLOsIekOyBl2SJNWJ2bPhkEOgT5/a1ZcfeCC8+25OzlOCWswFlJoFE3RJklSyigo48UR44om8AFFVE0OrUtkxj3vvhV694IwzYO7c+otTagxM0CVJUklSgrPOgr//Ha64Ak46aemvccghcO65ubHIPvvA55/XfZxSY2GCLkmSSnL55Xmtm/POy0n2smjZMif3f/0rPPccbL89vP563cYpNRZ2cZEkSSU58ECYMgV+97vSr3XiibDJJnDEEfDxx7DllqVfU/WrZcuWbLHFFv/evu++++jatWtxATUBjqBLkqRl8vbbubxl883zKHpt685r0rNnbr94wAF5+/nnYf78url2czdgAHTtCi1a5OcBA0q/Ztu2bXn11Vf//TA5L50JuiRJWmpPPJEXo7zuuvq5ftu2+fmNN2DnnfOI+mIruWspDRgAffvmRaRSys99+9ZNkq66ZR90SZK0VEaOhN13zyOwTz8Nq6xSf/dKCa65Bn72s9yOccgQWH/9+rtfY7N4T+/dd//uOUcdlfvNr7NOLhtaXMeOeVLu55/nX4QWVZvWl4uWuKy33noMHjy49l9AARpDH3Rr0CVJUq2NGQP77ZeTuqFD6zc5h1w2c/bZuYzmqKPy5NG//x322KN+79sUjR9f9f4pU0q77oISF9UdE3RJklQrc+bA/vvn148+Cmuu2XD33msvGD48L4I0YoQJ+pJUN+K9zjq5rGVx666bn1dbzcWiyoUJuiRJqpXWreH3v4cuXWDjjRv+/htsAC+9tLA+/bXXYNNNFy52pOpddlmuOZ85c+G+du3yfpUXJ4lKkqRqzZwJ//pXft2nD2y3XXGxtGuXy16+/DKvPNqrF3z6aXHxNCbHHw/9++cR84j83L9/3q/yYoIuSZKWaO5cOPpo6N276gmGRVl5ZbjxxjyK3qNHLntRzY4/HsaOzW0rx46tm+R8+vTppV9E31JSgh4Rq0bEYxHxbuVzlVNFIqIiIl6tfNxfyj0lSVLDSCmXRDzwAFx9Nay9dtERfduRR8Kzz0KrVrDLLrYLVNNR6gj6BcATKaWNgCcqt6vyTUpp68rHwSXeU5IkNYALLoDbboOLL4af/KToaKq29dZ58ugOO8DDD+dfKqTGrtRJon2A3Stf/wV4Cji/xGtKkqSCPf54Xh30P/8TfvWroqOpXqdO8NhjUFGRa6vHjs0lMCuvXHRk0rIpdQT9eymlTypffwp8bwnntYmIERHxQkQcUuI9JUlSPdtzTxg0CP7wh5z0lrvlloM2bXJtdZ8+eUT9nXeKjqphlPOik+WmsfxZ1ZigR8TjETGqikefRc9L+Ste0le9bkqpB3AccHVEbFDN/fpWJvMj5s2btzRfiyRJKtHQofD22zkpP/JIaNmy6IiWTosWcN118MUX0LMnPPRQ0RHVrzZt2jBlypRGk3gWKaXElClTaNOmTdGh1ChK+QuNiHeA3VNKn0TEGsBTKaVNanjPbcADKaW7a7p++/bt04wZM5Y5PkmSVHvDhsHee8Nuu8EjjxQdTWnGjYNDDsldXn77WzjvvMbxScDSmjt3LuPHj2fWrFlFh9IotGnThi5durDccst9a39EzEwptS8orO8oNUG/ApiSUvptRFwArJpS+vli56wCzEwpzY6I1YDngT4ppbdqur4JuiRJDeONN2DXXaFz55yod+pUdESlmzkTTj0V3n8/f00uaKQlaWoJekdgELAOMA44KqU0NSJ6AP1SSqdFxI7AjcB8cknN1Smlm2tzfRN0SZLq39ixsOOOeYT52Weha9eiI6o7KcG0abDSSvDVV/l1ubWLVPGaVIJe30zQJUmqf6eeCoMHwzPPQPfuRUdTf449Fv75T7jnHthpp6KjUTkxQV8KJuiSJNW/b76B996DLbYoOpL69dZbucPLuHFw/fVw2mlFR6RyUW4JeqltFiVJUiM0ezacfz58+SW0bdv0k3OAbt3gpZegVy/48Y/hzDNh7tyio5K+ywRdkqRmpqICTjwxL0T0z38WHU3DWmUVePBB+OlPc6nLlClFRyR9lyUukiQ1IynBGWfkEo8rr4Sf/azoiIozZQp07Jh/YfnwQ9hww6IjUlEscZEkSYW55JKcnP/85807OYecnAP85jew9dZ5oqxUDkzQJUlqJr76Cm65BU45JS/eo+zUU3P3msMOg4svhvnzi45IzZ0lLpIkNSOffgqrrQatWhUdSXmZNQv69YO//AUOPRT++lfo0KHoqNRQLHGRJEkN6vHH4ayzcq316qubnFelTRu49Va46ioYOhRGjy46IjVnjqBLktSEjRiR2wqut15e7n7FFYuOqPxNngydO+fXH3wA669fbDyqf46gS5KkBjFmDOy3Xy5peeQRk/PaWpCcDx4Mm2wC112Xu99IDcUEXZKkJmjCBOjdGyLg0UdhzTWLjqjx2XPP/AvOmWfmhY1mzy46IjUXJuiSJDVB77yTJz4+/DBstFHR0TROK64I990HF14IN98Me+wBkyYVHZWaA2vQJUlqQlLKo+YAM2dCu3bFxtNUDBqU21PefDMcc0zR0aiulVsNugm6JElNxNy5cMQRcMAB0Ldv0dE0PRMnLiwV+ugjWGedYuNR3Sm3BN0SF0mSmoD58+G00+D++11op74sSM7feCNPHj3//Ny6UqprJuiSJDUB55+fF9e5+OK84I7qzyabwMknw+WXw0EHwZdfFh2RmhoTdEmSGrkrroArr4T//E/41a+Kjqbpa90a/vSn/HjsMfj+9/OkXKmumKBLktTIVVTkiYvXXLNwgqjqX79+8MQTMGVK/vRCqitOEpUkqZGaNSsvUQ/f7t6ihjVxInzve9CyZX69xhr+XTQ2NU0SjYhbgAOBySml7lUcPx44Hwjga+AnKaXXFjneEhgBTEgpHVhTPI6gS5LUCA0blpegHz48b5sQFmfNNXNyPmUK9OwJJ54I33xTdFSqY7cB+1Zz/ENgt5TSFsClQP/Fjp8NvF3bm5mgS5LUyLzxRp6cuOKK0LVr0dFogVVXhZ/8BAYMgF12gfHji45IdSWl9DQwtZrjz6WUvqjcfAHosuBYRHQBDgBuqu39TNAlSWpExo6FffaB9u1h6FDo1KnoiLRARF51dMgQGDMGevSA554rOioV4EfAw4tsXw38HKh1A1QTdEmSGonPP4fevXPt+dChsO66RUekqhx8MLzwAnToAL/7XdHRqJZaRcSIRR7LtNRXRPQiJ+jnV24vqFsfuVTBLMvNJUlSw1thBdhxx7xK6OabFx2NqtOtG7z0ErSoHAqdMgVWWglamXmVq3kppR6lXCAitiSXseyXUppSuXsn4OCI2B9oA6wYEXeklE6o9lp2cZEkqbzNng0zZuQaZzU+8+bBzjvnsqRBg6Bjx6Ij0uJq6uJSeU5X4IEldHFZB3gSOCmlVGVhU0TsDpxrFxdJkhq5igo44YQ86XDWrKKj0bJo1SpPHh02DLbfPk/yVeMSEQOB54FNImJ8RPwoIvpFxIJ1e/8b6AhcHxGvRsSIku7nCLokSeUpJTj9dLjhBvj97+GnPy06IpXixRfh0ENh2jS4/fb8WuWhNiPoDckEXZKkMvXrX8PFF8P558Nvf1t0NKoLEyfmxPyrr+D116F166IjEpigLxUTdElSc/WXv8DJJ8Mpp8DNN7sQUVMyaxZMngzrrJNfz5uXO76oOOWWoFuDLklSGdpnHzj3XOjf3+S8qWnTJifnkEuYdtoJPvyw2JhUXkzQJUkqI2+8kUdUV18drrjCtnxN3THHwEcf5cmj//xn0dGoXJSUoEfEkRHxZkTMj4gl9o6MiH0j4p2IeC8iLijlnpIkNVXDh8MPfgAX+D9ls9G7d+6X3rkz7L03/PGPeXKwmreSatAjYjPysqU3kvs6fqelTES0BMYAewPjgeHAsSmlt2q6vjXokqTm4p13cq/sDh3y8vBrrFF0RGpI06bB8cfDM8/A22/799/Qyq0GvaQPzlJKbwNE9cVxPYH3UkofVJ77N6APUGOCLklSczBhQq45b9ECHn3U5Kw5WnFFuO8+GDMm//2nlDu9rLxy0ZGpCA1Rg74W8PEi2+Mr90mS1OylBEccAVOnwsMPw0YbFR2RitKyJWy2WX599dWwxRYwcmSxMakYNSboEfF4RIyq4tGnPgKKiL4RMSIiRsybN68+biFJUtmIgD/8AYYMgW23LToalYvddsvfGzvvDH/7W9HRqKHVWOKSUtqrxHtMANZeZLtL5b4l3a8/0B9yDXqJ95YkqSzNnZtHzA8+GHr2LDoalZttt4URI+Dww+HYY+G11+B//iePsqvpa4gSl+HARhGxXkS0Bo4B7m+A+0qSVJbmz4fTToM+fXISJlWlc2d44gn4j/+A3/3O75XmpNQ2i4dGxHjgB8CDETG0cv+aEfEQQEppHnAGMBR4GxiUUnqztLAlSWq8zj8f/vpXuOQS6LHEJsUStG4NN9wAr7wCO+yQ9339dbExqf6V1GaxvtlmUZLU1FxxBfz853DGGXDNNa4SqqXz6KO55GXAANh336KjaTrKrc2iK4lKktRA3norj54fc0yeGGpyrqW18cbQpQsccED+Za+Mx1lVAkfQJUlqQEOHQq9euXRBWhYzZsDJJ8Pdd8MJJ0D//tC2bdFRNW6OoEuS1MwMGwZPPZVf77OPyblK0749DBoEl14Kd9yRX6tpcQRdkqR69PrrsOuusO668PLLtslT3RoxArbbLpdLzZiRk3ctPUfQJUlqJj78ME/ka98e7r/f5Fx1r0ePnJyPGQMbbAC33lp0RKoLJuiSJNWDyZOhd2+YNSt33lh33aIjUlO22mqwxRZw6qlwzjngYuyNmwm6JEn14E9/ggkT4IEHYPPNi45GTd2qq+aVac85J3cI2ndfmDKl6Ki0rKxBlySpHsyfn9sqdu9edCRqbm67La8+evbZcPnlRUfTOJRbDboJuiRJdaSiIvc5P+MM6Nq16GjUnL38MnTrBm3awDff2IaxJuWWoFviIklSHUgpJ+a//z088kjR0ai523bbnJx/+WV+fckl+VMdNQ4m6JIk1YGLL4Ybbsgj6P36FR2NlC2/fO70ctFFcNRRMH160RGpNkzQJUkq0R//mBP0U0+F3/ym6Gikhdq2hb/+Fa68EgYPhp12grFji45KNbEGXZKkEsybBzvuCGusAffcA61aFR2RVLWhQ+Hoo3OS/uCDRUdTXsqtBt0EXZKkEn39dU7MnYincjdmTF44a621YPZsaN06L3TU3JVbgm6JiyRJy2D4cDjyyLy8+gormJyrcdh445ycV1TAIYfkdoxz5hQdlRZngi5J0lIaPRr22w9Gjsyj51JjtM028Oc/w5575pVvVT5M0CVJWgrjx8M++0DLlrmmd/XVi45IWnotW8L//i8MHJh/0ezRA155peiotIA16JIk1dLUqbDrrvDRR/DUU7m/tNTYvfxyLndZfnl4++3mOdG53GrQm+FfgSRJy2bixFzSMmSIybmajm23zXMqPv00J+cVFXl/y5bFxtWcOYIuSVIN5s+HFpVFobNn55FGqan6+c/zSPodd8BKKxUdTcMotxF0a9AlSarG/Plw8sl5hdCUTM7V9HXtCo88At//Prz7btHRNE8m6JIkLUFKcN55cPvtuZWi/aLVHJx+Ojz2GHz2GfTsmSdDq2FZ4iJJ0hJcfnkeOT/zTPjDH0zQ1byMHQt9+sB77+XXnToVHVH9KbcSFxN0SZKqcMst8KMfwbHH5lrcFn7mrGZo+nQYMQJ23z1vz5vXNLu8lFuC7o8bSZKq0L49HHQQ3Habybmarw4dFibnt98OO+0EEyYUGlKz4I8cSZIWMX16fj766NxOsXXrYuORysWKK8Jbb8H228MLLxQdTdNmgi5JUqXXX4f114f778/b1pxLC/XpA88/D23bwm675U+XVD9M0CVJAj78EPbZJ4+Yb7110dFI5al7d3jpJdhlFzjllFyf3hxExC0RMTkiRi3h+PER8XpEvBERz0XEVpX7146If0bEWxHxZkScXav7OUlUktTcTZ6ca2unTIFhw6Bbt6IjksrbvHnw0ENw8MF5u6Kica88WtMk0YjYFZgO/DWl1L2K4zsCb6eUvoiI/YBfp5R2iIg1gDVSSi9HxArASOCQlNJb1cXjCLokqVmbMQP22y9PfHvwQZNzqTZatVqYnL/4Imy1Fbz5ZrEx1aeU0tPA1GqOP5dS+qJy8wWgS+X+T1JKL1e+/hp4G1irpvuZoEuSmrV27XJpyz33wA9+UHQ0UuM0ZUpeeXTIkKIjKQs/Ah5efGdEdAW2AV6s6QIlJegRcWRlPc38iOhRzXljK2tyXo2IZlKtJEkqZxUVMH58ngj6v/+bR9ElLb0ddoDhw2HTTeGQQ+B//ievwtvItIqIEYs8+i7LRSKiFzlBP3+x/R2Ae4BzUkrTagxmWW6+iFHAYcCNtTi3V0rp8xLvJ0lSyVKC//xPGDwYRo1q2iskSg2hSxd4+mn48Y/hV7+Crl3hhBOKjmqpzEspLXGwuTYiYkvgJmC/lNKURfYvR07OB6SU7q3NtUpK0FNKb1feuJTLSJLUoC66CG68ES64wORcqitt2+bFjA4+GA4/PO+bP795LPQVEesA9wInppTGLLI/gJvJE0j/r7bXa6g/sgQ8GhEjl/UjA0mS6sK118Kll8Kpp+bSFkl1JwKOOip3dJk4EbbZJo+sN3YRMRB4HtgkIsZHxI8iol9E9Ks85b+BjsD1i5V07wScCOxRuf/ViNi/pvvVOIIeEY8Dq1dx6MKUUm2nAuycUpoQEZ2BxyJidOVs2Kru1xfoC9Da5dskSXXo4Yfh7LPzgis33uhCRFJ9mjkTZs+GPffMvxj361fze8pVSunYGo6fBpxWxf5hwFL/pKmTPugR8RRwbkqpxgmgEfFrYHpK6cqazrUPuiSpLs2YAZddlmtk27YtOhqp6fvqKzjuuNwz/T/+A665Ji8GVm5q6oPe0Oq9xCUi2lc2Zici2gO9yZNLJUlqEKNGwddfQ/v2uazF5FxqGCutBPffn+d73HgjXHxx0RE1DqW2WTw0IsYDPwAejIihlfvXjIiHKk/7HjAsIl4DXgIeTCk9Usp9JUmqrdGjYffdc825pIbXsiX85je5a9LPf573NcI2jA2qTkpc6oslLpKkUowfDzvtBLNmwbPPwoYbFh2RpG++gf33zzXpRx9ddDRZsytxkSSpCFOn5hVCv/gCHnnE5FwqFzNnwty5cMwxcOGFuRWjvs0EXZLUJPXtC++9l+tft9mm6GgkLdCxIzz5JJx2Wp4TcsghMK3GtTWbF0tcJElN0tix8NZb+aN0SeUnJbj++tz69KCDco16UcqtxMUEXZLUZMyfD3/7W/7ovDmsXig1Bf/8J6y1Fmy8cU7ai1ifoNwSdH98SZKahJTg3HPh+ONzWYukxqFXr4XJ+SmnwFVX2eXFBF2S1CRcfnn+j/3MM/NKoZIalzlzYPp0+OlP4eSTc/el5soEXZLU6N18c14I5dhj4eqri/mIXFJpll8eBg3Kixn99a+w224wcWLRURXDGnRJUqM2eTKstx7svDP84x/luYy4pKUzeDCceCKsuy68/npe7Kg+lVsNugm6JKnRe+EF6N4dOnQoOhJJdeWNN+Czz2CPPer/XiboS8EEXZK0JK+/DqNGwXHHFR2JpPp2xRXwySd5rkmrVnV//XJL0K1BlyQ1Oh9+mFcJveACcBxHavomTsyTwPffP68O3NSZoEuSGpVJk6B3b5g9Gx55BNqXzZiXpPpy1VVw003w1FPQs2dehKwpM0GXJDUa06bBfvvBhAnw4IPQrVvREUlqKD/6UU7Qv/4adtqpaY+k10MVjyRJ9WPw4Dxx7P774Qc/KDoaSQ1txx1hxAh4+mlYZZWio6k/ThKVJDUqY8bkVQcl6eGHc8/0m24qrdzNSaKSJC2FlOD88+Gll/K2ybmkBd57D+66K6+DMG5c0dHUHRN0SVJZu+ii3FrtoYeKjkRSuTnzzDwf5cMPYfvtc+lLU2CJiySpbF17LZx1Vp4c9uc/Q0TREUkqR++8AwcfDB98ACNHwpZbLt37y63ExQRdklSW/va3vAhRnz7w97/Xz+IkkpqOL7/M9ehnnrn0v8yXW4JuiYskqeykBPfcA7vsAgMHmpxLqtnKK+dP3CJg9Og8ov7ZZ0VHtWxM0CVJZSciJ+YPPABt2hQdjaTGZswYeOwx6NEDXn216GiWngm6JKlsjB4Ne+0Fn3ySR81XWKHoiCQ1RgcfDMOGwfz5uXf6oEFFR7R0TNAlSWVh/Hjo3RtGjYKZM4uORlJjt912MHw4bLMNHH003Htv0RHVnlV9kqTCTZ0K++wDX32Vl/LeYIOiI5LUFKy+Ojz5JFx1Fey/f9HR1J4j6JKkQs2YAQceCO+/D0OG5NEuSaoryy8PF1yQ57N88QUcckhe4KicmaBLkgr11Vfw9ddw552w++5FRyOpKXv/fXieUSNFAAAgAElEQVTmGejZM08iLVf2QZckFWL+/NxOsWVLmDfPVoqSGsYHH+T1Fd56C449NifsH33UnpRmlM1SaCbokqQGlxL89KcwYUIeOTc5l9SQpk+HXr1gxIgFe8orQbfERZLU4H73O7j6alhzzTyCLkkNqUMHmDy56CiWzBF0SVKDuvlmOO00OO44uP12aOFQkaQCtGiRP83LHEGXJDVTQ4ZA376w775w660m55KKs846RUewZCX9aIyIKyJidES8HhGDI2LlJZy3b0S8ExHvRcQFpdxTktR4deyYFyO6+25o3broaCQ1Z5ddBu3aFR1F1UoqcYmI3sCTKaV5EfE7gJTS+Yud0xIYA+wNjAeGA8emlN6q6fqWuEhS0/Dll7BylUM4klScAQPgwgth3LgmVOKSUno0pTSvcvMFoEsVp/UE3kspfZBSmgP8DehTyn0lSY3HBx9At27wxz8WHYkkfdvxx8PYsQAzZxYcyrfUZfXfqcDDVexfC/h4ke3xlfskSU3cpEm5pGX27NzSTJJUsxo7z0bE48DqVRy6MKU0pPKcC4F5wIBSA4qIvkBfgNYWKEpSo/XVV3ky6CefwBNP5FF0SVLNakzQU0p7VXc8Ik4GDgT2TFUXtE8A1l5ku0vlviXdrz/QH3INek3xSZLKT0UFHHIIjBoF//gHfP/7RUckSY1HqV1c9gV+DhycUlpS7c5wYKOIWC8iWgPHAPeXcl9JUnlr2TIvoX3bbXkUXZIas4i4JSImR8SoJRw/vrKr4RsR8VxEbLXIsaXuZlhqDfp1wArAYxHxakTcUBnImhHxEEDlJNIzgKHA28CglNKbtbn4urNmwaeflhiiJDUTn3wCu+1W6M/NlOC99/Lrvn3zBCwJKIvvT6lKn3zCJtCmhrNuA6obbvgQ2C2ltAVwKZXVIJXdDP8I7Ad0A46NiBoL/krt4rJhSmntlNLWlY9+lfsnppT2X+S8h1JKG6eUNkgpXVbb67ebPx8uuaSUECWp+bj0Uhg2rNCfm//937DllvD224WFoHJVBt+fUpUuvZQONeTEKaWnganVHH8upfRF5eainQ2XqZthSX3Q61uPiDRiwUaLFrDLLkWGI0nl6ZlnYP787+5v4J+b4yfk0fM1VoeNN4GyaSisYpXJ96f0HYt8b/YARqRU7Y+tiOgKPJBS6l7DeecCm6aUTouII4B9U0qnVR47EdghpXRGddeocZJo4Vq0gNVWgw02KDoSSSpPPXvmZuOff57/syng5+akyTk5X60jbLyxybkWUQbfn1KVFvvejIgRixztX9m4ZKlERC/gR8DOpYRW1gn6v8f2Dz8crr++yFAkqbz95CfQvz+0aQNz5jToz82RI3OXlp12g0cegaipklPNT4Hfn1K1Kr83E5BS6lHKpSJiS+AmYL+U0pTK3UvVzXCBulyoqM592KYN9OvnhBJJqsmkSfnn5QsvNPjPza23hosvhiFDcv4lfUeB359StSq/N9+GWaVcJiLWAe4FTkwpjVnk0DJ1MyzrGvT27dunGTNmFB2GJKkK77wDHTrAWq4NLamRi4iZKaX21RwfCOwOrAZMAi4ClgNIKd0QETcBhwPjKt8yb8GIfETsD1wNtARuqU3DFBN0SdJSGz8edtwR1lwTnn8ewqJzSY1YTQl6QyvrGnRJUvmZMgV694avvoL77zc5l6S6ZoIuSaq1GTPgwANz44NHHsn155KkumWCLkmqtV/+El56Ce6+G3bfvehoJKlpsgZdklRrX34JTz8NBx9cdCSSVHfKrQa9rNssSpKKlxLcdhvMmgUrr2xyLkn1zQRdklSt3/0OTjkFbrqp6EgkqXkwQZckLdFNN8EvfgHHHQenn150NJLUPJigS5KqdN998B//AfvsA7feCi38H0OSGoSTRCVJ3zFrFmy4IXTpAk88Ae3LZuqUJNW9cpskaptFSdJ3tGkDjz8OnTqZnEtSQ/MDS0nSv33wAVxxRe7csumm0LFj0RFJUvNjiYskCYBJk2CnneCLL+CNN2DNNYuOSJIahiUukqSy89VXsO++8Mkn8OSTJueSVCQTdElq5mbNgkMOgVGj4IEHYIcdio5Ikpo3a9AlqZl79tn8+MtfcktFSVKxrEGXJDF2LHTtWnQUklSMcqtBdwRdkpqpSy7JixGBybkklRMTdElqhq65Bi66CIYOLToSSdLiTNAlqZm58044+2w47DC47rqio5EkLc4EXZKakaFD4Yc/hN13hwEDoGXLoiOSJC3OBF2SmpEnn4Tu3XPteZs2RUcjSaqKXVwkqRlICSLy84wZ0KFD0RFJUvmwi4skqUF9/DHsuGNeiCjC5FySyp0riUpSEzZlCvTuDRMnwrx5RUcjSaoNE3RJaqJmzIADDoAPP8yTQ7feuuiIJEm1YYIuSU3QnDlw+OEwfDjccw/stlvREUmSaqukBD0irgAOAuYA7wOnpJS+rOK8scDXQAUwL6XUo5T7SpKqN3s2zJ0LN94IhxxSdDSSpKVR6iTRx4DuKaUtgTHAL6o5t1dKaWuTc0mqewMGQNeu0KIFrLsu3H8/PPYYnHZa0ZFJkpZWSQl6SunRlNKCaUcvAF1KD0mStDQGDIC+fWHcuNxG8aOP4Mc/hoEDi45MkrQs6qwPekT8A7grpXRHFcc+BL4AEnBjSql/NdfpC/QFaN269XazZ8+uk/gkqalae20YP/67+9ddF8aObfBwJKnRKbc+6DUm6BHxOLB6FYcuTCkNqTznQqAHcFiq4oIRsVZKaUJEdCaXxZyZUnq6puBcqEiSqrZg4aF334WNN676nAiYP79h45KkxqjcEvQaJ4mmlPaq7nhEnAwcCOxZVXJeeY0Jlc+TI2Iw0BOoMUGXJC309de5tnzQIFhnHbj2WthwQ1hpJfjqq++ev846DR+jJKl0JdWgR8S+wM+Bg1NKM5dwTvuIWGHBa6A3MKqU+0pSc/LAA3DYYdCpE5xwAowcCautlo9FwB//CO3affs97drBZZc1fKySpNKV2sXlOmAF4LGIeDUibgCIiDUj4qHKc74HDIuI14CXgAdTSo+UeF9JarJmzoQhQxaWpzz8MDz/fJ4I+swzeRLoRRctPP/446F//1xzHpGf+/fP+yVJjU+dTRKtD9agS2ouZs2CRx7J5Sv3359XAX32WdhxR5g2Ddq3h5Yti45SkpqmRleDLkmqX6++mlf6nDYNOnaE446Do4+Gnj3z8RVXLDY+SVLDMkGXpAY0dy488UQeKd9sMzjvvPx83HF5xc899oDllis6SklSkUzQJakBPPVUXlDo3nth6tQ8Kn7mmfnY8svDn/5UaHiSpDJigi5J9aCiIndbWVCmcu218OijcPDBuXyld29o06bYGCVJ5clJopJUR+bPzxM777oL7r4bJk2C99+H9deHCRNg1VWhbduio5QkLa7cJomW2mZRkgS88AKsvTbsuivcfDPsvHNO1NdYIx9fay2Tc0lqrCLiloiYHBFVruUTEZtGxPMRMTsizl3s2H9FxJsRMSoiBkZEjZ+fmqBL0lJKCYYPh3PPhTvvzPs22iiXs9x5J0yenEfQjzrKpFySmojbgH2rOT4VOAu4ctGdEbFW5f4eKaXuQEvgmJpuZg26JNXSK6/kUfFBg+DDD3O3lXMrx0k6doTBg4uNT5JUP1JKT0dE12qOTwYmR8QBVRxuBbSNiLlAO2BiTfczQZekJUgJxo2Drl3z9hlnwEsvwV57wa9+ldsirrJKoSFKkspYSmlCRFwJfAR8AzyaUnq0pveZoEvSYt56a+FI+fvv58meq6wC/fvD6qvn0XJJUpPSKiJGLLLdP6XUv9SLRsQqQB9gPeBL4O8RcUJK6Y5qgyn1xpLUVDzzDPzkJ/Dmm9CiRV7d85xzFi4ctPnmxcYnSao381JKPerhunsBH6aUPgOIiHuBHQETdEmqynvv5VHy738/r+D5ve/lVojXXQeHH55HyyVJKsFHwPcjoh25xGVPYET1b7EPuqRmZuzYnJTfdRe8/HLe9//+H1x6aaFhSZIKVFMf9IgYCOwOrAZMAi4ClgNIKd0QEauTE+8VgfnAdKBbSmlaRFwMHA3MA14BTkspza42HhN0SU3dtGmw4op50udGG+W68p4984qeRxwB66xTdISSpCKV20JFlrhIapImTMi9yO+6C8aMgU8+ybXkt9ySE/IFnVkkSSo3JuiSmpR//Su3QBw2LI+Yb7UV/PSnMHt2TtB33bXoCCVJqp4JuqRG7bPP4J57YMcdYcstIQKmToWLL4Yjj4RNNy06QkmSlo4JuqRGZ8qUvGrnXXfBP/8JFRU5Id9yS9hlFxg1qugIJUladibokhqFefOgVaucjG+2WR4532ADOP/8PNlziy3yeRHFxilJUqlM0CWVrWnTYMiQ3BZx7Fh4/XVo2RL++MecnG+zjQm5JKnpMUGXVHaGDYMrr4RHHsmTO7t0gaOOyq/btMm15ZIkNVUm6JIKN2MGPPRQXtFz7bVh4kQYPhz69cvlKzvsAC1aFB2lJEkNw4WKJBXim2/g4Ydz+co//gEzZ+ZR85/9LNebt2hhUi5JahguVCSp2Zs1K5etTJ0Kq60GJ52US1gW9Chv5U8mSVIz5n+DkurVnDnw+ON5pHzqVLj//lxH/qtfweabQ69eJuSSJC3K/xYl1YsXX4T+/XO/8i++gJVXhsMPz20SW7aEc84pOkJJksqTFZ6S6sS8efDEE/Dll3n7xRfh7rvhwAPhgQdg0iS46aacnEuSpCVzkqikZVZRkVsi3nUX3HMPTJ4Mt9wCp5ySJ322aJHLWSRJKmdOEpXUJEydCt27wyefQLt2eaT86KNhv/3y8Xbtio1PkqTGygRdUo1SyiUrd92VR82vuQZWXRWOPTb3KD/gAGhfNuMOkiQ1bibokpbotdfgjjtyB5aPPoLWrfNEz5QgAn7/+6IjlCSp6Sl5kmhEXBoRr0fEqxHxaESsuYTzfhgR71Y+fljqfSXVvZTglVdg7ty8fddd8Ic/wBZbwF/+kmvM77wzJ+eSJKl+lDxJNCJWTClNq3x9FtAtpdRvsXNWBUYAPYAEjAS2Syl9Ud21nSQq1b+UYNSonIwPGgTvvgsPPZRryT/7LPcoX2WVoqOUJKn+NLlJoguS80rtyQn44vYBHkspTQWIiMeAfYGBpd5f0rIbPx723htGj84dV3r1gvPOy3XlAJ06FRufJEnNUZ3UoEfEZcBJwFdArypOWQv4eJHt8ZX7qrpWX6AvQOvWresiPEmVxozJo+Rt28LPfgZrrplX8zzrrFxb3rlz0RFKkqRaJegR8TiwehWHLkwpDUkpXQhcGBG/AM4ALlrWgFJK/YH+kEtclvU6krIPPlhYvvLqq3nfEUfk5xYt8mJCkiSpfNQqQU8p7VXL6w0AHuK7CfoEYPdFtrsAT9XympKW0scfQ5cueTLn//wP3HorfP/7cNVVOTnv0qXoCCVJ0pLUxSTRjVJK71a+PhPYLaV0xGLnrEqeGLpt5a6XyZNEp1Z3bSeJSrX38cd5NPyuu3LP8pdfhm22ySPoLVvCuusWHaEkSeWpyU0SBX4bEZsA84FxQD+AiOgB9EspnZZSmhoRlwLDK99zSU3JuaTaef99+OEP4dln8/Y228BvfgNrrJG311+/uNgkSdLSK3kEvT45gi5916RJcM89ufXhscfCjBmw555w0EFw5JGw8cZFRyhJUuNSbiPoJuhSI/D553Dvvbl85amnYP783HXFCZ6SJJXOBH0pmKCrOZs+HTp0yK8PPBAefDCPjh99NBx1FHTvXmx8kiQ1FSboS8EEXc3NV1/BffflloiPP54neK61FowcmSd6brVV7swiSZLqTrkl6HWyUJGk0rzzTl7Bc+hQmDMnd1w555yFyfh22xUbnyRJajgm6FIBpk+HBx6ATp3yBM8VVoDXX4czzsglLNtv70i5JEnNlQm61EBmzsx15IMG5edvvoFjjskJ+pprwocfmpRLkiQTdKleVVTk2nGA3r1zr/LvfQ9OPTVP9Nx554XnmpxLkiRwkqhU52bPhkcfzS0RH38c3nsvd2MZOhSWWw52221h0i5JkornJFGpiRo9Gn7729yF5auv8kJChx22sF3iPvsUHaEkSWoMTNClZTRvHjz5ZC5Z2Wqr3H3lvvvg0ENz+cqee0Lr1kVHKUmSGhtLXKSlUFEB//pXLl+59968wudpp8Gf/wwp5SR9+eWLjlKSJC0NS1ykRmyHHfKiQe3bw0EH5ZaIC0pXIkzOJUlS6UzQpSrMnw/PP59bIj77LLz4Yp7YedZZ0K4d7L9/fpYkSaprJujSIt59F264ISfm48fnEfH99oMvvoDVVoOTTio6QkmS1NS1KDoAqUgp5ZKVcePy9gcfwLXXwjbbwO23w+TJMHhwTs4lSZIaggm6mp2U4LXX4Je/hI02gh494E9/ysf23DMn5fffDyecACuuWGyskiSpeBFxS0RMjohRSzi+aUQ8HxGzI+LcxY6tHBF3R8ToiHg7In5Q0/0scVGzkhJsv30eNW/ZMifkv/gFHHJIPt6qFay8crExSpKksnMbcB3w1yUcnwqcBRxSxbE/AI+klI6IiNZAjbPYTNDVpI0enevJR43KzxF58aAf/zg/d+pUdISSJKncpZSejoiu1RyfDEyOiAMW3R8RKwG7AidXnjcHmFPT/UzQ1eSMGwcDBuRe5a+/npPyXXdduKLnL39ZdISSJKmZWA/4DLg1IrYCRgJnp5SqXejHGnQ1CR98AFOn5tf/+hdceCGssAJcc03uxvLUUzk5lyRJqkKriBixyKNvXV0X2Bb4U0ppG2AGcEFt3iQ1SuPGwd//nkfKR4yAq66Cc87JpSt77AFduhQdoSRJaiTmpZR61MN1xwPjU0ovVm7fjQm6mqK5c6FXr7yAEOQuLJdfDocfnrc7dHC0XJIkFS+l9GlEfBwRm6SU3gH2BN6q6X2RUqr/6JZR+/bt04wZ1ZboqBn45BO4+2746CO44oq87yc/gXXWgaOOgg02KDY+SZLUuEXEzJRS+2qODwR2B1YDJgEXAcsBpJRuiIjVgRHAisB8YDrQLaU0LSK2Bm4CWgMfAKeklL6oNh4TdJWjyZPhnnty+crTT+f2iFtvDS+9BMstV3R0kiSpKakpQW9oThJV2fj8c/jmm/z6L3+B00+HSZPgv/8b3nwTXnnF5FySJDV9jqCrUF98AYMH5x7ljz8Od9wBxxyTR9AnTYLu3XObREmSpPpSbiPoThJVIaZPz4n4o4/mSZ/rrQfnnQfbbpuPd+6cH5IkSc2NCboaxNdfwz/+kctYzjoL2reHefPg7LPzRM8ePRwplyRJAktcVI9mzIAHH8wTPR96CGbNgm7dYNQok3FJklQ+yq3ExUmiqlPffAMVFfn1r38NRx8Nzz0Hp50GzzwDb7xhci5JklQdR9BVslmzYOjQPNHz/vvzo1cveO89GD8edtkFWrYsOkpJkqSqldsIekk16BFxKdCH3JB9MnBySmliFedVAG9Ubn6UUjq4lPuqPEyZAv/1XzBkCEybBquuCsceu3By54Yb5ockSZJqr6QR9IhYMaU0rfL1WeQVk/pVcd70lNJSL77uCHp5mTsXnnwyJ+NHHpkneW6+Oey0Uy5l2WMP+5RLkqTGp0mNoC9Iziu1B8q3XkbLZN48eOqpXL5y77151HzLLXOC3qoVjB5tTbkkSVJdKrnNYkRcBpwEfAX0WsJpbSJiBDAP+G1K6b5qrtcX6AvQunXrUsPTMqioWFgzfvrp8Oc/Q4cO0KdPbom4zz4LzzU5lyRJqls1lrhExOPA6lUcujClNGSR834BtEkpXVTFNdZKKU2IiPWBJ4E9U0rv1xScJS4NZ/58ePbZ3BLx7rtzKUu3bjB8eJ7oue++0LZt0VFKkiTVvUZX4pJS2quW1xoAPAR8J0FPKU2ofP4gIp4CtgFqTNBV/yZPht/8Bv7+d5gwAdq0gQMOyAk7wPbb54ckSZIaRkl90CNio0U2+wCjqzhnlYhYvvL1asBOwFul3FfLLiV46SX417/ydps2cOutOQm/80747LM8gt69e7FxSpIkNVel1qD/NiI2IbdZHAf0A4iIHkC/lNJpwGbAjRExn/wLwW9TSiboDSgleOWVXL4yaBCMHQs77phLWlZcET79NCfqkiRJKp4LFTUDJ50Et9+eu67stVduidinD6yyStGRSZIkFa/catBN0JuYN9/Mo+T33AP//Cd06gQPPQQTJ8Khh0LHjkVHKEmSVF7KLUEvuc2iijd5MtxwQ07M33wztz7cffdcT96pE+y/f9ERSpIkqbYcQW+k3nsPZs3KkznHjYP111+4oufhh8PqVTXGlCRJ0nc4gq5l9uGHuR3iXXfByy/DwQfDkCGw7rp5omenTkVHKEmSpFKZoDcSJ5wAAwbk1z17wpVXwpFHLjxuci5JktQ0mKCXoYkT80j5Aw/AP/6RWyDusQdssQUcdRSst17REUqSJKm+mKCXiSlT4G9/y+Urw4bl3uVbbgkffwwbbQSnnlp0hJIkSWoIJa0kqtJ89hmMH59fv/8+nHFGTtR//Wt4+2147bWcnEuSJKn5sItLA5s6Fe69N7dEfPJJOO203CIxpZyUd+tWdISSJEnNi11cmrEf/hDuvBPmzYMNN4QLLoBjjsnHIkzOJUmSZIJeb6ZNyy0Qn3wSbrklJ+Abbgg/+1me6LnNNnmfJEmStChLXOrQ9Om568pdd8Ejj8Ds2bD22vDcc9ClS9HRSZIkqSrlVuLiJNESzZgBX36ZXz/5JBx3HAwfDv365cR87FiTc0mSJNWeCfoy+OabPNHz6KOhc2e4+uq8f5994Omnc2vEq6+GH/wAWvgnLEmSpKVgDfpSSCl3XRk0KJezdOoEJ50E++2Xjy+/POyyS7ExSpIkqXEzQa/GnDnw+OPw0ku5N/mCSZ3HHJNHz3ffHVr5JyhJkqQ65CTRxcydm2vJBw2CwYPhiy9g5ZXhgw9glVUaNBRJkiQ1ACeJlqF583LHFYC//AX23Rf+/nc48MDclWXSJJNzSZIkNYxmW6BRUQHDhuWWiPfcAxdfnDuvHHpori3fZx9o06boKCVJktTcNLsEvaICfvrTPEL+ySfQtm0eKV+wimfHjtCnT7ExSpIkqflq8gl6SvDiizBqVO7A0rIlvPFGboF41FE5OW9fNhVHkiRJau6a5CTRlGDkyFy+MmgQfPQRrLACTJ6cy1ZSWtiRRZIkSc2bk0TrSUowf35+fdVVsP32ebGg7t3zxM+PPlpYU25yLkmSpHLVqEtcUsqlK4MG5dHyyy+HQw7Jj5VXzs+rrlp0lJIkSVLtNcoR9Nmz88JBm28OW24J//u/sO66sOKK+fj668Opp5qcS5IkqXQRcUtETI6IUUs4vmlEPB8RsyPi3CqOt4yIVyLigdrcr6wT9JkzoWtXGDAAxoyBhx7K+1u3hjvugM6d4frrczeWxx6DPfYoNFxJkiQ1TbcB+1ZzfCpwFnDlEo6fDbxd25uVfYnLuHFw4om5nKVTp5yML+jE0rZt0dFJkiSpqUspPR0RXas5PhmYHBEHLH4sIroABwCXAT+tzf3KegR9gZTySp6vvJKTczA5lyRJUqNwNfBzYH5t39AoEnSAL7+EtdYqOgpJkiQ1Qa0iYsQij751cdGIOBCYnFIauVTB1MXNG8I66xQdgSRJkpqoeSmlHvVw3Z2AgyNif6ANsGJE3JFSOqG6NzWKEfR27eCyy4qOQpIkSaq9lNIvUkpdUkpdgWOAJ2tKzqEOE/SI+FlEpIhYbQnHfxgR71Y+fljb6667LvTvD8cfX1eRSpIkSbUXEQOB54FNImJ8RPwoIvpFRL/K46tHxHjyJND/V3nOist8v5RSXQS9NnATsCmwXUrp88WOrwqMAHoACRhZed4X1V23ffv2acaMGSXHJ0mSJC1JRMxMKbUvOo4F6moE/Sry7NQlZfv7AI+llKZWJuWPUX0vSUmSJKlZKjlBj4g+wISU0mvVnLYW8PEi2+Mr90mSJElaRK26uETE48DqVRy6EPgl0LuuAqpsa9MXoHXr1nV1WUmSJKlRqFWCnlLaq6r9EbEFsB7wWkQAdAFejoieKaVPFzl1ArD7IttdgKeWcK/+QH/INei1iU+SJElqKupkkui/LxYxFuixhEmiI4FtK3e9TJ4kOrW66zlJVJIkSfWtqU4S/Y6I6BERNwFUJuKXAsMrH5fUlJxLkiRJzVGdjqDXNUfQJUmSVN+azQi6JEmSpKX3/9u796ioyv1/4O8tiAReMhUPDCqCXOaOGIpKiJri/XhLIQ01yC5maoH6OydPeU5laol5Y7XKPIkGZ5UpHDFNhThoGIKgpihojDKgCCoq9xn4/P7A2V8mmMFOnGbUz2utWYvZt+dh78/z2c/svecZ7qAzxhhjjDFmRbiDzhhjjDHGmBWx6mfQBUGw3sqxx5ogCLDmtsMeXxybzJpxfDJrRkSCpetg8EDjoFsSN+Tf7+DBg1iyZAkaGhoQGRmJlStXWrpKDz0+yfx+RUVFCA8PR2lpKQRBwMKFC7FkyRJLV+uhx7HZPmpraxEUFIS6ujro9XrMnDkTq1evtnS1Hnocn+2noaEBTz/9NCQSCfbv32/p6jz07v+ej9Ww+ivo1ly/h0FDQwO8vLxw+PBhuLq6wt/fH/Hx8ZDJZJau2kONTzK/37Vr13Dt2jX4+fnh3r17GDRoEPbt28ex+TtxbLYPIkJVVRU6d+4MnU6HwMBAfPLJJwgICLB01R5qHJ/tZ8OGDcjKysLdu3e5g94O7sem1fTS+Rn0R1xmZiYGDBgAd3d32NnZITQ0FImJiZauFmNwdnaGn1/Tb5d16dIFUqkUxcXFFq4VY00EQUDnzp0BADqdDjqdzuqusLHHl1arRXJyMiIjIy1dFfY/wh30R1xxcTH69Okjvnd1deVOELM6Go0GOTk5GDJkiDbKJKkAABzlSURBVKWrwpiooaEBvr6+cHJywpgxYzg+mdVYunQp1q1bhw4duBv3qOIjyxizqMrKSsyYMQMbN25E165dLV0dxkQ2NjbIzc2FVqtFZmYmfv75Z0tXiTHs378fTk5OGDRokKWrwv6HuIP+iJNIJCgqKhLfa7VaSCQSC9aIsf+j0+kwY8YMzJkzB9OnT7d0dRhr1ZNPPomRI0fi4MGDlq4KYzh+/DiSkpLg5uaG0NBQpKSkYO7cuZauFmtnFu+gC4IwThCEi4IgXBIEgYcXaWf+/v4oKChAYWEh6uvrkZCQgClTpli6WoyBiBAREQGpVIo333zT0tVhzEhZWRkqKioAADU1NTh8+DB8fHwsXCvGgDVr1kCr1UKj0SAhIQGjRo3Crl27LF2tR4YgCJ0EQfjX/X7pT4IguFmiHhbtoAuCYANgK4DxAGQAwgRB4CEc2pGtrS22bNmCkJAQSKVSzJo1C3K53NLVYgzHjx9HXFwcUlJS4OvrC19fXxw4cMDS1WIMQNMoQyNHjoRKpYK/vz/GjBmDSZMmWbpajLH/vQgAt4loAIAYAGstUQmLDrMoCMJQAO8SUcj99/8PAIhozf33PMwis0o8VBizVhybzJpxfDJrZRhmURCEQ2jqm2YIgmAL4DqAXn90h9TSj7hIABQ1e6+9P40xxhhjjLE/mtg3JSI9gDsAevzRlbB0B50xxhhjjDHWjK2lCn7iiSeuA+gNAIIgRDSfJwjCIgCwt7fnH4ZgVoljk1krjk1mzTg+mbWyt7dvvP9nMYA+ALT3H3HpBuDmH10fi11Br62t7U1EICLs3bsXAJCXlwfDNCJCbW2t0Xt+8cvwWrBgAXr16gW5XN7q/F27dkGpVEKhUGDo0KHIzc1t1/I5Nvll7mXJ+OTY5Je5F+dOflnzy8K509AnTgIw7/7fMwGkENEf/sUJq3jEJT4+HoGBgYiPj7d0VdhDYv78+WbHJO7fvz/S0tJw9uxZrFq1CgsXLvwDa8cedxyfzFpxbDJrZiXxuR1AD0EQLgF4E4BFhgC32CguhhFaKisr4e3tjdTUVEyePBkXL15svgwsVT9m/TQaDSZNmtTmr/vdvn0bCoUCxcXF7VY2xyZri6Xik2OTtYVzJ7NmFs6dVvP8lcWvoCcmJmLcuHHw8vJCjx49kJ2dbekqsUfM9u3bMX78eEtXg7FWcXwya8WxyazZox6fFvuSqEF8fDyWLFkCAAgNDUV8fDwGDRpk4VqxR0Vqaiq2b9+OY8eOWboqjLXA8cmsFccms2aPQ3xatIN+69YtpKSk4OzZsxAEAQ0NDRAEAevXr+dvebPf7cyZM4iMjMR3332HHj3+8CFMGTOL45NZK45NZs0el/i06CMu33zzDV544QVcuXIFGo0GRUVF6N+/P9LT0y1ZLfYIuHr1KqZPn464uDh4eXlZujqMGeH4ZNaKY5NZs8cpPi36JdHg4GCsWLEC48aNE6dv2rQJeXl5iI2N5S+TMJPCwsLwww8/oLy8HL1798bq1auh0+kAAK+88goiIyOxZ88e9OvXDwBga2uLrKysdiufY5OZY8n45Nhk5nDuZNbMCnKn1Ty+YfFRXNpYhhsys0ocm8xacWwya8bxyayVtXXQLT6KC2OMMcYYY+z/cAedMcYYY4wxK2KxUVzs7e0bBUEw+wHB3t6eR3NhVoljk1krjk1mzTg+mbWyt7dvtHQdmrPYFfTa2toORIQOHTpArVaLr8LCQhARiAi1tbXi3w/Ta9++fVAqlVCr1Rg0aBDS09NbXS4hIQFKpRIymQzLly8Xp6elpWHgwIGwsbHB119/bbROdHQ0ZDIZfHx8sHjxYjQ2NqKqqgoTJkyAt7c3ZDIZVqxYIS5/5coVBAcHw9fXF0qlEsnJySAilJeXIzg4GI6Ojli0aJFRGV999RUUCgWUSiVCQkJQVlYGIkJUVBS8vb2hVCoxdepU3L59G0SE+vp6hIeHQ6FQwMfHBx988IHR9vR6PXx9fTFx4kRx2rx58+Dm5iYe95ycHBARbt26halTp0KpVMLf3x9nz54V1/nuu+/g5eUFDw8PrFmzpsX+XLx4MRwdHcX3O3bsQM+ePcUyPvvss3Y7xg9rbJp67dq1C0qlEgqFAkOHDkVubm6ry5k6bo2NjVi8eDE8PDygVCqRnZ1ttN6dO3cgkUiMYi0rKwsKhQIeHh5iLBvmbdq0SYzn6Ohos3F29epVBAcHQyqVQiaTYePGjUZlt7YtIsLp06cREBAAmUwGhUKBmpoas/XKycnBkCFDxHb9008/gYiQmpqKrl27ivtk9erVYhkbN26EXC6HTCZDTEyMOP2dd96Bi4uLuI6hXT5KsdlWTBCR2dxlKg9qNBoMHDgQarUaMpkMsbGxICLcvXvX6FzSo0cPLFmyRFzvX//6lxgjYWFh4vTWciqR6fy8dOlSsQxPT09069ZNnLd8+XLI5XLI5XIkJCSI0zdv3gwPDw8AEPNpW/vI1LaOHDki/v/Dhw9HQUEBiAixsbFQKBTi9HPnzoGI8P3338PPzw8KhQJ+fn44evTof90GH6X4/K2vvLw8BAQEwM7ODuvXrze53NGjRzFw4EDI5XKEh4dDp9O1uf6GDRsgk8kgl8sRGhoq5qLnn38eXl5ekMvlWLBgAerr60FEqKiowKRJk6BSqSCTyfDFF1+I2woJCUG3bt2Mzrfm4ubjjz+GVCqFUqnEqFGjoNFo2mwbhtfkyZMhl8vF96byWl1dHebPnw+FQgGVSoXU1NQHikEiwkcffWTUbszl23aITet6qsRSwd5UNJGjoyOZYljmYXPv3j1qbGwkIqLTp0+Tt7d3i2XKy8upT58+dOPGDSIiCg8PpyNHjhARUWFhIZ0+fZpeeOEF+vrrr8V1jh8/TsOGDSO9Xk96vZ4CAgIoNTWVqqqqKCUlhYiI6urqKDAwkA4cOEBERC+99BJt27aNiIjOnTtH/fr1IyKiyspKSk9Pp9jYWFq0aJFYhk6no169elFZWRkREUVHR9M777xDRESHDh0inU5HRETLly+n5cuXExHR7t27afbs2UREVFVVRf369aPCwkJxmx9//DGFhYXRxIkTxWnz5s0z+t8MoqKi6N133yUiory8PBo1ahQREen1enJ3d6fLly9TXV0dqVQqOnfunLjeyZMnae7cuUbxtGPHDqP/rT09rLFpyvHjx+nWrVtERHTgwAEaPHhwq8uZOm7Jyck0btw4amxspIyMjBbrv/HGGxQWFmZ0PPz9/SkjI4MaGxtp3LhxYsympKTQ6NGjqba2loiISktLich0nJWUlFB2djYREd29e5c8PT3F2DC1LZ1OR0qlknJzc4moqT3q9Xqz9RozZoz4d3JyMo0YMYKIiFJTU41i2+Ds2bMkl8upqqqKdDodjR49mgoKCoiI6J133qH169e3uo9/L2uJzbZigojM5i5TebCurk48nvfu3aN+/fpRcXFxi237+flRWloaERHl5+eTr6+vGOOGODCVU83l5+Y2bdpECxYsICKi/fv307PPPks6nY4qKyvp6aefpjt37hAR0alTp6iwsJD69esn5lZz+8jctjw9Pen8+fNERLR161aaN28eEZE4n4goMTGRQkJCxLIN++fs2bPk4uIiLvdb22B7sJb4/K1KS0spMzOT/vKXv5hsuw0NDeTq6koXL14kIqJVq1bR559/bnZ9rVZLbm5uVF1dTUREzz33HO3YsYOImuKjsbGRGhsbKTQ0VDyXv//+++L598aNG9S9e3eqq6sjIqIjR45QUlJSi5xkKm5SUlKoqqqKiIi2bdtGs2bNIiLTbcNgz549FBYWRnK5XJxmKq9t2bKF5s+fL+4HPz8/amhoICLTMUhEdPXqVRo7diz17dtXbDem8m17uB+bFv8waHhZ16eFR0Tnzp3FW3hVVVWt3s775Zdf4OnpiV69egEAnn32WezZswcA4ObmBpVKhQ4djA+PIAiora1FfX096urqoNPp0Lt3bzg4OGDkyJEAADs7O/j5+UGr1Yrr3L17FwBw584duLi4AAAcHR0RGBgIe3t7ozIMgVFVVQWipqtShnXGjh0LW9ump6ICAgKMyqiqqoJer0dNTQ3s7OzQtWtXAIBWq0VycjIiIyMfaN+dP38eo0aNAgD4+PhAo9GgtLQUmZmZGDBgANzd3WFnZ4fQ0FAkJiYCABoaGhAdHY1169Y9UBmspWHDhqF79+4AjI/tg0pMTER4eDgEQUBAQAAqKipw7do1AEB2djZKS0sxduxYcflr167h7t27CAgIgCAICA8Px759+wAAsbGxWLlyJTp16gQAcHJyAmA6zpydneHn5wcA6NKlC6RSKYqLi81u6/vvv4dKpYJarQYA9OjRAzY2NmbrZaotmZKXl4chQ4bAwcEBtra2GDFiBL799tvftF8fZuZiwsBc7jKVB+3s7MTjWVdXh8bGlnel8/PzcePGDTzzzDMAgM8++wyLFi0SY7x5TLWWU83l5+bi4+MRFhYGoCl3BQUFwdbWFo6OjlCpVDh48CAAYODAgXBzc3vgfWRuW6bi0JBzAePzzsCBA8Vl5HI5ampqUFdX91+1wceZk5MT/P390bFjR5PL3Lx5E3Z2duL43GPGjBHjxtz6hpym1+tRXV0tHq8JEyZAEAQIgoDBgwcbnXPv3bsHIkJlZSWeeuop8dw8evRodOnSpUUZpuJm5MiRcHBwANDyvN5a2wCAyspKbNiwAW+//fYD7bvm53UnJyc8+eSTyMrKMhuDALBs2TKsW7fusX0kyuId9JqaGvj6+sLX1xfTpk2zdHXazd69e+Hj44OJEyfiiy++aDF/wIABuHjxIjQaDfR6Pfbt24eioiKz2xw6dChGjhwJZ2dnODs7IyQkBFKp1GiZiooK/Pvf/8bo0aMBAO+++y527doFV1dXTJgwAZs3bzZbRseOHREbGwulUgkXFxecP38eERERLZb74osvMH78eADAzJkz4ejoCGdnZ/Tt2xdRUVF46qmnAABLly7FunXrWpxkAeCvf/0rVCoVli1bhrq6OgCAWq0WOzGZmZm4cuUKtFotiouL0adPH3FdV1dXsRO2ZcsWTJkyBc7Ozi3K2LNnD1QqFWbOnNnm/mVNtm/fLh7b1rR23Ewdn8bGRrz11lvibUqD4uJiuLq6tlgeaOpcpaenY8iQIRgxYgROnjwJwHycGWg0GvFRFHPbys/PhyAICAkJgZ+fn/jhzly9Nm7ciOjoaPTp0wdRUVFYs2aNuFxGRgbUajXGjx+Pc+fOAQAUCgXS09Nx8+ZNVFdX48CBA0YxuGXLFqhUKrz44ou4ffu26QPykDLXZlvz69xlTlFREVQqFfr06YMVK1a0+LCUkJCA2bNniyf2/Px85OfnY/jw4QgICBA7u6Zy6oPk5ytXrqCwsFDseKjVahw8eBDV1dUoLy9HampqmznH1D4yt63PP/8cEyZMgKurK+Li4rBy5Upx/a1bt8LDwwPLly/Hpk2bWpS3Z88e+Pn5oVOnTv9VG2Tm9ezZE3q9XhyX+5tvvmkzBiQSCaKiotC3b184OzujW7duRhczAECn0yEuLk78zZjXX38deXl5cHFxgVKpxCeffNLqObY5c3Fj0Dz3m+tvrFq1Cm+99ZbYsW+utbymVquRlJQEvV6PwsJCZGdno6ioyGwMJiYmQiKRiBdRmmst3z6KLN5Bf+KJJ5Cbm4vc3Fzs3bvX0tVpN9OmTcOFCxewb98+rFq1qsX87t27IzY2FrNnz8YzzzwDNzc32NjYmN3mpUuXkJeXJ3ZYU1JSjH51Va/XIywsDG+88Qbc3d0BNF3hmT9/PrRaLQ4cOIAXXnih1StOBjqdDrGxscjJyUFJSQlUKpVRRwQA3n//fdja2mLOnDkAmjrSNjY2KCkpQWFhIT7++GP88ssv2L9/P5ycnDBo0KAW5axZswYXLlzAyZMncevWLaxduxYAsHLlSlRUVMDX1xebN28Wn0E1paSkBF9//TUWL17cYt7kyZOh0Whw5swZjBkzBvPmzTOzdxkApKamYvv27eLx+DVTx82Ubdu2iSeFB6XX63Hr1i2cOHEC69evx6xZs0BEJuPMoLKyEjNmzMDGjRvFq4mmtqXX63Hs2DHs3r0bx44dw969e3H06FGz9YqNjUVMTAyKiooQExMjfnD18/PDlStXcPr0aSxevBhTp04FAEilUqxYsQJjx47FuHHj4OvrK8byq6++isuXLyM3NxfOzs546623Hnj/PIpay13m9OnTB2fOnMGlS5fw5ZdforS01Gh+QkKCeGXbsP2CggL88MMPiI+Px0svvYSKigqTOfVB8nNCQgJmzpwpTh87diwmTJiAYcOGISwsDEOHDm0zp5tiblsxMTE4cOAAtFotFixYgDfffFNcb9GiRbh8+TLWrl2L9957z2ib586dw4oVK/Dpp5+2Wb6pdsPMEwQBCQkJWLZsGQYPHowuXbq0GQO3b99GYmIiCgsLUVJSgqqqKuzatctomddeew1BQUHiHaFDhw7B19cXJSUlyM3Nxeuvvy5eHTfFXNwAwK5du5CVlYXo6GgApvsbubm5uHz5cqsXVE3ltRdffBGurq54+umnsXTpUgwbNszsfqmursYHH3yAv//97y3mmcq3jyKLd9AfFVu3bhXvBJSUlIjTg4KC8Msvv6C8vLzFOpMnT8ZPP/2EjIwMeHt7t/mztXv37kVAQAA6d+6Mzp07Y/z48cjIyBDnL1y4EJ6enli6dKk4bfv27Zg1axaApk/EtbW1rdbFIDc3FwDg4eEBQRAwa9Ys/Pjjj+L8f/7zn9i/fz92794tXp366quvMG7cOHTs2BFOTk4YPnw4srKycPz4cSQlJcHNzQ2hoaFISUnB3LlzAQDOzs4QBAGdOnXCggULkJmZCaDpNu2OHTuQm5uLnTt3oqysDO7u7pBIJEZXIrRaLSQSCXJycnDp0iUMGDAAbm5uqK6uxoABAwA0PbZguEUbGRmJ7Oxss/v3cfPrmD1z5gwiIyORmJiIHj16tLqOqeNm6vhkZGRgy5YtcHNzQ1RUFHbu3ImVK1dCIpEYPUZjWB5ouooyffp08bZuhw4dUF5ebjLOgKYPljNmzMCcOXMwffp0cbumtuXq6oqgoCD07NkTDg4OmDBhAk6dOmW2Xl9++aW47eeee84oZjt37gyg6Za0TqcT21hERASys7Pxn//8B927dxfbeO/evWFjY4MOHTrgpZdeErf1sGseU87Ozq3GRGtay10PwsXFRbxTYXD69Gno9XqjCwOurq6YMmUKOnbsiP79+8PLywsFBQVmc2pb+fnXHwKAprtLubm5OHz4MIiozZxuqt2Y2lZZWRlOnz4t3iGaPXu2UX42CA0NNXpUQKvVYtq0adi5c6f4ZdX/pg0+bkyd180ZOnQo0tPTkZmZiaCgoDZj4MiRI+jfvz969eqFjh07Yvr06UbHdPXq1SgrK8OGDRvEaTt27BCPz4ABA9C/f39cuHDBZBltxc2RI0fw/vvvIykpSTxnmmobGRkZyMrKgpubGwIDA5Gfn4/g4GAApvOara0tYmJikJubi8TERFRUVMDLy8tkDF6+fBmFhYVQq9Vwc3ODVquFn58frl+/bjbfPmq4g95OFi1aJN4JqK6uFq82nDp1CnV1da12eG7cuAGg6RP0tm3b2nxOu2/fvkhLS4Ner4dOp0NaWpp4y+ntt9/GnTt3sHHjxhbrGK4M5uXloba2VnyusjUSiQTnz59HWVkZAODw4cNiGQcPHsS6deuQlJRkdGurb9++SElJAdD07OOJEyfg4+ODNWvWQKvVQqPRICEhAaNGjRKvDBieRSVqGvVGoVAAaLrNXV9fD6DpllxQUBC6du0Kf39/FBQUoLCwEPX19UhISMCUKVMwceJEXL9+HRqNBhqNBg4ODrh06ZJRGQCQlJTU4nGgx13zmNXr9Zg+fTri4uLMnlBMHbcpU6Zg586dICKcOHEC3bp1g7OzM3bv3o2rV69Co9Hgo48+Qnh4OD788EM4Ozuja9euOHHiBIgIO3fuxJ///GcAwNSpU5Gamgqg6VZ7fX09evbsaTLOiAgRERGQSqUtrgqZ2lZISAjOnj2L6upq6PV6pKWlQSaTma2Xi4sL0tLSAAApKSnw9PQEAFy/fl1s75mZmWhsbBTbu6GNX716Fd9++y2ef/55o/0INJ0IDfvxYdc8pqZOndpqTPyaqdxlilarRU1NDYCm3Hns2DF4e3uL85s/F24wdepU/PDDDwCA8vJy5Ofnw93d3WxONZefL1y4gNu3b2Po0KHitIaGBty8eRMAcObMGZw5c6bFowq/ZqrdmNpW9+7dcefOHeTn5wMwzs8FBQXidpOTk8X4rKiowMSJE/Hhhx9i+PDh4jL/TRt83DSP57a+c2JgiJu6ujqsXbsWr7zyitnl+/btixMnToj9hqNHj4rH9PPPP8ehQ4cQHx9v9AhL8/N6aWkpLl68aPbOk7m4ycnJwcsvv4ykpCSj7xqYahuvvvoqSkpKoNFocOzYMXh5eYlty1Req66uRlVVlVi2ra2t2XyrVCpx48YN8bzu6uqKU6dO4U9/+pPZfPvIsdS3U/EIj+Ly4YcfkkwmI7VaTQEBAZSeni7OU6vV4t+hoaEklUpJKpVSfHy8OD0zM5MkEgk5ODjQU089RTKZjIiaRjJZuHAh+fj4kFQqpWXLlhERUVFREQEgHx8fUqvVpFar6bPPPiOippFbhg0bRiqVitRqNR06dEgsp1+/ftS9e3dydHQkiUQijnwRGxtLPj4+pFQqadKkSVReXk5ERB4eHuTq6iqW8fLLLxNR00gKM2fOJJlMRlKplNatW9din/z6m9cjR44khUJBcrmc5syZQ/fu3SMioh9//JE8PT3Jy8uLpk2bJo66QNT0jXZPT09yd3en9957r9V93zyeVq5cSTKZjFQqFQUHB1NeXp7pg/YbPayxaUpERAQ9+eST4rEdNGiQOG/8+PHiKBCmjltjYyO99tpr5O7uTgqFgk6ePNmijF+PqnPy5EmSy+Xk7u5OixYtEkc+qqurozlz5pBcLqeBAwfS0aNHich0nKWnpxMAUiqVYv2Tk5PNbouIKC4ujmQyGcnlcoqOjm6zXunp6eTn50cqlYoGDx5MWVlZRES0efNmMc6GDBlCx48fF7cVGBhIUqmUVCqV0Sggc+fOJYVCQUqlkiZPnkwlJSW/+ZiZYi2xaS4mDHnQXO4ylQe///57UiqVpFKpSKlU0qeffmpUbv/+/Vu09cbGRlq2bBlJpVJSKBRivjWVU4lM52eiptEqVqxYYTStpqZGXH7IkCGUk5Mjzvvkk09IIpGQjY0NOTs7U0REhNl9ZG5b3377LSkUClKpVDRixAi6fPkyETWNlGQ47wQHB9PPP/9MRET/+Mc/yMHBQdy/arVaHJXlt7bB9mAt8flbXbt2jSQSCXXp0oW6detGEolEHDmneY6MiooiHx8f8vLyopiYmAda/29/+xt5e3uTXC6nuXPniqPn2NjYkLu7u3jcVq9eTURExcXFNGbMGDEXx8XFieUEBgZSz549yd7eniQSCR08eJCITMfN6NGjycnJSSxj8uTJRGS+bRgUFhYajeJiKq8VFhaSl5cX+fj40OjRo0mj0YjrmIrB5pqPfmQu3/5esLJRXASy0HNlgiBQW2ULgsDPvTGrxLHJrBXHJrNmHJ/MWt2PTasZMoYfcWGMMcYYY8yKcAedMcYYY4wxK2JrqYLt7e1LBUHo3cYyjYIg8IcIZnU4Npm14thk1ozjk1kre3v70raX+uNY7Bl0xhhjjDHGWEv8KZYxxhhjjDErwh10xhhjjDHGrAh30BljjDHGGLMi3EFnjDHGGGPMinAHnTHGGGOMMSvy/wF8KXzILNgUzAAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x432 with 2 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[df_demo[\"F\"] < 0][[\"A\", \"F\"]]\\\n", " .plot(\n", " style=[\"-*r\", \"--ob\"], \n", " secondary_y=\"A\", \n", " figsize=(12, 6),\n", " table=True\n", " );"]}, {"cell_type": "code", "execution_count": 78, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAF1CAYAAAAjssYlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8VNXBxvHfSUhI2HfZCTuiVgREZV9EEHFDKYgoigrY2lp99RVarbS11da21lfbijsiIoooKrgAArK4Ae7KvssOsoSQ/bx/nIEEJOtM5sxMnu/nk08yd2bufTIJ4cnJuecaay0iIiIiIhK8ON8BRERERERihcq1iIiIiEiIqFyLiIiIiISIyrWIiIiISIioXIuIiIiIhIjKtYiIiIhIiKhci4gAxpjexphtpXzuE8aY+0rxvFRjTIvSHDOcjDETjTEvBrmPa40x7xdyf6lffxGRSFLBdwARiX7GmE3AaUAOkAUsA8ZZa7d6zJQCbAQSrLXZZXksa+24Uj6vSqizRCpr7VRg6rHbxhgLtLbWrvOXSkQk9DRyLSKhcmmgLDYAdgGPec4jp2CM0aBKPqd6PfQaiUgwVK5FJKSstenADKD9sW3GmIXGmJvz3b7BGLMk3+2LjDGrjTEHjTH/McYsyv/4whhjuhhjlhtjDhljdhlj/hm468PA+wOB6Re9jDH7jTFn5XtuPWNMmjGm7in229AY85oxZo8xZqMx5teFZHjeGPNA4OM6xpi3jTEHAsdbbIw55c9aY4w1xrQKfFzbGPNW4PP4zBjzwEmvkTXGjDPGrA3s+9/GGBO4L84Yc68xZrMxZrcx5gVjTPXAfSmB595kjNkCfBDYfr4xZllgX18aY3rnO1bzwNfgsDFmLlCnkM99kTHmqsDH3QLHuiRwu58x5ovAx8e/5saYY1+bLwNfm2H59vc/gc9hhzHmxgKOOdQYs+KkbXcaY2YFPq5ojPm7MWZL4HviCWNMcuC+3saYbcaYe4wxO4HnTrWtoM9XRKQoKtciElLGmErAMODjYj6+Dq6MTwBqA6uBrvnubxoogE0L2MWjwKPW2mpAS+CVwPaegfc1rLVVrLWLgJeBkfmeew0w31q756RMccBbwJdAI6Af8BtjzIBifEr/A2wD6uKmyvwWsMV43r+BI0B9YFTg7WSDgXOBnwE/B47luSHw1gdoAVQBHj/pub2A04EBxphGwGzgAaAWcBfwWr5fMl4CVuBK9Z8KyHLMIqB3vmNsIO+17xW4/wTW2mP3nx342kwP3K4PVMe95jcB/zbG1DzFMd8EmhtjTs+37TrghcDHDwFtgA5Aq8D+fp/vsfUDn3czYEwh20RESkzlWkRC5Q1jzAHgINAfeLiYzxsEfGutnRmYG/1/wM5jd1prt1hra1hrtxTw/CyglTGmjrU21VpbWKmfDFxzbMQXV8imnOJx5wJ1rbV/tNZmWms3AE8Bw4vx+WThpsY0s9ZmWWsXW2sLLdfGmHjgKuB+a22atfa7QNaTPWStPRB4LRbgyiPAtcA/rbUbrLWpuF9Uhp80vWGitfaItfYo7heMOdbaOdbaXGvtXGA5MCjwS8y5wH3W2gxr7Ye4XzQKsghXosGV6gfz3T5luS5EFvDHwOs2B0gF2p78IGttBjA98HlgjDkDSAHeDnxtxwB3WGv3W2sPA3/hxK9dLu61zgi8HgVtExEpMZVrEQmVK6y1NYAk4DZgkTGmfjGe1xA4fuJjoIiWZNWIm3CjlKsC0ykGF/RAa+0nQBrQ2xjTDjeq+eYpHtoMaBgYMT8Q+KXht7iR6KI8DKwD3jfGbDDGjC/Gc+riTjDPfwLoqU4G3Znv4zTcCDW413Bzvvs2B/aXP2/+/TUDhp70+XXH/VLQEPjRWnvkpP0V5COgjTHmNFzZfwFoEviLRBfypucUx76TTj7N/zmebDIwIlCmrwNeCZTuukAlYEW+z+3dwPZj9gSmL1HENhGREtNJGyISUtbaHGCmMWYSrrDNwE13qJTvYflL9w6g8bEbgbLUmGKy1q7FjUbHAUOAGcaY2hQ8FWMybsRzJzCjgEK1FdhorW1d3Bz58hzGTQ35H2PMmcAHxpjPrLXzC3naHiAb93mvCWxrUoLDbscV5mOaBva3i7zXMv/rsRWYYq295eQdGWOaATWNMZXzFeymFPB6WmvTAvOfbwe+sdZmGmOWAXcC6621e0vweRSbtfZjY0wm0AMYEXgD2AscBc6w1v5Q0NOLuU1EpMQ0ci0iIWWcy4GawPeBzV8AQ4wxlYw7ge+mfE+ZDZxljLkiMI3hl5xYvos63khjTF1rbS5wILA5F1dYc3FzkPN7EbgSV7Bf4NQ+BQ4HTnBLNsbEG2PONMacW4w8g40xrQK/JBzELU+YW9hzjv1CAkwMvEbtgOuLOlY+04A7AiciVsFNg5heyBKELwKXGmMGBD63pMBJfY2ttZtxU0T+YIxJNMZ0By4t4viLCPy1InB74Um3T2UXP/3alNQLuLnlWdbaJQCB74OngEeMMfUAjDGNijlfXkQkaCrXIhIqbxljUoFDwJ+BUdbabwP3PQJk4grVZPKtdxwY2RwK/A3Yh1tlZDmQAcdPaEwt5ITGgcC3gWM/Cgy31h611qYFciwNTA84P3C8rcBK3Ejl4lPtMFB2B+OmOWzEjYY+jTvZriitgXm4+cIfAf+x1i4oxvNuC+x/J24e+DQCr0ExPBt4zoeBvOnArwp6cOA1uBw31WUPbiT7bvL+TxgBnAfsB+6n4F9CjlkEVCVvCsjJt09lIjA58LX5eRH7L8gU4EzcLwv53YObmvOxMeYQ7uvxk7nbIiJlwRRxno2ISFgFpndsA64tZiktzTGeBbZba+8ti/2HgjHmr0B9a21hK3WUa4Hl9XYDHQPTg0REvNOcaxHxLvAn+09wc2XvBgzFXMqvFMdKwc3NPqcs9l9agakgicDXuNU6bgKKtdZ3OXYr8JmKtYhEEpVrEYkEF+DWVk4EvsOtPBLy5dCMMX8C7gAetNZuDPX+g1QVNxWkIW76zD+AWV4TRTBjzCbcL2FXeI4iInICTQsREREREQkRndAoIiIiIhIiKtciIiIiIiHiZc51XFycTU5O9nFoERERESlH0tLSrLU2bAPKXsp1cnIyR44cKfqBIiIiIiJBMMaE/AT5wmhaiIiIiIhIiKhci4iIiIiEiMq1iIiIiEiI6CIyIiIiIhEmKyuLbdu2kZ6e7jtK1EhKSqJx48YkJCR4zaFyLSIiIhJhtm3bRtWqVUlJScEY4ztOxLPWsm/fPrZt20bz5s29ZtG0EBEREZEIk56eTu3atVWsi8kYQ+3atUs90m+MiTfGfG6MeTvYLCrXIiIiIhFIxbpkgny9bge+D0UOlWsREREROaU33ngDYwyrVq0q8DFHjx6lV69e5OTknPL+rl27FnmclJQU9u7d+5PtCxcuZNmyZcdvP/744zz77LPFSF58xpjGwCXA06HYX0jKtTFmoDFmtTFmnTFmfCj2KSIiIiLF1/mBuaSMn03nB+aGbJ/Tpk2je/fuTJs2rcDHPPvsswwZMoT4+PgTtmdnZwOcUI5L6uRyPXr0aB577LGS7qaCMWZ5vrcxJ93/L+B/gdxSB80n6HJtjIkH/g1cDLQHrjHGtA92vyIiIiJSfHtTM094H6zU1FSWLFnCM888w8svv1zg46ZOncrll18OuDLco0cPLrvsMtq3d3WwSpUqAOTm5vKLX/yCdu3a0b9/fwYNGsSMGTOO7+exxx6jY8eOnHXWWaxatYpNmzbxxBNP8Mgjj9ChQwcWL15MpUqVSElJ4dNPPy3Jp5Jtre2c7+3JY3cYYwYDu621K0qyw8KEYrWQLsA6a+0GAGPMy8DlwHch2LeIiIhIufaHt77lu+2HCrx/5eYfycq1GMACBkgZP5uEOEPHZjVP+Zz2Datx/6VnFHrcWbNmMXDgQNq0aUPt2rVZsWIFnTp1OuExmZmZbNiwgZSUlLw8K1fyzTff/GTVjpkzZ7Jp0ya+++47du/ezemnn87o0aOP31+nTh1WrlzJf/7zH/7+97/z9NNPM27cOKpUqcJdd911/HGdO3dm8eLFdOnSpdD8xdQNuMwYMwhIAqoZY1601o4s7Q5DMS2kEbA13+1tgW0nMMaMOTYcf+zPBCIiIiISnKxcC7hinf/9se2lNW3aNIYPHw7A8OHDTzk1ZO/evdSoUeOEbV26dDnlcnhLlixh6NChxMXFUb9+ffr06XPC/UOGDAGgU6dObNq0qcBc9erVY/v27SX9dE7JWjvBWtvYWpsCDAc+CKZYQxjXuQ4MwT8JULFBa5syfvbx+27v15o7+rcJVxQREREJxoIHYdFDBd/fazz0mRC+PDGuqBHmzg/MZW9qJokV4sjMzj3+vk6VRKaPvaBUx9y/fz8ffPABX3/9NcYYcnJyMMbw8MMPn7AqR3Jy8k+Wv6tcuXKpjlmxYkUA4uPjKWwgNj09neTk5FIdIxxCUa5/AJrku904sK1AJjuDTQ9dEoJDi4iISNj1mZBXnp8L/H9+4+yCHy9lavm9/QE3FQQgMzs36J41Y8YMrrvuOiZNmnR8W69evVi8eDE9e/Y8vq1mzZrk5OSQnp5OUlJSofvs1q0bkydPZtSoUezZs4eFCxcyYsSIQp9TtWpVDh06cUrMmjVr6NatWyk+q8JZaxcCC4PdTyimhXwGtDbGNDfGJOKG1N8MwX5FREREpJjqVEk84X0wpk2bxpVXXnnCtquuuuqUU0MuuugilixZUuQ+r7rqKho3bkz79u0ZOXIkHTt2pHr16oU+59JLL+X1118/fkIjwNKlS+nfv38JPpvwMtYGNx8HIDAJ/F9APPCstfbPhT0+qW5Tm75nS9DHFREREc80cl0mvv/+e04//XTfMYpl5cqVPPLII0yZMqXIx6amplKlShX27dtHly5dWLp0KfXr1y/2sT7//HP++c9/FnisU71uxpg0a23p5qqUQkjmXFtr5wBzQrEvEREREYkeHTt2pE+fPuTk5PxkreuTDR48mAMHDpCZmcl9991XomIN7gTKP/3pT8HELXNhO6FRRERERGJT/iX1CrNw4cKgjhPJ00GO0eXPRURERERCROVaRERERCREVK5FREREREJE5VpEREREJER0QqOIiIiI/ER8fDxnnXXW8dtvvPEGKSkp/gJFCZVrERERkVjwcGs4shsq14O71wa9u+TkZL744osQBCtfNC1ERERESm/rJ7B5iSt24teR3Se+Fy80ci0iIiKll5vl3qvQlZ13xsPOrwu+f+snga+DAax7P7E6xCVAk/NO/Zz6Z8HFDxV62KNHj9KhQwcAmjdvzuuvv16q+OWNyrWIiIiU3LEpCMfEJ7pCF6IpCVICx37BwZ74/vj20tG0kNJRuRYREZGSO3mkOifz1NsleEWMMB//RSe+IuRk5L2vXA9unB2ejHKcyrWIiIiUjLWQUAmy0vJtDExJSEiG7EyokOgrXflz7C8FE6u79zkZMPGgvzzlnE5oFBERkeKzFub+3hXrTjfmvwO6jIGso/BMf9i33lvEcqtyvRPfixcq1yIiIlI81sL798Ky/4PON8El/3QnzYErdIMehmFT4cdNMKkXfD3Da9xy5+61bsQ6RHPeU1NTQ7Kf8kblWkRERIpmLbw7AT563I1QX/IPiItzq1E0655X6E4fDOOWwGlnwGs3waxfQuYRv9lFwkjlWkRERApnLbxzD3zyXzjvVrj4b2BMwY+v0QRumA097oLPp8KTfWDXt+HLK+KRyrWIiIgULDcX5twFn06CC26DgQ8WXqyPia8A/e6D69+A9APwVF/47BlX1EVimMq1iIiInFpuLsy+Ez57Grr+Gi56oHjFOr8Wvd00kWbd3L5eHQVHD5RF2phj9YtIiUTK66VyLSIiIj+Vmwtv3w4rnoPud0D/P5a8WB9TpR5cO8PtY9VseKIHbP0stHljTFJSEvv27YuYwhjprLXs27ePpKQk31G0zrWIiIicJDcX3voVfP6imzfd997SF+tj4uKg2+3QtCu8NhqeGwh973Mj4nEa6ztZ48aN2bZtG3v27PEdJWokJSXRuHFj3zFUrkVERCSf3ByYdRt8+RL0ugd6Twi+WOfX5FwYuxje+jXMux82LoIrJ7nRbTkuISGB5s2b+44hpaBfFUVERMTJzYE3bnXFuvcE6PPb0BbrY5JrwNDJMPgR2LwM/tsN1i8I/XFEPFC5FhEREcjJhplj4Kvp0Ode6D2+bI9nDHQeDbd8AMk1YcqVMO8PkJNVtscVKWMq1yIiIuVdTjbMvAW+mQH9fg+97g7fsU87A8YsgHNGwpJ/wvOXwIEt4Tu+SIgZH2ehJtVtatP36B+OiIiIdzlZ7kqK382CC/8A3X9T9HMWPAiLHir4/l7joc+Ekmf5ega89Rt3guNlj0P7y0q+D5GTGGPSrLWVw3Y8lWsREZFyKjvTrdzx/VtuDeuuv/KdCPZvgBmjYfvncO7NcNGfIcH/8moSvcJdrjUtREREpDzKzoRXb3DFesBfIqNYA9RqAaPfd1eD/OxpeLof7FnjO5VIsalci4iIlDfZGfDK9bB6Ngz8K1zwS9+JTlQhEQb8GUa8Cod3wJO94POpunS6RAWVaxERkfIkKx2mXwdr3oFBf4fzx/lOVLA2F7lLpzfqBLN+Aa+PhYzDvlOJFErlWkREpLzISofp18La9+CSf0KXW3wnKlq1hnD9LOjzO/j6VZjUE7Z/4TuVSIFUrkVERMqDrKPw8jWwbh4M/hece5PvRMUXFw+9/hdGve1+QXimP3z8hKaJSERSuRYREYl1mWkwbbi7CuJlj0HnG30nKp2UbnDrUmjZD969B6ZdA2n7facSOYHKtYiISCzLPALThsGGRXD5v6Hj9b4TBadSLbhmGgx8yI3CP9HdXUJdJEKoXIuIiMSqzCPw0jDYuBiu+C+cc63vRKFhDJx/K9w8FypUdFd1XPQ3yM3xnUxE5VpERCQmZaTCi1fD5qUw5EnocI3vRKHX8BwY+yGceTUs+DO8cDkc2uE7lZRzKtciIiKxJuMwvHgVbP0YhjwFP/u570Rlp2JV98vD5f+BH1bAE91g7VzfqaQcU7kWERGJJemHYMoQ2PYZXPUMnHW170Rlzxg35WXMIqjaAKZeDe/9zl2FUiTMVK5FRERiRfpBeHEIbF8JVz8LZw7xnSi86raBm+fBuTfDR4/DswNg/0bfqaScUbkWERGJBUcPwJQrYfvnMPR5OOMK34n8SEiGS/4BP58C+9e7i85885rvVFKOqFyLiIhEu6M/wpQrYMdX8PMX4PRLfSfyr/1lMHYx1G0HM0bDm792632LlDGVaxERkWiWtt+tkrHrWxg2Bdpd4jtR5KjZDG6cA93vhJUvwFN9YNd3vlNJjFO5FhERiVZp++GFy2D39zBsKrS92HeiyBOfABfeD9fNhLR9rmCveF6XTpcyo3ItIiISjY7shcmXwp41MHwatLnId6LI1rIvjFsKTS+At26HGTe6E0ClXDPGJBljPjXGfGmM+dYY84dg96lyLSIiEm1S97hivW+duxR46wt9J4oOVU+DkTOh3/3w3ZvwRA/YtsJ3KvErA+hrrT0b6AAMNMacH8wOVa5FRESiSepumDzYLTF3zcvQqp/vRNElLg563Amj33VTQ569CJb+H+Tm+k4mHlgnNXAzIfAW1JwhlWsREZFocXgXPD8YftwMI6ZDyz6+E0WvJl1g3Idunvrc++Cloe4vAlLuGGPijTFfALuBudbaT4LZn8q1iIhINDi0A56/BA5uhZEzoEUv34miX3JNtx72Jf+AjYvhie6wYZHvVBJ6FYwxy/O9jcl/p7U2x1rbAWgMdDHGnBnMwYz1cLZsUt2mNn3PlrAfV0REJCod2u5GrA/vdMW6WVffiWLPzm/cSY5710LPu6DXeIiv4DuVhIAxJs1aW7mYj/09kGat/Xtpj6eRaxERkUh28Ac3Yp26yy0np2JdNuqfCWMWQodr4cOH3bz2A1t9p5IyZoypa4ypEfg4GegPrApmnyrXIiIikerAVnh+kJsLfN3r0DSoRQykKImV4Yp/w5CnYOfXbprI92/7TiVlqwGwwBjzFfAZbs51UF90TQsRERGJRAe2uKkgR390xbpxZ9+Jypd96900kR1fQpex0P+PkJDkO5WUQkmmhYSCRq5FREQizY+b4LlLIP0AXP+GirUPtVvCTXPh/F/Ap5PgmQth7zrfqSQKqFyLiIhEkv0b3Yh1xiG4fhY06uQ7UflVoSIMfBCume7mvk/qCV++7DuVRDiVaxERkUixb707eTEzFUa9CQ3P8Z1IANoOhHFLoGEHeH0svD4OMlKLfp6USyrXIiIikWDfejdinXUURr0FDc72nUjyq97IfV16jYevpsOTvWDHV75TSQRSuRYREfFt71p4bhDkZLgCV/8s34nkVOLioc8EuP5NyDwCT/eDT550l1EXCVC5FhER8WnPajcVJDcbRr3t1luWyNa8B4xbCi36wDt3w/SRkLbfdyqJECrXIiIivuxe5aaCWAs3zIbT2vtOJMVVuTaMmA4D/gJr3oMnesCWj32nkgigci0iIuLDru/ciLUxrljXa+c7kZSUMXDBL+Gm9yE+wU3t+fBhyM3xnUw8UrkWEREJt53fuMtrx1VwxbpuG9+JJBiNOsLYD+GMK+CDB2DKlXB4p+9U4onKtYiISDjt+AomXwrxFeHGOVCnte9EEgpJ1eCqZ+Cyx2Hrp/DfbrB2nu9U4oHKtYiISLhs/wJeuAwSkuGGt91VACV2GAMdr4MxC6FKPZh6Fcz9PeRk+U4mYaRyLSIiEg7bP3fFOrGKmwqiYh276rWDWz6AzqNh6aPw7EB3SXspF4Iq18aYocaYb40xucaYzqEKJSIiElN+WAGTL4eK1V2xrtXcdyIpawnJMPgRGPq8W8f8iR7w7eu+U0kYBDty/Q0wBPgwBFlERERiz7bl8MIVkFwDbpwNNZv5TiThdMaVMO5DqNMGXr0B3vqNuwqnxKygyrW19ntr7epQhREREYkpWz91xbpSLTdiXaOp70TiQ80UGP0udPsNrHgOnurr1jiXmKQ51yIiImVhy8duSbYqdeGGOVCjie9E4lN8AvT/A4x8DVJ3w5O9YeULunR6DCqyXBtj5hljvjnF2+UlOZAxZowxZrkxZrnVN5KIiMSyzctgyhCoWt+NWFdv5DuRRIpWF8KtS6FJF3jzV/DaTZB+yHcqCSETiqJrjFkI3GWtXV6cxyfVbWrT92wJ+rgiIiIRZ9MSmPpzqNbQLbdXtb7vRBKJcnNgySOw4C/urxpXP+cuRiMhZ4xJs9ZWDtfxNC1EREQkVDZ+CFOHQvXGbsRaxVoKEhcPPe9yFxLKyYZnLoJlj0Nuru9kEqRgl+K70hizDbgAmG2MeS80sURERKLMhoVuxLpGs8CI9Wm+E0k0aHo+jFsMbQbA+7+DacPgyF7fqSQIIZkWUlKaFiIiIjFl3Xx4eQTUagnXz3InMYqUhLXw2dPw3m+hUm0Y8hQ07+E7VUzQtBAREZFosnYeTLsGareCUW+pWEvpGANdboGb50NiZZh8qZuPnZPtO5mUkEauRUQi1CNz1/Do/LUF3n97v9bc0b9NGBPJT6x5H6ZfC3XbwvVvuvWsRYKVkQpz7oYvX4Jm3dwotlacKbVwj1yrXIuIRIFhkz4CYPrYCzwnkeNWvwuvXAf1Tofr3lCxltD78mV4+06okAhX/BfaXuw7UVTStBAREZFIt2o2TB8Jp53h5lirWEtZOHs4jP0QqjeBacPhnfGQneE7lRRB5VpERKQkvn8LXrkeGvzMjVgn1/SdSGJZnVZw8zw4bxx88l94pj/sW+87lRRC5VpERKS4vpsFr94ADc+B616H5Bq+E0l5UKEiXPxXGD4NDmyBST3hq1d8p5ICqFyLiIgUxzcz4dUboVEnGDkTkqr7TiTlTbtBMG4J1D8LZt4Cb/wCMo/4TiUnUbkWEREpytcz4LWboUkXGPkaJFXznUjKq+qNYdTb0PN/4YuXYFIv2Pm171SSj8q1iIhIYb56xY0SNj0frp0BFav6TiTlXXwF6Ps7GPUmZByGp/rBp0+5C9GIdyrXIiIiBfnyZXh9rFtr+NpXoWIV34lE8jTv6aaJNO8Jc+5yS0Me/dF3qnJP5VpERORUPp8Kr4+DlO4w4hV31TyRSFOlrvv+vOgBWP0OPNEDtnziO1W5pnItIiJyspVTYNYvoUUvuGY6JFbynUikYHFx0PVXMPp9MHHw3MWw+B+Qm+s7Wbmkci0iIpLfiufhzdugZR+45mUVa4kejTvBuMXQ/jKY/0d48Uo4vMt3qnJH5VpEROSYz56Bt26HVv3dmsIJyb4TiZRMUnW4+jm49P/c9JAnusG6+b5TlSsq1yIiIuBWW5h9J7QeAMOnQkKS70QipWMMdBoFYxZApTrw4hCYNxFysnwnKxdUrkVERD6Z5FZbaHMxDJvirognEu3qnQ63fACdboAlj7i52D9u9p0q5qlci4hI+fbRf+Cd/4V2g+HnL6hYS2xJrASXPgpXPwt7VsOkHvDdLN+pYprKtYiIlF/LHoP3JsDpl8LQ56FCou9EImXjzKtg7IdQqyW8cj28fSdkHfWdKiZV8B1ARETEiyX/gnn3Q/sr4KqnIT7Bd6Ko8cjcNTw6f22B99/erzV39G8TxkRSLLWaw+j34IM/ul8st37iRrTrtvWdLKYY6+FSmUl1m9r0PVvCflwRkWg1bNJHAEwfe4HnJDFi8T/cUmVnDIEhT7nLSUup6HszSq2d664+mnUUBj0MHa51J0LGIGNMmrU2bFeB0rQQEREpXxY97Ir1WUNVrKX8at0fxi2FRp3cBZNm3gIZh32nigkq1yIiUn4sfAgWPAA/GwZXTlKxlvKtWgO4fhb0uRe+eQ0m9YTtn/tOFfVUrkVEJPZZCwv+AgsfhLNHwBX/hbh436lE/IuLh153ww2zITsDnu7vVtDxMG04Vqhci4hIbLMWPngAFv0VOoyEyx9XsRY5WbOuMG6Jmy7y3gSYNhyO7POdKiqpXIuISOyyFub/ARb/HTpeD5c9pmItUpBKtWD4S3Dx32D9B/BEd9i01HeqqKPutKpJAAAgAElEQVRyLSIisclamPt7d2W6TjfC4EchTv/tiRTKGDhvLNw0FxKSYfJgWPhXyM3xnaxMGGOaGGMWGGO+M8Z8a4y5Pdh96qeMiIjEHmvh/Xth2f9B55vgkn+qWIuURMMOMHaRW1Vn4V9g8mVwaLvvVGUhG/gfa2174Hzgl8aY9sHsUD9pREQktlgL706Ajx6HLmPgkn+oWIuURsWqMORJdwLw9pVumsia93ynCilr7Q5r7crAx4eB74FGwexTP21ERCR2WAvv3AOf/BfOu9XNHY3RC2OIhE2HEe7S6VUbwks/h/d+B9mZvlOVRAVjzPJ8b2NO9SBjTApwDvBJUAcL5skiIiIRIzcX5twFy5+BC26Dix5QsRYJlTqt4eZ5MPc+91ehzUvdpdNrtfCdrDiyrbWdC3uAMaYK8BrwG2vtoWAOppFrERGJfrm5MPsOV6y7/lrFWqQsJCS5S6UPmwr7N8ITPeHrGb5TBc0Yk4Ar1lOttTOD3Z/KtYiIRLfcXHj7dljxPHS/A/r/UcVapCydPtitiX3aGfDaTTDrNsg84jtVqRhjDPAM8L219p+h2KfKtYiIRK/cHHjzV7DyBehxF/S7X8VaJBxqNHFXdexxF3z+IjzZB3Z96ztVaXQDrgP6GmO+CLwNCmaHmnMtIiLRKTcHZv0SvpwGvcZD7/Eq1iLhFF8B+t0HzXvAzDHwVF8Y8BfoPNrrv8VH5q7h0flrj99OrN+qUkGPtdYuAUIaViPXIiISfXJz4I1bXbHu/VvoM0HFWsSXFr3dNJFm3WD2nfDqKDh6wFucO/q3YdNDl7DpoUs4r3ktMneuSwvn8VWuRUQkuuRku1Gyr6ZD33uh9z2+E4lIlXpw7Qx3zsOq2fBED9j6me9UXqhci4hI9MjJhpm3wDcz3Pzqnnf7TiQix8TFQbfb4cZ33USL5wbCkn+5k47LEZVrERGJDjlZ8Npo+HamGx3rcafvRCJyKk3OhbGLod0lMO9+mHoVpO72nSpsVK5FRCTyZWfCjBvhu1lw0Z/d6JiIRK7kGjB0Mgx+BDYvc5dOX7/Ad6qwULkWEZHIlp0Jr94A378FAx6Errf5TiQixWGMWznklg8gqQZMuRLm/9FN74phKtciIhK5sjPgleth9Wy4+G9wwS98JxKRkjrtDBizAM4ZCYv/Ac8PggNbfacqMyrXIiISmbLSYfp1sOYdGPR3OG+s70QiUlqJleHyx+GqZ2DXd/BEN/fXqBikci0iIpEnKx2mXwtr33NzNrvc4juRiITCWVfDuA+hVguYPhJm3+X+vccQlWsREYksWUfh5Wtg3Ty49FE3Z1NEYketFjD6fbjgNvjsKXj6Qti7tujnRQmVaxERiRyZaTBtuFtV4LLHodMNvhOJSFmokAgD/gwjXoFDP8CkXvDFS75ThYTKtYiIRIbMIzBtGGxYBFf8Bzpe5zuRiJS1NgPg1qXQ8Bx441aYORYyDvtOFRSVaxER8S/zCLw0DDYtgSufgA4jfCcSkXCp1hBGvQm9fwtfv+JGsXd86TtVqalci4iIXxmp8OLVsHkpXPkknD3cdyIRCbe4eOh9D4x6y5138fSF8PETYG3J97XgQZhY3b1tWkKlBCqFPnDBVK5FRMSfjMPw4lWw9RMY8hT8bKjvRCLiU0p3GLcEWvaFd++Bl0dA2v6S7aPPBJh40L0lVScti7SyCXtqKtciIuJH+iGYMgS2fQZXP+OW6BIRqVwbrnkZBj4Ea+e6S6dvXuY7VbGpXIuISPilH4QXh8D2lTD0OTjjSt+JRCSSGAPn3wo3z4X4RHj+Elj0MOTm+E5WJJVrEREJr6MHYMqVsP1zGPo8tL/cdyIRiVQNz4GxH8KZV8GCB+CFy+HQDt+pCqVyLSIi4XP0R5hyBez4Cn4+BU6/1HciEYl0SdXcORmX/wd+WOGmiayd6ztVgVSuRUQkPNL2u1GnXd/CsBeh3SDfiUQkWhgD51wLYxZB1fow9Wp4/17IzvSd7CdUrkVEpOyl7YcXLoPdq2DYVGg70HciEYlGddvAzfPg3Jth2WPw3EDYv9F3qhOoXIuISNk6shcmXwp71sA1L0Gbi3wnEpFolpAMl/zDTS3btw4m9YRvZvpOdZzKtYiIlJ3UPa5Y71sHI16GVhf6TiQisaL9ZTB2MdRtBzNuhDd/DZlhXdL6lFSuRUSkbKTuhsmD3Z9sR0x3F4UQEQmlms3gxjnQ/U5Y+QI81Rd2f+81ksq1iIiE3uFd8PxgOLAFrn0FWvT2nUhEYlV8Alx4P1w3E9L2wpN9YMXz7tLpGYd0+XMREYlyh3a4Cz4c3AbXvgrNe/pOJCLlQcu+MG4pND0f3rrdTRWxNuwxVK5FRCR0Dm13xfrwDhg5A1K6+04kIuVJ1dNg5ExIrAzfvu4lQgUvRxURkdhz8Ac3xzp1D4x8zY0eiYiEW1wcZB7xd3hvRxYRkdhxYCs8P8gV6+tmqliLiF+V63k7tMq1iIgE58AWNxUkbT9c/wY06eI7kYiUd3evhYkHvRw6qHJtjHnYGLPKGPOVMeZ1Y0yNUAUTEZEo8OMmeO4SSD/ginXjzr4TiYjkMSbshwx25HoucKa19mfAGmBC8JFERCQq7N/oltvLOATXz4JGnXwnEhE5UcVqpGUR1ivLBFWurbXvW2uzAzc/BhoHH0lERCLevvVuKkhmKox6Exqe4zuRiEhECOWc69HAOwXdaYwZY4xZboxZbj2sOSgiIiGyb70bsc46CqPeggZn+04kIhIxilyKzxgzD6h/irt+Z62dFXjM74BsYGpB+7HWPgk8CZBUt6natYhINNq71hXr3CxXrOuf6TuRiEhEKXLk2lp7obX2zFO8HSvWNwCDgWttMYekbYWKdH5gblDBRUTKk5Wbf+STjfv9/uzcs9pNBcnNhlFvq1gLECHfmyIFWHm0Pon1W4X18udBXUTGGDMQ+F+gl7W2RJPF96ZmBnNoEZFyJSvXjV14+9m5exVMvtR9fMNsqNfOTw6JON6/N0UKkUV82I9pgpn/bIxZB1QE9gU2fWytHVfU8yo2aG0bjvoXFkiIM3RsVrPUGUREYtnKzT8eLy8ABsL/szMrDXZ+7Y5e/yxISA7PcSWiRcT3pkgB8r4/LTsm30HGjrVhW5MvqJFra22rUj838D7/P0wRETnRyT8jw/6zM/MI7PoGFWs5mffvTZFC5H0fhn+d66DKdTASK8SRmZ1LnSqJTB97ga8YIiIRrfMDc9mbmnl8VDCsPzt3fAUvjICaSXDD21C7ZdkeT6KK1+9NkSLkfX+G/5e9oKaFlFbFBq1tg1H/YtNDl4T92CIi0Shl/OzjH4flZ+f2L2DKFZBQya0KomItBQj796ZICaSMn82Oyb8J67SQUK5zXSJ1qiT6OrSISNRJiHP/L4TlZ+f2z+GFyyCxijt5UcVaChHW702R4ljwIEysDhOrk0B20Y8PMS8j10l1m9r0PVvCflwRkWg1bNJHAGX/5/YfVsALV0JSdTcVpGazsj2eRL2wfW+KlMKwSR/xyriuadbayuE6prc51yIiEmG2LYcpV0JyTVesazT1nUhEJOp4mxYiIiIRZOun8MIVUKmWmwqiYi0iUioq1yIi5d2Wj92IdZW6cMMcqNHEdyIRkbAxxjxrjNltjPkmFPtTuRYRKc82L4MpQ6BqfTdiXb2R70QiIuH2PDAwVDtTuRYRKa82LYEXr4ZqDV2xrtbQdyIRkbCz1n4I7A/V/lSuRUTKo40fwtShUL2xK9ZV6/tOJCISE7RaiIhIebNhIbw0HGqmwKg3oUo934lERMpSBWPM8ny3n7TWPllmByurHYuISARaNx9eHgG1WsL1s9xJjCIisS3bWts5XAdTuRYRKS/WznPFuk5ruP5NqFzbdyIRkZijOdciIuXBmvfh5WugbhsY9ZaKtYhIgDFmGvAR0NYYs80Yc1Mw+9PItYhIrFv9LrxyHdQ7Ha57w10oRkREALDWXhPK/WnkWkQklq2aDdNHwmlnujnWKtYiImVKI9ciIpFqwYOw6CH3cca97v3EfNc56DUe+kwo+PnfvwWv3gANOsDI1yC5RplFFRERR+VaRCRS9ZmQV57/EFg16v6DxXvud7NgxmhoeI4r1knVyyajiIicQNNCRERizTcz4dUboVEnGDlTxVpEJIxUrkVEYsnXM+C1m6FJl8CIdTXfiUREyhWVaxGRWPHVKzDzFmh6Plw7AypW9Z1IRKTcUbkWEYkFX74Mr4+FZt3g2lehYhXfiUREyiWVaxGRaPf5VHh9HKT0gBGvQGJl34lERMotlWsRkWi2cgrM+iW06A0jpkNiJd+JRETKNZVrEZFoteJ5ePM2aNkXrpkGCcm+E4mIlHsq1yIi0eizZ+Ct26H1RTD8JRVrEZEIoXItIhJtPn0KZt8JbQbCsBchIcl3IhERCdAVGkVEokHGIbAW/tIIMlOh7SAY+jxUqOg7mYiI5KORaxGRaGCte5+ZCu0Gw9DJKtYiIhFI5VpEJJI93Bom5rt8uYmDVW/DI2f4yyQiIgXStBARkUj04yZY/Q4c2X3idpvr3p+8XUREIoLKtYhIJMjNhe2fw+o5rlTv/tZtN/Fgc/IeF18RcjKgcj0/OUVEpFAq1yIivmQdhQ2LXKFe8y6k7nJlullXGPAXtxpI7ZbusRMedu9zMmDiQX+ZRUSkUCrXIiLhlLrHFenV78D6DyD7KCRWgVYXuhVAWveHSrV++jxj3EmNGrEWEYloKtciImXJWti7Jm+6x9ZPAQvVGsM5I6HtxZDSveiVPypWc+/vXlvmkUVEpPRUrkVEQi0nG7Z+7Mr06jmwf4Pb3uBs6D3eFer6P3Oj0SIiElNUrkVEQiHjMKyb7wr12vfg6I8QnwjNe8IFv3Tzp6s39p1SRETKmMq1iEhpHdwWGJ1+BzYthpxMSK4JrQdAu0HQsi9UrOo7pYiIhJHKtYhIcVkLO79yZXrVbPcxQK0W0GWMOyGxyXkQrx+tIiK+PDJ3DY/Ozzs/JbF+q0rhPL7+BxARKUx2hhuVPjZCfegHwLgSfeEfXKGu01rzp0VEIsQd/dtwR/82x2+bvw5OC+fxVa5FRE6Wth/Wvu9ORlw3HzJTIaGSm+bR57du2keVur5TiohIBFK5FhEB2Lc+b3R6y0fuqohV6sNZV7vR6eY9ISHZd0oREYlwKtciUj7l5sC25XnrT+9d7bafdib0uNMtl9fgHIiL85tTRESiisq1iJQfmUdg/QJXpte8C2l7Ia4CNOsGnUdD24FQM8V3ShERiWIq1yIS2w7vzLvc+IaFkJ0OFau7y4y3vdhddjy5hu+UIiISI1SuRSS2WAu7v8ub7vHDCre9RlPodKMr1M26QnyC35zFseBBWPSQ+zjjXvd+YvW8+3uNhz4Twp9LREQKpHItItEvJws2LwsU6jlwYIvb3qgT9L3XnZBYr330LZfXZ0JeeZ70kXs/9qC/PCIiUiSVaxGJTkcPwLp5gcuNz4WMg1AhCVr0hh7/4y43XrW+75QiIlLOqFyLSPT4cXNgubw5sHkp5GZDpTpw+qXucuMtekNiZd8pRUSkHFO5FpHIlZsLOz4PXG58Duz+1m2v0xYuuM1N92jcGeLi/eYUEREJULkWkciSdRQ2fhiYP/0upO4EEwdNL4CL/uxOSKzd0ndKERGRU1K5FhH/UvfA2vfcCPX6DyArDRKrQKt+bnS69UVQqZbvlCIiIkVSuRaR8LMW9q7NWy5v6yeAhWqNoMMINzqd0gMqVPSdVEREpERUrkUkPHKyXYk+Vqj3r3fb6/8Met0TuNz42dG3XJ5IOfTI3DU8On/tCdtSxs8+/vHt/VpzR/824Y4lEhFUrkWk7GQcdtM8Vr8Da96Do/shLgGa94Tzb3WFunpj3ylFpITu6N9G5VmkACrXIhJaB3+ANe+4Qr3xQ8jJhOSa0HqAK9Mt+0JSNd8pRUREyoTKtYgEx1rY+XXe1RF3fOm212wOXca4Qt3kfIjXjxsREYl9+t9OREouOwM2LQlc0OUdOLQNMNCkC1w40a3wUaeN5k+LiEi5o3ItIsWTtt9dZnz1HFg3HzIPQ4VkN82j93h3ufEqdX2nFBER8UrlWkQKtn9D3tURt3wENgeqnAZnDnGj0y16QUKy75QiIiIRQ+VaRPLk5sAPK/KWy9uzym2vdwZ0v8MV6obnQFyc35wiIiIRSuVapLzLTIMNC1yhXvMeHNkDJh5SukGnG9x0j1rNfacUEREpE8aYgcCjQDzwtLX2oWD2p3ItUh4d3gVr3nWj0xsWQHY6VKwGrfu70elW/dzyeSIiIjHMGBMP/BvoD2wDPjPGvGmt/a60+wyqXBtj/gRcDuQCu4EbrLXbg9mniJQBa2H393nTPX5Y7rZXb+pGp9teDE27QoVErzFFRETCrAuwzlq7AcAY8zKu2/op18DD1tr7AmF+DfweGBfkPkUkFHKyYPOywHJ5c+DAZre9YUfoc68r1KedoeXyREQk1lUwxizPd/tJa+2TgY8bAVvz3bcNOC+ogwXzZGvtoXw3KwM2mP2JSJDSD8K6ea5Qr33f3Y6vCC16uxMS2wyEag18pxQREQmnbGtt53AdLOg518aYPwPXAweBPoU8bgwwBiCxduNgDysix/y4OTB/eo67sEtuNlSqDe0G511uPLGy75QiIiKR6AegSb7bjQPbSs1YW/hgszFmHlD/FHf9zlo7K9/jJgBJ1tr7izpoUt2mNn3PlpJmFRGA3FzY8UXe/Old37jtddq4Mt12EDQ+F+Li/eaUkBo26SMApo+9wHMSEZHoYoxJs9aecpTJGFMBWAP0w5Xqz4AR1tpvS3u8IkeurbUXFnNfU4E5QJHlWkRKKCsdNn4YWC7vXTi8A0wcNDkf+v8pcLnxVr5TioiIRBVrbbYx5jbgPdxSfM8GU6wh+NVCWltr1wZuXg6sCmZ/IpLPkb1u3enVc2D9Asg6AgmV3TJ5bQdB64ugcm3fKUVERKKatXYOboA4JIqcFlLok415DWiLW4pvMzDOWlvkPBVNCxEpwN61rkyvmgNbPwEsVG2YN90jpTskJPlOKWHyyNw1PDp/bYH3396vNXf0bxPGRCIi0aewaSFlcrxgynVpqVyLBOTmuBJ9bP70vnVue/2zXJluezE06KDl8kREREop3OVaV2gUCbeMVFj/gSvTa96Fo/shLgGa94Dzxrnl8mo0KXo/IiIiEnFUrkXC4dD2wMVc3oGNiyAnE5JqQJsBgeXy+kFSNd8pRUREJEgq1yJlwVrY+XXe1RF3fOG210yBc28JXG78fIhP8BpTREREQkvlWiRUsjNh85K8EeqDWwHj1pzud7+bQ123reZPi4iIxDCVa5FgpO0PXG58DqydB5mHoUIytOwDve5x0z6q1POdUkRERMJE5VqkpPZvyBud3rwMbA5UrgdnXulGp5v3gsRKvlOKiIiIByrXIkXJzYUfVuQtl7fne7e9Xnvo/htXqBt2hLg4vzlFRETEO5VrkVPJTIMNCwOXG38PjuwGEw/NukLHB90JibWa+04pIiIiEUblWuSY1N1u3elVc2DDAshOh4rVoNWFgcuNXwjJNX2nFBERkQimci3ll7WwZ1XedI9tywEL1ZtAx1FudLpZN6iQ6DupiIiIRAmVaylfcrJgy0d560//uMltb3gO9PmtK9Snnanl8kRERKRUVK4l9qUfhHXzXaFe+z6kH4D4itCiF3S73V1uvFpD3ylFREQkBqhcS2w6sAVWv+tGpzctgdwsSK7l5k63vRha9oWKVXynFBERkRijci2xwVrY/nne+tO7vnbba7eG8291pbpJF4iL95tTREREYprKtUSvrHTYtDjvhMTDO8DEQZPzoP+f3Ah1nda+U4qIiEg5onIt0eXIPlj7nivU6z6ArCOQUBla9Q0sl3cRVK7jO6WIiIiUUyrXEvn2rssbnd76MdhcqNoAzh7mCnVKD0hI8p1SREREROVaIlBuDmz9NK9Q71vrtp92FvS4C9oNggYdtFyeiIiIRByVa4kMGanuqoir5rhpH2n7IC4BUrpDlzHQdiDUaOo7pYiIiEihVK7Fn0M7YE1gdY8NiyAnA5KqQ+sB7mTEVv3cbREREZEooXIt4WMt7Pom7+qI2z9322s0g3NvcoW66QUQn+A3p4iIiEgpqVxL2crOhM1L89afPrgFMNC4M/T7vTshsW47zZ8WERGRmKByLaF39EdYOy+wXN48yDgEFZKhZR/odbeb9lH1NN8pRUREREJO5VpCY//GvOkem5eBzYHKdaH95W50ukVvSKzkO6WIiIhImVK5ltLJzYXtK/OWy9v9ndte93Todrsr1I06QVyc35wiIiIiYaRyLcWXmQYbFwUK9btwZDeYeGjWFQY86JbLq9XCd0oRERERb1SupXCpu2HNu250ev0CyD4KiVWh9YVudLrVhVCplu+UIiIiIhFB5VpOZC3sWZ033WPbZ4CFao2h43Vuubxm3aFCou+kIiIiIhFH5VogJxu2fJR3QuKPG932Bh2g9wRXqOufpeXyRERERIqgcl1epR+C9fNdoV7zHqQfgPhEaN4Luv4K2gyE6o18pxQRERGJKirX5cmBrYH503Ng42LIzYLkWm5kuu3F0LIvVKzqO6WIiIhI1FK5jmXWwo4v8qZ77Pzaba/VEs4f505IbNwF4vVtICIiIhIKalWxJjvDjUofOyHx8HbAQNPzof8fXaGu09p3ShEREZGYpHIdC47sg7Xvu0K9/gPITIWESm6aR9t7oc0AqFzHd0oRERGRmKdyHa32rc8bnd7yEdhcqFIfzhrqRqeb94SEJN8pRURERMoVletokZvj1pw+Vqj3rnHbTzsTetzlTkhs0EGXGxcRERHxSOU6kmUecVdFXD3HrfKRtg/iKkBKdzj3ZrdcXs1mvlOKiIiISIDKdaQ5tCPvcuMbFkJOBiRVh9YXudHpVhe62yIiIiIScVSufbMWdn2bt1ze9pVue41m0Hk0tBsETS+A+AS/OUVERESkSCrXPuRkwealeYX6wBa3vVFn6HufOyGx3um63LiIiIhIlFG5DpejB2DdPFem186DjINQIQla9HEnJLYZAFXr+04pIiIiIkFQuS5LP27KG53evAxys6FSHWh/qRudbtEHEiv5TikiIiIiIaJyHUq5ubD987zl8nZ/67bXbQddf+UKdaNOEBfvN6eIiIiIlAmV62BlHYUNi/KWy0vdBSYOmnaFi/7sVvio3dJ3ShEREREpIWPMUGAicDrQxVq7vKjnqFyXRuqevOXy1n8A2UchsYpbJq/tIGjdHyrV8p1SRERERILzDTAEmFTcJ6hcF4e17oqIx6Z7bP0UsFCtMZwz0o1Op3SHChV9JxURERGRELHWfg9gSrCCm59ybXNhYr4LofQaD30meIlSoJxs2Ppx3gmJ+ze47Q3Oht7jXaGu/zMtlyciIiIix/kbuZ540NuhC5RxGNbND8yffg/SD0B8IjTvCRf80l1uvHpj3ylFREREpPgqGGPyz5V+0lr75LEbxph5wKnWQ/6dtXZWiQ9WioCx5eC2wOj0O7BpMeRkQnJNV6TbDYKWfaFiVd8pRURERKR0sq21nQu601p7YSgPVv7KtbWw8ytYNceNUO/8ym2v1QK6jHEnJDY5D+LL30sjIiIiIsEx1tqwHzSpTmObvndb+A6YneFGpY+NUB/6ATCuRLe92BXqOq01f1pEREQkxhhj0qy1lUv53CuBx4C6wAHgC2vtgEKfE7PlOm0/rH3fjU6vmw+ZqZBQyU3zaHsxtB4AVeqWbQYRERER8SqYcl0asTX3Yd/6vNHpLR+BzYEq9eGsq93odPOekJDsO6WIiIiIxKjoLte5ObBted7603tXu+2nnQk97nQj1A3Ogbg4vzlFREREpFyIvnKdeQTWL3Bles27kLYX4ipAs27QeTS0HQg1U3ynFBEREZFyKDrK9eGdeZcb37AQstOhYnV3mfG2F7vLjifX8J1SRERERMq5yCzX1sLu7/Kme/ywwm2v0RQ63egKdbOuEJ/gN6eIiIiISD6RU65zsmDzskChngMHtrjtjTpB33vdCYn12mu5PBERERGJWP7K9cOt4bbPYN08Nzq9di5kHIQKSf/f3r3F2lWVYRh+P9oCtaIYi5FQtIBcGM9KqoaYNHgIKrYXktgLD3hMTIjVoAQx8XRnNGo8REOQAGoUA8RUhBgMJOoFSKlUBDw0hmgJWgUsUkhN6e/FmtRms3f33GWsNbuW75Ps7MMc7fzzZXSPv2uNOSecuh5ed8HoKYnHzfc0SkmSJOnIM1xzvWcXfPE02L8PnrYaXvi20ePGT10PR0/sVoSSJElSMwNuC8mosV75LPj4H+GoZcOVIkmSJDUw4A2guydDPvaQjbUkSZJmwnDN9bJjRp9XPWewEiRJkqSWmmwLSXIB8CXghKr6Z68/9Phe+OzuFqeXJEmSjghP+ZXrJCcDbwL+sqQ/6CvWkiRJmjEttoV8BbiQA5uoe/rEnxqcWpIkSTpyPKXmOslG4L6q2t5j7IeSbE2ydWlduCRJkjQdFt1zneTnwHxPcvkUcDGjLSGLqqpLgEsAjl29xv5akiRJM2fR5rqq3jDfz5O8BDgF2J7RI8nXANuSrKuqvzWtUpIkSZoCh323kKq6EzhwVWKSe4Ezet8tRJIkSZoxAz5ERpIkSZotzR5/XlVrW/1dkiRJ0jTylWtJkiSpEZtrSZIkqRGba0mSJKmRZnuul6JWrGTtRT898P3m0/7Oxz74viFKkSRJkppJ1eSf57Jq1aras2fPxM8rSZKk/y9JHq2qVZM6n9tCJEmSpEZsriVJkqRGbK4lSZKkRmyuJUmSpEZsriVJkqRGbK4lSZKkRmyuJUmSpEZsriVJkqRGbK4lSZKkRmyuJUmSpEZsriVJkqRGbK4lSZKkRmyuJUmSpEZSVZM/abIfeGziJ55dy4F9QxcxI56T8tsAAAStSURBVMyyLfNsyzzbMcu2zLMt82xrZVVN7AXl5ZM60RzbquqMgc49c5JsNc82zLIt82zLPNsxy7bMsy3zbCvJ1kmez20hkiRJUiM215IkSVIjQzXXlwx03lllnu2YZVvm2ZZ5tmOWbZlnW+bZ1kTzHOSCRkmSJGkWuS1EkiRJamSszXWSs5P8IcmOJBfNc/yYJFd1x29Nsnac9UyzHlmel+QfSe7oPj4wRJ3TIsllSXYl+d0Cx5Pka13ev03yyknXOC16ZLk+ye6D5uanJ13jNElycpKbk9yd5K4km+cZ4/zsoWeWzs+ekhyb5NdJtnd5fm6eMa7rPfXM07V9CZIsS/KbJNfNc2xic3Nst+JLsgz4JvBGYCdwW5ItVXX3QcPeDzxUVS9Isgn4AvCOcdU0rXpmCXBVVZ0/8QKn0+XAN4ArFzj+ZuD07uPVwLe6z3qyyzl0lgC/rKpzJlPO1NsHXFBV25IcB9ye5MY5/96dn/30yRKcn33tBc6qqkeSrAB+leSGqrrloDGu6/31yRNc25diM3AP8Ix5jk1sbo7zlet1wI6q+nNV/Qf4IbBxzpiNwBXd11cDr0+SMdY0rfpkqSWoql8ADx5iyEbgyhq5BTg+yYmTqW669MhSS1BV91fVtu7rfzNaKE6aM8z52UPPLNVTN98e6b5d0X3MvXDLdb2nnnmqpyRrgLcCly4wZGJzc5zN9UnAXw/6fidP/qV2YExV7QN2A88eY03Tqk+WAG/v3iK+OsnJkyltZvXNXP28tnvr84YkLxq6mGnRvW35CuDWOYecn0t0iCzB+dlb97b7HcAu4MaqWnBuuq4vrkee4Nre11eBC4H9Cxyf2Nz0gsbZ8RNgbVW9FLiR//3vTBraNuD5VfUy4OvAjweuZyokeTpwDfDRqnp46Hqm2SJZOj+XoKoer6qXA2uAdUlePHRN06xHnq7tPSQ5B9hVVbcPXQuMt7m+Dzj4f1hrup/NOybJcuCZwANjrGlaLZplVT1QVXu7by8FXjWh2mZVn/mrHqrq4Sfe+qyq64EVSVYPXNYRrdt/eQ3w/aq6dp4hzs+eFsvS+Xl4qupfwM3A2XMOua4fhoXydG3v7UxgQ5J7GW2dPSvJ9+aMmdjcHGdzfRtwepJTkhwNbAK2zBmzBXhP9/W5wE3ljbfns2iWc/ZbbmC0t1CHbwvw7u6uDK8BdlfV/UMXNY2SPPeJfW1J1jH6veNiu4Auq+8A91TVlxcY5vzsoU+Wzs/+kpyQ5Pju65WMLrL//Zxhrus99cnTtb2fqvpkVa2pqrWMeqSbquqdc4ZNbG6O7W4hVbUvyfnAz4BlwGVVdVeSzwNbq2oLo196302yg9EFUZvGVc8065nlR5JsYHR1/IPAeYMVPAWS/ABYD6xOshP4DKOLSaiqbwPXA28BdgCPAu8dptIjX48szwU+nGQf8BiwycX2kM4E3gXc2e3FBLgYeB44P5eoT5bOz/5OBK7o7mB1FPCjqrrOdf2w9cnTtf0pGGpu+oRGSZIkqREvaJQkSZIasbmWJEmSGrG5liRJkhqxuZYkSZIasbmWJEmSGrG5liRJkhqxuZYkSZIasbmWJEmSGvkvPOs8Pzwt1xsAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 864x432 with 2 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[df_demo[\"F\"] < 0][[\"A\", \"F\"]]\\\n", " .plot(\n", " style=[\"-*r\", \"--ob\"], \n", " secondary_y=\"A\", \n", " figsize=(12, 6),\n", " yerr={\n", " \"A\": df_demo[df_demo[\"F\"] < 0][\"C\"], \n", " \"F\": 0.2\n", " }, \n", " capsize=4,\n", " title=\"Bug: style is ignored with yerr\",\n", " marker=\"P\"\n", " ); "]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Combine Pandas with Matplotlib\n", "\n", "* Pandas shortcuts very handy\n", "* But sometimes, one needs to access underlying Matplotlib functionality\n", "* No problemo!\n", "* **Option 1**: Pandas always returns axis\n", " - Use this to manipulate the canvas\n", " - Get underlying `figure` with `ax.get_figure()` (for `fig.savefig()`)\n", "* **Option 2**: Create figure and axes with Matplotlib, use when drawing\n", " - `.plot()`: Use `ax` option"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["### Option 1: Pandas Returns Axis"]}, {"cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAEVCAYAAAA4vUvOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Wd4VNX+9vHvSiGh995CC71D6KCoCAg2OopUwQaiWFDPsfzP8ajYQLBQFBFRiqKoCAqK9A4JNfQeeiAhhNRZzwvieTgYJG2yk5n7c11cJtl79r5nOZP5Za+yjbUWEREREcl6Pk4HEBEREfFUKrRERERE3ESFloiIiIibqNASERERcRMVWiIiIiJuokJLRERExE1UaIl4GWPMq8aYL/9m+05jzC1ZcJ4XjTHT/mb7IGPMqgwee5ExZmDG04mIZA8/pwOISNYyxsRc820+IB5ITvl+xM0eb62tm4Fz3gJ8aa2tcM1x/nPN9iDgEOBvrU1K7/FTydgls8dwkjHmVaC6tfZBp7OIiHvpipaIh7HWFvjzH3AU6H7Nz2Y5nc+bGWP0x62Il1GhJeKd8hhjvjDGXErpKmz25wZjzGFjzO0pX4cYYzYZY6KNMaeNMe9dfyBjTH5gEVDOGBOT8q/cdV2UK1L+ezFle6tUjlPLGLPEGBNpjNljjOl9o/DGmD+MMcNSvq5ujFlujIkyxpwzxsy5wWMCjTFfGmPOG2MuGmM2GmNKX/+cU77/b3ZjTJAxxhpjhhtjIowxJ40xz1yzr48xZqwx5kDKsecaY4pd99ihxpijwO83ek4i4plUaIl4p7uB2UAR4Adg0g32mwBMsNYWAqoBc6/fwVp7GegCRFxz5Sziut3ap/y3SMr2tdduTCnWlgBfAaWAvsBHxpg6aXgu/wJ+BYoCFYCJN9hvIFAYqAgUBx4BrqTh+H+6FagBdAKev6YwGwncC3QAygEXgA+ve2wHoDZwZzrOJyIeQIWWiHdaZa392VqbDMwEGt5gv0SgujGmhLU2xlq7zk15ugGHrbXTrbVJ1tqtwLdArzQ8NhGoDJSz1sZZa280wD6RqwVWdWttsrV2s7U2Oh0ZX7PWXrbWbgemA/1Sfv4I8JK19ri1Nh54Feh5XTfhqymPTU9hJyIeQIWWiHc6dc3XsUDgDcYPDQWCgfCUrrZubspTGWiR0qV30RhzEXgAKJOGxz4HGGBDSjfokBvsNxP4BZid0gU4zhjjn46Mx675+ghXr179mf27a3Lv5urkg9I3eKyIeBENzBSRG7LW7gP6GWN8gPuBb4wxxVO6C/9n15sd6ibbjwHLrbV3ZCDjKeBhAGNMW2CpMWaFtXb/dfslAq8Br6XMgvwZ2AN8Clzm6gzNP6VW4FUEwlO+rgT82T16DBhirV19/QNSzgPXPX9r7atpeW4ikvvpipaI3JAx5kFjTElrrQu4mPJjVyq7ngaKG2MK3+BQZ1MeV/UG238Cgo0xA4wx/in/mhtjaqchYy9jzJ/LSlzgalHzl4zGmFuNMfWNMb5ANFe7Ev/cLxTom3LeZkDPVE71T2NMPmNMXWAw8Oeg+0+A140xlVPOU9IYc8/NcouId1ChJSJ/pzOwM2VtrglA39TGGVlrw4GvgYMpXWjlrtseC7wOrE7Z3vK67Ze4Osi8L1evFJ0C3gIC0pCxObA+JeMPwJPW2oOp7FcG+IarRdZuYDlXuxMB/snVwf4XuHrV66tUHr8c2A/8Brxjrf015ecTUs77qzHmErAOaPF3gW+2mKuIeA5j7c2u6IuIeK+sXmxVRLyLrmiJiIiIuIkKLRERERE3UaElIo66wSrsWTIj+voV3zPCWnvYWmvUbSgiGaFCS0QyJbVixhgzyBhzo4VD3ZXjc2PMv7PznKlkyHRhJyKeRYWWiMhNZNUVNhHxPiq0RMTtUm4y/a0x5qwx5pAxZlQ6HvdDyo2m9xtjHr7BfsO5upL8cyk3rf7xms2NjDHbUm46PccYE3jN47oZY0JTlpxYY4xpcM22w8aY540x24DLxhi/jD4PEfFeKrRExK1SVpX/EQgDygO3AaONMWm5wfJs4DhXb3fTE/iPMabj9TtZa6cAs4BxKTet7n7N5t5cXQ+sCtAAGJSSqzHwGTCCq/dAnAz8YIy5du2ufsBdXL35tisTz0NEvJQKLRHJCt9fd5/Cj67Z1hwoaa39P2ttQspiolO5ujjpDRljKgJtgOdTbhYdCkwDHkpntg+stRHW2kiuFkqNUn4+HJhsrV2fcpPpGUA80PK6xx5LWaQ1Q89DRLybxh2ISFa411q79M9vjDGDgGEp31YGyqUUYH/yBVbe5JjlgMiUVeP/dARols5s199A+9qbQQ80xoy8Znuea7bD/94MOqPPQ0S8mAotEXG3Y8Aha22NdD4uAihmjCl4TbFVCThxg/3Te5uLY8Dr1trX/2afa4950+dhrQ1KZwYR8XDqOhQRd9sAXEoZWJ7XGONrjKlnjGn+dw+y1h4D1gBvGGMCUwaqDwW+vMFDTnPjm1anZirwiDGmhbkqvzHmLmNMwax8HiLi3VRoiYhbWWuTgW5cHRt1CDjH1bFWhdPw8H5AEFevbn0HvHJtF+V1PgXqpIwT+z4NuTYBDwOTuHoz6f2kDJTP6PMwxuw0xtxys3OLiPfQTaVFRERE3ERXtERERETcRIWWiIiIiJuo0BIRERFxExVaIiIiIm7iyDpaJUqUsEFBQU6cWkRERCRdNm/efM5aWzIjj3Wk0AoKCmLTpk1OnFpEREQkXYwxRzL6WHUdioiIiLiJCi0RERERN1GhJSIiIuImKrRERERE3ESFloiIiIibqNASERERcRMVWiIiIiJuokJLcqxLcYl8tf4oVxKSnY4iIiKSISq0JEey1vLidzt48bvtDJq+gZj4JKcjiYiIpJsKLcmRvg89wY9hEdxeuxSbjlzgoU/XE3Ul0elYIiIi6aJCS3KcY5GxvPz9TppVLsrkAc34sH9jtp+I4oFp67hwOcHpeCIiImmmQktylGSXZczcMCzwfp9G+PoYOtcry+QBTdl7OoZ+U9dx9lK80zFFRETSRIWW5CifLD/AhsOR/N89dalYLN9/f96xVmk+G9icw+cv03fKWk5FxTmYUkREJG1UaEmOse34Rd5fspduDcpyX+Pyf9netkYJvhjSglNRcfSZspbjF2IdSCkiIpJ2KrQkR4hNSGL07FBKFgzg9XvrY4xJdb+QKsWYOawFkZcT6DN5HUfOX87mpCIiImmnQktyhH8v3M2h85d5t3dDCufz/9t9m1QqytcPtyQ2IYlen6xl/5mYbEopIiKSPiq0xHFLd53mq/VHGd6uKq2rlUjTY+qVL8zs4a1wWUvfKWsJPxXt5pQiIiLpp0JLHHX2UjzPf7uNOmUL8XSn4HQ9tmaZgswZ0Qo/Hx/6TlnH9uNRbkopIiKSMSq0xDHWWp77JoyY+CQm9G1EgJ9vuo9RrWQB5o5oRf48fvSfto7NRy64IamIiEjGqNASx3y57gjL9pzlxa61qVG6YIaPU6l4PuY+0ori+fPw0KfrWXfwfBamFBERyTgVWuKI/Wcu8e+Fu+kQXJKHWlXO9PHKF8nLnBGtKFM4kEHTN7Bi79ksSCkiIpI5KrQk2yUkuXhydij5A/x4u1eDGy7lkF6lCwUyZ0QrgornZ9iMTfy2+3SWHFdERCSjVGhJtntvyV52RkTz5v31KVUwMEuPXaJAALOHt6RW2YKMmLmZRdtPZunxRURE0kOFlmSrtQfOM3nFAfqFVKRT3TJuOUeRfHn4clgLGlYswhNfb2VB6Am3nEdERORmVGhJtomKTWTM3FCCiufnn93quPVchQL9+WJICM2DijJ6TihzNx5z6/lERERSo0JLss0/F+zg9KV4xvdpRL48fm4/X/4AP6YPCqFt9RI89+02vlh72O3nFBERuZYKLckW3289wQ9hEYy+rQYNKxbJtvPmzePLtIHNuL12KV5esJOpKw5m27lFRERUaInbHYuM5Z/f76BZ5aI8dmv1bD9/gJ8vHz3QlLvql+X1n3cz8bd92Z5BRES8k/v7b8SrJbssY+aGYYH3+zTC1ydrlnJIrzx+Pimrz/vw7pK9xCe5GNMpOMuWlhAREUmNCi1xq0+WH2DD4Uje7dWQisXyOZrFz9eHd3o1JI+fD5OW7ScuMZmX7qqtYktERNxGhZa4zbbjF3l/yV7ualCW+5uUdzoOAD4+hv/cV58APx+mrTpEfJKL1+6ui49DV9pERMSzqdASt4hNSGL07FBKFgzgP/fWz1FXjXx8DK/eXZdAf18mrzhIXGIyb/Zo4Fi3poiIeC4VWuIWry/czaHzl5k1tAWF8/k7HecvjDGM7VKLAH9fPvhtHwnJLt7t1RA/X80PERGRrKNCS7Lc0l2nmbX+KMPbV6V19RJOx7khYwxP3xFMoL8P4xbvIT7RxQf9GpPHT8WWiIhkDX2iSJY6eyme57/dRu2yhRjTKdjpOGny2C3V+We3OizeeYpHvtxMXGKy05FERMRDqNCSLGOt5blvwoiJT0pZSsHX6UhpNrRtFf59bz1+Dz/DsBmbiE1IcjqSiIh4ABVakmW+XHeEZXvO8kKXWgSXLuh0nHR7sGVl3u7ZgDUHzjHos43ExKvYEhGRzMmSQssY85kx5owxZkdWHE9yn/1nLvHvhbvpEFySga2DnI6TYb2aVWR838ZsPnqBAZ+uJ+pKotORREQkF8uqK1qfA52z6FiSyyQkuRg9J5T8AX683bNBjlrKISPubliOD/s3YceJKB6Yto4LlxOcjiQiIrlUlhRa1toVQGRWHEtyn/eW7GXHiWjevL8+pQoFOh0nS3SuV4YpA5qx93QMfaes4+yleKcjiYhILpRtY7SMMcONMZuMMZvOnj2bXacVN1t38DyTVxygX0hFOtUt43ScLHVrrVJMH9Sco5Gx9JmyllNRcU5HEpFMstYyd9MxOo9fwYw1h0lIcjkdSTxcthVa1top1tpm1tpmJUuWzK7TihtFXUnk6TmhVC6Wj3/cVcfpOG7RpnoJZgwJ4Ux0PL0nr+X4hVinI4lIBl2KS+TJ2aE89802Ii8n8MoPO7nj/eUs3HYSa63T8cRDadahZNg/v9/B6UvxjO/bmPwBnrv2bUiVYswcGsLF2AR6f7KWw+cuOx1JRNIp7NhF7vpgFQu3n+SZTsGsfeE2pg9uTqCfL49/tYV7P1rDuoPnnY4pHkiFlmTIgtAT/BAWwejbatCoYhGn47hd40pF+erhllxJTKb35LXsP3PJ6UgikgYul2XKigP0+HgNyS7LnOEteaJjDXx9DLfWLMXPT7bj7Z4NOBMdR98p6xj6+Ub2ntb7W7KOyYrLpcaYr4FbgBLAaeAVa+2nN9q/WbNmdtOmTZk+rzjj+IVYuoxfSXCZgswZ3tKr7g+49/Ql+k9dj7WWL4e1oHbZQk5HEpEbOBcTz9Nzw1ix9yyd65bhrR4Nbnjv1bjEZKavPsxHf+zncnwSPZtW4Ok7alKmsGdM8JHMMcZsttY2y9BjneiXVqGVeyW7LP2mrGPXyWgWPdmOisXyOR0p2x08G0P/qeuJS0rmiyEhNKjg+Vf0RHKbVfvO8dTcUKKuJPJytzo80KJSmpaeuXA5gQ+X7eeLtUfw8YEhbarwyC3VKBSYeoEm3iEzhZb3XIqQLDF5xQE2HI7ktbvremWRBVC1ZAHmjmhFgQA/Hpi6ns1HtLKJSE6RmOzircXhDPhsPYXz+vPDE214sGXlNK/vVzR/Hv7RrQ6/jelA57pl+OiPA3QYt4zPVh0iPkn3QZX00xUtSbPtx6O476PV3Fm3DJP6N871C5NmVsTFK/Sfuo4zl+L5dGBzWlUr7nQkEa92LDKWUbO3svXoRfqFVOTlbnXJmydz91zdcSKKNxbtZvX+81Qslpdn76xFt/pl8fHx7t9/3kZdh+J2VxKSuWviSmLjk1k8uh1F8uVxOlKOcCY6jgemredoZCxTH2pG+2AtXSLihIXbTjJ2/jaw8EaP+nRrUC7Ljm2tZcW+c7y5KJzdJ6OpX74wL3SpRevqJbLsHJKzqetQ3O71n3dx8Oxl3uvdUEXWNUoVCmT28JZULVmAYTM2sXTXaacjiXiVKwnJvDB/G49/tYVqJQvw85PtsrTIAjDG0CG4JAtHtuW93g2JvJxA/2nrGTR9A+GnorP0XOJ5VGjJTf22+zRfrjvKw+2q6C+4VBQvEMDXD7egdtmCPPLlZhZuO+l0JBGvsOfUJe6etIrZG4/x6C3VmPdIK7eOHfXxMdzfpAK/jenAi11rseXIBbpMWMmYuWFEXLzitvNK7qauQ/lbZy/F03n8CkoVCuT7x1sT4Je58Q6eLDoukcHTN7L16AXe7d2Q+xpXcDqSiEey1jJr/VH+9dMuCgb6836fhrSrkf3d9hdjE/jojwN8vuYwAIPbBPHYLdUpnFczFD2NxmiJW1hrGTpjE6v2n+OnkW0JLl3Q6Ug53uX4JIbN2MS6Q+d547769A2p5HQkEY8SFZvI2PnbWLTjFO2DS/Jur4aULBjgaKbjF2J579e9fBd6gkKB/ozsWJ0BrSrrD1MPojFa4hZfrj/K7+FneKFLLRVZaZQ/wI/pg5vTvkZJxs7fzhdrDzsdScRjbDocSdcPVrJk12le7FqLzwc1d7zIAqhQNB/v9WnEwpHtaFixCP9euJuO7yzn+60ncLl0D0Vvp0JLUrX/TAyvL9xF++CSDGod5HScXCXQ35cpDzXljjqleXnBTqasOOB0JJFcLdllmfT7PvpMWYevj+GbR1szvH21HLfEQp1yhfhiSAhfDm1BkXz+jJ4TSvdJq1i175zT0cRB6jqUv0hIcnH/x6s5ceEKv4xuT6lCugVFRiQmuxg9J5SF207y9B3BjOxY3evXHhNJr9PRcYyeHcrag+e5u2E5Xr+vHgVzwSrtLpflx20RvP3LHo5fuEK7GiUY26UWdcsVdjqaZEBmug79sjqM5H7vL93LjhPRTB7QVEVWJvj7+jChTyMCfH14b8le4hKTefbOmiq2RNLo9/DTPDNvG1cSkhnXswG9mlbINe8fHx/DPY3K07leGWauPcKkZfvpNnEV9zYqz5hOwVQo6p131vBGKrTkf6w7eJ5Plh+gb/OK3Fm3jNNxcj0/Xx/e6dWQAH9fPvrjAHGJLv7ZrXau+bAQcUJ8UjLjFu/h01WHqFWmIJP6N6F6qQJOx8qQAD9fhrWrSq9mFfn4jwNMX32IhdtOMrB1ZR6/tbrWJfQC6jqU/4q6kkjXCSvx9zUsHNWO/AGqw7OKtZbXftzF52sO80CLSvzrnno5bnyJSE5w6NxlRn69hR0nohnYqjIvdK1NoL/nzN6LuHiF95fs5ZstxykY4Mfjt1ZnYOsgj3qOnkhdh5IlXl6wg1PRcXzzSCsVWVnMGMMr3esQ6O/LJ8sPEJ/k4q0eDfBVsSXyX99tPc4/vtuBn68PUwY0pZMHXlUvVyQvb/dqyNB2VXhrUThvLApnxprDjOlUk3sbl9fvBA+kT1MBYEHoCRaERvD0HcE0rlTU6TgeyRjD851rEujvw/il+0hIcvFu74b4+2ryr3i3y/FJ/HPBDuZvOUFIUDHG921EuSJ5nY7lVrXKFGL64BDWHLh6D8Ux88KYuvIgY7vUokNwSQ0v8CDqOhSOX4ily4SVBJcuyJzhLfHTB7/bffzHAd5aHM6ddUszsV8T8vipzcU77TgRxcivt3Lk/GWe6FiDUR2re93vIJfLsnD7Sd7+ZQ9HI2NpU704L3SpTb3ymqGYU2jBUsmwZJfl6blhWAvv927kdb/gnPLoLdV4pXsdftl5mhEzNxGXmOx0JJFsZa3ls1WHuP+jNVxJSOarh1vy9B3BXvk7yMfH0L1hOZY+3YFXutdh98lLdJu4iidnb+VYZKzT8SST1HXo5SavOMCGQ5G806shlYprunF2GtymCgF+vrz0/XaGztjI1IeakS+P3pLi+SIvJ/DsvDB+Cz/D7bVLMa5nQ4rl1+y7PH4+DG5ThR5NKzB5+QE+XXWIRdtP8WDLyozsWJ2iaqNcSV2HXmzHiSju/XA1neqW5sP+TTQmwCHfbj7Os9+E0axyMT4d1CxXLMYoklFrD5xn9JytXLicyAtdazGodZB+99zAqag43l+yl3mbj5E/jx+P3lqNIW2qaIaiA3RTaUm3KwnJ3DVxJbHxySwe3U5ruTjsx7AIRs8JpX75wswYEkLhvCq2xLMkJbv44Ld9TFy2nyrF8/NBv8Yag5RGe09fYtzicJbuPkOZQoE83SmYHk0qaIZiNtIYLUm313/excGzl3m3d0MVWTlA94bl+OiBJuyMiKL/1HVEXk5wOpJIljlx8Qr9pq7jg9/306NJBX4c2VZFVjoEly7ItIHNmTO8JaULB/LcN9voOmEly8LP4MTFEkkfFVpe6Pfw03y57ijD2lahTfUSTseRFHfWLcPUh5qx/0wMfaes5cylOKcjiWTa4h2n6DphJbsiohnfpxHv9GqodfoyqEXV4nz/WGs+eqAJ8UnJDP58I/2mriPs2EWno8nfUNehlzkXE0/n8SsoUSCABU+0IcBPff05zZr95xg6YxNlCwcy6+EWlC3s2esJiWeKS0zm9YW7mbnuCPXLF2Ziv8YElcjvdCyPkZjs4usNR5mwdB/nLydwV4OyPHdnTSoXVxu7g8ZoSZpYaxk6YxOr9p/jxyfaUrNMQacjyQ1sOhzJoOkbKZrfn6+GtaRiMc0Ildxj/5lLPPHVVsJPXeLhdlV49s5aWivOTS7FJTJ1xUGmrjxEksvFAy2uzlAsXiDA6WgeRWO0JE1mrT/K7+FnGNu5loqsHK5ZUDG+HNaCqNhE+kxey6Fzl52OJHJT1lpmbzhKt4mrOHspnumDm/PSXXVUZLlRwUB/nu5Uk+XP3kLPphWZue4IHd7+g0m/7+NKgtbnywl0RctL7D8TQ7eJK2keVIwZg0N0Q+NcYmdEFAM+3YCfj2HWsBbUKK0CWXKm6LhEXpy/nZ+2naRN9eK837sRpQoFOh3L6+w/E8O4xeH8uus0pQsF8NTtwfRsWsErF4LNSuo6lL+VkOTi/o9Xc+LCFRaPbk9p/fLLVfaevsQD09aT7LJ8ObQFdcoVcjqSyP/YevQCo2ZvJeJiHE/fEcwjHapp6QGHbTocyX9+3s2WoxepUaoAz3Wuxe21S2nNsgxS16H8rfFL97LjRDRv3N9ARVYuFFy6IHNHtCLAz0czjCRHcbksH/9xgF6frMXlgrkjWvL4rdVVZOUAzYKK8e2jrfnkwaYkuywPf7GJPpPXsfXoBaejeR0VWh5u/cHzfLz8AH2aVaRzvTJOx5EMqlIiP3NHtKJQXj8enLaeTYcjnY4kXu7MpTgGTt/AW4vD6VS3ND8/2Y6mlYs5HUuuYYyhc70y/PJUe/59bz0OnrvMfR+t4bFZmzXuMxup69CDRccl0mX8Svx8DT+Paqe1azzAyagr9J+6ntPRcXw6sDmtqhV3OpJ4oRV7z/L03FAuxSXxSve69AupqC6pXOByfBJTVx5kyoqDJCS56N+iEqNuq0EJzVC8KXUdSqpe/n4Hp6LjGN+nkYosD1G2cF7mDG9J+SJ5GTR9A8v3nnU6kniRxGQXbyzazUOfbaBY/jz88ERb+reopCIrl8gf4Mfo24NZ/uyt9A2pyKz1R+kwbhkTlu7jcnyS0/E8lgotD7Ug9ATfh0YwqmMNGlcq6nQcyUKlCgUye3hLqpUswMMzNvHrzlNORxIvcPR8LD0/Wcvk5Qfp36ISCx7XWny5VcmCAfz73voseao97YNL8v7SvXR4+w9mrT9CUrLL6XgeR12HHujExSt0Hr+CGqUKMHdEK03r9VBRsYk8NH0DO09EMaFvY+5qUNbpSOKhfgyL4MX528HAWz0a0LW+XmueZPORC7y5aDcbD1+gasn8PN+5Fp3qlNaVymuo61D+K9lleXpOKC6XZXyfxiqyPFjhfP58OTSExpWKMPLrLczfctzpSOJhYhOSeP6bbYz8eis1Shfg51HtVGR5oKaVizJ3RCumDGiKAUbM3EzPT9ay+Ygm3WQFfQp7mCkrDrL+UCSv3l2XSsV12xZPVzDQnxlDQmhZtThj5oXx9YajTkcSD7H7ZDTdJ65i7uZjPHZLNeaMaKVbQXkwYwyd6pbhl9HteeP++hyNjKXHx2sZMXMTB87GOB0vV8uSQssY09kYs8cYs98YMzYrjinpt+NEFO8t2UPX+mXo2bSC03Ekm+TL48dng5rTIbgkL8zfzuerDzkdSXIxay0z1x7mng9XEx2XxJdDW/Bc51r46+q4V/Dz9aFfSCWWP3sLY+4IZvX+83R6fwUvfredM5finI6XK2V6jJYxxhfYC9wBHAc2Av2stbtu9BiN0cp6VxKS6TZxJTHxSSx+sj1F8+dxOpJks/ikZEZ+tZVfd51mbJdaPNKhmtORJJe5GJvA899u45edp7mlZkne6dVQU/+93LmYeCb+to9Z64+Sx8+HYe2qMrx9VQp42Ux2p8dohQD7rbUHrbUJwGzgniw4rqTDf37ezYGzl3m3VyMVWV4qwM+XDx9oQveG5XhzUTgTlu7DickukjttPBxJ1wkr+T38DC91rc1nA5uryBJKFAjgtXvqsfTpDtxasxQf/LaPW95exsy1h0nUDMU0yYpCqzxw7Jrvj6f8TLLJsvAzzFx3hGFtq9C2Rgmn44iD/H19GN+nET2aVOD9pXsZ98seFVvyt5Jdlg9+20efyWvx9/Ph20db83D7qrrxvPyPoBL5+fCBJnz/eBuqlSzAPxfspNP7K1i0/aR+x9xEtl37M8YMB4YDVKpUKbtO6/HOxcTz7Ddh1CpTkGfurOl0HMkBfH0Mb/dsQIC/Dx//cYC4xGRe7lZHU7XlL05FxTF6zlbWHYzknkbl+Pe99SgY6O90LMnBGlUswuzhLVm25wxvLgrn0VlbaFypCC90qU1IFd2CKTVZUWidACpe832FlJ/9D2vtFGAKXB2jlQXn9XrWWp7/ZhvRcUnMGtaSQH9fpyNJDuHjY3j93noE+PkwffVh4pNc/PueerpKIf/12+7TPDMvjLhEF2/3bEDPphVUjEuaGGPoWKs0HYJL8e3m47xNRC1SAAAfhUlEQVS7ZA+9J6/l9tqlGdulJtVLaSHba2VFobURqGGMqcLVAqsv0D8Ljis38dWGo/wWfoaXu9XRCs3yF8YYXu5Wh0B/Xz7+4wDxiS7G9WyAr4otrxaflMybi8KZvvowdcoWYmL/xlQrWcDpWJIL+foYejevSPeG5fhs9SE++eMAnd5fQZ/mFRl9ezClCwU6HTFHyHShZa1NMsY8AfwC+AKfWWt3ZjqZ/K0DZ2P410+7aFejBINaBzkdR3IoYwzP3VmTvP6+vLdkL/FJybzfp5Gm6nupg2djGPn1VnZGRDOodRBju9TSlXDJtLx5fHn81ur0C6nExN/38eW6I3y39QTD2lZlRIeqXt8drVvw5EIJSS56fLyG4xdiWTy6vf5qkDSZvPwAbywKp1Od0kzs35gAP33AepNvNx/nnwt2kMfPh7d7NuSOOqWdjiQe6uj5WN75dQ8/hEVQLH8eRnWsTv8Wlcnjl3v/wHN6eQfJZhN+28v2E1G8cX99FVmSZiM6VOPV7nX4dddpRszcTFxistORJBvExCfx1JxQxswLo175wix6sp2KLHGrSsXz8UG/xvzwRBtqli7Iqz/u4o73l/PTtgivnKGoQiuX2XAoko/+OEDvZhXoXE/3HJP0GdSmCm/cX5/le88y5PONxCYkOR1J3Gj78Si6fbCSBaEneOr2YL5+uCVlC+d1OpZ4iQYVivDVwy2YPrg5ef19eeKrrdz74WrWHjjvdLRspa7DXCQ6LpEu41fi52v4eVQ78nvZyrySdeZvOc4z88JoWrkonw1q7vVjKDyNy2X5bPUh3locTokCAYzv04gWVYs7HUu8WLLLMn/Lcd5bspeTUXF0rFWK5zvXyjUTuTLTdahCKxd5ak4oP4RFMO+RVjSpVNTpOJLLLdx2kidnb6Vu+cJ8MTiEwvlUbHmC8zHxPDMvjGV7znJHndKM69FAd4uQHCMuMZnP1xzmw2X7uRyfRM+mFXjqjuAcf6VVhZYX+CEsglFfb2X07TUYfXuw03HEQyzZdZrHZ22heqkCzBwaQnHdciVXW7P/HKPnhHLxSiL/uKs2A1pW1tpYkiNduJzAh8v288XaIxgDQ9pW4dFbqlEoh15dV6Hl4U5cvELn8SuoUaoAc0e0wk9T8yULLd97luFfbKJSsXzMergFpQpqgkVuk5Ts4v2le/nojwNUKZGfSf2aUKdcIadjidzUschY3v11D9+HRlA0nz9PdKzBgy0r5bhZ0Sq0PFiyy9J/6jp2nIji5yfbUbl4fqcjiQdac+Acw2ZsokyhQGY93CLHX8aX/+/4hVienB3K5iMX6N2sAq/eXZd8eTR+U3KXHSeieGtxOCv3naNisbw806km3RuUyzF3s9DyDh5s6sqDrD8UySt311WRJW7TuloJvhgSwtlL8fSevJZjkbFOR5I0WLT9JF0nrGTPqUtM6NuIcT0bqsiSXKle+cLMHNqCL4aEUCDAnydnh3LPh6tZs/+c09EyTYVWDrbjRBTv/rqHLvXK0KtpBafjiIdrFlSMWQ+3IPpKEr0nr+Xg2RinI8kNxCUm8+J323l01haqlMjPwlFtuadReadjiWRa++CSLBzZlvf7NCTycgL9p61n4Gcb2H0y2uloGaauwxzqSkIy3SauJCY+icVPttesIck2uyKiGfDpenx8DF8Na0GN0rlj+rW32Hv6EiO/2sqe05cY0b4qYzrVzNUrbovcSFxiMjPXHmHSsv1ExyVyf+MKPN0pmPJFsn9og7oOPdAbi3Zz4Oxl3unVUEWWZKs65Qoxe3hLDNBnyjp2RkQ5HUkAay1frT/K3ZNWcS4mnhlDQniha20VWeKxAv19ebh9VVY8eyvD21Xlx20R3PrOH7yxaDdRsYlOx0szvUNzoGXhZ/hi7RGGtq1CuxolnY4jXqhG6YLMGdGKQD8f+k1ZR9ixi05H8mpRVxJ54qutvPjddppVLsaiJ9vRIVi/G8Q7FM7nzwtda7PsmVvo3qAcU1YcpP3by5i64mCuuJWYug5zmHMx8XQev4ISBQL4/vE2BPrnrCmu4l2ORcbSf9o6LlxOZPrg5jQPKuZ0JK+z+cgFRn29lVPRcYzpFMwj7avlmJlYIk7YFRHNW4vDWb73LOWL5OWZO4O5p2F5t74v1HXoIay1jP12G9FxSYzv20hFljiuYrF8zB3RilIFA3jo0w0eMQMot3C5LB8u20/vyWsxBuY90orHbqmuIku8Xp1yhZgxJIRZw1pQNL8/T80Jo9vEVazcd9bpaKlSoZWDfLXhKEt3n+H5zrWoVUaLDUrOULZwXmaPaEnFYnkZ/PlG/thzxulIHu9MdBwDPlvP27/soXPdMiwc1U633RK5TpvqJfjh8bZM6NuI6LhEBny6gQGfrmfHiZw1rlRdhznEgbMx3PXBSpoHFWPG4BD91So5TuTlBAZ8up69py/xYf8mdKpbxulIHumPPWcYMzeMywlJvNK9Ln2bV9RtdERuIj4pmS/XHWXi7/u4GJvIfY3LM6ZTMBWK5suS42tl+FwuMdlFj4/XcDQyll9Gt6d0Id0CRXKmqNhEBk7fwI4TUYzv24huDco5HcljJCS5ePuXcKauPETN0gWZ1L+xltYQSaeoK4l8svwAn606hLXwUKvKPNGxOkXyZW72vsZo5XLjl+5l2/Eo3ry/voosydEK5/Nn5tAQGlcqwqivt/Lt5uNOR/IIh89dpucna5i68hAPtKjEgifaqMgSyYDCef15vnMt/nj2Fu5pVI5PVx+i/bhlfLL8gGMzFHVFy2EbDkXSZ8paejWtwLieDZ2OI5ImsQlJPPzFJlbvP89/7qtP/xaVnI6Uay0IPcFL3+3Ax8BbPRrQpX5ZpyOJeIzwU9G8tSicZXvOUq5wIE93qsl9jcvjm87hOeo6zKWi4xLpMn4lfr6GhaPaUSBA9yiT3CMuMZlHv9zMsj1neaV7HQa3qeJ0pFwlNiGJVxbsZN7m4zStXJQJfRtl2XgSEflfaw+c581Fuwk7HkWtMgUZ26UWHYJLpnn8o7oOc6lXFuzkVHQc7/dppCJLcp1Af18mD2jGnXVL89qPu/j4jwNOR8o1dkZE0W3iKr7Zcpwnbq3OnOEtVWSJuFGrasX5/vE2TOrfmNiEZAZN38gD09az/bj7Zyiq0HLID2ERfLf1BCM7Vte0bcm18vj5MKl/E7o3LMdbi8MZv3QvTlwlzy2stcxYc5j7PlxDTFwSs4a24Jk7a+Lnq1/FIu5mjKFbg3IsfboDr3avQ/ipS3SftIpRX2/lWGSs286ryygOiLh4hX98t53GlYrwxK3VnY4jkin+vj6M79OIAD8fxi/dR1yii+c719SSBNe5cDmB577dxpJdp7m1Zkne6dWQ4gUCnI4l4nXy+PkwqE0VejStwOTlB5m26iCLdpxkQMsgnuhYnWJZfH9hFVrZLNlleXpuKMkuy/g+jfSXrHgEXx/DuB4NCPT3+e/snle611GxlWL9wfOMnhPKuZh4/nFXbYa2raK2EXFYwUB/nrmzJg+2rMz4pXv5fM0h5m06xiO3VGNImyrkzZM1d2dRoZXNpq08yLqDkYzr2YDKxfM7HUcky/j4GP51Tz0C/Hz5dNUh4pNcvH5vPa9efDfZZZn4+z4++G0flYrlY/6jbahfobDTsUTkGmUKB/JmjwYMbVuFtxbv4e1f9jBz7RGeviOYHk0rpHuG4vVUaGWjHSeieOfXq7fU6NW0gtNxRLKcMYZ/3FWbQH8fPlx2gPikZMb1aOCVV25PRl3hydmhbDgUyf2Ny/N/99bTpBeRHKxG6YJMG9iMDYci+c/Pu3nu221MW3WQsV1qZeq4etdnkysJyYyeE0qx/Hl44/766jYQj2WM4dk7axHo58u7S/YSn+RifJ9G+HtRsbVk12me/SaMhCQX7/ZqSA/9YSWSa4RUKcZ3j7Vm0Y5TjFsczpDPM7cclQqtbPLmot3sPxPDzKEhFM3igXYiOdHI22oQ4O/Df34OJyHJxaT+jQnwy5oxDzlVXGIyby4K5/M1h6lbrhAT+zWmaskCTscSkXQyxtC1flnuqFOa2RuO8tBbGT+W9/yJ6aBle84wY+0RhrSpQrsaJZ2OI5Jthrevxmt312XJrtMM/2KzY7fAyA4HzsZw30dr+HzNYYa0qcL8x1qryBLJ5fx9fRjQKihTx9AVLTc7FxPPs/O2UatMQZ7rXNPpOCLZbmDrIAL9fRg7fzuDp29k2sBm5PegsUrWWuZtPs4rC3YS6O/DpwObcVvt0k7HEpEcwnN+2+VA1lrGfrud6CuJfDkshEB/z+42EbmRPs0rkcfPhzFzwxj42QY+G9ycQoH+TsfKtEtxifzj+x0sCI2gZdVijO/TmDKFdWN4Efn/1HXoRl9vOMbS3ad5rnNNapUp5HQcEUfd17gCk/o3IfTYRQZMW8/F2ASnI2VK2LGLdJu4ih/DInj6jmBmDWupIktE/kKFlpscPBvDv37aRdvqJRiim+2KANC1flk+ebApu09eot/U9ZyPiXc6Urq5XJYpKw7Q4+M1JCa5mDOiFaNuq5HptXZExDOp0HKDxGQXo+eEEuDvw7u9G3r1go0i17u9TmmmDWzGoXMx9JmyjjPRcU5HSrNzMfEM/nwj//k5nI61SvHzk+1oHlTM6VgikoOp0HKDCUv3se14FG/cV5/ShdSVIHK99sEl+XxwCBEXr9B78loiLl5xOtJNrdp3ji4TVrL24Hn+dU9dJg9oSpF8WqpFRP6eCq0stvFwJB/9sZ9eTSvQpX5Zp+OI5FgtqxZn5tAQzsck0HvyWo5FxjodKVWJyS7eWhzOgM/WUzivPwseb8OAVkFadFhE0iRThZYxppcxZqcxxmWMaZZVoXKr6LhERs8OpULRfLxyd12n44jkeE0rF2PWwy24FJdEr0/WcvBsjNOR/sexyFh6T17Lx38coHfTivzwRBtql9XEFhFJu8xe0doB3A+syIIsud6rC3ZyKjqO9/s00j3NRNKoQYUizB7eksRkF70nr2Pv6UtORwJg4baTdP1gJftPxzCxX2Pe6tmAfHn0vhaR9MlUoWWt3W2t3ZNVYXKzH8MimL/1BE/cWp2mlYs6HUckV6ldthBzRrTEx0DfKevYcSLKsSxXEpJ5Yf42Hv9qC1VLFmDhqHZ0b1jOsTwikrtl2xgtY8xwY8wmY8yms2fPZtdps0XExSu89N12GlUswsiO1Z2OI5IrVS9VkLkjWpHX35f+U9ex9eiFbM+w59Ql7p60iq83HGNEh6p880grKhXPl+05RMRz3LTQMsYsNcbsSOXfPek5kbV2irW2mbW2WcmSnnO/P5fLMmZuGEkuy/g+jfDz1fwCkYwKKpGfOSNaUiRfHgZ8uoGNhyOz5bzWWr5cd4S7J63iQmwCXwwJ4YUutfHX+1lEMummAw6stbdnR5DcaurKg6w9eJ5xPRoQVCK/03FEcr0KRfMxd0Qr+k9bx0OfbmDawGa0qV7CbeeLik1k7PxtLNpxinY1SvBe70aULBjgtvOJiHfRn2uZsDMiind+3UPnumXo1ayC03FEPEaZwoHMGd6KSsXyMfjzjSzbc8Yt59l0OJKuH6xkya7TjO1SixmDQ1RkiUiWyuzyDvcZY44DrYCFxphfsiZWzheXmMyTs0Mpmi8Pb9xfX2vqiGSxkgUD+Hp4S4JLF2D4F5tYvONUlh072WWZ9Ps++kxZh48PzHukFY90qKa7OIhIlsvsrMPvrLUVrLUB1trS1to7sypYTvfGz7vZfyaGd3s3pGh+rQ4t4g7F8udh1rCW1CtfmMe/2sIPYRGZPubp6DgenLaed37dS5d6ZVg4qh2NK2mmsIi4hxaFyYBle84wY+0RhrSpQrsanjOwXyQnKpzXn5lDWzDk842Mnr2VhCQXPZtmrKv+9/DTPDNvG7EJSbzVoz69m1XU1WgRcSuN0Uqn8zHxPDtvGzVLF+S5zjWdjiPiFQoE+DFjcAitq5XgmXlhzFp/JF2Pj09K5l8/7WLI55soVTCAn0a2pU/zSiqyRMTtdEUrHay1PP/tdqKvJDJzaAiB/r5ORxLxGnnz+DJtYDMem7WFl77bQXyiiyFtq9z0cYfOXWbk11vYcSKah1pV5sWutfXeFZFso0IrHWZvPMbS3af5x121db8zEQcE+vvyyYNNeXL2Vv7vp13EJSXz2C03XiT4u63H+cd3O/Dz9eGTB5vSuV6ZbEwrIqJCK80Ono3h/37cRdvqJRjS5uZ/RYuIe+Tx82Fiv8aMmRfGuMV7iEt08dTtNf6nG/ByfBL/XLCD+VtO0DyoKOP7NqZ8kbwOphYRb6VCKw0Sk108NSeUAH8f3unVUFPARRzm5+vDe70bEeDnwwe/7SM+MZmxXWphjGHHiShGfr2Vw+cvM+q2GozqWF13bBARx6jQSoMPfttH2PEoPnqgCWUKBzodR0QAXx/Dm/c3II+fD5NXHCQ+yUWlYvl4c1E4RfP789WwlrSqVtzpmCLi5VRo3cTGw5F8uGw/PZtWoGv9sk7HEZFr+PgY/nVPPQL9fJm26hAAt9Uqxdu9GlJM69uJSA6gQutvRMcl8tScUCoUzcerd9d1Oo6IpMIYw0t31aZC0bz4+/nQP0TLNohIzqFC62+8+sNOIi5eYd4jrSkQoKYSyamMMQzSJBURyYE0QvQGftoWwfwtJ3iiYw2aVtbtOURERCT9VGilIuLiFV6cv51GFYswquON1+gRERER+TsqtK7jclnGzA0jyWUZ36eRpoWLiIhIhqmKuM60VQdZe/A8r3SvQ1CJ/E7HERERkVxMhdY1dkZE8fYve7izbml6N6vodBwRERHJ5VRopYhLTGb07FCK5svDG/c30PRwERERyTStWZDizUXh7DsTwxdDQrTQoYiIiGQJXdEC/thzhs/XHGZwmyDaB5d0Oo6IiIh4CK8vtM7HxPPsN9sILl2A5zvXcjqOiIiIeBCv7jq01jJ2/naiYhP5YkgIgf6+TkcSERERD+LVV7RmbzzGkl2nea5zTWqXLeR0HBEREfEwXltoHTp3mf/7cRdtqhdniO6RJiIiIm7glYVWYrKL0bO3ksfPh3d6NcTHR0s5iIiISNbzyjFaH/y2j7DjUXz0QBPKFs7rdBwRERHxUF53RWvT4Ug+XLafnk0r0LV+WafjiIiIiAfzqkLrUlwio+eEUr5oXl7pXsfpOCIiIuLhvKrr8JUfdhJx8QrzHmlFwUB/p+OIiIiIh/OaK1o/bYtg/pYTPNGxBk0rF3M6joiIiHgBryi0TkZd4aXvdtCwYhFGdqzudBwRERHxEh5faLlcljFzw0hMdjGhTyP8fT3+KYuIiEgO4fFVx6erDrHmwHle6V6HoBL5nY4jIiIiXsSjC61dEdG8/cseOtUpTe9mFZ2OIyIiIl7GYwutuMRknpy9lSL5/HmzRwOM0ervIiIikr08dnmHNxeFs+9MDDOGhFAsfx6n44iIiIgX8sgrWsv3nuXzNYcZ1DqIDsElnY4jIiIiXsrjCq3zMfE8My+M4NIFGNulltNxRERExItlqtAyxrxtjAk3xmwzxnxnjCmSVcEywlrLC/O3ExWbyPg+jQn093UyjoiIiHi5zF7RWgLUs9Y2APYCL2Q+UsbN2XiMX3ed5tk7a1KnXCEno4iIiIhkrtCy1v5qrU1K+XYdUCHzkTLm0LnLvPbjLtpUL87QtlWciiEiIiLyX1k5RmsIsOhGG40xw40xm4wxm86ePZuFp4XEZBej54SSx8+Hd3o1xMdHSzmIiIiI8266vIMxZilQJpVNL1lrF6Ts8xKQBMy60XGstVOAKQDNmjWzGUp7AxN/20fYsYt82L8JZQvnzcpDi4iIiGTYTQsta+3tf7fdGDMI6AbcZq3N0gIqLTYfiWTSsv30aFKBuxqUze7Ti4iIiNxQphYsNcZ0Bp4DOlhrY7MmUtpdiktk9JxQyhfNy6t318nu04uIiIj8rcyO0ZoEFASWGGNCjTGfZEGmNHv1h12cuHCF93s3omCgf3aeWkREROSmMnVFy1pbPauCpNfCbSf5dstxRnWsTrOgYk7FEBEREbmhXLky/MmoK7z43XYaVizCyNtqOB1HREREJFW5rtByuSzPzAsjMdnF+D6N8PfNdU9BREREvESuq1I+W32I1fvP83K3OlQpkd/pOCIiIiI3lKsKrV0R0YxbvIdOdUrTp3lFp+OIiIiI/K1cU2jFJSYzes5WCufz580eDTBGq7+LiIhIzpapWYfZ6a3F4ew9HcOMISEUy5/H6TgiIiIiN5Urrmit2HuW6asPM6h1EB2CSzodR0RERCRNcnyhFXk5gTHzwgguXYCxXWo5HUdEREQkzXJ016G1lrHfbiMqNpEZg0MI9Pd1OpKIiIhImuXoK1pzNx3j112nefbOmtQpV8jpOCIiIiLpkmMLrUPnLvPaj7toXa04Q9tWcTqOiIiISLrlyEIrMdnF6Dmh+Pv68G7vhvj4aCkHERERyX1y5Bitib/vJ+zYRT7s34SyhfM6HUdEREQkQ3LcFa3NRyKZ9Ps+7m9SnrsalHU6joiIiEiG5ahCKyY+idFzQilfNC+v3V3X6TgiIiIimZKjug5f/WEnJy5cYe6IVhQM9Hc6joiIiEim5JgrWj9vP8k3m4/z+K3VaRZUzOk4IiIiIpmWIwqtU1FxvDB/Ow0rFmHUbTWcjiMiIiKSJRwvtFwuy5h5oSQkuRjfpxH+vo5HEhEREckSjlc1n60+xOr953m5ex2qlMjvdBwRERGRLONoobX7ZDTjFu/hjjql6du8opNRRERERLKcY4VWXGIyo2eHUjifP2/1aIAxWv1dREREPItjyzu8tTicPacv8fng5hTLn8epGCIiIiJu48gVrZi4JKavPsyg1kHcUrOUExFERERE3M6RQuvYhVhqlCrA2C61nDi9iIiISLZwpNBKdlnG921EoL+vE6cXERERyRaOFFplCgdSt1xhJ04tIiIikm0cKbRKFAhw4rQiIiIi2crxBUtFREREPJUKLRERERE3UaElIiIi4iYqtERERETcRIWWiIiIiJuo0BIRERFxExVaIiIiIm6iQktERETETYy1NvtPaswlYE+2nzjnKwGcczpEDqM2SZ3aJXVql9SpXf5KbZI6tUvqalprC2bkgX5ZnSSN9lhrmzl07hzLGLNJ7fK/1CapU7ukTu2SOrXLX6lNUqd2SZ0xZlNGH6uuQxERERE3UaElIiIi4iZOFVpTHDpvTqd2+Su1SerULqlTu6RO7fJXapPUqV1Sl+F2cWQwvIiIiIg3UNehiIiIiJu4tdAyxnQ2xuwxxuw3xoxNZXuAMWZOyvb1xpggd+bJCdLQJoOMMWeNMaEp/4Y5kTO7GWM+M8acMcbsuMF2Y4z5IKXdthljmmR3xuyWhja5xRgTdc1r5eXszugEY0xFY8wyY8wuY8xOY8yTqezjVa+XNLaJ171ejDGBxpgNxpiwlHZ5LZV9vPFzKC3t4pWfRQDGGF9jzFZjzE+pbEv/68Va65Z/gC9wAKgK5AHCgDrX7fMY8EnK132BOe7KkxP+pbFNBgGTnM7qQNu0B5oAO26wvSuwCDBAS2C905lzQJvcAvzkdE4H2qUs0CTl64LA3lTeR171ekljm3jd6yXl/3+BlK/9gfVAy+v28arPoXS0i1d+FqU896eBr1J7v2Tk9eLOK1ohwH5r7UFrbQIwG7jnun3uAWakfP0NcJsxxrgxk9PS0iZeyVq7Aoj8m13uAb6wV60DihhjymZPOmekoU28krX2pLV2S8rXl4DdQPnrdvOq10sa28TrpPz/j0n51j/l3/UDk73tcyit7eKVjDEVgLuAaTfYJd2vF3cWWuWBY9d8f5y/vvH/u4+1NgmIAoq7MZPT0tImAD1Suju+McZUzJ5oOV5a287btEq5/L/IGFPX6TDZLeWyfWOu/kV+La99vfxNm4AXvl5SuoFCgTPAEmvtDV8rXvI5BKSpXcA7P4vGA88BrhtsT/frRYPhc54fgSBrbQNgCf+/cha53hagsrW2ITAR+N7hPNnKGFMA+BYYba2NdjpPTnCTNvHK14u1Ntla2wioAIQYY+o5nSknSEO7eN1nkTGmG3DGWrs5K4/rzkLrBHBtBVwh5Wep7mOM8QMKA+fdmMlpN20Ta+15a218yrfTgKbZlC2nS8vryatYa6P/vPxvrf0Z8DfGlHA4VrYwxvhztaCYZa2dn8ouXvd6uVmbePPrBcBaexFYBnS+bpO3fQ79jxu1i5d+FrUB7jbGHObq0J6Oxpgvr9sn3a8XdxZaG4Eaxpgqxpg8XB009sN1+/wADEz5uifwu00ZYeahbtom140juZurYy3kajs9lDKbrCUQZa096XQoJxljyvw5NsAYE8LV97PHf0CkPOdPgd3W2vdusJtXvV7S0ibe+HoxxpQ0xhRJ+TovcAcQft1u3vY5lKZ28cbPImvtC9baCtbaIK5+Pv9urX3wut3S/Xpx202lrbVJxpgngF+4OtvuM2vtTmPM/wGbrLU/cPUXw0xjzH6uDvrt6648OUEa22SUMeZuIImrbTLIscDZyBjzNVdnRZUwxhwHXuHqAE2stZ8AP3N1Jtl+IBYY7EzS7JOGNukJPGqMSQKuAH09/QMiRRtgALA9ZYwJwItAJfDa10ta2sQbXy9lgRnGGF+uFpZzrbU/efPnUIq0tItXfhalJrOvF60MLyIiIuImGgwvIiIi4iYqtERERETcRIWWiIiIiJuo0BIRERFxExVaIiIiIm6iQktERETETVRoiYiIiLiJCi0RERERN/l/BW2hczEEZ7MAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 720x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["ax = df_demo[\"C\"].plot(figsize=(10, 4))\n", "ax.set_title(\"Hello there!\");\n", "fig = ax.get_figure()\n", "fig.suptitle(\"This title is super!\");"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["### Option 2: Draw on Matplotlib Axes"]}, {"cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAEVCAYAAAA4vUvOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Wd4VNX+9vHvSiGh995CC71D6KCoCAg2OopUwQaiWFDPsfzP8ajYQLBQFBFRiqKoCAqK9A4JNfQeeiAhhNRZzwvieTgYJG2yk5n7c11cJtl79r5nOZP5Za+yjbUWEREREcl6Pk4HEBEREfFUKrRERERE3ESFloiIiIibqNASERERcRMVWiIiIiJuokJLRERExE1UaIl4GWPMq8aYL/9m+05jzC1ZcJ4XjTHT/mb7IGPMqgwee5ExZmDG04mIZA8/pwOISNYyxsRc820+IB5ITvl+xM0eb62tm4Fz3gJ8aa2tcM1x/nPN9iDgEOBvrU1K7/FTydgls8dwkjHmVaC6tfZBp7OIiHvpipaIh7HWFvjzH3AU6H7Nz2Y5nc+bGWP0x62Il1GhJeKd8hhjvjDGXErpKmz25wZjzGFjzO0pX4cYYzYZY6KNMaeNMe9dfyBjTH5gEVDOGBOT8q/cdV2UK1L+ezFle6tUjlPLGLPEGBNpjNljjOl9o/DGmD+MMcNSvq5ujFlujIkyxpwzxsy5wWMCjTFfGmPOG2MuGmM2GmNKX/+cU77/b3ZjTJAxxhpjhhtjIowxJ40xz1yzr48xZqwx5kDKsecaY4pd99ihxpijwO83ek4i4plUaIl4p7uB2UAR4Adg0g32mwBMsNYWAqoBc6/fwVp7GegCRFxz5Sziut3ap/y3SMr2tdduTCnWlgBfAaWAvsBHxpg6aXgu/wJ+BYoCFYCJN9hvIFAYqAgUBx4BrqTh+H+6FagBdAKev6YwGwncC3QAygEXgA+ve2wHoDZwZzrOJyIeQIWWiHdaZa392VqbDMwEGt5gv0SgujGmhLU2xlq7zk15ugGHrbXTrbVJ1tqtwLdArzQ8NhGoDJSz1sZZa280wD6RqwVWdWttsrV2s7U2Oh0ZX7PWXrbWbgemA/1Sfv4I8JK19ri1Nh54Feh5XTfhqymPTU9hJyIeQIWWiHc6dc3XsUDgDcYPDQWCgfCUrrZubspTGWiR0qV30RhzEXgAKJOGxz4HGGBDSjfokBvsNxP4BZid0gU4zhjjn46Mx675+ghXr179mf27a3Lv5urkg9I3eKyIeBENzBSRG7LW7gP6GWN8gPuBb4wxxVO6C/9n15sd6ibbjwHLrbV3ZCDjKeBhAGNMW2CpMWaFtXb/dfslAq8Br6XMgvwZ2AN8Clzm6gzNP6VW4FUEwlO+rgT82T16DBhirV19/QNSzgPXPX9r7atpeW4ikvvpipaI3JAx5kFjTElrrQu4mPJjVyq7ngaKG2MK3+BQZ1MeV/UG238Cgo0xA4wx/in/mhtjaqchYy9jzJ/LSlzgalHzl4zGmFuNMfWNMb5ANFe7Ev/cLxTom3LeZkDPVE71T2NMPmNMXWAw8Oeg+0+A140xlVPOU9IYc8/NcouId1ChJSJ/pzOwM2VtrglA39TGGVlrw4GvgYMpXWjlrtseC7wOrE7Z3vK67Ze4Osi8L1evFJ0C3gIC0pCxObA+JeMPwJPW2oOp7FcG+IarRdZuYDlXuxMB/snVwf4XuHrV66tUHr8c2A/8Brxjrf015ecTUs77qzHmErAOaPF3gW+2mKuIeA5j7c2u6IuIeK+sXmxVRLyLrmiJiIiIuIkKLRERERE3UaElIo66wSrsWTIj+voV3zPCWnvYWmvUbSgiGaFCS0QyJbVixhgzyBhzo4VD3ZXjc2PMv7PznKlkyHRhJyKeRYWWiMhNZNUVNhHxPiq0RMTtUm4y/a0x5qwx5pAxZlQ6HvdDyo2m9xtjHr7BfsO5upL8cyk3rf7xms2NjDHbUm46PccYE3jN47oZY0JTlpxYY4xpcM22w8aY540x24DLxhi/jD4PEfFeKrRExK1SVpX/EQgDygO3AaONMWm5wfJs4DhXb3fTE/iPMabj9TtZa6cAs4BxKTet7n7N5t5cXQ+sCtAAGJSSqzHwGTCCq/dAnAz8YIy5du2ufsBdXL35tisTz0NEvJQKLRHJCt9fd5/Cj67Z1hwoaa39P2ttQspiolO5ujjpDRljKgJtgOdTbhYdCkwDHkpntg+stRHW2kiuFkqNUn4+HJhsrV2fcpPpGUA80PK6xx5LWaQ1Q89DRLybxh2ISFa411q79M9vjDGDgGEp31YGyqUUYH/yBVbe5JjlgMiUVeP/dARols5s199A+9qbQQ80xoy8Znuea7bD/94MOqPPQ0S8mAotEXG3Y8Aha22NdD4uAihmjCl4TbFVCThxg/3Te5uLY8Dr1trX/2afa4950+dhrQ1KZwYR8XDqOhQRd9sAXEoZWJ7XGONrjKlnjGn+dw+y1h4D1gBvGGMCUwaqDwW+vMFDTnPjm1anZirwiDGmhbkqvzHmLmNMwax8HiLi3VRoiYhbWWuTgW5cHRt1CDjH1bFWhdPw8H5AEFevbn0HvHJtF+V1PgXqpIwT+z4NuTYBDwOTuHoz6f2kDJTP6PMwxuw0xtxys3OLiPfQTaVFRERE3ERXtERERETcRIWWiIiIiJuo0BIRERFxExVaIiIiIm7iyDpaJUqUsEFBQU6cWkRERCRdNm/efM5aWzIjj3Wk0AoKCmLTpk1OnFpEREQkXYwxRzL6WHUdioiIiLiJCi0RERERN1GhJSIiIuImKrRERERE3ESFloiIiIibqNASERERcRMVWiIiIiJuokJLcqxLcYl8tf4oVxKSnY4iIiKSISq0JEey1vLidzt48bvtDJq+gZj4JKcjiYiIpJsKLcmRvg89wY9hEdxeuxSbjlzgoU/XE3Ul0elYIiIi6aJCS3KcY5GxvPz9TppVLsrkAc34sH9jtp+I4oFp67hwOcHpeCIiImmmQktylGSXZczcMCzwfp9G+PoYOtcry+QBTdl7OoZ+U9dx9lK80zFFRETSRIWW5CifLD/AhsOR/N89dalYLN9/f96xVmk+G9icw+cv03fKWk5FxTmYUkREJG1UaEmOse34Rd5fspduDcpyX+Pyf9netkYJvhjSglNRcfSZspbjF2IdSCkiIpJ2KrQkR4hNSGL07FBKFgzg9XvrY4xJdb+QKsWYOawFkZcT6DN5HUfOX87mpCIiImmnQktyhH8v3M2h85d5t3dDCufz/9t9m1QqytcPtyQ2IYlen6xl/5mYbEopIiKSPiq0xHFLd53mq/VHGd6uKq2rlUjTY+qVL8zs4a1wWUvfKWsJPxXt5pQiIiLpp0JLHHX2UjzPf7uNOmUL8XSn4HQ9tmaZgswZ0Qo/Hx/6TlnH9uNRbkopIiKSMSq0xDHWWp77JoyY+CQm9G1EgJ9vuo9RrWQB5o5oRf48fvSfto7NRy64IamIiEjGqNASx3y57gjL9pzlxa61qVG6YIaPU6l4PuY+0ori+fPw0KfrWXfwfBamFBERyTgVWuKI/Wcu8e+Fu+kQXJKHWlXO9PHKF8nLnBGtKFM4kEHTN7Bi79ksSCkiIpI5KrQk2yUkuXhydij5A/x4u1eDGy7lkF6lCwUyZ0QrgornZ9iMTfy2+3SWHFdERCSjVGhJtntvyV52RkTz5v31KVUwMEuPXaJAALOHt6RW2YKMmLmZRdtPZunxRURE0kOFlmSrtQfOM3nFAfqFVKRT3TJuOUeRfHn4clgLGlYswhNfb2VB6Am3nEdERORmVGhJtomKTWTM3FCCiufnn93quPVchQL9+WJICM2DijJ6TihzNx5z6/lERERSo0JLss0/F+zg9KV4xvdpRL48fm4/X/4AP6YPCqFt9RI89+02vlh72O3nFBERuZYKLckW3289wQ9hEYy+rQYNKxbJtvPmzePLtIHNuL12KV5esJOpKw5m27lFRERUaInbHYuM5Z/f76BZ5aI8dmv1bD9/gJ8vHz3QlLvql+X1n3cz8bd92Z5BRES8k/v7b8SrJbssY+aGYYH3+zTC1ydrlnJIrzx+Pimrz/vw7pK9xCe5GNMpOMuWlhAREUmNCi1xq0+WH2DD4Uje7dWQisXyOZrFz9eHd3o1JI+fD5OW7ScuMZmX7qqtYktERNxGhZa4zbbjF3l/yV7ualCW+5uUdzoOAD4+hv/cV58APx+mrTpEfJKL1+6ui49DV9pERMSzqdASt4hNSGL07FBKFgzgP/fWz1FXjXx8DK/eXZdAf18mrzhIXGIyb/Zo4Fi3poiIeC4VWuIWry/czaHzl5k1tAWF8/k7HecvjDGM7VKLAH9fPvhtHwnJLt7t1RA/X80PERGRrKNCS7Lc0l2nmbX+KMPbV6V19RJOx7khYwxP3xFMoL8P4xbvIT7RxQf9GpPHT8WWiIhkDX2iSJY6eyme57/dRu2yhRjTKdjpOGny2C3V+We3OizeeYpHvtxMXGKy05FERMRDqNCSLGOt5blvwoiJT0pZSsHX6UhpNrRtFf59bz1+Dz/DsBmbiE1IcjqSiIh4ABVakmW+XHeEZXvO8kKXWgSXLuh0nHR7sGVl3u7ZgDUHzjHos43ExKvYEhGRzMmSQssY85kx5owxZkdWHE9yn/1nLvHvhbvpEFySga2DnI6TYb2aVWR838ZsPnqBAZ+uJ+pKotORREQkF8uqK1qfA52z6FiSyyQkuRg9J5T8AX683bNBjlrKISPubliOD/s3YceJKB6Yto4LlxOcjiQiIrlUlhRa1toVQGRWHEtyn/eW7GXHiWjevL8+pQoFOh0nS3SuV4YpA5qx93QMfaes4+yleKcjiYhILpRtY7SMMcONMZuMMZvOnj2bXacVN1t38DyTVxygX0hFOtUt43ScLHVrrVJMH9Sco5Gx9JmyllNRcU5HEpFMstYyd9MxOo9fwYw1h0lIcjkdSTxcthVa1top1tpm1tpmJUuWzK7TihtFXUnk6TmhVC6Wj3/cVcfpOG7RpnoJZgwJ4Ux0PL0nr+X4hVinI4lIBl2KS+TJ2aE89802Ii8n8MoPO7nj/eUs3HYSa63T8cRDadahZNg/v9/B6UvxjO/bmPwBnrv2bUiVYswcGsLF2AR6f7KWw+cuOx1JRNIp7NhF7vpgFQu3n+SZTsGsfeE2pg9uTqCfL49/tYV7P1rDuoPnnY4pHkiFlmTIgtAT/BAWwejbatCoYhGn47hd40pF+erhllxJTKb35LXsP3PJ6UgikgYul2XKigP0+HgNyS7LnOEteaJjDXx9DLfWLMXPT7bj7Z4NOBMdR98p6xj6+Ub2ntb7W7KOyYrLpcaYr4FbgBLAaeAVa+2nN9q/WbNmdtOmTZk+rzjj+IVYuoxfSXCZgswZ3tKr7g+49/Ql+k9dj7WWL4e1oHbZQk5HEpEbOBcTz9Nzw1ix9yyd65bhrR4Nbnjv1bjEZKavPsxHf+zncnwSPZtW4Ok7alKmsGdM8JHMMcZsttY2y9BjneiXVqGVeyW7LP2mrGPXyWgWPdmOisXyOR0p2x08G0P/qeuJS0rmiyEhNKjg+Vf0RHKbVfvO8dTcUKKuJPJytzo80KJSmpaeuXA5gQ+X7eeLtUfw8YEhbarwyC3VKBSYeoEm3iEzhZb3XIqQLDF5xQE2HI7ktbvremWRBVC1ZAHmjmhFgQA/Hpi6ns1HtLKJSE6RmOzircXhDPhsPYXz+vPDE214sGXlNK/vVzR/Hv7RrQ6/jelA57pl+OiPA3QYt4zPVh0iPkn3QZX00xUtSbPtx6O476PV3Fm3DJP6N871C5NmVsTFK/Sfuo4zl+L5dGBzWlUr7nQkEa92LDKWUbO3svXoRfqFVOTlbnXJmydz91zdcSKKNxbtZvX+81Qslpdn76xFt/pl8fHx7t9/3kZdh+J2VxKSuWviSmLjk1k8uh1F8uVxOlKOcCY6jgemredoZCxTH2pG+2AtXSLihIXbTjJ2/jaw8EaP+nRrUC7Ljm2tZcW+c7y5KJzdJ6OpX74wL3SpRevqJbLsHJKzqetQ3O71n3dx8Oxl3uvdUEXWNUoVCmT28JZULVmAYTM2sXTXaacjiXiVKwnJvDB/G49/tYVqJQvw85PtsrTIAjDG0CG4JAtHtuW93g2JvJxA/2nrGTR9A+GnorP0XOJ5VGjJTf22+zRfrjvKw+2q6C+4VBQvEMDXD7egdtmCPPLlZhZuO+l0JBGvsOfUJe6etIrZG4/x6C3VmPdIK7eOHfXxMdzfpAK/jenAi11rseXIBbpMWMmYuWFEXLzitvNK7qauQ/lbZy/F03n8CkoVCuT7x1sT4Je58Q6eLDoukcHTN7L16AXe7d2Q+xpXcDqSiEey1jJr/VH+9dMuCgb6836fhrSrkf3d9hdjE/jojwN8vuYwAIPbBPHYLdUpnFczFD2NxmiJW1hrGTpjE6v2n+OnkW0JLl3Q6Ug53uX4JIbN2MS6Q+d547769A2p5HQkEY8SFZvI2PnbWLTjFO2DS/Jur4aULBjgaKbjF2J579e9fBd6gkKB/ozsWJ0BrSrrD1MPojFa4hZfrj/K7+FneKFLLRVZaZQ/wI/pg5vTvkZJxs7fzhdrDzsdScRjbDocSdcPVrJk12le7FqLzwc1d7zIAqhQNB/v9WnEwpHtaFixCP9euJuO7yzn+60ncLl0D0Vvp0JLUrX/TAyvL9xF++CSDGod5HScXCXQ35cpDzXljjqleXnBTqasOOB0JJFcLdllmfT7PvpMWYevj+GbR1szvH21HLfEQp1yhfhiSAhfDm1BkXz+jJ4TSvdJq1i175zT0cRB6jqUv0hIcnH/x6s5ceEKv4xuT6lCugVFRiQmuxg9J5SF207y9B3BjOxY3evXHhNJr9PRcYyeHcrag+e5u2E5Xr+vHgVzwSrtLpflx20RvP3LHo5fuEK7GiUY26UWdcsVdjqaZEBmug79sjqM5H7vL93LjhPRTB7QVEVWJvj7+jChTyMCfH14b8le4hKTefbOmiq2RNLo9/DTPDNvG1cSkhnXswG9mlbINe8fHx/DPY3K07leGWauPcKkZfvpNnEV9zYqz5hOwVQo6p131vBGKrTkf6w7eJ5Plh+gb/OK3Fm3jNNxcj0/Xx/e6dWQAH9fPvrjAHGJLv7ZrXau+bAQcUJ8UjLjFu/h01WHqFWmIJP6N6F6qQJOx8qQAD9fhrWrSq9mFfn4jwNMX32IhdtOMrB1ZR6/tbrWJfQC6jqU/4q6kkjXCSvx9zUsHNWO/AGqw7OKtZbXftzF52sO80CLSvzrnno5bnyJSE5w6NxlRn69hR0nohnYqjIvdK1NoL/nzN6LuHiF95fs5ZstxykY4Mfjt1ZnYOsgj3qOnkhdh5IlXl6wg1PRcXzzSCsVWVnMGMMr3esQ6O/LJ8sPEJ/k4q0eDfBVsSXyX99tPc4/vtuBn68PUwY0pZMHXlUvVyQvb/dqyNB2VXhrUThvLApnxprDjOlUk3sbl9fvBA+kT1MBYEHoCRaERvD0HcE0rlTU6TgeyRjD851rEujvw/il+0hIcvFu74b4+2ryr3i3y/FJ/HPBDuZvOUFIUDHG921EuSJ5nY7lVrXKFGL64BDWHLh6D8Ux88KYuvIgY7vUokNwSQ0v8CDqOhSOX4ily4SVBJcuyJzhLfHTB7/bffzHAd5aHM6ddUszsV8T8vipzcU77TgRxcivt3Lk/GWe6FiDUR2re93vIJfLsnD7Sd7+ZQ9HI2NpU704L3SpTb3ymqGYU2jBUsmwZJfl6blhWAvv927kdb/gnPLoLdV4pXsdftl5mhEzNxGXmOx0JJFsZa3ls1WHuP+jNVxJSOarh1vy9B3BXvk7yMfH0L1hOZY+3YFXutdh98lLdJu4iidnb+VYZKzT8SST1HXo5SavOMCGQ5G806shlYprunF2GtymCgF+vrz0/XaGztjI1IeakS+P3pLi+SIvJ/DsvDB+Cz/D7bVLMa5nQ4rl1+y7PH4+DG5ThR5NKzB5+QE+XXWIRdtP8WDLyozsWJ2iaqNcSV2HXmzHiSju/XA1neqW5sP+TTQmwCHfbj7Os9+E0axyMT4d1CxXLMYoklFrD5xn9JytXLicyAtdazGodZB+99zAqag43l+yl3mbj5E/jx+P3lqNIW2qaIaiA3RTaUm3KwnJ3DVxJbHxySwe3U5ruTjsx7AIRs8JpX75wswYEkLhvCq2xLMkJbv44Ld9TFy2nyrF8/NBv8Yag5RGe09fYtzicJbuPkOZQoE83SmYHk0qaIZiNtIYLUm313/excGzl3m3d0MVWTlA94bl+OiBJuyMiKL/1HVEXk5wOpJIljlx8Qr9pq7jg9/306NJBX4c2VZFVjoEly7ItIHNmTO8JaULB/LcN9voOmEly8LP4MTFEkkfFVpe6Pfw03y57ijD2lahTfUSTseRFHfWLcPUh5qx/0wMfaes5cylOKcjiWTa4h2n6DphJbsiohnfpxHv9GqodfoyqEXV4nz/WGs+eqAJ8UnJDP58I/2mriPs2EWno8nfUNehlzkXE0/n8SsoUSCABU+0IcBPff05zZr95xg6YxNlCwcy6+EWlC3s2esJiWeKS0zm9YW7mbnuCPXLF2Ziv8YElcjvdCyPkZjs4usNR5mwdB/nLydwV4OyPHdnTSoXVxu7g8ZoSZpYaxk6YxOr9p/jxyfaUrNMQacjyQ1sOhzJoOkbKZrfn6+GtaRiMc0Ildxj/5lLPPHVVsJPXeLhdlV49s5aWivOTS7FJTJ1xUGmrjxEksvFAy2uzlAsXiDA6WgeRWO0JE1mrT/K7+FnGNu5loqsHK5ZUDG+HNaCqNhE+kxey6Fzl52OJHJT1lpmbzhKt4mrOHspnumDm/PSXXVUZLlRwUB/nu5Uk+XP3kLPphWZue4IHd7+g0m/7+NKgtbnywl0RctL7D8TQ7eJK2keVIwZg0N0Q+NcYmdEFAM+3YCfj2HWsBbUKK0CWXKm6LhEXpy/nZ+2naRN9eK837sRpQoFOh3L6+w/E8O4xeH8uus0pQsF8NTtwfRsWsErF4LNSuo6lL+VkOTi/o9Xc+LCFRaPbk9p/fLLVfaevsQD09aT7LJ8ObQFdcoVcjqSyP/YevQCo2ZvJeJiHE/fEcwjHapp6QGHbTocyX9+3s2WoxepUaoAz3Wuxe21S2nNsgxS16H8rfFL97LjRDRv3N9ARVYuFFy6IHNHtCLAz0czjCRHcbksH/9xgF6frMXlgrkjWvL4rdVVZOUAzYKK8e2jrfnkwaYkuywPf7GJPpPXsfXoBaejeR0VWh5u/cHzfLz8AH2aVaRzvTJOx5EMqlIiP3NHtKJQXj8enLaeTYcjnY4kXu7MpTgGTt/AW4vD6VS3ND8/2Y6mlYs5HUuuYYyhc70y/PJUe/59bz0OnrvMfR+t4bFZmzXuMxup69CDRccl0mX8Svx8DT+Paqe1azzAyagr9J+6ntPRcXw6sDmtqhV3OpJ4oRV7z/L03FAuxSXxSve69AupqC6pXOByfBJTVx5kyoqDJCS56N+iEqNuq0EJzVC8KXUdSqpe/n4Hp6LjGN+nkYosD1G2cF7mDG9J+SJ5GTR9A8v3nnU6kniRxGQXbyzazUOfbaBY/jz88ERb+reopCIrl8gf4Mfo24NZ/uyt9A2pyKz1R+kwbhkTlu7jcnyS0/E8lgotD7Ug9ATfh0YwqmMNGlcq6nQcyUKlCgUye3hLqpUswMMzNvHrzlNORxIvcPR8LD0/Wcvk5Qfp36ISCx7XWny5VcmCAfz73voseao97YNL8v7SvXR4+w9mrT9CUrLL6XgeR12HHujExSt0Hr+CGqUKMHdEK03r9VBRsYk8NH0DO09EMaFvY+5qUNbpSOKhfgyL4MX528HAWz0a0LW+XmueZPORC7y5aDcbD1+gasn8PN+5Fp3qlNaVymuo61D+K9lleXpOKC6XZXyfxiqyPFjhfP58OTSExpWKMPLrLczfctzpSOJhYhOSeP6bbYz8eis1Shfg51HtVGR5oKaVizJ3RCumDGiKAUbM3EzPT9ay+Ygm3WQFfQp7mCkrDrL+UCSv3l2XSsV12xZPVzDQnxlDQmhZtThj5oXx9YajTkcSD7H7ZDTdJ65i7uZjPHZLNeaMaKVbQXkwYwyd6pbhl9HteeP++hyNjKXHx2sZMXMTB87GOB0vV8uSQssY09kYs8cYs98YMzYrjinpt+NEFO8t2UPX+mXo2bSC03Ekm+TL48dng5rTIbgkL8zfzuerDzkdSXIxay0z1x7mng9XEx2XxJdDW/Bc51r46+q4V/Dz9aFfSCWWP3sLY+4IZvX+83R6fwUvfredM5finI6XK2V6jJYxxhfYC9wBHAc2Av2stbtu9BiN0cp6VxKS6TZxJTHxSSx+sj1F8+dxOpJks/ikZEZ+tZVfd51mbJdaPNKhmtORJJe5GJvA899u45edp7mlZkne6dVQU/+93LmYeCb+to9Z64+Sx8+HYe2qMrx9VQp42Ux2p8dohQD7rbUHrbUJwGzgniw4rqTDf37ezYGzl3m3VyMVWV4qwM+XDx9oQveG5XhzUTgTlu7DickukjttPBxJ1wkr+T38DC91rc1nA5uryBJKFAjgtXvqsfTpDtxasxQf/LaPW95exsy1h0nUDMU0yYpCqzxw7Jrvj6f8TLLJsvAzzFx3hGFtq9C2Rgmn44iD/H19GN+nET2aVOD9pXsZ98seFVvyt5Jdlg9+20efyWvx9/Ph20db83D7qrrxvPyPoBL5+fCBJnz/eBuqlSzAPxfspNP7K1i0/aR+x9xEtl37M8YMB4YDVKpUKbtO6/HOxcTz7Ddh1CpTkGfurOl0HMkBfH0Mb/dsQIC/Dx//cYC4xGRe7lZHU7XlL05FxTF6zlbWHYzknkbl+Pe99SgY6O90LMnBGlUswuzhLVm25wxvLgrn0VlbaFypCC90qU1IFd2CKTVZUWidACpe832FlJ/9D2vtFGAKXB2jlQXn9XrWWp7/ZhvRcUnMGtaSQH9fpyNJDuHjY3j93noE+PkwffVh4pNc/PueerpKIf/12+7TPDMvjLhEF2/3bEDPphVUjEuaGGPoWKs0HYJL8e3m47xNRC1SAAAfhUlEQVS7ZA+9J6/l9tqlGdulJtVLaSHba2VFobURqGGMqcLVAqsv0D8Ljis38dWGo/wWfoaXu9XRCs3yF8YYXu5Wh0B/Xz7+4wDxiS7G9WyAr4otrxaflMybi8KZvvowdcoWYmL/xlQrWcDpWJIL+foYejevSPeG5fhs9SE++eMAnd5fQZ/mFRl9ezClCwU6HTFHyHShZa1NMsY8AfwC+AKfWWt3ZjqZ/K0DZ2P410+7aFejBINaBzkdR3IoYwzP3VmTvP6+vLdkL/FJybzfp5Gm6nupg2djGPn1VnZGRDOodRBju9TSlXDJtLx5fHn81ur0C6nExN/38eW6I3y39QTD2lZlRIeqXt8drVvw5EIJSS56fLyG4xdiWTy6vf5qkDSZvPwAbywKp1Od0kzs35gAP33AepNvNx/nnwt2kMfPh7d7NuSOOqWdjiQe6uj5WN75dQ8/hEVQLH8eRnWsTv8Wlcnjl3v/wHN6eQfJZhN+28v2E1G8cX99FVmSZiM6VOPV7nX4dddpRszcTFxistORJBvExCfx1JxQxswLo175wix6sp2KLHGrSsXz8UG/xvzwRBtqli7Iqz/u4o73l/PTtgivnKGoQiuX2XAoko/+OEDvZhXoXE/3HJP0GdSmCm/cX5/le88y5PONxCYkOR1J3Gj78Si6fbCSBaEneOr2YL5+uCVlC+d1OpZ4iQYVivDVwy2YPrg5ef19eeKrrdz74WrWHjjvdLRspa7DXCQ6LpEu41fi52v4eVQ78nvZyrySdeZvOc4z88JoWrkonw1q7vVjKDyNy2X5bPUh3locTokCAYzv04gWVYs7HUu8WLLLMn/Lcd5bspeTUXF0rFWK5zvXyjUTuTLTdahCKxd5ak4oP4RFMO+RVjSpVNTpOJLLLdx2kidnb6Vu+cJ8MTiEwvlUbHmC8zHxPDMvjGV7znJHndKM69FAd4uQHCMuMZnP1xzmw2X7uRyfRM+mFXjqjuAcf6VVhZYX+CEsglFfb2X07TUYfXuw03HEQyzZdZrHZ22heqkCzBwaQnHdciVXW7P/HKPnhHLxSiL/uKs2A1pW1tpYkiNduJzAh8v288XaIxgDQ9pW4dFbqlEoh15dV6Hl4U5cvELn8SuoUaoAc0e0wk9T8yULLd97luFfbKJSsXzMergFpQpqgkVuk5Ts4v2le/nojwNUKZGfSf2aUKdcIadjidzUschY3v11D9+HRlA0nz9PdKzBgy0r5bhZ0Sq0PFiyy9J/6jp2nIji5yfbUbl4fqcjiQdac+Acw2ZsokyhQGY93CLHX8aX/+/4hVienB3K5iMX6N2sAq/eXZd8eTR+U3KXHSeieGtxOCv3naNisbw806km3RuUyzF3s9DyDh5s6sqDrD8UySt311WRJW7TuloJvhgSwtlL8fSevJZjkbFOR5I0WLT9JF0nrGTPqUtM6NuIcT0bqsiSXKle+cLMHNqCL4aEUCDAnydnh3LPh6tZs/+c09EyTYVWDrbjRBTv/rqHLvXK0KtpBafjiIdrFlSMWQ+3IPpKEr0nr+Xg2RinI8kNxCUm8+J323l01haqlMjPwlFtuadReadjiWRa++CSLBzZlvf7NCTycgL9p61n4Gcb2H0y2uloGaauwxzqSkIy3SauJCY+icVPttesIck2uyKiGfDpenx8DF8Na0GN0rlj+rW32Hv6EiO/2sqe05cY0b4qYzrVzNUrbovcSFxiMjPXHmHSsv1ExyVyf+MKPN0pmPJFsn9og7oOPdAbi3Zz4Oxl3unVUEWWZKs65Qoxe3hLDNBnyjp2RkQ5HUkAay1frT/K3ZNWcS4mnhlDQniha20VWeKxAv19ebh9VVY8eyvD21Xlx20R3PrOH7yxaDdRsYlOx0szvUNzoGXhZ/hi7RGGtq1CuxolnY4jXqhG6YLMGdGKQD8f+k1ZR9ixi05H8mpRVxJ54qutvPjddppVLsaiJ9vRIVi/G8Q7FM7nzwtda7PsmVvo3qAcU1YcpP3by5i64mCuuJWYug5zmHMx8XQev4ISBQL4/vE2BPrnrCmu4l2ORcbSf9o6LlxOZPrg5jQPKuZ0JK+z+cgFRn29lVPRcYzpFMwj7avlmJlYIk7YFRHNW4vDWb73LOWL5OWZO4O5p2F5t74v1HXoIay1jP12G9FxSYzv20hFljiuYrF8zB3RilIFA3jo0w0eMQMot3C5LB8u20/vyWsxBuY90orHbqmuIku8Xp1yhZgxJIRZw1pQNL8/T80Jo9vEVazcd9bpaKlSoZWDfLXhKEt3n+H5zrWoVUaLDUrOULZwXmaPaEnFYnkZ/PlG/thzxulIHu9MdBwDPlvP27/soXPdMiwc1U633RK5TpvqJfjh8bZM6NuI6LhEBny6gQGfrmfHiZw1rlRdhznEgbMx3PXBSpoHFWPG4BD91So5TuTlBAZ8up69py/xYf8mdKpbxulIHumPPWcYMzeMywlJvNK9Ln2bV9RtdERuIj4pmS/XHWXi7/u4GJvIfY3LM6ZTMBWK5suS42tl+FwuMdlFj4/XcDQyll9Gt6d0Id0CRXKmqNhEBk7fwI4TUYzv24huDco5HcljJCS5ePuXcKauPETN0gWZ1L+xltYQSaeoK4l8svwAn606hLXwUKvKPNGxOkXyZW72vsZo5XLjl+5l2/Eo3ry/voosydEK5/Nn5tAQGlcqwqivt/Lt5uNOR/IIh89dpucna5i68hAPtKjEgifaqMgSyYDCef15vnMt/nj2Fu5pVI5PVx+i/bhlfLL8gGMzFHVFy2EbDkXSZ8paejWtwLieDZ2OI5ImsQlJPPzFJlbvP89/7qtP/xaVnI6Uay0IPcFL3+3Ax8BbPRrQpX5ZpyOJeIzwU9G8tSicZXvOUq5wIE93qsl9jcvjm87hOeo6zKWi4xLpMn4lfr6GhaPaUSBA9yiT3CMuMZlHv9zMsj1neaV7HQa3qeJ0pFwlNiGJVxbsZN7m4zStXJQJfRtl2XgSEflfaw+c581Fuwk7HkWtMgUZ26UWHYJLpnn8o7oOc6lXFuzkVHQc7/dppCJLcp1Af18mD2jGnXVL89qPu/j4jwNOR8o1dkZE0W3iKr7Zcpwnbq3OnOEtVWSJuFGrasX5/vE2TOrfmNiEZAZN38gD09az/bj7Zyiq0HLID2ERfLf1BCM7Vte0bcm18vj5MKl/E7o3LMdbi8MZv3QvTlwlzy2stcxYc5j7PlxDTFwSs4a24Jk7a+Lnq1/FIu5mjKFbg3IsfboDr3avQ/ipS3SftIpRX2/lWGSs286ryygOiLh4hX98t53GlYrwxK3VnY4jkin+vj6M79OIAD8fxi/dR1yii+c719SSBNe5cDmB577dxpJdp7m1Zkne6dWQ4gUCnI4l4nXy+PkwqE0VejStwOTlB5m26iCLdpxkQMsgnuhYnWJZfH9hFVrZLNlleXpuKMkuy/g+jfSXrHgEXx/DuB4NCPT3+e/snle611GxlWL9wfOMnhPKuZh4/nFXbYa2raK2EXFYwUB/nrmzJg+2rMz4pXv5fM0h5m06xiO3VGNImyrkzZM1d2dRoZXNpq08yLqDkYzr2YDKxfM7HUcky/j4GP51Tz0C/Hz5dNUh4pNcvH5vPa9efDfZZZn4+z4++G0flYrlY/6jbahfobDTsUTkGmUKB/JmjwYMbVuFtxbv4e1f9jBz7RGeviOYHk0rpHuG4vVUaGWjHSeieOfXq7fU6NW0gtNxRLKcMYZ/3FWbQH8fPlx2gPikZMb1aOCVV25PRl3hydmhbDgUyf2Ny/N/99bTpBeRHKxG6YJMG9iMDYci+c/Pu3nu221MW3WQsV1qZeq4etdnkysJyYyeE0qx/Hl44/766jYQj2WM4dk7axHo58u7S/YSn+RifJ9G+HtRsbVk12me/SaMhCQX7/ZqSA/9YSWSa4RUKcZ3j7Vm0Y5TjFsczpDPM7cclQqtbPLmot3sPxPDzKEhFM3igXYiOdHI22oQ4O/Df34OJyHJxaT+jQnwy5oxDzlVXGIyby4K5/M1h6lbrhAT+zWmaskCTscSkXQyxtC1flnuqFOa2RuO8tBbGT+W9/yJ6aBle84wY+0RhrSpQrsaJZ2OI5Jthrevxmt312XJrtMM/2KzY7fAyA4HzsZw30dr+HzNYYa0qcL8x1qryBLJ5fx9fRjQKihTx9AVLTc7FxPPs/O2UatMQZ7rXNPpOCLZbmDrIAL9fRg7fzuDp29k2sBm5PegsUrWWuZtPs4rC3YS6O/DpwObcVvt0k7HEpEcwnN+2+VA1lrGfrud6CuJfDkshEB/z+42EbmRPs0rkcfPhzFzwxj42QY+G9ycQoH+TsfKtEtxifzj+x0sCI2gZdVijO/TmDKFdWN4Efn/1HXoRl9vOMbS3ad5rnNNapUp5HQcEUfd17gCk/o3IfTYRQZMW8/F2ASnI2VK2LGLdJu4ih/DInj6jmBmDWupIktE/kKFlpscPBvDv37aRdvqJRiim+2KANC1flk+ebApu09eot/U9ZyPiXc6Urq5XJYpKw7Q4+M1JCa5mDOiFaNuq5HptXZExDOp0HKDxGQXo+eEEuDvw7u9G3r1go0i17u9TmmmDWzGoXMx9JmyjjPRcU5HSrNzMfEM/nwj//k5nI61SvHzk+1oHlTM6VgikoOp0HKDCUv3se14FG/cV5/ShdSVIHK99sEl+XxwCBEXr9B78loiLl5xOtJNrdp3ji4TVrL24Hn+dU9dJg9oSpF8WqpFRP6eCq0stvFwJB/9sZ9eTSvQpX5Zp+OI5FgtqxZn5tAQzsck0HvyWo5FxjodKVWJyS7eWhzOgM/WUzivPwseb8OAVkFadFhE0iRThZYxppcxZqcxxmWMaZZVoXKr6LhERs8OpULRfLxyd12n44jkeE0rF2PWwy24FJdEr0/WcvBsjNOR/sexyFh6T17Lx38coHfTivzwRBtql9XEFhFJu8xe0doB3A+syIIsud6rC3ZyKjqO9/s00j3NRNKoQYUizB7eksRkF70nr2Pv6UtORwJg4baTdP1gJftPxzCxX2Pe6tmAfHn0vhaR9MlUoWWt3W2t3ZNVYXKzH8MimL/1BE/cWp2mlYs6HUckV6ldthBzRrTEx0DfKevYcSLKsSxXEpJ5Yf42Hv9qC1VLFmDhqHZ0b1jOsTwikrtl2xgtY8xwY8wmY8yms2fPZtdps0XExSu89N12GlUswsiO1Z2OI5IrVS9VkLkjWpHX35f+U9ex9eiFbM+w59Ql7p60iq83HGNEh6p880grKhXPl+05RMRz3LTQMsYsNcbsSOXfPek5kbV2irW2mbW2WcmSnnO/P5fLMmZuGEkuy/g+jfDz1fwCkYwKKpGfOSNaUiRfHgZ8uoGNhyOz5bzWWr5cd4S7J63iQmwCXwwJ4YUutfHX+1lEMummAw6stbdnR5DcaurKg6w9eJ5xPRoQVCK/03FEcr0KRfMxd0Qr+k9bx0OfbmDawGa0qV7CbeeLik1k7PxtLNpxinY1SvBe70aULBjgtvOJiHfRn2uZsDMiind+3UPnumXo1ayC03FEPEaZwoHMGd6KSsXyMfjzjSzbc8Yt59l0OJKuH6xkya7TjO1SixmDQ1RkiUiWyuzyDvcZY44DrYCFxphfsiZWzheXmMyTs0Mpmi8Pb9xfX2vqiGSxkgUD+Hp4S4JLF2D4F5tYvONUlh072WWZ9Ps++kxZh48PzHukFY90qKa7OIhIlsvsrMPvrLUVrLUB1trS1to7sypYTvfGz7vZfyaGd3s3pGh+rQ4t4g7F8udh1rCW1CtfmMe/2sIPYRGZPubp6DgenLaed37dS5d6ZVg4qh2NK2mmsIi4hxaFyYBle84wY+0RhrSpQrsanjOwXyQnKpzXn5lDWzDk842Mnr2VhCQXPZtmrKv+9/DTPDNvG7EJSbzVoz69m1XU1WgRcSuN0Uqn8zHxPDtvGzVLF+S5zjWdjiPiFQoE+DFjcAitq5XgmXlhzFp/JF2Pj09K5l8/7WLI55soVTCAn0a2pU/zSiqyRMTtdEUrHay1PP/tdqKvJDJzaAiB/r5ORxLxGnnz+DJtYDMem7WFl77bQXyiiyFtq9z0cYfOXWbk11vYcSKah1pV5sWutfXeFZFso0IrHWZvPMbS3af5x121db8zEQcE+vvyyYNNeXL2Vv7vp13EJSXz2C03XiT4u63H+cd3O/Dz9eGTB5vSuV6ZbEwrIqJCK80Ono3h/37cRdvqJRjS5uZ/RYuIe+Tx82Fiv8aMmRfGuMV7iEt08dTtNf6nG/ByfBL/XLCD+VtO0DyoKOP7NqZ8kbwOphYRb6VCKw0Sk108NSeUAH8f3unVUFPARRzm5+vDe70bEeDnwwe/7SM+MZmxXWphjGHHiShGfr2Vw+cvM+q2GozqWF13bBARx6jQSoMPfttH2PEoPnqgCWUKBzodR0QAXx/Dm/c3II+fD5NXHCQ+yUWlYvl4c1E4RfP789WwlrSqVtzpmCLi5VRo3cTGw5F8uGw/PZtWoGv9sk7HEZFr+PgY/nVPPQL9fJm26hAAt9Uqxdu9GlJM69uJSA6gQutvRMcl8tScUCoUzcerd9d1Oo6IpMIYw0t31aZC0bz4+/nQP0TLNohIzqFC62+8+sNOIi5eYd4jrSkQoKYSyamMMQzSJBURyYE0QvQGftoWwfwtJ3iiYw2aVtbtOURERCT9VGilIuLiFV6cv51GFYswquON1+gRERER+TsqtK7jclnGzA0jyWUZ36eRpoWLiIhIhqmKuM60VQdZe/A8r3SvQ1CJ/E7HERERkVxMhdY1dkZE8fYve7izbml6N6vodBwRERHJ5VRopYhLTGb07FCK5svDG/c30PRwERERyTStWZDizUXh7DsTwxdDQrTQoYiIiGQJXdEC/thzhs/XHGZwmyDaB5d0Oo6IiIh4CK8vtM7HxPPsN9sILl2A5zvXcjqOiIiIeBCv7jq01jJ2/naiYhP5YkgIgf6+TkcSERERD+LVV7RmbzzGkl2nea5zTWqXLeR0HBEREfEwXltoHTp3mf/7cRdtqhdniO6RJiIiIm7glYVWYrKL0bO3ksfPh3d6NcTHR0s5iIiISNbzyjFaH/y2j7DjUXz0QBPKFs7rdBwRERHxUF53RWvT4Ug+XLafnk0r0LV+WafjiIiIiAfzqkLrUlwio+eEUr5oXl7pXsfpOCIiIuLhvKrr8JUfdhJx8QrzHmlFwUB/p+OIiIiIh/OaK1o/bYtg/pYTPNGxBk0rF3M6joiIiHgBryi0TkZd4aXvdtCwYhFGdqzudBwRERHxEh5faLlcljFzw0hMdjGhTyP8fT3+KYuIiEgO4fFVx6erDrHmwHle6V6HoBL5nY4jIiIiXsSjC61dEdG8/cseOtUpTe9mFZ2OIyIiIl7GYwutuMRknpy9lSL5/HmzRwOM0ervIiIikr08dnmHNxeFs+9MDDOGhFAsfx6n44iIiIgX8sgrWsv3nuXzNYcZ1DqIDsElnY4jIiIiXsrjCq3zMfE8My+M4NIFGNulltNxRERExItlqtAyxrxtjAk3xmwzxnxnjCmSVcEywlrLC/O3ExWbyPg+jQn093UyjoiIiHi5zF7RWgLUs9Y2APYCL2Q+UsbN2XiMX3ed5tk7a1KnXCEno4iIiIhkrtCy1v5qrU1K+XYdUCHzkTLm0LnLvPbjLtpUL87QtlWciiEiIiLyX1k5RmsIsOhGG40xw40xm4wxm86ePZuFp4XEZBej54SSx8+Hd3o1xMdHSzmIiIiI8266vIMxZilQJpVNL1lrF6Ts8xKQBMy60XGstVOAKQDNmjWzGUp7AxN/20fYsYt82L8JZQvnzcpDi4iIiGTYTQsta+3tf7fdGDMI6AbcZq3N0gIqLTYfiWTSsv30aFKBuxqUze7Ti4iIiNxQphYsNcZ0Bp4DOlhrY7MmUtpdiktk9JxQyhfNy6t318nu04uIiIj8rcyO0ZoEFASWGGNCjTGfZEGmNHv1h12cuHCF93s3omCgf3aeWkREROSmMnVFy1pbPauCpNfCbSf5dstxRnWsTrOgYk7FEBEREbmhXLky/MmoK7z43XYaVizCyNtqOB1HREREJFW5rtByuSzPzAsjMdnF+D6N8PfNdU9BREREvESuq1I+W32I1fvP83K3OlQpkd/pOCIiIiI3lKsKrV0R0YxbvIdOdUrTp3lFp+OIiIiI/K1cU2jFJSYzes5WCufz580eDTBGq7+LiIhIzpapWYfZ6a3F4ew9HcOMISEUy5/H6TgiIiIiN5Urrmit2HuW6asPM6h1EB2CSzodR0RERCRNcnyhFXk5gTHzwgguXYCxXWo5HUdEREQkzXJ016G1lrHfbiMqNpEZg0MI9Pd1OpKIiIhImuXoK1pzNx3j112nefbOmtQpV8jpOCIiIiLpkmMLrUPnLvPaj7toXa04Q9tWcTqOiIiISLrlyEIrMdnF6Dmh+Pv68G7vhvj4aCkHERERyX1y5Bitib/vJ+zYRT7s34SyhfM6HUdEREQkQ3LcFa3NRyKZ9Ps+7m9SnrsalHU6joiIiEiG5ahCKyY+idFzQilfNC+v3V3X6TgiIiIimZKjug5f/WEnJy5cYe6IVhQM9Hc6joiIiEim5JgrWj9vP8k3m4/z+K3VaRZUzOk4IiIiIpmWIwqtU1FxvDB/Ow0rFmHUbTWcjiMiIiKSJRwvtFwuy5h5oSQkuRjfpxH+vo5HEhEREckSjlc1n60+xOr953m5ex2qlMjvdBwRERGRLONoobX7ZDTjFu/hjjql6du8opNRRERERLKcY4VWXGIyo2eHUjifP2/1aIAxWv1dREREPItjyzu8tTicPacv8fng5hTLn8epGCIiIiJu48gVrZi4JKavPsyg1kHcUrOUExFERERE3M6RQuvYhVhqlCrA2C61nDi9iIiISLZwpNBKdlnG921EoL+vE6cXERERyRaOFFplCgdSt1xhJ04tIiIikm0cKbRKFAhw4rQiIiIi2crxBUtFREREPJUKLRERERE3UaElIiIi4iYqtERERETcRIWWiIiIiJuo0BIRERFxExVaIiIiIm6iQktERETETYy1NvtPaswlYE+2nzjnKwGcczpEDqM2SZ3aJXVql9SpXf5KbZI6tUvqalprC2bkgX5ZnSSN9lhrmzl07hzLGLNJ7fK/1CapU7ukTu2SOrXLX6lNUqd2SZ0xZlNGH6uuQxERERE3UaElIiIi4iZOFVpTHDpvTqd2+Su1SerULqlTu6RO7fJXapPUqV1Sl+F2cWQwvIiIiIg3UNehiIiIiJu4tdAyxnQ2xuwxxuw3xoxNZXuAMWZOyvb1xpggd+bJCdLQJoOMMWeNMaEp/4Y5kTO7GWM+M8acMcbsuMF2Y4z5IKXdthljmmR3xuyWhja5xRgTdc1r5eXszugEY0xFY8wyY8wuY8xOY8yTqezjVa+XNLaJ171ejDGBxpgNxpiwlHZ5LZV9vPFzKC3t4pWfRQDGGF9jzFZjzE+pbEv/68Va65Z/gC9wAKgK5AHCgDrX7fMY8EnK132BOe7KkxP+pbFNBgGTnM7qQNu0B5oAO26wvSuwCDBAS2C905lzQJvcAvzkdE4H2qUs0CTl64LA3lTeR171ekljm3jd6yXl/3+BlK/9gfVAy+v28arPoXS0i1d+FqU896eBr1J7v2Tk9eLOK1ohwH5r7UFrbQIwG7jnun3uAWakfP0NcJsxxrgxk9PS0iZeyVq7Aoj8m13uAb6wV60DihhjymZPOmekoU28krX2pLV2S8rXl4DdQPnrdvOq10sa28TrpPz/j0n51j/l3/UDk73tcyit7eKVjDEVgLuAaTfYJd2vF3cWWuWBY9d8f5y/vvH/u4+1NgmIAoq7MZPT0tImAD1Suju+McZUzJ5oOV5a287btEq5/L/IGFPX6TDZLeWyfWOu/kV+La99vfxNm4AXvl5SuoFCgTPAEmvtDV8rXvI5BKSpXcA7P4vGA88BrhtsT/frRYPhc54fgSBrbQNgCf+/cha53hagsrW2ITAR+N7hPNnKGFMA+BYYba2NdjpPTnCTNvHK14u1Ntla2wioAIQYY+o5nSknSEO7eN1nkTGmG3DGWrs5K4/rzkLrBHBtBVwh5Wep7mOM8QMKA+fdmMlpN20Ta+15a218yrfTgKbZlC2nS8vryatYa6P/vPxvrf0Z8DfGlHA4VrYwxvhztaCYZa2dn8ouXvd6uVmbePPrBcBaexFYBnS+bpO3fQ79jxu1i5d+FrUB7jbGHObq0J6Oxpgvr9sn3a8XdxZaG4Eaxpgqxpg8XB009sN1+/wADEz5uifwu00ZYeahbtom140juZurYy3kajs9lDKbrCUQZa096XQoJxljyvw5NsAYE8LV97PHf0CkPOdPgd3W2vdusJtXvV7S0ibe+HoxxpQ0xhRJ+TovcAcQft1u3vY5lKZ28cbPImvtC9baCtbaIK5+Pv9urX3wut3S/Xpx202lrbVJxpgngF+4OtvuM2vtTmPM/wGbrLU/cPUXw0xjzH6uDvrt6648OUEa22SUMeZuIImrbTLIscDZyBjzNVdnRZUwxhwHXuHqAE2stZ8AP3N1Jtl+IBYY7EzS7JOGNukJPGqMSQKuAH09/QMiRRtgALA9ZYwJwItAJfDa10ta2sQbXy9lgRnGGF+uFpZzrbU/efPnUIq0tItXfhalJrOvF60MLyIiIuImGgwvIiIi4iYqtERERETcRIWWiIiIiJuo0BIRERFxExVaIiIiIm6iQktERETETVRoiYiIiLiJCi0RERERN/l/BW2hczEEZ7MAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 720x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, ax = plt.subplots(figsize=(10, 4))\n", "df_demo[\"C\"].plot(ax=ax)\n", "ax.set_title(\"Hello there!\");\n", "fig.suptitle(\"This title is super!\");"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* We can also get fancy!"]}, {"cell_type": "code", "execution_count": 81, "metadata": {"slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAD8CAYAAACFHTnaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd4lFXaBvD7TEkmvRJa6CSsNCkWEOtaVwUsq4sioihYYD+ajeK6UlRUQFcQBJRiVxQ7i+IquiqwgFQVQokhtFQy6ZOZOd8fJ0iMgZR5Z86U+3dduQQyec/tkByeOXPe8wgpJYiIiIiI6CST7gBERERERP6GRTIRERERUS0skomIiIiIamGRTERERERUC4tkIiIiIqJaWCQTEREREdXicZEshGgjhPhKCPGTEGKXEGKsEcGIiIiIiHQRnp6TLIRoCaCllHKLECIGwGYA10kpfzIiIBERERGRr3m8kiylPCKl3FL962IAPwNo7el1iYiIiIh0sRh5MSFEewC9AWyo43OjADwIIN5msyV369bNyKGJiHxi8+bNeVLKZrpzeBvnbCIKFk2dtz3ebvHbhYSIBrAOwEwp5fune+xZZ50lN23aZMi4RES+JITYLKU8S3cOX+KcTUSBrKnztiGnWwghrADeA/B6fQUyEREREZG/M+J0CwHgZQA/SynneB6JiIiIiEgvI1aSBwAYBuDPQoit1R9XG3BdIiIiIiItPL5xT0r5XwDCgCxEFAKqqqqQnZ2NiooK3VFOy2azITU1FVarVXcUIiLtAmHuNnreNvR0CyKi+mRnZyMmJgbt27eH2q3lf6SUyM/PR3Z2Njp06KA7DhGRdv4+d3tj3mZbaiLyqYqKCiQlJfnlJHuCEAJJSUl+vWJCRORL/j53e2PeZpFMRD7nr5NsTYGQkYjIl/x9XjQ6H4tkP7dlC/Dtt7pTEBEREYUWFsl+rKICGDgQuPxyYPt23WmIgsvRo0cxZMgQdOrUCX379sXVV1+NPXv26I5FRESnYDab0atXr98+MjMzvToeb9zzY0uXAocPA9HRwC23AJs2ARERulMRBT4pJa6//noMHz4cb731FgBg27ZtOHbsGNLT0zWnIyKiukRERGDr1q0+G48ryX7K4QCefBLo3x94/33gp5+ABx7QnYooOHz11VewWq249957f/uzM888ExdccIHGVERE5E+4kuynVqwADh4EFi1S2y0mTgRmzwauvBIYNEh3OiJjjBsHGL0o0KsX8Nxzp3/Mzp070bdvX2MHJiIKETsLZ8Du+MnQa8aGdUX3hKmnfUx5eTl69eoFAOjQoQNWrVplaIbaWCT7IadTrSKfdZYqigFg5kzgP/8BRoxQ+5NbtdKbkYiIiMiXfL3dgkWyH3rjDWD/fmDuXODEaSbh4cCbbwJ9+gDDhwNr1gAmbpahAFffiq+3dOvWDStXrtQzOBFRgKtvxTdYsMzyMy6XWjU+80x1skVNXboAzz8PrF0LzJmjJx9RMPjzn/+MyspKLFq06Lc/2759O77leYtERFSNRbKfeecdYM8eYOrUk6vINd11F3DDDcDkycDmzb7PRxQMhBBYtWoV1q5di06dOqFbt26YNGkSWrRooTsaERH5CW638CNut1pF7tpVFcJ1EQJYvBjo2RO49VbVbCQqyrc5iYJBq1at8M477+iOQUREDVRSUuLT8biS7EdWrQJ27VKryKfbb5yYCLz2GpCRoU4HICIiIiJjsUj2E1ICM2YA6enAzTfX//iLLwYmTQKWLAF4/xERERGRsVgk+4lPPlHnxU6eDJjNDfuaf/4TOOccYORIdaYyUaCQUuqOUK9AyEhE5Ev+Pi8anY9Fsh+QEpg2DejQQe0zbiirVR0X53QCt92mTsYg8nc2mw35+fl+PdlKKZGfnw+bzaY7ChGRX/D3udsb8zZv3PMDa9YAmzapG/Ks1sZ9badOwPz56uzkWbPUSjSRP0tNTUV2djZyc3N1Rzktm82G1NRU3TGIiPxCIMzdRs/bLJI1kxKYPh1o2xa4/famXWPYMODf/wb+8Q/g0kuBc881NiORkaxWKzp06KA7BhERNUIozt3cbqHZV18B338PPPwwEBbWtGsIASxYALRpo7Zr2O3GZiQiIiIKNSySNZs+HWjZEhgxwrPrxMWpY+EyM4ExYwyJRkRERBSyWCRr9O23wNdfAw89BBixz3zAALXl4tVX1Q19RERERNQ0LJI1mj4dSEkBRo0y7ppTpqhi+b77gAMHjLsuERERUShhkazJhg3AF18ADzwAREYad12LBXj9dbVPeehQdTwcERERETUOi2RNpk8HkpLUiq/R2rUDFi4EfvhBjUNEREREjcMiWYMtW4BPPwXGjweio70zxpAh6uzkGTPU3mciIiIiajhDimQhxCtCiBwhxE4jrhfspk8H4uO9fwrFCy+oLn633QYcP+7dsYiIiIiCiVErycsAXGXQtYLa9u3ABx8AY8eqY9u8KSZGnXJx+DBwzz2qcQkRERER1c+QIllK+Q2AAiOuFexmzlTF69ixvhnvnHPUyvU77wDLl/tmTCIiIqJA57M9yUKIUUKIDCFEblZWlq+G9Ss//wy8+67aZpGQ4LtxH3wQuPhiNW5Ghu/GJf/38svAwIFAiP5I0mlwziaiUOezIllKuUhKmSalbNa2bVtfDetXnngCiIhQN+z5ktmsGoyEham21Q6Hb8cn/7R8OXD33cAnnwB9+wJffqk7EfkTztlEFOp4uoWPZGSo/cH33Qc0a+b78VNTgSVLgE2bgMce8/345F9WrlSt0C+/HNi2TTW1ueIKYNYs7l0nIiICWCT7zJNPqpXcBx7Ql+GGG1R3v1mzgP/8R18O0mv1avWOQv/+wKpVQM+eqrnNjTcCjzwC/PWvgN2uOyUREZFeRh0B9yaAHwB0EUJkCyHuMuK6wSIzU213GDUKaNFCb5Y5c4D0dGDYMCA/X28W8r1169SLpR491FndUVHqz6OjgbffBp59FvjwQ+Dcc9UeeiIiolBl1OkWt0gpW0oprVLKVCnly0ZcN1g89RRgMgEPPaQ7iSqK3nwTyM1V+1H51nro2LgRuPZadXb2v//9xyMIhQAmTgTWrlUvoM45B3jvPT1ZiYiIdON2Cy87eBB45RW1/7N1a91plN69VeH+wQfA4sW605Av7NgBXHWV2nu8du3p98VffLHqCtmtm9p68dBDgNPps6hERER+gUWylz39tFqtfeQR3Ul+b9w4daPWuHF8Wz3YZWSoG/QiI1WB3KpV/V+Tmqq2Ztx7L/DMM8CVV6p3H4iIiEIFi2QvOnJErdQOHw60a6c7ze+ZTOoIsOho4JZbgMpK3YnIG7KygEsvBVwuVSB36NDwrw0PBxYsAJYuBb77Th0T97//eS8rERGRP2GR7EXPPqvepp40SXeSurVoobaCbNvmvxmp6Y4eVQWy3Q58/jnwpz817Tp33KGKZJMJOP98btEhIqLQwCLZS3JzgYUL1VFbnTrpTnNq116rOvHNnatu5qLgUFCgttMcOaKOfOvd27Pr9e0LbN4MXHSROqXl7ruBigpjshIREfkjFsleMmcOUF4OTJ6sO0n9nn4a6N5drRjm5OhOQ54qLlY36e3Zo45z69/fmOsmJamCe/Jk1c76ggvYzpqIiIIXi2QvyM8H5s0Dbr656W9x+1JEhDoW7vhx4M47eSxcICsrAwYOVKdTvPuu2m5hJLMZmDlTnYyyZw/Qp4/a60xERBRsWCR7wfPPAyUlwNSpupM0XPfuag/1Z5+pAp8Cj8Ohjmz75hvVvGbgQO+NNXiwuomveXN18sVTT/HFFRERBRcWyQYrKgL+9S/V1ax7d91pGmf0aOCaa4AHH1Tn6lLgcDqBoUPVdohFi9SJJd6Wnq7aWf/1r+rGzxtvZDtrIiIKHiySDfbCC6pQDqRV5BOEUMd9JSSoIqu8XHciagi3Gxg5Eli5Uu2Fv/tu340dHQ289RYwezbw0UeqSx/P3SYiomDAItlAxcXqlIhrr/X8NAFdmjVT5yfv2qVWlMm/SQmMHQssWwY8/jgwfrzvMwgBTJig9iYXFrKdNYW2Kncxciu+1x2DiAzAItlAL76ojt569FHdSTxzxRXAxInA/PnAxx/rTkOnM3Wq2kM+caL+77uLL1bHxLGdNYWyHQWPYX3O7ThcxjM1iQIdi2SDlJaqt5yvvFKtpAW6mTOBXr3UaReHD+tOQ3V56ingiSfUucXPPKNWdHVjO2sKZSVVmThU9glMsGJ7wRSUOzl5EgUyFskGWbRIFQO6V/OMEh6ujoUrK1Nttd1u3Ymopnnz1M1yt96q3sHwhwL5hNrtrPv0ATZu1J2KyPv22hfAJMLQv/lrcMsq/Jj/AKR06Y5FRE3EItkAFRVq1eySS4ABA3SnMc6f/qSOs1u7Vu21Jv+wfDnw97+rY9iWLVNnF/ujO+4Avv9e5bvgArazpuBW6sxCdukHaBc9BInhfdEj4Z/Ir9yIvfaXdEcjoiZikWyAl19W7X+DZRW5prvvVsfZTZqkGlSQXitXAiNGAJddpk6VsFp1Jzq9Pn3UPuWLL2Y7awpue4tegoAZnWNGAgBSo65Hq8hrsLvoeRRWbtWcjoiagkWyhyor1d7QAQNUIRBshFArgCkp6li40lLdiULX6tVqe0W/fqrjnc2mO1HDJCWpJjVTppxsZ/3rr7pTERmnzHkYB0vfR9vom2CzNAcACCHQM3E6bObm2JI/HlXuYs0piaixWCR7aPlyIDsb+Mc//GtfqJESE1UHt4wMYNw43WlC07p1JxvUfPopEBWlO1HjmM3AjBkn21n37ct21hQ89tkXAQA6xd7zuz+3mmLRO2kOypyHsLNwmo5oROQBFskeqKoCnnxSnWZx+eW603jXJZcAjzwCLFnCM3B9beNGdfZ2hw7AmjVAfLzuRE3HdtYUbCqcx5BV8g7aRN2ASEurP3w+yXYW0mNHI7t0FbJLP9KQkIiaikWyB15/HcjMVHuRg3UVuabHHwfOPlt1dzt4UHea0LBjB3DVVWq7y9q1qtlLoGM7awome4sXQ8KFznH3nPIxaXGjkRDWBzsK/oEyJydPokDBIrmJXC51Rm3v3sA11+hO4xtWK/DGG2oFfdgw9RyQ92RkqHcoIiNVgdzqj4tUAYvtrCkYVLry8WvJW2gdNRhRlranfJxJWNAneTYAYEveBLglu+wQBQIWyU309tuqiJk6NTRWkU/o3Fmd0btuHTBrlu40wSsrC7j0UvVCZO1atdUi2NTVznrlSt2piBpun/1luKUDabH31fvYSEsb9EycjkLHj8gomu+DdETkKRbJTeB2q5uQuncHrrtOdxrfu/12YMgQdbPihg260wSfo0dVgWy3A59/rs6rDmYn2ll37w7cdBPbWVNgcLgKkVnyGlpHXoNoa8NexbaOGojUqOuxxz4f+RWbvJyQiDzFIrkJ3ntPvTU8dSpgCsFnUAjVUS01VR1JVsyTjQxTUABccYU6d3v1arWdJxSkpgJffw3cd59qzHPFFUBOju5URKe2v3gZXLK8QavINfVIeAyRltb4MX8CqtzcjE/kz0KwxPPMiVXkLl3UjUehKj7+5I2LY8boThMciovVTXp79gAffgj07687kW+Fh6sW20uXqk59ffuynTX5pyq3HQeKl6NlxJWICUtv1NdaTNHokzQXFa5j2F4wFZLHuxD5LRbJjfTxx8D27aoxgr+2A/aVAQPUyR4rVqgb+qjpysqAgQNVV8N331XbLUJV7XbWixbxmDjyLweKl8MpS5AWN7pJX58Q3gtd4sbicNlnyC593+B0RGQUQ4pkIcRVQojdQoi9QohHjLimP5ISmD4d6NRJdZ8jteXkvPPU2+QHDuhOE5gcDvWuxDffqKYtAwfqTqRfzXbW99zDdtbkP6rcxdhfvAzNIy5FXNgZTb5O59h7kBR+DnYUPo7SqkzjAhKRYTwukoUQZgDzAfwFQFcAtwghunp6XX+0erX6h3vyZMBi0Z3GP1gsatsFANx2G2+4aiynExg6VH1vLVrEF1811Wxn/corbGdN/iGz+HVUuYuQHuvZPjMhzOid9CxMworN+ePhlg6DEhKRUYxYST4HwF4p5X4ppQPAWwAGG3Bdv3JiFbldO3VGMJ3Uvj3w0kvqLfIZM3SnCRxut2rMsnIlMGeOWi2l32M7a/InTncZ9he/jBTbRYgP7+Hx9SIsrdAzcSaKHDuwu+h5AxISkZGMKJJbA6jZQii7+s+CypdfAuvXq9bMVqvuNP5nyBB1NNz06cB//6s7jf+TEhg7Fli2THUyHD9edyL/dqKddYsWbGdN+vxa8gYc7sIm70WuS6vIq9A26mbstS9CXsUPhl2XiDznsxv3hBCjhBAZQojcrKwsXw1rmOnTgdatgTvv1J3Ef82bp1aVhw4Fjh/Xnca/TZminq+JE9XNj1S/9HT1QvWmm9jO2hcCfc42mstdgX32JUgOPw+J4X0MvXa3hKmIsrTHj/kPwOEqNPTaRNR0RhTJhwC0qfH71Oo/+x0p5SIpZZqUslnbtqdu3+mP1q1TN1U99JA6porqFhMDvPkmcPgwcO+9XOk7lSefVB+jRqkzgUOpY6OnoqPV99icOSfbWf/0k+5UwSmQ52xvyCp9B5XuPENXkU+wmCLRJ3kuKl0F2FYwhcfCEfkJI4rk/wFIE0J0EEKEARgC4CMDrus3pk8HmjdX+0fp9M45B5g2TbXtXrFCdxr/M2+euvHz1lvVmcAskBtPCLU95csvT7azfvdd3akomLlkJfbaX0Ji+NlItp3rlTHiw7rjjPiJOFr+ObJK3/bKGETUOB4XyVJKJ4AxANYA+BnAO1LKXZ5e11/88IP6x/jBB4GICN1pAsNDD6mju0aPBvbu1Z3GfyxfDvz972p/7bJlPGfbUxddpE6b6dEDuPlm9TPK01XIGw6WvI8K1zGkx3m3c1LHmBFItg3AzsIZKK7i5EmkmyF7kqWUn0kp06WUnaSUM424pr+YPh1ITlbbB6hhzGZ13m9YmDrSzMGTjbByJTBiBHDZZcBbb/HmT6PUbGf97LNsZ03Gc8sq7LUvREJYLySHn+fVsYQwoXfSM7CICGzJGw+XrPTqeER0euy4dxqbNqnzaydMAKKidKcJLKmpwOLF6jl87DHdafRavVptr+jXTx1lZrPpThRcTrSzXrZMvfPDdtZkpOzSD1DuOoS0uDEQPtgfZTOn4MzEp2Cv+hm/HJ/t9fGI6NRYJJ/GjBlAQoLaNkCNd+ONah/3rFnAV1/pTqPHunXADTcA3bsDn37KF1veNHy4OqvbYmE7azKGWzqRYV+AuLDuSLFd5LNxW0ReivbRt2F/8SvIKf/GZ+OS/7M7dmNz3ljYHb/ojhISWCSfwrZtwIcfAuPGAbGxutMErrlz1dFdw4YB+fm60/jWxo3AtdcCHToAa9YA8fG6EwW/3r3VuxeXXMJ21uS5w2WfoMyZhbTY0T5ZRa6pa/wjiLGmYWv+Q6h0hdjkSXUqqTqA9TnDcbjsU3x77K/ILv1Qd6SgxyL5FGbMUMXx//2f7iSBLSpKHdmVk6NWlUNlZW/HDuCqq4BmzYAvvlD/Jd9ISlKr9lOnqnbW55/PdtbUeFK6kFG0ADHWLmgRcanPxzebbOiT9Byq3HZszX+Yx8KFuDLnIfyQczskXOif8hriw3rgx/yJ2FkwHW5ZpTte0GKRXIeffgLee0+dRMDVP8/17q3OBV61Su1TDnYZGcDll6vTUL78UjWhId8ym9VNtx9+qP4++vZVL1aIGupw2b9R4tyH9LjREELPP5WxYV3QNeER5FR8jcySV7VkIP0qXLlYn3M7nO4S9EtZhmRbP/RPWYGOMXfiQMly/JAzDBUu3rHsDSyS6zBzJhAZqbZakDHGj1eF47hxwM8/607jPVlZwKWXAi4XsHat2mpB+gwadLKd9VVXqRdrXJCj+kjpRoZ9PqItndAy4iqtWdpHD0OK7WL8VPgU7I7dWrOQ7zlchVifMxwVrlycm/Iy4sK6AQBMwopuCVPQJ2kuihy78M3R61BQuVlz2uDDIrmWPXvUEV3336+OfiNjmEzqnOCoKHXSQ2UQnmx09KgqkO124PPPgTPO0J2IgN+3s548Wd1IyXbWdDpHy9eiuGoP0uLu17aKfIIQAr2SZsFqisWW/HFwubnJPlRUuYuxIfculFZl4uxmC+tsh946aiDOb74SFhGB748NxYHiFdyaYyAWybU88YQ6UmriRN1Jgk/LlsDSpcDWrapYCSYFBeqM3iNHgM8+U1tMyH/UbGf98cfA2WeznTXVTUqJPUXzEGVph1aR1+iOAwAINyehV9LTKK7KwE/Hn9Idh3zA6S7HxtxRKHLsQt/kF9DMduozumPDuuCCFquQEnEhdhZOw4/5D8DpLvdh2uDFIrmG/fuB115Td8U3b647TXC69lp1pN6cOerEh2BQXKzeyt+zR+2BPc+7/QaoiWq2sz5+nO2sqW45FV/DXvUTOsfeB5Ow6I7zm5SIC9Ex5k5klryGo2Vf6o5DXuSWDmzKG42Cyk3onfQsWkTWf+Oo1RSLs5MXokvceBwq+wjfHbsJpVW8Y9lTLJJreOopdcbqgw/qThLcnnkG6NZNnWsb6N3RysqAgQOBLVtUwXWp72+Cp0a66CL198V21lTbiVXkCHMqUqMG647zB3+KfwCx1jOwreAR3qgVpNzSiS1545Fb8Q16Js5A66iBDf5aIUxIjxuNc5stQbnrCL49ej2OlX/tvbAhgEVytaws1bHrrruAVq10pwluERHqre/jx1Wr5kDdPuVwAH/9K/DNN6oN98CGz2WkWevWqtHL/feznTWdlFvxXxx3bENa3L0wCf/rHW8W4eiTPBdOWY4f8x+ElG7dkchAUrqxrWAyjpSvQdf4yWgX/bcmXScl4iJc2OIDRFhaY2PuSOwu+he/V5qIRXK1p59W/334Yb05QkWPHqo4+fRTYP583Wkaz+kEhg5VLacXLQJuuUV3ImqssDD1vVeznfWGDbpTkS5SSmTY58NmboHUqOt1xzmlGGtndE+YiryK77C/+BXdccggUkrsLJyG7NL30SVuLDrFjvDoepGWNji/+btIjboOe4r+hY2598DhLjIobehgkQzg8GFgyRL19n/btrrThI7Ro4FrrgEeeEA13wgUbrfq5LZypdpbfffduhORJ2q2s77wQuCllwL33Q1quvzKDSio3ITOsaNgFuG645xW26i/oUXEFfj5+Gwcd+zUHYcM8EvRbGSWvIaOMXchLXaMIdc0m2zolfg0eiT8E7kV/8W3R69nO+tGYpEMtUfW6QQmTdKdJLQIoTqixcerldjyALgZV0pg7Fh1nN3jj6sbwSjw1Wxnfe+9attVIHw/knEyiuYj3NQMbaNu1h2lXkIInJk4E+HmRGzJGw+nu0x3JPJARtEC7LUvRNvoIega/4ihLdCFEGgfcxvOa/463LKS7awbKeSL5JwctXJ0221Ax46604SelBRVcO7aFRg3TE6ZAsybp44IfPRR3WnISDXbWS9dynbWoaSgcjPyKn9Ap9iRMJtsuuM0SJg5Ab2TnkWpMxO7CmfqjkNNdKB4BX4pmo3WkYPQM+FxQwvkmhLD++CCFh+wnXUjhXyRPHu2amwRbOf2BpIrrwQmTFD7Qz/5RHeaU3vySfUxapR698FLcxlpVLOd9d69bGcdKvYUzUOYKRHtogPr5oJkW390jh2FrNK3cbjs37rjUCMdLHkPOwunoXnEZeiVNAtCmL06ns3cjO2sGymki+S8PFWY/e1vqisX6fPEE0CvXsCdd6qGHP5m3jz1QurWW4EXX2SBHOwGDVLbL1q2ZDvrYFdYuQ25Fd+iU+xdsJgidMdptC5xYxEX1gPbC6ag3HlYdxxqoMNlq7G1YBKSbQPQN/l5n52mcrKd9XOqnfWRwWxnfRohXSQ/9xxQWqreQie9wsOBN95Qfx/Dh6ub4/zF8uXA3/8ODB6sTkIwe/fFPvmJtDTVzvrmm9nOOphl2OfDaopH++ihuqM0iUmEoU/SXLhlFX7MfwBSunRHonocK/8aW/ImICGsF85OXqDlRtHWUdfi/ObvwWKKYjvr0wjZIvn4ceCFF9Q5t9266U5DAHDGGeqFyxdfAHPn6k6jrFypznK+7DLgrbcAq/8dnUpeFBWlXrzNnXuynTUFjyLHLhwr/w86xtwBiylad5wmi7a2R4+Ex5BfuRF77S/pjkOnkVexAZvyRiPGmoZzU5bAYorUliU2LL26nfVF1e2sJ7KddS0hWyT/619qVWjqVN1JqKaRI4Hrr1cnjfz4o94sq1er7RX9+gEffADYAuN+HjKYEMC4cSfbWVPw2FP0IiwiBh1ibtcdxWOpUTegVeQ12F30PAort+qOQ3UorNyGjbmjEGlORb+UpbCaYnVHgtUUg7OTF6BL3AQcKvuY7axrCcki2W5XK5aDBgFnnqk7DdUkBLB4sTr14pZb1PYLHdatU2+vd++uTjyIitKTg/zHiXbWFBzsjj04Wr4GHWKG+0Wx4ikhBHomTofN3Bxb8sfD6S7RHYlqsDt2Y0PuCISbE9E/ZQXCzUm6I/1GtbO+n+2s6xCSRfKLLwKFhTzCy18lJak2z3v26DmHeONG4NprgQ4dgDVr1DnORIBqZ03BIcP+IswiCh1j7tAdxTBWUyx6J81BmfMQdhQ+rjsOVSupOoD1OcNhFjb0T1kBm6W57kh1YjvrPwq5Irm0VB37dtVVwFln6U5Dp3LJJapF+OLFwHvv+W7cHTvU90azZmpvdLNmvhubiHyjpGo/Dpd9ig4xQxFmDq5XwUm2s5Aeez+yS1fhUOnHuuOEvDLnYfyQczskXOiXsgKRlja6I53WyXbW17OdNUKwSF64UB399o9/6E5C9Zk2Td0oNXIkcPCg98fLyAAuvxyIiFD7T7lqSBScMuwLYBLh6Bhzl+4oXpEWNwYJYb2xveBRlDmzdccJWRWuXKzPGQanuwT9UpYhxtpJd6QGUe2sZ6FHwuPV7ayvC9l21iFVJJeXqyYQl14K9O+vOw3Vx2pVJws4HMDttwMuL55slJWlvi9cLmDtWrXVgoiCT2nVrzhU+hHaR9/qV/tCjWQSFvTvGLcYAAAgAElEQVRJngMA2JI3AW7p1Jwo9Dhcx7E+ZzgqXLk4N+VlxIUF1jFaqp310Op21o6QbWcdUkXykiXAsWPcixxIOndWjTy+/hp4+mnvjHH0qCqQ7Xbg88/VUXREFJz22hdCwIxOsXfrjuJVkZY26JE4DYWOLcgomq87TkipchdjQ+4IlFZl4uxmC5EY3kd3pCZLDO+DC1t8iISwntXtrKfBLR26Y/mMR0WyEOImIcQuIYRbCOHXO3wrK4FZs4ALLlB3qVPgGD5cdUV89FFgwwZjr11QAFxxhery99lnQO/exl6fiPxHmfMQDpauQtvov8FmTtEdx+tSowYhNfI67LHPR37FJt1xQoLTXY6NuaNQ5NiFvskvoJntPN2RPBZuTka/lOXoGDMCB0pW4PsQamft6UryTgA3APjGgCxetXQpcOgQV5EDkRBqL3nr1urc4uJiY65rt6ub9HbvBj78EDgv8OcyIjoN1WhDoHPsSN1RfKZ74mOItLTGj/kTUOVmy0hvcksHNueNQUHlJvROehYtIi/VHckwqp31ZPRJeg52x0/45sjgkHjh5VGRLKX8WUq526gw3lJVBTz1lGoKcdllutNQU8THA6+/DmRmqhbRniorAwYOVOfevvuu2m5BRMGr3HkUB0veRZvoGxFhaaU7js9YTTHokzQXFa5j2F7wKFsPe4lbOrElbzxyKtahZ+IMtI4aqDuSV9RsZ/1Dzm1B3846JPYkv/oq8OuvahVZCN1pqKnOP1/9HS5fDrz5ZtOv43CoduTffqu+NwYNMi4jEfmnffbFkJBIi71XdxSfSwjvhS5xY3G47FNkl67SHSfoSOnGtoLJOFK+Bl3jJ6Nd9N90R/KqUGpnXW+RLIRYK4TYWcfH4MYMJIQYJYTIEELkZmVlNT1xIzmdwBNPAH37An/5i8+GJS+ZOlVti7j3XrWq3FhOp9qysXo18NJLqqsfEf2RrjnbGypcufi19C2kRl2HSEuq7jhadI69B0nh52BH4T9RWpWpO07QkFJiZ+E0ZJe+jy5xY9EpdoTuSD4RKu2s6y2SpZSXSSm71/HRqLNApJSLpJRpUspmbdu2bXriRnrrLWDfPlVccRU58FkswGuvqV8PHaqK3oZyu4G771bNSebMUecvE1HddM3Z3rDf/jLcsiokV5FPEMKM3knPwgQLNuePD6kTCrzpl6LZyCx5DR1j7kJa7BjdcXzqZDvrl1HuOlrdzvor3bEMFdTbLVwuYMYMoEcPvqUeTDp0UDfyff+9+vttCCmBsWPVVo1//lNPu2si8r1KVwEyS95A68hrEWVtrzuOVhGWVuiZNBNFjh3YXfS87jgBL6NoAfbaF6Jt9BB0jX8EIkRX4lIiLsSFLVYhwpKq2lkffz5o2ll7egTc9UKIbAD9AXwqhFhjTCxjrFypTi549FHAFNQvB0LPLbeoBiPTpwPffVf/46dMUectT5zIbotEoWR/8VK4ZDnS4u7XHcUvtIr8C9pG3Yy99kXIq/hBd5yAdaB4BX4pmo3WkYPQM+HxkC2QT1DtrN9BatQN2GN/ARtzRwVFO2tPT7dYJaVMlVKGSymbSymvNCqYp9xutcp4xhnAjTfqTkPeMG8e0L692nZx/PipH/fkk+pj1CjVcTHE5zKikOFwHUdm8Qq0ivwLYqyddcfxG90SpiLK0h4/5j8Ah6tQd5yAc7DkPewsnIbmEZehV9IsCGHWHckv/L6d9Xf49uh1KHL8rDuWR4J2ffXDD4GdO9UKIleRg1NMjGpbnZ2tbuSr6xSaefOAyZPVzXovvsgCmSiUHCheDqcsRVrsaN1R/IrFFIk+yXNR6SrAtoIpQX2El9EOl63G1oJJSLYNQN/k52ESVt2R/Ertdtb/PXYTsks/0B2ryYKyfJRSvQ3fubPq1EbB69xzgWnTgLffBlas+P3nli9XZyoPHgwsWwaY+WKfKGRUuYtxoHg5WkRcjtiwLrrj+J34sO44I34ijpZ/jqzSt3XHCQjHyr/GlrwJSAjrhbOTF8AswnVH8lu/b2f9QMC2sw7KIvnTT4Eff1QriBaL7jTkbQ8/rFqNjxkD7N2r/mzlSmDECNU85q23ACtf7BOFlMziV1El7UiL4yryqXSMGYFk2wDsLJyB4qp9uuP4tbyKDdiUNxox1jScm7IEFlOk7kh+LxjaWQddkXxiFbl9e+C223SnIV8wm1VTEKtVbav46CP13379gA8+AGw23QmJyJec7lLsK16KFNvFiA/rrjuO3xLChN5Jz8AiIrAlbxxcslJ3JL9UWLkNG3NHIdKcin4pS2E1xeqOFDBOtrN+HnbHzwHXzjroiuQvvgA2bgQmTeLqYShp0wZYvBj43//U9oru3dU7ClFRupMRka9llryBKnch0rmKXC+bOQVnJj4Je9XP+OX4bN1x/I7dsRsbckcg3JSIfinLEW5O0h0pILWOugYXNF/5Wzvr/cXLA2IvfFAVySdWkVNTgeHDdachX7vxRmDCBOCcc4A1a4D4eN2JiMjXnO5y7LMvQbJtABLCe+uOExBaRF6G9tFDsb/4FeSUf6M7jt8oqTqA9TnDYRY29G++AhGWFrojBbSY39pZX4xdhdOr21mX6Y51WkFVJK9bB/z3v2qPajj304ek2bOBDRuAZs10JyEiHbJK3obDnY/0EOt+5qmu8ZMQbe2MrfkPodKVrzuOdmXOw/gh53ZIuNAvZTkiLW10RwoKqp31i7+1s/7vsZv8uk16UBXJ06YBLVoAd92lOwkREfmaS1ZiX/FiJIWfgyTb2brjBBSzyYa+Sc+hym3H1vxHAuKtcG+pcOVifc4wON0l6JeyjGdsG6xmO+sK1zF8c/R6HCv/j+5YdQqaIvm774CvvgIeegiIiNCdhoiIfO1gyUpUuI4hLY6ryE0RG/YndE14BDkVXyGz5FXdcbRwuI5jfc5wVLhycW7Ky4gL66Y7UtA60c460tIGG3NH+WU766ApkqdPV2+x33OP7iRERORrbulAhn0hEsL6IDm8v+44Aat99DCk2C7GT4VPwe7YrTuOT1W5i7EhdwRKqzJxdrOFSAzvoztS0DvRzrpN1I1+2c46KIrkjRvVjVoTJwKRPLqQiCjkHCxdhQrXEaTHjYZga80mE0KgV9IsWE2x2JI/Di53he5IPuF0l2Nj7igUOXahb/ILaGY7T3ekkGE22XBm4lPokTDN79pZB0WRPGMGkJgI3H+/7iRERORrbunEXvtCxIX1QDPbhbrjBLxwcxJ6Jc1CcVUGfjo+S3ccr3NLBzbnjUFB5Sb0TnoWLSIv1R0p5Kh21rdiQPM3/KqddcAXyT/+CHz8MTBuHBATozsNERH52qHSj1HmPIj0WK4iGyUl4iJ0jLkTmSWv+u1NVUZwSye25I1HTsU69EycgdZRA3VHCmkJ4b1/1856R8HjWttZB3yRPGMGEBcH/P3vupMQEZGvSelChv1FxFrPQPMIrgAa6U/xDyDWega25j8ccO2EG0JKN7YVTMaR8jXoGj8Z7aL/pjsS4UQ76xXoGDMCmSWv4vtjt6HCeUxLloAuknfuBN5/H/i//2PjCCKiUHS47DOUOg8gjXuRDWcW4eiTPAdOWY4f8x/0u5MHPCGlxM7C6cgufR9d4saiU+wI3ZGoBpOwnGxnXfULvjl6HfIr/uf7HD4f0UAzZwLR0WqrBRERhRYp3ciwv4gYaxpaRlyhO05QirGmoVv8FORVfIf9xa/ojmOYX4pmI7PkVXSMuQtpbDzjt37fznqYz9tZB2yRvHs38PbbwOjR6qY9IiIKLUfKP0dxVQbSYu+HEAH7z5nfaxc9BC0iLsfPx2ejyLFLdxyPZRQtwF77QrSNHoKu8Y/wHQg/p7OddcDOKk88AdhswIQJupMQEZGvSSmRUTQfUZYOaBV5te44QU0IgTMTn0C4ORGb88b7rEDxhgPFK/BL0Wy0jhyEngmPs0AOECfaWf/Jx+2sA7JI3rcPeP114L77gJQU3WmIiMjXjpX/B/aqn5EWex+EMOuOE/TCzAnonfQsSp0HsKtwpu44TXKw5H3sLJyG5hGXoVfSLH7fBBghTEjzcTvrgCySn3wSsFiABx7QnYSIiHxNSok99nmINLfhkV0+lGzrj86xI5FV+jYOl/1bd5xGOVy2GlsLHkGybQD6Jj8Pk7DqjkRNpNpZf1CjnfVzXrupNOCK5F9/BZYvB0aOBFq21J2GiIh8LbfiGxQ5dqBz3L0sdnysS9w4xIX1wPaCKSh3HtYdp0GOlX+NLXkTkBDWC2cnL4BZhOuORB6KtKTWaGc9DxtzR8LhOm74OAFXJM+aBQgBPPSQ7iRERORrUkrsKZqPCHMrtIm6XneckGMSYeiTNBduWVV9LJxLd6TTyqvYgE15oxFjTcO5KUtgMUXqjkQG+X076+/x7dHrUeT4ydAxAqpIPnQIePll4M47gTZtdKchIiJfy69cj0LHFnSOHQWTCNMdJyRFW9uje8I/kF+5AXvti3THOaXCym3YmDsKkeZU9EtZCqspVnckMtjv2llDtbM+WLrKsOsHVJH89NOA2w1MmqQ7CRER6bCnaB7CzSloE32T7ighrU3UjWgVeTV2Fz2HwsqtuuP8gd2xGxtyRyDclIh+KcsRbk7SHYm86GQ76zOxNf9Bw9pZB0yRfPQosGgRMGwY0L697jRERORr+RX/Q37lBnSOGcl9pZoJIdAjcTps5ubYkj8eTneJ7ki/Kak6gPU5w2EWNvRvvgIRlha6I5EPeKOddcAUybNnAw4HMHmy7iRERKTDHvs8hJmS0DZ6iO4oBCDMFIfeSbNR5jyEHYXTdMcBAJQ5D+OHnNsh4UK/lOWItHBvZigxup21R0WyEOIZIcQvQojtQohVQoh4T653Knl5wIIFwC23AJ07e2MEIiLyZ4WVW5FX8R06xd4NiylCdxyqlmQ7G+mx9yO79H0cKv1Ya5YKVy7W5wyD012CfinLEGNlwRCqarezbipPV5K/ANBdStkTwB4AXtktPHcuUFYGTJnijasTEZG/21M0H1ZTAtpH36o7CtWSFjcGCWG9sb3gUZQ5s7VkcLiOY33OcFS4cnFuysuIC+umJQf5jxPtrNtG39zka3hUJEspP5dSOqt/ux5AqifXq0tBAfDCC8BNNwFnnGH01YmIyN8dd+xETsVX6BhzJyymKN1xqBaTsKBP8hwAElvyJsD9W1ngG1XuYmzIHYHSqgM4u9lCJIb38en45L+sphj0TGz6ViAj9ySPALDawOsBAP71L6C4GJg61egrExFRIMgomg+riEWHmKa/bUreFWlpgx6J01Ho2IKMovk+G9fpLsfG3FEocuxC3+QX0Mx2ns/GpuBXb5EshFgrhNhZx8fgGo+ZAsAJ4PXTXGeUECJDCJGblZXVoHB2O/D888B11wE9ejToS4iIyABNmbO9we74BUfLv0CHmOGwmmK05aD6pUYNQmrkddhjn4+Cys1eH88tHdicNwYFlZvQO+lZtIi8zOtjUmipt0iWUl4mpexex8eHACCEuAPAtQCGSinlaa6zSEqZJqVs1rZt2waFmzcPOH6cq8hERL7WlDnbGzLsL8IiotAh9g5tGajhuic+hkhLa2zJm4Aqt91r47ilE1vyxiOnYh16Jk5H66iBXhuLQpenp1tcBeAhAIOklGXGRFJKSoA5c4Crrwb69jXyykREFAiKq/bicNlqtI8ZhjBTnO441ABWUwz6JM1Fhesothc8itOsnTWZlG5sK5iMI+Vr0DV+MtrxSEDyEk/3JM8DEAPgCyHEViHEQgMyAVBHvuXnA48+atQViYgokGQULYBZ2NAx5k7dUagREsJ7IT1uLA6XfYpsA1sEA4CUEjsLpyO79H2kx/0fOsWOMPT6RDVZPPliKaVXDiEsKwOefRa4/HKgXz9vjEBERP6spCoTh8o+RseYO9lSOAClxd6D3IpvsaPwn0gM74Moa3tDrvtL0WxklryKjjF3IT3274Zck+hU/LLj3uLFQE4OV5GJiELVXvtCmIQVnWLv1h2FmkAIM/okzYYJFmzJnwC3rPL4mhlFC7DXvhBto4ega/wjEEIYkJTo1PyuSK6oAJ5+GrjoIuCCC3SnISIiXytzZiO79AO0ixoCm7mZ7jjURBGWVuiZNBPHHduxu+h5j651oHgFfimajdaRg9Az4XEWyOQTflckL10KHD7MVWQiolC11/4SBAQ6xY7UHYU81CryL2gbdRP22l9CXsUPTbrGwZL3sbNwGppHXIZeSbMghNnglER186si2eEAnnwSOO884M9/1p2GiIh8rdx5GFklK9Em+iZEWFrojkMG6JYwFVGW9vgx/wE4XIWN+trDZauxteARJNsGoG/y8zAJq5dSEv2RXxXJK1YABw+qVWS+k0JEFHr22hcDkOgce4/uKGQQiykKfZLnotJVgG0FUxt8LNyx8nXYkjcBCWG9cHbyAphFuJeTEv2e3xTJTqdaRT7rLODKK3WnISIiX6tw5SCr5G20iboekZbWuuOQgeLDuuOM+Ik4Wr4GWaVv1/v4vIoN2JR3P2KsaTg3ZQkspkgfpCT6Pb8pkt94A9i/n6vIREShap99CSRc6Bx7r+4o5AUdY0Yg2TYAOwtnoLhq3ykfV1i5DRtzRyHSnIp+KUthNcX6MCXRSX5RJLtcwMyZwJlnAgPZWZKIKORUuvLxa8mbaB05EFHWdrrjkBcIYULvxKdhFhHYkjcOLln5h8fYHbuxIXcEwk2J6JeynGdkk1Z+USS/8w6wZw9XkYmIQtX+4lfgkhXoHHef7ijkRTZLc/RKfBL2qp/xy/HZv/tcSVUm1ucMh1nY0L/5Ct64SdppL5LdbrWK3K0bcP31utMQEZGvOVzHcaD4NbSKvBox1k6645CXtYi8DO2jh2J/8SvIKf8WAFDmPIwfcoZBwoV+KcsRaWmjOSWRHxTJq1YBu3YBU6YAJu1piIjI1/YXL4NLliItdrTuKOQjXeMnIdraGVvzH4TdsRvrc4bB6S5Bv5RliLF21h2PCIDmIllKYMYMID0duPlmnUmIiEiHKncxDhQvR4uIKxEblq47DvmI2WRD36TnUOW245ujg1DhysW5KS8jLqyb7mhEv9FaJH/yCbB1KzB5MmBmAx0iopBzoHgFnLIY6XH3645CPhYb9id0S5gCs4jE2c0WIjG8j+5IRL9j0TWwlMC0aUDHjsCtt+pKQUREujjdJdhfvBTNbZdwBTFEtY8ZinbRQ9hqmvyStiJ5zRpg0yZg8WLAyi6TREQhJ7PkDVS5jyMtbozuKKQRC2TyV9q2W0yfDrRtC9x+u64ERESki9Ndhn32JWhmuwAJ4WfqjkNE9AdaVpKLi4HNm4H584GwMB0JiIhIp19L3oLDXYB0riITkZ/SspJ8+DDQsiUwYoSO0YmISCeXrMS+4iVICu+HxPC+uuMQEdVJS5FcUgI8/DBgs+kYnYiIdMoqeQeVrhykx/FcZCLyX1qKZIsFGDlSx8hERKSTS1Zir/0lJIT3RVJ4P91xiIhOSUuR3Lo1EBmpY2QiItIpu3QVKlxHkR47BkII3XGIiE5JS5GcnKxjVCIi0sktq5BRtBDxYWeime183XGIiE5La8c9IiIKHYdKP0K5KxvpcaO5ikxEfo9FMhEReZ2ULmTYFyDW2hUptkt0xyEiqheLZCIi8rpDZZ+i1JnJVWQiChgskomIyKukdCOjaD5irOloEXG57jhERA3CIpmIiLzqSPm/UeLch7TY0RCC/+wQUWDwaLYSQkwXQmwXQmwVQnwuhGhlVDAiIgp8ahX5RURZOqJV5FW64xARNZinL+mfkVL2lFL2AvAJgH8YkImIiILEsfIvYa/6BWlx90EIs+44REQN5lGRLKW01/htFADpWRwiIgoWUkrssc9HpKUtWkcO1B2HiKhRPN4cJoSYKYQ4CGAoTrOSLIQYJYTIEELkZmVleTosERF5kRFzdk7FOhQ5diIt9l6YhMXghERE3lVvkSyEWCuE2FnHx2AAkFJOkVK2AfA6gDGnuo6UcpGUMk1K2axt27bG/R8QEZHhPJ2zpZTIKJqHCHNrpEZd54WERETeVe9LeynlZQ281usAPgPwmEeJiIgo4OVVfo9Cx1b0SJgGkwjTHYeIqNE8Pd0ircZvBwP4xbM4REQUDPYUzYPN3Bxtom/UHYWIqEk83ST2lBCiCwA3gF8B3Ot5JCIiCmR5FRtQUPk/dEt4FGYRrjsOEVGTeFQkSym5REBERL+TUTQf4aZktIv6m+4oRERNxtZHRERkmILKLcir/B6dYu+G2WTTHYeIqMlYJBMRkWEyiuYjzJSAdtG36o5CROQRFslERGSI45U7kFOxDh1jRsBiitQdh4jIIyySiYjIEHvs82E1xaF9zG26oxAReYxFMhEReazI8TOOla9Fh5jhsJpidMchIvIYi2QiIvJYRtF8WEQ0OsQM1x2FiMgQLJKJiMgjxVUZOFK+Bh1ibkeYKU53HCIiQ7BIJiIij2QULYBZRKBDzB26oxARGYZFMhERNVlJ1QEcKvsE7aOHItycqDsOEZFhWCQTEVGTZdgXwCTC0Cn2Lt1RiIgMxSKZiIiapNSZhUOlH6Jd9BCEm5N1xyEiMhSLZCIiapK9RS9BwIzOMSN1RyEiMhyLZCIiarQy52EcLH0fbaNvgs3SXHccIiLDsUgmIqJG22dfBADoFHuP5iRERN7BIpmIiBqlwnkMWSXvoE3U9Yi0tNIdh4jIK1gkExFRo+wtXgwJFzrH3as7ChGR17BIJiKiBqt05ePXkrfQOmowoixtdcchIvIaFslERNRg++wvwy0dSIu9T3cUIiKvYpFMREQNUukqQGbJa2gdeQ2irR10xyEi8ioWyURE1CAHipfBJcu4ikxEIYFFMhER1avKbceB4hVoGXEVYsLSdcchIvI6FslERFSvA8XL4ZQlSIsbrTsKEZFPsEgmIqLTknBjf/EyNI+4FHFhZ+iOQ0TkExbdAYiIyL85XPmocluRHjtGdxQiIp/hSjIREZ1WpSsPzWwXIj68h+4oREQ+wyKZiIhOS8KF9DiuIhNRaDGkSBZCTBRCSCFEshHXIyIi/2E1xSMxvI/uGEREPuVxkSyEaAPgCgBZnschIiJ/E2lJ1R2BiMjnjFhJngvgIQDSgGsREREREWnnUZEshBgM4JCUclsDHjtKCJEhhMjNyuKiMxGRP+OcTUShrt4j4IQQawG0qONTUwBMhtpqUS8p5SIAiwDgrLPO4qozEZEf45xNRKGu3iJZSnlZXX8uhOgBoAOAbUIIAEgFsEUIcY6U8qihKYmIiIiIfKjJzUSklDsApJz4vRAiE8BZUso8A3IREREREWnDc5KJiIiIiGoxrC21lLK9UdciIiIiItKJK8lERERERLUIKX1/07IQohjAbp8PXL9kAP64p5q5Goe5Goe5GqeLlDJGdwhf4pzdaMzVOMzVOP6aC/DfbE2atw3bbtFIu6WUZ2ka+5SEEJuYq+GYq3GYq3H8OZfuDBpwzm4E5moc5mocf80F+G+2ps7b3G5BRERERFQLi2QiIiIiolp0FcmLNI1bH+ZqHOZqHOZqHObyH/76/8xcjcNcjcNcjeev2ZqUS8uNe0RERERE/ozbLYiIiIiIamGRTERERERUi1eLZCHEVUKI3UKIvUKIR+r4fLgQ4u3qz28QQrT3Zp5G5LpDCJErhNha/XG3DzK9IoTIEULsPMXnhRDiX9WZtwsh+ng7UwNzXSyEKKrxXP3DR7naCCG+EkL8JITYJYQYW8djfP6cNTCXz58zIYRNCLFRCLGtOtfjdTzG5z+PDczl85/HGmObhRA/CiE+qeNzWuYvb+Kc3ahMnLMbl4tzduNycc5uWj5j52wppVc+AJgB7APQEUAYgG0AutZ6zP0AFlb/egiAt72Vp5G57gAwz9tZao15IYA+AHae4vNXA1gNQADoB2CDn+S6GMAnvnyuqsdtCaBP9a9jAOyp4+/R589ZA3P5/Dmrfg6iq39tBbABQL9aj9Hx89iQXD7/eawx9gQAb9T196Xj+fLy/yvn7Mbl4pzduFycsxuXi3N20/IZOmd7cyX5HAB7pZT7pZQOAG8BGFzrMYMBLK/+9UoAlwohhBczNTSXz0kpvwFQcJqHDAawQirrAcQLIVr6QS4tpJRHpJRbqn9dDOBnAK1rPcznz1kDc/lc9XNQUv1ba/VH7bt2ff7z2MBcWgghUgFcA2DJKR6iY/7yJs7ZjcA5u3E4ZzcO5+zG88ac7c0iuTWAgzV+n40/fuP99hgppRNAEYAkL2ZqaC4AuLH67Z6VQog2Xs7UEA3NrUP/6rdeVgshuvl68Oq3THpDvaKtSetzdppcgIbnrPptqK0AcgB8IaU85fPlw5/HhuQC9Pw8PgfgIQDuU3xey/PlRZyzjcU5+xQ4Zzc4D+fsxjF8zuaNe3X7GEB7KWVPAF/g5CsP+qMtANpJKc8E8AKAD3w5uBAiGsB7AMZJKe2+HPt06sml5TmTUrqklL0ApAI4RwjR3Rfj1qcBuXz+8yiEuBZAjpRys7fHIkNwzm44ztl14JzdcKE0Z3uzSD4EoOarh9TqP6vzMUIIC4A4APlezNSgXFLKfCllZfVvlwDo6+VMDdGQ59PnpJT2E2+9SCk/A2AVQiT7YmwhhBVqUntdSvl+HQ/R8pzVl0vnc1Y95nEAXwG4qtandPw81ptL08/jAACDhBCZUG/v/1kI8Vqtx2h9vryAc7axOGfXwjm7aThnN4hX5mxvFsn/A5AmhOgghAiD2iT9Ua3HfARgePWv/wrgP1JKb+9tqTdXrT1Qg6D2KOn2EYDbhdIPQJGU8ojuUEKIFif29AghzoH6nvL6D2n1mC8D+FlKOecUD/P5c9aQXDqeMyFEMyFEfPWvIwBcDuCXWg/z+c9jQ3Lp+HmUUk6SUqZKKdtDzRH/kVLeVuthOuYvb+KcbSzO2b8fl3N243JxzgmrNlQAAAD/SURBVG4Eb83ZFsOTVpNSOoUQYwCsgbo7+RUp5S4hxDQAm6SUH0F9Y74qhNgLdaPBEG/laWSu/xNCDALgrM51h7dzCSHehLqDNlkIkQ3gMagN8ZBSLgTwGdSdv3sBlAG409uZGpjrrwDuE0I4AZQDGOKjQmEAgGEAdlTvjQKAyQDa1sim4zlrSC4dz1lLAMuFEGaoCf4dKeUnun8eG5jL5z+Pp+IHz5fXcM5uHM7ZjcY5u3E4ZxvA0+eLbamJiIiIiGrhjXtERERERLWwSCYiIiIiqoVFMhERERFRLSySiYiIiIhqYZFMRERERFQLi2QiIiIiolpYJBMRERER1fL/kNtHWR2VbcgAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 864x288 with 2 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True, figsize=(12, 4))\n", "for ax, column, color in zip([ax1, ax2], [\"C\", \"F\"], [\"blue\", \"#b2e123\"]):\n", " df_demo[column].plot(ax=ax, legend=True, color=color)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Aside: Seaborn\n", "\n", "* Python package on top of Matplotlib\n", "* Powerful API shortcuts for plotting of statistical data\n", "* Manipulate color palettes\n", "* Works well together with Pandas\n", "* Also: New, well-looking defaults for Matplotlib (IMHO)\n", "* \u2192 https://seaborn.pydata.org/"]}, {"cell_type": "code", "execution_count": 82, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import seaborn as sns\n", "sns.set()"]}, {"cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEBCAYAAAB2RW6SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VOW9B/Dv2WZLQhJCQlgDYQ0BZF/CGvYtonKtWiwubbHuta1Xir3tfVqpVtt6wa3VW0UtbmgVUTYTFiGEfZMkBAhrEiAhJCHLzJztvX/E5oos2WbmPTPz+zxP/3DO5LzfvoQvZ+ac8x6BMcZACCEkZIm8AxBCCPEvKnpCCAlxVPSEEBLiqOgJISTEUdETQkiIo6InhJAQR0VPCCEhjoqeEEJCHBU9IYSEOCp6QggJcVT0hBAS4qjoCSEkxFHRE0JIiJN5DVxRUQvTtPbCmXFxkSgvr+Edo1GU07eCIWcwZAQopy+JooDY2IgW/Sy3ojdNZvmiBxAUGQHK6WvBkDMYMgKU0wroqxtCCAlxVPSEEBLiqOgJISTEUdETQkiIo6InhJAQR0VPCCEhjoo+iDHGUPfFn3Bx7eu8oxBCLIyKPogZF47BKMnH5X3roZfk845DCLEoKvogph3OBGwuyDHt4dn6Npih8Y5ECLEgKvogZdZWQD+5F0rf8Wg3cyFY1XmoB77kHYsQYkFU9EFKy98MMBO2fpPgSh4EucdIqPu/gFl5nnc0QojFUNEHIWbo0PI3Qeo6EGKbBACAffRdgKzAs+1tMBa6a3YQQpqPij4I6Sd3g7kvw5Y6peE10RUD+4jbYZTkQz+ewzEdIcRqqOiDkHo4E0J0IqTOqVe8rqRMhJjQA96c98E81l5ylRASOFT0QcYoOwmztBC21MkQhCv/+ARBhGPcvWDeWnh3reSUkBBiNVT0QUbNzQJkO5TeY665XYrrAmXANGhHtkA/fyzA6QghVkRFH0RM92XohTug9B4Dwea67vvsQ2+FEBkH79a3wUw9gAkJIVZERR9EtIKvAUOHkjr5hu8TFDscY+6GWVEE9dD6AKUjhFgVFX2QYKYBLXcjpE79IMV2avT9ctJgyN2GQt27CublsgAkJIRYFRV9kNBPHwCrvdTo0fx32dPmA6IIT/a7dG09IWGMij5IaLmZECLjIHcd1OSfESPbwj7sNhhnD0E/uduP6QghVkZFHwSMS8UwSvKh9JsEQZSa9bNK6hSI7ZLg3f4emFrnp4SEECujog8CWl4WIMlQ+o5v9s8K4rfX1rur4N39iR/SEUKsjore4phaB+1oNuQeoyE6olq0Dym+O5R+k6HlboRResLHCQkhVkdFb3FawTZA98LWv+knYa/FPnweBFd0/br1puGjdISQYEBFb2GMmVDzsiC27wmpXbdW7UuwOWFPmw+z/DS03EzfBCSEBAUqegszig6DVV24YpXK1pC7D4PUZSC8u/8Fs6bcJ/skhFgfFb2FqblZEJzRkLsP88n+BEGAY+yPAMbg3b7CJ/skhFgfFb1FmZdLYZw5BCVlIgRJ9tl+xah42IbeAv3UPuin9vtsv4QQ6xIYp1sml7y5AxWXvTyGbjLFJkFT+Zy4TPNuxQD9IN513os6MfKG721uTpEZuN39AWzw4n3n3dAFW2vjNgnP+WyOYMgZDBkByulLsW3sePr+US36WTqityCZaeir5+GE1KPRkm8JU5CwxT4JUawGI9SdPt8/IcRauB3Rl5fXwDStvf5KfHwUysqqAz6umr8Z3q3L4bz5aciJvRp9f0tzer5eDq3ga7hu+29IcV1bErVZeM1ncwVDzmDICFBOXxJFAXFxLTvwoyN6i2GMQcvNhBjXFVL7nn4dyz7ydgiOSHi2LgczTb+ORQjhh4reYoxzBTAvFcGWOgWCIPh1LMEeAfuoO2GWnoB2ZLNfxyKE8ENFbzFabiZgj4Dcs2UnXZpL7jkaUqdUeHeuhFlXGZAxCSGB1eqir6mpwZw5c1BUVOSLPGHNrLkE/dQ+KH3GQ5ADcyVMw7X1pgbv9vcCMiYhJLBaVfQHDx7EXXfdhVOnTvkoTnjT8jcBjMGWOimg44rRibANzoB+Yhf0s98EdGxCiP+1qug/+ugj/O53v0NCQoKv8oQtZmjQ8jdDThoEMSo+4OPbbpoFMToRnm3vgOlqwMcnhPhPq4p+yZIlGDbMN7fnhzu9cBeYpxqKj9a1aS5BUmAfdw9YdRnUfZ9zyUBCC1PrUHfyID3G0gJ8d299M7X0etBAi49v2RrwzVX8xWYocR2ROGhki6628UnO+BEoPTMRNYfWIWHEFNjiu7R+n98fIkDz2VrBkNPKGZmhoeSfz+F80RG0GT4LcVPvgyBY+9oPK89na3Ererph6v8ZpSfgLTkGe9rduHixptk/78ucbNA8oGA3zn3+KpwZi3z6lzMYbkoBgiOnlTMyxuD9+i1oRUfg7DEYl3evQd2lcjgm/tSn6zb5kpXn89/ohqkgp+ZmAooDSu8xvKNAdETBMfIOGOePQi/YxjsOCUJabia0gq9hG5yBxDuehm3E7dALd8K97kUw1c07XliioufMdF+GXrgLSu8xEGxO3nEAAHKfcZASe8Oz80OY7su845AgohflwpvzPuSkwbANuxWCIMA+aDYcE34MoyQfdV8+T79THPik6Ddu3IjOnTv7YldhR8vfDJg6lNTWPSrQlwRBgH3cPYDmgXfHh7zjkCBhVl2AO+tViDEd4UhfeMXXfkqfcXBOewzmpWLUfb4E5uUyjknDDx3Rc8RMA1r+JkidUiHFdOQd5wpSbCfYbpoF/Vg29JJ83nGIxTHVDff6pRAgwDn98Wt+OpWTBsE1+0kwTw3qVj0Do/wMh6ThiYqeI/3UPrDaCp89KtDXbIMzILRJqH+guKHxjkMsipkm3Bv/BrPqAhxTH4bY5vr3gUiJveC6eTEgSqj7/FnoJUcCmDR8UdFzpOVmQohqB6nrTbyjXJMg2+AYuwCs6jzUA2t4xyEWpe75BMaZg7CPmQ+5Y0qj75diO8E192mIEbFwr/0ztJN7ApAyvFHRc2JcOgvjXAFs/SZBEK37xyB37g+5x0ioB1bDrDrPOw6xGO14DtQDX0JJSYetX9OX7hAj4+C6eTHEuCR4Ml+BmrfJjymJdRsmxGmHswBJgdJnPO8ojbKPvguQlPrlEeguR/Ito/QEPFvehNShD+xp85v984IjEq7Z/wmp8wB4t70N795V9PvlJ1T0HDBvLbTj26H0HA3BYf07hEVXDOwjbodRnAf9eA7vOMQCzLpKuDcsg+CKhmPKwy2+EUpQ7HBOfwxyrzFQ934Kb/a79BAcP6Ci50Ar2AboqqUuqWyMkjIRYkIyvDs+APM0/+5dEjqYrsK9YRmY6oZz2uMQnW1atT9BlOGY+BMoA2dCy9sIT9ardPLfx6joA4wxE2peFqTE3pDaJfGO02SCIMIx7l4wTw28u1byjkM4YYzBs3U5zNITcKQvhBTnm/WQBEGAY9QdsI+6E/rJPXCv/SvdRetDVPQBZpz9BuxyaVAdzf+bFNcVyoBp0I5sgX7+GO84hAPtm3XQj22HbditULoP9fn+bQNnwJG+EMa5o6hb/Sw99cxHqOgDTM3NhOCKgeyHvySBYB96C4TIOHi3vg1m6rzjkADSzxyCd+dHkJOHwzb4Zr+No/RKg3PG4zCrzqNu1RKYVRf8Nla4oKIPILPqPIyz30BJSYcgWnMVv8YIigOOMXfDrCiCemg97zgkQIzKErizXoPYtgscE37i9wfXy10GwjXnKUB1o+7zJTAunvLreKGOij6A1NyNgChBSZnAO0qryEmDIXcbCnXvKlqzJAwwby3c65dBkOT65Q0Ue0DGlRJ6wDl3MSApqFv9HPTivICMG4qo6AOEaR5oBVshJw+H6IrhHafV7GnzAVGEJ/tduvY5hDHTgDvrNbDqMjimPQoxMi6g40sxHeGa+xuIke3gXvtXaIW7Ajp+qKCiDxDt2HZAc1t2XZvmEiPbwj7sVhhnD0GnW9hDlnfnRzCKDsM+dgHkxN5cMogRsXDd/GtICcnwZL1W//wG0ixU9AHAGIOWmwWxXTeICT14x/EZJXUKxLgkeLevAFPreMchPqYVbIX2zXooqVNg68v360bBHgHnrF9BThoEb/Y/4d39CX2SbAYq+gAwzh2BWVEMW+pkv5/ECiRBlOAYdw9YXRW8uz/hHYf4kHHhODxb34bUqV/9EhgWIMg2OKY+AqXPeKj7V8O7dTmYafCOFRSo6ANAO5wJwR4JucdI3lF8TkpIhpI6CVruRhilJ3jHIT5g1lyqX94gsi2ckx+CIEq8IzUQRAn28ffBNjgD2pEt8GS+AqarvGNZHhW9n5k15dBP74OSMgGCbOMdxy/sw+dBcEXXr1tPR1hBjene+uUNdBXOaY9bci0mQRBgHz4P9rT50E/th3vNn8G8tbxjWRoVvZ9p3y6/qqSkc07iP4LNBXvafJjlp6HRibKgxRiDZ8ubMC+ehnPSA5DaduId6YZs/afCMekBGKWF9XfR1lbwjmRZVPR+xHQV2pEtkJOGQIxqxzuOX8ndh0HqMhDePZ/CrLnEOw5pAfXAl9ALd8I2Yh7kpMG84zSJ0nMUnDN+AbP6IupWPQOzkp6ZcC1U9H6kn9gF5qkOynVtmksQBDjG/ggwTXi3r+AdhzSTfmo/1N2fQO4xCrabZvOO0yxy51S45iwCdLX+Llo6V3QVKno/YYxBPZwJMbYjpCY8Xi0UiFHxsA2dC/3UXuin9/OOQ5rIuFQM96a/Q2yXBMeE+4PyyjApvhtcc58GFAfqvvgT9KLDvCNZChW9n5ilhTAvnoKSOiUo/+K0lG3gdIixneHJ/ieY5uUdhzSCeWrgXv8/EGQ7nNMeC+oLBsToxPpn0UYnwL32RWj0kJwGVPR+ouZmAYoTSq803lECShDl+mvra8rh3fsp7zjkBpipw535ClhtBZzTHoUY2ZZ3pFYTXTFwZfwaUmJPeDb+Heo3tPAeQEXvF2ZdJfQTu6D0GQtBcfCOE3BSYi8ofSdA+2YDjPIzvOOQ6/DmvA+jJB+O8fdCat+TdxyfEWwuOGf+EnK3ofDmvA/vzo/C/i5aKno/0I5sAUwDtn6hfxL2euwjbofgiIRn63J6BqgFqfmboeVmQRk4A0rvsbzj+Jwg2+CY8jCUlIlQD66BZ8s/wvoeDyp6H2OmDi1vE6TO/SHGJPKOw43giIR91J0wS09AO7KZdxzyHfq5Ani3vQupywDYR/yAdxy/EUQR9rH3wDZkLvSj2769ESw8zxtR0fuYfnIfWF0lbP1DY5XK1pB7jobUKRXeXSvpkXAWYVZfhOerlyG0iYdz0s8giKFdAYIgwD7sVtjHLoBx5hDqvnwhLB9uH9p/yhxouZkQouIhdR7IOwp3DdfWGxq8Oe/zjhP2mOaBe/1SMFOHa/rjEOwRvCMFjK3fJDimPASz7BTqVv8x7G7qo6L3IaP8DIzzR+tXqQzxI6WmEqMTYRuUAb1wJ+pOHOAdJ2wxZsKz+X9hVhTBOfkhiDEdeEcKOCV5OJyzfgmzpgJ1q56BUVHCO1LAUBv5kJabCUg2KH3G8Y5iKbZBsyBGJ+Li2tdppUFO1H2fQz+5B/aRd0DuMoB3HG7kjilwZSwCTL3+LtoLx3lHCggqeh9hnhpox3ZA6TU6rD4SN4UgKbCPuwd65QWo+1fzjhN2tJN7oO79DHLvMVAGTOcdhzupXRJcc38DwR6Bui+eh34m9D9pUtH7iFawFTBUKCHyqEBfkzumIHJA/aVuRkUx7zhhwyg/A8+m1yEm9IBj7D1hdZf2jYhtEuC6+WmIsR3gXr8M1Yc2847kV1T0PsBME2reRkgd+kCK68I7jmXFTV4AKA54t74Nxujaen8z3ZfhXr+0/jF80x4N6uUN/EF0RcM1ZxGkjn1RtvolqAfX8I7kN1T0PmCcPQhWXUZH842QIqLhGHkHjPNHoRds4x0npDFDr3/6kvsynNMeg+iK4R3JkgSbE84ZTyCi3xh4d34Ez44PQvIghIreB9TcLAgRsZC7Bcca3jzJfcZBSuwNz84PYbov844Tkhhj8Gb/E8a5Ajgm/BhSfHfekSxNkBQk3PJzKKlToB1aB8+mN8BMnXcsn2pV0a9evRqzZs3C1KlTsWJFeK5Bblaeg1F0GEpKOgRR5h3H8gRBgH3cPYDmgXfnh7zjhCQtbyO0I5thGzQHSs9RvOMEBUEQYU+bD9vwedCP59TfbxBCq6+2uOgvXLiAF198Ee+99x5WrVqFDz/8EMePh8elSt+l5mYBogwlZSLvKEFDiu0E28CZ0I9mQy/J5x0npOjFefBuXwGp6yDYht/GO05QEQQB9sEZsI+/D0bRYdR98SeYnmresXyixUW/fft2jBo1CjExMXC5XJg+fTrWrVvny2yWx1Q3tKPbICcPh+hswztOULENuRlCVHz9iVlD4x0nJJiXS+HOfAViTCKckx6AINA3sy1h6zsBjqmPwrx0Fu5VS2BWX+QdqdVa/F1DaWkp4uPjG/47ISEBhw4davLPx8VZ7+ny1xIfH3XdbVV7tqFG8yBh7Fw4bvC+QLhRTiv5bs662Q/g/AfPQDmWhdhxt3NMdbVgmM/vZjS9bhR/+hJEQUCnu56GEpvAMdmVgmEuge/ljJ8Ad/t4XPjoWXhW/xEd7vov2BK68gvXSi0u+mut79yca3TLy2tgmtZeIzo+PgplZdf+6MYYQ93OLyHGd0e1LRHV13lfINwop5VclbNNT8jJI1CR/THUDoMgRltjtc9gmM/vZmTMhGfDS9AvFsM561eo1CMAi+QPhrkErpPT2QWOjF/DveYvKHr7aThn/BxyYm8+AQGIotDiA+QWf7Zr3749Ll78/480paWlSEiwzlGEvxkl+TArz8FGl1S2ij3th4CowLPtnbB/OERLqXs+hX56P+yjfwi5Uz/ecUKK1LYLXHN/A9HZBu4vX4B+Kjifhdziok9LS0NOTg4uXboEt9uNDRs2YPz48b7MZmna4a8gOKIgJw/nHSWoia4Y2EfeDqM4Dzo947PZtMKdUPevhtJ3ApTU8H3QjT+JUe3gnPs0xLZd4P5qGdQjW3hHarZWHdE/8cQTWLBgAW655RbMmTMHAweGx9K8ZnUZ9DMHoPSdQHcb+oCSMhFiQjK8Oz4A89byjhM0jLJT8Gz+B6TE3rCP+REtb+BHoiMKrjn/Wf98ha/fgnf/F0H1CbRVF35nZGQgIyPDV1mChpa3CYAApV867yghQRBEOMbdi7p//Te8O1fCMf5e3pEsT6+pgHvDMgjOKDimPgJBons4/E1QHHBO/zk8W/4BdffHYO4q2EffFRRXN1k/ocUwXYV6ZAvkbkMgRsbxjhMypLiuUAZMg3ZkM4zzx3jHsTRmaLjw8Qtg3pr65Q3o0t6AESQZjvSfQhkwHdrhr+DZ+PeguDyYir6Z9MKdgLeWvg/1A/vQWyBEtIVn69shdwu6rzDG4Nn6NrzFBXBM/Cmkdkm8I4UdQRBhH3UnbCN+AL1wJ9zr/gdMdfOOdUNU9M3AGIN6OBNibGdIHfryjhNyBMUBx5gfwawognpoA+84lqQd3gD96DbEjPsBFLoQgBtBEGAfNAuOiT+BUZJffxethdduoqJvBvPCcZjlp6GkTqYTX34idxsMudsQqHs/g1ldxjuOpehFh+Hd8QHkbkMtd4NZuFJ6j4Vz+mMwK0pQt2oJzMvW/J2lom8GNTcTsDmh9ErjHSWk2dPmA6IIz7Z3g+rKBn8yK8/DnfkqxNhOcKT/NChOAIYLuesguOb8J5i3pv5ZtOVneEe6Cv22NJFZVwn9xB4ofcZDUOy844Q0MTIO9mG3wjh7CPrJPbzjcMfUOrjX/w8EUYJz+uMQFAfvSOR7pPY94bp5MSBKqPv8WeglR3hHugIVfRNp+ZsBZsLWbxLvKGFBSZ0CMS4J3u0rLH+iy5+YacKd9TeYl8vgmPIwxKj4xn+IcCHFdoJr7tMQI2LhXvtnaBY6SKGibwJm6NDyNkHqMgBidHveccKCIEpwjLsHrK4K3t2f8I7DjXfXShhnD8E+5m7IHekCAKsTI+PgunkxxHbd4Ml8BWreRt6RAFDRN4l+cg+Yu4rWtQkwKSEZSuokaLlZMMpO8o4TcNrRbGiH1kLpNwk2ujkvaAiOSLhmPwmpy0B4t70D797PuJ9roqJvAjU3E0Kb9pC69OcdJezYh8+D4IqGZ+tyMNPgHSdgjNJCeLa+BalD3/qF30hQEWQ7nNMehdx7DNS9n8Gb/S6Yye9ZtFT0jTAunoJ54ThsqZPoSgcOBJsL9rQfwrx4GlpuFu84AWHWVsC94SUIrlg4pj5Mj6gMUoIowzHhJ7DdNAta3kZ4sl4F01UuWai5GqHlZgGyDUrvsbyjhC25+/D6j8F7/gWz5hLvOH7FdBXuDcvANA+c0x+H6AiOh3aQaxMEAfaRP4B91F3QT+6Be+1fwdS6gOegor8Bo64a2vEdUHqNgWCP4B0nbAmCAMeYHwGmCe/20H0IPWMMnq/fgll2Eo70hZDaduYdifiIbeB0ONIXwjh/DHWrn4NZVxnQ8anob6D6YBZgaLSujQWIbeJhGzoX+qm90E8H58MfGqMeXAv9eA5sw26D0m0I7zjEx5ReaXDO+DnMqgv1d9FWXQjY2FT018FME5f3roPUMYWOrCzCNnA6xNjO8GT/E0zz8o7jU/qZA1B3rYScPAK2weG39He4kLsMgGvOU4DqRt3nS2BcPBWQcanor0M/cwB6VRkdzVuIIMr119bXlMO791PecXzGqCiBO+tvEOO6wjHxx7SOUoiTEpLhmvs0ICmoW/0c9OI8v49JRX8dWm4WpDbtICcN5h2FfIeU2AtK3wnQvtlgyTVFmot5auBevxSCbINz+mMQZFpeIxyIMR3qn0Ub1Q7utX+BVrjLv+P5de9ByqgogVGcizZDpkMQJd5xyPfYR9wOwR5Rv24943dtcmsx04A76zWwmotwTn2UHmQTZsSIWLgyfg0poQc8Wa9BPZzpv7H8tucgpuVmAZKMNoPoaxsrEhyRsI++C2ZpYf0aREHKu+MDGMW5cIy9B1JiL95xCAeCPQLOWb+CnDQI3u3/hHf3J365i5aK/nuY6oZ2LBtyj5GQIqJ5xyHXIfccDalTP3h3rQz4pWq+oB7ZAu3wV1D6T4PSdzzvOIQjQbbBMfURKH3HQ92/Gt6tb/n8LnAq+u/Rjm4DNA+ta2Nx9dfWLwB0Dd6c93nHaRb9/DF4t70DqVMq7KPu4B2HWIAgSrCPuw+2wRnQjnwNT+YrPr2Llor+OxgzoeZmQUxIhhTfnXcc0ggxJhG2wXOgF+6EXnSYd5wmMWvK4fnqJQiR7eCc8hCdAyINBEGAffg82NPmQz+1H+41fwbz1vpk31T032EU54FVnaej+SBiGzQbQnRi/YlZTuuINBXTvHCvXwqma/UPEKG7rck12PpPhWPygzBKC1G3+lmYtRWt3icV/XeohzMhONtApocuBw1BUuqvra8ug7p/Ne8418UYg2fL/8IsPwvn5J9Biu3IOxKxMKXHCDhn/hJm9UXUrXoGZuW5Vu2Piv5b5uVSGGcOQkmZCEFSeMchzSB3TIHcawzUg2tgVJTwjnNN6v7V0E/shn3k7ZC73sQ7DgkCcqd+cGUsAgytfsmEVtw3QkX/LTVvIyAIUFLoAQ/ByD7qDkBxwLvtbe4Pefg+7eReqHv+BbnnaCgDZ/KOQ4KI1K4bXDc/DdiccGf9rcX7oaIHwHQvtIKtkLsPhRgRyzsOaQHR2Qb2kT+Aca4A+tFtvOM0MC6dhWfT6xDjk+EYfx8tb0CaTYxuX/8s2pgOLd+HD/MELe34DsBbC4VOwgY1pc84SIm94d3xIUxPNe84MD3V9csb2JxwTnsUgmzjHYkEKdEVA+e0R1v+8z7MEpQYY9ByMyG27QIpsTfvOKQVBEGEfew9YKob3h0fcs3CTB2er14Gq6uEc9pj9EmRcBX2RW+cPwqz/CyU/lPoY3UIkNp2gu2mmdCPboNeks8th3f7ezDOFcAx/n5ICcncchACUNHXr2tjc0HpOYp3FOIjtiEZEKLi4d36NpihBXx8NW8jtLyNsN00C0qvtICPT8j3hXXRm7UV0E/uhdJ3PC0PG0IE2Q7H2AUwq85DPbgmoGPrJUfgzV4BqctA2Ib/R0DHJuR6wrrotfxNADNh6zeJdxTiY3KXAZCTR0Ddvxpm1fmAjGleLoPnq5chRifAOflnEMSw/utFLCRsfxOZoUHL3wyp60CIbRJ4xyF+YE/7ISAq8Gx71+/X1jPNA/eGpWDMrF/ewOby63iENEfYFr1+YjeY+zJs/afyjkL8RHTFwD7iP2AU50Iv3OG3cRgz4dn0BsyKYjinPAQxOtFvYxHSEq0u+qVLl+Kll17yRZaAUnOzIEQnQurUj3cU4kdKSjrE+GR4c9732UqA36fuXQX91F7YR90FuXN/v4xBSGu0uOirq6uxePFivPnmm77MExBG2UmYpYWwpU6GIITth5qwIIhi/aJnnhp4d630+f61E7ug7lsFpc84KPTpkFhUi1suKysL3bp1w3333efLPAGh5mYCigNK77G8o5AAkNolQek/FVr+Zhjnj/lsv8bF0/Bs+l+I7XvCPnYB3YdBLKvFRX/LLbdg4cKFkKTgenCC6b4MvXAnlF5pEGxO3nFIgNiH3Qohom39uvWm3ur9mXVV9csbOCLhnPoorXhKLE1u7A1r167Fs88+e8VrycnJWL58easGjouLbNXPt1RF9leoNXS0HzcXtnZRjb4/Pr7x91gB5WxMFGpnLcSFlc/BdmILYkbfcsN33ygnMzSUrHkO8Nag44IlsHfo7OuwTUJ/5r4VLDlbotGinzlzJmbO9P3SquXlNTDNwC4ny0wDtbvXQurUD1UsGii78cJX8fFRKGvkPVZAOZsoti/kbkNwacuH8LYfCDEq/ppvu1FOxhi8X78FregIHJMfxGU5vtHfI3/gPpdNRDl9RxSFFh8gh9WZSP30AbDaS1BSJ/OOQjixp80HRBGe7H+26Np6LTcTWsHXsA3OgNJjpB8SEuJ7YVX0Wm4mhMg4yF0H845c9PEBAAAQNElEQVRCOBEj42AfeiuMMwehn9zTrJ/Vi3LhzXkfctJg2Ibd6qeEhPheo1/dNObRR1u+RnIgGZeKYZTkwzbidro1Pcwp/adAO5YN7/YVkDv3b9JJebPqAtxZr0KM6QBH+kK6LJcElbD5bdVyMwFJga3vBN5RCGeCKMEx7l6wuip49/yr0fcz1Q33+qUA8O3yBnS1FgkuYVH0zFsL7Vg25B6jIDj4XO1DrEVKSIbSbxK0w5kwyk5e933MNOHe+DeYVefhnPoIrYtEglJYFL12NBvQVdj600lY8v/sI+ZBcEXDs3U5mGlc8z3qnk9gnDkIe9p8yB1TApyQEN8I+aJnzISamwWxfU9I7brxjkMsRLC5YE/7IcyLp+sfQPM92vEcqAe+hJIyEQotZU2CWMgXvVF0GOzyBdjowd/kGuTuwyF1GQjvnn/BrLnU8LpRegKeLW9C6tAH9rS7aXkDEtRCvujVw5kQnNGQuw/jHYVYkCAIcIz5EWCa8G5fAQDQqyvg3rAMgrMNHFMehiC1+uI0QrgK6aI3qy7AOPsNlJSJ9JeVXJfYJh62oTdDP7UX2onduPDxn8BUN5zTfw7R2YZ3PEJaLaTbT83bCAgilJSJvKMQi7MNnAH9WA48ma8CYHBMfQRSXBfesQjxiZA9omeaF1rBVsjJwyBGxPKOQyxOEGXYx90LiBJiJ9wFhb7qIyEkZI/oteM5gFoHhU7CkiaSE3sh8p6XEdsx3vILXBHSHCF5RM8Yg3Y4E2JcEqT2PXnHIUFEUBy8IxDicyFZ9Ma5ApgVRd8+KpAuiyOEhLeQLHotNxOwR0DuOYp3FEII4S7kit6sKYd+ah9sfSdAkG284xBCCHchV/Ra/mYADEq/dN5RCCHEEkKq6JmuQsvfDLnroOs+Jo4QQsJNSBW9fmI3mKeaLqkkhJDvCKmiV3OzIMZ0gNSpH+8ohBBiGSFT9EbpCZhlJ6DQJZWEEHKFkCl6NTcTUBxQeo3hHYUQQiwlJIredF+GXrgLSu+x9DxPQgj5npAoei1/M2DqUFLpKUCEEPJ9QV/0zDSg5W+C1CkVUkxH3nEIIcRygr7o9VP7wGorYOtPl1QSQsi1BH3Ra7mZEKLaQepyE+8ohBBiSUFd9Eb5WRjnCmDrNxmCGNT/VwghxG+Cuh213CxAUqD0Gcc7CiGEWFbQFj3z1kI7vh1Kz9EQHJG84xBCiGUFbdFrBVsBXYWSOpl3FEIIsbSgLHrGTKi5WZASe0Nql8Q7DiGEWFpQFr1x9hBYdRmtUkkIIU0QlEWv5mZBcMVA7j6EdxRCCLG8oCt6s+o8jLPfQElJhyDKvOMQQojlBV3Rq7lZgChBSZnAOwohhASFoCp6pnmgFWyDnDwcoiuGdxxCCAkKQVX02rHtgOaGjU7CEkJIk7W46Pfu3Yt58+Zh7ty5uOeee1BcXOzLXFdhjEHLzYTYrhvEhB5+HYsQQkJJi4v+ySefxJIlS7Bq1SpkZGTgmWee8WWuqxjnjsCsKIGNHhVICCHN0qKiV1UVjz/+OPr27QsA6NOnD86dO+fTYN+nHc6EYI+E3GOkX8chhJBQIzDGWGt2YJomHnzwQQwYMACPPPKIr3JdQa8qw5lXHkLM6Llom363X8YghJBQ1eiF6GvXrsWzzz57xWvJyclYvnw5VFXFokWLoOs6HnjggWYNXF5eA9Ns2r8x3l2rATBoSWNQVlbdrHFaIz4+KqDjtRTl9K1gyBkMGQHK6UuiKCAurmULODZa9DNnzsTMmTOver22thYPPvggYmJi8Nprr0FRlBYFaAzTVWj5WyAnDYEY1c4vYxBCSChr8a2lTz75JJKSkvD73//erydH9RO7wLw1tEolIaRZDENHRUUZdF1t9L2lpSJM0wxAqsaJogSnMxKRkdE+69YWFX1eXh6ysrLQs2dP3HLLLQCAhIQEvPHGGz4J9W+MMaiHMyHGdoTUMcWn+yaEhLaKijI4HC5ERCQ2WpiyLELX+Rc9YwyGoaO6uhIVFWVo2zbBJ/ttUdH369cPBQUFPglwI2ZpIcyLp2Afu4AuqSSENIuuq00qeSsRBAGyrCAmJg4XLhT5bL+WvjNWzc0EFCeUXmm8oxBCglAwlfx3CYIIoFUXRF7BskVv1lVCP7EbSp+xEBQH7ziEEOITJ04cx9ixw7B5c1bAxrRs0WtHtgCmAVs/OglLCAkdX365GhMnTsZnn30SsDEtWfTM1KHlbYLUZQDEmETecQghxCd0XceGDWuxcOFDOHasAMXFvvse/kYs+eQO/eQ+sLpK2MbfyzsKISQEZH9zDtsOXX+ZFkEAWrpGwNiBHTBmQIcmvTcnZxsSExPRtWsSxo2biFWrPsFDDz3esoGbwZJH9FpuJoSoeEidB/KOQgghPrNmzWpMmTIdADB58lSsWfMFNE3z+7iWO6I3Lp6Gcf4o7KPuhCBa8t8hQkiQGTPgxkfdgbiOvqLiEnJysnHkSD5WrvwAjDFUV1/G5s1ZmDp1hl/HtlzRa3lZgGyD0mcc7yiEEOIz69evwdChI/CXvyxreO0f//g7Vq36l9+L3lKHzMxTA+3YDig90yDYI3jHIYQQn1mzZjVuvfU/rnjttttuR35+Lk6fPuXXsS11RK8VbAUMlda1IYSEnHfe+fCq12Jj2yIrK9vvY1vmiJ6ZJtS8LEgd+kCK68I7DiGEhAzLFL1x9iBY9UUo9OBvQgjxKcsUvXo4E0JELORug3lHIYSQkGKJojcqS2AU50JJSYcgWuq0ASGEBD1LFL2WuxEQZSgpE3lHIYSQkMO96JnqhnZ0G+Tk4RCdbXjHIYSQkMO96LVj2YDmga3/VN5RCCEkJHH9QpwxBi03C2J8d0gJyTyjEEKI39XW1uBvf3sFBw7shSTJiIqKwiOPPIE+ffr6dVyuR/RGcR7MynOw0SWVhJAQZ5omfvWrx9GmTRu89dZ7WL78Pdx330/xq189hqqqSr+OzfWIXsvNhOCIgpw8nGcMQgjxu3379uDixYv48Y8fgPjtgo1DhgzD4sW/hWn6d0E1bkVv1l6CfuYAbDfNhiDbeMUghIQB7Wg2tIKvr7tdEASwFi5Ir/QZD6X3mEbfd/RoAVJS+jWU/L+NHj22ReM2B7evbvRjOQAEKP3SeUUghJCAEcWW/2PSWtyO6LXCnZC7DYEYGccrAiEkTCi9x9zwqDsQ69H37dsPn376MRhjEASh4fW///0VDB8+EkOGDPPb2PxOxqp1tK4NISRs3HTTYMTGtsWbb74OwzAAADt35mDNms/RrVt3v47N7YhejO4AqUMfXsMTQkhACYKA5577K1566S9YsOAOyLKM6OgYvPDCUrRt699vNrgVvdwr7YqPL4QQEupiYmLwX//1h4CPy+2rG7n7UF5DE0JIWOFW9HRJJSGEBAb3tW4IIYT4FxU9ISRk8bpuvbUYMwH47hwmFT0hJCTJsg21tZeDquwZY9B1DZWVF2GzOXy2X3qcEyEkJMXGxqOiogw1NY0vGCaKot/Xm2kqUZTgdEYiMjLaZ/ukoieEhCRJktGuXYcmvTc+PgplZdV+TsQPfXVDCCEhjoqeEEJCHL8lEMTguCuWcvoW5fSdYMgIUE5faU0+gQXTKWlCCCHNRl/dEEJIiKOiJ4SQEEdFTwghIY6KnhBCQhwVPSGEhDgqekIICXFU9IQQEuKo6AkhJMRR0RNCSIjza9GvXr0as2bNwtSpU7FixYqrtufn52PevHmYPn06nn76aei67s8419VYzpdffhnp6emYO3cu5s6de833BEJNTQ3mzJmDoqKiq7ZZZS6BG+e0yly+/PLLmD17NmbPno3nn3/+qu1Wmc/GclplPpcuXYpZs2Zh9uzZeOutt67abpX5bCynVeYTAP70pz9h0aJFV71eUlKC+fPnY8aMGXjwwQdRW1vb+M6Yn5w/f56lp6eziooKVltbyzIyMtixY8eueM/s2bPZ/v37GWOM/frXv2YrVqzwV5xW5XzggQfYvn37Ap7tuw4cOMDmzJnDUlNT2dmzZ6/aboW5ZKzxnFaYy+zsbHbHHXcwr9fLVFVlCxYsYBs2bLjiPVaYz6bktMJ87ty5k915551M0zTmdrtZeno6KywsvOI9VpjPpuS0wnwyxtj27dvZyJEj2VNPPXXVtoULF7IvvviCMcbYyy+/zJ5//vlG9+e3I/rt27dj1KhRiImJgcvlwvTp07Fu3bqG7cXFxfB4PBg0aBAA4Lbbbrtie6A0lhMADh8+jDfeeAMZGRn4/e9/D6/XG/CcH330EX73u98hISHhqm1WmUvgxjkBa8xlfHw8Fi1aBJvNBkVR0KNHD5SUlDRst8p8NpYTsMZ8jhgxAu+88w5kWUZ5eTkMw4DL5WrYbpX5bCwnYI35rKysxIsvvoif/exnV23TNA27d+/G9OnTATR9Lv1W9KWlpYiPj2/474SEBFy4cOG62+Pj46/YHiiN5aytrUVKSgqeeuopfPrpp7h8+TJeffXVgOdcsmQJhg0bds1tVplL4MY5rTKXvXr1aiidU6dOYc2aNZgwYULDdqvMZ2M5rTKfAKAoCpYtW4bZs2dj9OjRaN++fcM2q8wncOOcVpnP3/72t3jiiSfQpk2bq7ZVVFQgMjISsly/8HBT59JvRc+usSimIAhN3h4ojeWIiIjAG2+8gaSkJMiyjPvvvx9btmwJZMRGWWUuG2O1uTx27Bjuv/9+PPXUU+jWrVvD61abz+vltNp8PvbYY8jJycG5c+fw0UcfNbxutfm8Xk4rzOfKlSvRoUMHjB49+prbWzqXfiv69u3b4+LFiw3/XVpaesXH+e9vLysru+7HfX9qLGdJSQk+/vjjhv9mjDX8a2oVVpnLxlhpLvfu3Yt7770Xv/zlL3Hrrbdesc1K83mjnFaZz8LCQuTn5wMAnE4npk2bhoKCgobtVpnPxnJaYT7XrFmD7OxszJ07F8uWLcPGjRvxxz/+sWF727ZtUVNTA8MwADR9Lv1W9GlpacjJycGlS5fgdruxYcMGjB8/vmF7p06dYLfbsXfvXgDAZ599dsX2QGksp8PhwAsvvICzZ8+CMYYVK1Zg6tSpAc95I1aZy8ZYZS7PnTuHhx9+GH/+858xe/bsq7ZbZT4by2mV+SwqKsJvfvMbqKoKVVWRlZWFoUOHNmy3ynw2ltMK8/nWW2/hiy++wKpVq/DYY49h0qRJWLx4ccN2RVEwbNgwrFmzBkAz5rL154ev7/PPP2ezZ89m06ZNY6+//jpjjLGf/OQn7NChQ4wxxvLz89m8efPYjBkz2C9+8Qvm9Xr9GafFOdetW9ewfdGiRdxyMsZYenp6w9UsVpzLf7teTivM5R/+8Ac2aNAgdvPNNzf877333rPcfDYlpxXmkzHGli5dymbOnMnmzJnDli1bxhiz5u9nYzmtMp+MMfbJJ580XHWzePFilpmZyRhjrKioiN19991s5syZ7P7772eVlZWN7oueMEUIISGO7owlhJAQR0VPCCEhjoqeEEJCHBU9IYSEOCp6QggJcVT0hBAS4qjoCSEkxFHRE0JIiPs/JT1Y7YZkUfYAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_demo[[\"A\", \"C\"]].plot();"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["### Seaborn Color Palette Example"]}, {"cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAABQCAYAAADiBIpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAAr1JREFUeJzt2cGLjGEAx/GHBkOZtbZ1VE5ObhQXF+XfkAMpykVWOEopF3HYTA7+Bc5Srty4K0fTYEaxu229LlJ+N9M+PWP6fC7P6alfvb31rWdX13VdAQDgj92tBwAAzBuBBAAQBBIAQBBIAABBIAEABIEEABAEEgBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAoTfrxZuP35TxZGMnt8yNZ3fPl09PrrSeUc3Ra+vl6ss7rWdUcfHFuJwcrpd3lxbz+50crpdH9161nlHN9bvnyvMHN1rPqObC2sPy8enb1jOqOXb5VBkOh61nVHH6+KicOHu7vH9zv/WUKk6cvV1uvf7QekYVy/09Ze3M8X++N3MgjScb5fPXn7Nen3vbk1HrCVWNfnxpPaGKzc+jv85FNFng/66UUr5/G7eeUNX2dLP1hKqm02nrCVVsbXz961xE459brSfMFU9sAABBIAEABIEEABAEEgBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAQSABAASBBAAQBBIAQBBIAABBIAEABIEEABAEEgBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAQSABAASBBAAQBBIAQBBIAABBIAEABIEEABAEEgBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAQSABAASBBAAQBBIAQBBIAABBIAEABIEEABAEEgBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAQSABAASBBAAQBBIAQBBIAABBIAEABIEEABB6s15cWerv5I6501tabT2hqtUDh1tPqGLfke73ubjfb2l5f+sJVR08tNJ6QlW9wb7WE6oaDAatJ1Sxt7/5+1xuvKSelf17W0+oYrm/Z6Z7u7qu63Z4CwDAf80TGwBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAQSABAASBBAAQBBIAQBBIAABBIAEABIEEABB+AfAGVV2++a/SAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 720x72 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["sns.palplot(sns.color_palette())"]}, {"cell_type": "code", "execution_count": 85, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAABQCAYAAADiBIpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAAplJREFUeJzt2TGKE3EYxuFvZRQJihpIZzGd9R5CLDyEF4g3EAvZSrByLmDtCcTKE1jbTWEX2VUUER0Yq1i8nWGHyQ7P06T6s+8HS/hBTsZxHAsAgH+uzT0AAODYCCQAgCCQAACCQAIACAIJACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAjNoQ8/nz2v4eL8MrccjfZVV/277dwzJtM+6upDv8z73lfVWdvVs4Xed9Z2te3fzD1jMl37pLaf+rlnTKZ70Nb2dT/3jMl0T9t6ue3nnjGJh1V12rX1caH3nXZt9du3c8+YRLNe1f0Xj///3aF/cLg4r+HL7tDnR2/4udzbqqp+Dcu8b5/s5wu9r6pqN3yfe8Kkdn+GuSdMavdt2fd93S3zvt/7z4XeV1U17H7MPeGo+IkNACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAEJz8MN768vccXSa1WbuCZO62Szzvv1/5Xqh91VVbZrbc0+Y1Ob6wV9LV8LmzrLvu7tZ5n039p8Lva+qqtncmnvCJJr16qB3J+M4jpe8BQDgSvMTGwBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAQSABAASBBAAQBBIAQBBIAABBIAEABIEEABD+AsYQTZBcSEeRAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 720x72 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["sns.palplot(sns.color_palette(\"hls\", 10))"]}, {"cell_type": "code", "execution_count": 86, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAABHYAAABQCAYAAAB8i/K4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAABBlJREFUeJzt27+OVVUYxuEXQRqIhAQNkgl7V1qpN2C8BazUC9BKbbT1LoyVVlbGSm+BeANipdXahIB/JjEYaDB4LA6hJZ7Mcs238jzNamYn71dN5hc4s9vtdgEAAACgnOdGDwAAAADgMMIOAAAAQFHCDgAAAEBRwg4AAABAUcIOAAAAQFHCDgAAAEBRwg4AAABAUcIOAAAAQFHCDgAAAEBRwg4AAABAUcIOAAAAQFHCDgAAAEBR5w7+8pM3k+M7JzjlFPm6JV+to1f0835LfllHr+ji7ivJtbTczTp6ShfX0vLNpLclyXtp+WDi+75My6sT3/dzWta8O3pGJ2+l5cOs+WL0kC72t/00ekY3La9l/XX0in7a1WT9dvSKfto7yfrR6BWd3EzarWR9ffSQPtqt5O119Ip+vmvJ5+voFf183JIf19Er+nmjJVn/HD2jk5tJu5Gs348e0ke7kayfjl7Rx9Hl5IfP/vNnh4ed4zvJb9vBn596f018W5L8Ped9j5++c96XJA8mvi1Jfp/8vm36+2b96/l+kmR78s5oy6PRE7raHj/7ZyrbHoxe0Nf2x+gFndzeP9vtsTN6ujf3r73cn/y+R5Pfl+2f0Qs6ebh/todjZ/S0HY9ecKr4r1gAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFCTsAAAAARQk7AAAAAEUJOwAAAABFnTv4yytHJzjjFHphGb2gr+fnvO/s03fO+5Lk4sS3JclLk9+3TH/f1dETOrmUJFmevDNacn70hK6Ws8/+mcqWi6MX9LW8OHpBJ9f3z3J97IyeXp77114uTX7f+cnvyzLrv3O4sH+WC2Nn9LRcGb2gj6PLB312Zrfb7U54CgAAAAD/g1kTJQAAAMD0hB0AAACAooQdAAAAgKKEHQAAAICihB0AAACAooQdAAAAgKKEHQAAAICihB0AAACAooQdAAAAgKKEHQAAAICihB0AAACAooQdAAAAgKL+BVCMY5TLW1IBAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 1440x72 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["sns.palplot(sns.color_palette(\"hsv\", 20))"]}, {"cell_type": "code", "execution_count": 87, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAABQCAYAAADiBIpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAArVJREFUeJzt2T1LFVAAxvHjWyRKiCBkCDW4FThW0BRCU04S1NdoaKqhra2Ghr5ALtHiJElTkI2u0RJcMhpEQrnhS7ctuM/WxcOxy++3nOnAMx3+cEZ6vV6vAADw12jrAQAAZ41AAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAMD7oxXeff5Tu0clpbjkzVq7Ol1vP3reeUc2HR7fLZudV6xlVvNh6W9ZXN8rdN3daT6lifXWjHK+9bj2jmvH7D8rO9ZutZ1Qz/+lj+b31tPWMakZvPCnl+ZXWM6rYvrZZlpYXy/bml9ZTqlhaXiyP7621nlHFzNxUefhy5Z/vDRxI3aOTcnA4nIFUSimdvW7rCVV1j3+2nlDFzsG3vnMo7e+3XlDVSafTekJdv3ZbL6hr72vrBVUcdo/6zmG0+32435Z/5YsNACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAIJAAgAIAgkAIAgkAIAgkAAAgkACAAgCCQAgCCQAgCCQAACCQAIACAIJACAIJACAIJAAAML4oBcnJ8ZOc8eZszAz2XpCVZPjF1pPqGJ+6lLfOZSmp1svqGpsYaH1hLrOz7ZeUNfM5dYLqjg3OdF3DqPZi8P5tszMTQ10b6TX6/VOeQsAwH/NFxsAQBBIAABBIAEABIEEABAEEgBAEEgAAEEgAQAEgQQAEAQSAEAQSAAAQSABAASBBAAQ/gBg1VC50SDDXAAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 720x72 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["sns.palplot(sns.color_palette(\"Paired\", 10))"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["### Seaborn Plot Examples\n", "\n", "* Most of the time, I use a regression plot from Seaborn"]}, {"cell_type": "code", "execution_count": 88, "metadata": {"slideshow": {"slide_type": "skip"}}, "outputs": [], "source": ["import warnings\n", "warnings.simplefilter(action='ignore', category=FutureWarning)"]}, {"cell_type": "code", "execution_count": 107, "metadata": {"slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmUXHWd///n595bVb0mvaSquhOWGEBwHFCceATn/GAYWdIkHRgEh2VOFEfE/FhiVCQGRyFOBAFlHZgjwxzOAF85oBIOfhNkjAf8avwdgUEJwg/yYzPQnd7T3dXdtd37+f1RS1dVVy+VVFfdqno/zmmSrq0/n3RTr/5s76u01hohhBCiSIxyN0AIIUR1kWARQghRVBIsQgghikqCRQghRFFJsAghhCgqCRYhhBBFJcEihBCiqCRYhBBCFFXZgiUUCrFu3Tref/99APbs2UN3dzdnn302d9xxR97n9PT0cNlll7FmzRo2btzIxMREKZsshBBiAcoSLH/605+45JJLePfddwEIh8Ns3bqV++67j507d/Lqq6/y/PPPz3jeTTfdxKWXXsozzzzDX//1X3PfffeVuOVCCCHmU5Zgefzxx/nud79LIBAA4JVXXuHoo4/myCOPxLIsuru7eeaZZ7KeE4vFeOGFFzjnnHMAuOCCC2Y8RgghRPlZ5fii27dvz/q8v78fv9+f/jwQCNDX15f1mJGREZqamrCsRJP9fv+MxwghhCg/Vyze56uDqZQq+DFCCCHKrywjllzBYJDBwcH05/39/elpspS2tjZCoRC2bWOaJgMDAzMesxAjIxM4zvwFndvbmxgaChX8+pWuVvsNtdv3Wu031G7fF9pvw1C0tjYW/PquCJaPfexjvPPOO7z33nscccQR/OIXv+Czn/1s1mM8Hg+rV69m586ddHd3s2PHDk477bSCv5bj6AUFS+qxtahW+w212/da7TfUbt8Xs9+umArz+XzccsstXHPNNZx77rmsWrWKNWvWAHDDDTewe/duAL773e/y+OOPc+655/Liiy/y1a9+tZzNFkIIkYeqtQt9DQ2FFpTUfn8zAwPjJWiRu9Rqv6F2+16r/Yba7ftC+20Yivb2poJf3xUjFiGEENVDgkUIIURRSbAIIYQoKgkWIYQQRSXBIoQQoqhqLlhqagucEEKUQc0Fy5jjEFUaqQYjhBCLwxUn70sprjXhuIPPNGg0DEwZwgghRFHVXLBAYjosbDtEHYc606RBKQwJGCGEKIqamwrL5GiYjNsMx22mlKy/CCFEMdR0sKQ4WjMeizPi2EQVsv4ihBCHoSanwmYTdzSjThyfabDEccrdHCGEqEgyYsmRWn8ZisWZQKNl9CKEEAWRYJmFBibiNiNxm4hK3SKEEGI+EizziGvNaCzOQa2Jy+hFCCHmJcGyQFHbYSQeJyTTY0IIMSfXLN4/8cQTPPLII+nP33//fc477zy+853vpG+79957+dnPfsaSJUsA+NznPsdll11Wsjbq5PbkiFI0WiY+DZIxQgiRzTXBctFFF3HRRRcBsG/fPq666iquvvrqrMe8+uqr/OhHP+Lkk08uRxPTbK0Zi8XxGopG08CLorauwymEELNzTbBkuvHGG9m8eTNtbW1Zt7/66qs88MAD7N+/n09+8pNcf/31+Hy+MrUSoo4m5tjUJcvDZJ7e/3M4zO7JSYZsm3bT5DMNDXy0rq5sbRVCiFJx3RrLnj17CIfDdHV1Zd0+MTHBRz7yEa6//nqefPJJxsbGuO+++8rUymkamLKdrNP7fw6HeSIUYsxxaFCKMcfhiVCIP4fD5W6uEEIsOqW1uyZxrr32Ws4++2zWrVs35+Nee+01tm7dyo4dOwp6/b5IFPtwGjgPC8VP+gbpj8YAld6kHHEcWjwW//KhFYv41YUQovxcNRUWjUZ54YUXuOWWW2bc19PTw549e7jwwgsB0FpjWYU3f3R0ipg9/6n61rZGRoYnCn59gDdDU7RbJnWGIuI4RByN0preeISBgfFDes1S8fubXd/GxVKrfa/VfkPt9n2h/TYMRXt7U8Gv76qpsDfeeIOVK1fS0NAw4766ujpuu+029u/fj9aaRx99lLPOOqsMrZxfk2EwFLcZjMWJA82WSaNpcITHU+6mCSHEonNVsOzfv5+Ojo6s26644gr27t1LW1sb27ZtY+PGjaxZswatNZdffnmZWjq3U+vqsIGI1oTiNj3RGMO2wyd8PibR2FLoUghRxVy3xrLY3uwfXfSpMIB9kQi/D4c5aNu0mCan1tVxXHIHm1LgNQzqDAMviXR3y3ehVqcGoHb7Xqv9htrt+2JPhblqjaWaHOfzpYMkl9YQsR0itoOhwFAKj1JYhoGpNZZSmLgnbIQQohASLGXm6MT1YOJosB0UiRGNSoaNJxk2HqVcNbIRQojZSLC4jCYZHlpjowlnhI1lGPgMAw9gScAIIVxKgqUCpMImajtEk0FjKIXPUHgNAwtk6kwI4RoSLBVIk6hXNmlrJpPrNDKaEUK4hQRLFXDyjGa8hsJnGJiAKUEjhCghCZYqkxrNTNmaqeRoRqHwGApLqfSOM1Mn1m1k+kwIUWwSLFXO0QAa255OkMRmAIWhmN7mjMZE4WgtgSOEOCwSLDUosRlA42jS25whOYKJxhh3nMRaTXKrs6GUjHCEEAsmwSLStE6ETsx2iEH2uRoUVuZ0mtaYcrZGCJGHBIuYU/pcTXI6LZK8PRU4hpoOm9T6jaHBkNGNEDVLgkUcklTgpKsGJOVbv7GSt5sSOELUBAkWUVRzrd8oFGYycMzk+o0p6zdCVB0JFlESifWbRODEMgIntR3aNJKFOJXCSAUOEjZCVCIJFlFWmduho8nbMjcMZJ6/MUiUrpENA0K4mwSLcJ3cDQMpmRsGPEphyoYBIVxJgkVUjPk2DJiKxOgm48CnrN8IUXquCpYNGzYwNDSEZSWatW3bNj72sY+l79+zZw8333wzkUiErq4uNm/eXK6mChfJ3DAQy9kwYKTWbyC9YUAOfAqxuFwTLFpr3n77bZ577rl0sGQKh8Ns3bqVhx9+mM7OTq688kqef/55Tj/99IK+ztPj4xga2kyTNsOgzTRZYhgYchH6qqM12JnrN/Mc+IxLORshisI1wfL222+jlOKKK65gaGiIz33uc/zTP/1T+v5XXnmFo48+miOPPBKA7u5unnnmmYKD5d14nIFYPOs2E2hJBk27adJmmhw1aeKxbZYaBkpCp2rMdeCTaIwx25YDn0IcJtcEy9jYGKeeeio33ngj4XCYDRs28KEPfYi//du/BaC/vx+/359+fCAQoK+vr+Cvc5LPx7sohm2bg46TqAYMDNk2Q7bNvlgs8cCJCSAROq05oZP6fImETtXQyY+4Iwc+hThcrgmWk08+mZNPPhmAhoYGLrzwQp5//vl0sOg8//ceypv6+s527OTf41ozHIszGIszEI0l/ozFGYzGGInb6dAZtG0GbRtSoZNkKcUyj8Uyj4Xfa7HM48HvsVjmtVhqmhUbOq1tjeVuQtkU0nebxM9g6vyNmR7pHNrPZjn5/c3lbkLZ1GrfF7PfrgmWF198kVgsxqmnngokgiRzrSUYDDI4OJj+vL+/n0AgUPDXGR2dIpZc3AXwAJ1AJyZYJlg+qIfmlgbeGRpn2LanPxyHYdtm1Ek8P641B6IxDkRjMJH9dSyS6zgZazmpjyalXPvG09rWyMjwxPwPrEKH2/fc9RtPhUyn+f3NDAyMl7sZZVGrfV9ovw1D0d7eVPDruyZYxsfHufvuu3nssceIxWI8+eST3HTTTen7P/axj/HOO+/w3nvvccQRR/CLX/yCz372s4vWHstQLDNNlpnmjPviWjOSETSZwTOWCh2g37bpt+0Zz/eSnF7LEzyNLg4dMbe5C3Ymdqd5mb4cgVSHFtXKNcFyxhln8Kc//Ynzzz8fx3G49NJLOfnkkznvvPP48Y9/TDAY5JZbbuGaa64hEolw+umns2bNmrK01VIKv2Xhz3NfLBU6ucHjOIwnQycK9Nk2fflCR6nsEU7G3xskdCpSeju0rWdcjiB12NPKqZ0mRCVTOt/iRRV7s380aypsNosxJRTTesa0WuojtIBvgy8ndFpNk/bk5/VFCh2ZCitf3+csZbOIU2m1Oh0Etdv3mpkKqwUepQhaFsE853SieUJnJCd0IlrTa9v05hnp1ClFa85aTjp0DGPR+yYO36ylbDIPemas28iuNOFWEiwu4VWKDsuiI0/oRDJCJ3dtZyL5rhKeI3TqlUpvkU6HTvLzOgkd15tx0JPsumne3Kk0JGxEeUmwVACfUnRaFp35KhI4DiM5azmpv08m312mtGYqHqcnz2vXK5W1lnOkB3zxuISOy82om5ZZVSBjC7QnYypNqgqIUpFgqXB1hkGnYcwaOsOOw1DGtFoqeKYyQueDeJwPUk+amko/vyEVOnm2TPtkE4HrpKfStMZm5lRaqoSNJ2MqTb6NYjFIsFSxOsNguWGwPE/oTKVGNjmjnRHHYSq5e21Saybjcd6Px2c8v3GO0PHKu5WrZE6lzdgCrcCKxQkrsGQLtCgSCZYaVW8YrDAMVuTc3trWyAeD43l3rg07DpHkO86E1kzE4+zPEzpNmaGTEzweCR1XyKwIPek4jMXi+bdAZ1x+QIiFkmARMzQYBg2GwRE5t2utmZxty7TjEE2GTkhrQvE4f8kTOs2Gkb1lOlmDrVVCp+zyrdvA9OWjM7dAu72agCgvCRaxYEopGpWi0TA40uPJuk9rzcQc53RSVdbGkwdF38sTOksyQqc1Z7RjSeiUjZNvCzSJn4fc0jVy6WgBEiyiSJRSNClFk2FwVJ7QCSVDZyRZRTrzrE4qdMaSJXHezRM6S1OBk1OVoFVCpyxSU2nRWbZA51YTsJCwqSUSLGLRKaVoVopmw+DoOUIn32gnFTGjjsOo4/BO7mszS+gkPzcldEpmzi3QJa4mIMpLgkWU1XyhM57cMp0veGwSb2YHHYeDzswyPZmhk7tzrUVCpyQKrSZgyXmbqiDBIlxLKcUS02SJabIyT+iMzRI6I3lC5+3c1wZacqbVjpow8No2LXKp6kU3ezWBxBboGYU5kbCpJBIsoiIppVhqmiw1TT6UEzpOKnTybCIYcRwcEqEzkjy381bqAm6Tk0Bi8bklZ4STGvEsldBZNJlboGM5U2lG5uWilcLQGkMp2ZnmUhIsouoYStFimrSYJqty7nO0ZjQndFIbCg4mQ8eBxH2OM+OqoQbMWMtJhc4SCZ2im7Fuk6SS/1EkLhtd7aHz53CY3ZOTDNk27abJZxoa+Ghd3aJ8rdRUpFZgH+KPswSLqClGsiBnq2lyTM59S1obeHdwfMa0Wmqko0mEzpDjMJQndEygJRk07TnBs8Qw5Fo6RZRctkGTGOHMFzqpy0arVHWBZOhUgj+HwzwRCmGRKLM05jg8EQoBLDhcUj96qcCIOg5xRfpn2tYaR2tswHZ04nFoLNOg8Ov0SrAIkWZmVAzIZWvNwYygyZxiO5gMHRsYSo5+9uWEjkXiqqGtGaHTKqGzKAoJHSMaY4JUKRudqKnmsg0Euycn8ZColmEqaEAR1w7/TzjMCfWJYHF0otGpEbfWOjGtmPzccXR69KfR2LE4I7HMf5n8DvXfQIJFiAUwlaI9ebmBXLbWWRWmMy9tMJoMnTgwYNsM2PaMkU4qdNoyRjup0GmW0Cmq3NAJa81EfPpSEyrPSCczdEq1RVqpxMFURyVGGH7LJE4iJOLJdajeeIzheJxUOhTSJF3g4wvlqmC599572bVrFwCnn3463/zmN2fc/7Of/YwlS5YA8LnPfY7LLrus5O0UIpOpFMtMk2V5QieeHOnk2y49mtwinRU6OTwwowpB6qNJLlVddHqWkQ5M71ozFOmptVTRTpJTbJrp0UNqmik1ekg8d/rxmetxWmscpbC1xtaamJNog9Ya29H0OHZWyaOY1jQZhmtGVblcEyx79uzht7/9LU8++SRKKb70pS/x3//935x11lnpx7z66qv86Ec/4uSTTy5jS4VYOGue0Mm9cFsqeMaSoRMD+m2b/jyh4yUjdHKCp1FCp+gyd63Fma4UnaIyHjeffN+Z2Z73qbo6npmcBK2xSPwiYgOnLtLifTG4Jlj8fj9btmzB6/UCcMwxx9DTk31pqldffZUHHniA/fv388lPfpLrr78en89XjuYKcdgspfBbFv4898VSoZOn2Od4MnSiQJ9t05cvdJTKHuFk/L1BQmdRFDoVtVDHJd/jfh8Oc9C2aTFNTq2rS9/uRkpr9w2m3n33XS6++GIee+wxVq5cCcDExARf/epX+fa3v82KFSvYsmULK1asYPPmzQW9dl8kysz/DYWoHBHHYSgWZzAWZyAaZzAWYyAWZzAaZyxPyOSqMxTLPB78HotlXotlHgu/x8Myr0WjrOmIDCYQ9HkLfp7rgmXfvn1ceeWVXHPNNfzDP/zDrI977bXX2Lp1Kzt27Cjo9d/sHyVmzyz/kau1rZGR4YmCXrsa1Gq/oTr6Hp2lwvSIbRNawP/qdbkjnYzRTn0VXqq6Gr7nh2Kh/faYBh8OLC349V0zFQbw0ksvce2117J161bWrl2bdV9PTw979uzhwgsvBBJznVaeKyMKUcu8StFhWXTk+X8jMkuxz4PaIZT8ZSusNT22TU+ekU99cjt25gHR9mTw1FVh6IhD55p35t7eXq666iruuOMOTj311Bn319XVcdttt/GpT32KI444gkcffTRrYV8IMTefUnRaFp05odPa1kjv4DgjjpO4pEHyQGgqgCaTI50prfkgHueDPK/dkDx42pYndHwSOjXHNcHy4IMPEolEuOWWW9K3XXzxxfz617/m2muv5cQTT2Tbtm1s3LiRWCzGJz7xCS6//PIytliI6lFnGHQaxozQAZhK1lTLN9qZSobOpNZMzhI6janQybNl2ifrOVXJdWssi03WWOZWKf3eF4kUfZdMpfS92A6n31OzFPscdhzCC3hracyodpAbPN4ShI58z+dWFWssQizEvkiEZyYnMUksNoccJ7HPH1y9BbMa1RsGKwyDFTm3a62ZSq3p5AmdSDJ0JrRmIh5nf56rhjbNEToeGem4mgSLqDi/D4cxIf3m4gHQmt+HwxIsLqGUokEpGgyDI3Lu01ozOcvutWHHIZoMnZDWhOJx/pIndJoNI+85nVYJHVeQYBEV56BtU5fz5mElbxfup5SiUSkaDYMj81zAbSLjcOhQzmgnVWVtPHlQ9L08obMkN3QydrJZEjolIcEiKk6LaRJyHDLfkuLJ20VlU0rRpBRNs4ROaJYt08O2TSpixpIlcd7NEzqpS1WnguaokMIbj9MqoVNUEiyi4pxagbWTxOFTStGsFM2GwdF5Qmc8eXG21IXbMq+nk4qYUcdh1HF4J/XE5NqcYjp0MqfVUiFkSugURIJFVJxKrJ0kFpdSiiWmyRLTZOUcoZMa3Qwlz+qMODZxnajdddBxOOg4vJ372uRcqtow0qHTIqGTlwSLqEjH+XwSJGJB5gqdpa0N/GVwPH/o2DY2idAZSZ7leSvnWjqKxKWq853TaanhS1VLsAghakrmGSj/ZIjVpofjfD4+lBM6jtaMzXJOZ8RxEtdagcR9eULHIGekkxE8S6s8dCRYhBA1I/cM1Fjc5plIIhByR8CGUrSYJi2myaqc13G0ZnSW0DmYDB2H6dDJvWqoAVk11zJDZ0kVhI4EixCiZsw4A6UUdvL2QqZWjWSZmlbT5Jic+5zcq4Zm/P1g8lLVDjDkOAzlCR0TZtRdSwXPkgq5rIEEixCiZpTiDJSRUTEgl50ROrlXD02Fjg0M2jaDtj1n6LTnnNNxU+hIsAhRBItRu0wUX7nPQJlK0Z6s/JzL1jpd7DP36qEHbRuSo6vZQsciMb3WHovSNjFO+/Ag7Qc+YNlf3qJZQ/yL10BdfUn6KcEixGGS2mWVI/cMVFRr15yBMpVimWmyLCd0Ym+9ycSv/zfjzS2MLG3lYH0DI/UNjC0/khGvj1HTAqWIAwOOw4BpwZLWxMfK4+CUv8MTi9IWmqA1FqfNMDjS1PhicdpMk6ZFuFS1BIsQh0lql1WO3DNQfstktc/Fo8vwFPZzu2gcH2PJwWGO+v8imNEwZsZoJWZaDLe0MdzSxlBrO4Otyxhq9zPUtoyxhqbEYzxe+oC+aDT5uuH0870wvV16xpbpQwscCRYhDpPULqssmWegXFM2f3IC1d+b+Ojrxeg/kPj72EHmijzd1IwZ6GBZcDntgQ6O8XegA53QtASUIpZRdy1rPQfNaDzx8xkF+mybvjw/r8u9Hn4UbCm4OxIsQhymcs/biwqhNUyMo/oPJMMjGST9B1ChsTmf6ng8OA2N2PWNOF4vMaWwm5bQ8E9Xzvk8j1IELItAnquG9g2F8obOsG0TSlaYjh3i5bpcFSxPP/00999/P7FYjC984QtcdtllWfe//vrrfPvb3yYUCrF69Wpuuukmue69KDupXSayaA3jo6j+Xoy+ZHCkQmRy7tGRXtqKDnYmPvwdOMFOoqEJIv/nv1GmBR4PxGJoO47v1DMOq5lepQhaFsE876HRZLHP8CEuvbjmXbmvr4877riDn//853i9Xi6++GI+9alPceyxx6Yfc9111/Gv//qvfPzjH2fr1q08/vjjXHrppWVstRBSu6xmaQ2jI6j+A4nRR1/PdIiEp2Z/mlLQ2o4OdKKDHWh/J06gE+0P5t215QHw1RF94f+gD46gWlrxffL/wnPMhxeta16l6LAsPKZxSM93TbDs2bOHU045hZaWxHzeOeecwzPPPMPVV18NwAcffEA4HObjH/84ABdccAF33323BItwBaldVsUcBw4OTa97JKeyVH8vKhqZ9WlaKWhbhu5Yjg4kwyPQiV4WBK+3oCZ4jvnwogZJsbkmWPr7+/H7/enPA4EAr7zyyqz3+/1++vr6StpGIXIpQCnSJTjizqHNSYvSib31Zvq3/5jfDx8/NfGm7Tio4cHkyCNjCmvgACrnzEgmbRiwLJCYvgp04vg70YGORIDk1B+rFa4JFp1nkShzb/V89y/U0qX1LHSvTmtbY8GvXw1qtd+Q6Hvqp8pEYanEz5nWOl100AQsQ2GqxIcn+aejNRO2w4Rt45SvC4ekVr7nU2+8xuSvf4FlO5hOHOOdtzD/3z/jrauDgwchPnuAYFmoQAfG8hUYnStQncsTfwaCqApc613I9/xQt5+45l8jGAzy4osvpj/v7+8nEAhk3T84OJj+fGBgIOv+hRodnSJmz/+/vWu2IZZYtfc7NcIAhaHAUgoTMAyDZa0NjI5MYgBKg6HAzvh9RqnE823NnL+cKAVhrQnHbSph/FK13/N4DDXYn97Cq/oPoPe9RkskzIxfSUPj6b9qywP+IDrYiRPsRPuTU1htyyDfTr+xCDD7lJgbLfR77jENgoHCpu3ARcHy6U9/mnvuuYfh4WHq6+t59tln+d73vpe+f8WKFfh8Pl566SX+5m/+hh07dnDaaaeVscXCzQwFCoVhKCwSp5otpTC0RimFkQyO9EBYQ4NpMpGRBLmD5IXuvDQ0NKOotxLbkKMyPba4olHUYN/0ukfqY2gANcc3TRtGYgtvXQO2ZWGdvR4n2Akt7WAc2qK1SHBNsASDQTZv3syGDRuIxWJceOGFnHTSSVxxxRVce+21nHjiidx+++18+9vfZmJigr/6q79iw4YN5W62KDOlwEgGiAewDAND68Q0lU7cnxkeoEgNIw5xi/6CWShaDJOwCRNxG3uxv2C1i4Qztu4m/jT6e2FkaO4AqatDB5dDoJNI/wHiWmP7fDimhWWZxKfC0NRE40dOKmFnqpvS+RYvMhw4cIDJyUlWrVrFHXfcwcTEBIZh8PWvfx1fBe6CebN/VKbC5uDWfqvkCMRUiUNfpmFgojHJM/o4RH5/MwMD4/M/8BA4Cia1ZsqF02Ou+55PTWad/TBSQXJweM6n6foGdHB51hkQ7e+EJUtT85/E3nqTyK+eTp8JMRwbOxrFd2Z3Re26OlyFTIV9OLC04Nefc8TyyiuvcOWVV/Ktb32LVatWsWvXLtavX8///M//8Oijj/LFL36x4C8oxFwyA8RSCmu2AEmNPpLcPhgwNDShqJPpsWkToRmjj0QZk9E5n6Ybm6cPEQY6kmdAOqGpOR0gs0mER3d6V5jl92OldoWJopkzWO666y7uuOMOTjnlFAAaGxu5+uqr6enp4dprr5VgEYcssYieHSBW8nazggNkPjU3PaY1hMbTAWJkroGE5h4d6ual6I7kwnmgEyeQOExIY9NhNSnzTIjrRmtVYs5g2b9/fzpUYHrL7/Lly4lEKmsXhCiPVIAYySmsxAgksY1x5ghkWrW/39Zp8Fqma6fHCqY1jI1mjzz6e1F9B1BT85QxaWlNTGEFMkcgHVDfUKLGi2KbM1g8OYd7Hn300VnvE7VtrgDJWkSvsQCZS0VOj6XKmGQWUUztxoqEZ39aqoxJZh2s5EFCfFJTrdrMGSyNjY0cOHCAjo6O9OcAvb291NeX5kpkwl0yT5qnDgamz4LU8AjkcGROj4XiNo4b/rFSZUz6DmRv4e0/MH8Zk3b/9Cn0wyhjIirXnMFy0UUX8fWvf527776b9vZ2AEZHR/nWt77FJZdcUpIGivLIDBAr42NGgEBWiLjhPbFSpabHJkp5uNK2cQ70Yux7u/AyJv5gxvTV8kQZk/ZAzZYxEdPmDZb9+/fzmc98hmOOOQalFG+//TYbNmxg3bp1pWqjWES5AdJkGGiPhUFyHQQJkFJKHa6ss0wmijk9Fo8nDgxmrX/0ogb7CdtxZosCbVoQCGaPPlIBItebEbOY94Dk1772NT7/+c/z8ssvA3DSSScdUikVUV6pAFHJKSwrOY2VXkgnERZLPBaRzAApT3NrngfFUsMkUuj0WCyWOIWeOfroTwSIcmY/v6UtDwQ60B3LcZJXIdSBTnRruwSIKNiCTt63t7dz5plnLnZbRBGkAwSFx5g9QIDsEUjJWyrmo5hjeiwaTUxXZa599PWihucpY+L1oYMdkDECaT5uFaOqXsqYiKJxTUkXUZjMALGMjDUQrTGSQSIBUvl0OIwz0Iuvrxejr4dYXw8c6IGDw/P0Tt5BAAAXAElEQVSUMalHBzuTAdKRDhGWts44RGi0NYKc5RBFJMHicvMFiDFjK2+iFpYESGXRU5PYfT04fb2JP/sPYPf1oHPKmOSeK9cNjekdWDozQJqXzggQIUpFgsUlMgPENKbXQVIFFWcLEJCFdDeIvb6XyPO/xBkexGhbhu/0c/B85MQZj3MmxqfDo68Xu68Xp78HPU8ZE9W8BDO4HDPYiRFcjgp2MuXvIFrXkNjiK4SLSLCUWL4AMTOnsCRAKk7s9b1M7fhfKMtCNTTijB1k8ueP4Dv1dJSvHqevJx0kemLuMiZqaStmsDP5sRwj2Inyd2LkKWPiAWIqcXGxijhcKWqGBMsimREggDlbSXcJkIqktUaPHSS86+cQjaAjYXQslrgKoeMQ2fXkrM81WtvTAWIEV2AEOzD8nagCy5h49CHuHhNiEUmwFMGCrwkiAVKRtOOgDw4npq36erD7U38egPDUnM812v2YHcsxA8kprEAnZqADVcQyJjN2j9m2/GyJspJgKcCCrwkiAVKRtONgD/bjpIKjLyNA5ihjAqC8PlR9fSIwTBMdj0PTEpr/72+WqPWZV660mHIcIo6DzJCJcpBgySN1bXNPag2kSq4JIhK0beMMDWSPPvp6GRs4kJjKmo1hYvqDGB2d6RGIEejEHhog/PTjYFlojxdiUbRtU39GV+k6lcHS0KwMGiyDsNY4WmND4k9Hy45BsehcEywvvfQS3//+94nH47S0tPD973+fFStWZD2mp6eHtWvXctRRRwGwbNkyHnzwwUP+mnNdEyTo9eAxTQkQl1rILiwdj+MM9mVs4U3uwho4ALY9+4tbFqa/A7MjsXhuBBIBYizzJ648mMPsPAJlWlntqZtlV1gpmRoaUaBUeudx1JTFfrH45r00can8/d//Pffddx8nnHACP/3pT9m9ezf3339/1mN++ctf8rvf/Y5t27Yd8tf5y+AYoLBInEKf7bK2i3mZWjerhH5n7sLC40VHI+hIBO/Jn0JZVnILby/OYD84cwSIx4sZ7EjuvlpOy7GrCNW1YLQtQ1VxGRMNRNT0hcZq+WJXtdr3sl6auFSi0SibNm3ihBNOAOD444/nkUcemfG4vXv38uabb3LBBRfQ1NTEDTfcwPHHH1/Q12pUBk7Ob2vuiFYxHx2N4PQfYOoXj6PDU2jHSezAiscBiD7/y/xP9PnSZ0DM5PSVEehEtbajMsqYNPmbmXJ5qBZDarHfl1zsl1MwothcM2JJcRyHjRs3cuKJJ3L11Vdn3XfPPffg9/u5+OKLef755/ne977Hzp078cp1HqqKMzVJtLeH6AfvJz56PiDa8z7xwYG5n2gY1K06Fu/yI/CuWIFn+RF4l6/AamtHySHCWUUch/G4TdRdbwXCBUwg6Cv8/bXkwbJr1y5uvvnmrNtWrVrFQw89RDQaZcuWLYyOjvLv//7v816lcv369dx6663pkc5CDA2FZoxY8qmEKaHFUMp+68mJrMXz1J96dGTuJ1rW9C4sjxcMAycWQzUvpXnjdYfcntr+no8RUYpQcnqsVshU2NwqZiqsq6uLrq6Zu2UmJibYuHEjLS0t3H///XlD5eGHH2bdunW0trYCiQNqluWK2TwxByc0Ph0e/YWUMVmKmdyBZXYkprBUoBN7/3tM7fhfYFqJ64XEomDb1P3dmhL1qBopfMmzMJNaM2XbslVZHDLXvCtfd911HH300Wzbtm3WaYsXXniBcDjMFVdcwR/+8Accx2HVqlUlbqnIR2uNHh/D6U+NPlL1sHrQE6E5n2u0tGIEl2MGOqbLmASWYzQ05n/8R04ELnXdLqxqoJI7yeosi5DjELUd2Z4sCuaKYHnttdfYvXs3xx57LOeffz4AgUCABx54gJ/85Cf09/ezadMmbrjhBrZs2cJTTz2Fz+fjhz/8IYZcQ6KktNbo0ZGM0UeiBpbT14OempzzuekyJh3LE1t4g50Y/o6Cy5gAeD5yogTJIjI1LFWKqMciZNvEZfgiCuC6xfvFJmssc0v1e9YyJn29EAnP/gJKJcqYBJdjBjswAstRgQ7MQGdRy5gshlr/ns9lEs1kFU6PyRrL3CpmjUW4i3YcnOHBdGj0jQ4w+Ze/JAIkFp39iYaBsSyQDJDUQcJODH8wsaAuqkpDxvRYRKbHxDwkWGqEtuPJMia9idHHgWQp94ED6XMgADMqYpnJMibpMyDJEFkWTBxQFDXD0LDUMIgYipDtyPSYmJW8M1QZHY/hDPZnrX3Yfb04g33zlzEJdFJ/1JHEWwLTI5D2/GVMRG3SGrwoWg2TsJk4vS+l+kUueceoUDoWxRnom3ElwkQZE2f2J3q96e27qVPoKtCZKGNiGDW7ziAKo4D61PZkxyEs02MigwSLy+lIGLv/AE7GddCd/l6coYG5a9H46tIL6GZwRXIE0oFqyS5jIsThMDUsMQzqDCXFLUWaBItL6KnJ5M6r6dGH3deLHhma83mqvmF69JGavgp0opa2ShkTURJag4fpK1lO1NjpfTGTBMsima2su56cyAqOhZYxUU3NySms5KVsAx2JAGleKgEiXCHzSpap0/uSL7VJgmURxF7fy+TPH0lUjdUau2c/k/91P3g8MM8hQtW8NH2I0Ax2ovzJC0o1NZek7UIcLkNDU87pfVFbJFgOQ6KMyWhG+ZLEVl773bfAsWcuZsanr044XcYkuw7WbGVMhKg0loYWpYh4rJorblnrJFgWYLqMScYOrORp9PlGIHi9GL46qKsDx6H+0isSp9Dr6kvTeCHKSopb1iIJlnk4oweZuO9WnOE5rgWSLmOSOEQY2/c6OjwFHm96B5aORlAtrVhHSdFMUXukuGVtkWCZh54M4YwMJj5JlzHpnN7C6+9IbOPNKGNirExeOlfF0B4vxKLoeJy6088pUy+EcAcpblkbJFjmYXYeQdM3/xXisQWXMfFIWXch5qDwamgzTCaN6ixuWeskWBbAXBYo+DlS1l2I+Ulxy+okR7CFEGWVKm7Z4rGwDDmTVQ0kWIQQZac1eDS0GibNHgtDDv1WNNdMhe3YsYPbb7+d9vZ2AP7u7/6OzZs3Zz1mbGyMb3zjG+zfv5+2tjbuvPNO/H5/OZorhFgEUtyyOrgmWPbu3cuWLVtYt27drI+58847Wb16NT/+8Y/ZsWMH27dv58477yxhK4UQpZBZ3DJkO8Rkdb+iuGYqbO/evezYsYP169fzjW98g9HR0RmPee655+ju7gZg3bp1/OY3vyEWi814nBCi8iWmxxQthskSmR6rKK4JFr/fzzXXXMNTTz1FZ2cn27Ztm/GY/v7+9NSXZVk0NTUxPDxc6qYKIUooVdyyzTJpsEwkX9yv5FNhu3bt4uabb866bdWqVTz00EPpz7/0pS9x5plnLuj1jAKvLdLe3rTgx/r9tVn4sVb7DbXb90rqd8R2GLdtokWqPdbaVpv1+RbSb/MQX7vkwdLV1UVXV1fWbePj4zz00EN84QtfABK1uaw8BxEDgQCDg4N0dHQQj8cJhUK0tLQU9PWHhkI4C5ivrdUrKdZqv6F2+16Z/dY4Sh12ccvWtkZGhieK2K7KsNB+e0yDYMA77+NyuWIqrKGhgf/4j//gT3/6EwCPPPIIZ5111ozHnX766ezYsQOAnTt3snr1ajweT0nbKoRwg0RxyzbLpNEykeMv7uKKXWGmaXLnnXdy4403Eg6HWblyJbfeeisAd911F4FAgEsuuYRNmzaxZcsW1q5dS3NzM7fffnuZWy6EKCcpbulOSuvaukiCTIXNrVb7DbXb9+rptyaqVEHFLWUqbG4e0+DDgaUFv74rpsKEEOLwJYpbtpomTTI9VlYSLEKIqqJ0orhlm2VRZxpIvpSeBIsQoipJccvykWARQlStmcUty92i2iDBIoSoeqnilq2WRb1Mjy06V2w3FkKIUkgVt/QZignbKXdzqpaMWIQQNUVr8CaLWzabphS3XAQSLEKImqSAZsucLm5Z7gZVEQkWIURNMzQ0oWi1TLymvCUWg/wrCiEEYKFoUQZLPRamTI8dFlm8F0KIDL7UpZG1Zsq2kYtXFk5GLEIIkSNV3LLVsvDJ9uSCSbAIIcQsTA1LlWKpnN4viASLEELMSYpbFkqCRQghFiBV3LJVilvOS4JFCCEKYEpxy3lJsAghRIEyi1vK9NhMrthuPDQ0xBe/+MX05+Pj44yMjPDyyy9nPa6np4e1a9dy1FFHAbBs2TIefPDBkrZVCCFSFInpMZ9lMek4hOXSyIBLgqW9vZ2nnnoKAMdx+PznP8/mzZtnPG7v3r10d3ezbdu2UjdRCCFmlVvcMlbjh19cNxX2s5/9jPr6erq7u2fct3fvXt58800uuOACNmzYwBtvvFGGFgohxExZxS09Vk0Xt3RVsNi2zf3338/Xv/71vPf7fD7OP/98fv7zn/PP//zPXHXVVUSj0RK3UgghZpe69kubZVJfo8Utlda6pGO2Xbt2cfPNN2fdtmrVKh566CGee+45Hn744QWvm6xfv55bb72VE044YTGaKoQQhy1iO4zbNtHSvtUWhQkEfd6Cn1fyNZauri66urry3verX/2Kc889d9bnPvzww6xbt47W1lYAtNZYVmFdGBoK4Sxg/tPvb2ZgYLyg164GtdpvqN2+12q/obR9dxSE4ja2CwKmta2RkeGJeR/nMQ2CgcKDxVVTYX/84x9ZvXr1rPe/8MIL/PSnPwXgD3/4A47jsGrVqlI1TwghDpkvOT3WWAPbk12xKyxl//79dHR0ZN32k5/8hP7+fjZt2sQNN9zAli1beOqpp/D5fPzwhz/EMFyVjUIIMatUccs6yyLkOESrdHtyyddYyk2mwuZWq/2G2u17rfYbyt13TVQpQnGbeInfhguZCvtwYGnBry+/7gshRFkki1ta1Xd6X4JFCCHKqBqLW0qwCCGEC6SKW1bDtV8kWIQQwiUSp/crv7ilBIsQQrhMqrhlq2VRX4HTYxIsQgjhUqnilks9Jp4KGr646hyLEEKIbFqDF4XHMAmbMBG3cVx+SkRGLEIIUQEqqbilBIsQQlQQQ0MzilbLxGu68y3cna0SQggxJwtFi0psTzZddu0XWWMRQogK5tPgtUwmtWbStnHD8ouMWIQQosKlilu2WhY+F2xPlmARQogqYWlYqhRLPBZWGafHZCpMCCGqisqaHpuybRZQ0L2oZMQihBBVKHN6rNTFLSVYhBCiipWjuGXZguWuu+7innvuSX8+NjbGl7/8Zbq6urjssssYGBiY8RytNT/4wQ9Ys2YN5557Li+99FIpmyyEEBUpVdyyLVnccrHjpeTBMj4+ztatW/nP//zPrNvvvPNOVq9eza5du7jooovYvn37jOf+8pe/5K233mLnzp3827/9G1u2bCEej5eq6UIIUfEaULR7Fnd6rOTBsnv3blauXMnll1+edftzzz1Hd3c3AOvWreM3v/kNsVgs6zHPP/885557LoZh8KEPfYjly5fz8ssvl6ztQghRDbyGkZweMxdleqzkwXL++efz5S9/GdM0s27v7+/H7/cDYFkWTU1NDA8Pz3hMIBBIf+73+zlw4MDiN1oIIapMYnpM0WqYNHssjCJuT1607ca7du3i5ptvzrpt1apVPPTQQwt+DcPIzj2d50hp7mPm097etODH+v3NBb12tajVfkPt9r1W+w212/fcfscdzbhtE3YcUu+05synLciiBUtXVxddXV0LfnwgEGBwcJCOjg7i8TihUIiWlpasxwSDwaxF/YGBgawRzEIMDYVwFrCp2+9vZmBgvKDXrga12m+o3b7Xar+hdvs+V781mgnHIepoPKZBMOAt+PVds9349NNPZ8eOHQDs3LmT1atX4/F4sh5z2mmn8fTTT2PbNu+99x7vvvsuJ554YjmaK4QQVcmDosUwWXIYxS1dc/J+06ZNbNmyhbVr19Lc3Mztt98OJBb7f/3rX7N9+3bWrFnDK6+8wvr16wHYvn07dXV15Wy2EEJUpToN9YdYll/pfAsXVUymwuZWq/2G2u17rfYbarfvC+23YaiC1qXTzzuURgkhhBCzkWARQghRVBIsQgghikqCRQghRFFJsAghhCgqCRYhhBBFJcEihBCiqFxzQLJUjAIqeRby2GpSq/2G2u17rfYbarfvC+n3of7b1NwBSSGEEItLpsKEEEIUlQSLEEKIopJgEUIIUVQSLEIIIYpKgkUIIURRSbAIIYQoKgkWIYQQRSXBIoQQoqgkWIQQQhSVBMssXnzxRS644AK6u7v5yle+wujoaLmbVDIvvfQSn/3sZznvvPP4/Oc/zwcffFDuJpXUXXfdxT333FPuZpTE008/zbnnnstZZ53Fo48+Wu7mlFQoFGLdunW8//775W5Kydx7772sXbuWtWvXcuutty7eF9IirzPPPFPv27dPa631bbfdpn/4wx+WuUWlc8YZZ+jXX39da631E088ob/yla+UuUWlMTY2pr/1rW/pk046Sd99993lbs6iO3DggD7jjDP0yMiInpiY0N3d3emf+Wr3xz/+Ua9bt05/9KMf1fv37y93c0rid7/7nf7Hf/xHHYlEdDQa1Rs2bNDPPvvsonwtGbHMYufOnRx77LHEYjH6+vpYsmRJuZtUEtFolE2bNnHCCScAcPzxx9Pb21vmVpXG7t27WblyJZdffnm5m1ISe/bs4ZRTTqGlpYWGhgbOOeccnnnmmXI3qyQef/xxvvvd7xIIBMrdlJLx+/1s2bIFr9eLx+PhmGOOoaenZ1G+Vs1VN14oj8fDG2+8weWXX45lWXzta18rd5NKwuv1ct555wHgOA733nsvZ555ZplbVRrnn38+QM1Mg/X39+P3+9OfBwIBXnnllTK2qHS2b99e7iaU3HHHHZf++7vvvsvOnTt57LHHFuVr1Xyw7Nq1i5tvvjnrtlWrVvHQQw9x/PHHs2fPHh577DE2b968aN+Ecpmr79FolC1bthCPx7nyyivL1MLFMVe/a4nOU9hcqdosIV9L9u3bx5VXXsn111/PypUrF+Vr1HywdHV10dXVlXVbJBLhV7/6Vfo39fXr1/ODH/ygHM1bVPn6DjAxMcHGjRtpaWnh/vvvx+PxlKF1i2e2fteaYDDIiy++mP68v7+/pqaGatFLL73Etddey9atW1m7du2ifR1ZY8nDsixuuukmXn31VSDxG+4nPvGJMreqdK677jqOPvpo7rrrLrxeb7mbIxbJpz/9aX7/+98zPDzM1NQUzz77LKeddlq5myUWSW9vL1dddRW33377ooYKyIglL9M0ueOOO/jOd76DbdsEg8GamZN97bXX2L17N8cee2x6zSEQCPDAAw+UuWWi2ILBIJs3b2bDhg3EYjEuvPBCTjrppHI3SyySBx98kEgkwi233JK+7eKLL+aSSy4p+teSK0gKIYQoKpkKE0IIUVQSLEIIIYpKgkUIIURRSbAIIYQoKgkWIYQQRSXbjYUoE9u2+a//+i+efvppbNsmFotxxhlnsGnTJjk/JCqabDcWokz+5V/+hdHRUbZv305zczOTk5N84xvfoLGxkdtuu63czRPikEmwCFEG+/fvp7u7m9/+9rc0NTWlbx8YGODll1/m7LPPLmPrhDg8ssYiRBm89tprHHvssVmhAonS5hIqotJJsAhRBoZh4DhOuZshxKKQYBGiDE466STefvttQqFQ1u19fX18+ctfJhwOl6llQhw+CRYhyiAYDNLd3c3WrVvT4RIKhbjxxhtpaWmhrq6uzC0U4tDJ4r0QZRKPx7nvvvt49tlnMU2TaDTKmWeeyTXXXCPbjUVFk2ARQghRVDIVJoQQoqgkWIQQQhSVBIsQQoiikmARQghRVBIsQgghikqCRQghRFFJsAghhCgqCRYhhBBF9f8D+UoghLnMZTEAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["with sns.color_palette(\"hls\", 2):\n", " sns.regplot(x=\"C\", y=\"F\", data=df_demo);\n", " sns.regplot(x=\"C\", y=\"G\", data=df_demo);"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* A *joint plot* combines two plots relating to distribution of values into one\n", "* Very handy for showing a fuller picture of two-dimensionally scattered variables"]}, {"cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [], "source": ["x, y = np.random.multivariate_normal([0, 0], [[1, -.5], [-.5, 1]], size=300).T"]}, {"cell_type": "code", "execution_count": 91, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGkCAYAAACYZZpxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd8XOd54PvfKXOmYtABEgTB3otYRFHFktUtW45sy866JXGc3ZvmbPLx7sbJevPJ3uzd3STyTXzXm2xucuPETtwty44seWX1RlESO0SJvYHoHRhMO/X+cTBDgARIEBhgMMTz/Xxk0iDmnJcgcJ553/d5n0fxPM9DCCGEKAK12AMQQgixcEkQEkIIUTQShIQQQhSNBCEhhBBFI0FICCFE0UgQEkIIUTQShIQQQhSNBCEhhBBFI0FICCFE0UgQEkIIUTQShIQQQhSNBCEhhBBFoxfjpj09iYJcp7IywsBAqiDXmqn5NBaQ8VzNfBoLyHiuZj6NBa49ntrasjkczY2hpGdCuq4Vewh582ksIOO5mvk0FpDxXM18GgvMv/HcCIoyExJiLtkuZC07//+9/hSprH2VV1wSDOjoJf1WTYj5TYKQmBOJlElyig/+y800EGQtm33HuvL/vywWIjGSmdJrd22oRw/Kj4kQs0V+usScSGfGB4LrcXkg8DyPoaRJImUxkrZIZSyyloNpuZi2i2U72I6HZbuYtkM6a9PRl8KyXWzHxQOypoPjeriul7+mrqnouoqhq0TDAcrCAQK6ysZlVVSWBQvxZRBCXEaCkJjXXNejpStBa/cIp1uHaO9L0jOYxrTca75WUxWMgEpA03A9D11T0DWVoKETDSlomoqmKgAogO2OBi7LobV7hIzpcOhULwC1FSHWN1Vy8/o6NiyrRNdkjU6IQpAgJOYdz/PoGUxzriPBhc4EGdMBoDoeZGldGZuWV1FbEaY8ahALB4iEdEKGRkDXRoOOP6NRFT/AJLPTW46zbJeG2ihtXSOcbB1i/4keXmvuIBYOsGt9HffubGRJTXR2vghCLBAShMS84boe5zsTHD3bx+CIiaYqNNbFuHv7ErasqKIqHprT8QR0leWL4mxaVsWDt/hB6ei5PvYd6+a15g5eOtTGpuWVfGB3E5uWV6GMBj0hxNRJEBJF53keF7pGOHSyh0TKojxmcPvmRSxbVEZAV7l5fR3ReZAcENBVtq+pZfuaWj6VMnn1cDsvHmzlL79/hDWN5XzszpWsX1ZZ7GEKUVKK/5MtFrREyuSt97pp701SWRbk7u0NLK2LjZtVKKoy7cw6gNHcg2mZ7N6apnLPzkbu3NbA3qOd/PytFh777iE2LKvkY+9fyeLqqKR3CzEFEoREUXiex8mLg+w/3oOiwK71daxrqkBVr1zSyloOR072TPteN62tnfZrp3LvkKHx4duXcaJlkCNn+vjTfz7AuqUVfP7hDdSWh6d9byEWAglCYs6ZlsPed7u40JmgoSbK7ZvriYQCxR7WjGiaysYVVaxcEufwqV5OtAzyX7+5n0/fv4bdG+plv0iISUgQEnNqcCTLSwfbGElb7Fhbw6YVN9aGfsjQuXXTItYsreDo2X7+7sn3ePVIB5+8bzU1k8yKJqvgIMt5YiGQICTmTGdfipcPtaGqCh+4ZSl1lZFiD2nWVMdD/M4ntvLDF05x6GQv/+2b+9mxtpZ1TRVXBN3JUsalWoNYCOQ7XMyJve908Pz+i5RFDO7b2UgsUtrLb1Ohqgrrl1XSWBdj79FO3j7WzYWuBHdsXrwg/v5CTIVM9sWse+FAK3//5FHqKiN88NamBfcAjoUD3H9zI7dtrqd/KMtP95znTNsQnjeDtD0hbhAyExKz6pm3WvjBS6fZtqaWTSsq0NSF+b5HURTWNFawuCrK6+90sOedTi52j3DrpkVIBxqxkC3MJ4KYE0+9cZ4fvHSam9fX8Vsf37pgA9BYsUiAB29Zyo61NbR2j/DUnvO0dhemyaMQpUieCmJWPPNWC0+8epbbNtXzG49slIKfY6iKwuaV1Xzw1mXomsK/vHqWAyd68hW9hVhI5MkgCu6FA6384KXT3LKhjn/98EaZAU2iujzEw7cvZ+OKKt49188zb7WQSJnFHpYQc0qeDqKgXjvSzrefO8n2NTX8mw9vnLACgrgkoKvcs3Mpd21rYChp8tQbFzjXMVzsYQkxZyQIiYLZf7ybbzxznM0rqvjNj2yWJbjrsHxRGb9w+3IqYgavHengjXc6yVpOsYclxKyTp4QoiHfP9/N3P32XVQ3lfOFjWwjIUf/rFosE+MAtTWxZWcXptiG+8p2DtHRJ0oK4scmTQszY2fZh/upH77CoKsLv/eJWgoZW7CGVLFVV2L62lgd2NZLOOvzXf9rP8/svypkiccOSICRmpK03yVd/cJh4NMC/++Q2oiVeiHS+WFwd5T/+8k42La/iO8+f4n883sywJC2IG5AEITFltuu3ys79d7FnhL/43iE0VeW3P7aFQEAb9+dj/5P9jesXCwf43U9s5TP3r+G98/385394m3fP9xd7WEIUlFRMEFOWtWz2HesCIJ21+flbLWRMhw/sXsq5juGrZnXdvGnxXA3zhqIoCvffvJS1Syv42yff5S++d5iHdjfx6F0rJfFD3BDku1hct6zl8Pz+VpIZm3t3LqGyLFTsId3wmurL+ONf3cXd2xp45q0W/vs/H6BrIFXsYQkxYxKExHWxbJcX9rcyNGJy9/YlN3Q7hvkmGND4lYfW84WPbaFnMM3/+Y/72PNOR7GHJcSMSBASU2baDi8dbKNvOMNd2xazpDZa7CEtSDvX1fInv3YLy+rL+PrTx/j7p94jY17ZFE+IUiBBSEyJaTn8f//yLp39KW7fvIimeqn9XExV8RBf+vR2HrljOXuPdvJfvrFfzhSJkiRBSFxT1nL42o+aOdEyyO2bF7FqSXmxh7QgKKoyabZhMmuTthweuKWJL3x8C6mMzX/7pwM8f6CVZNbGdos9eiGmRrLjxFVlTJv/+aN3OH5hgM8+uFZqwc2hrOVw5GTPlD73A7uX8lpzB9957iRvv9fFbz26mcpocJZHKMTMyUxITCqRMvnKdw9zvGWAf/3hDezetKjYQxKTCAd17r+5MV/y56vfP0LvYLrYwxLimiQIiQn1DWX4028dpLVnhN/52BZu3yznfOY7VfFL/ty7Ywl9Q2n+yzf3c0wOt4p5ToKQuMK5jmH+2z/vZyhp8u8/uY3ta2uLPSRxHRrrYvyHT+8gHjX4v79/mGffbpHac2LekiAkxtnzTgd/+q2DaKrKf/zsDtYurSj2kMQ01FWG+U+/vJPta2r53oun+YefHcOSbAUxD0liggD8Q6g/fPk0z+9vZX1TBb/10c2URYxiD0vMQDio89sf28yTr5/jyT3n6exP8Tsf20J5TBIWxPwhMyFBW88I/9c39/P8/lbu39nIv/vkNglANwhVUfjonSv57Y9u5mL3CP/lm/s53ymdW8X8ITOhBcx2XJ7f38oTr54lEtT4vU9s5abVNcUeliiA3BmjnA0rqvjiv9rG3z35Ln/6zwf57AfWsnNd3YSvDUnLCDGHJAgtUCdaBvjWcydp60mybXUNn/vgesqjMvu5UUx2xuj+mxt55XA73/jZcfYd62b7mporzn69f2cTchpMzBUJQgtMW2+Sf3n9HPuPd1MdD/FvH93CtjU1KIo8dhaCcFDngV1L2Xesm3fP9dM35NcBDBnyKBDFId95C0Rbb5Kf7T3Pm+92YRgaj9yxnA/euoxgQFpxLzSaqnDrpnpqykO8+V4XT71xgbtuaqCuMlzsoYkFSILQDcz1PN4718+z+y5y9Fw/hq7ywC1N3LNjCbFwANv1sLNTr77sylGTG8rqxnIqy4K8cridn7/dwk2ra9i8sqrYwxILjAShEmO7fofTqxkayfLUmy28eqiV3qEM8YjBw7cv431bG4iEAhw43jWte98kh1ZvONXlIT58+zLefK+Lw6d66ehNsnlVLXVxSeMWc0OCUIkZ22J7LNNyaOka4VzHMJ19KTxgUVWE921dzLJFMTRV5dj5fgkk4gpGQOPOrYtpqI6y71g3f/x3e/nonSt5YFcjmiqnOMTskiBUwkzL4WL3CBc6E7T3pnA9j7JIgC2rqtmyphYNWT8TU6MoCqsby1lcE+FMW4IfvHSaN9/r5JP3rGbDclmiE7NHglCJ6R/OcOzCABe7R+jqT+F5EAnprGuqYPniMmrKQyiKQlksSGIkU+zhihITDQX4nV+8iQPvdfKDF0/xle8dZvPKKj5+1yqWLZJGhqLwJAjNc5btcrptiKNn+2g+00dbbxKA8qjBpuVVLK2P5QOPEIWgKAq71texbXU1Lxxo46k3zvMn39jHhmWVfOCWJjavrEKV7zdRIBKE5hnbcbnQleDkxUGOXxjkxMUBTMtFUxXWLq3glo31uK5HeUwOlorZFdA1HtrdxF03LeaVw+08f6CV/+eHR6gpD3Hrpnpu3biIhpposYcpSpwEoSJyPY/ewXQ+oeBs+zDnOxNkLQfwEwvu3NLAxhWVrG+qJBzUSWYnTkwQYrZEQgE+eOsyHti1lP0nutnzTidP773AU29coL4qwublVWxcUcnqJeVSc1BcNwlCs8y0HIaSJv3DGfoTWXoG03T1p+jsT9PelyRr+gFHUxWa6mO8b8ti1jZVsLaxXKodi6KwHRdzkvNjW1bVsGVVDcNJk0Onenjv/ACvNbfzwsFWAKriQZYvitNQE2VRVZj6ygiVZUHKY4Zk2okJSRACXNfDtB1My8W0HSzbzf/etF2ssR+33dE/9//MtBxMywFNZWg4Qzprk846JDMWibSVDzJjVZYFqa0Ic+vGehpqojTURllSEyOgj/8hTU7wIJADo2K2ZS2H/VOYbUeCOjevq2X7mmp6BjP0DmXoG8pwsTvB4VO9uGMa6SkKlEUMYuEA0ZBONBQgZGiEgjrBgEowoGEENAxdxQhoBHQVQ9eo7UuRTmYJ6BpGQMXQVQK6RjDg/6priuyHlriiBKHLCyZORSpj89Te82Sz/kPdAwKGimk6eB54noeHH1A8z8N1PVzPX/JyHA/H9XBcF9txcVx/w992XBzHxZnmk10B9NwPhaER0BRiEYOaCo2gofs/bGGdWNigPGoQjxqUxwx0TeOdM7356yTTNicvDk7pnhtWVBEJBa75eeGgjmNf+Xm6pk7p9ROZ2WuVotx3otdP9rUp9L2n+tob4d+qLBJkZUM54B9qti2HgUSW/uEMwymTRNIimTFJZRxSWZuMaTMwkiU7kMYafYM3HfmfQU1F01V0VUHXVDRNQVP8XxVVQVf8hAtVVUDxW1zkkityMUxB8Qu3KrBzXR0bl1dOeM/pPL/E5BRP+v4KIYQoElmkFUIIUTQShIQQQhSNBCEhhBBFI0FICCFE0UgQEkIIUTQShIQQQhSNBCEhhBBFI0FICCFE0UgQEkIIUTQShIQQQhRN0QqY9vWN4M6wGmdlZYSBgVSBRjQz82ksIOO5mvk0FpDxXM18Ggtcezy1tdfXfbYQz8H55Hr//lDiMyFd14o9hLz5NBaQ8VzNfBoLyHiuZj6NBebfeG4EJR2EhBBClDYJQkIIIYpGgpAQQoiikSAkhBCiaCQICSGEKBoJQkIIIYpGgpAQQoiikSAkhBCiaCQICSGEKBoJQkIIIYpGgpAQQoiikSAkhBCiaCQICSGEKBoJQkIIIYpGgpAQQoiiKUgQ+vM//3P+8A//sBCXEkIIsYDMOAjt3buXH//4x4UYixBCiAVmRkFocHCQr371q/zmb/5mocYjhBBiAZlREPrjP/5jvvjFLxKPxws1HiGEEAuIPt0X/vCHP2Tx4sXcdtttPPHEE9f9+urq2HRvPU5tbVlBrlMI82ksIOO5mvk0FpDxXM18GgsUdjyFeg6WMsXzPG86L/z85z9PT08PmqYxNDREKpXiox/9KF/+8pen9Pq+vhFcd1q3zqutLaOnJzGjaxTKfBoLyHiuZj6NBWQ8VzOfxgLXHs/1BqhCPAfnk+kE6GnPhP7xH/8x//snnniCt99+e8oBSAghhAA5JySEEKKIpj0TGuvRRx/l0UcfLcSlhBBCLCAyExJCCFE0EoSEEEIUjQQhIYQQRSNBSAghRNFIEBJCCFE0EoSEEEIUjQQhIYQQRSNBSAghisR13WIPoegkCAkhRJFkLQlCEoSEEKJIMqZd7CEUnQQhIYQokqwpMyEJQkIIUSRpmQlJEBJCiGLJWk6xh1B0EoSEEKJI0lmZCUkQEkKIIpE9IQlCQghRNLIcJ0FICCGKRlK0JQgJIUTRmLYsxxWkvbconuYzvTzzVgu9QxlqykM8tLuJratqij0sIcQUWBKEJAgV20yCSPOZXr793Ek0TSUS0hlMmnz7uZMA3FdbNpvDFkIUgGXLnpAsxxVRLogMJs1xQaT5TO+UXv/MWy1omkowoKEoCsGAhqapPPNWyyyPXAhRCKbUjpMgVEwzDSK9QxkMffw/oaGr9A5lZmO4QogCy9oOC31FToJQEc00iNSUh67Y2DRtl5ryUMHGKISYPYOJLFlrYWfISRAqopkGkYd2N+E4LlnLwfM8spaD47g8tLtpNoYrhCgw1/WKPYSikyBURDMNIltX1fDZB9ZSETVIZWwqogaffWCtZMcJUSJcT4KQZMcVUS5YzCTFeuuqGgk6QpQoiUEShIpOgogQC5esxslynBBCFI0sx0kQEkKIopHEBAlCQghRNK4jQUiCkBBCFIntLfCTqhQxCDkyDRVCLHDOQi+XQBGD0HDSZCRj4SHBSAixMLkemAu8sV3RgpDreoykLPqGMqPdBSUYCSEWnmRGyvYUle14DCayDI6Y2K5MTYUQC4u1wCtpFz0IgT8HypgO/UNZWaITQiwoQ8lssYdQVPMiCOW43ugS3bAs0QkhFob+4YXdemVeBaEc2760ROfIEp0Q4galaQq9gws7CM3b2nG5JTrTcomGdaKhQLGHJIQQBVVTHqa9L1nsYRTVvJwJjeV6HomURd9wGtNyUZRij0gIIQqjriJMW48EoZJg2R4DIxmGkqYU/RNC3BDqqsL0DWdIZqxiD6Vo5u1y3EQ8D1IZm6zpEIsE8CQYlbTmM70z6qUkRKlbUhsD4Fz7MJtXVhd5NMVRMjOhsRzXY2jEpHcwgy3lf0pS85levv3cSQaTJpGQzmDS5NvPnaT5TG+xhybEnGmsjaIAp9uGij2UoinJIJRj2g79Qwt7KluqnnmrBU1TCQY0FEUhGNDQNJVn3mop9tCEmDPBgM6S2hinWiUIlaxxiQu2JC6Uit6hDIY+/tvP0FV6hxZ2uqpYeDYur+RU69CCrSFX8kEox7I9BhKSuFAqaspDmJdVEDZtl5ryUJFGJERxbFxeie24C3ZJrqQSE64ll7hgmg6xqEEooAI3xtToRtvEf2h3E99+7iRZ/BmQabs4jstDu5uKPTQh5tTapRVoqsLRs/1sXF5V7OHMuaLNhA6e7MF2Zqcagu3eWBUXbsRN/K2ravjsA2upiBqkMjYVUYPPPrC2pAOrENdNVXA8WNNYzuHTvSSz9rj/FkK7oaLNhJ7bf5Gn3jjP+7c3cPO6OnSt8PEwYzqYtks0HCBi6CW7XzR2Ex8gGNDIjn68lB/aW1fVlPT4hZipIyd7SGUsyiIGx1sGefHARcoiRv7Pd22oRw/eUAtWVyjaTEhVFYaSJk++fp6/+N5h3j7WNSszI9f1SCRN+hOZkk1ckE18IW5sjXVRAC52jxR5JHOvaEHo//iFjdy8rhZVgaGkyU9eO8dffv8w+453z8oSmmW7JZu4IJv4QtzYyiIGFTFjQQahos3zKqJBHn3/Kt6/fQkvHWzj8KkeBkdMfvzqWV451MY9O5awbU0tmlq4qcvYigvRSICwoZdE2oJs4s8fN1qCiJg/ltbFOHq2n4zpEDK0Yg9nzhR9sbE6HuITd6/i7u0NfjA63Ut/IsuPXjnLS4fauHdHIzetriloMHJcj+ERk0zAIRYOEAyozOfJUe4hJw+/S4oRDHIJIpqmjksQARb0v4UojKX1Zbxztp+2nhFWLSkv9nDmTNGDUE5NeZhfvGc1d4/OjI6c7qV/OMvjL5/hpUNt3Lejka2rqlELGIxMy2HAdggH/VYRhQx0hSab+Jc0n+nlH54+RsZ0/DcUSZN/ePoYv/bwhln9Gt2oCSJifqiOB4kEdS52L6wgNO8Oq9ZWhPlX967m937xJrauqkYB+oYy/OCl0/yPx49w5HQvbgHrxeWW6PqGMySz9ryeEQnf4y+dJpmxcT0PVfGrZiQzNo+/dHpW7ysJImI2KYrC0voYbT3JWTu+Mh/NuyCUU1cZ5lP3reF3P7GVzSv9A1w9gxm+/+JpvvajZprP9BU0weBSFl0a03JKMotuoegayKAooCoKiqKM/up/fDZJgoiYbUvrYjiuR2dfqthDmTPzZjluMvVVET5z/1o6+pK8eKCNd8/30z2Q5nsvnOLV5nbuvqmBjSuqUAsUNfy+RVmChkZZOICmzts4PS3T3UuZXxvynj9jHfNP7nmgKLM7jZUEETHb6qsiBDSVi90jNNbFij2cOTHvg1DO4uoon31wLe29SV482Mp75wdo70nynedPsbg6wn07G9mwrBKlAMHI8yCTHW0tHtKJhHSUksiju7rpbqxP53WXB61PPrieZTWRgvw96qsidPQlcT0FVQHbcXE9QFV47DsHZy1ASoKImG2aqtBQG6W1Z2TB9EsrmSCU01AT5ZceXEdbb5LXmjtoPt1LR1+Kbz17koaaKPftbGR9U0VBgpHr+hW606ZNWdggWOK16Ka7sX69r5soaP3tE8186r7VBXlgf+LuVfzDz46TydpYtosHKApUxYMFyVi72qxPEkTEbFtaF+VCZ4K+4YWx11iya01LaqL89idu4rc/upl1SysAaO9N8s8/P8H/+slRjrcMFOydhG1fqkVXyk30pruxfr2vm6hXkK4rBesVtHVVDb/2ofWsbIijayqGrlJbESYSCsy4L9GNWKdPlJaGmhgK0NqdLPZQ5kTJzYQu11gX43MfXM/F7gTP72/lVOsQbT1J/umZEzTWRrn/5qWsaSyf8czIY7QWnZUhEtaJhQKF+QvMoZryEINJMz+jgaltrF/v63qHMkRC47+1ggGtoFlkuRnJl/7mDX+5dMy/70wy1iQNW8ylDSuqrsiE01WVAye66RvOEAyU/CP6mmY0E/qrv/orHn74YR5++GEee+yxQo1pWpbWlfH5D23gNz+yidWjOfatPUm+8b+P8//+y7ucah0syMzI9TxGck30rNKqRffQ7iYcxyVrOXieR9ZyprSxfr2vmyiLLGs5s5JFVuiMNUnDFnPp2Ll+jpzsGfefqsDOtXW09SQZStz433fTDkJvvPEGr7/+Oj/+8Y/5yU9+wrvvvstzzz1XyLFNS1N9Gb/28AZ+/ZGNrGyIA35RwH/82XH+7qfvcaZtqCDByM+i82vROSWyRDfd9gnX+7qJgpZtewXPIms+08tIyqS7P0VHb5JUxppyYJ2MpGGL+WDbGv9n6/DpG38ZeNpzvdraWv7wD/8Qw/DLjq9atYr29vaCDWymli+K828+vJGz7cO8cOAi5zoSXOhM8PWnj7F8cRn371yaD1LTNa4WXSzIZVnD89J0N9av53UTZZEVMjsOxic/VMWDDCct+oYyNNRE+dS90+9LNJ/TsOdXmryYTYuqItRXRTh8qof7djYWezizSvEKMC04f/48n/rUp/je977H8uXLp/Sarr7knG3ye57HiQsDPPX6WU63Xmqhu66pkg/fuYI1SysLcp+AplIWDRAOlt5+Uan58t/sYWA4Tci49D4qY9pUxsP899+6Y0bX3n+siydePk13f4q6qgiP3r2amzfUz3TIMx7T3z7RjK77iR652eVvPLq16GMT0/fKwVbSWXvcx3asq6OuKsI3nnqXn7xyhm/9yUPExvQYutHMeNfr1KlT/MZv/AZ/8Ad/MOUABDA0lCZrOTO6d1VVlP7+qWWQ1MWDfP6D6znTNszzBy7S0jXCiZYBTnx7gNVLyrlvZyPLFpXNaCxdPQm6e5kXtehqa8vo6UkU7f6XK/R4OnpGiIR0rDFLZ6qi0NEzcs37XGssy2oifPETW8d9bDa/llP52nz/2eOggKaq2I7n/6o4fP/Z4wWdYU51PHNlPo0Frj2e2trre4aMJLOkMta4j6VSWXoch41NFfzI9Xj+zfPcsWXxtMY716737w8zDEIHDhzgd3/3d/nyl7/Mww8/fF2vjYR0HMed05RnRVFY3VjOqiVxTrUO8cKBVi52j3C6bYjTbUOsaSzn/psbWVo3+RfyRMsArx1pZyCRpbIsyJ03NbCu6dJMqlTbRZSa6Wb6laqJMg4lYeLGtnxRGdXxIPuOd5dMEJqOaQehjo4OvvCFL/DVr36V22677bpfHw7qBAMaGcshnbExbWfOiocqisLapRWsaSzn5MVBnj/QSltPklOtQ5xqHWLd0gruu7mRxtrxZTNOtAzw5J5zaJpKKKgznLZ4cs85HgFuq4qO+9xSaxdRagq5d1MKey0LLegK/zl1y4Z6nt13kUTKHNf2+0Yy7ey4r3/962SzWf7sz/6Mj3zkI3zkIx/hu9/97nVfJxTQqIoHqY6HiYYDBW3VcC2KorCuqZLf/uhmfvkD62io9pc1Tlwc5H/9+Cj/9Mxx2novLfe9dqQdTVMxdP8QpqH7ByNfOzJ5QoZpOfmOrqWSRVcKppvpd7lSOZw63fR6Udpu3bQIx/XYd7y72EOZNdOeCf3RH/0Rf/RHf1SQQXge6JpCWThANKSTtRxSGRvbcedk9qAoChuWVbK+qYJjFwZ44UArHX0pjrcMcrxlkA3LKrlvZyMDiSyh4PgvWUBTGUhkr3r93BJdxnSIyRJdwRSihE6pHE6VunUL09K6GI21Ufa808G9O27MLLl5dxxXVRTChk7Y0DFtl3TW318pZNuGySiKwsblVaxfVsl75wd48UArnf0pjl0Y4NiFASJBHU+xiYzJfrMcl8qy4JSu7+aW6HSbWMSY9SW6UlhmKrZS2muRunUL0503NfDd509xoTMxo+Sp+WreBaGEtFUnAAAgAElEQVSxDF3F0A2csDe6d2RhO7MfjFRFYfOKKjYur+Tdc/28cKCV7oE0qaxNKuvPauIRAxRwHJc7b2q4ruubtstAIjOrWXT7j3Xlz9EoCpxtH+ZrjzfTUB3hE/dMr5DojRjUZK9FzHe3b17E4y+f4ZUj7fzKonXFHk7BzesglKOpCtGgTiSoY44mMmTtmaV3T4WqKGxZWc2mFVUcPdvHCwda6RnMYFouvUMZoiGd+29uHJcdN1WznUX3xMun0TQV1/VGlwsVVFWhezAzrSrT020DcbXrzYeANp8PpwoBEA0FuGV9HXuPdvLx968kWoJ1K6+mJIJQjoK/Zh8yNCzHJRTUGVSVgrb7noiqKGxdVcPmFdU0n+3jxQOt9A5lSGZsnnz9POc7E3zsnjUY04gil2fRXV63bLq6+lOEAirdA2nA77vjef79clWmr+ehX8i9k0IHtJmQvZZrmy9vGG5EExUwVVSF5GUHWN+3rYE9Rzt5bn8rD+xaOu7PggGdAj02iqKkglCO5/mVZivjIaysSdZySWVsrFlO81ZVhW2ra9iysprm0728eLCNvuEMR0730Xymj22ra7hnxxJqysPXfW3TchiwHcJBnVg4MONOsfVVEXoGUtiOm7+WB+i6Oq09j0Luncy3ZADZa5ncfHrDcCM6dq7/isOqk1lcHeG5fRcpi4xfwt+1oR49WJKPcqBEg9BYCgqhgEYooGLaHhnTz0KbzdmRpipsX1vL1tU1HDndy4sHWulPZDl0qpcjp3vZtqaWe3YsoTp+ffsKuSU603SIRQ1CM2ii9+jdq/lfjx9GVRQc10NR/CAUjwSmtedRyL2T2UgGkHfrs2O+vWFYyDatqOL5/a2caR1ibVNFsYdTMCU8ibucgqGrxCMGNeUh4lEDXZ/dRGhNVdixtpYvfvImfvmDG6gsC+J6cPBkD1/9/mGeeOUMA9MoxW67fhO9gYQ5rUSM5jO9PPHyaTKmg6L47SdURaEyZqBp6rT2PAp5TqXQlapL5axPKZLWFvPH4uoINeUhms/24bjutV9QIkp+JjQRVVGIBHXCQR3LckllLUzLnbU0b01VueOmBtY0lHHoZA8vHWpjcMRk/4keDp7sZee6Wu7evmTKqdw5WcvBHE4TCQWIhXWUKcyKcg/koKFRWRbEtF1SaYt41CBjOlREjWnNEgqxd5KbrbT3JkmbDtGQTjxqzDgZQN6tzx7JHpw/FEVh25qafPPO9dNIiJqPbsgglKMARkAlaASxbTdfImi26tXpmsquDfVsX1vLgRM9vHyojaGkyb7j3Rw82ZMPRhWxqQcjz4Nk2iJr+meLrrVEl3sghwydoZEswykLy3axHY9ff2TjjB7KM9k7GZsyXlEWREtZjKQsHNdjSU10Rstnbb1JTMvFdlx0XSUeCRAO6vJuvQAke3B+WVwdoa4yTPPpPlY1lBMo5YyEUTd0EMrxPNA0laimEgkGMO1Lad6zMTnSNZXdG+vZua6Wfce7eeVQG8Mpi7ePdXPgRA+71tfx/u1LKI9OvRaU7XgMJbJkDG10Y/LKb77mM72caRvG9Tz6hzJYjoumKmgKZC27qBvKuZTx3DvqeNQgaGhURA2+9Jkd075u85leMllndMnRP7fVn8hSZrssqipsdemFSLIH5xdFUbh5fS0/29vC0bN9bF9bW+whzdiCCEJjKcqlNG/bccmYszc70jWV2zYt4uZ1dew73sUrh9pJpC3efK+L/Se62bW+nvdvayA+xWDkARnTwbRdouEAkeCls0W5ZThF8T8xt+fieR4oKgFdnVZqdqHkUsbHKsTewjNvtRCLBEikTLzRVHTH9UhmbB7a3TRhwsJ90yg3v5BJ9uD8UlMeZsXiMt47P8CaxtJPUFhwQSjH8/y9nGjInx1ZtkMqa8/K3lFAV7l982J2ra/n7WNdvHK4nZG0xd53O9l3vIvdG+q5a1vDlKvkuq5HImmSNR3KIgECo8Elt9TVP5wZ87mgaR7xaLBoG8rNZ3pJpi36Bi0CukY8ahAO6gXZW+gdyqCp/jtEy3ZRAE2F8Gizu4nSi8vLIxP24JEMO1Eqdqyt5WL3CG8d6+LuHUuKPZwZWbBBaCxFASOgERydHWVHkxkcxyvocl1AV7ljy2J2bajjrfe6ePVwO8mMzZ6jnbx9rJvdm+q566YGYuHANfsWgX+2qH/YIRLy065DAQ0PqIqH6B3M4Hpe/v+Hg35h2LneUM7N0EKGSsb0A0XfUJp4NIiuKTPeWwgFVDr60ygKBDQFD/8NRjwSmDRh4YmXT1/RtE7Ow4hSEg0H2La6hv0nejhyupc7NpduvyEJQmPkZkeRoOqXCLLdWTl3ZOgad25tYPeGet58t4tXj7STytq83tzBW+91sW5pBRe7EwQC2hV9iy4PRLnEhWhIxwXs0WW4+uoI3f1JNFUlZGhzWvr/ydfP8uy+VjKmDSiEgxqLa6KoipJPlMiaDp+bYaIEQH79Eb9Gnv+mwQVFmfQ8Und/6orLSIadKDXrl1VytmOYH750hptW1RALl2Y5n9JPrZhFuXNHtRUhKsqCBAMaMyxkMP76AY27tjXw+5/ezoO7lvop5bbL0XP9DCUtMlk/cWIqfYt2rK2lqz+J43mUxwzCQZVo2KCuIjSjfjvX68nXz/LkG+fJWg6aquB6/v5M31CGSCjAoqoIjbVRIiG9IGPJmA5V8RC65t9L1xSq4iEypjPpeaS6CRIW5DyMKDWqqnDbpkWMpC3++ecn/P3fEiQzoSnIVWUIz1IyQ9DQuHv7Em7dVM/eo108v/8iHjCStkhmLKIhv8/S1foW5WZIrx1pp2skxcqlFTx65yo2Lq+a0diud5/k2X2tKCj5siKK4i9pDo2Y+QSMQp4zyZ1jqR8TWLLWpfNQE6UXP3r36kmvI+dhRCmpLg/x8G3L+Ome82xbXcNtmxcVe0jXTYLQdbg8mcG0/eZ7ZoEqeocMnXt2LOHUxQG6hzKkszaeNxqM0hblMYN01iY8SZ2odU2V+WBUVRVleDBFxnIIjXmwTkUu8LT1Jslk/UZ8ZZHAlPZJMqY9rq6VpirYjufvT3lewc+ZXO0cy0TpxeubKnji5dN09IyMC6pyHkYUw0QFTK9XOBDg+IUBvvXcCVY2xMe9ISsFEoSmaWyqt2UXtqL3+7cv4ck95wgZQUzLIZm28YDBEZOvfPcQd2xZzB1bFhEyrv7Plyv/EwxolEUMdG3qFRc0Tc1nCiZSJgFd9ZMbuPo+ScjwEyByt1IVBVXxQFFIZeyCZ51d6xzL2PTisdUkJks+kOw4MZeup4DpZHZtqOfXf2ETf/KNffzVE+/wn35l5zWfDfNJ6Yx0nvJbk4+v6J0enR1Nd4l2XVMlj0A+O66pPkY8anDi4iAZ0+GFA628cbSDO7Ys5vbN1w5G11P+Z+wGvV+BGzwUhpMm4aB+zX2SB3c18uQb53FcUBVwPUCBTz2wlvu3z04q6dXOsYxdTkxlbIKGRrnh772NTT6AqQUgSeMW81F1eYjf+Mgm/vL7h/nHnx3nNz+yCaWQG9izSIJQAY3dO7JG944y09w7Gru0lpPMWLze3MHeo52ksw7P729lzzud3Ll1MbdtXjRuP+NyUy3/MzajTNf9YqeqQn7J4Fr7JI+8byVAPjsuZOg8uKuRTz+4np6exFX/zoV+wF+edt2fyJK1bEKjwRT8pbf23uSU0rMljVvMZ5uWV/GJu1fxw5fOsKQ2yiN3rCj2kKZEgtAsyPU7ioVUogU8CBsNBfjALU3csWUxrze3s/fdLtJZm2f3XeT1dzq4a2sDt26qx7hKMLpW+Z+xG/TxSID+RBbH9bPOpprm/cj7VuaD0VRN9QF/PYHq8rTrgK5i2y6DiSx1lX7PJ3O0rl5ktLp4VyKLbfvljh5/6fS4a0sat5jvHrqlibaeJD957RxVZSHet3X+nx+SIDTLxh+E9VsgpLIWtj39YBQLB3ho9zLet7WBV4+089a7XaQyNs+83cJrze3cta2BD94xeRDIl/+xXCJhnWjo0hLd2A36cFCnzHZJZmyCAW3aFbinYioP+OudiVx+TigXVM3RdhS55ANNU7Bth4ERE4XcMqJHe1+K5jO9+WtPtQ+SLNmJYlEUhV/94HoGR7J885njVJQZbF5RXexhXZUEoTniZ9YVtsVELBzgQ7cu486ti3n1cDtvHesimbH532+2sOedTt63ZTGVZQZ7j3ZOWHnB9TxGUhaZrE1ZxCAYUK/YoF9UFZmTh+hUHvDXOxO5PO06Egpg2S6W441LknjmrRbOtg+PBqDRLrQe6Joy7tpTSeOWJTtRbLqm8oWPbeFPv3WQv37iKP/+k9tY3Vhe7GFNSoJQEYxrMeG4pGewdwRQFjF4+Pbl3HlTA68cbmff8S6GkyY/e/MCigKRkE5ZODBp5QXbGc2iMzRiEaMoBSsnesAnUhZZ0+FLf/MGNeUhWroSOK43ujyoEo8ahAxt0kSJidKuA7rK731q2xW14772eLO/kZtLpsCjPBYcd+2ppHHLkp2YD8JBnX/3yZv4s28f5Ks/PMzvf3o7yxfFiz2sCUnFhCLKnTuKhQLUVIRnXJUhHjX4hTuW8+8/uY3372jM3yOZtukezGBZLqqqTFh5IbdE1z+UIZG28KvOzZ3LO7cOJ02GklmMgD+j6BpIk8o6WLaLqvhnj/qHMyRS1qSJEltX1fDZB9ZSETXGVY0AeOw7B/nS37zBY985CEBDTTRf4SFXdUHT1HHXnux6Y4OLVF4Q80VFLMjvf2o7kWCAv/jeYVq7R4o9pAnJTGgeyWfW2R5p0yadtad17qg8FuTTD67j8PEuf+lp9DpDSRNVVfxqD46Lrl35HsT1PD+LzrKJh/2eP4WsBjLZfsnly4BZ0yEeMSgfbQCYztoo+LMU1/Pyvx9JWXzuoXXXvM8vPegHi+YzvfztE80wOkPMLZfdsXkRe452omnqVQ+rXmuWKJUXxHxSXR7i9z+znT//9kG+8r1D/P6nt9NYGyv2sMaRmdA8k9uLKAsH8jXrjGnOjqrLQ0TCOnWVYSKjVRZc1yOVdfjL7x9m37GuSXvV27bHwEiWwRETp0DliXL7JYNJc1wAaD7TC/gP+C99ZgeP/dbt6JpCOmvT1jNCV38K03bRNT99QtNU3NHzWaGgdkVQuNp9nnmrBV1XRmec/q+apnK8ZfCas5ypuHxGN5eFY4WYSF1FmC99eju6pvLYdw5xcZ7NiGQmNI+NO3c0OjvKZO0pB4U7b2rgyT3nQFMpjxkEDZVkxsayXQZHTH782jlePtzOPduXsH1tzRXp2p7nz0Cyll+6J2zoVznmem2T7Zc8/vKZK0rrpEcrl+fK/niuh6OAYWj5jqm5GnFTvU/uHuUxA9u59DXMLZcVYi9MKi+I+ai+KsKXPrOdx75ziK989xD/4VPbaKqfH80dJQiVgLGzo1hYn3JVhssrL1SWBXnkjhXUVIR56WAbh0/1MJDI8sSrZ3n5UBv37FjCtjW142q/gT97Gh4xyQT8JnonWgb42d4L1/2QnSgDznFcuvsz1FVF8rOWp/e2oChePgkByC+/hQ3tmjXoxt4nlbEYTlnYtkvfYIb6qvBohe9LAbfQy2XSiVTMR/WVEf7gM9t57Lu5QLSdZYuKH4gkCJWY3OzobNuQH1xGTAxd4eb1daxdWnnF509UeQHgE3ev4p7tS3jxYCuHT/fSn8jyo1fO8vKhdu7dsYSbVtegXhaMTMvhrXf7eP1oJ+CniI9NQYarzwAm2i8ZGjHRL5u12K6L5/nndTzPT5oYrf5DMm2RTNvUV4b41Jgkg7H3zN3HcVz6E9n87E1RYDhp+rMkQ5vTQqVydkhMpBAFTBVVIZm1p/S50YjBv/34Vr72eDOPffcQv/PxLVOaEQUDOvosbd4oXpGaUPT1jcy42Gdtbdk1S8HMlbkcy7izKEEdTVPQVZW7tzfQVF+G5/lVtPv7k1O6Xs9gmhcPttJ8ui+fE1dTHuLenY1sXVk9Lhj9/U/fZThtUVkWIhoOkDVtBhNZNNWvqHD5xn5uX6W2towX3jyXH3fuc7r7U1TFg0TDl5bVWjoTePjLZI7rMvZntLbCz1pzHHfSZILcx4dGzNEzWH7ju6p4CFVVCBoa4YA2ZwFh7L/XZF+b+fJ9DAv352oqrjWe2trrm1k8/dqZGRcwnY6RlMWz+y6StRwe2NVITXn4qp+/a0M90Umq9491vX9/kJlQSRq755FbshqxLPYe7WT7mjrSpn1diQy1FWE+ee8a7t6+hBcPtHH0bB+9Qxl+8OJpXjrYxr07lrBlVTWqojCQyBIK6iTTFumMTSwSoL4ywrmOIcKhwIT7MAAvPN5MR8+IX7NuTEVtXYErikeMNku1HZfL36cMJLJUxUPYjseTey6A4pfjiUcCREIBspBPMvjrJ97B8zz/z6NBwkEdz/PIZB3+8+d2TffLf93k7JCYb2KRAA/espRn377I8/taeeCWpVTHi5PBKUGoBE20txLQVVp7kvm9o8rKCHbWIjWajj2V+e5gIksybVIW1nE8SGZsegbTfP/F07x0qI37djZSETNIZGwMXcMdPc8z6HmEDD8Lr28wTe+wX39N11QGE5lx7RNM28WxHd63ZRHHWwYZSvlj9AOPh6aqqIpCKKiRvmyJwQ+sfiB0XT9AaQpkTYce00HXslTEjHySwaol5QwmTX9PK2nSP5xBVRQappGiOpPltKmW+xFiLsXCfiD6+VstPLfvIh+4pYnKsuCcj0NStEvQZG2rx26u65pK2NCpjgepLAsRCer5kjQTOdEywJN7zjGctohGDMIhnbKITlO9/8DuHkjz3edPMThiks7YZC17NEHAIWvagEd7bxLH82u0GbqC7bhkTb9AaMjQ8ynRtuPx9JstDCZNQsbobM7xcFz/7+G4HhnTwQMC2qXGE5qq+BW9bRdQUBTGLdU5jsdAwhytEO6nS6cyNn1DaUzLwXb8hIaWrmGefP1s/nXNZ3rHHV7NpYyP/fOrpZYX4t9LiGLIBSJdVXlu30WGRibv3jxbZCZUgq6vC6iCoSsYukE07JGxHNJZC8fxxs2OXjvSPrpn4S8Z5X7VVYXfeXQLLxxo5diFAQZGTAAs2yWgO9RVhLhrm98n6NvPncR1PeJRg6ryMMm0RSJlkspYVI8+cNNZfw/Jw595ZcyJu9I6rn8g1XY9FBU8l9G0ai/318pNnvK83P+OCbZ+Svulz9FUQFF4+s0Wli+O58d9ea238x3DHG8ZzPch8is3BIDJU8snmx1J11Yxn5VFDB7YtZSfv93C8/tb+eCty66Yuc8mCUIlaLpnUTRVIRrUiQb9ZbGMaZMZPY+T2+sZK6CpDCSyNNRE+eUPrKOtZ4QXDrRyvGUQ03YxbZes7QezdU0VBAMapu2QSJlkLIeGqghlEYPBEX/ZKZ216R/O5DPdxp7VmUg4qJG1XPy2er7cK0IBjazloGp+wMpl01XFQ2RMJz97megwrqYo2K7H4y+dpj/hj3XsvtJQ1ubpvS1UV4SIhHQGEhmytkJAvxSIJkotH1uo9PLluzs2L8oHNcmOE/NNeczgvp2N/PztFl440MoHdi/NvxGdbRKEStRMz6IYuoqhG8RGZ0dN9TG6BjPjDqNajjtujXhJbYxfeWg9F7v9YHTy4iDtvUn+6ecnRpfK/MyzeNR/TcbyA10kGCAc1Ojqs/IzF0Xxg8bVpE3/HJSi+GmouUBh2S6JlHXFod1YOICmqVREjXwyQEDXcEwnl+uA64Hq+evQ7X0pFMUPSrl0boB01sH13DF9iPwW7sMpKx+EJkotz82OHn/pNO19KfTRQ8KDSZM9RzunVYFBiLlSXR7i/dv8YxsvH2rn/p2NVxzTmA2yJ7TAqYpCxNC5f9dSymMG8WiAkKFh2X65mTtvarjiNUvrYvzqB9fzoVub0DX/m9RxPSzHZSRtM5DI4Lru6GFajy0rqwCVaNigujxEZcxAGS0WejW5P1YVfy+oPGoQCQXQNWXCqhEjaYtU2uKh3U35QqLxqJEPQLlrenig+PtmAV3Dww+gCjCcsrAuq6sXjxqAh2W7+VI8tuMSjwbG3d9xXNp7k3QPZlBVBddjNInCQ9PUfKagEPPVktoot21aRGdfigMneubknjITWuDGLhuFDA1DV1AUlZUNcbatrmH5ovik9bSPXxigoiwIHgynTEzLX/pKZx1MK0NtRYgP7V7O+mVVVFVFeeybb+MADbVRBoczdA6ksZ2J94RyArqKN3rWZzhpEg7qDCctfwajXgqAnucHmHjUb0VRU+4nPoSDOuUxg6ER018GVPylh4HhLJXlQRRFoX84g+v5Qcga7aqam/GAXxY/Hg2SNZ2rppbnZkeO66Eq/r1czx93XWVYsuFESVjdWM5AIsuxCwNUlwdZ2TC7vYgkCC1glzdgM22XbNoZt2xk2u5oNpxzxcwlt4+kKAo15X45nETSzGe4dfaneeVIB4GARlVVNF/LLp2xqSrzv7lHUibdAyky5gR7N6pCRcwYrXrgz0RysxAFf19JURTU/GzMzSc6jE0GiEcNFEVhJGURCmo01JYRNnRs1yMY0KiKhxhOmli2Syig8+CuRvYc7SRrOflEAl1T+NwjG6/o8jpsOqQyFrbjH6qNRwJkRxMPcl1abceVbDhRUnauq6V/OMPeo11Uls3u960EoQVsKocoDV0lWGZgO/4DPj2m+V5lWZDhtJXfwHRdf7lKHW1pnjEdLnQm+PpTx3j1SAd3b2vgkTtW8NqRdrr6U9RUhPjw7ct5YX8rI2mTvuGsf0B1zFLb2D0YD6iIGuiqQvdAekxLBz/F2wNSGXtcS+7cLK++MsznHlp3RfWGLBAyNFQ1OK6KAcCz+1rJmDYhww9MlyccAAwls4BCQNMAh2TGIhYOMOL4HXNzHXUlG06UElVVuGtbAz/dc57Xmzu4Z0cjzNIRIglCC9hUD1Hmmu9FQyrRUMBP887YrFlazgv728b198ktd6mqgq75y1rdA2lOXRzk1MVBVjbEuX/X0nFdHhUF4mVBKuMhkmmbZMaibyiNpip4nr+fUh671FrhydfP8tM3LozuC10KWH7wU69IsZ4oG23rqhrOdwxPGmj2HO0kHjOo0f0zPntG6+XlygRFQjqdfSkUFKriQSKhAKmMRf9wlnTWIRLUGEnb+eKzd2xeJEkJoqSEgzq3b17Eiwfb+NneC3zm/jWzch8JQgvYdBuw5QqoXugaYWl9jN4hv8Mp+Blq4aA/e1EUhWhQ4/MfWs8rRzo42zbE2fZh/u7J91i9pJz7djaybFEZuzfW8+Sec5THgn4TO8UjYxrEw3p+DyYXRPIBImqQSJn5NG9Vhep4yE+xHsmOS7Hu7E/x1z8+StjQaKiJ8skH1zM0lJow0CxfHJ90hvjsvlbiMSP/cdv1cF2P3sEMQcMiHjWoLDPoH85ip10Co8FT09T8tSUQibEKUcB0Nt20tpZU1uaF/RfZurqaFYsnbhE+kwKnEoQWsGsdorxaqZqn3jjPYNKkLGKwoiFOz0CaZNrCtC8lGgQ0lcERM98XKBbSsRyXrOVyum2I021DrGks5/6bG/PLdG3dCZbWx/j4XavYuLzqijHnAkQkpBGPGrT1+A26/I/5wW9sinUqY5FIW+D5/YcGkyZ/+0QzuspVew5NNEPMmDY1+qVDt56bPx6bbzdeFjEIGfq4YAVIrTgxoWPn+otSwPR6rFgc58jpPr75s2N86LZlKBNUXtm1oR59CgVOJyJBaAG72qHXy5MWLj+MmXtQm5aDaTkMpyxChkpZ1CAWNkhnLVJZByOg8eSecxgBjbKogWk7BEyHYECnbzjDqdYhTrUOsW5pBQ/duizfelhRIJG2iIbGlxu6PEDomoplu6OlfHyW489CAL8z7OhsyR2duRgBla6+NItrIuO+HrmlyJryEF0DadLZS23Qw0GdkOEnbwQDGsOjrdJzlR0UvHy78XDQbxMx0bWFKDUBXWXnulpeb+4YfeNYUdDrSxBa4CY79HqtpIWxPXuGUxam6ZBMQ0A3iYV1YhEDI6BhWjaO5+VrxgUDfjZdWUjnQ7et44X9F2nvS3Hi4iAnLg6yvqmS1Y1x3jvXn6/W8MCuJrasrEZRrlxCjEeN0f0jNd/sLpdinc76XWTH6h/OUFMRBrx8QMnJLUWub6rgZOsgCv75JMt2Me0su9fXcbp9mCxg2Y6fmaf655hy7caNgEpDTXRay5xCzFcrFpdxomWQQyd7Wb4oTqCAzYXksKqYUO6wZ04qYzEwnOXkxUEe+85B1jdVkEr7G/GO46Kq/jkb14WO3hSu4/KRO5YTDOgsqYkSDQfyM5rcMt2GZZV84dEt/NKDa1lc7c9KjrcM8NQbFzjXkWBwxOTkxUH+/un3ePuYnzL94duX4Tp+qrbneaiqQjRsUFcRIpWxqYgaPDx6iHYwcWUxRs+DgeEs9VURnDHXyVpOfinyeMsg8YiBrqt+cNFV4hGDgRGTzz6wloqoMXqAVqE6HmJJbYzGuhiV8SBLaqI8tLtp0mvnjC2a+uW/2TPlYqhCFIOiKOxcV0vGdDjVOljQa8tMSExo7IwjlbH8kjaePzXPlaHJpWG7+Z49flZcRdTgod1NPL33Auc7EgR0hSV1MWoqw5imzeBINl8OSFEUNi6vYv2ySt47188PXjyN7Xr5nDfL8bBTFj957RzLFsVZVB3jlx9axwv7W2ntSVJTHuJT966+Yja3fHGcrz3ePO5jHv7BVtdz+MTdq4CJlyK/9exJ4lGD8tilZcBk2uRM2zDfevYkNeUhHr5tWT5T7vJ249eq7Xf5UufAcHrcUmchSCdXUWh1lWHqq8K8e26AdU0VaGph5jAShMSExiYtDCetfHHq8lgwvzTXN5hmcU103Eal5/ktHXIP2fJYgIGEydm2YarjQaIRg7JIgAdvafJL24xu7quKwuaV1Xz/hZp8GacAACAASURBVFPjyuww+vvugTRd/SnqqyLUlIf5lQ+sJxYx8mWDJnbpSmOvaehq/oE8NjA881YL33r2ZL4HU3nMD5SpjMVAwhxd5tPzQfhqRUmvVtvv8qXO0OhSZaESF661nyfEdG1ZWc3z+1s535Fg1ZLCVFKQICQmNPbdfHd/ioCuUh7zu5NCrvW2R2dfCsf1Rpes/AKituMRGX3IuqMlbCzHo2cwgxHQ+Mgdq9i6qgbX8/sGpbIW9mgNHEVRUBUv36YhV2jbA772eDNbVlVz745G6irDZIfThIM60VAgX8IHLj2Ex4ay3O8UyKeQX/75uYe243qjh1D9PaehERPwqCgL5Xsi5Tq4fukzO8Zd57HvHLzm7KNQTe4mm+1IJ1cxWxZXRyiLBDjTNixBSMy+3AOrpWuEjOUwlDTxPI9IKMBw0kRRlNFWCaNVqIezREM6mqZg6Gq+dYPf0whs10+TzlEVhUhQJxz0s+xSGZtF1WFae1JXjEVV/MOwzWf6eOdMHysWlzGUNBkayRI0dKriQRT8oDGYyKJpqj/TuqxdhKJAeZkx7mOXP7T9gqXka8V5nkdVPJQPwHBl0Lie2cfVzmdNdRntaveTTq5itiiKwqqGOIdP9zGS9quDzJQkJohJ5R50QUNDwcO2/XYHQyNZkhmbeNSgujycz5TRVIV41GBJTRTTdhlOmjCaYeZ5fiuGiapJKzBawy3InVsbqK0Ij3vgg5/M8L4ti6iKB/GAsx0Jv8yP67chv9idpHc4S8ZySZsunuuOWybM/U5R4FKvVt/lSRgAZZEAkZDOY791O6uWlKNp4/88MdqWPNeN9fGXTqNpKq7r0T2Qprs/Re9Qhv/5o3eu6NZ6eeJCxrRxHJf1TRV8+7mTdPanSKQsTrYO8dc/PjquC2zO2MCZm53lvrbSyVXMphUN/oHVls5EQa4nQUhMKvegGxdsPA/TcgkbGmWRAOGgTn1VhCW1MRZVR8iYTr6tdsZ08sU7Lcclazp09ac43zk84f08Dw6d6iWVsYiE/OuWRfzWDe7oXtMX/9U2aid5mKYyNuc7hnFcl4Duj8+vCu4vx+Wa3g0msvnMtD/++lskUiZtPSN09adIZ21g/EN7fVMFfYMZWrsTdPYl6RtKM5TMjnZb9Wch7X2p0WzBDKbl4I5W9XZcj66B9Lh24FtX1eSz7FIZm8p4mM8+sJbjLYN+r6S0heO6aIp/tunpvS1XZM9NFDhzs52pZOcJMV1lo/u6XQPpglxPluPEpMYu64RHl808z8uX0rnqWRjP8x/+l7U78DzImC6//pWX+PBty3jkfSuvuGfG9A/ABnSNSFCjPOoHt2TGQlOVq5Y5sR0vH7AqYkFqK8OkMw4jGYuKWBDLdkllLAaTGooCHX1JXNefIVm2S99Qmng0iK4pPLS7KV8mKBrWSWcdLMfFtGzCQS2fuBAMaOiaSiJt+eeVxuxFKfjVFSrKguP2ZMYmLtTWltHTk+Bbz/7/7b15dFz1le/7PWOdGlQqzZJtZGN5kLGRjXGwzRCbMQYzNcOFNH1puu9KBzp5yWXdl4TOWyu9OumQhKxcXiCJO53XCasTaDrQ7gQa8HVwgIANBs8Yz7KNbM1jzVVnfH/86pSrSiWpSir5aNiftbISS1Xn7HPsnO/Zv9/e330C8aSRct9m2ZrAMXfw3P2c0e7/eCfvEkSh1Fa4ca4nAsuy8jooFAOJEDEioz3omhsDeO39NpgWcxSwh81tWtuIbbvb4HFL4HkOQxE177F1w8Iru86ieyCGwYiaflgqEg8hNfBON0yEYiaCMeacUOX34Ge/O4yENrrXViiqwS0L4Hmgqy+GQJkLC+f4oeomzndHUOaV4JIEdIeTaZE0LeZ6YFlsL8ge2/DUC/vSlkDlzMwB53vCyNXBcp+M3qEEkDqGjSAw0SxkT6a6XMFAOInMgj+7CTb3u2NZLk108i5BjEZNwI3W9hAicQ1lHnnsL4wCiRAxIiM96JobA8Oyg0hcw+Z1F/psOI5NOh0VC/jgaA/qKj3pZa1YQofAA4YOmOkHuoV4Usfxc0PwKiJ8bhF+r4xITEU0oec9dFw1oOomFs0LIJ7U0DsYx7xaH+bVeuF2iYjE9fSymY3Ac7DAhAMAnnphH06cGxpWGSgKPLQcFWL7M3w6XvY5ZugjClxBezKb1jaiteMw89pLFWIAFjyKPOy7lO3MDKa6gelIKIqIDz7pRmNdGRbNC8AljV9KSISIERnpQXfBRPRCdpDUDBxrG8KdYG/0pztCwLCOn2xsAbA383XDBM+x4oYqiUf3YAIcZ6Gu0oueQTbaQdNNBCMqOABejwyfR0Y0riGa0GBZbN9HFHgosoBQTMPxc6y72yXxGAwlYJgWXLKAgM+F/mAckTgTMY5jS2CGaUHVjHTlmSQK0A0TA6FEukLOo0iIxLWsoXeGYeLWtY3Yebgrva/DBMmE2+UqaE+mpakam9c14rX322CYdoYppzPMfJ/PFR1qUp1eTAcD03wMRVgLQzypwztO41IbEiFiVPI96H6z/cSoJcCb1jbimZcPgedHXisWbPNPDukyblsE+oIJzKvxotwnpx+kz7x8KKsXyAL7nijwCPgkVPqZGsZVHWWKhL+8dRn+a9dZ7Dnew5bYNBNtPVGIAnN88HtluCQRXrfMBEXV05mHblxw2PZ7JQyEkzBNC72D8ZRXHI81S6uzlhHth709CiLRFYKqsd2hpGpgQ56hePb3bqwpS1/XndcuTB+jWCGhJlXiYmEv0Ufj+VciioFEiCiasYoSWpqqMafKg56hBASeuShkLntl7WNagF3GDbDPAswhob7Kk36QigJrjmXLVFZqoB3SY7V5npWAexQRG1bOgSTy6A/GUel3QdMtRGIqTIt9Xo+bEHk27lsQ2cyfcq+ERNKABeaEbVeeeRQJqmYgGGVvq6IgwO0ScKojlDWF1cb+sy0GdqaUbyiefW3l5R7Mz3D0Hu9+TmbZdjypp0aWG/jnV47gbzJGkxPERLGdTkphZEol2kTRFFICfN/1i1Duk1FT4b6wFyOzfRO7L2j9ZbUpQbJSQsXESuCZ0GT2v/i9MiywYgXduLD575J4ROIaBoIJCByHW69qxFWX1SNQ5oJhWnDLInxuCbWVHvg9clrsglEN4FjHkGFYEHge1QEFdZVuzK/3ZfXZJDXmzO2SBdRXeVDuc+Xtd7IZqYdn+0fn8/5869unSvL3Ypdt203CumGB5zgkUsuLZJJKlAr7JVASJi4hE8qEXn31VWzZsgWapuGRRx7BQw89NOGAiKlPIZviuZ9pqPHhvg1Nw97Gz/V8gJ6hRNr6xzQNWBbLiNp7IxAFHmUelo1U+FzoD7G1aI4D/B4JgTIFSc1AwCtnWegokoBKvwLVMKHrFqIJDT6PBEniwHE8YnENsaTO9oD0JKJxDfWVbtxw5SUYDCfw0bFeDIQSiCd06La/nWmlepikUavdChmKl/nznoFYSfZy7Aw1s0nYTJnO2qJJ2RBRChIqcz7J/Xc+HsZ9hO7ubjz99NPYunUrZFnGgw8+iLVr12LRokUTDopwjkIfhoUsGeXrhcnlvusXZS1ddfRFoRtsEivPcdANtkfEcxxqKtzpfSF7Sa9rIAZdN9E/lMCh1r6smDasmoNfvX4UPM+lrIFMaJqJhzc3o8or4/1PuvDuoU7EkzqSmonO/jj2HOtBW08YYipj8bolROMaYnENlmUxN3GwPSN7+TH3nikSn3dWUeZQvMzlMlHg8cvXj8GjiBPay7GrGTXdSPvuWQA4zoKuG2TbQ5QM21vRHsEyEcYtQrt27cK6desQCLApe5/73Oewbds2fPnLX55wUIQzXOyNbfvhnVANGIYOUeBSc3rsRtfU+GwLAMcG44kiD8MwYZoWglEt7aLNcRgW69nOECJxlu0EIyrKvDJqKjxwSQJcsoCNV8zFuuV1eGXnWRw61QdVN/Hx6QEAgM8tIaHpEDjAo8ioqfRA1VijazCiotwnp5tZc+9ZLKGnu3TtPaFYQodbZlkPl3IP5zkOSBVjROMqFFnIMkgdKXMZ6UXB/uzP/vNwejnR3pMbDKtoqHSX/O+QmJ0EIypEgUN1+cT/TY17Qa+npwc1NTXpP9fW1qK7u3vCARHOMZofWamxH95DURUVZS64ZCHdc8RzzCjRtFjGkVnH4PdIsJDpxMBseQJl2fs0h1r78NoH7H/LIg+e5xGNaxgMJ/DuwXZUlrGRFOd6Ivi0K4SA35VlxhiJM2dvVbMQjibROxQHYKGizIWKMhkPf27pMMdq+555FNbHZNvyiMw8D1LKaNU02Z4Wz3OoTM1VArjUMhrSMefLXDLvW+aLQqYlUG2FGwLPStXZzJdUqfwEO9sJwqZnMI55Nb5RK2ALZdyZkJXrxwIUZd9QVeUb76mzqMkob3WaqRQLUHw8AxEVZW4x6+9RFDgMRtQxj7XnaDe2vn0qPfPnno2LsGZZ3Yjx7Hj5EFyyAEUWEU3oCMc0WEiNcEiZvdVWeuBVRJzrDgPg0k2josCjs585bUsij0CZC16FWQoNRlR82hfDL/7raHq0N89xKRcG5i/3aWcYc+ewDH7re6dRX+VBUjUR5rVhDbYWmPu3wAMcz6EvmIBL4vHu4W74ytyIawZ8ipj1gBcFDpG4jh9+dQMA4JtbdgIcoMgiACntIiEK7HqY4LGCC7vaKKHqaKjxDbvvmfcNQGqwoI4d+ztw47pLAQCqYaGmwoNgRIWmm6n7pkAzrIL/TUylf8tTKRagtPH4vC4IojD2B6cQ8aSOvmACV7fMKcm9GLcI1dXVYc+ePek/9/T0oLa2tuDv9/dH0mV+42WkfQYnmEqxAOOLp9InDyu9TmoGKnzyqMfKXJJSJB69gzH87OUDWSXMufF09kbgUURouonBEHvj5wHoVuq93bIwEIzDshQWD8chEmel0xaY+PjcUnrsgqazaj1J4PCzlw8gkdTSrbKaYUJM9SFpuoHaSk86luNnB1HpZ5lYOKaml89yMUwL/UMJ1iTr4nG6fQhb/uMAKspcEEWBuWEnDRimNeyeZV5rLKHBSGVChsH2hQI+V6oZF1A1I938euMVc4bd98xj2fAch87eSPqz9t9jbcWFpZJC/h5tptK/5akUCzB2PMU+lCPR5LRrVmWN6MDief5h92I8ojRuEbr66qvx7LPPYmBgAG63G9u3b8d3vvOd8R6OmAKM5UeWSea+RCyhwyUL8CiFD1HL7DWynRJMC5BlAX6PhFBUg6azqrcHb2DFLpn7IOuW1WLn4a5hrgUix6edDlTNSC/bsWIH1mh6z8ZFw+IYCichSwJqKhTEEgbCMRW6MfwlyQIQjOlQJAuabqBvKAFRZEUKNQE3EhpzDm9uDKQH3MUSOuJJZhOkZRzTAtAfjCNQpsCbWsKzzWFHKggZ0zi2yL9HgiiW1vYgPIqIxtrSZIQTyoQef/xxPPzww9A0Dffddx9aWlpKEhThDIX6keVuxg+Ek0hqOiSRz5q8Olo1VuaDkjljsxTI75HgUdiE1tyy69w48jkL2G4Ofq/MnBhSWYcFtgezeV0j1iyrS7/BZVaUGYaJcEyFV5FQW+GGrpsYiiTh97kwGExAcYmpIXfMmw5gWZvAAR19MXT0xVDhc2HV4iocbRuCqpvwKiISqp62B8qEjahg5a5fuH1ZQcUfYwlMvmKPOdVesu8hSkI4pqKzP4aVi6pKsh8ETLBP6I477sAdd9xRkkCIqUEhpde5k0glkYeeGmJni1DupNCBiIrKVEVZ5jm27W5DLK7BtAx4FTYuotD5N/lirS5vw1Aqjkq/ki6DdkliXtcA+8///MoRJFKZUyzBsjC3S0R9lReKS0QoosKtiJBEPssZ3AIQVy8sjUXiKt450IEKvwu1FR64ZBdiSR1JNTsLApiAzavxIqmZBQvEaC8KmS8HFWWuLIEiAZqaTCcDU5Hn8ep7p8FxwL0bF03ItDTruCU5CjGryG3G9HuYvxrrT7Gy3Lbth2KZe3jJd6aIlMp4MzNTUGQBPM/MQ/NZ7GSes7JMRiiuI5HUU7ZArELOJQuQRB7NjQH0BpMYCo3ea6OnMq+hcBIuSQTPa1B1E1UBN1TNRCSmpvecNMNC31AcHM/j61t2pa8buCAyiiwAloWEZuYtx84k9+WgkGVRwlmmk4Fp8/wKvHuwE59prsW8am/JjksiRBRN7r6ER5Gg6Waqj+bCnka+8uWRHoqldIR2icyBG7BQV+nBgzcsyRK7HS8fwqcdQcRVI70Xo+omYFko80gYDCchChzKfS5wHCudvuPqBdj2wacQeC+CURWRuAaew7C5QvYelGEiPQAwGGEuBh6XiECZK+1PF0/qiCUNVJVL6XLrX752FOA4eBQxPXQP4FBRJo/ZtzWSUwM1qRKl4M0956HqBu669tKSHpdEiCj6YZ9vX0ISeTxya3PW98Zy2x4rpsx9p+7BOH669TAUl4C5I+xxZH6nodoDNVUxl/t7lywgqRmphlc2k8g0mUuD3yPhv9/Xkr4fAe+FJcTfbD8Bn0dCTUCBzyMhElMRjo3sItw9EEsPsrAsIJrQEU0VcdiVfbG4hkq/C6rGnBQGUvemosyF7nASHMcDsBCO66ivlEfNbAopWiCI8RCJa3j3QAfWL69HQ1XpsiCARGjWU6xLQjEb3xN5KOY6QodjKiwLUDVzxBjHWo6yf6/IYsqAkS2daboJSWDTXDtS/UeZBRH2dccSOgbDzEKIFziUeWQoLgmhiApVM1LGqxlzkkboQEja48sF5uAd8LkQT+qIp0q8TctC90AMCdVIzTkC9NQS3mgiTlVxxGRgWRY+PNINjgPuvq60WRBALtqznmJcEnJdDvw+GS5ZGDFzGs1t+1BrH556YR++vmUXnnph3zCHZ9sRGkCWIadumCPGmPkdm8yHdubvRYGHmbGUxhp0OYh5jmtftyzxMC22l5NUTQwEE4jEVATKXKgqV8ClmmK9ioh7NyxEWYYDQy5iyronoRroGWSC43WLqA4oUGQRumFbFyE9qgIYXcRbmqpxzYp6hCIqzvdEEIqouGZFPe0HEROirTuC871R3Hb1gpLY9ORCmdAsp5h9BFuwDMNEdzgJXWcjDl5+69SIJqf29wYjKipS1XEAxsy+Ruoj4nkO3QMxaLqB/qF4lmnpWJmX/XtZEuD3yuhR4wCY2YE90K7c50JHXzTd46NIPHqDCeiGCUkU2OC91MaPmRqW1xeMo9wjoWluOSSRx+olNVjaWIE/7j0Pv1dCOKoNmy/rdolY01yD/Sf7kFANluFFkojENHgVCYqfRySmIxzXYJoWdN3EuZ4IBJ7DumX5m8IPtfZh5+Eu+H0yqkUlPcdoQYOfhIgYFwlVx4dHu1FR5sLGK+ZOyjkoE5rlVJcrwxwCRnrb7gsmoOsGBsJJGCmPN3sJa6RZNS1N1fj6n6/G//f/3Iyv//nqEf3WcjObzCzKnsJqWhaM1DwhjuPAcVyWb9pYc47s3ydUHYosZJifchAFDpV+BbEEe/CfOB9EMJJEe18MSY3dH91gw/Qy2yOYLxwwFFFx69pG/M//thJrmmvB8xwqylyQJQEVfhckkcvywAvFNBw41Y/LFlTC73UhkdThd0vMXshk95jjgLpKNyr9CmRJgCRw8Lkl7Dzclfd+X0zvP2LmY1kWdn3chaRq4prL67MmG5cSEqFZTiED6myqyxWEoswOh0+JwEhLWLnsOdqdXn5rbQ9B1w3Ekzq6B2Jo741gMJRAR180/fmWpmo8dPMSBLwyXJIAnmcPcXZONja73CdnPWQzvxNL6Ah45azSbPv3FX43Ygkd9RVu+L0yaivcqK1wQ9UMRBN6ugFVM6x0BmOYbG+Gw4W9HtsujuPY8t4bu9vAgYNXkVDld+G2q+czlwaeuQ1XBRT4vRIWzvGnxponsfPjLrS2ByEKPK5paUBdhRuCKKDCp8CjSOgPJaBqOqoDCpYtqERdpRuimP9+j7UcSRDFcOzTIZzvjeLK5hpU+ievuIWW42Y5hbokAEywnnn5EBOCnCWs0R50h1r78OKOUwDHhmCFoioGUsPpeJ5Pzw0yLSNreS23j+inWw/DtCw2aTXlrGBZVta5x2q2bWmqxo3rLk07JmRWBqqamRYURvYiGpv2eqEM284ELQB+r5QVh8DzuHJJLfqHEnjnYCd6B+MQeA7XttTjhisvwYdHuvDqrk9Zhmda6A0m8JvtJ7B8QQUGwuw4ksBD00zomglZEjAQSsKjiKir8CAUSQ67NqqOI0pFz2Ace4/3YF6tD82NgUk9F4kQUZBLgv25OdVe9AzGYVoWRIGH3+sCz3MIpIxE87FtdxtEkUuNFWBjF3oG2X6MADbSGxzgVcQRy49bmqrRNNdf8oesfe1M5D5OV8sJApclOJLAgRd4mBbrJxIFDlZq1ITfc8FmKJODp/rw5t7z8HkkLF9YiWBUxb6TvZhb48P7n3TBstjSnj2awrKAw2cGUe6VwQOIJzS4RAGyzKeKFZgrRX/IQG25G+G4BrdLgCTwsCyqjiNKQzSh4e397fC6JVyzor6o6QjjgUSIyGKsnqH7NjZlTUIt5EHXF0yg3CenDUHdLjH9gDctQBTZg9ztEgv2myvlQ9aufmPVbcwtQTcs8PwFEbLnFRmGiWtW1GPn4a70PQhFVQxFVMTiGp56YV/6ntl7NKYJDEWSqcmpPuw51oP+YDJVfs2q5IyMeIKpuUJ1FW6sXFyBg6d6oeqspFsz2DWvaa5lE18TGtp6Ith/ogdd/TF4ZAFGamTFRJwniNmJbph4e18HdMPELVddApc8+WMmSISINIX0DBWzfGdTXa4gktAg8DxiCQ2hmAYrNWOt0u+CR2GlzEnNGDWrGc+5C8EWi3KfjIFwMi1EpsnMVQM+GZaFrMZVANj+0XnEkmwPyetmbgiZ9yyz8tCygGhcB8+xPaKaCgVDERVJ1Rixn6h7MI7uwTgqylzQNBODwQQ4jkNVuSv9mR17zuHtAx0AgIDPBZ9bhKYaGGsPuVQ2ScTMwbIs7Py4C/2hBK5fPRcBn2vsL5UAEiEiTaHeY4Uu39lsWtuIF3ecQkRNIhzXsoZ8DoSSsCwLoiiM27R0NPI9bG/MmXliiwWXuu5QTAN0Vhb+pXtW5HVmsEuhDdOCbphIqAYSKjM9te9Zvj2auMrGU7hdIlv6U9jo8UwTS4FnBRCyJCKW1DEYvrD/I3DMeeGVnWdwZW8Eb+/vgJla1usPJtAXBDwuEX6fBEHk8fuU4eTlC6uz4r+YY9yJkXHawFTk+fQLyyvvncGnXWHcfd2luHHNJcM+WyrD0mExTMpRiWnJZHmPtTRVo7zcgx/+eg8bcy0K6WF0Q+EkghENTXPdY76NF/v2bj9sdcNCLMFGe7e2h9ATSuKmjJ6HTLHwKKzgIakxsRjLKFRPlapbqfHcbpeYvmd/ccuSvMuHzY0B7DnWg+7BODwu1qCaSBoIRdkSnV2B55J43LB6Pl57/9OMKj0LkbgOt0vAuwc7WaFG6ili1/LFkjqSmg5RYGXouw53QeA5/OGj82jvi45r/hMxOThtYPqZZXXwukS8c6Adf/joHDZeMRd3XL1g0veBMiERItJMZnXVmmV18CjsgZv5D1yRBcQS+jCbnFzG8/a+bXcbdMNCOMYcFwSeh2FaeHnHSdT6XenvFbvXlCnWosine6bsN1r7nuVbPmxuDKT3k6r8LvSHkogndfg8MhqqPYjGmUWRkOozOnJ2IG3dY5oX6vXiSbaLJPBMmHJ7ONhelIWkYeLw6QG0dYdR5pExr8aH051BROJqUfOfiJnLodZ+/Pr/nMDlC6vw0M2LL6oAASRCRAaTXV1VjMjlZj2RmFr0mAI21VSDbfkDIOV8bWV9z/7vl99uRWcfc62uqxhZeDOvwx5jYZisYi63zyp3+fCpF/alr8NuKu0PJhCKqkiqOvxeGTUBN5KagetWzsEr752BIHAwTUAUWEl4philV3JyNpZ8KcsgVshgQTNYBpVQDciSAJ9bhmEy41lNN6mUe5ZyrjuMLb87jHm1Xjx61/J0BevFhJpViTRjNXtOlEIbYzM96uysp6M/Bl03sj431tt7dbmSXi6zscCG8OX7XlIzUBVwo6HaA91ClhvDSNfhdokoc0vgeeZQMNY9y20o9aSmuAopL7mhsAqvS8Rf37YMK5uqUR1QUtmKldYZW27EjAvL1CC3zEROTU2LFQQOUqr3STeY60T3YBSxVIm3x82WEKmUe3YRiWv4p999Ap9bxP+8f2U6K77YUCZEZFHsxn+xxwbGrm7LVyAhCjxCUQ1e94VenLHe3jetbURreyhttcN8s1klW+73ihkIl3sd9ZWegqvL8mWDoshj8bzyPEuSFu689lJsfec0BJ7tOdmZj1cR4VZERGIaDNOClmG9ZIFDOKqitsKN61bOwbsHOxCKa5BFdk63S4JuWNA0E+e7I6itcGPz+vlY2liRLkknZjaqbuCPe89DMwx87fNXXrRKuHyQCBEXlXzTVH+z/USWIOUrkCj3yegPJpDUjIKXCluaqrF5fSNe+6ANhmlBEvhUc6cw7HvFFmUUI9aZS4uKLCAW19LHZ8P0MMJ1cFi+oAoAsPNQJ459OohoQofPI8HtYsttPg/gd0u4/sp52LHnPM52hZFQWcZYAw6yJLBlvZ1noALpXiNR4HDPZxdhaWNF+mz2MD9XaqlOTDXBEjML07Lw7sFOBKMq/vbPLsfcGp+j8ZAIEY4wWqFBvmxBEHjMqfbC55aK6m2589qFWNDgz8q+HrilGfOrPVmfy3fOcExDUjWyRm8XmyXmXqeqmwDHQeQuNJTa8YxU/bd8QRWWL6jCd3+9B5coIkJRLZ35SAKPwXASTXPKsfAOP1o7Qtix5zw+7Q7jTGcIv3j1CBsRDgCWAUHgUJfKkDIFyEY3LEQSGoaCSbgkgVX7SbRqP5PYe6wX7b1RZvOSOAAAIABJREFUrL2sDs3zh/8buNiQCBGOMNry10gFEpljuoshN2upqSlLe8fZ5J4zHNMQjCbh98hZInm2M4RjbUN5hTCfiORep2GYSCR1xBMamuaWY9PaRqxZVocdH5wZs/pPSi1JVpS5kFANhGMqVN1ERRlbSuE4DovmlqNpjh+n2oP4r51n0RtMpDMjSeQh8dyIApSJaVmIqzoSqg5B5OB2SVAknrKjac7pjhCOfjqI5vkBLJ1kT7hCIREiiqJUnfajLX/l7rkosgCR41PLdm2T1t3vkgR0D8QAMN84v0dGeWqt3CUJCCZ1vPZ+G6oCyjChAPLPSEqoRlokYgmNjWgA6063P1Ne7iloT8oWSlUzEPDJKC9zYTCUwHUr52RdB8dxWDwvAJ9bRFKXEE8a0HQz/Z/fvnUKj9y6DJfUjr0MYwHQdQthXUWU4yBLPDwuibKjachgOIH3D3ehrsKNNUvzz6RyAhIhomBK2Wk/Vrl2prHoZHf3Z56jodoLVTfRMxBLzxuyiScNmJaZVygA5BURw9Ch6uw7oZiWminEQRL59Ge2vn2qoD2pTHHuHUqgvtKNh25egjlVXiRVY9jgvKGICq8iwZtqvg3H2DJePGlgy+8OY+klAdy4Zh7mFbgnYFpsEmxSNSCK7O9DkQVkT0oipiKqbuDt/R2QJR6fXTUnPal3KkAiRBRMMRVkY1FoT1IpzzkShVbjaYaZLnW2yRSKfCIiChwr5wag6yZMk9XomRaHroEYytwiegZiBfdQ5S+IsJDQTESiKvSMWu2KMle6Kk6RRbgkAZGEhmTSgKqbOH5uCMfPDaG5sQI3rZmHOdXegu6XBeY0HoyoiPAc3IoItyzQUt0U5sMjPYjENdxy1SWOlWKPBOXURMGUcmhaoT1JF2NQW75zMNfv7J4mgefSZqs2tlCMNKF2TrU3fZ2WdWFInmVaSKoG+oJJmJZZ1HDB4XBQJAGV5Qq8binty3fdyjkwDBOqzo6pGSZEnsODNy7CX9yyBPWVrDjjWNsgfrL1Y/xm+3F09kdHOc9wDNNCJKahP5jEYCiJZE4vF+E8ZztDON0RwuULq1BX4Rn7CxeZqSWJxJSm1LY+hZQ5T4aV0J6j3fj37cfS+1qKxKeXzGzyVeOtW1aLnYe7RiwTHymzs6/zW/+yG+290WHLZoOpAX8P3bxkQvttPMehzC1BkQWEYxqWNlbgTgDvHuzAYDiJijJXVlFC8/wKHDkzgDf3nkfPYBxHzg7iyNlBXLG0Btdd3pAWqUIwLQsJzUBCMyDyHFwuEW5ZhCRylB2NwmQamIo8j3A0iZffasWC+jL89e2XDbN3mixT0mJwPgJi2uDE0LRSnzN3yutQVEUsoacHB41VjZdb7p0rFKP9LpHaS7HLqzmOjYqwLPa9r//56pIsMUoCn6qg03HZgsoRK+F4jsOKhVW47NJKHD49gB17z6N3KI79x3tx4HgvViysxA1Xziv67Vk3LeipWUeSKMDtYhZF/EX2JJsOTKaB6WeW1eE/3zkNzTDxxTuXw++Wxv6SA5AIEQUzWfN8LuY5t+1ug2YYiMR16LoJUeThlgX4PHJBPUijZW9jZXbV5QoGwklIApc2iTQtQBK5kpuHcgDc9j5QXEM8qY+YkfAch5amKqy4tBIfn+7H2wc60D0Qw8enB3D49AAub6rCDVfOQ23AXVQMlgWomgFVM8DzHNwuVsggCVwqQmIyOXiqD3tP9OLeDQtRV0RWe7EhESKKYjJtfS7GOdv7oogndQApM1PDRDhuwjAt3LexKS12dsVbKa9109pGtHYchmlaEDjb782C1y0XvLxYbIk8z3Hwe2QosohIXIOqsT2b422DeZfpVi6qxoY1jXjro0/xx33t6A8mcKi1Hx+f7sfKpmrcsHouqosUIwAwTSs9CVYUeLgVES5RSI9JJ0qLppt45b0zmFfjw+eumtqegCRCxEWn0AfpZEz/NAxWHCBwdrE021xXNQO/fO0oEqoBw7QQiqr45WtH8debl+UdajeeuFqaqrF5XSNee78tbYvjUWRIQmHmoRMpV5dFHpVlLsRVHftP9OKVnWcgCDwUl4hQXMMrO8/gTgBLGyvA8xyuWFyDlqZqHDzVhz/uO4+BUBIHTvXhYGsfVi2qxg2r56FqHPtylsUekFpEZaavqeU6SRIoNyohH5/ux1CE2fKIwtSuPyMRIi4qhT5IJ6s/iI1bAEykZvSkspGkZiGpZW4QWwjHTGz53WGUeeS02AD5m1ILjatQG6F8jFWuXog4umURB0/1oa7Sg4RqQNVMyKIAFayAIXP/SOA5rF5Sg5WLqnHgZC/+uK8dg+Ek9p/sw8FTfbhicQ2uXz0Xlf7xFYmYJnNliKs6RJ6DotjLdVTqPRFCURVHzgziqmW1WDS33OlwxoREiLioFNr3M1n9QXOqvegNJhCNa9ANlo2IgohInC3RcWB9MHbBUlIzUZchNi5JmHBchdgI5WO0htZ8ov3L147C75WRUI0sUTrTGUagTEbA50o3sdoedPkQeA5XLq3FqsXV2H+CZUZDERV7T/Ri/8k+rF5SjetXz0VF2fgrFvVUqXc01dfkUcS06zdRHHuP94LngTuvvdTpUAqCRIiYNDLfzBtqfLjxijkFu1Xnfi6W0BCKaugZiOGpF/aNe2lu09pGvLjjFAJlrnQlXP9Q9rltIbL/N8dxabHpHoihIaeps9i+pdyMpdBMaLRy9XweddEEG2JXX+XJaxCr6RbcLgHVATcGwwm45dEf+gLPY00zE6O9x3vx9v52BKMq9hzvxb4TfbhyKcuMJjIWwLLYXKekZjBHbw85ehdDV38M53oiuGJxddpyaqoztRcLiWlL7mC6wVAcz//hBBRZyNvUmbsxn9n8aXuu6QabBGo/UPMNnBuLlqZqfPGelqwmWcVlV2xhWA+PKPKIJ3V0D8TQOxhLjQvPLqktpm8p38C+n289VNC1jNbQmttwG4pp4DjWv2OLqCDwaYNY+zixhI7ewRgknsPt1yxAIVXUosBj7WV1+F8PrsKd1y5AuVeGaVn46FgPfvTiAfz+vTMIRvJnVcWgGxYi8VQjbDgJVTOH/f0QF7D/DryKiMsWOO+OXSiUCRGTQu6buSIJ0A0LsKy0jc1ofT+Z/UGhqAZYrK+m3Oca1xJYblaWmUk99cI+dA3EEIqpWaOzATY8biCUADM15cDzFoJR9oAt80hF9y3lW2Y0TLOgaxmtXL26vC0rS9LtUQ8ZwjSSQWzmcXTDgljgMpgo8Fh3WT2uXFKLPcd68PaBdoRjGnYf6caeYz34zLJabFw1F36vPPbBRsH2rGN9Vhw8LtaQS31H2ZxuD2EwnMS1LQ0QpngxQiYkQsSkMNKyWyyh4y9uGdsZIPNB2TMQgyTyKPe50r5XxSyB5e6X2FmZfR5b8PwemTlOGyYAC4okIpZg/TUcx6rqKv0KNN1EUmU2PpkFC0+9sG/YNeUuvbX3RdOu2jYuSSj4WkYqV89t6hV4DoZpZglAPoPYXESBw7nuEN7YeRrtfVHIAo9rxxj9IIk81q+ox5rmWnx4tBvvHOhAJK7hg0+YGF21rA4bVs1BmWdiYgQwR++QriISZ31H5MrA0HQT+0/2obpcwaUNZU6HUxQkQsSkMNr+RaF9P/bnnnph34Sse0bKyuzsY6TMAAB+uvUwAGbj4/dI8CgSLMtCLKHjqceuBjByJd/ZzhB2Hu7K+nkiaSDEq1nr9UmNFQ5MpCQ99xpqAwpCcR08z8GyrIIzNttRguc5VJTJsMBh+0esZ2qsGUSSyOOayxvwmWW1+PBID9450I5oQseuw1348Gg31l5Wh8+uLI0YZfYduVKFDLO5zPvI2QHEkzo2rGpIN0JPF0iEiEkh9808oerjttuZiHXPodY+tLYHYVoWJFGA3ytDEuW8YxLyPfCb5vrHFMCRKvm2f3Qefp+c9XOfR0IkrkFxiVnjvZsbA3j+DyfSoxYGwkm0dhzG5nWNuPPahQXdp9xrGI+obdvdBlHkIPA8InEdksgjUKbg0Ol+NDdWFLQnI4sCrm1pwFXLavHBkW786WAHYgkdOz/uwodHerBueR2uWzkHvhLYyFgWLnjWicxgVpllFkGxhIZPzgxgfp0PtVPQoHQsSISISSH3zdyujhvvZNTMYxX6QLUzFI5jE290w8JAKAFB4GFZVkGZVCECONLSY0LVUS1mn6PMI8EwTAS8clZ13L9vPwZNNxGOs5lDAsfe9l97vw0LGvwlmShbCH3BRMpBnMmNpptQNQORqIpAmQvhuApdL2ztS5YEfHblHKy9rA4ffNKFdw92IpbU8e6hTuw+0o11y+tx3coGeJXSeJrpuoWQPV7CJbIm2CleVTceA1OR55HpQ/rrbccAAI9sXobq8gtuFlPBnLQQpkeUxLQk8yFYaC9MIccqFDtDKffJqYmmFiwLGAgm4PdKBWVShQjgSEuPiiwOc+e2xzt8/c9Xp39WU1OGn750APGkAQ5Iv8ULHAouWigV1eUKIgkNAn9hY1vVmWi6JAEuyY1oUkc0rqVmI42NSxKwYdVcrLusHu9/0oV3D3UgnjTwp4Md+OBIF65eXo9rW+YME/LxMnypbupOgh2PgelnltXBm9obPdMZwodHe3DbuvmYXzu99oJsSISIGYudoXApEQjFNDZYzrLyzi4aidEE8FBrHyJxLTWJlYffK0EUBRiGiVs+M4+NfsDYy4i2uWnmMFfDtGCawIlzQxPqjSoGu49K5/KPqwAAr4sNsYsmdMQSWsGZhksWsPGKuVi3vA67DnfhvUOdSKgG3j7Qgfc/6cbVl9fj2ssbSjZ0zV6qS6aW6twzbKnOtCy88OYJ+L0yNq+f73Q444ZEiJixZGYoHoUVFSQ1AzUVnpI8zDMLEqrKFQQjKgZCScyp8uDBlMiNNfrBJtfc1DAtGKYFngMkUZiUseb5aGmqRnm5J2veUr6Y7dlFbllEJKay3qUCz6HIIm5YPQ/rl9dj58ed2Pkxm9H01r52vH+4C1evqMc1pRQjAJpuQctcqpMFSOLUXqobi/cPd6G1PYT/sXnZlJuWWgzTN3KCGIOR9nPu2bioJMfPKkhICV1SM+DzyOmHdjGVgJnmpqbJvO04noPfK03KWPORWLOsriAHB4CVdAfKZCQ1s6j9IgBwu0TctOYSXHN5A977uBO7Pu5CQjXwx33t2HW4C9e2NGDzdU3jvYy8ZC7VSWl7IH7aZUfxpI6X327FpQ1+rF9R73Q4E4JEiJixjLSfs2ZZ3YT2p+yqsxPnhlIVd1J67PdERo9nmpuW+tiTC3NkkCWFLdHFdZhFpBhul4ib11yCa1Y04L1DHdj1CROjN/ecZ2J0eQPWL6+HawxboWLInXWkyAIUWRw25n2q8urOswhGVfxf97ZMOwHNhUSImNGUev6RvQSnG1ba56x3yEC510CgTJnw6PFie6MmY9zFeOHAwacwN4NITEvZCxX+fY8i4parGnFNSwPePdiJ9z/pQiyhY/tH5/DeoU5ct7IB65bXZ92TUmCarO8rntQhChzcLpZ5TtVZR10DMfxhzzlc19KAhXP8ToczYUiEiEkjn4GpUw/IUrFtd1vKP47NwzFSFWLBqAae5yEKXEnGnRdSGj5Z4y4misiz8eJJ1UA4zoxSi8GrsMrFa1sa8NHxXry99zxiSR3/58NzePdQJzasnIO1y+tK7rLNZh1Z0HQVPMdBlnh4XFOrCdayLPzHW6fgkgTcu7G0S5VOMT1yT2LaMZKB6XhMR6cSfcFEqqSWg8BzEDPK2ZKqUVTV3Wi0NFXjmhX1CEVUnO+JIBRRcc2K+vSxD7X24Z9fOYL+EDP3jCf1LJNSp7Es1idUWeaG3yuD54t/jPvcEu69YTH+78+vwjWX10MUOMQSOt7Y3YYf/tsBvHeoE6puTEL0F/zqBsJJ9A/FEUlo0M3i+nkmg3M9ERxrG8Ld110KfwmcJ6YClAkRk8JYVjnTlepyBYPhRLqPhuc4iAIbc+BRxHEbquZmiYda+7DzcBf8PhnVIlvm23m4Cwsa2PLL8384gaSmQ+A4GIaJgdQsILdLnFL7RhwHeFwiXJKAaEJDPKkXvcRV5pGxef0CXLdyDv50oAMfHu1GNK7h9Q8+xbsHO/DZVXNw1bK6LLPWUpI560iQWPGJS+LBXeT8SDdM7DnWi4YqD65fPfeinnsyIREiJoVC5wZNNzatbURreyhdPm2B/cftEooe5zCSoSow+lA/gHnZSSITdj41siEU0yAI/IT2pAqJfTx7UALPodwrw+0S0/tFxeL3yLj9aiZG7xxox0dHexCOa3jt/U/xp4Md2LhqLtY0106aGFkWoBkmhsJJR4oZjpwZQCSu4a82L8tqJp7ukAgRk8JoBqZThfE8UFuaqrF5fSNe+6ANhmlBEnhmDyPy4x7nkC9LHEvEPYoIv1fGQCgB02Lv5Fpq36i5MZDX0XuiTHQPyrIASWD7RQnNQCSmpu2BiqHcK+POay7FZ1fOwTsHOrDnWA/CMQ2v7jqLdw52YOOqOVjTXAtxEscZjFTMMFnEEhoOnxlAY50PSy4JTNp5nGDmyCkxpcgdwDYRA9PJIN9wuUL3rO68diG+9GcrsGReOco8EuorPUXtBeUOoAOGZ4mZQ/1sbBG3f+d2iaj0KxAFDqZlQZEEXLOiHjsPd43rusYiUzxzB+UViyIJqCpX4PNI4y4xDvhcuOvaS/G/HlyFq5bVguc4hKIqXtl5Fj968QB2H+ku2petWOxihlBURX8ogXB04sP88rHvRB9ME7hyac2kHN9JKBMiJoVSGphOBqMtdxUzZmI8FJIljlUdZ/9OkQXwvAuGYeKhm5dM+LpGo9RLrHZJt1sWEI5rSKrFlXTbBHwu3H3dQmxYNQdv7e/AvuO9CEZV/P69M3jnQDuuXz0Pq5dUT/oSlmlaKNBOL81IBqaZJqVt3WGc7gjhpjWX4IYrL5k2xqSFMrOuhphSlNLAtNQ4uWdVyJiLQoxT8/3uN9tPTNp1TdYSq8DzqPC5kFTNVEn3+LKXijIF93x2ITaumoO39rVj/8leDEVU/OefTuPt/e24YfVcrFpcA2EclXqTxUgGprZJqWVZ+K+dZ+FzS/iz6y6d1vY8IzHzroggCsDJPatCs8TRsq2RfjeZ1zWRuU5jwUq6eVRKCuKqjmhMS/dgFUulX8G9G5uw8Yq5+OO+8zhwqg+D4ST+453TeGt/O25YPQ8rF1VPKTEaiU/ODuDop4P4/E2LZ6QAASRCxCxlMh+ohRQ8TFaWOJnXNd65TsXAAfDIIhRJQCQ1W2m8VJUruP/6Rdh4xVy8ta8dB0/1YSCUxMtvt6Yyo3loaaoaVw/TxcCyLLz8diuqyxVsXDVzSrJzIREiZiWT9UAtpIIsV6QeuKW5YMPQsZhsoSi1DZLNSMLt87sQCSfGVdJtUxNw47/dsAgbV8/FH/eex8et/egLJvDbt07hrf3nccPqebh84dQTo/0n+9DWHcH/2Lxs0srOpwIkQsSsZTIeqGMVBuQTqZ9vPYQHb1w05YVishhNuG9cd+mFku6oCn2cS3QAUBtw48EbF+P61DLdx6cH0DuUwL//8VR6mW7FwsopYQhqWRZeee8MaivcWLe8zulwJpWZK68E4QBjlV/nK3MWRW5KWO04RSGl34okoCowsZJum7pKDz5/0xJ85b4WLL+0EgDQMxjHiztO4tmXD+Hw6f6iXMAng8OnB9DWE8EdVy+YUY2p+aBMiCBKyFiFAfmq8lySMO2dJCZCoZWKpSrptrH7uzr7o9ix9zyOnB1E92AcL7x5EvWVHtx45TxctqACnAOZ0Zt7zqG6XJnxWRBAmRBBlJTcJt2kZmQVBuRrQk1qxpRykrjYjNaYmw+7pLvCp5Rkr6Shyou/uGUpvnTP5Vg2vwIAG5fw/B9O4KdbP8bRswOwLmJm1DsYx+mOEG7+zCUzPgsCSIQIoqS0NFXjoZuXIOCVEUvoCHjlLDeFfCIVjeuIxFR8fcsuPPXCvmnvNF4sYwl3PtIl3X4Ffp9cknLrudVe/PfPLcXf/tkKLG1k1jgd/TH8evsJ/Ow/D+NY2+BFEaNPzg7A4xJxXUvDpJ9rKjDu5bi9e/fiySefhK7rCAQCePLJJzF37swtIySIQhmrvwe4UL2myAISlgXdwpSaCXQxmUhFX25J93hcunOZV+PDX25qxrmeCHbsPYcT54Jo74viX7cdx58OdmLDygYsuSQwKct0sYSGcz0R3HjlPCjy7NgtGfdVfu1rX8PPfvYzNDc34+WXX8Y//uM/YsuWLaWMjSBmJJki9dQL+wAO6WWXUtrsTCcmWtHHcxz8HhmKLCIS16BOoKTb5pJaHx65dRnausN4c895nGoP4mxnCGc7Q7ik1oeb1szDornlJRWjE+eCsCzgmstnRxYEjHM5TlVVfPWrX0VzczMAYOnSpejs7CxpYAQxG+gLJoa5L8+EkRdOIYvMpdvvG98gvXw01pXhrzcvwxfvXI7m1J7RuZ4IfvX6MfzzK0fQ2h4syTKdaVo4eT6IudVeVAfcEz7edIGzJnj3TNPEY489hssvvxxf/vKXSxUXQcwKvrllJwZD8ayll4Sqo8LvxpOPXeNgZNMfTTcQimhIaHpJj3uybRCvvncaJ9qG0j9bfEkAt1+7EFc216Lc5yr4WOe6Q9ANC6LA40TbIP7fF/fjb+9twbWr5qJshkxOHYsxReiNN97A9773vayfLVy4EM899xxUVcUTTzyBYDCIf/qnf4IkSQWfuL8/AnMCjWfA1DLFnEqxAFMjnrGmhzrFVLg3Noda+/DijlMAl22zU6ox4eNhKt2ficbCcUgZoyah6RPPViorvRgYiAIAWjuCeHPPeXzadSG+3/zDpqJE6LV3WxFLaPjMsjr8etsxHDk7iP/95WsmdRbSZFJTU1b0d8bcE7r11ltx6623Dvt5NBrFY489hkAggC1bthQlQMTMp5DpoQS7F+XlHvz79mNFb8oXOpRvvNNQZwLpKjrRjZiqIxrXJvzya9M0pxwL7/CjtT2EN/eeQ1t3ZNzHSqg69p/sw3UtDdNWgMbLhAoT5s+fj29/+9uONHMRU5tCpocSjDXL6or2jit0yulEp6HOFDgO8LpEKBLPGl2TBkohRRzHYdG8cjTN9eNs1/gztsOnB6DpJq5aNvObU3MZl+QeOXIEO3bswL59+3D33Xfjrrvuwhe+8IVSx0ZMYwqZHkqMn0KnnJZyGupMwG50DZS5IAqle3nmOA6XNvjH/f39J3oR8MlYNK+8ZDFNF8aVCV122WU4fvx4qWMhZhBOzuuZDRRqdePk8L6pimWxUni5XEE0oSMW1x31itMNE0fPDuKzK+dMCfPUi83sWnwkLhq5XfD5pocS46dQq5tiLXFmE7YXXaVfGVYmfzHp6o9BM0ysWjx7lkczIREiJoVc+5oKv9vRiq+ZRqFWN+OxxJltiAKHijKZLdE5MFPofG8ELknAkksCF/3cU4HZ4QtBOMJkTQ8lCre6uRjTUGcGHJTMJbqENmH7n0Lp6IthSWNgRg+uGw0SIYKYphRqdTPdhtw5Cc9xKHNLcKW86Eph/zMasbiGSFzD0lmaBQG0HEcQBDGMybD/yUdvMA6AOS7MVigTIgiCyIPt0O0SBUQTzKG71PSFkpAlHg1VxfWJzSRIhAiCIEZB4DmUe5lDd6kLFwZDCdSUu2d1wz8txxEEQYyBZbEluuoKD8q8pVuiC0dVtCyqgkuavfkAiRBBEESBCDwHr0tEtd8FxSVgolJkAVg8N4BZWhgHgESIIAiiaPhM+x9xYlI0p8ZboqimJ7M3ByQIgpgAafsf6YL9T7FIEj/r3StIhAiCICaAbf+jyGLRpqhVfves9IvLhJbjCIIgSoDIc/C6i5uGWuUvfADeTIVEiCAIwiECRUxhnamQCBEEQTiE31tc5jQTIREiCIJwCJ9C2/IkQgRBEA5R7B7STIREiCAIwiEUmR7BdAcIgiAcYjbb9diQCBEEQTiEJNEjmO4AQRCEQ8xm92wbEiGCIAiHMC/WDPEpDIkQQRCEQ0zi0NZpA4kQQRCEQ9ByHIkQQRCEY5AEkQgRBEEQDkIiRBAE4RBUlkAiRBAE4RgWVceRCBEEQTgFaRCJEEEQBOEgZFxEELOEQ6192La7DX3BBKrLFWxa24iWpmqnwyJmOSRCBDELONTah+f/cAKCwMOjiBiKqnj+DycAgITIQWg1jpbjCGJWsG13GwSBh0sSwHEcXJIAQeCxbXeb06HNaqhPiESIIGYFfcEEZDH7/+6yyKMvmHAoIgIAZBrlQCJEELOB6nIFqm5m/UzVTVSXKw5FRACASE9gEiGCmA1sWtsIwzCR1AxYloWkZsAwTGxa2+h0aLMagRxMqTCBIGYDdvEBVcdNLcjAlESIIGYNLU3VJDpTDJ4yIVqOIwiCcAraEyIRIgiCcAxajiMRIgiCcAwSIRIhgiAIwkFIhAiCIAjHIBEiCIIgHINEiCAIgnAMEiGCIAjCMUiECIIgCMcgESIIgiAcg0SIIAiCcAwSIYIgCMIxSIQIgiAIxyARIgiCIByDRIggCIJwDBIhgiAIwjFIhAiCIAjHIBEiCIIgHINEiCAIgnAMEiGCIAjCMUiECIIgCMcgESIIgiAcY8IidOTIEaxYsaIUsRAEQRCzjAmJUDwex7e//W1omlaqeAiCIIhZxIRE6Pvf/z4eeeSREoVCEARBzDbGLUI7duxAIpHApk2bShkPQRAEMYvgLMuyRvvAG2+8ge9973tZP1u4cCEikQiee+45+Hw+LF26FMePH5/UQAmCIIiZx5gilI+XXnoJP//5z+H1egEAx44dQ3NzM55//nn4fL6CjtHfH4FpFn3qLGpqytDbG57QMUrFVIoFoHhGYyrFAlA8ozGVYgHGjqempqyo45XiOTiVKPb6AUAcz4nuv/9+3H///ek/L126FL+Ak5BwAAAGI0lEQVT//e/HcyiCIAhiFkN9QgRBEIRjlESEaD+IIAiCGA+UCREEQRCOQSJEEARBOAaJEEEQBOEYJEIEQRCEY5AIEQRBEI5BIkQQBEE4BokQQRAE4RgkQgRBEIRjkAgRBEEQjkEiRBAEQTjGuAxMSwHPc1PqOKVgKsUCUDyjMZViASie0ZhKsQBTL57pzrhGORAEQRBEKaDlOIIgCMIxSIQIgiAIxyARIgiCIByDRIggCIJwDBIhgiAIwjFIhAiCIAjHIBEiCIIgHINEiCAIgnAMEiGCIAjCMWaECB05cgQrVqxwOgzs2bMH99xzD+644w48+uijCAaDjsWyd+9e3Hvvvbjrrrvwl3/5l2hvb3cslkx+/OMf49lnn3Xs/K+++ipuu+023HzzzXj++ecdi8MmEong9ttvx/nz550OBT/5yU+wefNmbN68GU899ZTT4eDHP/4xbrvtNmzevBm/+tWvnA4HAPCDH/wATzzxhNNhzCysaU4sFrMeeOABa8mSJU6HYt10003WyZMnLcuyrB/+8IfWj370I8diuf76662jR49almVZL730kvXoo486FotlWVYoFLL+7u/+zmppabGeeeYZR2Lo6uqyrr/+emtwcNCKRqPWHXfckf77coIDBw5Yt99+u7V8+XLr3LlzjsVhWZa1c+dO64EHHrCSyaSlqqr18MMPW9u3b3csnt27d1sPPvigpWmaFY/Hreuvv95qbW11LB7Lsqxdu3ZZa9eutb7xjW84GsdMY9pnQt///vfxyCOPOB0GAOD111/HokWLoGkauru74ff7HYlDVVV89atfRXNzMwBg6dKl6OzsdCQWmx07dmDBggX4q7/6K8di2LVrF9atW4dAIACPx4PPfe5z2LZtm2Px/Pa3v8Xf//3fo7a21rEYbGpqavDEE09AlmVIkoSmpiZ0dHQ4Fs9VV12Ff/3Xf4Uoiujv74dhGPB4PI7FMzQ0hKeffhqPPvqoYzHMVKa1CO3YsQOJRAKbNm1yOhQAgCRJOH78ODZs2IDdu3dj8+bNjsQhyzLuuusuAIBpmvjJT36Cm266yZFYbO6++278zd/8DQRBcCyGnp4e1NTUpP9cW1uL7u5ux+L57ne/izVr1jh2/kwWL16MVatWAQDOnj2L119/HRs2bHA0JkmS8Mwzz2Dz5s1Yv3496urqHIvlW9/6Fh5//HHHXixnMo6NciiGN954A9/73veyfrZw4UJEIhE899xzUyae5557DkuXLsWuXbvw4osv4vHHH8eLL77oWCyqquKJJ56Aruv44he/OKlxFBKP01h5DOM5jmz5Mzl58iS++MUv4hvf+AYWLFjgdDj4yle+gi984Qt49NFH8dvf/hYPPPDARY/hpZdeQkNDA9avX4+tW7de9PPPdKaFCN1666249dZbs3720ksv4ec//zkeeuih9M/uuusuPP/88/D5fBc9nmQyiTfffDOdcdx55534wQ9+MKlxjBQLAESjUTz22GMIBALYsmULJEma9FhGi2cqUFdXhz179qT/3NPTMyWWwqYKe/fuxVe+8hV885vfdCyLt2ltbYWqqli2bBncbjduueUWHD9+3JFYXn/9dfT29uKuu+5CMBhELBbDk08+iW9+85uOxDPTmBYilI/7778f999/f/rPS5cuxe9//3vH4hFFEf/wD/+A+vp6rFixAm+88QZWr17tWDxf+9rXMH/+fHz729+mt/0UV199NZ599lkMDAzA7XZj+/bt+M53vuN0WFOCzs5OfOlLX8LTTz+N9evXOx0Ozp8/j2eeeQb/9m//BoAtvd97772OxJJZmbd161Z8+OGHJEAlZNqK0FRDEAQ8/fTT+Na3vgXDMFBXV4fvfve7jsRy5MgR7NixA4sWLcLdd98NgO1//OIXv3AknqlCXV0dHn/8cTz88MPQNA333XcfWlpanA5rSvAv//IvSCaT+P73v5/+2YMPPojPf/7zjsSzYcMGHDx4EHfffTcEQcAtt9zieHZGTA40WZUgCIJwjGldHUcQBEFMb0iECIIgCMcgESIIgiAcg0SIIAiCcAwSIYIgCMIxSIQIgiAIxyARIgiCIByDRIggCIJwjP8fWSaTuOAvUsYAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x432 with 3 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["sns.jointplot(x=x, y=y, kind=\"reg\");"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 6\n", "<a name=\"task6\"></a>\n", "\n", "* To your `df` NEST data frame, add a column with the unaccounted time (`Unaccounted Time / s`), which is the difference of program runtime, average neuron build time, minimal edge build time, minimal initialization time, presimulation time, and simulation time. \n", "(*I know this is technically not super correct, but it will do for our example.*)\n", "* Plot a stacked bar plot of all these columns (except for program runtime) over the virtual processes\n", "* Remember: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 92, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["cols = [\n", " 'Avg. Neuron Build Time / s', \n", " 'Min. Edge Build Time / s', \n", " 'Min. Init. Time / s', \n", " 'Presim. Time / s', \n", " 'Sim. Time / s'\n", "]\n", "df[\"Unaccounted Time / s\"] = df['Runtime Program / s']\n", "for entry in cols:\n", " df[\"Unaccounted Time / s\"] = df[\"Unaccounted Time / s\"] - df[entry]"]}, {"cell_type": "code", "execution_count": 93, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Runtime Program / s</th>\n", " <th>Unaccounted Time / s</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Min. Init. Time / s</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " </tr>\n", " <tr>\n", " <th>Virtual Processes</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>8</th>\n", " <td>420.42</td>\n", " <td>2.09</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>1.14</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>202.15</td>\n", " <td>2.43</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>0.70</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Runtime Program / s Unaccounted Time / s \\\n", "Virtual Processes \n", "8 420.42 2.09 \n", "16 202.15 2.43 \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "Virtual Processes \n", "8 0.29 88.12 \n", "16 0.28 47.98 \n", "\n", " Min. Init. Time / s Presim. Time / s Sim. Time / s \n", "Virtual Processes \n", "8 1.14 17.26 311.52 \n", "16 0.70 7.95 142.81 "]}, "execution_count": 93, "metadata": {}, "output_type": "execute_result"}], "source": ["df[[\"Runtime Program / s\", \"Unaccounted Time / s\", *cols]].head(2)"]}, {"cell_type": "code", "execution_count": 94, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAEXCAYAAAC9NcJWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8TPf+x/HXTCYJsYSSiK262KqKFEWpXK6tCKqqWqXUEm3DrSpqV0qoqEt10dqKqrVUVWmv3upPI7VUbcW1t7ZsUkksSSYzvz/U1AgyiZMxiffz8ejjIWe+530+ZzL3cT858z3na7Lb7XZEREREROSWzHe6ABERERGRvECNs4iIiIiIC9Q4i4iIiIi4QI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAvUOIuIiIiIuECNs4iIiIiIC9Q4i4iIiIi4QI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAssd7qA6yUmXsBms99yTIkShUlISLntYxmVY2SWJ9ZkZJZqcm+Op2apJvdnqSb3Z6km92epJvdn5dWazGYTxYsXyna2xzXONps9y8b56jijjmeU/FyTkVmqyb05npqlmtyfpZrcn6Wa3J+lmtyfld9rupamaoiIiIiIuECNs4iIiIiIC9Q4i4iIiIi4wOPmOIuIiEjekJFhJTExDqs17bZyYmPN2Gy2267HqBwjszyxJiOzPL0mi8WH4sUD8PIypuVV4ywiIiI5kpgYR4ECfhQqFITJZMpxjsVixmq9/YbJqBwjszyxJiOzPLkmu93OhQtJJCbGUbJkaQMq1FQNERERySGrNY1ChYreVtMskltMJhOFChW97W9ErqXGWURERHJMTbN4MqM/n5qqISIiIoYoUrQgBXyNby0up1pJTrpkeK5Idnl84+xf1AcfX99M2wMCijj+nZaayvkk4y7Di4iISPYV8LUQOuhLw3O/mtqe5CzGnDlzmv79w1ix4iun7Y0a1WHz5u2G15RbvvzyC/z8/GjevJXL+3TqFMp7782idOkyjm3Dhr3BmTOnuXTpIufOJVC2bHkAXn65P3v27KJatYd5/PEnDK19w4Z1pKSk8PTTnQ3N9SQe3zj7+Poyc1jPW44Jj5gHqHEWERGRvG3v3t0EB9e+7ZyIiEgAfvllO3PnfszMmR87XqtXr4GhN/VdFR0dRe/e/QzN9DQe3ziLiIiI3K51677i55+jSEpK4vTpU9StW5833ngTq9XK1KmTOHr0COfOnePeeyswceI7WCx+LF36GatXr8TLy4vHH3+CV14ZwNmzZ5g48S0SE89RoEABhg4dRcWKlfj66zUsWbIIk8lElSoPMXDgEPz8/Khf/1HHFe91675i584djBgxlk6dQmnZsjVbt27h0qXLjBz5FsnJSWze/CM7dmyjRImSVKpUmSlTJhITE4PZbOaVV/rz6KN1SUo6z7hxo4iNjeG++x4gLS17Fw8nTBhL7dp1qFnzUYYNe4MyZcpy9OhhqlR5iODg2nzzzVqSk5OYODGS++67n/379zFjxrukpl7G378YgwcPp0yZsk6ZNpuNs2dPU7ZsOaftS5Ys4ptvvsZsNvHQQw8zZMiI2/tF3mG6OVBERETuCnv27GbChHf49NMlREX9H0eOHGbv3t1YLN7MmjWPpUtXkZp6mS1bfmLfvr2sWrWCTz5ZwPz5n3Pw4AEOHNjP1KmTCAlpysKFy3jppb58+ukcjhw5zIIFc5k582MWLFhKgQIFmTfvkyzr8ff355NPFtChQ0cWLpxL3br1aNSoMb1796NevQZMnx5JmzbtmDt3EZMmvcvkyRO4ePECs2d/ROXKVVmwYCkdOz7DuXMJOX5Pjhw5RI8evVi8eCUHDvzG2bNnmDVrHs2atWTNmi9IT09n0qS3GTNmAnPnfkaXLi8wefKETDn79/9G1aoPO22zWq0sWjSfOXMWMmfOIsxmM3FxsTmu1RPoirOIiIjkeSZT5muBdrvd6akKjzxSAz+/QgCUKVOWpKTzBAfXpmhRf1auXMbvvx/n5Mk/uHTpEr/++gsNGz5B4cKFAZg+/QMAfv31F8aOvdI4NmjQiAYNGrFy5VIaNnwCf/9iALRr9xQREW9lWXO9eo8D8MADFdm06b+ZXt++fSsnTpxg9uxZwJVG9NSpk+zcuYOxYycCUKvWo5mu/mbHPfeUoHLlqgAEBARSu3ZdAIKCSrNz52n++OMEp0+f5M03X3fsc+HChUw50dE/Ub/+407bLBYL1avXoHfv7jzxRAgdOz5DQEBgjmv1BGqcRUREJM8rWrQIFy6kOG1LTDxHkSJFHT/7+Dg/bMBut7N58yZmz57FM890oXXrdvz555/Y7XYsFucWKT4+Dl/fAk4r0Nntdo4fP4bNZr+uGjsZGRlO40wmE1ar1WmUj4+P05jrZWTYmDHjQ4oW9f/rfBIoWrQYJpPJaYU9Ly+vG70lLvH29nb6+fqsjAwbZcqUZf78xX/9nEFi4rlMOb/++gsvvNAj0/aIiKns27eH6OgoBg0awOjR4w2Zw32naKqGiIiI5Hl+foUoX/5efvhho2PbmjWrqFPnsVvut337Vpo2bUabNu0oUaIEu3btxGbLoGbNYKKjo7h48SJWq5WxY0dw4MBv1KoVzH/+8+1f+/7MO+9MIDi4Nps3/0hS0vm/jrua4OA6ABQrVoxjx4781aT/mOV5eHl5OZru2rXr8MUXywE4duwoL7zwLKmpl6lT5zG+/fYbAPbv38epUyez+W65rkKF+0hKSmLXrp0AfP31GsaOdZ6n/Oeff1KwoB++1z0FLTExka5dO/HAAxXp3bsfdevW48iRQ7lWqzu4fMV58uTJJCYmMmnSJPbv38/IkSNJSUmhTp06vPXWW1gsFk6fPs3gwYNJSEjg/vvvJzIykkKFCuVm/SIiIuIhLqda+Wpq+1zJdcXYsW8zefJE5s2bjdWazoMPVuL114fecp/Q0Kd4660R/Pe//8Hb24eHH67O6dOn6dChIx07dqZfv57YbHZCQppQt2497r23ApMnv82qVSv+ujlwJPff/wDduvUkPLwvVquVKlUeYvDgYQC88soAhgwZyD33lKBGjVqcP//nLeupU+cxZs36gMKFCzNw4BDeeWcCL77YBbvdzpgx4/HzK0SvXmFMmPAWL7zQmQoVKtzWVI2s+Pj4MH78JKZPjyQtLQ0/v0KMHOk8DWXr1i3Uq1c/077FixenffuO9OnTHV/fApQqFUTr1qG5Vqs7mOw3+m7gOlu2bGHgwIH84x//YNKkSbRt25a3336bWrVqMXz4cKpXr87zzz9PWFgY7dq1o02bNrz//vtcvHiRwYMHZ6ughIQUp688AgKKuPQ4uri4rJ7wmFlAQJEc7ZebWZ5Yk5FZqsm9OZ6apZrcn6Wa3J91N9S0Z89egoIq3HaWUY9GM/IRa/m5JiOz8kJNZ8+eyPQ5NZtNlChRONvZWU7V+PPPP5k2bRr9+l15Lt+pU6e4fPkytWrVAqBjx46sX7+e9PR0tm3bRsuWLZ22i4iIiIjkB1lO1Rg9ejQDBw7kzJkzAMTGxhIQEOB4PSAggJiYGBITEylcuLBjMv3V7dmVk+7/yvGKZD3IwP1yM8sTazIySzW5N8dTs1ST+7NUk/uz8ntNZrMZi8WY26U8LcfILE+sycgsT6/JbDYb9rm/ZeO8fPlySpcuTYMGDfjiiy+AG9/1aTKZbro9u240VcMVmqqRN7JUk3tzPDVLNbk/SzW5P+tuqMlms3nU1/15YdpAfsvKCzXZbLZMn/ucTtW4ZeO8bt064uLiaN++PefPn+fixYuYTCbi4+MdY+Li4ggMDOSee+4hJSWFjIwMvLy8HNtFRERERPKDW14PnzdvHmvXruXLL79kwIABNG3alIiICHx9fdmxYwcAq1evpnHjxnh7e1OnTh3WrVvntF1EREREJD/I0USSyMhIIiIiePLJJ7l06RLdu3cHYMyYMSxbtozWrVuzfft2XnvtNUOLFRERERG5U1x+jnPHjh3p2LEjAFWrVmXFihWZxpQtW5aFCxcaV52IiIjkGcX9fbBctzqfEaxpqSSeTzM8VyS7tOS2iIiIGMLi48vRCU8bnvvAiJWA643z0aOH6d69C2+/PZl//OOfhtbSqFEdhgwZQbt2Tzm2hYf35aWX+vLoo3UMPVZ2deoUSoECBbBYvLFarQQFBTFixFsUL178pvts3ryJAwf207t3Pzp1CuW992ZRunQZpzE3Or+pUyezZ88urNZ0Tp78g/vuewCAZ57pQnr6ld9Vhw6dDD2/Xbt+ZfPmTbz66r8Mzc0ONc4iIiKSr3z99Vf84x//ZPXqlYY3zgAff/wB9eo1oFSpIMOzb9eUKdMdje/06VP5/PMFvPLKzRvNRo1CaNQoJNvHGTToyoqMsbFneeWVPsyfvzhnBWdDdPRP1K//eK4f51bUOIuIiEi+YbVa+fbbb3j//U94+eWXOHXqJMeOHWHNmlW8886/AVi5cil//PE74eEDmTJlIrt3/0pAQCAmk4kXX+yV5ZXjZ57pwuTJb/PuuzMzvfbNN2tZvvxzbDY7VapUZciQYXh5edOoUR02b94OwLp1X7Fz5w5GjBhLp06hVKtWnUOHDvLBB7OJitrMkiWLMJlMVKnyEAMHDsHPz4/27VvSpEkzdu3aiZeXhXHjIm651LbNZuPixQuOK8Fz5swCoFevMAA6dGjDe+/NYufOHY5arkpLS2Py5PEcOLCfoKAyWS4Tfr1rj9WuXUsaNnyCXbt2UqJESZ566hlWrFhCXFwsw4ePITi4NidP/kFkZARJSUn4+voycOBgKleumil3z55dvPRSX6dt3367nsWLF2A2mylTpgyjRo3HYimYrXqzw7gnVouIiIjcYVu2bCYoKIh7763AE0/8gy+/XEn9+g05ePAASUlJAPznPxto0eJJVq9eweXLl1i8eCXDh49h//7fXDpG164vcv78edasWeW0/ejRI3z11Wo+/HAu8+cvpnjxe/jss6zv/apf/3E+//wLzp07x4IFc5k582MWLFhKgQIFmTfvEwASEhKoW/cx5s1bTM2awaxcueyGWYMH/4sePZ7nqadas23bzzRp0sylc7rWihVLAfjssxW89tobnDp1KtsZV507l8Djjzdi8eKVAPz443/54IPZvPRSX5Yt+xyACRPG8MorA1iwYDFDhoxgzJjhmXISEuIpUqQo3t7eTts/+eRDpk2bydy5i7j33vv4/ffjOa7VFbriLCIiIvnGunVf0axZSwD++c/mvPXWKPr0eYWQkCZs2vQ9devW4/z581SrVp1PP51DaOhTmEwmgoJKU7t2XZeOYbFYGDFiDAMGvEy9eg0c23fu3M7Jk38QFtYTAKs1nSpVMl85vV61atUB+PXXHTRs+AT+/sUAaNfuKSIi3nKMuzpN4YEHHmTXrp03zLp2qsbKlcsYNCicRYuWu3ReV/366w7atbvyQIjy5e/lkUdqZGv/69Wv3xCAoKDS1KhRC4BSpYJITk7i4sWL7N//GxMnjsNkArsdLl26xPnzfzreB4Cff97i9F5f1bDhE7z8ci+eeOIfhIQ0pVKlKrdVa1bUOIuIiEi+cO7cObZs+YkDB/azfPkS7HY7yclJ/PDDRlq0aM3s2R+SnJxE8+atADCbvbDbc7ZS3QMPVHRM2bgqI8NG06bNeO21wQB/LRz392rIdrsdk8mE1Wp1yvL1vfIkkmtXTv5rDzIyMpzGWa22m67YfL2WLVszbdo7nD9/PtM+GRnWW+xpcnpfvLy8sjzWrVx7lfj6LJvNho+PL/PnL3as+BcbG0PRov5O46Kjo244V/u1197g8OH2bNmymfHjR/HSS31p06btbdV7K5qqISIiIvnC+vXrqF37MVatWseKFV+xcuVaund/iS+//ILq1R8hPj6eDRvW0aLFkwDUrVuP//znW+x2O/HxcezcuQOTyeTy8a5O2di3bw8AwcG1+fHHH0hMPIfdbmfq1AiWLPkMgGLFinHs2BHsdjubN/94w7zg4Nps3vwjSUnnAVizZjXBwTl/UseOHVsJDCxFsWLF8PcvxrFjRwH47be9TqtAX69Oncf47rsN2Gw2zp49w549u3NcQ1YKFy5MuXLl2bDhygJ627ZF8+qrzvOYMzIyiIuLJSjI+WZMq9VKly5PUaxYMbp160mrVm343/8O5lqtoCvOIiIiYhBrWupfj44zPtcVX3+9hj59XnHa1rHjMyxevIATJ47zz3825+eft1C2bDngylSIQ4f+R/fuz1KiREmCgko7rv5269aFKVOmU7JkwE2Pd3XKRq9e3QCoVKkyPXv2YcCAftjtdipVqkL37lembfTrF86QIQO5554S1KhR64Y33FWsWIlu3XoSHt4Xq9VKlSoPMXjwMJfO/arBg/+FxeKNzZaBt7cPb701EYBmzVqwadP3vPDCM1SpUpXKlW8+paFjx2c4duwIXbt2IiioNA888GC2asiuMWPeZsqUiSxevACLxZtx4yY6/QGzb98eHn74kUz7WSwWevUK47XXXsHXtwCFCxdh5MixuVqrye7KtX43SkhIcfqqIiCgCDOH9bzlPuER84iLS872sQICiuRov9zM8sSajMxSTe7N8dQs1eT+LNXk/qy7oaY9e/YSFFThtrOufkXv7pyoqM3Y7XYaNnyClJQUevbsypw5Cyha1P+O1ZTXsvJCTWfPnsj0OTWbTZQoUTj72bddnYiIiEgedN999zN+/Gg++eRDAHr3Dss0t1bkWmqcRURE5K5UpkxZPvxwzp0uQ/IQ3RwoIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gLNcRYRERFDFCnmSwFvH8NzL6enkfyna4+kE8lNLjXO06dPZ8OGDZhMJjp16kTPnj0ZNmwYO3bsoGDBggCEh4fTvHlzoqKiiIiIIDU1lSeffJKBAwfm6gmIiIiIZyjg7UPnpS8bnrvs2Q9J5taN85kzp3nmmXa0a/cUQ4aMcGw/dOggPXt2ZfjwMbRuHUqPHs8zf/7ibNdw5sxpnnuuI/fd94DT9tDQDjz9dGenbevWfcXOnTsYMWJsto9zrQkTxrJjxzaKFvXHbrfh7e3NwIFDefjh6jfdJz4+jkmTxhMZOYMJE8YSHFyb1q1DncbMmTMLs9lEz55/LzTy9ddrWL58CQDHjx+lXLnyWCzePPJITdq0CWX16pW8+eao2zqf66WlpfH66+HMnPmxobm5KcvGeevWrURHR7NmzRqsViutW7cmJCSEvXv3smjRIgIDAx1jL1++zPDhw1m4cCGlS5cmLCyMTZs2ERISkqsnISIiIuLvX4yff95CRkaGY2nnjRu/o1ix4o4xOWmarypZMuC29s+J3r37ORrfn37axL///Q6ffLLgpuNLlgwgMnJGto/Tpk072rRpB0CnTqFMmTKd0qXLOF5/881q2c7Myq5dv1Cr1qOG5+amLBvnxx57jAULFmCxWIiJiSEjIwNfX19Onz7NqFGjOH36NM2bNyc8PJzdu3dToUIFypcvD0BoaCjr169X4ywiIiK5rmDBglSqVJldu3by6KNXlqreujWaOnUec4xp1KgOmzdvZ86cWcTHx/HHH78TE3OWtm3b8+KLvXJ87PXrv+bTT+dQqFBhgoKCKFjQD4AdO7YzdepkvLy8ePjhGhw/fpSZMz/m5Mk/iIyMICnpPL6+BRg4cDCVK1e95TFSUlIoXrwEAL/8sp25cz92XK29enU5OLg2/fuHsWLFV077Ll68gDVrVuHvX4wiRYrc8qr19a49Vnh4XypXrsL27VtJTU1l0KChLF36OceOHeHZZ5/n2We7cvHiRd59dzJHjx7BZrPRtWt3mjdvlSk3OjqKJk2aOW07fPgQ77wzgYyMDHx8fBg+fAzly9/rcq25zaWpGt7e3syYMYO5c+fSqlUrMjIyqF+/PuPGjcPPz4+wsDBWrFiBn58fAQF/L00ZGBhITExMtgrKySoucGUFI3ful5tZnliTkVmqyb05npqlmtyfpZrcn5XfazKbzVgs7nnOQFbH8fK68vqVpaU38thjj/Hbb/uoVKkSdvuVleKuZlgsZsxmE0eOHGbWrDkkJyfTqVM7OnfuQpEif78/1x7Ty8tMfHwcPXs+73TcMWPG4+9fjA8/fI8FCz7H39+fQYMG4OdXCMjgrbdGMXXqdCpVqsy7707BZLpSx4QJY3njjaFUqVKVY8eOMnToIJYtW+WUbTKZmDNnFsuXf86lS5eIiTnLlCnTsFjMeHmZHVlXx5rNJsf7YLGYHdsOHTrA11+vYcGCzzGZTPTu/WKW76mX19+/22uPdTVz8eLlzJ49i3ffncyiRUtJTEyke/fn6Nq1GwsXzuWhh6oxdux4LlxIoU+fntSoUcOx1PlVv/22jwEDBjpqBli+fDFdu3bjn/9sznffbeDAgb3cf/99t/zd38i152Y2mw373Lt8c+CAAQPo06cP/fr1Y8uWLbz//vuO17p168bq1atp1SrzXxPXrjXuihstue0KLbmdN7JUk3tzPDVLNbk/SzW5P+tuqMlmsxm23HJWsjpORsaV1xs0aMRHH31AWpqVb7/dQJMmzdm48VtsNrsjw2q1YbPZCQ6ujcnkRdGixShSpCjnzydRsGAhIPOyzRkZNkqWDGDevMxTNf773/9Qvfoj+PtfmRLSvPmT7NixjYMHD1G8eHHuv78iVquNJ58M5X//iyQpKYX9+/cxfvxYR8bFixdJSDiHv38xxza73U6vXmGOqRpHjvyPl1/uw/z5i8nIsGG3/31Odrsdm83ueB+sVptj27Zt26hfvyE+PgUAaNKkGXb7rX93GRl/v37tsex2O4899jhWq43AwCAefvgRLBZfAgKCSE5Oxmq1sXXrz6SmXuarr74E4NKlSxw6dJhSpf6e+nHmzGkCA0tht5scx7FYzNSv35DIyMlERf3E448/QdOmTbP9Gbv+d2ez2TJ97nNtye0jR46QlpbGQw89RMGCBWnRogXr1q2jWLFitGzZErjyy7JYLJQqVYr4+HjHvrGxsU5zoEVERERyk59fISpWrMTu3b/yyy/b6NcvnI0bv73hWB+fv58AYjKZsNvtNxyXFZPJ5HTR7+r8arPZfMNMm82Gj4+v03zp2NiYLJf7rlKlKmXLluXgwf1O87YBrFbrLeuz2/9uJL28vG7rDx6L5e/20csrcytps2UwatR4qlS5MvXk3LmETOcWHR1F/fqPZ9q3SZNmVK9eg59++j+WL/+c6OifGDp0ZI5rNVqW36+cPHmSkSNHkpaWRlpaGhs3bqRu3bpMnDiR8+fPk56eztKlS2nevDk1a9bk2LFjnDhxgoyMDNauXUvjxo3dcR4iIiIiADRt2oyPPppJlSrVnJq83FKjRi1++20PcXGx2Gw2vv/+OwDuu+9+kpKSOHLkMADffbcek8lE4cKFKVeuPBs2rANg27ZoXn21703zrzpz5jRnzpymYsXK+PsX4/TpU6SmppKUdJ5du3bedL86deoSFbWZlJQUUlNT+fHH/xpw1jf36KN1Wb16BQDx8fG8+OJzxMScdRqzdesW6tVrkGnf0aOH8dtv++jQ4Wl69+7HwYMHcrXW7Mry0xQSEsKuXbvo0KEDXl5etGjRgvDwcIoXL85zzz2H1WqlRYsWtG3bFoBJkybRv39/UlNTCQkJueH0DREREcl/LqensezZD3MlNzsaNmzMpEnj6d27X7aPFR8fxxtv/ItFi5bc8LUePZznONeqFcxrrw3+679XKFCgIPfddz9w5R6xsWPf5u23R2Mymbn33gr4+voCMGbM20yZMpHFixdgsXgzbtzEG05vnT37I5Yt+xyAtLRUXn31NcfNcg0aNKRbt86ULl2GmjWDb3pOlSpV4ZlnnqN37+4UKVKEUqVKZ/t9yY6XXurD1KmT6datMzabjVdeGeA0vzktLY3k5GTuuadEpn27devJ5Mlv8+mns/Hy8qJ/f896rLHJntPvJXLJjeY4zxzW85b7hEfM0xznPJKlmtyb46lZqsn9WarJ/Vl3Q0179uwlKKjCbWddPyf1TucYlWWz2Zg1ayY9evShYMGCLFmyiLi4uBw3g552fkbmGJl1fc7ZsycyfU5zbY6ziIiIiGSf2WzG39+fPn26Y7F4U7p0acMXERH3UuMsIiIikku6d+/J88+/eKfLEIO45+GLIiIiIiJ5nBpnEREREREXqHEWEREREXGBGmcRERERERfo5kARERExRPEiPlgK+Bqea72cSmJy9p7lLJIb1DiLiIiIISwFfPmp/dOG5zb8ciVk0TifOXOaZ55pR7t2TzFkyAjH9kOHDtKzZ1eGDx9D69ah9OjxvNNS19nRqFEdNm/eftPX4+PjmDRpPJGRM9i8+UdOnvydF17oftPxw4a9wZkzp7l06SLnziVQtmx5AF5+uT979uyiatWHaNQoJEe13syGDetISUnh2We7GJp7t1DjLCIiIvmCv38xfv55CxkZGXh5eQGwceN3FCtW3DEmp02zK0qWDCAycgYABw/uz3J8REQkAL/8sp25cz9m5syPHa/daDlqI0RHR+VoRUW5Qo2ziIiI5AsFCxakUqXK7Nq1k0cfrQPA1q3R1KnzmGPM1avGc+bMIj4+jj/++J2YmLO0bdueF1/s5dJxfvllOwsXzqNAgQIcP36MBx+syJgxE4iPj6N//zCmTJnOl19+AUDZsmVo1So02+cyYcJYgoNrExxcm2HD3qBMmbIcPXqYKlUeIji4Nt98s5bk5CQmTozkvvvuZ//+fcyY8S6pqZfx9y/G4MHDKVOmrFOmzWbj7NnTTstfAyxZsohvvvkas9nEQw897HTFXpzp5kARERHJN5o0ac5//7sRgP3791GxYiW8vb1vOPbw4UNMm/Y+H388n0WLPiU52fXlyPfu3c3AgUP47LMVxMSc5eeftzheu//+B2jfviPt23ekbdv2t3dCwJEjh+jRoxfLlq3iwIHfOHv2DLNmzaNZs5asWfMF6enpTJr0NmPGTGDu3M/o0uUFJk+ekCln//7fqFr1YadtVquVRYvmM2fOQubMWYTZbCYuLva2a86vdMVZRERE8o1GjZ7gk08+xGazsXHjdzRt2pyNG7+94dgxBRekAAAgAElEQVRHH62Dt7c3xYvfQ9GiRblwIYUiRYq4dJz773+QwMBSAFSocD/JyUmGncP17rmnBJUrV8VsNhMQEEjt2nUBCAoqzc6dp/njjxOcPn2SN9983bHPhQsXMuVER/9E/fqPO22zWCxUr16D3r2788QTIXTs+AwBAYG5di55nRpnERERyTf8/ApRsWIldu/+lV9+2Ua/fuE3bZx9fHwc/zaZTNjtdpePczv7Ztf1V8yvzt++KiPDRpkyZR3ztzMyMkhMPJcp59dff+GFF3pk2h4RMZV9+/YQHR3FoEEDGD16PMHBtY07gXxEUzVEREQkX2natBkffTSTKlWqYbHcmWuEXl5eZGRkuOVYFSrcR1JSErt27QTg66/XMHas8zzlP//8k4IF/fD1dX5cYGJiIl27duKBByrSu3c/6tatx5Ejh9xSd16kK84iIiJiCOvl1CuPjsuF3Oxo2LAxkyaNz9HTI+Lj43jjjX+xaNGSbO97rVq1HmXChLGULFmSatWqM3v2R44nbhjNx8eH8eMnMX16JGlpafj5FWLkyLecxmzduoV69epn2rd48eK0b9+RPn264+tbgFKlgmjdOvs3M94tTPbc/G4hBxISUrDZ/i4pIKAIM4f1vOU+4RHziItzfUL/tdk52S83szyxJiOzVJN7czw1SzW5P0s1uT/rbqhpz569BAVVuO0si8WM1WrzmBwjszyxJiOz8kJNZ8+eyPQ5NZtNlChRONvZLk3VmD59Oq1bt6ZNmzbMmzcPgKioKEJDQ2nRogXTpk1zjN2/fz9PP/00LVu2ZMSIEVit1mwXJSIiIiLiabJsnLdu3Up0dDRr1qxh5cqVLFy4kAMHDjB8+HA++OAD1q1bx969e9m0aRMAgwcPZtSoUWzYsAG73c6yZcty/SRERERERHJblo3zY489xoIFC7BYLCQkJJCRkUFSUhIVKlSgfPnyWCwWQkNDWb9+PadOneLy5cvUqlULgI4dO7J+/fpcPwkRERERkdzm0s2B3t7ezJgxg7lz59KqVStiY2MJCAhwvB4YGEhMTEym7QEBAcTExGSroJzMN7lyLNeeu2jUfrmZ5Yk1GZmlmtyb46lZqsn9WarJ/Vn5vSaz2YzFYswDujwtx8gsT6zJyCxPr+nK86+N+dy7/FSNAQMG0KdPH/r168fx48czvX6zZxiaTKZsFXSjmwNdoZsD80aWanJvjqdmqSb3Z6km92fdDTXZbDaPusEsL9yolt+y8kJNNpst0+c+pzcHZtk4HzlyhLS0NB566CEKFixIixYtWL9+vdPDt2NjYwkMDKRUqVLEx8c7tsfFxREYqNVnRERE7gb+RQvi42v8k27TUq2cT7pkeK5IdmX56T558iQzZszg888/B2Djxo106dKFd955hxMnTlCuXDnWrl3L008/TdmyZfH19WXHjh3Url2b1atX07hx41w/CREREbnzfHwtjBu01vDc0VPbZjnmzJnTPPdcR+677wFMJkhPt1KyZEmGDx/jWBo7p2bP/oiqVR+iUaOQHGccOXKY8eNHAxATc5aCBQtStKg/3t7efPLJp/To8bxj5T8jvf56f8aNi6Bw4ZxNhRVnWTbOISEh7Nq1iw4dOuDl5UWLFi1o06YN99xzD/379yc1NZWQkBBatWoFQGRkJCNHjuTChQtUq1aN7t275/pJiIiIiJQsGeDUfH700UymTZtCRETkbeXmZCGV6z34YEVHbRMmjCU4uLbTQiO50TRfvHgRmy1DTbOBXPo+ZcCAAQwYMMBpW4MGDVizZk2msVWrVmXFihXGVCciIiKSQzVrBrN5848AdOoUSrVq1Tl06CAffDCb6Ogoli//HJvNTpUqVXn99aF4eXkREfEWR48ewWQy0aFDJ9q1e8rR6AYH12bYsDcoU6YsR48epkqVhwgOrs0336wlOTmJiRMjue+++3NUa6NGddi8eTtz5swiJuYshw8f4s8/E+nT52V27NjGb7/tpVKlyowdOxGTycTChfP573+/IyPDRr169Xn55QGZ7iv75Zdt1K5d12nbhQspjB07gnPnErDb4aWX+tzWlfS7jXG3QYqIiIh4CKvVyvfff8cjj9R0bKtf/3E+//wLEhMT+eqr1Xz44Vzmz19M8eL38PnnC9mzZxdJSUnMm7eY9977kD17dmXKPXLkED169GLx4pUcOPAbZ8+eYdaseTRr1pI1a74wpPajR4/w8cfzGTVqHBER4+ja9UUWLFjKwYMHOHz4ENHRURw8uJ9PPlnAvHmfERcXx7fffpMpJzo6ivr1H3fa9uOPPxAUVIZPP13M6NHj2bXrV0NqvlsYP4NfRERE5A6Ij4+jR4/nAUhPT+Ohhx7m5ZfDHa9Xq1YdgJ07t3Py5B+EhfUEwGpNp3Llqjz1VCd+//0Er78eTsOGjXj55f6ZjnHPPSWoXLkqAAEBgY4rukFBpdm587Qh51G3bj0sFgtBQaUpUaIk99//gON4yclJbN++ld9+20uvXt0ASE29TKlSQZlyDh8+RMWKlZ22Va9eg1mz3ichIY769RvSo0cvQ2q+W6hxFhERkXzh+jnO1/P19QUgI8NG06bNeO21wcCVucAZGRkUKVKEhQuXsW3bz/z8cxQvvfQCCxc6r4Ds7e3t9PO1TxkzisXyd3t2o3ybLYPOnZ+jS5cXAEhOTs407vjxY9x7b4VM0zfKl7+XxYtXsG1bND/+uIklSxbx2Wcrsv344LuVpmqIiIjIXSU4uDY//vgDiYnnsNvtTJ0awbJli9m8eRPjxo3i8ccb8frrgylYsCCxsdlbyM0dHn20Lhs2rOPixYtYrVaGDRvEDz9sdBoTHf0T9es3zLTvypVLmTNnFv/8Z3MGDXqTxMREUlJS3FV6nqcrziIiImKItFSrS4+Oy0mukSpVqkzPnn0YMKAfdrudSpWq8MILPfDy8uK//91It26d8fHxJSSkKQ8+WDHb+bNnf0TJkiXp0KGToXVf1ahRYw4f/h99+/bAZsugXr3HefJJ5/d927atjB07IdO+rVq1YezYEXTt2hkvLy9eeqkvRYoYt5pkfmey32i5vzvoRisHzhzW85b7hEfM08qBeSRLNbk3x1OzVJP7s1ST+7Puhpr27NlLUFCF2866m1axy29ZeaGms2dPZPqc5nTlQE3VEBERERFxgRpnEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF+g5ziIiImII/6I++Py1Op+R0lJTOZ+UZniuSHapcRYRERFD+Pj6Zrn2Qk6ER8wDsm6cv//+P8yfP5eMjAzsdhutWrXh+ee7A/DGGwN4881RlCwZkOM6vv56DcuXLwHg+PGjlCtXHovFm0ceqUmbNqGsXr2SN98cleP8G0lLS+P118OZOfNjQ3MlZ9Q4i4iISJ4XFxfLjBnvMmfOIvz9i3Hx4kXCw/ty770VaNQohMjIGbd9jDZt2tGmTTsAOnUKZcqU6ZQuXcbx+ptvVrvtY1xv165fqFXrUcNzJWdcapxnzpzJN998A0BISAhDhgxh2LBh7Nixg4IFCwIQHh5O8+bNiYqKIiIigtTUVJ588kkGDhyYe9WLiIiIAH/++SdWq5XLly/j7w9+fn6MHDkWH58rU0c6dQrlvfdmsXPnDqKiNhMfH0dsbAydOz9HTEwMv/yyjaJF/YmMnIFvDqab/PLLdubO/ZiZMz8mPLwvlStXYfv2raSlpfKvfw1mxYqlHDt2hGeffZ5nn+3KxYsXeffdyRw9egSbzUbXrt1p3rxVptzo6CiaNGnmtO3w4UO8884EMjIy8PHxYfjwMZQvf2/O3jjJliwb56ioKDZv3syqVaswmUz07t2b7777jr1797Jo0SICAwMdYy9fvszw4cNZuHAhpUuXJiwsjE2bNhESEpKrJyEiIiJ3t0qVKvPEE/+gc+f2VK5cheDgOjRv3opy5cpnGrt//z4WLFhCcnIynTqFMnXqe/zrX4Po3z+MrVu38MQT/zCkpgULljJ//if8+99T+PTTJfz5ZyI9elxpnD/9dA5VqjzEyJFvceFCCv36vUS1atUpW7acU8Zvv+3llVf+5bRt2bLFdOnyAk2bNmPjxm/Zt2+PGmc3yfKpGgEBAbz55pv4+Pjg7e3Ngw8+yOnTpzl9+jSjRo0iNDSUGTNmYLPZ2L17NxUqVKB8+fJYLBZCQ0NZv369O85DRERE7nJDhw5nxYqv6NChEzExZwgL68mmTd9nGvfIIzUpVKgwQUGlAahduy4AQUGlSU5ONqSW+vUbOjIffvgRChQoQFBQaVJSruRv376VL79cSY8ez/Pqq325fPkyx44ddco4c+Y0gYFBeHl5OW1v0KAh06a9Q0TEOCwW7xteqZbckeUV50qVKjn+ffz4cdatW8fixYvZunUr48aNw8/Pj7CwMFasWIGfnx8BAX9Pug8MDCQmJiZ3KhcRERH5S1TUZlJTL9GkSXPHXOQ1a1axdu2XhIQ0dRrr7e3t9LPFYvwtX9dmXt/4AthsGYwaNZ4qVaoCcO5cAkWL+juNiY6Oon79xzPt26RJM6pXr8FPP/0fy5d/TnT0TwwdOtLgM5AbcfmTcujQIcLCwhg6dCgPPPAA77//vuO1bt26sXr1alq1yvwXj8lkylZBJUoUztb4qwICirh1v9zM8sSajMxSTe7N8dQs1eT+LNXk/qz8XpPZbMZicc+SEFkdp1Chgvz731N4+OFHKFOmDHa7nd9/P0aVKlUd+3p5mTGbTZhMJqe8q/82mUyYzX+/ltUxvbzMTtlXc00mk9NrNzpenTqP8eWXKxk+fBTx8XG8+OJzfPLJPKepJdu2RTN06IhM+44YMZTmzVvSqdMzPPjgA/z731Nz9Hsw6ndn5GcgN2oym82Gfe5dapx37NjBgAEDGD58OG3atOHgwYMcP36cli1bAmC327FYLJQqVYr4+HjHfrGxsU5zoF2RkJCCzWZ3/OzqicbFZf+rlYCAIjnaLzezPLEmI7NUk3tzPDVLNbk/SzW5P+tuqMlms2G12hzb0lJT/3p0nLHSUlOdjnMjNWvWplevvgwaNACr1QpAvXoNePHF3o59MzJs2Gx27Ha7U97Vf9vtdmy2K68NHvwvevUKo2rVmz8pIyPD5pR9Nddutzu9dqPj9ejRm6lTJ/Pcc52w2Wy88soAgoLKOsalpaWRlJSEv39xxzaLxYzVauOFF3oyefLbzJ37CV5eXoSHD8zy/bne1azbZVSOkVnX59hstkyfe7PZlKOLtVk2zmfOnOHVV19l2rRpNGjQALjyAZg4cSL169fHz8+PpUuX8tRTT1GzZk2OHTvGiRMnKFeuHGvXruXpp5/OdlEiIiKS91xZpCT7C5UY1TC1aRNKy5ZtbvjaihVfAVC6dBlatw51bN+8ebvj3yNGjHX8e9q0925Z09W8qx59tA6PPloHwOmZy23btqNVq7aZjleoUGFGjx5/03wfH5+bPru5UqXKzJ694Kb7Su7JsnGeM2cOqampTJo0ybGtS5cu9O3bl+eeew6r1UqLFi1o2/bKh2LSpEn079+f1NRUQkJCbjh9Q0REREQkr8mycR45ciQjR954wnnXrl0zbWvQoAFr1qy5/cpERERERDyIe2b0i4iISL5kt9uzHiRyhxj9+VTjLCIiIjlisfhw4UKSmmfxSHa7nQsXkrBYfAzLNP7BhSIiInJXKF48gMTEOFJS/rytHLPZjM12+zcHGpVjZJYn1mRklqfXZLH4ULx4QBZ7uE6Ns4iIiOSIl5eFkiVL33aOpz5uL7/WZGRWfq/pepqqISIiIiLiAjXOIiIiIiIuUOMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLlDjLCIiIiLiAjXOIiIiIiIuUOMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLnCpcZ45cyZt2rShTZs2vPPOOwBERUURGhpKixYtmDZtmmPs/v37efrpp2nZsiUjRozAarXmTuUiIiIiIm6UZeMcFRXF5s2bWbVqFatXr2bfvn2sXbuW4cOH88EHH7Bu3Tr27t3Lpk2bABg8eDCjRo1iw4YN2O12li1blusnISIiIiKS27JsnAMCAnjzzTfx8fHB29ubBx98kOPHj1OhQgXKly+PxWIhNDSU9evXc+rUKS5fvkytWrUA6NixI+vXr8/1k3CFf1EfAgKKOP0HZNrmX9TnDlcqIiIiIp7IktWASpUqOf59/Phx1q1bR7du3QgICHBsDwwMJCYmhtjYWKftAQEBxMTEZKugEiUKZ2v838cqkuWYmcN6ZjkmPGIeAQG+txxjTU/H4u19yxpuNsYVrpxLXs5STe7N8dQs1eT+LNXk/izV5P4s1eT+rPxe07WybJyvOnToEGFhYQwdOhSLxcKxY8ecXjeZTNjt9kz7mUymbBWUkJCCzfZ3jqsnHheXfMvXs/MGupKVVRMeHjEvy5ybZedkv7ySpZrcm+OpWarJ/Vmqyf1Zqsn9WarJ/Vl5tSaz2ZSji7Uu3Ry4Y8cOevTowaBBg3jqqacoVaoU8fHxjtdjY2MJDAzMtD0uLo7AwMBsFyUiIiIi4mmybJzPnDnDq6++SmRkJG3atAGgZs2aHDt2jBMnTpCRkcHatWtp3LgxZcuWxdfXlx07dgCwevVqGjdunLtnICIiIiLiBllO1ZgzZw6pqalMmjTJsa1Lly5MmjSJ/v37k5qaSkhICK1atQIgMjKSkSNHcuHCBapVq0b37t1zr3oRERERETfJsnEeOXIkI0eOvOFra9asybStatWqrFix4vYrExERERHxIFo5UERERETEBWqcRURERERcoMZZRERERMQFapxFRERERFygxllERERExAVqnEVEREREXKDGWURERETEBWqcRURERERcoMZZRERERMQFapxFRERERFygxllERERExAVqnEVEREREXGC50wXc7fyL+uDj6+u0LSCgiNPPaampnE9Kc2dZIiIiInIdNc53mI+vLzOH9bzlmPCIeYAaZxEREZE7SVM1RERERERcoMZZRERERMQFLjfOKSkptG3blpMnTwIwbNgwWrRoQfv27Wnfvj3fffcdAFFRUYSGhtKiRQumTZuWO1WLiIiIiLiZS3Ocd+3axciRIzl+/Lhj2969e1m0aBGBgYGObZcvX2b48OEsXLiQ0qVLExYWxqZNmwgJCTG8cBERERERd3LpivOyZcsYM2aMo0m+ePEip0+fZtSoUYSGhjJjxgxsNhu7d++mQoUKlC9fHovFQmhoKOvXr8/VExARERERcQeXrjhPmDDB6eeEhATq16/PuHHj8PPzIywsjBUrVuDn50dAQIBjXGBgIDExMdkqqESJwtkaf9X1j3C7HUZleUJNnlBDbuUYmaWa3J+lmtyfpZrcn6Wa3J+lmtyfld9rulaOHkdXvnx53n//fcfP3bp1Y/Xq1bRq1SrTWJPJlK3shIQUbDa742dXTzwuLvmWr2fnDTQqK6sco7NulJ2T/XIzSzW5N8dTs1ST+7NUk/uzVJP7s1ST+7Pyak1msylHF2tz9FSNgwcPsmHDBsfPdrsdi8VCqVKliI+Pd2yPjY11mgMtIiIiIpJX5ahxttvtTJw4kfPnz5Oens7SpUtp3rw5NWvW5NixY5w4cYKMjAzWrl1L48aNja5ZRERERMTtcjRVo2rVqvTt25fnnnsOq9VKixYtaNu2LQCTJk2if//+pKamEhIScsPpG2K8Gy3dDVq+W0RERMQo2Wqcv//+e8e/u3btSteuXTONadCgAWvWrLn9yiRbXFm6G7R8t4iIiEhOaeVAEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF6hxFhERERFxgRpnEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF6hxFhERERFxgRpnEREREREXqHEWEREREXGB5U4XkBVrehrhEfOyHCMiIiIikptcbpxTUlLo0qULH330EeXKlSMqKoqIiAhSU1N58sknGThwIAD79+9n5MiRpKSkUKdOHd566y0slpz35xZvH8YNWnvLMaOntgVSc3wMEREREZGsuDRVY9euXTz33HMcP34cgMuXLzN8+HA++OAD1q1bx969e9m0aRMAgwcPZtSoUWzYsAG73c6yZctyrXgREREREXdxqXFetmwZY8aMITAwEIDdu3dToUIFypcvj8ViITQ0lPXr13Pq1CkuX75MrVq1AOjYsSPr16/PvepFRERERNzEpTkUEyZMcPo5NjaWgIAAx8+BgYHExMRk2h4QEEBMTEy2CipRonC2xv99rCI52i83szyxptvJys/vi2pyf5Zqcn+WanJ/lmpyf5Zqcn9Wfq/pWjmafGy32zNtM5lMN92eHQkJKdhsf+e4euJxccm3fD07b6BRWVnlGJll5PndLD8n++VWjpFZqsn9WarJ/Vmqyf1Zqsn9WarJ/Vl5tSaz2ZSji7U5apxLlSpFfHy84+fY2FgCAwMzbY+Li3NM75C8w7+oDz6+vpm2X9ucp6Wmcj5JTzMRERGRu0eOGueaNWty7NgxTpw4Qbly5Vi7di1PP/00ZcuWxdfXlx07dlC7dm1Wr15N48aNja5ZcpmPry8zh/W85ZgrjwhU4ywiIiJ3jxw1zr6+vkyaNIn+/fuTmppKSEgIrVq1AiAyMpKRI0dy4cIFqlWrRvfu3Q0tWERERETkTshW4/z99987/t2gQQPWrFmTaUzVqlVZsWLF7Vf2l/T0jL+e03zrMSIiIiIiucnjVw709vai89KXbzlm2bMfuqkayQ5X5kqD5kuLiIhI3uDxjbPkXa7MlQbNlxYREZG8waUFUERERERE7nZqnEVEREREXKCpGpIn6NnSIiIicqepcZY8wchnS9+oCdcNiyIiIpIVNc5y19ECLyIiIpITmuMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLtDNgSI5pCXFRURE7i5qnEVySEuKi4iI3F00VUNERERExAV3zRVna3raX1f+sh4nIiIiInK9u6Zxtnj7MG7Q2izHjZ7aFki95RhXmnA14JLXaZlzERERZ7fVOHfv3p2EhAQslisx48aN4/fff+fDDz8kPT2dHj160LVrV0MK9SSuNOGuNOAiRjPyhkWtsCgiIuIsx42z3W7n6NGj/PDDD47GOSYmhoEDB/LFF1/g4+NDly5dqFevHhUrVjSsYBG5Od2wKCIiknty3DgfPXoUk8lEnz59SEhIoHPnzhQqVIj69etTrFgxAFq2bMn69esJDw83rOCcSk+z/nUVOOtxIiIiIiLXy3HjnJSURIMGDRg7diyXL1+me/fuPPnkkwQEBDjGBAYGsnv37mzllihROEf1XP9V9PUy0ly7umbGlmVWenpGlk14enpGljng+nxpV7JcZVSWajIuy5qejsXb+5b73GhMbtaU2zme+LvyxJqMzFJN7s9STe7PUk3uz8rvNV0rx41zcHAwwcHBAPj5+dGpUyciIiLo16+f0ziTyZSt3ISEFGw2u+NnV088Li75lq8HBBSh89KXs8xZ9uyHhmS5knM1y5X50q7U5CqjsvJiTUZmGX1+rswnzqvv+Y2yc7JfbmZ5Yk1GZqkm92epJvdnqSb3Z+XVmsxmU44u1ua4cd6+fTvp6ek0aNAAuDLnuWzZssTHxzvGxMbGEhgYmNNDiEg+caObFnNyw6JWaxQRkTspx41zcnIyM2bMYMmSJaSnp7Nq1SqmTJnC4MGDOXfuHAULFuTbb79l/PjxRtab77gy91rzriWvM+oJHbr5UURE7qQcN85NmjRh165ddOjQAZvNxvPPP0/t2rUZOHAg3bt3Jz09nU6dOlGjRg0j6813zHabIWO0wItI9hh1FVxERO4et/Uc59dee43XXnvNaVtoaCihoaG3VdTdxMvXx6X50lk9E9rIBV5E7gZ6TrWIiGTXXbNyoIhIbtC8axGRu4ca53zClUfkXR0nIsbRvGsRkbuHGud8wtvby+XH7YmIZ3Ll6rW7r1zrirqIyN/UOEsmri7KIiLGMnLetVE3P+qKuojI39Q4SyZ2u9mQMXrSh8ido5sfRUSMp8ZZMjHqEXl60oeIXEuPABSRvE6Ns2Ri1CPyjLxh0cjpI5qKInJnGHUV3Mh51544r1xEPJcaZ8k1Rt6waMfLkDHg2pVwV66CayqKyJ1h5LxrT5xXrhsyRTyXGmfJE1xpwl19YogrV8JduQruaqPu6jgjGNnM68q8SPZ44tLymh4jYiw1znLXMaoJ98RHABrZzBt5lV9E7gxNjxExlhpnEQ9g1NVdI5t5I6/yG3V+mh4jcmdoesztZekqf/6hxlnEA1i8jbkh01O5+wq3K+M0FUUk7/PE6TGeeJVfjKPGWURynSdOjzGqUc/v88p1lV/kzvDUxYfu9ivqapxF5K5kVDPvyrcFf2fd+hsDI6+6G9WEG3l+njhlxxP/WBExmpHzyu/2xZXUOIuIeAgj55V74vQfT5yy44l/rOT3Pww8sab8zhOb3bw6FUWNs4iIuIUnTtkx8o8VU9YLqro0xhO/xTCymdcfK/rDAPLuYxdzpXH+6quv+PDDD0lPT6dHjx507do1Nw4jHi7Nmu7S/+GkWdPdUI2ISO4yatVVI3nilCRP/GYlv/+x4omr7xp5fu68om544xwTE8O0adP44osv8PHxoUuXLtSrV4+KFSsafahsMbKJcyXL1WbQqKw0a5qL5+e+v3J9LN6EDvoyy3FfTW0PXM79giRbjPycG8UTP+eeWJOI3Dme+MeKkVO3jMrKq09JMtntdrshSX9ZtWoV27ZtY+LEiQC8//772O12wsPDXdo/MfECNtvfJRXx98XH4n3LfdKs6SSfv/UvqESJwvR6+9ssjz9nZAsSElJuO8uVHCOzihf1weztk+XxbOlpJJZQ2ZgAABiSSURBVGbxVYUnvudG1WRklis5Rma5uyYjP+dGnZ8nfs49sSYjs/L751zved6tycgsTzw/T6zJyKw7fX5ms4nixQtlefzrGd44z5o1i4sXLzJw4EAAli9fzu7duxk/fryRhxERERERcSuz0YE36sNNJpPRhxERERERcSvDG+dSpUoRHx/v+Dk2NpbAwECjDyMiIiIi4laGN86PP/44W7Zs4dy5c1y6dIlvv/2Wxo0bG30YERERERG3MvypGqVKlWLgwIF0796d9PR0OnXqRI0aNYw+jIiIiIiIWxl+c6CIiIiISH5k+FQNEREREZH8SI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAvUOIuIiIiIuMDwx9EZbcuWLRQoUIDg4GDmzp3L1q1bqV69On379sXHx+dOlyciIiIidwmvsWPHjr3TRdzMO++8wxdffMEPP/zATz/9RExMDJ07d2bfvn388MMPNG3a9E6XKLdgtVpZuHAh69evp0CBApQpU8bx2nvvvUe9evXcmuOpNYl4Kn3ORSQvSkxMpGDBgrmS7dFTNf7v//6PJUuWsHjxYn7++WciIyMJCQlh7Nix7N69O1tZVquVJUuWkJCQQFpaGjNnziQsLIwZM2aQmpp6R7KMrOl6r7/++m3tb0TW6NGj2b9/P4GBgQwZMoSPPvrI8dr333/v9hxPrclms7FkyRJefPFFWrVqRevWrenRowdz584lPT3d5ZyUlBSmT5/OrFmzOH/+PGFhYQQHB9O9e3dOnTqVrZqMyvLEmozOup4n/G/PqCxP/JwbmZWcnMzUqVM5e/YsSUlJDBs2jLZt2zJ06FDOnTuXrZqMyvLEmozOyisuXrzokVn5waVLl4iMjKRZs2Y88sgj1KxZk+bNmzN+/HiSk5OzlXXmzBkGDx7M6NGj+eOPPwgNDaV169Y0b96cAwcOGF67Ry+A0rZtWz777DMuXrxIq1at+OGHHyhe/P/bu/e4nu89gOOvRNJxzbSZHi7nMM3CkNpxKYyU7uVUIuKRU0dzOS7lEnKkYmZum0c0nFy21FJoPWyKTYXK8XBbbpHZyi3XdO/3OX84/R5M7Pfju/od+zz/WX1//V69f79VPr/6/j6/NpSVleHu7k5qaqrGrVmzZgEQGhrK+vXrn2o+ePCATz75pN5bSnV8fX3R09N76tiZM2cwNzcHIDY2VtObpmjL2dmZPXv2AHDnzh38/Pxwd3fHz88PV1dXkpKS6rWjqzMtXLgQlUqFm5sbJiYmANy8eZPk5GT1DxdNBAYG0qVLF8rKyjhy5AhjxozBy8uLAwcOsHv3bjZv3qzxTEq1dHEmJVu6+r2nVEsXv86VbPn7+9OjRw/+/ve/s2TJEkxNTXF0dCQtLY3s7GxiYmI0nkmpli7OpHRLpVKxa9cuUlNTuXHjBo0aNcLExARra2t8fX1p0qSJRp2SkhK++OILDA0N8fb2Jjg4mOzsbHr27ElkZCQdOnTQeKa6uLm5sXv37ldqvEpLqfsJHi8uly5dyvXr1xk+fDgBAQHo6+sDEBAQQHR0dL12goKCeO+993B3d6ddu3YA3Lp1i6SkJI4fP86mTZs0vm3jx4/H1taW0tJStm7dSlhYGLa2thw/fpxPPvmEnTt3atzSiNBhSUlJwtLSUvTv319s27ZNuLq6iuXLlwtXV1exadMmrVqOjo7qt52cnIRKpVK/b29v3yAtpTrbt28X1tbWIjExURw7dkwcPXpUjBgxQhw7dkwcO3ZM447SLUdHR/Ho0SP1+9evXxdDhw4Ve/bsEa6urvXe0dWZRo4c+dzLRo0apXHHxcVF/fagQYOeuszZ2VmrmZRq6eJMSrZ09XtPqZYufp0r2Xry/7WTk9NTlz3587k+W7o4k9Kt0NBQMX/+fJGTkyOuXr0qrl69KnJyckRoaKiYNWuWxp2AgAARFRUlFi9eLGxtbcWWLVtEaWmp2LNnj5g4caJWM5mbmwszMzNhZmYmunfvrv5v7dsN0VLqfhJCCD8/P5GQkCBOnz4tAgIChL+/v6iqqhJCPP3zsL46L1rjODg4aNz59ecdPHjwU5dp+2+DJnT6VA0XFxe+//57Dh48yLhx44iKiqJt27bMnj0bf39/rVpGRkZcvHgRgI4dO1JUVATAjRs3tH6SoVItpTpjx47liy++ICEhgcLCQqysrPjTn/6EpaUllpaWGneUbo0bNw43NzeOHDkCwJtvvklMTAyrVq0iPz+/3ju6OlPz5s3rPPXoxIkTGBkZadxp3LgxGRkZpKam8ujRI86cOQNAQUGBVvMo2dLFmZRs6er3nlItX1/fZ77ON23a1KBf50q2WrZsSWZmJgA9evTgxx9/BOD8+fMYGhpqNZNSLV2cSelWTk4Oy5Ytw8LCgo4dO9KxY0csLCxYunQpeXl5GneuX79OSEgIYWFhlJaW4ufnR7NmzXBycqK4uFirmeLi4nj//fdZs2YN586dIy8vDzMzM/XbDdFS6n4CuHfvHh4eHpibm7NhwwZatGjBnDlztGoo2TE2NiY1NRWVSqU+JoQgJSWFNm3aaNVq3rw5X331FTExMdTU1HDw4EEA/vOf/9C0aVOtZ/stOn2qhpJOnDjB1KlT6du3L82aNSMzM5PevXtz9uxZlixZgo2NTb23lJwJoLKyklWrVlFYWEh+fj4pKSlaXf/3aF25cgVDQ0Pat29PfHw858+fp2fPnty9exc/P7967+jiTHl5eQQHB1NRUaH+k9Xt27cxMDDg448/xszMTKPO2bNniYiIQKVSMXfuXBYsWIChoSHXr18nIiICa2trjWdSqqWLMyndAt383lOiFR4ejouLC2+88Qbt27dXH3/06BHx8fEN8nWuZOvy5ctMmTIFIyMj2rVrR3Z2Np06deLOnTusX7+eXr16aTyTUi1dnEnp1ujRo1m0aNEz1zlx4gQRERHEx8dr3JkxYwYPHz5kwYIFxMbGYm5uTkFBAdOnTyc5OVnjmQDKy8uJioqioqKC0NBQxo0b99KnaijRUup+qm1FRkbSrVs3AKqqqvD396dTp06cOHGCvXv31munqKiIJUuWkJOTQ4sWLYDH59H379+fRYsWPfVE5N/yyy+/sGbNGlQqFdOnTyckJITLly9jaGjIunXr6Nmzp8YtTfxhFs7w+HyorKwsrl69Sk1NDW+88QaDBg3irbfearCWUp0DBw5QVFSEjY0NP//8M/v27SMiIoK4uDi8vLwapLV161a2bduGSqXigw8+oKioiBEjRpCenk6fPn346KOP6rWjqzPVKiws5ObNmwghiI+PJyIiQuvGkyoqKpg8eTKfffaZ+gdTQ7d0caZXbR0+fJjevXvTsmVL4uPjOXHiBP369cPDw0PrOXStZWFhQdu2bZk1axa2trZaz/BrR44coXHjxjRp0oSMjAyys7OxtLR8qe1FlWp9++236t2bAN555x2WLFlCnz59tJpHyZYuzqRkq64HPrdu3aJp06ZaPfD58ccfWbZsWZ0PgCMjIxk8eLBWc9VKT09nw4YN3L9/n2+//falGkq0XnQ/rVy5ku7du2vcOn78OHPmzOGf//wnTk5OwOMnLM6ePZuDBw9q/BtspTq1qquruXv3LkIIjI2NadxYmV2S79y5g7GxsSKtX/vDLJwLCwtfeLk2j26UainVWblyJWfOnOEvf/kLqamphISE4OLiAmj/hAQlW05OTiQkJHD79m0cHR05evQoTZs2pbKyktGjR6ufdFRfHV2dad68ec8cS09PV2+3GBkZWa+d130mJVvLli0jLy+PTz/9lJ07d3Lq1Ck+/PBDfvjhB0xNTQkNDdV4Jl1subq6snLlSsLCwqioqGDixIkMGzZM6z/Nw+PtRXNzc6mursbU1JRGjRrh5uZGeno6NTU1hIeH13srOjqakydPMmjQINLT07GwsMDQ0JCEhATGjx+Pp6enxjMp1dLFmZRu1XrylwVvvvmmVv8O16WiooILFy7QqVMnWrZs+UqtW7ducejQIf72t7+9UkeJlpL3U1VV1TNPKszLy+Pdd99tkM6TZs6cyapVq7S+XnV1NUlJSTRr1gxbW1uioqLUTxINDg6mdevWLz1TXXT+BVCUEhAQQEFBASYmJtQ+VtDT00MIgZ6eHmlpafXeUqrz/fffs3v3bho3boyvry+TJk3CwMAAe3t7tH1cpGRLpVJhYGBAhw4dmDRp0lPnGtXU1NR7R1dnat26NUlJSQQGBqp/2B89elTr81p/3RFCvFRHyZYuzqRkKzMzk71796Kvr8/BgwfZtWsXBgYGeHl54ejo+H/f0tPTo2vXrmzfvp2srCzi4uJYtmwZnTt35q233tJqN6LDhw+TnJxMZWUlNjY2ZGRk0KRJE6ytrdUPzuu79c0337B7924aNWqEh4cHkydPJjY2Fg8PDzw9PbVaDCrV0sWZlG5VV1ezY8cOioqK+PDDD+nfv7/6snXr1jF16lStO8OHD8fCwkL9Z3ltOnVp164dR44cUWTh/LKt6upqEhISGDFiBD169GDjxo2cPn1a/SJw2py/q1KpiI2NJS0tjVu3btGkSRM6duyIg4MDo0aNqvfO83b+GT9+PKDdLkKhoaGUlpZSWVnJtm3b6NWrF59++ikHDhxg0aJFrF27VuOWJv4wC+cvv/wSHx8fFi9eTL9+/XSipVSndqEN0LlzZ6Kjo5k4cSLGxsbPfGHWZ8vW1pZx48YRGxur/gF27tw5QkNDsbe3r/eOrs4UEhKCtbU1q1evZubMmVhZWfHvf/8bNze3V+7ExsZq3VGypYszKdkyNDSkuLgYExMT2rZtS2lpKQYGBpSVlWn9J0ddbD35YHnAgAEMGDCAqqoqzp8/z7Vr17SaSQjBw4cPKS0tpby8nJKSEtq0aUN5ebnW+zgr1aqoqKC8vBwjIyPKy8u5d+8e8PiJ240aaffceaVaujiT0q1FixahUql45513CAkJwdPTk8DAQODxX340XfA+2QkODn7pDii7kFOqFRISAsDIkSNZvnw5paWl+Pj4cOjQIebPn6/VA9eoqCj1+cj79+/HzMyM9u3bExsby5UrVwgKCqrXjp2dHRs3bmTGjBl06NABIQQLFy58qdMcz549y969e6mpqcHGxoavvvoKgK5du2r9oFwjiu/TocNOnjwpQkNDdaqlRGfdunVizJgx4uTJk+pjubm54oMPPhB9+/ZtsJYQQmRnZz/1fn5+vjh06FCDdXR1JiGEuHv3rpg2bZqIiorSenun36Pzus+kRCstLU0MHjxYREVFifDwcOHo6CiWLVsm7O3txddff/1/39q1a5dWn/dFlNxeVKlWdHS0cHZ2FitWrBDOzs5iy5Yt4ueffxYuLi7i888/12ompVq6OJPSrSe3sysuLhZOTk5iy5YtQgjttjRTqiOE7m4HWetVt9F98r6qqakR3t7eQgghKioqXri94+/VEUKIixcvCh8fH7F7924hhNB6i8tazs7O4vLly+LkyZOiV69e4tq1a0KIx18T2m51qYk/1ML5dZaVlSUuXbr01LHCwkIRHh7eoC1Je7t27dJ6D9Lfs6NkSxdnetXWTz/9JDZv3iwWL14sQkNDxerVq5964Pk6tJRSVlYmSkpKhBBCnDt3TsTExIiMjIwGbWVlZYmYmBiRlZUlhBCipKREnDt37qVmUqqlizMp2dLF/fSFUG4hp1TL09NTXLhwQQghRFBQkPjll1+EEI9vp7YPDEaNGiVu376tvn7tPCUlJVrtm6xUp1ZFRYWIjIwUU6dOfelF7uHDh4WNjY0YPHiw+O6774SdnZ2YNm2aGDp0qPr+V9If5smBkiRJkiQ1vLi4ODZv3kxYWBh//etfAcjPz8ff35/i4uI69+j+PTtP0qXtIJXcsjYxMZE1a9bQp08fTp48yaxZs+jZsycTJkxg6tSpGu+2o1QHlN8NrLCwkCFDhmBkZERubi7dunUjNzdX69ZvkQtnSZIkSZLqVUFBAQYGBk/tEFFSUkJCQoJW+4Mr1fm1zMxMUlJSXnlb0FdtKbmN7pUrVzh//jxmZmZ07tyZyspKSktLtd51QomO0ruBnT17lj//+c+v3NKEXDhLkiRJklRvdG1LV11tvc4zOTk5qXfwKigoYNKkScyZMwd7e3tcXV1JSkrSqKN0SxN/mF01JEmSJElqeHVtxVrrVbd0fZnO81qvy5a1z2vVaoj7XOjobmCafkJJkiRJkqR68fDhQ+Hk5CRyc3N1oqOrrdd5Jl3eDey36IeFhYUpvxyXJEmSJEl6loGBAe+99x6JiYnqV+tsyI6utl7nmSwtLXn77bdp06aN+qWx3377bRwcHCgvL8fa2rpBWpqQ5zhLkiRJkiRJkga0e7kfSZIkSZIkSfqDkgtnSZIkSZIkSdKAXDhLkiQBvr6+REdHP3N88+bNBAYGcvr0aaZNm1bndU+dOsWiRYte6fMPGzaM06dP1znXsGHDcHFxwdXVFQcHB0JCQigrK3ulzydJkiRpTy6cJUmSgLFjx5KYmPjM8V27djFu3Dh69uzJ2rVr67zupUuXuHHjxu82W3BwMMnJySQlJbFv3z7KysqeO4skSZL0+5ELZ0mSJGD48OGUlpaSm5urPpadnY0QgoEDB3Ls2DEcHR0BmDt3LoGBgTg4ODB//nzWrl1Lbm4u8+bNe+rjgKfev337NlOmTMHLy4thw4bh6+tLcXGxVnPq6elhZWXF5cuXATA3N2f69OmMHDmS06dPk5ubi6enJ05OTri7u/PDDz+orxsdHY2dnR2Ojo4EBQXx8OFDAOLj43F3d8fV1RU/Pz/y8/MByM3NZfTo0bi7u+Pu7s7+/ftfeLyyspKIiAjc3NxwdnZm7ty5lJSUALBz506cnZ3x8PDAx8eHS5cuaXW7JUmSdIFcOEuSJAGNGzfGy8uLhIQE9bG4uDh8fHzq3ES/vLxc/TK606ZNw8LCgsjIyBd+jpSUFN5//33i4uJIS0vD0NCQ5ORkrea8f/8+qampWFlZAVBVVcXQoUPZv38/pqamTJs2jQULFrB3716WL1/OnDlzuHbtGmlpaSQmJhIXF8e+ffswNTVl+/btZGdnk5SUxI4dO0hKSsLf35+pU6cCsG7dOiZOnEhiYiIREREcPXr0hcc3btyIvr4+iYmJ7NmzBxMTE1auXElNTQ0RERHExMTw9ddf4+npyfHjx7W63ZIkSbpAvnKgJEnS/3h6euLg4EBJSQnV1dVkZGTwvK3u+/Xrp3V/woQJ5ObmsmXLFgoKCrh48SK9e/f+zeutWLGCDRs2qF+pa+jQoYwfP159uYWFBfD4XOuOHTuqm926daNv375kZ2eTl5eHnZ0drVq1AmDevHnq9tWrV/H29lb37t+/z71797C3t+df//oX6enpDBgwgJkzZwI89/ihQ4d4+PAhWVlZwONFfdu2bdHX18fOzg5vb2+GDBnCwIEDcXJy0vr+kyRJamhy4SxJkvQ/JiYmDBgwgG+++YbS0lJGjhxJixYt6vxYIyOjOo/XviRuraqqKvXbH3/8MadOncLDwwMrKyuqq6ufednaugQHB2NnZ/fcy2tnUalUz1wmhKC6uhp9ff2nfnP+4MEDHjx4gEqlwsXFhTlz5qgbN2/epFWrVnh7ezN06FAyMzM5fPgw69evZ8+ePc89rlKpmD9/PjY2NgA8evSIiooKAFauXMmFCxfIyspi06ZNJCQksGHDht+87ZIkSbpEnqohSZL0BB8fH/bu3UtSUhJjx47V6Dr6+vpUV1cDYGxsTGFhIcXFxQghOHDggPrjMjIymDBhAq6urrRt25asrCxqamoUm713795cuXKFU6dOAXDx4kVycnKwtLRkwIABfPfdd+pzjtetW8fWrVsZOHAgKSkp3Lx5E4Avv/ySCRMmAODt7U1eXh7u7u4sXbqUBw8ecP/+/eceHzRoEDt27KCyshKVSsXChQtZtWoVd+7cwcbGhtatW+Pn58eMGTM4f/68YrdbkiSpvsjfOEuSJD3BysqK8PBwWrVqRffu3TW6Tp8+fVi9ejVBQUF89tlneHt74+HhQbt27RgyZIj644KCglixYgWff/45+vr69O3bl59++kmx2Y2NjVmzZg1Lly6lvLwcPT09IiMj6dKlC126dOHSpUuMGTMGgK5du7J06VKaN2/O5MmTmTRpEnp6ejRv3pz169ejp6fH7NmziYiIYPXq1TRq1IiPPvoIU1PT5x6fMmUKy5cvx83NjZqaGt59913mzp1L8+bN+cc//oGfnx+Ghobo6+sTHh6u2O2WJEmqL/IltyVJkiRJkiRJA/JUDUmSJEmSJEnSgFw4S5IkSZIkSZIG5MJZkiRJkiRJkjQgF86SJEmSJEmSpAG5cJYkSZIkSZIkDciFsyRJkiRJkiRpQC6cJUmSJEmSJEkD/wWuO0zueGt2dQAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[[\"Unaccounted Time / s\", *cols]].plot(kind=\"bar\", stacked=True, figsize=(12, 4));"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["* Make it relative to the total program run time\n", "* **Slight complication**: Our virtual processes as indexes are not unique; we need to find new unique indexes\n", "* Let's use a multi index!"]}, {"cell_type": "code", "execution_count": 95, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th>id</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>Min. Init. Time / s</th>\n", " <th>Max. Init. Time / s</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " <th>Unaccounted Time / s</th>\n", " </tr>\n", " <tr>\n", " <th>Nodes</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th rowspan=\"3\" valign=\"top\">1</th>\n", " <th rowspan=\"2\" valign=\"top\">2</th>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>420.42</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>88.18</td>\n", " <td>1.14</td>\n", " <td>1.20</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " <td>46560664.0</td>\n", " <td>825499</td>\n", " <td>7.48</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>2.09</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>5</td>\n", " <td>202.15</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>48.48</td>\n", " <td>0.70</td>\n", " <td>1.20</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " <td>47699384.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>2.43</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>200.84</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>46.03</td>\n", " <td>46.34</td>\n", " <td>0.70</td>\n", " <td>1.01</td>\n", " <td>7.87</td>\n", " <td>142.97</td>\n", " <td>46903088.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>3.12</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <th>2</th>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>164.16</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.20</td>\n", " <td>40.03</td>\n", " <td>41.09</td>\n", " <td>0.52</td>\n", " <td>1.58</td>\n", " <td>6.08</td>\n", " <td>114.88</td>\n", " <td>46937216.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>2.45</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <th>2</th>\n", " <th>12</th>\n", " <td>6</td>\n", " <td>141.70</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.30</td>\n", " <td>32.93</td>\n", " <td>33.26</td>\n", " <td>0.62</td>\n", " <td>0.95</td>\n", " <td>5.41</td>\n", " <td>100.16</td>\n", " <td>50148824.0</td>\n", " <td>813743</td>\n", " <td>7.27</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>2.28</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" id Runtime Program / s Scale Plastic \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 5 420.42 10 True \n", " 8 5 202.15 10 True \n", " 4 4 5 200.84 10 True \n", "2 2 4 5 164.16 10 True \n", "1 2 12 6 141.70 10 True \n", "\n", " Avg. Neuron Build Time / s \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 0.29 \n", " 8 0.28 \n", " 4 4 0.15 \n", "2 2 4 0.20 \n", "1 2 12 0.30 \n", "\n", " Min. Edge Build Time / s \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 88.12 \n", " 8 47.98 \n", " 4 4 46.03 \n", "2 2 4 40.03 \n", "1 2 12 32.93 \n", "\n", " Max. Edge Build Time / s Min. Init. Time / s \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 88.18 1.14 \n", " 8 48.48 0.70 \n", " 4 4 46.34 0.70 \n", "2 2 4 41.09 0.52 \n", "1 2 12 33.26 0.62 \n", "\n", " Max. Init. Time / s Presim. Time / s \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 1.20 17.26 \n", " 8 1.20 7.95 \n", " 4 4 1.01 7.87 \n", "2 2 4 1.58 6.08 \n", "1 2 12 0.95 5.41 \n", "\n", " Sim. Time / s Virt. Memory (Sum) / kB \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 311.52 46560664.0 \n", " 8 142.81 47699384.0 \n", " 4 4 142.97 46903088.0 \n", "2 2 4 114.88 46937216.0 \n", "1 2 12 100.16 50148824.0 \n", "\n", " Local Spike Counter (Sum) Average Rate (Sum) \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 825499 7.48 \n", " 8 802865 7.03 \n", " 4 4 802865 7.03 \n", "2 2 4 802865 7.03 \n", "1 2 12 813743 7.27 \n", "\n", " Number of Neurons Number of Connections \\\n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 112500 1265738500 \n", " 8 112500 1265738500 \n", " 4 4 112500 1265738500 \n", "2 2 4 112500 1265738500 \n", "1 2 12 112500 1265738500 \n", "\n", " Min. Delay Max. Delay Unaccounted Time / s \n", "Nodes Tasks/Node Threads/Task \n", "1 2 4 1.5 1.5 2.09 \n", " 8 1.5 1.5 2.43 \n", " 4 4 1.5 1.5 3.12 \n", "2 2 4 1.5 1.5 2.45 \n", "1 2 12 1.5 1.5 2.28 "]}, "execution_count": 95, "metadata": {}, "output_type": "execute_result"}], "source": ["df_multind = df.set_index([\"Nodes\", \"Tasks/Node\", \"Threads/Task\"])\n", "df_multind.head()"]}, {"cell_type": "code", "execution_count": 96, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzoAAAGmCAYAAAC0ivGlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl4TGf/x/H3JJNEEBEklmgtRSxJiKX2eiyljwqeUpRSa1ttKK1aat/3Wkvty2OnaumCX1utqqralaqtSqjELtGQZeb3hyfDSCITMpKZfF7X1evKnHOf7/09J4meb+77nNtgNpvNiIiIiIiIOBGXjE5AREREREQkvanQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaejQkdEJBMICAggNDSUZs2a0bx5cxo1akSLFi04cuRIqse2b9+eLVu2PLLN+fPn6dGjBwARERG0adMmXfLu2bMnzZo1o1mzZlbn0L59+3Tt52G//PILwcHBlr5DQ0Np3bo1P/zwg6XNwIED2bVr1yPjDBo0iN9++y3ZfYnHh4eHExISkuYcv//+e6ZNmwbAt99+y6hRo9IcQ0REHp8xoxMQEZF7lixZQp48eSyfFyxYwKhRo1i9evUTx7548SJ//vknAPnz52fVqlVPHBNg+vTplq8DAgKSnEN69ZOcZ599lo0bN1o+Hz9+nC5dujBr1izKly/P6NGjU42xa9cuWrduney+xOPDw8MfK78jR45w8+ZNAOrXr0/9+vUfK46IiDweFToiIplQfHw8f//9N97e3pZts2fPZtu2bZhMJvz9/Rk6dCj58+e3Ou7TTz/lm2++4e7du8TExNCvXz/q1avHoEGDiIiIoEuXLgwfPpzQ0FD27dtH3bp1mTlzJkFBQQD07t2bKlWq0LZtW5v6e5Tw8HBCQ0M5cOAAM2bM4Ny5c5w/f57IyEiCg4OpWbMmGzZsIDw8nA8//JAmTZrYfJ7JKV26NO3bt2fx4sVMmTKF9u3b065dOxo0aMDIkSPZv38/bm5uFC5cmLFjxzJ37lwiIyPp06cPEyZMYNKkSXh7e3PmzBlee+01tm3bRrt27QgMDMRkMjFw4ECOHj2K0Whk0KBBVKhQgRkzZnD9+nWGDBkCYPncrFkzVq1aRUJCAl5eXhQpUoStW7cyZ84cLl26xLBhw7hw4QJms5nmzZvTtWtXwsPD6dixI3Xq1OHQoUPcvHmT3r1707hxY5uvuYiI3KepayIimcQbb7xB06ZNqVWrFo0aNQJg7NixAGzYsIETJ06wdu1aNm7cSJ06dRg0aJDV8RcuXGDXrl0sW7aMzZs307t3b6ZPn46rqyujRo3i2WefZcGCBZb2Li4utGjRgs8//xyAmzdvsmvXLkJDQ23qL6327dvHvHnz+Oqrr9i1axenT59m+fLlDB48mBkzZth8no9SunRpTpw4YbXt4MGD7Nmzh02bNrF+/XqeeeYZ/vjjD3r37o2fnx+TJk2ifPnyAOTKlYuvvvqK9u3bW8W4c+eOpTB777336NWrF7GxsSnmUb58edq0aUPjxo3p3bu31b4+ffpQtWpVNm/ezMqVK9m0aRNffvklcG+KYa1atVi3bh19+vRh4sSJNp+7iIhY04iOiEgmkTjt69ixY3Tr1o2QkBDy5s0LwPbt2zly5AgtWrQAwGQyERMTY3W8v78/48ePZ/Pmzfz1118cOnSI27dvP7LPFi1a0LJlS/r3788XX3xB3bp18fLysqm/tKpRowZeXl4A+Pn5Ubt2beDeFLQbN27YfJ6PYjAYyJYtm9W2UqVK4erqyquvvmopIoODg5M9vnLlysluz5Url2VkpXbt2pjNZs6cOWNzXon++ecf9u/fz8KFCwHw8vLilVdeYceOHZQvXx43Nzfq1KkDQNmyZS3XRURE0k6FjohIJlO2bFkGDBjAoEGDKF++PIULF8ZkMtG1a1fatm0LQGxsrOX5j0RHjx7lnXfeoWPHjtSsWZMqVaowfPjwR/bl7+9P2bJl+f7771m/fj0fffQRgE39pZW7u7vVZ6Mx6f+CnrTfI0eOUKpUKattuXLlYuPGjezfv5/du3fTq1cvOnToQMeOHZMcnz179mTjurhYT4Awm824ublhMBgwm82W7XFxcY/Mz2QyWbVP3BYfHw+Am5ubpS+DwfDIWCIi8miauiYikgk1adKEChUqMGbMGADLdKbo6GgApk2bRt++fa2O+fXXXwkMDKRTp048//zzfPvttyQkJADg6uqa4k14q1atmDdvHnfu3KFSpUo292cPT9Lv4cOHWblyJW+88YbV9u3bt9OxY0dCQkLo0aMHzZs35/jx48C965JYZDzKjRs32L59OwDfffcdHh4eFClSBB8fH44ePYrZbOaff/5h586dlmOSi50zZ07Kly/P8uXLAYiKimLDhg3UqFHDpnMUERHbaURHRCSTGjx4ME2bNuXHH3/k1VdfJSIiglatWmEwGChYsCDjxo2zat+kSRO2bdtG48aNcXNzo3r16ty8eZPo6GhKliyJq6srLVu2ZMqUKVbH1atXj+HDh9OtWzfLNlv6s4e09Hvu3DmaNWsG3BtxyZkzJ5MmTaJ06dJW7V544QV27NhBkyZNyJ49O97e3owcORKABg0a0Lt371Rf/Zw3b162bdvG1KlT8fT0ZMaMGRiNRsv3p2HDhuTPn5+QkBDLiE316tXp0aMHbm5ulCtXzhJr0qRJjBgxgvXr1xMbG0toaCivvPIKFy5ceOzrJiIiSRnMD4+hi4iIiIiIODhNXRMREREREaejQkdERERERJyOCh0REREREXE6KnRERERERMTpqNARERERERGno0JHREREREScTqZYR+f69duYTKm/5Tpv3pxcvRqd7v3bI64j5epocR0pV3vFdaRc7RXXkXJ1tLiOlKu94jpSrvaK60i5OlpcR8rVXnEdKVd7xXWkXDM6rouLAR+fHGmOnSkKHZPJbFOhk9jWXjk4QkzFtV9MR4vrSLnaK64j5epocR0pV3vFdaRc7RXXkXJ1tLiOlKu94jpSrvaK60i5OmJcTV0TERERERGno0JHREREREScTqaYuiYiIiIi9hcTc5vo6BskJMTbfExkpAsmkyld87BHTEeL60i5Pr24Btzds+Hj44vBYHji2Cp0RERERLKAmJjbREVdJ3duX9zc3G2+kTQaXYiPT98bXHvEdLS4jpTr04prNpu4ceMK0dE38fLK/cSxNXVNREREJAuIjr5B7ty+uLt7pMtfy0XSm8HggpeXDzEx6fN2NxU6IiIiIllAQkI8bm7uGZ2GyCO5uhoxmRLSJZYKHREREZEsQiM5ktml58+ontERERERyaK8cnmSzSP9bwfv3I0n6lZMivsvXrzIO+90Y926zVbba9WqzM6de9M9H3vZuHE92bNn58UXX7L5mJYtQ5kxYw7PPFPYsm3AgD78/fdFYmL+4dq1q/j7PwNA9+49OHLkEKVLl6FWrTrpmvvWrV8RHR1Nixat0jVuZqJCR0RERCSLyuZhJPSDjeked/PkZkSle9TM57ffDhMSUumJ44wdOwmA/fv3snDhXGbOnGvZV7Vq9SeOn5zdu3fRtevbdomdWdhc6ERHR9OmTRs+/fRTChcubLXv999/Z9CgQURHR1O5cmWGDx+O0agaSkRERETS7quvNvPLL7u4desWFy9eoEqVavTp05/4+HgmTx7HmTOnuXbtGs8+W4QxYybg4ZGN1auXs3HjelxcXKhRozbvvNOTS5f+ZsyY4Vy/fo1s2bLRr99gSpQoyZdfbmLVqmUYDAYCAsrQu3dfsmfPbjWi9NVXmzlwYB8DBw6jefOXadSoMXv2/ExMzB0GDRpOVNQtdu7cwb59v5I3bz5KlizFxIljiIiIwMXFhbfeepcqVapy69ZNRowYTGRkBEWLFic2NjZN12L06GGEhFQiJKQSAwb0oVAhf86cOUVAQBlCQirx9ddfEBV1izFjJlG0aDGOHTvKlCmTuHv3Dt7eufnww48oVMjfKqbJZOLSpYv4+1vf069atYyvv/4SFxcDZcqUo2/fgU/2jcxgNj2jc+jQIV577TXOnj2b7P4PP/yQwYMHs3XrVsxmM2vWrEnPHEVEREQkizly5DCjR09gyZJV7Nr1I6dPn+K33w5jNLoxZ84iVq/+nLt37/Dzzz9x7NhvfP75OhYuXMrixSv544/jHD/+O5Mnj6NOnXr8979r6Nz5TZYsWcDp06dYunQhM2fOZenS1WTL5smiRfNSzcfb25t585bSvPkr/Pe/C6lSpSq1ar1A165vU7VqdaZNm8TLLzdl4cJljBv3MRMnjuGff24zf/6nlCpVmqVLV/PKK69y7drVx74mp0+fpGPHLqxY8RnHjx/j0qW/mTNnEQ0aNGLTpvXExcUxZswIhg4dzcKFy2nT5nXGjx+dJM7vvx+jdOlyVtvi4+NZtmwxCxb8lwULluHi4sLly5GPnWtmYNOwy5o1axg6dCh9+/ZNsu/ChQvcuXOHChUqAPDKK68wffp02rZtm76ZioiIiIhTcHFJ+sC52Wy2ehA9KCiY7NlzAFCokD+3bt0kJKQSuXJ589lnazh37izh4eeJiYnh4MED1KxZm5w5vYiPNzFt2iwADh7cz7Bh9270q1evRfXqtfjss9XUrFkbb+9767Q0bfofxo4dnmrOVavWAKB48RL88MP2JPv37t3DX3/9xfz5c4B7hcOFC+EcOLCPYcPGAFChQsUkoytpkSdPXkqVKg2Ar68flSpVAaBAgYIcOHCR8+f/4sKFcPr3f99yzO3bt5PE2b37J6pVq2G1zWg0EhgYTNeuHahduw6vvPIqvr5+j51rZmBToTN6dNJKMFFkZCS+vr6Wz76+vkRERKQpibx5cybZFh8Xh9HNLcl2X18vm9ol51Ft7RH34ZiZIe7Tvgb2ivu0rq2uga5BWuPqdyxtcXUNdA3SGle/Y2mL+2C7yEgXjMan98LdxL4eLmAAvLxycft2tFU+V69excsrF0ajCy4uBjw8sln2GwwGXFwM7Nr1I/PmzaZ169cIDW3KrVs3MRjAw8PN0ofR6MLly5fJli0bRqMRV1cDRqMLZrOZs2f/BO4VWomxXV0NJCQkWH02GAyYTAkYDPfbeXrey8fV1bpdYiyTycQnn8zB29sbgMuXL5MnTx5cXFwwGMyWOPdycrHk+iBXVxerPh88d1dXF9zc3Kyuibu70XK9DAYDBsO9onDZslUAJCQkcO3aNcv5J16jQ4cO0LFj5yT9T5w4hSNHDrN79y4++KAnw4ePpmLF+88gPdw+ue9tSh7V9uG4LgZDsr8jafXED9KYzeYk29L6WrirV6Mxmazj+Pp6MXNAp1SPDRu7iMuXbXvczdaYzhzXkXLNDHEdKVd7xXWkXDNDXEfKNTPEdaRc7RXXkXLNDHEdKdfMEPfBmCaTyS4r26cksS+j0YXI8LNJ9hfIn58N61ZSo9q9h+1XrV1DlSrPEx9vwmQyYzabLTHMZjMJCSb27NlN3boNeOmlUK5fv8q+fb8SUOI5nitWjLVrVvKflxvj7u7OoOFDad3yVcoElOabb7bRpMl/+PXX3SxcOI8PPujP6tUr6NChC7lyefP55+sJCalMfLyJ3Llzs/fnHTz7zLN8+39b8PLyIjL8LKaEeK5eCsdoiuXG5UvE3b3zvwLEhbi4eOLjTVSsWJm1a1fTsWNX/vzzDGFh3Vi7dhOVKlVh69avyJ3dg5OnThIeft4S62E3Ll+yunaJ524y3Tv/B/fduwc3EBl+lqjrV7jzTzTZjQZuXL/G9m1fUa5sWbb+3//xw487GDNiJH6FixIfb+LGjRtky+aJq6ubVT/Xr1/n3Xe7snjxcgrk8eavP09zcO9uCvvlTfF7nBjTFin9HCTLxWD1u+DiYkh2YCTVPtN8xEPy58/PlStXLJ8vX76Mn59jD3OJiIiIiH2937MXs+fOYdXaNcTHx1O0SBEGDRn5yGNCQ//D8OED2b79G9zd3QkoWYrIyEga1m/Ayy81pu/AAZhMZqpXrUqF4PL4F/Jn7qKFrFu39n8vIxhEsWLFad++E2FhbxIfH09AQBk+/HAAAO+805ORY8eQO3duypYuw62oRxeelSs/z5w5s8iZMye9e/dlwoTRvPFGG8xmM4MGjSB79hx06fIWY8YM591e71HY35/8fvnT7Ro+zM3NjX4ffMi8RQuIjY0je3ZPeoX1tGqzZ8/PVK1aLcmxPj4+NGv2Cp06vY7R1QXffPmoV7ee3XJ9Gp640PH398fDw4N9+/ZRqVIlNmzYwAsvvJAeuYmIiIiIHd25G8/myc3sEjc1/oUKMWqY9bMxuXP7EB9vonHjUBo3DrVsf/B1y0uXrgaSjhC8/O9/8/K//20VzzdfPqZNm5Vk1CE0tDmhoc2T5NS0aXOqVayQZPv82XMsXwcFBhIUGAhAgwaNaNCgkWXfhAlTkxybI0dOxo+fbNNoRlBgIPVfamKV78CBwyxfP7ju0MyZcy3XoH7detT/X1FSOiCAyeMmpNhHw4b/TnFf69btaNeuve0jL5ncYxc63bp1o2fPngQFBTFp0iQGDRrE7du3KVu2LB06dEjPHEVERETEDqJuxVjWu0nL1KK0TFkSyShpKnS+++47y9fz5t1/DV/p0qVZt25d+mUlIiIiIiLyBJ7eqzdERERERESeEhU6IiIiIiLidFToiIiIiIiI01GhIyIiIiIiTkeFjoiIiIiIOJ0nXkdHRERERByTj7c7RneP+599yqVL3PjYu1y/GWtT27/O/UWP93vTv8+HNG9ZNF36T9S05Sv07z+IJk3ur5kTFvYmnTu/ScWKldO1r7Tq2v0tPDw8MBqNxMcn4OfrS6+wHvgVTvmYnTt/4Pjx3+na9W1atgxl1qx5SW7mPxoymNdatbas9QPw6by5nDxzhri4OMLDz1O0aHEAXn21DXFx975PzZu3TNfzO3ToIDt3/sC7776XrnHTQoWOiIiISBZldPfgzOgW6R63+MDPANsKnW+2f0eNatX5ettWmrd8Ld1zmTPnE6pUqUb+/AXSPfaTGvLRIPL7+QEwb9EC1m/aSL9y5VNsX6tWHWrVqpPmft7u9iZ+hYty/nw4PXq8xeLFKx47Z1vt3v0T1arVsHs/j6JCR0REREQyREJCAt/v2MG4kaPpO3AA4eHnOXXqFJs2fc6ECVMB+Oyz1Zw/f46wsN5MnDiGw4cP4uvrh4uLgf80CbUauUhOq1avMX78KD7+eGaSfV9//QVr167EZDITEFCavn0HAPdGgjatWw/At9u/48jRo/QK60HX7m9RqmRJ/jx7lnnzl/LjjztYtWoZBoOBgIAy9O7dl+zZs9OsWSP+9a/6HD58EFdXI2PGjH/kTbfJZCIm5g7PFM4HwIIFcwDo0uUtAFq2DGXGjDkcOLCPAwf2MXDgMMuxcXFxzJg9i1OnT+Hn68etqFs2XftED/bVtGkjatV6gX1795DHx4d/N3qJL776kivXrtLr3R4ElivHxb//Zva8OURFRZHTy5tevfpQqlTpJHGPHDlE585vWm374ccdrN+4ARcXF/L7+fF+z164u7unKd+00DM6IiIiIpIhft23Dz9fX/wLFaLa88/z+eefUa1aTf744zi3bt27Yf/mm600bPhvNmxYx507MaxY8RkffTSUY8eO2dRH+/YduXnzJps2fW61/cyZ02zevIHZsxeyePEKfHzysHz5f1ONVymkIrOnz+TatassXbqQmTPnsnTparJl82TRonkAXL16lUqVnmfRohWULx/C2rWrk401Yswo3uvzPp3f6sbBQwepVT3tIyBffPUlALOmzeDNLl24FBGR5hiJrl27Sq1atZk9fQYAu/f8wrhRo3mtVWs2fbkZgKkzp9Px9Q5MnTiZAQMGMXToR0niXL16BS+vXLi5uVltX7ZyJcMHD2HKhEkU9i9M+IULj52rLTSiIyIiIiIZ4tvt3/FCzdoA1KpRk6kzZ9C1a3fq1KnLDz98R5UqVbl58yZlywayZMkCQkP/g8FgoECBglSp8rxNfRiNRgYOHErPnt2pWrW6ZfuBA3sJDz/PW291AiA+Po6AgKQjEw8rVbLU/47fR82atfH2zg1A06b/YezY4ZZ2iX0VL/4chw8fSDbWg1PXvvz6a4aOGsHadZtsOq9ER44e5aWGDQEoVLAQpUsFpOn4h1WvXpPrERfw9fWlbOl718Mvny/R0beJiYnh1OnTTJ91b3TM6OZOTEwMN2/esFwHgF9++dnqWid6vnJl+g0cSLXnn6d6tWoUL1bsiXJNjQodEREREXnqbty8wb4D+zl1+hSbv/oCs9nMrVtRfP/9tzRs2Jj582cTFXWLF198CQAXF1fMZtNj9VW8eAlefbUN48ePsmxLSDBRr14DevX6EIB//vkHg8FMzM2rAJjNZgwGA/HxCVaxEqdamUzmh3oxk5Bwv62Hx72XPBgMBswPN03Gv154gTkL5nHz5o3/HXP/oPj4+BSPMxgMVrm4urqm3tkjPDgK83Ask8mEm5sb0yZ9DIBf4aJcvPg3uXJ5W7XbvXsX77yT9CUE3Tp3oUG9+uzdv4+Pp0/jtVatqftC2p85spWmromIiIjIU/f9jh0EBwaxaO585s+ew4JP59KxY2c2blxPYGAQV65cYevWr2jY8N8AVKlSlW++2YbZbObKlcvs378Xg8Fgc3/t2r3BzZs3OXr0CAAhIZXYseN7rl+/htlsZvLksaxatRyAXLlyce78OcxmM3v2/ppsvIoVK7Fz5w5u3boJwKZNGwgJefw3uR06coR8+fKRO7cP3t65+fPPMwAcO/YbV69eSfG48sHB7Ni5A5PJROTlSI7/cfyxc0hNjhw5KFSwINt3/ADAL7/s5t13rZ/DSUhI4PLlSAoUsH75Q3x8PG+FvUuuXLl49ZUW1KvzL8787xztRSM6IiIiIllUfOzd/70hLf3jpubb7d/Rvm07q20tWrRi2bIl/PXXWerXf5FffvkZf/9771tu2vQ/nDx5gg4dWpM3bz4KFChoGV15r8/7DPloEHnz5Emxv8QpbF26tAegZMlSdOrUjZ4938ZsNlOyZAAdOnTi5uW/6dDudUaOHUPu3LkpW7oMt6KiksQrWbIU7dt3IizsTeLj4wkIKMOHHw6w+RrBvWd0jEbjvZESoxsf9nofgAYNGvLDD9/x+uuvEhBQmpIlU56O1rjRS5w7d453e/XEN58vzz77bJpySKsP3uvFrDlzWL9hA57ZszNixBirgvPo0SOUKxeU5Dij0UjbNm0YMmIYHu4e5MiRg15hPeyaqwodERERkSzq3lo3914DbTS6EBl+1qbj/AoXJT7+8aaRJZrx8dQk2/LkycO33/4EQKdO3ejUqZtl3549u6lV6wX69RtIdHQ0nTu3o+D/Rg0Sp1I9LPHNaYmKFy/B9u0/Wz6HhjYnNPT+GjtG473JTg3rN6Bh/QZJ4s2fPcfq88PHJ9q5c6/l68aNQ2natFmSa/twrAd5e+dm+vRPk2wvWLAQjRuHArBu3WbL9yys+zspxnr4+HXrNlttS3yz28N5P1iEBAUGWt5uV9i/MGNGjASS/zkIDq5AcHCFZPuvU6s2dWrVtinX9KBCR0REREQyvaJFizFy5BDmzZsNQLdub+Pl5ZXBWUlmpkJHRERERDK9QoX8mT17geVzWkagJGvSywhERERERMTpqNARERERERGno0JHREREREScjgodERERERFxOnoZgYiIiEgW5ZXbg2xu7pbPPj7l0iXunbhYom6kvJZORGQk3d55m0Yvvsi7b3W3bD9x4g86dHiNjz4aSuPGoXTs2JbFi1ekuf+IyEi69wzjmcKFMbq5Yzbf2x4a2pwWLVpZtf3qq80cOLCPgQOHpbmfB40ePYx9+34lVy5vzGYTRqMb77/fj3LlAlM85uq1a8ycPYuhAwcxdeYMgsqV47X2na3aLFhw7zXUD74G+ssvN7F27SoMBvjzzzMULFAAo9FImYDS1K9bjy3/t5Ue3d99ovN5WFxcHENHjrC8WtoRqNARERERyaKyubnTanX31Bum0ZrWs4ni0YuGenl5sf/AARISEnB1dQXgm2+2kTu3j6XN4xQ5ifL4+DBt0sfpsuaPrbp2fduyzs2OHd8zdeoE5s1bmmL7vHnyMHTgoDT38/LLTXn55aYYjS40DW3EkI8Gkd/Pz7K/ZIkSaU8+Fb8dO0q5smXTPa49qdARERERkafOM1s2ihUtxtHfjxEcGATAL7/8TOXKz1va1KpVmZ0797JgwRyuXLnM+fPniIi4RJMmzejSpVtKoVO1ZcuXLFmygBw5clKgQAE8PbMDsG/fXiaMH4WLiyulA0px/nw4Y0aM5OLffzN73hyioqLw8PDgzc5d8Stc9JF93L4djY9PXkvc2Z9Ms4yGJI7eBJYLZODQwUkWD12xYimbNn2Ot3duvLy8KFPG9pG2I7/9xso1qxkzYiQfDRlM8WLFOHTkMAkmE++99yHr1q3mzz9P07p1W1q3bsc///zDxx+P58yZ05hMJjp06EiFsqWTxN1/4AA1q9ew2nby5AnGjh1FQkIC7u7ufPTRUJ555lmbc7U3FToiIiIikiFq1ajBrp9/JjgwiJOnTlKiRElMJnOybU+dOsmsWfOJjo6iVavmtGrV5pGxr12/znt93reaujZ48Ai8vb2ZPXs6ixatIFcub/r27YWnZ3bi4+MZPnwwA/v2o1jRosxbeH/Nnqkzp/NWl248V7w4586fZ+zE8Xz2Qr0kfc6f/ylr1qzkzp0YIiIuMW7cx2m+Jr//fowvv9zEwoXLMRgMvP12pzQVOsmZ8fFUNm3ZytSpE1myZBU3blynY8d7hc6SJQsICCjDoEHDuX07mu7du9D/gw8okL+AVYw/Tp6gY/sOVttWrVpOmzavU69eA779dhtHjx5RoSMiIiIiUqVyFZatXInJZOLHn36iQYOGbNu2Ndm2FStWxs3NDR+fPOTKlYvo6ChcHxE7palr27d/Q2BgMHny3Bttadjw3+zb9yunT5/Cx8eHYkWLAtCgXj3mLVxITEwMp06fZvqsmZYYMXfucPPmDXLkyGXV54MwojjCAAAgAElEQVRT106cOE5Y2Ftpnn63f/9eqlWrSfbs90aZ6tZtQEJCQppiPKhSSEUAChQoSLlyQWTLlo0CBQoSHR0FwN69e7h79w5ffrnp3rnFxHDu/HmrQiciMhLffL6WKYaJataszcSJ4/jll13UqFGbf/2r/mPnaQ8qdEREREQkQ2T39KRY0SIcO/47h387Qp9+g1IsdNzd7780wWAwWEZp0spgMFiNGiXevLu4uGBOJqjJZMLNzY1pk+6Pzly5eoVcubxJSEg5iVKlSuPv788ff/xO3rx5MXO/bUJ8/KMyxGy+X5i5uro+UaFjNN6/3X+4UAEwmRIYPHgkAQH3pqvdvHmdu1HXrdrsO7CfSiEhSY6tV68BZcoE8tNPP7J27Up27/6Jfv3S/syRvej10iIiIiKSYWrWqMnSZcso8VwJq5tyewkOrsCxY0e4fDkSk8nEd9/9HwBFixbj1q1bnP3rLwB++PFHDAYDOXLkoFDBgmzf8QMABw4dZMDgwan2c+nS3/z990VKlChF7ty5iYiIIDY2lqioKI4e/z3F46pUeZ5du3YSHR3N3bt32bFjezqcdcoqVqzChg3rALhy5Qqvv96ay1euWLU5cPAgIRWSFjoDB/bj2LGjNG/egq5d3+aPP47bNde00oiOiIiIiGSY5ytVZsasT2jX5rU0H3v12jVGjBllNdqSKLlndCpUCKFXrw//9987ZMvmSdGixQBwc3Nj2LBRjB83ChcXA/6F/C2jSB+814tZc+awfsMG3IxG+r7/PgaDAbAe0Ul8Rgfg7t07vPtuL5555lmMRhcqV6xEWO/38PP1o1zpMimeU6lSAbz66mt07doBLy8v8ucvmObrkhadO3dj8uTxtG/fCpPJRFjYexQscH/aWlxcHLdv38Ynd+4kx3bs2IXRo0ewZMl8XF1d6dGjt11zTSsVOiIiIiJZ1J24WNa0nm2XuI+S38/P8qYxT09P1q1YZdn34Ho2O3fuBazXkAFYt24zRqMLRlNsskVOfj8/1q9aA5Ds66Xr1m1A3boNrLaZTCZ+/PEHxo8aTbZs2diweRNXr10FoLB/4VTXj0ltHZ533no72e2J16FXWA/LthYtWiVZ7yclD7+xLSgwkKDAe2v3PJhzkyZNeemlJpbPidc2R46cDBlyv53R6EJk+FnLZzc3txTPvWTJUsyfn/LrszOaCh0RERGRLCrqxl3LejcP3+A+ytNcm+ZpcXFxwdvbmw/698VoNOLn60ePd9J30U15ulToiIiIiIgAHTp04qV6dTM6DUknehmBiIiIiIg4HRU6IiIiIiLidFToiIiIiIiI01GhIyIiIiIiTkeFjoiIiIiIOB29dU1EREQki/LxcseYzeP+Z59y6RI3/s5drkelvJZORGQk3d55m0Yvvsi7b3W3bD9x4g86dHiNjz4aSuPGoXTs2JbFi1c8Vg5NW77CpnXrU9x/5cplxo0byaRJ09m5cwfh4ed4/fUOKbYfM2EcEZGRxNy5w40bN3jmmWcxm6F79x4cOXKI0qXLUKtWncfKNSVbt35FdHS0zWvqiDUVOiIiIiJZlDGbBz81a5HucWtu/AweUegAeHl5sf/AARISEnB1dQXgm2+2kTu3j6XN4xY5tsiXz5dJk6YD8Mcfv6fa/qO+/QE48ttvrFyzmvkL/2tZS6hq1ep2yXH37l107Zr8QqOSOhU6IiIiIvLUeWbLRrGixTj6+zGCA4MA+OWXn6lc+XlLm1q1KrNz514WLJjDlSuXOX/+HBERl2jSpBldunSzqZ99+/ayePECsmXLxtmzf/LccyUYOnQ0V65cpkePt5g4cRobN94b+fH3L8TzFcqn+VxGjx5GSEglQkIqMWBAHwoV8ufMmVMEBJQhJKQSW7Z8wfVr1/iobz+eKVyYk6dOMn/xIu7evUsur1y889bbFMif3yqmyWTi0qWL+PsXttq+atUyvv76S1xcDJQrF0jn119Pc75ZhZ7REREREZEMUatGDXb9/DMAJ0+dpESJkri5uSXb9tSpk0yZ8glz5y5m2bIlREVF2dzPb78dpnfvvixfvo6IiEv88svPln3FihWnWbNXaNbsFZo0afZkJwScPn2Sjh27sGLFZxw/foxLl/5m/vwlvFCrFlv/bxtxcXHMmD2LPu/1ZurEyTRv2pRPPp2dJM7vvx+jdGnrqYTx8fEsW7aYBQv+y4IFyzAYXLh69eoT5+ysNKIjIiIiIhmiSuUqLFu5EpPJxI8//USDBg3Ztm1rsm0rVqyMm5sbPj55yJUrF9HRUbja2E+xYs/h53dvxKRIkWJERd1KpzNIKk+evJQqVRoAX18/KlWqAoCfry9HIiO5+PdFLkVEMGr8WMsx//wTkyTO7t0/Ua1aDattRqORwMBgunbtQO3adWjZshVeHrqdT4mujIiIiIhkiOyenhQrWoRjx3/n8G9H6NNvUIqFjru7u+Vrg8GA2Wx7P0mPTcPBafTwiFTi80eJTCYT+f3yM23SxwAkJCRw4+bNJHEOHtzP6693TLJ97NjJHD16hN27d9GrVxi9w3oQWC59XiLhbDR1TUREREQyTM0aNVm6bBklniuB0Zgxf4N3dXUlISHhqfRV2L8w0dFRHD12DIBvvvuOyVOnWLW5ceMGnp7Z8fDwsNp+/fp12rVrSfHiJeja9W2qVq3G2b/OPpW8HZFGdERERESyqPg7d++9Ic0OcW31fKXKzJj1Ce3avJbmfq5eu8aIMaMsoyOPq0KFiowePYx8+fLh75ePFatXMXTgoCeKmRI3Nzf6ffAh8xYtIDY2juzZPekV1tOqzZ49P1O1arUkx/r4+NCs2St069YBD49sFCxYkHqtW9slT2egQkdEREQki7oeFWt5DbTR6EJk+FmbjvMrXNTyauXHkd/Pj/mz5wDg6enJuhWrLPsGDhxm+Xrnzr0AdOnyltXx69Ztxmh0wWiKTbHISVxDp1KlypQvPzfZ+OvWbQbuFTpr126yXINHFTlBgYEEBQZabUsuJsDMmff7rV+3HvXr1gOgdEAAk8dNSLGPhg3/neK+1q3b0bp1OyBt37OsSFPXRERERETE6ajQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaej10uLiIiIZFHeuTxx97h/O+jjUy5d4sbejefmrZgU90dERtK9ZxjPFC4MGIiPjydPHh9GjhpPnjy+T9T38lUrKfHcc1St8vxjxzj7119MmTENgMtXrpAtWza8cubEzejGpHHjea/P+6xctf6J8kzO0FEjmDhpGtmy5Uj32FmRCh0RERGRLMrdw8iID75I97hDJjdJtU0eHx+rNXCWLF/G5MkTGD164hP1/TgLjz6saJEiltymzpxBULlyljVwgCdeoDQ5MTExmEwmcub0eqI1iuQ+mwqdzZs3M3v2bOLi4ujYsSPt2rWz2n/06FGGDBlCXFwcBQsWZOLEieTKlcsuCYuIiIiI8wksU5alK1cA0LJlKGXLBnLy5B/MmjWf3bt3sXbtSkwmMwEBpXn//X6AkY+nT+Ovc+cAaNzoJRq9+KKlMAksF8iYCeN4tkgxTp8+RUBAGUJCKvH1118QFXWLMWMmUbRoscfKtWnLV9i9ez8LFswhIuISp06d5MaN63Tr1p19+37l2LHfKFGiFMOHj8FgMLB06SK2fP0FJpOJkAohdHy9PQaDwSrm4d+OEBwYZLXt9u1ohg0byNWrVwHo3LkbtWrVeaycs6JUn9GJiIhgypQprFixgo0bN7J69WpOnTpl1Wb06NH07NmTTZs2UaxYMRYsWGC3hEVERETEucTHx/Pjrp8IDi5v2VatWg1WrlzP9evX2bx5A7NnL2Tx4hX4+ORh5cr/cvjwYaKjo5g2aTIjhw7j9z+OJ4l79q+/6Ny5GytWfMbx48e4dOlv5sxZRIMGjdi0KX2mnp05c5q5cxczePAIxo4dQbt2b7B06WpOnDjOqVMn2b17F8eP/87kcROYOnEy165e5fsfdySJs+/AASqFVLTatmPH9xQoUIiFC5cxZMhIDh06mC45ZxWpjujs2rWLatWqkTt3bgAaNWrEli1bCAsLs7QxmUzcvn0buDfs5u3tbad0RURERMQZXLt+nff6vA9AXFwcJUuU5J13elr2ly0bCMCBA3sJDz/PW291AiA+Po5SpUrz6qutCL94kaEjR1CpYkXeeL19kj58cucmIKA08fEmfH39qFSpCgAFChTkwIGL6XIeVapUxWg0UqBAQfLmzUexYsUByJfPl6ioW+zdu4ejR3/j/X4fAhAbG0s+36TPIZ09e5ZiRYtabQsMDGbOnE+4ciWS6tVr0bFjl3TJOatItdCJjIzE94Fvhp+fH4cPH7Zq079/fzp16sSYMWPw9PRkzZo16Z+piIiIiDiNh5/RAfD29rY8n+Lh4QFAQoKJevUa0KvXvULhn3/+ISEhAW9vbz6ZMo2Dhw6x98A+evftw8wp06ziGY3Wt7qurq7pfh4P9pFcfJMpgdat29LghVoARN++jauL9aSq8+Hh+Pv7J5nO9swzz7JixTp27/6Zn37awapVy1i+fF2SdpK8VAsds9mcZNuDF/fOnTsMHDiQJUuWEBwczKJFi+jXrx9z5861OYm8eXPa3DY5vr5eT3S84j7dmI4W15FytVdcR8rV0eI6Uq72iutIudorriPl6mhxHSlXe8VNjBkZ6YLR+PRWFnncvhKPc3W9l2+VKlX44INldO7cDR8fHz7+eBz+/oUJCCjDhvVr6PdBHyqGhHD4yBGuXLmSYkyDwWCJ6eJiwGAwPPH1cHExWOK7urpY5Z/YX5UqzzNv3qfUrFIJd3d3xowfR/26da1ebrDvwH6raWuJMdauXcWFCxfo1esDatWqRfPmjblz5x+8vB7v58Qe3397/Uylx+9CqoVO/vz52bt3r+VzZGQkfn5+ls8nTpzAw8OD4OBgAFq3bs20adOSxHmUq1ejMZmsC6q0nNzly1E2tUvrBXPGuI6Ua2aJ60i52iuuI+Wa0XEdKdfMEteRcrVXXEfKNaPjOlKumSVuYkyTyfRU3+aV2Fdab4QTj0tIuJdvsWIl6NSpG++++yZms5mSJQNo2/YNPDyMfP3FBsJ6v4ebmxvVqlajaJEiKcY0m82WmCaTGbPZTHy8ifnzPyVfvnw0b94yzbkm3r/Gx5tISDBZ5Z/YX/XqtTl58iR9BvTHZDJRMaQC9f5V1yrOwUOH6NP7/STXoGHDxgwbNpC2bV/FaDTSqdObeHrmeOJr+yj2iPk4cR/8XXBxMTzWwEiqhU6NGjWYMWMG165dw9PTk23btjFy5EjL/iJFinDp0iXOnDlD8eLF+fbbbwkKCnpERBERERHJDGLvxtv0KujHifso+f38mD97Tor7163bbPU5NLQ5oaHNrbYZjS707vlekmN7hfWwfP1gHzNn3p9t1LhxKI0bhwLQtevbj8z1wXiJNq279yKDLl3esmwrWLCQVd4P9te5c1eaNGyQYh/DBg1OdnuOHDmZODFtAwhyn00jOr1796ZDhw7ExcXRsmVLgoOD6datGz179iQoKIixY8fSq1cvzGYzefPmZcyYMU8jdxERERF5Ag8u6mk0uhAZftam4/wKF9VaL5Lp2bSOTmhoKKGhoVbb5s2bZ/m6Tp061Kmjd3qLiIiIiEjm8PSeSBMREREREXlKVOiIiIiIiIjTUaEjIiIiIiJOR4WOiIiIiIg4HRU6IiIiIiLidGx665qIiIiIOB/vXO64e3hYPvv4lEuXuLF373LzVuwj2/z08y7Wfb6ehIQEzGYzdev8i7ff7QVAnz496d9/MPny+T52Dt989y2bv/oSo5s7f/55hsKFn8FodCMoqDwvvxzKhg2f0b9/8uvXPK7Y2Fjefz/Mag0dyTgqdERERESyKHcPD2YO6JTuccPGLgJSLnSuXr3KwiWLmTJxMrm8vIiJieGjoYMpGxRCjRq1mTRp+hPn0KBefRrUq49f4aI0b/4yEydOo2DBQpb9/fuXfeI+Hnbo0H4qVKiY7nHl8ajQEREREZGn6lbULRISErh79y54eeHp6UmvsB4UeKYYAC1bhjJjxhwOHNjHrl07uXLlMpGREbRq9RoRERHs3/8r3t65+ahPH9zd3dPc//79e1m4cC4zZ84lLOxNSpUKYO/ePcTG3qVLh45s/upLzoWfp9nLoTQLDSUmJoZP58/j3PlzmEwmXmn+H15tUzRJ3N27d1G3bgOrbadOnWTixNHcjYnBzd2N994No9ADBZfYj57REREREZGnqljRYjxf5XnefLc7H/Tvy+L/LsVkMvHMM88mafv770eZPHk6s2bNZ+bMqVSrVoMlS1YBsP/gwXTLaenS1bz00svMWTifAR/2ZdzIUaxatwaANZ+to0Tx55gyYRJjR4xi7WfruHAhPEmMY8d+o0wZ6+l/a9asoG3b9nw8YSJN/t2YP06cSLec5dE0oiMiIiIiT907b75F6xYtOXDoIAcOHuTDjwYwfPhoateua9UuKKg8OXLkJEeOnABUqlQFgAIFCnL7dnS65FKtWk1LzICSpfDw8MDP14/bt28DcOjwYe7G3uWb7d8CcOfuXc6cOU3+/PdHZv7++yJ+fgVwdXW1il29ek0mTRpPpZAQqlSqRI1q1dMlZ0mdCh0REREReap+3beXO3fuULtmLcuzNFv/7//YvHljkkLHzc3N6rPRmP63rw/GfLhQAUgwmXi/53s8V/w5AK7fuMFzpa1Hbnbv3kW1ajWSHFu3bgPKl6/Ali8+Z9OXX7Bv/37Cur+TzmcgydHUNRERERF5qjw8PFi6fDkRkZEAmM1mzoefp1SpgAzOLHnBQYF8vXUrANeuX6PnB725dOmSVZs9e36matWkozVDhgzg2LHfeKlhI9q1eY3Tf555KjmLRnREREREsqzYu3f/94a09I/7KMGBQbRp1YqRY0eTkJAAQEj5CnTp8uZj9Td89Cjatm5DyRIlHuv41Lz2amtmz5tLWO/3MJlMdGzfgcKFnyE+3gTce610VFQUefLkTXJs+/admDBhFHfvxODq6kqXN9L/LXeSPBU6IiIiIlnUvbVu7r0G2mh0ITL8rE3H+RUuarnJf1z1/1WX+v9KOk0tPt7EunWbAShYsBCNG4da9u/cudfy9ZAhwy35Dh046JF9JcZLVLFiZSpWrAxgteZNkyZNeb5CsOXzpnXrAciePTsfvNcrxfju7u4prp1TsmQpFi1aZvO1lfSjqWsiIiIiIuJ0VOiIiIiIiIjTUaEjIiIikkWYzeaMTkHkkdLzZ1SFjoiIiEgW4OpqJC4uNqPTEHkkM2A0Jn3F9+NQoSMiIiKSBeTMmZsbNy4TG3tXIzuSKZnNZmLu3MbHxydd4umtayIiIiJZgKdnDgBu3rxCQkJ8kv0uLi5E3bpqU6z4iwZMJtveupbRcR0p18wQNyNzNZvN3Lp8kQqVq3D16m2b4j6KCh0RERGRLMLTM4el4HmYr68XMwfYtsZL2NhFXL4cZVPbjI7rSLlmhriZIddG/3nNpnap0dQ1ERERERFxOip0RERERETE6ajQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaejQkdERERERJyOCh0REREREXE6KnRERERERMTpqNARERERERGno0JHREREREScjgodERERERFxOip0RERERETE6ajQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaejQkdERERERJyOCh0REREREXE6KnRERERERMTpqNARERERERGno0JHREREREScjgodERERERFxOip0RERERETE6ajQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaejQkdERERERJyOTYXO5s2bady4MS+++CLLly9Psv/MmTO0b9+epk2b0qVLF27evJnuiYqIiIiIiNgq1UInIiKCKVOmsGLFCjZu3Mjq1as5deqUZb/ZbKZ79+5069aNTZs2UaZMGebOnWvXpEVERERERB4l1UJn165dVKtWjdy5c5M9e3YaNWrEli1bLPuPHj1K9uzZeeGFFwB4++23adeunf0yFhERERERSUWqhU5kZCS+vr6Wz35+fkRERFg+nzt3jnz58tGvXz9CQ0MZOnQo2bNnt0+2IiIiIiIiNjCm1sBsNifZZjAYLF/Hx8ezZ88eli1bRlBQEFOnTmXcuHGMGzfO5iTy5s1pc9vk+Pp6PdHxivt0YzpaXEfK1V5xHSlXR4vrSLnaK64j5WqvuI6Uq6PFdaRc7RXXkXK1V1xHytXR4mbmXFMtdPLnz8/evXstnyMjI/Hz83sgCV+KFClCUFAQAE2aNKFnz55pSuLq1WhMJuuCKi0nd/lylE3t0nrBnDGuI+WaWeI6Uq72iutIuWZ0XEfKNbPEdaRc7RXXkXLN6LiOlGtmietIudorriPlmtFxM2OuLi6GxxoYSXXqWo0aNfj555+5du0aMTExbNu2zfI8DkBISAjXrl3j+PHjAHz33XeUK1cuzYmIiIiIiIikF5tGdHr37k2HDh2Ii4ujZcuWBAcH061bN3r27ElQUBCffPIJgwYNIiYmhgIFCjBhwoSnkbuIiIiIiEiyUi10AEJDQwkNDbXaNm/ePMvX5cuXZ926dembmYiIiIiIyGOyacFQERERERERR6JCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaejQkdERERERJyOCh0REREREXE6KnRERERERMTpqNARERERERGno0JHREREREScjgodERERERFxOip0RERERETE6ajQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaejQkdERERERJyOCh0REREREXE6KnRERERERMTpqNARERERERGno0JHREREREScjgodERERERFxOip0RERERETE6ajQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOmo0BEREREREaejQkdERERERJyOCh0REREREXE6KnRERERERMTpqNARERERERGno0JHREREREScjgodERERERFxOip0RERERETE6ajQERERERERp6NCR0REREREnI4KHRERERERcToqdERERERExOkYMzoBEREREXFe8XGxhI1dZHNbkfSiQkdERERE7Mbo5s6ID76wqe2QyU2Au/ZNSLIMTV0TERERERGnoxEdEREREREBnGuqoQodEREREREBnGuqoaauiYiIiIiI09GIjoiIiIiDsXV6UWafWiRiTyp0REREsjhnmpOfVdg6vSizTy0SsScVOiIiIlmcM83JFxFJpEJHRERERMSONGqaMddAhY6IiIg4DN0wOp64uIT/jQTa1tYZadQ0Y66BCh0RERFxGLphdDxubq60Wt3dprZrWs+2czaSlajQERERERFBI4bOxqZCZ/PmzcyePZu4uDg6duxIu3btkm33/fffM2LECL777rt0TVJERERExN40YghxsfG2TzWMjbdzNk8m1UInIiKCKVOmsH79etzd3WnTpg1Vq1alRIkSVu2uXLnC+PHj7ZaoiIiII7HHOif6a7PIfVpLyD5czCa7tM0IqRY6u3btolq1auTOnRuARo0asWXLFsLCwqzaDRo0iLCwMCZPnmyfTEVERByIPdY50V+bHY+9ilNb/+qe2f/i/iS0lpB9uHq4p/GZqsx7bVMtdCIjI/H19bV89vPz4/Dhw1Ztli5dStmyZSlfvnz6ZygiImJHGiWxH0e6tvbK1V7Fqa1/SU/LX9wd6fslYotUCx2z2Zxkm8FgsHx94sQJtm3bxuLFi7l06dJjJZE3b87HOi6Rr6/XEx2vuE83pqPFdaRc7RXXkXJ1tLiOlKu94maGXNNyI+rr6/64KaUoM1wDe8V1pGub0blC2vK15a/ua1rPTlOujnYNMjKm4tovZnrFTbXQyZ8/P3v37rV8joyMxM/Pz/J5y5YtXL58mRYtWhAXF0dkZCRt27ZlxYoVNidx9Wo0JpN1QZWWk7t8Ocqmdmm9YM4Y15FyzSxxHSlXe8V1pFwzOq4j5ZpZ4jpSrvaK60i5ZnRcR8o1s8R1pFztFdeRcs3ouJkxVxcXw2MNjKRa6NSoUYMZM2Zw7do1PD092bZtGyNHjrTs79mzJz179gQgPDycDh06pKnIEREREbGVM70RSrIOe/3cOtJ0w4z43bVpRKd379506NCBuLg4WrZsSXBwMN26daNnz54EBQWlSyIiIiIiqXGmN0JJ1uHmbuSnZi1saltz42c2x3WkF5TY6xo8ik3r6ISGhhIaGmq1bd68eUnaFS5cWGvoiIiIXvsqduNMb4SSrCPhbqzNN+8Jd53z38WMuAY2FToiIiJpode+OhZNBxOxLxXoGXMNVOiISKbnSHOQxX70c2C/gkTTwcQRaS0hSY0KHRFJN462DoU4Fkf7ObDHTZi9ChL9tdl+NFpmP/ZYS0jfL+eiQkdE0o2j3Yjag6ONOjhavvaQ0aMkKkicm0bL7MfW34e0/C7o++VcVOiISJZlj5t8Ryv2HC1fe8joURIVJJmDvQpeRypONZrhWN8vSZ0KHRHJshzpJl8jL/ajGxsB/SUfdA3E+ajQERFxAI5UlIkkcqQRAhW8ugbifFToiGRRWudEROwtIxYIFBFJpEJHJIvSOiciYm9aJFHEvhxp1DQjqNARERERu9BUKBH70nNVj6ZCR0Qyvbi4BNv/YhWXYOdsREREMgf9MeHRVOiIZHJ62xa4ubmm8R9yyWj2WCxTUzRERCQtVOiIZHKO9LYtjbzoZjyRPRbL1BQNERFJCxU6IpJuNPLieDfjGb1IYlqmUmiKhoiIpIUKHRHJsuxxk2+vm3F7FY6gN74AACAASURBVCSOVpiJiIjYSoWOpAs9RyKOyJFu8u2Vq0ZJRETEWanQkXThSM+RgBbLBPs8LO5oHOkm35FyFRERyQxU6EiWZI/FMh1tVMseD4uLiIiIZBYqdCRTc6TiwdFGtezxsLiIiIhIZqFCRzI1RyseRERERCRzcMnoBERERERERNKbCh0REREREXE6mromksnZa/0UEREREWemER2RTM6R1noRERERySw0oiOSyWn9FBEREZG004iOiIiIiIg4HY3oZGKOtIaMniMRERERkcxEhU4m5khryDjacyS2FmYqykREREQcU5YqdBxphMRe7HUNHO05EluLrcxQlImIyP+3d+fhMZ7t//jfiYiqLrbgg/JRKkqpx07EUvsSEpRYgtS+pQ9iT33sQj1NK2rfY01IBKWIoE1DQrWPpYmtlgRNEEs2sl3fP/zMTyxZZuaaua/J+3UcPQ6Z5czZa84zmSv3PedNRJR/BWqjo9IREllUW4P09My8nxKXnpnnuHndmOVnU8bT94iIiIi0o0BtdGThkSJ5ChculM8jReaj2ul7RERERJaMGx0jUO0oCcmh2ul7RERERJaM46WJiIiIiMjicKNDREREREQWhxsdIiIiIiKyONzoEBERERGRxeFGh4iIiIiILA6nrmkYr8tCRERERKQfHtHRMF6XhYiIiIhIP5o9opPXi3Ba8gU4eV0WIiIiIiL9aHajk9eLcObnApw8FYxrQEREREQFQ4E6dY2ngnENiIiIiKhg0OwRHRlknQqm0lESng5HRERERAVBgTqiIwuPkhARERERaUuBOqIjC4+SEBERERFpC4/oEBERERGRxeFGh4iIiIiILA43OkREREREZHG40SEiIiIiIovDjQ4REREREVkcbnSIiIiIiMjiaHa8dF4vwmnuC3ASEREREZH2aPaITl4vrMkLcBIRERER0avydERn3759WLFiBdLT0zF48GD0798/2/0hISHw9fWFEAIVK1bEwoUL8eGHHxqUWF4vwskLcBIRERER0atyPaITFxcHHx8fbNu2DcHBwdi5cyeuXr2quz8pKQmzZs3C6tWrsXfvXtjb28PX11dq0kRERERERDnJdaMTHh6OJk2aoHjx4nj33XfRoUMH/Pzzz7r709PTMWvWLJQtWxYAYG9vj7t378rLmIiIiIiIKBe5bnTi4+NhZ2en+7pMmTKIi4vTfV2iRAm0bdsWAPD06VOsXr1a9zUREREREZE55PoZHSHEa7dZWVm9dltiYiJGjx6NGjVqwMXFJV9JlCr1Xr4e/yo7u/cNej7jmjamanFVylVWXJVyVS2uSrnKiqtSrrLiqpSranFVylVWXJVylRVXpVxVi6vlXHPd6JQtWxZnzpzRfR0fH48yZcpke0x8fDyGDBmCJk2aYPr06flO4sGDJGRlZd9Q5ed/7t69xDw9Lr8LZolxVcpVK3FVylVWXJVyNXdclXLVSlyVcpUVV6VczR1XpVy1ElelXGXFVSlXc8fVYq7W1lZ6HRjJ9dS1Zs2a4eTJk0hISEBqaioOHz6MFi1a6O7PzMzEyJEj0alTJ8yYMeONR3uIiIiIiIhMKU9HdMaPH4+BAwciPT0dvXr1Qp06dTBs2DB4eHjgn3/+wV9//YXMzEwcOnQIAPDZZ59h/vz50pMnIiIiIiJ6kzxdR8fJyQlOTk7ZbluzZg0AoHbt2oiOjjZ+ZkRERERERHrK9dQ1IiIiIiIi1XCjQ0REREREFocbHSIiIiIisjjc6BARERERkcXhRoeIiIiIiCwONzpERERERGRxuNEhIiIiIiKLw40OERERERFZHG50iIiIiIjI4nCjQ0REREREFocbHSIiIiIisjjc6BARERERkcXhRoeIiIiIiCwONzpERERERGRxuNEhIiIiIiKLw40OERERERFZHG50iIiIiIjI4nCjQ0REREREFocbHSIiIiIisjjc6BARERERkcWxMXcCRERERESkDWkZafDvsyLPj9UybnSIiIiIiAgAYGtji7/n98zTYz+esRvAM7kJGYCnrhERERERkcXhER0iIiIiIgIAZKWn/X9HavL2WC3jRoeIiIhIMXn9HIXWP0NB2mNd2BZOE4Pz9Nh9/+kOLZ+6xo0OERERkWLy+jkKLXyGwpI+3E5q4UaHiIiISDF5Pb0oP6cWydqQqPThdm7KLAs3OkRERESKyevpRfk5tUjWhkSlz3yotCkDuDHLDTc6RERERCRtQ6LSZz5U2pQB6m3MTI0bHSIiIiJSakMiC9dAHnMcfeJGh4iIiIhIQSodgTLH0SdudIiIiIiIFMQjUDnjRoeIiIiISCIODTAPbnSIiIhICr65I3qOQwPMc5odNzpEREQkBd/cEdEL5jjNjhsdIiIikkKlD0oTycReMA9udIiICjCeWiRPXtdWC+sqqw74QWmSSaUeYy+YBzc6REQFmI2Q81jK+2lb+TllS9aGhKeYkYpk9BhZFm50SNP412YiufhXRnnyeqpKfk5TkbUh4Wk1pCIZPUaWhRsd0jT+tZmIZDP3aVta2ECqtOHlH8DoBZV6jMyDGx3SNJV++RKRmlQ6bYtHXtR6vQBuzIjMiRsdItI8ld4opGWk5yPXdMnZUF6otHngH3/kvV6yfs7wzAQi8+FGh4g0T6U3CrY2hfP5RvSp3IQoV9w8qEXW6yXrSBHri8h8uNEhIs3jGwUikk2lI3tElDfc6BCR0ah0ihkR0cv4BxUiy2Nt7gSIyHKodIoZERERWTYe0SEio+FfROkFGVcs5xFDIiLKD250iIjI6GRcsZxHDImIKD+40SEqoGT8xV01Kh0hUClXQM4Vy3nEkIiI8oMbHSKNk3Vdlrz+xduS/zKu0hEClXIFeMVyIiIyP250qEBS6WiGrOuy8I2oWkcIVMqViIhIC7jRKWBknf6i2tXgZRzNUO3UIiIiIiJLxo2OEch6ky8jrqzTX1S7GryMoxmqnVpEREREZMnytNHZt28fVqxYgfT0dAwePBj9+/fPdn9UVBS8vLyQlJSEBg0aYPbs2bCx0d4eStaGRNabfBlxefqLPFxbIiIiIu3IdTcSFxcHHx8fBAYGwtbWFq6urmjcuDGqVaume8ykSZMwb9481K1bF9OnT4e/vz/69esnNXF9qHbUgYiIiIiI9JPrRic8PBxNmjRB8eLFAQAdOnTAzz//jLFjxwIAbt++jadPn6Ju3boAgB49emDp0qUGb3RU+rA4ERERERFpS64bnfj4eNjZ2em+LlOmDM6dO/fW++3s7BAXF5evJKytrV5PLB8fFn/T89+mTImieX6spcZVKVctxFUpV1lxVcpVC3FVylULcVXKVVZclXLVQlyVctVCXJVylRVXpVy1EFdruebne7zMSgiR45Zi5cqVSE1Nxfjx4wEAAQEBOH/+PObMmQMAOHv2LL799lts374dAHDz5k2MGDECP//8s14JERERERERGco6tweULVsW9+/f130dHx+PMmXKvPX+e/fuZbufiIiIiIjI1HLd6DRr1gwnT55EQkICUlNTcfjwYbRo0UJ3f4UKFVCkSBH8/vvvAIA9e/Zku5+IiIiIiMjUcj11DXg+XnrVqlVIT09Hr169MGzYMAwbNgweHh6oXbs2oqOj4eXlheTkZNSsWRMLFy6Era2tKfInIiIiIiJ6TZ42OkRERERERCrJ9dQ1IiIiIiIi1XCjQ0REREREFocbHSIiIiIisjjc6BARERERkcXhRoeIiIiIiCwONzpERERERGRxbMydQE5iYmJw/Phx3Lx5E1ZWVqhcuTJat26NChUqaC5uZGQkQkNDcePGDVhbW6Ny5cpo06YNGjRooLlcVYur2trKyFfWGiQnJyMiIiLbGjRr1gxFihQxKK6MfFWqWUCtupWVq4y46enp2L9//2txv/jiC3Tp0gWFCxfWK66sOpDVYwW9DmTGVWltZdSXrB5T6fWSEVfWugLqra2sfN9Ek9fRiY+Px4IFC3Dnzh3Uq1cP5cuXh42NDWJjY3H69GlUqFABU6dORbly5cweNyoqCgsWLEDJkiXRoEGDbDEjIiLw4MEDTJ8+HbVq1TJ7rqrFVW1tZeQraw1SU1OxbNkyHDlyBPb29tniRkVFoV27dhg9ejSKFStm9jVQqWZlrYGsfGXlKivu8ePHsWLFCtSvX18Xt3DhwoiNjcWpU6dw+vRpjBo1Cm3atMlzTFl1IKvHWAfsMUBefcnoMZVeL1lxZawroN7ayso3R0KDJk+eLK5cufLW+6OiooSnp6cm4np7e4uEhIS33n///n2xYMGCfMUUQq01kBVXtbWVka+sNRgzZow4ceKEyMzMfO2+zMxMERISIkaNGpXvuDLyValmhVCrbmXlKivuhg0bRFpa2lvvf/bsmVi/fn2+YsqqA1k9xjpgjwkhr75k9JhKr5esuDLWVQj11lZWvjnR5BEdIpJLCAErKyuDH0NkbikpKXj33XfNncZr2GMkkynr6+HDhyhRooTBcYjMQZlhBBMmTDA4RkZGBnbt2oX9+/cjPT0dc+bMgZOTE6ZNm4ZHjx4ZIcvnBgwYYLRYLzPGGiQmJmL+/PkYN24cgoODs933zTffGBz/ZYbmm5SUhB9++AGrVq3C48ePMWLECPzrX//CwIEDcfv2bb3jmqoOADm1YIyYb/rl5+3tnetjcnP37l2MHj0aPXr0wPLly5GZmam7b8SIEflPFPJqVvU6ALTbY7Livkn//v0Ner6s+rKyssLJkyfxxx9/AADWrVuHkSNHYtmyZUhLS9M9xhgMrQMZfQvIqwNZ+ar0HiEzMxObNm2Ct7c3Tp8+ne0+X19fAPr/DJ80aRJmzpyJmJgYODk5oXPnzmjXrh2io6P1ylXW66XS74bo6Gh0794djRs3xvTp05GUlKS7z8XFRe9cZfWYrLWVVQs50eQRHTc3t9ca9MKFC/jss88AAJs3b9Yr7tSpU5GSkoK0tDQ8evQIderUQe/evXH06FFcvHgRS5cuzXfMN51PGRcXh7JlywIAjh49qleustZg7NixqF69Ouzt7bF69WrUrFkTc+fOBfC82YKCgjST78iRI1GlShWkpqbi5MmT6Nu3L/r06YOQkBAEBQVh/fr1euUqow4AObUgq76mTZv22m2hoaH44osvAAALFy7UK667uzu6du0Ke3t7LFu2DJmZmVixYgVsbGzg7OyMPXv25DumrJpVqQ4AtXpMVtzatWsjIyMDwP//1+oXv8KsrKwQFRWV75iy6mvx4sU4c+YMMjIyULFiRVhZWaFHjx4IDQ1FZmYm5s2bp1dcGXUgo28BeXUgK1+V3iNMnz4dWVlZqF69OrZs2YLevXtj5MiRAAyr24EDB6J9+/ZISUnBxo0bMWvWLLRv3x6///47/vOf/2Dbtm35jinr9VLpd4Orqyv+/e9/w97eHj/88APOnTsHPz8/FCtWTJM9JmttZdVCjox6IpyRbNmyRbRo0UIEBgaKiIgIcerUKdGuXTsREREhIiIi9I7btWtXIYQQGRkZwsHBIdt93bp10yvmsWPHRKdOncRPP/0kYmNjRUxMjOjcubOIjY0VsbGxeucqaw26d++u+3dqaqpwc3MTCxcufO0+LeT7cj7NmzfPdp++r5cQcupACDm1IKu+vL29RZMmTcTGjRtFYGCgCAwMFK1atdL9W1/Ozs66f2dlZYnx48eLf//730II/etLVs2qVAdCqNVjsuJevHhRuLq6ikOHDr3xe+lDZn1lZmaK1NRU0ahRI935+VlZWcLJyUnvuDLqQEbfvvpcY9aBrHxVeo/wcg09ePBAODk5iQ0bNgghjPeaOTo6ZrtP3zUwRX1p/XfDq/l4e3sLNzc3kZaWpskek7W2smohJ5o8da1///5Yt24ddu3ahTt37qBx48YoVqwYGjVqhEaNGukd19raGtevX8fFixeRmJiI2NhYAEBCQoLur4T51apVK/j5+WHv3r0ICgpC+fLlYWtriwoVKhg0fk/WGgDAvXv3AADvvPMOfvzxR4SHh2PlypUGnUYhI18bGxuEhYXh4MGDSE5OxoULFwAAN27c0DtPQE4dAHJqQVZ9TZkyBd999x0OHDiA8uXLw8XFBR9++CFcXFwMOoxeqFAhXLlyBcDzv7AvWrQICQkJmDlzZrZD1Pklo2ZVqgNArR6TFbdmzZrYsGEDwsPDMW3aNCQnJxvl9C8Z9SWEQGJiIh4+fIinT5/qTlV5+vQp0tPT9Y4row5k9a2sOpCVr0rvEYQQSElJAQCULFkSa9aswebNm7Fv3z6D6va9997Djh07sHbtWmRmZuLYsWMAgLNnz+o9slrW6wWo87uhWLFiOHHihO4I9JQpU2BnZ4dx48YhNTVV71xl9RggZ21l1sJbSdk+GcmzZ8/EwoULxbhx40Tnzp0Njvfrr7+Kli1bCkdHR3HkyBHRsWNH4eHhIVq3bi2CgoIMjr9582YxYMAA0aFDB4NjvWDsNThy5Iho3ry5CAkJ0d0WHx8vXFxcxKeffmpwfGPme/HiRdGvXz/h6uoq/vzzT9GlSxfRs2dP4eDgIH755Re948quAyHk1IKMmA8fPhQeHh7C29tb91csQ5w5c0a0bt1a7N27V3dbcnKyGDVqlKhRo4ZeMWXVrKp1oEKPyYr7sqNHj4pevXqJdu3aGRRHVn3t2bNHNGrUSDRs2FD4+fkJZ2dnsWjRIuHs7CzWrFljUM5CGLcOZPStEPLqQFa+Kr1H2LFjh2jfvr0IDw/X3Xb16lXRqlUrUbt2bb3jxsbGikmTJomJEyeKW7duib59+4rGjRuLli1binPnzukVU9brpdLvhqtXr4q+fftme35GRoaYN2+eqFmzpt65yuoxWWsrqxZyoumNzgthYWFi2rRpRo977949cfDgQXH16lWjxbx06ZJYunSp0eK9YMw1SExMFA8fPsx2W2Zmpjhy5IhR4gsh5zV7+vSpOHfunHj8+LFR48qoAyHk1IKs+vL39xfu7u5Gi/fs2bPXbvvrr7/0jmeKmlWpDoRQq8dk9q6/v7/BcWTVV2pqqkhKShJCCBEdHS3Wrl0rwsLCDIr5KmPWgbH79lXGrgPZ+Wr9PcL169fF7du3s92WmJioO4XNWB48eGCUODJeL5V/N7xgrPUVwrg9JnNtZffuyzQ5jICIiIiIiMgQNuZOgEzr1TGUr2rYsKGJMiFLlNvEFGdn53zHZM2STKwvOX0rk2r5ynDnzp0c7y9fvryJMsmdrNdLpd5dtmxZjvePHTvWRJnkjay1NUfvcqNTwPz444/4888/UadOHbx6MM/KykrvsdVEAHDq1CkcOnQIHTt2fOP9+vwQY82STKwvOX0rk2r5yjBixAjcuHEDZcqUeWPd6ju2WgZZr5dKvZuZmYmNGzfC3d0d1taanAOWjay1NUvvSjkhTqL4+HjdOc9aj3vhwgUp53QakmtaWppwdXXN9gEz2QrK2uZERr6y1sBQI0aMEAEBAUaLZyk1K4RadSsrV1lxQ0NDxfHjx3VjnPPKHPUliyF1YOy+zY2hdWDqfLXWY4mJicLJyUmcOXPGqDnlRN8eE0LO66Xa74bp06eL1atXGzmjtzOkvmSural7t9CsWbNmGX/7JE///v1x584dPHr0CNWrV9d0XC8vLwBATEwM7O3tjRITMCzXQoUKoX79+ggNDUWzZs2MllNOCsra5kRGvrLWwNnZGRcuXEBWVhY+/vjjfD+/UaNGOHfuHOrVq2eUfCylZgG16lZWrrLirlu3DpUqVcK1a9dQrVq1PD/PHPVlaI+9jSF1YOy+zY2hdWDqfLXWY7a2tqhVqxYCAwN1F3qWTd8eA+S8Xqr9bmjcuDHi4uJQo0YNSdllZ0h9yVxbU/cuhxEQUTbx8fEoU6YMUlNTUbRoUXOnQ2Rx2GNERKah2RMFo6KiEBoaisTExGy3v7h4ldbivmz9+vVGiWOKXI2Ja/s6Y+QbEhICPz8/3Lp1K9vtO3fuNChuQkICLl26hKysrGy3v7hIWEF4A6ZSHQBq9Zisun2Vt7e3UeMZk6l6bP/+/UaJYwrGqi9ZVOoxU9Fyj5kKe0xdmhxGsGnTJvj7++Ojjz7CN998gyVLlqBp06YAgKVLl6J169aaifumSRo7duzQXbFY30kastZAFq6tnHyXLFmCCxcuoGrVqlixYgWmTJmC7t2762L36dNHr1wPHDiAhQsXonjx4khLS4Ovr6/uMLyXlxeCgoL0iqsSlepAVr6ycpVVt9OmTXvtttDQUDx+/BgAsHDhQr3iyiCrx940tWjp0qW6K7Zr6YP4supLFpV6TBaVekwW9phl0eRGZ9euXdi1axeKFi2Ks2fPwsPDA99//z0aNGjw2vQHc8e9fPkyIiMj4erqChsb4y2nrDWQhWsrJ98TJ04gKCgINjY2cHNzw1dffQVbW1t06tTJoFxXrlyJ4OBglCxZEgcOHMCQIUOwYcMGVKtWTZP1JYNKdSArX1m5yqrb4sWLY8+ePRg5ciQ++OADAM+n+DRq1MhYqRuNrB7bsWMHbty4ke1Nd3JyMiIiIgBo602YrPqSRaUek0WlHpOFPWZhTDb2IB+6du2a7euIiAjh4OAgLl26JJydnTUXNyAgQPTv31833aJ79+56x3pBVq45MWSaCNf2OWPn26VLF5GRkaH7+vLly8LBwUGcOnXKoFydnJyyfX3gwAHRunVr8c8//0irLxnTtrRYs0KoVbcycpVVt0IIER4eLnr37i1OnTolhDBOvm9jSH3J6rGMjAzx/fffizFjxuiuqC5zDQztWxn1lRND8lWpx2QyZY9pcRKlqXvMkGl2Qpi+vlSbSqrJqWuXL19GcHAwPvnkE5QsWRIVKlRAxYoVMX78eDx58gRDhw7VVNyaNWuifv36mDlzJlJSUvDXX3/B1dVVr1iyc82JIdNEuLZy8k1ISMDSpUvxySefoGzZsihVqhQ+//xzeHh4ICEhASNGjNArbkREBM6dO4eqVavivffewyeffAJra2vMnDkTiYmJ+Oqrr/TO+W1kTNvSYs0CatWtjFxl1S0AfPTRR2jXrh18fX1x7tw53Lx5E/369TMo37cxpL5k9Zi1tTWaNGmCsmXLYvr06ShdurTuL7oyGNq3MuorJ4bkq1KP5cTQqX6m7DEtTqI0dY8ZMs0OMH19qTaVVJNHdDIzM4W/v7/473//m+32//73v2LUqFGai/tCRkaG+O6770THjh0NjiU7V2Pj2mZnzHzDw8Nf+yvHnTt3xLx58/SOmZycLHx8fER4eHi2248cOSK6deumd1yVqFYHKvWYEHLq9lX+/v7C3d3daPGMyRQ9lpiYKCZNmiQcHR2NEk8mY9eXDKr12NvExcUJIYRISUkxOJaWe8wU2GPq43jpAigqKgp3795Fw4YN8f777+tuP3bsmOaGHJD61q9fb/ARItYsyaR6fSUnJ6NYsWJGjWmMvpUpJCQEd+/eRcuWLVGpUiXd7Tt37tR72IVqEhIScO/ePd3RwhcuXryIWrVqmTGz3BmrvkzVuzJ6zNvbG1OnTjVqTJn279+Prl27Gj2u7J813OgUMC9PlTl//ny2qTIuLi4FYtoWyfO2CTAvDqPrMwGGNUsysb7k9K1ML0/1O3jwYLapfgXlNctpqp/W1kBWfanUu2+bZvfiYq9am2b3tslzHh4eAPQfyGCOnzUc0VDAqDbNjdQiYwIMa5ZkYn2pN7lJ1lQ/lag0OVOlSZSyqDbNTtbkObP8rDHXOXNkHuaY5kYFi7EnwLBmSSbW13MqTQaTOdVPFeaYnGkIlSZRymLKaXaGkjl5ztQ/azQ5dS0nw4cPx+nTp/H++++jfPnymo6rxVzNMc2toKytqeMaOlnnbby8vBAWFob/+Z//QalSpfL9fGNPgLGUmlUtrqxcZdWtvnHNUV+G9piMuKae3GRIfcmc6icjXxkxzTE505DeVWkSZU4M6TFTTrMDDKsvmZPnTP2zRrkjOufPnxdCCHH37l3Nx9ViruaY5lZQ1tbUcY05WedlR48eFWlpaSIqKsqgOMaaAGMpNataXFm5yqpbfeOao76M1WMy4ppqcpOh9WWKqX4v01qPmWNypjF6V6VJlG9irN41xTQ7Y9WsrMlzpvpZw2EEGiaEQHJyMt57771st9+7dw92dnZmyipvnjx5gpiYGHz88ccoWrSoudN5jay1NcVrFhkZadTzejMyMnDt2jXY2NigatWqRourGlk1KytuUlISrl+/jipVqrxWb/lhqp8zxq5b2XGNSVaPqda7Wv+98Cpj9ZjsmLKp0GOyqNZjMutLxuQ5k5C6jSK9nTx5Ujg4OIiGDRuKgQMHin/++Ud3nxbPPY2KihJ9+vQRI0aMEGFhYaJp06aiZ8+eolWrVuLs2bPmTi8bWWsrI25kZORr/7Vv3173b30NGTJECCHEpUuXRNu2bUX37t2Fk5OT6Nq1q7h8+bLecVUiq2ZlxQ0LCxMtWrQQV69eFadOnRIODg6iV69ewsHBQRw/flyvmLJ6QVbdyoorg6weU6l3Vfq9IIScHpMRUyaVekwWlXpMtfoyB01udAYNGiTc3Nze+p+W4srK1cXFRfz9998iMzNTrFq1SrRt21Z32FiLH2Dr06eP+OWXX8TWrVtFnTp1dId1r1y5Inr37q1XTNXWVkbctm3bikaNGgk3NzcxYMAAMWDAAFG3bl0xYMAAg9bgxZvYQYMGZfthGBERIXr16qV3XJXIqFmZcbt27SquXLmi+x7R0dFCCCFu3br12ody80pWL8iqW1lxZZDVYyr1rqxekEVGj8mIKZNKPSaLSj2mWn2ZgybnSA4bNgwTJkzA/PnzdWP4tBpXVq5ZWVmoUqUKgOcfKLO1tcWQIUOwfft2WFlZGe37GEtqaiocHR0BAH5+fqhRowYAoFq1anj69KleMVVbWxlxg4KCMHfuXLz//vuYPHkybG1t4ezsDD8/P73zfFliYiJaP/dWrAAAEttJREFUtmyp+7pRo0Z6v16qkVGzMuPa2NigWrVqAID09HTY29sDeP4BV6HnGciyekFW3cruBxlk9ZgKvSurF2SR0WMyYsqkYo/JokKPqVZf5qDJqWuVKlVCoUKF8Oeff8LNzQ0VKlTI9p+W4srKNSQkBImJiahSpQqKFCmCunXrIjY2FsuXL8fDhw8xaNAgvWO/jSETOg4fPoy0tDTUqlULAwYMAACkpKRg69atuH//vu5ibvmh2trKiGtra4t27dohKSkJs2bNQs2aNREaGmrwhJLFixfjzp07ePToEbKyslCrVi08fvwYW7duxYMHD/R6vXKjtalFMmpWZtyrV69i7969+N///V988MEHOHLkCEqWLInNmzfj3XffRbt27fIdU1YvyKpbWXHfxpD6ktVjpu5dLfZYTgyZDCajx2TEzI0hk8FU6jFZcU3dY1qr2dzImhopqxY0eeqaEEJkZWXpDsdpPa6MmPHx8cLT01McOXIk2+0bNmwQDRs2NOr3esGQCR1xcXFi6tSp2W47fvy4+Prrr0V8fLzeOam0trJfs9u3bwt3d3fRqlUrg2PduXNHHDp0SCxZskT4+voKIYTw8/MT48aNy/Y5DWPS2tQiWTUrK25aWpr48ccfRdeuXUWdOnVErVq1RKtWrcTs2bNFYmKiXjFN8XPGmHVrirgvM6S+ZPWYqXtXiz2W2/cUQr/JYDJ6TEbM3BhrMpjWe0xWXFP3mNZqNjeypkbKqgVNTl179uwZihQpYvBjTBFXpVxl4tqaZg2EEPj777+zTX/RSq4yCQmTwVSqA1lxTZWrrLo1VtyXGWsymEp1AKjVY29ijMlgKvXYy4w5GUylHnuVsSaOmaputVqzr5I5ec4kUwiNum0ykrFjx4qdO3e+cTeamJgotmzZIkaPHq2JuCrlKhPXlmsgi6zJYKqtLetLTlxZk8FUWgPVekzWZDCVekzWZDCVekzWxDEZa6BSzQohr77MMSVOk0d0srKysH37dvj5+eGDDz5AuXLlUKhQIdy+fRuPHj3CwIED4erqChub/M1SkBFXpVwBYPDgwcjKynrr/Zs3b85XPJn5qra2XAM59dWjRw/85z//QeXKlbF27VoEBARg69atKFOmDJydnbFnz558xwTUW1vWl5y4rq6uGDNmDGJiYrBo0SLs3LkTNWrUwNWrVzFjxgzs3LkzXznKzFVWXNV6rF27dnjy5Ans7e11H7i+cOECPvvsM1hZWRWI32MuLi4ICgrC4MGD4e7urvvQfGRkJL799lsEBATkK57MfGX1mJOTE3x8fFCtWjW4urpi9uzZsLe3R0xMDEaPHo19+/bpFVfGGqhUs4C8+pL1muVEkxudl0VHR+PGjRuwtrZGpUqVdFNbtBhXhVx/++23HCeZGeOiYAV1bWXHVSFXGfX16hutjRs3Yvfu3di+fTvc3NwQFBSkd74vqLC2suOqlKsx43bv3h3BwcEAgE6dOuHgwYNvvE8LucqKq1qPJSUlvXEymL4bMtn5yoj54o1oz549sXv37mz3OTk5GeUNo9Z77MUaAHhtHbp27Yr9+/frFfdlxloD1WpWVn2Z4jV7leY3OmR869evx/Xr1zF37lxzp0IWyNj1NXToULRu3RrdunXD+++/D+D5VJzTp0/jwYMHCA0NNcr3oYLJ3d0dnTp1Qu/evXW3paSkwN/fH7/++ivWrVtnxuxMQ9UeO3DgADZv3oyZM2dixowZRtmQqaJevXpwcnLC5cuX4eLigt69e+Px48fYtWsXfvvtN6xfv97cKerI6rF58+bh0aNHGD58OCIjIxEXF4cuXbrgwIEDiIuLw6JFi4z1v2A0qtSsrPoyx2vGjU4BJITAtWvXdLPXiYzJ2PV17949LF68GB06dEDbtm11t2/cuBHLly9HZGSkUb4PFUzx8fHw8fHBwoULdbedOHECQUFBmDFjht4fxFeJyj12584deHl54fr16zh27Ji50zGZu3fv4vz58zh//jyKFCmCsWPHYsuWLYiMjMSMGTNQtmxZc6eoI6vH0tPTsWbNGhw8eBC3bt1CZmYm7Ozs0Lp1a0yYMEHeh9sNpELNyqovc7xm3OgUMKpN2yK1qDq1iAou1pd6a2CKyWBap9JrptoEQhlUq1lLes2sjRaJlODp6Ql/f38kJSW9dl9SUhK2bt2KCRMmmCEzsgQy6os1SzKxvtRbg1fztbKy0r1h1GK+Mqj0msnKVeU10HrNWtJrxiM6BYysCR1EgFpTi4gA1heg3hqolq8MKq2BShMIZVEpV8CyXjNudAowWZOAiADtTy0iehXrS701UC1fGVRaA61PIDQFlXIF1H/NuNEhIiIiIiKLw8/oEBERERGRxeFGh4iIiIiILA43OkREREREZHG0Md6BiEghsbGxaNOmDebNm4cvv/xSd/u6detw5coVeHt75ylOQkICmjZtikuXLhmc0+rVq/HTTz8BAG7duoUSJUrornLv6+uLSpUq5SteeHg4Fi1ahODg4Hw9b/To0Zg4cSK8vLxga2uLDRs2wNr6+d/U7t27h5YtW+Kvv/7KV8whQ4agW7du6N69e54ef+nSJUyePBkA8PjxYyQmJqJixYoAgJ49e+LBgwdISUnBjBkz8pWHvmbOnIly5cph9OjROT4uJCQEf/75JyIiIpCWlob09HRcv34d1atXBwDY29tj8eLF+f7+48ePR/369TFgwAC98iciUhU3OkREerC2tsaiRYvQoEEDVKlSxdzpYPjw4Rg+fDgAwM3NDf3790fHjh1NmsPTp09x9+5d3fUhzp49i7Vr1+ryMhV7e3vdBi0gIADHjh3D8uXLdff7+PiYNJ+8Onr0KPr06QNPT08AwM2bN9GzZ898bzaJiOg5bnSIiPTwzjvvwN3dHRMnTsSOHTtga2uruy8xMRGzZ89GdHQ0rKys4OjoiAkTJsDGxgaHDx+Gj48PihYtis8++yxbzICAAGzfvh1ZWVkoXrw4vvnmG1StWhVnzpyBt7c3srKyAAAjRoxAhw4d8pVvSEgI1qxZg/T0dCQkJKBnz54YN24ckpKSMG3aNNy6dQvW1taoXbs2Zs+ene25kZGRmDJlCnx8fFCtWrU3Pt7KygphYWFo1qyZ7nljxozBqlWr0KRJE9SpU+e1nLZt24Zt27bB2toadnZ2mDlzJipXrox//vkHU6ZMwYMHD1C+fHkkJCTonnPlyhXMnz8fT548QWZmJgYPHgwXF5d8rQUAXLt2DW5ubrh37x7s7Ozg4+OD0qVLo0WLFqhfvz6io6MxadIkfPrpp5gzZw7i4uKQnp4OJycn3cbtxx9/xLFjx/Ds2TOkpqZi2rRpaNOmDRITEzFjxgxcvnwZdnZ2sLa2Rrly5QAAW7Zsgb+/PwoXLox33nkHc+bMQdWqVZGZmYkLFy5gwYIFOeadkZGB+fPn48KFC0hKSoK1tTUWLlyIOnXq4OTJk1iyZAleDFMdM2YM2rRpo3uuEAJz5sxBTEwMfH19UbRo0XyvGxGRSvgZHSIiPY0aNQpFixZ97QjBvHnzULx4cezbtw+7d+/GpUuXsH79ety/fx/Tp0+Hr68vAgMDUaFCBd1zIiMjsWfPHmzduhV79uzB0KFDMW7cOADPTz1zd3dHYGAgFixYgFOnTuUrz6ysLGzcuBFLlixBYGAgtm/fjuXLl+Px48c4dOgQ0tLSEBwcjICAAGRkZCA2Nlb33PDwcHh5eWHVqlWoW7dujo8/evQo2rZtq3tutWrVMHHiRHh6eiI5OTlbTmFhYdi0aRM2b96MvXv3omPHjhg7diwAYNasWWjYsCH279+PqVOn4u+//wYApKen4+uvv8bUqVMRGBgIPz8/rFq1CufPn8/XegBATEwMli5dip9//hnvvvsudu/erbuvRo0aOHjwIL744gt4enrC1dUVgYGBCAgIwC+//ILDhw8jJiYGp0+fxtatW7Fv3z6MGzcOvr6+AIDvv/8exYoVw8GDB+Hj44Nr167p8vf29sbGjRuxe/du9OzZE2fPngXw/OjXv/71L1hZWeWY9++//44nT57A398fBw8eRMeOHbF27VoAwA8//IBRo0YhMDAQs2fPRkREhO55WVlZ8PLywqNHj7BixQpucoioQOARHSIiPVlbW+Pbb7+Fi4sLmjdvrrv9l19+wfbt22FlZQVbW1u4urpi06ZNqFy5MqpXr45q1aoBAPr06YPvvvsOAHD8+HHcvHkTrq6uujiPHz/Go0eP0KlTJ8yZMwehoaFo1qwZJkyYkO88V65ciePHjyM4OBhXr16FEAJPnz5Fw4YN8cMPP2DgwIFo1qwZhgwZgo8++ggxMTG4c+cORo0aBTc3N93nRN72+BdHJObPn5/te/fr1w9hYWGYO3cuJk6cqLv9119/RZcuXVCyZEkAwJdffokFCxbg7t27CA8PxzfffAMA+Pjjj9GoUSMAz4/CxMTEYMqUKbo4aWlpiIqKQu3atfO1Js2bN0eJEiUAPN/YPHjwQHdf/fr1AQBJSUk4e/YsvvvuO93rlJKSgqioKLRv3x4LFizA3r17cfPmTfzxxx9ISUkB8Hxz+OIoV+nSpXWbv8KFC6Ndu3b48ssv0apVKzRv3hwtW7YE8PyI28tHX96mcePGKFWqFLZt24Zbt24hIiICpUuXBgB07twZM2bMwKFDh+Dg4AAPDw/d81avXo2EhATs378fhQsXztdaERGpikd0iIgMUL58ecyaNQtTpkzBw4cPAUB3itkLWVlZyMjIgJWVFV6+RrONjU22x3Tv3h3BwcEIDg5GUFAQdu/ejQ8//BCurq7Yu3cvHBwcEBYWhm7duiExMTHPOSYlJcHFxQXR0dGoVasWpkyZgkKFCkEIgUqVKuHIkSMYOnQonjx5gkGDBuHIkSMAnr8x37BhAwICAnDhwgUAeOvj//jjD9StW1c3eOBl8+fPx2+//YYDBw5k+/99mRACQog3rlOhQoV0zylevLhujYKDg7Fz5848Dyl42ctr/+L7v1CsWDEAQGZmJoDnpxS+/P2GDRuG8+fPo2/fvkhOTkbz5s0xdOhQXYycXmcfHx8sX74cH330EVauXImvv/4aAHDq1Ck0bdo017wPHz6MMWPGwNraWrdpevG9Bg4ciODgYDRu3BihoaHo3r27bvPl4OCAiRMnYtq0abr/LyIiS8eNDhGRgTp16oQWLVpg06ZNAJ4fLdi6dSuEEEhLS4O/vz+aNWuGBg0a4OrVq4iOjgYABAYG6mI4ODjgp59+Qnx8PABg+/btGDRoEADA1dUVUVFR6NGjB+bOnYsnT57g8ePHec7v+vXrSE1Nxddff43WrVvj5MmTyMjIQGZmJvz8/PDNN9/A0dERkydPRpMmTXDlyhUAgJ2dHerVqwdPT09MmjQJT58+fevjczoiUaJECSxevFh3VOTFGv3000+6zWFAQADKlCmDihUrwtHREf7+/gCeT7g7ffo0gOenwllbW+umy92+fRtdu3bVraexffjhh6hVqxY2btwI4PkRtj59+uD48eOIjIzE559/jsGDB6Nhw4YICQnRbSAcHR2xa9cuZGVl4dGjRwgNDQUA3L9/H61atUKpUqUwePBgeHh4IDo6GpcuXULlypWzfc7rbcLCwtC+fXv07dsXtWrVwtGjR3Wbxh49euD69evo1asX5s6diwcPHiApKQkAULt2bbi7u+uO7hERFQQ8dY2IyAi8vLzw+++/6/49b948ODk5IT09HY6Ojhg5ciRsbW2xZMkSeHp6onDhwmjYsKHu+Y6Ojhg2bBi++uorWFlZ4b333sOyZctgZWUFT09PLFiwAN9//z2sra0xduxYVKxYEefPn4eXl1euU7lq1qyJ5s2bo1OnTvjggw9QuXJlfPzxx7h16xZcXFxw+vRpdOnSBe+88w4qVKiAAQMG6I7gAM9PKzt8+DC+/fZbjB8//o2Pd3Nzy/GUuqZNm8LNzQ3r168HALRs2RI3btyAm5sbhBAoWbIkVqxYASsrK8yaNQvTpk1D586dUa5cOXz66acAAFtbW6xYsQILFizAypUrkZGRgYkTJ+Lzzz8H8HwM9cCBA3WngxmDj48P5syZg3379iEtLQ3Ozs7o3Lkz4uPjERISgi5dusDGxgZNmzbFw4cPkZKSAg8PD/zf//0fOnXqhFKlSulO+ytdujSGDRsGNzc3FC1aFDY2NpgzZ85rn23KSf/+/TFp0iScOHEChQoVQr169XD8+HEAwOTJk3Wjza2treHp6YkyZcronvticEGvXr3QsmXL14ZhEBFZGivx8vF1IiJSyvDhw7F69Wpzp6EJ27ZtQ7ly5fDFF1+YOxUiItIAnrpGRKSouLg49OvXz9xpaIatrS1atGhh7jSIiEgjeESHiIiIiIgsDo/oEBERERGRxeFGh4iIiIiILA43OkREREREZHG40SEiIiIiIovDjQ4REREREVmc/weSdq4kXX+uWwAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 1008x432 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_multind[[\"Unaccounted Time / s\", *cols]]\\\n", " .divide(df_multind[\"Runtime Program / s\"], axis=\"index\")\\\n", " .plot(kind=\"bar\", stacked=True, figsize=(14, 6), title=\"Relative Time Distribution\");"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## Next Level: Hierarchical Data\n", "\n", "* `MultiIndex` only a first level\n", "* More powerful:\n", " - Grouping: `.groupby()` ([API](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html))\n", " - Pivoting: `.pivot_table()` ([API](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot_table.html)); also `.pivot()` ([API](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot.html))"]}, {"cell_type": "code", "execution_count": 97, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>Min. Init. Time / s</th>\n", " <th>...</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " <th>Unaccounted Time / s</th>\n", " </tr>\n", " <tr>\n", " <th>Nodes</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>5.333333</td>\n", " <td>3.0</td>\n", " <td>8.0</td>\n", " <td>185.023333</td>\n", " <td>10.0</td>\n", " <td>True</td>\n", " <td>0.220000</td>\n", " <td>42.040000</td>\n", " <td>42.838333</td>\n", " <td>0.583333</td>\n", " <td>...</td>\n", " <td>7.226667</td>\n", " <td>132.061667</td>\n", " <td>4.806585e+07</td>\n", " <td>816298.000000</td>\n", " <td>7.215000</td>\n", " <td>112500.0</td>\n", " <td>1.265738e+09</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>2.891667</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>5.333333</td>\n", " <td>3.0</td>\n", " <td>8.0</td>\n", " <td>73.601667</td>\n", " <td>10.0</td>\n", " <td>True</td>\n", " <td>0.168333</td>\n", " <td>19.628333</td>\n", " <td>20.313333</td>\n", " <td>0.191667</td>\n", " <td>...</td>\n", " <td>2.725000</td>\n", " <td>48.901667</td>\n", " <td>4.975288e+07</td>\n", " <td>818151.000000</td>\n", " <td>7.210000</td>\n", " <td>112500.0</td>\n", " <td>1.265738e+09</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>1.986667</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5.333333</td>\n", " <td>3.0</td>\n", " <td>8.0</td>\n", " <td>43.990000</td>\n", " <td>10.0</td>\n", " <td>True</td>\n", " <td>0.138333</td>\n", " <td>12.810000</td>\n", " <td>13.305000</td>\n", " <td>0.135000</td>\n", " <td>...</td>\n", " <td>1.426667</td>\n", " <td>27.735000</td>\n", " <td>5.511165e+07</td>\n", " <td>820465.666667</td>\n", " <td>7.253333</td>\n", " <td>112500.0</td>\n", " <td>1.265738e+09</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>1.745000</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5.333333</td>\n", " <td>3.0</td>\n", " <td>8.0</td>\n", " <td>31.225000</td>\n", " <td>10.0</td>\n", " <td>True</td>\n", " <td>0.116667</td>\n", " <td>9.325000</td>\n", " <td>9.740000</td>\n", " <td>0.088333</td>\n", " <td>...</td>\n", " <td>1.066667</td>\n", " <td>19.353333</td>\n", " <td>5.325783e+07</td>\n", " <td>819558.166667</td>\n", " <td>7.288333</td>\n", " <td>112500.0</td>\n", " <td>1.265738e+09</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>1.275000</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>5.333333</td>\n", " <td>3.0</td>\n", " <td>8.0</td>\n", " <td>24.896667</td>\n", " <td>10.0</td>\n", " <td>True</td>\n", " <td>0.140000</td>\n", " <td>7.468333</td>\n", " <td>7.790000</td>\n", " <td>0.070000</td>\n", " <td>...</td>\n", " <td>0.771667</td>\n", " <td>14.950000</td>\n", " <td>6.075634e+07</td>\n", " <td>815307.666667</td>\n", " <td>7.225000</td>\n", " <td>112500.0</td>\n", " <td>1.265738e+09</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>1.496667</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>5.333333</td>\n", " <td>3.0</td>\n", " <td>8.0</td>\n", " <td>20.215000</td>\n", " <td>10.0</td>\n", " <td>True</td>\n", " <td>0.106667</td>\n", " <td>6.165000</td>\n", " <td>6.406667</td>\n", " <td>0.051667</td>\n", " <td>...</td>\n", " <td>0.630000</td>\n", " <td>12.271667</td>\n", " <td>6.060652e+07</td>\n", " <td>815456.333333</td>\n", " <td>7.201667</td>\n", " <td>112500.0</td>\n", " <td>1.265738e+09</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>0.990000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>6 rows \u00d7 21 columns</p>\n", "</div>"], "text/plain": [" id Tasks/Node Threads/Task Runtime Program / s Scale \\\n", "Nodes \n", "1 5.333333 3.0 8.0 185.023333 10.0 \n", "2 5.333333 3.0 8.0 73.601667 10.0 \n", "3 5.333333 3.0 8.0 43.990000 10.0 \n", "4 5.333333 3.0 8.0 31.225000 10.0 \n", "5 5.333333 3.0 8.0 24.896667 10.0 \n", "6 5.333333 3.0 8.0 20.215000 10.0 \n", "\n", " Plastic Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "Nodes \n", "1 True 0.220000 42.040000 \n", "2 True 0.168333 19.628333 \n", "3 True 0.138333 12.810000 \n", "4 True 0.116667 9.325000 \n", "5 True 0.140000 7.468333 \n", "6 True 0.106667 6.165000 \n", "\n", " Max. Edge Build Time / s Min. Init. Time / s ... Presim. Time / s \\\n", "Nodes ... \n", "1 42.838333 0.583333 ... 7.226667 \n", "2 20.313333 0.191667 ... 2.725000 \n", "3 13.305000 0.135000 ... 1.426667 \n", "4 9.740000 0.088333 ... 1.066667 \n", "5 7.790000 0.070000 ... 0.771667 \n", "6 6.406667 0.051667 ... 0.630000 \n", "\n", " Sim. Time / s Virt. Memory (Sum) / kB Local Spike Counter (Sum) \\\n", "Nodes \n", "1 132.061667 4.806585e+07 816298.000000 \n", "2 48.901667 4.975288e+07 818151.000000 \n", "3 27.735000 5.511165e+07 820465.666667 \n", "4 19.353333 5.325783e+07 819558.166667 \n", "5 14.950000 6.075634e+07 815307.666667 \n", "6 12.271667 6.060652e+07 815456.333333 \n", "\n", " Average Rate (Sum) Number of Neurons Number of Connections \\\n", "Nodes \n", "1 7.215000 112500.0 1.265738e+09 \n", "2 7.210000 112500.0 1.265738e+09 \n", "3 7.253333 112500.0 1.265738e+09 \n", "4 7.288333 112500.0 1.265738e+09 \n", "5 7.225000 112500.0 1.265738e+09 \n", "6 7.201667 112500.0 1.265738e+09 \n", "\n", " Min. Delay Max. Delay Unaccounted Time / s \n", "Nodes \n", "1 1.5 1.5 2.891667 \n", "2 1.5 1.5 1.986667 \n", "3 1.5 1.5 1.745000 \n", "4 1.5 1.5 1.275000 \n", "5 1.5 1.5 1.496667 \n", "6 1.5 1.5 0.990000 \n", "\n", "[6 rows x 21 columns]"]}, "execution_count": 97, "metadata": {}, "output_type": "execute_result"}], "source": ["df.groupby(\"Nodes\").mean()"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["### Pivoting\n", "\n", "* Combine categorically-similar columns\n", "* Creates hierarchical index\n", "* Respected during plotting!\n", "* A pivot table has three *layers*; if confused, think about these questions\n", " - `index`: \u00bbWhat's on the `x` axis?\u00ab\n", " - `values`: \u00bbWhat value do I want to plot?\u00ab\n", " - `columns`: \u00bbWhat categories do I want [to be in the legend]?\u00ab\n", "* All can be populated from base data frame\n", "* Might be aggregated, if needed"]}, {"cell_type": "code", "execution_count": 98, "metadata": {"slideshow": {"slide_type": "subslide"}}, "outputs": [], "source": ["df_demo[\"H\"] = [(-1)**n for n in range(5)]"]}, {"cell_type": "code", "execution_count": 99, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>H</th>\n", " <th>-1</th>\n", " <th>1</th>\n", " </tr>\n", " <tr>\n", " <th>F</th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>-3.918282</th>\n", " <td>NaN</td>\n", " <td>7.389056</td>\n", " </tr>\n", " <tr>\n", " <th>-2.504068</th>\n", " <td>NaN</td>\n", " <td>1.700594</td>\n", " </tr>\n", " <tr>\n", " <th>-1.918282</th>\n", " <td>NaN</td>\n", " <td>0.515929</td>\n", " </tr>\n", " <tr>\n", " <th>-0.213769</th>\n", " <td>0.972652</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>0.518282</th>\n", " <td>2.952492</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": ["H -1 1\n", "F \n", "-3.918282 NaN 7.389056\n", "-2.504068 NaN 1.700594\n", "-1.918282 NaN 0.515929\n", "-0.213769 0.972652 NaN\n", " 0.518282 2.952492 NaN"]}, "execution_count": 99, "metadata": {}, "output_type": "execute_result"}], "source": ["df_pivot = df_demo.pivot_table(\n", " index=\"F\",\n", " values=\"G\",\n", " columns=\"H\"\n", ")\n", "df_pivot"]}, {"cell_type": "code", "execution_count": 100, "metadata": {"slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAEPCAYAAACwWiQoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl0VFWiNfB9a85EJiohgMyCzAmTIENEESWBhFHBARFQ6aZFsdVGGhv0tbQKtkrz6XttI4IiKEMQNPJEfCAhYBiDAQQEQSBAQgiESlLjvd8faXnyAlRVUlWn6tb+reVaJrl1z+ZY7lxO3UFSFEUBERGFNI3oAEREVH8scyIiFWCZExGpAMuciEgFWOZERCrAMiciUgGWORGRCrDMiYhUgGVORKQCLHMiIhVgmRMRqQDLnIhIBVjmREQqoPP3AOXllZBlMTdmTEyMRlmZRcjYNxKMmQDm8kYwZgKYy1vBmCsxMRrl5ZWIj4/y+rV+L3NZVoSV+a/jB5tgzAQwlzeCMRPAXN4Kxlx1zcRlFiIiFWCZExGpgN+XWYiI/EFRFJSXl8JutwLwfmmipEQDWZZ9H8wjEgwGE+LjzZAkySd7ZJkTUUiyWC5DkiQkJzeFJHm/yKDTaeB0iilzRZFx6dIFWCyXERMT55N9cpmFiEJSdbUFMTFxdSpy0SRJg5iYeFRX++5smtCbBSIiALLsglYbuosLWq0Osuzy2f78XuaKEnyn/hCROvhqvVkEX2f3e5m7ThX6ewgiIp/o168HLl26dM33cnPX44UXnhGUyHN+L3P7rrWQrVf8PQwRUVjz/zKLoxq2/GX+HoaIKKz5/dMDfce7UZ23DM7WvaFrnurv4YiI6mXatCeh0Wivfl1RcRlt2twqMJFn/F/mHe6G7eAWWPOWICqlLSRDpL+HJCKqswUL/gtxcf977ndu7nps3rxJYCLP+H2ZRdJoYRowEUrVJdh2fOrv4YiIwlJAzjPXJrWCvvN9cPy4Bc4zBwMxJBFRWHFb5itXrkR2dvbVf7p3745XXnnF64GMPUZAapAM63eLoThsdQpLRETX53bNfMyYMRgzZgwA4OjRo5g6dSr+8Ic/eD2QpDPAlD4R1ev/BtvO1TDd8aD3aYmI/Cgvb1et72VkDENGxjABabzj1TLLnDlzMH36dCQkJNRpMF1KO+g73AVH0Ua4zv9Up30QEVFtHpd5fn4+rFYrhgwZUq8Bjb3GQIqKh3XLB1Bcjnrti4iIakiKhzdPmTZtGgYPHoyhQ4fWe9CqY3txbsVfEdd3FBLu5HILEXnvwIGDaNy4uegY9VJcfBIdO3bwyb48Os/cbrdj586deO2117weoKzMUvuZdg3aQHdrX1zKz4E9uQu0Df3zH8RsjkFpaXDdSiAYMwHM5Y1gzASEXy5Zlut1P3KR9zP/lSzL18yN2RyDsjILEhOjvd6XR8sshw8fRosWLRAZ6bsLfkx9xkEyRdcst8hOn+2XiCgceVTmp06dQqNGjXw6sGSKhrHvI5DLTsJeuMGn+yYiCjceLbNkZGQgIyPD54PrW/WEs2UP2Pesha5lN2jjGvt8DCKicCD8SUPGvg8DOuO/l1vErl8REfnKsWM/4eGH7w/YeMLLXBMZB1OfByGf/wmOg8F/MxsiIne++uoL/PGPT8FqrQ7YmEHxAD3drXdAe2wHbAUroWuWCk0Ds+hIRBRCtv1wFnn7z3r1GkkCPDkxu1+XFPTtnOLxfi0WC/LytmDOnFfx17/O9ipTfQg/MgdqnoVn6j8BkDSwbv2Qzw0lopAVHR2NV1+dh+Rk35404k5QHJkDgCY6Ecbb74ctbykch7+D4bZ00ZGIKET07ezd0TMQHOeZ+1JQHJn/St/+TmhT2sG2YwXkynLRcYiIPPKvf/0nJkx4EBMmPIi8vC1CMgTNkTkASJIGpgGPoXLVS7DlLYVp8DRIkiQ6FhHRTU2ePAWTJ08RmiGojswBQBPbCMYeI+E8uRfOY9+LjkNEFBKCrswBQN95MDTmlrDlL4NcXSE6DhGR11JSGmPVqvUBGy8oy1zSaGFKnwTFXgVb/iei4xARBb2gLHMA0CY0hSFtGJzHdsB5cq/oOEREQS1oyxwADKlDoUloCuvWJVBslaLjEBEFraAuc0mrg2nARCjVl2H7/lPRcYiIglZQlzkAaJNaQd/5Pjh+/A7OMwdFxyEiCkpBX+YAYOwxAlJsMqzfLYbisImOQ0QUdEKizCWdoWa55UopbDtXiY5DRHRdlZUWPPLI/Th7tjjgY4dEmQOALqUd9B3ugqPoG7jOHRUdh4joGgcOFOH3v5+MU6d+ETJ+yJQ5ABh7jYEUnQDrdx9AcdpFxyEiumr9+hw8++yf0LChmFt4B9W9WdyRDBEw9Z+A6q/ehH3POhh7jRYdiYiCgOPINjgOf+fVayRJ8uh22/p2A6Bv29ftdjNmvOTV+L4WUkfmAKC7pTN0bfvCXpgL14WTouMQEQUFj47Mv/32WyxcuBBVVVXo168fZs2a5e9cN2XqPQ6Vp36AdcsiRI74CyRNSP0Fg4h8TN+2r0dHz78VdvczP3XqFGbPno13330X69evx8GDB7Fli5j79f5KMkXD2G885LJfYC/8SmgWIqJg4PaQduPGjcjIyECjRjWPQHrrrbdgNBr9HswdfcsecLbsAfvuz6Fr0R3a+MaiIxERCeP2yPzkyZNwuVyYNGkSsrKy8MknnyA2NjYQ2dwy9n0E0Btrzm6R1fPXJSIKXatWrUdKSuAPLt0embtcLuzatQsfffQRIiMj8fvf/x45OTkYOXKkRwMkJkbXO+SNxeDKvRNRuu4fMJ7citheQ2ttYTbH+HH8ugnGTABzeSMYMwHhlaukRAOdrn7ncNT39fWl0WhqzU1dO9NtmTds2BB9+vRBQkICAODuu+/G/v37PS7zsjILZNn96T91pSR3g/aWLij7n2WwJraHpkHS1Z+ZzTEoLb3it7HrIhgzAczljWDMBIRfLlmW6/UBZjB8ACrL8jVzYzbHoKzMUqdCd/traeDAgcjLy0NFRQVcLhe2bt2Kjh07ej2Qv0iSBFP/RwFJA+vWDz06b5SISG3clnnXrl0xefJkPPjgg8jIyEDjxo0xatSoQGTzmCY6Ecbb74frzEGvLxwgotAVygdvvs7u0Qnao0ePxujRwX21pb79nXAe+x627Sugu6ULNFHxoiMRkR/pdAZUVlYgKqoBJEkSHccriqKgsrICOp3BZ/tUzdU2kqSBacBEVK56CdatSxBx79OiIxGRH8XHm1FeXgqL5VKdXq/RaCALPAtOpzMgPt5393FRTZkDgCY2GcaeI2Db8Smcx74Hku4RHYmI/ESr1aFhw5Q6vz5YPzCuq5C7N4s7+k73QmNuBVv+MrgqL4uOQ0QUEKorc0mjgSl9EhR7FS58vUh0HCKigFBdmQOANqEJDGlZqDy4Dc4Te0XHISLyO1WWOQAYUjNhSGoGa94SKLZK0XGIiPxKtWUuaXUwZ06FUn0Zth2fio5DRORXqi1zADA2bgNDlyFwHP4OztMHRMchIvIbVZc5ABi6D4cUmwzr1sVQHFbRcYiI/EL1ZS7pDDANmAjlygXYdq4WHYeIyC9UX+YAoEtpB32Hu+Eo+gbOc0dFxyEi8rmwKHMAMPYaDSk6AbYti6A47aLjEBH5VNiUuWSIgGnAY5Avn4N9zzrRcYiIfCpsyhwAdE07Qde2H+yFuXBdOCE6DhGRz4RVmQOAqc84SKYYWLd8AEV2io5DROQTYVfmkjEKxn7jIZf9Avu+XNFxiIh8IuzKHAD0LbtD16on7HvWwVV+RnQcIqJ6C8syBwDjHQ8DeuO/l1vEPtSViKi+wrbMNZGxMN3xEOSSY3Ac2Cg6DhFRvYRtmQOArk0faG/pAtvO1ZArSkTHISKqM4/KfPz48cjMzER2djays7NRWFjo71wBIUkSTP0fBSQNrN8tDuknfRNReHP7DFBFUXD8+HFs3rwZOp2qHhkKANBEJ8J4+wOw5S2B48ctMLS/U3QkIiKvuT0yP378OCRJwuOPP46srCx8/PHHgcgVUPr26dCm3Abbjk8hWy6KjkNE5DVJcbO2sHfvXixfvhxz5syB1WrF+PHj8eKLL6Jv376ByhgQjvJzOP3P6Yho0RnJ978ISZJERyIi8pjbMv+/PvzwQxQXF2PmzJkebV9WZoEsi1mLNptjUFp6xePt7fs3wLZjBUx3PQl9mz5BkSlQmMtzwZgJYC5vBWMuszkGZWUWJCZGe/1at8ssu3btwvbt269+rSiKKtfOAUDfaTA0Sa1g27YMcnWF6DhERB5zW+ZXrlzBG2+8AZvNBovFgpycHNxzzz2ByBZwkkYD04BJUBzVsG1T32cDRKRebg+xBw4ciMLCQgwfPhyyLOPBBx9EWlpaILIJoU1oAkO3LNh35cBxojf0LbqJjkRE5JZH6yXPPPMMnnnmGX9nCRqG1Ew4j++CLW8pdCntIBmjREciIrqpsL4C9EYkjQ6m9ElQqitg27FCdBwiIrdY5jegNbeAoct9cBzeCufpItFxiIhuimV+E4buwyHFNqq51N9hFR2HiOiGWOY3IekMMKVPhGK5CFvBKtFxiIhuiGXuhq5RW+g73gXHgU1wnjsqOg4R0XWxzD1g7DUGUnQCbFsWQXHaRcchIqqFZe4BSW+CacBjkC+fg33P56LjEBHVwjL3kK5pJ+ja9oe98Cu4LpwQHYeI6Boscy+Y+oyFZIqBdcsiKLJTdBwioqtY5l6QjFEw9h8PuewU7PtyRcchIrqKZe4lfYvu0LXqBfuedXCVnxEdh4gIAMu8Tox9H4akN/17uUUWHYeIiGVeF5qIBjDe8SDkkuNwFG0UHYeIiGVeV7o2faBt1hW2nashV5SIjkNEYY5lXkeSJMHU71FAo625d4t3T98jIvIplnk9aKITYOz9AFzFh+D4cYvoOEQUxljm9aS/LR3axu1h27ECsuWi6DhEFKZY5vUkSRJMAx4DZBnWvCVcbiEiIVjmPqBpkARjz1Fw/VII50/bRcchojDEMvcRfad7oElqDVv+J5CrK0THIaIw43GZv/7665gxY4Y/s4Q0SaOpeZCFwwrbto9FxyGiMONRmW/fvh05OTn+zhLytPFNYOiWBefxAjhO7BYdh4jCiNsyv3TpEt566y1MmTIlEHlCniE1A5rEW2DbuhSKrVJ0HCIKE5Li5vSLadOmYdy4cTh79iwKCgrw2muvBSpbyLKdPY4zi/+E6M53ImnYVNFxiCgM6G72w5UrVyIlJQV9+vTBmjVr6jRAWZkFsizmdD2zOQalpVcCP7DODEPXIbDs+xKupt2ga9pJfCY3mMtzwZgJYC5vBWMuszkGZWUWJCZGe/3amy6z5ObmYtu2bcjOzsaCBQvw7bffYu7cuXUOGk4M3bKhiW1Uc6m/wyo6DhGp3E2PzBcvXnz139esWYOCggLMnDnT76HUQNIZYEyfhOp1c2ErWAlT30dERyIiFeN55n6ka3Qr9B3vhuPAJjjPHREdh4hUzOMyHzlyJD/8rANjr9GQYhrCuuUDKE676DhEpFI8MvczSW+Cqf8EKJfPwb57reg4RKRSLPMA0DXtBH27/rDv3wDb2WOi4xCRCrHMA8TYeyykiAYo/eL/QZGdouMQkcqwzANEMkbB2G887CUnYd+XKzoOEakMyzyA9C26IapDX9j3rIOr/IzoOESkIizzAGs4eBIkvQnWLYugyLLoOESkEizzANNGxcLY9yHIJcfhKNooOg4RqQTLXABd697QNusK287VkCtKRMchIhVgmQsgSRJM/ScAGm3NvVv43FAiqieWuSCaqHgYez8AV/EhOH7cIjoOEYU4lrlA+tvSoW3cHrYdKyBbLoqOQ0QhjGUukCRJMA14DFBkWPOWcLmFiOqMZS6YpkESjD1HwfVLIZw/bRcdh4hCFMs8COg73gNNchvY8j+BXF0hOg4RhSCWeRCQNBqYBkyE4rDCtu1j0XGIKASxzIOENr4xDN2y4DxeAMeJ3aLjEFGIYZkHEUNqBjSJzWDbuhSKrVJ0HCIKISzzICJpdDClT4JivQLr9hWi4xBRCGGZBxltw+YwdM2A88hWOE8XiY5DRCHCozJ/5513kJGRgczMTCxevNjfmcKeoVsWNHEpNZf6O6yi4xBRCHBb5gUFBdixYwfWrVuH1atX46OPPsLx48cDkS1sSTpDzdktlouwFawUHYeIQoDbMu/VqxeWLl0KnU6HsrIyuFwuREZGBiJbWNM2uhX6ToPgOLAJznNHRMchoiDn0TKLXq/HggULkJmZiT59+iA5OdnfuQiAsecoSDENYd3yARSnXXQcIgpikuLFDUGqq6sxZcoUZGRk4IEHHvBnLvq3qp8Lce6TVxDbZzgS73pEdBwi8rMfT17Ebc0TvH6dzt0Gx44dg91uR/v27REREYHBgwfj8OHDHg9QVmaBLIu5gZTZHIPS0itCxr4RrzNFt4K+3QBc3rEOjkap0JpbBEeuAAnGXMGYCWAubwVjrq1F5/Dltp+xaNZgr1/rdpnl9OnTmDVrFux2O+x2OzZt2oTu3bvXKSjVjbH3A5AiGtQ8N9TlFB2HiPxg465TWPzFQXRp3bBOr3db5unp6UhPT8fw4cMxatQopKWlITMzs06DUd1IxiiY+j0K+eIp2Au/FB2HiHxs894zWP7NUfTu1AjjBrWp0z7cLrMAwLRp0zBt2rQ6DUC+oWuRBl3r22Hfsw66Fj2gTWgiOhIR+UDe/rNY+t+H0aV1Il54pAcqLlfXaT+8AjSEGO94CJIhEtbvFkGRZdFxiKiedhw4h8W5h9ChRTymjugEvU5b532xzEOIJqIBjHc8BLnkOBxFX4uOQ0T1sOvHEvzri0Noe0scnhrVpV5FDrDMQ46u9e3QNkuFbecayJfPi45DRHWw7+gF/Ne6A2jVuAGeHtMFRn39ihxgmYccSZJg6v8ooNHW3LtF4XILUSgpOl6Gd9f+gFuSovHMmK4wGTz66NItlnkI0kTFw9hnLFxnf4Tj0BbRcYjIQ4dOluMfa35A48QoPPtAKiJNvilygGUesvTtBkDbpANs338K2VImOg4RuXHk1CW8s6oQSXEReHZsKqIj9D7dP8s8RNUstzwGKDKsW5fAi7syEFGAHSu+jLdXFiI+xoTnxqaiQaTB52OwzEOYpoEZxp6j4Tq1H86ftouOQ0TXcfLcFfz900LEROrxwrg0xEYb/TIOyzzE6TsOgia5Daz5yyBXXRYdh4h+43SJBfNX7EWkUYvnx6UhPsY/RQ6wzEOepNHANGAi4LDBlv+x6DhE9G/FFyoxb8Ve6HUaPD8uDQ1jI/w6HstcBbTxjWHong3n8Z1w/LxbdByisHf+YhXmrdgLSZLw/Lg0JMX7/4E+LHOVMHQdAk1iM9jylkKxVYqOQxS2Si9V443le+FyKXh+bCpSEqMCMi7LXCUkjQ6m9ElQrFdg3b5cdByisHSxwop5y/fCZnfhubGpaGKODtjYLHMV0TZsDkPXDDiP5MF56gfRcYjCyiWLDfOW70Wl1YE/jk1Fs+SYgI7PMlcZQ7csaOJSYN36IRR73W6lSUTeqai0Y97yvbhksWP6mFS0TGkQ8Awsc5WRdIaa5RbLRdgKVomOQ6R6lmoH5q/Yi7LLVjwzpgvaNI0VkoNlrkLa5DbQdxoEx8FNcJ71/HmtROSdKqsDb67Yh3MXq/HUqC5o1yxeWBaWuUoZe46GFGOG9bsPoDjtouMQqU61zYm/f1aI06UWTB3RCR1bJgjNwzJXKUlvhGnAY1Aun4d991rRcYhUxWZ34Z2VhThx9gqmZHdC1zZ1ewizL7HMVUzXpAP0tw2Aff9XcJX+LDoOkSrYHS4sWL0fR89cxhNZHdC9nVl0JAAelvnChQuRmZmJzMxMvPHGG/7ORD5k7D0WUkQsrFsWQXE5RcchCmkOp4yFOT/gx5PlmJTZHr3aJ4uOdJXbMs/Pz0deXh5ycnKwdu1aHDhwABs3bgxENvIByRAJU/9HIV88Dfu+L0XHIQpZTpeM99YWoej4RTw65Dbc0SlFdKRruC1zs9mMGTNmwGAwQK/Xo3Xr1iguLg5ENvIRXfM06Fr3hn3vOrgunhYdhyjkuGQZ/1x3APt+uoCH7mmLAV0bi45Ui9syv/XWW5GamgoAOHHiBHJzc5Genu73YORbxjsehGSIhHXLB1BkPjeUyFOyrGDRF4ew63ApHrirDe7u3lR0pOuSFA8fUXP06FE8+eSTeOqppzBixAh/5yI/sBzIQ8nat5Bw96OI650lOg5R0JNlBf/4bB++2fkLHhnSHvcPais60g159DTR3bt3Y9q0aZg5cyYyMzO9GqCszAJZFvNIM7M5BqWlV4SMfSMiMynmLtA1T8PFzZ/A1rADNLH/++FNMM4VEJy5gjETwFzecpdLURR89PURbN57Bll9W2Bg1xS//znM5hiUlVmQmOj9DbrcLrOcPXsWU6dOxfz5870ucgoukiTB2G88oNXVXEykcLmF6HoURcHyTUexee8ZDLm9GbL7tRQdyS23Zb5o0SLYbDa89tpryM7ORnZ2NpYv5y1WQ5UmKh7G3mPhOnsYjkObRcchCjqKomDVlmP4ZtdpDOrRFKPvbA1JkkTHcsvtMsusWbMwa9asQGShANG3GwDnsQLYvv8MumZdoYlOFB2JKGh8nvczvtrxC+5Ma4Jxd98aEkUO8ArQsCRJEkz9JwCKDOvWJfDwM3Ai1fty+wms23YCfTs3wsOD24ZMkQMs87ClaWCGsdcYuE7th/Novug4RMJ9XfALVm85jt4dkvHYkPbQhFCRAyzzsKbveDc0yW1g3f4JnFcuio5DJMym3aex4tuf0L2dGZOGtodGE1pFDrDMw5okaWBKnwg4HTizeAZc538SHYko4L4rLMayjUeQ2qYhnszqCK0mNGsxNFOTz2jjGiMyeyYkrRZV6/8Ge9FGrqFT2MgvOoslX/2ITq0S8LvhnaDThm4lhm5y8hltwxZoMnEetE07w5a/DNZv/xOKwyo6FpFfbd13Bou+PIR2zeLwhxGdodeFdh2GdnryGW1ENCLunQZDz9FwHi9AVc4rcJXzhmqkTnuOlGL+st1o0yQWT4/uCoNeKzpSvbHM6SpJ0sCYNhQRmS9AsVlQlfMyHD/tEB2LyKf2H7uA99YW4damcXhmTFcYDaFf5ADLnK5D17g9Ike+DG1iM1i//U9Yt33MB1uQKhw4cREL1xShqTkac57ogwijR7enCgksc7ouTVQ8Iob9CfrO98Jx4BtUrf8bZAtPX6TQdfiXcvxj1X40SojAH8emIjpCLzqST7HM6YYkjQ6mPuNgGjQVcvkZVK2ZDefpItGxiLz20+nLeHvlfiTGmvDc2DTVFTnAMicP6Fv1RNSI2ZAiGqA6903Y9nzOOy5SyPj5bAXeWrkPsdEGPDc2DQ2iDKIj+QXLnDyiiUtB5PC/QNemN+y7clC94W0oVovoWEQ39cv5K/j7p/sQZdLjhXFpiI8xio7kNyxz8pikN8I08AkY+42H68xBVK6ZDVfpz6JjEV3XmVIL5q/YB4Nei+fHpSGhgUl0JL9imZNXJEmCocNdiMyaCQCo+vxV2A/+D68apaBy7mIV5q3YB61Gwgvj0mCOixAdye9Y5lQn2qRWiBr5MrRN2sOWtwTWze9DcdpExyJCSXkV5i3fC0VR8Ny4NCQnRIqOFBAsc6ozyRSNiPumw9B9BJxHt6Mq5z8gXzonOhaFsQuXqzFv+V7YHS48NzYNTRpGiY4UMCxzqhdJ0sDYPRsRGX+EUnUJlTlz4Ph5l+hYFIbKr9gwf/k+VNlqivyWJO8fihzKWObkE7qmnRA56mVo4hvDunEhrNuXQ5F51SgFxmWLDfOW78XlKjuefaArmjeKER0p4Fjm5DOa6EREDpsJfce74fjhv1H9xRuQK8tFxyKVu1Jlx/wV+3DxihXTx3RF68axoiMJ4XGZWywWDB06FKdPn/ZnHgpxklYHU99HYLprClwXTtRcNVp8SHQsUilLtQNvrtiHkkvVeHpUF7S9JU50JGE8KvPCwkKMGzcOJ06c8HMcUgt9m96IHDEbkjEK1V++Adu+L3jVKPlUldWJtz7bh+KySvxhZGe0b5EgOpJQHpX5Z599htmzZyMpKcnfeUhFtPFNaq4abdkT9oJVsH79Dyi2StGxSAWsdifeXlmIX85b8LvhndC5VaLoSMJJihdXe9x1111YunQpmjZt6s9MpDKKoqBiVy7KvlkCXYOGSB71PIyNWoqORSHK6ZLxl//ajgM/l+GFh3ugb9fGoiMFBb/fzLeszAJZFnN1oNkcg9LSK0LGvpFgzAQEIFeLAYgcmoLqTe/izIcvwtT3EehvGyA+Vx0EYyYgfHJdsthw6nwFJme2R9vGdd93MM6X2RyDsjILEhO9P62SZ7NQwGgb3Vrz0ItGt8L63QewblkExWkXHYtCTFy0EW9O7YveHRuJjhJUWOYUUJqIBogY8hwMacPgOLwVVZ//FXJFiehYFGIkSRIdIeiwzCngJI0Gxp6jEHHfM5AtZahcMxuOE3tExyIKaV6V+bfffssPP8lndM1SETVyDjQNkmH9egFs338GRXaJjkUUknhkTkJpYsyIzJoJffs7YS/MRfWX8yBXXRYdiyjksMxJOElngKn/BJjufByukuM1V42eOyI6FlFIYZlT0NC37YvI4S8BOiOq178G+/4NfOgFkYdY5hRUtIm3IGrkbOiap8G2YwVK1syHYq8WHYso6LHMKehIhkiY7vkDjL0fQOXhAlTmzIHr4inRsYiCGsucgpIkSTB0GYKUh+cAdiuqcv4DjiPbRMciCloscwpqEc06InLUy9AmtYR18/uwbv2QV40SXQfLnIKeJjIOEZkvwNA1A45Dm1G1bi5ky0XRsYiCCsucQoKk0cJ4+/0wDZ4GueI8HEe55EL0W36/ayKRL+lbdIPu4XcAicchRL/FMqeQI+kMoiMQBR0e3hARqQDLnIhIBVjmREQqwDInIlIBljkRkQqwzImIVMDvpyZqNGKf1Sd6/OsJxkwAc3kjGDMBzOWtYMxV10ySwhtGExGFPC6zEBGpAMuciEgFWOZERCrAMideCc73AAAGzUlEQVQiUgGWORGRCrDMiYhUgGVORKQCLHMiIhVgmRMRqYBqnjS0a9cuzJ07Fw6HA02aNMHrr7+O2NjYa7YpLi5GZmYmmjVrBgBo2LAhFi1aJDyX3W7Hn//8ZxQVFcFkMmH+/Plo3bq1X3Pt3r0bc+fOhdPpRFxcHObOnYsmTZpcs02g58uTTCLm6lfvvPMONBoNnnrqqVo/E/He8iSXiPkqLi7G888/j7KyMrRs2RLz589HVFRUrW0CMV/r16/He++9B4fDgQkTJuChhx665ueHDh3CrFmzYLFY0KNHD7z88svQ6fxfi+5yLVy4EKtXr0aDBg0AAPfff3+tbWpRVGLQoEHK0aNHFUVRlHnz5ilvvvlmrW02bNigvPTSS0GX61//+tfVXAUFBcro0aP9nmvgwIHKoUOHFEVRlJUrVypTpkyptU2g58uTTCLmqqKiQnnxxReVLl26KAsWLLjuNiLeW57kEjFfTzzxhPLFF18oiqIoCxcuVN54441a2wRivs6dO6cMHDhQKS8vVyorK5Vhw4Zd/X/xV5mZmcrevXsVRVGUF198UVm2bJlfM3ma68knn1T27Nnj1X5Vs8ySm5uLNm3awOFw4Pz581d/o/3WDz/8gCNHjmDkyJEYP348Dh8+HBS5Nm/ejKysLABAz549UV5ejuLiYr9lstvtePrpp3HbbbcBANq1a4ezZ8/W2i6Q8+VppkDPFQBs2rQJLVq0wGOPPXbDbUS8tzzJFej5cjgc2LlzJ+69914AwMiRI7Fhw4Za2wVivvLz89G7d2/ExcUhMjIS99577zVZzpw5A6vVitTU1JtmDXQuACgqKsL777+PYcOG4ZVXXoHNZnO7X9WUuV6vx+HDh5Geno7vv/8emZmZtbYxGo0YPnw41qxZg0mTJmHq1Kmw2+3Cc5WUlMBsNl/92mw249y5c37LZDAYkJ2dDQCQZRkLFy7EoEGDam0XyPnyNFOg5woAhg8fjieeeAJarfaG24h4b3mSK9DzVV5ejujo6KtLFWazGefPn6+1XSDm6//+2ZOSkq7Jcr25uV5WX3OXq7KyEu3bt8ef/vQn5OTkoKKiAu+++67b/YbcmvlXX32Fv/3tb9d8r1WrVvjwww/Rrl075OfnY8WKFZg+fTpWrFhxzXa/XVNMT0/Hm2++iePHj189GhSV63o0Gt/8nr1ZLrvdjhkzZsDpdOLJJ5+s9Vp/zVd9Ml1PIObKHVHvrbrw53y1aNGi1naSVPuWrv6cr18p17kh7G+zuPu5v7gbNyoqCu+///7VrydOnIiZM2di+vTpN91vyJX5kCFDMGTIkGu+Z7PZ8M0331w9ksvKysLrr79e67UfffQRhg4divj4eAA1k+qrDzvqkyspKQmlpaVo3rw5AKC0tBRJSUl+ywXU/Pb/3e9+h7i4OLz33nvQ6/W1tvHXfNUnk4i58kSg31ueCvR8ORwO3H777XC5XNBqtTccz5/z9avk5GTs2rXr6tclJSXXZElOTsaFCxeufu3LualPruLiYuTn52P06NEAPJ8bVSyz6HQ6vPzyyygqKgJQc8TQrVu3Wtvt3LkTq1atAgAUFBRAlmW0atVKeK709HR8/vnnAGrOfjEajWjcuLHfcgHA888/j+bNm+Odd96BwWC47jaBni9PMomYK08Eeq48Fej50uv16NGjB3JzcwEAa9euxYABA2ptF4j5uuOOO7B9+3ZcvHgR1dXV+Prrr6/J0qRJExiNRuzevfumWX3NXS6TyYR58+bh1KlTUBQFy5Ytwz333ON+xz74cDYo7Ny5UxkxYoSSlZWlPP7448rZs2cVRVGUTz75RHn77bcVRan5FHnChAlKZmamMnLkyKtnTojOZbValRdeeEHJyMhQhg8frhQVFfk104EDB5S2bdsqGRkZSlZWlpKVlaVMnjy5Vq5AzpenmQI9V7+1YMGCa84aEf3e8iSXiPk6ffq08vDDDytDhgxRJk6cqFy6dKlWrkDN17p165TMzExl8ODByj//+U9FURRl8uTJyv79+xVFUZRDhw4po0aNUu677z7l2WefVWw2m19yeJtrw4YNV38+Y8YMj3LxSUNERCqgimUWIqJwxzInIlIBljkRkQqwzImIVIBlTkSkAiF30RBRfbRr1w5t27a95irITp064dVXXxWYiqj+WOYUdpYsWYKEhATRMYh8isssREQqwIuGKKxcb5nlgw8+QGJiosBURPXHZRYKO1xmITXiMgsRkQqwzImIVIBlTkSkAvwAlIhIBXhkTkSkAixzIiIVYJkTEakAy5yISAVY5kREKsAyJyJSAZY5EZEKsMyJiFTg/wMW5QNDIsf0iQAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df_pivot.plot();"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 7\n", "<a name=\"task7\"></a>\n", "\n", "* Create a pivot table based on the NEST `df` data frame\n", "* Let the `x` axis show the number of nodes; display the values of the simulation time `\"Sim. Time / s\"` for the tasks per node and threas per task configurations\n", "* Please plot a bar plot\n", "* Done? [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 101, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAELCAYAAAAiFru1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4U1X+x/F30tCNFlFIi5aCyCI6M4KCQAGpOlhEqGUVBEFEAZVFcGOx7FvFKoIs4wKiCEjZyg4qKAIVWZyBYQZRBgpFoKUFutC9ye+PzkT7KzRpSZeUz+t5fJ7k3pNzv8kB/OTm3HMNVqvVioiIiIiIXJexvAsQEREREanoFJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7TOVdwP93+fJVLBZreZdRKmrU8CEpKa28y5AS0Ni5No2fa9P4uS6NnWurzONnNBq49daqxXpNhQvNFou10oZmoFK/t8pOY+faNH6uTePnujR2rk3j9ztNzxARERERsUOhWURERETEjgo3PUNERERuXnl5uVy+fJHc3OzyLuWml5BgxGKxlHcZN8RkcufWW824ud145FVoFhERkQrj8uWLeHp6U7VqLQwGQ3mXc1MzmYzk5rpuaLZarVy9msLlyxepWfP2G+5P0zNERESkwsjNzaZq1WoKzHLDDAYDVatWc9qvFgrNIiIiUqEoMIuzOPPPkkKziIiIiIgdN/WcZt9qXnh6FP0RZGblkpqSUUYViYiIiEhFdFOHZk8PE6GvrS+yzcZ3w0gto3pERESksPfff4d//OPvAMTGnuT22+/Aw8MTgA8/XGx77IiNG6OJidnNzJnvFquGQYOe5f335/PMM0/RvHkL3nprkm3f0aP/ZOrU8axcGV2sPvv06c7o0eNp0qSpQ+1//PEHFi78AIBLl5KwWPKoWdMPgGefHcju3bto3PgennqqT7HqKKlXXx1Ohw4d6dDhiSLbRUUtJyMjg2+/3QFARkY6Fy9epE6dugC0bBnESy8NL/bxBw8ewLPPPk+bNg8Vv/gSuKlDs4iIiFR8I0e+YXvco0coEydOo3Hje8vs+BcunMfXtxpVq/oAsGPHV7Rq1Zq//jWkzGqA/HDZsmUQAB99tICMjAxeeeU12/7du3eVaT2O2rPneyZMmMqzzz4PwIEDPzJ//hyWLFlezpUVj0KziIiIuKwNG9axcWM0ubk5pKSk0L//QMLCupGYeJGpUyeSmpoMQJs27Xj++SEFXrtjx1d89NECIiPn4uXldd3233//HQ89FGx73aBBLxMZGcGf/vQXatUqvJTZokUf8u233+Dm5kadOncyatQb3HZbDU6ePMHMmVPJzs7mzjvvJDMz0/aaw4f/wd/+9gFZWZkYjW48//xggoLaFvvzOHz47+zY8TWXL1+ifv2GTJw4DZPJRIcOwQQFteE//znBlCkzcXMzMWfOu6SmpmCxWOjVqw8dO3YmLy+PuXPf5dixf5OefhWAMWMm8Oc//4WEhHimT5/EpUtJ1Kp1O1euXLId96OPFrBnzy6qVHHnlluqEx4+idtuq0FKSjI5OdnUrGkusu6rV9N4552ZnDv3G8nJV6hWrRqTJs0gIKA2O3Z8xRdfLMFodMPNzY0RI17lz3++z/banJwcJkwYg69vNUaPDsfNza3Yn5sjHLoQcM6cOTzxxBN06tSJTz/9FICYmBhCQ0MJCQlh9uzZtrbHjh2je/fudOjQgbfeeovc3NxSKVxERERublevprFly0befXcun366nAkTptmmL6xfv5a6deuyePEy5s37mNjYU7YQCLBt22Y++2wRH3zwIYGBdYpsv3fv9wVCc/PmDxIa2oXJk8PJy8srUNOGDes4dOgAn3yylM8++5LAwDpEREwFYNKkt+jWrSeffbaCrl17cvFiAgDJyVeIiJjCxInTWbx4GTNmvMOsWTNISIgv9meSlJTE3LkLWb58DefPn2P37u8AyMrKIjj4UVasWEu9evWZMGEMw4aNZPHiL/jggw9ZuvRTfv753xw9+k+uXLnC3/62mC+/XEP79h1YtuwzACIjI2jS5H6WLo1i+PBRnD4dC8C5c7+xbt1qFi36gkWLltKsWXP+/e9//fez203r1vanT+zdu5uaNc189NESVq6Mpl69+kRHrwHggw9mM27cRBYtWsqzzz7P3//+k+112dlZjB37GnfcUZuxYyeUWmAGB84079+/n3379rFhwwZyc3N54oknCAoKYty4cSxdupTbb7+dIUOGsGvXLoKDg3njjTeYNm0aTZs2Zdy4cURFRdGnT9nMrREREZGbR9WqPsyc+S579+4mLu4Mv/56nIyMdABatmzN6NEjOX/+HM2bt2Do0Ffw9q4K5M9BjonZw6hRb+Dn519k+5SUZLKzswqdKR08+GVefHEgS5Z8QsuWrW3b9+2LoVOnJ/H0zJ9n3bPn03Tr9gSXLiVx+nQsISEdAWja9AHq1r0TgH/+8zBJSUmMGfOqrR+DwcDJk/+x1eeodu0ets3xrlfvLi5fvmzb16TJ/QDExp7i3LnfmD59km1fTk4Ov/xynCef7Er16tVZv34t586d5dChg1SrVg2Agwf38+qrbwJQp86d3H9/MwD8/Py58856DBzYl1at2hAU1IYHHmgO5E8ZGTToJbt1h4R0JDCwDqtWfclvv8Vx5Mhhmjd/EIC//jWE119/hdatH+LBB1vSq9fvufL9998hKyuLCROmlvpShXZDc4sWLfj8888xmUzEx8eTl5dHSkoKdevWJTAwEIDQ0FC2bdtGgwYNyMzMpGnT/Ant3bp1Y+7cuQrNIiIi4nQXLpzn5ZdfICysG02a3E9w8KPs378PgD//+S+sWrWBAwf289NPB3jhhf68/Xb+L+O33HILEyZMZdKkcbRq1ZZatWpdt31c3OlrTpMwmUxMnDiNQYP628I4gNVa8A56VquFvLw8W6CzWq22ff87K5qXZ6F+/fosXLjYtu/ixQRuvfW2Yn8mJtPv0S7/mL8fz8vLGwCLJY9q1W4pMKc4KSkRHx9fdu/+jvnz59CrV1+Cgx8hICDQdgGfwXDt+k0mEwsWfMKxY//i4MH9zJ49ixYtghg8+GXOn/+NevXuslv3ypXL+Prr7XTt2oOQkI54eXmTkpI/VWb48FF06dKdAwd+ZOPGdaxYsZSPP84/+x0a2pXU1BTeeWcmU6dGFPvzKg6HpmdUqVKFuXPn0qlTJ4KCgkhISMBs/v0bl5+fH/Hx8YW2m81m4uOL/9OCiIiIiD3Hjv2LGjVq0L//QFq2DGLv3u+xWPJD6/z5c1i6dAnBwY8wcuQb1KlTl7NnzwAQGFiHBx9sSZcuPZgxYxJWq/W67Xfv/o62bYOvefzAwDoMH/4qH3+8wLatRYsgNm/eYJuvvGrVl9x/fzNuvfU26tdvwObNG2y1x8aeAuAvf7mPU6dOceTIPwA4fvxnnn66G5cuJZXK53bnnXdhNBr55pvtQP6Xj379enHixK8cOPAjDz30MF279qBx43vYvXsXFkv+FJSWLVuzYcM6AM6fP8c//vGTrd5nn+1NvXr16d9/ID17Pm3rq3nzlg7V9OOP++jcOYxOnZ6kdu1AYmL2YLFYyM7Oplu3TlitVrp168krr7xObOxJ27SYe+75Ey+9NIJffvmZbds2O/ujKsDhCwFHjBjBoEGDePHFF4mNjS2032AwFPj28cftxVGjhk+x2pcFs9m3QvYlZUtj59o0fq5N4+e6ijt2CQlGTKaiz+m5ueW3adv2IbZu3USfPt3x8vLiT3/6C76+1bhw4Tf69HmGKVMm0L9/L6pUqUKjRo0JCenAli2bMBgMmExGBg0azHPP9SMqavk12z/88MOsXLmMRo0aXvP4AGFhXThwYB8///xvTCYj3bv3IDExgUGD+mOxWKhTpy4TJ07FZDIybVoE06ZNZu3aKAID61CnTl3c3Az4+ZmZOXMW8+bNJjs7G6vVypQpM7jjjtvJy8tjwIC+jB8/mUaN7rbVYDQaMBop8FkZDPnb/7ft/z83mYz//c+Td96ZzfvvR7J06afk5uby8svDadLkPnx9qzJx4ls8+2xv3NzcaNLkfnbv/g43NwOjR49j2rRJPPNMT/z8/GnU6G6MRgN/+tO9PPzwo7zwQj+8vLzw9PTktddGExX1JZ07P1loPN3cjBgMBWt/9tkBzJo1kw0b1mI0Grn33nv57bezeHt7MmLEKMLD38RkqoKbm5Hw8El4eFTBYAA3NwM+Pt6MHz+ZN98cRfPmzQtdnGk0Gp3yb4jBeq2k+wf/+c9/yM7O5p577gFg2bJlbNu2DTc3N5YsWQJAdHQ0P/74I8OGDWPAgAF8/fXXABw8eJC5c+fy+eefO1xQUlIaFkuRJTmN2ezr0DrNFy86Z6Vms9nXaX1J2dLYuTaNn2vT+LmukozdhQunqVWrbilV5JoWLJhLhw5PUL9+gzI9rslkJDfXYr9hBXetP1NGo6HYJ2rtTs84e/Ys4eHhZGdnk52dzY4dO+jduzenTp3i9OnT5OXlsWnTJtq1a0dAQAAeHh4cOnQIyA/T7dq1K1ZBIiIiIpLParUSGFinzAOzFGZ3ekZwcDCHDx+mS5cuuLm5ERISQqdOnbjtttsYPnz4f5cwCebxxx8HIDIykvDwcK5evcq9995L//79S/1NiIiIiFRGBoOB0NAu5V2G4OCc5hEjRjBixIgC24KCgtiwYUOhto0bN2b16tXOqU5EREREpAJwaPUMEREREZGbmUKziIiIiIgdDi85JyIiIiK/863mhaeH86NUZlYuqSkZTu9XboxCs4iIiEgJeHqY7C5dWxIb3w3DkYX68vLyGD9+DBMmTCUtLY0ZMyZz6VISRqOBoUNH0qzZgw4dLzx8NPXq3cXzzw8hPT2dadMmMnVqhN31sm82+jREREREXFB09GpatGiFp6cnCxbMoU2btixZspxJk6YzeXK47a55Rdm0aT0//XTQ9tzb25vmzVuwfv3a0izdJSk0i4iIiLgYq9XK6tUrad++AwDBwY/w2GMdAQgICCQ7O4uMjKKneJw9G8fWrZsIC+tWYHv79iFERa245p2eb2YKzSIiIiIu5sSJX/Dx8cHHJ/+udsHBj1KtWjUAVqxYSsOGd9v2XUtubi4REVN5/fWxmEwFZ+tWq3YL3t5enDjxa+m9ARek0CwiIiLiYuLi4jCb/Qttj4pazvr16wgPn1zk6xcv/ojg4EepV++ua+7397+duLgzTqm1stCFgCIiIiIuxmg04ObmVmDbggVziInZy/z5H+HnVzhQ/9F33+2gShV3Nm/ewKVLSQB4eXnRp0/+nZxNJhMGg6F0indRCs0iIiIiLiYgoDYXLpy3PY+KWs5PPx1i4cJF+Pr62n398uVrbI8XLfoQwBaYAc6fP0ft2oFOrNj1KTSLiIiIlEBmVi4b3w0rlX7tadCgEcnJV0hLS6Nq1aosXvwxVatWZfjwIbY2kZFzSEy8yCef/I3IyLkOHz81NZW0tDQaNmxEbq6lRO+hMlJoFhERESmB1JQMh9ZTLg0Gg4GePZ9m+/bNdO/ei23bvr1muxo1amI2+xXZ1/PPDynwfOvWTfTs2dtptVYWuhBQRERExAV17dqDAwd+JDMz87ptEhLiCQnp6HCf6enpHDy4v9AydKIzzSIiIiIuyWQyERHxXpFt/P1r4e9fy+E+vb29mTVr9o2WVinpTLOIiIiIiB0KzSIiIiIidig0i4iIiIjYodAsIiIiImKHLgQUERERKYFbb3HH5O7h9H5zs7O4nJxtt11eXh7jx49hwoSppKWlMWPGZC5dSsJoNDB06EiaNXuwyNcvX/45W7ZsBKBz5zB6936G9PR0pk2byNSpEZhMOrf6RwrNIiIiIiVgcvfg5PTuTu/3rrfWAPZDc3T0alq0aIWnpyezZk2nTZu2dO/eizNnYhk2bAjr1m0pdKvt/zl7No5161bzxRdRWCxWnnmmJ23bBlO7diDNm7dg/fq1PPVULye/M9emrxAiIiIiLsZqtbJ69Urat+8AQHDwIzz2WP56zAEBgWRnZ5GRkXHd11ssFnJycsjKyiYnJxur1YrJlH8utX37EKKiVmC1Wkv/jbgQnWkWERERcTEnTvyCj48PPj4+AAQHP2rbt2LFUho2vNu271rq1KlL+/Yd6NEjFKvVSmhoGLVq3Q5AtWq34O3txYkTv1KvXoPSfSMuRGeaRURERFxMXFwcZrN/oe1RUctZv34d4eGTi3z9vn0xHD9+jOjorURHb+HYsX+zY8fXtv3+/rcTF3fG6XW7MoVmERERERdjNBoKzVdesGAOGzZEM3/+R3bvArh3724efvhRvL29qVrVh/btO/CPf/xk228ymTAYDKVSu6tyKDTPmzePTp060alTJ2bNmgXA2LFjCQkJISwsjLCwML7+Ov/bSUxMDKGhoYSEhDB7tm7DKCIiIuJsAQG1uXDhvO15VNRyfvrpEAsXLsLPr/AZ6P+vQYOG7N27h7y8PHJzc/nxxxjuuede2/7z589Ru3ZgqdTuquzOaY6JiWHPnj2sW7cOg8HACy+8wNdff83Ro0f54osv8PPzs7XNzMxk3LhxLF26lNtvv50hQ4awa9cugoODS/VNiIiIiNxMGjRoRHLyFdLS0qhatSqLF39M1apVGT58iK1NZOQcEhMv8sknfyMycm6B14eGduHMmVj69XsKNzc3goLa0rFjZwBSU1NJS0ujYcNG5OZayvR9VWR2Q7PZbGbMmDG4u7sDUL9+fc6dO8e5c+cYP348586d47HHHmPYsGEcOXKEunXrEhiY/80kNDSUbdu2KTSLiIhIpZObnfXf5eGc3689BoOBnj2fZvv2zXTv3ott2769ZrsaNWpiNvsV2m40Ghk+/FWGD3+10L6tWzfRs2fv4hdeydkNzQ0bNrQ9jo2NZcuWLSxfvpz9+/czZcoUvL29GTJkCKtXr8bb2xuz2Wxr7+fnR3x8fOlULiIiIlKO8m9AYn895dLStWsPwsPfpFOnMDw9Pa/ZJiEhnpCQjg73mZ6ezsGD+5kx4x1nlVlpOLzk3K+//sqQIUMYPXo0d911F/Pnz7ft69evH9HR0Tz++OOFXlfcSeQ1alx/eZTyYjb7Vsi+pGxp7Fybxs+1afxcV3HHLiHBqDvROchkcicy8v0i2wQE3EFAwB0O91mtmg/vvTfnD8dw/bEwGo1O+TfEodB86NAhRowYwbhx4+jUqRPHjx8nNjaWDh3yF9T+34LY/v7+JCYm2l6XkJBQYM6zI5KS0rBYymYxbUc/wIsXU512PGf1JWVLY+faNH6uTePnukoydhaLRfNoKwiTyVgpxsJisRT6c2g0Gop9otbu14fz588zdOhQIiMj6dSpE5AfkmfMmEFycjI5OTmsXLmSxx57jCZNmnDq1ClOnz5NXl4emzZtol27dsUqSERERESkorF7pnnRokVkZWURERFh29a7d28GDx7M008/TW5uLiEhIXTunH/FZUREBMOHDycrK4vg4OBrTtkQEREREXEldkNzeHg44eHh19zXt2/fQtuCgoLYsGHDjVcmIiIiIlJBOHwhoIiIiIj8zre6B55V3J3eb2ZONqlX7C87J2VLoVlERESkBDyruPPUypec3m9Ur4WkYj805+XlMX78GCZMmEpaWhozZkzm0qUkjEYDQ4eOpFmzB+32cfFiAi+80I/167fbti1e/BE7d36DwQBBQW14+eVXSE9PZ9q0iUydGlHo9t03C9dfR0RERETkJhQdvZoWLVrh6enJggVzaNOmLUuWLGfSpOlMnhxOXl5eka//4Yc9DB/+IklJSbZtBw78yIED+/j002UsXbqC48d/Zteub/H29qZ58xasX7+2tN9WhaXQLCIiIuJirFYrq1evpH37/OV/g4Mf4bHH8m9iEhAQSHZ2FhkZGUX2sWnTembMmFVgW40aNRk6dBRVqlTBZKpC3bp3Eh9/AYD27UOIilqB1Vo2SwNXNJqeISIiIuJiTpz4BR8fH3x88tcaDg5+1LZvxYqlNGx4t23f9UyfXviuf3fdVd/2+MyZM+zc+TULFy4GoFq1W/D29uLEiV9p2LCRM96GS9GZZhEREREXExcXh9nsX2h7VNRy1q9fR3j45Bvq/+TJ/zBixEsMHTqSwMA6tu3+/rdz9uyZG+rbVelMs4iIiIiLMRoNhS7IW7BgDjExe5k//yP8/AoHakcdOfIPwsNHM2rU6zzyyGMF9plMJozGm/Ocq0KziIiIiIsJCKjNhQvnbc+jopbz00+HWLhwEb6+viXuNz7+AuPGvc7kyTNp2bJlodtonz9/joCAwBL378oUmkVERERKIDMnm6heC0ulX3saNGhEcvIV0tLSqFq1KosXf0zVqlUZPnyIrU1k5BwSEy/yySd/IzJyrkPHXrHiC7Kysvngg9nMmwdWK3Tp0o0uXXqQmppKWloaDRo0LPF7c2UKzSIiIiIlkHoly6H1lEuDwWCgZ8+n2b59M92792Lbtm+v2a5GjZqYzX5F9rVnz0Hb45EjX2fkyNcBMJmMBc40b926iZ49ezuhetd0c05KEREREXFxXbv24MCBH8nMzLxum4SEeEJCOt7wsdLT0zl4cD9hYd1uuC9XpTPNIiIiIi7IZDIREfFekW38/Wvh71/rho/l7e3NrFmzb7gfV6YzzSIiIiIidig0i4iIiIjYodAsIiIiImKHQrOIiIiIiB0KzSIiIiIlcKuvO2azr9P/u9XX3aHj5+XlMW7cGwVWz0hPv8pTT4Xx008Hi3hlQfPnz2H69EkAWCwWxo59nfT09GJ9FjcDrZ4hIiIiUgImTw/2hnV3er9t1q+BVPs3OImOXk2LFq3w9PS0bXvvvVmkpqY6fKyDB/ezdetGgoLaAmA0GnnyyS4sWfIxI0aMKn7xlZjONIuIiIi4GKvVyurVK2nfvoNt244dX+Ht7U39+g0c6iMlJZmPPlpAv37PFdjeokUQu3Z9y9WraU6t2dUpNIuIiIi4mBMnfsHHxwcfHx8ALly4QFTUCoYOfcXhPmbNmsHgwS/j61utwHY3Nzfq12/IoUOOT/G4GSg0i4iIiLiYuLg4zGZ/IH8eckTEFEaNehMPD087r8y3cWM0/v7+NG/e4pr7a9WqRVzcGafVWxloTrOIiIiIizEaDbi5uQFw+nQsZ86cJiJiKgC//RbH229PY/TocB54oPk1X79jx1ckJSUyYEAfUlKSycjIYO7cdxkx4jUg/26DBoPOrf6RQrOIiIiIiwkIqM2FC+cBqFfvLtau3WzbN2zYYAYOHHzdwAzw/vsLbI+3bNnI3/9+yBaYAc6dO0fTpg+UQuWuS18hRERERFxMgwaNSE6+Qlpa0RfrJSZeZMCAPsXqOy8vj19++ZkWLa49deNmpTPNIiIiIiWQm5mVvzxcKfRrj8FgoGfPp9m+fTPdu/cqsG/evI9sj2vWNHP33Y2L7OuJJ0J54olQ2/OYmN0EBz+Kp6cXubmWYlZfeTkUmufNm8fWrVsBCA4O5s033yQmJoaZM2eSlZVFx44dGTUqfy2/Y8eOER4eTlpaGs2bN2fy5MmYTMrmIiIiUrlcTs12aD3l0tK1aw/Cw9+kU6ewAms1/1FGRgatWz/kcJ8Wi4VNm9YzYcJUZ5VZadidnhETE8OePXtYt24d0dHR/Otf/2LTpk2MGzeOBQsWsGXLFo4ePcquXbsAeOONNxg/fjzbt2/HarUSFRVV6m9CRERE5GZjMpmIiHjvuoEZwMvLi+DgRxzu02g08vbbs6la1ccZJVYqdkOz2WxmzJgxuLu7U6VKFerXr09sbCx169YlMDAQk8lEaGgo27Zt47fffiMzM5OmTZsC0K1bN7Zt21bqb0JEREREpDTZnTfRsGFD2+PY2Fi2bNlCv379MJvNtu1+fn7Ex8eTkJBQYLvZbCY+Pr5YBdWoUfG+2ZjNvhWyLylbGjvXpvFzbRo/11XcsUtIMGIyaZ2CiqIyjIXRaHTKvyEOTzb+9ddfGTJkCKNHj8ZkMnHq1KkC+w0GA1artdDrDAZDsQpKSkrDYincT2lw9AO8eNHxe7jbO56z+pKypbFzbRo/16bxc10lGTuLxaKLzyoIk8lYKcbCYrEU+nNoNBqKfaLWoa8Phw4dYsCAAbz22mt07doVf39/EhMTbfsTEhLw8/MrtP3ixYv4+fkVqyARERERkYrG7pnm8+fPM3ToUGbPnk1QUBAATZo04dSpU5w+fZratWuzadMmunfvTkBAAB4eHhw6dIhmzZoRHR1Nu3btSv1NiIiIiJS1W6p54e7h/BXCsrNySU7JcHq/cmPsjvSiRYvIysoiIiLCtq13795EREQwfPhwsrKyCA4O5vHHHwcgMjKS8PBwrl69yr333kv//v1Lr3oRERGRcuLuYWLKa5uc3u+Edzs71C4vL4/x48cwYcJU2woa6elXGTCgD2PGjC/yjoAA27dvYenSJQC0atWaYcNGYrFYeOutNxk/fgrVqlW868zKk93QHB4eTnh4+DX3bdiwodC2xo0bs3r16huvTERERESuKzp6NS1atCqw5Nx7780iNdX+PPLMzEzefz+SFSvW4uPjw0svPc+BAz/y4IMtefLJLixZ8jEjRowqzfJdjutfEikiIiJyk7FaraxevZL27TvYtu3Y8RXe3t7Ur9/A7ustljysVguZmRnk5eWSl5eLh4cHAC1aBLFr17dcvVr0LbpvNgrNIiIiIi7mxIlf8PHxwccnfwrFhQsXiIpawdChrzj0em/vqrzwwov06dODLl2eoFatO/jLX5oA4ObmRv36DTl06GCp1e+KFJpFREREXExcXBxmsz+Qv6RaRMQURo16Ew+P698d8I9OnPiVzZs3sGbNRtav34bRaGTFiqW2/bVq1SIu7kyp1O6qFJpFREREXIzRaMDNzQ2A06djOXPmNBERUxkwoA/Hjx/j7ben8dNP1z9TvH//DzRr1oJbb70Nd3d3nngilL///ZBtv8lkwmBQTPwj56+TIiIiIiKlKiCgNhe5VgL8AAAXkklEQVQunAegXr27WLt2s23fsGGDGThwcJGrZzRo0IgFC+aSkZGBp6cne/d+T+PG99r2nzt3jqZNHyi9N+CCFJpFRERESiA7K9fh5eGK2689DRo0Ijn5CmlpabZ5zdeSmHiR119/hSVLlhfY3qJFK3755Weef/4ZTCYT99zzJ555ZgCQv5TdL7/8zKRJU27ofVQ2Cs0iIiIiJVCeNyAxGAz07Pk027dvpnv3XgX2zZv3ke1xzZpm7r678TX7eOaZAbag/EcxMbsJDn4UT0+vSnEbbWfRZBURERERF9S1aw8OHPiRzMzM67bJyMigdeuHHO7TYrGwadN6Bgx43hklVio60ywiIiLigkwmExER7xXZxsvLi+DgRxzu02g08vbbs2+0tEpJZ5pFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFRERESuCWau6Yzb5O/++Wau4OHT8vL49x494osHpGevpVnnoqrMi7Af7R1atp9Ov3FOfPn7NtW79+Lf36PUXfvk8xY8ZkcnJysFgsjB37Ounp6cX7kCoRrZ4hIiIiUgLuHh7MG/uc0/sdNvNTINtuu+jo1bRo0QpPT0/btvfem0VqaqpDx/nXv44ya9Y04uLO2LadOXOaFSuWsmjRUqpV82Xy5AmsXRtFr159efLJLixZ8jEvv/xKsd9TZaAzzSIiIiIuxmq1snr1Stq372DbtmPHV3h7e1O/fgOH+ti4cR2vvjqamjXNtm3u7u689toYqlb1wWAwcNddDYiPvwBAixZB7Nr1LVevpjn3zbgIhWYRERERF3PixC/4+PjYbqF94cIFoqJWMHSo42eBx4wZT5Mm9xfYVqvW7Tz4YEsALl++zNq1UbRtGwyAm5sb9es3dHjqR2Wj0CwiIiLiYuLi4jCb/YH8u/hFRExh1Kg38fDwtPNKx1y8mMCwYUPo3DmMBx5obtteq1Yt4uLinHIMV6PQLCIiIuJijEYDbm5uAJw+HcuZM6eJiJjKgAF9OH78GG+/Pa3EZ4RPn47lpZee54knQhkw4IUC+0wmE0aj4Ybrd0W6EFBERETExQQE1ObChfMA1Kt3F2vXbrbtGzZsMAMHDi5whthR6elXGTVqKEOGDKVTp87k5loK7D937hz33df0xop3UTrTLCIiIuJiGjRoRHLyFdLSir4oLzHxIgMG9HG4340bo7l8+RIrVnxBv369GTCgD5988jcgf4m7X375mebNW95Q7a5KZ5pFRERESiA7K+u/y8M5v197DAYDPXs+zfbtm+nevVeBffPmfWR7XLOmmbvvblxkX6tXb7Q97tWrL7169QXAZDIWONMcE7Ob4OBHCyxxdzNRaBYREREpgeSUbBxZT7m0dO3ag/DwN+nUKey6QTYjI4PWrR+64WNZLBY2bVrPhAlTb7gvV6XQLCIiIuKCTCYTERHvFdnGy8uL4OBHbvhYRqORt9+efcP9uDKH5zSnpaXRuXNnzp49C8DYsWMJCQkhLCyMsLAwvv76awBiYmIIDQ0lJCSE2bNv7g9XRERERCoHh840Hz58mPDwcGJjY23bjh49yhdffIGfn59tW2ZmJuPGjWPp0qXcfvvtDBkyhF27dhEcHOz0wkVERKRyslqtGAw357Jm4lxWq9VpfTl0pjkqKoqJEyfaAnJ6ejrnzp1j/PjxhIaGMnfuXCwWC0eOHKFu3boEBgZiMpkIDQ1l27ZtTitWREREKjeTyZ2rV1OcGnbk5mS1Wrl6NQWTyd0p/Tl0pnn69OkFniclJdGqVSumTJmCt7c3Q4YMYfXq1Xh7e2M2/37/cj8/P+Lj44tVUI0aPsVqXxbMZt8K2ZeULY2da9P4uTaNn+sq7thVr+5JXFwcFy+eLaWK5Gbi5eVJgwb1qFKlyg33VaILAQMDA5k/f77teb9+/YiOjubxxx8v1La4P68kJaVhsZTNt0tH/yJfvJjqtOM5qy8pWxo716bxc20aP9dV0rHz9TXjq+9J5a6y/N27ciUTyCywzWg0FPtEbYlubnL8+HG2b99ue261WjGZTPj7+5OYmGjbnpCQUGDOs4iIiIiIKypRaLZarcyYMYPk5GRycnJYuXIljz32GE2aNOHUqVOcPn2avLw8Nm3aRLt27Zxds4iIiIhImSrR9IzGjRszePBgnn76aXJzcwkJCaFz584AREREMHz4cLKysggODr7mlA0REREREVdSrNC8c+dO2+O+ffvSt2/fQm2CgoLYsGHDjVdWQVhysx2a+5ybncXl5KLvCmTJtt9XbmYWl1PL7+5CIiIiIlKY7ghoh9Hkzsnp3e22u+utNdi7labR3Z29YUX31Wb9GlBoFhEREalQSjSnWURERETkZqLQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2GEq7wJESsq3mheeHkX/Ec7MyiU1JaOMKhIREZHKSqFZXJanh4nQ19YX2Wbju2GkllE9IiIiUnlpeoaIiIiIiB0KzSIiIiIidig0i4iIiIjYodAsIiIiImKHQ6E5LS2Nzp07c/bsWQBiYmIIDQ0lJCSE2bNn29odO3aM7t2706FDB9566y1yc3NLp2oRERERkTJkNzQfPnyYp59+mtjYWAAyMzMZN24cCxYsYMuWLRw9epRdu3YB8MYbbzB+/Hi2b9+O1WolKiqqVIsXERERESkLdkNzVFQUEydOxM/PD4AjR45Qt25dAgMDMZlMhIaGsm3bNn777TcyMzNp2rQpAN26dWPbtm2lW72IiIiISBmwu07z9OnTCzxPSEjAbDbbnvv5+REfH19ou9lsJj4+3omlVmzZeTmYzb7lXYaIiIiIlIJi39zEarUW2mYwGK67vbhq1PAp9msqAne3Kjy18qUi20T1WuhQXwrfzuWsz1Pj4to0fq5N4+e6NHauTeP3u2KHZn9/fxITE23PExIS8PPzK7T94sWLtikdxZGUlIbFUjiAl4aK+gfh4kXdw84Rjo6fMz5Ps9lX4+LCNH6uTePnujR2rq0yj5/RaCj2idpiLznXpEkTTp06xenTp8nLy2PTpk20a9eOgIAAPDw8OHToEADR0dG0a9euuN2LiIiIiFQ4xT7T7OHhQUREBMOHDycrK4vg4GAef/xxACIjIwkPD+fq1avce++99O/f3+kFi4iIiIiUNYdD886dO22Pg4KC2LBhQ6E2jRs3ZvXq1c6pTERERESkgtAdAUVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxw1TeBYjIzce3mheeHkX/85OZlUtqSkYZVSQiIlI0hWYRKXOeHiZCX1tfZJuN74aRWkb1iIiI2KPpGSIiIiIiduhMcwWTm5OH2exbZJvsrFyS9bO1iIiISJlRaK5gTFXcmPLapiLbTHi3cxlVIyIiIiKg6RkiIiIiInbd0Jnm/v37k5SUhMmU382UKVM4c+YMCxcuJCcnhwEDBtC3b1+nFCoiIiIiUl5KHJqtVisnT57ku+++s4Xm+Ph4Ro0axdq1a3F3d6d37960bNmSBg0aOK1gEREREZGyVuLQfPLkSQwGA4MGDSIpKYmnnnqKqlWr0qpVK6pXrw5Ahw4d2LZtG8OGDXNawSLFYcnNtnthZW52FpeTs4vuJ9t+PwC5mVlcTi26LxEREXE9JQ7NKSkpBAUFMWnSJDIzM+nfvz8dO3bEbDbb2vj5+XHkyBGnFCpSEkaTOyendy+yzV1vrQGKDrpGd3f2hhXdD0Cb9WtAoVlERKTSKXFovv/++7n//vsB8Pb2pkePHsycOZMXX3yxQDuDwVCsfmvU8ClpSTcVR856iuOc+XlqbJxH4yL/o/FzXRo716bx+12JQ/PBgwfJyckhKCgIyJ/jHBAQQGJioq1NQkICfn5+xeo3KSkNi8Va0rKKxZX/IFy8qHulOXP87H2exTmWxsY+Rz9PZ32WZrOvxsWFafxcl8bOtVXm8TMaDcU+UVviJedSU1OZNWsWWVlZpKWlsW7dOt555x1++OEHLl26REZGBl999RXt2rUr6SFERERERCqEEp9pfuSRRzh8+DBdunTBYrHQp08fmjVrxqhRo+jfvz85OTn06NGD++67z5n1ioiIiIiUuRtap3nkyJGMHDmywLbQ0FBCQ0NvqCgREam4fKt54elR9P8+MrNySU3JKKOKRERKn26jLSIixeLpYSL0tfVFttn4bhiVcyakiNysdBttERERERE7FJpFREREROxQaBYRERERsUNzmuWml52X49JrdouIiEjpU2h2Qbk5joW87KwsklN0S2d73N2q8NTKl4psE9VrYRlVIyIiIhWRQrMLMlWpwryxz9ltN2zmp4BCs4iI5HNkuUDQkoEi16LQLCIicpNwZLlA0JKBItei0CwiFZIlN9uhaUi52VlcTtYvKiIiUroUmkWkQjKa3Dk5vbvddne9tQZ705As2fYDeG5mFpdTFb5FROTaFJpFpNIzuruzN6zoAN5m/RpQaBYRketQaBYRERFxAY5cyKmLOEuPQrOIiIiIC3DkQk5dxFl6FJpFnCg3J8/u3NnsrFySdRZARETEpSg0iziRqYobU17bVGSbCe92LqNqbg66o2PF5MjqJ1r5RERciUKziLg03dGxYnJk9RNHVj4BrX4iIhWDQrOIiFRoWv1ERCoChWYREREpQNNrRApTaBYpY7k59ufgZmdlkZyi/xmJSPlw1vQaR6bWgKbXiGtQaBYpY6YqVZg39rki2wyb+SmOzPUU53Fk5RPQ6ifOpIs4Kz9HptaAptc4kyO/EoB+KSgJhWYRERxb+QS0+okzOXIRJ+hCTpHicORXAnDeLwU3068ECs0iIuLytEZ62dMvBa7N0fHTRbi/U2gWESkGzUmvmLRGetlz5nKP+tJT9rRcZ/EpNIuIFIPmpLsuR77wgL70lAd96XFdN9MXHoVmERG5KTjyhQf0paei0q88FdPN9IWnVELzxo0bWbhwITk5OQwYMIC+ffuWxmFERETkJqFfeVxXZfmVx+mhOT4+ntmzZ7N27Vrc3d3p3bs3LVu2pEGDBs4+lIiIiIhUcJXlVx6nh+aYmBhatWpF9erVAejQoQPbtm1j2LBhDr3eaDQ4u6Qi+d3qZbeN6RazQ32ZvW+z28bDz35ftzhQk2/1Gg7VVNafZ1lz1vg5a+zAeeOnsauYf/dA4wdl+3cP9G+nMzkydqB/OysqV/23s6L93SvJcQxWq9XqzCI+/PBD0tPTGTVqFACrVq3iyJEjTJ061ZmHEREREREpM0Znd3itDG4wVO5vfSIiIiJSuTk9NPv7+5OYmGh7npCQgJ+fn7MPIyIiIiJSZpwemlu3bs0PP/zApUuXyMjI4KuvvqJdu3bOPoyIiIiISJlx+oWA/v7+jBo1iv79+5OTk0OPHj247777nH0YEREREZEy4/QLAUVEREREKhunT88QEREREalsFJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFruGbb75h6dKlnDlzpsD2lStXllNFUhyxsbHEx8cDsGrVKqZNm8aWLVvKuSopiYiIiPIuQRx05MgR2+MffviBiIgIIiMjOXz4cDlWJY7avXs3KSkpAERHRzNlyhTWrFlTzlVVLFpyTuT/iYyM5OjRo9SvX5+tW7cyevRowsLCAOjatSvr1q0r5wqlKEuWLGHp0qVYLBZatWrF+fPneeyxx9i5cycPPPAAQ4cOLe8S5TrGjh1baNvOnTt59NFHAZg5c2ZZlyTF8L9/H5ctW8aXX35J9+7dAVi3bh09e/bkmWeeKecK5XqmT5/OsWPHmD17NsuWLeOf//wnf/3rX/n++++pXbs24eHh5V1iheD0m5tIvnPnzhW5/4477iijSqS4du3axbp16zCZTPTr14+BAwfi7u5Ox44d0XfMim/NmjVs2bKFxMREOnfuzL59+/Dw8KBnz5706NFDobkCq169OtHR0bz44otUq1YNgH379tGiRYtyrkyKIyoqis8//5xbb70VgB49etCjRw+F5gps7969bNy4ETc3N7777juioqJwd3enV69edO7cubzLqzAUmkvJkCFDiI2Nxc/Pr1DQMhgM7Nixo5wqE3usVisGgwGAO++8kw8//JDnnnuO2267zbZdKi6LxYK7uzsBAQEMHDgQDw8P2768vLxyrEzsGT16NO3ateP999/n1VdfpWXLlnz22Wd07dq1vEsTB+Tm5mKxWKhRowbe3t627e7u7hiNmg1akXl6epKUlISfnx81atQgPT0dd3d3MjIyMJkUFf9H0zNKSVpaGn369GHixIk0a9asvMuRYpg3bx4xMTGMGTPGdgv4Q4cOMWzYMLKzszl06FA5VyhFmTNnDvv37+fzzz/Hzc0NgJ9//pnw8HAefvhhhg0bVs4Vij1Xrlxh4sSJ3HHHHezZs4eNGzeWd0nigP79+3Pq1CkMBgOtW7cmIiKCH374gXfeeYeHH36YESNGlHeJch07d+5k0qRJdOrUidzcXPbt20dQUBB79uzhhRdeoFu3buVdYoWg0FyKjhw5wqpVq5g6dWp5lyLF9MMPP+Dn50f9+vVt286fP8/ixYt56623yrEyccSBAwd48MEHbc9PnjxJXFwcwcHB5ViVFNeqVavYunUrixcvLu9SpBhOnjxJSkoKTZs25dChQ6SmpvLwww+Xd1liR1xcHN988w2nT58mLy+PmjVr8sgjj9hOHolCs4iIiIiIXZpkJCIiIiJih0KziIiIiIgdCs0iIuXo7Nmz3H333axatarA9kWLFjFmzBiH+7l06RJ33323s8sTEZH/UmgWESlnRqORt99+m1OnTpV3KSIich1afE9EpJx5enry3HPP8dprr/Hll1/i7u5u25eamsrkyZP5+eefMRgMPPTQQ7z66quYTCa++uorZs+ejZeXF3/+858L9Llq1SpWrFiBxWKhevXqjB8/nvr163Pw4EEiIiKwWCxA/pryHTp0KNP3KyLiinSmWUSkAnjppZfw8vJi9uzZBbZPmzaN6tWrs3HjRtasWcPx48dZvHgxiYmJjBs3jg8++IC1a9cSEBBge83+/fuJjo5m2bJlREdH88ILLzB8+HAAPvjgA5577jnWrl3LjBkz2LdvX5m+TxERV6UzzSIiFYDRaOSdd96ha9eutG3b1rb9+++/Z8WKFRgMBtzd3enduzefffYZdevWpVGjRjRo0ACAXr168d577wHw3Xffcfr0aXr37m3rJzk5mStXrtCxY0emTJnCzp07ad26Na+++mrZvlERERel0CwiUkHccccdTJo0idGjR9OlSxcA2zSK/7FYLOTm5mIwGPjjMvt/vNWtxWIhLCyMN954w/Y8ISGBW265hd69e/PII4+wd+9edu/ezbx589iwYQO+vr5l8A5FRFyXpmeIiFQgHTt2pF27dnz22WcAtG3blmXLlmG1WsnOziYqKorWrVvTvHlzTpw4wc8//wzA2rVrbX20adOGzZs3k5CQAMCKFSt49tlnAejduzfHjh2jW7duTJ06lZSUFJKTk8v4XYqIuB6daRYRqWDCw8M5dOiQ7fG0adMIDQ0lJyeHhx56iBdffBF3d3ciIyN5/fXXqVKlSoHbhj/00EMMGjSIgQMHYjAY8PHxYd68eRgMBl5//XVmzJjB+++/j9FoZNiwYdSuXbu83qqIiMvQbbRFREREROzQ9AwRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMSO/wPgkCk9ZX0M6wAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df.pivot_table(\n", " index=[\"Nodes\"],\n", " columns=[\"Tasks/Node\", \"Threads/Task\"],\n", " values=\"Sim. Time / s\",\n", ").plot(kind=\"bar\", figsize=(12, 4));"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "source": ["<a name=\"taskb\"></a>\n", "\n", "* Bonus task\n", " - Use `Sim. Time / s` and `Presim. Time / s` as values to show\n", " - Show a stack of those two values inside the pivot table"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "slide"}}, "source": ["## The End\n", "\n", "* Pandas works on data frames\n", "* Slice frames to your likings\n", "* Plot frames\n", " - Together with Matplotlib, Seaborn, others\n", "* Pivot tables are next level greatness\n", "* Remember: *Pandas as early as possible!*\n", "* Thanks for being here! \ud83d\ude0d"]}, {"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["<span class=\"feedback\">Tell me what you think about this tutorial! <a href=\"mailto:a.herten@fz-juelich.de\">a.herten@fz-juelich.de</a></span>"]}], "metadata": {"kernelspec": {"display_name": "Python 3", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2"}}, "nbformat": 4, "nbformat_minor": 2} \ No newline at end of file diff --git a/Introduction-to-Pandas--slides.pdf b/Introduction-to-Pandas--slides.pdf index 49251345d2fd3a49db0808d5b9382ab8795b7795..0556c5099fbf9f53e99ff3f2484d4da43754979d 100644 GIT binary patch delta 614010 zcmeBv`iHS|%U{L~CRZn?UX`7`z+O&h@~Nv<Qv=lWChK1loH{`*c=Cm7TGK!Hs0%Zi zPIff0XEHRM+-Rc6WN13w@T-F4bb)TQ8PgZeR5PFcpj+)Dqv`aIKQzRr8`LYjo4oRd z;ADk*`RyNW>IX0~8=4tR{}`?*&S*HjQB~EZ-pokBKp}{ii<477-B7{M%ovGlpkQcb zg2V^On<DXz6%5VHkoYDFhGynSd{YHOGYcfXnS!C2C4z6HU}&yqfZ&@c7@8X*xQ+^j z=17inQ7|+&p8QbQd3v_6g2?m&MiYU_v+uM_Pn@S>HMyT%k<oB^ppusA<OO$wCx5@k zKYfC^nmnWVbjC17(a8zb%Nfn58~(NuV>UE1o~&3SHo5k`$n=5*Dq@rMA8<|AWHjWS z?DoKI`g|6X*^}iS@=UgRz&F|Aq096K3sojhmU+ZIS?eL+WYb43)8$`jEMT%Qm~O~! zBFbcFHd#<yck=4T;?w0{YrJ8!n0|1Hiuh!UCvMXfma4=tT1;<Psv^c{Hr>%uLvOOr zQ?bbfbsbC=#?$Z5(Gr_1@XU4kgcIu1m@G`DGs<d-Prmhxe|o}fErrQSnxfM;%(Tv# zoba4`dgL5Sp2_9U1t;s*a7<qQTx5D2vvD-Dp@rG>z@^F}jE2)UO3CX@{{BLIa=l^1 zWc^p%(=+4Mc_*KIAu#>HYL%YJ4|Vhy4W|~GicP<;Qk8GB%u7*5MvKYsjYTKFc%?nv z;FPBD^n(Ukj?)(=Dk)9g_f~Lvg1p&6CPT~Vfj5;brhiy(DL9?8LW!HjP{Gi2^2^s& z(*yqNaZc8IBQ^P0r|9%^8|6i&H@sEjnLhV~md)h#Z}g@c8EJ`4cd%DGGx^RNf$1CU zROF`@8f!^RPv9|Tt#5c=*(I~PJ;~?q%_fdZc?S>w+mI)JKrJ~uBDv$+gWLH=kGE}T z<hY-r_Vba7)s^G7z8Lr0-B}?uqw>1++XSh6KgRtBwwmiqi}{`v$GJZ%L$|x8aI=pw z&(@c2VIp(f=hv0ax_iics+|6ZBa6zHAN>04l=*Y#$2)gM{$^&LF_Sy2ep-z4^YW_P zx6#%N{Tp(kv-jUSfBM>W8>4+<+%ZbWQx?1NPR<qGaV@4%^icmKadmqyHn;!L_k*u4 z4Zgqj@SC~k#hki~0`|DyN_BBx#O0~x;py|mXNpi@n$yhPGMc^<j5<RuaxPC$Z#{D% z@9T+wYviV{*x(^^LQh@3QDprocPo1xHBT-zeF>ivrb`ptPGx#I-m;o5vP3v&m&3mJ ztsW|W_Fs5jU3}%N<$duQo*NS`blp4fckhjhZL19G8ISy5&NuzzRc&!b<H-r{#V3n? zP@CTWPDu!q@=diInJmpFZ!A`v-1|vjy1-sd{^<gH6gj5f|Et!)XgU2Ov%cB%1ACMO zrf1(U7iKkAFtsq4%=vN2bjNISt?B!ZYi^so=A*#mhFbaQ2Q9S3r?1a7;jL#e>sJ$U z^72&P_`-SVUxp<9l}nR!oW=gsp5^ge8fA3p<J{w0+gGgW-)bt{fA8-CsTmdNYrYxq zg|Baz|1e2McvAM_Wm7+_{&j7mhKl)T3&;4|c?qruE58U{Dg0!7U*=0e8@t%vO5S@n zxbN45`aXE}>JI;x1a-O1o1RGR3V6A+w0?aqzs;d7xoeyAmQ_j@{Zq0_XOB_hE?UgS zyEt3)$F;Zy(ZUE-eZR!1JZt_f?>2pVXXX2A$rVC}9!DH|>ZIiECA3I3(Cv%M7UxMK zGlQ1c2+2+mx@2_el8C0b%aW(7-DHbiO$hbquimn+$|t|?y}1a};TDzW=R-R0EDcdo zpZwC`Wf}{=_Nz%3AI_U~a;xOj_<1>!Z)@dVy{eU9Jtv>OVb8ve1^->|Jeam7^*>XH z>XLX!<XB8s(9sf`eDaIV^b1`ILQF;m(>MOrb6_->KJlQY;^h0^z&VU-x`CPQY)~FE zo33AID9dDEv|Vw&E-xda!E{G8UH$2cGL%H8=Pxo7s9*VRo5G<-We2<e1?=Wua5970 zv`s?4=C_*U#tRND`OoG|w&+~-D@r?4@t1*c{skxfsRkDQ-48ir`GPj8uqy7nt5Ngw zMwXam@#b@4$D_UqYjZWcxLlf^9cB@8<jO<l?t8rs%2yfMtFKz*iLI?Ka7k56OXXy$ zp8n<5tL<ej9ZmIbBe<_mFSE5eKmSqoRgTODEqRC48#m`!&I;o_(RE|3P}l5eRcF<I zUyX}OZU5)_2H0Db%EUjq6f7hh%bXgz;Ii?>-W6OsqYus7E<ZojaoW=*ekZDzJrWk( z9B^i`gXP@^Uz}V&JzZk6{C1+q`~Sz!*UF2<_Y@X$^$W8-aaR_7$Mb%<`rFvL|4fVt z6GNs4cIb#R8c%<JQd5-CXnNrVEve}XzNjgJLiwVZian#z^pA6Om8VNPF+y`ef|k`p zkSr(%O#81VpcSiNY@raXU}k8p5UXHfst~PUVql?Xs$gaWB4ZUy4HcplOhFajbiv*7 za`vW1W(p=|po$4pR~eZY>w)S(0|g^vb1(}eZ)#u!W*aCNn;I$@TUaU>n}9@2jZCK> zd}1IxJ=c{{V0u8dxz+T$yXDP6)%L|0Mv3Wqd*pqmTe~s}PXFM?D9>mxz0p!dZ2E=S zrhN4*8Rnddp<AX}yy-vojbVa>SZ0ex3v>Q{f%3UqJQV)s)c@15UiGSY?bPNMXZ;pA zvhTfg>5+|Ym_mt###tf0AkOl|AH<WhBc2>RYh^8yeb;}D2E(HA`E%#SCYDbMZs*sj z+A6g667w6o)yIlAOMLEC&SE#z_MUL#x8M1-m6`4>^%^I>ZT(XD^xEF*e?n{4ur;## zWk?x%&hgd0u&v4=?8v{V0Wp8IC9{6&*DHix?_Phc?bVg=<A(jGdw(bfOk?xXoF1%q znn_k@QP+#k7hWN(=cB*>x&GQt%6{_A))>DhPV-()JafWI`IOwse6glVC)GJk;#|)} zmYh=F@9Qw{Hq$m)=eygr#j^h<9X37ewmnv>_j~i~lR2y2{${-NY}R3LGT;HVE%KAH zc)5%X45nwfF{(~?P}5Tb=eFse{^}`D5A$Rc099vP(=Q}5&YG^6Z*D$$%U4+@LvUW> zW1Jq~!N@;7KuuSk(Qx`jI~DQi>wl}U*MAn-`9@F6!(z*1fuQTnM~?DI-DY-3+U23_ z(ir#Q8@Ji(C9X^_50};bzj1M+Rp>Pzo2t*vs}dj0-FWM;#hpD&_YPf+P*b_?=BxcM z`fG1;pvJoAg-!c5-96CN^!bIY%kh)vYl<&8bMxy|eU;j?F?`=on`@1)XBXeU&^))| z%&AG)^)C+jp6{*Bta>0gEmvFiQQEBS3!mvfPA)s3x@ke)l?90<y-fFSXm3#BTmIyz z>YPc9SN}g!TDWOjaD4CaFDgrpe^k_)Smt5mDr9)n&qXsxX+lch6g8LXMLjQEN*uh5 zmiP!wbaLZbsj^F8qLUxjO~K6X9U^v0b1z=IRsZevvv+YW0kalVKb>jPDYR+Ux}?>N zuWZ!iUkZP9p80d0R3vY}Grx7R6P|tQpB}q|Kj7{j{>_J54=&VwY$W#1`YGG?5Z&|q zzpB>WnVx8@2g;}yx5$f5Z}w$00EMu<ylDN~+S`38)<NHDZC&G(10R2Obn-a!QR;>e ze}F-AfSJ(Y-`@2#g&Pjf+_`IaRsI9^vs+Ade~Qk&`LMu3Mv(9Jdrkj;_jNDq-(Od5 zpUt_wUqAo<$2N7<mICjUZMWzDfBJU*zgOShw><woL#uxK|3&<dc>n)<$Z!7h@%j3y z-&f@iy{-5EfAZ-OlS6CO^`7<T*Zcqf_qdnK*YM2uJKDBg?+c$z%FEn${f1j+dhgC{ zQ>?E~y{Ep{(0TvVZ*uM@zl3+~-2Z(Zw?-v@;++diZd;3bh|E2(?9Fxiy?<YQS9oXZ zpOtZ9`}}_%Zxg1SsIU9=>6>{=`~JOuzvSl|?s+bfwlwO+N&EWyFFYmxEZNJyNPXKj zxsbmq``DY(`+iS8<^QWXSNZJ3{fl*eF51)YGG}G7EyqmxC*OmD(%!vbf4Qn_rE1{* zvtpmOd%qHwpAuicO*A}IMKg2H`Ag9+Ki*cIdOu#E`s`=zto4?qp~pp?U*%7|WpR3r zX5H?)PZ!<Y8hi5K)8^A*F}3x9b)RRg2wJylhe%8JB)!a46XpNBQx9ccIsMDLs$EAT znG5?(xH4P+%=>)i?KCFC6;~tqN)6oj4Of3!G=J}Qo7cIbQ<LVt-^drrzVh;m{<q)e z-4>}WP>5DMB6BahueeXzQ*es(%dIB&Rx(}*I{c15BI)hK`5!D7+Hp^jf2sD%+OhuX z6eH2O?^Uk}EOWP?!6x-7Ao5@CGM&KHjZW8`JJ`KSLjL~AIrR5!{QV_HLOxX!cXioK zZ9D4s#P4v@t0e)<o%-Rn$pW*?y_~zh=mxAh`H->a3Fnh{g|BvtNS00IO{x!=u)-^~ z@1aAclgyQ-clXbReCPR;cT8e2AA7`#*DFJ2)w`!X&vRg8aegIraCY;=v}rt>434U# zE?}3Qb!}?{>-M&y_K>heQ*LcN&-m=pQ(xw#oNLWZ5)XgBYN;&i%93?tN>Owkiy33* za^<ECk+C~ft}|W!pti$EI+NuL-!-2+7rV;r2khll@{+7S$`!Z8-taJ9|6A5j<@Bq< z{`6)0i#OLV`chweOxxG$_-lq}37yC*$7ZdSH}l{vkxjJty1(qg-vj3z5ApbDU5wcx zozCqNopCK+`H06iUKisR3nB^@x*a{j^mgMxA>X5y81$K)`Ms8_tn7ACIX#<u$*xBg zb>Gi@xO|(zc}jU;<fLuY0wJCYyWX<h;h#})rKxtkso;!LO!ZS&@irNL{CW5H?Cka0 zhYSnDzjbZa*e>*)^VzvXUC-3oiA|md7Pl|mH<8(m^|8sq>*sjhr9O#}=v7@3DDw8! z(M8gW&5nN9()Rr?qdw;)Wm~JLfTOd6uiA@OO1oTaJ+?P9|L|1bB@>z1?8-HH({g>E zT=aS@*88Mz_X&jw-5GL6>OJ0?3E0fpsrosGlh@Zo<yRSx4?~-$wpfa-(M4tMy~a`8 zy^|l=uYb=w_kH%w2^W=JrL4BeB}}>E(R_*XOS)f>LzZs(H5ZdM@AM7dZbk@CR1lcG zNzD6mjQ*K@V%jeq>b8H0QjU;y>sH=2d$Li(k(nBIry5SSh^X$qH&61C(_U$bg>H*J zE(q*5aDBh>=%rO=JEy4>7qm&TBp;nM{oH&FiTbb=cN(@NU$|PgiMhi634iK&emO(i zNvn44l_>MP;=WvH<;$tQQ+YPsyi;g#tdRecSAG7*l|KU`JH-OMb&GCFi(YjxTRZLH z{bM0TAFSNYB)iU=d}CG_n@v~H_3Y__UKt@;9I4B=xEA)DTpV;v!ZR!K$J~!MSBLHN z@-*1JYvG-D^<NtJWDmVye9$W*SlnNo_u_V=b@K(e)I8={ySY3%vh~b=MYIOIKP}^y zvFxGt-iQ*n4wXG-D>I+B+U@kH?zHJwZQYz?CdXbiVSk~Kti-i-5{ITUNM4OhTA0%D zWsjBnLWge$=Jc+7qhx;NtYKFo<E3IpTWOI`#%DkBzn^rIBe9;z*HYR%%=x4lmuk!1 zx(ocK7ZceHma??1O9<a=cxZa3)9S`U3{s{G5)PL?<c>57eK1EkgsXAk=LQvnNeRxn z3^}4-=e3xgV12!^YvGKRmVlF1$$XQduTB<?`dPeb#}@C5615fQ;;wFD{<=b?%3H!m zHFm<MOw(iu1LZx9yv2s~Cs((o&v<h1@RmCTM`GrMYAoPm;eD@s<!X4_s!tquIvjdm zT<Lg}qkBoSu_QpXYxVZi96Xkbasw(?%}v%Y`Jpu3p}8sDD{t;${!*?vGo)QakIgEc z8N)U6{!a7tUmC(DZTqu=%lX;HiNBgTnda<aINYf|l}lxcNRUYA+!fZJJDTc)KCiyu zxX$3LM^st1>NmZvy*+kMbD3rbINf0h?MgGs43iGtV#IPhX0}g+?U~I*0ahmzJVMjn z&o<FpSjfbo|Byj-?!&3QGu8w}&)2Q{eMmN=WlpWLUb^tz;`#$8zlZQIJoMEqG-uc3 z#pc|L7xRft?Co-yY8fK;?RIa;9F8ga^*0y0wNF|2<D@<Nd$qE#ADX&uB`m6Dn*-v~ z58JpN-|v^oE1B_0ve!w7LoZ$Yox}P4tk&$m>mHmtxo{O%$n~<@^6s+P%s!fH{5)DW zY(IUhOvKv6^2<35Q6}Bp4?8~k`7Y}0h%lP0rNVw~&vGMn|8D6wL7l7;CqDcWW0baD zakt*!#i^8(;^10Nm2XBSYu2#`ym&P4d%=V9+rD1B8dsybUw-V2cjn|y?wH-_!9C+c zYhqd9vg7Z2&Y%2hdB^myj(pmAH_!WrE(XUbd=tIN(2>K!c`?K&M@U0qR>tHg|Ji-L zaw+){zjl6MpRt?sabf6jx9QBbx!m8>WW46`pAitMe|FMxVNSq*6`vZz&US^O$c|zg zb;&hNnpv5L1<a&AUC1zbTzK*+i)GQ$o`Qn#^Q^7cG;ai4Z{<{YtjNpGwX>Bgk?C03 z?iKwfjtCW%3qBG0re=J$I?-<#GpqLJMLCZHZr;38-gZ2tf+Z-optK=ulVYWv^xAVv zR3{sUR_>ayq`q{Qk7bK`mGhp5p7l?)^3_8Hi(QOnX(gw;Te0?J@!B#WUTGG&TZc~8 zO-d7&(7pUvXTy`Hr{CD^`VphP>TU4LxPpdQeLkb}6}<1{&Tl<Zvh9=b%yL!!t2s+M z-ns_)>qe**MQHhles6ofXg1sTsm693Jj%u%p+{DFB`jWkquQpv<n{Xxe4SoN`ri{+ zC&wRK!+j-va;rm^hk(^FVWn~%nUI3O;GAQ-PQ@y)YxzzRms)sb$^(npJ{oVXYDFw= zvfaA$6q9wf1NUu<8J21~GJzYsujUBs+9D}zcBjlI#JS?i!>KO1w|^*=zc|p>xIf@! zS&zTgm0JGjC7)!jCUCg-E6sg%_kyCL-LrdI7gzU)N44);-@%nK^|Q%zvsDG}7kf>5 zSU!F2bS0^JiA{DZJ35}mP5$+hQ?RnZH0i6$8b_(Cv4Mq0__HrOjGpvP&iz1fM?>h5 z_A8AK3iRDVdu5uF7!3tjmHF<vNPOGv{iSwgwM~xD5|+dK%5y)S&|-J1I`?Ld$fTc^ zURM<FJ2gM{(b%OWbIf9D?1OtV_#gI^9P(`cy0T)npr7SJ#`?yr?g<lEcpQx@Ic{l& z=ALnSE4$Wv#Y8Jro>hAaLcH!Rwewu#FPW27z0+aw;mj+q9rjeqcq@9UY&l?_^XPBT zc@7VqS0=JYo;ehl><h2BdVF<?Q=;GF3(+C_Gr#|<$hY}EXA@KNW{LAQIUj92a^5<v zYW@4o;zQzL+pL-!6D~y5@2*gOUHu`h*LHQ9vtG`Q3+y`;cl7FgV%ho9z$Z}HcbB%2 zj1m9zVjcaRCznKI_<fpuNZc*>?5mnvOD1eQVi$U3n!A@q_QF38CR+Vbkg~XW=%~|` z-d+VKZW&|V;_@O@>BW{&l0IAXK3`z5aXBn^h|lKKm(%|=c6UiW5-B}!K)znr^FqUh zSD)NfOFSwvE&F!-xu};v-D#VPS-r^zFU9q*R_%XdGU1Wb@7RA++NYmpwpySt&Hj|H z@p;c1GX$A7iMKQ_4VjX4zhUW{vp*-vzL>L;cmBB-jr!9kK2bQ~G{0Qmm}&2qqM8D? z;^^1$|K5J%bG3UMxygO5@ve`PEBWsEy43$zeoAVd!J>ovXI!@YymRu>MRHR=uJ=B% zWzG2$iBrE?#_wRZ{V!HywV3a_cHZ1C{|jE9GP-vw=H5!5%TG)ja*qeiZuVqL3;JB1 zY&6^a(#s>$Lhf&_@HP4Ila<ZRV%HQV$Iykl+bi~-@j1vWC!;cX0h?sU62A&jy{IM1 zrIp2vE9$lE_E)FRh?x`h^zE6sash@PO&J$=E=W$CdSFKIlAo;{GuDP{PMtGF>O`1^ zMjTHEL%)<abIa9hhJBK+Vk);7D#vTrtYNmQ&_5gacV&6n)wm;%-AdPl%D-+n^OEnO z^)<$w?pB89)~hVKUJ>)d^f>RY)B|k|iAOqach57}xlDImy}b95Qk(s}8;)@-EcRZ) zzQTKn^l6T#oikb7-wWOD-p8KSz0bsZ^5+)E2PYMGuUuYybo-a*;_rFBhX{U8w)k+x zA%T~-+f+w$@>_2v#lWSVOL&s{rb&CA>|zL9@9I;_YN*}9;}XI4yP8MM!gIEKSK!k2 z6&4lc@{O&*nPK|x&FW=~7M-<kN%?%TcE9DTRfP+t3$ZH)E3MSY$lrIQrd#ICs;Es* zI-`opO|raSUR*bA-hDO;sm7z>&ki{M65pfx_JGf&GGD(-alNu4QaND>bF~F0>i2Bc zyQwhi_R(Kq-0qbV7T(?*ulE0eq2z{1D(ATN7)z*3{d;`vr&OMVvJC6#^(S@-W?Olt zo&2lkTY92gP`PTwU+0XaJ3XI?$6Xe@eCy%zT#g#nx5{D%t)~YWiEN)4xz@Xv^Q1d} zSlH2^oLQd_o>&!8x^{D4YTCg<Mk#gmRh=`B@;M%zrM*}9>X}6+H)LI8UETC5Xi6U| zLxag;x9(q)H_j0eO@91A)2vQ{OD?Xy*s_D$*=SkCv3TF;vZhZ7R@U5S7Oj8wFYDv2 z>2Dp<)pyh>S}U@c@xJ5#abm;7CGoR-)b16n^5B27OXbZQ9ifdp+rK`{mAbO+-xoXY znno$vRliy7Z$5u;*X7g9S6p|)RpNRc<b-H&9+|)V@!cs~|D`StJ1g?q{UG0$J<%VS z-`mvN87xuU+|rkxcj3Xif`7M|-+Q=A*#Eh`WM-OW*WC$^XEm{(7TY$<)nmGedu~m1 zq<(ig?<$qGPlQ5CKFojg$i!s+&40TK*sbQ}N-)~qXxTjDTgaR}S1%rQaeZsJ&c|Sj z{yjO-r3+?=zdW6nuO4?Xjg?Dwu9SX${-3%BsjA9ScJ*B6?>|XXeC5EyCiSX8?bsn{ z-X<YQ-;@W6TOuni^=;zgkx|sr+kNp*pH6?%gwn?oG9FGn%p|GFaf3f>N$Yf`QqgS* zZucr4vHsfqz_71StjS<$n@w3QOIzcX+w6}r+!m%4wj4E8-BaAMdQF;g4$~AJnH3fW zE29c-KAgFPjcHc>lwG~zXYM(l;GX$e)Ya4fn&M2i_$2FV3k%{l%#zD8)UOUw{`pp@ zXzB`H?Sq=B6NK$_r9y&U2A@`l*0NvnNMKf5+GmAq^`Zrg59SyhSGp+ZJ5h<p-7CQ8 zr^N@MQ1eBHJdbp-D0`Q0Tihuf`t9k0Syw*nK0a}m!Oj=VYHP(zne7`6c$vO?$<*eq zXSDLgkEw=+%cE8FJf3AvI;=haVnbhl-BR|uKfZ2wxnTF9#i<jVg7bKEwuW3hV_UpS z{MyV-Q>HKU(iN}YUhsrVq1H%n-d$ZMfruIUtOqX1Ts~+u?fC?rxaPYD=6n3FW>atK zy7geK%7sAR=+!DRGm1hDk8A0xv7ajTU!k6SwoV{A)N*wg|JO=48|kf2w;f8^aC27r z*-XX8{#*w4dj*jfjo;jQ`DUuV#G_uD@{fArJR3s4iL)EMbUArRWqQOK4f*;RZ+s>y z{Lq`Y{i3OdLcU{Xm-p=jubeC#BMu&9lH+#E;F@G<a`;BVrf_$Gxf`>X*7`DW%wEFl zrQn+R{r#mG0_$tqi)5@<Xk0oPcEDh^=JfJlrzaOK1~Z*din!%0bisUut@yccS2Yuj z2VNSHn|AE@^}r!uKI62PU9z4Thc<95tM^owxR7t-Hg(<6sl0UsOuM`Ks;66JYOG!s zq5PI%Vxe%z|J)l@fn_N<GoCFFOtD#WD#+p8Le}p-O=22W(b5m^-ThOvRP0T)@yq8S z+JP=I4C0RGOY7~wb#S~f{kTBLGG>9*a~0KDZ#wx-?vV(U65^>ey7Oc1$B@%Das5m8 zZC+7dWK-<q{4s=QV^@qz({&TU2&bvi*MDkvFJkxG{BG9U2zP~-CMJ<i$M#qlm<vX+ zovhr}sux-(dRu(gx&>cbB24zr`F-x|I}O(WpYOL%t#Xp>)TrEDYiG7cVQJR1xAQ-) z@;cbpuw<TusH`BHzCpawtki!qpD;74cY8VieKLQeX1z~_quK1Ov#qvkdKLS8jhSTB zV4sp|S>oT>%3g8*v+k^8(jnh!ykiu+6D_J|R$3=Y+(`HER_l{FwuAj|&F%yp&-NY5 zT6-tQo<GQNrnfihnxyZ0L0SHd-Ml8+n_Nrws~%kJu`Pb~Z||TQiM5k#Y)e;PY80Cn zuzXtP56fD{_fqw%B2H_tcD5hA^d?8Ll{q5p*t~sdg1NS_TfUvX?X&A&?U91?n!55L z6J3_u-y4JYb#7nT8u-TSWYhvj-cCD>swB=hgPAMb+F5zrv(Bb5D_0ztw7s0``Hu&4 zLnj<wV)rZ0(e6p@0;!L3Gs}xu<d3MW;ZU@@XM5=L?D7S<$JQzO*Kb;zVZpOQM)IY! z(A#C6d=aw>udF(l_r$e$ri%=3LTAFJCjxFtGuvHv2M6ZlS6<B6zUa&Mq%F;-s$~La zccera2>Mz`=pJByvY_-OPh*;Dr+h(Dxg(#kTmA{-Uk+0*ZthwlYs5Np%6FN?(e8O$ zUA$HtmXiJ&e=kaHs<jHoh6nZ53A3(6REEa6s)|3p7V&B0J%<D-MgCb!KBfum?n~R7 zQO(0^7dqYDcejb(?wj6)vz3BldMj9k3y-@=eVXJI!6@=8Hfg$f*iOFNUfGNHbed;J z#WrhkiDlg~m~>$Ex)+i@32PoXDu%Bu()r9VSwki5mzyf*K97wbwsxz1Ox~+fzqsYX z<q5L9NAl09GsGsYYVE(G+<9kbSk8}kiAe!oyG5^k<uBkroZP$F&ox?k$BBFY7?tiR z%{qT@_x+s#La)zpYN;r9iVFn<=dr$RHM!{HyG$*3>a-`Nyt-dnruf}`G2QEW%S_() zDii%SbLU9!zqlbe(qVee_jyP9IF3vZ^>MD3{^sWLapew|CCs{KHu)`CEB%doAA8Q~ zO);V2|4%n1&t9cGsg3Q!MvmjVXEUw~;eWUE-t;qv@?ydjc`ZW}7uP1`&)%WMowsM| zu@w&@iz@`Ow*+dJ7??fb<F(F_@YE1`b-R@JTisO4)#W^o!<PJM_?G(Wt&n-z?nd^u zEzMJ}FxJODPRJF@T&<U#Bs4FXZ9;{earS|UFI1)}H#*D2Jr>_LM<e?~+3O{R3ln$g zp1U-=W$LV)O1<dzqtDIXJIueQ+H)tfPWaZpKWncPRCZ08eOou^aln&3n~U#n_-!$B zzBH@!p3X?yyDJ`YNzG7IDVzI!_SF|<s(CqAedF^>Ze0H^T>msfv_9Ulh@(e&PLJeM z?!`u#a%Y`>JH2;EuBs4Ee0*R|$=8aU?L~{{%1TLIl3tpbxz$+Xxko_C9;<V@XTHC4 z+rB5FlYQH(I^BGU(~=)q&)LlQ^mF?5ITJEhcg1l%{kyTWV4uuco#4w($F{^2<gDGO zkmk55`2Eb_nap3ARvP@MZ;-XLo4clbjo-$rLPqMLiIVPS6YBRo?XdNd`R6`OV)2vQ zo<q<16M_PJ7SI197xw>3{_2-|m9Nf!Z0pgWutllK;zOF8MP<WMncY!p8<aGU?8*9d zgxjFw%>$OH79X-+1Xh>`9(wf1+-fDa3U`k|+<i$o<?`@zrV7G2i(~&p{;IE<-oecD z<aO-#LnqqiOj>wJ)@s?ySFwu@$K2(M4cR4Bo*lR4_hVhh_h+N|UigcO-`m1x#y(B+ zUj5luvp$=YZnup5r?kn%``ogfH+vWLz4R!YCdKCNV=3jD5jo5HLjj}M4DTB@8}Ged z`$|D^wnWCGA0ceEp(j^v?|Cy-Gpj!2V7<_Cjg9ZGrz$=0T`k7GLdf)C$-I{Kh{l83 zfsgY2|0KAlZCjWmup{8nrHncAIM`Dcrd&Cm;&eoD_QQ?GCgy7vFTS(aT(7Trvkr5R zjMlVyu@bejeyXq^+4ya?=Z+a+h0-6k=9OID-hKP+4N?6!%)0Zoot5JZw>laa{O8xa z1I$bU^(BHjCFjoU=M`psF`a8No5!q~+tU-~&S}ehe*MJf+&wQm>>`{_bR4i){AyW` zZO0r(qYd@DPygd<ycx-Ev%6mUm`wZ2uXh(&2k}ohld)CXzrsss;c=<5H!MHp{Dg1+ z>CL{>wz2-)!PaTNv+P-3o@fYI=hnaRvTx4yC6B*qHJO~PzZSdv&C~LPCv#8VYT#v$ z^nNloRJv`U%CfiXxc4fG{a%#id`BZE|D%G0?AkqgYtyH(Sh_CgU3rf8!l`-fX*Cj` zn`N8~7M<D89@hQ))`gSPvY+lcT71-x>4Nfu2ePZ=QZ89OUs^TeDa-9ieluEw$}ioL z6G>2D@HSl>E_u*-T84W4%h1?^%NHsX>e{Jz{EJ$gmTWW4qIdrf^OIpt(>uBimzImG z>9x&L=4)%bANlg0|BS7g(~gCOn%S||NSt;q`{(NU_+shwle4~atH0kW5&m!egGpDy zxosq(zaQx;IFPqEZ1%HV>3#l2T-$?`Hmp=DvNMe}I6r6iJBI^y`JU!2SL(xTrzRvM z&ssFod~RWm-&&8uhri_Ps;*gAy4o_4w_}HY*$Ro%g)1bq-8NgTFZVchpsLtIC-H}n zcv;D$X7i2ZjVH@CStK1>_P5i+<%IL+b=4XlV%sZTi@AnW=ahZh_MOS({H2yjm!ra; zmA#43bU8DLZJOKOV%I4R2ST{>y`S~fbKH<Wcy!qX?-i@%mBbzP<Xc9W`^<@8+^{zH z;4)*;KF{wmD+2OnY?t}KV_#@-FT$FSrTN^oIbw%b1pH{7wKY*=S7?9i177ws`PZ-S zd6<yJ)Y)FFeR&&`^^DG0T8s96-0`^hC{M`6`wM!f%vG~1y~!TAZSVRc!n#VQ#12%2 zJUdW-=2GaEm{$Iki88y7h2&^uUejw;P(4>Q*C)gC>)pE5ogC3CJ^TNjnsnA;^{jnK z+pT9fY_Pa-jal$ZM%nHqM_zs?HefHmawTnsix+bPr+dr-j-3AUQd(<NC(UxmsPc-7 zpK9vG_x^l?hHkW2L*%K6S<Z2nxg6Ri2_BWRh{`gGsL$}3$m*gnQ&?wb$ZwU@pjA^k zZP|L6Cv^UKanXY3Ua;)s`@PK4FLpO1MZF30WMujsu+&|53CE@h%_$2{-j(4FE!v&S z+a`If_}0wNXAV@oi~n$=FF5ZDho$TW*7g<Y#U1=VBZRw)e`<d0RcV{+@;%8={k-_g zgR=RzJ{;6)Ul&$C@$#~H-COn)EPC-MxN)kv?dlB%bDnX1y7WHcwxrg#8Oc|j`roqf z-P_H%;$GA(uk&5oSAL#(`-a_wnIT^dtgI^^b+=#c3jgGERN#B3|H6ZR<c~6bmzdf$ zFZ<WeD$_*wiR)(F+V*y$%lVGW_ZCU|c)nq>Y-a10kKmC`sxJ5BWn!!UYT3sA^Y%?H z{Xcm>_>LdmlpiY?8Dqe>bM8x);~O%6HKb27F=+6tZ917(pVss2+Cug#B2(Sm#m$a) z7s+OSytVW~<I2T1=J9*4KJ4W`*=H$lx!oG~*N=*`1b*CJVAhZ<DLrpiqvD@%x5pEt zd@kK=ynN`|KJPD6q;&RYEofDD-%)?$heW5`u9L?M)aJd3TXSc(d17A5LUrYf=^qYF zHxqh(AZ1zLtaCBPKAPOMyOv^WTi7<+);c{_w?lgF#qi4J@@Fn8&N1hfDrUFwZ0%Fl zv-abAnw;t3z@j~?Ys*T;S?uXXSEDLFo9_2en=sFF@`S{rte<Ag(auqwYY-A%lG7zs zAJco{vahfLTd|;6^&NrogTJobTdX+u>eYvyDJks_9i$RmkAw%>^{aV)Po86L+3gl* z;^G?9bhvhI<I0)L%s=O_Jg;0*%(tfNOWWk`Wv7=Y>`;!K)jmfxNa4)wC6c*M0}Yn) zU1MpSxHRU|?WoPUdsR|{SkBFzX?{Dqt5opbpEdRQpN?HwV(2b&ILlHbWuE#Ts|^!x zo?9}rQLTjOx5sIQmu}%x9a3sD^ruwjOk)b$Q0}t$$*jALJm(y*7(~<_w%A{IxNgzM z6=ykDtn!u2pJ6^@(Voc{W*(ckX@2$$NwbR$u|^AG7xLW}KI_(B!_NM`gq<n-jn!|3 zbjC@BI)bs2Wb5bfM6P3YTx<H>H(n?ylaGDJW*M0`lVx_@c<S5hb5p!G%0tS>D>eE{ zv&;IsYo9PFFK)d)sXguaL0vyN=1WTYj}A}0z5kj>iiDZWDWMOw$s5#C8z<elVP$cV zCw+30Q&FR_QwO(WWX->pCG*yP-=GlRw@D<@^pW?`4I5^=u96X}U(Ivr;9|xOw_6Pl z1eW!BL^5+7To`mq!s2@WMVSd2tu-8WZk!P+yqZ@gevH`RQ}nh=MJniYK|^`!mI=k~ z%G?r~LI0$r^EU3_>Uq3vx9YF03(hWi`0nDaD;ExY4DC{lH5T)empGL(skMC1%AZ~C zo!rr-r>{5VMedldaoYQ_%8vR<kC4eHZzrx_GV#1z8>@~tn~}^u9ga65vmT0k)th)n zWOm}5=kE<xC8x!GeIDBDBFypWwpvJLUyRbuOD408-OO^crGj&1T$yIMcd|a2u<cQe z>Ke5ai?^&w$`b?P5*fD7e6#U&T)tA+w5P8_m0Xlc;?0A!PMkdPYip2aKXYe9{qCLD zPVi~(n7sS$%v|oZ)rA=g&$t;(eJvRM@PN$I8o%R>bssgVl00TUoIANV#-3%Pi2Sd{ z?VG->`g_3c(Gy$V*x!vh8xKiL;#&00d6IFK+Bu#k#Y2As*fvE!oOg8NuZ53wB#u3D zj=od9T71Wzi2gW-vngxV#a-y{JYo^9zGSvZz3Mx^2BrsY%a{9c<aG8d7H;W${DP(3 z@(}lP^VbYBSFL;a^@=d-wIV?t=L`Suc~vjm`I<|i?Y*0JW;UnyfsH;rxl?<3%zXlu ze^NVDtjT{$x~xK|H3`(h<Yi5Gu`)nLYO77%Gf^)22Y;6Y6zmDI2++*`Cd_(wVP4(Z z_`c|-`nh|8)+mXo&2cI?oE@BYx%t}B6}|1}RF`l!hdFkYoIL#QS8Vy2haA_A=}2Zi z5?Pvc_I21T8TD^b3l<a#GX-^~r(XRZZ*%Q|XkYZBvoGdw#&!SUSu*9Ty4UiX^Y(DF zzT-()zMkpF%HsOq=|#%1q4O9r3btxiBxkd1-P;&7TRXIVe(&2GoKH4bCr{+h{CNLU z&3wyP<w?0GUol3Mlz3DgFgnNc!s+&-gUn)uHLIP)jaRF-Shz4Rk=NhlXx08%wWT|@ zgkeKff&&*{=S4o}KQ9in9F+dV{LUeHx97*3yyD7-_|1&YoNUmXCce6vSL58>&g0iN zI8N5S|2K{~Z?V_Azx6F48D*^dzPg<{W*1k`_w(dSw;2fuQ#!+cwFWN9&g+?Y^Xc9T zzYn<u>#RsI=qlcLarT}W99_%ioKmk6ls%VOEX`1B5o-RU{FL>fV;XFMqU{sHCj7g6 z|HQEsXA~K^?zbzOn!BVQh_dwaS>+dcW35EjtR3^7Im|Tg44zt8-IuLbpBb=2@#ZY; zo`=r)kyl!3pDanSHDB+McvCq@Q>f9rOk5}Azp7&I<3;P(5;AQrIcbyyh`UUl`tfn? z5uq<R&HoNGv~vEQDE#{V>KcjYC!aPXYgzV~pA(6cFVXmZ=B_et)$v_S-?>#T{&7AP zU9`bqN_xm|^TIi|1#*=9*33B>oK=4@Md6`S_C=RciTyKH3%odb&~6fE-Mzg(Eo4$= z99R{;K1X}rjU!s$oB1Prnr6QGIAhg3-iI|=ydkP{wj4Y5h;>&;W4n)N!p!7VGdHd9 z+_T5TFO*@r_1qOxBst&m-*3P4<m^?c_Q-4=E0LA%3t#MLvf10MykyRdDe5Wmr%Fse z{Hd?&DY~+;E<bhG1)C=d`I`Q}9&kPVspqA2sPWN)+}GC<Is4uG9~<ZWa<1OcB{}a_ zvu)nPg|>6U^?zmc|9*QbdBtQ7cHPbmTs8etn#)~mPMcTHpVM{V_NI&$(_#lp^CvEn zhrf!MJbSQ%$1YCH-qb*u@109cXb^Mc(&8B^FZZplKQzy9o78Lnnqb=l`}T?$-uP4G zFnx+Ax0puPQ3>8+AImjdF3aQO4eTN=?~BVwc|EB!r)aTzTp-h@KAA-mX9xCeFSwv- z&bM1t&hS_AG1>e`4f*YDKI-387(A{syxwZ*qOJP8Fj+|C<c+j~n&=JRxRxBuK7M}1 z(d`dzgarwk9IOAD_&kDD@1Vq{M25BRuPRFI<#=3?{Xj`+OYHWqdMc;uB7gdA)cW~X z$W}_w_V{bQWX8KiNv3v3tvM{uZZn?AA-P2JHplKRA(21FmRRL*b{wC5qW+M`ydN@I z%5{l?vWfBfQ_B5K>NbB?IntacaqKy()tkpp6DA4xKV50ADC((H&uvoujP-$fUzC%U zfxE@E^NQ*Tk`2aLN3RAjxLc`wt1mp+DPuMD>f^&smBk%xY(X~noOYeQ!}`*HrN`e` z$sUEL?-&(DUpvI^(DmiCkUduCHCNHtpJf-f$wtvYg>wRr6b|>?IjFL3Pb+W4dtamF z>g&X|2(W5qEL^y3$;OFO1f7<%AIr3AYH9A~snpYIh)j<<!r|_u`X@a{?v(#W4dwg` zG5I1(w#m6_Y>HfQAnhU3n(fS+_U<+Lu+m{(XFEfu53l6()n&?Z_0a*(WwhB9R~p@o z`N(X!!rZ-;L4I}w<2(Ho_P0V*5?$I(8Eg#>Hj=MQR6X^G_0o(<KJ_6x88odNY;MK1 zF+P&pz9@a`N%uW#-R+#td}4SttH!L$ZmaA^xw+4FEoOV`5oqmp#K~^S?W*z_8+M*g zW6tg<pK`-T{MfdC4W_e;j*8aDWXRq;6_c^`?8|lYk|M3T=e5@Cc_CGJtvyEm(ByJW zoo2p6k(+p0-aKtCd449&?!mRQ?_8d}Q{4Cac#0&~9@~W{+Ew=IYG^i`+?o*aaoR*N zK{mmhSN8(f@LpeY&f~}|!^J!M)$-kr^yL+?2EB?kOpVvv_3)oV>F?vQ7o#H5{p+*r z%$5|`I!D+RKMj7^qLlb;hVsX2nG5HBkzDM%XOF-S{WqZ}N;}%uu3-q%UA5uHvKP$8 zljmGBoN~gfTdw^1MM1wSR#P_y9AXyJz4-s}TZimZ>wKKMk6w4to7A%}Pr~JJ@}*@x z%vLg5xn3LPGz{j{OzN+aStjB+vul@O%>t{o`dHgM6}_&$LY+Tn_?07nRMzSL(Qvor z3+}R;=RU(?wZ;36rL}VfW^O3zV*V>umY#F$;f5CHo>@Jdz4Ik5-3zzcaM&$tli2PJ zdYac>DCyRoxW?=_qph_jCrZ4m-tqrMEz8T1(OWkh3V;1@n)B7`LK_Z7?fADP!gn_J zuI|I{6}jtwtx>w}zc#d)#q;X!sS_8Sy%DrzrpcxaZ?ocVu$MC|ceV_Pi1fDIcZ{(# zXY~^S{w0ZPk4Nm>a4lS1yR1ZG{tCv{MN22^>b4p2MV*KWIa%~A^VIGYO2U;-gm>(8 zU-*wDF>USqisHbf5`7|Ezov=I^WL6RB)eL8+l+@T-MuSkOsy}fi7t4&^xJi(u3h;> zGh08+N_MkI)~?d5W(o`6d}FDK`L2W66T9yzR5%=+9H_H#cJNc%Ibp{b(nMoi5?vl_ zKE{^f=py*Nj6Z+c<c)`8ADk_!c(X?IPPE0l8M?uCJMJq!wSB4@+hv*+cK0Cfv4E6k z2@LVi)b3rF^2_}mLq=asz5Thm_Wma+zpXMVuFtw<aYF6wnIKa=+vq!o9=5#+Es~U* zP?b?sc4O|wTc18E>bc79PEnBxFI>4M?}Xc=4hEsHleZ5yJh-@cqHkWRkiF`9j*Kh4 z{l{m|J^y>cp{%+C0vq*qPZx2O&v0=QyfdF6@9`V|ugf3EW#s2GT+!b6i%qKj@ao6{ z#fsO>TPjygzo+ZoCMmq!WB!@4GkZ)zy(ZUoZ#c?i7ss`O!|vRhz-pCLv0tqj%>_v% z@~7`ll#;qX>9JwRrJoVsKl|F<IN9ax^!X51e(vGr+*#HtuP^*N*LG!H;)_InCvRy! z$HGZ--`<Zp>l7IHBI3rXFONG_52@|z@u|PBGxg^d1-sATvra6VCGYBWTP~er)zrT= zMZYdZo;b8buV$-)@a|rf&W{|cn<Xl=EmUPq`vt^;D_b_iM8{-uKen=;H}k-plQjnx zRr((he-kWoZefywTJiEb=Vw*a9$}cB@%{bHly{Gm&NlB_tM&9b`(=aMOaU%VFN*3L z<}zp5*Kc%V2{`g$QmQ74%kI8F-9@Lb1=eYnHlI*+TR9_nLxn(2-1DprYgMXuv2Eh8 zjs3v!?YHxys&xywA1W7J&o_^>?C}-X4SFlJx=_+t^3}yir-<E>zrX6$CZ(>Of1Ags z=lirmPFG%qX*sMx@x}JD0)ISJWw5Z_m!mG@u#S6zQc%6-zh;%`8n4rW6atS(O!b<+ zdHc4LK@SqH9$Hd)L;0nYye0dEkFNw$r@d>+{qU1#!-E5x%+7z{DvG#PS?yzZZim*% z_As8v#;Lp+5l0z#S4Av*WfZ;lbfVd#X}kZpyuHXK9uPT$dxeD$vzCL~%GJ>uoMx<k z?JhIt=4H88K^||8*4GQA#V6PQk7=CJS}C5B{7fQp=k3~CQ>(vs&oGgnyFTbhQThF_ zduJXxX|(-dICZS-$B_-PHXARMzi7!cP(IkCe*W%(xy`5BkMVJ-@7r;#?(y{;ZLb$~ zUM9tiVrOF-T8e^?va;L#n_b`<@b#F6#^JtiReP@9;OknwfH%V9vZL6QdK(3`9SMdO z?@kyn-1)w%X;x>yTXFs!$tLC}c9&KclyBq<@XN{gnB=T&Fq^CCbK&tkar<eRVS+pE z9E*1KxHWyjfu!btaW)bA*B%dgvCn?uogK65OZIcH*v!a$SSH5Ve#3<^$He@5h~3%K zXKicZ%1ev+<!{#3G;y_rOq=>O_*wnDzq@aot>!zuCcPl5PfNk@@|tU{3l^xc8(VyN z7r1_-?I|m1_f6aPm6YY~`F|)oSLX4#*GH=-9S(ed*pVmU`#HU9jMeLIzi`xyxE;T+ z)lSqz{R3l!fVkbn`HKW@@;LikWN@CReaO{k>!!T(8cR>kwwN=~a9`ELg%T~rcQ|j_ zmDLL!3cAeX(=Yq--=TmH0?Z5F9{9$%LU)_u=3_QVm$r9@1>U-<|1;b1{oLC^9glB( zx0+aE<|Wp)k*CUGNr7^lkIkvSH&rTC*UH_$s_$6&WTJuIZLL>nGM6}xm9#M^M81#T zbELQ9BFm~d4IhgfyQlL-?ul`g4i5V|dwR{M1v1aG>h~P!4dY{KSaP&#%G{qZi8BqC z{oG(7r+NJ3#MYT5vs;}jmFgP(EPZ=6-VDF0^MN<cVBMtK5?M|h)iU|_B#&lReEm_E z@ci|xPfO+6dqt<+S;6IU%}6{;P-*S)Ee(lY6Z;(-e+90o{+(xitEBG!Pod6#4G(>4 z7p{n!!zept)g0aWtE-mI&G{mb-ri-A?)y37kxtUBITqhr&i2aOoHgx$SH$YrG)LFQ z(2t+Kl&xo96PekSU@f$*Tt48<tG2~V*Y?*~-pLJAv=0>ES(0{OZsQqAVF#_e?(`MU zPn=eLlJLNyDB**yYK3fp$>M2YUj2VcRf3sJnX_H_0uTMG|H7E;S%01*_pDuR_RVt< zZv)dz<)cEUhfN5}k``-v^x(2j`(4S`Vmh(+lO*@8;fipw*_J-LSM6TXwo_+3Pv;1g zd)a#b`e=6H0)K5+)$O(z{`XoY-{L0kF5lTFc8U4f;|}TAkLz~3m)9`0Z$A0rsQ{ab zf=l2RsV6U5n}sv?2NzCj(OFr~^7fFF>6W>_UagZ**{9K6#eQtw1;#7K&s&6@C^9)D z=;tE;dF2mx4WU2lpU*z@-|W%h@2$l#N6VWv%J;D;{Yc2rFIuc)adg#^$6}8Zy)DHu z?(F%b=s9PRM9$VL_jqcU`dU}pTu_;Ou_`8zn<v-haQW^M(@aMfA8CO{m47eZbEy9_ zcPV$Y#V5`)BIeAZvA3T6bJF+hx><8Qm!Yx0wC(j5*KM{_UOC=-dcckUzC=&{s@r^w z1~(dutFN=<?YuVo`>_cja&MNOEjlHff9mpOS>DMmD^5mN|C#+$*4#R&K7Z3{1+liN z>O3<NZhCShPu~`^w)(rlNpbz-Dt<Au*6dB1TE951DM#vYbCT@}P8ZAh2A})O*95HG zBO%iEoGWkBl*K(Q+NTccsCT*Cv^g~A+?u!_L0MBgCqMhJ;7a^)<{I%Cy^j}juw;Br z4sCw_v`Q)a!$J9?1nqRa^y!iv!n$vcrJR>wR`nK0yI^tu>1vndb0nfS7iBlzn6W2M z=XOEO^Ad~tn~EDBXf8K-q{DjU==FjPSNfb=crM#6^x0Q0d@u0HqpXXQ_Z}2F_x|9~ z%f>oQY<V`Ok=HMuG+X?4#eu)<UuEp&*SB9iW!7D_$m3d$F>6Hi0}ItAtuhPc?;h*_ z9w|KYu|Xw$RpF=I&F|%onZ-%2*tNZDI@`R2N&I{7aJ36OoK{rdu=nLo`4h$mOt-P{ zO)A|fyySWl@3u)!rdb!X9X8m>t9<R6lGC|qzeVr8NlkxtzOmWJv*zND4y8MfH?4a! zg=x_oQODL#lAnS?CmL%MtgMMoIq6p&b7y+*s(Tyx+sz+5_K{o2B_49R?$xB|D{r$7 zi6va!)Uhb$`<9D4Bebt)``)cr(B-UeT|UEoO4Ub)t($-T4*c>Xwf(Eo@qKlBDoxZa zKR&Nppm|C&c;CE;UE<T3qi@!+Yk4+X#QphW_o2$u>ebB|fhv|AO>TFrwV$Wl@!z2w zVo?&Wblv5F#;(-M8Mkh<7kzQ*UHtc9^+OLk?V<&OUq4!WOR-QoqNbbv{8{&#we?<n zm)1tfJ^CA?%3UreaN9t8zazu*UUOY{$8!zyKE+;PE1k;z=1G`p_5!sNTbZXY9k2OQ zC1!j7M7Yt@y=G5uh<M7oOyFQIIFbFmRW`)>0vC(PCFb5aH8bQ-xJ5<REts{vWN!SY ze-Addu}Z22MLg}+*pzp2)BS6_L0{f!tgU0N5ArzBncyz2{gM6D+AW(O$h!TRRLD6$ zNUzArenb87<<Hjr))LDRsXo%}C!cPrG+q7M!RQOWG(+NTcFdgql;P#%lLms%7sq_O zrp;$>_vPXf)?CR<oBxJK<RYIaThDVm7swTsC9BouX|8H{Vwu%FW7F015AZd8OKI=f zbs+oW@s#@Q4|PSPZzf$#$$x!ua_?iy{!154IR8)SYrDO6-oE2ueaEYKPM<s_{G>7G zx}>_zk1r{06Q>$4F*ly}kl~c&q&qK#Up`7mlhEu>VG26Rr@i&Tvs6KTl~|@Zis!Qu zww<fgjGXp0^l6^C^~%^uH#e-m+c-&TO7UlfPhE#5ELK^5CcB>d)ax(dCj)~vtUdfu z%)_{BigRtas9#vm6z8Cx7tNc`>we^QDZeRMF6~`3<u<R!MDFKZckXhil=pii-Rf~| zJ@T%C#Y*nN5x0dLev<@uPuO$qzKB)nN4Dz;&$(9dKB&B1qM`6IeA1Mq6H0D~tksjB z=&#)VX{C6&M_l?PuW-(=`U#K4bc}u1FSwqZW_i@-ok?!+ITzPlPrjE|Pb?EL%X+wZ z$|5P>9^R`n#6+A~i`0^*OinSMbnDBKlfBD=jlL{-V;XaC(>=L%YpFZuZ_aaFzqCF7 zYf*^wi!*yQn(J?Q<|Gt*=4|?uTez_DWHoEv&doX7cZ56>|6cvlTS0NIn*F8vt}hNQ z_FQc9O+FiNiF}b`u=6kC`NsL|!qYUBH3bFNlpHphPTs}J`h1&_#gAp$W!y|#`chmv zl~T7ic%AZ`w0wewcAR5&gk_q}+_-~Gd;JsQ(?4^jWq#Tz(fUSs%DM%Yj<8jqI-H^O zD?8H9QE1kMOH2G5r`qT~^6<F#%Y521_xj}thwuH_?q_NEdT(!*e13fb<88@^3*T78 zQl9P9zkTM1@8L2g3w^zLdJG$+Huv(%{+qj5C6<@_=Cl2Y?H}JeY(7!Wd%Gmui|>u| zPci;07Uhe2c;`BYyUN{J_TO@o!L@%szOA-Da(n*2&${2vM5`BuHpp5Wl+b^Ako&Dw z#{Z9R>)*e;U;n}OO!IT0IdT5Z4KA;~J+H6)y?p<!zt*<rwmbYcl3!~j;NoGf(p_75 z*ys_jQ=M|>-oJ<C^VB~)w-@weRQdaB`S$p~cK3>^u75VH|MfWfNznhOM}5M-|9dQ{ z2kj@?`0wr8<@MFw5h0pWOLBMo{c?W${?6XSM`_PleO>FnKJ8OBFL0T1$T7}MDbxFj zy!IT{W0lvBw5}=mVcn+QmX__Z_mJkFY4RyM_wSaJlXQL2apN{m-&57Q3ng23SZ-a$ zerW&tsX>q5*Hv+!F-_X~$5H3qhQL$RQ@O(pSSmj?SsmZIw`NXkkKlB+Ps>g;IQtg5 z#ZG&DtH9e+?cZz3^7^SI*%P_tJM#-aY%H`)>09*S?_6F@nYr65c*2&S{rBYXi!ZG+ zcGb2i*owAZU`r1zV&#bP-pVjlV&6hH&z?EI<tO%Boow3Xn3<G5U;E`<yG9@Hyt8$E z)^<N`aK#Ii^%rX0jnwX$VDV$d2Vcc?>W`ScV}cbdr|M7ob~bPF6eIb1mpzs)5-ZE> z_%lCmdbsCHTk=l6eZn$q%Z+x~Wj%JyH#&UrcFn;F)$4dZs6PC2tMhW~nrkN%j1|1r zb{}G4OIUf;RJHJTVPI!==_C8aMQ0^Mel9+;UeE8-leW)WZLcq$c&Plq8o5U;I~=1< zeox)v*LUfpH^-y1r%(R7c5=%4<0tReFFWb^YS}%{t@$gY8E0$et<ib+v+$|K+v5*j zO)cJ%wfK6*zl5phx`gjdOl7S++Btc;TjR5ylrD$TNlz_Y*DC0Wx?9g;bL9E+%5#Fc z#V@|V_pR3xW_7RO)Um$Z{7Jg5;pw$Q-#4z)ckw?ccI0Mt@*DNXpFE$d%htuYMU-7# zH2*{W%Ik$XXFcbeT)kd1rN-xej^~f9Svm9go3%Yn?0w$O`L*JH;7|SIYd@8TxqCOi zcZ~M0`<s~;J27;Z=+y&j_U&Ksa@C~MYH?*(Rrg+B^yv45nElhIinEA^2Ohl<%FVlH zj=qGY*ROf`cKU~}Pw{=qJu{+o$uC)*bw+>rRczBzcI~ZyQhWaKZKwZJz4#`|ymZ?2 z@bVv-ck$jgV*Umd>^}Sb%W2c!-G&R?=bWrI4Xe#w=eaxQx#{fnE&oGuXH43sDL$Ql z-Ocw$N+&e`Gwxco->~ed-N}6Y^{SlQ{_Ag7*z8>Q?0uN|X}NiCMDAQXo$lLrmNmL; zU+l%J;=3(t;v;S*+x)3N_9pYpc2m2k^K<U_9CQA1t=KoGXoB&>w4bwXJdt?2WnQ+~ z<ij`lOgEog=x(`suHysk*E_}jtqIGwy?#ja!j-o=bE9TRSVq@GyRtMF>{PwXvpnkR zqE%l_W`9hGPJVYgcc<*v9PRTLx14cw|Fcb|)_MEHot2N)Ts&)=u3znEtzBOKy=!xO z`G3Ri$BXy&?7mZwc;>@5qo1cYoN@d7t>~%n)7K}K?~PH5u1UI>9sEOR|D0nFRj2$s z6{pv1-*xr&>DKKrkL%=*e>IvRvU67H_W()#H&2bWl%KYEn`(1o(!+gsgG#P!Ry}ud zOX}so{ZD^nyqH#be2T4=+4nylMRUF_&ii_*-qLRC|7$<~&e`kpt?kBXPxVDg;(<Rj zUwsc}JH#)sCVcbX@U-2pB|mNYcYe0Xb+s2uZ6nt&yRzQof6=Qydw%|%8ny3qf%UDT zt4HHk{yW9-)9>?x-8l#1uh{(ddR{-hv_xWIyy2JnKqkGl2E1<+7dOmld$4cEwx;k8 zJf{}*A3wQ|zdmfr>PtyLNryTIGLn+H;@&Y!8n}Gy98=S4m%*+Fqx^Q-7^^mi$C} zuexdS6S@84Z2M27Tq*98pU9b4*TsHJF>EGR%C39GN9y*dPmVn^ue_$Uy6e`GwJUSB zC-_&bTU%Wf<5PI~Mbf<4&t+%deX_^u$k|7$A0LQ+cRhL1`{wAo^?zmhXG<TG6nq`~ zY;JMWaZ{BUi|+inC+(kldHa-n(Upd>o2%Cw+5b8@_wwn94(}>@Vp8Y4t2^^%$CBnH z=D#}k&c1o=wdKa|uhhT&eJLgretg;n-!s#W_<ordd4HGg-P!!rB06P1KW>tI?LO_> z0ZWFZi?99ob0@{`=&6)>;T@~nFV^q1`_JfFzxMpPlFQGN-QqhLV$VH2y<F|R?zwNp ztN!m<|C>4NWcaiF=i5H6EB*73_545C;Q#+8b*_2-zH40_zq<eOpH?QtlI!-Q^jvc? ze)GBN(R6c<!@nx;+s~HiUjBaG{zY=_g2rJMg_j?${dl!#;*`_Yq46v`<QcB5eY;HR z`@?!x85PwR(cN<zeln=WmOS47{ZbmI$BvF><K>nc7ZqjYA7XkXU;m8hwfU<w)|vVu zOVrPZq?}cA+^g!xS2Jzb#~W{#Sxf6JUvvN1bg5Ud@6xL$SjP1Dd|TH&`Q@i&_cl+C zd2#1Sl~D4=w?A(`c{d}ywRNAo%TE^bcPyK>{pQ{&x1nC>leX%|BU6@MQEFSC{m<yt zX_n|R(^U$EIc&T;B=#>~QxRG(V|LkA_w$z1>ig?#y`<OOXb3naa=BdhxAVcb{}1o_ z-<iXC^qkF;Af=<-yZYOYoK}5vM}GQ-;_I&d>C@A1?haqQ*|_20ElcHso!ixS%SfD= z`zS{y;e1);yG@Uz=hnya@w8Td=8`yJk(}=!|F-Cu#p@Pb%h<elwRzQhd>q5iY?AEf znqK<S!&v#s)`ZB_`_`UbbJyqQwfAZFww<<}z1?xIb&B-8-H&JN@9)0qaN$+W=c6Z9 zt>E9w=)C%M;*95d*=xT(i#m|KX{EgH)2Fu$_9o8Tt@Guc&GQP!9}f)H%hW%wobl8_ z{%p~qHOA+^X4XAeqG&hssk^G*p(zsT?QR=|Bd!~%-|A-1<B(YWC*h{g*Tbi7)brWD zTxM!zpE^~!{(Jq((0@|{4$ZRXHVXOur!UG*ewx?*tIJd@SN*frdFdMNbZ6hr{A)?) z7tj6f-DbExYSQAP->r82_#NhE?|;42r~Z@n)tKKx`=fcCf^yFAD!(bV^XR_6+38#S z);a%b<qmvph~!t+S>N`!W&hu+s;Tz{XLO62ALx-@slQQh->MX)FGcc49tr96{r{aX zNvyDbgK*<CJ(~mBg}ZW2@t54tH=nWZ<caesML$d*D0h9B8f7Pc;$Gjw@YtzyCM|1t z$G5krUVq=C6)~3F@rEDtwSJcMoo_DwI8{q;<*qWly5fspyvrSyp7~K@TEKN~!KocQ z*`I$(YX*lrv2NOEQ7rvG{OBEfflUv*=bF1D?f(!z(|DJ+Y}VzpnAOv{*DYF8!)5qJ zBIf?h!V=L95yE=g=hmDqY3=2lvWLCSIB~Olr>H@Yux7pCwd!L>cTN4CeeltNrE~sF zujzf>bjtj|5}AacvP{Qp7Pk<Uh-(g=W_MgIeonITP~-cz&`c!3T;}8KpTC|eiUd`& z-(EMhbN54bz3+LeIS!sU@3nf<3Gs7>vw9spMK?95YOS{X)HwCTvK`qP7u@{r7w9lv z>pb)-f;~s%PTs?rJoP2hR<4=;E}>`h!}9G9pB&b?e&MmwfsO}f>efFHOEJ0AmE00F z|MIHoidi*gi&`DB1f=G-W@K_0+_@4PJGoKx&ct=`+{F!-%wz9~s4*?x^m6^#yaX4Q z>;EqGF?wB5dnu8};H<Oh#WkVGDGG}Oqdm59y!pOu#hXXl0)BRF|B)-Sy?(~KWjT%C zdhadTe{*yDiL}MM%PI|O_;=qmuC7@3Z*!nd+rQ28&z)KtqdC3n_9MTiLDOHxv*qpT z@3(q)bn@%`L;X|4^yhCmt^Rk@yrQ2^zR#~Ox+}-aSO3aWc7A^5&VS45=Dk|~<(umL zb-$PYanO(1{zW_FKSTLGCHCnx#)qF8@2S5h_UZcGcjum8H_I1zFJdlnUG;B6;oSYX zG5;IZ{<6>d_HPo~pK__~oU2zX?R_XQtIj+Awcq@P-M{wCoF1ZJoVWe-XC>2LJQ8aj z&aYUlQ?pXskh|zc+jjN(Wd9S1Zx`FDZm!V^s}=peFRmseJlM|X@!s~DDHiKb>^7RP zKKJeWE%p7`M>Pf7-^A-F)YYk$aGzQKZ-RxD-_``FXTG;8Gt$`n&&V*P>U^r*T$(jU zRHCUe$vfIbOk;Us*T;h!qZ8(|ot$x`qVR+nQ)kkS2m=WXcbUZNSvMqROkws}bXwE= z>{*7i!i)tAd;>Zo)bFf1m7CCWmM39>>%NsTu{y_#_f^#^&wnb?7jAcLhUwh{m#3NP z9^9^&&2;$YttBh@=IMI|E7|;?#Fpvrr`{Jezg8&zOYEh6SCb!KFXofKUt<}&jYZb< z-4jmt=v=9brMW96^##^sXGa?*9T&ITzb(=K<+FHKEswBw+RL+J4`yChzq-jg=6>Pr zo#EM6<F3X%SNGPtQ@`E2Y00!nA^$?I&5)ZIJk`Vf>!iDjYrRj&s$a_}kh%SM*?Nf` z@`<s@51xB$xi@RI`TwtP<@;H0Xy+bk|MH1R$MlHE|G4dkFRJ`J+45JO&#HF$?)eLq zst-J}`}gScil^%r$R!{9Yw_kQlkj<=8Nbv*ZB$AW0xAr94-0>oAhmyHVf`1;<R^*` zmt|MzJrWoFIH9d>ZDYfxCgvGdJ7xGPJOmiygs*d)smWg;)uIvnl6Bd^uBP`p?Bed9 z{BvEle&zm<4d$k^?RR!DEStA{^_t~LcCVCHf8ML&>nZxF@!)G;cjv}c^?M?ieEz;T zy6c?z#)B8X`><*C{d>oE>_}t$-D@{B>!&_lb1Jr`zWDvY&u)if3t1Nayd2K+eV)zv zC8FA$5$wwHTkpjLZ{Rz&Z%uYd|En*jub+~$jM?OU_mtbA2k!Db?<cOjAh&tl%fQ;t zcgt<pu|{$fCl#*vbN%mG&VyCwIZtby>zo?0=BW;2jEa?GtZ$*xTdB7#^&5}#PCDvl zKBwhj{mHh;e0#2%TE&=JElvL3KBs0~ae>7f!{tx(?f%8r{MrBG$NyBjy5p6XH@R(U zyQja?{jpK=C-#`1@*XXFeOPytZC*Ehaa{uUOa3)G{!N;lwQp+F&-&EVzf+lQ=E*!b z=ocb!k5Nuv=E28HjPvwm9{fDSI8R>|LdiV%d5N)p-lH99?-|asvsc(z9QfSI{N_|- z-p!hq4Clr9KGZy9I6oaiiSvD^c*)Q&&bQ(9?j^O=76+0uq9*F6?~dE;_I`=(tz+Em z6(+v5MQdgCWgjS3%k24Yedc~lj@+Za+b;i>4eczIHJ|p~T5iw%!ixRxZmZh4>v~@} zHu?K*&-%C`>o}|Zecah9J>uuySG@ewCw^}I>y<mJKC#cazjIsqilmJ9rF}j!m2*7z znX<og%GRHz{vm$*$G7S878UN?`BA$i_MPS4Yb)&w^bXgjSN!>Z<;>S4_h;X8lPvi@ z{n(uv`e9>D&6d~aUo^e$s>>_iccU`Pc}pD6#beKflQpyW>jTfG*ThL(P@QnXdjIb? zw>A7uC&*hAFW8>nef6nPyR>3N!i)25N}I%1{QG5dFWzRS-rAdsPP&A>-M+cA$UJ*W zNOH&dWxCgj7Iep}<hs4ds4TqZdLZ+x@J|l@U7{}^T$vQUTH|5VQX7-NufpqQ9C+Ar zU+&Gza_?mY`aa#Ic0XO}&rhjc8sD~QjnY{y8%u#rC#PR|a5#-g!N7afZJ&Vjhmux1 z|70XcXn(%p<1ktC{Dpre{0TD_|84V3_>yja{?m%d%brbGcK-=?510H^)mG-}dp-;y zJ_qL}oRe^WV)1{^r>*_ghIeh_INz+BG4)kl$c~^#vYFE?-bZaPdQ%%6uJx}z?bNv& z_s`s(&1p0HyI#Xx#p>+`-dQ}$ue;&H@TAb#@#&Wp#m0;VTdZVfb85}Lay*U6p?@}K zgKe(b3WK@l&$2Y67#{s>q2ql1yIaLAKZhBm=@#3BKQOEFKg_f~7}z;^qif&fqaSuG ze2_6$`2CM93llb<=AUsk!hXx8%WX|}L$m8!>av^}`F4a`7im6sknNlBvwQ~gbjG&T z?DOrPzx^!DtJlB($Hb*`|36eouyqkNH~1YKSbx*tV*iYX*ROrk-)a10#nJb-YVXMG z{=R<_|Iep4TAzR0&u1rFn?JYqhi?A=*V5<uj((ESyMB_lI4-Btf7a1|wF=*bU)H{F z{dzy{p>I9kr@p-|F&o0dO!q!~6<lP#MvVQ(p*!v38$uoB3^Y4tmWxi#(X@MUf7Oi! z{nND-jO(=u9Dnf4j$Hg`-Q2%@?0uWQfz{sPQoOfi)r=j7r<_l}pe6I*bdh}AfhgCm zD+ZVDtQOT2G8XPrzFuzg;M6CO_|fxsg>5I?JHxrIen&u`{>@!?g#W&LyZruU&0j`` z(}TAe)zm%MaP~F(bm=4O_?dpJ^>bKxLHy*~>sxtG*Z3E9_VdU6C|$k6QLJ<QpZ~Y# zCQm=E5VQSh5&Nakg8E#2{fJu~dB^s}eBK~i!P~C&tM>YQ_3x9u+9$1vnRoWX&(_}T zbuoUMu3uyn^-P&vfA2$o+p<57k0*U^xUL}HbAMHgXW-;E$!w2Zm(E@H{d~&QATslL zN4&45QQB>>2CsiEM|Iujgz)=(Qg84KvNc$<zWi9uX_kP<PIfKrw+B*=%FS4_W%;S> z-%KajL~C?B8CnAs%|pG#9^8)2e)_*|kFU`k?RZV2n-1$I?%(xLT&(_CtYE{2rur+U z=~sN(eMJnGu&B7(7<kHkILp$d!+l;LVN&l#Np_!4W;Wf8UTw$U^{mtuJz6Ri{jDZT z;eROe_OiX<rY{eOhBvFF?&x~$CsC*pcCutb*H+D|v))U^mcMIB_V1mQvM8tJe3-8E z;U9M;Ht*@ZYj{=2Cgyx-w&?fz)oTtfSg#%bbYp75-sdSxqdspB2+iK>vBWEW>osf5 zSlz-;Z*IL&sV_X<JK?CS`81jRcUMH)K6YDPx_~#S@Ma2|{0<q}W0{Y$+phWFi7vQ4 zpH)q6BgbS3!$OlqyIJj~PVSn=dAy-#T7j%uyg=ujWw$oJxuO_to?>}sN<NqDjaBu* zg)?IwH2bsv&52T<UpbR`Q^A|>vips5`t=z8y4(wr-RBZBwJGOW(KSDV%%6sfmrrrb zy7D16C_s8$yxzV$_wTr;q&y6JU01x+Tw?3oJNfP$E5nS~gC<|<c_x=)edVkvw?wq% z?w50?o`2+%&imxYHoHQeIM?0#3S4&NML*f~uRivymCB>X);ym1n-`ucpA*@%u~_f7 z&!&?L*(T4`T;ONX#Ju(ApD*`gAN*zde>OYj?Ns%cxjWTu;w}X1-`lUX{Al;5%dB-D z_eBYu{}MB0v+;BJ51)2^TK{5A_|yNtioeEvJ>A7!uWtKvyZF=iDaBusKTQ-;cldg= z(EdEX&C2KEU+W(=<{yc?^1g1PRo0)Jz&Mt3i*8-No#^c`{qf$=+spQ_|2h2Wa`}rc zq4RT}oUg4iEVHvcrk`?qX~^SAdB65cSGM}T^ZeAH8XIS(<u36pV9oB(hfa&1a=-d~ z^u$SVWtG^T2_=S3msrI=O?~!vjoL1$jp6UjAOCahdab(M^0n1`qxzDS?(4o>pDMTW zMQhd3rK^k9J?rG&Te)(&{*tFb|KrY@hkuEm`uVHj=joLfPfwknUvu>S@|*giKfZ4H zbbGax-twt6UmxgSeyne2d#+=*=x0mmm^lYDvw8SWv-Pj$;_v2r-gRXEK3BW-`_t~k zb^1<?=g1V+WN@DNyK_SH#0ta1^%_5fp5)h;?Xa92f9p%w<^S&-K0lpk<`ewq^v>D! zmgS#q%0K^Slr$IX0H2K|4LU^*e0rIorJ<P-FIQ?_3YcqTXf}D{`C0{2W7t`!ocivd z!#7Qk_(lqb(+jN)6q5{1;U}<i>bn^#7=ll#10U$hsqbc_U}yn9ag|fw%~-+E63G}h z69q#{WO-8sBLif4GX*1q>5WZ#PSX!8l;dYMGBlZ9=*;LVT9BWUlUk;ioS&<on2}mk zlA32~Y%$$Y(8^H8&`i(3#M07I!PwGB&&0sMz(~Qw+)&Td%+k_gy6s}Q!s+sh<k+Xr za$)orH_$UO0Vyywx6m^*RxmQM01Hfhc-eUR`bBc4IP3}JRy9yHGB?vRF|o9?P_Q)C zGczzSFfdavF*ek*G*>V*G=z#wXLMz>o_^DxQDFN1pT>&QPX>UF1(ej~o1W0D=QaIe zo`vRgfea&IMkCOvaZb}G9n@4{GBTPTC~qb?{ey@8tnEQJl~ft0F9~53oF4DN_<j1O zU`GAzA9ra6Fftn%8Bb4qZXm{FWHLQ4+`y*Z2o$B@pa-3$Yh(nE8U1ua0|g@^<g;-N zLB54WsD8SkiGq<4JSOzh4NVn{j6vrO!i+OhFfs<6K?vm=DHs_e9gb_PU}S78i!ctP z8y=7P>23-}#?vSKGx3-%;KR6x(Rg}ds=DRmK6YhB<LL{9j72AJs1l!U@LYpsx`QvH z%k;!J1B2<65saeK6$DL}Ga65y*rOvp-7|twV0r_;2?wL`<cBwfL8s@6G8-9NPFG|! z6qzo#NmY;0X!^lv3SyvBbmuUc7)<^sE;{|BA0zklQ#bWhCvR*M10AP32^3t6#m3@{ zM$;WV<@B~YhO09&G8#?a&!qqoo5-P{H$5qqQG9wrj&VGbiShJ@^OZ%W{|sd0p6;cl zt2+H4w}RN@g1UBQBNLP9_vdJdPFLKfs?TUN-EhC6*z^xAI@6}lj%VbWUb(`QZ~ClY zMy~0r?d4S%jV1?ni%mbb!u0&~HHnN|(^srC<zqCSuIMMH$7nM3q4ARGrxO^trdtNe z@l7w}RnVJ$E0Ixr`UG9w$<u!)fh5>WK<X2@OlLD1Prul%r^jeA`Qc5m?fnsqQjAO{ zmec32mlvJBHJMR*`i6cTWhPU@=@;)AI!ym4XQDLyY$~I`bb~Fb3z>~fji)C@YQ{}3 ziDtaZWNJLwvFpL~y(x@>(-mIp$upWx-)OETHeH~=h;MsGEMqLAq$wyO!6k#Si3w6M zVLF|0ucq8|fjx>+Oh%^DA6_!I2hj_KjFqO%vz7-*aDa|~Z3l@uYHC|dUtp%iGQB;4 z(S^};`oa~eTGRLMRo=>IG<oAqJw~I+4{nNY|CGqc$;f1CIo<xbq1g1z_Hu&L8|Lcj zF_{@o-#Ay-p3w~A8z~1lDe#esOlHQ@AMz`iO^=f|m6<-rSx#WO{(Rm4(|0?_2|)Z~ z2J(;i^m7H~yxSGi7{wWx%uJ@&PgW3}F6}DEJ^kl>ebedv>5PTb3k8)#+C?%L+eI>% z+C?&$+eI>1+C?&0+eI?i+C?(h+eI=s+C?%r+eI?C+C?(B+eI>X+C?&W+eI??+C?(> z+eI=2+C?%1+eI>j+C?&i+eI=!=83k8WQetkWQezmWJt7&WJtD)WJtA(WJtG*WXNn6 z$&js`C};-CsNfJbv@ka^GB%uk(_PMr(F}ANr|9-iKV{vWq`?PSL)4gAnwTTSgW2Q_ z=WB(G4B@#OTwEI&P8XbNs_0}0&(z@J*~kbKo8U|gE}o4{;h7v<JR6z9%Mea|HxmUT zGlS`hKaC?8O{X*37|1f2nS%@9>HMN9Lfd8S<Wd=@TYAX}OkZH2!3R1wTzI;sHz??v z_4uX-Na}hrnok$(mxmN`(-(>>IWQZUn@nGrW}-CRutf=6#?4?dH{HIlRZop^x{tq{ zz;pw1UH0h<c;w$R8ckowYOK#_KE04tQEdB#*``*E)1w3AxTa@5H{hG@9w;X;U7%h^ zx8BGcbP^}nQ{aNn9PVdG!Dj*Yqkg)fp@NYGQb7hP_$-i0GEl*10k8S=(~T62EZ{+= zpKh#RWC0H${d5xrBMUPdlyc7k9uNBImI_7|NKSK9FhbOZ;8M}jVEV*=Cic@~z8Y~% zFLslg%VcRdUGSTc<@CLBDvC@-mXkNKD^3^SH{+i^&t1-KI#-Y!s0=hyn64ZoCp>+F zq{&JqOXKN=jHcq#R|U!OPj=vEpME_^P83`^PHza7<DOo*(3E%jtYA6*$sfMSPfrPv zgBFmMrr-k7Bt*_|dhstSQE=hNY-DLR-H^>hY`VZ}J^krQvT9<Wqs3n{8(Er9KggvZ zI$hIKj(hqa88wyZf^ur2lMg&jU^cR}02h*=5|vd^59I8JH$|s^h&7)vy>Nx8#Pr~L z3%%)IBIHCt<=?sK0a0??pz@D@dbE!m=X9=Rma2>f(=SGwi%tKx(sTo}v4P=q{b+U2 z0lN!V%j->FsH7%2-C>b(&vfo+Ic`W1>GaD=e|nR$n)q~sZw9H%#s<dIHwGGrGFnVF z<QHc&0OfjN$VuhK1}2b`%8jNMs>th24~&%)pPsNxdD8UmIFM;<CVZe!Z~Uz{YkFdl zp&q00)IfFd?bRW2QjC(u2JpOTWQJ7w8BaDWmYS|`N>ho^czR%-rUR3)!Suj?3X0Qb zFOU<QZqTVDHT{Eyd^@wTp~3Wn<w_pYeHF~Or-y~hbxohLTuyMhgM|kB^b6(+r>9F8 z*&0lD3{)1|&KW7^!N_E2IQ^oKk|>k0;q*dNU0V=+@wtLMv$3JcbitK!O4BE;kdvIg zV4vJ9&@sLbw^#;mS2Wk<WdtdlIN4Hv`lr+CqM)<ZS+?iI$|*2T=UFYsHGNu~9N%=u zbVWTz<LMuT%*3|8jFX$`IDPe6IWAU1Gjns}={y_cq$lq`pC@c&4$m);qQu;AdSHi| zypfSPJflDg6LWZ42Nx#B2FQG41!Kd>jTZu$jSV4%#&-Eda%HU3H>znHFc}+7XS}K} zJKf=gxhJF1bip8Vi)ncl+S6BV0Tm`@DqPba_^5-z)=^Q<f!Wx|4CHmi=_y;~1g2fL zSOhv|8FZrfgKo7CAhR5^&BejD4S+a|%PjS#H%hCDZNI>*V8zI6Y-BNgVWWcRbgdn7 zg46Y7<n`)Nnl=i?$SoT~Lj_~xrj4Pog0V4DfnaE&U~G(3A{d$~7#kxM31$k$#-KC< zEso3;jE&);qMz=lU~FumFx^;K)ogk^=pKPh>*QuK8CxP{dSjF6jEm(}CNH?lGF^U? z7RU6P>*egGA4)dRV>AXeVkRe4FJm?~F`WKzn!G5pv9aOggZiS=7sePsGCi}gi4mwt zBs|?~lN|TtEJ0O9lgWV`V$<aV7$-6tn;1`4d?*TPciGG9O`pC;P8@Wl!2Ic__R4Wj zKlMt3m(h6o1W+mhw`SyDYrJMQHZg@{{f!w0`i#clc1**3<v3<z6EkqWXEHXP4hnQe zlj((Ox?<B4{0*|1jZMs_2hOnsS!Kv>tv6jL*+6W1J)c4vv$2T<D6fhz85>VNpf5K4 z^Z_|hXjV0`1ZP!dV`Izd6SvFFVl<g9C}X9^XgWQS-CBHm(GEFrMoDm$1+EH>%nT6~ zp|R<7#Vx9m(-j_AXfc{jpV*~lKYhX!HBcLK;&TPH=^I20xu+KxX}2>On@&F%EoU}; zfwHO0bg^Bwg46f+>rG@dn!a(Og79>KKMJv+Ofpd(lvfT;w*+5Yz%o52R*rM~?mcn> zjJ)7V66yle>2o;cWu`aWw$OuIjWNA`p0&z!J}!AFa3-A&x)o!Zf{D!ZeqMRO=^KLe z<);_aSv;7&o=aX}`hjVd^3y-u)CZq<&oSNLrZ(&L4+rET8JWxsrhl-~00m#*Pa{1h zW3%ZWeJ#beuQ((Z?J5nvH3RGbLvwRuq}G73+4R5wP1VT-g^`Lz@M;d6jg5_va<99Q zg0a!`4V{*X`Y0^|Lj_|*Hvp2UO_7XoGgg?+_s}|o(QNv~Kuuw0V>8p~ffZKz)9;AL z3rsI))(D$EO;lcRy2DomNDc<M`=FVIJ%|PukDX%jg3}*>qy@UwrZXB(Z~UfUIX%Ih z@g0+~`E)}I4KYyN|6zKWxV--KLP<ktCI(3g^2>`)7nPD1oNgc^uUl`9oGFbJjLnfV zrHO*EIZ~zsWm0pbTxq0Wj3~SG(@hnOk(&@^3dYDy2y+Ev3wVjBpYEz)3~E43UtDTz zI=y;|{Awm+i|G^j%&Z`FHmDz}p{g={<y3jk=^Lcv4W}>UH`~o@Y+(Y<u%MjBY7ENC zikjln6<%q~V>Y%h1z+bey-HY~d-7`?6((bg<&9dZjLgOsX5gI1Xgr;<LLHPG7y8JR zO#h`I&po|MRGxRb;6hNT0KQyf!U^@M%*GZL(+ii&i-Lk{<1|aX>4}V{BGW(2vYg0d zVL9C}P!23Jkyl=C@<&}U&>bJSOqK?ad};yCYLg%8!Lq5PAvl{(e<dN$J^eMSsS2o^ zQdBk+oxVU(bt|*6rP1UEEuvuG%b3jq(TSVo^gwrQh;NUWFVD{iQlHmvCC+F$T|q|P zw%!ssMih)Kks`#<S;5#6shl))Q82bdYC0JiC>SF~3iQ*B%oR)wkRrv%LczoUo>2AE zjT{wB4B+WqKi$Yh!6eQADa9DMDwrUK8uZhR+!Ra<klbf%pkM;7`=RByse%cjcGFJ> zS&!sAkZqG62wQ;4be`>Xvhu==jE2(%-Q_H&-(4iHJpJQs3$f`1Q3jIJW##3Yrq9xp zcLf#W(<`*(d8Xg?kmF%Ao?gIjBF<!DIGxc`PGfqewmdiZTA1mL+VbwxPcj+a1j#9G z)e-}B8iNh=rq9ul7oT3gRqN1nNnLqvUPE(JL|Hgp@UwybbPrv5(dh!bhAh+TB^35C zn;4o+caT&No%Y2*fBGyvdGYBpl+_xi-`AJtW;Qf5n4YL7Z#~`lvw_(3as$;9AnOv; z<i)0Ufl}LRK~t6K244)srx&QI&15z)w4BbkQ%jW5Wcop2Gd)I=>4^f?V$-wK)Fw}_ zGL`3^&Z(}(J6%dio_ngcx(btt5vX-1G5vRj!7XMJBg5&13JRjrt(4`tr%Ux{faMSV zHWHiuKvRAuX!rwabfCDZ-t?s=^5WACvJECPn;02SXH-`MSsEyzsyBV5DM)6veE)O> zGkLD*Cuhs^F&a!3tk<2+XbuV*K83XDJQniY({~0M@PNhx4Ee=CPGJmVgf<OLjLg9G z4alz-b>(L>8cq*Xl?RO@7^<i$Z{M#cuLv3$c&INgKHbw=USRr!1@d~rhyqeS-Nf8g z!Nk~L`@&LVd&cP#4CH@IZ!nUN1GU8jzZqFfmoS!BnLg20O>A0`($r~b>NV5zS8EAR zPqmU4oF3pQC&y%BJUNg<6qFd4O^l5}MTFRN&=3Tp$@GW8jN;P|n##w6V%$t#Z2EH> zd4cKkx65@;@3fT{oLnF%H~qZ5yu@@#bNMgRc^&1sr=QAF=b5hJD6cSCp+k0hf}?!P z^a5tZNz+T6<Q=9vgv*IeKVvCBYx-*^d9UdktmJ1-zv3+Kw!Pn4-hq+PWcmdgdGYBV zcPmOwcKD()z06g<9@NR6IlbLY-U3otK6aCrnBJhT@O}C-cX{{e73`XP+rQe&OMrCq zIm(MqxAK%1m@Y8SntytNmKE3Z^<UJ4Kt4I3=)h!R0=_ZI#ALeRR|Spf?;PbjKvFvt z&8Gd=<CwnHN#1Pw^<H^_X+Jfv+)@EbX-iG@m`tEe0cjU`9!5sf=?~?##6W_Aw+!W` zPq?7PHvM>wg3$EUeex|JZtwJi{qlCxV=ijRO@BE--f;Swi(0u%W+sz2GK)`_l`-|1 z{$ZlL`*d9o`L9f-rqeHGn2S#Dm@F?ixuI4LWb8r}dC~3lp7L9r_)N_e3>2Vsu7T<F z*VE)>reDz25Che<LT2!y15($TnN8o=X{k_e2GRsBLclF%W0V%Ok%F-$ywU=9zfFwb zg$lU)ZGvb@a_YO8DwvqS%Q#MbH!}qj6L=ZQsqbd4V1lTu?d*8DIH%Y3%DZsEhG^~V zroWsnFFn10%}jyG#BBOR1C7+_-)G7TPFJ{PC<VIRO9(97rDhMJ9W_)%rytlU&olki zERdRh`9+Lo+dtMSs4+5|n3-%3^k8IRoPKS#yutKDc1?-x4$l-U7(p5rG%AQqFP$eZ z1gfZY>P--Vpr3ANtY88j%K!%oc;L~*47tB<s$hcXf9R)!M{kik*d~Y|)K524FhOnx zm@Akdw*p)hOw3IcrY|ZrHUm}EYZ%R^g9aX_3Cb%mnV5q|9;X#42~J-<Ro-K|(0qA= z=}sS&z<CiQJ+VhejL~HJLT*h^`F2oIL1Ov@Hj}x`Cgzrq>iYI{dG6_6o^mRTCes^# z8bLbB(^oB#=bnC&OM#csWU|0BJth;2=@SphiB1Q#m>EqbD?Ske84fCDrW;Dii%kdD z+a?x9pn6-3(R^~Epe{&H;YszyAo{>;dGYC>8@524jpk~Qi@87?K_PHaxDeEuFqy2V z39YtGEKDKQw)b3UYr@20I%624*z|xO23w}DTqVyvJ!76cA1E-mOu;Q|P$R-*dSkr> zxZW0EWU?@yp5JdJ3bLhffxK-!@~DNOtAdFoa?NX^U}6bRmHO#MmI@}8$ThE{f{7(^ z#p|MAf=KoH>7a@jxnTgRh>=?c#s&(4Cdf?#kbTn)g;h<a*DGl8Z0}nrFUrVd3GP8z zfNEPM&{)+OEl`OoI$e9Qd<~-oXrNbjdiFYbaZo`!ea?D$?&&Y5$@75+1Q<=HD=Mjo zP5-b&ejSsk!Sn@7<;ABv8f$@i9Sbv*#HRmQDqjzhs9h#64jv%@aTfBMiA}FoQJcbO zI$cmzO?-OwGI{RlT;dAgp$vO@QAkB;YG4YhC_gHy=uHpbEH4hJCeLkwR+Ee-(-{K| zK(;aFD2Yv<V61u<WI=&~0x0=S)RNZ&aRr4;!1d#d>783a8h2{(GMY^P_`v`ydvUe= z3T9ISOIZD=7z{SBuun&9`h<5H8<|ZF4ZuSx(<|4=b5EbSU2Y;Ml)f0~O+UX~USfKG z1S8+}iR(Z`s^Ro`>*d9#>+Y172Uj8)J7JYb?Jjwb=>q@tSf&SWl>a<^@@{#r=@T}| z&zxSfN8W9F{$}|EP^0I<7J2dMn)^VNrJ05vXcYP&sQqthI33dd|0~Zu{j{v9%=8Ug z<@=b745mNaVi`D{=Rc^|V4?AE`r^N^s?pSF`^D|@E{we3jtscuHL@_CKI=cIyR}SJ zi^<ezI(THn)W~G|Mk58qshkSn+nD%4l}kIbsgWso=w<R;Q}*fScgY`_-p#B49bdd) zu3(ID6_Vf7RUmmkIXRHg;6cYjd*uBYnT*V){Z$j4&c&+0JzaW}stThiWPBlSpS+Ac zqtW#4zw(ldM&NN+6H|C$2CfNA%%%r)s3`=Qpv;RIDwu!=eZhqwxSM5y7$^kS1g3`Y zJOr)@Op(WT-AolsjX+~7Aa_m-P!wh|H3pUDvY;VYAx6{bfqm9;(?3)zcuc>>r64$6 z;Ho~~^bIr3Tp3NL8?-1%fd^NZOpPaRd~Xlds${A-y@f|XaQXt!&<m(%1`;mZXK4ZM znoYOl1DUelk^?-*GQEIT!C<=MOf7Kd%$gC@+W-x)fb=vjkhiHfHHHTQxWqR#K`Jl| zO%zNK)fjlH$<zeySx|{@YJyZ=m@1f>z$-~miEnBGuWLc=a8pDT2<n@enwTR>{MC%6 z(>F}Aw1)J|Oie&ZP!v|=yH8&&pkTmgI^8kaVE1%MAq8-mz{_N6GFkAME~qtdkV9cB zC;@}+T4Xex{836DR91jGK%j9EkctDKIU^HrnQdx1{h*e-*mQ-ZDzVI_rqF4lDsBZx zsWAP)G)sx;2bQT!2I(tUE-%JpYBF8XPfnN7bUJvDVL^agAG4{cDY%=)Xgc|#9B4p6 zQ4-uu%V9P(HJctd$5I63zQS6t`#_Bo(2z>{bRB60E=V&M<a%+v>4}Y2V&HDtbS@bM z?#VA&K>nI8D4;NVI-`m%$lwPz!KFPvBeSWgCAhest|AAD<p^`#dQ(Jd1&yeig2x-c ziB&({&{@G0`I=561ITS<uv<Kh3>8cf%_04CBNGKvL}CYb-As{N1V$DLrpPS<BTI!K zQ{*Ork&}WcN|V4<!4&zTPGe&QQ{+a0v5A5ya;v~h!PMMj@<U<s?eW42hK!8n(<h23 z#4wqgP5(I6T6emPs6xkdA9)2xk1S6?fqVMv??$}S+Y}T8C!g16pS~5;St(ecB09ZN zQGpxME1RgO;5OYsQU2ES4kZPi>Dm$sywevdDY#Crl~6dyXffShQbBxrma>AtbcG%b zx#=b<3gXjsk_=`~uT@pxp8QjscRH(zg5h){Pz&JiQu#V5Q}84NxR5h6ut4<WOwA?> zit902fO-kw{u-YtczOb&($HY~eK7^m>8rUlRhUdIK%?HG(*tA_PECKUrNA{kQ%#<i z(R8|lCnPCpicMc&s5+I|)WQ_h+7M+l1-DR4!R-Ul>2W)?PBNQXm`zVqlNV(&H3#*D zbf=4IDTqTWC5!0=3JT(oHp+BKZ3Xe^XA~6HP2Z`lz|CulG&pVwZm>+Bt)n15{ko#U zCPs_t8&{c%O_!8a;GVvk)mR0TnIOXtIn1Vz@dpu*g^ikOvq1F{Xsp8&G!n7hTSdW` zk<oH`y{dxv^a=w7f$0mJ40J_Iky{id=4J|}mL`Zk*p2D`)D;pKEkW^YIemtPf(nzR z+4h5}>Y|L0?pKCBD4~lh$TM0_U#KE4Hr?R8-qPv2Occ1M&k|GMn=WIdz%~81q6(;> zKWL#PHr+s5p>z5zV+Af|LqqfFnnnuJ(<f-Eb%TZ(wdD1tzcf*hn7&y@;WICIi~<}t zMn)#n%oJ3?T`6}n1!z|))?5MFmD*vh0PRZ6woq`Nem_^8d;3WPg&@Z1_be5-LF2m9 z-&iV0!>`hm0*wfQCRrKHrazpkss!RP&a(zjz(VI)%?zd^=2`!5P-UC$!J;TOec^mn zZSYj<bnz+$!O05Zav;5h>5Aghv$m;nP3JLHc*bXD04lPfE;pX8SEC>^z2LFBHnW+b z;dH@&3igbK(+y446sOOrQIMV<FhyYolcDkShrY@V(-)X4NKTh;P!O2Df2zXe>2|dW z0-(MrquKP0+VW!4OcnU1zqe5Mz-T!Afu({tXk4U6Ll-oads<y=yN#8?A&}YsD-|TC zM>Hu2fTkdnO%Vh1;9AraF+$I&?{1`EYHTzeG$oO2iWr&)cd$&2kvmXE3Z`c8ng>#? zBATY)YSj!ehy?CnnIXo2z#S|zLxbssz48I<W`^KeXZraT1^MX$lDZ1he>E!zPB(b2 z7sg~}1gd;3rhj;7pf$a$O+gx5zfRxUrce*M7<u~iv+W8N(?N3;(-k`uBtQe4@24Ad zD!7B@G%XpYcXui9OkdTgz&m|OmjYx~Y5Josg?ex>PygMmU_R}?p1^dr3MGl@nav85 zru+9Oh=V4N&P<Q%RdAa=VY&|gcH>qB9Y#ju=?QHL;?otjs6smN<^8af*EIo_@(d=z zQl8)>1^4acoeH9i(`zRya8IA!rNBFV>SP6o-iwoAdY?~Gu$XROtSvKr-Bg&~iPIF^ zr`y#jac^JWt5D7;0j}b~>Bra%X+YWxG@xL~Xf}O9mzo2UnaOl`uaePhGGhnwG66G_ z=^txBjsz_e04Lvb6BLrCS3gt`m~OvO^#VwD;$}JB>5X4CB(_IPQcz`_zUH9<*Yx(u z3VhRrA1MfeQ|xrX?;4JvE`Fnl;`Fjd(A0`N)DXa>$u?bgszTHBpHCG);|-Uli$4bC zjCwgHGt=oGLBsK97pU@Ve>zRU5M{o>(h^ZJgND9U<#oY2d@aSNdwy5q+1@xqA>Ezd z6x5snhlQbqk-717%@+#N(-Q(TL1P6GN@j*gY1G|N!3=qh-rY#S%n00M3^oI|d%?9X zIBlCD7W9CdjAqE0!p&I0%ouqvz(m0e(aM6PZ4)zaS_ZlJVxXq*bgx$mg3}MEYYR>^ z;Gb^&QbBO~{b?#;AnC>+&7|o+Uc*wd=^I!|_I|5i1!)pGy;G0`wFci$S9`DE21&_` zX43`u<;Az}`k=tXJpDngI?wibuN0gadBOERI6y#?fvR5>w7`9f?5_&o0jkNMSpcu; z`ft@lrmuRdFmt-mcLneO)r{#<KNQ@z=e$=iXPn;mQ-Pb&a{8>F3P#ftHYrO?fB93P zd%8orLf>@u-wNi_HwYWcOpp4lU@+<1{pq=X6x^qSZV}#o;<G{k<Mh3M6}Xs<jSZ%s z`m3OY7@V5U_fMe(#GN=@@xOxg^bP4Iywgv7Q^=aCrl>vrL4=|_MlZp4Ivb;+`*eqG zihSGie<;W^GFcc-{-7d0{m~~Y$>|4vDrilA%cNL0{X@RVyy;9ViWZ>zb!Dc<vM5SS zU$8^D3u&GyZn`6@qTBWjSIs#XnanJv@B6DDK79_Gq5x<D1$=?B6i67{fiklIwO*AN zEv8@ms(@7LGn-i&Oc$J|W;^|}gwm1ezM6K>$z=x*)sxe?{S_etjf`gC`t+WZk~brt z8Mwm^jSr*gvjP+$g*}s*C8$T`z+`DMT`@>eY5Mg5MS<xFVR8$Y%`8n3r9GqNbVYMr zF-Q?)8>lES-2l{SGPB%X$f_vJ$Yg0Y{h_6T*mUJkMT6;&Y7ND<KVnl9@R%+WqR1s^ zXklW6oQ*6eZ#b{QWNt9sfL$qE*~}E)*aw&VX5hItXeIz<4p1|=LruQk3_KnOm2fju zFhjIaA-Mz5#sruAW{4&tq~u3T06}sGxB&(;&rHD#v5*5iv}T5=IY2{ellv~XfPxFu z`<gyIQW4zAQkcFaLQ!zKLXdeF$U_^|wPnHGuIW<IiqJ|SGFlN@DHO&iLMw%%F^Uq? zc$7X&zZ$Cu%}F5bA9IYvm_T#y@@AT#d(wrbUyoM==a)&-UnM9)6KiOMV#0LxBuHxA zG5tl7qT6(bA``ytZz2`N8K?KAD1r+}-swwH6s5tfk%uXY(ALQJR7H#F3C^lA(__;V zp{)^zbVYD$gk!sMoMJMgB)D*bBo*Z4U*_ONir{o8&17Ua-Ef_v1Gs^}WNrkShXu<( z+9k~9M#hj7s+FjCclx(AijeZ0(R^}(pdO?7^hR-2vFYn_O*kR*pVrBWL7-vxz7$3A z>4oc6!Q&7hV?nJS5WP^ySaJHtwTjZy6H*mtOn1=Kww&H@*IZ|M@kT|#=^Iw4T7d?) zXMolofmQ{YPj}p;Dlz@mJ@fyP=HS75uy>4%k($}&;6ZmLb7Rn8o%r;3j%q^Ne`Y9F zIZfx;tjHx~Xl`JLtlHRU^2YPZphz-cSBg+V%rt@1tT|$$3EWyS2dzNqP?L8yM`>Lc zDwrE0w@!={%pr{oUM@~faGEtYLY6mCFb9oj#481Y<^whCgs1=93Q28z(<g8!2~QW_ zswe;|&-uVze`a&gJa>Xp()7;lijXe<^yAxMsqg*{Sn4z02~B;@yI`r0+1$hcvSi}J zZbiskg4P~b(zD$QOM1(;C>Bmv+y_f~O#2nxr~4<W^KAFsrl`U=z2|@;7qgLt+4PwQ z6d~>42M1s&@7qCG%G-4amh$EvR&?Lqxl1vCak{}#MIJ`;>9$7|r9rC}!9}4osI}dt zW)JGWO;J+<QO`lGrT0oxn9NPln-1^YRr#k+*sC}Z)Xg^BsCsWY2fLEs^n%TDa*XDX z4!2*AlEC)x{fefbd4%2risI9`I6+Dtt7|ivn@)B#v7f#%-$Z$OE~gSSrGcmNL6a5h z_gM-|cRQq5I{gEW5~Kye$E74VS)m?eI(R<+zLXO8_V<Ss9T^$TrW+nr6rT>B#|QN~ zLG$?iM->ws8O^4DU{jKuuFbC`Fnt22swg}~AvbH?4He9dkxNA*1yIz2+P}``D0RM} zf;mc^Z=_(37#)G6D8vK-xD+%uHJg4Al%gOL`k+qnMs;n4i3a@4=4PhTFHTcQ0f~Xz z1J8t%poN&SuoAQovlLN+wg*0nD1qAp@1|c7Rq}vL22A%8SK^so&8NgWJzZQ0(yCk_ zt^_T8HcKd3OfP6ul9|3;QVCl6%#c#@05u#qwoepPvSXaCC8NYW{g#jt?{+5{rAdsS zIV`T}%_2(q+pXo4v>3O`h$$H}GFnUz5LXhP{_vBP)Z_{8<(bSaK-Cy1r6hi~0;QBd zW<{iyCbPMPDWpL9ETMFCdg50riRl+4l}>_cV^Dciz^W*|{XVFs<h1}bsldgBv7ym) z-vlLSMQLs^9b7AeXc;A?>H8Cu1R)irxupT9qO_lWO;#y&`jJE>f$8wIULc2k<WbTC zRmIae_0<Hn7t1RtL;JU4pb_~ZL%r#jQ<TJ~|9944-Tp&CX^pK6xUUO#gQ2OpxiO*z zYHn$QQVfCajE9WEK#C#6C=8?+GBcYFN;FR9C{?4Of;mdnXry3{QZ*VYn4?sUCJLb7 z-KrVLZEgu_=LYd|+1X9c&Qy{HEdYTOMNF3F;IuPcEL%ws)LnuMKQftHLe{*0@KG0H zvM`vQn5bkAq9-2IRGfY!2NZ_#W?Ya?(?)A8XwovyQv$Dk|2BPkE=Y;0yxjB!8A{^Y zH#jL<Gft1oRN|V>c~^;#$-rd#!h9tge?&108ojbWp2s&dQLr$8Ps)KuA1w^v?QziP zqXoDp3~mVMr#mZH7#d7|DC|7lPh4vrvjwO#3}2pUVF+HH`Cy(3?{q$S6-$s$1bZ}e zK@CFKq^<?1mpn~gbo#DrCGP1}{3g7h(GYEU5y%QnsZu4#h!Ug4bnvA1^&%y4$cjq~ zL&&l#CJV@<_U&RN3CQT8g&}0!6{E%Uh1=!zrhAquiG$~nm@EvZZ_GCq0~sc*s>f&n zUg|eJPFAaIdUlx-_w<Z59iHhcKyzOGB}%=ZaZ5&v>4skn#J0v-^D;797+OxB@Iy^> z`s_+jv_+Wf3R@sLA^PbiCI$)?M%yp)m^v^{e^6%3GTpdPDT)bHy@MvZj~6N_gI3oc zOjTbwO<7BL`i=@{bTL{?Z<J6K1I@lLTYwgePm>2N)l3l7W3n)szK~ZzVfwqnT3M17 z;4Th0ty?11w-!dz8%mUBPgk6$r8ixzPDx^Ve62C}^qf+q7t{CDD{(O!8JSE!S+ArD zUXeLnvO%eS`U4C3>C-J5l`LR=X8~?Qa|I(q(3TX1=*hoc%TCv<P?|8kw^2!a`h^Om zGt-wfDY=2W4D~F}W_oaFs`egP#6R^L^8vY_B}qDub$<MwB{|D$E6a<DXI1YE_*VUj zd42HXgR_2{7?1yU)aL$NvRSBt{ko&EV4<nUcENp5Z%Bz%6mCAlcP#3=ur}AZ=5qPD zb7OzJTe6H#F5*L$=ncpCpYJwj*_fLr?@MHPTXEvlB<&Y}J<qSLtj~0Rz<BE0)=wV~ z>Q=A+dHP2L&j*gk3DTCDGkmoVZu`ZxhU2eRW#PxwDGRRd-*F=)R)2p~_sfm`{D(Dk zCi=NpUTj_ABqSLmBP`nyw8(uC^TnAjT0|!5DaQJI4O%7s+=VkJO7W@tmVK2z^|JS^ zMVKzTIK7(}Fk3*?{ZC4h*~u_7r{`%;^cJoQGMW@voar_DO1)ez-->6y<gZuWZ&%5` z_Uq?^r3VhKQI<5h^S*cHnN?Bq<z=?5m^!^MUr9_7ymk^CgT_WkV}cgO(*rv-Y^P_o zDAi9t;G#ThdTpzcIb=|ww@pc6TCLKL>G|zS?%VC_lxjf(8GGxM#6de9zAAuwRlL)G z*DJ|SkL^^d19h^%T%PIS{7UW9i@G2ciR^T>ZY6Qh`UHpRPa2hc7%it8HYt@(=j>7P z*#53bNsDoMSFaNH^vWVl9wrMD&<b=*MicNPh=s}YiAtu5Akm3tDw5L`-YZQ7Eoa<k zX*s=MrzP+73wx9Wr(bPV+6kJj+iwZkyD&Zds*)ghgcqdIu}4E<x~7H|_x3~WN^Xq2 zCZJ*l8WIN6`>w<44hxg%iaRXrnJi4F2Rf-LPXBWqRIggdPX~!CtT1qxzNJg4XnOr^ zC4uP;yDX(a-O%mR=iUIdFP_PP6bWiriEa1qQL<(PO#mgfDTsoy`b2p>u;dOC@%p=c zIXiRT)!MtpvU^1Sw{H+U@c70)zjF+g4SsJFR`3Zt|J!)De~C&~==ztd?p61vKdP-U zxcPOfm};PiYtWPu-i@FC@3#1L-#+f_`8ju<etrA2KJLTxCv$eUOt|}W{r``j^8Xk7 z%s=$_YWtb{YwItv|7-gH_w{_ePyPG<J$-6kUsOMR{~!I!9~bWQ=Jk1YUjM(-|KIb) zm8AB(z8+!x_hfu+zh;cn{<Qcgt?FLG=>po<Mc2*sDhbzL8B^;$@t<hTn(I-?PTuRz zZROrovQx-0>muKpX@5UFKAr!s<5+C+^1fXaKR=$o!k^apXTJRXxH|70zn7ox|Nr&T zT~oH}##f!{f7XBJ{;O*G&wHm?R=<AgKgHMT|6XytySU!p=>O8V;>?BHe=z9&REmvO zIQPWt{{yA}igCeQ6L&6_Z`rK1D`-*S>!Zi}HLp(Qzr=t3+oLsI3R7-vT^<$mRX*6O z-X`;n<@xhb)#p}jwmK&<>3?MO>*`mwKl*>q_4_sV^h}vK{~m4;Pp^+(a)1B*6;sZw zvJh<%_FA5MYTo}3?ed|#Ewc`pUMcu!YyC(rQ{)oYN2%ogr$RD@E1t|VE4>g^YPags zqWN2=-T0h3iOcT$>hr!=9aotAuH6}v{BjY$S&Al${9RM``_;QAh&b+?7{~qAOLoCL zzBgqDn6mpT+Q0LCow?wThxx_*%=IC@Ua=SJeC@2S>;5{GyFinFYN~hfX{N7I8Yy=z z_b<HCw`TtP*d2TSJns&1Yw~2xT=63K<&5=L?${Z~YiWkKKRO*+{(i|>?xibTe~D>a zO(|e^`@~eV*`hc01JCSJQXB7UdaUJIxjoI{WmEo@=B(3ht9Dy!N*f-}IKZeTRkg^g z{<X(?8y*D*gC*+(_E@~gOzq4Nn>J$s&z1zo>#Kxj6lgBEy=2pq)~u_B>=MCKCoxaa zn-X=QmG%C!2U|8wEV$CCSK_V1BF5Oc{OsaHTj^aY*O@MVQL`|X&Sd+-b*<!`%biN= z1L1OCZYgox*d%aUD`&~n>wmt@n3UPK<EZlX{YBgB_w>~7J8rCN6<yeH)O4E8tK`09 z88Hu86K2B#se0K3x7*%NZjqD-Su}IY%yeOw_>8OiXDj``@w!}oxnxGcBEO#pm~uBB z6Y@>TY+By7l6~pqrYo*WLQ9{ptkk>z?({v0ecHSiDmA-LHGR3;lrdExG^g~zwu46& zKRWh3O1M$cH$XjltAoL@`_uRCo$*gfsI7DLrtcQqyJqh2H{j>X_FVK;t;O@e-qxl2 zrcdg#&{sb9Ojlru@Y&xB_p-0cQR;nT@UhY((<nRN=6u+!?Jrc$-@eH+efBXqmFXP) z7QFSk+){4^Co$)G^BZ_&Epd2h@hhFjNnwhRa<<Z}!z+zuWb3c#^bqLq4Lo_tDqMK; z`X4@46HYIiwV8c&toFX2MTS9a6D%I5?obL7Vt$<w_)<<$*Q84>>j=M`h?HR7MN^Ua zUf1-Vi=^=O88j!X>CxMKBjs9pW^(JqlfB|C)$zjhXJiiZEHGWZPE^ZW;q8o)o$uZ- z#4-PLzWAv*-RJ9)ReJAzb}PJEEadvCDlJ%b(aoH95;C86SZM~WKPql&Z=`)uC2M8H zvb_O;zA2Zrc%!AfPaeyDzp+pCr*-Gs3+Ec5FI~GDliDWqYO83AQ7~(3z^{bBg%_hH zM5)y!@43Dv)K623F)dtH<GZ!Yg=N7K$_#rZC?&o7c*0coZG{2H+PG_G3pTE5u&}@W z>Ed*6FBQpppCS>Z^T}R`=OcP=x8<FUx0uPt^E$xfVRv)SD=ou7BbTf>&5I`}S1<T} zXzdy$bCWaox)U3h9dD@;(>U9|<(T}bNjEtXon|M=+?gS(di#Xx^RWLH>sEAfSvN#` zEm+MJW-4u4BdMP&yTG6!jW=q;gV`Tib!O@m^vG$oI)qm`)eF7w+^|rLVOmes_cqZJ ztgl!0tdv;7sW-Xwn2gHyRc($YpP#1`zMOF34Nt&a)77c%*A@%q>n0jZEphDFeYGd^ zK+gs?vol8(T!q&g9Bi7Mxig`EtIeta2U(6+>&`y43}X&``f!JEpH<*W;gdI_mITYZ zT;QX7?wX$R1=s$4j!#$0mVMK^_~f%sqZ;e_DR-=!^IwTr7+&wx`eJ$P%1o~5`4cT< zTv<3(Tc5awvP+%2v1h@RzdCOf!e@l3ERFU0w6!bAe{GqjZ^FcB0_GRBT$N{<Z0<kE zFV&R1me)B#_sr@|m&+zN3T#?)Pkj1CS1mE|BfJ(;oBDZo&T%a{|F&WB`;~G|ZLfP* zP5<YrC0V~T=i)`ag$sY2vu9qf7Z&zI(Z?->MOAFG!}?8$a(f=et48^%&8l(RJb|U@ zrOqR^Eq`WjDBO@Qoi|5jm6l_v?)JYHuOp-rJQGWuv|9GYnr+*AW8uLC=5C!FTi!I; zKC>?E6jMs_<X<&`XU5~GQ#^Ov?<54OiX|u={ym#F;>NXG^{k6yC-&sLTeZ|7Nk2IG zN-4wASes8`Wii`gT2?V%y%??2U;ZcSmcjK|J7#ulY2eJ~+1!0uw=Q{4`MUEDmPsG} zl=w|&$`@T3+o!Ba@$+~Y&bv)8nWb@9t&wR_tJ#XLTW)Q<u=XbRv_ikH44(}W?asZr z@xo|9?(LSfob0Rq9^lEWce-z>uA6OQ$H+aO|B+%xjM^ia^`6XO2Sv7SN#Kz7t;{fq z`Z%NLmSbOxrZP{=)ndkrcUZGu?J8hCQNeMx;nE!!mmQ3`J7Z1UQj$E2#W{;OvnNh{ zHfzS@MCXI2ETXp+taxK_r@SpXeTQXGZb4~7+9t(H+icbE3#Oc$d1_BgN&O|O&}lM< zn5PQl@3_1_Y1$>nP?!99J<HBW%(TwR{uH&k+2t}@W4lq|ruj>5bGmtNx8T;P{JCk@ zb}hT>eOdoQcB#KfxZd4-Mmw%?_wj69!?|n!I6RB(@->b2N~)fCC76F%=bL4xg0Jp< zF#E-_W67yK{7kXkJVB!SRtrVE(EBD<UtZd?eYex1rW>cP@*a9J-SD+cZ)CcnfDoh8 z@d}40eXY$L>ZV6`ouB-U#WKKBrE-y+m#_4j>WQqad!tx4hi_;z3Z0pp&YO`W&93d< z-m1)1wrUou)AVTvTUe)y3SSkF<E>B&>`tzmXuT!z_L2E3c&wkP3!2_PEOv5_o2bO0 zd)!I8tK>5#3&<De2Th;np(V~}K7E^qmbF)&nEQdvoeil++OIS|D9}#}{U+0##3-r2 zq0ATSA`x~|^VhUjv-nqYIwd}sJ@MR*^r_6swr*v9LMLnTPrja_zwSVxnuzmLv*bA$ z)2*gj=rOLEo;lSb#L1+z<?l6{4T*<MvvY1t2$;XRLiuy`hq&IofoGe1ZWJtH->JA` zi`FNWohuD|0)=&V85_M(@}FL-=fAUaNkoS4rtU-2|4+4$tT&aixOphEWd*miV~d(a zn$)v(PrSt37R#ILxVY=AGk1Y7?`}@(0{zqazZbvJa_g9Uos+rVgw;{@(5lPwQ!gk! zT<LQE&lmUAQ~Ww}IxYSL9=C4YvwHQvO&1-yvfq^d3KpBE$A62F)$niNyIUXTwDbxp zE(mn6m=VNw^&@Y@se5x6mrkEC%|fkyc~0Qt9=)3Md5z)Xg8xo#YFF>k_@G~9ey(Os z%E}e)ra!_}Q)WF&f3o4!zd5RT4yX5XzCX9(;M=}v)xY=8?Avr^`=#aOTBl7ac@u7L zyPB3TsZs9ApV%2|p0$=(ZB%`dEwa8-&0aj=!PLdx2L-2y?uzXAe!5L_$HCs_6rn2$ z%oFRcaK1nEQ}886sF$BW=+EDq%-c>LJsIicE?3gt)w!NgLYGBUdNs>037fV0R~q87 z#8y37lH$J2iK)_1LB=L4hgV>l_fea)6-7_$&Pe`@dYCJJ;XrnF-z)yDMys!>$(654 zT3>aWJ;g7a<Nh}O6UsrIg=Ol3i;sOi^v+W6LLReNJqwR*+MQcpT25X){_NK_*IBn~ zGaGJJbIiS|bl2goQf!2ahW{BAi>l=}Zhg7CVdG2h)h3qyGg!7+rkG#d@czfLs`wAb z3V0<8?b~Gad0EoJH$)zubm`_k6#=2CT^?S_&opBFy~0>J+|DMy^zMjMOi?&=>BjwJ zg9DyXe*${6?z+?;J&^r_!)K0{v3up$%*n!U|EZ~T`#<}AG%&cAaqScdiJ3x<sgCZS zW6yj$abVdhP48`i!SA;D>1y8n6?&*Pvtg~kjGR=qJ4@;hd0#Ti@wm0>q{pr5Vs@9i z5uy>#y<DF37G6{3b}3&SaX;&!2ES5C^_JUD*4wDdmQ6Ym*;vljJbjOkmYG<pmZno7 zzwzpjm4*sGUnHca<{WLi$3I;xSVf_JiEtU~)ukSy(hLllu3wd3`5!9^2<hoPyFB7Y znnpy$x~Ca)vL_iH)&BS9))wI@?00WOCWzHuy&gXK`m}9~y>k<ewZ36_e#2yk><6(# z<&!%^B7N38oib4_qSX7wjYyRw!MxWCO?+Q%{9p3+<o@QqvK8;dYtrX8hKrv}KV@7p zf8zA5!75_)ExZ|(<`0?Q>)bO~s<^pjTXo)rC+iCSooXy!qReKWlX=O<HaA5)Wyi7y z$2N7I%@Yh#JsW5ppLXr^lgLIbPUD>}qOyO~?JarFn&<p?z0=T^&h6&FZ<grqT&?AI zFKczuqD5uz)72z?J=b@4)zrA=`fF3)rN;6tk&RC7?T2pPuIJvLTQTco2XlVs_57mE z0;LLU%%wXWg_9rmsyTk@VKe$5aLZ>;M)gg0wmt#T%X(Y(DW6tWOo_EnnN{)Jz|l>J z>07U8=A*R^cUyfUCW^~dH2+iE@qO)E7lCD0CLCYY?{IxWS#^fYT8%5ZeH&)1+oA2g z<I)?mLuw8u4>fi%PySTTp(kxK>579x^R~Q)oU6+xKihfYXV;=7)~_dcY}Vf(n;l@G zf5W%jl2?Csu=>uDB17*hZBrA(rJl5W7v%L)yt>Zh#I&yV5E&=u%Q<o>Z!7pr7~aHQ zi%_vzr0taSz=M;^+0M+S@@nsj4Z+E-O%s>iK7H+ItJd#D!M;`>W*?ontNy~wFKm;; zKF?xwNLVIyy@>I!vRY(F$-h%`Ufj(QQdjvba`NHS^BGRR7sqEh8rSRElw9zA7^XDK z$$MS7&eo8?e$%2|;@@U2x^T9`)cqu5x9_E;!bVdCRh%-ehkmNmn(iyJlgVR#NlSWo zzW|HaGj7I+S!<;uo)_g$I%u6>{Ly;)j@cIc^;yDZK08;<NSrD<nfK||<4@;qJX|Lb z9csBcjK8<i#YTGTQKQ2t8*X-`p3PHi>|e_0ey?EGMdLZQR=%0)FY&0?ru?IxI?slb zZ{pHMFI`SvQo3WAX%%wuo=~{bX`!80o)n60X+O-}@m7fc<ksmKvCAwYce*w`*zIu7 z?W#iKlqR8i(dpY9u3Bzy-q3WHqryjGp{7ULWuC{3llR`5^P(qG_*Rrk!-iQ~95|O` z+|G@hCH!dW`hdPf_K8ZdHXK_LjgOYddUeQH{nBPk5%hVh$oYc%%EaR8z=@o^ToPQG zUSi_m?|C||xi_qo-lXd>+d%iug(b2)E5zq5zP0Y;RMve(O!d3F`ZT?puS^MzT{Cf0 z<B1)GtNx4GxCQ#9=*+mb;8}{@nNv;9?;diz<K>*S;6={c7R}v1Qdg+Wsg}NUer4FA z4hsgoCb`eQ_N|qCcq99fr)rUfW9d0hFO!?X%tDpMTB0fvpOSWbkbbPVe4prd&G^U= z%Xv2!F09aOi>Oo+d|+A{$uceA>7mlUU5j2cUS4G#ZhcMA!>ZJE+k}mJW@~&~mbn$l z9e10qwZG>vcWC*AEC-!g+{bqn?bTkv(e<=0GBPsCUCHZS-rM7S>PtetZuw(;FVxdQ zP~eKN@}=qX1GUsxTG&1~Prn|nV$c4{@PmML{DtZKL0Yo)+GiWzpBDeHYGK#T-boWG zX1L9|d&BJ^!?gt)r>&po5?wC5wzm4E<M;jBCGx(1PqlWxJV*MuokQv2M-jWkx-P2) za`LTExX8Z5dfNlm$*rqGBMuZSd6sp}pjleyXP{bPAO9&IC$`DIUhL+)IpKR-){)(= zb|)X^2+ZD~!n^U~yJzoWz3(+ld$+pH=H#|TFE2bOa#@n^v1PWHWx~SW(>Am1o+y6S zWM!dAqiWO1NzM|TDLKlwWG5xPKGE&ATXbo?znip1Z0+Y;t}2(CI$s<*mcbaO$iDPc z0>>3&&zff8-5k@!BUKdY_wSwJp|#ypAmNbtfh}t`emb?M+e`1*(hX0N_ctE65R<dT zWAPH<-F;!U_U9z{D#ByMWN$4kxOMhcSG2BF*J^?F2}<j3csRxd6&W`;?Vr3pDCv^v zji4y*r_Or<FTdgnnJB$*8LKj<&Fj8<4V+&hZ8V;&O6^O{OAu&1;uF6@<zT(KB6qxX zrjY$NZzYW#QnTh{DAX0(G2VK*E9!@b?W7ZPUmk7B7gJ+v-B4xN_KzX_x=xtI>yRy` zP2F$a<|{nXUG$S@&#}3klOn?X0u&`V_e^Y<mE`$Ce@SOpmXYbs&_u7es~4PjJzidE zu2T&4oe}xLOK9bmT?e*pWari1##(Z^zHF}Nnhpn(n+Ihw4&LO@w-XI^vAS@??ONxT z(t~A(%bSm{(+Ll~`d{kc#;dDzC$;f?*vb)o^C*M!)u!y#-(%ArnygznVVTUT2{-Q* zZu5<q$|-K=WgK;Ib=qcyZy9^TG7@A?<VuxA7)%OKxw8FL)|<at#m`>w^i&HzVqAOq zO0-D5xS1cbxlbl@cCd6wZ{ybJC2Lo`>GZ7VlXQ4gd43I>`=Ut^+Zgx?D|)&2yw%A5 zP_z<sY5l7kbCynOSt@hvTZ|0zv-jTj8tzS1?YWbw$C<nT|Fvrdwyr17u2l|7247kq zU+~L<$NoC^wI2eTt9Hd57Bw-P%>Bk{{iMn*w*xX_ZmgNTFD^qm{(jk%#i4&{pPf)N z=qoTXi?TCZ<oP;d$~ONmY**TyBU^f9i!WVC-gxzNYgk!EikJSBX-jYVFQ23AIPqte zg}I^iF7DV*MjClH*8HxmJRH;4p<nRKar*iDaY+u#)@oHLPVZi5Vb1hbb^4Ko7QVTL zKU>SBm`*Y&_k1s(b@asDsnxtESfVpT>!<CD6Df3TsM-5!p2W=wu|^@Q9HZrTRRx;N zSb2NF=BaIuUY)i6TUX0@q57|o?6KgZt^8}7&-SHuosZwV>zR$OZLZ(6{T(`6RgW#) zd9!y><4Vxg@zW>7sK~P|vW=WQS%3QSFfEn(-H+L=jrN*|G9P#8^j=#~r6e<@b5h{@ z!vactH%+=l`)at)wto5$H$#R!J(8_OMr+!{xe~QfKh@ZeYz#Z85W_S14pYur?%21{ zPr~fOjtW=1_W!m>>u=GHeY8Tmtls|t8)LyP&SzTb&*E<hu)dhiGnvif#l-&fg!yxp zWj;-MGTl2|%bC%4dVjc<g-~gt$&sY_Yoi3pxsFHcaJc<;oPIN0ORXMs<GLr)7WV_k z)I)Sn_&%RAJtuLRu#ESuL@_U0PwR6F7@V0mgkH{?CV3~Nd)wr=tFkq-xP-1h@@{$( zUwloc=ef}GkLuBra#VRbcSyv#l_xz)T49-#An{}B)OWe<k+YMsbHYrYEpKSwdFRQK z`O{70?v}q?Q+eN_a(#vU=X%!q=}Y#_d2q0&*8dHM^&B&;of+$@pZri+T%fJWBweKN zJoqwea{tCxoGf!bPb+cu$h{WLDaE%;Q|jjh$>Yzibjj>^J<Zp=`}@xPtJZ561;3x; z6HUHoE}DEaBlP)SzLOF&RA(O%nzhtoW9|f=JyO-eGjf&-y7yRYxi8pRurc#qX{in8 zzHH(AS{K2qa<8ZEeY=(M>}r#RPqsXpx$~`d8JFPZC7nwH-_H<KRWNvR<oKjY1(|d1 z1~(sM6;<{%r!!5rjMUPucM+*un3l^Ua(LBsy$_Ad&$dfu+Z9|eZ9H;l;}W|*Cg~Z{ zS3_O0A66d!-o+c>THlzwY>mmsb+_$KY+75YHcx|7-<{!e*i1%c@9>~qT=_wVE&O^{ z-blH$CbUCAHLu5N=7mYGcK^AisFbsmZSOa2FSF$HS--mO<|Qy4Ofv72>yTXVJ8`?W z*Bn24=Hdc(-`qCOB_<3K1xHyurvF%KVOf96T66N0R<&~yB76>PpB6_yG^pU+S*rJ1 zn(sn5<Iyb<dxe;oZU-!Nb@vcF>%@17!*|`go&eSF)o%_O9M0m=E}kbj<NIfBvFO56 zt$B*edF2i&O5J?%M^S!ta<Se$)qN9>Y?z$Ewd~=O$Vp-`AD6M_uQ7V@M$|I*)lQG| z!s=aq-gc@Hm3KFBNgrN#UP1rwx1DbmCUr}O`IcDwB|Ipd)$r=<$}?Yd>R;}fH?#RI z?@Z4~{l(Je{(B-V&Qz%8hnN)3{~;!|=6{?_LAPM&biPCtQ|<f$8@F$36$Ov73Qzbg zS+-&8MxXqG{z+_X1}pq8+<e>LbMe-#FHN(ST*|mLJugv3j`8*M-b5ASkR2aWz9&7u zH>G8#;8I(`PP<<7eOo5)U{@=WUi$h>YK(vI@#C}BEH^(_u)X@}n$?_z%axC5>3ujh z=R-=z>AfZ?XD2KSD?FNd^z6bKU0%+P1kd1!VcF9eS6B$w&rmpj((Z7W5r=Q7>(PZP zj$Q4ri8WzdWGJ4v@i*&7fiwB;ma{Ge#>&RIM43qFEn%GIQX~5GcSaMB{j<u6yEB$N za0oe~Y7z5XcE&8r3lq+J7QBhJN<X~LLwCo{6|;S~nzS!1tvuE1!qrmQU9$L$4OiaE zMpMTHt_!{EqBS2!=yQ0^oN!>T@n56q>ylJ7>NCQpIi%Qq5kGZj`b4H_1!b^H$KBQ@ z8r<$Htb5$_)+zboMzsa2E~V~Ey!$}x=+u^TxjBlrwzkbQ6qDNEt+qumYs1zHIwhye z4L*34D;WG<wVJ<3OhGbNWs&!$=7|d@zIF)EJX#aHyrsvaoi`?uk8PVLU+9}pi`<sY z>8^LvRpE8^dK&S?anbXaVMUD-FCMBs>AU&!12Oh)M$LKVA0M7t8(+*RCBY|iO6)^! z;s&+U=1F&M+_AXGQ$Bf7>k}sT76EmpsG9#ROXi&|x-r3DTGutL_eYRn&KtLhTFpOo zCU5ze!?0+gnZk~iOhu>Fj*1c?E4H>(|CQ+F>kK-<*Zv@TN<-zP374#l<b*Fzf0V4E zUavE2xm4DUeO?<ER3AI^l9&0cQe;K6=h^T(8h$y~bmO^qr99lWSVzBg@`GP$fv#ft z&3n~*YrY%kB-}Kb@bZJ1;)dW`Jj+*vbv|K>XFFE;k8QD4)sxuzdsjKOG$`y}>pa!% zyvWI^%dXBb+?45kaYoid4WSD+Ci!RZWon-bKa}TG-*S1Lf{_sCQ(3lx*|YD4-QBE` zlp45io`|B*x?8&@208k<U0J_%>X&qPr7*o^=0%6N-aUC$o^spi^*otb8k+@uo>m<R zyJ2v-Xy5W==leQc6EmDH$68t*?`anH{%F8gGi7U<Ec-V>>-m{0toTwoRgX;wc~C0T zbSLm~VY&d1pj>_Xl?ivbzMt7{$tPNV(BK(=t>M#W8V0uWw+Djm6h9Yup?_uPzVnV8 z;xD`6n;BRS%;hU@esDu5^R@zq@NF{=He+7@IrrBHFIl~-?fT?$k%&%D10ToV)tYZR zkFBz9n6Z!h?2@&rI*iAS47P<B8Qt69@b=W~D7j!Ojr<!A9Ys#nFW9jm(p=<#LwRdb z!1^yg^1~K>V7*t)#d=+PC$DJL-gg?e-hO&?{ZHx+)f?xuj~XQ<9@1nnUt^YPCc8y1 zZSDOMJ;hK76Hd(_RsP+t%C8!<D@SlkpY)L3uJQEZUaJ*fw<W*l7BR_laM1d&YR#|z zXOmdt5_hxM^_-je!1AQOyH|Z=eUsJNZ%<-13X&PrYef(E$Nui#HHCZSs!uEq?Vlr> z#LdzJBH34L-5vDx-p#Jb4s5#(pZ%O9_FH%T_lcKHZEj9mBiB%QnQtMx&ZBb;TDh}r zEE43dZ<i`DGVX5?XwGQ(@^x<Fgo6)jI3Fg7$};HWOH63-PAWMdV1LUX@k7&_`j*=P z@p?{nvtAlWC8|qHK1(^UWTN=$$-Elx?tZ*|eS>53!u-1PoZAC(-{rQ4WQ4J9`@UF{ zySlc$_>8}w`5`9e#Xfs3nY&F~x6{C_YHHECYn@vc%?Li3Ao4va*`(4~Q1?}l_WT#F zJQmB(>N31Nymr^QX`bONy^d^wqRkV+CVZ?1T`GR!j3T4Z{&r<kahLQ1Q9J#7R`EsN zSS#UCYU96o;hEV7R-US`Jzg^1MB~l`i(T41554mtcZ$30HP`3dm?5}Qr1JpxZq8?$ z{!W^3s4y^?dBcUiTtyM}6~c>7p88RiYiGIl_5wKx1H(l7qNLoNXQpqgT-Gied@!M= zpkD3dzXgt!DS2X=7p#*tKJ0T4ID5b4-jwFf#(NoCbvs|*nUx@0nDo@=O;EQQGpD%M zN9T~+55$W_nQSd1q9vN-uV=_DZ}t(6`1)$9?$O8H5l_oLF@AR3u&_#J*{XEM9rL4@ zLmAE2ZroVW<QJN-a3R-*vlp-W%v{U4XYZA=P=@LC)^Ao^_|kIi@OM2?P0Q-!4HsuK z=5}3K6i^c5_~zQtiOb&1xG*^_|5Qm?!T)_*w_G)>*H5*&c;ksu{zCQSg0@dp&s9Ye zoeM91lelIkB<Ehub-yr}|L;M)WxHSVpWCt1xnApi+?AX1pKpIjU*M+1W1^ZAlHguq zk~+Pk`e)kv$-%LLKO)4=ZZMJwILCW4@YshvtY<AP^m^A%KkCnWrla|`VEoi84q-24 z)Hti&X>UyLS$yo5@ck6-4f*;iQnTaPR!lOoY+~(7GIl#G6RWq{X|eNJ_8$FfGV%Ub zHkY34oqjJvMZDg<=ikM@UE6)8tdDkHCR{DVkdo1GHHK%=)JdOr7;tvE$Qa+)=X;}? zHR!?C$IHV%9hKa+G=Sx6U0sA_SfjhaEEx%h_t|D0Zu&8|y-aOfTK2u(c(2pNQeXSN z<}}s)@r&HgCO@gTztDF<-<*hE|Bswbew)|c@oC|4nx5Pe>dMKbRhJkf+sE=_t;(nQ z8(P@+wO5(cCCM=x?whAEf1XCnrcX*oCNJdedCzTfWBR;I6=x;EOY?&!{@QIMd2z~Y z)+H-%u&+9l`?BlsTZ6~Tue?<H?6P3?^smWU3iY`s6f<&ET#meKES%M+koQ>0d0IDD z!qu0`NiEt7ng01l+f14ND6q<Ifu*;~l5Ke^B9S^F2^$NTlDEii+Pl`|!&--FowFG_ zeN1QeMG6Pr@PG88<uh9-|JpCStk-Hqbv&y!ALP39_NwdbfTuFr%!(_GVt9VG$z18q zY-L!#dLxtEoqL&ouPs;MR5l8|6<}@I@=)1dr}E|=2dUr*Py4l|Z%Wb9Fk_ST2((@- zC|o%;arM=NL(guVo)O`@XYqlwT?X5(FozwRq`mHeOL2GeGnda6bMjt!Dto7IOIMmM zm#v~Kx>;cVU*i->u040)*La`XIz22~MNUt=l1cN*su`Q~Rc#CQFRc3Wcv*(un$6aw z^6Wu7=BcfDXZU$-!6l`{ve&vFE@oy<@7-vjAamJm+Pp8jth>#&FHR1SEIuh~U@!DH zKHkivJtJfK$&D5Y^>WRb-7U)&rSavjIF}gQKeKbQ>unpcx?_iZ#OmJN=eEBT)_-t| z>-z7;K666vlpncdm*2s2!}4fro$zkMYqiD^2UOi$pS2wGXA4?qEPEqCSL9~*+=!_n z**p`2@{7JW2;?1hi3^WbFRNbuH+uaOzx20Pj|kbXZ4c)QjrTslRy{pGO^c)6SEi1; zcfolT%lfRfQYsv)?y>hiINqhJ((b7&eS6un&b^-)3aq9$wobKt`ZhZz;P^JLk~(Lu zZ&hsC>S3>Bl8$a;d@60aAYh8s%}Yrdj~BJBSQ0d4x4(1Dl1VyG=H)+lCfNE*xMikk z{h}v1Q<HWCoygQwlna(kNy;l0m^R~K+w|{gTCz;LnWu}TYbn+D9!PKHJ<-ykbnk86 zH68Wj_Vxp_o_@FysXZfT2j~jzeLL<eyp(!0MeitAsrLE@Y{?3emJ$d0cXpazS^7^* zyuqxxPCk9=Lv72O`^u#5$;Rr+q)e`JTPf8)&o}R3k@GjLnQg2~<f7*AmL=;<-%;D) z9(a3EkIQ2ny{jvvHwmgtKbor|tK_6}oVl%|G-~k@jbjeVMqLm7vJ^;{*RQf?{qEpi z&6u&*Z2Gr!Ew%dV<*YF*^5x%F*a|6e|8?2oyu)zUwwLcccw6I7Zj{hkS+n+c+$8-n zsV7ZaDw8_<w>`YfIaPF$X~y17id(ZXs%|!KS!&YUFefGbcF^W%g{Mnpg=bIQcW<N1 zjU)XNGfz&L=`Z}qx_)VQ&Z?V{OLC(>^EhtZ^6#EyZKk@B;Y#j!-};P>yG~6<Dq61k z@$8YDGpX@aG)H&z&ejb+@jP2Q3+Jx??vrrNWnV&Jh5r%pIl(!{7A75Nf9N-JzU7C1 zCm4=7?XLT-lr274M(#>#n5KRFPTsvf3@S`c(_b^skqP+SX{ywq(l$NETTvmZv`?#3 z%iVovzzSxi=@KCuk0pFQ&|B&_clE)IlQM2!o#2{ro3%e-YQE4_W7)YJ@e{4<XCFP4 zkh4p}b8EI+?`4Uufc|4bhwk}CA6?yZa)D{Ro^eJ(&9)xR=~?+IQerAjUf-G(`ZZoB z1}VfHk(hdF!shMUW=)@!ucBVR<LHjZTCCDhk|%i9=r|nKV!p88l)@^#&nwEU&MYpx z9J??3?KO7cfSEHmS4j9UYdJ)nDvsFTEU{VAJ!Vei;aRVoj$BW%FWh@>=l;5L4yTT+ z;oi34p#<-))3s4kqrZ30xYB<v+$(A4?0jSSX9kK>8gDS1Iu!OJB|*EwXvO*qoZHzG zB{-EUitMMm7pQ2PbWMBcQhm=$bX)Tul`Rc|mrO2jWaSB%TO=CaSbxHRVb6D~=2?yF z-HcW9cn&fe$-fNV(Y<E+vH}%3YY~wdIT!9vX8-(MV&j8Vvi>UO>)z!b)@NemU)En> z-QD7N%!zT0=;m)J`_7(TV_OqnZkEj-e{*kb6W5aI{|i(k>bLr_v~<OsNw_fEb?vcj z8n1I=PR6~ua&za0pWLgr7WP`d7hmtn7rxh=*|6cVb@v*^Yf;-TtX-OrTg&hJW#t0H z2L1zcc6@03Bhq>zEhDMRO5#(Dpj^_anWfb%Q<YQ;EtQl1d{J_~$N9WM;L(p89vt4j zg$A}^OMdq%rYo|=L^cY(<qe3=aXc)w`NV{Mu2HU;q0=XBw@_mYoxWqcg+{$+l|gFQ z{)&_4{HIFSHBYa&c*=oc!j>84w<f+9ohG`NUta9Gvg>`zO&6NwHXCT@A9=qZHcvQt z&GkrA?wUsNp5;%(+GYtH%8NcJy?6(&e*S&)IW=>=_gzWeV0L&CcW7gWSMefcrzKx` zbPWu0C-yon{HojgaP8{%FE0P9ed@0ADva^)++UX#**xNrSTNyf-pWbtw@x~l7n-f; zD86FSuX#>s+0l+-UW+>?Ca$#;is01Vc}i=A#s;0ZdHdd#9yqmN8AqS;!;0^0KUd{h zXeInT-G4YXP5X&D$Mmf`EEKszvNS`_$5$Jv1{hC&m7}Fn-yl;nD{q5zaw&`V^X)g< z{5LaA6X;%hHEm&I{|w(*h8ky;3YP~gULvp0%=<WC_loVQCqm0Z7fL?u+Ozj`sfak= zj9z8El4HB`#9}{k#+*~zJl$Dh0>g9Hi`f$vtMU1@gsMH(<GdMEXw`BvJHz^lWz0R# znn1I!W<9nGc~2ZaZ&4q1qUg#UF~1`cpV$6~))4x0zS{F)edfOpwU1=NKi*Y1HFbVt zftf_q<UJbPejBw`R<!Oo8Fr4tL@(~<1eLtNlH~0rQ%Y)>&vArDF7Qx$EK%s{o{*s^ zwJ-Y0)g`XVH4zOa^S;Zwa~`=LxvQW>`JDrQongSmmAQHEU#NN-z7DsoXM6A?Dt(7v ze$gAnRPIlj>}FLzjwaMhK3mAqkQZaI-Ou;I)a=^I^`@Rr4_4mN*lzQ2q0QdAg$a{5 zuKvvE*OgpfaZ~Vl_2CMxq@){_hgu4itvwUxT$;ALG+#{Z=cBhX4s?3Y-8%hz(bewB z&dD`_YgkPiHIB)q{rlJ{y6Dtw$946Q>mI0j?>yzPW06cx(c+Hjhn3H~Jn^bkekq%8 zl*w$?rT^~meeg{%>oXVPxNs~vwD<ngUD;ueyX~JG3Og6mr)Df*9@Qg0SvQ$YBeKb$ z`BvPt`9g1tl5_e_t>t`_@Tq2F&cT1DUKSKNB^`>*%RCaxwW53e!-SQ&vpINu&bJhO zuFv(XaG!Vb=@RqmX4N_Oo7<P~p3R$8@v-E@u6uslBy!VP@7bUD{im|FKI&|a@p|(v zm$PQU4O`jQ1uJPhZZR(E|8mnm=J*?PkD_H<>ieaCq$SEcp4z!8eRW0l13tB%7mlwj z;1rD0WRK{+_q)-C*(TXLK{;}|xnq`}MS`|wh;F@gEfdS{&wfGcJx;3WKks&4t*UWi z{^^sGCpKQ?iVtilk9jtEuG4|jv4SpB-cOjmYSJCYM)#+$bEeJNa{O>@;g(fla}Gab z{;^}SdsHj?s;4%kT}NLRnkI5@u-VkH$L9N%3wDv(=d(*~K^H-HPM@LdwRp!us~dl6 zy{rCiI+!&nyFNZXUPr3=&X3~T7alyFrWxJuf3@p$+u5A`yi=Dr#^~>>e_yd*CFiS7 z&K8d%0oJb-<zeqm?s!|^x?;o2oi6J-4@~=V;#tP!Lvd3VTU%K~@!#ime-t;7(S31T zf3g2EWv84=#btT-p5%lYOpv>}NnrkSufQF}4#yfJfA+E!+^Yy=w3=SO$3m=L@y4%@ zujhTKQ;znWUbOV|R?SIv9SVYa4<;mS@626m_CSGSMXR&4<xc~-S-o4fRb-gTzr3~o z$>)RByuwntf=M&w7j;yrWdD&ntgz&|L*`d*0VO{3rd;PWz4rs&J>9{5FX4#(%;_IA zpDL>NF#j&E$$nR}KIzcnqhcEu1>cVAJyHL(Z|^6;ExWj{&Sn+=yeLLtud$?BlKm-B z`Mr-mJWlMf%Fj6M^Z0AO;<pnv@iz<ki~1%>hZF}J@>FS@bVy$L*f`ksHfv7yg{U_Z z0-smt*G0b(+tZSy=&jQ=C-<(~rUIMi8nUjFKa{`JsJQ#;UA4?pi)+RkB-m^n`Oca( zZ#>*vpYNY05ozh`W}GC=x8RQQ$>w_#_4v|ui6wD6J8Zg<sHwhZkItjUCEg8pkIrM4 zIR0RdcBJxa?bEmO9xp5NOgp@@jM*zIpyz1Q3GE`^b(7v~TIZ{A?smMYyXQe8{o}J0 z*4~KI`#LvNB2v=#rb?<w)#Ep{{yFT1F^~Ipx3ca$^|qc#<z#cQ=e;}@q1CP`hHHN> zaWcAB!E%c)BVlm>i~5P4xgK+V=X1T?Rnb_yshG9W=RsZM+W?14>s2(p6(u+5Ma9}F z&3Ds#8mynEP<YQ%+gUZjsc*LQ%*<abd*h5xYo>i#mie+sT`P;b$aB4$S!=}U&i6r| zvP=xGg(UYakkG21U@f`#j>_%{0lRW%?a8>M>g=C!{w3G6t3`9(y(qXFUM;p)i0}TZ z$19Q-8Gqm7^Up3XiFtN#!sMy(-Ni?}?o~gSw0q*)XUk9381G-ckLA&!yidw&J@j3+ zY+mru*SI}$!Gf<0A1WtgZzwm|rKPW&*xtNZjB(Oh$t$`ZJGM_fcub!!c4PE|1*Iy= zULu;iSzV@U6l<x}XU)Emz`wEAEbw>nEI-EyW($`)&TZ1Ej5;DHzUHfagjB!Z!KSr8 z?b%X~AA6x2a=hXvvv9<@11;0k4HhQOi@tTZCq6gAkKy^zpLbaqrq#+6J1?()s^b}a z*k#&J`weG*m_OKXBAoYh$@OVDH&%Z-oB!g$oj#*$CA@P*BMWB!`+cVVP|WYor}O_k z(Xan`Up!t}e(sTA#>a;^k5y>%$7Njg{QW=fU+cf`_J8<_A8%#Ze*Ln@fwg<;|MpL> z|J{DN{__0CM=$<YieGz6z=cCxrF-w*1nG}Viu)%ViTn4}f4c0C*YPVn`FwvpJU;#Y zpNsKHJ6`>rVgK*vQRA!iQ+6aD|7kDe^Afa@`t@h~*t$RK#m|e&K0IVv{`2E~{r#m& z7X9Ggv1FC%p4Y4Ef7l+bXk;u&t33Z9|DVLSD#4G6>n7aRdparL@8N#^zG#=b6Y2v# zPoG_)rBSb6vpq^}@6;!)TLLmVv;XXA?Uq^SkmsW1s$X?jyMC_YU-kGeZA=pCF?H`h zToO6eByxytWg+Vl9svQjt-X%9Jp2DG@@461n{2nTX8n?O9Y&VvKX_%Y9NIdm)-g@` zd)i;w_vs&|3QQC7ODmjpD^6RiqW{B|T*Z0+9-ema2`}KTubk#S%XhoCdh7A&fAshS z-Lit^7R}wGv!i>@gHx+}-?QvKmf4in<5it*GV`HCZrz^ae`I-9{NcH@WC|Oz+uBbX z78o^T&(-ZoVAy8p8?N+SzQ18c+~>Hx-%o8lxZr?%W!i-&DG8rKt`ynwuzmQgRoucf z>u$!e+Z%b3Cp7bX5^1V0*jTh_pQ%ymYr{|5Z>6Y|ZoTKR_3et8jNO`P>wMnbtW34Y zef~gZYVEdHKhEC#bL!QksX{SxCKe`770NTs(%f`aHd6QEttb~m)qQuDO+2x3nc~Z* z`%RV@xIS6iW4}ag{)e+?_dVV4Z_=^&qDAYDef3@UXFAt$btS)_hKAxl^>^&4=PP{u zwROUwSAE{sv;Qo5<!^7fcAvIpRF#q3ExQlgj&oj3?EK`gdCni!eFX>Qemvhfsa`!k zC1vgPY2uoZo*R1S{Fr;Qzw*=J2pbzdw#fyPe;vE@v$3M`%=udt@rPDcy!^!0&L=Iq zMAco_Zr<OgTe|CbYL2OPtgV&iOP?ud;p|)g=&5`{twrwjnQLmCw)wYzoTB~wt<~E{ z{sx=o3Rzzke%|xvv06evvp<)_CMMSdc9R}`cY7LBKiBBzntuQ6&Z7?(_}iSf`t`$m zO-j`C4<{V#?6u}!U_Y<D*kaaHfiElmde8bQTKeQ?h~@LgnO}dFteUraT8)zE?;ZvI z=RYL{C!eeDm_Ot2bFMET@8^8_^n1_mr)PJYnB;xk@zC1-!sIW<H>b@lx8qM-JE>y# z?nw?eKA6o*InjCceHKq#!iIgPpSde_OB^dV%u`X<ocuQTZEnJk^m}tW&NV!nEi{dn zpXbP4!|#m?B`ZHGG%h-L)M7$UVM=Q(x25%_8otlZU(S&*y4+uXQ)`Z1f99=%ULXEt z!l}Ql?yfyL<>@rtXS(|@ZmP7b&UTm<zJsmrr!>Exa=M?pN<pL%<KDijJ9-XWc)hE# zXU=MWJO8~i<P<K5JKx>)>gW7x(MJ|CecP@#t+-FKz4v(E?G2S(3=iM_?3Oh#ce|Y1 zr}Y0|$KgL$IL@s)>~SNfXJY-4n;FWRR~NhOP!~U=B5`KZ<<yN={ni*V{AQWbIP3Fg z&F2EwxlRTNE$@wsUF~K$C#!dUz~=q(^_rZkelq5k?VB)n)|~klZ^Rde{&^L5!}{#6 z$Z1dFn|`m>_9;Ftx@_lf(PfqMw%_!Vv^iF^|ImZ86CQIpOZdlFM}M?B`<JVEIzxS* zHc#F%>vaYmDSP4*3ts;(Y-LOflc<bH)?EGd`O+(5Gnf9&Y4!GBx6HS6SJj3q>t4RT zbbhj?Td)7KnWD!w+|=PMb~qzs#NPMwb)Pm*+y=+>Z@Gf4wRhx&OYBh&E?E0*+o3DR zyf)7iUAFDF=rXgP&$k`<Fj=CbMCaVqQ`?V9@YRR6q<X*k&E)*zE>rOFgloI>4SpP+ z)b{n|B<bjrlQvwOq1wLrsCPo{`Dq#Ya%(gVB2(466Iaa)oBa3pm&u8<Hh<pvwN+%o zI{nfWY<u``J5@Ls&egX~ueZ25J^tcmoA`3S@ag^*=g&ufJa7E8g!T6krB9vb{Iwru zTO_|LkMhnft1o{Oyzy<jQ`tfLCnbMdPHw!~-~02U`2X`(lN2j+6y>Ddx}W|%_WU+C zPvg(e+v=1aRLxHP9v}DqZ3Aoj;;lPl1ol-cGwhtG`zg3>j&(YNowK6!!Ec9!XW0Kg z&tIO*_}SNgSM$mLan&0H&&xdP_~BkYY5wDj%?cYQ>)+=5x8U9U`YUD25`%C5wGpoN z4B+H_&n3$&E4zGimcN?F`_L`IIac{14?llw310f@sj$VKeUD$R?|*yPf90Iu>kob! zoc?L@HP^ze{I=B7FZ%XxK8s9h+AO+5>4fc+nGH|t{<5#+wBD2=JY6j|$a9XS@Bbqk zE1ztQGo7zrRVUJ&-+MGsaL3g816{8@j=eu|;9HPRtIo-L9>Uzeay@n=witB8o$h(a zD|E~%uKrz1>OXaLy||~MY6(ABG*>DdDnDI($T;q}63^C$+v?AIK8VZP_9SiT2@R=k zlgK=~PTORY&tK)&2N*flZ#eca+-PTKgM<THq0yB+GS_;dvO>-joSj-}eCtHQ_xdyK z7sdN8XRSMM&2(<s6ss4jQ~3{gTwW7pXLO@redkk)3n3F)6WZDw&+Ru#KH)A?IpM3Z z<e%H!ntlw$i(+{a8!UA5XEX3@|LK!-DdvDh_NvsS$qW<OwtQ3&UGmJ5Z<0<K<I&CM z|0ez5ns8!zE{}xEtTR92j&U1o-SxX$GL-FRz4fEQ<NkL3FTTz{aZPs7rc-(oqg<wc zxcO`PjCITWGR<OV1??}bJI8-`xn)0(^YNP75%%iOq?TCLpH1kSsi$UfKXdOtX4#F( zYm^U_%YKY?uemN*Kiw+nnfoK%!gFawi<rKs%Prae(%;VTwbRkHMm5vT=cOGBOlO+t ze{X`{)rr;hebLi7pIm!oT=7zCx|wi~`*F+NyTs?rV$u|U@~7uo=Scx+ISq;Z`9FI1 zxW%&`_<gA2>axf#ma;uHv%lRcEEZgM`OCJYJZ3SndB2t{D2v%Yr)KBg8U2%-H)(BJ z$oumMd!)?Q%O<LpF)IWu#L{QYE$D0e7p=D}n?ZG9)mQsU^K<puz4Je<nQ4??n|x!> zirI=Abqx=1kIH4M`kFtv_d5HXE!u1K{`}wgpr>9wMpdc%_Zlm8)%=~CWRG8YV0rw> zF|}{}uPRF}nctJ2+iD$CyZZRY`|~gGt5?__^nbD9bwU693)f>Li}>nhh1)$^xO&sa zELMhfFO~kwA2#^sd-wz6*(>!Qg^v4~?C|`Ol4Gwh>-X0+Gv#YKKde1`cGBzHf7;pi zuZ{h@ZvOh~9f?n4x^_DjsUP~n$S3#cmf4=$>i-$l%bz&c2?ej>tC5{4r?)>o|3_uZ z*N-P}`hA%EZT?5&d0Reji7OBKx5QSje&(6au}4=rOg(RSX~W&)m&7+r`(0ZjKlM(1 zNAiLl2D!D;{|hdC7oN9<X9@qSLv7v%AARU7TPJz#v3_OS*B=*oUi*7J^89&O^4pUh z%egnxXFbSan{#&0=F~4Yzx}ymTy(a_avA^m6G!4cPHJ^uYV)|&bI-Y*`~IeFp6KIu zFZj2M@$(cPyFX3pi?_Y|of7lcHnQ>@Y8Y{olXW=S2R?nq1iXvUu{v6NfHOF0B21 zFy+q-HOZNs-^=VS&NF@e=)@*1{%hWEtZOpUWG<chAu0TizyEYw&&8AcTXg&{|2%WS zdh(OaGk<LVx=L<-Wcn+Mx|vU;`A-{s-;n?N?DuA`66I^NXWdTP+v)O4;x(&VT|}nZ zH<pw3$Eq0RlJ_2{@7s7U<aX>D@f(KMxOtXr=H1Tt`Q&olYusNXUZ?VGjQiPstm^4; zvDcy}j`69RN~d4x;@^1hs+;hhIkg)L&t1)w7K(jic<}O3ci{|E8FR&(rY33?yN?AN z-hFm$gg#q+_g5hXzmojqy$t;u;}YH<sbW+%nVGw0`-j)UHI`Q&IUcM(&2V(;uA^0r z_l{OEDm6&Gl`yzb<XgQ)++gdjRO#2L6Q0ZWTi0c+3ICUwym$2*p_Q&Bob%V#cfQPe zH6`uxQq8Z?&!7J>sG0Togh9!f?Y&=%lh!%T`h1<|*^HO-Z}b0Jr@ZfV$9t<s?>*h` zyk&o=y;<Hx?DszTDTR?Q3+*+k>-X2oPuW|YZ?ADWH|0;nr#qJv3f{6mY`@EYs>XcH zO%uihvoJB&&78^E=F(=Xm!@T>f6aXRf5GE2`xT$Rnmt?mPU-#h8*dl9Gs<6cqpjrl z>>Zi+d0zF+XZuv9&mpmV(%N<9=5qJu+HYUG;Adyz2bJ7ohfEIf+|F4idH?2GU!}TZ zu?qD&wC|TU%H3v-+ViVxw?p@f>$g~|*3ayJ$Fw$o{(aV}eR0Zd2md!6PP(=0{cZ>O z>%Yx!vqmL<`J*>M^8WJj#%tR@^2hssQ(^huaA$7MVaffM-_Hv^xBS!}mwW%iK2=Bk z)6w|aTI7DA^m2^<8)b!Zl_{}h`<C7FlH+f+Rj~P(BT#?7<)IE+y;(=P*E{iLf9moc zp0p?|53%9r@^4%IYX9614_>}vS9$KDYop7Vu3YE#|K{DP|C1*<zx%$mF6eE@ot58t zulgMouI67Gnf~f&&W3rq|FvcBgw49A|M|}Yvm>WYb!vWontc1ivf~HOR8@sm7O|Vp z<$b@|`bhet4{JD!)9Sful?xU6<=Z=NYF9_e?RorMD*11i(8JgxYqzs!+6s4WUVF+| z`>UsEy_Qz|=?Ooh!akVadh>nWvj6+EYBD!*->ciRt4_^<|M%BPlE1vaz7D_l>U+ub z`6h4bY<H$-`^@()KY9MS!TFNuU*CrJGM;&JzW?c!`91%|KW|OmecJr?@p|`Ak0X+t z<ulUb3+3ED6(^V9o-zN^bCn%`j}|gal8sH9|D6A1|GEYD+w58UU)wHu_NUY8^Zkrn zMI29zZ64onyYu``c<)>mn`J*9%&|_sbyDiXQ6KG!MO$k6@^=)d$v!)E{fV^M13BTX z#($z&qd$~<em-NGa^3}vx6z!@e#U%X>N8pEkDb#`i$47N+HaR1L9;hmJc+yFzjo{C zMQ8p_&k6K;y)Syo>izqFvAi-}<{vf1TWsETjpy6%pIG!K!0)nTota(wzCY$hib^Y6 zc6@&lxVzge?6KDSo(tg{c2D#Dp*a2X$+|n4M#rwtS{t9$tz-Qr^PjZz>)9XdFaBU_ zS7zQ{SFh>+q`vaH{n2!ltW1{Yvp-l?tN3nf|4}35SZ${E|H-in+oh)8nH^{O?avM! z;}^4eygycW^~QedZ-075!ZO&{U+>oPjlc3m)@jIU?q6D)wkyQ^`?Y;1cZAq~zi$`j zot`Omo^74~v5(!~6({D!mP=NDaS2yF|L9yq-96qFkC*MQPxmibt8X8eE$_eZ&ndrD z+YN~>c0E>$H&2eA^Q_}YX50()llp!|OAcxjy?;{uw#H&=ab5MUMOXCS{62APj_J#@ z{qx`dI&~@Ljg9bpb#vSEr{-6#_SarC{~mwE8Dp!CNxvT+%s*}6l(p>r_mt<~r>4xU z%<VqE|No|$0=LhU|IR9|Z~XjzTjrmfZ3iR|pJ#h<ve82J!sc%_8fRoOY&9B91@|?5 zzOwxCh8OkzRsV#Ze*3!ij!L=Cesfp*A41!WpErN8$z>IduiF}SL0$ZFs_fcx^&hM3 z)+}~4x_127p$Ny<kJlF-yBmM4{z=bn*E6vXJ_db|%3>(p`Ct0{9HX}C9irUzOEsRU zi+$9&$mnhHKjNd?o0g0}5?QrQt-BaI?tc?IQ5gTG`*h3-bCFMNLW(XYXTRb&xOnrj zK#K{ky`Pr7wLTJ?l2N;Y!|>4kt(WeX9=-qd`u*ag_l?ir|9r#5!Tr!|_ctGc-kOR_ z)s+W)=oC-(DEhivv@?2V^qIR?AG7pWxQEvl+xa=ze2)8Q_a~9*-eV)i)25F~=l|wD zseSX*LG|BR4%Q1*P8kPxXPqtl>v+_D!u01cru7}4(+VG0+6L{6TO)Vk#EY9#cW*a3 z#$%gmeCEGipx@!=mA|WcrrPbQW?dYY&3$qEZV!jO&t|;3dzm+6-<4TDhaW$P>RIZR z{r=3sj}`Uj)pp#fyY|rX?*f}+0W$I5WQrpG^gN#Ra|ZLh;D0l07nhn&6MFmh`|`gw z!e8R=vHS?)J3j5o784n{Pb^)wOY{?NNG6|C2}|z!zUuk)(+{s~uKM7n-m&7*yu|w% z9C9zt&-DBE)L3Eq#HoMIsrc<ZS}td~JO8L8^Q8oahjQ+l?61_Xn}31beyzLz)%VRj zT065A?M=L3uq>FX?(yN5i#|TNVwrwt<_g>M+x_)?ej4sm+@ZaE!s$J8{FB3br}fTR zRK0xSM2&-W^S1VW|CV8S^4|Tu=d1L;pZ8l3+;+`!j-3CriJJ?**Il-rcD5ivHiqRp zYw+{L=H>sU94t0x*=P67@Ev!(;QlK$zYizhKPL8mzps^^=ESQaXAfKOe^Yzd)ZX6t z?Rdwtp!c26j2AsMT$FP9zVO;~m-+Mju0G#C`=v?n)GSWU_vh+Xn9ny2{B*fE^P@el z=f{n~<@YXro0{|F&$(Ccs??Z&{?y!?_B88g#in!dwS2a>w?1m${Hm`0(!N!Ty)IqJ z%&L9wddWTg-~CD6-k}nDy;u9zNE@xZe0-~~VE&V{*K<OCO0L|@XM5}2(q5n4$9sIA zs6FOA%YWQpPT~9I(d^6%A8TG*Y+|$U{h0;)>N7QdeLpkh&fe~@e4eRKgJ0j6X<^YP z<^21<hLNl6^ul~4F@94M1=#%z7A7VJ)7RcrlAbP*YzRM8NfB|ZJmh>F#HsR-^KmRe zS0*atn}ZK=1s?#z3A)nO0&!0aC+JFB3zSp2j1?@5;OEDH&s4HNKD^1zRKda+S>8;+ z0&%=G=w!L+jJC?c(;Ir_9hodlrx!Rg`ibJc-d4fDT+hT%!PwA3&(h2QbhoXkrJk{o zrKKh4+A%##v+4WARBWezz7IOcs#ybkC!-Lvg(>7X9*_l$lDe|sL+L;q@CCG>!+56e zc?dhw>B=J|=(%(nkCmW@m6|_Mf*w}NWMMY#u9EolHBXhGCzZZ>3Oj9u={fYYmCy)9 zh3TAfO5D@$+*2~09{yYjdc;cF3njPhRu7bPz{edH6lsc1*MFs?J{^3VWAQ7c?&%wB z<$I@3c&%hP{ofxA>FG~iD}j%5{QgGCeS6&#B{9b70q>M}rd!TX<DQ=WP6=|N-NJXU zLq)c}haD<n@Bw<Lh|otRx9N6uN_^XQy-<o{lmOrK1UZ(wIulEw6kEgDjwqeV2Q zulb}@4>`Z_&}Su!>0GtuGSl0>fC2;c{KnYnnO~LMx7)o{5@MYG>YEbx^yqg=paXs; znyE-m2AxD@VKM!pnTkELg@xJVjl~MnJ#Cb^r*rMq6rC=xM-g&79+QQ|^pBv+><;Wv zW}E(hgR1ECf9|T9)8E)C3r-KnHkXE+-J5Kq48E0w(E@bc)AsO>N{o!W;6vlVelapO zpI&9BEHfQ+XfLD1^n(Uk4vZGl7bYqxO@CphEIl1`9uDXdsKA>_7Sjz5DRNHdDOFdT zF8Ng5c)H&{O@ZlmFRSxR-=L!>I6ccrS#Yv{*QM#5_R50O6IA8p7%jlpI!)$($ys0G z!+&sEyyroQsP+c_+5mI;2Oh6O0!}+k<Nx>j)b2bkQIDjw^s?!9SLFHiUYzItK5vR{ z#l7ssGCq&rsC>}Avn5gKp_li5#hRxVBE?vXcl*e-9s8oJ?R{=>zrfr*(LdgK_J&s^ zT$~;JV9U;rcbDcd=cQ-wPh@ypd1h6Y_6z4__0!MoD`Wn^k^9@Nb;q~Ub`}3b=6AEs zQxLn-D<kT&ZSn)FV&<@84@36Yv<Dj+yo$F`y}osN{M_iPkz!X0V>-A39W_)-RHh^^ zJ6rtYY=OQ;(iG0d_#&tE9-TH1rXO>$6N(g$RG1lbcFL5WVZS5;-A+C7crsIkbE4^_ zN<WpaRUXRQ;#Tf1Wq7^l-Q}s9ixW5O@SXF*$~*VLz5?r8SGV4iFS|19Ft|VhUCepW zMqYIKD`#cy>7di3LBW3!bTx$gcO}{SH@yqg9OisyH?yB4v~vHhYbEE`G(Yx{xe*-y z-zreVHAv*^tWQt=?`HjV{{G%w^S8F#UVdKx|JSDdQv?p_E|tow|M`7-{a^d-|5a@E z9}C$z=WjRH5$S)Q_3QVXwEy?%`SkmL4DbB=b3ex4NBK_GqpW{lKArzE|9{m&uV9|f zrr*8l>$}z$KAV)6x$oKyx6JhJo!h2ZZ=V{cUTf&Qf9f|W_mf}Nixk(twH5#J#I&XG z@PxeeA&OsLu&hbn|M%fj^LmHpai5now$=Q8=x@TO*7@f=|NQuW^FDmw-!A{}v1;4( zIfvF<;rjdZe%_bqMnCl5mIl-(W&h?6?LKnd;lr7WT_OLx>+9F%F0uS%{c4iX(^8d1 zKC-|06+g>=%GT60F5Ti#b?wNNSsC}zx__QF{i@D-D&O9!E8SORW#*o9m!e;OJZ(DF z-sa_-;#u~u-xhn>W<Qp6d}W`R|5&GZ*^j4%)72lZdn+k#^Y`%OKpXAAy6<Jny(+IA z33jUpx_sI0>WTUvfBCh9*n;$5ntm<m-psa0&QoL(*H6>w^Bc`2>ep!<wTe%c)#3|U zepUYVThr~DpB^~)C>)WA%kC@glP(l&kv_TABrcP|<WlQh{fMNO6XicxD%x?k$e&dE zRo=8hGgZqf-g}LrPk-Gby9<-rPkf3mJ}=ZOrBPwqQnBDl|Ei<s74O9VyWef%*5fIE zDI_pZGUCmZyE`|`u;RSp@TUH>?|F$O=i4q_QmW*h5>-^epjgSgvwF@mJ=eC_<mMCd zB1__y8XYfKz@x|~<@o)6T2?jNPqXCSi!IDLCSOCe-zsnZY_fo<>0oJZ!s3J_b5$2d z-$<GybfKBo`E}I6wrJ<Q&QjWeS#PbLGZer4^pq);W34&Q!3V$R&6(Jz#l)L5J^8+t zs;bS)+LVw7`&n<7DJs9+^RE2JB%SJGw)1xWpW7~)`tP-JT;^p<yXhOx>ZsM1{WWvy zS#rO@v{|o<S6nK@=gb8;=`$BYbag)%ZTO;4;x%bohwG-AosL=BeaG|P^Vrw$8o2xv z>s6K9&3;jPWr(5lfxiu%Zn|qe-4beCnG;Z*s=y&Ezkl!k9UpgT$q269xLu>WN;`0V z!aSL2lR~biubd%aQx$Pb+A<;3z)!kr`rN;=5={Hzr)NLV3gw!6F)CxONc^6CX46kS z&@$J~_g-(>bR}_%Mbd6dJ!X$7okp>e)}76z+g`k$c~IA+TQEsQPs(JL;Jb_2(|^rT zaI}sn^E~3dTq^U$)X=Ftd7F1VE?Dze?#bkTw~~UtF5V=dt28a@$u3^ei!N4cuRYv< zEUf5)mD`(S*MELFyQlwbF_#gP-fwJIeO0YomoqCoUZdYScKYJE3KgdNYrM0RXK>b@ zstio#pHi|oz-hzB#s39_WvdvzPdRWw^vx<Ww;M)*zjiq&GOU&Qa^S)43#}&8TQ2A* zJC_|3QQ5p|d1&U-M@tG{PPy>PM_}&WRcY<_7EgR(nkX<e#qregYdxt4T0U@@T{)^U zU+iAuBzFF*mmYNNwb2fCkl~Puo4#$Hf=~Tw4W60T-Cl`{vRFhia;wh@Sv4U*$Rp6D zbkWN*%3NND*I(i{YRz=Nv@2SBW4Yj))GwOx!Z((vyZC<by6B^IRxY_~HQ&LF*Owh# zBlj%UGQ-|O(Id3%{cIk+!~!M`-9!e}yAP-K+*lKI`>5I8+NXRmvX;-=e9ozDdR}+% z<hKy+`h|zSxCO7-HF=>q_u|ETX@btJi%-d%;{R5vEUC`(H2d3&SM668{_wPCzb#<R z{b!1qqSYKBH=QfjBMtp8UR)m>>nt`)WO1km&%v(|Px-!lxxK-7!+Z93Ju+FV97<;1 ztcxwx;oY!wgN35tp=)~Dw*$XicyhsdaR}#<H3tP>&uw$5mlm9uq9*FWx8~+HBlh!8 z%{N4KvP7KN@UM)W$GR%p;MY{olg}3ZlInPynz?41-hwaP>Guvd?$0$}X}aK=X;e-> z{}-uS8x7iK%>1yWfn&a8ns9p6pL0Lv+?jXyuEDftho2Zud7{f>yOgyiexhi@39kty zv$ER!m>6B8bA#TV{FNy4;$m)d>OAlL2W)&J`gdD~?UH%%dt2iALkq7}Do&U0Fc+J? zX@P>H)m8)5%Z*J_D!-p8=y<c|OnKY!lnNH1T!YevuuF=S_R?$5Eis*J7+Se|hDzzK z9LpB<UruWtdj3BZx^MalCb>wN_e!(b&QA@t<KR&?_V7Kj(&@m3$!~4te$9ISfouB3 zr&{@p;nRDW<;2DAO|S~tcSw7})bp3`Tv~BxPyZ=T?)}`;cQMOZDeS72;XAL$6ZTL( zh`H(R-iT1sP5fPwDUB;6>RzawNw`1##51kf`X|w|CLj4U<>0bi(~C{4=7jClJF@$D zp~$2bXYQQCYS;A7_B6OG^1JPr!^h(KIJ-5pw#G|K<eN#^Ue~R&bG{wVe!Tbj6H$#h zsTa>2K0TkkZ*A<ZU3coX@$I>NA*{DtT1YBeJUeAN``gf)(Pt%|+-Z~E`+@ghZplOS z55Db5UDGn^FW;T_a6;wIIoXw;ebo*+RZqGvVrM)nE9`M`E|;YHo8ZWt=p`+iL{5o! zUwP=hym7K#%(U)Z8--jl8WWf0z4Kd^l5BE3l)XHvzcPbaPAQQ;ja@GFcWU(%-=jQb zUAqzz`lqR6G(?x)Ui`>PWzQBF_dDM*rmy!_j8)RFHu>PGSU>;Os=aSiCOmre`|h_X z?b}Z_*Eu-kR8MK&rlYQy+{T?zt01DYbkVg?HkH)ubJyQEr29zLNG)dH=j-;US%JOw z-kviBUoIX0nAG!Z+xh)}uD=y+syVhft=}s7%7@7neA^Tc{SAJ~<Iiz1A^yzEo}YI- zg9E#>F0SuBz2!|(%7#-vr@v*DGq$|06DF)%_phPR|4pn{<APNe?mE}RZ3{WbEcZr5 zcsZM9hl<}15j{PB_g9~uvRw?R`Sb0Z!Ay&-r>;*==rK2{FI+3Bx%NXL--`t6S&P2~ zzxUCyKJwVHbWW)J^9G-ne9x@UF;==+37(s;l60*i_J^@M^IyY+=EDX_M{h1v4_UX9 z?|Q%TB`dl8Y!S&Umv<^(V!omrbl51Sa*^7>3)NjW7rt*?>l}Y;>B)*iN+0ej?p?Y3 z^O5aej`P3g`5yA{d$L9ShieWAyu9tEXEY~&^=3L4xRi4_k5b<?Y0nc}%oo?V=G3y< zY46}^iDbK7&7&sa>BfI_#l_}OnVie+2@eBi*`79A*6d&MgMG5Z+?dM6E3%I@&hwV( z@#tK#XTj#5YR}xCBwWApO!fZCv*pJZ^mz9dZvFDZ^uR?9oqdMva(DJ8KGxd896cvZ z*V3;#`|W~D8_HOx?R+Ho^Nhu5A!frndbhS`S$H+`+?@B<@TdCpv{zd47Pq!<xvF^2 zb;^r{zxWqU{ib#^{)dlyNOt@DU5X#xZt1sRc^~6_Qs9pF*{s+o9}c@+8Ihvy8#B*! zPoJ<%A)V<v_w<@RbBX%BHNM?dbM5z@6T0sZZXfcEyKd6?gJv$9X1*%B8_p8f^PnVz zgY(Dy<%{o5+5B(q;;>$k*X~F8zHGVup|wm-KH}1YNT=h<rWu9h67_GLtS1R}%l*rq z<g;1ks??Je%N{sx>V2CicuDn4Ap8BYE2o!5HfwlV?{Hz2eY1RrChy7ZB{ub|?=<$M zu^nE>KDS_+s;#Jcc4<jq;KiyQYayP;-P>0$5E1#UH1*Bv*GJTE={P7Z4u1SN_wal6 zxH5xBho<}Yo4YEvsoO2s&n@>@B3-p0c-85{x0DTdTJFYKxm$DbcH8RYX*`@deGR9a zb^X6xEip&44?7ij$)>cNf6A-1^2^H733^lY7h1F|TX@l?<5uUJ3<itkZ#Ht290^#` z)vBzbq5IF`gHWj1qJy4uMfu#OyvsQ*z#IDM>4Hfm56k<NOA?E&vik(-X0b3dPL0~~ zmZ{5KZ_~;bzowcRF1J?E<9L=SbXfanhU4+ou`eCjx7XS3Nx2X^J(o*PoBiLm4bMT> z*w5#ZlVxn0zL!g`e)`ds3SMHLcC`pdmV60k@=(5U$(iW_@0FR{&zDaRc&DXN-^qMq zYU!QrCZ5iormoVN>>VAm7koPZz_hza`EbImX157nH%NOkZfrljbGt=Gv(n~Lfp^i1 zr?1}n;NI;=b$nZe9FOo7Bz}om`)7lw;Ek+DuBtUV98J%4dYjx37M}FeV3i4r#HX~3 zA9Fv3oVKy+U%Jm|^(OmbC#R2LJlncrT$@a;nmmkfn%wsK-&EHN%*$iT-<Rnq3zSIB zl2J^Km$@;UL$~>d&H83N(K^xV;=AT8_{tJ*Qa`<nM=oDU)H%W^@JYZi+ZW$&^FH>l zI<i++!mrBKnt6k{nN(!D$zHeVY@uqd+~@U;U;h05@bKJ^AE$?fss%Cs`NTIp;e(c) zhiTsmXBPwAjt)hc7O@AyKNghE<Y`P(?UOf1TC3Eq>m>bzvvz^ki^$f?eDj$6PnGvw zSgX7(%0|^Bv3KgP^ZL4zPsl!Ex$!}Ex*?yOc>NEfjyU(-aWUmQ;x%1*{dzAiS-d&c z_h^l~cY*05(GZu<y(ULgr*4qd__F(mUi_OX*)*rq0sD^3HeIvMQKa>0mXU<xgHZo3 zVm=9Lk{lJo)^5`O%rKclMQztYA(r?hQ8#Y6HvcG$n-u8$BJ)Hq+amMh!VBUPSGDzD zQ2uylXP`uV&36Mq4OQu*vwm^kIs75w@rvMy*9!DDZLM$ku)X6+@rJY3;a)j+Egf1b zR6aT~MV(rku;+o=t(BfvpTsRaTNxY6ZL7E>SpV13OQs3O61at4ZrSay{i8Uqbsy`O z6W89UlvOCS%}LPP@-WXuWOi4!i^YXwVOKhPt|rt!s6OyIWLntlS6TJC&u4sn^<haO z!yK`PKdx~+$ojfK_Uk@Rojb=$c`r?J7T$DA{oS_Cm75+O3(pMGuedHFcSJJx3Y%;X z_fF@#d~C`bt}(UOt|hz<@7$c8o@moGMSr^bIt9gg<&A7Soqjo%LK;Wjnf`n5xpNas z{&qhhaiL}F4@dr*v?1uS)x6W$haNqiUcP|;zL489lX}j~`hVB%71VZ3nt6Nr@?#4- zD$^hDd-$y|sw__==Ywk6){@1$v@;T?O}J6AP5<?)?W-?txNA1mtYpol@4~71qSM#E zv1B<W=XWgZyt!L_=_R{aOW#ZHW$u0XN%zjNM$MPEKF;X9bm1IZuTG|OX7sJcJYJSb zB9ZI+iljep&R+5H^s0{s%5LX>mcCZhR^O=1zf9!+pGm?>xuF-lm)6*C<LjHgcy4M| z#EBW&Vlv^`(}XuGTv_@3%)&E`X^k!tIS2YA=KI~U_FEp2%{jAqRe^7hviJ%6y-zx< zz25wDpCYk1CAa6$PxcKfHICi$|HrqyK5P5cFSi6=o&P7t;vf+9&{5`x5r2wYg5L49 z(>T|7a2U>?Wp{yzMakB}QH8H&`tHwK3hF_bs|7ikmTcL&*YJ|!a+eh)?R`5_wqAW< zaDAI|xqfV~*(~#8e_yIjXZoUL&-ib8ub`Y^{e#IG|F*MNZBR769bm>0qZycK!sp-8 zxG6B`RdSTi5xv<DHy)dpzw&axynE8&$InGRV_eC{d-_aXPgmNxCk*z}YG<}|Wrn9W z<X;VVJwG)4@rE|@Z=A~WUeB^+T36D&c;S!FwvFr(3NI8RUdYU>m+lr-h}Q~{Qpil( zH?Og{D5`$hTzloy+dnQ;zL~(Or_A)YM{BmxJB1>alL!93)%$MEl9nv{;myBnjp8@U zuIG2(^RRUYS{%CG=Aouzi(K}OjlxT8depA{l-|CCIr;aTx!k(nZR-p!2{JAW>6J@f zJp05t$K$_)Ei!LemCr4je!p>IzTRsF9=@V!C(Kv#v@KFuRljy?>rH{)+V7_n<V4nO zuMlYITfI+jarz{dlS&tkg*;}<NImVWY$x`ySw&GI@Y{Xn)kmksy+}E`wdi)z&PQsD zzmy+5kX|MCWL@zY@2>`*IoGMqH85U!Z%J%<K*K_2i&c_)PjSf=xmbIyd&Oy|%la|9 zaFW8$>v5)SAEO=_{Cl*&UL}?@SV`^Jl$&>F%#c{sXCc8=m%gytK5^PI3#r?_Yrkqf zNY&-v`BPlA$NhY)n)ki)GJCEk-TAn`$vYrkcSFLpo$7uq%z4sVZ<$=P-CRE@aK_X} zjlQN6KdyY(RQc@AS2m`1mEJoPcWlcFYijJy>`L2La%`XFRV8t`W$KsjJ}$1GAAOcH z*WpI(CdZ=@ea<%{3~ycixyM<F?b~$c8qUMlcWg|aB$G3DFSpOG%b%3fVs6d<;L>7a z@@`i<)9uoZt^4+Ltm;2|?%Fn4htGPx8j@>E-Sdw3O?LXBlbN{kx^;L3Cx_404_i~_ zbu|1IjLGHN+p_DqViBv$?`e-`wRQH0GSuJRC$=YL*&)N1bD2}Untz^ReE&iC<i}(C z3Kb+$wjJA|)1%cIyCP7U`{<UeTdeyE4tyyqJ}b_*jBP@N#df3Xp$Y88%a?7+$lvqM zV*L%Ksb6_xw2vM-vRv-B!l`ZFWh)kiy6j|%=szYiW9IIzYpXvTH0^nOZN?^F)swfD z3bh<r8(FU|8s$`bHZNA^P*m2XE%A|yB-2B$hJPtz7v>OZFa7EuVXL<{*6C5nPs<r| ztyg6k`{*p?JJ2E`zJlrc<ITIcvO87O9?Y62bUplO&!oG*jSqOAp2eE*tf=MIgsWR* zCoD{<*vKB_?aRi!R`XH=he~Oa<@BieDn4FQtqPAX*vM?eJyF(HYWKnFRmq>WPj?iR zbFF9DCwP3r#20otr%!wit-A2XmrZ_2(F-|I$=s}+Cr)s)cjZ}$W>j9D%*B2<Gf!Rr zZ{OCr>yr8{gL1#@@OzN3+t=akwM%6cVS9Y<p1*VSTjPl(t4_WMd)9eg&hK{oNp?}^ zGwSD@n*Z8&F}^cgC2D+q%a4C158Woto3$?cwsPkjL6yaOk1jP(y~wS?&dX<CAYtb6 z{hg2$3(uos9{!@6H@W2hNY%7YzxP9{SfEw##lq=1V#nsH?-f`7{?2=P;!iC}(N@z4 zf8%o>Hl#mav6}be0^?^|(iQ2`Z;8pNG1gDt_ESrP`SiN?(;xoSlBxgn&}quiqn3Bd z`Fwh1Bs!j}Se#d$Q~V%giFu0NEWJrh5Bdr+<BGH=Fy-A-JDg$N*Hrx~fmc8x@|EiD zwOdQqPT%3P%HiJ3%II?6LcK%N=YRFyH)Gb7=N%?%wA-4ld~We)*E3o_$He$Tn_q%_ zrnW-u*VSFho8pdfC(7OCV$|MIZ@nn4sP~-%%ku^I3?lv>u-JDoVgJR7lDC{0t9&E# zZ<z0Jzu9zQXTNgl{_6&Y*W8$kPBxWIwK`)a<=kJv&K|vkxzV)jZmqy(hI10y0<lf9 zGW=^J*qfrV*ZJI+*>p&T@4_M(nK#WcyIwr?o$9kwyf>^vT5S5MtuMIU-``%F!c?!k zsP+7$cDLsTb^PR*FDc1CIy_}_d^LBJgr3YP!4G#0GA0)}c&6pZ%4D?NS@J@0<^f5) zBfSgs&e<z2O#f{yb7J~pJ=d~sjg=C7Wt$789!{F-YE@y%5a=&0ppt0h@=8j8gKz4s zV-9ilZp97@L>?(x^a^e85DKbtKb8E@>g1MsZJ`VgWoM@Mr!o{D_l1cW2rY?`63;8# z!PWD3o0*WVZbtN-g6|o3lQI-)rzUxx?`gfn-exu1<)LhR)}BX!kB^nz4vGqR-1@uI zXuk<x(`<Hk)0=x_zloU_y-UnEP?Vx@`r+p`2fvrbJ&W!gojf}!TH^Rm>z-RPX8QmA z8KQiV&7<kZHqO9V%GW)XnY?}0Gtuw%tY0D0)e{?@1tvL`dqfrP5%Lo@>iNbrP0(Ls zzCpvSJ8u(n-|IirJ{?qbonsou-R->-xQvW8O`GocM@z%mzFNfCaLKt3rw&@?$u(tk zO|N{gdd=QfHXC{^e)>6IuT=0|W6-vsX~pLWD(+`p&M9ap+3=?->=JzzDN`+HRdmom zOn-XY4h5xp{>cIn!ji{TI0TOya`F|+>dV|;!=18fN88n4f02mOt_C`e|8KW^b1S|s z?4T3xtnHay=zU;=PtQybw<FSKD}pP6&lhWoKjgKw>2!!RmD+Z@jUnQNW`K;;R=a<* z#Wm&}`0cnrVQ-K{z{>n@!mj(BO{?C<_eC|$-4e9skht2E`ljN;-oa{@U0)?#J?8vO z=u)f0ZY9@UM-t0*ugezRXimMs<u>cYqLAw!eyz&w6Rw`UP@zy*CaAMKb?X25w$~Cw z`=TG6ej&pd*Zqe_Wy)9etmSv-t>I>U$May>dZr&MtLuX&Uz)H^$)AB|$2#2`8}>HM zid}H+q1WZ-3D$W`mT%6nMLbc_-KR7C(qAnNrkB0bJ(Ja3z4y+aVAN~+z<vL&q#Mi4 zHI9FIQlOk;5OC^<*55N4hfH~sQ_6noec8A1q6qgX$sQ$rv$V<l!WS27M*eisOFCqk zbB^H)e`IO%|7Cj)O@Fb_+^Rl%hm(X~)#){APn4Bav+wOunwr}0v6zF!?2TT;ihU}I zy?+<2V@=46`R$~U7a(3SdFqG9rALHJwma?@NJw_7J96aLdoA_k?il$zAJz7cM`tQM zZ{~YCb7%Du$9HR19{A1Vsq%lqFEjZZp08`;e(O&>m&;-HP(AF_6V0_51``4nPIvjQ zWy#nyz3#u3EX${bCO@ao|F0!izxj{E(~RW*W{JBl+Nez2enq|b1JBdHdR`ib8kH`7 zn{{m?lU#Vc)bkxLr+<7PVr<jHUVi6Ls?A(~{a<qZzuz9)9B^Ea@0QF)sSn1xb`=#J zQLf+o_2fd18r|-&h-fyA<85;^k}K{tU6bLNe(+`L$6#6Gqz8UK!c|QsxLWP@oODm) zw^oki<5e5~xy*dUxb5xIu7j_pGw*8g(MxY!WYH67etb$w=!=q9Uz?^o>`_px-;wmC zU-InzO@V&f+dR~_sW6<l!ti>lrHi!c<BJA`T`4if7N^AK>}AT_aO<OS)>mDNO;fM1 z^cIT0d9(U}vV^l9Pr{eIRxW$R6J_FgZCqM5zTSGTH)W^3_EVA7LihFWEfzE^u6bu* zb|Ktn&9CJ@*c97umc3JpVaq&adT8Am7Dk=?87A%8j30jpee}O^Ncj1}xViTuj<~G3 zB>nWZaPR&%dpJKPNpL@|Y2^F;<=J$ey$asq@8l+|dnB`hduyr&<ITit{+Y%p%Q_v( zr|0cen9ZjCdJV&O^Xawnays=~AGgYBvdn+VcxCTTi7v}n^GCK;(_i+9l_<HsS>u=U zWU^26dp=>K?>Da<l1h?Q4ZGaBVQu_|ZQEiDS<R!|<4W_ktULX3-P}!!O3LcZKE3Q+ zDVSV);<MtO%ISw}UMM`7l&X+&US7pI{o5bL&3R?Vjmr5y-nQ?au6W=!b617OB=g%% zlNe^);hH8IFPSNrCvb4tJ=vo-3(jWsxXh6>p7lH9Q)<im7i#_rOYeyWf10{T{2hPD z`uaPf(+ifF>#JOS8hRro_>0pSm77*=Wt+|}dil=A>QLu8&s3c$1qUB-efj^TX!_O+ zHLv>Gs+h#2HA?pdi+`UJm|0NN)lw(D+t}=JL4=dgVzq3izv|qX>#b#OBr2O)cHfPd zE|Bdr@tWO}SB(mH+Iwp@?aO=f&+UJIpr>ED?A2pjkPY{7-G|xIAO0%-nRV;Vg;<_C ze%<Bg*A@N05_Z*dLdc%=RzWe=+d_7RNLk(}tJlqcBka%6?ra(25$SE~rR*sCTFdeX zbEd`X$R&3oURQUCTB}Vl&T?3g@pg%K_o5yb?#R_zkwx>D<%EjfJfWQa;F)CW58;;1 zt@V#i-_<@kAxPszcu=KYZRq6JHzp_KwDE|yY0jQnG)1@KW6<+#W!JOjm1mqX&)O+J zxzRQ6v|N3I?bS17nkT#SHbgyHXl@`EurWo%JLg%*PrjR{Bo3@=YS#!;4_LF2De^(! zk==I>uYS7Z%?FW+tukWP-mKq6FUf9BJJtDHHYhIm-kqfpixWeO^9<UwjIEh}7@BWv zTeii16XT2GC*KR-Nc){U`KvVG`#Y(uWcArS#@?4JzT^aR*PrCQx$23Pjl$at&)#gX zPTu--v4WhdY?v`q@9G&Lt8+iN3H38Dg`K>0xaq;w#q)gSQiZHl^Z7HbboU>hKKFC2 zN2+POLB*Qxvy&FhVE%eSqv^Y_L++D*A=O;Z8qaNGe6hDIZ2y6TA12&tEb+Ay4E?uW z`rS1#@z4>?JL<b-h4p>opI+K>>QL^+M*n=H9R_wq-&WX7GBW<_R^o6%;_mTn<x5(R zt$$L%(_7;Ax~}eI=iIPT&tH2s9tyu5P~v<xW)t7r^=mvLxt%B5dc@x<;8->JMb7`L za$>8xF7@}mb+fmfFg-F`&7Env`}BFra=P_*+HaaQXbHtk4`VQA52;V;<XF)0NcDJ7 zK}T8a;wabYs~7(Xe8sIaSz>Ea|G|fj5x=d>o3mAKe$Q6uy6~M_tg+Vq$m-{8y9E6v z?ylc`_Eh4UT^UnXU0)-%-DrxU++4Mm&9f8dm(QFWdi`H!)`deq@+7YZgfJ$Z3sd;I z_j|HLYrXwFo`yFckM<NW?96jm<+1b!lc!wZwbM%+7Hu$;nyQ(eeRkK<1CFbDPktzH zzr<@-#Is=W)q|(b+-1G~;PcA_$3vUU{J(Q0MU?HceP>t{GxbTVHuudwQRXXaH!+m1 zTH|#!CGKrrb7g7X?9=>vZI3;W(ULCa6K!AV%z8qj)Suh0o};+*bH|aHwl{;OdnM`b z^O#Y)zV`P{SxxEBYBLf~8$^Ab^)scn`g3=O$@*jAnu~Vs-ZWLe*h2i2(;nud2F3Gr z&dgC?T~<7|Kz`b!4Rh4{FCUoPe7wEQvQ^kVW^>)+>p8c*U(|J(7c-xpy_2!<>9Q_% zzCHiVA9gNyH8t=HkNK_o*B?WZZ8hF?@kHqPvg<B?##q?S&DXrRvW@Y<-s^9#_{@<y zTU(gU!8SpAiT}f>t$YDq5?eA8FO;2G#`L_#<o?@b$HUHQ$xL6iCv?Y>T3)UkqZjXe zoBvjyjo`X_UcE^=_s8)s+|CD@W}d!#PUqo-t$_^EXW!aR-CVhIZ~N!c@a^^A3r@XT z%po;lozeO?^EZ9J@qSa>z2b;8%jPwfS`99~(QETqL`^-<Jh-sieeaQP8mDuXq~zD0 zesk-`zt-uuJRYBWestSO#jC#y1eka1O}=V%;G30m|GcIxe|5J61UeQo$u_VWJ`}#G z$u;qufr}__z>}SdHb+9VPk-x)npM;Jq$jH9<K=FiqY6_Vd!AUm;jzH8Sz-&SW-R}0 z?0nFfrzNfLEptHZnFULGD^m*Rhpt_dayI{8w&VS|#(XYTW!CDGk`|{ZN_<|x-onlM zG3Qa>yz^=YwKLD}Fx@Zt)N8uQQH2mGHY?TH63Lt2FPr&LdQF0jYPv*J6L+;t{5{F( zi;gOo)Hf+E-}hyOo;|agM(9c1tFO4M4ZkF$w{uyi^M1bZMknW%jP>`H)4gwQ&eCp} zx*=@$o2D+N)k#lZzK#=Lv-XzA!BUl&_jU_zT;*|R)~Wwlxa0P_);}(;0TXU9z2iyg zo52wDG0Mi-*4<7|k(v4BiN=H5M4p#AWVx+fJ4J41iAtz3lP+_%>m-eb|LmVNY+PdL z6dmn)+iqL*l5ZN5XH5>fsw<i@#j34$fz=I@%ZcU3eico7w`uw+E^Rf@JzAI7yq~pa z@9Eqv6ZB?$SC-oKH@1AbzJ{E*#r=>clO`xnT@W0xc-OYz`<F$Ve~3Q~cz@uAkX1vK z?y-GN&lU^vl`B1)vH6kwI*$wc=f!jVz1=bW)ATwGInDZ7Nekw4Md6hTJXIdgDs-Km zd_th~e&pL#mlg>dN-E5K{`vS<)<5sh#O^pW(LZ5X21`hZ_w3)&MV?M)o~@2!=9qI$ za@pndo!<ghvHzULtZn-z$>3B-xhzvc1n2WN*I43qUYq{?*n|MNJIl{bdfKV~G_&k@ ztEa-1C#!A$o&M7`UADe(zxmqb3TADS)pcfUSTtGWm~L)m)c1FZkM!;OJY{y6L{=Tu zS{c_ABlXy2qudpSMRWXTygY6mwj#`qhwE@KtA3=Hmh!@`AOml=i5k=0XIz?jl-u5` z*DCX}jNFuOuXh|MZ;Z6GTh-8P7C&3+kKT3X?QH7*CbX=T**PaRMZqX4eU12J+e9&q zz@~uaV?TB6RjpK$bIy9L<$aX&scz$$2R}|dEGTkLIvl*oL}@zHtw-q=GqR5#bmG2j zz3@)$f7LaMPh7paXy#r=p}zMA4_`KZ!^gX)Vpm1%=E;%^|E@aloBeBy{rr1zVb;^- zH<&BumGeKATCWqbH~OeMGrz&dcDuY*6_<*oG70&!zB3oHRUDgkz;TaWe$$tzf`egB zE8KX0v2dJw-rN#5ae{8(JMrZgqk|@NpFTTTw9!;*xyB)Dz27JORw{U{<5)GN_=I<` zYf-?1z@PhetD3+4SP&mKeZvNGDT8p4z$wq?@ywmQ<<p*PSGX?;eF(4U-nq!6n|;;f zvrpYGemTwe+V#@Dx~h*Eev>{vubcj=NKLE$H)r_{uJ(K0Po{CmxUSDxXD9j1Q?qJO z_oBZ+aT=4(x5@0V`ucL$w-n1mN7a<mA3xiCXRR0CrPWb#kABCfa+m6z*kz!-{~}|b zbbeHSlMJKn(wHlZrBB)KJPA|W?Z7)Bn_WY+uTs~x`<eNtUZ0=qd_89?J!~!zQe<qe zDZ78;VtqFIIxfcEl9$Tt^3S}t3tpS1zxSDTY`W(@`I>DT7G4!zx#p9zNaXsIwfD27 zmSoM=$i2s~Qbj@ehT+j$KbfBfu8aA=r(AV%SBtMEzh$D_jeU>T?EJmAi+8<T^^whf z^6AEhrmKJJT)*J!<dt^S7dob^Hh%F;S<&(NRCvwTuDkuy>n&&1EYQ{N{chiOL#cbt zrpJO$B$jT-TI+n%;N?;k_O)yK-us+=Wxipt^R}Cci}XH3{@Hj_GRG&eW25Wj-D{8g zn0<R5vvYB#z`v8Syz8TFryLLM%eLk|oq1LL#M0Y&Mt&6q-%{EHry8f28TUP8@RIYK z_ocI-P{6onihC4KkSl+%_SOeaQxo}FVwvVBp5Jv~kJ@wJb5Viuq4&z7XWmks!TbG| ztj0n|OLKmubs9XLs+Otow*&6oj8}E@Jh*N0<J<{lZ!|n>%Z2;G!@~LeBInv^{I-~0 zep*4fzR*!vyY-NTXV@FJPj>aeFQy!2dw294@0G0$&(Ho^*w7O188FSsC^2}+E)k{K zZj(N(6x}{yPw}NwA)H|XkHx}LX4yHe&rGvC;&aa=H@IlgqOB^PRaZA_PVJ4dm>v|e zv~%M^p<>IU7aE?V^i1-+HsQ*$_p|n7SgAVszq)r?RONO3+g*1IAJo13cBV=<_SCD# zE3y|Fe_f>WZ>Q15#xtrLPn}wSwDp<gd)*5^@?3Wx)itu;eLp&miSuR1Pr<MyoPvL~ zB<5s3+r%aEMU0_K-Ltv2$+DzUl2ctqW-G^plCw+F93Ah4v9a$jIhy9!aAjhLhTxJM zu>fC7&krI@sYkUkc<a@V_bk1vbz{MH&ajtza+)G%iHI+qklS=g^orfaL-RgG)GqpW zeN%6fO6?(!$x^JLkG6CuDOSF%pJ)=_%hbI0*M7C9N3Ok*TveR&?Eu>ui5n9lnWUp$ z?Ob2I^5ZpjV<rndy?JU38>Bu*N$>h&?e4it%q;2E|3iFF?>BlYZx{0^t-n4`=7##x zXqyYJJB3qoUdZi|{<L7_zvrh8Mg6{fI{%+Ue*M4q({C8ZgLczvKV(U+nZmBU<@KV! z`}P0({QtRrdI7ij4n2WJ@jRsEboW0@KVuonzK8u~o5sfTSArb8_k-8Gb$BSRPrqjW z=cQ`V%>BaUkB)5JS8tbRUsLz9dXmvw`8@kS$GLaAd{RlCVfW`DXyx0iYw=n|X1w30 zE7Uh~T`Bmo@n1mOpT^=v#{w_^^FHxMJf)~f`1$G3zaFor{x=esHK9=M@4IXD{|}$m zjyv&q`<jA-f4=G0?}?qT|Ibg>{Lg%5mtM&ChUWZX=AK{GbYvTA;BAiWFLjhV85w_U zFV<7u%2<DY>GATHA7iU(rptL(>14~PPpDYN89v+YeSA@?TV0{u>SK%-=9Dq5=TOjE zzU5HfoFh9uqTK2jHtAgqu1t|tzdR?l!K85G3JYtMLgS!!pE@h9U;Dv%h%q&;{@zF7 zhhisoa)(LJ+0WVOSf1MATleT+hS<ihJ3dIpvP(*D5Xw=g?>ZT=^@h@szel}%b~I#5 zo3E~T<>^uwJ7Z(wzvw9wGt$$aWP44tUVV6G&C+S{@1vFH6{<2u?pL|FY{Drn3D31j z%KP3o`A#mqwye1S<axUtkG$8-3BMKb<NwC%YwADiCF{-WQP+R^^KQ|qx5CSp$(#(> zto6=yji8Num|*{gt<Qeev-taeNdMZiz3}P>`Hv+L3jW8Nj!%2^qE6%7^x(Wt{}){P z^?lR(d0~>4z6o|OCm&k(h4bb908N!+o9pTpYM5<(t#Fm0%I*Jp`I?y?QCIs89{<tX zy#DjoHHNmylRve{+Wn}lI<zfIZU6qe>TfCyC(PI1+LSWKBjwezzuWz9{rYQN|2n54 zT1DCF-Qhh?rrG7r4*9lF{2^y@EhBsWgJ)tv-%r&yI{Q88u4xkA>M0ZTKH&dkNpJr& zpZ)){;!GPi?H2g|axV8(PQKUww|gztwOC{C-?r}b7s3B-lPYE=JpOgqx^vUDf6^kA z=IbxT{SQC0`qFOs$5+*V_#a=rn>+sS>TCaPzQ6OBtzLd{ey;tg6V)}7e$L*meEj_G zOMi0Of8Gs$%hP{<`~0-@>Qx4N%R^JQZOA=W|NHV<&h57&|Nj56czS}7vT1!%=IXt_ z4KshIEd85u>DsOjqL;3H{lECqwXSFP?IjoKKFgo7EwAU{+`A?#UvW*Jf2^n=<o8{3 zzKstf_n)k^E1UcOOUs=9UwZe-S9lkCu<cCE`2TM16P2>vMt{s#O_KQ)b*m!zMZB%c zxwx-WdwNw|O+T6bh}~v)G4b{GzS?}>KFj+3f&Csw<~-eGG(Ye2`E8%ooz{H&-u3op zRcwhG>%I-K3P&p2zL~z6nR&0czB;jPVag$A+3Bo5dN<Ghso3RRU-v(EbGG!C<Ce3J zeXoiXu@_HHuZ;OJW!L=^HzcPs-ri|&|Mf?O7hlz<MyWpdlve4TQ2&*|`^eX`#ZUK@ z=Wz$EZmqBRbkzLaZdOB8@vD#K-p<q9@kpG1;lH)J^H%=pdF#LH{j|2*OO|i=x%1my zBNdnQn$`dvVSm~Ai<Z<pzM;LbV8;u__jB)it@$Oa9XeGwJLXG6xz~HIIlp2i@|ydZ ztiBlX>;2XFpSGN9T5hKI=-Eu>?<aRU|8;vh?~2J2jz3zR0qpg1k|*MqKD*i})9gR1 z_Gs}jj$Qj*<$8brbX~Nq;laCLJ)5toHIM5qTGXFO&E4OxIq!Ps^9sMKuNLq7t!|xH z`Do$>*>~D28_XS^rAF31K6XKEQ&DW$_xv~M{LQ^D|Lpi9pZV#??JsftF3ThLNS%#; zIML(t`kTs%dw(1D9}$+n?_d9X;*HoJQvEGo{~wm?jQ#Tb`~O{r|4RPFul_Rg`isNr zll=eeKfmOhxY?HS--}PP|Bk=6vuW<c?3zzUp3kcPe|hbCm$Kf7lK7Z7|Jd*TyMC5P z|CuS%e$Hy^#y!`UW{16yKK<qP$((7g#83X|IXtg$L(z@L-{pB(D>wDmzuq$A;@5}u zk%ey8&l_o<WBC1Pi_POt=}oWG9~GrPshKe^?a3dVCnap>r=R@UV?F<8{ydKP{HNdZ z&y%iuU9z<!{DPiI{qqvb+W+Y@*RTCuKY#5~clAB`C;T?}PF}w2r};dkGL@HmC;We` zRV`V6R;yYvKIrCrpAY`aH@(-Z={*&9?EHo|K5PHiD^-4S-};o_&AUc>X7c>1{-3%* zduMk>U*Gih`1M=Xd%E68z1Vkd{fqM%_1X`2nTaSL4v)*OKflzrxBJ<N-?LurstrD7 zlXqXl=B<>{e$!n^KO46i+}^OD-eE^&!JR#f9okAaWA`w&b+g}$HP`6yJU{EV*Lqb3 z=ZUZM?lL%Ey?VF4I6-GxM4z^~!^NA=^6nV4Nt=J--&?3`-zRO(w9{KUZ1(O452eed zJFe+3%RX}Kk=~3Qj=Ohj^x2eUAH8@nZ%0Mf?NkYK)3V%SXBWn-IjHhJ+HA(3$J2aW zrzPyI-lEOc@mqQy_tg8%H9Jz6e>|MTd!XIh%+z#W`lWtvGlxRu)cRlEW(@LrHw`SZ z^q;HFK9$cAt9O%Ois!}pPpr~Em+wzd?$|gfG|gxE+rGznXJ0+svfDIIW%kW}!}qBV zPi&svzxZ)f8vD`jRa<u6Jbmr#!>9-G<%aKfXZ+BU+SlFopLNm0s@HngB=2n99pP>J z?ylejdA)mr5``OiCF8$6)o1!SsXoCf@1E<N*<nf3Uaq^xc&GgRkM`X)$M^qzYt8n? zZT9Mmdi#GKdpm2+>*cY_i<NJMzpJ?Mj!Q21=>3Dr3ZGiHmVLf@`N8_@A2^OUyLr5L z`u?HdnVEi0yMIpf_1k20>@08na_PJFe`9UJj|Ep=f2V%r>k<EZ@3zi=X1lN1xbC2K zrK#Vt{Z+F6U-uPldzbJ0=h<W#<Ic60mMd1s+hkT&9s0axUi#-xkJSy{f9tP5`20(% zby0hk)Y`gBFaFD(d->{rYx0)2TTXp_IM-~~-POgZ^-SBZn=4l`)_+{C{QUB<{Q-}< zO&TI=mNvFce&8s&N$b;L&))|=hwW7JR#?8gWv0opd8?Ps*`1N*Up?`o!l$j`LE9#u zyJOY!vfHZD{pks}!o3kEKPfc@R`c?&d~dgDL%Oy2b9b?CTi=}Dy<zRv_uRh|6YEch z{Naz@U%f(Vc}w`_^xmh6@gJpM*MH~tzxKW&=)upR%>l2<^?%;|7+-$!@Y*t+CHy*- z;orm~KJnZB-S;H-r1c}4+_#U5uh{uK|MyVn^YQd&%$p8me5g5Hw`+;rp7iMK{hyfh z63_mzKK?*#!_>d3VjH%8t7Wv;Nl-p_`Je6FuKTq!Ed0aoUKX^S%KH9_$X%<u&Y^k7 z>$5v6`Y)z7^qt@KU|n!vk;LBJS1yG9Z|Ip{(fYzW>euIO_Ih038tPI5FKlbyyFZ`D zPh`s%?=Gh7x4She1X$hX^q2q1cUf;P^=Ivg4%-Fu-QD&)Kce_t`kspI+>Z`^={6I( zjpZ&JmE?c%sE57e*T3jJzy3AOIm@`yg#E=OnFZeU#SMCAuU6)+JC|KtYG)Gu+!;bm z@0a?r_(wo+O@?0FZjtqS`>r=y)>kfmTAJB0!P~h)|7Au;!)8UMb8Q?uOhneVt6PbF zOx*XV)bDZWt;bW1W1P46=<zaIN;4Iiusq1%IB-#*!Q1(7RmGw`Z=_#MKP((8vTk9W zrOm~q^<VETZo4&&`N3m%-gR%<`=w%T^2?j<*d%X}Rj|}<&7~`bep`PqYxQdX=3Zg4 zZtHukv!P21kNk|UzLH?_!?a&2M!zmJdTC@*GyiYd+otNL&hOeFU-hdt@%Ev->u1dV zbN}sgYmPtkK4b0QQ`{Eydp92h#Z1A!cR3aN8a|h&H%DB2kbmT60`sq_sV;W~)#UAF z7o^s6N+zzYoi504bg1L=_Byjf=fBZ{tkn+tH)*_xmyh}q@a?%M>)+~(i^YK-bb~+I z`)I%T@9f;Y=CS?xNyq1Q{O9);&|{qr-gjqd3g35UZf0yaeYT6T^yK~LVcYJ)l`Krn z6bz8=rMECON8%ePSeSzM-6dI=S|Y^V3>7Sp@3VI^Qm`;XmN!<gFbD1UgYDBZQLr#a zmN!+fut1hKQ?Rg@-q@t)H2uIrIesP!%ju2+TEf%!xG4)xlvkL()>T<>x`3oE-}Hd% zN}khmJe0Yn{}RxOoZjpK+C1f>t~7nGhjRUNfo`?w(=T``L$9Xy@luwYZcwlAZo00w zvitT6vrR1-nJq#0&^IcGPVe?nhHOwf;iFtX{X#P1%<1=hl`SB*UQhB<mYCk4ukd|( zslT%O^qIRYdF#&@PZS7Za(r~5-Rn1Fg1%;u;WS0|fBVwRRf2RSv&+)oM3&v%qosBA z{F%Q7i&rG3#jan{n7K!iaZPLXdYN~|H@koKeb8=mvtB29{j|y9fR%YAm!=qgznr%G zrcO@zq-1XWzTbH&GvZ=zzO!DhyDmTK{~?B~w0V<LeVo$st8%~8M;kK~2X0%x<m~s) zo3_tVf1G{sK+TakcRB(OEs<ti78qU-bbejW(xtI8nZ5p<miM??_Gr1`2|k_MpZ((6 zUUZ!37cA^AVpa6p$-QWSi^$Usr}+V$8oLy{&UGa1Qq{b0{_oSr&mL#~?lI9{9?thg zZRcZ7ImVe!QYMLusI0Hs@$#Cx@{<%JHLjD38}<kpt5o`&*>FcgV#%sS9Ze<akAgq! z5$!v8c(2x~<i8JJC)n)L%sY0&?a`M6_Ure)a>+3-bKkq_+F$nHe>VJ>+{h|6{a1i8 z7r(KIA!3W4rQ!5Ic{4fC);lR?OGCryg8vlkm@Eya8=9&qGFnbQxJXrMy25*<Da@9J z#?uAoso6~z^isB&E<QzBV7mQA)eB6PhLaNobr~(EZ`76-n;!mAiEnzNxAJERLr_YC z?ZZQ|aQemv7LaX{AZs38GPh^6oGy6ZP-(i*R8X?Ake?2caMaYcfbYrEo9^$Y>@t1o z3}u1o8&;@VP2XT8KV$mlsmg+r6~yHjEvFlPF%X-6dVwlmz2}@GZ@Cl=g4itIG^bWK zTnURh{7B-s?UT3Z(Xs5t7LW8_s%r;bD?5HJga794*{S_<Zn;wqr|z@rEI72;tVevo zmM`X0_Z3O$oMyVSzWew}<Hu)SNh$p1xOjB8sF{D3-9zTn_vSb)KPzb#pDSNdzxA86 zx`|xTHIoGeJX7P?ep}W1a6}&3HkYgL?e*M*e@1rU-2p0RS4vxI$GlOv$os5k&AG#w z3+nimCuUsPU*UQsbISCCN8c2QZ~7cF#Wy5$>Xp99RVu0;TbJ;ye7Cmg$J+AxdCxU_ zKc{phCslg-P4t;L`Ll!HDru=sKgS&kHSRkU{N7ByDZZWW#n~T|3njmEo|0HyoLG^W zoS9V^ck4mz%Cc<}yS}qOUOQC{6#tBd(-Xvu#h5IOCJR2(WwJDyKJk#8WPR$++^@B^ zM|bi~NdEhu!Li{+XYJe?<|m9=8=D`LG+4anuZdAn4O*UcKBUrW?#8=?3Ev~Pn!AGb z<4yTy`}E}ha_%ql_wU^e+K=~o`t<*G2jjgs9!?A5-ERNy_v!ur&c5BxasK-Zt^Mi$ z7l}XO{r_|N{ku=(>;D`+y}nL7ul|RS{4(Lo9NXv3IP*UK-^_oX@9Vovx45e%TW<^6 zcURWGIOSJ(*UtOZ=UM06ah5PId0D33bmStZMEd@J51)qbXD$A2vvRTG{kk8vUz=T( z{(n9^efoZ7n?HZww*Rl`d^j(7#?+{V`~TeT{TIacf9YNJkHXQn>sS2p+QZ(I-uKPx z>HaU(xyolJ+B<mP)A&Bo!>II)eao5p6W@dCgVJ8U;C{KPbLEtbJ89iNmur6Q7C*J# z{&x3jwMhX|-y^HEZU31p{dAi<ZGCFp(YITdth=>C$m6g3Q?qkM>0S1B-xpnce{0>B z2cP(-@7+<g_|LQ2WnMe89t8>NX~cdCQU3pMeqDg^geuSPS1#+Glk%ua2|S_or23rk z_Gm7Z1!3v+mS+x1*dAGPth?^py-#bl`)VDvdcTp+lzrvpH~nwR&gXX7S_l|(7`9iR zEj(AKtlLzmynEWQxmFIgu{R!bdgs`FlCJTaah~b1`?k)1a}%<>W_F#c?lf(Ac`^K1 z<1!ncY4x)#y{}|1xbRirQKOK2XuSRI4;4TA#WQ<ECd(~ZxTrpSY4S$l-NlK9rA8|n zuS}mk&yeGM+odZ?)!b8}iYgiuDj6#)<{X3U!8;-^qOvY%X0k=VE&=wh3x1~?Z?$c< znGL@FTuiEJk=N@JZ)`xfpKn<wm?PA)WmC$AR#ml?47N8eY+c7<c1P+3U*;N@g||x2 zFh0BV^dzg7cvOA<i>8D9wie2=DomwGTz98QH~KnEdfAbX6XrhsOH{(Fdo1B%%4ZvH zD$Y7N_r&rX@gJv}@42%v{@1y(ty?1VY3Y9DWhpn6-+esur~F;ml#lE4KYDea`)F}M zj4fO2>&9oMd~8ANcO7)*9E)dvQTX7wN+P4$)eN<_&u+3^6p#9PyPm^vQa$rk9xF|= zm=(c>8=b0iHn<5#&U%oV@ao`;DJr=WyHYBPny-Y(<j=1)`135YLGje)3?0w=wjAqP zRwP|(JkB_|Co1B7wl~YNO^#1bIdG`$tNr%z(XZDY7K%~H?>)szv_0o1$jNM*<np>( zK#jFuZrV3Dz8RuDmz(0Oxp&l0pO~CzGHrre;Fi|{-MKxtrnWA(-7D{3;dwz$^5VrN zse5x){VU#_uHYd)>-*^{{g|UJVwMSyK2Nxma_yeWytO9z7d_`~pUulO)8(^5T2{R9 z!NW7Fjn2=zaK*)a(fi{Em^K)^Jlb}x!>8wjn|#kTr_W1%Tz|bc@k6aPn{Hjp6Q}z2 zn~ZKJdrTzeI{ZK5$+6^GQJS|)@s1L<?D@UAf|^X7n%a?3&#MwYZjCs}_G$Cd>r#rZ z45DN<-kmdzQRSqI<hq`zM-Ey=efe_cf|%4%4r8I|JW{<J#U=i_)55l%-l`JWY<x$- zLVNY;HD*)aMq0W&EcrBn^`YT6CiCN*%o*!b>$94*cr&ckV&5*eX!!2(G2q*$2a=bS zXRf+!eOa&b=L?sKyW(z!o=lj1SGGM_?z=+&m+EfcyZxu!wsb^hP0W<mTGm+;we;cq zV?jkHtlZXsHY8^4USs?qaLVqu-Dd)v78f~caEAtHr25E-N+qjgratCBmcIVhlVy`0 zlznY2+FyTJ*s6ppnWe$p$VJCiZs$UOb~zrW>M2`!Gv2LIP<*$w=Hqd-7Pt6o22RGl z@sdXuX*;PrjqRSr7x!Ya=el-{PdB10w8I`3E@1!NHu?2|4SYuhcCx%!u}(-@)qTlx zTMI7MPwdZf&ZLU(U6|MxD8s#B9``N7fE(wx9J9Ce&QqRJ&uQ~?&ytPSUi$(y6eIp0 zv_Iq0E`MN-ki@R0*t^F%BGkCnbBi!uSi{K9X78f+<YY)=ai4)EOWQf&Ne4W-csDa_ z2;EX`bZvon&T_3~NkU>ys_%PLJrYCxyEC3%Kl%8Q;=-FV6RfI3&-2|`Jn@BXBFEGm z$5YF%_hcSu`oL#)=V-l3zgQe-+vN324?4EmtPVOL!y)xf`HF2Acj#lm9m0)P7gq`& z{TY=K%ye^smrVHk>4FkPF832YU9mbIknzcNnZx9!aIbfB5Azpu&1sQ7B64h2@l2oA zJMZtzHm`Ef&Wx@zYgPPw$K&rwRz|<T1BX1-rg8{*v1xX#^fQ@L>Ec+w@^|Qu1pza{ zRF>Y2>fGC%sK401a@GO0ITK6{PF*xJX4c)~BI3LUH(pz|bdB7zP)iN@Cjv{fR)6=k znts8O(PbJ(!=!Z|wA^&UR=&NyZI5jsyPn&*jSDAi?tEKm^H8KZt0h3NYO!Y7UCj%# zTQ3H(ukKj5C@_`pDtq;=iM_(DpQhB??)o7h)iwW9@rKfkn-BVDaxYTWOgzN2_gr6P zmtWo74BnX;pQO$@1#v7(J|g?#>GnkN1be<atd>_o8eeYO@VD~XM$-e64n1q};c(ym zCdd7w^JHiF9wEVq$Yy28&Fn%aeX=IVL~Pbg<(sFSpAh27GUG(YKQrbw**j7^`|6D> zZ{7*@Z@dz>>{!-oPLX{TPi$p=+$<Ab#TXKvztLvj#Onda4oL{5DP3k#tVx{VJm=*{ z_Q%CV)qLf5Bj)jU9}n2Ho#RW0*oj)#G6p4U$3rH8ZT?KmF5J06?@#_P_>yotLGt;f z`3Z7rXO7>Mv5w{YvM2Y(?t%qY^IH^k&IA|LAG*2Vqi4jAq)8l(Up7s6QsEo5L2KCz z)#imcCQlPDW*kjE^_0c3cxh8X!SxfYF0Vy$GF}|wnecf+8*}SjCzlzGiHYL9f;%G) zt(&-D!Uprm%y+G-Gx<aootbTXIC0ZwuKSX5lOGD6*rIraG3sRdldm~jtR@F7OIY=( z$nfN=lE|WZ4*xGLE{7-oo4VR&?iH6af+sUq^-SEoc%Rz(tyUf;xf3cfq}Bg>?uvb| z#ixJsp`a=HtAD=`DxSOIoB!78!;E!%Sx)SEWZF`_=h~zTH&6RNxi{73%BHDG`@}PC zzb5QHkvQAN^e&tI5i?#n?dLTD5^iY|W_1MjHY{9ztJ>y^>Ai>ge7#<e^uKT52#z_n zh}$G>@>B;86%E<PoHMP%_>^L<h|b=aw@dno%hO9wdfg;UQzs`*Q?6HKX`cPm#kAF( zInMLyr&;kLe6lwTKbmVD?)&NKa`*QKSFQDdynO{<Ze-pQw^BKJ{L*cay(cS<zq;^S zG_r9`)x2lh+(aMNhWJMPaQ-l*dW}@#WPW#}6&`|H7H+KYjy1H1^}Xvjt1ZW0%P48* z^(BRMPHu7uy*F$H^CzU0hKDfKe>^N*vLo}-;l~~oe1RLf{!CyKnDg%FnpG2v1J)>T zvm`!QI9sFHc6aFg;H^IsbU0dD<^8N4PxR%R^JR{uh31ma#Zy)U?`v&4Ff)KB)M8HI zqF8}@Ya|X?zHFJy`#SienQ~K+6SL4&ZD%Jb1D3NQiZ2#~d^P0$TE0bZrJK|ggBA53 z4@GKLPCKTu(KdC%%J)x&dij<|t{49JurQ}p<>G~=8yh^ocq=O_bgsBuBruy<@nXgL zj#d5cCtDBAI<|8Aio(gg|8|(iRr|#@9*&%L#%9l_$_qDcwO*b2ZFA*=%WY=aHMb^Q zh}i9-{JZu<+}yoadmQz0cU)B8tGJ_A?-$G7mj(4c7lm|pSsTk3`A;v_%inu4B_hN3 zQ}-cpx8So<HS1gzle=qIb-nGF60ptbr>0WrkAo%!pIT3Q1)7&Nap-cKF*$ozb4pIn zvmF@*mq8cFe-PlV*0BDdaa#ZQVi~Qp6~R|Hn=7`cI5J;aWi2=LisHkiPc0txx$m}# z<@za9d314oV>wr4c=+Sg^hS~Eci#6cx7p(?_kodl<Kw`0x4P!I^hjzh_}bvHVG7r( z*RmZ`7F+t?Y}A`!^n=HZzoxxs3A>}&ubPUP6JIQCe;jNu>-N3>pZvF5^Ze{lPwn58 zaOFdA1>ZJ3rN6<c{QfK#1>(=VZ2EcUWbnm~tdr}#Pi=W~U86o>>R(I$JB@L5(ss>( z?Z0KW`+ck5QJXq5Klj~>kZGA+QVQFWSD!t&gxPrI@9Y_Cp7rKfb*f&ip0=V>&EEdN z0qykZK?*ChzI+gPKV3KcLj$||NtKn3d`dHg@3nSoU!J(jW~ZZx=zY822{WALL_K|Z zrdjTS!AVob#jOjHlcye-Q6IeIYpcYJwc!iB9KCp-Xp2k`XID~KbnF^K;?~kL$!%8V za@Xff+%9VOjZroyy7)@ntGTYJvn%eb?A!Y)S$=}*-Gw#B?G*Yw)DQlg>(V22o_qiE zj0N}Eay%s5&RE?3(sJ7L`m<jfU89cQUe0(;Vqr;M_ZNoJ?kgL5Lgwx8<oKdjZ+QEQ z?S`$Oo90>lXRyqZ{WQDEs=UU#{`Z6Chx4>P)$y>$NpY-Mn7FykG<8$Gr-I2UlZ#Uv z4+ZX;*t14Mpf~EsrSJ)xolZGSNiEoOJi%!~%BO%HDcg{v2hD0&#PpWlT%1#D^~Gg( zy+-HBlY8@pO3zwc$nI<o)SMV1USe|pXnjq;%$r%ac0HMStE#-@)Rr$V!oBn7vsp+r z9yNb<!1=d%&aAQo@5^gcmuJ2|D=Wa89hxv(TXLd)&t_difxB-X)vj(|Y;<D7+nf25 z_kWthbHj5|0_#OdnMtQUE}mI4lQ}|m)>WakiAU!7O$xm<Z|PFLuX>MM_`lY3tleUE z^4FniEAdBB)_=b6Hojj{dqk}wT}$<Ffxh|b(#+`xEG?w!pE#KoZnjWZaie%?`l4Nt zTO`6%V>f88P;`BHgMq<AJ1Zu#zG&LyMUQf13|k+zFMjZF@3iKf21}B<!vEae`c{1f z&$7>(6?CeyZ$(F6o41X5?)(SGTK}{N+%T=Md8mBYeNtiOrWqCIS1z*I@Os*Y&zn7t z8XdZ}e0gTj`oGJ6>wJ{0FZsA|Tl|OM8oq6ML1#kBU+r7;A&KSr;zJ$^|83^JS@z~@ zzWmm#r4jZV))!9a9roY!`Nx4NZRdon?s+w<mAikqJ}<@HEa~K7d*5l9)0)>f`ekv+ zDc!#DPE0ZOl+4!8x#4?rW}42Jw58ko$_2%`uINh}YEFMQf5cZ}WGumH`=h0Pv(D?4 z7OtxocXxMPOTIHT;YIu&TWK%Hje3`6*V@jlaG%YqkyDbjXK(J0#|KX9xyAg@*i#og zqje24r$ojI=4ler`6irRDJBz}+pnZObhSQZXHc+Y#f-AWUu8q(ST$cC)4X`dx}DW3 zXu<~h91re%)>nEt2fK1A9`XKae_+^GSTE!_D=1j*np|Vzf;ZnfEu#WgM9)bqjO8pp zS1|Q%?h@aIN$t$S?21>X#*|g4t!->ldwT9e)75H@YQ^HcizHs2G*h|!#{122E0KfT zWtW|GwNK5v;#s$=B}O&-uv-BaFV~^xr`V>3{0fnJ;{9}akc`vi3t4g@Z(aOM80G|D zix8;?-&p@pgVW2~o^OxK*4~T)q0Ng9uDCS!?TbYVwf4zenWXpUVc`@#AGO*8DOVST zF$hGgbdA<~Q1L{myX##1OyS~PzK@!c=Bb(P`6T80;)hIl)rGV1{QA;g0xGufgk_xU zZQMFdYSzwlz3+$Yg2i@;?tG?Wno#Mnv&3<!(Il68kGE}phW^jfxzpD%T+$YP8Tndp z(gCF!MF#(3ANJQV^PIIR#NVj>bNP8cx<F~=3RyGd#>T8$(Wws)gskea46HP@42Y|C zvSr=<hy7z{=%!a+FU&}PviV|Ep0zLA{I!)A=g0{?xxrR&g?IW~+rum8o(ufhw(#DH z;^{An4l_hQt*9?tFv+h+NB7X=?q$K^uXQU`Kj{Q|`wFHr+s}z}$eW(xv2bt7Ypt^< z&&hB$eHU_-j-AZ%Nu*~*%NE{cdM&~&;xb`}k`H_MIvTf!N$Ah`b5-z2+M8(yvL~}N zZA@995;Ud!zs_0C&QrQmA0KgCazad>Dfy?*&O6fu7d7<#^J1v1XSrSF!MLl@s_0=& zNQu*Araq^WK}V0CWoK{t&9lMBy-ejH=Vc`wZ!5)yy2qBQYI0Xf{5Zw>W|h^uNU0?Y z7tMOqyM@{1sBggU^bb<5mJ<^V);cPmsJYR*wBgp_sdu8Kwm5FQd5iP=nv<skbuGSc z+cMvK?Gb@OrWg_1@ap;-JskBirXQCG+1^>e_I!zI)SFJmlY1mXrMP%14Nd+WtXP#Q z*MB_d{hC#C&d=Eput&sst<q$Vj#+9#-Wit)V)t*7sCuyF)w`>Gxh!3N&XaXh)^syx z3olHaFz@-+i%XBKfAquYy6l#D6S|+Z7jKVx&!^Rtw9{OFHCOqPMIvv%{k-$BX;S^F zNFBS!u~VCb89kK^m1HNf=@-N+?b`atcqKcVpWM`CzclTV!)IJ*%G!1{U+T^>jkShX zy*)D+>Q|jATA|z7s$Q}Et61z~X02`aCW)K~mN*xmcGJ&-?X~F?)yXb=>35pz_TDwv zw#50)>86KIt`{3IWG644SL$}zHtE5_vW<=D^{zgyZ#6yTTtEH2wZ;78hs14OAHQ5# z?8P2c;W*c;_~G+Utb4LoCFL&`5s{k~nznsgphe@>j2oX!yCYt|+_W`5F749a_sZ?o zk8h`|r(br8cy8zL^}wg7T|7rKC$C`<zY_3*`I2z-ho+NGrdBoyEJ4+#(lZV+&-+ug zte}^F-p!VJ8MU_;tEE3_zGuGL^Zi84B;_9}W{Iv6AAi0Ryl3~5;a1w4S)WwycP%^Y zaAIQMKE<1PQBN9{O1iI|^~NpM<g&`M3?^^3$)@cFK__j(wpoiFeRHBaZMW#s`g}+0 z6?YzY+;SDU?9}n%kYWa7+(P!XrxQ3#v@`!W2xPa&Y-7otAYT8aan*u!QD5s4E-TIR zmX6!|Ze^XEa-qSr?A87~TYS{YJ%kbt^B>r<X5+_Id%C?8kFDMKEO~$90TU;=Egp|g zD%8oYtty;r81o@>m(8v<-j6p)-|jN*oAxkEMSDlbH0jJ0-dc(30WZosW9Qu{kxg?u z9bk84_SQA)4vMr+%`%d3t$z?&4&J6N<hU?wZIRw*hRG5tV!IXwvBbCNB)wha`sarJ z$pr#cQbmgzpPc>5@<7|?>xaN9m6_JpxtrzX)EJkh?2T~#&+^^C=Gu-|A!|%0b<4b! zSNNox^iwA1@i`aIwbtS*CiJP?^KkIqDf&hHmW#IO&RJ(dZ_T=Hy7hvv*JP<hn)Nf3 zPBofsTjjT8J=<^I`^<5>H{A)j{v%uUc+YC($!&ZewsIWbtj6GewRzjs-|IFMNL@Ge z2<G!Wku%@ow%Wo|ZPM~fBV#_Svb5>2y|seZN`k$peVHten_$<HUu)JLyttk#z5m>y z9paky3u|{*xn0~)Dpir-WgQVIyTO$2THeI1^{+OmtG%=oV_5k-I+2$}XzrCF6_1X~ z*?$g97f$8Amp4~OPsb;I_U11tiA$GlwVi&w;pldMyM}$0(+s$l|MZOb{ds%Q;V&Xf z4YsfM>2(hLeC}ZF;g^rMJi4QC<AL)Tsh4iP;TMkRC>FlR@xOL-`{Ilnd9&}Cm8{t= zuYT&LR^9%huxA1i=@ydFbMkvKE?LcL{oZTWaO}$$olD0WRY7~xzh1g<j<MG#(>XKp z)?Xei%OH`N>-~zPKQGQ+@$&SdiiF*7zklT|wp8AKU@CiX-2YFLgtc<7Uf`ZQZLys6 zVh1%I!vyzUfA#mWyMy0sZ8_r_dgItc<|pg*C!b#|TfeJ(%CF*m?5qMUVJQOa^Ug4v z^KY2;IOH@-*pikR<-Ye%Ffl3FTO3s3vyrM2k@Q`%VaA??liM6t9pHHUckV+&uJWgG z%tZ%z-U^++blXi(oaMyrYu}EYXrB|b@RF?6vrSjsE+($aZO_w_b$xx-`fpvW=Z5Of z)0mG1Uv1@I>wKoMzO?In{N|m{tbA>A{pRgoq4ROl=S_EH+%6s{nPTD1-E6#UPOs9I zoYS%uyBN52RAuJfIR7=QbkYQW9+Sd4t>*cw-du@x`+7=bv;C@sPVXre-(GJL_^|Nm zRQ45<Odl4_Yq3vaXX|%4xqt6Oc6Ou9yrInpTs*xN7gj1UP3fH!EPuH^NXhRePrvE8 z8g5_b%8GoSzR8={Fgx+_o<5P+6L+>|GV`a1Zz)2W%Y4r<++Vfu*!+o`>mm+ISG)E< zw@T}8(vE$!Lc6Zs{{bT_$1YAWtMF&{j|H*bn9enw&12Tg{`7?TbCzX3Kd$j9ch5@? z!w9ES9S1BH-&)pV+!5nwR8Y73bp21hM#~6xo89$N=VX?@{CabddJzAFI~iZK{VTi# z7ao`Ld&5#G?<oBHPjB?4zQUSwCtIieerGT8az#VHO1J*P3%*I$7d`%~G07zN?QTEI z)9(+QP@le)nT`FX_mjz?Y=;Adu3x)#D5K-}zMV!L)~%0q<ysazUUYrwcb!QJ+c~xv z)|>8NjI#W6p{rl@kHU0;9*x)U8?QdP7xyCN{MMq|LOUO+F#ZrM_`n&;Z}d9mbCB(s zs-|R5^)p^8)ibY4iX<d3M4K)SpLx)ETZa10(7OkhuT-ei-KXO5Z)<vQqRsRjJ^O#C zpA0`V!K1@4wZvRav2B+!Ut9D2n=kDAW~|lRcC4&EIJ=JPhspHzIe)r?jxGMJH(B?+ zxZb^N!*{>p4=!D?Ud+WH`@XRCA;#ssQMpmC=ULjH)HvjI^1!lL8b7WS9keNaSH;Bm ze9zK50#VUl!<rhKGrQ94N{;Qc{Hi1_w@m!<;m5`Aqt9~YJ6x$PayS~%=X^E7FzRaM zerGMVZ<C#iIO`7w-??Gv!Dp5x&oue{mQNj$?cdam1Qq$$?tZsWp-fh2?RuR>zmhi> zZ^@Ouu*XZ-%Q5@z)Y}`AmkU^W&x)A!^_*xV6H~Bmjm}JVr3W=ElYJLX5BP53qUNwE z-*R2zj2#=95^f)FntnFKLd~{#fmf!1yyXMYx<^HOHu}qOu+3guZ>r0!yr_eFYgY0? ziLkw8jr=kj_S}v5+}OO5RYmUH+B2mhHx8b;5+eGx_qptS?QIUBwanLjHX40gdE0Kq zrnj}?^E5g&+!<b9oWX3I9Ui!gOFrtbg<tQ=TOpg)#C9xD$?LV+c_HXkcH!$F!EZs6 z<9<(FI;$|OwDxFzxj~~qVMM(<zstqPpKdQz@moH>*>dONb!LZ`1kGab+3|=;rNG86 zd)0<%9%)P~Uuu@thJMqq+-uLgY0H~PhBRIGmAtOL){K%~ZerCBvR0l<SZL`gC(!uB zZ^N^o*OPlZS2_u&^GK;H2p_$;xKL`(aw|1^X?DH~<%~zSZiwS#Y^+^%X|eXwdX8-Y z&0B&dUz<C1)swpQwi03y=TB-qk8JpAv;TqN>0qg<C3E;HRNFIBiaY$jMhMR?{^|Qr zI+KUJ^WDKsO*a0Qny2L({ScVyT)ti-<MIjDs<<5iC8t*&I6XTq<c5S_v3ljp@-=UL zM61tqW-UHm$i#j-lPPQav~8z1KgxYo^^8wx8-Ive=-!^ZyEY$>9?pEOUAZ{P<HwQh z7ZU#V3pG^ttVnt?nPsI(y~BfztMX+#brfeb+&N#;l)NVOS3~+VBZCId<ffB}^=UoV zt}PV5B68L3xH#YO?n2q>&$p&ta9pu?jj{adHGI~#zFJdx-ql3*Z#(+^io(bA1!WDz zl5GBK4+#8Ry`a#OSM24R13NEWtMm9WO)6)9)}mH%_m(3SlC5%8C(;tn*!-;Ddt+z0 z|Dn4l4*9z+JpZ6q|E<cq#*=3jm&{$-^E&faRb=<qFUKU`eR~sAx>fOA$+3u3W_g`X zkG>suyq)jySZ2wF$CTZXId%QggeH!#Eg~m(FwSBRH@X`2^Mk3qhu(yHo|6L-kFr$y zotwLDlA}bHwiTZ%Z=Tzim&;fMnwN6)+h$80ao%u0_WZ>u=cHbJP%_$dxImG2gVL+j z8u#5Nr~EKHKl_fWGQXZnXw0O;wf7rWPGx5PI)~+X<&<K+H(g)aW_K@Jy+mQh;+R>> z?`SP?n6=&0{MNd~34XF`SecZ$W4mrgMIW#7Jl(?bZtl$OlNYYitgi|6bh)<t-=P`D zw|O1lI@gymEoQZKz(LCnX|~nxC9a!Gy%Cq{UuVkbyH)cu?`yW=DQh|AR?2Ap-rCl> zQB11CTWyQ-D}(3^9@|&4GC5EASgzeD{pxs@$s~D=Q;B9-fz_5QS&po=JIjAvn-Kb} zpdsw(gM|1e7mn)Zze+i^Gh<7=)2$6#Li$|oGr!o~^-?s@imK4B%qW#R^yrD9g6=0Z zJ15KETc<B*eRyDD4x>F!v$>}96p>@s4z{N4m@Og`#4%^0(;beCkAH=Os<zEP+*V_m zp}8sg$n37fWb^JYOP#QpOPbS}1<r0^JgDl^#<7;M`9Z)!Gq!hMlTFw~ycWte)vpg^ z5<BU{RsO_AY?<f6*ojWguO#(8tm_fudY6&LsO)?y|M3A`v+%~kd)KNK<#XSfW@cj( zwOvwb$3Cx(ORA44y<}!Ss}@>ud~($Kihw&e@}lpFT`753xM+=jZ})>|3j=+{^4s?= z@2&Z6V3TmuXu``6sm=n+KlChEQGW8tvKwOc$4dY4EjCMg7F&Pss>haw1^aRjO?h@g zM03irt8)xLWkz3~ll53f=z@)xPD1+{(d*iY=8DQ0`T>$BTR!nIFFBjTpIvR=8522e zySeKMmlykTr-TGdnD{mK>7;)$9!GDT{p#iyp*UwtUHUiOEpK%f_HL3;49Rn^X=N^+ z^VwFG{a5|b#S)#0CWq&C7vHg9`6x2~SY!XDZ>t_3FnsjHm^b!#qs_)c5?x%2`kW_O zXQ{p8X;MD)IDl<cwBWp>8;>u1tS52oQE>d7;%bo@achoiEJ!U1`>yfg^pT`F)dH7% zcM0VRBrxo_{PL^<%Qu%}h8#*q3VE6i%RFv<J-f8Y$MkwfRsE|@rtF;@ZJICYXJ5RR z@opD$$II*t)ok5NPL^q%hQ=pXR2*h1mCAo)GyPM_o`>z~h8o?A5_jiHG_=lRJGwCN z<;VMb93OJ;xi29SvtEQR<i**#MGve)CSU*ebcyN>P3@yvMTtt9D&~7kQw?n+W6#{G zxDn&Diz7ogXo<IM+4b-ByM+1DH}FIs^$^~!arNrneJjouCcW1d(aCdi()ze+&A0#E z$E6k>D)g?An5%s-d*b}Yo=yK)N~7Lt?h1HtkiqYlR>S;V-^_V6d0%FIVsU7H9o58p z+jzxI#;mvNOlr%vJyw};Sgyx)-;$&IPrt5xR@CdUPjxnX!o`n@Um8;HNM5LK-LBiL zuJh<uSbJXLwNQaa0=^UW?K9>vvWU@F40@Bq+;EkdIjF$1hfm^@JG&Z_*$Mw0%)M{b zo@}12*Uf2v^Ms)~`?58=BIf2e6u$Sfx!1-&OQ!aFwZDb))Vs$yS6+%>-uJy*^l;q$ zi87}rpYGjo;DF}j6<@d)Yg{+!nRxT*&iV_#kGTcwtVlEHs@`ZgYtKxMzGZh#sh0^d zpGz%fYp}nwO8SrS)4nZ+Clppc64=CLRQF5zs>D=P6^DoKA9|eTy(!rdwoZ8RvS86d zZMGoc`O7T>rujY!O0BUyUOHVz<IsdXyR@4gdgn)8b*T|qlCsx)J;%m3f|(+%2ij~| zxUcT7_w;zYXGJz+gw**x0$svaSZ}6?{@KwV(R45O!hDtuhJyB4Nq>u{>L+*m@T)JI zboj>upNW4R+drMKvAL8`el6g^ZzfNj{{mIf{AO%b-P!+D))h-P`9A3kHLCQ|j^a@X z%FxvdmGzF(3Dx*AEkQn0vu@kPnt6Oiz7MWuhorTs*PDGj_4f(0*yM!MUn+cj`yF@8 zj}i{$G+(=Mb46ob@Pmb^TpP|BUiH0sN9A6e)N)OS6LbASGTfYgU;e$&q_XJyvBcHp z+*Uj*-4kEzXtb&AP+l`<#s%SR{K>nlEB4vDS>C#_|LlxB6aJkiqF<bph*`Mjo~x#- zML^7!y=|pynvNe8@qcWc_ba%5L$~C;FYM`e4h7d+y`S!otS4HZbtL-lvlo-S1%E_{ zo!zjFDPSG1W#F+7mE5z6Ibzu2^}FZKnlX`~Txq}7(#D)imcEm|+zEepLc+cGtNOi_ zau06AdGM6&m$|SsrAU=q<Y-#YGRtK#VXVu7*ZWJvui1I;UPj9MNi%akx%Thb%pxLd z>0)fYSjPY1qTqKje%?08U+ViMb?<Kq+?U5Y)lbHgVZuVjYuUveW?lyuCr%PMX^~d2 zCwjwot|f|D$Iq{L5?zp_y^>Svaoxt^bxiUHC5jRl_P)QWIBPG*<BF^Y&Mq%@%e}tq zG41oFPxF#OU;S3CHc@ix`!0Ko?boW#tA9l1D?Bl}eJ)2Sb;2?k<u|Lm3_i4Z))!j{ z3G}N6{%=vW`DlBk`)98!&ylL?#WhunK2Dx1t~ie;Ik6^w!Qr_3bA2W~TDj+o+7u<v zw8pUWdl>&53H8=sea3VApXC#_HLMT%qBu=O4ov0id>mi%#6@rJDXEW%i}zT%1T$;O z`7gYaDy8^WlQ(mZ_GG~|HZ}@tlH^x(Z&_Ne&A9#Wn)#Q~PUr|X$}#!MxQcXWw^*Ds zQ06ySsV$$#e64!&sh6Gp-0MVGB{Lo_T()HA#3>V(vmZ;fYHD%r;;GcsY6wkV*CV*D z#p}oXM58J5g#z8|7VMm_p^<Crp^>B%a=>Lrqv<WitM}rhe}pOMA8~GUS>EPzd{wK4 zjCx_2w~|YHR?D?#jZCvQa)&M1b2E|m={KoGxhsl$r#1(K%*^Zi<G}msY@y<T)rQ&! z9?QP#w-eQrn7Gnt+Rc@kYb7d^RZl%*JvC#JPW_b~lh<#Ot2c~Qe`ISF{-RH;MB(Tg z9W}F0T8FRgKJ0R)cAM$OHW&BKyCs4-ul*yUz1OugNv~DbpC!Hab-}Le<!iL&o;~jt zcVAM9^ICh2U5ohppa^!^mfb0m95-LH-#j;SZ=J%L*>_i-IqdxB?fj*u4IaGZ?W*$F zbh~L1<BU68%S7cRGX*p21r9EoCwuf>!C9#ump78&6CP4r-n~$p@8Gppd)XsxSN=Ql zE9CxHXhd<}e&c!fc%w*OddG_Nbv4>^3RDis6|2};>F$|qo4mzyia67M?sU;2S)s($ z8Vy&chTcdD{^B{qGw-#;sg&8S>vw;C!J)p3ZR*B=L&9R=3;(}9-FR(Ez3kc6X;b5c z_j(xp{&i@9l-y*y)R+qo16~GqeRXJj_-t~`md6H9Ju<XjJ^Rr3N~Y}Xj+r|wt)6W> zVQhakW#aRn`%WyDd28WgSygL&SS8|Ut^1m{zuQi<%ngotv3(<ZvN2z~YE06V6u*pr zDT;6Roo<vh3!1$5MsKO+#$y7SUlrZ!`B@U>%syr9$$RsW@4x%{Cw}Q~uO8#7kK&KF z45`-Tlz!9t`ux<@nZ?fhoIh;0OtPE(<loA*S(6l2R>qqI#b|Gv5Tn<dle2r8`L|Qd z2c8D-i3VN^>fc`IDEnIrbe_bG*O7}r=Sg&kTC+{bztZ3s`09yw_u`&zu}zb-BH!87 z``+{rjXa@z|G-&guFvWm+}Zz+OrEWMv|wq#h2<?3dbJZzmcDT`Fg?sG-nMeq)S^An zAC7v<uJ0A$z5gUxOe_1G<iozTFSfqn-OxVks-Ei4MbeAJeqN9k;a}lm)TPQ-yvnBi z_9=-2tD5)&b<{pYC9`i*SlscxjQ{<#$(s*5Ke$_8<nks*^iJ@OcQb5*_wBf^_;lW< zYkEheN>@h}H5*PiGl%Cv|4vU6lcj$r@-m#CxW7O7{D-M?-o&%}zF)V_%x{yY{brNi z{&~5X4~v}pv}U%kFOiL!Bl|63&9<679sP^=7WX(k)>6EhCB18+igH6!XxBFb#fonk zX_KpGs`#C>X0Dg|`rz@$l;^+gS|ZN+OBh`{>gE~P)0mbba`3ybLhhZvD?f@HVwTNi zKCstlwf_R+J+oT{n)>ZL<}Y`9S$p-whJ;5VZzo^vYn{F<D>Lf7Qtrma>*b;`BJ$<m zR@hH6(*EnV#d(L}u726~9^AeACp|Vax%4yY`)AL6H!>%BANqWZt6o0$@M`I-X_HDb z_HR~B)#cgy#<3#vu%d$c)tmoT-qoGZb?Er9vc>E3U6hg@^-p{`dFiG(W=G2Zd5PZ) z{k++ua&u+dlBkXQ{q^FlI&*w(9g3EY%1ZZ`B-7tv)zQ3ta<EarXOBd~>F!*oza9;| zEwTOQuP_dsnP<dx*1hO_(p214f0#9d=g5{rn%_68-II?z5S8)vd(NgZ!;_+pcgrS! z`aHFAMlQ3$#0k5$h!+$&{8iu9!O&$9w@J6PCF8o~DwSO_vQOKC;ssidEa)<2o6VlM z_Vpc}zNsnauRDk?e9kS{Xlt*s`nlCE!F@{Q|I50k9==f;IO!GW=nCU0iE?w*Tk7}D zPV6t2oa~zY-^4s4v1VJ3rbuZ+#AZ>C+Vy{5xIJv&&h+5hk0eKnh8S}Nl_1T3tt#?? z*A6dnShT`WYO3P%jI%d_9td1LwxrrZ`K6WoPPPjtUj?LId)Jiw;iu1r2ZuJ9o&Um> z74faM`i$Yb9a<-shly<x)@I9yN@biC66s=EpAz@>T|=ee_QOxj@5t2_a8B*r+0u2` zWFb?^lwIwt)-5}C6&^V{)AnYFxY9=P|6Vg{&)5FmDXb~|S#d_9wn0>hZq24+wLe^) zW}QD6uK8%^?s9GUX9b#5T7R%~B~G)8oT2J3R_Z<1fd8~-#L3Cq4<Bf5?&s(A=2HJx zaQ0Vk{O0<%Itzbm-aNy*Cg&NO%GB9fb_EYU@8_J)vFe^AYr4h7xc=o*za0yOjS`lc z$ZnZ5i~R_Xcn+KUX&&YS-{Z=Ij6Yt@c-P79%+YYi`<G^n@@s~vEsoJ*Y;TX`XnCA- zKYcf^GUxglrNYc}(XL*%f&&t|9qaQY-`vkW67-_ZCh$&1{ayREco8PSGchmA!Z_R4 zv@+eu$a}l8X7=>x>L2^wy}Bm1Z`1DzR$h+PYqWnaUt{}i_Zt28mO7i~9$agg)o=uS zc16pqm@^M9w7c&;`c30@PRz-BzqZ}n`tc`s{?@`?>-XZfmD*R|Yj2h~@KRR!HAD1k z9$SmnjNjE63&UB@a@H3yh^e&ri!9f0u{$gfZgODa^R^F)%c5>>OApBWq@tIe(qq5( zL;#PHrCiINxH73jQJ0xw_)nMACu&r5G+xlzSj+ILTXM@D!+xE&#+O!kUHfxwzu1@E z#mgFZ^xgf|`DAP0CXSxc3(SjJ+bT>yYV@a1el&H9`<+?$yFTeC3&zCN?_Qy1F-5TF zr3|CPru+L-JN1>0Ee&|eGEK*POX|xBx~F}sI8)8@H$9on{?zKas&~!BQ;rM)TO#;x z&3rF9O*DC(gxGcErxuo*4JONNF3`|F@_s>Zo^W!`x4S0VHO?YE{wF2drcF2`cYHFx zTcLEE?LB#mpSz~lWFAjUUara;+FF0Yt9Y@t^OCnZ+8Yd>o_N0Cz+a8*irrsjYpw3T z|0CG>ujQd%?ZXx8Y?#?JLU%^5x*A%R^kU&TKGD*1QO`DBjl8nOvh*EiyR_wI({M)Z z#I<FStfH)8s;4fmueMFh4Gd;EKCxiW?}nu71~R-G{yyzLeAi6;lW@xeg{`bM5+`B| zC-2`SQ6G}E^vj8S_afB`MjOJO2&vBbe_X;~+Lyiy*RHM3&A+W1SUtt{?DVj!xuQ#^ z-)iq|kV%^LaszvEt*ZC;-8b6wcQalS=)akjobgCGZFZWU*JjUqnqPIE9)GqVQRbJ( z=d`{U{_@aSUt=cczb}&3U7~*GxghV|pX=J)b?qBZ-%R<IQN+b8C9p`M%D3ptp_82{ z=R@wODn@HLwr_Cr&0W5)U7PKs{;6g68VglQ7{2~AJtw+JuD4)`u;H;9?SB)yTK>HL zx#YzD-XCA;9!iCG-d%8Nu06A0jnNkIpNn)<jxJmBSo?_cwxX~_7gHwh+bw3%p}kAU zxh><@xfQFuxz&=49A-TKd;BZQr}t}OEg+|DFol#v&pvKl=IM3jS!_Qe%f4%p3onaL z=GkLjzwhzsK8yRauYu0an5*tHW5cS+BF8jye{Okq`0$eWJ+hN`6l8At+7-I4inA!A zN5AXq0x^N7HHUQU?KV1vR2pmW=!@2z3|eO-v~mT@<~tffPd{*YTWzj<*dNraraS9! z^QAgj{}0XyWqtfY9v7ZHU&dBH{WWiNv;Myc+|fIWEbDila=4SRao>zLteYKH3bja^ zoJ;>1yeK%YXKm!tt&TE2_u_SoE$;1<@$>V@sW_$EyTh9?_hY(6ME3E8PTZG`7oOQy zFLW_5rD*Gmv-bozuYZ4V__A?M8{58$T_v&k>c)=0BOBk#Un%~#XP^DrvaOL<q+K_K z&DK0{jrqE!U`XL1Maix1zi#@+9GBtu$XX^PzTf)C!$g_KQ#)6sudc{`!0YpCa^hZ5 z#!HjS_ZrkYDV&NGbeZyg!t`ZbcN`o0Pklc-ZO)eC?Y}=gT2(&h@I&SwJ0`pDIK;l{ zsZHrg-B*RCg4`Q+t?F1*^X}w@ovzyRug|J-h~oOkrEhp%qxVtctAx+L7r*!lIyYlo zZEfwx48Nks=N~%+Pl;YuW4*Cty&n6v)qnXyy4VW${`gt<;BWn;k}b(M9(iO5u=f6V zx8}~|j}{O6LLOcy?z|(^xcJ4yvqvW<uGhLK94qwJ|9!X1r<)U)#e>(MFZN%i9F%jZ zm@jYNiJPmQDA=xgs%UpUbd$$(&PevOr{)q5c70q{BJzamh30$Lw*ld`2R!pkH*sHK z+F91%RB-0`_VkOtdux<~=hbHiuk)Sw$x)@VfU(`?+l?Csw=#=6Iw;$IJaM%BXJ_t| ztxwh0{q(s0Q*A!KUG$9$k6b!J{|UHWQ;vN7U5ZUHmwD+~X$2RiJQnM=h?({Q@1E}B zzL%(?KXZDA=2K@s3HHACKd#;RySIy1zt8qj=<@!}k{3@4S3gzG_#3iHU(V!Ved<n! zUm`{^M}Dpeuldq-x!*t8q|!M$O=^8TPoaz0&r^Nd6|QTvx^CqQJ-noSlFXKAR(8gw ztK$#wwdHJdc8z_o_eb(Z;~P^B2?TemrAPNq%$ak(@><_A*B{HvOlt1FI{Vw=)W<vL z4i!axVW~{I&3lZKf1mBl#E_>vl4pBzEgI^J`c?RUx$LxPk#swytjoIcQTx=W4^LAA z`9)yIYp^|!JsTAoAG+`Dw!EzANoI4h%NI;xdwR#FW7i^sCt4>pU*Br`wC`_d))bMP z-$i?PFLlX24Z44~<?_^{rxt2<zjWS|U;W6s<6%_!9m#1=w6;r6P?Ddc{pqcn!p>@! zdalc9I;&J(OZPh*7oK%PQ{<?pQL_1@@Bd~yE!Q<G@Gr|-u#VFv|5!UyP@Sr4B-hCX z-;J+62^}>l(wy&B$bIs+UzDWQL9VPjhgSJq_P_AjbaPCS+I^GU;CC*r*`9hYubx>Z zAiecNtXJS%wPS5jXQqlcGZ(2RPnn&<>zP}1?MZ$2vS6(*E#Ky?6Nt<|e_2-c-Se#T ztFB+Vy!%(-71N86Re@^%W6U=?o>AR+`c!;3_u1@w)eBzUT~*e7JEg90|MtBsLYH2C zTD-<X-{s5Zgb%*P{+k^f<ryD*Rk@xpKY=fHUr&oH-?}Ikk9}#EHY|7mI)J18W!K>* zhSkcVfk_^g^*Rb(mYyF)xKdTMGI*_z_bfHmy0M_2^V;poqb!?EDr4t3^>KQI2UI4t z+dkb`q4Y2NrlX_KybG6?I66+X(w*etaqoA$(%JKljR)`jjc+bW%KpN0)o@!y0<#!T z&IzSPUfu6^F308V`Iz9yaQ)~}V-|+6<hWwz<@L|CJg*;eJ5&ER{>H;U)&-SMt~Kp^ zcj{#0-c@%VHR_$5tC8${{leV|>}S8)r;9zi^*+At>+Xu*hyU+6GVkXL6+6)ldUFzb zwto_6Et|XL|NE!&U)ulwE0p)J?Fy^bheL1s|Nr~6zP|Xk{-Mvj^(SkVzjFAda5q5p z+f&x#XY;<r|Npf6w(zIp_5$YhjXM?9UtascyzfW&B#yW1x>e`jS@Kk_&d$hi$6MCh z5<k{R*7GzTl0GMVY08Qnc9QEfdkQ8^4}N&KyyfBUhUU{HKf3H&YChB#PkUTgbK2-P zYx&M69odO5M1NRx^QhOimPGI}Da-BJk<-2TN=vlJrS)<QyO(PG@6J~~b^DX!k#qIt z0emYH_kPT`cz!gnYZL#Zr;0CkOgJbzZL9S+i8*`RH|`dk$j+zhG55_ogTq&L-q@SN z@XWyVmUjma-xMC%Pi!$#;;uJO7@XL0N8r=9gSx$6#rXd`K5E<ZK6v77sV|9&-Tong z`(GV&a-JK*Ih*<6HpR*JZkoK$6Er)@Sfunoe`0;hG4Z#vw@8)MBt5gP*&e~E@+ddN zo~hS7yX}c^?iQ(hrUzV7=1Ul!Px<ZTnerooJ6h<c_?!o-iq)4wPI}C`l==GAf%S|= zZrjCn^W~P>@7kx{Hu=Q6Q_u9aNNlcxWE^KHr%!9!Ntm#>rdn)_&dPV0{qEB=b- z9PZqZ>v2E#aDDmh4|mP}gx+j>ny28}_1;6}U(DTKqS2RHOk#MGmM*l@`@AzErdY<J zQmsyH`8mPks{6e6HiyaxTzq3K-_Ro(y<%(fn>1&(NybYj1wLW>d3ampgBAP#)jUvF zi+%G)`umqhWiuYG6twthy(j(j3Wg&ar@YviQt*IdU8%d_%Z>ZC*B|*<vC;fTLwv6D zN`uUnLnmg49A|aXzr^%!-g3h^7K;{k9Ij&VIF?>+b#&_O*!@rZ3?@$7n~-$3B$vU4 z*(~hXs@|2QCtov^JXW{$i?aFgf8)G0^|Pn{d@UbW_w{y%e(}k0rqgfR@9%d}`?fuX z)$G!NHtw4f<@fFRBkMZv@B4iF`ajRP?TUgnW((!n|GCZkW6y!htaYyGd-|^zG;;r~ z|Ml=`T;8YuFJAsK|N7<l?hb!f7mkwe2FH9qI+fY`8Ge#=|2ZLQt^KLL(SN+SKDsaU zwE54HU;2rcb@s*&uji}pyHVh3-j^}s&#UuO;-6oRsPj0KU#B*m*?blMk+S&QDeCq0 zZ!YwIoa#26`;WQ!k9>QxX(Eg6?SJI4=-jTJPp0mZuEol*Ro1K2Kf2m>`}St}jT5e~ zzOV5^t$VM{n;W+uCb`G_kX5>We%H0)gaZ3H-Mk$4+^u7B7I4n=d!EG1UG@3#CrhPw zO2_T@cJofSU#Mqhu<Y#~*<*`pbWi?KT9B~aQhav3;g1`i_)9lEJ^nD2`-zPC;%9Sg z?r$jO=ym@rvsVAy$uE1$_*M!}s9fha>Dd!GC-e3jy!|`R<;fh~e#{}?U7D+);#N)Z ztQxOFf4-l1<ni;v*W^o=v)Y%RHD5ll_{QGVXU{p+6m9)EqlEiy$=1e4o81oYzQyqH zklf+}3h#E?#pa%?_cq_Bf6LW>;_u~(6LOYztk?bj<=i&g*N@CpXVtc-zwJMK-ONun zX^UKB#>?M%jw?D(Hib@p-j}uaiSD1Rj++cB`Jc^tQy(Ss@2*dcx$yn7N8)GBtl&Et z-K(dPzfe}O^02Fk>#2ufGp;k8E9)_gb-2M)U*`F~B7S1>;qOB1?`7)WaZKJI+yD5! zp4@SN`Tob-TerKNVM@HeruEFR1+CYvO_Z(Oexb(T-jANS)r&t>wmeMw820q{hQpf! zD!a0r5{#pzlb*e3E=+i&AJzYQS5)=iPX~AGec-Z-)B2&c*d2r1w7UiC?0#PS-*(WV zZ2!MQiwj>r3g<cA`$At=&ivfIIEVUoE<dg+6&-&b&V6$Kqk#1@?(mlUe$vp!e{4Bt zXrYDuue2BUF8nDtvs<~q{c|+?UW=<s@8#&d{E$}Mxo6++TGa&JpT*HpjER-@b0QlG z4sI$=YfP*>pBH$(hOJ(1U(U1YEAFe$O=o4hbk$P0XYa?<M!VmedJayXTE9YH+nz5z ztX|={q@?L{*Pm^3kEhzq%1)~-jGOa%OYx666=zIKicHKedEc?|GdFoQYnP$ObJ6BK zwvjyl9-d75*Yqo5ceGbU&-QgX4)>l|#6}({*t@Dc)wrJF&&jE0KW%-d9xkRKv;Spm zWJ7*TBpZ8I1An;K2kG!>2Ui9<J(~aO)G7PD+S%vpt>)fxnfq<$x4HB3!hGkh^<MUE z-)A#NA3w8+J`1W3ZG5pgj$v2&vffE&6Qs|XUjM&k#`oP*f8?p|i|*X7r~Ogplbed; z9kUXir+3=>6!+fkI5z#FU})NYLD>i2_jgtox(IL7%3u1vH-qzNiMmyR>f&5i_H{`m z)fc5w*PYE+{KBk$aqa6o<69P`voBs#zunsx^XYZn_p+7)EG2#7x6e*iU;eAo-OBBs z#rt9jAA|deg0s4tCFf-S%l!Y?Lr>`0d^?e{_ZEiIrRFO0gzal)XWL)cUEiKpqoTxT zzE9jV;pEN#|7u+3cvign@SOYjKcz>zZ?*33dXx3P($K4Yon@Wwz53rDzk9e^Y2N$z zE<WnZ{zZweAD-{yC^vay@<d$d_vf{Xe_pvae{bjR!$InY=kM-5{rgPc@%fTJqi6j7 zdhBM|th*NR8DFnj#GmWCUzZpEe-qyWuYS7>Mx**y+WXUO*9Gy_7ilS(@7q)I!|<2X z%8rW7|0jjCxSx5KKIe_XsU6pOm(<t)Z~A5I^ut=A>4a46>~B6t3=Nxp6j?M*3d%aT zKr_Hp!{GED7S_o6ABvwiUMzf}k(%;Y{LtBlpPP#n6FM38WXC*CE-q#CQhBQ`WB!r% z^he+QkBaX<-dqvmtmMdAaX`55;=?8r8AYpUsy*RXC;C0TFzNL4r0g9}x@Fh@&HH<! zes_)Xt|$NB-2Ha2y!zrJf$w?$Z|s(AKmTU!$AjBXT)x1gv3I@M>nCRMd%JHRy0=GL z=vh8%$*<e<7G!b!e0QKP`oeelSI46sCm%h(_Uh_upRUU5{rvs)s{9f42mMb{J_*=g zIHnpteTm-v8S=t>@ooW@mU)MEK6ziHQCIx+SiapcxB8&cPdP7MHJtV;koBr7GycFh zX;!w^`PV#oF`Ue^XZx?qJKDIk&G~@;zPx?qTq{l{*{t<>zvZu^sQ>5O_M+fLw%ht# zK40F|seMx;=7a2{!hXT>e_y2T8T^=;8TD<M)Bi6fTg&$!HPQY2+hp&YWomQI8`oL7 z{r~Vd_V1ZLcmModT7TyL-G%?>{#>oOWM1n1nv$Yy!L?Jq2=ae&j%=J$ve_uGp0EAc zTI-sLIzRgAkMEc23;y)}??S)y$@?D3&s+26tIf(E1vBQWi9M_>X}emt>)rk{f<OBH zr#`N0J6d3>`|7IvqpR|I=@Gvl*hCuV_)k86e#5<U4BuyaTg5NktQX`zy`J+cH+SGV ztrEMLeZM=q=JhYnU;nFg>bu>quB%@@HvQ!(|Gb!(ZNH0ud@(*_T;<bUWqR0V^>g`S zqASmz+hFT!XMgxvu+fX@nUCujEB0MluzF^p;pcTG@7B-SH$QRu<wM&G{FW4%PFy$b z@bW3A{Lh1Q*dE>x{qM2#wCUU4XX);&zi?so#LoXeEPeOKRIkhV$of~iPVf4jxvMW( zNX8dG49Qy~q)}dUZGYH;Gxt-EFg%=A%lm8nw_WS3>aHHF|FNXFV5`Qz%g;rgeOmMO z>b&=&|L5QRynDg@b#wZ=>te0U!$1A^Iv@Y=?c%2ww%(r{zNBA@^YXztbx!Q|yXXJD z={3Rsb^RfB-3*@C@5|Qq&lm5PHQpaES37if%v1d?mw(&$cKAPk^soQNpQR69I_2(P zd8aN;Pdj#}{`Do#mf!#J`Iqx9u4VtuxJ+6XbM3VGo|*OU`Ry~Mvm>vvKb>o>WS13Q z{bOb7b1kkNUHk1NkJmS+rhotV`H|%3J8J)*JyVa<5&w87xxVNB>9kK>|EAXH{oL<i ze3ZL%_mcXf=SAnPer|6aH-GBw^q)Ju>|Mp9YIF|%PEYgte09<T<H_=;*I)gAn)Ul@ zb?tpGUrm~w*EyT_&z7HS66Z`+xqtR~`RAW+kAFXZqh^}6@}tH7KKHJk8Lw|Hz3z<P z-dmD?^6c#M?9Q^)-K((+-%$V0X!-T>&p*4(=THArbE_uq?5Wd9jrPXxKi?9HubMyo z+l$@be~O+-|CRH$W9IoyW=9{Vuim_G_WAeEJ}ZCPb4dT}^Ux(#Kil&Ywbz{vSSNEJ zKZ5!5-I{+opCj#}B~qSkzWSNtWclZxcWdfm-+#XR?6bJ!o_h27^*f(!uHE+P^qJ?* z8udwm7gHUNr>{P~?nR8~)0)?^yL$AQP99g^w!uy}y=L}b^(TLp$0mII_H%zv(i;Al zQ=X573Isb(UTb5WTKQjoSzpogiI%!zvX(}M@S{u2%ngirxl;2|@{_W7xh##0CT~2i z%w%pb-GE&wT-m}B`N$GO1q(~0E4|%~6f7()rw4YZ$?IDh7@(YCVrc+69R+qqiIIY( zA+o&j^n-#b!qX2-R(6{HaE+qK^rv%`1*a<nne$CwU@s>$eZ9K2{PYji3Lev~<|_+M z-#<k;Wcs)H$^w%gT$7sq!AD&Pbh?3~i36k2<VF*v>1+#?1*SWERp0`jQUW^i;NcEM zv*{1I)jmvrvPfBQ+D{D*$YCWv7AhMs8gKu2Q{SJF+0xix`ocy9(doyQC<{*4myy@4 zw=_0_c|$+lP{GpJ7>R4FU}<cE#5Yy2G=}?9Ki$w$!O|Fh;){N|k%FZ$JoNO_L8{?_ zr=M=7U}+3LwnabPLc!9+KtTt3T#SCYqk^RgD3ZV-sGshlU}=KnGB*WF6XVGbh25vi zxft+FcL-LOnXWa-Qf~U~d8VGzU(Z&SWi*+dI8ViDdhL8uMJ7v==@XSqMJI2llAfM0 zO^a`OMTok{^c{1QwWg;nRd$`6P`wPK#_+e5*mS97%7T;6>vK%^TBa;Ay<mZgD6^%B z`E*4_L*eOM%asME8~Dk|O~1NaS$w+uD~<WgmL?X{4cSdZr!QNsY&gAfwpKC7s0Z_v z#Tbnz7uM=BS(;9Fl(7<<UUyu5BZ%{UfwK7YBol2t5a%Gb$tq?`Q^V<n%jHFxER81% z)`N8@DjSMUUl1VIH$8f_GWT@LKsjDU%jpxRTk1{EU85{MeZx%a9A-;X<LQBOEJc_s zO&~{Im`>klt|mHNJHTM~^jm9{xu@@3qRhu+VmSGrzS#7G(=A1&$1xj6gX|4hsw~E6 zG8ufP$z(-IvB~v@kxZs$lOHOAOq-s#Sq|)sLN#5n>F<N&CNf)^nom}IC<^l1#nmda z7%eAXl+&Ajc!RRUbcbz<yxV^*SC(VsH3da5I3pQZ7);mSq^vq!;gqJ*^omW&_27%h zr%%|dY%%S>p1|~f>n(YwUtgu%I{n#ZW%213%oR>g|FT8d9b_Embcd_zEZZloQ8r|p zzGs^<7qgM2<@A%=lnp@_#!F3?+^*aSxiH>jhqA@=4Z_AU(>r!38%+9kfBNj5%I?$G z=bG?tf3ZQ?3VhxCMIj~8>DIfUNAi^Jh8@Y%u}9fr`iafTa?_{mRTiHPK9Z+opR&hv z`#L4A?QUC@%NQBWr|;dSEIwW9fHL%o__PDc&@19=4k}wr*Do}bncjFvSz`JE^ef_1 z4lBD)@7`v~wf)UbWedjXAC4&VFd9$)dqi1!`hi9Z@#+2Vl!TZpEv6?XD%peRi3c?m zr*jIba8H;1tRxCLtp<8gyrso-@a^pj%(VEXU)ZC3Wcpt*70Agn)0G8P1g9sc%FBUF zxM-&$zJ1R=<uFEG3sBAlM}@JG$@DI9703<oU{#=t=`AhHrZajfD^C9@t|A4F8;}&} zK6-HU966}GZ+f+~ioo=MZ1YRgXG*9DPHw1`W3-%FXeu`So|F>T_AQ5%Z5SCXrhh!5 zEI$3Wj0)FuFHboYM$5?`b;Y*(9#!7!&1gBDTTn%Ex`(`q0P@LD%9chT*Majkr@p(P zf~66>T;bGrH&U=PG6ff_^_E8P0)<oG4OAe(3k6PnHzNg0l%u1J6)aJXjxtfOL^(Rj zRKe05$s#v11xs^y8N{jYX0Bjq0hhP4<K>z@&rRQj+0w#tdZ9C;?{t1q75nXG!Yap^ zr~4?V2uv5as;@A8se%f)=niADw4A<CU0ZhghM8urjF!_E1}fTs#6YM2farxn#)?dq zmXj}D+rVf!z0p{~a(aS0<Gbm?sw#q@1Am}Jbh(NO_`sj(W%4TG+Yd;qSTizOPXCx= zB*tuLU@)CA!rUgz(7*s54xn<{(7*txbTl+kFf=fLhp>LSp(#iJ?lVx)Y-oU}p!Cz7 zLGosk9|}89_Y>Ee&um~|K3(vek>&Kgaw>{Uh6d9GUKtop7m!ym2fJaRor*rA!Q_WG zMJFdzFQ2|fTZMc2%W3kwEFgDGR;&@5UeKo_3MxFsr+ewBa7};x+JJj{r?Lvq^wYv- zD$|c@sz^+if35L`$-r>>!6hmZ(-(E?=uJPPr6MuCVZL%4v!Q|E^oFG>;*18<1$#8~ zrdR5yh)<tzLVX&ufuZqqMp-Q}MuX{r;;Q<L2Gb1#4aBF%%W9P|8yK2QPiWH-ojy%d zMR5B3?Q-29*G?9!*8|ye(OzC`Yn(L?Ba5Mdq3QGqKh(sS4GhhuH>#@I2pbq8)l?=X zh6;uT(+z}GO}E!8XbCV*m(Wm&XEL+|g^9)VjT$N{j7HNL7t3o+(^Q#0eV4w9z+?q+ zIc7rxqv;o0b;PC{yw_Vg{g;Uf&-B-#s(c_f3RvrbrNQO;PAQXh(_a~@@JwI1RGxRb zm63`N%(X_-8&|04PuDS35ue`hU5#)0d>xf%lHl9|&dWwdCWyw0p~3Wr)k@%Frj)0j zH&bZ@XXEKF%~dSHd6=z2iO<wrAzH!6&`819+*l!2!O&8{$U?!?!a%{uQo-0j!N}A| z!Nf=*TEX1dL?Kqe)L0=}!OX;Dx_yO`60?DV!Sn}j6*Q;+=~B|1ZfBt)Io-it?aXw4 zOBK)h(^)MBB5mL8T&G<=x}b26k7LVD(U>nzx$+K^ABU_kJaXpH_WU#X%P%w>nqFM@ z_mQDZ=yR{H(^~V>L`);Eef5%>b!@iak*HnYv>q5v-n&8j=WYop*%rN+^OKh@47w{J z!kYYW_iDduXL5=sBzyBa{>W0985eu=+2;`Jb@@^CmmTU)ZPL*2R$E!@UzPX8+gO0R zHYeIM{QcWKr8D>U^+yVK+ZNyG2)wjJ+HqN6I9Jz+wUb2s^QJOt{#<`f`N%E58q;Ij z-^Wyo91VQ=lHru?$1|7n*l#rlT@c*zT|{}h!t*FGujBweFPo(+o~~G`eqr(S*tMJD zkN=)&@jch3?Jg@@x=T)+LeYoWo=k!}(qv{A_<q>LbBeP_^W1#dhnsgjvZ&mY<(Tqw z&gmQPHw&33-<k1e|HJ2-eU^on{IC78V)~V$zYH@iR{o#-v07|8m$eGd<jnWH)0M4N zK!?VuPLH!zX`CKlt}=Uisf~*H^mE24a?|(Of^tBd=8x&~?NmIbPnfR5w>{8QMU8Q~ zzk>=Fvyp|x^cV*fwaE@&RHrX>fa%}wsA4`{$wEbLy1x@lzmc<w$M)%#DkY55XSt|w zO&7IR;h%mml2Ly8g!QV@Oa>;9`pD2=`ayj?B}T*Pg6GVoA*Z7m8koQ<BERW>Y*Y?S zpF0gw5nY`AdkUx+vr|!EG?{+UPDQT%AD8}ZSC(fpJvcNMb{<*8KlK}PhwT!NqY-U7 zKYrgbR+-qva%ty0YyM-7q5H4wnqT=L(f#IuGrQxoxi43275X8mw>M4c(W>d6y?#t} z&W?C+=B&|KgDbnFBLfTMYIa@D+{RshYxPH-^EwsVxpLO)|9QDPOU67rxh|2x_Va|P zs^Rq)cKWPeTba%Nfbo{u)}rTs_vFlZF8Fb)!~?-i3-X?<NHAK<a{Cqc2Bi}Jliic6 zz1X7uTAx2r`tFH;wxLzo#YBnLrOPwArz~+1y~wAz?8FqM$FhNKQ&c==9+;I~CU~#Q zw#qso#-lUVRG+I+#Ym_>WVVr;idxeV;UJ&3C5!xmJcWw0G#0gm$)BBkROMa1ok+1z z|C7ZpH!*i<KK02wF{fzRl^U;aHM`Gw9sU{rcKwms{!dwJqZRK--<f+qYW>5yt!Fa! zoZeqA`+5EJ#O0=9EQSUq#?wDoX^2fXo30`~UE!3b^7NAFuuR`GL&X|&lAPG|{rfEK zr*EC9A~jvXTJ`kweX~?Nx98bv$uUlMn4`ioeTJPD@ASwyDuUAkEH&hr3{0nQ)G`vE z{@X=Ggz?OD0aq1Krd7t%)m>GR8S|%iyQ+97eR=9%&sw<s#>&Nd`~H40f5pDp<=^w= z`SJfc3%<wStNUdiKmEDAR$%?%)q5>W1(z%<d%bd6$lv3pOZUrl*na-w@^)tMax*`k zlmA0kezpB7_viRuzxKN4MU$Ez%lGZIsGV3>Gk?VtKVKQvhXI!-E_?Hnzy7D^RfiRt zcbs_h_ochvQSNn$QoNV+X5$`KcOI>s%Y9|Hgw5?=wdY0pTGelV%vN*ReV={a_iDZ4 z3X|WpmAj8#a+S|H5yWA)E4pvr_it`NEKl94bhk*CHdI+{_|3|_#`Y2OJ?ks!O`nwS zy8P!0Fx4z|{jK}+P0aQe;maDA*@R5fJv)W<m1)3<UBz|IoqcQOzmMHf|MPzQ5<?*$ zEe~hc`Ci9sREvHes9CWjK(<rg{O(@iS>j&7_1#}|1F}v&;Olw9`XsMVYWD+4vtHAr z{lODfaIM^)=J2v9|4MV#X}7H1)|%3W$1@Hvs!3I?ntE+wT%|++<G~5LoIX5Suzad& zla7v|qh!Xxrgfof6Amq1a8IpQRex)kY;l8OsHUaEOQ)5ru@N6?`TV$}Mf<ESF1;tj z-RSD@D6{^v!kYA8{gYb{nC#^|cgAfN<K8CIxz>W^_xL_&^H=2xir&~Ha9b;9$<*tA zzRj4F*|+1U^5yuQ(Q(J@?H|n)o4eNHz#}Pdv9E^54f(j2@XczJu;|^-ccJ$1ch5sS zJX#lHw$4l!c8Slps(-f9{~NE%<(Erl6fE-ld4MT*<1r!MtM!*y{CR`<z0_GVyIoYg zPI3lC@3Wn@*Z5C>)Pm1JV!f;{ce6T94Ow;L)q&dPPWPj|@3*QlInP=UwAI1jnEkZ9 z^@e{<LnYMK9lQ5f=hfLGwM~@;5#B+u_m?CI733#ou6J#ZJZPc&Vy97acGg98x7wnG zs;;Z~HokCMA1hfg<MQwNx`V+DUruyvdld5V*o3e1C+}fh^vdOPUB>%H?b#m6);=|I zL9@=>l0LtA>N8!dlb_2bIVyw)>U7MEI_|Qe;K{r%d(}-$FAC=WzPN#b$EV70p`ntj zve8BB#g-RsJimRe(Uz#WeX5DgHt4Ct?Muu(lcY2Qtor^*Hirm!bxt%DJX`-TMDom5 z@oO$B97mR|xO&MdTzK>PA3jzSPA{9anSFJv_P(E=(w6Wj6dpTW;JQYI?b^jfmu#J) zGDK{zbjaIim?-&N)D@ZUbxrTNND6PCL36^I9=**sQm&<ECbv#J*(=^s9WQ)F<}l9! z)8*@UwagXX&M4XW?hQj6^H1lCpPJKs>c1{ob?@HHGRG_KOQlx6p6NT4W7Ew$h8E8X zOM{l&>(bAvO9@-#c_rv$%y%bO(}}*TOK)6?@G^_5?l09jdEYaqy^QV7q@eKPsghnR z!nHV3mvM0|{Bm$nkbAac)XX1qKgMk~v&`l+*!{|3=lzFGW^)foFg|D%5iIU^UzeGA zyxFln<LjnvjJ=_(M}F>{#{Vm#^}>tOQf?VbUTQC%QR4bRWlwV8<%7jri>EFYsFVxl zsy>!=$E-xT{$Yxh!5Zg_E&6;$t5zRzIVrHRkgw0F?@i-9?%+t*yo?!p#Sb$rIo?tx zrt!o*>al+6$($C0#$^)h=4tLH&5BO$yjp*O-!w3hz20Cc%dS-kp_?xrp8nD4HA5?- zNw&kmruT=$H>GSkU|6+6gemqZr{@CogKbd^5k|M}a%xZDz7{MQY{<c>H@WnfjLP;^ zZGoB3&Yye)IyFpkfmL?cX}&9q1@m<i4W^bjcI>{|lX;+L1Dn~IqYAFV>kSSz&CcAJ z(7)AYRe*ym$E*6hvrjF<m_wgF+#%d&6}VFP<c+8$!7?uw_=u!uPZxZ#$o>9;Pa)RT z(=$F*u4`0dT|ecHb#wkJ5eviXomyWkk6qa*X0$(9H|!<jS(V(6tGHsH>=b-;l!ehR z?!bXg^_f~KQ$!|-hstJHB!6xS`o8&s<2r-29#Q3*C$DRD*>1hHwBDrARYNhaNy}Av zrpf01gZ)-4$D^d%Hbl(`PhDOz!BJq-ntS<|b~c>jRM^wPEK<@MZkDu>E49w-XRfyS z1BDcM=_1SS7xR9zs^1T`ZQ;2t?Yr@%UtgSm&$c@eE@E0jQ>%h2BbIW%v=G#Y-t5XQ z8`S>D`ajQ}T@jHF+YKZG1?#6ooN=n1%KP~N?|-eUS5p?9OgG{7RM;^ubSI<kf3+N$ zH^1AY)!S!z1;n1t-G9#N8e2qA#M}v7iTTrebM?zI3|`C)T*VSqc2Mr~++8l*f*Y5x zhkCG`Db!76d#9YYAxl*(LFw@C*(^Fai^~o!(4I8$Z0uIk2{%q(k;sj8SlI1efA3J= z>1pOGuP(fHF<Pge|4)|JjBMXKJ}yxQTJm`|cVE`6OW#wTcmBaL>BFBAzv)c*qAO$j zlr<@S9xuarw+RBiriaxUnHII0t@yg-MZ^oYZ%wIlg7+S<@tM)T+0twmPe$hK4W<tR zviBP}d%UoI-m=N<vG9fuKNaMfPNXWG`#7uKBtg_C(3`t$!^J7>Zi_|xv;C}3Ow>+o zX<S{Ux5A|S;H+JGJ`9rl3nc?i_=a!_Uzm2=HQ7aN+JxP!6sB(wi_FaHw3IXxS<^Fl zQ>%08@rV12?^qo^J29(yHM7ZN-jlB*wRf_wojGUanbWT7YlBlyD%u2aer&V;tDUAP z8{+!qS^de3Q#})RF5U(`IZU8JLs<Q{=dQU4TS~e&ADA><e|7chN5yYfeDhygeTc7Y zuf>Tyk3@G=@3|&)`Q|D9lzU5Wglt}_vQ6C6_G`kd6M3s_Lho|#>(0xv2|M;f;lkDv z3Z@TtYc;mMOUf?{KVGq0T1Bg4Z_M2lGyWK*&0TExx?YDR$hF~up`5_Z<cABoCeKQ` z`#kbJi)DbNO64LsFJI1YdrveSid)-sQ#-<W=BhIrH?x^+>}{U9`0yb?R_oBSObfkF zCmd=z-PM`J(a&ZxdBst~{U>B^ZODD(AJQiKd9s%2{lj7>_qd5l9J-gZyGlM|vVeSX z{<VzIW7bja`_6aNbGc0Yd||oSse<==y)GSi-_#ya8^%97$KsKrTgL*EuSdOCbRB%5 zmBn|-B&BwepkTKt``6FRN}m`uAAi>w(QLAM^`b`|`PUX4oUU?Lx33{xnDKN6|4QbA z597|PdSl6Ul*z~;q{pH}Ffk%^`HS08*J~nFJb0P!_mmv7T`eQ=(y)G0@g$FD)!uQ- zYYJKWj2B91ZI^r;Qr=W;T*HyPMA*-2P1#ZJ?**qgOF2UNIXFEXgiR*3FKC{0^_b6< z`(dkEq%s3y79SIKU%Eu6*E6B^R6^kG(=1ZFew*XeAKiU)gNsvXA?LnC!S~bM+#Heu zmp(lp&fK*4-?WFJ`K~8h4$V4NztDVr-DRo2W!ihbz1hUnY|J|^vf{{Rg^fG8Rw}>Q z{;ZK#dR=7l;kK4vF-N6m-f#Y%^`<vXEagy}@ZJ-=2bYFUR6pU{n%Ffh<Ko<jiQ<*J z-V|4!@>MzNlszd{WS^l_QONUR9WKG>H?gicRZChniFJwhUwI&X@xVzjKV_HL8yxjY zCI<~K8<eYtZ!(bjyP~=CTCQAF!|aS3zBd}HBkOL;r-mCk&DrB8@nf+j$18!bx&KzQ z@NxR9{(83DK5A)+SBm$Mhy7OfG@r!Aex2US78H}b|ML7zA4)16*hP+fao?GJxLC-{ zt);<@@nM3O<kr6Y13}-O<(y?RId`S0JiX*_{qoZuMGsOIpWiiIurW^SjsCd|o#Owe zr|Fq%e0ukNmTuOZi>>d^7=L)BbjUvP+lLlG)_<<=kIn3#sw4V!1>65sEk2k3^vHzW zoWFUh^o39Phjtrh73_W-=K0@z^Lm}nYrnjld&<Z+j`_y6+^v!`QWmhA){CpHu2h`s zm&5r}>}d9)`jh8bC4QW`xby+XDXzP^M}DUs7P<4_n4=MA)`UinS1sia|8$hJXsN1q zEc=su)B5m}M^AK?D)aAhK78alLyuTfS8pg&Ezi7b;z|pq&srK*6tqb>T5(~Op@NJ} zRt~SgH1DG}X)B5z*PW648TBw%{=$Lm?7mz4Ta8v<Q<E!Sm9)OT>Nb0dUpUA8ZTu&c zgE|Y#)CCtG`+Vq~rQU@+W-%5X+q65kzO<aYdi>e1ZLYI!CucU?tmc?|Q|Ye5U8UFv z7Y+Y2Di&4lIk~^`Zru2?G<4P+bsr{gzMH<LZ>;yNv=iH79OLYEr$6zyH*@1n(VS}= zmXvJM=WKCVsx;|Rhh@}y^?FrpCYQy}Hhxh(vPQs2ATjgJdqar_D!O$VZoPSnk{+1W zu&DVhow<0=uPrA#%j$(E9aaDQ_tA>XV+~<mJUu?03pOoS{8KNjIwj%ql_{#;SElS< z8|>}1y>9A<2&n{Z7PZ?m7|mbK|1fC_uk@sCQAU%#-MizsG;a;pnqpO@PrZfL>Q%X2 z%2!9+&w8lAuT)aK<@S^KN<XVNDxI5|-t(||ru{Em2|irx)G1Y|!yUGB6;?md^7fYf z6nms2FYCX+tjyd=Ut7PI9NA*_BTt%XzGHR2?}t-cmv9`lJ+mfg>CuKKi@T>z-6$$u zwO=Aqa`(EO&&|&2Sm-&_K6f!S+<ZgvME#B8rABdQb)tASht1ufy+Y4*75KohRq}!L zM$?)XCFSJU9X(|3eDF}QE_>lR&toF%e{9aa>=z(clAPWc`6V<y-Z$>{F5ZkcEXH~% z>K4bB9sJw0okQC5*wPb8NxI8>z8qK;edyRZCBg23X#J&`LH&Q1NBjSiExE98SNw;$ zwbN(Mv``a{uSoycrpY@~b&G9Lvs!uU=WxC0S7urS*53{d<mxJ&xNptkk_WQ6VGAx? zT=?PJw?prx=cO4vIuQNn>+Cx^F0vg59b)q?9Jx`k*mHu-;zk~u7BgY}TXEkS8<ky- zmWoH+pZIj5z$QHzA>Td4GZd6L8Gj$^GWi&`;N2m$H7B_F_c+#z-}!y*o0q_{D-(`q z^*dajP*$zj7bfzmUd%nhC;U#Ya!h8KbfWNrl!p#S8$Byort`{qW+^OiTp3+)=+)g8 z8*$6{z$qo^vO<~PShpqfay@6={ZeoF!_@LuD%1V+(mHQ#5PB2DZuzj*r8&rBYqo5P z_fc;xzJ&`j&G<K!*|1A7eACO;5t6+qx-#j32Pc=aotaJL)!vK^^}-vK4xYI5Hud!* zr>V6USE|YWxckT>_C?HBw#i|iXE8b?EEBt4#CTX)Ei$C!->Eq-?&b)ot9%wY`Ecs_ z45#0#<1-zN>ve5PF2p_zQ}S4-dfj?jRMv{)QkHkQfBOW!I@@9Dev+}<_tH{fqp5-_ zP8rujKUHc?_m$bn<T1abB|W^pUw}pInK$bOlW6k|=bqkEX)ZsI_NaWxf7>QmN7uI> zf`lYiEZQ3?WahJT)r`ccqLX=_Zaw~V?#9D)0@0zCtHbzvD_v})*B&)GoU-9&SL)e3 z#m4@njPCaeW?eL%b8F?Bss0j=dTq)->Z$W=Ncko%ZS>OR<Rzs$mYG%|7w-v$E7hMC z+Ii(kq1c7P4_S|tb+$jb<-JAk@|-n36BT~wP1qi2>Y=c7fy>dQx&fu<-YTp~FlUkz zcFW+JbkpQ;#etOdX6jbS+gPHySp>v9xu-aEUCKLsX^z19n${v7>lIp;jxKI8%UL!f z&zW<gvwOX2gHF>*TNTFIMysMceJ!Jfj*P+e&Rvs^9zAQ#-1LjXpfos_+evs?tMsfb z&5U1rpRc%Nx^vTk^>YraTa<k2l7eY!sCf3090jAiIj{D!_6JT8mgHV$y25fM|K^Pk zCRAHARXaDSX;?*DC!W%)n;9j1ZZGf4=ONmGE;0<_j{TLj_pkL7yfOW_M96Z^0;}gL zs<Ym7GS+wQk(|mU#8YV)^JDJE3BmWfeox8QStWD+%>~dgU~6o`1s|A}vP`@1<WT9~ zu0<~zFR!u=x4tImVO8q7ZNf%9vo*dg%iN0Oj=N3Q+TZh-JGA^lmV?eL?&G_P_G)Jd zik$wtY15_vcO|cTd2g@xsV@ony5*1Yy--gJL4hm6i&xp!A9}#~tlNEiTfN%P0|!nn zx)fmlGd+h(c-DloX1{!!qeYgQszvL0${x^<jAV=TPI|-{cfG26-ABf$Tki>pp9so0 z7MFIfOoHvP@e);GceCU>O=WxM8f;rKcmC-^hfc10p1^SJn3L`5p0?S?4>-T6VLaQV zBN)3>rQ*rSZ`!rBo?Z3)n?olp-z^t<>%tN4tm{_n`}E@vtZvhKX6EJeC{Zf2ELpmh zIbw0&)|#&>w|33Wc)MNS_Qk*NVu#=U+nDn_V^;CwJM39^H&{$t*ZOFS=M^sYkO?oE zS6Od+z&g2gRcOS4f+f$gt{F5->--E<E9~Pxb*76)?d`>K;Z2I~d9QYqch}cUI($>X zEYXu=<HvW;<h<`SPJ6ey&F18`MK3QrC~{en@3CdJm}SDk-_tg;?Vc!pwp6Ilq*1l$ z<RoW_&XgSGTe6dqUZ3c8104kB?<TErx90OLSCz|6oi7d@%V6B+#OF2jpumdsNk7=s z%R*B&9DKnV>6X93Xjl5gExyYXCI_9XH`o>OB+PqB3)`9vf&brncP=TK&BCZw!|roh zN_+j8-7B6X?Gc?;^Tu32VpeyrSmu<Hr0W+~JwGmanDPCp(~F#Ui}>x1j4te6v~UO4 zM=rHTUA-btR8`HHHNIH?)KX2`%NFgGy|AXkJS!@;QL9M#%9aF`#`L=vr41VGy4hP} zw$`87c!rl}(S#W<xu>f9P`P^Oy5FoL{eLHQNX78_`k4sqx17&VvU8o7T~NPDQF_(J z2fJH49TnHa^(@?f;Hqi2=s7FV+};OD)xV`XD!Mc5nAaCR_wrn$t-fMH4-4ohu#GBT z#4ovMo6el&6FOs3xapPv<{+!D3*tROh110LOmgwoTC2Aq_l@J>u3W~un_|<2w3P&W z%M93~3d|05`yVw`lFdj`e(myWSHkXxyALLZPn*5!RekS+8;i2Kmn>wi(LEGaW_aLA z*1@e;f9p+8USMI(=s11;0t<zDJEPSHC$3PLrrY2w6Ze?ue%Tb$ipteX3Ku56x-n<z zq?V;J$G*kLFh7&`zSn3sMYZQnrXFYR{{LZFJM3Ifo?WXPlpOG6&*tLzf?pOq_Sd<u z{Seq(wJYwhsEOfZ?l)HJCskg^&5F5^GkafLhIIV>@+pf$|I|J^p=i)oU}UB-U!wl1 z=j#lSTk2KpuMRKOIdrVgGV|8P8?T-^X<M5ZEfx1Ved*2e;BylfoTxFKGkb>Y-B!Iy zNz=R=IlpTw56AR%=odV5oPK_PZ71W*ZL3}^4YHG;E&crT#Z#9|b(egd$lbTtRJmj3 zgjXTiPeRh%7dvS2*d@63`K!K`-5s2>b;k+M(0cIMU-A20`i;G0{<%++So|b+%aQN= z34wt<i|5Di?XG{d{b|8!kFU=w_=OZW&UPr6P3hq^=ie~pafmnjG?msF<-YP2jBFES zWfllYckO!B>MpCOv#xI8+%|_z;4{I}42wW#f*BnYi#j@g>H6^A9SRQn;&T0aa!%+; zYSmv|u$Dh|Z<fi7%-ahldj&s!b=Latzh9~j@4s$;VK7fiuO>q_r%Wff=HINVrq459 zWfpJx<C@YrO``o-nt2!7GNq%DQ5iCZPcuXoW@hCbzsx!#S?}S8BRb*U*F2rf3@;q` zxRRr4)1=Awl{SU%TJd)pEBBm5NA|@}ZEfIR+h^f0t$qdP^3N=P1g#A;9;yEOc7VSu zr7Ba4txsE3Z|k9#odp4EUT%B&ojWX2F6)F@e9|q|o6`QhclF~3I;R^#+S^i7)ZOO0 z?K{a>xF*zyL;UcXJjQKTTlId0m9Caw{jjsvwg0z8T7Qc+=vc6_djAJ(j0L+mpJ}B( z+rL$j>w><dT0QTC3(E5657=4yUOsj7#An?-FFouc98PpN+~50ZS%-1Q9LGxqb-Pdf z<ZHYc$$n?GE^l(*;V)5UFFUXBsu)MTJtg~Yl1s+MCShy8eeIWznAJa=wk7$^{NjRz zN34GHJKi!<n6mm_(wh?D+omro#9SvV>#4o2m;RIY#m^_3$`TIx)qfNEnR2x$QKK_+ zH|SijqjoE!1j@ONN9%C7{SJ(ude7K<&K;$IsPN}(8ENO8jqTVz&y8`quxHJF>1mUH zRxOyTd;Lsq_w%mFEDPKZ98(X`J+Y+tocA_^)0};(Zw<JY&RZgz9?;OpkaKm*tW-Ah zn~UBq2`^=zzpUxV)*q7;eqOJiW6J$_=aI}mC#R`Ib2=;OxlO+~cg7BhtUd_|wz|}% z)%O#xExRE#+qd_p=7Ur{bIYI4ReRmP$696I%b&9+e9!!!`<uLj;{84(9NVW})*|aC zJvGMUx@}R-q`)0hg&KJ+CwyM{vT5V-h_5V6=PJE-DK0U4y_SWS{jx}J&5NGo;`%IC zzB{F-m+e0K`_A@Pvez0qs?*!MHolnMwJ~YSs?T-pDLiK;`6h9my=Jj7cLL9zj=kJI z+b(w~yUE;o-{G?3hROR~yIAgT?c8p+s3WWY>#2L+ZZ$j$ofS|N_4&-5Z=%+%9g&xg zTv}0nrb9?TqUcfbNgDya=gK>7J;*Am>}!6`Rp0Sl^_L-!ta%uN&gX~^7iMz(UXacg zq9K09ov)(x{SKM+XNB3D9MiM?P9Ini^rLmwR>J_E)p5HIu=CBhpSI@b0mthsLfpqE z{j%W7Nl;t0y5riR&wcMjr5AMlV><2=nfWMod+mhO=+{0r7q#}tFrJA{X6w<3^?V&# zF<I(ZVU|z*QMJiwYlAq09vxdTnNxS=zSH@#N{7O-E@batlw$mC&9e13-m<9)=#)Kv z(a5n&zHIlBBQL)g8?cvOxso=+#f!OtF+64gmrQ@Zl-8M(lV>?(?DCF_pJwaD_rAPc zLpNHiA@bD3Ea$k(JPx}=1drzJh+1VlBg1bZtBb-+VV#{<s_NBKCvCdYY0TEjJfZQ= zi!ckGIOn{%r+>9Ee+hLk)D2s|gsCxi#id2cOE@-7Xf|=0yxLkh<m6wuYJ)Qyqz<2& zlg{?+@1LflVRMQWMxV%Rb}#5~Gqb8cdHmIlIo<r7`6`BQRAx10T2yZH;$ByAxyd|C zvgBLW9J8-6OP+TMyQ<Hx7h1C?FS51w;f3@G)9Zf6d<)oklxMZtE?ISh4_3YoZ=Z#v zRZXjZy=&gg=C`~vJtOrOOPl-GY%ZAb(d*udj7N4Kbxk7v@3nX!wm8bL$kl$nE3==- z%XKd;w%u)dAz65<Tb?agV7J4&1qYw8n;o8Y<6dY`bAw~;wlv3o+om6p-p^gX@9;;7 zo7<OlY3PAY65G(cwl}q^xq6C;L4#v$)49C*l%8wXmWf|cnd;^YI!UZ3xA^m|B^Mf3 z>h>DTE3f6Vwskd{Di-r|lU#21`<0Fl@*8h4_ND6V$YyK%5HH#5owdQko%x&Kwr$Rf zwqHs39m=e`$KsIcvEv?JE;ySpCqJq``R?esy_%fG%3QXBop!zE`?gHp!LDZ1d#Uu9 z(Yoa;A1C`>yDXi)<M!U7Ygb!#Toz0g6|YG5t1vq9G)`($+KGVGJ05L%^ekZCv^Ex( z4NF#fbW1JRSg00!ZYF<xv7=Gr7r$8zJlg9fJWrXQs4dyDY}cYk0U?jmT;|;~VO(S= zo>;%}H|s}%Gx_e8vn~b3%Eq}wnMmj@VVvetBl`4rMiY<yv&xCPGnPDX2sxr^5%XMj z#w^PV6V7`Uyot6-KfKOEcgM~ZvwgUlv@b2KJk{&M)l%7AviOV**Rm@IW+_})bj7<a zTJv#)zUR!4#_IH6w=J@}Y6b27tWo`$kab~(^14LX>1$V5$S}T~erkn9BcsxEpOqFW zjQge+uC!=n+&=yLN(-g>ch;vq1zB*e%NGhw`Dk{d`qGJV{=-bubeU)J-B)8N<2qZ= zl{M8P??Y<BoagxlS&QB8eSIF=>%h(N>9$o!=9d`dotL)EGIle|)sza>m2qW~ivGm; zWWu&bHL7paTrA#lDk)D4xR=PVede2Ox8|t|YIlG7x<*jx;i_C|P0=SQF7<z-RxYu( z7TWkJtx8#a%>%!6b?)1Ax4b>Mu+vETU`U>OPAjkRl+U)Z(!b6wlIT<`-6gI5d`4kG zl4cy}jI3*G9v`qvdTz`cdc09*;}MBTTzmSQCs=1$z2j+8JoI>i)TZc%^M0BgU-(E* z;@F?1`pfRfu&z7*JXhp`k>u)PkuS;hN*BLday<0i_2{~S17pGR!-o|twz=Fg<2ZC= z8*kG=o`;>EXO}jWgkJwp^{J0Z+mN$OGoxOAsqMvxQg(sM<qKzS+1jG|AcF1KG%vSf z(qb!OD}|pLF75u*CM)N%ut!SV>~<TI#EW$SJg>Ie{hJ-CQPcRn+3Da{uRQ0a`{K$) zO6qs-`C(cwna8>9v)9I+h#3W32YFZf&h!;u+a3AZe6F{LDBIaCk(HC$W54dsnsHcg zO>1w;lD_CEpI*etZvDC~`8~IYNuGm))`wMVe*K?)lxxqSZ(=_TtkRpFtJuqGrvB}` zmAO^@y;Gw#v&GBR40W$=#a~$(;}JSloxy6(aiKjMk}aE0Svjn|J9XLjb76B>jBd;| zJU@NQjr_{J{d3kmJh?69E5jLSt0i^`g5_)>3v)j`XsV34pLOBn85<!do<)q8*1zXz z=HYwp%^|+}1w%sR;Rcl$p~cK?KQ6X$HjAgI-)Z~xNo{)h8Vl9>a*x(D(}Ze!kH{O> z%Po%oc~YXRV_<OVi1y!O8kbDPk9n*QI(OA-W0**>mSoSPxSSrfe6^-UdfPvB#vN%W zzIBJmK|b$l={BETia9-50-=T+nXHobe|vL!&d3NUe5|&(RODE~wr1+<BTHURXuaFD za8=*)OtUGK!WN;D>z~hfS3ilZRa(fsyw$MgrEd4E4gGVbtoZ&+b)`;}i<GO<hePk0 zcINC?SyB*lWebDO7H!>@M=YgICXtf&^UkU-FPFZ;&8(*O#@%m??)0BVX6L^?JQ89c zAwS1+lYK^j+|1psTwl&faP83-aQSS$GXK=UBLVjp+?sZzG|zWKpT))^wX)25*U617 z+)IBbuFCz;y_2hPp3E9uo`e0_ChIRdF5_HN_4U-WM;~3+6j}dl_^EIsz*a2y>Sl#I z{%adoHO#(tBf@4uuxLca3Z|Um64PKc)5h)7Z>{5cP}D9v)yj6^*H3%BUA@lTlgRm! z<}h1ntA>cIxxnty!j>trlYh0m@tt{&@14p0?bEiIJ$t{@M_p=m%oE+OCne?t#J%6M zL@7r@@0Q%*TW*IQFIfIT*8J-w`8P?s+W$T1nZ0|u?>Y-9CYw{!GuK&!GVYtcf1QOA zW6bnN>nv8(uYd2S#`!TNu8KKmqRJ+R)#-B>>K?69UBXn{lKd~Hi1`{rf&1DWQd|$b z+7JBGm$RJcy?jws%?%BGwu=`WK16FS+5IJS;=d_vSME<e$r1EUOdx0@e@N@?OQP+! z6OZ|4UUq%f=}_Ki)u+UDMAAtn<;6Vq8Aqn}Z(v-#)#F*o@yqp1$}WyvQ5h!`Gjdd1 zj=XFvoYkk0_gKk!S~pk1)tAaiE!qp2{w>#)JLUgT!&d&n995y9=<Qk}kvbs>8w;3{ zx5#eVyVm5xT8C+!vl%*lOlS5*3J2csfApf|Gg~PC+AqAU*J?#|JgYVz<hu0ss_X24 zr!v~iiYtxw%zPzX6mXxXUX-aO_6S!&efzJq{+>c^DXX?DEGyzT>^?8z)27NslVu90 z<xTY*KClV&Z(C-@P}uK%Y4@!s%68Y3<rUL*GFIx@aUY%0C;U<D?cq{)ZmS84%Gd;j ze`*~LTYa$Q?AGaq8)sFxH=Zp?%vmYErbjhA=3wVDG55K`XCD{r%2e;wnak#R-euoD z<LNvbEfl!#I{o=}enP6ohffXD%{N+T)bBkh?6ENH=#*N`myN%9uRfM9cP&nudw1n; ziwTF`nk1I?&&+QX?rOQYcKZSM<*j9x(tE@{ewy>R{^1&@Grl%CsjM4p7I96^?TVWr z`D9z)GM8!dzU;E@Hru{9IY6@bWUPU`(BJ)aH!sL6T3Ngx^T>4<y{0q!tPDEZjxO;R z6fcpe5BVihb1xua$4`~Kw-P>@ldMEdiz}Q<`DT}$@tGr%`#Iu=q`q<FkDc}Ue>|eC z*@C<F*_|^e3@f}Z=>2<-qEW(g5%FKXZ_Y)0KbycfT|#uGu#~-|$Ii1Q3C&vrQuND` zLW9;Ax<pk^Ud-NPz$^T7SH|2Me`SAdk2^W{+^yA}s`YhI{Oe^_?VHxX`|Z%z=N(t4 z*e%>`@kdO`aem~}KP%T}O;A`-C11*7AC|MSXoktAjk!_tZiLG*__Z6Y*kH7LPi-&v zs~cgR=kh%c#+^@idc<q4^O_rG3u+d#iF94_+qOmG)Q$|rtWeEUcb6-!TQy1N$-Mjr z&jee43AfBNtzYzHNxhe0jOLRqQ$pl|Wv?E&^Grd<@G!49cd(&%=5MoypaY#cRZ8za zG30(~dc3FL__Xao-x$s;Oxwuq7+2DKU5S6M<A;VW^~Dhh=IY*-cfyV_go)a?7<L>; zZ{<DF(xG(kZQeB<_2l;U1GAofxDly6BWTCF8M?vycHCEZDfVcJ-qCulQtkB**pgQm z6&W<h7YpaF@cyl<$6!)jC!ap`p|<7CePvSjWMg$@QYP2AWlHtW^UZr$<or!*Cm*+m z^%e{1H|HYs3V#dqFWMGrEY!PsN66yb6K)ea7=*%3-ag#&;O63qzVA{6>{ZWkthnCX zAAR!F_gars%Qyp<HJ7DST@Bglr6vZlyjO3yz2kTAU(FrtR=2nrzIv^h=8#@t&aKBH zUpv9B{OhIHCnhEy`=NJ9eYLEye#z8J2K!uZBr(O`7cCI1xpQ;zH;)dTFTxl39v*vf zYuSEfU6DG~<4GAyK5czh4LZ*$M7-r$r>fnpHh=YyFpp~sz8-74lC|(<D!-F=W<8r@ z>7=>2-e>a`YU!8w<e2^X+NgR+t**z%d)b+qSpxTeYR9GopFO9vH217A%hgN2s-J&Z zx_45iXY`LOC+9a}LMq3U*OVnaIQw7<Psn|z2%o27hm2|sxBB+n{`2bu%QK%R++ywD zU1|<m9!-<cVylsOH|6I{=J)+P2|8O|m+Nn;FDsmSxVdV!@2T_aeVp}$9Yh%yp8m?{ z$G76|5h+0jp~K$WmI?^0wQ}FurRDCvGhhX?(sYTfNxcW3HA=s>GH*^+y?E*B1lNq0 zP3{{`nRmXL+2_}?{>0q<XOmJ5%wo5AZOwM;zAVud(0@$m&^_PiqpN#PuE_oulXl_2 zj~vPC6Ry-VB%KUXxU%!xV(Ct9f5roEKW17!WJsFV5F!|~NuH(BC6a$K(?_La86j<R z_HK2Z#w5L3P3`VsNzcob=PeuB!e?u2E>V|h?yqiO6`wYBUwin3!$$9KCwCPd59Ko3 zVl+WABC??^lx>0I)WDUy&MdzB(t!WbvfY0i-d<xD4wyNEvwnqy53`m-)T!c#4bBpq zCEa7@L>`{?DyVb)$+|~XbBpW$&S{*|87ZEVc-T<ttKRoa)4aR-NkRLq;x#*;=IuLM zGvjbe09z8X26yzs$&G6toLo`c>Nle;QKjd>$;SpC9z6KCa9h)%M)`G;`#-LpE~#o_ zuR6=JQSj`XhL$4dW6bRJX8)u=xCCrFrlE1T^V^=OS~=`LBQG+!d0ci-Ua`~Br{GZ9 zhWLqz3>EK7*-V+^d(*t`NH#I2*j-v)5WbZyz)vURQ<9^xfwWN5=enbL>h{YrrwQ(e zITr2aaqHTG11Zh_=Gn~Hf4qY={B4EO&cf1q={iA<3WM5~+mR|fMq*qE^=oHrRsWnD zm-hDI?_HZCtACt&_g2_MVacX7XXbDEw&s53o;~RsPE@gNf3|{2$T)Y4m0(E7lO(q0 zd%9Vs+gu~lAA5ZZT7K?a>-qSIwY}MQD)(3D7VUVoSF(d~&b`R1QVDBIx$kPQX1}h^ zSme*z%UHwk>_{vBljRyNX3oOFR}N07f8O>%Ao$#x+sav*K|<4wjgI;28$Fp@(8sRW z*WcT+;fe_R<z&}g`wgGy9BI(j-msT3t6MiCB3VrG()Lwhfl+7ue`@>PpBpXI@%qMf zyNNZ|f<)Rj@<cf-DNqda(K+=vQl(P$j9~m(f5)AlJS4=A>%B^nxx^7=-o~JC^Zooi zN9wyf>NrAfH6A?8=^H1N@~J4yc81aH_&tzQoep~M$w*aT@Q6ASeRtw}(P^TK`Q^o~ zE4$ve+;pK?ZnJ@g{*m_!V)KNP*Id78!d=rS-n0CPSlcv#LwV6Btrzd$)z80gKBs1` z_r5L38_W(*;tp->h<fhg-r{jvGAbd#YhtfsedDib$39%UTK*;T|GrPkLSLI6`qeJf z=(k{I(@5DFz3R!tvP~C!=kRJhk}*A-+_kwQ)9_IYGoN`;%IbcWutQ$!HgRcj>2yzD zzP>tkgHcv6_*AFr=9*A*8Qu;5o*sXAPfhfbu;@VtE#@7@0+z{49>=mj@?3pUxw}P% zC&ry``neqzwv6wl^X#<H6*U)~6}axi?cI0W3LiGzw0Pu{zUOt`bibVzCQ^TUl3R7$ z&*naK=`p<DwZB#A;Qu|-MgC2HrayhoPK)^ZdUt)#uE_l_4H=GKw>n(<OYOK^&^Cqn zMG1@B<9Uvm-;`-*cyX+?`1KW*xSiLge~+3RA~$DwZ_#OC`BRr~%d)F=2F&gMc4N}V zw&}8k`^<ZmE2y>2RrirF-vmBIsWR$&Ug9MEdwra9c3g?9{;3nb*TT}|nE27C0O5|L zJBiQg<>yB%jH)y~VR~A0Pl{%^Bxm@P=D<9Wk3|(Nma>t1KP<koVzSuTG{;Q)?c6ou zGkPDd<zmTrymjTV_eHi7uKsw$zjMP><LQe}@*L?EdwewI^bAI?X$of+Y@7acxy$Z5 z60;W<Wj9&Ou!+}+-mt&WYR;SqGYY0hOBGIMy7egCA|k8)wwe?3W#ffD`*b<qpC~T1 ze0la>0_XGZ4<5dJr{>73KaVf+`t6fqi{Gv}@SDAIzJ2`t`C-Pl&%Ewc3fz2FB;jr2 z>nR+kEFSjUQLg<aeBJOj@1!{^51o9^wl7-Zctz@>S2wlpNmVp>+I=b1j&W)UKgD=$ z(f2xq^9<*22;K0w_SCn2!YpCF8(v(Yr~T$L9Q?Ou@)hl%O(#$Pd~_j;lk3y-qE9I) z30n_^i#(K_{xfBH$b+ZrI95#ooxe2cj$@<y)7L8AezzV!+-I?3mFV+=9}ITyo(Qh` z;IMVha=(ogw(Hb#7^k_5O`QIGp4ct*?5CA$*Rd~AeW?FYsMs}A#5{z3_Wt^O&-L+U z5xzxlUtiZ3>vhcgvok;AL(%CexyP4h9Zfx)w(WkK*CmB@;`jHL?}-=MRwibqF-gY7 z(e~clsntgBtYZYVa;o$uMk{SlwcTWy5p^T{>5D$TzH6tyADXzsJmrAnmFutXOn%uR zF#F4#xwG?&wrNRt^k+qOoG)Igac8H(<N5<@{;)C5F^}6K$7;#E>vVaXbx5dO!KCP^ zZx~D+*X1k-x$*1k>v>=5ly7@XFIswftL7xT4h2EI2NROMcjksj7ld%EXyxvmQzN0D zqP$i&ZpAa@*x%D@>?-mTotlMK>U?$<3G7ely`L<x<dtc_tv^glgxaMKZc_|<WIm<Z z@?Dd^xx`2BXR0+`l_xkKANVJGf0p(A)iXXUxS<qQl68Bw;LbZ6*VnMDedqM`Y*Tk- zpx%UgGkJtJ#y{=qk1PD~(a3GC`IgjWAAcPes7{%;{!InTbmzSmMiNu|7J2^IT_Un4 z@9PKKzM`1hk`X+M?Hu){_wKbYtG_pO&BU)$pXP2a4BoA>`C-g%MpaXdV@ZxrM0cu% zdzM9BR}*>ucKxKqOA=;If9yLUEJuI(uXAcWYj}dpJSAQ7=hVLGe5=rweW!5y28HmQ zdl@}HJ&2jKUApl|mY}E4YrB;bdd%e-w{c6|&=5JuX_Txk^!(p!r`>vS59YkN;~*zo zzhl3ymB@rI+McI^JlNKBhfVK4v3#QU&nw;19&^esoeJQbHsSFzx3pPyj_a?VDe9WJ zCo^i-ozAXnO)-~NPxM{6=IN1g%}Uc*64|Q^-2-@dPt5I!%bOJIp>cPTn*OY^lNToM zdS1eMI%}t2dC87<t8KgEIH%`-ExclQab|U#TD^R|`Nqbxnj21@T7PtBlInZgf|GYo zlzk3Ptux-gd>_lBLwTQ+*Lvu?Y}vfvqp$Jw$OQ|&GJL3<kiDVYV3(G@a$<Y)W--P| zYbCGfdhFOf_24o6*p1N-7L=+edx>c7W(^7EnPk)I68VwK>)<)V<izh>Y8kanA4_HI z9Q|GG#1~JfZK@9u4ViT#fqx_Ktd4(kmIVv6sC_Y65j;WFzuV$b)7F3N-jA<pMr<(s ze|*848xnh4UrFfKCor9soN?h3i<-%q;^^-NkHvXUb3WK(v41zifld9%c`v@KpQD-? zHRFWQfA(#X|Jh{3er6@keCKtttu}PuPhQzMw*!yOTDNesBDdb<`uh2iGqUS{e_CGu zE&u<o|NDMO{d}P^k4r+_&)`^e<p-zLez*RAe7gT){lDJ(iFtdbJ@{5Ni|K~qkMIA# zKCS<^eEWaz`o8?Wf5JbruC^&SRXA_Dv0eX$TTSzX{S%Mu`}@7V?sjAS|8S*~jZ5U~ zetlZL|JQbjyej)={`J2f?Y#D1r_k$o-{*RjOZK(DKl$7JpT2$mzw_ef#bqBJGX4JT z^8P)4Co78{tv{d|s{1fD{_o*_p2w_gSBy_rxBdTeeZ%(d4*tT{J7t>Fm+ajC=gam5 zRVum6^_yRdoL`<GSr=uy#ar~_mX5dUf3|<HT<v})`RjxFkFNwbSG(U%5j?Ts<<c{k zR-ejxx#7&BxKqpC8=dD0ZE`kFo9S2?zG&w2sEpbB&Kl{SUN+PC{KGr?Q8uS*zRx~( zevwp3;ECj$9zi`;^9)=w{XY8tsfaLT*ta=rLRUqMDTCdbdMO6^aNY$MG!K4aQ<&nv zA%^9Kkh_b{aYpC0xr+}!D3uY`pWeH_b63`kChyfVw5Bs%dbWObn_}rov&$=&vikmC zd&*=_)T^rnr7shWnZhz>UyPEf>wO-@Rk3BW$IA$lo|G9^Q%_EaY@fC#H~ZQo-_84U zHO;gi3jN5v8Z-Iunhn{3QZu(!`0mWT8+ZBgnvdB^(%B0Co31ux>*Pl39Lis^%Gv(f zwEfLZpD$gW7xbueez)F@3-i}}s1HoGSDCbC!aA>?7p*5OW!XJ{$0j>_fq#A6pRR9@ zsaFwTthay6<`XO}xagO_`?W%fU(D`At4@i?4Ox|SrI7zy7-vA3^y{@kC+|4z4NaO? z+W#etvtLd6#abb^yN~vSDy=K!{~X47&P@90S}jYd|Es4fy#MvNOJQAB*oKQ{J04By z-Xgg_#x`Q2-{tF~!gGBLH(owzBYej+$4v01rGi?CHG5zE&))(!*9uAMm~Du*Z1Iq~ zaHLe*UHY`#)wMFybJUhatJduN8q72|k^4m$Z|ALwys0-bZ&>IgUfbYayxJvYFYmK! zf@juFPsqF5wDWbaviUMW<;2M{%AJ#Qls7M{ciY9Td`2Z8@8(UTomtDTCj7Vin=<3s zn;PA^+sjISre9=`WUv2g6F2RLMcwa-e?N8ReOny(b-Hrs@rL(1r`lBab03TP_cdqN z@mYOhFLo-gZ$Dlv6R)zQKjiYii|6LHu=e{fCSU$<@h?b7E{$*hg2~7AKdtPZfBaYN zmBM+ie&6=6w^2Q4YInb5&CW?rGOoucTsIZhjJ<9e9&~bDwqE=qw^eIqnAVHmC_Q_% z`;}g{o}Tn`UC+(Wm>#e7UTpm{=u<~^=bKsFUv@n++IH=ZLR9{%{Ljx<KKC^(cD*4r zC%auSSI2M}d$I1O+PT@+l1@e46#IN_R`$(3Vy8_NvIAq8kN@GFZaTd<R6kqKC}4f| zx|q+M*B#z0>Rzq1Q8MDb5C4wKH@eMZ>!;S|t<HPj55eM6-(0tUKkmA{Jhr6zzIg1P zMBQDlFK>M@%k0{$-5rtH@04zxc=KwG;JcHo#++=M-;_k=Y!yCjzh+nVf@gnfGOzO9 z>y5o^^+ic;TmHc}z4OX_?R5<dlZ-tU>RMR+E_{4`Wzgn^d0!u$zac80d(+O$K72`i zgmt9;vUQ(l-S1obCo+2FS+&Dw7$Oem$_R!V)Yu<B=l$b+K#dtk-`n5+e|=tP6qO?P zdCtDtgSX7;?_EDHB~$i)%bS0vUz^6>dzkmRYxP{Or=MHpijO?J<;3uv_r*K2d2=?( z%RSJVxkp|#p7B|?>{ZQY_3Njs?qJ>!yDVu!Nlbse9E(cX-?!pwb+s41v0I0AZ&;{& zZrSa~pt$RT-c4Q^6>cAP-Mm&PvHRN=6_4*<3U1m)Hr`v&AH3yjy36k+U3+Spv~z3n zujyL4=k0fYIw$Sh%?H2vzCL}vZr$O+vpE%!ef2*R=P#ciBD3^JZ^OHlE-q0j_pj9# za#T7`%X!r2GN=CXv*y4b=~E_0nET#8el%@If^hq~0yB|kyc-@_ox4{mv*S~c4(rZ) zA_{WLuXkSy`tZjvh2Qen4ozSA!-qQONLb&mKlcC0WG?f{GC_rX2dlcHemp2y6JzdU zkjGzc$@KZ;>APorA|`2Hb<nHt<x5Cp|0cHQU$X}9FI)L3M;Nn&>MfQD3NTw3P4UT% z%S-Qw$}%}qaMm>3S-E-cdcPU9A1&s+;}ZIlvtDwU+^;N27K2MZtEWxoF}stp%}};L zt0w%mlpLGo(_1~t_p=T#ubtn?aA*IGN2bR5w`Q-E5EJ{Vljm~a$g041n&vErPo0`N z_2nxm>Bt&}iyIi%KM*_qZT`c0iF+1mp%?D!WOFWgb=r=H!98w@q>;;ku6!#Vs|^gh zKbd{-7n5H9{|M(?P2J6FCa#KHInn;|zKK^nUkSaqx>WV&w$IspI(BP!ZjrE3pPTx3 z*4*qV*L30zTRz)8WBs2AM}O&Objc?A3jVtwQlHUfZ*tUr!?GFf%Dd9Jcd8z*a;U2h z-J9ufW`f&(<-EzopC09F?Rd20)Z}%(_mp)7`*pAM-9CKm@%EQ${-#&19gmCFx6txU z4w=2@`N6fO=L|C|CVSN1`zWj~xncd45BsF;+ggQLHya(YireKMy?Mt9f$izl&I-xA z(JiZ$yFBB+Za&!Yd-_*bZ#i+(i6LudNek`Kma7+!FfrNVGv@;jf4S?*T+P>ZuV48) z=be6`Q}?1U<*#c0G_L6%sy`NnZnMan9h<zFBPMx=RnqZ4uZ8E`(A|6Tf3m6M|9utC z9y^XaZrXEt=iIuN78QM`6*h>k)~v~V=5}G#k^lXxj_*JI?D@uXH}a=TE#G~~)A(om zl4<NQu}$nTw)L-$fBF|tZ#~8SLUC63W^4J^_EYM&#xMW$@5*}Nzv_Gb>)5+DU5NBr zFh|I!<=TvA`|W<_HZbk+xREGxb$v~hjDL-F@9C9yFaKC|{zsy`a^KzEpW@`}t=9`x z&&$$Q>ts9|s&@5Mce>#=r48L{IbK{0W8vanE)gv#aqV1E*clh?`e)5+IVS7}$**2} zVurt6?lz?htJj{8$T_;ij7gfub1h495Jw76f9Pz(Ah*M%+eO8DPk)N6HFTTwcB|nE zp5|#UQ!RF$+0y&+^b+I4n|thy`;z367A#-O!FVIbmFYnDyR~aM1j0_Zu^fn*?7e#} z$BZ2p_iPnqw7bz|sb)6)RehQ^Q|$&(#zPFR%OoUncD`Mv6!0XkGF!_?<E52E<)4t? zz<-&(M?=dvudXWToS#{D@}*Kq*XEZOru<&}y0}e3@9fN!8<xxN9Q$EuepceFWe!{M znQ!kuYyQ6=T>qle{>u^jS@U*OO_4J%*PVVzx%bqsDJ&0~ew^TU<~x2g{kXYq{fBd( zJ`{4SdB0;SOYtkc{adVT)EX{td?J5r^OO76wx%RhW-mMT^hWMlefbLkyXLrFUj8zm z>ZE-1e(w8BnRZ$=pBdL(Gq@^#&%Ll#d1*x->(f1!Gb{Fq_AUI9TEd&~{O0yw@lD3} z)c$XIx9sP!4V72(+KvPzwdDuqvQ>S}pWM5=KIVLL{f|YjJ72HcrgPK1d7piHhw|Yl zztS~UzN`Kp4F31i%J^!fqVbOSXNuGNraTe4r~di*{<UA${?(gbv+~#JU3Yiq-CVcq zitOKadDTUeSH;+7zBs>s-TCQ<mjAjS-^agBtMy%9S<Z7l<^5bmpC9i(uut~qj7}4S z@QaokKJ;%mQD5HX`bmHCXOAq6BDqPDi{<C@s7~0``B2I3d|T!;H{N%dy}xQ-9n83O z^P2uue(%eApX|+*z9@1}zcyQC2Q%mSz7_3)<tsnUlDuN1zo+7&<|NIZZf&QG6&F3f zcC+wcV9e<^{rbnw{`+Mo$1iL+zvP{#M0|*cdsSSh&GH>z;^VaI-}C?dyY=U1BYD0> zf3nvfl)m3|Qg%zv=?^ORUmyI&e*4Qe_S?t)9gXL!-*D%)^!epxw_fu9`_i6lUuRSM z&@X<D)b_x)d*zqgKS^fye?0NupRCa5jaH=}ZuBpnBD3Fu>u}|n{zt`s4zFx}dF5Co zOMl2*tBSnGPk(;g)gc#I^v2zyKIm$^s73v(tml~pzaCl0J+J)t>4;@koAS<wsc(zr zRxF+}=h&Y!NA3qt{Hw<Gz~kM<=H&}(V_gmxX7uOSpY6{*d+w?Iv;($@I+x|=9G~3u zvGjj>)UL~y?4q35xh>|$+?vc<b}P^>qT)DDTe$9B;koMG-xGe$jd>|N_hE|QydQt+ zpPzr2ZqaJt_hpXF9A^9Yvl10v>((s&-ELOnD828_v6-tT|NFyd{7Al>)g~(6{*U3a z`sd02Hg#8+&Fb&Fbb8OP<OOopKiJFb-*un8^q23Q+}#Vw?EP+^*>64P6t)maKDaOM z&oR56`{KPfCx5Kw3ZHkV?Po&G+@6)eEw=N%<;K-7xxd%r{OV)BHDhXwqWs-zEgl>% z_}HC!RsHezj3@Jc)IU0W@`r6(Li}~MhZ4uE+!E{zGkzDvytu(%ZZx;A>))OJWQVUy z_ShNweK+zxS9m$yNy=X@V!iv)c)8E}H!rkxbBxco*_$W5&&K|owV=A^AM5V_b?p;B z@mn|DU-+eePkmLSMBi@N`y01^f9-KH?a#k`6KC^pdBGi)<EtF`P-K&JtCjz?d-Yoa zUUkp@d;es6|KHxAi7q`;HXZ$PeQ%%L`o22D$b<4P?5EXVT=h*~ZR?y<^KX4s*MFqI zzy8{Pt^0mo=De~@y)V0W_vD&=R`1q-dVA#m<m-ho9)AsUeiqqWo?rjQvpz<@K75s5 z=-ic7VPC5rANPIkpY!KPS^bu4@%ewAUTHB7bq{{warLBv#pK^s!v4!HlyiJFlq!4m zbLYp$;>S-s{Mh|iKJK2Ch55f-2V|fB46NzfWA*KE3X9zT0=4g7GYgiy625xrG}q5F zNBm`OU0+#MTPJh;@d~3prtdu7X7%eI8%KWH6jgLS&efpj>XYM|e-{gu8ad7TlKf$p z!=p9tuU<QCR@(J%`=*ulC*A6<rrF<WSbwWceg2zJtN#~sUIo|Z?mmC>%6k1T>-AUa zx1X__ylSyn?cFuDWgl+*2;BZ(tm?bRyOpcXZ;|ZFzOr)F`xie0z4}&vo_J?*?N_Uv z>rdCe+xT&M`jwyE{$GOXxi9~`ajY<-KXh--#M);jKV0ViXn*;qdiJ^VH?Qnp`0`Jc zw0^|Kn{UJ398XWsp1*+a+wFGc$)WlF`XMUEgzk4$e?PNCSABcd!`S^F<BL{LbG`PJ zRd%ICzT!UCy<27Sr!cM*J{hE@&vO10^P#PZT&#EAdQPY>U#9h5;;`vd=B%LFSHexq z2fj+LINh$QuT(TGX!W{9zEK{Tysr;mnzZGHTFBOZRoxZd{av#IPTx8ix+;BX_QY3n z-}g)8t#>#sUjJcM^v+L`C(flit*cRcaVkBa?5S~LxSepxQ{z|rKg?X9JwNc(q37I7 zw#5DH5!0`6`zmh7ysQ3$<lH?UB$uwM*_ZTZPWsKCG6jF{97}gIvt!=*LGnWD`G$2h zY-JCP7jVzt`ETy|2ECeRLDuuvPq<X|(0Kcf&ofuw|9R%Zx%78W&ZX;>KK#slEc~3+ z>F39fGv#XjkC<7XamoI|Q~8eX{I*~Cb3X9z`NYrjl|SY?zw=}HW9RL8Hr3ZpVEM11 z|Icxi+vng<ZnnV|?A2{Qst#Ah-=4a%p={YZ4u37DvSmdxdsp`4_^@s=7Cmt;M8P_^ zyyYub*1Z|0Qq7hXMN0?oTrC~k7&GIP>}H>*vvh-JrW_9WSDU!%MQ`uQMR7X8=0`HL zPKN}hPg}X@vre$9Vbrp&Z(DpsMYCt_ic@rpj9%8|w%tc`YyM2F?B>)}>lCJ~+;mQ2 z*{P_M8Cs{WCau!RkPc3+O33mFUzW#VJaqzha9~=x)`Yn$D~xN>wG_pdeR5ta9c<n* zvujrQvPEakg>2bsEE;=vrq_w7)0uizV(a~`KKL26Y3JR;N6&pK@$3EVsw8MW_iE0) zCAa#k<+62Hx4+E|J@#{3_u=GAnU!+0Y_H}myd*CtSEaP4{Ql*`%tl|sqC584&e`^7 zf{lDZpn0`Yw_WDiJ5kzet1d@fy5_}Uchh`rSDoNTfvL3#&-J}5^8Oy)sxM#n@NkmA zM!ks=^-Df=OMX$5Utw=v8S(a1TbZ`%FFBv(brthDcx%&zrbZRNk?+4WapCcQe{AkQ z<33~g<4*05r^??IAFr@C-?w@-&$iwLu6;|*e(#I2-f&j_LzdC6BIS8Yj;B9Aq&wmL zyHkf3m-`FE<@f&ip5|6_L{rA5?7E%Y&BZqVB7e?JUiIFi-lJC~<m1elPv^byl`Eg{ zU9y|Qc-e&ypAwILp0xf|`wgpmmiKprOu6>Vc4gV+mx|s?v|jq3@Aw(df9mT=LzP{5 z;ZIAY4kt(J`}fWlJ@Z8+dGq@<6@^>h?<g*0S>ko}-oE+k+=V}!s@{6*gF@=`A6I8q z&%NL4o}gK~!(?vwtjk;Kq)N{{Q9pUk?%skGxA&|zYVNXBJ9vLp_P3v#A5Z_;r=nCp zLrmPJqQKV2{mt1<m(4a8S2w?^3uD@>_Uzc!nifUBiuUbO+YeTych=X7*{pUhI=Maf z?*FStH4m#zIsKu|wD8xAj%g(a4;=QHza#0vwz!>)UnLJ(Y2BAUrWEY7C4Zxxc9g>7 z?_#<!ZhvlfiRHQeyX(68$S3ViG2c07%%A)8t*W<hx#X~O`*GhnkLB(1*04`~ywl;o zUeTSS`{sFXiBoo5x;lTO?oCV0$B!MZhp+gc6kdGsuk4dmyD}edJ1?Rg6`fxdUivf7 z|ADgqA6fp_scyE`QKnbf7ytck8ZmFl?w`^3uU_Are8Xe9Ro(u~-iH_ce_oZif9JmX z<Buk{%Z>I;HmjfVx<&o|(ddKDEE_M0`<MKDp|xkhq7NS$DvZ0or`OibS?m5z{_Zs8 zkM?$+7II}d0<%um*v8NGNPqBjitCZUW&LqCHrl^C?ks)(dAW>ot)jiAM}<(E?4+jx z|3j<2%YqlTemK1G$2*QA!dFt~DxMCv>pS`&u;a+>9|hG%7MFgXUZ0ru?L|^WMfRWM zS4Dew9Qpk9i_nVQFOxO@&3h0deOdeGt4D{GezF8#KD+MO{)IQ{WhB()?s<JJbNy-I zF!|)IBYH=VS3P^`@j(BJ>mKjFj`s7Mwx$<v+jk{t&&`G>^=lr^J-B{r!QAhub@Tet zqfY;-c~o>}pY@e*g~c<KZ~tNV^r8OX-#U}U^O*O&uem+%_qILP^QzuO%OA3qfBxK# zZ%MPtwETT*{mX7lzr4MF^&Fuu=j8ofKl<XF$-4TV;m@BpjtMJYmE-ic_rKphby<YG zR;cha`E=#@U$UxhvC30#$UWyiS$pQ;i&t|`zIe}b>a~tt-?jep6DM}pt2}NGUV7YK z=4HKg-?hm~0rw{VzTdP@e%=y)(?f3eH*V$s_n|Pm;=-GkoF8{xu(52-s!5Ie_w)0M z*XJ)@kEvL)evX!{&_Ao>+xk<!h22y9v%>ZFOMZ8wzIYkY^PnoZ?}^;bZ%eLx{nK~M z=G>3PJhC&3RsI~0Uy*$BLY=$k9y{GW7Q2<JPq=yO*Ppq~AM$<T*7XwkH}_|_NIus6 z{oeduT;6r5{MV1wc@2{H?ESOW@ZPoU>u+bQj}|*V^Q+Fo(-pgmeh2q#fAim2B7b%M z`prL1^s1jUICeX9UEIYR@*2;|_i6b1?bv*$o~!n_>R(Sm(__)!_AmYT?MO>SZNR)M zDaR_JQ}*nWkiB|%etrD5i}M~FdwuWK#1D_N{^>k?Dtjni{FSn#yw9%ieLr06UzSSe z8a}^qYvPB;E96%HIv`ee((SkE<ww(3`D8D)HPo-;md;I8vXR|Z`TX|v+$~?<mfy(G z7tYPu^7ZZHwyhg4u6tY8b>)8+Tg%3a>+bv$k$$_&{g3s{jMe$`B@(KG%<6l3x1F%i z6JM`A=dsnN9ER7nJO3ZJ{6}|gSn^`qWiEebncWf=ezcuqgRYTXpxL}RPRHD;o22Jw zES5d`=H%1^H!}98T-uwrNA`b#$vwM*&GoU;Z+Bh#`xhi0RkN)3+mSs#baS@M`)=@E z+w9h_Z>7??wZCP}ZvFc4)dI||fBWmL_U9j8FZ`dJx76_HI-kEH!8u{Se$Pr;oxeYO zN6y5L(K+Szmgc9bAJr~-zhlv!ys0+c_l=H<)$VWAEW4UFf6<%yS1gZ-{8mkoN&SA( zRwcPh*C_7(xoX=fzjhrh4Sl^nf=OPYZoZJHb<kI<>v7w6%!{bDo3U*ErsAJ(vT}7K z*SY>w&wEkde)Q{+S3kIQ^kRIz{b!V##3Keiy2*OJ3b(M4frXJd@}XR&hA2mfT3Q;x z&dh|Ib!Q1bnT=E5-AKXG(gb?eouw&4p&RH3GL$n#jT8(G43SU6GgdG(Kt4Cm4Rq|A z5%PI<pkv>RO^^&VQ!q3@oVp1<@y^h|1fpX4bT@r(&?!Tf(?N&bi5BGN<fNAACFker zCuXD;m89mG8e2>c<W@BhH!?HOGc&NXv{W!QH`OyVQZO+z(la%lzE?umk;%|t+Esmn z=`$9p2!T#C4V&J*NJVJ+0y7n^=?{F=l^G4DZ>+O&U@<f>HJiM#SZR9iVikdD*DV$@ z8yc8S2c16%I=A%W^l3{~1VLvHazG9)y}m@nXnJC!mH74xvrR2QXSkVKO#c|JDaLGI zY6(8Wt=_;4e#9!|OguB>Gx7`+3=PcSF`=Js2nt{`cvR@88-l{q3=$SxoSgdU;A8a6 z;Bf*yM$Zf$1^VfR<{(4OApsl-(gTVlGteQJ;Ij?&(?L;!ID!y#2&$ohIg&F$5n_(y zOh*Mn19K!-x`Fu93+AePU^E9EXc{{`P)SR5@`Afu)7NpR@l541m71R5%g8qU9Fqy( zboKcvqSG5zsJMZS<zq51pAI_Fl*Q1%%n)=aAEUu^$NBQ$Gfl;r%%Mk`TCP$Nnm)l? zO@4atDizV`b6HI0vKSheTTC{5AU6HZDi!zX4;HFSnZA9sisp3i$)~f|s7Oqgf2FZt z`pvZ}+|w=DO?anguTe3c{@GYp6ndzi1>{gatpzGv)1xd^)TSFs%8S8H_OpPT>}NJv zP+XVU(7<APqmiok^!rOy8W=66CoEHun7)u(Q=iGeV*0~rmg3V7EK`}vWMKk6^pDBF zY`UYRhTin!8$qX;z0=qPQl=NJE)Mc6=;S;`i|HFzs4ShHyIF;6I_T6?W<vw>=?m>t z^rtWMkrSVu;BS!4VrXDt4n8;)<WnP1&`kemsVfRT9Cf<(HWi-fkxP|%K*t_#l#<s2 z(TR+vBGbYdr%adLs=_l_^C2I|zKg3>=1hL5qc=Tzn~LQ0zs1IU+YhZ#kzi!9G?-pL zSwVFAt?ep8(+#$$N=-L7r76s0U^#tamzo2JcGOT6onFAJ%0GQ0lcMJI4;J$6%!US* z(?8ZKSWKTV-&$z<)b%RzjMHy(s|rkycT%|mIsx*Ex*kZc;A9=~?GHAB&Tr%8QRSM> zZmPvMy@W?qXu84_H9bay$qptCOoj%N8%&g@-{4V|ft)1A7%pc%{r?sfx#<tX<;15? z0G%XP%d09ly+KJ;Vfw)}^58=~`L{Q1Q*mIN9?7rDEnsYDid3u_8cYw=Qq`X<WGS{? zX@`na;PgL&s@y_G2Idw<sLC2SRaKbHK_@#-RgDlfg{Nk4>1SvFI<&S!O~JrR^O zK}UNU8larz3Cc;9@SMS^?*_`AlMRc4!G}YFN+|GgoYOtIRVPmWDXJ<s{eZf*;Piy) zs)Ex)#Z(2R-=C%u4vM?RAkE~-2E}%ahSLM{G(qLl^uT`#iqmIHstQei06jE$2D71| z!S;o%da8`fhK7dI4J|apreD~p`C)pLl&az8M`gi`(*^nE#lVsioeXU14Gj&E3l9ZD zLqoWK^wSLuKmy2RhcQS1x$H0j2|&vZP|*Q8q|?w4sq8QUDS#K};IhQf2v&B~bAk&K zL-0w~(89({!O+kM9^Crr<{&<jBP~FDBu6@e_(*Pa0r8QX=nCQ^xzG*7hdOY&g|O;< zCL{2Xn6P6)4W~a;u@alSp-K`|IQcOd8czRsMO|;Yubiqls6?86T27T4d{F50M{=q{ zll5yjrVGo1a>4=?F=j(!qv?u_hQi<=2A}#Vp`Z#Wk*0SjsPard^-_ax`a%U&cX08; zXgK}AD-DV1k%}OJ*BWn_4UJ8wALLRH1=(vTV68WOo|3BMbcLlVann7ORk^2kE>+=W zG@LFtQ%irkzKSa3Kv5<`<LMjojm4(_Q&u&eez8eMZ2G^IrW;rc4UH|P>qo1LF&a)k zxJy%ivS5qE^b2D0y&xIO>4t%FV0#+O)$~CsrYVR`-!RiUhsDs)!~k5jfLw7glu?h- zaPo#W@#*z^3TYro!|59X4Maeaiu1HUS{=jH#ioN#Y@Vg9$}{<vJTJ4Mq0w|k1yu<~ zlgWV`!jNKVrH(43SOUu$8mQ_|Kgg{BI=49jWUR^b#CUbl$&GCWjE2(<_bZA`U!bVE zoyo*>@`Dz!>7FvG+|#R+RMjR2c8g6vAf`5%+0evnvf@KAW<w*(=@Ylh%>=n<B8P$= zv!S8Mc0(0aQ^x60hN@fwMrO!u8$*-njSJ*KiQfb%VHzqJ8k)iqCbZ%-G==9~{d7Z6 zN<tI_`sqfXv~7x%G>t&H0Z}06ryGG1uPIXEGy<hwQ%LIc2iMO=mLPkP(x(w9L4%K= zhGqyOu)RnwH3nr%<YofMS~J7R4~5OA#|tZPY(J@{D#^%bHhm(WndS7mi{zD<4Gqnv zJ8Gz|o$h6<3a(eD=b6A#ahnM=6>m3zrea3J>5NiZV$-WlRXwIFyw-TlY-nZ%PL<4t zhNjaS&DHd#N13aNPyet)e%<t$7OK!QU^UHEji)zSs)%m?s-Tw4$Y%&{M1YTcH8wV# zenC@JY`T`8oC?S}pmTSp|5++uFJov3Zd-tr85&q17sICDgL4@Tr(fjO6q`OnS*>aM zYim_*enUe8WM$J08?E#}abGBDC^kJnM&Trjp`p3q^h7mzQBcagX)s;dMpb<J0z=j5 zOy)+ATG-HZdZCi4{&b^-dScTHRMlop@3K|pp3b>bi;vN8x`U+#C|w^Eloy*m!C3V^ zqxtj#6IBUDv+0Z~s`}G~R_lpPH^?@aJl)elm1jDqx*Ff)k9Q5249%xEYN<kU-*iiR zRi5eQ(dv9mhGx?z%9zapInj_^Q-6AugR1287u)4|w>OxpN`ublo@1dZF<sEk0D2BC zuaheD99(s0RmeHGHadE|)8nmFS5B{URuzYwVcYAX>apF}M%A8?*8)^zg2T|r(sH`L zn=0fK)v0c(;8R#<O<(P<YB7EN8dcfp8Xl?=kh+u0Q`KX-Ly-yJ_5}{AqKv#2pmYc^ z#N2Rtf)~_~m0mDI4tc9uOiyrDm7Ct~11ft!6>yfXs>k&Ex#}F-@4Bd_GERTzr^>}_ zY+^e7x1XxabcYrtO_0AA9@BE1{NcUI^qQ%v+|y^7sR)2iV`Vg)p1;r1diwkKN}SW* zyQ^AF=Tx&3m@cs2QhNIS<C@#1PoJtPI9;JfLmqT;v7w5p*z|~xN_^83JXJqSfv+`y zIM)~@gIi8l>{PO5HZ-)HuDHX}o(WVGozYUBeq*|-&~yQ7t%XcR2GbW-7&uH<@KaWr zF8NeFVe*Bq5|BW(ouMi?S>c&HqtSFlB^9ylOP;AaGBO((7)`%uBQFXv>!7fi-t;fC zRVB9j`m0L0)SJKmC!jOSSYi6k-Lb#+^={u=6@B%#{<D6;_L+{_vI*@L_V;hyw*1w; zU&ivj*+1?0KU%yAc6%-<l&=;E|6Ti{EOPC`&abm#9(>C0Wjir3$o?+Fud8t>d)U6+ z>fV+#FZuO{e|vYNe_X_rC%QA+HL>-8=l3e!`A+NVlM<&tPSdqd+P%TP_IG&fjdff1 z>%O_(`ZwM8X#JY6)ooc9zZaZ3BXxTD?)3YS`}fyxt~)-P|DOKV;^!aSr~i5R<NtZ@ zeJ$0Bf6q*^zyGgV=jZi#|8h_6R;};&ylw0J`HR0@E_rAF_voL;#-F!)Pf-<TWQpVb zb$PnsTvbIOLvu?L<U^c|45l+C8>%oH8W~JKFjX}|)zAQ5M?;!ShKQrO!97MpLjyBV zmr<eK&;XR|z@;6e4P|HuO3W|;P$_Eyt*|*cA#Er_b7TQf`3F8J9;U@q!O+kGSp}$3 zf!t$t0~O4c5EawQRJDDWjSP&ZU;M8sGQD+ys=##r>8gs;7tB``oGu`#%Ll&10_?Sq z0$Rz_r5345gL{F~qZX+)f^MsrF}-xLss*IWcWSY!1f<b*Yl*7oc86yQ7K|*0MusNf zjvk}Y^o<WJpt*eYGS#-}1<Z<*rXO0a>OFamDfe`q`KnW=FIb`KHT}UvwVBg9SE_n! zKeIs9j1iRlCuW(5ZkJxITFNp#LCcD3`uZ<w!qZo;S8W4vCr&@GLDgpZhIA9&>D((+ zr%u=3sH#2vL4>0G^t-#|&6x~Mr(cX=l$fr!N8Wcj|0Y$>$^0*Qx8GZ-s>TRv0X3*9 zh)%ECtSU1Zbolbl&9EGQX$z#-kehC|6_(=_x2bwepL0{4bGz<3Rc*%U`P)^wnJg@( z*KAjnnJ%zblOJ>lvkas0bkL#k%!WqB(-(qHjR)nz8KzR;d=D0N)YP_^zQ9b2W%~aO zss_`a{#O+M9U%|N`HV)B1;q8h>I%~p#kWUpQsrWl0QdVLS>6OW%TG^?V$=rrP?(KO z45u%gtLngLGTqQrO=;?5HEHmX;-H-SQA*bmbigp@be>Xm!RhX4iel5VSk#0j`*&TQ z-p;5d2<}BP8iAW7(@Yh3rk89}{mp1Hy<oel1n9B|CPO1o^JDwD?W$>R{3f899PAoH z3j+hg=^r`NWG3%FF9s@Jz`4K(Icd8aDi|6WKoT7nC?&fafds&JuPA01!rLB@OkiXP zZ#Qs)E(tI+f;XF?nZU>hS%ry$p^-7N8KxisWEEx#hDIg^(+gF#1DT9WreFB4DmtBo zOHBZj#ub<ijZCI1KG#c~9?7jHG<|`AhUWAS4-K@YNAjo%O;@;O2)?pKn90Z#-2Y=V znm%!gn)38zylR5e75e2DG8-D1ZvR-Tpa$x9sR>Pw_h9@sJ(*9<2y|tK*mi|JHEYJ{ zIRa|j)2k=T^G=TvR1=!sud1q7Z)6J3{onx)BU5+?L3$uYh#r+bcznYMx$OfQ-!MWM zBLVpvd5i=U$jCz^pnyV*kko^FAV$a|B%p9Y9w0GSFf=kla-;=_kK{;45Fe?1=AvL| zggiXr3gRO*B;7!KSP3`%CXcDkbcJAbiRrb%sxz65%#EkRFD+m;G%}ywz@b(<T|-C> z)NWhBWNteB;WT+s7DFRbi^+;L;?w1X)xe`6V$(ket8q`)WHjWS&LN^E1U?yix{`<* zr1t?zxcUzyrmq%Ja|d@lrhAL3K}SB4MAbaNgC5fp#MHQ_XB|`Ln_elV<^k?@FoP~Z zX<VuzIz2~RO>o*(b@}O*5^9is$Mk$jHSX!0vRZu8IVIGLrW;Ahi%y^LPGb|Zk%bYs z<1zgeryBS4)ujfYs=;D<;Ysx+%tjW*;I0R=p^@3-!dg8hBMZotFQC2$v!Rj2bU`6C zaYpdi3dq@tnqttNhmnOTwC7<28DBB7n7)u#L2SBCfWa;nLn8~b=^K|Qi-HX{<QD^J z7St92_dP(e=F<b0DvM0_=2PRDEcHy4(Fk-6$mDv%2#}-&xbwke1RiM7V>Fr$8ZMds z;giM=CL@c<_gf^U7x~EPfsFj93+{eQVX`y;_dY;T2I+kmO<%}r3|8|{Pi%XDgqi~5 zbS+giuIW{hYW&kx)YJr~FK{x@tv576R7Q|QZwaq0AwzaXh+$Mn&%?+PRMvniI7rXK z2;BOC34jtcv_6A$D?o|X5-CxF`WeR1p;&u}5=R9?W8@n+j9fqhu!PB}pAPDI7#kpU zaEy&WDokKK4T0$s4CF1Q%gd>-PUlls4VWGwt=7$CY%qPIh=SF0c^Ne&M&s!p=jw`0 zFNiYGpKc(kz%kuGUWH|P?tcS55SL~8QW-Vh=@RPT#JzmFjfNWc^jETK{L{lU)C4Ba zZ{nQZrU6af%*F;5;I1{J;j};l{psFXYLM$U7>%bV98;H=E~BMpIK8k>M-0*}S*5K8 z>6U=Y{SO9upiZ)5pt2aKbCSZyYY57b;IbRkH!+k`6PvCb3`(ZPhSR|pT!1<!(uT(1 zwg^}qYUjjg`oYuc`b@@#lLI+KL4A{EN$^+-L@7!K#dtd77X!WNANABEKz)#D(=834 z*#;C?3++_&n2ZglU$mDO1$9JbgQ{xAomyg`3RKV(?Cy`J)y1Y~si{q6G@PccCO%zC zMU5ML3kjp)bjLNIp)h0Bd(6g$=F<yJRK*yLrz)!JgTh|OOnmxW4YgB@hSL+&<i)0Q zs;Tiz@6uG8#Apn@d1Shiv6|%cxi{50w&!Z8sWDEUWugYUhrxLIauYS}=?1oH^3&g$ zsI@{`DNJT+&<2K=uG-Y;^UT!14UFy6>&(@>wsY&N=`(^VmiH$$L2fTxuPQY?VTPL8 zbQ?>x2G9WBtm%PPYS2!|IV&}2CuD=Qn#cAiV>JgxUhud-H~@_e45qW%s%cMGuvC+o z?r*Es3cpFHV|u!sn)UR8otC`Qz0K5ur)%1)X+t^-JPv9e+mD;8DKbv)byVYKGP9gM z%TW#5CIOiQ3erpF_RNOHur`VDbVfv*#MpQ`qD|6orRKnBJbmE`RV|3=tJ~GUciMn; zgW4q1v$m;nO=q@I`^sc&IbCs@hS>BsooYhU3m&WMFd3Un53p5pgtS7Grw4VZK`tl) zb*^{Ifv%6@m|n0*&2YNbQ+1{3e)}{9rr*7+&NF?3j-KH38@*~m)8Ff=U77x^OHBaO zC{X}6Nv2;|smfQcyZ=&?;TAqd`Ckk2><>)5wsOI=)-^JJzE9nf$0h2KlvWnD`tFjq zeRIS3CYf7z%gOe5d3T?#*~;{=M|`Q|c?YeBW+MKEyltxY?yT=Vyz=tnGq0o+D!;#a z^oDD<yXE|keX8rj7KQ#|+I@c8_Z|DCKKBY|v1?{aO|baobH2G!Qmwv4<<_^kUv?F} zzE}NE$u6vUg6o-;Qik3!XA~~*{c2j{_cv>S-OsBAS3b>;oABDEYyH8t7kfTk%#3>G z>)<LFc$9NuSne&`g+|Zr8inltnRouPNn4@Z`Zp4LZPY&rthZ79)OcdriLSWHt`!QK zcBy}IaZPjCHc`i0Y2_N{ZBt!aTjb`qbKbqBweH%lzGH^R!rIiddbfMdzR41P!#=ET zX8dHvW^rEdbPzlx1@x<lO};Is!enR+ZoR#6R8w%Szq;C<rFSV;#p(se{kMGF6t2Iz zDl)0A&tlHc?MdxF9fLofmhaEfcmFa~C|*`;&GOd)q45V!7oNy?vZ&z_*UFiu*S}1O zSGsR4S@%`5@mO)=)J_#8&${&wHJ80xEqi{)-r|=PdD`3bxA7Uj6}sEDJw)Kpx0!WQ z^5Z{kwaq;_Kkifg*1uD{|J}MgfBK&2Pi}LjudV$pvo(KN@&9K+pU<B^v;9PqZ}X?s z;okqAPRhE!r=dK%ekSW5$<|3<7I3Y9ywH=$($rHy+*jy=>tvRaiz<w@p_A7<UG;#` zQq)GFy@~xnzy}5yt~lMli#)UP9|cc;e0j&C(l;Ny<gQN$_^^3aitj_s>g-AD-k2kZ zj7jURnCEL(%=+~^Ym$HJ|3$aEvfn<>eY$JATbr5zBg?8(4ogtrA~$=@%`Gga^G-l* z_No{m_t(J9Uc^Wnr1NKFIz6C6O{pF+zy@vgLI=md?PE7k(+zpz5j1>mjM5A?Q7|+{ zX$G4r7#gEAgUvt!$jxAL1w&&KXhV5=xvI7|D63uob^R(QsewCu3e%@dR1=zR@LVqp zRB22w(69uzg~5Zfg0~Dcr+@HK7oP4nMGf5hn>jses+u{d_xEY~{;6u>klx?9X=)yj zX};;&Gt_ve*G!h@neH+}O$Ku5N$U(X=m^jJnQEXB9+Bzd6V>Xcf19ZW9^5%Qoo%+7 z`}7O5P5HK;pQNVF$Ych(EJ{ff<RZZ?J)P+dAJjyq|C|FWTKVR|iq`IVu%b10zM98& zvFU2!pwU3R8EO*KZ!J)R7RnL}VLA;Ksab&T=aHTMd=X6N>BVXupbO|YrW@SUX4@V; zTg{763f!oLWGa*!oQ%z<D{fJhgOt@9i`5;OjLkvAjiS>F7OL@0Kl50PYx*uGMZ{%r z9UukZX(Dj%&u5;R!}Oe|Y68>mTd7@|{`|3;0H~eGXgpc*p4jy8O{#p;56xHm&ub2f zMzH-xCKl6wJyny17PaP+9Zf)my7}Zr6UFJ7&(vhVJw9ebWAo{tOC+cL*8>-}6^!Q7 zKmO2oG@b7`s3@;jnBMr)NDNk}PHHmT!pRCLRHuOpRULUyp_<7hdLk*UJnj1KlPhhv zM_GE@d!u7jVxXm~tM@sJ^-u$}P+g}{cl3(%w2H#*x_ryS`i)m-H$1uPE}m|F!}dhw z0qbddqB_G~a=)?jpL_gn)){lZ6|zg#WI8;0F?U||=S%+e9G+9&M!$S~Dz|$5&(l9{ z@HmMXF3&rnQ)sx?;r46pO;%r*H~u;~zir{P|BozJwguLFHA{Iu^}OF@qkJZ<t`04~ z7al8m{K9>|zAn%{ae2nE%9>5ZS3b=-;au}+%86<v`OY;fxE4NgIodZ-=j3LU^IbNl zCwY9bNx8ml#l#Qm6V<m%Id)x*vOm0Ihs7QPv!x%mMH|mv!1bN|X~wi^pgceQ^$Rtw z>6vW`yrA^=kkwR=(Qvwfq`dg_1LrhZrmtD5Ccri4NS)s=hMx^{Z%jY7RL!CO_4fLI z@%{DUHuXnBe%}2#y+%O($9em|{}%rLao)b}_u2P{ANT)1T9qXA@S^bQpNF^CPx=4n zxcN$xqXzax>pw03A(*cBa^f@h-rOl=+h=5Z@7%ohi{a8EJbwdkxyz`Y-XC=4@8a(< z7bf=$9AkE_s_|&Ov{>50_V-)=`*okKOWrA~`b%b<=%4>j;jx0}m-@P2AK$KL<*)zz z<K_K*M?Xvqo)H=~asQvw(?bGO73#TPUD7{w+{0<6)i-&kXY!xiH8m$&eRHh3eq_t6 zlzVC2Kc8p6%D2<l|99)+it8?yW*s}Ovv;ao{k~<NcAL+w_5WPHx7L4UdF~!%kH6Kg zbLXU<6REGe^YrYF?CRs}`TswZiM-#ZQUASkxmV@&BhhXZ!Iy8_T|Hs{=diyTTaf-s z<@&E*IySQ{oaZ4jk?W`O^O?7mSrr3TZ;pAC&?A>*_E6QnI=}MT@pW29t?ZLz)%b#@ zUzNZ8Sb6)(PY;~>96Bs(uE;!>;eV*aVLmZCv*rXt$`bDCeF>eHl<N;YZ~37kP^UEe z$$id6%cf+$_@lA0&A|58+}a7M{1cygZ%+4g;}zK>A?LIw;HCT4^Y0aH_Wzxqe`|)p zGLb1OC;3n3*`=z)_+`5OE>(%?0zsyN^}kQNnZp*MV6bByXN`tLYWm3+V%uh<uzX24 zd|_AUhKJVz-d{N8btP)|S<3@4yQak~;9K~$O;P5@PWAL9tGg7MXGG<n_C2s{!G#i+ zlAN&c^&hq#+O&stoyy`h4L2QUopgLMdmHzkbDr;&7c<3+<=mdyv+47$`-0w^-bjA0 zNc(Ty&M#W}?{)f~Q_G4)*>4<DNS`j?t|3~ll3>)Ab~SHqu0Zm{*!{f%i(i;0oK5IX zI_%0ODlB;`xmiZ{>M16DW^aC{<tn+}5h~dydA*_wYxI7r{8?#oKwztml($tG|Dy1y zm5J#L=efnCwr<$BeHx2TYV)<#%uNO#i*G(RH;)T%ReqHDM*GyFds<h-XH0h1)GYmb zp{w;^-s1MHdnYo7u@>IEkgeWWEomvXXk&{>*TTEYB2tsLEYz`i`}A+kL2st-FM9gK zd_Fu2c{_i1HM`4I*K2<#-QzYl>U80Y_%SCa@{HN66IZofi#0#lb@#5ogisUyq@~}s z3fRoCoK)HGGEI$5=&uEv+4PCN@*<4#)0g?m>(&2`(N~G@4oy)wJuNPqW#!?F!Xw`b zV%P#SgiCiBl?k!m&hdOX^PsL#w_uWro|MT<!EY~=w?;&5RlGi_g#TPX^MW;N6es6u zJ&oMy@v!34qSgn7-<V8~3o>V{PmOAJ<1Mfji+yWu+3;QETfnz354v6kx?FwSojN_F zretMcTinX&tM{mKZ#NE6{l&z{zFjX|^*ZBpJ#kG@M$zf(1r)6rZKpSgYxXi;p3Wzs z8OwNRdX9vqg4iF0Sy^U}i*vao-QQe}$cbLk6vXvZd^)d?;v7c9>GqPE#hm3;(}M(7 zNPYP-eYd2hJfr&b+mf1781GFlkkXW5^q<}>r8!INkAh!hkps{6)!%ZZ`YtLsZ%eQD z`8RjEwX~++^!p8(iqls~Yx+z7Z0hHc^?bhcW!fXt<y{{R<hdX6J1-=5+8{c9x`>RX zrEqJRoP5Nk2a%4))3Z)IdS~$O7Wec78O^}@3ehQDN%2$ke{0RHSmevdB{^5Be>?xb zJs&nT3yRxuea|=C{Ge2TiJ7<5LFn-VUopo{m&qCx1-W8*w*t>MHXe38x@-2E_Z^=! z3L?#Sxp4dQaaSxkkZ7;r!QIdFR%Ba(yIsX2#=pTIC64dVZk&B7MsB$+<6(yzZ@r(V zxKB*HSbz9Yn~>d$hg#J)3T88i^0F)OxvV<9^UVjH7-lx#YrC7p-`sQFEpGH!G}OcY z)C8T?`hoqW8a?83mbFJsn`)anK_}K}-K(t&1?EJxOFS&DZ1&QsjgnpD{d9VOjN|1E z8FDUfU96-S&aJH0VUjfzS)25bgVU?qUT=@f<lc+|uk`w<&4Np<Z<`)zmik#_;JNF= z^5cTL3?jd>c87F}F)AcX6+2(XcvM;ZZb;7GSF>hZmK73b`E1hr@ap*#$K&C<FE!`= zt*SV=VEMttsU@!4?ns>2dg;O$TjM+2&wV0aul-<}-phE}`S4P1rKt~9nzGGHHdb1l z7OPsva7tbH-A!X93#rDbKcW~-&Kk<*WLNU_K8W2A{X_U+{rrQR%cna;$&1!My(j$2 z_r_BD73;F5n67nyW^;Ic@3o@ac}6dC&Q5-IZGyvbvj*k79XanM^WK(3J(XswRz4TI z_B1bZ&eU&@98~6VMc!;tZ(bH0{&H=d>O~zvZ(Xr;=lU0M4f)|28q4-py<WBE<T*Lb zruUN~r0>pQiQ;k!@x8?sD1M07iJR~A!}^VhJC+@od044OT<6y-4lUy{?-$v@?1x@n zV!S#rsrGwns_%->x){qonV_jB9)%u^unN|b_vYwyRIe9xFlo}YHDUPMU{?H4Z<S4= zA7i-lNvWeppEWaI{LQn$C;Y9)Ep?sl4Jt2L7=JZqU-`9lWzm86JPGF43R6=jwN1=g zWp-)$dPVaHF7=Ngr}uOn53)ZoT~Nt9jL~X(hLX88qtNsvO6GQq?$aMDnY(cx-#+ur zpWmMzp8K(Lx{0!RAk%r(>0ND__5$*SF49U(nT{?z50$ns-9I?}W}BwGpzd>yyH-i7 zuLdg#Ut4kI|Bq|aIombm>jRBe#HsI&iz(+3uj$t7*L!(MqO7>@kzfC`2U$+qD>{yw zUlN!ea;R*<iT6Ugr``B!^@d|@^CzMFZ5wv61&T~t{qg_@)B3VS+Y=a*L%F#&W=-99 zhTBJLg2$KUEP<MfS&7-=+>ee|db;s0T)xm;s^wmfy2JiMCcN?s-Cyl2UTiVlB~D(T z-fixxEp5dUul-{^bbryL^9R%KMXuaXn%>a$!Q+u5Q`D)o340!>-CXH<HD&#!XM6J2 zwayc`lqvo<=%tuJ@dII%OR43Jd5`s_%4E22Onkd@@{Na$5>-t*FSP9z49wNK)={va zckK#c+1HJK8{f084~{gudiGz`xs8`spPt;tXrOzDF?71^SydOt_~}>9nkd%K?=(&D zC`mj$(Lr(7^@s<@dxM&`yNh>nb6&pwaLp8vHCMLuJ^wUo!;hU$gkLP*)YNHtcG84z z-}7JdzBUdyb7!B8DWB^Z>)zjOw~uGu+!?s>p!b=ymu|)3Cl2W-UM#Uwef?_t>W>M# zbASF?kX-wBPhi#RAGJ%L3rN_`ITCi>T&<Mnl-;bY@1<**dS5QpnXcKXsqH)K{)TDB zf4F;WX8iiupKqyn=^D%4uv5P`mKwzQl}*b`R7_qMQ4q5>((g=D!18;>&NG|OG<6u< zXpl9ui``N_$1gCObEadc#j%UrPwwxZ?x~{L!?s`b#NMALrr%c4^qyYVrK!Ls()p_X zx6AaJcxx3c_SK7vr`asHx-fC>&EAvCXU>#)aNJ6Da**NMS9}kmZC|{+zw%wrW0O4_ z-%rigkYr5Wt{|_d$S7TTc*-&hsoTD5zpi|6I!dnUvwoID|J>a^Uiaju$0#UzG0vO5 zTtQKjQEU4}1;yEn9Py7fs_{Mlw0wGrlA^m{f9CI*yKmSD%nZ?$ynD*#<KgK7S4=z^ z)u%^YF<H+zc{<ls6DR(5RtKISL8)pRf#nJHyH8DTWYv(FE~9JiX3$@HUF5mao<BLN zm4>D>&kJTog!8nnc+Tm{u4lA<j*0P!HoXM-Ol^hQud7!nZ`#*0ea=<Y1g1OY(|=6R zOyVxGn4ljX+xAB6<I?G=6E!^p_aAGGmRZNN`2M$^Bm2U(=;l>aZOJn<nXvEFhLrSU zUN5<w=lU-Gux^sr`iiSNHs0M<xAw)u*5|#G;-#7&JUbfbYo6a;d$jkAEe~%*KTnC} zpBvNb@>IJS4{ztnR~2N`Fm-l(q-L>1s62J@e|wv238H=Ok5WtAnyxRhZ{|q--FYi@ zyZGxv4eHb9WLT>kdg>T?cK@IDyEbiyo5<Zsj~F9L{$BXikott@#jWkW&Eh&rwX2=Y z4PSF{6n0p8?5{VRUUJh!q5i_F&Cz<Rh3htUCh2kcL>6w`cB4V*z2BaFZG5w0{=WMj zSHQmYon8Kk8P7}}xbNRpwBdbxK;M^?9fD>O8mU=R|0#48oNX4I8GE|*p1Ikq#Df;i z8lRGq%_?Vf$oZZ<wY*4B_}qq_%nRyItdg#o`H6A6;i|^)ql!wRCI8--FEZ4czI%$M zyIQ@b$Kv=aTN!kEukYjNlD@)vFGcy!4~dN|r*kjFb8IkFwNFZ_-8o%js-`Btx6<6( z0Xc{KbEcdOj^3CsU9reiEaP?2g;b`s_ttDuu1E@Adq>|c!BBIXOaF17FESiISDp== zIw7<7)FbJVZYF-+z=q_$%&b%Id>?(hw8NFr=UvI-sC1Dn`)lOAE>Eg9;fr1zc|p~~ zmdo)t+ovyTePvINZLxd%P1WZ+!~6Hs?@iUzWxPC{XPTx0<Fo0y(=^TMYl3YZZpW>b z2-z=l!8E1FlAGsfV$V*?WooOPmItrbmk`cgx87W8W$dQOzVTm9-1b(uHqrS^vGJ); zu1-Hoi#yXQjy{n$ma9MQHZzZRqTd!3h8I^DUT?KLA|?9xW5O$ulRMH1YNHFjaV<HR zb^LtB)$I>Xgarkg9Q&KNd_7Zt0*};QgNBRWUkQAUYbl&6Rnftbyghrb^vSCDu>I2+ z@2Kh~Om+DqyzRpgn=7k7OLx!c`1;kYvU<_Rl;>(kjv9y^t7+u>{qJc~khuTTYqJHq zmds<lY5SS&gYe2}0$e`)$NyQHFkfSuusF<@mwCb^#f$%rDyz>b(VBg<z4_BKfnwez z6;r2oPS?z<-|ga<@jA3svAu;&Mkp`gY?;HB?a$fLSU<V!k?^R@dQr4Sti#E=^IoTb zY?fHmY;mrfW9uR=en@LKZMi+WbKAmm658yFD~xPozA_uG;J?nzx^MnDtq*?|eZM}V zi>>EHkfisUD^sTR?%62x^#fC)kLPy#%$P<I*#%;``pJx0a$MV!cHa7;9QXQS|MZ3# zn$nExrq7w7shjpcDeFpv{I41g^Y=j~n)#gcBAFDc{|Vf*-29w>M(JkjX_ZwS`Tup| z+8FZZ2OM$kx)T<{av()JB5aS*C8awGUB0`myEZ?ZbylL&!dPwA?~Ev;L*-vCs80xb z-zNFfYa{n}@vQ6i^QP;VnVT_kPv3vfM3kMiTl>QQ-`l6xo0;1Rq^fG$zJEVe?rGNX z#A}P+&!2vNrlu0(#_8|P%q7@<zkGdcUi@@kb8}h7dDFGc%@r8$Pxmo5uVVC{e%##L zjj?|^pM|+I<K*c<7Um|5+|%1F%w3rNPnsT3p&H2ae*Sa?OLGs#`sr^fRCO5NZ<nl8 z4PmMe&zR^hdX}?<LF`J4f6{UZ6|2Jmp(YL!)150iR)(GW))O^rnoE&eQccyw03I(( zKc_f(Yd*#6TNtiBuGm#Cz$K?7aH}vUzTssOd(^EN?qc8PuIioY_j&gJs14=M`Ph|Y ze_N_wI`4MU%iz-j_9@)_k8U1WJm>tfgW8$re`MAfGo8|&Ui?Hgn`4syq7!Z5>)%g* z_C!@P@o(*OWud>U&VIFT17qvhd;(U@ie7b9w5;et_gvXkZ|3NpN#4A9Q)cm-JHmSA zmo}S*GptTnTXvU~mo@C_sm<5-#%<V^Wz2GYV!__uO-bg)GQ0u*J{9gb{;u_(i)+Ay zTTJt&7d%x}sE>CKRJ~xdA<U#x=-vNhz7EyXg12t{+VVDew`*4aq$@sAq1!_)1m2P` zYkHM%*{9vM^XpTcyZ0YS?0ds@LQ&3o_gP2b^)udD6>qYd{cCQ}d8xV@5tB2{^R@2v zDP2F@Zg^Jf`j@w{+b%j)9o!@Tal!5TU%$Ng=&xWodtKZvg9D6;^{W<`tGnx$_$>)u zrZl}pZY9g?LsDnA&iyrSoy3*>E845X-Mn8gy?UMgMRZcX+m1V(Gm_Je?vI(cpnk8n z*5BJ5`uD|;?O64eE$m$ln^Hx3hW@WbIvTElmp*cRys&uA(+ry}pY%La0(o9<DVfT1 zreX7)P`M1LlRMJxTzD#B)v@z^z2Dnqmlg>d$~st||9m`@>0fz~__~58(la#Wn51?s zJ^Pt^=Mu%V&xhABvMeiYd-=tAz3r4&j`xZdTskb?{L#1cx*|i{)Pi?+W*yMJ{_WE} z38_=fzqdqgw)q$|FSR^o2Ah*_+}n?;pV{Nej{Lp1WnR+_3BP$85)O6w8A)v4@-_1= z<MQcz&sE)H8|QNcTkc!c&}_Ef%=Cxe_2qfIYX2^@tnG<8r)MM}se7&a<U9lJD;ka~ z93ShQUhc9yt!M4c6<Zx+eD3K_leMTbknzj+$f?Mh=Jq7WA-blmImTK~ENaGG&eZR< zp3}7@G*p=H?~j|V_rgSV`maTrJdDEA6JD51kk;1PT(QvX=ASwd@BME!#F@N({XJjq ztf%om8~y3rFHN)@Di6!9JCyic=;ow`#W$v&y}G=)*1YT9i$xjrKjSnfy>FA*VfFQI z>D!k@E#1EEevhBE-&^a&w`p~h+@soclcrkfPcMCGqN?+^O6+w06X}^z>wJA@FM8Nq zAf(9HE>@lQ=G9i_@YV*ms+Y>m{GYwI3tpQRKmFKClOXNqqFd^Wuk!QDJxcXes1=sf zdQ|gNJ8tiy-yc)^)cCiQE-n18?9#1clzKdUy7Ma&Bgv`OvsfSAzjN`!uB*%67fyY= zb#Cj^Ew6%~ES=u>%EWAX-YZpmNBjOG`~sJ^7TuB6$<*4;K4B66InmnPf*$YWE*{t- z*==~T>apO93P<6oPN{R2XqPEh&fhOta{3YTyQAmWUPT@FTsZx3m34~Ct~-Vg>fV1# z**h(6-`3-S*PYbAF4FtA(`aMk8P&klr`d%IE6@GrvZ>j==<Xx2nf7<y>*_bQl&t>4 zp}nc4qfV43ZB}LE^z3TuV#ciL_p7bF;-v3BYSlY+S7T#h^^3d{&F)|Khl^diCBN_Q zv+o~29{>MKtoqqiPaDw<LVf~|1Lf9S$m{-AU;o?v=lS{??*0!AubBiZ9)6tv|JU33 z|F1v3&w8H!kE-$VR}J44Yz0)mIZx+$Yf?2`V}+(iy**#^#iDGpA1h8SkIW8!K863r zoc*^Z`0J*wQ(XT|$w0Cwnx8T9{HciKd&~}>>iB;0Z0Y%`U){`6@3!Z}lhp^>3zlXd zy&5RNfAQsnpPM>LdH64OI>}g6n=w38_fz%XcFu+Q-kb;fZtE0p-7xd?*Hq($uRo_< z&n}p~kzds8zkF2v+^LUNR$aTY@c-6tIWw|T>y{_{01ra$?szVzv+c=p`<m{U+x17! z{3{l@vtQKq_j39B|Dwz$elqW$|Bp9+zRT$-IXU~kr=9-=S^vMZa7y}*3w7W4Q!`@E z#LBprmb(7sKGfxXoH^4z{^tFU{1(r(YdA{kC*HgEb=%Y*-@_uc>KEmny0gZ<<qT*% z@xI-M6RPtUJNI=QxBvU^W7D7K@(-hGw=B7SLw?H9s>s?`u7Bn&y}IW6&55^#XMEZF za_zl{;7cibGdqu+t&IJ6Pw(DK>7G4H7l)huJre%Qs%9U5@x1ah^@H{jM-SXSY^(fG zA>PN&^}VvU>(u_I3tr{;RaMy4|D0CoWGD3X<D%>u9)Y>Kv!b}19gIJe+jh-kd#LCz z?_i1zLqp%ohl)WlyUsU$ZOgIRr#O$vHI4O_?W4eXIvZbA@vU)D+gP0ZBr~94QuT_1 z%G)kYadI=2TQcph(V~muFGP;s^JQ6>*(sj0Z-)2TzL|!5tKya~je0a=v0Qj&YDN8{ zxSVryVm5Q^n6NRM<Jr4}<Q2a2ZaK<w%;RqPG~@1sLZkkad#f*d$*@G7P<Oo@sI=|O zszkQ@BJMW7klbotpVM#j{I*;_vUP7~V$kfJ4j=i?zFj)G-b+@^a%yhgr?qn1tp8fS zsXSIFakKx&hCd6>MoP7}WeeWDVz>J3nbVO|)9e4`yj?YgXG+JWV_)SrZP7HpEWPvO znRz?Z_8v_$32Z))_vCBu`l8pX_y2i!H-4JO??<!0z0?0Gf3Hq>n$Pdavl%6=8g;5e z)OZi(SO{0Y{keYP(QAbk852Xd&$FMh)$@vybmBkN->3dR3Hy-O6S`9DVM8{@o}V|b zoxZ<r;ue!1+aA{cJDp$uwe0(}FZnNjZ0ogme7HU2r*LxR?v?xBe!Bhb^p=a=wL$6s zRih46PhIp$pLyXC$&ZWetq=Zd{<n<v#-Hd+j%%8R-?Sd>FZa#%`?1H<XMc<Q{jcB7 zC;W;x>vZmU=sdaTip<5p^YwvecM7bq6n2;C>|gMBewo&{#5jMMe$M*B4<<j4OtiXG zrev>vZ+Y9JhT>Hxl2|{c&-yETZ_5&S^(XevKbK2ff6y#==4#(zeVLReXUre`(Dya? zw(w?Fdo5G?)-dO}(?WyGqMMz6UoZ`x^-YI4HUFo?tX_s2%C3LoZHm^%zdrqKu0N;3 z^*w?t&kZ{QEKFT_Gfqckn0xIAuixjs;kSE%QrzPn<)mV<*8SJAkF=zg{IWT&#CJeP zdwI2%kj#!hg@Q5#nLF-1TGpnpHzbd5rIF3Eys+i}ex9A$cOpeux@N<pD8qmwBF~>y zGj4hGb?PpyD|*cC0dn^Z?l11%^VQeAUD@?X>$VH8mZ_d(lkk7?LG-5YgA)obZvIG6 z`8AJsQS-!zuvWj=CvW$6oLQ9D)Y-JN)a~c&U+G)wA5}aK$Pu5;vQ|^Ce$$Z_hv)kh zjPhJuj^)?Qf6@P|`^gU&YIqW%m)>&nfv)3A$)`<!wY2YXze{@}@<ey;ipm?_&Mz{K zeV)7MRK~pL(<UBqJGEf@w2(bD8C-L8p4seW^GVbR^L6=k|40N&Ztwdid{3%2&-ef1 z;*;>^Pj7qFgBOzPj1H>B)eC5bZ{ESswua?m>4X~&Ov{V~4wtO?c2nud=h?rR5@STW zZ(X&KK7YFVJ@cY$u1m8EHCAu;Sa8I%`0>ocG7{-0ic@Dq?Ke@~axts^LB=lavMc4W z1)sNAzkXKCf9kybk4Mk_Wb9I+AO25X9{K;7+~LU_Qd=eUjbCeje7Y@5y{THFzChh= z|E#S`XYbSF=1(lve|93>X79oKSB>`_JG<mh&+@gs)7$^qx9$43caLEH@s90Gk6+Yv zJnMIun!n=v^3^?Oie~5U%C&y}`d|IA*V2Dv@7}xmIWO*%^q=zlSCz*4`OjC!_D%k7 z<JMSlS?f=kKf}94N|HPOi7$KTR##>;p?#s7&YdsCU-vJ}tul5G`*%K#<7Qid_P?Y} zAIksR?mK$4U#aEv|K^_Azy3VvY>R$3ecMB|M8*%(B_64rsIU9|j{o4CHH_vO)qhxX z_q@G&d)2)<!+OcW3VFx!X6HHE*Z%!wnYDk`xxeA{hX22u`J=;|P_X~ff;Ew@|DMh2 zlfL)G<<5e(>U%$*-`3C8eSUuJ(`_<eEADKmwR-ns(bf$zUoY*CYqqxhb(P!V=$5p7 z|8KFr+4uMVhKAVe`p5(8xkGLUKEGc6=dH}&xBq1<@AG|4-}gh5`^SX?(-`xtAK5)! zUVQ4j_H7-{n43I{zhCAxw$)aWlg<;|BeOWwCVJlM<*GkiZ|{$Co5T2b|3txnnE(1O ziyn7@ruAeH+Xf6xEi90?%7M1Y2573nma?iCqtEFZqtEFZgXi=WgN@NA^^MUd^^Fk= zHX-Y|jS=fDIrTwXfQ=FRNjdf1Os8M;QWu%tpsMY}WNb10VxXqT^lk6d5WD3Bn2jw= zr(c|=k~-b$gBthrt{}~*>A@dBD}Q~|m8Vbspaz|(U;hy{Q_u1VHd8PB89q~={Y8y; zx-`E$&-9irYKoBcPlvz2)<50+s^&P|;j+5Ybho!^z0>`_sezYi&zf%e9WqtVyPf;J zngQeVz8`Ab)7?I(@oiuJLv0e{bkMeo?P0&vA{e(ve^wJ@oc{NZ8u#?_FKT?##r~=( zfR=AVS91scRfDePPWuO1Y~>`+F<thXn&EW2|7tooR&!64SNGiB@Li3Uk;%khdjAhK zaYmELhQ(6gmE5lx)u9_eSeVr<rf(27mYF`2SzQvc0i=#a-DCT@-)aGjjE2+y|51}* zGz4wtlmji`mS!?BoPP1Sf<3dLiQ(ji4&~_+SI9|$S8uZzni!f+7o4YNJAL^-wHeco zd#ejfH!#;_pYGtHdJ3dZ(N9j73AE-Nv~Vqdk(t2Oa&<XI&_<YoB26)n3d64oa+4K0 z<QWa8A2ic&011J2G#>F$hs@ry7@8OvOn>OBTsFOySzT_rUx2#6bO#F!cE~o3OkZ_D z@ETVp6Qk)Dx67;4OXa_16zmErxX8V=mciFedWGSU9UtD#?%sN#p)Eh{pZ!DsknO(O zt&J~y_18EvFP;$dcvsFWMIH-I&kUv*gW?JQH}4Er+4Lwcp7-2Z8S$WL3>SC5UFY_` zpz_J-hH{mvt1??B2*=pHK3B9|^J}lM7qj6?tp^rS%b&;X{bKC&B(?tfwA=d(eqYV{ zr)F2yI-z3OL$jQRJ66qG`0i=TlAgD#7SwE7t)%gDf1Oy!;S>9+-Y&a*$nSXJys*Aa zXM!D>ZCOs)J}q2u?6(}>%k}pwZFrNX{L;<bGi}+ziuc=1_>M+vTw53+v+v-^*t@PZ z&kmWb%~km)TO+2&s`#-+YpcfcqWdiT99=!rCtB)?fkMu3y22j=QD#FEqv?!n>iW|^ z?$Q+7?#8CR)Um$)_bdK`O;*g89(?;DTe>Ibs&|n7{u%d=%i5STzvDSSM}Ga=rwV^B z$M?<E*Zx0Kzit}4<uZPo4YLjZ?md3(AxnLih?`VS%<{6pD~YYs&vi}F)l>OpoxW}M z++_KhENdyXXp!H4BIEyBSl9ngD(gFcdVQL@4R7GY#m_yX|1A8ur~dZe?K96W-xdG- zbNkOf&wGyA-`H|D_U~`M=$Mb2Gk<5jk2#y+S@!Q4)8G1<&o*2C`l`)d{qFk7Z#Fk& zisP<*d)$1bZpQh)?fYlcSEbY?h{?(QnVX&%rM0!TJ7j_8<6~bgU;9>Q{O0z{#%v`I z*^eKmooiqFwbXQfLeTqT|8v#8uB?A|-Scl^ko>bfIrmR*{Bf7x`1w<xnwyKKzjprl zaOdvbzsl$BUiz2${N1}h_Mg3Dd-bnXx&4{Dhv&%W|M;((_3`1s`1GLq{{7a<&aw4} zKR29?jp?W;Hx#n{TDQAfc;V^THS+&@c1LiXz5RAZhsAc~RkNqx4z%BOr;lOD)sN0k zKRVZQKW@)E@_e1uu2a1J+pneX+G=-s?bpt{+9Gjgi<0_tzEVqTek7V_8k(>C{cZQ% zC1>v}d3XDL>Eter-Rt*V_l=r9d&`$E-FKIy{(Jm#(!=D(|7ZOU{JUgV{C8#H>V41J zx85*({y!|%sOH71`{C2qe3bW}&Lc1V-+boob-Uu9zx#Ygtn|#!dcWyB@)aMh&%DC1 z^T&V2&=s1p(;tSZi_02;R{MgN*ch4{qim`&F*2FF@w^JGK2SBbfG=5wZ16F*04>h} zFGz;0@iMl6Z1Bl22Jb6_%7D&<Fh*I_Wu#zej9APJsSr#I;Omef6@m%!P6{_u1w#|? z!d#f4W*~v-7q@B#F`F0}fp+o;Pv04;E;xPv4t1sJqG9R+(+iq4!kJBs%%?W0B~6cs zP#1*kn||P<t}^{#x1|H9xO%8!r3B717xOGOFdLc}PhVJJU@<+xo$=jtmuPjN=?%Lq zIUr{_7)7ZYO?M1pgzjx%GBKWhF;HEC$=Dcjkb?>0%nI-lZxds9@Idx8m>46i=mu?L zFfm5jWB@vq!NeG8mw}Ojp$T~R3)sv0phFo<V9VG*JFh`OVgg#z43T$F2L*`<JQVfQ zEffq*OhC~KQIPHk;=|)mKivhyM{=VZh;KH%aIT8~bemxHxlAVJkevy$=cy<$nV3u$ zd}W|F9dv-h^r8@T$LX?hpi00`PHwtMoI2>B1eKM{CMK5P?F!(aWK>WUXEHIJeo;w5 zczVGC6|w1Y@#@^uXDO&~PcMyE_n1DP#bow${{(g3$yN_|r)MUpgO}S*H%(NRm@fZX z<IVJnBz2zYr??b&rn4rh8^h0Bs0W#vuuMgq(Pa9>>6Ut+n0zqJQUY}B!j$Q6($pb) z6qrm*CJR2(V>AJ8NdfOu0BO{VR+pIkQ3|AMvZAEe^aTNOeJqA1re@Gh3MMAt5|q(& zdZC)G81(Q36I00H3(STlCXoH%GU@8#kS)+R)75#W?^>eFGhH%DooBLU4c~O-40Y(q z45u^HdB7(#OxKQ9=K(EBoxU+sT>`WVVfx-Ib)M;&@#=ijWn$F1CRf#}f;{xV9K79N zGLwnfbjD(1Q0Z=B4&Cl-GX3CEQ$1!w6SL`p8dhS{9kwa*ZjVk>mt*7wZ-D{lWFvFS z={>pXGT{9-LMCQNac*L6u3$Lbaf-av_67s_Cydil)e{)arYEMV$1$2sUnpcOI;}`) z>U053mAvWstF=U?x96w}f{)N(G@PzDO@1%f>WMu%VxTZzSZV-v3wUqu`D){dVA*pS z>Jrnv@<BO}%d~s?%Y1dA$qM3f(~XMMrKaCoVfkr#M6o*W^ix^teAA1I)gjH64aKl# z%gGXTi|GrLO=YIHmBN}W*=6b;+wbS92Qf04n@(5I(Gp`cncf&|E;V_=dj%#F=yE_4 z@Nz(ALlg7qpvDG#0eL4QWL4nw1ACO&ruSQ^u}!~Mpsqe${)3X>^tC(Gg{J+~fb2n= zuDKnQ2J7WP#)DQ0dKIY)*5~p&Mr;!)dLcjS8)J`O(855&XA`!spOwQU8j|+xcW<5Z z`m@2wzAV4w=42T<<*(th*lDTJ!pEM>`FKHZS9FM<sh597)9utQ3$tzIOV%;Ia9`zT zs8g^b<N8C{h53%j24xM0uW$7&w66Z&tbB_@RFKK!+sez`U)C47EMT=Zv&y>a8`IbM zGq^@iu5tQ|wfh789zR)nNa1b6l69Aa0_>Noazy=Izb`O${l3%_S!I5&R#|Oabnnxj zWw&N;`mL1AzxtO-(WLb{^*YyoUQ25Ibi2}Rx1nkK1e>XjV#YVyHtslo%X<FGJ@t%b z@ePZoFWjdt!DFCcpa4lorbg3kcdA2HU4j<2uTybkGO?HrIS3?Mop1WOo$8QP?#zZJ z7LbEL3=S!Bf_B^0OgG!BE-=}@>k6X<IL9!WOjgtstB(!z&2BLe*!w*EOks6|$*x;^ z9RV?7HeZ@={bMkf+}<eV+{6CAc5+Wd#(@*FXMTT{s+M`nd-c@jCwKi8IkPuky7b6K zH%#Hqhjk{8B|TK{v^~;2c5lOx$-7I-EVfn6hzMm=k+-w9-hJp{q@Q_B!pYfFGp6o4 z{BZS4n|ET#bp<Z<ZxvEYd4<^5f4MaKdYy}h(%Tze^TYFOtIowAeV!$-sl#%o;N&AW zzcA&le}7`tmHASuR@<98>;8YrophJ&<K5c<bEogK^6lQk_oAe0#gi6|@VuSsPOJ;t zE?Ab`{8IMyE{}h*<nxcyW0j^q7g70Xv-H8trX{a)kLraNO%L3x#@4OT)b!-J;cc0K z^B<mUm{mJ3Y2&qiqj&n}41D}E?}X>52}eBq&Fc7h`g?F(Fq%$JY*PR=>ntW0*6J~u zOcvA@tAAU2ciqyRxle0tkM5IGIR5KDV-Led;onv>**-B$z0sTy-eB>bpXa)gYT)lV zlh^rKv)NoOOqjpdYradMh-=W4FVj9f`ET3w=Xw6UJLjVgJ$}7i|NlqU|3OY1{Zq0k z{=AIe|L61nsz19Q{M21`>ixO+PmVPY?EioH-Tv?6a{IcUSL?wGIZsw4K^JmP2QTCl z2QB2hU$p*{|3}?(F_)CjZkM{P@ix!!`n00-=$E-(osz#6Z`p3)H4U_obM5yShm+A9 zj~n%D?=5j!_=1fub^p(Yr`Ol9Kf3p6N?+Tb9}oF2@o#eZ|GYgvzD~E|$L-_%|G%lW zZJ%>!&87OTKd1NGJc&Q`VE>lwieHXg`(_{VTV)?>V|w57$*1aH=5OsaasSu1>r3}1 zvq=TZ`u_4OewP0ft*JTL`kUjgHJzEJCwH6```my1iv7<8f1WM>_Gq)(q-!Sk(q69p z^5e1T)cdtgZ=T!y@40o}@@u5@e8VOG_6AC)&on+N|Gxa^lKWfhYt`82|2w>V?~ga# zpKkYeYCYYoW+&R>pY?0XGO3^Z|35UZY`o%K<!x*GXpQ3zbt%^^PIad%pMCRil(_Or zXS$Wd;`SN7l_$^Ni=Ov&<7%&s=e9?*uWY`O`tA6)iqpBP>~>68ERe*PZ+hJFxbqT@ zQ@&rKr1CE@zI=ITo_@rlZztXheXv|;$312K3$>rtj#sA`@y^Yk-fym>#JF$!f#ZrR z7}@O2E7@JHPOo~XE5nk)aYAc)^cEwf>3bgP@(8V!$+);URIfzF)*<AINAo4lPt)t| z6pqxF3*KHjm$5(T%GX<^ZCp~lT#hG0TotDnR))NmP|nnrt{0lWH)`_kX)K#p>reUX zr~hJuW{)7lJr}`=)iOI1mol?EUyv)!WuCR0)1#wWH~vdt>xmbyrPMN}y<ELGBFD8u zX-{_G=7Zd|n@)v#*!1hRZcZ|l6R(<BUtlQ9aXWx#`bHK5;d(c%-KTnaihHsm8otC_ zILA2kk52X<??^*wMV|$l&yV)r4cyr4#QE@x{1<26k{gUmLJnNueUoP9_QNPJGj@TI zLmID!#fRXZO4EEoEuM2sRZ4g<X9AO(V9pBGhP8|C&fdVbbHTh-GrBxIIYQSM7X{o| zH7{)G)cM^<Q=OGI8#|V=f6JOCyTV<0dSHT?y{2f_>g}glcq|v?2UISbo2+5<Qz?6b z=fSCy_7?wG>et9!+`Q^gM6urFt<zU*)RU1|>g4FE=o)&}v(31F#fp;sTC$J0PIsl0 zPXAY@E++7M#-mlvg=@BEa;|RQsl~o{dgT*cS@HFE8oMV{=Nx&Ov#NTY{*E8>o+*ax zxR)_~?Gs%|oA}M{;<8cg56%C})a<&k@<Z^go);WmGHDC<`5m@#J-%PBly`2%ubF3@ z1Uar1Yn3l}e!p#Q^WQxM&!2b%PxnrflV%FyoV?IMvi^#e&H<OU@7p;oZn(Z}bPN|$ zo*nzuwByF>D-pSS8@$Bb?;UPTz3rUMyQ1`~*y+dCb-c<tJqz>HlynmgnI9@CTy}i^ zk>@GZeC2l|rt#k_4!F3z;7gBqN3E+A!$h|ULb|4h)f$;5wVKWRTJpl;h3mJ*(mCGs zjg~$$`gdDO#qtS!*^+x>cEO6$eFn~+Gt8e)nI5oNPu}YItkb+kMX5an1?J~jr(Rom z!{B-=OUK6vZOl{eC{3NvP<TgAQrU3hlsmz#J6iU>^!glj;$+Ffgw%UerYk(tl@wVW zIcMdmr%7GcUhaCrF>gsr)#2cO+dn!fJmRSTuhkI25?!6a^oud~$)VVg)I&{7>)Ixn zc6Xm;XK(riS#IYgyv#LXR!I}%--DJ}CAsTlK4=Ty@GXgnlw6XyW>!}37H*egz6O8G zADDJkDLp>0iLH0R=S1^qOhx?R1^J#A*h15z)njfR)(_7<xO2PeU!Sc(u16Sla8<2) zKHc@avAU>vm)7H%!ctw{hDWqEb+N3^RNBy@Hr>`($(ZxXB8_RklT$;NPCqZHF9BL% z_CZ&TDN}a(|5@4&997*C6&<lT3nuIN$hxmCe)#<p>z?QpN%@OKROF^jP20XLP~t#T z>71w8Vpp$ScFo>jJM-kX{p%&(^}Ijr=XTjC;<;VG>(-}ROJqfs`)&%|v7pUGK4kjJ z3&zqB+C?+Aso&2%(Y{Cjiqbvh&noU89CHqK2|apzS9y>APnKJ0Z^S-{-1b^_xZ(7~ ziTf5_%!_=|uvF50t=Jp4IFr{Rk5ZVjStd_Xp3#var+sT~SK{*%-LAWNr*7BsQ@F}J zecK&V!Rh^a#xmOcVaFfnq&lp2K5Vr~da}Q9evyOB>nT2`j&50P-H`uvLHoYoyDyJt zRwTz?obD`ckk6PieY3cMg-~vy$(5x0A+jBF4}BElZ@O4`b^2d%16Ad1Yv*bE2{p*E zviq;7ny|$9`O>NxMNP?`<~|FzOy2UEhs!`<dcC8e`1HhU#v0pa1S=S`=~{MlY;Awt zJ8wgib>*+Qnb8rqXFE%)N*@f_ws_m2R?AbB{>NMEK5MuoWz2opJN?BSV|$&5_%+ux z7Ni=6eb=~g+$m{JwZJ9k-9qOT92hrTetB1cB}(bB6ie!(9c%{^`=;;yt7{~+&}RCl zMSBw4)k8H_A8UTQZ6SkLm9|K`+v@)9|DGzwG3(f;*?gSV`)QYHiq*x*3=5o@*Ia)l zkR3ATcynfe%HtUazvdpir#*pfy{!G>(CN3D<Xq%bgcX}jzDgvT2R1d?&oFCOX8fqt z`A1#nVdwV%{YTRSUz$eB&g*)!+$`naIzP7wpT0Cq>Z)C^?#{J!EO+=e*JaI~E`Q8G zg(*yGy2J%NUB=Mqfhq=0)9>fWv(+zlYFytQ!8%Vqp#JO1j6)rMQ#W4m^UeHuLRve} zTz|r`DJ4HA9~1Ss$oT5wHzTnH?+Ufc!e`eVNw)nZm^4j1;QOQEfS#9Dg6}Wxj49ue zz`QamU2x;X^;S81t$l9ZNskuJUQs?JW0`hxbp63wQAJlp?_|hUUfp?d7vJ*TWv5PE zV!Qbz=gDjK=?=#Yw7B_P?UuaAb#-O***3k$&(KmjCtYK8`no-$ewsmP{gy)ge%fyr zo$oOF`pN0R^ncMhRohJy6-t;mzn}cFboZp*%;@R+PZ@|gEcwKhxO3l*TV}`1_U}t) zvYcFb@X@DvE&3MAE#^48DlB{Iw{yN}VSNf?_CnkJ>6f>5hwAaa+Bo~l{CLm9InoZI zlkX*o%ZIsMU%Xgn%CDv)s%~o|k~dTeT-$XntzeBx^)9we9JbTtuIh>Tht7)K9Chbd zKwDMGG=Xn<$29Mi`h>;)es0(-c5HL%nuRkMT~3-QeBJwPv2<(ec7_MveiY3qVAz@G zu-aqk5B^DZi*njM8(l<`O;$Pk<-eUUeYv5&x>8V&^*XOl3#YceIdF<mXU!%C?p15N z&Zfq_&1<g|+<y0I`IYH2y_Mt`r%pfk-c*Dw^nKxczsJ)xjr8Ss*4*-c(PE;boXF~b zZ+ftizK+-e9`#$VLswno>)O4DdCi1n&0ztbn>?mBzA%<n3|`CJBg}qlkHrPPGs~JD z)YxpieYQV$Rw#>J|Hm-FN#9JT=XJ@M%Ux)g<P~|-zVxl-{?k>J=M!gEv2A}ggDJ>3 zck3>}km-lJ<TQ1I*D{}rD!<Sjv|(F)i`dVQi*pXJCpgCbP^s&3Ofu#%b!FzMG;3*} zk+n4M{EF$bLkwl62Ub~%um*4Kyp%b8!4_>b##z&E`I~51$9_#ZmG|$%By;{(rR%z< zS6n>h$S`3`#QI&v??tbPChN(IT~~f;AsIR2WM8Dk6z-4gFRt7^(s6d*>}3b0=a<P# z)W?0=D%;*GJI!VVr^_}g^Ib|V*UnvH;x_K8;o-W{zo~8e{C$i4zki?G@9{;Pr~H++ zYw1x*1BaEb?gp)0w`Fp3+@m)EqR(?O<)Y_=`pg!7KCfWM#EENn3PrGHZ+)$mp|N3A z+`PT-zBX+Qovmom*YfzTxXA9E4>KBmP47Q!YbN@ONmz9HwEz=EuGMR&$o(u831-rr zd?8K6*0J<M=CZ@{j{M@9_AY-TZ+sc^6oLM^SD!8DbU#xz*D`Xh?_<A}>Av=MY*NP- z`iJHppYZzO*_O1a*}uN&-Jb5IYcP}ZN}if-N5@MBuj%hQ%%*c>JxvRcn5SJaz2K6y zh^&U`t0}I<6#=)`KW44d@_GDY6%*sFKew(t*d6o!#PqyAIXxHiWrtsKcJlh~T`E|v zxj@(Mu;WVE=^VOe&b3Uci5I#Tm{Pj+#@TxboS&;deE7mMdqJbP|MWGt-=?%*tP6Ya zx4G*4{PptF<!|d5F_uqu&vaMY+O(qF)nn-%=eXHgRqU*CQ{T_lvCZsn|NUvvs`5F9 zA2Qb5Ik`Aw`o%6Y7smYQ2A2%P46WItMKbvoEfRcx?v<_NdFgi?qI}lVPfTNxIog+_ zH;eDvRg0>{-HZP|t$ymUPrB%V()0ogeWm(lhG)IztB*URIr#t8i)!C>lG(3l_N3Sa zswcK`U*S4l^S4TD_x%&*Mq6WMSLJps<5%)%;kMXvqc~aoDqoB!lhn&rH#PZZ;+rO3 zn-;&~*~E3fz31`oi@tGTk&E`~nhvGg6W4sL=4}qEWji&?z9CGgK>3F05w}0Bo2I|k zt7zxkUtbb;X!(`)IR<=R-dAM5t6QIRxI3x8;^NE4d2UZX9ozSbBWi!^tJ&=QpEt!R z)EY~wJ*t_iEw?x6$H&wjHS;Z{%L@N0yY%aPI@R}Gp?J!nRa^Ol52v(GlG!rNYTnFQ zSM?Lb9n&{DyTv|;`?K|i><^Bkj(rg(wzsQ#Q<80-hg!|5SABT@(!~$EuI_$cI0e4^ zr!~i1!rZ2!+9)yQDUa;go?MHDs(uyrTBTT-Gd#*qCr)b!*?QPZx1uugD6{8uhV&Dg z^$gY@{28z*>{|HM?RT&FzMXZZt@th9l`9M8%x0e$F47jKYFQe4JK)~-{aJmJ8gt|O zwmU{{TpahxfA{QyO`AM+s-z0m7JjSsuVFWgdEK|WS#|HJw~R|(G#9(x&tsXi+ug)4 z_gIqCrh64ER&f_x76-7ZzwEi|aqo9N+udD18mc#KZrr8zp+?4Py1)-p<FIT`{g+!$ zEDJNsdKl|<u}3ZGu*oy7u7!+yCmX)<-Nf#hTXpG+>*bY_RZ-vPtxJf^Uw>Iv_TBd^ z|BKl#pGH^9l=_ww>A!k1|FxRghMg+2*3{_gndn!_Prtrf+n4dm^h=ZERQMNnvQ?i- zzNqr$`lh)}OH8J_+}G2qFV#2xccEYo!?UADZ?iIlCC3#XURIwzZAo^b^6@|MH&Xvt z7eqc;-kQ8iT2=hp)gNN|C57+YI(eg=%bn$Hmi@QgY;gVGho|BD`}^(xJ)eHVxZm&5 z%7)U1EQWbc4|2aX%l!Wx()XSIfrGzAZ$hKET>Y=>`v3pzm;0|*QTL!e-spXZY=_(u z_Dx6j)gJu!konSIfxy~7m*2~qe^_qMrOUYG&$D*@{l8?DJB<wMejJ{DLh8R;bFXmw zKbIx-KfXP^uK4%u<M#T)qF-wg-CN9U>V8Z=zTP=>kK&{bgZU3PYR4r+x$3M5`?tBO zZh6J>h2~+V3)ei_n)t1+b$e*7@Zx&aQx<zBHP_w>_Em}bn&NQBWm;(WhdmEW1GWEs z?@|tolKJcW=f0qO+SM03x5_Jjn*3;fNvXiUtM4yK_Qij{FY)3ShqUyL{k4Ct&yAk@ zKrQL@^2?5eYm^^NJ92l=#Mv456(gT4zNhH(<)X)_uCK{weslLR=B@q5nS9~2E!+PO zhsEn<Zq&^Ae@JAP;7n(a=SN?+e0lhB`CR21V{hZOb1?;LxP%LR?oAchFw?^NP_FRB z#ucpH5sS*K_}qLpy`MZoi$~=l@5eUnD=%`-teon1$FFZj{AK&ES?%V#)pbnjuKv8^ zt!2Z`J>l!&W$CLU<}q?<#;#wf&=~R6DR|RQ5!PKz%j<O+?Si)0e>kz?>H`1nvU^Xx zych)==113*27VXWEP6Xv`2E(&fwKb^O?Lczd1*)O)C&=_-`f?w%zPuhzTufcE{j-n zCtu3LyU7fDOjM+PeN^&lKFF_Y{?y{fw}o6sKX>c*Tklgd|6F_bgv4aMOLmr19x(dE zw8n<Fx|!cQxMuI?`kj|9yYHE{@L%h5k48_)sJlL)-xM=>%hyeBe{K?YnP>CIucwUl zT7NHezHe5xIAX`ew(NO-5|~*<t+xGQ(7K-eTX^3yv4z1mIB&1K&bdte5a-8*KRkB7 zzCBYyT>hL&k&pG|vmeXPpUKuar&7jTzHGPj<E4`OiXJ|H`Q~$cfSUQCdREJe7C&5< z|5+4VcTscyiz)x3mg}5n*e%(7-D}mc3-OijWe;i}c>P%R<dnemr*(L(|48O<P@8dL z$MprNb4<@ozH;ks|5IOot@OAp@w?-a)Q$9*r|F(pzqWB=<pVFi-#?G|`<%J)Q~G=6 zW3lBAwS;p%?R>L3^2y6bA0kRvgrqIh>+7wOW_-J97u{1)XBjWD=RwR-g_=3DxZ@n& zSwvT7Xs}i$?`Um`HO%rp=&U8N<+6Oj<bN;U6$!3Cll1AEcmBKJxVij%{{BbXf6r?% z_G`akJa2h$-5*79`&SaDnhyUzF16)fT_L-%+=a`>ZQ^SVb=pe2>wdN%E>Yvv^M{6u zy6)EdZeHv>bN+*u!hbeb9XnpZJO4pu<cI&I@gGXOS)Tiaf3mN+zkK5K?x+9Fe<*mj zS^knYY|{L-V{zbrZl_{pB`f=&{|A(roAv*%`E}N_-n}?W{&ASxml~yg_Db7BHt9bW z-Pdn#5f`p3v_tl9<>g?xU;h`R|NZ;;OUkNGvGHB@o9pWX)R@aP{z+!85oTYbx3lAC z`lXv6LY(%cJluVJ;bYg2-E%G<{hv4Gjde{;a8FFlWIOX?_Sw776v;>|c>8Qk(L8qn zYnAy+<ptJED7*Q@A<@P!eG)Twnd@sKn;_j^%gs+PK9bJwXLi1OIMVjWBD?G|9+d?O z+bxslNc0r`J={}R|F=-`F_)$ByDQIf?Cx(c7U1taKE<ZCFm3t!t(ya7oBJ$ZTU6%U z?|ykapzLsQPL_FJR%!Br?VR(z#9D^eXzA;5%P8>d>}HGen3ul)Z2kcQ{?*&}F`oO8 zRI~i#{#&`#%&oPz_Ppd3XnSMJwWo4#-|cs7T)!=<HqU-wa!&1^$?E#(|6jtsYram& z3V*fay~+C{CBjupewMuG*!%w1OoevubS2rccaqN~>z6%~TV&jPK49I>fA@>;)n63a zpV1k=<;ef|s7F_2-5VeG^-t0-uXzyoWl`kn(`Ti3-1vD^R=%?4K_9=&6Ztz2?(01} zQM>!`kJ~#R|9E+~@Q)qeyOnQt9NJfZ^RbCMQ-5)-)uzAi12>f)KgjXEZ?Ry-x^vR< z9w*-HS@>;&L7}r=5z8KPI|ZW(&tsL34_t||v7Kk_e6FrC|4+?>h+W!cXUbJ}B;Go* z>tRgor^WxpOO6$C{at^X^X|DHFS~v&cwc+)e$Ddu?wz&aKd+yf``BrJ^7;A4UB$m$ zFXODg6o1G0e%v<cb??9Oy!5rcRln}}?!7OA)BoH(|K|R;W&e9h^73z8{8?=K<!P$5 zQT^|^hZTZWNh{PJ)9Xr^_CaaZ=jWw{%D2ngysz-hwg0qMW2*SOn&nofIP=5Kc(3>u z^>v~{{!8ZAzv+Q)st*|M+y1t@>NdaR&-1LsN>Wc#Eq~R=rMB#-dsBZeGC*s-)ZU1B zc9Mrh>e8-%T$B0B#rN-@gRQmV&&qk<Ex#mff6!jA?N{XA{eL^({^QrJ-L&cPsZISQ z@2YR@3+B?ExBC42HD>?+CS=yk`F|;4rF-AQS%Rl0%qooLTlMd-c-%p~tJiuzXde79 zV>wUI9)^!!HadB}pHg3cz|>4beeIq$Ue-xEEHCAq*tt|UK3f`KW6F3i>_;XahuI2q zPlgSfcdle>c>Z8*;aan|LVdG-^ga2pF8<@z_aCR)E?0cKfKeu2&hNlhV~;c69{0Xz zvDm##>XfR={5p~7!&fywD4*Z{_4mG`tts197w^lx|2>y4^)1t!{NLqur?1z$eGh+Z zy<aHY^ZSkh=E;#>=F?xL-+#n6&41rh-ZQcPa?hV%v8&VEsPvBR?*9wx;<Ihme7zO* zcg@y6H|=Y@?&sV6Zco@blW}^`mmjjZHC|Vjht~c&`p53shmPg90_@W@{=GYYe5-%; z7v=ar8R3PK&t!*ppVNP$byn*1xqq=`((CH`*6&<4H&FJ}`yO`NuQi`4on`0OBurC` zV_$C(@zAdGzPrVnJK={m3*9?<JYV*9*6e*r|0lT5`MCRqhJEd+<vUZB{(YiZzwfWN z&(F)Z^n?H1onn9H=ahZ^?T@zG&$Rrk{&~UQ>&l;lm;HIS%F{Y;+JU>GKTECZ44QZI zvM$=RSKg@p49~g~oANC-{!C)uA1pL~``@{jPpoXZyYRnc=m*<nD<eWAm&BN9PPnbc z`YCBLlhnzZOMb<2pHmBc;hu9TR%734&3)N=`zDFRue4jXsPs*>uWQVWANNf~?{2@J ztHoywq07K@wiZ|P-EjNLy9a8&Ei3r-o%2tm`5o=;^^K*6w|+al>*KCGi)VjI4*lPi zdt%<bj}O*YJDz-R{l$Ls0tJ^(^^DyU1g1}HG8B_DGyyLi0M9-dnp&6|BOUu|Vln-o zt_FO8nyLx%IWV9@XH1OX6YP)$2_{D7;1frKO^o0Z>yTq-OpM_Z<DB5b7EKT*20|Ak zpe#r;Q7|+yM>5^bbb5lG24saAvx$WnWC6m}L+XOl3)svQm<>%Vr%yD{NSm&6L|t&Y zLbD#<^bIr3T&HUvRTrAB&@T@@Tv3G4ayoRql_hw+Rpl|zil-JOF7O$n%qEtm+rfvs zPxm;XE(BR`bpdp`yV-Gd111y8>4mI{Vvr+eSPV@p&A<nag2Wl?b!_WREa85JtVcjT z9S(HTyD9W^IPl?cpnD`tkq?IhEl@B;EXsh~BVlR)4>tXDLrVoiQ^cvS`sqd>K5Rij z2IQ!BQv-OY>4R1%m?D;S=!1@WH$|L}30|>aYJhZxouh)GDdLz+{d89lAF<>i-3`Q_ zev!x21azPx&twG=j_Gy>)Ymf^LeEsJoo}khVrXh;GTm^RmihEu9H3(opKC}>-*8Y} ze){iI>Yy_gmou9hLJnDE0x8s$7oYwfw2BS1Vu9Jz&}=&BeD~?M&w!?}pUF@EdPW^` z!XmSwso`XU2jWbo2B5nd^ro*nt1b>XYO(s9I?r?~b`zfIlh3I`k6O$-uMRzGvHiR{ z=v+m`>0uYtMZp(LOz*#_&I3N`eY(m8b))GAITXaF*B@8kG=0@Yb*||@7AW&h-+f4( zXS!66h8m+0<h;5GC)B4i89`3Bo-TP<oqKw;xT-3n>2%Q2FX*ZUQzK*Wss_*zbAb}7 z`i!R28^u*2r@l|;x&ks$NR5}t)L^n;z20>BtLoy@L1(^CuezqrGks^E0S}|$^ab1H z^_dM#jiw`=yl83!Ie8HjxCWrRD40O<D)P{C-z~307d?Q&2pl*di=|b;2fS}%HZ`&U zo$$_NY6w1CoY8c;<0e(;q6br>=>_N2B|uRKI%5%R0BCXH^yZuDl9NG4*j8Rpmtf=t zpZNqXCydOEr@y<Ut_C@0$?~>3^qi&OJL;Cx{_6=$|F_<fXZrlN3f$A<FRQPezUq#; z`1AlrjkD8t-BtIP?w_d6vEAXSx(y?v@$}kj>Js1s;=pSuJMODDPIoZZm_2>|19fxI zMHI5rr5~z8&$0XaP~BtuoSW*d;ANO~*VM(Qf84DIS<W!$F-+&SC+g<l^`O%$pTcy; zK2!JD&UjDVgi*=_lwTm;us}Wv-PB|{<2-9Q@VZP!)9DWnC^|43nwo&lI|9*23mnc{ zYjiT2Oa~o%1X<wle}gI;=xA-r>9GbHg7CEsjHb}FBc`U)Ki<?woU8qb&(st#<!@|0 z{f&VJc*<Xw5qkEkDdg<e7()%n$-2yjATvO>e!wRC6+vfeCr*EAq5+!mzdX%I1C+uQ zzzc6c2WmSpPQPoc!8QG+jXW<XEgCjj>48mIs3I@A-Svfff-67xTv%{W7@C_KTTYiU z*N~ZhL03ZzwggSt!~$M8K$f7HSb`i5Uf%>Q@uxG+FjLGjG(lN#W~g9jg0kQYR8kqk z3ld0yZ;Du+1zCY+idbF6sqbd0U}y?H{ugSSo0)>4si`64bX`-^?T-2yvW%c(<ORSr zz;rze4e+VD5sYTj1)KF`A>}`-wT2AjC}~G)4e%1>8PmgUG^`*i&TiUhNI@2x?Y7nM zgq7^3X3&z|)NFdAnTGxJ7<-KdNU|(-&@hLrl`(hJkc2Gpm2uMWm@ZIY#J7E_rA8#< z^aaiuT+@G8Y4A_q>8v3z{Q#39__$_iM$_pF#g!ab3{A~VrayeFuEc0Q-LOSTZ8|7H zftJ}Ue4w5&{g91@<aE7e4W#A1(@!;OK-L5?8=9JfDk1Udksp<KrwiF>eC7q$lHgc0 zGB%&Srx})%%t5Pu9j6EUQ&5_&-2w^)3;F3RhNc$aCBKP~^s}{H1G?lFls_5Gr#o6| z=rdY?mivlL&v~!FwLQ;C!-#SE+BOZY>8qSI_!%w0B?yzL#dJe9b+K(O8XIgux9K!$ zNKOCNsUd)JII}6@U|~q|F-06K3`stwW`^JfgQ+QaH5DwX4HXPc5eEW88Vsi9@TGRp z^kWWLj%aEDU5?1#qag@6Sp0vNh9GD;V#M^by&7CoJJq75KkWtOB_DO==~{iTgy7Y$ z0X<WEe!qqU<W#xM6EvWw$}t<7T7p&_iZhv7P7mzVu%8||36>7>Cu^8bH!#+go&I&Q z2DEs(K1Bn1qT2*xEw=5cJsKH|)8(gWa81A7tHD3rVw#53v_1{(>1ES28m529H<>rR zce;k<bp1j@ndzxBG$f}l*rD77I=+0Og79>KKMJwaJ!fioZr^a#oP&|Y(9FPS`u@M5 zl__Qhpk!mgY-naMdE<Kr(6MzBl}r^uOTP;*XhGJGgCwUH?z6O<4nFsP(_{_j>3#P! z1d-1Dm%6JV2tM~8bmc;hlGt*&sT$xj@D!$Lh)>tJuK_t`6O^0W7#)}mK{4f|sx-a# zJ}4k9<fns$7FHP8P2aG<On5r)7bVW=ucm7VahX^uL@St^nkmFi=YOhhi+=Q`$YTxg zGEZsHYWwXVX9r5F>NA-cf>zjxPk$h##9PnV`mJGt*)A`cZ|=#}46|nFUE&Dz;NSDN zsdvT}kA}K$>AxpC2bn)VHtWFTa{E<cOz(TI$}Ri&PV|HJot{*uqTG-O&ih#}WW19K zt^FC>j(t<s_C7bcf5zOV`9I$U_J>y_oSc3ALGRv=cf;?x<-I@m_W*<0hbf_=*DoCR z)1O=Yww~<)=d`!dvY*w?{Eqm%{Kp*Gf=-<iy;7z=>w+IxS2Kq#`xvrk&yirm4Zq^| zEm)PkexG&!E1gxBLzZ223Q|fHU*e-6J8vQ%`w}MsQ5VUJof^kyW`EDUmgc)eL-<Pg zyp3TKm;*0o7)=WN{ib7n&D>8ebsmv(G%6H1E%mc_o>{W0pS%{hZrh0yo2EYfwr%R_ z-QNpuR~+5(EcM{AL*K-AT+|Ic{h52-+<B*`H$KsjkObumZ~<V9awx7D<X#;{v*{bP z<;6h9$g$P;-mR`ZTE#cv?ymR-1&7<2--{<PKVe?=n6D|6ao6Yn4i+9>OP<}jy!E^0 z?>RT@-nPYN=frAsE%NBPRO4Ow>Ax-0-{<!GcFy10a{PLJ{J*!{|6psFe*gdT$^PHr z$NvT9-A`H-bN-*J=p*L;KlA_pnNa`d_x`${?e%>9_4R-E-|_QNwyAoQ_V35j{g>+h zz2!EYl{6!NXZWw+nr`FiUpzjqJ!a-*U43Tj(mOlXe=%DLK8`M0M)fkvDkeqSdn+6l zy<q9tbpP*{r}F<89^L!2q_OSKkC*)>d}*D3&imir_ecHE;rhBiU-s`m@?l!=jHy)% z_t*b9-TW_z?f=rfyo=PgZTlav)vJb^<-E*Vuc!OJY`^6;OSyi5?#jS>Zc68_Z2T`^ z^j~rR)JaCg?%GRs>n+>n^4To<%>De8_d_)H|9+$KZkNZUOBJ)1Zol;Sd$d;l4#jWt zo|j*_SNv*SzjfP{|BJ31i+twu@%Ljr^T+Gn`tjxcFR-rf+Aa0;`+MQgQ?cUPn+h&p z()Bg{B>(TFdMNYC>0hQ*RUL_BF6=kq%542J?em$p6PXNGT#e)_HE`oMT>WX${Jq<4 zUMHJRO`4m(kuQ{e<>goXZ$D1EEmB*cune|-sd)*<sb0|fB@+gzmxtzw>umgXLjT8{ zfcdPa`b&iC|AN;qiO$Vey(X~CeZLX!mM050)nqQyxwxXy>6&u~yH`ob+B&|6KcCju zPCVyfuu{QSG<0g?QNJhWT901wT*xLA|E}tof{C=3clQ_FfLA9UGWI;-ee$w!)@~8W zvbnrT^#K!Bc%}9|bdYqCF=={tI_*_8o966|$1)Bvip{F3&zkye;>}8_3k(M*>~h;s zXmIJ=BuBArGnVjxkGC`1@bKD&cN5NeO$pn54s^WTl$ZrP3%|B0O8mJq+4#~$mj#YK zncJVbB?wQbuu|ffeRZpMk*<Mmev|g*iD3ucB%FQX_+;{S?mwp{-*b0k-lub98@F`k z^V0pw(^764zx#OROMSUq*p#2^*H<j{eXhZ`q4nS-*W@*oXPX;M9Lxo|m;b!ZSta*l zr^k#&Pt{qo%U<U+OK`vamD?h5a$jQxTdat*p2><C5esb1A{MQTjCzoo@Y3<+6qVYE z9VwbS9bakpUEk#27VpK(6L@OTW|idc3M(eLiEd`J;h#})<<P42wt_S2Pq9taVm>(I zN7T2UM|-cEKAe#;ckl7YEzzC7Sw276Fm1`UeV&I^9$Y+p>HZ1E)lG%BE@Y>(eK#u7 z={Y8JNu#T5Zqmix!1hfawoL#2xoJAf%ZZY*x+@-?UHQu1ypnCvOQ+X$neSV*XL~5K z>(tB(iaKL8>%{7**L2xVzAl^Ws9=7v-lk*ft?N!73Z6|oQ>?PZ#Bjok<Axg;b$r}5 zE;LmZHr{kmeeu={R+{^&YO`n5-0ybmmdh+!c=!v$;w5fUQ~VaxKU3jda;+%M*Cl&L z30wC3UQ<C%rj44}o41_*dgx8|#z}lnHZ8p_b?}uzl*~rkIa3%_&biE7*E9FXL96JH zsx*&!?z2fPQk~uGy=g6)Ro=SO!b(qURk_)0d`3Y+JNtx=+0?I*mJttAK0RQ4X!woE z__!hHn7pj^Q@kFaWAfCk8@{{z3;6cuf#_xBm8*_hpVsUA_2P;W@7_%-CpntUw&pu- z_0F;D%XYEZv*f2v%@EvrMQMBPiWO>`GPm-^OGTfoKloZ=W54K6>&~~A&Na9PzN&h= z$%(Vqi*@0d5J&LhyIT^<p8C@DMt0R#^~$w5)57C5`mJLxEcBKzX4o@PDe2wEGrYR8 z6-FFy1HYLq*txo)WykkVuJWq|X4T$2%yD*0O{!S;JC2Dh<+)i_l?(mzibR#pCwo6! zbEEfoqui5vX}@L6hpj}Ne+Vfo-sPP$g=gZt?@u&DPRPyJY&bRcN!v0@H$xqVD!muS z9Te>^%hhXorzy8^nmpaJV<WrQwm=QV8$TTFueh|!9+)B|v8yTe>@kjbHLkVXB5W5{ zF|xARx9X>y3~4Ox3(#a~JI6igfJYPWR)!6sU#f+!DTuFGUavJRNl3^^^>vS>M_#D^ z>WinYo_uskbK%vQ3#_U`PxD<_Jo$xgqQTS>$5YF%_M{%@`M_p&=BSD*_j`kr&Fz_) z1xMoMg=#F|W8uwLzG55B9r{$TLZFfDVy3{+n^8-GnO-jN5(&?rE+|oS<i>(eA=bwO zGCsQIHHxvmpJHRxF8``t#KO?LL#xO1xzSEhqy5GCaW5Iys^tD$#pV2L>%?D2Ss4A| z4jk%KpDLv?MI=ZhbZ&;#=Z>aJA68#*Txams<5pR=>NmZvy*+kIO&WbQ6!V(2T#aX% zRQG7EGh;a(H+$NKsu|@^7nDqJoUrQ6J$}iULl0O4;tnx-?K-S2y)km>w))k%b-$0v z?%=R|-WGFCZP)Y4gD1a-@Gm^{)h#?{*W|_K+>00Ui3vKpE;=Qn#UHk7VxMs1C*A6j zi;B4#b)U{3G&^#R%YNzEj=lvghTLyU&CUdu{CR!l+JsiMs~Mt`915(j?O?Y3Z}vv! z&GSZU_4Zv_0kO}v#fQsgGv{co@$+b{-?07ku`&^B6U#3rHB6awvkQ(?Emyqg=Atvx zQ*;t@_O`WW4i+EfT@#wbC}y;0zi&e#`&PE*bv|xp{8zU-B<Xu6e=TKf)tgtz&#re{ z?oyV+>g+8y<l=vrPT644wqs_;mIluI5^3V;Rew(Ym~&_T;kyRYo*sT<IOU73jO|m_ zr1<)YybUMZCJ6ZIf|d|2>NQ*WHKjzNYC`UYGsQ2(XDsJ@U08nHZ921UuJkuGnW(wq zX&juNpUep`%cv7F+c)Egv%pTBBbN6ji>+zW%sQFCA+1}PVRGx^j;BRUGCPCZEOxAZ z-sJXLBxl9zLo5?OOAA}?IQ1GZ9=@YDOW9~+OH6%sQ_P`zDa$Lh&zvk-09sop$v1WG z^xx+`%;4#FSjD@J?}C?^%KP-iS7&ZXEn23PFFtvT-*nyf4=$=lr00EEAG5S1NYv0> zW${WQw`YB~X6?EDO6B4v#|H~@=e$vuENi@IWP6UuJ8s{bcZ<8vmoBohoBEEI{l?cv z3ZMI~KX~^suHM@xUE6+QW%#FnvteB~;#9txH03I_ul*EKD*Z>~u1UqZIUgMpBxX9k zQt}IBYMYnz{^Nz~HSOjeAwtzV+pik@Og*#9q1Y^vV@W5=!ekr8qT`1gdBshSrmfk1 zm$zs^k>@8j<tej-WYQ<|w(gB$%?{bHd|PN_LOO3oqBOhp@s|2lWv;T-Qp^jzZznY! zJe#yg>d<1&^(tAFYxRrT`QAkQke-@({MQn<*xDOPQ@^iZbGE2@6Y`#0R_IakySHL{ zPgS_T4*1)(!XeDkzc_m_*LS;BD!P9(D^A&lecf=fO<69ah2vI0{GO%jBzo2@d#0f4 zd`(?caO0iqAbWd7CH@U=QFG>Xn0l<<rLEQXBazqYj>^lIg)BDh91*TH9<m&K-;+YG zo-ou9o4~p#@yNp29L-bjE_xrm^=pEP2RFBUPsuUm)iM$<EjJejc|3cr5jeeuo43z+ z;fz%U5|6J;H=LoQP(L~7>M<RYdlz@LNM!~cT5yired!XNvz|${rxJp1pJtVk^;;b$ z{^;^!3ocKkg{=D$h2Kw4b8|=vT>e(UjJ;{`$F+x6+jULiY_;um&JX;nHv8|#YZdP; zQ(4*4BW*r^=z8v$lr0_<e&hVLMt<pAt3D<=J0-t;)cfYwgS}GKtEHRkV{Q~I7T>A3 zqgU?}%g&buJ{N^^cUc?B80k+h*3I8}a!Evn|EJl9%-w>|zN%U0tN6I1c2!4i|CE4h zPCp+_wECkUWpVRRYU>JVX~z~Zi!`Zc@1A&>xfRFc8eFV8<1GC_fVY~%`h&)8{ojk< zXr*-oUtwjg-=gBkd}!5e`KcEaA5PyLqbyLb-deM2^}kJ*9lEmLl>ZKvyQjzhqM_-= zKMnreO20$LdIT<LDahz7U34{+T_-jF-1avP&wV6otQNEHi*=jStiWD-Z|@n7FF_A0 z3f+otKaby6Qr)aH|6|V0#pfhV|D?=o&h6m%A7Xh}*v;gJc(GNwUHPVvD~qH4ycROj z-7RIgroPDTxiolrvVZ!OhyRYOo%~P!T}<S)=-Icer{>Pu!?xkAMOLxF$pb!F|D@D* zS1Ql-%kliG+kM@odp@_phpCIbH3dRMtExKApPr^!aiF<5Md*qG^TaEh^A8;red!VF zl_wB;6x7r?d30r{SNgm!4Sk*KIVEygWZ74<9Gj!W{8ry(das+Vczs{#nSkf#9!D7m zML&EjbKzi_iTmH>_hyEcbsTSgWwF}s9OKN(vWLp&Fn{VPNt$Etd1TGUT_4i>*nTA+ zXlqD3(zV&ye@0BP>^gb(C8c|&u|*`eT-d36iTR3h&|xE|$|SXe7k3|hbK(1eYYX+? zUV37aC|FT+BJb5pn~%DGw?3HsuzsG_qdFe;dr};07Czk2rkc8`)>A=cmC3{@j%O~G zDQiXwD$Ls2v39*eTI+;Hj?)SC{RdgpPySdaQCii})tvi_LuZcH=JcD#N=|h0{TC2= zJb87#OzB;V3*Md06E!D>h?SV#Kl-Ob=FP5Ko1S#uDk|qWwd9LLxcB;{jD2niALm-u zf0*!(clHw58<R|4pY*&{oz33cwpDw>xv3o|%#TG*m*{v{wsGIpLxFNBFTTC$Ke_+Y zEFKF_p>)=Jl01`6{ad`UCX)Gv?5w9kYcr3`^qUlW>C~mL_8M`+MeVojTf%P5PN{!r zENi${w(eHjf$|G>j|BD<YpXgJ>Km^veQBup^F>m9YN*W7WtRGGVMkYH&n?X{=I-OZ zU||{Pdq$^>L+f13N}mwpZnMLye8uN*t?~}E;$vXA)F%~wWq!}oB`YMP+x-)NBx+Pt zynm{o$8&PVBiVZX+}oU|nqR)rG3d_nUA?vP?d`G!n}zS}nJ`y?X*Sz=ZabqKm6_Ak zW_NC%qjiaScfA~^wRN|P&f(m>Q<k~zJvaYeTIc%(-F#R7HqC!iyn%OO&9Yt2-$gsc zl`W)2y_h~ee_3JvbWQ#36`{sQe_h<bZ2R7<=HcAq?9)tArd{}WiZ|+x?78^eANop; zJZjhXos~Ilab&a1brGA0Z5wTMoOUg-eD&b=xvHBs*#WAV>eE*&3UB@|V!nLg&uMS- zd#x{gJd?okB|-SyrY*}KJz3kQr>0faUzpyMSo5(kbV^fF{E}I<Q~hcdo#hg-vNE;1 zXZEM^L8`j4UX94T{U^^lU1^lyF}cF%+tX|wHNDJJSGnFONMM8f8V_!H)>oQ22m5j= z9x?w~{=l%W(5%T|X`9U&d#1w<x8Al|+zQNykV!0b=FFD?oixlbn?aSEU5n3WmG+J| zAAEwC8GXIxK4jhfUEq_`vl`dHOOs1ImR+5GqpwtB4&<ca>9&~@Vs^E}sAe7ZD)5qi z(sEvuS8HYcmzB8_bf@aCv}jqj@TSd)Tb(i)3>M4ZZ1gBO60oGRRasR-_ou}Np-}Th zhdqyUu_$|&Z%giI)B0T$;JfR?^5YYC8SH$?thQFnl)2%6m+h@G#>2|uH$zJPo`Re- ztn%69<in|1TNXUNy8g?8=>2kWRxeh5$dFueVVX3vw{9tyN%8qP?^=tO>Aao(Fi}~i zUQ764q_kkufkQQ!4AY*?;Jdcfrak3@-VNP9onQ8c7bvY*!EC15*qLP&rTXx|l+|69 zVU>oK0r#q%Y$bQUVc!@!b#vC&3v<$sY`z$sXYIo_du`>lIbuRTZm<<R;hipPdwA{K zb8$c06z`oV7JpxKm?1i~zEEMZ-xQtPLz5>j3l^_`t6QkLNoS(BuUtB_txTLl&h!e8 zb$eZ2Ypp$bPK2|ms&h~8I!7i=R#h#%+~!r>4_Ojf+eJUzFmMW<aAu+8F>bZ$QkIL7 zyVWn;QfWv~k<@4uS$cQ+Qd7maovlSO)+;nG9bMhHF=tuKy=g*9?S22e7$RAst38-@ zHCh!v)X_4kU+Bnq-Rb0{qet&T_dHyG<KZMc%@w-mAv@&dtr)`(+Ugrtzu2+K#M3#_ z^r%!Odq>ag1;5TeFzqf<KAdo?*=@qt4c6X_JKME)Y*)!>UbMMXVBMOJr?*BGywCNt zUmn$|^oU^xN7cHp`WsywZ%jWf60*Fr!0Ne*>a6-Vot!6YBtoTxcq)xe{+z5>l`3~M zd1b!NDw*?hE(GimbzY-nKJkI6FUzzGOCRp4PYwKXAoKd&-LkJaROYs+xu3Wp&i+l! z>9m67`PU1)r^X-s+PY3X!&Xu3Y-{oMnD>2QEJw@o!@@*gdAOXs{r0ofho&j3BG1@A z4xZX1&FE=sSf6F3#1ogW&xI%ZXZj?5o;f;Nyk95RA6sUyko9Ix_8pU*zJa%rS3RG! zh4Ig%sZRrL3vugz$os9^c1%1ZXTPf6grx>^_MX`@*MKL?bcw34J74mh=DPiN4f>Wi z-?`oNFy(r&0Yi22;)$hhm!ppyaekA;e70*wN0cU~oa?5)x3<ixU-Dx^lxk(wtI(y) zx_cJ-<rY7D{*84{_KGBV*hY@NK#PX0w>G@Z7P|=D$l-Z@f4{`Lp7p8f?w6e+zS~`R z)%bL4sbtq}wMglh0Ov*gv*uYeiTjwXx|qm#c;c<yHxF>hZFmws^N^*T#%AfF8DHGL znmuv8$G%GNef`9rYM|{Mhq?s7+dHP!Fy$JT@m5aCbv>PU;OPmE`x7$EbBhjK>RBAd zTc)f(>$b|H3`TF3$*S!JLMLs)wpfcEeRHbYZMW#s`g}L*6?={fmUeh7V-+@RX}-u* z(<-w?Z?fWrH7XyO{nnU1*>E(Y*=8|+h@|amk6Vht6FfERpG(}eDq5`?<RpCU#)|*n zmZk>nbZ%mhu47u3+dDP<X>dr9p<J)3{BvHGWrCj;_)4iZ-zeSk`e^C#f`iLneR^?8 zulI7^8;x@sQC+JA*C!}N<t$OuU)dt-u<*WWndZjZr86{joqr1DU)!>aEmS0I#mNMf z#&Fw<(FTnhyVzS}wpyOrc!t?$(S#W<+q{HoCZ;{i7WV}oHqE_oxuUsL$Nf3}47(16 zaLccB7us38*x<*@#H0W(vo6!G(?9y@iq+39&zo{&S8)^9NsmX(EMKNXAFNRH-4Z-` z<;jqxx|Olc+_s8KgY|zcy=0nrEWumo<(AzCwtW=mweDm6a^l)Ml`<EFwmAuUTOQ`Q zh|KSbcCor}EbLlm&((zb2h|5&hfLf3>Q(*P2QvaoT`n0g)QLUR$mS_nTXmtY>VB$N z-s4?-^_eFZa!0-uF28*w^k%{1)h69s_e|T_3*Dr*I<r4^dUs(%^Fa@%i2?J!n%?*w z`s~fkNQr)>r`)%;uT0mK+Lp)6uan8Hy^?v?v4d7Rm%?Jt9Z|74&ZF?LCiPl_@<mS_ zccylWJ;zx0&DF^M@a@Ht!i9;ytmZ78)G~F}wU04z!ea6D-gb@qrl|JZ$<*V_t^XI6 zwZqo+<k`2{L5~BT?Acs=zu>opuDv;z*$<)3Rl5QYi*7OS_IP6zeR9`}GF_={zn9%= z>kIu|xkzU1qhC{%+YeYAI(cJJP4X4Bw~He)?!OSu@R`1eLz?~BlGn$R&AgngtxYy9 z;a!@W*>9}z+#?`mua)Gv+%xCbEmYHAeU$lj?SB3Ih|`iES<l(b2%0`GKv$i~gnRn& z0A2Oz+?zB681tvgY|_Z8uS~xazhC9W-k&EJKd*drX!^B-&kh(J{k}djws_vMduHmV z<6Wj@oUF{uD_fkAWEC`LY5PIJ;669OsBO>q_QW)>J`>XOe^azKG*%@=nAulm{;37a zwJg6*oVeG>^=-da#3K>aZ+~~?u+(Ih9%WqR;%hNi{b9dFqvJ%4kK4uTHYnE{-wrV3 zxT8^+Y2xSK(!43q=v8u*(-Fnl4>um0n4ft$VBS4;^Wz62r!i*o$(}xw*Rv|E?j&QO zj`qx!?o9LahWA$k7N4KBxiI3m^zSag^QC9yIKy`xy%_N4=ez^VOafm7bV|;hsqazc zx}Yzr#yi2pIR5+rOH19$=Z>EEoLlq4quwsU=|sl?i^Z>&^;mbzaWpEZ-+lToU*pY4 zcAMS$yvcoszeH_&(R+ni#W?EiDdBmOTwZK!leTtzbvQF=_WnYDD}!(6Eq7cfy8pOc zK~_@W)YTV;WxG1x&MMi{t>kg}+RoQgcK_k)sVR<RPbiqM*=1j3ssWFxVeVS}Gi?!X zW@|NPRRrv~_sG$}YTdV8J@X=ko`^P@EweIr(5{x7^>O12`6q%+f~o&)H$=s}ZS~t0 zqy1fXo_3y4gB&CK{eZ6ulh0Y|Up=g&zGGU+A)P5zlgsWpGO{rhgcw&%6}5TNQ8p>= zs&Gvdm(cY`?oCgoKYXksZ{+p8^3WRJLX&N~qh1FeI2|Qd^jY6as(;>YpKE*WTU4$; zy5n;_>+~i2q8=PvQ|v#7gZ<9*>?TFYdR~@0pQn{Ld*ogX=Va4cra9~9CCTH@u5`sz z%$Vov-+#U~&s2R4qu}?Ge4@#ge4@!mGs2&L<~u2IL$&>gP+NXs@^KZ*8y&S=KHDyL zDW}EUn&08lVq@}tS3A@F(vI!>7IkFxpFMYPo2<iUJzovWwWaBK$NMHb9nr~5%)DY9 z?o!Xm;j{I_)|7c24Zj8N<Z$h6+4Wqpi22CxX^&^Mb&6{<Y^&9+c<Ixce94+!YYN-v zsm%8ts>>ah{(Y=5;lj;Xmp2(?iPSAj%heINyz0E(hgRli+h=F*D=;u^JaTyF)Sc^? ztY>u2(pt3l<F3c$N5xhw%6|~0IZe&(>kanEZF}Dz5w6cwIwg9bs^r;$GnYcQ#J2LU zOqAJvEF?!O^O|0-f@<DbtC<%jy~?h8EhM-tXtLe!sj9OJ!%S<B=9L>XCKN`5^SfMl zyy>>8s^9ea&6YbBFEcx=5+udoQ}Kw&_d!+7wSYw3iC0*hE(d@5wQ5daQAItQOXkf@ z3}=G+LZm;<Dq}FJpVFi8?ZD-r$p@XXyL1$oPR>a<x%8g8=H#HIzIO~WWEy;)xc47R z{4np;j2JV%m<8{dx-t_NPhw;Fw$Q78-2|l*PJEZRd~X$mt(bIt@418-iMHye=cKb; z`~0uzxQ<`u3&A3*2cj~IW}a1y`vg8i-uscXCy#aKx`ar-dHI)`>&5boek4qF{=VWw zX7G7ew>XQylFus-oSHo^)I!3qn7#64`I@&pqSa?MW-UHm%EW#<m+95^Y1=Muew6&G z?wQ^;{uH&)+Mc|<HXqL(&OEODb3sza?<4CkB>eAx)KJ|Mb@Yts+I`(>cQh^qUoOq9 zR=H^WXv_8;Jj+zd8uvIhALf^-Z{yv#clQ!D#^zr#hnr){w;f{N&u0IyV$GZA>n>vA zJ`Qr}RtF8QnbjUJ_Lh=3u*B|Q%65BWx9Zmy*t5F47BA+W{@8VAUv0(Ppce<O1YVol zKQ*j<@;tSfUTo!cYutZ7D$f%5VI07IU?WfS^0Wkw|5GnkEMc2nQuZJwG234CmsdS+ zU%cssL$j4*l0w`Twa0CWlo0kW)AxH9>p4R@^2JGyFOoGMmNp-;Hkg??Wufu(k2b#X zQ%xiN<L5j~Jbx}ST>6n?`k7F(4=3kzq;#C#ZIW_!!oq7GkE9+yz3`6?FK0)BYw*M# zsRfk<YQbx#>c<y58a00Loz=ploj2k7lRJsp^)p)*?ppLX=*ojUmw9rt7z}50Z@978 z(S~*RJ1uu_tJSLy&pvU2?{Krpfv%4Ai~h*@PI`IVD*uyMuSiTs*AABU-*wEv#_VjL zEIH48_INI1A^MV6U)*=Pr(=QpE))HoQ#~3D@+T*5nd^RVidBR#i`%rallj@Xv9DD% zC#!vUcc!L(&F*Cu;tx-skD8>vOs&`Qk>s_h&W_J2oh~+ZpLy*&OESY*eMA2i-U<6& ztP<*2GyS8}%;VdF4sgBe%a{_g*?Pi3%MK~F)$$V0&86O$OZBg_WsKdb`I`4PTksTJ z&bgT~n!oq9&D>}vwZU6#OZJt-Z5Jh~o>*JlxFpN5X5;I3&2#EmJ&r|mzL@mpK}yC` zD}gIf#ihTdO_=(upkdn62MP0^TsW$ipOtcIZ^jp=OB<GitaFW5sk)!1DlQ?ZTQkkZ z#F{^^@RP&@v7Z9+>*oBu6@B4Q!NY*QhWTv=XH8-DDoTF+z{PlvFBjKI)^i++c`Ugf ze+y5l+IIS(!#<f@%}v!VzV$~7Hq3TiB_p<4=hDH|j2&*b8XgF$IWJku*!mzKGnZ%2 z>*E=G9#fp`SnL<G=uB!8d3B;f=Z@OWGFKtq%#?})yN#kw>|8vRwMRtr`Z4fD2#<HH z?RClKzBSFn#x`oZlvKq&uZ>I6j~#l+>^$3d(}%uEv({H^*|G8N_A6pnQXVQ)F4EEO zo&4aLVxX^Ce*0ea-ap?AbP_C$COrL+>zuIs!gRk#UE_KOzD(_N;fFGv+AhZ_7zuGc z6=o}#eNyh)cfHPt$Z5BByLPy|*q6T~WWwZ$Tek&y*7K<(y?yAWY`*4!->n_Sx5aLK ze|EubW^aPlcjaw|8ZA%#oZH9z_gUbXBNNOHORGQMQOS{{8TYJl{ibiLJ|D1q^u(Gs z_Iabu#zPX5xE7sro>Xt1rFM^}N%7F<0Jcrh59b}-_<Z4GU5R6lQgzndna7%^e=S+; zg0bZ4YOyUw6D6L{Yxy!^q04L*4F<WAs+lbZrk$`*bDUw(=UFgAc~3#zX1xh3UrELJ z+Xg1+iXYs-@;5*Dmh{<Je};`Uyla=NRn=iUZe*CIB`KMIV}ajO-zm?7>h(@ZmsJS0 zZi+I=`OeF_;X?323zMwsKj!NLelWflZ*6)$^-!Z%_2&5+FZizh*jjIy$65BtYhzc$ zi~_EMyz6~u`iigZ4wdGg>+K=V_O?yr<)rqzTjR>lJmi>`s4bcKNObA0w(H^9#dB`_ zW@7D~Eil1rkM`<+|DSDSTVG%!6z^95+~-5olXQipYwRytz5VtiR^vkogL$p!0sp(d zXYZQQRuWptlyIOl_h8#w(JOD5w(^DVvSYtpD10K(|Co~frAMzn)y=nzRi2c4@)cu5 zNr^}G0i%07FPv^aJILByvG3}_*)vO3TP$3dm&D(n$u?8w+;joGvWtudUNtgmR;akC z^VEM_%q+|%{Y3mu<FRiOo^6iS>*m;h<Ai}a^RhL2B4TqKKECs_$vVvDyRP<owZ4V( z)H}~PS6+x<ulv$1a(Lgq!<Ns~mrEx$HwLQ3y)<{5xGqydd9(M<3%`%K1?#LxG3YAa zXgIrO21nPjJ*U*G1clFK7PB?j?Ezm_(YC>GmScU$QN<;qDgVBhZ!**>_GmbC|M0|l z(u<4}*4n76#V*%+6UO7~TQl#O!%Xwe;He+K%9zJoT2SEpNot)zoBZC?K;dr_Cr|o% zcaKtUYQM*F4;HgGnh`7ZsVVk8UbK!qAu}dZQN(-&_o9=heta}b;{3JEalb)A@}asX zM}8Gel~3-zQ!kh2quT!Q=uD;O&3sR1R#q)>e7|Ppf$yx7GX5#P&9%HCaVt9H_oRw* zxg2JK>S5=eXztB0nozKC>kgMvojSvC#S62WYnQ10xS95OmrTmc1FOQ<pAqrTNt*im zD7%i@!D+8P&R8Ya{K0N3+bW^BsO032Y<E{3aP}5`Fe7=@%uOpj>udIy_=Pe|x1PIV zizMgU>Ax15Xzp}>yuox9t8CYm#Q`OE9OvCTDj4MFb4z#=f9fvwifi(VWoqBtU*=;z ztKH^_?%R_xcNXrs@9ODl5n!`r@3PW0EyrE`ADid>O0}^#%A^1IpzQVnN&n}UyZ0S` zT(|q9&K1v==4~!(`2O_h1^IQ>S4_?SW@jndxIXnFSN3Vfr*|d@r}E6-zQC0Ic<P7G zn|`cplq@Vzf3$j%)CsM*hgCe^*NT4YDZCm{zsT<^!|!jGjwF0O%@`Y`7QVqDQ07?1 zjO0_vp$b-Cs}BB1JR4fQc;Z@bwM{3*Z9nx1O(=gN(0iw+Xv!hy<u(>~rtL`j(l1%B zdv8-<T^{dDzc-!?6IL=_%P#IH^E$UUQ3!l9#}!?RYSv2+wmwe3@+`U_M|&lw)Z=wG zEW;Z66L@wSfG_6gjcX~KBK1Q+@YuTRRpyhP?pt#uc#T)xewTi?BWFJDJbc3;-g2YV z{72F)bJA|l^l9O_G$p$w)|Hd%p217L@Oq|4fkHq1ZyXZd@4UC;e#8-%HMgXn-WKll zF1y!KVc669vAU7(_pf(JlLY*qt~FN_^;F{CQvHngf%?2CCoKbai*M%@^%Ha%@~?EQ zUdS-7#N*BXN6PA-UWA18^Rquat0*Pq@lm6-WO^p=OaGT1e`6zi6rR3hR1|&g5W7Ry znX{r^Htp{eJLj}{9A88-9%(Idn4@^au}!kF$us6Bm-L2vvs3*1YoZETH9Q=-c}-P& zdzbWB*c$j<7F3amNjXs*$oR&p*tO?_O30!AJdYRt5$QMj#CkS%k;2xm8BT)93z?1` z;$3r-@5Hxnmkz9Fs#KF>QZX`3u?+KdNwn`=EUai%A7Z=3j9=tNPwWPzmuLC1J+_C7 z=Q__VUL(`8<kXjfv;0pM*vW`8)tDx+R_t^BYq(5_Q+ZR!u^?;HrB9Xf*SJ{jagYk0 z^tRthT)~yS!~OQ@h=v`<*S?6(4eDI~)kF1&4*!C8XO9P*dASR6p23#|!kUot42*L3 zTKnAKxsx8vo!wDB<%W;=v1tjq67`_N3#@~c&;6QkzWu|qSgz9xnm<g_VOFgEsc_eF z^K||lrJJoMR#tWF|GPOwl55Z21t;27_UdYAHk{m>5czTHL@_}&!JJoj1LyEwUvtjm z$V|h<JNwmCm6P20f3gI<iZx7)*Q|Q@&*AH@<G~lBBGUb(?DUot*gHqq7C#Mt*rHUQ z_-%&r$E%qO=YEk~?7L@=z>oMHt0%k`;E#@ET(fS)p|shH#M9I&*CuOB%oVGBcW$xr zoENh~jyZ9P>#TG6zdoLC%d$7OVlpB>nojIiS-oDLXVF7L$>3wmvV2nwmqzf5NW|Hl zbhqaV?posOdRNLWAolP&`RzjHuE(v!>YknU605J9_qA32>5JouUKg)l7gal_b<a8} z^S-`|+MGF$9QXIyO3p5{(0M4hSS{P>u{w8VzP0R)L}gRU?z<7wMY4S+ZnJyxs!_q` zu-iVVwbIr5oc|kYRbGyC-@5V8{A-89`9kBp53r>_{8fB3>(-qM!7_FHYZsi)EBb#W z&eUT<$lmp4^+7S#+e~))NLk(}v(0~_?a#2>*)k*|(%Uxcaii6?(4r3ZO9j_9N9^2q z?YoF}nUBW)6^yNm)=t*dZ8MUKI&mxH<fm_$r>=!e?6vvCeaB{TKz)<J=5PK}?u2Nz zskb&wn{=%B<?5L+$LFyK8}BJdoY57j>3+9KKkijc?vfS1)#U3p2gDVh;mFT%)lbzw zFfU7N_mn5yc^{&lIOhx4EO>NMW7>_gD}(sfPc>|aWtCqP;j$nqnR%1KqK@}v{Q1)+ zZ#*3Q;A~OFn>C^_nl|NUrfJ&Wc|YOPv`^FYj!N;ajw)z2G?{5BaX`LUI6uSdzp^yL zEaiIn<EK7Mo|6;L&ij7d!g@2lO(!ijm-P0}%guXO==@D<CojK;{T55>Hzy-<f3E20 zU&NO!*?BB9X4O^m6lG5r2F}$_-X=PJcy;lFTE9`}{7L03Ca;bjU!3y%yWNtFv-BmD zt{qMD3_R25mLhWSyYPYBJ%3mJ6S>1YH<#IAuh42$0|~pcP22~=<x|cC@BOl`z9?me zVPV&olX=I_cn2>vS-XoPI_JUb-AsB-{pQtI<UD7#)+t*l?2)*8{9E~w_G9rUKT24= z{IlkF<RtmBsI#gIE0bH-Z(I1PZB}cF?5+DZCTx;xv-_s7Wy?bW6ZM-n_g#?_o7LrX z{8-uY`1lB=oJai=GfxK1^p}2QUZ2{Lv+8Gk=#nirt(*ha-ng&6Tz_tFj?XWrwY<6; zja58*+#_U<9JqZ@bLNW5mJKsbDYra5_9*JM#P^?Hr*fW|d4^v{?|tWwrs}T4mLWVx zw%pPDzFEyqKJvh=jJMx&HkB7nKHXgPM(^qK@MVeHco%fGTv!@<;4I_T`4P%Y8c7u= zH;OPVioIUH!tCPHR~q78wT@4O7Kgquw6NjGj(?t4uvP_fOi1hpjx~QKte7YL!tF=r zoxitp!}yXfyUq^To%VG{??RrhFLV^=+~v`}m+BW5{d@ULNAAbFQ|~whGIyv(H(vRE zuRl>lZx1WO`s3oohZvviV$4*U`bb;lXUC>EHC7?lo{I)6eJrc9-KH_IuQpRVd|1}g z{KpB)hQ9E2jm;(EG0o@G8(8_LZLMqzpKy57{oBc1AE)n2(Uq(hFT5RFxA2=pGxv&| zGpr#p%NRu!7GJT|wNN~B^{leoxi=@L?J^On{up}bP4(N`=Vd)^&L}^~6Ww<)>-rt_ z*LQZuA6Zgay3b4S^xdm#Yi1s94G??8tkD+vBPCJHCUR}`i<Zm?w?ka>_V_XT^V!*% z=xEIOaoF^=dEMD<i(B3;cbOiRsw-wR<)K@(t(WPx=0|xa8bmLZT;R%*6A+FmkdV<e z;$gU7eb@2q5&y+Ih5XwdFzodDr5Tew{a%f-Tz$S{<5{-9dn-58ub1>*`1_|z(PG~J zGwK96Dh!HSZ%3-gY%=3YSiE!Z@=w`udG8;7-?jR7^^cS97IRq%1Vx5@^S@dBraUtK zUU5X4ZF6{W2xI5WZB=(Uq_RF4G&|3i`zm#N@tVyaRjOY{r(ZwzU4PHDW5(}l;&Nuo z%&U^;OJdmWQobgV{YG5+3rEd}+xMNhLq$#0KQKlJh}%t^zewOFkF(E32IqO!huUXk zrQV%)(QERgia8Sv|9w$%Hsp9-A@ph08<m!&)9cf8CF?Jx`>xiA{2u);>cabTGg%&4 zmRYM$%37R~C~<lLy9*cZ$D~Jr^UkZC)XqG=qjW#((^JZcF>%XR9J5#=*z=Ny(V^(x z{>n~$rDLiAPg%tD&9_v(oN)H^-7iU}-rcJ>sn36^cwP7OAB(0oGbm(kl*>)83y&!4 z*;x}|(?8|$lM{!0>Z{HkTDV7Wf3shuZ_mb?<=1sS@WvU~sisR*IdN3WsLt<sWV)y7 ziu{hBySCT7Jf4``uF4zQc;ePGx9}E^-;q%XiCz=?9UFfIUi(reZGEid+WS9(oplF4 zEZY|l5<Z7fc*?3hx>sL$SsQ*4NN?}5Nca7G<B?9%tvMFoTTb`N+?-Xf-8gka*zPw? zT}-PVJ$-q7uU<s-TFs`{9y{*UI&54m-NzU4|I_h@a<jR9cD5xbY-P2PJTb?Raml0X zk33&xe(q?I;jwY&<Jq^AWj*t}v@6%VUQWz*H&VS|ydms~pz59f$7Kwred)b$E$r&H z{<mVQZBMOv=DzyXH7+AB*~4xZWNPYXz1*OlT+8ZR9xHQr`dvovj^jDo4NX3ZZoZr5 zcPnl3j^J03m-^2-9JcwQ`RXjsPPuy_8DTrs?%#WA7v&*-=C~m5-H+>*yX)FD9>1CL zwTOdRNMMmh6>rg(LkBxkQnl_)nxH&&L2$(4wr#=pFN-!G5q}!+{=f}ktA?tz$2K}m zTU;;LSD^H4M*LBGr-={hZN0hv-|m?HtF<`hXnC_n`9B_)4+k&AJ?Y-`KxFl#zV!n9 zmZu^c-5yWn_k1LJbc3IF_{jtM57rb+WuKK|v`#X-gtd+5;)l6g*MZK6Imw_n@4S3C z=aKu7y9!#B=O6I7D6!(jHM8^OUnVV?an^h<o4}7q^Yk5l_n+KyUMcq^nlI<e2l3{> z<-1-BFdVKbIG5-9K>PZyr+W=mrm}y}+`Q-0k?Ehllpb&ORJ!tHI)AZ-c)ey%^sP^s zcbB(&?)zb(R`}>r%3IOZHeZFFT#~RCdF|+{aO!8v%=((-)~Kh47Z})te^B+VJms-t zk<6J-i#(>BRzCCc%&S&=uU@mv%QA9P{=MFDz`yaPh21QN2DA9xQh#FCiEm=F|D(vi zt>{@%+04d@i%GSHH;vO8C#iB6XUs{h{~5d}IId@H<j$?2o1)@%j4k#RTFtpL;l_t4 z;Zh%`G5vaUzF@<ZKIay(W#vvY!ROmNd6so?`rd;==iVP|U!H!0g}3Ho$;n;&{L*^9 zt!BD!zvB6?pTGWXx^*)xFka;3tlVV`+59%kT>_5srazH;nQs44rr1W|<jkx&f8IS< zUf*8W8!oo$-r7ft8^vclakkHEb?^8vwWwk5%iZ!Pj1Q#eaLTB>{^UC$j$7}B7uVGl zj`oaApMNT>3}2GsJ>~b&%rDbKp1dmhoRXT*d(2<tp|#%c$#X9`OxdoqBCyUmZkN_4 zHdZ^W`{t2Fm*wQ&o$g+BuaLi8|G{HlxrJQvE2jOfzoNQ*#r3N#x(8mJQtJA&Q{DM_ z+S;19>{qOro<Fqr9E}N_b(Hz)$!EV7zxaHb@3rf^+P}Y!F19?`ZGWEGH!yDIr@u!o z?cE`B<J>pv08gnSpC6_FJ@8!h<%{DRTqizJ;F9`yH?mUwapfV|g@+b?7uu=L<bF|m zcDLH$eOm7RC52n!>tAuZf4Vu5Sv)X)eYXEJWv3jYqO!bwC-1I$qOf<>Q^kGfLpK#X zZ(75>`I9tD!M%#hWg<^_UTA(@#J6I#%>%XVS~pp<nqsUSG7HXRzm5D-t9<|Dl%m{I zn>8odbtnkRJ(!SmzE?KHy1<kpV+nWfoSGT>Davbg<5xV>j!pO7Ctp+lZNoy>PLr^o z&LWZPQ`X+kmRgcITjT9LhD?<Qt{alOrv6}l8n|xz16j8}lS(<~2iZMosZ99a7k~Ed z{na-<EV`i_SMtkZx8P2jjq7Vz*UoqPdbau49vyy<`95u(7VC?ShOf8yQ!#V#N%mWt zE>-+b?y%i-!oO@!)11X3VXI45NT}8Co$_SC)~g@qu8jQ4Rwj@#Th{0m)BL0Iv*#XE z6KR_fVY2gf)tQvX73V^&W~n`#f9c|f($&*{?KoBVHa*dD?KhU46W*#lZeia)?~K8w zqP8<>#|&j0D%~fkBcI;0@vxWfk58LA*eB^Ro|}*!n-Dko^SYF^Yu0PsFRPE%-|B57 z{cfvuKu~j0o}5cupv0#sPo~u7I#=%hr)BBIwe7FPJ+{o_eV<mme|PBQDW#_qrnr7N zc=P(iAB;)6u1S}-saAqc?>WK#ysHL$QP{*ITO_-=PX0Qke4)@$Sh`io!ZYlR+b6sF z;1^epvb{TcPWH;yhUbT01UOt;uTrn+tvGXoW>l=!M1SS}Pb<Z@PuO#R$<&oXYZQ*_ zt~q1!mu0V=@oCMpPrjGUp8AG-nf7F2TyKt7@?x<%Z_QN~kK738-Px4%!r@*@&!<Ui z6j%EC&#Jjt;?*{9%iihQ5!Y^)?o2-L_s-kMFHyU$T<u@HuJzoV?oB_QS9S8{=ym#r z{i~0P$%y-OkJ<NK*tY09TAyeC-uqQ`!UVs`@|mu`6c)v^HpkD}xrT{#FMGo)&v^&! z4$ADRk>pgDnX{E+LeAMGd5#BnujS$UcS&?ND`S+q(IS_Lo1z_bpQ@Y;_Lw5Neu3#6 z8RKbw>l2#qsYh)6{E0IyGbpyl=^Lk4ctB=Sv+dK3av4g$vTyo13e7UOw8YPGs*Ua= z5087l;&sl3FF%lwKmEW@WzqU+mG5rHrR}+x;K%U%=+VpI!-le*r`JE%@w|T6?aZI} z8;O5FhYek8p83w}WMggUzN5^sbF2f8wY^)oTbX~>%ldUXYqr{hHm3CT*Z<ugpLD*a zRA@d|1izobG55+3PP_GP{r?BqqvBoB!tNw~;sAGl{r~y#|BlyJ{Hd2e^qIN-<ez1) z9KI;nPEh^!mV4c7+c*3F-L|*aJF)-2cA)SKDWgepz4i~f>s3EqxL30I$?Vx%?jAnp zuEMr{?*j?u`KFKi6(>|5E_8|#5<Rbe*rZj+FUV4KUyZxOK5h#O-}d=GnoqO;Hc#Iv zcYM9h=GYHv{W67mJfV%fn`b?IP`}<pHmv<XN1LA7?L|7K3&lFWWV0NQ(>(S6(d~|) zXuFOZKUq&HTCU;$$NPBCj%kbLG^c2)Fi%hW(3bkP&xTEXe&Cx#mm`hN+>_LIv!5~G z)hjzM-C*hS@LQ5nGqa{M`+mmh$2<egjCqQp^SFNgcrfwUs-wdH|2*P){5vFN8=G#u z&e=!8p(g99CR~`H9)4(<!;0LFCFNmft0P)`4I5;*e|W1b{OJ7q*xEMX`7?g<-ai}0 zwDP0bs`-t_+D)Awb(%%@@-u#5>75<aP<*O-=@FxvHLa$df4JQ~Jen}oByf|O?~5(v zrVp;ONG^=-y4$dAhrIKB?!$$d`U+3g;*W+j2G?&pU0qh~`HClT{%!B;zDxB!u3yvo zW7Uek;w6VWH{^Njf7y1w<Z%A3hwr`2b&8o4gKFHBK0beSZT*c&Y)cZe1T=Yn7S4Qs z^wG@62M!u<G`1|^v)B6={YrMpqoxkG`#+gd)>t^Ll`S@xR+=EAIkiKn{Dl0rv&`Xt zzdjeX-}oZwdHwy0<>KoP^W2weoV@>V^|u}#hZyh9d0uSn>mJ-H5Sc8Pz4vI}bMe&& z#s6eU-{Lao4VMs{{AfkPYuBIy_dlC730IpuDZJ6aaPrR^$K^YccE6s!hg0p&Caz=G z?ymD~P(SeOl*d-ft%{YB4LLQ}A1yiC{9pd}$zR(eXYT*~^0fUQ#rj95V?Iqi@af0P z{&*$xZ}OJhIZGOu#V;w_*Z%%A|HS7v|9^hG{QqB5|D2FHvs#Y(|Nq2bm;a%p`Tkbp zd&jeP99;Uh{@2UX(Um9uCog$@-{g|LtxJuTQq#if7Q=U9`4!)nNB8_W7HGF4?7drb z-iQ15AJj)|scmmF`uM^1vq{VSzx5K!lji2TH*fr_uvlu|_hVoA7JvLMFBAV<I=b$b zQ(S1h;(eX7J9su&_;dGsb?W$2^E~Lg%!%c9Pevvbc6nal<L>FN_3FACnNSmV<!MBE zu4jPxkMvJs5)M~Zo?~Ke+cx_)k7V~JL)qJAKaV;oZMWp^F`SX`iGS<CC&v?8IG=p0 zFU>xClVM+Sy1qnjTEvZrIlPbD-@Xw&u3(%aqkfhx%4hv@$!E)s>u8(zCsiGN`DTL( z`<!!GhrKn5b)o~_?mk(b5@eU-X!G&X(`bQvc~AJ~ewdy+x3zP-_2Z)=-W5zsTgzr8 zIeff1`=#&3Blq9UcsqlQjlJ&-U$D+cy(8~AtzY}j+HZPJeSc2fW8V0UN1x2UC$V|c zxpnt@t@saoeP7e+yK1M1naXF|KM&4&8`{k@Pv*Is*Pp)kr@NW=GxwV%>%RW`Y_s*g z$<h2-kIa2PexIIwMPo_5<)3NxAN@c5{Oxz)+x(ui;!k$39Cq&dnOr)zXKKSPePs^w zIY0RR-JO?tVD7akUwQQYU7lBUC;I5&r=Q{l8iaqYlMo2rm2Z9J`%7Q*NeiF;*GbyZ z+428rb8uI0_M9)z<x75MuA05hbn)}F4<Fs;)LZy0C}cNZ)9>b()41pOBzduV@$DV^ z^o`7a^mp;7U!H1q?ED0Yy6?}Fa^=IAI5Qh-8m~=zG?(d(y;|E2rZ_jtXCK{7?IfpH ztavnIcg^;LcU>O8Gusi}dOz=jzZ-kL`8ED?v3eCL^)B}1dR9LUzg7y5$@i3x6#K}x zUvO#k)6cu5|Fnf}e|!I8@%3}DKkNUT)~WyAbY6PioV|kQ`n5ba*?g3GaChIw!-oPq z9b4-Jw^^%JZg!}fl5Hx?YhN6_mUaDv`Caeazh8}7zFehdg3ynsaMKF)<K?qI_Quq) z|GzmWUr^un|DLzIKhFJ8aQvtIv@>nzd24b$?+d(OuQmO{yyLEd^&xuE$6L3}-uwIf z0U4X+cJ=<dANAQjb^CemU3~fJKj-Rp+^)}Grh3<6gS}Pk-p`tE&I>)$^S}82Xv@y? zg<B`RZ~1x5>Sy3Po*LE#|7{ZGwur3n`D<*HKILPQ%KeS%_c@-Y_inUS{@{MohFNdb zvts+d3k3Z3)cl-&`&IfQo`3usE$_0-ubW|8x@WHPpA|flHq{?yH+r|{=zQ^2uPSU` zIGvw+@<(&sr#X+aO1Dej{Ih{scEZKF-KT3Td|aNLTQ8zEY2N=3x1+rei^b=xHm~;H zds{mH%7NSoU-Q=gzI^ad|L+C%vsjIuUHUY8d#3b;hX>Ecuy5J<fA1}y?YWb<i)OB~ z4*%14_G{nS$Lxn$X7ZPq#oE_9|M>kQrHH$<a_!Ib6S<xIzx7Y%e(ad5pAxfb;k1uS z<YxVQEWYHQ;Gy{mf-KAHT70yH3!VEFYy_7DWCg8n<$bCWP#Tbby=#t{hk$+gqNN44 zYhyZBJ@pb%3}006{k4;bWB4MDT|%W{Q(}%i>f}0;JMD`?(mSrB)2BW1F8|oNtp0~n z#U4Jrxa0Ecb-MZ<%~^Luph&T80=HpHOowGwqXd&*(g)w8%@TJ$S#?gd?9~^Rk6)s^ zuVaGxvlXeEUUUc+mLBPF(LQim|FN6qJ+33UyADq}_G_j0)~U&7?}c@(eYn?JW`ES( zUmJH-d<qI#wfeSQn0foUYYSH2wvQ0c*&6k@K6xuw{bTW4x312WUmflFcw<&^=>Lz+ zM<xYLiKzDZyJbn(-J)>u_h0v3ncDeueQC+B+onZ_)|Z#nv_BAf^*b-WX5;@_ulp}` z@Be)`ZQuR7e;vyb|M`e^9`#=Hd9Kv<kh^B3(aCi^mVab8q;K|FZr@v5*LQ3A&pY<9 z$^Tx?{He!ZKS96vsbl2kuJg;UPFa_yE@#kVyvzQ|w~hCT>fZX+-uZVe`L##x-@1Gw zcf&`v>*AcNk01KQC;ND6-+aaN?Z)>1xYG7*`E;uJJoiugx>+A?+utdA`@Mcv_WX<2 zQzg%TY*u>xW$V?ys$aH#{Wg1F-Noz2=0yL>TmC3)R^H6w-B<G5>q}PuI(@wD)s;_j ztF+8*6x-cjeYz@JfAzZ5<YU$qiC^+kRy>a??A`M)b6WTD`S+_{?cAqvt^C)&J<skl z|C(yL|Kx?|t^ciG|1tLd6c&<a`g*O!zkkU#1+)I^Z|ckA{NKm)<IJ=Vj^)QP|Lyzy z`PcCqPfYe-{i|xS|LeEe&+0G!IaWW%{_(24Q*WH#{JCt!{goeQ>Lz}Eke}*(gZbCg z?JfKq*Pn|XSUc~}e~%q^rX|??_+zyz^!j$^zkANspKjj!yH@4EoX^bX)#o_ID5MLB zpHS`Kej#*(^~xmfM|^F43hNwpWN&KP;d{$U`LtyG2K!E_kKlyqR->48M0}B3jUrdQ zsJ=^Yh2p9Q3=b5zPI!t;;0|oib79;i!1}^TB;2Nx>C5uNcQrzO30{%yd0;l<^|~+K z0pcFsb}LSAtqBl6Ab5qffTfhXUMa_YM(?8^Mr(c;efx1}!H+{nE1s6@@pIdAZn}Eg zm(Q&dPI^aLYE(f9dqt^$^8rsDMs>rA8SfP8-B`~EE)IIp5g1r{WQC1&Qpk&5iC77@ zo^`UyZqui$FFU6V$_k24oOl$)lLB5Vv^7iyWr_)v<wBF!Gp+GDEDWMv9T%Rg&$OoM zj39`*^<nXHp)HmF-vo1pf4{t3Xx+PZf7NC4ymsu8x0~v*?^?URY8#kmJGK5mxx}N$ zua}n#{fK(BvAzD#^}^D6#`xo3zs+7>{Iyi3_+QV)m;3eNk5^0x@7VKb=Yv0!KK?vc zc(nKVr$Y9ndxAc$w$NB#a>x5fuFcE!w;f-;U(*#G`0vleJG!;o&;0yjc#M5J!}8<R z)}<fQzx>$xE<UV3I)DGmkK(rfl!HHpFI!jtJ)m31bWf{cwvL$pr6otpuY8ryyYh9% z%7XQg*?%M+`W?<cRG-S5zv+{AOMG3Z>p#Z1AAj1uwpM4GZ&~%<kK>hbS505>iur+0 z!oE)rcoObaAN<5`qIB`Uyvr>;?DZ#27Jj;Pd;OYe_6DEp7iT*Cm3{d?+Fw{p^UoU- z#qjUq7wWIC+kXGc*U)(DXMff%=e!y4|J3=G)2AEiV$Z%$dGTJ?cg6qI>lgn|&vg2+ z=lpqJ;iA%d&a?S@|1SF(Z?fO;`Fk_p6BQq}Z&H23`1e%wA@-Kn`6j+A_HRD$FY0oO z-5%8~wGTcx1{Ov)UH!YWvGIHk=e67S|4jSPFQ43ZTd2o!|B;w!AAZ``+!Oxy;Nia8 zLT3DRWgpn)&zbwj^y^ply#jrES_M8xUU;9&xqY^`m%Q|Z+d|(O>YnO8WY&KFnSHZ; zxKf?x!=mV>v#v37S{<%j+HWseIse9k(8mAlJZUu(r-M!k-~(Mul%JHv%VlV0X<{%v z|G9?Dbb(|;QD#FUgXssRsz#`qqTDeCI)}poex4MkzB}j~7YoQ4UrweL@bj)9XMCAj z!VjzB1fTI`iZ~Gqa%6`Y;y5eNkuTFf1ZYB!^fEIvo__Jasxasnh{R?M+35@H<%Fi+ zexV^W{r)tS@aZ>Rf)1~c)P)}Fb^Vow(DVm+7T{yOgqh5YrY9yU*)toO8BL#fP*Z8T z${P*A=?U^?kb}J#&9+b2p{c<*-SeG>;PiM8#&6Rl-)b0b|F}ytka2qSdkyaCKf^Wo zr)zxB5SZSts;XCShB)dBe3q9P;-oXk-C|}&$XAIOD;Sy~PCV032c6|*W&}Sw2YgbO znKAt69Q|~V2E=(d;Je1mj6vr(fKNct4@);wFf>CPnFc<&%MAIxGYgQsse*w5L_@kG zh!2k`@X1|f$hV!jf#jzf3ai>od#16J$=DKd)7XP&8p@0&(-{}bt4v;Smt(rYa}Dq5 ziE##c(`7ztNK8(sUOxT9M-86oucpcKOy~Hdp+6mbNSB$35#*4rRi8AVw~8(Qtie0| z^h*uC>4!dRxPeaPS~z{q7Y**|r(bFCP2c)OLjZi2<n+d`8sgLCUu(RbzWbX7H{`Cd zfUg?HlY_cNr%yPcK8@MT#B4gFtd<y~+4Kc=D*8-jCQ~08i%mbj!t^YQp_z&K^aU$T zMVSrFjKL?-Fq%y_j8zw#KH;6lX3$kh`qAoQ(*-9f=rbFdnM}X9S{`zt7?>ycK|`F; zcslrWE2du>5|E>}0)A`ofREmq&h<uvXL>cSf(qzRk_m_8#30v=Wr7tfQRW3(TF7rA z#%yS2I$crO5OVq!i=mmR(e%Kj$|6jLW|IZP^+3{-13AQ|2mCPDGF|hZ2G8UdEqv1_ zP6NBjboxefHPPt@#MCBFm-?&0Jz4W1KPW;Vr*D~ouTYyF^-n`$GU)KFWnVQ!85vC{ zzcUt_zT>}!4CK(QpZ_(Whi(ZoYFbYFuO~2lzok6y^!gtfh10VbHN_!UcvdoLdQ6`% zU59VG<}VFRMoIATJKzGq$kGt$q(8Iif?aw#(;Ggh2~Y24(S+V-x{y`V0&>`qFPkR# zu%n;T4cRq4wio}?&|~B^10_F*VHU>I*Kug7fzR;z&H>Xez@=$1-2ik*&K@pJ@F6)r zr!VBzbl-lENwb`h$=qQ2`}-E4m^7cRxJ6ZNdI5{3%=C@L>W)li=8!9|0ys7K7|o|| zWKxuyF0e<DWBUESY8@cikD#-#7MN+VOux^nSup)spr*j|cs9*T(>F@V>w#iH@t)Z9 z3ptts+uPYSr5Gj65pFd%NAWo5QZsOvGMPbdH8V2@9r`u>agZkDnp9>(Gjs51U(^2U zaZC^3(#)Nn8>T5R?We|->7Buv0+SW$<r&SUH~usd+wM@PsmsW0W??WLbPFq^+4P63 zrXcrBH<XkY+g`$}dC-X;=|*6412c>13nDaSrY8hw!jIijF*AhcWXQQmW`^+622u!v z4$GNps*q)9W(Y53Ace4*5vY&{mkN+V*bL=vU{Jw>ayPJvf}xoil69bSx6DwEVgwaM z=4Oy{x6CZ2Ukua~ovszFDKPzjy0+l-4fiwzr@KXI3V_RLCNqoajX|0z(@(}|N<q%u z;)vCRp1Y+SrwKi7sUl7jdfZY+ye9m(B{R$Eg8cGg(|;vsLX)|5q9!z%hbBRjIrwZj zJ|kWJ=?5b<Tc@u{f~ED{$(kOM`CoEwuZq?*V`Q|PzA;8qVtP@krrPue|23qhZ%@_i znXd3rt#A6ZG)?F|y;|v-hSL*_v>r^i&(QRozRE<Kcl*6~O%}%K6EZb<m`qKl&&z}+ z>nEA8Wc@1(rhQp9BwPHL-kGE6v7I?ZGn8@q&s<GzW@96x>Fjx$YSa2Ow5A8-X*NO* ze9FkzgdX@LQlN?Dz^5Mtn$QEErsouC@=ibTSAl1GYmuf9;uJ9^bI6^+EQaQWCX+W7 zD>9lRUmI+0XgYo219ivgcG;R)(|4%ZA)h0*c#EdsbOS#*IYz_jjshm)+b`s3YB5f? z+NR0HY-DaeJz<+B_#8SNkR=B}cLtjqP6yu^d}*7e@N@xdt%c0yM&R?q?5EE=t(iUj z?siS+`C$w8X`Y>K3E~E1Xeuy*ZwwZj{`#60?{>dJO$A0qqv`oYniA7@?$i{RKEYf~ ze)@-9n&R8f7HRHrWHg%IwMA2Eddwb80nh<r%;rX>(+^Hn4Oca@KuXP^BS+0p+9yT| zhGrJfJ5bHQ2bsbWzM+Dl8Oo7#Af+fr(itllnj?<e1T{xM0!aA`loQO+??45G{#MOk z&@qsp=F0S({hET)3z{|fAPtuGeVUL43zNCgbVf;C$SHKphUP}oFXmZjPXFMeE<D}$ zAS_2@9D?PDy@wz<;^Xvlhc(?{C()T38&6LZ(-NQVsAVNTS)oI2`iY~OZPN>w6(>!< zdrZ@2`i689UP#H$zE87h`jq3E+S4CIC~lu#azfK<de1gXuI>BxYnm}me|u6Bav0!r zmQ$KC;DXxu6f8x@oCX#2hcxA;bDq%@hn#Bn=8UGt^!2$WeA|_eXa+HYZeQ(BQ52nC zaZXcc`T{c*uIUD*T8fM&(=VE-I53-=n1RwFlex)s#=V-zg|)fK^pDK?W{{H-@3U$u zPq#m=89F^oKuchHK(;yf8p!R8CX+#z?U_TW^8V>M0^84=&{Sk(G@1VHq^1O;$@Icc zO4iJV=BChgp1CQgou@oKR8R|Y9U_yV`SgIBN|w_N4k>a#)24_P_-w@KKLoV|r*E)R zkp~^J_fSe6IaxB98iR^zaYj>cvjAkw!ReM_+Yg-6WOv{<g;yJfX2#|Q(^pAo$)F@q z6>~(x5K>f|BN~Q~qT1YOy5Lk(1$RSpM1v4gRGT9jbdaLj+!(nq2PIGwq~s5}wcXrg zdSjEG)AR-2>H;9&I0|TqPTwo3B>*}1PFzY$aJm4fmHeSv!DD)ow3g5`L9Ni~ijR~a zr7^R)nc?(AYZZGYbF=A&rfN#l#bvbwrz_ktT*zW*Ze|QU{<c$2O9<RfW;Qf812?m# zKb6oD->%T7X3YrFnjoen!DMC%zKA#298rIO8_VWq@LU9G3Y(k3dkXsLhNcRJ=4Nn@ zg4@RC=16U0X9Yv^=@0qkO{XgatAoy%Wtr|LuC)ME&heR9P2Vf0qR4D$4sIc6Ob$?I zo6aY%VmaMYT8jsKp{x1ygM#vVSPacUrz}pB7oE-_qs24**ETs`CPVYdiuXjoO;{## z^XUqVh9aN{U&yVgKix%H3*0V!!)$JDHvJ$M=%hV!v+0f*n)=gyRJ1_X?JCECR5ysq zi-AlMc&0yHPfbf4+-RL{rLG0O1DAjLPkAi?aB5>TpMFqLL2P=QtX2h+x#jePHXYIF zBFb8V(-+8?bx)U4(J}%z8n(t-^D;6Unp;eND6b_ky;VyK(g_hY2e%Z!C7OP^iHVVd zp}B?e_JyU!_KedNd>A>VPgc}QV6>Q?I8ViLx~`Iz3ZupJiAtuB8)Xed6<DSzYl*@R zY&5r+&KSlh3To0bnOjUZ{B0!$w)5i^bv;J&$%5Jv(^FKmp7MfAQAn%K&|tc@j+V^y z2dh<jrr*&4rIQ{F`RQu<S`yRmuCU~v9;&AGjLE`c`oS!9F;MjMX-I*ZQYzCA8fZ04 ze_$a$eflj!ElBf}twM>97gQ=M7#kQU7@8|YPyY5=QzTXaep(<X2^c7tnV3v3JfWp9 zeXW(M%Jc*O^~9zx*kCC!eS)Tz;B-SHE%E8#n#R#s%cK5wR*Qjv!~MTqHrx2S)n2Ev z3VyrP#J@M-Hh;n7LeTB>Z<_1xTO^k+Y&v9UJkxmQk>k&<NW6{w^Um#NQ~F-BQwL4r z=CYKvb(;x_`((ZhKeS%PO8Thc&bjLR&dI+FS7{x4)W5;1(tLCKUa9jRB#!3$HC}#p zNN!(W?t^bxZ~1xZ6KuQ}?MmbNwc)aNdi-w2h@Q;ZZmp$npZlKJ>0WbAY=*<L6lHhT z$!}G5oQqLdHR;2ZHC256vW<cNuX&%c`u=HmvBX~9i=Il8sucG*-%4{~UnG06GoxQ6 zXvq}iT+55Xfo)Sbm%Ql+nc|V!S)z3z@2keYHSc`i80svH37o(f`p~nfF38aDXoX){ zh;i)O6%l@uG`CK^G|#eBbjro4eTw!IKHXyQ6iF&o-TgFR`osHbYU|InCO+gnsHyw; zB3s_{6MbbTqwdA;UA5Y2^2chi>3>YLc$kb0r*oNVL0a+wrdrURK$@AB#dPpNm21tl zz&(K<(<fMHd2F}S*V1C-1$XlyX~x`Qy1x}v{|qab{*BgJ&=!}24NSkPtroa~;n+UG zSSyEddXJqJ_jGnsExzeX?Lc|NOoa=4*|3EHxQYSYX**X}iOJAndg5GFd8F=ug#o;V z5m>&?Op9@PORtt7ymHybXfZudTveaR!eDx%rHc4;Jxx9KdYjh%mx@W7J(U!fw5bWT z>uJ4Z7O3{n6-}0We&F`?Gbt0ZI4{^6-`DARysI*^=bO&Ig2g!pH^)goO_0*}W3oON zIa}lGj7yi|MfW|ua8rY?z}jD~?bw&(kZC<f=O47LG~ax6vy}e_k)!WHY35AW{Zi?Y z>W$yT*$n2X28J54*4Li+a_i>yJO(l4ZFwOdvhCM1fA07(OLqfLsn^{Tfd^BpIoBDd zcbrn0(>3*Y!77fPU(cVr%&q!)*|O)HbIGI>&#fzRy1TeTEPt~6{3N@Q>2sX%o4lWL zPrpk{yE3J`J7?A+FY^?e07Ji33ub9b_OB>ns_<RPD#<A>DP_68RcF3cQ$gJVfmeHO zEDjXV%V^+z*z`-JC4bxXl^K0ckLz;p%Xf{N!_9p#x?y%i*#h1>`dzYbopjI3uLxRt zc>2Q`TH=xhpb{M%<;F(HXU1DhZ@i)fE(MgCEDXW5H7LqH-nLMh-qZ&wOf2N5gG3bb z&CS6bs`dLU{ikzH(h{2N-*tJqdcT(7^n}@33XF!+K~?qkTw5&#Mn=QweRf(BjE3M! zn%U68aQa1ic~Q`rmMry4E%WZx+8*7-H^J6Qo<aFQN%gJko>C{6rx=4ywS2S3UZ74z zHSqtfS9`-kzaA{C?wJ{N|DS50i0ecV)xE7Ze*Vwv`}cYN{WIt1+<E(Xy8r)Qob{gP zc1CmDy!-EMecdnl|1ZDQbM)uirRZ({=gRtr_y5oQ|0R>_|J>eR^Xs(z&idQ?|HQ95 z-u^7lw7|6f|Cjie_Wyr%YVqFtx;?`9@5%i?<$`y#{+m{tx$=$fu^6W{cfu-Oe{n7U zI_=c#e9cSyoBF@5y*9()<m}?NZF+a_t#DeD!7i3+|L4z3ef!28+i$E~taq>OpY_+~ zNTvUuLC$m7@mqiU{Quw8-``6runpD@{xZFO-^KW#$NQ&jcl+`q=$ZT`v5)zE59I!8 zP5P<-Rd>2rRk!~YRn<$;+(%~Kc_tt8#Qw<kDNZTxG8zlA7G?XI<n8_OqtN$jfWqGo zS^9pyEGt*;o$l|ZB3^H=wRPX}d(HoM+<$rDeT-jG!Joq$#g_}cJpR4Y>*bXrfdYJ{ zvYDsm{r|9iekgCttV7W&9zLrsJ7RlDV~Oaa=pNf?(FI2qOsc+h#WDNp&lRV->#jv5 zo!=fA`eEn(pLarJTf8>kpME=9C-%$1Hl5Z7i>psx{C+P_#Wf&r$#tjd#eALt{_JJ@ z6B@U=*Bq#B|K$@<w`BH<`;4p9mafaF_qMaXuKR0d<^oOrsj2(ZPBDFz(nz^$xqqRH z`?W{a;_v4FyRM$u!!p@!$-+g8rt7(@Sl8z(Z@oLWM%wUr#sNk(sj5{|uT6}rln7uv zIANF5her#RPgQNw(J^$C%sAMzE_7|ep`{D%sr9PrZw-?zZZHh}S=4Z;HHdrHh6lf8 z=7??6k||x}y;oI?sk`CG<!6o&=a<Dz%5Kc85}q@&*Mzx>HQTCO>D?aL2kCNOZYgPP zxbKuxzk0*Ou(;2+lf9N%J`(HqsehVRDf$0TM|xDrw)2c)*CRHq=(p@Ej8G`Oz;on4 z=AY7rchdX(h0+oNI-jjNYcpHnm(%LH%yZS7@)c(JsUK|-E<MFAmeFlGEo0R*wTi46 zRRLC-9?>dFf&1ntY<+tB@%HjI`F(6J_SAGAYx;7xX@QiNR%lM?gM9~&EPmuxncI0_ zg4&7@U4fpD{r9IAIcd#hj<(r9UC3F>Li_%*S)18c$7=8US!5i<Ho@X?>JFtaA?DW^ z7q8noMP-QCUg?mx(J)c+xfngYq~F56{_ee*WsX<emrAXCJ=1q8$EKTi3@x4&mVWZA z)!w(_=fucPwLtHq#do<yuezA6y_UHDSkR`Ax2o49d;arFvfg6+VA_;jvsRx8aM~N> zs9_u$z_FBHY^qfh_oY)u-uHZ;we@7Acf-w4_EUfP#J9W@ImW@DzocVEwM~)l{xTbh zmN5PLZ0QRTp$>EAXa8K#AIj0YZ%ty0+pK*?U7q1A{)eo^Ol57tt-~$tl+Gu6C7zGy zz1^1gM1PJCdt0f-tPe*W-Abp<(2!IzJ$Eqh#6;T*)rnfGPw?_?{+<-k@MXq@b4;y& zJhJ~hjWz;bihS%~@6EtXy)i|3U**3z`-a?L^wFHY-%G{Ca;HUPjFpOsHFHS%*{qw5 zRVI(ts`4zGq{mUXeU>5b48dy$+IC7jxqL+1XTyWED7_oWy8T)r0qjk?rt7(C)meNp zZFJR81f6K8Jkw-z|G|DMmg7;<Z5yIygr_bqncyg}Y0W+JmoW~{SwJTma_u^#Exj?K z)u?;=CvO!Urfb)y3%O}&F)fjp?&G6Uz?6S_`aT~OF-Gp`SAA3#PtS7KGOT~W{jtsZ zuXfr`s})@@&Q88KMN+xgJ=ZrbyL3XvErkyOYJT4)mslUncqx|NsHz_y_C4(A^IL&$ z=X-r`k$qEDIHB^WcER_GwW`ZDPnAEh$9v<-G;hxw{Yh1?4w_878&bJymw1i%-76Jq zdOkWX$e!q!b*Ma)iTm!+dym%jeJsnLP`^UqTT$uaq)(@3l=dB4vsu7Hl+o#Ug~OA+ z)@Cigtgh1e>3fBrI6R&3q_axHRQ1MpC2p?jtz2pA6L?cs867_-b>WB^UsxX>x4X!j z5L50JJ>6zbZar<aRf;xJAAA;x9si?Lo^g0vr+uJg*%|*;SEjV<PO9wHGHBU*wCt<h z1+{ubyJz>-TwK*tzJ+h<`3^3Zsh=+_H#=4Eey`W11Mi#KBWlC=XXjWva&+rhVDj~- z_lmBAFSN4wE}5j%P7)OCHf8_%nOW%*!{+1fIwP7*R<B<4s3ZT{f`ijl?&|h6qzf~i z?%-d^eDGo1nN@Er*^V+9IfV3Bln5q9-1ob<ee1fP8|pnKNU`mceA!bSW@&IKIpw*^ z#53Qg?eY8hh)X8j$uK0(_}I#KEZ@_92pscJpHmX?wrl#khf{=K39OJ46q?kamZ8G$ z$gaA&cjk)yYeP6qFD=;N)~nv<b#l9jTH{yEX4hPO;S3XtvsH6D%Da=bRXSSKezdvn ziI<XO>~x(vjXB<vhokS;cAoWBzo+<UtjUzA`uxg#?Zy23*6Z_P!x9RX9W>_duaHwQ z3s)>{`FqV~L*il6?3^1D0_Lx-P~L1)vHsY-j5J5J9E*$H)9+2SP-NtuHqAnW@#A#S zX%=4f`}{g{IxYSL9=C4YvwHQvO&7su-~9>}n+HDoZpJ^2^4to)L&rJ<F8pw?m=WZ* zb}>)Hse5zQ-fTEFGwQ>;p1dC=lAe5Xa=t`<H&VLbE&sdQSnBkh|C{2cn`?Y}_kEUb z)|`v2@6Q;2c%^j6KJwd#7D3j3uJ4b{?4PP5`gH|6+y7N9K9_Z-Kl9Quum2-<G<(s> z^YR8CW-j(VC^$uQS9Hhs(`}kN4)(&&vU`8%r{GJD(0y|hW_{|ve@{|PTs{4#)u#p4 zCO$R12Qm~_+=x)UaQs1Lts+y^%E&BLbye$4qC%_0nGYRYeC!%S;?9sW$!%KZ?~c!z zc!?|jcLQ5obn%tC6;mU(noXZI-NLwDZa>?Mz3mrf>R#f#qI;>;wdK<hpQgp-N3Jb< z-`49JAGP#k<sp>~PbS<AIlS-j>{pN5%iFR~bo@4aQ<14)u)FE3)U+w*zNt1&SP|k9 zBxUIS`s<Pu*M^KMHq-XC%n)^AQ_|`EYs<zwXUS3iqbn}@hVblZ>pyU0rAhIW@cCwz z7vI(AJ8k-ra!S8%RvJ&n(jx~>OySVtwwm=mX`4HnnXhl;CKunGx2?7=DR~{v*&olG z(|RC9+W3LmU*Wh(+Y+5Gg?YPOx;NW;#g*RB#?o~zF8d75?Mi8Uktg~(T36<&V@qCt z+3Y{Y=RMo!suYGjn0rv+<QsdvsrtnXtDPfvx+F_%WLqwrGBxJ@^anvIeoQZ=rz`nt zS($2G4PSXOJ9;}~@7#oAt#4SK-!Rz`|3NHK`Q#3fNS`%Nr%aTKDD}Q^BT^+vFz@x# z>{(Zm|G%6*(O1ixF@E~(nHFALZ&zus9^K`k`ufLoLqDzR`d;Oj%rfaj;RPuV9ga47 zR<cazmGjI}Sm3xay5i8QyDc{2mhpj8O44P8GQY8IOXlTz&bs@h-tvd3<*!ug=f<27 z+M1|(V<}(Jq2C>BODAMqw>mMcYkG)`lk?>qxs<mRd?pNUVy{K0SS`{HI(lHDkVsoi zPQ|BH(iaodlU$o7F0H?P`r6S}t>24+eXTz1K00yNg`KZ>)z&@(ovG%dyY4Ado4e1Z z6)*lwwY<3dri!1(GtEhdwU1^v{aziP>1bT9Yg2L|_F<Tk$3oTX*3+W0RveeIyvzOD zC-BwT4paA&jNQJMmI@n96;yG`xE}hcQmcNpMG@<Su9BAY@O}Xnv1i`(tQ$<C%{QET zdQYXf{6N~H@+JRmn`9kb-+l-Zl31~5Z>W%&&(2jd5~qqz=6$;L_|v%?57!Aqhgz-< z<L|9>v5{VT)aY=^hMQffXY&*r`<F7h-z%7P(Rj|Sm2al{OFZheDgUUa&a)xqo4B;m zOP7<El<rt&T7_J^Cls!9T4?8$Cx!K57Y;vUJyO=${^XYT7QM@J*7!_R&=5aydxezB zg!KztjxN;=C_VR9VNHTLlbo<y2G^vUCWk8yq^vhnw@Ti|64lKjAm+(E#i8p`-u|VQ zig7==o=TJjgf8iJXU)CgW4M=B)rC*??^K3O9Lv5<VEMxO>cq~!!4o-oxn@WOP0`WI ztG_2HaK*i0<?O6zfmsH+cP=cE<ym1qZ?V_)C#RU~i<x$J_5Ga2wo-HTt_bB+=81)m zL;mYl^emclBEn#;<JprnGkRIu?;IAqBQ0d&c=6^f&d+ZjO<!sH@XqZCb$(lgT#qmo z2!5Fn{&QPeOY-_o^{FQwvRt)P*SwhG&*Smr?23>H{0S$zA0B$&(>~|dx1Ih!d#4-E zwQywme0+LaxJo{w#`I@%E#$>MJTv?tU>)zUS;^bwdbp6yr<C7Q_jyg%j!-e;ej3cb z>;K-P1-tA2OpglE(yRZWR@leCZ>FfE&#lEp!kZM|^Iq*J@2;72_@;tcq9@13kMEwz z?cc+!dp8_>wAkf^2cLF;j~3G{I^gtOHywPm*lU$X8BDOF#csH5u~s>HZK8N@nYP#e zc|B$URiDphi%<07R$Ig^y_od}kEKQ^oAZKso{yyG)ZYl5c#v(ec#7oSg{NN3bG>9X zv&rXFdE3RMO53B9R810Edw=QA_fna9TZO~mp>;ykwTQ~pd#<YDkHaE9ZM^T0kfCQ5 zwdCVc;oW^<w)W>F_$tC<#bj?SEx2{|R#&tL@6phXa09{coFxkSnmZ*O7T!M@{xj)X z_J*Zf#7?zWEM8WBRdj`txsxxqn^46y*}aUyFE&>MoCrNFbNbE!1+LDS`vN?h{DX9B z-Y)U{b3?y##lfo=p13f7oc)>8VfyQ=hss|)l**ThbMK3uAt7?;)lrFG+%d76BOa~^ zzIcs8Z`1bujUC%No*93TDqlC{$gU#LVPg+^S+<CHJJl=tZV8&avi@X9t7c`WGq<V2 z(qR5yts$m~X$Q4Emt1<qbo-c`$(kEt7j$ozs%=zax|qUVynr=bdC!lK80AZiYG#}K zmaOOACcRJErYv>m%2ofabM)!1+U6l;b>O;E&V4<$8Bw}Bwt<ct^LsptE%Veu&Y5pz z({CRMomud3u}L#moat=VjqdfYw>mOEcF4QD;c(N$7Nv#zu7)MQ51(o5o}O^0TR=Z! z?y`HU3KJij6daynwqeq(1=&1n?keSmruzFFDn7#?blyG9)Iw<Lkxi@x9f!039Gotj z${UwA)kM$4M|Sq+FRF=}?Hg^yk2m~0uK(UaexGX3oy>nix9a|{y;4xyHEDLVd;OAQ z3r<v~Ki~J@OQA&FI`K6h71O?!>}}J|NKzBOQ5qNj%yIk5!o<zFT6-^;dEGCcvN$xx zuK0<7gu8{L^c4S|S4&DwxZVoyW&Zl`lkTBoeU_QGHr{yk)Jfag#AvCw*Xc`dmIt4k zxZp&M>73a!Wbd}>RZ5!X-N^Y}TX{I9uS36p<(cF3N7GwFwIU4v@$IgEwf*Ubu!*nE zf0R>k5SS(CnDfKP?2gTWpuS*T*@#IZN%u@^AFxWelod31<@}h=wa7xTerlZQqb3H; zy|?B`+?)_=6tc=OT7Fm6)eM8n+Z@%WE<1L0cKNTrKZ6_Yz25%9V4jv<O@?evnND!c zzgbsJpJ%?xEZ+3THKlW!MEkQe^Dee!N=GB3GGq*&W{51z%*s1{nRQ08-op<^{;Zp} zW^zkT(t^gv!Gd2>RMqb*Z3^GD;_tM2R_-~Aj_iw{+S<Usw$H+0+6vC)pIQD0S{wX0 z;{E4sqx_o_UoM64$b@^vWVK!vez?GAN>7!1n?T`-Wsz$No<zTj(cpjIyZZ41ozo2= z?QN+k>Ta&e_n$OaT>E9jA%1vG9^<yFt$M%0N>|ITe%M*-*8kfgt-nP(_R$LMvU>jq zZ1s!<yEva|r9ZoWOMvyobe_p<9xo>Lrzgyxvn=!J`4gXY_q_D5i*Pv6;c$QNt7RR= z9djHn71ZrM^%Hz<*`3vYrH;w8zx;Z8iF%Ovgfkgiwaa&S3oSg#<@d%ylYe<<?!QC2 zna6L~KY!rVS^7=BX-leuM)=;NH(si3%f9sSkBDRaETeC+yXQPLU+{eL>06Dg);GPM zOb+F4Td1<^Z5H=pMX}#YvK;Sd%H(fUka+7}8(MW<r?9BoAv1Qa^n#hT{AYhioGCBj zbo{*OUtWaYvM&zS(d%a37CSGh&gszK(Cfb<YJ%tUIn#3zrwPk=-%1qovh}n+w}63} z@y4o5)6+b8o9bO}d#-=QXXne>nf+1K@zZ+CY_Vg-otJ-1{yQm0m8WxuM66qR(xapm zmPrW`Kc-H7SKA&rJ1INI%=FpvhUq)+Jb5yIx{2J~@|SBW_ZNJM`&jqvKbM|ot>wXH z$=~yC2$osoh7?_l`F`S~r`y9YFBY>W4(FCH<31*rd{vmk;<@fir?v^V)@&Ctk?{#O z`Lxiu@9auZ%Yy5=v)_rmFTTI3Jc3#2-CS9%V~g^&j&)sJb?&$9BtwJ!IYQnU+m3bS zHm5vreG|L=`4Wo+#`-^N^DP|WSw$`<ef823xY4GiYvt6Xz-{TFY_fBgvD4H$?>Dj^ z=2>mH=1gT;!oBnQ5jjUS#do#NF{@x{&q!JPd3w#7zOy@jO!(m@bl7jvPXk`{^I@3> zMf0OR9Mft(7dP?pvU%NKYzh~>coN(+^}6or4Tdtmcs^aqpMP3TYuk*(`l~M6AG5H< zE$3Wucg`uF^Pje_dp*<g#=QwMr+hWqRrvXcICs0``X{|zYVU;aJ2ij3-_4w7xJpzx ze9MnNCJ$UDzMIvTd|S6;p5XGmKN1aCH*!DWlgg<}FkaL7HdfV?L*hz$w%C(RdsXiJ zi2Wejcl^XY(@>YfgDg+#+GKNbbuLTS-&wq*k&)+>a7o#3<>W2f%=Ru&TWKP-tH2^| zO7`s8*VS72d~!4A{FKNnz420W(#kClPEG%s5nbcY%T&*Og|9#-`CzQELCgPB88Jc4 zu2xbT`ZsKq723O$?e==9jE6@B^$fX`FFNzz<mu^D-z{$a{h9X+>A)AA9$zx|d|W#B zh^>Ob#LOw{jHegc`pUMNM*8Q^d6@V8RAjjDBR}_^(3l5vr$1S4p<XXPiE~N$C6<(k z!d4sg-#pPL6-=&*incG3GFSdoa+#&$SWL^&cj8B!4NmvH&+u|DEv*pDyqK_K0$YU8 z$IvP77jqi@nep89-J*&7?2DB24nDMcf8ffQ#<m*2rsVsVETzj_vksnhy_*sw5HnHl zY;c}RkiwbhCDN(S0u7e3U1Mpi7h4+l>9&{T@hZ<#OStY>U(SELM)RBNj}M#cPO=9# zACoEMeSKn~!e^TYm)n}pJocOQF2hlM!!`rn305yo33Z&A{?BRVZ=;|CLg)IRhi%>L zkYd~XR^qw2-VHqyG1+XUSz58rq_6QV(^#icvTS2(#&xN*V-Xn#^k!aI7Svq7wl!^G z^uFfC@LkM}H^XCVCv0XonV~EgJ4v>Or#FVZ$xCyY&s-s+OEP8!sg@Eq)GR|bp6-^K zS)?bmc7h3y=G5ei;+^xBN1tSMbK`!mYJT=ybF_>O+mecVN7}Ww*PT_(NU$i-h(7SW z_28^2yk14g#gAQ#?|@I+>f=!KW2rCw_*ZyRmD&EoZ8f)E1*L53nADY+Y~B?jc_w}4 zlHPP?f!-~Q2UUHzC+?CGX>we;?OMTl`NbC%1G#<*)bt7&_)7(?P=0J!IQPjdRZo*8 z^Byw2Ka-*Kyf016AZSU96noyrom@SSx2;x>in?I5<YC@Lo2vnbzlL_P-Zd8U%a?dn zuQRE2d+o}fUD3V5vva*O9jEKuDWCFmX@OA8eU()w9_4QMzGUKixi(gvXf`9+eLfs- zL}on{xvDks&V$njEY9CgxZ>8o=k@vBQjKB)Pqvq?xb$MDThY=?)AXL4TR|qvqAa>t zOtw7{KB1U<^rzPi-;RP?!Y*z~3-=sm$TPl~yVX{DzsnjOua}X^E{8&In+0i|IN1>u zwQ`BQwa~_*>C57@G(x1+pU)^PNYacu*4V%4+M34)?2?`v^M)R8)Y*7MViMP$KIaM6 zSyt~rCvQETAO$*k>!;cAg^%<kj{RAx|7^D<SIqqLw>1`|8ihUA$VgPW_}!A@;dG^V ztwoGc(=Vs0DAgxzWLm%BE|a|5bDs}$o-9{hy2d`xdM)SxtAca}^;*#b{;|KicTM45 zx#|;(L;L55CULX$fJpWgTX$dja_?r>WCyn0#?O9E5{sU8{r8ENQuA`W!}t&ES?K(V zS*$SKLG+dyzut`FU)QqDJ#$7`@rZ(y!rwpV3{E^K*w<39v5SwPewsOt$01citAq~u z+!+QHj%9~(SLmCsw43$PsAI$AUY=s3gi9y7ubyNR`Tp+5T9cd$39roeKW~X%F{%2# zqUfxv4R8M{q$bY4|4`=h<jcJq4jj-BUjK!AvB&io3FW<~%GX`%+`4E+@W}*`?@7rf zmBxZ1r8}qke^FwabNQJV!>@w+)$2CjUt-?U8_2szi%oH@!sF%pC-zR9>CB{3$L}7c z*Kw|4Yth^pCbFA0L>q=&{b+Nx%_yH~xz^*aGM8gPCs;jtvCg1Pe=p<&E1|FV_NYvC z?e<vg!4h{P)?j+BrxVw4S6}V}PP;ETY4`=GyG)+?@$K55Prl?eS0x@e(!%=pMCaD~ z)63IUv>4;3Pf66uVAXsdG*N##W0IB}<EQC*87gh{r&72#<m-o;nC<5YP)#jj;TAcX z*3)LWD<+I}k@H#c9{p=FOVwZ9+?Ar#z2}8s`jmz}%FP*1mMwj&9aC~@?%~W%ZMXj~ z>W)UMow~kO@p7jvCxem6fh;|?i*6??V`i|pD)mX`qzZqFYZR$?`{U)-Uypch2Wd1_ z*>i{Wg+37MsaIoXyYPD!@1l#`*SD>gl2dZJ|25*h%c42crxtako_s(3Mc`)%%X{S+ z!Yh>3!yX6MG)=giqdmEEg5!&#o(-!s91rUI%sM=gVSjDsA9bCFjqexA9q~Vttl;*t z^V7@DL-Ap8Efq#v8b8)Hvi<(^E@hH{|Ffm$3g8o(s*Z6!P_JJHIil&=c{TF{UWRh; z5l!n#INtn!G*NhGiPoy)?Y*Cp1bBH__Sd$SOy8$<Y5t`Nzjhl*I-a`A<fQejaaBR| zu15vdXMSkr?mA&3_(Ct>c%Vz8g>y$U&)v@qlXrX)G)vejc5=?Uil~AX@Ci+pEWN!g z9gq{6j>zW5q?{-UWL#ra>(W!88gk(OmZQ!;HRYB*XP))Bd%9niid(&TaIG`ntFr-$ z2cEmGVfbFY;{LBGDv2)3yri?#+YM@-bgJsl7WYWz+Vm&zF%wHZ!^e#5EM|f4J5=_r z_T~DxQBJdE##6Q@JAdeiBwP6%iQdA0T~_ynL)R@y7oR7ad7{^{37cJyJ9Z@Nku0m( z<<^Z$<2D#giz#GPpA{`r>SxkF{r?6FuKJ&U&Ryu(eDBFmfw(=vNs=Z4?<S=laMhMy zVqLxE6XW)E;mStk+#he-J5O79;52hrjmM?iO_P{j+~Ha#Dle%imnd*>*F4#y_X_%6 z^;Eo(G?vQN{<PHn%?mYuh1Mw1;BQNpu)i}8>94;ddbYE)Z27y#4qV$Ww_LSN+b8O$ zA(Xbg{vMP3T(Mi8^9`epoG$MB-@2L0(EQ_usiFryb!ho))2vENn{eA|mQZBXrPuFt zZr$nYb4)#>T7K}4$Cv+qGM$S%mYr){CKxZglf&rus{;yBVw3G$V=g2HybS(O>D>76 z+2kEtlMR-7yb8H;<{|G@%bZ(=#)Uy!&L%%h-*YDA;q$nxxE~X@mGLYSsjZun_-M_e zeah3mRXV2}IH#%iW%iA^8{f@7$fReeWu$IWXEfoH+2uywYfcmQ-slYV+;~hN^Q~{6 z9LFIOpC_Lel_q^Je{sJ`wcILuz1p-NnYMe1R{V-$GP}WjeZF#7@UND4(+f6PDDcd$ zWU!DuwcyaHIiJF&&)H;QQ-5UoWUZqGOD9}jzvR=5S1Z(>nXxB!O6Ki|n9&vK6@9Zs zT)%XW+N3MBlaK36xh`XTNH+SO*G*=F_E|^uSSl~_#&z3#VLQmIHLoYB@$MX*`wzDn zv29rOK(Wh_rAyRIL0GA)V*BpM&2xHW<(RUk9ZpVPo3QUt>G7PIpN{@z^UPPQ_j?(% zCSdy~t~`S_EoFA*ABN^1+jeca|A@(9^Yib8*UW2F)o)+-JG^`G>el9*OXoFwA79*j zQa2{=M4amNM8?c^vGnG<lBZSkSU+lHMVl&LwCMIWz15b((#fHaICYP$563)PshdyY z*ggh7>S?I5{jsAq^5;JOl{&|{+d4|47E3SDIOd>i)b-#mOM!HG{VIFb?+)(Oj0@sA zuj)@{%TtlB-^3B^^WZc16eR2FD{`C@TkDi=Dc+HYz5S(pN$a8YPa=4FL-t*({Xa>+ zOzJA@!pfx1{%s3iw4CBPDYa$aM#ZgB8C5r%F9gkU449jeetUh|_JFD4R%&L_fBzg1 zN))ztTNc0UOwBBT`#-f~Q-aT)Q(BsP)|ln$rC-(0zbxH5iKWvsT4VaG3@tCsyJ?d@ zeKx*);WSHttHX;T(E}$TM;Lh|Rh--=!n7##`HHZ>r!O?>r%UIn$TGg4uAQl+RDXVT z&&d_p|6<ZE9QctVd40kahNP2W3RiZ1TP)paKaZ*5_T$S%hZv98Fs@WulETeW=@Q95 zndzg_v5b(mIeWLdPGgc@t)_POu%zeZ%JY^DZQ-*uHkYW&H1}6Gu!>Kcy01Na!eOKL zx0AaHkB4%ZZ84f484=mg7Rt83acbboU1t{S+<j@l|7h9nKMrrNu?q*xoWZ$5!iQPQ zA?j3d#0F=H&64ghb0QDVdKJ{U{-oISADLQ8jH%N#3sn3W<ELk5X(_VD-;r!$PT`t9 zIZG>wF>Lyu0+q1(6)P4PHt-*qv*SbKACcA*X&FgfRuZ4?2*@R!nps-yqU*Zv$kU#l zkC(f7D%IyacI;TZVWPmaS&tH`)_8muZ=2I9QIN{I&D<e(BP(zA871dmVOO=hR{zwj zKl*Zau{Tqp?C)FZlah2@L1*`{x^Rgn9X+zhW}fS$@Ix{mul^C4Qm@_LQdszAk=`-I z-UX$}91N5G{yXWtr{hJt!%|s^J##KRS?Z{!pMJGjbMw!m-uo&8))mX{Ino`*#?-Ln z=$@;xKjRW34S#(|EVK>!GFO?~_JtvL^Czc2e7ByO86K;e>$~}Yc*VgAue`(zPQ^Fd zYAe%4wm*Ejw&w83>pP!#TeD@?8|&;05ban|>Q~~@v1RT;R<>m#Hzh<?<Y)5a$JV;f z|MqFB{KOUFJms&rT`P}B8aODPz8j?4zh!c3-lLoV!RIS7<$~w9`g99EmnzsXQ8~I+ zWrI*y(bUj@z=X&>Hnn$OH%$$ktz^;H^7yXwlhwN(W;A@&x92OL9dg1ygoSw}PvnDh z4o`YG6(rXmH4a(){H;)tL4mBL!H;P|d&+jq3e5IiS*7>(<P?X~2fQYEPbv5(pL`(V zg0+*kr0eNB+oacQ)7U&qf9<JYZ4dpe{KAf<A2N3xeAjbTP-kxHbm?3z^?GyBSs!C3 zZZF^2`{)qs=E5Vb=PIt>U8HT-c=~3_w;~Q^p$B_FXY*V+a<Fs5zLPt=owkL{;Y<7` zb&Ic*Z+f{<{1o54yvhC<%%8SO9OsJcn|1q8r$q8T(RyyzrvH`ygMP%%+CRmA&SR~8 z(k?qc84H|abIzV5o_bI-OjUHffcee(Q<9Cxj%rI!I-=W^_hwq3zU=)5<3pih8k0_1 zxW!x)l!)qRdmr{T>rxYkyqLm~&;K6(VER}-O;6@whxLW#c%G1wtl7V<t2~3w{F*Jt zTu`&tIA*zi(Hq57?oXQRW>r6qCQLc`%!0+iTyIYFa<vbqw(i?=eb$ms4{UO$M9=#X zFt7gJI|~EPmRB`fj@L=v|FB8<-1oMRB1evF_}s$z*sW~RA&aHD{;%)p`g}Ti+ptl1 zx>dIR{HLqL)!UE#SQNpX#T3|Medf<&VeJs@e72owJDaBKJk?Tu*i~e3s#htFuis#~ z@@nzADN?1E7Twg*c>BDp@jcV#!abpl47q#EuKtK!XTZKmD*lh6IOwz<lbMY>E+*}n zkt1pBa8js6^2)dTpPCo-%#S@=ac7nSpW1ox(_(L?zsu8-t*_&Jf1<e5^5xlk37pTr zKX~}^oth)B{ye_O>$gveEq=S^z;E`-`S$bg&kr-cedcwqQsCyZA_;FBUr*sUW%01* zj&kic;p>LKc_+<TdFbSOwtdkO$1747y}GG&PpYE9)9y>5c8pU?_$kI~i@w(>oM$+H zL+FObwWq!lW(o7%@Zt(RE$TO);o!eLldot8Z8~}S=c5Z*oLohP)92@FCGb9tzVv!J zZ`kCR-@krNo-S3UB3u8d@4NS*Yv&HJxlU@<SaE#!<|6-Nwe8wYt-j|~i@aI3Epazv z_vQY*M&|CtgBPnb^<_G%o!MkuYWJP9o!Q5+(ewPxoj;Y*S2s0&Suw5khfR3bp}E{f zd}mJO3mm9??D{%zg7JdgQ$F8Xxaw2G<U6ZU*jI2Cr7|x)bZ!08>Px?SbLy32_i4wj z^PTv`k)^YMvAw2j{tdUSjP9)sQ9CZ2INAQu$?VdtN3B_Qm$puS^7&vjx3JU{kJOp+ zi#n=Qvj4~(RtR0+c<GtA!c>bp9NTy|3hiHb=X9a?o`W6nM*0tfPdWQZuz!31<Jz5{ zaYtL&kBV(v6ny($&xxmfwa=6@O2t>{*NerR=`L#gaxP^?$6u}RnlD|4`==Ye+OtsC zxc9n!+YRN<HL1syPgr{8U70nzEAfJ}C!3VF?EIOpZt5jSJ7#ZmcANWn?~mM#(I14m zT6H#R6m2V&K6&WloYf^FzK8BFUHqVQb^9laQ-!(d35GqtSawdxWlL_Cz7IYjXI4+z zk$N*3hn?<|*!L>O%A6_DJtEfDkh1Y`kY7b*<Pm1i=?uHOZTSuQ4pxS5a=R8jZTsD0 zzHcX;X)AuqHs#6!iEh@3;ZJ78sNPJCogFY|`+l#!NlmG7eddl)8~4V%vYu_Q$;jiT zN~*x#!fzYZw>3+wD?EPpP*cp)GUiE74(?RRH)ra!xT-X1#<kiYMag^{rd)B84S^a> z!YRl6RL=c1Z!L@6bHMWE&PE%xg8jNyA``x7d!7pNU|Z82Hr;7@T#;4+lXv9wa}_E| zjPcVyR;WnTi|`lme&cfsf10ZDrl8=OlEWs`=3T6u-?tgv__0*Gj9X?)Uy4hoQtI}G ztS-k%%O_}P$2n@=uuRi=6L*kht-pcS@rS}+LYC~1XniBRWYvO8N7$-6axb`id2TYd zNx@{{a>uz%I+amJ1jW~UwU3Zm?{~0i?N58Q)Z@oq=!P7x_*u^^9C7YI%QSU^g^BZS z?`oIapAi8%rRL{dR)%S{GR4lz>!0d)UOwb9?Wg^Qvp>uqY&a3leYzyv%k0hOPiOOA zJh;<mbghJUE^lPP%zwYn9E$n<d-?u9llT8U{r~Ti>?eySS7;@~SR9nde|nI6tySj# z-^>4d{r?$W*S_;(RMYL(ne|)=?GNt%d%pbt$N72x+yBYr_x%(8nRT^I!D)wL<eSs# zIm-7Go|sR%al8Ka^4olWZtoZH<Wu?k;q&tSf1czU?s@rlhW-D)lb=WZ-+V;Y`rQAC z9{>M5y=?#EPkf&J|M&j$^sNrHX21LP+5Y~&gA=<R**}=HYTAc&>;FA;Z~Mr^{A#Ay z{pz;=pMr1Pc0JO*!zpif&2+B%@7w23pH!k{Sf5|BJxXow)F-W50x~+Y|Lke)mRabK z=c47RUv*f!ey-zR_4qGs{04qI{@i=GRI{dgm4KN?ue3sHLxaJrTplgMKfk&saY(dG zwp&@Veo4CyBg^z3ys}#kt({csm?r%_?XT?n^bb=7wyDiI^T=fD-cX$nat|}T73ckX zc-p}yynwsDa+>=r-|gP&t;eVT(c=?z%L<lTG<T2Aj_y4VPOa{J&$9biW>Z>^S9Q9{ z%!d-Wb$gEgk>y$Ohv(87O<uO1u&0TRsSMk#G<y;lwi)_{D}9&mZ<rDHId1RwQ(F%% zIM8ZioKa*{@b$~er&SU>559*!<6xa|H{;mtjXcQ{nt48nG}RYuF4}ZTYUZZ55<jC& zBt2uVNUz)`YigWec=XKFleX6Dd6vJGnX`D)`7qi2mb2|Q?@C$9BA%XdCt_(!bZ=Bw zPN{pC_m*v4|2}%^t&N@4wqp8zg{O1oyp)>%qr3Z$c#K7R#AmIAYabL<K60#C)RJLv z#I_*v>6LE1_KOwALMu`_>dz?Ie~jOdIO~V&)yO4tyHeEa8;zqjaN7QV;P2|klAh?* znk_Ea`FF;H>8ri$Wq#jdYtD@Ps@u*l-FeIT&I9*1MlyESrygJMq4c|5jnBuzit~p` zMWz}@&zrnXig*96Yp!fAd0~4t{cC(9(qFSk{l%@86|Kz5iK+YD!<{yKblzBRZ(c9* z`?LHlnTCewH12m|J14j;J1iY{_-VOz;Y^;{PS#GxT(Sy^J~+w$@1FnJv*OC;)3F<O z>{9#aJn!t|6=L>WffGae%jYmu-6=Yq(7~C0$$qic5_<>DN0(+@Gv42O`25n(+jk^R zx+b_%!MyBF(!=^tU4Qux#cVscc&_jNw7h<Wm)6o(h3X!M{vNDIo9n35`mbM`!)H;t zM9Sk$`b;~G8D54z`G0iPiTQUwC@AbXF7qS(;cTWSl3ya(9X7cp-?*(^lQB>Hnya)! z%sc5EeFnAj-x^*TTyW|R*}R9*BX8RIY26IbtIk9n{&?v6(en5=FAQ!x&HG~6_sNKH zKWj&QVg0i$KMlg4HHd%OdaCDjQY_C+v-v-LS44D~tzVK>=c)DZ;mNBj@5~U^z5P#k z#s>q3Yg|*pPb@5v`?vI=R*<f+p8Pgt2KL5ZQ<fMPZ!y}h=Dud<+K*>0dp)^$PHE}H z|E2#^RFZ2mQZlY)JUP29FQqszYe~h|lN@{A?w={s9iAqoTfc6WX1e<UpYx_sX-ex0 zWsT$B^tyj<(w$JU!J$PZxz6R{;Xf|Q>v+F=d;YEX)xGM)_kThC^_j=ZE`8LupZjl- z)u*}pk35dAYkXC(WP!~8qBs6_(=7i#J$x&}^oQ%|O&|7dot;=|lK0Q*4c{Hk3um~> z&GPDObW@IB{S<NiqJrht`ob-hb>XkyYOguF-e7*8*pZ2A7T^3MYF2T|UHW6rLa&)^ z#o~e|zsU#Hl&P=jyzzQ{(l+^%slvX;Tpz8R8g{+E_xbadQsb8M&Glan___RVdLt{_ zp3ZSk_sRPV4teRHtd@4CPv2Z>`HOLV|8(I<EupsZV>c}{4c>2E<x<pBKFO|L?X;NY z4&6t|ZIL(i_wCjHed6~{v;P+_B{hlVuF<vZ^Aa|@n)P4o=AYJ^C08P!@BFw*`A_>* zdv)I5+@Ie|U!C;!RAIyZ<*({%9c{`~{=U5`T9duRBAH|E)bo=Y%~$K!?e(jhE%$q= zVB9gI{XA3tdr1A(zP9we^}PMZPq}0tSoEg;_`+?gpS9#ldpcOW$@?~O!uF;I)us>g zPEL2UIr&cMqi^8SpGjsD8w#J?b-Df3Os}#llkHjIVx#xFXUM7~?6FU7`djn4=*Uy; zvi}?!!a3XeB_8{l-HYIuW45(S=FI%(*IHJly-UjBJ;%%MeCvjUq3w)ljcx0TH>Vn= z=AP1dwzfW2`Si1`S2wezyyaZmnEbEp^fW>BCkwBeNArH4bvP*bu*W;2Ba_+7_H%rH zn0S2gJs<uZmv0o9#7?cxt9Fg`s@NTRW$Cko@~&MMHoO-uRohm%+xN=uJmIhV@`WGr zXV1<Mjot0Ctaq#XmX641m+lPZ&8v&ucBqS=QIR;a>2m7EtMz_s3>kj2Olh3;`Sa4X z3m@F=IJ-iqFMnhD{Z}W8?ub2HZ2Vo+wNCi|`|UTjSxN`rf3hj3cmKH`?<E&n@}GDu zooU~<E9vdQ-(QYQn4??zJv?`**=&W6TVDRYbE|$^&3TpiYnwL5f9uy0RjgbxF-CK- z>rca<Pfx3JJpNM|Z=YRoqOAT}{`dH}_j#XIUT~;Lk(_?2{ai<c%ypF}#yjQ<c5na4 z*Qs04uzE>(-IR&UGxC35HZcBQ{q*4ynXk*<DoD<f`@;U@*Pp-A#f^3uKgCU7DV?r; zvvuFT<$t+nS36gEWmJUcZM}4L3HJqo%(JU?of_N^*_RccPpZA-Y?tvs>GF-oFYAx1 z%bZ$&(fl~Wf!DWw+PMDZnPENW{^_>qPk&68|7OW$dGMxHjNtQmr+k!~A8q^B{XN+{ z#Zyi1?C#ciKbG+PlYE+SZuYa{$IG<u?C1!#u+ZTM7KkX6ZQp3+_n_jZ4(rbMLJD!( z*Jp1J`Vb?rseMUs%-p5xl^=Gv^~}{j@~FP(RsFBodk(V;q$bQ>AZF(&t$m%hc<SxL zPwNiUd@7o$FFfr@pYDXyOD{4?I3CD5_}aeX(t@WypUC)KnRLLgw?X27<fN3W&qXoz zufi86wq>u|DJ3QOre<2*x1*2uY|=jQW7FQW8C5S<rwSbCh?w(KrI|N8I@gDN4p;oW zt!?d&=MI`au0L`7PUV8FGdK?Xo&0x>etdpSPeJG%;rla$%$0V<ybN>C^)fj3?Bc1( z`P;I0^v2#djLkVP_s!9bYjZ5F71}oPpDIkvZMQs=`7TYu>b_3EYmN2J*M1(Ux}12S zk@d#Z?Tz)DZdCkL@5}MYoOxer<*cbvKaJl?d(K^=*BBQYH7Vb^e*d!*k1o&h?p|1Y zDe~I-n>*by&ptAplf18c<#~PSHUFEI-4MJc^3dP+<ML%cf`k9CUlTD7-&eh@zwqzL z=|5M$x>#)J{9#7Tk*`U9^BPpG<pjAZA8$U%JXQ74x4*Xv=U%DcHQjsi?%%CnC+@t& zeeT>PiK}Y-HU-(dpCqK^R$iQ6UjN4>%es@V?s03S$~@Cx$wXQI`ODWv-ic{{J!P-r zgpF-2v#$ysU9vtZ$KcVw%&8f&=9@)z4~Ukx6l>WFnR>pc=r?TDDdkPtJ$cU3g6O-9 zYMQ~DkKgT8KKXdMO{(UaC{{7=@T1*7r?r^+bl)(Yv)RAwi@p8B{=FBK4*l;hP5o2< z`;q8HjmMvy7FJkGTr5<R{LZ3q+*3xmbiQEIDT}xDHyNd^TaH@^tNA6a&%Y-5-|W<< zsht(Z!T-2j-k<P@vbr|^BhNj*O{d>amifI<+kRjFb7$M12ZVS_Y_84c`{Doov6Ml@ zlK&0zFL~O_PBYqHn9qNI{)h0_7e6*x$SnEJys_SQjrsHwyPmsDp2qR%+s~EfRIRlS zo85i#-|_U1@5i?&tg93J{$St6`mK*`GxyoPop_G_)TCdNFMKSYeNj;TTrB7QYdw8( z{f@hZ=FhzJ&-J4H*T3dsH*ZvYH>v5p;dbxEiKn%NKdd(T@=ZT_i|hZ#+g39+*vj}9 zzi!^NgYn+>_gY)(J4;&re+^qWr7&9X_B{F1Z&qrzr#@Pd_W#?h@Ba+c>)u*^SzD}n z{n+pLx7yFV@^+LI%YV<GtG)Aa;=XRHf5%=1$-H}QKjEiiVE^I^yI<74&e1IJ(AWA= z?Kgdr%CrBxlb^O<&sjLRKrVOl<lgVEp8T4s{(HOMx~}PV`dzPYo(w%&@5vdjy!F`C zjDMLc|DHOUyHjDa?%lATRZC6o_PPFZRM{W&#V#fBeX@1#qz8N|YxXRNUw28lrf}t_ zP1QeFzwZ&LbrSpkrLenP%%-_F`>^jG;fTV$TSTigYxv#YMeh(+XeznbV%=zI7iXJn zcf|CMaftL=77y1V<BR8%$~QYOrSWa)G@Soq-AU2uOtXGo+BRLIPD`U+@86mm3m-o2 zGLGt7KVgaFEYUqC$r=xRc|P@&id8yZui@L>YniC+7rQetvq3y!@txrG7f0WmFXBD@ zN}{pjVQVkv&B7h$^Edh};NWqSe$Dbj;C0G|r?b9As3)|jZtg8L(hyXZtN68Yqu<Zv zy`}5&dwtG&^?sT8t#^)J&~%ISdiA<Hx6h3iPWhPWyX5Ev%ZECzub+uoyd~{})H%cJ z`}4w|`0IXLKJ7=a_n+gJgs#g9-p_Q{KV$yBylSN{>(9KmS{GsMxWjBhzJ+XH<&z`L z*J{060xZvFZ*yrlYb*FK(aiP7_Pe5q32#l-a9y9*l3VpQPDkmw+VMB1@31|5H!D~0 zS$*4GaYcnsliAFpOCL%Lm`iyzN=(U(ZwaWAJ$pZ=-Ro&>-|UwqlKK7T=a;3Yh;E!C z8+zL?!sW)rpscqu`uuW(K1k>FPKl^9u20?i_3j^0=YN`O>bri+Y}59;EjKIoTgUuI zzE3^XTaPX3c)r={^MsU0)m|a%ABK-6#YK7F`xsV#CjHUs2fung#y?sek<!VnckJ*r z`=5@J&UQp|H(cpV`KhMQVlKdV=x-O-Ltb5nKYE8(oU%UlLpHQ^R>=AH<(yM~9LrmE z-yxRk)6ym{mUpU0!dI_b<QwIY$-6q?;N69LxcoY{aw(WEe8%$X_3C#mS2n$PRMRed zsF(ecXa0@HPj}bnbxo4^p*_FxO^x2a#`7$(KYO_4*MZqb?LSC<jsFqzhk5?TtF7n7 zJu>%xk}Qq=!Smu!`j;1no<EZRvB&vPdda6#=~vQz$`qV_aV*`<%#L~I2gwVq=Ns15 zu$4VDUcfzn=fAn<8}w?PtuM2SS6uq_Q2M&;=f=*~^LM&i&;MD!dhU7gj-O}d?)fk? zJNmwD+^NL<pZcf%Y*+is9Q&`a;{OHb{|DIqAJG1PAmIOj(*Fh~{}TWFIjr!T-Sb2L zr$_QjvP|q%^RF1U78@jYtT$hCeBl%BV8*vTtecEW-7B6gT-3Yr&)H)kZf46qb?=l8 zZhYf&SMZwliu7cy`pt%-C(hM}yt{rZL_vI6k-1Lr&a~4ZYBvq0*2mA#s!C2?wL<)K zNTAcSmC{L9W~Q!sVRJepuxHxJMYg)Zu1BMm<#hyJo3?V%McrW6x6#W^-Ab6bO1mR< z)f(frm7ByQmz^rwIzx;5*0GSHb?bbNp4>QhWzCHI<X3G5!GRagh16^|7Cmt;B&B}$ zTOZXYhpzA@F5Be3!%+188=s?Z<E(=(uAjSdN8j&5AtlMlT3PpIa81$;whS#zUlk!F z9enh`1|QMQM~q6Hdm58xYK2WmT{XjN+R7yV$Yos@Q)li{JXW*WM^yT}Q7Dh&>5z?L zy1`eMZSfI3ec2#%P4M9m!vyi*qergZ&zbhvtNygPji?vjK~>#{XFrOm@wQk=Y<ey5 zFz{MV->SFLGRLJ(s_IPFdTjIcp-g;e?boP+i6uvQuS`EyaI!*O{>#G*&bU5~iF2+_ zmM>B{-|lfv(>k<!-zxUZ6PbBe?dLcgpY3&U`KN-`z{+lmd1?Lk{`hjb+o<kpzkI)6 zwP5@21c8n9dJ`p<d^*eXYXbj{ld*lv<8EHK$0cXRvn<$tkAF+v?KGjOQN=Yof*uu4 z>Ep5e_I&zJvwZc_2cN%9YF#h8lV8&P@4;%`w%p{;R>zyB2d~%rrhNMk<9fB#hUV?l zcdV<kRNAsL{m$k8uR7fO%_FLEw%h!9KXZ16_5R(}JB~gnOzE%x^dtOfdEd*ApCn{< zsV(d}e@5qfO1_aqUuMkhj%_WHff+>ygV$Uy{J-O#S<r%O4B|_-R`wrH4_9x~nYii; zM{ljpGke)7uO}yal<bY2dOee;KX<Q<X<eYf<;gu~_icXE+x^Ah+a>R_b-R`GW3B{y zZ@u+FAyxa#H^%QjbTywmSX(by5HstX_Swv+{Z{FpCa0w9KaX3!pq)qS*$kHdVIQv* z{;GH}Kj!d3jdP-Je;(fYFhQ?o#d<l()y3v}9>!kJlK2s;X2xkK*O*(Dq}^Mg(&n<+ z=Hlw+S9M`b#`n^miLBLZOzaTOGtPXPxZz&pqx<t&&%c@w^C@4)Ptr`0J*VEbzVO!! zjy<b1&ujkrU>n}UbX2T-ZjIQQ#h?Br>KLgW$@}$vO~%xj4S#=khA9d^-Y%;9B=Fz6 zMWIPQr@C~j`F)Gnuq<Pxh07&}oyqZ^l+=&g*W8hi`+4T6=IuwNr~l`a@3+x8U!F0e zD0}Ds+UXmgzgTCO_3QH-_w!snuE(5jiSJxo|Mk~u!+9(p?yEok9d0~t%j!8H5jEGV zcgXH%YD>Rj_vX{ZhBfCu?>p$c<HnBXS6^5}_usLX+U)+QzGl*g3twWcr|eTZre@=G z|Lv@bDK8i2*1hRhyJ@%WW9hXQhW~^=73aLLaN9h4<wNzix@(uM{nGxMQ-1Ep^<TZ` zFIe}AC-PFMOnvvk#R8q%FV<`PKV@C_{Pe?V|H7|7>{Aah|D1epTd<SX(}(v~yIcO8 zHNjW<GPl3^@pjiwoXZ}ycBLNt)0Xt#Ft>D$NyWkJ^C?XVC4V>0s<gEE(#xjhoBDr& zod3t&o7cw0Pw<QhoKP=5_Zy4(ge@Uvzdwm5ebv7_@z~kG^X?z#*UvG!_pr*<?wslI zk1Ke8U%s=V%B8IDn!JL|mk#^gmmRsMR`H)!uGyCJEWmI-)0DR78|8&oJ?D63oqD@C z^>p>yWzSFj61b;1XTElidXB0^-l=Qq)@Skq_C<fY=<wm^m-fk?hO*XCe^zhryUU(y zV;J;y;)gG%ztl!#c70uV$s(_-{;;Xk-@U92yTU#+eLt*IWOBOL;@6XOqhHp|pRBt3 z7k_<Robu$6{K+2=LtcL5cmLJ5`0EmmDc_&`+rHp^yZX!E-VGPabKW-F*W8iXv|;`{ zf%?C7m#)lTy#Co2k9f<_DwRJ!+La%^l|H)WXE}%cs`Yih4o~b!?tI*1Kh5IbLyvb8 z>$Cl{&b+%9c=-6rvMCFdi~Cys|L8rn_PTrMf6>j4Jnm1nYU0^mUh?<#rT<px{g=Kz zIq}%_iSX0)H!?2otG*UyWOhsI_paV=MZ2%LMYqo1vbm@CTTx{4;<cOB&rVt|EpWW@ zkIuu>Zo7+q@4k_7o#XBMl*McJ?LGHM*?gYL;Tsv@JL{`bYkwq2RxEd^EIKsz>A&3< z%1spJi3BDue)=i;R>tbB*Tv^P-t*`6>18*BKYuFC|KRbX@M7Jhg5<8+ZWGy)KOAnw zYkrjdJK?(T#-nqRv)vE%FRohiih1&P(cm}HX-BuO(#r0#HPrpLVA+k6YbuY4MBnW2 zXHUGR`Foe<wo`Sjn)Tm|E*=w!PMvRZy;rj=_xtWM8{^OV87#Xo_4fUvBGG}*?_U*( zuKnHjaFcrK;TcKYJ&zxK*;Qw~F6w;S;(L>S^Z&Vi|B|TLvKx!uZ#Os^mVLi4VBVD2 z<Stu7{r!tI%Vh4Whi))Dy3h4i{Pv4|^%l1><acb`zfQ9(HtFBp8A<nzwCndR*Zg*5 z%a7(+N$Q)QaR%#HY;QjiZ*bJ-=5$}f;BTeDXGH2OwbD-Q%jvS6QtO(%XJ77zCF^(T ztYcqR$KRbD`fGPo%(DFb=^su{_!#{r(B9JgRQ03UCGU6C?akY0=Y4<64xZZmjYq#O zxVx|Wg3Zp4n|1V@kG-xgSnsY9Z?;D6OZ`i2?tkpx?v{5J%C4-Mo2@S$c3$Hz|Fh%e zH}h(WLZ&CCa{TX`{b9Xy*!eYH^*)DRWh}8tj%fX`s5gmcb?CR!!&y^njeJshS5N1b zKK$w{pZ?*jskUB+%6%+<Ea(l_S*OlXfA`U>ssHwgU4M1Eyr<CiByVzI?9*4)dd&Be zcYl<u{}p#$)#}psB_9)Y*16u#Pb^$}ZQo<L50mH3+PGuhjOpvwpIv`^$2^rgGm`v0 zF27#5X7SNd6P~#38T-n1#2X$JEB;q|bO+DF{n<UQXD>VYKD#ScQ@+*z{etc0rkSr) zJ-(h3zF8HZyEpLZM%y`V70(0Tf3|*Nv@eDIn?#oJbFt%^_1faAwom^sN9z6G(4x|o zd)3T;eoPOJjsM8<`(tLsR?oP~t$+Wp{Ia^S@qXLs^V2?+?oj+(J4OEP%s*G|o-kY? zF>#`)U;CVSAvSmZ{{FN(XL-9HUxkhB{Lj~&ceDTUFPZnMP~Yxj#j5A!)z9Bue|LTT zN1LDx?LEGYciwgh^3`uxQ-AN@1b<bX&EM^}9G2Iy{$~HD<d<{J)>RctUbP3ae_s7} z!{IM7-usel`u<v&*5w@bI+<@Tr~dAlaQWvzp?;m8A43l9)mgNh@7QJezDLFLEY#!X zs(!S1wwzDyccI9R<j%!0wJLUpd93#@3EMkweT?^u&H5|XUfsTY?~Bj3ettjXU%&d0 z=jr($#N{LG_J#b+USHP!zQ1JO4z77}%j}|z_a9r8AAbMw5su@PclhfqUUAi5nv~94 zrd1fymM;2t(>ZIcugW_gK5c!xgJ;R*qOzFv=Y9UzUSD88>D{@z{mVnwas8;g+q=5y zzx~C#?cwo$Rxh3i{$j3Mq&_F^rp?PElb@GI)l2)mm6MxeySJ<O%F*Sf51tgty|Anb zQU7=QBUk_Q<iCdLPs<HY^#6LX!(y(@^6S?Z6kNIMzPIYt@z=~>pLcy~j|=qrRwVrN z@Tw1onuHF|=RUPvS7Uvff&YDZkx#3?)J#tL-^Tjx%ch?%f1kCiJSF+#zuR*8uU9TU zw3ue`^3eJZWqSXbS6qFsWT$_8+c~|*h8#bQZvU70ygtrLTX*Tq{Ef8{0{*G>jK|Y% z{bxQYxake}00vn@_|Zg021dpfyj-byDf!@|JuM8)CT~2i!VEt|%iPo)c2Ferj3QIe z=?&n6WuRvinOaT{>`+svH#Y;F!UC0XGX$N~1F{Du06v1o5Mh`b=!_x@OC$jk1w(U7 z<U@-<r~OzWt1weAv@k$cVGa_2sF=P>MVo7SgQ~U@vxT9_^g?GwU(tg6oSf7$z2y8{ z{ltvaqLS1+Q)7$ij)GQ(Vx|UqW(Jm)mI}t^rh0}(3Z@1|dZxzH_e$tGPTw(IO9*l( zlE@6?Ly^FTM|>2}N}kR<3v|>3=#0<@KI+QM7DkYhkr*we8<?soGg%l-7rbS-fyL0m z2zD&empRa5k(dlErZ<?Y=`&hPZxmM*gPe=RY++<F{bRVM*mSY^T7uK-*K6t5BTk0` zpNwRII2;OcjHm_5siB4nh8BoJq9A7{Ss))9YG|rpXkiSG0R41BP-r3@9GY%u0a9TM zjgfjz@bO9(h=Zo|)4@i-BUL{gYy$iMK>c*E0q_K)pKb{<5T0K2K_`t`7(=3qi<477 z-9^FB!UUdb^wZrye5eyAKNohKF6UyPFui8BGRNcq5t-?kQ?)V}O{P!eGqakesH@0q zXkh|6>k)F2ll?0Lh3N%~x>C~%d>L7$&zYtrKAmlWmfQ3P2enpA-?c!CYx>J+^1Ptn z|FBI?eA+@SvFR5!gAQ(D1RY{)VKiB=UT?bWA}#Uh^I1%0PoK3&i)XUs1HS2-7lBTM zvDA>CerA!D==1;&gDKN(7HjcL)_lk}J#?{_`*iu&8gG~_Of05Dj()N*o*p<`OMklE z5-suR3QJYum@P~!r#CKD5oNM4p5AD#rZ@fUQZ4bx1$7<M`Il>PPk%l~i+?&}thzpv zh3WKz913F71AGilvKU&J8ct@E5oI>CfE+x^Y-j;KI#hHz_^?w8QzOV>rxw!-c@^}) zvV|wrmrU<kqs2YlGEj~eq;qm%tscl+@WG)QW?JV=uU@OgGhIqZjd%L1nOfYFrNmW0 zfdV?Z402|v#5ygW={uKz&MdVs28YV#)mjqM4ZazqPA^ykk_$B80UK?|FE)MW8ZEKu zam>ciAorSsk20NpdyW>*WT|Ir)4kSdiA}CIi~z}5Oizqg7iF}V{80+xR`3C<?}Owf zf@CcxD?SusvM`xGQO0c6^w;yXc&4xERRX*0!%cmO?a!8KX)#Wpvq_6<y3}$le$ZLJ zh3mEKgb@edrkj|9iUZI=WZ+}2CK$-ynU<;^&uB3{VV;WB^tDSYm6;7K%n;{X323V1 zP0wGgB?>x%(_BrD(PDa`ppqCk#emL+{cR;S-F&N-(ey*hO~t2Qs5YL!VrXGzKK*=# zy4dvSZCZkm<E^Z>YZ-z}uv8J7es_iCXOJQb@WEEot#`w6Gx8~ApuCDWCR0D%&{@II z!W_vbhM<gL4$Fz4jA#N<0WbOV(~Ur0HAl*dMvfpANO{r72_yi^jFKQjK-tS2DLcA? zR7`##Y%x7vSV3U=1Os`6>FYLVy_zoIE@w6U(niRsU<Wltrx!#SXiq;qRi0<MmZ*Zz z^w3RO?vn+c8BCYos|60OmD6MPX>m@!<sk>oV1~@b;!K7X(>&!gSqv>esh81EczVZX zEuQIJ=4z^-bHBjJ(LquE*7O+%wRom$ZPnt39>8ibSy5ALdi_?dBa#*%4?=1tb5rDM zYWhM}V^AUjA511b{ohjg+Uc_oYw_?K8lY5XlOO8nF&SD+7StA-K0{fpNzwvwMwy|Z z0g{o^1wSh3GZ|V;Ei@IIUZAQri^;-b+D<Kr>4FOl^roLUs3kc)ey7$cCJW2yiE8qo zJZTQj8W#>}iBG?;DL<3N(8AJSI^#|)aYpm$j+PpF)6X0Roj9hbx@~&o5iRb?FIxCO z9>1t7KMR!KK&QJ-w>_#Qx!r89mMY_PuVY%=)6@28@iAE%PcK}rWvhy)3-!}Yj6soS z2?`Hzg$g><%|OA>!gBk9Qezv&=^_WT(wHpGrwe{FvY39nP)Ui|(86-M;41@_>HI}X zEz^{>Sf;lg)DoS}eq2ice2ynb!Q_WGMZu|^$<lKA!)fxOAcrvq8t5?@T24Q>MqX_C z^Fvy5m@N$qCL2BwoBsNQmf+-uT6rc*gXt3w$%#(iFw>fQ`n$tg+0vE<pkf;wRhB3* zU}-)bbT~1{V8vhqz3I8<v?Qm89o70geaCq%9wsA`>Br7%sez7uQ=ZOsK?{0htL#NB z>**iXTMACM*U{sc&T~TR{`BgLT9VTn&TF5U-f&6FeR}?8dG_scr?lJ|r|-F}#m#JN zXgdAWWi6xW3b)lIr%PSY>YWZgvDNCTR_nAI+7G8Mxu)elea=mF&h7o@w6qwR42`BY zs49qpygG4(oc#0&7qr->e?PA!GClu>R>O3GZZ%erSpW2{n_A}6A9Sm+O^>;#r7->e zO;EJ*$V*ONb5Sdo$;@Q(MrQHpvNEPV)8F3G@|v#aA^(}h(9+O+`o#=$u<-|FO`Vwy zEe)qD?y$6HHncRF9_Xa1#AInW-SCx?!Sn(n?M_Cc=?g0i%%&$etIAH_pawb|w_jr- zqtWz@6BUG~3;a=t1?yYbq@&MhG+j``N^JY<Yg*cjyhfm6103!~=9bg#)wN}(JKWIH zXEd6;@x9~p2}-6))7PnM3r}x|)m+SEX*B&}y|LN!gEzJ0ruS-S3rrX2*7!gD1?Vu| z3751KK=xhI5}zLPS&eVI>uoJYMqY5M17g0Z(ezj?ZJEgm_43mfXlsjaUwTI?z?~1= z>Hw=Sv@kNB{$EF1cDjO!wm1{)AXW>M6No{DpCP;ug0vwm454jE3nO@I0CLWy1>!Ju z$T^o5C?^mbD;QcJ&Vz&;#A;y)FE}~%-Aok>Em2O6Hv<VE+3#kqU}$Lw(IUge$;qkj zW&sjGR${3DinIb%?O;Zu=@a>_{H9w;=<-i5on~r2Jwi=8a(ZB&wZZgL`r1O%1+MDz zO$VQ#xl2!5Xu3j>x#si_4-K@YR~l;bOz%!N5}AHZU0Ztk6hm#uv6|Cw7-~08|8PQk z=JcON+UC;_oYej_-OpHCe0qbH_Q&Z-Cfd*=U8k=y)#jc4JI9D;`e9RTVQ@4vnHWw# zcv{PW(FAfL=c;OLA#hYPT2B8crE3mOPt2Ak#@h|gYVm>2L<KcJ7%itC<W>-yzAo2< zZ@Yqlb~NMkH|^S7(<2>J_?Rrg$FNFH|8QALd-{V*<_^q;mL}5|3K=Ux7=3!%!3;-D zZ8Ojb-Ez})j%y1{->^cJefokO%3Yu|1WU8ie;m^mnyer$2huV5;Z3pW7veSfrf)aV z{>o@FeXXgs#PpxXwFRd=(DxNEx8UXC)DQMeEY4Oiv@|uGZrE&SIDM9m86UHuCAirm zw!Pa-o7I)kbo#_<Z7D|6=?fR?m``7zV5BjfyGGlN(R8{Yo4VNcgc|K4?&-TuYjX)2 zS)!EjAY=UGbf>>Ktt~OV-c*NmyLpGUyzO+Gv)Wv&hNfo5hSNRIYRjOU(rRXjXfs24 zK$eI$GbHs|A`aW<)OR;lFtju_nSQWbM^VKXUS2~|vn8Uj3rWqECZ^L9ujq%d7+RVd zOfRg^kz+KS?kJ!oGX2L{ZK3G_(^VCwdtcB-KA1J_yf)}y)(|F3v*{BJG-M&k>Gnlf za+10POHO8&VacicGAudGzM}21-Qk&n1tW{0rI{(D&!KQlTN+XVCtTBpmcUilwIPRZ zem<vNI{o5xZRoM^4{m6COfOhu#=m{h1#JaJDR8?6ocoO|kPq{-1Ru;UIoaWh+H~-_ z?3UnDS4F26@T&5HYN~~|)i;CagVA#4(-mGSNV6DPnwvn<DYPYEIa%?Z*!G84wAC3I z&8OE*RuE$}oZb*@E)6o35qjjhCFIC;&T<{0sRf!#Kt?{?p%^s%YK4x_^bNuK^5DXM zX@w5tuysrDxv8L}&$->;rgj7)lZC-_@ae>hDs_aXJ<#`?c3Ybl)Pn=3KZo1e0*n^h z18-|j3*ff^l@buY8kkyGOutyEBRlPZzWQ{BTz&QF|8HrtPtVZNv0${=zEDS}j)T!+ zx`L^W<n-7Y9f9ef;&uAeS{<?N^`<(7j-Vqc%XFleEX+~*+oqQ2{cTJ1{<ftlyaNSI zZD!LCl<O#&pcIUT3Wk=5qjjN)4bkT0)CYCHEzPGVT+t6_Hng;uUQnSU&uB4yLWPd# zbh}0!0nkyv3e%mNbcCiGJl6|jHng+^B{vI5VfLz7M`*f2v!38|gBCrp=_^`5+<tlJ zl^T|o(=R?(uxBx}v@`)9?QCf|-LOST5?snLS(-vl3I-dgXs#;;Dd@`DbRZ3r={b!$ z65Gyb+b~YoY0}}E{xe*Y57a(ktk<y%0Us9%Z2^J&h!`FKcX^Er4B!=rKIph$BLi^5 z1ggVG!N>q{Znu8AGl*|I`Ju4$bU$&edCW!z2A~shp$7$nc%U<JCvT{don9}YWyWYZ zT`|}|pV44ypt{&}1wqs0Oa=zv<8VQZ2t!?YaV8^!>5Mr_;B$gSS&R$}%t3cuh)kcD zZmvK5Lbr|tsIT~XdS8zY&-9aA3cO$&9o2O8r{C<+0e2Q-r+4=1@JxR>UzrDF*h4{6 z{pkgLI^xqmwCGHqUfZw3HC@`zfRE8&`axkceMW=nj)BVHbAroQj0_A7rzgali-KHr zaka{<>C1a`j2I2U&4sOT);x^UEhgyjOrP;XjTfZYczR&CfsLqvAyU7>#Kc&^$iUEa zJN&3%p6T*kI`NE#(-TwGEvN73(ovZ%c;8TLT9MM!=?0<-Y}1srgs1<Ss3SDp!9rJI z`bQx%SkM?wpV*@VI(Spi-9V4gV7lQK1M%q}dUR$p8cy%&)sdLqIYmccdI6Vd&vd=1 zI)c+5wCl-Fub8eQG5uz`Isf$OeLBw=jiw*SQWu+kdxnn8^bP$wD$`|W>NHF@_@_5x zy7?>}3-Ij~CKGjp1!5HpK?6z(MutWTh87CZlYhO|ot`vNrxtVsFw1m@1=bwX3l1p@ zPVb(jBROrh?wRRxX6ty>XB{>WaQ*&^OZT$t2W!uR5<$z^^nWezvp+EL*t!MNTG#0O z`93v$4vW@=hdpT}?<+*6d|i3%)W-*x`xY@Cw_dumHFHlC;~%EImvp*zh8$Yk5^uPr zjdkCSnd<D$Yj;n4YWe)&bo;q;=Kg%9ah%&`<AcLq8@#^Pe2z7nH+!|=euIXxdYcs2 zgQ_L}mTkYbXFKx;hSS@&etCZCY;^qR6Bg&$DtcrlN*j93@X<c7Z5R8r_Bv6U^?$S^ zGJd|lQ{I$1-S5v9vCG2q<=P4(6hd88gSI$(2`yp{bo=5|qF^N`JMoc-W^czg7tKJ= zFFjKxRJpz4e3`mr`h>V?iOQ=Vzj^lm;(I~Y%TBwlcQ2gJq1mPRqw8SFR@a%<MbpE~ zeR+Z&#|bx2+1Ve?zGUa0tEs=fPwZU1wJz$1OM%bnhAC~owT%`>uA26jJx_79!Suim z9r5Y@b9K0xj4Y<d%+)cPp0G(-V*2X2I(^eO*vj`#KRr*!YP!rc9ogwh^L6wmeS0|F zY=MsZ_6gH<Oc*7>qg0S$)dH#SU}P{|VT-ENbO$v(RVD-D=@Yxu?3s-Wj6p*_qSFne zbor*A-mfD#-C?TE5=P_c2czYJKsm;6qJsGJfN45Er!TaZ*8_<-PErsD9Y@bGeS)zT z>-LYcb>bKqji(39)sdLaIKxzGT9CdLqrvn<M|lU3^2Qma%F~U-bOonRFw+p5zCpy0 z8`MN^2irZdz$BQ_V0z;$Q*o5mj)8({-1Pqvx`NX$+|-u`<<4me;@dY|HRoWQK0{KM zXS(}yLp~-06HuEao5{oo(z>x<q$2=ox`CQ4X^V8cWv5HY=yC~}o0wZ7x~4`3CPvdg z-q$ySR5J=S2JF-4&M?rN?yyLQe|nItuGsea13Jez`Ak6h7!r;q7KYO|%IV5XS8z9w zXEc}`*ewP*@HWM==x%kbtDSTJ-+OTf0R!V%7dO9Ud-Hvhd)ow6=g0rqWwez}aHP$< zTk02D+W#<ftHRuvqi4MhB+S`PR-c;u|GC(U{q;L`&)?c|`?>!7e~*R#Eo~9V)4W>n z`}O}nU+(|A{PsTQ`R_Bd>eK5lvVUy*|L^qvJ5T!e|9ids{$KAMf2Cjle^`|y_3)Z- z_~+^V|7ZUD-R~cg*_C*&c>R~@d@~iq>O+#+>a^d=xu5(J-nH|7^?6p?o$UsB5|`fk zi3aui9jN-&KHu)|yYnyZ*!oLloY+49pVQ-nNhkjQetCL%y^77B%Ws$0{}wrHyWBu~ ztJD8a_IY3QQ$OtA@_WI*BiFv!hx}E!$9&M({r8ej`@dA@DxaNrKX7_Y;5%i()K@qD z3mE-(uHQF(l2Nd`y+^pO&)Uvsx!Y#!j|<-aW5J(?ix=<6Qu6eDZ0DW7^!WPgA^&PF z-prmA|MlCfpzz!n!6pATe=|F0l-?CDU%peKJU6_i;3xm|#XEj2`t$Lv-_)Y3M^u$# zu9VzdF7;FX-<Qc<jaR&PEuWWHc+KI8a;H;};{D=zJMRW5)H7|hI<3fe?1f^QXxx|0 z->0STeY+}X&1bpS0fiH+*8aPZ_x;YY6V1$qjRM6xuFE`^F@L1QVLmB4^G+s%$)#4? zc^i&gQr`cd*r`U0!+w(Qm-40+nyFe=?^Uk}EOWOnmd`lpobvP1oy{(b*|_5P73DO( zE`Ig=xquwx%v*`csa%&rE-p9PaAW1};zYwzp%slcrq7;d=rNyn=~CBEVj5eYd|+_e z#8g=^=b4^sTWoUk33-tvaZ8Pk7cAgW<dbszo@%_+wt33gh-8z84BWo9SG}rI%I2|! zI2i0$CzvDBvn0}J7pv&>Iu|v`m`U7I6t~<nU}=`GE^@P4#bMH+`E}bJjvOW-Uw4<| zX{BF<;<<fJ&wg+!Wr?VPwTE$~z|SRbne0C=`93kQQJ;I;TPL?md)}2FnWR&F%y!<+ z|8v_#Q~$lzj`Mseb98#uYz0+z#kKd{IwroEe)GPT8msQ_gda<%vpmpJ;nDs5<H@nt zs|sAU9J@EY+Eq=OQFFT790d)V^LK5T14|c{?qBl#&{Q9liOgbl{+haJvc6BQdc78F zep0%7x1&P%MVpSPx2`*VD0nvUOtH!q6T=BFjvFqR_D@!;-oAJeS5UU)W|c*zF;>l6 z&mWuAA<=kZ%GRh$#d{5YMy*j{-kI}qtJ?&t9x?YE^W&)uokoGnw4EngM5K3no#)A0 z7}+DBTzGN8#h!xxcPo!xTE(|>nu?XhVV<Uqo7&Fg1V_%B+APwi&L1Tpm#lA4EMwU4 zEozzBiYpA;lP_Man^ezS;s1m`)t^7k(00;_U3)janbgtmXL{*^_G~T5yJ^M8A4VLv z^_W<fzj5Wyz{n0UL2uonyKP+=O0&aWe^|QEi!bUphi%xC`<=PdOW16>zOB2ir#<Du zioFU`I<+)r7^(Gp$tJ60ratCBmcIVhlXa>G-@M{}TDV-j<b}{N9)^6C`i>b@HpR}~ z?DKe>szvUynUtqa5ZJC4|2J9CX|ujn&jp{;;b|LJxOE)a<Gu3blUBQ(r$Rey`p>p* zc9QOAw%wI)F_VwybqLQwZ-)L=({5-;D%rk28K^PA)*$_HT-ihES<fVnZg99>>}bvA z_1*a8kL8<E%$jCiSUyMG^qa#;GcHwC7HRum{Dv13*$ezRd14Q)OG|Fi7hbxaTZHMt zDo1{vI*!;AlcsC^RZ^;tO!sjtT3r=2HSFIU9lg0iQFA#LZ4Tf1=0dfJ&|X!ZMU!+q zer}nyk!Oa$y#sAKXDrD`<eh9&F=HB=`-@L&d>9KAGIsO_e2>u$X?1_#$Rg#k+)*Sw zd!i4gO0(A29aXz~4opx!#x`;JCCfIaZv7(OEgBKQpI*q+bp$_fxudYiK<3(<(@&yK z{5iL`av}Q`q3uu810{^s_g<OrBk<tKbiVlt63L=!y-P~Bhb6sNx^enNu$S<SCF(A| zU%W2*sGXHd?pn=vaAEf4q%i)?VSKmvjW~it-_}k(sLJEVuuxTI!4j#slN_m2Z~e=; zd^`NzfvXdX^G-a?QL2{nxA-~lm14+_dl_B6<wetXJ=W5!SJp^8;#51A_p^xXU#qL8 zDGN`gZ{g}x+#$F6PUE~f=`y}=j}Oe9?CdMrp;vr+ez>eR^9m6$brq)@w^Ng?yJTm{ z{7RUj)i}k}B5CjC2_Axio@qgiPY%rTooZRJZb#!)FO>sMZQr+BC)~Ig-F$JqkDD3) z)$0y9`rgS~zp{Akuc&`!E3+eKx93{Mt?Mp2+3vfLopJn-#G^E&OH4{Ni8Es7y!^=i zxVWgAul#VtH2%rQ114=R_%cPTqt?}oK}p*2Qsyd2Gfox(&09;ZP5yfL!s6R(r){SH zWBF{7X#4KjjTc1=-rsK9%h?|FT-b04_va;ZzT{l^qoT2I#t~<MeL60d*XljF!;Xn; zOfi_zJIzK#D${1&&N&M1>!t|sy?eED!6hqJ=~uf7*iTe=9B#aH*J)}2d)v-f6Ze!P z&+@fgMV!^bzQy`JCrcJ6q~5bNmQk|S|33Gjp`=`+i*$_af~h$k*U}eXow+5gXqndP zZqK0Q-KP|70y#gnssEk2dWxTx(zA~G6qC?nC+-ABPcB{SC!{OQB6sW9$+}62;u5-- zAD`Lq<Y{-Ad~D4+;j14t%kwP`tP^LSX&TqO`}nSD9p}R8ls>O}vT)K`k&SyhUT3o0 zcHxVDvhs!555-NHA7U&YHy<!CYQEw!M~j8W_U66E3)lbTD=!EUs@~ZiYWOqNXO}~< z+05x(=al*CO^>Fn*?o_<XhBioCpYDmS!EXI)VNyrMzLmxY*@a{H8LTcHzQG+eOB_J zLxPOEU3(iREX@@>_#n+NkoV!mmhhyld#;J^bY?Hp`O|x9OLA?{(s$K2l%|%3G%L#3 zmUVq^<>UNl__eGzE@h8m>5Jc8D;&b?{ENL8bA7kdQrG>XSYL6<Htg$$lWodUAuSxY z0^;{9T_@4AZrL*hUFT`)qJkUmWCz*XD=P7CaC<Ya!_;H-E^V#8ABntHcPw5$EM&21 zH;8bp@sQ=<`<@hf^@O2D+62}`Nk<mWHfWxDcg_3ktzQ#jCrF9aNxbZF7qc|DRGjvF ziNN{ufs6Ehib;VEQLYbtXmD)hJErexKLyTtsLx4>nBTQs^5GO=DS;Jnf<liP6f@NL z9o3hv>W$3Uv$&Mg^wN?R$6oP1FVDzXlaG9wa&XzU>D(q(bHeuO9ce$lQFKy^Gk48l zwR`$!dm3C8`MpvwV{cmYG45fgyz9x9CcnoQqC@tdOsl^m{d(Ty@PvYC^{&SJ>nr3e zww1kn#r6B9)rUmqXj8i!kBl|3dnW$1%~*fzUe+-MakD!wgzpR7aTBj&x?du(ETePE zyFQ-wGpC=%oSvO;#3^>kGfuN6(d6oybI*ggB%|L1N9I&7Y1t%l%3p5f;eJ16_2?aI z1WJ>YJ1#IC_c?rLZp_JJ8GWny-fa=d`#gb3PAQQ;ja|<5?<V_G>yp^4r}r+?P^jM% zd}8;mSNhhROLiQq+iw5#;oDCO<OKw7%RgPHd*1WJ3_+$S)|RHFAy;<oWAwZ^`?IO_ z1<PQz`R86V=1-saL*azm{BnI`roAB+c9x5GzWu8ozw55ziFBLnZ!3!3c<no%CrB$D zvJd_Cp+$iA-_beeW}cs`Bl>lP*xy|(KBxcn$kd13od0>M^@Yp%hnE|_D%k({n&&_M z?dx@3uRZ&AZr3ce^^7Uj+iuDD*ceQnwZE;?EMMhvr_RcIn=5>`{MgCBJl}HH6eh>e zh3)MX`*UVCvD;X9s5$Z)33$%=pcfM}vG2;#Cu|o(YIJ`m%!rv2wY21!Cx6C_7qc2B zD!sT7p=$6<q~3FX0DIc&&@5H;rEHr-xmJlYD;)rz<h-?XO>&!+x!m<x6W5E{ePfi( z0iERhYOZJM><XI|eS2Re%TLg}d$8uXox*t!^+P}Bx}1?(&%OV7#)A87IUEvhYb<Vm zX*p?n{n@XLu2ILcGaF3Z4CdZevURwtWU8Y)MLkVOX0P{|db3*ooZMfNrl~#W>^@N5 z{$|;{bF%j@#dF(9yj!XC?s!4MRfhy#-r1&SG$+6HW;z(Slyf<cQr|Uc&l6nC7uUG1 z*w+L)_W6)b^Iuyw;W;Xc+mo)mIH<+9?WOXD0<E+2Ql&2+RJZ!m?Ahb@u6pr`>|>4d zyk&ZPI+yHOu=%IjGxz!@3D>VYQ@y|PZ29p8J>LC=Tfam}J;-1YyFY`O|K0r!g|`}Y z{WedNS-y8`SwLn)RAcHo@Tt$6jyUja@BX@0tnZS7^S1Q;zW-)kPdVT>$wK?Xxr7NJ z-{gItoR(@R%b4c9Wtm{LmFJcvQ&mITYs3u~wcoOD3A^OGD89nq-6y-gef~DZ53*bO zZ?L?N@jfYV=k%GZ*eD+lyQ)o_w6-N(p5yNpc643#+|nFl?mq4d7M6j&XLQOqw7$ix z^a(NUo|1TV6?Yly)ukG;(hLlqi;szZRZq6m)H-(TVX#D<1ee^sT{3gIosE`7Jbu40 z*V-}DVD4Pjq>JH~_ubm^t<?I$&3ewfxD$RHjlRvth3$-TRAx?BJ9Q-5PxNJD?Dm$q zb6s_&J=|tDb(!nlZ}Z=6K4O01D*x2KP4k}=Z{VF+vuv01chOF9WeaIhC#H|jUuKx6 zuCKqnBGmZkufUDWwr|b;xLEh|>tue=S@?LW)RrCAbM}98v7RK@Ew|6ab6I3x7H?5V zeeef`o5#Lw;CMOd*^1_T>({B5*EmjDGB;*X6W_n!J5$=8L~q+4`p&`KxLNQ*v#-VJ zN%OiUZ@1btV?~DTvALXWACKPNyg)>xYT~{(t4kiq=87$taB=0wZ`&UBGwWMR7Cv0O z;h&m0cObix!G!>J6+^Ro8G=(zWGFH7FFbq5%ledEy+J|CiXHFVe#u74u`0ekrg-s? zbvvs~kiZ6c9S`n&)>nEtjc#T(AKCsoe~>tCq3t*$$XV{1Tw|ib+ixq2mjq@+$Rrjz zbC&lNOtsBv@okvY$}GsPbX7E_tU_%aW3$@Zxer-yReOAQdRF5qcxiH~$Fi%_Z}gRF z%n^UHtUYSl^m^OO2{F4`VpOvZI~91zK502G%B!{V%gWLTx>M%|6>|7GZ?2rMRoL<Z zLxJDLjUFXO0+w{ODywSf{<HWX6l%8UpyymsKDTM_a*hk|hJJdwU{c9L{(j}s#G<S0 zK0&%!Yz&Q4qfAN}4=alYYVE2^^*!^_tdo0E<*X+kPNi>I@OX25{7c8}b+&s_E;v8D zXtc{o%be|5R942bdEf)LBVVoUFik(nc-r~WQf{NEpaZwfOFmUvP1lv#$>cHLrzJht zg@cLv<5H%GS;<xr*FVWjI=DMw`v>()|KkpJE?C5OqlHCn)ys^n-0aIjLeES*wfSV@ zrgxlQRo-lpKN1#tYSq<x=i+&S=iRb*zBQ1{+4jt{ILc!|vh;z8<}qboc$Sx0RX>$x zt5!ZAyXQ17bI#PiM;m>t1UD^dQCIg}u6HT=kylEj()3w2=i2@iR4{IgU8K14o6y?T zThy$-dkEA_KXLnol*)u4fklrlnRV<E@Dm6th+ypJRW@NgCo?N?Pr{~f_j-Yu8>5}# zXR`>b@n-W<aQ*%6^rcw>>+d*O_Q`~Zo_rK~Fv2WY@4ITtiG_>nRU34gbZu1_?>fxg zSs*4l@4|wH)eBQjK6>=5nfc;xo((?XZ#^!l>vV5WdC9`~tM~efZ`r{|51gNKVBMO> zr!J}Rs$LbzULvbtl-G31zWKV&sZO5edQbLVh1ZGZ)0m3*!wd2YFR;0$y;g{cTs(dC z)(3ZPKLVY%?RbQ-An{Ag+uw=WN*k^p>Gt|j(EMtS@brvL>S`*V(?T*m3{p}vel&j! zIc?K*Jm~$IRWj%2ObA%hbuet=YL5@I)R??8E)`sjk7ThexU?(!_QoEEOPLv)T6y+b zEU2H&q1*h!W__=oXr1VB@m=p0d~Jy^5kGggXs>mapvbFxYu0G(RTfjt-+umiqxh1L zvq}FX->(vx!{PC&Gw`Zl;s>VBs!0*2?I+hHJV*)5TrvNTu~{pp?uoSM$IDLUc1`MA zInOJI{loG#I_<N(boLzB{W6-Tmw&~KeX3d$mKx02TYqNDTmznK=^ox{T{6dZu<zY> z*I?Tc=Q~*k3pTyBlwi1fBO_(*#ghIR6&qr6UTju6wkXW2$$etZezUjULNyU<C)wD3 zU2&;VENn&a>zE%a_cfIBhQ7(2(sbnTrb}<GnQ^gi2$Nm5FHJDhHg?Om)5~X;{QuqY z@Z686vLX}RmeP03^;_j4;#Qpwm}7P_>S2?VP;J21BVv0J7Oik=XXSCv%HG^4YLjqs zy-{m%O+Z@s6NAkDeYYp@SIVz&+vEOhvdlsDjhxz-1m)k$J>2?)Ib-(5>=To7w4?Z# z_1xWlwYlu}Jjv*7+!tkfqjyiny2)1V+!0DM&RDhxdOzE^=<Z65H23;AlUr*w{_f>` zyP&9F`IW##A8w^24)%qtKX~jiV%3}%M0P%ApA)hAL}K>^wn``Y6+%^E54SWgKQKAy zoZzm~Ct==8TGZBT4E+Bz__Rt<I}4-P9|oVS-q!G^u^~l<dA*kMzj;}f34T&g?VaTK z#_Cd4;atO*51PAdb}jLKyhZwUeb;6=-Gf&<!VCm;%`Q!t9&(6p!G-riyQkdvYIUY% z+QOO+^X#bDW(_XwD=7w(4y=CnLU+c2h@;I;>!O}UJY!T7^zbQhR^{C1vGv2&Zncle z`&AaVUAR0!nAau$oVvsQLm}MqE8T^57B4pV@i0*-z{{-5^s9dX|Ka4`&3>*?$~)>$ z-22C<bWds0`GaQfV>CCGK4%eqH1UWuXNKnXrjJdtJ%T5%Jh|6v_UBz~VpUFF%jLd! zFU>yGb8wo<CC}XlwtZyhwcf^Ba{Agil`<EFwl@iSTOQ`Ph|KTGcCor}EbLlm&((ze z533JkhfkaR>Q(*P2Q$9D>R6J<P@{V&@EXU1tgrP8a=-5L)R}Xvl=spkXW>n^)X#0} zT)pYxG55?c{fKNn{-l1htY*GrjdvC%vNum`QCeu1oxS1v>LWKdZ#Ix~J>{Qqf7!gN z88@tWZ8j{CT@x!i!IbY>;>0blHmR#Uv{Yl*_*{D<n@p!)j-`;sk%y*wAD+5IHf@hq z@8ssZeEpfuR56t`SGH_>{%O{RA5otezbw^BeBxK^=`lU%wz5h+_vV%(>o!kav-<uz zx5H((zieHYT>IA|urKW6_o>S52P_Vqyz%Piu@!!o7DxWtcai<VjCrS&a%5&qS|{6o zQ-k;In+qo<nN7KJNiIF$l;GkMRi#sI&zK+U+#4U(%f9V)-R%1trWrrto>OV?^t1l_ zBBy0*xvEx9Ie+}x!JkD-B9|>|o&M#vvWR5MLH0K%KE6!Zn_S+tcG?8Xm0Y(iiW>fW zUOv6>p^j|*_r8$&zV8Z*O&7X29yy$}DfrA#Z0WbvC&4wSqw@NfRxt&En+G|S3KwL& z2+S}MJoM-l?_3ksNvv)X@89$EPu#8jU1|bnT84Q2w0+y83LP72a&z;0a!zPUYTaF! ztQVPUYISDo+Y5KS!x#5H>n*JRH$~z5GhOyG%Qtb$N3qXjuKz4De}7ux*~(c}x8~^7 zCq};VKIdJuS=v?j^2A3vx;%X|icGpLY*H<M@RUi%U}`}{()8DBUnwchmdJSYBgCzK zRoU`;Mw`Nyb^Hxv^_~Mdp<LYcKzmrY%mS|~Ete~W{s~$eXb7qP`{u-7mXaoYimg#w zRjc>d%g%xTGcUJVpXq-Bb-C(GrA}S0e*DV9;<Syz)rE;OZ}whXJ~O|_LFTlV+QOt; zS0x`rn_l^qe)Xosnuoo$$2y){fet4REi@6?zhC_W12fBA7Vf#mpYxM9GClEb^<-8# zd*-<D27kZPTZ#=o)kx=CP2!&>V5DSlZp9|e$2>~u6L{v_e^<26Iic(t<N0^q^@nFX zHrP8&w@T?N!^xho-Je>Ps|Z%Dd3eNc!uy9N8_(X~p(-o!`?*X^#?JR2n<w`1a4gOG zB4K^krOemro~z)J%<TK6ry}dv-RyR*VK%Th5vMeNjgds#q#4_;iKRK~e7mdNToGV# z?~$W`)w*B1dggfwJrQd(TV`eMpj|CD>*L1y4*4fSO@glf<sx+7y>9i}7Nfmgcb>MN z&;olVKD&jl9N$?z-xI=bJpVz&B~IhuSDv>@*;pm48rIIbxO&Y4#po@QpR9WK;BwG} z9b)l9D)nzelO@)x`aRa)r*hM4hESp5vNP|F9XT3MeB_|P2W#%T$2m8f9KCiUFKewo z<NRx%CQPoc54==SazAy`lfQ>fR_h*{`(Jy9%Gaw*{Aq8iliV#HYzbWLTYT5}xVmI( zw5H&V5Mj&tv-D=9pNsWZcra)C66vPw)%Uy%3JiQNo@qa4VYWQ%$)UqvQmQIy-qo(Q zOyuR*?O(P+;&h>gw6<H+-0#*Z$qCbCguEs89qW~y{3PM^8)N5$O>@I!3?E<k=c1zY zWMSoXTah2@ocDYcbq%S`Df_l9mwDD!lZ8*VT${U7*1C*KaPyMZ>E-v8H6>JyMf*I@ z%V-2kopI-jIP4$OXa22|`Jlq|9ru-W>R<Q07mZ%9X<uXZ(ui3<uH?$6-2Apr*ndlx zhC9RSi!+#wi^DHgiQ4UGE1V-0yltgQ<nEBBDLYJGr#N}9TK{uxx9bfr->SFa({heQ zUi~7v`|d%OrXz{6wgPVbr}L&yv52kXd-kAj)-4`k?@R`Rhh5wujgLP@I=60h5fbL` z^*>qvdi5svlMnw&3M@@M&16t)8I*e>`xfJg0HZ}Wn8Uq&*|^tgZff9ADQ>cy9yMRZ z$7`xp;jsmU3`P^>ZKc`|R<BAfx@l3+u#a0~S!*xotoC*-+g(mwFT{!_gk@Z6+w3&e z=G|8I!z`~YBcIs_Z<zO7+$OEi%ejBTWybXn1kUEv^L^Bm&rT}V+pn@u@c4$wFSw>X zeezSwHshmOGk=g}Nq^TIv#&8JPg;dt&F6Bh+4It~wfCV(`Go0p$8Vhr*mzuKrCF7X zdclUdY75G;Gp%j4?=5>}T)v@J!Fc7X)RNcFI`!rJtm95fi#p#?-`C3a%f5^Go#84` z<Lh5O$C^BJnOOgB*1F`|%AIorm+w8AYM=@~t39XV?Oo7W?MI$V$UVtV*WU9n`vY^| z@l*RsLsLL!wHGcEmPuaul6hX_r2`CVUpduw|D9=gX|1#V3e8i!>*6hB^beK3Ih#G* ziG5MurgJrGwphLSVsbLXXvgPN+goDygPRY`Z?t0Qt521%F=cjsvA*S)s%gNbn~lY- zYyVDpp=)}h?y3W~w)>7FKO{Qks!pUO-l^PFy|MVc*P%NnF3s<8nSW3^-pb<+^W>fV zMkULP)-8YeI@$NyW$E;a8=H%-U2UtlAXz+>x5hwKN%B#VK5wLP%8JsM!kdM~8u8xF zJW3H4LsVY#Ua$$Vn7s1ZsrL0d6=phAsrx#$iH4uZE_%0Ns?VW-$cu#<Sp~+2{LOtE zBz#;W-dt3e*Yx+Tmb<sr>eYw6Qc~I<I!PtC-Utue*ROW+OY&Uvo!xF+dM=UE9abwT z)K9<TwZvh@_LBy;&Mkg0&niNg#cf*E$^7hG+1ILileG%opV_l^^RgS_4-cP@n#8|M zt=ICA)U~P3j?XHcE;crwdF?k#(qp0U4fk7Y9`S!y33aUTf81)&pS!d{bdKyrjh$)b z3eCj<`4VgD66V~`*br_a7i-1nyH)cwZ&h>k6kSe%xxX!fzU^x3+$h3(LY4bg=ybDd zDk}A}_gSVawUk+qYH4vp-Lhok>DiDI*#*pX^rj|X^q1M|zkL#SPmkC=Z@F1>*|%F% z@_2Ob>EsVTSC=cg#X!blitdB<#0_ex&6Doju(G(wQ$Bf7`xB=076J37T|fSDdfMK8 zx<N6%Z<okT-ACR>H*B2Ux>`nTwa%r3s~J1oZq+wD5K?nqvW~IwLBPsfo;$CPXYhGU zak68HU(BL2sb$K&i60|&_!YhFQjxlJqM)%nb<2cecWrJ7&Y*u%uoKzMg#Jcd*tX;0 z!;8C)UO4bIv`h7_v6z><#H*Z1t>sg$)Er%WtoQA<r`e9Z;&SSz{#>%)%#)M3>QZU_ zMmMki$?o<<#?#Xpb=vi%nJkx{FX*b8?vdA(n>gqBdxNaxw0mEl$M(8#vHZ*xUS#6F zZemR4rDr`8eQ(b?79#CFvEf-@l4H3?RN+3MGGU`R-<YON^w4;3&~WR{+r-@WlRBoR z{;ayrF^%Ky_TDL6MMj(I*6v+W&vzv0?K3xJ^)(OtZq@HFzAbj^+p-I8GkX-YwkvNt z)VOorXIokJUq=_u=u|9ivsQn;qmm;@)9x&@eCpfK=Z&>TPNqxkI>#KD)M}_A>N2-o zrTmJ|9Z44Fmgft3Qnnwm?M^=Ld_2~m=jif{JBq5scI=Djk90VlvgTdnh5nV@h3`B) z%q6|Hcs4LRa9lpU-jgGzvnN@orQ`7omiC=};^*?Ou^NTO9Dco0oomfgC5dSZ{^vSX zFW&i@Phr~ng;SSoZBcy?p?1tiMfou=*DH~GS3bv_n*5<ncAm?EHB!8{bDbG<zKCe> z^+w76pDnIY)A+sH;ow)VhYm~k-Sijv%Xjs~)_Th<&az8h8@nQA1aQ?K<kk0`>Ej<H zzS>OAX!-;_mRq8lmsI(8zb?Nk*sdJWwl-x+XY`a;QgQKH&lV=-8;hvqIXP%;3=8}D z|7bFA+`}EJc0K22KG=HVyn|C@{i3o<pws3*BtTA^zxvlV*2{TUmkp!AgIysT602EF ztsT}Lp1SP(!Lm6lMK_u^x}KQ6<wt(x{dB+U9VyY9Dj39K?U&dkNS3peyu7{aps-kB z?P_Op!`EIMg&k}j_WKQajV$NrD~7yLVs5y~%p6qU+2beiXu9A(Ez$bJb9iQK`jk|< zk@4tW>yJOA%rc6;?!I4rP;%AX+Bp-9dQBg=@86Yl<GH!U@h?wGlr<zIQXfsNOB8uI ztIg18_Z05E`8g&>n~K;L?+};Xd~$Z@i;GjDf4b-;9kR?l$MA)J`zyBiWp@P4+)O)G zS+p!^Iy3*Do0(fG7iYi^TbazAiuG2^mrj)?T`F1Sly@}X>XFYT?5DPP&RNxSz4%Un zXVW3xli53*B=&uo7U_G!-OuY<_2;gTX|_teN`f~wv?nb5rO%luBVMY@;Qe@~e#;}4 zQb&_WPWyMt(-xFVe^F=3@j1~yCnA2`r_`K@uMc;wd}3f{5u8$gVWEvNf4|9zxu&9W z74Zt4PvnE{KWpw?xbJFqywLTXya&}D9r2oJvsBb~dS8l~ShSr!d!*WiS68)-4+_tY zcv|<7vD<TlYL(5hMaLEH_^)kT)iV3qjfg!C+ciF15MsUYY)00yH}_QT#YrvKXgEFB zFXUBE%eUq4oil@q`i~`Mn{ZpPtaMj=v7^yuZ};?#|FtA^Pq^L-nt$e?=&4_NURsA5 zA1!)ox;9zWX5BxNeUF#f_p<Mv@i5iK;<4DgW0xzxPj`@&6RY3z$-H|0oUQ}MH)XVL zecDizccRm%?YVBo*@K0WHG6gHvJ%{6?sWcGwS;Yx$8!VEOU3c6w#hQ4*XI9NR@G2j zy)tRT&!-J~nv=C77HF6yo18Ixx=E|V>g%tTk4I;{e%<S~O>gI9-?%R)ti2rWO>{OX zGCmc^B|i7lgMz3>l8f!r>bF#!cKf-@G{tJ8I-|ofwutp-6>n)+_P2Qks63u=@MG@5 zd)gD&*2~&24!hr^9PR0QLE?M+++@)TmgEzSj6M6p+cUl>^(?+}z}ZD&x7_Qy9@9Q= z`ZPBw^wV$EDifu&zVEWf*nXYry!u0AzQPle+vo1OoKWz!bh|Nis=@=_$<GQ*RTSh@ zC;n#<o%ciT)zzQ9u0BV8RV}WmT2y%QoL7hV;RuQQ;x9Iw&(~Aq{1_6pmvg0uP^7}! z>EB)|>!}BFz0|u5JtBXT#Ko!Y>`PYPV1MP5E9rIMt-<T%TO^GxyDVs*?)^$xPM1-) zc7<kUj!Np0myLz9`V<~6P;#Ev#pUq&jHuzEsR5k-^CftnF0Ys}kw4>|(DZ4ql;!GA zZ_HBS`t2z*m*e8XR|~gRE;x|(rb*N@zbwLe*WO(j(y!(uKUGi(T{e4lodWyUXH|*^ z(qFG(=r^yb?^)?_s6%J!#v^{dnLkfRYX_R?PdGNk<!|6)rX?>JK4w%)atnOlA-Z?9 zuic|$+fRZ?)7S&He=-y)-sN|sx<n6jV!lgP{f)@EH%_F_+;&e^E#=+jwXLQ{ti5uU zaVJLCAG#H^^AT6xmcBi&?qtNaUyij-O?~<1U(S=y(!t8-eoc7p98o#_kj)E)JF2H0 zPRz6SC_DG&Cv)E2H+`vca*wvxi|IQzY!?^#IYDJRt16?xPEj3gJEKcVhZLH8ZLPcZ zKAd$`vhzm0ahl2Zi%U{mz~|;Ky(b#{Y3d^Ocl;s!^)@1FTT{O+dHC3YYrApF731)I zqJC8>N92lC?5uQa)hmx>2<z*!{Nqj+Es}kdsIA#>RW$TQO7NG?8J>BsC2pNG>y9gb zeo@e`#8)eMVT-!XI+y?F=ksk@_U2VgM&w7+hutcx*X!5wta)fC8GMXYmT#)z(g=PL zi9EZL?$&&l<vizh?J})du&XWBI#2bTob2m}7c=LFZMyLJPuz>ZzA~9*w!i-DI&>uR zXs!F1x4+v?w9E~Td9i&Xd$KWKyJ}3*l@#BMKPifD_g!w3H4B=&_eO82=f-0qnQxu@ z<Twu1-Z+u|`t>on{ONx_>c}!xbxfE3q$6K%_nD=@YKn8~l&x1DXU7B_-{!^l(Lw54 zm6)dawO{j+j`ndrl{Qrf*iyD>>Cu2=uH2EUwIbiy`QBWmwdjQM{R3x>xjw3M2xtFy zIeAz6Xu;Be3qe7ZdbOdGU*DLVkkclu#}jO({q)DS2S>f<uJ08oz5m3Jd#UO1o`U0H zUt+#7y>VZew$0l!uB7?8693-Dj}2YwizAZEmwQ>>2|LEHg-dQx#M}evy}T!yI+X6c zmAj{-p4`6t!0e|VZbWMB2-@*(hHmh_9rqQV&YSjG$C=4iV!G>R9TP_3=~bU~T<U-N zvWXu%KG!y@f5{o2{erRrc|Grve_LO2dK_M4)8=Ls|GIA4lkT};rJld`Y&_(C`@_q& zS*<Cux8CP?L~=XpS5Mft<)J```pujBuE>e4>blh5`_|2V{{)v4NBSpbo(!7lC;iB} zKD8rf)z8o+wVO-Z7DR2VpFd|`N!TXCOz!yH`izZp6+M$|oL(ug-Q)8+>2g-N<>+1; zr-(eAb=!IiXU~uCJTT>C&A~^X=5^><EVr2BeAL0`^xPu*>_>kmvg){I?@t%Ldo)y! z|JAnHQ|8a#$-g<5AylPB?=ABjnSkG&s!9z?ZPRnS6%}rk_GXF3_VpDlydv(RXPDL6 zckr2GL{<IV*#|dHdh^?Kg6oUlto;X0@pr!3*_hX|{>0t=b2k-9%+`xqddqb6(OjO? z4)=7<#P?|tAN7hiy}D(8mM2PLzV2hGE-8mIH@TMVE46P6-0>le;f`GV8BX>Iui2J# zg>?N_IH`Q9YKDl1h?(1Bqo;4yMs63e@Yrf7DR<6e*FpDljP)g3tRiOa-2FhJ#*SHM z$A&d$jrTOkOsl;w_g$hqX6h4XZSI?mqRb|1HZkz7TH|#!HSTR*du3_f?$i2vZI3-* z(vmJ_6m8FRU_GHx>d#%qQC#}DquaQ8(^9>uN8<jdCw|-e?d@~EB{^qyC$#Av&$ycX zZnEjSyZTC(YRdL`37)=NUmN|?pq+c6&Jp$ip3NUl9@44Ul(qc==l4WOPVI_MR=hTr z6*U<V0Tv$*o4z)$JG*Uh%e&<+#^xIq&6J)HkhiMh!GYuT!t*#*-IH)VU$AJe+)}CA zj)mbV2e>k=GFVOdJFH_iNXqCM@i4sK`))znqtzE<I@z5I8t%CN5?L4enxTGai{orD zwzmgzv^dVWci+vc%DKEosUY)Mw5!Lh>kAI3HUGP3a%2DXo~0N5)+p_~*jDee-+;wt z#?C`;&j|5Fb}`+^@cSOJ@9gQ9a{Jcrwz_*byi9)n0>+nGpHKbM+;zNe`qxkM4jY}8 zyfbStlgF7YS6{gW1WxXjl=<~x#q=9;sWa<)wQok>H`;AxSO0LS*}B5#f0KfXcD$;! z=wO_4Z)28h!me`{7B5%Gt>@PLvT}iCBj16h9UnTu_X|iQb+JM27g#klwc1VB*XvP{ z+p!-nUE7ibPJL8)@^#~5foHSC5~?DW{N{E(=*-iS*7%k=Ao|RL)ZWUJ!ug?V*QA`S z&;OV0cz>=j-;vTc+x%7L_fBd}IMXaApl5PqbEkWy-E5WhOKcxs`;#^$U5fMJr(3S3 zhZK7geA2<!3;25P>5ve2o+=!%<<5m=OP$Sh%dd88?5<p_df!Il`cA#5N3PoJj1HHQ zY+s$LS-&BpXJ<`BO#hU}Pfi^2sXB9L;hK*7^$yGLs2#iUW_M=V4>o-X|C5q!(*zF5 zxu0ZTyn}bW+<pEzHFve*Zx!CSk?83>RdLg`ofkzFFO^LbiJ0;2#PJ0eeg|IrQYLME ztfcP#Pr=TAEf4)_Uk1h&viSt8D%u{hTKnyh3(a$7wcgAzJ)69F^M=ggH+O{j%!^X8 z*Rg~hih8?9l~t5A?C9ys*Z0obuq`W?<@m&cJ--{0!p&uPH~e{e{9)d1@lV2{)2HoL zQmnsn%j@OD{e3B33sMu-o>29&_}_1tpz~68;o7zSx9@F>Uh++2@+|$etD?0|Xq56u zgYFPmc37_GtEkT1`$^LK-muMZwn@8n?7|WEGi7rvGw1p~@>`kiX>Z2N`}xB14s+ut zRXemVuPO4qckiiLl!yO}er2g$k7N1!qiUF@Z$9~|{;2?)g@TLV7pW&NTAPJWo(j36 zsu->1xO{^fZ|?Ga%eC1$^-nFk*SJx=gyHK?<33R%`QCySVZ-A!+W!Q*SpL3_40>_j zt>)Lhg1*&1@)Dk&JMX|E&-2zbZVKzth$$s|oNQ9G(^;i@!|YT#qeTwi(v4MRzTdF< zP^etSq?0?+V(Kr7N*K8uE)Uy1Ys(84A2yHYmH!K;I{cZtliS_m6XzL`-iEHc%+D3h zdY)Z3_q;Z2IB?zSaOp3l<8oeK73LQuEN+kIIc9!Uww*!ZT5EAx7SsBe*QcwKJ+%1G zT~6Eiw3Gko%eQ^plU-Jvbg!;CS#$h!pT+&z*MbG451$hj^NG00>B;qY$~K#|zduZ8 z{H5a|#97C2=GezTR;DdKcdk76zG!dBbb+tR64Q%+>4>@QDYlw3XTpsSQ=+8`r!(Dp zlx{I2`}jd8?#spt@6^T%-3xs3D(m9xy^ccX-XA=C+4v0~@1BZX6|wp1#!kOO8^80v z+F56}fA943zjRdj{(La#`*_Of>gLcrrXQH5GyT??Sa0mLxnhCU%|CxNs{U>|Ts1K} z-oE}*hF{U+^N$^Zr$jHSvEEp6UXOj-=D&O)lh_LP{`gt@;P0f8Ey*`tO?;xjCH3*$ znmdy}T0HCvczB_>^NvvC;ujOoUR6JAr|s%r61c^_R$t^~x-(zQ++Tn8d`q!ZI-;hW z{`^_@oV8wjmlj9K)j#?iqsm=6Z$fE8SlwdgIp+7a$gx^7SDh*kWWO?1zF<;x>l-Fh z$91v`LM)zrzP|azU$=b|HJ{#^k{zs4E8wUUb3pN^oV0b-+XJDB3ntF{b>d|E&y}}5 zvQPW(eWo1ye0q)DkDNs3)#^c!Pun#%$(@Yaf8E66s#)NzJ&Zw~2YM6gkBekK=bz%f z^IcQ9#6|CGsx@AfCpbSJ_$PaR*6#bOZ+v*Q(cR|tmqIh;n#!d4KRKf8XTIuY@2!Z` zn_$<;BV1_rSyX=SqYsZS%lO{AFm39wU;T>TPAJ9S{K!?*7ZkDe+QOU}UjimIPh0ia zICygvYgx&ODY8bdnBE_iKXoo4naf$FM|akoT-&rwg*MM;TF+8@IRDPY54*0O{%&#V z<DGMdilV-9e!4RK`FCX{(JtArtb?adACmLf#bV(+ue7n!_uTC1azB*il&W%_EARi) zvh?EGR%>~W%`@43=aq8vhZU)%PajOV`m%Y``sr~$lvOPjcJ?|Y&QZ}WQ?7i!U$f*? z67%<@=WMT{4t!4g8{lwhy^5x{;>-=2L9up9^WF5G2J7c3R^Ip24xYZQMOnN)%Dc#O zy_?z6O@Z9^mx^4?NXl7pB*xLuM4{ZsZKvn830IcApS35$O4Zr_)xFcADzD#G?o2-L z_sX|3Rl2sdtNRzPYdv?Rd()5SyE=JO^g4aR>U8x?&R6C)9xK<rt(!OT=h46SJ_&hv zEI--5MQN|V#q~`G&ClAbWn$gS-f(_$OtW8YlVwSzB&W5^oUI%aa?UQvb3C|rEe~Ja z%dWdk3@eo-1C=~(>Mod7H0g<^%BimK3sPl$lHSY1H#oi*UbFu5C(g9YPdh<(08Cl8 z;9Do}^m#v(CF-O9cQ5&QQ`6wa?El$8emQ67EwnoRj6dhVoJQW6>KhiO&ilP<x@3N> zfqKK|M~_}IF|0ORzjfj1{l(LkWG5=8{nLMA@K1J!PEqzjpYpdS8*9UM9c7N4VjXy_ z?bU_56WGswu@4u!b}QcQ@4NU%Z{z=;Uw*?_e(sTA#@B~9k5y>%$JJ+Ccl{l2|2O^D zd;1@<&kpWl*?#>om+>c!|G(_*|8D<Z^1J-k^BV3i@y}L=vNv(OY)jdwKYv4S1@q+l z9m)CspT_5@f4E-1RFAdfCBJ>`ue<Xf>n`7Yum9)ecstj1U*%QaSrq>3kNCA*fBrwi zYxTSSe#xJ&6kpQ9ef`ke<^KzRAFp>%>iW+(J*2m(y!Na7zY_*=2@bZqYf^rc*ZZaK z?)V`PdLnmv(bD3b_J6-<7W8LGd}1%%|Ju9y(+tiV(m^X9wDL_7o4dZN+wfC!4exHQ z9R?!b_ovo!@&3HBqwedm^3|b}qFv)Wyn93LJb13_^o)bGNZBj9>Y{Yq&)Gb$=GR=T zm*z^CSMam;fOoJ4=xzXwW@&}Qh6aOKvOHPoKfa2;RZ1wC^ThLcwW@Ljr^1RO`7aiT z=1qOWZFIZB<lFlS`{wm6A50&nh%H|^cdgSw_m<_g{2#yY$Fn_ZYl=Rx+UC-mw!3Pa zHv67j*Km>O^sVeDyS(Y4-lsP0^?bX8W!RQ;*6*^+dfa<6r73ya&yRB7-zzvgPoGfc zn<|*FRg0fni*d)*yN7w05~MHls($|Qk)uP}^!?T2D?*}Ky#55HFy(rwt((_XwQ9L5 zLtT98`2eTw>}xCRr)T;WP4c|wGa+xD|C{LJ!TV&7*I!dVzVcf2@vC(U@>nGT??m0a z^7-|tz+3C<587%!&${~a_UfO;-QHqe1%+Y9dd0nVT+NtrCagSdqf1zj@IjHMYEhFW zYGpe4zK+*=H%Iziyvqz;74y`TEpO@tHeP;sFU3Xqx_!%;{|((Q1e*W-Vt>jX-aB3K z|Do@0#{(~iO9v)$6f<n!Qhwblvh=D`@Z|f3lV1Dl&7L16`m%mi*Yut9PjsyC@ArtU zbl=|ehkMTRHs8<h7kI^noU{nNAER6!Q##Q*IQ@TB?EX_G*D9~BRgyjCSNU*x$^N;4 zuXnup@N~%(`*@T0?m+@Uch)|+>eU#0<GFQJ%}%NAH3=>pg=@2GkK4;^Y5%%EI&%Jp zYPPgxG5-&TzgCiFG3sLdT%TCDqUPMa2N6NHP9IfW;$NJ6G9y1%NAT^@P5*BCM<>@l z@$C)Wd7bN4Z=ICX>cjWWU1;RJ>acfiTHD{vFAY{7yD~Tbg3032-0T49#+Om%VV6(M z*6^#&e`NXj(8QZJS*o4peB7Yk_j2~U+-}pX{HPNvPPUXyYwfF=)7ILvi$6WQ{=|aI zHf^iw<-%I)g!Tq53|03}d3z)?&?Ddd3!Cd~tGT)J*jWD^{Bh9E^ju-CM0aF*kLcRV zeVKP($W-TB?MU5l;;DF#;5GfVrmW9}rmVcB{Utf<2*>HJfW~9}9wq8b`l*l4M~KH8 zDtRopb8z{eMSAOYCaJ%5IdS&kS+{*tX8*6x+SA*$*dXcc@wV7wmwry2)e*ep2e<x; zNqSG_*3BvL`D0V=T;`FvsdIv0>4`r@S%;@~R!nO0p8U0C_m75e^L{>yn=?^jk7JXJ z=|AtR1xzy!eic0TARsh0E0*`cT>DH3ja`!~9?$-8_3W|jwx2&sx2zK^oW6rqtM9PV zkJpX+KWwR=C~|;5=Biz-D#OXhu!8L~wC6P)ncBXtnxXJ_#aCs<2qkY3^RxxJE-!B> z@gIo$VVk&E<v^gtlBXy6DyGfsvrL+>ST4`Zc%9zEH){X7-z%51wg)KOi|K9VZ0vr% z=HtPV6QQ@S)$u7d_r$WBh>700!2W-$#&Q>_Pn|u1D=nA2s&D?#Y<;ox)ioL3m+Q{V z_IVWH)tVl$Ztu}G{P#*r-fZBmI(JjF%B(oIdfuJ8CeQ9JE{w@L{Ea(F_{93Tz9+X{ zC{Yr-czw~Ct7rS;_g5=jcM`w&RqB00Vwhfw<oC~>Gg^1GL`qhiQpn>>NqYA){?$|S z(+*XSXP5mvE3dzwGyK0${o||qTTaJ4|EFACV0-Dc+>tLI^VhvxX6!EYDBV<olP$?^ z+HJF!;dz&~>Wk^?e)4YroUEl&{7NW9;{Q=C9cAwauFpOmPV$%HQP5wb?rHV&i0kb3 zD@UK&dz`j>^7%=~wmAPlKMiq<C3g3IIfb^@%{Za0^EGn1K#$%r=l2gH4S4F?LW4OS zOQ+umzYr@r{geLPR{06tXRk8~JW`(fHgw<rdA;7Rqn}zojPkA%3C*jiz7*@=d1>pz zOy&tHNo(eHF)Xy3=fieDB{TW+=EDldpWn3!GxO1^4-PHg*%bX`r_}bGl3r`WSHE_u zu9LnXb~f*Y+7a1_+qRTnx#M+E@ZL*)^LqE_t2b2grXDdqv#UFOZt3*LY?lj<nJwe$ zJ-p|VNt(&mteEVq8$WKp%#P+<b|d%X490}jr)P6*6F9qKgJ|}#_H}RaFGbD_4z#%X z&erO+x$fuf7mYTx>|YjNr?#$G)cj9H==H$0rz<Y!AG|WZ(|2ER{dc3#`p@xe_CH;( z`|;)T)%DNVJT|G?y_|S%d2Vrb+;fJSi+32}P0a&DEdH1_tT?58{2c!#@vG0GCo<Iq z-eE8lD>SU`UA1GnbeDR^B+a}(6@ho=^4spwcz3RPpMRJ1gYHM~WO^#Y?l>%b&bM6n zLH8rJA8n7={w&%dSrc|=?(y^MeZMa1x-ELA=>F9mUz@Y<)MpA^Kfkv4PQ$jmB4=~e zXB}I%&RzWMT36o(zxrL4w`N^aE7VT;sFS)|d)1?|I|)x)a#xjGinq^wn-{i)PwMn7 zhn}5xJ8~r@GIRDyaOP%KCf(NBk~#6{ZZ*H@pUgFL^0u@bzOQlJt8kz9-jX?1v;611 zK0bHG>K*@%ul}{;#J+1@_1D*3y*lsM*1ny0WOjv3pMLhgRMemCd$+8AyHr;BXX&;} zb$?}zJtuv)PIIVWKJ<2mqN>DgfxEd39$KG1_esVdy6Kjacbw<O=f0V7CBL>Lw;k8A zSbFsB493S-#J9gc*dLX0C;NH%nFhP}GYr$L(=_K;r@fp1U9NX^TK+Q`-gmk3_1Cv< zwSMBZVf(~C5#Q@33m)CJw5MWQ^0SjU(XnQV+f>tpkAJDXXZUzCpTBjQ#la7IlGU!e z*uS6ga8+Us<JZ~Jjc-K0Ca?JPd}E^7{Tl|e^K)jL-EMZ~nY46Taqf(>%Xv3f=FB*2 zZg%Ebv~=3%Uf#_=cO^b!e?Fr+_@Hi+tIqzI`g^zZH*;EuKe(qK{rN}Z-%TRl>t>!} zu<@JsoagJ}q{p$6a`NF<??1W|TlPcx%hmHPe*f3R>Rnj8u|C!?rt^P(*59s#@K>** zdgErB$<Ke_efrhomC^D&KFb^4RJkmBx&Fk-7nbKlpU-+Fao0$F!=^;rtIbI~YCB@S z@TYS(8Z%w351apJny=mpv%e|-c@LT#y7FWGqnEsYqZU^O&vD9hTig)5$Gt{2d{05w z;*)}fD$Bd$t&gg&jR{hopb}twsHR44z0&%*{tvHia+>)?*#1iDtx$%;eQ~#Y3mvw- z`SJ2yn6CA?UAy^x{#uy_ERfoDSA}ue?a8xC4z#`bE7{BVs_%LIJf34mJnv3!>z-=3 z^hXna>xYbROFI>%z!$Od@#;E(FYX$|`}+I~y*O=Yca2AL+x<K<k%Z3F{k*gMm%Df# zH~GZSDqLZ#^{G>EUDV6DOJ|fcsr#h2ou5}w{{4!fO5lq_`J#sAD*s-8JXvwzl;rw| z(qp0f5+B>YUi9&$T&Lj{`T9*8_X!@K)**QD+9dVuYprHWM9(#A%oeSW7O{HBYh4$V zyn5^XGQa=z{h7)icku80QtSK6-So5h4OQ##uSfNEp3&b`W@o=H{lDMV8fov-kM%Ep zT6<o+)$#wYMNb=F{+p4h(6H!}Pbg#cwND4)w%P>nvgMg_zKJ|N`TYUjWzMIW>s_z6 z1z$X{%O<+{v9R~a{;<%Km*bZ``S>{UBy)A>rzhNw4%z-o!w+~&$o60Q{eZ%!%Z7dn z&U?wtXlpiq+K~C+h6hi8@|kKqiRxLK59UwsPT#Fnshw_h=#_D75^wd|<XDrxDb9wr zY0clH&Y##Ex;XHn$%>1&Uq{WBynL$ql}}}Ta-8eQ<aMqm^TjqK9n%b({c%eE^&RJ{ zGGcbIC%t*&p3{@RWg}~n$(E^4R_11(dv^5Nva|Q24&Pt$I54qR?EC(=Cja*@n_Br) za6g~DulOyMj_`X=B=Ub0?D_Oz`u&amzc$PEFFbaA-v5j4j-S0nO!m){_W1er4#NiX zMGJoRYGh2Se=y1Z+|lcsz8k%gWIen7Ia`D6d})SnRe20AyhTjr2VVFi!g@B}#qqOr zV8Hzau8yBi?_@M*;^y78F^Z>9_-L!tXX(HTf6~AvZ|F?^wa>+IbI-0H8X40RV!j7n z&{_O0UBqO+8%Y0!KT@nmlLdYpVs&JE$goGb;1S=G%K9S?jYZ+HJR<r<Ct{Wvvz_{% za3*2C)a@T`JqN?mdw9$HW%utBWjvej;_z8oFu*-%{|d2>=Z~sS-g5ofais;RYd>8H zXPF}NyGPsT-hTb%;h8&_Lmz(Edi(3c@df)Ix;*ONvhDQy?|RWp_S4Hf&dHazeA;zb z{(JGd@2}U{ZqDBNvHqd$zFGyt?~>`>?`KYtpYf?g_V>T$S7!p#x&GSD`dBOd&USzL z<}cPp6XIw8^s}=%Xa0|8f6RM>J*!W@&w2K1vbUIg_1;gWhh^J&?#(-weEM5<@Pag- zx#!b(6!mBC)ZI|EBF^mbrf)jeRjoAdJz6b!SxLL&(N(6z{27M2duJK8)bE{PxFhy& zsqyrHk{j`x8-D+Ged+mWdZzQA=9k{Tub8aPKVq_>H2rnv>#Z+~&FzB!%oaFjcY~#P zS-0}q&6eL(EN-Xxi|vmwp6@H}6lYfOy5jDEwU5{G-nliu--fBmFgB~+_EU$r?7Up@ zrg=Hyb*zt$mK{{=SpGNqP>EEwb?)@~TYKIn&6is5p**W+>&~pwV-@+|Z_K#Tf9A%` zjD(#1o=?R(lvhQ2&HnRz(&o3(bC32*=&!B+d#UC1hQ~{n?K$VXmq)+uhR2V;o3?!r zSU)}I{szzAye|XoLmK0ytL5*1`uoH0$Mz+?vD@YUM=rMzHOdUGd?&H8|N85m0=bU+ z22<wO^Z&Md5*Myp{jcknRD7S|!+DlRx(k96j;-9)<$e6)?}zp06%v`;zK7>8j(zv) z_pPs94L@Io@j89HU$*knk=P{Rm6JFFFZy)*f16QIdO3dI=d9)HxBT6lbf7%vw?S6D zh)uk0t=QeCl`p=y^X?a@|Ku%o|6IrYgygt%|G0H?yanq^=9YhdY;0KH7%Fi1fH!Bw z@q!Px6Ajt+WHgvpJ$>iOf1oO0+IRW51HUA$mTyWvc35{+#gly}<P4kk{|x#d8!h!Q z{l-J9+n+9p?Kiu$*V(o!`RB?xa~C*upA6(x-v7=oZhdQZ-kzW<QeTh$&Mi!`e=6H| zVY|jX{^bwqx`q0!-_*-~Fmo*3k~97Pr}pBxO~D`X80PKgeZQ-eUv1%E`Fnjf0*`%d zIBE{hyCMG5_@(OY^1Z9g&YoKDnas|^uc)w&bxmt$_cQf8@&2GS6GSzxmp$gYvP6FQ zq36sU#tFAVk2y`R-d*^&<Xi>ox)bxapRe(pzvoNyT~jmmiK_yI_6s%5u7ABU@7M*o zvYduM^<6bReTsiu0!qYJw%Rbv*mxjM^OgLS%S-NmE)}cLZIS5v&C$Vlr$06(H*lWP zsi-W|GX?ACuH5|V#DgizKU|AYx|hVMd!?#pR-#nmn|Tfl#%s5{(>(cL#h)Lmm8~9J z`jHqkTaN8#U7&gYpB8@qEp=)<AAUTk?|QDY<pQ7gQHGCFG2iAgbUe@cy~@{$N1|Wz z>TGGL11HbRS{pq%Q(w4gRUnT>?UX5xoT3^+YOR+w9y}=5J=<`>mDiH_d2y0cmROy! zsryuI8TkK5?v?JyHERr~hGxBaKFi#0YhPYj8S|~0dY;<#0`5!qPLi>_KFOM6|Mg|F z7w@fayPLA^s@}R=vi-g{{x{CC5S%9b(%kan>^VPt{r=oN)mh8_p(jc9G4E3S-_LV= z=XW;p8oek#sA}*>$xq4Xf#LejfK(~xOOvAfB=5VHOqG7fp35W|-4eAa=<s3%6Ze*n zuLUkeIru$0@R#S;=f?RvHk+6I^WFbJ!9#YP(V=IykLs_c-Pf7-WUu-TlWUI0GF0jm zx=u!X-R#?WT>W<oL*0}B`-iJI4|k_kw4SbVRL~FMyAsvT8TZo0OpQ%dIJMuJO;FuS z^k1iEgi7&!iQL$?X1wnHImcqw=Vs+ru<O^<wO5y^_a6Gst-ASNUD3pXt{;5S5_j$1 z)z7P_Vl6j$Vo`ryd47j_m`&D~El)d^>?xZ3-*xiq_fwY?-xND{;#}Lt$ml}rbK!@7 z{Iq&~MO$snDcR79SNnc>udmp9VEu`L(DQpV;`Kh*$6qnlI~D(+OzQn}&!gr)T05;B z&DI{0zqii#f2KdT+^2oVzt$UAs(-qwdFXZOq&ZJ-?Ojm0Z_z{f`ZM)+VlRDbE?yG2 z;rhS$2h;!Vd9bwT;Nkd(jpdK!*B%$zvoCk%vp#d4iS|z`9-M#w_;!yu@BC{!PV@iE z`}gE@rPO`BuciNb<mVjMmi(lBdA~`F`UO9!eUtw!T_4R@C;3Y}<K5=;@GJWlJv;hp z?~{M_wQFkj%(xprOL|}VwP=a*eU%UEA5XrgBq!SWyy<V_<a-~ODl+byzZF0A+UrK# z#GgSw;x#AsZ#t=eX50PKYI}RD)ziLl?`i4YcJHKpZBO;<@IRlY=09)Hthu!$obA9> zp*;ad!nyuVVy}y9tlO;XllN@zv|z<$8(tl;V_$Cbd0qRzy{~enmwsd1{%pZ*(f6@Z zD)#yHHFd`QXFJqe{BPeETCx9A?xD@Q)a&i?t^Yr2{A2Wq>%v2kHvS7wFU2#J9GJ&c z(jc($gnI+ui{b{p8^sNJ)4xeAVE!Sqfccxug5)=<4(wkn9ga&dm3(Svd-3GB-~!<j z?bT(uc1BO6z6CD1>n@&mEBWI@P4g`Iqee_SE2altI$D3s=3=bO*=5IF@8rmts)e_) zzBs_(-q6=@ok8}%bOzZ2x4LcI^JLln2rXdlxDfm`MPtXAPpS^=A|KbhWG-QdXDZ=Y zm%TUl6vKX(7ZO`IWb3k8{Qi9rw9?LwNu4V7|L3>f;I*q~FT6X!?74jN{p=$bGuJP5 zy^zxF=kZ@=QSs(2_2C<5pWAwGzwVU(vzPqv4f>;|`R|{~QE!9!$DTF)G+b8V@|lyP zqe*#L&cTN#`mR5?-Cm|JbD8vA+s8j!%#J)Lyu03Yd2){RBKfCN^|^E1cj_N{be|!n z=T271$CB$ixc5fe$M)QFOKJQw<J<JvTJ8z^O*(7L<!|b*{qXw8(eF#P)SD~+cIA83 z_DuP=>p718hf2Sf%1*5PW25x@TkqmcSKp}}`F_NA-q%~cn|t3s=!rMpa{qMEVmpcW ztCQK{O)u*5?4Mm#z9jL{ngZ+nwcD3hyg&Y7oy{xzJ(n-fn6>*`SoprP7rPTT71#Eh zx7nNjd709ZYoYf0KWUzOV$1(&@x7wA_v<}H9!)Pkw!d8dL~h=V73-QFh1<QG>i;M3 zRZOnH-x`~jtAnR=ty~b;XBe0JV9)jKeiru?_kC@TJjpp@=KZ})`>Wp<Z2$WB8(;ZU z`-)Ze3I%22hpbblitD)jTc3A#U%b^Dulg5h3G=kKr7Qo-HU98E+jznZ9eJ5=doMog ziQalTvi^DX(g-!f3BvjQ|2L#Q*=AioG4#ncm;L*?>`t`GKW#gGwZd@uN2R3ton7mm zJ!*a%m$xZ)OZC>-#i9SEN9l^Dn=ZDg`?C0&w`?;%cVB*lzUcaEHkpr3$4=#ccdI61 zQLN`T?eb@<=HK5r+gW?AucE#CxnuwT-3?mw(|Y>vr7wQHs84&`npnBBv+Clz@_fH< zh4qiN<=<%jV=#TUt;gd}{A$x`Z)B{wf4p^Z&(w^s-31R1L_YmKGf)0r)Bn~T>1`Wh z)LwtC-Y%Pa`qSYz$?F7zoa%M2pSblaaoxnwpXSBAYq;+}kh1*r-{SfSt-q-;%I1&m z$1L9Oef`A7xBSJuGU2s1>P>$Yo<0$?I6h5uX7-o9&@Z#SKW{J0^tjX-e4%!``{D9s zHom|4&xD)kzj>V_x_;T~MSu7`KR=OJ_xiSVugtm6f6QJ!$eANkZ!4X?{p;hLIk8XM zuO4vk?})Jsl|SqCXGP`TbD>+lrS>SL75!ykPJe%K$FF+hf`7}{&Xr5+sGK@k?_=@& z%iK-JXR3XBd%V@3cmKQ(H*^15Jlwqc&(YTN?#)T{+7CBte&XhoU;TeEJKsOQH^#R` z%C=O!Z!^02ebchHm;2YhG^^ihdbjRJWXScu^Z70IKidC)0nZMuCHsv}Y!dcdb2|Q{ zMn&o^`@Nerl`1E<SHvWr-+uhz%-9r<!Z2wk&+WNKzAyP4{P&Bz@AN+hErTR2gEH@E zotx=@=i|+LdnT=7TV?cl^@V>g7|hSleIFdB`z(5`(WDdm)`+aR|Mz>r@8|!|n*NJ# zOR^ONANa&?Vy0lAkPkjL-qPH_WcoZMUDUG^O)M>tPSJD+o!5qZ;Jdq#f}y1){Jb{k zX?D{YXP7Bw7+P9_4mJ(q<>CaL$O+PF2|LReBmg?e4SHxNL<Q*BG9yFi+2tS=CJIId zh$Ga&CxIFnAfM&vW~N|dFg^Z?ek8MjiQ#lc8v|Kp0~1s5$?>4`J-1FjAZTSPg7pab zKyFn7DI+sOJ!2#A8S=&^dIlDtqvcEtjrEL7r|+3&>N=f8Sr>e8qY|UZbj9a-Y12Qe z=n76xkT>I+mSLpKY+!0QedAnRdnN<Z=^y1xlt8rLEyIn>2ByZ_7q;rDF;3Ue&=s5> z@4@&TEcaSZkIBGvyW?xU07hm5Q<Le5&ke+w4NOg^2ZkHi)Ek(B;sYFFpabKL3{2qx z20k#}$N+Japnkfcp@NYC;wVAr>3N7F{Gq4kAr2MP2b~XZWMBr57SQqVMh0e}GZ8_S zMsR}8hc_}XGl4|{=sb8M12gy;n4t6EjSLW{5`xZyH!?6oa;1xck%1XJ$$-v-H!?7r z{6Kj6^gI`XXeI;m>4NTZptIkV8O^6pJg6x;c|(=-^n__zER(ZEt)|a)H4vDtsjcfV z-Qd06GLZ6%9&+N--)rmYO)prWB09Z7N0(>1CZi$G^ocsU?x1tt=P((VPyQe-Hr+#4 z*JJvFg({P#E9vQKPyX;tVLF$-t{CLJK2HN(-sz{f6nLiJ(9<=Z?lfOsbb3OLaXh2J z^afFRF=itJv+07b^+1Q*Iet_Uo9^#pa2jO2poXr*bVGJc@G)cu6&1v%7ij2CV=}j# zUbw<kjL~5FLL~*TT;oq8@#z8u#(m5N76#J|1Lee~-%`=#p1!)&Ky~^@V_k93$?SWW z4M4|wEm0N)TlmnA5oDpEq`cVl0&U$4(3zDR0}Vu(49uo~)Yg??w3r;oAq+a2J%-u9 z!gzY%Qe_d)`DP2bHT9T{3@oODkKkS(WDv=0U|}-7P|8e{(O|lRr<^{c!DP@8+!J(l zr%V_0mXiQ^1$1mRvyp-Mbnt0~2^PBI(;c=c@^07D*Og_QzS2^cdwQ6GE+3=Cbi=O- za?>9~GRiR-SWG`?reP1ZEbyO#BAB7rsiZmG;h$ayvw@|-^u$Qbgz2(Ix(BEGOwtvY z?qH$8K5e${ndvY4bp@vfc*=neFMFsbHvP1g7SDDO6J2LUUQ19e2NyfWh9=W*P12Q} z-Y{2JkIBGt`bJY-N6-Pbi8FPSrh8A;g&YpYWNA8GQP?_gy4n<7q2&hVx{T9XCW9^0 zRbaH-o@k-#!8n~~x-J*9k%igxA5(Q@AV(2ePuCUS&S9l{Jal^B3|;Q&xB7JjrZ1nN zD=>Ngc`@)68HO>&;X(!`@D$6b?+(gV(;IuV6wQnbOp(eqH;{xWJTGwSyMc-@@M+|r z+yg4HKt-74<i-nuEJg;F=8$seKEIXA^qmuRCr$U7sVg-7z)xd^>1Sr^3W5&b<eQ$* ztmifT<t$x+>EL6BH_SA1V=^?DE*NAkJN=xxwj`60;q<}_TJqBsW|+!NUpH5`ary@j z{Tb6w&eOG+e!x@z<8-<Cx)ReD@W{WPuDd|jbNhwardEv8?=IBko}T&KfN%P@g}Or1 z4bn_>7!9Xy_^anQ{ljew<>{R}b%m!Vgvl*rG@P!OZ*C4gg>k>7Jn!_NS-R7i42>o` zc0FJ=GBgAw7Ck0I!|4yD<i)0UZ?ojuE;mQlf|1G4c>4NWbJ6KDuImbeVo#sZaQa0v z6?+yVLqoIaj!}$?(>FY@PzN6#2=c@SW_^q4|GM;Kr-$Fw6__4iq4ICK^<7<_>1z~J zRi?Mz)s+CB=sMltrZ(I5mIb;|jEsiUA2wNufef^q{_(zk^z^0sb@>^MrW-UH8cm<w zY|IZj0DR&hIkD|~7wK*hoBmf`kBi0B+|p?JetA7v*s-o^(_ik?bzn4_ZrE=qzCGZE z?pqc{qv`tlbtR{tQqU8e_CVhUZ18l(%j&|@6>e)QfX$xXAfYP0o%eulu{fjA^v3JD zlGB+L!OFph#llT>G|>~=?yyVu9n17?6+N!$7W;JtCO5U|P2Z`aC$W9*UENBD>AY%s zT&#v>CKe{srPTBgH7qFcnHeI^JB1`ZL&SNfociuY3Py$o@Ddwb!x|YH7=tcskykM? zM7c}F5Tw=;R(L}asNwVpZu-vCFFY_16EQSIl8gYUHZlg+n&5y8P!yhiN=;7~l0=_s z=piT3YwCI^Nz@oMi8^XoNr9@w>9@7?pegi=ww~4W1b4;{(+}(DNlbsxruSj`a$P;> z*~QF8hQ`wqo*RfW8cshL$tX45K}}C>d%eEiai;CMntBn8QYN5k2~tQHnIN5|XlOEh zqM3>$=qyoXCPNcgqBDUcI*<tCUd;{6MusNSKQil^fm61Pj$S*X$#lnT^M_ywaKURh z-7r>NY`R~MlHm4#x_TOn(@)v!aWNZN8cp|a)DxR-^-4)*dcr1U31%Zh)9D-k>NzkO znu6*q#pxxDdP3l4!1N2rjI$UGrw80rGM~Oc*;JO<(9~$V;(T2`#_0mhdIHk})O6*i zD^9Z%pRS;<%fCIuNKb`v`l@C<E`B2mGh|;)4@hUUpMJquPnXHmbUOItVgnOBfys)J zV%x(^^z_)KziH9qVlgx|Gn{VIf=J%#(-kBQ*{83pH8ck~Z=s63==LCMy*L&|)9D-S z^(3dCXwwsz4m#3u`u}!4@$CW*dftwVrqg2@^`xd}cj^hiPkM)>M(|Od(DDpa6dEEo zxWK6q<?w7{1tUXaNNO}QGDO@o13oR=$PjT=3^X-@Pq>5{?*`IrGQF`$FOtdB1e_3= z4NWbkE7}+cPZ#LYgBF%rJ$izW(h*!(N_T_Y90WO(U3>cNUOn#VyVSLHr+@C%lL4ne z%RX2djO^EgmXhoG^`NEX!3lcMQj*EgZ2HF>Bk}1vlk|kZWf+q=xIyQ@Xbx`AO`p6# zPiVTsRGr1lhUUiL8i>Wn(A*dr!Bq?NxTZ_J)>E5)P*7fM`u~lVeB0}L^kP9rUEl51 zlbG)HRF7*q*IrG5X+ip0OoryuA6_!IXEri42OY+)G(F|1p5XKieR``H&8IV7F%O#l z=9!)l<}vIBpo2-%)a}5>>ncn?sHh;eef?E)PDYShET`K)Hx!%R{#;K8bn^A|o=JMV zOcsWq1Y|V*>?A$@>7drd_D_@aI(Qi^rdKb}lbo*e0#S~sPyf6?&mL6gv#E=1_gtt~ z&nbm;NVbWgAxa{3WL4AymF9-ul_a)nt=3bpn!fst9@q2`kXK&5(*sqkqRd8y7Sj!4 zj3dkp5sgo1*@kF*Ld!OI>yr~&wwalL%QiJ5Lqxk1nwr2TmBSJbs9-b)pS>Q=Y-nKs zPClSJDjWs0gr|Fc&=Ufkf2}xu+DFh4*U$ALriXsg698vgP$FRlUFNWHuC4>4B_yi7 zK7-1;TZW664K2ZqcXh_;`@ZN2fEw>VrY9B|>Q9$=uP46EN8g$ebQV6O=?*&A9@KOX zHMB%+x*H<;I*^9BA<DVerV2)emhi$D+zvNF)C1sSt&I!}k&d-CG5}wiG<~m}iXyX- zkpbukUC6CT>)z>EPoJnIuLl-h$ZxiX*~q|Tx*?;f*mRpudfd~0Y3uTVT8$G0%rvJ< z|Iy<Hx1T{3f3Si6^yZ&>;*ch?!!JF^k=CFHK6qMPZ+ho1JxS2@N3md|8%5<snT(94 zGk!79pYHuf4}75YG;oU$)E1tu{Y_60T;4Gm8Gx@PiIdeTV=*!^u$&G$(t3LEPd&lu z3uMfCrbqqKGn`)7rz5@<bfh)2k&)r_hw@rtQ?Kd^O^**Z&=Un60d1fFj%odL6B82! zBO^m&#DUfV)6ad^OJFnvo%C%vJ>!R-%JhvlwBQF?bAS%C2Ac|Q(Hl+wcp7%tw~-<E zu<z+rO!_?2SGDS>G8#<}3^ov(zVMgcQC{#Z7vL(#(A;c#CzHO+^ara|x~E$*>kCZ> zox?l5g;ieybhfp?^x{8y&p^oybVCT(uEI}B*33pmMxdI)5p>DKK~2T!Rj&Fx)1&0g zR)7L7@TQW*^a=B=g{F)A*OOv_o^dTJYN8OWU<^(kW)`6Krh$UFsqyr{|9Xq2|8mn8 znC#zmY5G)GeIan*G8#?)xJy%f`pn&yy!E#oCV6paDs~=O$UpT9bI0B#9!DeEWPbdf z73;AiiYfD$wRQ6P!+R{mmPtnZcxe@S=)kLE8SJ&?<y<#J^Lja3Qg#I%?)k9()+x4y z;?tAu9inIK;=VLx<A>AlzcowW%v!%&dk@RQ_R9~Xij!Br-}7b1p6K7)x-%L-Dx99t zcB{N<b^V*_t4!R1+w`{F&u=SyYkI!xbVj4+k)}&4{G9W(S=Skva|FE$KXz$zd?bV0 z|J(N`yoy>q|5W1Fo8iTJpL3iZHE7%tv=X|dJZaK}nE^c-VjYV(0uNm*ey4XN>Dw8% zQX9qKz9he8HtI#+#5!1Jo)Vszq7|pfS$X>HqQee`tdG3CI48L)nV)`XkkgW4Bj0kz z{ED%iuBwOJ1Rsr3r+3kwDy{w=`|h3<cTk`AuD(jW|KY0L#dYg`%qUoJSwot+|9hIX z^~z=M`OhhAo-+O6SAFs6I_~;h%*G}r(>vVtA$<}?qv?){dXCISMv(T!^dIi}kSYNb zqaT^|L#AKz(1)~V!Lk3)k5PYmqqHjYZjP0#`VNfKcX{h`2^bq1BbB8_M$;WV<@Bb% z^wt-zzgv5^Z>e?O-CBFsSay%zfAtK99n#)>ES<#sgz?rq&YruBIs5Ge*138uD!Xd8 ze0Mq<pV9NAs`Z!LJw;q6im2{gZu4{hc7^|cua|${Jnh4`ueYby|8CkpMc`1hm+79r zzxUVtjQ{`i?SGDW_mfxsdH2WLt|R})`}#kZXa9SA|Noz-_2vIX?*02CzeM;lN51XE zGxPWTDgXKY{yvV2B8O|v?>#mDQT3diOSYTb&(2xAW%sd|=u>k`mwwk&O?#2Qbno%N zO@FkH-T@u-tXs*SxM!hv{(Gl@s1oMosr&ywJ^lV)$FaT7HD!5!zMXFGX@5fK@Ba9G zwLh&79=^Z-@2B<gNfqZcInHQpJrV!!r|<Lt6%%<z+3Ee7hGO+`p@zMadT!?!{x@6t z?@{xo-|}yduGX3qB=vstm$0foxn58E^`(B#dcHpD_pIRcuPTmC_{D$imc{8gn*Yl7 zpYE=^{>_Uo?%%^y{kYn|e;+CrdsT)W^>(aqe3?2s>xulokK)11E2n>%S5?)$neE}c z43UdmKW(4SydBMTXhB%|&MW)}C2Wu6obs;wcJI@g{MjMXJ0y&~rq^p3O0s->T3<iC zoKs($v3+_kqd@}Wo9XWu4Ya50bLq=ZKPG9cI=z@n-`H8_x5A%=CI<wz>S%f2D(7Dm z>UCwq<;LTz-2G7z_oIE8mThv(zRGxT#*d9}9(TW9ul#UEh1Tz$%?qMie=`*qtWa&e zW<L3ljXKkD;mNOULIfSRh|N?#S|4{`n(hAeq6JswrhmMoDXzjd-EYIUn=3k91X_G= zo;YQ7o%`nXBvIKDo0eXeI{3;UN@n9;%jthkD#|cNf0;M^BDcQ1)Z59K(?e=Y7HY(< zHwiVG<y(CG;f&+98595Ao36#9Z_n;n^DQehPiy*1X=C;2(|PnG8MUT=<k8n><e#p{ ztDnJWH@%Bj-<u<>Rk1j4$-k88cX{=F8O^7kN|jS$ddxZfU8-C-&yIrUPdq|dSH0fx z_Wbm~G&x~L{^_Y{auy=Cjkomr_Ovsf-e$g3%AxeD*y+dY(-|jd3s3&*U?d`ZCh<_s zovRmL6fMZV-L{vLebwjA=>^&*FBs*gC$2JBIQ{W4V-d#o>3T+n){O1bvy2RT8QZ5n zTx}4`=s8_+vbHIs|MVVX!`Y1Urwgt%DB(yg(PV90<;Xuhe~Pvo^R!xl=@X`C*G}g- zWh^#*t+KHI?`-9=VE^xZ`7h<U?Kq}8Ow~?e?3#XXoq>pSgw%r!Cb9UL%=$0yf0($1 zJ9<)CR?(zyH}5cBoF1cM9LE{r)%GYZE$nsF^!Kxsq^GaHtSDITA^wJImUp0)83V(q zE~)S<@jXvdR!B)t_b>c#I^e^HxYHMR7?>n?Y5#k7YnyNn`{kRF3Das!&xg;xK5rZI z+_?{qxxQ%;$dIy`_hDk9^2;42u|9jAhD?;Zk?VcqW~5S*WZvuG%$ZlR|G%uA_JecR zt;AjNA7|I{*~N;?U-|Art?P9AD~e*0f@KSy-));;@%&?>ChttqlA0%NKJWORueY82 z+dWX?_U1()BCi+K+zfwtL^f9|;Khq8JNDLoI6l4ljIp0E|IuWb$7)RmOIvOHYMI&^ zx7=Pn{mvQVIL6@V)@O~)7#~hAI%}-W{U*HX!r6F!ec3Mt+gF@5_GM)3oz5YtpU2od zy~flej&c6<24f{_#^uxZ7%SON4>L1y=h8R6`R}{v;kh4^r~8;F1u}1Z!aRL}iIN?o z-1Pe<N^U%i5z|by)}M+EDKxw{y+GKYo4dWe)lqY9+?s{;P17B04SN}<O#7^B#pplX z`m?U$^!G=tq=d7J!@Rh{vZ8JmSMo;uiTK3$#d*4{sDVAB{Pb8+0|^$;aZ%Ij=V|LO zKA*l<RzH*Jp7nGMIel5i#_4Wy`aaWn^^BFK@31m4V$7esCqRXffAYfs6~_D16&7ea zG2Y%DBW|F`$lEWy%<Sm38|$*p`m@fT-X&oW$@p;k6A1$iM(6Fkk_NLGIqaS$`{tZ` z%0GRBl!3cy{^e`X6IgDgf=*z`2cN*w+qLkWaQ?!BzvQnnexDIAeS?v)HB+C<^bLVJ zN{nx(3m6;AG47hKZ)|K-f9zQI-R`;7;X=>cu6;{U`Nfl06RBRv?~^9I_4N~@b)b_@ zysvGRPQUT?=FHNqie*;GYd$f`KXDOpj(NXSFx!o1YoE5Bbspc-ttLteU83HuR%;n& zu^Z3KT5D5twke6}=3Em_$uN}@mX_r=yx0?Gtb1W0Vj9tV>hf$=2c9Cq>0*yea~QWx z-(PN~%Q%1f+j6r;M*r#igLPCGk5B*gTepSLW_tY}U8U(KO^xNI@BgEl!8m*Rfjh<u z0?z__js(nlIQOJwo=j6zm;dw+cZ>~Hmhan9R4wA6e=S=iV6(*PYLPd|nMrf11uo4l zQ=RA7z?883a{KfcXA>7j_2~<pO=K7sOyB2hqRi+y&C^hQdXu@aJSXR?O}Dzs6Av^` zH*_&kXH=LT>0%-`{e!u&@pP94IaTQ$io&yk8{hxUI(2Yg-66|QlV7?;BqU5(8UCwx zdP{?xF4H~1>6;tmg6-Oq7XH#_&FtykCDpL>;~g=_!lqpcvvPXm-z!f`0G)flmg931 za_)iAHjgR`!>KaInvGq*v&){ESXnXMrBTj`ao+U$Mmg2#Ty7?^jQ-O#+)PY`L{ELy z%hEd33OapY4e0cNZ_{5`8Y@lLZj$3<JT=|4NiKxZe|lGwoD!qt^tDZL%b3>BpB~yQ z=OccY`Bumq=F+Fz%2Xee&G;JpnrEg>;ERRRcQnh{G3HPI-Yge5eZo~McGWPA4_{5f z8jq{5-Ty1ZB++I0sfeuQ%eK@!>7BY_wzx;K*RDUFPp4msS5UXi+RzxXb+gpQiR-O$ z_FDVgyptX+oV}uaO2#tnWY9+TsG_T)cQRxvFWv!fWVZ!vWdD})<hA;AhvNnc-0kf@ zzMY?xs`23)<Miy~1{y;7zgU7^-8D##*DQPR&*|-t<A<kLT+}mTJTiU#MLkhX&Tj3C z|6fn%UaM(6i(6NF-?E~KCEvcbI-1xlt39=2!Qq9smW#Y@WjcIzx|*)Ku7lO;9q&6X z?aS}*xnX&<wNAQPV0NK}&O@Qa%Zd*@Qs>TmZ!LQxQQ7ov_uYu=BH26>1Ldo}I0$Y_ zRF3zLHvjfx$>e|pS;mEv^AhC4_7ySA;CmX7nyUNtmz4OGi(w}f<2(+>olkmtEb6{< z&JEKAdjgrcj;`p|UE5})7j?pIRm$GqCQqGLy>ODNWHxsfdF3x?1l}L6b+}+@z=j|% zo9X*bO!tq~QDbD7UKXpP$P}hLed$|8<<RO=(YtuEFRiU=l0M>KWGr#u_?;`#v!ec= zV0W0UeE+y*YK5x$+t&#X?_RxnOkwsn<Ls*yUvi4Mr%PX2t-{NnVY|t~`i<k7Z8fzW z?t#Y__P9J=rFV7J^m9oHib|bV|FkG3#h%lU>@wWY(W6*l&v@t9-TBY_587_HXvYwh z-#a}dPDedd>w(sf9h;B8nK(uBi}XgmhsR#nZQH-t)MVeJ$A%%7D%bvwog{9pTjY6r z&&ETGbAOaLzimm8y>&m+W3E(N?6(EEnTHh>mV<VTzZ3It%{_jsY-zmxhUpsv4c!d( z*QGF7POb#)_ioV#@Ar09SoYL!=X}$``V_|Og|_?CFK_Kuna=)o+v+Rx<8MyBne?2| zdGf(zd&W1D8B>%Qk5AXXrWeA<KDjETnep)Ce<^y5>63L+ZKjJj8;eY?P1R>Kp1d|S zL`wa|mD@);&hA^i?0|X2!3wW;2`e}i-xN-*5tuBUX2R${IUvnSTKJlnsdIr0=keY8 z8fC?Y0~x>S%ePnGUVCA_!gSqQQ^o0X{gg}?<)&ZqQ_>YNUl{px*1o-`tsr|x<w}n4 zmYXi@uVf<i)A$&drn_>?Lzf=I{G<DwCO)X&>#g<wc8CA;M1Q3?j^pZ8p226H?Vc{3 zso=nPe0of#f&}A->52hLZbCK(`CBt(;#C9|oIM}PyYKYZh0`kol=K<TO<x(H<iz-V z`kMeHHQvLAEsm`gzIraKF#7@XbooG~iHvU3HwG$6GU`qLcUw=3v46VlPHjn^%im8; ztO<W|;OdI?=ch{tDM>LpO|RXlt-|<c`n-3>Vq(XStqZd*5M(jA6f8ZnX2$$ky<4{Z zxibCSPVJQG`#p?hrhC0N)|<}hX)MU`Ix@nqd!Ca2^oj3{TN#<B*9+*0G5Sw8=rxmM z-Z!^w`pO@Q#$mT6#a+st=&Nd$^)S}!VvkzVVUuTET??7^PBwhyyNTU1_t&zQ-OGZF zzfAcyZ(TxU{`t$YvhTiU`CrU_`7*j%rqs8jNdMK7`LET?HtbZHwWdZ_&qTj+{`Bj+ zwPl%X&QAZfTf3O?&Gf82+6mnL@pa$*KfXQx|D)>k1NZer>YwgEUH|`B`3&~!LU-c& zS9kCBxV8WP>FNK!#^3wb|HpPe>reg9c~=`XoT{9+-Po>w!@Z_?%Kpw1`~LRVSM6@B z|G#;Q<^o?x*FoZbQPp;Cqxzqhr+cjWAIjV>%+BDttp4Y>r|*;g{@xz{@2mF{U-un_ zx_kb9I-g%J?&AKDzkbKkED@VG+4Vn|6KxJMSnaM+`Lo-8+3vWOnikzh+p~8XMZA-* z|0#4s>1EqL=UL~=4)a9q{xpA^b(fmM;f*sF_#XFN736-ymuKroeTzJ`XWw3iY<Tsv z&q(ftRXyj-`h!zLI^1M~=2o<)P7yqDV@cimB@<ReTFsmD>!(*yjP1)E^{18R&Qn=D zHR1f1nU8-iTl=drG~N2^^L_gq-*4ReG5YKDeHo@Tmtyr#zw*}IB=F>qY)|FSlc!%T zpExNp_@mp0b&GGwFA*1<{o?+`H4Ew+CGT&j{eE|`lF`q;a<QLEQtLDy$m|xJc!`C3 z=KJ7J@iiySLZ74<pKCNcv-ER?V3}&AcD<p`EW7BdH9Z}_g*lhS%z8IDWSMlr!IVDx z`BT_5l)Wc2eAI}!<rWa5HjAb8|EunXDF;GBdJaEIbDYMy)-B-0;~hICPOjLV6?#d` z`|45e_j8wvvAXT<o|c-=ko0}-fBn{<9o*qUcHaUQPko>n5-0n%<H5FvVa2tpCa@bd zA6#8nFU)y%?b6lKlV7ebv?-N5f1~wA{x_c|QRa^&t@_1%3fIs0vM6ua@vBXmY0qsP z80>je4=MD7e~Pc^xh#6*ZRMxjE8nC&mt=G$A6YzicU5hH%Im-lm#>^j_cH1~`_9i$ zd5ft<Ogm#mfcW|9SI>`W*-Y2IpYior@E#AHBZ=o^{ymmk*TUrYQexf4Q#H#qQe_>a z{TePj%CMJza5aVd-|LUlC)(*7)ldH`zB;UOYnG|p>|N8=Zn|15xnrW4-D}4{m;L)h zKE2v=>~^d8MftdWSyfwWj@JKJ7xv`?o4N05^W=xy_eq|t7hZdkHOl^*|Cf*Jg%2;5 zWZh$HvN^LpXLabE>%VVvyZt==b^4X;Jz|^woA<U_T^E0J^ZL!XrHi*o8X0?i-@CoE zq+a2*vGUdT+m9yi$@!4&_wS?YSN-Zq;i{~L9O*0e<bCkosC)X^Yl*6Kr@hZUcpHCI ze{+2L{6DFij3#{lU-|Y!pZ)4336mdecU9V#@+3RCV8_ZyPUURh-(QbEbwcyn`P_Z0 zQ}-K9IwzC!vD)MB(#!9DNBo?hpz{5XW%R28rhnqmC+i<iZKxNIKlHx-NX@az^M{rP zf7E}{Z2KfW%Sq(t-Lq>}{OXx((RUyrR3s_lwCLiGI;V{SbbdR`z9}+wdKTZEkWTB` z%pitfXQj_(&u_KY@=jI}Z1oL{40@TeZyKBV_Hz!#ZiZ1Cf6SV`<iI0FuI5FXRDLzw z^YB*t|E=x2gZ2N`dUc1ZyB?fh_su=4&m}xqb?&K(#2rzlD|e-pn%1w0y!B^YS&&b- z`|hZaT#IQXrhAi0*SyYJx^?!+Sl(SP+800XKiu|VliJUR@vZ0g%`5tJ`^;%){u#Fx zE>BA^xEgl$)-j>B$nDGZ4_x80+sn4>*`~U+e;8Ly`}$DX!1N&h@y3Os^}kwPOGz)t zcwck7*}dbMl3Q4h#3|<|`{m;MMCKH^NAc}c4&V1kxp8@?dys#4pU-bU`Iq)@EH^*d z@bS#@qaU*3U!SpdE>3$PdB}8f{V9XAVzrzb{A>@^+cxU1n?Li+<EQ59&%XKcNx#0r z^KI(wx}$UI?{2%l|Ce{g-|6->^CRcgtLyn4dHiwq#{0ilMtrH{cl(>yZTFv7=a;YX z^P>~w+`fzb)z1FBHSuGS>A#H}0+(93lpX$rr^xZ}ZC)iFlXQPwp^3WijZZzwqE#6z zrLXE)RkOY*2rI49I;Z2Uzg?i^+&UIXX2rI8)!*~xnL5n<-QciX+jH(8LH{pZe*9iR zw)M$1^FmgJA3AO9cS~@K{QOC~rkuM_#8Z>nE1uD~N13bLZQBFqTURw3MVDLXp0=J> zxNAcBgTvoVvwN2C9-q4A;1mnl-<yucUOM`6jiS`FnC404I?s9H=Kb`&s`>xujDGFy z(?2-t>E~vOnjgL9^la9Q>1<`Ok%c_>U)GfDO7@StReyh@;rh@+hBouR9^vhEP1~}h zFE)-_gxzelL(0F`ACGz;)O+zXRrt%M)P?g@XL<9L8~5*dchBNr+23!)37b!xpLX`N z>E@uQ9RJH44q_*l?sJYy-?eUH%;jIpuNj+t_AG7v<uzS?>9@qxil1lKuTfhce*F6D z$cnGiudgnsxcO@S%X<IXy<Gpd&wt?e^W(gI@BC|SZo7Vek6i1ATJOwb($c2MPwkYx zWF3F9HT}DA-QRxQde`(xI`x0Vr|)mN%`{JB#h<BVOTxDtIP<7POLE1{Wzm()#?ocl zKM#dVWW3$=lwrj#<Mf9NX(iv7f{UW3ZHxZd5Ow?8BGxm%8m2wVdmVTAYJKFd+X><8 zOZn~3c;8TIsEzp^H6tXf&XtXA?X%hZJQLsTUhFXcx^2R$K>pVt*@ji~><&Bnoc(2+ zqstck{fGX#>UDQ6P3yaJZPmJ@?eBJ~<;A|;wQ1_E*IO?C@3XC5T99*xyDND|^!Ga# z-lV?jxf^%RVngK7g|~M-Z%LS5d}vesNz08z-SdPG+;vf3v0K}3N$m2uAM(HL@Z5Cs z#j?rKAMYHw?fh8n#kcrex&K$H!oQS#e;@n)-{<fZ*W+&aZ+Y-F>W_J3a9#G(2Qf8q zmSHTmodst<%33niU-kIton*hS^5d>)`(LRY&949Sd++mYwh!M+TU4BXoBzOe`+uJI zKl69jOMf$3|2XySdh1U?3+j`$e_0>-xBorszB^xjO??$_`01;B-6HMv<%V&2muuTS zXBRN6ubFOE>HGGn+uiSP6O-qi-|#Hw|GUb%eLr8H{p|bs|MJ@R^7CHq4?6j-w#&n> zZ@!1$JL7ZT{?~Lpc&+<#zoXV2cd`93ruB!iesr$AE+1Z8Z@>A#ULUI;>-PTjKK)ns z&*%QDd;AhAc24;FaOtrc%Oj6j%w4`NX_G$xUx@FIh52i5>(5Jd_TJO||M8=}=jr`h zjY2*y_c>jE-+YtNj{JXF+J_g;%#q<*w`u<MhW*>_?e`bjuPyiWvDDM0MNx$Z8=hab zS|oUX<BUINN`60H&wrTzOZ~s~Cm&yb^=B#HzmI>G%@264@BZ|7`#)3pdN<}hF^v1p zTOKai<}74nx?kT^`0~%1&(~+4o1JE~ab-oX`D2#*_m4gFI9ZbTYE#3O`{$lUGm70& zygqa0Z&~4A?X@4}=S#2motwn%^5klZ{E;xX=Z_ob=HF;P{rmahzjLZGszvL5W!9Vf zeQ*5E`om!LnpIBg9)FyArNX?Ep`ZHzC!fmA-|OuT|9JTS-&tmthM!iAu0MagFV5kZ z?)AOry7f%s{>_VcKB&t0{kj}qRrS(b>;Ko5^y`~U1?yDHzZ}m!^gg0z!5z0kt&&+> zz5+Xnjy!+5=709DS7JU#j;;y3^;)ZPtyBFmQQ6-Q_dJ{*+4<P=af^5Rs>i9-Kd0aS z?fI*oF<;@rddOJ3jjujv(S)Ii@pMmLebAx_#KfYAp@juvnFDy5+5&w4xV*cOA@X`e z(3%}XOSCmRMuwpEN8s5d@GZJVM#$?T+(5HUM$;#{=?60zS%TN_h!*7M<fNAACFker zCuXD;m89mG8e2>c<W@CQvM|@Puv9QKFx9g#wzRY~Q!qBR)HASDFf=lTicDv8Wwf6D z%U2&dpDhxgFF0Kx$UJ;Hi@(0$^aJYJeA7Yeex{!Z)aRbgc}-t``m;cN$Z`s;Abs$1 zikZ{BgZ0fp3w}OLUl6P>4q5QCDMTMSmCbBqVgR0z1Wga^R+IuQr%;`)$fyRIxiA4u z7J~2F<eko*3!lC)nZD6aKV-V%K1K2A0n>DTFd3OlU)ZXn2U;q#Ur~H}On`nN=)UoD zf%+2DLwocErw15mD@^x)Y$(iVH2vWLMF(ahBa_LECW_N7d-QpxcbRF(Oh>wF)5v5x z=&sG_5mWUALDx7>gxxC+n$Tu6ntpJpss8kisrurO+3e|_m-Qi+Y)((T4AQYs$8UN~ zm_8qqDfF(*y<z$Suq(o!gz0mMF`7<)pQA4cQt%OayJi~bQgIy}vF&?v^_e)Q&$_D5 zHT`6nz5r-Z#mD>lF;ElDKojJK(<{osCW04D%q!QQD>D7gHGQt>u08q!(=D#)gBAyY zSNlXvuPWE)o1WNcCAOWjSKo|-(R8}QRDH?mJ8ppHemv#mr@z0cFTQ>LRQ)x!jAqk) zF6&E8kG`#sHXUwcjJ%M?P{GIu<=$~4kN|w`C8xf-F-X7^JRPoTWMmAVVTMeH8<`*{ zV~}PO&}Gn(!lp>#pjAFbrlz3TaXBVa%jt?X1|p1R(;2Vo8%~$Lr!N3Wh+KD(6C#t5 z*|cl=7Sk24X@gTCqtW!lYucdLHUq^rXyVJ@tAZ40A==F8hKtlJLCbvJGa5ne7zZsy z11SM5QUuW#xi!V1tI}To)8_`SN@FrIpRTw?RT7*`LCK<69b~*YQbOHhWgs|x!)^7& z%tl7$;HzP$r`i|@P1m2V`+vHL4M?(8N1o9Lbiw%awZGK_win*hPi5pa2W58f9Immc z(R2-41JFXSXeM)WNQ^J|rY|tvaiM|u_N@=}okjV~LFEWoxv7bf@$^K9dT^wxPlsL9 zY7R=Rpk)`YXBcpE@Ee(fX70h7j0}t|r$4kekeU49oBVVYM+5Qce#$07+g<+a$63o- zfFc5{&d}7*(iD02&%$W(#`DUEl@dl~=t%=*VFW04&CrvE86;_l8W|y0<U*5%xgqFM z`UpnzX*LF+OTig6>_n!obu|DNJbcp^*vkn|-{NKfEqwy6>U%L-Out}bkTRXe!$4qq zL9+(mbkOocW+Nl;a!^UonhDU=zz4yrL5(b?Lso+tSxmq9RY4M*6qqaxwokmSug*A~ z)5id^5EN2Od3qZdG8#>Os3*3~N8g5#(Q>*Vzr5IV4L<{+=?k0;^y@7_OTED5F?iXt zktN)x`ss!S3PwhV5*)JZ*$8E|1t^=KFSjrP&!@x8GzFOfiZqyjg@TbWe7!|ICwKvd zF=E{vcpbDcV%eR3x*13Vk~6^uAUV?#Bo9h@P#YXUe0YY{Pj><Fk=9AOg7~1c2UgDs zUMOvBF!_P7$8<RtgEfqX)1m96l^Bhuf4prW23sdBH$DE9f!TBke*<^${pHio_#1Ff zzvUsvH~opff#CH0-wZgWiv$>mg4av47#SNHPgi6#6qy!i09h_QeO;gd_vD}Aywi^c z8VF6xGEiVNobJeODmGm{fN?UT;dBEw6Y=R8K?d&A<zH#cXEri6oNmBwB0gOq7$o#s z<Mniz5Ch0ck?E!(2A<#*BGdUp4S2wJo=?{ZH4p-4hi{<<;-H1pXP68vCo{^3PCpuI zU^G2Zz*=njhZdb_%*I9r;8oPqXS*42Pk$|Fs>)<+G(FKkRSdk48pL7rHxOqu249p8 z;vW2MBsM+4-yj!MumsMr6k#$lo*ww!KpzxHyEMf>YpnNz#5RJLSQ{Hm7j!q!pWZ00 z3SMBH4l-jypn({ZvBC60eiM+<jS{LN;1$*&xqzk0q9E;#eLDIeK4Tc8==AkL22s=J z#2au;uaq+51!+BaQ(uqC*l6lQW3lN0KMb~ll*)$~h)<XDHQ=7Udb_*|$Pn-%fC;*~ zlbMY{nTX9qjLFz=I%E~LvEg*VXaoJ}j+<1)xATP=XfT4>8VY|vPBWg)7-4Q(Z;V)Y z2hJ77h{^+!D~u792P9V*BbMLkryDve7#SNQrAR|JkN{GWG%^4QAf-toLy!P8QPy*U za)k*<1S#VfnJX9>n}8OnfYYshx)CVhBPt^ObR$s8H-Q&s`sqeaAT3B)#|V@c5bFT- z(~Urx!34>vMs5m5BF5m&DNt*SL2flMpZrkRe0sdFg240%2J#xy`63P8P2Vud(rWtM zMe<6_M#d(fVo7v*L6pIQ=}S@!+`+pDrZ=P-@JzR2H07N>GZmIYPNqV0$n?rI1L%%| z$!X9m!fb46H2I^rD6^5V@pMH$Ilbv`(+$KSdkdy#81PNEW;5ZLzA?kVeY%69{4Hi9 zW7Fx1TeZZdzsof6oc=i8;3T8z^tA~F64PI08MsZal~6dqVq|P;Hr+u|0b(d91x;U- zV<0|VC&^&$^bffPT;MEOnPXr)J*m-3bo!sA^7S%C#^4PfkSfH$0;vKqHkthJn;xU_ z<Oes!rgNkiG&7n`?@2L`m>wNtz%}`|lnS$vvDtLTXalk7uTu=BO};2A4h|piiYVjh z6Caq1O@EMTFq_HDa602oEs(1qt-t9%3Jk=j$L-WQ$zo(|W;8ufO&%f%3I`@*v&n%R zqSLuJ4W}>}n@wN9X(&E@b%Fu+<lAx(8^JpgCK#*U1?e`KUZ|iTI{kE_0nhYbnFeap zKQ1*DpZ-8oeg;U^6k+kjc0D~t<LQNhN@CLuvJIv(nVC&r$Z06XWNb2BP(WeU^v)Cm zp6T2wx~kJJlp08EKa^vj$2i@f+<<HPuUrHE>7L~V&?awNxj`d%QSS8l6$TdICArfh zD-9&3U&uH3Io+<xz<s+wp+O|0lsPDgf&<pr2)Sl9HlJ?TqGZ8rWNbcp<9mBhMh;Zc z5(C{<&pX|02B^x~qc|5NJ-u+BrRDU3otE6wB}xpIgBEe_x73=xf3Nb^>C!U{c&2)r zsxlf+cbqQ|zPp}x``1zfYtY(I!*T<O>4J6!Qjj&w#^%!%cUXdL3UE?Y0@--6MMG-3 z!9TqjOvV<|7giYTobLb7Kwx^qE=%d@1q;n~OqY3RAP6pF4J75ox3^Ros4_BH7)_tY zVJtRX`jG)>Eoc<8v4sh|(ZkPZJl*iSlKA$H8iT3Qj26@7W*A6L4}D|+Z{s4GI~I%< z)4|Ky-+-Ds)9*et;9@ZXHFQosF@SEY;CW^sK0RN<P-J`dLWA43)8n5TaIqSiS{R#5 z&v|Zu+F3I*0xu{9=VZt#P$LU?%?VirYGeV={m^Ewg&DZn8);-@0WYDTZ5vBa%t1{9 zZNV@`Ua|~YQ*4abfW)Z}>dqOP!;2rtE;3_t3sCzgoY~j{vH+gZc>06@MUm-KUV$Rm zKm*!Dn)4deVrtgon;syk>pA^9hzsARG5zx!kZh1Sq^UIh>06LqGZpaOFh=9)fu>px zEJntbX44sq4V0!oe`g>t?YhN6W+P+E>7bSApx)d^CS%L#j@jnop!M<ZryG4RFaT9| z7Fw_-v-BqeaFdyz$<h+CNz4S^Zs7#i3ns|T7Eo)+1i9S;+9YOT0QbIrx}mXxkqKhg zfPT862}l4Q{*YZ`CI(0qg`ovV1vDBU^#Vu$T2X-N2~!XsshTiTFfuVjswF@MAUfUP zU1TPP@MzRecLb?Na-<804^Jcd>8>C?#EINoAPe0<0%nsR3cG`vORJep49%wtelv<@ zG?_kesxn$*Y1$WPTZ!4k&=RsR_RJSZMZh)v-xmX6a8qgexvvI1(`PBDa8G~!)xZP1 zwT#)s$PiQ!fV##9h0XM*AOB_`Iz7O{U@EhTk<oNRHWRVw0pCH*qE{O8r@#Mhz%$*F z-GpyC#}AO$YmL_|MkYok(+_efh=Pm=6j#-o?)%dKvZxj$XFC1ie9)dQlj)!)$Mk!@ zAT6fT(`Ek{a8Krx;RSc>LA3>wiP3aWKNZ|`0&zCx8;diVOkcQNUJqn8xV5n$K(3$J z1k~CHloMk#nI0&u3YK)-q$)Oj!%XX(sW%OIrb~U$;F*5&jRDVeFEw3NCKKc77nKym zrt1V4>;`kb8c2ZJpP<c(Ah}i@vFQfi4AMcZ7x3;h6T|5nz8OeNcMM__0XLnd?_oCN zo*ubWnP<Ah2LqnzT7GgMW5HDgcz2qKu`zge8k33P^o4AO`qLi<Gm1?Y5H#7wY+`IO zT_MB(<k|;*jQXHm8j}>nri0o|Ajg0jqu|(W{H-^O(PX-zfHl}hf^(I{w)27-PSa1a z8*)$A_+!97{RoGlz;uCn9o>2(6Jw<0X{caig4l@wP4dXC7*J!$1f>;YpkQQz(ux7) z67ZH3aLJ>e4r&RRptNE@i5%LBNdzZSP*cbRxfKIy`IwkMGZH8ngIYc&h|OpE>7bU6 zi3w6pG6uOFu?tN<-5BH$Q_#|IL`%qGy1bkU>vTSKRhj7ykp{feU&zXfPUl}F&pVw{ zPF`!e?>~b=MpMuNa?9zbL===j>1E;+HL>XhQ3m?c4MY_<rW?qsuuRYWZ;(EH2dAMM zq-Sx5%aD7zC8H_d^siiof|DKi*{7>;8;XH*3$u}l>2w7~L$T=}xDDOF3&>fFOiazd zX?^-B9zzds(@4h11iXheAF{{T5~&4aVglZ9IeitMp*XaOWMXOoZX!*u<TEq|FCmAt zf=s}>Tp?zlw1P}bz|Auz(B>adQ-?Ffpi#=i3{>(!R2v!~+c^26960fSTR#CZ3MWAU z;b^ET&TM32G99!j2xO9?vZ3g70S?32OlC&VCW?v4bWjsz`adB<aZuxDDkHe<BQYH` zh6U0CZ}v>@5HaMLUa6qK3o@HgMHiH!k(xawW{_qNNH*~h#5v$*j~S0)tt7Y~4{^Bx z@}4J?=?-dOlP;DTh)ut)sIZa6$i&Qix_-2}==7BwhCI_}$(T)={$ZlL{`59+LrKWS z&hvbR>WtG@N*HqUSs=F^O{N>XQc{C%Z89+jEm(J8G68SLRRp<<vBydZ+=c>`rmvMO zrpL*f%7F4-uN8Ep&;-1RR1c)-qMeH3c12;s07gl0Eem$Nv5`4)xKB5<Q&j^E4azf` zL-%W$n1k0-D}h=~do?Aef5<nP4>As1G3pl@%1ytUVkj{E!b1y`VZ-UGQVa#BfAC|J z2Ne__mBhDixN6S9$YNw-ZUNZ|voh5X)cWxSZHof!Wd&~*6i_x4V6>PH-YeK4Y50JH z4>2@jWMpbI{d%e)Xq*T(?gQOXWdYedW2S6)lVy5#rXkmKNe!?;pkdPKvoa0Ex94jZ zmRU`In`OwwVrXJ%GW}<kq3m>lWJ7UA=oT1b<l$)0NVPF|_ba#*fi!-ME#WmGr14{H z3E5EPZe)xY34t_zj1ikgARDSojN!!zWGvgn3|@Lb8b6?jb<=kO?*L>rF}DN_1<Ep; zSQvxG0)?lq&NhUOOCQZO6r3La&>(#J)*M6dws+{bbY;FF_w+0_Gx6yLEqdb9C*>PT zgNB2qU(YuL4^GdR{=L8uy3fj|&`<(0>JwjN2pgOR1q^7X`}9-AhC<U71Pt{VEunj% zOe`ULp`2<Bg}^(l7)_=(8Y`GjQ!tTb0!gk=6$6h>Gn!2Q2x=W!PJVb(Y}zJE-tAI( zh6#*P-~fRnIuqn}ys5$TKzTDs(9SDnQv<{47w;K5FdBgO`Y@RqKt>-yiH^~9`bAG= z^XdA9hO*422FBAj_Up|D4M|Q^5S|VmsWzSdP|#F=`rjFbu#xK8Ylh&FYX0f7t{DnU z|9@ZK50u<^nN1C#1Iq>`di;#0(;0J=#I{c;F`U7{Z)yOFD6m6~K--lxZeUAs<{-B< zTB?X{|6Xgjk%iyX091{Ebr~937*1Ee3D)JyZ*I=Z#i<|cn^>H!U}S1I-JsdfX}V*e zviSDSX2bVfeBjm=Sf7!(x#jc(h(7h{3lxkrrhn=)v|}{fZrE?w%*h9Che1?=65fN` zhBDI^{5DdUu5#B<Z2Ez7nylL;XBwv2G8#^AxMnEDXgHlQ*-#CZyiF|N4Mj-X-UPY5 z4%#nhf-+SDYJEbdYSfHOkn;v;s>TE{&<9E0rUnM!hPsHU0i^i{J}Lq<sBLNhP06O9 z0WQ#vL6iHil<fBqmXhrrAg5#|Q^V<rY-S4JbPSp`0H=@)BbDjNj}059gEv+;J%J_V z>rY@w`PEZcQl4(}+>mE_)^h{i>7maJg{CjKXQ&UF3<2-!Gc|&w<#Yujq3H*5jh0Mz z(A0*cWRMgnC11!h`Z?WK!H8?R^d?mmCL`17pb;Q&a$fw<Fo{vp2$Xxlv0-e2T!xxX z7qnHAf~029DAGMchv^e-)s#R+C~Q%c0vDjnrpCt8KZ+U#O_xYF5}dxjUk|nLe3oV; zI9=hjo;;%|xCI88cwsg&HJ)zw+)!frvvea+chE=B*unrgc^QLKwbAtN3P$|X9cOBZ zCBMDPK0_q*+Ofh*JP8WQ9wCAvE-cJl-AzehB0k(nPO(Qj=5Jc@S}G!zIqAR-tz%bB z*LGze>NwG);JB#6Lui7@kw(dcv|lyP{d#lXml*r)s<rx4?{9D8>RbAC?XK;s?wtx< zHGN_RqeA_JzExpsXHA?KxH;`?ECYkXq|;~4Tsga|bjJse<$jC1zvi$pFibsc75PI{ zCR31sVS><_$*u8@W}D|7XJA-R6rs+&|Aa0B!xEv_DG$YWvNAM;B+b?NqqLoYA?RwK zthJbK)R$VX%bZtE_RPtGDw(jVWcI$Yx3>Z`Qep+_<4Z1;FqIl9S4TmNY6$uI_xt_j z1sR+#SYD;LecR|KRyQ%4fnnvU8*H|rAeIN?$CJA6_x)a%=l}fdZ1KO#=ggV2xZlpo z-hO|?|Gc}q-sa@2jou!&yDT?l{>J3velrXdU(~(Xczj;<yPZk#irX0&CNO!;j;{OZ z+GiJ4AGS{C{`xu9?{?nZUB3VCx7&;VfBEsa-~Q7H<%zYQK7I0%i!RCA`MA$ouHr%C zg6h}T*3Pvq*ZU?~#Lb{^bML3FJjSJ2q2Je+Enj}=*);9-Q?jn!*`GRn?%ca;A~*m1 z{Cs=%b-iEf@9rv%-czwrM9%nP&gI?Z@3-aNepO$7w>13k_WA`29-Pu%e<y$c-#+Vi zJ0|<v{am~K-lRi!774EKo~|crT{g!&e_q{Q&&g`PgxO_FE?keVU(5XE<>mBGPfn`( zEGymgq5BRK!%Fw&u64IohiLxFD6evxe&6gxGrM=coS~gm_@T|3KQiXOIQZqY^~Y1% z>tl*ess>2}F7ul!^>g{#+x6SCpK$Cl-Tva5S<Per3DG7iGGZ=%*;MrORMpp4t;MGo z_uH+K^|$$WWa;!ct^d_~T<_L?zpL!l(_uTa6_gU5h%tEBu8kJIFO@yt<je1!Pdk)T z`fa-|b^lv^_wKH#n%n18y;?cH?$^q)9vRC|$E5Rn{#@=7)&6!nfB%B$V(;_y^K1{- za}}L_aIkrP{lA|J{O|9pJ-jpZ=clK)3^Ok+iQ8M{8Io7|Y-W1ij)!eGCP$vIiu~c4 z$JlTscx%?jJBw;B1*|+L%q#Uo$a`(nQ;X0od3Sf++M2yR>#Embw{9`rsBJltmAAkC z`uaNh|15FS?HPwS|F3*<M=0jLQR=BFa#Azv7Zrj0SoM1C_Gtz)ubn)kU&PI@WS*L@ z#l1&Uw6=eFs~sMzYMi#Ce(P?Xd3C>Dp4Q)Q^XLBJe!HqWI|?T<XUsTx_UzQTPo|mQ zuL-Ue6A@VxwRKh9-(S|JbwPo&=f(F~+3PCbZoTd`!v~uDgU-CU8MM3XqqE-gdD<)M z|1oTnsJYL6cXRsre*1qGf9_9IcIT5a(I{&0*4z1H^Le|;bDxO$>V(G>x)#Ldt&iK= z^x5~~&eVT@ezMC|B>dQQM=y3)N@}X>Kdzmu3=@`2)0vod_RjN%?cMLxvu<9BJ+koP z()#+FyRPo4`I!3e&d$us%jVYq`>Dz^VeZ_u|Fih&Z>G<$4V(7J?aj-}%ia4Y++kwy z2zq_3^WC-c^Zwe~IxFscE;l`q&n}|w-^~>%VrPoGtKRK=zG%L+__f9E{mpz<D{6m# z)8F&KDf8I3m&@m~nTNT9GXJE$cRR%6JU0fv-~YaEugZaGHg!UZ+mA4U+!(VhcXHg` zCoRHt&y~dLWqr8#_xH$3&o7cx-o8Yxh?_xW_n#We=Q8E2r@i&3X8oxDf19`F>(x!k z?awDg!jx<cIB|FXYD<+zobvmfi_c9^e5ZX}M*075wK*Zqd7ieQRGIbt?sK6N^Z&;@ z)8F@J)0H)v)o)de)2lSXk`$o!Y_%+osn5{7zd2IPzbyP!-3Q0i>6(d06t{=04tu*G z-u3=VVfiOw3=WSj_l6#oSDijN_=;iSA`y|0lAO+ECOell>7V19r;rZHe;x(%>-8ih zgMQq5;AN0Kt=iK6{=Q9>#ZP+-9RK9yt^Cow`J`^4TOMP>664ZUZ??@Yd86_AdiXgG z=X%A;CxR>E?)DZxJakGjU8&>F0`cm@pN0K*%+rk)tDhKrxNY74TU-Ad7jPbW-udgx z%g3crUJiMT3@U4WeqLIbTppBsw98BGbNYPGzrQXmXsr3@s@i|^)ca@CUWli^c0V;K z+Txy2Iw(ApZg2OVZKk(9qw3?s<@293FhBYCdv8y@&A+<uHWQES=h|m6`wm2<-eULN zpI!dt+>I*P`MyWe_55|;xS0Ess!r%KOb{{gtN9xGr!Ma>Tlu*a(dL>*t-FN9zY8w~ z$J{<y>nB?-s~8)v%P+3`>|6e4VP)}5Bh@<lsGSw>VqPh3XK-lZZhi8o`)*{9`uv{n z{`K|W=UQ_Gt`4i@b5UU`@`fmpwz|?fE%9(pUF}(^a_6%Rj8i}K?EV3Z`%UNVw5!TD zC+6JP=v-7Bd;HPSce|#mIOTcTN=izCd>SDYey`^8-h($|92-kssl2^)lHWc;eCd^v zW;w58k6lt13eO1J>6)6B7Iikap5ef`9!cfSvMmo@ufMxE`PG$){PtV)yk6==ZOM3h zYpbSAEWCm`&b8m-9uos+#-ECE(>I;!QPY)AO;WwIbMx-(AOC(&e$X{t*1GJ4+27w& zmI<$zENOWaRGh5KXKZjW&YpH<_49Kl)<h=9PKnr-H`V@MAfK(t%lTgQ(^tWYQH^f# z)AOpmHm9vqPHc7BRJi!{h5E-oJtU{JK?`}#)CUgb8&bdJye^vJx4-VvlFmQh_g{PJ zzyd8<guMLvto^6xJUchF_WRTxp2}~LuNOTC2e|^2t(tOg-}(G>((9KRjbC3sZ4tiX zoVIRfz1zR<zXEP-fYh=FV(RwIDek-dW&h{C(!f)y`u=%44#rNKd__OeM-pnz4X)NF zt5(NkNE#m6r6D?b>eGK$dA21qmIhv$4Rz<XcY7|kPFv`__H>}<yItO8cTFStWtOr* zUCEPsM`LZ&&gu@K|B`u2>$fDe%GB-fPMUR`i))Sd<Y~~**s!%|>25ofsZXArauwhC z;?nl@De2ME)&4>o90`v$pMP>ITli6Hr(KKFrw@l0&7Q6qyrz3n9aMjZ{oPsbx6PKR zSdeooC01m9*m}KJ5j!qyk;yy;twAhi+s8|p)=%2|t!R4FlIHSz6QxX_Y&;(HTxuRm zI;0KbV51waw>H}Q@v%>j`>(lnPWPR?q&&ZT=jo->KWQDSfCievynR0o?Y)rxD&%$1 zk#NVxJ5{T@_1xt&SBFJTSGyVsY1RnHKisSmy?xfS!{?;)cW9T!SD)P_v+|r(J)}Cb zxUtdM&pviu-K||R*A7kpq7$1H)i)&#;*5rTR@S12t?zVB2Kz^fs~Vn}rMfk1r#s8? zSGf<iLH+w7_k@6WR2%PRJ@-R5_QkUC7JYv5Wb))sqBl6tK|IW`zKy?J`o-$?&-5NV znpbt|uKeEnb)V`F^IvoI)P=@vMd|y!m)6VYzv|4rWAR;M_WnOdcgd_g3N^sLsJPq8 z;!;qPsCL)7qKkZKAxoh_aG?F;<J9xEPjBb1Jv~un)21br#gYaNMMZ16C;fpsa7D@H zG|#<N?@slaX0Pd<q~fHw^LJjkV*Lfh_7j^@uPyZ~g1RAO-O=v56Q?~pn|e~{^&*wo z-|tPnTV8%%c%H$*T^c9PK-|*cwWVzBmR#+xuTRghyyoiZSNz;-w%I$$S`Bk(GSj-a zEw|{RtBl@?38k;Q<X%mhs#;ljZK<ad%o;9Vom~fA>r*ctDf;oS=*>pGy$gI`Zr$;x z#`1U0%L@;;SI-YD)ZeEubLOV+_ug5hPnicz<Dw#5qPAQA9b{kIJ*h~|w@BRb{jSw} zK)Gg8J4{K*aap}BcS<IgS_WO|61}u__3o85zsp`PQsIQT@zK$G@z@MWiwWs_tESA> z_MR?Q3Qpz^p{XW7P&<6rb=%_G-ZdF^Z?1TX>2A_<PudL0tP5(=&MK`ta$9}=4t7EF z9F6$8%-AU`&@|&<S@V1C?uakPq}QIFSXcKa@YeR}udY7*c-+!l9F|X0zaHkVzqDfF zo2}FTeCjR@ymV=qZ_%yHpzV5}?aiQ0JeBgZDD!UAw;PAw{y6Max3A{^-q#$hU2^NX z4PK`_40m&5+sVq{<+**5yUfFTf6a4el?Dd9SlGVAm3yYu)m<{3N30?%rq7(2Y1_}J zkm)n;jO#*97v_}H(}Gq{+w*N!X<)rjTj`n)-H&w{0;H_VPE@~-6ldDFCQkS6?%m5@ z+^N}YT@NnZu5V{J@Lo$}0=Iri^f6FIZ;IHKKV5s>gjJz;s~Hm@`Q*TRDWfB;)As*8 zyGusnVvnS&>}>Pd(+<yq#)qo3-JRBH+3Ox=DxQ2e*?);6^Uoj2^{<O=Y=nj<OY!qv zoB99#+8ONX!PPCkyPPp(^)sgQDmPzfV0f9O@#HJ{8AWe9aWj4Q;*{s}^(`&0E$y_1 z$|p(L#~th2s>gClTV&GicSRSU9u;5PEmRIoaxSwiFWb893s!%(+BYwFnaEtNTbt^S z?$Rhsfw<qnuv_dTxCYpi(pef9Ao=Y4bT!{6KcBBXEvOGOBWiEdx4Yr5u1~itUen#= zwJC3|O!*w^bd!n=Po73jKV}bgiqhT6<yY3}3adp-XP)Zy_|(_yyI)*dJv}8ga{4i2 zm>N-$6ZLOyUTbZT*WaTsbLOY#_R-T1!(>D1_T8yiT>XVT==PS(NwZ&D1^xJ!0oCcG zC~0zHu1m!$&DV<*^vrT5{QW*X@o>=R!X~IQ?-aIk>zdz9iRC-u?blbWGB@m3WV&bB zw$e;3XzEiqYx{4<?YjEdBF|ZN!gjftrTr2Q<Jd2(3|=)?ehVZ<mTcZ*WBJCw^6!@| zJ8Z=+9_uOOm#}#%^13KQ3*r!mS-1CCPSwA7<ozuB_-Xp(vbVP_Jz)qf0vxJ-eT)A7 zYVVe+Kh|Co=Ig7^RjL0KthLAaGNcTd(Dv-?<oY(=)c1Q+pL)Gsq+pnlxAUo3`O@I; z@7~Qk>3J5aEN`0b<gm3V{kBhz%dhQjV)=Y4`(5Tq-RM(aUS4xu$pCdpROEI)J`0Dk z`*&^Yc{-NyIv1bb_gn4b(p!)aY1m>^z0LZ@r>E1eJ#}D;-s+Whra<=R&v*5cOQ3~L zrqZ93E4jCQPB%XJ_}u<<=JJ!rdapgzP==asb>TwMK~|%ZjIKK`x_(qV;#?Vcc(0(s zPQBJm(7>`et7U%YL7wQ&*LtrPDctOleVu2!I{dutLcK_6tr>Lh@Ausoir#LO$#JaI ziF<R8bwT~?Q=sxV$O`JrE8p%E>uve+e*Ucdf37tt>ARWr8;|Ti5AAkMxD{6)TlL+q zwS9q-;GRF5O5R3&iEC&{g`{7P&|Up9555R!oqlm~)9t)X&*yzQYktl3rX|!1Ub8HN zrOc;&zqeVBJ?Pw<o14ztO{$-%slO*7cFJ66O|oR3Yxk1O;LLk5)AY9LaRmj2P5bid z>AKmojE?To*a-8-nO9feDZc&s`t+Th*IXT6ojU#dZARQ8+u-ZaDD&EuGqIV!Z2hs> z78iGEc<@hF+i4zmc4l&H9|zQ*Awpayb+?~zua}RU&YbC7?0tFJyQI4p7q9L9qz!d$ z)`|1eQ%|qqZrrkj_x%OuZn+b4ILy~WOXi@4Je_qroW9*q&YYLgB{F%kGBewb7oX18 zM~S!IVPfEXzwP!Nwa3q9uRYypvh3l{Uh}SX7q`}0Y%bmOL0eh5`3{r9O50y6xOMBN z$4nAvf6*waedl-2v0h{ChSE(R^o)%!=R9L_I9l^%V#r#p^f?n*@_QX;MQm{RcH2Me z%7o?fHfc6Mi_J;5rs=+8TQo=JbrFN0S>BXjzruFL^*atdxElfT>biW!2}{z>Pdht% zEjQyEm%4qsA9yW39sf`0{rqj9bW<PApt88~^O8ho%ilS#ix^a^zQ>loaeef=$R8RE zmm;_ML~Si9x7CkGh!t5NQdG1g-M{khSBt-MAO)+!&Nb2MvQ{VF?LH045sY5y+TQ;@ zv@a@lE8O9F3mPLa=d8Sqj8or4ye?u$-B`Ojrfg=n-rnld^~-$g>QBQIiRn)RwZ2&b z$`($r`L`ovy<Y9FAAc30E(y}mm=GRsTF0XqP#9mQ`T6;7zWVT2&~YQ7`RgA3fB*lE z;kWYpTlKgCB)53RmrS(zGGY1`=!ld@&G);{olbAP{z;{NNk{JOJ5!@>t*Y1G6HrvF zUHJqQSVi0oEaq8LqW6A(f8JARiAe7G!)-ga-QBvndTF34G@Gexy1LpmJWzd3!iNnd z3Vin}-OKJ?y?aZ3kH@YcXz~=gV}9SGY+I=!Lw?%XN&5R%oDqaM^75IP@7R<SYI)?} zt+QYMWA@qlwUb-ppNKJVW?WRtycH6)tz>;Q+odC4ukSt`+h-qlZT<QS70?2rGwrI@ z&GPt_@$t{jZPnuvh+pjH>DHG0Uo`U%)bTBwGAEb3RN9(-`bg(BS4JJ584A9$JoZ*S zwSNT*0}cIs8m3t%+(F5H!{(gG`c}PnFrUqOp!tHq<iPjW;m=m@fmx~`GHIc6>Zg>~ zMGT!!F1jzx3VnGea+;3j;q5RL54PRDGgqYiPGT&d!oiv^6R)h*?v*~hqj2fpE=U47 zFy~!JR>saRL2>phM?M_pzqD@d?swVG&IIx1&#ea!7H;@@EBl>C#eBP|A9m;}gy!B* zP<EeYb|V_ncIJ6m_2bRvr!N+3|DU?U!E2Vef7SPCrrBOn(58HXw!Xhv{x&_92`cxh z{j;u43S0YR_xm!d9;o##@65ivQr-V2DV9&+rq5h0-KZVu#``|Hy<uE4xgH$)AGhbs zto|M_S?$wh|7)&{lP;W^TJ&V%yR2{9@ArKShbF%{YeC7}W3H7^?XJ?mh9z5bXWyyL zf5Uwk8W111q;{9QRx`~$bz|c-SH_@2zrGe7liZYWFuxYABB{0Hjl}N<W(`F%j9jHm z3f|ZI|NnA%kzMQT@2`%1JS1Jj-S9(0W5S=B>j#UY8cuC3Sa@4@MVK!ePr-Jnm)rJw zP4#(Q^N@QdtAk97Q_<hAMdvJA#13@7$+7$rP`)(pVfyq#{#i=f89JJ)-<Phwe6YE4 zlKlhkhZDt$xEVsOtO(4Dt-4qFE<}*Qe^r?3b_NI6-g>#We!J(FOv<^R7b~K$bZee( z9%Dn7l>NQdX}ZyCPBSjq6&@#eci!Y^h6OcdIUDpCC#0F|5|Jx?Sf|9GF}sx;)aw6u zeC=t*CG!uRtv+S9Ulm-sEht(WrJ8$dM|$Gfx!JKI3ZQ=5dn04xwa*P3u52t^T=MSC zxy|*TdrRvB8@8m#YX5mu!QJ3BWxl>`wO6myr;o?4xiVgwTDs}O>cF$Jo`^9_eerVn z-J^{RYhE0yEq`6|@VuRA)|T~QzG3UO%sb0a^XsX&<*$tO-c=f3?DLnnI(>+L?_sh3 z&!+gPT5H!_Znb9*U0LKYRjcUf)N9644gR}&UdwfzSN*%bero-#txtcy|NEEe)Vcb- z$`4~IpDMOWe-A13m=N96Z}wi!_Q!{ZlY``A*Bw5+W4mhY&3(4V!d`xKzAUHs`Q=mL znnywJYlL2Z&R+UDtu`Ozu7i$w7d!7J^S``ywr<<!hliIJ*}Ka;oc1oE^;x=S{MCD{ z({A!sxAbkB7h(6X|9{o<`pE_J<F)?^yv}%dweIRFS(z<ad@4*Uvo0uX@43F}X|m^h ztE+cym#jW>=guivL#;FEdzBqU!*=Cen;o^ByZ+mmGi%nb{k3ZKlKlABH+c{6$L=bX zoNsve_@sIB_3Qudu1@0?>N{WM-lVnW%dOB=CY$`k|Gf#@ZT8)fS)*OPZo<>k^=r8q z6}+a3)Sa?_ug(;pcY2!V>1jnj9=`jQ&cF%n_yvSTMqb*t_sUA;`?cw@A`F4h<ea)G zwR?B=!Zcq=>ub9-7?Pmv=qV>lukXAae6RBOE*XZhLy)pPKuy{V(z-uz4qAnJDT_=J zuaA46sOumEt^KDQ+xvYN`+B=?GfFKP{>VWx-hua3-y+4M&RP3&ajofQdhi`u%zAx$ zxBH#b9bx||Z*Q;dW?CQub(ZRhvs0g)z5Ds;ww#T6Tn(3C&dRxG^L>FO!%3)%1TG(H zHL9t%=>Nz*sUK2ODBM~VdTCj&Nrr-UScEvMgCx|YT{m|GT9u2%8v4vii4|c;g$@sN zOqs0>POnC3J*9yRQ@Ww1TzWp=+pTTSuT`a%3{$2<1Q*OW+P&7BVF44=k&TIm?<hZG zP^pLZ9U7!8FWH`~zo78Ch+ze&YbCyu^}y=&yDk(xn>lHIeyj+CD70snnRiB_{CmLp zdGGv`7&H$+g7?y$3k%<6>PnkOO=osch4{E(i>S@v`2T0mZPVjwIF$@(qrH6jd_HK5 z9yEx=up;MLJ$S@>LffWIDgXa2^^^Vi&ieHtkOV|LZ(Gj9!~D}{nLb^;eoZ&i0cJ>) zcxd0=e!5fLYipKG5}!vTr23f<W|luKxqoW<{H=QI4EYd`Dm>l$scTD~Zs=;S)nV&) zFF3HvfuROe;iRUdOo(m}sbA*kD*jO`w99U5_HH|dpc&BSPn8_=ho!FF_no{yWZu2C z%ZH(6Q=e#E;T~2G&x6KK>;7!4$hhc#b=9?2<_D8OA^bYJA!JkKW^3M(UoVT!n!ejV zEAG{`rxn~2;-Ky@-SdCnm$$FyomzBqNoDcQ&*v8XJGw6aVtwAae8wPXpG0N-+UV3T zFBbi7Ubo9@mf6(o^;17S?!Ip*vTwe}f7LAvn&%;*J;^U`U3FH>|9_iauX`tOs)cji z^JTuESTbVZght4u)8+Sfe&@=J$-EKp?~D4+KgB0cZ`KoTaDi6DoO#Fje*Q?7thWeg z<1hbzcbhL8?<B+In0kf|XgqUfzlqrS#whc`0omA<!R~o`ukLbSnA8aJ>>VbRDSv8a z+U#8M`;2kw_PbB^e15X``yEqICmI?T99&#aUax=pYV}f2;qsEyhfddve-@oQxlvED zAqAQgp6&bTHmlyWxNvEhuH|c;%E!EqxEek|1{WHBaJN3Wo&WTh^wX>1ck4HATH-JN z^ZNcfm-84GG(kgj-ZKB`v-2kH{a)rCZe;XiTJ#!j7KNvf%-N8?aDq-;%$3?F6N47F z%_*5=^MB8p`1~jx2F+8DF#I#qIy`TGZ2h<U_hq9vgHFw{e78n`;Rn=hb~S&u$`mwM zONOkSB~#q<=dt{xxw)}w3@;BtbZeb%V*T`e|7r2~9q)dAe!61ulaI$iowy`M4`WCO z1UPn!pZ@#(^g;IBi?x6Kd>y}*n?+$SBttv=%(?aCA8+dtU+H@B@Lgq7+2yA!^<LY} zs_+)7V5UyIUcZgf-CaAc8?xt{$(X;}e!G?70JOzB<x+V3PVcZ)VWsZjd{!r7PaRsi zjX`JvBx<H4oRzA4r8(2`a%sQx^E|;{x9_Livw5Aw2rKv;wye>q{1$2X&SGWU-Fn$r zNwYIwd0N+Wvob7&4rC-&R=&IcrzZ2xjiXb|a-Zne7qUlt=rBy`fY^|8OGSUb&hoix zvesg*Q_SyA$-La5%`j;aShlIetZvVo!nP}GUiPiqlA&mRM`7pAYpF~PU64{?Lf*EV z!uH_0e>Y3_e{3_U&sJ+@KYgS#C?Fx$h+zc}B=9b|`1S4iyY0`%{zY&1dWlLJ9{PIb zwDLLz4^ybTW8ONGj0car7P}c`OsM&}boUQ2h9IZ|rfjL*UGrmMOv%JA?_#e!f7t%? zvVZqG38n@SNXk|?>N87adW_Q7*Si;M*MEI=a_RJ<3|5CKsQZ{ceR}fweClDg>$XKp zuB=oRk5Q1XdC<3u!C@Cv#hy=}?^-vn+Y|Kd#$nmm%72yDi(iMmOJ$pIZ4J0Ft+KN8 zb;^0$*qDpos^9H=7q@VZ%xfb?2PQ}*GeO5m@#iz?o&TzKe!I1(-p>5a1Gxj6QoA!Z zGAJB`q+X92<FpeK6fdosYQ1aHOwGT)KeN;^+|Y!SeVv|@Pkwp1DY^aizNca*PfQ5* zpE^BmQm^z{Z#ITb$e4kn)5RS|+0*V+t=^LRx^G?0mx-@;ruD9g&yO`?@DRFo^3eL8 z9-bm@p(C48>o@)Xr?)O-wc6gQlg8(FbmucNq$bVP*>n2LnJx2<d&GZ!emb^Xbg%A; z1rFz|yyw*fg{|MFC&r+n`#R#G`0?n3q=!yBpUb_xb5l0<;`y8D(c&BoL9L*K@H$$+ z-~NA0iS~s9je6^33R|jkFKkM^c9f|>1X2Vk@R_W$`BFbYrf$b+t;@@I+i{DZnxqO+ z5CR#GI<R_v-6Z=z3tyxJOxG)Vzjss7($bj>3QHkbWJSs9u#>|6C-(n)x@&t*VSD7e zeYa!lxfwd3Rm9ZPw^5b9GA+MFl#3Tn)p~bMfx+PqRO^B_Zx;0h`<E6jjjgxd`POWv z?d>f-3=@t)qHoIiW4)gqbr+q|eAnuDdirj=;N_>v?|*!zz+eDLKnvE?{cx=MURJo& zOEmLtR2$z^QSCLSSr~qR8jRg{nl7C<H|=`d<n#9BcV`8eth-at>@)AoMNtM13rOnq z+EBWB&(CGmGjiYFs(<&wYk!^V-%f3Y2^%2xyPQ6+|B6Fy@1-T3F|}KJq@UlDXJPOt zfapE6EqC(&KkjTi1&*payfe;7{Cw1XKZ%Dy;UmOv0iU0pbQSl!yX)NxufM;FUM{t{ zD#kDg;;>2EK7D#J*+1nN&vo14W!$>r@jCMLwJNu_M^EQr2w((T;JxeQ`SRs;di!If zOpDyZ^>%~GhC7~03=Uk7<a_C?V*8FApo-_&g7W)Q=g7QfVr0;QT5yYt>&gEAQ(vzu zE>zvI=iAchPu6a~!+VaQVG1Nlm#mVnFX?Z~zIaGBc4cJnuP=r5?`>Hame_!kw(8Ut zr+2E3-qUuxGfY-dK5RST|NQ?`d}pumW@G3OhbUpqh?!~VoVU~U)|Nu|@Vs3ozn(cg znO7RD1k#jIy_uQ8ske1)T&$mkqg(H!H9D`27#ZF`a@NU=dp440KIbf#zt~^@fA^oq z_41q2dNXG-Fmysnc26bmX*)VDt(<JVD`@MgFE0YWnA9;a90JG8v?JRK7OshYZWUK` zQgxdBA4j>`kgzoy^u!nx6d|F{nSD~I@&Tjemw@S^a&<Spo;)`#^)#qt^~iyQF4L`z zhh;-9?pP#$R`+oG>GSsW(bG8@Ca6HnXZd(q|J|GO6BJ$l%bIw++v#5S>*N+6h6WW# z=-r6g8#S-yQfy-M)>YQKF74cGeS?X?VJF0DwQK8is}?@|@KA5voBjLm6t<t4n;ome z-~g>qA7%cns(fc@`O)Qj&yMSH#kFDUr$uhQv$_5;1H%dth~sKf(oe5kzDt}fbfr@D zdtLMUI-j3|o!13+o>;wE{<QG;sS}lB%Qc?xZRU|wx?gwtq9{XyJ4FA|+nZePRXCrs z3C_A&<Q{HSqOgL2;n8t$jk!|C(sI)L_f~B@g@sEqgLgiYlC+QG;#yPh&BoxN4$;s0 z^x3Hw7mMyyZn~ZK>FM-!=bKoK%5nnR7#S4Kfn6}I==7;c+<FtNO7C2p%EtS|zkZTs zF(~JGR6|Ud`R0aV^05=M^LM@5W0QH^kBzUSwjx4?LBSCe{YFMcCv^9FE1ycAzf)O@ zS9;fC?YZ?<qF<jkMKd@o+UO^C4>Tux{xOT_J~vn4?qgH$mQ7}4ezNy_%5AgDNsJ5| zimz=vq~EvQMO$OS`u)>Zub-yo+cj_R|F_#eowIiJf5y(BFcB0PJNBtwdUdtv@7GIv zc3STWT0Lz}>9jNRK+Ok+Q;^0#XKTu*l%KD(ukWqToP1@icI_`vIX3SMKZ66fyRbAj z@8S-l+*v%bTGel#_N|ktObPsdCkEt*07Fpuz2&T~c+7)GUcFL9mpnfm;(q6QmVsdj zXe>DV*OO_M#ZSK7e%ipCa#rg5eSZ5X>GMm^_c1dlOa+BPklpq*ak_`wcJ2sT+7(j2 zR_nM-a7niS1B2#CtH>WySM5wa*t96RahlG=tgBCu8a50MW`YI}j~1O?<XZIqZ_$T? z?_QjGxm^4!j~@>s!vsE146U3J&Bjwu=xQIk`&5VErjnJVjSLJOpnMq~^n9AA_LGV3 zPj)=+%8RReXSwseUHJ*tdWMEAsdIJycpbYlY3ftGFw0jO<#TgCOgk)JzeP_Nnk}cg z>`Xl?6}jz9sn5JOkG$IX-nlKT{0z!h4oaXpS+y=Na{D>kjHf>yFRd!w`H1Vfy2zur zGzJFnRF!H)-p&tB-#u<?g{IuEeR?gr^0XoY!+y}3vZ)#MJ5w*KRsKxf`6H=3!1eFj z{G!Xg?_8Y@)-y6VoCJA^b5iuC&3CnDoVRe!x>n*I9<@zp*A!L;hAEw;n?9U2+n#e% zN!n~j-}igPg-auiC2b<q{H8Q9trlWrm~aQAUu~zVy8FGl=ySH=U#7p`aro=aZNB^d z&Dz1l;NTjm&RxI%(VS=}#hp)tZswYomn<zzmNfBD^X<Cb&&)947s!CZ6S}vzpKg~I zlMN4?6|J}1$L_b!r%!wS=`b+71PzNn)!z<I^*g2n?cZm;D`@?^HSzBsmoqRN0C$0= z&Wrx^>CREDS2xpRV{X=#?|i^i`M<XO3M&J{kF>cu^?z2axie|LetfNJc${YS8%2NH zr@vBCPrkV5ns39x!0<6~uFjuT6?qqr6x}V|^nBjC7hZ2~6`iv*%8N-oTg|`_U<OK# zpPo(&@YwhB*j!F7nc|)~mCN@0+f^;c&A?y)D!H_RL8&>li$_vvZIo#2ZlO7Bj}-qf zFsN|6PN{zwo>|m=Y|?|y0)D#}-~@e2^V217*Zy6s3=Ey1ND6fVY0sYa=j-}Q+t%*+ zz3%nqf`vBU=d6hqzy6b-fx+uMDBaGKRNkI*`<a~Z^?iG-cLlATB~w19=40#0J?sn& zsi0Q<s<_(eTA^i`ccbDeU7wvV=ifH<kg{%l?k$ggxld0fZ>ri_%F4jd5VYA(Y~S0U z9}`!FcHfhnGXMQDEA``5`<NLTHf=s9x=-|}*xxJb^-oWaKA*<`sx)^V+J3*t`|7G| zpQRWWLV8NqeR#Y5&ZS*jzwTjUU=U57t6iggN_Y30M|x*j85lgzT7~}*t+W?pVDKmd z1>B7K^ZASn44$W~B7cN_{O-ui&~OA4;-^lWPyj6yG+HycwS4Bxnb$r`FffGhK^k2Q z3?8bW@@`!|BQ#IrSOPi03zUGKh%qn(fl{mX<`0cKVJ4+K4FCG->e~8l2IkP!VO#Z> z9`$<p`(LpRnpA3L^5Nrg`R&=)*ZIyi`+l!_eQ6}mlEkI||9n1gTm3EP{=V9FK3TcS zCxWjZNq8Lg3g5YNXS-}!#B#s6TkhrW|62wUK3^67^XJdG*5!6zuLQ5<PC8%_bfopG zO`m!0`QL9gpFh;fy*>Z_I_)j>JBy!3P1m@0X~U)ZpHHV}US5`Y{Mp&rx3}ebFJ0al zpfP3c+_kdSWp7^G+WOl3eob=hq6+WxRpI=0KN9}``+HJ%<*6#U<F}7=3j13;Y+3Mo zp3}Cco%>DJeDPR5zwX!a`E^;bT@~J+z3%TS&7Q6otL8f^C3XVHg!pYaH#Z)a`(1xj zJbprS(A2LsecQL+t9pIOTc3AVeBIBdtJm+lwaw<^^tP#T+bTXjnx-3_cWcYZT?!wk zZJRo8{`~q2j_hxDy<X?s&bL*syYb7K@0-tAWxu+zGWmF)>h>jCuPbHppG-4Z^Tna8 z?At+h`9I%o=SPblakv#$m2kL?*S7lG9NX$`rH=KFba`L@{rmm?{!gd0w>ICIbZE`< z!aaraG<daRxz-n4sH*>PkbNz8lCrI~?WGNghvh0BFuo2t5-oM@_gVA%clK0%zP2{n zJoD0$vbVRG*?2bS1@4h_@7l3p-tmvqrcdAg{a&?x)E12$dgbTlSYA`@+HSJuOMphn zK~`}dIhz~16w>N1ZMbxGmT9(G&W#1KmX?-xcb8wcEqpC>G`i|qb;Dy_%`;VU(my^N z=D)oyclUX_-*;-i-@TS<IH7H-UEQCGxv!Y{Z9Xh;y2Y@@TO>a-;$_yeGc)H}mtU*0 zf6&0(#w(o`E5rOU@;zgbH`nHQ$2-imY<UA;zU-{>cRn^zNpH<_!+KD%a}KGhT6FL7 zgu*2&cucdetqEHjb;h2xzhN7yme5K6|MFd39lkzv^|f>Vq7KcUuxiB@6PKmS)nD22 zW-e8)&g10U#$x#9Zu$MI?<zk(b7eDL?9nk-%Az3Q@v&Zhiw6x!f8#5kPG#n|*^qp^ z@9wVB*@pGWZaa_rFI87t|J84)x|-OxFHfoy{lDE2;!t~jr}+HadwZ*&{64zs!YbkO zI|?5!^PMercZs^sj16^vtKR;2vABO%+1sdhAA?_Zp3L4G{IavN)z<cB+>PL75j&kN zk(<*#KR=&;eO>GmmTBe34lh31E$(jq(jfOn)YPYPmQ&|#_;a=1dg{Cl5jQSRzTRqU z>hX|qg}2^L7wcW6ugywdUHQN=E&tqs)stp_Vdl3Hs0($p40y?TI(~2POU~|ATieRm z8^O(fr&lhYC$)#I{K<)l=JzU+E0|83r#}eg^!;^OfB&8O|9>}c+H}gcNXs_y=jw7T z+r*6<maDJluFi_so)`P}*4Fyytyx!hmA)3!joOlP(@2DibFEe2+clo&=U5icul+XD zzP`@Y&2Oo?PCY1mbU@)#n&{8#Z~ynp)9LYY^VUI^qB^bi3o)Gi<<e5`+gmb?6A!g; z_093}kNEd$u9ts=&YPDfUmuz$RrT%7&yUCD+m~lQIWe)BjaMkDwBG5}_4V<Wm-%L2 zS#fbs<>$b~ZnmKwzvHW3F8%uID)+q&#U~Wor&Rw5sY?13^**F3DJjw4f1mibD*=aC zrWNl~&J28+*#RoJs--sZN>5$U!rAlukBicROP2+v&YQR5yGe?)nU?F5&qc|82{zBw zg&3#KYg_T<i_6~S3qO?ES7z4#th5(YLKt$%%fInX&{Bh<?BkC6qxMu3TFjWqcKCje zob9gz%=|ohZc_GjH5>Qu`}gbhuj_oWRy?v+CNGTh?(EQu-4(Jv?(f>|_qh1KJ-7cK z*?zPB|KIg{zugMZ*i!oXTCksG>i)mqF3&T+TM}$==F(E{>Thpu?yN6PmwnhSU$>%m z)22;Z&ad13uIlU6@OJmF>+AonPCnjeb*58&-j1@jQE!b?P6)_O{r2+m^7C!H(p%2= z$y)2}`QRk$Q~z;Z^*hdbb9?*v<MpprE@%6{_r;>_Z@047C!DMQez!d6hmMPEXWy$0 zhxumPR+kyvI4)m*XI<=Wv)o&Es_WnHop^cO<wdF7yW%Szwz~C7u`aIqb~F97`D)?i zmljX`Q`Psva^==FpWV}E)n(t>lKD{4Jona>J(ZseTK(o)g&tqo%*w0$;^&LS{cO3; zvwM%MIy=AqU!=6#?{9BQXSmB%s@Qx=il1^QTD;%l5y#ub@#oK;?fuyu_24kSy-mi$ z$@S{~*X)vy_pJ?H?q^_mxQ&<FZK-|90Y>&0E9B~aJX~;Iw*1b;HIbVWHY_+g&ACRa zHvQ_tB)y)C-XABadT;6XTgfLDvvNn}=Vu?fRwo{AYi8%?YpZ$OYu>c#<^BEj7na|6 zq`&c+^!51qT7y;Fa&LnQ%NHx_Z5K@7lmAlrX5;bt60MSDtf&8-Q`7y`J-_~6WxzlC zKM(o2#dI#%S&7~fYO*VSe(tK>{JLK+53<XzvHf~qf8P(KA4!?BGAvcj9kR>6XA|pY zWNa*7@u2a={#P{@el9BxntpK4o;`DU|6g$Ce|hJ^!Czlri|b@OpIbg}o!Qp&2O616 z1+Upjo9EfQ-Ez6!s`S+oXS@G@J|7e>HC=aAHcs7p&8(^q2ido}X8x6{ezWlwU-Q95 z(xD5=-`{(<yK&L<3vX|4kFWW7G-_cKPwbiIgGpf<r3{l?b}T&_qdp~c>J$5WLKiYQ z^M7~wCj5Nnv-I@2b9}3U%o%sBaQo+3?0R~d?)5d1i|^iAwRNxOL*JBot0%1DF#>Uq zeP<XvJfYlwMt=!!oOHuFt^I#Kd28ml-rZgP|Hb0|Ex-Nie_fvJZ?{r*7hmSxU0cg? zZf<g&JZW9rq1l$P1ybgDGA1gy+i&S?eLUIUj#F&K!qzR1uZG9}eJuZ9qxE%)Y^Viq z*6-`3nJIalJmEnSjqmn+_S1|pE3KEDcxc7u^LD>=Vs->{uky8x*uPRUc-fr#e?KSg zR5gm3>i;ODYRjbf^MbbOrMiWeJk>K#|9mz(U#WfnyIrrha2@*W^?4!Rg65Y89E~ru zU0fZ$KKJ&v%<r$Ru2v1p{rBm#{y{M>^SQfba%-vn>b|8_5-Yw$CwFz!RKxm@KOXn< zTh(tlV_WrQ!lBZTCtV?#9apC=6mvMfa=*|TzpX!y#$2852~Ki~t;MEQi9K;$U)LYp zb5*qI+MzB{Z6)_b(!U-s^4b6UvG|=7i?8a6))z<ZpH(UQC^zQ4-14}Y-_GLQj>jc! zud5zhaOS^yWVP*b|M}}uFEh0idw*GS^v|Mgli%0x{~u>Pui_DB?z$j}h0TV0zTd0f z^_9m>&S!d9`H#qVOEVWeonXPe+wai!`*pvk@BgE^%TQcIWJ|_HrHZ7Jx!doWWnEb@ z<FJ1GzL@gpqN1WLzvmR6yEt{B$Tja36VzrV9R2rw|9{&E`|PXN*T=_4PZ3!*<^P}O z_7l6KOMGAQTo0>XC2KXW_`Gd+lIf}kyYu(|-L@`Hsn~mCXVssN$4$4h1TX9jQx8ZA z-6---W^TbD&b3inxt>o;dfigAfmeE}hmhU&7T-A*froQb<a75PJQln6&!^Mjah0h* z{3l8q{av(8AouF6Zza>sGA1YPQmlS9GkweBPp9?wzu)(}>0#+|JDYlk6qO5i?yU$^ z?!9yC*t#8$x|YwcvnmRCzvpvbTaBiT+Tw$8;W4|~t}IQsyQ}n8@y$)CQBikmH59kM z=zD%WzFxK@J0@~#)>JXK===-M=Q#yQq?OdiZ=d&aa`d63ee;y7{IYVhbXo51y1n$X z7uWY}lg5_kQ@`=3C(2q>OqjUtd%fN7H=9oc9$j;G!)1Sa+lo6SU&Kq#S|%K5IALd4 zANbn*hW2&4gNjWrO0Ue$-zT}J$NBHu{QBMh|NT~7S>%1@Rfkxd1oOqKTKnIvb$KRs zciqctx;J)T+}oLSTzawif1zvAK|gj)Uf|TuFTZZH)r*zJ|9j2vaqtVzj9#R!`%L_+ zfBj@N-${p-{+Je>*ZIfw@2<QJO21!hdC?X+*;8|NhNa4_Lvou9vkzRjns8yQ_OZ$S zc9zdR%!=N^_@Zeg_ewpBUCNS{liKB~Je>PP&Q-3>p1ZwUOgHQDGT#Z3Dp`fv3zwNh zWW`LJn-gpj$liX=>x6E2Z0S_9oeQF+A3ixbIXP@&z18bAn@gsv-??-`ccRK8o51;Y zwMyz6nl`Tx%9Oh>>ndwxw0BDV-4@gQdoktpTXxQ?d^U4eA?N><H>BPllg?igy*+QP zRcRBO%(leCZF|4ptA2Q>HE4(L%NrXP_ic#VTlMg}iD!t)g^Ta@{eI^=+syXWip5Q~ zFAQ`K*#H0Oui0Z>zpM62%jVO1yIVH*ZgZB+P5FG;>6Ou<-A_P8_J;3Ex;x9V+qXS` zb#?XY55I~ZZV$|8=J)z^Lb?CNAq~Nq!Q3ldF9p6_pAn${+onut)unQ^XRj?6JzsL} z$%jbSSbLwDMy}z(wpCv)e34ie@OI_zwFeD$h4H*{6>qtnzdyEoPJg}KuZ+6~PWojT zFUa-ZzVKjQ@fUIVx*rcepSO=s_MEO4+q6XRvv}#!<;oXD*FW3%Kx2#9BsN~Dl2=ze z&C`pYo#AY|cw))yoLK)?|L&Szk5O*Tc8y*8GK62o!ocEC0N=-zUtYZGkW(v4<PnMP z+M4+K$hCE`(dALf`z>;AZ1}+KRe#RnF;B1Fu0qQ{9}XY(U#7L~$Mg;NF8o}7I&eeG z>u3JQ7aPZz%S3GuRCa4&?>?h@akALw?x?#_%YW^DdwV;-eC9>Yi*GlD{q48^Ct>Mo zb=A>YGgVl(-6i@)@-wls5}@oF)twd<YyUo{B3AX)sQ~dy3Fi%c#N%RrHO)PEc6Pn_ z>v!|6t>^oBkX^o|T~mxR=~{@xb?NfErQsK3_xfI(+Ml;dX}*;B-j-KfPu^@kf30o# zP0#)R-q-)PP802yvyECFt`rsZ#cH8U&S5vzNlz^A8RgyCQSi6z?{oYA7oUb-e`0>8 zpn2V<Lw}X8S8$8zSUjB)yovkegon&hw<@;qw$!f|tN3t`z1g&9nR4#NhbD1vD!SLr zs{8d)J$8Z8?G3wrzuRs4gVnnB|KIoZr5`UghOduXdpkH*bpQW<zYpfcJ~3M4>Dhk$ z?VDEdIEgu%t{i>xs9XQq*GYNr`E0*jc)#zrp4Ijj^Oi09_25j%j&~*9Vma&of9$W9 zDL!NPboOD+h?n(8-@N%MbFtW{D*Mxo<bKwN3!mIs^jgN3)yk~5ulnuQ>18h0(>{pi z`t3UZ_1o=y_W!;A7Oe~4>KtzEc;m;P&*zi>J=%IbZuM$?%{>OnKUSMD%kC7B+jz75 zer@wZ_g<-`_RBLXFD!68xK(C#*xF0FYs^Aoi`kZ&ol>-$`fvBnr8nviNpw{1alQRN zv0ZlAWx02Yy|XLao$Ecso!9Ez)yt5(pd(WJ@&3)K$NPT2<2Fik5YLL0=(m1nk;^bK zRoim=kv~cI_tiG<{qgW{yEyl~_4|IU+IIUxed+2YiEiOWL9f(yP2L$d$tC(mdD(}6 z>&HO7JE{F&uSJ(mJ0=sS+_>&b{k1ibi@&bhD*48SO>g&`O&?nQZ%s3adhzCx+QQGe zb3D7APMdpmN?+LFf(^5J^Fns5dv|yD_CN10=PjNdko)}L)DTcV`=t8(Kks(GcMIRR zPH#(L-klwRN>Nc~N}VEaw)J|cbk2${@mI0n5~*~ED33d|x;x3_xLe#Jv7N`dZF1^Y zOK(khymX7=OEu*`Q~6}ATKYp?@VENQxIdeALix<B#fOgTmP+LAJ!l#5^L}&VFYR5n zyM8{KZF(SEIp@-n&UXf4*0ln)JOSc*vJtnlzEmpR4ZbjOi(bgqtgB|Zw_NH1#f9&( zc35`TO|M+)-krm?w9?kS!p}{9?{!^|)6;ZI>zA44+$i{dw|xK0WwVpy7TSJ1BHVmh zcgcs4x$AfqX9sf$uesKpcK3t7d;Q0)*W<YJ`?s)WS@-<xj*36H%>Dn>Cehi8PWYxg zm=>K^`KVJ}>GzaBOgAT0uKiN*_2sk0Pd>XG6+7l|=8h1L%scz!V?En)Z@2v~IVu|7 zqQCQsYpD2*`nkIQ8k1i4o||iZyk<((|9^j#*VpL%v<dtou6({+Cw5mzbJ!DuU9sHy zn@>;Ey?pZG3YkCKr}&!eI<WtAO``s`w*Pl0&zoQK>7?cJIl}+)pM02@9ti3@edye8 z{eDkyvQGuS$tRsX&*nUks`z>T>ict9uQs2zyKKAcgPY>6K--`7PbOEt+qv9~C-!`L zN(zhks@9`1PP<EAo0Y%2^FnK$X?ED-W4+C$HD6y{EnT~{=;^5w`flrmy-u3tgeZAl zxg)gfq*=sj|Ji11BR8iVEz@giTT&T)yZ(uoZc*>|U$56^FSxouT1NL`tnS;DFaMq~ zKF?#Gxpa5+LDty&_5b&7JMf{N-}RYT?2%b!xl(I1{{6bX|JAu!BKO`eK5Jd{c42ky z!K2~P+j1`2zhpE2vpnf|^pb+?rPVA4=ZfsAmWa{)cE<R8Ou<3cpc&^)U0$9`E{M(B zsNC{!7x#MI`<2gS?`mp1w$YnpF;#Bulk3GU=RJMPAFfs{P1h}YaDuCMkCNUE1Kawq zSAw_SEt~BUV=5Rs`&Mwa`W|`lj(>~HPV2?)YSCZD%jfI<f6+Sr=GVVKjr3-Iy9nzN zQ&AK9*sX2xrBWuPbNP2o<Iaob4*%uMZz~dG83QWwg;qHy>Gm|9SQ=se;$Z7^tMJm( z>t26bus`hk+wJ$|{&nf~IEGyj-F?j|tUfI445-nVd~Z+XE>{lyAG^2(WNu!Ty58$o z&|)mG^I^xlEid%7d`}<b@0Bw3QV-+OSL8dkz?Ey>opo1Nov!%75x2m^cZ*JFpvpzD zZ*!kcTd-_f?rpIc8HwT_o|DyH#x2*&u+rZ0O}_R^;M<>XHlNQj;JD?J04kE^imVP> zTYt&da|fI9^^=C#S--x#luA=N|MX~1NaKkPp}j3xilwGXt>61(ORoeTj9<LkLg&t< zq;<llPJv_p$DKvdyt$KiRarjjP(E}#`7k@r@2{_~@0;-MHd}28zqjyvz1?pvEpTN1 zyGUf6o5_(^*Bse@@BjbXUNeUM6-(Cq6VmObzv|^GpG@3!?}FV!?cG~$URfU>pFXkA zct@^FxYVzspuwdrm;Jb}`R%g3y4Br4>+apjhm1MW=htrgx9i^`wa+I`cE-4wd@g@; zBT)Kh10!=&a)YqC-<8r$@3ww@d)vI`Xw$Zow=22N-7UW#oAa#Y^}A=Y^RLaneCYd| zo5A7xpU%G8Ss(oJV$!~OkDpBT=PSFm==l=8>!2pmIg_{XZ`Qb^<XyCXxxK{Tt?(Ky z6ZuyjTb8@^CD=;F&c4N08ppc*x%<6`5pTMKDsn7$*c$H%mjByrW!9@5RUW&$jQ3o* z&9@uLj=5PZyzX1y-QAtdxF!9^zv-XP+uQF@-CzFxp7riaU(4%{F29r<=DtDXc#Op2 z=}EEYUr%}U<n{iE;gXrF`g1<~a^BVRy62KS*EP<I-TRM3<$F9_W>BNN?bO+`yloew zIP%s_KV-fm^I(a7M0sx0WDaoiV3)JtoxiK9A01qI?De|cdJ&sn8cDzDzf*cW*6QTL z*}I#4%b>m2b<rvHbC>RZzpwi4uF|c_7PZ20TiSUf7nLqwedI&st{I23%dXn2|Lh{( z^&q70+Qf5PPDr<xwj7tQui3DOW4`yLqpJcJyKT+7dMU71(%3EO>J+yrw%=|jON15} zX{0UYa(OoGg=)zERhJjVUny+MU)i_r(T0M&&YgZ5+J~0}?(~{*;M3W9Nfmv>py0N| z#X?gJ8b8jN@4*sMCAH|%W#O;$+HwxNEq(CUMWfBjA39PPF!f1&T;A7LSJ4M=uD{(^ zs;RXk?d&WoPQ%OLTjP)J582?fbh)CIt!?1@Opn#k+kfo3yIqfi0Sfq`bi<`z_3o2S zR8LRrGZg0spSc1)q`}b4)Yx!(U4{|-^cXc}V+(`ni4XL3r+-s05@0l*4m!@G{_WlR zj5}XtkAE!B@SQt%>-1|vz0)KjZ--u+HbaTmI3n><*MdGS?X9b&IFGkYF8#UKvDHg6 z==b@SOOZQTcdc{`-}w2sLh$y+39~+3y{9UEdzN?c=I~3Y&C@PfI!W!m6T45m>SX9= zTgChDzkjXyQ~3Sl*ZDOMPqzENuim*`l7WGt9_kMUj-96);%j}M3w(&TYG<%&XTpWH zfByC`<z1z>fByBX&8_WzGV$)uIk>lfUiPczd9UE@8@b<3O%B^R;hdmYYq59krC8T< zH+Y*xjeF*tdzh}=_jpUp&C2XE*JNxfbj;?T6RZ~t{{H#vaq-B*OLxCn8e7u0VaBDO zs~S_&u4ZoDeSdjzi)-O?@8I5>%loI_KDW1|Z$p9gdkLwtChm*Hti}7S)3WExJ1l7B z9#Jr#gX@J1VPsPh_to(~`_J=6eMcX^zhGI<binz!{<{sb)kUkj-#q7F<DWZ!&&fP1 z&*vOM{B!4<ueO*U9b05q*>O&g!T9B$!ztIAZyr1UG;YPlU0>e*tj{i-b90}_f+d^I z=|1MmOR{hOU-_cu{g407@n`guKIatv_p$;DU3C8|9~S9+MygtP@7c-g&wpFWpjrrW zay=1l#_F#-=We%uE<V5g%a^jXa`p3y-`HBYXY813e)YL^e$S0#?>;_%yZ*A}p~VGx zD}8sZJ|Vd|+HTkMbAoc0OYTV-TbDeyE$RCpQ7BWt{At&@>+<m_{BO*y+&g@3o)72M zF|JmeZ1?->>XN<<8t-Z{R~h~{{%z@W<n5m143o<;y-{ysY~Ee4bZYzU65#M0iXJTd z?EY(C-ih^Qb9~+|C}wGBKUcrwkNnSb&v~wds?E6F#PFdcZ{~}d*yWMY(sK|0KlQRE z_)O00dOJ`6&5*aseSU_&b$(%9V^fjU{OVWRP92dg;rsvj!q3AqC)StVI$LkJ`+s+1 zx?24Fx896ikL(0RE?80l)uWlRWA1kT=g;TmzkK;NDtG(8zn}Lle<`!@VcETq`S14_ zCQ0vpyR2&WzwW6^Cod~z@qTzGXm&~XMB|;y?f<u&6BGjl?&-gOo;C^D`k&+X{eDc= z%AKLdqVIB%>+{$B`cn0O{w=rH-I_1{tUapA@V6yXV*RPQeOU=Ne>^swdwYG6)52mF zA8>+y+%H=H<87#seu>?Wo6B`e`WTQCzPx?${~tyEHg)xd_l|ycUVChs%B)Y`&)N^2 zKQ(jpjIEoe{+0O`?)Uuj`t3hsrC-SW3qSYg!Y-FZ{XZ9SFxlN_VlCl=p?WxrA_gbI zL_SvI_m%HE=WQ2%7AEbttn7kiQ^K>k_sy?=dvj9n87MKREnj^8+f;_7XZL(Atmof9 ztv2R*=Cx~X&p+7bzn{PVcgD9uP|5%$jI&EVANq44{oXo_cXNI&{9vsA`)9KIy3@AB zd5!@UFKP}yH-9Ex?0+|G=8oob59{-uzdd~N&gW_K?yb9e^u0u!W~r52y`{DNm3RM> z8h$S1XxiB6G5gi$x#n&;$>krd+wPysiLd7hm=&D~E~Z50?|CWXXukFHwTO?_Z6$pR zie;dg!{s^0>_>lVt{&K=`Cj6ZCDXfl*SY$>rnjb)^SqQ{e7<k}4MUSznSE}$WqNYu zUH1)_6tl?G%X7iP7+=WN6Qc;EM$T&foXNA_ovm}1oqPDZO-bC0$=NTDzIo2UlK*_# zpE)sB?g3Mb)vvSJ|K5`NNEDJ3CTE*&Q@MDgj_<#Ax?kS4b75BP|EC(Om;d`}wm+MB z?&1G7CG~MLCPz>A_+qFo?s%Y9Nn=4VIx4Wvmp^yjHoh=LrMms|_1cqt*)L@hAvvPv z<gL4p=U(TjJAbdH2U_A6B~AQ$#Ov(KRXg9`b$`y${nC2-a{Yh5w@Rk@J^!#?@OWX= zvJ$zUw|lS4)J*}E|CirC@Bee}&GX+cWfBc*pO=4)4gYv57`dbmo4d2XZu5b8_7nd+ zwjrUcM=m$_l<Zrr{_pzi;?=o-|K5Hf^Y8i6&#Y<ttLiOxudoUgwG>@g{A1qnV(;7U zH}%ivpCNn0=lKU)|GDq&=AP+&lvR7}&CWjuEJ2}~cBL}0VZ~P4_$!vbE&rT(yfZcP z-R(Gw?FtHeO8zl#Ue1>)9@;$dM1ttt!{7Im{0rOk{H|1X$4uLaUbb-+mD}`LH9C=t z&3bqNil6bI?4I46-`)Pvg()h(+s|_I&$ZascTP|&@44^SpXa8pxjXmmpQ-9=ixlT7 z>u^1vcI(NJq~{gS&3VGk7!+Bx&-cCmbJk+^{-e(>TOLX}QaERt=3MibU8m!2)w_bC z==<kaTW;Qc50d<K?(O5J+luw)D(l=iXWiyzeD>ms&~&{y=XExi`kjAxB6Rh#Viu0? zoeLVyEkr{HoS#pA?0o#u$MP34j1LxmKJ+7C_ldf`gb!tTC;R!A7PGWYKX>=z!m^V; zpDgUWK0}_%ezs@*^P`WQ*B*OyY5V5+hyU-H8$E58eBPGk*`OE#nQ-BRP4u1plg>S? zm$TCE;m>{J`^C(EpWW^0OjC|vO|F;;7_Ue@BDsSTdcEn3E@kDLJD;09zfoP%ccH*K zf7SW&eJO9>#XP?qzr47`{o$RU*L7DvpUZi^y{1HeuCk3+N!^Qc)h}co8a}e{J3Zx` z{EhsQK7pBa_VtKbv@mbu>i5t0@7!bYeb3tc^`Ht661w&9;Qi5dF8}SH^mU(C1&2-y z7PM-AU%AV_B%{>o`p;*~Y3yc~Eo;tuKj+_<^7CBueADW6Q_nrDHhxu;)R6I=H`qGe zPw&r}!*%}_KP>rmY5LV;J6Rhaek_jp`FBs2fso{yMa4hneLp9il;*!As9!v8Hn<Kg z-WlLf539c&o=?C`fgfa9_B~9=VxN2Xdd@xRmG5p98O=8i2%j0@`TT?N@1v)`Z8ksk z5>}<3UsF8y>|cLZ$+`JmGjs2{KmTCteJ{yu!;Eu+S*hi9W!u&>{BTQ7ogba{o2w!J zV4dZ^{};^b_on+j=V03X&41<M(vrRc?ZpLF?g?m>GK4$j?#~-J@r)mOkKH(rp7hXC z;(|BlxbNQ=n!vy7Lw4PArcc%Lbaxj+TDoVh{AWB@{ctw;7|P<3=^1^70#e{JVZrTo zBTGXwuoQ%6I(_1FOFht8Y6qt&h;2WnWh80kt6HO@)g!+ud{Wv|dn1!y{O=@E-$;D4 zF8<ocwSUc$y6sYjc||-zlGf`VUSgK`X3NoUQ-4MrO8z*lh$rJ>*^;`?_J<$m|1<ae zCqLr?$BgNXZ;T{l5C@Z*SehCkJHW&c`96?HQ$w_4^-K*x#|I*v8fj_>IvEfqU<^70 z&=P!PwwjTt5y&2>6zEtzQzN9q^W2OSj7*Io$LcYg8iTKfk!3bD2Hy=MJpDwzk>GTJ ztNM!5cjSRiiwiOjXEHUJzENFU7II6`%0eTd=?X1+>eGL&H{zar>zcxJfea%N=!HP0 zkPCr?Hy8;`clfHn1wK>{WWd86ie}&wuNh6JfB2yx0Y31W(G+rms;TMrk2m!L7^h3V zGXfuX%{Sfqoskgacs<kU6T8&xL6I|Yiki~&P4A3kK&O+=25F9#GoOC8MoD_Q)h8pN z<^B&08K+0QHxhsxV0du4rPy}<0;48IDN|4YfaBWO4CRza)9D}X>&FNhn;Y{You_CD zzAeUxA9Rc<r@l{WUV2G}f{`is0-#jT*>|B=cYY|Gtnp0BekD_&fawAu!>k_9H)_*d zdOMd*IC5pRc~(!S`K%U~;==~c@AsOoWKxn{!tJ4dDe=W#Ugz2O&i#ISRFW|<;o6xw z#rO7p|Mh>~=QGCVc#5x`vD@(P-KKA;)29dKFbYo>*r{t=zwyh?^R@4~wAbzUbV_?Y z69dD+@RdQT`DxeRackeR*vohEUn?U+!;Fi4+|d_n6_^+p4mnxt<+x7v{Jou(fg#Dw zS}#XXk%6J5r!3}%k`n_1hveHG8(do$7!GOK+t(lOla)Sv?ziOL`CsnH$3WCJZ1|M+ ze9M+C9x97$C)8Vfs<V2Z{-y3xvHc2J@ogOf3=R>wcXk-wVHJA%x96UJ)jRhsj}M6n zGBI$h{=Dp&fU*+<!-uIyTu$sLe7xsp$>n9f;&ocq*1sRN%j@ar*t~!I{cidFqx+)w zR(-v6>C(BsC+_Sl7T1fBsNEmEJ&&1<XU7MBkb8f0rMBFeY_zyOZt}@{w?El>KR(tg zU-RK0Xns<>ZdLX7ccA5C-<4TeS*QQY6L<5tyv+CZ)@<=wdu{F4>vq4}g)pXqRj78# zV@)F?Barx&D_5fPc0N6H{$Bb0TI=$6Q!ZB<?+K{<b~9btB;&!~=hOFnQGK5q7<f_s z|BvI*`Sp9hempJ@S~+p7M^bsY@{!jwcfa4aJ8-evY_r@?|0>o-ZQZkc$LDj_&(F_) zUwg3lyzTaqmzTW%FS%8i__|Aboq`hs!@`oZEWcSh_7%Q&6}Nl!KfCL?ocTPx2`{4G zD~s37{C-^jo5<ld-s+D>#h;esuZh_B=#Kx>r%x;Y3e?{3t{2GPW?RhbZQ``&)rVV$ zy(c!a^M|brdg{|s^7hu%>gDeJa{7C}OsXmK?^s^>`Ptjs+xOq_ms%<-o*J++XlYSS zBm+aux+@%(oB5yIai6L5WM=xjnTCgDj=#LL^mKIo-qLr=zrDX-|9b6qxBK6fo?LX7 zxBa{_qh-&>W75p*d_8qf>VH0;Z!fI)``g>k_aZl?oJ{VwRTFpdxWBLVe$D5z-G7$^ z-bzh;{b{vU_^R0dXY%(w?zyrlCyt@v|Cvlp-}RagAJ*P6Tq@VsIgj_!gSjiy?@fDo zX2O>*U;h7E|9{uRHt9V@D}tB%-Q87sey`Gx8yl1F9bf#uTJX`+Q#1Wzt(+D;Z>iUb z-}h&tyWB)>r6t+d*S+8K`P|a_ptn0Vguc906@G0+_J3}629{$7mY+SG_|Z;%iT`{% z{r!JF&HP{U<6-;rv$M<JiC3gfnmk!qymP|E#qQPeI$By*B`*T5t_sx`Q+#`SyZ!ey z*Fn>XPfkpH-m9`e@R2BoAQQtwmzE<xU(Ilrudgk+wIwtC-)8UWdh7T7dbKnD!=rBf zb8{?%^@J4T>h^p(rF~I2Sibtr#utfmxs_E+O~3Y8zq2S#dUdz_e(jeR7a>WZn}f08 zf|An~aqZ}xMNik)|9$OU<LKtr_WfFS*X;a#KOY=yURrlJbamL&AH1Cc3=R7Q6mJPW zk~B!DKhWAeb?(O#%KdjLpU>r$Hj^>Qm~ggywqdf{ms$5e3n(%$)GIpG2q<<swlFaK zY2{FK`qK-stV5t)*@;16ONW5ck^3D23>>;jEgT=sl~@>@x;Z-QTWbD&p1=Qduxi}) zNfIs`3<u&n1Wt2gM&H-Te!o|D_lr%*uQ~)6>Kpc(td4uP(^Mu$`N^5LrKkEhR&s!h zSj|+NZ82x=tmS5!_w-BdDc{QU)t+Dby7tK-{m=h?xX!VZ`FyANyy}bPTAYGR3?I5* zd~AK8yt8fdZ)dOm2}1eiG1E8_{XJX-6d44ZRL`w_r}?+QXUnxo>urB;>)Gno62c<L z#E>Z5S?}@r*7GOFUoPf3o9*d1@7oEX-eRYkJ`To)fR9`$zxJQ4vHIA%x%l;z{WG`k zm7liw_Lk$*17c(!7rSsUw6upS$nVR2cG<Ij>Y_#GV`MiMPTI1|F)Bts`*=pbQDMZI zGtWWc!nxjInVIIj_Ye2#i?0zbs_Fkyf2ro+kLxP>!P)gQI$c_R$bcO4AoTc@{j(2z zuu_Rq2)dM%+RAFAeRGcLrMGdGTkJj__AyX80yb{XBBhysmT6Alzi$_<Q1nqWc>DRO zWxOg&m+8FzKXX05EL54<dWS{N7x?}E{?oOvGxfGH-{}d@&(4?nDt*#!UPI!l56hl; ztkBl3KlNL(Q-Hx?Q6;O<!_vz_#<Qnw@PB;id*8=@Z;sDh8fp6ShQ~LZ?$-ue-`v=! ztgEYgNA}U*l6&W0{9W?AE&x)X3xveE_SByhIkD!+r2bVm?i@IGy5FzYr%UHW%D%)M zPo6)o-u(I4hR=0w@6~O;vtRGyj&|W-U<nFbSo2|3z2*c<UA?Nf_NTEWoBL-s8{OM3 z^=Xc!PxFJzP<8#`3d#QyHYMh*_O6|o+H&G$clI=XgXOEXt<}H%>_|#az!F(-wZSpt z5R>HRMVb@(Z%z9&^_!qjX~y22CEGJoXU<e<{kgQ>_Kz3TxhipuJ^%J<PWbuO`+xnT zO>Q0P`oYKkpRD=+&;P{7yHBN+uVfx?)m36)U|MXj|HqSF*139LQ;Vaf)riNwe?0A4 zpCR|2?W?q<)k12nc-TN{I|l=iCnu}-8|iM`kgYUNuXgvB$|E*+pO~xKs|%j*xB;p? zL4IxsS5U6YoRkpwy~Qr`OId~O`}*n1D?6*>LS~eKtIq@Pxr$PMocHC?dAIb#o0XTB zp7p)7XWJSnv3I8T4!c0y{~-IPrO})8We(H6g-Rbj`Pb-$q;cEE`U!V}vko_yLfq3( zU&(6p<#^h+_-pZ%Dz2@c0;N4yDaF2<^mo1nKig8Mdwzt})o+VDbVYl@Q|7JhpH|M5 z_x^obWoMhE!I6cM^3VwQ5g0dZ&u{0=c{fg#Z*Bh+8Ts<4`ihGDz26^t-zrS(=3r#F zfAaK{gZ2ijo3dtn3-A)^Jn?AWr8T=sGBkFJW%aYEUVud8kM3}VXF3;7eLBhUc45q= zf1%I*Ojx2-|14(WBB!?(9~eVxdAmuo6`A+tr+qVByrn%!@%xlL|Lvb$=n3~#=g;V8 zONYkHpF^`R|F+NMN_i{sc40)f%NfJP&$gb8Qi@K?=w~|$HEQ34;-Fu)dY+-FcO%{| zoN{+!$mUg9m$T1st!AyfwU|+miDARE`eLVFwrXcro%~gJ%UN^%pPb_9lIxv+*=W7A z-s1k)3L2W5-aNka-FlgWnco#Tuh!fd3Gepa-qg3II=))N4;oAvr|i=5!fvnGl{0IN z?Gy>iZKq|zv#NT1er%3>%OVAJQP!qQOTRm(F<v?wytQ2@xb>$|z46JI)H{D?7iBbm z%ZPy{<qHo*J=U}PG%oSGF6UK~Gg~)zzmleD>QRMj75)ZLCpDchDYo?dv~^SJvTp&8 zUS3hG{O<nj!kHKMXHL$ar~!$Y2A9(oO1ArQ%LH@gF14NVLtAUoPuVj|kI#KKVXyWU z_s3jschrO0Y7S1RGG^&sORh}HE#A^T$)S3h*KxOJTnqYl&(Lw40}XPa=T{V8maW&E z@K!#PU-jXpeo%UEPiy;k;|;fy4NTFKCyXzv`Xe9KJZE~lP@~f&CDOiF&1ZLX%$W@= zmmmp2<<QB$m!9Tj{!6{NHK4v);}+k#$$9q;#6O(#n|O%n?ZuYKki4Mq&hL$J`QH4( zxo_gu*oxGjI6b9s{Y+<L=6&kNzi0HTwLk;)<5S;FbN8$1t}|Cpe-xALHq#)xv^i(a z65A;opy~X`#gBKNUAi)@H06EK+l4<aUCd28dt=%46I1qk*VpxZ%Q)l=$yoyW$IE8D z4vM}ywRTN^VIk{Iqqp;yIak>#WJYgw7Z!pB>JE?lin96U$ECilza-}+kTXwhZN7>6 zyLECaZKoJO6Z?^S7jrKyT)1VOI(t|)zp91bo5_v-Gh>zH_bBa@ytSCq3=)eDJ@u8W zm;RZ3{{NNzdKSNGMi*DApEoF{?$=|#meH?v0P4q$Q??ylbL8qXwarp&r_zttWY(|V zx&Ol?yE}E;YoJODi&Hjl$yUhCo8~ONrCq3CrhDp*^Jf;$oT%>+w(DC)lRMOp((UG+ zw|_l*xVO2h+a;wwusky?)~aTz>%CL3@{zgSY=*4DTd5NhL*6cIIlXV{rJsJDtF%7f znq};k05v8ckp241$qu*fCi!tVo_RWFisAoUzOy`aVSch#<a`Y>AO)z_lLJ!4iax(@ zpK&$pnC#&a#y4?FR9gAvX)|vv=41ecL46B@!_T+>kLa*nTByi6iKE@zvp;`!tdj9R zf3DA4-5+N|1HI_h{!=<9?|m%WY@sEjY#*)mcm2x=`|g{re)L!g8URl>=C^KHlby#~ zoHPAfz@5$im_MJ+k37Doc@oq$r*hsG88esdI($b(T&wS`iM8{rxO!#b`v$w+KSV<9 z*>rPrNK}me-2H0Dzi03t&29Z@^w@rxb5+gkt&!&z%ZhK)+rLXnkcnYinf^4f>z>nh zpSgSO0ef`%Ebp|Stdpn8BOm|edAmcS+3V`-jQ`sh6gbLsO}@{1|Ett;XMDAW#qpKR zX`B<6U7zvPrN}R<|Co6FmeYsCs+|}PoI1z4ocoE~wbP##FLIiB{hZF4TR*eYCWbx- z<*aj@j18CG&QL#_?Y+JF=@rGd3m-fx(>F7pl^GT*RyKK&(%Xv}(A+g8>32-=DaY^m zp2rg3E?i&|`SRJZ-M;H5CfZLuWAgUm3TT#yIdv^^Qc!SJ{T+2l_bu&A))PB)-fEvT zUGjJBrsRF!GD@Ifrk8cv$8%p;)jj>0?pxcNjI1^so8xq6%ce7#imj}-7JHh!1^4zI zUMqCV+N(BMzotU|y4<YyOa09Mo8NuSxVc^4ams8(`8`>DXL)K)ZS`KY72KJ#SXB7l z^`3LJNd3W$m9sP_+~W^aXxv`4WapZdrM5S1LaQ}8L4n;Na6r(-Lo#Pp&bkdRK6j+Z zUzX!aQp{cbrRu^Pp_#W_xQe#APv(F`os474jawFhvqC5DyFc;G<6F*-Zz|pzewAP5 zTxGA~zCE*F?HwecSTu2L+?2RSb3$Fe=ec^$w+j{c%zO=xr$)u7XS-$ctL}p<)4aQD zW7^5H|NJ+6DW5U-hBouQ^s>&L-;1B5X7#JZA(S1xWw^{?&r8kkQ@#ZVq_?sf?cTYw zYWr*3qJp*GG9H2Y%Yupx${iEDBaOW#t(w7YS!}$ey~*XKq5rM=yGhp?BX614Y`=dM zTs%JDP<pZ`tlxyy=*3Kd_jBA&8ugvHFn@-#@%z78DdA3_)S$#tz#<s5DfIA}yq^c{ zC+yLAyU@WoaH7tetaEPfDt5n#TVy*6++la&c)+2wghji322<ttc9D+P-_}j=E1xmB z>DhMv<8RABQBg0*WYNT7dB4js&Hm4X=PLHm)fyif=Lj49Du1T>(Dmg?=Ua<cYCs~n zPr=D9IkMjPF3;c2C(kqZS@#Kcp6EI_DaiX)-O)R?mM7pLVws&8AFOb=?%4^hdm6J3 zOE3Ms{fu@>TCnDs>vF!92tVX_*5@1V=lO5R+SGmO^rX&u!}XKv`cH0*y|q}AA8u)n ztL>RHMxR(UPh6Jcs>#3m`_iVqEvvG{KJ!b#)ts3+<D#e{)9!xR&T0Fcf7xWknN9vD zwMKXb$diIh7KgraL|!=Qqq?~6wNqosoQYBEPd?$6zjwTTYrB{OYo*a&+0Tz&R_>R% zxyDv18k(RUmb9G7&sUpxalg4aZ(-+UY1?hv&P*^f_xyZoQ&xt;wF*d6_5nxv^TqwQ zW-(R%SG~^V5_9jx$AV7{k+<!CMSc1k%LjA7#h)2@+Q!*Ef15=_v-n*b7fajL?Fp}+ zczug!=#ta1o9d^2%g}QL7t#&Nb7uD|3C_HHNaO_j`dyI<j~=-B_r!89b#~4SyBm}9 z^t!V#%#GJ-p7`=^p5)uuQ+@U(li+o;Dy7t=r#s^3#1$;tm?C#o&X*G!Er%BVJfS^d zrteu6!-roB?)0p=BXjFTedqJNXQq9b_C)H^KeL-ZH-5`Fw;bG_J|MX6jQhPS27m7_ zb5Ps&u%fZUS~~XPKmR4C?>^I+xN~jo*7LqF$Ij^A!}RmR+eb^6&e0brOj*48v~B9S zns0HX%=4#B{=L;b*axcekiC2*tI^iZncU0%oZY^hTP>pghxxAh8lyXFlrB9}^ZXl7 zt<eUl{oPw?>^`kZK6T%>u|n3Vu}15O^xgbR+dR&*pXvT^c>C3SKS*QgfMDXh{;sYw zAE&>t|0i<7^3a}(e>Lrozv=iK*HtSw@ypvTW=N6upyR?h_qaxv_q*)=-WNGh>9qS| zZQkR0mCVxSEj!|_^<9)|g4tYb_lYaz(CcLmX=Y0u^hD0}%5fb3?(tv!takCA`6~Lx zAJ4CchLPf&{w}VwQ7QNKf8IPvbAnK7!D4og#DgzIKWl+X>I=VE?01^)um9H_o~`co z5>%We&ISe61JPiG;;0}6@p|EHy>c$MpL^|Qn-mm0?Q8#c?yZk|u2lJ|xyw(@x~}fT z@WXw@Gv)OTi?of;<gT?9iRZrR#=oxTu+fvs&qcD3-kkauvtOxiI2j+PKb+am#hr4d z``P?2mAPBnAC*76`NA<gL`A-QTH4hm$;vl3>)bmp);qyL!HL1WCB^PjJy*(?_r8s1 z-Y>A7!oYFTjh|QF-pbTSbJK$0nD8&EP7FVMC7vxlRI}Onwzk0gdaXo79%<W@P5t8g z+uCi?`7R$}7i2n+&txwz3hw{>uhM_B%y!BFjz4bvOFdj59kpzQ+s}?Xmh2E<s1tqz zN`r#?O;|UrX#W<_q*8xF+V&3LTJ!1e%+~5`o;9<%$I!Kf;lpf(^X{xWjs84e<}mHc zH94;XEES7)E9hU=Nqx3=!*BaUG4pO&C6<Q!ETwj*&QDCVH~t@>|8}+Qln0!z+{#bg zGE8gy9#)$A_((*pH&|H_C`MoO`!?#xFR-2B!1ctfJm6PZ@nP%w_oa3}bwAHqZva-8 zZ+GgvS-3#Of1~vhOKhhs;JW8l9_Bc2C;OJ~S?_-~EXiH@z+4#=C<mS`-lJ3bz5Usi zy;GgHv<oFL-hScnHz4Z1#@YQk^Lf^v*scgtHsRUgJwB3un1dBWe=nDCy!E2PYG*u~ zU2a)tPi<t8|J3*O)dGqPf7A><PYhRRo;Puc)~2c@-vXHQ4WwnCYiXI7yMFq|RkAah zZ;jq@^A5KY;&#hpCB#7K=-`b0BIA?;-_P3b&vwh^SLJEicrkF%T<#@*b0@_(i+$g; z_wTzo)6&GfE@w;q-~2W-TtJbbMup*X;5*Hi|CgwQnu_Zxi7{=czgWmQ(>=8!`Ld{T zonqw6Z}sa6gXW*UA<T5Z|Bs#g(>YV>`e!pm{%`yiaOm)RY1yS+E-8inpeCcqlvr-v z{{bdWOpP3jG7n$>)Og<VrTWaB*pkB)Zx^<7tv9!N^EO^}?t7DVP5Z3ua}t`oprrE0 zT0T{N`o8;ytU|j*l?Cgc-tX<(bjnim{r(ibvpiL9esVj$To+Pg_;YOe=fH1<o5NBz zzuJ`9^)0~Z#Byobr^1~lRwZ8Avu(@H$ZcnK91#br?Ef4Xw(CpXi8=rGSI+ttaOh;e zw5(`}N@&%+{IX7;`r~UhM+t$V_eY-HC$1&enJ3k(1$V77e&*FLR#yA8IrY=*WzN6q z+%J{K{HO%0%(gq_WBlLzx#)>&GjBO_8rSER9J$uU`Rv|q-Pb2}ZG2wa#=-c&+-_FC zQJ+VDzPFd}O|$4~4aMh+d;2OZww;c-aqo-N%n#|syO;V4f;^-DIq+EG%YVL}D^+hl z&*E48^JmjVLHpL9^+v`g?_{j}z5U6DV=s<Jtl??6|0BuHs?=lG-E6=2_YM6kRq{R@ zb#rF|_X3k{)g4vnbdmbM`fg}=OxR2ATdj$p&|hdTKi5Vf_PybD&HFnYiY4?e-hbgC zvHrvTzY{G@jDMA1tUg}B|6kdO!Cm9LyZZOp(M{WSoU41886s0J_-NW9rOb~{jm<ZJ z5_bEunv$gXB|E*NV)S>5zvej*>e5ksZfCciAkzW+E6)}`u3qx_x=-Vq$W<TS<S9GN zxxCFzkm*2s$+N|ecQ3sxo2J>k_q6ceD+*3AplmGN`t!vNzn3>otXaM#-_>cp_<SX& zJ4db>GW=1y_&M+w-^+^n-CK4YywfV<)gfTcnlX36>GkW}S{U>^UeuJ7%r42$So`{9 z<5kWow<#?gg~1JBK3_vt#kv0$XH$45WG)ZxJ7v}`mWi3&vHb8+LB%|-fR>nl|Fbrz zvlKWsJzKm*_tHDD%;L#1G2-8!J7snVn7b-J`5eC|%G%H?eC0FWsaf^c_p7J2eS6R2 zP;>SF^(j@pYRA9p|DJgE(z?biJ0tmWJ05R75T#^h^=EnAWX^kM>MEz+y44wIl|Sd+ z;p(Yb|IaZTng0E{&99E@!ZP<#u4#ObyJ!8OeMf%Dk4f8)E}p!*ENP0K)j4VZ{a$<1 z`rhq+e6ZPlhTO&fvVC@szE0nJd(E->_a#|>{GK1Xo3{G@9vdn3w8fu4+<$!et(|6s zV9~R!tNw96IoRxeMn3&t)BN8ZPlHS5dN%%eEBL+l+~Mi{#<#5^1VQ88GUhCYPW@h8 z`>eh_`Tz94h)&ms-XD1-KdvsnZCg?8w57h7;gPo9a`rc{{?;S^`Z>anmMOgDeE3S@ z0Pn{A0ZIS0Hmg)0zkT-6iVv#m`U+3anRapai);Btb_U_cW1{;@ofyPj_$80Ox&1a; zQTO$%=)*F%MK{0ijOhO8=I&4-{dZHt8sS5GlNsEP6xrR{edmtE_RF%*)OLO_R662& zk%N;(iKW2h%(KO|-b;^uz4SA?zNp5ZXP@+=PL4uhQ1OstEdMr6M|a(1z4DWtwHqZw z9(BWH4CLQNflAld{d(%(k7opQ=qnxZb>U#xzw$-Rmg0jinRdGS$@bh`AQ11;F&k9b z1TXxVaoi>|E_&Bp?d5z&OAtCV|JQ7(UAN@Qq<8iAC-ofOD2K4-l%;&`TvbierN?V0 z6{_$xJJkp(<|%>7^2%q6b&XYjM!l@upCZ?L9?70(KQ&5ssa&5B$L|qVb%(9>hmzAB z7f>y>>8$(g<ujRH{uN*q%7D45?Ptd2l+3W$Up87dkJmr4(KsS5_()BOr6IniD*5cO z|2eO17rmd|{{5p+?i`J?t32<&_xkqn2%pGC_m&-<pi-xI@~?{ipnVyKD}ojN%1xdl z%qfX*zgPc+(qz?@tG?7b75S-UA^BO==~|y5tI>n%N!417Fn`rE{5ZQ*Ddnt&=PD)U z`IGMS9O2{o=nAz+ym!J?W#2}gDz{HY!gg?X-k&0)xVp{r@+qSqkta`ILW(1=jtNtp zeH!=tRz7(?ObX$sbNv%Uo6lq^I?r3~;M4<+P&;A8)4%FxGf936K6yS+7D=_+iA(#I zIkcHiYl?a6sJO2~z#LSDF8jFu*38t~(J|><DM$1*1jGd(5p(ut_3@q>N3Ks>+M8Vz zAR#|-+t>5=4(P4ydMWT;xqtx@zWOq^HM^@p!?+d=U^h7U2G&n}6RWs+($eF#NB2$) z`I^(B5`TK0Ksm%{m8iOHIrG$n|LMGy5@|oaAU!3p+;W%hub-Q%ogVOjQ(ptiNsA;g zJK2xko-0$C79TA&dbNGiFWZw|_V2m7*Y_pLcX&gb|42h<qVnuiNB5WiTO!NvX7}^O zPd%A`vi@4+^c^3*1(jcP^?)R_BXNn1Z(<bW_vyyI)3Up{_`9>w_Ng)vxto@lxO6l_ z3`<h`K4p!(dUE`<YhQgTRIX20Xg@9W?~^0<jB2HojyOV6n&?y0W0&?lV=Im;t$6!T zwBx#>^s(7$n&J=ziv&OY)Q?+RKUZR@vJ-=Rr^}g*Q+KXia=rN|d(5soseSw3{JA01 zy;1_KI@s!*$J*;DMPC9}mene;G)!%ZxoH)wwqH|LYF=LdsZ0MoBQJRNEx9%4O=2fU zp@86{HJ}#6gG-w(rGE90{5t#5>{F)ebKkw%l(k~#D>J?h0d_&fbKn7sdX5Ph?%Piu z$}{@#@`cl~OYg*H{t);4dtr^4m_OLN&=FscmPJlC_qwG0ao=?}x@MF6`QNE!U2mcj z!y^4Tz)su@>E#>=j9Zp7N9A$cWHa;GA2Pyx+3dBut7rZ`r79!%NI~fcbet#Y{T0VZ zLytD|`e{>UEwhcfHq}u7)GfnFwK0VO$kulBdbsedonD!{^nH03|BjL@mEhSYzV$CL zh%Zhkj&eI*{Ee;bV*B^P7FoeZI*`t&=p)v)>5{?!6DKKK?W`7jw6sH9W#jH$W@<C~ zWsbO&PXl){8a|z{%i~+$Q(1peChOxN<)zCke{4#cU@7o8{ERza(qe0GaF5ABQs#E5 zpSJ9uHI_%OWcQny&z|gO?rWyL;FsLziOn}&K*EqCplgv*vEth|A}<T$KQd0w`#!5X zw_M*){2m)Sin2|AayB>III@4n(Ib04cz`mzQGIuh?A>Lyn~IX`iUg$ZLW9Rn`Ef_2 zMeP&rG{MsKwox(Z(?a8IFX?QQD?oN#!_J<k9;<dH#{5@5d-n03Z!a!fxZ{`i+NU^s z=Y|9%;~IB!ai=^#{^{ZEOHbcDnrvHTn-O;Y#{bUy>(=$wb3RippHuDqy;%O<@vZG` zERfFHoXOQ*W<AsS<0f7+pBLw~cNb4(+_Y~~g{!x^i^aQeJm3R|^#M`!Zzng^8GSiE zDdzAN_t#ZM-%=y({XipYI*uIz2V}vWWXBn<N<|61XL42d%4^v@xb)Mn_)qF{red9A zhAtfSP@@!DxQbF=>&*N!t>nk6m)}<C{GC66RrcwLX94p-X`1oQLRru(Q;U1pt~GW3 zZhym~V(P0jzeX87n!c&1W9KU|7mf!)U`Hu@xU~KBqIX6gGCfyi-C7*WJo7{PO`Ef8 z%-V_t6dSC;$+XEqOKXa)cWPR2{mXx6K|yjyee<N$_gtG#S$R3NFua2dBR8q&pT47; z_b2<(H|^!qgVt*`*DG{ad;Q{jJCT(^kZA{G*qWmuxIN`)g5<wq&y|_C7N^Qee!jn{ ztOqn$7C8ZKCDZ&amnRq4W?uLERk!^|gZFVaqp$LtYU|gDJjvwOn*a~3#{DACPJio9 z$r659;$B$&r82}WOPl@r&YIF(AE;s1o`#1jJ1x+E-m<1T{$9Oj)K$}m6KmG;{GO>J zuK}8-(XoLT7sxhs)%A=2au0?cFFQHu-luo`OCwD$%jM=xDy*N<E3B#?TwR}{=mPSu z9(VK`PRB)}q9^xFHL`ZCx))z_VCil1lw<!-zB~HtQ1lUAsDBInID}N}-Gi2&K4QM) z@7m?-*R54z-ls2LK5@(1Tgt_(P-TLO9qZ4SM4I}z?Nd0rKj+rr>fiU)Kb<T%sWPNG z<(#4uLpfxCv%YZRHdniMI)CSznD>9awfJwY(aZIlQkUJ7Z#weILV0W4<dfodd-}8a zc^&pZbQlJQXzUg{^`(5t>+9YA-(GxeIFqUPJG`(|mqBF`ICBRC?v&h=*i`dj)s}r1 zTiiFlGJ0Yec`Ll{{Y5!R1`Eh2yT<a#zf&XYCF_3)d#+2owfHKp(Kr50|Cmo&uCz5` zD3}W|h;3qrOoVcAwD<e=ZvGu5|7Q98p8jS=ewY<2!;fZ&l3h(UH_f7#{qeQBSGUVn z%X|Ov)H-&{J)M(n84k2V5?l8vuj!_XQ@*@ka`fvm+n}tI9q}hlDNZVks7_(1Z}5iX zxO3C@#fp_qcRcSA6na@M_x0(P>#3hZPM*FbC&_T23v5?{i0H|AsYb@0yXsf}Na>fm zKP~cX%KM_vnhXvLz+rPFvodm1W>?Su$v5vNP77L}Ro0;MN)a@Z#>Svw56&GsG#+nQ zQxo3yKPD(^*0+qvdUv<~ao2jLy-B{M%*=440c=r>VCRX4y+-@@eyLtlq4~9M`{^nB zPj9n)_DGz;p#yA_$`h{7smE<*e)HeF!2L@~zg_<c_uMBBqSmcrZP);=SUfDA&Y4h} z{PgdCL++VXko37yM?PViB`ZS<BzT>k{>ZD3yySlG@5G&r-Ph&T=9_FUxoL3l&OKI! z2RvZsvc#z<{SG_z=GmpsjgOf1V&6}E`F~n$_nF*WMuvCbfb$4=`uxN+Nu!tbOW~<e z9h4e%K_1co&klMVNRgZB-*&os|D<Q}W^W(v{d(`a-K3ezY>gP|8{#1zlDM>O)?OLr zefi%iD&AiF7q*!{<uuP`dlrU<^I-pU)QgJF`fRoA|Lr-C1#NFGe$M>tPXFK4J9ddN z6mWvexsP-2@Z7Yx7<2W~Gc{qkv#VyWj-B?!Fnk{aLxLl?HmNK8)DU?*`G)`5S#ojJ zTUKR<{fwwLzqaNFBZEUE*cC3pDoJ5_e^>NI9yO^t0P4?`UY7lQ#%nnP!<24t)QE^Y znQ6Vv=jZN{oRVF(TC;!eJd>aQ?(LzIatsYz5YIkJkvA@1CHuF!_<GcONOGI8`{q2W zCALNk4lBU+sJy#WeqxcF(F@6Xa3T3NJmt^)l*=NJ<fbqOoNk50U0pYo?>v*GX1g!8 zW|RB({F7%?Zf-tP!^O~00S*%nou{cMpRF`{SehCA|4Y!T(6f9KTy0fqcYiy<z`zHI z9-b5#v*l$yKUyu%9?tF;yMFq`{gbl-Crw>vYsApdy`>&B9TDU=u|wvb%4chj{m0Kf z)s3qz`LW99=j@!>xq5Ys3=aKZpPyQ`!J+KT^vwU0&XtSJe{=D7;>_Dod}|)QiehN+ z2m9)X*E!F~|BXF=o44#b*y3KqEBQ+}@>;y#o6B;N3=Ge~p>txX%zb6=-=`)#Kf@cd z=UYa7?c$mbT{#l^JC|>9XJa_v3LYGPQZun*r|;W2VwYZnlij;%FW;Y7*ZM4ihk;=q zczkw366?-QsmpwRt=_VKZH4An#`}}|t-WuFy`9L&5MXwzF!A(Pj*~W8^Lr+IuhZ3C zXZ-f!o^3rfj$yo$&zOMK_<_`1<fymY<ttV;wb9=*Nc6JY+q{XL`5v!IPM!x9RScp_ zWyQD2bWH#?y&}^7%rE)v_VJ{g?fdCB&!*n@nij;)(9&5JbAzkC<w@$PW1dFu`k_hh z<Zk;Zs(YW_&;wZ|AbzVbQG1JE(WeF-d5yz$YA3JH`j!zIey`s1+TMD7OLdUP9cnU< zx2_Fv^-xh_zkbp^cj@`XN7-Yn?kWb)KG9bhG-JK31p|W+Xaz*8qSKxOH|)Zf{d2Z5 z)ynJNcYkW-+b0*;K+du7u-40AwQ$<hfBKf8(X;(aQ)7kYG)+@~oKHQPU|AYaox;EX zo+vxmJt5gTwa{O({tt6;*UIa1xp~t*u0Of#<fQ3KZH*WhYCt)LRoSVlE9E`c%&9uI z@3ie6T>3lPX!FW9ky(0sSQ!|egX-vgeG~rV+_dpk`xAM~)ZpR75LY%kUGCj8mmXta zIN%CO74~i(#{?rSUEKZz1!c|rmQgsj=hxabb^e<!ZFOg3aHwa<INrKed-e5?t}QM~ zMJbzgUTFNCZvd`~4u_|Hir!Q@ZRb`Q28IpGWW~3wTT{39yN2DxL)B+8XI_X8M(QcZ zIlOOA$<wynFl%)-BZG!KXbGE)BImSfuWS92H`Y%GGoSInW1XUNz0T=hCp-6c%5gF< zEL<#GFTPDkN--{3=dHH$JoBp$w?bM`Hx2HYa56A-2)^C1LG(KZxOZTwyA-W=z{tR` z5#+2#qKd3LH<d2)sSCC;vAHWZb?N`fn-)x#@qC)X&%p2qRO21BaDsLQq>E$MUY9$Y zeforW%GH4S;;Xt03?3XHduDT3?mD|h(G1#hx~psSQGe2}g^{^D3=ArucC%J}i-_o{ zcdAB@?JvE(2WmFm)88DNav#)eVqgeZBrCq{l#F8K%uR)pdaBRfu{_7!pLR9n!{$vp zrte%Y!@%%?@$HTcsnUwe`A&5?8tvJ*<cdlC+l!ml^;8C4>znxI@yGwMObiW1popE` zH33J<-+tqMKL&;bPy>CcfMQ%i#Z1Gm@@kfg-ad5gn64Bzp`cV3nn}Bqm*mzKC#1fW zD4qaKiDwT^7i~V%D8axWAOl*#`KF%t&8$%4{M&bO{H*Sp+?><E#lXM>O2xHOic`Du zp9O`i_&b}Kfk71HxpVJ0JM9=491ei;$|DZXeb+=hZvVQq-;9AFAP{WaJOKs<0WL7} zsv!e|g2<M~hd|A>-lwr8j0_EC;HhaB4h9CrMX_SrZU{5gGdP?8r9h+muHp;~KW2lA zI;2&+0!HAvg^@ua1zadILDYj*M>R|Um9SH@?l`nCFbJrDEIqYqtM=7(@#{}Md9gV8 zKI5(ZmJAF5iXfTp>mj>ety;aMKAM3+Ar0iJ(B+x`w=vW+IGh1x6D1Y~h<RYgLFRrL z7@Tk~FDB?POoKvKg>-T-GAQ_ftQX(+f%UB-!*r&dy51b~KmKQwoOwxLI(P%FDQN9G zcsaMBp_zr*^wXb>WTyYWudgxPAy;3G+1T6|yaQLz9Bl!&>GX}?^u_A$R2EDD?ZtgR zNx;eFC|8)PfJR(HSr_|-pdNLflrDuV>#U_yJNu&ME;639sON#B@z$_t*Evy9f(Mzi zbt9y?mEs!KO<K~)r6S=p#oNHaB1q%*^PAcyrpEqie)IX`-(Si7Z=Rjjw|W1kVw3ej z9>|6ShJ8Cfz1~+={>gTC{r&70^IpxUUjFuDV|LvA=QR%$uH<C@cy;yMS(}yFD%O>^ z1IwyY-*$gd$lei9yz!~u&uC-+qRFM--j(wiy?(Qojj{Ukrfp42)AIX_q<{9^T<UG+ zH_Kk@=ZDINzS(lyZh1H#{waOV#5ynA-F~-leAM@wxf|90Jgs|eu)FT??X`>QzwgoO zpS$&C^Y6Wm6K7AmYA?4btbBch_1BE|(vRD2ZC`W0`fKXXw7bvp|6NbsxaN6$qJ2k9 zn)uXT^*^E~>hgv^zkYXP+12xl_~U*qEI0fmn*BN8?W~izdmp@y`s?%M(T0D#iVb_# ze4aON)|p+0mp#0>{k=qL?5o`_@^J-ox4ss?UB6acboO1l)AxO&Yc2Ga|Ni87QN1G4 zf6kp<U-_LcR>xgCZ#(^Z@zVKU-+YU`#=C8PcxnFk>*;$qgZndXXVyBd_P$oWg_VE1 z<POVeUt8>NtY6igduZ{+_bXrI?JahC-L&@j5B_a83)*fz(tcB3|Nq*=&1zNsBHJ^i z_hxkN*I@DVt#|(0r+>~T?eAsQw1rcBcYlq3Y#s4OWl4VSi9_K(BfqcxY8Uq9`3vDa zYt;8#QvUeGqkoO;@|mvXuNl+ydp7PgpFMY*^6u;-zY{;{)z8-5x$pEj<ul8UZ`!xw z&Oghng=gjOP5El}{(RJJ{a-JH`6Je^ztys>=J=Zb>C^ttkLiwOV6T7n_FCj&bD8-k zs?KoVJ1%CDT6?NT-(Et<e*3>KO_yI6|6Q~GR%Cqq{-5%ofRX=s`|0W9N9M`BEUZyE z|K?c5qI=ErW74Kczr134>DKM{+pFhqPxaYfde2z>*rs#0|Gm9xIluhIwS}6mcimW3 z^Vg31?=Mely+^gTj<KEof9H3=mwG0P4H*uv-EOSDxAW7C@;AS}@7otWd#lvOza5ho zM~eS_*|>bs&9Cv-zHA6zxBUC9?nU4K-2HXsN1p8ITld%ce=X0>ce*IQ*x%~r{k8LZ z|DX8ruDSTlQFiT|`H{CLHEv~IbM>0vMeB?16$@E3KQM9e-o1HRuEKczaijNlsy;ux zx&2*z#;ISo`pQ0j+gADiYt+_r(qTM3WmCUijLqF#HD9{6Dg508xrOIe>vi1wysM_J z>fXz(zLEV=*Vf)WlezKlzR#~5BX|B(zj>&=h%Kip{qKWi)o-Tx_8;FASNl>fvR`-o zH$C~<hZe6*I@V0wG%J^Pw)Q&1*B^d8D}Vp>l+>P*$13mZpC8fV-6$`)d~NQEJ$HVe z%!}PyzRh~Mn#k){M<iG8kCM<nul;?xY4oc{`KKy$%WFz6vmY&<9JyU;d(qu3$&Z#B z);`aV_?{*H`d^vzqp1SYB9`~7+}HJ`)?QxqYxTZqrPE^{?>&8oeR}?{CuW<D{a<`l zT>Q=NM$PZbEf)UBbob7z-~Cg>ee#E1vlX?ocZa|IExKjh*SkRy1-~K}e%`m|&c!UZ z{SPw)_T79JyT3B<eyv?m{NWoRY;&Twe%-ui!tA40*8G?^+mV5R!QzaP!?9bg*Dh>s zU9+%#jbaB9(wJF#?a|E?Ucr-V-2K(FS9qk<Ub@3Q`+U`hNvrA&Q+m%_m*8vX-s_b< zZ|?n^Ymry)7N4q`WNH*wvt7>U<gD|%>N_I?1tXOoAKg4JB7Aez>wW*+*WB%`IQ3@N z@jub64-35YWp3<WCjMjA{k5|<rEPa}^H$IHa}p4Exkq;L-aXNNk@}n5j(NY1J=V1J z>dAPU+?TD)zmLy;F5q%az@`2gm>M8b<b1u=_rIG?eN5pM{J6&X?V7KP>QZ=lebp5! z<-e+CXLzK{4ZRgG$M0%NFV8hlAT6G|ZT|JyYZfMM4|h6t*Yny1f%ChPtFwQ96WG+& zR&gy|S8u(<bg=Scw+#vVY>Hd`weYZaR_$v9Su#^<k7edhGG$U+J6T|po52KAmZg)v z&f&U$;qE3qp7!XfhX?*`jCK}?bPkY;<X@c~6YO-2gW+CZqr#>(@=-m8<^>hk=02~D zskDxCcCmRa{OiU<@9IgWCU44wKAloc;pOdpSg^z3R_66vi%&>NP1;?$o4<W|uxX@n zv+Ab2SR<>ot4>Nu>dY(6c%}R@)c4wngpX_3T~2v>bDxk>x^!pBNh!tyyL%8JQx8f6 z*keDy<=TbAdAyD(IFT!w)XMfhv;9xU=lNgbXu7g_pULg6?vqlC6Yjmfc6gp@Hj6`5 z<oR7@Ww8=`+rJ!Y{Ohgy+ETQB-@>%yc)pF%$_$rou65Ttk-h8kC2n>;g|DmF>+ck9 zuh!k0_kbbj{I0Cj%$F&f+ys`)`+9xrmtBp_3fUY=Q1s&A^nD7D9H%ky>y)jcDZHYc zYuLXjW}onw*HWUIeL^9dBa5f~aBB*$?i;Xgr<|xdwo10tynceI$%ir?mWig6Baw-w zUp9bKh(IJLoe)FTV=4+zdVSD))v*btE=M+>TlH>U@U_ne6z_+}{rc6J(#z11es}+o zH7i~mh?Gw)yPdMhjlrbt@I$A~g8nmOzej9Nmvi->V9KPhFM9cuugu!oR>$&0+YamQ zElBtuWXU-*_@VTx_tzfZTr0@%an0uG<)`a4UtfLW=`o#alN*Cd+ym{1DBEo_m-!q1 zKI*f{jbX{hvNPVIPd8glG-YZimqaPmAmL3ZS&vjs5@}XO|C;q{?v(OHD!=%4;#be* zdn(y1_u|wQQ+gjLL!&uvX|Yy~^GPYL8*4#s&gfs$e${lHreZdWO#X2P<RHfu{!x+l z1z$Q`<7g<^^e$#o(;7jRmnpWNcblg4DtIWrUf3U{^!iZ2j-}#!Z{oEgkJl^aT)cQJ zuh+q&cDr41uJ74%w;rFAnyJ56{Kt*8f*dKlj(cR8ab}`=v@C?iWuN<Xo$fnRwxpDR zG`5tP?J3XJHJ`Pr*)YGNBAqQ|X3a}UBjd$l#S!josc8<=W=0wtXBoDaLKM$5-F)Gx z7T?`74LXzcZ9k_oF&G_qpc<O|=e61SaNSq0%ATAkU0T0%@tvM6n%UZmt}nbFKJ|N{ zwNZU?=1U86<+Y#p^lRsT&)*T9UbN(J>9c+DVV3vyKm4#lJ$;wWo5=3;-{G11#;bQ# z`$hV{KX!KV+vDeVM|veaIdOc>nQo~Y>emtuW-qMkzSDPR{@b*9?_2E3o&^2RF5iCc ziAVcuo~@g&b^n@qdU5?dlgm#N<!x<$xh~&(=AUYstLweqN&lw(O+9fmXp(YlUF|i~ zYY!&d8%7s3U7o17`P<&2&YiL8HA`-nKC8WQJx1>9vYCARzdeifd+IJ`>K7jgPP_i| z^$LrVYj!zrKJTCY<V5IGW9!{BUUZvVR5#qbQ#_~dOnm&eD1CF`#lhMAM)liY_w<+S zJh$djThjkqcLVchz5KA@yp8p@y>q@9@uyxpzHOuQ{Q|>_<u5kbt(q&UQ*3<k^1H(i z|4ltzddz)SZ2IrYy=QZ;b<TXp_j`h8*@Q^>Q<DY!uepf}*S5b?ITHT()rD<(lCpct zcAPunF@JOEtlr(1W9GLUNt?C#u-(RWX<zHFWtIt?J`;COclnwB%ioH<U-O4mz1y?z zOW&&vt$uD%n+~4dBY*T>x%H<X6Xu4$esQ5~nVrz?hk0{PPUO3ObK~BvwbdOvZC?2r z&z1XjBX90MBkpNo{aZQhH{B6meeeCdG|kS5!rG^w&3%`)<ZQ&&#qZi?=WV+1`0D?% zFZtC;Pu5N~P37MIK5Yqa$CT;Q#4KXLQ9W<#jy*|p9xt9Z=jEpjzaw|YszJL=3=Ee( z*++1;egXIVrvLhG#KmH4VqrSn^M{em^obA5#q0ORu1~ejll>L9Kgpi`L|$z@LoY+- z?YGaL$SHi^JEu%w&8gP8|M_G39K9A@ySLhZZt(KAJCe6wjLm*ysoAwiW6~m%`@!@6 z?BA~N|7ZXEcj>wh-@e|i|NjeXy{2Nz_9<Bvzn}mA_jLc?_U->wE9&}Je%kw4zfy7E zL;L?<-{1ct|6le`e|+8d?+@R~|2Kbm#N<%4zsl$3`u|=3efE!U$(Vlcg}Q9LdfJQp zrF)MDZu+Br^v?b2^Q?3Bv>V*JuylL5qK3@f0}tQu+t>cQD}V4#^}I_LC)}_5HTg@k z(#8KjU*4X6pIh$V<=g)MKYR1Mw``4ED*E%Z{hpKYryj)L`YlkGl>M9kYFy`g#|JYX zS1$de|99`UiO){lcl5rm@m{$z<<*UPj+yl*GTtv;;`8zb_sdY>%Ni$loE7_gKKPY> zoJReRrF$!`x&(PWuAO$ztKZ&#<)4qNo7boQ>$-h?Qq|RC+KpHCo8~>%DPH#D^Itvv zU$M8fZ7Y7ZPv2Yd)$Ql(^E0)ch6?M8K4e`w-R9~E`#*R6r$_5rOk%R%xBb1YMG9k@ z@yVt<(U;t34lbN35_Nyd291g@8@8Dj9ay8F$6fVSq(EQ!xRc4W32ug4ZVRl=?YTC! zb-C?cdH)K}3v#j-FE&Zuo3rX~@#b=e33^8Fr+<yx(dnsEbl}MI38zxF-E%n?Hgo$6 zmFI8MCQI3>);n$yo2h<uf82d(w)@+Q798!L6!XHOtYO8BiEN97pUk(^Y`hY6Zi|ai zySIA8@0=|zi#U{)<)oy}eck#fdt(>xlg&%7ODVoGh?3d3*HV{RV^XJ8jHGsFbMBTW zFJ~^)HR=*fQ_+(&krXWYGA~MJZPfH^&s}WkI~)tb!lth@oBFMOP0XSKtICs3A0(<9 zXFqOX+;ZJ$t>a|2EwYo>eT$YkP(7(aqq?%-*cXjuuij41oPMRIWT8gv`jSwi8_RY- zE;#d8?#sk~_mYgiFTT_vX6mgw>6_zKlTQC^lRuXuy!0ZEca*Mqao;s}dMTStSK;;S z>yla-CVDJO14LVcjy(xnYFO`fDa`Djf?f4iHS?(~+gIyP`RnKZVuNOnAj7>Q0)bUB zI}`oc`PvrPzPiO`QXV`(;Cs}*AB#CBUc7GVb3x~FxckN%T>`F^*B7NVi~mwN`E`Pe zTr_w3(JULiFG>F&JhBqlwopQAI)m)i(4@tWI=<{-KfXZW-+?*3F=bb!C7(%Lt>4J- zdgp?<%v!%Aul-n_el)kmsB!t6=_Y0FN6ooZTQ1js;5WYbkbOchqqF&j*|#MGPrE!V zZPa3zY5L&70sg7o6-J>C=P3JhH7qQ4;*xOPm?*}ut*b2mnADf1vQ<f1YN?7LAJ1tx za;~n5a?y?#??2t<l9t}|^37En>w<o_Mc?aN6hk($YTl1CUdG7!P&Q{rx2L>rOyVSV z{p+6&2xeEBEp4z2Fxk@|@I6BJN{@SjdQ-_FZ}qOvTaPSb+2|N*vF@I}u)&j#eFvY+ zEbUu(;z{=sg~?6Ys@2awoSwrZ{*cYIb>p)bwUr&e=T?7q<IfPyJ$-(eLCU$_EAwLn z9tg4O)W@U*wJunYG-1)KS1N~Rx`%}9il55Q*_!HVbZhO@8@r{x8U4DloHgfEr-yKi z<gBAhZ`S%0UJQ`Q&W$?tDskPZgFgh?6+&b8-rrKpIXBoLwUa^PCRcvak))}&>T*xt z7A}8~^h8dY({lE$dB=tIHZFJN5M5|KYtd`H#(O$0?y@2E6Ps7LO||rqKX=(TXO7mC z<!>$?ZNFsjXWIN`e{pNxI<IH}S<g;ooeQr^&IFfydhL|`!sYVy6tOO+3Fj2wIq2`_ z-Ocd3@S)y`iOaZru5;d=pDw$Wahk|1VME29vX?pTU!5mA%e%C4ta;O@{A_oLr<ju9 zNuRU{G7+C6Ps!MX-*b5oAS#%kr2OkPkIb7#-wr&`?w)*hT@}}&Z&s#Z(f$iQ9i8~S z;KAm%zAM=RV)q{X^usakumpE<#*9uM?v@X|2F`O{eq^8i%3aS;#NVKu^K+rO`|{I` z^S1L=i}Qs%pFCaPLobXmZn~YZ(L~0D(=QksNlrgFPk#=h$n<lbde)3K)49C#dKoLG z2bda3PIp|O@60%V`dU*XMX`LB;Im>i>s%F+yK854z3m7Ih+6nZWV(*G-fTwA=@AR{ zi#g+G#(Fs}$hvTN`jv(H3XB5Nzb@3DGJT`Dku;;g^t0whv!-ufW|++B9~X8sEN9l| zlhdXB^wOCs4o&Y_ZYaU+?|*tp+;9K)n~(TUU%%W?UwG2o<Lt{!O2RID43sk3Y2CE{ zo67W$%MAl0@6Y31x+p^Y>Dhhr{O(*_#@O2H*L(XmdwtCGM@#hmgad4j8RjW@1V^2E zyhS}hLSuJr(sbvg`mv1u(-$t)H)A|J{l-##ZEnkTUlz>XFBfO_B5^z4GJQG5=}T4_ z>T%t-aPM8OJC(UEb$ZHj{WL~_>8F?L$1y&iuC+qnnsMdyv=#cT^>0u6Z2MpPv>^S@ zk2fi1x-F&em_zh+)-Qd%z#?~2?}H{Ou3CqxB<?uF*cEQ=>^%-y>(iKxD-KMKKQD6a z$Ag)^ClYVX+p}G9{-=Ebrz`r;OqMyQzL8b?RLA-9{tq8dvR^Pu-acjdk1!)yHmAOx zPrPT#PAjqNoVCc>nqvNHk!NuIjLDp9Bz>~_5*AIWT$59-)izgIf7)BKkbiqw-!Awh z=e|X6(F`#s7jZpD?GK_=7k2TrIc@Gb#?P{`eZt{s3;3U~)-F_g5gB?}Z*G&{t75+k zYZq^eGFCN8==J-%U0=8Rr0gt~8y}cA=wzG3P2IghC~1#rmfbgL79Zs&irpsjc<NtW zKe<Z$y5wQj`^!!*KE2Ci+TA&8cO1TG6yux1D*o|_o7AgGUN<;Je#RzUS2v4omt9;M zAou8OSlIQ1u0vj?vJ$Qju9kff(@9t(<+w0xt<m(#Mo(U$*17=QCVelljb$5^>fTIG z3E;5hwY{kDDb1Gg2iIkrnkjOb&(3{)bbz0~zPlmFYHx(|f0pkCHrFCbS6!1j>FV}d zyrZT&%8q@0p?YB8>vK$^7bhO+W!W+%+OdA2@1~&c)t>7vUE7nlvUOg-rA+p}K`+A$ ziXQ~4TuLo%%zw-;RhGkjW7=EG$u}l8O6+Rhd7*8yU|_OVkc;JoV_{c2zkNMWcldkL z^>sS4Uy0S%uYGdk;j2?i7BcS<dsy|2<3Qlo2RC2+4T-SmeJwRbvt6xZoBy2L%K@o} zd)+g|#A8g`**CgNuXSX9?C@^GmcxyKEsIv}yL>I-OZK6gi#Hp5Q+letB|rRqfXxjn zUK@j@vN>z`Zb-35Z$A=MdRO@J7a3NCS3d(Im>XThx5{t|CDm8;^4IJRjQa5H+R;ac z4t?2bsqN1dmKAloxRN*G&yOd}FWS>tCl}1}KXmK<{$A-z#vzC9>@zaub3JR_{JZV) z@yw$;12-OYJ|p(h%{%<W5gkRt5<CBEN4GDo*l>5-p4tl=@73MW*c@83->8_QN765; z`*Sa+Z>0O?Px~&iUzjm(o{sA+i-1Y%Wc%mF$!#%Sa8a{1AaYuneY2;Zi0kv!lkXh+ z^Fr>+i_?oL5_i8nKi$~L;%fc;FTY<;XW4Cjzvw{4tX&^2SRIjB5o}ZMTYT2a*E&~k z-u_i<K1}+&=?>50lmsiUIa^x~_GoSnY?_w4lX*G!1_#ZDACA<m+nzPqr6y@X=g*Zq zb*nZ8-#1znzHHXtKv8d<z@#_VOBEk1ygHSA#VpfAOaDXi8=0Hk7d^XgccQuROiuFQ zD+&`<cx0MPQ&)1hxx(VBp{{DuskDkUhM(7(@Sl2Et8A&3zLMFCkN5S7JfFC;drmS| zuKAo2q`A!Z9mBq>&2s<vc3$qk{NdQXMaPR}H@hF4s#|zTbpQV49~zigZnJRDo%%C> zyLp735+m;&gSDF5j+F&x*J=GQnVz@FFoKbP`u<2g4MzFxA2u1zVdMzuH{EDC-CksR zPqdyp)9h{2Z|}2~uD|ww1>=t6En05tZod9~u|?Q*TlTKL-2NqHZq47srXQYiMgM|z z#)hAbXE!X|SAPAHLW05k<cbOJ&xP&ySp9&VsXw&#wMPo?L6H>u%e;LXr@iE!7kT;s zgIYJI+TnjbKG&`#ieC}A>~>t7@A&FM+3L@?re1Jdv3QNK{OUD)*0#Rd^;7xoR7Uo1 zJzAYL;fM8t(uSQq%>Jtn1pJ)6pwN?7?B$ySJ1<?U^LR5&DrbMxqSkI@r=&eSPW;v> zn+=Tg>-5Xs-JM)uzUkBCz!%0lKBmq+VrwwdChNLpYK;Ho>!-ukq?@1HaC`ISS6R+) zN{&T5Wwz7k)acuB&s+Ikk42VjcuX1Z9hp<vnJ$hZ+F@NKJEk)puoe|6E_%0RD&HZ4 z=!=CKSsNs;E;pZk)7_}B{<c+iSFNC2-8S_~1JlTJg4Z{!lj15oFDxf(abnNAB{Lnx zN*I58+-7{)y?#~aiC<UZB|hH><BT|XQ}Fbp=u&nqi}nKN4Zr#}?)!M4ZsErlQNkBO zW?S9gkT+p*P1l8!k3DX#Hx)S+m7$<F_d?%_!{?leFRZ?I@Zj=0jt8W6ueDoIAK8%B z6WX!vD4$<@*xF`?wWi<w?n`YtC8PHt#M0u1xMj)L)3YsSR_RHt?J(2Py_$T{Uuv)a zb}x>eF0ps2{HxD7N6fKdTjHAcNO_9&{%=BC3}h^>=sq}p@PY3uwxul_OE+BLDWBZr z%-Luh)FI8Nd(VF1()8b!IVYxfPgC6Ox~D!<!mMm_*3`pES3RvPq#GiZ@p9-TT6J8K zGT`6~%}Ra{XTQjDK>*iRfjw@V5hC0x?{t2S@CbI=y{NVAl5xy~*iJFdcPVL%!p^6* z7d{Z1z52k6?Y6cXw~OX_OUucvz0JcL6Q3Hf$u@cFm)6F#%UXM0d#(=Oqmh@heQmyW zRmsEp!o^pnA5+><nHh5V=<US$nac0w+Su1bvsuaR%jI|!GEY$C>$;hDL~b97c>dlX zGdb<uui|j!lT1y&ws8i}Qr7g+&|Ph5_%Snj^PH??G0qG*Rk01q*SfxX-S9oZaf>^| z&3NIR#D*;=zggtISD&bT`q#H*98)>&ZttDM#c8x@Z*G0esrk(-BC3n`UK9@FQ1{<& zT+5wZ?VYh$M7iZu*_H4e2FESmzua*lU+$;}&r->Ik#im&Q(Uq9hY6p}savainUjy4 zH0Hf~%+Y3}6OSwF#bb&uWle?4*$xUmw3yQPDy${F@J->19o%gZHLtp>^ZJ=y9<AzS ziV{mN?QhzvqjPL03%lap%;^ia>iaUzoBn>QzF7TibB#R*em6TF{Oa}4Y3jW<=3M)n zZ9m=GKWB@`?$p!>S3Muq)+cS-mx)}SeD&y>-sxvWm#l6uQ*_>SEwQ|Mz4b$b=F$zJ zJtl?SL9usVci)mR|F+ZV;3GAaB|_n;oB!Xpxh5dmxBbZB7i(D7yVkQAp86(yC3Wlc z7l#_y8RvX4WtiTwO<#%8ar*LY`f`H8VuiJ<owpmj*5WAaQ1#efH~rc+eZ_j;lj-KM zV#0NsI+OMId?HIXn%!)8bZ>6OUS4?<%U|!l&nsXzEt5A-@hX=3us42<%$wKhlNQ@V z=C!c0`OS1&dcR{)%;yA`wCm5E-b+iL-H<TLQRI74vdPYw9DU2~omyTd$b4?oPUZ&t zJFBGs7(bQGOrGEvc2qG*wB*kl^Hqjg^{Pu89)2&_^0e&@kIU-ootc+cuG+!Nyt4EB z<rt0B$q}o1)<56zu8Y-GVp4c{sKK5u(^f5eG+9CQ_TEa@&eZ;l#TqPjH=H*H{GHuo z^2{}s`@p4&XRZNr7U-Q&oBiPU?+(=)ciH}WGDru1T&#A@KD<&gTE%wG3@^UN2WKw& z-OTqi`Gk$lrG)Zp0S|sNdFuWTsEXz{W2@@U{;#sGSh~yiNvE$-WtMgr&yt`FUA<6Q z@3<*iB30fS`nQPK&%anRkI%~Y!PV%HG9Le&S5tqVWY<wUI_>4h88hcGKdj604pF_c z#V!5g^oSk$vW&~8m+jCusjp})+S?t~Rj_bJMm6v22-g1Y`NypDeg)TW=$5qm!k&KT zP;k9fx&E(r{lDM-+8nT4knfh%MyU_VyCQa)K3ZI7{3}J1sXz53PqsEgYVL_%p~KI0 zQ_d+CNbZRfv)46T%=pfwF4UVj^U_Q;&$4%`4UCQjCjag%U&StQTf5Wo`)NzYSZ}rP zO$P#Ujz!E$ew7-UVD<G^%g3a%U%$C2@AWpi`K4Q~GM!V!s;DD1&u!<tL$1r;$oP5N zB!8Nov{Qd6<NE0wyYzj<+u5gtzF{t%x~)w0LD`J2!MAy48U?;sI6Y^V{)GCo6XjPp z))vQTeE4dx`oLr1ckAs$btNvYG@5pErRG|R%4F47&sa~*n50*KX$O<0m4ouFxMNHv zHhD+iWnG?LvBo{#>D(u#S8+9bU52shk8G{NU-XIPC|rG`qh|Igw0&)P`^p)=bF!0o zd;5g$mWbxO_K%46Uf0$ny;fO&mh{@!yal_mm#@*9d-lBBzB;4rYXdD@8Rc94uMV$T zzWHlba_jtShr{{K#$_L3tA6;c_-WRyI~Sa%ryMYxJ$-GEkq6`V=^h6Sof+k(_Z&1d zVX{x0UJz{L%(Q;~boN7rW{mHr+Z{5LVdS44eaKKY^!v$AOJ|=rwncZ()`d&U*ga=G z4h&>3{ZLlq#hw+XsZ&(BbVE$M%+}tGXV=TOI-E?2+puGi`b6$?ntb8`f*qNy!SB+2 z@5o0Uh{`zs{$|NrrIVtLd*4n!d&uxLQ~iVKyAB)LF`l3P^RS^ZlO5l5xg&-ljO^2k zj~F&Hwom_l#88hheY)CF!+Iv0)6<t9H4I_ooc`yip#-DAbkSpmCXDLSy^a}L)pKTd z&r-DLYk7QETx56a!;FS+)8*T%Z^yjw7iem}BKARHLZl(%l1JGeTdMl*=uKo`zCMxJ zIcMd`*A1&Bd!saMKfTph#}dVMtt)O(%jf?R%t<HTapdOiz4dL|U7@Y+nptsCq1!_* z#6`)QF%@-WE;}rD<d@g9cjX&-<I9+@2=v#_z4~lHr~4VRvvYdVF7F9`6?wY9zqzgO zMey0%g-@y~%$G)<H~srf?{<cwZK7R&#f7==t17-cQ7^EZeJ*a9!2(9bRSUPPxa<4) zE&1$oG*)QWQlT7<>@8QyURCc%y6|UF-m6#%<%QfU&aXEN_pp_E=%t?2Q>p!LYFEpj z*MFCs+F#%M<4av)@9JZD0Z-4JcVL;%^VW602Dj(MDJ3<n6)(chd6~#X{+yzc7s!*n zy~I|sg87_Rc;$jj)yGnW&f!Tf6sGO7zH)XctFWQ0!_4RZ9#=8_EYA|}D|jM3LsO1X zYS-GckA-(HQBC`Nw~vt}?sd<Fm$T)nHLf<>Jat&!9?x^E-ukL+JA=fv*5c<^SoRg= z#@~~6_O2|LXZBjx-)2hsc56K!?uBao-+rinw%+%q<MZCkTCSwz8<mGzI9FSpOqg@& zn*VD%8=YTA-_AI4XsPFG(baKZg}z*n(C_-XKvdvq&EYBX{%bfw^VnJ+E^X3}d==`Z zB|16bnzZX8Ik|;PjL+6{+k5fO+LXb^pY^-c<{*FTOPP3;2@B4i_vNjd{+c<uS-k#5 z>)JIj=hhhsm`APASF1j#6R?`)AzSb7$U3i*SG^leXKyj<Xg>M7JC(ify-xdOVIk>x zRo=?)f*hj%@UU+!i_zL*U@h$R?eFA{KBbdalgz7~Ro1*e*uFgd1`lsd{l}7*yYBjx zvAj)Z-B%y*{^#efpEI|vKD+3y#-z2k&M-vr$1GO~ILeuRMeb(0eW7ge9)-0tvvlgp zKO8=6acs5l)pKEm*$<d?ekICpKcwpN!^`r(y*KyxuSh;H-p0gtvGlK+$9h)woUJWc zR}$tk9Q;>v;gYuDCe>FzADL8nvwbR!x2@cywZZMNsOyiu)BjSI3w2b5w+K9y{d6nj zqP50{z@PhWUYh*vM?rjC%-6nR3!8?1>&hwGH4CE72T#AVNH#opBg5*|T^g^R&*QV& zp7Hf_)MY-8?1S+Sg+BM3(uiBZJN?0BYZ1nn>GPwFwCd%|?@ZK^Dbt&%%W2Uido#vH z_RVU~FK*Laeqa8rHL=G0$$_I+u0P+o{IZ~?*;~uz+4)u5v@B2bWmR@O-{}?h(nj(1 zfi?fwnAb?>yB&83bMUX#k80oblG(3l_Qco)q9?X;hcqSI?YHf|oBu?5=C7F9Rk>Z$ z_?0|cxGlbHJbp~Cex2+N4koFWo$g}t&(yaCUYj<5$Fqs+e*4bj-xq!3!XuZ?(7Fz# z+Y{G(t>$f>WXGI(R^FkL<qk&~??%J=g>Rnj;=Y%tq(66hhvrvjKMD3@<$Fxa>(?h8 z?oRHnxcc&Op4-<?$M${Vh}u8()ok|u51Zl?YPlu#9@SjamfM^3>tkkpkDB?G(q)Bz zm5+4jd^*+FuaG_E(4wgJm5H02J^7-%WzYMZeI>r3d*S9A3m54X=>Lm)!&fuqk%GJK zta-V6-8LD{|GY-_Y}beUw;4ZnU2XqfIOXxqxvfvPywLn~WSex4wA>!snFgzh+WOLt znaMcpb)VF17pTXV*f#N#hqvRZUx|rJ#cC=euQIz%XGlM>S<hho!Ji?U!>)#3&ELIt z_N}cmc%R>rU9r^B(wu+MIt`w^UPZ5VZCkh}zy7L}D)a4qGWpG$lHB)RDK~#ulDe@d z^HkEWNpFtN`@xsA<C<(ayLZ*p+tSk;Pw0zV3eS2Wvg(n_+>O#FtN))}a9d2iz`x8a z;5y5^{C0lkEq}baH}PCzoSk*`t7>QFmms_DM`Dw{&)s4bGTrZ*wWf<$vFgza4fjq; zd{w*Iyu{2l`<LtGm7-N%)&AifYqmds*~j<2dh7C6Tfcl+S1VKMTjHhv>dE}qYGxff zRd%iU6BUyY_t|cGYP`i~?w6<E|Fhfo_woOKLemrDjfCr;pRS+y|Ig*=AH?oW*yX?) zhdQ@%INs=ei0lcuCFUWWwZEGlr{zE2|L^tv{kDq#|MVa7RWN^~vR8Gl$ISm%1m4~a z^On0i<*QtuU6A39cdWl9eyo$+-=^@9SGd(kUF)5HTRxZeoG(v9Dt`GH)JPO;@M|ys zqgel}nR(9UdHs(~PnYoA`#Mco?C=Tgf+8`=wEC$f5xh*oa=U)zbZ@>gB|7BNdO3z_ z@4)}!^6po*f9>v=8y>)?n^gNazvB7Pz^+|_lfEjx-7)E)>a?xa-#Gm8g5Ko0s5Ciq zM``S~_KC0(-#wl8fXp(lYR-ud9L`=)%|Eboqt>gQdLGA1Mb0PwHg7k%7H##ZU;p3B zl}!e6J@1y7Tsq41KH^mI_k%a)PGPg1e|e*4=9xmy#82^Sbre_aQH%F_dzQOwQcd=C zi4R6AcO5^_mObgE<o!Q0{L1>{&mURvxJ_P4__w;u!?mivBbWQmUU7N%<vqa{&c3+# z`0~QVANIXY&yvxcTd!GiWasl);(umNsqQ#;$JTkL+Rtz)rFmku|5-m5D4X!Vynpua z{@LyI=KTM+&uo8Mq7c}%-t)n;kNLmDb535mRABMsYMa*1GnY5+cw=GEy6m2s@QaRT zLir)@ABY@x(P2NIJYi#!^478#K1=CO6V6P}ikry$>GQVA2M6~5t$ContUmV5pWfS5 zh3;oQTw$5>N9z4uqgM=t7OGWxoP07zZ0{QSROh_cEwtG;$NX4|;*kpLDaW6f_c#^$ z^qjn$tDBYHbHDNQ9*eBy?gyS-;ZKQPeth5M?7x?09}J0l-l}}f`A1Jf`a_;;iQjl$ zy_<ZU@x`(8zvgbL`|y9`k~Q`6@t^ta>p_!j%KOeQz0akSZ~ynDx5~!<C!#h?WZM>- zRr4D(+2;M{=6~>P8@F9)(8hA1dv(9s%^!Sbofr3D{fnOSAEn|Rc>RB0_iN_52Zsd& zn{L~ltp8q{?{+U{%73jT3f|1;tZVhy!u~({W&T%R<4kYItv@_J8-Jf>S6b<6cjbJ& zrJue^>iOom;<J7mYk4zQ^N0Pgd-&iEpWUjrJI~La{b|{M{=94Z>*vkpvEFy`sQtf$ z=UnT=4`0pMFWX-F=tkT1jv4h6PPhHOzWI97C#QVhpK%ZOcLpu%JTG9jUQmDPra!4u zjMVS+o3AhY{rJ0P>NC^)>pi8;{|+BI`J*rCSNPoejgk2;{-+$PGwHr>IhnQU`<GAU zT)SDWXziU5e}8w#w}x>0F3tS{_vat4|9a$@c+t`18$5|g$K|CpC0D#VaaDZIbo+ld zU0*5R+h6>#$=TM1{UQJTpUZmuE<gRh=XW=I*_r!A3I8ws(EpgdC0(NHTYCEo<$vb; zeOS+||9RC*_Vtr`TkqKqMe2N(CLeBhOPFbX^8OXYTmP=9{Xezmn7En#pSRo>_b>Q- znD5HBCce}6GwrV4wp{<W?e&$9HFaAR;vcR*6ZDgt(_-<CL^k~g;jizOTXWvt|HI|S z{nzn-9)<U(_9Xt<I?L_#t@#^!*C%cLbZXkZD7MG?J%aHTtJm`!_KyBr-!*^#&x0qD z+>_kf&c*!S;d!I&)rJ4l%ij2Zc~bEsE_>%;mGAGq``Jc@TV&QBU7dby*}rh>?5)}L zddi=(%>FzV-~90En|jCP`y#g0-(bEacl70BerreT+~N$m>%YQ3X(~!A?sqoYH>2gF zx%W?tZ~M!I<dlo<{q>z>x9<Mu?Wca#Tgb()xVzrKZvL0wyLCM>>$i%z?Ed!r+Szc+ zTj8(s{~nZ7&Rv2@1ohb!|Lr@nsoec93SCnfj(ib`F1wO^I@m-vMX_Z420bS--H zH~d4-9jmRC9reHGt}4B@`0)Sleh>G)dlUYDZQeBt>Ak-{?VTNV-0_dOe%s_l|9p7% zJ96!LRPXWZyYIC9AzU)-4$^xk7{~0_x&HU2&(G4=XFQvB&-~pi9j^N5#Jd;!HRtb0 z)4y~1vHSLQT|4spbN-#Vb~S%d)6!3ukKSM2tj{!2{_4S|T^zCJ>$knX|2j1+aOnqa z-b&G_m2rpbc2*mn+P_=8-toKB(ckM64ChvFto$MR?&!n+?Df4D3$6LA^^Ym-JMsB% zfkchdP5)hA_ZqwDyxPB1^0T*-)$3dD3sbN4-!$DmzoMhg++8w$a`wyXdtM*YT)O{O z;iYwd|CMt6O?~y7RrvpN)%Sk#m&<=u9?zOvp8Vf%^2W8-6o203RFQeAo6Gb6o&NPl zLjSY2?pPx<DSY;G{jKk>ey*>7===5X$NZhX#h+Z-|9R&>41M+Hs@U!Bl-e4@`gq>= z`vYzsF8};F$T;rjzx@-=o%Zb$Uw87f?rHJIUyHoIwA#e?o#wWy|9IwS^Wnm>ubbPn z`J8La4qcb8x&F@lmHywu{O&nPd-J_Ndq3Lr!$!S+=f}K<>#tR0U;pRx?bY;m`|78Q zPhDrfx%<QG-d~2hckAz88EL=n%(DNd);teq{=8W5{6|MV{{1n%zw@K6f8VS-|Bz4i z&+qHEe|}WHtoo?=o2a9YGyb(*emHZ*o*ef{Zda8pH?r5nv99lZZzZ7Xf2uxZ&sTYy zNs|gyRC~=!mZ;aH*)(67AC|o1QPjT{eW@os4yxkfYvydbv9CzJ@Y3xH?;oFfw`91- z)qVfpwtfHK{~n+Iv+vC0v6~KFV{c}tV4wh5V{d9=VmRI6myyim{pUrQjSMZO8^jn# znwl6X7$`uGnRho-FfuhUMiMXr378-WfX=8lF`XXRp(ZbCWNLzRz&-ekdQ-#ciC6T) znM_Tm*%-(%nVL;!)UXo)(SkwdveOsX%L#)x;DhJ`By~NfSNt^+oOazpYC7onc}BD8 z4=<V9GaH$jO<yQvti)(KUGbW>6!iFcv+a(W+G>mt*%hkd;KS!Zrd@2;(_=C<+s@db z7r+P-_?TlPF+H2fSYWz9gt=b5sW~VVz<$(E2YJyP?q~gULjwgPQ**eV_0tW(D&T(B zPd79HsW62Ff_}Q8DM$eBb^UZh3y=W(Y=8Z9P_UVUwl{z*t>@HF2L+qCCBg`hkroCB zKFCB1Bv+a#7@1lixzZBEM{=Yih>zq(7Z4xGiLM|%)P-D}ocif*AOZ8~6aSgmPmlR( zw3*Rj`o>9?R?`%9m6%K|rU(905S_fCN_@J(a}AE^i@q5JGMZ0!RMXX)?#XN{I(>tr z$;#=wn2ouoTQZvRF`JqjP2c#<Kx{e_i?QhRf(0s~EJmi5hSL=p4MnDRu^78gpU+}4 zhuPH9X!1vK(dqM9jXkD6Sg0~-dL^5&_H+ez1NrF*?8f5L<zH*Oo<57in0NXqE(M<H z`s~KW(-pG}#HK4ORfz=|X*&Jkd}R^PtpS1y4fL5zEvGB;7>Z2~@G&^WY-(vXnNdcR z*~rv<>PBOIM$737Rpdpde`wK}22!{&-&mZ<)O>oQmXZGSgBDt1)6cCiJr9zZztU8E zy4Eiv?#ZvdsZMw2F&3Xb;ho0D=^J>Bd8Y4LWy;5BI{hK5sXn9G^n+{U#ilO^kn5j* ziWlVhKsk`4z-v8yCNqQS6A#IWPTw%oI%j$opE1w$$T^lg%todb(-*et=rNj2S5#6F zn_i%;n?8M(fHC*<oq-0t%%&D5;E-c9o4znZNo0B)vvCZwnSt^2z@-p>E<B{AH~pl5 zvBdQCK?ae`W(FqH3#H6NL2>lZk5La~ts}ds*z|xO23wiU3{0mhgcyi1noeK1T3(OI z$ZTq$y4dsyy1J8@%?!+@8?u>*fpiKAD9i%8%+XU0<TAz_C9&xjR;u!CZ)G<YV`Mfn zFrPk;!&nStx?-o2HItFqbU`;pM<z4F>48qFiXeXD6)mah2LJSCfCLv-7}!mB2$$oS zF7RKEWqLT5@tx^!qK&zySM9P?oL;cdY{&F+F=M0Yf*Mxh+Y@+<0~z_u3_-~mTof4_ zT27CTHI|*O&}gB-Y-DCQdE<L~kR2OuXemvf9cwH+eZd~ZxgeS8h5IZmrx)zB<ei?( zZyYu~D-M*Y_ghL&-@jLR>vZNgV<B*QVl<l`7;GRm{n>VT{_P(Gj71qG4MF)4Y@d<2 zA<``!X44PKnyO7t*rY50wn1@+r9HEenGx8h(_bVQ3r%-;r6e|egROioSbSlHf!Xv8 z!p3sbdy|a?rf=xike~GJ0h5{0^n<y^`ix*-icR<LQR3fjB5JJ7IK4K_m}`2bm@)tK zmUNJYRvmdpv+0fEs$$#si5cs=G8vgne;;iuIsJA9$T!J`;*5~OSlA4n#X0rCg|V3l zxTy6oGBtzeZccr0QELt_J~;J3*MXQBzzQ5rPJK6H1tT*<B-7kXKmr!i3wz}QSd7e! zjHfHw7zl$rk=U#OE|^7_jLfG8J~T+3E}3I2I9)(emk)AR$aN66fXz&Bx<QMcIHTEg zL0dJcX&FY!%x1=h(>Ko5wP!S&KG9Z9iP^}^c)H*%!;Q>l#>U$hw(6-dPTyW&EI2(L zG~jt6-`H^a!(c|SZ9e+ejLc@nCest28;DI;Edr?sH_)p$GlrH}paRQK!N?4JMI)#P z<%E>eX5hPDU;<zjNM))a$j>J5P=OTOW+q6bDyZN#GXbSTm>FgYMrN=IFA{96B}fFR zWHkcu;bE_zZVKWfxf5&xD5*h>bOg!6V**_8noYhh>^WV|#eie_fw?NS(+yLNa~Msh z3%bi$O|PAAs>EbwI(_0nO;7<WJw0KX7S~iBQ;F#bzKm?s&oP<sOixHNmYptHY%DPS zgCC>(^rywf;?orbO_zi8UG$KXn7*ypSYVotE(b_}(Nj)yx^<~B_jFB0L!Rkb>BijC z=S)*jVKy=|o$lyvuyOjDN@MQHKgD@LISz7Tj@k5s(=EloMKoBM0h@^gqX{^9Pgax^ zn=b!KV?IQJ-9%#YM=3op2VC5Oi}1=CW1i_JxfFPrjm%7@3%=F^6*7s9R$|i=a*Pu| zB@n0>2TLw&)zO=Nr_xw_azS1D^qE!0yp!L^@PMTh{p9qfKdv$spI&=hebe;(YGa=1 zKNcv1+&TH8oZj^9)y9(33p8}6GMkwhPA^<xDmHy*o-z0ISALAD)7@*0#UUkibe%Ex z^pyq1{EQ~k!7T$bv*`!5<i(~Z_#5Ofo0%C;51eBu!eV4*VgW9Snas?lZ!}jE2A9Rt zrRt5jr$;VT=9!*VXv{O6TSZru(QNw1rKaN3-v`M}0x1TEj_LG^y7IF?LFk~StIudQ zy--j|eEZ*GV>L#Qn)=BKqRd8SX44t#b!;?@%*>Edgo%lPf{~dSQpz<kH&-w+GdI}2 zu++GgiOJk>y5Kh>i|K2ZSSm9cnVC=C$gViufn9-h`u_u3P1FA=X|YXzD`Ao~J$JR1 zD5KHz1>BnYV0D2UqTqzVY-Vme-H_2#jL~emgQpzGc?SjM#Xxlx_w;v%wX*n(%*;V) z99%qFT1<bo$JlnV(mm1X=c|n;Gnt!CKcAs4I-T=}G0*hQ-+Gg#tNt(+oUZU%PoBxl ze0m|PqS*BKTI0V==4R95>Wsx1&8Ih-Y1mGG^~<<v`h{f1S<_km7+XwJFp-_E``1`v zdcZWDAJa|$8GB5>pR3NXy`|B(kWm`k+5y{dY-)~NJX;t||9D?NM!?)0=`tTP3*+gA z&4z~4XEz%QFj`DssG}p6eK)-%<oVwBh4=1meYbk|B=hpr!WT?AkMDJQd&CG?EB5)% zvFLmJ_=ulh-(-tIsVt8#SqDmzdkk-sG;10!4tyWGLg|X?6>F)h6Wxp_|L!?9UB%2b z_1mBCXKL)br#^K(^5SB~w|{Rxy?Jh)D>c0^M?bQD-uJKT>ucZL*~u-gw@03VfwTD8 znV-kZ_bJY9)8YzM@Y*lT(9obJ-P-kg%?Eh~h7%L{4rjg#m{upvz`*Eh#pCJB&|ve@ zK!ul);nR}C6HHhbPE6)=z9hh);EySJWw+hxw;o}CFLcCKDKIQhd}*Lk&s%!-Wy!yP z8UN0tw$0x&|DwH(maPoKg{~5bNo~8z)b<CuK9rV!eumTVUq<<?)Dvp9N(>iTK$5?% zUa;Mvap=$d>Pv6=(nCB??+JMP**a()UynyWH-in>`nf@zKQ7(tu~s^xC49GDIR2WL zNLp1{bdmf04R3BR9C*CsaQy_6D=T9;Lyf0P`o-t`xxU|L?VA{ZykFmTcdiv%edPdy z1NWsw52;syfyw9Z2t0n@7gJ(2H~!cDP1(Ei<K?~{S=MrFb+b}3GlQ;2yJF@F>t^M} z-e&4{oAk~ZRs6Ly7Jt27uggR~PQHF=_JPyM%nZE{Ws2!t>8#S1R$JHSe==3|omL&@ zX1_yi+p4|yvzeJ0-hvhBZ(N#dJYDjdr2hR++NYy`zl)b${BO$EZ&is23=1?tVP3jq zasH2ep@#RX^;0WKVzkePlz*|`WA^Ud)Qd-Z#nv8YW0*CG&-qe-{v5yOujNzE^Bae5 z``Y_I{%Sd|UYz`XjZ1UN>z}SFOJ-(R>j`qbc)RhdG(F>*IdSF}>u+2!{_<p5%kAmz zsn<#}4GkDRFoEq{xN5KeT+w}H3cpwPhxE8dum5`cy_z0}xoUVxMNJOF16ELYosyO; zwb^d_^j@gp+uF(X%l2)q|8X<-q~pS6J5J}y$w)I)w1eXC)3y59r_%I{UE;ImK6?Fy zr|(Zf`l~wvi&ySAs?5yHuzn)Q^$~8R*ViOCe|V|Xzb9(_)o+jHeX&$LwwcveuF{d= z10Tpys*!BD{p-4aUwd}spkRNgI3G{{zmoViuN%Uayz{Dj87|BM**584fl2(_<DzC? zD!!$*yS-UoH^a2Pc;>@^V=d_`m>M`hCLOJrcYg^}wtLJ{F?~Cmtop}~WxoEBSGk_? z@fX8`NU+y_Tvv<l-FNiFipOjH^|QoxFg$PsiF5tPn!Mi4?QLIqpZE%gJ2`su?@aDt zcpwXwD=`0AH|=`GYyG)K?T2^1*{t;SZCJd9ssLmCi)kRI-FuezsrGf1?>?!(Mv200 zF04sEo~!bm)jPv<AOw^cUW9JX`E<3z>t5-x(^>-mt2PDfww}shkO?xpDs;u}liOdV zfi>??UFO94==SkX?r-_t^D{8yIf1g_`$F@d>tx+0uP-Z8-<22n@B70&69bt98~Qxz z+Z8iksJ>IX|Gsbc$#84=W!F|Y{CRp%X0>mH3PV9J*lh)CPi{|A^4)jqr^@Fpt|Rl` zpa1lrtAN2k6l{C*?vvjWqSk(K`1dj;@9>+1!`{`#zuGxnAmzc8J0i1dwid73Q0dq4 zvGs1|G{yCP1*{G0CxK!%T6uAO-}CYw)1Tk`_MHs34pd$H*{L_HC7j)D$#Euy1)l8> zx4gW(d~(~Zk0F!SmkFJ^)qKe3e2(wC7t+(@xEl_r%C_klr=6KlC;cZltyg_^&DP0b zS9coNWSs=%UfX#Gn1UacSouFOv)Qft^YIreIh{+!FIAr03DBOV7(V&^<k>=O^)-pJ zyvlOF%L+a_Zmwn$cePBh@WAX}Yqr_ToSnb(%!dcFBEIhT&+#%4+4|xwpWU4$hbR1Q ziz+n#DOR!TWVrRuui@`|Ojfh3e=RdXj{5;)E3fS<2LIeP>&Mz}`O=*#e;Y?n4pq~; zJ9S#*WmQ|Nnwg*gon;ZdAaU~gGOt-W-|N@(gt=b~eY>kdPiTfr`{AAXJFD_K3P1k( zac9@N?E3XaA5-!UE5Ckp<=M~G&6ZY`|HSjap&s`*G<@>=?&?dmg_Z$Z>vz<bzNuZE zq__QxS3m2Fo^$^m#><>2TklYD_vy#AX20hhdF49s+0BD(`{!ysDck7>PEv_+*`Kb~ z`}w;6Kb-yeU7Td>l^4d-D;c+6IdzWx+7Y(anRX}l6n*~P9M0|*7O%m}Wva_zp4+4K zdh4evYYjko#rDizoo(f_YPJU7H~n#z_v0%b^Y>og*Y20Pz&QKvM#WV*VH+M=M^8Ex zb-X&&S$6Bck2A7oowe0o%)jJXm%g&h2~d4e|7FP|x9-&^zX!iJ{h76VXZnkizMR{2 z`%kS%+sF9Duk{x9?#m%7Sm*0WNzE)+G}R<B?&kcJ|9&P*KRz#N7Tl!^PTu{2w;xO@ z7nYBczHa<N{q?Rb-=pT=nq*>sW=hOOMO(24Z9J~J-AZS>mClHF%~JoX^oql5<)X*C z-!EO^Q~&2*U&utEOAP9=ZA%s&Z>f!2vrXClcE_$??N|RPYFrVCzNKa>_Tcmt#T8bP zA-C`HmoKe+;<wjI+opD7;m2PUUuXUQ8u;zU`W;EHK;HS%v*YwSwfm-RK`$FC=2=~h z-DO;w*AXb&=-toyWBI3R`<8E0Im>01)1kGwvgF^kt7-N3r^nQ$FNxgyW4^zL*>|4G z4@V1?!7<!WH><|<QufxpJJf5-Hazs%mw%qGslLE!?);Rvneu77>PvIHmWECLc(w3B z)Z?cM3?~2De6D2XDsga8ZV{Sw_|MaWa}@5H{LD&8sQB`<cIK;qpAltyzeEUJ&}rUw zziyIw@yv(f_3WGWZn#qO`07DWvE~0SR(sL+<yU^Z7F;g}N+cGc?Z>O0*k1~syxwh% z+3)ORepC5VD<;cvGlk^Eet-1!W3hA3?@6ooT7KTVW#{$3F8hDIoB!P0@MQ?N*7WlX zt^VIsa9RJ$^(U(ZOB4P)TNty|Kj630%Z&;fZpfaS`*CW0u~ScfzR!fHf96{^ect(Y zo#*mb^;he=dk*%4sw9ibcWU>m!`xnPJ{hiTw)^o~W$~+giPbTw4KmCQG12S4KCNB% zobi8w$$tNmixQ<_726iPoGl$Q*)RUD!Rw&St_22lZdN>=hfm%Xc$)Re^!1LD;mV84 zj$0q+zH)w_;i?{o`j%^tPTzVLE4tah=9Nocv!7l5;l<znYMPd>@0ll>^W*YIrm71z zpj39)v&j6X-fy4xpmNsz#KGmU=fl_8#IKqxEApqGYi_8x*VW^1Zswj0ef#&);h#pQ zC*<y3nNv4IQ{&2(V*#(sPv?1nYO?~PD`6WdYWJ)+`I+U?n((B4r+1dWXw|YAo~$2s z+&b6zynILACD%E+8*hEFp1gTy`iu4I+*db#oICN^_sOfi+JwvnwXO<`?%6%d`gC^v zel1&pL@j}<8#msH|NAs$;arE7=W|Zx@2Rc4605yvaqSa7m&ok*ujO~D&9&R5_ipnZ zH?wxn34G3%3J%@z-FLfo?aBIZWi5g2N5gh3H?JtO6<}G``0!%6-;Q@)`?r`MelFJN zx&GasgXcoNFTH!@Q(2ypPY0*~6MmfasrSoOwfMJhJlBL(H{6#wCoB0h_u!MMCXxHL zS{9aVNc8q;?axc%YyVu6`1!H4@D;I-r~dhT753~ukq%B*jO*0ye~<OuSN}EENAdTj z{!3X`pZ)*ke)Ep`L6sGkS1_;K>bP)O`}Jd~*M8J=&al!6i9WJ-b<!2LkKZ=d+<*J; zn;NJ9Qa^C_N%g7YpbAE1bzRto*A*27Dh2A|i9);B-RepW+;d~{YvwHe7hPo`cR71& zuF-T|j&fhC*vfrhR>}X(h?>CXTz{!xkJqdi-+li-XUctN%6qhV&#{{a*IC<b>i0O@ zo)S`SyTvT*X{*)DPp5lVUrqY^d!^FWSe-6|)yi3V^X`B{<ME?<-+i|%<8RogANg@O zHgnC-{@K!7t+%;MKhI^Rb92s%@87R$-THN9=6b9Dp}Qvv@8tEd`l|(U|M8=D>z~Yi z7Vo?7mSKF>T=A@$yy`Cd*so3LreAsfR^;#c{c+BL$~^Pc%d%gtGx-{9zuDAsVUOqX z|KKzo-K}42`g7gB2kpN5Zh7kD&zDcDs>%+kj%Uz))K%D}mAN<D^~>ASi|x+mPm=52 zzLLd6Y`e|Qlcq1fEdOo9)f%R7UGb$sy$Wys!p-$R{#`XZpXa^odd{LttF6S_+;wlx zxsmj7<MLw*WLKY+`&Ze?)%5<o$68P|*C#RiZlT8Fcl$PaF3*?US+P{R;C@#&sPx-2 zGuwCH)3yKZJXt;W&aQXXN@x0Wd(zu1|2@odcpc0>E$jdOV*#fYuk@OKb(`w07+I5Z z-1Vkz^LAgky1ue<<2+D?uP~n9WBOCh<LiI5__rb^U+zd|)|JG@<TA|XaFC6VJH0Mm zATKE0ne*w}ONTE`{}z}1;pHPsMYqxyJB;@gWvDplJA+Meey4Un-2P0G=PS)!S8{fi zhn{K9PSU<@ag@(xZ`kek$E*zFZ_bwtNL^4byr|4#zuf9ebs4#9tcpHdTw1XVoZDaT zzV_tyv16|}MRRNU*K~%?jJS12+g7Y1wC?ZK<7UTJ3(t?`47CX>@ZMQ^*Z$VqStY-& zOj|PJ(zb?KC0ep=OCEmBmC63ptM#$>>*rdh+~)_BUq5;mC3se47sJB>i|;C7=XnkF z;^gPomoJU3vaoYjU2y9&D6PcpvMJbA1P;u;H5=9L@1M_gK`s8RNeTa|%Pp>gX{8K0 zwqhBp_n!atsy#BR{-6E)XB+trtK4|g=Wn$B&VH+Ff92Q?<(7j|*ZwuvUuAu&RoXDS zX6xl7$zRu=9l1TtJvHR_pHpXcOnlPS_dERfnR<R>*^{gIS7g`9E&t|pJ4yS>w?%#% zr_a}Y`Q^3ea!^H7cT+y|)76OT^<P)&dS->s3;|WC6*H_BN2c#u<Ci|~-mD|Vp7SnU zG?)3dGyBrZx2G51>t6fiI&&$=4gY(0pA4_Pw}k!C^IgB%_kWM`3RrP6eAZb*xv#O! z?^2ID)t?h#f0N8~Yvs!q|KF-tzIwa2zVyxV$nZb;msWy`n*Ud>7;n+I^k?zi%zxhv zFDss2;QQ9{d7A{UtL~-bM)o=SIdLM1VbK#d&WK;p_Gw*A>H7D(p4@f$yfmzSmw+xP zBE;YDJ@>zNen)Mki0{6*%jsKJzO5?T@bHVPmU8Wl2lXdj-1iq<`FFF`q?C(_`T?90 zwJX2ge!oj??!F!Bck`dU_G(wm{LyOLdG*!eQlssTRSJ!+Z$0Y2IX+vHaQNbzs+SuR zjP$mDS#@{QFW$T!t<8mjN4wqL@@>6pv*DQO%P;2b#jCA<Ep;~u1qJ1<DJGH6S}#4( zKAg4r|8@79S>1N^Gmddp>~qQ0X*Yh=bjT;G-RI^^ky4wT%IiM$aeSU5kbGih()@Kj zpsM4-)hDa@^5mnWtEU>-DIQ*2_I*}J_2gAck2e**l#~g4uKX%|SzpSZ>RbE$1NJv{ zY*sCH?%A%}e@iI%;``Z?{gxh{VDhJZcf8uxNzKuoX1gDMcmI4>xW3BL`TEW|yWY89 zKYEtiv~EJoVXb|?0<T+sxVBvUxZ2!fD=wGK-(8?9+je=G|9rU<nKJ^e`AuH$cSH7^ z{d|p({e8TFsVs}^R^Gq(ZO5sb2iw%mR7FfT9hxU6YVzgJlfOJ$WoxsG7p>fJwB1bg zr9sI|!{oLvw-p{oO<sTX*yg}p3+nw$oX&}?=B+&X)7x%~D0@d(_t)jWV|L%%-v9J_ zWMq!-{wv#r<F9@Da!uvy>8ix?sIs;BK2}rx4jr&H50Re{fAPs``&Zu=ExPcR#XS7s z7v*<Fw{5i-i?_MYJ(K&u;i&ow;h(~my!>lReXVLAKfbf7Z14LQOAZ?pyqB(<<vMx2 zU;WCtZ`(HVO|+k{v4q*<&W9CuYimC3{T}ouL8^X%q}0auUMr$R66eY0aM;BzdERC9 z(tziJNr<$m@4l*KOoi1kOK&m%e|N%l{%oEH{#jPP=HH&Ts7`R=bG<_6gXN|CJu94N zRW5YfdjEEg-u36Lc`prkj+n?ume$m}Yx(Z`^}TLVeYR&yy!@%q<?5G`IbG&IHNCgZ z=GD8Y7Y&!@g3|Yua^8Q5InTcBU7f_Y?CL7pg<m@U^_EDmB}wHO?Veo|>3flVMeen~ z0n+Mf_paF6{968)b=|g`-;JYmoG%@2R2Mb<wr7ui@ZX~OH>MOUToGws-njIz!GlW% zySG(`ZFrc!oU48*d(%g&S+VQuQtf{$6c-#(pRf7N@@Vfgb#v7-d}X%3Pu527Um|3% zaL?bHxhJ)Rr@!;L>UncTi3D4i)TJk{7yHHMgjhe9fA4$!`Cq>MprUR0l{4I?cANC{ zR=bH;dt|uFzM69;H(-DE)Xx1jGnDOi$64_(YxDju*^}Vc@lmPXcc0yffGbAkM|PBi z&q|%(aK$D3|A*Jf+{gA+YD^F1Vs5{hc7JxrUX4qpFTdn3=VI0G@orCKSo(11p|q__ z^SjqhkmFF(T((75<I0!4--C8VNL;>rX|<JnjIgvwn$?uR<@2RIKS-7S+5F3C<*j|s z+Gm=%O#SK=(=w6ou!E=bteX12&Oxs2w?O@cCzrFozV5oEWH$438td*`$=<W8m$ox| z^4@K(w|O?Jr0V>s7yQB5du^siTk$X}@vb-h8TV3Zf*kiUt-ZTGZ+jZ(ZKiH?z3`RP zdcJ)-j)yM!w>`MkC#WgfbMn)x{F|>Vf3&gpV><V&J>LShl}NC;NWGJ-&UwpH@4N4x z()M-Lfi01_t4!AVx31jr^qj|MS;4fe$0y5im#FUqbyRkW#r^o#cco<gmvFE4h5wf? z+<o%<_W2i{ybkY@s(u$G`1i!F9a7i0W?QU2`z}tl_T{+{y%`VOu0%eZ`RCZt*N?Bd zKi$fFb9(fay%Y3g+v?`Enf&~<@zS$<zr&8!+iXzVw#oPXX~EZCuF?06qhtAJtu>Cj zb~{Vuf@0~LFOEgMRzK#5zKOEhvC@6DwaBH!7tb?y{8_X5r1{cK&Q%H*T238gzkcN2 zZmnlQn_a7P><+vvkvq8xR7<-HdWz<V%wRaZz*p9ewRPr|`K8NFN7=kkk!|}or|q5E z{ZNyizv{Q%I@joa{pelEOud{1HQ&;7oXyG&f1UrHzIC&czMAV?iB*@KODC=H6TQm0 zIQ_c!6h7zuzRt61nBASfKS-8-{Jz8B`IVn;t5<%18oP5>MeUzC0*~Jv(W;6za9w(K z?|Rt+-75?1Lef7;+kWkw#OM6q$9ehXpT~}`Q@g(@Y~Fk>j(Xi`3sq+ei?_K~rhl5v zA6UIAmNQg~eg96yd7(2NIA(^<J^$XLP&~fsN#2waiC^hbyJpweFF9#GVaxZ(`S)gl z`j`>-^lZiUX1w3JZ`1v&VW4tT*Lh6_JAd%;sC4dGR~o1N>e>4%G0gMwl)U@i?F;3X zDf;eXTwR^;WanGW&-G5d7pF%pJ+9<0D|%<UmRl~j`{vh`dpK@M%57a8+`l{AZMDyz z%O9JLt)5)N6=B8mSC==p>^OhfvU|Rh^A~L5xmCAAJ2$W6qf_AKFA+z2daSNVcwJrh za^~8THg!zzH}KpvbD4UU-<Y*^R#?2oTgf>eoO3TFzR1t?n5_S6%{KY>^}h3EbAITo z53JH*dS%6ag>m66E~oP%#;rVY*ODZEz4pAm<g&H$+3Lxw)W2|o0^iGdR?R~*3!_*2 z;>%Q4$5rXXm2O+`vX5i)Ey0;xmI^I1HeHJ=x4yCX^&`KhrhS`@qpW!Ts)I7ix64nu zH?o@Cx&7EZlhJUdmn_4I<f5<jpZD!huf1fR$H0GT#k(l0vYC%==AP_)`gZ%CN?qBu zf0Nrxem?ScbCca~IcK%mG270omy$1DTbg!yQn_$CtF+nd(=T<J>sGMr3Apm-$1#?z zlK<W`pLuj_wy)JxK4*JS4lj%~gVc5NdH2r=Us<=J|MKf5Ctv<`olhgZU(`>w(zBfr zR{egJ#8%aR4>SJtu1a5W_=5bU4Lj3cob&k1ZSwO`)f>L&@yGNO*O^cK8L1E_D^dA* z!s{pBzxHq1{i}UxJM$f%`B%5yjM=Af$3*|ij!!k2-@|8#EIEAP`Q?DOuj_X8tHs~x zIsB04_npuLk;-?I?z1F?`CbQ&>GY-6*L(He{}b?`dac;&P3ODP*rml>XOydk@b>;G z1~q_w)ky90pR9k(@#)c3-0R#wH2I7F{<Vqc6-PmIPV24tHaj&RJ~K~Zs9lxwy83bQ z_0-<>>&NDv$Sm*&dH=qjbNS@=_43P3if><Lr}FN2;C;)$2fM|uM(a51@16hfmu8=M zy+N&%o$l^!zuR|Ty3+ph<yy~=sh|{cICF*H#{HXBJJsTSPW0{Yy1r|!yWXuD1A%0( z+wbBeYj1yAaUdpw;h($gVyW)vd3T<Go4s~(+5}C0CIx*{-Mwzz{z{GViYw{UvNqm& zGx53J%0&C^wo8{Sj<2$4P+#eM`LJZ^rNkHYt21W=yvzC&TRBfH-sjlym!+>hf4<e2 zGe2VYnq7<k?|#2@hy4e;DGv^`c(gC{U-mF!a=wo5z8PJQEx&GV;?;kDTIRyXyXMO; zS1N5!Osu$KtG)QK-gZxZ_6rkAB!0z7^_l*B#@2f2N%u;t$@eX+Z+w_veW`kF)ti5> zH{ZHv_bke){=xF!Mp3#Yn+}}!Y+v|(>BEU@s<zhOm>;BUEAWFkx$yKIfybBTuAHo~ z;9^Lk^LgRfLLm|P{i|i3FFM}fKbg;2-uv*ZzJIL`1MTnoPu90l+Xk+Q?tTv{*)*s7 zSI&Fybzzc!U+mg3XII|KhYWE_vTggOw3+;LQa&jv%YDfAe*Mi!SM>f~eDy}Y?rp>B zs>j#ci@uia;>z%{;;Gf-HJ^R@YFyJJvkb+}%U*AL8t9+rmGMq;l9Y2+>T~Aoq~=3D z?Z&Sn0+<@ztaxhGc#B`{N@th;S2am3K121r*Y`ynpUusW+|TH(eS6~#sHL{KiTBl? zFGbv!4-0fGIefwV(uMlFPk#S!n^m)L?V@Azc89sx?=d?!+keOE54DNgvujuFpRXk) z^H8{tK~=VG-^8}}J*GdO#V$N4J}Y>6+V{0xJL^kxT%+fU@0+`DMQY%Z$hni}>F0bq zw4J%c+lpto?|i%1=b06CYfhGD^Z4%jFlp7deUQ3h*%HsgZ5;~*t3TAgRQh@|ZkP7j zeW!0<Ph;FWk<WR$q;Z<ZeqQq@d7u71)SFfFFtl_obNBV*tIx;P?Ntj`ITihT-mOVX z78T5Wxk-PWJYU6}5}{YW?p%0Suy2n(s3Oj~u3{_3GUwRp=Kg%29m<E^+-(0h$M3oN z%<yOJGvCF_PL4S^>+=EeC5Hp9f3N4=pYiGJ!js}gQM%Vu->d2I^n0y-_2mS26kG28 zzbgK<tK$C}tX}Ld&i|X)N>R4$m+xWkvnD^C=ABxTzD<q2b*9j%+sl6h?JT|9ef{`( zUc-03tI`ZrA9yc09I!kyW9!aYHS#gell7mJ^7q*6S9X=1?K*Xf-#gJae9zDQIAy7L ztp2#!vFs9Mp%0~(5?5R{S#nZ*SCZtWy&J53kKWwbY0rM~T6S$^{IXv*pjKw>v{Z&F z1=+SLALm&$3!VQSUaY@&zM=Jv0<HChfBtLjTl4l_s3G?u-{Zxvc0S|3(^4YwN{@H< zu~{|qZ+cDEFG<fh^6&HC$X5YxFR#(w{^!xdz~8ItxtG4`o_}{*%++_j>^~XjtI4+g z@;aRDyHDpTM{N*$=6;(Qi;dnnWWDv>w`N=MgP*dRuTD>!ulsNZp9KF)gDc@ua%Y#F z6t6NjdR1Vry3u;$t6lL0YWqKadm322wqxFxHPQ+Up6v_!E=^F2|Irn=`|;c4pIQRj zkA(brefI!psHxshWX1mfAMbrp+nJ_uK-{x^Vcew)Y2`Yy*`IQ^UU<SSpHOb`ziico zty^Y&++;1_Jxk~QtvMFjH$*4usBrj9DUo=k%6q@J%=D*J=BL*81r~D>=ZmjCpZjE| zH+xWavy(6X+TOD(-c6Dde=vE;;Q;Z>7kQula{KQ4VESrJ!Pgr{0_(p%4`(ml6{*8C zL+7Qz6#v6<tKZI+&iK^2KB%$6VC}cdYqV|rIDA@5Bu*`VXsyn5rBl&&AA`V&C5Hnn zc=bh0cdI}1<Yi!3z<w!FV`iJlPbP*tOAZI<@MeBuWr$IhZA;4Bp?~x0lWLpg_kQ1( zVpw2)DN$oGsPS`O=3J_j97FvBdB&M-VYC0P+^7~WcaDi+hiCgj2PwCCyG@E`D(-Aj zi)R3()C;#WXINZ&vis2=)%CUR3=RK0+ZTpk-mtp<N2BRR|9sy?A9)!*tY32YLUrbg z607?*E|c{c9$10-9w4UMlEW9gGb3(WZZNQUHTCaIkVE%*S@G<xp9pfy?l70_5gE+v z3^DB`5>?7z*WZ~_B9S$(Z6`=+o~sqlR^P+>HmcnRjeY#T@FJRl;ZH+}MAq!K|NBpF zk6wJ8o#6-jOM@#0V7)z)OC++Uw&_k=xI4^6|L)YZ#V5rX3bZdJuJDwyk~ufO)?u<f zL&BaVhXd*-oBUDO*#`3F56||6&o6J-veR7S%9q#9AbXE_Tk+V=0SBv^BbfP4?Y_#a z8b$_TMcKA_KF*>|ph@bgCs!F58lA0pY^Oog`dabWPHyvC{`q>c@4lsHK}M<hfW?j< zn^j})vFxNcgMs9wM2p<|UteAZgR&DNL$C^DI%&q2AF;msc3;Z)#LD2)S|a54^-jU* zh{@|0c7R;@#Iyb3ly}n4Vhc@w{`<+|yN{tkb0Xj2lgkt5U;TE&4dgaC1=+UA{?4Ud zEBtthUxSUAS|Z_R#LMfdyH4%?iz3~7!VC@zK)ROHgOU@&`AK|-IhQXy{IDi<|LT+5 zr>Vs=G_-rPKWw>NP~Wxs<o5_O-+c@W{S)~PcP<5M(Di74$a3jI)@J*?rY{*mmd;a? zZ4>r5EczUj@-m#Pc#h9*I|=f*iLz|lW3R*S8U;bhZcXGn9K9TD##+zzhimIEf2iOC z8J_Fe{!sVQhHb?Uwml8B|J?v`LfewVAJRZgMTP^`VCD|hWuO$<AnwurkoWS1yH9?f z>tuSrU!9@BL0Pu#y8q#S4+BBA#6fub=PWrX&hWtYQewqi6BDuBvuf@y1qtY0O8oKE zBxh?x=BIjAhKiXb691w>4QuhX%TKr&K4`r(__N)l#QdimSas~B#2@EP_S|`t^{I9; z$XVAt+aHQ&W^BDV|K=>8$@&ZqEhQ3uyMNEC4h0z^eERm%`}_<J3X}K_XKoh1xAQ^Y zZcvzTfcWvVcYdg^SAMZl7Zfx{Jlg9YZu$RNp8MbR|8vV%-c<VQ$H2fey+p$AcmL1w zGcg-He&sSSu$a6wn6vH0yXw44-?$mTo<IAGmk~PmOw7Uu@T!QznZ?h}DDpBgY+7=- z;MVnh-%MXZ4iUHIXyE)&|73zp$n=H(jU{;Dt5__|&CRF3W-@^uA-+JtNMrh^K0`h5 zijnDt-<8Dc@7CvB0i76LzEg~g)on(~A+I&Pek`h88XE*t`D9nR9B;}?5fGG_wDU}l zK<mT@CEYyJbhs0_q!%eVFz?#IJ4K-WzyY7SkiBIh;W?4)J@Kq%CwK$Y?tVZ1_dry2 z`ThL(hhFph>(|Ba`(As$y=H#R{_EKuXCWuxT{u^_ul`j18rjQ5=g&|3-5-4a-x>M* znt*+3B`F^({v5hl@rV87CcES_j{i5V+4-S3_35gs;s;XK7Ots1*qOh76PM;{;ZLWd zwtp&lTaf>F+p7M)f5+|y7JYNFu{+?IR9|dkcS<+=!fW-{av%C{ecBNF`Fim2>s8W6 zSNk0)t35jViOt?MmG#FK9^QO**O^R<jqBELwygahcIs8jpH1gNUBq&}o86n4Wb0m4 zy(fFx^sf4|T9zLI9-ckUUj2K{CaveCnsRS*Z8q(5e=_af%S~F|c{x(q{ki&Yx2?H! zGbZxV+)Y-B``4JCVVnQeY@1!FYm)!zP5ZW=y&3my$@cS_*-zhl3;WOcw!MDgNzZ$i z*=Ooj-Lv~KE%N{8*3`34kNsYAPUEZHY2FhzcWnFgW8KGl^QNWR{`1rk>$ZRXw)oVp zPyFp!%PXZ_{oh$`S)mad)_HTW^xHG;=PsYG-MVJy360gpS&`E|vt>ToDO7%5wsX@u zuPLT4zkUhyi|o7je4S^`^tUtfwtk<b>l;(QS<EiK^!|tMJKPrwXGLCnQfKxpro8<8 zg3a-tzJ2-eB|9#1??2O}D_&fCy?61PP4D!#DyHAHo?H9*n8*EB?Kxj(EqZwT?xwKs z5=C$Fe!rZydd>aXDOWSM>SSNtSn;;}Ppr1zkvs2s-@aUS!{dAP;n#7wRv)kV-qTyY z#`S-n`I!%9^=eoDet+@EN&CKFed)&kdmm0bKG*yHnq8N9&#RpBs(Zl2a?F)WY6>gw zDW|+i^X<1h*z3={>A7n0#eQ!4_-oz!w`@DT$ZCsHLFCKl0b)@TwXzS$&;Ivwa!4fe zzoJe5+V2Uc&H1mg@19ip^*K?|Ic9cJ#q}pH|8O~bytPwVgL|!K{j{r3@BWNE{k_&Y z^4hiZ?)<D>m#f?A&)%|J@SffH?XzTMC4RHA&BtCGcy|({A+zUr(njO_+Z}(;9lIkg zl*;>O%k-N~;(OD7r23jgZ@Dt>ckAcUyRz3T&IY*$h(%4_lV<zDe))#W>s3!lU3~KA zrO$u$j+Ngd&#k+DZilSjrepQHbxK)M7n+{j<W~D4KfdH_)v^6)dkX?1Pd{7Q?<L2$ zMJ+Py$zJtc?s+>*f7)f=p7dy;``_$~>#s$uTJw<IO=QZQ%cpPqfYklnoA`9%{~Y<* zI;%?#pKP1?&v;$$v42x^P9J;QC0ln=U%S#p`@bj$DC=2mNK?r6ox<9wb&9EpW%|LJ zy28`f?ba1XCHSpUw6c$GygQ|p!DwpfZ-Y}#0+R3BQm3>kY|_hi3%$BDPTNXoUF3xY zIvD|CCPq_3D}Ves_;O0?oR6NG(-m*&N=!enTbC8pOz{ZbQ%!EmHXXZq_54DeCwk72 z6WczmyV|VDZFxH2+6v#a;^#qPMbj3p={$XQna)C;Cpxb;{pj^O!CCH{k)pA>;QrOv z)$IXdMblmew|DL3{X8i?{?*n+$`2<8O~0^9S8jU1O<nHk2DfxM(d>2sS$jM6ZhUp3 zMXF-Qw$r=*?b4mn>R@!2SCji-O03xaa(2s~O`GoBc)P1VTde6(9tT8+uf>m#7k#I+ zGW=K~GJW-KT`4sGfViBo7t12||8qa9U8}*(xFz=5-PUadim8eXJ>`cvS8H-Jrs!n< zP5D3Z{)?75DZhICKF4W3nAOT)6tj8RzRSvc3s+w6>Ra-5)3LWN%P(F7h3cejr&rkv z^y)3uVL70_bo$1dy2>DX5b+~XA9Kno_NtuJ=d=?~%~kuS1(jO0Zz@_DV58bUZIXZR zrwmO?-;;|=pI;36l<6g>+qy|_wPxj(DRY*c$(SCVGabaPnKjAXJ9D`v!vud&Y!u4x zUc2^wpjg?7E6XyzJUrkXS(vl^d&Gtv`_dwAC?@;4F8<7{pZegL?biO*Snv8Qj}==* z-mh6#d+M*!6-h5&&hjpuPygC<t_x*qypOWI@$-?p_uJpu&HG}CPFzuCRIkXBf94*z zabv=hz75XDayT|m`FD8D^?L^uuTPQ^%F<=EU7K;-gS))#Qt+X<O0%~f`@K75<Fvrp zXP%ua-FL&}6j#6amcLJWoSpP`pXpD!sZzgr*FVMf7VXntpYL{BuWG3BCaP+W`JqE| z7k-&iuzbarv(|g}dy8ey+;JzT>vz&_@3T_tIKEY_R1D_7zQ@Mk22Z$B7w_V;_hjUX zPRtO#D&5W!-({R$|NcU@ClBZLX&xr~F4XcAgB`PIdj7}%Q&Toh`=<N)^xZcTw>O<F z*qUA+xwks%X#2tGNw)X@=Ka{J($*5|J^!qE#Engpf}Q3r`glI-TI$yKcP|K9isrPf zwte5W?%0Fp3o|aS`H=0&$GKB%^Uuw?f9_tGpOol#v8lP&{oI;UdAhB?*S(8+8@E!v z^xovP+&`LDDxTAvvBCC%fVXR5|L1j;={FR^#ct&OW}aW)-ZXXp)(hF5yqsI7)zz-~ zz3rpeJD#P>TWnlAv%}1?SKhd7aDLvt>s|4y?nlafc{<5i>`GX^oJdJWsGMDW!LKtj z!#?b8+t0p_QMLWgj%`)HuQThXmK6J%L<tt@u2fuj&FIVDS$97>&tG_DO2P6I+S+fT zKm`W_1H*$)pX;|iU}9PbZffv=7J-8otQwh^PxoLov0*fuET}CuJzv96vi^dtedlG4 zZ=T90|Fh4^o;YbmZ0PrguN8!kH`adBs-5BzDB>A-sruC9|KB-2&EH>FZlBHBpMU@U zzsJ0w18Uv9Ol|&sj=%Tsd%W$x*bjf?f}fT@kN@OY^T7W9m-hC5kL~||eQRFN(O>^p z|59gWi@U$d=i}S!r~LnOe71nE;hFE#Pyg4qR{Hz!t@(cU$M-%@>1+G*<6-|L{!K3b zpSQoyuUD@4ar-#`|8LWM78z(Wo}U_Gpdjua{3^aCpzgPK^~X?APtD%%kyYBZ|4gPg ztkDzEKNuyQKGXQ<{CDL)7v0}ltI8h#@8RjVny;=uf1j5QJry2Wqsb8;@N1K==_mgE zzYk95)G~}^WS<_e*g%}|{&dT=deY4Q_hnAkIc~b0QF^)*lYty#|8z?xgK*YqwL<>_ zrpKQ!RhIq}@$KicU#~qZ)aISCd#v*!?BTuxGBR173%|xrw|}VHI^B1@-XamZnPr|= z-Nm~uef0`fU3}A|T&AybI{#KH>FxUQW}b|U@3-H7tlQ4WFaN`IO=2QXsj*-tqwqfA z>HJA%ix~B%OFYwE%_uuPF4?S&QGL4ibKUR4??vOjhKBfPtjXlr>-u^2xflK4r@v1z z3ud&QzVe0cPR91>e^bp8xxTN7o9t63rtqP6`ni|7DolSOruU_p)ic%TOy^HG6P5CQ zlk+R?#;q??L!;)X`!L;?**LpuS9y*1|A^^!>1HWn!DqgoIJj<=uJ^vc=y&V<WHtBx zx_asObh+2MV!Y>{@pZIq)e3l?<?_UOy5nnIVaELF@6*lhvw+W_w0NUy$*4S?XS(*C z?f;BS_!$|MxAU2purV^-pD``RERRuhdVY@CMMn4Oj=5&8-0$;^Z~pr(dU)=~<mo;p zN`Z_Ur_VD{a^MFY#;7z?%*RDs&rSOS@AS7ON_yPCqfaj?YG-3K`@=Fh$amUwK7R$p z$((*=O!ldh8~v;pxhL=OQxupO$=v56zEOr#CaI#Ab>IETZ~esC<h|`0>og{F`P<8W zc9UHD==;=(&IvsQLeaYSXIz+4YLb21{1=PVW$(#p{yMxd_Y9^RKjJ=PGvn9K@6*p& zn%FUJpT4|QPLA>3<iGy1jQrD5Ek!3A1emkT|ML6x^o2VNN*VblKMe4-HUCnvF8Q0s zj!mk5yB>Z2E+Qw;kT5%8p|SCQ!)Y20`$J}!I9xhoGq16>Xy&rHM~{5Yy;CA0ucMfv zk}&6D$@G(n@+S4!oBA%=rxz@Iy6-o?<1QnGp4AtVOLn!somR4^Tgl_{wSBLzZ2rU7 zW3w|y)}r9TUYB`mtPFTmO>_NYC3v^qC|}KY#P4B6H~YaCJ6@E&wT%?|BGzcO%+lOJ z+m`?IkBBq;Rh$PqcKwTs(0%v1)h}w@)Y8?@yC$<_^fxuDhuEH2CSv@2Y1NFPresfZ zpM_f{Z+XqbWneOW#XUv)>D>#pMHpvpU$9VHjET{C`u4@z;f!~;^Doi1X6E&gs{C%C zlW^DQ!pje}(=*icyE%5d8wxpRwv|u+t)?Ht$Ui+oT|bf0ar!QGeQ&;<4vvr2SU~4= zUH*UHcDlHWNde>U>5LY}iqluRm>3G&w|gk_^JIy#j)B3cE82hkw!d;Q>1Skgo?hi< zqQE$1`)oH8IYy@YcGGveoBU-flUjY?^W@2WaXtp-vfJ*-F3Wkhd2OfZ6>Be(%TqV5 z-Jg)FyYm%S-j=>S8F^dQ9e%lP-lk0@Wz}Y%-cFug8m*(n-Jm2N^kv(kMGR`$(^p07 zSbAPFo^sVV{2teG-JrC7OQC+h?AxyM1#@3LZ9P!`aE;SCXWN`))(yKBam~(c+h<_> zGFSGn)XlVwuix2N9qL`@s4C`FaqyAXm;c|U^Z6V4Fui>|{bsA2(sZj!dXj9nGhZK@ zH-EZRo17h^`Si#(xhh8a?Q-e{ER0Os{U`G$nN5$<Fpy!o%|5+hqqgjH?+!UFrtSUH z%RA(B7<;EL>5zNDxMg~8r(80l%=V9+a_o$ZZPR0n^=%lfr_VIjpU&8{{am-4DkJ0W z>0f%}4hY&`^q!SucK@w}!-K8o3g+&6J)K|AU^yfI^xQr<{prv244jzn+s&W;uusmA zQGR;eMT5nu_wU)vntboa=RFrhzE0DO_t&}GeY*8+&VKHzOB`eL>+0oq#7|mR#kVbL ziDgHZ+aBxH-&1VzcPNKgyopiD7Ag?2-n8>p$%g!67o}rm-s<1icK;MRkvV+vzP;yc z=k{@I%sl_{PR;e{fmf_W>ZK0s`IuJ1lfw4p%KJs7D`wj~P}#0|lQpU-X19Z?#k1Gf zH{bZ{wr|qPr?;+T2b<IiI4Z>)Sa@`v^zNv)2V4a%c<AS*d`hg#G`n=`llSV%C9nTY zdfxnA%4|#2q9a=Ji%yiOWdDsjykN<Bhsdw&0ZNSKO|i~7z54^c72RchZ}4!s+BxqZ zQ+`blKGyh8HvjD1_n|ozTW=`GmHgVVI&kNnjrlfB*YX$sdN<uN)I^z4d3tQ9i7n&9 z>9a#koEYt<%Vg-7_-V~qvu0V$q)k$_h2N6>YuF8AUia;8R^5B*E#s0G&Bd<w^H?VB zb~iE1J(lFO>0SkkRon%a#R079FMIBK-20u+c6Zm0hU!h5n|7&vsF_nXedP~D<Aht2 z;x1)R^i?&>dKl|<u}3ZGu*oy7u7yl{CmX)<-Nf#h`)k?D?q$KoU#5JUw=N+vfBj`y z*>~Tw{4Zv|d>UO1IuoS`dM3(-ohq}|)adG&=vU5fbblANE&7hu=iSpE?$*9kf4?XH zqm%gayeT&}n3jY;Ihg$GzA<<4+y4ChKb>p-ysqDSbY5kNkU#4hZuO2rZT`57?Vi8) z-}@K%@3VaVLqR!?SOsQ%l)C=_`23U(xh3qIj_li?`2Pdr%esygcK=@T_e=jcUq5vl z%a*6x?f3kB_Ps~t)RFoh5Bu{ciu{ji?iFtT=dz^!$G>mphJW5ZZm+Lye$uI{B_uCr z|L61L{G^Z_N|RmFu18da&e^M3u{`+Whw>v6XPZ>z%|7$|%Hj8-@3#CqGT$IV`|sKJ zmoqD_F8ROX)Raw90*_x*B!z$c7ybKMX_WqZSD*ij{(BXD74?69(xtCE#iPEPy{5+F z+1LK<_aZI}RJ$g8Q9p6y6RY<AjMTU%g>`z{OqCYCz1BTb+{}5O)XEz%uM7De8h=u( zvkF=FLqGe^!$y<2%OiWve6g5U{jad_QdIr-!_wzs?atLFs@>`EVNH2@=<FhGKKqM( z%==~^lyFY>GN1C>#bQ#p9P1m-bA2mr*0)TS-<lxUe2H)8K{3y7wL;y^9~Ep^?-dA3 z&26)s`r?S{V~)F~f0y68@FDMdZR@f1R`I!>t;Zu7C)xQFU+W4LTVS&Eb*^xZg4p^C zTW;0_GQ}R`p2{GvdCUGo*owdl;!f7<Q&PPd1sirp+3Z{q-F&m_?XJ%6w@$9O8?b2d z#`l-&mv+3Jc){ar`TQMUOulu8I~30_W9nY(!anKcJ41#zsZXqbD+HhJdfz^+I$NgZ zcR=f-pU+NxE?Io<<1S5R=V@-=&N4*ojyv@FmQVV=GCSd&yO*bHe0_K1EH@jklu%3W z>?hIzcg*eN`VRA0ww$zhF2~ojqa&|&ee&_sc~bgC*2?uh1yRhCT1_@wxn=)QO>d)R zYJZLFB6pG6zwTN7!P`rA>%FZkD6R9CJigp^yNvU7ojnozpRbl)YP<1#h92*S-q$Al z!Snw&UD_eIZhmL>&-jw#Fx394FLgumWJdjs9UGm_F4+I+-lfKkeeMUXi)0qxONx{- zyJtMl&9^@Jg>I$pV~&DjdO@+_M$^h|9p+U2uYFs!ea?wZJb~M8?7r4k;Vid9^KhNr zM`2-uvVX@+ukVP-v`A|5-Ir7w+WjSR&daWKjYrt}*3a*gSXR6ByqNO5{O8?myGyd9 z`<-_jJ(!SO=qqsWz=!QCY&RY=>)<;6x@7sswK}z7_p0uEsh5gMX0Ll$TXkyH=Yxqa z6>Da^pIy-Q(&QV@^LLZwYdwzoS7mQn^Wp!-OKa-)|HzPBf9oapZ2i7lM~-orYZotA zE!JddU!k}n>GZ{(rvdf5-#n6E9%+y-wW}bbZBOp2PZ$2X7hm7Mbf>-F=12e5?w+Zc zGbz5{!Ew(=k>}FRPpZ#(R^MNL`|0iO)W5~krv7A|x9`CIMaKIiCVgO?R~Ki$s3%nW zVVcvwyJ<Q_ZwgN?`X_#)TG{?&O5yf<@ewih`9)dtABX+(mrGk>){*w;v19d)L+dBI zMRMJXS2=#?xBbqUck;A)`7Ly2nbs@v?*D%=@PEhm`RcqDM*`ULf=dp6HCEqSzh<vR zQ0e)u^-KQ0-+$o$yY6rGic;|xSN{L7c=HQ?xo>j{N}ufc@i}{Iz_Y6zKf|W&|2y^V zk><rO#eV*14eI|HzHR?UhL@__#m@fpoO$xsy`$n%Km6bPelWZA?W^klQ)}l~+<7eh zv-N@GzsuSxYnpys<@&if{Ebolx30g-4KJ^Kvb%m={OT9yy!Lt4S?=E-^>tsAYJJTA zzcqh9hW^z5^6sLxef`$EbIT|HJ-_{y+^hJt+xGuW)%m~a_5K1)u6Uiy_)UMrw{5Pw zcz^w=cKx(->$h4>TEWvTFlXZrr#p|{*UkHpvPaIAIpp@jpQpFB?U2}?Rr&Aau5 zL;psteV6mq_w)7ob$ikd*Izm&|3B}+#PHaS{M!F#ixfQZJ@PZ{+4`#o1R1*vxBurp z{rddU#{W6f9?Um;TVGXW5c64SbNq^V^LL+EerCcu{b~B<q3-{$27kT2>-KKW{b8@} zh}<*TAN6Cu%(M7iRe$*PKJ1?SUzhvO!hfw#p2zQ6P<M3I`a7Tg-(2|PX8qfro4>w3 zud-_Ym4ct|jRIa&ue@KD^76WrM)B{s_Gj0s#BLvRzUQO=+Og~5(+e{7enDLv`~SHA zTJb-j!C3jg$>T>}IrpC_o$%}ND(>q%5B#@w%=g{>a#i=$&2KXfXG!v#d$o$$|2_Mk zv%mgF{gNO58O!<SKj!61%}XgRDN0SuonE^|lS|OZ%mTCp8QeQHG&L|co^Hc#A~XGh zu7)U!k(q_%bi)|qa5FO__`YSx_Hr{LkS_4XWlnu}BLyQfBltd5PJMUKerh92@CI}< zBQs+I*l`t{;0@?z#-I){R5N%3x*3vb;0@^J(=Tq-beg^)-b9?q!e~09je#sP=%!D| z)^p406Ad&VThFK0a+wHBS7_Gbn+`e^gvrcuI^$J+S;+qLRvr_<=?X#SeACaVYfDbw z%xfYveSw(@7ibGQXy3o7mII5CnWfou$0$a{>5KVHKnIE}WHvIhoc@tn-)#B;PyLS| z6CJb7A!mj#noXam1wJkTbTEYY_6xI3tr(}D6fohQp84E>kJ-%9a(ZC6fla-+0o>2v zgG0;>kT;VXC>WU=Aa5o&1PQ?R-0P<s8iNEtGZf%Zf^0}PH-HD5KKLXNa|3v+Ku!`d zH-Ls?J#0g|xdA*{z-Nn?8z5~S23cZ=<W5rsBXdI}cbb9tNX~Qw@sV8V0^%b%(iOx9 zyOD>N3*-Vfkbv3riT_NJr#E~xlA8W*u8Q#F0uj#XkLQ^>O#krJNRHXu&>Xa9*>XB) zKRcuO^odiI#bD=&uuNaTWD>?`KArK4f&TRQ!X}X2>&)hcmeUOxO~siE45x4WW+29B zK0Q&uS_FKa$n>8gCOp$;DX4IRP9=CKXsXX-ZZ!QMhl1Gj1uQ0WrsqhSa6$I4n@>L| zYzCH9R5la^?_p;#GB+{;AAT|2n$?7Rdh~Y#)#)F0X^Mk4vV&xeryH`Hh%uQPOc!)F z&;#vX7FQJmA4dX`HJN^pOF<N5aiF-W9*Ay~P!$91WshezH-el=GQE<+glD>UpN{JE z*^(yW)BSx6PEU`NGU1ubCBrk_g42X&`l*}xs?!%qnMh2pJFdQQdb+d;-}GM#l)*k) zxLsav`UYte$cFamQ8Fex)2mjP@-muF50qBbn{F>_A^|?IgxTE4a{7Xmref1`cucsb zR|%V_F&a<5sH7kY-tEq8Zfr2!Fi=i>`W#*puIaP5!P4-9Nmz``jSa#3-KTf*nea^C z`OSb2bg)YhBlPGIb7Ld$(Id=8=7!Tj8}OOTjVFV)k%LbkF*i1z4my2g`cHln?&(tQ z2CCCz6-~sa3kaHQpZ;FSgloD+2-v^}evJAcb0;Z?O$VJm!enkd-GI$R9Gos1f9uVf zzEjAAd%CrNwaRoeWfO_%2|pBACSNe(-hNcrM3#})7?cITrI(Sp<@Ag=6Pf7(^*Xv5 zM&`&TKA4z*a+onv+6Ql(H#Y%qoVRD3e1MH*`(iN@D@G<0lr8k;CTLse4MY`KrYUQ& zfVR=sPyZWlA~5~JO?`PLa}%)VL5C|ao11|5(2GxpoRMHY{UEo3`1D;;ChMoyB%5$e zU%6DCcly)>6QRi;zR6GDoMIvl+C4vs+1$i*`gzdy`CkbpLeu+y>-9{ZpJ*aDeF3+L z!sNhi@#*ok#@y4BWlcUYnSl4ti%mb2W+FY^K}}DU$=qc6K{E||W+QVG(3w1nV8+F- z3X<S`^~~m`2GbRVtpk~j%uTl&T4?YxPS?pW5t{x%&_sdJbb6tshVu3%MUz}cCR4-d zAC*kR8BM28<TlY~G@Wk9rY<(!U)e-jywjHB+ew9U|JmEJLF1Im@7&E}H|Fo0-l%LM zUyn2%`DK0n|Ihhy|MkH4W$pf~|5L&4!~FVxf1Uq-TyDSb@2l?*KOX<DGIxes#TOT& z`ikG`KhM|i;k+nvxaR!cQ}Z8H&)K=eeb#%^ZGpF9lh^4!J-6%9?<qpYU)(d_7f#Xn z?`8P?`@LdE?|aS?{3S0x>ai?!H7_uX`u1A>Ufow~lXtfMFEdW`%l}jOtKj{mzV64j zZ{<zx`|JOF$j>+2^IRltYSa_`|DPsI_h(m^tN+gu^~<$V-qRxZ_&?_pf1K;|Ra1+O z+j+!?8um`=xt(M9-(u;%qwG(w+iw?-51lyWQpNnG+b=!t57yfMd(p=D&wo~5t2?`L z{i`2cieJsI-Lg16NAq9B{?p=r*S*!Y{PBrD{@bI~`lsyc_6IJl2|YT!=>zLh{o5hR z|3BQ8_u*X<$A78%)l0#2-b1z*H5Q3}s-C`3NlCUoS#}v;(Da+~w;$VXU-|2SQ=e0Z z<(}&@&t>>0DruNs%+B27&AwzgclEx6&Rfd$hn~0m(g~<rH2cYY&Q;5%WWK1;-`Hkg z`|F_Di7D-;J}teuNo6k^S0uk;+=?xWZ#^#;pO^ptx39MF!6{8fA)i*3>6B%@i;3`w z70D9#n0nQiEw}!&V`^6CK2|MLOPhv?F%I+Orf>9~xM6h;$M5FGORGYjN$_3KJECa& zVqea*UFjD#Nf!IC$s|l%D86b_-<flX42+G6rM?diAJowHcH6w+h)VJTcIjQ$dJnWk zGv8e}b?S<c-My9vVs=f7Sx~m{Ynz_TkDcu4OS)Yq`1vfoT_n6gGfBfnR*-l0)r+D# z!y=Y#KQJ|Cill*cgz?SJn$Km8@-koSj5vO561crCXUf#;fBR-kO6}iq-1zqWn`>7* zj<<gtDmHhu#Q`xkRqtOBpQYNFz1Z(M=)@em&-SA7;dd29=E<HWp40Pe6=a<zOy!JY zTP8Qf&ogRzhsU)^(o=Rl`VsTZ^G9%IgJM=>$h0l*<y=-zS&_J$`8>Cn+|~{Iw$Ebm zNo~Hiin+<~WAV-Bv!`F?(x1(=&wP3Tw|)ZSyy+LY^&=SXZP((_k7s1G+up^iZ_dQ{ zeflAO{nbqO6u0LK=+`j{?>)47Uso4rt7-4T?HP5KCI5cBw@pZ&hmrC9bY5Zor22VR zvnQQA&%|OU0lAszvhyAN=w%OB`PojItWacIv_kmZp`)TNJz~A{1VWFVPo3X#^ytb^ z?{vN@hogtCv-pTL_4S4_Ci?|m6VE)5vsWv$FepnPdSSyJDFH?~(`{@ltJfyW3BOun zv(9pHymZZ5W~(1LXFdO}EZ_7h=h4RC=@yq14J4jlV#w|hu-fig)ws>IYC})Jyjh+F zU-liDZYH9ClCgPurHZj5SBO{JqqwxN*HOvSr(Ran&h-#~!!^r0(8`Q~;Z&DY_?7sc zrztC>q^J8AemEWQ;X~Z%i#rTVlDoA3y}PwdxQG4n&B%mlHKymoXJ4PUjd||e2gh9B zv<PHK*~EXCn5g`6he@o@o~I!b<!<D9-?$m6lq8w=+B<XRmF)j7Yp4B?oqqAOu_fb~ z?c8UKUo$fDZ2x}Nn2ph#UHFD?Nlc{VlEgK$vU<00yBza1_*?$Kw5v+#@qtZjy$e1k zhEHQE;twy#_q@OsnjWnlbMvsi`*cSi1&exX*Qp=RaPl5qDv>1WsdO-V7KhHlQ_Z)3 zO%1)sJUz60ec2U34=Y~Z?GrZY@vZS~nx<GZ@4DM`&HY`Ex$l-;sB+So)mm)7^PX&o z$kC$uHEUL_6&4iD-+umjpZJoHvqgW5->njv!{PC)lk;VVK}F+Fp^Iyu&d;<nDA>3{ z=ZgM6Nm1WKNA68G!}g~Z%wD+ZSjc(RrHp@6r}t<YyC}4oNf)_%nR4ktpvdj@XFo61 zusajxJ8xcD$V(?~@hh1o(?4h$i}AQV)`{P|V%t2usNZj=n-|H=mc945<C?3=<)+RT zhmK~j+9|NFeVw3TvfATMgK#y+^uQi<nR>=-lUMuqZq?B$&k#sB?0;a>n!w7?cZ<5Z zKW0p+d1KBo!|jB#SmqR-EcpFNt4=TW-fglBbbr$2MN4<g`oN|3sI%APiR#o1%o?9| zA6cggx<6@YX@K0Lv(v(^FX%eNWhyJ-`2c!<(kn;B@U=$MDjPjTg=W^(2l#?6P}*0v zQKb%XfzqEeJH}h0%OZbx*j_p@_w~`n`Ep`xOG~OYw*6y$msqjJ@O8*m)28k(-}D7O zie0VYvwQ5fNa@;KPAw(nPHD~+n%kTHIn7F0Di%C>tylD?U9DnOPF~Apzj!Z=K6Iwh zf0D=atE}64?K5s{)U8j5-uB!l$(<$X1>Z9#>2q!_UsrkvzI2d|j#R&Oo%uKKeeSs3 zo7SwF{eNpy^77Dd6<*l~TRFmS9%gXA+MK@n`|dM`GGoFQ`dEf6++6!8XZ9{F={y^+ z%~1zKiz@`Gw_MaJG2nZ`$89Ym;i)0@%DR-dYX7l0wpQH9`ayM$zs<hZ^Brwod-(u! z@U4T_t}w<vPIx^nWA(b~B&m7I%q}+e#@PoZzEGN`+~~}+e&d1d(o5O$`}L&6rIxKf z8>y)ou`)CF{8Q6}kHsg|FZidj3YX7PUHJC>{cBQ}j6?3+*{5X6=X%b1F8KbWpF0CV z_a{Aj>BbGdKj~tro$BkX?TL#kHpFhPslBjqU)?>8#i4)p85ME#2>K<hekv_IYg1oZ z?r*pG4#`!T-5UxO)MIVstoPbvEO%ZU{A<A`ows#tkLPf7oeMv{v-jsk+ZPk3yM8=W zcK7~t^D|F-elQvHFRT0acKY_q#&%2}r%mUQ)0bhoXFXj*PCu8a!h8CgFS;d+ozoM) z>iRM|OrPniQ?R|nQt1y9qy6?m8>Pw2jPIv!_@g_Y@!a%)zq&DunbX())lFcupU(GB z*PCgd{`8$sO>3Cs?@uqhXB@<IynK51GgIqr_l=Vn8Lv#&d|@ijIDfk53)8CUe;*hx z1<5aYX#9uW&M#TCqHg*0<&TVg7#B{DVb;@Ow%cbsy_;E2lX3oZ{|2+}dii|usNgaa z@u;vG-=|71-@N8-&ZzMDJ*CjG-Fd6O<~45Cw%PulLi-P|arL?!VBW5O<=KYS$Il+Q zyC_>u+y3)upRl@n_qFX$fmO)QPoH76ddK^YOZ)OWd~R4CZLO287MfjXq4Q8^@v`DW zkJPy{-&@PxNK`hx+kH3Ux=6MV&%{9asxJ<L+Y*)Km#>wsu3J7iAVHRK<>b7CNA<Q( zbz|F1UxwKp<V{kTDarF7Iqwy(@7nq&%nQy=eE)ck(Vj_@zm;zI@a|Ps@&w=CGq+~h zRBhYYdYboT=%hCGEpm}_WWT9|MenmavUtVg0JlYjq0_Uj^4|225_CAUs-k*^z#Ln# zn<@H}e`!{_J1my1+2d7q@B6|dS#<{mHtMBMk>oil5#e%7V9$JpyvOhSKQDhEcOyfd zVeR%~(*=_iRO{vMix!C1+_{<j&Eu5Fuil9Eg5(nU+xIU@NyVT1D53Ro&$YjLC%fm0 z?Oc+3FXG`vvzlEC%bYgxy?t-8#E<u|UiF1-TOJBbxcnw3KC7I2$)at^$-6K0`|AXn zeKa)Ej@0_OMe*Lx)v-%fK1-jt_3asBmaC_J{!aOI$u}iAN_^j~3)5F_)CSENmvzYL zG9KK{Zm93iGCl6R!69~c{mibLHQT4hr|8&EzwK%)IlbIWzk})i%;}8g`i}KA^-*tg zHfNZ3rJOc1Zn(vKU6V7U@Q~zA_iu01*CqFfFR={nJ^7xmu1ex~Md_kjH?{J3Ynoi` z-V|!bIJJbIV*Hl&y-wjg!}%Lr7B1Jm`c8=B=DU%_b#=wTdEkTpuV@Euf*<@}Y+Jd> zXoK5hQP+y&srENlvMjo%B&z6A*}f+%^a~%Cjn@70&0m(-%Dp?iI&|-289x38kNxCw zrzf}@tB9;$(etSFR>J4sfp31Lwtro8eP7+4={x%6T!iJ(r+n<<rYCfp?PX-&uCPmc zGLyXgvF#NLyNk`ea&AcN(*E?o@bCMXtvkQ9Z;$_LXZP>N^oGfDqV@gT>nHvHb3D4D zh22T~!~yPp`@gSm|Nk@l_<rtr@;|(v&0WQOvH6R`v>V&a-^kl3+~pU%dffj1ze48v zUyHY>F3{co@8R3<{mCkUYRCBNE4r8b*e;bb$Ks2+(%-||x9{(M_+H-r&uwWH|D3>y zKR*0;7%x{ZzW9*nOdX@$#}2K2^rqhTp!M9Y_IicBJ4-GW-%i=*Z~MpZq2Fu&Kb*~5 zFU9}Wo7)!d`>TJo&rRNr!V;T}t1JF*t$l5^cKUavW%U>9RV90tM3hxrE<9+cZ;|A0 z{Qgnq#<qN+lO@|fHCHr!a_~DnfBhHzM`xB#`yaOYh~qphqiS=5*UToS|4!VPyK&x* zhxN*NR{I0z?4G)|KFjLxwSYzTN>ckH&mMHWSUAOA-{_(Cw)%rjwo)5i=S|*t&8Ppd zVy5=}Fzwk9M-xx`>l~^7eOS7$1T+mX>2AjvBb7ggnio&!7r){swQshrlymwvi)+1| z9_snQTsQLO$TIHi{NZ?|$u%d`+MeB5{pNSi9?AN)SszYS99GT#;{GgTk?{BF%33$R z%&+=+c=ufuF{%BpY6R3o=S^Yt__g6zq_$W=!=)+f#3MH}Mu<CKPW!x(tAw>bo~dR@ z#{UDxOWYjg<=^gkJ5`s}g<)R7$0v*4S*2-jd#!daTYYhvbEjY1RsZQqWpPf*ruS<f zbqc+yWHo8etXJM}!>dHW|GgaZgQbe17yHEnXNlBh?94rWa65mf#=QJ>HvE3CzHXdt zWT4WJa-XMR>+8S!)}8GUzH&}nqx}1qie+)9cT^s%aB+UOv2bz?bJyxK#}60IxY%PL z>2&w7qd@tcweL&cRP_5jmMu(g;q=RP*p$H;R`^@p=7Or(@;4LR);oXcShW7X$J@+T z)AFt_wdG%T?!D&YA6uSJOMWq{Rs8k$n$pEv)W1odUCL;e!SrFyx1ahNz0waa&B;*v zv;EzV{JS6T?|Qs{`mQLG-;6cWw?&(nG5Sw`8*QS;6n}2IY>bJx<kMT}d;V@&cv!OC z=+xEYAB0t-uldi}@v5G6x^Ik$Iag!axnDBJ#Ap4~pWYW^V#2s)`r#N86|<+@?#F7^ zzLi`5;dD!k#zUu_vtQ`PJ-jw+r{=$@*O$th%c{k{+voOrxt_hpGmQ}E_S5!RYyPHA zmyI=1W{+Pm_lWGz_0!#BO)40tPd^ZAB3&=Ews1wgVfUx=bC<?%e5LLE;s4u!KTp2> zx%%sCxX{)4t9k#g-XeF`w=}e0=Wozj^X<DUGxFA^D^}X%o@?1Hw?yJz(Akg6m%Qxw zaJqg;|1bVysm6~s)x@o}`y!CYzS4fpu7ZzD|3XeHr_Wju9=m2<uDf*D>54nST3a@} zU;i(>;t%Ju{}UelXLZrNG2QW#l9-^8xhZIH4?LJ+XliI=G2JJ}1bpT*@<^~He83Po z5^M<{F@%l;Tf&D7p(DYT#;}oKOZaFZbR^gkJ|qJ<iqsr&a3|y_Qgah5Bf;jTM&Lt8 znaxd2r*HgetUp~V-$ZD-LxM^8^lSMhg3}+^7z9uMQD_1_j8t&CL5rUF^d|)%i98GN zfziUC69_l{)pG!iI0_glGn!9Ve53?9FB&AYS=k&s`pax?X0$!fgOQbSdR4KB;PeJz z69v#&(^B$ckilPOb2H=ViO&thKn6}UQ<0p$p<hQC#JOmuVh<Vt6cjZC^BMPQZeTVt zHv<nXPy4SYGW}q>N$&K$-%SLj2V|RHn%?;xG#&#wr!!DSOMH6&bRB{18JQ;Pj7(-0 z(<f$`h)?hOVIl<{?U{c3he;!NU}yS+pC+IK6Xm9J{WcMY9GEEh$HZg%`dpJ_Mjr6- z)ZiF3HlDuVuZb*Z{9A1L1`$I!CUf)YAUCoYnVXwUUzld11R7}Ft0_7CL%zuZMsu(` zr|TCQ$}*ZyH~gR^K7GLs<t|2}=^H012v0XqFpZn;&S)wKK3Nnrg7;BLe7i%Di4r4| zxy9u7#-bo|EvJJHWaKwBLOPJq++w;xv!U^H&Jq)TMhnnU$YS+(Icr3p?zAs3UlkVh zx=C!UG-FEln!FHJ-K@f$i$q<ky<fMLt_*jLo}RsO>!Q%tQCm-Z?b<H-mwVe+6-AxI ziM|t#N{A>b7^I&(S+;5ZoYH51_vbeWDylr+lb$xOJgx3Nzq~z%rLq6B3HNP`)1S>` z=7X-&gHqGyXE2J_f0)zEXZ7Mna{t@g+uwUIEV#DZf4;DvMWdDIrZx%2fG#f2q8o|r zf%$9<H+s!@mngb1OmULtI4)mrv%ZnBK`MjUkuQnG!F0>a3-|5?<THa*2|Q77V+d*X zVQApn(x||0$h1Hzg^8hL0WXVXhakgM1z`pb)yXGit;=%M4%LUB<-W05?v}%ZW(mfG zC5eloCMgIXc>JS3#n-ntQR3VBS?i~)pC!KGx%?%zCYd7~42!viStqm1WRN>9T{mgp zBH4IT{e<)O3n6B^NvW+;<uqcn$y-0){Sy<!aSeg(ok5<DT77P8Xw;4Oi)C5Cwbu3B z9sy;ByH45l59j)H9KFG*zQLJ4b$+c|ESJW~c_tj~hp)%i*Uq=Ab?cEZto!q0ZS?kc z>lto2OnCfDg7HKPZ(`8}M|R%7x6aMA-W_3WbTDZB-ecPhUf-O|D|I9)dgW@yuQw*J zwI$9eK4-ap|G%o=|EEoxrg#6b&8(nCh2vihnI>>bA9~WE+;^hB;Oz;P*D6A9mQ22} z^ZBM$ZrA3*=X0;HHdf_$G#~92pI`s)r=*yJG)K`LS!D)Er|gFleP&n&mxvra`sjP` z@~->!KNL%S7tH9JfBgS1eY3QlKl=YZ{jGetbo#r!-|yvdXSl<(zWNb)FXa1?Ri~tv z)PJ1*K3`N;zQbomy+LAqc7D6h1`n;HzrG|ccH8)EcH^T$vl<KQXA)vuf#Gagj@c8f z#gB71Jj=<@Ex6Wn=XU=4+F41b#lGErzp3!?jCGf%vUY8JD3j*t$!RCRSYTVD@aUJ1 z$MVSk|8iagY`gwv(zkw(d9~A4=mhlJPA{BSdM(m8?M%l1`{(U`^GvTVWZJ<W#eF^f z(3_i!T4xxizqfxr_n7JR4RW?Oeti{5ZLE5;^QVajm+u^ljsElPn%Q`Fz1ej7)aldT z!x?fFP84SMFr=`qZQX6`c>U&sgOBnq``Q2KaJkW`-c>B6tGg|n?bX2(Ywqkca%0%k zIx+Iyxt5*9M>V@|ZvOt8)qDCTX8!t=?f0^heHUnL5!+du+QX2-y|%U6_@Kd!4T+DI zxLDo2I^Fh@$Mg9!8m=$cdSdSHBo+szC~ooert|7mZIPRI{oIr?X>O_5?}Pj^?&o_) zF3__1X;S{KTabaX;?v4#<Hr4~7rSk|>?b_edHc3}apnX1I~L6TEd3zQy6nx0l`9oF zS?c!%?aPWgFt6T2nxiO2Oqro*#UYo2Dut11BI4b_V#eudzrMcRtUs^j(y3VvxhGR5 z{rAXII}|?mPno<AOb5qdm#r#=!D=7E3cqBOeLDH*qT<Z`Puiq!9Aw{Yn!RQXk3#a6 zMup?PhD;CmPOxm&iPQ0O-194|Y<*TnLjCf2T5e6|W>LXn4rUq5j(xL}SPsZe;7pUW zp7!<K*`$qY;&&9OTE9^E)*T-aAnY&=NzJl|eKB)3RXk)pIsN}b{zp&W?@7+`Ww^PR zm&I~jry#?12elcG9(CU=Jiaj_<kQoYBELWO-~7J+{Jz>=-G;j$bF!0I>JOMs;M^I# z*=<g7#j}}n#5QG%TYvH>d$)7ZS%w8pptLKf%#hdQbK>sP>6?@L63?F9srUSDxoh{Q z-}h$+3O9&=@?@U`V}WprQ=eImz~2M&|D~L}RQJ=n(DS)m{~optqM&5r*u$`c$4Jp# zSgoV-E-&vhowX}FpFZt;C{h3Q>oXkz1#M6Ou^KWxFgno^Q}b=6MXF)$teK}{c2AQn z;@JJp%I$j!=LbEIU0);^3*>M4ytuo2`(oopbB6oB<yNmYuH5Kvt7<iE`#qz|jSP1e z@v>O@^$Rk5U+CA$T=n&p>t0@!+<RyEY$n+L+3?fbZ~0M%b;^ASPoF;1ua|l9=luT- z+UpW#xy800UGdprQgJfNfvFkH2QRiu|NlAv&F=fDSFcXfu@OjcmsOp&c-Bv0&jVJQ z(>gzU{JFmI_@+rhud>#-NOKg)$SO0ebD7O~?(c*xdt&aKGAv!yy86ch=8gK*FBG}M z8E4KgcHeVdJYGj{t)z*^pMNix$5yNI)Pq7NuZLlWsFCA2U-ONJ`H~-Q*qS}l$hGF# zrizVQvm5o!%syWAMPPGKbkvdmX6Bnag<VgVpEZ3~vq%O>@1b*ZAF1_KzuQ>jT2o&3 z>*bpk;fUO|PhU6H>PD+coe)&sS6aL=al`X@$?WoH*mwl4-`>Fk(q5m@!>~ib$nntI z?VI1%w6ivst;v4uR(QoGu_^of0qyL!QP(!BOIvLCd^&TQUh3YePW>6y*T0>D_*hDr zL9fl{#I*bR-@fkux3xC=&*}Ihl0PJk-$W}<nc8_e<M)@ug%|4fs|h5e&)2;-i(S6t z{N#90$`ejzIdFFZ=gnR9zw<t3o>&+AZEfK7o2t_{9Of^7__Ew|>h#Tz`_t9u-T2#_ z@wo6}%BOda7Im-L6@DTOlu$YinI7bwXju~y0;)B(-%0vjbvUu`SM7^{jrz>qnNrp- zRSGA+oF1R{Ytr_6LjSdXthW1k<kYDgM^H40D>JNX_c?Lu@AvN4-?!E0t4EYNHd<Ki zdvDhiTFsvS@Ygp{|Lym8815Ed7k}Q*(lw^>^D*gbA!*{E)VD)|vA{OP>Dj8)M|;-9 z|7lv&u=~B(UDraxNXB<!og4nt7_yXp&6+v=`n9f`;(vH|Jrxt{o*6qQ7Ubv6Nh}Ar zCveWJexYcXs`UBulV#btsrAln9j6&qtvZoauzHzV*|V9CihE<)a+h6xGtu3p+%RiO zuzS;GwkDbMqZ|$53c^N5`aP?^rCg8qk2$u?H|cx%&D0&@SA8yONE^G=TzUF==7ufx z|7X|!|NUl0@{L8VYC31Z0p@7P^g!@L3y<x$85UActILYk?@`jK{F(a7s{W4B#DvGk zyFUkRPM^K)%-ZPkewO-In(d~Ipn!(z^D!~$@czASXWOnmvzqYIpHCm%agCHL)jT)d zYh(6$(Y3eE%v96gxpQW0`P_(4SHrC{RV+Yh%d3Z>g55|_*xyF+o8ZlRrU`RjWqms= zzv*D}(W~MLzSnQAuT!nRck}uD?I}O^aDvj#bDib$-_4k*0<v4vkm-T!iIzN5(~XP! z)52pMV~=mwjZpa3S$@|wwmtdd-@4zj=Kc10Z@Z@Hr5=}kK4anokTyZXNsE`<3z3a> zjb(LMHi7eQ)vwHr%u&0i?dq%bnXAQR{PdJFf7bq~&H2vK>skxyFL)GyBDO=~<i)mG zziXo6G`g(MAC#QH8JnFcm~5cGcgn85b4MQM+%PCqcM?Cpv%$~y>y#T8{bwfKH=X7u z$>}G}QFNt$qKv6}`L8W?t+yH;9q70wQg`bh;{?vw>VK6Rts{0$+ST{>$0zTPITH&X zA4z4Nu<%=SPTroto`oAC>wkNEkpJs(baKL5P#XDVIBBtec75~<d6~}j`k$V!U$y6; zLC*hn?g^?XPU1<1*LIul{^0b=YS))z(n;<=?-XAtwK%dSGO0MWRMcB7lk3I?$Cu!6 zaQ`TAGSJ&g`@*mMRn<-Z@7@2?=zm%}zhdexjfOl0;awlD@9(;MVUlY7mC}-v21jBy z+E#Vcik0M^lQGOrx?}Ok@y^z*j{>)4^|37HWwGo!?$PI!Ew6cn?O4!MpFbO<UuVC2 zIM*%qPw=Z<47-|qZp^QUnX}{H$9`FZPZ~mk{tWN$$Hz!A{Wi{@mvO+YKP*Xm>E$;U z-OKw~?r-hhHOuw_Ta(PxWEJ;|A@wU9qyxl$)*hd)^7WYO!Oz}K$&;&u6B8L?oz>o) z?~zpcDXz0%owBj_w2sP2+wXbBwy&C|o7^sYtc^eY>(?tw-#8wG`1h&A$-u}IseIi< z_xF`-HrsY?`PbVKzZpV98SXl%m1xaOSw8R7Ijhr*%XO@5{%m;BDr0DKFfIFfeb+`I zX7*JT*=<?M2Q!%+`!*R)S{$)zQ-E|t)bA7f>bEZa=Q@9yc*f5Q|5h;=HTt}`5}n_9 zx5SaLRQBeBw-;unZ(7`!RA*nRsimnce0zz%d};p0&@6EJ4>WTt+OqOpC)3(`?^To2 zU%Yb5a;<n|^Z!Bym;KuXN-2l-UCO*xzka?&<+?+GDPh}kh1;Je9}~C}wsP60qK`bk zg#A;j%L1lfQZ01@7XhZpD()Xkau?QrIChKu`*+qoD<7;q+Vx@Up0gV^8#MSR2!H!} z&iawSr)K^YuP0opD}FlJKj`{G2H#}$xkvhJ!+ic1wDe7UQ2cDdRZw&GO3y@@+Q9Gi z>GQ9xx4aqZFO&1}=axOXU-fT=i8{1R;H<t_`f=f(35tHQPDlIe)qRDI@6Wy#Fx^Q@ zCav~&*Ym5ZJ_qddVPSeRr&t40La`>RxObMsPPDIgKD+mB-P2>Y*elqBq@&ZFLm6f| ztG#*p_q*$c{omzEWi3~%7k8fd>x&?N*ys9X9xYFwZ&vP0SREcbebU~FId==&f4EmX zY+bYJ)Vr;qq7P(n{5AXcmw%b5ZY%peRder76_c{S4}X^U)z0KQAUA=t`ci4xG08`t z^Onc2-cYo3$IFCIDX*+FKD50$V|>)+?IfXBK}8OxLUYUno~#g4wtVD!$mair(yKG= zuI{MU`<K~xt-khbKF{%38Mb$=J~uA!|F7F8_W%9=6|W5rZ^?XAUHM%0mDL;3-mcXV z{B}2Z`CHyfaM~re)rO0JoOd-z#XVX&?ptOhZ>NslbKU%ksr!%I@3B7bD0-rW&t`9> zZe`^v`)^jxe|AgQM){-!{dvYAtSXfAr^3)G=UaWwt013ChC+Xy&CZnq7ba7>Cd#OO zUH0fe$JVRCo2sTJE(s647x3hKzUR9wD-0UeC<t4Lh<5VSfA)Q4b!Kz%@(kUI=7)W0 zE3^Mp@A($>k?-6b&)BY&IdX8rrkd}0clpz+$Ei2>Z7>ymWP8&6A?L1%8y11hs=p=K zw!`TEl;9I`9hno$?~7J1&Ahzg^@bViHpl<<s#$*C-aod>G)Ee2+Lg|UGE2X__;X-| zX{h<>y*47c&vH*b`;~rXEtdmRuG*J(ccUlzJm@@I?z4WsUu-+8n!niel64V|vF)i9 z(G}nCK6+dIr|?zKnk}W;(l$3ffiiBrg8N*FlNY}oo4Lol<H*zbi7`>XH~7Df7A}4; zH}HYpm6Zh!>*MyW*xp!hkToeS*#>0ntXW5TSE$clb8YfYpDX`9Oj#K`*WA`L`s~>^ zzh1AE<@B4&K1rl=V$71SH<}LIT&-O{@w8J=RY_sSokI^^xa>N&<`9F*1-2%ocIng8 zI_r1Ty;OZ=rL(zA*ZPUT#_*#1=gNPTe7xs7^U<OFwZVUG*Zli=SNY)nABX-t1;w^& zl8U?atb5-wD@`}XxZl01ZYG++Y`1bB^Y=weinn|Mo;Y8c|Hs89bJ5nRyZE%XzHdrD zyJ+3vko9|%_N|o8FZm-gDd%I_j~$PX_-y!o-@Ni<{gy@r_lXiGU2k>h^Yq0<TArM; zbZh;FO{;W#CV4S(3YU>SK+wU^DqSGE*-`|*g^jyYmGf<lOw`I!ebw#(QZkK!| z!TIk1bJ{&dP%|{7W1`I4oLOgQH@>>z6+A6X;@7KHCtLp=^!42SXG`;C1>s};;{F@5 zG8e8r#8;DEQhz1zk=(JC&+q+a8@tC`u*jR^ds*&E%29BwxY()ZiIe%H?k4dy9RJT8 z={HDvx$0+Q;AyRO9@2Sx8hEBW|L7C3-B0E7mzOQ7H?rQveEe(oMW9r6=S=hduP+pz zl~ycNd~<D0<eLqLeIP05M6!x|)aT!Jy6ZQUuH4zp>t65uBguaK;ou344abciu3CMh zagVF`?bR>0-9EDCl&bfN*Auqp%)Bv~PyXF4={S{~J16{Xug;kWs_ENp+=>=TubgzD zRlarorbnwzZ#rReFE(UrUCOUXj(*8Wr+>|=mJ*H+5>K+!Pj|{(`MX{5O}G5Z`E|Q? zT;8^A+O8>YJ~DrvS8sbX`2FhDE4>4G>dp1{UTFcFef;8D*9A}GYu?8T#%3Hnbh#=g z^QgZ#%elVgvOg}rvpRcH_Rro2`Q;1i3l==Rf8}Y!>C-a{-fm4gw2+;@?x$m3zg&`8 z)8==6+S<a)XZTt7vNm5?s-ZbI?f>8Vi*`S-54r@YYKo(|57&F>bH;Ak^2q4$1>GoC zdmp_kZ0lC;V*S48QrEI3?&jxb`FmD%*6!I<B$RJp=K61i^t!!lcQ?=ca8&$JaihDu zYNX}f=ktVrFOW1|@%ltW<<1?BKU#!szHBkIl&{-St@6WZ<>LfU`{vFyr5iyf$_*E0 zOkA3sIe*5%|Jg627I1H@FZufDg6ro$hoyw(Z{EgTZomGwaD8xCSe(4~>=M>(Nj9@N z&F^WvJF;e_Vx*;QY`S>-89w_tx#u2TJey+DJGW%gj)}(wuTFX`!D&}pbxnO4s1f5F z&3*X7^st_Ip<PFI1&hV6KM@gJ>b=lxgW<-bmqZ<x3%#`Z=O+I1^LMF-a`ibMMSr&I zaLkkLT)%wPS*v?zSmy1usgSR^@Xu6x$s(sWYub5(Yxh)IocZ-F)m={0?sy|lX%EYM z1I68|r-15f=jiUP7ff|`vd*W!`&ja}>A+2I?YddlY-_fgwJy20#iqve{p(f9tH1q? zzV}9#FE(Vs+<l8*=1#9odV1F9$5Z|Kqm0$5OaEqvc{?`V_<g6|zEt+NIH)0CSeF^9 zZa@9P)V_%i{{Buk1lJxG8@E3AJuy`@{L|g8ycy>2*La7nmH+6sOy|+J<qE4+mTq6S zW=_b0ul(-b-@coA?k&vyn)_$%&46P2|5etfH&0<Vez<zQ%e{Nm>(8zZy%JmA`7Wvc zU(G8ktIJo8oU@rMTcx3W^Zj|%66M>FRM@%JHTAX7KJ$ySp5NGc>D&45yKkIr>?~3K zSa{XfZf*XCqu0NNOSSFW`f&Xp?dhR0_a;r*%M@)Wcc$fbo^bW*fD_NIYOUHDTBBG0 z=i{>8ViRwZQ^$G)eHW~sJ>UC<o52iFCa-sx@Oa0yLk2xhA7+cO9=}o3>~O0?fAx-} zx`Zjw`m!PIc}uQ^-oN=xW%_rc8qd(zn;sqLNcvxJxqbP>4^e6vvv$1ybk6#1%<@;K zPPwcv{rQyZZucyY4#qd^awpQxFVj0J`s3S^|Idse?PQtjQ6XFPmRHq81Q$gwtpD(8 z)yev>c<WcGHMjHD)K1uc^tSZ<Gp|}NPMQC`&Tj4dX>HTz{9~)s6@ItNdyCkfgAKM@ z?VYCl4`=;z;@7QgS6k!spy`kFWR(wIfAjy~T~Omca&2p(gtqqjc!@uTS1;REcwgRj z{jmRZ)gQla+p&~pA3iOl@BeyZ?^gZ~)7P)uWxCLOMt$78T$`z!3ny6E?Ee~eJM4u- zo8q~s552)*ZZVzfy1R2K<3IlSd}Qj5pyM7N_Wxb`d2$HEB3Iux$+t9xYwmyd{3^?O ztKruXwN+9vImLfB=l18#)T=$tUjOjivi+aUSE!UMEOu|I))IcVH@v3o|JCqqYcF`N zT6IKJyqUebezpFJ5A%=ie*f*!ms0D}9+v$tm-*ex24&eb*OE$~*6VT1ajq85P>S7d zU{O_=5#!Y_H0`0?Q{MF-_boE{l<}^7lG`KcAJtFpOnh+fB+I_nHh&5VU3h*Q*YCUW z_)e*KBqP7Q4%ZB;(1ok*Vpb-r{OAy@?gzK&`LcACK7Oqil0O)|P;J|-<zIEz*0$^t z_?|JpYS+SNc85J?Z#odM>()-?gL@})?*F@1V)E9~)wbEitA4*1ub$Jy)D-GJUoXry zmFpMR>=G+T_E@p?$BtLwpPAFOjP@lI|257{KGwaGyO6p5bId-&>tXlv^7tRznfO5N zWXmk6!tDRN<~Qm$Xr*@_KU#AxxnFd%)!Qp|vM+nhyO^^!_*Pm<8$F4Jl$60y-McC@ z@4M$@|B)_L-2Kw+(c%v+;Eq<_(es`fR_B+0jgB?FxyZY?S(i0QrQ(4MdoRm(4>g-# zD{d6m{@cmBx@gbY*+<pg#p89>t=MvWP2{7yJ6~x{E4fi`X>Xp9nK)Uk))?Z2rCTGS zYoiMjQoQn)={=D?dvdPpzdxZ<&1aPI-EY>4o-UTb9M+;9RrSy-IqCJI3;r@DLU*`l z2E^<8{fVnyd-Zi;zohYzeb072e-m+ij^(2jm3J(}4j<<2_^_brVe4Ipca)>L+m1ZX zHCI_xSl|3z?$-Gy)6MsI#dauPJ#tOt7rXB29Y!nDKd+F}^xT`7`*q5<)0QGXeb#cv zooG2OFK&J6Qqbz_kL7COi@#n?V(7T)&obNGe@*I_jKViOTW&!b<L+C;=7-$3Ja2!d zO*UZL55*6^W>s@-`B(bUe`R*zj9nF(6aV+9F7$r%vOcQ%+6^<IKcVhDEakOoCT5`i z%>R$_)7Bkn&C0&nslMs5|Mr6A=f9_d`&{D7r#i46REXmCHc{L5srjt_>-YtFON#eA zj1;liuVNCml0RGI`ivVvG7<;PqjXZg7wgFy3f=iS^TU<kM^ldODxJ3O$lPf<f{VB1 z?>;-Jb$#sV`l@d!%<P+9WqD8IF9KB_zt$f8HS7PQ_U)ZpcG;HX=FIhfy?x_1##c^r z7FzC1c6{)r_29*eQ|2#W`0C!Y+gkXC;P;KkH_iWdWtZuWJI?%_$8z4qOcsw0Q}a`u zTQ<wWhixgSuX!}O``MH58u1M~|DC_mT9WMjm)lNv{q5r=PW2|DQ4%)!bqOKCMb?Ru zxylFSL&{Wk>^6S5^ZAi^g<rE?Uwcq=a!JJ+%Y5cP&%Qo;`ZVdyb58XQverJ)YBO5R z1fFQzi^^G3yWoQTjcxspm%en%a{Y0u^54RXAq~64N{?Q;+U+cU_A`IB$A$X^pn#Uo zRX%upm6_0;qcbnu(kiP@wEx-Z+WoyN_x2Hw2^*8o&a_yV`DV%FBP*Ajo$VVTHKPyI zX}J@%MWtLc<FEbt>PfpM^tc4q-HTeo;r}F;tyEXbYsu^BVLkevp1VJiUXlH?ZI<%E z*g2f~`*r*xb)wTQKC*qXcKeZObL?!dKW#a@CO^LH$;4^*E0`{ULi<$xTG!0C&aJl` z*v|&?Y^iy1`O~&5`#oYiiY8TE{`BGMpSx@N)-GC?n*Xun?5b1Jx7?cS*GY4}Dq`85 z=47LnS77nKMtj;@%eI5-_Q##Eeeo#q&fPATh`N0ijGMf6&iDSomaA|gaNE|7WlgNN zUZzg84-lU;x7RedHfsMZiFLLA-Ms4aV<RnBI=q(en-*~W(#~xYANYTIm*o1iRBOwo zyt6IW<Hgx;Rolrh76rzi_p_V%_2uDNvr^*j-OyNf^T)aJh|Wd!(>F*%Ecv1HDWcKr zKw<KhpARcNGu|wE@RQ5$p~6DxPSa5H-&^**ihq2|P-xB`<C0W0mC0|W1mCcH{-EA5 zJS}RYQ_tBc6(u<)r}TC>%=z-;gERLjrr?WgO){p@-Pb~P1V{%+RZiI@AX)m+|EJ)u zU$d%Z41;e4?V1=BUc21?^zEyE<VtlV15;Eiz@4DmT|O0`eG5-5T5;kFYxUhNnMsGw z&6|7FTZq%FZqJPViC0%QaOEnT*r?%Fw54A2le^seb9-+uit(vE^Vz)KA(lh+@P*s? zAMV`yp;oFJ8IY)AQK}_#VRg8E@&3gjT~D7H&NG>pzy0j-?QdUPeAK98U7q&qtNrhp zFWl}`9Da1_fXbChg_B<-P6q14#=emMlKJ-i3hs&N5-&rinv4AW96f2~-z~fO?4Rg& z`(#&tI$eMI%GQ+L8qk16MB$E)-}iUd-rWB$^<7Znc3Eqe?1R!hA?4-EU+((xrDebP zdHa0t)C9I$4igqXi0syXHSbgA-#Pn&^L$&o{vNjH@(*~jjCpqMy83C~Mdx4lEq}M% zDRiy8D7)LXUY7Wz&#N+x4}RhIyqx**M)#kZ-*O!995<)ecef?p+Olq6+kc&VwcCGe zvbT8is$xB83S(7lwxGZJkAwf(X8m5lZRn_B)&D-u{JOn!Y{%VG(s7UPS7bg3eEv=J z?Jc*a_?vak8|Nw?jGe~$ey@62`uqL)kCYY)Pgd{twhCW&=e@YipA8kt%lwWW58`u{ z<|qou)-}6s|NQbVvwGF-f#OMhmu|KH+#W3a`9i>BS>OEa@hcJ}(s;O*Y&-7pAv#Bz z^W8F^3#Dc$9Tks6{URgQuJpXqQFTgluKkvhUnLjAeP%Z8J5&kEPC;v3m16DB*B|>e z>wbWE(yS?Ru`*KI4J@oCu3NnBDBr(lJ8Sg!Z2MJq*CXh9(kxr|Ci8lgHxjLHmihd6 zZhutnt^9w3?8*yMO|y^uU2;8sfBF9pr?el%?)d0d%+}m|7GlHEX}`pO_N_GB*t$!= z_^P_u$Gw--ua;Z<z1*0$wU*&Ze(BXGTLhP{J6coS!?OKPlFRiJrvK{pH9KY~-+lYE zHDQ|ie395AYa;Le;rws=e{%imbwZ0>4|Iaewp!~Nl&|%T|NoL-*RQnB$gh5UX4_4^ z_d()G3r}5Jx~DlxaNdkdi?3{rIJ#}(gLNlcnwT~Q|Gxj<G&OO;#FAOPl839liS!#h zes)GsJfTPWc#`3(Qx0OFyt#a9#(dU;{U29y8_rLB@h4)Q{D(_+o_DNFH=5SB{&PI7 zwXWnZPf)d6({5#9p60owV%A?nWOQzyeJ|c0WB=L5Fmtmze_?QzH+QM;1ZGg`^T?if zDY}b!@wJe<PO%-KKk_o_60U6O(!TRO(J^+<mJ{{ICS6edSfX31YsR@vMC|A1wbGpL z`g|fbILz5J!%+FVs^hh1=R~FF|Cg$_+w*y~)j>y)|CQDr-FD3U$Hau#J7@d9^16#} z?X4;}X8g$b3b;lK6q30;i!1ng(&}aF-J9yKnw<W!IwNKRXU*g}<#N9-_8+<I*LdXb z_wLPZSFc_vbvOqyl54H2SN>dii|o>?DYuMr0>pmWzSmn7Wxq)8h|JlOvfNDd>H0i< zearq_*(#7B%~|*Ry7IxZdk!68ow=c8rA12JQ_<jU><!C7MUiM!_j;-OkAB8T|8CjF zBfaG7jY(bJKi}P8oiFPWys-7)=V$D0JJUEiL4$nW+Iq%?b!)hd9v<Sp$zOjWDs$dJ zrUzPE8Wr02Z1s>Xth=#$)hD(?Qg5!*&-k$^KzhfrS7Gk=yQRFt_4#5=&fBk1{AgLK z`{kB<)91B;H+S8b!fItJ9JcOAuoi<4DF2*@?w;%W|3hZw)s3MorZ?8q#;N|-FIAi* z^zzqI(Z}6?eop+s_9`kQ@tsG(^7KPXr*Dee8*yc8xgzt8E;E5A7q*G*niwHrlkZxw zsD3g3!_7zc-!u)~E|SGO*Fr{TrMWJD{MqjBA?7nWx5)k8@@@OF9+vVFwKcKYevvkR zOZ21}81{i?ax$X3W6!?d8hdR=&ngBjc;D~TclRq>QxuW<Vk@!(18;kLC@+%deD}g< z$0x6{FBczGiZLW`-Eyd(;Cv(Mg<F^U2lt1Z^Q=-YHkya*S*z7;@$BQVT@xdMOE>$! zmd^PYczw~9T|bV=xHnmw3!CMMEZ6z>!+mEsvx7QljYDGg!~B2h_qVq#?)JF0uIc>i ze@C`AL|*?F+4a5g^{V$d(&7K)N_F`z7z)kV-Y2AdaPDl*>oJG>Y=n$w)iay{joPe; z;y&!5&(|9rR@iFpAGyU_x^N%sGj_K~bE8`#Z40;CN7Ph5o_%Gj1zY~HvVInR|DL5< zo2%A38z){?D?IgR<8hTZE{5N((i}xAqPi2h`<LfwMCJTnHTBXI9sMu-aj~YB-*0p2 z9ICdjdvW&unzg+8!Pg(zRQIr)uTRS9b~aADr1CLjjfcylr3@S5L8)ZP)(5*UE)}(Z zx_`>u`L{CDFTdF)%w)Wh`{kWyztV3%o9zGn)6b<b9z87ONoqMa5AoSd`1`K>X1)T$ z3!z+v6N;I-P8XB*Z9jCi;q8xi&nCZ$7tdf8k+BcG_d%+DxtDVPqV*?Sw<#Z-JA<=+ zvij!3{OO@y^_$oqc!0WA|E@K?UotH;W}}74IfF}O>%vnzOYR<e@Z#vg?z6Qbu6?)M zt3U2lytnd>WLw<4j~)fbQxAQ6`{qIO(a#$g4wOJlP?FJoXsuKKnZ0aXNUiC{t2O(B zqkeOgD(?Ph-m%~JPeio&q$^u@xVI@Ete2h6x&6)|KHDjwAy2lIGAu9#neYtMBkn&W z?A4UK@$jwd&wkl!7iDI{`WcqF4<_DF>t4nb-_KH?Sbts0Qd_v}ZBo0;p?CXkFX3fj zxbG&-QIwOXd+WJNqM6h366J%x*MWK~AsrifPF-8ddaFV7VW(HE)nm2l`W}}3mJ{El zu(fP9de~<j(Jy!Ay?H(};{iEP@i7<FpRH-%s!_4;h=5{$hTl6K@SM=ZSD)Hu-I(R{ zU!g8y?iFcIt`8mgZcXgR%~bZ?c%3ghh4Y}o?{nohrf8<+D=_?!0yQ=^Z_U^}M<GA` z^8L4wbDcBK7XJv-%C9(E|1b3VQSa_Q={lUTLjKop?Jwj1Ri*Mnq5ib}_dmt#sfTR8 zclbM(l@-ToF`NKZ%Vpcd{v^~meu$~5xo=u$vwPn&bJnQ;yM8P$TesbC<5CNQCV7|b z%MO*TyZ+cpmh;^dACC5$iR~L_=WQxtW~`6{Ic4qE6}`2GK7U?)?ElvK#8|)S7o^2l z&+Bvc`o28-ZOuk-Ge4(}Mb`JBa`EoB)<SnQXMQ-q{ANM(jcvJN`3emAAa`urDz<vH z+IjvtQ!hp5Moj14QkwMF?3!K1;a!VXUO4oi@-y?|S(9#fPPkdDvP0Qu;j%W_LYCh@ z&*$DSW0(huo;R7guO7|+RNuTQw>Ljxuaf!Ap#M$0#@@*<Umac8{p@GErUmzvY%8}W zYb9a1N*AAR_x9Xu<7Ix32}&RHt|j?iU3;`KP;>9mSE4&R^Ol6Qte^W_UdoqMC(2bR zcK?<n8~cd9BjyoXxK4Nl<^R(8G~?GyfzA!@Yx`r%=h{ZI9=HsOU*5I#uC+<Qw~LMA zx0dLx6Y>4|{O9=y!FeZc^IR4`_dV(K;c)RR=2gk7ec~;iG?@ukeSdd1SIuX(+PwL3 zVQJ^TF?=w&<uGBgXU~%tpiK6={j==MrP+n69Zt9BPL_^0Dc`8Mw>0(X5~j8F7Q0T| zQFVT|BKToL+}^6vz_?`P-v{|`)VFYM%jIYAUwn?)GxoSgpOkQX)W-BLQy`6WkD9%a z+*f*!%vv?OHY(nxCd_wB<At{mk4^UP3Ko0q`};cwL+nCc7R#{tTO;B>&#wGuEL7E8 zy1HQRl6xUSQoA)O8a0KDN|m>+`*m(x;p_L$_L*#8%2g}*tC(4AZ2e54>}G0xSsuuC zUKYz~aoHEA+&RYIYku86`{Jj)i(xY}wrz<|Hpv{mV1CW+#P6=Rz4^03rDym(^{IF! zS$OKv<NmjI<RDS1ldEfX<xcz)`KFZ@m)*GaA*+vn@$+2I$S3@dKCf(>?xVxwvph%5 zW$~LGk8d0mzrDwn!KSy~OyEhx^(YhY?Ct#PzT1-?%B4uWoH})K*Poxdo+sJOa=`7` zKe8u3USW^$z3Ef&(Y5eY($AvV+o2Wn>!@!3?E3H*@*>{h(Hjf$v%t;a>Fw*U^`>lF zubW@d`(1SDME8r~EBwzw*SZ-dzqt=_bbXOdmhPgJ4vl5MmYtCIjo);<b<yXF_6cvF zYFp2`_iX*GfMWTpn{O#<XQds=Uf&rkrmFfa9~xp}TgB$P{@WcO-H@IUwQ$Qf#rfB^ zt8KG7y#Bj+{ej<ITd!{Sp7WYPh%3!W>7bugXRqAZf=k>7zzYJpt}QYZ)w;k|Q!iF| z=FU;4-Ba#uvM|X@EGSWmz5Z5w``o85w(rU^nwR=sfh+CMnVFBKxE30ogr>J-*X%&C zpU#bCRVJb)<r^<7wA<Keo<Be2{>`tg!c*6t{xN+mhriFuz}s2PcUDg0Tq*MUa(k~- zYp@st3n<aQT<fY68@hs5XKn3?BlW3=_H8pi_onJisBez%!ukuFy0m>Ix3HE4=?dSg zi=MOT#|P(CZy6!k?#s1DpLeNqZ~3QtGFDAb_**J`a^vLN-~V#qEk6mZM=oBePF81s zeNT68e>8=af%lffgyg*JgXJl%{}iROm(AMh@WM$aG*YHsV(XemU3=Fp&hW|6<m=Jk z>^qveg>Pwy+L?K}evxP9dhY<G5;K7(Gj2!atgAn^{Oj8<7E)^j`t-79H+@YxKHo&W zT#sYUUIPoOS)YW(*mee}3zy90mD8#Fc%OlR6J%{t_C$~C;y=$v#25E#dN=b-b*($U zyL(lbp`zg|u6kXbdFJ*8t2B4^?$VpE+)wSyTy4L|GxL0R!|c5gRTKH2>Hcw3wQaLD znVblS>epSlqr~ySn`1|&K}sr96}#nnTt$mK)FjxX&3s}qCLUX0%3uX5sMcIlT50}q z?k)AJ<<ItMoCr&PblNF5q4C=O6Z7Re^B3r`*B34IQ2SByXv)zwkymCjAGi&Qp~$sI zueI&}wZ%q8KltX&FZ}mzg&q$J6lYQkP!#5I=GpY(a=WVGVbKPWT!j;cOSgKwJbScp zV)p7h(^TUo85{W{rXeR<9wil?N_yt=Dwpv=CCDXHt|di3=9xb&TwLEY)tIS5CRc4v zVcUuNmWzvTo>cF4Z)af81(jvh*%L1<{>+?S7xPtnvzc<k@r!APGMD$hxnKW;k$ppW z{L*^@3=Xm!MMe3#+sya9y!=V&<JYuYH-`SjXItd|B&3|5r(FF#ZKK53HU@@Q4ihFP zXHPVH#NG6K-Ksx3J7)_Xc${Ip(7k`6jYM3{#42rudIxEct;yLN7r*>p6BXy1vlXi9 zVTZDtT+xXW8gkRP7l8V_lfA)4HQUDpR>ofM|Hjs^=0e(`{yLLSQ-aUbq$n~xX)+Ud z^5jy~o2<I+$wy2WX0)0KxA7SM%sjy`f%}%j1m(L?FWia(3(kD{U}}-dn4s65##GM` z(P$>{#N&9!{>pX!r&s61=KM-y`C!qW#srZ$akL|GiFkY6rZtbe=4@gxm@90|$e;sS znfD|~<-(_h{-;-WoZFsc%v3Q4E~Aok#NdnSLhor|J<s=V%<yKanEBX<kzoy}>8_Hb zBBJ{#v-03Hr*1RlhWg`{dcq6`K#4{DwuB*1ZRF9X-Ol2VEoU=`6^5xXG%U?vcJ$k3 zDAcF-CA0G1wEC#+l8iQe;Hs$i8k2+UmPQ5j)e?q0j~9OkRb9wks+{_A8p{WxS0NS) z!q>-Lxy`^(2C7?T9`{In9W;O1a?}6z-sYfaWn(%Q#h_6S8bV8vQ*KLK!|^{S@B`Cb zkBGghjC*>_gbUWPHUxoee`XjY8~yU~r!up>$zMT%vpj`~;YNd*z>^d?Wo>PBU7kKa z>B7|@Q!Q1684j?4+;muCW#`(DnU(RTXE!B+LPyz%k>L%f-(b`;@#@t55ds$0YmevD z-{@hGd*0#0z)*dGt!a)=l8Vs%2bVu>Ge5T_9i;2mOa_K+pek<WkrT64&3?}Aw)D#i zTTnW>a-M}@18=UviI-+>uO6q`>8{`N(DXJa#cIyuWJplI<uKuLZqJ&v`}SHGD6KTV zxlNMM#_yvK1B3NNwx&7jl9woMyt({oeQsvO$#Z8p9u#V&GcnxgF%x)FBCGs*)%#h` z<!4=xesiaXL2h}G8bbr9_wOfecxj5x_srV;YyNki1vz5MSr@*qbjxtU$L6aM6U z|8ixsd^d*vU^8Kc19e*(71HYsFU`60@ba(P!0%iBf;3$@!@{5d3W;yx%JtIO@;YDm z`<7?Fxeu}`O$}0NUC!*;vSbU>+W*UTse6DuHG`AE0Tfv!Qp!uW_KRdOC$IFH1adf6 z8WTeRD2RR^^DqHbDpOqR{I`O9yVZw*!3pGq`x2VnK9AS3<{PX4nYD5nCxb(WnZT1b zqV>ufLsA!-ZP@ZH@es%`uT&<63!wFz)kjY(+ojI6<)5x*ZviMKf@U%>Y{_7DJU7o! z$p5<7FZTR3wG+xfGFCGg7@k06KDpkVUmLam*%Q87Ak$u@FfmL3wH9R!h5X&S{`{2A zdbjjm7em}~4>g7ct_)_!dO!D`n#lj+^QT>(a>Hw{DB~W#i9QSrqM*d^O~Uh4@8>_x z*F*2S?&V};Sj);#(`+X2q({QC>G+9jZPRO`;+&I=zpAk?Y!PGl0IFk*bB;U^RBjh% zcU!Y|p3~mH3=Rv<vTPA!@B)QTbNgJAlp81Qbl2O(xk2UXVUo+|7pCn0^S&;oRQT&L z=7zf&#*DD^|NqbXuV?K|gzh`+{m77De#^%pn{feX;jMATi%#ZtIsd&+86HS)nb~lS z$w3no+%G;fb_g;oy^!Yg{@&h+oD8oPK$hoU4Oo7Nac|YvMfcbkHb|Gsc{uf?F=(`! z2^8#r7}zYq7{HsW_8^Lz0X%MggrgyA0w==-P!XkoZ%@I6G^hD?wG)u6x{!A0qPx6r zGy{W$Y!b`#!W{j0PKKP%{~6cpShs1qBfp6_zXfOy4|to1p^=%n#q|3urqJ6E9CG#5 znM{qQCqB^Eoz78WA~4-hQeLe7?cL~(&`_D<A4?^+a%VZQMoBFem|E88spag{<fNwA z)6~RtP~)Xq1V3L>f}qmgh!WP9in|gdg*XiZCBIDYnr?i#XUW+UDNReiD!2)_nWgKs z7u?A{8#nKMe&3hBd(H^dUwiZS{b{+U4c08sJsN7oW$)g`+FlfAoU<~rJ~#2!zn{Xj zq7KY86}MgD84I38@%yc>t^9F(v3lUCi*M#`e)B2l_Pk$b?=HUY_hsq4+<oWxW~NS` ze&gGdbEa?1gcYriZjY@jHr{>K^@QKYTz$Knv1_+&zOB>pCM4;$aP7);X{R!!6iHk} zJx&?wN_ge`?p3x0yH|Bvt+%w|bETB!SGGmhb6SckTKAf#++z!fsym^x+h*PgBb$kH zIU?I8KnS7Rb>Ba9I&0s|6>}<k#4Jc%ch%zw8+<l-<y61iw{PnkGk#D6+`VL<?{&SV zY<BB}xsPtgU6FKhXWxC+2^1msH><X=$0u!%<hYr+NAYu1_oa&V4&nMO6CQTH5xM`Z zehG8&@)F$yki6!`x8MH$eSITWjs_mZ;m>+p2?OT&uDsv(?$wKJx*gN<M&$0d(C`|^ z6E`_-YHrMRI_G}EuSLiCgx~V}-<I2&mj6`;#iG>uxPnKWI){aCc1}p;xT(48?bG&u zzqU@ko2HbaZYMBNF-6^J8l0#{FzLx!{$ktw{|l>s^VFBk?wl}p(d~V;K{vK^g50?L z%C_nI&*m8mZVJx2EpK}O%zAW{`}MZ)w*TDu%o@Gn`W8pG?|roTbEU_VN1dQhxwKb& z^X(i^0F~W8fAv*1IGulN?BG$f7TkoFsK+l&Jz3Z7e{;&ePWHZ$tL9YJl~-NG;s0rU z;j?;hHnfgQ-9D4!rslr4&+Fbv{#?GVQraPNPt`%qk9-p^Y;0_IQJZ(dZ)I-$wZq`h zD7iho{lgJ6Xwdyzu>AL8@0%cVNzb13xDqCzbcrK9L$!J3{9ZX(eB*7O7EmUeb8bEd zsF*preec^{j85lVPxxKTz5mrof_G;9cE%~kR*TPBv_9@et>c5vIlbzef^%+PmywkC z@%w>K+3fZSbAxU_>zvaIEslOTxWGy#ubkgMu0J+BaHZpMx{%RnJ<G79+mEy7tt<-m zEmk~hb@fNC`Rlp!?m~F3C(@6HT#oVB>}Ohco8MS<M%FCu%xjwU$G0&uFc|6Fy}o_h zx36>7*6xm;9IV|Jwwhm*cW>d6^cUGrkM4W7?a*Sk<<n$Vhg}!<J9~5I_VUtC8-9g+ z*--qw<ZIrFTH(FNe}#OJbI$mg=l*GplFsidE8BE;FRi~fW!=x_`!>I#cI0OlWgYdN zxH&IV`d-xU<5OpssV|@QrX%)x{hDnCx&QxMN&LF<MdH+ziJ#uhc6ucDI{0EWPvTi? zXM63cFve-NX{!=XgG;sJ56tIwA6jx>Yvsxx=W}K6-Fp4KeM5d&me#)8v-tD9<;{$y zTD|#`pU=}-y~h9O`@(PO+xh;kxe~ej@TTKFra3pi=Wsqecq`F%v-6An8m3zx71V#< zX4%@_o0EI|k$_$Fj9F2is;?jCPMUtLs-WuEhKVbGB<fzZH@mve?fphO(f!ABuk-(} z@0nj(rBi(-<nXlEqV3}Igynwj`LH2q_gp*EE&nBUZd!T&j&0vzw`D=?XKz%Ndc04r z(5mV`9mlzCLS$KI>hwRk<}02?JWO0#cl#=jNPYaBC+AEbTjZ2z6-IEpp3nFA2d}A# zXwvr`A1@rxuis}nZ?j)>YX3~G-l%WjqWWr`zm3_C=P$oc3T`&vSrh&+Q8{{d@`v?2 z)m`;ZPFy+Twc}yJ!=s`1?#Ntfzq));d#sJ}obOLJP1te#SI8eZ_x~LdwyPOV%NbwY zk-Gi;`}idBc{`2g{I0t{ukz%|-o3Hb>vg26!1Z1DTCS<nfA81-_t(VgYeoL`b+fsb zi_L$tF6?$N#Ngkt<>!ArvAwo@(RYcqve|dS8K>30no@8R+RSM9zr3DtrTf!u;D(X3 z1!ylbxM5^uWNOLFm713V;h9@Zf4JR5pV4CaLLD8k>3;sIT=g5*F{f-j$F9KfAaD0? ztDE){YUBN^Inq)OpZm=`J9)yS6+5$bh5fziR+PB?Vr;QatyO@CYmms-d7qyA-^=>* ze0>e*ZioE%{k1=z>;LfPRNS*P<nZnNf4=Mge`~+zul~W$)jm`2&#gbn{*m|p&-L|{ zm+SwWwy*tpIR4OW`@i|u1cfhi<lAnXwZHDC{-^o%|CFXqKe@rmJYqW6Qg`!$s&B{d z@B8!c{EIu)^NcP`xL@~sbx*U(#s5Fw-k$znrQ*l={QZB=>l=d4M+<wR|Nn<ty=HTL z=6mN~!qK<uSA6rV;b%H8b6$OF{mb`TdrjQ`xlI2kV6G6pW7)q)&7Y3Xmp!^#ZPGQ9 zd+9INe);iu)~WgNCErZX#(({0x-@R<$1a7h@7HcGoMsvP=i`pk-G$e`b@9jjd-zl% zt~T)Bm%n~fKdtJV-t%G6vgx&}Cf5IGzrWqZ)A|?V^k+e;W=u8@r^^MahHwh3b-m{K zasKu1)2oA3o$8BY*a9?!OLrNS39;YK@q9V+psrE3V3LZSl*vrNZ!c`OMnr8@ygsRf z|6D-xf;DRtC+BKCjoj(+u;SCA)(3{)m`slgGH0w$jcRt|EwC1geQR#n@LlCwz_%|C zx?TplT)kaBEjH-m#ieeNRZCY*x|qAln(w&PJIC%X-^FIHl%MLvzhy;4*2Gfz5ZB2s zwuH6oPd~Ru)uVnXv%2#Ixzc>*S-TBAI;!>K|1Rd3c=Nig&jp>+;prQ1^a-?9USF0r zS^QVZ)YTIr<YsfHAI-DT`||4FLDy1+oM6K#dW<$%yN|fJ3cjrL?{jqg(r77NeRFDl z%B<v&qfD{qS>MV8?4F<6U$3Q|r96YP_EcqHGJi<P;s7U$$L{~9_g832Pgi@VZlL~i zXGV;f>Lx2;m-O|^ZZ7<up;F~5;UXG2;nP~vWXTBvaR=LW&DfGLz4o2@1dFAtIk$ut zs#T?Ch)qrFH#{2J{^&;b<)kqF;&8re{DB-nSMUDzWuI<f!8&D{LBpiCAKct>!dAXL zKi&1cx(;LT^lz1#+Kl$o=e<`is6V~Ue68t%Yo<{-{qiqN*CZ$Mm>NIKWE9*dxUAFI z_Md{C`t9N!(#I~<c+6|=+S9r)eM`f8?I6aEkftq{gN#drI23MXOwROQF3-MqS8c-F z=a=Ru_z7QooY&_yow@eD*_%*{D^~M67RJsnf4U{z`I&m+<8Dt~mZztcraYdvB_X-q zN7S30ZS%=V?JkpL`%R}yFL{27<Kct6Y1~?CgEuBF<F-~f<t)W_<(=5d7FmhoZzfp^ ziF)s@UL`PjgZbUed)%5c^+cAO*`3bbe&XEe8g(1Bhk`C!4qjo5a&3Q7XBIX0WR_U+ zs-oR9luCEySvIL_F1+?(O8wJSODA`BST54=omxL*h4r%RqV-!nC#5nUcfP&jg}>Ds zrlqM>b9l7F_Pu+zc=g%R#b$Po-|@1)_?o3qd_3FW`;O~e7gs)24}9+>r*_jT@UHic zIJXU<Pd2#D>wL#-A7aLPZfdX{3y-q!6tzbtiUk*DzqOV7HS7HczCN#2`rkKbiS6!L z!flj3*=IqhO1**XN0#%lGo7{cmUW$tDBml+WN}g9CpYDmS)~@|mPvE1jbhF=*|2<@ zYvh8BY+C}3A3SHc@ZpMvyNjMROjw#L`0&8nA1-HG)rI3)uYQV(PvVQcvGs%bs>^*} zHK*=+zpy*xT_A5)!IvAl_r$HP9Cd&7R%-8wAAMIQzSrKvbn}PJ+38%L)RP&fO#f7) z8CxF}_Dm&ko>0!RYD@RUhf}ZKcB-k6aaZ)T+;YGyC+qL2Ga4EyuQtgZdFBvcvM)U1 zYItDa!VSwWeib{LXSLb>p7i&5v%?n@Omj8n*RPke*jD!TRnhOcr4R15rC+VszHq_D zvaN34zAxCTS-pBDv*q@OZu5V*Juut#N%+SyXG2%-P4zGH&KI1B(fb~CuV%9Ah7<Fi zn78J;1fNZ-S?8<xxT998JGVO|z-!^3l!;b<UYQhJY&~5RXs+ehBqove?Af~{FSA9K z>#S~MT0fh}Td|^L?+n?BD{rTN)9^jYQ`WUDA)$ZTl8lDv(%Xw)S&8h~BIADNTgLTE zOFQ%?PPdh+2s#m5AG>+_To$7{HT!SR`}D!A@&Z3cM{a*n#_6IUqqH3jVT?-?G)1?r z%XbKhD&CjIZk7D%z;?r`hqqHi>^Q0}JU@Gy$9=s>pZ~Fpyx)ILPtSWV@Wl9@Y4sJ! z#q9e#pFc2m*-^i0-a}1AsW;u0a}DS3&d^E=)csXjI&<3JnG$QN?4H+amoHd;zb!xc z%ENz0)^`7qe-{&ZJ$m+StE;(DYuF~dwaO~q@Zo^ZvVU?u<)77zVoywZRUNk4Q_P-Q z;D^`yATFlRW;wY>l{bS}^(!uTF7x9J6mXsMK}1i_-~CloQFDe?oz8Cs9W}qTQC7v5 zn5D#asU>U@ERk8mB~je9X}<^i^b=py<(a-@PcJ^A>d5pXV!F;(bv@>Y5029x)@ud` z-}&CYXq_Z`m0qENlIo<7O=q8#Pj`|v*H+rMy(}OzVmDLjx+<4_g3EO*720lx{x;)1 zo-sl3_GWvv|EH!;Y|xZv44$t0P2DfZYi35)w4Ao9tMn{HO(riYkzrt%B5SI*e!s@) zlL4V-db1xrn7-)2!@biN7bj*M5h?#;yJfAq1n;uTn;mq1X3bk~wzl>zUrANdZ1Ic2 zP7AU=R2-Tf*r+MN?Y}fNaQ)}y-y<KDPnVO?w47cLXUe+$xTs<;8{_-wjvboTjGWVJ zJ2Vw_Cq^*0xrlF*;S^a^-OIY~u7+ww^=qX<#l&A$bEZyenmX&+$Cx-_G5cvX41WWr zd#9?}%gLL2<%{lL|3!vrar@*OuYMj|;&;=1^S9c?{0j_ir%qpysyc1@v^eW*u6@Su z*2fDyxmR;~`fU|WZ${ne>Z+P5jE&QMKve$pLRC#osiY&tv76lwOwBDc5~<&}`~w3s zi!}@P+=)N)w{KC^v|(gS-u_WdQ=EyBWjd#(rn}(mZS!|_zh$22d3DmowP%Fy+iXwN z1S#7*eV&$P0b}lVer?SzM!x%x-JZ#{v8{1u+a<Fvcl!T{n*K6+obi#@)|dAtbY7^v z&9PEIS^4($Yu-PL1;n!Rr@zcoRp%;ad%mNRW0j`e+38aGss<{TBVu;ia<9?9mMwN+ zlg8?5u{X&tljc+lU7F3OI?uC#;lYB-?b8n*RdZofpU!biO@`TVfx`3;net-OZI7vO zGftlFc}z_`>^Bc<=j;a)yzWf({a61vqB+#!o{;`xW1&4_e<fWsZu?)++r2kJoXv*g z!Ls#?KQgQ9jVFInxa%^HNunS&`oqC*Tv^YVw(^G0-p78sQ20b5f6_$Hs6X4Mf4`xs z!SvO7x`d&5FrW1lWn0O-7G5^5nNdscPnUQgugkRO@O1YF^1+JyN1eXLb6t8NUaHIB z{dlK-(<8RhM)R8-_V?U%4i-s&QJ=p1fxHZ3#q=8w<gKRH+)`CzWSVaIP+o@7e|p$M zc~d3rDZgW{1hjCwE_!RaHks9C-9M9OJ6`%fKB$@Y!$9s%A-DhZwGZW`80Dv*cqkvr zC_G*6k-Q?~yy*^)<d-wmm2XefR%B#koIBlrhNezHf5lpN`=;}sm|oqh;p?)DHGgDl zHT`9uSdLQYn>BtpPgeUyzvl}!`hN4;A*n1`)m1OOZd{wcVcWJCQ&#gR_qfu$E$dFd zTsL>qqLQ+Dvrk{Gr+e^e_)q_oYyGW$?!WlOm*$)^Th%LSx3)c;&o^%MVYc*#-->@` z-MVwZnYWH#clr5sMgO;io%NjHvuC|kP>l7qu$>`Nwl~Uj^WSKzH#`jB3k|v!w0`}> z1%11`_&z#GovRYlG{5$1Uee)poT+ZS93rb@OEN>JOw3S>4pq&5cX^6`sH^#>6Fhh3 z1lD)hyLznoE38_+p2yj1VZzcapJINkQoFuU{ow{lqZpYpH`YvfeY;6qKX;#5(3zUc z$8~zHeUVf=9`+^X8{>^&-)-KW@g>by7xC|H{MfKcH92C@%;2puo2CjLSl8695vKkj zaxqingTN!Z?;c+LbkUmvu02tF-E)HuPIcOqoVCp7&h%~p4P{LupOc<{t!7l0^KQL( za@pfEw@l=0Z(ngLa*mq1<}mZEzMOM>)dH(^<K?Gc7tqkq^eTJy`@*TLx<d~(>ZMQP zIVv;59ehAumh$)IH-ioMbGGp}+>1_M%QAh#164Wp`-gHjHm<)v-B(aUaeB{ldC}?3 zf*OLn-ft5Zu3GW;#*Mr$ui2;Xe=hINv|fHX#|wFNfxU0lzCI8Cmbi^~K^M#Qr$47F z3Ta3<ih0#KCJ8MLdt+!}!;u}IZoDIGQtf`WMI5#J69ngca^72&w?I0v>(1ZXxnX>Z zUnPakirXA@=TtyjMae9Ib9u)!r~jR!DJ|4$&a6;fW9eqm5M#a|bV<-3_UT%4H6s|? zr#H{lRI2|s+2D8F@8{3UmgJn7oxmR5c5&7B8UD))^XoV#KHK~;v@7e~yW6Ku%baW7 zB=FwB@<!o&oi`T#VQ-I@9<tL>O|<m4^J7+L@8|D*EaF$QBkk|8^*6UozwkFC{~6mf z^J3;#r+h{EWh(yX9};%Fs=fGyWZstRt3wvciIlstN9g&o$LlVC#=7w^Yx}{E6>W?U z_FjK`#mA@jnU@X6L53pvo54GlN3lz&@@>g1T<~^=FYCFV6*b#u%SD^6E{KtPy7rLj z+iZh`$p`E5rQY1nJ{I(%&Q9=7MO(e^ej^s089VR1O_|PUq%K)+vLIG<{hRr_zR$Uz zx_8g>4L+95Yb@0oLVTmw=CO#H`kr}kq1}D&k#8EQW<i^_?@KMq-BbT?soA9+pZEO8 zDf0MgC*#7fz1(jrpGEau$My4?w*0NmnCLHhma~LG>`IG&(sBtEtHS}ICJqzRohv$4 zhMoG>6E$m^OOabrP1VEz9!oDvKc_f(Yd*#6TNtiBuGqC-kV{TU;8tNye8bBm_NZGk z+{M1nUDZ3)@AK^cQ5(vi^RX+*{<c)Vbbflo6V-f1+3g2x%%3r`zdxbMYdHJ;bb~ro zd#3vzrx(_#N-)|?@2XRE6B7OtFyqw6P*#~OKX<M?SiaM)Wcs5zRXxVJ(*^5QGq>}Z zD;6+Kf7Ph!z<+$=55}ZjVW69oe4l<}o1W;PX~<|jeX@gQCnNuK-)iemobmhrJk<aA zcK*NVADUGq>XrWge6IgcchAAnMvgrnzUlw}d%FHNfBt{(4}aSBr#uUh{UEo*+@-U2 z@-(KXS3XnXzpmu>*(Y)!`Lpk|NzVei4g1=z{8VLAx$Kg+<xKh^fw~FH-+hwRzY}Uu z@9OZnqxs~iO%eB!c5`3za=zp6d@obWGLE$WNlYfctIz&fwn^nxy<qmPv}?NFEO|kh z8~GDnuui`G^y=1G;pNuBx~IZCeaf|D0{0l^?*60QA=j)pXa6Hx&Sf42TOTYETD+~M z_{LkMnyu^NE7;gO4P(AfoUr@R-X!}AW~ncg@4j8w;h<zcq2zhMIz{zz=U2;JA1{+{ zKbW!8RJ!KMlf!Gat}H&qo^x(`^9s$N`un-lc1GPe^YquInHRoRZhmdL<Lr%guG#<j z*PiqG7-F0K>cao1YO^z2jrIo_{Q0<Dzy3$@kz#(a=ufxf_q(in`~Sq5f5jqq_KVv7 z-ku--Z}JM}`tS4a*ZrQq$hmvXfyqTdAGX)mOtznL(Eh{Od>ggt-{PH~#ZR!~op<@O zt1{ngnfgwV*FT*jL$4|&pRfGC)a@_#p<eIfhcoSSo}|V;J^zQBkBvK??{4p!Iz#D7 z8|IZSmq-8KeYMKF`F!Nx88KTw>&qVVZPWkM-s|(*VM)c&*;n^F9iKiq=>L}XpbI^- z<8z<M*Zpo<eJua^{(rCI@6DS~|8u!Mhs*KJ@4wg`tY28Sv%dVhgIfpVturnEWi9tT zxX*V<$;PfA%T-J}$^PbCzZLg9?fn+TU;f?M{$BdizC%v)g0<(ISg}6x-$(tkZlBhz zd^^FHfBu0@uBIXSv%+|lr|_29#WdKJ_^v)QPt=a*;Jr^zMS2+g+qk|h%b#JeJoeK1 zuabAp?K%8HLEvAT_p%+c>KDzcOV`~Zt$Ig$viSRdf^#hHSU&Es_$T}_;I(PeA){S4 zYzrBl8BD#?-NnML<f`AqtjD`?LtYj~(9+W46Ty$oOY2_mH~iYKzpf<5t26U$=1~X1 zhAHdf7}k1RjSFwRmHNQq;Pb^xt4kbyW?gXYy76QEwBw6ZPqIn;{Id0W_koG^`MT$> zO`6ZUXz{m=t1ql%*1J3Z$Mcy9ixTqY2L5}NnY*RlZlBD&!dCv`omKquadRznURUjj zyxpIx-!z-AdT+&|x2;cK?w<C*R=j%Sug=@6Z=L@b^?%oYgX#l6^*ef`1t)%N->;&z z{=c5(zu2NbyPy0hKgoD<<D1|)D<3{wxM-nF{WtEtH8=F1C7qI0-0QQXVb6~a<C7=e zwO)=(yPhFwe$P0s^UBo5Eqh+q{+#pij`Q1DUV%TNUpc-o<hQsX_2s?I1c_sHb{~XK z8<zcZ3oCyjB)!h)pqhN{{#mYDEY=ygU3W}kzA1Iif#>qZTj|{b{rb<j7b-7$>Q-lM z8otE;&5nolwZ8(Gjhq$5x!RNVu4P=tulBZw{l=2%Df~O<O;-H9^r!OFu;<OrmxDhp z-1q*_%;lGF8qZG;sQY(N+`h<v&*^Q4{vY?-{O_!7TORi;=Lp4bOLBI;S!hxybmH<) zi8BgDZ>6UN9hLkYw&ed8rvJN_>i&P78>-T~dp1}7zdOq-jKfyc7uV0W|DHQNfBpM^ zKX$%ni_>4c@`Xq6KL4g)$KOBRShH>|ho{l6_lmw#G;?h2YX5lNI^wg=d%wxCUnjRc z5a8S)@#5Fd<^FZID{p>3Dslhx?0@!Q2Yzi|(;$Dv@<Y;bhb>pu8Mnqh?+*RiY^5H5 z`LAv8LFQ|h+SL8e>WAH#AMX=b|KD`dk~6%S+vOjxpU8Z@;grVpDf#h7itiuq-gr&? zY5g>_m+?z)y6>sYyI17IbX9%Zza<?feORhCZ?!bC>w7JFH?HTks_d=xA3fx1SU1+z z-~997c4v0tyo0aS8%A(;1niZ3v$<)r%aKL@>~=;L_}e`3F58pz=95$2zA2maCHC#9 zk5KsPzu#<O>v^vGJT+=2dkopV9OnMMzxv#tP3Jn>`}2;STQ7ENHS0ewg`W7wGqt+U zF$vYrO3!jEJ3afS{b^%SN16SrQuaojo4;=PzrXw|f9>9};-g+jg`!y9eIL^$(`py) z{(CM?>`vvbO51%A?fbQ6M@e5<`}zIFa%-mf@h=4H_ZPqL*lL;oSLs{4%p)23&|l&` z-y=i)LvDT-H~RVgq*D5$B|n?5eh>2e;TmVL?EJe!=||g)YyH0eFBScp?lb%HeE&^q z^D?i-eqP=#G}FVz-uLKzul1E%ZQH~v{-iALzxnC%mZG%N=Y?O-P_M6!`a9vQeX4p* zy3hLxPri?S`4j84kNo}f(aHAOA<2)cbKivP3eUN5y(aMc<fdn(bB%8McfWd?_d6@% z=k>O!g0-u6e~`S!{nz;aVSj0h`JxW{Z}Tg?-D7{U{rtMEcV_I$?76@3+NOObKaGvP zmG5?(bF%1GmEvN%+*2~ePnI8#OVPDI`T4Nq8Lg)D)GzxFben%le$7<RC~JG~@+YUq z{`yCve}rlap6~vrx2$N}#qTY5*9Skp;c36@9QWL(;VXk@>OY9H*neumIlo_-ZA<2U z$v@OB>KNxQeMUQLf06ayHNQTd%KCpbviRFI|KhLPR{!&@xOFqaeo0Y9>fU`C^7WU@ zKQZ5ar~EHprEyolpUCXGoyX!{uzjq5Z=dPFIemM2=kG}MFB_+FJ$`KW?Op5buk1h0 z&#+8&eKu8GZt?Velf$z<tgfoNmf|r#<nH;Er{qqjZ(XY~Y4g+%E*<|*=c<&K75=K3 zW555sPSf!h9~T|gpYN^`)BSkcme+rz=PUo25qA93joKe?Di3Zn;G0?hg6qfJC*o(H z%;c@FzdHZ<n#uED{9nFyvh%s~vv{8Wcv|y2a`M6lXLlF+KGvRAshS@5vn2l1(r|a@ z{S|MX`%HR&=IeVKMvLXz?ri_!i<knmK0Uv)=Wk~B0>$0O&mNv{wso59r|sfz?7v0- z(>qtN?cjYMt{tDJ|7R}w;dr0zo^6%Tx%nkA*E_cy*Kg@;4Jhl)VwbXg@a=WY;mIlU zcQmO~HCkQyBH#1wWXHRQmp|^1X<~`z4E<ZWH8k|(`ic;<$??@?xf?6XWNUBO&R)6G z+Q0rs{o&j9|JSei_@7<Z%VxUaW;wCxCpk=cSPe}rj4Y-na+=Ca7f3b~V}{+0Wom8; zzVZlk;}PUURC80%oiyN!n;<8mnwvteW#Z(7oQP^}I$dz8sgj8)^696b8*0pu&qp;< zFfunoRsp)N$$a`mH+`q+7akahF`JuPLT<(~w=f2uhstDbF+H(aLw5QCdpY6hf4EEq zr`so(L@-)RXOz^Hh1`kN&1lL!eRiLQz_bh_<>?0uv>X|YrY}fTQf3BSpc5!>COQ3s zhyDyEbIa|4H<i>F8I7hJ7->mNU%(^(p3!K!gRz$WbV*iIiETdm){M;Nmd4=IPnpdv zO`tblS;B(@a`TlXJT&yv4Gk2G%q`)ep`UID@{=Xf9aV-VAQf<5gD<VJFfdRsPyh$0 ze!8)Okp=Q)TBaaAXqE;dua<5G5&#`!3lT_n1o7eFs-Nx#;!mIO&*TA<g~9a1RCUYg z_n&DfF&SA*e>hiFZ1RRG@#zN7HCU#YI!-UjP|{;IvM`w5XsIGPT|v-v<@AX?I^vAx z(+l`bB$zA=CO^C>48C@X#mK_Ia=Id;p$Mb-^p775Kr=&yeL7;(=YuYt;*l`rp8Qjs z7jz!1VlY_JF;H1-y8J7R`7A~jhKAEYw@OXFn60Eg-CDv_V!Hfmjn~XZ7KYOga4Cp^ zoW}UYK%dFNaC)PWs`&H+%Ty*$-z{m%Gre+!DgX3a0;UGjH)_j^Pd~rH^!)S~DO0ZL zD^{BFPk$(AYQShX-I3jN$@DB4Q|{@OfpUC|7T|lY7%irMJgqK1U0}6oE|Z}d_^Kz6 zCrrRMYE7RdV=6j5j@dYd*}~8qdeM^w^wKMf=^us6AlEf9T1*!VHISITQ^=HidKQ=I zr0J_gOu50gTQOQpH~eBCHvPg%Rle<k+@>Oo)3fDFxhH=&=4Cbl-RTx#ZYyG81X_6n zjVTjza|I&{qwN=YOlz2!jEq6|f>}&oyTnqN#mK_QWc$HXbuGr}mGY)S(*x9W<ryue zgKyVT5HwxEWMn$skkM3($--#5;A=fS5Ut2#C^r2<wedt|3nR1Xpo^72#u!fr-zv3P z$y9K<fuEeh^nWU*;?wW0u>1^?HJ^SkOI>t&m71yWbb~Y#9Z+C(TRMPZ;Gv3@64>E_ z-l`jzjVz3(FRU=Io9+-U$2~nw%=9p$@$|x7mRi#b7Mkst9^`LoG~FqPQFQt}DJA~x zNfM?`jMH<cm~u_$_^ZatXf$2FMM-+PK(`v}^a&TV*rreK)Dvd1FrK{ey*=3IiAtu* z(@mzE3QiAjl^2=jCf^PgF5G8nF+IVZk!5<!MJ>7M|EHS@O&8d2$uZraUO{5|nu}Vw zOlBsNH!_P)mz6Q~n?7f{slapvcLVw94l}jHr|Wpge`PVUFgBllF~eMRdi!isq3I94 zDsW8;($``F6(Kt;LAIMr4|GyhoL)c6RA{=xD<#G01xDKKpb#)L(-xloV4jZZ^f-A_ z+36~CO$DZJ=+~HtbS7~8bndyPT$5jYQ)RT6?ij8vw*9JtsRAR92`Gm`W=_qf%PlmO zou1IC0m@n?P%oQI2Yb0~p{W4qh+>)P50p$h8BL~NtT#5BzChVjZhGlrQ-SFM-5UR< zH!LzWVl<iV*rOr2T|(8=n^D>XRHT57H#RikMa<G#m{@>MAfA3p&D5R|l(hB5wi~FM za%k|IfXW!K7DEFgBa7*6%S~;jPdFqev3<6`>2?=>Q&7T$$eWv*8%<xm(o|;h{_~=U zv#?dnE#O5PwB!fhr3g;V(30N*T+nA&fGmTGyMYRNOL&0<IrrMa2wucN&b_uUf)|RM z`fer)Mi$2KGL2K;4OHqOE;!@VcLSArCdShfujq#}gM1CXG10=*V0xi5qwn<CrE<>G zmrgT{oqlo^C`o{>L{yk=Dl&cQYEyyf2h_Fsrf*;~^P29v##CVXeH()iMvKW8u4zpd z$S@LSvM`-q=%Md0eg1q?@#zLqy1dgv*O>}VclfHn1+FSUbKo=8%)#engA{-Kp#ixq zar&oqriRm97MhA|Z}?<n%Q!u6p(*sDL<=*+>5V+5w)JM9gaHm2aBX2>2KObTwy;1{ ziTde=h6+X&X2|sms5UTz#{%S@L<_`il8}26EzICysh@6W2{Ho~ADNtx8pa$R{QBS; z#vBy;P-lSx-yF%Apr8hys|}TRQ82PFhsURWx+{o}<VaA3V-CIr(SCZ@JkuSZgSQ30 z8CimEJOmv)zHq*2^Yoa-rd-pdUhAn&Pugq>zUFYn^b1=|xu#n(n(|GLUSi4(zJhOh z;VvyvaD~HcWMMIVqJoMDC}%EIQqY^;ywy|!T-`8RSQt+JC@u<?DFxRyhLZB))9bzD zCQrB72{M$;gpbL>Z2Ch#M!o6RcbY=(H=G`~*OX_vB|Aj!Vmqi9wV1xqTul^QAF&u& zSU@f~WHg%YxJyfay2w6L3Gn5H(`Ozr<(~d>zA_KUP6tmp15ovnYkY#)!oqC&hXu-_ z)2mmT@_@>P>5q??ickO0qBCv!Di$-I>AUldd6_KCr#q_Y>M>eOEi@Ga-ClTs(PH}i zm8KHYz1Bj*h0$VqBBQCu^aG}<o56nHxXM&wy6rksuIam_<W-oAEGB={6`Q_crgaXB zk%grJxI&vAvB8vQ`f65VRYr@+5B0>RuMaYaoc@!|jC*>elo>Ch#Z*UAeI^Ub>EIh6 z1q4mDF<V#~O;-pp5SuQs5q7w_#q^7;#w(dEERDfeLo!>Kn}aJ6kh2fo)Yk(!jonyc zyY+fgc}6Bnlj;3-T9CjGRFs08*Y4<|?8t0nVL5%Fkg*cT!i9Z$s?#^v%J+f-tkGD( zeEK<K6`ARI{ANPaH>^-)2cP5)3d9efdf#&L!<%B$*Zo%G+upI+)Ps@Ha{9$BrsB+& z1_q$=EqeOQou+n7mIl)&9+DH=K4+_G8?%fhxRnGh!7MC{kqSji10#ecM$737GnB-( zzuReA$P6+eaj&WPbRJPN!RZO<jQZ0b+|rf<nXW&bb)TsKNWn#WdC~1U`%H7$rk@fu z;}$S9GcrXseLCdoOUvnuIZ9&FPxG5|Z)ZJfy3`(|cMXe~B#1t!tD%A@NR=(X7Y~55 z6Qm%uFoowQNI_~bz0le~N!0?mX$>k!EzIB<6<Uy5nt}^KRZB#pkyAgyP{GL30G@|A z^&^Zx0w&YJ#iXTy*>pu417VQM64}fQrngC%2~J;Npb<8GwzQehbnxx68)llhGa618 z?3dSs6pNOI(>I#xIxt%rnoJkeFjJbYD{Ce&-JwMZQYtcA8k%lj*s7<-IDMCZ8TWK8 zb6s9=BbwRB(r`NH!p!N6f@b27X0)ZD*>vzF0+xo;8S8ay>WwT7k;^OvBTGYAk;Mrq z7%dSs2BcuLL~crf+SQgua1TQYMoS~)!qrs4$kGTN%#ec7(g;#+MT4(z1%(mf;$LvV zXo<M@S0B{UwnS7@`spqp6Oo+hs$gVkj8w3?f%t}?>tLOy-{CdeGX3IIEo)FIsKjJx zJl#=4Rbz61It#e*JzbvPEP&B+x}kuz9+Q#f^oPNWVxac-a!`7mt|iW7WI5S@A4E-e zoTMNEE)l2yRyO0AuE}V~!(?eR`QbOc=>l_=#UUl4rLh^LM6{fKaF-_7NXMC4E2eX) zn(<7xWHaHLzDwMUd-|I>$|}?S)XXHHEptm_3rNfSrGy#x^xL6~s?#T$Xp4i3!|C1X zW<1lgj;Zs49H=-?3vBAaX$oTCB9YnB#9;cv`N|?7*~B;leMZa48{5RD*B)2jG~HXv zjA#0f1<Jh4MwUj?71hl2rw7i{T0Pxb(+u3E=VP>-F1SfmZ+f+s8T2++OA}-8ZLUm~ zM$-%V&Ge@q<W_(bchk9b%y_0t390c+UnOTIG(EsmPJa4I9W!xoX$LBg3Z%@$r%&Wi z0J(5-V7J(Ga7kxrVg@Pc_9&VePFIS8HtCryP0YdN-1Hj?pll#x);oQnJ?PS7%jt%( z>SEiAWz7^Ac}+m+6I{9&nVC<2Gs8?4++b$1G@TB*R|7;(JgBKSU1O%1@brW*xkb|h zZYo($|FGUtaJsL8S<m$EGtC4h`*&Reg^z=pu0BY|Ln(Q&=@(|3@^2SbGE-xmK6{oK z*YrqnC2$ZI)>)~6Z?0gpoW8Nn%7Mkm($ox+^~&d%2}~E*tH}kryJG%y!}ZFR)3&Ne zPnVc)CN%xRLkr|4Y8)t8HClnfVtQhumH75_H8WmDUQ>jBOf09%E;5q=HGajWCu~xd zU^cQe1N(~6a{5F8L*?l%3qj?hycrkd4vq<%l`W<xIIGG`-@4dLXuAG<-T#c1(*u7R z=`&fHO}}WTB0l|rloIduMOtP-jMHP6m~l;?o}$P*y>ywG5WJX`pPsE_W<R-5QEd7F z9Wyy+aWO{aMUM_WYdWT@A!HbMC*0>k!y+ZUPPMMC1sVpw_vOFo+I0T=nJqqU3A5&H zJ#YQF?v?JUxeve9zIa(#<X1kw_)XdLLTw$(dbOHMH-B#0`?qzu(*6UV^v<$Qmoc%4 zDZ23C&66kA=awfm$$VmuTDx~%*B_?SyG_JFG6g3c4{x4q+{Jx;!9fk39Umb4#RnC{ z5VFMb>Niiur?h?dL8XtzOZPlDbXb+0_q?CnJ+|OmRXy7}e*0+Z!)$Kfeo$pvUgOH( z%(okTo*7ops9QEgJf>pDlLZfNo;-XnA@`VHkW%pUbBY`1dHg`q=iYH}M*XCyU3aag zelz%sEHUMv$If!Cw~4=I2E`RTd^oAOEnU6eq<Lq#mb<%q<^PhVkH``}&4#Jc5-B@_ zJ&SK1oY%VmrXi(S@)x_u@}Q>={Z!AUvR9imwY7WmNzI#UbBOm?(eg>pHZ|MUOFJHh zc&(4^a|uKYF61}+pq94w<Kv&||9`J{b#-00{nV*bcK`nrKU=#w{e02Q+2L%-??Reh zgxo^1cKO+abskGE>F@uuY4PI2U%jfTeqCPfzxP(>cDCx>!JhfZPF#MiK7m_YZ_V1Z zrS+-5zPy|{bLPg48<!+ryMO<Ds`@_3Ggnud+^EXQ)7rgwt6107nM|xdJ-4ky4ywzU z8-D%z)zZT9Jv?q-&CFS|R)wu@Z)+<mD)RF3+VSSNe6yw1)MI|FOK+#VR+Upe6{Q!l zPDHDCj{Qlqexc3C{`XscaMPwu>tc33dKug3U{L-pM(?-bcYcXKdddGCeji9!c`QQV z^0U)hD$hkJ2j+*qV*W0kY%s&%<beYRj?35IxqkimzeNWVb`(5h+I;ugHM9DEHF~>0 zZRULzcY5yJ<8O`Limg=hU!$gLcxmpE&-=Y#38en!NzI(*ty{L}L~Ka7(=972D_{3x zVc2R}S=qCvPg|F~5SSjzdLiMptCrHnP^Z*&5wR*)^QL8$d6<?Ur!q~G8(Xulhpmlz z`YSyvORG@o=8Dy;yE{8)nr4UP<>_TEFT5Gbz#F#KXeqadOOp0nd(YUbGp0_<+grc( zddlmq5!JbhdulV0lE@sVW>y166A5L*OG44t)YR=yZu`wzKXIjZ+RL!$Y97CZthdw3 zHl!<OK$H2!1V;UZD}!_11w~eWF*|;E<G~FxW#8Q7kdo80%%~_UGKmQA&UiH`dY9?B zHpzLt7ocg>y}r41nTP-6%o!8&mi^~7w!X1h5SINjHe3*YnRe<=_6+1C<KFx+!sl?$ z&V?^S51--tmczo!4=ORNEv0%U6`7vtk(qaPL$fVB3HPxrUdxhq{Xg%ulkd}zlc{_2 z#TdWYrS)F-Y-WFaUy5q8frF}nrQF=mh+Wm~ZM{n>#cnk+EVNY2)Pv;diwOd!H@bCh z-mF>5$8w=PMS-Di>H}~lb#HcD)A{6#1H&bo%SF4z9o}+!79Rwc9DQuf5pSOOd_H69 zciAWM^BK8i@v5h|_3CY`Ev0ypDqYW+oS!l+PgeeNhReC|&QDF;=lwuh>?Rvu&Ny*D z#+LiqfzK!YXa&X<JiK}GVuFCS!V{+JCQ`{~jivlNW^qG9S>gy6o8{*fY`-UO`4ReP zt|Aju@r@_*<}Eq8Ug$lKAjf$>zl8@UO`5c5@#2|V>vzt#t$tRuci%ocGqZ1}_4hy7 zab=b)uh;@5Ghx<ufxOi->ZWSw@A&ZM$rj0+l9G~NUtT&pJ3o%A|NHCf|9{`@*M@oD z^YZiCSN&aY`d-nKTU>>FXU5d~W$szG(d5PLXkOV2gZfi{J)`c+UER?B66!I(*$1B# z{ail3ZdXeE$w@nQ>@ZG0w<9h;BO_u<hT!Jd*x0$VXP-{Z*FLi9NZ8D3-K@#$g|xPN znXo_kb^6*ltKO#{Z$~i)e%Vp}Xt9*w@6bhi9vs>{`EuHZ<^J>6MQ>lXe*OBzi<Q;X zp8fm#`^@X`bulMTo=n{4Szh$=($bi3Wfw2)3r{{XH8Z%it5B=Be!VKw�AY+iw+| zNm#kD%<jdzsbBYgt6zD?L;LZKR|obwJFjnZZ*y~RE}fQOAW-z^Nax$z+l_CVnwq|2 zQ<nAAt1j5j_wC4qLhtOqv8h%X*Yl@m6}zkwDO<bs<n@jadoPpyC%!%pT{b%^d-A@y z-_7`Qa}E4eE2<YvK6vZ#tNdH_hqo9yR32<iS6{xC_u7pcKOP)pPW%1i<Kx}s@6)z< z>KA={bo7kb_qZoh!asFR>9|%GJhN`<>&`VD*QRYd8M(#np6Y&Q77r7T6pw$~{eN7L z`pcFqD3!VJWv;Da^&g!Sa2m6*w#;Sw{d)cWegA&F{`c>nxPIJ`qemzDseZPqtbe-s zyj}3>tA`IC*3{J8x^-*Jw`aHao^Y$R&McfOe_1NCQ#bKyRMG63wH{lYSJ|pu4`1c8 zee1R5j{7#Sol6jY*t)FVon7LX+>HfUf6^>G8BD;IDc{_lfB((R&FN=nm415S`RV+R z9~GN#`j~m#?y>0I<F{+t;ydd$vV6$oT2#MPTFSfiREfj7`&t**h-ry$&eC1#yRYx! ztV03?Yg-!+9uxg+v-V8xCWU*)^V=q~I2_(QIXGhjgW8Jo&0D3c<X+!?Z8EJ`D|lvb z_Ue{Xu4|&aOV@qh8@x(4TtaV!Pkq+fvv!%fe|XH|GLp~dtXN}f6}`UjjgeHJXTL)Q zs8p&?=+0Q{c)xCLhHvH_{p<M?Gd8uJQaSIZJXI|~VC~yUS^U~O;#Z&T-*PQII8*lx zui4BC_e?H@oY|qiY_3?;+M5Txz+RTpVR7B^&EtOD>Wy<`FW>T7_^CQ<t*)>}(a~4) zm)u&+byz;@^W5!Q#WLAuZ*f|0Y8}DZ(3Y<5-u$sX)Fqq$>)Y!l(~P~6SNd#^Ty#=M zYyamrTUgg_Drr<Yzj7<r<h5S8`&MtZZU3f|w}F3mLJp6}V$-#2r|*0(Ibn5H*#;p7 zUQk)FcvZ(WxfeO%rqeF_t<4o$9nLY8+cINq#46im1|h4@)(5ZOdO`l%_AO~|KSpN5 zb=5E4-*N3#={9Yt)0#^Q=lg6ATob1mxG`JTdBF+s)!$E)92af#&iZU`70qoLwfM<~ z-Ex7C*CE{RsN>|<Qxc!PI&ikXR<Ej2?81n>F$;cN+kEXrG^n=Ty4UC~=hBaxZq@Xw zuf14v<L1^hcI`$@TZiI}pmx_Z_4=YDl}D;c>W?&%Rxxd~njD(FL~(n}3Y92jJ{2_; zJC!h=Zx-bR?RT$o=E_T?<Vo(iD8<TOvEbl^1cB4qMT<-?b*t2RURtd3*Xz=5mD)3` zYodNTu288By_Br_H|$dNTK*N+4n5uw{HcLmiiekN;~(|<yca*B(^rSh?$_iw8kAc< zFJkVwRa@UjrE0gF@=YpT=~Et+xo6czn-8Jci8VK3qbB!d`ug`?dy`?%;MiOl>XKbv z+V|X~Pm9OibL-BeuSSfwzsR~|M>;)C>wK0z^IgxS3g6_)6N#I)dRV`C7Zv<zxv8}j zPr`+Sf7gwjkISz8%D?qz$Ds|;tL`cUE!~*)w*Gh6O|OMT-ND)EQ;$XUJ{9!qwO*)p zb=Jj|rr8B-Ew?TvFf_Aq2boG+{ks&Uzv^teXj^R1+p39LQ$w>ob3f%Q+~l$7rvCNt zXlu1|KX?~4)!wkpJS)So_9jGQs^HqcE4Ri4%seI9Hn-<m#POZG&;N*BXmrv3vAKSG zt<l>0y*q_pO}+MJk5rGzWA3@-$4>fh>ScQ@VIuMV>y-<I(b;Q5X7XwBSTDJ?)g^mP z@MFEa$?L_mw)bYfZ98_UBlxkO#`J3^B-a&ey*9_VqT<r5x%SP1sk-7?;apQK&&^M{ zt=;LXlK#)3`*YEvm5Zn6pJg%3FyQJw&_Da*><rzRTesF9JM&|2?|aGpn)Yx0XPvba z*E7C6%R9U5ACKFuSeKY5!D(4bKMT6}@6RdTeej^gtFI?GGRt1&?0urIv^HSp(%F9+ zpPW~z*ZDd5WceJZ>8FMF{O-Ab#)&N^?a#l!MT-0XM|-6GX{)#q8?~8_$0#cKSv2?4 zB|DaU-VwLrOuhJOb1#$GDzDB8m9C3ORe9^SJejjU?TlYbfR)+`^FAZr!W)_<5s{IR zTa4Fveu`aR|L^DXGhRE=&(C|hN!vuC^{Hsh<l<xR@7K)w`1`CA+Yg<0EI&HeZf(f! zz1ewl=ZVvDJM$KYZ1!BGIc3G?Bd<)AQX3<53zB}+-^etMsI9H7PfB`p;J|?g4<0OX z?asTm=Vg_)t?gaYT)X3-zRmxK^495p)b4s-T6yPK<+1m3>(2j>z1LnFv{rJ>9JP-d zEbEUy`BS@gZFuTiMPJQu_w`Y!Ug8?lxJ9(*+MhJ5R1J8tMbbxWs+qaD@oiUE*E1nM zeU|yppEq-+q_nhm-23<MpVx0PH<4%+U9z&!+2C<Gi(Hvowo|b9=5r!}laJkepIlXc zr09w0&ZW_B$`Z3K{S`=^xOnfG$}@W}U7zw~i{u&6sa{_%y30?Tf5tw3A7<;Dh1V^y zwJ0m*yX5}vKl46H^INw*DUs^ga%9n>MXOe=QmYMDs24ah*LwQtx-&KU$-S=8FXO*= z$M4&9{c3RTON%wz-vqo2_rBseFFL!=QpNR@)6Q)n$yVu`?q<BNy7fEg^Q!sZ?OD1t zKgsg1sAih5Y}qn@yPr>9U0wZ7Uy7%VTU^iJc5ZI&=jZ32Z_>_b4vY{vwEO&zzniBU z*U5)UIGp+6`!JEep2IRX*I@BQ53Bxlsk>uezIgHD!(sldQEy+o$cT%(x6rwL#~WT= zw?xOr`4*4Mx4E2Mx0R<W{ZCubjlHVN&nDd7mOI-lH|kG>mX=mfaBy@~)QRZQ(o#c1 z!_8@DPn|t0EAik;iA!@}M8QMOpGPG3*U!jOWcEt?!&ZAE^4`+3361r<Qay*7xZii) z*)F-C+sXQI`48E$Wfu|zy5o!L-}QXvlizgM?{?4qhgCN&CJ1!97unDE>-li_++!r6 zOYf8(of6ZU8TGEFfs4y#ZhP&cp8Id2KIa~LUts$t!=U4+vgJ#gbtT3UH`UfVG_sf6 zxSRf`OgH7gC!KfoQ;h4{UnjaZJL=>#yWUDn&jRV?mfUgvM{MfL85WPtJDi#WtDV?h z8uMm7EH$`wYQE(D^P0V1&j09TYc6&A^?xSY?hkP)e@zRIy*F7n$u;{-&wZEdRF~{2 zXMgmvaW@Ma<(vR@G1DK!8rK;|MXLub-Qais;jE9p#pBZdxYake-sj{5wcuTf!kc$G zted;#pwIuF`xzSwtP~ecZf;|De^+<W$a~GBx{H@;kG+>ym8whs<JR1ImQ#}L$%2Om zC+@y)ac<&@+8u>&;_S}+@ZI8etCaok?2ppCVrJ?o5);5C{QDqhID?=6y>Ddi!TE5h zYVP;X>ub+**uQDaZ7$Tg-g946>oVi@p8L8&Vr!RfJ9W)g^v$m81xubqeSLWNzsR#~ z>*DXKT`sZ&1u5(FJK7ch=i7FFIQ;H&>4pPgpZB`+n~UGMxpncY3kx5s`%U{3w)1J7 zbJ^q1OVR{aUt4mf=YG1+woc=^-CVqE8y`%nW_|zv^Z$za8_V~IOWwJ(eLH80|8^0Z z_|1!QQ`<CZSC+iozUgSEkEgi0S-RT&Q}O?!Kfa6ale-%gJiGS)$M5Hl=tOx7YnXL} z>|T0H8Qi{*T^pM4?oqU{Bac+ip+|i0|4aDTyisgb-<KuGoqu02bdLD+X&#@hdj?OA z*;l0hNblvY9M6ySejir`A9`)h>U;jSNm`n^aQdIPqgJNxxHfh{i&O5~35iVWH*?P8 zY&HKcGS^mHPjlLnXCA@(=HChT7V9vc#&La3#@YDqImM2bpEb4F?%u03-{SH2u8plc z8YU6GzGvrH7N?z?W0{wjw=iJFgb4=O*Vg>`^Jn2gMZMil&Gms16|y`kHZRxP=89gs zD>T<m_ul5{O?6XEDjz=C=k?QX)^4{=`TZ~MSUz04pXGe(*?Rj5mo-~Uiw~cZKk2{e zZq56N|DT-cxxfAEwg(j_j?XyzY{iNd>(;H?w{PE$9Tqcvo>gh9skKG&nCt7mzq7MA z=35)v;te0-R2V9HBR?#0ji|47F8Q?N$MU(8w%&Yqef_;pp;?nm>gPUrE_Ctd=OzC= zswU=6wmt1N<!V6CpNwF;pD(BGTc)!7tyf)WsHmXG=Gq4b8aHh+N{e29z5e4-@iS$~ z$;m-MLeuvygpN!tZwQ~w(tGyM>g%q@`@73?r>}{0{8c;och=1$&xdTDH|x(Yx?eAT z@8@n`h1pla7uvkpBKhXRLg#f~cW7&Cb8~age7oF#zFx$JhMQrluP)I)nVJu(Kb7|^ z|N8o+`tnsVz4M=Ks?C?O_iBD{Q8@8z=*5f5k7REzSv}2POS^r&(KIi!r=E41!m&Fv ze*CVR?QzlVzLxhE$u|!UHos%Ly`xaMe)HcaCxy$KYrkF%kNMV?U3NLrEq$W@^4f$A z*##@A3p)P1k&sCF_cJNu$JGxfUO$`|e)zC{d;7`VZu=S=r~Roce*Emu@>c12&!28d zOXo74cB;<f>l5vppG1ys^Ietv^wllxThG+1x?TTE9k}#l%i5d1RTF>y{CVcvj<_dh zW*X1Tt$*X%q@dob(YP`=<CVzFT}!6rEnOO&{QBzcs?J$H+v2*nUQa8Ya@DGI;{EB- zyDIaiGFrSbTDxGMV??cI$%_Rkuhlx+XE*nKyV_;)iTlx~=0&f(n|}A-S|auDVXf7h zEn5%H(EceaE4w~!Z&!bR{l7muU$31pW5%*&YMTNB0t%j-s29|$c5ZH6))6fcJdt_b zhLY85L4AaSw~SY=Jn{U{(Wu9#o^6?b<4$Y)U*Cy*b6r$-e0QkW==JBd{v_SjOHVcD z)u?)U3#F!S$&L7|WA6UpL*eY0<M#CpeAc;ao2}<BOStyTuI7iq&*j-?^Co(j)c^Z) zb94Io$jxlm-#mNz|9gCW@XXyY%P!rXvusmgZt%@oqZzAD{MStESaJBB#v|>CP6glh zt@zaR!(nDh@V+S}oVHunhoyRz<q6AM|EhU?Y}r}X{_Xj>H@5!u{OEW5Gmq-gJ%2e5 zTE6)weI~_7Q-o_%U{KJe+}qpU-roNG`}f~F&pWX4K8xNtyQ}1W$ThjOvsccj7n^vV zYt!#^gP^o|R#O*RC(dauY$^XI_%}}TUc8p(9fjC!H!dGubm^+SM_I1;d<(rjQQ8%E z?kqFf_3d)a`-!g|*BpE6de5%I)syvV!jkFVKOUC{wFGkNe?Fa_nwsi8UC*}cO+*6A zlky7*Z;sCJ%6KKzKeKCRNa_|#orlX;Hr1zZ*yxw)-(fxVpjBeW`Y6>y_V2sS88;VR z^S&(R`)>8p`(DLiR_u@Gh+Mn2lmFPqkjZztTf!VoBZ`VX9d75J`F8#Of3yCWNboFK z|9pQ9laPr-@VjM`1cQ5HL)4cQ#jfJov9c-4U>S$yPiLoVD|yavF5b*JkGpmIKcTtS z>UuX1*PBVGS1v61t95eT-A9*~x0Y^a@sGZ}MQq-~pDPwf^=#Q4bG!KYxm2^H<mA6M z(;0*_*`#;>y{=j`>s0CQ^DoK*ZBv$UH6EOyR6k2eWv*AepTyeG3wPA^9OOCn({oeZ zR+FFB{QG|S?Mm!jvLvG9+nNv0<~OA~J+hkj@a2jHQaV;v^|!YE{q)p3E&1M_%71T+ z8#t4jcj|?Ds^9syx$5%*Ckcr&R@YWeVc8jM`IU3=MhmvbG5Zy*O0!lSw7Bp6`PweF z#~e{d8oy4}|F9)2fcM*3^ZPS=)V_!JxII49%Ki6~-vc2ww%K1CTf+}4yXniXT(ta+ zqk%+l^4wDil{tSn7n^a{OU>t8A1glBLhs&Q=S^y-A1BP&;yUTj*GZd#F6QsIWP7~D z)7e0R{n5>L%sc0^tzNT6WnWf)e)_+gckk}4`1nXWd>zXHyG9O$X5X5C#;4!r+hzzc z<Qgn%y1Ft%a%<AW52s8oZcKhO*WN2!_xp?0UsTT>wD|2hRa~aIu%#%D?eT^Bnr-Y8 z?)+b_`R(1^-~WEUS65LvGvEGyGr!%9?fLNxSA-V?WEf0ec_fctOJYv=m7VwhZC-pZ z;`B3%CALBJR#Un5K1f{rp{V!8hs2Zpu9x2U^z+B3s(Eh{>8Q6=`1P3o;9mCJBvIad zi=O20Ggdmx%TUeT5PdE}N9_N1u>&76HY}*OTan=2T&Qtr<&~m0A^RkIiX%hnJT~QS zHp!mp9{+d3E190pt5>YLWhvqAyL`P<&9=`Teh-a*GWuljn7s=M<;eSg^J2oB?myq1 z65syZ9{f_GXR+9wYK=dOy=p#)dtP)~`TXEHm()q}+dKNFbnC^6+0?Ab=l^<i^@PfX zXHLzm-|CG^_j9h;RARj@Z0B7@9&gSAt=l82&KUK6{HN?2I`zx-c$L}QOC(Rq)lQwO zd2?fE&6kc9&$=E23cvJd>t%5`y!haspFXksCRtWDJ)RfQ!NSSVRQ|(jk<p*v^}7oK zYZLYtCC}5T<$RqmNB*dKU+21B`5xgqAqL)lw#RiTYQMVbOW2yt_q923USP}ru{&;O z>ExQLMV}_;?0>3VyghP>!JWO!fA0<2yFVmyhvT-KPX{eFsd9^Chp*}`f9W^>()}Gv zGx9`zOeNIMs4z&$@g6Hmk=a)iml?kMXV<^>HE$*+8Z6TJ`AS~o^(N7uub*Uxp9)LM z@SA^ap8a|~UB&e$Y}V92QH|aeu(57x)qDS4#_2rf|4nSgqk3c?f6LkO)hqIRufb%7 zj0zKpV4vS!Z=S8buB<HfD)s4d77ZP}4`RW~SB5T%*dMje#&zDtkZG?9m)S*rDnE6{ zbXIM3$@6oPdG`&scIh7T%Twtqc6f63@%jQ)1}VEqylUIO8SG1vOWweeRKLnric9b3 zk`GIIQ>xUi+~2d-w%BcJ`u3!|T9^7hU6BuYw*K;;m_@(e?s<65Uaj#;(yLGGZF7XQ z&I$J&oXU{#!^14X{do6=FAOn7LCSysE_-HHd)N2v%HUP=%d|YcUpRdD?WU#oPhFm_ z5vCiyE`I5mvx>5wt{0CbC>ZvCocvAVcm3o)P)A+6*T?pFr;gR?kDlH8w)qu5+L3j= z?C2}ec{Q#nOYcls{&T5M{li5c=T~iZS-QXaeyMEFAC=pW^`5ayTz$3UqEFNtFK_eA zU6a?h9e8pSJkH90I>Fc1my?t8<HwKPV!D@Je|?uP$<vm3dD&6x$#dqMNzKpLkWepj z`>$i~%^Nq??2lS)S?05~c=nyoUU8q!q=W`8{B~jeuT@#ef0Z};Byapu@%6vxn@yJM zZBE>2i#RluA)_LKt-GsBsM93{RN6>NO1{g#diCl~vG~UlCJ_f-ul?O@8M#UHw8_(_ zvy|II?Zr-pFRT7?m4D@`wX?T8W&b)|?>p!1`ZHXAm+V`#Nk;t7(R1AYKw%*_;UF6u zn_ld$BRSi*Y}v8QCnYE*X3mTm7Wwz~ELozmG2%>Wd&UNbsgDx_m)`ra;bP+2o~3>2 z>ut`|JpB+Fwkzwm*xQLkho`Py)~2@k6vN*Q#^Qf^6I2bBvS;Wyuob7Kq@>*3l)CPy z(#$va_y4c|^Ye4c<9By=$JcyhJ^r-Iz%Hevq-4eF&HfiIm2SRP^r$26cN*(yua%nj zCA-Qa&d+_b@Aq@<nJE=Hi%x&={(r*b_W_0e)w`2?b?U<RtX;cy?!#$EyTxzM)!le? zb-22^IzJy@)i3#DM~@oL_5GG0-4o2*yk-58tiyZRcXijVsJE<NaA%7C=Pi@2Phws2 z)iq~X%<QFiHbl+bKF#FhlxXvh9P*D2`yJji^<c)y3o&n=Y}tA+ZeNY3RcB;mr10#B z<^J>Ey?K+eEjc+k)#&DwYUgHOo#P2I8xMW>UK{(AHLtm_?3LeKlPh;kY;(81$bEPH zV9joO3Ay&U$5XX0CYVU;7#r7b-mqc9mn5})u3L_+X}o>mf`F{7Z`G{ecf7oAHK{@; zc<TQy{`=Pa>-pai?2l`_d%nC+n3L|*o%km~X4#)T_7Z08bJv3myCUVIAh752IqM^S zXOx9ku3Y)#XjfO)rAtAZ63u2$*NGGo7M?s|!hxmSnf*4+;A(|u`}>UZq4g`izYToy z>_m`SyrlcIJpnrtdzUTwaW-L&nBen+76+S_?^m1jc~g$6R8LehtIfk)gX0Nv#3uf` zHviV<bkEzK8|zFzPHOLddtdwW^(?RNR&0;|d^O)VXMS@b(`!bJr=2!8w0l5<g^3?R zH%Z)*Z7$5ab7`Jk>Ye@W8_jM%{>+nE?|JGF@2pKhwW&)#zO$Vi;P-3Np3ls-Z|<CQ z-j<^(#l!3NKm4SrgnRX;maOl5N2U6k3sX*uX`4UGth>2>{|lKO<*=Zq+7az{{Xa3R zF=%3QZr;h-bx<dY`}#o(N$=2TE}i42zJ`V#`^|qg$aGHo?UmMV9F@|;BtB-{le=f@ zP+Y(8V8(B)nOD`44+sC9x_Z`P_mJD&Pqd9A*dOOynf8Cx{*s$N797;MZnW=Fx6Kr} z1snD#ncuFOdQFbe)IVmyL4`K9=9yF39v^nQyHx7zL+4Yuv!80)tb3w*K5E&oi<T10 zmmT}EqVo^`VSlCt4{H^^=Nd(rNJ#Z~cJMx{*b%$V^jf|7i&d*k+3Q2aa;NC~e|)0t zTGp0zJnZeq#civv`}F$jW(BKwFqrIF|0K?zt((oc*^qP1!DF^3EzKmJFMQXp^>sb_ zl-b-*=CM5%h+q59ac}YLcSj1H-<AdkZ+6Y@^x<r1``&(M^~r>b2^j`zj3zVwy{o-> zipO&0nv&yEaVPIr*3a2fdy?tsEYVl<%M6+ed;Ftxs-$h>Rqt`@?fL&?*>-iA#mAXV z#HG%(3tuvnaMv)u^V9wN@At3ff7j%`w)srU8;PFH>D%9($vk}a_Of)Q?uB#ztrzNN z6}NMEV!Nk@*S*=1$GthyCw7_H%7^E7-|FJ}x^HhzbKx|d3Cs1v*7$_iuZh)+|Ld&5 z{+Q+A>LdOKTlrOX>Rw4cd@(`b@X>^{mA4*0S)_Si^YfhM!gKS(^UkPV3wp9%`K@8l zlDkjet}&WYH&tMs{ilFFuubC4Goy~?S9PrPJjL|fD{lY)ygk4BJr#=UcijCSnVRuW zOVK9&$+_b{oG-3)X?El}9=9a2ewksnXfWTghlN)=1!|@W%ya*=apS`b1Ctxk3m<ld zMZ~MNJfCQ@0_>n>w#6GB9BOZvGqb=)sKrlJiYMtpf{0kmj|mgmlMfl1L}UcT#@g2Y zDoN|RHffU3_w7|xRhKSZN;^MqZ^1*S)mKk}JCEFYH616<E(y+j%Nep<sGe7BR?gjB zUr$Zdp1dzKBqSs*F0VXF&)RzS>3d+qE8<S{UYpkd3d&Zs`!%0^y}Z0)Vq*OK{K~&a z=L7}@x-FiV!^6v4`{5wFPWHx~O<+fU_IUUIMuAC0#-^H|pVH6I>+S1%cM~)nWcn_D z@9%fJkHnt&)+1?rCawN6sMrFHkNs5rUYuhgr6V!3<Y=_o62@=y|NlAuclvS3p2tfK zc+}=xvNuXPTzYtA<mT#_s_JV0ITi<V%1cXY|9m|D?){{=B_~rhCF=_rS!PsZotT?^ zc<-B#BxxNMNjbTBcC}V7T_?TWv}seXwE3?6yHih3Yi8%4)O&im{_^^zOABu*g2&+e zMRy)Oz42kjh6_tJZv6Oq{r-8j)n#sOY?+fLhI@H?Yint}ITsdLRaI3|Qj(Ok$Zz>$ z@YpG<_&lc~;pd=8>u>~*^u1Imw>xJ4^+th-#E}Kyaeyh4H<xQ&Ob~#?;AQ`Fm%s@? zs^?IB6E}a;97$=rjlrF4%@QUOt*qj50zZ!+8Fz5v?tXCc0=trb${j<qJ9k>)iuEj4 ziaQ_PvtGK7?Xy{i0T;KPO-vEnJV|N22l;mkOlE9{IO^e~-G`;;zHa;cPSr$WI>cE8 zC)Mi@e1EY=Ub>HsyA~4NJDyBF^xN{Ggp>{oOylMQ#i%OYe2_Wbw)mivJjA(rmhKhn z)nuHTTNPmTzx$B(%W7)Ih7Z<?pw%nw-tR>BEC+`zJFi>f!Pa)~cg!^g*LeBstDCoO z-+sJbRZA=D)|Sk7@1=OyK5>1{D=ISDF1zU93T@CLo7y(>n^mGU<ywrAXQob^IPv}d z|NE9LJNEbJu3ftdv+I2%q3+me|6xgR<_61SZHo`?SiWgf(W5MvqeqW+c6NS#cGla= zOQ`#3%r{6J99I1<Kd(e<Ykl2%X*oqUX*oHy*b|+7xAxcn|M~g($zykSm+$}asJpRo zW%w@0`0c|<>|FP9UWc~T<XD_#n_Y7Dopt#;pURoqdU}2;Lai-=%?J00uDZs%JnL+p z8Y?TSxPIK6AHQB+UT$q|J@f628xb>o%$}~>0QJ5cOU3aUA1;*CYh~s&`_7s%Lt<-` z?Z>Zc)~q?)&Of=gt*!0Fix(3oPSh-K1!t(ks{BGV8OPe1jc-)H-+TT3{rA7pU0q!> zGc|7-%s%TqO-HfL+r#6*jaIm0MejYCQ=n7fAJbqQ!2t6#zg><02T<@Fdf(FG%_k*S zuUC2EL9?Nm46j(7x(a0dlryLN2T=OEXCJ&HUHMQudu7MNx&0s6*93R6Eq-X+T5YCO zBQfDKll%&hswz9Ms%Ew4g7^M|1a5%@l3NZRR(&oGN`@b|g7kd=>2ou(i7AqLQ2Q=q z(ZLmeeICy1t)IxrKYfl|h4IUfsOmkhLKYp=_zx1F$i_c?j#<Uxt?s8P?-rOybetD? zcT>XhL&3?HEzd2?WO&(LfDL4_i7Co@xD!-79sC8-n8?pReNIuuH;_v@=4;;BY}oVg z;UwpV@;=`AAP+GAp4p~o30k%i@W69<QT-!OHhpp4<P3O}x}7z@sv1-Z@z`D7pvVqd zTOzZk`0fYu<ijt`BQi5z{`>oT=G%Gm=55)s<>uye{g@pWvbOH}f9u7I7wcko@B8&? zwPo=$6I0W|o5qmbI$cI%&r!>VGbScAfBp9D+0&<czu&9YYZet1ojQH`<la~HuU@@* zlk+`(U)^7;iMLOj=m=Ul$Flg@g$oy^{B{SICZPNyFC&>MDSdAJ!H#7e>%YCd{oE)b zBxK6P3>9gY0Qs5^2Om6G@OpZ2aq-Fb#<#o0bgTaS_=v1s{mD7Mr%#d(XTETKSKfBB z?)%;H*xuEW#%VLo)~8)xud1$o{rYv|+m@D=rlzLB?<ApVluzoOtKG{R9|ELuE`7~? zyN0cJzsR<dmqF#tv3sjbQ=Ulhv`yma?J48qlgy0zc<pY&67fu<nQ!E(CQjFjP1?3m z{G_!r3wYt2z2?s3oE@8kJ)`xDPEXTi=a*BFo~|G7=j~lz{NMCai?^qzq?}yX>Z|i> zzukO&ef{z~@ZdAC;of=fn)dc@EMe|;NA4!X#>T#U`SRk$i=CaFR&)FI6#f48_RpW1 z-#0FcTs(JYcX|Kmc^4Bz#9+(sa%J_K6ji+-wGw2Zo8P|2HCk#XAf;P9D0o3L@s2v6 zwLR42@#i;}mhDriU$A_WwJ7^W&;lXI^1C@T$A5<Kur(h{Fp!x3;<mPOeM4qW&K&dn zxSX7vs;a7T^Z(lODyA-5wydS4<;Ra7uH9lUzgF!l+~b#-xiY(uMPTL1l{1ag&z+fR ze14woY4h&ul^-9u`uOl{{=l+e%G9Zbuan-~+dDg7Ov?G3+e{xfv###$@9*xOHt#F% zMCq^9Jg%5{@7}#V^?UYwzgNva;ozAxW6KAzv9YzawS|R+XEK>p&(E_}{y!6xViG0S z?AvE&Xjqt#kWf%C;ZORnXJ=>E2nUL%8G3yxetT=Hd!Nih>EqoK`mb&+N%QtTeP?I! z&!-=?u3o+R^y$;z-`+B(Y*@8QD=9YZ_kl*{CAkOm`@>J3Kd*k5H>o}$f^D+b(z9pJ zo+%3qym)f5`p>5ejgvP1*#H0U`yNT-9yjItI{Q)}J+}?}0(|aFzp>c9oljOvQ!{ZJ zWT5=#(~pV|c%F56E&cUkasLVbeU24=xw&t7w(G?0x$*Vd&(F_2tEake(=^t!$?RMk zx7W(j@@8#n@vTQMHyo}vx^b|X{Vwme!pClPl{Fjz%@e0dD5~cs>~mb<U0?ryZS?jT zZ};unmw9>F$J38<K?@D1Oqnuus;kX0^KSjdRD(~vNz-DtF~4y&YRuSxn1`%szA)qA z!-xL%f46MiIyEPLPsPM7DL>Rc>CK!ubBVsOmDMTpj{e3}gN$chb?)xRSBI~E^!V|7 z`}%X{6R$I-LuMuU<!l~Ex7;)E51t@wq^o;2#pq-2V^<cYgVyi&2+PXKzW2$>(z@>w z$3E@gn{&%Glai9s&dw_R@gZ?vWDTc9bMEbJy<d7B9S;f&JZLUBeWSLH*z^P1IxO`Q zjBIRb{`@F>c5{Yh@v}c)F8e#ke>s|9AUNaDp+jrdthpC=oa<|CZSBmNGqbO+dn(P< zd@x~IU)bu}|9`*7@2PlLbu?@1y&Z+k?kYTN%@1en+O_NF=jWe&8xJNJ?0fR;?Cj6a z&OV;a)O;|Zrt@Zw-1Tmi^-Gp6-COr}mb(^6gO0>AFFR$!PsYm1$#-{^);K2`NboG@ z;pP4N=ks|(L&J|BKW<Jxe{XX-znyR6^a<KJsvIj${b$~J_1VSg6NSvgWxyM)z$?5B z4NXifk@t9*O$V=8zgTJ@w%sDijN6tUyyps{*woCxY<e8Ox!Ckmx*F0fMzEdIs+I=u z%>kVH?w~ChhVb11kZm58hKADvJJjUejVuk}n-@6s-N0%=d;Fk#MBI!Nj4Z)B_+SFY z3PzU5n?^ue<}6L8H#X@-Fk70zHhP#rHhN5N;WrnYUchFiINdA2oO}8#1C5yJDFNn4 zTRo=V3j`@)H`4*_I1pC?tu{A@ZuAfcG8deFfJ=S>i;<<dDRh&^9gv`bxh^|+lgIS3 zAafzm{!)1+OY`Z4tcqgWFU&TzVq~^7Hv{kVn4S`54&Fn@Km9=@qZ~-pK{E||&|>(2 ze+o*|qeDUZJC&rSJN(n@V79a{m_Bj3M!@vL3(T4rEv6e<XoyY!pkQ{E(R{k2r<@*> zrN#7%+vUZlpDQru+g`uOOr8<6gKDvv#B|qabAjm%rn>r!meV(w>N+x7PEY)7r3A8R zVvU8)^bbPDAoES9D+*f&PG1oVve#Vq|Mb@}=7!S?SQW*$?^|Y81TxNWg_*?kvUqcW z>HqKR`%YiB!ps4@U+aL58Ebvywjcjz|4dcdmtQw?Mul+xJ(uG?K1Y1GySDvq+WqB5 z+3K84njB1BUEGV_u6x_H*2yuH@#sFS-+ehvYgpgix|_c%{b99{eyQi?Rh#nCLiI{N z&)eZRC3TYe`Loq_b9T?Qwm;v(DXiu*!yxexHby-jIaH~@@Mq8LG&KJIdA@(j-$jX{ z7gu$AEj|<0Smms=!}aFwfIr=Bp)RZSw0e!ASzo!aYaMy;KGxXP<mIfgI*GXz&8ObH zmj9UE&#K4AwfM`WRF=hG4m0y6eW?GwZl+RiY3+}X>6xE?I4k~`y5~||$Q$0pKQ<p{ z5@%0lowbVf)d_Ykh-p%<n;v-0vbm>WV*R`B!_U*#=DmFNO#Iuehkv>n_e}a1eeGU0 zYwUEn(r3@M&fj%;QsLW^*N<!OJEL>Ea7oGUiI;lY-@KlblP$C+AndsKTK`S0%SGxB z*T1!moLRE(UE$FK2Tq(`u-YMbtAp%MhenA%d$X5$B*#AK*d2Z+{O+em+t!*tO**`e z=lG|H)06)Gym#u-il(WBt*?bF7vx%G+@2G(M|-i3(&3H2BP<>GPnjRre(?ER3HzVx z;_O@>_46!aYQFrs{7HTBW#jivi<o?`GL=4IW=*R9011GfE_eP;+BfI-+KJ0o8FU<) z{I+vvY5Kcu_qKk&nbnp(D}GCf|5qLhMK)>KdRxn{*DQa_-JP>%G1rqdIdZ#0uM~f9 z`g>}J(gmg*n~$-@)%SZ2YF`M^4RE&$P++TnKTGpc#B`QN3OT3u{1Zts5Si+D;p>5q zZ*G2&`FXZ}YVT2B-~HMv<vn-b*`YIwTO|2>NVtvc+|tC$8KN1h#8xQFYX~&&FFz}i zx#qO;BZVUCvdx*fi$pm#|68E@_myzRCXq87KP>MW*nE4HRVSYGX5Zwg0(w##;68+U zaHsM+ue#^wO4tKZA1nU;_<j~c`H%g_met>z<iFoZQgV8uMZUSbRCVd*73sA??7LoE zzRD{rZ1=ouWlf};ffuq*1PUECUpdWtK|NM1c0$ocMypjyT)aJdmFCxp#=aLWykx#V z`@QeKZFV}xgoI|wm#$h>o^ee9-7DP6@1|`{|Gu%lsAGyk%kI3FK@N(cg6*fyE_(O( z=2XSspBD<}u9W&>=HUMHv{6%_)u%=#!ynbxeI_2;CGbek?iE9ZLqo|2r@0%_vrLXG zEc*Am%;oWl%U93Z2EVI~{ytZP@s8EP>!*#JxUUEc9Mp$Kg7}38XYO8mYB)`wPvqI1 zd|r{(ka|~{DgU19^T%g#bZ>K*FJ;%U;mtbjhG_LKRgrEPja5uaKaPSklGN){>!tX5 z&&1D9**)w1&f+YeBMZCNi<P{!2;zEpXWJH`ho6m)tX$&l@4&Jjl61Xe%iq=>Xn&iz zbo(0HqKT<2N1lERR&ifv=48RH`uLWx$T`C!E9;SU7{{7(S2yH$K7ajQ?7No3G)IAU zu9kx6VDAHS_RH(;j=XYMVEH6HTSmb@N#Iz`EnyU9;5aERz3iEt7F&0r0Q=K8&-(|t zOE0{P6Adppx%To|0dav?Bu~6>`gnVycCYcd@=Zp)5|V{0>gUv7*w=S|ieU9Nw;k*H z74;N$ePMC=(0%a!?zFBe*IJL==ZnuOu-fUGIz>^h|Nce!;%#g>cjg4usP3PvsMmm` zIOOWr3m<uE>|fT%`h~j4Kbo*E*?jh)B%Of1dljby#5Itd@#^KKt32&4&*Uwl>y1tK z&gkk5JM#2nu|PDRIP<0N^H$V+voSbnR+=M$5(8Q<SLH}Wi^VdWvorh|_QUpQ$LYtP z9gjY}vY@qC_ipgPPn&pdGkrxk{=(NK$wjU?i7su)C4aWQ*#E*!Mr--|ZEL(YF+O~M zqbl|3T;q_#^#;gEglosTZ~JCm{pfljRr<@7NMq(l3rhIUsm)p4TA=qY=Iw_Y+K2b) zC~Hi*uvA^4DW2!wJ=5SP`}H1PtXsSHvNYeVYpS<q?Y7McZ#R1PCxPuqVfE+q`_3Zl z8}IyTHhZy6`bnx}z{D1$`1@b_us&wDIoIy%s!`LAN9?P;@vfKc{PKG<SqfJaMeSOC zVcWGizjOc1X-GaNwgTD4mL2cc*h=%?obD#-@togK`q2U(pS`wqn>jVUU)}iW9b@_i z6CUL)4v3WUzqHZ%{<g1qewuu}Iw$tsRXWQhti&f;{kHzZs~?L**}3GW^Ru`fMhT2h z@z)Q$IQ=$rsp7<+$M<J{I>~ieiSN|rhdck?3>7%HG``lzZe>C4hLuqZ<~4BCL2~E( zU24nkxy^la$L#SfVWF@Yl7#_t&V3h`FKhWAxpa!|9OF==4Ef3Z`jPr8w`Uk%Rji3{ zI>9wr!SC0b4Uc|JEbZL3A>*`c_53?JFP3E?Wx}pf$8hamCdbXcPu?u?sOH`ux5V#d zb<0ZMcY3{eDZL?4Vj=4*&W;D-;PO)QvZ>LxEdMZ9kCeK)qYWP#(%LLO&AzW4dE>3< z#K>#r8l@czGwY*~T+bBy*SYxiWv|0YI;y40#q;Mmo)=L6{!BgJbbXI@%;bc%YSD5z ztHcmdp%Q-m^0|||?77;HyIw^dzi7@=_)mfF)a7+6=f33Q=*$=W`s2>!EEFBy*B^gs zOuabm!;?qb=4Jk=S9P8<zoVI}#_;2_2dz~mhPr2LQ$HbD;j)7J&$}yg#oq0B5*(^L z|DASv$7lJ%fZlVFdA6KaKA5X(we49x8zo$oE?&K7Ejuxg?Oyq-vhLq*-fcS?6!=7= z&wlt6ar&6^w`J=*ufZ}({qD4`C8dlP^2EM5JTHk|boJtgJC99y3hR{owsfr9Rw^SP zE|&Xq-<z4gXYJy*|F@=k^#z~l>smOfAo1O@?$$K%-9|EZ9xmTm>by8^@;t*MKRYeH zcjt?gEiR67Wv_OeS^IZ!Wz+(M9{1R{wZ<pKr4JlEG`YLp`<2_0<v%4JG4)w!lz0EW z(01)@=2G+SU6PMxoDc=aV`mBDoxYe%o}2UcKXQ0@v|Uy>IKTFvmGc~_4rkTBuO?qu z(G>d8)$;poiAOU|2!XXI#-6+RUDV%=|HJb}z5b1Jc3!_`YoWdIbWnubG08_)oMPna zrM}K$$@WO8uY2@!SG8&_PoWRT(FgBsH*~e^Jnp)5as9JZOVf+F%B}A0a=HEU{cXm) zO)FGS&y{>6VslbA`+Ruh(>n*_R;t<_&XSE^5gt7K!cu*urdXbT_n23o*sISO$2@m| zth?7j|1P!~qxJTCqwlP4Yv<y2p0i1PXZ$7h_u4wQm<+$2Jv6UgGM%AliS&|{-Y+hR z3m(*CtAF1Z+9JrFa(c%%6{W+1QjrWP(X%sp?Zd0Lf0=npu8Z4wj=g`;*-KL^=G|ub z_<eC|OLY|QC8nt_5!$cZvYuPCGV!;dp1HooiB&%qy|{e!`KMb7W*06wf0lUkr%vek zYWX#$haa9StElg1FUp#=JH&EA)ahk<3%%oASawVN+53BaM%J&`($C$+-*1;KEzZ8Z zV2%GKS&QiAlgql>jgI{MsgkiPG3%FZNqG2C(SzBo`@>Ru7oS^TJ2}c}`o0d1GQ%I$ z;mb0rp2a2~Khk^X-Hti8o^BM&`0u@#>j3MzC*`qKS29`nQ#(F?uJ>#)UX}cKeSX9) zbGb)KyUuDJ72lWt{>AKz+gaJdU}mX@u+;CaW}CBZR$|9BrOm6uj)>_M`pT!=&(d5e zUwQC-{gk*}#{`}~pZucLBILpQSxd7FzUA;rwcdDE^>tAWXIt(op<Q2GT{eKKwcU$O zuH3%2dGl6XeJ(BbdVTwMHbqMd{lkuSF?0JgXXN^aS#HVAKD(iM9#@-%eSV(I5#O`5 zU$*^Q{(0u-s>Jd$H)lOH6uY8jrh1z{ZpHo&weEFC9g=?^+5FJ*)5?gmv#gxwcr8+W zH0Rv+$CLBh+~dFUo-O-!-lW|3>h|7nv)-xK?Dbd4RmIp9>|gSK+Sc#&S#{!Djv1Fn z_utR4s@tvlvL^P*%2jvWPcP(e3T)#p@&A?{o_aTDSMKYzIdal6wM#2X^_=I-_fOiw zwI}*c^|QFw2lHQ-%WK~++97dv-eRVS_jak=K38&l-{h&CJ4-XCOZV4bulW}D`e?iC zb=|w=IeYJ0&pUWOp!%(c_kQ7j^X%$h&d7N^w{6~`11G#+i2M8Q|2%WcWW{p|pI%*c zpJZhB)9kyWwTpXz-@Po$+1JY+g&A+*N;ti7w(rdA^V4FgnHWP~Jv}zXoA-mbvEuf3 z4t~B@UaqRW85*A&>XI_;twqo-)2%HVa=dkKPJP%A-(wTY``vTj4F;`E@3+L&T&cW$ zFS<U!H00`^MQiiZQvQ7HURmyHdblMu<x%gE|6yDGPVBljzx(*y_o2Hszo;r-d}Z^+ z4Wb;WhknZaJLWiBv)bs_ilhf_iT>}J%`y(O>zf~Ye$8#(qbN-i%bUJmB7T~yYd^fc zu$kw(r&T<EuIbYv<sVMJuBu<iFwVDOWoL8^IFPzvPW_X)8o$fDeNXQ=aeB|s#rGy8 zVC|-%cEzxF<%HFIY)-EZmw)<B{NHo?|4V(}v7Qxy_0qH|H>SDfHmwY_{LFS*{CLUB zbsb@`ZU$cUs`}S1>D9I>_9exJNTqJ$3OU)mb&Gd=V#neL@u_Yz*D{5EO45CMDO}=_ z#x>WafoZE9rtXRG-u*?i&7!L`FmuXHtpG}lsHcJ%lo(O(y*p&mnKNf@+=wvMO26mB ztFr=P+=L@HeLHrvwYA;<`>vd)Q0+Rz^FsCJ(vR-#tKD7n^i=lsb%sY~#z2C}Gv;1S z$L-DO{4Rz3@^&d5#ycTh;YmC8tQ43&efsoy^Z4XB1doF{;f^Y^&GY~L`F!5lx!(Ez zkK^|LzHQ%cTlA#k%U7K)Sh#!cxfc>BBX%t?b=L}$Q#qm@kKXVUHm;phX>7V-0W>Ov z(#_Q$aZnO@^%TV(B&aZqQ2F?1=g#l5Y?m`3r;`asy49E6%lbBl>kT3~)vtCC(wCE} zU3s%uYXfq!^W3u|Jt1uK^N@t;`wj`XZ-j<sMPc#xDQV|d9zagBDjy&1+E#dWUT|aV zFD_@9qp$!w+IQ?Z7FTqyYB#O+V=a5B%~Mz}@_NxFjm@D7o#OU7(ih%Xir!ed-rz{! znr`smhDuz`?Q5$s-S%VF(rAd=lKhTLHMQ%v3f*eCRHAO$N9V1xBwgKEXSqxl>{0so zsJq_^YFCNEIoZfd;`x>_d;WU7yx%|Vp#Kk^`}G-VQw+5yyfj)9s1jGBx84_GsuSZQ z8zt{YRR<Jew*8K<)cPQ~@8TH^<}iiJOLr@A#;U~4som|0s+8j!L)(w4A3XOn(xxzK zPk4DLc4CX3kp8(nA4_hnya*26g$#vq6IBasyC2QaTdX<hg6pHB_3TAiZtC|kzO5*F zdnsJQVa^?mzTTsTv2MXC3%ieWC!Y&3K2j;nC7@oelh=24g;6XUL}IaDxFJ}=T)o&W zG=6bUWTVgY#9pP3k4^;h6vnmk9Wji3W(ZEUM}KdUe6$B8UhdCXlhW~7ji*qg9v=Mf zE#nRfJoiPEGeY|JYPZZ$JU1ITI`(K^2B}Kp{d3PW7&hEAsp8|eEkbP;`9>zcUj6*> zI?~ep?77)18(Fu)Qq9L}S0*(+XR}QYP%W5v`oM|P>(bBdTNwFoOMRr$g|jG14Hed{ z&3D`EJ~ey#z9s?orN3tufB1Pi^SSloJ>`h<R3(n5qxx3ng<`f)Ch?sKM;2Z(Hh8`H zzE%D*HnA)4^w+TC5?iy}p`}7QPPn#Mg#2n-`fKgyw5$ZjwXoz>&jT7>T7Gl!sjc4e zA3H4W<j?(hC4a7YFf(@+q(D~r_(=BUQp@i=vwnoD7EJ6mKk~5d^@|_bd++T|>&mza zEtd5Atiz@2*M&jct<-A~@~b^vefhn;HJQhdU37DM^r6X1FCBOl5yB+CbAm#B-|Ovs z7VXF5EYt7LUW*)Jxz+C{{r&k)R!>=E>H$~1mJa8o<ptl4KAHXh&vW}{nF&%aKH1-# z%h<cf8IsahO%rd}(WSn4mhD=d-Csl_JDgMBo%O%$C%Id(X;<UQwcd`Wk{(OD_Ub81 zxIQ|1SU;}y&H4R5>NhxVUOqK-`o2XBg_DcrZT*}BZXURDP4)YO&IJZtQn79ZU7%v) zzH7=9*ZJ$Ny~#|yxpcjT^PNW~N4`8VVVTP7lN(#q&(F=Zc*Vt3mc<@>Bm~Nz<-OjN zaav{joY2MWYTLczKe87t%H+_Jo^fkegh+Y{#7xG*)ZX*c-_)O9pCxtqP2<V8m%{(J z$Y|9zZ+?7a_m8dl2`Z0&HeOP_u4g8O(DHb4{xmmHi2}wAQBRbn?f$lJ+r3PC!S=50 zcLjc#8924ExJ)<NeWPbpVyWao4I%w`1^eXZRviAyamni;v)*ODUb(nidbO$9Stoy~ z+&=0q`((lA`Zfy<+vd#y8#ixe%SvdmJ=pN#(j`4-%|)S*P+c_Z;hszXrgZaO2;V#D zKIi;EL#KH@TTi&^Jopr#8^BO9UA}x$gCA4jy3CH94L;6i*cUYl_C05JnLe#d(o1md zuAT&uPI2WUjCT%9oUDJ%_z36I%<CziwtrnX@h3-#G~ccIbx+E-e)nuVr~Zh^l-Kb5 zq8$o>E~_DN#8DV<pnm((sRl<lS$)kz%z9<_Y~a}C+y3S{7ek40mtecs`v-4sJdtKS z?#!~GQL<j=oI=+h8KD%>6_fOY^pACPpI*s%bAJ8i743?A-34x2AHB@D^mCU0&#si; zrQX}EUz`wZKUKeZ;`CF$)_zu-5g2+{jJ4~}{2RQ}xJ;IT3%MS_>Ax4q+L%ASCERAA z^RC<N)chW`XV+Ta#52TJczry3XdWNqiziBa-=ou0@_x@UcVIT2qIcljE|=GzBu-yi z!SsW3{!&MmbtnEmt#k}*YzqY!X@-y9P5-jCOS@@*Fi&Ab{hqbm+SxL__Tk-*?Dg07 zYezB6Wja!-IV*oI*tm5aUxFHLZ+g+RA>*BTO<O+Gq7(mp#gI)~;4*JjQ(NKjd#453 zU8-KLU;OZA<D6NldKYqib$6z|m7V{00Z(Bp_vf{nCkN+y{#yH)EhC}rlBifN<0i*H zZS`E|t-KvXHfo&P;5M;hqd?*EcUu}(&)akLj6i!!O1ZP=UynC4T`#;nQ*dYF*Rn6w z^LiBCZ0GCy6{l{qKATxt{_7;`fb}=l8Q2va?r1*$!Ph}#<3@|aQm&7VIvu&I`>xr( z=C@y%(Gf+(`v*c}%!P`VNj2vkpLnVIXzkp(hQ8O^>%HcEGhP3>kJ)Lu`ktVUgU{@i zZ))#3QJ~X%DqigDM_%80=BG@i?T6ArdNV~j#kmF9Ss#6vTG;yC`<KL{XHVY;ZoS@n z<oPvSx008Azg7SKYw&xtWqsveDT&JCy-&OZ*|smAs&#wCQD1YFn+^FHJtitf@^{1D zc}bXV>v{QOlSV*2I8IzUPVf20GRys4vsv4Y%B8nI<eDCycr#R@WVew_z{W1e=T=Lj ze0GA2{rSQA<Wwadw-hUp<-(37T#uP|u3f3hb<KG7mXGnrr@J<S6ONA4owJMNeke=S zubZZrcW=Ls^0irtFFqw-a5R5aecbry0_Wu+(n}gy&ARG^6F<xr7Ohij{hS^?%j@Or zlA1^n4RF<{ES%4FEbgI^(Lc6Z5-f6C@($Zqe|vMk!m{eiiu2un{g;J=*lziLMCrx8 zGdk4~%VbIpUEcRBQ?i>oLFD<zwoQvHrcNq&1@a@vi%(qxWmxjfxvLLI{%(I}QeDTn zn@RiY*RS=f!`J`&`FuWTSBmd!v#HajdBw|5s3{E432ly-Uw>c$^Zm*gy9GQY6>~q> z=o+tTl<GcQ-tD2!+k2*c->RmK7Gg)igL*>i%iU#u2<~_oTRlJRynbSMLTW+5hP``b zYyCVuch>#g_2p}$lZ@6+(dOz+rwm{0JEhg0Kc%&JZ+-J-`MMwNkN&Q8%Ra+6GjOi( zg`(mv*|V$NQY=!=u6Si6CVqpHZ)^OtZ(S-S6D#&wKYAd(ed*L=^Dh23VSlRgS#|N^ z#ruEXeg9zjm(+9N_6(btBGl6Cr<m@&p)Ikv+a@&jrq#MPd7IbQ|9L6De?_>rqk7@a z(hKKXU%9f{9X2n@uV?CMz0V}xF#khj?{krr%?Cu~zRngF{UB_Yz2Hhn&{eC%e2Js1 zd)W5v3A?e`WYvSm{r0c_maO79QUqF%vDm%8CQkB(2A}wgMRr=!4Hk^edG9+<9a^Qx z+BM~EKJT&p*Hv7vdCYR`;i|YEVZ6I1pi$-DJHxK(Tb7)4-*?nF7}pDn*zb?Y%*_1x z_kDeQNQg_($0Jv6?>l(2L7A`lUG?$J`o`jp+ux@w-FnRUh1`^H^>ah_eO$m>cPM?L zlKp2RR@Y=T%}oV~0*jgK4lbM->$bu{NdH^Mj+-~XKRo&ENAcEKGZ*~$nR@ce7n3jk z(o#|!>+8S1Qnoqv<4QEgbA>oAo%%-xFBl?s8_9IXUVoz%{dPk~zBK<$GkLvxg-b;0 z4yFG%7CZ6L9v{bxGd#Q2Of*@j^wqE9L#9agqdym2A03qwWPf_+ui1;$eLZ_Go#9G7 zukRfc99;i-_WhP!PtMJ?zI0vrh$Ca3&-p#_l^=H<4-Z(bbD5*zU7hEDzi_!yjSJ`A z)|V>3s8=jv-t^X|d;!z^htmCBA+NTdlU`sbELIee=(=j&=ckufG-O|YlPb9|bV9{m z^CMfo`7|%St9`9F?yCMARwsi;1%>DK)f@g?R$p;0I$*iQOd%%OkRN=EFBbWSi(l_` z_%E{W2&io8{bFg+_!eyT>g66+FGqRyBpKJQ>MEUBvC;g<*^j?xeNUO1oz}YPd3fj@ z!FKKv&UUx>uRI;iR`mkyUhe<T$X4I~w#D_r+Ai%|1t;8uj@Dkv=e=NQ@xpb*-Kn2% z&bS)9<Wf<5Y|o{oOr=*`9~~9y*q!^D^?%m8S(nZTu%2JP%0q!~s^q_pWBV4mUijH> z!DF@J|JwSMsuCrqlXV|d2_+Z4`Wij^_nZpJw}+}Wmq>D#gq|{gSO3~czNG(AQwX>| zPU1Y$+qa*ud!x+%b&<x-A~yS1JrXWl;V``*>D5~WdsRV=BZ(L8Zu-U$VelgCxOi;U z6~*qQ|ITke_VilgW9Izng`B10M*c#5QYU4zXI;+{OQ^pmkzB~AKkKDYQ=m$mPNRi} zWcd6w9lA1qOPF^|D|@Nk(&5}Xds4x^>d*iF*Z6s!V2izf=IkQ54<#-;C;a`%xpS-T z-%oi>&!VU9?O2;R=XZVK0)f<I=acH3i)D8jUfL7(Wajm*rNzH4I?UcLC?&1>>)!H? zZ4di>_p+XP7<Ai=uimcoW8m@+-e=2RtUj*iG_lp<&za4|?~gCPXQv#O?i6wBcUoS= zuEUdK7j&QTw~7z{STf}gU)TA3*FYIRX+HTd84VSg&6BJznXV80UwDr}Zq+J1-T!Vc zLK{`$bh;khIo+qcRQqw)JF)MX^+#4^y-*TO?I^CT;|~;8P~G4t+wiV_*V5|Ciq=fA z87cn`a(|uboBX8wh4dWR?~~FlM>{4LYD8O<fATJ2{3IK?*up-Yv4+jyGuwxN(9)R? z^I1B@f4j(7T~K^mr0hIrQ#oVc<r_z4?|XQlDeu?5<b=fxB`5D+3pYQ_aQDE8(=R2J zPBF?WbVbk3h!xD{d}v&e<F|3Ldp&E{@kf6?1_&*Em+y6T+M2z3ThqIG0~%H0-Ut_d z_x`mYE$pbX!u8Vv%YVe4IafPlPL=tOKTCgG38$tOy-SXM|7Gg&xzc>MVist7?7R_h z_fONF`&OTvUR88hifbzw$##go7FsJP$+t7vx+p#5;@1V*I>(r<X}(CG_~7F0*+DB+ z>$BH)yB2!XDDkluwd<Q39Qpb4Ui`j42F9QBO8#uUvv$3lV7nc|3q9LcG4r=DSiSI; z+jk}4vJ=;?eTpmVw2LP1Ro8Ab(B>0qa}!<Dr5#inD-*YXDW%!KROc2G<B~fUi|n51 zw5)1KZ`)nTld$A|$bslh-*(-IkP#9(;;69QbZh;SZsykQxwGUpu9Dl$q57cXaB5ju z;oQ#o9fueE{+7t@Vkc3OIbAwC`grFd%YPLd-;;R{DmNIscw+Zr(W2lP)7_q~-nfQI z++^!R|2K{D)eq0Sc)`TM>ML>d>_*AZI1d4K)$fkd7Je~)yv{KU_pQaRSc<Zh%3VLY z^_x%pkA1bd^@o^V95~n?QyJvWX7w)OaOcsd#Tsl5!9037MeaWi##@<+9e>m$w&I6z z6U%wFhw@Q}wihhO>R~-2_;dFf^QZOR%lsi3)9Hxg&B>vBYoBJ-i95#}xNpr;I$7Y# zNy(LyBYtr&u>QZGwwIwqGJO7(?ShT(Zk{;3Qc`b@b8JZcmOJ9>k2jzH&?^-^CxG$O z8ov!p-i%9LaOkpHJpI<N<OX9l_j#GA{0G-ouRm+McSDt7|E93S0!Sa?q+t2l1>8|T z*6|!KUK_@=nnT~{B2VFp1q=9m_y2lx;MbkI7cLo>>aEW$tr27r`Eu82y?t)R{1>05 z)V`Zsr)|&s@$1L>uJu1GxB`Twb~;!dy`iYt;q*}R+tNRmk{D!JlDVvo3cg&LQFz+P z-E<YhzC!uxcDaqa%ci=m`;#f!b`{*;nITgcFlqnV=Rv7q8B?@^T`MMb9_tVmo1guP z!@OW?iT~3(+0mlUnPPjM9=JK{t7ll?H_PwwJ*QW8o?Y2#6UtieaAV>*Srh)bcBXg! ze_G5}vFCzEo|{C&oBvnbT-unwuKXE#>O$aI_ss_u{d>P{OVGpol~(^HR)i&LK!PAu z@m*Zu{beb?cd6X|EFQ&Dq;;s<r^H1@D`RoX@s>H8%nqBC`_A2Yd)FmaD~$`icjtw5 zeV(@CKUYEi=fvOl-khrcap%^0|0##P+aoj{%(ZwBoe^R;OUi+tZQ|_tuXjAy&M@gu z+2$twACjS8Zd?kSvugDTrrTOPi%xTZTFW{|94-GZko~u3SxnB1sr&go8e@NTz3Xs3 z`gl!C)8Bu-v6Gj--_o{2LtN-&V_tL?=a&fExc*<83l2_v?Z0}~u_tzBC+jbW9m&i% zCgyu<(bd|zV}Wvy4d*8p>U0^efixt=3j_Am-eC0IxF9KjdG{C5W(7X+Emu+w?4P0* zFRL3Z8sAdU#P-BoW{d6HIaB1m7w7)|^mjr>PPXvc#EW7aCzt%*cEO%kIH%UN|4DlJ zjoT|`3G5WGbrMlOqA%SIvZFp$B~Is7n}5);<@erONA5IQx8e89Ps;k7Z!d-Sv{{7w z(0P3-c-Df+3TCReud9eW?BKI1xw$=B;ml;Y@1J+R<!)wLyT{ddgOKAygD&TpFBbGa zs4tJOY7oi2`Qe0v+2Sl2SD{@Vdm<b~%&k5ytIy#3WwHB`?BmH=dJ2JpaVbeY^+yt2 zg_KL}G~3fc%H?&tPp^!W%XVDQY#+V+T?NBjgQO|<zP0YIUN?379V@HOg}M(TWd5|A zFZcQty2{YU;DJ`l^lJaGuBuI!LcX-u&DzSP3+efWwOQ<_OuZ~oQWhdRCAdGfC8^-Z zLVgYZyT$fqt)^u@DR*<C<eDABOX{EHWfy;+a%9K+?YZ$47wTB;Z}sn*f5|zz!cDa9 zP<kiVmv-Yrbr~A_l~UbzF`w62<Gsb}OVHo<hqJC}m1H(ry;Ay^bhM+nXz>PVn@67> z`+a?LDZGiPaEC^Oy^ap=TjAq*HoV1+d7(9d=k{(BlPj6$|NGOHx7_Z92N<{P$#q>* z?<yv?Cv<^Hdd($&i`fi6TG^Q=J=WlR(e<wLANL8FiE*z!mQOwFl5tJzOK#(>*GeCg z>IK+8M*q61{(!IlR7j-ea;aS&syhVQx$OV0vZ)nr(EI%B@`eoVbBpWr*1!FE#XA2w zv!7zak-uSz9cD6H7!9tUyyNoztRCmN2`-U`Ocm=T_W$^`we#B9Ka-O8BuFgssu6zq zRYhgv(zLaQICKNNV^!kb@IPAMbAC^^WiapBrH@{&kScqreXzqK=8xz7ko#uy3cqsB zdlWN0<@DL?{n_uoZc}IawN`jt-D<DHVM22hJ2$ypXQ&HTkND_($p6anva@fC>_7Vc zS+aWC+Cu@l0nDKE_eTBEf;}@TgeL}WQ`)v+VXo4HvX|P9y%r%CW?7{wmzJ)5?7mK? zNl(S7zSQaBw=F{b)k*>TOK-iuyl>A<)kkNJIhVbNRdQR~rQPz*AnL{IT<*1Bc3J$0 z=eQjpE;@IAvlvhH@7ObjhwRp*tv%GB8xRWell`Lw4!7HuZLK$2w_#<r(T1{@+9C>m z5mS8kU)#3l#ICDN+g)4SMAv}UXx*@V*V)i<F@2VAY8j^`a}9UzDfgR3fv+A1*vT3$ z60UhX(Rk4ZAp!M2=`L-|tVJD@l_Dy+eL25_B5lhRa3N`-(9wL!-b8#}%pR+KE7qo4 zHI%*7o}!qSmssz6w|c>ZHKwJLi{-DYM}>2KtN$qN!F{`GxozBia~o^RuVFVeub$BB z_Yhq7i(#MQDu#(pF`S_nPEFpB(Y<2(i#qckJ8jp7NX&?>yRtCh))d#mU$2xtK5|gx z<Er5O!x%d|qjj3R#_lhozXaO5*CZceC=}T2_+R9ZwBm~f<8Zn1`fcAU8D#I2WrUp6 zy!yE&sW|i2n#cT;90bEP_AlepXjgL%KO*MDEfV+UV;;kz4xjelYWh1DcjV~!#mB0| z$v7Nwd|CI5<<wfw4cpk1rUmoHE^#t^6mZZnc6~|!dxvwiQb3*1j}120nzlC_l-@t< z{!_sc+fV*0*>>M?R(|2i^}Rl>^=QP09g!UOy<-pR8+?;+ujJYCAng8}6&xp)Rhund zwOCI`pHJt}f&=sOU3N};r}_WwrSKK*GJ2P!RWIza2%NU_)Uu7u;;)=z7u+s6QMZ=C z!Tj;R*BWQjj$RI&B*FPch_}EogC(k9iO4bEa<K;<Mn^>btGX9|xcgy~`3`1-%k{Qh z+|#C~3P5TT<~|DzTjq1VC%;|&=z2D`F3``kWMWsPK)YAy<%m~H+y34RWj_~I|Ne!z z;<@CNHCEF~_VKxwJUn^ST<5NA-h%3oZ#n;0YH7rOv~g7UB=P^uZr8#LMfQKowG}<< zIvR=+FWT(5<b5~4`(4|$LkoFkp8k2YzUo7JM6d7ndp(zyg|bw0Pg&i4q+2xSu>9;Q z?kSV?&fX2a&=Ph`G<5r(2|IFby*#W}do-lu@L{ib`SmxZ$4b`jx)o*I(quJ1(ib!~ z_2gR8vxesTI<Ewq_;{bbJ-yCrPk?;wvMTob-@jONnZ7p@V>h`yCn?@VW_^?W6h-;t zMfESL`Zu$^kT!|#S{8G$<>k9IpBnOaeK#{%9=V$1mDmag@lJ8=jz=7)ul~_{v99fC zM3MX!O>T}*XYrLYxC$5D;MABhBf8t|)v`Dt)x07TyZ+OWEO)0JR=v;o;+N$G$M0f! zJB;rNP7D+)-DPFCJ+F4s)#NbqDUUfG8P+6d*NDZ{cP_R#vt4zav+9ncDic{3uG`Go zy4^Ls{h_kroz4GN1-9?_zZ&6^)$JC2MXWMUAMn5U`Tn-#Bc6K)RHjw@{T%<l4&49q ztNJC%du^?^#vyjM1&`(OZdZMm(Qek@6KLo9@o(FeNk8t~iha4XLhVa8vshrCGRJ{{ z`d60kG}z|_zHrgqv0tF@4`atPgYcO4#nunxTIx@5)!aHKzU~i0d}`=~knS~^Vfm#i zkX+Mc;bNIF;dHX@eY-aa9mYk>lOrBIz4UdSbzst$smEm#4{2UMduQEwrGf$<#g0b{ zBwLo>_}D0TJE+@ychz)l{(=Ww59`&_3;UGc&3Q4SRrk-K2Hv?s(uba3I->n($C88V z-nSYHzQ~znIWOe(q#OtPGsiBhsBzFRx*&c0$uo(>z&Xc2Rcr1M$DNbz@6=ky@vkbb zN@bah^PEDd87<b`C1)+}_wSMwZgaa`FsH4rMPr?Gr(JCCOlAe93yv=AHZ4tMyYuTU zGHy?O*f9UVe9?_!EfyTxonm%cxz-&1!S(P{dR^DP7fc_`|J*b=VKqmWtCnB<@#oOH z?eFhgm)NZz|8ZK*<ldv1%es$rn>xr$@$R=;xYp_OzPy)d9mYA#pT*8pTvoMF<LTeF z@R08OVp-0_^|Ec!NqY|be>U|?`M2{9)g0Xq+v`s};%aP<Pn+iWhP~r(`}R-j+oNoh z@<L-2tvU=+{y(~+b!Wo-V2uNhOEXq$D)kpsF@3Fc{wdLaI!s++-(#UAF3|$Z1UN5# ze|I{3&r+Xs<5ja>Dt%1K6_|c}es=RW{(GCg8XUQJ@jyV~xqb4pYbF=0OWVy*_>R3g zGP~`2dN`*-{bAkD5t9R2>QjR^)kbG|-q|^8D`(8M;ys_Q6pM)O{2+X}v!9u}<@y@$ zEsNGEy|Q1_U~uH?>jkxuA&mQf+toij5;`xf#_L<n9_t*<`uhIU;Q;~c6I{-BrkCDb zZ2fr8nuHM0=v%j`v&@t?w{;c&$RDgeTFX-?Vq%cEGDoV{rao4*bl0obk42;R$e*7z z`+8gObe+P~;Nv&F{qE-VS%+`8?VT;&pdhd|<#UI{8P6J<BhN&3zo>7taj<0Io5gxy zZoG|TBiqLxoE@#73ora!dm;YbTPwBM())^2rwQxEJ37w&T_o~7^oUz^<iVvLPU4;7 z*_{>|8m(zxUS_pfa7oomXziHIrg-*xWa@pH^&Wfg1VotLc$;}ml=tSrqdyLCxM(ei ziSv}d$G_WpwarJTyWz)AE#QCMo1dt+ZNX#33x=(S`m`8$d5=7dWa#)(AR<05$=x>c zivF`_DLWV1<Tdckf2wurmP*vVrY5VB4=lHQ+58_B>dz>Q3p3CH4|3K^Df4kj)t}q* zuSHSshV+d&PgIUR`LcWA^G7ekA5Ms^@Y=XRp6fzIjA6s~!%US8T88P_56;EQ2$Y92 z>NN3k|I|1lBp2CnjZOJhhmfJ8cxmn;Q@!nc3>_0%#U>y4`r;2qzSzRw2V@n_I4f7j zI5Aw;5)nDKQNs_^u32OIXu<UQUA^7^x%buHI4B@~g*WG1xS8U2=XI^Z>kn)+s0#|U z$layCd)0y>f%olq%QqbgvzD0|yH$Iyh;F8{M)SAkU0n=fJ2=IYb_(rVIA4)_vykgO zK7l#k=Us9sN$UG>ePPR|*l?2+_SD)*p*u`_dXHwV>^{=H)m>(abnD#<F%Q>2d{F;F zI}<!fJ%1NRvD3MoLPhiTUf*PJ;(WeQD?fwP3*&X38chLQ&F@}67M-@rQRX*e+@kYg z@+Vf_oE+MC>^OtkyBHx~^97=shg=ojZJr~S`K*vz;uqUjpNlfu_THxxb8{aZx_DdQ z?!&ERY&DUNtH4R%b(4jLdcLXiWQ)@J<)ODgQ`zU1>qRaP4mIs{oxASV<WRo9E-s2c z8qyQK%V<|ee0%d+c<PM6YX1<iFy4oyN8?kcs?S+}yLeAc>?B>Ky;uI~RR37qxm;c0 zT2VZUl8xc=o#$WbPMvc?sl-nFS9->kLs?>5#B+@87aUIu`FhFq(NV5#57}2OiOp<T zRv&cH<XLX@KG4uio5lQHd%k|P(c9?!rD0u0P2Sr+<)sa?^!XxMUcX>S{jfj#QFj=J zn)0`~YqnhDS-4JHLG`7R?t-8%5>9#xCE52}V%BF8oLjxac5R4BZA0+M&PPEC62IIm z)Vn9I;AVWm`-!a*9s;6A9e3uwj+Lwr7nzr{KmL;XFMSg?P+PiHvCn1t@huPKcB(Hq z{)$EWi+_2lg_3`0@!i{pkKW!<`(;~hrfP%rl~P{+xI4Q<XU3+kmOZA~>K?bJjO(0+ z_&rJ8H0S10jdxDn4j%+JD*iclv%`norTpFAoDEC|T95s`P{7qDvFo!?_%F3BTlgL7 z-)>%=H)pzN4|sTcV_!$}q{_dVCNq@7r6nKntoCTs%ikM5XIF0P>jSMDW;C4$o@$t$ z{cYZwKfeRl?dIwbD2shR{mXlspe{%8(pA3>eSe#wru5CHH1hF_H)|pmXKdipWfJ83 z@^Q8r*N-=|Sl^wm{2Az;Ardw7j3bYo{LVWK^&Pz1V~@QTjNT@|TjY7gbJr`ky2xYU z;6m%GtIU!7XujglUj;529+3>5$P~M%cqSw3h3n2=B91TTb?k7s{p8|_h^LnWUrbPY za?Nf2%DxjC!g-9Z-^||`erLNg!!ChvnXPIUqasW#48Lw$m07Y{Ay0(w+QXW{L-Fnn zpJr_4tFKEv?0B2&`aZTFJ;B+FL^Uhy#m`+)*?5BG==Q>$rHx*m>2ul=Tf{sb9sQ-m z=XLI{Sw`te@z;`%dRBTg>dD;bXxo3GFYx>3KQRm&*K}#$nI1c{VxiqLpReb>1U(en z(D!eq^|pJd^Uuv>TC<?KyJ&g1S+Cl&YgKm?`ujXf?=wBCH~hRILnp78YkQxchxegI zcg0@|g5UTjB}Q`2^|{LAxhJChh~v#^VVjKBy~z8Rq;OmyUB;EGB=P;T_Fv-PBNpyk znDK;bkwuB&0hZo{jyBt#SFn~OcuTptv@7a~J~2K%rP##Aow=l0S$}!D&77Y{mDe%E z_uDa)x?bOrE`IQ|Q~jOE6Mih|-N4L!x8Ue;=M%m!QdWUH>*jE0rS%=pBa+wW861%e zm}nH+A#vws#740r<~G)y)21!l`}vTnWI^N%?SmX8iW8NKtN;8w;>%HZ`o|lk(~EYb zmO7m}I)Alpwv6inX}RA|3Y=Rw0!73R&CN&_k8R#=|DbrqMKR7le{R>GJlF5$D#80n zx!0w=X6OCjYnx;?Z*>sTH)8_NQ~GYn^Vd%8FkYZ^bk_mryPriC@_1BO@Hy?+`lm<b zp2jYlw%Zz7U7=~u?R-9Hw<{ZYx&HM%qqjh;B<Jwtw+siaesqmbv-&shrA5IuskJ<U zxzF40-<liR_g?=H$Gz!NYA5QKsLay+Dj8GR^JvM+7a!+6>0a%7gUNHx4UUfHNi(9k zdEaL_iaXD_D580}_4*^F1-iX@4yW@jK2bZT*JtFj$j4pdu6x85)(I~R!zzD%I-Hw* ze%j$X8`#>ec1d_Y+p0c$($P$}9e1NY#(dlP;mM=il}8VWD*q9?UXz$qoG<aQ&8~ir zs{GAEvh2s+YfhHyc6P436XTYnc<a6XEv|=#3CV$TKx<gcI3BHgQeHHf@BTI8Ba*%o zjbd*Ywp!n@)l+oVJbw2%(>{xYj}_5&j#VGGZ3*J|KdmsGTg>6ZwR`59RbA)&pA)~} z^g>YwE}oVj0W-9OtyWn$a@`8+=U;zN;$dI?(!OmAN{(a;brrCSz5Nw`+`eH0HxJL0 z8G)|FTQi)s<HFQ?p4v>B)_c_Rh0@2QW(7X3EjRRyPfI-NS>`cQum9dFLxqO|(=&Jr zXMc2Q5ISmEAiO21w|m*7w=bsXaa;=E6aH>paMEGY8i$3x?QeD)c|CkyRF@+VvE@#w z0gIPxPyM!UhtqpBkBG^Xw0>CG);e>_g^d=9P4hm9$35~7Y5cIFV0G&JXHJ4~Z*&uq zjaS_(nOL#0P~iL7POgl)jOEPEa|%T?FF(B)-RdZ)#<{DgS=?da)a^G8F0Agj+*z>q zmIU{oq?EEym$aE1zH4b|^NSQ+-a7H;!;@utnd)1%NO)V+&%aZ&aP~_s+36gUCU^Ke zkgpajd~reMp@94?3$=~A8)w%Ss!n(Q`E-F?i}-2Y8xh<pACn#{=)Lt)-Xi>BqtOvb zuZc#n_db>G=yz%CKm7gPrr(Pa^&ZZOD~S=Gwbo%v%%S<W7|a{*t^QEsoY>gi*iwJK zgyE@BQTBejIJxR=vu@YlQ|*uo%=^5xW>LcTmkB>)UfmLDTflq&f#^{S%jGU2$7P?N zI<Ka@Z=vqGMct{aIcr!aRc!3L{lWEUkTHwz(ThLk<Q_JkqI7hZ%RQ})tGRdX*)Ea8 zxqqq1`G5t@OAh}~*{k6$)5JDK)Nq>bNtqYdR3biZxLsto^~9quE^AmFwrkh#HTmTe z>XdhPR*RC&uk9OVsa|_j7$|S|<$~-j@7O(}y+?P3FF0;7Z4V#sRfC=jpqyb5c;~3Q z?1f7@q0O7-#fK(#a4*oy-#jhjb>nf3yu|aropya{)p_LoBeeL&YuA}|KO49VGTMJT z-<))6?xf4NjOP|@RD3eI;p`@>g&FQu^_dp^N3L>)EnzzQpKE*Cf;^r2mR{EzsbcT4 ze>`eXHJLQ~bb<fE&UGST3YJ@^e2w-6m5DbjI(7%%;LUx%Zm<8f&#Sd~3K_4cZv4U6 zyFs`2S4x?X?%{|>R#^gqJh2LQ@;20Le7(KG&xFMzK6UE*)9ZSyVna_XzxHI>nWZ-t z&ac-FIjH)k^#SjpZC4)6eR(H^#jCn6kVkw+(tf8Yv6E8_XaBZa|IBW=y{X!qscDya z7rn3TDii<>d*8bBy)PXe059LZI;5JS&0p~NgNCp^i=W0Z?&7(}S})Zm`01rci8pZ9 zi9g?~lV4+ZT3zNIZ~3_gLNf}Ot2(>u7dYEq_C5Jc-}v;m&mMQG7cni4C^@m<c%j)# zky$Th@3>>dYTCxnCp>T7VX@whecv^YIo^4C{LZBvO<bkctHipWuCM?5dj9`E&!e~J z{oFG{QE$U8m0uY`o|XkY+neV9bz#kY!d}llrFHkUzfL0Th11=|ROhbm29JHqPK-P@ zzrH8=e$9@Q&^wPDWTpqdTk$yY=H}D=)@7*{J6y}x>Hbe#_eM!B-CH#%<5B(s{WS?8 zzFRb;p8ibnu6MovTja3<-%^=E6PxK@|7<$)vZU_Y&Gh{H`~H4BF7NE*)YjIvWPN(a z<kjB2oQ{b-&$*t6si_90Pdoo4tYH}&L!k!$q>Rvd-I})lw<=C-o9w@dB|#@oCimSe ztK#jV>&+Ugk3GGz#{R_9S1s8OwlVBlI`QWZk<5PXt9OFgxy$b^;#2z|{Od%K`_%~# zy?;tvof_9Kot7fKqXq1&cPB#gE_$4A2)_3D^d$FwxuZvqE<A5(X_<b0-qd~b6#b^@ znNBNJoWYP)f8iO2iH!QI?M2#FG3~{=YyK8k^Ki?@F<)O}pYi*dOKR$Ai(9wuUoo9o zvCr?u)!4}iv0}`!5qW{^5}P!4N_e#9YZwXNVC7f)lm0_-o${V3^3pD|uV3)&xVP;y zw{GeA6D`-5>Xa^h#IizaVWPxB)=3q63kAfBmr31Q5IjNI$*}&^o|CQI;(qgNI_;i6 zeX6Ra<`sWlK;3)#ox4-)N~i9eTYu{8I=83oJAbWJ)H|~9=6QkZIV)czRDEa7oIUAn z`+5_<Ptm^@7IR&^tEM;g*P~mLS~L4J`a%jm_9-vD9n`Hozpu(f`0W<g>VpFB6s|cH z%deQ+ec?-Mw$J&!hqXUmXRLpB@^EhAR)ZS1=kc%aL2~##i;m{$|E_K<+Ie2z``mnc zeV3S^pr8YxGa|Pwn_5@ADCzx4uaF0yw`~c^7dQWI`MBuygYXCHHQy?D%V!lYW6s;E zeD`3bx%~2vjuTn;HNIcSyhCZ5z{<m!jSC-l{u8%lxKp#WJNAy;{~JyR`06jP*+(Di zU4Air)jqqpjjj{^#Ox?g{bR7byWZF7;zMo!2YI_UpZZ>9C~R*avgIbD9Gl(x9_=TG z{kVVW?_gW^C1d4p)&N%q+a3IWetGTV)(Kqgb7$$Q(nI$QR#jJqoLu{R?~fhcp~(vu zOUcXk+imX4I#4>%y->)pJ3w6Sq`ULG`ox+!YCg(5ijxa^xKoV;kA_!>Yu#&WFl&Dl z>33n1{cfXQK3g^Z@6=dydqT*Tp9LSUU3qjOc<M$=Q^WMtja^E{ADIuY4G?MXJ9P74 zzu2z%e_!RTte$b)sMq6#(#NW1m%<lwW}SLw2nxvyC5K;MUtj<0<?;&`E}T2(_wu#m zqm=rWpDe}H&#ci-5-f{esQ2dXkDlr&RebVnil=<u?Ni`A%etU<#i0W{hb;Gm@%qOw z>6WKX;o?vJ+fp>~PTcj>KM($Yia34l%cYh(w@zFR-EAaeA!=}AtJOY@H<#nt=d^tm zmN_JPdeN%M4<t^TC@t(h@|w5F;)n5et$i6!j%M#XuU{XoBX;`v{Q7^>_y2kN=xDc{ zei|spRz-4@UA?fvzwLgj<LN!iH(J=;ym)BKvhzOzelQ$bntG_xvq31VMP2Xk56&i2 z&aea5!}JzuH*CnwRN2mG_T+L$-qXg`g#5>jzdPU0Qt}Ud+t~3gL-HP<+MVxQ$DI5l zZ@RHv%;7$5^5|dvUVlTTM**8Ge$4JDyMMZ>F0>W2t+Az%E9&~kqszUsCR*qFYK!`6 z9<o2UJ1|IaXYp1cX_ja9shVB^J<DPmS9n~ntNZ^ZtxkE>alRZ0|8pNitiKcs>t8wC z-05Ud5_WW($x6$Bg-cbAUzAz`$$%T*-TvTy?EaixmznBq>u>)`yYQ|$^8ET$21i%} zroVXNSm&X8zxMKF^FPm+I{ntI5iPf4|N9|#p*Oc|=oMMF&FgMo@_LZ?s5q-krqJR4 zmCq8fPn^O_(swB<ZO-}YC>@oeBy%}hG@K()rtXt#uOwfM&?5KlDQ5#_uL4!w?*e14 zHx#?(JbdWQdum>MXg#?4oOswNre$&q_vZ<3Y$H7%oohML{9kC9svui?;m*=U4+L_j zIGpqpkPtVzl^X8$;kWFM(!6<*+nbeV%R2H~Z4)rb^NjU5Ab0L@tc88ku44kH^87Yd zcVBoi?^ePgP-A|V^1COwdM&Tt%n$tbXBC&T%tAe(2Oj0SH&`pzAMxD1`FGXMt@Dnp zRAJk(V`hiXl=E|>>kqGf*3kZLTfym>n@;Vwi`%EXw<LGb^O_Qk^>aT+zv$6dN$}tB z?)17NJDV0huuL*(blUfOs%zo9`@cnM1<SWC;J%gq>#BO!d{Fa1`J$^)%9G+7F<~O= zGKtaKHnc6d5WCf-&FV+bv~~3lSMcOc=XiR)U(D9h#&}jwL}7#U^yUvdR~EJ&e5W4J zy=$X}g3rz?1q#cb%@&^8vEsmXRqmA`I~>kQU%DAF$3IpjZjCair?7BJTdnhEn2k@3 zZz!ZJ_#H84`-2O$du5nfJ+^M|llvtn@SSzPJyU*wt2IYUxkj<<{rU!FlZ0EREb?v| zSTzZ7m3XfgEm`}wB>jkz+2S20hj#ZDzIs%geR1WBL&EZhek?dAeM#T`)q`h_EHhv9 zT!s{v5$;D)@8&dx*I4fNJ_H)e=yREVUQzjoL!Pa){lu<c&F{WDI^2FXD{v~q;@?%4 zTM`+MM!lO}+5KqSu5HHk3!2lWee4bjn9!-F@Zn^P_hPZ<p3Xm?YR~4o`C!wIIkVW8 z{(Vs}r_}S>1b;#H?N*hmGaoBTPslw!F{p##Vc5fyM|T@}U01*96npc7jhuzW@kJI) zpfC}ClqXhtIR0>N`<uh_*R@Xm4UYFtz4?JM51OoHkCpD2cl_Ui-Fo$tu5QRM;C<Td z+#~dE-*-!~_TcF)pR^+yD((pFI8js5!DCk_sv3K|HfYY?$^LHN>q`EVo`3M>dgN1w z4ZbJ8ZJ5EN_~OCro^1bbso{*w52beeKh}J0>c^O-v$8Mm+|mA0xmVRPJ-N^hw8%-X z!#VcKg%eHO_qTUnJ9M%Zl-KJ)ft7H$)avk~lfjGrE!bf4-7-)>^w@Lt<IBwoes&10 zby`}nS4Qe$k$<Jh^IAEUvnw8LReJI8;v@4Znz0f+h0i(btoF3!9E?hv^S<kK`}U=x z%ufThunFG1eq38@_x3>6=%B8JH<g9n`8=OgtY?4VZS~!$4?S$+#Y=Z_bv*x9zr6A6 z3NO&SW~{*UqK%CAs!uI#v$>ua4NXZ`RBabW9h<*F!RHI3!lxH&3!awMUANp}d}?;f zA!88>#<Mo}=GcEoP0XLpB*L+Ms$x@T*($E{&2c9(L}C?A-TwCJY5VPKatz`&XT&$Q zF3&S}elMC{aHztjU|ZE;M{T9VdX9YAmdbkjD7n&IQV#44B6f=1k7_`(x^D%i7w_l2 zm*bK)^TUadqmTm1OMF(i)5@yW%s!Xa(*`qNI>`01p9;8Nrdhvk@Amtj<XLUBJ_ZVQ zA9wg5ys|apPEO*tY3VCHxVcil%jmNQy|s+nsCo0-f-UvYS%!;BPN=iH)!*1Ar+05c z3agOQhIS<@jp(56<ntl@dn#<-*03L#lbl@00vhB`J`%gR#8EkZcE;azE7)rf3yAOG zJ+s%NgvWD_Xx+!z!lDvk>-I8phkO*9_p_g=gndfmk*ix{el%QX;Qs!DIp^a?fz<i) zwEu>NRi3%|>c$+Y2Um^iwDrs%zOLW4EhRe3^V(T8nTrR{_qOL`JX=(KAakv(-|kBv zu5R3PcP3xw+27z^&$N!+$?tjnpIu^(tGUv+Kc$2F9-Erhr4@>iay^SJO#XIRm9O}% znf-ll%;FDo-Ul7@veXNX*%VvhzomuQwJKYvt0k@L*x7F>Q<+zn%V<VQhHGpr%d3B^ zXw6a@^X|(ECXSy1j}}bsE;{>BQsnfurBfZQJkMo0a5pO$G#qh_r|^PqYdHV<uSeFV zJ^ap7c<}ZCm!tpJ?9b5Qliw#Jw6oyKf+KqBk>>rMingsZI6wRNV)<uwGmrg!!jYM> z%>6c~47FXWVzV@&Lcq*?*70;^flYjQ9B1lV9Qqzh+sE!cGxc$wJ?A2pLx*f5Q=j_R zupe8N)u<A;=9}4{i66}w3^kU&-&VBxfn52b`bSE)s`S7A3>9s&h}<>hEJK%9@qFR8 zY7UFb0v7z|I56>^l-rJ4o<(X~uJGnnEMFr3U!QZ%M^hVyoojz-1alc(mbDQ0<ho?~ zBHh&=&epdzm(`t1P4qu<ta%$Z|1H<oFBG0cAN1d}!1bt;mRrg+M{$d<Mb4p@GY;*H z>YP&zaa5T|dy`4Wfrq}b|JPNPecKD#@BnhmpZ-S^^deWN$aFNTJMPr`_~%X0!9O}D zeLn;*TwHMBP3MI(M*b%)FDmjm=uXL>%pLIaV*Sqbn@=rNc+u(5-giexsqg%Omp2NR zh-7fiz5n+nXba`*Nox`fS>IWHhm3|XADL>}*XAa6<mr`j7WYqX^^Q;Mn7q{c=7#;d z^(M(C2HrdW<MWBo9TJbskC@x(Jh3{oNb_O`54*gbZq70ByNvczvrptH?%d^W+^Tkf zHN%3he%<p|>T6lf>f}6mro$EB^McRnA;-OCDb@;ow`ByQJEmPNba-r^<E<_D_LXTU zsQ15BF#PhTB-b3pJrl+69lxUj-puvnRnWAnzDrI&-_rV_o{?2R^C!>G2bB!U9r+bM zyFPf$uMvxTV7FLHYmtM<hPD8<KY!F#@A>rd#e);|r)$-<6@;8$Px~lye3M3@-`A<^ zIu)m;_CNBvs3iR3`K1?swsN`_KF?ZoKCIcwOze4Ji0hrJP3uZKw|z+Y{owQTQ(*hQ zTvBcH3hZgWEbQrCSkY<_mnuFlNj%Q;(rGpJ9WU|(XYy^|y?1?%)ZNLU=O&&yYOWx0 z>$sF!L^V(S{}|zTmc3CNe_CcMFIeOIMC`hwiNws<%(arUW>i^QXRiY_AYLiHo3@ty z-;K3B+Bxs%hUI{^q%GgA*MIYN3!~60wn<<5^zC0Ul(c-BIekHDp8xM9=28=OPBL<I zi+}j@qEhS*hNqYG%yT?8F;z5{a>OtgI^2BR)wuqLD94KWHz!wVtdM!KYkPanJMWhT zFQsSIet#%$yzc1XE!(&rez$W~J#tt3<?X2tIXcg5zux;J8Ep4@z5coG-wU|sUwLD^ zLx@Ru{(;u67u%%yZ?<}Ndd`davgP%p9E*I*OHXw<{ycMGEirS{bdq_%&1C!_H2wdX z#h)7Qx}R<plnqa+=MLZf$V%~kz|1+nZx|a`fBAFu$&@_{-zQ{>g1Y)%9o=@Zy!k3$ zixwZ*WG)1rDXA^3d}G6w5_I^k#>3pk{Dpx(4_z+!VA$kj)j2_RR+7VHsS4hCC3zY@ zMC**}Oj+18x(=UUx?rnQy-js#g&}WjPik(`ME8A)M;7wm6{x?$d%lTzmB<xIP~UK) zREKl>BDcBgPEC%v>74}fs<=k%lf@BEvG=U{Q;(?cnINq?CouM${ELRKMU%NNiV4oW zGjXfg#jfl8i_ZjlFaC6~e&H9*OFI`TRCL?LicSvRti1P%Y<zX!)Q_uO#E!oRJ0=>H z-KHwg&dpNVd_JDdrhbL76SvC8M-9sFZnwYn-g#F;^?O(Cn@#E)K{<=NLoc%M`kwU~ zem8TMih7>E^y#+bC)fUm|8oAAwFK=c;9JkzrXTo7t#hLt&s*m7)vIS6Z}7M~KZ$GC zx&sa+9DM>M6K{rYyOo%E<l%yK^%d`qKAC;fQZhT3_a2ky9*YefyHo35H||gU@cpS< zqWP~jMZd?>^BiI~O=CI#TdF&_EIQNm(&jCHcv@Xu)XP)WdT&{@{OPuNJ1_lQ_h8zx z8-ZHMmj1u%YF_2uf1txQr9e;AVY}H$tusGFN>}aLk>?^+xZ?}oIXn6KxApI@a_CMt z(#_m$F@^2Jo4;Xyc%A1Q)4$uWE2Z8y?A-3J@_WA){GG!*_xn9%v9p()t~}Wndg``? z;vbjQWr9z|E=^rhb>rbv<7Xx3_JP)sS2sMK^gAXi&Qrc*%C_ZGlP(;cvr=!R{Kw86 zNAJBpak}&6cE`IQ|21@2mo-Z_b=!w)|Ct2!Ti4<p4EL_>eemUw+;$I+^vwF!%qc3z z9vN(UQ0^KnI_;ynmqxU>t?B1?H&1xGSav)OXezOZxPH;T`1rN%;@6Izzqak$^3am= zso1rdJm-o$U!~nU&HD;GE@z<t?$$VjuJ6+R^(x}$hwkewyWe<%iwCAf-X9}k81i5L z+ikJeAnJi)%&}*M+0ExAL+fh{r%%0mwfhPGKEZsk$<b-g?e@&5xvc$Sdly&5eckN$ z(+;n@T=wnx@uycTq*5FBl3W=yGYW;?E15%*jZ0y}CTH<i54V=t7qeXhwSM&ic1=0E zg6+e$MNHS*m){7yr}AUx!v(!Hg|a8lUSu@?v4-nnnqeyI17n+STwkN>ZJXESKij=% zUhcYe*&O$mYE>I~@mZ~7KFwY#V0G^2tf>YNdldBc7YVHT64iM9F_Y+R&=%E;tFm(! zmCk(NvSI1PJDJP><!^9py{+@iE3N6=DvsyxHUDb2tWsYt{%h^MUF#m7<2UEpeK_{@ z3xyt^Giz5*;Iv}M{Qu$3jVJZ9C6{04TO%07+A03Kf5+`@asT=gZhrB3Ab#(KHcz3| zt4ZIg><f=9T~h2Csj*$i>LK^@$f)DO{u|x$HcM<*HItWBc#+F2zHjp#IrA?XpS9U+ z@}4<e=6zdhd|mhM>`8AWN<5#x)|%gUl1Y~9)sJ4G{Pf<7T6gw;*Zima&cToON`0d9 z?-r>t&{o{4my@RExEy3-SCE*$vwWd)r}?4BJ-LcC@058=Sfy0Wx;wkJR|;pYSQfLU z-zxTNXxPqz^wk*`IU4wWg&l~Pv*6{0)?cgCZZ2@%EOh?3c>g&=4^VYwFIfJwFg+vX z;6ra-t(%~Ld%4uRYTK3ncV_>Ih%v0US~%7F>BNAR<Lg`29CqkFQNWVLJFoiVj$f{O z9-Cg&vRck&_ue*gV#PkaUp}QSX_EJDzS@_uWN-ejtU7Tk)oJXpj-R%Fy?WNmfnD}S z<HYGw%S|SN_kai&#-|lM?=1gvenkqX99uq9PiEthr`M+Locm2F>a*IP_;*`cBi_|> zNJQF(UF^x4@j8d~VUpR8hDI^5ScP)ldGiD3WE|IiWmoOv&ag4&QR}a}HByQF9nMSF zmjAl6_}o{|?gidEZv<Ta<iz-5SAf^#eyOD<6Ei>y*ZCiv`*7UQLH_>yqxqM>L3`_k zkeiO+OuqSnlh?59xz|+?d*_ymwx3F$V7<6l^37RMpIFUbpQ?TNaRG}^x5^~V$~`y! zdgx#8+rX6nlA|ou;@i9x8o3gU8s1ee^&8$jTFl2|wPM$m)4f}}9NL3sEx5b>opR}| zEe=BZVLdylRck+73O_D>ck6efBR^}zXYKuxa7DEz;@iA6Pr~jkn?9-MXr&F0chq!^ zm?QiQ^?!F<@OOXmKzhqnk=zyS|6AGoEyUa>2wnah{4gS<g56HHfbrJHSBA2T|JJ^o z`Mo&5?vv;8Yx7>_?|;v*A^F16*vvKAveUbF99@uCQI_L$Y}PIZP;)h`XUCV-{tJqX z*4v-`oX_371++1Ij@hmjL2d;;ez%`<0$cxS9?5^_UcaS6``tsOUB<uUW*qxkxtPo8 zr!&LFH(F6aP5;7YIG+3avE}}QHOeb$iWfP(+hy@^@gn0j8)sfp$$wkEEH>|l(dCc5 z(_4z1F3hdJuutt^*Y<>l;OpBbHl1_!5?(5;DzY6ECT%-zZ@V}3&+C2hkMgYqA<GSN zOLn>!wlx2&FM2MkBGNe_^qE%+-&~iHu&op3zl-(0sHXoTHqlB=<mk!R7n^1nYt6k~ z?`Sl?`<O)eGV7%CVaMmJy;-=#WmZu@RMoPg&$kv@w>eHP?Bytl3!cSe!R{Vc6_YOX z0n~IkB`|$LH22ntk8kCj7kK_Tc157&EsaYK)3-nHx~Bi@O}+i6D_RHCw>&Dic>Al+ zpD8DnY`Hzv#6l;{@Tg1zyP*Jk*N6Qdde>+v9aP?a-|TXuq+IPXtCvo(+w~&~7rdT# zYUllJr&z5VzFd6mFMUg0MB&}!d#mTjCUQk7bc$;`+$r@IH~&<*g{S^7!fv<e#}$nt z_iMcU&C&Lv{*A85o^8r^6=lDAez;tFNPO3scRQ!H7_Z9Mk-swAo3%cm&vn{T71k?` z%OieB#HU%PExX5*>+x&e*}K8%@3%6o6F-;VyHRHM#Va=+N|r3q^bL4_b^p%rd{A}A zx&7f|=eG-G_FZ9Ezj9}~mO}O0rQnk+R$Od-q~~ZC_ilnz{rrcE%<F#jJaYLk=lS{l zY`v%LZU#+!fBs%ge%d1qzb_IGmfPMl|5VSkYu!rY^62nmqK}$a_218_x@5SLr*Qta zIMKX@PuH|O_RKKoI$U_`@;T29QdaL@nHE7t)B+cCACJ9bWmWgxwnTI)YoG?JRZDKe z%Cnkf{mF$&73V(JKac1B{%rA<nMKn-Pqdj`uy_6o!xqjLHPe=@I~iOawII0PfxX7A zaJA%}c*#d%4#!jF!Y);R1z8v&_UOSu1)jL+DZvHrHa9Jj+YLGhLMrxMq4<{$(L3zl z;{vyfONdU4du6v+Ytc2EdK=z*v-eN2=bts7PcLK}qwgY)>%S}O_q_dbrkZ1g2iuDU z443`xWwkv&;@&W~q|uM@(UHB^B`@7uy*<qF(a}u;-*?n7oN1Y#W#W_y?u!R5K3$vO zTXno~`=Xrp5=LC_&$@q<j_O{N!#wN0=#P0d4SbF7jx1l$%#fe)Xl>GwhxcA@o;dw+ zaDFXY>AfDMk4Z&G9G`5nt3SC-eYMkG);ccmRN7+C=^Cddt@hX;l%FWc`Or^qVc@?z zDi1_0tiS*J`Q!CG#-IzfFK5`)ZO*KGb0}?l=ttM|ciYU$eSdOViCp3B-#cs0H>;rM zXElWM)!bvw?KRuLeI{fjt5!8=sHHC{c9Y0Lg@VV5*7xphwL7V0-gVfu-b&<)vHz4i zTyx6yJ?8tPB)y>d(hbAHH*Ugy*?Y9sy?C?t+Ou~I4SoJW$KOsW@Q0f15|jM=$)y!d zi?7emy8Pz^c$n|9&-6#G%C{s~&$HDy2XCxs7q4-)=ux|*x>4rnf15zAII#~YMXz%0 z3-^n9IsZQLvO3qImeHlY<oUbpTfeX{l*D$k@7L3l`<5osDLz@@U7e@=o}>e&ER&_S z*h11$=3?)Um*UU%Jepn;5%cpYR{?|bk2&vl>Dj+(h;NtE{&OU|;bGpL=}o$#Tx~B! z_OH2llRx<gxA(3eFWY`?``DB1U(mY7Z^N@^TiLlvVw+STu~08`ME3tW&Uyd))`q_g zTmAsttIjRaymw&f%)k#e-itqdoMcw;N_6AC{^Sp0v#NNmUYNds^?6i#y_UqX&!1Br z)dPREa40^y(7tQi$1kh97evoau>HSa@78pyfCbI%Gi(1owh+J4na=33=Z5;DcQ>l9 zt3;H`XwEHUv&gqRdHPa)xWuC^7oQeN?_1b&C_2or-b`l8#OJ|6t;>WsAN|motJfu` z!4o2)o?XNLYi+Rcd$t&Lmme-NT3gpX&J33-bg#=@^!4_8YbI8!C8uk{nvQhWD(OwU z-xqah!O;&LzfWHR8^1JJ#QojxJCph)yfyagGW}4~o<He?Mn9+h#p(6Y!QL0dj1x3p zICXcWp0(StU+3uKY5|L{yp?aaSH*~jU;d=@^^?+zYpOT(?A~O&{wiML6niL=Q%HZB zo6M~~F4M)A^g`zAgE|YB-KNJS7Z%mVhv}#Y&hlFR^Jt~TMT5C9Ry+6W)PFkQt)nv$ zycMZtrJ~8E1E#-oc7IuMxnBN4<rP-PyY2G-9$xNVD){~DN3M!<+CS&=6h1k>Ch}>< zPo*ni3s3i~`k(ILA@cHw@4aJ>T;jDVoW4(2ovS);$r+3LynS8b(|+8!8*tZVT1}x~ ziNLS8lkc<M2Qyja@48p}rPtzn?vIM&wWX)ID>ej|M_s+0@&0ovsKF)jde-y$?Z<w< z{4L~aW%5-*U|0Rh2b_1c4HQ(Ki%;A0T7I6gyNp(-Z*sfdm3BA1bz63ZF)WyUk*Dxo zpbXcIwDkM#^Vh{qPPm$8y=wb(P|GTCO?KQ<jXXVpg_#bEEdF1=_0Y)rdt%NfU;X_X zT&~GoJ+(a9^Z9G1m<6||<m}ITsm4B6s=i}&g%y{7QS|3lrA2T<{zc3=?quY!{Duar z|BJxs^R3lfj#{49)tNbIKkxoOCo_`rWbY|5oiE<JVR<t{38TAAOM!;UyifbGeP+9@ z03Y9y9rvtf)p4c0{*E(*f<G3Ys&$&Gb>XjJ-LK>NcH+}2bW;7@9-qIObfMmHX>Iru z<`PEtn8Ldq(<EJ0;--Pmn_1VO@#)$`oyo-~7BIdQ675%U@7mF-dPG{O<><u^HhRn1 z-nZSJ6;*Wl*6oY$B}*Dz?|lAvz5e`@YtJ+GU%UPn8opc|O8J)=1C974O=iU|dNlD# z#Kb#2s)vGZeX#lVM(M@2rPJ!~Y^-F6O%P09DP`ouVSZd7oyT>{E0DgxIUKcIe3B+1 ztW_#IJtiJ+Rc%?iq)z3Tk13lh%ii+0wR4#+u!<GN%Ri56f2Vjy#(9pR$i-FK3SE18 zkIvNUI()P?v2#t*dg)HPy&Svdx_iAB*Kg2k=&&x|@B6(o<RLg~Xk4oo)o{HRwuAHH z_Ky>6mG+th2+z6|zTim2oN7Tmoxp&ct%oNrUuE#3Y^imFxA10prdA7s#L$?FKbGWW zKXlR8-f-#CCD27G7cN}zoo(jp=l5&RJkU{6S=v!HFDwsle5i2I@x0r%({rC(>bh`9 zDD`ic#<f`w|K6M`Q4*gTYNPSC{(Xt`;>q1RUQb&$;l!Wd@~Dv7ubbk+5}s~8Z}<BB z`*wbQIh&4-jt`Z#pmTjpf>jDX#0T7VU6fJu>#ngYw|9W%D!E(LNrENuY13?Vs?}KL z#vD01|M8?QlXCyeU{{q=35TCQpU?mN`SZo+>(;GX>OK9}AMnvtnafW6{gD=0zg(^- ztZ~JCuX&l5_lkt^x^f<SQ6{fjA7j_xpw3<Rz3X?_F;U0!;nQWm-+L9n`}6z$|9gv{ zpWB>%epN}mnoo<+^l0|LJNG6}U2!1&hui!1OHp+{pYM;``*;7zo&8<jsi%L`9hA7c z@6D=D&kBW(^jhDypI>GE?oYtABe}b_U$y^V|Kag@sTpe;Z{%#V=TNb+shQXR^xNCp z+e=?xi?926^to(=$nu$b&GYX*Se_|#+?;)VY?0{BXVFtziYwf{79M4AIV4f?Bv8gB zuU+4Cjpqix^Dp*?xkR)#PL;3wk@)ynZ}qn~j29-xoEKQ$tM_>R-3RF(D{D4y&{A0! zQfj}(Ow^*@`gdZ;IZi>PBaV%FuNH4&%+T5-aNXWWTrAnLa&_e9>3$%?^!NWUGBo^X z|Nkfd!>>Grw_X_iyUBa&#iV;B{yS9dHKHCIvPyLAIJ`i6g^Y^(9p>Z44oR`Ecckgh z-N47Jv3Kv@{lBiR2c2=%`e{?`@3Q&(4?&%?ptoM{<rUAC&Z$jHS)KNmIvEx2GI{jm z+=^rKSKlqTu<WMc_a~*G44t{S+qH0ohx!2(pMJ?0-3bNttLJxshQqtJrQA0<Rb-JU z`$`++utjw`eF4)~F0x3RIj>TG?(~!XN9OLi%Cq;%spZMD_7;A!x)Lt&$mFu?#~!Vn zdY^la)>mr1SN&x4vvbGan^U!uxWAsQd%2eHD>#WrUe<V(9<sE%_}kwT-PhmU-uK7l z&McPfJ3FJ!#%*5%Hc10?5LZdag5TTp>jkEVU*g|;<@L0@vvG|`(pN$jWZa%^-(fxd zc&h)Z{P`E&h@M#G3_WtKUdlC+^_+$HrKvxfcT73mdpcS7{PFngZ(J!?7lO+nJ+0nF z>zQ`u#$SFvXMJ5j&yKz7+Pqu8#)Y)Qj=Ji)#`Wj={{N2)Z;Nw2+O~9>LwxA;!|yy_ z1;7q*yBOQ(w>>vrrQ`OjsGz9z7eA&WPT;B!yb}K4&^G<>T|!Pr9DhI$B7&X%wuI^9 zHhrNZZ%>s-<YuqB02<!tONtGVN?iqNFa3Y0en0Z!qvF>lu+y{<hiT0>i0HG}327)I z&eBrd?+rP$3VxzjJ?o^3kIcu7u^is@?N%ZdQB&PxUTJ!e(SPUxbQ6wr&)%g5J!Xri z5aEdOZ`N2uzw@5Y{02LOtR57BX`n;M-pN;DJA`byYvDb_0c$EBAN><-vse#zKgju; zpRZZ`DirzPD!GJ?&w9u%F+SqS0V=?tC%GM6vsg<JEME^jd~EYeHcnWmuVwPwGeh_9 zQ~~%AdlQayOFmL*0hO!=vqK^ue_jzBIy<=Qp?Zy3G3%rXL+3dy21f$dXnXWBEz3nd zU`%JxoRwM=j&$FA2QfZ;f)wjS=?S^tHx`9FFs@0yRnMjJF-hzw#C1(qG+xYi`qL)J zKL4Tg<uHX#asK@kixH=vg-?(=y2#?<ce~V_CdG5Bp;jg(7cP2Vd+NxQXr$<Bx~^fi zSnJQd<vxD<FJqpnX7jdYJ=olOSR$PX@^wXCAJkmf`B;BGEp_8xc?Oa4sC+_UJzY*Y z#Boku$jR<{dLFij><rT-+qZwezQ6w8R<EhXNT-&qm?WN^8GhjD^7(a9d#k>#uluS! z73E+=@M(YR8crW<W`A2|?JRQ{asnCnR7fW6)YMc%L&Fb^ihVB^fs*zDuedc!WB+xW zP5a&KaOm*i@HG)1KR!NQnRLW3@lcEBhI)^<xO?;eeOVq5$58k|_@SRugb4hwKMT8~ zfpc0m^l2g65hB!Pu?&(tv?@1(j>rIKB!p$Ka`9A-DA+Tg(KncptDYQ<x&>*fLX4=V zf*E8Rv8VELJ@b|RHBGBRnitJfih{(?gd^SYhT!1g6vlmV19qtZbx>{l@9X-j*Dl?; zBO@lZE#>5-*xhA&tH1l%y6Woco}RAH&&zvvOXlS#PnJ}5ZK$7PRr>18OygH~?<Z~i z^L2gw-_P^^*Sx-_`*n-L&mSKjKc8Q3XK1)^+oH|s=l}IiU+mt$YAtu1K#0PNT~%LK z-P+|~WNe(AoNO9!q{XG~*URNsSBDGBU47Nx(9Xxpd$4`Ynl-}eek+#0KyA(i_zRwB z=a+x<=u!Q@`~QE}zfwH+vZTosv34>*c9n{(tn3GKj(_)7_U`!gt16?^{{NrP`uqPd z)pvS%dtbf$^~=l4rrFp2e4hXR&;I|v?N^+fI8pFxNu!C0$)9)S`;$A2`($h?F63>` zZm`HW^CCSY<jPX-=^>Yx;wI0Z-)~o5TB;knE2Li4)kDs{?$6up_tVnTSGVtQ@0VkA zz4(0292t(fkRTQzd3pYWW(5wpM|k=8wr$_O_`Ig3=JoaQ;i0lw)dH9PzyJU5{h2d8 zRb3DCFP@sJy*_sLF@baeO>OP&&dx@DDFwbKH#evM|9k)c-*)>yiB(lmxv~HMecxaH z?#@arfemvW*1Im99lxXC;gge-Ulhm1#U&*z^6J`<(O{voc=2L^&j<Xsiq5sG{k8w! z>-`Nj|9_sZzjAp~`gysIM{;&GCj^#v!`qEVyF}&fi!9@q`Yg(0f9!vEZ!h;;kx)@b zo$dMe_pOcIzR3Rms#mkZB@3UQpD(VYr>W_w>Kb9<TrYE^XaV=35Z;orpOcL)XznY2 zKhNuX`}WD8<4PqS@hE+8`}bwJed{Ntj^_Cs<yj}}|9#|dKip{d|HtG0{Xfs<hXk>F zI?QjMb7zO(zj;hAu3T0U2^C~#Y51r7YfYKEXs206HvDj<CEFG~eE4wRKD#eJudR)~ zpdaRWvHscF+4lec6n|K3|L<e}{=aYY`(-Q_O;S?ha(UbLYX85l>;M0p|NrH?cWvkI z*Z;RY68`GtuTQ7-7n(26s&`RYrNrlJzNhZ5RFgo#{B!60rivt9WGK9R`SJz(R=c^Y zq9%ldhU&)e`;#8GE$8MU#*j#nbcc%xI()iPjOuqcCbw5P*YDfAcW=V!`~SX~i_Fct zzb{tR)hST4@bjNVf*kz+K26^rv!^1^RyV@LAtozJ%jMHTy`9C+`&Pa3n{W5``u=~V zCnu?{+NY+&Q|N>1h864?)xdDypL!|P8PgM!)WrmiEG;Y)3>3ik02!HD8k$X4h&C6S z?&T?`Iz2YpTy(m@e|?tiXZg+R92hO9`vjOvF<BZ;-gsV_#RzdrkQw?dLFVYU1eqIx zZwXR0vNShRFi?Qq0c5CPWNB`WBw(aqWN9(E@q*Lz3l9v$m@O^Lr!(3Z$TC}6SWZ{8 zF%V|5w4Ba(Ro?(a3kI2|Gg?mHsIDzLeZx#M_vs4*6>XS}EG?%$yku?<W-JskR${WW zoP6=x2GH#}jm8R=(-Yho-%sC~YA!f^!wOZ7=?~iU-cMhbVy+L;u${3(FMttb_{SV0 zF=k@}gXxSB<~Cu*1_p*OSL&x5Di|9Wz`dcLZfF7$Fh){f3KB3u2pEC*rU<?>h;KIe zp|JCGKXI*j(`~cNd8SK#GcugMS58Hd$=G1Jz$*j8=>qa9=F?}Vn)6IQ<!h<RWMDA) z;Z4!W3DwJ3j13Gdr$3w~FFO5JnmNzpllr`j#?uS>bVR2YEKm`ho|R|LGyU~z18$H} z2Zhb_K(u3^ve<O_*BY;xjSUQ^A6%j$HvL(KxzO|llP%?$Kq9}5idl>e42`BgoUbf0 zy(`mPXnMjYTlwi*3(Uo*PdK4Ib^7l@bDrsy%jJ2eE9ICQO*afQ5T70|t5pipW->jY zO-BUeGV|#Zx693%z9!e4d-|?vAcq@Hzi2Nnwl&V0myy}P&~*BQA8Ml0ElbUXrt8bd z>j@he!qb3$x`_!W^rjmKtD0_Kzg$a!ak_f4c^t?F%jtsOj4Y-fOg2|xG@8!1SYB(o zK#KX?>Ha0=Lem}Ct>u{vjHX{~)e)N>AZ@jb(O~*RQC0EjyUNUYrdtbGtAb<|l?_Fw z|4B7}z-t7GKuEGTFrI$0%v@&r{Oxi*)2qtO1*a>>SjkU6QfV$R{bsuPH%6oB7c$Hx zra!D!lA5k?N>ge2#%lAX=?^UAr%%6FV{SR^zn;MKf9oxI_zX=I49yjc42={FEfk_B z|9UMmeNL9S46~Vu$#lgpN+Q$GZIl<8-tbn9Z~6l<Q;z8y{_CktU$DWFWxB%xYq{y_ zwdNAjFPJNwo^DlV?m7K_t~y8koI|He1R2#PggAL{da8*14b0?sc%!&Aq$l-6)9vd& zF1oBzRjz$pX?(ut@FuIUs9v3#?R!^brmVem>C%P!YZS^BuD;}WW@boI%!zu}>oXKe z9#u)Xz0$h-&2gTwSly1xiCcuD-=@|tT&_^FdD5Co;oE*`Wgq`~c82^bkA5AluBLj= ztk|W~kL@v&-FV^jwW%e~v*uj$`+VZZ93I1WmTl4(y`_AVPniAka+KQ{y5Y~8Fu@7a z{-2w_aMzYcyEocd7v2m!viQ(t$&jipV}DPkTa7^%7`HIXI#&D3%#==1Gkn3~wBO{@ zJ2Cm2^H(2N4Y1RCnEtZK%h0_*bH<{tVx>Fz^UTa%a8`;bS2%IWq_E5TDEb#R>c;0B zJn`rMGt2w!%6Zpz?fh~40lQJZQ|7My;+JPfn!b-e_H+64hd&L(WQ+}r;Dwv9kpVAP zYF-LB%8d<-rW?LeQk|Z#Nm+u~*uZ#tVxp2gqw(|w)+)-Nydr3;CN+J*KDk+p2GbkW z^(>|v6dFoTe|H>|V((h~pYCzYTyXjYUr@#|p8iluUTk{7A~XK&cM8lE85xbI|0^_? znBH~5TyT2BGF2_G1sBa!>{*NrjLoJOo-|jU{^5kV<n#q!)cB{rbChoftN6&QZw5|E z`z_^Jr*AJdpEbSwjJd${fNXQC>34U_n==`jPQMt#C^21ckGwBf3*$0NJthO=>5Y~u zVw3q_@^0@hHP>ZiGPanWC}u1Q^2otRMycr!a?RBkO~8Hxi|OkrO&2(4t~Wj5g#yTK zlj(*P<{{GqV;IG!H|Q&TpT6y!xe(NQCett4sVHxMS!tfbC}jdF<RBqvYK|P7CetUH zsi;ohAYv%XY;0gM9qL;Xuy2*7&%R`CIK99~8)6yAqtm%+&E=+NUNsk(e&M0TL`I|O z8z(9VPZ#*35If!FvboT7fn}ERj0V#UW7WmB^R`(DGx8ajz$4Sh)O7l~Yvy9pxm9#k zn2ilgr*G6Ul9>LgS4ptmcHYO*NxV-Ory2A0ykaQ3C(mIor?TqWuie?D?>*H%e3LMa zz5lCpkw(`NjaTzNJ^8<z_1F3PckiB$I`sDK>*@8soAyr;IHbE&D)0Y4`+a}D|1bF+ z-}1cLXX@#<^?{8QhwJ~nw!iyC{{KJy_<tY#AAZySKl^oOW=phx%-Q&Tf5d;)pWk1* z&?}hd^StV%_D8Gd>|7E(>$}u#jkh_5*QXUd-*&0?lDP4g=*;gHUd!s2&iK9ed(4H& z)f|u86z{$ZQT+OXrR;p&&#$ND|Mi@^`*}%YTg~sU`X+p8oqx`+kKg~t_TfYO`*nY> z>l@xF=Gq*j{bhRnzKijv9_-)pd%?dW*RIL0su%10?(pGEq4>%_)9cpfF0uT?UFz9c zB;TnKeEgU5i9hW%`l_kR`ouiKeSOw;KFi%UV}E?`evN>-pKmnQ&GHDkyyN_(=$9XV zn@+WlFZnj>S@_<)%dUh<hqJ8wzhZCi<}))NeLo(ncP#d{sC>-7heaacs;A`b--T#~ z`^Fd@a`l~_TDxlE{}0RKLwT0OU9$aJ(!H5&k({T<B(9(HKA(9zjY)9D)kwZV12=xd z)gKnk-@D!Bb#Ca?q`BWC+Pj*sWPUwfw)?r6tDMXUF%HA_>a&IC3YGPm3Y2$FJ2sci zLD}@p#}?ITazACK-*;9Mub2MbIL*do+W%SA(=x6&9DJ>Kgn4OQh;AL<!;eqv>n0xS zFnsAeOG`_OxqI#|Yu@galO1@E?7Q=&$MM&mz^Evd{Kg<}K7Iw2d<Fjg%XgNZ*pQtg z@Uyw;%Ic735`0q>k2os7_;=eU_q@XWv^9pa3L09M&C6O^n^HE9EyTfK$2!634Nc}s zJT;jMcou$bQ_T6XQEj^BYz57FsUOEC-*b0k{TIC<SKR2*xz}~>Iwv=!-FZCo_x;L< zz-RmS9oNpaI{us?TH;Kk$+20va%LXPCBlgoXZQPEczocz>me4OQx{{lMyGQhiO9H~ zuYAPg7jJ~|i$xIy3muOh;d#69pp5U;OHBIA-uzC>RWiFHR8CLlUb5{`#s9a>56d0m znRx>Dxh8uad*}GYODi;o|3Tpam&Iah_H1)W(Bi%lmn+cH`F?+GP2uCxPz$AZ$LtpA zyjts0+f-Q;;T04czjS(+tC~{1q0QQ-e=81oGkrhN(<c`4;aSMn`Kzm?U9PrX+v}Ns zc&d-eL}oENe@)#qS>GpDy<UqoKPlb4%TXcxqD{xtTe*rA7N0$ySqeqXlJNNQSmFi) z&*VUz6KN?)ZeqU@wunWk9~EE!z3t@pwK*q#DThi~ZIelua>S$g0_T_WbCxt+iK;)R z)0x3L{anJ^%^Ove+!Tyb*G~JkGj2wWZrG&8Ke;crx=pa^5p&NmKc33aX%x6jJ6XMO z!#S~9TjL$AX@*WcE{h!(OFopl8{EA#RJKUh^V<U+Q;t(zyfbeu+hn87t|{X$w?)C` zSlohV7D)_mxBBD;tYpkPzG(Gd74{GFPRN~dnJ2d=sY)fV^moEdRYCc=SxXj%hlLvL zI{T{c@W#IC3I4zK9$ogzJykKvMQ7`Y()<t?;g?&Y+W$*MpLBdJv9VwDr}f6Q(^sF@ zk;xPLmr(O<mG8PJp)2e1H2SS=7dlTjNMoo_c06+B@l5Gor4LRjY;nJNyW!b79-&9K zPOq)kamx6X%CBs4`P0-$on6W<NpZKYlzeiUAG5U9W!mvahaxvh_cPn>+FuwXD{*b5 zgwu2exvQ~B3zu|!*`qey@R63Nc}~Et`I-IozouPrGZ6kYWpiLM@060o0Zum_yZ={I zv--mDPP1{L_Kncoo(-vszFc)sWLPWpCE@UNpLq&;^<kM$A1x_-IpxADAAz}hSEaSz zTRicFX`;Z?6vtD`ul1xJX!*cpcIBwbe6f3pli2yM79AF>t_)k&U?E^~$9+ZiI-byn zf)xUdY!@>Hj=qdi31&LEz{_@BoW8Qbla7s!Pga)nExhokJBC@8>z-z137`ED%>t!7 zfk27ubE!qTOX}*M-`jJ6IjZyar_CBXGq1b7^4H=h*u=!6J}YF^ga9FrK$p@*FV84* zc^zJViQlL-)BVz}Xzh*Vf^Sm4XvPcQSfcLY`^D>`kJeeK<gT#x2RE`O8?J7z4ClMW zAH)$f_3m%AW^ai(3{Kt>4xZ%|s>)`ouY_%M&5z&7yjJ=7oe3vzrn`KznOCsM_Nvng zgS{6;R=-PmarV%Q70r<;iw^~+@;z<;TdFLn&hs?;+lsHwuLAxoncw_fz?%Ed6fs4s zIYP4|R;=HgG;h)3_~pCWbWAkeR!@*<dVO=M^@Yp%2hSa-li6Whv|=UG#jR(j-=D7_ zU7u%>wD<Ca3}vNBXO=LXY&3np_RPV{f7o`1DKUx}t=WIIu~&BQU4vg!Jx@Mc_)Dte zZE9vjwEu!H-RbuZH}20hUun7^Oj>u_@$xTHw>BEI&6xRNO9Mx|WSVe#)t`eu=G>Wg z_^yG^=fqDrQ=aJZ*e+$QiJvIiaKdXs$*in4KPE<(dg<Jtx0&CQ7rSpa*ZCatOZd#? zmajWzB`-bQxG$gko0d%0T>m2z^v+B!y0qEx^W+U5kE)0@eMnV2^>JRx2BT#iOL?1b zW}I|hbg}Qa>2%?g^HYTm9gNi#4~bfy;Or~@jzN<@(;{G3^a`PO2X3T^pA}pgap`U> z>&%wDC;f``eNL9tFHlI0v%PKMQfBsf?n6UKxkeXhAK3*{OFZtKcUx_oc{ar-^q!uY z=UlyLzK5Or1hOkG?Jt_TesWibrIM!aRKuY1kn2zOhN*W><CWpheYnK_<Oc33(_R*) zMQr+%S}q@(vrhQxN6m753y1aM%rndPuod@zk5aPA{@HnD_oQ~OZS_Ge-<8%a7t|58 z)S0+^QT1W|iN4LxPie}tv`v&;qV_06al^&QZ*Apvoh{$dym-=!)3y;uQ>GifWIB5@ zMQwtX(2Ty1Eazp7*+XMOL}zbYS0#R;&+GA%RyPjQw*_;2%|y0kiLMDeIPaEFYGbeI zg4R-*H!{LfeH=Gbv&=XmZ}o80OXuBIU!`X=>x0*tX}Pr%ElU!PABtb$V|`6M^wlY6 z@s)erO*IZ(OkQ4LUeeLszjAxl7p2F{E1jQe?_rAkX>(S!SL@906?0O4IDeQ@y(TMh zGM~H2iUPqc3%6Bx#~NzH`d)R6YSZ!8vPs%`eMwnele=6(uZ68(?u4+?@DQGl&MeX; zKb}qh;H@TJ&*O6RgR^;J+uyfIwehdx_;+&$H9u^hbgm+0BD1P(x|tu>$3HTvuO{U$ zJXoM65-iG>I_H(1LH?Px0xzqFDu;iC>^aM^c+Ld|_pOy49n5VDX6mraowCX*ZQ;kh zYe%noOcr7@jk}?(djHZKm1)a)%&zX8v-sk}Ew4%y?QHrMPf(GPiAs<*+gO*G#-bur zdW$cqSV2STy=d6ikDAk0cbOa3Yw_P&y(#@{&WWA8;=hiVvuwZEI{$#VY?o%#BH!}L zHs@zgi`G3oYCe;N`>khP@Q+g&t0H^-Z;Kf9-B`Zq#wHKWRLv>#b%NUE=d$_jDlil; zO;+u=z;xK>?wz?lCy!<Hg|U}M^;c#v%PA%Dr?JbW{!Xo);(L^*tZP?7LjN?C48exz z(wmDPS*h&VBI6$OEo1un={eozS{(c>O-n<rWTj4@*KICS|I5Noa`Dc!pY{Kj?slGV zzT(=O!1SKHKPvN@zY9G4x3Z{By(MFV{<D%}HSd<JT;ZDf<@F;Y-PID3Yl`fiYnLxr ze!s~-`O3q8N7hdMBmXWY@>=xl(^gY+XRTqI@YW)$*x=&<pH=_ze9At%8O=R0>6LBw zRhRDh_6ZMq_j+pzgosutR&<;{?IUXQ;GmyTVb+8uk4G*34;NKh1x?o%?^yQecfS1e zjm*lHLb+!>GF$tL9oXM5w#>5sdTz<B>47h`<mz`g*7MwWV9*m$`1^ve*7Yrizdr8R z()T@{d5vMy%R7QE8D9y$JZ2PAxk&Bch22NKEqvd2bD{p*ODQ&qf<N9(xOe4p<)i3d zzxm~PzK1;go^0{qnnMCFZ@cLk&B<TAnGOan<y_9A)OStV^8^?3#Wk)uwXAm9J9t_m z*=|?!s7ZLvu9xcyT+F`OqQYOkvDG>An$CMe*_uU%?PsK1J~{QiNa<ON3&owyf|?Vj zh?khzANkWE^JZ4mo+s8@f4q~p^6XM_jPBn5QV%j%#O}{v=6@Ie;n@~uW53(FmVUo8 z-Y&S5u$$?0%*T$J)H$gq*$nUK-P)dI;nmD@bKYOWpVI43HcVEjHw;Ud>!`Rg$3AbO zem28y=i3`y%z7;@dv5Z6m!G-Xc~7^-Mdz>bPTFsMH|_s0vv0*UKKoMV2d6XT3pwuX zoHj{uhws^}*eD+kyQ)i@wEB`R&++#PJGwG^ZmEtbcN_Nw3(ElCD>`NzTIXV3&R&rv zmfIG(TF*i>Wb&dC83u+Wvh}93uFs$Hbjb=0>2}|ZADsg~e7JS`;!XpVq^|NmrdyV( zYw#|+yxBoV%d~u@Yj*s0=DG78JZt^ZA`oF(Ve?Sg*?m%F=BAkyXICoOY<N9!!{yB# zM~%*0TfROs@b=HkwbOnuX8jGgssF>%j{Uvjq_ZK@U++`;ki@clv6IJv|2DF3m(|bt zsxP}WYe|H?R@s8(cbn#CJpb6J$~#ZBWY2Oo-FJMC*V|s~OKG`yxZZbC=CsAPcr90H zR!qoA%#LU&;Viy#aJ%T&O&Qk|ye@I+1v;|-*3|QI{xtL5e(mxFi*L3)ywL1t(e3Gf z^kkH5Y)Hr!xyM~BhkrbJ8yUdWRXfqE?6=j&`c5<MfD<pS{HUmY+|R79EphQfV8wqm zW9~S1C4&nA>?($Q_c8>hoXAjO<zIL9(Co4)#R(4z0t@f<ek*sW6xp#xdbbPrd>OG1 z9*u|VHYn)Uh^$z?fz|rcF=6=&_ALE{J)4DgXkLA~@wT!7Ps?4q(!MegDY5E^I{}C0 z+Qy{vO8e&tFIe)>;Yg#$)j6m6&L1&NxUgjJ?TUl%Y?o9k7VlZa@$#gR%H>zyYmQrq z9OL%8?5vxX>Mx~IAM3R4(bhyoi=})<hn811dui2X$u9AJx_la!oS0GTLk>=_WAf~A zi%z+jSghQ9=wQdCxo;&NxlOIHT%lt6=V4)sp3k~p4W6r9dl?iq1a((Wzqmp{vEEGb zOF+ezo^=<dNi!Ggnwk`!mwDG(yiDh7*pFG8k2E}0e0Yg<;;90mgIlGoZraS<ulr^v zlZUI?oz2xQ1x(x@mojC{O16r){z*pYVD^USAHomo-yh^$zKE}ao6{%c^2IE1KA)AV zW++chpUnJpulkkA8<yF3tXnlDbZz@Ho5S;a>#r3>=NY}oIXn5;l?e{V%^H;RcIdp9 z%zIn1?UXprH@7*vBc^k+-O#$-%{;M0DJ4^Qo{Y)dT^{)#wI`-^Mr3WWkp6Y}9qW&> z&bE|W-P_k)n)T+6vSWbW#H|;vdMd;_c652(R(R!P;h1sopo|=MTQ=7mOOr!45-x?i z3(VXY<rHr++d`mhx|v3w$lKljr(J7_czS#4;}edd6Lq$6wY~J&dB>MyqN97gYJ*9W zs;vq`ZL?MJ!#~q!bIVChKQPgpkNv(yLu};n+UZv(n(K(&&#T%Q#r<xt<oDtgQ#q8% z8n_of-*tMr_#|_c<nzfZ%hN)?rTckk-0M0RHgUDbhFNMd-Wf%Ych#o~emRhNJ$AS3 zX%3dTZEEf(ZiusgQ*%14V0XUk!qP+QAN_K=F1%&lgYIYj#rHSflikYE^|mfMGPKHF z$Lm_&{PWEE94lv~-kv@&L`}GUX06)C0|z`82Zh_;Okcw#93^lz?eVgcxm}m!f^DZR z;d|g87|C}xI_V+nz3+A13qP_>-Fsh1)FW8JFFx&-p9WhPPvS|JiO!PW7u?Sm?@@j! zaDCf`!b`7jN;d4>c=3eQ;+JxU9}{-pxRCB@*8Oh%kxCKI@7cxERSvda)jD`NczwN= zY{o<0(yX~{^KXlPShudLv?oZQB0}fPxxT;~jj5$?-e!wUymq-Vdw<<b&-45F<=^$Z z-#_<_FZaQBwF|B>pWarQE3(~pQ&>iT^8)@=^DLUgeau!}T*!EMLe%b?2e{-eJb63& zkfGg=w9qF8nf<49Pwd{qA7Xn?`Ll1|gSj_aMC)I6d@t|+@b5JH1+(Pv>FO`Tw#cyg z^!0q;{aAKcja}!gMOJ9K`J+WU{a(rFCVWgVdM@CmGqb&NcW_`%d}Uz%_C;UbyJoOY zt(FOF??{Le5OlWS&^;jiV?pUmp2jrQK6!(ra#ucMr~DJbzZ|As*vz$D)`oT7l=m_V zquq11R(REC9Fo%h8oz&wk5YMuaKb_U16$T^{IIH~%S-LpTEpj$_cR_bagy8O`S`R# zmF(N9i|-_)YP$6LXO(2ilx^;RRMziPV7f>&<j7m;%nom@M9Y8|<(;wnBEDMXaIfwC zq<U{nVkz$;jTx&m4|6cBuUeFD(73USwKZbvseNadeUv85V0s}vJ?x{FN`2B{etzM` zpj(SKtgLUUmXOPqDb>0pb<TC$H-3SCViRll?tMNtRVccgFF;Ywvt~lWv?6T@{T-cU zSwW^d!!rxx!mm5|bG*FLUAMA?cgD>Rd_pg`>~`4xQJmMhkM+xmviqKIJ~;4L9yHnV zFwaF~c2~BG#f3vUuUwApO00iSeW0vf>$Gp_*8OKJw^f%`Tryzr>n^C-&G{hf>jS%2 ze<wuj=zT4<M73QlWvl<4T;br<gT3o7Md(*tmytUnnR|szwugJC^Ibk^H-WAlzsjPU z*T$=!n<aa=LPXPkVeQJQ-N$-w=00dteVg$1Rl}OX4Sd~8LZ=%W7M?d`?6AEroPA)z zi~1welpCGi#69NUH&4U+L)mMULdC>gvga;MZ<#vlO@-d=mZRU}?Hcy|o@QXQ{HM3a z@6X%6wY?6Wa^_CnJgIi2XLEahx7|K|^35HM8xOqCWW97N4Zm<mM{(oJJ^R;O%MX8i zEbMkj)#Afm_I^|LhQ{pM^jtuq+Cp;kJpG<mOKMHL??;ROVvxFgd3%90`?4k3$CIn4 zNWaawaAMLuja={SIgXm{JxZ^y2IeK!m6`AQc{Iyr!_{xc|FmtL^DzFwiDu2C`|D0} zPTZ#TVrkGm`Dpgzr!Sr}GSx}(>1I8CRjPP;z-KLGrrXn}AB<453AB!Ca9F~w-f^VS z-?`suF{ij#`2LHY!3u#1EgyfL`yerM_oV9$Asc$jHm0xqvQChbX~~zo>cl0^ew_g? z`D8Drd|h`jab0fvy0~3Z-!tqazTcjHbG?F6z1hjLX(GNp?j4)A7~Ducbx*_T^rSnD z)44Ys2s!k$^J{E=s5s}#BM!p9mmB>G-fI1In&4g|*EjuI5sw5^xBcCf!%~xZ^$$bn z9yOVBlRvo6Iq+bz#=q_5UlN?twk^yN*b%hoQijYt4(8N_ORgMG@j0S5`{Bl8^YT{~ zFSglhzOHX>$mTQ5L9$ZQX2wd0o}F`&v2M-ZR3WWpp?BG8R!iUgd;99!!Z&T=-`WKI zcc=9?Xy1L5q4BTA{{bT#M-_*dmHV^%Z5x@Mc(-~ntDHS^-MGNd@AQ_>>C+vA<do{` zc~krDe)*MqQF<l2N7j~CQ`K!$J1!*inwK?AX}@^Hs{Zk`l7yW3n~N7d-FJ-N%}PmO z%BqXWIVHk3O<z>ha;f`nF21f={!>=s=d(?G35Ole3H?mF+O|-mGi&$lLpdGC_El|F zloMIEy+WX+FD!ogMPtvV6v2$-RfWu3Ha%S^Xe{scN5PZBZOY&82eJy6^3GkeGb}G! zC;X0zLp_U3jq}y!JEeV<E9KJc4sKl{oVM)B>@8)}D+QEgyw-+pHjML@ITrtC`V#F# zuOmlh813d37IwZW$nJdby-ta|`k6~2?#Zh)qvtc(t$nI!{(n)+#}_+Kr=0vfwfTEg zkM_Ut0?t>fS;cy$-xp9ekG%B3z;>pb-2B&fvivfb551ert97hM=G3vSi|fukmlZPH zuutZZx5U0<t+JD!Jh*$a{lF6Inev8@Fa2v#S9-Fr@Vc$YjdjjzN<S;DvNN-ezWtkF zR(Yn=$&9ty(`Rf_P^dTMpQx>HYr9OYl$uc(L(c1{4JUnClP_7bpPC~5Oq+erVSkn5 z(yxy-CQP^~bva2QlxuguVl$qjTe5Dk?khO(rL6d@INvh12^ALGjoxZ)Xx<qd9J$3j zu6$1T8Hd!rytlk=CO!)8uN6qW{hQ0?qSm4q#x?HAd}q$Yy1owm@j&XBVPUq<&1I8P z-Ue|xJ<7S}**Y!Ye(rXu?hVssnY<03mT@dH^sDIJy9ZgCjvQPk$FbP`@^l9wWedjB z(<_CPP2FxRp2WrSZJk&DEN{WPPCS!#s(mjw6MFLTHe(63i1V55=ZqO&SJod)zU{yB z;^C(y2cF3+nt4{y?r5^F%(<uKjrm6mb5wTmPoFp2+@CRg`n%cY;>=MswbMD~m}^X5 zzeRyn<UX%`LPf-vwX2o7In@;Ujpsg)*fxE>u(Eu;Y}{@ED}hpx-JcT^OD$ez3a#Ao z@Z8C&ExPA|nUCLRD`j|d`o@PV96Ss63rTrqZSYKI_bZP6t$9($)S@obojbqJpfgaS zQLgIbF@twDFZWvPERT1(d*agk9*6k{+2gG|o;04k<1T3xEcr5Xm*}+w+p`vj56_#s zc%9gh=5sSv?+H1`9;`G;Nv|@~W45B}TIHju?#}}Jyq$TJA}$6jxhuV(vOpzx?Nt5v z&+SW?GW}+?aA>caaQ#V4p7zX^g_{;V4!ZIntz~|m6ocW6t_wFFw^eY3MgE>XQAAm8 zdgNSl-}<lK`)16#^1Q=jjhM6JtI9*mnZ;-7s-NZAvQYSjdlZ+)_PWqQmut&EI?Xtq zrkKE5?taC4-9_1s2QpWr*;dO-95>Iqk#8cm)t1qBtLAIo-)!GC-Yb;6d+c%Zy{Qk+ z?F<LK$P4R&+TZr3Eq342++4ncxzV)jZmqy(hI0~P9eM}r`TE**t~D;WHcR`mczeW* z!;J4V*x7$8wChz>2CD|Yb6qU@i0yIEPO-m7F1{|)o_U}n<KgBf3olk0bWc9su;oPi z4}+)Q)^BB%Y~yY(V)=7JVvDEc0u|$Je0(O(c|l($_&nedf8-P({(Sy~3!A^n@;x~n zI9+MA>y!{4_T7;?P9@fFJf$SNN2+1Pa$b%}2DvV;qy#wlrrtW{5NGdJ?65%Ok)lPf z&;}2opepxM$q%hgZqXLX@KAPUdVeZI@o`_6n1Rre7%B0*!W~>af45buL`7XlyYt~g zMr=}sLhaNf&+|R4m)P5^X1hF;jnCTiDDd&2u-idV7tV6`3#Zm)%CMN%^Y>+Ks<eKi zocH9;;R_8<PdH3Fe4Vv%&ZTq-*S+29=10>cj{mgoxiw>^|KFb>$`{$1er)3moTYr- zW0}d@XFU`BZqND^B3(VP;aOmkW4T9E;T|DBVWXaJOw$DYHRc;M+`992<L$WkL*dhw zepw}`Be*MHT2VA5B}I4b-X-?zNgM0SiWg6m4l_{yzQg#n*sX7iE;!BXQPA41yz5Zo z&UwZ2`k4Q|3OsXUg4N-<&Bb?YST2gpf7ZBu)3;Th512iAV$B=-ywPOiA&DlgMdzF+ z$(RaTHZSP-U^AuhMc9n=!ZnpIPOu)1sFCXaop+Y$y7+5D?u?mJu9|X3&DbUJd{#@z z<c0M|Y&iuOY+iiH6Jp9%dOU+g@sWkv!NhfsTOZFZZS)bnzM<+>CsX!LjyBa7_4y0; zUbyp>Mc{P#;;Bov?odsLP&>BG!|jN)*^1zb;Pb_r{)eQiDuf!7O!IQK@-im8&<v1~ z+G_W2wz$Te1Hb1wI94q!SP*poje1vI`>vN;>nyW4UCS<cZRCod5x{khSKoK0kAIN( zYBM>b=@ax=qC_<>sq*d4-ubTMu-uy7NP|l*VoS3QzYe=CqyEj%+3}H@#S)?Sr?md> zubO^6Nlmr>soSnD8%Bc%S<xSkUE|97&9s#-e3l*i?Ly%biTuZu)H6S(R_;G9vrf=+ zd&)-!on3VvwFiuf*h*gBUUX1cY~sGF3%h4rWpa{P#CK^s|1w9l_Q$F%U9l+)8>$i< zxF#KW(Q>f9B*Ezc?@!k91sm@!`SoU6cj+O0v!FAcjhbTOtLwXYH9oyNve=~L!jo6! z`>!|MUQzbF(CL)PZbtj6*Qbu%vs)l@dGg`j4F?@Gg;#&kUd(a*j)d~&)8z}lxArcJ z2soD@Qn}G^cFl|qIp33~)Qbd#&m|U1JN%yzYW^etlx$vd2=n?bXAi9te_rOhB!?`U zz|eaC@Wg4-dyEy<E)kx*Oe$EkNV{#7+PvkK0n2<J1*Gno_qfelNF>c;+w_II6vXQ* zlKBrheO2Ymd?Q|}%i#TZr+&*Lw$euPNKX5A%F`C?<ozYgD5mzr-Dl1Jbwx(oPJDfM zETl*xevW35-HU*EGuz#zp7i;$-V^sw`q_SE`;Uag73Zto?su`;u6UzmeuU=a<y#gV zbZ~0DwrJxkgDS(&gBQA+YE_c|>`DJzX?en^u|8~l*iA8;jh$id#N{{4U@^Y<*ih6~ z+Nmz9G(<HeDmnEdQ|zJx&T3o*XADDqBlmjN>@o2RWSDF{cf}P+&bR(goijf@mFhj5 zW5OoebY-zX$sLDz_l`_lH)qBb^}BX0FQpzt*7X!^*;tpKxa)$A%Eawg)QbyRKh=q= ziad0fm~q=~S!u+9#b1{f_RaohA~z?gt^Dyp+3g=p=ABzEUfX;8Z`otRD}^o1V(t;l zb#805)!p|z&);TeDblz;^&(ex+Vs;>%9iy@EV)IFCid*IT&A+xX?gH^e+l(#TP|_; zu8A#DpS|bB#Oc!;)+o2Hc%C-pv9^lU(}NGU9Wi$MKcnz>wAiVa*92Z3na08}Qz~Jv zS$oFf6q`JsIZBe(dHOc7rmuI9T2uC?C#sgaFGtnXF*%0S`nT2xj$;$JnI&r1^98<l zl{g;G%*!vB_@-)YxnktI(_WU-t(TbVs_b+5BfRayk;)ZoKXZ4_;LzS1u+R45kJIO7 z3+T5cN<8N-xpBLFde0JbYv<$P9OW~2EB)2vUAb4gTQIh=!eLie@dCXo(-yL%v~Qe$ zDeZ)haHAZPZ;Y!*hjPn}lLpHE1{<~G6Pd47Pd@Rob2;nT>FXG^W$Mo+w@eA({BLZ= z`*eB4l!^Ko>-4#tqWiT(ZmNVNOfFzFyUlp<-aKgw?Fs6S4munPcAl1e)j?$2<Qvw4 zi=3}IWq)>PJbQyxTj<`K4Q&P0rWeJoSROm&$g#@DJp8W%&#SXvof@{^jbxOQ|ME{F zcw&QKq}Jghe!eGjp0rNYXcy;5P4?RKH}Emjk{1jcGpZ%oIx6pUJ<FQxRI}Ed>tK2% zLusy^^wBxDdMo<<jPG7-@>|j&`}&B}y_8#3<ufMiJfFs$-BCIv!dLvzwtp?Aw~LO7 z#AL|cd=-<i_4LbibCUwCR@-w|{!W<Qy-z_!r~ji7OGS0NlH8;x+ZL!WsBLdbJsR#7 z)gtY(VP&~{p;^pkDP_U*V?EF8X4OphRFHEuzPg92JEzM|(AaZZ-@>^$n=^J<_xBYn zGF#cxDl~6HM&rNyc)l&m-n=r|GNa!2htkPcuiK`VGi$5We|-^g-0A$EEt6X3rB^O= zx4cz2<J*h3f4PK{MSu3qxE<bhqGfWh%9rRH%^M}#4+~9_FpU&`WpB9TZn(vU!){qc zV!Jo!DPEhQw6^xdRc6N>{M?ndYh!ObZvH2~c+#A6R;yY?>!SGA%dFZX*3NtG(AVWZ zvu?#)aOSDwpLsbwbZ4DX*6LR(9$NR-_KD;kpQh!zbYgSv^-qWHRWMn|oLcB~D(Y3> z^jXWzZNlT%#c8%padO;0=~VH{FyD2_zK7C`Q+C{#u_;p1{brN6e(653per?#kLygi z_Qu$$Z|#enZ)7(tn{`u9weliwShvj=wqwj%(|VFR&(6`huNW=Kd?WOOK<jk*EH(A| zM|wx4cvt5=XG>mTwAr{pzF0Ur!|S(lK0|HaAG>q^+JcKV)yZDjo9&$YCS`JATBcP0 zJl!nCor=*@W7^r5$ljVG`z>M3wi=Nmi&rFH?{Rpnr8add?>&!4f({3?BC8_=_EcTj zd~&f*(()%y8GEZfe*Ceicpv}DHP6&}<X&$|_pA>*(^!=va_~3j0<)s}Rkp039n!0r zU+gUl+kYV8hY7bDOMLAFL;tOpb{{=qkoZXC-Q>G{ozs^UWp3J35UumztuveWG52$F zSKWismc@7QaY!!y9r3Mi%Y`3PW%?IRJePU*yuRhe$)VGioaffA*~;rGer22YwS|Ar zbzR9z%-F>Kvff*o&#_c!?%VxQhn+$Le{I}w^~G)LNgOkO7#jWE6te7clg0D(JQG7r z_jhf{ubz8wW!Sg->h1b-r|S6Ja$3nMc{^97v)|oA*5zRIIn9|XDtBzyF}<Dpbnnrt z+YItPzqJ*dVKh@%XVzDjl7qHKAM$9iB^ec;`n#s{ygSc^-m?Gm41B-ot-GYN;&xV0 z-M&Kkv}lG^9tE-Qn08n$_$BP^!r&^RZ#k{WdCP05t6IBaWS{m=XIy12Q~&p`!1{U8 zFPtn~-~D=Prro~r)uPZ<aml)RsT$5UR=ynR=E?Q<QvKGf`&zu(vF+nsqjd{cFddn* z*5Ot5`{M>&^?M{3ZazM3c8KxGE{2s#Qy+1wRJug!PiE>obSxue*_^do@9MJh1?l>< zwOdch`!F$?L3S-)SlT<i9c=Uc*|~-4r){m=6)tdi)2FwE{SzOrQh6U`m|_`bwjfWG z`O3<qsjE)rywz*IX|?^#)AGHx#~#RNaToK6wy$(%J)u$R%k9TeT>81=$V}U}OZBE6 ziL04t@H^`F@8?BJbk599kTyPi;?><}m-Ft-j(1t|GpA;%(yZOu(Lasaix)~flGTvD z{Z4qg^lEc{M*Hd7tIZAT*Gs*2EDYVkSe$8fV$Lk~BeHrHJbkx~c^KaB)mxtS=t{=B zZgyvbh8V?KuJZ8L3`>u+iRqeck=eZRfTjHQ_hlE8SEh;fonE^qbjOlfUM?M@7w=u0 zzur#MX?^!x_+W4KkK<psoewn4e3q9!t)L@U<bYdowg1zcxV-ldYwlisYdif+t{T_$ zr>o6<>)kUJE^2zlV#UCnbVz+uu!z#!#11W~1t*G~D>_z&O?xZ3)#RtpNlD4a%f%(T z95s$lp0IYqV}WP0#1>TL_<s*?YigI^$hF?a?@+ptcc$4h!N>bzw{E(WSNAcV``5cW z&m5K{-+%5Blru$#C0XuEL%~Bgo7ojpo^SU2;1y-OZ+3ir&nF*c#h7iuS9~p61bbeJ zFgg_7+n>=XF1Xk*#FBCG(<U)p*-aTcSD7tZ^UPe=^7Dcv#imh@T(#L59WEr<zB)H2 zJff^8(@f`*@>7eOn++z%Z7$HrKO(;%cvGjL+3&1blKT#F9Sbg!cJ?kv?0<ZkeesF5 z@cvKC=JD63>A$tesn^;5#BHkLrfWL`J_}@8tFiK2maCK(sj~0#&A*>~e8#y?bLA(# z@Rulh<=wyPr=)@7O0T??VY+Wp7PDJhhupBto^d=WJ@N9h8#~ow@>0%U+rkibDC+Gd zZY{1gT~n8@ueMD*n-$D*ePY4h-wjFO#xlGc{yaVYFmJW^Ct*=X$1Jvb8;KJ#hKx%d zZLMgl>Z^%yVq?2Bk-0fn^W5u(D?L%snzltRJyx+qv0dv@2|V<-{tRQXXK~B6G}qf! z+l+&%r+A+AT>WYimywt3VW$AuoLMh7uqWT0vvjpi-^0^c4VFietGD0Gc%+@S`rMo? z=hW(!U)kIupU=ws`NHy!?Q2hbEvOG)w(<R}J$p~*ZkaI8;Jy2u7oW;)ZFc<?_Bf}u zdU~wHg9ZWD3#%tD7BBN#^4Hf@kJB=U)2h{URkrn4(^$if`ar&~d_B4gnOB@YdL#Tq zjme>hen(`A!~Pr=<@|O1v-iS!>5nUG9!i97ynEo(-1&_h_atw1@6q7)+NkleqP5~g zV11vZl=<2{-a?Tg&2y*Sn%-#qV8-rK%)UyJxyM9Jk6&=RQoB7ne5%;oj!foDm3H-8 z^dHoxzdIz_SHom{)Yrjv`j*NXh3P6sa_)VVa(J-ioWb0Er?$2S*`C-g6Y=t)cyr*g zU9SZgnpNlA-mdoH)Yg4_%-dQ%J+RB2rsH3u>A%^!UP`SoVDkEJKlDG#>RUgm%ipwI zL9A`Ey3UM*i=JGMr){%Y`}>2zM{)V%Dts}sboM4q4bgYh>n&Uq!JowtcuxJym&elD zA=>h6tq)f=P1jMKIx)aibB5|-k13~>eO{h<)GEK!ZSIy#K7Oy?r8Woo8zU|4Ry8!6 z*_)gGh+S8HSE_!_4`-omMNf*#CN`ePNYq!WJ|v+L*c8xw?5D21s+DST&RMUutdEjD zRc*{U{PEnwf+FXngTb3jl%_M?dX#Q4Bm4M4r?!`K1K#cXFLW*N$*Zi3XYMI*9{>K} z;Y-P|cD6Vh)41zzQf6PM3w`jnxoX|~?fuiQcA0h03RKD7GLuQiwtj+N=YlTja~-yq z((NbqS;|c~;$zBJSN`Gf;T^}cxkKNFeY|+Udd3fD`Rz_ZN_&F%HkhCN-DtsVlkELK zA#S?4W0mfX1Z~BT#cZ`qEYCkXI<5COF-_xp_vIJ5nkSAveb(uk(0fd?>qFn^s!hRK z9h0=1w4Ta*x)d@|Mx-KS-}=1zlfKn9cc!lm-}_jOFaChLpWI7PxfRoXUs2t@;`-GV zodc^}1zjuOWiBqB7&h<vtSZMSrhi=dhUYcTK5BfGQv5T}<nN}#RTH<Y&yTm6H96%^ zrA$WGq|{T}g}uMODN4}3_1-}>L*V7n^Pd{edtbVE?${c4p=OPYBfB?GQh!`{NOs-y zQ@q;TM%R}2?$vblzoKz#{wZ$PPd6tpuMN&WpY1<QIVQ)b$SiN)sk^J5DC}MJRB_+= z&`kl)IX6z<qoFLt#g^3&W9_iA;LP*s4>Xj;>ib(|_m(XP<;YmF+^*<DV%;mVL$^K! zum9<FJ#x}}_W8OxC#saDhSqf`y`HM`JNL3e==;t~&&(C3vZSzBFN?6QUtr^Pn)SWG zqUmeAZ%p|#LHJqYTkCVPcHdhavEl0t<$0yQEM^Ptv)O3Auj!iqvR|(b`tH%;T;i|f z>^kRs&C&4n^*8?hFma#Eza@3)$A8BKqEjXYm+fJ<bkmGjTdE<gws*=Ch1;)woV&87 zj@jC3i@CMS6;``$d$ZlV`O9vcNb6QBkM5tD^X7czv%Y1HKh(=j_T+tCXS1%zW_xmk zU)X#F|GQ<A3lBAKRyXchF-LLp%t9XafKMKumiV`HH_u31Vlye;&_mRA&6TF<(_3u? zN;nJJY*shkRD14xZqthOTKT&pmz8m*9o}2U?v)X6?rd|1HkWgdr{B%%VpGDug?9!9 zZCLxHf_sUqwO7#nt1XX3U!OXtdF^HMruXiT*gIZsk|~#-K965p%sDCFhDp{xBWY=X zg!;*@SdX~p`CM~1RWxUBEM~qc_F>Q4It_(~;X+fEPVl)QvQn@0#IlJ?YO;<>P73#n znyGb=E9p+t^fg+_stIQ`+t^gplc)G>lJ?B~weDp1vS6hzOWtjbaoluo-gIlWJLm7t zi(J2S`KDhMt8`12#Z5VCuPZElB1UNSnm<u78S_5dF`3_w+!7t5^m+B~y-!ppOz@j3 zpXfSE;NtqGgEQ0SO+Qtt=2*}D#jJ7axisN3mzM0%Xw4CxvTnh*PSI~u+P`-Gia%|{ zHR%hdvTv41Natmxu9hcT>y<O>%(%?nT&<ryMR@bg+bhm}+{P}pp|_DW*E_*+*}UJo ze0%TL-f&|$e)Q;N7KX6oZCe+f-d{XrNp_-Q^k4Hg0smw(q<-clu6}oGGIMqCuKJ_Q zrl;m=Bs+h<aCHLv_E+`mbk=O$U-R>@{n6X||Gd}Vn7+@db2*dFLzd*4DeT%?UN8Ea zAODa0@ALaVWS<?Z=G=7sve1H+yZ`?F|KrpB|Cis^U!4D0_d>nV@-W!~r6tl$NB7ko zG<?MCQ>Waw_wV)kU2_lY|Ib~jxxjn>pI=Y;>-*}r&v`dX{`2+yHJvf9?|0rWeDqI# z;}_7X>Do2_e|~$tzpiu63l7ffhu&VV-}kpxLGWn3!=zP#AJ(n^_pqPmF)Q1Z&HMU! z{y#kbGDloaei7Hqx1VBX{<%B9?yt}ecN3nU?4|o(dsly&!FfYEXyt=ezDZ(pgO47S z`02Q>Etpk>$F=_7_BH+s73WF449}kvy>`+atxrx-SzC_s*4<M|`4*sHwrI<;&U+tD z-A@Vlf3ox52gYZdC*L#2%{sJw1y^3P(GEr-wgQgDHxDi-Ym2YHsK?}X+;d*ZIc>>< z-VBbab<XT-3sx_QpK$Bg;+yrye@o60I&{5dcBIU*vTa?wc86@=R@ZkdueXrwkmlMn zA-r<QP2SzULKSnKlm~Yh2+jT^@ODwEv)-q+DdFsQIr*9ov)q;0`te|n(Lux8e=7Qa zTXS6aDY+yx*pMk=^`{LBgc_n_ZO<q$^cmg_FzT1@Z`cv|IkL9L%Tzhwk<&!ZEgCa- zRQ<XVY%9t5qjsvPGv{5oEsy@z$EeMIqB42U428Qk^WSXhTV7+`_rGku%<^~ltk->G zF4ayDKDu_QtL^@EGE4tT#cVEG7dChQ)>-!>Vm1XdbtVg%$7v|8zNj&C>$@{aom-aZ zHEDhj=2h196waEoU%_ct$)2xi^_(;RH*G2Upz&U)e#@?+<!2Y}4GNc?UN1P&QoyNx zs-XGjD>j_lt?#{lGX3j>cTKHdJ16Yuz96Z!zxdXV#0Rr&EY`1<>wobrW<nB+|E~5^ zFV_lg^Sm7VWbXHf%yc1>r%lzH^Z#hotdi_xRWi!vshqp#;N-@V$vu-M&RD!p)W2x{ z?Cd}1*M;5?-?_F(ckQjB=-e$ixy)DP7WSR7&E=_I{N3ZoU8DZa;1`cF<=1(gWB3uz zZ^!G=>w8(pQ%pN@`pXrp=RLN}Ivw1-SaFS7|KjS3$qm=eTTWuU7;?!ngDJYhR+h!d z>A<CV8J%kyTIU{TfB180^UQOROctt@Pv`l|?Uyq#;P-gt_;*9u!iFz#tJlPG1crZR zY7$tR`T5q>Q}zA#L~Oe+IbJ>3B5{>>zQG^mFx~Z2oVJLIY6Zn*b}iU&DWdxRmv$}Z zSk1D&#l@jN@2;Nm^nmN~&Fgr3(|2=i7W;Soad$fJ_ovU4!j~uST+H0(7@IF^yt~oz zoc)Ri*E$!^hz{=Ck;f`$ym9*K*{0h!-DO$LBOv)RPBm#|q}~#>`c-R|_B!W?iO%jQ zci;7R$CArod-rK}|8zMMTA>=eIin_E-o!c`T~@;-iLo3XIG){Yz2md2sO;mm)U3F> z$Erm;PW+hXv%T@rBSF!Z(LB?WF6|S$b^X&n@2N(zaqD`VSH2hDnNyb)y5z<6oA=-H z70mqJv17mZF3~6YA8gEAWY#LxAMTpq>$E!Uee}cgx7Id2Oa5P1uOI!NO;P{<r=MYZ z-W=W!Bp7$jHy4k6f5!D#-;c$I_^0gOkSZ@Cm-oM4|D}-a?p^;HcP$7L;HfPWtDk?k z?q`kj{PnL>W|-N>xv?(y&=+_+$?Sf@vehsDG*<qbI4}0{n@L9N3x9fUJ{|V2;^?gU zaGoE`#$t6pduHAI$tqmAs%*uqn?Jc$+URZEGO15tT~}@HYW)L?G?M);zZ8<byC>+1 z<(|qTZ?390Y&pHHG9${tdfxW$R*}ym9!By#-SpThM(=CLmxiGKSzo;r9i%*x-}b** zzF?N>yb0oGi^{@W7rmJCqxCyOjqHI8asTw<&714_mfXEMk5T36g8=PD(I?03+_<Mq z=_`9NmBEvj^YUZ?h1?l$Rm?7Qdf&*4lBk|%U$@@w^k&~>p}Y9EU)q>`=hex)+u26z zW=Fp*WWFUeNqTqqa<iG+UOj!WbL$r0s`VG&dfvJ<fA+Dp>YsGND@)8*xV^MkWEFq< z(cIXlX~y?=JU&r>*Z=tLYL~vVe;?ePbfe`~c6#uYu$#hPa~;j>1M^<KliX_h&pAsa z%ZBIu(tWns6V%G=FX*0r8h`8g|D@<c?Danz_g&5I{jq6Vwr<qYPwe$4ufP5CaZ~=o z&$YYXIqq3<yL9HQxJ_IhOFk?XIj1+l(bTex(|+NsYxM@+OeZVaE=$(0`#NWJ?YF4^ z6~6yJ&3gGXE-&}P?JC3C`Ud;eCuC>+fBtr%cT((4gX{G>-dtN6{6^Y!-PhBnBmbC0 z?n`vrlg4j-|B1o9^*6P2Ev(D0y;7Cjcd@^IgW*<|`tqNvXH1&@W#^j@`KxO8FBAX2 z)%U(gq0`%z`&;(g{BGTU`o;X2Q(jBf|6{D%7iW^}E44{>i%tBjXW5@$e_mF>i9J ztl8_9UY<Jh|Dxzeroq3qo7|8|He0gk*FM?Gn<rAYuUr0q=|l(V+Q!879`&}L?GxhW zpH7-G->54-)mCOpt;?o~b7DR`w*UX3cwbY~8jJh6fAc%OcEsDI*|MDaf5sy&+4laQ zuV>=xxBX+5{r4s1?*Wf>(f{2;t4}=2`?%DN@8GpZ#~(e&QHc$FIxFt~eZ%e7&r9X4 ztPAq}dRG3G-PZrY$u=$*PfnaJ^!)ou^Vs!Q!oM;4uMaz|ogA|A-!9b&Ne12zPKo{5 zbL=;-=*uACUyYO3ov!=4M(M|-gTJM3F&geO$)3a9^S=JAQ{?SNsr7yp@4~)JU!1Y` z({z(Nhb+C+q<>3XI2&&v^?ULsF*!r|zjtd|ejoWA^>y#YZuJ|F=3JGJIvHPJzAHRm zvZj3c**)fx_5Uu^Z=SWT-Ehh-(ZIBa&B7-IGUgRkCO)`sTx2=nb=bFA$BH-pohxx* zYBI~}W$*txKA!jCRKSbH)87Zbc8_@7b!d8T%-O`)?78|iKYERC$5-iFr2i<8a?g;z z@lrCmU;j-;otM`K?srvh)=d<AyxYFuLyr5Y75q2(_?v3>fA#*wweGASr^2V>n}08y zp1;>zss8)_0^fE2eqJr`ow`zHqQgV}Lz4CfW3PYNwJzKLgYfo02b>J$mPL7&NEQBd z{Xb!aONsVxk*u}*w>vwE8%>JYzHa)Tr#$f|o5Vv|FWF3FQ<weySAMNV`u<G+hc6v0 zW?Xk&zWkQulI^<`q7ph@<htireOjfsVEfJsCFiz=ec*fBSO1W;t^S&_f$dez)|eP8 zgLQXW1(==9UkOg-6Oql+)0k_xZ|%W{r&hKqtKI!u$!fDZD=g>B#RpuA%VIYdWScjM z&Ukx#m(vdOz_JzJ)$aAVeowi__@vsYY{}1g7R&Ohxm?%}E#CJtYeGFAqnI_1tc2U$ zevL07+{XjI&z5F<zVSf4DVzC~L;t@BzVKjf7c%$XappX81ylOF1A<k0Cz+3TnA;~u zE}yj7;^)kB=I6O1*(wWow@-X7SibMqqa7El-rOkdKmGBmQp4l=#gpSToh}x-%+9|x zKimIVhVEJaqqCNWy*W`W+h2C8GXA4u{o$xxn`-NJ&)Dg`_%r(>>Gl1${-xBr1})$F z#AwQ?*(vq{1{E*2{cX$rJ@?1&?_YM=toyy+aQ}VV#+v#wznC58OxJ6g9`iGNTlM?A z+kcNGetmS(W3{%aP3PnP84uZ26qE8Mu-#AH|Nr{K`TDY->P4otS09npU$sA8FT&%l z=C@_Kyf&&5@g1G1PTs%g95h#`eYsrX^OgF?HvfCCCmF>@RUf~2JO2HeJMxl$zeN75 zNbHKY)~Ua^`B!-1f=hf+PQ{mtB$s}+6;@KJOnlcj>3C*k*T+{9zYFH=Kcs(s<JR`* z-_y0d{&`&aEaj~|Vek4m^|5~cLi_hWeD|OC{Qh&S*M4!g%RXna?sJ*@B2&NBzuIx; zB<|xo{?s2Xe;t&}eSX!vV`7RI;=9ea{V=?uu)W&1^+@%i%4d~Q(KVu-%MMCMFYc0i zy*2!hox!#bN-sBWY+Y@1{+QUh#J%R*3MRh3dE=6Fd|FO#omBMi^U+7|U(Ja=V7?=_ z?e5mp$TxyH+(&v#XKQt9oLdxmr1;o0<;|NXU2Cz(&hnMHTyJhK9o@3Wc$-^NYkgI6 z_L5YoAM0Grl-i89xjk`|SML3E{_qVcNAHSLtSf&mD12bI<njZlhkFm2Hu<Jo@ap|J z`0=pTD~sc%k1BFXkAHmhYTM%|bGzgB-8i=M^u*L1T+*Mj&Xo1J&>ges=bohJ=-oPZ z<yp{K`}?2QT(n-kU$FXX{m<Y<ua&M(JN~>`=CS>%D}JpdbH49$os{u@vVF~8Cez%% zHE-shSo1mJ{=EH*_QhUNi&1)zbgNrY?c;(<cdOVxbwBP~p8n>)Li?-XtS5{s->WWW zIKzK8bB5*r>g5YMCQnm8Yq4o=c9oJPuk)hr{eM!FdfspO`}TJ4y5x_)FV2~7UhlN- z|Arl}=DxBzo6W_iJG=5q?oYc*AKmqWW7jhCN*yl~T)BVU#BAB8?1!esU!E6NY#bAv zTNrQa`s>!KjGKD@Kb_v`a!|8C=W*+n>q46k{NDP%J3mpjBVJs^KzrlQ@So{^jhBDj zHJux|tp3qK$CM<ObukuVjfx5!m8KILj83K3tDY?GXYky3{m{w}rb3T+WCFsDo$z{c zrO!g{jLO-}`H$<19+~}HouF~(`OOecBSuE&t0xqXpPe}EOoYyyK#BEtTRZpUJ6w!j z!ujN%@O@)9@A&_Yvc6ICJ|9z>Z}L&PTu^}d#Da*J+`vg!)Bm25N|RuBy8CtFLCKkX zX45)y?k=o9`1v*4Sq)x;GJm;-nb#t}m!uRth+W?Nq`})+O3d7nr-(_*ynD{$xyvKF zPkyoAx8uCFoZ~EJ@l9n%89v5zyk|DBNx!z%=%s#w%I)hPPn}@+<TzQ~Nw*@|bW4Uy zN)_W$ryY0padJ;sm4DNpsd@1?Q%<AAhLzWy(*u`Hb=<k4rM~mHzuyYEuk$^^GxluS zf7fQK_T4+rZ{M%kwR_i%o4lDD{~G?->L4@sno|+WR?+eab-HJ5J+oPNpWL!lkL!}` z&5rN&j$U&(ygR?_p7JBs>yMu5zh<w_sY-cn7ki@pbXdNmpP05#mW#vaWO`i$_w+>d zcQp^TvNL@wdhFn~vh&OA`ihEq4o}M7&e34kJpc1%mDA+AF;hECuN={gnUEPV%VnZX z!t2}b+3S=yN55gZ;Qyp|-QnvV5B9k4dG}oU_~qORe~VvrMivEcul0I3%5Iw$6H-}I z*cx@L+oPa%=c{P9eYXuJzxO;W`c5e_J9fRaefvyxtq5gii`13t9-4dJPQFr~X{Fd* zw!3HXr*(IIJKlHB-g7tG{A_g%d-|Te2`lbqmOuP|ye;{Eozb)jr=IbxmB@bGF?Y_1 z%e^-|_Xw=zOgr;!hRNxVu>~KkV|W*Rzdv8xU;p<7wLF*Yi~02~hV4B0Ke^&t{_c-8 zk?G5=YHKyu{L(w|_3baV`zGiAKDMjd{bo*mmh}5YKmFH>_BNh6b(?K|{`IrD&x=2l z8!s`f6=N6uDDlMhR(<0%^-r-~yCUD0dCC8K__!>1=YtKE2PcYuU9t1;r;5)<ziacn z+-V<P@%K*Gs`+oycdh!r$o^^n{OFTaul`%z)!Vl}D?C<Q|MJgOcPkvvuYSLJddbPw z$(qXlHtaZ2pL(zOsPNUko&W#b+H{s<rcmJK)BAQjF<!fBj=-buKR5ZsocXg|M=$MP z-;NXEZ%U5ViJyME`H@nr?)KGB3oiaYzv=J$)BnvQ{{8zsKlbmIDJNtUoR55bwR*Mv zdF%Cmf8Kn1@8lf+>36f`IqUwFUElZZU4G%)`c3~%|BG2O*MGI%|AY0{6O_0YOqe>| z_WYh5Y$tc^`ONmFYu}y;59GR1WdC{G+{#h>CpxahvMygR&iC6<x6+mV@dn4!Xa4wp z^z+H1!4EbUeg5<6(8{uJuTJed^|#~ugOKg^0cGpwNd21@-uLBQwD$AzzW?=yKYq9* z^qbe-eg5-(W@p>Q;<UYQ-3vY`pE0$*s&+|RoxS$wtybK39&Ta_pL;v>>t}7o?QQdR z$>?ossoAO;^D<amZ;^KTv-G)hrmvgZ{V(QaVL0~_`#HU#^~QhmHvjML&U;-xo45Yb z{Wo9sg+4$3YmV_fJ09KIJLlg|=}l|;S9Yn<H`vVJztyEi-W$&=civLBfBEUh7o)%0 z`itw&XPuayt}p&&=ant%ZC;8${uO<HyLPT-k=>_C!vMi<nb#ZLzWs8#qIiGV0|}SE z+rKWauMb~$P)}ldcW~F~wa?UDAKywX7mpK_jt(uo`@eVE71iwjAGhvvl{w^W{xc(@ zoMrQ4(Ie3*NjvA?pKC1S_gziBB=5@oZ_odHc;X^d<XgYw*YoA-m#*0Pp8NlFbCk<< zyN~T|ZuRxod6y;C*FDIKT>4E~x<Y?FN9IrS8y?>iKdt+`{f@`=#?R~im7D%9H~rmS za$%{v)wlYq+kA_rJlyd?ee0XGjqj}LqfW;~J$L_G^Kiwq{^)w^hZ9b2a9lLyW4I9C z%q8a)z3Qj)?e}h%j|sKb?fIRe{O9wfg@p?5^0nlo?tM;BuDLE*A7rz|r?jp3e|==R z#$&sAt<U|t+OM%~;(XG7^l<s9GMl=hOMmiRcRx=LkNUf?ciCl`SOcL&x&QfJ&MI6y zJu%xtoZl35P!9M&1w#uH1Ec8~*Ue=n?>{fff^@o$CFrCQ=!rS*pc8W}jbSIraO%4o zDHvH=noJMuP?N7Wvb2OBGQ+9w20o_-WC2vOn~{RCfuR{fvzxJkv4Ii%oElDjH_%Bo zMwUn_KxeTSBdah|Fg7qoR$;DSY+wRbF@2hwz7LDBfr;hxLT5%_(SrP(oYXSC<osOy z#EjIUlGHp?V~gp5+^R+j=6dEvmX?-g3dV+JdghjvmX->}hL(C}CSaDa$#lgfa)#3v zsA=<0*ScjcH0^}B(sZwz<^t0dg3QAp2R=ZL{c#2JK3=oXoc_T_U1++_9rLE?0^MrU zr@P)Yw+5Z|^KSZ@yXI2U4eAx%O`mYj+;jVeZ&p@}({J53=b3DCn`io``{u&a8*W?Z zF&mf}PTzRj!k)>%Y<l2zbLHtV+7?{XrMvW2vKSkf8BbRfwhm%8Ff-n+c-MlLaeA4y zh0*kl=4xWo?@K9hY*)N!p2)~+1_}yrj2fF5PFKvekewc2q^&T0ezmy>qZ#OEB1cBE z>4kU9m8Zw&S_pz9mopn1m`!KAVjePGC(lA)`i2#%?9&(QQ0_uG72{~G1?-d?v&j!{ zif!L;)trlw$;@*4{=W*M(>E1b2u)9rH{+i!ut!mf#n`|c<`;8_U)B^@2uwHFq6${P zG5!8uwRVsy<LQF))T}3c<eHv+!~8yzx$$(vjjH#UjSb8vCkpCKKd7TCK7C!T3FmZ! zo7$|~8*Z70GfJ5w{Ag^3d<=;B^pCgAZ5hoW-ZY1Jb9SkPz;uCm)>6|ySb&c@F`w?J zsckX6;jXzJqxtlOD^xwFPw23iHJz&h6xs_7RG5qnrXN&P5Ziv^o;fokqxtkZ_su1y z^Hf_1O#gph-*0-*19SW7pNw_Iwl9BRzSV2GR+R<U^fYY?K}HLZqnQjWrW>-Ui*4Vh zZL!Oq-vX3f@{_W7xeU#WEKR0s*IFRuv5%K6B2-LKvzW1gDM$}A+qi?Wjj74>jh&VX z?gpmlIm`?_hnXR(0Oc^`)3Crf%-nQ(;uZZc7GnbogXx78Ix--Z(e#ZPcEZyG>MaDP z$5&V>PIsuY5S(7ntN~VMKK)>VQX;dlfyMNTUlk;$Kk!jkn(onP0Zr?1O%~9!zP#B2 zn$|m8ETCzf$-r{@#Xxn?fmW8&4O^7trZ=cq$!(w0W)aCa-633#W4ge9J(lSoODtAx zck8gwVcdSa%)*(G*AjFr6FB5RXS&SmvXGhn;Hv^S0ZB0%8(2<P++pcBo$-v8()87r zEqJEyYP49&WN0uwvB|=1`tC}Lyy-qyEd-}G?6SNx{lsMp0r0s>lLalsr*rD732aZQ zwh(3HGc*7NKG+r`bK~i^uUg20a-%+@!Q_qa?U{`Y4W>_2GF6=Jb<IKsd?XLZhKu#a z=F=5kDo9Vibkjm;x<I$azv=I;fpWknTX{yq>5Mr_V$=Bx4cNEOtG5VeoPPR-1vj6u zG4c^WlP?xaPoD5zp2^s7x}Y1Q1GBNA;q-^=ES0A>UeS`8zF>#tG)BYiiA@&njMMe* z!Mq`Q2kH$bL&NEU8dl=d`SJ|8w%={B$YA6%G=zJ_*wkqH!}}Iu(`T=c6969?1u`Gx zBanR?Z)hn^XL$e$PYe0!Aerff`z-sXUwH(|D*G+3Fd9w|{A8;KqJj;?wik3-C@?Y` z8k$e<x6={@nP4bjt<PvU-SCTn*!B-y7JEEE?pb%)LTb8zinc1G`T!?w3#8QO4yq9> zkSYLh(zY-MC+!FW@JVpcL=Ub!kSiK+<zWdrfd{6-Si#uP04bk<lD44%vI<iLV?#sZ z>4Fcf1DOpCEkFrebowSWZGC2ALnF{RZnD!IPMCX6=kBx=1eNTX(-p2+=uAJVVJ9$s zftd;yIF&ORPj^t%b7V0#G%}kmxKd7OdP|q3;PeAr@(Y;^ji!SS6ME3C_F=kAx1|v1 zup|yhQNN|j5`2n~!t_RIRk7_Cm=&xTL55gNU)ZQ1I$gELQfB&tTys?>L&)h*pio_C zt)euYv)>Y2l5&Al+w=x?J&S1yCNk5zCs^`q*Su@N20G#Cps%I=^b2+>5}^3!-QIG~ zA`>M1?!JY@bVn^Ksp$$2EVLPop$8!u8bh5veTt>Pbb-B^T+<USo6iSX4R*hNp`i@3 zv7zzwgAXkhpp^O_rdS#=LJoKW75JQt%!bAm;1Zw3*wEN=`p5hF(bH!?v2d7vaGHYH z_K#02wq)>|fQlqYjxsa1FrMBw)6!<TW4OB5b~ZoD*H+Wl%(CQSH8eFaGn(E%+fruw z1Wr{^W@AH>$%TaxDuzbzqwYBMK`F)%d{i1V)<G%8&}jOGPD>?al$L{`g0Ue=%fUzi z<e`af`cBgy<XDI?gIo(L>p&JwzZj?~JY9RPr4YEN17+CjN^+3I&^FIfaQgWKrQqom z^DTuy1r8(~fc1e297a<}HWgoBDKPy(p2Z^2xmXJ;3@oN6xHG<+eshW?&-AKYmVDr3 z0E*SbLvs4l6{lK?LlObAv7srrIAk$4G&P>CC?juEZ)ggt(!hSy2c7R{h$!au(+xo> z-4vc}^wSMN3ELD@IKp(8D;OJ^!jry!x*@1NV+wC3>8FE215s1xr<;IUKJb8!&`$>$ zX$C4jphkk5M)2IFpAIq*+_r$qJAw>==WYFT7Z4xGjcy>m`SilMD#6nWz8Z;4ubHi^ zHr->AWybX4C6-pxYv!9OO~0_jQhoA*yIj-Paj5Z3U-ivMWO{+3F5C1SbCiXqmrk~n zW;C5Xak8cUbc1D<*Qa;Su;iM~rJ%|?-E_I7*mUqogZGwO@=VucG~@;av|*!_{`8|O zEXAkGztWgL{lZF1p6QnCCcKQslQ-PdXEdH}xKK}gdc%C>xaluJaxdpA^MGSx<1|bC z=?4Yn#irj~s?xw>Y-nyWJ#m=|xTKrFE3ZFYaJ8QJ^xEU<o2IW^W63l9#{y+uW@AIM z>4Gv=dQ67q(-nCP#it)wrZRc@%+;2VBMKRfCx5)FKmFz!ONr?ZW?F7$GB=;DAFU2b z=w_f+0;Az{$B#;4(-#ED^?_`(m~I#-2e#3WT~iO_9Z(Zw`i7a-xgZ+^KWK<f?^<Zd zGkvv^f(l5w@u!j4^a5?&G!|n+3xnw!0}Vu`FJ1^LbQDzCnT-uCrcXR1Cp<ll**F@c z!f<-vQe~0p|CU-BO@F!3QfzX)VZ`*z%^=s#v*er3zTDD)(PH{REqSr&?}Owfg0vV< zR(vQr{rhsu^NbdthNk%T_yv}_jMKHYSaMDNp~5@eX`7`G_y|Q&LqxHzpKf9fN{<%i z+ZUD^+cQp|U?6{ITB>>+*i9QJSz1nCyTnqJ(PDbwKLycgMM_hr3uvn3P0wGgB|P0| zE64-OEEOhy)D?pqHEC#R06A*%)OL{XSIdKZKl!1a*!1(&#uJ&14K1fXTy7~b{pof~ zf$0hY3f<FNc328cU%)FbKfQ6crNs2RD=fcG+iS@+{bZIp?{x9K(1Le**j~#<NEw^I z&(dOgg0rg3^nd#-B_U_fJ=$;S2|5CiZ`)c+cgE@72Q9gnjg1VaM;x@2nO?BYQjZbb z{%~M40=GcG?hy1=-N0;YWH5bUg@N64hs)|B)44WSo|=AB$O_yHk)F2EatBDm7Xv*e zW25PcN-AR8|8KO+W}MC~Y{fl2a;^^V^dey^NX;;Pqp%g!fu}^Qpbq>bY6W%RFEK0c z?Y-M9?HH%mN?37EziA`SJAJBz6}ZfTG?EyNrwh0-Ix-qh4|HQxp3W|9B{cm&qs4qC zBSTOl$#Z(cPRsYxxn&`)yU1uXJy2Rz5A01r4J)zjGk062F@h8`?zI%3zDLeVaJoZ_ z5<jT<CeLUHX-ybS2el@^dM28wNP>^01oH~_S@unjR<shFF0kM7^7NewR)W((=Xru` zK{P6ippA;@uavBerdvu|iEUqX(9+UJ#>fy<e1U5bLrW7&V_wARiALZ?2B<&=)flRV zCh&3yT4R{N3nFk2)!5Jk+{RF>2Or@FF2NxEQ$ys2HmHeVh}>QQ^-m2^8X=%!6QvPi zs$gt{(g-mF3BXHYPJK6X1!E&aXhAw%{Gqislab-}iTqZc%+oijX&W#b8zD7Cn2d}- z4P;3B8YBe^;|WTpN}v?;5OfA8sCx;L1U1?qwGNoaxZhG7TIm=~PmD9rn=YknB?;<o zS~D^knS<LMV1<nf<ZbGWjS$tPe!8K7g0Yb?sNM#Lj()nKAxHpTLqIAWBV(i*!Vu&$ zW2nzKIrY;mKsu1>F-H&|9yR*uZXiA^W~Q$wHTIZ3TheMCld(DIU{%ZMv*&@%o;8}@ zIKxzIT9K0M^ixt+_S0EatpvcCnaRj_GW7geP)IBcRTl@*6FC&Xc?s11m_DDyWHyVj zk%__NkK$s}f2&yuPWx-6FnME}*z^YrRVFbT8<|XJEH)NnG@h=wO;vyTMFT4dNQEF^ zWW_TbR3U)OTxc&3$^|CV8;w-Or{7<yQa4=_B%irVg%>100aPbN8Ci)>*A6h)J^g%{ z74P(2OO$!0XX;o9O&3s5We2G;+^;ACE`F!KDzoC59=Q}$+ZY*72c4S9Xf!#nTWos5 zGUZ7i_nLuA+7r4~Jkw`xmzz9&!!%2MCL@#ShAOIJ+l`g2L>YNaK=nO1I~bXoPrqAX zB|AN#*g^-SN^ys!1Cx>I^o11`O4EHSt)yX@5F`XDh~Ql;W;Lsy)34Q734l69u+j+B zK4CI4-7ctMRl+D~3W{Q|J*fQ^qv?!B8dB2@ip-Umj7&l4lG)hE6w)`!ud|Ywj&z!+ zktrx?I!rgww(?~(oz4g<O7HGQJ3(~1XuXvXxI_TC9puyL&$r9-Z9kx6#l<KEZr*^M zVPuBfZ89>2c0fT*XCqTk7tn#p$PD85A5B*3(*w3x_CZ7p%%*P;HkO%wwAD&z`i6cD z`RM@-Ru88yX|@7)1r-?0KwT*4*{MGbtRxwk%#5Zh{4o#(M<2T;C=r-}YCh5Jg+^8h zF4L{rt+-eX%}p$fr=M@Pl9?`$Y$ysVheV9fTdqb%M&PcEyO9w*n?TAPBO~M@!bri` z2&H5)Rxma~DVa<_0v3>-jFFi!s3#*l{Y9r0xP#6&?UR+rboNdwf$90V7U3YjGfL`$ z52bdU9^DP9O+dZ%ncY^<-uk8<D`;<Bzt;-dTNm!L0{7Of8K>v=TX9cc)u_NTy`|p@ zGBgD$J|JhR8kvK;5{e)Z#=V-7;0hGP`N*svG+q0H70-0*4@$g{I`r9kE92=-AC<(m zS2S8>fJRatHd#qbzu2My?x1Kf8Cif&g=IE2vY6i3Y^6M1<dYR_Ov=b&df-hZGtfz` zveO@c#P|2>p`O%Q^~p*Il)<MzkdhbQ&IdZC71XSFrzAE#{hO5#xDyBJV}s3yy59og z{^<!{K{eA}O>j*K8IJ-h19ylH>``W$exk$5emct!EASDx($n|vRo*)N<##Kd>0HY! zRT+(@7MhAppP-|{vfa4LN|2Ek+<k?lSW~m<w!f`prZ;?2(g7u<g9cg-AbMe<lG5}= zzd^}f-fSVWv5_Unix$%j4k?OHXX&-loo;BPB@RA<8Km6NSW6F7QU%G0PB&1tV%r|y zXT`_JXgNKv-%4V7)qg92=?UqK`qLlW(w3i|tz)JyXl!oC%f+ehlbV-alA!=H|DwIT z=yZK`Q?~8)6Ri5>87-%uUvDKjeWI2;*l1Zb@$GsWtp3|i@BMAXHQoG!l^~<#^n<z@ zDzId&Y-9#2vpFHvtC1O~C<50Lkm}WFy1-OZMR#K(<b&8jJ$NJVNF7uqsCqRr2UY4Y z0Z=lxfL9oh;a^ZfXwnO3F$N8lf%<D8mKiv~gN{&7WHZyB-ucgpXZkDyjTmNQV}t2} z&3e$Zp2cX*GhM1*UI9E53zoe2T*02j7&Lq&xKd7WdJCg9xCz4r9-;+Fm~LO#s;9~b zR;*~QD>i)rkNk(}+gYrQrUt2tZ+Cd6V8IAdX9lf4jSZ$V*6Y}W85<*p8o*sPV*|L? z^ub568yg~5r=|+V#)e4MsS$_|Dr&)jp`Y#y;u|B5WWU8}%`-h~o(k+pc4JU8OKkFn zD%t7v5?ZEU_imhK35vvzr`5qtWoBbz!|8^<t;DBSu~~CZw&LfT?zl!y6x>l_F*XKu zQy2|}r)P0k^GuJHR#jm#HlF@b$P98QJ4k`W^n+XqqSKo>tRbf_gL+I~48*4^ELDjG z8~$LvvgmYmPHUmb1%e9G69ufrAm_5L6tsqPdZwS^wl-n}pMu`aY;0^aJ-$sxbow(c zYoX~6R;z%7zynMAj7H#+cWazAALH~aA#1MbGk&P?PHz&ihW00n5uJO`k?dv)#>Pgb zi2j7cbbV&)ct)e?iK*(A(@!v4t1uc(Unpb@=}s7kD)3BG))JmxBy0^iUmi4sA*~7v zC8OyRdvri;fP^>${pmgK))LcM*{sW^clTIx@mnGvENyHwJ(0_F7AT|yH-TEl#>U$d z*{!)jV=V`=)Wtv&3R_gQrW>5n6k;|uHl9AQOU)k4aMVy0oqk}aJkRvTK5OCW31M;z zz~Uck6)dKISZ^sfJx$D%Ps`9!!N^j<)WSf)*gzp#!N?SpCO`?t7~IYTvCJ$?70gYI zr(1DZubbZAZ!IuAe}VOt>96~&1*R8lmQ$GSI7vagev)@yvw=X{ce~c<FO?3NO(<!c zFw4Y4=T`vy!1g(;+t<HUTp8lsu&?spVGHYR=ht4Gm-aqyl5B-l#$uT>m#=y*NZ*m+ zykmiv_x_-&(;K&|aG$(uR4oy0?6YK*##y_j@^5(yXRDjeeb|_i@7H+wnUi_^alL}_ zt>4()>J8=@1zit0D4@0X%eSrajcJ;>w^u#5UU#!?&i;<`N0~%BEmuvP+;sDsP)xp_ zgO-?|?`pL<vl;^b|Cy6`t8&8qz1|NiInsSLSP9)%JypEKeTmS^hA$l@PF5;HOe-C; zghY?KSh`y&Chj--`dH^%HeZkW#?`Ct`aZ5z>r=HT6O3^6ToBf%#64xsdgeD9xuv=v zEmN;6lj&U^?P2stCbiS8=T3L17+2?h<8^=cX;+r&t<k*OyJh|k$=nBZwQo|A!)odn zH$GW8-SMxU7{9TxF{s%JF3XLL%%{gsw3eB^p-)e2I_SK1P@E?^$~%DQ#u=byx$*Rg zLHcUbCkR>hPk*pO(E>6u968NeX!?d=efjAD{MHY_O*%$n&@h?A^m7H~Lfg9qtQ8oU zObn(ss49p~-#y)02sAyy1s)Wf-ruDL>b70%Qd6E@IRj+SZS}>>#>OVoH~Q%ZO*feZ z$|!d&{!h=GX>B;&aKEDX^!2$W{M&DdSjRI?|1-;)OTgF!d2YnmWcr8u`f<}Yidow+ znoM7)A}_j~RovRnV0zCSYc4@UBV!{=q%M~6^n*)H^`=)&w-%cYx`LxVc73k3-_zee zMPEyH#v0%6Y?-jbRrLIY@K<&A0b4FuZE5(gzxDWr$rjn~E6*R_%c^TCvdSv^&6ygD zzGUmZ&tjJ!{I}Knc|LyM&iShG{paKD{@zyqqZ)txYsbcz{`&vR{r`W~m;0|(QN_LS z!|uQOKNV~~%&-5kyZzte`~QDle*drjUDcn@^&931{QjCT@#>$Km+zmh|Mzxsh}2=z zdqLWtmVXd)JM~fUcr@qM=T+Ngc=fK_xb}zHk|R5ADPP}yp?FgL(FwPrvo#m1=U=}n zFLCLyuhtZ~xd-0e^tZ47byxo4&g~{C3&N}Z{85)=_gwV<^XKXQ^{PL<Uhkj(|7q}! zdqI2L>L-Rh(f|Kr!u}`c_Fvhq_m^|)I(w1dDtls?`bEB}x7KIoFa2gw^{Z{ym+n8; z76&Z*^0i(2BmYa?=QBKHe=FQGHC&@Mb9<okuPWcS&zk>S{@(X!UFQnZuiGa^pVh6| zyX?>L+2`(E{<CiT_bI!wANMId&0o7c@rhy5k6$}JpWWfT_i=smZTmZYkKT3v`Q2|l z^>eK7_MU>^%enKt9?1Xuu(`AGMo~?-uH7Mx=>h&KT^_Aprd{&*DyXj*psOtZXu<cg z)|5lub=$%&YxIYP@}%x*z2qx%L~XVGmE+N?oSz<S%xM(3^ffF<VzGTox56Elbw~fH zF;AH2_vUAlt5^RQK6&Ox^~TOWI&&t~yLZf*)4uSrZhKMe;l=ZBvPXUrh}>sVEtU#8 z|NOcrU&yb(H=m0+&inuWJ=sjHN0T*m)stY^h>S~j4L1tR=D6a0W4dpDLFRmOEpP89 zx&fIdABuCF<bCq8aOQ3aj@`$0P55sVP$l~L#ob1$mJ6vYXQ%sK`nF?B&Y^m#$(-yn zQeQ0%yXo%s*kl1y<H6F<2fhatti7GKZ#e3ryntQ1?b@0q*6UqWyUnIGU%Qoaj&a$Y zEl*fVIktxKBpyC*YH2GM8e`P4@awe@)-_yQzSR!L-3q^Q#cS)Fj(*@|bc#!YcZsBo zi&due!Si#zTocy%ka}>N?@0~o^}l5|)T?}+RoJioZGT~e<MaJ{j(6u+xfeEkef2~~ zGTF0O&P;>3MA)!!X8r61&l~4=x3KgaySV1o+Rdy<I-6c!uWMEK#T)T?lk3I@I?Y@Y zdERdH>zkI9+W5S0Df`07i?^xjOxp5<Y3bSv_ovqi)rCtv5Z$69)ooSAzbHIvWnwkM zd1kSCsjJy_`MR7EpPAN%OS2>%`n~DAf8L&TT<%Bi-f*Ady4Q7uzJYpsP|&Mii$uAb z+4-}pZDS)ukEA;5_p;>eTt1<*t>)-F-dwYzTGGwDsgDYE-#_P`r@X^GearRJEcsnW z|Lxqh-7#ct>RtbrwuQ=*J)UrL&kxq>zUd~sBP#W7QvHOO?W?7kHg&ynTyw=tys2H- z-RRuJ6PJ!SG|9UkXEQLAJ=*lFhv&=*r}-}4(@H1(eg1T9(x+N&=~;g-YN_AaE~B88 zw8ZH}%%}4rTbm-Xy{5QqYAaTbxV2)6%OMV@Whqxr*<Cj}8SX47d1BMfsX`8~R$ss1 zTx+4ntTBbtDwfl_zOy-Z+mbIH55#63WiS*{<6U)zqxy?j_KB@GCV2PlVpm_`7!dYs z!b!8%Pdf5T3T!GbIDHU^YMb@AgK^7Ln>CJ$*>=cwuiG+N=0LPawMJ!C!O<-Wi(Y*^ zxT#yqZq^kIXZ?^+p<TYE#~(%<e|t&k?b^1iSMCc1&T37|O1LW>dQqj`YVFmB-pSgQ z8L~{@Hm<1`-!}J>WWo7syTfL!3vg`y>J%Up8fcK(A$QfPs{huhL-UWgYhQb^O4aFY zmhjUZkGXH<awfAigbTVXkxO3}{jz(qVg~oF?To%>C7y6)>(BqYm}BD2>$W}@R8EJd z8{X~{XsLX@ENyc6)`ME<iW_aj#OwQ-?(UF(aq(|&_bZ1R%NA+J>U~)8R)|~Fb;(jw zOSafW{5^p;PcN%czAV$ECHA7~R7QI9t-mVOf4n0Dr4RbN2=<yRmAzn*bnMSv-+o-I z@91Q+ZLk&nki}*eEX|xVb3yIg1wsyCyj2?>F2CezGILRZ7o(Evfz^eMToNrC6~!3p zuQipO?+g9F`ZVNVP|vN_)g5JSTwRe@AFbK)q4?sC9Iup8w~ljRKAWB2U-bAe%b-JR zlfts#>|;g>ihG)POAWIwo{?3n`VgRNF0)~}dNNlBv+MfpbyH2lg-st8779$~S#(li z)8(x$%VLz8yT0tG*z0pZo3)2m>HL!79h-Fa9jKQ|2`pIt<b_OKNALruJKnB|8k$cJ zM!Ed;TU)h|eGA9-rQv}Us_S}h#DxevNMiMg$p~8F<mjrvDta|=neo>JD|q&2*dGy@ zCVTSLI@9)RAse3GYnvvvA<MsI){ChNJws-h9+OCu?MhzXJ2}$!Ozh81bsbIu-S6)4 z%f=jeAQBK&e~6)L+hJ+Rjgd!p*+qZ(Hr2YI?8zKyL(A2t<~`@u+qOKCgLRqttVOT% z+U}ijseYL<u~*Ce>BV08vX@#$ev+rIzqxpmf9>H9lk52IIp>J{Fw}E0u~0SJ7!bcW zNv?Tu{N!D`^i2Nxge^2+d5t)$U2cbQ(UO%s7q_0R|8_mpJ+nc#^^uDU$J$t}+m2r^ zyttqqxRNEP>@ef&*ftgEi4#&>ggy9lGV@dU<SyrL$QBh!P(1uATK2|`i??|f$9qo6 z;k$ZWA!ogJ^0u!`S^F(M%k7KUX1C=U_ttY4ld5an*XPOZt_n96o+l>okUMdf#o@>P zkCHdow(m~#Ia}ZU<mQSK(Gpc|+&}g)i8eT>dRXh4I;%G_OzJh8^=-@VjTaZ+mcCYb z?k(#xlSJEf&sLOJUihASFs{{k?c-L7Tdjpbe%04f>y*s)30!pw*muUs@|~x!*|Cs~ zTM`Xs>r{G}-250(Z0A_Du1A0`FKy?7OGYBE({^oOUSxCRox|I_`e|M_8uy*mo2eYQ zam()AT!x&{SLZ&{ojmEIgX5_!Roe<X-k6*%KU6F5ZhD8=3@eB37ZdKBuhLbHI-BGp znkVkO#P71M`v(oxD^hZw)`x5<F%dMZ5?H!YK)CdHiSN6uW}cgJ9#pL07XRznK6l|3 zp8m;+M^9b9yVrc{PQNS1((ml8f52U}SL(!_k6LGJ-)(g&$@&?1W%rz2p4;YxeivFd zT~J5#XOz-;m+x)!wPss^j&Em*vlX18cE|v7e0$wi%lp@*EwoncyR$BG<Be36yQ;-z zCs?9fSuP9qf4DQza>=8dRW~?NukLoR(o$E~H*r`I*?xG%u7wv?nQmZVj$TvmJtfxU zT0`0^iyM|~CNiQMyszX4Y}(?dl(Qpm{)(L+QVw-*h?@1<`^-XSYq5V$rMEWPEe-l^ zTQc#G?J6fhJ~`{7zg>3k`r)xRbg{Ukyoc=1eFwBB^qhYjacRYYJ^aT!h3mECg1L|C z<Xn8%!p5rCbnC3x`i+uoOIOdb(l|Zg(~|lF%G07c)1JFmJYk&Ha9Q{&TWYAe^Hl-+ zEspK^epOX6eCOBkgguZqVs3gDw`P^li)N)}9|6(B{IOFd%WfY1weQ+qxiaxBZJqL7 zRv#Te=ees&sYh1SeUZsId42Vv0x^-`QrS~GuFOrm=OcYc^JP;vPxj#tR!lubj`|j> zmbcftSS-+<b;N0dr{=QcG|Bw+zOlVVn&H!r8Sf2>3VWs!G*4*FvT95B#fMX`-gc^~ zl5tlIv@|(vwkGTEsWTcHDp{LkTV6Q?nCuaaxauAlxNyVri(kdg<lWkQ|Gw7ud6UBz z6g=}Z=J&6cv)E?x_EpL6x1|s6wpCxP*uHSVLX)j-*XqA7*sEE+c_y#r_J>aKKinSN zn*B-m$1+DlSMN<P_0E5ox+CV?);&MeIuj<^p3LWp?>IK;%#S&<oel~9HV}&zTe)D0 z)61hur9UoaK3K&4{N<u`Ax$i24bGf7d-uqcH7>z3N;h0CJEJUJ5YAa`VEtjiZT+`_ zv${Cnh~ykRAa^$KB6oe>)ztn~uLC~B1iwhUx!BkHxy~+^S>Ik9o$NI4)vUd5R3<!p z_B;05l=kT-o9i4LbgHK~&z?4UlHoyC6K)OGV!aimb<C44&H8L=eL*r<+OGE^bG+K( z4+odB*WTOXQ}D&>;fJK2WxLMpuX*{4&C%{q<YxD|hPysauHd`p-12+*3(5L<LW>UV zlQ=B-d1dFaB(bYY;)ADW#?9|MxaxWFz9ROjU%Ed`++^SR-<fsd|GRTjOZQ&gxF-1S zvZGlHH~SWwv2*kHWW0KRti*i1(&bj2jeAtL&Pw^XnW6Fg7rmq23z9BecDB)<z3KsD zxz))lD;2pGbqLQp)cW#ehp)GufN$&f)cN%-M~`T_daL{WYHe#>CpaUAg_nIbQ=3Th z8~sa-fzcPEj(TWLf59brbv0Ar!9~X|HY6-HTa)b6+uOb~?MrrZKjftOO#5waL2sRH z_*Ok!^UH!=WvTRx_ZI9=dQ24O*n1vXQyBZh_&D#c<O5voi3hrFx6cdMdCVrpzR$zE zzCK<mfs@had7lUWg+34SX%9{Xn{u|@)7{2j%bz3n>y)1EF=4UB_kAyXb?2$?+qqZ& zhsvF##{2yrj;?h)P!uY2Z9*{HS8v9HfjhO9mnimKm3BFy#e8xNYfh~s=mh#HkydYQ zn*`l1Eo)D_^x~iv-@VJ~327Q<XFauD*6g42gS~!oj@8ch=B}~Ed|zT7CAfIGJZ7DJ zmfz4`iGBAnG5w!@y8Eozw(k5Q5#IaWoB2)Xfj82{4-Wq2zBi{VVe;iN@4m}+QPwNI z%-YSAx~|G)pTKgRn+k2WLw=j_9?zJdaC@@7+W#}Al@C=sdqpGC13b9i9@qU;%9~KW z!g^YUpYpkq`bF<1?Ou~p+EE^;x@-17<&24YJ->_3d$}U(?T27<mVI-+F}6SG-TH*( zpzYN)x3(PZc(7Ppcl84ev%ZguQbgzMnilvgXmi322HxhztW{|j6*Mf0ry3o+qH~j{ zJ9KWLR)(5uo&^JghIQ7Axcb0pix;lSkuf`ZjNkR(;cR{P=j+zh3kKi$c>Th(c?l*G ze&?AsK3TnSf7F(5rPdc-a^}Uk`0vnL#dcnNkNOJ_EB#P&;q{iHE$n92LS<FcHbgYt z{1p@>_SL4oO4_of;auH}H{pL&KzF7bP18DE8ZS_BQ6G8&z0BLTd0+Kqw?-_9u+}PD zu>5XQe8%&SeX6|k>P5HgU*4wkj_vXKeHZ*vjx1@{*PWF41bhO$B;*A8CKKM`EeEfQ ze%+K2rs(yEOV1E=0=<rx^C#cC_2KUv+&A+cUdTST;EAR!uXy%W^U%PHRUFzvJde5i z!yQ*@d~^M|>FlM6>bFD|Ot`r5Q$_XT^UUY9B?=$e7XKGBuIG+pS2Vb=y2K+%X3t5b z6O9=nto-ZFp7FJQVQEmXV?{*y)W5QUa*}$ly{2b8JDJGVpJMUGnl<xT;DWh_(%zhq z?zdS`uO;X7K3%mSc-HCU?dlJ%3YPu8WO*|%CF0A59SdXfzZ5(*&Dr7G(ACB)$gVW? zWlULx&^pFux7T-%8JE?+Uw3!6&|}e15B^gVR95Q;^_Ob&h|gITuj;Q|eL^A9Dt_gP z>upX28L~+&{V#b>8E#K3?a-SV=Tykjdv{T#z*gZG84MO}?>2Ij90}Oc)v2ta;rGwt zgN%>aqJxTaL;2jMyjyWxz&z`T_jJ!oo%XhU7g`Ul;*VGowSj|yv3tvo`t95ra+<G~ zCA|*6enjHk1PkRE%d>da*Qs$^?YT8ouH^Og!@+E}yzfjGYHxbl)*YkG+j~Xm@ZN%R zQ?}e=iZ8w-vEhnojFobbq@U7`vh`|a{>e9e&Wk$yOgUh?+nq&ygHXJ7!?K(0&AGb$ z>jd`*mvPrC{CRI{@gQUiW4>Zz=c;<MsMm)YB|~|Omwd`8T5zX&U6D}PEB;lhrBZ!g zPqg&^kiK|p$n@DfR?%OVSemL_*jV<UL;Bq5>b7X>-msrd2k&(hhrcd5$dJ8o?+roE z<xXK{4-YPQc_XB1b-bsE_mQCPqmdWocZol^Eh^QOx&GcRrR+@`-Mb#_*0|<otll`S zsa_y-@;0X{vDZ1Bxc4nPoP4mrx6ydFtAu~Vm#cLv&qU}hTpudSvD;fZ#J%h5-RV<J z7l!>TdumbS5vtUk&RYA*M{~cgq6*vGKcNg4Ii`KN!0?6l)|uG!z^9zWTsx$SE@|kQ z)msYe^=J58aP`}Y+C!UmEK`wHaHuZmjoL33YWAakCgYo9R_oUI1epi%UUhrLsPyQW z(a-G<ExW6flMioV|LT4HaF$M7hwYqmdrvxYhs?}vE=V=s8?#pO`#rVq##g*p1!W(c zda?4&``>Yb;%n9Pw4NSjomHq8lXP(2j0r~$uZR&$IB~Y%vHzouPYOl&ckY=O`trQY zgn&C;2g4deT_Wmznfp{tb{5{=KZ&dA!KT;i?)DimIW7;ss+{tsTef=gf}Py+mseg$ zJ+%J8FQ?7ITf`oAr#-w<wx--!w<~G){iv{u_c*(|w%$JW`hc<1Dz|&zB>h8;@>pCp zA6fE>!MvjFmyp4l%=wu%1_c*aoVlw1O)@mm(Rk6#XFF1hRxjLiT%_J#buIG`?~rNE z->1#kdEoZFd_$ACfSbS91~{6uzWb7Tsm#G}#(YJcNR1+m$8ukOzild1scqe=n-lY; z%8Ge|d6;CRvebPhHMtydtzS7O(k{k&&2@Jy*>Cl2y3&sgQKl7DH$s;(pS=^%e%110 z@o%PkXF@mj1sXB&f9Bad`?y9)eZpC*Z{JKedA)wPXKTD&Z^rZc?fm5}-&5K5W?naa z4>}*;yZH4jjl9_^s|%b&8|_w9J>ZBlyt|^RnT^Le>us8>_73OC^HYtIYXZ_jpBUu& z?~9&LUMat#a!>Um-@en<8(B}^5`6#u-Syv-{1=qAr0MxzT$^H9GDC**q4cY_)9QWs zB4id$Pdb-(#C5aZ%Q-p;UlS%3vj|V~sjb?bY?c#WX_&u#;V01f_)oWAXyz3>xJ5y! ztw12E@%)44TO~#!Qmz*J4tLxYwagK!a-MgAJ*!2|)$;8F%@0ea6}PP8-FWqt=0wib zA+Pq=tnzfp3s*nTG`}G=dhrJ>8&^@`$AR@He_G@V7<|(%y}2atQ_x<&vb_fHCH#Jf z#LCURwAAQLn*7nXa=r&cTf+hbx92ZW($kDT-Key`I3p_Q>gx@<Tg*;*?>Twsm6ppz z(^y|=H-U<c!h1QnCAy*lIzqL-q{=0PG`cLx4{3g|IgC5nI$FT~oVQTcj;J?PiydE_ ztzi06|5|F<L**|Xw&i&u(sfl493qe9j?Vcdz9aT-^3=fPT5BK1EZJJ$@L~IkC&eG; zm4|8N+?80MWFu5Lp<!CkSqc3eo@H5qrZ-pbuvkAcd!cJf$t~CYGiI}%$*ExPG`ShO z;P#L1Hs0e*WhuMgtC&?N?3$P0x8+fuOTg?dQze;<MC1BbF2{F)kI(-cGR@a?^ZsSU zIp1G>Sdz%#(_Jv-E=$4Issj11bsjo*j+OGBn&d3J>lXXFZ7Wx9dT?sB$!768rn}h- z-K5tzvOjjpGv9u=O|WIrx_x)UmVeDY61myfuuo~3_!iyJ{Odb5R!Z+k_O!mS>y~1+ zOwM7U%&T8~eC`(4t2AtQUY%4bA>?~wlY2nNJ5#YAMT@39_<GUhk<+0ql@{8ntfy7a zJ>F@euCqt~C(EyOYZ8+DHmfZ8`}20y;a@zW#@l`Udz}S8`#s+G=v(2Ovb=ybpM^F@ z?mBo!bd$kn(M+rNlTyFkzPe-M)onF<FWT*|o2Rii^v}Kv#T-3yeo33_pL0*PN|pD$ z^}W@uvF%5YSl;9ADJ5?!a{7xF_p<fsz3e@;ZOgGr$)_!WC3~$->7F_N&dq%P87cmp zt$z*oC+e#I5SOSl`0`nQevr$OwVYLJr+iQLPTw=<jn3giPQPYse6S<Rc<v0zg??*Q z+l=CkxRnkiFq<9uVRG?ap_S{}r(X3us}33V#VP#%qse+FaM5r1z$BNWw_eQr$-ZHw zgxh=d(+|I#f3r>KzLeA7m+u`JS{AU%9qF62Qu#B(PMPgdY#Y`n9<ed4b>|lF`0{{b z;*G#BS&o?|4-O@Lm6kPPm10$sIA6Z&_>ntT_pmK$%H6WkRy+Q^)I<e`{r7V9eM(L& z6s*@eyRg<La&LCYjO^PBS5IGe%yt(4vA;iqTkc5rmn7Qt##Us?rtCWryr<r`@T`UJ z?p(cD`!}umqPkRbXQtc9BPJ~t+1zvGf~yv@ob@h>kI_4z7sNSTJ#1%Kx318|&PKOi z%Y}Xgud#kQQDCo8$eZtrB2qepa`!KjX4GHnXYUYLzn=4OrP99+VF?k=SM}BI{8C1X z%aWVBr*ciLO07`hnbO)7B>yNyX;;p!<65@&qn^82?&S}2f38#Mu-f^s)n@L={=&wV z2l}^qyDd$Mxte=m`>u<3_s8CqJDyjOIN$J*;rg4(4^C~fknFO*AH1WPQO}xXx0Lc{ z`PxlPPrMtwnCn&gj=Yw%P@kT9E5b+T{wZhojR%!t+?d(~eauwvIHs_89{>Ax*>`J^ zWgGb_OyZ?Z$=v-CW_G*x3bTmmtuLp9<)mC*Z0wS@o?gelxYMdW)!WSA*7Fj*D_5@l zIOyTd(h_J|(c`v#!ri96@IZ^qS2pFcRnzY`Hkwb*Wsu(YMQ38Y`D!yBSI^Mfcg512 zO}|}T&083-<K81j0jo2=X7$Ze*=f@4@b++z^n%uD?XERGkK$*wEMUJ|&%Y++`&Sos z)9Z(}T`fB5%k;(l;5q44aw*p(KL^?PfKTyP3%=!htCF2n!m45Mtb1MS9;|cU;{0UQ z+y|$F0``kdW_h{)+Nzrp_1A?C|Jbarxl3r7i*L`u&ASau4Si$_4MhI9E&Oeh=oKu} zyLQ>LUm+h-b<6ku6gTNPelC_x^}RUT`>O(Bf7U;ex)N@rGo$idr|?7W?Y&tm#a_>Q zF<*sibCB(ZjV^|Ex-ka5Q)b<DIAEL4YtC|A?6lW~Lc_Bcj(DekIXhF#@?&;=g^{hT z-L;)pB`&Z{xy#P0m84mcoP0PX{CQ=&8_$|av9+9cukYB9JV|Dc_3w~~lI1VmeRgcI zf6%!jX#0-WWvMsT#jgGO($%Ck$0Q1L8^G=@3zD`>6Wu8*<;V4K^OV-qxc4CsR0RyC zoyk5qr-S>uazyT)sC}nqwIASW`DWT`S<lNXsm*Y$RJY=kPqXtDYxZMPq@PV?e)oa- z<i}sT3KvMEY&*Ke$49F*HX~44_~@3XTdZ*w3VZLyd_Ht=1A`F%@>$3CaJ@+=%aZ8c zcB=IFo+M$DYxf_-Xj=Q!+}Oy!C?`6)Q9aD{f_B5xj5Cd$cc!k5Yvy04*cY9A%*<6K z`?6QPfRK55Y)A(0*Slq}Qv|bCUc6MN+M6bGG$j7&ZCM=!kD9Zq*-yPleDzjJDE;*L zgC*}~tn!VBI3?2{sHqpgy6(7ovFJ1z7oP*BwkGS=zmQbD`}=Xz^l7tL6N)UIa*t$1 z@tx3Cuh?iE<jva@d2LFD15=lk<GHEV+Bqi2Z1KBeSihpg!ENK>>ZQ_qj$UFv-PXtb z#n&-Z_uGmsOs#uYUs`;5X-A$STjnmc?*+?NPkKBr-9RP6yU_jI<c6nv_CMJ8cKMwb z4~wiGyp)+V(>J`L^SG479Pjr`_gj)PRCYC0N>%Rj;?JwU+{PbdS<>s(W41Y_<jKs& zMcsaqQTIM9Idrg~Ugq>k?fuRxm#@B&+!w-ayH41m;=bC1GVgWTHrh6AZ`0o;RlBDI zZA>XK{(MB7|M=7OPaIvtKX*oEZ1~S^dcam~Ytpk-wfnl<?r3ZZzFe8R+kL8W)|TrA zqRUoPH9lK#@F6?j;a#up`8qc@IM#f7=U8W*_3YsLw)qA&X`pKmR@QSaQ#dZ^zv25% zU-=InQfzDnvwRIQzNsf|+Fs@zFu7Mcc7K6oTx)iG`*pn*K9{$Z_kPX*U68O+YUP%P z$5L#siG99u;Nx~jX@*)!X*sdRg<s5_ls$RPUOqWsc=uYJmyS1YU;NpNht3MB8QQrm zXph}AQ^H!mO5g8Ytmg`8&)@Zv1zudP{E*u0A~)lR-Kz_psY{k;eop4Twz<bx=37S3 zt|$Taxd!2x&Hh139ZKseGhJp2x~^3`n(F*4VA)bZwm_X|jZ5!%FI<s48RGTuX||Y% z=!v3BE-n!poz|V)cqhz?^KOdk;iW6irA?VHC&qBm(>3EwqVt@luWxnKy{%@htUv6# zM7>>6k$1zIH`yAWFS^XFTl0C<&WtS&TzZaPwY(F?=hH3oqT{)UMX&Ol&5uKtgr?|8 z=}mHa&{mMCw^P!C(LDcZ;uTT%gY&FzFtJo!sydptx-{;!sNQ9*3FT=v&tik;bbt7? zdFqp+S2FC}mn6<L6j?OSUF7YK6E?+{dc4i*OBkd3y%{q%$Ggf-e44sP;Mu}+0vmdE zD?d}+{({e?pzI~@!AI=JejMZd-Fs|tvA;ub>5Hnv`wq%2m2Ej^_ie_XIOn7@y=+e| zvA)$Ry>TzYtm=rhMMb+cM}*VnyX=PC4|?pFFPh#s`0+wdslbYBul8kjJEtM;UszUO zRcWdk{N8o3=)<;?ORIE$wJyH?Hq5Y5@ZzD(Px3$)Ff2aaaOHq=&5WYo*KakcwQ;vs zvHZCsvBlGNfr#<861G{2=9*O+Y6VT)g^DY>f2x~&$(ee%vBvI|QOed1ecr<d^MckD zMQH5uunuPy_`HSDQD|9jMyxE;!G%%L?@zq0cQ=XUnBru^a#@3sTS;+i`68RNYnsbq zuQ@nNN(xnoFN*B3j*L9uGT~Ep%#NcEwG4jce)o8j?fUvj+j95QLe8=;SMzk2rLCD_ zXK*Fbl<U1l=EpAgUhe4J*Vnu9;wt88{9J0pktZV)TKc){hWnipcMe}@_<F)&`r+xU zjdO0LOVqorU8!!~W@UKnr?t;5iO%K!Y_4`}YE;;l>o8^60jZ-?rrn)0<HeS(v;4PS z>Si(dDr2-u`BK+MFAHA}gImTCZng_;5*fDMe7o;<oa#eu?_Xb63F;J@-Zyj7I	} z+t#l^|7tk9ueM9~-rLY*x%2qk710s5yPddIB^^VyE#7sgv3}<~WB=ogbssg-7G=-9 zE)BYVA!e24zBA10H*HJ$>>yqE!OwYfrGT%FuycUphRTjvi_;X+1w;hTIlt@3YpoRf zHLJZX#^A`I(-AQ{O}W?TPe~TLut{Tew%D8Gmq`-YLXVu=g}$jcFce()cvmInipwuU zPOl?%K23*XjvGIoom=0?BYb^B)u~RV)tcIE(AyWTyaC_7;JRe%F4cqxx1?wl<wv~I zS2Xu5eXjXj{2{Nc%_@hPklPmwE(R~KFo~%BGh1B4=fPjU1qypFl`e?7pP}AW7oU1L z`)|>epf^jVCbI4`SSm6{I&Rh^AAQi}3o=IG6PB?=iPlSAGU3~Ov;3@JyWE=Ivk6NY zb-Ysf)}OuQX1}ptl1s?^kfP{L?b(0+KibH(dV{@^{$gXHJt==HI|H`OUlChYy-|;+ zLg;{RJoAUk-~MH(J$0MaX~Sypz-aq}-nF73-&wPy*O}GwZF{IT;qbg8Op~|#$lrNi zy)B#NqOPV~1M7AE`nCKKPUjky)kd3C9Avt*-Ks=z^O**L_8HAzKC@q5F!^u==hCEL zNrp8t5)*n<49yZh$ji<Us&KA5D4Vf@f34llr$*Kf#b;|gTXf)wq<A*?a)y@2*)JAc zy!yUwJ?r+s*Y7^J^kkMX*L~TnE&cls<5Lg+HtEFX#-L?kFU1#e)L*|NG4bM-J6CTV zsxp0JbWWjb&y5+ra%zj*oi~448FQq?I46(!h5V*har=Dgnr};7J+S(bz(g*q`ft(~ zC0a#-6h7O^<nBCV&3q}#$}rbTOm%zWimV5fvzS$Lm7J%3tm>0q=MgYNF_SNx^YD`G zDW<CPB{WZddX~CYr_x2*RpCSZv3XswN9#2`md0P%%AoV@`aX^>=_``=Qj}}zUn|B> zyS-qqKtiHd-H{`|ids+JV0wMHcjXI%xH%`Q>|O+%J9AlCv?$$=^`3Z#*3aG7z_&Hz zf4eo^#cKPy8x8YsXiRR~mUPg;t2OFy%2m6UuB)0BinB)dPyTp$-r4I<7o28^s^1%# z8vUVVRn*S-ngdQDIbCx7Ghf^k_!K;Qv6j+hsi{Y$OFEhOeFGbk`x3KGz4CqXG05JP z(dS*oqNsF%EqiO~pRQ89o*`rAZoJTWLX}8UAMcWfzA|r5b!OJydh0x69pk+F-{<w4 zU3;(VBR*@F+NW#3O8DLdyeoHf7UUD@-1fYF%Qwjn7QcgMK3=xBhkf~s>$^Wb=)3*Z zXx_2Q-P?{muG{_52XbA*8MZ$?=hn@U`8aQXX04G(<MmA`tyeP}jLe?6bUv))jx08a zvATTv(Q?bQD+gphtk23&aJ9Ota`9blYSghESvmF}eLphfR<B(Y{I|&A@`RHwbqqw> z4WB)$mzcGNYi{4#JqbQ*EceG{EGRqa7gl>wSy#U?!ky3XyzhB;O%<!B4+^3miB7KX z+3;7FJ9U?-i`B(R3=4vp*GzpSkR8%<ymw`=%EMU)Kjt30sXc*fwXA(}XuQ7rHks9n z6xZ-e*NRrKEPma}*t1Wxea81kuiRJmwRael?Y_2q!jk&$sb8%RcOCn_`uhs@GcxC8 ze=*(a=`{T>k}qI%X4}Tu1(HV=Ugwy-QHbTwu`QM{oE+|+N9+^1`_DMrTJPV`&^aSs zf68`sEpM|trx>2vq%-0#Hk_B&Q!D)_lDAiIp~tJp33rWk8SE!!aV|XYrC`ncSmOj= z2Ft9gR}2_5WtHB>*V_~=@?1VCvc^JVJ)hxq2Of9LmfbzE6aQXmJ9F>q(T;UCwhLm9 zS_TAXy$;YzX`gAo^{n<pH7;9GsU2M_1e9A|q)0Rh>%2LoopT^+wUnjphb<3E0y`S6 z*-eo+Yc3@G=gR?!Ws6Ug227l=d=cY~(qmsF6jeix{Qu(X{CA~T>I2sLv!P1LTfVM1 zG{M)2*^E=%ApN(~mhI2k(pW#a*hqL(u6kXhBi7+$-FdH5+v1AO7AroH8yvnH*E~GS zx0++Sxp1yyuVEOUQ$T9Xj#t)60rKm_xoYms4Sn#_@qNExDzC)FrI(i9&@}Xuu1vIi z@sRb<j753%mv%52S~%$5n)aLJO1;gxn?+k+y6?HRSpHyoB|~bio%GQ;=cGT%$zCpT z=Qf+DRhFhM_9=4tTGMvTnYULICzfvQQ@UEBnv<&^F*kbMtR`+<+p|{UQO};1T=$z7 z2)b3`=bwXDR&2cY^`}7IJ<G}LvMn*2Sk^uH>74T1W1fA&wcckD&t59-`)gb&$+V|_ zpR*vpW>IvYAVc%ogvgJlJa`M5HO$_;(>T}WZIrC?;LMDSti4$$8SY<np6}4LRx<6$ z>6?0Y<X6Q0uaJr|O8qwB;bSMR+b_LdP2}2qD6@acjoL3KR$snVJ~7>8byVf`qxBEh zIcde}<|wmnFxt!2ozu2Yz&LALU*6m`%F(;5`|H2Gc6q);X!obDO|6nI{{Ot(IBiDE zT;a2q_b;mvEd9E*v(eOMS+bYMg@*yM!8}hL8Wlf#THPv~@zvwC$(6ManYWt0xmBoL z2)fk5>-?8Zlcvsl{@ts;X3JxP*B76E*Y@cRePXS&eLc@aLG|SxFSc(`-zd22u+k)n z&{*MT_A@<d>!TkY;CsFCRpgsPv)Uq(yViVL7tSw|C@=P@@_T9GdH!GZJzm9Dw^xWw z`?*Cf&eEiEEuZw9*4yV_u3nk!=x_SN)?}{T>Qi4YN13WSntZf--I4h2M%2@g%r6PI zx9-_+ehx#Mvt@{9WRc}Qw<fDsS}(cSg9@)1d+ywD>zasknU6-jahAh^h_{QpS1;;u z;Xb+QlxOk$V_R0A+BK0q?ZLAir$3rbNo(h8?5s+a2;zzj^V0U;c{VHPWwwynY{kPz zkM*1_vfFpI;^U=f*@`#MnAe^;l;JyHuqcQ1eCqoK)2k`FCBC|vN9g{#AT7baBFd=E zb(W>;X~k$s#y46O9Z6+O^Xo&kCP>P;?zw$;Z<O9CzU2p2KizOcQ#3|%iS@FyQ%C;t zoy<4XeP^`h)P_@Kc>>N;JI^uLJzI9|!i8_uw-|oO{IENxcX-O2E9>=(-=A9;W_7b< zj_2%Si_^QKJn}qNPb#f&xIOXg%|!pCrOO^W+jQM3Kg(gFmlbq&+d=6-TPBVO(fVwD z?xxkpZDz})hFGiW@@H)5?sq?VtVTX6(o<i;=33?XNegE%e?B46^j+8?_sKt#YOZIE zXTPyssD8a>>VbrcS**fM;qoPC4zKxQmYm`-!(htqlI_YL9~tQNevaOuEB4{1Gg~<5 zu8hm>NlKUXkFd4$TwJSP?H;|NM)i1d#*%u&wZ9`Lb<RyI4g9@l!<p5&KS~@+cc;kS zy0^mPt=KNr>I?g>yb}mne(~nMD^g;sxNh~gu648DuiQDQvwvdb$rz92tcK6m^G#ee zE8g|m_PysGgq;5UzWJedx+?eOZ6B^Ssol<1S=I0ES-Y}n`<!5_z{drN8{t=FZ2S4M z-d50K<`I_e%T+?V9?VNBXA^A{SZ?{WZrX{@6FJZHmi?Ct{jL{gsk`EMR#1Iin!H;q z!>W#g*mwK|#RtBqd$}+~it5`=YjWOlQ);W$tT@@!g*Vhx)C{wZ$~7Nu&VKhghwZx8 zr1#<OA`9P(>ompgTOEF$w?xrr;_kZLXHO-D#MZCzx}2TX?Jemg(C;UF=%(-eqqEPQ zT$BCxPS%AZ72A7EQ-T{#++;hl?OPp>^5zdo3@QERZ*#CuIK{N3YsTjP3a^w;mCY3K z2rzS7Z1r@@wX*Fz79Lv-WaZv@>^jJPjKL~Oc8$-wb354P`>}HiO}kpSD_r34rcZA- z9zRhyb#eJxpL);*8VPw*IcEf?hGnUJ&MB8Xv$^<mOx^X{$vo#4ZZdctP&mUfq~S}< zwJi@?3`EWQJ?7ke6!$91Gvj7`QSY{E|NiZi(d7QDcH`KxM3dLh8#J7je9WqOx@Oky z-`hSIwHGh+Ibt1Pw(YLE@a=PxBY&68-M}C0Ipf^q@0SnMpFH^3xz@T>S$^Hj{U5Wh zJXI~RzdCzo!^^WV4ZDhx4>Ggg`!D^`CE(*JjjA^3w@)=fSF*Q;USwP5ecAEy%1Vbf z1;-K#Zp=$$sCZv$X{sE&c&CuRlR?8B_irNa)?H(C>*Upq%E_=yOKvN+%ent{(ea?O zTr$(6E42$ee@pR1q||S?-_7>=`<#sxruOqW^6nhAUluRPBz9)TyRuC!&d=N!*Mx8X zE|T`SsG9$CsrdHq2C3gaa!OrTH!1v@|J~|u?``7m6-O+Z<9JO**kRSOvti;*U8~g6 z3SL}Z9G6r*#YkH7W_GmE?vQ)?KLkl<-l>e+V{W;m>OG%Q!)@!`QS5K_*5@sD_jkPY zO>oxJVAo(4*@oDxL+%@cd4%RJT&-2*I58b`iHFFkZ!J-)rnwZkCDl|-4A?QHXikfX zeVL5Yx|QM~{cm6Xb9(VfpmBBH@o$VX^tLTr*;|=XbbsBgh)nbSKi0>6gJ0tDEAqT2 zr<>fDh9bx%9-kvk>nl{(N!~xJ?^d~VqLAKM$R!?M9*QtJR6#EBIGnPghH3IN?x-y# zCl)<jRV9>ax<B*endVvNN-qiNM_F<(G>M%KEKiC{ylZ%DOX5U1%~r?rhdRp69$I*( z!``7iO<39NR@N+@_(aynnmc<Js_xkEJMfdI$juL@KGq&TTYr7)(`;+L*Qa%N1}1l; zl<JjKb*!1I$*PuS`^iq@%f9E9dvp6`ldbmW*SIX&n{Z;~dRwi_=NmY?T#LQ08XfjC ztJ<*HdFtHBt(7`uVP<Rl=0+cR>Q=Sw7*B%enrX{+FIae>E2{F_uIt=k>A7tWtc2E; z%LinnwJl~m6>rD)Jz{VDh50KuxPs;$nCy^rgk?h0^+%jrMJi&HpqF^8JolP=rR3Ue zbD|$ycMRd&!m}pLcTvml|1+4AE*7<1v$9|N`bOTQTZ>gpCx=Z{6)l-!*4Dbf>W0bT zME|5*EAQ*uE!xhnW-RJB{w;6w#S_|TtIvt7J-4cE`He|!kV`!3+q$-|J+bxm*%@im zR{#2@cY8&6&A~nLg^N$$|N7;{H-81o+3VtV8602?4{*%)>znp+PRDK^M?Fs4pq)8f z-Uippa<X?FTKdn`_KLMZloNYEoc-eU6KbxkKRma?GA#^ziO2NKOD^sI_Tf`)TF>fR zc?nOCr7P&Y=gEzXpTfFSquxs@PVrsU6l2-m*<troJ9WCQ+vv_!)lWMx^PLudNN>s< z<GdFoJh?~il<zJJ&b-(uV7_4P^Pi7(82?-E<PNvE#MvWZ#>g9c>DkZ5m`ehiKc-!0 z&|6m8_VSDCdfO+D9Pbq^xO7;&`J->)bw!3a<A-<lnKp*6d;4_nJ<}=d-!muIr&T^$ zYIFLXg&}W?)Sg?9y_cEqdDHQGZ=oIQMuRyvi3ekhtxhJ~xpZxL>3lh{e~$`%QXX7d z@P*4YcyCNqW>065Z3d%@=3Il9$ECG{wE3IYy#rn1VLEkU&{2&UCW}2ToK{{^vZ&(W z;wvkH&Cb4a%-#P*{KrazsgD<PS!7(!4z8d3zG(03u=Gd#zBf*tc=|+%dE&*SeKX#0 z8awt1wMbn#zp2KnB;(kPNj*{AM~*)Ensl@6u=L@FU)qi|wWnpe=&^1&nr?Ao>)(Wh zoj2zOl--}+QYsP=dve-MX_dqpez|#a*Ixx3?_NInx~}z2wJq_Y75^8^dHwwJ@zYtZ zvsq7TOsdzpb%w!<e@U>=iU)1RN&Rnb`Y%c5V_#wzJoVsvzPc)j>lLL7Z{5|B<K5HT zYX7ECTSf7Z_EU!Ft$XA<j1L%ZV=8-CS}VL{Y7h4|DW|KaQ~etr)cm`2L0fQ><%_?M zZbbL8eJb8tX{5ZNDz!^#&*M$=-dy2ode$|;Yo>GD>{GLv>zVpbZNI9!H?zO}_oX+X z**n?~bN@JTa`E0n%vY=CTP>G*vuoBQ)`*#bE{^l7Z@q|Ea`pMvw%7^R8up*jeI`0J z(k5VbPTl>@OXJHTPS5)G^|N~avK5l`^Vp@D(`J5p+j7Tdx6F;MZ`J|4QZ7{=KmYE2 zuKF<}J$bXcRP&0A1G_iRs#kwpd5Cx2p}g-xHzzgN-ky5)=JMWJv#xnBmSj}_jMJQS zu1&_m`s>fqw=auYx_#aK9zW~8x3-IK)9NU>N44wbOtI2GvBzNb{)>#qdc#*AcW`sy z|EqVSVb(|HyrS6?<}P48ah3TB*YAqIRVk<QpGZqat>g2Zz35?cfsi6&yI8ee{hJqC znbTVvs%l;;H}hZi-Y$4;T3ppx?bzqj_sG|5+pyrK@Y*#W6uVNwH$8iA$s6@`o<?>Z zbJWS!o`mBf(a-s(ES|ITfvnn>OQoE%gXD`2*<9F{eC^KHxT8(!{kD%Hmw(+X`Si5# z?=#vNZ&Oz3%iTHRJ<H*jic!dskEg=-RJneye|%boS1#kV*W-Wg9b%CQr~1AtBu`lv znf>xu+eJN9%Z$9zJ;tV8_Yd^(y*<k(SSo)0QUBSz!?QKbHr-tG>h85<HSNEa>+b~W za{PbN*L8jEz1sfOGV9;^=p2olucUt$blu0?o0B<}wU)omQIk2$c*SPYoG*<9g#w>n z8Gf~pTvES6ZkqS8)2C0#aqMETSZ8vI<?@_4{Fd2nwW77RbJMb}Cz##IE?>~bwlu`H zW5=S^*;*$T{=U_8>D0efhF)yfrpn|uZc1kNeYJa5!5*XCMFpqcd~v+_UHK#Pk&?4A z<<i}=PQ7JRdEHzbc|VV3(kyoqgWQ%JAEWyfEVtq>cq|Q&tXF^473&f8Jf9760m$Y? zBk>OvZ|Wo#JPenbk~+cfM!?E-@}0hmJ%66*n(Yx~nOV9@<a9^j?zEIywvPFkX_86H z@@HLJXc>4h>Wa$VXE(2$sycaQsfbUe(ly^CzvU8A7v}Uh8lTKlx%P1PGW}V6y%#R; zx?aS3GO9NAokW3keR=h!xL*DHw;r!3UO2hRQT+dmnKvAs$*kP;Y3q*FRp)+l+^I2N zeD{#h%=kO+RrMQVK8E}h3`^k@{HyiijLGLsTs&XI80`9IvHfPbeDzDJ%A5j&EWrgY zW?ekf)U#(Ti*@|2MUe%LuQFVwa0Sg`4GQj(vT1dQ+{%@8^rYd&iYQjl<st|FSozLQ zc(Q8#>L8EV3g*mf{X=dfzuN47>HnnZfdX6oB{EGGFUXiPE#OI4-0%4+zU$o%w(b38 zum1GNvp2a{o>kmt=Du<4K+`tW4GUJz`@L(q)c)TadKr!#Z3W#f;xsG!@U;45=<Oo& zZ!G*{U6A!;ck9|+(f)jIHrHR&m3gt`PN&f8ZSCvYY<7hHFHTKd`}gJL_y6>4{{6JK zYn@h6D&)_4rbYNj1?YB>n~VO+&;J+q?{j`l`_5v0$8S|j41~Ks-T(jc^8Y{G$M>I_ zfBEsG|0>JE-WDhwVQ)IRujY{9BW9m}0)4fA4&S%+dvO1M<gSv1-u8e0yezNhsqYuL zuVer0eElzxh}ZF}?iW7zH-E#I^YM0nLpAFE{`eVh$Es%KbZG1AkDu-B{=E_sJZi7t z8G63r`t^Swst;8(GJak2sqw@6e-h`*9)1*D)p2v((@*y|+>x*QSF+LFi05y6$^M(( z)xW@(i)cP><(nwhyYi6}N6m!wk3twZohR1+*S#5>(Xrg^*H!l7)uI!lBjY`~L$~cX z_gr_K3qNa;a?#ppFL>Ag;cfcnuU6&Ect&{A{rHMZuGB!$J8U~QGYW$57V*1ab@+Px zn(l^+g%j0#D^-~*I2BeLF)z8m6)pPL>55rj+JD*i=?1DT>p9IgODrqf*2Qag!1ir* z$MX9689YaLStCz$+g*Co7TeBYqxSQzh>*{bWp*yRGa@H;?@@Ys)v>&B{W$|ibN8+F z2D4Qx(q{L6-?6`$q4&JP+F74e4&;Q&i<vNOxO(+43)2IM%e<<Ee=1mx^v+8Eswi<) ztx?IIOXb3%l$5VQSAuQ*m_C4R77@JrZquW`F~=-9P6n!18amcgOkc3gT)jT`-?glN zK82nOS%lNw?o=#nS>tA_o^`h~$@AN_RZW`4yM4u{8G9<<IlaH6#X$AQ+B5b~*3CC4 zE`Fi<ZvT^?(<h~_$gB^R`hO|mhsqDl{c$&^{t#DL-+cd<wA9Yui!}UxD?FHaCU$yP z<eZIZc87M^Np7BaC1w8V-O;M&PH_c&{96C-tKq$Gucv8jcRrK4EpB4rzMcF3d`#1@ zcX;^Q?VWnWPY(0`r;`Qtw?^NJHQvs$dwK1S-=_n^z3&^u{#?F$*SU=jx&Ky7<$3?` zkMpKJ#lS^pykn&Qh^{sASbXP0%DrF9&hZ&omz36LewGgMdGgzvJ>_`)VdZT#c|w*6 zD-O=-cu~(F8MNX-qV2!#^&g(B`Ly(7;G1bi_wOIsytY;IzThbxC2jF0#*>+x$EFlc z{bRh!=?YVdWYO6#fj`)ICl!`Xb4~IP{2%4`a?AEf|5o4p9;Bc(D?xxq%r&%gK}dgy zoaN@5i>7*oKlvZgSY{~TwteDa?b`_qr`DhQKlRX=POe_V;`-g%2fZFF-Lm5R^!HvL zX2t4$-0GN9(kQ*?bxd<#RN|@~i5xSSzZcp+YWsX6;J2epPN&LBb>${u3uX0_AIoI_ zm>vJZP-8x^=FOhZvk&a7uPb8ZHtB2HP#B)-IO{sMaMIau)>fg;tO>8P9&!gr^6z}- zIMvVV%cJA^32sjRlSC!z*9!cuV7<{gc~$EIg$=2>Y?G$3XiD5MP4})=_}k}kb({JY zov(eLW2g9A|Nr{uNyTB&J26jI-H|Cb*}wC0Y3b*U(pS=cHZxRLS|q(~eR5)#_+3NR z>c(9!Z+YMJU9+|_ROH@m))3iGy{``FwbrfRtK?jKXW}R8981e(2ESZuRh;Y3XEUbP zt-f^I_GQ`TAA(CC?+)dV7A)HF&~tTplu%z@ips`1@9lbjxosYZPR!T8-93RfDz-X( zvFX)U&E^+pt@?j9d(v5**2@mrSs^C*^G&zf@qJ#ia_%L+*K1aKPTpI1?aCL+oXyL^ zf~<WvFJlY+J}q*yXu4H(wc(j>^S58yzq<Y=TT_0)ZK2)Sr=Q(WzHzNn`t`PCvA{Wd zH+MYeF>+5!cU{X_`0Uy&i%Z|<nqCW;z5bp=cF6D4=LOp$7PkiYd#|}T?Zr91?5rZ0 z$03hZ<lG{RjgQ?<@O?YCA|S$daYa;u@7fg)csH2wZupkeu=Oy*?fF*w3VSX1qVE>Y z*|F<wMg6tj^M&74TB2FpboWPzh5p?%>xupJ`F@w9=H5>){+e3+w@^}i;kJACJRA6@ zJiUKm#}Bu!-<Z80N^d=V;Lo!QdO!8=6>~2=$7>dHw{&-&|F-JTyQMqb0}nf?1eNaM z+irC8>w!n1+hgsF@2*I0JiYo=z%JpSqf9OJhEnr>FMD(PP5q%uXBrl*TXl7o(DAzw zQTw(;eQD>OJA3=8$O9L@FY0P~8QG{T@h4uBPq*Xa0Y<}Xn*_5PZ|w|iUo5n5QA|)} zrl6DKmW72S{6UWLbp^_eAsjZhEZTTaDtLJmvOIcxre^-ZK%tAPjM_dqeX|PT{1nX6 zbLi&z)ZG@>KXLxMDk-zAp8K2G@%^t}=LRO4-VNP;^4g}alR7`ITQYac!IG=fyX4Em zub#3q<0=h3RC2@Z)Vf<yA4A^XwK`ZiJN9)gZ~eK1_t{@~lvUylg5@M@KOfS2aU(7K zMa7w0e#e$gRxCG{egE!bj$Ju(Id{_J6Km)CdT+nb^QL&_jaheupM<@i<q`d~-hPSy zCTB7IZBLSZzMOr<?Nh_5-oLA}9`6<VcDd;PgDp+@FLE4fUZ2|`x_$e<{^-Kr-1mC+ z&;09jZ%N!g@0P#6-STR6mfrvOH0=7`?}m5ZH<rtteE(hi?yJxC20wngy~~{z?S4sD zzSVw4y}nY~hP|Kv>?ybX>-2eh-ud0v>JPS7)xR!}@z!UX6OsRU!=Ji;OVa}Ww|)Kh zd2Z?L*S~LVjQ?=rUhn_9z&{7x+!uZ}J7P~;zxZj(U;kyKek(e?|JR{e{pC&3i3xJ{ z%M6mb?B`5bye_{)?8=4x3*$eo`{^7ZQ~y)#QF==0&%#YLr9t}wd*5H#v*6h0_>jld zA=MhyXZ`>2)b}n7TdwqN#k*DFs&X54Zrk>Z^TM2jVCT1mJ5TS?<GvA-9sQoQW7eLg zJBxq4eznqvdD_3J&eiN1%7&qPkK0Wxk2}8NTSWE(Z^PC9`sNo{%l-O&lwCOVX!)<- zN7eb)SA6MT@gnWo!IcN&d2XJ37~0CNXElFnn5^6kjrQvnQz{mGsK2sL<D>ZcB8Al- z!ya|+J*TQKI7=!&+^6Kv>Nl7Em(7j#zjL<Q^<HUd_WV4bX#Y}{0<E>m*TU*#W4F)R z^ZY>e=jvVCKD|vVS^cu?di$J9z6;CWY~-@Ci!$|_W<BNS+1ac6``WK3$n1WfxI1+t z$CGR47cGg-^6M?{F7oY<-dikI|6J+6qVBw}r8X`PO+FSq7oB%JO8!T8ef{_8nosWi zS8dt7f5w#GE7-rwy_SFB`0oDwW`X_xXBT;!Fa8?NyNuia7bo+Q{Eaj6Z0~-5cB=gK z)Bl>!PJOTb|GsyJ{heDX_j5JwWnbFA@Zsn5En#)BJ;!R#ulc*)@N?OUM**j0*zceB zuiu|ra{B*lpAYjlG2}%igk5Edo2`5QK;!m3g6l*DFD^Z7(H3*|&sn3JN`8Ky%x}co z7p0YZpN<axb-V56#DaINf2tTdOsbzVDhSM3p;FEuF?sIl9m>23@A(;Kim&??aF<cR zV9x3v9%gAvvS)TZw=3&hxyPD;<y#d4$D6;53Ky=|Gdm>xW-u_)N|smKX}{iCJ^ZZI zJS(Xf_Q-YFpZA>ZO_1&Rxp5uy7T+ngXSQ{2=V!2;`TgYGc@t_6ZCCI6(yPzj;Im`K z1gV4JhXa>C<6~${yz<t9(WTDaMR;4gG$VU&LY#TX-{tm9E^<CK5B(Sz6~EmVwAjR) zDf7JE;bv(0zk2q~q0f!_9{=gDzj0=R{oS0$(l>d`tT*2*_<G~xYq=T8Z(JF-GpH^6 z6LeGMYj>8=|Ckyp&+Oc~>mTFKOn)1enOXJr)!FJZ`|MlZoAaLd-FWxawVz*ayL$d} z*l?`>h<@GocfZmVx;XzC#j);JSU*wT<3uZKsExVu=I~3qzxKV)uCLJlk^NxOsX9f@ zZ;cPuf86^({LS14?po_wdakuU5EqgCX86<N+p?rZ%YvUg=8rz~#(%rcr{0{ITX%0( zx&7|zw1&Kz=ny?8i_Tpf&sz2>ubq4;TWF3+{N$r1%O8i{;Ql1_w(&^)`ipW03|`f7 zRnKAW;wk<p*Km)sdd|bWY&8mh>+i4LBL2elmT~F>>rDL@*<0EZ%zBs3yR<Jv|LynX zv%|McoSxBtb>`XX)yHRh{ykx4oiCNMEq+N6_YuLXx=UUE6`x$2(Qny(U-@13?2B?~ z;i5Kg=CqXy|97zXy!T7rMU{vgr)N>|sxvsIe>Y#eucnD7&VK&y^y?ymVc-6U>TE2p zKX~Vv;^(_F>$fTh2l?;#bnNx&cjnWkJT)$gukDF4I=}wz6{a)c3TNVv*1!K9$#^q{ zyMIRVRqpM*f<1!Q5B&S0y}q+{>BsnQ$A8T8HQRaLzwThl{!od1>pTy{yt+Aa`r$9F z9nH7)ywxb)@-TN#pj(0a4*P_McV*dU$MZ-QG=I5XZ(3CU;T!Y5MYm)BvA<h>XZ^(u z%D*SxU1<?@?e_jZC3-;{xQz54GB&=R{Z7}(@7@1Lo#z^NOl8cRmYgal%2D7Q{3&hw zU*&tpnlJu6Fh97xif2t6^Tx-_KO>vOPAf^7e&o!X=>FRxt!i<raY6M$0p|u*!-<<U z75nq9)jxXl{HT4s_KExrMN7nLTMRbmC1vpY+cQk|dvQAajl{ic2b{liitlDQ%%E_) z(KcyAy@&te+Vgw7PHb1>Ic~?K)WD;B^QxH1%;Zf$n-dSMH3>@pHu1rQltaZjj5pt` ztD0KWGiyVSfr-CDgJ)RO=P4>TxGz7qUc`KE>dL#{zX&|x%{A}$X{tZbx$XQE#(DE& zKK2y1T-;q6p?%J#Wk*5MChLha^$fD*cHB)o;Nc!AmzTl7F5gp-a-u?d(<4oGWo1pa z5IZM>|7yApEBDD=cDSGyxI>e<M|k~*0%7lf=7-An8}gqp+eDqMS6X=d$+XzA;;ZXQ zKF`muFMjpzRZ@oelA}M5Ke#ScUsw{AeNwPQ&q}p+llaqTuSzy=3EMdP+|GNU%@21^ z|Gi&9)30Tc(!cFXe&l<8yg%vD|76dNMw&edTAy}kaC~`w;Y7#6Dv#;+C2u~T8E)|C zp`zsH23~pVO|y8HtT_0%$9YQK%dAHy?JhBW$~>+(ZOhyS{y5V~o<cpA+qP`=KDE5B z-n{4Sb7A|5KNU>=O^f$f9ky$=&xVg;AHKEbi}6c8*t+(CmB*ULQP<@<60O31=LA0b znOU#o;E<J`*b}?Gp>ySeO|RV!>=M&kz@7ZvqF^gq%$HluN)|gFT|3|$)A{V0|CvKe zX8ukSzJ7Jz^M@}^&NI6H+ID+h4ZC^GKQ`mHzGb5I|Lo0X{d_O(&AHJq|3XJ$L-CV~ z5*~@{-kf1i3g7cAD|0M5F@18ji}};`fA+KH{GWG_XM1kynhjkW-)=ke!*Q<p;U7<} zy084aRBQa@Uits;@{dm&R3ClJTjxISz3%+{4@J%YKeEMdzg0IgMCw+*_)@dA>*nwK zc-u_pe%Eia+S}Xf`;IQj{rT-K$GX{)zq$Tho%Yo$`>yVPA@LUJSNG1w?O*wPdHi+{ zrf=fwCSHA7@pqT0(4u3X<)<#QU*q-h$=T=`|65o2KY7i&<l{H5=datkFZ0fQA9lO^ z^8R}te14X?q&zwnvoSO$Zdcx|Uyse#^>lohw4>wEi*J8duX_4_Rp?UP>iY1j+t0n~ z)zL2BT;=?7cj#{ZU-bo|d3|xof3BVm__kk5>rmj!{9Qb$#x~jeV_WX;RK2UK)gATo z*{6qXvj6TlJq*{cyZNu;)dP>;YqMiSf;Y-2nt$8=a{KHr7EAuU4)^=*Z~kQeWtY4Y zHLEY)+4B2t&ZqRW+wrH>BA2waHCmngQLp{IBc|<X!H<smeU<$ZFZXBlOK5j|a67;6 z>8$s6l=m$X{PQF3!IkBv65A#JOnY_NBR=|2xlZl!Yxg$9@0hrwT)2MsmwlV>MswC) zem7TRhxY&U;QznwFn$xMea&ZZjnCi`|N4ZOn;Y`$|G)kbx#R89WAWK7`G@PSS7x`~ zU;8S4Tm8KKUYaxKPqT3D3%Z|iw=Yrs`tQrTbsw>xJ$~Oo@NVsI-_-MAUb1)Jefw+u zC-47W&Hvfr$rCuM7oIfNKbCrIXa4?D!%L^D_2$-WUwQXKXKQf%?o~y{^Xq?`reEm) zcsnfI{>gUv$#cD3|7K+VTOe@wH^*b4%QrhWN}KWQpLBPUN6f>J2Nu8U>by7A-S1rb zMf<p3w%N&b1wDKJo-!2MbL#6wyU%rB?>%_Pf8S%$xi^K!uiR}5;C$QKR<S^pO?;`K z^TuC4tOE6QdR0Ds=$QTdclrO<Re#?8Pwf3Ko}_bY`o<&!F*##n6H5gH1@IX_h86~< zhRBEGm`)c|(T1OprfOsfQX0g|#R)wj&Dg*IafgLF=%_CPL-0v}5ys%t=AlYKN2D1W zm?M;ejz}{`IV;du!PwXsery;g_=XH)V>2Wzpo7Is450`58=IJc5A+A06f}|F%3mZO z#~m1koW{m_78aJ4mX_03Pcsc=Ha0e${_(iE0h6)mbip9=RM7E8g>_a^;6u<soQ-u> zj?BiUkmK_}sy<$`*a)VX_06V(k3e5E&l>3nbdV;{k<5(7(-Rx5#6bs<S}`&kn?g=N zXE8Q5wFIAjonnl9GPR+Cv9TH4$NJ#Iu8omTrUrS~41S)XemdxEFyxb|EkOo=&Tj&T zGWgh0V>7eK4~5OA#|ta)OqX&o;F*44t_ln2Txyo->{G3~n9QI@knWXJQDim-otFN} zKx4Z6CM~w<a?`ABr|(&0%{Bd1p^f@<y?$F!$hpMEW|q?*PLmg%etD6#(B$*_?9*L$ z*+P${*7;=1GkunV3iovB2i823vjo+qH+-@cgB&$FOT~_7`s<nUJk!k{SPMap@S3z# z4R#c?vAGfSC}`v93zZb~n2n9iA?GqD_#0$T=hCv{nI1XEl6U%oQUiTP<LL(k<t3&Y zd^1P|E8GxhAUeHcg$?wSLgUGb_r##bj2fGpf{qzwF*Y_cpZ;;S_3Y`l`)s+UujbZN z0Ub;wEH6I2DnyQN`-3^w?2J<8phN~v{zj%K2T7SvH~gvqxx#@7<T5i2dr(XV{8LZ@ z(SmjcQsDDPL1sQzvzk6(zBTClXhRDPvFR7g6;6YlIgwXhkIC3#`o-<?Vw3q_@@}8L z&{~y|$-;2@zD3sJ(;t4alIANY$Vqk1&&e-x&CSosoG#dJEx~9p9dx1}$ezT{R?5>2 z->6CRJEAGvsAtu~Y;0jVJ#mYoskEVmp{0VMfq{WSEH9Ux9db6Fp7_;DJQpMfIyBKa zvA`oWGd-gOtQsWZl3JXcnpdJ=Y-prs3KDS3NlY(RFf<0U^YcoaoboFaq7`%vE%eMy z6?Bb^^h^~D4NT4Sj6gKRN=|*Z{Javk%$!tEIWYa9g^CD<iyKoJrCCi(EcDE$JMNLw zU^JfY$f~FZ@?`<5qWE-O4|(qT-Oh!Vz4aA0Y~?AsVKwV5qfGQkp6(ox=M%Qif78aN zw!!h=fB!$z?6yyzR>So7;K8yP2_K$FJm0Xv^+n;AC99Mz@-JVTdfQJ;OSfSAInL$N z+7`T$a=7m@S9tw~>avB$)t9b+Gr_iZ!*8qdOXc1@_7;k&7Aux9wm17!8GpR%!?7zQ z;rF%9cb9jGKRf?%r&~+%%hlCV(lX~RMx;0^ull8M)#0z!RSlKz{`XhZZMffdw02e8 zk=O-q?%gw<{{K5is(9MT;AsI(PdMg%*tlFGY1yZrtnSMBe$yR!t;Lxv%%&gAQWs@0 zHnuPaT__OC0}9_@-^Ai<1!Lpsi8+SC(-m%OEAShEBLQ}}rSbGcMpKdciaC3)aQjRS z7h!my{e?Gn;Zd;+Syz_=SAiLkC9`&B$h=ted1~r0&3A#%MV3xBpCZ<k_lP;srmg>) zLFZzvHlF|&mn)4%l7ie*rhUqp=;U}H=+~lj`#i(E!r7-M&7E`S&L7L4|Nh^b^IzeM zJ<FAMA2M${%X&I4*7T6?zGd&Y^?m&x>qSONi>xOvvpsy!q|`*J$F+dvD|f(KE|Y?` zwU$n6|4;d><yY*~pf^8MQqppQ?}gJllfx^PNjpx9wn-K}UvM%$+~e4s#^5($o$B8f z?YEq$b-6m?)y+8)7FE~oh8%8w*Z<(9;)XfQ*_tyxC1~8bw4vn9p*i<-w8GX{KAO5W zx&FVmV(W?OWe)^ShnPwK+IF}^(m~om--7MH$BHy&t%lnPXH4#M89fQyv^Xgwa?Xbj z?Da)itaZC=+^VgzgZ$bLo@Y39Fpl@z>x9*ew{<sMZG5YCW1elJ)(oq(_1u@92N^Ec z?EU@7^XEfXFGKFjYF(KZb~2u+O!zA%Q^~OWfF5&wwqeA6_S=ySml;?SPP2M5_NYW@ z|GmQgaz?PQ?R(48^!4`3GWRcZbmp)TY|s>YQ+Q3Wai?|KtvPIAoDnJpa}#BIX1}^? zp4-WMnz3RQ!>rymr~cm?*SH_DRGP?9?7|Thv~$1A2N}Hu%|%m}R(9{qoV+r#*{*D9 zV)~KEllb2(t3QA6-_exE?Q937YOk!?czWWqZ@SBV^<JJk`=Qb9;76)r-S3aFCWKu4 zU1NC7o_+7aGtTp+mvr-(=5@>Tb8KA`^Dbh0-iNyij}MD}>ojHF-K;i!e|G%-vZTrn zPmZtV$)5i8*oOzZ^6SlBC+c`le9#&=eVgt?*R?NBeQGkQ`W)3Zt^P5)gi*cSo`>n* z<}T+;^D}F^={~J2_qoIj84k{pAHNQLQa$$I0{cIn%az{(8l&@-)@nC41%{XZyi#Ww zt-R3c$rkt9lG`=)n%}((UMFJAxPHddB{xoOSn2E_zwGSCpEr5`U%7eHNv-$d-C3Mh zc0UX`U3sm5&vkaouE&KEp?ha{)(2`S9*ugGG-cmC0mt<Pg}d4>)UI)^crr1l{sm|2 zy@2B6fXiZ4vQ81wp@M0lA2pa~7B4$(v!$I=mVJU%S=*%dpZ-sLe|M6X`8+iXtsTM7 z#Wh&xtTG7SDZWtqGP_9P0={OxoZ8|)NePzyLFZJ>a+CYS&Xvb-ZkQ6ZTjfdE!R&fn z!zVMdpSOSh`KMa*%|)3xd*`s4R|LqK#htnQ^vCTi@x~-Wo2qGDNBh_xI=eDDw>Ew| z6|f@m$&OQ|UY@#6+p8~rX{&uR^WT%t*^i&a^*_@(s<*6oU7vQ2`&p+I_1sa@9ADpF zP%&-o`Rl0{cCh5N9oo8cT6fRG$3Lt;&QY@4Usdn_;C*mv{DPPd_xwNlINRN<I+?s^ zO6)(;&1#3;HDfQt@A~lZsen$Yc+=IRd)gKk>%U9?Iw#3m%jWo!D`JXY-OlW}T^Qr@ zyLS?I*md<yvnFTeIxTvrayI1Dr1zzw>&vXR$xYuou_DP>Gu`;*5w%Mnc`H0yg8zkG zDlohpap=YAMfDm&Clnsv>-}8)u{_Unxs!I5w~ChQl8cw$wI!YJs<<^%qsfFzzxU9| zMFp4UTI9s<y1sRHhiT=x#pb8CnszQYt)d;Qq44?V;T1s(`~(@h0-~8V`g%zHJeM1B zY>oHw(~D!h%O-o5O{~A+ymQ)<d*zc%^^(8Tyj|p>@{ObLlt@!py;If62ii_^S5{0| z*q8GBn~Kx)mPO~6W`2J8N|-0qY_Wd7-IV9ctY2N4=9J^F#v|``Dy3$-!1w9NA#Is{ zvL|==2?nVOhibZnN_na(tv(_$wPT5w>dMO>W{KSKnJLho`ClSSFerJxy8Ee$C7!O% zk``|r=Y;j#WnePAwB%ux>p9gK-?|zt?<y@3T=dUGJ$Kh<hqmDOV>)X&z9!Fl5jyd| z(0(S<@1McvYRVZKTUf%|)F#HJ$aS%W1*qsZo9>XSug+*TJ@J9QE_!)C`J=8_eR6_= zw85t0;^IvS9GkP#{9^ZKI`(cAShd6HbnpL!4`n+|jVEc^iT^u%@O2pDj+Xa#|9d=e z*Vhh-dHShd<b!e#r_Q-szvOx6gt2&M+;yG)V?N)dLsNPc|JAFT2Q(#{EjtqHxPaw+ zm`~^RLkgX9X9&G_X%LFhHdLM0#MHJ`GC1lHkNk<9-{cKdtPa$PNA>FcyCfu}vTpuG zm0OkyLOH^93p?Z|x3;c3F(u#Qk-Ltd;32_6Hnl&Ce7RJ)LO+$;{`vFu=}b9kzAYZ< z&qBABng}Exo)yr+%#gUnZ2H5W24d32#+IPI1Ek?)gnaV3@pRC6(9FihmeUoL4MpqE z)}CIMYFTvGX8)re-XCW7`5g=%T+7zk$xuCSQ;LLouE)Rn0~^CwPCnTAJtTBm)q-`7 z&m+s<D@gJj>vnwCKSlljcaBf@>;DzlXLI(yx8L{owfUc=Edp|yS3msN{{QFO{r{IA z|1W4$e<bARy`R(f2+03<FaQ7F!v8<E*Z=&sd_TWPfBnz;CBm0E`saB(o4@~W^PlhQ z?@wR5*xI4~dHlY=FW+C-*>97&K+(SLXSyVN<f8xIPxt57t5*Eb?~niYeY=ER5!Yrf z?N8I|t4_q9dJuo>_=JB)u6>hVwO7c#>45R^&t6aCf4S!>pPg9Gu3NjfrblJY%H;ow zDgPAfr%W>1nXJF0+}CHZ%4f6aGy8p4?yp?<=V!Y6$90`crW|uWuCsTlT>b2zpS#WH z)}H@dzPI-L%JSSj$sT{DU+2zAJttCMedp=f9og0D?D_vcl!?5*r&0g6bh%gM^&`=a z70xen=Vv{U|MzYBrA}>g#;?=4y0oRejTj_f9-5~gvFO{0`5!D7+Hp^r|3d9&dDAM* zR4FTauQiH3{dMW`DJPv%e=fhdS!FRBS0uk;+=?%YZ@vC5Fz^1q>*l#WEWvV9R!$0^ zZWmxFU%!O0vMT18p6j7?8x`O1vw5u#nwe}7&@Ry4v*367<}J3(cC$AgOF6_SHnVD> zR#{4!A2SCB&&q5jc|Ny|I+AyrIz5j$@SE|hm2TwS&bG^0T03xM+3ezmoh7wJjaDt! zq}vJ}JfAmbqMnc=o8i>F)4m6mE%;F4Qj!zq9{waMF><;>wYsRP;{ki_jc-r6ZQS#& z{KzDo>SMO^ZvH=)=sNfRFUj>uCF_neZZpuB-gr=6Y<fYpIt!oYt+ktZlXQ~4-sUju zs-OPrqNXa_^Yr;G_O{biFKMd8|9SIyw)A@Chchaqes^tN5Z(Hlskmr`YU?$ARUIZd z+cj@{Wj1JabUUt}%kwVvNkqpnp-UQVWwVp6_Fin;^kK{N@1I%qIWH|Xwu&-1Iy-o4 z{kwOv0!zBr{9d|OJTFJ6clv~tYNGX?Cj3cDzikz;nPWMrvfpKz8k^8x3pSnuhe|}G zql}FVm8ENi*1BHv{J8#lf7{9LYh^ONx_j!C$k;lBT=8hW#QEv`oGA`jy6IU;k%yNG zuc<Z5QW9iI3^v=8^t?*(chs6i%s+EpZgtyW)g$Jf!>^vo&}tmGT>J1OiyLX)^X5s` zUsBpEvC!?&Bge^-iT!p#-AhBIi*!A63)-Yv(o=b7CIzoNf9fcg`ebo^mi~?6J1qMo z9jbLNOPS<3+}ijeYyVBgJ?fq9o1U|W`}8kbB^R%=d&#TC+^&*UOIJ_2n7hlG@3_@F zNBNiXx@N`pT2nIuw_Z`oln)7={9}vTVSC=-B9@O<Za1bMxU8woSTOy~Wlib&TV@M( z&TeSgk^A$Nd}zm+eYXr8H|xaDJ(?t@*!4kgaoS|@Un(cRPH>Tn=1Olhl@qTj{r}*R zmB6-@5~rp!NSbPI3@mi1x;HsFK%hS1+_AW_snRo_NnG9NaJ|^kn*GYV^o<|&&v)JC zNOYQC6nEzav*>+|DFWwyT&!Qw$!FhSD=J}7!n}KDui!?XEBo{UBo$V(*;;%E{;4!? z`ur=JO7$Plop9t_T@~e`9WUO0dYMaDdef^nS8c4n$o0Cs=WJfNh&yQC-ZUL%qeIp= z3dASdMP(#TV%NX^>44xio7n*lvKmr$ZY!$SiDjKqE)Z~JyO=6)^k>wf;HDP~v~1Vi z(-$^)(y`I;>CCdeg(n_$FHz`jnl@>1@sFi`joih}s}4of7wb(9Ir8`1-pZxyTe`M9 z4G)zty6*N$Uyq}plSxd^W~Ea=K%hrpXz8SvXOy+H4zIt(&)IrZN%HMAuQ#!x)snTZ zE;E_E?JN-9Yh=>xz4`czM~fC(<m5&jdX*UUG~us6yF%zz&@qvR9*6|QDKU7ZJ?!l@ z2wVB~y4il)LiTli^>>Pu71M+7ey%yF`fUrxLZvTm!6kQ9FU)Rzv7%Y2C}8ReqxO@B zD|dDF1vh@0V!P|tLKB|-Kc7D^KH}Fp|5BQZd(a~T?k`rdpG9Q<@46th>%te)$W|qR zCB+@q7e417);mxaw}ZQA$x5cHrH8&<4|UIFnCw)lq}6g!Z|>U_bs0tVFD9=LXq;wS zaHMLwVyB|ev@<DOCmT)WgP%Rv`H8K4)dmJ`$&2^j9XPn|o}9$rQ;$-LSIleb*sIrj z^&0nzzmLvTTYR|rEnpR6$n}gwIs1><5yuZnNTn%VW>Wj3a7G}#>W^oQ-?rxk<~>h; zPOxPct?hO=U(t9cd<nC_OP0*#tw!}VLK+H&TTbp-e!0In?ylX2bHy+94VH7hE;M&v ze!6jAzVtUenHA^6(=x=Lowa;>bHYzggBrukmIXzTEyY_rxy=rSY%NLPn5|QpVY0De zNle~^ncB%M&AVOo6rz?V9d;5gbC}a^BD3PIu2YMwg!-FFmO|p*yQ@7sJZ{X6n$_=A z@3)MbRr~Y1n+F$e`pk8ov){9VB`}wxv?1)HV&-|b)y9&koXfP%9u--8`RWsnc~3Zd z+m`>)4zIPE*)>DC>vBkE=kDZvYPoBDC+SG5$lW@2wEj|}xP|WJ$08A(pRVreUuSr| z_tp=eUFI?mu4gy+bYB;Eckvq6<(E&@3*URmExTFo6?or!Nu1k;*e4r8=dFClY#(aQ zdv0p69Se`L@D#O2CaMJ&qTkrc{hIau17oMxEB)^qIJ{%ruCdPC?5P+a#OdU2qgd?z zP~gzfn2nOJm+f{`)0(c5Z{oBvvi)&RR)EA+sffjmwp-VpVrn*B&}zr0bG)T}F<05@ zS<Ft;w;gR^uHQacc&o@fp9;~y)7iD27A1+-58YqkXMJtCK<WF#;w!fV^7a*cxv}=1 zxRuFK_jkEnaj7*6OP~DhTH|15>0g|^xa))6EEU~9D=SXfhIMZ^+Ab^?vV`N-hKM~& z^Caf1OMACK$NAOduAYc@rjc{zPngIap<L#FMS4o;UEZq>e?GC*%hsv9d|9Ys)6Ny) zT6cnpV_EgaRaq%~T}+!C1l;6ytu&aEzWqh@s&v~qdK#^*@qShxJ*G0N+orRryQb9j z3FV&LenG&3yK5!abYs0O+=ph1I$Nm67F<lMmAaSa5}=piu&654!-c7BQKS;f>?v7x zX%j#8T{FF^F<Ge1ByPsk`b+7lenMY052o##?rmZf6Si0P$nxVGMJI(gaVH&Kc5(fg zo~A>K^qwi0u{SOLxL9e`J~>fwF0<a1+cOF;&;0xGVn%gdWaHsTvGX>2K2=V*ack>p z?YHIE8vUi`g+9LA)^zNasnpH)&EKEBS)0c9<Wie-?L_Iu+b^{IC(PzME~48Rd-3kf zhZA<jyxY3xsakiE;Or;8hxiw*Oyjnj9(dwL(tNcfYbDVsQ5ySQmhkPj;*F_!xGCsL zuiu0Ptc^35?%drnsW+pqo6S1+woOt)d)5u_8;$O!`+M9awbD9*x3Es%u-izrK2zba z?)Tk~HTmC9VE^0DbmOB&`!*%@)MPiV4BG`VI!l{gRk7=&nmpIEzQ7vHzOVTr_kG31 zCmb*I+R4YIsZ>3E_(Q1Y*|zWd|6G2{+*NaI_9pjOgQ^d+EBWl4U4AWpB{$D#k>b7? zmsvmW>|UNEc=b{I^(mP**LxmV^}Bf94rbf>|7JDpi}}7==f!^cU-0|Xu6wucTwFOT zvs3E8w(Qks4=OPm&-`6&u=Sa5$*v8mSNqolPS&Zjb9i9A*;|t%gtw}y<9F(5(LE0i zs?1a~J>n=*dMI|s4kOu>uO~~p1b_Uz+5eExqbsZY)BUO(4j;PC;=|*3{Mf1n!{r*^ zT&)bE*L&56HcgQ_60V`Jp3lX>rFSjk!K~L2$6KtV`?Jr!xXl*-yMfOxy7*GvtGR2e zW>?6B9FP0DmEXg!oa6ph{u7cf4_WM=+!6VB*N5sp_Aj>^csUPuh?bk#J}f%Bb!T1f z#A_daW;U3*am>A~wAbObl5K>Wmj7K9ma6=Xn_pHZW?v3pQ@@49KZ0eS^&|7ICGUSs z`}gyp`onozpXyqeeVZFhO>(XU1gZV?W>gGZx^f9mV&BEyMJb^TDc6*I;vLU%X)=pW zJ6O@5;54D+N8${Vs?M(F^Ite4BD^-I|Ll1=Nm%-ys!F^6yT6A6ulF$Tonj#|Rp?~O z!L-lbXZlYZT(?r!dtb0q^t*MAvYLC3UA^>tIb)w%!pC0A50n1!%6snKpqjZ{RXsC) zt*ij=X{~_gS#D3*3tvrQPTCQ>H~(`%54+?p+uymL-cLWX!TMo+{DRf;%YKXQzxn)u zu}kO7SAKWHMdErM)P!hoKAFG#@!czX|Gixtwp!%1cp`h%z1$zI<#O^7mnK9y9#79Z z@#r1LzgyhzUEFo*ek^x2K3g==cEaOXjpC=xwzaEzTsLx;uDKnmKRcawmCD;kLct{+ z^B+AkF}eTgFMlDs)jU}VPTTq)Et_@TX6|rVy?AwZ*R|w3QxhcOYxZb)xh9G~J-ct7 z-<^xgm|FY%dT-xmuaB#^d9;IDzV%!5A)OT2mV*w?vKNlrsF>^;pmb4%PcCS7tDE&J zJA;BHD?E00*1Au1cRaPrP&H~tafE_0E9Y-V*Qgz$8M`;Iiv4`hDgDL&XtK=XdbK8# zrAux6s+rmvH{G6ouG4j5qT%63Z9;Z49%@zJ@R-dY%FnLF=d((C=bH~YLClQ4*LF9H zN4#HnmwV>du2oCaOFgDto&MsumB>Nvvdhl8+Nb6jdDz7|t(&!Vq0k&J=cW%kH#w?K zwd-yB5%hDZi2DVTHM7`5ttWP}H59MvbzNAm+_p$XtZ&kSEl(aF@;15K!M404OjROu z*XCGfn-v@N*)K2QuCJ0=$~}3Be#DljEnEzYtG85~VU_8Rxw7KMudAkp%WtdbX*|n} zI=p)Q$)>*bg-hA*{`&gilB0jK`{@^5Gww)eY`t{hjP2$-+`oMyUxq!IwfS1Z(}hnj zu}(eZA*5KpReIMEo4M!3($+DY(iVPs(^yHRaq3SmhI!9s@NL^_(;oIg?}qN5&QJT# zKX3`U$W}9jMQzp1jJ4e2X)&f}HlFG}*?Q?)OO<iiPySb{rP9y7o@jagMEc^bcgkk* z*hPO{v(r}P!$#f*E2Q<TtJ{LD=LY_4Q@ppL`1*^Y!wk`>do1b$JePZg^?XRVSn_Js zUeom|^Hj4|sy@nj!GD?i#9J<Y)h*X^VyBwkys7N^A#PH};^;{Z^P7aOPT1ynwY8x6 zL(^feiX4fRnjX(Ka6M-2-fz|Ps^_lIuUjUK1-nWde3wMr|GRmUnu(VEN}1z)imJOR z1SL+VpL&|CsmS@_$$F*^_xcT6+r<{hUr5ut)4$3mBIrP%M&#-pH);wLs^&9JdwHU7 zN$sIc9Nv@t3>Mh$a9bNcTbupQIi@mU+3#z7E*XURes#OWy6BPGjDOZ2X1Ur<EKJzw zsQjYpM(@&wTZgCKi5A-8c=e_k$M-i6r!S5wc$e#G@4Yre(2#Lm)4bP}^>ai8>m^JJ z16RuAU1%zvD5U-ENJ~nd+tfBDXQ{)@_MOY4o_(#*`P#hbRL!%Nwndt45w4RwI%cT} zd1rijkhXu5R@H-~((PLp_c>h5%-Ge+v)dwJHjA$F6PxwDdck#~$HjNOUGTLf#zg+y z-z!z+0f8dV{#8VVR;w#%UCf)mo>^aG<*fRrN7C<vYFY?R&=C^8B$)Yu>APxDgtpz~ zs)PrR0wY(&KQi8Rs7Wkj^V-7GPt2T;9t%0Ix|H$HQmxYqkE@93eW-h*+jfju>-aq` z@gu<!=i=4!)n%H$N}Zb2syyBJonwB!d5`W(f$fnNJAQoiVLM=ECK;(d%T7s6E=gSa zSI!B+`iq~ZsP!-UQI|W<-1TGP)~t_Twk-A%kID#Gelg}p?!Ja{@6b27Q<@GP-gN5C zH8U>Zi0)&C@tap{o2M83`|)j`ZU1YZ7Nr0A^Crbix25zQbBMl<{^inuIc6u_3LJS` z?G$V`vaX*Ywd&$SM&${&uH_`K@>hI%J@b&1yv=4#OP|~IlfRoi3BD(uCHa10<s{`F zD%%oVtsi~9t6Wp}iF3=@8@f+5_f6GlZ=9gKxW;+&-J~ZCOC{acPJ81PYm({pJcTiv zZSo}L867Ed+PCL+B|bmVow}QMYJI+&^@^G!g1H?U%UFdCTe>fD)wIiOSvPs%g*8ea znH}FKKG|^e1#_ia{EB+Rs<5eByq76V{xv7L<n@ZR*L*sCA{Gb#e;j>!QBk`ZquC!8 zowVLltBb@#oqF6CKS|#2c)-L-E@{cflz{zyYvN+kdBkg0>-Fosy%bSayzP-+|FlP0 zhqQNesGDC3m>zP-Z^4Q8Lc8rYzO;Iyv9|e>K>oH(yVycS!dAUJpux0$Tm9ng35>~C zIk>iFP2G8h+h^5;6JMIM1Zx5}b!_bx{g}L8rP=94=8I0Yhvu(2FRV8>d)WQu#I$#J zH2D5}*<hft)VRy^t9}9h;pE=X<*U|Cj7iy2-*{sCif6?iW|j+yZhWT`ASmg1$HT#U zr)ZD(C6#GWF}~lla!<aV7WINtb#B>(di|++tj6qiu1c|MxND^AFKkGTKCmt4{LCYL zJV!3bo@q6k)7v2xJW=UXquI7qekE(zze(>C-&2-)Gi3XZY}Mm_>(}{6u^q@3T$j$z zEECE<Z|yz(nXQ+1taFSk%5Vz*edMMYZ>ZUwiYaMdo5G4K1gf`Olqxacd&1{!EhFKo zF{}QSbuO>l{$q1&t+^j-1l2kIF8j)Nw0Z621I*sH4qm&;82dOudRoTnb=66;<|#9~ z*w`CqD@=HyG)=kD*=PO7MtO5D-g|PfCVD15@v}F7T9UAI*;d=>*ISOB_qS`Ts|qvV zT>evK%iq7ZtDLLayk^`EUv_NaipunY`vt!&)>@cr)tgmx+*G=o@scZYhN?>2x#uT$ z{d%h*m$O|rU%q6`_W9<gazyX1KO@7G+&1~ftDnbOmfg6xruO~|;S3-B^GdlgCp@qB z9Y3eRe@pVhi%E7XW-PTmmoP`z@#5E47TXQ&ceC4m+N2S8Bky;1<>9DvC-gUbN_h3! ze&5p;ujt?}UQ?bYyS+}>J11gVW~yTHx~Kw~wUM4@nu3<!Gxna@e5PrI!I1`8Q@hwb z<!}5hW^>MT4ZU&fBJ-2``=53gd-?od?A5cvMSAgve~c2-?}h2fD=n2-9;LQnk?N5< zrhkuc8+iPAz%te1L&l51N|T9)lzuk*&73YDuBTZaTdQGpX6xGvcfH*|_B`t@tp7i4 z!S`p%>}QsDa`UfkKHF$?^z-$Q>uWA=x%}+W&($Zq;)~*D%}$)+<Ky1Bd7Hru!&Eb` z3!6;K9~3c)olupTcjNrmu-u6q{yZjz_ERs;&$_#^zvtD|m09&6M}@qnNc=7}WwF_^ z>k~uhW;LDXo<FA7IT>-(tJfJ!n3+36f<;JFulLv|7Zwd^(dBl_R9$>-^7Nag?VI|{ z(Q+^Uq~xM$Mhl)?*l_O6u_ss0%$AvO+{$0=Y0|AHd=H{+U%b4pSbnTf>fVj=o{DwJ z-!yg@39CDQ{9Vn(&*8Aacf*Cqng1ocMHa+s#Yib+rpcW@V7F7}^10(GpK|N(luVJ( zQA|}ym~*it_?V<i*aV(A_up0Rb53M?-H`s>|M1M@S@-7YmMMK@I@)Wt|5Mv?F~O=e z50Cg=_%3L2@p*pENw#A@=A3Mu_FK-L<>jgdgLQ8GhA+gnMPK|_C*nD4+qc-|^PZL` zJUN*veW0=Vo$9BQtBnseR%Tb<I+U~G_`dq;QUyM)<Iy%8ZpU5MzkYFY(t_<ATMTt~ zFh)sMMjSn!RCmFf!!6`@b>h|?+r_P3?hM<ucA~bQ&;oldzIg#(6?UJSHT_lMDb7CC zy9TY7{4T9C);Ms1G3RPeTq!I6-9>X3h3B%zPiuO%wZe14zwGt1nhSL|_U!+mel+~h zl#C9;Qq3~+Wr}S(mHFD5@2@PGZ|;-ZwRYp(D^c^g_N{rkQ2qa+X&-OwJH6!D--FYS zo-{IX@W|a7&B?~MOmbG`i=Lg9pOwVrmZe|5{J8ji^jXe)hoiMd3zVikHZU~vS!4Cx zdP`D*y`{-?1Dm70v6G)XxO{W@bjwplN(O7UED+jqEq14@bs5)0&>4i0?_(ya3K(2H zlzehdN5f}9mDx`E3*S|Cs3`2ow_KMwJzmm4G;~4h{2em+Z-m*q9MhwHPakU0c;vMD zR)of~tLtJPG%|m>eb$s;#z$M>V?kc(y2S_h(v~ml%*c-^-xHqGsP>CJM*HcMPXF8A z9H-{K-~Hi;hl?#!#QI~?>nr6%>pkzxDlJ^N^~(1nYrS1wELGe6O*`B4@tSA9R^5M> zz<BV{hCaC!3yweCp6xkD*Ph*YXYx9;L_tk&2DO+%Mj;Ei`MRMI-Xf-rSH4`?wQp7R z6rcC!8+3GSxerV!nsUqI$`;`X3sX`yvag#qi=}&w=EnvWk@BWV+H3s-)s|}c&N0lW z_i<3`T<o4KwP(4N+WcN-_7}UGUPa9b)MRX}U3F=(_R@~Lg>0Ei)y@}$t(x>WuG%0a z;{3~ybCVmt+U<X^aq@DT7gLLNJ(wypY35nQeOHowbIv{WZ_QUS<Po~toXT1`Zwb5q zzLy8YSIg{jS9P52s%Q1-kkiGp%bE1^tHKhKEzZ`@eKPg_#%<Q2Zw!yG>Ww?jDO2Mo z?6G_6me_fs@|WMtw7y{%Ff-(>(XP_ZNBH@d&t3n-?dXLMo!c)Q_~*`hz*a59u=s4; z{eHDM8k=G-m*!NfTs4;3vVDilvL$tm_Z*wg^5?Yie%-r!8XIHtFPX#5HRan5_1<T; z7pz$GD%xEso1=c2!tt4T1wE<D^efVInVDzksLkN{ZEU!4?P0wYnrgl4;w@y>pDKNG zHapyjeOce8b2V!=S-tsUvNpu3;CZU;HL>?A9Ur}KFk^UT#AmaX$@yn~&oNa~gG)CX zi<hqbJLQJ1>5aOrF5JD!PDy)uocOI%HXD@1{fT>XXSe#pyp*^8^==E#KR7m>SLpkJ zly8CUetM6qX6=jHmSnrTu<h`?xuN0Gj}{m|(~|$->E}{-<ZGPN$Fw7XuXjA!^!Qmo zoVPO5qKJ(_OD;<<sN67V<+W3Xuh#^`DD0lBw(w9F%TBfDe$g*gcrJ^|wl89v9avcv z!FWVL{Ncvq%!ORvcE7faymZq^MpkO#MA<g(%mz`>c;`xa-%Br#Tjf`Y_uB0c5T5>E zlfHtO-p){uMw9%@iCbd9M+tJVxP|Q!nx0rACt5%6$-yfrmhLf!cV%fDvGuPgd7$ul z*W@%d!xv27CT?TC6uy6zn$qjj6${TKN2?~Vrn~ES=UtUu@j&L1bkkM-p0B;^-`b8X zKCQN3rCI6TgLxa=e~K*J+^?LPpM9byHRFI@?1jD+hx-;<z6gE);6d;^g@oR_YxuLo z6eN>H7iDj3cAdO1^tD1j_SwCcx3{b@YUj2I<>UM2$`||hQ<~qhdEIW>O1$1)Un9PB zyS%@=R)}fwqSoq@hgW?T5L54G%$zv;2glQM>vN|k#OaAMewlvqoRM5g(9;bOr4#wq zu_;W;WNz}F!MA7&n@E%M)LRleuJ>o~X-sjlWmzA{B<AXz_5Mhu&JxXqu@{}3B_;Jf ztaIsRDc`iIp;PJUZHt2Lv!MxRZqJ)|<963JRbK!8Yirxs)~z?vxjAoR(e#a;Mk4i_ zKI{oR<(({eXOGINl^@G)gkL(byZs^K>uHU8?efx0)?3eWbX8sV$?M8ZT=Thn#uh{4 z^1nM*Pdw7FU|+7&)Mp-DLSEgb>S}hm+0%k^&nPjTU3{eJUB|Yhy+UQeMor(CCSLT> zD3>^pTUI@1+xN*Qrl!_b2e){%yu0n@*~%h$v;N+;xKs0+J0hxgTztW)-7-1-&dhzS zTlZRS3EU*;lWP4+J7&gf%l9vLT#%PL>cg{C(k^1o<7bL1mj5u~w>fod^;zcRBPWe{ z?>=+1+33XM%6jpc;!9am;c~Wvf)8z`G`<RJNiTd;`C<omTSSdycXi%*rk6*n&N4-b zrI(&>+N%>=-&5@GRP`d@(M%Q%20p9WSuGC!DKV25_{dyWu{cw@XT!dmVkb;Wdsi&K zr?FvLcTz;tzwd#!q|e?hW7t^3ALSaI9mUj`s#F$Yq;)T0LEckc+w)8JXypHR=qY+? zQN@P4W+Dfi@>?HW$oTTZe0@Mg<9GGerq@#swQB9XnJ@B}?`!>s?Egh~g5Ervnkc%{ z;Hk(Y>A2aGeD$NmSDVFIg-=+=bE}2tWmNm!w|n2sILveHV3^^hBf4ItyzBL|itpUG z&cxa~d%^^-EvJ_Kudi66s3p^X<nW6%EbCqC*#b{}6TWivmUl_wfyoShzoZ)Gr~RJY zI)(k^vQHuh8eSV6WWTMwVs1V26|<P!UvfFeJr&w*J6+>0J-WYi?|Gf;9gm`eY#F-O z$$Rlf9GlA+`+HmEhbGsU`>!sXJ+q6;NhXQ&())OyW<S2ys#CgSOBps)B|32Fb#CNz z{`cb0l!NS_xZgP?S8M!yGwt-NmiU}UGrF0B!(!Lynl0E-t{#_vnBBK;-|xNR@^>89 z?mjPVw9u0G$Hn#QWZwK1pQCIana9G+yxeE;CHd{^j#yu0s=vQK#%I=}l_q;RmwL>K z6nH(;ykY*1EY76|&J?_v@0@=iis9Xgs{w}@VqQ*=`2R>*z3OGiwhn&jr)L$XNqKy% z;(Dt0Szy!rTN94%-X(Ey>T>oit8cKsI+ZKyb>OYR>*d=djVc#i2wvE^xPxn>Q-^1p zq~$@SbvB3C)_h+!^|J7MG5;7%uD}bo+GkCA>K5cSPfp@=i3q2-IA^7v6vJxc@M9d| zPO5+ITi9HgFBRw}cj1n|$dqkyDm<1tCJ#0gFlTRLUbT0x$%in7^GCcJLYB4ZO?OSz z)2-hTr}5!$Nm%1^@xA+xg=|T1nSLrFYx%M*Nl$vGu9z*Zk?fWAZ%H9*P)UQ^mc2c! z85MWB?p|G{|1qL}U(1}QtXFbt__{1()gRefg}>+%%TWq_yT&i)$!@>s_k6)--)~+! zBqb%Qy6fes8`t7DZ1Y*y)+D`FS$~%F+SdiUvX`&Xs-Jszes9hHq%4yN`CmT;q}~T< zH1i#b-NfSb?UUlJ;xv7Ej@N1BN}s<7?EkwtMUrbzty3VsW>s`xAj4$PL1-sDx;>gT z%-+7y_|}%aEkPye{EUoui(gI_+_|{Dj!E-t-i(dwMXU?z7nc2boSC6}<z{eOKeJ{| zy2k4Cb$dkps*{$Skt<e_n|p0vx1I7WlT+M{{|`mB#<aWLIL4Jwnks5`o2NE0?b2<l zw$e>!ldj*bENPLBo$RGE<wMia&=>#z-fq1%MfPm#w5jpIJ3V&&`gKS_O75~@Y7F=w zw63pCjSrtq@BXT(S^xdKwoh~DopP7V`{picZ{|F5+TUy2dDcQ^T0v*vWz)o;lUuj+ z$MU_|Fmcwqqj_txJ586JSix^wwSeRIhKcW&ua~Z_yZAplq-y!*-mK)-`PUAI^ZCYS zA7ZP1_^tS9)~!1if|=|1*Dg7)wzEEJ^)wZaW%tB;MW!DOn{;~V#opZO^`DOID`tw| zdm50Ms{6G{TKvkz@RN#h9*5)3Cp|qDbw4=ghUvmRfy`V-S9I&I?K9GgI^nh|W$$m3 zr_QTZDE9AZoNdhYbveh(t@V#i-qk)_ury%9@+lR1wG&U4zVWn3YLnLEOG^qn^)>IH zxPI<Fvml+C%l(lO>t`Atl8wITeN(+Y!Qb?#p6cI4(u>6YUXW(tU*TrdrrKs1I{$EP zDoaA>2gR<doO`ala1cuo`FQu;!@EU=WfrXWbls2mt$i@>Q0eh6K9z<0olm)+ir&SO zZM3FplJpS=BV)+}{W~*FOt$`=$lqY+UMK(D=CHQq%XoJ0_v;p#sogA@6FK{s`+2kN z1@$`>7kgd$(6CMU80eg{txsRO)`*nKoYF8^Cl$1Io1(O*F_T8b)C}-3XGXJSQZHGk zzURr<(%gT2^4#yW8XITD8>Fl`JyX@$kbT-jLzesg4BHF8FFzX0!Jo5@zu{hV`ddz( zw%w5&iWOfRkK5>ay<hFt*3%ih)PJq)%<0QK>ocR?E9Gu%d>_xXgUjyS8^d~)RIa~n zISxAvclFD@&*1KjKlxEY>gAqmf9ocRTk95i{@%0k(Bj;RQs=izQe<!0zwnqV))xD1 zL2c$?MTO;8Z~j|pt23eNR)6nXxBc}=otrx4l{c$<tIjt&VqIU_QF8T<)~0=POWT%2 zS=P_jiQiS<nd5W&P_%SZQu%}>mU5}30qpte%S#qLn|dfof4#^w>F&kb47dIKYb<<X z<{56W@GmMg2Q802WYS_XTw8GJ@0!lv%G?oc-~P<=%@y}t$MI_8>?`x{-)z5W#vsJG z^7LmWKfW3NU3xhdta!Zic92I$S@dGJMXxUg+D-Y@q@uzWdZS(<N3JFH`c0m`sVVo@ zH)=WE*LPug{&QiZt@(xC4_$Zu-j>vEzgTKG>Dl!)V%v?UER>t8-m-Ugq1<~b_3mr` zD(@_4{g@-EDN@{^ag%MyzFhmZz#kvP81Bf$`w8$VT<6v34C$&@eCa;rt%2r*6-hmA zrKcp<&drl7*qD`UWiw}@d`WZv8pe`6yIf{oiY?%=yU!^W6LIa?+&D+x)BE!KZKo?9 z(3f_ed;8(1<@e%}3pl6t?riBgth10QWy-GQtkx|%cU2xaI@5OU(seFL`v0aH{Eqwm z{JGzfoHOkS?9q)E7gZlxet8G~{ua;a@3ZvexHs^h_KY|=`TXSrC#PrKHqsPdlx}e` zZvAqpzYBJ7$|fu|k=-(BmiQ6A=?O;+<?0_FX*AR4+akPqrGllr|GTo!$-C1;J5N8} z6S`!HEi1E`^qcR`4*uJlrqlZFx$x26^dHy1taeannyG!)Z(_j-Bas7c#oLyDGSg45 zu81!$-PRsn7QcQ0<6EuN)c+y3i|eL;eQMjD`bzT7tYj{ayIZcla&uVm@+c2qZPk_R zoc^Hn>2)6!h3eh-!uRsC3m$km*ZCUb@oTbQUTH?$-tW}CXH|yZ1Lh426l*3~998%z z*|uvDW1o%mq4pVBOY_bzxb(#{=A1{*{5Tbn=AypI6Rw~3bJ8%?J@D0H<~#Y8rgn~& zGNIez3Hxp|PBVWtQMI;xOXsD`y3_I8-|p^IZrsuL_l@w&?8Pamni8oOn6+BjKPEj2 zJePj?(bO&Je@ynXKAq}*YR8_kK>o)8ZU)PWSr}f{O<!1`AzW|%^5~Sie;%sl%UyXL zBd-6^RhymB;bPL>jP!fjYs8Y*Nr+unerho@a>mKNNQ)_LKe$U?<t80TyYCzPKzdO^ zjn}(`3{K5Ag|<Icx^91X_4VI@lh<=UZIx~Bojc8D1*ePIEa_NDrR?;~#@5LG8a}SQ z@~OW0_Q}U*y!&o#uXHg!$l%V(^|q_D&o^*-g}$GbRXTO9%om~b_Ei??+MjPcT9b5Z zj>Y$u!@Xy6&W0Y)idY@HcEQ2}tK2HTm97_Gqnp+Cz(T06JU-x!SleR8SMhZ+?>1IX z_lz(yujlJf-L1T3>({K?x68V(%Bild%nZF7<>;Q7e1qeJ;<A~1)k3eeBX`|DYF2ZT zH^9lJY|U9m;r<!9vn(agE~{LAW%D$7d3N5<7nZNu{`kb#4~b5j=VkwT8@uhIQ`Ny5 zxsMC1K?jDN^nXxf7Q5Fc(SgY+#5LcuFK)&hkLNSHcB|Bvc&pwJxt6i=?UnB(M;H8b zy?bT1ft!<fKzw}ix(P)lho<@+k@+0<M_ZKh-}T>~PwS;WKK*-0D!liu!l}9Q8#(MG zZ*|uNip^Q1_3{VT#|vxcOwF*_^GVb5&LW9xc`vJsKCsQ1y6%(1Wv^qVkK5KAx!|Z% zTfSnpceme>5{9=n-{qCB3!m5@ysMx^`ThZ)j|LYmtj(Pl|3X#QaJGCIkHUwj^cFw+ z?cXk1%QDv2?_E>2HFArz>!#4zk`8YhUr%9KW%01*mh$g6>g$sG#Fv-`_Z|fwj&&S# zIMz+AJl>inSGzZl!*;ZA#A~wOn0@zmqZM<_v9JS*o7UZDdAapL!`f*9y;5(46>iMu zkE&Aj+U8;#KgTWqq{F^->i%J@*E04j;<#UUbN-tUroj65T>^{tILFP_s$yrg)4E^2 z{mT+tyF1gv*H<04l#x4de6Gzc?V1Hq=Yyx;StJ`Cyp3V?>Mo5}&*$-3nP-3f9Cew` zBl}?d!p=(9R5AT4YO~+>CtcUKUL(Hu+t=Ub{m+(||Fh9IaowAGYP+!a_eVvEyKlXB z+L|G7z5D)q_IJ~ltY(?pyjE`d{%9j9rCO^S<&R(V>h*n_{(Y+Q&%6_jtAp>yU!SMv zzT`&96P~=f7t;;CnTpiQCfuzswqo1FRQ0O*BHI;Txq?Zzr@UcW>##0%fsoASuWuvY z)G6OTapn1~E7`$YY6Lu$Vh$|qw>2;OdaJQpVZp?>Und?N{&OjJ%GRgT<34*_|EqSM z{l0Ea##fil(7Fz#+Y{G(t@dr6WG9?@R^FkL<qk)g@5a)9PL`)i#rGU;iLc+KCm8&y zeU1Tt&-;q(cmLv!wuSfGK5|{&zgu$ZY3bkRlr#Q{t&*3sIdi(I@ypqi9UY%T*HwJ! zdU<@h<*Yjwu1$6O?cO06`DCi>e8+1Vt*%@7gb$~*Pm<Z<BYWQG>?__IR~II~2?!M5 zAzm-Jn^}IL#R<XgW$DrDXXc!FzQ@abv#-*hXe+6Gd0$`F$~>*eO;5Dct?JrSa@+S9 zFaN!HJ`$mp&gsU<(tHc<DWCM5uOZHEeAuIMiK;^A-wi?B`}VAP)VRpI!T3p}_>AjM zYBZ;>Ic+Gbadlm;#{1jxTis3`*rtE{_JW8vE2jT?r#5HJnsqUgHd)mce*5h4hruv* z`p46TlJ=Y@e;rf4@UcnFs#VLvGyIL)r+f9rFRmSBztcUJ_sZ6W=a0V}X3*V#X^~EI z$)ROgrL~?(QhTSIU$mq3Nv--?zv+`78)+pUi}5rxSx|1|w%7BU!b;!!rhgZ`yuxL> zbnkTSh-<fB7aec-o%>d^N_X#`Y<c%s?zwlmcl~(2tCKfJuTxKZznJ)}>3h~6P%dA6 zOE+)o&%=N3{Sxx<*nYZylhSU1i|d;X&Q6O9o38N0NR@3t=@um~(dph#j5O+B3(J0+ za{SfgFZ-v-im1F5cAKT6u_9`@sto7J>i^wKf0}AoY$*SKeaW30v-URMl9^wTz^pED z<3cBk*_J!S{?$7_F6US0NQjNu<IIp?`fRIN&d>5N&s}0>MR)$U#-7{HJl(x6%3|H_ zuTKu`lfM6`Rqxzgjg5(BCFV~KKK^xIo4Y>y?fm_JU%r3*IR4-L?Kh13{T>A~zCOg6 zbmx?_$gSLq|F-A<SNQ+;_4W@O{7du#8pY-Qf3x5J_xt}ZKkS>Hv;Uh^x%`#GHwD`O z)o+ibzwygYc-P+X>aqO)e}&Bdzv*9^-mve_&*}N~zjpsP@$#_Vu|H4e?{^LQdwy2I z9E%_7oBo`x@6WFneO+Jq=hOcEu5Xr2(eg60sr$M7czmnp49&xw?{7R<=3hP~@qv+f zvvT5-(v&wsbN>IjT)%vaa^Hs2Mn)mlpSJIxV9dyTrT)YLtC*%wfnR^CO{loVmEm8b zHhuf?qY@u`?dCc1>~IzdKa~2{O3IFFQtFkmr7@zRVPAfCt?aG0sPK;Fo9W42r?+`w z(xT5UM;Cm{dOd&7@3V3pE7xD2AS@nqLS;k8L|z5=HD{T&ocqvhaP8=cpx+(0me0GE z!0}4J+IddO{7amVP8OOxfB$0%TYl$<DFqSTQ?tugZ}?gGA?)2{=NjIQ@69_FK1lj> z>b=?T#O<0^6TbhG<KtADHRXCezigaYjQ_m??rTTO8xJQuT`+sG*}fURMlzevzW=#n zzcjOrYK*vb;mlK6ra~&ri?;2mo^gQTP0p@`Dt+?zSqm5Y{Yf`jr_1KLZ_1As&s1_b z*KPh5)4y8#&y!R06tB(a4P>g*dpzsOiphIg73}uRnNvR3=V#fRKXdIYJ#F`v2feLl ze-(Bhu`618c6D8>rQdJU9qCWw)|$Q8J8OS%b5N|JM5L=lT<pU|ivt&|UldWNp;I_# z(<;#yFD@1qZ_1ny(DjeC{D}Ad;(PTgS1o*C@UY3MkpG)??cb#j`@YPp=Qj<_u{fr+ z{>a)JOY;9P>uqt?`@QEw{L~QFvt{yM|0wQ#9bO+=YZ0(;YT&fZyT5K<9i6oBkww;5 z{*u?Vuk(L??Yk!bXz{+wf_Z5v?e)K>Za?d<tSYws(eFq4H7@T~xr;pb)0fwpy8X!F z!`J@TrT$@ieYDDPS9Z<T&^31^FO}N6c2y_$9^U=SvK}$XzugvUx}No2Sk~E?2W9>% z*Jd&9-xRv_!`Aw!y=zys@^%Q8RV@`ObJIU(Yvqwp5@XM}{YuE%W&5-C_KN%~D4AdV z{l&@Ea~B84&foT_bgq5XE&eYnz8n@_{+s{%oYGHo%FLdg>Dp|U{_n)2A6auhEL5uD zO{{pWa!%pPgN%Dtp>fk=-1n^wo_S?`mVK_qAE!{i$D2;3)}_up^`PE+W7X@Big^O^ z>kDG^n`1A&=bI;~^_cs0NZZ*w$?c_w<oi-~l=q9ozLn`LuC?0qva0^c52+UuE00gv zY{mEek5|#0Z>#gppW17e`|sPYzm~6680SYW-}Xgey<h&hODpboH_bexpY`7U&)41d zI<5DV^IX>LcNYA6{93<#;;ef!+v>lYz1Cg1KW^`-*rY?#>iYjm+viTdU-a+!^1o|a z>wlkG|HJ%$sbF^Ihr{#ZZ?Cb7%MFu{d4F^E8oSb~zf095#Q)}QC<xuN=I67wqIT{I z-v6SW{Ww&luftv{mFTi>%ASo<6OT;3Zlt_P`m0%}@}|RQqqP!x+CmqvylT1X-JhQ? zj?_CpTj78I!No1hv!j*g3(DMmd#q~9pR}&cY_luR#aNnIOK(;`BDvVM@PYpGubV<^ z3$EOqt#xOe?K^{2<)QPp&pj0S@xqpKK40B>ZT@;xey;9)X%w_~)vWJkU8)TlpNehV zY$fv^?Bx;B3liVichBzY)7mdpx0lE5t+iS&cd#&5rk>M!uH~c(tJ;)n{qH=!KRg`C zIy<&*ugtMuQ&Wu#^d07|*lSmRPL1>C^^TS7oilFbzg`x9vFE+W=lYz}%29r2thN=& zAM$^4yRNxkaFe<m>!mN1A2+TK`>^-G#JYaf%Jud2OV8&&USz*N_nGa+`KA&1%~!u) zd;a|Q?{yz@jC-1P)K^I!o!_sN9k*8eP43tGiIe{~-1*P=JMMn#scBM2ZSyyU#iTvf z-F>fmcJgN*W2d{__ioGmX>2*N{t4He0;#;OKe8-XkLvuF`}hCUtQ&j#{<L|2HGaES zUPf}?UU`M}_xw-&ocx{n&F1fijo0bl<KGbezI}PNeWktTZSQlx8QmV8tM6cRHvjeX zFGFhk-0#kBD(p44pZ;A~e~<0@#GBK8W)<8nxV|;@)m@Hl{tu4tn%jPO%Hw32XR_~) zZ~nPMH{GePx>&96kFWkce*XUSDV5bmGNtd%{bg(m{C@iH!N}4ZpZ^soKUfgFzirk3 zFZcM*eR<6L{13w+yJg7*N$j8Y)W|P*Q@`qSZNbK-bE^3f1;M@cGKm)J<u-oom0^sY zYnim8`puKCJZCt+J!^<&=nkw~DKqVt>(&|d`gU`d>@}-D_1RPP&$8#AuT48^FQEHx zjsF*Rq51Dazg07Tna+K@{^+lLXM_Kj^gRl1y5Xz+RZ3s_|MRoHZx&4N(0J3|{$#hT zMfTz)_4gIU-XH(DZRYmBRr0I%KmW9T#?SBbF1~+Y;?{hs`~H-fw<lfundQm4Fz?f} zEv#89UR`DGt4-70Q`WWQ==o_|TwkqtWI8z^KH}0eyXc^Uc9B7IF8`V0&TwkW*6mAv zh=_j8JH4GZ_h$6@&#waC?VFg);#a<HrNv%5wWGc7Z_GQ(kzT*Z?C_kgC2LC4^8K5P z`>Ququpg`0I<Ki<&%LT^3vbuntGf2l^^?NYf3s{DzMQPO_Rq4iVe`ZF&w>|-e?Iy7 z$^0|R7pz~|95UNCId}WdHD_m^|NLsAXzr3Fw`<m&leu}@*3Rjbd)bknA0Bl4O`966 z(6=&AGxytlZ@=Z4>rc$zJb!KdewRHjnY-(L2)x>R`>%Uh;{T%Av)+H^wU@uOC-?DQ z!@7Llf0K6J-Y)ywTaBacXp{Kk!Y8$S^M9#sYgja`e*KDt_o`ebK6PDr++N>n#k5zU z@l#)lFiv+3PxVdO{p@#t=(jJ+{|n01f39D<OY4yyca4t8!(e3%0}<7q)?I6AIIq_4 zF5Tq4q9Ek=b|L5b1J*w>w?E`hIa+7;{j>YD-~PLg)?b`EYkv8@`~4sJ*WBGM_4aw~ z8~Z8iD)%=(J$}FXk8I@3{VK=n`tAPLuKj;b@!!6?hrdUC$d!8kw`Onb!ToE^L+ck_ zj&A(B<I2tA|6RWVul;@VI=}W;eeL1xb6Z!hi0iPZPvWfNJ?C^plV9OHcVk%0{MVn} z?>juTY0Kq`K=;G*y0>0dTW54&JIC6Y%rRH)%zppj>Z$yd1qb%jT-WmW`94@SIw4c& z)2}@oS`QY>?kJDn&hoGJ+GF!s|3X(k`n~ncscO#dkG_k3=)Ypv6aW2v=HAc_&3tXs z>bd8(>?ytR?^uYd(PVp`?LA2w%!5R{4t{-|pYw33qG8kLu=}gK?2{JM?~8l<cFmso zC%%6zIsCfoKmQbs*LvX1&C-@e@EvcamPRP2NK9|wR8?g*HZ+-BSQsH}Yzk5dKC^&R z-yL)cg6Z@PotBEG#-=7n$31{0ERh62yUNXx&yWBe8DTNG@q*Lz2RRmE%%Dxxg%vt7 zEXKx`hSLk38C|EZdT1RXW^SfuVqsuls9<7dqGxQbU}R~cXJRpZ;xakC=?m1f1*V5R zveuhEvB*$t`m9IRQuTo@Dj}Rwo(hgm-W-fam{w>=1RQKiSRCQ7p@n6tl9aZY$m_*T z5*wXd0yl2Fx%Ym3TDfz_+sb>-YxlqZ{=4qY*ZT8k?pOw&n`2p=_KsIbc@aaDlaXkz z%;dSzc7Km0dswne@tYYM_V;n>{(VkIK6M_dpJTNDS^?jV|H+F^$SBp;Kf3bjblTfX z%WeIqY?$ORxA5kf*5Kqt-}ZP;`6L~9r884B_38aTM&CsO|Cwv7ziy(!a;!B(U~aO) zJgeNWw@>9$_8IVhRCK9)e|F8Rpl$E|^ftPf2D%s;r%#QIlPyd4&|fswd*b~Wv1Y52 z?o8ia*YbneW!mDap~cyrd@nppj%(Hb+p}xgqF?Qw_xCvLnWynXHfW0Km;C>4-X8j# zHa)x`Yui8O$!}a`3N3?fZ0|4>3_rx@pk~Q6ajIifimLPz8UOAK+uQ}cCHA%s{Fj`! z%-nY2@Rq6DE-HV~uyyMXw#{AccFWQK!sIU^Z<oYwnf>j;<t@|aElgk8IdAdvm#kHt zam(s!zi{pKT7U8N7q-2w>@RYw+V3s?{*w8Zc&&&0MaQ1U>LoMmmZtsc>AUd!3u~=s z{Ke~Ecx9K0{hHQy`FlxI-2(ZS>Q<iim-WAB|8?7cSu;yjeCNrOo|Qi7bvg|<BMrJ! zHtNh%-IO!!@UG2rYxrLu|1`6iH_16d(Yl{ES^1`hS$$h?viQdCNY2?uPDQZJKKg6} z>zkr7(dZ*$n`htD%`x3Qb#1!z&Ez%n_8#Qh=zsJ5nJGM)o~Nc%dF)+sFR0NZXqJMg zcfVJ^x4x&o_wOa)OTw4dd&+yWFLl18eyMztrg7w?)SF7tPg5*i<uv0};+6a-t$tGZ zN%YgzPf9=8Drd&jtFNDuKQ({y`zhB?Nk3(O+Ww@fa`zn#dqsO~^ONUK>z~p;sed~E z)czCuPx{>q@%R|dG-aaK#G=liMLt36!tw(00>iYoYnE%2YrURQJ+=4L-&2dd7Jr(u z$-OeT();K1PZK|FEeiP=`7`uqtl?D!(~!F>@`B{U%UABcDt<-$YVE6f!>>!!vg>B; z7hAxZl^C@{Y_)1eXVj!=YnEoLjG8rVUFjvOY{@8b-Qd%gc4gh&lB4VXdfn43+buS0 zmtXUKz4q(HUs-=m+QSy`USi93-m)-iVcEK}d1gM=@zQI1FRNut&obUJ^OjETwy>pV zFJ^7o8MW5TfA)Ia3wqbZvcfaMv%>2$!?U}$9K9v<R_blkTdUlaWqZq-xA{b`ySw6Q zruLSpw|sA%y`_6gD|c(z>ay8oyUW_Qx$O>)UcL76yG!q`y}S7C>buL=vZc59-uios z`Bw8S=UZvH-QPBB3%$L}c9HEW+hw-vu4dof%C<J}_Cni*wkvIyzP(bGxqGYat;@IK z-b%i$k6i0n9a!yI9eI2C-bH&??OnEa-QI<7uiv|J?-E}|e)ju}_gU{V-)HOI+J39> zt@YdLx9V@j-<H3f^6W~K>Grf&uD>*Dx7fMKukOEm{I&Q?;V((Gi|RJkb;d1<U*&(v z`>RpyCOcRC>)Kyd{!0C2vNve{y7L#(Uu}N0{P_8fdc}WR>nn^C3lDweELZ<C;Y0AD z_ni+rKXy6`yQ{=aiI`JSnB@8BYNxeOyibk!$Am}UJJp5nw#^qzX^}{D+aZ|fB6ZQN zM=<+{G^g95L<vu~O%wA{q$1tSm5;wjd?NX`rzW|<@W_rUGg3n&yL)f<`X2jxjQN=J zv9!mD$*VV>tvFI~=SF>=&BP^Yt!l0+u4=04OVvxgcNt{nTw3bsJ^7u-tw}nn*(V)O z9z3ad^5MygCk;<>p6om+d2;5-=c?1yrmKc8@zDG>Wr>N`<V$}pzsXF@49qOdT$ve} zS(*7W)A;hVCAz-R^R^ki-L{1{Q~L6@rM8o<P1t7r_T?7w%W>Y-wr_j4Y_Gp$=k;65 z*8c89JB__2wO+rje35(^8fm;)tfc#n%x24znwG+II{gmMeE8<+nR31YF^hH!cPn?x z<CfiXRnHlvw{E^<dD`;0<@uc#Dz|=?dR}_&_1x2Q%&o#L@{8_0jCsE2`p%1$`#(EA zcRqLaT>ISUx&2n#t?diyUi`UHdE#g1=lbC1>F3VRjkn%kC|9~`PTK2~>kilZ*M*gL z?Y^30>YEs?8`qtgQ2I!$`11XzGi~)-X6Tn~nDKkB*yp=tVxJ%H-#X)X%h5mY^mUe9 z&Nl4y^hp+bcAhEG&^bb+JDKy0fSB?0ryKXJvA1p)-Ec5R!&+SIb4}P0x6K=KY-S(O zOPs!`KFDmQZ|deqUY%!7Wu`jMgd)y_ZkVxsBX5py^_<-F-#69Q%$z%kL(Dkx)TB=d zhQB?UmncP?>AaL2R6F}<jqk4u*@pby_fM<nEMw}<Y(DBUwfhNYQD=<S^+QQ<oZUM` z#ELC-o}Jw=WBcKxb(7z>AHBoVeN*B6g!wH;Yy9dQBhJ*<eq#I?{<D0isMzF#No<Fb z`kIdJ3DFD{(>y&j^wio@Z%;|3t}U8gG=Gz4r9-99&4q75=CvKQSx~d0W=+jvnc%v> zx?sPROKx4gx?#rm)n7Nvs7^4958_{;Zj!ZmhU0&BvEm(OZqn;TvzO+IZT|KDMpE9N z^*Yar|F<3ev*2vfybJYyS^KMWm%ZM<Wd=*PrSZR`73EB-I-WZe6P*wBbE*q#8fsni zu+iUmBHK`1RnN1==;PBP{6hAge+)m0H}lj-oC#Qev`0wH_#IF8O;)kZ+B#`^I%)UK zx-IX{;O*Xd>V|^Ov*rymqW6e>4qSXM<3)m@yGpO;E(x*XtM*Z6iV_X$d-rdc;hHN} zJaxm2=>JEO>NvV@u0NX;w#2{vsLt6{tw($A<XFr!j*B>>k}jSuAK}wpykYZ&$R{#y zW!}$uvFD2AP0Op6cP(#6KA!V_&!L?sD%TdT{LJ>eD1C16($8tnrJl#0`#op&9Da`O zovdQTvp*X?-+iv$(!NNp<*3b@oHDuk!a7BrwAGjIR;|o#*f685x^u&fGk@;>Is514 zpF@A{*d+NWp0rVVYgVt&{&VF|(V#k`yA^gvZCn<gDL<=ha^Mfg%J&z3PVw4%;H&M| zW%D>{^Xj~<G@luMw)<@QIc`dE|4XC03-Y>5-W&K{`8IK<)Wg_i!m8_3>bVTI&nkUZ z^x3WceeL!g`q{hxtGzR?c<=k{@D6>`_2&Jv@6X(w$@}Nc{LHC8nLpLKmu7tCeb&C^ zO3l%l2DJ-9pKYU3_9d?~=f6<%*;mS^_-t)j=TD)tM)3>0KIeUoD%PJm(?6io@<h#< zJw3-(oBiawn$@;a?4@bw<Zr9G=B%9)QfJ1mc|W=?U|;>=zrm;5ubtiI_B8e-?^D^+ zCQln~zv~OSSHiCO`|cUt-E;DSzC{|{Si7oOH-LSU<ST}-#q$=|r$nyZzq~Be_=?Hv zPuF<gNxmz5_wt?Bca!T;-&5D!z8id3bY1GZqU%@RX|B`0oBGcD&eC-^-+9MwzN31I z@vqF^j(>|cou9k%O<{R`px7?sDUt8ao#IJdW_0+gv~G~z;?+~Qb~$M-{&`Ae)=H7f zCaH6lZa3=F3pjRxA$7{NRXtl+G!B<c|I=j_b?^GG&TIR>PPnt8G~f2ZFRMN0-bc;8 zTKa14t0?1zUuC}rypCR*ze{bWS8VFKlj}6stz36H=5nlY%;wnQn62wr*J;PphwoZf z6#F*n$*yBtuWUUN`h3^Pt*1((vu*e9zP97q&Ub}t%X5otUsRpgy7Q~z_vx=(UoE>< zy4E}D`mXZb-*?5k|Npi-p6Oo6{-<^i>Tds?_dEVw|K0gp@=EGo***Gq>2L4uqkrfA zW<OG2^#9SntAA(zF8{7+e&zbxqTP1`qJ{JJbJlOa9TJ^y92#uAcG-T(l(rcU(^@2R zkIn2%+cYz+%*;4y`Yg$`X)|-5&9aSNZ(2S3@0ntscFP+&CharDXDFY&_{^esPvu0* zi&wAC;o#kQWlqYpS*g!bGHQ25UX02Nn-P50t9X~?={dP!Gq0|-EtsEkE-Wq}E@$gD zw=GeEs|}XVtT&#bK9%h$=bEtUDd|(5PZ6J5dn)@>-NU!?0rx`f8jja{{0y;NRMQ!{ zhE?h-^Ox7*Pp3Qzy3_SDcK!Qjb?a;FAN`&&?dbgJTXg<-S$;Yk9^_r&o#9>J9pLTI zUEdwwz4qv>McXrUv%2pnZM|T)`RQ5Z_9&^@@2!pAuRd<yoxg8;{m+Nz<FfZ{{<(14 z*|U>po1282#Q(2+_59`h<tFz(-aM+i-BdsK-`~x;XSw&yty}W+#PqZNwYR_DSbBD` zy>!i+NzX!$>)8o?{JHz=w`AeIsdduVW3JbHP5<1t_ruFC{^Dlu^KSmH4EuamH{1U1 zr<b!1XY=J-?RoU!(_wag`;s4tE%jOUrgptHHqSpSIefEyHve;(GMRUU7GDD%E?n6D ziT|tZmDd6N&X(;)e5&$YwjyO6vVYzsoIaS(S6BJr#6f<(c@8hWHtWmRe0yNbKL6K` z-Oac6+dO~Z%`R{A<Hx~;?Ci2S7Bi|0ekNQx*rI>U^nGsKrw{X1P7HRwlKw~U)9eNI z^(pbI@2|eU`2O1aOV?k%9<_h##DA;KCfO$DZmmny-Zu5diC?q-t=M{X*-e$%Nq=4M zX9R!w>LH&xJNa%_bVl{XvYl^Py&F>(ybYUeALM?+ElN9gajtXD^V`Rwx!3URUH@-$ zS%|d2hr$E5{~ZsRw7jD1b$UGv{y*2Bd8IzhY^I8!r>wES$*xr|#a5p^Z?9l*LQY0V zN=!~rQdCx0T73S53>DSoOO`Dye>LZ#s`2XV?QiD1+iCl$>f5Wk%k%gD`}v$l;)RBU zNyUi^hl<Zjm;L*|?G|IPDdWlu!{p<=`!k$A9_iNC+*uNoDd{^eD9-Tfrp&3A)6dK? z-My;Hum0?vTa};1WA=UM(q6x->f$5S>nFbJ@BMelH2!YE=dNn`x&v|U*YB1+YM=cs z<{V#b{rzk6>uh$uoERQgSMq5}=+pI~Z>qnZy?+13|F2iJ-?#d3BlZ5;y7zO-m&@kv zEUbFk6KR~DzhYK!tZ{kV+dr)LW9p6`(q6ys)ym#(aowHIZq#qz-Erlvi28<^kEWD# zHNXGW%Ky&mGxxuq;Fl6CLhl>DUw7!gus<R_EkN1Yb>bK4?zFp^5}IGMPkyo3`GSvY z@y0D}tq0Wm7ZjTGXr7qtseSYAvzpHubDg(eQv0k~wsxoJ`TT{`Uz%@uu;I{y-SHiN z9<ONXI~5<au~IxTL-J=}eZACKr4>DP2fiBLDv-YGcYed_Gxr0sC1SfjeOlSTb>{h* zuvbpnQ$t_1UsKO8eVZt?XPKARf|OO0jn49)@z<Q&^|G#tCHGW{@2ScuF2*maqE0V* zI$dyAvz&tY=jmQg4!+vFB2%Jw`OPg2uQIgv9&?JA_-kR+p*@%W%rfCxdM+bawO%&W z_9n+m$D{XU66$=!FY8sY{(TxgxoG32$h|jgFYLKqGw;w#&9r3y&CjpId`-J<`poUK z;Tx+<E3H+E6kpBsxqh+ui<bS=iDI+6U)o4D&x%j_cqZZHgdgldTef&asqFW@d*Qaw zmNL1u%d2`g?A32^-;`OB_G?n>#)vYz*=NEw*UPKcuZ*ek-WPpOasP6Ir->)5TQ4ar zj;fk4Ph`1!zG3K`S0Wo<uIaja@?GlLpuJz#ep#IqxGs23m$z@Z`R=*TT5sHS3FL`& z2)~eY;#*zeuK#L#_0LVHODwzA?wc$fX`7vP-z!WrQc5$_J9`QHQun9aPp^I|_VP~^ zDC7J+wf}0p^cB$?%XdHQzW=Q5%HM52r~EW4Q5Sf+JXlesig(K+$EvV7nYAwSF9@!) z*Vu1A`-GmWZt=~cGVAIodym{pJAT1iD16hEc&VnS)k~yKyo`Ej_Ok5CKe2VpmyTaj z59<E1dCjSlMf#O}dji)@FF(cpWWC7lN$X02cWEn6?JT%oTsXIWbzk826}PWEzbYKH zFKk_C_Wc*vUwP~1@7T42Z}&;tv$5~<THZx1@C<hl`hHRE#b3UjgV_^a%+4q@o_j>& z$Oe^boNwQq=DJy6))ae0FH!VO)V7|xr><?<eN*k5L{)>Ght;ilnxY=bON>@JMQQ0y z&YM*B;Fj)Qty+az4O#co%1`S>EQ8<a@lRGiC4PGI#rCMeOIxL`hyB$38T&K)r}R$? zH{Br5fM=TF8n36EJ;nDl_bXGW*gD@=o3keW+IDNzwya5Fi;rgByj7ChUFLHAOI+2& zy2bzI{hPdW*3pf689OiDQ}MbuqnYzkn5IwUnLcI3d72_E^U{-KjwOWsabZq1KUS|g z!QTD$p`{tBQ;M_rmdgFvn#2D!MgL-w@1(@|scBgW?Mu?0vc8n5nm=_@M(Spp=vrT| zMY$W?Rxeq;)HX-p?SxNDKVGsm+Ngh1?3d85I?KD~(l+ee(kq+(_r}#V=FvXyJq15W zY@71wtnZ{lYjPy49WxkX7f-po^#2C2FH4<EuGH7g7g`X*`g@CT^^c^8?fy3pmvpUs zwtYjM(V9TXHD|nD{Qi1mZ5-#bn@MMmXGBbxc`JHL^LmY{{M?2j*0~Grzg)3PTFR7T z+L!F|rA6~US$?aCH9Tx^I)nS!T@x#D<7eI(C*zJ(z7aZ8BAw%@msTq1yQFBBR9ODj z$ozZBap`&{^{Zc$ewddO`9|b+gXBhGnV(;{)<wTi-p2I#!=3*(qh9DOSF<{{C_?J= z(He_&=fcBRMqibEW&Emct@V<<Q{J_?$v2wazR;}s#Y}c_{7lwlVc*Cp?ccsR-d4Zh zvohkIcXK39X!5zTHd*;6Z%@WdDbih1&j0Ll+?ihC4Z_ne7=KZ$pB$l5Wy1P3I^bNv ziAtd&`xe1HeWprFWx{rIZ(VS|aZP_n_b(ZZOx`tN!naB~_BCzsy|_;2Myq0u&8c5g z^%fOfxzOEpqpat^<SXLSN<03rJ(+vzjY)^<X7&T&U6N8BAFqV}o#Q#>>AnkZltWKd zZ#*``<9@?c?P=!{i!XF3d^ue2`Y=c3Ye~PG^u5$gLFexYu8mL+opJgJ>${m>tZaJ> z3pGA}RdnfV+Su2~eD37?`|I=P-?RN(^`z|l$#>UGwKsdaJ@<Q=xl;3_r(2R!O-znY zNl1!IMMQ?j23rk-1NYCTZGACo)d``+YZhv@E_JJ|%G^6?UeUeE*h-tFJe;X-h3dUt z^Qwr>o4Nd+hUm>6<6^4`#aZoh`279cqy5s%KWXmIo@Qurbj5vpm7_OKs`brk_~7dt z)Ybdzv678bOL%7i!y!-41cNp=U+JVPn}d=wY9Ic|EOqv7U$EnC-L`|8&DuG!n=^Kw z<#)7id8Hh@YWwCBj6N(&PAvSp%{ztDVezZ_<e)a5wf%mQhoS@Ym-Fgsuh*9{O?)xo z#*!tE)<u5J`7mY5$*)t4R@i9-rz||UXjWBj!Ct*phFX>R8Lb;_SFg-_>Syh%clL|E zzo!1~6sNs0VP{@*oO9Xh{7QNK52aTnBCYK_^ERycdpTlfUPj2$gNsW`Pxt&<7ASnn z-uKb>M@jWl7~?e8ZrHL;Aas3;KzqMo!0eLRk1bVYwyR7k{43Vm{9WxKc`Ddzx%Ag- zQyeufzgjjuDI@9CtIRKlmbA@~IIg#OW>T9}X|nnfm8<+czM6W{LfdV7Ub*S#^pr_l zOt*VEYwKOPH-c}z9Z<+WV85Vt!J@Y_IXd6inADWaPLa$HtUqO-;j-88sDroKk_G;? zKh`edzv}z4Ip>F{alzH;$u3&2*EV~<e)G4&>iPQc%WpK@?w)7i^|1W+cBW?PJrUir z|BOE>T%T+fdbl`#hn?}}ecs~hlzt`jXx_4LI8t49cGmvjS5t#>%^ei%w3>2Gcl}Ov z{^RLc(-8iq<U)$etLZ)UvmSIxn^<mZl({+c=+_|4`b$r$h3xw5BOg^?Iu<vJ$@iY( zH@1ggr+wM>zv+$OLg(dQSEmcsf8KHEbIp$#Qywl>^D}6>Hnl3%y5^0f;rY*Yx##yR z{B_}=@RNv>(vy->KZ<x&dPb+o&3q8Qe#t|7Uyahry*x`rIL~OT**<;V^PS@Lw<k^d zHz|F2Ugq&Fmu(L2WU)N^EH|}w{~6=Qf6sT!zi9Q}O7d;!rKJy()vsN>d9EUigE=HT zd`6PUwW-&pzBQTd<7fCrvvl{8vzMOjdbM!rKE}J5@8Sfb<9BS5m^<UxFULq#sV%mx zy7F7^9-P)c(;{*D+!GOYWlqgUmK<E#+||9i{?OJ3%!?i!@>+X&fviw*_AkH81<F%G zj_OYK4ZqW~NO#t&X-}3%T17rw;1(FN?C<oN@PDn}CjV59`Dr4MSgoCRxA;=i<fhA$ znkGw#{S9-@%PL(^pf2e(Iej^YewKOGrj1RpOJ>Vkt=aqgS?1ir%jL6t`LdtStDMDb ze#EXsM76a3kntU(72TIy-{zeD_TG8#)y999Gk1k3`iCx$)Z1LE%szL$;mM@bO=q)0 zOSBIst#3cL{KA^9q!m#!R%MCJR#vNP=na1;E<8WodvZ!-@EYrzm-`%ir-!i4R`0G) zN#S`r<&;car_YWr-ZRdWd9CEjUNrS-#PkT&*Lj*#MV@Ss(y9+${8w+T&{R&zDLn<Q z|AUO4r<|OlalO@9yRC+`@yYGa?9ciw<YX?HTi>5LbLM`Zx6^jMc_lu*wEL0E_UF&_ zt3MunJIkcvO^fU`n`{TURI&2&iHBeRJ;t-%zhT!KrJE(@5hAzqF7tYB&AUFu?oarc zXH!zT;-e<@bgQ=hGW;6(z24Y6#$T^wzs}e6+TDA;8Eq7N=T=&tJvU{?tfT8{cvJ4P zZu-9Xw`^vZ>(-N#u1;IlVxwmqspcEHP;}SPNA6-*lQQyO@?>o|H1Q3G2A2l!gw@Q` zSUlVu{0_7=EMri0_++f`R7U5Kk;=A37x(|R=~vld)w5yxnUz169$78vB(TG=UO;t* z-=1h+-jB7ZJ+96@3b&nqFET$GARoE)^O}Ig_X3pfZ*41`*0$l?JN{Vz<i~HT!n7<x zHDVt}y|K)V;MKR3`ul16BAL3nqFt(Y{lhM(`-rrgu8W^{_QiGk^SdtR<b4S`&RlqR zLf7oHtvBqp*JTHbtUfEIbyTw~dy%f|si1nE>}_w2GG_%P&drNfh+Susa5t;^(5~Cx zy1!1*P1?KZ)UJEqHhm4fy?+V+RQ@&cH}_537r1YW+-6pt4RLw9{i0UJq{n7PtG*Qe zqqXGasnlzk+kReha+O!&4R4ERzpb|^CS`8I<;6KS8!LnCRnOnLZ)OlMUA5kIb5!ob zpdO*jtM#_49(qg>S+Vui`qw+77S!u4TNyh|$8}nRjeVW)UY;-9CpKF!SwH>xQF_w5 z!W)$b&NrQHY6{$%xVqI)Vurko(9P?MtyOh?@A$j-v5jKc@|*WBif)zYI+}HM>QsZs zFctgRy5Z9VrUdl7S?@7vKksMn?J8`W4$ReAF!6WP?xl81X4U)licf#CvL?^9PjdG1 zXRr8bH?~H8(>tc|=Bx3aKTGEZ$-8st^fF7HZ1kBj`^EV`m4=Kl#c$M~%bY*6<#~Pj z`TovryPxfN_T;$BO~c#?3ICJ$r1HhHTCUBr?B7$YR>Je;RFYZ#cjF%{nu7Z+P4_IG zV!52<R7z^h<P8gX;?90MQ2+Ys&CBl|zw^H{e>cDL@~Fj6^8G}$u3L#0cIZm;8t*^2 zuZ-c_@0~e)$+P5=JA)r9C!OoJ)z6E#<@kH~!E13BTQ7<)_3z!M^SA9w^y2*PN{zJe zH~VIUC;c_mRj_gD?t8H$wME=re?r~_xl8jd#9jL{|LpG*dPkQ(E8{=M<x!eaUv}EN zRHgiwu9e+-t*xe^Ub;Qclg@DRoU&G*7r4iEpWVOj6{>c2-Cq^hgPJu2eWj;A>EM=| z@uXwxV=>Xm)3*e#s&%^fmpLagA^(W6<Hv}ACnucv+Lh1fFRb3Bdia**0*j0Fd-t~( z8W{5Q9q6$6KVxF0&U%s0FQ3UAi|FrJ;#oiO&1DZWqoSac&?PdGcNcFuV0`%bl^%<} zhgv%?#C`H!rv8m}{tJl%XBvMp8)nQ@_cq%9;Bu|sGWTxjO^<KRdGvVR2|X{<+4H)3 z&r8panx{22MXWfR%~+E?=~42t!+Qcx%3RB2cs+6UfkRI>bevf7#qZ@@rbw@%s`Gmo z*OcqO;i|tBJjpaCr$pCAXOX+!q^hqeqG`{p^KJJQ?~s}O%<ftG^{1cZG%6F`|Ja>h z`?6`#s)xxpm+tLb`fZ-Ulct5XZ|W{h%qzbeSMxad-CXVU`xVxeZ&|uwL*maPv)hg@ zl`LG`_N{!s@FeN0n*0C%xbx-SN>L~IX^!%F?Q=O7S?nqoZ>^uP-*VUQuWx0m^VWzM z#YyK&%NyFQvUnFB`+DUU{ulDMjLTLS*(6lFxNzh4*V3@r^$KP=BF%{z0bdR5q!!lI zIi_^`Y&sI6zJaB>O=UUz+Z0K@`Y>PbfcTO>4*f@-CrB1PtuI|zdrn`uFIkJnrjNU6 zk)`UIln*TJ_d{}5<!03%xw7Jv#nvS=yo`3feREY={I^om39HujHdiONy*5tK#}=*6 zt+@BL?Cq|K-O4KYHx5mDJuNP*klB2VdR}?`+kba!5B>dk^yqhwSUH)<y>+)IOTTaR z>v6u%o}}k;IlV7XxT(vzOL-Y<Xj_O|jO<o}Uw$wB{!f3a@Ba7nKgTP9Z|he)&3JL~ z!~HE6>=xD@I?r!uzsO+Kjs2J6--}<eUQ|A1k3+1$7N5O}FOI#?Rh+F{)@mb}$SYzc zHT(EWVa3GCMq8!|uM($u3mgwtGVY$~WOhPF<wn2E2`|1Ui{(}?Sh-s=M@CL^qSfP- zI-Q%CD-;wmRdhmq*31(TlQll5d`j?mz5bT}K}L@%o}GL=)8s<wrYGDl*1S$hQ`2DK z+S=@MHSdB+f85tsYm2rjdu(#gYq@myu8>7)%G0ae=_0<o>4`Jdzsr|y-_Y^+e7$Dv zZ0oc)uhv$--?>BU_sr*!R>290m&}UyYBs#Fax6;}IsWdxYuO9mh4J@GukB{Kc4PaB z*}2vAYpR*bjz#DszOi{3v-X0SQKI*O$+spO{?1wdqdwvHh5zP%uQxR8Sg@mj{h7}W zWdjR+jXyU(Y(Mn0KyhwMV-uTOlb5;WpJpcKE+%j0r3Y3Bw6XiU9e=h_PVva+Bhr;k zYUvdjY2p06UBXucS(rCBR=+4SsSfhs*s>+?BX{ScTlKSEEe{qt&G((d)H*T9DfG}U z7F9)!laDw!PHlEMUj5ctZF(W6_$N<|*M)0-^li{^f4-qHu&+hoPQsK$JH9^JwzFb^ zcLj@L21`-PhhqxC9oH)gZ#_88by!(U@1R44z@_QtyA&r){^hnhx1mE!g}3FT`#=31 zzM6tp*{u|oI>cqxE3CJ>z?e8uBV<QfgxaUb0{)13lPqW0_VDk#sJT~NzIf7Pp@jCT z)}px=wtBo2>3&uErLg?;*Qq*h?mpIWDYkr)eVWbpjY_=Tze#^;j=81Z-}<rh>U;z4 z(<SeV-|wwDTAA}qw40rO-s#$@8X8B!U+orgw3gkuSLB+j;TyMtjhpIKytZnbck_HG zcrYl!!=)f0L*OQ}v*gXC2CG$1^!t7?{;OhdCt%jg%I<1l+~oQpgQ=#fjL9{7VWL@f zf8(@?1$-&q>D6T)mLzCas0Yh1HZFV_bVKEqz(o;7*Mhklem!?}agW>Qy-MZ$jDtrC z-tXP2@;}A%i?|4@a<Gy5eO8|OBWv^X1nS~W%iL<d{XlN#M62y;AJ@27aGmk>x?)>< z{p{|Vyk8F(pMR-&F8lrZca4{><~p*Ie=XYke#OK2TkKT%AOGDy)kCw5w|4=XdzyfE zN^K<n%Jy0TX_1;4f6uMiCADywmvGZ^*3~_p3lk42E-adHq^ZLHajI-wRKyP5rW5t& zr{!(5>bbJ#_}VjDjIw=1uHWx?a%E3wp!A|8uT}^LUiuz*V|mL`_ZIG}ZufW}zHzbO z?(dVC@qXiK)0uZ%_fDu@J#&9W@|}HL)4x{S-*<3gQsAZ!uAH{%cUGu*JbaNS7vAo0 ztU2fQr@g7)dwR<2b9=0o7nJdTzrJBf{5t#fRX^)>*If<zepa}eZ|6t0>)T(Ls9nt! zIHb(+Y45eB*c8{(Y;3pLtk$@OWp-}8cPqs<;qSdwYEj;6yVpujSa51qU+)YVmotv+ zD<tQrM!1`VUKX9b<nXzU*x;b7c|y4#zr8N8XX{e5c^i_<kZt5#xw!Fm#FpRLVry+q zij=SZT%&sTXZ^+x%l)?(p3!@E$I_^R`>IlC)S_#veP1zttq%1K@xFTW6`M-J?S?gG zYvOupau;Si<<I?i?cVKR<7u;lTjl=CzMHm9?Au1+*ZaGT0-QKs1)H9=kLmt!e)4CX z%D_rZ=OqiLEev!H`on8!o!qn4B-!)WuO9X-XMZ{W^Uv`AaXnq8{zS$(jwL;BdX#J` z%pPCn(LF3EJl$O2qw1rDtJF2Cd~D{M@S53ro{@Fk&dy%m)!Xg;KBYOJ`OQnkgMFR0 z-p!GsE?a`NN?48_S$6!m;##e~smC^2EP3nU?f?GBh9Gl+QX#b)Ruh8V^|$O6-c(j3 z!tm1}Yxy3(zPjg6Qp>AWU#?$1_sIgk&biY{Cas)&QFHm^o1QO4?*9B-Ge7ug;b}$v z--Wxi<#(U-@i`H{;p%DowNnmp9(#2@;TA`OPqxv|B`Gr(dOo~xuEWF5R9Q*6Wm1{f zcg>fXwXsK@i24R!e<G5%E9Ks@a~E#?@LT-L|MjzfR*4Dgn=)hX#%sS^EiY%Ccc=b_ z=X9RP*ILum?q1jZzehCt&ZLlv??=`gTKYO>?L6D*K|O}u3%>Sg*qRuXEJ~f_dUK^g z&$QZ(RF4aRyH|C3O0QvO%lKDU$D?)VlCp<SRFWFk&()sUpS{2HKl#MV@gaZq?tgDs zY_1wVUpL{3{Ic~oG<a;zO)t)fxg|L{l!G%kqF%GCey-K3_Zx2c_%N0p-K|>Q+Y&$b zgNN(<MN4_#xv2h~C)>PScW=;-+Ql2|?ziq^JMeqw<-&XBZ?aFXU%0<b`}dOk5KWb+ z-fdn-zkOWzSh;KQyD8VQvUSUUz2CA=Up9n4^8WY#QGcU;s~y;P^V6;`ZQq)nrq-9v zd+L_E(v?rFs{V!e$ySkNFA{6N&bV~rRfMLQLFc)Ga2vn-g%=gyeK^~AJbmpJf8Lo= zfs#uN-hJ3O>B1g?lAc3{AADH4Y<cV4vhQx!cfR}C_;hFd-)~{x*O#7&Fs}Y4TYhHV zUN^6}lUuC5?|WZguz$mqJ4N@W=}N!5xvBO1@zfj1-`wioZaI4Kr(gZlNamXorK_y` zr*3vuWAWo&!xxxyP2s;w{Y$a>%kfe#>@UTCy058Qkn+OHEpnPkbo!=SYb~#3txoEV zl-XqGGD~EW#gmT{m=(P`=3d%p+CKZWx~KOIHjASd4>Ff;wD`1hS8nq!Z_h6r=Yv`< z9+CKd_Unv?mL_}biq3raHE*$+U;T}|({Gs>KYU*HVVi4bect}Y{?`vAoxQsCt-jCs zw|KLs=l<ej6Xw~MYu|YF?_hFyk-@sMFPpo+>{;x|eJx05u2Qpd@U^xzyt_AFmW^Fg z6_GeYWRrSA_=9~*^n>fTf2c;D=8zB%5G-iFKUZ<~<no`dSvC8vD88JoI(@l5ccfTZ zz4NEimDldQbl&Q;|1+~2o2VME*R{#P)=R&Cdq4Av@y>Lw^C7XDS022!WJQDDzmq3V zYF1@!QqErY|7jxk;pgdRUT?Cg$(+9X(EAsglq=o64hWTbKRLCcG*<3i(EO#YYOWTO zf<7t96n0j23cd-}`D?4=>6*EHiDzctiXVHn%+T3b|Fi9{=BXshNFD3$R8^IyH)if- zzmvGWS4bq%CTy0xg=>1;zRBHtMa$gZyxdc)S<KgeP)Sz(y{3zQuVJt2hA&UzJX<}J zBMVb3SNHs3{r$qjv(wXSnpHd75AV6jYMMTpZ{CE998ThLF8#sxqhH?eM}U!fnYilg z_2y;ontWHc*Q<SAJhLT4E<ex5=j)Nh$u4&UyASj*T+`lZP?>w+?MZ#L{nOW|s{Urz z@Zx!YT=+xYO7`!?(#pH}QsUeLj!eG%$)fZ~vZ%te!!m0+G?(UZS|3bFDm&u!aLMO6 z3k6S{oRQ3;nKP-#X<~)Al8lDcBKIZCPu;8nGL|e(f4|3LUwVIi$&%CuZAHyW!biVF zbjpZ7Zjj~fN^~_$>v{6_kIX(nvHki+m0wbpT|ZZRe+u{E&l_$$jy!vC{gGm)X<7ST zZTQv7!}F>~`pJj4lNoFO9{%(DQ$llnyvK_hW&8IXYE6C69?RkTI8V#$puw-X3rcK1 zAIVx!b>~_^4uj~wbv}pd4BFF=ww#$~w7NVh;)lU^WpVvqKTh}GfBoj4X~m_MRWizY zb8W+I9zOXlzcZrj*^9!tk2m#x*zn*X^Re}-tA9Ncz01zy)#KsG(LcND-v{Zu+U0R) z7Q1|w&fHq1zvgkBdz&Mh_r_F~uiQ5F(@%5T$TK=mf6Z;9=*PLOY4_&2i=TWsF`@7w z^WkglwsLCI+jKdjMavZ4xXkcM{AQr6qwaIC?foa-eXXSxwfPa<{~o!Rp2>L?{N`h+ z|FkE!{kh`5@37eGc1?f7^e7%1nfi=RuSKrE{IlX@cx-`dy!~s_>l-9g_ujPqcI(WJ z8~wY#NSJQ<E&FEevvT=@`y4-24$rGwuw?Sw-W!6SRvlVUylnAqTZ{9@3NFt)s`mF( z-Dc0df6r~5``W(IcY;>r(k&K8KCLV|@V|QL&G?O}+R|TbgLMA~YnX`@U(dQ2vF*Rx zL$P}Hn{QKgyGHVFHNCX^sit-0GrrYp+ig!+zqKq~^087rh2N;Ds7c1LyLrn333ra{ zCf8|BCEol|kM?&-7y4LepSti@xw0qK%;1~&wZrn)lz)8EuD#Yg`|YGNQolVT^6I{v z4)%K{e}2tF_40M|_aFFcu{@{mJx|9>cA3U&D{RDE>bJ=R%+7l#$9sQEC+9(4+bz|7 zGx#S}9!mWD`gQtucBYm`;=%9dtqITf4X;*fHQpQEzvM$o+2<#3-nqV$etPrW%k5{n zlY2`h?2VeMYy9$sUHP@Uzt%tbS>ii2Z|CycQ)YNN{<M!?r2EMC-?H<ckBUdh^I4a% zmrcK)k-gD7ImPyG{YvSHb_Z$|d9O`8UlSO8`{V704fAH1d%k*oH0+k<e!r`yVz?N& z4o0qdx4837_AZw5X$;LzE4qT^78ahc=l{5K!FJDDU-3`<>}HI%4T26<1%?F^#giMD zKJ4Mjah050VcAsYclqnz624bT3A_Ppch>bSxBl?PZ>_%XvzIHfRZpdQI9AABdVh7> zrL30gk17q%Yim50_kaGlQtZ(7m5+Uc_ji^o5j>=~#C^fP=*roSmjnODq^_%!d8nsR zEiq4@S(e@E+U<K9g8$}x?%4Oq?%s*R6V59wS<mLitliM9D1UA~^FEg&`A*ZX^VulZ zTORxPZ7ch&Bfm>UZt%-wT;JBW<0a3TrHV!ThIM<+Gdk2~+VeKW+}RWVYWlPFG8gvn zUtDk7uxd(hIrq%yi{~0&@kMo4=uOZ!m_DP3KlG%!A)ECJu3X++7c0-Zjqw`3zosQ^ zF?q%N)7RmrIHRb>XV!)MPxtUX+rFUl)O3;NO<t*uFIW5yoj+$sj(|P?V=KnW=$}0e zG1Hl*PB<8~plv(<*Yx6<$#?2gAK&Fy&NqG~d9Kk)nDs*W`5l*RKAd-q^ttj_lAWLR zLyc9+FNqI2A7t{I`JK-15lGEdjl7lhk41{>2*dBjtJClC+en1?zj!5augqWmNKC}T zxyG9h)Ef%$mRyrt=)LDf&z=~&$ve+|`uRwE_G_{0lJcTfw$3m9YVVmJv;5Y@+gH`3 zj^0*y)tdKHV}7|tx#IGo9T}HnKmFd)HQh_VMy1}heBqgox3XSja>uTy@ex0jf1&l2 z(}n1Z`(r(v>!*BAJZzM?WND|7!8GNAyVo(to?f{B{IbRCqNn6eIQqL}{e;)QgEoD# z3%;8BEO6?L)vwGlCvyC6EMv+3Wb=5+;=h~!oBXY3ddXZW?d$qu#;<*ui|n_5vRt@* zgUo>sflJI8yc_EErul5UX4L%l%JGS@%2u2qntZR8TdmlB$%T1pL6L)Bric9Ux!P~u zX-(PRzx9Hz#Cqv31zr>T51B2}d&#_ppFv-~#Kqdy%K5p~t4aO8zHC)~YIXRn-U=?M z-pcLLH<)YQ98EtU_~LQpft@wE557gN;oorafUjJwY5(?@&sUf5zhFE&Jy+01(n~G= z|IXScW_`Ck@}B>=_5AexiQ69UXWsTW{t(~$<(>B`=Q2KFxT*0tbG__M<@YB3Nqu#T z_h!Gl$Udw3$@Md~x2!%Z*0%lZ+IDyk`}7NfHsbXm>uq;?KXLt=BrB``h9Q&N@c**Q zDN}y4#fSg2nezVNo@SfCds|P5%~~n5Ff^lj!k-=Lv69Z>MYC6&ahG_x;pLy5^Y?h! z$gln5@_8yx%l3wQz6WRdect-qvVUj%lG=Bb$1Y##EK&cW7rk?$T)_6rEOudg<b(V_ zo7#Pw@!4>iYDxWizY7nQOQsib)#f?Lf9I^)enI`*?TmSk{$BnayhLkpy$%0?$_@Gk zdp<=dr(9G?DQUluc%o_g%Dw7;c!TU+{(UXkdep5v((0hyUmruOoX!>5*0Cvt96Pm> z_Woo1yqML>tZ&-t#AolF{>vNs{uFr@!2L{|{qW|3uCVAAd1sbBt#`7M+tqYlerM~U zoqY@HlUwaCGRf9Y$l8*-B`CY;-roML4{Cd&xqlfo|5Df!bu-OsV!6gCg*fv|?wtQy z)(7)_W|*&ECG7f=?@GVT9^OO$o%ep4p7B0+i_Eqq2QE2%&;G;Am2@Z5hhbN>!lOTz z+5SmYEoE0a`);8QXKKvZ%S*ZHt60}gc+hWTCqAX!@cX-EOqIqrr>y)S-*<6qkeTje z{g!*O$7d;CzG|~BB{2P`1@H8F;n(MluDb1Y-N&)!@%?~_K|KG|w8EuU#Fz>8F}-WB zYx2MADSTD)!)85K%Q%m{2a=a6<+2{S`Apen{))%u#!b$V9y^=X%eq9@KFGayWnKN* z4+oxRFW}#^mt%Xretvee_1@e+o4<9|eJVPr{z+yD(}|Y?6P_)67kJ5c3-1kuS|0m7 zonjkJpXHs{x`FvzwtTqQ#-|Q~3pBc4*j-q+;CRFL#_ERUjqj(-E3rLQ$G2tTdv1#* z=?S|XKK^k`&@Z_0eT{8}ZT+-+a;L(dz57;ZI=%i^kw@f)myzjq!av_Hws~4~<DpEk zdArU09GNJE)P(0#6=fZNReUJzSUvZp-%_qh_sM_!bAMSsn10!>ukTy!mtOXaBl{bj z->x{Q`7AtqpWT1+x4-8zJl-v_!{<ajbE&Y^7v7qpyETorzSB3QeHMAM^Vq}A;GPN3 zYen8jt1r<PuYW0fjDOdq?$djctq%Q^*;jGA@b7YqQ)_eh=ga+A@O)CUvt`d8hvOF4 znAzKpmFm3i|G2H{KUcCQf00(mu|>M>|0J%znQ~S!RC%A+`TdLhWO6@loO1Bs=OTw~ znlcl<=JCDcP%S*M_+!qN6ZQ>@=f<cP>^$W=C;UVA$B!>7kAGy;uh-N+Bv;Egzf$LD z$&$CvbB<TuHawf|{ZGfgedol_;i>=rbI!0{&-lAx`hWk|jq{9~)-jbe`G42@(_8gp z)%WE7pH_EWo<#XQsp(r$D)dI++JkHE6V3P@mRyi;&{z`Mlw?|DrX16o{+{u7Bd?cE z?7Oepiv{IhJuJ0-qN{)Q@cEzheg|(Ce*5&ndOBmd@*gz@-Qs-=Rn{-gpNQw*mlW`W zVeR#%XNqww4)Rg=-D(&bO80M-FA#CCj(&J-OIq`Py9B%M?*CHcf9?1FpY;FZ`=IlZ z3{yGg3%`B4qy5MBmH9UR8_Vuw|2X!4{)&A4kL<6eGS}?8ZgJ~v?Z2}A$BQM--``tr z!CABZPR6bW!LJVWx9Mxw<h`@6TKQr7eer)PpXX_EovKZLx4-EA%-`!5eDA2e7oBlF zW>>@e&#t>`UVB*I)=CXz6?n+{Mvm8QUipQ2!W(QI|J+Y$%-`8{xcWlnO7>^3BX&0> z6wgofpKag#&fP{Xd*;>c%YNp(md|-3e|^jU%RlPtce(xJzjkF}Tu51ie(fr8+4<?! z6VF^M)cxoG(Lek9{|epz-KM+#TK&C$toHRD{%ed=PA{~+kat}E@1?%F1NKM%pFIE9 z|FP`fzOs*RW$Hi29I^hTy060h&%>YcrRN`?Ka#NT=Y_<3f0rMykzEopQ~u|()$4g> zpBLV)`Fw2aQ4^MWiC2qrxJ%n)Pcnp6eUH`TNai(J|KRoPrBjP^`-Aiz`FHF$6)`)m z^KDJ-Gp}vT`@XDy^j>GZdrbJZ?mfbLH2$gAzFV>Vj=lIl#T2z$`?!(|Cv9r{=fJT+ zcE(k+Yd8Nyb9~n}3X9u!e(HXMdbddX|5NpUgp2&%Ben0ovkk{bg&XycB66)&KNRzB z{GWH|-`C<BM{7eWfAyR%$?R1+ulgwGXYwwAvO2AAM?z0Mf2RCM)=y-cl<B_j8jo^v z=YEg%(y^DmwEy}0x-;&3pBF#=s<Eco{-VX&2B9O>9OolzEI;`@Ob@=4{wIIRQOTky z)61Sd53bpJ$>@lb@QrseJLLn`e5qfg=MewCdR6z+V2$d@4`LPXowQgPS2^X_=kmmD zYfE;Q%HPd%tY7o^Wt?r_yU?r`X3_Rh*$>lC6mFTdK73!P=%(`jCvVEzpZ3WuU#9u% z&P8>Bx35`u-@1P1%Dy=H`Kbme#<xD_ov1$dZ~H#pQ!jZ-SpAsd|Ng98zVm+dyPZdN zAFGeQw(VKD&GP;IyEG*i*`1%Mb1mnp{L>%Z+qfmmbGp~-ojCe6eBXrg<{#$;e*B(u zz3TqKr;LgBwro74ud#sJAWr$`%$d7-7EQ5|(#<uE&pFLJ-*b-PKFyMCecOXS?%Ce` z_0^r+OJZj(_G|de@!Y3=?_uowqe?GcIzO5l*=@lsy|zA=`Nz)1o{JS%ulHjvUd{U~ z{FK?1ql))_&(yCf+-~IcB7IA^dGgfz88bGyzVPYzJ~v^)CaDLTR=4$i`;??t|6T3g zdrqyCt4uquU-Y=>UT3zQw~G7ciSM1C4|dm9>N01psZ;*)weZEctt+-q5Zb!+fM?gG zszdf`ocFgkeUFOL`&;j@Q|3+D=Z+-`J#7UiTy}EV6yK10^uF$=b>jQ#t(6DfzTmIl z{#E$A`lqUUPm4+(PT00d<$bkNyu}q^vCQ?AA190RZ)N^8b3UWrOAC8Tm!CqnzRq3l zyGeG}Eyf2k-?Z`^`CQ&`%5}oknG$ydA3QbLtvumeW|Vuy<zy?Smvi`Danvv2|24Vn zPw2k=S;ym-E-z=fbosydt&ibPmzA(w3jVjO_OLb6%ftVh%l=HA6Ku`&a%KJHK5lEK zm*QnP>~AhVKCt=5V!MOa{nuQb-u$WF|AEW}tp|oJ8{eBQuX?<`;<K+c?>}SVy%J0x z_L^Kv{v7>4F5yb%hh1k1-tRy8VD0fajUVd!7d)?e^=QvK+j+ZK_mu9E|FrF^W<vOG zi+t->W%3`dsK0WvzO&o5uBURkd3}BU-r2Tq%iNo;Rek#Wd{2K<{^!gYGwRgd?CAcU zdnWV4w%r@Qo10hFsD1ZauVY^Msx)zah8uJ2-t*JvZ{z;bRS|yV{@aAL+dN$66h&+2 z<f*o9jjmr^^M1|yC*S;>v!~Q_U4L+RA&>NT=^eb{zddi%Zk+#Tdd2!Uy$M~VPi&9a zJ4;G0Xm8vw+k2()dgndUXP(}lZfIUO-?^^et&k&rvFDnrtTnb9<~kpZvfuJj<>-Px z5r2K7R>q#%uP>NAZ@wMx$I}nWKa{6fo!x%NUHdEl$CzbKYwE+BYhUi$yS8j^=Bmgi z&llJIU2$WV_)G7H-bXJK#Ld4q`NvGZ{P?@MMHMaYi;wOo{+Z7zr<!$^MNc5tt=h5K zF}e0WFUQP1UA8-YA|K7YENGK1vcNSdZfj8bU9SI+JfrfaX3Vwod~^5ol&|SE`WL3| zufKF}q0Uz;uJ3Q}ZtYjRULW~k>E0>xdw-l`zEb^C@2TjNQhmusd#8Q3S<w6I)Pwi8 zqh93wTkGP!|JZZ)tv}8088>aS+Vl6}l=XAp{?gB|u0LG7Y{Oi=NAHjQsJ3}nUb0}H z*~jk{e`2Lh?F{)5&-^0jFV~v2{Xq-ADe;D}ANIGO&la6@;)48=jCb>21}~g_C%*o1 zx&>Ql=zFy@g~bNPo`+swb=X^8*Z=+8&U(iFirnKF{<~((_9(vl)OS8#3~NZ$ywB;+ zlKgLc-MhTz;~OpiI`QqHe`MzzIiInopz>VqkvV^R+i#z&?EUcazenx+clqCct*!U} zf7aN<uKlNZX#J<Y{mM_@xBveAXvX~a6$ff9KiB)tm%lr)>fU#5`Dy#V=YPE9zvoNo zy6ijGUwc^B?f(>hfAgQM@~`Kn+f_X)*O$#Kyj^bj-(hOm{gZzr|CXPBcjR}~4NdvK zkH53uGu~<T>g#Fiy7uB(_qgoeZn)mh`(=*yCErK4=j?a9Z60Gk(>}|7>+%f~8U8PO zetv<fLOj#Ne>3WTF8+5TQ){2$59y5U4e!O)=yyKrpLXQiltUI5o`uTI@MqFzYH!SM zbX(w=_N@O={D!F9e=FAH`EM*+Bldf;{qKEwTgvob?G^vp<6OJp(XZ7R`fD0~EPI&G zFn?}|`46>jyMITnAKHI(_6qiUO;6db6f;-&Eu0tJ^zX>S$-Djg>~_{K$dB*-_-X6S z@crBG{4bLUe0FO8;rRaUpTfughwcBr?(HkP&$$nT<&MQzJ-Itw=2Ok?cB6ASpU*D3 z8^5r>p>87kqv%;{pY_N6VcA*7Df7haRQL0}_jPIymwLDH6)cd`5Ab)l{c(~z|IX*X zy)Q5AGqS&O-rWA-=Z5;<hY!}Sw4YqxAD6g~SN4xfJo7KLie=rlLf`lP_?=!?c6k3r z-Oso7sl2XR6K~#WEZMyN>$IvDW(WV-xCfvA^7D*gob;Lf%}?)(v}W|0gq2-(y`jH8 z>`&rkJA?g?9AdrqR$T4ADtG^U4QIu{-@PjS^*d~z<V`uySYUspJ?c#L-hXD_le29K z>g(Tn+TUHbEnnp!XYzXQ7txZ(tUZ3{zrL`o^hUFB)XBfB8{JqE?d|60wfReG?A!VA z-S49}5A!dOQ*qQwo*I4Bd~q^MpOXClb!-CnpH%D%mRh>>lE%`=n)t^*pG~iS{af>c za>f4E^Oo<vY&YG*^Nzo0zsEnBq88tY=865>=Og#Y*O$y;@8YQv{r1B2Lm<C$48Mwk ztz-#ff#so>3&I)1nfog)uU`^l%9Fa1qc}l-t<B4Yo66&Lzg^3(RFGc5{PI%viS1K9 zEs>vCCYQk6R(bHV4X=E^y|l`wr(W)X$5~S*C+~fDu;QCx!pArFkM2Cwe=mKXO|#$g z!2aNcxw<v00v^=66>pD9c$em`=_q-6zq}DML(h`g@7w2n`V}~1?K6)Dc6I-LwZCVo zd4F<mNNww{RojEsi8)?hb<sqox{*nj<MjuYS3JKD@82)?{HE~EpZD^l{?D6H@2#`{ zz2*0B^ZL6tlr`*%oSt;w`%nERrG1uSA-A6WbWgo$v9YWx|E1*jd)w+OZHzwtHF-Ac z{Q0ZiFV$+5Yfko-Y`iWuwetL~rk}g|3gQdZrZ_g++z*)9Y-6|Y<nzN4H`=ys4)^<M zo*T1$&pw6o|2t$3?%!!t{kdH9ljWak-GkL~20Rf@rat_s@qJ&}`}y;py!dhU*#Fz_ zw_EL-|7-Pk*Z*H~kJ;C*{@DJb{)b=v(#PAS|9{avZh!Ru2fk<W_oi#kpMAbie%9?k z+j;G0zc)@#X|Y^zT5Vn}Ppp^IzSm2HXKZfYU}vFuv06>4`-{Pi^#)JP7uKJ)d3w;^ zUpRf;pPYTW?%uat)9~JE>hGnW@;<xfJwH<3p>j^AeXI3q-3;sHvJQ(|*0%b7op<%# zk?)!HhuChinB=AJ;7w9L!6vZX_)*Lzv5zYKv5yin?a~gP<q&`P)1ZIuBQuYAEb}}) zte<X-Jd{>+``B~EH&fp*=(+xxA-=)!lK6s#KRwH3FPZ;|?fo6b|6|tUxbxT560KGJ zcRrF4N_>BR@rSMb_1ojxYFPh2(XagLJ-`2F((xbmKU?che9o#ask!%!?|JaQwf28n zYegRZoGt!--|64ETdq0332(W3Fyh!Y>-zJb=UG1Q{J3jkQ(|z^{|)*RR(AET&G+ZG z-23M5wj=K9l?vA~^^UJ^U7Hf3^s1rv^Q*aPf28*9e_Y+Zc3!#Qy}k4E^~E1vU3>1u zZK*ZQr+=3JyZ7~9=D&S5N4wcADs~5kuK&OEb;|GVslW6xpYAU|xm{b)Yj4ncyOm!L zeO;0#IQ_6ta%Ae(j@MfDhu8o6^0fZv&DU>Ar~gs1(XRi0y8HjhY6t&U5C7Vq@=95r z^Ut)gOzVg2`}_0UHaL9xySsYtiSPD{QkN(_`+NMm$HIU2HuyxET#ybs;by!iacWb> zJo7aZ?RCGlm1->vy|<xt(Tg4CIZGG%d~IXCVNqu1mDVM?@#Uqe{2BjGZx73lQ0kU> z#e3SsvF~e}DA(lYRrQCpR8O4Vli0iH3H#o}xn-xT_a<^b)!^QfsC`v)_TGmKnX7O8 z{n_4oXU?3sV>dEIk9DlN8M>8wwRX?JP}8fSrm0(}hHl<1$!eS~wOCt!c9`{biCDw! zi_+>`E4MezI<;wL^QyFIzaxHiiZrW#m5vWI7N6sGKF{)Q?>S|y<yS(^)~}rvHM`Kt z`?t*9B7JfGU0sikRT+hzGd<OFYu2VuU6HA##yzW6*59;ST(m8)JN<E5__eSp(#ct; zv$PM`?6%px>ez}ylckcquI{<H)pV+8@$SE&in*D|KXW~NZ#JE}IbBkDx!>A3L5U@% zZsERey5eDeGs8?b=j2Tb3~76`EM!`}Wb&zJXZ76Ud*0Rlej*lr);MjduF12rYaO~T zG_MTZoZWj%Yw@0<ysths4vTwU&GJ(5J2;u^!ls>WrLJe!oQk^l<s`SOd)lINH}`PZ zJV?FLapl#lRi7$@vnun&eVm<dU1f-}tUh(7@~MRQ;p-i%ZW@bA&DA#U>57~jShoAl z=KuBE$|mle^L^j4B)#{l;^$v-*<AWI?P~m&6~(GqE7#6Ani?708FhNK*qM2ep<#8) z1Wwt+9xvF^>wR_4tyh&>-71gP=%qcG8D_Zomk(#@;`WmZVon{r%Dr%-Nw1cJdw}R! zwyaFW(C#S*JFY66d7tXBUc_?OLr=!DM^Z0jEQw|N7gaw?J4tkb=m}f-??oT?e_HF< zXY@pt<=#w>*Ad?P%PM=e#r)0KqmjODyI*tFqAfD7`U29Y1bPO4*ur&wb%xfdQ$H>T z{ae+O_u}u<w-&p$W#7GF?6peduNHGwE6=IGM>-dzBy^mw{GETgf4Wullot=B+apwy zVv^W;9as1qu`xaGR-d&^<DfvQzi_S5h5uR-r*1BaovKv6{r?Wt`ZMO+bWL2I#3<aV zl6<6m@%l=qcYiX&4R3{-+`K)V`{?9Mr>@itZ?Q{VF21IZJeN**C~@a`r(ET+qX#0s zEVYy9O}Z%Ue4<S8h0Q{DImyan39B-)*Ltizv^Qo+c=s={ZJwtbym~Y0gV%<;ZEn@E z{b&>zv~@-8v<W-?UrlzE+$T8m<=f|PwuMz#)Vy7hIemN7i$u#P8`mojCmv_In5Q?< z{(ZChxzB!%xu08HP8~h-N`v#9VQ`C;ay^^I^#dpGmHn^0x%q$hzWI84_vF6GZmIiu z?9y`E`fJVKcGafs{<U3N`JS+Ue3ol{t=--yPpf}L^-W=2^gJ}_+TXcqQ|21J61_L` zQsKUWmDiN++Z;R@ZN1-jw(ZjobBrfGeqXX;_VMzcv*R7kzfGPl!g8Yj!ea&*)jPZi z%nFm8>y`xapD2C9!pkYVMN!GPeEQ86hy8L&dtblZ={;}S_KPa78lU9yKCbw*&F%Pv z7{}`RFW)b`dDmnXVblM0!<{2d5*t#Pg;*<{l^dfQz8=`z(8iX#*q>2&!c*N(%i0dP zO!=U|#ihm3y!r5jQ|vEw4~VSmZ~XoE!1sG1tZR4ezxe9>>izKrM^Alk*5)X;-oR2J zQ^6gulI#1|2F?>4xra9Us+^qtq?h-bOLe2~zJ4+0Nj3H2tcL&mr<tG3mVWDG_FAgh zsaTe^>?fZVlgg^;?g7FI3vXOai1roQ#Gn7-R%}N>#bRB9>wSN;FT4=VIKdUNld)Xw z5nsde_=^%!2fO#LQ`Cs~5PNgN<ma3ww-y(5E3jJZDQdNu9i$N$$1;n-iq%A}WK)bE z<D$8J#}umH30+~Y_YafPXm?&J{FKR(iA^_9PU(2SniFR06)yyz-_v$3w&>#HgGEzL z2&u3K$gOa_CS4@lYrDyrqrP(S)&A}ImCd#`<?Czqt_hYX(sf*S;>d!%n|PJ8g>5Bo zXYihg4Sk^B?`nSBNvAVIxp_)@cT<}Af(1<pl`CZ21uM*)`<546sCTk-ym0oDn-<I7 z?S{5`8#DWBW<S_9RlMsJdqqgLL$X6cUT|ZmT*LCOpUz4&%yxacTI%xeCqa(8?#wJ= z;53TsxsbH*ODV_I#4E21f=VS;TA8fkyXF3=x1vb-Q_AV^fUSEP!Wdr*KFbol$I$pr zsPW3Vox7i8SaLOOeBY=c8I)WvwYG6jY9O!TLZ#@C#q|mA4($DK$DK(?D*m>F<kaY` z?(dX#O}Z)}dRlUo^n!KOPd(0GXfSNzKN)Aq*Yu#NbGoq9A>r5DLW0k`=6Lv2`C1)l zRoSb(_k4SF6?dUu{P#<L<9;n`pXGar@%)kr_a1K9so?iZsMU9p-NLUNo|oiaves9~ zcV0Sv$?qQ5OXW=QZ4RB6+B>E<zhipKxNEoK%c)1^UOML{u;uT&wg!%SkuO`@&gA4P z7@n2x==sX#q*TOxY02}Y&o%g5|8Sd#ez9EHImvN8YcEsoq^y^s7u1)`GdR(CiBG>a zuxi%o9bcw=QJMDGW#vZ23FZs;IX-{#k*#;~@p`Ef!rG_&YND!qZn+tr_?6*Y#S^sM zWZ7~xwzrOzK2-s$ay$HaG&guk-()EhnrU{SeNIrvmX!<5^;1F*Uv_(>mpOIIDZ#6^ zCq8@es>0)(=joTTK2OM5l30G>cEt&e4c_L58`exWs9!3&<GY%3(>DgbgsCOT&6jrX zJJ4$PvCeZ#J<E4qrI4=btsH{yzHM8s?vk;f#I~13Wy(g52p%2AbqDndrk1c4s1}G8 zZ1q^l`i!w=e>iVnRzXPf;wTUyC3E$`3Ne|hi@sGdJl9}#*R=3D7^npzxcY($rf~7y zy9c8BlnO)|7jwwCHi3u-8cgmJL4=@1eHTkRvkYH>#es(c5Q?GQ8N>roPa2fjWh@_@ z5Cjp7?tB(SEFj{*L}d$}0*MC(2NF5>m}S^NoTkGJ?TmcR1vd^RvbW31ltHP28?5cI zJ?Cv2icOjqOUj&mkRb*l*xZdRX0d{Z`hypBbZ_X%YgBORupcO5&|zme&A35^0YnHu zMfSw57d<p#fmwIM(E~yapUoP#bMEndkSnyu*J<xF#yQ*NWWGLF!S22nMA%xqIvA)A zBKZ5N4sK+Wkv;$-SdOz5<S>8;0U7C*N9UL=j@Pf7^8e$7dXMWHIK|d%y(BbE@kP?F zunVqV7A^?CT;{lbQ9H}tN$W(vaJ|xf!Q>?_@{}{myHo7igd5f?6qwW!R17#*{Hpib zJ?n;ApN5Tb*&gZU&+b!pEqS?SbL{MjY^Oym%}tNCZgf1#uE3WuU0##3i)FdeO}4K> z8bU#VtS+lUR;~)U<lR#5rM>>TQmpeT1y|d!oy(RNomlJm<x2Lidu!$fT;0Cz^I7xX z_sl;ZGkzS|&o6mE*nxEe+XR<9<`3)%?Y+{?|NLIA`Qoz5BReSCwMuv6xdS&3Om<M+ zAeOP3C60Z@q<86x8~YAja+2%*!nY)!@q<94iE5Fi8C&7;gt@Zq*CnKlch%q5$bVd- z?05aq7NO<+k4^5L^9$Y|@ls?`%7ua~so#qy*9cGOIi{AFTD4`<U%B!{?mNB1ZKaG# z9^^WRZs6I$?!n~7$l1X5;E)*m-b@~|RWYnb7z7)d6g}eQYh2&FoYrf_eevn7^@>f; zW2`qi2fSM<Y|Zq<YU5@Hd+Uvs^YWJ0Ypb-~?|M-zu`~UEXnTI+Z}tAVk{{j+mh;Io z?|OBFk2$t1Y5&KPjyQ!o{jSTUV;a8q+C2TxtziBBgJPe0=aEG#`kWPb_c&isi9Qgu z_=<a+%GHO$4$XY_eOWV)6g<dmP;vQui{ZpRDU%nub7$3My?LDfBfLhs>p!O~_vOds zN9(^b=Vs{b&0zVN^~hRa`Oe9Fi{$3<UuC;};{4A|-x}(<O9OLT>kspPcIOOd`|O<Y zomueE!|x)~ZH@Up?Eb@{uez;b;{1o3Yr5jE9(eabyGC@jr%u+UbnQPfAwM|xaG!m+ z+%(+eqsadrX`5sH+N*Eue=;LH-)Li(t%KX%7xK>k>yMd=KmXCX#Cvz|jxW=<Xv9u4 zy4147tNBv<rG_io-%rFAweN}NJGDt>!e67wop-w3x4-z|osrM*-`|AuhvC=m8u7zZ zD($BmX&D!_-C(b&oTi_Waj&kl_sMgS-|w4VU3&1-yKMHXg=PNpo-8;1W@!7~%R0C$ z==|+VJ5Q%gz2q)dACdd5)%)a@mzQKs?!Mn%?bkH<PW_E|^(p)6|1V6PSa5%Bh{aXo zo3(#Jwz(Qz_V~J2`%hlkfqz!<25;rrbgD&+t(n8_{oAu3#_;u;$*n~<tzJ89I<xD) z+UqmE3-8t&XE)|}pGYt(Z|FHP!9gv(qsb`3-$<j`@KZ^k2H!3Yp%?W{ibA5hG7MBo z>biElS~lr)n5b)piIZ7tTCno_jD%wjH*-v-M72T}s;yeFQfpD7^CG2lj*}iZIX$eN zyP_jl@QmEO$r-#Sf2>Q1Ir8bEE$?@ez3sDR-E&@W@&9wv`4=;Dm+aXvZ+3XGaaNw3 zL2`ZN>#7_3te0zCZ8fqIxh+0-X8rCm*~+qedaFN2Ry&^6x;pWz*t^n_{uMX1BG3EI zzFL}W_qs<y*|O9u`)ZK-nJ@d3Y;W|Y&dUhA$+_mtk%*Ng+~rbtHG8HWi^%MmY80dt z_Kxk`@8YyjHObdcMEkRI;su_4@Tos?>PzX}IY&5S=XbP-|BC;?S?l%f<+Q!=XKyIh zGwc$2=^_>T!O}ULeTKF4x(|n3mi%X}y;V@!xHJ0fgtY5IA`d^7R$2$`NO=^pvG?Y+ z<gg>&I}WRqD|6Qu#0xcC-|ZEYQ#my%_G!`14$nw^p-I~xx9+JG;lDgtg~N36)&pfb zGC%)pS$pf=yyEh>#^83h3qoy&=lFeeh*Rd+tykZv%Q{V^ExI-6?Slg^mhV3x{D+U> zTj85+#yZ>1zbVTNIQ-XprJ2n;!<_JmbDJjy+9Ydnx=u9h?|sLTBDVGDk)$HeXfGXA z=8C4bMiM`b?7ZeaOqJJsc{I)4VOxse`#A|6-}in#*ub%;MKX5#7bVfZU+<q=cGmCy z+Z#!XuPs`!PxXq7!1=hG5GLh^uKMQPQ>9y5HtTRzPOT{4eexb_dCMPW!;kvsz=r@b zT2A*gvhioMoPN<>UUd38BO9&ycL_NLeaSs96M}m*z59(NoEkPT&Tdgrne7{47B5!T zs51N0^K@p-B@L#(&hK4+rl*Vd=ePU+e+%Zv?R<Wx`uxu2cZ=UwyGbZ6ac&pr-nIMM zv?=`WEQ+LUewJJOVmtO{^4I@=dJl6vWNVr6n!T)@<!XG8oMT5V@2S0qCo3lhOV=;2 zDfn;bv?{)@=biMwZ|ZB~T7>GlE-ah(*7={~TkrUdN+vN}AFkeh*qFGx%JNQr`|mez zlNavw{<q=n{RjV8oMH~YIMQ(c-}Ftr9B+T<Z3#DdcHjDB#?^TDj4%ES`aQpox9!_# zR4(e2EY{MqTV1_L@kr8&{|`8W>?}=9e$M!%S8sjCp831Bz;Vlq&;RLLKC8O^<AH!> z{jnIv&Z&JRE<ZXxm=?6Zv~B<WU=QC<fqtDS$JsCPggp+4X^Z|CwTJWfN5>lL&$7>| z&(v>N&nb3LF@;O-pz;*1Qm54)dM-cxvO{9}snmj*F?`|6R$sXK@KrJI(>*UaYmS{c zbKzU5heNtyeS7eNYifJg@{iP3=wJE8cI8*_imN(HI9@h6WUrkYy4rBrHODCJwy2M1 z)Q$Jg*lF?k?95{0?`LFYTN-T6e)ejnud%FP_7R~#-}L$q*VzC6ImmDSV>$o5KMxME z>(>hWOSt(vfB*l--~au&Cx8F<{r7*r?Tz2_{a|(e{_l^f`S+GTtG~Oe{9X7*rSyNl z{~y*8iT`Soe6(nf*V>C}Drzskw52RQnX~cM8_kt{TfX$1(K-0CDE)aw(dSRxT-{xJ zRhOnd6`dM-)wDb7^($#HbG?tIrrWn{+p7OIVq1;t^HZU*cUNCu6I*`u7q9JJY4hBB zn@XeS|L>}OBQGH%C3jQq#>V23`kb1iPp?)cWL$q|TmAj5eZkqS?CY&de*BW|yHoMS z`}n?^Kg)#8=kIxX?RMV&$LDsx+xPs+%j);L|2G=*&#Qg$&|U6t`*FGYM<<uht9z#X ze4kX^w?D<_>)*Dn-~Z#%>H8H=<@f)5l`Z~As#@?a3;R#ogY(@w>Sz9CS$JadpUKAZ zpLO($|D2ImDpwM5b3K$0@j|++J+S<IKz^abVP?fYQROo}=kOHg&aRr1mwxNx^#7(d zDje7DD)Vq3@Bckr+swv<v3+`inT<S0r0Dd^>RV*Xr?;EgSOiDv#@Nqhuuse><_?g& z!Y>fx_xa;vrY*A1xaYhx_;&hwrjVV?mwn>5qPf=UyycdE)qm-ej#FBBw#4?9z{iz6 zh9;phVd9Dl`CnD(8450b_PF-^s_8=JHs*}+)4j}X)Hu%v-^|V}(XTR_UTJQl=$9^; za$0cDp&%_DpL3fYAD_N!`mVo!6W`?7&F|TGm5FyoLPXAik{|P@wG}?RP`Ex?K&sDK z_gTiu2TPwi&1k<>uu$Ngvhv&LyPsvW3!H8hPk&)<bBJ-x^wkzNs*Fn0FIw1$Gs;YV zX<;MJxMn)1rOnLx`Hkvl979)#>ADHd&n<MWjeWal)~i#Wn)c*`hqc{Y@<`}PtM;MW zyQ*t+IgB~dm8Ko!={_y^OybPM15*<Pn<uibdSWW$zivwuhux-$UQ=hZnn;=M3|l?< zN|RZxYlX<FtXccDL@y~#6?0_$9J(qbC4hUD$^B3JSMzO+YMv0ivb%oHoLl$qeOTmF ztQ;LU?_`8-)wzbdJLkErTXpGi*-Odo+Sg+ub*CPj%WmC!PRhd0cWv(5PkNG()8<FU z#J+mg^Lw&|d!g^j4QtHm1LLZavMxC!uhi8)oN?yF=BZ|Ga!K_SEBDNi-SLHC`{`#V z4R+Pe7Q0$<UA(I3O=Il3u0uBYvGsAT%_q|~#r|4zB>l{p?YBQ0^?L7cx0hY{tUH6{ z`?)jkKkh#;<K+Zl*)J~zPx)-0@xX6+*vC&6OBJPlq!vHWYW&Yr!0wS6Dg0vkk^dnY z&MoFG{#*@HMQ@nQ*Iw7d`i*ISibPRS(UkZb9CreC@6DMyacxe@qCX#ve#or8wCdZz zgY{yw=Ek)jer+^6_Q@NQ&&!wZ58YFDc-g5_zS7skjd|z))1DHg6EG{xXF-?d+~qee zpHW<3%ousG)-E_n$*J?2%j$~^{z4&hycS-awB)Ev#4evpiB6{Hi*zpZHcSzHc%Q*z z9g|bH#+2xmrqelXe}ooYsyQkm<Z*^YY=e@_97(05`V-DKJOw6jocHz#cx~9>!f9r; zc=`^dnZD<XQdUg*nEyokU&)ibzgf0N@8I9PD13?00@3h*sPNxH4OL!>+QAu@g$&s( z#ZM-0aGB#jflET?;*lfe6J}rCpRqh?H`4@n<@ZJrsSTDhZyk>mDo9e?Hsj6A2R0#W zJcqfPqn-1wYO&Q@AK$*(qBiMzmqTz`T5y7E_#!(+gJW-gd8WL1-FZ@KuV<{(pP%*r zs{Zf0|L4*3g+^OF^9}Y3NG_clFIOpEAD!o(t@bv=Xy?3Dr(UUAOjg~r_}tf|9cx#b zJ#5<O;8bHgC+oMxmge_02Xh+IPC42CKbrsT?f<X!|7;?-&Sp#!-e2GMe!<(E-am5X zi}?f9ZaoWLx^$I=+q0!78w{`V9a8O?Y#=)6;!ahzphw=q@<Ho%O?4`o6tY0g?cLRu zNweIxwP_p(OAec;yjey2X5g+Z7QxH?PY7KKv2u5u_OZd%{&dRewI_7G<==jB(!=Z8 zOW|U#*K^d;4PX9Nn0#bSqFiHSQGK7k>k+<R?>1jvHt`0#$~VR{V%|N|F29mFvcG%A z4EJ}6t+omBVa#vSwp?58b?x|tb^Sr<hnSQv%6`7$HP0*e?851Do%Izrr*A9jKYumV z=JWEI$7k4o7C)dT{yQYf^!Nq4yF6>vC+dYeGF#m$W6E43RKO*9X;y4Mw_)CquRj!P z>wS-LEej8S6_Z%H`$xTS%n>(}Gk@m2elnjWs`#Q@ywkSR6P+}krF6+AY*o3{6Pa+& z<*tL;k{Jg@Dp+3m)wTrXExq-$N0-Un(?Y3vgGLsMF3&}M{j^nDzP%DNntfk+={x^v zyE=*UPFBi}b63^lWTpQf7ruK}{a<0to2$aB<5$(++_ZmZ<^N~1W}SVqXKCBdgW41S zSM6K=yfUZmsc6p6DF5@<mE`w*dhz@CtJnQ||G!xLe&XlqmdO03$LAisXII+y-rGoW zGH=z~u-=JDzwdfJV3ph;mLR?0{nG<YM|6_DSR6@F?(=@c5~mb5!SUhtNkw*S=M)YJ z{*E+|mpLw2*`riHVRG=)XWBEFdG0(Ch;}IAoy2iGVMVp3c=4QLr=;SHLUtVDaO&N> zV6Nnpgo{!^A>AK>w<jJqu{!o|$BG}Zy-~|!JJ<jFayZ%KY~wcPsW%naMPIPS8@ai% z-qh>1jBM8`XnmyK<!x|W&FTCMAC_tJpDH8>v<n|%VtLfqm}sz#r~bwK1(Pg7EW|q< zm=$#dxmk}MVAxzUHN0Wjp%-BrPMlmR)aqfTsPIPgTv0SznUHpe^ucdki&UgPx=nj| zw?yqm%&xR_=O^Bk*)~6#d9E)FYZk2EUzY7%7Wezwt5;{ePYaneHT#F;Uo4lem{7l| z>dCpacaN{TyVat|An>`DbZk!jIpat5t8QCbZA>}2?U>HOvQW=9=EqO|Rky9?uy;?l zd$#Am`KKyMEuFQ&wYia*o!2MNot9;`=xN2yuuhKK8>6N+Sl;VXG&<oT(6Zu+4TtRU zCTU%Fn@1A!l&`D~X}K;n@w$$*sf(1Q(w>@7mf)psT0!Ak!j>v+h|TKY_`lBTK>gM3 zQ@Yn&{rr6Y>=1aa9<}F=6bDQ01KzhYbuQ*wIfQ=ZyYgaLwYt<@-`UyzclJE`wVubv z*5>BKTbWy<Hkt4ofAKl0J#5X6s#f*vuey_G^Q}L5GWV`i+d30Z<t1+I>o&c=aqHUL z)#8%H=k6L5q%GQ4_Tlv1rfV6Gw$vOmiVwWGs(#<3UHiW6Ieg>tp31<-&)R$zZaXb4 z>%;c6G4G3G&cvRa7u9xq&(6y6xRP~6OCk1RuMhVNV;A=sADUW3RFa-$JmEN{aN8>} zZp8|=f=N41h(GM8DmH1D#XfJ&oCQXyA2%3i={#GxO~FLJ&ufeL4yGjGj@&zL%QFlk z7U}tY^ZuV!zim!^!Y?;(w)CX9syB?&=Ktf?kg}hX(_O>)ezUasMt+xl4>JUoy>_)s zS3V%E|Lef?H@fG}pFLHuWX2@ZBblf6tbA_R-_0dCZF{1C@{HUMGDrFhZaZ8EjC+$+ zvW|J~(J6{*Y%D=3F>jqhS7h`}yT!KDXepDnq4U0H`YopoWG2?9?Bpv_5}US5bL#Dr zVaI>vX`NiuEYupl^qi^n&Fx;<%DrbN-&UK?ceVWfms2+;U3gHHzE$&b%*BWKksH5j z<>y_0x9(NI<CKodIq?rQyJfsH`R3j<`ud3X?Ml|GGw1f{_=jb_H`R`Iv*z{@Q!jQq zV<S8}h;L6B!*+R<uw4fCXV#}~SIe5nY%St>#!s=)YNFwW1s$u@KgJibIhVx?>0CJ* za!l#SEf#@|k6I5r3;tbE?6X7VRw9Sv1NP{on@iJYJbwM2cWaqUU1H9c)z`PIx!qF! z>U68Ipz~4FiSwVVofC0OFe*CcitWuyf>E(2`mXocTG)KJa<FgP>wRWBzrOwZqrQG- z(DMAE=WbTFmt7O7zV2hTJ^pTJz_v1<FPV>1_Oky-b+Y!D!je9j(PppE?FbcnCPA)5 z0VhulsneTW$_1KTUz#WgMW<d0=w>ltIe#|E(kyAwL!HhaS0lQ1WjSmWOI~+y!OVZF z&dsit-5fYQZO%4{%ResPU8i(7JzLiD&de+IOvSSb<#+tBlZfa4(WCR>koU#yHGQkR zmN#6Sbabls>S<!nxJA!#&Dfp#Q0HiQMX(9aj}tz;J^ZH&LS9$KbzZ-6!SRvNfvCwH zzGWv}g~SA_`?_j*>U8*A3Jrc;4QE*XIi{RP&eA*SfcIhlWhzBCR!@p?%<GYuU~t~% z^}NiRmG%Duey??3&u8Xmd*i*m^;L;kHdU`Ly*~FoXMV)Y_-$od_SKc-M*ch1`R!Zd zv6A%3_n&_@x4bOPJ}JBW&gQQ_isv;QcaA;Y{`ys0e|f8%{s)`#n%B10S^m%TWHTb< zGR~dK;?v2Oh?sS{g?oCQp7#69ZxyquPn|Z?*Hzh7rhdY&eyfQXzd)=u>;1V|?6J)M z+)H(xH|;$jx?x}8s^lp-``2Xaaf;<ww!ic^n&5fuez*=}<Fe4BPD(0~s+zYREz&tQ z<)~q?hU<?n66d=X&75;}d$0Lcd7JIEPdfMdep_^O=S26CrIG!Qp6ALXpDmmdbwe`Z zlFhbF3gwXtRwgep?tfXohHsACjbAVReY^J8zt_a?4Tnxw#+kBZc8f0sJ~`UIrKj|n zc-gy%OS_79E>F3-A!9k;!9SVuzxn0{&zWVq{KT?iu2}+#Vo~!&%@-^E%a@)TY_Nd8 z=grY6MPW0G&jjZkeKbdTSw>^z^P0;BkJtQm-n=|DeAcp!w|*8Gv@0p;8zt6DeQeQR zxWwYPZ`x%peWRCOD&p!?I?HB#P@d~_*11?HEUB9{k%#5jbmQF>cK1FMR|=b}&Y!#3 zYS#miSku|D(`Rlro}O0R=eTa>edBu8zo(sfU+~V~w{6)H3-jZu6Jk~^sufk)x3Pgg z>6wawYjjJ-k~4y~r`dLAJepduC@1mCjQXDCJsD3uWdgtNEU1XP6e2i%&XOOAVR<4Y z(<YylJ==F|^R=m47nLtr_}cq#ch~J}I%^;J{GQx(d)KY5*wWae-R34wRF=MaKWnm> z&)F4cHdkMN8+*}mUs+-4*3Vy(J6V0VZq2pjZGD^Ccjk@H@AUNNpQ`@$1Wr9yzVPaa z{_NUAx9UwLa$m(hj(;70D=a=b)KMpX*WrwS&l#q1YnAWhGm4eXE@ZmQT-?$kb!N4~ znjps)E1PCEu{CM*N|Y~PndaHBT1B@&d!nP(v?%Miwa+*wSH$_wSfZw`KJ!Qo`>VSO zS6A=N*&DSnZcXaMX>AJOtKw!qd;K%X)Hycl)xSiis-LUskN(_#db0OriAkp0ZbnWm z4cn5ub%s%)Yo#ft^yUp+#k)7zvdn3o`256)=L`kCH<b_F+7TW0_4TX1wOKD#p3kuQ z@@lKD^U>%t%huFXNBVo`y|4Yh>HmxT^StkBUgmF~^D91Fa?%>kmDbAgwNJGt&fim= zd-g$R`aOxeGIbA5Y+H4--a5bAAkzEQ>7Kbe?}=W|Ta!^&d34p)w?9v_y<Ye0l&@`= z_mg>|sW(+KIlJ5PZx;M<H{Z%@|Nr^zd0l7byv|&AVVOz!8p;3ZF<;JZG~Zu!+aveh zst2+0_bq>YT|Bp1_v!1|1?$RAewetekN3(oRfQw^iz`dDtFBH@x$t_D&{nN^^_^*9 zMm`36mlumZdM4m}CpAgzq?Nj>u$Pg*>5WqZJ(yA)PVs2!vvs7+U(LXCnNz_1!NEln zg*}&7B)?YPz;h#srLH!P#d0>2@r9UcCxhan7%wXs?Z~RTd6&<zxa8NZ#aZF6?w)y+ z@1B?b#(s08@LJ9ji3g>X`)6MId3idYfp`7t@aNkb=Q}??P&}V?UWCFV4F~<7IbqsP ztd)8PXQiI?*?6$nxZBjIzH5>}?-mQwzP92?s*8&~eUx>wzCX=a=WvMeS+U2Q!!8>a zOR!0u4380$NY0$=<dn4NV@>Zx%WS3ohny30`mNpf70f$)-}=+5#;Www0k4_UqxtHS z^PgDP@2Gk^Z|Y5c8;PHGZrR_;D*fj6{^9+&T>E$4t$?fh*WH};^~FWs^8Rba=I$l) zw&iXWZtqY3Z5Aqjhc_gD&d(XwoA^I0s{b_8K&kk&i1b$HxHq9`)2F8STvM!YIb-Dh zOzo+b&q?jxb1VmWH3~O!YUeHZW3+?kj!{gEORj3n_p9~wb}Bup-ik_-C)-S9x!bR1 zvwCyq+69*U`r^`Su7(t+PcEHnJKwhY{?gBX8}pOi-Zb9-CU%jTWT|B3)ziOg4~F-z zkEwjj&3OMqo2Z=fxyx&1=iRDgd@Wxm@ml}goA~Rq7Z@++e)(+O?fbj_y@=jkD%D~% zopBe3(MfscnLbV{RqCH-Z=TT`_4SYC{UbBx<X;jk+SjH(<1_2$=PZ(sa*{S(_k7xE zZ}z9?$)%Yu?;B{Q8+`xtq1>u(k5G?I?|QC%MN6809(10#f1lBz`EoyxpNN;Y`m{LO z+P-?l=V|g2BPA~yt6!MXaqgFoOLRaI)5(h;4CEpvPL)|%{OFWgf5(*1Hub8Llz+DG zxU)|B)Pk&e>mIs(6bWE<f3#{5>jH}j++MpleEmKZO~2|nY4eu{b1vWY`S@kO!9#EJ z&&$udZ1Q(~lYZjZs)$)zUZ~06v{>QF<$7^Xu#D>xUAfD9giouvPS?6zne_66VYdi# z?AkM`*^@#G4R|(g-z>ED<K6P^x$o!H{i`p%^!bSK<>eX2UH5)%ycf18{+Eu*^f`~u zc^FGi7BbZe>C_g@4u8*L&g0coI>YrrU!^GXy+tyv>i4uJB`fbyD~{Cixg@n_l6cet zF1|lj%Y|%rg+%(WhE01>cv}3>QlmG0VNQON?1Go)mP}r`@A8Ut)#ZMo){{4`4i> z85y~`{^ldA|G)gsSEpImZLGT9yS(ase@vCC!6z*<o5HJaufO|nP2%#TvnzY|{=W9^ z_qC5twf*;$6)(~~-6WlJ^6};OPp&<kwX)5=>#KO#l4)B+zARCF^|?qUw*1eJU&;Tg zo@+(s{csHtKll5KVV1zzuw^IeL@O&~9ydMxIaPU|%th1Sde6hI|GAUgCVje6dyd)b zT#D(A3AbE1yA}p`#PGN+%2&SR$}nZ8d*5x3l+{di+CN;^$M5>`>$T2zt0X_4_8*ro zx6gd-a<_uJ?j4I%<d&$&$HJN3LTAO6s_$}gzy5F2RG&Us&)0js7%e@uOD?o>)jU7i z?J?<j+syu%?+<R3tvy;lJ%OEniT|WEOPfD<^}f8c>4aP5*N8YpW!s`vof3`9CQYqh zHpj^=T|;e2#2g>a2}cE1HgK-(aq3(-<IYZoq;IZ_Q;PK$^)5B;c8hTqyP9JnU>as{ ze>K0I;WK`N17@qQUJ1Bov&rN+)4z=O=J^@^=U4ceNBLI1&bx79-r_CsE%g^yGT(}Q z;XD7{Q;|(Zmpiv7BpKazsm<_UZ1#G@F)wfCgMyl8)pi<>=5WUNJlpNiqI@qX=G9F8 z#yOd<qF0H0=328QKt<12p|Fv&TTG|TP=!U@c#^=C)Ff-(+r=BFFa7y}tLCtg|3=pT z?Yi+l+FyQOV|nchlXdX-mYa!w*Iat)JD-K5d!29P&gr{(Zpref<?lCgbKZKh<z-x` z)23-FeT~#UUY<PZ4TJd2`u1!&-d`q*#I$w`o$)wj-Ssg2P0+5H&!QH)K8mW^^~EGj zakilNCdrd)p9!3fX;hzi(K|o3=851X&RgtP6L*v>zFy<$l;*bUtdCN$s+NEHQD28e zJGJZ8qr9$JKi<SWvpCVfcdpk@R!yz>%&y7B<vbR#rR^KF6FY5BgiPDn!MRX4UBcm! zmF>sZUp}2Un9yi*d1LcLrOwn)#j>Y|inS#zJC+z&FWj!Ca^uU7>AOmf>-rn|9GMk0 zCvJ|EXTr_pd4)?}e{k>7TB@bH_t3$(T>l>>EvGk3t6vsp6%upi-UE&8b>F!El{Edm z<SCNwo%^CJe$v@2L-j`6-bih;f+MCvWr2m$dHW_#{<O$sXN~|jNBbpDM(47LyOSMH z-1M|H{CJ?!WW7R^uh5*yok4SCytfGn7wwgpGOI$qmGj0E58pKD$Y(3-s;51?^qS}M z6@~h!^q+5b_Zih&|DNveKIv?XZ`R7ELf%iB9cQQ4o&W#l|6e(VR4X6b<uYQ&SdRQT zuVD7)&6$}emQHVPk3V*2rtu7M<s$(frb=5|<<+Q4Oj>lrKJL!W&q~*9zX)90YiISV z>PbJpY~|~1p{w(%U!RyLe}7xi(_DMClIGmU>zKt}DDo{63|n<KqoLkfR$e}Fqs_E! z`V&_!5|TLXdgRGno*5z?r<DRLEVa(5z70Kk=)&2AJk8JS96G|A<xj0Wv+d5#q<;sP zFJF+>dvLtJ_Ps~&@9F!he}wOks=oVck^209qLYpOO8@&Z>B3^?=Ki<2JGZaM-t+VH z_pZttXD7~Ibz)YXm6q%LpOd<{@1C1p>TeUFGJEfdx|QD?PET#kebLI!H`S$ST1bvj z<T{0tMQ8pBrRcF*{kEI_(cdP_qx4Ph;ohaQ^CD)??US!tre#`mXvXyN<KNd??OFKZ z<njAy*Zl2|&R=)4?)b8E%8gIcvhRH<|0FpjX|HAd(Qm5l>%?<Q?w&dRX7}{|0GklW zmTQx8bn-rLH|5>7<JDhwKKT#VfAiUxmtLO!C%{HZx;EMJ`=o;pPL=PJ4x4ULqI*hz zRpj>l<*)7E<WDyYv=I@0m^)Yf_-t$I1@B)f>}PkZyZVB0dPJa&OMSwUH%Uuc?Ejuf z=e#pte&MI0vS-ToxJ;G^Nf~UK@zpa+)a&TVK&c4LHc{Cv8iGc=VNyp!j)_D`rp8TK zDsrjgj%@29J-HPH!kr4%yKb;9e6n(a#0Kf7sU<}-Pa3@cHt$1t%!^%*-zvM`+qe0( zQ|td{)zWV7@15w2v8p|L`}@}~^>@C1GcBlne{8qAc=xY`jS^{^vF!IBU!Ku(vPw;j z?dpXN-ek>#GenjeM;%$<RoEJ|?2^Um6#_AHLY+UgUNO?1Jl!dC<5?f(%`<NB?l%2y z$-=wOJKz6G)Yl(;TeZLbdnvyE)cmpty_Yd}TU+nyed|Bg<L|z}YJ&0C^$Y)3zTk_m z4~o;9*(~wZFfw)b?PZFJu4>B1l3bJ~MYQ(qND>R3l*GLHLekvjGcG(<Id7>pPl@kP zK1W32j~h-`nYK)fj^<f9V_DzE=>HQAFFjN#HP>tH^+#8=%3mq5`|$4esS0gkd;a;| zm1-s5=St;{DeImpm(N+e$HPCnWal)C8~;txChV?1C6>;7XT~MPtlZP5wm*@u`^_f% zc=E*Wg)Q^lthRK#TFUoQ$RumttEJ~fH;Zbd8Sh%L_{p0m9ExtscPOuDdNa?uQ~h#| zzg?zx_n!6Va<(u1_jZ2J+qa8sa$C0DTap|4LnuLQ;(}+EY>QlXeOvWrrhu@T#}-zX zJ4@5vOued7Cce2|^;~a~a)nXR>)q2zLS1Jq{kz_Nx#7#>Z|eMdKLzUQeZR@YeaeeF zi#xmc&dir9%epNCPb=)=RtolED$L>Je>U%(R7%1X4<XOBOzZubgH9fb-eeMS$GP40 z|H^4jQ;*Ky%_Q{YV$`#|eXHlM7n-+6R!i;r)K>@OkB2Gd?S4IjU%GzfiGNEfvoB5% z5;d@hn(TF}L|s3AO2VXWq3MgWrd&5TvCrz2+nO0m)~@=ZbJpwa`y!4#s_TpIZrk;1 z;<-o9tn0p?x!@3-AKZC&$}+)gv3F{(PVBwsQF(IJHr1Kz^CWePMNAi@9KZJFR!sNi z$`xx9lWKXdZ>^qhd_VKr^>y#!Oe&;5t$G<h>+aJ-`wJqUu4Sz(wRHP9w`Hb%f!RN% z=^I0Arg~o~_Lk%PGDl`j-i}`rAO6!1&oGtSQ+1fvbm?v@zj;OG-xdEI`f~Vm)$IHo z1qGiDon37mZC-uD_U>t=ZO>kr?>8(c3TCWTPkhGzrgZwmP@8<6p8V>R{M(aipEp~} z#U3(KRa=_2ER1*Fo0~P=`;|^lPR)thyXfz+?&~psZ~0Ew3A5=l{qcfrl@Wh`j%84# z-6jc<WjWU`O<o?ez`&Ay*S4)O^@3NPK6$0O)#vAO?{)9v+Ujq|u>LACp8h_}CWo<n zdQ7;Dgk3s+xyf68f7yMPk388mYkT3JM-L`1W_?+!zI|#+YBST*tJP<`_y2juYaRFJ z(kbb8R+lU`DaH3>%NSUce|jD;eN(ti8|PEc>{~ZC`L^$x?igXC!u{h?q>J;>PbXyG zR8KF6u-T!qY^(Qlj&r;A{k{J7{c7gYIWsD1_N3jub*L*PedUHnt8P7<{c-JdpGX_6 z`snwjQG2$%nUms|t^GbT|JMGs+cI|U&vI2beQDE)ut&NcdOI>tf2s|yw6DJV*w^<_ z=&UWFSJ(YI6yly~yjg2=mFvf8A3y3I)n0W}+##Rc@i+g6>0w_uW5c&At=5d3?vmuM zn*3zT1)jAM!fxhYqc%CjKHBy*?PSA@W1K|-9tW4ym#&?i{5tr6MvKh5qdE<myve(~ z1j6+rd(<mDs=go2URYgzLW?U{RrlWR<Zry%)=VyQ=Sz!EG8HkZ$$I?u`RsE&Yxcfd zwdix>#dZ4ECmwh|bK6!^XZ7p;@(Fo7ao2B}<Tj_RZx7@9c)qdX=0#Vd%Ufm$nWU7d zr#5sP_v+opn_GWIDgV!_<VjC&KVmE?X5a|EoW|@To}b#btl*ON?giR`36mCm*y$O^ zar(V<_v<|uy<Rx!Uzhd`oF$qlUY_u1-skrbcjMX@-^ks#qg$45{q0kAMVb@;vY2a~ z_d2n&<ygG&{oXsCl}V1362hHI)in>#C9%v5N=oPti&GE#X7XW1{ktEb*Lrf3j%>}b z%ed=w;Y+V8r&RZP-REZ<g`a+XmT@%YXyb+zHFh#qKQ-p^O4J@@xUA~2{gP-;(&o3v zZj>zT^)Y#txbcG7wU=xBE*n%eA6pWA)rSALeRXbOLTI6r(|o_)>1&_Wd@hh*9K7Ik zJ!|Z_BgZ7>&-Gd|sW<JiXOm5R-q)EH0kLAGoR^%ot~qbX-E?eC*y%H8CO16S2@|%c zte)5x9>=UJ{P3Y>T18-Jy5gcAu6YHQpBCSK@T5<7&nex$BQ~$^$W3ZqUeq66q1%`8 z#yDk}oy<<p`DrGpFFtf`-lkLg#L_t}?Pu|yR&Rb4sgG?b-YOX-Dk`awN}g`Q^>r6k zbualWeq_c=!yhjjrNw+Ne1Er6HDFV>l~BTqwA^DIb|xMCoa($9zq0oA<z4jXtyj0t zo7}c$*Me1lTK%VAI2W+{T)oTlg_(BJHkuBsJ1zCncQwDcd0|!Lnv|Y7KRay%%OyAq z4>=pR|I+D|k~=NE{Dn~uPsfoBesjzx@I}@yI?(mv#DRcyhdz1Dx9}Bg<jpBjREsip zH%{eNym&<N#o~U26`V}#(-t<oQC_(~KRGCr#k_y1ulJl;6SWlYKX2I4IA`VY>1*td zTnRCMd#SJFB=?KQe-85bH|1UQo$bEPd;7Mv-=~+y?><;v_uC;by!m&{|7*`ydkg&b zJojzeJk9!g-||#1*Z;b+JLlghR#=@F%)Il~{_>ZPGGnjYKeXe<MfsKcw<=qoDgKh; z67s1d<wnKDx1HICXS7}1v_91A(g}wpABy}U8Rwj@JeF%7n3W>g*+2c`HU^o;xsiUy zc1+qn^~YSx+53Mzb1yr#BPQX+k4?RsW7b*hfBxlwz44ZBTh7;~Y)xPhJC|Fko;6W& zwkZE(J;VOR7d6)JnJe}??QE05wHI;x?3y8EcaJzV6rb(W7unA9x%gho?B9F|%E@Y$ z>iwUp!Y>{vzP@cs%<nr#juf*;NAug67k-~xe($d3P9^p9qbkSs?aLC+-@D$Y8(sEh z>)vWTndrLA_uuFJzcqX6-}>!2cPcK$d%8dWc4G3J#^B3)j<1W{=`yP^Y4J{%{8`QE zmFKw1rk@PCBolIK(MlfSvv*ZDUs-Qur$5b9toz5iPZ2s=t3N+gOg5bQ^VgeiVlI=C z7-~zjQ#@l<Z?yE>Bz9(!g{GM*=cgFy`~DYs&U*Q5vJu|u9^`tFXR&42Hr4I<^*!ee zge=WXZ0+2P)h74z<nP_cB%OI^$>X$1i9I$a%b&e@`zm|qLnU8BvukcOclaL%_qebt z`ER;E?O4@!(ND)dTCSV1X1!{eLeh6_3p?{^rfk_Wr${EJ>KGaPvgF(vIpb8s@uWCD z_o&G9uNqd@3U_#|^H$ZJw`k6fC9|f;cE1f&*ME1U(|_{BT#+r)Zm@=?Zs<JR>)(Gh zB>cgTFE_TI|1HOP;^fAE`r+!T6-xb+Yd+-}+8(R>^z!qM{nPTN7^l45w{DKN`DB)v z>)pI21lAv{@tSTEZxg57FR~@=##PN<yH4p|7i(zVuypRtjmLBL7+$rpGOA_J0u2I9 z-y3h^X_j~MqmOgru{5KnSJ%bG>|ABEwc_Wt#@y50-sbYL_CFG2cb`i0-hBJ>s!c`O zwvy-ewDES|{+=`4Cc#FL+3>T`^n?VPZrk?{|DN1-{FCJDLgk;|!jmJb>XwBr_FwZQ zZhp-d1>>x3I$Iw_HCui<@$lv5eQwPs6ZWjy(9?Ij?!v_U&GQ|mYb4ra#jdyZPrm40 zzGiP;t>W*KU;aHf`1I_V|NExQFy6Lid)kL5RnIh@DxX<@^FNbaT%vsEzxopS&X;A` zySUtxBi9<fbo_Hk$J~`oj>$W7248CVj=Qoq&vd4|Ug}aP&-q_)`ujwiNb?rmx%*dK z{4C}D$p1&kXRq$&|AmVJ536V2e{lJ%yR!bhHy%G6CLj3BIV)ZzO>Sz%wMRu;Q;fGu zO|MU~kz?b2qR4Cebo$~X8+VsoCocQn)|s_GtM|Q11W&))ykpG%w}VWLv;MYomYr_y zk^1kqzFWrA|G3>=!%233C&u>YpWEOrcYU(B*B61sbv%DIEM%Upmu%yte!_d=+V8hy zwQ?@Js@TNsx%QO7yq-U+Rax(!+n00QKR#c3)9vmzXSPnCo^0bQ{rk-EH<Q!0*WD_< zTr}5uX61jDx%w}5R?qzUhjIG<WE(Tal<8(EHhOG*e4A&~N=(m6v5~3&x7}*5-9yK{ z_ZC!7cz*e{SK3`;E$e-TvALHeCo9ii`r^yB6X{Zu)ncdj<;N^=xYJ)?{>7X9uhGFN z!oQ{_`?_6NFZD~2Gr;D8`HrZjv)5#_t$#mkFMY|$|LTip8@uqO*Z<l+{}ZdOmzZTB zWjKG*loto~T;$k3k-2QQZBarVBTxNt$1i#_F33&s*gy5;<0DSGi?2P3(Oq{j>0ACp z^@9J~PRu+}d;3GelaIMO#J_K-@3RrC+`#|c{oVV+%{#X1f0B6Tn33kzqv$ZtW<~q6 zt7QxPS8TX<{>6>(8PWSLY*%}q-s&xHusz0KEyC7#|MTmY^L?K!s@f!98n|`4$Fwlj zHuL(4IwGRsn>=m4-JZPJYt6;KTO^mb{5jz+!}Iq7yLa5#$#Lft<G-aI)&DKDTk`+c z39WYAPERbKbA2z~mvi#t=J`JU@h>-PWrpt%zy9{-`_Jp0c<i1j|L1BGp7{NW(WT2l zFV4lO>gk)QO*Rn~Q$Jf2)%`BDQ}6ETL^<{Itemg8lj|pNwEVDJtS%PsHgWO(^W93d z@}GJmHJ0=|U-j&G%9H~ev-G^~Y_eDF()&HRmE*_5qpAPZIQ@^hU;lfx;P^+a8QY3t zT;F`MKkt3|f0FDI6}Gp<*Z(gqzj5-9Df8vC*B{9>?79%%G;bY`XtJUDGKqP$9g;Tk zk?QZ6BDOr;ck)<EOTDg@>AuJ3y1XNE<nMAgOkuY^w<+5DdcLtqO;gZSd!=Ph&suNu zoAlX#`rmKsX1;fO7w|vI^&0P%Q~OUbR=g5ddj0VGdE@(Ye@^~&eao^L|2IrK?RxZ- z><WcqzP*R7E@-}!Sk;!?t|eXif&HS?ALf#-myYfaBhGQH;6KIoQ8+{Ub3K#ocZ2<N ze+t`VH$3*W*ml^E%Y9yn+HngRmiK;t!b>`2o=ElWe)vOnc3;e@z%BFMyK(N3oBP;& zQSYDg7cJje$Sf}S&voZN+uY=~i_vf5t{hnJC~nC&H+Z^}q)oW#g0pv|Unp6AmeM%w zR(j{J#@u?jxvf^Fuk4j=*E8Awh+gur-p=85W8dU6@6+sBKD%Z7=i#2kR9bz*-q|+# zqUJZlEi&h1W4NNu+4RWduuN@!yGJ&n+IFAG=h%umu66RkZymNzeqK;gaJPU>=2~-J zI(wk<=jafY^WP8moIeupRP`-+%DIUuPyeovy`|gqIK1GC!*9iz-wSGG`n)Xq4mc*> zxL?0e^TlkrjO^5Tj<atXi#+o?RQ)SQA~NC3t&=khmS2#vxOQ-J{={uRtwIj$xL{gP z&ob|Qs$J{9xsK(Zw=YVpy3-fc_}z8N`_D43p3S^JVdH|w0>uW0jqMw(-nV{sFZkma z+HmS=;fz{`{d|`S6_W*vFKlcue5|)<I_Lf8)*-b8YW2wzh3XA5p5-6-U;W^Zn2i17 zYYY5RWzysih+F)A5phJ$K&<4<1D_1lw}Mfb)%{F!x5$2xxX$soz;>0|mx*R3+nx5` zYpAjgkd;hV%KoBrQcUu`W%>ox2jY|XxMi4R&L4K1C*OLQ<#^b;+z_tZJN!kZ_Af$Z zWu#9Y{3CMppyRoEm$-88<NZI1SGb>Ez?Y_P#drL!f!Nv)caF|?wfm=@VH=bGOuccR z+!c=FR;!ACPZVGGIwG;{MO?%s$3@-yn;#2Q{NNCG;(O4@{Oe2e%<buRZfjpWoXMYV z*AjWIJH!0PjL;`@i@)^!Xb*pwf3n^nJo-q_rTykJ?{Au#BmbMv{6xL_$NB)-pzzi8 zD?Vn}U6J$m@T+k9<Ne0pYL)l3xtH^=)SrG}D&rqF?~m6f`JTzkQZ7qfKK`ukbM>^) zYa*{*Z^zxX{$~2^v*y}M_v?OCyZ!ODeY(SLt>xW`|5o>?8{I#7OWWX3_BrQs<}urM zpT2wlOr70x&HnSBpWoU3sqFb*mH+h#jjIwiJz(elD{6LW|Kso<zaQTJ`F;8Sb^DdR z-2bJ1=6CtW&;Ld3i+9@Z@;ub_OL5nyi!YnF|M=;8Tv)p*zU!mHsUwfO>aFxDZ9knp zIJe@g!;;FNU1@=gyS#Tj3lORb-SsR`?$^GOwN20Kr>wiWLgcK+b*U*$-b=D|jUFt$ zRLWHU`F+LSlDQp08PjI}na;AUerL&A=IYYklC|!9`zG$$b~<z6VzCRFAElIee;9p~ zdKR~8Ldn@hrK?^q&E{LWqE0FH^NQ%N)-R)4gRT_K&APHYPCqs~VC65?mr>nDSNBg^ zC;UU)bWX|K4zJSn9@jlH0=_RSS$o+1%iT*`<wB+I<;|?0amQR#;-;L?C$>+mpDt~> zl=MSW_}6#Ng|&Bu7ytX{xUl%TUwy&;3%l$MOm^5CD7@ip*~XpS*5n+#yPd7|Tj$3K z8&27qsqC=&yO48w_zNB$o?iBa9e<qjf}JvcPuNfvx%`5urHP)CH-qb;Ukg_zBqYUX ze4bXx`Dxa|iLs0SY1Z#d-I%!Zu2o|Lhmeo#%bdtJlV_ar(th2_>wNISg)0?`A)*|4 z;%W=NJ~*;&WuszKu+GDPKMnyOxEE^ve{f+&eb#aV!#xTw@3nHJ-PgLx_SfM>NJEIF zrO6w438A*X$&D9l4?PGlFfiit;p*v@xn*j`c1B6rVaEQ0_M%_jYrgwlFKp+vA-LF0 z$v<VMff>tL4!w<h;wyueSl!pw;bzQiT)2S2R_cR4FYkM))@#52I<S_gSuj2}vlNt) z;%EJ{Bq1TGrozNPfUBpUV{&j~=Sl~T39nlmJUH^^-!Qe(U}<kV*0Q>s)yd$&fh`{& zs9dp<E8?u)cKF9Tt}d0Y{ya@A^}KI+Isfi<IwaR+DZ$~__v?FSuhUuO#=`#^i8Tr$ zJ;&Q7N-`ETH~w{YT)%<uhOxmbel})i2760WLrX)^ripxFoEOS83>@5qe(kds;Q7+e zcT(oAsimcf=>zp5Goc%{F7tc&S{*dn)R!G=dgQ?JC-_j=|0_3+{IF~6d41u<g?f&M zJ>eN#fjtTn-vlJ^WGUX|>Eq*l+tc^z#gQX^iD&i;|FGU-ZNO2pz{B9elSA@Cu4Vo9 z66W_(CUi3-c9fJPT|ZHF=-xrj6)81JDm?x@eSU8m?;Xf^Gi%nO(nIeToalIPA!0#A zR?`YG!JY~B22x9uRtJcSoLs8=yY=D1g@H!(GZ;3pzu?K$X9{C?b1h?W4i*kzTOP~2 zFgDn^WoHY|0^=v|+26IetP@C5FJnF4-sJfHTR_I9bxTst&$C^?J2^yp53_KxD!1+Q zR`UoYulHt=Ro?&PZcpAGVEprc`I$+V5(*Nu3?#X#ni~V(AGzY;8D5>ful%9Wl_s?d zD!1B~)dw*2E_kca!t%kLSwsHZ(+7>G9%xKkcj`f;{Q)k9t^B3T&on+QE;Qlrx4Nje zMfhD)hW(wbhw>SC9XT!e4@|Z#;B)-T6vceLxxmLU#LT7e_QGX_w?1jDNaUHv^&r>! zp%sg&-jk(YCs(yG=xHRrU8Fm?iY3bUU{v=s#w88A8r15Uq@&AgcwIlF*dFCO^qG?@ znoW12bKcA^B`miTL;TJzw4C<n=9g<1za5EciTrv+bB=DbK-#}~Qx|!K@Rv(#use&S z$%uOG<vL(|=ssuXH-(tDOdL*|@A!ROQ?}@>a1P@;4*lg1d@QWp63Z@Gwg2x6{9c#X zqdoQ9+uRA)bWR03)W1}Hc)(x^PryovWkI41aRN7Gm)udlWT)pD)bPnd%Xv3LmCq!d zNcNPI_Z=#oqV6)^d9%D$G`n+s`K#g=E^%|FaBuOQD5dm&<KF_!y*;w8YgS2~UQyDn z@z+@-{K-Xzx0(-`C37d1U5YQ%aXBX-Dfl&4Xq{6?o>M@7{6UEYLKgKtw`CTjK6X%S zoWJOjrR&$IoSl8&j9gyd^;?=hrKqi-!((#8y0&!2TYL)xrkFUrUvee<(ys2P?zfZv zy$kxGed#{`S3WPZ434);*M4OV=}2<DEwjXC){-mlx)+x?Z7N-2=d@hs<C6G;r?=_8 zI@4jYD`n01;9Vy*)=XZK-r&TV`O>!`#Qxz`mZu*?o?c~Hy0c^2kEQ9%U4C6P_kDlM zGu(2^-22gJ7q@|WrahYqr^;5rS!I`tB>Nt;sdyXu+?HQ#;%2Jka9f1op1-%}{cnNO zZ3}E1nZ5-~Zz!-)V(g#3xWLAOapLql1vb`9-!4p-EVS`sRGpqtXrmy%g;OW^M@*8@ zPt#iuwtu&ozC0`XGS_*FWdeWYo390kgE!;wTbe2uDC8$)@p2iO85$W)KU-+y%xF1X zu*gPJG5q8v-S@j6=@vdxIp-vlet6T`BVK!s28DTeI5n6!M0jyek1n!NsDBvS@$~!o zImIeB3pu`2zu))1_I|g8Rq?q$|Lu+coBg*pHsVlj*>oZC$fAE!v$dF%t^4-!<j1vV z7gX4oT>aCn-mlOSEs)g5_r8<!l>F^?ZXLC3um0X%wyobke-7WF&$~G^@7=N6R)0Ib zzwW7mljM5EE1%~tet5y7?XRP})9Si<whyI?KRA6)ek#`zR{Y_Oq-_7&Xw$p<h39z- zJc>G|*6w_K`u&f!E!TP-s`q`ouut>PM5C??ZPJW!GdOzN=U4vucld*hyT|^jEF&pr z9W&)E%@>51Ejt{%d`kSLLz~&>O;_xbcA5V(zAUQp`w@>BckC1OnvQsd%PG~k{3xn8 z^re30;U#akYIIbjEV8j{N!uuNyFm2aq3jQ8GKbnfoIPW2WS{u&fSvLTmfa5oVw@%h zXqs@w9x9)smp-w(P&3AA`oYw4%b2+9Lf02)$NWeNd?K7yHf`JdR+bX;X9au#u`S_` zdn*LqGq2KTxO%-|Rp1H1Pb`f=xpUk@=ew1*1RZs#7d`(k_uKi+=g->N{=V>L?dId@ z`m^ua?#?c|{AN;%WulixnoWAV<?rsz`g8yOyeWR(uKHW&=8v2A*8lk`U;p!1dw$J_ zWA%GJUX!k`d;CUvf8FDc=I<&WpSy4V_Z=Ure$lh~|MqJfiaqrew5L55^_ptsJbC8Q ztEsPf-6r2mI=k^^eevf{vaC&)pMDb&6P-R~T4n9ie_f|mIh6Y5#@0F~2N!#1M^_gF zx~GSipMRvf*L(U`-S~~0>aV^s&DM|HUU&GwG2hwSbM}@Plw7pq<Lz(Ro-5z`=7y!2 zouTE{Y%8hTd(+?V`^&Dk`_F@g+I;esRZlmrUbpYr4{^Vk>bqan^LNyLTsC`u#p&t$ zYF_8Y|9thfyyh)<ht9qA^^a#Sf4BR8G=I%+Yks>g1%JLM_y0RwF8}-9WB;1}C*^Iv ze&L^AS>~6#`Gw|=6W=fY(QNrKzwp4sBbom;-Yj33Gox0&P}-^RiLl$FLl4Z#WxnQf z@J~5zxJTg8`7g(JF6u2@SACgndHwB~)k)0)@892l(8JDN)LOx;Y0AUHQCM1@p%UjL zclEB*o=GBFoJWlRO1I=5>J(N~oOf}5qQE_lC3?+MUU{s{Gbk@eNKi2E+r!Kpbo+wE z<8JM{vW2WM9WiqYU7xSwElgehT~HwJd4l^Lp>xa@*Vs#$Oiq^YA20lVAtAhS&gA<0 zitB%GY0{Pv+2y~(ImKX0?iBA|;^IY#JVo7w+b+nyVv4yZe!Q8fXL+&a%EqSM$qMrv z=Y<^(X0w@kTy#mJMeq&9uTQr~omy`EK)X*jkFkTXw&4Mnwci|p1#d0lpOqXh^w4|m z^`qe8bH<E(!!4UC4C*R0Os8Gukh~jPct_H`KDR%iXW`0EJ1(`iI4=0Q!mT;*c;~^( zT*sp2!hb$knilY)C5??U_ecI!w(S>~`rqwPoHPA(iPQP3`*xg?4xc*pxN%L>h6s<X zPx(xDv<gqpnepFf`hv_F4mYv$8r{josg*XD)vqw!{Zt{gC*3t7VOx(|*NIR3A>Vi1 zy2HENc%x)})RkW?VhiS}@Y!&fPB~s`w}0zWn|XU3bbD$f6u#`c%(F>^t1i(nlx^9D z??*b1zB~HvLV(O}Yq^uhZsatv@hFIK8_51!ytVKR@B9zDSr<NK2{2ri#cID+{E<z- z;W$M*4;9&%tq%jk9<<zXzo~T2?!raJNg<_8Cp0$fPB%DL-c(<~)*06+b+(MJZ^z@9 z^bD3KXUp1(7TS1}a2{~Fpcm1%n?2$Mo0YAL+A2RUZjX*7cS77BCQkU!qkhVvfRTSi z^CPBGv3-u&#dps&int1NcJi>xRLs$z)b=>9F>uz)*E>$#Wh}LQceKUs;ilHUd8%28 zpV-#keIOonV3BL=M9E3@N%Iy7%&S`2_UK*W_X$e`h3xOT=&lJ$o@?aH-pSm^c*5rV z$DOS9l9l`t{-+!MZ;_hq5Se@O`rnu9-xe<vZ#mhjc6O0m!^g%uz5jNIrOYpH{Qh&_ zWsccBg|bs*_wA6&%ZtDBAa+B%>%JWqtC@cJi7+3lu;b}CB_GbbLVcyL(eHZ4i3jem z*uU8AarUM4S|<JvKey(6d>(9a$u((@Zl1w4lZDpoOZqtM7V&>%(%5z4#?yyllO9^# zy;QNZPTf7i!R-dGjX>3b?32w}-;VlvGO0dMoX5O0C~A}A${r&&xi=pkd_8*BGef>| z!G)(=To(M@;^LrPQ|K+UWs*(61+6Hh1@(+kN(-*;+hNKX<t(R>p{px+!755=!B@K< zSs#wRc0KQEBh-HCfi{1dlldz5vnym(o2Gr+c5T|TWyjiPIYf4PpE!Rtz1XMi(r%r) z%>Qi(>W6p^@f|Umkyyx(*mp2Sl~X6;NJ0pUN~P%W$&;dZ54N*wip*kK5~S%Fx$;a1 z*Q-1AsUHm{L~Sw9WDQbom11mc?NH-<Ii*R<e8-pfix!5g66lFo=9=gC^?<{kgV{NU zuQIYHn`K(cmWhjRE!=AAnm2t~;qI<p)7+jA&i*<!>#ygkcKmaH?0eWYSljFKDW*E} z{GZd}5_Q+=>96=wy~<{%Re0I{o5Cl~uhue|&As~5r+Q|&;z!YMem~#RedEN==$)tk zymh_1@Y%1aXH#3{PCqC~T)Tb4mRoPXWp3X3)A(p5W0Tm4)9XLYI6F`4-I3$cyMNYn zJgT$&ZP)COmo=sT9#@v&rspZy4?WKo+f1A)B{8Qv<HPfZ3A<P%4Gt(u=$)22aLj@2 zmp`Lnw}Pek@}ieVSJn$8-d?~b=qRvo3G;@Xj@Rc{iKTEJnwWUv>`C4U^$PN9%r&Rv z*{{30`Sa4kYYTS!r)zAQX2!wFt7>Vf%FF8HymG3&X>r=+!_Ln9`AJcB|AIFy+jk^O zccr@7fyLKumWyQl+kK*=D^T>68*@eRg-v<6_b>G&ILC&zu0Qiw=}u@t{S~fH2_{oj z<_AvFS;nC`(Q9o;qLq#Wdur1@hAs1t_qaD!+D#T0Il$Vny~$MkICDkQ8io`D*=DBz zFQ2>!f$5Jm4s$YYG1%ud$w4_KIzfg<g3~}Ucy>gG()rhyIA(aVH{JD&iQ`=p6w|}j zu%c5S)#%BykdsDJRKm1910o-%*LQTz^yRC_OD>SkI~LKs_eau%Gx@L0<zGY;B`63; zSZqi+nJUd}zeVJ_m5ixtT5(|S;lSve#CPYuaP-%G3QAk}xA5PInh(p@itM?Nq`Bll zSl-E3$<a)Wy2r!T+wR-CtLpW~t-jh?XP=!C_2oVNM{RPw<h(0SYieA#Nv>x-@ak24 zE5mP&1o?s|Uf<aE2<DhDujNW>SeCkghxPcWc~=&xt>dnlo?*?iQP$;*;{>ga0MDtj zLll(~T=Eilt_VztdQ&DEnqYe`BUEf!<tY)de<6?F$nNXnx-T2Sa6-1z*k{@y*2-;0 zCuSOLV2jA#V5OiC@M6P!)tI%*`@LA3o0X%d)bH`M-dM6_@qz`(B`;g9P1#!6(z$QS zj5>?ci_C6@%)MM+`TA}%`~B+IXJ7J7J)5z`e$EY7>-{=~Z2OhBFE*Q0mNnziqFb|e zmAy&mY}D#Ln3DbK)oUJ$^pxUjchV}Jie2K{_b_qy#f;!mpZ!0tRkQQ&`+Y5bnRTey z<Xe-z8rXT>u9rMmpIl~ezWJCao9Gd51F!rGT&72gcc|J0$tkLP&)IqTjZC75vAps5 z{VrP7>G#|B>}PoM$0NY;&CH3mOT_}Uj<oPZB&a-}@$H(<zO#`6W_uXcT+!G0#@+pw z>EXsnf>+KL$M608_u9vw>$uMEGp^>JeSUw7$qJhl7gj9&x1V=yefp$_SDlz6x4h-K z6v1oqCe<T4OqY9`%bHi^uWbA~3#UXb;-BUovHJ9^lmC~knX`tACGGyxYajaq<#(9R zP^`A`yB79aM*Z-nMRrQeUR6Kll+0JSK6|B`_48fa(+XVK5?!Z?$uc{a-0DC0fVV{H zSldsv^J}9^4}acWW?Q{!|NkfTn|GJl)*oIK`Tx_zUAG?Y`}Aqw!&|#1KCOEe?yvgq z@5aW);~T!NT)we&icr4o->uX6LPBLLUS?mKYw%{a!0#!azaLiECvnE)#pcpmI$MR5 z<K#A53oqhi(-C<i_)CsKEQ4#oX92H<;Kw_B{2nYl$Ze!ib3NeQ@`EoqVm9O`3iPe1 zKe;n_!;@zr0eK=;UroPmn)o=&R>Qbs`-ECcZS&JlLe?Je|07cT{G8oEz16F#Jr-Ze zE_<|h{)_nxr?MNPcu#B+vK2dXY{i-*kBuZZZw^ph7jhz5`+H*FRfl>B_D2zCiUe#r zl^O*&8#@enq@El$n8`DD-wBPq&y@u;rYS4wdM&JfAz}1jR<}cNYmxfK6TVVb(|DXY zy`tapM10yfxq|-=n_c&c=B7<cndZ&xRbKwBBxKE<i&K8oJ$+^*qr1{Vea6}!)n8xF z=9b|-t<AnDtoQs<W0|XKt&8OUM|{4K8~v+4UM}0yX4TcH;`cV)3QIrQZ=NH4^IpW} zO?u_Y@e?O+?W?cT4f6hytbD_T{lms)m!lF}O|D-3ak@6{gmA8#?W+T_uTnzpv`y{e zIrA}$hq0SkQ*@8h$>u`^I>$E{WGnSOv^2_UZTb+Q`e{aLaG%S(W#Y9~noTPMlvwAk zoE$Q_<-qp?C40ZTU(~oUWrmV&k#cd_E}Ii6ioaGr`nBs-!_ij>^__u1E3XK>6gew+ zZr#M{WzpQT^jBI}?fCy=vGU{Z@1kEzoIkyNdKS;UX`#Gtqi=KT*oOP%+}duDueC)n z?W|65>gh>YJo523Wg`RAHTM4R+8Dfh7L&93_9^L6XWp%gO3ysL>e4LlsF*?>lW*a9 z{W&jvJ9%p)cf{qj?B`Ea=C-Pryb^Whrd4m$(vSlNlYhN8X#AMSuA$QXvgEW%vSvWV z&E=i}NA$9vH3Z2%Kd|C5LkHLOPZ6{FI#w~SXx||CZc|$L;V0aaw@1GhIXg?W>TQaA z)tS8ApSI4l&UM|>Tlrz_bql+Tee&sZ%x8QOE`J!%_*LQe(IZlcnJ3Rof3ZpL6?6UF zD^58NUDKOy-rMx(P*Y8HpJKGD8f#_G*`+pz9}AuNB*wF-U59fL^EBmy(&v+AaWyKb z6r1q<5jKryc5e2QGKuSGX<DZnZ0#rHEo2}(UGUA1m>oQa1>a82oG?3B)0dlT`{cFW z^L1B#>l9|XYMHw6;>mvti(Qj;rDa_G(p()?A9nZ0;)v^wb7$MsTB>e)wXXNzx{G<= z#n*Mc`SHr`nd`o-+mt_ct<1h}8@<RsezVE?MOQ@?tGV_~eSFY1T=eIR<wvJ}`g-7T z+=D{96xMP<|5x8DW5PDG73s~He?`S#@0q|=l@CQ7!pv2@8FzY8?tC&)Jjj&0Oifmi zGh1!L!B5=vjZ0^0D9_R`KA+n4(CFjTB!RU#%^Fe9rdUihDqpv+_WY!!;r6Do)qgU+ z&-z+%;6m)bs-)g)(;~&Z{#@Ldv0-mzMWJWl`GDfj3FV5_zIT7@O@4U!_^)YkU!Q#0 z7M}b=+;ZJa{x5ww#eR$SrtVn2BgJ#Y#@rpZgEv{YloktA?P00^vCQ4tBZaAauUYU~ zpJPI5C!agJI7qYxsC5dt@JU7_C3X1lx>%QX95LpTx;KHL>A}uOo#RSR)Y$nGBD@T< zSFC1#oOSe$Q1P)d@?Ubd_8U#jd+#&<>e2bPB5&sWdSX^Cx_#B^Q>lCV^XeCfDm+*F z@R@Z5Q|TgO$Li3f!3S3Ctlzk4^Qz5TB32ZHy(nG5Ag=Ovuf6-x12xYA8s|h@$TiIO zI_B>6LZR^UgGA337618moZTyI-LKm5+RL&pQoGQ!tGnUyl$&$g+}};I`Y=gq!iH!* z6VXY(^`@<Lb8ON|o|QHseOdOa&g8xA>uw3Yyi<Pv#EIJ9R^=}1tgckQ>0EiO{_NXB z8zbJ#xUg^M*3{AiIqP4pU;lpn)|t$!H%F_zld!3|^?G-C)z_0A#l=sayn0z(d+%~P z`}-LgmDlcW)7$X<K;z!V(%igfeT%+@-n+E4S1<hWrJ(n#zA0V2*4K3IOR!|f!u6fo z!k%o5Jb10)y=L_3>34Jsnjc=6v(jJxXWq?gG4(<^J97DgIhQ7${I@%XiOGAlZ@Y`f zC$}J%BTFN?FAD`3dMxz1-u8N{gt}zr!k;S>Z}#rqHBF{AC+X9dgMO>GFE#iWTf6-G z`5%#couzNIm(J_+E#;NI9m~F0H@e9$EztMLw~H5;+oyk%>0<t^uDrE#l8kzAs-7XI zU(K#c?+c;z91_3RYrML_5zA(Os-E$U4)?R2j}Q8A#2YJWKbRT9GCRLTpvTWYWk!eM zn@b`SrcOH(@<5MyqfGSVCKU%OCJ`Oa)#(PlCKf!iJbpHN-sn2%%NMN}r<*ocC$&p> znVG#FoB5IYhpFY2$8Mb2ek??EUAz(RjTt)x|J%%)x&G?2w0gzuvf}D>*}9MX=kAvI zzj?#HT~*D&Th7jQ6gq!UqSwP=>5I+<M^l_uY`O8)gmW3wYRP-e#{*72{+gPUWjIG@ z`I#Uu*GaEcxIC5{7hcjjts;}4)_!ECM(f-|7Xr`6{9SoK!rMDsNT}3bDf-n{zsPut zSIZ6eOwd`s!76~A?d4JP`p5i!|DJesFSfnXdAe$yU9rYT`H1~GcV@lj=+p7r^ZS*! zpPb!4@gwtBNn2V5>`e`A-&$PuS$22RnZ_e*{@(SKM>pNt^S;05y;O_f_Ots=r#IP7 zT|A$iS3*?$+4E-+U#wL7PZd@gIjvy4=#<n}+14@rj4>nYGUwGkXP=b>YKqpcIJMC6 zL2!X&MamA#xQjj(aykEUJZ9{$E*F}4=ShM>K!fO<+fOx>Jd@_Ovn(`uFlV;fwe5*| zX(#V(R5bj}|6L_bp1XJM!C(3JKHuBbt2O&*)XtLYzjE*ITeG|R{N35F*{79S8SDHI zsx7fGD`ZQ*|G9LHweh~clbUC;`Oi%MxUqiuH<^lG8Rg6NURijpV;@(^r2j@QQq(q0 zjJcU)^y=!V*5Xv(sC9EHC&om6w=7OgXcnH*v00*Gk*nXTfIrjAZ6;Uzmo{E+sCxgv zt@JXLdwlPHUh6xuKk0T~{##C?{kyb3J~XyYko%MP=<x1ucBQH3EnUw~^=FJsN;j}q z;@xGPQLk{V$wX2m?U|#R#Y+9wpyx-XmdYvaI^fBEa-v0%pWmA{s~I~gcdeOy$h*lY zis#<Zaz+ill4icx7BzEq{j*>ECh=VEE<PL6_+NWrO5dE>kNp3t8UE}(@-6)2F*`5m z$x^Y>D(vA`G%Oc|$Qh)&EYX#_Y}1fx9K8B^rOn6kC$s9!MPy?S=&7B)vb8ut;*tGx z)$N~m`CFfVa{iCyN4b~3ZiT1IsoIL?ZlC(>eLkDwehtkcu_w2_?Bdzlq-<Gp>9*<f zX3d7C1l}~kBiHvdF}{~~Sjph!SR{8STWE4X>ZGuDlRy4t^(f%@;UauQWupmG+O!)* z&z~P!YW2oXP|^J4vU+aj(yvwKoHyrG>CVo(JtuT!!S1fVYjSSq++3C&wLiQ3LH)Y> z)n~)m-}%)1xbvg$`NpRQFVDEU<51L;WMQlDR_ijmiUo_GUvSp9_`K2Re$DMO-@Rsa z_e?5GpD)?H#x`I^uFffAot?kfH#VP--)pf_|BqD`b9>V*ldt}%y_TQ;)OU1M%rTpK z>f-9!JljRDcWp{-PMf%u-zr~^!S&swLUEzD6YT!%I#O*cE&M)FwwUX+z~=mC7WG-r z($bvXd|v$FtIn61uB#_yFG`9xcKz=BdwSH;B_~&^OGZXd+;VKr8U^!BUYe!M_OmPG zvrqa7cNBh$eP*f=d7=5i*E2V7>GVFS{~D9>M$2dVX4h>ew6A^QQhYfv*!2pdPG8O| z14gdSBQHW(rr5SSGo={1s661x4hl%hh^et_kl<Bkd>Ub~^<h9rjQ=%}%!IJj<wonb zzNt;|znigm+R5{muTMA4%P4!G(`H%l?8qgZw|A$-tS$B|G5yVOVW;euB<p(lq6PC= zw$}Ik*%MRE_wk3%tt=<884SGK5pC=8K9;EW94-zMZfRX0vFoey(Z#19o%VE5Iy5oT zKSn8<qw&t%16^L78vT;<P8Hhm&FWVA%#zd>GU>&EuubP8dj1M*6<mAx`*v|wo*!({ zwKw;x=3Lt(lfIU>{)b<xYgy86%?JBcJ~Ez5nm%J~{g3@Dx6jm8y3U+wcm2$=80+MX z(dm63zn}be<R9mkR(EB`sTrOp@A4~8DzZ0hP+^>z<Ki~!`?6IfOSERF@AZv-lYZoA zom!^pk=2iO&p20HIOppz>5%k={9Wz~LcEkx`cG@#&=FA2o+MZ#r=6$Jy-v%aXVRLF zm-tk}8_%^LG^wp$TB|Jhsgl9OuWY&FC11`=CWbucZ4I|?q-_##nN%vIBmB*|i7nqF zE%E4^6>?3<?Q-?*OU-Zd+Skrb6+T@u)oEeCO7D{5H@EFgZ=7Wl?K75c$=kl%Jz=g@ zbJx!b<?2)S)aLw-jB|99i+-PT-gf&$`=cv(b`{rqd@i)i(3mlkBYEqLtutr!Y?*$s z%SNpJ*~D@l%YYYt>s8B7HYQjJY>JLvTfV%PUtFT7hmH5MV9%qdg=b7ApWKume|~<_ z)vC8U-OAJLtbcxVn>@ERE@S(A=5qF)w=I^1&;I}WcjV56V7|SVnEdP7j>X^i*z^5O zpX~XhyXHqU-mHHs(E7F_A>Uxf_eNQP&aIO@-s}}uQ?HLduxt0bL%YP)me)<G;8)s| zY-@Xb-Yst>W1;DWN4^)tv-4#Hu9G-A!GmGmrXM>4dAPs%`#D}n-4XJ^QvH?6^Zdj^ zV$&xDefabz#Ai=ht`*PSX7x1*8DeKPTzT#x{qbCi+he_H)2Ayu-7Oz;c(wW8UoP(F zOV`Kzf7I=*KCQyWyIyVDzK(Puo%&U;4=_JGak#xIPV<diUhb`158WO~RPr6mXpXz@ zy~w{``#hijgVdjv7ng^fdMEPW(=**&D$5_Ge9>f77x%w(A!z5?_?AVN^K-3qj?8_; z#NZulIql9<)`l$$wRJs@YZfo`NIE3E{m-jeW$#z*t-ab>as2l?t=dPa^|hIvU;gcj z-8*mgzAv)N%API%v+`Q!`kZ&RyB6E4@6UU-*2el@>)lT|fzO})>a=zFopwL<KbzJ4 zt~idY+0v)Ixb9Y#ZJm@nsc3y(tB>aap5qf#jb128FUXdNQC*}tg<WDvd`0T^SBF-p zBtQGeq`k{`KIik`u%hQGSzTAM)>XW!Z(DY-u64(bq>Y>6FFu*=)40wzmp5DLv()x? z);sdElb=s~|Niy9Uz_HpYMZdSMPEKO_w=In1+R)$WZjp)U;1OK-8;SRg$q_FY~Qqb z$*$F#PTbz{@4~T#`SBNLOTYLicTvildFkWZQqx0rdP$kZ8SnXYdgHu*su#Y?Y%u=d z;L)k}vOaE|kmtepOUAQ0uWk4;g_}3#*}2FMlYZ2M_53@zhe2*r!x{grGL@%;^mhhq zaR1D>ck{H}b{lOzIwnchzv7>NrP%&wv&4N_#{J=*xyj)H-4jo)I2)ohf%kUM-=w7x z&R-5Jn)0-6=F2O=lfyFArXFm1QY~e$GnnB@t+((h3C)*J>r+#MN(|0qYwPV^B9p#$ z=i}b&^|g<`nOdx_d7HX_?aivMQe`jh%yqA;zkc9A?0$Qur@ODk)N0P$;2Cx_-uZen zdy`h}Hob1oZsw4ZS4SeE7M%3?Y8!fVfmGp9zN&TezhBe#Gj&^Jn36Viv6T7u=<WW^ z*I#jO2@{W7{B3ug_2(b;?0+=F-|d`y?``iz-ZxvezIfcbq<$vH$~h)(9W2J)-Yrb- z^WtW2>q`3?5t3q6VDRXU$CDW+)qYzppXF-0B<c+JS?()KzF*gHXS$Ghsg}FasO#?W zN4q4;(*K=|UHB_tZSbldsX5D66|61!ef37($*@-;@><%l`@Oc*Pq0{gBIrPUeP?=N z%eg(p<(#Kaotnm(b0W%RUXym$bde2;v)P-PulL%`KAUdyT<|NmYTfZ!Y5WfFtzJrs zPV?akv3jzmxsUBr(xC~y!fdzi1Z%$3WR5H|v(ApZymNnC?f1J1^Fkl&fA{>%3YM!6 zw=Gz@X3M5UTh^^P_qgcE%{6L^-OeiPTJ)~IVOrFj8BhNjEN;9Wv?1m2j6};>r?o_T zg63>iZBNq*NGy~V?beI8QxyGUV{+n(2j|@VthdV;t!#d-Y}s*X`VtOdPb<;F|D`us zITToLevg_kq3epnr8j<p!5-2ZKCQ}PRXe$H$B&r#Hq$uPA6;wcGi`6y)-^X%65r1+ znVu5SHNF08{+f7`jhC)heOk}IKK}Bh`!WSLY-WABET6xpZiSVi2&;5<@$tM{0Xt-7 zw#JpOJ^tXG<lDSkTUWMb-?W><KDoE>>E5#wXJ1$6xwYrg9`>JiHnBZl#I}pA?ChKB z7~B6sKb9KRq+Xbm?S4Y_#_6KdC-(SWlawqBoi=CjN~Mo2%Jb_VS{kcp>UcJ6;+kS1 zxqQY6CgqQI6AlEuSCyasyQU*eaAJm2u9VVlg+)y_HuUK2a;;2TGq0Z~?8L_;50@7L zA$Ma!F6mje3;z%akuzjj9H4lXsYT3t(#>i9&PkHHgt%rYFE1|Iy=Tr@&)27~{(5pV zv@lHd^r9O}1768S^qpV#vwp?b)wi$5Nw3TAuCtBVs1%WZS>sdgj?$kMt~U#WZ+4zo zAKmw3dYWAHmOa036t^!*&x=Vd3ANnyR;=vnqGv9?zL__7X|tQj#W)77|912Hjop^a zpAywp=xPhfSc**&_x{K^v1Thj6PtD01O?p$hX03_9936)^lfRX7V~tIXXm@?vz`Sl zJlh%=oakkx#F=X+%-5TF$1|o#dEwcg8+p&Nu3~1*RP%P8<!zES`J(WPb#W$JJPOKl za`WEtibTooI=Zy^w)!i*z5f&5FLJ(rU%qz3Y~8DA(Vy3fO7pFYsjaB3+-H4%*T$m2 z!f%fr+gojUee?D2>1Ey77uPB@Z$HRa98j+rC$;59?uErn(JS{}@k(thD&X7doaL8x z#`tF?&sW<L=XqznE+-3b6?hdc%2T?=vv`+;(#<Vre9R4sv*s_TvNJlfM&@w$JB#i` zubwSbJNvR}h1VuWKLak&pb)o?i(407>sFlD<K~!b`f=_RgZ9*FrGM8#4gE_J;!EZV zG1XSq>lVc>J*V<z&8?vA->f#QxUu(PDZ7@v7su)2TBqBjrOgDBqZ&`O+xn(no45L$ z%q+I#Ro{*K`kC+ZnmwK$I(=%alTW7V*~SjtztT5?6hA$Fli*h<=$5+F^<Pqb-MW(t zPG4FPsHhimx-2wVmHqC?U*ds*MT?j=r|fFTbh-0h>2>`Yaf3DIduOLbHtyWP!0EwN zsI23ezAw|X-fW5gX5E`>EnUOeK6z}{(YCNuuP{F*{_EE~KD*P4=I@LuKHWI&Yxk-( zR^3^iFSnh{xO?t+|N0lZ9##K7#`ogm>2JHP&RLlIzIk$GYueYj+n?<GWMsOiGWPf9 zY$gAih5x@at~}-4)LNg^lfueqd+NWy)5Vud@>S#~nmWur>5%j>rR>$!iGS_ROn#zK ztJ@^^@$&@bx?4?K9zSTAdo)v{<oCQMkG~iw_%}UMVp{jub6(Wkrk3e4@z(5ie?=69 z`~{bNlkNVyLo~cQODAt?=FA$OYo{JD|9rRp3g3L0h&!i@8JDl$eW}f~vtIIu-o;OS zcM9&ey>83unf^SxSM;>>?nlq}x%2pX+&T46J>AJSgY{MydvoPqZNpm|@}6G%xAt_E z_}1!}Z8FYg#}}#HSu)Z8bouIyL7}-R5~=Ot%L=beY@FJWIQ3E$_xgm&!nr}-bsA0~ z0lKRaihdtDbn(F&(GK02{yYyD-9;nnXS`T`X?MxObG25stdBS*9x6GcCG>gi9syaV zML|kMdjFVIEH_0z^840z=gE%#C9Hl`anW{F;cGnn=LV<SERkOKv3P>H%K1y@EnheO z->Mwe*<Jj}JUt_-ysj`dxHk3iG~4O#Z(h1ldGv90S$%r=;Wkm%e>v#~wk9no{o`G+ zdwG5C*=dROk)?T`udRDG(Y5bL^}lsRuho8}>%M>Hv-8{8FzfZ(%{gnQuU&oNNj29e z<C{Fucc<N3cUXDt)6;EP(|MlGu9jL8IyJ8LW@+?qz3BJ<pJcjEv}}GZdhOe#J6zK* z#zdUW+5Gbs*KanqUpBc<%`QIcQ!Fz0sG8!Ye`&9^u~EJBrp-p4F*B`r4;^yJRXQD% z)G*zOJ4uVdduFwi3a{AZnX!D&HI{7o_3xX_Do+nC75CgnCntV6W*Eyl*LlX9--0?S zZ~vU-zI5V{zOBwm`)`4#dlznXzdpTwOI>Y&mcyd;@}}QR^7bd*^_jA>?)A522YO=X zyiUFlFz3JKiayc1zV%_6K5aZxXKYk04vl_w+%%H)iMr~o%I=1ppBaOGJF+}6-4t}n z(^76lCD)9!`v#>-ZF;35Cmr(g@{~@T+<&F;_4EIA%<;bk&uy-rJ;y0|=Gm}o8Wywn zl=b~oVO)1#+hjsH?}xrSvm0)hE@1Xuz|8kW`c=7XN6x+*Csy3NvPvPc{>ALgtDW|w zg)x?@Ut;T7!_q3w;(NRGp{lLM#D?>?0~8BBT`L#!ck0s;6p5=j=PO}*v(-><4>$80 z>nGcvrk;P*&Gm0eMc8}8*{wNy-u3@fz1its!smY2{g3x^xhqnIn@`T#ap}#uOH(6+ zqk{SNom%BPh4J<Z*}F{f*AFpwt39uO`n{z*G9~EbtnHpNs#Xfe3+25Cc$KadDIU$~ zp?P5Ig_HfvTa2$P6Kz$AcX-dD`{7u7&C;WC+m+8xOTLnQMaOR)+ms1=OZ3~8+?>eT z7`e}h%jYFi&o+mpEbQLX5-Lu1{(g2)xp0%Hv-Kt0U@rAaseC!U2F(q7zUUsCqSV)y zR-d``x#_`+vTwN;PMoBZzM<NK^;U$C`=s|%{$@X~Xo}V@y}9%3+|z#-HnUoKUu#{Z zXSr?Tqs67!U1Fh6|DHEpowa>RL$J>KViuccCw{$(+rKpJ$uZp{-aNdwS5FI@bm`mL zt^XuzXYsSv-M-Mjl7Fk>?4wK0tIY{JF-NQ-;I7QY-uljHxfyO+oBmJvo@bj`u;kz6 znp~?lPI`fM)zkeZEj>M9{?TTyIVESF&)K)2`e)lL6L+pPQL0x&W<J{)G|RZq^nkds zmcxBMsWWOl2Ud&B;8r+gmXvH%eRi_Np^GmX{pVS!X1f~2>v1Iey_LV^nOekdF55JR zYeuxDoZ{p2)(@-d|4H6AJLb{fdvWL8Lnf~CZMLPH+^D|zqI}HN+tpY37q#o}e)Hkt zY5nIs-u?4$`j>5;KF^{!;s4CX-sfxIS}*sr{qn(l|4)Svk0KtKd^p5o?8UiHEo0+T z1(wR1&b2J}B3%7vM;&K$b+6pXb3XD#k&jXA5~<0j*m+AjRiaHye?PBxFj=lVDPet? zoKooCR<VXl6Q8;)uWJm`?@)iso)zq#%=G!TUp$*qw5QHY`OD#rC!)?(%8KnhvZqyH zT6)ksr$tkvP8+_;Y?{1pPH@N?^K-GMEX%U{y3M!VHCEGqzUF@X&-W#=?q0Uj)%`xN z*16^_p8sO!tIA!If}<ziICIxHzh2V)i|`u8k^@cCgX|L>#TMH|d#Cv4Hg;TC8Q7pY z>m?JXwyfne8`fpZ_jPQVoUG8A*$@)5^75@Cp%0!28qP9iG|*-?);VsJ`n+0PQ1z$u z64roAd)sPSyw$gT;y76$p4IyFT(O1Fsu{M8$L;xhxnpGXa~=J}7R@O2ocC&(5_|pn z)%#P6;~f%wt73c0f3n;(K3yDJ_p;?TXR}}R$yYO#7yZ|pT{~Tu(O&iK|EVH7=YE^> z`TKvF`TPE-|C;i5e`}z9?f>_SEaoTv_uu&8oBY)`PyWe&PHS_`*I4^{-HX`Qv3m+% zA3J()*TwZb*W0$QDKW{C3Cqrm&2L`6_sWadJumAo`F8JZyx=?iUB!yd+*9X_Zu;ah zrtj1a*T}tpVcVAn%d!@qp1(UZe}na#wD8Kl<NTrb`VOx9_R@P*wba7*M>oGWs(%zc zfjhbAS>K##rjzEgq-k1IJYQrN;J%2>^w=7P<fT>zuS|Fl9#toFxw_zH3G2}bQFg26 zwKsb#Sn+_lxS;-`%#|fm^cuWw^oi<B^S9{kNOM{GC9*(ZlHU!l9Z&T1w|`i-DC(ol zJc-$t9(O(JEGvA<`nZ1At7Cz||ID*@)SOOS<GUw5GD&xX)D@|<S($fBZ*Gq}y5-he z=baYEQ#@@%=l?8CovRkS_~IMw@4|cMvFxpzova{N8QACT({_euYkgOGa3SXxPN}Ao z_ZbZvrW`x*-2c+!NuM7sn8&c3&-zrM=S7<c&+Vm|7t*9&PhHON@_xU9u~A_1&z=)= zjC*Q6=?h1AnE3baQW59>S|QErW~ap1bzy7Gf~vO@d7sJ{3*X+g*YLofr;}ZNW-Z)y z;f_VsVXJ3W862Ce^yDj&6{?rkx8>xWo4Jxl=dYg4%&V&3y(Wh~;;%m{Ec>f6f9c-i zPUe2MYnLdct+Sgg@wYN>;V0I;p=-BE)vfw+V;+0(w%KWM>+ihzp1&@|M$P(*KWA~g z;hB4NCAkKd-xqVT{w)6P)x9>edg-mt-@GobzWm*5`q6r)ZL7ssd^_Zj^Qn5%!Z_#p z@8^$NX&M=wlRv-5y}<hDC4Rw(R&nj~Peeb)pShxGYW9|y%l}-(I`_i*X_n3_&+qEh z-()+p;*&h<Tj4C(^%qvnzcS56_0z(dxz~5Eo1<xT^Wn?X_p5^5TiHK6rOqk8S!=)L z{flpASiYTnPKZO{uuV~r=J~u6*V3HoCOnxCxtyW?oY(AoQ9qYVJ)?Mg&Z{lL;VQrV z)(e}zyWDW8?A_Hx4No7g&Wz$brut7SIseha@}jqr>pxkYZJt^7c)l?I!-M5Tb7$RO zxq1FY4$Jz4FF$PO+I`gB>)pTA&H0esXZ=bxnQu>2;;udymTj1^kzrS&W3uDaqb_yD z9;H)Ua@2Isp9!qLloROrGTvsws|i24E4Y;Y9c>m7T5I)RU(RE5ySViE;MhOwj=in? zGt=dTY5Rg-d)1;B8fC==iAKeH{5d+WJ3n3iwDFlgSMN=j9zXrK#7aKq(BF6OS3LU= zJ^fYGzqTB&PupcKcE{hba(%b{>%Ol`Z<Y&fUp0qI{J^To^@jW(ru5gVUQ=A6HNQ6f z+x<{KllS@G5>2l=|C`tMr9_0~v-cP8ZTzt(W!;Y!lxkN6XxDRdJ-U8z>KV2z%<EFu zH2hkSCtSz()mVR_;EwN`x^9*~h-Fxpe`u@Ny554whe{h>Ka^_8W{q)|WWMF9rxDM6 zy>Q39l<L5RNiwCMt}C+UyPAJqTfd^WUi9vnx9!;y^ZXBf-oJ46Oo^%~cNr_)dG4M| zT`+rUYykUv(YGrm{}$dg_f94Il~Bi~Vy>qj3QJfridGd(Ik~<;yZ+n$9pM4eJ<6xj z&i><;<lj=?V0!Qd|JidzVOzSo7iQmhzqoA2_M)dN=2mhYTj<ENom-aqyHxU<&H4q} z^%qS8_PG{vTe;mkeD&1Z7V8HaLSIOH+1L}xz+b-5^IZ29F8iP&UJdqBUf*u75WaP` z{dIc5SEt|3M(-Ea%sld&bB75_TdjO<>%Q7GD;&0-d7L5o+nB3(&WCyXtXq86NM9A6 zX%O#vw?MbG++HE~^Y4k1S2lcaU+_NOb^0c)7x&NCU+DeQyP`kNd|}mtTGgk&nWk^b z{}$h&vqI*Qo|;*;`iVyzcj`H>N4i?Bn)=k>e^cGt1x1RRJob0!IHcWa*YNwf@4(WI zLlvDmr=G|4B!3G%RKLTX_qz5Skyjq4692K*H13{$O6f0CWWdaWb9<(4aX;pDd$-gv z&)bgM3r<h$wrs7>I`P9pdX+}c>-i1uqzaN0(idev(R(d6@qK0a1j7>_^dGhQ6uf-6 zOMIQ<j&&{Ehp(PpoiOW0>ps4!ucaGSEAF^9vHR*G#T_SV=cdFz+0|Gt{dLve6;my{ z^qOD0J(EulKlIz_pY@7~{|%#fp8Easyzu+%3aNEhuiRV59+~S_x2>}Nn_b1fSt-p& z#O}9bi#u)Rd?$F}XZQrsUtbQrao+sDC+ni`=JjXxG2MGwXTn-sr>s=J^i%1_=Ke1E zXNo`e9Nu-K^in$iZ|T0re1-WR)kUpE)@%E(Iu+u6HTISHvpS<+#{X9R%u<_fIq_%G zwX2coTgBd<wc4NO_1%8+^|bwK-Z#{r_ijsWo8HU#I8b=j_m8vxJhSOOTy(8U?Ri>s z-`?~8X5SJ0P-(ti@BQ3A%zPmS4m?+VIAin4pUL5UuNk-Bt$pyn{$I8I7kBBj5>3v> zFP&y`Pi^K?EOGg`%;c}d2bZEctHvkxOy1`n&7E+HXNtd9s+j2F*-MSsqkgu8JPYKk z@~hXHynp4lX(3^YyuLJsge{bLGwoE?lEY_%ESoE3^{1Ya`f$}X$Wr*(R<o6JTIVsx zD^J^c!mmiA#nQCo%8~D$sXZZGjw{bNREB76&S*{Y(kec&pdw1^^NRS7n?k}Anu8{s z@-kU5<>l&trJvGPu5sggS{!8ATpv>zrj;F#dM!7o-cq<X<!^*m`orX?`61U9NyY9d zF3S2}lJYylM?+Filxb?{)TbXpRe9cuC;k4de%wh|+3EhfxeH$~E`05vVpF7Gr1Pft zh+FH`hZz-B{uM4SX3pv0)OLEDc<`!tm+!7WPVp%gHiE5MpWLS{Z@rNb5pnsp`kFah z{v8*D8vG-~=hgSQsj0VU)lZ$TQ0~*$d*W=@+Ecw|oJ-;q7<`w^4n29?L~5$(*+ahy zOvL8R`@l5Oqa<WTi`(MKyO*~gW?48#A>fQh2nXlJmlr%LY)tkB&$v@|@Zm505X1k5 zo@P=_2YuZ+POkj0?LtAs4Kb<yp10y|hc2G@#+l%g;`HRyyN`tl^#TvA5`X-<P-3!W zdyR%mh5A9i`N#hXO+0(3LSmL+j1sT7q9)(YEBarKC1gx22x*YxZC`fyc3HpUYiC6X z))F-<&P}ss^|Y!dO%zxuF>lTdGcn0NSG8^2!IvkVeCfe6VRnm$Pe-5MJ2`2=MGrsh z*pOYW!sf)b%-3ak!z-6Fs&DFLS!cfM>vEQwCBwLu^L;m`^X}wBab1=|oqoNo-@1F5 zp1z&fc|jtvMn!CHx2@Q$dwhp`-S}D-*Cpz1NUzWl>2+&ktjnq@$||yAOX~Z@l3^_- zd5`zQh3~c#Gg2~ibc##9UkRzGvT!NMu1@ivu}_-&xP$UGU%!5LS4S78%ZKVSGOB8d zlJ+}1k&@%iSD*8dyE{ol*=viXm?XQ_lGztG7F48rtxBFe*}C=P1-}RR75*tKKO81H zTv#H|)j4aIxyW4Qe5Dk5g%(eD_40gq)i<&;S(Jn)8z$a<a^uF6xEH)0$=|=2Eakkf ztfai?;YW|3UsMd$7fEakNYU{MHM87RzrrHsR*}aIF}{AmM5YsQ66rZt*w^&+biV00 zwoH8?U*7Ka<lV~;x9m)jFgO>H!LdVFc&8Ja^-gOm!9KUYi#Of~33fetZ*TQMsbwon zf3&L~*Vg+I7j`eBb;aK4r*1`m{QhJ1ByQ8-U-idCRi%6Q{N0x&1=gDwJ)1x0Ufjk_ z%h%Umsefp7rBh8&=~n-;K$cwh#TsoaGn(51HSaJRybd`SsyB7jgS!F;xEQv|e`S6q z!L^Xngem{mg}g1o^A^2euqi!Q&eFQD?N0l{vvE6)H|%Q&JN#QC=5hvqt3UvMz^nzj z>lwHne+X-k+{S;(a7Ce_{ZjuIEsT0viEo$b3R^KPt@qh*Z9!av$OSJ6;YQ!(w$q#V z@2y#UBe25WGja6-)uNNS<rf6|=9u65vhkdJrf{z35%EbPvnJhH6Sbi1VO_`~sVhAG zuQm54iKH=AE}iG{K=$FYB_@|Nrj#+WNG`nNRJo}&WHyU`gZiP(nLC8}`VQAhxw)*! z{cXME_5V8(;;U`z_iqpMio7!0W7G7MH@6q0&G4$1zB-TNOVf)N98aY$zT)&uR+_R~ zGxjF$g~yZFPVUmn{!w*G_|mJm2ag5buJ%aPyZiF|g5RpeTOt?ab}d${ns<*seAD!o zL3&HYE_iRXa62x)Y==^RTc$s!d>M0_McJkJKryBCj<Sw2Q`V&tS7+2qT;NnSY+Ly* zcX2M?<z1W-ijDJ^RayGJ4bR!x`OV1fWna)<>BVytWt48IIEZbV?bI<%Cre85{S@%7 ztE$$(lYZsuKehYnIbQU6>{ILccJW#pgO=OIpxnLyIp2#H-_19^<au(rU{%VTO~)qJ zx!P}iYk2GQ+esyzYxpk|3TxJ{nYtx?hLdaN+YK)BKV(fRs+jdDYf|4$_iU$2yAy8} ze^U8W%m22X<(Qe<%X3#R-fggS{cWg|sj$%P*p~Kdrwdrj)qZy5Zuwhib!>{OOU7)b z1ML~QFK^dnMK9XhrrG<}bFN}?tV-sc6-%5q<*PlGnEp$t*x2ji;Va#9@>eHcxL2>T zR(W6A@+JEdt$qo5$_MFois|m>^t>1Sjk8))T`%YUCe`0d#147(39Y^9w|Ci!y~-cl z-kfCF%GLNOujgCY`Xka8%{tQO`n_HrAvbfeVBo6Xf*-^#Z&58Qn`G<OlXXub*Z13| z=co0o+;^=sY|prVD8y@1YFEfNuTLshY9@ub*Q>;OdFr|SR(aIvzgx4t{PM&Tv$VaH zwH#X=v|aCZp1mj<xoPs1A~g-RjeUVueVQNmML*p1wy!(szx)}S{a4e+3?C~WKCix~ zvB&%S-s$t6S8M;f{b=^2^R}~szWfggDf!2-xWRpgm8)&T{G^_PwUd6G<H}gezGC{k z<>K>s{r}jzNW^}SH?v>pq-COWWaDn{j?M2@?pPTu@JO}!_KE)<DqrjSI*i|~bH6I7 z^SCx-vhTjHVn5_6TC@X8*1u~imwD{^pF1pOdf^HiNk+@*-79PY87-$TRFM~*{%M7c ztbvsx8xsddlfc2It_0>z4UH~V(GZ7?f>jz!T4635ZOjCil(ZyVT;*!bc7L`t-o0?T z{Yo48`dR%NA?6twc?YisM|&-NZcsB@%}3t6_;7jWPL79MEk3qtcPwsyUR1S+QSoz4 z%aU&OvvX|re(OzKE?Bf$V3N;lo7{6tjOEYQa4kG=mgDZ-%Ckob!|Us>-mT<VJDc~q z_D(jdDdv+`UZ|72)tJ5P{65KkYg3_H?1G!t%ri?qWWgVNx7qmxuf@GhS-*D7PT%y^ zOX9rZ4)sql=6Szde&5xvXMC&Fk|LabZicCJ;3`Ls+TTky)Ia+woc=Cq>k;0!u^gIa z3bX7Q{=Md}_WaxSdfhyYoS)~W8?3TXuI~(6n0}!+!!)Y-+M?$dxie&|1oyVYxvgIi zezEFGm)Qc}4C7l(+ZN@n;LUZnzTmfodv9CWV%rS;D%rh__gwN9Zog>#BKC`1mHb<G z`33zK9KRU;VySKW*JkG)zd-+D_zQtEkIi3jSasdHXjmds+wHgD{RPi2w!awvcK9ux zAHXj0OLDI3{sr+D^IypPlAY^b?_R&a{-S+=`t(<;Y>eyk4)j*&$hE6KdbvaLeoOwb z?GJB%wE4pj*Cc<0|KZdhl7F=Fj><nc{6piP@aH4WdsLjbJULe?F7~jkY+a+CKXLm> z>nE|F<bF2Q`0`CW{6xB_X^x^ztEN-nl%7e!cBlM#7r6z62PUtSyuy1$_sZKVOj(Lo zophJUEt(eCAJiXszCIv(#nuq*t&O)_au<FJs9tHlqV`JkmD^X^uT;L`*Yf*lvM98K z&9-CR;`NK9UvB&oQ^mNqrEWr;o4u30m%X38tG%<m`+leVMcXf0zvO?Z|6=`%_b=sN z-ha9Oa=n+yq;!?@Ue~<0d6#+IoAPGz9%V~a%i{q(lL8GTduACLxE(uJzeB?OacWJ^ zd`<&LwIeMvebl;7rYZSM=`^(T(VKkyi7~5>V(<|WV^tr`;A2ya?@IKoOsq24>f^sm z{POIbO)n3BN&RK$JY(S*gER}{F3H0&r+t!_8DBRvo-xzMxY*XXd*<0Y2kxA>bL7sM zGl_YLd8v8H&y2Pkf1dI4jO>}YXJYHm+&yD^hAB<4SbuXzX5zbKG2`#X{081LmY!)o z<9x>GS>iLnG|SH#pCvw9d}i6)R5_`#t8!N4$u&vy66dAPOAa&6p0V}J=QG@Ate&|( zQ+<~DO!Qf3n(gINISFP)vuB(=BbKJUxi>R;o3Ztbxo7mAnWmX<ZoheY&$&GZ_ndr_ ze6K#~UfR9Hd#U%5@1=h;mN#IZ!9TNqM)R5DXVlLuKa+mu{*3&Y!anT9Z9ixJ?6o}q z=j5N}PUE>glO8TDy>#%B;-!U`5-&ZxBzS4!rNB#7FEcWmzi4GHF6k**v&GZO&nnK! zv1)6{qLN7^o4!cB6nPo)a_gncOE1r@JeNH;f7i2}?+WW}A4NU<b@c1(*Z$itzAgD) z#9z=~a(%b-o!)ml-<^F|`_BJv`yKn;=XXw)>vex_SkWW5`S`1im2c#hAAed{Z6mk- z_;b$6Pd2Udl>E*8TbG}@eA)Pz@%hgio=2W9o_BTL)_KouU)$(c#eLfI=H`Q&kET|9 zjhlS^Id5h0p2K^R_w-lP$A1u%e|-7J7Q4CUUu^!BV>kW$+tZ(1YietJ_Z9Bztb3IH z_nrdRqy<_h*mxbiF9`CmEIzm>!L=Z&pzg!F2YU}5J(zkh^k90EK5IN*9?v_DcU<qd z_sQRp|D*6D@Wbi{Cj(qNxW96kwyL$LwXWkmd&2Oz=N-}V<F+5yRCw-DiW9A0-}$|V zzl*<*zyJDi>Bo;B2|o^gbouewkJ68d9~D0?Kk~lozHq!myvTn2y81s8e?0!U{E_zK z^GB~AxqfVZ|N8Fz67{P46#rHJIsN1M$HO1<AGtq1{^<U({r&$X{Ez(ft6aV-_<H1p zo12RR(rcgpIJa`Hv3357m`gtso*$l@Z5{ujzGma+r{}Jn+h1CD?`P_B^UggkrH}3% zS>JhXiT%x)Pk#E%6aN@C%`K3>LWj|H{@;F$T_5XRF4opNUS!S``TIpk<nJ&0MK3f3 zUC;lK7U^9cD3aJDsdHFs4V%c-MDDT#@oya(Q4QS%mhbws3whTa-TOhbVbR|LS-Gb6 zhk_L%`?%`+5BgTv%xhVH_&Rgfxr4=wuFsjf^jJk=+rl5Ff2`WWD1YGogR(#TO$@HJ zDqdY4k}H`-WPRgQ*NO*xsr{5H<=Q`C{)zJ<LV;7*L_!(5*j89&iCpzC4czQ1vR69b zOPs?+b_Q2@Hj&ynReS+oDjhENUP;T+Uhv}emDx&N`<!L#m;Cel>siXwmE;g;y5L2E z!$rdq;aclj{k>D_I_hS``PsYKJKFo&d#_&>ztsG4?iamZ3V&7qn*L?3?XvU#ujn|5 zozZpv<Sk5H?^r}?y^8{hra6iSgna(b*!9hS@e7V+^D=+^SM93f)A%*FV^R9d;xqRz zYs~sl-?@k*pkx;J&iZG&#dgS*t}Xie%IdjWUia<C?;fx7Ui>2Bd(HQ-@3-Hbzk7d2 zed+w~D;QkADs@G<h?M?eb>(JoJ+1F}ap}BJrLJ|1BDIRWi`G||#kDPR-phM$>3`*} zINe1np5I@PahFvjR%_9V?*B}#`&mTZmNB}jw=L_^=z8oY=(_jgn+nMV^%~;qd%yQx zKiYo8{fPVV<42AkS3kP^*!u2x`Td4<-haORnEP?}W9~=ak3~P~e$0Pl`tkW4_OkJ! z@w$s%a5pT{KN{a#FZEyPU+5o!1urI6RR5{?<MOAyBHiYurf{Ii{>{6J6P~X)XV|dl zvUPf?ox-9Qlf?tR*b2JtXA@cLv3P}gy`_Ecq8a}u|8M?3*ZyGrY5C{s3WwyE-+NN; zC{sVhp3`>!N6#DfjrKikpXYx%9w_=>^h;gSuZ0X+jhpM-madS<y8p>uQFGDH;6IoD z{QeVMFjxI2%lwvHp_xD3D<0;>f8=+nwU%$!)^pREa&Z5N?H|5>>b~@pZ(~fw!avSB z;!94~@BL$?@&4KSht@xg|L|>*`SIg@hUR~6nR2$R2WE(Wh+nk(XZg>o86vaJ*SF<8 zw|^M^iTz^lpY|1EXCK{vDE)K$g_3{1Cav)Y@1NY?cI;zxfb#w3`l<7K+&oOK7<JAv z_b@t9Eu?x=bz-pLFaKZie-eMq$x-<$J!S8cj(?N(_}42=@7rV}T`&Ey_Y0fN)V!l- zzf@&z{W4{X^xjEvj`p{9YE|YIRTO0vd3~C7B>CjY&i2WZCkYF4PYzdqrlziv=iBF9 zHzCI>X1dJe8S`?MR2!W4-0l7Q^3#(XvfgRI%O^)(xtOB%mAACzm)b}6UA@1!?mE>r z<}I^x-Mq5@Vn~+#ES4L;`Chr#?`_puVLtO=!wKt^d6TBE_;fB`g}+>GS<|Fx=bGpK zRt-8SI`^%KzxoT6_3!_<1l{==_`JPyW9PCXJC6J~(sE?Uktav49NF6WTIg)&&Cc0E z+g0*>?@XI9dxveI`=fV94!L+g`gi2gkxl2q7W(M;+svyl+GzAKC&@P{_tDRDTRVN{ z*3Y&ozr6n9$8*Q6pO@QBvpC29D(2qLq9XUA^yizNoO`nFN%qORCv8ufPs&%l@B8k3 zjasEbrNPh4PoJNJpFDhW@ddkSHWUBoRT}-Q{nY-X|77sV%O~egl09jBa{lD>$@^96 zegCmt|EXK4_w)M``$?Q~A4Sf8D2h9pZT0+P)V%}ImAui<@9ya>|0H+se7n{A>Bd`Z zl<Tj5Ui_2opVozGhJPaVb;@72Y?VLW|6Kjk<R6-ULjFb7MWrj&H2>LJA~u&d=GYa@ zcI8&(bqiy+2<@3W&Fn(jEjQ~-{<q7WOJ<yFNnTu{7waH?IklvGSJ%3Q)tACA{C&ar zK)U^s@{5UIR`jV`+gV($cr`s=+JCNH=`R(_f2Tc5>a!lMtoFNG`l>JZv)|pitamGK z``xX|I=6DR|J{;TZNZ!UW9wJ_{PFPewQtM&?-!i8`7h-6uH^UI?QiY-R^s;i$G6b8 z!nfaN)<20jywd*m`@H|3Z*adgpIf)N_V&y6eZRNWp4fQnecx97zw7?)czN6Z*3I|( zENh*sy?@_HHkX-ORZ{QwyDwk)Ex%0d!xx{FPxsqYKiQ}JUCy#3<?Y1MfZ4TIim%ix z`FY}o@=o_#{ZC{c_KC=G%Dk)Has6S};iv81eByHFtml;8D8Es6qd-F5s`$m1h4Os0 z<u86LJkLM3_0~V<eED0&8Q&M?#?QCh^6<zk=X}|y;*7rw<JzlaR#}Qz)IYI)V*A9Z zv0p-E_teExc`t39wd9ND%gL8SFR3r-_m-b5H(~z7ed_l5_Dc4u|6O*)7B2nM^JmEy z(Tus1=TH5wWv^K4_HT8`(xe58+LQJ?$~x-fx;d#WY1taLu(cHq^8$DRzJz|6-rw?f z&Z6x}9XYGE#QfTA5-v3{%}Z3k`48Vjhok*x3YX2bWRm-$`(f$s1N+}G*zXp#DY2}0 zC3=8=mCAF~@99%kwRs54U9x<s(%=7o|Ga-*Z~y=I&->^9zhyUm!8Co+Hk+9GRq}TW zLLblA===D>56*D^IVL}6X$G&KYxZ}Sr19+a^G$!ZN$2mXJg2+;p4s<rm7m`)n78}) zypyN>^(r3hTYhbATJ(k3)93yb{a^h3(P4Z0zmM|w&#V6SwETWu>YtXS;rs1B&i!t8 z=l{XR_v*EOE*=b5pI`Z5v%lTmXU8vhFZ0`3R{v|u>#(yK^D6(Ykxsi`ahc!zzR~k* zJGbXnr`>z|`Mt&0%VjMu-aq^;u<7tM*IswM2Rqy^-+z4acJS}U*B_p6PdKsRi}_bc zw)*~#rv^3(TV2B!pTAJ@MWIUM7uU!34B1B$*nZhNi?~&Yta3Pg!S_XehQ)^Gi6^?} zIomJR&~m@dP@jE$QKd%b^F_}M8h2h;VDv?ER>!nSTv|@^+ispXR(Zwyho4CEY93~@ zJU97+qMIvOx0nm6uWZ=dw(#$jh{!4DAJ-qPe);{!#}|<?j&{rAUF8?>y;&UiN$;QC zgGc^KrdIBj!ud?*v-#3_-F;uMl}Ps_*i}i%9{9Rs(wm3k2WPm|AC!2uFgL@#??OkO zla&ce-#%&Ewrz{=zEJ+6`in1l&B2)!cK<}`)f_u(Pu3pzaO|^jfWC>q)rCJdT<>h& z(blufEqHxEyvjb`ZJ+gad^0Ff-X(drYubXPFI2y@PB1(!5;!3-#o{a1ro~<+QoZb% zdd-Gwo!>899MRTYV1DKy>yP@>B4uCIZ;D(OPjCpmQTF=pxP>WY7u#C*-$#5diN6q^ zpxL_CqN)Ay>JKqB{B;cWJ=Y&h|G4^x$;1iznq9k^>t@@{{WB;0ga3!u5B8NkagdwB zY8>3QuH~mqgWti=sgE_*9h*OaqcdnmnChgHPXD;-<o=8OXZ^I;Kqk7g>X0$NL%nk1 zmEsGr8R}Ki=WHA7T+}b#ck~hoOOQQrsQGUNhg?^FL*SmK`eU3)O+U4jFQ0JxBq_R( zkHNUsbfaaaPaey=v!C@puKhFn5BsA((+<>TC9+9f^fB?Cvr)HT{`L!;UzC5zzB`y; z-m{he9sl{?5;6ZZ-m#QUnt1!<>6YbME0<oWuii4XPRG)~()MRWk+8vM#s$$LlN7YI zn)c@{@I4%88}r+5!n5KezkK10^Uq)KY)cS7cewWGnh4>2Z08Rc7aH#qz0VdD+iw1N z?vLUcj`@lvi5-GZL==Tj%uSKJ>GN&k`IDSnfzB%fLySwcxAxrfkzG=^ATr@a<$>d~ zUs!(86{=TRC^7j>vtRM^l8%mf9(!h<@%+~E<L$mDuLYLMJfHeU?w|FM1vV1NwzGJW z=Ww6j&tTgS)^+pv`HO~MY^`+DnCjUxPjBRPdn5LIt=KVJ1~)sQ>yJG@l=IHx`ZT{k z{*d%Xy*=Xl`|cn9{Zajg!M~Xa619APO4+p~{L~H_+c?H4)vtY`{p0uCKc1~CG(sIj zgF-`uZF(mx6uws|vuxjD&fF!R6}QcB-><w-CER<OcbLaF&wEqnBt<M!>=it$#~S&H z`IA+wtFQCw0NI5rf}aQnH9ntYQ8&-x<Ld%*^-%Y#6QeH43hoi!Qe$Q05pEE7%$uiU zsu|~Xh5pGBrjz&rwM^=z-|$Ynn8KLpl>JdpM7`GGa^4cY385)ETbt@S)*XspP+8#b zV)UUhq&cfV^vvDmD<so2+}19)7g?t<F>vmrmnzNi9`*W)SJWGtr_Km?|M=n#=IesO z9;>Y@8GbH2`-tzxH&*UHTqgC_a-FAMlw}#dbmw!tZ?c7FKi~Ns!oJGZ^&dAI=%*(1 zUw>@%M`db%-tn^vy+tNdZF*`_)IK)a@w@MTXuVNT$DFTNSYfh&Z|Vfj7sf&So9hH# zd+_a({ZeAJi+}q94ZjC_Uod}C&^jo*^6uPgE@}to%2qI6WzRiO_{;W}t<&MDaqOAT z7^?~vD4u6@<6%GjB}nnYEF%@gzzg;N-5d^RPn`CrFJJlc1(81zUzOvWvo0u@Oq}If z_4w(@`!A(d38-vizOZDP=5$5R)+3(c2Yc%KS2;+lD<6q*mY;e@^U6y9mBj+rt0pI_ zzIu{a!tJq~f5GkA1n=4l*Kf2Oe{j&m|JP+3d#1fE*DkkL8iyt7|C+(h?VWc})Z##O zLA~+%Bh8M7j~l!e>c9N`;`a;Y7q&O%cQI$_Iq)x3zaag<H>~+SSF_A|mdrTT8^)|P zE^=B9M?aK=u3%pf6n`VU-Hl<M8Kak<)AfaE4)>N{IGw><vErXXzhS{W6%)~4>5c8X zMDOx_+b^KY#uL$ZZBhTp?iAIhs^2GVKhc}Q^-HS0)_1RSVFk;to;a8D&dz}hyvM3` z6l<QDBz-RWOg&fmX{R!W|4JKzE>!<B`EU8(>5=k|dr=a<oqhOAX03FcnIT~3e|tmA zYRO}v;h|wA@5AE4qGCcKCd{8cTe#b8(`KW?3lk2!|6FxPZ~5W8%~5C67CWxLyh*CG z&1>a^(@T0<meq5(U5xv8&v)LnfM9LePv2h(3*Y)zc){@9q`qZg{3T!a{h1NwKe=MY z^H0i_7Dboh`<?{37m4>BS+kre^vI%ladrN$8|T&eOUv0-h+KL9{^k1bTgp1VGA7lo zj5y!0>pHi3MOEawmoGDq`p%16yElK&vZdj{{yXllEnRdi-a1gQyM7Tbmukq=fNay> z>3Ij9Y3YP@><r(|%W~2vAz-ap{rR}HVfFrrENeqHT;H)e`ZZhstE-paeZ6*k(b^ql zP4zX}pT1{Ybvfc3u(o1$*s^V*TKA3_yH-e*%ujbN$v^$bOsqG*YsI>6@wV?)1+Kla zqw1mDEsi_e(^vnTCOoa%cgK!(^<`HMd4IpPa$4LpO}T|PFKxPTc~{nl72e;gS~u;J zTgUi(Qo{RX)9w|#KB{o!pR;X&d6EC$6=5~}cP=U0bbbg~`F!?^_o`n^e7|lv_1E^# z^({WRO)EEU-Lgorc#m|hS)TR%zMQ=_x`*9<?p=Getp4wgd40TWSBz55scApo7`IPd ztp4tStl*}*3$88EUe)8REv)}WIQ!8<r?vkla8EjVsN+wqqhge;u#Lf_z`BZMMhj;| zv_+{+Ihgoi<?({B*H;acgQK2q_0`QWUl?z(KU65?@4RXE1v47<KVE*i`q<Ly84ACx zg;q7qiwQ8jaX&P_*ClH6W>(RO*AC4&B(eHPS)oo<eX{h-NApisB``m7E>*Z)`1Nj) z<Da<o1_!@yEzGbniF(d2H#MvJLd9>lBTwC4MSD)(ke+{C?r}ll`9JGy#r^U>HLK-| zC37aP)+u>7zs>Yzb?oJ}qO<=Ue%HD3@89-czxm~CPhDQUR8#l%zr%XjOTSHzy)k{= z)>ql?fn}4{30kYxzhhmx=hdNuPRUbNP31de?-ufE_3b4_7rZvIS66M{<Xan*y7$oQ zzxw`JkI!?Zch2r!zO?=3E#0EZ-M>@co^D&7wJ_m8Nyis?vt3JF3vceb*WjS5yZ7(B zd%C{5k8l0>`S`Egwfmc7IXqURrmbJLPBQm#`JMFqw|jTU$vu*~!@Ff_{Q^1ZKR@mr zl(wjOf8pZdZJRkN-^rR~DF@8HwM_2oSHlOB9;|<HQYi6nkI2`12Rv?X$TD_V(ITcL z5@aB>B4?>a(q!+}eQPBmQ=9X)y0C3}uEnOJ#kT3WHrs|yu8`P?D+KoatXvwk-t5KI zD)q}NE<3+{`=lZ4*u?gG+)G&IKkJ`d|5%9gL!G(QkxaYry5%ZHE15P%*xzO|zj5rP z@dV$@s;O%ab!k0cy@SznV~O}n?iia+b|vo?+xs^PAF)(FVp+BBU4r$7uyDTrpFTIV z1ZBPX-g+ox#f}wAHZbgAR-NX<^1DTEldj8|sJSy)JlEZyZ)_;Da?L3*u3rm}Wb~hX zrkGu?>lN?U7k^Q6b&rd-*5+i<Lo-C5RK6<xC9KjMXr3G3ed`31U!!P|<%`XaxPS6( zlF~ex=lAsDyNh*8Y*+n_)V}!cfSSvRcfLjmQMoB!r`g=(k(~Heso(j{7w&c5w#Rq! znKAkouVY>kelV=T<)Pu8m&<oVG**92vk6<>esJ>9RrN=oO}sE)C0B8~b&LP9Z3fe= zf8NeqyM%og)7RsFcOJ5;otwNgacS+|#J#zDW2;zS33Gj0`_OCg#z}4a=Iq<?{@R~+ zKUuziXa9BbiPduF`xn;t-rs#OTqlodWpD7E98>Y{x3kU}<R^H%-4Ix|E@%_i_n4!p zYr87LSPPu%uUu%))~H{br?FZ~_f_zf{T|CRE}W9y5^AMaT{*Guv*>G!VDl9jUB_Q- zSl4@{a3iB7@6nBIlM<ZoJ2>xuv})3#eXgZ{3-&AR-FtAul})FdWOz&4mbQhmoeEgm zu2|r;Lu7UQs`#bLzwADte;~DvF^r|i=DNhsl^YjNeA{qqXR-Z3v#;!bKh*#9Tr<!5 z`pv7gN?*hKi;8cy6u2yM`mrHN^IPmKM&U~x`YR?HC_fBPz4kkJ>!YB(@gZy9{YYBM zCC+3#F{o8M`_ap~_40>U``<}UKl`le9`~vhTdT^eJ6f+sZcN{MVYln|CAZUx?O*$r z?^BaYJ$%pi(7h-5>tB{n7CvczrfRRHWPNF5Mz3$P{hkQnUmJaN?2Dr^uN_k3*1L9O z^FM~Uwg;~V*n6-oPOQ)hfAD$bjaPO5>KbSNEoQ2|peSv8r+j;UcfNOnoT_(v`I5x) zy9*kb*S)##f2-W1RQl%rjc+2}o88&4ae=~aH`jL#mM1*!IcLpbG;8{>U7**x;BeYa zxg9s_^EPHOT3=ICowMlbt6K%fmK7X)^2Y4b!)xzqwGVF-bT#F&SRl6V?n5c(2U5Hq zZtrfqSSRyIY9`~6FOp{tn6BH$zDA8Pta#mG=7w~J8T?nYTQXgDK9|yNIca-+qV|_L zuNj>6#rOTJ+*-V&OS{c-bJM|piq8$q+xL_P#7Mq4{ZPAp(}Dut(t-+!Pdwia>c!t( zP`8j#hVRFEnG5Qh&D%F^y4l4c@w`>3N%_(9KI?-2VNWmoTkGiX{cQM-U(!`?*?v8I zTJPldW7m)Qr;hmBX63mE&N-x_eq@ou{UcH<SZ0|2`B~d@F~RI&nmC*7M5&{)Q!PZy zIyeG4TZ7N4-H43{2&#`!nI|kJxOTU}N?Z5Pgzm8XjV~gF&rac;d2!DgHTiP=)zVu& zRwn)z4qmd1XYSE8*Hce$ZvJ%d_x!aFHi_@K`2W<^FRO!DYiFO@VZ2sscJ{i{X<MGP zdA*afGI{kn@AG||Kfl7a)Qk81*qu}ovVP;vu-$JYi^@OtuztPUesk-!0N47XZ!-0r zR&d<-%$&R6u}9|_4W>W)#lAoIwLkl44}ZM2_r=l$A3kyabgEo-+UUSr`&a69^@dNS z4@B`tbzb!<)z^KN?N!{nRAjy8)YV?53!L_>o056>esPX}xaj1_(6CjVk2K;#qb|7B z-M$vwS2R^PZj;La*@SO3?o4}_S2RXA*5|NmaMYAO-PyZ9z^RjUu1EIK4H3F#;Ub}_ zi}F-cXU;g?9MvzgVxv*4T99_g%o`5QXI&PAMc%L#o<7|vaBlqM&aC8sjHR=D<}7S+ z(l<;~GHzpXy(E7pR8aKjlrRy$dxtNcO)Od=D{5LKH%DRx7kjkWKDK`@k=NZX%$m}+ zM5Nw5YD$o>@CpYuzpvA$O<@b}^E(yr|5-%Qr;D1w)Ai?Dl~x{IbFev`GrlJEdF9rS zl~cV+ra0*aI~@J{;)-VfA;<o(GFg|uhHp0>U*=o=<zl9D`gu97`^}tD%Y!r|)b{#r zx-3`wChFmW#La2^vPI1scFkCzQa{D(l2hF(wz<!D)!$Xy>suH7^Y;(t{w3AlI`*9W zcXH=;ulMVsLN@#T%DFl_w96q+EPT%G-fSM;_s3X1efs?Osi}j|(^P})xiNKxAGv;r zJrSSs^!MMNKN(fb51gCDaBlI_e??lecLrPyu;hJMu!8rt+3rPi)HVp~GahTu<V@Fd z?s}!M^o-uNt5wn=_0n34dbS?d->s8tQP6)NiH#wQLx(Mt|HX=R7U`SIB8qZlnc9|^ zsIE2OE>?QA^Nk(%q>Y_k7gV^@>QCBk&tG_9C%@SnyMy5kOU>C1znrOY)>C?~rKx8R z+w%ug*1q=kI;yuJ-!04UH~X4nkLFAbI=tf||D8QwuVwz7b9(uYs$WX=Tx&yf*A!m= zQROT5*Li7u$LVE;EuUANS}$<d>Foy2?>uvFiu>-U{=R7CYFqQK=jVLrIGC~NRS4VC z`-$^IVmGVoOu4pLEVj*a+qy!Q2Mw(nJlpx^|2Xj0sZCy9+51H1uj&Kubo!>|w5|(3 z>HOlVs!`k$9p(vtl)hR`WSIJP$CPFDGQt|2*O}h5{ImNQz3uvJ-926zK4n3#AI>TZ zIo`TC<fhKV8CR=X&mA!kx|VZEdi9q{j72-^rdlbi`K5N^RYg7fG=>w=M<X+3CI~dj zzGK@W<P$!l{Zr9JS@D|%nbU6xFLq29Tl$>4-J`=KY>!0P%F?ixrOC%))VIF6vg!f1 z%)k0lF|~@0_{@u1A@9|1hpqSAws$$xLao{z@j+7@b#8h-TY7x9s(O+1f{DFi$8@e6 zrU`2&ChXy2<&kz<!}!T-!r7fw>~a@OAALU5;eTMlQO0<)xMn8r-8^C8F)oKRjZJ5l zs2RPF@B2PI($nr|mw#&O$9?U;*Tgmd-oyWxwQSa%daXWjS@ob-(GvMQ;)UgsGHd1+ z|H=EUtgv#c-j(y_0eQQv3sM_S@tLH?ter3S<G`QU@8<l?aS%KEEl?vkG2k>$T&#)p znm~^i3SCE;4mK!C@USq<{>#{Y_d&spw`RK!i(PolQ?=JmZ!&91RI}gmURLJ1c9zsz zU#!-~ESknT!LMF!ao~pDMHX|zR%K5(Il;u>z`Kik*=ii_w#|QFVsy^V;rYZv8^6q- zDY5mTm!G9Zv76e-EzkB8UlfpL?=YUXVngIjzS*sBGu{Yfi3zOOu+lCtR?ndJ&eIz& zw|MG>JdaS?RKMy%fa9Z$t*wt@mYiV7%MqCnI=f3?OXi=HC6l&@J*_W08*0k8?Co`* zQ#uL85v#*Dh^^KA`Pu5)DpSepYmKE!!`|+CBDwn7qQF-xRd4A2IQ3*>)v;AqXQX_! zpJ7}Q_PpQTYV9tb&-{y1-FmN`T5@lduIttkRa*v;m5ryjo9(#Eagyi!X5KHKjeMJ9 z^onKNc#Vpi!?H6IA|>-Cc%`;~t`CVw{d(fnJBIY>-TGcU`xZSo(Al9j*+S7kG;Bjq z?kVkzy_(k_ysgT~=PEqWe5hGfoZFx&y_?@MdWCTLC#{Y7TRqg~izcS^1c>LTPWsbR z(^JeK#$|b0`i1b7zH>~+Z+ktyf8zBE;od8{s+VGa7%p+Ryz#SA-jlM9XAj<fimRyC zzoxc-L;IRKuIDQIbUs9jYB`!&cTBl9xl&;AEep|G+|$$)!=gTXWInigzROPL7H-MC zN4M<zTxs<F+3Z9g_8*T$-1aZvdD3trXR(iG{mLz?mggVWOYvN|ha>vnY34%@8#nDb zxYX(6=>?nem|OMl{8zD`WTiTjZ-dF)*J{&eZwRgTo4T;5GXGBaJ%#;Yb;|o9_jzpd z*e7GJ7vFsS<n~2tf5`rs_oui<=)Z=2|NjZIrxvZrIs86v;grx7j`!Nk4=s>NS^qR> z#xJMaZRL44RN3@6KiFpOG%+_jrO)A}(jl;KoBFy-OlN~8JfFh0^_mvvpX87Ws{$oe z^=DiS>lJc%VO?MGPG03u_3W5Gr_^Kvf0TdNuheC~-B9f`Q`1N7Q%}w>H27bh(zJf! z|KDNlQR}9yJjwTu|AEZ@ypmPPha_+QSwF|#`%%E|t9ExwW}aT?Y-yo$^25)o_q<}a z1TC8EVU#mf;B?&vQ~Q9G+n(8Oc7F2Y;uc}nW2`(r3mz?6IW_xq@Q-?SlWdcdiOyoH zZ)R<hTFbV&rSQhwvgvnom(MKFFrFfMitl1i(9(dDp+-|fR1;TB@Rxot!9D+RK?`S* zhTHR^8|yz7-N<WITGCad(e6+<F+KILdJ+4pMgBY9T=IV#y4YgzwWZs`q+_Crw}xr> z=uKaD>-w?dmV8=?&CcAdb6XFss&72BX5BY#*Bc3^8l*&~F!n8uu}UrVVQlqWVaXe| zzF^{f3*!(Iw$0HNr(=CZ)@(baBO)I0Kvh2R#@8Dsx;%v0ESZm{yG~~lxvz6!dq{|b zf|~*3dv?DC+RN&8BtH`V`|ecXw@Wh?Ui*JeCfxs;$r`iUvm)z`{#~7=JnhUUyYBG% ziO%ek_uJG)e@}YvJXJYO_Q;xm@3tX^N%wr&wf=_HZ>oL&ZMNN-FOkeQcAK}lstYWt zTkxOZ{`SPherfrS|35H^VmtYy>|EUP)tfIDo#oraxAFs*-?>#GQf1p?+*;%~zr5Js z;`AXe(n?nU>P=qj6XG7;YWdDWJAG1B+vW-=X4OxeS#v`3Ldse(e>a`9cxB^>%#U{Q z2V1G6lxiI*@GDs$t2wVvuVC%{^KW;rnK-{)>S*P=rcK-&>N^kgo(y^;I6>Rc_lS}I zryj?38?{oxe)azdW#ZoS;!B!UeoMnONu!+_-P0Y!;u~yTH>gj2b0aO>O~vGbUq|_N zjgU64`79Iamsm~wr1tG?Lb&^m6}ACa+>5)b94j23HLck?GkbH{Dzo&{#wA?A8&~Pf zKKChow^G{%?aTaAd@fAu3Estb*}jBRc&_H_Nlzc<W(Io29ad+EnJU1Q%(3`sQR}H| zZU67++^be^IhOFlsiM{=T5`?Fh94Ge6Wy7M4u149l6C#q99uu_<UD(IiD#CI4s0{S znp^xg$Xe)nOc7FvSaDePLZpwQ|A`k{3q0OmFS_x@tRO<XK`A$}{LaKl7BvCJd3{%= zSM7F+$}e27rAwqcuziZ>@AD>YD>sUG3O|uMxU;0L?c(~ghwrSvS9P~L%xzuL)@Pcx zkK2~oTq#KYbXxZCo<k;g>kDq5G&Wu*ImI&f?b}|lm50teTPydu)O&m3<}`JF`^lHC zoBw=l(!q7`N&c)bwic!ht2ZoI5OG`gg82pgi0Crgq-T}lQ*52|wd3NpEvv}AS@xIj zbKT#%!;GI5|C&FW|K-2I=bcdx_vo_8`^??O`|JYaRGpb_k|(bO?KBYKp7cYu{=}<K zDQ%0wX8iG$>({&0_Wr)eDjk-%;{Rf?s*l&}WFD5Bb11^oQs(KDwbAeRX0WjDOrCuy zDo!KOsP0zd^X1E&IQ&@`*c2uyR0}P!cQ_HKkZ32QzChDuIa5Ygmi~lkA|+N`UCfSq z8>g{!|Cu9@Qe+Vz^QdLR6k#P_oip4=rq@sOh)gb))XF}V#N~KKdx__=8Abw+_%<Ha zQ4?sX40^m}?vfa#rSoe~zt6o~cjDrV$ZH!OO>Ms?wSDWw)Xh=9P4ufDZJWsN8o4$o zThj7*=T!L~b$!uX$^S3Dhd<qDb#2kit+{FcmpZdnAJXMbo)#t|`6SJ3bJ34^yW4fe zlMkI|t)I=b?v+d27sKg{b$6X(;yN$CHE2xm&nvYmpKan6E1mbKB<pM5;^VL9`e-mK zihSH<tMDsV#MOJxI-cnhik-3woE~hS!*@``$Ah_6P5G+ZyGJGwi{`y4*){Q4>p__q z>l39Xx}_~tZwPMtm2qnY)B3NRJ{}JawV3dG%*oFY`&3)s$rY9mz{H$-zGIG;&nY#n zEl-6O%u4#8E^+?-{LqqI)1Q@R7yR83aQmqCme%Qq0?Tub*7*c>`hQ&hx|;jRhV2n* z_eD=FUvzR}#TyH)J3kv0_C9$ZJEP_Jq{W=;SG@ks63c$m^`hXp<y%h6+Eq^5I@?v~ z^e&_9oNJ|#{i%D?ZByzkb0<c!x|(rzt!eMN`*^x!g#Upj+Y+~5?v7&)WMwsBteo@U z$vLlCVG9BR?zioK`sA5c>)J_ElV0)_@t;z<yzRim$<2*sf6kg+lj6SArDwWN!&G6O z!qSjF*9Ehk@?6hsUBXedbH(XJY|%P=op%%&{qrU|C#KJl*>>uT_*U^V7WG1zImd39 zBy>!?^Yj+?FD>8CH%gY+tiQi^s{jADZ=TIwCw-z-XHD4u7spboub<ohTF;-2CG;<g z!a{j3zmnbkIhEi0A0@23zGU;OclGaovd6tV8s(#+wqW9d*%9oYwlYrp5hzzTG5F~Z zo<^nl+K)c%a<cyM`4E$VU#w60^sATtrq&;RdC^FXL+Kui(6=Sq?FwJ(b8Y!JzmSX3 z`N5k8oyEN8=D1(pa>hYAMbS#-^tJNK->;j$SpMqyi}zRW3*T6IU+72F&#muD+TuD@ zjaIgEMw&AEU$DMte9-#1wR&;byEA)y_szXIe|4X>->Q<usSXVhYtJn<-_ff#`EpLG zuB4sFiTVK6sfw)UPODl5eo%|N<gx9@nH9!NKNHlmw;j>a^vcUW>~1l6_az0+@KeS* z$7gs=Ih$6!>GP(SZ?2zU3~6ApXb4GpYZjj>*OGhf&)gk6_X`{EnR0mwnO)Ri`~SeB z<)+=ls?SB9ldcN(RPEU^?`npr74Oj%MpGnPIxpRn`SzlgF?afwD>j;p-P7+~u@SF7 z+?um;flbA&1E#{_GI##|`EuPWYxU=_zi+oCrix8AbDkdhGp(rK^vj)|ncCsLGUmIQ zUZlsCmwf$XFMj9yDRuw*)~Qcj<{w*Stj%+h_kOkgy<bm$9WCE$vqj|1r(iqJTE4PO zm(S)WG!Hf!GsNF)Nz~XBz3$YB896R&iv=a0a@4Or<F%M8P)BX@RIascp%>P8?PSgo zoGflO`)Sx^|LFlQg_&KrLUfz>6Z&T~2%Y6zbSs4GmHt0z@#@`1$KsUVHI=^VI}*j{ zuc7sG)tM#NA|<M#JWP6~azA>1Yl~ReLS~hJa*x{IAN`@&@#&+}y5;XG@Be<mW3^bQ z&MmR$h?|>Qy-;V6Z}gk2=A}nJ8Pqv_YblDXNPTkhhSi^#3htYWZ!EkeXt|)me$o8q z>lL2+6xn#v7ax9~^?3iy8PCt(JXp`%cwBz=)=g*5G+dZI_vP(_|67{=tn5vkAHKkO zmxr4A=kT;t!*gDHRklw$`C<FR^%iE@r;oI0txVo_D(kX>u;JE+^?ZJjFIJ}XyJ|nZ z*0jGx;ZS#@o8jm9dDTH7A&&m8SI=}my?r-IS-1G5jZBdQLub(v0sAMO2WIZt+TdBH zEMgd`*ZxWI#tw-Hj(1<@FXp<^Aw4_L_=xE3z?T1s!Y*td6zp@F8XRvFRSM{P=v<f- zv7oJ0YFkGwTj<t{OzqOGcJ+%dq>KF0;}(9UUs0&oeS@_vY2WHEldi1$H_2-0{G#07 zt3uyi_uH$r`}X~5_P-*xujxt8oALL|De3&E%(}{df2POJG=DEz6#wwEZ-33-ugb~u z^|kcmZT3A~+#hx9dg<@NTV3kQ`{K9hXwKbO^|kc+{trwK7ReP{<f#&LY2DG+UGJG% zvdyHaD30e1hk+ua%HKeZD`FZ(SJpKtP37-m3QjbUG3Bc9xjf<j+;{%}^KU*cQmGa= zCms-FvD$Y=iSU{Knjs8DT?Zq3621TJ`{V!lrQxO?2CkK%iK)wMq?H_3q_!+jZobB{ zNlR3S@w|nr9>c6d(V3?>-ZGpyrI2mux}ZKNS$mu8<S@5*W&H(<x-T4^=RHRtUS#fX zzNK3px|F(GHHOp)?l|;NX8wG$v=yOQhcX(kyohA>HlCEQO{PR8nA1v#?`IDq<H|1< z?P5&+kzysQ7Jk?q_u_t2lFvKVH@jH&1SGpKtVye3JiI_p;$`cT4F>D83}2UYUUxp~ z`mkhEeZ-7=mxQwX&n`1mo}Ybd^Q&L6u3MijObx$V_x?rEY}eIB?cD#{xOtBH`|kX9 zGhMxOe&`F;{PVMFzrGHh?_smy!_@a?_ae62Y`=9pYD?NuIq|yrf1mzKo&7$3OXp)H zgY!xETBQ1o6n>q4{$y6K+R_~5q!R0moCb}@mg#yez4~fL{S1$l5(kzo;xy#0iL`S4 z|9+CTICoY}Z07gIL*^TwI308Sa5%Nbto2A?#03q%-Ql$Xe^qa<`!~^c^}oqeXEm<a zvqRIr*);dYv6G1{v+m!x?pq>lRw#K&>8rYwuvu-ct54OO6;j>$&B2}<`Bp45+Blte z!lyU}ZzG)uvlZ(^x(?QdCq{m<UL2bJ(O^2yx8{_2{?Cn8ePL3U?$3HrRK;*)OL^fs zUY=<upE9=adaQFew5oyOl2dHkmQ8FrJkpv{TTF}oC<Q%;eULoeIp>eiq=&K6GvDs$ z-NPcqdwt8R3k$4ua&Pd9oSxOKyXdm*#fyypCw!f=^zbRCjRDinRh%l)Nve0P(6IGO zZkAd8_kKmzM$eU7e_5RmE}9>@+GL{k2m6q)wW0IZcwc+DaFI~uPnSDR{tH7M-I<;@ zg)PCPzMw4GVeyt*bG|6Zw$)3;u3H!7{&G#<mqq<<3a1a<o)q)o?4#<2k~?#`l=QMM z{+yfi#Mf45%JeHI%^K@FS049oU9xCKME#K$i4$ILT@)i;u+R3)@m2AmS5iOi2|33b z6}U~|v6SkGunDUb?r+ICxOLx=l^4Fnuo)}d+7<1%<({|eY>SWa9p9Xs{Q53W^Nhc3 z89haJ>5D(rQQJJ-rs(D!T`QiV{Xo5RRvv5I%>J@sQ`^)ZnqMzRO<EYYGGd}*>r==7 zbN_wK3b9g~tY{y~E)t)9c}COb#a@@Sd_x|eDisv>b&uV#kgsBA$h4bnyNiF_*`2zn z$tm<ow)PeCh&8O|IZu9GefggM5zB*L=L#DgayZjkr5CX672m`O=F6tr+_q7TQ+}5u z-r)4|#>YwXrg+BYMLtRFNYZJ4m302@&BtwtOx%@5=?@M(|9;-H&Oj$Ba;~jTP^9aL z0!R6G@-`ONil2FfU*p(#)q83E_m77BYV9$b{;_>wyjcCBJ;3bL!RVdS_usY=lgpNt zUfcb5;@ZvyZ{B3^si`bWxP2n)+?0(f$*F9Xv!;K(ZDYf>uX^Qds~6Kv@7S2tA6Oh9 z5?<K$X2RUdCst1s%YKtrz5DN)xonr@?#^;|x)tHEojF`lcYpchu)wvVVuv>rta0m} zST^BXy6*a=2PGEGE~@rruJus8JS$PDb&LP1Spu80oKm#+v4~I4Iw+$*r6cjJQ^3#G zV*UE9H*d_T&buFfuk_z{-;X((0TB;pd;O{puIKF8EhH58XS%G{o8>E_h2zb-U#CpU z=T7CF_qBb-;c7YiK;^Ri$}AUFPy748u1#Exzl8PN6-`F3NBJ=vOT;H}b}nzZnyc*C z{>rgkMx%%8gUY+DUvKKW-V58a^pBHb<fOYom8Ui<?J)Y3HDRZzfxd-yk#kOGQs={c z2PQ4Zk+86yICuGsljp9SyK?r5_wP!!ir;L%+{IQ*Z@g=xB(`BU)B7hudu?l*&8x&J zqCUxeT=OyK<Mf?(ZA{G8WVLy%$~s(L7`aj5(x#|I7xk{byDE2OTlV=Z$+c@W=Da-g zNc-yMrfAJK=ITp@nO>PL4}W9YHC_3hjR{L}ak29B=zBH_^+&}6-UR2b-T8XjF4M<C zk4~@LUU2P(<5XMueVRKt*GtzFhyK0%UDaN4+N^iF+ieWZzMnKa{7zcm$5Qj7^|EPv zyOv+RlAdK*UM$LyC|5sa-=sR$sS6k1Icvy#&h=`Bz#<j3#hERYiymfOo-$`<Tja8t z)6S;3u3W6Le*VgM&*q&A>nm3Mob{+$rvJGX*Jo3?-Tca4%gknabKBHSS7Q#eT3TQ1 zBCZp9&wY2(#Go!U!JSqr*`L~+w&i`Bpmu-m{Mqqy{hvpl7LPOH)Li1H!tyb^TsO=+ z_|li^yyBe){212-W;F&Te8}i9mJtYTRKGJZDt^n+6eDY$W$UggF@-cQEw4{a(T|K$ z5e?pSq18oh<|8hqkDSi~rta`yx4kl5Q-6)A@X3yw{Qc4gTdP`RXWX@UyVPoJV0ssi zrNPofpZSK}T<?C?J#@TvH+IG(`MYM_wGqCxM`WcfwtZibx_i>{<2|OcwmiGDTI%mN zJAGS=PfKqbl*&K&emSAqyy>ka<ExN4_1_tfDm~r1%k`IQ+tFjH?^NfBz5n}g+8WiH zTB&M$)th7l9JUsJI(|5M&yujTGOmi%TT&HgpY5EJCMkI9=p-G(@OM)(i%s&TpL|j> zGgWYUj9-kA5JzT%MwX4#qK!{oV)foM-c&mwb-VNQ#y3fRj~5wol!)~>=(J?~w%=RE z5Uo-FDMh;{%eT#KX<$}{ng|cOadV{Otc$OCtPWK)-|TYW`zG<%(qcvDlZ5%_=1%r2 z=Ul(?QfJAXnwhm6>nmF-C&#%s9n?x_J9J1}X#>yl9k-a@&)#L19x(0muWGeBGuH@I zg+2JQ^0xHaM!CkL&6DMq_9lhgys?sb*_nNhuV1ufSzVt|S$ig#S^M?tMYRXz+z!?} zIaDK(ESoO<dfve^$r@{eWG}v)<2C<q?3?e_vQy?T+HdxJyh?0aOi1$DG&g|{U2L;0 z7hSi`b+v42n*7J3aHFxhjPNH<6>A|b%j9=vHodDi2+9QgVpfbc<YJBG(9Ctw{M>57 z_h)l+xqv&bs8dmWjC#DPy+;1@`BS~099<Z|*R|15D4V%IgNv>4&CVyzUv}=AUz*O! z6?G}UP1Uwo_K=kCLbeB2Z}70}x9m;p3^^6{gZ;(T#vAvg?N{#z@Km04qsL`eS<DOZ zIIYCoUt8M(Z=3Rqr+MC<nzpmTXBRuaIycM4@;>3TC6PxAvZh^_tQXOJG-vUF4v)f1 zy1zC)dDeYTt1{$;<%Bo(VRwq%G>&)eyg${ze{<rzt_%8iW~fb9dSnw<ANs9XNqFLo z_6%Dcw>LFqn$^>mMrMEf`L;<lwm?gv&dgTX=~j$KysDPoxnuE9`}O9wAFDUy-SJWX z{nuS;3%}T(KQwuzc%5hUb)AeUdapDczjW@L?teJ7N74CXz8d4=pAW3xG2RbsbdI^1 zbY56)(&@0x%@M2CuPRSy*%WB1w4pw1r`d+?n+qphuG?(CgzL9+<0OXQrc=`weJXmQ zqj^qLVRb-o1GiTZ7gtg7oTFSbt<N0$awBzHLvz>El-+Z6o^B0q@hWmwo!r%(xz~Kf zvIYjfhc;}@^HSI|cV-9q`JHJs+!WgCEHyLQE#=y&R^xw<B90vWv1Z0HQ9<7a)#`dy z^)o(w@scoHSRr}AblC*Gs{)7Sd)N5)GHrZNs`AHD<f;EcogZnRmTzP6v75aAG;<@j zkl23H<h3*IC}dtw(%Y4@arKN#0(%8@D;BRS)tq!?wv*NN%=0%|+2tg*yg2jdZ}(EC zYnK*Xo@My?<J!&Te0m38+?ZP4=i@8dW--b1LGQ`q^<Cbtrsc(aap9h}<;)55jGT3M z^H$%qthsfBT`Irk&*RVYd}6qQa}K7}ws~sZy1F$X-1xw{tdG)jyuSCmyn4rXneEOJ zt(br`mrH?7XO%bAU+bJJxc>6Xk5;)CnKp7ieROBdp*we)oYJ=}YQJzaYt`MWORR#T zWA84$7CEs?b&8Kly{y*~CeEdr+OqC0O^-?y?wsmjF*0suOkYyH@j__#se;HQE7q*p zapLCP_r;1mPp>rvm`HtW$vGIHGO0^iYgc)=LqOmQE|Hx~Tjv~(-Lk2yRyQ)Jddsvc z+a}JPvv>Nrr(d&TD_fMkIZZocR9u{oO_FR;+I_<BityLN^OuXAZ+=@J*0K8OY-Q1; zH1`cRxfG)WDiyW$T6``Z*{^kaf6m|E$Lg(KufHx}=-{*dS<~-{**sU(__|^W+-_f~ z%5a$IHMQ#huT#Faw+iilJ$26a`Bndl*h<461q*JP-0pf<U#O|u-jzpj<4nETSN|@* z5NxvTwZ!UbHBHZ5di>Td2K$Bb-_@@wpS9~-^SN4f#}oYviu1m(il1IutWq~s-TB9S zonqOY>$E%<YMq~uzNRc>H=9>h=$uC5Z{<8id_|H^r2>mXR39DUzM!)GM%fgF_QSn% zu8GJ8F@0P9V}h&tmcz${)?Qq3*-H1_gi!HKQ5>8nO%!*=sIe@%<*1XkcHU8UUGa(u z^#-pEZXQ}w{>MD{=lZnQ^TU#2rty55%>I9q)Z$o`UrBi#>vn0Z={_WKJ(=O(I`*Bd z7uMg&-5&h;%XSH|iAS#p)pkGRpX}o|g>C7?swNxN+Q477zvn)*7Ixk|`NrBeVa%}# z+?9Wh3Zzu7$vdvtee~tDtP(HPw}ry84^|%4Y0#Wrzi_SFoUXNb?iF@-&QDu8b4l6B zl%T}+kQ;{aT}!Wh2)_OC{v|&Cj5!UP)Y+CDe)Hx1e5;nw`8yld{nx7bv{CJlgfE-M zRw3R8>)Iy1(k$lL%(Gxa=ZhrGCXKYXO_v=*lB<5kS?tZ~7rK|hX?Qta#e1#&$1gW> zFSA^4W4F1L?{UBWQri<V$HbFMrW6QoJAT{U?||x}U;nC(iq2fe&Ng|n_)(tovHUZB zSe)3&zH?UgmLoc<+h#c=7A9t%6us9r>*T#mQ}fFF)tL{YvgDqJU0JjKX5{Am0qY%A zTlaFgi(Qn8U$Ue;(D!4<pW3VWMb+6UW%F(8yYjvM9d>=4{MxJT!{2(z-<w?mFEB6s zqgUG(v+R7<lLLKD{42H`&pdlh__Eo&8<!+bc0Y{B$*j|vHvRpXbMBhC;mVxTMB<ix z@KUhVY(4*p`|Yj?YESr{wyp>`BHpBMV&>D&*F*|cOG^3U?Jg-!zn=b~s`kX}_ls>U z^ryV#Pfbsa{9J3tAHg%Dr*+EIw)$18R;L=79XXl0qW8|Go3FQ?;J)=?MeaN~+fRZ0 z0SEd1FnyXBZDAZf{r(ht<M~cMW9nk<uFk6$n^EZd($9vgGQd>t;TGGyatA*Nbf4!s z7JfUQU9QYfM3DJ&7ngSRxoI05Hs4g!;S)@_o+f&6`{AJ6*8+`}fr@RKkGRfrC2no1 ze{oCvnM;dlUf7YHS`PDNmj*;|FEBX1z#t`TdEL~2{Q*YiTQ#l~Wo}dZZlC;ZY300Q z&;E1V4l<1noET-XRrcqPZ@$+YCJLO-ZPDdf7{|b681UD8!Q8OShKxVrXT<8vla0!k zN_uMaxUUhI9<*lHi5-QLFKll5vd8Ps*{%yuy~XN%_HDPiVB-2G_Uhf);*Y*h*8R_8 z+G#N{=D-Keo7>N?v((nhnE5HNEbHvWnhpJd3G#6!z1qzQD<e3ju_*EVNNP`b8DM3m zC6=Tt6m+Y#z+L%xk#s@U^tkk|YiAap>{s(QV{-S~>$USl%l}S!Zte<wy_<ihPx|zD z|3sO>+|bD%B6qysr+w<-ZoPn`%&h5CWj>2196iBwezW+z<vlGs^N!C|k6mK^Dtw!` ztjqjI`m*xY=NEteu_sv2B{BVmsMhX7hL=7zW$%7%{6+HLnM$tz56(zDJ*0K<+ZXND z>8D@XgfU7_S9)dRXMf{E&xc<h=50_p)4I9q(42J<!f`@&5_$adTlbk2^%z^-t<X{P z{@^|%!N*$0L~+aJ-ZKw<s`y={Gp;NAb^o<^`ubNkVq7<P&K~nva`Vu<Ez{4xvXM@* zF#meW$!Pjr@r{3~tFHd3KYnqR>-{=ggWqXyj{mFo-umRnecgsjzfNBEJ$e0x=%UY+ z@fzzj#7^-Sit7CjcoMqOH1Kz9nL*s#4L@G4&ruLmogeGBaz(J_?lX+G`<TC2bfp(e z_jzrTz_@n$+SfL+^&2lrUR1rfI8ZI?wBi)+baB4xuaCV-e=+^V`B#~}a<A8J%)1`P z@orY@9QN6#!Z}+Wr*v%!U7{KNN}M4nXZkl5DIMl3$Jy30b6wM0r@umc@}K|xFYnq1 z7YiP0{#Vcb=<Y}RgO<L_ROLJ$eyuB%oYQf={p1!=CcC9GPKtJzm52S)P@VeU_UkoO zo7M%{4g7J;A1l~4J@V_T_y0U?>I=VFeo_BY{$H7EJa_Z-!Z$Xu%5na-s`V~gXRVpM zX7c*5z32DnPrmCa=KXH^*>K%U`bKs>VII>rzOj*aFsZ)LyQ}wC@3FAUa;N!LzY#sV z`i<1x&A*=atoD7as~?rB{I%J)ciPl9%D+;Vsq6Mfr|$i-w`Z@<U!CwM_iVS#(*@qz zSk!B&IGRf~1-({_eyjU(zBz~Y$Cl}z#Ov;Bs64z}S@BR@zjuLXv=3MNwy5jJ=HF+D z-q!m+dGfiSTp_WV)x6)bCLevWW*bMVOw2d6-q0JRUN^jM{W!0`WvbP}zik_)F5h02 z$lY>NW6tzj^B!MunAbaxCwA&RR#vfT$6u_yD)~}ZuzuT`jZstYMYV(~OGed-hB+_% z#JRP8Z&BQZlq(&)EISM@ZQ_^`psuS_CvV7QnI~I&cCWqut@(HQyT9vOZO-^H^SarQ zjU{KZ(>>mcPdXm<uxiaQDVwa&Pd|1s?<oJY_we#b@eksf@^YDUG8uF}E|#!59ho7W zJAK!L==|$Do4+O1SL^@&)}a(Fp7;2C!5iLfyK_}^PEY$g|JyzryDp{N9jmI}DHnge z6MlZ?OrLi?P6<wz6lIu-PAIx`%z4=6Ams8vVcqLaE;$ViuHCQJbvf-Yk>OhZXf5|| zy%nq9HR&zdt$pg<qV=oQe$HF<Zl({@j(zvv|9<?tdF9H*t5>aFy?S0%{j17(RjYp0 zU9YmgJbl$(gYd9Pib0<>{l%R2b=(wK$7%d<19QaYiX#ju8&<Di;BZ~M`NQpbuFYFk z%<@>pIsIb83kiPi3*QnS^c}n?#bF<#Kljjw&o|8$o%L<GC@#2TX}dw_>%NZHCKm%3 zwtt_xh4Jdgqs8*P+On2q2d2jUKenr_{<yo{=k9fnf24$GzgPTwPB#3HQqapyJ`(l0 zU)LP>*ezW7#rwiL))n&quEvSHu+!;z#(b6Y+`AR?g6x*3RC2EN;n9!`ESj2K<f(ms zR(<ZzyHEX}*#;M>RNeW{{?Fx0#lh==!W*`$I{$HIzW(g~qy5JJ<NmMz8~yqIgZn&l z{9e@7|K7ddIV)vHg8bJsl_1;NC(l0%F}iM0uz#ZOA}SOf&`{&ry5uIeXScZ6s)mOh z&z=gNyS2YRvXyIwZj;=>?jJp=g8W^NGT8HOY`(Sm8gnsIpJS9jKW`qV9Pd2dQ%x;e zhBH`{^^E438o8xE?Qq>2{#t6<+$@W$4&_HfFUp#U)IYx*8Y97#nWj+v_TBTc8da&A zdDEU$TmQAHi~nw!@w0fh@UEiS@&-rFsl+oawq5&Pt@C?F)dBy>@4OaV-n`<AM<iQ{ z+C2aD|9`yry*+2ws<(NKF}ioRY+d<!_W5aVc0GDIH8$UP);htxjL*MHue%i!xA*1z zDF)m3hu9^)S#*k1y1s$!26r(Nd-0)!FB2!2Z+KJmea5D?O`_YPbGPq&S8)Go{bPl* z1$7y^&JK@W-dfHkyM6w)`sDCkC%vO&L|syM*(n}jUlzmHJjZ!QykBNvhpx{gQ@hF2 z-W2-JQYyV=y6KSV&XXPs`lcQ{z<*)szPgE-`_$wg7xO+<a`H405zU%i|7i8&?8mbo z-+ugQNAZcpzc<)>cYnJgIb+Syy^9|GimzhaaM@)$L&vEti<q{?+FWaSA(yl(b>sJ2 z^OndwOMbDFVbLT1C|zaET-8^_Q4W!s)%z`G&Uzd1?}z?%o4|^nUo4}u)vwO4d%AeG z=jJZW-}2ROS{FKZng6MKb;aK1y58z<^%L$@o_C-2J1^FHaY@X~`%gYTyI1*j*Y@`s zYM${ErXE<yZ@VqyLd^WDqPyN~imv-9wD9b;Lp#<j`te0h@%(~oQzswoUT{3#QEZ09 z)ID?7gh$NT#`R$797W>^^*lVv>Fjw`_cBa=F5uwc+H*1Z$;@|_k0wgmn9ehtmpN~# z!K`i7e)Sb0^Y*)OMEX84c&_sIuT<B+Upg9dw(lvB<6t+ER=v!acDFqw%5~=n{@wEy z?b>pF;<MMfYhL{lZp_-V=r!Lf=I!mrm~G<t-^cbe|DMPm(7*rp?zwe~+jDjnAC8fZ zd1$xP;_c7b|L>nM@5;Y(|7ZP!t5I&t4&<%<FZNxTtM#Vhr+WXe#Zxy<vs@e2emPt0 zsFLLh2Js_-j*f<(p3O8_bi``iwb!Ou>piE`@^nx0H0n<};IlBp=3U1u)4<K0ADL7I zd43q=HSJ5}$>5pgW)?ZkD%NglR!`NeU7mZR_J-+(TYGQHIM1f_Kq=t%1?5+#1m^w^ zZ;Ib_f8wI4UV+C#J5E>Ei&b2j!*a1^ji34#kKI=L|Gd4FySnXXjHT6l4@<jGm-LU_ zH=JH1k<_wgSMi0u&BpQjr&V_9y$_H}x-e_HetnKu@5_nRl1q20H@;@=7t)kH`l9G~ z$B~lvwZ|6UtGE6)_kvC9yiZ0}elgqz(;|D_&b_)CnS0Pih*hI5bBbeNa!GyFmy8gx z-ebZSGvW?O`zYwfvJ{wT8r~GVy@chR(m9Q(I*+d!Sv*kbJiPawQTz4RB^AtkyG3_+ z$nRNnHmy{pVe(dMi`{n<w?B1lK9|wZ{p!XFGYO6tB~fgNqE{>gb<286w^*OEO5xko zuzaiWMWxp!uN}3sTVKcCEz7yzp6_N>|Ln!OnpM&+d;yl_yB@|cU!9V-V6p01U!mZT zDbF<Z7YJPmf7<?OioK*_sYwCXqFvdhZGIwK9fTyN$7)QgEUFBzT|4*kYfI~Q?>D?C z*7+9yFk1A-GF?7CJ((RrUszREheelKt&S?G-?Fj(^uD%ztW}ZUSia=;{A|~lBqS5Y zo?O5Aw5XB7x@0{+!KbA?R%ap}KYHRB;4W&L*YNJG@G<k9v+nrLQ+xk*TlCxZC+$1* zb6&kX_Hx<FXD`KW3bIM(y6sL7eq+S`c-!web?f!Twuc*tZWH<)khWs&wYdJ}H`H$D zZ?{japImwPo8lg^SPmn}<5C+p&M}tKofCdOl6j}fwR-VqhrJK;a7iCdKHPrD{qUy` zyCN*+NPlKa@>sqg@(SD5__GpM*srQziC?`tamBjHtFLnH3|F82QEyV~XTQ%$`8zMa zF16gd=W^qN)}MXr-nT9ZJ@#o%jN0c&%X3*zlNgft)SnkvNS@hn<M{^X8|OCgq}7H= zKiOaySj}GC`=HoGu>RN@(^IEHc3y1g{!@8R=&JUjD%s}vLq82B$r!j>COVjMEOnoA z<NXmo#r1bIRkSCa+or_Pa>#SJz*%3b#Z8LO`hC0C_O0#B?UU`Sl?^`n%~-pUXA5(G z&h~@3W(zrV?qmtaJY~CmJ>+Bkr#!cgY0PK06)m5$eIG~vV*&2|X%Cs|559W-L6NUG zaIuW?Pl=yVKLvOC{8L(T?4p2H`dnSDqjMPr{+`OTd8)MBMpt=G%i}GVZ|pqt)IvEc z&3sN%Nc%_aDF+KKt>O^eS{BsFZJXdQ&n~lpr7Gmb0-G!08-4|Ql|FaxNKQ+s7V+3@ zqi{AZ;g-boyQ#&VE;mk;g}W(sysZCMq`r7ldCB~{iN?!1O_XACGgkDsbjZcZ>)q)+ zeP@Ti%<q5t`+vRGU;jP$Nu=kq4TpW}cfMTT9WT03v-5-Uwr9uxPYO*J+t!qGv44O1 z|2bRz4)eTum2&;Gox7SzNXM)#mj7K=gm4%Cu{YEU%`|nJD*153treQrdaiDeTE6q+ z%lbD*m(Sw%w7Xnfaz2sueZaKGOHNdsc=!9CLglVM`H#}{dj4IiW&ORgM$c%$>F+C& zqtb;c&hfL@vRuhpUd1_Y{iLTQ56sK7-5zRcZBmbKU$!D%=hQ*V_tK*4-yh9auG-MF zMSs8W#m8Jiojq||m$3A(8}w(-QR`p1nbBr@&4uri>vN?R8!Oe{T4idLup*?i)QJDW zwiRMO_T?sCnRRuR!McT3_mi~$%*boqm#gspqRqsxni;dUZw^1d?R56ZRp-A?krVXK zes7~xy<NNIi^u+GOV;dESJy{Bnf97)zW)D%Mebp?{g-c6s$8DP6UDye^wb>bu7zAS z!8;yFJ{A6#&UJG|z0o88lTo_bG1qt8-Vq)1z3_Ex^wj7b>M^&wzG?73dGnxb_qSj7 z&RK>hT}@CwclgcWW$ZC$N?Xgt?1FyyoV#`?+`DgjP1vF?#^alP3tYRHCVChM^vv8V zR=r25LF>^B-ODRKYg>Kre5h4Z&69bGX-$}{!Y@tl&o}>6crEWPoZVB;xPFq#3&Hd3 zEPK};6FA`7IP1WS16vL}JMitm!2_KQS`SujS+C2d;ZZd?Y4f86k6N6T6?{8=`@Zv~ z2S-+%yL^dh-i;qGb8}sJ(>ZFL%LP+2KK@(wul9%fgL!i<IoNbeak!zn`~0G!4d>n! z?>@82DfE}f^0w4TO04XW-<9Q4HkQcOPdZng)iLG!oLed9Z@uu?w!S;5K2u~v%f0Yr z<;@!=$6NfmV61*$zTo$aZQEvAS8Tnw?&Qp^nQxxW^*-59Yx?!{L;W+ddlyxH{1=(= z^sw~oFxz~Cdv+;)^}UC4E=j~x_MdxY<92gJ{Oq3OpvQXi%`>IG)G~hgtI`n7-}UeV zpHXOiuJD#)N>;wCU*)8CZnNlK<G1{*)R!Mqbgq30jBVb=eEya&?~0!c7hZ2}vANbP zusS4rFC+67o5clBTh$a~^PhG!ZEnnd<X52cyeGcazpQ+MpT$(M!YdPm<NYidzFPTP z`guxe+n0(QI8iqDisYdd)~uK{x_tcIv68c8tF3;d)c;`J6JCAbd(FGVpSM>fZ|V<S z{-i#5X3i#|7%lk~YY!)HIb0k5sPhwBYIB*{JmvT$vFBoz?>x8tQhj^={QpNE%<JI& zaN_3NsAQfW4`uCU?_l1?sK5HS+6(2BrveZ6I@R7toU_%M`+07~erD}m|I*JN|Gt0L zQpImK+P~lZuDEg2`FiXBAEK_C>&w5h`h9Eimx!jUT`N8xduIPP(>P*E9Jf4YvN8YM zyTTVTcwNqXTRVZj@%mbM_kT00FV!1;_<rJk(bUB3b-4!iT1HysO7{hJYLz!8HWt@C z;ah&rttCfSY~8)0rKO1}e($#H?L73<Br3Kr`HoEC-OQRJKNckKeeL<We)0r!7M<pU zCwH#AxB7Cj_|L?W-I@a7S>-21=EdJ;R?PMD3f+IS|N2k<pOX8v=X1Mwn&)>WZDQE1 zcgk&U=ix|O-p9SKG);A+OZ{vnGn~=%v|j1{H8iD`v)^IbL1EkF&pX@wzTT2lecQv$ z8dxdB*#BEAmSg#?HC=D{-_-xyo1UJw&-PrF$xUhb`p0kA$#3}f_J7h>IU~QgPrKi| zOU$jWe(^DRdhgRW%Z@B)ol*NYcg<q<Rg0w;?%h5q-^ro7{?nfidnzk=1f_C?#TRt1 zxTCS+lcmR$i?J!?yJf#E@K5GGc7<0;f@^oubiqG1iq>zvo@`yZ_4{;BU6&TS&=6mV zXUBs-*t;J)badvLNl72)SQ-hGJza4|t0}GO*s-`N>>|wPp9;B|-1_@--Spf)Hd6KP zCqKKtKIZ4|Y5np`u6x@@{C~hMZ?oec^Ude>I%+STZqHw1v-8m{;nnvJ$ah`X^Yn55 zc7cqv6>+hG2Q~?Re6hkHKKXV=s@F`%GZtxLpQS#}daC=p{TcsU`Q85?{W$Y~ukZUW zPbw$*EX{BEUGzWXd+0y4?@IrB-|fC5Z7W@?e}cFEbnb7P_M3;FncL?75?K}Qt2eK` z^2QV18&fwmc&?uPz$@3WLQ|>TzgF!=a}C$>Z3R0ztxw1@mZ&_Q)3_&nb3@4$$z6qy z&aC{R7qm*{KKI2pTMD@xxOd;3bN_gWN4o8`;8)p_d;vGTw{6<WG225^>%d8_x|&np zZe9-mzwX+k<dRg0?)^JoHm?)D@!{C}4QZ1;|M>e|zWAZLeEr^CXC9c$>{&W_!|$`= z4Ap;LFEhP8Z*O$W_bT~{*{d1MCcns4RC;mj)a@tcuk*BSF1o$)_S_1~LY;*hSMy}u zm3B)Gn5*NWx?@T6MBD!9um0Mo%L{VNdCgioF?568R=KUG)|~tFwECm<B)u~ltD2%y zZG5L2{IgN67j{~{q<P1sCOxLExH-$XyA6&mo9la|_IKqYyZ>)&wez$$TUktfy0Fqa z?18n$uB+vI-rRXJ_Od92>)%KTzIi6iIy>GZWvhp~(Tlcq(y8W5InNduy%F|mEAX~_ z_V|FjQaqcVYaPcNZf&t+;^JqtW`%C^s;{kyyczp(+a~wN-}$EH_U3EeettSJghl?$ zlIair*@$FKXQ}X2YIxVL6{_jhC~EQSsp0yI5?7<Iyv@3{KyA^Cx382B+}(MKn>lx3 z=|bIw-zL0Cc;WFP<wcH%SdrT2v@cBIUHTn%j3sP}D%pO5TcRf4yLoXx|Ev>DkN=*y zTg$g|*ZH?+f~S_1)Nj8$J?_7aasBKgk_K-gtV%^fxBNZcA-Z$h?LPbOhxyOT?tlAs z_xrlnYj?k|n_c-hvCH_IpTv~<(w?k>I6Is5-;VE<cz?4w@cIe%dzIh+vEQo|KX%AP zg1b9WC*)Du!i2@I+2>76)SkCCVqHYLe8RQ|>NCprbYHYt`J=aJdrki*)2HmGg!Pts z*Qag@K9l?4kIZ4;(t<g61x=22Yuub{ztzHi{|XBU^DLL1^~Zm$3^^la(iO7C%qVnG z(#gcBw_5@#1#MRwMRcB2V~eyAYks%R#b{~Z;-Jsxg!y=kk3McHW8nIr%HG{CVtiEg z$NSyC_-9YNxz+Uok8GgOrR9qxFS`c*JAd_1%aSeiethrjT>RD^a8W=0WKu~{f`e3S z-p(Mw!qao>-UL-0QS|hC{vuNKMz_e_=ife9*{ff2__`=!*1X${%%5#$uJSmmrN1qv z;dt-f`cr4Dm&NhwbnJhfZPXZ3`}xz#t*+ghN;kYb!S?D!yXWDyHL{m~+RyxW+AlKn z!1@<|jEeh$OMlh-@PAP{(CnM%q!X}db?cr5o3ChE9JfrjjGnu{L`%2oaSGpy$W}kw zNIm{nIdaddv@dLav)YHf?m=b0)B4K_d*p>LYB0a?=<`u~zBbw7jOE_&HSZoq_0HWg ze^u5#+so~ht~aaRTnpIw)aI<mO3oRj*Vi9YJ~6x8N+a6*k@O;F#d`C<ANym&|NJ<w z6T>Rf>oNJwyIm94E_wgVb#`mZM46>WC2nfARq+Q@&I@yv&N`gyBfb0H1mmc!VOt}& zUfq0N`TL4HDUHXOm7~_N-uu4udFrMGVKu3W?yC!Y3qGZJ_r0x?7u@A9?89?-lihy5 z^VNHkQzD*yd3(6}!~2Pg-4%SM);C>t`hG6h^nTg5H;WY1RS%eW+_U|BE;2g$)RU#6 zPtSC|&VO}j^3(dX8&6I$tC!R|&vw}RVfvH5*7Zvk*IzqS%35dj<NYk}=X;wkZ2x{Z zLO<Q=+ae2w&A#!%>eitavR_*b({j(ooX*!d^HAm7<4;PhANQoJ*;Btm&B!2ba?AnU zdXCKJ5d|lL5)*~)%=jU%T<=pS`P1m9^ON=^Sq>=<MUEAYKg05}Jp}dmTPJj!*(&Mt zPSLsE{8RG&`8FZxYd&6nJHw&*_wu$s{}MD_a4u{z>N4)?ZddE>K0WDRQ_4<HZ|+l? zm!3SyFm)8ZSjLp+6;fK1vt*Z_qj~zt{z*R)Ki2=a;$b7#%ko+Ip@+qp>FPT_eM;%r zJVV!ptB|90!cv<vC!H;3e5zQZxm{`2DSdBIktffMZ%w(`5~6t~!{U(N>e)^fUkX%g zHrB}BYf=(e96u|^+o)!fg{AFDHBP@z-!?O_G8A73DxE#ca8+fgA<K!JB>~pj-yXXM z&em{w9T=ukfBfp?x#l60e2%0}n$ojM(EFCgw}0DDuCO{4_n@->?Wa&d*T&@CHh*32 zM{520#`Nm_o50{BF8&keJ<{BNVCL?<t><bl-aGo4$;n#3TEErR`}@h*bp?|a-{N1k zq*cN5!^^_j5UuOZp6v~jo`nb&l_YKYef!N{{t3)Qy;F;7w`)JD_xUtaw#sGc!uAy} zIloLjwet77uA@I3#2)|9%JaE!agq9oWVdkkdp6B_>*lF$T)D3OgK2De+Qy0ZAJ;TF zz3BVBe%CAG+sV-{X58XW?rJuC>cHz%v~26qs?DMu0(VoKteLi2%nayCYcJh<Qlvyd zK|t`CuiImZ$BxR`C03gYm2B&Gy??ah!=j20_wGe}n9st!Y-UH!lfH>l->|aZ%F&pt z9wPZmQmgovG@HaK9%kOAh35=ha{FFsmF&K2{W*2#4klw^TjQz5wrfv?_3v?td?mR^ z=F!X*Q^Z&Q;$5Qr<p_gKLdMqyM&{Mcf7h@HJ$-z(V$IJLKbQPm6WMmgZF54}S?BuV zGilC#7o<K0H!-sII;vS*5$E|;d(gvmqeNtyPV%WXv8hu<#aXr6xKuWMbdg;r9Tgm| zeuag*OJrY0qT`v@feEQ`_KK}-TA!HKXfFuce5y`VbYe&7;`0yRnjMUf%gNqsxJ`a> zocw%g)$13xX$b$_C?)#Q^s396)>Zsr@+;HoSI<5CX<l)PXTS+_{#8bCY1-{eZq1L2 zHv8`WU%c8#>Rk9=-+pP<gNLWAc;Ox6afMaB+j@@FT%UElM^bmz>4aODmf826{QT#} z!s4HXUh{vr^xw|RVAyo{?&hB!m;Z`RY78x_=Q#gMpks#plFR^|c?TD(m==Uyw(Wi} zdDa`2c$@l+%?Fc~elk6EKFuYIbE4Bp0gcXmBHb=$z6I#S>%@du8wcDpO7J>ruuJ^& z#EYq|#aZo_9?Y23^rx}Z<X7;jvu@3A&UETJxADnN+VyAEIomG}-nO@JI!jsqcR2k0 zn(wD$>D}VCKAf_XyBW@@GtLQrbi1YQxajfFGl@qNML+Mzs$ZV8yeoEDPO#DDDVsw# z-+iO}PF?g&>A%<t^TSntxc~4RGHUy{^30-`LkVA_C0_^Z>X0${zBKP>re?d$Rhy7m zGhJR?>rgtzak>4-)#?1Ao_8*VEM<CsSY5C`ol`8|VHr!-^&GRzD^mAL4|UE>2{H_F zDv$jrrcg4s<<winxhhii;VkFR6&ob}d0)=+H(xX6+}nw(r)afy1y(#^D9W1}zNF~0 z#?;s6UK}bYcs;*-ho#_wX&2wV;pKHW8TjMn!jkF-i^XN;`oHj-RpbBni{aE@4VN0H ztMc_5EB>rXy;-u3MR)aU_T#nLZRK@$ou6Ne4=?wAZhwwhZ~^Q4w|0uFnI!5jDp~LI zSz&TJ#q3;O^8F+ES^dWHC;u<8Sr@7ka?aea*Jp9gzN~#|jdc@OUNkzsZWCLCv%}e} zt6s4T7i;&OlX~_1#!CGcYoEU5kPbAQ#kVAly?FKm19lOno2)tx^VE(y9u++5c{H*$ z=3=A$-KPvDQ=TOzbXi}%xuItR|4ZS<>iS%@JN-Ehoke$_mr3uGIk#{9@8B8b_IH<l zpIKwONA>1kr~d0gTg(>iJ0*DB<;YyI=Jjr;8y8<{Sgg|5DWmv|b(jCi%(D|X`g)CT zuC{y>VZrQPBqMf4;6g@2O0ZyiBJV$~IS#cVJg*HWK3lfb^rq4JRqKrP<=_3{n$5qz zM_1Us{^q8q!bu;$Imf1Ne5qi0>erik+i%Z>`}3?Sn@(KXowwxi^f{}-6s}Ck;Q3p8 zaGH2bqq-6AubUFTTs8*W?^=I4Tkp!gMHWkbF8<X2iof`OL{ZeonQl*0KHq#jrF^6G z&Gg9Dv(D^mH=lT2Qnkl%wncE}+59iFre!s|Ug~N2`ccVw`d<!PzWP+JC;qM?7aJT~ zL)UGpnR56y&ppF?nfKJzpLwlwR_u5%lfG_`eXwgQr}!k*KU=yYw{6f_rmgnJoiWtl z^5+>}syx5XFMHBfl`F4$d*zWrHx*l#HFXyquX^vY`*ic^_5bDG;m^D0-%(vBXqL)( zQ~vMaw%+4?xiv2&tcxE{S-IA|e%AMr()|~f3Vfa0u+1ZIQ^vo&?tSZae}5sUG`nSA zHQO(}maY#^pVVy6FPHjtobyAd)USN!{iXTc8y;UUxt_D-$X105P3y{IgDZ@8-7d|3 zc<jZpKkZ!e`|M`_pY3#6Sn-cXjrM-ib6qhme%m}ej+~2nEiIHJCiu~!spGN^Q_<6U zF^ixyr*qFmSZt(BCyG5~yYSaBRl@qJ-#*`F-dU4pZI%jqtaXxm0(0iJAGiN*QvNsj z-{!h&?{)mTr)*y8Qo_un5dR`%kzGV^siNRT{|7hk$-WliU!uWOWO3-}<mUfLF^ib1 z%<e5uch&soTF%+==y!p9;Kj}BgLWEC)hpLs`Y3&`>3q2tua3O&R=+NDd&5JCjb~;{ zd-DJLkhRPG<9GdpJ<or>TQ~8$oMqAbz3%;8&#g|cOA2S$x1H<GS4)d{Ter;z_FSrI z|LJ&ivDi{~k(WR2PpGiiUMjztH$u)az<Z74%}u*~C4{AYr@!a2RTZ1sb1AgJ!Y+rS zm$&oKp3RD`CuZKS?4Pd1ZL3&+{Ls@IXXcrRs`l;r(m89<lwV0w2YEgpdF<?V@5z>o zBAtaxHs4ofFVt4OFD{(-FL%|Y^XF{79XR4P{piXqEisd~m#JnxpW$2f%%Sa=rPDr9 z=Epe(|Jn<z!ym6qJu`iAl}Y`F&3`uktqc9x_w=k|{kA>n)$4yPcC6n%$E(iph5Kpq zolnY}&qQ?}Qd=L!|0#NnS@zcI3$q^ldQ#V1HtFfAQ$MG22d&o1_qiKb>Hf+yPks4L z^{vOx$1I%A$YZPJ7`abCyzBuxtN#`y0SC>eNB%V$+AVr@@>h(rw^~b3VYY+9=Ow&p zE(`Z*_B}qQSn3rfc$H;KxOa2kt8%aTnFl(Jr|0n428z8CnSP~$ucW^3jX@pz;R9=* z{W|#LuITj3JhlcraSBUV-RG?F6npladpbX_t$6+36IUlq-FK>R`(0Zr(=9))y=_kS z`F;2G`t@OvNAu$>-!AO+_0QRv6m$Lc_V~It|8jE<ac|gl?)fIm)kWIB)laQXl50LH zxa;4h*8RCWMV5N^iy01FbE+>qyXxTL?yetC_N;PU&AI0u`<Jk;H>OVcTo2{%M7%HC zIaA%F+C)G5-vSBCr4!>P7iXXQHRt}5J<DqSS8rH-qVm-33DfuT+Dh2R82k)+xIySf z^^yy$bE4jrMY7jLJ^1uFG|Nt^g153q?%w7r#TS&>r5<dKWo@~u9DjL1x8Czh$89F~ zCO*3KvU0izpRG>)r&Qti*T-M>^4b2kKmG2$Td2Og;@pGhR1WX{{QYqHw2xIq>*^A& z%so9*NyyXRPVub;>#dFR=5`h_ioZ75WNW6Dc35w!qi^AcbskGEuMBl;-mzg-Y5z2_ zuwv#XyBcIdZKm+IGuIf1-{z5#_gEOydw1fe-!*Jgtx`=ib}+1dT3O%n#_Ul0ipOrk z>#Y_Y@lwj`|0=pYJhbz8WLW94@7KF_e1GoSk=df1vBBYj?tSkSdD|ugyXYECmY*p) z=f<Z;23tH1e{fA{eVEQ%bmGq6m0OxTraBdEo;ClQ@BVqGxA>h{dwyTxT!XkN9A~Bf zz6-m>8y_6T6uW(8-lw8t?$wXq71nd}bvOpD;HjO^^z(z=i)Mj&YEyEKMxQ+&6%lth zyRt~fkuU#2W3~4~ug?spWzyDV+L_yLku|bSHsr4J;X8FhE#j+3{uS|;k$*F)65Ilk zjk+&u>{%<H-syZYQ{wiClU2bl3nd&)n_WMq_c~9h?>pCF@5^&+&yS^wdMyI^4=w7u zTQ|=zyyVg3x7~1QVzAU!r74fBJ}^0ECkDALle%0coPDcZT!A}`yXs(1_gUX(y3ZD; z&HU-QM>avNiFuNo!UU(~E7{&iPFZ?9Civ^*Q|oI(f9fsRUe0K1_seoaK>S0wt2J*$ z4{y1D`D=6)lhU&E?6n6^a_EWJpAL4t=B}m`RzKg)cysZL6D(=ZE}nXqca!<TbVIZF z3Zt~sTkoH;ORm0j@8FxQZ?~-$NKOg6eeKq^+i{!bZYaGO5<R2r8OPyODO#(YpKUlc zV~0-K*{$KHwAM~Pskhm0lJ6t6XmxA#<If(nZmPVt^V`mIJ2$>gxgKSHLvG9ewwqej zr*<9P*M3v~^@jRwx8n=;2~=PHw(GC*ZNuO3xy#>hu05OUZNM3QsBZS>Z8tV=`@8M> zll6u2xAz^0zp+2LZbNOldFL!w%VRxR6IU?q_B|0Vbxh+-d#ge9w3clx{cSgwKHO&D z9FjD%phEd-JFnNT4Yyl<n5^1xPH627!>n)FruY0plOs2Mj@mnM)v<au)vFN=-s`t_ zygJHOxjfnSYWG_?#VO0aCjIP*)0w|i{B-)uqn{?ly>YA&ig*{+uza$MN~b@UqU5Xw zLu<!nCw*CCH1AEiq#d-2;r#2bR<4tot>X%lHm#9!{chd*sA#!>x5`{66>*vM{4&eA zWtuf#`fy%Ow%8{Bf11{jb%JlU)pzy;T(Unop@!$=aSpfONiPrV7yVLHw@WlS{$a}Z zVogiIO3~@U`QfSmRrdOHO#dM9%9-;@`|p+ft%C6ex8Hc~Owf(jjn_`^_@|>>FIeC8 zC^Grk?Y6cvZ))3KoG{z5q<?u3>#epeOu3KlWKQak+57cW_PJ0=f6152CH_y>+VZ@< z^S89rw7JX6>lS)=_M7RJ-VhG93^hvT_iUc6?4^4y^|y@igr!QeJCpP0Z{MDLZ<~c= z-+bZphrePsTVK;t2zqt7<wLLHnF=fahieS2+8<i&Pmz0P>L<<kT(6-p>i8Y?HQ#6d zNjnykIV&aUj?1M-{C>x~&-yklyYOXK_y_G{_l0KGi&v<B@q2mt<n-4(T2CCLo2H)> zvW=`akN;lKJ5fhwr{T2MOpLSr)ZNW;n3LWnHt*qVIBdE^<WhO7+&R<BHI41XuX*n& zdCpMyZpEH$qUSqLX{p6ter@CV_MXCrmm9Ue6RNsl`D#k@n+z7O8=hwSCjYZ`4%u?v zqG!2>O6P<c@gj-ya}=vrR9Swyy~I_m_<M9p;7J`_5v|7mZ}jxk@+wT*JN|1<ENJ}y zeD3tE!nQix{U;ZitDLslwf_d^^f$t`l8j8#*+gt@>kselk(t;iFZM-%BeYRi;hd}a z6{f2Tk1bWYJNMbQDt$-B@)gG(&3rnuaN#@CfQFQmZ4YKIn!{M}wSH3K#%0<0*Xyi0 zOKaa2OX>vH1Yb8!<X%$m_H4^dgByD`pH%qOv!w0g>e%d;?O87`h5TQ4-F4>jd&^k9 zeK8XCRh%?y{YFoj=rF6<U45&+#+sipJFr9RD0{;a2foe9GcK^ddAj3{iJSh7`VD`q zSA<5pMY*v&e^|LJTlYF!{`Na^ce1N4Zqok|_2F*<pGcCP>1;1urPRllUw0d+^jg2j z{+xLK*mPM@TSZ2Z>Gq<wl8lAZBSmfPEPu^dx^MEn%`Nu6eX6q+dWz!qh13Prg{_-l zefrb4Kp(xjghh!nKbkB!uw{c{H_IdwgOiaria3@3w@<$yYAYUG$nbivR+LzRSn1lL zUolmy-<pX2c<5OnquOr&d3R4t;`8a|!7mm|OE3yE)|tIto7J`8xPi5c2GfsMg0g`X zR?PyxMGs7t{Tq7Wi9n)Z*wc&|;=89?iP`$Fo)@~-J862in5`Uh{RZLbYs742>Z|8w z&+uB+c(HTFvvc{bYWXS89eyo5VeV$6Z$A0JYmUcXW9PnMxcPhqOYV*0J2f^ZG#D@L zd!W6Y)%M_${x_SSDhP13ar>qzXHR(UFPPOZ^L2tuwZQsWN)iexECTPHb{^*{J)ZK( z;KIM-F|Mr-9UAQ0V%)?Z7fq|%FMfZ*MY|=kTpCwwQ*B!3xVkz_vxrHb^T4!W{?9AU zo`$iBF>TXR#BDX}HRa7#oJrnXIce*4zk(fKvi5B;Yx^(BD;83o`^G-z+^W)sU0&^H z4t@UBJ7uHUxuoP&<=+o0!|y*Zm|ZFrX16H*dfTi(2fYclO5dHLUj`=V9|)eg;JVTr zm&B!~W-7n!T`4v7-?epLa?>~Fo!J`^#Zz=*TW!5`X3bA8hwUNyBKGwczAE3I|LtJm z!AasrRyXCd{ufJ`&za<3w?yHkLcHdw#s+hazWEkqUP@vrYo7?qKDeCk!K&~;+5E(b ziQBfE<|(?baa-ev_QLBY+9fj9t1jbM@}Fh>jqITCoknxncgR`2W%z8Pb@=y7Hfe_J zmHS=Z|M6p<U-wV{ZlUBUVUF!-GWAod);t#u++u%Je|dN8w0jPUW$K$3o?($avHGju z^BYe#>@wPZ_njZ#uChIsS6*IXZLnYJ{AwA+<f~PiZw8uGlwD`L)hO0imT;Zzg+q7b z^0cQHW*29>bzANDUAX(qp*aqMTY@A616{8c%16JCO}LYAM|#@IIT4FL{pu~c_N?@E zNIh3?y!eOey}>40ev1Pa{^#=v%-Q^BdtTS>&ZBJGI#VOU*PWF-Tk}-Jpyc9;bH&fC z{3pKu*KvQ-QtLn!72UZ@TB}dyOtqa~y7*Dd?vf;#-{p&wZ+~c7Dg1l6Ok8-z0`V1m zyR$Fsne^kvtYbpQH*AdSyZOYRtuEATn^MM;Hdd3e`pJd{>(sW_H<$alv`1XI@pom8 z+%3QT@8z6|TOYo%j(k10?ZDi;?FSEJ$(Dbzi+LlQpqBMH_oM7r%^LaF@1Af<>&-Ym z>$ZmWI)nP2cRE2=G>&Q95{VWmYBiqoZ^aRfs+RQ?J^5|<8k&76wO3;5CK~9iJ>?w| zs`_cwhr>ry!z=2AIS)RGFpcr?N<aCdWWC5F<t@+tK3ly^a@D@Tm7Io+7amX4P80aw z{IEV+|J|}l`fc8(XZ62X2ie@+DVXuI{N&O%cYVBm9e27DquG1sL-`uV-xoDE#QqRo z#wfnP|Dx3#hu<G|zcBg56SQqn_=V~h24;)x7o6Y7y1!fdqR#_yxdZiLU+jz)dS;kb z@%XyU4wR1KD9>^I>Y~gox~MWk{Km-){iyC^%E|{GMVN5Qrn4>D|3K?gs(%f`T4&aR z<GlsPf4^We5!~BRwzxS!T05%cUF#Mz58I}9&cOj(p@)L6FE*~Q4Q`chuu(Huy|Cuf zl8*sF{WrP3cc#rx@yN_Hb~UQEf26%Y?E2!ZJ36n;GUHy*BvsKT`D&Mh*Q`!ChHB9) zcg~Q;x^BCJhBB_q4|At2y8Pq)hk4}-WCNyu{E)W#p<U4O%7n8o?!Bu&@Vmanx{&2m zB}<kacT`-bn2~S*-=+of3si+)s7y(1Dpx2o+A=TWS)lQ}S+zU3=0&!$8*scoQ2)Du z$&zhtxvEXE{+2U^C2cETy>l^leEIreCF_N1%O6rUg6Ahy&G~YgH$d&=Ua5PNZ%FU9 zPfobtw6~*{XPx!Km$_HAIiAdn=6LJ&#wKIy$pZO}OXh67pnRmSJxoO`%kgbi#o^Tp z_I^t+ztzyU==Co9!)YAP71-3=P6~<J^5$->7hIdXhs8ls|FP=2jLY^l%u6QS`BJ{| z!_oRPcS;y~95>xwuzzubamT+L-B%6UQy%;^OJ=?j&AXTB;)VF%ioFLvf2`TUo6x)^ zaM#mIYgM*g;g#GikWj9;s;%ta{M7gs>oVpP*_Lfy+tX)XnfKC6^mcLRGTqB&OdtGy zeX0FbW9(3WCt{0;n`)<jv<Lf-RZiQT-<D4B@4nN+^&r_kOmX3F_lo&Z3Ot{8^)IZy zH1QUPzm1=JrtKCs$;IEDZPS?V$h29VX;QBU6kT%8$#~)QYY+Zr2u)kK@Q2qHwzo+< z44PXrn4}up9q!(5s`78LlWCgvSfb?}>+U&DpRx?9HD&Ty>uY)x(pXQmFP|VKkYmW? z`|cm3>0*f)q7x1?nhIral**du|2nY$kq2Abm%AzrdD2(PWw+cdWe5*%Jb&;igTeJh zMo-#*zi0I}IGMlTpY{V=_k{~J7}8Xx{FDB|E#hW=IQIL2yDanfa7ZMY7wn67?2qLx z*J)ADZxD=YdS)nS!&J|I{P0YJI>s|>dl;RRXBq@E2JCHInRH!Y)6pjyRXoubA7^mK zHMTpyKX+L7Lip~BiU*{&ANcWkfuX=Z^<Q#-CI3q8?V9KMeu3_V)7u?hIexLfus`16 z-&YYke#cvJS^Yti^>zvx<ofU2e!<AIbLOWHTrVcx75J<Z-2VR1<wA-5ef9C~_67zk zJ{<p{xIzB$@q_zX?GM!-+03|k?%~xRS?=(!-XQdR5xe5|%rusNw*SPhJ&wsyYWGb& zc0bx>!-)+)uK(cNBdUMwu|l5kyw2s!Z(K9PbcO6C^HuH#Hr%($s5IJk!k@YA&pbw- zN-<lOZ#qw^c#bhitl&I&Iq8q{kF*+@`mBE<b=;q-7s?As+ROf{|IoZEf040_lT1$$ zZ<Tb^3&n;%&OaFb^<A5+#LeOTzWx4z{b%-MTlrO8|NQ6p2hk&!%oM^DxA`7>|NFA% zTjifOSpUv`y8O1-g73Dk-nV`9yA+xs`L+DfT$6p=3ueXq=YHi?_rdN<>^#To7hdl) zaI0^uuWL19RAW4Cv2Z)1-UXf#%Pl9|8KkQk8jdeil@jQGa)Cd;(UNa(q4APQ%X6G& zf4Kj_{D-u}eeREPHGKbB-DgH#$a-s#mlY^7zh%b$2kSr7J9e&j*0y0gUnT#d?f$~@ zk4$&COl!nt8?3?@b?!3?WH`k$ZjopBY*i)k;rQAaZ|bjCa-L!QV_<jj@~xR+3KN`e z-SmFQ_%Ja+ZE^iV{*UDs;`cXeH2E{;JIR_IT4CFB|5!T%|30n>yTv0;7?eF&{W0Mi z+ZVRI^~QCA_MPzylWiP*duF}svE<R6P<uC-%`tDo%%7j1-+Ht2vC}u>170cTJkImk zU;j4Oa?@KKukwy*^;a5g9xHu+pmb(o{sAUEmOp10<@Qdy)tZoY=<ks}))Rfqd8(i9 zDy%S`!up{=d|s3OVfKSDZfCiyx;RvpE!=os<JZoAuI{(%C0fO|@Hf_~WVghf`6j#b ze<I6#^Q8Zi{oP7#o#LF^AHbIFwfK*XeXsBT=J^Nt#6MoX@yPz?%x^69YnVcw@6V8^ z*^r;|>ub_AhQ%R=mIeLqp3(6mytD0$#Q|TRw#cUf_YP$wOnW?`t<YF*k3dq?2kRZ8 zXNp&}B(NUq<^TG&wPZE3+I`RH{??gw!c~gB&o}8#F=xow87*P_xXtQL^S|D&Q^YDe zE@_1=Xg<S`AI|Vqk=c7ihV&A#fO_wu9M)emj%-<IYY;U1;l|tp{Sk>Ke_Mmfe=~AN zDNYM03pLo4Q*d9;>!vK*t(SHO*0jW}YYKF$YYF-%YAVlYS|pM1&Mt((=Irwof)-q& z61-R3Ss#aTx-p+`n%LcKRFW|3nTo&P<A(T!yBWfcRC~^1%W_z8cHa*7BZj}L0vFUD zS@zLk)~@?pZc8%rUFTnxTJEi=Y<G?OzrY<M{)!zoUX8j90uP_NU6!nq+r@i^H(}c% zb%pmXGy0z`5^tQQBJ!#3ftK%uqOg@;*&O;V8l1k<9kt>nm+lwC9p4))nQFug_qX2? ztoy+Fg8z{4wL@1WADnsTbe^&0E!%F<c~!DDQ|tE}jN8JZvD<9cqKRkD_`Jw`pmsJv z>@m|E_GJvUjGGnNZgK1|yL0l1f#rdG&MDk6tzm|u28(4FwsSpO$(*9Mz|t%rxOF?j z^UyZ;hgC6stUJ~*z2lF0(8%#Vj5%4ob@hXHk00<eIL{MIoV!J5W6Sw!FXi`M?-;A< z<n7$%ODZg_zi8bk@4|6vsokF6nLE~V**Dkz5N$gm-%xdIL5b*2{&oG%osa%(W7x02 zyC7zV*0JP5k=up!XPo^1$VDl#8awR#GR-I>Q7Jxx=WifavFXd#S1<6-KFD!E@DA%{ zqnDO~Vbh$W-?REX5k0l}K1)DxLtEM5+USe>8OxFiY#EOIY_4~h{(bq6%N`}R49v$8 z;}rjSNlc7;pmAby%!Fr?E`=X5eZXE3T=YFlqu6{)k?6W(Po%RXyyO^4=Q_LRv8X1t ztXph6UG_!Yp^4cEGD|IYY;7nnO*o;W#vbGPCVl2lJ(fR5oK8-V;d^qN*=TV`kDU=) z!n4KY6Q1v3dh0OHKc~ti;|_~RxLr@z7FAWlfH3VI9_3FL18Z3yIP%J_m&sLMA$~zi z`Qz~ejU^1ZpBUvh-f3>|-*oum@{YsdkE9pME3(xxUAZ>7V6W&pvje7w(i^=snVf(9 z@c&`O8NH-%M#u4OLVo{ksujIbjHlmIwv}h>p8ikSRw<$7x3*%Q?4H+W?9^UgfBUZN zvCibVY{?6@zbuwte0)A*SjB`WU->|p#@p4Kd3L4?&p3Ry{pFo0xdG+c66QS{@3EEE z->g-gA$@Si?x{=OZRraTztgt;QjvP#zM7x)RmcB-nckpcD=yhO<yk)?+p~<<LWQam zr5$F?n3UPL{eVEd*z^r5wj%Y$SJjP<YCPD^_`+l&CxiX(Yzgz_4D#{}K69F$@9+Mv zCE1kN{y4b7pPixIp~!NE%t{%irJ4`yl^8l*x*X0}ePKFg(ATG6KX-2(W0|%?G)H^p z>;G(bd7hcS@LDmEIZe?hd2ZwGTZ*~NF}f`#`VZ##U#LD%J9`7~hK+NJo)<UN3;k!j zebMj>|AHxJ8YK0Oi(0g7ec@j+W%G;uf#MI|CLOr0nh<f|so{Z#ng?ElCM=#Xt7(%S z`;UKY@7B1_b(s0t;B+smO@6zDP_R={Rn@Ggjq7%a-fs^-w3qjQ_`V}M8n*d=-um)B z!xHvAuIJ``WLo>Ud5ds{`V|ev+>ps9T{SM%Uu9`#dTPzn)A?wDnZ!=_1-$E0uRGZ9 z_$cO5#<PCf8MXtNE{`@b<vYkT>;KSvs&$Vw;)lSipZ~kMPdvM-x@(jE|JuM+cD^gW zf4uysB7WZ=n^RW4o!_6D37o0cZ}d+4;(o#8!0O2hrn)7oUzo%3;!H3@ZTKRtg8UXa z)08DoSVa=V${BP_o&K#};GfrGx1wd!)R2EWnBVQ=Ua;8Sj6po6DZM$dF-YRH$m6F8 zX-uUttbfZTG*&+rIM4W|pn^%xcj0rR9LBuA(tCPlsjO3;(7K<6qk8%!{=kNPMK6Ml z^w+gbU#Mm)Qm=GnN08C?g_nO+o9T3)l&swMXZojpQT8c%PdT3EJe_-La+X`|?q^!L zE5EH+=eu8%U9!Y2MJA`_#*I{|tg34^=WNbhI%OK|z4rd?y7c(x5l`>Dm3lp`Qtrc_ z7qj2ZKXYG7LPSDjj-(ckt#Dqq&PiVHG{1MoJL8|!2?iexDRli)zjsfyP-tiW=l41@ zB6lqK(7foRs?W(Mm&#B5n^Uvx&$+H^byuhIf0MuP|2X6PFxz<B&CmQ4wPXbLt*Ffr z`2K(4&X1FJrs&P|enyb$mfYmCQo32qYgaUn(ITayOXj;HH#^ryo!<Cx&Y64NTrEos z+@f|Ix)kdbqTL!9(x5l_kkN_FF<ioTTg)`qI9O(^6$x7u`65trjT7G-z4+du4bEJz zKWg}x+}-HI8_qpLOtWWV@6X91X#sqn^)=5dS{<R&ntI}x-^4>jPm-s5CbE9okiB$+ z(B5NtQx9o{=y*R5RPKKhULO>3-bSbT<J09oFFktXRd;BQTV2TINz1NH^_Kp*YuU4< zzGsc2o}24xKFJo>eRTZneCzdFTjj6cxOAh&_wk!UyOupY`&oMS&x^g<$4t+~?#pm1 z{&kNr(vx{zW=>wC(T`7u9wphCW&K<8Y}vGBmTNz*u?bI0)zsM==GEA;@v*z_iTYE= z&*wi(|FHI~ahkc_yo-A#<j*R;sP*~t^bcz%m=&J<bM4s8KR>QXuI(-OJn5#Z@7WsR zB_^LY&zh#6*}5p2OF!&Hs;_pM$@ypQX4|&uW#z2Pk2<G6Z{wu+dzUy|okO3Q=w?1m z-}1p*dbaraeAWJ$J15zdoH%kiTXE~mIGx<QS@nBs!n9Xj=&Jmje)jY(@jpMk({!Wk zr1NrfAElqqkKDx}$FQ|!_cQ0V$O)?pJ+l?hFPFc!CFP=*otgbPbG><<?_OzUds=;G zUG1{@{Ji}sdiU?#V9K}c-V=ZAab~e+>e39}q|XmE*Y<XMCYzjZUw$qxYGX>^<(@a~ zPD|4}LR-JppE1d~{OQ`#)6qX~_Fg|T|EkBQGubg)ww#w<xLmN`E6{L;7l*II=K$p& zivxtCn6`<ob@9&hk&Q8Rp0UGNq0a7XAcyAG3_%IG-sT-U3+lDA7KZmeFn4;FePAxH zr6=d<hgEjHPcLSC2)|HMtXL;F<yOtTV)mFP>ln9ONvmjz;IEgPdRX{G^al;LrDxg` z@AGKtCOmh@{MbFE_^GRxW{cU*ZRc$t$tGW{(5OG;dg}4RS$qESY*@QxX`1t&q+fa5 zihWm})!#q0<cjJRmyi283rywLdF=iaFh6Y8_Q0x7LLIt`R6lHaQyIjYeo;z);n!LI z#p3_gXBSEC(0*}yf_i_;ocgs1Vi(n~T>ez~Yn%4Lc)#EAYqs9dD$bBxyJgywD$Tw5 zhPBhb+&;79`?C8b9D80rWk`Iq_iUu5cjo_dZOhLrQti^+(qxw{wnMybU4`$bb4^kD z%l8`3ewNErZsr^Bl~|a%O!sK|+38+0RHt6`h-Lc!r!wEKNN3SPi96!#^A8+2Q-5Z& zUdVdY=TrZFj$XO^%grrIb_!hgsg8K_I&$W}-5+j$cL;x9wRF?1hCQ7>^wxf<%sip+ zwEMl)>_cpopVhd&i`NBjT$=tR>#7@P*l#DD%&TE1w$HienN`hOJNuZArOI=q6CW?v zy1Z<g|KsJcH_pPl_&2tf`RNE-9gud|8*BOSQoY%u?5|huuhd(;Qa6cz;nIZd&9+Qo zZOa;WM|CAml)odjL8VOB_x_=G?r#(L8*RC!9eL9{qgG%uf6_NcAKu%I2EUnp|2elo zUT$yobmN#`rE9zIw(dG;^k(lHDUpUv>!<z6oU~u;kIjecp8xK?nKf5)|H3fd>k_rR zdFByp_i`_vt4~b!`hLk_zm`;mitOhTdL19HTix^xSPe((4;~G8r7ZBD<A^=e$NmdH z+)tdG5)h)GC#uS7_SWRa5($ngSvRV_c{wbtE8FzMKWY7)$XE6e)^q1_xaKc^CsxMv z^PEZP^1yPQ((ubyuA1C&IqYi^<9ygOXvPlL$aV8mcCkI$^!Ua{hD~+fxXM_*9^d2~ z!1Bki!1vF^HwCZyliCCS7j=|3*b9A{c~Jgf(B7~zix_^k|3*91{uz|LICt>hqgzW0 zY<Vw9RLFJ8^OQ>PluGgRx+Gm|y36#9rFSOVyQ~fF2d4At+Pc<@y(!t?puG8KLA>1+ zZTWc<&WkNDm?E0+&PnFSo+rO&nx0_a*B`n0@^kU5t7q~|K&rhDZZq6ne(G#n6yK+b zdt4KaH_T-#Gre&(VS97vLMcPn3r40syw+`!hfgu=dc1qpDzBCCVT!-x*1vciv$XA2 zni=0&5%<{#Hw8Sk2(jc7SU+pur{+|KlA?=_8{7}fW0?L>*Ve3F_(4(?yQe&NneL6| zpr{E<#S@s)1x|4}<#r!fyHJsNN1fS@$$`>V3u-?yIOp1Dd^b!`oVZgu>T_Pk_T8K< z1}OsKj$XY}l67yqO?dhy&Y;j>XF^g!Qvy>$g~5g9HT+fivNN_OykjgjpRxPEn#Ow% zwyE=}&B%P}`*ii`>(lb}>hH(ZZHU=9e<ov^m2vC^h1t9l7TsJ@bX7`HauyfQrSDg2 z`*xkZBDx}5JSO<-@@22?&scTeB6NS<s=7}he_yQpwJ`XrYw%auie(A@FYLWuTvz=P zuJ%Qgv$oPHe%giO!oQ+~*BzfcL2j?hUB@fBOY<h|inGaFF1M2Zfu_a+rjFw~&2}@J z|Fq{WIq|{o|Jg=9(Te>7>z8%Jb-CER*XKL)^?A2p;6-lsxG9dD8A^3xnuSg$!uPG5 zvuwJzzO7w-uftohG8N;ZKMFRR{$9{ADN?)t@9mEO_G>YPp}TENIJVDrUo=se&GOc7 zRkt#Y-N(0vtGR7kecW&69_Gi@uO6<NyK^t|V$R9d1?HW*j^52%r_9dy_)qk^GVi)t z+nwp3_$2rJepi*Ud)cwT<aK6W<*j}&ohvzc)=Kx(#M%;(m7Vq5{~nz9Sbe+w<F)zv zs*QR1e?2mGe*AOgWc5t1Wl1L<?DesKbk+af>da)V_8#Srv$h@lYWq`w|6}v_MGPM^ z?2b&X>3Bc+{P8c!Kb4LMfBu<a7r(y7nvJcE=bj+PlFvL#D%rlBGu~c4Z>P!m7)^fd zXPhZd1LwIg&Qf1sQyC|B|9t%k;hhQd)?CYxDf#y>#@2q1c<+JtZ&yT{E-^GosmkzB zzVY&H_PUwRGxBGj{9GL<Ti37h@oi4YFQ0_KgYz%mXuQvD%9ppEoA+6HPef^5)o-my zHcBQH>`|sEhn~o;ZaH?)+MPqWttE|T-F?#>w|m8V<;vZE6<U8vi&?Nia>)jp`cG>T z&&MkKw47wqWAobb)0*ceHn(veez95O3UkD&3k!bjTDfR{_r)xRhUL4Nzc%L_TY6Pw zRxso7-gmV|E%Tjjxzz5~Gg%SKKTSpSirAG&DiWzGn(T{sgC;#b7II)OzrCueq~a|R zsTLXMXZ&sT-rXWUX8xZxZQ8Zf(d+UQ?f!0$-lE6u?H`=&sJoWq-hwdq=jQea$xXAb zH|*_xl(B8;(tV*eC2LbHm6mQ5TE6^)Pln}`p6IH%SFc_A?yjKR=)!$;tIqK+F6JB_ z374I=-E}hT2no_+UHG5bg=f9rbVpumab-($1p|frq%2-8V^afDb6&30yc94OMjM(= zP88Ii{;<|iyuOCLB>MQ&7iY8?ZZI@ys4z}rZ;)+GSnko)6ydTuVo8^3;8X?9NgHms zG`!L)x})?xF6sEUV|{NeHY!+t+jXRG&e`);osU&!zfqG`?=zphX7kOQeUoFWCr7Y+ zzgPL5F=3+W^EdyW|0&+L;^A!b;`eiRroOwg^RtQ*r()!jtV5Ic)!);-y7ln%_}gr{ z_N_(+CW3SF{=U;z=U8~*Sgdi0fmY_d^VJOk|8&0mc3bAIo>q2_<-y-tCzJhBvi3$s z^9*;)o$y6oIOzL}2n~xhw%?ALb7b1{eCSQSu;6>@Kbd>UAL5M61Z{mzZU1)gH$SJ~ ztz*mEnl|&tPIvZ5H|u#mlS8h4-ZP`Ef=;^%{Vt^xD1BL;uFAaUz1oqApI<^$yehI3 zQ*KM&u(uVS^>5F&c`+6LP4}!<XZo+U^M(CQ&9664J`}LCf27xNM0;t&0vS$QzWgbB zxl0)4MSC`M966IxqdIeW)GYt(4Dq{8<rfw9PP%vUukLr>cj<p3PwL!UqI6Pos%L%O zO4nDD_Pr>uIyGlb@M9B;;yGsN6EDBrbHwri&(ylrI)4Ps?av=OuOw7Ch0BD0#kys) zU;0@&@H1b{XSgcQ96EW5x~PZH;$2CCp~+lV6WyjVg<AbT_{aWyeeS=lKhvMTpS{2E z-;F<S{xtrK{XG4MZeekZarmcq_xJw3TYkUlyLJ8hy4QEF->-dn_r~t*`hSP#*Z-f( zfB$EH`M<Yw@9+71{{5cc=lJheew=&!-p@C;b?qxXluu3iIsd=2X^P^@)RLpzi`-Uw zd!IjX=92WLUQ4yjM`z8Rp1)aKL`>A1Z~5vaTh{DZwCU8_kH1#^HQieJmABXTtaen? z?XYd@xz@aU@#a-r{pI45w@P1|$L!j;J^%7E-Dv&W+iKnapNrl7{mor-fjtjo*xTEj zl@}*JJpH}j-^b5aenzKDI=`G%&65`!ABV?OUcIWm?&p=Q*JJAs_s+MgynJ^1ovPb! z%kNZPzx(}8_5Hv6Ha}*z%l&(!+;8_Se17$x&hz#^uUw9=c-9?X^)2L0{g;`~_x<_9 zUH|uyxBmW5Q^Vtbzq)x{oadX&PEM|W`yyLRwf3E<ckuX=`SIn???<Pz*8SuExSO+6 zu-`;xGMihB;ic`$SKjvqW=u#*|DEJ?^W2OJd$ZdQKix3@j^fc@zsf9<8tZn8WFLzv zuHP@>{hE*OxYh^Lwb5NaH$HOj*j#H}zeMomlamWXyx-q8WY87*wlsOIV0JI_x5j_} z>Z*Ho{Qf<4V`9NM;mf<MlB6_PywiOy@62@fx&6|P`P5sP7aft#tPIDi7x*_R?tHgU z;;o#_i%-W`w)XCbU2f|1vf)bYB~h2O8#j*heeU)wd*CQ*cx?Kvrq~AUs-zMJraG(Z ziTw2;F|vO*mekzl$$$CbS#M@RgGBhPg=e0YNL}$?et5ma)?F$JY+o3iG~QZN1~qL= zPMUgHbg|>syzmbTH+-*?SkLbEQnDk~cE*#ZCW>m|;XP%?Jbp`hY4SYn&9rrqVu(7Q zni6oSu;{^-w&Ln!D}IwS9*?;OXBaNE?Vnw?V~JTsed*C6C)Tod=CpawI$z!~jGbye z?cKyBa+;RYv~Rqb<QKOsxp1-UMI##)i|(c2M^_wu-<w*sgl)m=-c(0x{liTgLQU2P zy`DbvZRytCv;5P8xO-N7_sDgyb(BdF$oY1RM=m~Zw)wQZKKccAECO!lGy5XERp(zh z+|#HXTm31ee|7zFQJJ2=@Z&RcymZqf6xgpMu`WCue@%Mvy9=K4y(iuBV-gMC6#i*r zou(R->8oi;%qw0VSSEY^<0OTf^B<pPiLQ5N&j`BCsg-<Sohh^7M&T>Q4P~m)Cig83 z-gI%!J(zgG{J!KC=URqb&I3&bdTV5^O9?FGezC@J?h7kPT?NI-^+kr#t<xE&%<MSU zu%m(f%E5w0EB^flv)<~t*H2Pfair%>19N|8Dwp*-vj>+B%}TZkXaBOc@T)@Yluc6$ z&o7QVu}Lwy{Kpcrh>M%nu3+-y@(<?9&z{+O>7C;B1xbQkHnACEJ5MFdUFE=jp^<@k z)tS#WdMDfGtZzJe`PzHyxo&6c6W09fe75gO+HI#7sflk4mbh+Xj;L8sK3RVm`(5!l z%lBR=o)xfJGp(U&qIz0O`)T3Rh5FX(jr`9%vEwXuKg=LE{ZPZInvEt5x}Fh}wdxF1 zBJw8jzlmM;?8BUEjqE?3gkAr9l81MBNB8!#tlg%rFZ=3Jl_s&jRSe?^RsXbZQ*?dT z8><+u{ipT_%ZMqr-&J7F<gL)1y0Xas%p8S)M*WR8D?&F#*<D#RBjLeOHvK&RGm{#= zJ>YKswn@tAcLcBFYFoo>rYrsWJX_kX3T&BnRbb0G;nThi*B)~-=O&o4<ffRi<bFD^ zKFxoP=eL*_6Iqz}|0&<#)b=pWY_`ym+rSo9zjb|1c5dXwD-TMiPq$JH?sN0FzU%t& zZ(rYXln9*?jB=^yE3#Ru8uDPpgX0I9)MZpt9fGcKDqXvDN#TcvqLi<j;l-C*BCcl{ zZw;DNTbm=}u{Lhrl(r>;zEX@#rv-flj51W`+HQEKzi8prR~&_^84nLnymntcyKMHY zpSx};olB~}#?AIh>-)vFUu6py?mP4JO0i!0&XxNDU$$*GdSzfWYr!AOde`vv`Bz`u zI;E7q_`a${|FYsOCvHE`joQ6v)6PW-%J#)8?&h!6Fp=WcUi0tUkK{km&$F_BE-dEf z-h6G7(_-xnt9Pzke>FC2mNefiqt-{Sx{TtBD`TVkOpjN+Tl}iNVdDxT^X-dH?C`4i zbAEB}qW0FZC+dHizvz9mo8(u;{PMyize}b}>$6Txa!dRuZs-wo=-{-Ojw<)$G^X8N z*!XqF26ipgA8wt_4u%17tCt^m=#{moe5%FPqpfDyD=XsvJfE*wX4P%)EZdWn`{(<X zmOs;;Osr+}UFZ71qV&xi9k2Sg9L*(~XO|dkSo6izmhBDaji+vA{Nam)<qc%#_y-5Q zyY<QF0_Sy>&8uVYMm*6zcW!;;W8HI;R-M{9^XuyV(DI1Wue<gfthGMPWxUz=wA8NE zyBepJ|NFj0=2@0fG}Ek{y>1?7Lg&x%<(q1eI!|-0SPt(KJ$w7Oneo=sO?c#=o7P+I zEt`Ek)69CW+3xF^v$p*FaP)ZG0^zqsa!SDu6(g!6k9h5qI$`o+vyt&76D4<-(!5qR ztq%*F8Qp|69-iVjpDxmDIoU^v^HfNvLfnJblP7SbOlYj*br98bkok0xAtB^Is)B;e zhi3lvV{#vsUUH7;yK<=J^)&Yj-;6n@G})c1uVi1pJkRU(istVZi)^oQ@!y>nuaGyV z`s2qfm+n~aT)$5$fBFBiwQl;axHo(3oB6Kye`sH9&4W9Ed6U;JUbE(Mo4Tuo5r^W0 z?wKN!wLS$M$ZEWt9oibaNhG@K)0zu;k5>9kov1$f6VoXV?@B&3KJFNi)Mm8@l@=yn zgm_cKRs`0&ge`q=fRW)2(`P=<H!5rq%QN_|)an>4m638~;+)Udn<J{$p0&kw%1k%5 z(kt7FU-)~ye$q9Y&HwW9W%AOibz{x9zB^)SdwqZ1le3{$u2t_?|LB$Q$NyFNmnZs) z9$)`cR#5&!p5+!Z0ogkfqAQMnxggwbz2o+yq^rkHzN=+lS6Ux$wXdo~<oc5je|{g5 zKf2u0v{HM5Gv}}Oe`1`c`8lu3+!{7DvQ|;_2v3Oa3Ew4)8rBI{er|qKF-7*gbhl}O zlgz$?7(Vq((VJK2$xmnJ{HU=|#D|+bh<{70jL`9iT;55KnRR)1*KCVjv3jdmaEXtd zK&)Rfr{2z(wRaliZYAl}KiZ*g?Pg{cDweV&m236)x(_>7-`|s3`{lOD^UczI{W+SP zFV3{h>3Y}s_G13s+Q`!{)|N*sEjqbM)Vx>b#@{3Q_J6r@|NJzJek=9;*q1e3uexmG ze|>0Nd1E8r43S$;vNoJFDauta_FaDUz>>tGlT*12HZT`{ny36=pAttxoz49Elj>os zWUUK$83TmoJm<Bka$HeZ<E+Ke-hG3$uFbhh#!g0QGMkP;`?Z6+efSQVm!H<syKnS; zHt+g*&sMt%J%2ZUw|LsA97i42=nTdG5(dq?zwOqZ8#M3g4Bl%OoT7!aSFG&mnpGmf zIz>6l;)BCh7SYCKF>JrLJ4l)zOVagmuiw}wW0xqvdwKyk3(Jy3ZWq-lO*s!Qs)fax z$o2nJ3ZKMaH!1C)>C6K^O@7?oIZLg;;g8X?z;};@zZGt)OMicB(x?5Vvl3dDUu3tI zRt~?v>*p-_JG(VM<<9zjWSX@4Z|~cebgPoLZB6|9^mTvj^L1y}KK_1xLZYtO<#jT( zRcTf4>+hUD6@ALLdfuO}C#PrJJ>MsGr7Se(%%$b&q0?@CxBLCDmVIAMs`@(DGo1g# zOb$-=W#o<WPC9>*Wo}cUf%&{Ug$3?ud8Zwo$hzNLC@lLUplnXi^p$<<{+wF5Uce{$ z!q5I^_n(^vY@MXfdTH&noLaY82RJR_7%yzgd=lYs&-TjS`gu=I{ANCPqH#69!hwyA zk=KkoDlN4d78#vYVx6#jgLT99)&5SA0$Kt4L>hF{!<hu+UntE~+-$LU&&s)rw!NBR z_Iigk*Z=S4Qr~}lopW+dUhxj@SLN$hpPo_My6^99%e{4n5=6HyDt<h5_s{hkEmGKQ ziZwszO?=P#C8#hkvGHt5z0c($m&K=cYjl5V*;z2Jxw9};sm=K)(~UT_=@IiT6$QNL z5IA>0_1h&aNxrI?t-GeV9$3zN<l+(mR(^Na8y*L9KQM93=;DlNd?+M2^~8)*+qi-< za~8ebGPP+zg80eQee34@N|^ohB1_)ef=b;le`EYFDi_CZpEB!njGI)oj{5!j87n*Q z&xn0@Z_CT4!RtTx1?#Eb^eHZXF1CE>?wsPkvr3$$u1`y!JKN>+#J|$^Or;Zf*h@C$ zd%H|hyCAbUtn#)$?{l9Qi(gNUEwTw;u*GP1scO~7g)AjYAM8!|c6Gs9%fBzf?S4m^ z@j5WaawS$=6t>=JoM0xAV0wdh+nk(?lS1{0QJuCtHLE$~1k<^q*^j6cZCR$b+NH#0 z1>0ju#<^ZX&T****STc2CNc`JdowIMtDL}@@WE&5Cc6tyS2f15O*JpPQS&0@`03>@ ze2x8mP1fyxy8F88_1gEFvdezViA}ycC-+_a5q7Ee{Ci~&u1f1at+W0f@^_xFbX3{; zGQ+y|`p5P{`K<D>4Au{4H~Or<{dB_j>}{JP8X7n8Y!GSGjZ5`56`Rbm+ww%7S>nXA z`$96r9_jW^>S^{8b7;<B>2o#ZjNtBW*z=ruv4&wdQ_KQQZt25v+qV65wcfVPZfEpj zhNIE1zr}5zY4xty?8%??$Cz`k|9dd+-pu@<%gGUzw{7aH&d+PUzhmqA$}jJ1+xHh{ z>&I6=Ij(;%Sl&M6)N;4vbNAH$KfPS<`}&^czV|D?=gqXJ-IE>v#-HEsNMHFo+pp?# z^3;AD-7h|0Mf;>V)30lyqN#fBjk><t1)TQ-whQrW=GbyxvHpNK|2_YP3FrC$bf1{6 zVf0a#w>9frzt*M?ZuQfiHhHXgx~RayPjF3-w#s9LT?%(DYPeqvVdr97nVG;Yl&$yw zCeP-35!ZH=h9>OTePq9(iP)_d@t;>tUmRXvT-vVZpZ}?Zcm4Z$ySAL#U#MZT<)XaB zpQ9g7-r#yDy7yq{%T+J#-3_=O93B_BJ1^(%iO=TWTDN^of3ep$?)<UNzWQZbw=PZn zSNeFb^}km?cCF1$e0MzItsO&lxVK!|b9LRoLrYwyq#SH$Q-7gwlWp^b=?=<r<`tGd z9ODmZ%59gJ>)zZD`{8=)jTYIgn|miYZ(#TOILCj7mZ(6_lmbqNpZ_?o8wf9yu{7o6 zpYixF|K2|VHM>1)9z5)4d3fjWnQ&RgdON$M=l#h7`p*tTPE@N|XesP*`uOvf)q#>8 zFO|2%eKjy*x9t9X=Rx(F8z;(QD`%(7yQ2F=J%-m+cGiKn+k-2`AIy7Oxm3OG@AJ>O zyY4T2ee{fz@?NFG6TeI5J-u_kVC|oKHJ9&P=X#yH?U&O!Tj{$S>i_Zoxy<DMsdILX z#EEUU>%C;mw%?tbebOWNo4fj%b94P!{e%+Jg$!<Kc}cC^8L>p?kJiFZD}zI1e7_!F zupmMr?o#&(x#vt7ZK@fK(~e3=L<)2%YTXd4$`QPOF;%_rr-*-x`{gz@Q@xbs9Wkev zc;$6e_a+#A{&#oXpE;9stKDYZV%vRsPxPYgw)={|ZroPCQ~t`EySug>$SsY&wT%6D zn8%VM-{u~;ajWZ9?DgE+KhOLPf4g$?jdOD&E$jU4@9KVfn%#8Kzx4mSpI_r9{9b?L zy5l>!DuslthYxN$lKJ_D?S)Cl7YYAlnayVO(aT1iOYBtV3t<njBR4tOd4dEF{wz`z za4@>x+*DGhq{2P@hHO^7h)P|g3U7ygu<KOWutS$)1ukw7`6za!oNEzV{b4!2gZvA+ zKjmo)@m=)d+`YW@?6T5>0aLE%_p>>?P`qmR@nDnM(<iaVlhw|5b=s8lS8y$OV6?SH zFz?okORsH<v)pg?HEuj6yxltdtAEViw9Cs^Z7TWc`epv#=H0)zmTo#d`&E5;e#Yu8 zdCHGo7k|}u&OWvO)1PO@-&<~6zcKr2*6iN-xx4?Id;8Jew959i^Tg!b_P)nCw;kR$ zZ@9PWWH?jR`rT`m9GI4Uux7H`)v{8)sC2;}+D{fvn_GAAr}~<EJ=MNO@4`$!cwW%y z5X*>>YffTN$-m#CvAd_Io&RgZ)Cj#C>H5f$W9yRBKPH{Je)auL>8zWDhu6LG_TOh_ zT$3ETSxwzJzkL0=*LK@>FI-R=ytv#qdFkPG=C5t_*W7q;Hgk4G!uO5wHrCfJUtQ^a zUjJNt{n?olzXka3TzMcc!N}~CVZz}*@+`d3)}dSYuk#(<8l1ZR)M?Y_OI~}}oxQ$t z-s)pqjrCht++}^DIc(fKBR8pP`LXg&-Ko!e{Ll1VB2s!S9g!VpLaf=#r&xT7<Jpub znGz#Z+C9N^#zx_kel@O)YX#3lpJc2O(fqtahsnF`$&X*37e6Yjbc|RQI?Zk6E1uIK z@f_JpO<wXj9t?YDANzCJrn%0)XRq7o8z=p`Z|83Ry#n#|5BcA{(k+=1d+$bd=>B@? z9f#%D?5nALx;p;epC5bGznN__DY|FB-s+;%zGUgMIUnBaeSY+xbNC6X+}6@UhHI{( zk&baZDb;u0iOv&!y7XJkWJ6=yjb?l5Iy7{PW^w#rFw08Z%k6cm;jO?)4WGL~dUBq9 z2VPA-^!Ok{vO$@_gvs>*DUN(zlY25v(<V&V#S~ONRcW1wt&erTI@3Rg$8VqSb4=&| zb$xr)=_PMunwRTY7>VAfD_U@GW7hRIy0i7>?mHq{pMCY|?C4GMHI)&k%1l4A$_D?H zea7Q`?CbU!+_9}`$-#$z-MTaF@Avn2f6ScCpTGWVN$$H9_e<9t581qEu}b~&m`x|X zGpv5L_0H@^n~%6&X0m*9<Y|!=SCQi;Nu~4WytmGHYUms?g-=jdqW6Tpg<r-BjUch9 z2Msqz>@-Z!-}FE6_g|+Hhl8JWjwOZcv()ficw(~w<Kub1To-RDHmZ_85S*D{`<07n z&0beWVX?&vk45;oIOI4^aXu=N^7Y5T?0VC@tV7asmhDoz!=0jjEU$=Xi=Q`tTg|br z*?AIXvr5ZT($>iB%F3;tJMr{c&&?^juA5DNY4p6O=EI$v@7IZMOYgKi*4unL|HfnU z_t&yB>pq{mTD{Kg=I77rkG_AlpI2_#)HUkW2cw^^&AEMbe`;`f`t4s+U%!5x^;a~N zwV*2XdwqJ@1oz`yT3KER*Y%pt_UL;tt6BK4Zs=JM#@_qp1Vhw?j7ef^E^E%a>!l*= zQKlR4D$awmrm0QbWb5hRKNd-ky_bLec%-D|#f(FfLrix(%!!!Capa!V#N$iu{X7|1 zCaZp)Tb^(3EIFaV!-4NZul(hB|5R%Bm15OxPpusGvROpb2dW;_t2T;?51UtzU19O) zugUeuhiBHVS^37IDl6%C?!skfuiIaazx3Gav_a(QZ`-!Em{mx*y_21D$Hmv`T*@vZ zUE8|U$InDv|4K`nn~Ucyzg80ac;BkC?dH>DXTF-T<I35;TehuVy*4*AGxWOZ^sQfF zOm{3=lI&mn{*2XfH<Qr%XQJgHx42GS^Ig09$+FJAUt!6N`CHd^)Gz;asd1L9we9O~ z*WTWd*56clHglKLf34@L(lNTy7bjI8+_8_ZdcoX3iVgC2Z+70zx|W{lSkXCo^^t2W zGW|>0m^KJ+*fVX`rr!}3%{=YW!4rAf&)Qs{Af&P3g3sBy&{bCyOuQS6R?VniF@={& zzG7;~+0)^kJkwUK)bCpzE$2L2YG0t(zRWEJJXy=T+_u)dpJ^Oj70>V5SNx~VSlXg4 zwY~iQx!%^*hHkg3KAiYlKI87r;^RABpILhBY^|yF`db#?<!;x1J1DbH*N%PL4DWM~ zUQTfpvI+EGzT@{3;b}i7>e~zLGcca1;#<#nB8thNE{@@;6rbyy<vYBYR;zQKN>n=4 zsvcIxq!-*6bH-3Dc)wHqql}E@+|yX*Xy@Bhy?P<9qvs#D?s%e^we8MIx#=_iKZs%b z&zQTtGB$1V>FmuvW5hPEj=E=l;KC32#$Hj)-)@4MS~?q^FHZT9GVkot_$i`C?<#Sh ze^+H%-?&QZR;xpB&e@$3B8Nq${nAPGNIG<{#z<vL(8hT>o;xSCN`@QkYGdW-tkK?? zurE~Xt&!yQO)iI~&fB@?M$YMFdvCf{@*nS);Of13jptSUfvoc#$2WiCp0jr2^P|_# z+s;W`a(naHj~?4>ZG(-D8gKUfBDmQuj^Wa>6n2jPsVhF#r^xT#o*p*igh9&2(o-kJ zr@eaWuqp6l*8-l+5k?Cg<L1q=opA7)B-75FPn>RjytDFoLg}AM(aV+mjaF~M>!L(A zICanead)a-`og<ehAB%kD`zcpyQV4;nf73(w0~Zaz}a;Rz8tk$dqQ1rTfsR|%?&Jy zS6X!Zj?HNa=Y6{90q@CrjYVmUdk(B?wwN_(^VH2=Jp9=bP9<C+%@$Ed1h?9JdAQY0 zR#8fq`-8?sj*y+%LR;oIvD<St_Hxe85e_;Mk$v%$oaR-1Q?)ynnB=b(Z`tp=|KFJl zFCMgoA78edrS9-b-dVT8zHi%?_xsh2rF#PIzIy-utyYBV5B}Tp_J2B}JAYUG%U#y? zbEC7}kB0_t+;@EM(}??b?2E47{5x%)-v4#}x$~;yFUtPc(pWU1D92wzrM2=}4s(|7 z#FG;ZJdYJ!b5)tS{i6Ceme6EX&4L^M3x6MHO`KZVJL}W3L!ag-y?El*WInUQ*&@>0 z)X2uWy@)ACb%%|pilghH*CB$=rAo)kyX#9grA&WedFg)IjW2IInZsAyK9cqS!n=D- zVpD!xU%&t3KkKuhow<v)*WKrhe)jB1v6t|i;JAhjml%R~7*0q&v+T&c`EQMOUD|TQ zfwyzAmt)fNrU_mFdTSc<ZDy?4eXuf7heKE+asI)@8mC#lzOrWRnrq#1L^a)L*-77z zza%6sZm!Sf&;RP%x7K>gRr8DcpFSxlzVEx<@6`G0>t5`BceB>~{;lr)`MWcZ{%}4V z{{Inov-UB0xm~Zs<0U3l>UG$k{m=78tAEGKwuY<I_^tbu@8=dfd(S&MW#TdQ;?Nvb zvF<q<Pn;GU7gz1Oe&*C9_Xjf5L{2>u{<*5#b;}Z^q&c@YaMVwn`QTE@b*GfC3+`<> zv*P*D;6q8ai`Z{X<I&zd*LA0M+>=TF*gFi~FTS;6u938_ugk~oO#!U_U$#p=Tw!}} z&9a5p<kx2{NxvAwy>!#xEIzG&TPiYd_gjC<UlB4nV6E@RyoYDEecZkM_+wv9OO3uC zj`L@H)@6GCFTOEn<&I5jZs^zl<j%QSrTYBzrvTTG2VR#CE`P+H=v}<;bd15;y%i?j zT(^D{WqeZiIQ@9jp8U(3BvyLH|1$K9*HX9G!FKt$THVpilWcrzu3p_<yrC}e-Sz$H zuT@#&x@Z0FwU3>3K3zI-@81=r`ROMQi4@#^TAsVyd8KB;&G=&bC(jig{Sn*Ef3jY6 z=Q9~+F@5(rb1PoYo6Gn5-VDZfLVx9_#|TsuPuz5HnjS-nw%fl)9g>@v*8F<S&AfT7 z>4RvF<C@>j+WB}&ZCxO-b;g(78E5CbsVUz2V46wJdF=@X4`TmD)Q3(DdCPe({yNXS zYiZ&<H)no1I{W?k%41(%-L#0iu;l#y^U0SASu5+67vyJYXcvmy{v>wq<k|%xIt%7} zFf1>6_VoP|J58<Aq3luT`oD_bImLPU{wdB^AE*9q)UytLzvA7e>g%Rr+uqN;ar>T0 z)$wx=Y_H1Ay*fkp=XJB|U(6hj|G4*USEGOa?b2Y~{i?=?v(BIWzQt<QZ0*xgWpSIH zy-M&dPY$29??7mMK*;ULu<KzDvu<rPE66Cn?Df;F?*5<OcRnXsAF0~f_$EvLUhT8z zPos3z=BiB;{j_tXTR{E-mp>k1E1s_0<KJBJMMIOfX!XS>8A2x&&KpH!n7ObBKRYG% zV1?X+MTI&>d~U+L;)fFD)prW*_)*Yc6&?JML*J=m;)(jrvmNKn;jgzA{Cst_yqIIE zsOiJbhT7t#&!>hsJ<8s)$z5ap#WhwFQlA_UwcQf8A?^Lw3nk8fny3CSjV)cecF~13 zmzQ=f{ihwqx_tjC!>L<BF8A}?tntf>YinI+FyqmDYr*T`*Thmkm72E6H0!-JDnI*l z#bL${_kZ*LGo<}g?EV>ZBs9ZZs{Tu)m9Nq>?K9_-%ew`_HP!w02tRz;)Np<y2Zxp5 zq~o`Rzqw9(Wjl>YY8um~^9dpjSBn*#R=rQ)_>oX3$He{PB2R}**|l3w|N08KPqvuw za-~v%&Dj-sb5-k48E~g8YS!U@!2Rx4#Ew^AF3KMD3urF8EIobmi~j!!?{@4wvSa7^ z`m*n)wR0ZExH&48hFQE^CVbtt!rG<r&eoi@IZeeEz5mn;%2(P=c=_34=_99tuP5LC zE;?OYDxoN%>8^0}>8kMkr%R=uyfgoB&wA@@^{+SHhOKY=eAUk<;o4^FTuFu`7xr(Q zb1t=?-X!;zPcFN)Dxf`DbaLiL-;ayJ|8V&IRGVI(b*JQV>9d+V{vBJ-)CjCUmKT%0 zt%&_V|MJ;i3iPy2?6lhVw=L$Zp+vOL^<($1-Cp<5-az{KqIFj%ZMk*yZl1wx-r~#a z_}Z_$e3W-?+nmz{MawtI-gG-@vHj-BZ~K34cUYKypp5&(<HnLRO|Og}?pWp}!Z+tl zLx4(tMc2+%OtH)AuOCp&yF6EOZ_xvvsRw3;GpAQC5Nf=^E0Go&G>I+c;>~y;xxbDX z3WnQmTz=9YZW48BU#8see)ltOZ^e)B++A-}v`Mb}zW3Mu8EbE?UzUEPe)hcSp9P*T zus?I*xcqs8^b1*g?cU9+zP@Pr_lV7px4%AHWV3<u(Wdxj8=WV{jB}6Hv#<yKywaaI z)zaIeCVWA7(()FaDRxTrmFG@&R)&fN2~Ga0|8v28ISpq46Q!@&d4Jr6i@xcazFpVB z`1zT)oy~&WX{WO9_5J^;*X{aa&WeYZdL&I2Xq(&-`oG(&O8oyM)#`Ur-cwl@slHp4 zBYe8|vHAB!?X|`6eo-H1Pk81we|i0p%+ua?+Bel}H!OENCQ)~9>M!1Zi{!jNRZnnw zGtvHdJcDxmq<sDzGYt*y`?<vZ3zt8s-NGvWq1&^3{x8=0m#p`u*E~F5=p9ut`EYu$ z{h#eWWxW51HvDCJuk+eHx4$dC?)3vZ=iBTmzQ1in-fn+)%ewcx{QAFVZ7Y}+_v!89 ztN*i9^<Sy}gUtAjd}WtloBy}|$Ub`A@LkdKr}O2OqDQ`aVwpc#xye1er)n>lr_vix zbwq#C+(i@DEQnXIf2egLa9z^B{tNZyUtC{YUNX(vvFXE?qI%nUu3J?L|8RMkPO%Nx z6R>MRk7Fh4sWgrI?iCt#2Yuxlzehi)Wc}{{B<f?m{K=(<?w{YUXXDv)=>Eh+Lmq!~ z5oOM<yC3X)n_`qL4_-f0ukuHG=EM2Qj%OENFlT+LYNXRMQSzf}g&kk*ef61#w2FLU zT;GZO>y^3wPDQ<C`LlSjJVp1G$12hlg$4Q(3LiZGZqP1Y_}}2a#C0FNr~e)PH1&S@ z)V#!3LxJ~CbN!O3x1Ga2_MhFaHf2KGFS(oU_vgt!-S1^~Y5Pe&U&EJ-JLLY|_nbVz zlS^QJHSfL4o>t#gH}Plie$b!v^^tFi@c%D=q66+9dC$Tg;+VBV_KBp#|5}OqR;B7G zuRS%`G|oHh6iWQzp1^lDWqq3J&BL;4+duw3S$g3+%PF~A-<<B7)ay@*Ubwbz_xw2x zpIEN@C{9vy+c@>j^Oz@j4JTW_#TTWYT-#9Z@kjbosmA@5BJuD3pWhqq)DJfCKX2c< zE1}9mb3uFV3T}<XKUl0^hJD?z<G`L{j{0?1T(c5)NhqJ^%J!5!mAg}^Zl1_uy#W4| ztY0=vdiluqQA^O-`N_YMsv=_QFN8f@=@`32>`H5b;?g&qdp`Z=-1VPVGHn;T+|<Hv zAOCxC?Wo(t`17#gmi)<yy?s9}91A%ADtN2zmG_gL_X?~ro9r9Fw_x9bJA76~2S2N7 zTn#w3z(!MM-hciJxA#8EKe_jdN+s(l-7k_KuJlh1UvTHNt=<3NgU)gdml#d%3(r@r zkBim6c`{e|x})Whwez++R!@!al@t9gApK!u)R`Io_ucS+C;D&h&0E5U5;r;i(2YF# z_w*mbih9S$X6uD53+tp6KdZMUUDEq9p=?Gl|IVHm|8>iErnJO(`(4!fWLDX*$8qZe zqkECRn0IgdCEPmyy56()=;ME9?VtVkk6(pYU7cn<-=TX2ou7)stk=%HHua^STHU?) zACtcw{j%KXTI#j*e@d?d|ITh(p_tc^zJJbN_s8~6?qodj*>7l{ow@PPxnFzlWEZbL z`}yhK3GaXZw-^8VdGG&~^56O;bW-Hi@*}rh<otb(YsKB=Kc{Z`D{|3u(LZ%j_0C`N zVF3p$R$j4Oq_|zHzI0y5q}@|@IT)Q-?G>vc`h<7sy2fwcr|z2e<D|P+tox@G(JPk= zGQSOZ_41DY%e1BQ96zzl4?3^1^^nxkd9M4|Uc0Y*-RYZi@XOi>Y{I79(NnEdt<KH} zdhW3-Eo$ZGl+Dj}1c`Tqex4R2?m7S2bgx+FHMgpku2W^cRq7S%{^yo{y~bCQpe27h zgZ#zgulx&KnJ!Qt=Cd+=(!(|7Q>(=GhTUI!<?E7rAKac_`7&|lhZhkct0Y!U$@*(r zr~hZwM7Dm9i^{dZj}M+q%sl+&U&50WS4vG}r0k^RCh@f{PQLUkK*glkz(i;5%vn8N z(#^t(CwD4J%q{x0g!kdX3n?tSKG?U^&z!g@SuykUE#9E_B^g0&VGK5xwq5X1u`$)W z`Xj5RV~?4X3_t%$=F^W?9p2`_p?Fe3*W&7|DQzNN|9*vKR%;0Hp7q()7+_(f=6mqM z#FaN^E)-Z)kt)(A+vnk^X(cSf=gX4*%{y56dFt)*eSJsQb8ecbU|=ciHtF)hi4Oui zr0O~ST8{U79A4;AQ6j`5GH=RKV{1dkCa0H+A8cn&S32l?@1Vk|fX2Czi(0uN?_6@> zXq!04h*y2ml$q<kG-fnxEznRp*wfZzyl~>pLWx=fj+g@}O2G>@zg(G-VI;+ubo|1V zCmdb&HkMkx=UbMi9SU^Fn|LTt)5y%!+D^ySX(4C*%L6$UT&LI;`noM^e3f!VQ&x)k z?m4%VX>7~e4pup}FTV63C&cQALHpr}FF!sItPEISBQ=kwZ}Ee}7f(37`S{?B#s+Cl zd0y9=OJM@%FH{%^aq=_%`EusUmn%LZBC;Pn49ZMwOt?Q7d~bf}QBh#C#H*yN%F4u8 z#6?<~SDt6%w)&3&A~{JZS!qg2+DbBWCLU`t77m{5u5u+i!^Wg*(nrtLi+Plr!en{< z8ARu#rPzqvnt$chk1JQ|GL?47KasYQkYlqnPzf*zYYMy>$Iq(F{iWCI8-o*vx|ON5 zRof%kc}z-^g99^DvTABx37lcuVrXrAIOEX!#7KdO7hG;w8`rm<=HgYB;^}vvaZ+tZ z_lY-~CN^L4&@kyc#WKP9Kzhj;=0$w{ryq5=q%T{*FSptG;?0=?T;eww>=qw%oZuHS zjmyZ|RC*?ltJ1!W86~@x?)r6Mq4Nf*WjC`v@cR0O%wHdCde38P&fec4uh;(b{^NJ_ zXWPm@_KznCF}t;;9lCt6qh4P~?z`{Vp0MxhZU(%xu9ttQ5}YziM$uTs$L*v<rx542 zMT$3;t5{_J_T&{=AGEr0n`6UNhF2Ufna>mosZ36hh%%cHxk>(>(i4q6r3c>|a60na zwJ&%oV6)gEUTOA1Tc*@DnG^w`NaiVOH%~}69%9+zwc&DJLzPI?oFm6yD9^1IIN&O> zCeqC4(nN{WBe$HcF)eYaYE*CWUAlKd6MNJ)!#5mT{0(nNNpN;seTw=a%OWS3Z+Lv= zAH8SWT6@(lPY?^p^z_*J%tqk!`IG*yJhk`arf=#tn&J5<EKQ`%Y|5J{he}zpHZwHd zS+%%Ayl0Y(bfId6v*fu0!m3t`=OrKT)ob?sVZHUOHmQgEtKQt)mcVImHRjAv{bbK% z>wHGaZH8%UqFBb}!#-shPbYV=w$5ysyv>;Vf^e7X%5CeT{*<W+%X}3$Q8eLf=(0@{ z-kot>)7r&)O?RVVYTku+!OtK1oG}W$JT=F4O=_5I>YsLrbvla`&4Q;K)=4<Ahu`Sz zV~I`mDHoicl$!Bw)z~~s;{vCeLEDVKy((+u(+y8ONS~2=Zo^ld{yT@#BvVU{&v@Hw zd~!j{g;^>^47U#D$UF(yX7Z#wYNmGIyOg*jpUCZ-Ie(t|!_Ra#@#y!K6NzTG6dYV7 z!-~!%sx8hu_I4uc96wDvzL$#gR~>!4M@ioLo5k#>D;CwqUilh$%seY`b&{<!kJh28 zc9CBit2NagN~*2aJhr+0E6dbvie|+%lb_a2IBU<dr`LEFcW#N8!Sb6nZ6e$*Stl+# zUR!@iF)!q!uyW2H&SS|%t}Qob2pwRL)Iax@BRcw16|bSxV$Ru)apBrx=F4tOc(r<B zKWD1mDidWM`y+c!)L+_a#rN2Equm$N-=e>H4d1nkR(tfRtk2l0x}u`^s=7?lB#ZyQ z!ooMXODay8pb>Re<MW(NU-_K7Z6<qe(^65}U1)aOxhv<%*2a6KYN_*zYAYIDU1q#( zKNx*x!^9_dy}n8Wrd2-9F}ZqL?`mvHW7%XI_M3N{e7s+snzB+R=u2n)6`QWmcF}0B zEWK0DR34wq-|TZ}bC2-VqR?CykrfINOLMF*vTj?HRo1n3j%Qor>g1k}hP?k4O4adg zl%M}-`Q+;6{-3ir8-6VL&~2N~ax19z{XW%w+kgF!+7tY-bLUEx|N5?;-j+QKa$cpg zDjDPtOSC^1`8@Zk!7Zr;aXXLb>3Q<`{|n#n{I9dF{>zR&9#6wpuO=n!$+k*+H*HD8 z(E}X+(mPK6|EqUw=dO9)-p?(+7fas!aXX{+{@?T#F5mCZ^fH7k%zx$|yPB;IUi&O= zX#rdNY-ng~ZV6laJY8U;ob>b$g*FO|mXjae6rCP#WXoH>^`wgLEtRE_v(#cQnPqx< zM{`MPutu?*^1JBeSavhiMMSf!VL=l&Q{IENM{bc<nCzM!t<&h=(V!6G8nU5@YsZq4 zHRtE5qz2lb|NQH3-TnHy_2*;W85K|8S^UoOeet=unG8$}Coiz*T;Y{@q%UWl8Y#Y~ zNFw=h=;dQ){@8tbRG-SQL`Y%lqg9sIt>*8j$`p0D6~iz!@6egf%WP*WADA;74`N9D zdt{}#&y7z{-uE+9^fOM0R_m2Fez&_?UYlLwZr|gneuubkvHEE8$sYN<#`E&JxvS%= z(j?~fvuv<2EIk&Q9L87k#j;`NjeDEwZq3+feD>zErwrxxEpO*uKJFu3Z?E<JOMp#1 z>-+lOXC$x3aOYfdXkh<!>DSE7$It&M`l}pKmmt(|lS5{^_`lcAI~LU3{ZjZiQ*Z14 zcE22(GA1u~1NM(SC!Wu_$+Y0bNyZhP{(Ba&@m{iI&TA{(ASc&){2^zBklBIY4<<P+ z=?@|+_~x~XCkUGyPP@T%`+;i(XIy=o*bP4G1ob^k|C_=S#ox4De^7dZIsZ`f2eUoQ z?+;afu&ZH^KWO*EyoP7~f#n}0Yxvk7D99Wt{Ug+OATXnK{e$cuY<&l}7s%{ue*ci& zg45nfdQQ{j55|9(_8*e8;C}wV{D<tn2K$AwN&>8%0*e&97O9?eQDB?ocFB{iP{5wE zeuC1anNucm1$nw$n*2p+uV;LaGutG`6b?x@w+W{`nI(OXP5781HPdySdhto$Cuy4+ z?zo0c*nQGAMYeLv9*0>c*`F9#di_%ndYlr|)Bp0!6eHUi6Mbwy+idQvoLt#mIlHpG za{A9XKbtI%$fWH{=`*x96!MN}ON|s=on{<qZe2e?_F&w>zO?iW*EfE?G5hAxH$r8S z)$G;$)%v?<#U8dhWp^?!VfM|lZ^FL0mWl74T|2k7xps1G_umP&$N!yci|l09>-2uc zR#bXNG=|xH*6j1T&%z4Ii@z7G-f{I#)VsuYf$s|6Rpx1bH`+e=_k`bbtWVS)|9fEW z)4Iq10$zyrYt_pI=LF@1zX{y4up+w9sjw}*Qg{9l_0LxKj?Dg9a_^jVh4}oFyMOB3 zJ6!!U$FBYS)6W(1^UsTaXx%fP|AT9d;r*HXpHyo!@3-ndKK+v`?n(6r+n-wd#N*F? zfA;%B?N6zF)8x<aKWzVW_{YRQQ~zB36H+H-KX?AY^H0)0ZvL75BfI|R>mQbXzW#~% z$5tm-uUs!|KY#zs_ygu2xqn9gi2mvNC-+ZM9q0Zj`{%|V(|`W{!TTrgABBI={<-^S z^^fYGzkh`O`THlUj(7jG`iA-m^&Ryy>RaNEuYWH8RQ|F2^Z5_vKQaH{|Iz=m^w0Dk z=|7+Uc>YuThi{GX{+ag=<v-p2QU6oD{zv`Kx_`>**!NGaZ~ZU+Uu%E&{j>Xz?LYVa z;r$2qpWJ_R|JnVA_n+Q>eE+%qgYTc@Kgoam{iFV~{O8|4{eSrX%>R*GBmG~vzU%)~ z`{Vx){y*9Nv&`<4_bIEV3QrTB3Oo&XYVfq+DaTWf)V)PhJ{3I`J;nBP>ZyyT+@4B2 zjd&V*s=n~l$5WiAI!}3?I(bU-)at3hQ!g7WONp7g@%X+2b+c=y{&oC){#*RpdW$oC zJnmZ;?@w-7e6Mil;)90wH=h02mc0M*gvV1J_b9)*V%_UE`SKf|;;6Z1>AQ>%XO>&d z@mqd+=F2Zu%;(OXTd?_1<jXhj-aOrNY3G5;`JWA+KR%~EM|w`Zzoog={6f3eHRpET z{JF^cp;zJ3T}H8S;R~}@y!N`Tb^Y>8AGP@_&zq!38K0eb%_n-9?d6FxXTLoCX7<e) zmTJX&W*2hjO=q|1Q9r3%;Um|*e6srK$?rL<v}}WIedoE(TRP9$=6lt(YPqjAuPe`O zKDznv=dS0x=d0&^x0SE3`y^BUMdo{0m219#{^IXi?^)hoy(ih4nW&b-Z++-oLEa9N z7|C~X?*!k8%1OwH$ce4vH*Y!Ka=cx=eR*qo>w50{0`uhKB=(usL|1tJ`1aw`hq(_! zA8vive)#pF{`UDi`5gA5_ay4n{?t?y|JeMY@q_ro!w>ZjyC05k-OpJs{!dYcv)=pd ztFqYL8~5(m8~*#iw_o2jz74*WzAgUxzD0lEefxdOe2e|ve?Gs9-=2Lte_Q>vx&?nv zdngEX>Gb{)%Ix2@_-&wP)^rug+|WXv(nb3gN&LF;zhhzaKjpT4g`92gdXr!L<2Lxx z{a?`8|AfS^%k~Kw7JUmHBn}CSdMa5R2~gfRq2BL^-yEYhvB?UW>am{YmzqN+W?f=8 z+%oOT#Dggsl74QJv`<W3GO<Th_(X}3wBZ*vBYDFuoQ5T;NiX)M*jD!BD9t_@_enKV zwce;fV%Etg#*WK+Ryy;@9^G@mq&(q8^_fPCHo3&Q6u*rM$r|kvs~maGCcVBfF^Bo~ zi8$@#7fSU<E-dX>SgzQ1uU%r-v|1U%FPcX#=)N)grh4SU^&7TEZTrr?ORi7;pKx2y znKNkxpJ9nW(u=7v%H_t}r$nE;d-(40yXV(FlzSleQ10=(2XPO!73$v6zGL@};XCVh z+wvys<A2vN9KGAIuwQ$YsI{Q;{g5}obDk|^cK-Tb++a(*jB|ba=dU%7|LYrmF+Or3 zKb6P!?EHuI-N_kG{;RezCA|o-zA^hv_uJKPU%%ad<GjUz#6k<%TG`S<9@)1UMSGr9 zoc=iTvG;NPzT$H#M=pp+I_ny>mF;42?iO@Dt$*Oc)N@~r+Uz<dewD~L&o9s0$>H3- zL$7@8pMD7|zheQ<?GrL$>)G4ZO)>m3bN|5$%pD6wWhJccS-Tz!5IQ%(@QUa;?&*qc zT@P0kyf28YD5$8Y2>Eg9!;KFuAEtcx^5M;gIUn|XIQuaAQ1_wk!`_EaA1ZHo&vjqE zPT`M7MePqxN$2@)Jhf(joGR*neEx9ogW{13$`7x7xc)Ht;rqjHA7<?KI(A{vxB7tJ z4c{id4OeRO%ih22ub!l{{Hp^O%2Rp%G8t|$>RWg&BUr|{^Go}e-6dgGYPHI>y0NT1 zUrcwq|B`fhxuQg7{U0sYjsLV>8t_c|<{j@`{!$_CuSAw2x7Wt&nlG4CBYwI45}b0t zQ+<j1lJ85}3+J>i=@2<;!<BhStMlI51tsS7)3$pj%6#PWXi9l0nK^Sy$S&J??<QPU zm3{fXXqUyjchk(0c6sdb&6->{sqDbtjPCiZQ!kyr@lHLWtvF6cw!!t1^(A2gp;=4( zAEdoZ&YZi2|CxuplW2_cUR_g<{6i+0{65p<rsPfh$C|uEe4*nj&Ake~Ef2YDtJgcJ z&lEX%W_LZ8?&mJ2vtkAH1@&I-JB?Qf-dR5*Y;~jcfj!4-*ZrCB+eFJn_s+i+^L|@+ zEy_`mVSUH^&Q~>R(;YFR_S-(o3eKj8ZTFN6nimjO@OlUP&Z}=<FAjHacU|tH?yl~7 z%|+eqUAJFHU%yUgU-y~*IMJPkR%*W-w-_4PR;8vyZE1X6f6{*4n^kX)Pj#=2aWv_- zl{}l;?^b+6|EBVr=@aiiRQslICfUAy=bO46)Bc+KB;If5?AVj<tovInWK;Ez#E#?E zH@S{(&Z+!8{cU?>e^TV{ec!%|db!U37UuUzDJH}#^M6F(rGJ6H+b3R}c<jWC6E{wT zPUM`}IZ<=sYURtyo0YEDyRGX#(|t!`r>2p8QE^IQN??j-O5~GsCr+K%`}V9!?;ZI_ z=}L`FdY>YmoIKHXBKWPeQuOWZ+xDOO+s(aweQthMyztK`sT+0mzl$%*UYz^(yIZ+i zeCI#yUs)yLU%tMWeX)Ge`|b8pcct%&-<AKXQ)N(PQ6+MIf0tZ$owTjoU%mQYwO`s_ zbiO$GqW|Ky7ycK6FJ8VlfAM~o`lE$)z4JQ%iTyQ}n&^<E8W-g4IcZ;QW6A`dNuisz z>QBlEYI`!}&ZO;s#WdYNdA0^k6q&NiLo~?TbIPhE_kwy$W||lTDez8e^E$j_V$fa_ zuU#>_m@1!oWp25m(VID6r+4Bpug6O{FV&}Hc9m>3*}B)*t-r){`st?&WhdWScWm00 zqbldlWd>fBv=E+t?B))hb0>FN>Q6uWG~ss5x$~mMsxgw+r@lV-^+8o(?T)B*_OFgA z-YLjqG2ird;WqxdEQ^ny&3V=R=2=wE`T6Vl<AS7<owxn&R3$y^WL3|zGyH$VS3S?B z@Nnl&_4;-8g?Br%{m<ALzJ7gJeeK%*n%cYJl56?5=lyxL_uAF9(tc{&`*LINTkZS0 z?OJGjY~7>&Yp!eSYrdAe{;K|c%f6aV^YZs+%Kizxx;=jDx<A{#zP^%gmnXXK@24lF zYfnc#uP?oOQPVv?<L<}a^<UR5_LtxL|HNN+IqOY-PFzxM@2k(T*d*wEU9MEl*V^dy zi5JTMl-Ig5xgSxU+n*x)u6D<-f~OBZ9bVdQEzc)&&UQ|v#orAt4J^N0UO2gZpZ%A& z3)l14mc1~UcF+FHwS}?makgJRiQCKGs(EwLIbW{o(}iWuSKF)PUKMJ*4tS<`UGcYJ z(UBz;q1Im2JBym_R@FrOte^17@hS7Et*1;+?R_<W%KKI4SN5;)Utu4XcRgm=KhN5j zpEmR62F?%rzsPP`O~~KwqPb}e%a*6DNt=_lENxm^TiUW!?OIEAddpt?a{Wriua)iz zdsn<%E4gOYBAxJgp}(furS=6i|2rJ{MXT<?{%6rYl~>r`ck%tjm33WqMQXg$-};!o zs$Y&<_;zWZ(|qUiZjwm^W6YG<QlCHm|Ni6t<NE&pw*S8Ws4o+cvuc=Pz{60S$;>b< z_=DHfsKvfs*Iu$V8y-#Z^W7Yg`*N<)8@}b*m*+nHnD+e1v!9>1x&AgTdUWpKq)U3K zPeo(3cbD>a+E#^qUG?tn@_gUi{ilENOGKDw)PI<;@NiqdM5O(zPuf!JWbRt99g8!~ z`_s}nS<QcE)vGNpjnmG}sy(~)`q`az?|47w?aBOimV1`irhffhxsU!H7r(#t&%<7S zj?)jWRr~+1dH!nYlMgH1=l%RT-MHWO`?=`z{d=>X?)ZLe|KE4*@9Q^w-_7~|U&eiI z;rd;_C-;B%|5g9+$=hJHc-!1pU%ncrot;yAw)FbBo&SFC{G7L=@Sm@~{jLYkmbI$a z-Qhb>+x}6`<M^F(eXQ2Ew!1(6`1-}!qP><<j*n{kL~cs=Z%k%-qk6N#@9^IbJj=dH zOg|vBX-34;)!z@f`8+?Uw1a=;%68TRP4jzNo-2s2muHdZX}>D*??An=@}AbO)fX4N z<NTet;*K5r`nAVCo1dsrYc71i_4cXFhWQ?MJd;x9w^*hy{+ue?`*{5^!9{2ER<f}j z&iyb!E53?xkHR679h~pl+B@f^cwJuFe85@j-tMTXpepub32)Of6whxiy;GAZ`%Q-F z@<X{BZd^Ov-rYT6eldEf<cm_3gY|DWG-h;mALP{dv_$X%=P3o2@B_a$E?4){6TjQ1 zzx1rdKK`l)9^4<+l^=e+fxk{|?}@r|s~a>X%3S(=N&LmelH>bUb96f@%v@q#In6WK zKIuOTYs3QnZ~K^z9d?<)xcQ+b&-sTs{u32675C1F^I_gRCGzN-#P?616`MakrPDB% zrJlq6Q-{Z|iHc7mKN<d%SXs(!ZO>&PuWpww8ge-GLc{spOyRF&E3dIDI&qv!V4CUp zY%=@Fs!h{tj_x_g_w-kh`o&i<EME$HJ@my>oXuqtHP*f7-XOXy`ThD2ePMH|(}fN_ z-`%>iXXatHn^xb7zNwX|{#N<T88uDcrTOCg3&mCSAyuxwe5_QqKCECn(ZckieTrPy zze~M4ipmcsTfEBtVEM=C&Jy*RetC-DCmuiX`3dVMuAe<FGgF>LZkw`qdTpojoD*vw z-RqKC)bAd>X!(+?EwgWb{CVuq+6^K*-xl6zklD`bZteAJ!s!zVMqMV4I=WB3eWJOk z{m+SlGooj@*G!*VfAm~(eoFYpbW48o{@)>n>bC^;n(vC`^0@w>XS$bq!Mdsqi{?jm z8}AiTQ%*nAVrd}$yhixaAF(+<bBlHe&wo(4=lSUk!Y?mz*&m8rq;}H9-N=K%S@LC{ zzv-kH?{^B>CxxG6f0F&#t7suCAAE`@LG4kM-KjkX-=yzLYTtBz<NEpyzi<AH(TaL; zcmntQM{xlShYpkn*9zF(*r&Nk?UTcl&S!4YDody6l}`HQF?)&ai^u<3CcSQ{d2*Uj zBiQ_)*AuB-w}03bJ+O;;o&V7KiDK)YcPiZ#p7lknksVXwdbZSc*z_eT7oAhP)bvo4 zXZOk3De^)8i!XWYQ%!6-bGky(zW&?~t~91%<<BOc_0#x;Q@7?=y>_b#+w^$ivd=eF z->}uR_1~O-^Zo^8Pe=VF+UE0iw^vWA?zKMADq1V@SM>U4wtswet}>Q-RmN_sW-9cZ zpHMaBzsiyy-DjeG7`=|%`_KKb?345!=c+^7RhnYztlL^Y*q*w`v8+qR-LI;rMDct5 z1b4}4lKr{mm*>WPv-~7ktbM2PQap#cq3RixAdhKAa|L+cr)@iAenPT3Fs?4`S3;%! zx-G2VHdUYW`7!s8)4P`7A3D7~l4_Is7xsWwd23DP&f78VjVs?_XT>6yLd!>QUAp$( z(R#+Rxob|7-5IOObLA5ZH_UsYwEwN@^uub;>NUbo{pH@d#oTKpZ!~{eMG^C-XU;tA z{)YLA@AKR&r5l1aN-Zt7J>|(ir<5;-J2XW=;FEM<bK{-9J9VmF&)!<hPk$IGl(@KJ z{k=<kmUZV@CY%pHC^hF^*@>p~CA%Ml8i_rvkiK}p`GaW8v3U>AtT6N|mh8&v?Cfi0 zzNApWFIexL(C-j$;WAA*?@Oz`hn9_o@6@Ifz12&r<~&!L!E#u{R;0}3vEiAJ3g4Y_ zwhO)Xb*Oh$b`^FV?5gY1aus)-s1*J%C_=QVwaxly?a8-~<DSlYkmq<)_sN+Up=y?o z#m2j*#hyEt@O!i3Hi1f`=BG34XUv}=KjZKj#x(QI6C)k!XBAFsUsAqgYmn@(N3lz$ zWSCT$?Na~c^yT1-RWD*ME_-n%Bl$`1H~rh+x98{8Pny#$<M5}dcaJ#lV!j=Gd%v7s zQmm1$_A+i|^q1mIO!F@?3r<<jFA)CzXlW%=rnQiuU&=2b#zh5Uw<b8vPyAa}AyxUN zDx>A$p8$!D*Kb`<?lG-D*ZWv7d;TF~vFoQgq!e02_VZkS!j&MfbaUY4eT?Tl`!^jf z=sCM-gU!(zmpK=YD@q5ZS-o0b_ks5%pSnR#bM8d;4|)Ed{U63||1AAb=f8pUF~RMJ zi<U(tKKOIuvtSzA&fr}(RhCJ&dN<7dE!M`^F}+vDu;#`E#b)-ayfOjN!u7B2t=*LE zS{XTgQo{2`iyHQCP`E#R`s~SXzozUoj`eG|T^zjYY?i0D>Fl5$HplheewVVYXsND$ z5YgsPw{>^<;>|a2-#AlwxAwQ#h2rlLdkmg6ard6}+jHgjBeS#T+;-0V{AilewmAi! z-iFtL-eh>Pq^pLAJ+WSW_uR9+d+(eRGpf(J;GuK>=IPk?IeC*$|9xuoe5(JXk4K&! zk~^1mdP&^5v`a76<h`>^zqIMqu{eu+X=|6AiZzW3p1?obG)gCH<CQtj=Ixxhq*T4A z(R1~>8)q7{B-5|v6n|fpw{2JTMNN~<^IjP~p7olocg?%0?~1O9KQW)YYW1Du*$3}# zj(k6Pw!_r=n%QalRz+&wKV~`8j!&mN@7(>pZ~DX-kD2|NbZqDG-knJ)#@5T`-8=l? z@b7O~ezVKZ6#WxnHxKKLDN4+>+P&tM(M?bP>AKO6a^mbWp0sY&n|1B_V~HEnKYq!J zxh9=o%f58c(SG5DmzVboRj>H?E~{#3Vb|u!x9?ug+mhp@tk+SW8)?k5@8H&>X~NsR z*Cwnk)04Kk^frrc>F(FZzr5OVljStq{S8;Otk#NO7kQE|#$%Y3ckSil)+JB4xgT4< zdNS$GoN2#!-zlgsG%mWXAZ=p3zUYyU+pdp}r!tK8@l1;iZ9Ds6h5C)vl`?vVpQM$B zJ~mp|6u12EY*D#`Z)3{D3U1cl&9#rKN%i@|^<FSwQvDJU$H__u6C&nonE$RhTUj|p ze@f_%2^PoSeX8_y{5MA|ZGH8!2S<2LvX?4vjIM2!&wN*OF*Np`(xC{O%seR*qq27` z8(&5{eEI!q_Dr{^&DMd*a&FnPgiK}cO5Z)P?{-T2u{&!%mHoNQy;Ae)WUX1Auj>B? z*xH5N&+piMe?g$~+^eUh9&dST{$<hTh}uZ^*gaR~1es3qO@E}SHg{_FMB()>GJO2q z)J%)z{v1C&$7Y@DN~f?X>jl!^r!Cx=ue0|0j+p<c%f()ryj4wqzWeC%n=ub}|Jd`| z^|`pOex_u%@UuNW`xh>rrh7TY<}2gAXDa@iZ`C))T%7YJ^V-R$BIl=t+%=fLIr91o zM}~{#OH33GZJ0QJ$?jKkmFJ#y{wxrwrMvv^a_!l#1MbY;D)%IOme!MvUy5ew@MnE9 zSzf8*vLa`_&iiNEx6E61)<mwVdheW7HfNib-&B|$Y#Y6X&5F6XCO_HTOZdlWo);`F zr~ccp@BO2H_HupB*9eCdAzPhm^o;CGCQE#L?Pj*Df93K??*BDy4!fCsHmZyjaeMsb z(#h=tPwF=&wlBJ4#{cD^{gg|;S`AN@9NiUL@PK2@bPm&4?oW3kn07w-vg@OK+(Mt1 zIWC4@bhN$8cfX2OSvhghDj$Yr7auRVdRl7Zi#)kW?%8|Km9#Xw<=5MmC2!2l4^cfm z?Q5BJwSIPt*)rEGsn=y(?^18y3^6OcdFIuzmI>QDtfwtE|Gsar+|MGRl@1I^3!bN$ zM_OfU_L#;eX<D?K;X#a5$rCY?7ptYJuLYMSu4?Ps6A<*IeU1JCso9KKSA9b+<ZqpF zA#}^<Q<qn$ir&c-GuiXV<g}4l{nkm=z6VylDqnom+`%IFrhSm5gGKnw_>K^#6-Ggx z$$<;H52k+D!LzPYW{dUByKj|#^(7V*?Y<ZlVCcWmdZ)i*>%B04!{Fr>3{qQX2_%?E zZ*^_!ebs-$ZJEc`i~VLC%wdmBZ+FT+nQi*TUf8nuozD}Ad!7p#?{)2nkS$EF+FXBL zJjCUy^TSO`twmF0bgeFLJW(s<`}Njaxgw)!!Nv1xRAf^lw^VI?AT;^P?ufMw5??s; zeQ!0M^GJNN?(c0Wg)3nqA7)g@>{W@lwbNp1D*N}h)-#TEiZZi>BushPe$S%dZN|rE zPIjB4_S{l`^;U8H`tJNi@6+yc-QR6@@2#@Gbp5^4_8c#EbIh0Ii{QVp@AU7pt0WWW zp71gA*%0Ua?Ah6q@ku+5?mAH({qNSE-=8Oowxz7L@}C%=_998tlYg1k&h`t}4dzH@ zdYs$*;0IfkaBz2t%ax_&TwF6}NMt1CPAuzAjqup~%qY%z-qqyKPpUq9wHUn?atxk% z-E#iP(^qCY)lYbSTJ@)$yz(s1ByCTFHwkhHaw&3EH{+D6j+Pis<xBGsyP7m<#+o-b zBAeu#*2w-UH@%d%A@NI+&+!>uhMd)^s-K_xuKTfJ5##Zz-6zjf-qs16oU^`h#>;7W zn<LNrAD*87!O(}hc<Ty59<@0OuTG!s?LXISHD|Qcr?rmU$!AX2vn1E4z2H=wqE~k& zdPc{J(DYp~Qghl%*Dq{cDSma%`zZOxpE-Aa@nJSQI4xB=_i>K(%=s6~lV<#yUh9<q zu(VM$YR3HSVrz6Z|CqpdJHupJ^k3d-+qSWY&zt!)dqs|O>;~CSOYcUr7Hi0_+$#EB z@A=<78*PrOJdd96#IEWJ_eQ(=%8hoFA7M!RE2nIB^dgNfx-<VDo8-iO_CP@1#MM(e z=AAlq>a30EhunR8QWQD%RZZcKKdiH}as9%DjA^DnI=nk&a@_LDPQIDr_9$nq!qH6e znD<^=c&yb{Y3r@yZOvM2f32-5&aFysnR<$P<Yn`<8+O;2hD7iAagw)wNm*TGqGM%c zVj}C|w4^Y<Tf9xHr^IP#sBeAp@5PiG>y~QNp4ENIw=jH1e976jPBK$Cmmf+o(yNYn zH$~5U((AL=)6T!$boW<K+qL;Sg>#wY%U-LgEl-)gVb=9XHQU?E*>>er-CNK7lI@k- z>$DeQFDmZ(Et9JVFxsB?^~R~oaYySnD{VND>2T}sq<a!2EFKG5YxZx=`NbA<u9$b< zDYJ#V4_E)6d1@OQqxhEIwqz!+>iuc8cX^Z2>Mo>ce-Zy7dGF23H(Q@Ze>x!IbDDXz zy)A!Gckri<^X?jjpT+c4c<nM2?s5j1HwSDu@hwTi<<q6JV!>I@AL%WPeUi1=^Q87u zwt63PA(ON~mrARp2ilHko!A;RdCIdp)!FMS63#u}oyM=jW3~BG(eCG^*)cyZcz-{0 zb3@mPcdP3sL}zU-U0=J<Y|1pTQ{LJdYj2lb&i%gkslhah;9bw3vQ|Bx@@=)sn_Ev` zcmDhrGxOag@eW_XBg>M$HH#lqije3&llb%CBe9pir`KzFb?JzzM$~xLTv){~+Bu^~ zqi*>R2gB7Km!r;Rz6?7zEp6MgrIl;u7%DsqVQExjG`!rb>ch0?Y^SQv7YChR4GD!& zE~o9fi&)oi=;%kq?cuw|dQEJtZXIJBhfVmGn2&llL^HO|*~am>dzr}nHr{u-RSSN6 zT$J8ruWc2v=BG;i+YL`AeC=Me_$Zf0PT^~Pr_LjG+b>Vuk>wT=*ew;P{%Ysv-}iRw zHEGDUs@N9a<J?nlf<=P!7x#L#Kc3T#3qy0)Z)EHGB{Ff5*visuzrqb2my99=Pdhss zr1N#o)d`z?G|9L5(Y~WgZgigQa?J_WNor2Iwcy62Hr`8XTpJ&m2-OR;Pg#yV^9 zoF$^7tG|e`ubb>TRm_L?R#VtAj@^HivOM=`sar>{4O>~j8@=6R+KHPJBErN^R~_Hv zWqJG7W-X86joy)!6E@G#d93q2a$96y<hh6`YTnaQSENp?dB}TOT`Y8(YKM3Rch#yb z52Aj(OrAN($wd6BTkeVX{68h@>$#0%Oe|-|{Ep$-!7}}_XhET#;r1h~PHIa3EHt^2 z&6SeGouZ>z_uklSwL<*!r)KRhM;3m6ExC8==iSmtTyhh+bh%nqc|DYQ6qdS#Q9q*h z>A#yCF&mk6IG@(9Gb(v@#?X1^{(}*5c{=mo9<F!Mo2IY1#5etDqETGW!zKD{6K>ZZ zZ0eu1#@Bt{QI;nyN;*o<*06abEbF;&qiFT+at_WLDz9Q}ofrj$7jTLy28K^)n{L23 z>xiCW!Q!3;MN2z%GODuIXeoDwsb19b>C%l-o@T&#!6k2^&(uvTmY)^cQGYV9KX{I= z@ZswYJmL#0)14I;M$VeG<mC0KZI8Mg?jG3HS-(B3?Mr;N^WEwxWt>;*TrYKeoP8@G z(zE|v#oy_(0#+=$e^NI`;Zp(674B0veOx2unyOMvja#RPKAWm}t3O2K$g3Hvm6j*p zu#+%M(@W}^T_PHrVR7S#$wj58K!ueNSt~y-u>HSJOVL+z)5J#I8-3#87ZwM%U%7Uy zmn$n~N#c?ErwrLXlN@^kn**hd%@k&Om1kXwU;6ux?YZ~ts;}OBi!zt!xe{j(G)da{ zaxRB}*6dK9ODD^&oL+fS@%4A7D)n7<o)sG>cZ6Hj`tw-NeE8!DlPHTygTpKi?Flne zRB!rzTgdAfE*Guz{{E(`pVzG^)renwOYodR_G!*rf*GdC3+p#cTBm9B;HY<3_A|5N zJ^syy6vTH4KHHo6Ny;j->bKx7o;l%hD}vv;pVPnfdeg2r&qbRv9+qZ3zV7Y5!}LvX z#^N%^wNaCnD>OPS((u(So!<7zX<tCy_NL5TvrDpCFTaUdd+YH2*MC~<kImN(Wh{BK zMpYwy({+g;rpj2OMxAr2^*bwLn>^ikmrlI@j)!ZO6|ZvEER&vNrdIQL&Zz(Vxl?W9 z0*ef(e36*4)OE`=J(~3VX7{|RIbwGGh0mm!3^RPLJn&}HJ!5cjg~;U+#r8`pc{C!I zZq@k`#G_sFS2?6yIqb{weeSo{1awG+EQ%B0c57wXHOncc;nnS$4#mxB+t1d|lAWB9 zGIQ+>58>@QpTv0dKTor?&o2&iFr30|FXYS<Q_w0PAHZU(x@*SU7A~8$DlbaYwUYIm z%7w0f?rcqYYPDIDx3}Sv-kQb#`%cgMGeKj2{tWYiV^7Pc-zq-s8~Jp)t<t+&@0YzU z`E|_mv-{Mg;{7Y`Mlv_vx#JrwR+p)zRlnwh*Sn~U&&xQ|UQgCuv^eE(R@>6(GQYNq zp@BYs`zK!td{@`X*s9jQMx<M$Cu*%{Qhd<frN8{XE}vCw;513u`@=8E^hx%oU)sL3 zoq7G-cI%~Up6CRw<*!VAm8|G}C8PP%OjhofO4DcRJ<HgmW$}O3PbXGR+23nASBF*m zZZfv4cfa2v)v$T7<9W@mvt*{by<Xs*#k5pm{qhxSf<K-0y0l8g>*qZ-Uysbw?EQR_ zP9{qoR~eg5_!ao-;+5c)L92>lwLE=Iytn>Zx6AVx%YB`htXipQGp=5U-}d;!{Dn1Q z>mnkVKF0fqZFQR9^+Zf}Yp>>&@Vg4PiayWLYrVC!z`~<`os_Wp{Fe%qt7O=v=3Utq zy`w<!3eR3gkv%tWspJRs%|3mt>du5IJ}q7>4_ww-cPDP1;j{hF*(6<OtE|+^vlqPd z<(Z;+AcyJI(ph(956Lp;IZ1L<wrt{%y#D@R<NQf;UVMDdw*F=DE;E&DJ5tXjwC6_N z*pm9!_Pfn01D9r3*NgS~-}cJd&Ym8v)BXFaNp5|DWASI-&F}U}f2=S&^{Z$~sr($F z-|{AJ%xmYB8vJH|TzL888u?9!mu-k%Y_#&O&&t9*iHi#NR66-tbY52zOzz!SU$*z7 z_vM3YCNGoUG{r2tNJ!&{NOo0L(53}qmprSu3v*AmRPNjnP@g9pv(u}TyMCqURi62; zPF?xL{HA0kOZG{h>eX{sZhpVnxGdVSOXr;NUY0$6`3I~opRQc{Q~sVv_}{;Qvled- zT+@H_&4&|)jJhA$v`Qobe_T4X@<E`Wct}!FmWQ*jsqdwii<CT6N|bk5F8Q)YGR|X@ zwMX?mhVq3!V})3<s`EdjJXcP5mO4YXzO^}TU-jk7)w9@G+jf86WvbIX&${%s*`(5< z8@6v;%2%WX=9YICx>Y@x8U0LeJLlis&%eGZ`x&~uw!Fh)j!5+G#ee<^Oy56qQT*c2 zmm+E3dipq`+HXD-`7|eL|IPO$&tyNzotnJ#yg=c$^p|r(?tMzRcC2agsYNwu2c34! za9XNge{*fq=d8E!;<vV}_;@1T^+MA6i#lOTmj%4^4qO%RYtq)tl`Hv7MRje@IOraI zqqeq1aa#?4tmJHG35_1HG!Em|#fLN<g+g|-C`HtoYCjQOG^thTnt-s`!cESnTI8)= ze4Jf%z6J?y-m$sVZTrQ?4LP!Ek!&Ic>;Ew^c6$co&8s)l^zZ&Ob@r12;kD0_eirTW zNn0-Y^mOW>sNz@mPlog4*18-^?a<AO@{HLRq&Go--R#|NE_2@QE&EV@@v+MD%e&Zr zo&5B)uk-rdeodZ-;VVo;pFb0Pd;53C_7xsl`Wky2cD<<je&p-CrcYBDBcC`1UQWs} z+&kxAnbmZk+_$s*zSTdlNL%$X_h0e9hL;Urt^ZYD{(dcf=H@@^kCk11-)Dd4SI|EG z^AhT_)uNZ(SZ1NN<9+fq%dlPZi)|kMyS(abfL27V*R;7SRz#gz&9N%w_2F5PIYDoO z4VQ;TI0nU=+&bDL6nXE9<cgBFE?dlR&J-<6%2yQI$l|hiw$$o~7a@-r7S*>meh}Os z^!3Q(FODWRVnRZ9tyopEGid4@?+dr0XB^Wl*ek{xm-XXRrM>>ykN@7SNmxBCBlq5# z*B94hiuh_S+I?iAk#Vc1<7LwsNnfw{^gc8Sy?9*X^aHN1_R5EiW?5!zQ1%J_yw&$y zz=HTK-C^M;^sFT<H_E8%KF?b`C;y~pM*ZXYDe8_ZdYG9qCx}`p*EU5d>OMJf{K#FU z+D)v*x8^u8ZfZa6x8k>~c<noz@&tp^c2?`3sBPc>rl#iSn|j_2&!^oiUi5ygg}AMU z)9+{hcNfR+|1AA~*2&4&SWZkWP44y){b@PZCRF9?UuGBkO~r4woIZ9|(lY6Y$4$1l zR+YWt^@a<KU+V9g@-p+~&6ly4c5aP3^nx`xeL>iV`#IHt*F&4XX<jROuKPsJQ~c+; zSv!udp1L+b?_;R=gznfo5nu1`*kSv|G%~4le!{dH^&D!dqB9m)PBXPTK9%uUA?w`4 z7{|JO37iWa$E9a(F^R0;UN65q%=mGL)CbmcT2UuB4Lg6;SN5C^d!)?fbnr-~@R{Pt zi<nBkrg6M(@jay1$h?qmb3cpU2DWI9n{yf}pR^=9rAn_;c-r&tc;88nAk8hUX%Dw@ z=x*7nDkCePaVbRU-FY|n<E1M@W%N%}Zz@abd%N>NP}+ow;53_)i;`p`T`yNAXIg!` z8+*8~?Nm|l9`0j)FY5iZUYe$bhfFt^byD9%c0<MH#X9%zhi1MFGiZpLaQ#|a_HUVW zxsrc0qWV{Ho?rgyrj7SsF10j?r3(-5Z~pn`&%MSy+z<I#y8bcU-1z;XRLNugElZQk z%5pY8{9_PsZK=t(KI?mBv-d9JnWLMsc!hep@r6C7&Ym=sVClW;6z&qhTOTrc<}2S< zVWz9Mg*J4@U14SNbv+X3(zWI(v-+{=&i8gM*EZBnb347Sbj4erXrDVPj;Zn*o@Uj| z>3A#fi(_fc^h+kr0n4_3(!VZjc6RThwV}agKGF%CCF^Yig}EYrr~h34!gOa{LR8?2 zZ|%1NCZ;y@?9Mp*<#W|9I}7z)4(~PUmvaX`6X4jHw%~HOk<qP^gIi}zY`$^3CHo@( z^`=(84e8bbEZn(8<!wn*B)Lnol+?Pdp8Z)qQJmZJOmND%dVzw6N(Hj>c~#bBy)ms* zJHnF^k;ZP!^ilY4No-|@YDKkNc;H6i^|Klh-EtI*EhCT4I_npF;7Uf4@3o#l|06Ga z>rd7$>&-I_YjfHxz?jSz&wRBdt^DNuiaJ9lqqFH91%7Ey?M!UHt6YueI()GCqO`KD zURvyv%dH->Pfsut+Yx!?P`qv4ub%q-%xv|JYFqanYw9&sIKAtv!iBRkk=N!rIb?`j z3l`k2CKqt;z{J>F^+l<V`L}$}pQpC0==|(WpZ3*16=YydoZmL@jfCOX74vc)%s*RU zR-b;X?Dx4pdnMmLU)^)1^hQ?k>1}&o80~I8CfO(1$}Pjq6>bqGvaWcIw#_Sxs1=$) zvbxq%Nlsg~Mv3bzUK_k2LBz1}$nuS`+W(KP*&Pue9N+(<)V4(Y+R616JQBSUtd;SB z6MuX<lK6l2w)$TY*0<b!jI@O0*NTX}=`ihG>u_F9>F>Iwo3j7B607d5vlf#Vu)fLt z$*W`2^0P}%78hR6o?`oRQo@DDhS>$Bg{5&m-lE;!DdL)UqbF(I(r)6s-<j<*cjm1r zyNsq9FWWZZ@}h(9N?2rin%6CEUZ-J|rW|+5tg4XV=Eu{Yrd2$xXWZkycln-4)3aTg z_nzD>)LVAzxcBdh!X>%^0Ufd1L%3p7yRSxXTBm)nJof(AjO*9dE#IwWH;H>q%uM@L z3Rgnkh;fyPR)66s%U$)VdFj5t8%k~p=v?JJ`s7nvLU?wlMxN6V{#}2s=YKe{)_B*X zb+>0~geWe*db;d|<*zv9ZGqqG7fsJQRq<4Jde02~**)f8F0IX3FHz24^L6T{e~&D0 zDNZe$aB^y!ZBXXnkXr^*?Gm+W5B;c{UBeyXC(9tY$SG%n?c`6d;w(&eIlNvqyZG3b zRnvE0n9ju8xz<hf=&~<6-p{PNXHXVp6moK|jpw|Qt+vcYZ?u+%&YtFI6ta!y+N7NN z(+Zm!eez!{PAj@|jWf__@%70!TRa7Qja>I`tQPcj`gE>!V|C3vf%^xS2p=f>R3`FF z!@zyptV>Tn>&`fS>zva9^V9DFrF;e1c?zp<3EaLN5LZ(7&t%_6iS|Ex9yzMADu4D` zHue0w;-xqCR==I+Q=Zng+(mEK-N?P&E+RkQmb|Z@_|9xod5B2mr_Y~j@4m|GoOVIi zHLcVBbjI4gI8kfOFCrmFPZ@SBR$bL?t$gfa?HZvZvCAu!;^rQd3zaW5*ktDSCip^c z*XJygZ>BYli3|Vh-?I2vI3w!o^i?;OiBEmm9a0oi^S8BdiHqgd;MN?4^vi*Y(?8sd zTd(lKG;?K$NquOR$>pn`vO`L`lUGHqSIdePx3)<68WVBji8`PC$7pZ;u=64I=dJqJ z7_zyD)?O?#^ZX!o_n=#=Q2c4`FvER5_3JlTPs=a8IjK?KSJG>`Tijxu|5Iz%$<4WN zo$>U68;e5OnKrxK72dnm`Rkpirzc(p$?px#U*EAZt2Sw6KsbNByZuYI7;W2EudW}} zj!%pFao&WzG+x5qv_9?Um0zyE8vX9StV{m)VDkM<`=*|gxE<6tvp?E@S#f-X-Rm#R zpJnS~ii5s42U?ypT6%eM*YYdUTh6Q4uMPK0Q~U7PH2n24iQ`K@sfACv^z6|Vrmv}{ zU)r<gT;P&<lXC7+&@#irab@)@m{!fy3fn5XK4rnl%WjMJ+;j*vkSob|oIP)4czchD zVX)!BJ6%7;&Lk%}y;T%0RowJs?!I$JV^$f>sBO%ze7yGJiMiz-8!A?A`NMZe@7C?~ zGs>sS_Z0o!6n>(+c;BAVhZCjqa-w(rdGcp<+nGB>v5$lO7k)0%vYHaz`sJh31etn) zzk<hSp7F?A^1$bT&xGffP2--aUXNbKymP*I&HU;;4dqL?<LY-^J}t>T%j8x<!@lVY zewV!9_;u;%qct^GS+)Krt#<ddjQY%<zyIH>sW;x3hH>kh`?S+2Cw*<P@f5LrH>S3- zP1c(obW^sV>ztK3x8K2+CEKiarl}X+^1A%|W=?&Wc16A8T{UUmFlLS`5kEBcZCnuJ zZZ78a=y&<Yx4Tb0zH&{x@8lW1_m4s^$+CSByVW9}%F>f>#BeudL+q}T3GZdjoZP&- zc<;=6Hr3mjOUjZbJ^o<naUpchjjSCB=K29oKC<mOnz!!6<8tMP`nPfoo{29j*ZLr` z?Dw6nKYkJO^Xj{=9ygOo@!?gNmc_HMVU69DUjdCB>8&Q33x1oons~0@-(`F8!B6(+ z71=&PjaADkT3J?Fukv}r;<qdC-t+j<I{ptO_u1KMeTvNPe*ScTT_SkBwflP6tGSmC zMaRt$&7HP%<AM!yYFnmNiL)-czh%$<j4H*Qr^}=Nnlfjz+5c#$e{<Z&_05t$)4ZSU zd!v%V>)*5K<CBe3Gg_h=Z>r=NEyz6(`{ABj;lJ};dLO;?>%JfQ`}J>E&$Rl=@`SC| zRa95^u%$QJX9!e(Ie6qLr&Nhqq&I6<YU$3a@1}m9?sHAy<kie*kG2<=0?XUCN184u zTI6wkrBvXWpHsCKZTiX4aL}W^^4tW@PuwT1!WU;R>n@M{toOm`adZT8%j3<`DZzW{ zqor3B#jK9d%KsYAwNBHppx3Y?E+L}v;!e@3YY*5CD&+rAi{RKB!=<X$7$w3s>%_NB zjcSDgGp{n9|HLgTIr0C!{cq2N=*3)3zB4t+e17?g)8BJ0yXvj|qt?H7@ydnOx%Gtx z`){WPFL%4Y|A_2?uW`LUqB~#TZLjpz36%aRwAyfMic>=2gMSBvTW@oH7pYtJ&*gLE z#lo-UuIZD`{p6Ke6ryqU)TKENEBE{7<?q+(E;{bBcHX|#SK3V$sB4vrznFJhy25_P z<|3~@d;iu>6IrYGi&^E<?&#!@jGHQ3?KLMXt2b3mjgSe8J`hnjyR7m-@>|9I?<#(V zi`M^$Oqb$JS-Np9_hgd;Kc_^lyP}fapjq<h7JJ4dm-{i|V(g|LZ8}fYxOS>dJGph~ z(~VJQGT&a?rReBuGyQco`>|Js)2qKP+*^KRQ&?bhsL+Ag#Ww?D1^2U`b=|6K9T9j^ zEz?BzOvuK1tAGqH7Ou!}@uiEa9KWv23X8YhFsm?Ra@NJSoMGKdRj<x3eI0gkdFM;k zgIjhoeTrV)%^H5<=nlKhnVVwO)^e11uRYEn-|BnVXQ5|=rV01%*04tL9Me;C&lqe; z-!#K5F#Ej3gBNe!$h<gHHtl<J?7M{Y?E8({kD{}_1dINhEn4q#!Z`PnTF&h?ZOL{f z+_zG!Ew5~I34bwLe-ERPw)E-V%%{`$*v-rB$X)(;f8?j#I;Yl{37DQ-s5R@$GEY<A zs*5fACg1L=46`XeRvezQ-^x;CLE4r-xBPpLZMF~2=T$wu>ay4NM=4Xz^gLfz@oq|> zFn6ek!S4%8%zam7ekxzTr@r=UOWvQ0Z}+g+T-v+aWY=5e!)e?8=&h5Uxc|I&ckcJ8 zEKmIllGyz2tXZnh`h+iM{iBytuYWIlVwqkOU|#uc##8rK;q6~$9%DGww>;u`yvd() zjPoW<;@!_Hd8yztdu`rYpTd`)PO+qm`%8YFaCl<w0ZxuzesgWU^UR8?-g<c6ntJZ5 zVb|M=x{HfG2kTmz&Au2GUHtXStiqRbOCmyJQZ;p!Y^sny^@#7C^NIH7+af~OiEVN% zsR%mw^lODt#n;Hz(+lQis)nszsbD_+j8B$t(xjA2O2=<=*+v?g-<h3g-rV_4|H@1$ zUt{01%kC}<yPP@M?LhYzr^%j)o5bEIv`lfRcRC$*?8_U5hwAao3-9#*dFcM-wY;TR z*V{d^lSNl1_#|40^>R;Q^yyM!POAQLL}CBlJq7$%ql-R@#k~4iyFH=m-j(+J*K;Ob zz8WcFTXl6^tdZZ<Q!7f6YmVpE_-|f)D(vOylOOnNiu7(eYj3~2>#gkX+_EKCqrUN7 z3Dz<Up1iW&n{%bBkBQanyiIAFKF<lBxLW)2-8Z&gd@uH2|Ez0RZJT&!&i1@7-=qwi z=Un#@pZ#Oz$)r^oV!laT86v!&)Vb##;R&2yvhdO`n~l6rHa(B3Tzbsax3>4!n!8h% zgr=tLdJ(omE^U(UlBpZMY+Zi#`K^;H4zj(xvcp_rR?m?{6}RmAdq<D`ExdVep|)~< z%RI-)%P&>Lea{J2esFAUmC37>S-U={vZuc5b2T_2<~+US-h-SgA@_}oYVUvi{!_;A zvf`D+zq?Kr&J}#=__ny-@7#vErOh2aUrs37?h@^MvT?_~1^Zv0_$&SLed>O(^>LXo znQ2#g<~_9yJ9cncRoL=1hO#O3d=mEN_0KF1*5v;=S93?%#^GK1JO9Y+sMkC1pO!9{ zE}z|h$nLS-XUz=LZL?G@a{nA%)4HtdqT_-WoW5o1YID67oD546%2m~rIQym5dHzMm zWE=C~D=Q|Pe;Q-A{n)vq(HkA&vrHssKiVE-<zT?|>|#Lr8sqiMR{5oJk3UW^URpm- zYT5SZT!$xIi4J;aQ0sCp`JU;%iJux@>VBR*@9sVOjueBHoaa~A?z!&ursv?~S8u(n zs<S=y-xn0gUVN+U9{g=)U(mx7CXYitGVV!QE|j%!&z+SjSM%0#NJTAKzdh;Q!9S^I zB&!0`e7ygBjyjlN@GfEA8-re<`qguv-aKmaF}yzdu7vrum&YCp%g#+&|NBx<@Y#<G zx82O%WFxm~y~(qX$&$(ydv(t^2IiVQT-mu){(REXiwQ<jyqXUCyKOa|Ets5RvMi;t z$S2NtHkZ!ixk)N(7<&@Z_NsXZ2F;iv;+C7G80>N|@BE1i8CPtaL=Ox2zT$hvZD0`J zp(pq%LCwUm-nc4exua+7dMlgQPVtI{IdAy4PrfbKwnn5VAX?VD=7{M3DX(YL>=pVt zan1B6wW5~Mmp-o4*4pwzeEmn`)0NM~ZJA2ldNd7|`)p+WeB^ozC##Zm`AV_aD2=0& zau&q<>~B}wWjiJ4*2ljkjMq|=l=7J*UsTL^>?ButGlSDm%%@)Og8Pc>#BXc5OGJ*C zWt=&&wL*Gkwc&L2wiT&8&p%n7J0NlX?8onM$13vr>Zd04Jl|v@a^$$SNB7*td8WsT zch+{9Ub9oJ>nk=rR=oL**3`?F&))LRZQPOPYFuHKcz4a8j}hTQ%@yTVFX#9@x&Gv1 z_MS<l#*^Pwz1_L#Q^4DGx9S7JejQ-sj>}rL`-~9B)qP>ouY!JkS)CGBVz{|m_xs6s zW^3JxbC=YYXs_&h|M2;=;)!x1w`)6e{S~)OF}|M1-uz{6#tN;A*3PPHSabiC%qq#8 zxNkWhgB0)m?$`|zX8o`F7x;Ji&zSpP?){vvWp`D^$13B`l`kv5cF)mgs(-chZ~d3W zUrv90|N8!!aEn(?s**__VrO+1PWmLaGE(PwjOh*+POWNjqe%1c<ujf{JWe=sWL9G7 z8};}XeJL`9Z}h`!m#8vtUA$F$%j_+?w{WcuQ?LJa<L(@>FTc4JT01mLHGMT-2hR!? z(bRNW*CD!d=L)sctu^wRCoWi*IPJ7ud|;t+y;b|-%o{rrnwu?Fe2}a?(!voJH({cq zKL0rd$uFOZopyQ(oa*#Dv0?Qklc%h=Yj4YbOXB}O@15^M-TS*)-|jNb_}$7K^8JUL z-i;O2UKOs}LvK909r>X#um3~a`@c;p&FAADd=eEa`4%b`@>5ScVqLU~&Np3c52<z1 zsyyF&wPw^Wn62dV!B;b4b+m5Ar4q4&PrUV4T>UEcgDG_Xq$Y>?LXM%08&|m$eA7NC z$u(!~mGC?3k33Yi>N|a9y3oogQ>GPt;tSg^<ag!^8+(z<gIPQ8%A7tK?<d(DbB4=@ zzbNMV8K2pIbW>taa^1GNt#(`Qw!2yD+4~P(zcDZQ_WQ~EOV;(jrPBf<ze@_Gy?S$V zb6VhholkGKf0CaZ5_XCIp0v;;eeo|96V8e4Kd<opy^Q{miw^HYxDVF+`ncL^qkY34 zTW!6CpJu1qTyd#OmbfqWdeYiGFQ!!JO=;PpC*H|0K`%A+Q(1)Lw_ELhcHYh2znXXI z)QJvXu20fic<XLO(PbN*Jzn*!O)?$xdO4fzS9hmfT(sm-j{V<jOXjG09^d)NX3dHB zuVz|U?k-kPliif#(q81hI7ehd&yE$#>$GAP$FF(*<x8sWg_Me8GQX4l=6(y6<f;|k zTVb#EOYN8Dx4$#aT)Drx-e<q;wwL!WeV%hSC4SNF`0v|dAF8+Rih202=l2``8}aq0 zD&+5-vdFtGah<X7RreR$FU?<rzs`P8`B&3oY54B1s=rt_IMnz5Gx$)oYr^$x?@z4x zZcEo~uWPBBVsNO=)aRP-mh;V(yLvYS)(iQ)_|M?HYeG`_WS`iX`?l|!{+FR9D_nYR z*79R3OVunV|8=YHy8py{_1`uDr34Mt6t0=<%j$VdR<cR4NwLpzmv)nOU*2QZYqt7J zmF%QN3miIXi#>(xOBP*@-{d&kMaaHtQsVv(@4Z<9&zJo9chXflw%$-6zNgkgZntpt zKkW~4v%L4qE`MKeM5WR8zxXln8#7qH@i?wm_F5XQp^=fu*PT_}#yNGF-}>e0k`6u# z#6K)ddh1aC)RlGJp_>)9R$H!`H_eSy=8|;!QnW)#B4SgV|Cc~nQ<JU6#vKzjDl9f_ zc0CdC_Y%__>svF{Phejt;Pj+;!vA@RVbO=zbbR$`Ub^<-i~_fNj*~@oPF)iUUFa_u zzR2*of$qO{WxJ&dR)vHf+vbq^cWUE?+0Pc-kF60p|8zU6WJtYWl3vQI)1?vj*7R#n zt`dp3zozYGQM#AB?6;<<kkVgjvrcF<bn)~>epTE%=g9t!V}DL~TP%s&<6wAn--AV} zO`Etj+dg56T;iqq*(r0+m;SI5GhZA&dNAOvpGi^m-=baWvv#e&+T!KCsPga1NnPI- z9DC31wX9YDwC0rUo{M%q`CNZv8mCwM?;A7bX=&)VGxhhpOIsiQVj;t`?#jBY_OHc$ zNbZP{y_sN@o;oE=UoFm*J@cNRo@3<HlrvTLRc|hA&AByc+VQOhi{p$|-1ncv^G!BI zNaBP_;9DQ=C5D;T4!z$t`LuBT)v`A;1TuwREa#tbT5j*vc+Gsrh2?#G`u`TcufOM8 zrnW88CHG%~qH=wDRM*iN-fcC<la=R1&P*-l(S7@D{jQY;i!Y11y7EdL{&li3Z|UK! z$4WjG=ly?pQFdous%u<b>ik^^rZe9ZXL*0-_S$-KnT=7+uf<b;?iAIUYiYh~@h<tl z(mNeJnr9mE=8654&PhM}B|q`ZPCm2Xx2Ja1Gb?>q?ziyEvz2GVcKfhD?NB-Rbw0;N z)3eXsD;(VEttpTtoFa6@?(gLNpE@o7eSAJ`?$0Y0u0rSM{`eHOj3fA&-+y(b2u;CN z9`9qeuTlzEb6Wqx*lzl=Eei2!P9<M^_>?BxJFGwXzfL6MhS&cVC%eDaKELXU)=zdm zIeD|i>}UDwugr;1t(B2orNG6!Ep-0>n`#Vo$tk+GEUTCHFXb0`qQAfAcv1Ds`!Scq zirT|FxSkzkt6<ru6mKZ`fqNSJWcP=np9FKJ)bFjd(rMhffrIaWl+EusZ&bf~9#<4^ zJ9K=5?=Oi<jx9Vbs|znMhrh|pna{U(iT;wyH`3&uB-~|^;Hh7EY5!8;30-D4vV>aG z3k2s+GMlKrAkK<&^Fr${Euj**n_T00xtA(mkZki_zChon^=iTVKh{2PZ`@{|ebVE| zMMneq`5%(^Y>(X+taT+`AnkF)#tS0+7E$gSjvwCdVRmkbb&RW5f?dQ?dqW%Vc?yve zv}?PR<M^6CdbU5ZHGbe#zk-STO2Z_H4mqQZ`vm5xt@mJm8oyyifAKr!$q7w1%VS;| zzchZcn_aHCR>iC6!%z7s&;L#MbM&9hl5>m|qM9?Ae=D$8-^e`jp~U9NDaBAe-y@Eb zJk$y&=bubY(Jh=P-oae;&{%guy>^zd^OD0B;a2}_I{(c(#h${UskG?Jia+(-aV4=; zk7jJy+A(F}#@$;wE1BO%`YYSTmdhOMTbuEQm0MU)^Y%=)Ij0M9Ohfxh<{aFiWU?%Y zU#d{7=uO{iTLCu3<$t7~9nh0d&23`uocOOuXy*J56IZ>Ht*4hZ_skV|nXcA+azUn! z8q?oi?ORr5-~6A}^PO?oWB=^ad$X61>p!yY;M`NPv{21<0qe>W4~*9yHkD=dy!8Ci z^PXuJ7n$s7{`ylzK2AZ^s8?u;cR=ScIq@S*Pwp~ZP?|eiuj}%}`IjeJcL{xQ(UVfR zZ0vYh!Z!caf>awX^+$j9dBrXFPwmrDsebv@Wyx0!-{T+uEe_aMH>qw)o%;TX=_jpj z^go|i|CzDu^rTrT>qVztDv_CZ>P5;NcfM1af9D#=d%cvuz?ogUqwT-j|23??4wp}G z_xgD9y~2Bi`RoPfLXUJ7*Na_TV1H=|zlo5T_hCb`M|)Ijf&}Nk%9P}mn3BTVx3)E> zlC6Wc!rpqt(&A5AJZ!CBSkGyQKel<}9{ud`WVMAob0^e)^Iof=>0$rUz^>jlsQcUc zW6yn${gyK5VHDkPquipeo-5r_;!{9a?Tz>)e+zy8AF;Dtny;Yo*jqnmbCg?4+Dr2% zRnmPE*l$+s6|eYk^OYq3N>$S(Z6}rVlOvq3C9IU6e00jA;&q7)v7EP0vTqQQ68O({ zSa%7NN==dYOD5+B^-)tgYj*TRJg_x5oclrRO{4V#sU4yl6OGO|>AYmSdm?H{F6*Zo z0uoAZ-I(8-t?6!^TC}6!$>+y$YW+KTx6PO5k2XoTD<^S0WTLf)@=2xjlfoZr_Bec- z>?!em@@<243iBtGw*32du6>5p1C@IZlPwspC!StDQ=w9JqlPSR?|RSrORW2Cw>Hh0 zb~ro5{H9NvqBujJS?iStUB~!bZS0x)PyY;>Q4n|e$Y;GDXQT`FWo%shY$nI~<O;rj z4wcfP`|UdKw0w_pT&JY{$o6K%yUCCLyR%m|*r;Y(MAeDT|E|5M<qkvs;onaZKkc*e zkGkCT^vCCkFPCH=->mjYdBeZ=MMd?pA1`QJe&A#^XE}RyVBO1&oP4oU)HA&67x&3& zbx1OvKA?R+Uqn)MzWKp|pEdgDrpo=W`Lwyj@!T?Z^D8lz1LT$~Y9*_v7jB)XA24g( z@vDDCUe4>2DUgoxEDi{Ai0izOb*II~wE4_|xXUNhPq40ExGvgjono~>?NuMOX>Esj z>pN85iu67;;Ml2rEuFV5_k-FV&t(%cS18_h>z&l|>s^(E>oX;Gw+}XAZ3jyhHJW7{ z4y~ABq3H8UZ$ViT*OXwjV=vw3mnpQdP3d3!q&7zXSFX*`;3K}9CdG7qWaQBfWD1*f zRH9ae_2M6|BGqc!TRQz-{gZZ|C@y*{!gErh=0m-;=g}Xr?h&40aV2$jJSv$IwVZ!{ z-apn|a{T_$mUA8%?f=c<7Fp_b?fdLF&pGMO{><(d1uS+4JvIjPa#%}Pb{u2k=?q-K zI=$1v_iHT2^Pc31#yg%xs<h`EpCHU1(xsuUw&P=v=CAzE^%J)JS80{qm~ZpG=wDQO z%fH}1%OB6LSNRdt`Pbia>I;{Ul9*muPR;!${&zmwKP@czaona)?7yM^1>wNf9!0}= z#^NH@nfErX`!B+27cArZ__e&V(yab2)+=t+54nB_T~D_=_0WAqw9kUXOEdjc8ib;~ z!V-PsUHXz%U7S&}X-BgY=d0r@`@R~=EZKL?<jUK^IlB!Wy{g~sX<3ro<70I$(c;zp z_zCUpjnbz3G-MsEIWAaB_H5IBP<-BbK8wJ0zf*xMvNKeF{a-hAQSENF-<R*JUh)2a zZ21y1zOC=XoEqv(b)rv6-3+&ERleV`BZN6{%gi^M_TJ%K+P+S0>y(x4M)L2DY^+L< zXgKfZAy9NuTlW0QmlGQ2)rS;yUPxqD%kisv&cb#^tuiC?7++NT-_+NCgWl{ENfrvL zWnve)_V=sAik@<}C$&xIb|i~veLUp)!?|!FOXlR3D~qNT@U^WjV7tDsmn|Z`(Jat^ zM&s+r%z7V^Gn}G7=}P{!KUP_%P|F~*t)y8ndiRU>j82kmC3CJjzYxFl?`ORQyVdfO z9y>*D%Fk&H6aUJ|Z1HYx#XbJ;G`?%+9JRH@f5)|#>oiQi@a}c1wrjSYt%(SKCzI{2 z)()=c4`d7v>K{3f;c2;3+)(G#2Oj@j6Z1BSzhE;D?z;C-ct+YKnWc&A?<Dog7@d6T z(w-bL@t{SLWmWFX7k?AG>h!+e-E^V4zF3g`+dq+F^EQpW?60RDU!)u|Dg9i(+x)P1 zpQV4*=qIfAx+Ts0cBYH_(ZZ)Py3cxV@K+04XC^lMx+*a#;P$)pPoApt>bsQHP9}0y zTK@ZT(;`gorRS%PJ`sUw8V?K}CG-91+PvI<X8*K$%c@WB75=t0Gn9Uc3YO21VKaY~ zELi`qchhIaQy)b=UcURZUM+0V9skyuGxj&wE=ziy_U60Jt(vkeN2(VcU3WC_v%!N# zBbFDfe{}vfKIDGs{l@(D|1ITz4+e%*{ww{iV%#Vx#MG8xa(QwCBlAl`4Q^)z<DZE! zN<JP=9s*}u&P?dxd1+znd1Nb7>C)<Vm8W9vX1@J+yk5}q?xf9L>djk4Z36Soe{K2f z<yV+$yIsnE-4X5g4!o<Imc9SH@3OF(;+&kfe~Uwn<L%x*|6Xf<|NF1K*Z<B+X%hA* zDqC8=YQlWp%9&Bc^6!pjh;Y1aDXqDC_*0Bk^oP&yb;=h1t3G2hv-G8Krr8~f<ee{D zF8HWB)rou8&RhPw{_fix-n6dPcjYk)8aH>UO!2#S^yjO`*$wx9UTCV2OYEI9zs6%N zN1fBm-q49m+e@URv|qODarw``=4{e6yOZw^#<a#;>@?+)f5>8_W}`mm*qLfS3vL_r zzcc<?&(`0<d3Z;k#=*(2)iv^)|3yx*X+Qg($xpL#g3$wIo0k{z40qPItA5{TVE;0{ zb>=*mKM|$jep`bl-g5l$ZnD!YYi6tGbsd!xn?CX-p4#0~@*(@1z}x8yH6K`CELn2T z+Nb{igu1+c;mL7J&z)dB7R){UN;OxX^v(E-oV%E7@0x^unf|pUZlV6=;*!rtK6XCd z5%1Gwx9ERw-QqZl!oo+|JugHq-mkyv|0?xYQeUUPy4}&8FHP6%VB`B{*YZ;M*X&=? zE$v_1FW>Xr`m+6NW2d?LJ%!!U%eww8(tCO7$oh@Oeu95B@0uH0eH425Uajp!^*hy? zgRx&DH|=RW_jI59o5%cLp6=SQKBC@S_0aVj&HJ8J`_Fpo|3%p1_VJrVcb?C8I-6S7 z8CM@Vul2#auE{&wWPj)fPL^sGSFm|@eq(&XAHNOXH|)MU=h=C|zjOYr`KPnnQ%6K^ z)BZGT^>Fd}<ukgidF#cG$&2tgopa(#nqTa&=Eg~T<0V|5k{{}PyBzdTBU7~N=8n7@ zxtY^GeOW%^bK*AEpzg2#)!zu;Ihp-2#7KN`Ec2UG(fVJKb1wgUp?xDX?|97JhGN^t z@BbS-cf0BQrtl4OX^nVW8*jCrwYAIr`Z$%2LtJl8nBDO;<5D_zQhp=1#(d=~$>nB+ z8_sViwk|mS%m15V)-)$EhiM7=`bXvB8f0rN3$*90o3`NY-3q^7TpxvRNSZwqIkG>v z#_(N8eBep1xT4hh$s*@BO)vO#THI`Nw-fKV*557b3&g!_O_$plzM1d6p($oZM)3`% zFYkH0IfSl#cC`7pr2bG1`%&9POv#`0-a3|Ec=kGf@fVeK4ZaeM*LaVeIdGD>TB`o> zCCxu`_NwU|(W?;oWcH_m*Z4udz3YYQE=~2uE9t*}{*Lnhdi}?ebC2sUpMM&Dbfx;o z%;mg)W#1h2PrPT)6U<Q^WcMz7v5xzRrSE6fO_sf8f86hbW!Wd8f71KEO#74kX65sj zyq5OAr$5&0{cn3rHDv?i-g?o`g&Z&4zD&RWc<u~!=@)CtnAhcPG+@y@DqNvE&%Dn4 z^OA<z_MMwW&Ku;-vRyqf`oO+pb6(URvx?MM(|+%L%X!1o|61qC=N-L#DCpTkYrS>v zR$nfcEYsASk*;#N+^mf6ldQ_r=l*Z16IT}n$?a+DiRtf{I^qAms7+5aKRw;5^1J8f zoK%(P&o}d(>pR;Qd3#Oz&KuXBZ+ohHy1Mk;k2@d#oPVyKw`28zpajjBogaD^9q*Fc zoherT<h=2ui9IPQ%91BN+>Ed=PyE+^_&+rB>!#g3`zPpbvRSr)@0iX)=}*1?&uI!g z^ZEDgsMoY#hi@^>?wymc#mKOK;<O0W)#jJfBBYHjMe0odyK>^Ww9hv#yWKjo>!zY| zZenZGRgdQzEDtFu=L(x~)KA@@Goxt2?)W>&OIX7c>e80DrU{lR>l*G)F}tLu=55_u zBBnh}&ivBNH)1a*Of=hUzO=k&ORJ@?zvN4qvdJ&6yWLWIXI}efwR6$Z%R9aD-twN1 zzG7#(Yq!0^^;Hk+Oz(*DuBsK?q%JaPcC+o?iye1lI#>=hGuFGVwG!ZCJM^jk*nxmv zsZYzLc3nD^8uw6&r$u>#(*3}PC8xa2Sau)Ia=9xQYZbdu*LVG*PmYVFw)*Ox?p$cP z*VRC&{N%-g>Gm5|YwrmTE04KcYk5Q6J#hO@eF@$lPp4&sn=~A&t#jo)t(A4CXuH(~ z@z$3fN4NIeS;|-1`nM=qL5i34knF35J@u=zx7!GC9x#cyx$v9o({&wp<T>7Rxmlk5 zcGo3p|Ia-Btiw}Y@~{5a_)eodV}<#RyR)x}6>eB>ZSuhV@(Qir%@h9#a6C|rVqJKF zcdbMG7N=>!PqN}Ow(n8d5yJQ8*171|jaR2%ns-q(=sWxGswV{sO>yO)|1G_Exj=H; zwF&IrP4x+#Y-Jx0a<CtK72f{KDJ$GcbIv=jU0omN$V8MX+_D##`nU05LV3gMFKkYK zFITm+DkWE1Dz2W8mAY4_p@KO$QeGf+cclH)E0^RY-Y?(4{nYW&3WwhIRt2MMw@Ch5 z?vX7;j7J!MP29}z*?DrbgoB;OQlr})6&-b7bX$JC>{(Zz{o?dw-Ix?ho@q<;jdnBZ z>`^z0W~z3~VNSf_(jdEG_ZN2EZLx>rSpT}ezH;s4Hs3X^y8f@7Uz=JsnP|m2OmVx= z|0%ZPaE|(^9qsi$UY!2Yer)H_l-*}fuugpZSogBNTS=ha$vf>qtvV-Cc3=OnVYbaX z<^4@dVn4E17l|KId{xhzp4XBlBBa#Dw@E)Zzg$^vLFL3RR+d`UC)}p&dGfO^YkT*v zNw3b9WzBw-Y5S|nJS}chuEpAA^VjW^*SVWwXzAp9<Z5q0+P#!{ugea<X53{}cPUix z*UEkJrYGf8jvJj6HPI=N-o_;IsZ=rkYVkV3MOTD=T~(U-?7%nAbu<6Gs^5L;+t>a} zqOa>VU1{EA5c}}S)_3#v)ER&Ock0coSJ!84F^q89KWp=pFBb7xX$8Me?)#OQ_hH^@ zllSTGGK-e%Ue=R!V8-gp={oXPHNLQ|Q2kyup-Onhmcyn$`J?{5zupo1^W+Cf`>^*f z#CE5z^-SP;z@p+6${e>q_ygm62B`wM4fO^$FWhC9G0569BlglvCJWVn9)Z0ZgfFNS z|88JDz)`?>A}KHP(T6vdQ_K9DO&XU8uaUQ4m~r8Y*E^f3Z;XqS8;%tDM)p|GWewl_ zz(XwN^rGj}-UrN6k4@7uXu2bLfaUe{2Q0@^pSiwKj$zxEyk6OkGln7U<?$u?eEC@` zQ|4*azl@gnB^FnAdR9YSg1!LzIR**#maZ?hReyAO>iwha6xjCk{V_bE&inS}hQp@& z+K+vIqpC1(*-=wH2FnHi%{D%Jc}jW8hO<kL96h{l)v3wzeqM6@qU)BZ=ft{#ZO;L_ z2dWCvCXYL1w6{w8uPF<ys+fK(QZ#zud)GTn5<d^mo@H47?x@BJwml5%Z8%d7zO$Gk z!+zP~v9E7}H2YzTWA!rO%&G<-Q<Ii<N9^;-$yxg)=ZR)n*P8m1_lzIKOMP@y{<l)l zKI=%W+nwwqxo&roj=b)vSSuJVS-4d2e%g`l-W^9eQkAy_|8ZTE>Uw5#$S)@5=acOY zPyNGl_bLBDUyjS(N%aRf1lao+)f;8RjA#B3H&SYezjXbP*qgIuH}*P|buZyg`7X0& zPV>~_l<#+@Op-8QI?|YY!1HB{l6w5N9ZTH}s^t=G@|b)ww#u*lw)kq@mRslR4dfE# z6qx-E@R~5*T=A2^RQ`eCzn(90&(2r>acDB&pTMa8fNj&VCn_)HkNUl-*DQM(`SD)M z{dEaaDh9klGuSwP)VW!)MlU~cP4k9T>$T+<eu+fQSBefVnzY4K@#ov*OY4QU+Wcxi z%(vh6dhzTK?$29icy4_Wpu6_86wf8YmUIR|<5g^1O$~yWd!<TtwxxRV23hWA)m?qW z%x2b&rKUlaNA)r#kFM^mm>M!~2XnoR>LlT?IWuPa?Nj$iJuy`=+-;}p30<c=!8;{N zF)h<lJHi#>RHlBi(OWcU#`X!%HqI%~F%uG<I@MjZeTU?C#&wS@V(tgL{Cs9wUekQ@ zgTIYdcGNO-tkChg6XtogOQ_sTg7c01yq%Yr3|(T(JH!nI-(IRY;w^aIIH`Kkj$?H$ z^&dLk?%?A2e4^{(wxktnB;vK(j&;4xIr<^OG5cuGh9tKL!~Qih+{1X5iGDs&RpD2+ zuiD3EUc{D12ecnWzuEI+TJ>fP>lWt7=bMi(FZ-<av7sbRh`-~x>&LHeuAg0GyW48F zarD`H)90p|htIY?yQ*@&<?5(4)AlS1H#&K=s53^bUVpOmrcYg;WhzxGQ!7t@lG<c# z>sY9+m$dwcpzx7?m#c>^tlj%)|3V+J`tA#z7kE3)v~QRnR4sT+!?el3Z)Nh5v$x+Y zt+|(Cy{=Nog4rX)FZbyEF2$tDM=vK>^1i+7Bjn$GJ~(sU55}w?Ru2{m7cl!ac>Zy? z<8O7odw*i`fy{abp?c+aM-FZ3ey^T)erxqU@%!SpHU67DnXjm>a9lAz(V>`AeMR{3 zhrbJ#G4EKu@DBSIX2S;(6Iw4?Hty@~$p3s>*vb3>^NxR<+xRPF55$Vy;tIN&vRZiI zfo~oBo7;~B8oU*hXDMUmXS6@abW7Q-kugC)V$r0!2aF0lE-O@61m7_IVwmbx)u>Ql zzd=}4%Yte8t#(_LdM%5Pf)x(}I+JZJSX%g*b~m;+%nzs(kzinJRMdLOF2``lp~cJT zfZhWBfR#(cIhejP-`UswW_QAU*57(J$|u%}L)n|&H$m90-(ojF*e<14o_u<tP|$dQ zl}TJs!(~B(17jl-Q!9svfQCYV!vcXuCZ>8;7A_7Er2q%8q?2qwLVRN_>o?I&>nGOo zelxvsJt1ECx73^L4eJl?bA#}kYkMJlw%<}WuP4MegA{Js@BZeXOBG{<;N<N78@xXn z88$S(vSyUOz?!psQguV_fxQQ6LpHHyuv;~(4Y|a$g=u!9*{(0PZ&>O+uyjo8v{jZ4 z`LN<a;K9X0{^}K0N1b!Dcl=0t$@a&A;fCYa>9ad+rR!}g0$7994J!{mVZB_H^r`72 zx0?QpJx89fP8RoxGpOu@@Dn}>LHGxssDk8QOcb|?d$f|RpIb&L=x&2N2ZQyBb;2JQ zV-J*R?PR~fc8B|pyJ~bp*#hPpUaGnd+8ZP@7FS+BoTtjiD#K+VQlN2UVS_VcI}_jZ z8=bboya5NmTqhYR3p<tRKRRud>K|P=u&~jYx&4^sk@nX34tv48BU(Fqt`>2wekQr5 zS8&Zl<_PV&H8XW1BzYqgw?=4&Mi~07>3$j^e|m%8sSR;r$)QscN-Z{crL38jw2|Gc z{6Jbm?6)b0UVDG|C;7vIDW3m8x_!-kCVuG$nYuRXnx6ap*e+A2*StUVL$%=^?Z*1) zd==W=y6;+#`qw|+{-1|~nV(@hqv(Md1&e?4*+|B+xizpY;3{BBJ&?43WkO?8gQ&=Z zf@${GAAQpixZYL4mtgi#qxH8&&7?z$T<@1{Xmpxh?Kt^u#^kr>XXRu~Uc33^wTmgc zH=lf#wdwC(gM)1gKd$`!Eb(^m;cfHzZg1ngeXXAVc2-;Nyu{nD5^tYMoZYlVr$#Tt z@uNbkfA9}+o0RFAf7%Wii`;Wh6m2zXJ?a#C=vdLQmTu1DQD3TU9)3{zwZ0|UdXY2d z@weZ?TjLGb{d&qC-fVenH|1aMp^H5$)F19(zS!6D*v!S0(_L5T{As@Be<vlMQQ1-a zR^Iy1w{qFn^=}K0XZ<$bqmyXw5W4woqWezU2Rp95^B2qablYn4YiaG;$E?3UrJUT9 za`IWF<>#WL<U@krxr*P+KVvxG@|nr;Q)f3upWPUJW~1w~8FyuN-?X_uDgWf=GaDmx zH|vObZ#$YIsC&j}etq(Hqkm@gb!Bq>n_g;v@tJZ?xKcwc{%3bny=%(rneRmlb>)Pw z^>x{Iou4dq^w>11g@$!&W}D_sf4o0mQ&u=F_m<Rot+j%We)g`}xOJIL&<%<B8<!;V zZ*JLI>k}h=Kl-}HW8wH4J~xv~Wj{u1SgIK;(eB+MojHBtz3!6ciEVZ6f83w;Ca3MS z+_!3v;k?Tw{=Zi!*xYQ4iK(gQ35&XYoMo=KZIsCQ^-u3R=--g9UDR>>*JA&Yk_}A< zUmbe&r?fcyex$kc1LH$m-v7|qGwI14-`#h^es`x;@4dP2P>#Oo=TFDPM2^Lo9DjAz zFs36V@!{Ez%cY}lJ^pp}#f*s=M?$kFZr>^|xccbUuchusN^M?c*l#LuS+nkWJ<sy` zs)rm_mMhzjM)KOOIh*C&uluYj=cCD9p+ec~+K&T+*0+4|TK1yX%;ME+H`%@^e#|dT ze6C8)TxINJrQFsx<x1g_muI4n$}D+2WBV(uxszUB(3~BZeoWu^`Fw}7rmHX69}>K# zld(9P?KSh#ulp|jVtCMPZ+9bF;{NW~Y5f~an~v45ezK#aJHNVIzkfGVa#NVpithEA zYbU$UW?#Rqpa0XVXP0&bnnm2dWoPw*?~3ZIyJx>HjV+aJ-)nnyp=OD__r>0@?`IO$ zv`epk7IW_c&sD{^w@+gf&xt;YiQ7JX$E)U=ucll3qau9W-)>8(iI`){z4>1FlNT#A zPrQzI_fF_tTu{H`g{aKm`RSWaTR*yXY1R(j2cf5JPuuR{;+`LV*0FG1V5r5OV}W0~ zKI{pc+Wu(gQd1u92dn&R@BZKG@=|zb-}$c@n?h>0Y_N-%{;yxGv~r70Q~gus$!!yw z6U7X<7ELTVwx8|hEA7v^pG`gXCCzv4aj~j+7&vFukCpB7*RxFFyl8V}zRy8+-d_GS zD#AUpAK%}|^H@+(vQRwnmFTf0i4rdblrA!6@N7u2IjkN!v8R&bK!KKFz_}a$8TL$! zcLJYd&SYsh{cfMF!t`lE^7@P>(+{qZ7n>ft%T}`ffM&7FK^X@JM?szft>80;mo}Ze za%yGJ<x|?T7V<`gEqnSQ%q-LEmd4U+w^OE9pZ|XQ_nhvE%WJ;>{lEWx<v#bm{hPmS z__pWUt?c)k1(RGv9FD47e&Bfc*0B`7C@W4y^~NndnlFRvXZ^Ts?XreF@b7%1W#TVi zH`}jM$hy(zA#GQm`09w}`#YO9=?0!)Qu_Mm$el>xW9xJ4IyDw?ye!_l`I7PZUdd|h zKTkiDpK^0}U|VXhl68&aU)s&!uC#wv*9s1H{>lGmU~aEm`{B9sD}kkKf~F_uPO>Y` zl3lA7!JYni>GP%jC%Nigx)}ZO7r1FZe^z{iOOb>7qMJ%}S&rAPoT%?-d)F%e(KJr^ zs9XJi^%b+KqvF!Umb*PI6*?)_)cIZc>TfwawLe~alV40O<C-Y%oIg?i=i>R!8GLJ( zmTs9hZ_)CXlD9l&XBgXhM`vi;x}U$yy`^`~mbqmY{Hi9FUGxrd+nve3*Ju5O)nBCE zF0K7ywb$|YOWms3d>5=sCh%R{UH?T+c4_h#{i^wPOCEm_to50HVR;GD;~$oD7hMkV zi@zXg<sE-1{EKO=^ZiTZA&&Pi^OrR0UF!cL{C9TUviKL_zk2JIdw*dMoiy7f#o$;- zTC!;b19#HaNat%)S`FB<Pv6@3Z4LA5L%TN0=}bGinPu9MUz_T31f&nOZA>wnbobn` z`VECTb5l2JzTq=#KAW=nri|J2yXWN+_&2rRh}t%9?}0gQY|AFiO`ASL@nz5q5#7=W zR-SX0T4YX`qO{cOy!Y)T+m~!#%6!TClH<$dm&Pw!N`ijHSm{d|O;(MZ_IA^J89nzC z%}*wN%BY+(N8f+)`zi0IJwMU?<Y-ano{&0^x`;ZT`Z&$?)8|h#Kjl}sdyjKn;63g4 zlkZQsKjr?U`_uYQ>_4^twBF4CkCiJ~G@7RzJe85!W8}9pI&z840-F^!Yiw58EL#&a zFXWoGzvg*u>nYQxOrNTJD)4FY)8MDlPpzMdKQ(_kDQQJxR&43sU5<B`y$k!k;`dea ztIV$~zoz?M%gQj_TF<a{TA2Up^`=*yOxwklwPp)O8S4ghU&^~QD_eKVw5ToDyt3DB zy?86@?Urv*J=Yv}N4{QBddVs~cFVdbbKS7+%a69+i)xy-LN&8?%f2Z4wfoINysrgq z*?22OH+=S@r<p%*$woDXtq{$;yyfLBp4??--n)Z$d(U2bckS7W&$5o*s<(M7m%DG9 zL-Y#WOJdpHTdKDTy|v3-xy@&He6>ULI@=YtOKjKJF0x&<_JZ8yu&mWvuHJflOZe90 zTT;1exB1;(V7t_It?lC6D`uIqx2A8^y%qM>@@?f?*4)|8u58O*dW$c2`L{*eysJI6 zFPCLkZ<)R|d`tM&>s$8TvU}_MR`+f0+xmuYePsdGOZKkbyIl5KUxxeE<Xii<eBa8y zg@5bgsMc?LzcrV|?OyOV`giE=C4U$0+~Re1vE;Uc+Z4Ag+?KfQ;kK099Jf89yL7Lb zohsX%yCt_LcTMgb-Lup3r1MX2NWHZwM>t0~_vSX4+bXwHqSxhmomevAq~dR9zE+8a z#m?ewcJ*?<l3(n1*0+3R?IhFL*Vs3)FXZ^!KEuA<vevTsR(1t*3StWWy!r6L^ozsZ zzBvE&>&-7nzv}&}RuydP!hcnE*ShwX538ogt=)d<_KUY)_<o(OGT+;NFWCRW@mIlL zYHHX0>)7X5?^Pdle?|VK`B%5Ui2nNgOYX0-zef#B*W^Vs*KcS`e3%%Rn0qLXTUyS{ zEXVQ2;>6j9mlo*S80;ylnET<^!`{QQTiV;K4@I}Qw}0pL=l176-!(z0N$HT1W>D7} zNlB4N{Y`->1u2_PgiSPe|JHG)SEnyVV5dq^=99w{Un^aA&+Dzx+hkJY|3rIYzMEWE zjrpg&Cl*hf?^Y*!Rk>cvOv_G7S4%m|>B^H8f5LXIP1};WW97+Z2GgH#m0HH^THU&O z^6K{0%eBu<eIWHj>XBF3(p|@PT#AicCv#ooy6n2lb&>0K$9|6a9LpWs9s7OPyJFp9 z+gDLft1fN5_jSr^$?I;{)vj+|r@QWX?Cn_jopyz_&#Yelx>I`VYwPPZuchm+Z(sL5 zCU1J6<-NP7|4!b0N%-MP6D?ln7h$`X8kVl{i%HJ=;oTcq72ErBS^qJcoXj))t1{1= z{}+@zPgv^nA5)WMr!UPoqO#1;diBXH$K-2?y%7f7sk<)BFnp7CZE9)y_6-)-W~*+p zyD;PL%>=V4yy?mjT+(NcZ89;N=bKQuhM``nSZuen)Mg2(VoQ@}hjV0aAK13>?HhyN zbEa;#S7|!NGd;@F+&Q^y;-jSpFU(lHL|i3(>M<LY+N8`g!IxNPwj2vtVEA{T;p~&m zPem$w=BSA~Cf{T2-N_(T%xUuM?}Zut4$12#&2Kt(hov`C>;05+$K-u_@5QA)H`Mt2 z^WCQsUhkA_lyN5N!VKpHhR3xsPsyZqZi=b&sC0>3xF#e_J9`T6smrIhPx&qNsbrP< zJmXX6r<tGD7Ww@Q{TchyS=H2|RzT{r=2gz#pGGFnqF)()UE~%jW&EMuF`4f|Tc+}s z5Z$$2$$o$1ug!S<U%U6`ulpBf$cJX0>ArRTR{peOCI6?_OHE#2SnPa{=VMDyM&XM^ z7fKh}xBh#h;I7>M?!{|~oXj(YeM!glj^FO<mzi%}SM+Dq<Tzoe&FhvLN^|x~*0dhW z;q1LBC1uPewK;q0u{legJ0|O0zs}kFlgH#)ns>6@dh4%2^1YS@IT1JBUYK!u{c1zw z)?-)JFEnHi&ph+gDY-sxXV<YmEK-}Jrye`gHH)Qp=CxHEQkx&D-8~wk=#<>HGiui^ zhvZ|ss&-F`X^wS{RgPI4lN|dvRybyIOyxSJ>m}FcuCrWM9m5^d9pfFNx^C&Z-?7>; zt7Efcq+|TKdv{7o6|a8HdYye;f9(8Seh$g=il**9w_~4()aFZ1SIWG8SFdTZ?472V z)MUx&J@<R#d-QuZACpvWR(agB<@k?@NxhekUFZ0@{h?z`Tj8WO33-Y170W+rI^AFX z?@EuA;#JmHKC%z3vTOX!f_jRNNj;wMQRP$Rp#o{S0De;wIa8h~-&TH9xU-vAyeP)Y zRP(@%q$v{KJ=JT!%YBTC`T8$*k9cJL``TlhEA$P-r0gZ0_u6h@D*L9t<<1Ymn&&H7 zO5;*$oVa_+dzNdqcJ=aS_I=#9@tTF(<zD40v$=Yik4Ze%ot5-vxy<9j$8wKDz0Bj5 z7`pBG*km}-ZN<M&i&xDL^xx{;9^zXS8v110sq?4wk9j_A`s@DG=HBwR^MB-iy1%eS zVQ>BNJ^AOu`YM}jdZ#GQb9lO;y)tF{Y3Ean)!g4ENS#hwvG+#GR(0)w{Ef9)^%uS^ zycLzZ(CwG*%9!Uf-*|rW`She>(_L*_;k*46Y89LAblc8+x7$|o-ENzg^S;|;zOy+W z@m=J+#M2pX#coU9_CLkwzva`W<x7oDUv`@LD07`pSW*4dlke_l_8Cn~(~c}zKFRO$ z)WRvNmjrE_l=FU#%H_4E3|_6|xu`YO@f*X^`Db<aFXo-fA5yojbiIw{`wO?i<yO~- zhduv!s;G48uNk{8ajdP0w~ega@~NYGj`i8O@8sT}EATJyFYzz(FMGc8eS!GS^d0X@ z?mwOPcHeE=<F@Db9@txdBlc0;v$%J4J1(8P|4#H>=sWd0*>|PyoZn%-%RDsiOU=^0 z5c80At8~`IyuA6i^6F>3Tje)CixnIxzEXVVv;O(^dHuHYEA7_DytjO7`S|Cl&uf<- zD!%tw`Op7ve_s7O`+4{CNzeKDk6eHJt-?kinmKJh<L27|+VW;0&c=UwX1Oh>4?Mmi z-^4&l`e55(4s)g6XKvl6Slzf6PrZ1p!_X@1UUG@qF3If@8{P7iPrgXMlf`4yCUx={ zNAeQGQ+IDkuyRUf_ZVO5DM_|jVt4t(sxyY0dN|$s3{TETdLsGr*p*X!75(O)ru;oM zdurWOUah|mP8)6NJ$XuRX-K8u>Z_+uWuK~leQNe8#-|gCA|ietpTa+-KjGv25I^no zDeE_Mg*q&%YpMCW?9aj-qWwv8-k0qA&{UN8pjAz@_<Y~W8DF;+Jv+XBY1c2&Qthm8 zmN1r(D{EE+K8$}Dp1Asg))lUuPOBCayB(cqtgc-)Wxb{G+t<1AEmQ0x|Gg1!KP9hy zKVsv`nwt8byFRV?)S5nfZm*Se;J+8*+rw>Q_AU5xNqqL{^cwq@K1XM+KNbIL-|L+l zpE~b<QJYut^HcHm`I!aZnm;Wl)_i_xAHSZy=KkN^na{t?pI1^9_H$m>;q>UK_v1Hy z`tt0uw%=Ndtq-r%E}u5Xsxa&E%Jhd?R%_?yRlMp8e(bl^HngsO)!mghf@S?ot!I`P zeN5?}9P3|Zb@O4$?#a4-ZS!-gHr?|qd-SKXOZfi0AFqzg6qcX6gX8*c^?P<3zaPm~ zkNfrJPv_hCyG4)I3ZI{IqfF_e%b(62!e{+j=5tsJ{(8FVQ~2rfxmA@;hdE2HT+ixR zGcoD5#Fk6nmb~S>{dn8eZK2!hr`Fy7J^Af|{deClieGwv`oER`lK-51Uw->@-PC`x z_CHzw<8M~<`}H@jDb;lRm#vHblm2u6OZ&_9`)$wNJN;kr|11vK7xpLgkJqoLZ>q2V zFIZPtw{hFLZSh;)Z<)t9pY_k`XO>f+@Dy*ad;I*^`QG``_U3i}&hcMf;gxITsWhoZ zvc4n5^=eL;{eLM_<}6mWtLuWd$NgpFl{U@0WMZLmWnp`(yGeJ?u9cPD(=M)!+MaoP zU9C_1Z0oXDca~;ve`lNb@}{<#-oA3Dq@elx{{G_MQTiaanT=o4DyQO8$3)GQi}U1d z)86dZQX(~f;!M-Tq_T5MPVNl;^lACMz<>yo++RKQGdI86ll|>(@iVdWljlcmD0tJg zUi@zT{mJL;WJ8=j%kTT~c+>G|8zzfi%lY};-#)+M-Q4Z-<>zm-`5bVqvDy7z?fVbr z!v9LY+~5{IZ~x=rZ~2t^@WS^?=9~;J`h4x_eZ#E_3ZgE4k-UFyPw}<b^7D0>fA3fx z{d}%=|7?%D&b^Il^{>>j*0=;J-&l8_;eOGplZN}Aew^d={DN|-Sclo=&pPe%mhb(- zw!0(bc82-eCFLs=RWAse%$8etbjd}HmOI|gA6IbHx0srh1w}{s8x=_GQO@LhyO3?o z#E-IPm$rUl_t-jtNn_5V41=eajmlOV_PSlpOto9{Gg`BM*`_4rqdV@`SDbi|uD<(e zIgk0(1!_|opKmCP`^)mX@tVg+jkSv|zfs&Tt|_)ur1`U_)`F{_Bw8hfd+h_74Q4f3 zX_!pl+guxDQgnV%euT1F^t;}ec}8=N&3?eO%y5eD>P-IECw_S(zRE~mP&h+sLC?$+ zrJ_?W>Di=y(W*U`wMx8qd2jcX8Bz6t_FK}`WfOm=^jFVYE?(v1s=sx?x{i~}ufJfB zO%{Apsu{m_<*^kTU(LNCdS&sqDLuFHoKCI3nSV*frugahsVd6zvKGe6J=yD<e^Go5 zXZC5fje<ekn(<M};uB<5w;iACY5C&))DwS2y3=+qnRO}fr)KKvN0*#zp1SGwc!=2g z`PW~1t;3*uHBxbRd+m{PUVE1oUV3~<@~7a_$fvc@R#CRomR&Hq<+XpK)f#T;LwV^p zbIhX8$fc~lkyzGKt9{h-@Y0i)SS_RXIoE}D9yj*U40*P?`^xVv`L>$#%oA<@v)wKe z<ZZM$<NQ{BscFW|JS(sHk1T!DXPnB~5LHnkc5Kqk`q+wR8&Y$aZ=ac$Y8`mWu&k~2 zcwN$dgXt|VH8X>P3++VoTs>GX@w^m#$@x-aUh<{ymsEEyl+klPE&EiiXw{tlDBWq( zA6EwcbIN40zV2Xue1-Ovt*_EbSO03O3S6DJ`?%k??^^SVwwKKRG$Fk+y><DO&6j^P zy-Mbpy+B;%3iH-_|KrA-kM}YOZSS>9Fuhpr8{vIz^4+d^lE>9HTHo;b@`P#IEL-JQ z|Cp*-_kJ<l-C)J;ad6SO+$DWMdrUaaM`(KQa*oooRe3wbZqmOAxkbE|0qgX)Px*Z! z`H9X>k9n%=C(Qj+{ptB9$)Djnh58r%(B@N(=?q#l)$Wu<>a0y}Ki%qoy2-BHx4LfW z&+OnWu2D0;EnYi$?Q#oA$>iz-+fIL5Xv=$P=lr-O)7J&$JpE*28CW;*-E=FB-lfWy z1W$anI5macYeGn-akSFivt?dqugr`pUunI&S5GVO#p~@$w_aKwR9>kdeW2~4%F4Yn zXNURUWV+;h)8AfW{eoQg37>t|s?Dxfj=hi-q^Z18`&5m0-g1}I?=Pi)%1jHscA4|& zeA5(rkJ(QSPG}0BIxmZ>^`!p=?oYCB@~Q&8R6dp8obJ?@pB%kFylu0@x7|4tbndcg zzS5b$^ruPWua>$4HgQh<8-3oGy<g6kV^-@dZKxf!qB6>Rt(~>TQw`Oi*lm+lo<?q2 zSFfFYEM=>lZbI^ttG8HR2G4SH7p=EawQs*AKQ(RwyO#LXg*wv45Avd1$|XK$Oq;c6 z&v~^;XWRmo1o6E!i|z|N<nY{Sbx)h$?be%n*{c-%<T@s}O_&p{D1P#S!0L}{TIK~P zI9kqlti14O-vz(i9U*SQSEG2M+C3_-8&7eQl+LUd{r0=^nDZ5>UkMuxr7iQ8t$)FI z>x@{{yG1KSx@H!4-Cd>T>3&sZ@zxNfS}oqmVKJ8bUcB|V)^YA(CF8t#uTF<7s_{9z zV*17_7JM)B_;`1B9Sg4iCA8M2U+CAV-z%D*n`Q2vsN(Nh?SEMydGf=Ae^YXwTvDiN zowsr2l)Ua^64v!Me`mapoubNX+Vw=opYPX0#xG7fRoPNs&hOp0cXIpjqu*XtdiTG( zyQ}QwosZA>4By_~ntORyXvt}@v-w?JIbwox%dDN8n`WD3-dT~@{OjwhYb#|%BD5Ez z@z&e#_6-(|OuC|FsHEvz?zYr&>WYqiwb8}(E>=vJR<ka#EM-xRtv~tr%4L?>b*kw) z7V19=j?J30F?5cO$9qTHsO^`8l}nyKY~k43(<?QJ>HDUZj*z=Qn+y0w-aS1e%TOL6 zA@riNcaw05y7y(_xt^Cddkb9_nsE1<)W5yTRp~#s=egegn|&aXSug!?$I9E0hv)fN zENSb!yUja=-(l$-UnL=-xxLEuLKVDoic*rQmKA@PFy%<gvc$xdYojeA-}iKU^y}&< zXLI8gd!^e|n6-DVSzyn+!_m&)U*3*>s~s67=JNRRqU<!clx6*Xg{NMw+|zUGqK5gw zn;*{UOUHgw`fRl~SS-9hS8KY8*{O>=w=YTA_%6m=WocE8ME&w*O8iTvDowuRHK{(} zOHj$9hD0l`$zscvS=@9IS^0U|hp?G%Pj`7dQOulNvOM0U#-;4!5)&TZ$wKP9b49~$ zE%AJlw|LGhl~<~VgOv`=**nW^$uf18{Ppgt&gpM6WLBH+Gg?-<`mN*Evwe5tv@aB0 z;aTzS#Hub~y@TgsncKp?>O3~>dcodU@JiAutA3JDqgm<0^=tG(CS7FB`Qe%B@$}4* zjwcp>tCmk?DSiCVW^ZsWPuB(SIz<nMBmDQ{B`4*zW=wS4FHl}&xl+jVNcG)wFEY|k zPm6KM*=x9LMY8|H_cwN3{bHo4l$14ruj$?5gD-A>xssQA@o!>cO~ZTb?xi0;Sai29 znNc_Qn7QuK`WxFWuJqIFJ^tqNu`B-143FNMvFb^t;Djf04{5D?zr{WDFE>wCfVtuB z*^^CwbidFst~;=ygVEV->5ER)%&_}>5_PTTd)^0$rth3nTD|;)uj*-4)2XgHEkz}w z#^0A*DbbqvV>#!-b2^)EDo#~udFgp>!Ipi`tgqVZyvbM7GS>T4AJP=#mlk^YrtUAV z`tRC*!b8@lb@p&2uaq&U3GwXwFIp&Iy7@qzSmTk)AEp@W-9CAep|SGE^=EEeZ&lv9 z(pW6^+H7Noe`gd<SF<JupPt(#uQzvXw5sF9sZ&&3UwEo!s=iEh`}l*yR%21h_AhN; z+)iFOVzU0h6v^s$*{^(}W_8u?JC%0VKvSjbzTClSJU8V|PveoEy2-l3Bi_hnX-HDg z`z=30?oAAO|4{R)yT4E8m1`5&IysrcpO(AlxJ=x7ILp25DqnKM7p>CD_*9)mF-x?6 zA6b_rV4GQdYUiIOF78y`*VmJ_b@<IaY}K|k(LA$Me4n9G^7%cD$?9=c-mmMj>-*mo zy=(4w-In+L#i!<-kuQ^%bH5B;%Kq=gwz4}r4#@4lG5glhuI&%s`085zU2=b?dmz)z zIa=R;#ol|QxMultvsb+T98GRK`(kU%{bEI=<DIyT52n~H+vufumHpREr;IkMrl1>1 zQmVNNZ^{&L9Mw7>$XK!cfIR!I_T{YgMg>wY>KS_&W<?}2H<lzwd~Yr{_wTk@_Nj(N zcS&Fw`_t9RJm#mO7s@T*JRr5hTq8Ym^R=nV4*WN{^ft7^s#tDG<igyAQ#tCHK1y;# zGtXlBU$w(sIoA60+w|x*TX~HIihEc;?L43L-uKh%E1sGr`y8T!CZ^XX2%eJQnZ?4x z;2(RTBB9>U+QIt<V>0t2$4t9Z@n;S<vUGoQwc{4N&;4@NL3{akYAf2=q&Qj_&n|tw zVs%J=9Aj?xw|<k`yfO=N?mb&&w(wur+<!cq`<PcTr|#o&@rdnR@9=lk)wANCYcKe} zb2z$Sa^tcC0xu1G1M^hd{zWaVb2VaD>HL0K^MRP^<h;$F>z!NInfToGT)k6XLL(q! z$5i!<xqpmH9q-J&#kECQ_%APa)UT<xyzU2Q>rQ&+v`=Wlf13o}Pk+KrIIHox|IBr; z)`;hnjAGGojTGPW_sDOyf0Yu~7iz4Ybe?00JlmIpJ4Bdw?y=L@ulv5(?p;pHa_x%! zEax-$TFgZpZtwK@WMWfq`>AWolY+ykUeX6P^ZbqCTgC9TQg)9(Q5s`mzViHI4Qwq8 zxee<Zcn_p3kTzh*=-b5k^psPaqH&B_YmI~173LStSA0*bx!Go#WOLSX^Sx8u(}kDW zx=+?^`DpXA=AlvduAJ}B&OR5JE~zj2$u{!D-^zP_dcmP0#r`W7*zMs<s^@dswr9$D z>nk(Qw~GcD=`zOhTFyJ4I_>&-@5=oJk;1i2mWdbTuHL%kcSbN^rpBR3Uw_8EdfTlv z%hzA|yh*N2$tkN>t3?jB)lWF4Ew1U9=a_q?jKjJ5!0Rbm87pMJ*<P>tu>R9RZOfeF zH&sgIZ|xNQTRCT*%lvx_Wu_mR`q(G5e!JBDl}GqiMK85H^jG~A_qOvrkEblIx?|7# z-(R72NnY!@J6Usr`=!}#eHNH6yp8J`--W#*50^R^UbrN8Htd%AW}|2$)=U?B=AT|V zrNPN7jjyeZ^QwJOd4{z`eRceWxJt>pt7XjXQjdn{$S!x?_G?OCZG?ip_pgp;#UK7S zE)T1pyjVNsT==v-SG3pfoASEGdzs7vsb}{Ex#OdLi2h(LGGQ>fIb%I<jD7c4Mk}d^ zlvArex=*c<TaxbZ{`0Bj{d4@jO*}tqU(rkNqqms;zMH#z#qquOz7_vHQ7UtNV$AtM z+s9A8FTHwcx<|Ca@fd#jWr5fB@NK^!Uuu(lw)RD0&v%dd!xtv?_}=nM-W+rM#+suC z{&FsmntkEj%+Tztu7?}1T^75y^$O2&se7d%ZykblYQJr{U~Yd=IZ0Ml@zwL?xr=wM z;(p90tMO|0xmnFG{I67Rn$%_&@9TZB@7SlLGwv<Si!0}MY*ffPa-DUb+Nu6U^M6Kd z>3McqJwgA&7TFcsBJ`{3FM3@0yMW{HtW%o&!S0vX);1+gNqKRrcFM`)UE7<lxA*U@ zm14c|+Sy-b`L|P>AFTBM_aIvRm%=nN&Ycf3)ekRmioaoWf^FtrUK^YJUzL1yu5SGG zIP;>ol5LKl-r+s^6PAa~Z{w<7)O2mtNfV*sjJ<1TT+2Q=qxfs4@uv#5my;^%V<)WZ zj94$f^tR#tX%6PPjpq~<|1aj5zDM-!OwPT0Cyu^Yy!MKRuA97{SgwD7kL>Ol=jAK8 zT?-{I%C*Wp`*vh;$Rd~EMP@UnDdtG(9C)Vj-L6IVz@Oaqoz?o6tabMKYW$9C`MhQC z4&B4KEOzlZ8$-gi#mX2utqQDJpPs&dv8sNjy>6q-@tg9l_BtvN`+KB&7dli6AF@Aw zC`edI=fn~nAHGGqD|cLJyywno+QGB0?OoWjz&@j<q$l5I?B2R^>nHs)SG~XNknwmt z#reyQAUE%w@hiR0rbc}F<acA5%^wZkXAdv^{;+;Ypcns=c&Ex!7FtubJAboNsZV7( zCiU{l?|Mb`vlITQKgn*KyEO0<$C<UR1@T7n9@i}DnS0EGZ>j!Pv6rhHuUzGxZ{^K= zVbwp0;49O2uV116Dk{`JUv_<v{YAfd`j-mjo)*4pth3^DnRUh3CCV+jvGh{<m1sGS z%{S7L`G1+7WUpQQdum^f*#)<k9{P-*ALOzAlG<?g%i*%u^&aXCttWn$UXZPcKcILt zSlv%>8(ReDp4Yvr`Qpx9J+#_6H|x#LL;sboNj3b<dGqkYQ+NAvr^>lgqI+y*CLH}I zb1P<5`fR_iPi70qb(PrFZPk2sx%-Nb+T-o7ufAO0Fu&~TFT-tB(t95>-g=P#AjNc5 zan@Si|Alw|1t-)zXG(Ud|37c}uVp-ey5A-i3YD<@?r3_FIl+<P-?b0dzkXX@K1bl+ z29EEN_9wVL+I{E!{`Gg?>#u(<@kxct##yeI)ZV^Az5NpRpN94K>n2ncW#lWqTWkM& zs_*rK8d;j_pOrT8-20Ng->f6=(S%tG*ZEdRov~bSs$Rs3>A@bQT86I=9~4iocfQs6 zS1LgC{zM_mRbR8!@2&roWqi-t?q1<XS@|paVU|vR9Tq$6ZsKEp`+n)w=WE{Y`O5qG z)uh!Qf1K$pyMF5PfAxfSGE967`Tz5$ALZD@#lm>Y^M>Ny1b4ai+9K<->P61eL$<M+ zIq~zd|CLCL*lVlXz_24*IY;TmWS4dE5A^CCeiRC~EiqYIIxY65MB?r>TgtTeC#F?h zw|1%j!;@otdG|Jk$q)Vs9;kZvOXf@Ig{cqh+e^3|?i)P5`}o0pzCBF!tbcYoaNRlW z__}!;(<`RZ33aUO+ui?d;r}bYJp6wBpIENhs?1+YJ{ap?xVf*oW54g-$Ca|Lc3=O{ z_y23gR^xhR`K)iu-+a;&zFV$-U;8hs|M5}@fB#aAlWo#wslIvc#nIDlpFdQ$WyOvC zoYrDbg|2=M%Cj#1J@xjvJ9VtF`sa8;0_UgfJ1_oq)3x4LyQcp2$!<_su+mk%`T3-h z$%QPt)F<3`J$CO!Cf|>2Mr9uf_l;$&No#L&@BPjFBJqc_Lw)_nb(wK@f2qq>&ozBp zf9t>h^%MUSe0w(<oMXSv^?gxyYn{x#?2q<Gzg~Oyze0EaF{#+vx&QM2-YdPwy?>s_ z;lys!Zv{VYEv?_gyzcS-d2@gJ|J_%1-2U6|8>(^p_5X>y*RGDMUdCy<vg!Pu-^(9V zb3Z+LdfWc(eEUA{$l4cK_oY5CsnmhrWc#%Xycfhb{O=WD$e!|1;Lx)h+M37y*&IFa zU#X$=@@M7@wSMN<)6+hF&OOZg-}VE$W;<(sSL>PACpWLZQ}jFLM*9onh3wNm{|b&? zU>(4IgU{z<pXq()MQ{97*X*j9zq-e$F0hZm&g?;Hru#1D3b}s{KbRMGzs}scuzq`T zrm%fK`&ag_?RD}+KYPv>WS4Wz`}ZhkXU8w6^UpPp|GYW<<1&lOp92=GUG}5TNIrYT z;c7qj`r10Pl*>OWI|I|^o?n`2pC~KS`Sn8odRdL~mLF;+kq@8mu)nBW#Ot-;+=SPa z=O_LADH6Yai<!sa^M<SDE6-p0?No*rLzU*U`tnsNb^ny=Rrg)hdG`F>r`#`HUu#dl z+~0cbhwK8=Z$4g|&Wqlk9d^S1LQRWp;_mtLE-X6weQL`4U8k-eSv}|P$IWNdLepo3 z&92R53fzCOMBBc9W!yURxwf3yFa00MoU%E-r!TkJbRWwJll|cm`{VxZxm<DH>id~( z*M7VV&EEIkvi@&|l+yWw`_5OZ?H2r^EVWvPX^q{twcXowzI6YN+BV_3S!4AQi`T~c zzke`ZvFqx-!>XNi|NMHw?d{UC7@id<$k!)tPpX^W9iG+{zv$R0)&n-xBKM#FxM^VD z{A9wlguZ8q>m1mowjVX$!zy+lJ4fVY(b@NDw+t4DzcOWfn)C2}eczr1t<w{0R;mPd zHdurkn|XZgxx0Y%((Xsn$qT;fZrHd<<nbJ}b4&N$XOY%Cdvs@MajHebNA|RX_kFh9 zU9@O@(nLLh-&XhB>ddaUaTJ#A++FIH_3>8RB9&;JCtKN6S6Z)_Ifwsus(eYT!LfDr z$4n<YJDsi(^3qANDEHKp1kYpjf?<qY-gBL;+CTU^%D2p~|NVEyv8w&6XFk9DM96|A znsLLvr$s4+9?=mqzRoqcTGT!xucdTpEYm%kZ5NJZG0ZPyEAZ@J@TTI_lv4r6tgf&= zJ>fW`-p*mxN3mJaPrn4ZCH2L2-rMI8<#+oR)5AG#zYcNbKjLmFmU_?Kay)*i-1YiL zyTfePiON0YZgKz1f8}x1Pq!aT4+ZN3_cQKu_|Z@w(4YOa*f?Hc&&~KNkImv0{+Qjb za<EU7e_bhEefhbA{l;s*-#g^9wtlI+*CPF!JGtrU|09p8c@F%$9>JQhKIceu!#U$0 zautRzzB7EgdThe!4>BygX73X#P8-UxMKLL#sozu)b^dhPO{TD!^JLSizJCs@UH#LR zw_*L+PcAoOzQ1GaWeAJ@<GrS6ZrWX2{`hClKkn&On)}&^M^d7zg8jvY(;xO^9J;~( zi|N35SAK@~5$^(4+gHqve^eQJjr&XckFX>A-zKcxma8a~{Vld+^@W}8>myd5$-kDK zx%omlTS+{Beb+^%gmxRxk9YDOSjC(b`tyC|%!t_>-%fITw9VfX<hSaRm}%JlMTK5+ zswZ|Qh<|U~=PLPVH_xYMRkLr)eA;UwAaGynsJY_5w<&76-|lO^nXd5RO7K3%+VG2U zZ*ETe@IF0e{_R@__RHi(`Ws)}{lf3J$gS0}F0uWWS=NN}<;s-ShrVC9@7~_EX03m& z%-X=M6V)8p7H@Fq=iQd|ng{a@-|R{@k*K|PGrBC){>BQqL*}!dYs-C^!=4;3$$LlZ zRnM<Oe8C&GuY11Nd_kY%{FJU=chvS-+In++d$A<$z^%Levu^)MsNT9%wXQc~?l<jQ z3m2|=k@cPRNBJ*Zk<{59Z?7J$7kPSjcXs@u`R$YUPyh73@ZM*J8+os%<|OK06TH85 z&F2QKS7)2+^R<^P{j;uReeC0{i&y1vz3y4?>de90asm75!nWRDboCAIXP-p*H<y2j zoZbJp(^xP*>#AqX@!RZ?o8Cm;j(e3q+0pzGORgYqF#DqTSC<TK*R4u^?cBSgHf=L! z{q8)j_{CSfH@LP3ilpq{ZhAkRp+@iP#%C3RhwRzr89!H^A8!+L#<yi>c=W@`4L2S7 zB+ozY*}3d??ZGqgN6wo4ygQ?v?LV7(sP$^gT&FkAUtX21DxIEnasG>^`QKyeCav@S z|4dS9{^37<S3~!G{C%n2ar54~8<ooq-Q}I4WH0QgFWaIYdgixgv5!`cv)}xUFM?yP z?O6NVyY~J1nAdiv<8N$yX7l-y_WQjRFC)6$Lhqj5$+x!7|Cx~~&*}Kr@8{i(OwaS( z^F`}B{~6<*r$c^U{<qRfG}&oW>hYrAd-wl1cmDmeKdh_X72IW(+##fF@uRkBwc}y0 zLy4#N3Qe0^@0-D2uOORH{^QUObM{v@=UYDRXyxLTwn+IGUD)txfqqXtcg)|q*rsnP zr&!;t^}WG2OW@o8c!pXBvoi_RvW}+v#Qv!!q!!%Ji`a3V`|yJg-*#`8-}|>|TWxPy zdid3w(fg*puea{||8~b8|E<5*zlxK+CTpwzwEX*))z_pSD}Trrexz4_R%}(aqx1fK zJUOg<krgwTi<fflU#*hvIB(OD+M}yX>L)d)-k4n!QTO^^@3MoNHk%qfXWaigxhZJ< zHT!Kk!T)m1XZ}@r_jbm%>){#h4W-A+nwI{a^^<qm*K4+s?ALW8%75DAFW=)Qyl%_S zp2TN$w{A3)2C>%XZta+~q`Y_e73=zi!g^BgR}?35GiYQtwl<4ho4IZN#<RQFS9bnB z5dGrjs{{AUrZj(Eu*d0v<mr3Q%5oYx&zq<Hcv@9iy8e&#t%r+_J*vxGb0eNVtZ2jX z^9zp^u|7)F|M1?o$m-}vQ|EUqx4Z7|oSAud`qOm&<qp0q3*y;M&t82tzixlq{nd;| z=E~ID`Q<0`KKPU0{pH@@+Ty}}CX!WuSS*j+l|RyHZF{2me(9sKi9NEdRvbl!EPI@L z>Q8Dr{*L+~d&0TaJ)mz(L)2;E4f1wu)ywS;y=VCJFpouwV+oT#!{wEGIm#XV{xR4q zXn)wxzA7nyz0#XWtxMG^_T0#SzsTptk(npXKe5)kR6pZ_#^k+<r%p|IJW>9K%9|-E z5h6vkr`IahDPDSO`u+W%n8wfD7W)17Q{}$0dwrVk;29PBATGIID*a93{XqUyk*mjM zurbIQUUOgbmwEf*KBgDC$-IBsRqj_a-h2N<EOh>InXh75Yj-8e&uNjF63qWKyej6c z>)EXbBaY8g*7Lqw&$w^<>;vzGyLTTs-m83XbH4r-kyY=%i+w#PA+&%0!=;zPK2Kj6 zxhbOm%>Dn5uiXy2tR(z>`PrRnZ(^dE&K|e%WBL{KeV_V_`^OWSliq1Qv%UK4l(9(C zt->1qr;hoOHFiABc`K}{pH8`-`FK<6%_fg58}+^V|KjJJ`xD)2GUNXBdZEmG^Y2U9 z?AO<^JV>ABAM*R(mZr!5zkb&}`P}--)_vl!@AHm*eV6s;<bVGCD}UU(yW?JL-|Jts z`*y~>ua-=idi#WDMEJL?=$^+P_OsY<{QYIp?$oAu&fT~AZQM?_XJvxl7W`c?vsCTW zc~9qs`<<pPedJR=ai;v$*1RtB^Ur#{>R*4CIZ~-*Kl^dn$~zu^<XnVbf0wHG_jm2* z=#SOHq0hIN2OC}A8ne91wE6zqV|Kj1)F!_cd#O-5LCaV6NFTSrb=OBRMslS+;vqYh zPMhY}scyfL`PQcmoR$|XG)jVWgVRs8{5iG5?(nbdSE~hfcCOsNgx^<IWiC^{xIOdp zAKRtsH_op+8dGd@zH94C{$PKu*c0a!AByeoPkJ|>>8H$-{p`iI)h9RUZvS;*`ra>9 zWecaKt)BYq{GV&vrPrvI9-URw5cOem=c-!qK=wlOU)dYuUv^jIHOFlGy!ZLrq&Ws| z&$ib-+pYiLe({eRRo}ln+d1?3;jEH5oE!Z<*ZpBDn`wW|>u$8G<b}dV)&2`VZVvU| zXP?Pqxp#fm`{#F0SALgrxjWVL%N85KZ2{JG>Yi)9uMfF>-|p<er#!E=9qfI6>~sCk zmnDyPe!NqWXJbBZdi*n6rTYJq+duwy?azw-KY5pn<CSUum#v%>``Glg{mtwHSrfni zzx&$d-v5TV6SJ0yt<1S{x9GHoeEv?+4|fuGhH@==IW3y`ztid5#fDq16y07aSew4{ zuf{~f)3OI9MGF02J*`W=X7ZBby5`FDkz4NwU7f_NyWJ=Gsle&A4bSyXuMJwU=R$o^ z_JjIUMYl8h_uMVIy>hP6&7$9dosV?29d0dh+xKye+~sw#>a`VR)9eiF_4j97yP~tV zyzbzYKTTg2&H1y(tSTmNot;T~Qd!_aJCoH0s}rii(q`{yn)Bt(!bsuePnU^T1eXdo z?h?I~>k{Uuc<Ht5?Je2s&E;oI4xA7_!+zn4*7^sl<Zh~^E#r{3xN}Bfd4T`*Zmvtl zo0lyS_qq02J!W%WmEXL$mK{&_%vrR?r#2$6Do{-5dFr;a`WHS61}{i|;(uCO>%>W| zoZ_`Us}8k&4tH|=)iY;L=dT5v!bL`#zFhlt;m=2nr`zWAy!mtI%b~De4@y#|Pn^7t z-}`y}xh)F<^6T$!_4dj7XHx6+OQ$v}Q7o%P%;&^;?MvOCzMh$LXywihhoxUuvRZPS zaqtn#s9I=ex;nwjPjLOOACZd`cWM~-r#EuUb8qCB8#Q6RrS9U6?PYFeT0v`BF3j1} zb0>4Agz(+y&OdwZL{@#CBUW{7%EuGCrONNcPt&_$T=|-N6IZ2nedYHUy#sG@wb#E} z<a)L^z$@^Y$i3;TmKvtU^=@%_byd%%&Yh5FCVM#0RPX2Iu4R7OpwRi8$L3!a_U?*y z^$K2FZ>ysL);4n=Ncr8I!fG|)lP15$qDYg_mM?AV8S?)5xmWZ($Y`Enaq8&e%K<IE zF29ttME2=i&?)dgZY?~gzOdlALhibb*&df4c)8EWkG#98@Ri-3y9-h(=Cy|Xv?_Hu z_jZMC%-M;-e5nd%@*jViFj{U~G41-+ply!7)59K1cf_rTYnHh<uVjJ87F*$;K7w0k z_87#Svwv?sFMHmJi$2qN;`wU!EH9B_3*Yr&rs{LWEo)CWidUw0PkWJ(ZC6#V=6^-o zy<q##<EB52?|;w=Z+b9C@s*X}KgW#MEEkX4Y}+a^w?-;|>r*qq$-M%0VXarV5}RE; zS(Vh>zdSV9v%FJm=Hi9PEW3ildmL9~^y>X86MJEzXrCrOGugoL%2tn-r;q1q9$Mb@ zDJ}Htl)ec}fy<Rv_kVJUpY^X~;^mOQU-cpvpWlm<*Z=gP&tu)yb9+`r&CuNQRb$05 z>(CQ1YFTp>PZ|79Zd+mge&Xuw2fq~G<C$XS`^96~jKF=i2ZNt*g%^L=&hS*o;@+z7 zS3jTot$(Y|^81-p8}$V~J(cxd|0QNE>($iXr>aWVo4M^#O^fbwsf^qC<mc?%vo0ri zE`F*pd|m&~OX$*iiLW}@%YK{_zqi`;!ECjlPq+NmPf9bEKR1)RZ~vr)X3O?|61QiR zEx%l_^Jm`*x4z`{Cv;cHOn4%;^rB+l-A}$n9+~CtIWuK8F82F7<G_w<oA|nytgU!m z@tpZ~!`=p`$4>%U*dN-8Yp`u&tZqzhXzOa}ijY0QevRp=O}!i6#AfeO_kcUTMafHY zdA!vF@;t;Dm?xZUERRkQFyO0Th~Um>>TiF-T-><#fUBUewz*F23g%b$Hhi&jEb}?l zD|oNuvUOF@hj$V)vo19{`^>s<KIL`Vrmg#L^5hBUUz!~?bBkY!kKyuvjE27-NuA)m zaDr{ckB~hxzo@Yu+EQG9!D^?SC8OuHH4`Fsp6g2sG|c{fitD5OnzIJm_>$+J@nX(8 ze&nZjTS?=q3C>pfe-n;**uPm3YMquFQ~#1Dm-!phrV_UE;+Mot!nK~)_Lb`==xz|V z;EG`|St)Zq(`NaSU=fX4zud;S0~R2e9Sk>?od3u-$*-t7WY5ms;tKVi>LBidNc9hV zQ|y{w8^1ITdE0#HTx@a~w|hzS>4zO#WO!#s^;z*Iom%qUTYqbVi)-Q%#X$Yj53fwN zI`MGn#J94kMT;-VS@s#de8XpZYop$}xnC458UG#cw{tluKZ%cr?NY<a2Da<&1+^|m z4-_THK44Kutzc)|Rl-rh|D(R+7URYP2?z9KwOtKUFI~K}qQX6f`DI5*gVdtq{NC?5 ze$D%`ZNYo5e9kHX6Ok_yzLaIIXnvHXFmHkyhY80P-AAD>zsjC{Wzn<a)}^>FbD7_7 zbI^xG+l3{2gDNtYE#@<-oXK~SbI#H)a~DWwHqT8`w@g}G<;+m}uj^GAcYRF7+N;;y zJU0evhaEf}ANbv#MZDfsH-byN-u12}zuv#DQ*-&m>s?d*n!5Kda_epG-oJ>Ax1D>v zQRZ3ivw1}&awaoh7B*hu`2s^hOC<j+^yXTB`|(oU=talFj=OEoc&Tyka94cdQRm2y zY+-Ybc0J$lsB+B?c5S)S^<9f23k|gSQjcz2^CR^dYi!_|r1H3jZ>4T`h{`7&J-_*p zQ<%)rF6GEV<FGZG&uvT%ipbp0*QCO=Nx9G8>Oypt({C29#1|J0PSi-09E#i1&(!we zXp<+u`Aq5dBB_0gQ}r+3Ul#3C7ZaapFZAxX!JFlm8=4qz@f+Ui_xYyW>`=d_n(=W% z?E%&U3?>Ebiy!fKlq=kWBp1B`#tSZ`dJIBOqeJhgX<fUv>Wjj=$=@D7tk=-+;p*n) z<l^h%d!=nJaE8hG=7Ip_kXJsuQV#0ZSLUvdJ;qe_SM0;@e8wl@&(-hh+d3#pbUYQS zUGOESV{y+~o!+XOg5mRR-4=4yFX<~?sv*XCtCg#DzcTA>%e^z3mabi3xb&d%1f2~g ztEMLNf7|1+^>m@;5AWmU2UCUS+-KYW=0}8naKy^T7EasV71c=8tbd$v+sN7}u2U;n zp}OSYF6$lLkAFHhmC7lFO}Bbhu<3MRd4c@#CkcWRQ{8%WTlCE?7@A~FS*-ubn?qRc zeTS~gyxlT;n~qym&4`h$oE1Br=e?~YtLQe7+X~aQ-rG9V*B4!z%I?A3c62l2xmrn+ zggx*6lt#EnewH^nwbJc~ar#_FlZ1*ro4vm@7|k}ka?`S^;j-C}Z&Tj(+@0SQuzbss zo{Jx*7^Qt!(CYj1zWz<$o~v;?)@Uw2E3W75yVQ+$+4rm~tNqU3ik&R9?vvN%dl#qI zOT|9qD_kdGpmTJms>;<^$-}a49<LalAO6EX=S`aZ#_mqe-8cK^ELrwuTJ@&+LhYXl zcBVUJy=pKrbNVpxTpf$N$}{(a>BkS9`RTE}eOAqC-+dlS*yD};4m^MEKCwyv(s}<6 znmwO$^>e1p*syoH+Xq|Y`i|2&xw_M;S4X@PRXzE}$bZ90;edBfIW^e*zuf<Ova7!@ z&3f1Jw4P`6GHSX?hTI;-_snf~PuyIwXI=hzkFEc*d_rzj<Q#Uqym`(_!AQ<?Jsm8y z)!#3McgmezyxUzRXZgj>!@=A7`_6i4yp_9cYp7(aSn59ipn3VeMQf^8pW4M%`61Lu z`pooyA8cjS3Qm<-A6@=UF87jb5O4j7?5N8duKZwg46f#S_*U*(hTmn|4Pj=%(;YwB z%Gg=nJv{4O;_S666j-kJbu53eD6{qQiohhlrl0Et>^Zb%9kaeu<1QZen!T{|+>I|S zhm;mEo||@<&7zuDa_XkL(`SFQRSVmkk#EP{wRC#<h8qE4F0Cs!8J8R=;9Qlk<LmOU zZwID5I_;dOB^7aEQRG5%{?)fGUQGGbx&3DMqReThUv(>W&(fT@<ic&$Q2RZb7p<;Z z!y$R;KO@(sRoT-&O3RBenHWsh|75E;y(mLTkJ;G7V0z;xTT4|(hod3_1?N?#hn!ks zblZFL(WNC9yzX4`x!rq7%r`iOEB^8&lgrZ|e6p3R=a5NB<?HR$o)dGmx5`iGiKx$6 z{oTuCi}@HPbG*FSBsularrZ2mSwC2^Jt)j^x_M+}_O+UNE`<Y(3)alGNd4CG^V(rm zhPKw0V9S*n`!^&WJ>JZab3JqKy2&dJ7b`B#^5IDpoV+aT+@^P7?-!PdHM}<u_Tv8Z zyKau#+ql3hc1HE4^<guoJDQ3pd^UT?t@<;#+fH)#Bj$!R1`JnsZMxLu^&mu?q3E0U z<J70FslLZ9m9LETe?FVfre5OTSNH3y?Dj6%;GuQ&_Wx9&=WPZPUU0;%UfEhS`}-_c zXT_3e(YAnoDHE4;<}>Zn6Li-!fBnF<him=8*Bcnk4yoPX$v-fALp|%ZCg!XJ>piUb zhpjg-XC<n?X}Y_C{oA448~DE+t}bA>*Y5m*v4%tb;PDTfHC*!@WosDY4+;L@+Siu< zAlicM_(PVDAFC}`moJn%cOcS&{rN-oAA(X3nEtTWHF+0E)-`Guh}N}c7s%E%OMkGw z(-QrG{Z5-&K~qNuSI8pus>StuwHtZc7BTutbjxlOK9*eWb3|oJGS{+1`8Vx<4Taes z2gtN37l`y7ES%BrY9YG(q0gLF{s%QN4gHU_YIx+2PcM+ob7Ze;Q~zjk&uJp(nKL;$ z^GZ|qM)I9b&EK^4jll1Q+7ot3@|*K-mcL=KKDjUb`OWh_PbMVG9A9Z+Dt<1qeuqyU zi}@_+<5P<+@3g#A^G-2OGW@9RA=`7d2W^kqo?ZJm?rGd(nHb*fbE{|HKK}MOUjh40 z=R53op5Nhpr*{2Br;TCn_h-gGb?Qv)+vJa*e=Pqf{A2$|{}2A3{6C)mp#S0ZkFS4b z|0%0u-#`2Rod478&zXPt|FHgX{quayEnTHu_0vV8MXg2OYx8N@g~Wu!nEROB$*;J- z<G_w9KjwT~^>Nn6X_^O843^Gjo8>m6$ak?%vd?Fq{F!{S`eymfs56W;w`5)WK>bB4 z!@^zxofeLTO^ya!YK{VDoOTFkmWVuRJ?FG&g31@6OD!7@F(q#OuxUeFg=>XxMeGfY z93eCAe2#k4L$}jfZ{C;5;4^ohWj$l_+2phSv&>sI7xWk8?#SN}U*S+uP~ow|@Q%nm zy*py}^lkKQ?Dw2Fq+`{6lPfIk>!w$0s<J1To{>uI-B`9wEpmB;c+~WW>Cy5V?Gj_N zW7F^E)E?e-cGu}$$Ez;<>iin~I{li}>%!Ol6Fnz>J2B<N9<~!rCpag5pI-aTR!4UF zfB(BTzQvb5eh|B>@Wxtc_vn|$%KtCVi<wgT`1$l>-)xQR`;OYk^b2obIqhkl_Soi9 zZ|f52t4pN)A4JtiZcpNsJNAB~-2ViJU4rM5BGRwTO`Vw6lM+2+v8%aV;_*AX3cF&H z_7^C;X7k^*Q1NcZgH1bR@_42n4?VSOV@pZ0<;!D>mq@SnG@tkI+T^@Fe!DjIR(Dso zmprz8R~u<=_hjFLy65$Ih1)&NCzKp+FG)6dc`U-NfBt#>=c|7n|9SO~)W6Jsk^fx( zrT!DG<NhxefBOBy{SW#--v226qx%o<zhz7!{S))ngj<O0_B7|y+!qjI$nf%*h_ZyZ zl)TY8(|=ie@|c1rcp7{)PTg6WJSTJEOWDip%kq8h&#p7QE3n7I{7>p#j`~TZ%5U`U zb|~NV$XF_U^-xr#d7SFq8xOAanz!bbzc?1~S)=%C{ncKlNb{EZ3%zT^?yi_tntb{G zi(`hDdXI?R)##d|^P0^}D&?+$xtn>J`rQrY%gnxIzIrN>a@XPGw2I(AzBc;vgwJ=e z9yqc&r=ddh&7;hZ?yq*LS!M2Vu;Fa3Kf3r)<O@}~<@b~ya0*_Sn)a9J?gH+s=Q^i5 zaPFxHtO@+%Qqy>?GA>7GZiv;w-XBXeF6A9RdVIyc;G89*@{IZ)#LPQG9~Bk0THjZF zemd&Y?4o}YtncgREvf0;5wb_;pU%4`(=TQJ*seYbJ@i|0)r&LyoyQY8e@y(r_2hul zN9`H)`f`HtLi-yeA3dMICHkoSk;F#<AJO~mNgpi>C+-mcbaZ=S&kUtJLG?og)6N`< z&<{Lcl_d7MaitF9{iL@MTPh~GYD_caetOyV&kU}1Bh~jQT+7c%9<f+H%~0KH=Q20- z2f2TG@3T8rgykGEeiXV!JpWPVzA5|9`X96UBVxa2@3s2M{lzniH*LOQx$<S^^CQcy zp5r{XXj$sHL(3}9H7(nDuI73AxjoB-p5Iuu@|<DBIoYS|pOQD+$UJO#E`z6ZoAX-Z zt~f9GFL}E(wE}$mr%aj`aPDTyi#=?;=i*Pa{ds4@wcnEeplO~`<n;LoMz^_-Zuh@$ z$9nk2=k5J>>}o!4?p|K6cW+OEo%u7T7e7VQ*UyW;wqfzZw{35EO?jiGx0&p@`N8e* zv$kGdX{osUimeZ)woRA5HrKXvVesGX^yTvnuj~)l|M86aSO2T~%MM1_@2ktL4g7oQ zm-_jhT@Rx7FZp+EChu2c{hqb=3m5*i{QpZaJ?Q+;YvJ=R&*in69lhTAd97o8czme+ z`!ioIPxe2*?tW=n^xwtH&F91wXPsR+-QTt*>*q@0<#E<qCuU7u-g-IL&)3@YUC5i2 zzk+4`Z~7md-(_+0dCISoOD1!w@1ECVfAeF??#U0;o&8_=KkA(C|EJ{9p-y?fIkq3q zc4~+G{&Iv}{oCA%???LH*VzRYKYK0Q?zgADD(Q9S7hz5Hs`(ujf^~;#4pl6>Tplg@ zewAFf?ZP_`WLMO9{#^8l_37tR&!?Q<boiC)n^~u?@A|&;`_At_U$fgTaCMvz_~+m| zw*@;|!YedFvwD|L-`*eg{Ppwo{2V#LA~Hf!X$G@cig&0UlDcWODt3$RvfB0=eRCf@ zvMzslYi)JCQ&Rtud3z_l-5VTq`O@z%Z?D%o9IIt!Pfg>MGcu{Z@j=jXr?PvmoN-x9 zoL!H;hR!U5!k~{&elPdY)zqCG78ht)d+bc)=I3W>6Yl+C<(7YPO+WJ2=UMXdRbL*8 zo9$b)y6LEY%+6h(Rz79-`}gV5vh4kF^*?+2?JA0E97`XnyVlFs{rS0kzHHu%52<&> zqt*WXxe@N(=lAQpzqXqAefv_cleaEqral$Dtet*lk3sgiH#<Me-Po9S@J}m$+@3AM z4fzTcGEOT^iXI>Icz-d|d`{`P@?PuNE)#3LMI;}wT~Fs&n)69@v!>_PwH8e^$8vVe zueqGl^*-#OpvNL{v)MMM>eVxra8w0NF`1P*ng3?v3R%XekS3;Elj2t`o&G-b4bS2S z-aSn$EB*4<O}!@TRrhYWf$;MW_7}5v@V>pXd(X_ccX0(%G99=LA8^0T)Ys)pP^+_j zJA=2<fctr1&*!cmEUwGsE(D7@$9+f)VLrV0&vB7M&kn^@)w3BePnmrD4`)q1-*iKn z;zG%_8H-MQHtCHjki7joMki0L-dc|Bz~v3H*2U9*+OT%W2gmc2G#SnC-uFYOLS$aE zvq}2A459pq{DMx~rJ1x(Fx&IoKk+f1>D;o6Tq*10XP@vD^CqdWT=om|n4W3QEOuE_ z&+DSf(Ft`o_!bumzdq5nNh?p~yITIU`rn_Oe{%lu=gPfo`8@8UVBzKprmD+tSU1es z({VPy`(wJn&x`zt!n2Pp6_~o`M@pUH#c=NA1g0~KWall&_{A{yh4-zc!bj)2Ys^hK zzN66Q{P#!p0>8V2kG|J9Wzg80A?0otsC38u`D~WSiF`J$fyeZ^*!+b5pG#D6-Td;& z%6^sl^?R7M8>DbuYv1!WJ(BnKas5Z;pXIIcyBw3sKiaIF>XGidaO$T85?UH-8=h;H z-S^#iJki2CNYLfV`DGdw{P73FKbG2@<9)hn=lzO|Rb}6b))oD8U!z>>GHF)dg}K*G zsl3lnc_MuG*#Vo18H*O^7QHEI%cx+UBU0Ia^yLqeI`4YJgYQMO`xkHN3EjB;MqC$5 z-J`UCHNTlEKk$|mPyQUeF<_43KF+F1|2?dp*BZ=QvQ;AO)N1{<sUIY4yk-7{+<PqI zYPUaNiSoy;<vZMbm-{d6P@Vqh$HtQOPLY*5N8L5FD#h;~j{hL`cqaR0LtF0D!#7;Q z&Zu3s><f@7>h6A4RbOEHa#^-!o5i8p<Iz7|>{^rBEJZYP9{LB_JXqKfeC9hxNbR*P zmn|<?p8Lr(_nOu@HhW9HEfYn`6lSR$Dwy=r)8*#Wl5=O51TKG4v9>X3b9RZJ>Z^;- z`nJ6(x#ejwKWW9$9X*r2yyrPDeD?kljVyk-MINuX|M2+-Wi6R3tubp;{RR)qd9RKJ zMZ|mky~#1{aMukTv-!G8tJW?2q7;4n+UD?^w{!S^CB7qH8B<5YH4)#Z<vEVRW> zmp*#5qhg);_36?M6T|q-9s4$i74{cf@4Wx>VU1$^5&MJdRbSpbH$QmILWviP+Rr7= z%E@j!&|!V1nD5ADiAl#Lb!I6YT&v<(zj47;l>^HqoCUMZq8s=(m+U#Qx4-(u5xI(a zKb^R4cSRQ%xz0A-)9!Ts^#2)4C61P+fBeEw(@{FXDW<09_pG_cxK%#-Z~P{3bft&d zFDEUw#shDUG#;tt_LOm*b!ETg_lY9^IQ|;2m=!ZGWO!v^{r11vxmGSSvAAoCo~cW; zyBF3QPWKk7<Q03UBi6{a=qF>I%x{KjW9@aRj%#ew9LxXo{_P6B>FjczePfHYhSUx7 zC5ipTYDX15eOuo&?SJQgPtn77k1yT0Ms3q}izAle{{$o-zCXNgiKOjA<98xyh2J-e z?D6rx(SApJ`~18r|A_}|&z*a0JmG-3N!|S)cH(;X?$<9_G($<I$FGg~sAbI3Lnlky z*3~e+{BF~A*Lq^zIfdFTMeWUPx2z^DwAj%R{ZM$0%dUss*N%EkyV`QsQ=i4=P?5){ zkR{UJC!XE-`1Kpr3lG9)I9_^s^t+Pxzi)5XZkX`8=X<hyq3nN)?bB@E%;Cv*(3@K? zRn1>lwl0l-bH4Or*Lu_G?D>m2U)<u`d{eipb=m=@kBXBH-apB-X3_VTnJ?B}nEbT% zigIgp<VDu1>LpHU_Z~P09F*P4f99;DVNJxh3yRH~jo81wo_%L^dQkt7mUnk|mGt$$ zzGAq|`L{%L$?g@~CSK$4-Vtda$(y)P@t|Wa6Z4mUb^EN=_HUoQ+-+@8RlP<<pW=}v z(Z8N>_MNa{m(P58ef{1m+nxlw*RAfeX?KXNeRrggqta+rf%>w!2I_ZOGs_ciMH>XF zt2hSzmQcK_WWl#QvL#B!(xUy9_GO)&O^-Ll$ZK5x>9O;nFYo4=X&f&dCtqS=f5!Q; z&(2sabm{Y@7pqL?%?k0(nz*c%=SoJs&B|AvrtZ?-k-XbpwidN+_4HqpxZu;WU`r>R z%$I!$-m^+r*wcN_>zAbPp7ZqQHl1C3`?!U{)&oZO7^jJ}UsGG`uxd~5Vdbj}r)(GO zTKf9HVJF`+|5mwYl^WQce-@gdc}9Nj;|HILm)h3kZpoju`0Sj|j`e1lh5N6}NnPvi zyt97Qmjy|VSz)2N!ZO+H&$q~#dROM@t#vG(xz#@|RQ}d4!OkwnjU@sve_RTUnXa{I ziMMU#WY+dulagkJm|FHr2n9WDP~3d>wv*Ev>!Vd1p5m)E73-wA7p+h=x7S_c#vkgO zme0S9`(SzBmj0C&f9_fl`FL?@_?|t{;ayS3p3Lg0*Sl)ewq=6wQsKy7lO-%#m>T^i zB`@qQnZ9Y!yMWLOb1%G@+--6?&?85qY(?<rRVAH4`%UgI-0(`r>1w`1&i0snCF%bA zb{{{y>NoF_RVp&NOm2_QmbRaL*3mcZiPKE4o+ZZLCf$y`b^OeVRQ-rkB}}3&b|+3P z%-q?z(WQ8E<fB*hhqsnV`12k=bkK6$HipN}+Z%1KO?#bCdFjNzXA>I|FP%8_Y~r++ zm108ox2K%9Ik2!R=Vw-F<G+`ag=8gu)boh%JZ9V$WyIEhM)1<=Pj|MQJ+W``Q>pj& zjGnEt{1aTfBjDM(jRAggs-7};n{-Tz_Q>p+x=(JCiug6HP?fGCey-YjnO%G8*4cz7 zoBcoSx%H7~=CqhUmS<~y+!wt)SJrQRt6b*%>aNAipC{@lSEqzdeRgi~=df<)R8>V~ zMGmH^>pG7(FR)Tk{nEobNt#Rh)xN%|hN5A=_)hPX%ewZ|tLXWKoBNFZ`>(F}lPX%t zd(zI*=BcR7(!loqs|%+V=dX6wy<Y$F_OVwS%f6O+uDZQ$>g)9<y52g7U)@yn$?0>k z>ePw*F3Iun&(vG@b?=j<HBWR)K3(6MW2QMr`LbJl(E2;<v0ABRzS&<Fitg~Z^7Z{i zyJJqK6SAF_wC=m2>^XUY`>*7+ujH}}pI_@rnwP@&c}+@F<h;-cZL2@6$SUONo#v+8 z8c=`f@tzYgvyOT0XwI3WWi{oR-KD^nk6eOQ{V)%9)}CvrQ5JD7eBrYgrD&m7>yCW8 zz3eK_=9!t5?qyqC{C3T8o40&w@zk$f+@_i*C#L>xkNxwc>)tDl2`3+E*Z+<B=5^_B zs`;POWqOP5?TwYMy0L22uZR}A(8|!CTOS?zDCU^H@>c!H-e+#%Q<pwBo!t{vc>VCg zKD+)4dq1fqD$R6e(=-)}vD<O1?{s_LnVX(@GdI{+r%StvuB_DDx%2JP7d1+*i-kom zofn+SaJS~{zOc>fE0y@Sv*!KJwce@JtMK8sYI|RzbfMk;;E7Dl2^?ix*H`fx>T0g# zZ+_wUa^8(;ORKY3>PvSmj|=$zg<s%GXQP^<Y<f@D=|??p7qK6ev@U%ko&M(H#{8s& zpyT^&|Nbs{GyC04N!u06>%+b*IC9`%Ze-Gf3ES2zuTM%?a8zQsxzyuJwzj(eY`^~d zXWP2%qU_b2fcQ{1mxM*>R`YXB*nU+XQ~l->ezTc%YwN~sTW?%@_fq&y{r1JGR#mSR zWL)0n#=eo;y5fG~sRKRnm%FR4B|X0Vuk8GhbN{x^*kill#*H|sR*qPf?jNRk;$}^O zck;tm3tLOa%m2Fd-O=nW@9m$jlh3`Lm3L#Ec_3@j<XOj5Ue21dVhUIMelt#uR3V+u zFB4`jxAt(I5R&!&SIMi6<YNlr^6ES5o#o7))Lgh^w#oZ>-oI&KR|{6Yxy8Kl*}5-> zDl*$9b?1kc>LwXRpZHi`ejuv()ajhM+RjreF8|aNdmp>X=ta$68?jv8;Obdt^Z6_6 zbQJFV`6RS;b@_Xt%7~2>)iX@aR_5j(iz~ZV8NBi$tHfNxV+!}YSARTyK00*jJgdEe zp>_2^|E4O=`2H#Mx8>ug(AeVqQ$<X_H+nrhSlMXa;<$c0W2hJRwW3?HjEs$9^76SJ zy49(>(>o?E|CGBw;qXuOrkv)I>+JL7m+UqSP%;z@D{ofl^hld_QXs!?^1IVpw>)|M znLXd1^Kv`)omU2XE#p_sJ{z*!d!uYg$mIDY%NFmOQoq{d7Q<qZdmYBJUj1O7Bi40) z_wBD*ET-?*I&4^RwNC53K)maQbz;-6*r>_A*z?Z4!}sjXu;qs`cX~3v3@}>$)VTD( zwc{QcbEH<NI(_zUS-JPn>{nB){PzYf>*$s%eU#ZMe&1o^Qr`7%SoT)r><*hN6X3mc zy_?qV+gGnFjP#f}uYTU@w^i#?8c*fgaRw!>|KP<ib-CG1sV8$Mhy|=kjPiZnAm`L& zr+Xkz_kwtYc*Zmr`{zHG{Ii$J?|-49cyrD(OF{K4HE!?QtCqQk|J?Uv^VR3RpO1C; zUbIf=|1LNG?z7ly{w?_rrT47(Df@rJy^e4E92cTZvU-<W1*{F4kRNxtKJA^sS7v99 z*om*caRl#Yu+6afyZ4NkZ*(>TyV+vT3mO5^E5f7&zjQcs#Jy)pbCYB+**fQDT+7Tr zt*ys0zJ2=g=@VCn$!~2#HLif=Vd;xz?O2$XF1DpCciObwi;foF3VO@**8A4ls8%xz zw%Z9kY@Fh(U28W7Fiv^;Q1r>_i;eYPgIJw!tq%Uiax<rx?d7??nPGl<D}AS@T#jA- z>%i%dqY<}d?#_Jn?(c+}o7eRf&3+aYO?qoIXZaq^x|n4XriP{I);1cvnEhb(1P5;Y z;FptXp2>zxRB&oLT%6H%*lXP(v)+jnWo6M*?uBW`Ro#}+VQCI8zpgHR+^5;_a!v;G z?E2TrnR~n+?yfvx^;X>R*6XnM6+N$y?kefq(&F4;7x1t&dzQ*!d6zdoAHM9rw(!-# z$-!KwRqmD^Ix$`DOjT)I@8*Z0TqeuCjQ;*|pTBpL$lv)tIrdL(+52%{Pi5c5&+*0o zcGRAHy{<mf);I76$E4kQADZ{Z&(N|^bYaVFvbv)DtlsnX>TTuD_qSF$FdT7poRYu$ z!n=j<UG~e@n(VTRVm7>S^t`#t^`rV0F4r4t0^bNM398O4-M1;>ORk{M?)fX@c@_nV zFS`EHspIxFpJ3heEwgXU<b84dsKk|n&eu(~T$Xe5ziewyGIHj7dF#cltdgxM8GAj> zm0IasUZ}U@wcfMN`u^q|&W<{v<7{#HN|Qe%8-Jd}W~Qndzt8W^<cep`KFWNi($_LI zCf`a`(|Pt`cTa}-ra6VVJsP}|TDP`TXIxynSM1x@tSKk&g=jsUzpl<*>mFxraYg9M zLwWm_DJ;GJSa_N3E8#Bfl;TsB=3l42(3f=H7OeEQ>G%B0tN-p{?un_Ny)u(KMC#R~ zum1%0u2pN*-@7(ZVuP^ABUaDNo`>~sd<_Zw{Hh_r&f<Yn!=cmB&)4%8OuTm6+xO!} z@BcqGBv>tWNsG_Y5OJ$*h+EH}5OLU1S3K!E-(%Z7drYgGLmJ|ae|wPJAi*wUm-bzM z@}0`Xjpum+QeJ(@{ldnZyQhBl{CdMkz1qVuOHV&}vz^^jee-MKFJ=E(E=+$Z`>V=! zJ-^wDvW>wNbABipAJe^jMDX?j`KJB97@JjkrJQ3j9|jd&;;oXto8@{r=g2%B_X*ME zWs^AfMI2^5HOomRIBM6=`zN<n6mQNecx`>=Z9*k4`-wB0lZs?E{4)2H7uk2b-<th? z{lBk%b{<CYo+js?i#aKMyTzGyo%OKl>{TD9p3dFJxh8DQc7D~<*<wvwPtKR{lgg8} z@OPe}D05rdD%syzQ19S#-e}(4J@caMa|LE7GA;70Tc$8KQvBl0#r^J~KR*3P=e2w2 zlGtr_K;%HpU#6xe=a@g;+e%-Eh`(R;`{%EUtSj|G|7}jr*yb8ta+||@$L(!uWv^xA z-M^Om{5{k8Krl{wBkz2ZnUzb|&yO$J;=9-+`>??pG5L+zO~#JGt0R{_G}-#5J$Krf z9Z_!*zc*#eJ{CU~e!O1r{N=vZ+tp`oC|K$q5%?7LqI#ypqQz5cc6NSY6V5T~Y)zhG z_aydO#fB?6Gg%bB-fo(Hf!9v0KJN*$w&>+wUOv{^skO_s)Ow^hE?Si{=StB(ou`k( zPCvf$gLQGxG?CZNv+6P*s$W-I@PCJ0_pEjI&L(=UKi9eZXX%mTllv_;3YR=$eY9%& zk}&TYVUfUnoWh3+)?JUe%lzwQ;`vSLS7+Op|9to9&ePu$pS$myE@IF6lcnw3_gCv5 z*PB$iMyyjho}4oK_gCRV&t9ar*)ETl{WbGHd*VGouIvjkN9UM%i}Jso&Zf)x+xdU= zg<b=HdE*MU8B@LNi#MqS2QRz1%5rUBhEtE?GoN=R$9E(+KPs5cDP1vhkL0PB7d`js ztakYPd87EABd;&G?cs2IbTs#0<HFr5B-P@|?G?V%S3THb7~rQ9U}7)sl6q`=@9S2h zhqV%WMRUHaj$eD!Y<1kvSC;9A|48z3Z__zl|M%b<-DmpOb=}@_$J=bbQ~CGlo2BaB z&-0}$svn;?nm-{=MtPU5N6G0!z26S*dGhs_t?+ikcaL}UU;f!|yg}*d%LQLQ?5fM& z{WUWG;Jvc^)VJ;R{<maL{Zc;lJLt+xon^h7((a0vo+z-0HC&Kim9;}t$3@ig#B0HG zhx7Wryou^wSyo!@yP$G{(N!6}n_}+|r0o21X}8zfkfb@bVZ1Z7_WP9Dt=QnRH9mCx zu0@YR6`h^VFuyTLZ<s5vp63AL>qoa!kEx~}d#^NG%-!r%y!b4h!iajQaQSl8zHV;0 zITc17d;TnaXP*4v>*-ymH%*+BX@B;vn$xZw3aZoD-TNyS%$9!d!upDtnW_3}m-zix z!Z-Z+zbrA||8xm=@{3GQ*}2KzO<tX7XenK?#((YUdgC45!c)uSS4os+<rYOum~wTO zPi=g;=8n@MCuegn>+)PsEwyyb{Q3pH27(ftvtrw(^?y0czg;YAViL=w_PixEmzbA* z;kdA!^T|_lU%AZJ3rl{ApFA6!((}V&)`iCRmm=Rixm_vocgw#$fteq^e{_Fyqx|9K z#h0pX7#L_)pO_NNFK%<!_36{q-#<QIBj<ML!wbWVv)^p*o;vbU^RWFq^CZo5<CY)Q zE9+}l_bS%K?bAxV{^6YF++C%-{6;UG)o-w`IoI8v{e0=y&tb3cnY8_=UfpwwCHm0f zTBYB&oo=U=`_7vy{r1;K1J*f;pLdz}URL|NENJzU`8I3LM{V}h>i@d`$C4*YwcP@i zoOJm6yniyIjhUIP^S8enES%>olyEGItUP{xn&rO@BK7CJBtEr7|KQ#^F{?;=_h#lb zY_kfutCBR`5^Za`%672Ke#kRxA>;GMemyS2Kc^Ny6nWF`TOq_df$i}FB^&O_4cz<M zxpwf(KX`b949ki3#RYQ|<oOcRdDsN=ocN9%zJ8{evFb5bA=_)->Jy)TF~52s{prZQ zHlt7MYM1{si?D~(PvW&^Kb~MMbJ(P)^*=MOfoM;G<m?C`vBYYQWq0*2o!cV3cK`Cw zU(MHwmomQ#(fs@7!qgYr)@|urnjpBgUSj<v-_NR59lv)lh`Da(ZngWsY{QuEVEJwN zZp#O@D_Yk+@|-j$@PhEK!z^69`&4>FKZuwd6u9C3_-V<qgk7JRC-m3f3ut=(NXf5r z_eJ4(%*uEF@@{xgR5S109oFg%2Ma{EC2O2LF<G&H#d9zBr7Z`8nwWjgO9)4pmo=_E z=<0L&)~0zM1TMZ{2z;Ks<IJQ4oy6n9xn<qYJF2A%_4p2Q&0tkEh<(PLc=CpLr;&JS z)%_<`LSMf%xNJ{fX*;d#zgyeWEz{o!*{Q^9T4<efsE^@nJWvp4>|yD7HL8Lw&Ye9+ zV7(EuvBysCS;FU%**I@s{k8m;y}Fs8o0sa_V;a*+4~jkVRjHgUGk1x3VUFTg-^S?y z+{%uuRx{4<O>lcMvB$V;{<;HVd$gwK3)@N7AO4WXZ7c4$)#rTLtW#fF;%8;vbh<oy zNwJW>|LNcDla73C<a|@Na=+w~!b$7Bx192r!ET(Wr*mleN6T+=UYorVP1dv@Um@c< zNh>ppbMEi#NN@QzmPq&b1;rr~=E+T|i=Oi(nEmCF#E(Y~uiMZRc){!W?#9yztg~iJ zEJ<Lwa=^4+XX)ni#~7q)`R8m9pS_~2FF}9pf4PH^Kfg`V?O@V>73n$2KG^P{g_J9k zTh-;+m%KIwFwH$s+STpSY2LBPQh{~9l-F;UiO<$7Wylc-e7M5KzRBQFf-ujr5LUIy zf0ip0vOlu_@shdgUbcv-ZqoDhi#`^95Q<1(IIFezX8i;?nfgVaecN23miB~2c-)xu zEtkQ%aCu9{Mt<hhx4WCVHGL0x&f&bhA<L#mG{@BY;rt^}HvI7ivL%{+1{|+4(rvvb z8^Lt5%{E1IufeR+V;npUR&zRd#2>O8(p8VjUEpEMY#bpzhihkrnEOM8A1y($y*n?7 z7Zt7V$$zMPgYkdCdg*%IwVLa1Y?8a#bUmZzpt#P|g3lbzRlKvFu8+L*PcqH%+WfcH zO9NuGmdid0+9~@!@BYLa1!gU}>8YEh{L{Y>HTfUkzq7pWu9!(ieQ}>vE$;E_63-{e zC6@I&w{p*zS~`95+{)9J4thj|P1@oSz$m(<O_+W1o~H*wZoO5H{2jlj_;P)fPGjl? z>sgNPpSf0T=TT|Ad-9!*+Dkv>*~N3->|eqebWhT5iTO9PoA;M{{@d4b-ZOc>sC~<2 z3D&|*e4!WW*gfCh6A?c>twMB<b6l3~S<%k_>@!6#cRtU&(Yq!><&99iGVg!RX_H!O zdrMwQ#59OM4F6bOWh}jbBfnAq$3cfp^(Pn~@s}tsezC+@ST`cAd#)v`>n7jHZ?0W; zN#&g8#F*KWz0O3;@5_WWH}BrbdFGPM?SA2q==ax-wKI*5YCYsATV6T+&gvT7%jYl6 zI&HK)?{MCwS9%{rBeP%DbKAIYZBAjn*Yy5@-OvA5<|y9mSG}k|c@M{?(ES&FC_eMQ z_Ds{OKJiiXmUy+bKcvpq&&&9v^z`QrroLc@?Lu;@`<_hrJDa0FA$`h@5^mE^@A+=N zI5YjlTCIjui;g{S%1_RdReZId>8lFs-v`Q7$^8fGKDAbzc<E~5Xt-B3@e%8#MAN*( zZ+{4`Q|k`&zEvZ3eUkl#js)}NDaSQ#M%o0{2(LL5qBpUAPyf9e9^WmxR=+rF?{+J+ zNqmNR*AE5hPU%RQe;v;^_H9*`e$=`9q`AO@WpAWiHkv+>{_;fVX5lCCU7PbJJy)!j z-y-(*2fOz}i(B=aKiRttroG$4UHz!4N?&Z_wk^x$G?|>azo}<(9gp}V|NRm34~59< z%TEZ~c+b19!;{FradQ2Jd0&?m8%6yz;ZCx7XzQGPFHLKYgG~kdvx)OxuqHkUHJ!-1 z_f$yF;qM)Mmpiz^KN!^=WWDgVslbBi;^alLRgb?N;G6Vs{e$vJ*JD3u{#+<?F2Ty9 zscc4*;RF8HD)V{gsZ{-E*ndz}XQ5>F!ih^hX+-W}n>6>HihFaS(odh|59`??Jhz{@ zz<+D9PkGzIFHIE_w%qks|2?bBs=aELJ>%KaE&UH!G85G5bk3Judc_=R#I0)8CR{E) z;ZEv7iCb?i_8Knsa1NVrfBS@AvIe|K3R1TmtS7bIR#EqLan--{kTvD^`pdVi!`n`8 z`g%h3e6&J#0GF|cTl$4}*O%U3l5{t!ev8K?JI`(vYo)UhjzxuyD(lVfdN-x5jqsMp zpAfdgag+TQzgaK-u3aqZcF=8xbGG~vYvv`BuGKNvPq6=`8@B1&8>RHL-5*oST3)e# z6qvT5ePuesuMMti?B5-K{AHcY0jaVHXAeEU8Cu2@-=@4~Vs}dB6ro6=-xG5aGCx(G zZ0oFdeN=UGn&&;i%1KxJrrDlK`>{Ir|Ev{tyKZI+g?DL3?@^!5Uh1(;A*J?6|IyNS zMN3(9>sBiK=bPm?&pWK+)be*9LZh3H7;~QB>Rj&X*Oa!u``-G{P4RD5y`P{n*<$*s zh)v76w%4B)E|re{nX2^1eU9$AX@B&0s{Gd9&p2tSl6-wcjBB>nz5>a}iEOWKJD1-r z5BDlwF2W>zB<Z@n@EXPZ1Pjk__NdaMv6;LVpV>{C$MLBxL(cf#M3GN-o)sEr9@rU{ zDR^^-$fkK)%nr@%d~@FEmhQAC&(BTa<L}yjGJe{*B;}WP)PJ^4O83~euqkJah;QSY z?{EL+m;cEx|7l+Rzy9p2%pCTc3uKq9%#B_<m;I)SH_IEwuyc=23e`4hpY+N-oPSsF zTKXH)Z#J*5IW^vVa^7oe#iPe%Ggz`eRNI_Ay4|Y(%4|K=b=K-{zp_^qt~Tt7Ry@Au zbpgv;jlXTLr|;mCSJ}JjAnzHcYu_Sy(s!<Dt8HWd5d1~?|62R%E}d$d`gcdI4n4Y| zdh5UUrTDIU3eAhAI91Fnc^T_<KWIv9kLMG{9>q#|pD*`RKYwD^I9iyJdrsgPgHJ=e z=Bv+(!hdg*QH@uddD~aaX;X)2%SYB3C%WJ29rbylsCUd*<m>)Z6>TY7y*JMB+aYk? zsJ@1EewyGJmwV4by{5mED?XWL9{9Un{14;$4F`W%-Td&@<eT<CzX?vYT4Fu!9N&v; z=EuqF=NyRr;^%UCmVW|kp4yF$!!N_)C;gx6m2Sg({YCGeNpEs>UtUV<n&5pR+OYGu z=lS`I!_9hCZZMvHap(RdQ9fn=YN^V5)<<qXxqd}(naIk%W6w{j?^imy^TO0BzsaUE z{NC69E{kygcffi{^Yubb83F&m5K;Acs!=*>dk(jJXL$R`E-}1gdZP54CE^d2GLNJl zQrI`~nw(1XZ{5h#Z$I$OT_>^n<<nc<ADHXf)?duE7J4)Nk<+!-wM#cm^DAc&?o`tk z3gw&d_Kx4)_}!PcJd+B3WM?L$FL*vbF}^C)JyFokp<Zl*_S|PeZFkmMtE^pDa&_*z zOW}`BRabNdZT=!R>3^>Jhx0BnKki>%^PfL6x;V*x^ZcE<L66i;)sK1{<qZ!~yXXD= z(%usNyV$99_n!yGHY|L%U*Mnv`$mIFTJoB&@9aM>++nA?|L<kdS^qcGvoxu1y<mHq zxoY=onUc1B@2vRi46esc|F{01S9$EO)aTFdma2+4^zL5Qq;O^T>#Pq4CCcwgvnMV3 z68^QqbgSCt)OS`+3cFveGyd>s$~!Ce$rknHbK5!c*6m)$p!|K(?stqA@5GhIa>^I* zzT3rR^(lYX>nx7P`^&HIy}9|%T4w3`)*XGaySZ;p?rLdVs=9RQ=F?p*S1x_pbm`Nd zQ;#l9;&Xbh8Qh|HR9HPUjKjH0tLs#{h-jII?%cSzm=HZ4tywqs8`XOiI)1)#Buu#} zTcgk|u#$DHO3BL$8y5?hZrHJ4&z40cPN}>1FXGE@y}9tRjyY3rI&bd#d+NKtu6e|z z7+=3a=e)kotXc7O`va^V%CA=xna(lQ#B9xy9h+7JNJPzyk93*r&6VtZx;02jQ=H3d z`Sg%Wmqca%WlpSHYW(>$cWck0Q>QdtpYB|Gxpn2w&8;s*UALIXraEPME}amsI7M`- zzwWvz+a&Fy@0rxzsNI{nB_?mm)ahb=`YWdJnG^>V)*oCFR=iS2PjiOR-U-XXrg60% z6-^D!V75{{tEJY$bVy5U<r@W#v$Lm9^O>pZBD!6;Ygym)w7)yUJdMBIm-BSf*U_7) zF-1J|!dmVnzqj6sQ=4ABR_+t$qOQ#8rxvXgGCb9tdHv9(nX18FpQH1=+Rv5CPJMCH z>Bgm(Q&TT%w;ozlFL{*JRp{K3MVhJQcR9?O7z!^0{%aOwN;#~ev8YI4iW8@!>X|m9 zo$6Dgo`y^>ddVJs)X0rp>LqWm2B$&GFSSd5yjDzzb`22|{Kj*Nn=?2n(Q0e=(>O-9 zKuh6Yr|mgrJMCqyziIkW{uxL48Luhj8q4p-qzf(R{&QT;DoD5MTK$xQQ<+Pe5}3|r ze_tOa`;R}ntijLV^*Yg*&znzt*}DI=-Oc|y!Z-RXt!eU_xv2Gu{nS%MJLdmdGWp;8 zI}^fmCx(}tm3CX3l;!zF{6)z+c}uaK<$4S6MO3mn##K-H-NO2*)B8!W=;<4>|DI3& zvbbhhjdbR7o<nPvn7H0k43CSSP@iu-`_#)#b9VT>U37}2ve)b9l%U-{^UOo{d4JA5 zcDi_W{w%-pz5OZ|O}Fp4>M`@oZ>L*J9pWy!E}Z!(j&;iazx&p0Yl(JPK2NWBdB8E< zrF#P8^cM?W=Z)D?@;3BM+`<EU!zRx0u2TB*^qJ5xk)2|$pKk?fo;>hl+TMTfVpQuR zf7jm+etG^X_tU9M<UdS5EmQV!*Mipi`ugAYOJAQW{+i*+{8DY*?vPWzO}*Q;?0dbg zbyJRqx&G9r|K8`nT2%5+Hbl4R^sBo<+JRdqeOPwdc<JSH6Y_(vZ0c*VY&H0oFW2~b z{ri89-Afar*UjIyeWJEXz2dY_DNR01d|ReG7Yq@8qh9~u;1OR19oeTRSyppcM4a%w zvF=;v=Icem+cKXYd;8?r#-F#jd~e0(2r8Ig%d-s4SY>===IcYRm0l&iHhS%LJvR6% z>ov*OKBa-B+ji|MWq*~marNEs&~(c?Ukk$SKG>yLdb9MXSMGbgI~=!iEOM=xShSK? zhBVC0ni&%9@ImNcSp81(Y0_@(Qf|tJUj$Ufm`xEhm^GbOmh%luB+FT4Zq8Ml*Mux~ z<m{fVHdD2Drq1NYf0L@eFFC9(+@l=fx}o2Ju`-8IM<u~zn?v4P^%d$56sMhSXJz5p zGR1qXPgCK$duv&~vUpXh+_atb{9Wh<*C}EFv(7(z-(fms<}RTtN$<?+lV@hCKYI{a zT{82fL)gqrhn$%!CoerC;>WCZ$kBnt)acXcTU!+Ke*IkaW^e6{05OlI2WS5*k@<ak zXW%*KH;SzHmUHj1*ZEMl{y=qVV|iKQ_X|w#6<P0HWWBf5;*^}xq2Gr%-XB!n^Sl3p zpWMT{wJqh-1@9Fq@44Oo;oaNroimv0?-e+lV?R-;ZplBrSom4aXSPz^b$70P=e#T@ z!&`eZ?WO+_kF&8iM0srXCGWaczJ2A580}DZX|-8KydihfHqCshbSgAr$vN3&iF2>c zy?S?5xiSBu7}Iy#%0t7}hlllthN)|;-mSUXT4VKX&DFQHRx3}v8kV|s!Ijm2Lae6t zpYpC>8n`k<PAl$c$bw7W|EHf)vwT{`KR2Y}L(sX?rLxRF*L$CwXYDN7%=qBLbEAl3 z7evk!ywPvy`PlUMSb(=~7F&ObhK}Zo52qV?-b_(&H;;B(8zl4SMc(Ox6`S3jUQw`{ z<*mye9oIc!ZgBUaD_c!Meoa=h?hMbJzK&<=Dfa2>&eWf6Js^3~@nqfJ8sT3{{`yXP zelGfNc=rP9e~(?=uDz*ENIK{uEu1&)v+p;Dr6(7f>|JQW8#L>ermyYPW#_zt-BVXb zI%kG$wOJiCFI4yZsxpn$_XEQCgTlTChkXwTD-R3XK2J2IV9iO1S&wg|oG3lwDSC0j z?1vWiArijdU!87SR=@nM%F4w`=IQFMnQJe%pZHsQsi@evW2%vy^s_^!%N}RG$(hk| zye;$1+K&f3{$^Sq)Dbn3lX&{Ir~IL0#I_c3MNvJQ=AQI|$179z%+e{Yit4?o^O%Jp z<)lR<qr&3?J(*%{nN-^usWO{4{nNK-t8WzkxZPr{MfjAW@AZo^|9aNzPgBv?Uhc-K zxpU>>*wh8<)=bxNy*G33Jl?yk@x|f?FHd`YAtFd--ZT*pKfX!-jW@PWKis@)3X4z~ zfANJs7h-K5uu0zT-nI9x^V{m}?{#@6>UlWZUAq6Nke~JJ`$WFGt<ra#tzLawYWr_W z+m}Zs*S9Y!s&Y+bl`ZPe`R+4`b&bM_R<0%Yy1afhtZh;|vG&TG*e`uO%xli5rndZN zpTqW&6}%He)x^M1!9XEDDT|lO(8%1vgqJHdF9pnn(Z<H6(+~Pu>M@#3S5#6FtA9Jo zHbXd3=Ggq|`x9mzUY`&+QQ)16`qHK@r-^*G4mK^?qLjgIJKK1pN~VW&M|5|$v#gAW zxTE>SM+<Ja-u=Un&hD;0v1zfwji~wGg$y|kT3vCRfB*33d$#Y77v7nF``-tKA2Zrq z3zAaK-#fH)^>qtl_xbXxT};<}UdMbdYS;dV`h7JY-#q!N++ca?>%kxy(KiRy3O<W` z#;oeMgxz=UPu9<UL8+@OtJ8z0{#3s3dz+1+*x8sFmb^KY$7}*RXPMf&u-({t;;*CW zsv~>L&+9PkE<W=+OL%hdhPrt_mqfdtVv8`8wtgpl)rm)E@_m_2xz8V{R@zUV{zPQk zr!0*f>Z*SA-zr{C-GAA>=b%RW^feP)`8OC#r{&JzJv%l3Hs9=zOK1O0%X>NH=Y}74 zH&5%QA6_zRkM)a#vfPv2d)mL1J~j7t!Hdn)Gq3*s`sc@%-TS1Yc3dnpy1dHubr0{f z%XuZG8xwa|*;^i)dQtx1+eP`8KYt1TCHi;5K6m@&^DpGTIR1rsS8l)EKl3{u`{G}? zmrVY*Ma%T{q4|GOoj4R*1Rz95X!2$i&q+{JdbP}RlFCc_uuJAIpKn}t*ZpVq`6Y)H z?$0w{xB7DF;bk%RpH_Y0Ieyg5a#gZ~VOPe29*(bJ-*dwM{3#cnn$-wSBzz_YMzBO; zVrevewTfMsuc4WOfkKdik(ni!Ha3LPX2xK?iKzvcHZ_8Xn;Dve`DUgN`B+{qPW^zy zqSU++1#^Sxj2d>r)1$)`1t;%6&o$jZ!%iZ>%o3v0+!$nekb*hXWOGXsut^rCrV!c^ z;u1?Eh&oG4P>K#xFf=fQG7JrH+sQmnRS0fphM|!G#85*c6Nq~ajo}Onh$)69Mi2)W znpi;mXlM%ctf8p|RLaZ{YK|FH7dHR?+oLHoT_D*I;^7QKbC|*ArVuX~T0leD(9+ld z>{&xgn3Saj#DPWzPzM?rKm*Lk5E|x2hGr05n3jt$8(Nr8-gsUD6xNdIh87SDjf{*T zVP<4x24h%2g4M{_0umoaCKeFC8JR*oX=G{wRcvYoRcvMiQG;o-==3QZCIYY^mr8?% zp^>>MB<PIHVa8jSLJhMtfP}M=r5TI?jbme292*-zL*CfX2$!FQr>D-bghw{_^j8{o zd`>2iNHsQsYBM%6gSgz-$P!|iv9T${L}O!1h+<4n2~Xb@rYJaFK}8!Jm)z5fHSI** z&B0}Bkb<F+0VH@0&7r|!WC)8rGiaz98=64;AIr;SXNM?-!JFeaRYj*i(X<m}g60$! zV-o|D>3mvt=H?~_ro3DRaG+pjYHDn%kOmerwlp@fG&fKH%PQnS#Y~M&%ni2JXxV*c zXR$CcG}>NlWH*&r$I=`Wn;@ldl@`Y4px{9gGcho<urxB=u3%=z#awS;h+?#Xfti6B zC>D`47#Nrt8i6t>nwT*txY5K+%q`H(Gcq(bLl-l&G=$h&Zvb_vfq|KkDVj^cVrJ&( znvKjs841;5NR*?B8Cil#8B{T2Gh-A7)*BcYm>HXal02G13s6ynDrRD0is2X&BT$A% zQ)gj<;bRjEv`92CFf%nUt~W;aovA4(gP<B{YGjFFv8kmcYN{|WFf%hSG(j`Z!W5ht zP|UM1H3H>5kXSuD_$|zgLFEQW5LwIu-4Y8k6Hsx8rp^qM@=?XijWN=eg}I?2O7I)h z8yHxan}f0|nr3rQo<bF~FacEtXkzBjgoH>(78d59LKIb<rGW{m#RdizmPQs9_2|K6 z39jVOG+P*;2dkxlfiZg2SsECbqsP0YfhiU-3qvEQz4eeBZD3$&XaFiIQ7pDJGy;{H zC}I{CW}spRP0ZXJJ$+bM8ek+$3riz2G>_C9SXi2ZibPZcEzL3F&eFiZz!K_exT6h> zFdc1Ribc#ER7IfJVQFY!WT61ce+G!SvotgXRd;9#!8J0Pn7N55x?_w?Fv<!`BO?>^ z1Z-(!X#f|i2N$RY29`#a7{O&}Yyhe^Q7tw$!$@$J#>Swk7fqcdMj2pfj9!o%7}Q&u z7-A+Q6Elo5z|zDRqYSV#HNeQSmZk=vHWiX%3@y#fP0<oCSPaxA1BX8}zZ+Uwn4lLv zU@^2})X>tx)C4UpfW<&9C=`n=Oie*e5HvA!q>{BBRPPyDT9}!bq9!hom?2uF0}``9 zt0TZ-Xz^}nX<=@P5egRO7HGAjp`}H=xh1G!iRwZNL$nlZXlY?#YzfP=kkk(nGdF_N zVz2}Z5(77MP|dS6L@T%qEiEh|g&8RP5y5YX95m37v9!bpR!ajzPzxNz5=#SPc%cGw zpe06DG_<rdFh?#^K=y-z%N$lAARJ?EfmQ~9d}nBcT8x6kjL{M+NX!f^v4X@bK#f8a zM_X9d8ycaOT;QO=B4!3^$)RbsG)67WK)y3XYa4*XjL_;5keDgNBlYmY$I#N!&;TQ~ zS{fQ)xZ2Xt2rX}e^jess7Dym5Gqg&_(9+V#$Q(Hx)f*Uq1u;^(r4eS1u*7K5fb^Oh zp;knOmX^lG7^&aV*w`F3hZz|d8W^R4TK!1D3Km4mP9_G%1}32H2&y_G^a{(!z|hDL z)LceWXJlY9J;KFKtsbqKH!?6ZHUjlZ(bQWSV>r~<6s?2>=`}Ni7vtbk+{nPt#0V|= zL1HG*h7!E32@*6#Yp8<6EYKP!Mh1qa2Ii<)93*Cfs6Sv9o0_84${=-Um0rC8NYE0k z^<-pVXl7`FoF)uF>de4h7u1k3F)>4JUw|BK3hGRvsRMVfQN>IROzKf{8ptumXpIw) zm?>Ht0VIarLIa6eqSe%3kAOxHP%SotX98GT6Qs}#B^N+^Y=Kr)8yOgy8-u!ps0NxF zqSZYhb>^tedQb?Oo1?Yr>p==FLA^Ir11(H2ePUsVR%RF(7+P4MHDW+wmT0A}k%6%p zreloF%*{+t+nOc@rY1%hJ~77PJ7aT0v?{>Jz}OtzxkvGcvAGFS%?heMj0}t|4B-_k zw5<u!Y=KtZfE1$lzQAH=MS+olv85qefd~>aL2HeH#L!D@qk01q0|T_8-N?YizzD6= z0un>-X@SJd(AudWF$=V|iIIVcp#etJnHU<InV_~cK?+ULI<O#Do1j(cATcv@)OrSF zu>o4M0VHOKR*8bdOc1R*NLv#mXa*W^Ly0>R0}G6T#>CJ7Bfpy%8e`-V6GIEMln(No z1xATkZ(?MQ)}S>qFaeeAC@pD_7<w%V5;MUlq)d#_d*Vh0CME`;@h())nHYhJbWmFZ z)=~l~G)1evL1O6r4kH5-Qv-}tZDML{j9!?Tn4)(RKzc2ZvOBn~X=GqxhF;Bs#EdYC zQ4=#0wDuxMohfEC85>~K8z#nv$gL~`PyuIBZ)}1^p*d(=2{pKkEz#PVppY@bbc~59 zMh$3UVvaUO0n%#;Zajg)AKJVF1&y&GYP$g>hTi)EiCJJ&=_Y0dn89ymgh=VoTG7M| zrO^zs9~6X^Xia#q7)C*3Vu3zZU}RuoVT@62n^>4)<`N6^hBQcTy)oLr7Dy1Y)HAU( zKpU_!GBB|;z^EfkER8VA3KLLI20b@fnn6Mf(bhCFFf}m3aEz&e5r*$f4NNdvXr>01 z7}d6^fjMZ@8zmi?qLmf(pj2oIE($^F5LwaG&=jrn3u@behh;$u;c3Ry5VM73YGe#; zULl!hWP(won;Mzcqm6(W8JHRyV3gmcMi$1XEoqQC^!_GT3?spr8<=7=a?K6Qpdo|Q z{xdg#WC;U!^WVt8+z>npkK$u<LqpKOF`Ae$+7N(|fjKBCp~btoA$SxVp%>KtGdD5; zb-NLQ1|ZEQ7=@3yu>nS<V{UAWQDT}KV>Ud^jV&>XU~>~g1GKS5BLj02W3-M8NX!(Y zjxaYd$7r;gn^<BbR&!G$w0^0PfjMHR0MY(4H#Wv7xy+4CL6bwMA!BTTQ4*S)7@&<w zf*fs(QAe1ADg=}$sRt=E$H>R#CYETuC6KF)FgiTursinfc#t}Cv~Hh~fw>u$5Hzze zF+y$s85x+H8)Ak6C}>bz4N_-{nHJ0~FbW@Y3j>UHfVqV+d}wewcaWW2y#+=u%-j-v zgx<)&95f(??hZ4|>~C&vfYHt{2PIx~z2>HnjHH5`<IK&`h6#)e%q<LzEv8EZ*{Rl> zVRW<1Ei5ofLvu?*j3&6bCHi<Y$VcddY9KKSjA*ui4VoYq*A@oGNDT={)7rwo5+hnH zu#_tnhK6Xv3PuJNhGrNoa0^2d6g$AhwS|!Z+USarfrXI)My{|hLLZ3*sl)6^TNq)s zH!O^e(MIo$3@nU|>oF|0#26|D%~zUX^!Y3;Ezz^6A*cz2)~z=*01W`3CKN*h10!ew zi72iO4Gh53cF1Lep@AVrBh}ErzyiG;VQ64zie4Fk#L)YTh6YB4sHJedfsvtskqLTH zYG`1D(R?>FFv6%$3=NDidP;@{#wL()CqynVG%z+p?{OO%7+aXtqt$|j1|}Gd5JLkK zWAxh6(7?n5y(401V1&{X1H}f&Bk0{WkVjyN8eUw3e1cxEfP8{BrfdZA33}%Q<P-FM z1IQzg77=nNn4s6H^+txE1|M1@6(ok<!Zid<vS6q)Ge8>{GXjn8p;z6824*H$)R`Mt zq7~PM24?6Zu||dl=7#7E4nqTT@KOuZ#A=Q{APUlJi5XfJM)2r_b=N^7kdU$yIk+q= zK#MU@EwMB}AD}QautXpHG%_@>#OSUY8kkz5O_~|i8yc8lbfpaq%#6_$g1V{bV*;Si zLT{{qLJPg7H8e2CXwn-Rn46g!EBJss2X9mw8kl3WY77l5j4<O9G~<b0s8~!l46zfg zw=}@aX_iLl-3LPhON`1DB!-b$3=J$XBE}Fj28w3Ap`i&lrd5%en}&vlrs!3Gp`oFn zh1v9&NISK9^pPP$LqkjS_O79!kpZR|MrLS}LPmy$M#kvP9#H9t-kbr6L7Ov3g|DG8 zM$gXB&={kGWoT$@f?k^&8k!hjqyj?|1N7l6LqiiI)LH~o_!^p^FJ~|Ug(OBAH#9ZC zD9sH`G1@|g#)c;7%~OyVMg}%Ev@own8;~_LHnc=<aDhj!(ME<0jg1V^`%;F+Mn)L< z!`K*OSi{iR$Q(9UhbVlFjZM%;2n>ylP0+`=4ULUWF-m=76C;d**4V@Vz13-GY+{Di zey%qH38ME742?}JFcPM*DMs_b(Ad<#9KAp`HZ{X^pebe)gL*V*^YWl2Bqr#?6^6!` z<K~9OW)|pUYalW7kwZgcbByk-p|Lq)?jK(G8k=KQoW|yu?HgkY1C096*uoIKv2AE< zVUFoQ3sdwuvfj|x(h#Gb0}Z~SO-C4-nqv%MfW$B?F*Qe@kv1|kHMg`xZ)KQT7+9js z%NrS*S{Q<dkdO;7Qww8QYK4su7@AsQ7D%QR78nJWsig@<3(?dPX_gu~RthR3F<NwH z1{kwOhNhO57^R*WsQyALip>nnpv_A}&0=O?j*&j<%?vRsNi#zu^Z`6WGeZj_v`HC| z7)HHd2AZ)#cZ`uK+61AIp_!2psKW*tD?@UjktJp*7=af_f+|UP@S7Q<&omnuni*qE zM;MwJn?lD#knAu)o>zg4l^U91tWGd8G&3<q9}zS(GqJ#^9nDNk(Fc4C%}fn3;@!;D z2qWj1)tee)G&#-8FpEqxQ;aU8p&6DIotc>lXo)3iXqlOz57HW%fkuH83_$CWkb=g{ z0u(2xn$1nnr!ox9%psHd$hpMA)Dj~rT9~3|I}-y7V<Y6O2#S9b0}CVgLM?b4TbP+( z1Q%%e1bT66VTLg?XlP+(hT6w5Ffz0-!)!@fnAe-44^J9em}7B_xg|!`YhiAQ5p@<8 zh8T@(3kx%3AA`Fj78WLuUMEuL+t9)iv%z3tiM}?+2(+pZBN19ynqwq53rkasO3c#0 z2&H}jb-oQP4KS-uO9NvJS6hM_r)YWG(!c^E1T76s(T6k)EiuPl4J{4L>M<G&mPUr? zy?#SWLraVb#?r_XwJBu)(uh$<fLe~|g%n5(I<kyt{~3XL-)NI9ATjh|AJEi4`otTk z1C2$@1jAxb!xzPldIKX+M+LnpWn^fGF#!V-Lyr<8LqqWTYve3zWN2iJo<58WjWA{z zj0}y;jq1^s7JvlN2T4F{v<*;P4RW+G#ypvkp|K(QtdWtSu?2eB4-$h-i^JQ0MxZ7% zhGR_3(Ax$^h9(#z%SMK#7_A(T7_^NKFW`&}O^wi|JnD@=l|Fjo5i~@C-gpF6S)kcH z)SxyqLLbaEGB!3quMa?C=p7g%V`CFjbF|L45oiH7S~Y8AY;1;}kBy9t&9R7~ue~)g zGBz>8h&p2vL_-$V{xdQ*!Kh}9j7<&DC*zEaO%2h<!;Oqh%~1*!0|O%?V^hrZ0a{at z7RB{O#%6}-T_+=BGn7gKRAd?%n^~Z*kuWkg!%QEb6$5CU8Y5$KBaCcpY;IzLK38sJ zY+;CA=@=QCTcCHHjEpTX8Wtci^g&i5V+%9%StHN@6=Iwe+WrGgE@6fOY(fn&9%5u{ zX@<}YnSL}fH8n-AbU<PzsKbyZ24)s!=&O*7>P<~8F;cpzsU>=g*T~ciqoZkLYG#OD z0~(o{8DlyIG&hA>Zy1@Hfg3cS`X7-$O~G*j%3&yCkg5_X6ihA9S0x)6nOYd3w{DG0 zEzs9ygVdQLc^K0EGcvWXK=0EVnOYixM>CLGIYy?I#^{3yMxgdQdg*9t0p4o_@(HX# z19A*zsMcGUVWdn`3k%rTBto;LA^HF<$T8@HtVX7m=xg$gKw=mLl9>Tyxe_S+;g*;g zpfBnKZLPtqILr)<FdS%RfSEnbKm$i;@or{_GLdHl&f8{&=&OxE7MsH=34{ZUOiV1M zXJmuc*rD|gjm(VD*IgPJnHi%mhX;w7qEGS}fwlyoml<Xz2Jj(D$U;*iBQp~NXcQu~ z8_Y~F=Fp7HOfVLB7@3)1w2F+(Offn#ATf-J%godmwQmV(H<+0jppTdsnVDj-7;}M# zk(rqZMrCFOG7vqw%ndP0T{AOFQ}i`<MrP)w=<R=y7)F+~Ff&9Of-y3(Ff+txBUqT3 zW0blUW)`pnk7zeom|^sYjV#R37mOPjS(szAD~&8b(|>3_wlFtCA1F1lus~l#Qf~wj z#Ar8ISeT%X9~fDHmLj8DVu8NC+sMem5;A&<T;5n%nxK#58d+GH8DX>=EDbP=Vhc+P z^noZNO9PCxG$1jIy2sK0V<6wi(hxRfWuO3WH-H90(6geYA!ZO-8e-Ojpe1&w%dCw+ z+Y>M<DN9hR6g33vjVz7K(TD9oVi+YIXo45R5@QpzmG4GImc~Zt9bF?!V{?qgj-|1M zff3poJ0nYDON@4)r3uCgQzJ_gj0IgrmL`_yJt&YEy2ZwZMo23Sq3s4^P#Yd?Xx7-! z*bsfr1SE!@s*MeeF)ArzLt|s~Y;0_3Y>GY#Yg}(=VuU_aV{B-GF*ayyXkvz5V}iuc zOE_ag6ASbnwy~k9G5Y8#Xy6BwK0x&ryp3RN2x<_ZCJ>MqdVCrinp&dwH;oO=FnY<x zhGs_SrJk{&8S;7^NV@?f2(1v19Aj>PzTVQ<&>Xfn2U#7)jF7RRxh49rzp<f(0s6$h zv9XQ``d%$if5HMIo<PlY)9D9_>{M-xF@nR`6k}`$w4xrv1;%F6Cl=ZX*JCyTjg8GP z`XL}O)XK^L)Lk(_A3iiTHpgiD7#o|Lqc<&#K^YFzzyifNtSMk@Y=N<y))>^)MC&{m z8-s>((2|C+1;%iKF=#CjhF(jQ!8DNlM#jdLX6Uu9v9YB&`m%UqENg&4QxfQH4^Swe zH=;qIfL=Zs8(Y+4ti?4pw!m163kn5H11&I?%^4e8SfVd70fhqkqD5n4OX$Qg(pZ(T zu_Z<;3KR<Hl@%xy&=(LJo4{6{AX@YwG3ba4B7>NK=1h^I4m4I}Y+{Hp8gFc3Xox=8 zZERv_jy@0y5<?%KFg7tn-(6#5Y+_`BQ3#qC8P=m$?Vv>t7^SKSsKQ5bHE5xSiLn9t zjGVEFu_^kHk+F%fG5Wx}v5AQRbU?-gDQG~wIdn@*&<8h+j7?0YPb{+&t~bHxt{R(| z8ltzaL1O5`6vif|7|TgPg9_-AgrLC;Ouc3%;Fbj_=fHEWi5d931?0Ywv56VR>KbDc zbBx(U&~9+_IaOm5b2IdzPh%5vbL4(J$bKVZGjohK5=acAxHGdb!>A?9EX=_^L28_V z1|-lMfW~GPmY8Ce^`NOHkcSa5Xl99Aoq!jr7@Jv|Vnm5KXjl_1rp*nEFmkE60mkq) zXpaRXWRP>Nxgo|N9cbePMlLls#Mp;mY;K6L(#qJ}2z`?tXt)J+-D4yu6PO#K@7Odl zHaEm*`5T)XqHnGTsl!-{1agd_$@CMIpcQl&O$>7*GmP@Y+}H$t6xrAuG&F=Byv7)7 zM2yW%&{j=>hRlu4A))4jRFIh)W2}|~jWl7DJLV=P7}>?##LUcK`k5*_RV)d{+!XzQ z10!Q|Q*-pO5o2>x%mU5a%mg!GnHixE(t|2wNJye27&8mZpfoo?pUE{gH#dc(HssJS zH%6a&GB&rsSg-^VL+Js6i+Xd=0zmY*vA|eN1R9@1U-@QiZfT6(699>!kDnWxTbg1t z;4BOb{gH-<AbAtiFhd(6Ft#wjtS2lCOwgBln-~~QZ>+Hst~bQ!bDMycMWfAVfi?=E z522YD7-95IOh9Yh(7IkG2B4NcYM7ZA7(rGGf=WSHDGVCiK<^}g#L#2a#K6P|JyuN& zOfaTdObkrS&<jWt0~3_ZIUxIuObkrHN4|hcLxf{YjnPY769ZFoOb41;qK{^q7?@#H z{w4-y7)@&v1G9QF^hOn^7DewOn;4iIpeGX(19Kzvi3k$|bBysE6VRe)P*WADngE3s zq*6!9RG{EOU(p2$F7&ZoP-r1nWT4S969ZF>RZb=bre^4~W}xLqD6LIUrUC^QmLN1n zZ=RSKn3<vX7eJwf-rNC&7JAtR3N7>wfQf;*Nj-X}546G^eJ}_lhTd=kO%P*-mIcP* z6wu}}%qX@5pMhimn(Ia+I7<_>;c+7q155BhNGJ&tyn+@zJ6WP{7&kHjRc)xl?O-v~ zPGmi(+BU@4@n-_+`=a&XO^l5U(0ddn#zuzdZ3`1)BO~-iyooWW1&iirV<S_8dbIwH ziLo*I25-==4NLTW5hljQ7>h|jVi-BX*aTxI8EEGPY$O9dW@iFwv!Mr<v8e%io6^MC z6ud|TB}$A<F=oR|j6n;0(0y!XfHn(SZ)9R@20r@>)j%`wkyvPA=$mRmdNFnan;4rL zK^y1rmYs>QImSXZ6Hu*efHv1>Vr*`KUVEDuTNq-bbYlx6Om!yU!^uz`ZGtf(W&)bl zgGD=R%nlT+7}>-ab6X)OSTVA!F=$m1Mo=4J)Op6BA!}51^(I)h44W96S)$F!8i9fp zeQqDL2NN@4nq%yV1BEJj<JiR50<?PrRR18_CML!fX6Qo_ATdY-2w9ya#_$*Dj1u&b zZ4+Zlj2RFUP+blS{ygZI9jHTxk+)3@Fcz4Ym>6R8S4>O{jnVrnCMJd$<0vMeZY^4K z#iZWE$Pgn4O^h&WF%u(mj8qL;423p~YGPt+h?zbtF`A^HkO5U};P8hR!6pV6Ll>Zs zK_9v>F)^@2pIioo3`R)^+WU;&k}@$wo-Kup*@1!vqXskqtr0{`ttKW$CK$dmF*3(U zm?lP+7-_-87_)_BQg4iY>Wq;IC|RS&lZgq&QcM$2B%{|6CMFo$oJ~wjEHFK1VhJ8b z1%*E%_)SeQ3K|p8CP(y8Ftq?{MsCrVm|CC@g_wYL8)G;Sw2}>B9>{(p6B9FI^ifI^ z6LXA}%^)%KA$1cIbM#Zlj7&_-F}ACLHV30@F)}a!O&r!6pwB3om|)KLo0woJZcQvO zwym3(SeRiHG$xi9>p@IRK<96PLIJt`XJ(EuO>Sal4nDol01?!nh7V?Y!OYwoBTCH7 zEin2FX6BYCO*nA-&&&dJ92Lk8M2%%;fiX2^0vgCbPnc#F7+cFsK(lY?<${@|F-FLM z<_s}Xrn!M3MqAI!(h?(!nHxZlu|X=9%?(U38m;CAnAy|Z5Y}{$LHO9*0AnJ+#N5yf zqard#DL}wIK@)RB3-sk$Cgw)dCwAEh*BcpOv}etYEHFAopph-~_K&%-0Y;j|vRBl^ z+!$kdqKP?Zj23M*CrA)|hQ`F)1pQzmBT%COeJa?*98}SO(kya-n^>Z+4mAOFfsj%O zB!`=u8e()4%uO){=}gQ`F=pXR%*_liN_%rN%+djLoEX|tA`?rKdW@yyCZJh3^lHJ< z#0<j{OB2lQrlkqSMo<$=6U_E8XxI)M3dlL!(iCHu)5OvY<G2Kn7)EEw(hOtf)&z9s zC3*pCX>Nql#s%kaOVE~Ow79c0H^;~<mKNwoJ{f`hhEeBPT9{%q%q=a<G5W}smIn10 zDc#c22z^@5#M06PBcoYbnxjvenOIs{pf^`cLC09a8&r_>Po@S2u=Q++RT-uR1}N)H zKpkgO0|U%<jiou}a0KXhGH`q%rG86uj3G2oet@k<fYhs?9-gHI#_mN>uwpbTEiEtx z08K0{%+W`!Oe`(Y&m%N4v9!dP`~rolA^L6}6H7~swa1`fMIS>41uOc<4=7mC3t~{H zqBqb?4GaxIGqRv61>VC038K_J1_nl^2B5`0s0kBv<_UT&Z)yNqJcywVqm657U}TBb z1+6zSH83_oA8|A_!0f+*wo+k+f(gdzKT`uxQx4rRCZ_1^A5#Mp&}wFMg{BzsWNKh) zj6Prj3I+6B0tyB6ogSv3ExBkTexOi*PkzCAc%}x%#wbHS;NUmLSPBXX1@ywl)W8Iz zodgO6^tFwq1}3KH&5&SI0~3sr3$!*DeWuIQz!d#pOCyjNdg?bdFr9vIB53Lv{eVRy zQv)-!HBq1>hS`}kH88UT^*%u96Ov0o>dev4<1;cfFgHV=9sup`0=Ml!6&pgcg#r5R z0#gGE1GG~FjZ6(Jj4(5mg*j%@vA~%2F*UG6ISUJ9zY$0fGgd8Og&(|iV`^ZD(ONY% zurx!dDnKd1&;Vn%lc^zS?Jim}1|6w^-eWZd?G!~D>NGVpfN$)BhZblLC0YZ~6ue&& z%@QL^BMi?OSwiQLkSbQt8NnE7*2og$<PK9KOA8D~gSM}uJI2@m{TNImQ)2_v138>P z!DVb<hFaVk7@2|=;9wYNXbhPbLR257#)i`;P60I#4bbOOOpOgOR>+$g8(|!k0usYW zV#c7AhG+o^nnOn0>}CpTGlE({pmYR}8DnG6@!Oz$fk-;Wpy4$P1I^I~N=%JS(2v+P zGBw6L&&kx-#0<I91+w1=e5f~CQ^wTT1mnOCQ)5$%j<BgQX5-S-*wh@Os5Cak*cf4I zY+7%L-pVjFHp5sE2ilW`(eeOI?V_i5V>9qU{-7X)hpMR&M(5bn)ChVUA96Z2H8w_{ zwlXy}1|8rAG7k|YpfE&FVy2)?rfAUwS}X;MV?_7S$kf!t1f`4yH4sg)oX2NsYGQ#t z4+auL9l$mKEi1=ZQEO^yiZN4cYHErx*J^5NW`KSSyAkN%T=eBMrlw}7hlhePpQ)Jz z`kb7pshKH8wF%m2i=O&T&0)LokQ#`l<`|t+Q&V%yg45I-daM;vZZ-v-MUNi*78skT zKtrmiB|$wX2r<{)n3`H(%x{~5=5aCN-4bI(9B8pVdb8Wq40IX@x&tjOjnL29Ff}v4 z*gF6cLz#>P1;3erIr<_rQ!~(tL^Mmx3=PodBS5<ZVC{WG1JMk#XKiY3iE$2tDd^Z6 z^aj7Vr73zh+teJ?2}5&?xh47{fO;d)K1%d%ENJ!s!_^iBW*Eh-g@FnBoTRCRp#gd~ z8zhE48)s@^XklQ6HU(e`I`#%_AOMuM&<`;%wJ<Wl2!0F9QCiR*2=tXprWVGCBlX}7 zL<?gRj5e7C=2{3-3(&m`Xu)b>VuZdI!PEjY?v9}je8mQ+G=r6n^`;gk7U)}YO+h^& zwEh+-WYEW;K_P=a>}zUaWQ<YETVRgTf<gvkyN{`bu_5~Q98(Kpj3w8m7O<5bNM(S9 zF~(*IQwtM}F>O%DAeQ$+rvOYXOfX9>3loejoTe70#_+~HbQ1zd46WN^WNLxAz{Au6 zG@ghSCG{3&7=t*b7Umc`ut1tIid)b=R*Yye$Jpd(YGIBsaBga0ZU)L>p!y$Cvw_Zb z!ASk)7*qVF78a)HlOCoP78qkVpnWswi$_f@ERlC{L#6;sK}+({D+vqCv$RYtEHR5^ z3rmb`{-&0o<3-Ve+7fg3zNuwB<|-{yO9Kn^Zi1PCnK}BlATv;TgjT<sfez$DixQ9+ z`s|*W0ca!<ZGh0sz#L<2+04M)41KW2%)r7Jy#r-t06G;6)yHNApoqs5Ltc3Vihm<B z151q5Z)RYLasDPq480gNGc*8SK7(ASfa)CdrA%g^19#9v#?T-IqrGMZI&cQ9U1tV5 zeg!?K4GqoE+k|F@hA0bMK!Z$XhDOsDE&{dm(T|HaGBX5qEYJeT(8vOPyu!>7a#awj zA3-Yu(DWKunxpq7Kw$>10YD)QD|JDEhCY;IW@uoHKGX*aH1sig(1;~^j};VV$gv9X zw;{@@uOR!4%nS`NHfVwZ4SfvB40P)d+HkHJXd5#|B!Ig8XrTbQ3Jyb^alHY0pT*43 z7^9yJ5<}nkX9hkX1>F)86ZG9+pi@~eL(9Yh(iK5!>4SDRp${0C8G;6V&@BNqkuk)K z(91qELsRh0TBzy6)Doq+0&3}lw$-7}uYlTJ=xeRaz~^6}TWpSTh?JS3IYtA`40KNv zM%0;`*P}PG%nZ#<(FZ}z3@r@NTLU05^a(=H;UnlP49pBM_iUPhPJV#YD2SH6nIY!c zU}lDv7@aRO(8^P^ZYf9%eY6g=whUC4p#;CNIoh}vDE%2@9y?=ZY=Lodj2UQw2YL`1 zgYKb0ixOiCb67(fp0$lF(Jy5&GBdU`F|0=$Cp0s*G{uM#69Yr^4c=zPmKa;pK-(VC z2aiBv=%aOJpcVU2d*Lm8GZRCMp#n1#(0O@izB4g2#VGAf3=u~aLEArOCWaVW96<-6 zpmkO2jm$uk`e<DTGZQ0ojQBJ$GDlyEYi4R;hTb0riD6XApsFA0V|bK+4hJ$sYw4Sr zS{kCyn3$PbqF*;=WM*oKaY{dE79FF0104i}?m069#Pt!dmcAM26mWDGni-&9q-11f zW@wC&7C<#CdeLeI+RKC%b!O;C02>(9gI4rolzL{M0eW=Jm`hvDK>M%IbA*`@#t4y_ znK5QDZw5YK7gYZsTI*(@v10UE-ptqnz4dQq20D%k-GP_`;$~(h7)Ks}j^06(tk9Oe znHgxX6Wu^lL-ZL}GYca_jO=7#WQb8YSr}pLvo*6Y!q`1wR&Qa1eqo9cX!|Vs)U}xf zXq*(yfmnKiW?1?~W)>!f=tEc_F_7oL;SbLe7A6+x^N(g0rWjk=%`8lfFsf7wQ}i2R zjLa-R!#wDYHbXww8q(4?voOOr6~GLXwb8Q<=(aKR1ZQE6aW=J?g*nF1lo{v}CJgiH z&CMaJevuL(=)yJ(g%;pD15hdx&?QV5>OiCa=sq^Z*qm)<VT!rs#>~PLWAiQeFbMPp zGH68{+K>|{v@l9c3p0#ku*^U^%#cD56#qt`;6fit0tFYOiG&g|W*GImg}EiB#hAPP z%q%Q0t^zQ#u&Bpa8)aqz+D(lfgqG0rnvop?+6s)J&Jw*NZf0SLKL2QBW@!LD01CPN zXK8@E3=O=B#LUtFd`BrtyjvP#964YHx~vH)SiwzgOG6`!#;v8HIm+fcaQn~F&;+AO z1)b)PVIb(d7BnAQg3cPj5W|cT&^~OmzO<R8v2i`95J2@E=GeBGr7_0B9y3c5LyR)O z(ir0m7BkT1Oh{V~KB8b|X#zW257GWJH#9UupJN7zp_l#USWX!=H#9Ot-(_xYXk>(b zu#>qV=wKY=(5g2u0<AnkuTsqojg8RHh6SxaK;MO64!XVot=a~Op)ag4H#ElB^lNTt zVq#X0mXFOrR{^8NySbr>1^Og7NDO@*&fE|*y^ZWUkmoS3f-*NWg|{K#?LTuvQ;Y*$ zL1LH|n_-+N3R-@J-d6-I)5458a|5)_Y`u}Wp}8S?v&r1h+z7o;0o`AKUR0YKnqwSQ zX>Mp?h#7UDVO{i)u`o74Z~vJaT3{UOYi@{nIuPiP3bd9iXfV?l{jeu<Lrc_|9ng(K zMh1wh%3$q3b3;pv<!Yc?9MIbVATjhU5$49`;2WipvoS~vZIBJLN)cm&K)pHW>;&`# zXKap{T0#4=(7Ijb#ugYQA?TV_^b?uQjV&-XB$^vrn3<cR9nfG78pcK|r9fgB`PkSJ z;}mss69Yr^zQ4IK=z>ACcsDUHMXY&&w*NqP9;1)OnVT43v<*ND^Uzz%<|YP~7-_-8 z5M@FYR3Dg|7^3WU1&h^#Zc9S<u?c7yEV`>P*DRWw7-6g?1&N_o<>sJ8;b?6La}&t< zyrB9YUM`!1wu_*3B+N}P&&&Xcp^tW$n}N=GM{_i&sfX4=GB-0oo=1nY|3HH1qgUo; zpu_jk4KxH_ypEF6LGxQ^eFk&Trb!GjLyVo7=4SOq7)SY=n;D@Dk%8mM%n0KWBy%$? zb%dEQ#vLZ+X2xc)y*03wwz-)xWK#(!{1Jkf?R0Z96Jzw%4CZDg;QP{1L%|s1u0eA% zV~o|yAjcp#@j><*fn0+=i(_tPf-#5$at!)5H*+)4LTvPCGO<7(LozorHA5fdGB-1= z$2iu^+{_GPgS<JY!-t+Q%|H_l=oXt{oWO2whI#e{NDML=i`4!zH#5Un5@2p-Zi+r0 z06GmGeJT;Ow;g@T5hR8_V_<G(fqI8BsQqVdW`VII$lT1r1g-owGB>lt7zYB0p&x%{ zZf0qWK3Q*WW@&*L#h?SC&<h501B{VObI>_W=)rGpfayR`+YG&qFgL)snaA85bS5!4 z>X6!h=Aff|!Geea3A7>rJs+DJ8Dlg`%#AQ^-!KO?Au#otqecm+{by;6ajT}er7^}? z0HD3f=<}K&G4y#&&>6HC?L<q=MK|V_CWfZyoBhl!O)xG)1f7(P-m3x4t)tI#n1gme zq5IepG~a_3s+OPwmmy+^_8(|o4ZS4`npZ=QcT3E*d*+tr7+c@WEzL0&R-0RzqjzxY zjm$00Ez#$=%`K5Go`4Q0np<MY5tbI1MXM#~<SmHr;3cc2r6Kxcy}2c*{}_Ow&=e!< zSb~;nW2m#lR0paMrhnLFr<RPq5zyQcly}k10NuWYAqE*2Kw2FH3N`c<kLH%<(-n8x z3D;W~q0j$<!U>~=XlY@FnB9h~#|DKuW^%^7d&%6=665Yyb4yDTaOwk9A4q|0j^13g z0JV3~S^yRX2FP>0;C{A+fg#4tHWmh$Z72%^)O!y=_8VD%cITt@qd=O`eQaT1h>^EI zha8{}X;^@+*+J{Ff^J+w&w~~Q#x^GCwF9U{j6VEqVPI^Denz>4fys2oJ)kpRuz1|W z47HRpFtPxx*hMR<EeuRC)<swtm|`4HX93!yj}bnmkQ<^wAqa~>3j@%}EvP9H<RA2I zIp|I-^chXinj7?5(ZayQ7`-F}9marMQ-bUV`wmmHDaLgLAm5>P)j_L#!Ha*9vJB|v zG4z2AkQmC)ivcK9&Fe8v0k$vz-E4;*3g)JWL1Rb;vM?~mSR`y=06M7xLodeZ8WslT z(7P>>8XzD8(d&E*1JD&&=muI~oV#mbV1Y6GYGGiBadwb}0qFcfB=bNG5DNoKjQgiS z^Ixco;y}R#D!`F6gM!e|z!-fT$O3dmH(I9#wEhYs1Pu+$>(R?E3qu2pJ2NZ{4UN&~ zen300(WlugK!@g_RahV~^yP;ZhK82Vt~#OtVqu86n%4q!#R6LI*uu~V<BkQ87<!A> z!qC_NIi-X85f+BVrl^Ax^#(>3hQ=6csx1tSF&d*5hQ^lYy9X^mCkvpLRiGmh(F<K; z&|!sWQD<yqX<3h<*%+gXWnpZLaVG*u41Ku?=;k)`&2gYX7WCT7!WdB=!W$qK#wHjO z&mb|3g2vbctqo@Yx}p=~_!A3bQv>uR8y27=uu&U1^&rg{^R=M6L@-jdv6%@*m0}E< zQ$r6{GjsIu01IO?jGJmKOhNl;(Iy}*Oij=iLmF9t4vR%=R)fUQ+x-@x)kElY1n5Ri z^e8qrMr@9Q4M16#n;2kJaOR-h+GxHr$GpVH!rTPoWC06v6O8tsg}EulPKJ65a}$h{ zkU/(oasF)@5%im}Jm0@TGtukFmuFb;{fFgF9GBT)T=m{b4>VpK$+{uFwlVs37N zK0s+<Zf=M^@?~LeZh=uqnVVZ6at?F=$^vxU5?b5c!ra0XBkP!Bo}X=DZh>(erG>dA z#tuyjOUzTJE$S^TEzlPofo`8b-VOjNxhxHgjL_GBSc0ykKnrS+7-|V;U}R}%iLuNa zG|vvI%E93eYk+_*kic+^A?BV#OG8VHnQ==)ON@gOEkV~+qULuaOVDlPh>(U1Kv{w= z<3k97+oT{d^l2GOBg`{%!8c)`B}_{rBaG8UEkUz4XxY=!sNM);1l!Wc$Q*rm&C<x& z0JeP(9$H4mhUlvwK#oBlq5+AaPf&v#10Dqhg+IbTBUAJtc93Jx+kciupp87J<$@*X z8UnPM5+sIRA6SCUu0g7tK=y-96UI1Y(bCAo0=<N@1nsHBh$hSfd_j6ai3@pz%o4N< z2rV018kyD`qc;vLjZ953gW3#ZF|{S=#CG)5Z)9eMJ_rrE(GR`zX$hL-2ZsVu`_IzI z9AjIFrI9(t?W&eW<`^THATjh#r=^iOM#*YvWP!Rt7S#T;G_t@rWDc|#3%!R65<{O8 zwluPY?<+;5BTF;%E~q8wlxB?Jx3sKB?<`pw8yKJ;c>y}$88TjnD5^nX==Hm$i2+7$ z3M7W!o3aF5#tBJB9`L~?kRW;o!4k9#5<QMVOCB-BrW>BI6P`ZhjGaim5yp8<mS&*& z9kd(+x|9UHJTL<t4Ueu4v||fH%nW_T4Rj3!cxV@trQlIvW@3O*Y@3-Fq0bS3wjH7$ zAZKX?I-e8WV$eoS3^Dk8BFJ8l{YI8%pv^@X3NcQPwlp)txZfUhc?SA)fTbB|{T;e_ zW@Z@Wi<uebngUBRV~pKFpx{DZz-S3tR)=1Qfi4a}Pq=0#Xw7&7BT#5T=Ae<Yw3#XF zSXiWVW@>~!GYSeV^qsqwW~LVC=O2JV3w?(PD6~+zjo>T|Du*x<Ddx=qmS*M{R~vxD z&|BS>X6D8irLh@kAOJl|%q=jwbe3ioCg>-PfW$BgEHev?(+NQXXXuNVLFX=@PZ@)D z&_l}{M3)XEh!Qjgpqr5m&Colxpy5G`v|wpugyCaQ&4->oKr1j%TIcm3ON=l^hAcr9 z3wnOHG%`ouq+@AmjIpZ}be$kZTg1{BV@HA|XqhScr4N>tpz|it;>i+pjtzzw#wCN6 zmZk>iiy1&-=)*demZq@tTMXb`I?%!!^zkuEOU!F<EG^A2R?2|H(0bIM7LXCzXggR8 z(V7O2%+wnj7#N$Q#V1${ZR*z80CYb(YLtM*Fw}u=ghd_DFg7qWM896o7&Js;gtmJO zEC?=_5d%~pF%z^_6-dk!Ex&`r&{x)i#L(xZ!D8^070@mnNDzJ6-569(p*8J6V(13~ z8XFiJ7@+k%z+z|x7f8$qJ+$gUBSL6{svw2vy8(?2j6rL8P!b_n46UjMi5a8S2gU}* zM(E81kUG%*a!~yPZzq5h8e=-f$ONsQ0aAxP#Aj?^Yz$o|hGHK2<R(ZR((!DNE*)49 zt#&dtFg8U$RtqeK)?_yZUBZqw?F$w|8-D<uSB`#It+7EpXe%<faf#$=Q_xMXXh99y zw~e9B!~i4bn3@=(HT#SWOic{Y`Y0eVW6&ZBaQK570tTRwep6HQ1}sP+{Dv4Lb?E0w z8ylFKnxYleATjjKUd9HdX2|PN!Cg9#LQAx!I7p!xTA2<O!$|3-X6W5^V*^uj^uszp zV(5$Dj15fd&Cw6Z0Vza3NW<8`%n<#GJg^vAtJ~NBbi*b}1!DjfLtBSzY+w%RqoeK~ z0}Dc{MOXs_v<?XU^f{0^^o!uYVrZ2PNDTd+aFCceat8+#|HcLu21r=~TrPve(5Lo6 zV(6Q*Kw_3?T>xVP3(zV!v;=HnXpYv91*xmIKpXov23^dKHe3S|L*Fk45<@?H1tf-k z{W?eteNr1_F?1z2qWuRFv_PxhL7LGQD}uz(Z=3;%nSv+Tkn0T#(0nO+C>W!jmI}In z!T>ZDi=JpKOwf<eFgCEjI1CmfW{x)a2@<nF>l}f^j4|p13(%TI^eWZD)DUIY6R2DO ztszG*d@M}Sj{`S0urM>gD84N~8}ZRY!ORref`+&MK$_7njs=NfW={)qBeXRIAa#~# zeN$rt(5+J#o&&AlKz2;M0cZ#v{eE_^7<y_oG%ztmn=>^AiJ>)GL1O3=-5@daySG4M z7RG363XBawIT5wh3KBC%F9{6|Oij?*{l<m{pygG_z5{vA486|)QfCaC?0~iZK!O%% zV}T$s^eah>4GqlEC$vCf#%PCtfW%DD8lJ|61{j@?dXPf&gMmQ`(RWgU#7xjS62_pW z9$JeREQS$UhGyu8wHX^4g04eD9nv>81Z|u_9UlaXp|=Ua(@&^_mBt`3^cJrn=%x|0 z#wbV(-b;eD{|rqG&`)Lq-Tj2VLf+UAw9N}GD;k0>Yk`cA!0HW<Iz#lVXb8IK1+||E zzH|zG^$bWe`T>i^pta6u!~7sI^oyQAVxYC6pwT=e$AHe+MoXBWX$V8qHKoReCdTNu zOoPSH3nW9(Gz6MYKw@Y|Sb%P}Lf_^N5;H^Wuz|M!49(0eF%p-V8R}u51_s84X6EPz z5rM@p(g)~1Z}ccJGe<ua+t{$)%pCoQbdZ6Vg#~DD4|>8hvp`??4!S+d5^W3#EQa1r zG&Hj`2Q^wj^*<t>%q-DwtTi??H$cBG8zg3o-tIRvH$dME2~vl?u^)7uG4fIYNc+#w z95mO8mO#u6(bvI%G-E~+XgwKv$e0_UpG0G9Xl{gl{JycFdA*SZdb{7y+{h9mADe^h zMt7hw`ib|(hUTF2i!jt#pf&4^4b3bq!37s6{9(;%P*9`I5rBdaeW5x?%oNmi2jwv& zz37|XK`ut0Ndt))BlizL_Jah?p!G2#EtnfZ7M&oqXbjDb&^M=nf)%wz1Ii`lM(Ee# zg4Cg(MgS74N5A9`6olv}*n-4hHx3{<(AW%Z`p?+V9OE1nuo&9jV$d1eMv!R(r1l?Z ze*${v0<^&zy~}I}x|9XI@G&<-zb+eeL7g!;j!{C;40YoSsQqVXZf1!YpP=0X=m`n5 zVjM#ZOD-|Tl1nTM(N^Xg8=6~~)MK=A%q`Hby#QUIXMnc!10-gI+>rqF9}UedVS9y; zq6swSiSB6l!Y4%g4;0jBhtPrI2{cFmO6W)inxSt{1qU@|9D_!o(Je+V(n0M%b8|!V zVHQJk&=fnmW^*jL#2ia5u`t9eQ!Jo2z9G8#hUONa@o#iXEYOcp1_w2I@7U1X(gefN zpw)V4{Rl$~1K9n#h!C_eFoHP{(f+eAFh?KdG6dbcgWk#kt<ga*ZY>Pa*PIv|S{NE* z<R;M673%POJxC$?{ID_TIA}=zL<%koBlN2kLF!B~8krWL)Bn&y6|@Koz13u4Y-)mb z>8r6JXw?Z?r@_$Dzyj@bAkY~{&_gMZ90*#6j9%wkVh&0f8CW6?e1o<BK!Wf=LC7jv zV<Q7gQ}mH9kQn$d5~M=K$N)6rkLqJ1&_O0>X~D?A62sB;Mh2FaXyd-dMxc{k&|0lV zh6d=XD2$B^4GqzbwgHPlrdALkV`OM(iMF8K*vQZbG!6u+e~=X#p|4*BDMa5-3KBC% zTSo|LVH%)UvqpxX>m1QS26Sc#JW)g2e@2GJ7U*L%Mxb^zTB0#BG%-f+B^eo-pkH`p zY-DJHe&hq_$T0MS+>DLt4NZ;Ehs{8@zo9okj0{cDk5UC0h<;v{v5}z}##pcsXki>$ zq6P&&D7}HhAJ&L4GBh%U6%0sX=(kURgBraj3<_%Wn$pM+l*KTDA9<rQr2S`P2)dF2 zU7-oa@GB^&(Mv*5P@^q`0EG<taz2n4Mlo+>SZ`{KUh08@8odK)WN2!EwuKWE)EHxe zMuukS2S6Dc8JZiTj|~}twibhO7%2P^L2Zt{xXsuIbi^H6W5dYM0%LU3$k4(J-l>F@ zAE4u0FcL6mr!yj?LG~LP8Csg4_uq{SEzK}<gry~->jW7m1TCIHTZ?9FWMlwYa*kX` z85x+P7wJYu2KAQcqZmd;hKA_v08nsYI?x>bya;e;p-o<b#L)MkfW)91oRHdoMur$S zQh-9n0Bt!ANX!_s!~{*sBZ3vw8Zt7pv_RV|0SXyVsfTFLfZBhc;6krpjEoG-(9V_t zX|_b4W-~G}G)0?aHU^2I?G^xuL2p(>Ds7F7jOx*wO-7)IN2}kBj6jE|p!v?o$P9fv zz{to5V+_g2$k+rk-a$8SgUv&<|BQ@`&C$n#L1O45nMOut7!6O57<z})$jBW1v`Nrf zTeQ*AdIMunvjQX0fDW}m8-_D7F-AW-#2B<d3T>wxNX!@`noKaRM+d1hH9%X^3lcO# zIbPNP<Uow8BaDqqObjt<I};Ogv_*{|b?AGQL1LD$v0!-n&&b3S{oDZ1iOCofhDIi) zmKae2I=me{&6t>>Z{q=7jfNKd2K6986XYH#IO~|0qc6oUHZn0cz-ak^?v6lhP#PPV zfTqjAi3{H11sxm?s_j7e4qn=t8dw^j?I|}lGBviusM$<0mUkN)nVO-mz5|P4v~tWr z_jIE<#@q<8bPV49GY2gc!%&DBcjll&z0uWyriC%Z&_~3L%t2Syp{lDl0`I#<6*K}} z;fh{yn41`56xHS?CTM$QjE&4qOwqgLM&_pIXOe-`fyRbF^$${sWNwOn$&;~>xheV` zParYOvcep6ni0B3%rH8xM&M1WFm<r@pShVCdQaHM5_D@dOd+(kvjknqjV@+picyMM znqh<jXv7)47j0Z`Xo$Yr2{ez5F|P}neMejK1yYB8SPe)F{fcLhm@(R_I*=H6^Bg$* zVOhf15R@BHeP?WFgjj$MZCDr^V%+{<3=%`H#EcD%(Ko$=4(LXn%7e83KttW=RVC;O zN7yU{!ht5}%V>;^jm*&3m4n65J0Zr#2I#wPjE#-!4bZn|gEoa@G#)|MbED^N(4n^I zjS`R;daDU^MKbyv5$Fte@LE<-_``i?VvaGb4!W`%y~$;4VvaGt2NJ^wK@*Hyw~aw( z6eA~ekp0HSCYA>1Rj;uLXtgL>S}?IRMXzR!O)M?YN4Y?|Inet8#-;`sJtt$(1)Asu zh%u;KM(ep6n;IITZOb<{HZ?>)IT|E}e%2~T41Li&NDO+kBU1a%*whGlWE!-t+}PL@ zbe|krD3}_dUz`F`htb~y1vT0hAaF>d%rS%7f1seo2tpG}jHwk+P@@+#prA%?euIJ< zeZ1cobQK6%k#1~iU{Q}ghy)61^w|t!(BW!m9Y|wSLsRsYv9T#=1Q0#64AGBt0)>_# z)FX)YA1J8N`*FsmphNV~4Ky}FUv^<^YHWnwh5)VJL2srTn}W{&KsK-50CZ&oM&IAq z)Wj5R!Ll((483DwY-)mj%9gRQsi_fW2$~vzm+&L?h>Sr8^`o6057LaW>IHO<D5j6i z&@U+g-!p;U2Q)S{Ge;lV2Z_NJC&Al)#^xsIS63K=#L!kQgTyQ`ie+;XOY}P5*xVF- zr@pbVxheW4$9j;U5rzxRP0^3~Fg7+f!{`?po13EVKLn}67&S9CH#5a3zRk^zEYa8h zfo@z!pMo(qH#b8cIyW{4E#N^;NCw8n<`#x%M|y(9Fj`2U%hloO2-f}s9d?RQSeRR) zpN?c~Y;I|Sk+(4q<p-&=MB7ziY;0j*h(4ZJZw$J;5I!6RY2_GO7+|b)FvdK*-xw5H z81;d<ImR>_=-49k&MYXjj117`e?ey%p*J!?!G)0(%`Gg@dpgGEmgwh7fI`6peKyqC z+|mruJ%hIYj6pl>(fWJF76$0ImV<&2zH}B|ZG%S1(Rx3|pi3~(i(3mr%p6f~VT5|f zhym!HDI<)bR?vC2=-q8&3nNRkL+e0yR2iTTR2f@<t_Vd-tQJOQpy?Y>{SWUZfegf` zjxCH$&=(jPTNq=Ed>MnbVWJIG8CziNNd!3%x$y#R|5=!rV*1Vm{Z?vYV@qQ*jMQ&w zY=*uh6Lbs`hNCS(2bQ9Sf{CGnp$U2|W@2cFp87${@Gx4zCWeNV#wOFh{IOH5H$Y!s zX#yH^MN1SWh8UYoj7<zdx0<87${1s=4s^*RdVdbIoCC695vdge5=2{LZEONsSAjM& zVPa^45tJr|Cg$kl`JiD2^Z^Ob(lm@#jESKs>TV^_9fF3Y7U*#UI+GZEWr~R*#+jnV zCWdAh{XWpO%;>FQ6GL;udh{B}#1OQ<7Cl%&yHYX4%+VK(m>8O)pBG|mVrYTU)iN=( zfK5mtS}`Vu78ofR6x8UY5J(JtnKUS<k=y2=kq{F@Q}p{Uj6ordI_Oky020JlGy)20 z^xg<4sL}RvfP)%+1kA+H%pAQ#0Xh^7eUT|Bq>a%|#x^!FG&hB$Ohn(_1T@W!RzQHx zokkxT2L&~H6$}b$^g%=uLkmlcRt!iGy+vyRT6~UH7MmCu7-La~QO}zg8KB-;21?YR zsW8;6U2hCB5at?K#b9D&fWGAkq|O4psbpegh<*i;F-Qy}eSl{s&=Rnbk)eSR+A22C zrR3<vq=}Ic`j&lTkQjP(YXWN8fMzC;TB@LnXfSdKsB3QobquT(V`6M!gb|;{7U;*R z8=Dwgn4r&anHXDOw9!mJvvTNZ#@NyXJ(tvj&MrZ(KtOk-qqj~#Vi<|b#J~W(>1AR9 zTJa6_9dy*g#KZv8BPIr**;8;W3a>^@ObpRC6dQx?SH~#7O$^Zw;Q^^bzroko1a#^; zTH^#Hh8WR=wqi_7jL=WC18KHEpDHymF~ZoXVq#)!gpq(vjEyjI326O3EZ$)uQ*R2o ziU2LRK<j?d6`ER@Vbql7CK&6u!51i_jRAlzMn-SLgTz2}2{`=W*$(sM0%H?%QzP^S zBj~bZ^tnG1&}oEd1Ii}mrWjjuOw7%YH$mrs2MbKh&5%|WLYmShprg$&d}3~jK0jju zYBr;%baQhH^f5mZbBpN@ne2t@Ele;<anMa`7*<(gjAfaaTVjmrn}E(OLr-GnpsikL zk!lV)ol3#Lzzn%~0G%9#9@C&J<T1sj3$oga)MHE%nV5r4h(WgsV<RGHkjo6CQZlzd zKkm^O<VE!H0FW0UbrN!G$=nkC-dT`l^v&$XCZL7O=;^}30R3KEV-pKQ^vmBsVyHI{ zfyR7HER4`EjW;&2Ffv3tb_c8(qdAAUj0U9F6us$gVqs*8-ah~x09g;4{DJ2f3uBCx zYM@J3z$26>5p9ey)M{b@>N}xDodxJ-40JIQ6KDyI)LODIF+!hiF#%m?hSnhkiDCN0 z#1f<FZUMTU5#3_Ycpb7BsI_EaYKhUHurS3~?`s0u(SQ-}W@Z?P%fieUqh7HvN8c@N zY+_+<V206JvNT7(InLO`5_IJ|va1b1BW@Tg7)(LyN6;EKriP%q#xV54hi%|vKBk6d z2I%d5Q$sUD^t#^E5OZq9)X*Gb8J?-38OBn6Q$x@>yeN*T2aOY&pqGHAh8F0DmKcK$ z<3}&%ObsnCmfM&bT3DcOLIRz)hF+nWg6^m>Kx-|T8d{<s;bsgv`v!ej)zruUV*?pz z@ecY}pQ(`n#v*o8BLho#iwxFUG6k)4Kr66KjSP*^M?p=E3^Dd`nSvI9pf*B5<JXpG zCvSm65WQ(%4+=s^QHW@sn;Kf6mQn_w1ZQc0J~U?vy7~vLeFzFc^d1-}1ks0WOpU;6 z$-%WXytM=hLeNTd<hfZ;5Ta)>P!OW`qCg>tKBZ=AWQcyi5h!F#5qrv@ttC(pqIV`u zLFc}p`_9P77`+-cH8L_qpI|aI0`0OwN$JL>Mn)Fs%QH;tjX>EOT_H#<x|j*Z$cCwr z3C1E+QzKK1S`oCv8`E>3VO0eKaQMT@ep4fJ^n;6xO-+m~(N{o$#Lzn~rY4}?0-B>u zOkllYL=>Btm?A|dH@LNAYGPt$Y&6}2*IpI02n*d5Q}jzgK*R6oSIvRNP`kngpdooP z^ojvAOb;6FLP=yM=Fm0UNDTs06U+@Brr?$$x&uLnK%t9Spx^pvY-(a*j9$ZmF9t@= zyPyVvsfh*hx;SVMSsJ2ubxch_7d)U_Y>Cm`HZ`%dz(@e51_tPJw4n2I>M<0WfUc21 zw*++BFou{B`n(({v@j|a6LX9;zNRJ?hUn+|frATu9}XzE(C1G<p@ly8YHDJMu>l+u zS{Q|ki6z>Ssd`YNvBVheFf|1&zCrUbXdVr%U2AG;fH4(jYHDDP-flBB1<i+}n`dZf zT8~}{m>Oc%qo#)D=v`)0Q$tJit&pI}CyZj!)CgmW1+>}+Hd}#c5SSWaOof@6f_Af` zyV}?kBT7KK<uO9W7^975YHDJD*1)JYHU*9Kp*8wU%}mWPY7h%Ui~)U93(URQpsRt= zmpp*P&_}OKEetI&CV@Z~<zf^d7Dh%G@o51%{s=8(EI^BA(8Y|=FVr;#-H8jY7~l;8 z(CTya#vJGZT=W{r!Wd(|4Rrr4MpFrN&L~>z)zkvipG9?Gy{Uz%5vGq#4bT?@n_7T2 z)}v|$iJ^C+K_@Yx4;+|*&hbR^9OzCm3k$SKATuKiQ}n4TGb0PM%K#0G&5ST^{Wdl; zvNV9DYFG_tW@L%6hZ{89jA%GO8w6&?1_tO8eP*E3)6iXQY+!=kd@?gOFhNfrW}t1v zXi;YdUQdG>f@bxgg)+z$f`Ngt8EAJDT8=O?HpJL#Zw6Y}j5fA!W^81PXzoA;B0%R| zqnCsr$AHH6Q5pnhpp`rrJ~lK%Z&{idgVxKU`2@5y9IXrhIR?FoHZwLtp0|Ze0)YfU zgE<CBJx()YV~jGu473CbBV<g_&uKCSO^{<+Y;1|%ZZk8kH!(urs$ynrf_nKAI7&<~ z>IgGq(3%+ZPynqC#1O;S0AyxtW&oaE2ZcX8wHjj_0&i?)Y=*I-0CZ6W`qmdSV>67Y zZ_ss{=!;80V#s<y_Ja=HGDhz&nSrj`#7GOEp(=FWSs0`5(KR!+FhO6nU}kKAeqXGy znXzTPAtEorQmX~}>0=;;82e{IS8$?FcbXYnnqznbbW#d>ngNabg0m-5`_Ih80J<_9 z(KP~zp|7hjGquE6ECdomuVBnfEiIr+UEs}OkQj3CgBs+<W~P|?a6m_ZVPred?l-iN zIy2DqD;Q!17@G+|7gC}RLW71Z>(TqpW@d&Mn|aMZ*L8q{3n^sG3^A5HfsT2@$aZE% znDK6A1UnfKF(71SW{jDS&5RAu8>nWWEP-C?fs#LZ;bUfuelDA_nVAXN(yDsU5k4m9 z=Q@KFT4I#*W+s*x<-D0G#)dyLGgI`#C5_F@Ofja?&CE<K&CuI_AVKtDPS8D$=;Qci z7N!{IE|?pDc4DJuPmmb;Xok6gks+*w1aJR=1kqElxq%V-m8!<(21dr{?FDlKBUAK{ zF*h(qzdpd&+`!lXZS1EWBxr`-x-~a2HitKnpfe5T2AD@9nS;*dKpQ$Y2i+czmLtp! zOwf<yHU^2ASfC9Efx3mzo(Vk9nj4s!p$EUY0q6i|^q@Aw=wg{0m|<+8H#aatoa-nD z_Z`L^^~UA~X45}P*$da3qi!4l9h+ugZiE@FpgXwG-2^%=9bF7`5HY%#1;(Ofa|6(* zDB3|q<^~q#=<7SpK?7W9Invy~(g3{~Xl`I>hF%|m#83)EkmrmnP<Bm$>nL+03lof( zF|t5E+TYmR$O8G|DsX4o+{glBm$kW(r2+cz9cY0)`e2s1k!3x`Dn`)qF^nW(Y=Cj_ z0BAq~y=86=J`D^l_(4aZpp{?dp!1c$=@_YwG6$Vufu7)v4KY^EgU>8L>sp!{WA<ar zjSVsO9D}wBpv*sm#wg5<jm*$zO3h6z&CsiPkQjW08!T;u);6OxCCtrD&`W0%0}EqA z^f3z1Tv9!HfoN`Sihj*2WIY;MhsWI9)C7Ir&>XZ91U&@J&5Y3pTg*Y1ok2nnQAe4B zE|r1^B8ms_<x^<!X>M+c-V+B6gJ7fub8`#yxdU_1gcwR?TW<hbMQ4m@poJ-XU>P3N z78aQ5ETMy4h}zrS+|n4mhi7hXX^OtR#~gI44cg_Gpj85p6D*Kg>*f{)hUk3^a|_VP zfoLIP0Xi)XLkzRDH%A<vjHsh9k7);mi~;(jmbtlw5qg^x6w;U>13J$g%`u?Wov4Ym z9^_+V^sy;WaG|f92L%^qg0r-Q)wZyfJ}9)%7e|2x711Zi%`FT}jnOA9%t2Rgpd=6j z(27cohP1hb5qz&d!eS#6OiPR~PT>RvAiPqBjZv6e7-5`-X%4#g1j8}L7#o|-K{sHa zXFJdZ6X?0g0(7?|YLwK24(CT7!Zo)r!B_<i5<}l7W^Q3(icuh0n4%wKYHV&{Vu@1f zfhr;kQ_xCDQ2m3Hbu3KH(5Gt6Ele>En>4oo-H49r6VQzU7!?fYZY)C#bry({6*@)% zI-LW37~b5%+zh=FWNu-Ou@TuEG)abDI$D5kFG081!WeyW)V$up0{y;mV{;1&j0H~S z7M4aBtu_lwBeW);u?6V7D>NU2#L$ai(ET)^wgEW&VJX<c5OfC>s;eyw4UEu-ek=?P zFxm^Cl?LcLCqbDBJvuE64UrebL&hjTg6N45eD4fuVPOnvaA8_vWR5;XZvmRCLQDM? zhQ=7v2o{F*#uyXKpc6LG=k`FciC)5i#!NAT)dXX<73662xe5zIBgh>mpzucoKj@kW z^x!wfD10mojWN!N0y!Feg44nfRCb}8XM(aS3uM1BXn{R?dkrLpJ_li8h;i?Xu?1*- zDq89Xt=7OyGo}{k!%!B6pvy1OM(8XIF`M-kpnI_~(t;Vr4rmKQGmJB)EDX&J&~uK3 zp*eKp6H@!n!Vq*RBYJR|W3+NW_b8*63l@f;w2r3N*whSt)gEXh8l|NTYX4b)2CUFi ztFalznNSwSW=0rs3>wiy4?$xy6AT9$n;W6GF)fVEEbGymNEXKC80*79V(3f$ER4-9 z(5r3G`3dNYTP#339MGc<)Z2tO8qxl<09~Ap5egQT=tGF0MKBog3Az;u!xBsME5nT~ zj4jd5o2WMcji+JkincH@FhyVDYhhx5Q7eM_P3V;lNDRGEVqs!vh^TZRgK-unhGxd- z?LP|>&{2eF3CRTG<^*F46C(rkrT7-0%~0rNzo`Mn6oiGDnK^7g9^U=~38HT%u`mOj zR)*#nGjq&J2Xrz%y2WPZ7^mr4n3<z@YU)9k0AsAKv@io*`i5??g*ke++``Pl9KBa# zVP=VP6dP!{w}qLdDMsOAW@%<&iZ(`JVQzr2u+PFAbh#p$V?d)L=%t>y0mjK`7Ul*R zd(A<Pfw!b!?LP}MOZ3|;j4eRt2BP&`EzAuJG4i&#feCv50JI<qqY^VW#28$yw=f4y zAffxt$N;63G60Pa8DT6PurLQ*P=le@41HwQ!raIRee4pX*9?85k_G4xRJ73!kQhcW zYHo}%_hexX8U;sp3~1^KUChJ?V~MW?=z?(YfB>Q~3c9`veMrT^+|&TQb75g_f|)SQ zO;Ltfz=_ZtbDYwm-rUp_G*^T?J7ZyPW{5s?Y+-JSaip__xtS?O1H{}6(>x1|`)Q0p z^M0T;NTB*3-rcq|09_c28eAYTw6?p6frX(dx&uK&Qs|BWiJ|E=wln~>DB*TM+JBY? zpnX$tLGZwmrGcdZdXZ^q0J>)lL!B}D;Hss8CB`OZOG5)p^9<_^jNo|@+RwK%G%!YQ zj9MBRV4Rj^X=s2kZ)Is{V2M6>Woc-LvDd`X&=7LTEhzk9?LW}f)}S^ya#{ez9D1)8 z<UsUxKgfaTOF2OfL?3hjIS|>yAp4C$E=2GBfLw@P23Uf&W}$U7L1O6h)Ru-uhUnXJ zEe(w@#uF_Kjp{L~SxZCE`Gjb3Y-o&rJCm`cp|LThqm3=lXJ|p!`68{7f}|}&6GKQB z9I5?hX=sAc#j*q)Pz7nJAaV(49VlAaZ)s?Te!;0RNDRGqY-wy{jM6d&wf{hZ=o4X} z69LeV<gx_SSZIZmr3J=Ju89HYfGSjVpm{p<D<Dij7Z{|Xtv4|-FvA$F2IY73Q?Wr? z_s|a|2Mscspshgxi&;#+ZfLJiZ(?A|%f+c5l%HRsU~B?9o=qVLB;c8smJbpzQ80iC zxF|#`*qB*3xfz%_nY%c<S-2Tnni!k7x)~c-x>*=oy11Gc8QBq|B$k)U&W@L>xFoSi Yw4|aaHI0`G<RnvL6J9P=RabvE0MUW3O#lD@ delta 613353 zcmeC&@|Usu=^w@oCRe8~>@?D!Y;;wA`h{ECo|99qT29}v%v5XgsjEVh9j@t4Ph6sB z&tzyiT~N?iakAbu?dcC3H9Ds^F4Z%ezQ9T2({@2&V^+q==dTG)7pPK~XEdE&Sga_v z{X?3j731VpH@K#sT%*FrWM(j3uvp!u-po+JKp}{ii<477-B7{M%m|5VpkQcbjKl}Y zn;`Lx6%5Txk@zMGhGu3+d{YHOGjk-qnS!C21%hv+U}&aiiQt<l7@8X(xQ+^j=17in zQ7|+&n*31Md3v_Ig2?3VJ5#1Fl2Egn+|RDaWN1E}@uIrH<TZEQCwtxIpRDjqetO^w zZL!G-)ytX8O{XWSsfsa~8BJEK5u2=dPh|Q6D^;<{_wI2`zj;ZWXY#ju0@FXVsmn8( zPfz4B6q}y#Q)4!hx%p(n2jbI{Hkj&8uDLHh{k?+Oq{(^@cqVH-<eTjAz-9UYLDTt@ z<sR}(R)54d+2Wzg^b2dX-cFW%#5w(>m;&!)<411O6;@lvF&a*PxKv(@$<S=FV7=bt zHIKz7*FEXr0R?k@QWh_lp`qDi-6sLl9h6L_G8<YLPcPgoFADOIW2l_&Wbdcq(-p)` za~KV$Pf$`5XEHa0_(4--`UgJ4XeL98>5Q9|MJL~QCOG|puB!a>Mq@3p=^r%AA|@w1 z=brphk!N!GbHVBJ56g8k8ctuRr=T}^*>myf0lQTBHp{#eWn?s;{N7j;WXwWkQ)>`i z=&9<!XgOU`#Z+;!`z!6~1~w`kjF!_G=WCcv|6rpcJngZ%(DagYM)B!6qWYZEe=X4w zm~8MyaXO=$y!`aLKNWbUt8cb8o4n_Z$#g+o<A;-9yb_!q5Gp6fXgJ+aRbFg*z!gpY z`oanmA*V&2${SxeFa67~p<QI9#AyrefBVwZe3wKqm83nZS|{n={wrek!Ot)5`mSO; z|NCGD`{$BEt_t?&2RB3%*=p3Q)~w#RRfp?Q+DzM?tuNKXMCQ25D_U1?|KPiHIiFm_ zmuDtB4$k@c?DYkfJiTlG4saYRK6q+U_KU-Q`fF?JbKM^Zp4zsR@8?1N+Y5Gv*XW7u zaOpeQJImzEw$KMr#cW|68@%G?9MY1M_^UsE@~YQY%U^G(5?|FiVNs0cJ>|DXi<ARf zRfLzQs4a?d+UcVdy5)3csY2_S3kSDeU;Fv)3*oLKjWRYt{*5BbMQnmL|5?vcttN5j z=#xIa2{y?Fij&PXS&cu<x|EjLIzJ|8!mVW`eKqx8z204u-_G~LOtiF6kB23n(JyK4 z!Gs58fp1d6um1YOB*?Y&&~(Sy+T!Byq+@Jk#><tOmjX#g(*yYx<);fAP?etkpxMHK z$<T6o;35sB$(`@jr=7HH2k{+mYgtYf_{cli?Bn9eyFT$x-+xf`;$-y?0@F7f)RG6q zauTEH^aN)Wp87j_UYF)vbK)q`Y>jzyV3VywmiFAl!k))*Pu@QF$YeLR`0#Ujon}yo z`SD{J{1<mir*_L#<xV-AxyP!r;8?d=((Hyym)5()Tb6{mDDIrA-tV0JD{zXc!xzCT zCwEKA@nzXOUfgkSj??n9taAHanH5xT{l?C2B9{~xx?lsppZ?tX+P7>i9hb~{xpsZ~ ztoG!OYt1<^Ma6qX=0zbEH~kj9KEvuN*&ggz$+cW4<BEOl@yO?Kb>)4FE(^#W_l(h< zBH|KxswBlqVCkBtYf>cxH>M`7jo2z1>^J4Qi+}a2^tE&D{o1j8u5GblpI+IUl3iDq z9G}HoTz6-4{-$4>E`K_GI!pT9=PBXO4{2o9n;cH9y7i#;XxSF;Yen^pi+9eLtax9X z$<lm!;v@x8P^cO%G}fMeVVZ&vqv7<89TpBuMh1}Vlm10_dO(v&$8^USRrAST|H(2M zfbxXcbc1yLACtMi3V<?(Jfp$%hpkHD)75#@dFxeJUZ}JjshY6khU4ODhFLTCGFvn* zaNnytxNPng4~5zr``^l|-wAI&RU*u7e`i6~jELKkZxdwl{1|s1*lNru?o*x>#d&{K zevUv@p>4nLm#LZU3g;!c?Q2Ws+&N>mR8H@MNXvV_=GSMY=I;Bp_4%)~xBOoc)Wld_ z51MS*cPTr${{Aevh>lIUOKbPcezx}dpVT?&+&&7$v)p*4+-_?W^zL+;;QmiU$Npz9 zOTw4^7X6-OnODmn8`yq(85rWm8q}tuBGj)@rZCCF&|OG#Qcq`@3+Khg6)s)EOI!p3 z+gq$W97~+Myq4%F-x9V}UOMMR$F^%fFYlh+UhS7T=T(>TS67v;ldG1bO?u-o%SJW) z)6;oP^5rHRSA9I@1)WVPb^YYCCi$Ym>Hc`V6UnPzJ)0A+aZl;alTC-u9eBLx=0Uwx zPk*xZoZO^1x$%d%1R|H17$9<qk->CEWd&VO6a^Zpiq^laz1^p3-FLUT_Gq2igE<#s znb_Ettv|nw{{g?o?&^d$Mh0*Hv!B`O;d$j;k5%N=<KJI0{dy87s2C{XI#EP*?@^N< z`;V*s|MzzG@5oPIfBbrTdVkHq$u+Upm5&wK{`(fc@6Yo3&p+~;mTwo}-haFPB>Th0 z`u`8l^Z$LEU;p<Le|`Nvx%$8Fb<~g4*+!)p*8lwU{^|YwH4~kZcN~k(a+Pb{ZV=Sh zZ*k9Sh3)mt$3n7vdP|RPSIqBOZCg~!ZL9uMyY0%oC~wIrdt$@u7kKuYYX)doHTvFs zU-$D9e?3!Sex`@>`Y%78>R;m9<nsUX>FxUeHGX`3FSq~Cb^V7`-XEo0>$4`R|Np7z zU-W$PuWPOI0$x`IyqWx=jMFCQ#(WXG%>1R_EUJFFME-KEdmU&I{Hv-!)y^Z|^0>>p z8|)v~btS5L?(dblw0`=PJi8P7e_sr{6DqiM$v?BA)jM0`^)>&$Y`alC?|xwQ`IWn^ z-bn=gOSsZD@p#9>>$m6T-->-TSLTjg{f^wDcg25xmlvM;IaYLgQ$g@0U0>A?2j%Mx zO$DO+@;4rJmv}1luG39$?Sy+lQY-Bqsq(B!ec~+p<=(mpK9wiWU(1quy0NQkVbAt} zT`QY!q<m@rRpDK_!p>sCS^=kB_q@20zqES@PMQ5;>y7(M7%yGww2j~3@pj_9hsh4L zX&UzR7kxjKx2!r@DPeW5NaMPx&9A8@CnmI?`jkI;lg3&$uE_oC3KlrIZ#;iq&1V0f z&*E!+Sc2oGtefP&HE|*5&g3LTv%nS8JM>q}Jq(&<uI23gMK@sO$%o<+Cpn+IEPT0J zf@AloT^s%z1+3_*{PNBr*XhNjrf2tkgTC+ha<|1$O_s0T!27!QN~8XsV|fmYOwO-X z9hlwhm^O`NlfhA!<OS^7v#zaaV7=Z|v^#8C^R!!Q&ND8%^W`jOmT=bUj6-enR~J{= zbnRFo=zMzZO0Eb|k$K-34!IRR?TXRXIUN1K$?Oz|1n(Nj92cuf>x1jxe7Ppf_2Io! z&g@NrX>s4J6Fi<>eOxc+zhwW$NXOs%_Z;u`u{!>m;q_I`$V<m2rP=2MNWHL1dUWak zHOKSJ_UxRJ626Nfw@9aRyF{m4TmP5K@r`uHv()CKgOO6AO02h%=L+c_J;iWd)|uZ+ z-F>aMi^|K{+*5Wr)&GAt`NQt*jB$?lT~h;ZzjF*&+A6h8`h!iv!@#}I>c59gZZOop zu;P}2gz&xnzyCbC^}4IT=g!pHBau_0TYfWbE?%L!bWMKL29Amk8?Ify+#2W@qxR*} zi3iiFxn^dZ2!C_)LR##aU4{|CYI4^<)a`p<=~T7Fy?U?D$7K<3&b!`Y3oMydXutLQ zkzU_L6ZLs&%2x8EW&1wJm|EEFR&+<N-iRed@M^Qf%3MAce)VlBb95&z>}+GX-`B^P zkaVky^{kxai;1mvozrw4tNcEHI@<O5?<g~qmlu`PZ*7-T(8^lk^fKmCdRLUg8dKFQ zCCS4(1$A;mvXlf_5`#A-rOwNq`DXRP4!$S5cTN>L@M`t-3(mC`n#>w=IB&&r8h19Y z-CqCX?L-CLOWllFDn4={F9n0Xh-IJH8Zp_s&x&1rhND4P+GI_$)?YgEYYL1iKRA65 zh-#bpcn0H^sWxkz9<wcxZC<x!vh0Cqk$R2Fx`HEH6jr_ZcyL4aD!W-zG<@|<LWNE& z+xfVl=W*Ff?YC>&vYxpw6gs<VT2{hM>CmexW^1QDtiOLOr09bc%bDcJ`Q11C-tz27 zU%YPWGUbp92_YO_%e1%_@?2aT<@P=>JMzcm9~nni#VmE15u3Xxr@Y2-H*ew>h7Vd@ z9e0w?msbByO6R!MbS~E+*qCwWp;@QZYeN(-{kCf7oR#t;OFwP4U=zptIak(vUS}5Z zq{h>xU$u2{g4w%z_Noc{3k_vCqQgs`o@SNY8kw{(sbk9)tK$p2-!vL(t<2FfzjRh{ zMIz&+U^iRokWZ7(eAIv6b(15J$yd`iZ%tcQZpqWvx8Ab<4G`unW6%`+ki}+ZEX`aq zbHNtB07-?#Y$7>7R@Ml5FVmP4)ZiufAxmZg6PsYp3f6|L3+_$cP|vk<!8|RAu0YQn zT@mR|7VHSsJ?F%2FW!B6my26^%d4EDI@SUGUQOFu4u)K0HJlq}+{P&RkT+*WcVPV4 zIf;wd`7ak8W-P8WTG(I}@TKZ?cx0_<V6dFHbfKs6EE6T`Xz!9!s#YsFjvl?8$`q%$ zAUB|L+1$fZQ$MgyQ)q57R;`bI{=s=JllZf^Rb0-Vn*7t0o|R`^)wW&Wx<q&Hszcg^ zIY+)FH8F_mCp<bdS&5ZPi%WCGs=iBeSF*b<{ptErAUq;XMSJ%(nW*5S^QxtPZEFbC z6wGVVa-KZHWOc9M86%P7G1AL7RL$7@DYc}-QK0+WJ^tJnm&YOjafcYY%nnP}OB+TW z-DMa3=Uc0Ffl$%6-W_v7OV5916~BMkriJOcbm+wrargX`MSDxSPPm0G`t(AL|My!h zD?ip#)8Ab5Y@e3+<D@<Ndo?qyKN8}~QcXg$BQ@4vH0VG0alL0`Ec>iFwZ#D}O;6t( zl6~=Wd&2Vsd;U9?mO-IyuWsf2e!XI`*@5~gPNhm(E%)?#-!3T2D0wk?g$R@G?uQK@ z^?WCFdPEp4(o|uewq>~yd%vXljip@N1`{6s)nzg(3)r1_Vd{|+X~DIeO5dzZ(qi=& zTsk`M`-h|DubsX32E5AAU3R?u&nveZS9kB4*|DX8^FGJrqmpv<Lh{XDE$^5nN7<#E zcXPdesQ#jHoWeKJ3<ee{N3ShYcxJP3d8pmWxORD2@?!Rz(%0(Fy=6@^PqbP0Dx<{m z!sTrV`G*!>`FMy&HF3_I;8VN4_#ZhUzNm^rYkH)`am&m@YBN?%Gvi5|tjOQ1W-RA@ zPW{A*sfLFRp0yDdiE2x_8zU~HaLoA)Ur5nr5htc!WxJQu_a8YDR8%hbNNC$C<FnCf z>W>?nre+3iD_rr$<Zk()T7h@dSD5Xva_GJ>Vb1v~UFE2gk9<V^#GSYJUDkB}ppn1A z+~&#pkS}jDw35CkxCJY!J?pzUYfkps$tgD!J_LyCeVc4%eK<o>Zux<(>FYOF=f5hR zyJGA4CDjMT-&B=OuzXw}x}$ndcI(S6pBB$3w=BJ!W4ZdRYLLEegxaUAA@f$g<FyYp zFa0*v*p6jSm6AqiOQKi8;^jB0|7306zuw#<B&2$0?B;}zr%&wi{*@EJv897!p|YId z&cy{D2XFdp6g;I>-pCW;=NXsL5M<nRc!kx%3#&~xurNoj@tzu6a;+ilR=vdxOEw*u z&<);Ka|Cv6@l(s$@ovV7)(=Y#cXve1dhC5?A+t5xKc}s?4egc&e7DV+c*t_qApt%) z>#M(AcDMaFu{U&4xTJiB?9Y7)S`&QEJ&w4w;=o>hHBaGsExBOsqc%AkAGWZwDmL9Z zE53fCB-`TEvn(|ZPx!S&L1|i4=d<VT^)62sr!`y^-pZC5V(xrZ(0+|$d%kB?l?>zg zbxdIb@<!}U594}P2}v|BYVZ+YRpyHgmH4*X`%CT0YMUIPEiIk$ZdM;1rZOwrs#>W> zrqq3r$vJU-^`SyBk=Rn%V>_nIeR$7D{*dI$rf$CM!yl}e<`g;Vv#d&QaZy>IJ?n_` zhI&8EwB)qR{Pn)hy_Yn@r=K!j9Q1457tbYjsu5?u6*aoGpI))O@y8d7X-<p0GTQPZ zuKu1nFEAkDN{SW7)y4-I71|$G^@ksAIW*_kg=mBQncwT`SI?>Ti)=hNQ~kV+&Ev`m zH!e-NBKht1;{)xy-&cH0bar&keAT<={lRMEZ)v8|^+kz?TlbylJ+Re$s`?4v=ESa9 zDVJg=KGZJUF(<k5q_5CXrQ%8RMfM5ys?PjusovV6`Ylmun@y18%GOKW?yo*HXFN#a zelEFaok<hR*@81VXYL-Ey2d4VM(Tu&=w}l-cdTx+ZIP|G@N)V;jo70sg<NI{5Bi_2 zc+tAy)hBn;5{-)bb(&u`{JFR+|GCaKms$T_9G&X4?$xaQZ%igU6#E_fZ%X_0)67;2 z6sFmqTIPG+^X3czrdj$L?8SN-rFG2HF3tX|YJI^nSlVvxMdo<D#U~Cf<*vQA*N5ZF zsnZXSO8S<rt^c|GwY11jj`WjqrRQE8^M7VpVJ`S^{-W%PQypCYlX#xjpINRpt*bI* za=owfvdUUDzSZl_{{)v-4=ziV?uakUUi5!=bojN8VaGrDmCh1d&zNI9?Usy=k-?&w z`=u}6+|%VJzU|1TX;-o*9Xv12QIlGt8OJ2rJWuXX)lCyt{vF01%N%(P1zhJAi0Ym3 zaL@Vmj43d*;{UtJ8+KSMeQ~?9es0~uq=(roYQm0(53OoYJgV@yTfiVoJ8G4M=2M|) z#l;n-3VIb+BBTV?Txl!xS+Vhx!SSBD+z%W1UOd=qqW<;xwG*rMb{uyzT@xz*y5UJl z^9R}24R0o@^?cUud|}$hz5m$`$NfAJf(ASih1C~@)vnLzetldh^X2>dY!OZk7k1XG zUSi&&dZ|~n<<k|Prp4vmZ(Z**&+gu5<lX(b#qq&O!QCs579Ta={$1aWb9;oqcjcPG zEP)L%qTQxbra1l%a_|UQr==M?Bl#&?;3h4HOWBOU@os0h6q!Y*`PKI)v`pUeGjT>p zRYzBI`FGA4GrcxfRc?PdK{)%LqRMRlcfZdD)`#~p@10^HF;nPb%E7A7&S$otIJj<= zs`tDVs^#vBw@s0IyXxcL+YHsB2ER|qRCxSv+P*~g#*{6wlP7QKKgP$k_t_eUxvK>y z<{w$<ZPxM3Z0o+WhYaOZUVM8p{p9{4pSTFmpmf%Il01`~{ui#Uk!7AC`|6zPth*hi zb60GBQWw6=s{YCD6@quq{uA7C;?9!K+}BI4Y$^MZDa{n`_`AXN!?B>ErbqMA!g8aM zT|Qmxo*KGAMEZDz;U=!I*wY%dGb0OP8rlxJn3`^WAt175=PB!hXLM%rbc@d2sFk7T znis*qpkbUfBe33Z+Tw*-IWl%fkMTPnJe;k^UKoD8NAui|)tRU3{S4%I($gCwKV7{M zuN(J!lkAH(EZ6mu)MLbbo1b&v6V6e2JAKvU&h2x!E-}y6<+Qf;cF{SQTU!~;_BE!y zO4_of!OzO)yLR2C^9Of#J~Eyvx=Y_<&x`4s0~e|Y)XVjiJ751by*ElHc#SNp^@Y!Q z2le-St~frS?F`qg`^C;|<@L><!{aN|t&%<+-mg0=^U2~Hyq4=ED>mdLu8wRn@h#qR z?E2KNn<~N<dOh;eGjwJDuc_nb{Mq+*z4$wa<C}Sv7qHJRc(T%#S3G~KxoKcvHHWq^ z&s*;PaMzU@&s=|QI=fvte9KCQg^QD)e)@K7KKs0Iqen-opZ(Fz6I;Z0C}BZ({mTnS zA}S_3PGG*M!6xT4d*<Y_3#ADUI084m(fVw?$;Qa(+Em4hXQm$Jkvz$9qg?CKnWYZV zt!HOUG?&}y@IS<+<=%NGfn{4J9AD>uV72nwZ><(H1D8bhY}m0ZCcmfP>D8PT--fPM zW>I#vsgf~e6+$Z;8{8J>J(k>D9{y?Fks8<f&`Zr$DkoobZ%LNrdd|A~W%$X<r{ykr z?3=qj#3ajE)nW@z;i2O_Y)@z0-e7cOnwS1ci>70FH*HSb;^Z-5ka2z<p<=a2GwR5Z zi9#aFYh)_;mPrRb6i5nfnz+>Z)x{&dQok>y&MJB2->+PnxZwq}*jh0iW`_exrte-d zwYi_NT3LVN$5lhawrG`e9?w?JI=p)R$p*glbxYar{`mUgilcvXwXcHfvO5KVSxXm9 zj7r)ier@KYY0(1NezTaT?ONuYo}#7f(Q@J4)g#X{Ys`&{SOe@NInKWmQ{-54<~mbC z=C_9l(x(?^v%PP*dqCdfe>FcJi|E>e(VhzyuiARe!@}V4s`|vf&^RByDaGeQ{f_zl zcFYZZye882(sRy_Iaj8=;+lLgZS_3U<*h7s*Z5>A4_CUL-;llhqISH&5$VczuVVEi z5_G?aTN}L$IeALOW`>FE?5zA=?atKBn5>T$+Ak6-7&pc~T)5+#)LLyLHEGQtmiw+B z&1SK3e$mwkEX~voxm#L4S7FVAY&ILQo(m!>o1@!4wj7OnJN;EpsBp$wDTf;>xdF_Y zZoBKlkF``iwVv|$hN5ey-aOVXnZ`^1m`$BvQSvE-VI#-1Zx>j;@J5}FeZE>tSWKiq z^~sXRm^J^36jt~%d@eZpZG}l<L`?8xK7$3e7H+-kj!xyROJ&;K*;gHIRlibtbz7A3 zSB8m&#WVli{_w{2?!=9WGn;=ceViC7rvF6l+=F{l7O<{5x6N%wx%vK>m6E^jE&F18 z)k{>6`GMApm2ckvmJ<};tH!4_^)TzKV!fcGlk;9oIC6AF%*2EfCkr0?Kic@DaF1M3 z<>D1a^DGxEv=DV(!_?jJVHO*c_lly&X7%-|p<fQ9UW?r<Tgo!YZ~ZFo6EnoEpQ$+( zi(C2^FFZXZ{@}OPH0=ysC9$*9gKzJ=$GcRc>t$VZr0YsyLDBr}z1Q2)mxT20`D?sx zRmvNVj%S^o7a0>j@O)NX5P8}Da!ta6q`=4(@qdhG9coHT*?hLl`+1miYM<sj?<lqp z)7R+Kx4+XgEN<9tdw)^poduhoM?Y+e;JSPB^pm#@i3ax0QJV^$7#y>G@%%Pxvga?Z z?5G<%ZhYloOUPSuX_K4DKGqVOBYGhha!!a{{5y@Uzv)I@=^K65kBM8dK7HA+){A|X z<w8E~;z!TFu<nUmk)*pgMMdt}%rx`qff5I1rM`KYopQDQ+F{r1{k4)8ukG)bc*pVn zzHHC3*z0$`HwN+RoL!l{_(txeH3v9DRemja(WqK+v}DmMUNHlim8P>xdmiw4*X^4; z^Ko-|m?PiiUr%<k{+#f=G3v-}^><Hp)CfdxSkv;OqJ00o{Xbcv+%v>JiQM*Tb8bI9 zal*cZ7xQL5X*eoar72eb#x2g|w8*0rhHRF}layz4q`We|CA&GX`gFJJZr-W;#TUy? zx$ne(%|+#MQ)kAZgBh&*ocOXXp9{zknfQZGy-fVchLbONE8XN*7*>f)-Qv7VVe+qe z$tAfb)?V}IEQwee`2Vf9@1mmJY>Z-mSadE+O$~pjwQ7e%zt_p*Rm}|><Lg(RR_Qg@ z-}*Y`8h3I3!xsOmPcN>F)w-PbE$Gg&46Suqdzw0TBrA(ndj5=J6!|&V`LcP~PQKe- z*^BQSnXR*Sos(#+@s%x!DvjdN7iVv1Sh#|{HD>Ffh-Zv$p&lu}+)O#`vNwL%x>@yO z@?MpNEvt{NvzBVPe@2}l_PPPL{7QGJ`klpVZ+y6X_|O80a_zM1`wzT*CAa#FRcLPS z1EsxxnO*j{n$B-7-@iFP@bxhk(TNjJw6a{8lI2#d=xY?*z0z~lqe*+x7Pg8_yp$>Z zHz{wL!RCi^RW7BJHRe7xmon4gzA@?Ty~#HO8ei;cvb@-}SJ1ImYg$Lig4VNZgmYiF z{cU<*&v-sGGVJP^|FaHm^t~$R>C9ZAbLiu{v<B^~&DATvJEtX@uUj3^CbR0oMY|2# zePgGxhUYDv8B%cVjocBb+zni^J-j>b9^#XB6Y6UFRTew<-g?9Iujh{3=$a9CVVlq1 z*hj~n<vr+Ae4C)W)%m)`jajO<R=u1xqwV<#2Ep^+&%7$ASDDq3+W$b{aCXhZ+nqtp z*WHDCxp^-?d$eYcW`tg$-ub0B6CeJa?Z4ptJyD-Knfo|%>;IW$Ma*0H=-D>Om4zBb z_g>x!e`D8o`8;n|X<m|<zj?$CC$_YGO0m!Xrp+wbEo8p!)wK2Ix1L`=FPyri>%O=f zU!&n6&zzur2AaXoE-tCxqW^`{<jC}LL9=})Jj45smuZ{ddU4^!gnKJ|yjRbiUg*c- zdVKZcJBMoC=arm3t@H6f*j@S4(#MLNY8q#<JKO*Nrs|q<Yu2LcPCM<ll{`Cr@{Ey= z?vnnQ+<j|JjXP#ee03!%N$a!fUIi^4y9DPxf8p1%tAn>htvj+rOXu+mwomoz<AV;! zskZ%}sOlE7r*~fEKL$0?!xDd=R7d<Z-oN(9_O_7vW7QKF6f+!IHa<RkrSKEOQkmUR zY#Y{S9*HrnJ<e_5@#X=?)EggPU2Xc5q0n;lk-60pZWC@FgLUsq`a5^8elFF)x$WYz ze`{*?dLLnA{PlHRbz+h;-`RjnzPHJ*Ue(7gIvjJCFE(VCP<ggp#`o*`f>rr8ms<as z6h2&5y5Z*{pThs9S4}^g<Zj;?@lR`$lebrJ@#Wr0eVHDG*QBhJm-V=D&YJ#gpG8bV z>=Pj~|25yEbj>`DsIf^&&i7idT*C6{#0h(iLf(E~6p_*;RJ(tfFr)d}a~2L4S8!gg zRFX@oXJuQ@(z}1}V|Lk@fx9~o9(8K<-fLtl$al)==nDQqE<tCryU9~0=Ia(Oeshn# zJGo$*(SoB3liuEJJ-NJ7-BO`%>;0ZnM|X7HZdhNsc=o>7J9)>~RV2n=d}O%&rt-s6 z%Pcax;_nCVaAwepX4x%e{8_%Xi|LDZqbIXU-;uYH5$g5R6L0;PRk3esci*FC*Ond@ z9_1N%UN@Rg@J#Cad)xPWxrR@=?1zkhxe~=Zmv8UBS++!O!HkP(;qyLRP;u%HeRE^y zmud^&EkCuhH?>`~PcK-wY}+k<M=K+Rp4A7FOLn!somR3Z&UM1FbEVf8R{xZh*in2_ zYQsbC>q0v>XB{?}a;1LD-O`2TSCZmGayxnteG}tvx|lfa`j)RLCzmegxMFu^Cu7u$ z%7|mfQ~oV&7x=Q^^ZUlBZ}!c5vEXS`#P+InH#`}tMBdz4_{wq8xjEAxC7$BkraIT4 z^-|fTbG8}>92ll$RcTu_?bf@<cX9Q$CVgke$5A#a9{-~jrzOjH`#e7X&$oW#)C;Pw zl6c<UZC%-&_^hKj@qxM4-RGRavy(D&LQRh^Z_-cR`TE@c1(`P6-Wjc^+;3R9zHP&& zdeQ4k_Dy<t@Jy-y8jkoIxgp+LW4<5xp%S=bs#IgIYS-t?mra>VuH>*YeXGpgrMP6< zjg>62(wBLB@01+7F(-1O@cy>+%a<P~udR>nWz2RsT6<xk(ljS?Lo=VW(skt-#|~6& z&emD@TS&aDWKy&FM*r5MWwQ#8wD|sJp4g#XdU|(Wc-#A1SEJ_#x@<n~ws`wq@dcLN z+**Fwkuz^EOk65p=q(u`_SKIykclz*<eh0}`gUxvZ#sHx_0!dB>Ns>9D&m7@+%+gj zVm+{{ejBU*+{}WGZO;$16dk@(bU?E1LBXDVWilFUb8{_qg(o{b6py-g%;n<RvNufT zG868vTfg&RLIhK1d+^!hJk~OUPARoTYm4rDjM>OJ>qUM+-;}v(b~!iMBe$(xdqh}U z>4n&VqL60?Twb0ETX(Siioo%8hQhOzW^K(>^yr+uS5K{e%d%g2`%Akx)?UdtUZ;9C zP3EXi{MOsDItmdrXV<c8y-2+Ec9u~3;qwQ1-pyF)8{u+_sX@>^W&uY|zrUE4j%CLz zhm5L>xcG~vUTxoxw`%C>avzvdwB%OD^({;j!u>ju%4Kv-InpG9lNdQQp0TKgXUQ+} zDY|I1@%REG2FauS_3x%8eh~APuQ4ylS&+}QDsyA>QdW&O&Qs;)D!NW+m02P=>(1Gk z3%#~guRAy)QTOOvOMkX$#s8a*m(3|!?0({9LwbQnm09dVRr&0MLcP7-HNu?>C%=e0 zbNS?F*Q$c!v(0KYoLaa#^wE}?≪Q_YsM$Ikn+aTe_%N+v5nwxSz81UbfCh<%-ut zz1TSSz`<(s#w*c9u`eSZ8s^v)OW(FOn%pJpX6`@l$Fqk!9!-r|@#2-;M-izr{~cuu z`aM^^*qJqdeYkR&$jwzR?`*rf_?2Yot?U_W!6CaH&M!Flh+XXPu3PtfgPR*1Yrnm7 zth3H~cIbWE`~sV_Z)>%cR&p;>xGh=lzu~*3ulxs(S!`?uv-}NSd{a*{+FoY8Ky9{( z)vgVeaZ|J7yRYlD^7*{2eD`xkW@*IBm9tiEd3fw_)f&Bd!OaKmv#n+9NzJK<U~Bty zU!vDJ%fM5ey-#x6x7eiRR}y|+WzwA^^HAt<vP#trwb`8$D>hbdEP8*hW#_~x^IBZy zpQ~@x&sI6t=(!|twx8bPidkm%+fr<;3){}h^+twsCoLBKrIq`^(~rgQ$k!ODjcG>$ zvMnBMdiW$j&RdyjQN*^8CBD2DuFO0c;`Q)Z_C5`@33EM#Cng?cvQ#_H6`iSGa#@sj z_9Cm*ft6JeOfKr;i5uH_H*#Ow{@GUY(#aTEKPB6GOCI)145zjBwSBUgwc>7nVcb_8 zsoFv%wMSAid9QhVPRqPF@m$2BS9$K{<j^Idb7D+l)LIYlzPuz;WIT~6@!qPlE42HY zrdZt&VyU`RbTof;Y2Is5&C5y!@6J@5*}E)4{Nc0o>dDf<i;v0_^1ME?P~fx8qpN+r zXFmJPDm>Yumr(z@P*NfHQmBbQWZW(8RJm6^jHho{Cj}Ore&@iJE}q39cHiKcdEO0w z6S=v?OsiHoAD4c{8#JX%$SU)V;m@6IXJ!cV-dM_fOZ3$S+lx70PLvmX@GBSC(2};9 zzer3$vQ}+T_NL~^3unGo2v~cy_VTorGbZiKcOv=tzIpQbzWtO{@3!n+x0|jKZ?IQs z^p|dz^>^1kVp3k*ntk%_rq2(=-1`|<Hg^9gc=~O<DXTA!G+!y_kDZ1QlXp32=H<Nf zF*$s5$%25G2Q31RoC3to&%bbG^H({sC!YhSDXw;_$&?T)o9s39u+v4yTb5D{5leVE z_!4h*OuM>JKxWm_uYJXTJC@aRcLtqke_-f!pee&+sbA0WGe$?Zo}QJVp?jF|UTcQf zb3ZpRgTN(!q@?pU?%?VvynR>bchp6zr4L_T+;k=2_{Y#T*J$G~KY58$Yi6~U@5%hx z<=)91UHbZZS6*brJdLMIjX3jUghER{mECZ^bYgRRBID~xjePC-+)UO}(=1%q)@Q1i zw^<oJ`)Td-N}_Z1znH5XMvV&la~-BGJ0Ns)>a?44X584aHOgnJQ5TEJR~e%dg1JX) zRM)7fSiF@~T0Ajeok7EGmEG@mU7y`CRrPPxRE~)|X04aj6n&JU^840`DaWUGMAYuM z_JU7)$K>62JGZr7-D|NWV3VLvs%@6G%#6iz>Yta$yfE)yq`qrf<z7R}<6jRio%YDv zzCb%$`x^fjLH6$^Ca>8y9x*ah5oLMZz9Rh!&m2h>=a#<{tT#nJoY%VV*TRQ75=jr2 z>b~21m0L%D%3|?=%@V6ui@!-$H0-&``Ej8y=WgKz3^!i<SSPF(rS$g&OKOt6)xpHR z4`=?QNh=(#zhb&)UeTfhS*N-ZIey)b&eS(Cjb=RZ;ckXt?%G67i)j;Ygq=K5ahRo4 zD}SNQ(?5&$B(}SUYHU8zyLQ(?2DK_Jk#;ui{_}gB9x~p0FT&LqzKbv9wDemS$M2zL z`>*LA*FEYNCmANd9qgyL<Kb4#n_m`{8fG0{Sj?JvYC-4(Mc?|*8)nyDmnoJwc<Y9b zo0Ns?$}`WlM&5d%{%xa!<6}3LB}(b3m;c|l3418|&HYJQNm|qNHTL>}r@jd<J)NU} zua(iC>Bh@!hPqpK;?FL<<6%5?IfGQpGm$+TO`BfbbI3h=b=CP}W^Y)EZcL7Nps4#V z`rP-<mr{;7-mBOX4qjaNl(F91!gzsZZa2Gr#DR}%`C`xL7%Lu86jS*7%h5dJxk0?s z&Kn`@4BG5$Dvu{fyf!$}&*vk#N74QPpUIVWvH5ojX1e@1sMfYq!l3fm(OU`3UB%^x zKAPrScyX$H|MiC3D<=N7Q52pP+nE1XB{ezT{(;QTlO@VN1_r0DX#aH+c{xkEUfF2Y zzVfZxHpKDn_A%;s6qEBsO<dUV;)UR!A^M9B&otZ4c%ePGRR6zUo%0QeqYA4Y30&m5 zRsT);rbMeukius>nYBBWteCI8Dolzh)j5@SIN-{GuO{qX_gt1~J^m(hJ?7$q0_RIP z>x|mk?*(0%Qu}C$inY0ZcH&9pC{3Y8^KbPbZ?yh-J8C^%w2m!d<NixZ8f5|LE|Ysd z{$1N%bMq$K+g3*I;BU(6*Y<~3NJJ-8-Y^uEJ=SX+d7WMM)V#{7B~I_ptUK_RDbTe3 z`lo3!Iy_H(SN)xBac-@)nSi?4xg`s?Mi@;fT6oRCb*q2f#MJ^Xjvl=BSme)^>d&PX zFAN$(^XubohS@A!75a`{euIGM>{Z8;msOdyd|s&=AX<1ys`sdL$x0@E-_VBCzQnXs zi`0rLSI%F>pjU1asB6q|D{kNZqO0cN*)nF)#tWS%R*7`=i7t5<E2H}K$QB#b-vP^3 zH$MNq_xa+!uhrU@TbHe4ugtEz#a^!QeD{Kt9PC}q+tRn!f1CNi;^j)4$IJF^VP8Gt z`tEND{kOkfns@AK_qJP)>vn(hx#HQ<Jk8|{S53cPkY8to{{1g@GrJDtMj9P@RpKyH zx@ggng1xOhmKJ(*kDq?DoHgyrLD`P=Sy>99R)<wCeydHbI(8!~$Nr=5M~2#J-9?xG z6gga;a#B*qK&0DH?3qM;RfK3q-`YJ1HW9^jdoMV=p5zj?_oDJzjm8RhzKth*&mWJr zcrm5-a9(G)&p(O8<I!TL9$%aA(#4;tp^SG!*ed5WL4|VW%N!@R<gy*#E}6aFL2FOh zAD*z9y)w6p)^xRPu*>NQeIV4cPMYn)uP~XUi`}c`^Gjn~TDINZcCS_CZoU5M`;uWM z`{Nh8+b(#%<J|@E3u%69jxOKPJRx&iZ;DciKzp8Yj+$4%2kFbNHmEAd<SYH>46b-$ zd1dmCR@Rauf2tPVu?_s0_E_b}!3*lgJ~PRF`+E4`62*CkR+=k`dMa}pRWD<Gpxzhd zq-CHi^E&;y@CLO8<E*P!4H(?5Tz>7Z-|@tSf3DZFkBJNSSRHX<Hk8R%yqo%_>CN)6 zlz;2^+$Mbb(lDv3biuMa*OtXt$fo_fVzu67p2nAuj0EjPPG<y?CM2?yZRpV6zJW1& zZPv3d2d*|5yC`x+Woj5k<*29~dD&>_>pt=I10}`tuFM9ndn64HO$-qH|8jQwuVC9# z2YBmez3%O~a&0k(vl%z<4V{<+Z{Bj>ycZ``p*11>k)nfEaBO?>Mi-G^o;`js2NynD zc(riB0k@2<RNwrv2-jVEcV=*Bo!M9<FiGq2VbS{&n|~FAXnZIYUVY#*^Q(TdR9}gU z3ok9drD^CVUzuq6;t}hm8H@btgLX0*S~%F=n)aLJO1<s6o9D7F_wQKiZtryF6T_)l zHD+CQbFClQS}l9sC$&a7^sSGQ*r(9lYfalVXWw2?oKX6;Pw8w)YEG_x#N6O@yPCLl zZO<BsM?HI167D}Q(yDu2Yt7#U*;gXpSJiT;zn`Po%y%eq6U(|MPn}Did&Jp2xYqm3 z<=IQcdw-2nCAs$0?{l8WuUQox7|77PH6fz#v<ELovxZsDdyQ*t-bU#v31??yWbJ)5 zn{ngf_P9ooXyY?Crf<&OVIOe&-$#=zDX-oro;}_sa_#cetIDGDxR#4(ZvOpZV)XK< zWf#+3R##PCKe~TIxZ>1xa@#gCMa&FrJ!<A0KST2CmcBffYZKq@u<oz__Sz+VxzO%U zUz=KIzWD$3bmO!cF*AkF8t+?HBv|@oYp0`$&9YoCiv@=l-dZMcs*&mNN%fa2jwiZJ zoR+yl`Y?M|@{OyH-5xD^A#wcF`7cJ3rp|x<{ZxO=mB$8)U%dV;xa^$PIqOAR)(a~s zhxrvQxPNHg5w{n7-4;hyyqdA$$4Qr0^|!s)%Od(iuP2FLGdU_1o3gb0Zq)*g%!m`$ zeP17%Cx4-Si`V&*ZDG1PpR;W56lMI1Vm6E5-ag+rEckfSyjLHpGuUdwCca*NHOsLn z<5lf6!NYSlZatBC>BXUKt1A=ZZ!-F{7p>T|=}A#dFY~L6)l0NxJdQ@4PkDMMD>^pk z#>Iv8Hi67sN4><Oqj*zgwoF*FV$PR0muHj(Myh{0AiU$|;(+?D36ZbW@5O{jwkfyj zReN*$?>w6n^m4WEwiypwx_f8Ncv@34yYTVSuh*S6?aZ&5+4^yoq4J!KqI;(7Wey7u zev@=X`tF0RFI@8lY!<vaDIxaqnMf`F@~MIc)--i%s0r5pSaYf2Oozs!d+*+zEix>- z!Fo@p{kY%S2loyY9^c|qS+L*vQ?!rwE}qqw)@*8)J`#|UWY92u=Sp*vE&t}3G0b9q zfBfeA4<3HEu1{|*PY>2^&bf7NN$BHCn~&<s<aw;0lv?5Ndg95OiT+7Tmpyil>AF>Z z(!)gWRnXa8iqe6~Odj<SqWS#HO^c5!&CW>;u~%Kok+Gq-|M=|Q=d~G$s(TYUBA(y% zZd=5!qm<0?&Yxj>;kV^KgA4fAY&U0k)f-XG-1{&~EQTYm_JSGz=S#QGOjJxh6!7x$ z&Av0;hnJX~%NN`hao{>XYYeM=`nMUjLc*<eiq{n8NZkGPseDV@spuk``Zh1A{!;t< zPY(KR-m$_&U#B=*+AcQWu3}{SHgl<<-EDd8wi>!ytyzv{mTjxgHsy9@U7DP@`qKLM z5sPvjrKWsK(|dBcsp8psvx&=Q$-BDUmP_YY_4IFzLG4SOl*B0UeNh)gcK5pUe$-g4 zZ~7suz{@&IMo}lIvSmX|bWA39a{b)+`^JrPJZ%yRtNag%zX^VGZlRLEqmt!!&I|3d zGitQF`0oDVS9gvoEoc845&G)<`Xz~1SQm73TzLAA!J7R{-6A)Z30FT{O4Vd>ncW+x zz3An&z<naOTaKu@t(=j(p`zey<=m?Y(Vm}5N>c=@c0CY$^L@A5*BEE<L&`<h^UWhI z>wA`Ui)NOcT~jFO%=zkKq*KK1m%qO*t2H_uWxrk0#PFSNGUrVm1+Q(48`tiXKYOC4 zl9R!&|NL!E_6et$wsg$c{9oaf>ZxrrMLYrw-Im^Z`sJEgB%92ds2OJb)he-%nTr`@ z*YgD~D@o63_D^qMWuJDnuq}MT;Z5gmD<8FZtmR%WA2ss?*P5IIhqQz@EI6feCFWV= z`=S}@g{Ncd+}~bg6Ay@-!M(!b43m~amEP*;4Nfz<Uc1Z8x%o)$Rg_1@&HAF=ZO8uo z+sUNK{aNqEv1Q37r|-VIyzb8K_(MxRzN&e;X4>xG+X{@^xfl8zVGl6dc355b_QA=K zzxd`(Xv<VN^WbFt@4STP4?Zp2*L-NA`1LdQf0(}N652Ii>TJw`o-{oN=balLG%?Hn z@7<xaq9R#jN}_wU<-Ju~nh$AZFdHv<xj^!Yje^jejS@0tDH06ts$(6`o>+YGj<mm1 zLBk#QGSPQ>*BFm=^6JLrWU!_syA{~Ix$*YVaig<bOw(^yXmfb}7OLlo$k}keoBj3o zHybNV@6Y$hyK~llS3E0|+?g2<%eq>epSduu2{->PGVj^bXL9qd$KJVfSb2B9e?a3T zugFOI(swuaf8JAhKC!ckZTYhqOhLxE*LDergnUh4Yqzs~WxCCM<>o?_>Rj*i>8JjR z$7Mg3C|@W3-jmOLZ#lc*fp>Fb>(?-Ui`jm$IcUSS+LpARAs0msvL{U6^&#+&Nb`}j z7g=3#22Uad^^&w&ciAqSvMT>kfm_m^s)+$RrWC(vF|jWba$31k+^1jm<v+I<p9C6L zzdP`aafa@;g_*sTDPH&WZn<QJ?|-sBuI&AtX$~^S_g(M&vU%QQqaLFdj8hNwRv3P) z*Z93T>yuZE?Y`CVO`lFFr^d`$y<&Euhw_WVl1vRHd+R?6nJcwv2K;1E(-+@T@p8h^ z)1hBdPOYl@JV~AZRpGkH(|24v<;XB$OGMu$;q#)`B$IvQ#f~d4HIRsuxVSCSVv6ub z_7@i}AL;1bwrbgd@QQ;wyz-J)a4Np3+w)VU>+*;CQy*)OpSy1QG~1T%wYJXAK;e#* zRJ{_njy3aEvZ|$t{FD$`@xHPw|8}nX>~rs>^(SWNOPsqB-gT<SctLa0#m!5zW@f5O z+a9^OQ0v^uOE%LiR?i4iKc|~itgIZJthRwG%=>cWg@6Rty*9h=zGhv$*~EE+Ea&ar z{2C_3hXWbE>euVHSL<kfQRixE3{n4}GGT@x<B|v4Dx7p#^`>_;H$FbmcyRlb2VYwk zORn8AC;Gv4M<32BJZsWyT{wULzsP=M(Oki(*MGLGOWl1ktAEl}n=Pw!)-G7P#Y~6g z=)vWZeAPnP#u2;r9W|<n6Af^(*_J-L*DcR5I(1n_YFMxJ(P<`s>no%)UbLHq?9Fvv z7n`qU@_Fy7^7otis*Z}EIWB0v>rt$K|GOV7eCd}jo)%zJdBC;mh3<)qM$N*7`-2On zwdk#kxz?&0kzu{<YV5;HKNjh|l9jMs$gHt`zG0Y$<*Vz0elGH#L;fg>aQ>VA+4pJv z+lNnopOFdwdRO68?{$Y5JBeHMo9=0F`vp!lx#M)FR5P7T%6xr|htP73xZ<rP`zk-O z%#mF8$>FNcv73+E&K<bmrc<-s+kCQ^OUn*M)p@V`Kl2{BuNiye&_ut4BO4?$UR*Le z&;Mo8vKhVRx7i9lMx^iXyI*qKSx@eX9=nw79z%)yBHLw|9+>jaxxHJh;PlqJd#=~- zUiK-$KKD}ayd9e7{mSReP;=tVd;2kenfaYJ9e?*0#<6ZRSYwlTAja7GWWt+E*H)L# zmlON>sK_Vf(WM37xLo_Ic9vY0;P3jnKviIA$)P9m<!d}v#_;Ug^_(kj)0M?NQ?!pA zT%z8^a@WSmPkohmoL8?=>ZLbwSAKcdH_qp}Y*BC5<<MZZH|%Pq{&nk3R{Z}iFh|ea zIVUDf!Eeh9bG7PYJ^`Cq64}0fj*U~b`f}vPq@HN*BgdYUCf{s3EPeT5N&Ate_IZ~& zHj4y^uYb7U$~Wg0wX|v{&wcg6_W~0NRd1iXm%#bCy5QrN9b%5M=JWg_w_iSKw)pRg z1Ap0{%Gk%-*UN=z-`2U&sdRGFS)K*o4itJZiM}atdp9xmcjx07hZ!@^g`|Gk-8^6J zm|2|cif!AwyqVu8Oyu8vhpS!S;k2TLwYPT4pD;dPx{ax9V(DJtB~yENx6N|8dO9_{ zA))r)r7PNjn=D`advqhZm+e#W-AW_l4OLGCU3VN$jlH>&mBm)O-ihm}<fo|6YsMM{ zD{G=tUiwwX+?lQxx;9as&-}q-AGxJm;vui=Ud_qc@HXp|SVC%=AnV?DnTwM*hONIY zwaqa~_@B}88Q~#SA05_i{#kpz?9ZmdQP+~=_t$;Q=&E{j{<A~!h2Uj1wu<KZdhFXa z{pAap%vQMP$Irh<zfP*SvUy{@=fr0UT2ck?*UX#z(dJ=WK;rh=&NZF~=H;G#wj?t- zzIU;@mF2Ctec^peHY>6FE!wxQ&sMgNV`Jv&mv?F|?+v}^xGnUw^PTfkCl@_uohhC6 z)tn>YUd7fTo)oq(7v49Su9#_)puS!6CTCPrjID$2hW_j8-M4-2tx<KpzuLLq_hS7Q zN0!b4hW35mVs1EYWlnEwsH#~w@nrkU)|@3<mx{02x%Bm)Nxz%VONp6iUOdF5zsO^o zYWBZ*cNe(6@7wgsd_ilBh2WbPNy`5mZl0<X+jF=j-b(Lb@GDop7wo^vZA{DWhHre} zxzT;ki!F6wi;F6g;&-yHo$K`VZ1e0&PyPvZGwXST3-_E7-5zK7=f@@YX6{>7mn{AZ zE^-&ENI70T!P4ux&ejs)!x^(D$(Ss+dN)(*sDA>xWA!Fyx4TET{z%?*`-50lZ_dUQ zyS9IQaq?8fxz!~h-iPd$E`C(Dy8M2!_VH|6Vei6e%TI9MTxaaJ<MWr4LnltXyfvHi zbOFOx8PBp`4)wb%W>kKiQ8kAt=nCIy)yL0LMfp`?nPkGHQkyc%&b3c6-Mp{s-di*O ztm`ReZ?el5EMr?5V%xE2(dyTMlboM#WnEhOYxOe?$%yL@E4ZgfTEAGhZ#9>?_T(wf zL24J-)9-ITVlHsk^!$$75my%9k#pD-XEFWjJ2!=ul`g`U-A<^f)PL@CU+|Z;*Muvy zU{T+V)+Jm2rCnIrZN7ueT3e%-q5t@@!wkOrFD=n&-g3AttMso&jg;+_^Luu5E-6)8 zTQ)UG(lYP*8K2GCFW%0GTsGt7+-0RNX0BMF`$}=I*v%`4s!rN?YtFdnvS#+NIgW-Q z3(}3)Y(2}AH}d(<x|d;P;_QFAKJKunPWIQ*9g7dXo%2?+%5+~%_VmT)8vWj}%Kk~7 zcZALCxyR(G+mFUx^}gr+VA}4PZ^fpa`tz(#zn1e!*YcD7Ta>H?F7`K_o17Ns*4TKD z`M~qQ{)2W0OHB7la%#(*iDJ>%mS(bD;qjfYrn%;^7j<_mC^b>`64kuRq^arZJI|?p z(V8mOtw~R3MA+<YVy&8=P&ap(zd_N}^H(*N_)nPK=qAkjZN{%9o-gz(Em;FIoxB%Y zvbuiW(xM#x<=X$0%&Jl@vo~k|-_%q$tIl71?f7l^hy!J8Vq0t*S$#j>nQnXbhwtGs zrWxYme&P%foSA*R(*JrRC#`F1&G}rP)c*1Pf%?pe@1?fA%$p)}Bm8l+#f6hQg;lTR z^2Lf)7R>(l{KTP%->0Y7|0u5b^L2kcr*7eEm33S**!=_^2g&WZkk<UozV7GuPw(R^ z_=}&%G+ln3%F*G0wCm}Ug{|Jt=@nbD+yxZvCg^;7%RNm{Uf@%^$D7CYe|{D+)&E{y zKcS>?$^E~dp346dk<;9F^XH8Hf1Y|Lto$GLxR3ewf0rfoKfgVdcm7%4AOG+5^aj_d zF)r8R`s4q7ek|{-s&gkN=7PzUxIBv@W_K6KnwO_NRMrOmNp7Be$l`s}jtM;b{&jvh zaA8g83UiCN`UlNRzL#I`WM9M~%US)p#rfZacdPyCxeAN3I`v!X*G-LjEMNb#XkzxE ztiR3?cM=vq*}h18T>?kZrzWf8d-vL$(`#w)X5Oj!>CnPu7K`;>mgeqQs>1pIZO?9{ zU8b*F`wwluP?;06OK7pip8cDZS{D~~yDzs|``KU4EnUCm#<O&eOWuJTxdy8zi7I5Q zy~<>gRN>q^QKEjvZ}|y5S0Cl@IOZlTJ}>$<Z@#yW_qH_q<FfKL+YU`{xtr{>)H=IW zP{^vE^S;QVDkZsyN3)ntYVPs4Wxks)@RUtQMX`rL;9DF1%+H%1?fKG`ypwMqcTMRs zqg{5Z{x;uJIehW<o`e&&=4?ME71X^w@KSH{HHQg298s?q88k6Q)Mu6YcIMdYX%(*R z`(rF|U9FkPzN@CRaMEPybJxGc@J|-G$GEwwgR?Mp%cS?G4XiCQ)b$lP`1RF)N2>?# zlT)vst){+mc9r_oeGBtga+dAbxM|1p<5M4Rk#Alde(qvcZ`|Ua+M!mW>U$Q?6n!G9 z?icq;a+Yz2Ceu~TX^#W8Hf^a7k$G!j%8~S-++VM@Y4Ll3uW=PSmpv28W;%WDv*SNo z`GlROpY5)FZGEMAqsgLr{rA61?%QS7Tzc?awIwxN_Zz4GUcTB)zn@EH?RysZN%3En z_qzKtk3FlY*f}ZW^WiIg8^3<)JXLR<_q2Xi>6IIm{I{w;?UsLbO*V4p*+p72u70Z* zSG^Znbo<Edb-R{+j|-`h?|S_`@u}p&qoE=5-e^U##d(?cys@l%Hd}uB!|GFQA6<Rc zTuT1Q(%tR%U)Hmqb7r3Wr+rKRy>|LP*NboBn~!e09$x-qduRXj4I6){J}#Sm{>y3G z-=9+)xGg4s&s+2B+MUT|x6f6Z-RJzj@|J<>-&Ha7ckFhg?-#zV$M@@gV93wEDdAbp zf4=?MsFL{b<zq8B|97i@F28zqSG&3;Yx$Q?k&}~)k4>8!zy8I$?z=Mg#HW3i*k5P= zHuKDO)jd(?ee%Q}D^|ST=`u^^k<X6EeJ-<P_RhOj?0NY~!8T`46U#Rm>6?vN{+y`N zn>l~#qqWZ`MK=1>-#vFpbLNp3Hy_>B5|U_ntvmB_f!0x-RY886CHc3RKHGP9+U>ye z+dj$oo|Y*&l7IT5d5QGQ+3M${?%pZ>w(0qn%|+$wEvhTN%SXz@y-mIIw2eD?*Y@d0 z<J(fNt=>MJ+kc9_?c8rga$9~}S+srG2ci8UzaOeT`8aX!9BX^7qqk4btdCw-xWE5# z)jJi}^=Wr)r~GFBR`l-L?w#|$8Oi0GEV!SiY4z%+(DRI2n_jNCUsPjKa(YklDLL8M z)paVCe!l~^S3Q-Pf2}_I&%YUab-uOTI(<=X(Hil<ADXZH%h?Y3OROp1{I@)9_ixEh z+y2R$XTI~j5M90Lj_=C*ng8Bi`T6+S_xkdzpHm)|ZF#z`dw=lXxq_cOKR*aIdyt<s zuXg!o`&3z3w-@C+fA3Feh}J&CRDD82VEMzM_&d=DwJX?CFaCO+a^Ffc^;2=J^eVl* zO<B%cpITmiEF}~;?W+Hm9k1L<o-UMUJv{&EoM+V!+%KO0WV_+Ri>t-_DvRe7*YK<C z_@yZ)QSZFQO7um^-sc^EEBw`V&#-;}gX_D<R?q0*n|TN4eTj+w{$<CEN6RiAwJ|?$ zZMOSlWogIkqv6LJ_rJNGJSl(f+Pu2H<7avQ_H=Ar_W7LU!N*cUK7o04`BQ^$e$aio zR!Q|pa#_CXb9eil#(QNrpY$C+5qj+9yW?m2ysccSn&;oRU2k$b%2NGX*q<Z&?C&-` zesx1=Tj$M5J38+fy^h|#wEA;mf74Mt`#7`Yzb7`yS+FlCyCOB;-fX7#MzfjQE$3e8 z@;INq?AZC25BBGC?U-A?=e=3ff1jt{{qv^2EMNAfdilR=H~&56XFv9CF~jzW8>4rv z5ej_ve)_t7wT#!VpMU-@@@qYdS@rinqHmtGGIn}No@$&v;~`UY&Nuzu1D_c-IAv)* zf495;qIa;r(-Bsm8&O8u9j1?czDT9B@)fxL<j;Q)>6$k0n`%-{sK^sJ){mdkMfpCY z?&Qx;SpDewG#19sI~1cAJ-T15C~(_mM#UcwkGUPP(#adH{FuJKSo2f(tH0~C>Swz6 zntl?#c>Onf=Cr93FJHQ|VTWnqzl6m~X+M>Aanx<mFf(8G?8C1I>~CKC+cel;h*@y* znnK~b)jf|c*j+vnJ^RhQPyb3M|1mwb`>VH5mHXc*>kD2_`1{W<^6qb~?`9wSuh;)S zd9eP@!=JA|U+iaZ^PO~W<@K&?3j-NuC)fEB{q<(=Qr!ICmKIu>MxQGYE58(5xzvK2 zN#e~6<89NTYSRmun-wR|{mS%a@6oxl);(oQFJyLpc&~to&FI_;sSDxVvn4)zW-Pwx z^vmepoyVz9b|y_Ttq9ri#?AefiGD2iG}%|Tckx_1J0<se-m~29+nXzApW5xb&2z7H z-=EspHnyg)`sMBVZr81A19&B(V)-Upo5s58@?U3Kx9wP&$yDym*FUJ0XYFeF{bA1I zp!Ww8*KsZ{l(^#%&zpBJEq$K$`I-ky6!#eK==Yk_B5CNyr+(BgA@=l~41KvBiUyHS z*-xjfk`J5w_xXp*c~Of$x4+3vdG^X>=Cw&hyIs`(PY|n5-*>P6IR87fQ}ZJh@4eo! zee#Wb$%3x>4a;0?TmA_fE^-ZbaoN{*{!GaJ#D-7nR5j1s+_13Q-u(3+i`eh$PM5FR zx!vmD4yl%s>l3uxZm91ou8ZQGANl*&{H+0X)8Bm9sp|8ldPBQoTk#qTjUU(d?^^ms zSaEwm!FKQZj$c8>|95+-Iq27$Td*cQnK9|-Wm8q%2WbiFOs4mCT>bv2<o1;LFE-rI zGx)2eT(9DOc>O!MYahz9ets1A`t9(|g)f&m2lq_7v(vi7mrr#2-TEaKzh18~bPfJ< zt?6?AJ%1_LXKud~w)_t|xjy~9NW?|?R;7EPh2B@+=ShG1J$qUEZT(*dpYLv*T)3+~ z<dA9j?DP8*jjr@(ul@bwVs7O2z)kZbi+^0?*_eBZ<>j+?cW&P=OMIN}5qFX+V4381 zga0dxe7}ZIed+&V+5fd!@3x2Bm>-fR`0+zbbvaLO{e<<p>C)nt%I()IKD(9kyU5bQ z$xq6pI=rRb^QsQr`Pta3#dK-!zaM{Vl-Rl?9=)$mx@56NIB@odK55433#UKip8a<g z`;?I1U-zv@i+a(%vD<n=pU`pH%5tucaog*H<i+l!)Sddbw(jT0so!)B{(pFWV#l&G z+$$#EejBvi)J)-#Wn2}LcC67st-r@Tc+N#Dv;Chq`vgm>Q}2S_e~abzo@$XwdUg5n zju4B!-Ww(V8ZXr!7TFR#gJH(6KL<=^2?TEqHA^sl#~`vrldCGQ+;IN<8F_OKUfuj@ z_U-7Ph2}H+pWC?D&V8ElYx#OpwP=e^TU4VHKIM9B6Di$hc5Bhp=iXb6>Ym@9;rH|8 z%M%($Z>m3R-q(F?dl|!rs&fSg4^KZ__BbIlT={lv^Hqz?*>At)dOWLt`TN?ktt`)f zF1l}H^E=|p!Dl;^1ot^FI;vB1{OHxC7k8DERn}B2ym3G8<HxNzj<c`i6vn9J@BEs3 zTWH_T4ep1YU6V7e)YboWaVf8Cf3e89c~Yy@|NlH)|L4vlhQ6qrh>ZfGc2n!-A3M~_ z`%H7s_4NPIvOE{P^IyosOlkW6c-4t|?oZqI*Leo?UoyY{MSoq_%XkjgXV>I7x64f7 zzRt+4rYmH~Cgycy>0Qa`-&RR6Xsvm~`(8BNm?QLn5TAkKwJ4#>tTQx9?uEp?)&DDX z-a7E7n%ln4qAe~{Y*|i+DH|+hiceq6yW$eJ&+Q3<2Hb1<H|{yIf8G!8C0kwo9qAWJ zJyc)j%8<QP!c05+#%jTe$X`mUKbHK=TB7yyK+y?BIbPPN^#Qw+IX6sOJt<>N_8$M` z6X(u8>EM2BYwB+64&Ic!w|Uu1{2pIujs5fI(Y@6Y%T%|tYx5uH_4?hue&?fxzDbL& z=9oN6INTsTH#WLJV^K!q;;T&$*XPAc*RxE`pS3Turhd&0si?;XKX(0HyyMKYShL@3 z8=u*{@qN4JR`?g$OKUy_{J8$Pdvep)d6TDw&Y7$ozH#ya*F}@BToqBjyzZjkFY)R- z8j(3Ak53xj>D_bH)GTi8=Vvdj-gx`Fw(&~V&vW|jOXrICFAbZ<KBc-Pt}Zl7-e%|j zXTN4%I`npO)$b*DuT8Gcpa19O@%eYQA2+&G_rmj~{k=;y|9yWJuG)Y3_V$|H@8|y! z-dk}0())nF!gqf5$=vyrTeZsm&}-Sxf7aPvEXZ5ocI4WH-@3BT{NGLbc_!=R{hh9_ zitVoL4XzaC`zhJ{^7v)mx<iqFe%jpLdPgo=e%8N96E28vDEYmz_s9GV-_G1PT7Pk0 z)|Zd^Qng0M_ik2vqN%2kpT%&<r}TyjgW*!k$E*Tr`=0d3BpA70E1co%@N{QnN0tTS z<f5W7wlMjqhl!nxB8R*R&7=($#=l+7&L<tTS^vQ#^{v0Z_|Iam$*W)ce%itZr{dcV zsU5k=+4m?_eaAFi>w_N;+~n+wKJ9nICpNAAP};uDLS^c@$_KwbH4;smzk20|+bLx= z*Y_y=mFkQ0(z}2DVfv4^>n<F8ebz2$PWGP?nd|3twS0=F*8Mnp+`nb(8DrBQ;msb2 zx9|SywmJW&H$H8r+0+Y8KD+s6e91_0KX$5)&&BseVGhGl#u>9F9SA9CSew`q%&zx@ znIZJE$c*|fB?IXh7A!NJwEw$XuKTvt%RIniPhD=%l@R48?0x>{&g4Cex4C#_ulcks znUzn1H-C#h8)|st$Kfn9DfjK)c5mx3l_^`z&VKIE%#Z0MzmI(^d=X${VRvW2-CARd zT_^8etxnEl{IYiLw8ggn|HPYi#k@$=>D<3{%cZqfr{v{ME2+<Z9<l6@yMLbU+6wDK zm-p6Icpu!m@5J^kwa4xD)C#@R{Bbuwv%CIy@J{`=*B<e04|`i%{m*~f&;8C{_l8&e zKkNVD*YZ7$)i-}W&h>t8`AfL2>?ddbt?ge@<G%#@7iQa=-m$%@xj0XENz3)E0ty|= z#kY$E9s0dhAfaPIU$X8Jmio47>z`e7YEaxE6XUb9rT?0f*8%gwlI>zlKBtZ;7HH4l zee*Yp<HGf=0!eeen-s(y+9~#E{`m{L_0!p2o|j6Wa{IDb^1pq&#(8zy%GN1Y>^t+7 z?fibp4fd9{*9~gsxA6bci@N`7tAN6+z!#@aPOE&8{l)ONZ}g@dxBG41vlS1d)z>X~ zetP#-0S8O<=#E)EVM?zyN(CMIeN`aD)cR`-??v@!oqOxsB6Ka~Rx8e%r#tEWHRp5R zay9Gs%RRE(cD&cDbltKug4?PW)?bKD{`#zceftA1t<%h=rW#@|UwH2NUuyMd>jDp< z$*ZSi&r6(Q|9#?(ymyOtzvZ;wp{BG>>|E^c`epU1GO{y+%#t^#9Gm=G*)irtAyZTJ zni;>A9Z=$%=d55Zy7{^HtcNKHuih|iZWZj1d0Ux~ov0#O%@<P3kdSqrdGaQ~CcmpT zMG2QzGpt%?9S|+ydDW)o;FIb9!fjISg!bCc|8x0G0>ht`%RcF~Ejae7wwIA@W7}8r zLKf41`=jd}1A43OCmc#TeS7z<vZkan@$))at}g%ZM~$cW-q)Tao6h2|2^=ZYu3FxB zd0zkD*-53H2d8#ibu~H^-q&n+M*e$C($$IcI`V@wpKbc_Z2G1q#(AMT^7>9|&s)j# z%BtsmLr{;{+haE)BMvT;e`dYq%!h_D3tI;-$CV;qRb^khs@J=&c2Un?SEN3(+fV)A zYDd3ovA6H8h{!2goc{50ukrCJbER<oosHJk#eMJRN1J-CS+BOd{M~e(cf1?sNBaDj zS@3heRrmi_I{)^+(7ESbv-kPIT<`slC*19SJAdL4e_fAxd^bI}mhbj^_d|WTik$za z+{~xnX4idxGH+Y)8QHIQrqze##h$->)OOw$`Q^X%Exn(4UcUZx)v2}Gwehz!JLgYs zemkSy-dEyU>od;xk#Fk{eY(E9reWWipZ->S8;ZZV?_bD&VLE?6d`-hFU4?f(eOAR@ za|(k#b8WOXUbgD*tJ;QNjr;-jUl?Dp+d0hDR6VD*dR9=7zx;x_2h1U#8MSH~>b=j{ z{`vW2{^gV-OSyh%x=sBz$ByBE+5JdUu9#&zcXcRdw7tz@bu?~@ZRVVPa8HHv1)tX^ zos-g9t@DJ#nrpvyCuQAO&nL2BQ~gih)aCa3e}w=3!dN!3_9w%-Z}ZNIZNJrfVP6fy z^(7$U&$}9i<E!Fw5|fQgU+&(OWn_KeK>btZh;&!o12qiS7uNn{c=KUjO~b!O%wPCx z8vZr%U$FneC^pxxDZF{kn(zFz5TOr@GOzD8ypjLGaQ8RE-}m1cr``K`b?Mpqt+)PP z&HDfUUe^Er8J*AXb^l*}UgzH&y94EG?nHb4U-IC;ShU%l>1FSk|Mc81h(Dj}{eRz5 z!}_ygH=YMx-1X%o^E;bW^V;lpzxuj;-{14`1-TqK;SowJKWtepRe6%5FVCCjxvWPi zyY<if_aBnly|&5}Y%hzudg6<Eu({IVux{p>#CM0KE5a^1*Y3XLv775j^M}6ekw@8T zB0<8Tjg{3gvm^IDn057UAA8@XZ|&wE)+BW_POMMdeMZY|@4YV>cB>CD?$i1HkT>Sq z*V3<RuWyVJJepV4edBz}`-%fopW5$fJe^;3VEP5^x!qf&Q|evst?!wgXK(Z5b^GSD zfAfO(*`)q|KljVj@Ic$vd;jt+qMm%yxc+<Foo6ifRc-IPvE=o~>3r^(*7f;ItlJ0w z3Du{6%|99Pk5{Dp*8SqAb@zY0op|KA%6EH)dV~HGpyQjQLB|Y2&NZ_zvoz#|A9H48 zU^;o@`C3I&BiKQKocivD3Wlcea|${2-Hj9sO{Y69RZ(y@G&M!2a|4}U2tQzuQ{T-< z!O+42N#0n&&=ScUHxmUzON;4+Gvx!AjSP&Ze^_GbD_&k+u2+zslapGOT2xt{ky@0h zmz<xgKYijd6+;<A3q1=HOG`@yV@o4F69WSSBLx!^BRz97OH0e?f&Prgg^cu!EkO!Q z%`Nl{jTMZH4JHR%Hk>|BMTLLz$=`z0&(|0#G8#;8yrnHW{X?gb=k$qM#!}N067-cB z4W<`*s@gLeO&8QQR-T;xS8Do%3X>U(hLE%Q5-LqTP8ZNMmY819YxI6H*FVVVV$&b$ ztB7r1P;Fw($Y?nI;Q~uBW+Ox6>5OYkZR!m{feb(T(Z~=URQl<L1`0-oX0V{qPd7AF zFfv3w%F#r@$PgZM`ss$I3Py%VM>!grDHs{SgIYh`NWsVm=`2TM1tTLPIfU`13Pwio zfY(oVQ!p|zna=o4!+ttP1mh}3qv;bB6f7tAv8zlEe61up{Q#e-;&iu2Mmt8s>4m#Y z^%#w&FEo%Bn=W9Xy9}gQNkNRs$Z&e&T1zn|BctgDl@v6Xjf^a&3r^D!nXco@C@?+2 zQCFVPX!^zN@}kq@e`?HTHZroD{*lE{Y`RS#qrmhJQH=7_1$hm{roUG(o6KZvFj?`T zD9Ff<p?Z4L7pkg?O;51aeZypIIQ^osnb`CzAWaR<y7JQ}s;P=h-ymz8$Yg9ZeS(Ua z==9PcMo3gJ8c#oHCNDO*?nxW7k+Jdgef`E_)5Ag;^%;$)2O6r1PIpi;nZ{^5y<oFE z*x80Nbo4+{2?k=*=l#_<%WPz9Iz9iNhA7BSkW<Wzr!SOL5S_jtMy`+9$k=SUVXT}O zqY)%bjHh4J))JeZu+DlSvyrhm$OqG#BN+v!3s|XjPj8Q66r665V4yI4OC+P{_P!KG zX~yXVQH)&Em+zM6oqjTkk$d_qb1fq#Ba`WZ6($ahCes<4Oq8Zi^i|WE{=r4Q9V9XF zgA)8uNUrG)I>sE+3(^@MPX86l$TfY{PbJ=I&U$Aif0WXj?hwZ)K3$>BkY{^qCSw94 zuL&r&!TH<R#AJGZJfrAz?M`!n=^MHX6c|mWFSJ&%2U!sKT1gQ^PZThgoGvg?X$pu_ z_*cnpdS?!!)AS41H6MUP0v&brroTyI6x;qWmywH+(Pa8Q14D`F3r(O0^D!BjLOfv# z@x;MYMycr+@)>7MKj5YpGTkJTQDFLppGxx63l{1<U^Jc1=&GwX{b8QI*!24X>ipXk zix|ZjnM{qRPk5;<3Nq{9TV3<%3f5-q)BB4V3#S{NRupL$DPe3EDPd|CDPe9GDPd_B zDPe6FDPe0DDPeCHDdA`rDdB7vDdB1tDdBDxDdA}sDdBAwDdB4uDdBGyDG_KFDG_WJ zDG_QHDG_cLDFK-$+AdNe)-F;a-Y!xi(JoRV*)CEd)h<#Z-7Zohvt6V_wsxW*xOfAH zqoIYlk&&_C^a<IF(vakBI-N0zQFQw!RylX4>1%QsxmXR&EKSU(AIM>pp1l8jp0JSt zJcok|Q6mHM>5hN&6r2p;Ih#}84V3diu>~$Dz=fufF+8Vp>bn^$7@5Ee5>9<L69pp^ z%jt$ShT+p@>d7;int{vB=?9clgtp6i$)z$*|DDIkHT`6bq55>;d`7|P3d>Bxrf<t< zgcNg3W=7L5Y8g9BHxxG%ovz@n%RBvSA)~-_h1v28nT*V~f9zCHV`MTio6fjiO?>(W zVUrKj_ZKkoPZv;DkYhBOT&O4pDea~g&X*SltIIdHsW&o1F1!?s%-}wRlyzosA3@4G z<a1~ZO%#lf526K?b>{Hu2VAz9!vjb^-B`iM93CF}=^)LfHYi1%IXu|)(=8Q@%#obt zs9<D{<TN)0BXdhoLFha^KS*vNlZC-_LnAGVX|nQ4OrY|t!&ql}&UX!t>5GEpoTdkC zHZ_>u=%@=V2rZ^Jb{b1e|9D7FjLFDiav+EB^Z)@<aYkcEIauJVt3Umqth^Ys0JJax z7l4fB(;Y+Q^d>86LJL0&Q&7>tXf(}LS08e`>;WOux6^&2<v6F`R5s(AF6AR9Fx_E> zj{IanZL#T~GjFFy#mI3_?^2ZKnZC<MP7oY7Aom7-Q-YLoOcoa4b8e^4_Lno5eo$9I zZ2H{48t0~S#>sI{FaM{(JAI0uoZxf=8Dsg$A9cm1A5b*j#AInOz45<>=yd5oIqvD& z-;`7sjV3?T6N8q1mWJTcZ@NjK9JKrf9XC5|tz{aMk>&LNpip@dEGIDSupIkzp%6Jy z(D}JB(=UX`aZO+4q{}<~MTnfhbWjn_XbCBeCuo>Vo~{)t$2D2=Auq`F7cJ#yO}7Y> zGn`%!DknNUVVV`o_PPW)amMKiVRGF3MrI~R%@oV&g6x{sj7F0kOdJ@ECO4QUO^=L_ z<DNeIh>F1U2QKo{L9TLKsOC0(zpFg&^w4CvZe}A(%jtp}bstXuWTd7y-7iW`d^=~V zoChP5fx+~Pa!R6%#?uq66m+Hw^jZir85m7}*lA_YXaLP9t>%2w9oOn?Vlp<E{;^ZR zZ2E=WmY@Si8P}_cO?Rj@|217m-%5A-jW{_m(DA=4+jBDI6d0KdOsDUkYydKPqM5wj z^o6==;@e+l$<1_>G5{q@NYP?uZf=b5oALC8!e*+I^9v(|jZESB22z5U8GuU=BQtnq z4=F(q$3jC&5KDL#0GA-f28Poo%3B3889+*l?egp7%2+`S7Jd_bP%XRgsfFzH4^J(; zr)Q_h@lSuiWF0)6CtXfz`iI$;s?#Sw*0KYsI=IVHdAi^^OUY@s%s~w!$J<&K(-VRj z-%an%lH;DP`O@OwbkPhs{^<r$a`Mv|E0n~x3*0rgW&|C#ys%e66l6x@8hM*~W0bax zf-!Pa#?Vl~7`ZKDXslptgj5_DnkX0}H)ae?6^xCL3IsC+V<V)Nmbrql5j-&T(;XFz zjm#%M6gHn8FRvgnebX+vnV=S5k%8qjS$Snfqv?TMilUP@R0&VNxLeL``kXa#0@Dk& zSSw5y;x!bVoKU@t+1S`%`ol%?qRhrd2Gbi?S&L6!q^c@BeSwv#=ya*Qa@?RZueqmB z*(@hGeZol_h3S*jRE4L%RWO^vY;0@<%IedPZk7|ATp*}0y>XN27G`5(<LP?KEJ5uG zL47MdM&spyGRBO|#>OVo4~l`p%xHSzemPJ}WuddK*!1@Y<l>l&O+jrRk?DeB)`p-a zN+Yu|sCA-ZEHYhahnxYUF}P})UN5DP#%yeCK0V>Ky2y0y?Q(+C16FIXGa65SXr(6t z%AwJc#>SxX5S$Lpkq&Y-HkvLdqcCgws-1FzkN`MzNL6fm;So6rMqY6J1lD3?W;k8p zh@A9v0Y??F=?<>ivdqRNhTxntUC>WWX?lQ?wK_<gdwM;aVmlMaQ}@lyrmt@|keTka zPmX)Kmys^-^ag7MiRlwM4U3ozET<<HGRjR~uvsUN(RlhrX+yo~6Zgr1kJM(Fo|7rZ zxqbHuIRQpVaGeNsgDFzxF_{i-%mmn3sWO^OZ@g*lFnyt`wi4LpX2VS&x^bzV*>r(s z6B!Ukai=Oc|NdY!nJg%-JDvTooapukXXG*&B}_n>4{U|8u_clf(+y`R>4D<FP~1R# z`-*dN(XRZapbQCCYiMq6Y(CxYm>jqfplobt0IQt9S=iVRq!L=$yBjGO8yZcYD5WZI zWNZkp<iL5_7}5R*=V@aTB!k?H6^u=$CoWVD1i9lOzp?Q2Qzt=nLal}R^v5Sbai(k) zHoff>BnvAunOcA&h0zq0z!j&@IU^@H{Q;vQ7dR)IO`qtlVK)83E%T2|W(M0C8!cEF zr}v$f6PUh0QeK|XY`dVMsy`!>vDtJ%X?bx_3qnyt-liVq?0RDbV>6^&2+E}>XV;r5 z7$XWPP^E5++++aBg3=*4T=dh;6pWEu4CV^P$PETp1!GWqVe(^P!|4yCO<AT_FOXl& zWNbb?(LxoRji-P7tS>gLPDyb3>V@*|jK<SH&XoscpvFadVxT<CXgvLark42hgLiBV zrVDLQ69XSM&unaN3eJhs%S7b`z-8EE#d~6)bLU@AzpWt84L*2&`Z7^@!RZT@TFXzr zpsiH`vbIrCUX0NUlzJGArw4pf5(D)#rcUovlINaYxmli<$ryAty)H<pqOytD^b1Pz zeN5(-p!!sFdcUN+0i(tAi+T!;%*LSh2PhMFNXQFL2cPP0JbmH@Q!!{xwlD<eWRO9P zCvEhmH%&4Sn=WUhx|P}3!f5)z^ID?Q)urWyrY|@w*FAlbth~YYhidX_jEol356-s| zXSA5EpdoKtZ-G=g8Y&oDAeD}W&I-mBpn3@!4~8xZ#)uxge!7u?g0TfCS3u>B%oU6+ z;mJ}z-N-`0*b<(;_0x?UK|OU?`qxi4a#1jjLkt1vryIE{7+WGG8zVObV@o9W85<}V zBkD5!bW;UmOC<M!tVc>VAloKC5Vio7?L5;3R#>x4cQDgs+1{op&ke5SL5;iVch|`) zf%-tXN@C!GUR+zgV|ul`JlAxsC^;1-6KET+VU^ZW5J&L1mKd|Kh1ukT`l5^`lLNnl zuQw27HZd@se({pJFq5$bDC$8<A-zmp`P-5PAU{Eh154zh!(y^vy)L84^p9su#im#2 z$se9R%T%6=-_RVn2(y?zQBq!a`U7@#aZti!nLbBfelMu%c2EV?2bQ1)q%O$5g$DA| znGDRQFRU>To&HKio_l(fp}Z=i!E|s#FhE1$BuG_)k-Qj_vE}4ML6FT0IrYV+e=t>> z$!ua^IenwEswk7OCHT;8Mw96WcgTxPms2#H%xq$4Ful=S4b*UP6jan>GBKQf@vyw; zbUqi=yVJ9+Kq*^CffuAzF-lH%`dMvx@#z7|hBK#k>3~|L&Z<1qKm0Y&pT0{+UUa&b ztLju{6GLOLiPL}S$h(8`K<{)ZJ$at#R<UwC(~b1x-N1=_x|O~>_w<b0>O3GP8}f@y zZ`79uHzuQ*O$^N@>nn;f8ce@vDL;F9A*a6H^!WxLi+8E=ZQpMtuLvH4v6dHSG@RbJ zM&4E!xtU>N?y6v7WH9-mu<`Z>(xxvMr%$kvmzmyRCm#oD0R+ogPM5HkSDCzlU1@s5 z6|MH^2jooarZ12;6$T}i!}5C5_nXO!gNl#ondb65({G2!@i3Z97c4c`o4&zZUVQoi zNBIOsqv?uH@}RnW;ymM7j3$#41ofuRv5*&^&bvs5XS#~B{LAT5mhxQFPfA$xGMN}b zTCpb685b)%Fqs%lZZuH@i5fC0%1tleSDXa0dZmu}bkNNZ)AKgya!o(uDnDy_xr4mG zWdE*9)4yBG3r<$3mzyrYYbZX=+?ap+Tz7dR#_83L@?6tzddTxlH+Pa3n7-kND%bRe zb|n>N6Hvv@rD(@wVhm~69ylrw@`l4&oy{PzjWy~)poH*PT^v*^e`hqAZa7szZ#tv1 zyu@_gT1~#~U%lle7^m~P$a7DZ@RjGCuIeH$KV87eN@jYZi+s!U1FY&3r<c3RJ51l| zCvP@A%}w5Gx?hvIIkT~;@$^PepK^Yax$krjcX{{iQUUV3jMLA1fWkx2ns@p$4|(b7 z4`!*cPLB(emz=KVDPITYvP}z;@0f1qC2tP8goSPT(I9#G>65(V#iuWjke8e;5-gv~ zXgYntQ>~Qg3%upsr|X8uf1S?jE6+W>OIV+0x{9y7;N*r{IYyIdpmB`)Q2DJ+{3f8H z1d>b54NT3apY)dpSK7kH;C?^2kb_j(re@$uy586nqy;MBW~g9{xX%SrNn3z2K1|+N z!33oeH&HM_v_(1f-AolsjNzpvr@ot+f{8J_H0IQIGgmM%fy>+3@p4VCohk3iW&&0- z{f?i!{6u-h>4~${ET=yZl?UhUqjFN9AXA!N7AW5`IiQ#uba_qt^!6ZmyXg<!>%W@* zI7r@bdV!Jdwdv1-<=wY8yi~FT4d`5$uO>d-GE`o0x<J0UZoLV@pZe*B#tJ5;NX4w7 ziGm5DV*(zWG%-W21r$sW{S#1`ZGs3TP~C2V+;A{gFhOoNxGI>KnJP?AE><@KRqJb* z%*^0jaz>Ns0)ocyirs_J6jJb-fy+Bk&SWw%n_d{jD8^_qdE-sJ=?f~<B_``>%>xPF zT`Vs?{rXIKaGOSs$;5nmpn;m$bpBYzSIj2n2H>{#boN=$dKV-QF7H6yZAO#n4Xdri z7)_=po|Dr9NliQ_2kvN3o&IVWs3_bl&&Oy6DqxvR%qItOfUEdkkirAY<;6j*5B=$& zwg>pC8IbTqB{k9MFXzY$PT#OX9&(iqxby?b#otyJonBC(uFq%!ZhnC4cN23nNd4Y1 zA5y<}P5-n|-VoBvPiRzP*&e-Go|jP)Jk|kD(MG07T}l&kaCum7j#PIWx+<7hAjg`C zf{6t@wdtoDSt^)VAoaV992HC~;7wF;U2cL%?cl211i5Kp<fdSP+_o?_P!KXfZd`!u zvj7#xphg_e_P(|9qKr%ymf+}~4yvS?Of07}u9sgn{mx=}uIaNR<y9C>KqC^Mm}WMy zGz4|S#HKrh%ISehDOGu~=^r-8uLJ2?uu&e=+zB+4*PG1vPHg(0jq>%(CYHw2_g5Q; zGMY>eG}h7ssRLKoa!#sKL7alk^5WAss>y?8E_#D%9dI>iX$r0;8BL~7++hut1P=;> zs>$gqx5;x)?=)BAo$kF-o*UYLu!KYlsHy~;tD_*sWMVP7uoj#{Bjm)VKQNV_$z*8( zHWwr%D6R`qd2ze^3T6{aOK?327O&T3GBp6DREg>5|7omaHZ_0_(kxpqF9^PNX!@!R z@`lr|ua_5{-j~A2zkT8^c^*bagX!~j%ZoD_Oy9_-Xbm#r;%5bW5Y2c|U3B_^qw>7d zYc|PqO<&ClN^Ja!lR$D0`P40^e|V(MJKdqxLU4M*UioK?2Gb|{XlPA;kfOMq(RBJo zeHFdwYqrRXZ_nE=p9r$%!U1{l$%e&J;MxUbhya(OJ)`OLg`Db2jHZy;l?(ZdGeM)i z$#UkPQ4<+P)9DYB<skLT^vWIb+~ByKp1n(6V)_SnRle<C56desPM^D5o_qQWeoda~ zTXxGUK&qIJyJ1xf`(Aku(AW;w^z+B$k4$&lhrOQB*e~zC{m=<{f5z$O4}dBI4O5=! z&klfUO>z0@LRZwqw&$Iam$9GTbx@vb`V>wD0Y<~=g3EMOCl?e(2%CVrfY9RH-B7{A z)Bs!$1et*Qdr%2CkOa6)=H=q#1lI#5h*3sP&=9Vv0X!#xhj2~7qdzeHrV6HplN&Dt zGMO4qpBSSk%w%db{UN`JKDa`&kemLYUBLq+wy@JkcG^cn*Xd`DLMlonkm$o^3wsb9 zxJW~Bdi4o;!RZR;EV-s%aMYL%5{3`bFq;~gZ4V4#WMKpegPLt18a#%5fnULzar#9K zEAi=_oC@62yVl4X*P9w4mlnnfrp8F6g`tUpDWdKI*8!%+a6f|jcc#Wjg@vhtsWH4} z1l0ki#z?Jva|KgGy{Dh<s$gntt}ywLuo0+afOhXpji(DjMro8lQw5-58h8(H`eIH6 zK~P^+j>*(y^23{uff`d2$UqG!-L@*}F`7=^*aqq8NtuGHRd6|Jh<tsGsqtjNXSz(L zCey(s{DrkzuR)vxVhZBZmvSozOfC?VV>F%a7{^$`Y-(Z*8HC~BQ4j<T!OBlpG_Zp7 z{Xm*P(@fJ>g5(PJ%Yk$~jAw)nrka|VLOOq4{0at>1G~k*6~lB(DFyE7mMX?P)0_De zAgvWsP-_KLHKc>82JkQrm!Jao^x210RX~=28~WfH!qmh9QbQ;SDu8={UDJDn6$}_n zAh**+td{3zoW5E{fm;BjW-v81n69WHZ(VPSNYVP~h6<*L31IznLuUn3!~`(78)#~Z z6rDyO^+@q)WTIed3eOPw=|<)XrpOHnBMSvn<OYS2r9zM?a*M*qNx>AQMd7Moirl0y zHdZi2Zc`YWD3~HQD$Ep2%}hX}eB0yY6$}{}%|H{JG1CKHL%V!piVA(8*26PhP;4I1 z0*?wz*H%~Ho<2)Sfse`52-MpH&8-|%QqY{vt)T$E%8q+_mAC@;bS`BD)#(c>)WxPd z=*r&$sZvx?5N9+6jnnBenVL^eoS`E&U7^xoKZs+m3YLT9H*-iY%Av|&_H=J;1@6f| z#d(=bO+j@7NG&+k{n;qrz+`R&uB$+Dg5r9NpjL(GbeS51MrKoUV{nHLl%8+uF`7bJ z76BRxr<lx5rY9Q7i!zy-f_spl!JZe|V$(qt-1JO+1#a+Y#B@nH1<2sS^o70};?v*N z8JuJ`H8%rmoxWI6!41;M>sJD4&{5!<zCsC}^1-7UXLJ<SO@F1Nz{O{1iZmu~3To)+ zP1jRa5TAZsS7Fn11r<<H@?V2zy19yi8zha}s>0HEs46JiSgCb0nVNz8KfOg&L43Qn zfr2q3lZD}Q$H!Wt%%&Db;M6H%irn%rF*j2%wE)F0xF`37ar!@Fg#<<mP$XMUpJAe) z!e{}W$evcGG<Es~GnE`jH_jAXyHBsuR)BQl@^ql_JzYvufouBg9o8z-x9TW}Pd6}E z=$u}qtH8}?XpR{7Gqsq`Xr(rb$rN0bPd}imAU=JQg~As}@Q4VwFflSh4iC%ejE*Xh ztIL>8Ee)p&g8E&imeV)7swskQjohaKo+X{hWNJD6AbeExnJFlGjC9$-{jcd$4HZCx z#d07;h8}8S+xOWh#4=8QWv0N*Z)}XTa>LXTJn}iMN>d)B7JP}NspWJ*L1V?~ITi|n z(-qh?`KLelqtp+Q29JRrIBCf?z5bvo+jI{BMNyEj;!ahq=>?~iw}Pth?ehB5=U6C+ zPk(t#m3ummqrx*OQ%g{t0QD<U1Jld^<X6e*3V+m;rvI^2sGlCNKw-voQELVB=?*h2 zxTi00R*;;YX{{hW{erW?nduca3T_Z%-?}J#nl59fz%~7)s{-G26FUX)(3>2i+4P6( z>SEh%+!PLhW?}xfDo9S>?EsRUp(X~ZofS<H(+1#Pnki!10K7=Wbo#}1E5#&J#B2e0 zVAa$J-j@N_)uyKKdJR%nBU-(Xx*9RU1@5z%A_l0yeKs?L>4Kd`PSYD=6b0A}z{TM7 z)AkDT(-n?u@=aghEhofmW?(t}qPKF&bS@_aq3IWLl!B(Oc2WTMb(NUS42?iZ!ya^l zBWO+*)FYoh+XWP3pgCDHL(rV8I%sGEJSA(;t?+*OPG<!HP@N;kWM;Tsah|+CBa@lo z^o#S=#6UD?YK+OuaI&L`J&0;FQJgN`rXV=ofl-kkG^{Y0(QrCwZfu&Z3g7hjeuX)V zhSN7JRCqL5pk9yBY`P(zwHWA@LjLVW6BTqB8I7hVOi~b^?zmZ12Xqgg@bp_93U#3Q z{h8C>cPdyw2J^+c6(m3@_Q!Pj9tF4U<x>?z8K=+hRp6dJeVPLA^zFS0kT&A<&%Fxu z5Y3$Z3Kr9QCmP92|J4uEd~bq++w?bwl=-%AnyFC2I6Z!n0vEHfnfdgbNeZf<v^{<6 zB!znLT7~InCo5P?N2K9%a}<)ND@}nUF%fVoo^CKz!F_wgJOx$8={?gFxTnv2sm(Ke z@iYZ#NJ@P)4VF@WPggLXe&Mzz-*nxD3Qg1fXF!ZOGd*smg4^_*SY`h0&lf4^GfIF* z;UO6Sd1TKFv<!pE4BT)KpU%aq%(K05i9)*j^gFW^xC9L?jF4ye%uJ>~^s^J4oKTpd zY=*oTz}-;6%m9?bpe;jpBLy=<NRu<z%n;r=11DoM#QGs{GB!g_{cgqzW++1qCJJVV z<{CH|n;DydmtHZNO+PrxQiR#e#AKqN9>@!ci<B+E0}9ip%!egc(*@Av3Q{1zr3hNE z63C?p8c4m!s3-|(ZJL=vCK47nX?$QdGc|y;Hm9#!2y300nL?)$%uGR331W<9(-%%K zf}|=&)9DvKD>#5U3eY|Z52M-ikCs-@Lek81`oVNL^XUp-6=bHbd8;5WeSwb#xRCrY zy&A*?H?zzpD@uxOpYTl~kdYVM1OZ2tv7!0&oOcSUkXYaR4i@XD-YZy6U%;U$IPI~z z$n;e|6=qKV^g%&ly2C-sQ`3KZRB+#(^IO53aeC!v1s+DD?QNeGc$g=B=G}hszk)v_ zFL*u!V!pA#^mpGCv>=@n(;o`ZaWL<n3f|LCGbyG|cmAb-bsS9fw}Sh0heL{d+w)lz z<r$gG4W~ccXel~<*B=G&yqWCupMMm(;WKC*(}n&im`}H3SCpNe_D?|{bJA>j$$tg+ z?Hd+oa4<5NnNQ!xsVF|(fDv?a=?O)t>Di2mE#Nv}dIOW9_4IctN++iqGArspa*Gs; zqWkvyYD!*=(|cJJxk1ylvse|?Affh>RS{aMv$HEAm+H~%iqKL$k3$i;RNu>~$UXg) zs{-%ztDK4glNH3}n9MAuPjoaAoBsQ|I`{UsLW-;&{NVWoa3~sDm>5}3|HGpwJzZg$ zt|*h4<#YpKrEqyO@LV4(OBgDcnScvfNN3C4Xu9BA1>xxnq*Mj!&A=miP?c_m3TB8_ zEF_O0TA|>g-VD)*1Q+#Yh&d@p9zm=_ffV)N@fDc)<_czrssc1TH@WYE3)qXGKAf2) z_?~HyFC63bQ<=>yO{O2rQA(U1E1)PieSv_n4oC`IO`AcgX-2bYiRK$YqTt#Yl#7_m zEVqNNo1Q*fNYN0|lm`#lP3MkQ<et8=SAmzw9I5VQHa9SwZn#SkRAYjg8Pkis>;yr> zzY9Uiz>SO#HY!5X^WG@QO=pi$mYCj~qNp+bT8yH=^Z+AW4oJ#h5~B!dbC?@UH}p^w z-+n(;QH7Dozy!QPYx;s%MQLz<fBM~6MQB<6IZn|6+_|4FouCM=2)<8ON>p^8zRyO1 zW4m&eVlpEyxMTyzG-y%Uh9pI;=>jJdrKkT$Qf!7KO5PMj>*=bwijSsmO;OZ_B+BWj zitf|<+s(PRTjnc<FftjMOuuMlCOTaz9h6Q$?TyHE#ro+9g^Dw#7iB<Fro{A@Z_UM~ zAI(sd0JS$xPrs6>=)PR%y*W68>3=X6V>Abk+=JTL;91<~C5k;x(`|ATxmXR&4Gb-& z-_275jRnI~p`w{3yn737ZI~hEvB0ejv*`{?RTLe~P+A9u3g!mLtqUUsb4UvTl6c*W z70i+6huusR%%>+TR1N~U>mg`Xmn~0GaGJTE;6wv{W^*GGNGoDVfg-pS5j@?kP!TfT z%V-XnLof%ePE=H4G@5+z+6G4R=?hotfCtP!Fq<1$Ld)aWB1Q0|0VoW34aK%!;8(C> zWHL9N9+;{x2BH@pQPrGo@JCIE+1%I&l$@Ze#TM*W<OQv=T&%MJr0gT8@?XHADKLG- z0mc03>N^z$rVFfBlLn0z?U?>;2Z*bzAO})<(OX`8`uwfRJllN_fs&H3>GX^Kx}wuR z?t~>Jy<M=R<gy!<lydgKl2Y+rMfdHU#}oq?c@Y&bs8na%4@*U!`(ddl?tr58^u7=3 z64NJ~RGc_n{2(kT{XD4XF@1u&Jn#0f(~4%GVej5EisI8d4=YMR%DCf)VJYds5m-uc zJEvGW-Q*~wj5|Hu>6oJX^!sW`+}q!uS9D~Ye)G5@&vcuMiae11B<MEuiRa`bwokaI z81KkvI{kx?k|b!r3sT?ngL1cluu_B)a--DUP{ACrgaw?M%#BRJBTdfcDAl;3f;mbx zZlqw27&!qKY3AUe4OkInqF`=fHvM3>5_oJW(aTPl$rM!0PwzgX$UQx4k+S~ugq@0d z)0do46a=+PgQvTmg{CNGb5jdY+=E8*4r(YVO`msOQ2@MV08-hTLst!eiYaDuGgxK6 z>ztzCG)X1IssVGe>4j2C;?pO7R<L6<pMC*U$D2<V{Gy;VokLhjaJmDZIv2P-$OIbW zPM0&AKBHGj2E>`@qag-rQhsMNpPsnER1YLpD5xj~DpNSOPn1=%W1P+<s>C(@rkoNV zsNKq_C^uQ5Lw5QqQ6*@BkSHz>uHXfxH!CRRPk$+{1g+fPODK74mr+tOW}IFirNliw zN?D0_dWV#f6u6CfOiBsb#=Ix31Z`u+b1NR3ZX}}wE>WP(OGjBHkL?e@73O(4C2l4| zqwRO(l;$!{zco#XXZiz8rReRS6qK|Wr+3?{@og{GR#Il1?ys!GGu`{K7WectWhH1a z3tBxWy8W|`(nec;a8DOpN*bD)n;TE>Q&W<jK4GE;tR#w1GKCMlfD0mXl*uY11#{?R zm7_UIZD*)pj#AqhDVU?wcE$?kD777^C<@>=ah^WGkCC6r++up-F-_s=ni@*n6D8Fc z&8L5?F-)8ONJ9x)63J;R2~1yLuEhnOegZ9TNX%8T2hoK;loY31X(<U#zo4%x1)h%r z34<3mgAxyjv+$>q*fa^H4~&+e0l4XRbd<y)#S*i*rSWvo+A&7+>GB%#wgKjd@)a~r zWsbZ$z|cg&9C>+wp{atoCA_l-8k95#_g}%eLqFYF!NLGEAM8Axw^(UD=<@Jjxo9Q} zgUK7&6{ibm%d<}oP-mMS#bs?d{g;TH{`AWQO5lM5&@$1BA#!5V)pC>sC!g162MI8S z%4slL7?^<91WXSH$tZ}+F<L;T`avU!%oYZw;AtjC^XY|b`g)8O;2th`MJKa`ff;x- z5fm7p*?*9ciCl)Om@N#<Axk+A=PE&lZ9r1saX(vr>oR5w1B>Z~T>2u@mlP-oPG2z3 zxO@8Cd`P-tw3rT>?ccsZz?zql*}}kb`awZ!(dkDjlmw@*uU66%M)WB3(@jha6f6vl zK=U!6>2V&$>H4)waZHBBkog#^D_Tm77Sk@Ot4`;yQ<^n>Mx~O#WQAvP)Blu00%iKY zG9~WmFBi%4PB*SnGMw&St|T^HV6Jh=^j+mj+<cZ6h=CLf!|4qTO0yXa!2@Q~DwM>h zCp0R3nZC9{iHjd)2*tv1`a)$>Ymi5tYdJ81MuSvL6`3pyr%yE3(gd%Q2Q6-Sp#`2H zmjm@>xi}5Y6pYOkOf3wi+q5W6n!d75NnpByuJI*C3rLl3VKhB)hLZU7+*oC<`t8mq z%Qrc3lt{M9d^@<w)*(xKZen52W4TY?ikGZwmX!HC`O9<>&8*$a&t>pmoIN|WU(PLe z%Hh;~7M%r$Hk&DVI%d9H?-Fmx8|LD8XMOkamBx>CUP&ob@!vbTTl5`Ymfgd>9dUD= zmY<b;XLsAKpnl^wX>}91q>CmC3V3GDWB*-m<ijC&vTQC_-P`N27yh``tPxXG_1htB zsU7o1;Ue#|o<)6!GZ)ykUFI-(HGhB7)yygJ&5K{?xEwE(GIwEL*7fql6``f7f%61Y z*Jwvf5B0GOyeJe}{pvx~>K|)svP~X}c>4Jtn_0B1#@~PDhL00_=WMS@P%aNIm^Nv) z4wu=ddexAZTbbAG>`jiooqO%mqZkR}x6_{O_6?KXv-bYEvf$kB?8RDhtEU%MD~U;h z7h!@6CSwDn<ti3N(+&C5B|!~BRYs%f;MoWZqv_z;2&qOT*la{T<4jQeCC<_aVzvNH zM9fg&VFZaNb}8vi_i9uU2X*_ow-<IP6*KZ0fu`9Zc9|JZPi#_BoqnK4NpiY=kCO28 zl}$=@AnwBH`<s=_LDhxq^m8pr;0Yy%={$W(K1>#-kY$8tdX#vlxArM{PT$z7<hEU; zUrC2?x?j5z*L1H5N_^AP+Mxyhl6FXeKXv-v4kdHYpn|~kHxrdkO?T2Vm6-hD<B93= zT}mF??@d+;Vq`R)Za7s*eEOemC1|t3u}7&Myy$p(La&kqWEkPWG^M=hTYHtjU8B>} z&w||Gby|^kd)o|<8yqGmaZk^hq`)&he1Z~q`T$f`fF}@E^qPy*&ph+P>LlAIhPgK! z19A_X`_25&JxD2Z>%Y6%UlaGJ-<z4R`*rj$&CW#{lNK$hJ~jFOeccQH|Gj%xcTFg7 z{{EU@*ZqHZb1L2mTJ`W-{{PpP|NrpcUax3#KY7)kxqrLuI?VsP-~acq@4t`v|Np$? z|1XjE|4;o)KOf~gRY^wwzr5Ukss8`Jufl@9hG(kZP5meGzVO+kyv%#qIg7V!J{A*w zYVK>V@1Ck@FScKLS2)Gzzn9_n>i0VrsD2kX#v8lqZl}W57c6U1>;F8xEdQ_R*xk=d z`r2xKKb^lq{*2I1`~5XPzkF|L|6lX_>HnIphx3AGOwC%j|Ic~pze{=kdGF@W^3Tcr zzp(z5`bRmAd6u`-r~be6ervCZdmX#(&qa6KmCjw+_+P;2zv6vw&zU<H%P(22wJc~+ z;cVS!>w{m3%TKYd+aewws<P1J-R3W0Re!9OewyBWEbjB4Ra>vm*|q9%m*Us`8QG6@ zikJQPS~tDB?s}Oj`}F!9Z;oCSf9juazG}*9Ej`wUO_%CZXJ<XJ|MOEklzHX!5`Wvf zkJdEqaF=S`;<WF%P4Vuf4m??<)0|~{E;^rCwdY0pd)@O@x0eL1`7HN3pmc)O*?%|k zzTa8)qM6ySRiJpsb(!Zf=982(%r9kU-dV|f<#Ma-ybVWgDer$!>{KhJVSmZ@%X^m4 z;8P(b_q^9A`t;X5GpoNarTx^Wr8`qQt9V5=$vN2sWVv5Ge_qeV?(cj5AW2R&(IpEP z`7cf07+n1PP|~X<0nDBH;kL;W%%r`7yT9lLtUCFSvF8cvlZS;;yG10+rt&7$2TX{X zdP?SS<E2)M73_DXpAGrW6J(a$cd>z4$K;F4)N2!OR!TTDBzVLs->{IV&rCg;AvSHs z5}q#!&ewMd-6+UjV7+9MP;1t8L-rZo(<gCH(c5zG0&BB;b%C3e2g|D?BD-|WnPxW} zxh!~bL!@l%r0mAbD&d%!y(Y|Q?AdDNO7r)`K1i4QVrRthW0Syby__XeumA0vF)6iw z$8qEB`-`_P>Zz|is;z6~Uf7_^Gp%0dRr1+v8J;D4yBZ@bdiV2Pczocz=OG>+t&2Xl z&Ti&iq`&3WcEKc--)xH{OM-HC1T0TVYW#L1p;K*>$-&bHt~6iL^n9fxcrvJ{IV4<W zeX2aq{wZt{i>A1ydj5LnxW%hOD^0dS#^B?M)~|c7xg=;wUkQ`sICkXvrhfl*`}<mw zgBOK<6H9m8F7%!A*}+6z&n^2n5`{jzNL-o!q#^R4h3<>3#?94|mSS$noS7o7yZJW0 zIJP1-vf|d|-yd71v%H)rD66~T(b<)+?8`s%u)K8oT$lO2b^3t{MX`GGW(T#4HXSo> zU3d9V@NC|h&FUtm7bm{>ZMcC!$ERxJLQ^GS<xLma7jL~_qxtW1RlY<`e7ECjTc@Ih zhrci^Ug9P-#cx6VGZmJgY|G7Ri!5WTnzx=mHmifB@y3*?I%|vf8vKr0vxIqP&daTC z8?1W7+;hy;QyDsq1KYHdRSP%t)r(D?Cwa+fvBW~RM~@sA3qBOP8{EA#^lg!@=d}ks z#vI2^y)x?dO|1>%3$vJMQ{h<Av-iN6!ZQrFvS&suEMmUY=NbO{B;NzuiS|=$?JJIb z@mTfh+p#U)i|nidm#hmn3pJW`_F3Oy!~W_CN`LPq1%F<=Nl16mw5XI@ZCzPPv%@m$ ze_V?2;)^@pQM%^Deb1cfWo$NG+tyvzGoEr`#ae|aGqp5YjMVzMdJQLC+4Pb9@#gTg zMZum1yMH<Dy#JC@)~eNz>43DR(lfdKI~OiBvNvClOU-4TwVTVMqgprqZL+A-V*PB1 zg)^6}?@78SsyOMxI#*wI{Vyj~!WBQ+Y!f-xb+x`i=EcRD!zW7;BHEKU;+axH!aI8> zDPH<4C)3JwleyR|FI9Z!!o<En9&Qs`@hiy-Ozba9{STRT#*IVx)|AhWj=j^k>9(*X z;jjDeg=$uB81gh57i!<Qn$z<kb<vj6#zPFVOfwn}@;~H`Gzxt%M>&M6apC6{6@y6$ z&bkaaqF?8U@@7xqz7{MRZ0ITMr24wY(jza_zkB+#Dn)(4OAk7>+N=(6kmZnir+mdW zjC;CTwPJ96L#wdAmY~WMksy)KxfvFpJDP&NuinxelNdE|N?Eq*H@&XCJ$6e?8hxXj z?zpTLIh%6njoq>x8616E&2$sL8mvF%c-xW9an+`(`%8*B=L$PiaI$N><XWF|Bx&lc ze>tCT3zt90I$>${q{!@|ZNK`Q8vm~XS~2+{N0(V!R&6%0s(+OrXc(fh>deAV2}`A4 zS_o?R-(0*}*2($f<a)ksdSzihG;`fbSX6r=7hJz-;D7Psdf~N-!oGHkBR!Z7mh|jk zw*7DRM&`}&Mr-x<RaybD&$ij0x4Om_5fm|Z0#{=G^xn4`Wf?^;ngf-Xbh8VN)GXJ# z=;Wd^(^GU3bN05SXAagEALZ@Q+Q=X*dGCH+L!x^&uiI`T$(wgV{Tq+OEjzaAHRqJF zk0+`v3T~DOuVM@d&);aX??ZOR;X@LS(v&VSsnsOTh@JEDBm3jxqFTQ4yAjj)Hy;nU zw7uZV6!DH)S2G4BX~#<$i$GV?cZl6ua&7X~!xt9cWIJs!{U6I`gG9S`d9QA~C|Zzz zyKOHg`>M~Kl9yU4i~OR@GHQgx_RTorEU;7Oh-KVlu{BMaStk=Xq<t$hOrk!{D6(|y zi_uh;xpTFc@uC&0^s8M3%qJ>54mV!9<K(h~@$elzDP^OLOLn?7#T>eqvUI2TvlOd< z4My*$O>f++Au_$PR?(QzZ2H<-MM=iC>Bnmo<+aQv9uBKqwTri|BTvdE?A#9pgPt=A zp@Pe`7@hq$ey@0uz2~s3(9|Pw?-HjA)G12W-z_me(RfPrq;zjU)~yE?vvoAyT-AzL z++@3T?I|YfYzOY!77><eIx>M9qOVGD#NHAU=E)NizA7NcTcH|wI=gP7bxFeUBllPE zSU*!2EWLkNY~>y|Q;9<tlb2V;znCB(Uz{KOMe8x|TIc)WF07kQRnCf*4&CuRP&M-* z|H0sQ8xvQx`<lsoT%hD~q3zcr-O{58C8nnAnNpkVR(5nejhp=IC#PU#gK5%tmo<*F zuEquy9^ucv@KDW@zhC)*rON@WN6xPt3U-KZUgg&3xUoS;phd7fPl+e2tb5<`tj`B$ zDTs(o=dM>&n(nn#L$<y-=;|?@EB7z%YLUteIJDptxBJp1I=!ArwWkt-Z=YtBlJ(mh zr~c^h;~QL_N()){B?`Zv?&ju@6uA7Uf*E_$;*W6;L*-phwj7#uY~l75b(4Gl?J$q4 z23_+WDR$mw&!fr-H*PImsr@GX^MQ8W+-pBJC@$Ps_R;Oz_Xm5Ws#i-j*T>u_SnOZq zTp%6$gtO>!;*3RVQ6=Rm7Af=ep2yrPn(Vpp!mKCat@=I7W?lUm)9rLj?01OZZ8^<_ zYg#`|c7OF@@x=ot#q_jY?%v=~+H%0~vO&3e_$I?yj~5;6y_PE%)zF@C!}&&|dt}{B z`P6Vj=Q)e~Bz`Pb<&+W#yZdiN3m<2_zV30s?e@2pmT0DUKY7~Ec2Dz3Z0y(RbJ>Do zlK0=9|LH?n<pn;Cj<@|q*QY&K$vMNpxR&YA!62;_>+%l-eS2n;%5If@>cM46+YfJz zCdsheeDV2Rs@sC;T*uYZO}6j-|I~ZCwaCvN_0)c=^eZ1GSMqJsQ~DE}%I`06@j?8V zmvicW-Z>c**q`-rz4wVNZ_b}coch<&|4!q)dTG14f$hI#xBLC7-%*=7Ge0-)eaN)T zPf`cAC9ghvP=(oe<<IOHYo7I%SZ!3jS}nG|Q_WsH;eoOH^dN;5T3<d0yq~Tc{GoxJ z{iMnYM>eIE!uMLcwJ%NFHRX=NsxDBaKDj%1^^|iq&Mz26h2w<{qByL~!Z>>@U8CYx zFmC>;6>`#ZWn)e&)2Ac{mWnGkq!iX{>#IBy@ch){S;n8X9y)HfpgA|Y@0I^v<JCFS zI~o<`>UqE1Zs27++##7hd!E70XSZVPw|Ts-(B<85jALPO^b+<J(M#G=TRt7}X<A&~ zd2`wO#<jljQA<x&9#Z*mR&n>r<;BOhf4Sbo-&Vb<<F}zqMW(`rwzjiU)25vKrrJ1R z#U+;@HbeK9Zb6%r989tVz2hB0m$?g0JNQqonbU95N9TIORbK=|*>8UkjIfxR*1zfN z%L&47|0${*Q~$oV@Ji@o2YppOw`DFtkryu32!FOM+ORt7^rZYN({?WoR$J=6KdMTX zx4?v{d;OWl_AmK2RNfw#wj|Qm@6x?l)(TSBRvoYkS5k_XNRLfY*me8puP|=+$_Wc^ zZ@#bg|4gw_g1YA%(fW#X0}rj={mVY3@+FjJO!MB-CRlCd8Rn_&?JfH$_DF|Z)_;Mh z%-l&|Tfdhaf!yVO-|=^c?}u|CUTu%!(!yQ`B|Ck(IC*O5M$y^NYK%5%mBqeZlRO)A zm;14komoj~8=V6-KKDvpG%Iq8M3`#q2JIDkt}kyeFnDNZ#RS&Z8%>+MC@DwAuJvL2 z!UqrcPFq}<=y6PB{g2(*xBUX-d_Z@(f4RD4z1e!(Ty`t#gT350ITbf#eyBL)-qx$~ z_)?1D$7#W?RSDO16VuZtcBJlD>%TNJX#L;izjZ$HmTYw{-Ty%Sw@gl~%KVk@F4Vd{ zI?8d*t#y*apGvEHzBgaruQ$uO>a(#<plreOyKVC;o_}oA<ejNnvZtt7t-Ss7^?4QU zR!JWZPggr@a@z5l!f{hp{%N^6<=qqXGW%}*+_pK+?7UQn=dF{ft6n^?KYBJZV_)iT z=|Xm^d6GR1ayf@0r+o{Vv*+r?qb{y*4d3|~e9^x*Pju;m2=SMv_j#$`yO_qx$0a*g zDnDQPpT&nwlLf`68?-38)=ST;X#S^I(UUyKMPS*L3GG+i6C^x#*JjDA)wrVDw_(S+ z7Hjt%r{0+zQgb+YsIiNA@+&SqYn#be92_QZJNKdKYPH8_r)M>;ftMzidMvv+{YGD@ z#vJiC%i5!+O}AY+Ic8T&jB3_luL3UKqC?NS*rta33Xw|je!4tF#_95f9J!SGw=R4p z40D37f$n10c1n8a!Rh5~$G6AjYVV4Ipk&vkiA$|-UvzbzT5GvNE%wLZ#~!gWe10`} zu68}kps*pRcU#PX4<}s3MCa}|Qh!!5`v~hv8{eXer^d4`e7w2-%Yxba<>IVfEc}om z>AO(XoNZdvs*GpzEbnsv_KAEEc4XG(C)4|PYlzqTs~y^WO_`;!^`{fVv}ZH;uI;pG zPx+vC!}m|;m;K=dN-I{#nyEH6X5EU;J=CZfE?T_iQ&Q1_J>OcYjLL5EC#}{>zxryS z;rWjA#oO+b&EPSM{=CLgSLMS--Ulb7^{lJfg01K7{lx3MXX10cdr#XKx1IX;$U$wc zMr2fry1MUjz4}|xkGxVMm8Q?KIoI~B0Ce;EBgLKHgx0P$QMcaiAy6~@#O)VSDieYN z7CpLTwqlonpFmha1Y<w1vI*-+nOTW@5;ldq3(Vb^?G!zmMPQ95o0o#??RTdy%@J6C z$H}r!)}^cDqmse2vr|sjYAP1Jc(I;kg6oE@?J5hTS1600TclJkEG1GP;x$c2Z=Icm zz}oW+r%O`YCz&NiwJh~im$;B`<GwX^wl-VcGnO(@+3;y>nHsB?MJT^zm{=$r@?Ua~ zTcBTxgirPb4kP)pR858N1+3qvvE&AnY%4o7)wIrX73=eR)4mk1nyR71*U-J-dDeaY z*@BIG)#imLwM&OQpR>fJezL8h!c6nUUd~O5`fY9Y68>AyEUwV`dT!CFk7qb}k9r#( z(K6~}S)Zx2p+$@L`d97lMeKg7-^IO+a94O~Vsg{z*e;6=W`a>{CoAKmV^{sr>eDZ| z>-d^;V}{<G-A}8^0|Z4*?~RNMjdEA=x|cWqysW;*%2`MM7~c!kv=E$dMYvx1l3?No zrq8O2qEFjTu1R>15}3JS{vTtrR!-d$Y0-a|9n9^zBo%Bsy@l<=@-;f`w<bkYG?ho^ zUo^E_kn~!&uu-S=;hWTFZ(9;K*f~cT6+SUIX8Yp$ZQf*Wt0Q}LB>c*3*_k((nZ1fk zH@U0KCYK~GeQQle=ZdM59t5h~Uhn(6ev*iM+G-Vlf7?|h3tGjmtTYj?(~Cc_yG`qx znU~|E#K_FDZ0T0!i0(Gs_{|;L=IKTKetOww*Z<lh1?e@q)|Rux4q1I?T*W@^`lVD2 zzu76OI~KIL$WNGeqe<LHY}Lg?#={eDt-g7HM{dKD@R^4!?KC!XTKc?N{NC(|^F8)e zg751m{#0@Q;Fxo$%jC%M-R>2-KN)VNy^;E)a=UBU;fB)_C+<_cm>2b=VX371S}D+_ z>z9`tyT~$)L(Q8nQDsu)nv8O-uA39Zd&{)F{@?2<3)p#FaBH{6GFIV>t<4viYT9JB z=rt=|Sflch*>8<t(T$`nj`J?Euj-i>s`7S%=7}X!a*BKMWOrT_(p<=xopYuB=M|%s zcN85Pc<mW3Z#s5r^(Q^8of6xRP3r&4#&nsZ@`6(DB*!;aQC}ZfCGU6;Tv}O@IsI6s z`8LsX-KehBg6k8MqH>lf>aT2(by#>`wM=v4ORF<erY)@LFwc&PZPuFp;ggO;eW1sg z5@%J;eH@WLZn;kWu`zy<qv98nCoaq%XMg6ru+HG>A@^4kUEam$^VC($keD**YZC8Y z;X8*vL_A&-eDNBG-lpyK4ISG%o)vHCwH8+0_-@VuC!<Lf%8aH@!!E>o2(P`8l2x?& z(zHG67PiitaA_s`-=LSX43amfc9ulNCfxo}-`pm9n`u{ScDj(Yl7MrWf%vTgGo>#7 zqaqXewrreQs#I%wBmalohg(yhuG;l0UfUvVt(8*d3x@daf+?nK7OUj8ti5MGv-R?h zbxyO2Ryd{oK62BnFx2eM4~?@~tm|hTZoaX&H)>&Xp+b4aje`j)3q4kxe<k(iuU7H5 z7dk!F6F=1p-`c)1U4%D!c_aI>EzMh3GVeNe@RshSu-I=$RBVp(D159*z1E<7(No8r zsoi4FG1h%^G_pUGy<SqdF!9%|IZG$COr3S@TTC3YSiHAg!@eo1J$EwoK=-R(yJleP zdh+aB?V!g2PxfpszF+XmLf77$%j}21=BizRheb^cy*=Jo)kmM)b?dE$)V9~l*7M4~ zeto>NXiL}r^)i+$#{~V3g`GBcGs%=ad+A%RUBj_2A!3P-56mg~T5+Z-Gb6p-ZP}KE zTXf#mu|1XH>^c*Ed}r^^i>6neqz2k-i2Z*1Q`^otg7FW|G;7YU|2ak2C^z&Xcc7ho zH2d?@7f%_P>ZY8T%H6k^$y9rKYqz3u{e1hU9mZZV|J<iZEPj&PbLcyNLSSIe;`uRr zyX#+VzgqI%<LmPZejx>pwH*q4Q_e7(^KY2)IOH@-m`dx6a^Lt0Mz)Eva~24(ceTm2 zx(h4nsO7&{qBudv;7~<<dPUEj*qzrKd<>j-|JeLxYv2)9#!p+X?ls(`xIAS=NqgVU zlC6P(B{NpvUbuT|-=eS2dh6={O<C~$nJ#<J@-A-qDE8URr$y%PPb)oJIjic{9G!Z> z$Sm)3-o=}xU70UWe57N_(>J5Yr0c>a)A9!|nRE=M7gQuopI*_Us8YYq!eQzP&gGv~ z{s>wdXb7qP`*w)GEG11^i><L!Xu8|uFD@1u(yEK?mZ`ePY?74AmiZ|*tL@W=doyI% z(<9khWVEJDyem;V>!%v~k&SCog!GpAo@0n#z3`fya{Av5UFP2;ZRfq7VJoz*q;v7Q zAAfBd*;y1`s71V(GqYaWTVz3ey_S!ZLS~xXyvEw1S<B{jPkes6;_}3r4J{J{8w=g8 z`bwq?ST?6T_)|9hvn<o*&3qMQ@lwZR+Fx$XxhTAn-6L(wt*PoZs+|{-dDY9BYWSCT z=KecontA+&{qqM-r)$5<H<hF~XoN35e&eOuw(LtE^|};%qkpdpKKIGm;M2*}w+;0N z9lr_vOqqJnV9Jp#TXz{qC2f2kCV6D;p^u<T(hD!XzEqv&IU$<m){Iwo7}mb2%s6&D zscwQdhuf5|-w$LJ#_N}CdK$Ge?_*5iB!;(w1s^y=`HL=FK3`fj<0;GWNq#e0gZwY8 zGuAk8fg$H=Ph2V+|II~nmxPzH&tKMbWb2Pf3bsG5&ogcN81u;F-y`oyYg-fr#gk9H z$n%NeF?E;WVcx&_Qtcdr?BJZ<x2vxG5&4j*$8Y&lT(#Hzd#qaaJ^kqoZ<I~zmu!2r zmW7%9vdGz*7d^?vS+06EKIfOUAAf#t`z+yW4IRHz+PgN&w0CVx+Oq0%U3&`8n@P?| zoQH$&+%WXu+jh*3MeTOxQ9)zAxBf0lPI9x#?>aZWw>lCXALz36cv^b?ZL<ZHQ`M%- zxwgxAd-8EV#iVH_8%<u#)n3HHvMlOHgwb@aenqbOcZD534Hfr`Vh$S=CbJ&c*3YUx zcV&T3)ia0IO9^&G2ekhjd0LS?-$H=LD!MpI%+2MYc-FOJPKIl$-ZIHsB-HKR_>7r7 zSlGj6PV~&z8XKB-1_rxsF`rjnv;GEC=oj7?<D-|3EYJI`aC+PKxfP347RfNKaZlwt zqZ8};Qme*;xBjt(>9V9?&&_3uO;dK5zDjZOUbX(`T5p#dUcOat!>8pOi@f?pbobqZ zEKNrfWo-o<`%mXhpJFk$j_=unzFD_;CVONu7(DFao^asfk2MPqMJcW1Y+1Ja$=A@E zi=TY>$J23XQ!3+(r7|nco|wL6NYRiCeABpksakXEGm%IKmPwWe>nC|{^$${8%H=!9 zFhi!n=ZSm&vBVGaUd@Ox<C9tNo~bJ{ajy^))9-+#?%^JSXPx*iars7-hpm|Od+)b| z8Hu*)r{|=zUHkl}>9~$x<_p0hs|TVoizc2`w0oNDn{)2z^dshzB+7(h4{n-c<A14H zEZ^uy!c^z-^(Qie&%0K|Sp?RXd|r9r)a-eoHzfRu*(+a`uX)QOT770?*5c!ZOzgKa znO1F|w(aufN4c-6p7CwtPf-iq+mm<K=Ht=Bna8y&7bkW6KC=Bn!r%T!4b?p>lAg?} z+t;l&N8?iL<<gvLm5auYwrt<QvrMI|@s4BjS^k_h-i>>AFJWVB{v~s``On*&R`dEg z-ns)HBW`Z*a}g8wad?+*b<psdQSAX^Zz+ibOY9D&Y_~Ud%YJ=<JFClUake<$@$Mqo z>d&{9UT9poc#W~V_F6t`TVJE8Jnw2E`>!4SensI!`hv2CWJxyvvj+tJX)iAH<Q04Q z=D^NF*XlgJOq0slpS7S>+<nK99}=B%RVUIC>+e)-s@_=q-s{kv6PM=oxXeE&9e>O7 z4)f%ly_ZU#8LeCX@^!NBwae1!J8o|-zIL^3$7RXnsk}7?>PnK2iu8FSjZ;>X#uVNx zEY^tkc4ktFxEP|6&3nPdV)Dvsr`p%=RG8^drS9w0CMx{I(z5)97hB?rbuTPLOm|34 zTs~XPf#;dFlFqjb0se#k%BC*XoO|`^L)Vm)_J>YV39d)N1NZf-o&1nI&wOXM8<(Do z>-0UpbrkBC-|<@FFk`!?`K@z{A561~5N2@`+x2Ao)@^-XCr#nxykl*g|9Xw)H`gB@ zHcxxfywWqdZ%13{(|`$;^8!j9D16>EIgKsq0_Pj$T;?U~%R)I_t}XxPH1qhjpaWdz z`ZA`(Y_^_o&~k+-PuP9KbNMDW^iAYqvzb<91wWI%#+w(oO{Kmh@3F_t^`>Wfwq9t6 zHCiYe*nZO~`NhQd4-&k~6*e4Ow;Fu4d9vyvZ_w4|Q(rp-WS_0QyuD?ONjviv9d`EL zD(!k@mBGrv=Uf+yO=?qJTBP&KbJ6#gVMUD-FCMBs>Ad;#12Oe}#>|Q4A0M8&xqdH; zE)P3jD))~>i8Y=#7fcVGtSC_5+aPw|UU6mmZW*&Dryac~#wza%;gQ}Qx#U#h##1V? zHqs3lOL#f-5{+Ckcr{qsxwaY>te0PGsSwEZQ=q0-XoH7TP?Y<z<iuG|Zi#xDESdL^ z>HVn;#piu#Vg^A={+ROJNh%hVIG(#!{nyq7xt@m)FD_lZu<`Y35$|2;I&<s{>M!I> zYAv5~rRHe!qhn=vKW$y0#@#QRTA4YA#hkx0Yg2{w8{Nz&yW0~PPfu&~Y1fx#vR-<& zpsQ-SM_yNM;+*I24OS(m-TV4Hw%3K5<I`=mkjy@xi7}Z`XC;+qZ!_&(Y1XI2cy{rT zre_njJ*rWCqn2XvmQ_i4V!*vbhV46V9)4ASPgPL+^rx@OI3{x3z1};8tH@|m-P*NF z?Ae7jmKE=vC>&OxzV`miT<*2i#TkpwxEV}+Eg1dqK+Nf%^ZJ<oJ__tPA~5UWxs#T8 zGEEU({*Mp1M^;}gOpq`9G_!5pV~1%Gi9DXHfyWh3%9;w7vmF$8Sg65#b8W%-M>if{ zC=};O{#d_Kf88B9)@9<a4Y^j#?73>o^~=!I@SH8jOSRZeGmZd;J1@T&aWv{qEaYi2 zD3ob_U~v7zp`T~19G9)iuCV>;(zrE-<*>+?{l1y`Cgpb-k9;xRGHKhi4J<OJkIYz^ zlCmeU(Q2ysR-5Ucmh4GvR}a+aUX-{yPotrA9@o)@fiFMauixYJkb6(O2-muBE_SUi zY4(9ztV14O|Mzr<>W!1yN41g?4{5TP?=ed?v(1b>bF1P-jMFZI4B?<9-g0Hv-|tH1 zbKk%debPgCyT;Y4d-tt4TbPv3En<@A<e>F&)tX=byN^rlIaKIfBQe+bVD`lMjZ-%L zV=0Y#dvbTcgM$oyzqA_a=kNMvUaHCaa@8jmhxXS|O}w{_SKMUGdb=*9wrtyDl?jLC zdR+G{Ia+`Eb?vi~UXN|6tJxDSZgqaaczTEN0`J>q{PQ++ypERLH8V2Ysl(aC;n&aJ z#0du<)^I*d5|?FIBPTJT$vdg!fPlS~LE;9-x<j%VIp&J<@0LXNewf_LQ(SM9aOza| z)st)@-`^d1oPA@#$&2Otzqc5N%>HemC@Qu3!1p@SqZ`iW7xeu+`O+;SAz?~q_^;N$ zCD~HPPP_@y`?7E2MG<Z-$(~1XIX!CmYKvTh^PURt?O=Sq#gh4g-JMm^H8YFcZ%CvF zgcfpSvP#<j?ak>qB_p)pL$yUvv2zJq{hFz-k1Tl=(t5Y6@ye0UChVv7c+OeXbG<mG z+_U)*@5$A>4@vC%GR@WZhP$8Fwd&7Z0;lCBdQIfWx#7Ga;P3PnlfLd<QVmN#-Vt*u zY}%zTYfX>*cR}w9yLo>JGn=WsaraxJAO6#5+lem)Nm`aY{O3e&%9m*LpE<0|Tb0hs zdQZIGW6{s{3%83l7+#28`%SfQ?rnh_CBHRuP6lUPOi_5~lwH{QD&kMlI;REZ?7uy{ zKWy%O_PJz2Ce!M;y+*+{8#_basmpJe!4kddc=D<$o<o1HNUiYNk=fgOl)Gd#6Tfa~ zLvG*7v{QM$kKQgVT*b8G&P$ipG?gv(went*C+#-pi>}`rd10Z4Etl(Y(I+osWin57 za@uBoTj*2He*XP&4R_h!+chuuK2sF0<hGS;)}C^Gw+84&^X_feH}p;Yu;bR{AAPg` zU6Fs2)HeO!gP!P$SN_lMcJKTBxNi49ohzO#&D&hoaQ*36w``8kN3HvBYKyd(<WDb> zyf%&b)J{e9QxfyG*DtVSKc4#G>!u$o8zl=1)E}*$By~b-?qL<r^R=SidJ3;Z)IXa2 zit*dq)*}g@Pcy~_sfBNF2+TQ_F(dg@YG_8utFN4oyG^fOm+sApEmEGn=f%YGDGhs+ z+cTb|O<63WXZ7^l!!1XQ-Tu$G_()g!>Fa9~ULKjp!XPP?u-B|TW9bu{dMP!>i9N|| z$G5XquXm8zQ}(CFYai?JZIfm#Fnq^veO&7U$FT{_%r9!!^Id%5D&fAevAyF$x$U*x z6Lp@aKD9o&>dANSFBvX9GViT>c)v^)Uj0$i&hbR%wz;!ACpgY3>e;Yb!||ZB+SP|1 z4mMs&|2e%Y9#yXhe{3#hDDe7q@28jboySzI^_^@aj~)84&!N4xuGq-4WBI2`vnO<^ zOk|C+{mk}3I9yjzbcV9b@8=VwH;6S@XC1v7zz}Yw@~!^kiOv|SsaGE#cB?GzXk!bq z@lw2-Dy8^WQ*`Bi?a6|^l@$)Nx@s5b-I=zI<qqHGI<L8k#{Mi-943V#fePmY9w{8| ziL*JNvaY6uH{!jo(Q@^9Vlj$bK^HEy&6;$~Ey!(-oW$~%97240Mo)IGU<jMLQ^{?I zkk-ThJdYRt5$QMj#CSG#k;2xm3JW_n1~4W+WV@EZo>E<%`5?N{Mwp*bXr`3Wbf$MI z8ugZ+m@QYBU*}@9i%w>(*mLpMVt-d5x0F>qOUtsnPP^ZW=-gD<XtGS@w0x+ZLl>Vw z|F-EH84CNOFYdneMA`0|vb<tiB}1vcU0agR_0Ed^b5D0IW|Q>@v|cSJ{Zr@gwcUqX z&em=--Pl&)-g&kpG3T{^M6~z19Zk|}mGx&yuYGM?uxs`5H9B+e&g-qIOU^hFDgUX4 zL;v2=4LnvH<tL2<HcjWhG}pNLXG664ZsD2j?LXemSDnr~TQT3{RhL%IHqBp0&ZulJ z<;hK%?Ye&V=NBC6yV#~~3^*h#7QX2JbAR@z;4%~OsIVH}CrT&Zyyl+1ezu}o{oO^$ za@_WxFZ+nq&AZQSe=4y5@D|tk@#!-xR_}P<v9$KSz|0NBUEF`oz9r-wd$^&+yJyxJ z&ffVtOYW9iZ8+?fwMl&UMm^1I5=u+$p1f#OxYO2Kvu#`6n~!e4`{Pc|J$Gw$uV`Hq z|9Y8K`=&MUemnH_dDqn~I~TTF{E>@tobOvy|NlyqsmFwnz4}s`>qMhH^d`HRZHqlC z{re2_ftLY%qG8v9`qvja%HGzpJi?rL<8|bkI}xv|J4CJ7rsQ8~a0+~t;@!Qlr(0~( zB(2DIcD^?~L?cfq-#>6xnd_@MhjI3Qmy>t3jutEpxDe!IGkxEQCsyASX3Til#(g;C zjF;s;-3p73LC3R|UGJJ#o^h%?Yp8r@qv+l#dl{-%M7{}{B!2h7))UV80yYaCoz$3i z<Lt^HzU@;D8$wz61J_LFnyaW@?>#-KcUP$Hj)M{&X?$!SlJg$%`mU@`VZQL}#QVn) zlKUo2e*1dC!@F0n9&<E%nLcgR#}_xBiRqcAte=!w;qYqV(VL0<$FfczZ?6z3l}J^Q z3NKt4c6UOriXfxPnn~N+IS+1jSDt<6v`U@VJ;4hr*yZ~t&3*q{Aj#A|u_HoUTGh4Q zkWFf0Aj^C8hTA)S2mjUF!ESYnZNb-D5xR}%KIDnTaM=A)sGav}>G!G1hkH7Mm-vTS zr^U_ETAEqgz2PXE-G0pnN<VgNc7Ho@O5_XkMY4x_FV^PNyJuzm@#;Gs;Q2iJ?)gbI z8!szOUvgGjyJidT{Ja&B9@iHBJ=Zqns==2{?3wl6(tM1TC(nIbTDILm%gfqqoA%#7 zhlCP^?cJ8CdZ*gucD(;HRd3VEXXz8SoqZ<Rly&r<on`Gyl}&~#x#M#)I_D~SCfOW% zrNDNN&+nweS>=|aYi*n&*6H`%I=187`Sm^t=Ti116ju5l5uXz*b8cah!m_7+JLj8z z{C9%snp5`v^!mwLyFK;zUu|1GW&Zq~yqj|wRD_(Se`ECHTk-dZl%Rv)Vef5A1q9w& zxleVOzIbtr##h#f-aM-!k~dTeT-$Z->VpW+Z*QeeD1CX`<eu=f-Q{bHyZNE;C-3g( zZ7h<Qt>+c=c2?+Pvo@nEi#NAyC^ueHG2Jk7%Qt`HX0c=Gr)M|?)-!jgMmJvheycxE zL~jo(!}jCi#fKQ5>|#`$==D)vrP3vme=<|2(y<jGZFBaTW=~^cUu~v#_pqer^`9p! z8~VcAH8z)s%QT-)Z(tRlwzaY?e8S;P?{7aAd)&8rQcXsxqV<NPhPF_#1&&i)Lt>wW zzAu{*{&?H&KbLMT=GR-W$xysLpl}9TNJCH1_YDc{2I1y?J1jP<&wk~k^6im5=jQi2 z^X<zOQj_no8s}KLb+6m$AGWi6e~0Jin?JQ&b;`fzK0Pd>*Rn}K-ofz9A$9J}4^A%1 zTPU1&*hnbs!;?~pih>V6E^Js(@TfieTK=C|x$c~I{X5h05?qbV6&BtJ`FNnQzy80P zjbO-L!>(x$U8-%pOt&>ZQcF3&m1&j1YRcas9kW4FM%Rdk;r-rs3(_8~z8KTV?p)At z$NiVcx{0L?MTZug<!&xZFcW2YzW8XKx&5}xFu@%rkJl=xyw%j$aC5<abN+AdO_MZB z?B{vpZFwhuSf7cJKW$xsb$5&NH7CX#lkN52LiU|Kz1FrSzPvP>KmKNIO%vCWl{(tL zm#?w?wtLO=?=sUO&p)^(6Y7w(Y;BY|lasGrTEUCMi{p~3r<9tlOUbW&{pQw>Kdskq z?Kn2~dw1@{!=djFJMujE(l@cRVQp!foGxqj@92z${;X#?YZ%0iwE90;uHj;KSRmNs zz=Y>rAL<2y*RHv3yuw7Y^R%So<K^O#U5*yVn<rd9?&lPd71i)EapF6D9#(!sfmy8E z_#JW$o2QvRo2Xjr7Ug<!)%{P`oAz0!3w6A{kvreRPFj`wa0HvJLQqDBxN!fc3Nz0* z&*~#<f9YzRw-Gw_bZd83kF(Ul8RrBTRDS=RJ-tHEP_MCGOMOGd&V^^a+jHXbE_G|} zu6nF`-$vv5PQAECuG;L34wsT_Gt&2kM}+n4tci%}pYr(0i9<eBXAUjgBe1{GZ>Mk1 z#+&6=bw2RM8O)nx%www9V%s-~->pzO&UT-?#m`;SYgQglOm0`@4Q)K(RlHc+X~|a| z-3<o06Z;((eqFrgVdC3s<zHU@+4osl=r8BtxxX$g+VzM>VnN8$yp>_$w>lTLTUdu2 zvCN)zTr6Gi^0Om5)n)RYoVXUlxu#|7tyIwvkqA+J|M>4!hi)xe#?hzzu;M%8(RFzi zS_ywo_aDAnru{^nW4aiRu3~*i*3vI0;@yo@1B^F>JrPo!^Z&Sn!L%=Z7p`4fo|}JL zH>`R}<k{(ASJ#RznSQIiw?U?6*2@j-$+fKB-?!gr)8EZBO`!i~R&vH8<+RypeqNhB z?`VG2d3ii-L88nrk*{fOG5qDCvqIOMyuCZdo%<!{=Rz0f@;$E~26p>DC^DP5w_fH@ z151lWS6s8q-hu+9$eCTcRZ_fFUkF@VvGDDc?*&H{KDyq#Vr}rPg>Qjf{jrTs(-sT% z6(}8>k$=?QY2t%=TW_xaw>$jri=QhLz0bSo&QHmX2h9ujp6K56KxFl#zVMFroTqCX z7Jod|u2R^Y6tR2h>XZl41z|f*G5Z=xUhmMZ-^JwImht1<iq)RoZbwoYOy+%;59d5` zKXO+=i}L&fJ{Kicytro8Z~kS{k{M@r%Q17*tTm2Vu3z+KVF>>xO?I=YA4d~vg6|e` zG$h7aq%T+daBAzmJ?3poK0UC>ofbXsN5H&$?{*k?w#=&8a(w!k@;z@lKJU%6W!-4_ z#wPJl%hb8`OAP!nPhZ}}&p)~5W0}vRBTG--(hl4CO7+A-!+jdpnrAso`OInj|Hl!o zz^7*y7}$h=n6xw|RV5~nFKuU_%BhEf&q~t19_kNjR@0qzxH+g^*8hWZf>|HG5XXgQ z&sVYSKmGO6nuFr?CtBCe**PaRO(AbfguYt!F`a--EQxHrn|12#Rjr;LyD@8OwDggK zPyQy&Joxe4%Yq`Oq{G2^nMY!|R&>vQn6Of|okQ2>d`r>iTF(mii6^fvGOun{opZmr zeR=u~Ua5+YB`0^?^GoabwwdX@{FUN=HFecdZ*w-UFz-q^YZlzFm3>{X(uzkd#zp;K zZu-X@m*Mv)S|+8w-}=YH#Cn;>Q#)6sudc{`z^eB1!tu2QoPu$h>^ElL``u{6Y?JK$ zKp}Fvxnq^CMS`|w$YQoyCYIly9fQ_;oSdfdy!-MCUCk5oPoJDTwb4{6KCq=c=G)}C zP70@D1zo1RpD=w@*B!@3_ou(}rp?)M{BUjM)>Y+m4nJi6v177(R4e<cr#7W0>vdlh znkI5@*tMx+k<Is%7kAc7eZF;>+=OW@`ww}aG4@(qvB2uapT8Pae>WYjnwTALU;in? zujujl#}2_$qL<a!ZY<H)W8b#<FJH(cw!*zXe%3ztJE`PK@{O#CPZYSMKE7LXXYxmj zhkXGLFBEsi2sbW%G4bqGwZnGW?*1i(TkLD~>t#-+yYj{K{`zC{J;h4th?;Hs^Jm?2 z)_U<>S{x<!=yQxJclo>tr3qnmiy7yb-<#6cG>6gl>FyP>ueA6rPOkMTYn-KUoiBi+ z@8_SdI#v58u21pWY4-G%h^M^E1P<{6kB!HV^@Uj%2(p-53YNC~X<%<EotgV{<<*)c zum4Os&pyB2G$&)LOGjv3htlhbYra<VHc!~rc<B|dfD)s5ldSWaUi*M|Pj_+OOFW`K zbNUC(r;6%5%)iTPvftIMPddE%sNBazmybvGo_N|>`%F3GugEHWIg@9pI~{(d82KFe zsS{rFrR#9Nf3iuXb99>2`g)#??qWYr^@UF;o^ohWRC`zArFv&iz9?_m`7>u-)lYD5 z&e`bf7W-iDkK~QUH(Cw}2zRTcNB2+6kvU&Et#6s<kL4vMd-A@1vh6FfxxRVB95GwR zd9&WKJ#JyYKktmerlPi<v}0y64m;f^vDYfa%ADa*emZelL&(O%Ub+>Pkw=(4r!%CV z*sN!;{$OSBrm$<_Q@7u(zvlaP(wVm6w|rBsESNK!ePXysTa2n@YV7TRd)xPW^-XHZ zjqls;7`1V6%&Xn23pQ<<RpfCh>&wBL*XRA<OWJWww!BSs=c%`BOHMQwyWY!VnY7zo z#W45SBBxFFDp;)MT{z;lki&11<nD=kzTX$ID&5#vy{VYB)b~N<<}wY1m*JD@r!1Yo zb3<gUp8Q0A<>{YRif^B==lznY3x(Dw9M@fQ#-z3>ZvD)sBF2@MxA^W97Tv14b4j@J zY^R(nhsrfwO=n3+uQCh|;1NABw<j=flBvqpm$TLMXZfAHAbhKOS5xX<TmSNs9rIV) zcE@@9-+%RZMfM`&?~8o??aWJJp6#79d1`!pH}_fZd(jI{-aS>;9i3WNxPSXT7NJX- zpOn{n=(~K`obbWd*nhKw<9o&jpH;3W%unEpjdMH1$DXdsq!MksGCH6jU%R<Eepk|V z1&7xjZc{XZ%D6j%{3hA7x<r2DiaLDGF!|*dF0&W4O<zmn><;Sq+KDfoP}_7#^orTW zgY!N`)aNexc74;_CY4+#|H)RYp`W&NC@WUJuHR^4Z_Ub9{kfj^ROi}@#v#XV{AuK! zVZ1@{GmF`lGsXVZGe2HqD`v9L*PExuutDncENQF1*6E(Rq|B0@{XfL__<rMQrR`E@ zO0G|nxsm=f+UCO1ox-U(FQj&9e_Al}-}5tvVtz08um5qpzT)@u|GzcAopD$H7;<1& zL6hOVQ_bSHN-zEU?*D)4zwhh+@O^%;m1X<&%OVHX?)m?1zun*d|0Tc0e--az{T2Ug zbtroi$IG^qjr#L9^j0)axbKma|NpIgzWRs!|31E48JFbie|~A-e<a$ke6RfH>Gi)v zX1==bd8hEvANkHN`tf#u>ucBi|M~6o|DPg17b(Z=5X;;D=lt#a>_LHl*kgiBx$b?v zYX7G*anAt;tKBszKltlC)Ax4#5C}h!JH5zt#lN4^{TriQ?oOx=_`G}H7WMv_4to|( z<%)ZukbCjxsvQ!__9w1ySlz(wT=+lw+VTq%{Ci)A=htkHQr#Q+q;<=cj85r4^?O`T z$SicobIJ78uR5$<KiToGdi<9*CJFVJI{6QmL{2q{9AZl?U|qr^AmFyO*)f-A|G!1P zEIn<L?OxWbPifI%WSRbhSN6)Gt&?gU)1<#2``7o~_=gvVKd1U;3*WbEM7e8RDsF8T z@c;iIRbid>j@CV=l+Uiaojd8!WAD0N=a%}3x2CjbnCnZwQ_A1*>D2@4gNX&R7Dz8P zyC>nBX5ltl{(WIRJF}I2^A^piM;k&{+vu#|c@S03Z7k7{>vMhTnZL)C71mwf6E45F zDA!Qqqx(e3EtWH9*oc0O@$Y8*v+tDL!j?4tSs&|kE=xU8Y2MSSaCgs~8{7Ss)!6#| zTjT2&RKNDC->O>oyF3QVcI@1=^ZE0skGITkt`0eObJgSR>7UcXrmvau;L(~M>Ge|z zR$tVZx%S<etj=rK)VfxFcx%?|;%Cb1ssBG!p;c2kKlSfIo}VrGd3}r3etSpOuWa2l z>+S4YKlNq%{N3h!dVR#{+5QKgtd6XG%dOaYRd)Ki?|)*i#@E*sMg9#5+VUmDX3O6r z`YeT2E^4Q&XNf-1|IjM^?ZE!I+F#|Lba$=!YPV|Qq^T^oPqf~j`Pa(--wv_<j^=|Z zcb4qiSW@S@N9kF*{2qP5kUb@p&Ccz;e3vGzo;G9szoMH*cd+eyBy_~Ej<0?78ICy% z)joE;PpI9MbA9TXn&zB%zWT?i;p=Xf-aHzg_+*Dl*;4g&l0T<AA6UR<uaR(qON8<F zERp@DTGxNQo^&$2_RofC27KzZk1DSlUXL$Qzr1Vdcb+H5-JeQ-Ie2_(VBA?Pj;b#| zZO{H{wE9%FD(3UYO~0xvL)V9T@14+9>^7nO^GC^v-RC;uXCA)J^(E+i%%@M^E9<}C zo?V`rc}K4BaCxn}|Ec(Ovr6y&+|{zx`_bE%UQCIHZ&yxQDQ32Rw{b<|!C!gp@|`+K z68F#UoH%ER&$jK`w>LhV|FuBLl6h9Xmw~jLM2CC&J7#C&R}USTT$^VXD@Z;*!L?hg zsO(4$-}mQl=U5os?zhysqt~B(tEe}If1B{r`ro_m>Lz#XOg(1vS=x5?*_)dg4cA{_ z>-#x-{v5Y+bIy4@_>>}4HFtNhWaGl?e?LfAhR?5=S66K7ut0x#U5V)@`@P#coLS%G z-?e$p6zs>|&%FKN2NA|Yx4X^lGZK5#EM#2&H4C@@T`4TH`mpDXyq?KN?q;ZOzGkU@ zXEt}9kWO0t&zDI#Uxl-I4_Gp$F8KE6&xGQR?A8>`legX8CzdRi(c5}#{fe9RYxi$q zy84GNw`}i(*jaP#FWOlDWYv$udpDTR`WhZNsh<1Y`gI1%HtP+P_pCEe{<LRp-KhtL z)2@rM<+s_aH)#2I<m+b9^_TaoGpOKvP}zF$Y{_|T9wEv2aEUwhzy9wz#89l=W3wjl z)Tw_tUT06t`1V<J*1Rpta!a#p4Yt1imG!IA_~^=yXKl70vM}4dG?Bj}+UeT?!}`OY zxthguE@baN^yMU1-Y-$M_a{tZR@bgEsNHZ$Ca?A7<I>ib&i^WP4F9OGDajt&dGF^o ziQ^CZHsqZC9FxFN8=3G+>dd|R^Q>(32ALcDee-Hm)e=`5s<rPvs<vTYy4tN{%(Izh zhvsdvShg#3>&<#Ud&y<C*7n=>O<=n8b*cW<hVO~)Uhe~Zu6v)qDzEqTDgPIp_1EW~ zzWP*p&h!50kMilKo^pNT?LJ{%QWwo>e@K%1|AMVw9+n^9r@8I#x(Tse?~8WT9eq-N zLwo+4q@+&@jMCpbTFP_doz!pCZ>X<S+Sb@PJ2Y>psNeEEk3Z(_4F9ms)86vaY0H|e zDn_RgtC_MBm6FSqe2u*}PFj`HqBLFQ<@S{iq?isVR4g`XYv+=fU7=Ja6!vreoVz8{ zmq#@`6s|jMExNDMq&Q4v-UUUTtq;9EoS3;NuzubC$7xf~Xh?O(SmoJq+9q!o`6_?q z!jk*NMW%eQM=W=AHb^+kN-VsxXwHjMQCXp93f9l9+<fcAgPt?(SEqL<>n==mESZ}& z#Y$p#I{yKmZ=v67QVJe?Vm@EEU}@s&OT4_zbCx_jHsQSEM}^nvMnC%f*I6*0=`1X6 zVSMDVHlN9$KIZ4fPS0Y-#}2cmP3>cJS$E)I^Q8&<g>OtYDq}o)d&B2vKe#5G*q+QI zaU|~7uef8}23xC+&6W;jyV>%n@VLKSiOARa9xtO8C8hc<=~=-!fBpR<S7z;6db2ds z`|rh{w)Qgfzu6S=#D0F8@ORz}Gmq+jyAH+}$6m|a_v6|>X4yie`Zdaz-djB?m;JcA z?+5=%<uV~rIhkiu+7+}M>K|Qw)&B2Ea;aizjO{`3e~<o#&1qK=@LbMpDK5;psx!XV z|4vk`_Ub!N)54oR8W}E6IM=pVR6%r-%FXP#Gk7W=h<*P0yYaq9T~{oFjZ@ch{kG*E z4~~4E@pO&s_1O>3?R^n_>cN5fzlYZOb7dX>diw12<Lci7IZtFbpIV|EZ*ki;z&<wE z>%hw2NBDMUmpN{-{k#2c%ykB@YfHb*pL3#gMdIHn+xw?fe(O!%99ZuBDEd*``KY&S zw|<qMU~74{dYR^0y+8jqK3G$4|Maq8WK5N@W${Ok6|*f)Gkvz2zM*W_zZJJ-Cx7v+ z-x9FcZBAUl*ERS0|G#Xi+jZbKYn`L}-G=Z#P5bgzOfLTLdQX?+`iEPZ!(Z*Yu>E_{ z<p2GN5&xGZ{@^-mR2ci;)1=k+OH$5$r!D7xhZ^tyq?%;Ic>Vm%?O)Ho|Fg~C_uQX~ zy?#8_`8)RU1nm%5w*J8b#dl?g9>;x>FZkrL@05R1z1Q`|_u1AKSGK?Qt(Q%#{r^Np z{D<rB^*?6n->Qtv-=R@|abCcF|7Sm)E?-)3>bu0z|DXI`dPkgoY`O3K)H^+!lXirj z+;_Hq-;3X@{yM%7wM!MXZf~%takkEFJNqYkUZQb*ZrfRYuSc#wPfLC~C|PW|dA-TO zt2{eqRfeB_;ePvb{q=bh&5Xaz*jMc)_N~iT?4I^h(eoD`a@zm?w*0J{k)`E_f4pb! zOx}3pi}bvnTf6S7FaG*H>F3_8{dppL_U{ir{fU2ekJ&Q$**$(@b~ci4Z?E?`w*In; z^5zRsbN4T`HGBQZ>uARNHPdf=|FU#;;R)M^+xdRj+vu@xa$CM{acb%8bM@hE_ok}E zpFL6^zy8%<<JVrY&)-k3d7fzbEN@Z$(!UF)9q#%%O|UN_UvXkx-&ZDO`!&4c)lE<A zk5@6;9j|J%JznK4ufH)a;rzz91clhz9lQ}b8)Y`eEjYh1?wG*qsr4Ca!s}!<#x>Tw zDG2^t=(hHU=C$nHl7px3ipxLW;`e(({fdppS^aza^)9@!c;~dq%tWsuJ9)*!yMj8` zx)0hX?PX~YHvSc%f8cq9{s!};y$yo1*4SOU{iCaD-@#)Q7Yb@CxYx>Wj9Z|;F|L7Q zL7F`qPv5Q6lCN2P*2-NyUM2bD=kdpV^QB%-t^XCVeyZt2qeW^p`|5;)vtLb1yS`NS ztNZi%?|%wvZhbysSaNoI^VjO6TMBP~zGf>v`z8N2|F2m0KkJn1t_%L3SaRfaoxr}L z-;OC8=l^yTHJ7q`&wf=R{(Ey4PySo>(4Ct);zRC6OR?Ol6R7*~cfl!fk6pgP40*{% zHFo(*#P7bnVdJ!2Yh_<ge*1sH<2w6{PqGs47E2nvpZ=r%?E*=y{53z?&K#J%<LMoq zS&jGkJL~j0B+{=(UQdr$U;J+V@vsa3ju=)<E=ztW^{_41{Ce;Ech?jJ>yO4N?9kr- zo@sBs_=$?I%;k+eFZyq>R;`}-{x0jLeEWUeUp`jNm00#eny)+ab=`f|UsZem=k0bd zbCbW%TJ-q$!&rsiX8-Gd9zQv+<-tA0a`DFnN8f+qmk&NS{nQ_)d;j-7`M&8-XuvD$ zr+o{4FWhOjp}*nI#4CO`e@?7g?XpMh3*W<&;msAQJmH2vRy*zqD%x-O^!s(Od0okt z=ewTIJrw+K<+1tdHWl~3$xbR>C}yX_8LnLC`hW3m?f>&V`F7s_{;xM{`Qu0RYv->h zv%2@N>iVqGrE%-nUN3(7-;KR|%fjgaH8ln7NvUrSP5Jq6qwJ0!|4*Lz^<mYggR*yu zO!vs&Roo}k-apGAeAxwmA@)x{3Lj0_yNUm_GtZx8(eLcNm6A^EkoxQywch1X*6L5E zy#6kjwO?eaeCmlm8rnb9bH5$;xcomxbf5XndRG1;cMtCoT2TJ`>m<ov(O+Nd=70TO zGCkh(&A+mu^Ep2D)7}Ny&pW*5a_pPi@>0w<ZqARNe!0T%-~F@KJKwIesFA<F+R5mg zN6YfcZ_LjN)$GmB7xes8t=DV1eP5Pc;pWBEZ;$^d{=6vq<@tx@4_VihuiRO&@Z2N+ zS?gq&eu~X2tj|%NU;M89n4eHwO!f0QyOVAmmHKekC%fYKhFa<S1=_Bav$X9e<=<$i zp1&gYp}qEvrth))doxWRXWlTYo3`QVrpFHV*F0E%<LBKR=?bRrb2#p22XAY*)BVpk zdu`;D(tp!*y)y5<7hC%Ed%j)ctz%!B#g?8tbX@n;-?#poH1=yPuYbz5UuwQ~{6F=X z0y9IL?5aP-?e2C9d#sh;bAf-u?lWqCw5Gp4T6ZVa=ve=(wfD2TXUKj_{AVrwdijU_ z7k(^jP-d?G9Ta!se^+9i@cfA@mI}_9f9Sc?L=($<N1vbOxaFSwN&b$+ugJ$i&kw9V zn||Luhwbl_#7x2Wx*Jdb`<l4ZsNQYel{4((Z%;@3_2&xT(mCb6*}l|WUp9QdR(ER0 zmmS~l?^`!*-6az{sU7<yj=#Ux?y{@YKK0FB^<7q#V*1BE9lzVKPtX3(i%z}YpQN+q zzTVrie`9du`x^#I@@{i4-aYx=uh`|0iT;<_Ps-ITFC{p9`gQwlO}W<df8UB+U*5m@ zeQJI0&g`y_*1Pi}XB|7I{qg66WzR!@YUh7F-1Xx6cjkM~C2c!{emu6`pZl6)<?Ma? z)vfohRr!4`+t}{^%in2Ea@P0Xwx4A^x8Hi%NB7OF>m=$-9pq&?PBZS!I&a-NlX<Pb z*8#Od`~~x#l}Yvdd+&Mv{^C1zd!|M|@jSPE*^BUfN0RI3ef6xe%VFJm<6qj^1^F>& z&RT6cSO2|g-x_7*nZJJ@I~3{o?PI^iW4Ziq@|KU^30lWZ`Mmbw$s;VUJ{=Ic=aj;; zUPE(QRIpASkAA0pGV61BYq?2x1bXG2lk-*tnlpT4KETBKuDgEPRPM8lP8S1}S~Oh4 zWfd!CUNYrk-?Sp|V*S>?Ejzk-Znk#`C_nPne(W9o$h-crcK9Rh&yTeGW0^}-7FECG zIv;s2d+|elf3AHWl6XAdecYl{82$Z3Y1=;=M&olAzedehSGd>ouEOP4Ceyx0MvS*@ zA9GH4rX?`<*2yrxjXzc&J<h5cIB#mymFlzK*hT-l#Km#k{j2ys`cUKb`cLytef9e7 z;&yD!!o4vo_NTp2ot^m4zq827?!CIr2e%3i{qU#XtK~J1e-z?;@qLze{m%PyPi^lr zKQRAI;G?K>Yt!@Jzd6`h@kOcC?%%4z#XlXZ<(&&_EQ?MY{4w*ox9(0gn_a(3zpc6U z^-k0|{rA)NT|BSt`2VeM!~3TNa<0DK^~WEo`Y*5u{>j%CYxvA7$#mI|RaO7WEMw9_ z`R~1C5e&U!EW^%w(E3;L(#iF|c~<16s_r-JJT3FHclw05=)$87n<N}6j!b;BKI?k^ z1@`^x-1V=%x0bw;b={@<_<~fQ>60EEY(MS#xH<Uwtitd`-wOBDK0Xw3|F}6z`BRai z+tWYSXTHh0uqn`+FW<ySSoOyF-P^uui0i8VVfh(edd^+_f~xaxxpN)my(ex~R6cpi zdpgZ>1EZePkG_?k^O~3cpLOuF5zEH?@00I{E7h(1{jLA~Z?pbCzj7}YYPPOfmb1!W z-)3`GahpA}U)0E7y!A`_VwLNbz5N<DKdpE9EqamPf4N-!>-rflw**hE@@DN1t_#ht zyW+A^exCQS|C>})pLyP`biQ4_Y2s_?)zvem@;vGH&zwE=TG!Wgp?i+cO8c69RDS)c z-<Mr~@9NX?y!_(t+H~&w)}Q~|?o3&As4#PFS<2lBp0WGlZi{_%yjQc{Z)*I+U9T=w z-_E^tVr%u;8%}vfa<_gPzmiy{{qAqo>jVX#J?1}jc;zpY=UtdS*+=AYbeh*(!<6;r z(@u4z`n>V6vFwv_{#}18sbYE~pQ4z61^66B@Tn|@7DlF)(|aZ>A)k>Kp@_Ke0dg{x z1?U);AYSmP`0hpu<`&Z%Sxpt{&A}%oL&e<;70eM=KyiX@jkZ8J6VF(|0__$R3*^Jo z+)NcLP)_tUQ?NiBJ<kccMa9Axeh8GE9pn}j7bXjn>49vf!qc}-QWBgfufS+Ay>PZA z<RX>n?o%PhS_MsiF;xk2OfUFInOr5%`J{zEl$54J?znZ-m=2OaoMmNUIvsSD)$|1t z^6#hnPFE5H9g+k(=_yZNY&-a%z3C@sDnU+eoUZjqiF>-#IZFlbVS6Bhz!&pcn1W8P zR+{emNJ(J&0s&*L>EH`3Elejf{_+4F-559h?Gq(|=?|`Jg3sF9K7IESCCGX47SkDJ z48^v8d8?$$2)gr)Ur1ea`u3+v(%|EHrhk2^1U<Ny>$#Ez<ltVT7fR6c8ZBQcxo@}p zq$I{Teb*}`?&(pVm3XILdZh$DxL0*L|7)0Ll{ZSzgL_ZEfoWd%R>^((n?uUn+l#&_ zB{G7J!JN=;C_3HZy^=cU_)^*F<?ofcK`d_YRe;m`KPXvF-`8a>J^k?qB?Bx6nST1H z<i7pqFC`(y>HeRUc&2L?YI09c`>Z4lKB8^uXQg`3F~C!&@B0Edu?KvVwdnMC9}S7= z`#z`(P8a-&a#)+fHzoJ!7a~>prYrte`owDvN)zD3Y-DUc{lRx7=;^R}KVXOXc>h$g zfSg`^fKj<=`huUZ!+bXVQgW{kJe}8Kz_aJMcF`TVFoB30whBw8UG<Xr6_9DqAhfwR z#7X2(<No{&np34TBaG)2_Q-~Q-D-C0^NX{+n;6em=T2$PoHLi@-oaRDHKBD|zDOTh zFB5foQ9|CdlZOLl*QK}~to$OkX>vKYz0InP&Fo@(tyukLTie%!`5ri%^VXavq28uH zGO~!ZcEy)Fx2Bgd$Sr&uv3kPwI!m_m^B*N|JRp3eY1hQXO((Yr#bm!b&}A`alKA!l zFE+Qor<Xr@RrT}guFzU5)>4`0i(IA%dvV5cq()?ZezITm8@p?dk)nZ0_?NCJC%BxY zlxGJ0{L-U%JFe2HL@BjS@sr!6mJ?hjb(ANm-Lg`Tj=pl@*ZS9f-yBcf+-cw(Bg2<3 zJKJo-`)hq=rE9;le^Q&a9(;7vbnZV&+|yU}D)4{~Y2RV3$7nGbbpI^}tFmnUoZba$ z4wJsKo7qniTDgDMwUYCRHw(jLZUo2ww+a+-4HEe}>(i6}yIFsozrSbK{H-mwm!H@F z|FdcT6oEs!OQrJue_gNt|4)71f5(ct-jzj`zr{s6%>O)}|F2?l{h#am_x^d-|L|M> z|Fd6@m>gQGzV4a7{(q1EKhKM=GC67xU%dWH{qi4D>3T1xJ<IORol>@KMz;6P;^>#9 zm&A>~L}#vt9&dF0Ua_NpoU?>E&&zLKqCx$B2dci^o*!5DnZ4wlslQaliS6_Mxjaso zbmIS?FF&8=bMn`h|9*KtKB?lY<{7WG7vldtb*tBG{(mWs{j2)6ZT|zdderc;oR?Ya z@pOOvm+QCOW-0Gqtfv_m=dN@Ldc4v8X_JhC-MN>f`}(Zye3rXy#{QV#`k)1WzAau{ zam{7YtYfcr_D+@C9~1oZ@Z@uL%YSaZXSe*yX0v&MOa3)~GdpLL-W4xbUTO61*1V4g zFWcM59^EYTv^>9j)s%E!o75I{Q`@(}y?@&8|6d}Mr0{i8T(JLki)@8g6I~QnPKck* z_drLs-t^kSM+&7;e>dKZE1s>y&v%5y>CD5e&n%wr5EOUZF)_yb@l-Yk<=7j4n^dRC z{bZak{AjbokBK>p>eV}D1ua|jdFv6WLtkE~zhl;|?9lmd`d#PZipHkv&K>Mte^*5P zkva7D>HobR$wy{<QS=oRo!WTR@9tdg?v;}rc#rJ6^QFgex+#a8K>hCHneT#9ZkU>N z{Bd-A6{=Ot!+uKO(E`De|GCSyrBBE=z9!*oalk3qf9oYXBWr(VEd_~~>l|iWZnq+h zcD3rNX)@a0FxawAG-rqD73(D%g_d4hSIlQHT`yiQpzT7{VF8|f?@vm;T%mM9VcC`2 zMammEJxpW;WoKW#>RqF2pqpRcq&<0J*nu|+XP-DenY@kr&ymUZ+}&9JMQ_LzH@bB0 zb)CD;$xZ2Z9?$%JzcM25*?zl6Q_bc+E^g4}d8Q+kd^TH-X9?r3&IpUM`~5EbJ#gOj z5R1>Li!ocH)1{9@WL(czKH~9<H^TVEq8kMZ9giO2dAsqTjPKP;O!~~;{7%bNGP~;| zR8CKqUb5{`#h-8IJ{-Qz;5;S&V#K74)dG7bd5Lajyu&{u<H{ke^}2#HPO)tbXKOO} z`0@7dZt3-_4+&nBs_x#jV!O~+&SxhRH9bpfr*(B6T-?5N??mP>*2h~GUO&h3F7-)- zM6c?SK#{jrN0p=(^QAt_)PMh*RiE>YvawZEz`^?2!B^|wy_4)%#l7~o>R$16DN3C( z8$MKeWg5QDP+A`rwOvAG{q4KFOgp=tIj*^~PpqlkxIbl{^1`K^jV|_mjl2noMqRvX zC1=i<*n3ZMZR<79k4Il;AAa&Xj3?^vL@jYEA3g)Gq$Q3oSbnAZ1vzHvrcZO((&nAM z;oHp!Awgw<`k9-;ynn~&`|K0bKI!mp+m|S14_UWv<!!Sc8#TDh)VMr#<7A77^zME0 zB=0zFmQZwiw8(L><U_f=%f!4_TRn-I^yZ*smcW#$rYUK&PkmY=v!uYL@<P)GiR#8# zk2@H*TsPY4xRh;&Z1=ivlVuK6D^+V$SAFPuInm|n+uqdaE;S|ft0uO^MTVYyVYb?u z@3_@FN4uBnb<INUwYV=TC9QN_cRN7Pcgf`}*?-wNs_bi%kJyDhd4FV^w-vLTYxVW) z>7rg4SK<UtxrmDRNKSTN+GjXv%chUkk2i<s7G0mTpzLewryZABWp}k0G9QrUR9Yr? z{?3K<%>HZ(ZBN}}GbvA<AW;83Zr`utN-b&e-wd3Lb>n9qU1aT~@+@}tEWfxHlUK*c zPkg#@XF=GTV~-vB-%0zeVm@po>ik0Jz~WurIa5R?&inpEL&QUV#^yr(-5+>;i+dJD zEO@<hfh_aV-!s4cIK6#|S<}o5%jbxjesl0N=Tc>nw*SR%cyS?nfj=it?7?+e$wDo< z!b{h4i!fbS<;c&ok2}_5@^ptMI!g7K={}A|tE-}>hUxi9P50wmdyeJe&DB|DFKnec z<Am7)J;j#PWSxy*^Wj*Z;2i7oDf6MMTIGiTUEaPMr#Bn19%)?gu(V~@^Q?thHcb3V z7Zj{`7g@x1r+6tyhO9h(^>r#sn~b4Zht1S;h9Xfl6SEh%9<)~NKliZRg4OQ`uM(F_ z^4Xm}>sqh8zcX9B%0as@dSBO}36;4^>H-}bCW~$;Sme2si&M2x#5F{H);XI+3rzlK z{Z$B_QKqtX_g0~5@q=-0^FNtRfAdYtR6jQ7^6l_<2d+*m&O7lWN2&Uq_?#U7tpZv; z`6fqKSxZ)JHn4h?AZ8e1vFgmiKMC>E1HNl%$$A<_wH^_O=?{J9;J=^On)!F#gL5Yq zF5_~UKJ)GM=?_;c2s7<9p8jpMf`vMh*ZzuUwlY6%mragh&Wc@p^xF@I^$TUWlRIW| z`g3=Dn3-r+xa|1*>D)iG=GMn?2OG(1c+4z6&(nV5-07P13ZFK2g^O&#>=~-ElfG}h z_{t~BSTcC(_HNIh<)^1PS1i&$A~o;J`k1G$mnbFmd3Xh<_FR#@YFfGes^_9q=Ht${ zEnfN?y<u9KS~W*<+M1f1ciqKjzji6DIdxZ>@51Y&4$oxQAH4H;@3f9{QFTgR4c0wb zIBBiO#l0P`Gg+ct`J$h!d|~!OZ&T)n7|W;42Mmmwuei+7V&Sp9dGGPU^*{O6PhSwN z)*;Hf()p?O9;V2jHfMEvwa)xrF=xw%-P3Jj)T|kIPp^zo>(kp)E#t1}X|d&iSx(a5 zOJ_JdR9<b7J@U*Uz+_)o#MR@=mpCQ*Ctr^a*?lstevjGo*T1xsr$??=;GO<ZKu#&q zc=5_KQ@iWSCKMjAn|gGctCxoN!kUd9vUMd=7B3H_?pz_Q?bsqFk@o7@yA&@ox8j)6 zg5_Ulw3|Ip6#AA>_8@Ru{5JQSA!ibnui$3;mf_jNwj*@At=2l{L*AzgkL323{hU7U zx0V*?HFl?iL0Va{snak1){?2OmC-+zk@x%0>H52IiYL--vcIh`cH_10e4Ze!bjLpQ z+=mtc-fu_eoSSieu8HW@6=HvP?eICR=f<{r&iS9GWM918{_wIy=??qC*DC+pt;45% zz4mOIU+QeN)r=|DeYa$MYz!u^+TV6E@1Dmp;mDxcvq`2GA3f)n_;KXkQW1_-Tz465 zr|;OHAj^C_|NV4<S>~4Y*Jn+<#3lc{fp6Pl%Pjk^=ay`8wvh`t9{IJ9@5GdM3Hu() zOh{iM{P2&bQd;lzR{LU;3-Zin7Cg#fb7ZTWp3Zt*@Yh0V?c<Nx4W@1ebFGzZ9c-0M zbq-He&l2L<yL^W1FS#35UzWzs>QUEWx-WZac9oTXjd%T@59bQ}MeFR_nCtU-S*~3u zh&VjQD007wfK2GDf>R2QGWJevSz{n@HtNW=@CTclPCLv<-LUs~Les>QF9AJLwh>1U zn$@z1@h!c%IVaibhf90CLFdJjQ_Z_}rOCY5dE{Wn6pvHfR<rYy>RkBBd~@SI&AnAq z&U0$V7m0B1{&;4Y-UE-Miys{PD{bcIWxe5O=Cw(Ww`{-0r^TBco-k8eZsPf#%{qnx zhu<!$UEQ|W<iv!xH{~bSKQfgpn51%yYmKpn%G9^+!ap~$ZLl`!R*kycVLVr5_mbM_ zmxSf~>+=__irgX@wszNpkO1GVON9&!6Uwga*z<3Rj=HPsO^Y0^!~CuX4_E8EKR+~~ zL-XFp?-#bsTVOK7?>y7S6<4+d&AzrTkKM}l;92gMoQfN=3idxxc6OgsnYn3Z#o3ig zHXB|~+;Dkw$5Ep**G^yGvf}#B%dbHv(0p}H-Ty%Sr%aBsnab>ydDm-Q9~|ZIb8nr{ z@W0aPmapaO`&L<3JvP>bym9c~%^RQb{9~gk?>yBKo1kW~^7fC{^`^&dRtS{X&E@5| zQ9tP9zI}c*i_S8M7+IOx-81`BH@)(|mOta}=_mhd$uP!EH%wCNVygQ-eQ%PQ3DaHC z>7SF-{1}y|J0+`~s$cKTG11YzUbVrbN!M0|;jY8nodtDTHVge2!<|nG9X)!Moqf@F z$%L8fZcSX`A0d|Ld5M$hi}d=yx7U|-HO{wah>bj6>pj_IN=WdQiDeBPJ2<ue^Tch| zFgM~^W}Cqh$-jG}h(Ps@In~|GW*SD(><{;uR_%=9ez#Zm-SYr#K^Ofu4B~F*ub$$M z7HnLr78i1;T{`6PoE<LBwuXu``4@XRHz?+}wcVHW-+Jcp=ZII@)AN|L9qT_I-x<B8 z++DXRX}7uVYOnVlt|xE3{cQE2X~L?=Gj@-Ir#4A5dg>akvO2^Yw_u+OPxj4pA%31Y zCR(LmC)XZZWw4O-VovrQlbybSw~|*apLB)skI>Yo0k?&?^*`kO)@?f`9+I<PRcpdB zgE{-oY?&Lt6K2?=D(uRadZ)Q=|6PN=>3YoCLiO24jx@hba-J`0D7JO|kxCKI@7b5V zCOtTuHTA*EmElwQwtQ%_+Ip^a{%!FO>(+JE_5=x3M1;+_Yvq>6er?s^ZR;alqWqt) z{rksg^1OO^yE~Hd`{%y#<xaf&+hHyHwCmSWHS%VstSxZlZM0ia^@t<R;N}Xqb~Ya8 ztoLcm+7%9y)#LAr^nE;NzFVo?vpOWt`QFpo1+PBJ&CD-id4EK0jfeZ5{nahU_1{ll zEh%T0827lt%7x`}Q-{PM#|%chM*gVjCj~OX9{pfczNS@lLurfSybJ8BTIPjXynUeg zVM)z%j=NS#tB(dd315p?`Tx%)qs}{uehs|$882@;c4+k{O|6*{+mFrZ{|q_jL#<bT zdJBuTcKxTL>#irNZQ*(9y(jYUD=C-2h;?esf-G@gUGfjI9McjLNxG`_+lb$w(;;b* zw3g!s*Hx`+V@*2bpQ}omw#;k0lc7*mY{U3VbXnF94qKt~bER7kmh%fY25kylvvU6d zTb_Q?J}c2o-seiuzu7tJyFKjKZ|^BydgR(%=8z6|A^BXD1xxR69plbhG<Q~r@4L`j zbFN?AdO_I9>g%F-tytzXo^1*f{dRMgNY`K7@HoPuKj*DqQagLn3C?Fu((l|{Hm=;^ z*20{d<2v_51n)QYee8SuQg^Og_w9O7U*vi|e<`*DnSy=!y$tKZ_-_TipFKT6S}xXD zDEq*K7e}TkH#)tEd(3Y)U&H%D*=v<T#l&A$bC&9JYMZWoymOD5j$K_P`>zkWi79@c zr%%^n)7IAcy=h(DZYkc|xxtyv$F*wh1HXk8{ya6$IpNL2l$@_M$sy`*7f1fuchUO7 z487@>cPZ%bn(a^2P5&Wo@hQRU<N4`4yA|veE_?UwSbXGNy-TN|*R^9BbLtspcO|{~ z`{aGWujOUYzU!x_Wva<BGEZ;KRP(N{OujQePUy+KJx?2chLk<@eyvcPFz?at>pJT! z{etsnPkyGa<6V2Q(lgI&aYmAr)10NP2jzmlxd}#Xd&0LTrh#>tke>gW_f@NRd3dO^ z&AMSf_2T?hcUNxjc`;QpsXpYOP`k#)x7SmZA9$}m%^z?y`_Mxh&iW&qJa(Or>Z=#9 zOV=B1=1pxrFjZ)(+v5)|5*pH~OYN2&b$J6i*5b|2X;!>XU+yg|eKRLjZo;bz8_v8r zwj$%158sF6o6|j4%qS~m`w_;w^<QME8DDlq@_d6wJJ;P*e&Ds;LaNLDzHmhYW0PD{ z>$!<Pw{MJK{It|*DdVKHXRjqK)R(8;`f0qWMq1u#dIN{Htjzv4qvLs1f49Bpy~3<w z8uj&*@H`=x7aQB8tsPHIualEg46tvVylidpb<OghvJyX^ZQ?udKq0-eX7i~84X;JF zqM~Q;Uc6Dhp68L{!>Vp}#}_+Zy*8>+^PHf=l<Q-f*ATYN#^h15puLAslVIw9+YM1M zFQ>nklk;-?=Y46afof8c&&<2Mot+C`bu=%0P%gIXyKq`&*W!(LuSCsfio5n{!tDCM zLls}{q;7ih_sqd+-D9%<wRf<5y~@O$Hr;u-xp{rj!^A41yS8@UcV3-yfvx4Px^zg- zQ;R9RqKjkap0`#>N~pIyGTor2SK3<b<iTq<cOO_{t!tljZ0TQ4f0q-^kJnXeY=~`- zczwEi#jhK0a&m7on!LZ%GU;Me`IE9Y7Md;RCy7m~+FRT@z2QIzcf9wrPL3V&2d^%> z;Ju<+PAS}BOMSlOy383TA{aNk%|7UzrX@4^o@Kx?lNsw}KJeL3l*xZ1&EDjgmhE%; z(2AfNtx{Vz2KcOA7W;sk-6!Atdd<UxEQZeZV(sEs)-r?gEUoTu$6oh+?$Qm2ynkS8 zkd9BytBw4Na;on)sz<p_(Qf#fai($R&ea)vx#VLGTjcd>-VV{3v?f-|(c{jn(x8Q^ zSFXRgc2sH2QZ?V-Q&ndbhK1I;=9e2ZDilV9^S4}ld};dP73LO<x2NA(VQyN#A<&bR zsXBbA`*d%?yG}fpihOSsOj|wa_}+5~GZJjoyXT}cUHkm6>G&D{%oh)ftR6g-Sv2#k zV%(#RYJAT>IX{pt<dN=tcX(5eP5e^!v-eXzIBK=O3!Hdy*|hGSJp~J1EDLU&W^TK( zz+ld^vQL-ZN8Em?^=*doRk!}vEPUH;vs|gq)6H#9KYIJh-!ri}@*O^_X7%Ky&inD^ z;g-KsYXS_9)I8ELx$%Fo!~?m-QHI67-S7Q{^F&^*e7S3z?W7ZuhPR?)xPpcDIuu=a z@PWBK(YfTk-a^L%3U<doC`_Nb_QS#T2g@bow0~U-op_W*c*60Seg!>SedRx#5n^LA zSm|qU^G*Hvo{RUaOdNd!^Gg06dRig4E?GWqw}6#E>6Fsv$*or(E?MrmWYWR8lfPy} z&somaXU|;9@aD8ZMHWljg?P?h71J9_HZwmjivF#6QODGxF4Ubnzt5mEP@++;>SS8t zoytqqg+=f8wd|U>)LydDu9<&d$%GTklXvzTl`J#5boooDK}7RclgB*#)n$FVZVB*P zC9m7mSia0f#Wm*Br3q%vT~Y2`r~A$<oHMOW!ezsvg&x<Y?^|UqQGX{-duGeRO^Y4} zU3rk!GCxm>!Ei>`g&T_<ZCH1|`PDbABrLeyeBwmewic5ET^rUfn$xd#@=Nku^OLU1 z@_H_jF>?;rK0k2fL}O!xU(;usLze7*u2s&@7QIx`<aoz1{h8`^Cd~)Wa*cYnJ=WN< zobMV#<HV(Ln{G!%U$5#sy@czD^xT=-ORtMOSE~6Lx&KM`O3&IpkHfo?G(2qme@tJl zELTx~>dRS0?K2M<bWa^TXm?^^cig>@lT)fMX0+}|EL<7Wy|3WQzPny(21-#sbSg7S z<jy>LVyK||Nzu;7^7q#53tAr@S}4PKpSRgelYL6cv1<n#(@ywy$xY&%^U&!I$E!zw zgoUcM?LXXDWBDp5WqZe@u7?Tc+~JlwVUbIk!<hxXZmDN<6jF0uvW~IwLBPsfo+n?E zP1sqy6y=&OYcO`JC@w8uVk5S0vd?a%#x@fpl@IHB#Ejl$q%tZyo?2S?P^^9RfgAbR z$`>y+Z9B?a-hWNEjqOsn=Cm(oA~b3fR&4eZx%YADF>N{1yqxX2OIc0hcFfoK?EP3_ zM`c0C<g>RE^9z;hpUbte>A16PlCjI@crwNAu*R!co1L25S_|jwKfI!M=Fcnh{Y`~( z6*}@~3oNxP>P_*woOe#*<(9Q8{kLuu=gg2(6)S09B6?i=p^4(*4E+Sjk1d}#nOB^> zD|hYNKcRh_be5L)CUjn?z0I*wL0LIF^R4P%OM&jKv!#3QY-qB~e5`P8O?1ZX*-p}_ zMola3^u6F>e^zy_(u(iPW_Lqj=T|)Ir|(gfvr+nfcOL6H{cFi$7mPGlSBq^iC^bB1 z%lT5xxzmhOfWhX)7lY|iYH|sT^3$u;<jkf!9#s(4+%Cx_WPVU_YDIY1&;K`*dBYy= zP~F#aZsLQjC(b)KMb<AWyY=?uu7C&Urq>@;P-B1B<LY<m(dp?j>T;S)_hwALepJC# z<u|A1<p}1wFRQiNYO9)yeEj*$53w;X^;vW2e2-GhWdpag>F=k%7SvX*&p)Mo=hzCi zIMMbAArpRHzTa_dg^wa5*Zy{8UGs``hbT{VHQ(i0Pr`UYeQo@U7x>IRvhY-e?Q!1e zDjH`d>}k_(dAMZznJgzeqo7UC&T0ome(Nyla!5G*uBr8vx6q{<`mdrGrXAa=-|~p9 zw9!10(>~5!$FW%Y3pb;g+7ox5HG%)v6&Y<i@%7=ckRplrIhsXwF9PPx-0d#)<lHQ- zJ^B+|KJl;2|9tRR!2MTS{|mjm)0QAym$cMp-lZ-!W=_$l?(Wdzi^PLPdG>1FaF6Pl zpKG>$y76%ZReALnVytpeix`f}1YezUclMFv-j79C4R&7c^qM>ILY?OH^5Y67jOV9I zYsyJ;9<C@jt{Zdg^3Ul3%QQt<)ZJ}9O^?u&GoK#0(VVaTNs*XF*I|j$Vjs`2R=?$O z`V#8bVwRdqMecs$XI6PpIbWYK(w#5x{8^3T;T|QYnh)o8YJ+y(|Iw9xT9VySlH|?Q z;KREiZnpE5KqEO`;pHC3Oq&<y9K5MLfo-*{{o=6uP0G=pz856Q51!k{Wz%H%<Pd|~ z{ngG_ss)dIyn2Ag*+pV^-0Qm@(|&IXnw}z}t*4?d_`gNhrcmzH)t|ktK1a0n2JW-H z_~Z1s*#i1)8x78hzu4fPKfOvz&SttpxtajuyXk@DY9dS};?vX1)n?_?Y&yqPP`~*5 z@flq#Jtu-Bz297!GOc&dMxm!4m=b+Fx7laKG>FJ5h~?@hGbYJxU$pbq5`p;F6P-Rp z$~oMf-M?_g<x=H)i;HKz%WzZ=I&$vS5jVS&TfV+CP%NIGtGh<=T40iCEXVC%tl8P8 zMW+XRkQZT^e{Z^pn6?5>@ppm!e>Yc1GVQTlFg-y`TctkU?MGkUCzhaBv4*PgnpF?~ zIeh(fJoaK#M4G>po!*iHYiAGJ;-_m0E-5R1o1y&iYUWGplg4hdBPta?>@Nscysjv= zZ4y&NY+S3anXCR0pGj+zGt_VE%zAfjvGSZ3vqFwJaf<7#bNKJC58AF?s<%bw|Ev$L zldfJDXS?=cMvrEcvSYh*s*mP1X4bYd>OV7%C*D$C863F1jX&i2hV0{OkKA3HEX!^C zIaQV0_WUQO{-Q094c=Z{eq2=TnARs*!|m^RCUUAT_js{=qjj<|U%RS`Vb&(KEA^Wu zeA_i$QCCjFP5t%jWAF06{Fj*eq~uy)?wSvmt16xbJl$%MQy{j^e){@lXL;`)eenH4 z(XTgJ-~Dq#=dySn{k=;0=+<QKsoqN`Hs@adbj<GKbj~WZDn`cXEmdmnjHc6TCA8(W z_C1_3XH7hN>HBpH&B`{NwAgIY>weyB>x4TK)_Scw%zTM2_Z;7D<FIHuuIa}lv^D%| zZd%@N4+;Cs+I)Q14IRxc%YgnKr3!n-D{k-nw=PeRdyymEa4$RkD>qM@|K<dz4_DbG zKZj`VT`wW2<}>F|?WWs?A1{UI`L5QvBPRXhi`sNXeL02t=hNrh$PAsn<h-<Y%~oDl z^DAdmUtjols%y$t1CyK0UzYN=FR<!7_bvWy;=)xLe{bB#`*NAtv&H9+#LT)#t;?Ct zb3TW+ome$1-u0Gwbb7%m(cizHd|0}9Qm<#U#@2;L%i2^ve&kr$tWj~>QdQWLUtH|_ zr-H<t8+Y6?JC<8lrNX2WtXAA~G}Trxw!pv8qPeSa#x%>Pb=QtOSLTk8Ui){R?>D`5 zMUes9?=JcC=g9Q<a|$o(FWgS%Ik#|=;q!pP8CKxE&RZU|7=)Ymd(62xS+{hh%C|?| zEjPd4+CKmG#7&0zO_JMq7Kg5%>3?m9`Th=%&sjB7m1gbMj{a%XUc6A}h;;yu@%NL5 z&Qxy7GQZCGJyDbMbmb=tUK`7bnv5C279S6rzBaEryKQgFyX6(e<{S3RoSrYOEmj|I zdae1<x)TjgFO^&<%90Z(-|@h}Vph5Y!@cUeerJ!Yym&{vye)xYr_(Qyb)l~rmbN&~ z7Gujjo}*Q8&i(V<ysDh5YYr7=o{DbuzIA=U0k!6T_e^f=zuvR-!rvOD9T(f`efAr$ z=*-x8=j|CGzDQ}-4Hxg+3$~m+{dToQe0ga#Kg;qrc3smsWVDr;_Et~VmC@E^x$nd+ zIz3KCTVD3$bdPf<B<%N|2;gzDoY%64%bG87T_)qI_R3xM#?xoXXsgz1nt6#e8S+;- z?6@FsUQO=l&m5sWlfLytf1Vw<&P3?Y)6%Z27H5frGyDV@RG$BxJq@(ExJ^raL&na9 zzTWLQQSVlX2bO(y^FC*z@iInS_v50e%?t_|8|6yV&uQyeAB!>5xupEm;^t<9$#I(t zH1dz+F9_b$X=wI4Z<ge~gIvd^+sSHkaDIF`H!$V!YWJVh{bjW^>z`WND_zu=D0=1H z|LT)*LQ~MxJ3(vLZ4h?mFDqNIq4=6X|JiegmYv;L?7!pAiFs>xGDUD^Z#}KILSutg z*t~u3N)O&z<trHDe(38v=C0VY1tteRO_y)q{Wk7|e+UcfO5F$N9G-P>Du}K>YJ8>m z$zvfSg9&{y5;@+5aqLUduH5pfe>u_HJxKL}(S|UUPN8@IlldgPXDM&l8oK3e@^06x zexsF^nW1-s9NktX-{4r)>}xDrmcB+m{iR-a@{di@349-Cyftf6+n2QM^%>9CIgiS{ zY`uSM)XbRCZs)pZrqcDptBub7T6gmH?mKSWFPkdu7cIPfzx4ZxpXw9l_=f54HaOtS zsMxh2T-{y&%^Z(!zOH(lmO-3Wt){E8t-spF8g|qN@_ps&(Ot;A;(F2>?G!tyhXv|M zeU{q)9(J+(ef@Lkh5fx1n$v|YE5r)z+^;xY<w(xHSEdaIGUp~*)lQpU-l%3)zrNz8 z;P>jwRa{BQ7L|vZIJK=j6YpG_w!HMcoZ7!fk7pcd^q#yle9fd+swb8j`iZ=D<W)HJ zvt?#oO>%42)58l4Y(hUwTDrtYXq5)*<`j|6qRJM{xsiK5EWWa0vf0^(j+y)WxNF2` zOntnV%Od0R)|Cg}7ul9%7d+zkym4yc>6@-9Y)XrdRvF$DPHPlW<uJ{dbN^HDqF|$A z*VbIQrJ$$wUi>sq-}>oMR}`F>UcQ~~qM)tHSM%Lq-N#c-S9gcjn0#QEe({RJ1SxH= z%@qr*ZpPG!`0jtRAx`D(>*eD8&r~Gq-%YQ+s-WexV}3#V>Vg-0UGh2)1b#X7?A7GN z`BN6D@6x!X|Fl)<XU>Vn)xq=EW&2N4j>$19GRw0&eRtIpg}tkuD(*WUx+&m!)0*ir z`^}}exUVqmENcjQIOF<shyCVa_1}AC_m(|aC2+xGx?RzS#C;{wiMc;7W$(LGI_=5t zgX!GTQMMCLY1z9>{OWb>*WP80tG0Dsdd54!i^-@-Hh9fk`vAG8r&!+`ESkQ?`^J<{ z6NH~NzO_C#Yxn)tH$J@D=x+1+OQD%^O=Z&jA6!xPGhc0H@2!Xw@|f?^)@8B2=4kl( z>0B0a!i;j$<t*fEU7Rapp6=MTdBdEr+NPLYZ`B^Ru&4W{Nd#Itrx`z%;9Kxy;uFvL z9OCSThdnBn990PYvLT2&E>7&5!v)m?lAqRapUEz|H+{Z^oIPXz^!pZazM|fWn=(~2 z=SLNCpR`tA>oYZh)i5t{I?q9K)r9H6JiH!$$24Z9@OtL{T6eO0S+LTVCGYmeIBvSP z?zAlPyXSf5*Id7}bd6o#E-|ZM{Zo(TYYR)Ch!I-7=1){i#=Ot>n0nubZHd04^m+5| zy-!sqOz@j3pXfSE;NtqGgEQ0grpMh-DDl3kVQ^#h|Lh>YoU`*5S{+a0&pFW3$U9SY z!@{NWe(#ztm0xS1-0=9(qf91-)rRZ0E<C-zc*>IOMCE1w^xp*hligublzlLy{O!rc z+MwwI?P_B6phX)Wzvch`D^&e#_2dez1l2hSJ^h~&TFYX${Qv$`{-yo@pF(*L*{-uH zeK_=X|G%$K=l?(d)}G_M`5)C{zpISz9d{{uy)oV@a^X^bebvvi@=BLZyq@{hzrLz7 z=2`xcxfX?M*Z1G{pCA8k+7h4NyKnpd|941lqRmN(W&HKOrc3+&UApY+^sYI+hySXc zh+n{DDpR}0eu`rKgE=b-uWb1*Wb~hP=9~vdeint=U#@z(pQlAFWsdv)-Cytj|MICz z{L>Fz?HGgoe=p1Di$B@_@9p+UR>}()8UJiIwo%^7Sij$^KYr=)^_L!pzudUw_@-xt zOr7bo3bwxd{7*GJ<B9n5%~>)GXEW75bTKR{^3r~D%yUlnlGG>c3a^E1r@CJ&G&*~e z)k9dkyKA$vkh$_xz4;yGxxMohWCEUjeJ*P+nAbRGcf!_#KW9&nC<%AF@kISyf0|%) zKll8Lr4u$XY9C~)Uo@j9v|HEdPW+l9E!;b{6>jcYKF>wudaI=Lv;D4;on>Wi`<999 z+-x=HWO&xkulr0NNrnqe`070=muuykhKX0S%pU#LyI~TUo@@1e#-BIM+WVfIs$AOJ z`d_~K>@V~8M$aCdtoRf(@4oKxTXuz6rzY~4u6`7EMC#z@MA45N(b@Cr{XcwRsSi6} zAsx>9U(mmu^;3yXMUH0QyY@#lmQU6G^J}fG*Z=)4bLzy)EYBv}X}<BAKj9zuRHr1H z*U!bfl7e^h1@SIO|MLIW!Reh#Lf=Z%^xU`jVHJN~>aww!rvHtH&G(n9=d4cq^!s-0 zp?TuWKYs>kdmQU@S(bON{`Zo#_xIOtKG(M0)o9UUyEEQ-FE4NNOqH(^oM&)Nyx;>{ zUY=s<`aj|pPh9q$P_GD_ePrQRzOVK(H-1Su_T~5bXQ9FxySYEg-`g25_rZpL^{Y*8 zH68x-IpxJJANh~@DxK3g&DPoPnXHlhcE97q^3Pgtzt$hzqqX<9Wn67jy?xx>*dJ1H zTmRYYFL%FXv$Ol(hQAuh?>~Az%fHtrWB=ak^Jdv+<?&mMZR+mtJAdw5NMhCdRi|<i zZ_oMv?e|*F?YATU*8kr;UBN-wv_2to_1@o>nZHw()|zK#$Nu2TeEsWxU}m=K=lAn@ zE{c6N_lh<@_TgOKtdP>y)89AB$Xu=a-s_xGaV@`SUVrR!dmF{)_BF}x+3y9(OmfVV zytTht-LmuUI-dW%t5n+eO*6YE@hhBv;^y#L)nsMQz}_0(y6J2EOK$vHn|wcda`L(Q z{42^rhUq)koLPSR&*ry(It5n$-J4XsFHU@}XQO_OI7i{Ug|)oZX|ulHxgR$pUSsBm zfa9r*b&ubq)pb0&H2;46?KijB{uZ8F_Hl2V*wOx^H#+^@^MbxhOIklRO0X7xR&6WC zvbQdLWhj$g{<Q5Z-@^GfxWwGI34d4pe4E17s1x<-@imY4MGFKM1?t}0`F2{9cHKvT zSNC_lo_6Z|jk@c#+fDAM*|whTzg2#Eg23F5qD~uqY)WgoCVlEnUVr4!!$s_S%ImZ@ zzA6t}rKNst#|y^yQ|?W*__|X`I&V%!*y5F6?yt6gnmL!%KR4#cS!4EhlZ)Gb^`5d_ znR!C+N2t(3KAU=@3H!ayt`@drn{V>F>v@l0Nqx7C)c4QbF1d^c?=Fw2cy;>6vA>H7 z|IIjkt4==HX1(zFk8@UCb+7&IUv}ry5#>bdJK;f$`3+}IZ~AqtccE{}(_L@g-M?{O zj!pXV&%&Sfm!5QPf4Nt#({FQy>8$;SlqWum-{kI8^}SfGQ{8Ug`{(r&Z^ZtP>Tmh_ z|FB$V?3d%e>+eeJpa1{5R_!y>UmrT32>*X?yz+A^@7ufoUVJ+EZ+iK<g!Cs;^KCxv ze0INn|JSJ})(LjM>puN@<?DZ*=JWHK?N1cGSQ9LLx;l1OTI;@zKKtjMNn2Sr@yvOP zH<Iky?Y4FQF9u9d|NUdTU$<ne{5;Y6^pd|5A`97WOke&~a=N{6jD5%Hxf4GpR?V9D z+4;mvo_YF{KTDR|eZFraXeU4IzPye3pKC9(1lKQ!&G>ijWznyH{4>|D{r%r6+PmMc zB7VZ$gxPBTrJwU{T;F(Hs#g4eJoKB<ze%CrjP@<rWIyx4`{kS7>(%t0iaW+1QMT+_ z{Y0DkpNnsOVqdJfZ|a$i{(F!A5nFlh?2)zEH@|((ek&X2TE<%v|2+Il`j-9E3Sy<Z zCO*_&zjgofOY@Go7C))=Exo%>Gg)qXKG(c5-ii06VmJOd5H%w=;)1=x9UF_hdkjZJ zC%)0U$8h*)^P6?jB1e{_pRHYbU8rH9N9pvuhJ~+Qy|Xl^7xUIRK2>_bi=1NfJc+}- z(m&hp?U*QkyjQyM&QjjhXJbEn;N5*%;hOty)1>4=ai2R2?#7C^%kAF!=tYKkjLp%v zMm@8ocAGtZ7NB=6VbXV9X`g?Er<W;tZ@6cBOO*M@U*7wzr`|i-#cX2yQ*e^)!C}?e zv!w1DzdWugy<o>gqra;4(hdC6b0lQ8PX9c~_o;b{-t-)XQ%hdh|7`00b2)y4;E{-v zTE@#RmmM$Mp7yoi)?F#{NoU_2pYeTD!IPV(k6$d*-Q4`B+V<9+H>t0m73h9gzk9~_ z)fqoRP5x*}{S)tKd%bpdM0&yXcS*Wmca*z3)a|HnPdIYaET!h=^!*%9yqjLu@2C_n z%!}%bT(-N4z2N@d$MWw!$^QSg{k_Bn>D+a0yZ=0s-kx2wZhqO^bG;eyJ0B<R)~@go zt!M9VI3a%R*4c3X=KXPpl?C`E6&Ft5-|lXZZpHcbnY)?g$x{;M=6~kqmHhuw{xL?< z|7q;*`2yF4?JIX*ubcJ#2j96Ltm~g#o$=4-QR$!c)~9an+RyuOwtvwXm2F=0+aA<@ zSn~8G=lRW5^Uj_=KmWj<+xGuh=U<-w_Jr)J%q_pxUHor7=knG6+{ZI+XHI>6*gCgl zclh&Db?n<`x++&P*8lrG@pI<mc#V&)QU`SQU2-_=`C$Q9r0CCwOKKlfu8x_kI^lBg zAs?yW^H+n;#hPqhzV}3hz|ULUnzudE^JI^Gah-c)aZ$?R9dT<?Dg_U&*xS~ArCdJp z#^$-*pOv|PM}0f4my`YWdh6c}8}_Ga{cB%)-!`N-_|WQ`n~!~(u>MEy*ZSY>>aWXf zG(Xg=jMVtLd-|VuKjxR8JiN9{X9>SfW%xJoh)?{se@jo^o>YFM^46{6&sWsWIQRFk z>a+9b&#<R7UVQL#+TRk-+KThruKhd1y`#nS^Lv@*=mTNjrbisOc56NNk3>f4!g=4` zzYO{F?(mVyU9aZ#y;!MJv3%K!YcJ(i6<OEEc^|3n(PJ*D*~VHvw`<bj7k8Jot^38E z^5=-QOZ=rv^SA#k4BWu}C0&d)xBABK-^U)fIC}42qOsvxohU2+q5~bDKlc5f`r@lw z^L{bOjqG2NQ;t;o$rSB-=zHn1B>$6=W6V1(9y7+y`PiU$uEJsY`~62(zn4F8Q)Ys9 zaf9Aj#$EL$>@P0G%)S2X)gH6(=g!5Yb|zq|?&k_e`!0UdqwUWgZT0?m>ve_fjL*}} zqvEEwaqKi{`97(yjl)7(=|N6MgSYd?s)|Lyg7VL_<DQ$uEw_!cJZ$Q6`pG4M37Zua z+?^Tv+8AVb8F!dmS>LXH>h!*ab(S_4T^~xlntoU~wm#~;ZPtohO9s2TD-TZ9{aA5u z>faB6&Dy^k7qf-GI;`a@`#7ZAe!-<3oAx(&J&yX_r*-yn?C;034*sYM-CO+Kc<M31 z=k;#`n=d{%UwP$0)yMR$p|e!Yer&kEF}8Top9`&jFI<in-=_Pf>}<~G{TJS6nEX)v z(|7IG{7S~>>&wk{Y|7Ywgz239p_?DBZ)*6w{v6xlgYli453+qppC(x9KBMMG&Y`J) zRa08Fep}sBF+tF6&i-$kIi+94cWc~W{$<?V^zZ9JSN_!cH5xDMmA1TC?<!JrI^+-k zWv*ZUFI-T1{i8qf(+=T}{~0&==}tGaRuPl6urO6HPyjD|H#9dhG3Vt<%}W7uEiB9? zZ#=IIy`(-|$-=};!9W4JQN!I(!NSBGiEpG}VFKRJk!)dNi4b=)RIot4qTJ0$!NL?- z-dMrH4CxAUHxmU5Gh}&F1q*Xzc{2qIbIa+4Gvx!=EiAwi)9?OOlAk`|mbL<ug~fEi z<C+%JABf89PSsKd-$ouZ^|Uf%*9NnNrQvkJ*Gl$`meV)7swqxaVOAELzTt=}*YpeE zy&IO(58gL7n-02%eEKRDW$x)-M!J8PEG#D{3hFXhSWY+eP!r$o@JYdfk<ns0W3!?7 z^k1IJ+|y?X7z=>6R4`gjPh6sB4^k>9XskG0#7kLl`h{l0#UPQ!rFv%5dnX#nOh4zX zEI8d@rz-pO25W`y)8~3C3r<!Lmjfv(ELIeo-rsJ{UH?*v=`)Xzlb3>r4rmua!wu)I zke<{NP5al+<m?Pl*>LWR>~Fs0?JG`4eKjt&KcgWvBl5a-W`b0{8^i7cTf_Oj&wO*V zM*UCM!mEAR-Lq3?C9ViHw~9PA<9Fuf%Q<4(tWSMp((n77r!pfh_U60Y89L_XYwHsk zOpVW<ELK~%*}8u3wqI*y8+Jx)Tfg+|_s^TQoBAKUzNqo%i8*&V0uL>TW?U8;USM?I z&hoU@?<ag3KlSSutnyZ`i)wy#V3qCr7f(GjC&?=p_7|xNF25tGxnja1Ce1IMT1#H^ zOqnww>6WVI#q)oklzjfUrPgU?_ytXNtI2mhD(f-Me4_GDl{J{>*F&$c?RtvplMOwE zio_>`2epOBO*UF%#>uvFwZ<Zaw=;i;*yQ#me<*n0^(&(ON0p)6WfAk_HwquWJz%+h z^DCE}xKDr8+Nk^X{QEZYgLfV9g710<r)y&qqv`!V%BtX<BiDSC>p?q5rc8h1t86vB zpjwk{`hjp|+v%eI%8<LBr2~}RK|4iwryE8pf1W-kP??*_*nIlRKxOD2kxzlj&<mfr zf|V^Gdqf&q)%B+Tk5+b>9v`eMKK+8T!s+R`A<FLc6K`j=7znhz|17fePMnTZf2=^_ z&7}`q`LBFqG?CoiDCOKEzOVLi&s`^G!y4oNGIKih&Tcil_4&nF-%YIN*>k5fS4PcY zxp&wXvQfnPVR+x%)Ig5B>o*VIn30$idbIM3+@8(l+V*p<UOCL%9XFS0`Pp81JN?`T zWgEXqyBXBaJHBS!&L+i_s&{X^&6)ZQ-rQL6;Ch{H+YI}o$FmyMPc-eCIJxO&nNUo6 z-hovXb7qD6KfJ=z^Xs|3<|_Fo;m^&sR`9&C@cS(F(kDbHw!_aOvvJCDkI1$V4y98; z0n>UObqSYkxPGcm`@XcO;i;Ab>N|tZPU#8J>Ag5(vXOeKqt+=K_2f?fnQxA2{QdU) zcH6t;solkii*~rlJT-I4eXuXn`lfEyZu=#sGYuy<vWiWY2~*}`HnOywt{J8*Jv|^) zPL9daaJr$mf%tSTR%Nbwc8|#C%mOSOb8lQf8RsCkK-iiii|IyXeZpsD&55ht-Cun> z+a_|GI^Ua>>%RsIxdy7ZdVZgx4!R(_{@*|F1=;K4<LdsyH;~l-I6uAq|L)uW1?Igs z4E=ZRpR4>4>3^T|_wPJu|L?=@>G6Nm?$mwX@1wp<FwfR-X8rwrf3*KT|E}+1a@64c z&hTHsdydca-nF!H{l?x)=cI~rHOtp&-&LPFW8r<T-Nyrs{%Rk+^M3F1rfGMaCCp1+ zmZ>*gStPt++TTy@)8qe0_3nP|Da-rw+u{6`pxd$M%kSIshxy?{`F#67-@SRh&pEUv zg!}JP`@ApHjeh9AwOe7kv3~2{_EqzbR4Y_G%a|YX&wKxMvr95RnYTRYE|TxG2tNML z`NW_08hzE&XMJ@O)~%Z1)p;y;+l=}-LHmC!`15J=-W{uyIF}aAU%LI$<Njc+{rfWB zn4VuBReg5lYO8e;LH{G8rPF5`AC-S!zVk(SZg^3_&-T-CF|~npU+Wfo?OgRJs9r!% zBX-+Lw||HC|5=cw@O9F=mCK{&m<oLNSUe%@#P>PrdD}%g9M_&JTG4D+)e$*W{O_B+ zPb2eZhjf+ROO{>57qtAQ{Oz~%Zj00wC@d35;`=`9@tntQK`c+*s&sp;OB<?oZ8$DG zEu#8~`HwjP^I1>zmk9s0cDy>pNObOZp=^%JOpDh~e_y63Re!pEuScrNjF1U!U3OFZ zj{2RQ%iX<lvJ<b$zL>8)j<<3&e048vcUY;`&TcSCd_w#2%r`+PH$u%i{yI8lfj5$P zi9cE(R}ya)eAn3HW{;&CGv9^_7lcEj+|!;XGB7qNmi8t*PFONkb#Y`w(j=n`&AhR% zy%G+uZG1Q3l$Xe=`q<+#33{<!dI7sGR5^?D)V(<<`BFh}g>dkTZFe|wn1uY@T@I&} zmUymXUG~zqAl2*=&kWf$Gw*cPd@5^PZ}XxyMc_lK;<nfu9@^`F%NnYlmMiQ}&#Ql) z=PLRCm)QC(FJz7~ZZnA3w4&d1eWAews~2oZ4^94AIrKBzt8*F~tgLr2&NM%7*0Jxx zs{3vo6W>U8q+Rgb_|R!?S10SO<Yv`bCoZw*GY9i~Emv9D?V{p+k~b)}aF6cqgde_{ z4T@foA=8$;mvdR&vLfkP<8eme{-}ui*}g2xHaX@_ZA|c~iT?KS(XZDY7HUzc?+e9B zv<v4a$jMxr<np>(K#j3qZrZPUH@+F7J(ru}tc`a}pO~CzGHrre;Fi|{-FZE?rnWA( z-7D{3;W<H0^5VrNt$TA;{VO&<?=V5n<o)z-aXU73niL&4@?3H0$u)aBZK5;pEt+hT zUvA8iB6PNS#>!e>7XI{iCvB>of`w%}_sKJJA2_r`TslhG$WTeT)*y=e?BqxG>tnvR z9sIskV#_UM6>%#cegm(pC5|sa+en-gwoWt7R+@Eqsd2>boHd;u0v*1QCofrD=ia>j zsF&4*)6?RzSyms;C_GYD9K<%kLO6AYQJ4_>>x{scGZl4Bx&*US^rk0NDvH*x(c63@ z<XZaEgx1L?o5fp>-{3wYbDU?v-f1gEwagXX&M4VB{|&=E;h)YoKR2iQ^e<VJ_ugl> z%B#h~uCJ<6gH;#b%z0-a^LYom=B4+#W~TO9+833wR=O_BU9m!KQ|8n*{obWd9+dV( z9Pj!w_efc0`hmq6udCh~Idk^j;&Pg~vZ>xlBl**c3lhqny3+LqcGXw4%%`$!Uaddn z_uP3G76wZwGwhkDl=SZ730_^<3ImR}f!E9y>|EW@vg7)vt9D_ECcied3C_y=bxK1l zR#1uaebkkb4^H!aibR#pCwo6!6VZFTQSPky93S?!QjN9`st#_YQ*UTUD%rk27^pG9 z)*$_HeOTE<X{l!tM>jZJE_SqK^ZIPO_M?C5$($C0g}#>hd2jkA<%)Q5T&v$ApS9>P z--BsF61$pW&mQB5SM!P%*Wg(Y*(@gUM_}Is)nL|hmQG6rB&_^Bn3Orqt}q=43w(cb z1KZ97+fYN%$tH>+o6gN>eiHU|OGnthIXZf>LbK*_uBzW0zV*$8st}>Qsyxdk>3RIz zGRu&6hTy#eZ98Wy$#^KLR{6m|m$xtC^ky#BD~$^t+Bw}#-Wm`p*Jv%cLU^uK;GDIt zR;m;DR$Y1Y>a7uzbKeW;ka=0pCAfU|oe;?g`rvhPZ}E?XevQJ#%_|N?6zff1IpOEr z>d#*M8LFA5&#y8_sh=mk(tf7Gfs@=379W=gIXZbNx&~hDY%}iH&?w#SWqm?)nW$&x z_OPV)i*B5L5$q*=V~Oe!-z{DjebmmrOYZ7!dk~R*StyME^D3DwvMB;fv{rxjwVHmx zlCfoaLBphVA5OXHgspsg-fX{ZA^W<vImym?>B4tER~$O|J%oSZp|5V!-&ZSgPnX!F z!CybccGoRM6A}BL&l6rJrMJ$%l;+|daA*c=)m+}sBC`LjE=n0)d}2JSRYkz(c!%|c z&-sVX9juetQCzfQ71Pz!yx*VKB<D7$wqE62De$fA=8e9jcC~gp300*Fo7mjXl)n<v zbvZI=W{9HYhP3EYGB)9N4y+L3HkkPE?^`yBvMtvV>bGc5o_IF)tBA*&)T}kT<~d}F z_wQ+Eo}O#IP|Bh7tJvws(sjJK5faXKd|aXqwCM9}?l!jlmr&!k?)<}b(x*Qqev|O} zCDu3Z6Vt}^C)gZPls%+;rzB2xV7%xw`%2ZOGKnga+X<4-FU?PoQ#*4!R#rNe?@R9O z4dxFWO6?4tXBpJ{pYuG;*6V-hkoe>Z4yEa>7RR$MHH8|u>Pqq?F4pAlb<>s$)>A(* zQ9HGzd3TkbLe%mE=UDMP21))*i-1|t9USHfGj6*kyQobwx$ZH+`^M}wCf^Uu@nPo* zdv@38@WM@>i|$LxO@1iovGw3p#;B8RPrl}Cv6>vDmcHs!k)h}7`jW^Z4*w9RJr6zq zp9=L-4;3tSF`A{7obqnP+LPI9`GkC>S>$dVJ6Sg=Ph3Lx@?)J1PoAEBWw+}`jQXm- z!7uL>G{oxj8LhA2eJ8hm>yeUepM+<YtMXsXS=#Z|HOSxghFZ}LE&tH%2l+4hHXlDF zDbLb2QF4jaqY%}E7n<MX_-pHX%Xc_0nsno|t<Iq*(+yuU_1;WT6cFNcI$q)Qq_4G^ zL)`Re+M3z#*enBfs#Go(^zxOKNuSKxx;Kh7J7mN1ZK06~>AV?<((KyDTUwR5%2rD; zFZ8~h)O7G{(juutiy7CeWL2KkFKXv|GvkN!)WqX|R2IFfzM(Yr`U*B@i>fyv_3yc5 zg&rlp%k7Fw-Lts##qX{a4q=x5#o3FwzT2%*(fy-XamqIA>xPqU%5ots9Jd1E_bgo} z(X(#ZGX-DgYwDtc8}DQX+1o2B@o#W@Gq1zcWAiR;t-c?LyjFKqUOp^jv1#XsaINu> z<>33C6n6E5p@!H5)+U2T7kpa|p31xUJ)}O@E<(8F&>?>1xgSqxvAb2BdoxF5(oajT zE1LJ6njiaUv}ws4v$&{NkUx$8VNb~+&-Sk?D`pG&SuSL3d?l)=$SKj3_DP^5VAZV| zt-q|JrUxkVdP#&-K3p+n%2GqmHU5%0S=Boo79Y;M_S&VULMB?#Q)SBm^PES2FP-4< z(0R3`UgpR%hXRv(+IwCt)|eR(aoOUF*wy?^7v;Yn%RaBEZD4Ww(aiR68-Aha-6o~2 ze{<x1Y*=_!O5RMx<eJ{S6aVD)geT{RCQsm&&imq-$C0<V+r}}^iYNGrOZU4zp7t}B zpUycQooA#e7B%_Lq7SVXLpEE@&kj6sBWb=?(rsncDO)W9>OOhM)|p6I+&q-px<Xpo zu|>=xP3qaZC*bW)COa<fI_u2+L4dcK!}^29Y5m`e-)N<E1YhBt9==UOuHL$J&+66x zHeGh;%6?P+J6P_X9{(*y){TDy-`)B&r=?d?aY3kqMT8gY)vvq}r|!*J{>I_Ck7SM2 zV)lKpZj+i7q-*c(J;U)O=;4niJ<qm%-(T~xtX*mT$0ct9pZ7@B8J$0P&9$X|)tiT$ z%2I#2E$14~w~o|$6{!2Klyl~^zmk?~>NnXx?*tc0%Z*<Z?0<aC^FROg^*W!|o_#y_ zl#y>7^Nq5ct(G%V64XrVc_&}pGtp0d+mfpDk4!H<dCtVMr>I1ewP}?TKmW(Nn?|hs z6$KM~nxs+`CRsg<-LXSScBS`8-bJf^Y<tt3SX7ub_0mjs+XYFFvYFht9giQ=YBXH# zQU99TG+|p@tCppv>4dcb4skpk4E<8k%q>^18TL!Qim8k#cH0;B;|6=lhTOA(e^-{L zP0f8&xZLX7s{UGsXC>_)WPdl<D9x34UM^&qWuyOR-r~kO=?#hr5{8d+E(@z&kD2}Y zxLBrazBlt4L#G#a#9lJK5?h%lxzNUN@`D$#N!#jQRwra%o*tH2G|zyuruanOtCx2^ z>i*3=$bQ&1^vGWczC9)a5zdFxc)d@h{GR0C5t6B-**s%$iLz#-pn}xaj-~4r(po1p za-2@6??1?*e)7jciO{N!uIAhy96EEnHoM>aRdS-U?7x7}<H^78S-e_RxL~>vyK=D7 zN}U%O`?`P1)mz>O-I{vRJnQt`i<*-!EsodSi{qN`+4!#suYYPOxnZ)(Ij%j%5-L;w zx(EL>V&7n8a#}U&aEI+&mDNk8E?vs^Q!mMde``I*+AU@$e;ul}N{Xtt{<DR*@%@6@ zBWe}tTB^>4`o^nER~jn*d~x#BsvBLt#deaBqPy3XUfXz9$3oBH@e>zQ!_7AoSKKIG zY7}@@CyHnFB)uD=A=4L?<S;NS5j9=6!d~*UXP}`O-~2-#4hMYr5O@0G4g;0suJAv1 zx8|yA@GslE`GC%^tXtu;ug}}YJhy)CgJZ34S_E#GRM<RJKI}HBFmuz4iqk8VY&X1~ zwqf&Tk0VBRt}VZ0vhw=B%eB*f@a?*_a98|?$+djj^d_ATDSxp~>0=U0`eG+fg?~1( z@0Y##nlHUIYgvRnhxLWed58V?eExA@O4}JBt9v+Z36H1xHQ}STgh!EaOZfH&E&+ko zIbKZ6SGR1x)xsRSPU~63)1yxuD&KN`O?k6P{zzEpxm8!4ljjMZcgx-R)<806+q1~x zD31rp(g!A*$CQ2HSzcyU{ZzWGLiv2`p3}U{IaB{0ZS=7U+_Z(m-*1**Z2gw)N2Z?G z<f3O<IfwV{!w*bJyN@^*y;Y40&-5$Ho2c+ZZ{qfgrXC7Q7q}c<nj286I7ea4gAGh_ z(ry`ClPpaRR~$@P-=|=ee7$9x8K*+TWS%JwUEA(XUuvlsx3jfK#=1k~<s;Vwo!Oex ze+M}|xo|O_Q=vN{o8QyHJiuLVj;m|Enu*2(jVU^jF)_6T3Q_YJr@cJUr;>YU3y1e) zKZ6DLEBdl_n}ze#JY^{xy(N5*+!CIucK5$s(hlQ&G`J-^`V-@pvo}nicy1H*ZD*XW ztX%87=<b#ijNZn5QKmO~_hc;d>|M;MBj__t=8%WV=ZK5%LPRzz>r1^2oAPh3<l6;B z{mNP56MeYV7ICvLX02!?bW3<W>Mh}wnKMJ)O;9+{Cf|@5nfx@gQhaJmPjvFh<8{o9 znJqRM6WvZKl*z8GDx7N=^I_#Kn_XMHA8(Pq-L+Xv_vqD*a05YIvr7}EhaBQtaN)hs z?kP7)WYfG(2iP5%ZMt@yqiCyWmXU<#gV6FXVm=9L9yuz8udOfA`OGj`LnUq3!bvRg zEjl%C7kU1<p?`9LK$TR{qQ)O*f3jqR&&YbH{MAFLe4RL(y^Rl#*U74lZT~pmC048{ zytXnUn??NQZF`3!(Jr4YZycN3IVqytFF;Y!bI-(vSw-3}^p|voWf__749)b8yMDpR z-{a+#=DL+7zB3GOOmeZRU#qtv_mAV@zFfw;o3<Kv$_jQUTF>ClwU8D(x;&}NgZ<Wx zQ&toANxd<z;jegmswgz}?|M<0&0(?=O-dTpyIP!*VwMTzzZLd=_nAYPG2x27mLZCp zYaivz-k~L(S2HDTYg72yhmLP9x~;u%&|-qM$(sa&NdYQX(o1>2)lIdmE~ytgw%6k) z=iA#?jJw*_UOvDaeCyz?D~z#^6W)qtuGXtg5}KFHHlbo)>NTP+4!=LGhM_iinnBU> zohn=Y{)~=3{6$37eEWKjUgwFQ&z-A1{POXZKX){4Ja9hq>ZKcR_=Wl-I*J=#=cvBU z+P*mB#=6=2%u3d*msdY^QS0Bnq9+0p?iP~Ky7wh6E-5wfzHR=CLF#gFWJ@n|@ujPe z4PP%^I9FC`=B2hvo3{LxoKmc!VH7X>-0YeA^?=FKT|XWuyZipM^s^$jnnq*(Wi|hv zs;Z~lTD3@gQH|X;zH`$TPfg8=I#EAETU^FHJ4|4+!qt`E&#XMt=++n_QFEYAX1?Dw z>$2rHvN&f>UbUfDnf*k3e9;j}Rlfhq-aUbz%-kOSX5X+v<Jd)iz4p8IUvFpaDqr%e zcn>?LKueg50K3<-#@Xx<rwUi4GHFk8I<tFOKK5J1>q)p)9O+i^xpn*Zsl3=*d7AO@ z%14LVuN{1L!071n^^vi~^OnssQ$HQ=GVRu+&zJ7Jal3e+WQm10Z?p0;nO>zWIcH@n zb}?|DQI(l@<7w4uE6@59YHYJC?519vx9aT5?LBX%YG&1k928ovvGM)&RK*9*tF`$8 zRI?7f1Z~gc<LPqg+`soByS33~UeV?QE}h<s3#*i5ru0q<l)o&b#CH?4>9&U3*SWGH z->0v6vktQppXlimc|CS#YbG;4iU>2}6u+#N-mv~^K=%BJo9iNuO4nDr_CL2u>u=GH zeY8TmuHOFvBO}KyPBE+WXZMc@vA&qjHJQz0*3AC&g!yxpWj;@O^3&{IiHf|AVv0+` zoWRoHW0EfC6eKP7-+fxse&Ed-=6QFgw;3K!tkRAC;_`}dlH}U5r=0$tN?#%lcg|I~ ze>gK~_WnZOTZZ4xTkg0}bpLOAy@ITyz^SV*49j+PzMWOFr(4P6^0j@hr)>Vi*Hcpz zX`N6oVXuo_WU2v=s$uS0y`Hv+H@idG3YQn`Ioh0167yx(mwAywPsAF{mRXrQXjjY4 z`nYk1{1ecI&cC)BqV8Pho}05XY+bZX_#737Y8IIqr>o6(O3qcTluNTbxN(VaTK&Q+ zlefI);W98`h&EjuKJ%dSwhZ-`p?421U#U>2yHCaA-`4crM4Rarz59PmO3_aAIC6A` z(JpCWap$vw?1vA$UsEEle&&`)bn@<1ruM8gvraqv{d4tve6e==$ywjI)!%QGDF3(q z!K5qU+%_||zVDQM*l^ixt=ZYq^D^^OMDmup)F%Y{KB>vtl`zk;+_tfy_}-*Ej+JYx zv=1IQXyR%tZ}s@boT!Q1{FgVseE4za_qESjOcfs4-CUTYb9`aa8i}>9_S{#LWZwN` zLd2mDBIad0lbY9V<ZnD#7FBqp$N9JL#EuE=&tks^JlM_m@mjb@;M<KiZ{FU<n-RB^ zQ+4^)cW2(-sNWdeF+<f?r?={Pmj+|wN-?`>XP5;G?3zx3H<HRI2`k*&E_2<$=MHEe zY4SnubS;_5^DF}vn#|~z`M_mgXnF63Iv-2(xodN#wF(CQXq~lnV*t<UxZMZX`DWbD zTl4e4!7D66{LjOlS#iBd$h#6E__p`C?0xNR4x+Wp*L^nDn|xe(+wR1sx3%i?G&(ih z8D0m@WH$B=58TBiA9UEluXp8*kV|V~I}}v&daY(&nDi>U?zNEMwxG#zzo)9sE(|lR zJ(^c;(3nsd;m+@J;qj*1s;Yj==QmsKSiH>auu6~=gU^mfOezI7cG)X7O!LTMTKH14 zvNrUahUFf6=0#g_BI_B_G~HM6R{B~qNP4-6R6odCc`{+4rK^}gV~XE~CqZu~Pw`yo zB%ID8#jYUy^Wx${i9O4$)TZ|`v%lEgkQ5cMzNO)SUC7IeqCqa3Cp2$yntW}p=&C1m z>un{{BF>*QdOox9tIhrghTXwZRV{P)Dp=byQi?nLe?|z;F8=BJNZPZW$GUS}LZsh3 z^_Py_=8`oVPA%LW{$$I_=SsHvb2N7S3`uzEdtNJtXZg<NJzuP^m9=%*K8x6T@v%i? z^IH?ftI^)KUq*g3E43|Vzs+tmc~zX-_PlvN9zERhc<P=&!y~niqBA!9b1yt#>lR{I z<ZFN5RoGAD<+_(v+iWMjkSx3v9aGO1EVSF<-GYP9*v$^N-MAMU)ZE}$+xO7%U)i=p z()-!$A5^S)6YZ|l&8?>J-FWT;iR_tn4`!<J@+1V!PuO&OzU1Pqr7u`bU6)?m%H96h zb!Xq+%C|u;4qOSmHnV?fSo_?0YBRmq%J;2tfBmRBOW=obfc1fmJk86~5;*=(y|`lu zTYYy)*@KwGY<ra|Z{BV3rWX!%E5{_&^tkZbrffFIv$?tV#?Erp#JrSDf44>FAN1<K zRe9HV@{Zd}t76IPm%n`7sP_70ukoF?H!WXhIp2BNv+)$0-3;N0JcT=_x2=&hx?;6% z$D19NQ`Rq4WE5PJp*3kMTZY`6lOfqp4_}X&;G?j2`iF^%oU+zAs?7!=;UzL%QZc<J zF8c~AuoVl6Rhx9QC)DqrE;dO~zFvHhlHS3G``#b8a;CAd2DC%<k|leYYt`Yiu9s7T z1nx}KI~$y*8l-UM_7dsb=Ya*@vTHb*l(}O+-HwVrUgdeJh2<S+gX%Sr-%2$<BE3Hy zyt2g5J?8MPB8?L^{u)*V6Dsd|8Z+y@VEHz28{?($-K$uXUI*7NJd+%)nZTOvUT@;H z?xyUC2QpWr*jB%ncy2EBMqH|Yohf7JR?W}6ui3V1L<?DMFI@8Gx>VY+sEh-8GcWY5 zIGnT4@XLwvf(=Wp1tOBKUuC!Cp3t*V=%VV)gC{SXDpgpq_1V6c(N1Br4l_ngYi_Qc z<Sf2>&&r9K&ld%9dmf$?WGVJn<>K!W?VSfsOgEaWC{+LEdR&uO8*}?6);|V3*Ouf2 zOp=afSD*DTFKEkzm<K%qkK7!(-_M_LWpgZ_^rxo_mY!HA7_ZgVdsipu>4u2ZNqqBo z9ZW8<u}n9RRNBHO(&XHFOJc|M{);jbG+Jvo_PKFJsPJm8RerqDz_;jamx@%-`GUss z)GZT=-Ho{=G=u)tOR?u|+{xARc-uAMzfl*qEqVCx;;yR~4tx#mQoU;|<|i+aVRrJ6 zwO7`@M~;QbyYqfV1x#)|-nnUyiC@#~b{EsgJ+j~CnS8o?ctb<#X@_Npr}H+>y_9C* zy4PF9{OC4=bDzs4t{NJ@|MhvD+agw$pSi-TOx%}wtTS2rtY@O{?ODg_L!{j&HarVV zaxC_UF5D+nCTuk48`H#z9vbfr8gActlUVwGQpeQPpH;yv9xd-)yLqu%N=EL#7ItYq zb7#cvo%c>~YVVkQ?fsc;t=INiZV60No^k4H$J&B~bx&*jk2ltR)No7UI9u@iiHtd) zqt4Ogg%1|5+55_3L%+pOALr|Z3f}c=4BD17t#~})N#Cqa>*j=x4;E7z--PW*FMLz@ zVh4BI#vfP2!}I!?E_Z*GV7=mV?3Enr-x;$cp3AkAOkU?A&7#5ZuB6JCgX~Mn>-P}4 zrF;+QlJff+A~EYl_(EQsty`2)zT(*Wzo!emH%t!i3O#bDC72_xBKK5I)umlCwtl>@ zv!x{Qg4z;~={9fH-7h^Z)0ZH*ZPG-wyuekft7`*iKR$9#TqEO7OGC(`(8#a<>&5#` zD_S2<`(a>}-gI5bo>?>XFXyW*w<eb_JkZQI=SwJqed*i$S3y#jLZ5Or@Lk`^BE2m= zU^DZTTd^yDy~#Q5snBjK(Ou)&{eRl^-)CM*P0aBQ<3F${yZr+5w8C_U>DzMUY!U^p zZ?`Hj-n_0wpgp7E%h$Py6X2JW*RPQya7(!nF_)BIFSj`U=ShjOj)B3cBiertX<Rbp zO-?D(6tB8}BcqFTDvw*CzM0!(bK#4NG`D~1j62d$d}|J4hJ4=iebW@}rJh`kP2`EM zI=x8kjk3Dx>%En(9jW~uOFdZ3ri)KkRA!W(ZarO5u6}bH(|c}}i+`M7<XYa4c(FF@ z_oN-?ayiTd)x*v`(cGG0G@)SO)*UXTI(3HOiWg=#*Dg{0antQ{rPT?O#?bX~Gd1Vk zIHL7^GJk|mlkU~WhM~4>59_jcLsai<Id<$3>#oqo_GwxN%#Mc`r*2pK`0bKKC}YgK zl0{C&LbvAc<6r7ofAX$$``UXtF9MdxwJv(h_34XVpUKlBE%Qu%2Q1s&{QP_Jl*N62 zZ%=vY_IX10p4NFi2Src4j-3+H!hF>Ac6P*ZuZozrnKj3K>tFGg86KWZ=+f}8eK&tU z31P9D=4!k~mwigHGrQjuLz{fZ;_1ELlojfam|tanbDO*K;Irw>yO#K@OK4nlqvxW* z@hPWQU3hWjweT_V>~-tSrEcze;$~KPQTe?FW2HOa#S>>W+%;oLPR%`>*_qz+&v5b4 zXtPt-*D7A_wB=+lGC5F{%XiW1WTlBulal0dp1yqUZ*h$#6>on?POahY%T+aXOui#u z)))Ffu)ar;o$bQ!IN3!PyAAq+nE3@4zOPzSt{i#p^r`Z$(39_{zqr^TVR^4yLi&Za zdf4OOnx+YtbF9sU6`M_-N+gB{HZ__1tU5fgp<;^5KjCQ~j(iVTe=J`oN#WXc>8F>4 zd%erzS}KfsT0hn{@>SQC8=>C}UN20`tHBB13~nQYel>V~+sA;qE_cbF4bSufC)}!< z5O5@7MZ?Ad=IkxZoA&NC`LNbuUS~T)rw{MU>5b})a`m?Zp37*nE3P!UEAz8a=F05s zR)+Q0A{gb~Z~6Bkcw&p-Os(XVb7x)pG|@b4QBIsfuja{5?o+uZEMh*g_-(3=!=1-r zU)GuZ?CAe`!o35uExWsap~U4<rF)BucfMQU$R2d%T-Fh{xYQd}<uf+yJikrtn!tOF zjWhLna{qE>XP*?U4=-3;`oy((ajC3d`PV5^mu|kjdE)i*Hn%xn70<VScofTZdO>r+ zbRA~J>YoaCEjLf+-%+~RdSYco$Nhhin|N67-CJ;?U1hJXhGxUbtqD;dCr%U-WE0GJ zbu;h{@AWn3JdVsWT)eYiO;tI`-Mo@X^Xs}9o7Rii7Su1O`tx{UhVGjB&FZD{>_I!` zDXy8f^V8abOG=5L?cEnMGp%15yUnfuZ|@FMysjv>Z4*;OY+&nIGuQbuW<J^0x3D*7 z^NZ4QIoXFU*B2Oxc~u;G<n^V#*7CxvO^bJ4*z_n{N!&9nK3>A*aPp<)J=|6@TD4vq z<unZL)J*EHl3AuJG^=ZuWljA8tM*viJhgXXvY#V<%$%RL>BHwgaX$k4KuW4=tq&iG zJX-6n^Y(Y!iI%y+F)y}nWC!o>j!C+b;+OF!Me*&v%Z;*TL6i61=q>f!cuYX^tD-wU z%R{rACs%Ln+IZaht$mehxmEUhv#=kTwtI?J{EA{SyTN^ZzINE<XKiwi>OWLxu-2NL z{2QEoRlzan>%NR7JHm1lclt=(yisPF|7I$C!{voCT5HxUm5YDeWVJ1{sDu5|hU=Rn zc5b}(T|m2xN8|nq#@0nwPEHeZmK4`bQ4QU6r*_t+iCUW`xbJJ6?Jn}lUm)$;zs^a! zL%SY&EnKj)r9!WE;>prCjs}K@dBxl6SI(GPR1^K-(bB%_Ze6?bKh0?UG%ML{N3wR6 zW;OGhg=rhTJ>yE6uPgEIb^OrKrM@^K$$Yt&<(;r&3}K=+E*qs9&r3;9U=?)TbK7=L zq~9?<{zmiD4>xWOD_B}^*D!inP2qm$Q?^faW4laWg>8MnmaH(-QsO}W&Q5carT-@K zI@Hfr-rt{``oqg_+xq6V^6+qJ_M1!QN3J@yIDK~Xjyn_fdM$g%xUyX=z1>z~wXVGU zqrfYPQzmA_99<e!>TEX2g=NA9uX}Q8Ea&BVbBgpQ|In;-cUUY}W8+n}@4a)!)jutY zNwGOoM2<>ixVQ=Kna_~-_?`dP<qzauWJot$%TC@}&ti3WcVvO$j~C5fDpyUv7v9HX ztmZe-F7oY+%FI<$mVMPdBqm)^8-Bp`Lt%RVEoIHk7xG=KTcj8NzVWZ`%7q_OW%?IR zI(L27eAS;x%U$(6XPbxp$dI<X8?br88t310c{NujzDVW2G|fzgsc6#Nx885_8bhX( z<>Z9_`qid-NUg5E$H#lxshV2?_kU`~rUaiouarCctTD^guD`WKzb<*EBnOG_yLCax z+IiBEik7R6JbPs4Olq9v&e0uR*|H%fUS?}=;oSB4GY`x;S#$8wr+FRv7RxQ>I3IQJ zIX$<?KKs$%iL7f{uhpGb%NCy;BX=b?T+==t<v#QJ6?D1KoVf$XedhHOX?dafvaRm& zF%GH8dJ7&I@UCExT>38YAYbCTJek76G=H<JtsZackJbyN-7mgh_s-$eu|3>rH;Q`1 zVvFamDSBTgIQiM;&!Jrr@7~=$)ovNXk*a9dkTj#!Uo7q5WY@b+>UY{wRn|N>c{}mJ z!Gn*T4>uj^lwTLQ|6}$xS=ADI)mb|mMbF-8XekOl%FJ%}Z}tb5fUn0iqS}Pte$}{o zgRg7$1V-&8FBim!Ua?WgD>#@|u;qjS!=CTEnrC&ccPmzv<2lG!B>ysahubyAQ=H9a z`aHK9Z-xlW=@;95_s@-Gk**Ie^=$8&ux0sz18L3w?%CYff4yVrg})U_J1_34=h@G} zVl!jsp~+`<NQZE0O<1;R&71j~zTJ4gDehizM4D}Lba4n{=ge(ccR4srcg{GtkiWmG z_if;{n>!}${knE@_T$guaoLZh%J1oKbL9))%g=7uaM{}J8soNWl2uzo*1UZ`JywrV zs@~aW>!!T(3ob2D(MwP1nID&;!S+yw-ziSsnlo`_CgZYp*IoM!L~M>YWQg6cW7v9> zC+gY^_i0}wGeuQb*PV{%{`GE-r^34A?X^ljbEfF<Bujp2@K~rA=VNo~@lBOV)whD% zUu|Dt^VvgU`gOfkhJ2YU$yUw`6W)B!k9*{LWCu(AsyPQ9J#917m)%sk(^G%hn^(Ql zYd$ZCdA_TnQ+%xq3xj9(*9CKb#wA7?KKqndXdBcwS()4Tr6G6wC#OGrR!_|gkEPuY z-F(2j;$Vf>IfE-L0^cmW>?DrnR($<Y_u$FvxKB&v+IwZEnS`(^X`k&~$1(BR<}C*f zZE>|@YrWRLsjYr{^!<y=KmR`0@9{;Qr~H+7_p2`BgodE0yO&1AW~#TzJ$e%$_<T*K zT=X1QpV`9C=N0Ujs2p9ax<Tk#*7VSTz=Y5}Hnn$Ob7ptXQnKi4d3={$WcRLzD;mD) z+w+y*UOQpF0t@p>-3JF9p7n6T&Kr0uRAf*fYiaOfn$Vtlz8$jyS5Cd8TrYcaio@9h zQ4_tV6#SD<J`i!q+9^7E{<gij+aulvrkTb^g>Da<5SJxy##HnnbJ=0Jp0A=hckd@j z?|Z`);bfDxx_4n`|BT#OmYQeP3YTBmyhMI>V_V^i;48Bwi)`<NW`ylj%YR=atGh(~ z%yB{9yC2uJyX)FDp02-{@~w!2Sx8`!Mip<-mqQ0TQ&P3wO`4!Pb%Arl;<jzU_YaFU z9}!Otet+PGuvNpaKa$6}BKzDd4s}W-?-Tvc;o9{7tB&TMd}X`Zc#GqqHRc^f&(jr} z_}jiI>7Qx}UgKpIrzp2+>Sm_iW7_hQj_7tJzMZyiQe*ys$cI||CMQ!oVwBgt;Np>7 z^w4_oIyGG>!O4u5D(=<Cs0!4lzdR(^SHooNn!I39^lh7a7riGXnZ2*#QTVX+T*2IZ zCpNYR*`8P~bK}KB@#c@d(^Z&M)av7n?tk2*eD3?QuOdf|ZTQ^6DI8Wd>5#=zUH{j1 zHa?$@-ZtzMp01X?KH}-B=?d+~ek_XM&teKZr+((oV_|KVspidxKExdKo>nw<Vu7pW zjHhlBHQL>0T%LKA+un<J)|L!Dey_i!HV63|Z(7)SC^*cXzgp^#-u2mOy!(DQ>*YK> zQ~&gh5p&_<qg94Cjnf(@sd5-+%t`&Jc~R5+*tIoxZYl6VPBtj_Yo9DEBt5UlTlrm( zL+l?OcJH?qE*XhcYEx#v_daCZ<+Dy~?@ei)hkxX3Y-|tbT{zIa-22+sGNa@z^F=HE zFPQiF`PaXhTQ{FwbWdZF>1`jzYjQjMIu~>a*PlCKdnw(%P`21c;pEJ$Ie*?gXm2m< z30GS+Z|$SCjpha?+wJmNy*oa5Ssu9e<sSbN$p@0rOzbCj?cuzXeULHQbD@;!3t@#D z^Z6%Lxq5ALv5cSNmhb8KFUD`)8lE*5e{?DBdAw=<8xf|!cU=mLYTEaNgg)WpveCL< zzWK=#Te)}jr&ovWeJsN#f8h9Bn@d_Y0lLpudglf9ujY(yxH{EU<mpaz=jUl_ZPuH9 zZP=pnM>H;JUZB)b=Bo#vy?4L(db;ej?wH@dem%N4=gG18#~YVvZ1?$DmGm+$hA$`m zx9kcP-bYm*KmR`PTlM9N;~TCjopcm2d2}~&r~2c<L$V7GEqpE%vQv%8{i5>h)xK?e zwO|*N%bWz?PhM3!ui8jfFlq9<&BdQx&xNV7zYNsn|5&+hQmeK92`dBb{TCU|N#}dH zJDzKp_bK)YU+Gl#IZwh=cTZ1Prl?q-?7mud2M3eX%ay%zYG%xz)w^ZepDS5*mrCnS zK5srRWws?s=?M752ajvN_O>~C+;+(P%EmFVLHb~y;<aP)8sCfVvc5NXH2sYC573DZ z#~S}y?=vmmAHMP7)ujH4i!UFqaeMOVNZe13DErn|-R!-Uk$MyCX7UIZ+MO1a-}|Wk z!{f^mzV|Lnn|bWDyz`rhuKPAU);(eAl^D3z`KZCmg(~c8m-e0aIr~a{!(zv6Hxw7^ zeTe(B@rGoMQ({M_>*URAk9(N)J-6|8zpU~n*h(sHd(~%>?jVoBehGOv^b&G%?;zi9 z`%(5t!SozKUCH{^l)WE0N^BN(_Bsj9Q86x4u6(~=v*cA0^Y@hJT(4#w_?-4Oz~Rz* z6-{qN$qkxOv35%H-SnOY>*py}-uKjYR*i7%i;kF?`HN+5obhSRv`@=2XBVk!WqB8Q zu6HwQy|JS8eNb1HiJ@6Y^11~QS`(}#7vE9I_Q<+y?i*(^chW*D^)25^SWj0~&wKZx zz&^ZMZ11#r`>q}jyzY|z&UNOW;=4!K%%&ev)7~#8K5P1(?+%l9Pkk%4{nVdFb@|g* zuTTuG&$;lM<@M`5HBFJTYV_O`f3qyrUXh#BZ2NTMEtj|JQ>|G&Z?()*E9F}CBva7c z>C?6UNttzJTs+^N{g;{|9KASwMc>As%+dzw3C_<rb24T=pZCq^@mk(zECq2fHn9u| zrq4{xOMaD~n^a<&bL7nbR@r0wnWwwvna+5*PS<in_|tl<SA@SktzRdczyJ6B={Jn! z=N<`We0_-XScNu!T*h_J-~Z$OP5t-z_w)j8^A^1cjpBJodsp&*ct5iaWnaYpvQ1~B zzP?3X+2;Shw%@-qZ-V`wz9``xrYS0SrR*Pc*Q<WK@NQScr<3)*QSTC;D+@K>j@!`N zn11$$Axlxdg`Y?8qDQ|{W-JRh<Z0*E%70(5t(=j4`O6QY^#wl@{y)<>{`kkV)NS1F zicShXKXgHTL!p=?-#@OG8?;#5a$h8ET03p2+FDnozpofKM0b7KUm+d1ZyLLx^?e6R zmG-a4_9xB}ch@{+=P}LcQhlLfv$alk`Pt-xPjW}!xw*(#Y*DD(wEHkm@bjeadl+XN z7Rl3BGqRXqRPsT(AajmLs`6ol%SFy7ZnJMUxfX8op<g^);(hSMn^IdgOgJhWdS!i; z$wEc{buD+9GIO0(_HNF)cULK=i}6Xs0sV<B$Hd=CZ<i{oNqS~oV;;?^@+h}H#Ga|w zJiG0PaPAhVe5MCnQszq-o=^Gh)tOqcrq#6b54YQgM-!%+1R70JD~Z}I^&z`q&BExe z*!FEZ<YVs(A1=)FS9q!>e>9{qc-!gPvTCna9Eo#p2Vdu1>i04Hno~{4m4Dp39=b%B zFL}S~;qJU2>!klJD>-arE}(SOTBvjW>iX#YN#0Tu+EzOHW}fIjU85&<U51@+UgzAC z3yXggcD@gKpP|Lqk@00Nzr(RE-7B{Y%Qh=AotzldsZrGWXG5->#jEx9@;^E~#jXDz zv)#KxHmxFy#jmdY`x;5f28(Gzwc3(07ERfA1AVI2+}AC$iF?Cs_aOXsfR>NcIs+xO zqg(5l)`@#E?th-i>-Xm3gyV^}Oe&8zThD#e^>$r+k@}2+({={i@^+aq>|-<wyA~oH z{Cd)K#uLZ-qvmX>`0zj3HuArj_UGyLd;UDSE~sC8QoHf#x5N4IO2WUZ&oN17CLC`4 za)LiT?q8$L`G5V}<^TO=?Vl6!W>(8>{{Mx{cKRPm8tdaPO1^(=8uP&Ee|%lV&grxN z*jMfP=WF}-aqN*`K|!9owmpTxdmh}CUoP>pZ*fh*+H3Z=er^9DD*j0RsoK_`?zh6! z?+0v<7OVSt`G&akx);X;c^}9B?fmn)M(Q-b=Z~xYIZqGtzGB{YH(dJZ$$r^ihWjSH zC~Exwis}E?<Hsh&T&e#ZF5~$ma(dvtXC9Y!bstuE-~Xh)=2k&<^*3d)PrtrMTi#!? zaeAw4wYATi4(|QVPku*Uuj1o*)^5C!@!+qF_D)_C#Y-=JauOW#>tf8@kHkLtvD|zk z<0tcTN7#;SnY;CH#FXok&ge09Ju^#BGG>#G{<qL=+aHTHIgN83rd^pcvHrPs8Qa3G z7j@iUcN-hkuAl4pN+M<2>c>kYcd}nTt59}0dD&)Z_l;`}FWkP+#vn7z?EV}zf6p0z z<z~ui%5SUlsfv2LVav~FCPsX_&9~l+=<r`=CO<iE;oN0r0XEqtdsgxasJ$`d;(4_1 z_2nzic9cB+y=d-tk)8Fgm`;Xu-MID1zdk=FI`a8;&5LhrZC2LHY}>Z=ijCXri94t5 zd;hFOYWA5()4II%*NX4miI-L>p8P#w-N}E;e?Gi_^+>tt$5`J#y(>G@r|-G?BIc9W zt%sA$V_bq&Wb<}b>OROhE^*niMfbyI@2ca!Kgmen^Oo6Dyu;S#&^G(Ndh2=_`@Qyk z_n+O9sy8fdsona_D4O}~)@^+`?{~L8oBQ!t`kOoAQ_m~&Jn!DF_5Lv5{gzX~A<Rs> zH*P(c-gi%uUG3YVuRGSQ-g;gCea~(7zNND_B=5^^l3sQ<!hFtZ|GF>x7aI57UBAC5 z|IV%-qIV0Ge-(c|zBV=fykfb|pDekZ+0Vm^Pwsydpg;c(Z+*${Ck<`<zm{`G7FyW< zN_%nd!k-Q2ciR@Ye~z}^YjJhywH&>d8`6q9_w4&!tD3<3u{b)4F|pFVC$hod;3ng= z#>C3=d4cC^*y`oB<vgpt;=cOaG*-4tS0#me_HImVw7b2j=is!d^(%C>?fIg^6w)On zP19X}cFjGSnrm|T%&$lFYb>s3rhl;fHY4-JkBqb>&v!)5$;&unQktxBOq;DTdXvPT z!;{YbY5EnhJKC$FXZtc8hkH*fd?ODS>|JG^YHZK&FXdEP<=WpTr?7Gz&aVm<dmtS= z?O>zIgTqr;{~Vi=TCi&RgdfXiZTjS&e<~_cJ$Uwt$#&uUCttoBBAotuQs>_K_j`N= z9#8gFNq#Y};LNWz;tlU+W-d-KzR^~E_N)Eb=YQ9!?#u3cAN45T+uLUM9zjQe?Yy$i zmfsg9d*quh`e<ae=hPeXMa*yhnb+y}WgH5By7tRnLEUvT-np=!OWCsa#evA4JpHJ> zXSPb_irh`xvi@$aTeSDxv@KsxmMvCZ{%2SH{k^h!28?t69xeO)<m8IFdlUO6%0I6y zYvz1rt>aW&XV6@H*8Xk1%*o0_e=hGn^iKMC+TwR@N46i~zn`~N{>9z>&SrLx1ly(W zcS~(}@}|E2p7OaPHl{y5w<gv<{22T8P;6z{*8e8*OP#O9RG+>7`|<sW9VJ409^c+? z_P)OI@U_GB^WO;O<=^l;asJ5n=h5z;HTT+A3YYI*+ShJhDn9-D%vkCAMbGo|-d&eY zznxk3xJL16_~RN&>$<-?YyY0MY0$R(wSeu!pDW>Y{?#$9GXI_gxa8GTzWk8<#negg zW7>b!g&h4e?wz-|={Tiuy|l;wZ>&GlTRvDTG@X#DogJq3Xhyw+V~yn;2T#qd2^U0G zNQvw?xrc={vVMm^Buj{fm6znjAFTzY6?FxAEWSz%_oG&Syb%-IAmq8bCEK^=@{=FS z;y><u|8b`6I;DpTm~0+!9)D5bDAgw*ds^t&>Q^4ii#$#~b>C<j^XX{Y^?%#y-bC*c zjD1x9E%*0>?RztdI(~1fuYYs9=WzPBt3Muur(|ZZOxYJcw{)9Xd~NsbL-%U5Wu9$k zvih6r9}wD7Q=V{K_r-7iugP0KZhZ9o)~nFmpRf3*zx};@wS9;0f&M2cn*{6wj{m4y zVrL;zBkB0`!4AXclU_Ux`19&jcYN&{NzbDv&7H&9W5SwV2YlK*vyt5+Yn`TT{d(ga zg{nL`d3G~*iLy_V;$yVGx$Eb>lMB^)KW;JF8~mO9=d5S9`JOIwsm_sYe73w)IDFH@ z-4Co)9?L1e`}5LtPv(R4Wtlf;bN#)1`O3b(Vwbm^d4Ks!(JZNAyZGBrC1Q=9H#a|j z_CD`^{OLb;Wq*A>6VI#oRp<A!#giks^Or8^uaB4@-^KN0$?U0}zltSH^3Oi(PB>Wp z$NJyZf;p4w-}9GR&HW<!U*I`=?Vhgo!+%T+`QI-#Ui0m8$^Xi}1Lc3#OMf@kX<MBc zxc;BO`hNwMhi|bzKRGM0dR9$c+t)Iy9rx#4{;4&mRIq9n&x-hrj-sgxKc6hP)1UIC z#-^tF>iX3M_4h;f+ew=3;|Z@Tdi-e9z4@2?><`yC_h$yKPn(hd>SueQ>#NPiIsTK+ zpWpCPgy&b~s~z(h=dD+Hk(Cy6W{-B~@7c@Vr{8$G<%8)Q;gvDIOIAPqpt<DJV~`I2 z^9FCG{r|{&+WT(#)@d;wFRq?AQvYwxlK6GD;k$k`{R^$uyS}Ghc6E@w<ocZj8s=ez zQ>-Ol$Da;-RxWAiup>2o?!VQ0*RAf0Fa0pzE>k8(x9k5W%f_8H+0|R0S6}^i{@u^m z3;E&4j=S#H>z%FruYT#L@QU9VRwZx0KVf~j*y~V=!E*VD2hYEIUS}r!<npEuj=WON z*Y{?=e*FAq^6@kJF3-KL=!Mt+>{gj*zg_g>%ZNMw1Fh@xDs~Cn&Ofz%zSwE6@Mot@ zSN?pd|8LX33G3#p+;1>#iT32LpSagQyZ`%e|EptBVc#4ppZ9h2zq%?{mveLHC#H3O z-uwUhct7Fh&DuXU)yHhMpWMImSEu-C*F75~9?y^Tjk~!2(fQQh`Z`Z46!WHkSsyd6 z{`{q%ISl_d*X+(ZFKWO3kpH|wdF~JYT324G*{bs6#FOKXvcLW>I{5e3!LIyWyPhnI zezc6)eyv@$M7r9^@~=N*YwLc0{L39S|EX7J#rpq$9%Vhde)?>i_SWF_Wo-LbpYLDo zf4Omf`26#dYwXXz{2E*P@6FZcsnvFC?bfF~P2F@LzJA8n%C(*PYtMVve!2VW57#T> zTC?&aSJESAKeEq${bcvAKQ~vO_pXb3IQ`Y<Q^9-x9NvCG^m?X7INJmBGmSsj+0{?_ zr8D1`$LQ<LSCuUw<?HPBulxEl^Xt#eCHMBPKEFTi>rK1aUsGQdPq8;#`NC-7<IOjd z!%NmpD%$szFZNisj>D%PN7Ak>|Jk$sW_`=~`dh4G`KSMvswCGw2=bGf-q7vQv)xSR z#F^j!eVvOYKdcjzwKOzTFo2#LVrFJ(&I>;`#M00R`P>ji3k&3PLJSowEI^lS!p;#f zQm~kw5Ua0fWMOH5dTfZLDH7jE!O{R(-dMrXV0z+0<se4G=@0phg{S`sR~DRRt|vIr zfS=jY&}8~U6_wQKHc_AhIC7MNrr(KDh8zOIWNA3r(Zqq#aB`!G(sZ?0Wr4{Lt}O(e zD&V+K&0>1M66N=dhT9#MDzh<87O2-_w483pXDtS~t(D2rXnJ6(z8JHmk>PYj4SDN& zOCuwgBlXh_6)X{V(dwrg8Y@^Dflnym<>KVjPd7AGurz}ENk84tQo+&)ex!<ix{-pV z5j>>y(?P1?0i~aAreJAgiLlE;!P3}3K^uA=i+;MJf~7GiLcqbQpYEbyX^iADHw8=M z>5RLzOeQY?t&uU)6`0PuQh5!d@pJ<tEz9Y)i!GIyERClJF47R4yrD{ZdTy)%-*huo zRle!TtCS5UCkX0+q!&smh)zzZUIt<}tX3AEeqy1rz~uA#9E`@(8Iu@=r!TNl6$ME? z<hB->{$ruC;Pit1a&nB8(;r&tiA_HsXgYuT%Js_J{Dvk5NXf-$x?+@^E~DjiL0wg` z=?bf@<3MIiT&pZL{m3F^fyoWEa!i&c(-UXth)vg1G}#E^ELf*3K0S4@vH<Ad6h_O* z8{5RDJ1Ch<WwtaioL;zDUUa(aGGzlslj#%B$%#&15F^(I(q#}UCkBeciIVal`yAsK z#it9*HRhU}@GNoq>CMXA(=Anud8Q|7n(0q(bk-K1Ucjiid;0Dz%G}elHYxKl85>SM zs4q7CVLYSA^bdT7(I7J!H!F)xpS()hb@~Slvxw<+tChJYzf|OzK5ezK;B*0H1+d#M zYHNv2PgrL?aeAP(nFO<?vB~s_hvjBYf4xT8aJu{&Wzp#yHdyj+U$a$NmQm6K6zkxV zN{lR!!^vd&L~|``CQH-liMdMlAiD5}k|Lw!^n<C4TGKzc$hU*Uz_$;7uu&17_E?>B zdixILHb&?z#21_uPJ>i@+^MWL{pbc|vFQmcid@_6cPX1PN}3wOa<h@8B~s*=P8U39 zDG55=MrC@Tk(ndNfWX&EiXeKTfU)HC3;B#Qr%yCCvz)H*RY4jgeDS)b82DrxCQH-F zg|)iV+qNo8O#c6gcl*qJ%2wc;h%d@1iB5m8O<5XZu<Ul_dWb>BJCrS^R~}TBo6fsa zSsZN2^!GcJ-M7Cvq}<5JXf{3Xh_d+fp54l7(;Zy3Wv8Fot&Dt)@S{D-7Srw66=kNI z?Nv6IKB3dFh{?cmdSW4?-1G&Tbpofm?o)Q3{^7hP*Y>%`l`R-~&ER2eY+yY7!G7qe zFq#Kor@}ZMRJNFY;H0I%^fwcg1gB3rrM!9i^n;KiT|}lAoL1g8ec2&p_wBi7l*1UO z=N?h!o*vn*#529+h_du_g+FRa(@z{xh8_>|^r*7M^ba;FveTQ+D{q``bqr$6>FGYl zmEEV`S5xBLo_bN)hEdWS$yH`Zkzqa^lyaFYEv7RDtB7yAti0QMdiP0XuIWeRR0O80 zolzE;y#Kr??7${vOG8kkf=dKWeRo3zOG9{R#HsIYq+n@iI(?#)s(ihrA-ovk)OQ0F zWALJc6LbZ)CCZ6T#tN1wCpwuZSfZThWU63khGdbOnSv$CiB9GUmWUIbz*lg`nd+HN zpWw&H&unRKIsL;DQ{U+alvM1uKUYvW&OF`qw6ehT4V^{`Adfr7>!(h?bryQG)AZ_d z@M7Hpa`uv?#dPr5OQIJ+`7hCYA*1E=z+KkD+x(P885u3M3kn;vGBR0OOcoRel>rBJ z6`+MXv!#XQ^o6|&qSJTDsc=u%)Q~s!x3q)@1h{y&L@HAaO%yCG;Q<UO-Vs-qgNt)S z4W^&&tYB$5T`<l35u@d_D_U05WaX6@Ehjgah)pk;q7yXzikynzv|Y;b)1x(2#6X4Y z^wnA_+|xT(EAuf~8ckNL5o0nim>!s>uE}g*U@-mSC3RsYOUvmG+tl?y5*H84i%!3= zR_hJ3fq~)lgJKGz(_K|n1gATss>_4q!Nnk`Xr0cXr@}LRhKd=_^pzk58xCs8Ga5_| z{0=EUSqu#fj3EW6mzs*;^bK|@3XBHR0}WM0r`z&dmx1I>rW<nUi%i$nR1us$|FB&5 zbQKL1!O05s@{9)4Kb|oa+rB}-nwJrz(scSkL2J?J$%ZOI(*^R)b;S$~43KI#6B9!P zLjwbg$q$8%w?B|J6=0lx$5bUAlw%Ezv@E8VnyIKv7t}Tun^vbZb-I<Yme_PFBNf5v z0#)kr)2HaEh)>&~vVzfYdV-p&`1I>WDn`>E>8prNUtyuLfzfdKf{pTG%!URA(<dC3 zo5gHsU^v||R8DvLTmuz}>EGGa`KKpasXUwRW2nN#Z)9YG$Yq8G(*@31YJqNH7iKar zoW9Un#gWl)x}mFz@^oDj6|U*8*QzQ^H?UFZWHg-2_{)>iKp|Se$ka$7cDlZ;is<x1 z=ar?W^WM?qkTOs(H8N2!GBs0(Rj@EnurO0FH3c1CrVu@yhf`C2dX%|}AmrY5gILua z(_Kwq0d6?GF;GQ(x<P{pU%fB8;)PP(CrRwn-ZBP7zvSsomiexfZ||OEJ>y{8`AK#E zr!A`ed`IG~VpaL#oQuxudy6c3#nlD<Dz3SyXlm&Go%&*mbGoZY*X_zr7ADK&T|*gN z<Q1(d%@1cSKPGI~@#3sz$*nnwU$^EnZx_$5FK~FQC|1hL^?SjWOE<6QIds&o$ho^h z;CfwL`>g#v=Wi-4Il{Sn;^IRm%Y<Un&uOf(SR=J6Iby5B;(tfC$CSQ$TK-(an)_zq zoMT^|PBv;(D|wZ>RC-Pkb#e8Y^4w*1OXm469wAd)QqLXHO7*N;r=M;vUw->%oBZuf zLC1EzQMdo3dRuGKY{6YNF{P22KR+4Gs+O{UdUWRnuUYb63trAMtB~I)`!;CnoA~Y9 zXDCi@)K`&^fESfUmKG?HxWL3%XZnR{3PMbV2Ga$D7#)}m4UDD>T4*Uv=d}W*B1e^_ z(-l8zm`{Ijz*Gh-x$viw-gJlO+7B2Fra#nC)t_!_r6Mt1zrloWd%m-Z8sl_NYZY$L zA#-8YDr(aO1T<Br&$m`-gj8MIZB#6$JGiOHP2XdyB0l|szv_?a^X*hTw{LS-DQ4s~ zf;-gM)M&b&gNoX;DousyGaXbKA?J^6c2uzh)ilD>?|P~HpU&k3GQ?RyWcq<d^=;E7 zomD)h_qUt#)*oWy>1>%GGz;@wIK|Eol?ms*-l;U;JN;^@(cL45_{~>Hsa-2`vzBOI z9em(i!Al<nrDfKpYg^*4nwxR#-8t_#=dV*+oF_c*X`TPCWX_#4^S)JC94;2vXU)6L zSp3_U*lY7%uim=<Li0=s{;sCXjM`<_>yPa-wcQ|)JKO8`=e$|w_da+0n5DacBQn4| z>w>{8x5n%<tW9%%FHiV+(%zN9?Z37E$<n;5{*Mi;zFnN-z9&NCmXhkE6)LwBkBVq& z8r>6I>fzZmg=@{uH1R)SZ!X?ud~Bim?W$NHhswl>6-#bSG4xu=>iCFLQ_VRjNPUva zrqdm6Qc<-g{!){7?Ee{X#=~Y(|1xiW4X;z0nJ0RRyt3jZ+1_5a`BK5@^>OQt)b_u6 zH78#2p7fo&o3@@i@Hgw`LA`ZP|1!(HUEcyqJmONupz<5s)G|hHk{TKqgPJ{>;4)zP zTNjna=?XR~GpBR9shES#cMG2$<EA1x{eZvPnd!OiDjwU<`)bKEG8-6MO#kSoCB|f6 zJpE#jiaw(WsGioA_!4(J?*M<m>&U|$MjKv#XFt=wMCFxBmeF*VV3lOX_0v}bt9aD^ zdFpT9xFh<_l|b?Pb^o-#Hb*M`|NMEo{(qMpzxDI&|IgRIcQ>iPHdy=1^!m!h`<EQ6 z*WB**<wwvn`Av0?^7|gh{r#o#IsTRIbg`;#|0}BTOQN}t%)IkVKIV!2k!UYPqw+7! z1zC%-eNFQA{`gVo`}Kq4uZLIT=FH*<3f}!S#JhggzsIvK`LidTx3Lebes*PLudwr{ z`p~Re|Gn)03-@1Mcz@@dCl7wKC+qvgFOk2muC+8+*xk|MO34z<>VJph>%vS0vbeSf z9G?CDrXcwAua4~!)jIhH1)IIzWd^ga4Sl{?OaE77cBk$Bv#XlU|9w^*Tq>Y-wl4l& z-o}!P?9#EDM4I~FO<Vka@7{?bjyosDaldtwT`-UDP2EAJ?EW7O-}%1IT=2)k{NjG* z5MQs@i*??1*4K4^P0d`O$v-vK+c>qcidSUQyE*p*7Ae1eUM>DE{@-`;%pR7>T$cha zE}z~MsAXNhY2vMSey7~d7)lj1bhgdQT3Wg!T#hZo!C=Wcfjt&4GE+MhxV?P>*rGNp z$PU$>QJ}eEyJzxA@3o=FWfFWsz4!ul1!Osji`C3;zI-UGb+KQ`%I!y-5(Fny+_K?# zee;TUk*<Mnev|R$iD?e&6MUch9htkG`Om55xM&yFZ8}G`DR4<=J~iEMyDVjva^A-i zU&7x_oBr{9f5kG_bZx#3JC047zVV`*XuSb*vzJMD?z5XL7saE#dKcfDT+4j1#7a|b z&Wd2W4Gz(3Ho63FH8~i3_)7C7PsdwIf}KG{O;@Jn_ou$+v7f^BV$T%UWXE55jsdDu zwYFIm+)sEESopX)xAVXRwG|<{0zDu5Q{Tt?)ccCIb*|p{-J-k77<!yn$aV9TGg#{H zL`U4pzL*$h;KyCH?#zQ(QC~U(=f`AtUR>p@v+H7ZIGfzFFZ<#@h$z?^Em~_4y2mi( z?{k&>#uZi<_sHL>esD_d(g{A{`R!BGHh(+zIcI5Qx8J8db5jIPgo<z{ExTqYs3Wse zz4kq)uW!kb+jS;749t_`d@_1Gj(7NcIhWyQQtv<Mug!ffw)@*QEpY4)vAnSD3&Y|i zZd_CP7S|tB5N!!cO7V3mwg_b_e%op)$jP)(Gi&RXb61bN(YBk+_hi$`XKxN>UGK`@ zw?|Tw*<;Q}qZmQ$&c@O$D@yt&h)KEfn?7Ra=j!DMF5y19eA3p_maLJ@%4ZZLv=^V& zF`M}{@>WEBVoK3t)`$15vlt&YV9q$ZGQ0T{uZOi->^f`fhU*Uh0=E2lAQ^1Ca@F?o zWw8QZ16R7es!9u1ZOSn#=jp4AnJcn#`=jnz@-wGq2yG3qxxP0b&^P6Bmh3i@X_I=d z-%FPD{!}h>d*NKh?Mtp)jY(}2dNq{`biS99M(u_bS1v|PFbY$vOW$*SjqkZArZelT z0^XJHSm3+dz>T3o(e=ok#}l)oZhcG;h}yd**C9ESv9NC4)8^^X^OYnWW1ecb%sW2i z(7cUO+j;Mvh_{%@$MZVC<Y9Mn&nqp%KqHr|In9eFC|57|ekdetqO?@n`=c8eUK%c( z%gXh0;<X>%k<)*NXvNk4EZ(%E#3Q4OZN<4+S2r<#%{UV6E#adYEAS}KG+D|(c}*j4 zv7yJsBicS29;8L--ALB$*AfX}Z`u`IT-kTkA+*xsUCUy>kXJ57+r(aqxLaumAH8`i zm1Wn9i{>kAuAaN6I;&=0_5#m?+N$5rJ(z99>UXAe5m#-WVd=WoGw&n1V?(PPj6I|G zta1{s%xkGKbZnR`Zcy;Za~T(>YU>l%P<E+vH})*J@>i#1g0_$Lq-(KWpSE@-`L8Y0 z^i2@->X^O2>!OF+**D1_7V{n4c&$xwjo7o$o0_sI0xdeLzt5hoyvRandU%+Y?DV8X z7PiwjhG`{AZhGpQRl1_|i`ePM%=>2vJ&O`H7oI3)@KAcXcDUB!`sgITHeOck$4hb^ z2HY&%@t$Y<xq{*)w;sG=IGf`9sp^{7JI8Fbbgj=t7d>BxL>6)IgN}ys``;Dm#U3iS zx6){qQF03M(NL$3fR2Vzm(acY2y!&ky;VPAtU*UZ&D+onIU0)fogCz7DCU{v^_pf^ zb2K~Og3gATp|)wZmVfB?ruU0xOZ87RwBsnzHS+NNvCb=D;qDvJcdi=Vd&kzvm82hT zuBEoWC-Qm587uC_5J82K9(I>^5f&>REm;=vz4Ds1BVP!g=e!l|LBUP6`kNMP2w$D> zjq6&#GOgk_YZ!fV9w$6~v7x}_pkL@_hx!+njAm?junBTF)OnSx!ZZ3s?PfW%e+YvP zhg#xw_WK4`qxFHTZ5y`VSa*;8mdcUicV?SLP5sz+ZQ*<4MNENDZN9ARHMev-+D z-47JQ=3hOmCf!#tK~PD<xAvpZsw9J5U9*}^cq8YhxEx73>-hIiLx;_QHyf*!t|^>- zRljP5#iQA#86Q+V%e$2y+;ll$^vL;@L%|O5&05ucjvE_z1VokjVqGM{ZfgG8cFj~? zj5Fx)0dwWKh3B={-Ku)t%u$*2^WLQEn(;A>pu?d~<sP%RI`_dn9{EEOFIy(_t&aV8 z$#zbWlPuF!WhW=03oN})6kjYz*=i{Kb^BDUg>LmyBG*@ZJQAp>>76VTG2bZS$~U7% zx8}=hu6I^!x7g;?<dM;oA93XO(usl-B0@4PKOAj%uws8|#ntFQqlFum6}~vT`u-NT z{dc+6+wNX-;DJwbx|rNY8;_iIPOmtAudPft+?IXq#s<ZOcHtl0o_&9?SE_pPOxBqj z9=hlkITvJxKB?y{3QnA{NHwY?J>`b$JiXsB^NNH$H(r>PBHo(c(<XEEr%bog5wYrU z!P#<}3)i$hI;w2?!_A~%Q|o1pKykAs4&Q<^CTC(#PSxpgvwxMasC0I_*aJ1GGU2iZ zans_zx!(-!5l~+*%=RyXtI4V*bh*9OLgz!lo%?>i><`nND|EA7sPM<)zH+Y0@bJH> ziyK9*-+2FJxsFY&+yzEf!@q&=Zhe^3(krOAAke{LMv&Xu$I=_7?6r*E%-CzZ^}$`q zyB}T}O_H&=`C{|CRF?(Qxqf#WOP#*+f78;_yj^>K?@jBLN-ue6{h4Rau8t4>(`;=L zT^j2z?k;?mtm^G*yXxS6EyeoFCicqhq2He8JZ0PRXZDA8JyLhx?FhZ}|Lhy>(>2<) zRm(T|Ouo*rEjK!sO-=HJ<JtSIC$r)_mJ3Ha?Q{J&E8|l!Bip{B5>1PyO-|+9AM0)! zu$u2EoB%&I%EDercA?iv&PAI4Bfgz8*lA(u{qjWfy9)*%O&J!qE=a0Rp6Vdqy!>k` z$BU(DE2qwx^5#UC$BH-}4tDUdQBQ*m`z2T1*&z=)Hmc$_yUB-Jvlf4IUVCQM*3RQ| zSKU~B?;GRH%c6(2zh(Z^5t20LuIG^zANOpi?&IEayMdL_xnFX-nQdax*Nr>(<xYI| zEkY{co19bnHV^ZF?H=M{f~SP*jXC@72}aM}Cv9d{n>khOIp^d9lbp+fd4Koiuj*%g z&vSi(;P>PkA1^s1l(Eh>)zO^$)|*K&aAn65lcc_DuRTw8F<e|xsZ+~osNKTj5+U`w znupE8vs=C^aPjOF5*57ijh(@n&otKC<rXcvd%q>+<H?%+7Fn|l7fcmmRt{ELQ4c;i z>ZY9J4HMJUlR~CX^Il(>bZKq8s?9XE8(fVi&C(9|{!-tgl6$yq$=Yc>OZJ+V2dtD{ z&Gb5^v!f<?PU%Uei+8oIZI7}z)y#2M?ycF+@OhK@tUVvCIbhxFIO%46j8^<JhOqWc zMV-eClKj<AXze_8DX6_h+;GwCTlOt!QPW*xwH&A0u2ABr4^@A|waR;<mKg)XrLI@* zSLXLTU9dtzdba<@4`%~5e26*iI466O;Zf~>Z*FZ7p2B|jMr49m?bYkyldo^fW0tZ$ z*u#C3^W4VFg8dJ454lY$)Z8>9;<To+?S@y=Hf-GNaYX6PHSf$>SCap~yf(R>UAAP! zJMo(I`HkV?C(}<Em&~6y{m2R>v3gPI3!m~1iQkLdlj!A~#+loHXTizXhkvGWzxQzG zsk?D$$;_%-t70cSoYf?KTFq>?tH)Fm_qR1OBlRbzv#wG(^F%1L<iq?wPfSeiZ}=Pj zl+DB@+JLEQ1823=t>D5>VbP+(qHC+|jSpV1|6dk5r70<PiT-O1*$VgBq8cS78hiHE z@BQ$*ZTZX|ix1N({;HXC2eKy_1WcDUF*LiEA*6CXLxGup;n^eI+osnhJm3f{yxV%M zJf%{lWes<`i|~6HwG$pr2lj1L^4%l4V)q74?N5i8^Do?I{l0JOUZECE(<d8mDPJ&M zayPDHv1seAqk>|WMav&^gwML`c7sJD(juTRA*f#NU~04bBq@%JfLCJkHdL7_o_9SL zE~0ujvfX7?ZR6XB=0lYS^LCxithhPX>g3YN-I0sT*0Aip;^<c)e{q3G(Ay~Xn?WBZ zbvb8b%sSh=M)rIoTf^SdQr#}@C9bO^EP|R2P3Y(Kk1JJ{dgHRj!(dZM_03&70#f5k zR(Z15ZMO)j7q<%EdvM9sJ!uRAGgcnm8gt-7ho_k6-2F!CRpzsgaGtbrEvk5GJnO>0 zSK(0?&ct)`%a(-in9329aq?^5(rHq!HoEzJKV%m?rOG(zY+%uWq{$^OTYOSkIt6Z( zPOX`DDplBh9m6Gc*@ri;Dzh}U{tRN&IeU$FP4Q0ilMiG!%=}R=`?9`2!95_*de0OV zwpAJVQ(Jh0*J-6iq#jLiu6$cqnf_)2{Ol+>!Sim}8_yU>=4?xf+#K!kAUX5EMDsam zptGa2s-Fr&&yM0`)|vVDXdC40sB*tqe4$83N3nh>s9@X}`$%!;H=(tsP3qOPgH<^8 zaX-lo;T7`G)Cerh<PMozY|Wv4qqpIBi{PxL6tlAiat1e7pY1$1L$~po5@U<&B_`Dg zi?-a}WTJjVJAR?eVZK#eB_CHT;GM0x>~;YB?5He$PlxygeRFPicll%l9Jn%JQA%Oq z=W`7U?3jG+hTLwt(31JEtzPYIf<x_N%T*=5>vTS7t8ZBSV#X#D58ueEN2N5SJ9?y- z|H?m@Eb`RlSW_l%mfy3(IXV_k<oX`mo3Mbh>)bWJ8JoJ}mtAWq&UgN0dDTlqko|z` zh2*&V+f9{as(o!%y6~y5IA`hEsaBojpp@^nw28$zjz_#M-R8-a?T_r9N_RVH9XGZ% z5z#*?pnX1+rNURXQPpH;LG1oT8dVRrygGNauasqyU+hHPlr`PF*}@A~PMmXm<He<? z^dJ9lx+=RxN}&7Mq3QP%weqJkuT@eMeP;MUz&hSxvy!(<xF)Au<)*)0@$u7JlC+HK z-+J@!`oH&R!R~sU+m^GQ-Ld%I7-g>0w={d9MXu1+LyV#-zZSge)2%p|vM@_j%s^)4 z&RM2s9<X`WP4S%bxY=m4QnP3Em%A-FC#s!IAKg`&|D?dI!#6_6DQC~_oyRAYFIf6} zm7@QqwHa0>J7ff3N(;SR=E@iGV&Bs>2lJk|7SFYIk?~FFOxW~9z)eZ=c1KzJk{ec^ z7G2D9eR+TKMK&+<`+Ld+Pi{$2+O@$js$u<v=AcvqmRB=X_8shu6`iiKPD!D@{&$el z$~$U~4V?EGFK;?_O8c{()=r81R#o}myew_ck`}v4sm{Goy5-f+!ea#ocE8&6;(}i5 z<-BWQcNS%6taIAa)VU)`nYGgM<XHx;zkd6?IwRK~oOUTnL;g|ktg!F}U3WN4btOC> zM3#SH^I32nbmWq5u}(2_vxZ9AFDF&bdOOdpAGS_b`<T36Wf5Dr^JHP(Bl+jl8DiJ1 zZtcIK+<9kaoX(HD#H0X@)#Ax7^b1PQCbe$%bB$KsapK-THl=$?v(6vLzOyq(==CX1 zEfwWPbD;}CI-Gx7O)h%*E>jB@UG^lDSNBT86hGS+;z3tiX0onVndr5eJ4d?u!iJ=1 zhwb$_*JmE-;&7QPd!|urPVa|D!G*mZ?6Yp1u$s6}??&E_ybm{~K3%rzSG=;twiUOO zGG8#ncW;;)%VV%Lsv!64zSBB$j+ydan&K>Mbldvew$9Z?4-dI#vWf1=GUHC_zn0z1 zcC7Kvvcz^)WlmS8+SO~1-CJ*z-goZ64spe}3s$~+L+c+OI+ppMO*1z^b*tlbiHO~< zw^p5+H>2hG3`UiC{b#ZYRJ1x%xgQ9$U*B<HyKE|N+&!(#n2Z@#X6Y+c5;fa5+KL}< z_z6lV{HdJE<+Hq<Zol6@Rcf7oU{Uewjw=!(mha!(5uanncli9*CR4j3Yv!%HUcl;m z<_Xj8bE{M2N@mwfiJRSCwqE?!vFqPupJs^G&$le%=uw{2!+T2It@M(WRO`3SdyT&e zG`lx!O!k{qrn9YT=Y>;zy*@8nFKsgU{StEM67O@hH23m_-f?cd(q^~o;_n$uSAN7j zr}Dzn&-w954$IbRRjr(I{`j+FKZ~|(D)HsctbNk-IO8lwl3M)|tE*C$Q*U0>n84M{ zA2IQ9@X4y<??j??^@@T-w-r8N_<3Fb;^Q8n_Wu)Ak7-m&>wf&p91$Y&_=WoP!|&$* z%C)?s74+BgUNZ}ald)0<uWIt)v&=eAEv{Z_RP|JR7JHdJuE8;doqffTwngiz9tOH| zbgz!jSgr^;bZL2HPyC(Oo!1+DHnfI)On>=0R9TN>!us&r!phQ{yxY7?GhRD~ub1LY zyJhxb$)zhhsy_Se-(Sahq57|`RnPJ+Zuuzo*|Mia=I>7{JzF`e>ed{cdcnv=s>c@Y zyxF^`aivG$G_mQkH!8`qHO*V|<jMBw-!@sOFxh^XF0<J}rM~v@D+`O$MhaIKCQ9Dy zytsT~evyMr_EerjM-5g-H{_Ns?A{l8_to*Nilq39kL~(yDnIm^Zt<$??tS4Mjtq11 zns%O=`7=MagXxQRn<ul%mlMa0H~9Nq-cn@vsfIh>Y7)PgfRWOL^7XqkAMq%qPcWHt ze_hc&=Y+CrjNh}o56^g9Z?JcoZ<SIh^U0pD-9_!YRRp8fJUG%f`Tawajc4O`sJ@l> z{ahwSW8=Ah&J(ura6DbLUBdeAkuqPad9H#>G?VXdJsnxcTxGX&jcmk*$)FRGwkAk; zCEZ%L%|I$?qyH+gBXbXZ6yt8XSa&6S>Gv~2>f1S{T)VoHan{Yx7kc^+)~MG{7ckL( z{l4vK%09V_^wXxrw;%0%q{8?@aKlH=P;R4_b3RYfJyX<_>}h?*X{CDRaY>N`1%_zT zwP`aC`fkgxeu;cSl4<(cLlt_3QuUiuPlg?u(9wM{wM1P_uWgnxTU%p%<jZ^IGq!4O zJC+ulT*p;0^R%zuze>;g#}{j-pPThvTK&D~`*iRTNz;XGW^8=lDVx}S*-cgaY-vCA zh@=E(KJW=iZw$lWCnTM%(sn$2(8N_4dO{L&`Q1$~^FG>rUt85~s_^I@=!B$S%Md3d zZBCgS;k4P*FGpI1SwHDL)8zWMCXYG<+rL>W3F?`h-MvolV0rGNwf!24ZYA&Cw0*DH zg376CQ|4T=G2UK#)K4*Kn#o3!SF*;7SXkQT{D?5(Z#n#vW1ZQKSuyh-KiJ9isJ63? z$N6}#D8p$RF`JTQhwNU=WEMTe`gtOA+(T=<<Jq5&G$vfQIqR~K!77oug=x7wBGX&8 zC`s0LzS3H>^~0XW)koP@EZTp-FgR>h#r0hIl$+PAg#EX0>AN$0zBYqV**pAFmFT@C zZH05Bf;XOA61h60Y03`6S1C^3tKNT#ZtvJIRqD&F^%^&OY*)Y3F5BJ6$<lq-qDrCZ zUHe@<%|ffcJZBEdnr@X;n|O&K;ee?43Z~<a7q@X0f2v=iCNS&Wr0dgD`zIa#eOJ-z z^fcClX+=wJO}K8tJVDRZWux@EX|H(HW(B7(3VJ+a@z&dV&vWJyozh1=jt?196zq42 z@-<(d5dD19zK0C8q5(eLSG89<BuKB?@`6LNN#}_|?}aC?&T)hm?LRKZW4z|r2GDs( zmG=7+Hi|Bfc_CI*f9rvu%%X|C=i)zYv@(1C$oY}9Cy#aKvIHr=d225<Y2VxOpf{9l z?p~$kzP92oD<8RBJh_}jdwq0RVzR{-$tO$i+fBC($uT^<sx$96C(j-~;eg$iQ)kY5 zdVklt^k)gx&S^o{PQN&IR`|Y-Oxm7F=329M_}6grUaQyV+i`S7SWnD!$!$u;+V2Z& z+`g?{sni8N;^<96cJj=759B~c90kl@u=%#U<l?PcU$UBdF1>hRdigdbImX-5r)^U* zuAfn{sd{5^zSp5U9Zvo(i~Ju$4kzmLSzI!AXV2@*S3e>qfBkYy@?F{bIi;qG?@EqD z9A&*XQ+OWya3ZaBJJ#&5gd9$!lc{xS5nD#ioRd?EpB;uAPBd9f;c%Ds6U&?FH@w&u zu3WdmLgeZW$%)I&eH${))VoH!sdKbp`FuODZ&^u5c)R#SG2S-r%m!7#c-NnHvlI^Z zSH?ZjlhU*h5G~~7yI#q@ERE0PNwJX3?`h|5ZqN?m&eMCPHo56RS4rl)BISupiT9N5 zY8dx7X_{_O<Jh9{b<+K?Qx?~}gVaJF+?)B&?A)xR_!fTqY)`uxQYOzjvZo*4t|U>v zK-*ivDE=3B>buh(jNTU3ivo+zzH?wpSI&|+vn_ef{T&IrFGQ5A;mlZ7GBZEIe8!?3 zlP=6WCblRxdxm84LdM-GPP4suw~5Va&HKs67Wa~mB`v=6tK&H)mBqa-C7xvlMkYnF z99m0f<iDCSVdAq5joPOV9xyw(uq!t1%84n(7wa=xmn3?ul<D5*@x|t@m!5%9RE7S| z%rdz<j}i<Oj(%3Ni`n@#ThEdCaHI20rhWR*LyKlhtAh?L3h>Y?aN#IaS^+t<D3VY5 zQ|4;#i8qz@h44u44qS37!S1w5u8nj<#u8o*y~L=FD_0i?@Mvw_+E)EnqL;5T=mcN; zgX}2{m6s+s$x8NjzMlSihmv}|?yTifSv&T5ZCp@&?9fYI=ee$%K5UybYyFO^78`GF ztI>Tisr7f?radBlO|NIWh(_+=MLCpcJ7?ouC*wJbqEshI*GNh{|0&&b>&3+Kzm?(2 z7nqv<Y~u@+vb_#FlqkCESO~ZK#D-(jYM3mSthI>e+|8*g=vUoz!b4?Bxx|57wcTsC zrF$MZwW!86yTxNi)@|^iM1lLmv|gU?b6K-z=Jc<-EYvxVowQ7onG?}9eY)yy3#0m% z-J0g^jjumfO0#b9Ird71_3sRiFSUG56_eNfFy#nfxbyOZ0Y{(i#BIDy1{-sm6AYXy z9{ow1s}OtDbkDp!iw}7DG$nG~y6>IoZxVKw@yM6h47FU{L{5uojT@Ivn)tDeH7op{ zOQp}tMSBw4*#k8eA8S3kZ6O2OE^U$Ks<r+9ZPP@#;vf875Kypp((Qni>#xhQ-qq8u zI~(5?-Sl=(kdCsL+8n2X!&$*;mt9{cUHj$xTqvm3akG-^swauzf2ZpfXergFZDd-% zVK1v)&$*coEKmBodqvhSDvNr1a(BRka}0jJv>N8``X*kgDINqqD(Lw}7X6%a3pViu zWS1{}xp%XudLvI+`kBwFy5FMX-YYN9uGpj-Y0L1rjc+A?#F4p-p&7Gnb|lDM-!4^R zWZd5((45im<+b%;h33OQg$^CnvSRRzxM!fiIsM3s2F1E9iH9Dr-sIfAaNi!!uNQr$ zJGRWtNtrR3ak5+78b7lIJIase#~)_nT~_zG+HXgz*3R#;K?@^!Z`|V#68rX5cKV+^ z7S@b;(=GN|gevY%(7UbAsVO6Fs>{Ir){A?gh2vZS->_rbqd%W~d6(_$q3P@PTF6X) zTBs#9{lQ)fRmRuT+4fneI`O{<VHJ~F#c*3D_Usf--v@7(Zd=W?<4&UcQa}HUy*2NH zCQjOH&L+KA^1?C?T`t$-yhrk4WfW77FR@ds4qmpo`S<tf9YtDgPWw)ZCESl&m61~? zxxnkx6Am$ruCo%n#U(q}aJjV4(wB%|W4UkM3eaW+ollG0=L9l+>f>27arU%rK|5Yd zv2MRC6h8gmUM2DR-btT#7;tvE$Qa+)=X;}?HR!?C$IGw3>Nd{tUdZw4@1G4tYnb{I zOe_r=?p@Cj=#AU4ZE99U2S@Go<h{b3MR8&Kf_1#>_Pg}YI)38gKIhpEvX&dA=06f{ znUfYh)2D^UX?k)?s4FK|UE(E~K9(PARX)w%(89j2y-L8|u)k3vUc`TjzrToHWToJv zlNZ>IeP@+=^LqF6`}-|?#CNl{guG!6eYmaU=)<xZAA@g|OsrJ85If!JfQ3CzW_SCi zU>mRV>?Y}*(^r&exz*<{`_(3M#oW1-AzpkV)1CVZ>s|*>Y7v~NmAhiD%%Kkx)u-(N zpGI@ylY1|>z#hgUi`TB?b-43*(wBAc(`fP>=5?QUGF<l9WsmFcg1Z-+_?E1g>v+Uv z->D5(vkVf8-=_MkQM(tIU>qwE{fbpP`J`xg!J?f<1E0Hm=C+uVcgs`RJN=UJ#OZ1W zl$1rc3+(@EoFd7!#|D1j%(=DG;|?gv)#ra=30e_qm>Ta@^`OrA>yP8H7w1Hzm%p;( zTT)={8*w-JS@gperNpw=x*slPE}Z*Ca<S_ko992`EmjK@3-d=uGV1iNIFvGbk$4*0 z&b5m*CoWar`|jMLvu|HWgdB@05<k=L@_&82nMr%bE13+bkERp56*jNu<5`qw_%iqi zt1R2}8DHi2>bsWsxt^7|7clqmGFf9`b=TWAVs*z(`-s)OyU%TZ=~~~xDT~(k8~e-& zy;FYVl3jiW&kf6?t#!h?jjz=jM;uUfbA8rw%%3eN&sg?Gg09HT?zs_DMY4G&Uc2|? zMWcexVV8Y+QR-#&?f=$>7cJlXEi0*W{<Xu}?W@+SCN%FY_-k38WV+P<g&yDjR<{f3 zVV3n-tEE&pR^4-#J=iZAy-G%{Hz#NIH1%&&LC4APXstP;nI8{6PG-?(>7WhQjUy~K z20a(h-o~o|K2B!qWL@1hBfY4OsL-yW@0lH|SE+FCd@jAC(q-X4mc+EP^EE722JwV* zS?a1zJs#q2YPh}LlEeE<!QrEaLe2!;+UHyGG3a=<lILCX$}>)tXAPC_Y<#+QiY-I& zipV!k6U6U6*m}Y_U%+O;qmvq9H_o06;@dveupyL{KafZ1Lu4Yek>a9`^4+sdPoKQ; zP;o<=rA^s2u4N+YtkX_U(SK*|v8&Z$srN>wyQj2w9F$nqBg6CH_#NjX(yuPnb#pVE zop=9uB;-7qxozd{;oP9}WCCX$Tbw=_a-Ph(!%Ua>bkDKvHlF5v$L`4D6}eY?TpsJ_ zUCo$&;*gS}N>F5<IFI1#EpDEHJ&kTDA_sqSJ}`UtFQlI9U1Q%jCWpO3t5v5bRA|Yw z<_m6{abUXPVI>KB?$-E|8zrPx)~x*<H%Y%t>MHBP%B0TzZ4WPVP8FSGnz47I;?}5) zs+-Lhf@V1e%uPwZ9ke-m#VKxC;n}@)wF%Sr9kFn)-*0EsXes=&>F7gS!T18djgswM zjPh;Psddi|{8na`;C}n-Zugqln5Q2W+)JDM>9h9b3#VBETpeB%)iz9K&a&U=#xmi^ zhe^4bEH10h1+HCm>SCat$g74Es%~o|k~dU7IJWED*#{AxTS`n*1fzC65M1-gcTv@{ z#ljD@i=O9ij*wLD@fBYi^mf+8M<#7bR~Bz<*-(Bt?4wq)(W_bZ(<My|?4pmEPA@p3 zBqbKwGUW}sqg>#%!%H0YbQnraRZP#%oj85L5heBd8A*2vr#A7f<w;=+6I+ltl`$hA zHDs0E=ZtczGtE0*>e&bE{(6ulL@kX;i|uj)*Mw=GWW?SG9LqT-D4u?8!?Il=kFqz- z-x2rxPP~1(LTb`A*614rJ#KqX*GBb5fA5}gW&OEuucV!`^Nr=787NL^yuonlP}q-@ z1nml=toVh(%cjq&(z4K7%5~eZE^JGK;3bm_99ek+!gDrAz6no}V7OO3*YWIu@WnHQ z%G(|=%<TW7c_(!3^fgD7<Sa}z3~nyiug?GMy<yV9Q0sXfc`<kIx5cwC$@$1XEED5w z?rCL;&`x`MvS#-5$m$>a-sN1A+qbFu_w=x8t+4tR!H&rc@(q@S51D^za!ovY;fP47 z!IPbeHb<ryzy8({)iveF)1ID>m%Di?)#p5R?0B54tf*sp^x&6>iSP1xEV&IIoZ`yK zZ@87jEp=^%YulH#t3s!QeGdNDb-DccG?qtJ-?sXz%-<@~nyAw(CZHM9Au8PcsY1*% zj<fhk_~+n&`gJx!$Bu67-X+m)(sZp?k-_8JZ*~2TN{i%~rj{jqC~}%Soo(ixIidW^ z&O8&>|M|>u=eg1kLi$mX91N4hK8KY*scua@`r>f=(XSpC%lmY`EI6*ibBg<;b;k7D zM<iaCnw@2ef57@!b7$*9)s_vn!#<tU$UA)c_IF<O_~(=K-%6~hKfB?HQ>enCYnB%U z6)%;wiAl@|N=Xh_uy3j1p3<+fwYT=K|I^{JH(^I`yv8Zza}A7Kk?*EyRW6yUQzD$+ z+-2eJ`+3GAousH9i|Y-Cdu49EQf{2OVbba~O<hc<A3c5fI!=5|&n=OIg(@=d?<vGz z<#lIXQ~$GY$9B)wKQ68Y6He7LyyI~>H-ll)$0!?T)2e%VitNnSCo(tZYaYyQUoE+H z+muz$*W1n%%8-okEb0_G_dl6Og1gE+L-X-vqwR0mR_mTx^UQnorz>2Syx$&n36QOs zmAAn<xs=8G`Su%a{+k)633RW$nzpd9f5us><O^2aN9H>9PO96(W76aNcG10QiuK`l zeOuF}Xn*>qw>>asM}k@3jti3ScSV;RRWGodeI|}C(Sd1>xa)eyzF8I)f?+dzcB`a# zAAKp1wtnH;fae93>K|QiUb$`Xt;I|s-u`if;_1NRXbZvQGut2KFZB3e|6aBA|I(kQ zzjqeL94&9w2(M#1bTc8t_tPRBi=(TSJQ96WuNG~od|^jLs`I2Bt`~dnUJAVQk=H^w zCbdy%W>4}FQQ5|Ytr<V^uC7zl?f8($=w$QWzE7xQ|K^g19PW1-<^CisSQLEw&VA51 zDcAC=cn*97pObQOWBU|c#5pNu#}yfN6+XOUW!f0N?(5UN*HosmKhIoz=hKn)`cGfV zjyHNLg*;zuyDeqU!&LV<?|C0<c625_=M+BH`$na;&?|c0wY||Zo^)?dW>VKHy%uM8 zI#l0}ulJ+tMzJd_izLct{5-B6wj%5vPtn;TR{h9Rp>BsnpC(L^cHJW*m+0pnrvFF7 z^wkpA&5;4O&c9{4&zknQVl@-vt%}@LA9vTs@TZtUPf~fB0X|5j!tkb1TEiq&4&xPX zQ-5k+)H6T!Y{i{f3Vdqk#ZQa9$)CfguCAhX=jk-JJ4+k3{gC9Fc57Sbg#%xFG$!YJ zAF}=w6YE#C**xOVPuq%$UAsL44tFnizV@|j)6ooT?GOJP?>#?%{rmE(XUslVE%vxl zpJU7#QT@P5waLiOLixML{J%#^&(t-mq^~OYw7c=W*fGPnnJcQcb!}&pOPIu8dxvYf zz{9CU4O?IAl|Ny8z<3*r*`(4+;U&*nn72)Gy1MDIy2A$h_bOkzrsRAo+GnvPs;TME z&N()ck`Ze^h`LrBPqn+LDO#~pyGiS*^^>J5Rm$rF9t8fhIyq_bw~8J5e5<mKTFTfp z^jlZ9Kn_v~)`<fjr1Es4>yxKDm$!a98C4m#`ZZ&w=MV2aM`8k{j`D&IQi;CwdOB~| z<e1;TzIMANPmr#ECoQ$-j#29Ek1L}JZ*G|RcKgCfCLOPjet$3fetOH=xvjiiD(ry) z{pIQPPv`ag<_mA(nmy0^$uy1}&;A^~Sz_NpEq5($Ui|gb-U5|(ypjb1U%y&?Pq9)u zqGp@^{Mqa|Yq{7iEshd<^f^Y8t6cAdg@N{dM~3IU;%h+%sl59%_c~uF<RBGm2j2<W z(i)=M>i+Ih-+TXr*`=j1FN<=!mhdZiv~XK2xlv!6Bz=`lMwBV*p_8(@{4wsE9@*XE ztA2W1|ED^i|6cTr3kzJdPX7^by`miX_`3w#$|~L|X8Rdd9(m}tA-7}d58kJ7eY+p< zy8W3{$vHnruIP}(hWg{%pPl=zrDmhCtwVI~t#4^AdgX7l<sDb=4yfJyASrGN_mXn8 z!!B>acRpGiUN2L(rzh|^Z|=;@J^u`k$jyANZ7t_`F0g3vwL2j^&2nBw7b0H$I1_Td zjPW){RJW|rE1CC4^SkdhO%KpX>2#gAdF^cvvA*XqOBZJd{nL|WT_0^*)4y2edKsJ8 z;T8T9xNoKzl<oNV_9Tz8_VSY%ZaIe;r&Oy{Ua-D&^q|jmr<}xk4i7PFou@6+r@Pur zDB;|&`^IO6#}aeORkKrSQ!8)h-npW8GRNY2o`WZE*Tx8eO4oHKLnp;v+sb*g^7rZ| z8k!N$o>mAi5xsqS>AuaJ%G%9Se1q67N~g<LCs}tqlq$cYt8*eWFW+I3jm7jQZ`~9& zM!5)G-sP{Q^0?Q1!P_P_v+4EcEX3>cyZKmE{(4Q?Br=Kd^`fg!l|N-Z39|e8h)wAE z+$}~SO{!0J?3_4rng4~?rkm#^spZd_rdPgb(N=}&U$RnywX!Wg#(Kr|svVn^bw*Ic znYl=P@$}g#;zC~Amz?Zg7Hjln$vex~gPWq(U6z$y_dDzSqVPjcqibbKeM+9qn||{C zao_32&01oN_osU`Yf07D$UTvIBipm?)M<|!4<D>?ZAi&xE9Dk?mz%obqj&flF^de@ zlN~~?r}7xDiZrYED+Y$`X$sm<d?w<?-X_kd`3W_$?fw^nC!Rm5kuqN)ly$0_*$wBM zX0=83%U_DHEabH1eI=4|^0HFjj)b-U4_>M$<r2#|``=K*+RQC~q1Ca|_3|?g6tSso zv1#Pw{e0(|?U^60hl`jj^v}K5W7zQK@eFCJzuM`Zv&7Uko%!FGdu%^ryX(HFh-JHj zHYLVS&98H2e_l3a<Ff1*IVYM<f4QG7_Uu;t{y#70|GmBc-+ujlZgy6k%bAX~3io^r zliPD))#PvWH9zye%&&i3K0|uF>W;nh>X$jFx&OHT|N8X*Kj+{3r~lV-pXD$AC#yrH zn>Zfwo=m#GFG2bvuhTy_q2J%`|NoiG{_k&mrwaR|x*tDJ&#(KGZ+PcR-I@9Se;qAe z`#<tgpX~Gh9!u)~eS12;<{xA|@H~C1L#^5G-afCd{H^Y;)%Cx@dsWn--TQvE%S#^P z=8;&DKJ7ct|Ch@*Z13*iFKoS2ra67d&i#M>Y~S0VlFM9geqD2(|3RZaTdFdqYdy*o zydD3U|6y@h|BU0W4*q|1RXOc@-?o!V6A~|b&s-Wl_3EX>nXY@M_})*QC%THIJ?)H9 z^QUz##^<+QFsq%N8a2(=IDOvXo$*^Lru}?p-aFsb^u?kH$2Uz}B2j9S*mY^nqxnBR zZpdP&Nx!Nf`f*1VLrp}zDTCcQDTjr@O;33pH0CGl<k+Cv*Adaj+!l4)t^MF@3$-{s z>3ZSPs|Kvo!wf_9SeKlQ59f7$6_mRy*qeLSzv!u%6<e>Ye)#Ir;WU;tm&_J#HTffT zeyhlbjP!|@HfBhiG+2FllHz7Q-OAh7)~L=-tBnrI2|J|v;r6PXYVDDU*8@$AvOmr$ zy1i@fvgMJFue+FCbNI))n)Q0bt!)u4_dP<}>(=Pjv$H;5y4-f@5n+4r*bNKqBOm@> zbga%pB~meV>Zir!3f`P$_JygnbqarE#h)zSUfHW6z*t{@n0Ll9GbNX=iua;bonGYb z*zTpV@z#ovt1BMMy;&=?V2#<eXw^wOTdP(dv3V``a;=b@ui1rY)t+5PD_6V3yq0^m zR%lMH*{SHzB9njN`i}R$J{NV2xw<A{ac;p;Rq;&Yx}8-Ul;$p5udQY^Gbw5L<Vv+2 z**9{OHWfSgyeQ+7ssH?4aZ|LaQAAF{_9BjnCJQ=WhxM6Fvt1Q!sdv-IXS>&rqSwn= ztPYD^SSuy8_2V6_jh8nRMjTp`*#9i7^F)>OnYGF@qV*5n*~MCXeYsnnkFwh#HA^=k z^_y;KzW;kl_}ylBF1WL4b8695ztso-)&4qZaQ5cUs6X3$Uw=Bkh|!3z{#WH5osWfo zzA68HDtz~i`{Gyn?yLG3?-y%Vev=dL+4`qD*Xq*rO|=};ls`*~SL|5+jn}j9-nIIT zN4G0xKNkp}^}s;)x#6Svai1>a&B_)2v9;{HzK_Dx+aG(aEjlht)Ve)U{^imLuE@Cc zM|w&f?fJHB`gr_>QV`RGjcd!VD>v%ZyZJgCw71;&;@Pv(r+;`=3{-Zqh}^vT$4@me zgFk#d!{<-;wDXb`4^2|p*$}g2V<CH#;2YhFzwCihU#ib#AFE`)FMXM#gE8fYYVhpo zheHCrd)p+}?R=J%k+R`*;Gv7+{g+kNCD@<)HY@Sf!u8V}85X}jRrFM)nOB@Y$A{e~ zETR5wS%t(C9!}%F8jeo(D0^YX9rYWJ7Ve3XI~@J>)Z_;jcDJ!f#F*}koOy}+b5Bpy z+YR4(z8gKAxbkT0k@fo14dqT5NHkT%d^=k-&0$sC4hwfig}678_g{A$JfQREQLp56 zl_Fiy5B_!^AAg;HV)^VtMyI6~&YCLq(fF;j<J={BmGyD4QBC>Q`<I<~ba|H7sS8=p z=4^^Hn)>`n%;GI-A7#!O-gZ6wdF|%c`xmH}wS0B?;q3osq58iI!v8l^C8ZfYJbJ$? zo%g9){9o1dQ@ds;6eRvAvQ+OcUfOiILsUp6YVz`CuOoX`i1J%K`REtA>*U&1SGPVC z``#4HD_7SWv*q;KkM%z{-YBTu@o&##^+|mXm>#9>I`;jV^3U`zw}|75r(|Y}m3KW@ zWS!5EvgY9Ic-cUoU#sTxy4~47L%$%@QBOr=SsKeR?RSi(CJHh$3zE&sQv;$WwYm7z zb6s9H_v*v-pQrE9UlOBLb;t9Eg|@Mb`Po?;XR^#PoFlt2nJ@Ckg-<^D^`HJncpuxZ zUzv47dhf^CPo5ml>&%i(cPYr@e)1|WdRC%O)Z`!k1Hb<G-VrSGy611%%EDuX)|zVn z1?uY#T$QRnaCJ?+&U^l^+ns+h+b%CFRsOc|pYzY~-=$jb{r_5BtUvVo{*&h&Pv<XX zIi;yMWB)Oe|6iVLXZ-bEDY3oK$9|7leV_WixyPPfd6!vJTe+@ZP(3B4a((~)x$ZN6 zB((f7-g!32XU3#+pS2m24VlU|iZCX=?3ulkL*$#U$uuPcow*lvW<1IGY`=CP2haSJ zWDO?gt2ftN>G}EOa+(IyUa790g8@_OS1i=9H**eDNG@A*tEbaQYM(?`_p#LPYxYS9 zpDd}r6%pKKd-|PGO^n&Cgr9k8vo=PS&6jl9$YXfwvX77L`?RD(${c&QroDA(*x*nm zRgkjzSX{Zapuw402_T{RL&sR61QWG>p7mqlTD&U4T2P^9{SICx2P3IVdFo7Ro1!<D zDK*FXemG!%)o)6Dly%`$QzKJt(@W{M%!{l%W9uL7*|p`!y|Oyr2}hTkP84%~-m`g4 zd~k8^rCEovEsm%Bw`>2zZ~C!))(>ajKg}yUSKD`<j_h%M`FPJ1r#*s9KlB`P4*G9z zb%+VOy~<pUuhHUMRQdc#7Z~g}lspcp`q%v{=+EIDQ~%ulHI+vv{Opw-d#rB%`1GG= z?&&}i+gayS%Ij}iOg|&~I#%d`{2lK-DIXui3w5maEOa?<HG}2xB$jhNQMSxCD!;9L zmu{{nFvEWB>dbwHF>zaGGj5zR<6v~i?8Lagw^bf%ZvXs1df$sOrL%dr&(xVb`(5m2 zA*87CGwW)mQ4wF<r~B)SAG4mBd*(si%<>p3BX+Nf`Dgb3&2?2cT3<8Wzb@o&>fLuI zcHFXDx$Z@I`R&i27ZpBVnzrn3*1tHe`LFEjE$ns#YD_-hV!h4Y=h(wfaeMCR{Ad04 z_QY|YC5=0~&Na5yx47&xR+&^kbB?>q^vcQidM@_+w+R}>MeOT1zgcnC(!l77sKs^j zs|;q9ZTsr|_3))F-G9#avelkARKN7A8s|HQLz|UfB_4`hwdY7{L8O$|7Kdq^l9Td1 zw$v%ve7R#~eNM4`7F&3IjbYli%fBmZe2&yy+Nqvc6R0TrvNH7JoTN+jm23CdfBAm> z+4<8o79F3~?`6yX<CyoXx+Se*()+C&{vPBz`0r>uU;PH3TmJ+;uk0=R)olOw;f;Rz zdjI$xm&KPK%Y9Jw{`gD&pEnK`Wc@k6KCD!3MKF8+-w*1m`r>6;AKE-~|7iK|;gy3W zS&wa++*kR@+HC*$=}$$hOTUigH)WZXuhw(TvG?8j*~Fr@P^SO0O?~Af8PmfP?|j(w z&6590pqF2AUD~7fD^Ju3vlgg)zj5&Lg?)O99$IXvci%Su+40~zx;y{O<+yWv-`Oom z)qf6jomJodCB=1aSqp#IEkovqq1j(uo}Y}ejmTFo|KXBu5m~Cf`s4ZehtC&q1<!e5 zS*gihw{O?u`Yn^@Pt?vn`fuS&In%qRbLXtIdO792f#AQw@a>CJza5rO{#S1IOn-NM zdh?GLEPKzawr6`)zp=T#;QQ_!yCXNIzmtnSlg!@F_L2S8^UewSe-BpH?O(TF=BWI% zyf4aeHCsgd3okqW48HSG<o{`Q?-wb7bDf@k+`{-->F+z&s<^EW{0r|-ep<EZ&0$9S zW3};TdhH?)xO;y;@?Th9XTG`jcafCZSoN0V1+OHMe;(QJ=Jdq*$@X{ZPc~Ss`dw__ zr+9fX*Y7hPcTVeAy1Uf}UPwxR^t$l*^y7ct=VbI3p1UsXzdpJ{|9t=FxWk@8|IaDy zxu3}K?{MFPa*e;r>*K`Q9@iZ!e{=7zRnVr$UHkL@JY&}V)g&tYx8wS}M`g<^o}aw+ zyI;(|w($Bt>z^MsUT-Wfv6gp?@~N-C`}#!QlFxf)ls@49B7b^+M(A(x&B1<8{onqY zEM7RFJ^Xe3)O__SzpryHz397l*V8Uu_IvoxvPb_<zP8X?@=sz<jpeGB{@<3^ubaMK zJ9PP~b0M;;tM-0;tao4CtS)J{ebnpq=KqR59h|vpv1ZAVS1AH>PS(!tR1bb(-SSI9 z*!pYzpF2N3b|?S&@Z;!5e*JufInwp95Bfg;(Xexmll@(2#MEDJG5Pl|6N{j)omnqa zTWiuDsq?*k9kSQXzVC5ih@^XCb(`w!>mO(8R7UFVOn)yt<Jc>oOgpJSb>%0X_H5fL z)%@<q<?hW3KJVKQe|OnG73rU$v;Sr=@5_>&SF<VnW&I!b%`5%?ZhdQ)9=w0wh5h@M z?2|G2?X#*c>PzY7Z#NDmKX$+SFZ#t@<(<n{*<DVvSQof_)xO2g-8C)OopUeh|918D zlYM%-j~|Pl7x-M??xOc!U7zR4(#IFthJD@S`fcXr2g0R~<d=PZpKE2G9{j&;+2_}} zHu*=F&FufQ=A(?Zd}}@5x7+QT`*&=Oj`P;cH=K6j`rp09KQ2z2yn5q@zGFZ1cS@aB zdM(GaM^EOSQw=wx=>M<W_gEN$)F&<ViQ|}8$kK9KMU-pDyvYjheM0XUwyjoUzp|ui z&$YDyhge^(xbF~a_hkCasT?-%dV*H3TjU$%k;(h|a1;BDi%GKsuG&r8vY=kiRx8g* zH(Nb?<-DouT(#uB)E+6|WwqM(qxrh<sj253%It)To*Fxb+cj^}o?l$~pjeN;#_g}T zop8xhW3SjBHH}lQY0tm-sP+7ce}~c?#O)SO7Pnh`W$O9xp84lBt>-hpn{fNbnG?s- z6~yhBcYTn&F!lTay&ATXhsM|Uf0n$^T7Nz!>-lHVpeX&CXJX}c#b2%GOWyi<X6~Jz zXO`;K)E)RSPd@$UpC1<Ox=-b`KlA(kV&C<L`QyKZ?f)8i|22mHYh3uR@%6vNj6a8e z{A_pp#y{zS{L`cM9#=E!yzZ??=X#!SULZa{;(hjRBhd@zuE;+0bUkq{L~pa<)QP<- z9m<w5)!&@Sm6HCdZ$q5pS?S=NXO4yBWhZNumnLgX;11rIJZ)vn=2Wf8IWtb}*Y^?K zyU{T8N_Xn3HVNO<nOd*T7=@P1OI@Ymb~@zZylE>JCFus6AJND@9dhx-w3Um#=?16f zZt%G(dc-L7n&jb-$ZnqC)SXd2Q(1G9vwZk{R9_sr!kehSOsFVP>(m<`)=kEu`Cs1p zs6IIqQYVp_{Ho0$IPmkikSRB3c5N$LwrI6=@JFpTt<$~cs>Ig!l^@LCIpOSExxDnU zoJ-eFM|$mPnv-qT|K{y+<9^d=P0^pXX+5qvbM)cIZCh;k&(6!*9`KU??=6Xkdw<V6 z(_Hr`|4MYO;;(N7Pd+(+vWW{9^G~^`zIJMK_R`S&DDPWQoClW&ty?=a`pD&H-{#KU zukmol9{%s!YksuycRL>0<&soC;go*bh4z{S|L#2bxj<X`*4imAstxA;dRVJu@@1}P zNY>en^)_DaZF0XqZ~ti)Z*%(K^LO%bOY3W&*rmvPZNIOqHg|E3v?F(sd-i62)ve68 z|1hpsTdZ&X$kV8Pj(@=;S<dej&%SUTdcAhy|9fXT`Yl?UkH5QhT)BG6aeM9k#Xj|4 zWjR+)Y|*ka-h5~B-jk1&3WN4bb#oXmyYOLG_)+1k^{?7*Sltu7vm<26wP&^~zqPY_ za)+q?eJN@9|K)<1`7+M?{Jt&P<Ck2K^ZMz^kLIk#wkL1AvDUu#!|hkRzP}9P%An2l z&oc}5tcqA`X5(>FwXXD8-1BlN?-tPy7cZ5>Wy<<p{&m%I@_ZHR-xbY^@{}hVrvw-t zSNRcLy7u{(kJIhut0>h+%vV@8Yy07nBlqTbn4A{gYqjECx~f5TQeMnycZo+L$>(-x z{CceV?{DOXHGC&k?{6#pA1=O}XSRUg?Uk$S<LB6^EmDm&_^|Dg`Z@{Lu3qgrw+(%# zzPE2YF-2ha%ln%bu^QFoU(`xT`m=3OXhQGbdy7Joeol4iR`Yvy`0&@F&w2GKyi=;H z?;NrG_weztssPJ*++W@+9gltUdZ)|lRH2Yvzr=1&nmgIZj<2M)l}o?KRQ&FJ$8{e< zrrp}{*7)eEM@t*_SR3kBGs#yzdS4NtZ~W@!#Z@cqB;M{{fAEva-Lv<9t=l(G_ORQo zD<748vU&RJPOU%o<Jmtu$@`bejrUD9ds1EBD1QHF^vAwyH@)I*E<Rnn`a@IKA#SEe zXLat)|N6CXo7~R&lIXr8|9_}FtT?&HF+=V1*P2qLxq-W5P5X>$zZ~lOTWBwL>xbR` z#}Y5Oe|kC|y8Qml1fBLD>Th*#`u2();y?aqx3YkL!1U5Ko%o*?V$JS~LivvmzZLAi zb~nCl=FR%W-3w!neo1~+w0Fl5<<-llIo$P?_x|{u<@v1{aVNvY<;6~_&zO~0X8ND^ z=)cDYEIxh+TeV&L)N#gHKG)RBH0`b#>$@}6FVue&`-=b9N0C*wvp0WTD)#s+o67%W z-uFCpYg=FM(f_>tWyP|sYw{KJj=$OMoGWiW-Evd!oDBvw1^ese&#rjh@ZS3Vw&(kF z-*25g@AtL#59f~m+}Y3kQlazd?EKf0WxqZB^7gUTa+bZH+b{33_!|&)a8<oeo!z#N zM?AK=AG&;h+55v@!E5-ZuHuaTct!l@rS}?!ucTHU`DPLC@h+LqJ^a0oTYY*!T>8ht zEp;`0Ju!cjCGF>E+5UUzalf#B%RG_BPxJ2l7yI(}gG%ixL9<_dYimEW_eUQ-o#OA` zalQ4~NzIVQ+Mhq2pYI-D-?#7CA?4bqAulI>xGs6SZsC^gpZFfS>)!IOx0qD;=h2Fa zzId7c1uEZ9Y*k;n?s>V%v%+KYsV`2<QGRIu&q>z1?VGjNqpz8TDjz&!UCpAZ67SX5 zE!fq+ruJyX>3^=urzG-U-@e|vefsUK$8P`n;mLePB458gyJ!2?x3A4^y`FZoFwNHc zhta)tcm9by*8Tlo;Mna~w_oen6+QMe>iJkUb#=JOH}<ZdbM;S67JjGmeZJHELeKgj zm)?)tUi{YW*{-g3<aP6>C2GdUZYw?hdi2E#xqpA^H}!sFF^~Hm*54u@{yCjf|GmJ! zT><hZe<WPm`{}6qFVFS2GrBF0U+Zg;cmEo3m3`X>Z?jwaGsX6Yq((`<?X3J5eIr9# z_~FY9XRYt=%UirQfB#{(>X{kIi`VAQH(Ar$TbBDhc*(zTV}+jHvZvpc-^jRb`{@2j zx9Hm6M;LBT-jrCMv&HpT;m(TKhceeErZY#pKlzt^-n0CdTco7l8mhj!zUAV)83OxV z8*(Rp?A-M6iHMQeE#W&qT%_M>r1`I7Ip+3Tb@IE?$8UeMFaG$garWQWw=%9zefR#j z+i%s&kBoD-s6RWJpSbwzp7x#b8!uklzW#Q`>)Y=)T)cLC{c#Al{(64=%;W3Z|IIJa z?$s<yeYJc>(&kI|uZu+2{*FDI+TC+MY4`7wI|J_tzgMn3F8Z`|^^?e7(=<T=>a%fm z*>925|4YspF1w+x_*i4N|2sv=;GBscf0f;Pz3|F)-F2&@>W>QjIPl^3lodB7uDZVS z+peQukKFov(B$uwxu?^^vy%(!bx+wBI{&xUS*IR${QiMQT>JKA?9u5yUGsa>(bRpl zMjKLf)?K%c6T4nsQV|vN?DpdeHA!{{*>m?KblE!pIKAw~sxRfHM}6+w8ESn~F`uUS zO(A^#iW&CF&p%22vMUsR?^&EMGpTLg{R1M^X-<3IDcQa}q#Jx@!pF|txBMq<^x0^Y zzT@MsMSrV8-b5ZcZQWA;=-ktbBGyto>t|ctx4xr)Bcsi-K0VOT`R98n(ciA0A0<ok zPCx#yp7T-ZDezenvL>M8>%eDC7#Wxtn<Af8Vq%DVV4jktg%RwaH^{k77NBD)VCOg) zDOg%ecU-EXSZ`s9Q08W+U}*`m0jkW+2z0a#^07|F3Wf&A2SB-*fCS)2%5mzunJO3> zAP%hK)ORxj2_UO5S1>d%hMny+J<?RqYWjkiY68p##+K6q1=NJ6-}Y7!1fSJ3J<Csp zXS!Fse$4b{KNXqj4`!(;Pe0_R(m4HsqsENsxBXSDrY8h5zMGyEpdvN>gS_hd>HdK# zp4%NhDOfNv8yc8QKd?qcg2}{kx?r)oO}&9B+;95npi_fPkq>4vP%tzwg@>7bx*=Ev zJkY>L@fjK*4z1EpHw1a!6dr!y)0+$pOyS|BpKb{9tEo98gd;%b_klvx6m*IUIEeMr z!A8JC2XtVcp@A8aGeMzehU82~1w#WfBv-mA7#d95tz`;6lP_Sh4#)KO%Bnomt=6e5 zVKjpr%r_xLU75+iY&!H{KFR457F!BT_w6v&nC_}=B?>y(#&Cv`9<!l=*>uq9e4qo7 zn9R(kC#tE6F&mf~g3gU%G??yqKuZL4IG-5EtcRe(`6QRC2u**Wt11r?3H+ucIz9fU z#vCRCvuT@DB&Pc=R}q;0p-mlhqSL|(b+PI170f10f3;nOXR_u)zUf<*!%vnn2OrBf zSx;*ov!Q|cWZ6gJ(<4@ZlE6VNc_st%=@((=QcZueQ-yo_NihZ9>DH@Nj2O)!C-Z@h zq+&5NFgKb$LB&jDy74N|Nl{gxGpo#}JL+3aogTScg=hNnZ7TeeH{R4|G??DFNDp#S z70ABn1)Jr?re9kF@=K74!t}rw+G5ik+*CJBf3*j6c-DUnzUe#HtGG`G9RLWj#%#J_ ztQ<Jl63@x$O~0{0MQpl)l3G5qfw}o~Llt9@=~5e2geL3Pa7_2!s3HnJ<Zt@ljVe4$ z<_6PwHmL+ncTiWGJpJP)6)nioSDaf^jHladRuSE9xK~A;k;%ef`h=I-VoU}W(-$65 zg&ZIQ;%wNb;>c(*-B8?6bb3RyD)00^TUEHHpIWT5oY~O8V*1BU1&iqmI5hdDJG5G` zY!^PDBG1TZF`aR}n$~oKSk)cV?`%`yp1xa6US+z}4i$;*F^5#j7^T4ZA6%jsn;IjR zCl=EWHXCY#4?hAKKiSd59z;)Xe6Oy=XfRzdSyKvpW)WEM;Soji>2*g{WSJ~1w_oH^ z=VfFvu$U}ZuQy$4uZqO<d`mO_?Tp7&>=~I2EDff=y9YYo#&WXYGd)Iw>4vKEV%ry- zP;m+rFt7wAZLn*M49qQzrgI%qk(vI%&yH<!LLoo1nWf=$$7QPF!UiTFb>J)nF5Ey_ zJ#dDeg1MoA39Mw{1fN1@Xn=C;94Px)z_Sylz8k1OvoM=pI8#1=#n8ag5OHwa^yAX1 z6PXPxO{O1QuBs0@Pb_hfvc>cZ0&05GUmXS|F+sK9=@X8qfR6-KW;U?2n7(nJisSS^ zE=9%ZE02NF6Qd#*xTpf<v5D>)X44lqX?z5oC${~gtu`y;^jSw$1gC#cP*q?w*e<B3 z8pt?3>Vyi{bSY_hUKT?`10zVeWoUq03Mm*G8o>RipKfRX5<o75j6nj(g^&qI09puv z${<5ikN{F4WCY?P6+$2lhVVkD9$YFJ8p4B3Kiy2h(9jSb1^VgcAU={KEkJxEM>>M| zNN#ii@sXV93gRQV&<(_gIdFPZzPS!c`L>M7&~mz=k(LGM06b<xL!;@8>*ZA@FSyGE zD%*Ib>#3?bgHGRSQ`ciOoPOc3Jm@gI<xGY~(-YKGC8kHps0x6xCrDu8IXPiasV2^3 zWHkNaC3TVMT{5bI(>H)lv@@LUSZXc?F4U&a)>Gx4Z25q1y5U+~eI`T0=^M@EA*YeD z7#bRxOqP2jHa%Qc6>_c|$l#0Ku*38WjZ7hj>HU&b6#^Y`2a;YWsUSA}{Q<dHkajaj z!F5kT)o6MGm*HxVnECX=&GMqtugR+lO%Di_lLLDbT*x}OscvR8n%?kVL!8lYsv@Hv z$T<qiCgRgCD9QJN^jd;TsOgnTs^IcjVY(o%A^eciBxXZn14ucQud3=Xy<SQoZF;Pl zD$n$c+v>d2%hgmNC;m;Jpr$H1J&#dy-}K#Ts@#)r$@4NB8X8V-Tx%&dol#v?3|z1= z8yXr<U+APO3YJqeRMnsUA1tR~76Fz!Xs9aAXgHm*N?mXIKMhs!>2gM@+nJ0_ryo48 zB{p43OVtB%rs;kyRY=8fLrWEMBp}FJf~Dqq)7iCECAMGCP?Kk5HZ(S$UZ86RvdwsU z;~IIJdP75Fq?Bu@U}y+#BZ12XNEK~pf|PO%K}ii!dg!McffBz7Qra~FrG7*yqMvRA zO5G+%sn-aUyiFj<*PjcNql_#;_97)<BT$M5pTP=sh!NOcB$pb4@-1?M1Z1tL;pB(H z=G*PfRTUW-O{XVXsK!n=5I5AF{@Oydk<obiLj_g+=?BFX!0CDVYdcl$>8~`k_?Qh% z48XOt;dH~(ir`vWeEJ!CRj%nbFRAlP_taPAp8Q)%g~`xxv!Wy;Ba5M-sTnv)f`a&> zv>_;$BnIk<PfxH>-N0x%UC>rlV){aFd2q^Nlra?FUSO-5%qRhFxPVJ%W0bb%WW{a+ zCPUNdipnNp)BkRiuLId&IemY%fhd!q;pB^QdW?pX@81-kE>mOB$YN+{W-xtWjR7bU zO{RmA45JyOjt|gKI63`?t18d*la8wVj3(ez!(?bSz0pxuY`VOY>a^)R?y6kVD>uvY zPXBER%S~pWT3&qmJ|p?*%!Y<$(>FM)N=(nORCSxq=c0OldX$wa*Yw{?hP)u(f?7J$ zyR1~jrhB=nPG>SRo!)4!CdOoF3aX5z|Fu$;n11%3#>Qzjs@&5%K~=w`4Kz7USGQF) zp6+d<Dmp#jr8>*>SBK@fxBqijm1dkSV5`bC{keoDAIPl>l})X|&M5R$b!0T3uBc+F z2(o!$r<K(751y(s8O^6N&et%Te!xrh7^C@gL0#jA%!Y>Mkdr0ZoKz*YZ}3rdU}Q9( z{?S)eg3)}sA)mVBbkIS8jE2)Mb{RN;RR=E8P@4Y6MU{IxcbkdKWP^XbU}3?xTISOY z_NvM-8=9LzYGOvi$q#k(reAkgm70D(RgrJIe4wfb<8(<+RUSse>1v*;&{GKWJyjdQ zHTv{+FICIw7j|39OmFd4l?0ta_-lH$kE+}BeKral+oMBOQyHg!@KxoSekx3re>$h1 zs?;>lF@zp|s*TeHCMr#tp5(7;2|9+5ZF>DdRkrB?J{s!N_kB<on!dwdRbu)DX9ehi zgeL-2J+@znRApr31)uK?PFqIC=F=U5RMn;{{83Y$-W{ac2oARC%Y#+H2j_85KftIQ zGW|e+hVJy=!KxCFBlNgKRXwKX{8r$at{kLs&-RINtIg7sb5B1jw<f)9Q2jki+OqJ| zp-DZHzuscpzw^(hO|x?6y?R$Gqx!Z#ZHLeKh&y3#+_vwS_M6+4c?RS3jXJ90(+`BH za!t>iq`*7<dYGyZxG4*&cR<IOZod$(D&<lyfA6nigh{%CUUB*EFSXK-^}|Dd8$L2H z&REL)M&NmFcK*t5WqtRAp6goHe}2cGFa3Y2e%(|y1Npej3A;nPR{ymt*}dl4ha*+K zdIdkXyD>lUSUEqB;cu3{Q5<viTi0mA^BYSm{>R<fToK5)z3a}_MH`$REUDhx=C63& ze&dGIg{hmT&5yk?f8XELdO6o`-52}z`q014%O2TZ`(^9A^+mNsYFh8p%Xc@wUvvNd z{>c50&$7Rtersp(kHy~qO8)$Rt{Q)6?}WOvlk@Zc+fMtF?f-w<le?4bk5t~ib^d(d z?@X)j^ZzCND^&cr{qz!5aYmL?n!ip#!lf!)m5bHT+|tB+dTpet%;f#&#X#ZWuuL^V z)c|pLEwo`~2`@Oo#|0Z2Sek*(3s$VRgcp~PhMJ)Pyg>mzFWAt~7}f#+HRV998Z%@8 zP<d$%FSj8*Pebsb$KWCt((^P#?)AEX3Ub)F@zcv^%6l;z8d^>dWHS{8Ga7Gc8%%#0 z1*$Z?l|!fZM5_u<7Z6knnf@|XRbcuBeO(<ELn8yj>5A)A9T*L!Z*)~tn$8jnYAqa5 zg|_pI45lBvZw_haP4A3X6`USmr2CE8(8yr=MO{_B={w_9#kW6j(XeKm{%5Hw_w<u% zRQRTgFH;qqzCgg33!LJaj10hs5Q8-d3K}a;m-Mz1ny$dEDFr$(wu8}VdZWF9)$|XK z)CH#JZP4YK-m_kHDyT)iQ`K|&1#i`v)AuchHbkZ`;M5o2?!8gfoKeyMRQcp5W$|(u zSsEZU^o^z`dTU96%a`fDSHOw@;Z>@Z)AjeN%1yUhtqMJe)OC%j=XBmjT0Gm=Z&g)i z<OL4|Kuol-n0|Gws`hjND=V4lvg=garypQdpETWky{gyr-W{rwrz>ty^_uS2WNyxE zY-&8calM-O^!ZKZzSEgEs(Mc5f62Q&ZkMVWBPbm?KGqW3K5LU|3CnbW1FAC9b+)Uv zPJi%6seiiD4pp1!eIL|0r?(zd)taubQ&k&st|{j(RgdYK8`OBGKRu-Sj|Y6jJ;Yrm z(<kg!RR@Rb^gFv%8$m~K&Y1pvkE#Xe2u^TGA~^l!TXV7L-g{M{hjGU2Q}x*X@|Y?c zBct*3564v{7>%bdJgB9|WMmBPA5Xs!ugbDL=!9yLn~X826#%x%(89pL5II<lrz_4- zQw90RVVP>AGIDZv2Q^bHkrJ~zs1ag0Juy~aA;ZuJ<&FYF1w$hPq&x%~lQBXx&LLeG zBST~rCJKf|M)2l4CwNT82ytluBxe{+7w9x{29LaeJQg6JCOUonK~;h23dcb`$Rtf+ zW+P+E=@-3~Q>Onq49f`%j;Kma2Mxn88cm<5WbFWI${M~_S7tPt%-A6X>FXGoZ2#D) z0E$eb>4tL^Bp?GbdylFLg3C}wqv?+G6eM7SG)5-VFV0sJXEHLG&X{j*Q*UTw0xuZA zqcldy%_vZB#|Y7*gAB?TAvdEygEB@a13RV)hM<#`4HUrTf_}OYhz~C~z(X)b@L`>L zPH=C>2zgk?45R@R(NF`-L3|`fT7dZQ*aTgpU}%Im%v?X+MZwSrc}&L@#7AnAx`Fu6 z!f*0(VN1{u&QfM0Gh=uk2NcYLUlhb9Z>Rzf-|&FCI8NX&t5VlvG@4wf2x=0pnEqBl zjca<QnkwJ)6ah8CX@}+584aiZFJ=@4^>M_e-&R!PhO`N%38)E9e-NZ14~mWhTH@0a zern8SHZn7xZ1_No(P%oToy2TtWHue#<pABfz+z}*W&!T!BnzquPF8pZ(h45fxv*C2 z&Gb$cHR#X`n~)l~+ab?nWIp|(9<-k`T}xGs2XbckD-ku&*v&x^1+nQ0+Nx8Tjm)9< zEj$ud6M`H!ZUi0M0T0CdR8xbr#+Zyup;^&<av+BoxWhC3wYnP5bjw&d-s!DkYC@A6 zYC#SI5Ai67o90aK&`{%<K1)fBZ+fkynj56MlPRSJ?d~*7f&5Z0KYfmr8l<<wY-DaW zU7tx)jLFD!vLU}1v!RjsbVkt46rkH0rXP@2<C$(HVahZ8rnH&|<i3UjGHN`NLH9M> zlu`2lb#S&#=amBm$9XNj>1uLn&@RqtIW<TZ=ZTyeq>D5Cro5W*bTN4~QBeOz0W@6m zQBzHV$pYH*H$qfjki1}l)Tsuibnx&EG+l!FHbxdm2^G}0F#<QNpejIp8zWc^$jJ%m z+Zb7ZY6h4JO9ewC*ch-KScxM@1Sz>1fzmU0pa!M~l%SDMu{Q=~F-sFrUuODzQNzsX z6DI3$PG767wvEZia{5FC1*_@vb<~tVoWR#gqLVjN2~U5mqt-sXC_+w;+0e*x`a%PF zvFQz~w3dO?B<iV2Fj`DjsF9q$C<4-57h^WEv;g<lnT#x;Ny2ja#qF>@w~?hKxP!xN zXk;<Duog7v7ige%6m*LH!j1BxAYn-7!q{LsC>?@2I7y7tSDLDEGaDP5PCuZkCN^2B zUX9TJGQ{|2qkKJ!p|ODxxKjhxelbWzkI@)>=sl!c1G@YH(ycMF1UKdx4W}!{$%#%E za8PBLuHd9Ph0%C={$_b`kPkuK4Mt<|QTNk7n5xZYGBBOK(OFe&I)|2;;B)~GHHGO9 z+116S%PAU8o<7@3jc0nNxf<W}LR~fY>G#al?oUt9Q{$RmsiVL<y<88PX{JxqQxlzj zV1pLRbU914lhgNtl$>-_<(qz44`is7S`VYq^pAfH^rkcEt4V;mF<jf<TB)fqf=0LQ z^J|JR8iN`G;A87WKqDu<YM@i=H@d1RgSs9zYMZ7vhAV@c9{khK*s4vQKHEf%Yr2<_ zF5h&AgO;Zl4X5#0>ra1Vq9(Du(_YOGwTWOdz1~bsZ2If9ssiBF29vQNxS_*jXgob} zovJd3f3Vqb6SJYQ;q=C(dXRn$qcN!M0BwQnu~6fl&Q+zZI{l25n&kG|&T96cHpAq= zzoOH%Y}6E|FYr{8nVw~%25m7k+N#-17Wl|J{j{4}@bq{)HE4su$zIKKyN8FG0^{^u z4r<(>%Px*Ps6h@>7jjgC_F{CL)S$f>es490>CH}R;z)g$NzQ5>(_bD_<(}T`qxN;W zl&cySvyrjcbahuX?dcnQ)#Rt=xvI5J->^($^7LjmHS6gc{N&lEUx-%LpML*~y3+Is zElM2IR%obAmvvXufeg_8cUSYM4?LZBSV3UVXVGdO{)xTuXAf?gV%7D;S$@@R{(^+L zN>?Qki$2^Jk1(Iw#gdU$-j-^fxjT6I)aEB=&n<FiUwrA(BcuCk9Ckbi%{*p2!D|Qa z(O{qE#7^<=uOAh>`eLzp7n{eu+LFSu*1Lh{#A^~xuAZ7Pb>E?Po8Q{L%Rg50xaC&8 z<EdF}Dt-4}RvPFZZkgb6bKhjUb$51spS8cI|EfZYVDT!qGeY9V99x?ADXk9PFSX)) zohi@OKjQixrIJUlCpeeI{d{Ah`&n(lqK*}hS~S9PH!?3Y`jyA`bp8FmmGh37oO?WV z?xJbWUABEZ6>L<~wL)Q&l|bdPDkG)a9@A7Oh8$E*-WKYR-{#+zc*j~J@7k|tM>~(M zYpv7l{l0M4O_tCb_U|R9P8YnTDK2dco<ssSzKkr5k(yq{(DoXLmQ)a({<K6<WP5v% z8jo}R)7ADYy-T?&Rxdd2zs0a_&#GI`I}XpR*DjkOZz8In`C-$l_`SalpPu>Ct8+b{ z=(WqGD^}@0cxsViQWWTr*?Q&7tn8{&`V-&J<=Ovhio@fb2Tr*NO;p)`{ewvG_p5#B zckb;hvDq$qTRggbW?5(6;b<+6#NR&lr?%_=yftsz6My~spSS8xsn)-JdEWb;Zl&_M z)7SRZ_T4hSytBTz^XK!{Bim0j`8I!A9q#?_>7-vONAEJ-Tl+Uv>_fVU*QI8yJ$>zJ zoKLQ(G{%^CI*9uUU2vVu@+H)F)3nu1>`y{IG{|ttH8>w+F3_mh`lVZK<=#&J*gpTq zUDr1r*RG6lb~<=IYm$v=>-)8yyEffl11A=E?h3lUXYGT`SMOJQ+D-l2ou|ESt9)T} z<;sUOzvDh^3fEs<6`54mXR&Sju4!rpjLf159McmWw8dqOks80|76ulmF@V(gjZig0 z?#h8$zeb2bJ4m<C$ix8DEmWvCLX6fy`h`X&@EQ%$FEm1)*#r&X8>2LbO%x1`QJTZ1 z3Wmlg&0#Z;0CI!bT*1)T7}8*#F5YQm18NluG8#`05Kt4D?&qy0h}0-HhBk_s4UJ8v zKjb%&o%Yetb-J;i8hCnA1==b$o(^giPwxo;>76aV5TqK`DmF%H6|eADgSLu|ky^#m zwS&}nrr(;c1{wnsWY@F-mCL^J4xo~<F-u<wWZHB?MnySr>B3}eGTm{Z+R5oZXQ~NI z&$m;%GX3~WHG#<r^$ODuE>e(~?(j*0cf0dqHFZWNQ-kS&%1WZskIYh&0T;s4nP;m( zM}4H{sDZnDveRAXs!4!GeSS>$ou}rpy=%FeIOFsS^VPVgM}1b}nf`n}Otabom}a|$ zYL?R<959uc&ap@hJY@7^`rAcn;Oi#1x1U+9=F2!eYl#}y^oVvP-sz1?)MTcChKvp^ zffcrQmck0#1MAcrrW-FqDQumVt9fkK+@Qw8$ZH0QIY_QIv6#MYg&KIENM-u36>1HT z?w!agHE8#)p;cXP`u}KUp6P1>G<c@#ZdTKup0!F%95iHfc6!xnHTTH^e>m&AWOh5V zGG6-DFu`h-r_49^<Z6alGxRQT1bXoA`75;h^%7UEYw5qAx9CUSo@<rObpGC-HB}rn zCSlbP&sK*YIA35mt+Oe6@gd)b;l9nukuASVISoq7=0wI8&)a+amC&D4=I*xhA2z10 zk83vncF25wu6${I={sq)4UNy&WbSA)toN&uyK~xr@w~w8GOKI85!)yJeElOr_5;(_ z1-Dm39)85eTDL(wp;RvX@ayF}q}am#ub%EQ*Zr&Mk1Mh7lFH|u-sHJzRlr-8mCTx* zlk<B1%q_4FcydFHrR`D68V${#9ShH7Dy&?!bSJxy*CEx1)`ylZc_Mds-;TQt=X~~0 zeY3xMnZ&w#?z=zqUReHQ!p4GnH}l;tOaC%&TQjL?GGnuZ1SnrXf*WPnz<9F2Gkqpw za5G(ey2>^+A+9$^>im8&{A`$OG2LOCnnV5R?e)Ln`|HJR>W_r{y!&%{jez`*^Y;H9 zF8u%FeEr{Vv+Y}s@Bb(Mx-+xI-G9xq{`>zN|9zIfzvPn0;Xfz#o|^y2ea_A$?z7}g zw*}t1o3u{%>A7u}j!zLX{^Fh~UpPhQzn9_n{(Hra{&r3h{5&r|DvEmb=RNrHX1jgu z@3ZeO?(DC(NnN05U-xTqPqWI!|36<I-@aeW=Fi#3%j<uO9d`Fi49j%=_vt+UPjAUT z-oGU-&A)N$pYvA#NA3a@&noOz{_+05B6o@9C;b)P`!(d1Ia6QVsOOkje?org5}#K$ z*k8s9U(T9TIa~MH{PipM|6K6r+x5OjvBI9&Qu3R>gjN0dIqOvY`}-x|Y|q~R`ptIf zy{#Yn6u!P+v%PSdW$>S$h11O+uX`&izvu7a+ktz2FZ%QDwcpfF>pHjhd|0+@d+n-; z^*?^k_u*L*cgg+LOTlzrC)<e{N}`|K&lzub=W<#QmcH}IK?&O<IfuOKzTNw@rav~c ztF-Qjm5<C4z18;Hj=SdtKRwtQBGV{P{9}dXIZL@it^#>V*Dw8;z<9z#{9DaIp{4Hs zTF!HRj8ypJVs>)Bu#2ze<qJOplXw%WzF7ZO@Rn0LJw5IGq#h}a3fq>7g_ruX=HGX& zsQYbyfBNzSQw`peyiZ;h&fG1+x%*h#gz2viS;^I}4E;9orX}wRhlGMy;U578r_N2f zsGDPWlH<j}wuPmu6ArIkcyD3v)D>IHW*0Z?EYaQRAnWv+*V*DjvHv-ba8XA#!>#wG z&2I2@T==r%#f>%V;vQzVrdD#tc)CS0Zf-W2+<d}3SNzA^$@kpdSoi7N*rqL+`n+_% z^0btj#_v9!`Bz`gr~T^B_45@|eV=RbZD@5oH_7nYo@Wmmj2z4bxu^f!&RG@rW3PwD zffSjutL|FeRyd}#yG~ls?PC6cSqH_AwsrGpsTplK&Sn|4YAS0S+cdcrKhIm!Hh5f{ zBt2!@qaQKfJbwgdHYjFAnoKKsBj>VyOVHtS4D-ZwOtKPd^L06A7@T5T8_v#>_~`kj z^Z9vu)^WKXxqKshitFCc75WD1?Lk4Wek~N`Zg%I-u2yDW!}Vy>blph#<mvp6HHBH~ z<LsrTYyMF;tDmO3_Zmk~`^85cZy)a9SrDN1swDM|3g5PylP(!IN2iD>AMuDW$uLrW zbJ0C(<CZMvb*eAr<}74$jEr<vyB%_BbJ4^@AD_5#A54D3n$@Swb|LQc7Pelg2W2|D zZsiv-y!U*w@XgDEqL&wUtU4}!T5si#7eR}8_6CKXd|`G~wmn(4{`&&gU+&#!uk?E< zMuq5XJ+X^_)gsT5sMUw39}6qGXyx`M+4a9(&h90~4+7Ve?=6d6*yQ%Qb%DyNMG2>7 z*sLn;nYd+YuYKqFxV0x^y_;@b6+czDT)gCl&@mo{e5DQ#+jDm|Txy)Gn9;v$JLB2A z5-LabPGA2ou;s*?*K%qZ)1Iyt*c_4L-f?J8cJStt+_jrdg-*}=t8SCDe~Rc<!80v( zPxq|Y$gZ_3P(yLf$Ho5zgk`H3s<jecu$2W%E9cByQ5(BJ$RUiks^G!$ORgp}R~4KS zRB}CVVW$FX&!HOv+zipKyUUMD{b(v$m87Zm)@j9}xf7d`!oF_NTKi`@&p&mQ`lu}h z?VfUbLQXTgzj=Cd2Gb*liysV~?iOzi5SD9f<}m8eYu50)E;Lifg)Q`D;n%8}4T|nP zyh`Vn6!W->#i#IY(%2DPRKmCah-QIeUO=Ek_PNweVuAaM^W$DHu053dGgPGQ%+`s& zy1AHQ)-<$o`>qPnSi!Mm#UiVdCC>y!r`A6Vf7?Fe&?e=`yKAT3*v<9L=+~7?OlEI8 z1BCY)nRI(?K0f2oD(AvCTQdz;x9`+uf8DOZvhvltzZVXw^7t_>RpnWbV!dag;Ox+> z-<y5&<99NLyT98hIC=BRH<kMyBvsF94M?n7thwr4(u=cBC0889ELRkT%sl+#;gme3 z$5R&8oUNCO{d>WRXaCFR4~&oaHO{}J=F%SgNPzomsn#=1t6!xnvtKw}KA$4W<-B2D z@J?pizh-ZE-aK!$R(7AIB@lZ&r#`lH3fqk!4L_Hb3%8bTk`3ke<*OB%>ZOp%FSGGp zs>dclPR}%>#wQ16oez8VVCNsU<zb49Vn%EB-)(G;-D_)5|7)u2$!7tzyobK+G6{>; zU+}Hl`2E8Jo8B(m%64U!Tld?K!h73Fb$S-2soCf%9O6G@Qn>8+{3Fj(s`<(fN6g|s zSsXBNyTO+pu@AMbS_~7tCX_{GwfQkIsz~P=y?y!R@q+N}{A)hP{Ng^7d8q2n*}#`Y z3*O&u+soA+^_<&q3-{;xWplpeocN=XQ)9TYbwN#JOVORlVmUo4lU^Q3FpK;&A!F0y zjn9gjzr;u?%G^0y<hZm{%j`@^BD+ha$Kl3Xca^4YV17I!*2sNPQf9foXp+#kW!7ii z6;&^{HchGg{^o(e&B~eYTaK&PG<BHGuyR=aV#1yCZmW$W&nEeV=7|R{@#DL$>;6GS z^@`NIPwQj0mQ3frs2U-&{M538JBv=WHzcMsU2>VD#==*%dGB%O_|LL-2c|b)RLzt8 zZd)?(l<g`<!9Ka&M}IrD@A~1fH+HeOWc>EdOw~BX=^2+*MYjLWQWa!me7~JHN7b6K zzVoM`<qgxVl_$%yKHoK6ad_$V9Z|nxq#k52iQS*UtpD!*hlg9Zqvw=G70vl}^_Jt( z#J5~icD@q)={RT8lLm>r@VB>3WEMNN<(&UF<B#?AlmniVq_j7jTQDKyR=@j`*HQ=G zUGUSnILmF$OO?B-{*gCd3A|tA^~K<?`vtA)$?x=S>@Ejhz4dT=9!HJ!TV=k3*4dhp zP1P$S*JgKf9(31_3OgE@GwZYK$yFAmYd80;O*>e?D5cJPHRS9f$AH3TTB*}*Cu&+* zK3QG4@79)YrPdc-a^}Uk_;WO_I{2AYUeapPIq%D7k7WCaK5V?(*D`mWs?M~;ZTqH7 zbKQGxzFk^p{PYbIH7#S#Uzu?9ZsMP<;<q|`BEEcB>S}bhD70F^-IQ5>Qf>~v_k?wc zeP%zlEsirgE9K&O>!7OIiv;_lzL_5Tmj0f9O7=xYS%Srv1;XbxEm{6BX>H#+Ev=~j zLieV`nvWl~roY$G6lJWO9>A{QC%pWTVP9c5lljt}Hh$GiZH*glPoJKqs~N|rKmFb{ z6EjBt>3?)JwYk@qEoHy^>+6R}j{egVl@<M`H|lBr=V!mZ;%j#B(}w$!2lCcDJ~dtc zma2}}DY>ehQQYtL>b^@~F_lZn>cG^C#kTjS7v55ptM`Aja$2Qm|I)e%p)b$RnGkTN z>tNW#P?ZQ@;XYN9%7WYbH*r-x*!23{-995G$K?xO3L1So+PK&Af>F!)&sHyt9)=gz zF1*bd<^RETbHO|HYr7YVxo*5Gue&<yeT(bSTW>#?K44W0-7NFFXSo)uIn$)bq@dCk z={*j$of6kJoi~xIm)MaJ^6ZuP@19i~7O-B-$-ZN>^K8J)<W<WjU1R*Cs&#r{y0=cu zgTHUKOGxRjnDaMmg~F^u1;30ktrtqHIWI6xM`Y)eLjGTW%MM#i;w#MOW*6T(?;OLM zUSGFsoy+<=I@xa@ZL^auiuf`m=y{;X-SuZbFXgaX6UIAlURmf%CvJ1qE19Kwf9~yT zC@&6ulRTyAz~N1Y-dr=}l8sp1x4HK0qDxg)`EUED3mIz0F*Z&wG}QEAY@WW)P*YFr z<Jwfgoz8O^r0bZb<@O$0{YfO$r^kKzOhfZ-?&a;R4w`cV*Q~5>oUU(V-aB2@Skszm z|AOg1jm#B|gtHG!cyVZ&a-&np`i%$rrI)hg_v;CX3oToJI8swHVr8c6`KP9dAB#__ zU+_<56)v8oI-Pf>rgpv8wX6Bzj}MmJ{`A%H_^)4;i@$_@{OxsK(V)trbM3r*pI1|A zO|tKs|6-B4>>atIms#`Wt&cY(pE_FeO2uAcpPHN5Z!Gb&C9q_#)v4Sw=ifQ<?_VRO zpR@h1>Hb9B^dI69l?Gow%ik|@TC$e2YVDNo$*&Xk%z2}8`H<7Gn2is1L`}P|Y7<dp z@z;3w+GYKH0rkJC1sD`FTG<O1q{yAHanL)yb{glJ3=TtoU;B$pEJC&xjw*a2ytZ1s zYB3RO{w)Yz=CJqx%j2KtKFpZ0d)9S_kPXdcThpJu4ptUod2xOEl>4g6z7v_BUB1ye z{hH%5hk1|wW_M*D%e<9aeDTlJ)TR2C`X_yjz0{T|ABl{X_%h>?v}(r9N!A5B8Mv1S z>G{7Y+8Y|JvPhWO_ltk(m*r9Auau|P-ZN2|-fpU?s?8tf{#>WhVYTyNtIg7r{f&(+ z5A>IMsVz;qbyfDj_Noh)_XppVJf2yReBW@o{%lR{1To>$+dp0i%-O&)ePTnQ+hkwK zasf$4qk{U~umAG3X0BnLcXxW5k-Pccsk&v#UzuEc&Gvq3Th1m}wdUb5zYFgZO#+|i z=bU77`#tAe>$Kl;_7X3<8Vpvs^<R7;wki6;N4@DR4^@5Z?_B4ednHEucGziAbIuF$ ztnB$KswTvypYi@`@RQ~Gq`VnEndX_-WknKRF!W`)t>4wuE_cyy;_9*{eQ(FVQ9eRT z{@+^tEFs35=du32B`>^Y2$>o#JNNF`l_LhFM-B#jux@?#xlPlz&}7@}sMo;<r*F0S z@+|&}ft+>u%qe^9CH73e@KDv0(RRAjBUP#TNzS#Lhp+G0m_13R#_D%SM9K1}?q_yv zv47afQ5kWkl%I9m>wxUqN<m-w*>kUbvut>#r@KO8ZK-?S@xIAUKXg(PXI{4sui#|y z+4>>MNL}ec9m{Iph0_DR+qi@&Y{|D=mpS7^1mlLc*$2JTq+}-FwKP~}W3XPPpnbka zpZT|5=K7-wn{}6^CI)G~aq7Mmp|R}hCA|-a7+=19HcOmu8S8`!i|t0&Llf9H2VaiZ zV!qD$nP~KajsF<0ds!wvy4+VQkb3(!pUp<CMRAO4!jt*VJXx3YRjQ_txA2aX@wSyp zk-Nj1ChRbMy~rth#ruuX;@tt>zSF*GXPZ1;v+UQZd+!n$>m46$SSP2k`1sQ8*&cIr z?b$EyOkQP{n5bFIptfX(gXj*q`Da5TyhRKduYb9+W8bRuDJAdEGwAD@avyk7)N-ri z>K54v3sWjKvIlwlHo0D#lHtJAW#xEo>b2z@lY_SU-7(B4aZua1*nP3|p5<0*r;jyq ze~EPr)jhXj3sdXf)t466pI+LLr^uGMQ|)}gwAGUy$E6#nM4W%=a&B_N*M0jRY<#@j z=Ec*ZT@RkhOqzLCao>?-Uzu}H{TuTS8JY;i9^BMp6Tg(bfB(w^;wxo#xvRR(j?}aI zbjabN?{X&H{Hmab2^MGHKAC!d<F?zOZw%d6^~PQ2l&Q%R_Sn63i|jm6`ODw<jLSFH zDj2PdGTJq@@=^QrGkS`ijQ-Qb^cB}Ls!u<rujr)1&)p!gM9Jh^g@WI~e`QlAtIj=p z<)NC<ro$5^utfxZGoA7?W0If!waUveCQ;LaMKxR*<)^2bsB26=y+AW#dXcrc0^`H! zVy5aUjQrDgSerL9ewl7#W3D7~URrg(3ERQ5-HT`C-Q)Y+B|WoRLTZDY<cp#o8>btJ zYxqw;X=5(UXght5xQ2pYySt&V^J^Y?o^yqt1ww*rW==mVu3?}uedCUzYO#p;HP>|( zqy~n4*ST^0(ou`=Dofh=ROfj%Fg#drdHM9W&rDq8#2@n7+N^YlG?mNQ&da#rLi7R) zlc?H1v&A)h9{ly3?*H6GnX!9%@pBV(zU;Q9BfbS5s_#yz{jaZ>zNSI7fbswI|8|;+ z^$V}2Z;uI6|C1zqG)82`rbkJ+8yQ{i&8?{Al{MM<>+bu#5BRd~*4~?7csBDue_iR* zg!}s!$h<sRpqyh6aO#TIUq_LLv)Gl5c2DEpo1bHHxT%mW@X66*IiCy!ZD-Az>i<+p zZBAk_yTktpq2@n~o-*ephcK`2a(2;r@#ki~OL9nkkVoU8?*&_)vc2c=SpD+ImX{$@ z@3bvk)%iSAZ^{-=p3q~jE%SCLIVQF}F^y5>nS5{3)hRVeOHxkH4&SorjbN@w;{o<+ zEwNSqgC@A`Uy;oiA+^3%P{e!%_nwn(KRy~JaZbCvV81{@vRB=aBfpBKp1h&-`f%^c zCkAnIG^^}h1e}vNb6J_UDBYL!p16nB&-QEEe<mca$p3n4`t-h~ni;G=?WQbKo&I~N zrd<8~{=ju+-`*?xn9pig`*iJB3E#bicit~*Q;N|L%3Yr+tNozx>vF^6zV(v)eujsa ze|*pvT_NfJ{H5#t$A$avR*1c_IOI56IgGi^Ej&E0@5h<@TkIse4rE7eI&{m(K~lPC z@sSUETGv=g=rzAg{dif%IO~Dmk8o3y2}*PGCZ&AeSI?!J9Amm|{*Pr<4cqpH8Lp_a zT#$X@Ns*XD*I|j`VjthIR=?$O@dj$wV&d~nf_A5<&))Z9;`ZqdYn0n(JWrdlT104W zQNa$~k6kD2(`^1t>ovM7r8GCgli|Wj#%tNd9j02x9v{4-IjQjMgJ0Voyb<+izS=kc z;;Q_E6W1<TmeKRO{;*#>tK30}szipx@2@I8+spA-%k+bQ;IX{xRpyhv?psrr9&z<Y z-B-EZj+u{l9=_oaZ@BT<{71Y_Z8yuxg!P(DzDgyUhcz|W&oFD(X8fqt`9nSDVQ1xv z@aN`YhJvqO_kQ~3l6>-<Z%22cPR~y!*>8VOA6=q1@6=jzMG;S1?oHG0zfskz*J>@8 zUa7Td{;df&ckhz8ICVMumem&Que@?)y&TGBd=0+MGt(sS#mWmuLS0%V6kXI0_smI1 z43A4>zE*wt#LLd*tkb)lShjpyxGZJg#3>J#vmY~%bv@+j>NKy5E#dmi)5$GU0yzI0 z^YMON9yMj6xJh|u(}ioRxt#epc`a1#9GErTd4;AEoBiC-2R~h>CtE1`7{o4LTi&iY z^LI{mBJb8dp{pgTIj{92qNCT%YLZ^7yxz(@>iW}?>wb}eR=e$`fBri<{l0~w0{0hz z`~M>M@G#!9TR5G|Qc)vip})e?d%VV<rY4EM)4#H=-iCK=t5Nl-4~2@YZ+TR|o|zi? zaErUw8$<U;S2N%4K4HAbckLd5ANqGfPn51`&0WF}Ha$FX^4SaGNor@W8LpX}E9PDP z{Gwo9iLchifJ5A3;S2tM&!4_;rKXe5eQn!QSNjgHaldcB-oP|$;`@#}`;1-G=FCxA zc>mbEBWW^x-X2L;N_=PhPf>iE+|F#Bvt(KNM(Nj5NxhnzZnekR2DH@PIPv}R^<LZk z(|uNH+NTsVN$@=lP)*hS`b&!Q)r!?m1oW3YT$4VrD0%IBO|v(%0@AKDIBdM-Iz7x) zvQunRXy~SAcD_GDLQ9nU&m1@_+4>{6<;X4jz@qP`43>y+g?VY8U%Ec4NVZytZ?@v$ zqX&D=dhOgd{rxIUvHJN9wpUYjPx<0%9-;f|g0uwxiYTKt)mfIIrxl|m8Q*ACbR?BB z%{SGWz$)ju=eF&hD7{mB%MYx6y5WYVXpH6(>t$)Dj{N1*l-JCEXSC+zhF67o0?t!s zo@20kw(Q!4E8pDh7=Fq8v^%GHc*>kB>zj9$Uk{L;n`3oujql@&n|*av>dlvgp0u)A z@b<*BHyhM9-um=aQO;F%c^ZpUxarEU+Yfq|$T704>Dt=PdhlxUJl{T}m2)R;XE(WZ z^!VzO^nLtm*E|#Fk$YW~b~4~hV`U1@!QY$<%!=w~*|L5<koKG5#op3uUI_*^XPY<= zuI9ITmKjzRZ)l|AGv`$8uG<qUGNq>1FZ-%{M@;(1Kh<XK$I9vbFO@YXzcf!`b~^UL zZrk3)x+eQ3JvKDCH1pbDy^}}$R_|I;doSYQRkNC13(I0Q@x7G~S>nfic#>^K{H+3x zRhM7n#Aoqyhq}H!eynWqefx<nCyyLIu_k5ZlFMx~K8Lq^gq~fm^!j#WdcmrxpTD2{ zuypsN;NHyWA6d@bZ}}!&Ilg!a->L_>&!_lZ*%K4-=IPTzMahL*b9-{@{`;^5sTm)9 zv}s<8-j3xKa~xe2mZkdboNxNECWSG3vF-l!%X_;+^|)VcoPA~f{pq6a<}VoMPygp` zZqK-Wx}Ar)3Zu>RWDoNYMwRJ1Jj|OI=TEoxG}mKXKmB93s?GHEUsN@wpYt@Ao?g(S z8p_B$-QLSwoN@m2+n-HL8M&tmelfAE-<yzoHH~AP^24g{tVi?GETk6vdHT4Z|1S66 z&aMRtTUl*5Q`~$QR#xcF3phXVxN1^@f~=*%jcKp;@Ohlg*gEx+^8UU>UJFta)@BH) z-uZuAM!<WT@|LY%GjAU+>%JnVx^m{0Re38HEZ$<6!*ccDvYC9<La$Fp?%IFUu;wQ3 z1ZSJ+tQ$4u>-m#sg|2&fdw0&_)-O$!_KzI5?|=RB;^X-aMP{*kOA;HHokAS*{rciw z%<)+6<EqDL8^meWYC0?1`m1fM;fne|{;zsH(=M=HxqkkIwu*dj!A@br<7c|+cPcsl zubLk6YrA0lKK-7;(A&Ig?)>C&`Ec$++!xo#fUZSL9*aI&=x!Nw`eH@K)7VKT7D-&o ze5oZlgE4*QYMTotlM2u7Sa{m7M4<To+*`g&UDcDU8p`H9?_bUG=lv7Cn1?6K4T5c0 zOiH|GKNm0ZbUyQ}J(iin=QYpem+jNHyQ-Vj^Y3}n@q2HkE$c?ZIW~z0TSVuk802NX zzP!typS%8}g_>bOW>D49RV(9~;-r!nMes*41fDbZ`StNw*OgO;7Z})teweg$nNiRx z3D(VNBAr#0EmO{k=+{h<Dm}H#(q_fm>mQlyMVA%Tgfg<{*5zh>h+XG@SIXzlLe6N( zopWMS6zq+n)`(BGO%z)Z*c8xwEOwfIr{7tL=*@xI%{yl7iPy0%_>*8U=iY=HAFk;1 zo&X(-%EP|1EJkOG!EWJG?|x63ZuCRd$7*?dVQ;wjs=I3+T|A&3@#C=Eb|)dFJwbdM z%uoMrv|zSL)_x!mcir5vN_R)XYQ>PnY}HIG&p$gluXmYl=&mkRuiY_A+es^xuQGR4 z1|OG=*8TGBUzXX*y*s@+eD7m9KK%#E>iyri_(NXTzM2%h<#m>qSVF0*plj{BmkWv~ zht0n}tIRQq`5)Kz8Q~#mADwbH{rsyjt?p*x-i%w<-`}^HH9751Wn4zrtkhH6g}uMO zDN3}y_1?)eL*V7n_wSj{dta)*dhTFYzX@C5#g6iHQ~zV1+pJ?+55H60q{`^NQG51k zfA-&bB6}~oUi|lIZ;;A;Udw{gSHEB1y8M(we0JZQV`usIMo*PV3EygS<adm!c4^#% z(!{X(#mqg@`C<KyJq`1I#cp9NeawF6iJ9VV2kr^k;wwb^e*XHZGwuEfbEB;>v;Ak8 zxgKVJsN%%Lr~B>BjjP%0>$n(uzg%)>lYcfnPkD{*{x7q_cfHfEwEvNp=)77zD)Onb z$jx;rYwu@EZFyxJc<m44mPrjg3D-rUpX*Oq95Y?8%UZbpZ`{$g@P6Azk<0scOFlg< z{rjAD#^1D6@^UsuPS0}qrDhaz<majIJyovXAD@=-mCJbT_4uEAhgf9FslM|H$x{xk z+RB%FIA!`InJwF_?#-NaH9sM|{ajjm$F2jLe`IgA{*c(!EVC`6YWvq&C*A7LX_uRD zAKJfj@x#*9{`Vhi9nYSgu~pNqe$wW!E8$nS-wj(<#+!C{Zy9@5M!>nV%^liY&cU93 zcdwgGDgPGU8)&rQ?UM@WDYDjCLHF;rJf3=WYIktha{W_va-H%D%d(&Du#UJClE<&$ zDnCd2SDEsJJGP4&GmXWPCw)DpeBoo0npW#63(xR3ZlCPxjbBVV%6_MNF7K7C4bKH0 ze>u#+yZ_Pxo#v85%e+eePB-1AnP6X&-M@HUtKTcv*gwUoNz6077o9qF{gKn>Ip0Mq ze&o6CKB{X}zvF&%924iuu%CiqDV&0TwIt4%eBQ*x^F@roZu%*04ZHe%=T585So-q$ zDv?WS8h0ID3yXf6a{SfgFZ-wEim1F5cAIrZV};amRT0jU+5fwj{Jg4Ru_65b^(A+1 z%-Y+0OGdsrf%&+^jSCxD%(h%9j{hF?*k8U+@W7586|)%*WSz;*z47UN&!iIFoF^;( zbMKx~&#u?|XG=jy`RkLdwdT8ya>qta*&Ud4_}hiM6WIG-)vwoCv(>)t_gVQzkK_Np zj(#&UT>WFn0WS;39{0)(PP=t){r~$`{)zqnkGeL8nAdT;JZL>$|L-(xR@MH)^fPl- zG2d(c;xOd~|MVm7idDhQnYW+DJARSidH6^4y{Ca|(`r`nsS;bC&OV$c{&02a-$TY0 z9z73t^|#y+eJ}dEahs;M{L4IkR~Dh4jZ3WCi+C+}N(b5NN}2z);Bh;>_U41dYV)W4 zQ;n+sowxbS)kA4|*QcLtS$BSR?D~Vb$LvCG{Hf0<4eMI|Dl)kJ-}PIY6W2}sIk)K{ zWCm7wUiF3>lji^Xp<9&uU)1>b`M`qzVPD?NudDf;ebeRCeVe*p=6h;|bh9ff{(J#V z!@m9F-5xaWq4V#X_EQ#?8kQHzT)is#Ri8s!Pqv<a$={mP{g34f&V~OFc=1nZ@7mY7 z+8^Jq*%ab(d&<s8(9G<Q-}Cp?KA7lj=iV+O*kAwW@MG4W=j&Uuzh0aams}qp_B!?J zO7V}?)5132OLx!nPq_4b+4ibrU(d-qQ`Dr)pO+r3-d(Xg-{8}<zPOuTgyUbn{_xZ8 zOy#|qb6Nf;)Qd3Z^MCJYX|6G}6y4jeBN}Qqt$EdE%a;#-K8b$D`P1Xd@$PjW4IN6h zWn^jcFrGbd|EoroR7*QUCEMhW3=CGw+S@$}U)r%>liu|5M_UD#$V}0U?;Y-yn~tn{ zZMi{c=8<!~6PG(Odc9l7)_=n*m`n0%#e}GDr#sx@7X*t`n+w*rEK`l!@H0uz)H?0h zmsgc@r)6~}_f^F#o%*n|dZT4=(OIPjPRG_M&e+}DyU?sMi@j8#LQmjSa+&k7lQxqo z*ZXM~3S=nG7s+++ykWGuO>)mkT?wnet#3^YbvN&}xELpV{hL~wXYMnmqxL4-r~CcW zES>QrWZTY@+pBK8`|^In^LokSi7EDv4u5JlOV5;%TIX64{CmwdWBv5dc|SLAT^(c; zpma*=di{w@%kKE(KT$KTel+Wg*zAigyiB_%UN_%&YVG=epMICuM=HJT&cC&L|C9ao zzkMT&-umaUrMzI-^d@ko3Cre(K5w=@-|r?Cef;49*RZ=){{pV51$O7O{G9$qyZ-;= z=!3fr!<I(1Ft1bm@GL!AzkavdrArTPxBb@N|M%+cyU~~SFMWL5>>o?({h+7*Jx|{* z`?u|M{%!rsZu;Lm=l-3Z!T3J3>(qXp7NPVb{r}#u{O12PTP)#o{!+z=<wtI;?)ZPt zbgkvX&uWH$h3aaq-?ndlS$|W7&#;Z(_f%l9OTD}8e^=AzP79v-$P}vBHTBisT6v?r z(zeh>?a0B)PlVlHdED;&GpAy{R2TEPl}g>BN9JdK^RKu(scz1M|8vgYPmF2icQXjL z=G$K|VWRQ<hR6F&4&G=_TP^#IbI#Q$-qNTr-<!F-d~cnv`()nQ%rj;0)8q^@ri6Zx zuk{~K?5$f{uYbGTPPHNCvzx%2;|fj>uZWl~(9K?WSL0#aPq~Bd<PUaM^cwedoQ)Lu z7qwncc-qC6pJlo&7&fn&^KPX_!Gll7T?-B@eOT2!TdL_x&`!%Gr#{Ts9Xa>cbMtU3 zrOCZH9}ae9A9WB6o-_MB>xHiC;jdN&?B<bitgJa))35jGnz?MfY@f(P@mo%-XHQd+ zPOzDHI6TF?QMq|R`s3!8)n*-hZb^}%R;3fS|5q~V-o>fL_3WDD)BIQSFaGO%-0QqC z_J_gr)!#onyxMtq)4JocxBk8HO=-u=4cEKXZ^cE-+n3FGuXv;Q>iIkNuKFvp{_FZv zLc&aQ|2Li3At)%h|EKdJ`&at)lOF3s5%Z+vopS`$nzyqoO`pR3ZS|T8{T;I>22a>t zvglc&KJUWClIP32v=&#+i*^%|)@;5P74-4bLd}9rGd_QjGHBfxVJi5tUN~8Bi|M|} z))QWzt+V?mY}mN*v$<SW<Kpxkr&wlJI4+4f`-n+mlaR}G$0TOX8Rr~$>Mw7+mEJ9I zKK~teOJS%^R`}-}8-4wK{2l8wJ@St&TysyUQAqu4Z#rLb!W_l(QxmiPUYc^jZS~*A z#V^<02)ti<@a*MxYi6If)v*8npnJY`;g1Qqt^fPyrv05=&Ev0>aV2ffnKkQ=OuxNq zF2}pX19K(*W?h?>_iLAqP0QK6GnD6ltpCDRAAbIal=<XO#`CtB#mW8pFY)Tv_fKwn zWR>r6^(_9aILn?Xbl<{z^Vb;}ozC6&a@*TE>wo{3T%Z4;yreq({O(H4{15l{uY7)X z&z`yK%PjrweU@N-<h%OAZCl12-CZe9e#Osdlm2=0q=Q_WRN>|GSO2$ddwEtS@~8c5 z#T4m7YbAelpFH&bUv*7)x4bLI^#AOV=3jpv6z1K2XS%^BwM51r(<gmWJ5m4d+g<r4 z%Sh(DfNwvzZ%O<w4&55>CUejI!rcb~&vUc)*Y(|6zpVKG)%Y{z^*`R~FJ|O<7cO;! zljGBzYcZD#56_<0A$_Iby!HP-`b#R#&5u5vYx(Nqj?CXBcRspiCtAK*TECaAyy(kn z@q(_*vo-&>a^I-^{Xda$_qBhU8sfz_D2JU}pa1r)%wE-V(M2Gq-1ED6zUHI0*oTFU zy3BXVj?|v=e?Db?__oMNJ2pwWy<aY!Ru$%AV|GWW!qV+@#WtJk{@x$Dx7Ba$v0(mH zudKXa$G`aVPan5{RzXRFwr7A>K^dA_SeWy2rRJqTxW?wwANtvePEIHkfbR8)P&Gzh z?r3ZbUt$kg?r02M?igW=zTD9meYvACVlxXT_`CvR#0evu`k(_?j1dQfKsNgro54;r zFg7=YoT>7EotohE^UGBgK})va2N^IMo10B%6jV!^{&Axk_#6Y3>4N?mjvz(gV+`!J zfcA1QLXR<EG@jnbq-Z%Ebmj_ZE#kxVX3*U|(VJo0NsOmY++ZrU9kR#m_Et4+@M#8& zhSNW8wU(Z)@JCH$`a)$T2WCTKi|LFP)kVQ4Suhz}fOfgU)-zg6f5@k93EJVNKK+50 zD#!F=f7M#2i+xiQn7+VALmIMJ`tesaLGWIY=?CTI#iw83SK!;;{9nz0kr%uL0vtO= zmgdv1e^Y~Qa8>vYTdipELk+srG3h64sbkhJHIM0g-f8h~f5fcL#5n!UZ#5n!Q<Lex zeyc(EwK@G!gYIjK`K#tIeG;3x$#k!OYTnrPwdwv>^W6S}U7eSa+1S!-`awZ!(XFS{ zr!Y>RAa5<Ry^2Xal5x8lk9q(jlY!y%Mh#O@&>rsT8~GIFK)c?gr(3bAw?THj1+uBz zOn;}M#5X;wQC(`f6Tf=t^y6&m+Mum(+ox}2S9jn3KtNrWk<nl}pOCu5WW!>q=?+5b zD%0aR)f*rSA}hJn(H2B<O#dpZE;s!=mpXVY<eBOBxYa%CC!Wr0RS;<VZgW(}UtGOw z`eePHlby>tyW@gxvj<4%da^d{`0)1h(OXMY9PHBm$)|bDTK9Izh6#Hlk5+9l;5^B@ zF3XrF@kpeHlktP5o6Uz#O>>-lr1N*})*U59K}%LKOez<TU3>Fk(etb$?34CL^|_sp z)SK`7e#iYS|BkUPZJkno#k63~oXejV#J903a&F2#9vgGx?<<pfN%`GwCzvk(kXmN3 zt|}pe%~E+~ka^aMd3RQDdi~RnbGd4<as9y`Z~i>nba~5}Y=2k57jDY7Zd%M!GnbhC zkmI|#{(hxxZ|0OX-R$OR&pvM8jGiYa7WgFo<?hOD4Y|j5ymCJ6d~;ud;z#a3qHDK= z|NP0kFu7y0W39N93HZzlNJ=uZM9TCg(;4}!^_UDzrY|f}5(8}rWZiyBOnrf4{r{I& z<(pVb*_Ir9`_cN9M7?FueM^aoJhnTM^DOnVt50s7-uz{frT)#Ix5MizB7dH*`MBBU zgkkN2#=AW)-`j5EQ~wdX#NblGW2>#*i}<wnl!PtGDO9|8-*WTaH!{B;1mC`BaC6a( z=jVUDI)3x#Z}H8=HF0&O)(<l~x@2tqZ$09#Kl}XdyZvWt?5_T`ns0yRxqZ6Mzk|!( zzI%1Q{MMtc`M$TqtDk4Nd2jk`F8<>G<Jr$wzRfqf8B@C7Z`<>e&t`nyv`t=q$+yEb z@9h5^{d4*9XZEy*4-ek26kE15==OFG)>%e*KK8k}^5%#4&6V4s)^tTsKL2ISji~tW z&)jNX^ZwjVs}Gw0s&4KTd9|;J=e!r`AAeMCzvu1VIi33M&z}AYsH=GQZr#7R&+{_> zA1E$2|CeuE?q9n9++F_S?*`A0XaC;sqHAaK<F(JL_aDpCQ&zmruaGO)+08BZUe9gO z@_YH^g-RtmyT2ZuUnuUquyVJou;BADm(tHg*00>B-xh4xVpX@I-li@i@y~_cA9q6C z!*@P>dF_|a_G{_8w%T1>>;Eo^q5a+Yot}%Q@Y}yp(|x8^dcSV_>@72AU#b1QH!nyq z_50QDyF6bPO`bNdZsY7NXX<TYjcRiK#24GInjiB0bzMr*`Rji+h*>}TbAOe08-MKI z->)W_{(Jm#(!=D(|J91Ghkk#3N1}G#?mo-^=U+~G$jtxGYO<7~_<wu(6Pg^;8?)5K z`3;Q~3>3iW$<W-`*m8QWfV#}|2@^HM5LJgce1{ig1GTX^XuUIdrxmp7Fb8j-R>&|m zhwnjztduuKSr~7mU}%ik`vt8!5Zkt(Rfi?A8Kw$`CMdhG%|HUv1Nlvyrh|^?VlpwD zo_I`CWcoIKb;0QqYAqC|a|@~SOuy-^95Y=-NL?7TT{?LBNg;J`U82lrGJWB5Ek`C3 zBk(B*)4z(S3r$~Ot_9gF&1f?H;0rBt@R>LuC4#!f;^4iaj3(0sOU?C|4NZ)uC(ck3 zhiw%#F`E8xfu$H&T%cIpt{!pD7<hM_31W{c<XjvRBly+<$Wb6BMsV*!4(Bp4LfW@! zq+n=b1h1&U8$(T?+XBF+e1L+-7-=J%D=2u3K`jGt^ysHsC>WX;gQ6J9cLed_@d@4t zYGMqJPW^N@ko<JPG;;^gmQSAPTa(onG8#{3yrN|}eL{-53ZwDlMibEXIPj)VzUfA) zszTG5Q`L1r8#GhZ^`{H!s)|kDP_DjW`tD41=*Cay7*O1-wPa^DG%=YTn5M49WMTl` zDmT3}MqO|+Xn&;1<c)2RgKd~iObo$WK24@O7Au0n+yt`Y4Ya9~$;4#(0Wk$|h=UGu zVl<iV7{@3!T_IDwiP2>Gy=^Mu)1Sqv3qm%MnoL(Tu!5YcHGM{&IuGQSj*|)MM$;e0 zGeXbQvd&lM1|O`!WMVuSbpDgc<iKt*=-FB(CXlnWrh6x;^Gv^`tEvie!9{H?vFQSH zjkzW#JWFCWF@YYkm6D_mK9oU$(FC$dwSZA`53`Ah1!VK4iScBG8gY>Rg;9*c;InF` z%cQA;58={IQ<s4p@nZtoAt46Y#aWrA&I8`XIU!Bm1AImovkB<*vxj2LCZKihhvjBY zzmcJCJbiz<y6E%-7Dc}8Hwx9|KnJzVeXS+VWMVoUlq!Ycdx<&q(@o6H6%0*Gw<i{> z*Dx`enn8B-ZnacqHZ(DvE+}X$I;~D=>hud{DtXfv$b-%yFfpBO2#VTux$2OpWi*{$ z7{w?yeMPo9&-7IXwN$5X%2OAeZeV0GS=P`5yw4a?q8OPW*HETr(<dI5n+djuu}WQk zdQQH&*mV7!mS3jd%2(%^ep14km)X$7Z2H0@s*>QXAj~FaM$;2H)g2hk5NC`rnoOVg zSwUxdgR4r%^n<hIEvBz;H;|d0QLZjDU0}T$J9wK2D8nAm(q}XQ?L(eE;hO^A_RKnU zS4Kv&>Fev&B^b@73$klM8a7NOW|JL3CyAMuO$VJMHvNC4y5MvNMn!&bYX?-N1`2AL zLk<t&_f}(@9^I&}KD}?ThRk%&N_Fn(I}fT}2N?o7TTH)7U2^*VCUyS$x2hbcr#bQc zb-rxZaM3d?Bc#Xj$=lUxvz=I{&iq-o`2L0L&vzn(8|zq>NA+BgUd`;6$H%qs@WF^f z78#2liA@dey(B#ALD@{DzTUU8E3+AX&0H1C!!4tCtMrG%i|Pv!J+coz)aC}?Id|{> zgAOw%*A|A}+E-t+{?3*W%sANB>z7$7JUuz-pGbVS`vcXq*ZET}TU4$z@UT``xq1uB z75z-krm+93^Fyw$p3M_^_MB&IsCw9y=y~@;tAoEqq`b)to$uoJY3kGIMRVWlhH31d zo4!RlxR~Q)uw;ti<XnmF-)r`Mo_XrGc%@^*8gM-_-KJWdo5|F0x@Wbz8l<r|wHnsg zTVI3J*sGb&S_^C9iPWikOjmDL7pNC=(a__T`{kHh-=Ox`EFih#<AeSAlQu?Y95^xC z{QcP!wai<^t07woo!P-#3fG4z@Kl7(`pC0HD9`<)Sa5#Cqoa4XS<H#DJ+}tbusg4J zF0Y_s(&vV9oyx63YcGXc)R@gZemCokx!(%eC2Q6>K6){CUiIfo{v4iDWb30}RzBUf z`1+sJnjAL8?is=6Nz-=Bh+FXXt7zoZU%}3$AD5@Ccxt~-;i^H``g?6}_I$aS8TF*p zVR^8Ns=7<e&SL%+E+^iF$0Jg|TmRj4f7ZiHpT{=;HWgp_G^Z(L;_{S=g>FWla+5Y_ zXm~7rzj?33&Gzf9x_8{v!?OQgd9>=$4uL}prX0I%b~dL;tH%D@`pI`7fx50<oojle zvJ&s~qxI_GedJ6g;GN&1^>1sV``7O5z5Dy8=x<AhQ@i3D92+(o&wH-I`-FYY5n-0! zEHh62XFs&n!}H2It@5v19v|`SXa9C{b;&}FE+tK``_ZQ+|NqYMX@33hXLZ+v<nGtk z{C=MQ!<$plCTP{ekNW?=-md>=-v3{*qON=8rh7l9hjj4&d2avjvGf0r`v1SYtuOyC zA@~1_{Y^g~Wt*xb<N9CUK*Pd+e5HI1&uqW5`j6(mqcgp$mi!D$mR@?-_SvnVcW<=! z`f3_F*H8H-=6>?idXeJ#*S6vTpTrJTBzW|jX9j5OYIMH&zW&#@-S$m8wnKNyOzvsc zxd_=QBW&|$_i_LKf1`QwEnDj&mx}*9U0-=3{?vo`Tek(OlCppEUtM)%yTXSvA469D z@vdJD+A1S{>yp&dT$P7DvcLHiKlA@wJ7vmA+0_&5UMEF)8|804`scImSAVT3_y1oC zthwfTY1*;dI(w(e)$d#S>9~K#-#O3c2mZEPZuk1Jaod&p{42*IpZR=zemvGrvRpBD z{>g*O>wlDp%)hEp|6|6AAiLL(f*pS>S?Zs;YGVD5_W9HM^pv!<?}l`h?mKGbBMaFE z6P*|Q^<b+^t3YwZYS1niCD(wwMb|G?OlCacF@5V-U4?q<%n7ReQ=fWI-lVdajVqF0 zF>b|$z_q_@Tb^(K|IOE0_~4W#qtKvGcCp<Pti{EG#apFZYHoh*am=(^p`&|oyTelT zc6NhF(kCuIHY(Q?Dx1rjSZ@%p!Yj4!p@XcGj8W6O(`hfO*>q=bJeG2ZQEX;aCS;RL zhC_l!tniP5dV^EvCOL|2n~}ovCE@UeU8WlzUc2z_!a1)iVY|;-9*EgBEoK4V!mn+L zGCy{zr!QIEsn9&*R^Dmf1IreCC~*-mTb&*LBq}lT9#i<Hz_0^v63#wR_;mI*Yu)oD z-zQ#d(C6Ox_LSSr%DeA7R3pFjRNGAccP`O&?*CtM>o>iOIm)=rV0!aWYw7x%TcXpY zk3^(g&sRR8@r~ET_{O3e1rr^Qx-@>fvB1T9^QHr*4_s=#r0MxvNbqD-QS+s6nfIsd zIQMJw8o20opPSTow|Rk=wCNk32bBj8Efx!_eeHQ5#4IC3R-mWz{b{@XJ3sDHlM(h$ zmoF518}@MDfjKf+o|&)P&2*ULY}fqloxc2$rasFPSpnbaw;pNAuuN7|m_7a1BTWsX z@b&q;liyccURdNlJLZK&Rl|xE6WNvuKbdct$-HvwoRys^ywm+Qe7m`#(?y`g_vWmr zwbOa+Or)mgJ=SEeU-IS51hJV%IZTDb`DdNs(5&*-ofejRVynvCX5%vo6581(L}q){ zhUtY_%-mC<Skbfhz?s4`47ajpURzkme5ubh{P$VD2ezH|Q*7;bBvpxoe*KYfQ#DjR zHfqYk@L5`tDVOgQT3jpSk6N;S>y0yiR)j2ay&BY=^LxRnSx1&_HLI!5%uy9zpM1nF z?8|$lZQj<*az|IZ-ujwL)I>_OY0}CrCynG!E4CTBU5YdNr(##VRj*u|Gc7z`<M`aT z3yIzm#teHpm6X0)6d(3t_iI~V`|2K>NxAR@f$wqqUM%LCc=Nig&jp>+;prQ1^a;3D zTwj(pS^QVZ<kb@@<f6IKkLKCvxqeal{~*aqVB1QGQ_~qFx5g$dPU`rwNB#H$g>MJu z^oEp8m7e)b;_3#5mpd2CXV&@|`R&K_O-W`>GaQ1?bxT(-NRn<9IwU#W=enXq{Tiu& zf(Oe#x$1!T)M!EX)F|Bu0PU&SZ=T3o<Y*hZQDpKYfmIRdPZsP5wO#9`y}J8oYOvC3 zW5?2OS<_@!xT{}`K9sQPMbni0)sm+hdOon3ojJP1mAib#lY^(X*c2Rzo9C;sfKP-s zU-^n{IJfCjL5mKB<`+gCk8<jDFKRlL1c-L6-hP^e$1*7=pmN#VWQ|Qfl%glN9-KRA zaq*9(evRD4&8rSY6zff1+wpU5^=B{s4AIQf>sJ}1tn0lJ?<4Tw5vxv2MbJ`5M^{DH z(5s%yjQdxt;MuPw`-tmwUrO%wu%!2^Zk&D*?9F{+iqJ!~6-FlAo}djkS<Z!aZ?<M~ zf_L03cIIgcDg9pe;(-v`@`g`Bd;yze@7?G)tF<*Y_w#M@cL!Wg*qT2oGP`PfUOcA8 z|FeKrOn%AqKwkyP`uv-VyZLetf0$j*XXpGT<cDUiTM3IQ-{uQ(%M<4<dK^D}TbrKA zTD8>yEKP6c9Fu+Vb9>_R1bh8EmX?=78(&%F{eHb_vDtxXPNhm(E%)?#->xXjD0(q@ zg$a{x^@EPDdd`!2JtB-IYpSqctJ!A6eqPkvVl5Z<h6xY<<}&e>1y<K5T$p<F#It}} zZl!O#Ov2*z7hF0z^Ls(U&2JaNn4@ABAN}^DFa9tGck+taogUmXJ~SJ|&UyJ!{iEg0 z`G@ZsOnd75O(x`vu8i$t)};7}Yz|8Vm$-PJ-r%{QA!V^|nysuAU)99ggt^Zz#V7a) zUwizn&uu!hZLah;HJPZn`ey=!o-v=bTsnRI2`hQajZcf3dtxM&W$v6Uc3ceFLQ|^9 zm}Il$p@Zsn4`r1EneE=sJbZLiznduPCFbwCyhpUiC{`n4rulUHCEB8Fb!Jg>Pex5w zI%$=k5NghQZmO{z3y-q!6un0#ss$IK-`L9in)UtzTc=l+{`U=1V*7j6a2ushc3R-8 z!Xf*y<%Ddjvy@(1*V%~j-O?!wiabBLDNmUtD3gAfw>55Uqp8%5;M=QoE<`d%Wjs!J zK7FHtfv6$pdZnz&wfcqadT*kBNMFr7{%eX`Z0!xDsnsFPiZZrktG~DM@qV0Gz1wxY zk=+HWp#9VTozl}1KRw~s5+$W+)xOW3tGhg5yw-79cq?0K=ydzjdXm;_R!K=VFKW;c z;8o_k8zSL%Q}@@ttDEKcIBy*~q^~@;V#%q-iSvx-PF6CqckkTxBs!yD4(rj7*3%Nx zw@ueAm6M<T>Xa3~L`j^))JvO;)H{DoNie>BnpH|xZ}mN~N0+Ayp0<*#UwdfvzOF9L zR@>f%+cWAe&;0xG+K%scHZe7C)|ppXarCpo#;w{bwcnIqYvh-n7y9^cThp;ySEX-$ zJy>o0EzF#~DDiObz7xF%a!aPFpYUx@?3$Ny`R>Gr6L!YD+q&neT6fY!+mrcR_8rS+ zo&6az+v%9#Zxg}Waw`{Har${wx%7wY^n=dE;!I{9)2C)ydbliL=1Tg#SmxHJIa7Ki z6&Hj$SVnlcu3pU-;gx@G`x}SnKC(Z`-1KX9_b9PD^8eaXJyY<-)I%SSN}kP~U;p#c zTi&jkW4ovOow3rc-&e?9^)L5FnVal8|2w;0{C{|EYU$psJNE|PU3N5^;r6=4X6)TO zXHuTMKUiX(zvyzS?#g|sUuUI!+|1DUzDIAVLV)Rumx}YI>jr;lVsB27x+1_Fc!ksd z;iImSCF@kpJJvn=y~+R3qeoX(Ej3oRU6A}Rn@LUD@%X`24Tj4#es>Gh8$_?awaP-% zv}0|+g*{RNjB=)ZY%HtSCd&%HdSkQBbn#Z+edicuYx<ro`G3VavXt+m#frYouU^Yc znDb6x-)or(#+O<P|EUOWK34khybS+~enx4gHbL!oGF6A3%z9n$*Gg&a<J!yyQ#X#e z)=GOFtd(pd+%){ps#sLbPkMgg`=R=43)jE7^vEVru%hTl-m8~(A9erM9#nrgPwP=# z3-fk1#_SA>H4B&c+?vkhw8$&iQ}U2Zwt3g2P{v7--8X)5C53TFuGqlytC~f4&XU9Y zhnHOT4w0!@=6~Q&$Sm8_=|0ov-1wlcXjxPAmES$qobOA}ql6SMmC3BL&+;4EE3xlh zm%dG>a?!RsvCURNRlTd1eqYMir<U+>uH}bG|9Is+cW+S5T&}L3DZf_MMC#f)hq<c- zC(0jL>CM;iux#tTvxf}jQeJ#}(|>Y*u`k;km6e;B-t(||F8yB-vTq&Z8@{(sgw|#r zndx^a_S2N<x87(fh;5!aY2l9PGq3LYHe*7~m!#BCnWM`r<EP&Xu#%_`QkykXb#~&` zW!!$OXP0WovNJHGy7y|o(mz&Y6w=#!db!1qRE>&?_fHk{c+Spv)VIHV+gp~$2TRJt zW~gp`wsLFb+uLOeHVfa`(=k_o$+!7Ax1CXr%G~M8W_NC%qjiaSw=Ac%wYQ7T;oMqH z-R`Qn_Iu9?**l2KF8eLI|K{@t#yKt@XTIXQ8?F-9^B^ZggY(Gz<&W=P+59heaoA~* z*WrixzU;aEf&0CU-G(KKo16N+-<fdq?!!M@#qV|YMf~}&)YbTGk!iKUaZ_gfX^{P9 znV|h<o8!#RONDseI;pzs#RL1JXEQVQrT(6OZ2ClhLy`Kb{=#(d4zpDnqDS{>nEuw9 zTd~NOl}mQ6RR4DVe|tV`nk*=8$MrqGaI-+E02?!Jse|z22fkvCoi39lDmZe*@@@s5 zZ){X{Il683oA)O^X>dfEx4Cfp^KqvvQAn^~;lbU{^j2hBg1cSCBgVhMA0>|OkanDL z$w_XxJ>y}ATQP6B3pXu3u|XoS(3vy8r(mjWPK$3tS1Yq9yV_OJn6e77m5mK*i{Cw9 z-Tgh_lT+HhMOrUCWhbS6RlT*5uk~}&<u3uJKW$phGij;!iO|JnAx*)z1=MTSWdwLG z_0OK(5MU@`-tW3dxowfJj*O;b=E>u&(=&Dn%K9mWsY*od+8pa_vtpw@`{gCv^;I$} zxhMO^Z^+o1A<4iL_Hz393s%z8_vTsh2{nt{EJ|K*#mn9J`<W8`ImW5E)8C&okns*x zJG437g@Z}^^H#=)S;<y6u6>f3b#QmW_7Ccp{@-gBc662g5GXWbMcQIhA-yv@vSuVt z6`#!g^q%mmvo})hSFFvNW4hY?nT_(i-h0yvFIw4)GTZX#D{RxY5xE|>xHR-yin?pp zg1G7b*J!KNzvJ9u#;YJRiEl-t$l|-xr<yK|`^ov#qRb<BQFl0V@=c$edvsM*_~!lz zW!T8E?b`*GFU+^jwC-MUs)dy`hFdjTOnf&#AIn$CgqiDZPMo5q)4jpuB@6Sf=Ikpk zZpBzWC|BDs`^An;MxKWwOs`61ig)zPPWbiyK(^Rdw_}Z|{8Ac@*AKtbVSOUE?!moD z3wT$Z+vd1qQ+xcnt4-DU-oIvME$!-HED-$?<3C;Kqo#_)qm5V0yR;t96qf3WHaw!W zsgq@WrqYHMz3F}*HFY(_&i#E-Rla4B#<t(dsi8~#TtfETwTowun-FAr`s4YERY3*H z3NzK!e5Wt|sHw)3DLq}T(9)rPud9#E5k0dDIVS`!275KT2j=WI^Y;y`iC8<!#`f*1 zORZvgD=y!P`LVZ_@x9op8^<+RJKIy2-dvk3!nPqyI{o)7*R5YmF5Z&ApSJ1qd+j#s z$G<mCzPLr;+Ft%GRf(0kvFt~4C+G0$tx&wk?&~jeP<xs5)fXEY9(ugJo0GuGA5s5l zwNGLn|EV`^GRyvY?&bYC;d^V;k?NFtPdMy4bRz<tYW7sOd{>?CaJ%QO)4ZhUlSL8* zmPVJ%O>XJVmf2wPc*WJGyC=HSW;@N%N$5=oDq<0ycqZ9(cd+4`n97YA+ZTR%e>Q`C z>UN7oyn-jUBq+5N7)CX|pU`}*)JSAjs7l=d=1yDQ>HB?6WNbLIO<vX4WJiX)yP$BO zZGJ;)^x{veY+OafA79k?X^}5r&^w_$=aPoxm35P2_19UqaqkPA?moRN(`UD(`}F@l z#**T@`K-NOFW7Trw(i<>j-suiSyl#<4y>L#UEkMOqCWD+t)r8E6vj=u==37<MK9Y! z^Us_P;WN@6Du4A*F3%HTud9lXm~u(-=&WDjJK7&^JhmqI>NO6%OSkts9ElG3Z29Ai zwY2EQcRm4vlAbmm4*okud&DoPSZ|#%Yl&9w$=700FE};lmR;1Jn#XC(Zs(~KTPA+P z?BAlq;~N`fZ_cx>@01nnSg1aOJ9me);ML_x-5%_>Zk)2ZxKZwg{ExT~R#Q{M@BUdY zDq|fIJJE!v;k;5zDnE0~YB?MCz4Auf+Y4jcH$Az~y6#)&?%Y?aa&~;wI=iT8_p=WQ z=Q0+TzDS5UAuCp9VK6Dc<VyK3sV{ZCmeplq#{!r9Y5JD?YOWanw!9!_ew|Eq>6Og8 zjvX}9xfm9E{)mZ<J6lJ^zVvGi$`@UA+?m=X;*uNX&AoW<$;F!JnfS!FZw?CD5OmpU z-s$W^kA6?`U-14Em)biMZ>QV$_xDO|oBsEUrb@lnHP`Lg9}{-xudKbWG0Q%G%0;bf z>w9FFl3OO<SX7gIY1x~_k(u{j2xs`{rwW?!Jz4Vlcyjs__O~S&C7$vj+m_m%OPC|< zc=78ii|vN?yV-3&ZHn5n;qLe2pW3$05sXiGcJRt8`+ZMae4>ND+|qb|{Mx}9%bStQ zmbUinEIL@YHLaf2kUMB@)p?&(J|pf$haNDOJ^4|x@m`^o>uS{$wa|wW?)nqz|4&nX zr(yV~U&nCKquicD-`O{;lsNW6{q(~x=l^V*b<Zm3ujG42rj`Ywf=3!BRX%vi=w+F= z)hEF<xT7-bSD$#ogc}DrwF(zxya=o`5j>RinSHJi>nv6^iSy-c^~aCgy;{zDgvB}| zygn>zzSu{HhHG}U`93)(R!VB!U6`yFTN_m}<Mr)@v%RiAl03`)_}@QW$M<L5`DXYF zi^oN=&t^{T`o4bUx|z!}x1T-wDSV=6R8icl*?CiZeB8S>e>0FUOf~Vku*tOiK@p?a z3DuZ+H=b6l-sW*cjcu01{8I~zmrGfGoj7r?QRv(LRS`*DLbdzXNi*uNU1#BNbp_|; zN}+!p!V)5#QuWox`K^pL^9nZ~aGNd|ryy3J`+32fd+f853#J(@IJ+=;?#*7$t7oRm z2pqRkom^!2_8H%UYTFkJ-<y;lE3~?Iqr9hLUG_JR9h-Fh+8&+%E+Qw;kkFp6(AfCD z;WQ10{UI|<94?*NGq16@D011{qenjH+LVaM>nNtEB+R*35`0Y7C2a!Fo%`>q_B$t9 zy>3YVzO+8^jG<3{YWH1_y$*(p&#v3^aHVI9T=tHQ!dvX-sNMS0YkTv+i}}VoE)?B= z+^!HSDRAuS3qz~BhswOI?zsvs$$WjM^i^yfyW72(ZHzJ&FCvxl!(=7eCe7NmT>ng4 z)SKC>m<t1T+<W9`V72bsuD*FXoWHspq%Y5rUNCiDduol&vwHU0mIRl(_4;eX!mAff zo|c_@|JBY%YK$)e3qG{1V)wKvj$75PslH=c$zc(%-JZMOEnr|~v{)s%_Z631m5a6O z`dgg)bXa?{KTcHmdp*vS{c%*1RQ*TQqhW`ptmrl@Ei+%H*EUm`udVU^%98o!KDk|s zH{QJ(HJ@wWnx_lR|1Vlr|MAAo(@UQHJ@{m=*yD5mLt`fY%4%fae9pE|Nv7cTimPcm z-_88!xu`(flxcRB(DTceSU;cHd7GEz&gW|-&K|j2!#UaXmPyX4eA%<na<h`S+_Ln` zmme3;k3P$p?QpdA(n6(aj|~jXe9B7am1i6~pl4|^&7h`RdbirigY7q#A4;<JTx*eZ zZ0X-l50?{%Kdr0Q_z>G(^;)|t<J*llU$&iRG%3$?Jes-Iy4bpGj)+p4Cim$@_jW3I zDI~0Fy*|lOkny|njU2AMExVp8Zkk?OVX31i)f%4>Db0O!%dO4adkP%tcJF-F+MLO$ zB6n`>nNrak2UVt@s<4#NThqBBoZ<D=nasvZS4Zq-iw|;^*?!C?XH~|vb-fCzd1rUc zxG?Kg^`C31N?U>^+fG0HQ&WRw-VO)h>AAP9Eb90A2dXX2n!O|Wf<%MQBlrGe1{MCL zKGS-c#b4}h%8Hs3n90obJ7B4MxQAehB70`5+WCU872rLkDG}#irktDH_!YFLRCu|~ z3(=xo4@70adrF@qgZ7k`cjhY@mVow@&at__gx!D7%LC%8L3>L5W>@N2eLCcF@ofEa zChh#HFwmw_*(ab)rPd*D438r=mG0lVWiEJADR@t*@yc7tC9j`$%FFp#$DM5MTKG;l ze&NA?@>dzZ&)Cv6GdrwS+;>M{%JOBeZ+-Jvm3}2NzfjW0^DR?tGh4g71&?%Ab-6Du z6WdqIHulK!ZHJogGqc-2tXT6V`ug;mDof@1l7~fmw61UDUmwdQJHzVKuFo4Uy(+kL z*(CVofw}!(BjRh8vo-E#zQrJM+Tz0&9-gQB4W;_8BuqZXH%B|??eZgWD-V8L%^J1C z@{p=qs!G)j)!D5RD>haa7QOd6bmxSZzuTho4-QV}6?%Ul<<bgg_30mNeB-C;MxKwG z^Ke6Y`n9X|Z5A(jcAjFdnIs&@Q&>CQZH=Vi6{~qW-c(plIe)36K_g5@^ko3E34fZ= z)u_s!vsjO^Y%<RjGFo#(;rf$1iQ02p5_c_n9CRhYT+5%|yFucKlFm2K4%>CRPo11} z?%AsXVac0`6`&oqA5Evczo;^|Zq4Uq`4=+|w$A9tF4*zD-rPX9I6+~4@B^FmCFdH0 zC*J!|bg^Wn2vhkI@8XkdUAS5*XY(z7Yr_@vD#2SoBJ#HA{<T|6*M=|gnSEfl@#l^2 zW<82&nLdB5ivBXSZp%lK*QPovKC5)P*w}sMweKv+6ld`b{abh^?0d0Fs$-4*<5r{o z+@%eocVste>`X0JXfCejFlAXSFY#HL|Bbm+|2kX7*sUvH^ZsVjJf+S#*Q9UC-#F*A zHN9+aF0sCqD!p+tgRknTwZ)Gm)*KPZ+wZbla!=^lD0I>E=E0K}PL&F**!t|%7hOf| zvk#g4r!_a%PI3<4y=UgcmERX#?DjZ3DQK_QU!{w`%U16=a3bSj<fjd9Y<5hSOtj*u z&v)cL-0E!0R42!CZHZh!mvl6{@YxS$ni?YF7RoI<1h*Xhu5R)*XZqpBnw__dQoeW0 zYI~SqzB<HGCoFbJ^J>Np*INw_1eY~uL^E?8TzKo2M8);~3_g!3PIfHw1DV8JowZ7n zY{a%{u8Y0s;w&jC_hFq&w?+A;O%0t&skt#b>W@CuGB}od-eb+SMY*1bFE1`#y|D55 zY98;hv^8_~8Em;}!u?(=^JiChxAg7W>|ED=9h>|qpDxW{G1u?R+Er=&Mmh7z?ZX=y zzMgQHez>2vajuu~oJIFcC(TZZmiYWfR;~8Tnc(_)St>UjCfqk$=vAE3{mAQdo}W+7 zt!p~VZb`V-GtF}EWPQ@HEoq;SpRm!KZ%h*}dT97d9LSwy>vw;*N>XZM_Ioi!p@qNq zO$<`>bK7>yZRsD&j*hME(!KXKG+9?3o0}OOaeub6w5s&MkZ+5(9cr~a_0#Wo>%R{g zX-OHgANHQK%#&-1>eBywVD*~4w`?xB&)IYNLay8qA?+g*LImn_<tFV5H2#<-z$19h zS@J|)Yqi+%dF_4M6FQDg2k*?j5eM3too*QRT_++{(eRut=gWo8o#{dg7%X0V$rEDI zomlAGWK<Y4`GJ9ZMPl7%-3ghmq~iSd1}5l=AKk$6_x<86=CgLsWk~udx20>_wGAvX zr(NExNJ-g~*t~1%cFll!-j#v(HXNR;HRbA~gJt&v7`XR}b~!KJdVGIn>ml|%_ccXq z){E$c+@8KKO+l_cV(Z6CJDW;UFXWw=u&(mP-B+c@W!yIKZJRVvEiQ0Xc17)0v*W$B zIsq4Ua5Anu5_|K@fBt^ciq^*yD<tR6e6aP!c?GYVb&E=GzCF6z;DINDc`fe&|J%Q3 z@0`N^a@i-50}ZclHSuo?53m+rk-Ov8SKAwXvmN-Vg}Q5&9KHUuZvM>rb%IB?EvaG< zla;+Cx1q<JdDo?Fl^>d1ZSKFiaQ4hDAt#w6#!K(zeVYCFKC4dYjxA-_P?hMwCD*x; z)A`SfLsJg2f8u`Ulw6(h`KIo4*OvI4q#50e!C`T0bj=o2l&i;WO>9=XzVG*5@jH&a zcb@akyfBCF&kJ!)_TT>)pP%qwCS9M{+!(kl?j`>skLxxP6K`&fc~P6ZSW?W#sN+#= z&KWg+VaJPC!heS7Cmot;R?cvtJ-oD8Klq-2nVWIPDhrn_P3PwSbu)8QZ5Pq_BiHxs zj=)^T?5~!FZ>>U8w<l&~J^E}S?sZRPnbu>_CiF#)58IxY#-#Gd?_Ih=^Y;<Yli%v| z;w~QB<h~_Xg-QO+%7_*FmMQcW23}|0U=o)p2-=0d=;W~<AI*|Dzio4@PdspJ%HI>6 zU!Q8pCwJ%Yn=hMmxT0{`i=PXeEsg#AO<v4375%Z#A?U3Amc6>{($3Z0S@A;Wck&)p zdvxU3Oq;FZ-fTg7Tg0ZX=sT)kB+9hc@`ig<ebfB&Is5e3W7RgiI;(BnrEa$M)Za(U zVw01+zgC<HIp6rfZY%35p}45U8-H-_3T<qkrggyZxQTIU@Z^d;CV8O@)2;8W*e1#P zR{yJWW>iuCvBYc>?p-1)-50*N;W+Q!(ZHZQpWDHk^iy}SS6r8098>$|zWdBP6aLy0 z(YG&K{@{^$S|@HQ`q1g)g>SR2Z4{Cdx9!cp^JV(S2O`FMq^IjKX^E?pK1eT_Smb@A z`scFmCqr1`PEQiOHjVkzoe9#aZRev;%xZpY^kaG^la@?<=_>XYx3h(tpG{}pwajN- zLgPY<o{a{_uN+_HQ1a?4>*K?-R)2F-Uh6G%^Gml}r90;l>!J?VJhz=*4;KdW@oiU) zGyHkHNB!QWK)da2KI&CM3?*3&UvJ4I&F%VJVZhs!5@WpMmDrrUOqm~UeKd~xtZT7t z>J^dR!tggep%0WLoa^;@629!UI<iPSF=i>7olDEc+gtDTrtH;U{gr3+to!RPE*3N_ zwkem8exa>??NRU^#}g*E{fq>SJc8E?mI<qB{AkWB-ytNhe$t8hLt^uO@O@RPOBNK~ zn3X?eySkKjS)Nl2PjX_7{)NQ*_Ax$Ek5=BP5)PVZvPofg`aOoaM=Mo5mM|F~+E~w5 z%b3kru{bQ2m-)jI=SBa!`{%q^9DLKpPG*XEdqjr9(bXcCVxMK6sLOJH_Wo58i>5!n z#!3tJSEq7iy$-xKc)k4FbopjW)#?9ob;P9B8HXR?@OM)EbKb({%KTS>ZgCgxsB#5G zuUDI1(roEeZ)!iG`By=R#)rQGs}Fo;ezo3E)K}u-Qln|NR%+_XS0<~zddPZd#-zOZ zOFNk~tsHD`#T{e1Vw-pLUe;x=J=Ydb71+F|VVC**<|M!Cy%qiEp6*)AKHDSIy1S#d z=6dGqyNRcs+1-wcaNfJv#W+^-_Al;h*QTvr_rUG-iPdL&ua#Ox-~AdKHtpQ9bmjZ@ zGo(tdwb$9T%r4iQ;>i9`H<C%Q`lrBM%gxjIca(0no>*DcasOZBCLY#%_ZFUL7umaZ zg+{~4xD9J6QkS^4IEu_JD;G&WY&zRms4&gP<om@f(`{L`<m-P+o_aM?JH9ozYs$^! zz9XwId+mN<yvTPieDi#J?iz-$@Q}pKXD^7SsnxDcmYA3;R{ieWV&yw8W`!gzY!TO4 z=kovkeZ4Kq-rS1Gi2P_ewR_3x_4+)E9vaF9A7hr~yK1;JLSIB8&hBKmJ)d#c7GLMP zQu_j;53iHoE>v&sdfh6l?%DLIYyRwct!;nmYX9M$MepB-&#+ou@xJ5IzW5Fw3(KR; zb<)*BvkNVB9ttjAmVM}vI(KHiwd{>VWmDVkyAjt#vVA6Qwfpj_QE5q{@_qib($#ei z|4p@OFW+?Ay77?z>xbIy%hsDFG;c2Wy)(%)H}AztzWwcC7t+ml*4Ia^7gO<Ab}w97 zbDeDT>=?CPxt!he%)iYQK2W03uBDy5GCbENz&%>Ey+V;U-L`wGbat)(#>DF_pImu0 zM6zRZGEJv^yx_ELnb)=L{=s&>qIXXy$3J-1<Mdb4Dediijh!ovc>K9owU_ojzZ7n~ zv(J{({mh3$M-Td(@!I)Htfv0srDxg7NAH;bozePnmZ9>VjiP&}>}CEI68t9UlK!rP z*%$fuI(}$arJfwIXm;>cnK*6bhFDhlMG-Cwq82ko3IrZ0-`#G0`sj^^A{Cou<gB+g zX}3P_%bfY?VO{%_?NhdwNM1{c_{w75vGC-X1P1$O%kEvc^3UClA*1gPXdAzJy=7)R zJNNr_3(eSWmduIVea!v5+4c`R6!&^<d&v0K-7LM`w)5(=^<6(SURmfWU)-_Ed+V>Z z9F<-Ug~ZT3wmKZ^<hpZ;rg;9HvPXHrMLoMXRqOk|FC5FNJ1DSGFMS%%QJDyrV*)ky zjCYRRp8w4MpzVg6b_^@blh(4Z9loryLtsz+uLa5To-O@8RoVI2k(HO0@0Oi8eVJ!w zRH@*$8wbAgv&OK>=YN}FJIScEPT5RhkHp>M-^#bNA6x&Vf@f}t-RrvPPY(O7-nqmi zf6a$1=~a0v=1y4S{9BrL<>kX0j>}D%W+v10%*6Wk^jn9Wf&*XPxbg1GZ|i9qvws*G zX-8`P+@iRz{^x4vB`cqWPrO)mO|mKL>7QDo+Lw7L$+yI_ax*&bI!-!PG3BZw?;hDX zmpW&Kb99HqDe9PuUB7kg#`EvreH7A-<RfD4P5!|8U8KEu1;>#scQn6mR-4zalaRaR z`S+Y%<r_~vb+j#;{_C@K=8RnC3?;>qO05Ua8gBYu>0s!RimQs&X>G{ZZkpv=ve)XA z(@K4hn4~RTwruU}iEm%OVY}|NX?eCn_l3)>{ST(dOI<ByzRNNH#NGXO)1Dg4(z~|g zrs?YAxjd;W+|xN9zDb+&DE4{E)~)q&#u<rwqK}D9-}uT(QhZBiNZ0xaUzAUk%@pwn zF?3sQ_4La%zR2khUs<WuD<7?Ryh=qrD)I#18kqx!w754cIF)rJ=GoQvWi!MJZ^zcT zzcpnO54bsldxgarCM^fImDN!NPBT`|cDI>x^K#^?TOMzYhI4LyzqP*Zox`bPd$`Ls zJe62m*8jW2>ifIt2ATV;;+L*?`tDU&+_M73DXl*kP9607k&>uhu_?-aq3|X44LvQQ zHkJ0%dtY1W7-<~t{Z=(KYfJN^ycZ1GOI|Jzy|PC^D5gL{#y>@ZVc+*%&9gfF7w;7E zcPeOzQT;9QE_1rwe^a^o-(oyBayHzb&HnrQtc@bO=KHId&wChuc|8*&f7-eNYu7`H z*^3#>X5FsVivL_x&42&(y1e%fC*KVhEm^Q6DD0d6-Rg7iH|^W=e1nf|b9k{2<I0)a zs_t?~W&JW}cAhWyRqFQQD>o}9?ftrTbN1uE-0Qb~?6E%IeO|47`MvgLjtAcy&ShR> zOkZ#P!c{Zkw!Kq#NT`YW2gZm1al6j>NfU1HIQw2?aGodo(Aj5e(Dw8#m$s<LrK=qC z*B9z?v^?&4V)dr!+SBFaSTk?Ayeyf%x64wE@$U2|U6va4cfTZ^diU?cBz^u@#p}AK z|5!A&nL#0QV_a_fKJ7Ku$71Ys=DD9LG}>e^Id*e_hWR7@3oF-m3eK)A_ifDo(DYGr zXY)e!mJP>4KY5C*e|UBEzXNBl?|qtW&nIoIQyC!Kk&~NO;@Yuh{!&)4G?AYYA}i!m zee>;;kI#7bYp(pn7y7&s_pXF@z3MVfXbQTzeLCYwZ3%-SW##B%)eT(NvaZKo2uKLs zYx8^8b?$3n*=-N3gw~bE2fTUKwwU=<e4Wg@jVmwA&zSz8+fuQ9%Qdf;6Spp&A@o8r zLi<;T(7XT1d>yLQ%3HREZhf1)`)F4Gq^mVsR^_dQ92s%;;BxSh5!w;EUO$r9_l8eH zQO<hzSx4dZGv1mNZ!(*GY;Mr`S#>o$CTE=Iue#T#c>VBf&a+zAzueya26UFhPm4#6 z<$GSgyeK^Xz~h`<RYH=78dzFZblq!`*=t}i(Qjtg_UYEVT2l3^4Z}Pvr5<vrC-wc* z`X}1O^8a;g(9ipBH7nz1JYKa=+GXcwV}XP0&ea$7Pc;RHsLIAG%2iF-%+%W+Zl}^2 zE^^pPH&&H7{y^kIEq;@;DKW-*FSvMQj~psrUTU1_=;Fg3@Tl_N4ljj&elHJ+_SG;O zA3f~gynS0`-Gb>RM|1Yo-!yGFkUsaJ)!z%*{7b7QY?sOS@}c|Sir~AY91V%K7Ug-q z545j;d%D-qWGegj%+32g9r3RGw(IdB6Tz%cS^fGm?|(>jzw_Srb+CZ+;giB*J`p!P z*&a{ZRu}dCW#UAAx#KEodcIlfBfhSjzF_*X9|3FFbsIIFORN2_NOp~SniyazF;Dx) zq@{MLOJWT9(rN=$UOg2ovI^e&VeyrWV6(Fi9pCQn6aTT&p!e}=PL_<%+2PIipH{g~ z=lNizU*G$(pvpPvaBzI)k!Y?L-SZzVxYFm{B9>O}<hf6u^S#EVol$R6^Eb5owEgkn z3(xEYjr#NSBDY^Z$+!6LssrEoU+t~iSHEXX*|x|n;;x%gXG=P~ZG1k3Wz~*{J$ICU zzfqr;+$X-oGPw8Td%n6ViR%@m3vb=klH=Xe>}vPsaacu58b`b)`;FOqe>d7N*BlEw zptxz>eU_J7A2h997SJp8Mp(gOKL4yLRj+L>d*kQ0<)3s2yFOc8n>pLWF0keOjyL{g zS<Hd=yC%5(Y}->7`h}OPCS+g!rZ3BE?e0t$4}~01@z_^x>GWCrS~~T=7T@@Mn(wvi z{Mx_&&Mvlm*=>KG+cz+N=BK|$F74eBbK~5%-2uK*M?OC)|9jx`q>``28(b$oQ_zz7 zcsH_E{c+`C*@cG^zYE=*+_3n@)U&Ra5AKt8&o3$5vj0kW-;>?S?0Sp#?O$gb+sCo- z<%ySf{#@7{deX5h^tAJy^P!uHp0h^Qi>G}x=Sa9$vAK*Vh3(6gs*7w_eB}xz-=6Y@ zN!M{*>;f~3XW4Hf-_$DKKY67n_tj?2S#})?f^rWoB%SY#4Y4jT<;YkfE;X}eM*Io4 zsOY+dv%+`1o3%&2=KF?)uAOFKKNY)j!Z%%eZ_0b?%S?^e{}^t09OzECE+YL={8Zq& z?GNf@)&5*6<(wa6|D>gILH+UY;_u(J%=Tz}>kyx7_bx9)FaM48`UPL3SJYK}FwlR^ ze93%rqSCqWosX_+x5>vp%lPCF9WM3V-s#H;rTK3v_>J5(*Mz+`F!U+YJn5Ld`tjVA zk$>6B1WU}UQ?9ViI~qUxZexFd%##k+%e&WJ_c1$GTpzb|aiq{cU0L4v?N#CO;g)f~ zBP0A)+q%Y`D4Se(xOu(0uv^%<3pdYLv@x%E?@@F~{nF8cXAFYmGC4g$t=C*>($`;I zq3}}Z0Z-*M)@P=c@?O_Y{aW=acl+0%-D;a3#_eV{HPv|j%<+k6>q39X2^Qa9ub;Iz zCE<4e<J^F<;5RG!f4$S2vqmRK&oj~`eon2ukiCP?^{U735<KS@RWoS*I=FMu{XCXQ zyWLF;bB`rCZQA#dqh!y5PPc_zewRddPuz3<KF_YwkBr}w(%DOOAN;f^nVvt<(l~Li zYVDHiO0#d>SkaoV>1sTygZJ_bZH+d*FTTfC=%18R+4|D+vi>Z;vllLJ`(DI)x~e+% zokYR@^6IWQZ~fA@k5^<boLn6!{y#>4W8+!Xiz!b*2VPA2E?Ds-FLn3PwMO+jrZZ2n zbTXSTt?1GdO_fut!Y@eq^>r@2t$ky`ch0c4duo~@XN83?o?z$rl1<9j<VLVux7xz} z)82}xEag<5{@}c}Sbb1l&e?m8xqbci8yX+;<h-b0l8$<|GrxM~$M&|zEC%{|_w*Px zNPUiy-uB0Ovq~(#wB@t^hx8ubZ#=DJZ!2^8uEx#{?~iS-SlC@`?v-;xZkP3^2Zn#& zPi@`$ZF&Cw-^YLaSpNT~?zc0mC;tdJP*u<*(f{c|YgzP`|1WRXPx$}mbN%)Y9Q-YM z6B@<k{(p+!|Mz+Q=O6M-&)NS?`nl|t!xshH398>7OP}MHpYX1|<JDvPe~%xt{d+pU zWg0_N-T%wm@Bf`R(IryC{_o4^l<xmw&Ar0Y|G6xw|Ml_hd#7LJ{qz4>&s*_ayv(KI z@Z;tGKmFJpAe!HyqI4#`;!T(Mj4(mz)%8>VubFGFbuaTp?^Pd-)fKrBdy^mLn%+N> z(P_lL{>g(m-%Nx#!}m%Gm`_aIs$`@8W7Z1M|KGcm1EXaAI{&#Z?4EY@#m=qsl|M~> zG@qwb;NM;O%QO4-zus?t;jAE^*@wE{KR!1{H$PBJdYyj3vG9%ZqiIL(?wvS0<Gy0# zlf@Smed@nl^f}e{wfM|$?Q@KAYyYtpUpQ^c{{O>e^OzeobN(L^+9eq2?D72Qb<UTE zAI~rA|8Q34tb|qZ!HwEJM+|?41szCy^oC=*uM7JkF`cB&TW>8S3{SpNHw=~VIAnfA zdS1Zd?S{+EtUg*<Ce``=U+HhX=caYy!i{0ipT`9~w2f%Ush2mitv>pVC&1(7FCSLU zBkROxO*-ozn4s}vi|PUQu5bJ`DOaK{_;;7>d+O!IDA+JRx~4eryvSzJ+qJ^)w@wb6 z9k6J!<7eX~9mP{G+?XYAS16hJMtpt4GlN_<vFJ{|l!teV8TOc{Nd5Y$<kfu8Uzh)> z#m}(7)<-|jPCqUkKe@gB=f2#Oo|6KZ^JTm~F#6cE#)db$neS_ktbYF7>%7Frtvp}# zZQQwhPF;AFwrUf<XLd#LUK^X`A5G61NbirUe75w1P05Sxy?1rQ<hDGVscwJM!Ljw+ z+B$}*zqkGs-uFywVek#k+nLunm#H7({J8Lk$8PD{krLwa=ah<ktWTf)SYE&WOt#)R zr8432X}f1XUMjh-`0?|%Z$8HdsF@$)wY+HY!*}_gWx;iqHTS=qV!u9kT6)9fo`dPC zp~)}S?>XQ1K=i@u$Fe7<1kOLL!>j&B@_vG^!Nia298d4ao}<2U>vs9mv+sqRtI613 zR(r%RB}PprdP00Pv-0NylV!er?wlVnV`Kei^Lv+%Y5N^ERlD)z`KI-G6PI_NPQEDU zk@H~QAIXkHtFYDEBtHHr%Mz(MxU<XghlQ?q4dc$od2bgk6nWD7P?U@B=n7p{`JjVK z=6+<D{l)+Lgzkz|vB}%xe-+LD^eV){#+Fz9UA53T8`-4uHS-*Q{%nu=vnE+Xn(x1S z^@U&GyX&oId}Or!JL7q`zeOS2;o^%jSG0Lt|Ju~_tawy%`OS-fXX+KdSpKh>`_VA& zuzE$5*q{0G+;(?`4(>Fb@`pcuwbaiY5&!C&`8TD`So~j5dB&oCbE&WU6->;P7JW8; z%U_d{@Zq%m>e}K<_b<-5b$rKEcH8+K@6Vsmo%-f<P3!uP?Df}QXSpzKUu>UWb;|j_ z{FgQL|7~n%uBzES{n2_E`6(w4NO#pcO1(b9y4qVW>EF~6vl=bM_)Q<4R=)VL=!fe$ z$w&LmyuPu@-xpCfzrSR@^ke(%-DiqoBo@4Vwx;NwyMVRI{I&7|YbKQ4eBzL3<Ci{( znfsf|Ya^Q=-CzFs6PR6O>+}1Woo^qGv^}z@?%Ep(4+qD*;$s$u5|4lJ8z1|6Jheyr z$(bFOXKnsjbNrlxjfq_Fr=FuT=hj_0=T^#N^=!@KCmU<^m&rTd^gX|E<z1UqS9?3} zsa0Hhe`@EW;L5_t2MmcPVog3cezN(UTgTj18L{^(Z^1F~$JW08R^Q!b9&lrM{n^>~ z7!pt1+k9a9_18Pz<}KLJzu0^?r{Ck8NB*04eVu>rm0jvwpSNyvzs!9%cSfF5zsY<? z*^S?w?YW;6ywq88_}tz{HjmF=x)WRy_F?9!t=ImSp8K62^~hZJ<Lqfa{(F1x+4WeX z;LgXuPfz>!Yee>DTzggYnN6;&uJE|KocxZ*%=O|w+4+BL@3t(u|IXsy+dGASzPz)j zlV|^KQWleV|83zc{>I}w?U--=`>t_w_v3_?^5YjdZNi`T@~fnj?F*>(m{Fl9Zpm~{ zT3$f1#`9R^;{#WsY?S9&JD;no%>NTopmUek`kA%R9h2OoyCv%kf8PABZS{CZ>%Z-9 zTk_KX@EonFzwmwEgZKMiTu;iq@B43U(eoV_-rx8<z3^h|->tDtU&6m%*gpO3ve&EU zDeld5|GoZe&35zJTRruErar!X?@RoIb8mgEt?Jjd@7t5({!D(K1+UW5Duz$uGK)OY zIQ17<*54H{-c*~u!{zOTpT?!GEB6#U?|!ABUb8tV>v+RsAeg_1^L?UhVHN(qa_< z@$TyPm1e(E9_$a37QLvUfBRziRKZ8THvUfycU<}B%8R3)zMPa<_CdS7@BFM~{#UN7 zpC5ChJh3jb$bRa*ADsU>4X&KO_5ZN`oA33Puc=#G&(rzs@qFL%x7|SzA9w!xb29Jq zdj4t0j{nr>omTZkVx8nho=nO0PwN-Fw6A?E{N_^5T@HIy3AxWx9J|C7?%9QDyqx`s zf5$Plr%QUT7c5wJ!D1=b{qFs@xMXHbSo>cfD^R2JY`^lW%R&NkuFZSb;8FhZ0?U%O zMicdC{VZE1c2M%AoIOKL#JyWr(=O{h)aZNPCVIcuc3*Np&GDl@PQCnLCD|@9Tc24Y zwtf#+qkG;2ws%XpOFFZ2yH>;~{mfi?LrN~I@p{#(YwNEb{hVIbR`P1w`m1Lbt}$*8 z-d?{^Z-4Ht?B4ZPAH8!def#R%`m1X_%6rPM?*Ff}@e%(kN4a@3jfy|aoAWC&*2d(s zXRMv^-KY7{oUWk<YRXnUX1x2i{nyre70Pe7ZvPdTU;lHneT~=s_x8V?H?Ul3m~LM6 z$4P#E(AUi1`PXK|C-c4ExN6~#>}8MM|1XO9UE*RN{5ZY6>v>UJdsIoJvSRkNh_bHF zMt&dd>du<J-SRQuUxv+#mCq+{k$LrFNz=^zKUk`cz7-5tt?Mn2_`JR)U3Jg?uQ#mD z@tM~i{WrmV&PVT(`Y9h>t$tNo*-d}ypPKrI_k>sG$G-vgZ{J>C`0wFnsrjECT(<j_ zUjJiDzy7;2zlqCtw%yuyOl|oI|GWF!l<fEZU3TKW=BLAR;`dqDPhI9e)41M{|JMBZ zGvgPX_#WWf{xDF)X7{A{sc+b;cHRzo;IQz!b6aJBsJM%ip7j151@A-t*FUeVFO;-o z-Ov7|KH{Lf<gcfP{u{skGhOGTzw6WB=EuQ>e-2--cwqAX|FqICnh)(4Gt~W5TeQ8a z?pmi<zE1L%>EC&te4E#}r{a9W9N{^$u4SJK_2Y`YS6sdJgiUN?-LdL>t&et3d$jxA zBkNg@tPeeY{ov8-AN_~3bbhTm+~uD2zkVy<>eatf+e>F0e)X#EX5!mt8+PrAFO6tj zyY5=JY*?MIEJS|m%EPZ#{Yz>WozJ(i_3r*<B7JiozxpToM&|nM{IYYa=RThCS^Uo8 ze`+>2=iU4GApbVQsrT$(>W?r;y?^;5W=GvlrXN?de(d+y;idh)^27BHpX}FuG?sfe ze>2zDf*&9DGh7Xs&II0v#}D4t4%yObW?*VKJ-bO=2IZ1*6XfgNK)1=67{d2?L-xp< z7@C7`lM6R7gzxW$?2$JyGFC8v+yo4{P0qv=S-@Dq&;;c)6%&vElId=y3Wg@;(+g(G z2eKHNn43XPSDDhN4n1AP#9}(=Qn=|CZfSc?f7T4zB`c^FJiV(0X-ho#_!ASP<4>mF zZv$<D<x_`jjAsHF!l!OAJt3I!9TVt~iS5?n(-%m{zn}iARULdmuEO+5E9GIQtW<ZX zLv9jhHnA|DE?BH?TW<mPwtl*yf}siW6|bN>luck)yn=3cH3a$E5@};Q=w?|HOCwl7 z>8Bfld~FF2DE)LpO9ev{OQfysMj$?XYkLOx5@i!hc);nWgZ9cJ4ja%<2knbST!9VQ zJ8x-;u+mY%&=heIwtl)Rh>zq(HxS=w@<U<w>ED%AWhP%>W0{`uO+$9N!3FgqCIiUb z$<u8YTPiUdni@=Jyr|yHXfb``Ep>hHrK^(@s+TjH8kkN`R8tk3o_s=GaIynGJCmX5 z^oQ)~BH-JSL6_xSxTG#Red-By!RY~^a&lmk61fb;Ah#u(8h~$0W-_q^?PLcjN4hN8 z)Bt>0GLwnr^ozQxdW@#i7jo*0O$TkOXErsk1m8|Oo%IxC54-&I13To!rz@<sj$<}7 zHJskBVkSEM<r#HD&?eu5A`0Tu^%YGvfTb3ynt}G?TY@jWWi*}sP+tYQ=icKUY|nl6 zIdz`tzyBJjfc&!%bVA937`eXb*7wzUrh_j^ZaD`^m{scX(*-vgicePn-III+Bs)t< zjdyzUMRj+`J;?=^)On_7+*aqE-gODO&42o0P>|#?YVMnU?vgt9baN(6zUfadsS8fl zui=<3dRbj``UgJ4XpqeY5~gC)A6!=VfLw`u;)*)Y^i$`xc&9(SqV7I@!aemVjE0jH z9*Q%Y8W>LpZC0QD>YBRo^!RJ)qT3Z7sH-tbg0F1^7X?P<#=M9_mrSQSZdR27ohGEr zWNI}1!z*=1(2)q@hLGcgrr*Ay&OQCqVx8q6XME^Xu$;btLsM|tWA%fKM$;MBt7%O) zh*jM&{nSl$?&+`E)K#b7zojk?+S1Rp{p%BT8^-Bzx7E1>j15eY?KGNxu-Q<1`h{r< zLLg%q7b`n38=4w{wy`Tum$|FXHT~B!_0`iCuGBG~UVBtUmf6(Ea(m(%bv{N$BS^yI zdY~>oo#&Aj=k}<V>Nbp0;KL=r-b1s>7_lpV`kaUA&<h&3JW_|AT6EyCI`o3ZB~R2n zw{L%|Zp_FFK3M{6nvsRYbh~Hjko#;qpQ$%a7nrCtW%}ah>d^aa>kq23O%L$VP@lf< zgSznaU(eN%Z?@%psqV4-LZm7q==h^QpVTF$2P#=ZLVNnVSL%(BLxnis!1kFRU{ns7 zejq?YZ+iS2*k<#*x9T3-4dPTC7^lB{r_Me7riVN)v!SWU<ic7#M$>6YjAGk=eOFI# zWi*){ZL1;0WMVOS<9QYMF(@YH@S*^642p>b=pI7wxf;+S-og-E#AleGoO%K-?BIud zK#F)%BY3$1IR?cPaV`kt7!*^)u^x~Uv`oQwn?kK~GgB}$HG!7-rY2_7KP)lzoqj+` zMRj_ny~Zj~7C*RLRe$=gPwL#$vuCO4Pro3brZ-*qGbodRO8@Pjp`|~Qsp<4UM-4|t zQ&52fNvw>f(?42TNlm}ts4)|ipJ4_6^qJq)d8W_u(cqi@L0<L!biJ>jIwDnFp3!u& zq9nNNw_yYwDRFR(irDl>TMh2%Su53)!0D64(A3mo`o~x54vePL!3TL2+iD0+cUWk= znAy<OZ2ClZjgaZC4jKZ>^WUh04zK`SW(_jy;$eBQ>G#b|c(;3cYD6(kU+bX3HNDJF zg>Sl`qlWY}(3PG3jvCPPl<uTqJ-wh>lM9rT9Hvil){vO|;p55aGhH-1reBCu<)41S zSL4%k88;2?>1?0X`KFt?X+V=viJJyA8TGqsK+mQ^B%`P98sgIr_^X|n{>4MXV|vbS z1+MMNK^jJkOy-8u6DKK%PT%FF0lj116m%23==Lqa8XIk=$9ijU2^pH2n;Ri#T=VIT z6E#%fY0K0EEp3^aqNOcUQ%Kq}H8q7-f{^BesVREeGDB8jtN;pK#CbWU=8*Gp`h7H@ z=jH71(}13rbJ0%&dR|VMzXs&I941rq>55Y{92qUZ=jDJ)nF$8aq+v0galVGx^aV~D zpBOEs3&IY|nf^9F1715>pq!UuYB3#hUXCgFbT!B+A50+8W(#{}LsN_Cfr~VhKmvm2 zEG4I3$Y-1h7EPR`5i(tLGAwmiz^WR@)$-!g``gX=woA>?$Y7jaJ6VH^+1S)%`nAa# zYSRy}Dr!!bo1)P)Jz<{4{OJ}`H7usv*=fm6Pn@P9F}=ZBL1OxZPQxP5RpW_;jB?W# zY}N^!o-tj+bNhw`8k~&NU(e9snSP^ElXp7HOlVSbnF&j3akDg#i>~y=8qU+V%+ipU ze!*EmWcq<d^=;FS%+~Ojer1Wqe?C)iI|EV@8k<e;pR1t;t}3SAp9@QM|L18~Oh4eI zDm{JfQB}_A^OtJ~P2aOzBYS%2d=2sG0@9jir)MtEaGyTcPnWa4#)n^UMtG5fhi;$> zU+s!5@(kZ5MQI%~dUoLc^*5J7R;g}Cv)ycbtM}EjOA>D@zdTdB+4Q{G?9@RUT|cJx z50~)@bB0I#l6@H8H#ap<VEgMgi8*HsHg0-iQ^mi2bGf#?&8n5{>|%SZSp8;8+t*yn zJ@7W^t$9y^O@Cx)A*=I?FZFkBPS0bJTlnV2iVy4lR`JZTKXyE;QN4q8>BPxRH_L=# z((?|SvY68~{d$2Go7>;&^PX4vKdml4;m2&<H+jdcfJq8o>pM2_1S)cfwgfq)J6Y~} z^SA5%yYB`{ZnFfQ6gjR{@DH3U8M*w5o$bS^@AdpUjFQCCwc<LRBD<x!EB##6x=Ovi zMTn%#KD=%H?+H&I#mvyx6J_7s8zQ~q{awGZ;N1KC53A?!PdEIdAwGTALJh9z=^Yll z%!XzL(;v2}>oJ)bOb;|v1s|fZK6iKSz2Cn?Kksx1E7{NB+IXY)^PO)De;KVyyOQ29 zc>cE!s8dl5N?!MH@3))ZEVmXvI&klE^sWFA*NGxaKhFE~<bO5Guk-i!?w-H3<@ogV z`TxJQ?VloWNO`H0-2Z?3@BMpTU-d`(;ZNITr@p?44^g!HF#rEQfBv7x_y0eAyZ-+F z;EF$||358Dl6rVi*!=VH?f>2W|J-h#WpdQue)0M*%YVqF>%E-#thzUMO4+v=+1@*g z<6qVWbxQtPyyd%v*RuMhGk#aU-`OzfyTCDK=c+xy%`O)?B~thQe);zOe}+f*J}+r( z`}5;vzX@Mj=b!Wb@%R53KYX~~rtX)0zTuwdBK2uY<6h|h|FdBKl!Nt|@0(wAu6=7C zvR3Fm^Fd?x)j>b?|L)y3@!5&_8Qxh_zEA8hE`4L)a;E;o`=v|H+_}j0a$WaI-HUt9 zihbT5{mNYQ)cbwqBIU6vnVEaeUy6SD@wV<%`#S>F=RaF#y|*mAeq7f1RefmIW1Zq< zKi(EjpIvypOue3cd;JdCqp`i8e)o53Jzduw?YJZJ<+No|Kl%Uvn7pd-ig%U2t?i>V zjXT_>TDLgWov(cM&7)D`$}63AD~ZMJGeRpbp1&78@9W0dUK`JSk7!@jd?oYi@oyF9 zbGz&;1cEsX+rQ6xJm;}v5X)1yD&5|4DTdyX#Pi(KBC4N=*Z8eCU(fW^eOKqdxeKzq zW_F$XE|kr2d2##<wx~}5k^4-7r)6AmP<*X;gjv;URhWJIhnnB_^Djwqs);UHxoDNq zh8vxCc5awqrFq5S(dpRp5-n-YnVA#!v3l8B+B8hu(`aMsS3F(m@Vd>8Z}_={LRX$K zl+keRXm-0$d()@(yh5t+H3{E(ivv!<{%bGU8Cm-?ODRYMUFR_4bGsF3bmEZM<SC7E zITBIV+05=p-IBc&*?B4Jx+VJz@9C4crzmc@XTZ`tzq-iHY8Hn{hvwUDcQ|sGg#6uE z5;yNE^IXTe?5S@-s@Wy38M13;+H}->Dr=0dxb*u(#)0XrH_8%~-|l%=eq@qPb^S5h zc{Bf=JKSaT|EuWwEiYw2CvZe;%IGm&UuiIb?S)#>LzDkjj^~-}#W{@)R=N~l&YPPn zki0N<f3JY@O>=>>3%ZjIx3Y-}b8k7$=51o?&Ao?5$5vzRq$T=76LnP0J!+4BjQV!+ zgLh_wqE}?ew3Ih;ETNZHB$+ilXB6&_im3m(Rh=pL=7OM91qtE!({}goRKyDRbzZya zKF4+U)E)i?{(RY<S+7@{_%O-Y>iq4M*`Ot{oOf?oT7kau@k1FpioJ_6u4{_jl_=HV z_OGtA*RSxLAUE^k#U`zLb5{K;o}8{QOK;1&>EGgZZ0a;AI&kQ@=F+2U7I*H6%DkI2 zVNafUy(CMK@Y&{wm9@Go{ONKhZQPx_g_%3+WSFH797++9jxshfRF<waisD{7`O)g@ z-`h@p-z%}@#Y8o6D<6IXudF4GFIj%2`(1L#(oMhSvZc*CeZ#k#5yBG{1ZHnC^Zp&9 ze`cSU_Dcu7=&H4XYxou)6})}eQ_|s)&y<&^Zg|S9*<A0sG`(%h1s%5)6L(Zx$Z(sn z==+tV%+U52?@6{6hk2SdZfZM|6dXB!YO|=H8h@OCT(Z7Fv5axUx2R=hEABLGNxpcs zZWD8b{}cYy^Zap!wv$#>)oge(X+^)E?xhRbv$Z5sHt&2~u;#Jc5|8@)jVpf!Ms|t? zdg~V5ZtKcYnjLn#{=?FZQ)Tw_3I2|lxPS5uy|+9SB1_j@*VCSIVMU0*DIZZ0C&|g~ zOM49`ecAL;{qg4Tw?*40C6s+_{j}pUtL&~8L*@h0no7^)&fmFksZqW8f?R4o^Q_%m z9v#*C@n1G_ExbA1w&#M+>F~6TFZu*LE3PkFHd*}F6SZ)~Pd3{`&UM|buaJ4+xbI<# zmBE@|!xnu;qgA_)xSbSuS?S;B)cB^+QabpiYhK2zWRb&6OP)8?@rZmfe*1CyrW7;y znII|BtwK$`@?V^NOKvdwXf`g?zHv3D=R@kE3%eW=8P-Y#Bzy?|;WW)h)Z#hERHuX& zdlWc(RG_DXs3+F*79FetUA?QQ7_#ZyjOHg{U$;oDjhU;XH&-ZXF6XMv;alH0*jjbo z6JiVY6kk#kbvA<S3`c&#;TWHwEg$$M+f>Y$#^(O!X=E$YD~Ago?7$cEhRQXv3uXw+ zWec3M*40XN0^cf^!mnkLji8Hpwfwgh^R$Y^KM~6a{NQ)8esS@Sg?^2~#my@YfzAnu zR{U)J{n=Ex3tpF|fzAnulU@lrC*%pM&YX&%m5xrHimriIJC_;vYiRK9=aPNGb-8Z| z_?(bMH%`9@_7c9)BJ@aYMUcs4=s6(;Z@|ZdREG0;u}iY7JoWDHgoCO)ehd#)Wfm;4 z-m|G*aCT_c?px2c=ih1Uo=}{3;%UyJ>UrXGYW%-~&j~rY%-XVQvw_vC1VO_Pl~rdJ zeo9y>{nA2E<NhXhaoJ04kJSIm<T$@s^C9?F&kGJOiOm<{(hu9X9^dbm%Nv;y)ElPA z$+A7U*ZRWe{KMxC*2(QCE?Tjg>1t};@6xLq%??bfKlG|4grj<QPLBIV=gH3VdxDfN zY+`d?Q!XWx>vCk$%n(J(4QaPe$=HP7IS{2PmY{g}_iYx5vVd%Z7pGEEJ_pott9;vJ z5*9BW@Z!<T?*$Jwy;WSxwgr4IZ)?0WCwFqk>`o8v86T!5mVxf&?Kyw)ujL)y<Vd?S za?YOj4_&Mej#Kz1dXu3ehlTUv6{8#>4TW17lcW6I+846lWIJs$y{@rx)&{xq@|+UO z3zxSg<{w&kwKB17f`R`z&eY~->WPoLJ#APfo_3n^*f#T^){I5dc-l5xoYd~NShhb} zPyNJ1?bMd$-Bo%STl@~T?b7pMkmS#_2soj8g+tij%-cnlqDsQvC$_4cP<`WDHtYML zIX>)MVb6T0?~Tyas1I@4^U(AEsZcNVP{Cpsqgh(XDeqRSJz2fhPe@mqMef$IlXa64 z#U*qvKi1js<mu^mcDsJWsIPh){PJEwL##fZ(fbPCcXIEy9x2)ONqA<tD*x4-r5$fw zgZ!0ms1@DN@(<m9(Ep-u^Yc@Z@+@r=C70+u3Q<jXq4`aYzxHf-MY~JA>c;8S5xkS* zkFDW0NuS*6Fv~;0>X@)nxsJ@0g23RMW4mtORbbbeu99!!v{Lh6q1nxV8>>S%xUp7e zMNefdyVfAKt#CuJPlUyygzc*g1$J%GRg<`*qqa)XX4VI<MbobTQYwFOps#g*;LNf$ z{#jS9w(AB}_GcNiEI#h{b>9U=#d^DE_wp{T?&06UcXfRSSIX4SCfm(c6}(^Ub?MOj zrsa2%L-}XtSUhrc?O4G3^=R~~u7fYKviL3;rPKxq3ZCAp_Vu%{(kF)OBQHB6nzyXl zz35Sg{Ivy#eJ9P6b3ahr(GYs1{YvA50{yViUYX`3#z+MzH<?|X1`(iBPeP;l-J0sR zZ1`~4Bi&{b_}CL`_12WSKB3Z++b=w@5bj#Z)o$pQE55`0bbEoD)x#x+e}(Kh%dvdU zg$9SOT@xm-@HiS*a#(4G=ALnSEW6fw#Y8n#o>zMcLcC60nxk@UIgi=ay)g?eKHT!E zRMF11Z}9{bp{NJaW*_S^(^yo*N^kKc6)V(RNZr@o^J=li%zzu0Exw3d&EIrW{(bNF zdBI@`1=Efi^RKUvQ`uIgSlaqGNA|~tg=?kc%~VXT>D@cAj{n~3joWt_o@nJYubL>` zbo+&p|Ag6mhed2JF59hqSn+d_<@Ha~X8UxtepA`6S(9pVb<Mfww?vHkZY=M*@y&xX zRd<TM+)Bg4{EHeV>&Aq2?Aj>klF^vFEb*P+x|C#-<5$^)*B-ao!pMJdL;D8i{!M>3 z*`HdM)Mhb#_e&jx`kJ5<%Xhufx8_~4<5=Bx`=<}zern*;=y==z>B6+<DmiC37}qi# zIvAuC6<c~B=-acJ(|jf8rW{;uT=n2~s){8?(S_%CPxm<Ji}s19n{2QB_tblPxyC2S z^V4i!%?Uj0|IG46TgM0gsm3;mF3t6Z%Zr~Ct9!fJt~$D3Px11m)e{fbYdtT99>-Dw zK90reCFnSoRPb>uH<z8vX1LwA*o=KL&zU99)+cV7ZGP$Hk!d0KH&^&>`LUCMIo@K| z6eh>eh0EK2?8%wg#BO8Zq2|bIB;YysgJw+3#J(#_pRipFt<n9RG9zYA)Y6h?p8PLn z{Fv2n(d|Ov2CsxOn)R3dIkB9%wt9<~pBHb6wup&7n@fXx?_$P7S+66G^OU}`S!b%e zRn+brqil|Q@s;{lb0bsRD{MgLu{@TUV0l-u=D4N8c@OntKPS7Kky_7P|14vHJzEZk zgxeYm>n|-QO|L)vRp=6RJR5c%i>-sLlBtgJ6!kPAnZ40x>iKH<b7X&A((^qhEY_&r z{$|;{bHev8#dF(9zFVpE?s&n2wT%a)r1-KUg4AwLXK`BOCG07AL?+jK(j-yFMey@j zIyUfp`!3;AFsVnrD{y)H3X2=d`VSmhX;M8c*Qb5Xix2#YhITuD9SgkP%e;4rg~UuD z&s4|s&(3H1>rWh9w_4YG-U{9F;|qMe`U|&yiIRGd!6J5lCNuxb`x`uOHR^h9o;PPn z?Uu3&84<ggUdMEH)TGWS?QE3D6Mr48EA!N`Ee~{wH~0FJ4U<(0!ye2%sIc;l{j5{d zO&jhmjMTdbzQp^c>RO%L(i7!^%2g}=I%h21>-kOG?y}(J={j+`R`sV`OgCp3uenun zaOHwsB1<1LFetoTQRw>jWQ1Q=*T%vhB5m?*P3_;~_#Pda(4%?p<M#{O<}R?Aaqb+` z<`vhrM9sdwFPGiQ`rujao1BUpGC%BjpnTYEQf20*nH8s3D%oy$J#oY4%^pXL?p*WE zjJopr&&%3rKNxqt2)L{N<D?z?ZGrle>8q?u;wM%ZHf;`Es3K55udh7#+^_AuQKrFb z<aw<xe9k*8ey_47!P7a7Q+EBG1xG>0uyDWkaM!8(acRlSG|O40CklNJHm6G8KCHCF zd)8vUeQ(!HKf9SNbW&MSr<T<Z|H5LaS@}2rUE9Gdd!EP5f#2+*j(4?|-@R8ak`^th z|1MFkCUHz$KHODP<D2WMo8d2ysNY)SuyAqk<Hxy&=d;I^89h4W{_yYYJ32119S0qp zWiK4Ds95Y8ptQJ?$EL-MJO5VTIq<10x#qX-Pkb6EuqjVQNVldaLP438@%O>5Egu3G z%sV9Z=0uyi-GX{9xyKUe${fL2Cl3EoHsD!Oe>bjUv21JGQ9&{DDId-WuG`e!yMZ%c zQ^A5q2bSz=I?Z=p#Z=(Jk}HyN8>;yg^;6D;i>TU0wx>kZcD{{hKU8@zvuZ_Z<;}@# zCqc)uEHYcevV4o9-;bD!3nqEZzr}Vl=;x#^=M1S?XPei|J<-V4P<%?R+r^#7bykE$ zP}8MJ{Zh>Ofu+h;b6nPV7;Gv@w{FW=u}Po(>Jskys_C@}x)Sx**RSccysKE~XyiXx zCT^u0w^iI<FaBL$Uq4*hJddk?nj=^4PQwjXf<Py>yo|F*KXob3b&aJrUxeHwz1RsW zdlUqnb}yWK{_@V8hbKfGRv8J-+bXEYp>t+BTS8{v%Y@j|#U5<$o9-T(@A1EyRlTXp zDj`^C#)@T&LxuQ!cCMP?2|CDy`RQKuE0Z^#t`mq3wOk#>f40)iMtbklZHH4f+?<tu zHdC>&KbOJ%Uct?a#&>SLd^0s);!&?n`A0o-o(-Yj#MzBrx}3bEHr+#*QNDiG8=r{^ zE2f{g{X$A*LQue>N0-c2>=N)32rGzS?B`WBVLd4`D{)W4rf_$Gxf`pQ*7`DWxJ_yl z@(8?D8yO}1Xlk^^@r}*1lw$WtNt{kQ^|V$~vFOE%^(+%yH*9TJSs=Z_Sp3`~C1EL% z0^KP(kui5_3lvtIXE<GQwok<*F|uW8y{Edw1^GR0Q`empW!_)Fw7aWM+k3Lfl+fTc z6U!P-?BHDWpC@j!hPe^XGTRK6NdDcMMJ815XsY&ZGSje%W`B4}YJbdX*6;VGeJNfw zRYQrdp?ksetgr2BI}XGN>uXIs%)6@CFKE%pc{3)QX%AegcyNNb^WphD%cGtJ+D!X( zZqcdwk7qb}kAe=0DH7(4yX=y{87sB!cet1<|D3YBdv9;-bGVe5QPk2?TbPiqw1sEV z=RJJ8LVkwE#J{L&x+a`-F~*|&^w)P8t^qmU(^5kh_PI>ibJuP?v%bg5Sx5gE+l6ZG z5S(yDc=0mjLl0P=c^}y@tzPZtfdeNOT?(-OnV!QXTpu;z?6zaRlW&VGwOv-F=P7+a zKQfYUtM0}ROz*edPs*rqJo+vA5mO}B;hU$=+~z!-5b7LdRQSZ;nC*-2w|O6XSRL7` zE8$mW%g(&P+)OGm-DIyj<fxi89i1ztPI?fia(lh+YR@kI)uEG?FOLhgx^PJP)fF@G zy1e)UyW6zB)f;*_K1z(tEPE}{${ewp_x8Rt!Cc$eE#F?>_Nn?;d!!(}M%UVMme`?P z-y6gDb=I#v9dO6&<gEuyQbM&Cz8n$UldvhUmycVb@5;TiY+)Z7RQI0}Irq_V=G_U0 zm)Nh`t|<S>E}*xf|BSh16MvF$Sc`!Cd%1^Op9p8n-k5!2a*lR=6d$vmyW6iem))6@ znWv@6Y|YvrU3u}2nxH#(gwhNh%a(~A&o(Z)yHX=9JkI3ST8+Qe#<v`w+V-t*b}`bO z(V-~QBldv%$%4|EJdJ6po$>`qYZcpd-K3vL)-E{pBGUB|-^?Z-FU#XEu1$>AohUSG z!!ftN*SAmee9Fhkl=FjgM*TL^u(+xIfhUhvm`tmgV=gem?L@O#<`kZ!>lfFFUza`1 zI)Bya#ooJ3{C00#Y_T{)bDi6srp}Cw6WjJI5h`P7t($&h>5;taiOaU|JoVladHI!8 zNMOW5wdRQ|abI2X53(H7k`pPqs&(9m-=NbeX_>T^=LgqWt?Oe=I_00MO6s<x&uhDr zp-@+B$M}LPShr@0oad8sy@wtwZ|`)}ys2^RO8f)4w&POibGx>=6-?awm)T{HtI7Q4 z+<Q9%g<hZI)KXFI<QKXSoX7gO)#Rd|?=rREsoS2E^6GwRnc}zi#dNRhEt1W;o=Yyj zn|}VTii&Mm^WVnzjO&9V->q8xe``~++f_l&!wf$nTNbY|Jh1hZqxGx56C!u?zP4JT z+OC(f)&EYeaCqwB-u0Jsv?{JoH@K%FnKW~AdU~Qw*A)GX`^)BS&A73P*Ji^K*)>b} zUP!UO-rx~kYAHPVgN$**k<U{jnfqMSH_C9zJo+Fd{-bKqnuE6&Pd?V#_VRVXG%umB ztf=F~mA(-*x<6Td1x+(3TE0_d%io{TE2poyr=n1QNJnww>m1eBi*9etxbbdwmb6va z+vlA{Te@C{_sK9l=1@=W{?r>ddrN=X!rI0D3k+jVDdot_n7mHD|E31-+cy_ZOfs9Y zZK>_K1#^@gCqfUdX`8iYjTnE<_rDwWB<iLg5x4l9;PrKVzNO;jFwwmxr@kk@eo$k1 zD{|Sg)*i2&;FD{h2iMFwC6giM(Rz^m&54gMQ}#YC=~_E&g5^rC;}%7Ye@;jD?O1%| zVSP%cq1U}*8h`#Vn28>>_;vDW!LQ|Y(Z27eKRKw8RsS>LPW(NgFZXJmH2e%HeCYi; zp*UgYqu<xpth4kF&YwN`slJl;mM42m%y$Qx7|Lp%yL9+Lho<{t4&CTt_Bg!*OvRkj z)ysC?Tcszosk2e7&p-7-@YFfKPMnCFx#*j_s7_&*(C@lfGp2o8c0FPUU8FYW+~g1L za}F%<nDXN`xBZQY^)qu<NU-Eh*<m8JT>X&aO%2JfhPsN6CY=2c@%Y5{Etwkr@0({o zexP%@!KA$}HO<^D)Oi1s28(G^eGVPnGTZpT_pB8c)6d?tSo65I_F%{JU1|L-+IJsi zX#A`3f56DdQN<x<mHy2Bm=NoW>0Fc9JZ8;YpZ;LZoN1ZQlb-xEvnx@F2AwnGk}xN* z6m-taIR(ib`|m!jYd`R24fDLa)7uP>Csyf3e{p-oI7xDC*;7t`Po*yrhkNHLe0^xL z@$CH_>ar5QpUcE#?0o;xc|so#$J4AY64rN*l=)iSa}}JfzgI!LzHQQsZP&!poOQnW zPIa`=h{^w`AR!xG9qV>phx1dHgLLp*=>=15`Op4{IK%&m<6y_8|8fz!>%KXuN3Wau zTkO23Ij2K^Lv#L$stKOY=S+W<I88Xl+bU7aYp>^S_^~plxa5jltUcGi;<VFc?acnD z?D%Q@-YlNSTaRSc|2aBcC7Lr>N$=Q{n|EjIkjUz@kYKAzU;5i7@!B#AsoSw@ziK{6 z)#cy$Q(U#z{d}xi_PzCU_FPZ8^K*ZbcTl|UhlFc8)%{wS^Q5=lGP!PBTr(+f$5f$4 zU(<=7SH5hje0Jw68`HZ=?_G*Zw!K=-!YqDS<ZR8$p5)>zS3Mh_^ULa&AAfGQeU|XG zhK}DU?OhvX+PgL;ZCU-fvOR_8%_Qd}&coYxY)qaclXJw5Rqb}>Q9)z9xBf0lPI9x# z?>aZWw>lCXALz36cv^b?ZN3GS)77TTxwgxAd-8El#iVIlHkiDctG$SYWm(jZC?kKD z1AjU4%v$4|?tT{7$@r-DbfNFzBlX>)47c}*?I~Gy$nfP{W>K%^pQjk#e-Q3}+*|wD z!Qe&C*~~}@Q?C61o6W?!GOwnK|2V|>`Sw}Uc#9dc93DNqb1EjhQTB|Bujs{l6?Z@G zPT~%^XkM^Z#9MfN)thFW+xN;Jb(#r2<w~%%Do#jysda1Jq4p~VebLEUW>ZbFr@Kw4 z7uudS*C)gCtLgsIPLAl6p7Z~nnsnA;^{jnK+pT9fY_M3fnqBEd;mx;`gqEK^e^BO5 zVDRijAx&NeHJidlwE|na>=hfPd1Nsye5qMk8+uN|a*sXpqAfX*3~8F~t9UDYtr;Y} z+(fD$WUf4!u+Y?1OrSBvZ^M(I_mii1uDqo7PGWjhwk~hIo;17Og>uHDTQ&rGGBcr^ za+7PJ9dhz<T)M%T4f7_ao-<~CU0HuHS!}t<7Y<9=4_tf~&pZ>*{~00NUi?$_W3Niv zT$k_-I_l@mUpjW1OV(^SwXizm$(EJRm6Y}8XzcnKlJL~`yp{~l@}13lzF1!?YwNOo z7O}Pd;$y4E=C@{yU!%Qmzl{87SZZG^ew*EB@+v#G?Q!#dyn49h@zk0C!y~ni!ZSAf zcP~6(>$W!O*{rbpuEKdDFIT?Ywas?Y3(3M;(J^enLc1OAEjaj)o$qkljeD^{%?*yV zeGeViSw}x?j&Gh{U=#LjZMIT3x0*t~@!SUz*|Y5)%&b@C<w*#dpRnone96UoOJ6XX zx-PwVvGw%FMKQ<i_LOOsB)rmieeSr|>cgJ?lYLa1t?jQZuKj3j%JD~X1@nW5wu8aO z1}*<jW!MBY`&wBStlO}4zEJH_w&UxiG9I24)HBplzUZufQ>Uj>eYd#!_jM{~dUd{} zsQluw`*F$fk?f2!^(Ln-%sgE&Z`t}&v(_xvKlfon`tvobc|R^Nex@b;BgN0f=*ZJp zsZD7o0$x`<+VuEoK;5)97MBf+R(iPcUa+y4yz<(q>FakY%yjsr=IhiZYJMWS=-q~? zK8FHgFBWQM6__je^ZPbPoN<kKb5UVlQ*8Ov#j10!UVZ4BlG6UrQ7XZ;{z!OWUBBAN zFUfPwE4$se^jutHnhw|QZ(KQ(nfd1&mgkjAiuvYreQBHCz3lW7g&oSVv!>tiTH-Kc z`$>aa=N2b;$*$pKQuf~cWc$`_>%LB!;wfBFo@RF~Hh50=ho|YfC&hy&ACvjW^ZL|6 zh0it%UmS3K_EqgH&z6P4H{5TrdBm60hjO}HJ6*BxOmehl0&BUuiPyTDvL_zMxbQY# z<?s0{&HGKd*ZumuhIO~5d~K_3);u+><(x_1l)rI@&qPS`-caSfW%|nCb_S2_Cs~=C zmwYVOZj^p^JjbMxyvC)(v#h{qOOY%`*4mv`wcaPZiY**Y7Zq&qFM5$Q-Q3jZX`D%w zVtr;rkk<7@`a*m2w@>2k=@GN@mYX$~eY-^^k4JY+2Y>jvy0^L+i8~53+z<F4PVha& zsJe4wX~81Ndupt$PngnM1k9VZ{rJo2X?y!=fkJ%WHj$gQi<Tu>+&HTg%GVt#_VU41 z1{dXAhYuW+6)#<Da4J}_#f<IV*JKlR6)#2krup@OOk$qST%{>CVtJEeb}MzZnHbqT zh?UfRa_8bHCbzCB*^dwD@`X1R-nr(sXe(>3x70kjwb8u1Ht|a%E*U33{L;AatXgD+ zyXV<(o2WZC-bH6|XKngm6F6=9G0%d}6IQ6r-hS9_l3QK1gxCfd$rD9Cb}4QM&S(q1 zvfHI7IEVXjy-j_4puF+tmG<+qRBl0!!+9cha_X|Xa|}0SMqi$h^;kpbf{mAsLi-lc z=h_cV6c1<W3rKdheBxx@aW;kjb@g<YH9FpJ?<%<{mE1QE(mHYSL{#+3CHCw>8^0AS zo+uqwpq_hYW-j;J>f(&WXWR^?{uYdWctGaqAHU;`bzkc>(vm!8Kb$+c_>K+BMiKqb z2f`z(uU00=7k--Cw(hgTw1`9=Pu9TaiYKK_h4a}C3OuaTV7|Gw;QXT-pD%nA<4OK# zBo>}`o@u-IYeViAGkdPua!1Yd=qdJhsyY#{$d^fkf!}Jck5htoip*pMADQDS7H0(G zEcQo=p9m@CUB7%@y~c)V-3bv*|F&zs?R~aRy&+;>TiB&*Lem<OXG$1P?ddVk30VF~ z?NqU*_)}hMn@*=lU8!xq+n6F=tPGHm+G_i6cDTl$hVR`@2S0l~bXdCgroTu@d)A*@ z`(?JXSXVBMaMkg#XnoLjec731-Pew;>TN%#x`eyA%(<)N<l%Qw>#ggb6|kJ%Ftx|z zV^>h@;n%CTTKc_7ZfrW{%i*DVZ))iO`mYhq;TCe8`iqOzDs(>?PYAj;KVxoL^(Q@% z3ZsVE`?ww~fA`ln*2{U<DjP<F2fMZ<9R9|YRn{2Qt{pqS`RxwQCmYn0C(37jEUnys ze$G0<liO0hGU!-YEwN3I%x5cESfBg(0rEjPix@BI%lkC@@ICkD5a0cRA>r$R1`!*f z#lmerE;e#D^M2xf=a5|O@fmthPRfkQjG%*Z^uPz@$iWZFnX}OA-RG8&j5W;mzg)W# z<Lw^Ee4c!{cf-L08p7+pXfO7-ZqhUH=F*rK^|i^1HN`@VB#!RBF~ir+hs8BG?y2zJ z4$kLWESVkT<F4}V^Qm;dA#qk=)gysRTt@Z3q;E=0wN!C<`2L~CdESeX8^Y!ZPhJ-+ zTBhB$OwG=}c)^+3M^>KtQPn4{ml?1_v644j;&A`HO)EHmpYS~SD=%*1u}$tvf>oHL zzlrFC#80lDa13%%&bloEUD8)rFQ%masgU2uQhR$ryu=2>MEjzo+MTERH@fD5Ps;i6 z$Y<hb$M#QWY-}$rD8Cl+;5U<}$^Qx8w#nr1ywzP*>uK}cjAeF*uy*>VDRCx}9y=~X z#VoQC+dpHqz>Bj7?Jf!Z$=O^P%eToV;p*z}v@UhC`i+p2auU41R``VWJ66n(Vh-ih zU%PQ*MRQ*0gM~}E3eFf_^|^UP#V$^2xmLsJxqczHdRo4D{|%Tm<<8>58&YSR_*`EF zYFNEf@PGe^LsMPtE$7X4qr1#Duloc0?7rm(FOxp&Eca>Jw-mm20r%c7TB0PQA$Ke8 zvQ^lj$BUNNf0Q==Ya}-(scrhl2Yt~ydX|5F>3aWh;r_c7Vy{#VIYujmvDdkYYc6-$ zbIQDW{+zA@*EeOfZhhKNly{=jsO^081@O^1m63n09O$vwA^b7alQ(7Rxx`6JzVG9z zKDHxkjeX$qs)pL?%%lxJpEl@ePS%cCpuv}Ha>nrKMlFH4^;LTl{%m-*YVXAp*HndX zJ^>%8bHci)!!6Iv5_F`FoJ^i~jNz~2J!1JcHSD*y`KW(WVK{Mx;q_Ka7i-n$7Y#T; zN9tH0j?~He3_ena1$3m2%<2Q~25m7C2VPW{cDU&uvhd=q>EKAdp1oK4WKn$BE6uQa z)&22{+?A7_{kW5uvta$4h+hAXyiR_b-}<OIv1OhzJ+y8S3v2$2l6Gyzj~bnS)N>wo z-d`AZBwr^<DeP_Ur?;KQRIT%!_DCE%^kc6>d+pBxL(h)opRUcG(4{hw^_J~twhzMo zx{9JRlx2QDpCG<Ltie3%=+yuQe=C)5^&ck+SJszktv=q~{OOqhFYl6yDNegiZ)y9o zykyD0bvkYnK7DDJ&{e!Z@6NP^EPMDi*LlrXH1=ny;xZ`|4OBQM@JQiskIg}qbv3QL z5$}DCmaE(8?r;)WvY@qX)}&)@L2h&8B$mJA5aQD_da`o`L)qM&N^TWGS`X{nJ_giv zxl8_RdZrgBKjBuD$-<6}0gTBH*{<cVr&L#GJ_v8L5$0zUnkltOW;*jb6*Y;f9naW{ z0_6L+823qRWU{ee@J}LmVvAtp^z)^<iuGUCnyox?y=sY2(lqvf@6VDoo|W9~`2Heh zopsfPPLZvfJ8qm1pSkUxtXj^y&1+jtk63%<EaOg&-k*@0yYmrO-j=>Sx9()bPQM&$ zpPKqIr^@Wp)8>_e>9r@GJ6C+xYfZi2Sm8abal+o33Ge3IJk5S**Uh;nY;2F*haAHb z7r^txdD1<xDIy1+#BEqJ{p~vyiTX)`8yC0NFll~WH)GR!k-Y`=3#$G;UYVi0X0tl4 zym-)#`HE}i?fkU5z-gjE^_hu3UTwMH_p9fkT3j5*AN@O_CrUfo*RFw_$K!jE+j#Px zYlc%!n04EgKffsGSK_Ocys(8^EPT=b>D!stYVI}@j|!{teWG;o)obqNj0&G)Q|doD zv^%HzXkKGxZJX}@>0<xkDN32af!o{oL#}UleSGZ^--{djTIc`VG^urddhJ7Z%U^{v zg1$U0ZSCCL^}R3R)_3lSoa)OfF61ZsA4`+r^R76u;^eFgKTbN``t8SFcEiK>T$1@U z)uU3uOV;x5tWw~(ykVlg+v{WV<S*3sc-<?xRv(zV=EL%@AEr8Ay)LxjVC0T}F&k%@ znST*!zwfO5V)N`f_FKbwg;YY{ukIDO-lyxUH`$GETkLu1--m<`ybRzI4Z9Z9f2(3a zU+z?yM~x<PzUqYKt@&zuv`bd_lzx`O!i?7`-rWm(+Ql}Rg>KqYJ8P3^Xo_<GA13qj z8dv5koLTd?URc#UwCkbg!Uap0e2n>(rFMOz`oSYS`Y{sAlEO{}Zhz1{-6~#M^VPnS z$91M$moYvh9evUJCijNrvySSi{#+!zN9^YXX%_w!6-HgEWyPze9L`SVNeDmKt|2D4 z;@XV{oeqshyYC*J{WRsx2grdu*{tDQ=Vdpip5p&*y=2ew`aMg%H@Y2OC3Yu)$2X0S z?ZfdqN2F(6`hSA0;n|7%$2S`NQBl8r-SP15>=nJuIY#GnVjnL~pB-IsXTn~uyu-|w z_;b(kRU3sx+i5*oyy9?_+oD3z=~-WSZ+Zv`Ivmoftd0=aQ)RO0<YJ#k%b&<H_EvrT zsB!b>UjEEA&$!z<N;gK<2Z<Cf5R`QN@Ry}PI=_CEJ?nRe^xF&p>yKn{^0fJHe&F=s zD!b(85dFRDWhB#l<|x%}x^4LRQi!JSYP~~Z(my^eZ0LUQ_^jMk_n@?e_dEDF^xeL1 z{44u%;m7bIn>Ify``2~Tp0v*mEB4H|7x8d)?uuOt(-b4yzm=OUS<}9--?pAZH`jvY ztY_Ia{jKe-%NAYOxbg1G>EhEkX8%Y|iP{wM>~h<Wv+<Hjv$N_%HFLL}6A01%_Wk5b z?{sD9$@>DboxR`icnUoh3}ZL^P*&ijmL;dCv+NT`;?9jbu9+RHt*cCBDpvc<+<m%Q zY2Sl+j|%uinGJQzPyJofdEQ-YgIUz?dfVA=V(&cpv_NjR_s^fLutRw=MGJ}@-l|{g zVCa&FD*~O#bKP{6Z^=%pQ>{Vq0y~dnh*tCP@gKT%eW!Gc_Q`qc8g-of#ci0h?NwGi zXWJ!Mr&RvGZ1&W{H%cz5U0oMxo0qKNY-{Dsk#2stt9<6<tJnTzrd>GnBTsUBeZUol zq?2I^U-y1bmT2Y9XFTxw<Iy<<3_J52W_c|A!R2YUXw7ubMi;^460P8K_hwC8df?!y z-jg2++%NIk74a>2d{yz3&Ry2)4?asK9BfX_o%c}m$%Z%Izs*S6Qy4mlf2~dmdl=7! z4X2n)R&0_AonHBMx9l_5J7v@3SJ)nVz@#M|U(6`lp6S4PLZj55+mEBT^m9kMarLI9 zdc8;DYNi_ej{E(sm_5ksS**d~X~|n|nSMWM_5Gc=VP@Ri^+899%1gE5p$GYNC5qWa z&S3Qqdo5;_C^c>3h9>p(mk&&ye&@4_W<6`_j*D^qLA`Gm?2tA}Xf=`D(lm?x2#dH3 zn|n78^MUVi<pIVYFK4VfGFj2WVcn!UuIsZ(8;TAsILqB!mS85z@_g~pJahYPnPGxE zOdhXQQh6I4kg(aYK40$5{p@2wFY4?j-pM#@zbu}GN$yO{!!j|>_BFjsH!||xulzG> z`t9oaAA8@u`X*Pm>Gz5zzLt<_Q~w5kllvWeZTfeaX_4n2T$KrRNLscw&b+B@md%+5 z7nZy4J@!rGb&k!+d%v#T-1-rE#?O55+mJJUBo4fl&A!IC?Yd-D0N1r|{TG}<S<iCT zFo+##^?$Nl!^P~dK(NVy3D5gJC@zbN+@8Lr{?ZZ^x%8AC`@JUucn(?4YuTe^&6&6| zlW|$Q>#qGqA~r`HGQ@7!F>F1`6LoEd`?N2Sm$kgE{hhX7?91+AwZ@9RyXQKW+|r1Y zIA-*MaiWv+o*5NWo^SU2<aNt9?{2>1&QBf^)30l;GUUr-Nw#ukm@wyie%zz(jzZ25 z%f_Rpd2{RItWrJ~neUykX}5XYr_;@!=DdESx-a9Y0)t1?8u!~X?~6{8P1chaJFooI z!g7<r<hacR8u>@$7X-%%C+B>-Ysy{IEZ*aPQnGEHz#%#Jlj@5rc-PB)WzXC9PB;En z;f))Kp3b2Po3`z|D5`j=ZkkxcjG!mU0SoG;nC`uMtj}=n*Lv%Emqqagdsga;Top|} zz_L^;-+Sw>OMX1IM{X`uIv07_W}8L#3^Vm}whxPx-M2mSN>E*MRd4r#MF&<@RQ@Vm z4?0k&3w)rEe88JmZHt+&?f+A_<M=YCx<!f-9=VMEY)0um3@d*`**M#}+vzE?GoPQx z+?=m@@O8s-$*o(1>Z_jIn&`v%g=dXur3>fx|Ay>6s<lX`4H>Qed2!XQtxY{a$2SO? zu+LAkdUG-&{@|rp@#7y-%MS=WGQ6G3<6CnyXZy^_+it47n^HCHOS16=1OD2sDr4t$ z?d77gLf4(#UcR$m>=NteLKkPyX+weC{tpVxBKOK1YN%&v(dde6mf2fSpcFZ?YrD!5 z57ieU*H$cid*yq{QH77LmRGC|zP0czh+AE_X2R2q7Uek|me0aJ_6Ml^h(AB+(0{W> zOY0uWgnzuNaB8kSvtW(E7V)2pbS#dpTJl)?h;v_2*n*1{Pn{=KxEijxd@0oE1Gj~C z%+p4-nLXLZL}MEj>zz$%($}u`<W@>Da_D&e`FJSP$MR`<F%M6u8w8uMY3<s2_A~Qd z70tBIvFjOG>aIzyyBxmrTfi#zpVOG7ZT}oixU%w{70ZDQa&tCE3;#H^wXQOs$MfmI z+FLs7Z9Xowsl8j6IElmbC-?}Wj~GV~aXqe|wyg$q2GJyayFSl3J4_<0k81hvW!Y(R zjQ?m=fN)2VUE(wO`w<Jnei~@-oENP*88pvGXq^W8<~<rhPd{-KTWzj-*dMgm_m)XJ z`_lhbdLM!l%=-G(1QwjVzK*Sa`s>y;2l?wyG_Rerb53lULfn>!c%N@Qkqc5d5AjH) zNB)~q|6+=Ga&}l=u7LRD@8YL<`rgmsQ#V&Jvw1qzZO_t%eLsw4bhbVgSlIe<Zh+eT z=`H0VJ9kEXNzLET^11rM!<Uj~j?D2kv76SdpDei;a$M2Qx_vd^<BG0`yKYLGt$E-U z^Lb6dkix@~JKcZX^tU-K!|zeFOiF#f^^cc{G4+q9wyr8){UhT6tJ=>C{m~Bvm1>sC zB;@~k$Nq`ugJd)l`^jB3!b`3<ac`UCWSVuszu`fRoyRLt&6`3`>k6gzs<Q6fb;l-B zGGg&ZVb>phr~joaHxYQcmLqG*{Rz|8b?tF%>_7G0ciNpT$J>8@TC}SC&f$mLKPo1> zuQ<fM>Zx7n$$H&arKXA88+L8#SXA@w<b|D)+Vii^s&b4H`p1=T7(ONKqeJPYo&Pj` z{n>Q5YGQi){ymi@>Xjd#S1!;zr5(I)e#9>E>CCrp*0F1OHdn;`StI{rkBaPHiESE_ zWLzAT_gQPdPqFdep&VlIB~IzP%L9$7)Z&XNH^iU5=+x``=3V=+-owti=z-F!)1_}u z7P)lzx}7_BHhgFFRGB5=TWyYf-{~dxE@nb$Vpv@>!#U~vTYXJ)7;TrvU12Pp%6{ib znCfl^-wE058oYg#Yi+yt<v+2W8MMx~(#-V|yP(P;W|^QjJ2y6Gv9Due>@8V1aWens z)|@3<pK@QVS^9d-$?whQ<;?20XiPk&Ro|iXdg_|5)xOOpxx!2DN-OlT?BOW$*(g-M zz~<Cfu|0=7;y39%3_jI9$AJIM{g116{;n34juWXq((NaoZmu+4{afq$1z&?#?5nyk zWBOCZmy=H#2tE&8_v4jlyS#p}$xnyqFsb+TJR9A`exB?LpHMvIP}WvH(ZfroPpX&M zvdwCrvFYmj2l$$DHaok;KG^&td9(42mO}!<-D>60{WEi9&hPYczpU~n*h*?&-q#@c zaLaXnb##_rou?qa>2AuL4-c+SmUIg{HvxRCk;Z$EPfPrlbT`jTTw-%cXo6N*#7frq zII)iomsAf(ep<tQCcDUP%9^QPL!aKxd%d*2%rouq-ZFNttblW8n@?zSInSFkXVdyz zjrZ5%Roy)gZj(QLTjA}EK)J7XV=W>hm&i=o)M01w+X{ND(YXyO{yS|OM1DSqnV4_R zbn>q9q#0((fr^p$D_E@bGLjYtu&AHxy6bW8c|O<NT{jNwy|J@-m)M6I30W?WUsF|5 zHS1M`&0JS|tA5IS5@`4Jk=Uf~v$q(9Hi<sj(K>bJviS?Hr>9vS_1TwsYuTR8u6vVg zF0G#Eo0)UvP`;+C=`0E9RfgdKJhCTd_XNgGG6fxiG+BR^-^mM;A%`IC)+^`PF@Lvh zcbxb1UB3#iY`rkEI#3LH2-3!rr{cT0>(6@Mb6;@s?y0iw=+wH>{oD7k2wlqjq`cNc z-sQ{cgb&`v(?b_5_|6bud(!xZ`V8mk`pOSmnm3CvPFg$jimpb*_NfOC#_vknuHf+6 z!)=O2P#O1%rE^p&xjHvJ65Y}^Ir-S7m!dfrezUADi?chZ<GZRm@PwV?OD-+noDIuu z#C%=q>veBydN>KY&AOtwV$yO~8P1c@|GSs|d?h0B=Inn{P4#VQ=L6;@e`YsJICr4! zjPQ*MM(1m9pYAc2I>Y&3&yI>+3<t8#Waqy4^nQ-&%c>h4Gyij2_tdlNb>FEnxE!l# zxk3Nb_KF4F#p<VST(B)Ef8uET_dMuGrQ_T8|6l&&$MpLDzs0Jb!Om1Nv^&)-eyjB2 zzy9t2-TwdFj&!6F(zck!{V8?9r3zIO<W30v{?+z6jsN%h|Ns2^xj()C?{tM_SzFH% z_s9G{9>sgwY$?C1^YfWn?)MF!1v?LB>suT<kbd?@GRKp91#>1$b2<9C{-lBL!j{P) zey#fV1>4>;@%deTsQ&N4r-T2_My@;lQTud`_@2|s?sK@ELlYjaNwfH&?c07;(O}WS z?vvXzynR==D*csW+~D5zY5xziMOUWrE0xtX7J2Z!ZmvIUp}%ga#&d;8u9F9rO72OF z+^yVy@MOA3wS-{dg9}YhPQGI__Gzx~zWbRifiHN+-WewzIGnn0F#o{P!k{T<d7AG` zo9$$0SFvPc*2g3E_hS-k=69XBwxD%sWX+<kW1;*)QlFl9-4Nl}$~*DPxmA_?-5WI7 zCL}Y~cdD4wW!&F!wcwGk@&1RqZ+a=1-gEnEeBsB2G!L7LX{$dfGR#|07|d1RSGj&l zL|c9T)(vVC>ko3o$!waW=5=ie=iG1W*#68?P%iP_D1AZfd-99wL<_yQtV`}ZSv^Cm z;8a=V`8<8kxr%R!t6%O~c}4YK>sEny(XIcR@+<_e@xC;_`(bw84`1^??U#5@-*M;= zxj)h4&(2+6wYM!{%$y<R;^kZy^Q?Mf#WRb74?b^v`0D2#?)UyPt%`l+4uwS*%l9!z zYWD?XAHQ?9jYGxVOLfr+*-!1cpAUrA|NVKyUuV~ipXT>o9(`?ac)Qz!C+|PZvsGpm zxE{1<`J{u5+B?i-j;0)m%HR0-XPW7crubav=!eT5aw#VT$%q#0_2BwZJ<qKmslUyJ zPg+o6=6u^1BH=mZ^?xUsA8d&ZJ9uN)?X8?2SZ>5ft~6V2rlQY0p*KHj&X&p#|C8+_ z|C?!lF1O$N_piLtzB8)voI3sU|NRi#xpDtvoedM&_+mWz|9tuS)_(HyoBvNgUjF}c zTmPJpIkQ@h`~UyLV3+@)r1}0<W4mM7I}R@WTmR?f+r2hV{u^HUnlJToe!ZNMov7f! z3$}+O%Dc_?{JyN~R`*y#K4x|KVqNne@AE&{>)hJs=sdIH$D&H9L+|T)f;XP~zWCsc zx(R{2=c^xAwO{=4+rMx9=U!d=T*dXP_D{&4mKMVnF=sjJu_{HEx_!kftNET>e)mLY zgT+ymjCR&z$L&;)zSA+V(|=X8X7e_c`W4cDj4Qc$6kdg-H!?ckKAYRt<N9+(U+(Nb zNs1G1&tW|#;bZW#{Z_)K#|DR3ihl3f`Yeax{>IJXJ#NN2IXdUqJ}xf%)|EU#(yVWC z8nf=Q>z8?oFDFl%I@{fF@1v5kh)K+T>02MFPO+S(yW-p3C)P%q^4k>VRlNM9%aL#X zsok&s$LVe74js8Y_hV9*s!ii1Cu?8B1wY=L{jx0LQGWTEG9Tt<X7{vq&1n_lkG{9e zEj@c*>iOh&v;802*563_<e%RY8JT|lz1v*&2fxbq9a6g*!zDfGr(E5KXG<mKpP6mg zmbd-*=6ipXXRCf*oMUyp>VM_DTlupdnfrd6z3fN-a?N$qEuLsBtgro{TmNYOlh51d zE_iD%dG^_p+G~wPrJtX_vXazhERA;)$g}v!`)9W8<p%4uny)2e{v5acx?_7+`{}3q z6&Tb%`5G!LE4g2`LjLmXJQe5D|09nS2n+syt-f4D`ntu-^Y$-3T@Epi&2~F~_QB&` zi~j{P93J!KMa=JQy213bL)BiVUN29uHaaEmgS@Du-!kpop81M~f8L#Sy=AwSMd%XK zPo}lHN3B_J)cf!hvhL|AI`g<ctHwz0W57|v@}GIlyE~8F%`Mo@wg2ve`;xMI?nc;K zmhXHp@vq?DJ3C)I;9uVzQ@B^PHZAgq^&ht>c~j57&-)-9c6VF7`}tVw@~8hF>Tj;U z!)=#eQS{Bt!hW^N$xlbJ8_Itl<L7o(WflG9dgI-cCuf;{2Clp6WAf)r?pCoqPIX$l z<nM-O&z(2vgQwSn?AWUh=E~g9J!W3?llM=0@jll*U;cdF_WoG;qr<Y#>m!V$?aV*y zJp0?t@&AgLL)CKPu74tT=E#cQ%KP@tp1JtLoL}`eZ@a9&O_6?Dy}SOd?q}=Y5A*)- zojI-K@qvFYO1_?3zQNvm#%>$e|Kh^W?2cdc+9&)>`t=j{oyH$T8~%N6sk{)h$LQPn z6LSKObx*80KCec3&i(A3yONFer=Cd`1e(tO{ZhTP;L+35`|pI=3#Wgm?>hTZ?Z=nH zZ&p73EAuctb;6W-S-S~^&vpOp2?#y@+EKjfozF4(FO#3kgs<Lx_r$a1vM(BXzTJ*} zb~#bWsJw2e!Nf0rmK$m1@yy@-AZG8)=vQ~|RV-%9YhF`ceRn>eSlvDLzZZ2T7*3yd ze~<6&244QUXI2Z&{(XNnZCCE(m<gv#?(Te4p0lnzN6ubC?L^Ij%`bn|OCGv^yj*R2 z!1U|0>f7#2`?2Bwq&s5$H-0)DTPl?$>HlisOZ$C_U;73Av2-g~d{s_~n%N;;#qzMz zpfzZ6m2QrPdgH3*s@-8vwm3HZ*eR^r`a1KeSBP%-B95Ixt-IsJ7jf(oa=kEh#pXp% zjKusy67n`LVHYe8*Vwm3Bz{-7zDfO2@k5VG3qD%?t4Iwj5qVys+BSjPuqCEL@rl!! zK<*;~1wzgFT5?AoOuO#cb0)K9=8qprvL9VrYz*CXC%d}$bgWi(Q;A}XtCKYM`WU8= zcUg9t$u<AjRcmFkzikW3;eCJi;g74YuARSnbn^5?L9utg?c8NqvXw3N?!S|}5>{W8 zs-M3)^oR8R3)j}Y`xA55OR7I~_Ud2!^HruzS#;!9@~h>lTVGAvy{lsV`=#rAbn4eG zzI=b(MB%!<n;%=VOb@tkUj4ZHuYB+?$NZn~__u%g`|ch8ChpJat2}h#lIF@^*|GH1 zww1S~J{O;P_}t;fiLx_0-@g6*d_}GK{NLr*XVh1v?K@e|{N!{@Wx%yHk3MIbE?s@Q zlbz>r&pZCDwd=OeiLVZp-@gC*4XdE&{dZ@d3GAupUw!?8-G&YO9FJEleVl&c=G!y< z`<rI!uif+M!SB{T^803gxNU!@=<WCVS=sj&uRm=x@3Fe;wU^nee|x{ke*M<G_V1$g zy_Va*-1R%U*5t0y^Rkt9>-%1WeVu-u_v*^0wjrT;6;6EpSDvo6{<mtqsakLOheI#! zo(MR<^^sKN;mbPW{r3C6Un#B)TqFPG@84PV{4c_<{ZVtium9(M#Pj=`Rq|b*hHbvr z_4vL0apvVe|0}(IG3`UXM#KA?LUu3DS)9FJUKjUYX7-$C+js46dA9vt-Q_>}v+D29 z_?#ZIb-U2-zi;-)zB13MIX`Vf<%jK?RNpZEJr#XOz2)_9(F1Ge{rT^)<Ic1Mn;-v5 zOIEMTZ~yhz?7uGmw|C!XG8CWVx0zqSR@gYlF-Bp!g5Cme0r3EDy$)*$tEL@H57%|J zPBgX)uMaYKG?mF|ok-6Qr-L2(Ac|2-PNZI><r_a&!yFNYodFCloER5yvo`376de7g zzUW%a3WLRqvR8ibRuS{?wi7zNwMIqkfM6$UflCs1{q@sL2WId4Vbt-%=+civeHE#Z zdx}isB;W5=6Rmn_^(6axOUy2}wTrWv&aLCL*nP~q(EYlW_(#`@nCn`J>#{|iUq`uK z-4&KuzinOUgWBt*al6%?TryRhzAo_fi&+huLE0uhD=VA3K51F^wQ>-3`hMwL{iJ14 zM@r}Z{?76zGycy_#`^H@yP5y3d$*kVUoezDdHq+(f%=RC_pkm<IdH#*vBvkqjmP^A zix-sEGsYkI`fav;!B<w9;(t9GZ|~QOKTuyWA)I69Bg?ygCJFv@wD^B))Bin;@o_7E zg!23dw|b}g$n4&y>j?+y-FAL0(^~O9Fz@=V`pBngd;c!G6F22{zt7S5nS8gMbvIdj zY&f)LV}yW{@m;$MiS;`!CO%$vXz#9-AB$V8w{GYBKlSRolc)3_ZvMaOR&HN#dQE@X z=3V<+%68WW{hD1?eCzCt&+=vu4^@1a?z2NffA8N@yIu(!{|}#A@R3tBEa=D0NRD;y z^cNh7$=|QJakWtKnV-?;oi;4|H&xzp>U74xyIx&5dEtJV*rD_*iIEHUytkiKURuvt znz8rqGQRjL3k{#!zqz>Q<AZ!x|96akPgQ*qKJ+!b*5tpW?ai``lFyU>6jxn(^)F`s ztLiUHzJ4=bum1mG@tMM^OEW%uzc~5+|KacHdG((}&b~Z(wt4>B-;Zv$Pqu%(``-d{ z;g$UoO#9rw>)KYXE)4#4r(w>#JIuePetn`IcJKTAhCeZ#KR$DbznlHfewCfm^hQ2K zF+oE!1JH?2;DZ$m%`A+JrZ+CpKs}nv)Z7$ygcIc47E^OGBmpA@(BT}@CrYU*xSN{8 z<mcQaHlG_`;qFa<rg1#yZM^xPK25meA~TP!W67tWLq03S9G$Yv@$edS^eq3P$B zt15zy9ca9zEekn`>&;RPq3Hskvsfl9gB`YEW;ng^mZk%fnc;Ln3oWJTTq`vMr(e+5 zm74y*QKJJSJn@4P_`r>i(`T>J;GVwfrxNdU@G)GfD>Q^AD?F2DG@A}OUTOOS7Y%Dh zW-~+M>EOdytlw&IPnRrKH>o!>gog+CATBdQcyQ>agAU>{GlU-~qMr^rh|A0n9xVFl zpo6%~4B^L>=%*Vg7@8TuPb<++HwN+Hr`zbKn}GQ66G`;LK*w&GA&xxL2OYa*W(0~w z@Yy!tW4FwVklg49G62bqt{^^=6Wu`kY2P#+G8tJ;H#E|+m@fTYLxs_JI^%kImFWxC znTk!X`mSL+J^ZbP!1N6VwZK87s=AlaY<j$!s>JkD?=-+CMKPL9pQxs)#cXD5H2vZw zb&=_R-f0L<7pPK~XEHOM-nhwBY<j{^jX6xl#*+;nh)+*_uOTp9flE_?(HMM~#PkD# zrt?`0&5TVZ%RLgGehMW0AV>wQ`J%VH==2L~wcbqEWYpxIeo{<<m&wp<x?rif9<!mD z@$`j~3Zl~;luV|A^qWmD+$=9TJ>av35y%rsjAGO0{na?nXgoddpN7PAuTL5R(;w)n zg1qt2N>6OMgPZCmkP93BYe+B}fe*M~G@CA{t131fbcz<pNXzMlD#jwyUw;9exRVO< zkjdnSH$}lGYOxranHWq@xUDWaecN{p_vr<UntK^drt2|jN-!CjO;)TCn||$w2IL5> zX+Jf1rr%=H<eM(}Q^Re#9<%25>3@D|a6`_}68WX!KHWiGZSwTrzchFzYdz$fF8W(T zVEX*Sa^2J8|7aLbcl)g&I$hy`I{)^^tePT>j3$%c8H+I+nwd-&WY@Hverdjf11MY? zv-FjwXaCdSnQq0XC^~(^GL0#WCes}ks<}<y?<&tbeK&_@;Zz?@uIaZws4GqfpPMyt zk%IozNtzPV6P#59wx@AvYJkoV>gU#!n6AsD$u)iTQ8}6E4Gt=j%x0!W(-V_59i|(I z8;VU&_@Kczec=S7&CG^orqegps0TBeO;<dnC_epyzv>SrGgEMQPT$L_DY1PWpQb*@ z)O-Az5{#zP;YV*x_hHv;0-segJ(WY#a(eGXBbn)1oSKqgGp6%%X?kq`E2LS@IK7Ws z6LdU{>Gav$nrh&qi=J_7LXIw)#;b{ZoJ`zxP1)&oVw%3w!+AB4Pr^#$)AXFqSF6dl z{jj*E6yx-}{F>a;Ur1>3P5;KPDK%X{Qd4ERnSf>k<V36hK~0P47jA2oOkXOfDFHb} zW}A?v`}TsnnmUZkX66Rd`GwTQruT?w3W7=xCNuNt6VJ(sZQm%XdBBO^9F%V%g{!%N znZ@)(aZQ=&AN=gtCMOgMz)mkxF*AVYPDlxBW&qEgkdv{@45l}-nkr-∋@L4oC@W zW(d#ukP_C+1j#TrP+?*UFH9gMteGjY3R49`GnC^I%|HTX;4+xS(9GO$dZ2)s@boS* zO~`SG)9*-Va!=1%q^u7)66>pkCbSryDX9rL^9YoC{52dwVG+oss5t$$w5HJX2aJl4 zqY$SzFezG12c3h+XgJ-FSy2*l7S<0bO~L7){0=HcHkg7B!?I?ao++!zJzYv#9(4GO z#q^DQiq@b6z7Txgq8aqOMQ|GINzfFS?!c$c4@vG8(;xDwTTcJ*NL^~WgN`xB^n!Fo zmg&DUHQT3$BxwpvU*Mx54NmzW>vmY{flNKP!&-bY|4Yv8+p;yy7^m+^(&U={Ek~1o zx?(aYWe8}hO^;93Y=ETHvJ_3r=@aCwWv0(hg{9OLX__9>^*yxtwo4UgvM^59%FyJQ zu2rbXJKZ@$Q+m1p$b_a0m<cm8VJ0+W!AwZa*7VqJU!obxIQ?~wCO5OOk<s*@Ihsb( z9bC2Lrn}^7_JUa4)9cw3+o#9nX<CBLW0IS`HBVC?%TY{+^EJJ;3*_pvGftNUx#C8p zCf{_6LQSb@Rho*^D+)CmAg9PpEJDdU=jJG|O>d~yOqu?o2qo`)FV^(f&ReUg$;f12 zHvPVYrWm97WW!?U0brj>H5;eh)|@$AxLng5lxa$*XOwG-Pgk(gIy=3l0+MNT8K<AE z)a0JN;+`ho^k<ct(4yEJQt5IwYwmI6Hv}~rAi2iO!oYm`t{PCTIie{JIz7vAnQFMI znK@Fb2OSq`hSEp@RjKA?(+v|f71O~-kAiDPXof*KTMnes0x7eBGYsOGOlXDyA3g;$ z!&Jf0+yIoXVFG3#f$4$#CQj2A%v2KqA82+=Qxu${maFQ6_=r}^r#e`6F>TZooW8(Z zi);FWS!&9R=F<g(7#)}m&5b}!7iC7H=?C?7HNou`M)U28A2l=>naqu*FZ`(_25GRY zXwu}F{#r*>b^50!O>szj1*D?kjHbl&iCg3#vBGFReSx)#BS^x~RYhs~NpCyB=?esm zxj-?+Xf&Dem&f!C9GcwIozH1DO<!>g6d~6&rKf*5r@3=_*)dIl$qlvgAl(;5OeCg1 zIA+PY{r7oIGe#yOi|H3V<VB|!AJ>!trEJydn~rNjPc=MsLep~kh254i(?6etrR+ba zG(9H&|HQjJ?uuqG<MjG7nq1RwTAA@qpLRx5ak{_(Rq5$h&uF$yfAB}CfBM_Anl{t> zKB#j}kGrl}H2vr~P3`I66Tw!T*Yuoj&|t#1o#UpaA|tOcsAUCCDn=G2)9o&5szHtg z>%0g}i%T!T(&Dd6u(Zf^1(p^WO{UMgrztW0)KyU70Xm4!eEP$9MzQUG?rE|+OwYci z$t7%PW^8VNboQLNi5cizLuPYB)9IkZsA7(2078myb3_9WQhb{mf{SktLvuvK50V<q z5e+v;@ojE|T)-PE7@8X+C3QCwkbot$a5gtFffUZ?uWJfUpKwcCk;&X-y5Mn8l_j92 z$82t5Ih|2ZEou7GThNl3$=r1M1w}2;VTBuA)s&`d+|?AEzTt=}q+|xk9=vZ3Z6D9M zr^!7%I)f2<R-wxsQ27jMHknU9D6Rl4pP9`~O{O=V(G&+AgD6<6ZWC&bs9nI#V{^pu zdXUDixhW{lz?lbf3az;*+{@tBu(=shYuH)A(A>;$@<U<g>Ab~C^Oy|HrzcpbT1}Ic zS7J5<<#BOCjmZJ(Y}2E-tSy-h%}qh4QBL<z)e;9C2RnV1nilu;SDIS<jHc5aS8Itg znollNgq#J-Y;I->X{R1m&=Q=iP%qD9ZZ;j<k_5Fh8O^6N+NerQ*H+XLoW4O@OJTa> z0WC4;d9LPW(;F4#MZqp`43*ObGr%XsLK>mwW)_e}sIih3q*q}+ePM;V*mPTd>oTxn z11^2h>EfzdLes&mJAM@{q3Ivm)a9AX%_l#+DYpH=EFB(37DID$gXsqatwpB?>1qj0 zmoHY=6EO!jDxl$KVq&CVXl}lpakrKS<Mi`}S_zEi(+!NYVj0arCjp91t5cdf-9S-+ zWx9>AmgsaXJuOIqJH1&85<*Po=F=Tav?Qh<*V8hXenDGHZ2CMCt>@C<ViS_F3{g_Q zxykg2hvjBYx7O0)nfzKuWqOZ}mc(@Zot6UACz@$Jn{KVE#Wnq;gf%ZHsu(92XiYcx zqbAH~K7Hb3D^T%f0WRLA%NS^JP3Lk{5df7#(>G4BGN1mzMn!nqV|6ZdbA@OHBSRyF zSOr511!GeMQwswHV>5+l1v3i+g;)g>OND3!b5pZvZt_agb-h)UCi8bmOn+smB|m+^ zPbFx5V``u!0B(?(TTBgP6rXP3rOQ=++4+NzKBt89G_jf&PIK)VlzW36b-5!gf4tQ` zyMr?%;qddB_0O*NEKV-Y+EQfmYs2D<gCFBEGZUrq!x;7-2+f?fBu49@*rDwbR)>}J z^PZnPc;Q7|O6bwbFE1BQ-fSHI_Gv|<y4c=m&aju-@wKwi=ii>4Aur)zEw_2sGoh;Z zm-SnX^Y1d)INjVe(Qe(HJ>O=zAFDJw5d5U&PDkLO6f4GUm%|f6-}s+hEnc6+7WJ=t z`jTB=9_`*dWADeCg>#OTE>KadQoE&;TeQT)`IOKS-qf@yGv7}<C6u|{*=p*GgqNXz zO6w$S6QXLC%!__CQ(2XDtKY}uZCjS@VzoTsF>m4?1*4tcg*BE(i?SEFn-=f#o2j?$ zgvX4)8&7K)AEm9GZ>uNME_ZCL$({e4#<Lc1o!6h0v2gk1kJVz#<`%}&H`J?(F_~LT z2OldbAfTxV;w-dQaRAZan#IaY3sSRy+egfX<`$C~f0=>XCyW-;FJ9La12^ZH%q_rK zG|Nm&V*6%$EiFbyi|O|qv?LfUrY|%xh8)H_{fxO5v`6sNLJQi?Vz<(Q_6XisX?aec z06Mjj$3-iZk<T1FhyYHl#-_&87uaZlItPl=-`HqDTR5zCTHxM+@btT0Dz?*;-L(!( zkG9i7K5R1EUdv<po70wD_1oGxcqD>26-`YhT6|f!>@P!-zGjf&G)4A*`;Ivat(?Yi z_RYDfX?HiQiqE?1tMg|=v(2R=xBRrd9~W$#bffd!T)v7kA?nLTe{O#xE!^T)Gv|2c zuc+<L0U|xE^YyI!%F_7HXIWfK7T6c<y6tlMw-2$hvUYJjKbOw?a%9m0otca3uZ33S zo{7FJ%)K`!SX=!4vdYIM-+R{I6zH~nR-nx8x;RtirrUf?4W)9gFqu1=%$Hup+qA#B za%%puUvG}2x(CWk<$ko&-IMDJ%M`}94cp|7M)wCj3~bV33Ke?c@=SJ3`NtPkU+-#a zxryp5FnBKaQR0bQ3Rlnprgqi|g>35Dm0mlRRcvZn7~1~M<;_Wxy~}jw^L#4l7x^;z zt&OIFc!qX+%z-@(Huu-<U9|J*aeeNh*{k+Myk>i~{e*wf%*5p{w`HUmbZ1rmW7zJz zX|m#diRpJ8w78g!O^l|$a?pZS&!&!A(6eF#oV37a#fDE`;-n=x{Q&5M*sac59^23R zYAG->8chG-rzJ7H+f_?oy1`W~h3Oy9n2Oie-d>kt*>|_P?r5digN(cS2M#!d@64W; zEB=80L}7oTi`0yd|CygDX?ET!3{h9o4^7>%oc*rk>kMxZ*FY6l&+P)%|L@OU{QuAK z**|AauKxY!>E->khvFv{zte4bbMN2Z`kG(w|37?NFD#dDm+~*~Z@1lt{2%A*|2{YW zd3^u>*URho|Jhvq`}+UGUw>S<6U`fQ_P+gJ@n7fn*DmsEF8?c*z0CgS?DvMP+b`tb zoIdT;y`(d$M^5FoMlTn-dv$wA-oB+C|GDh0MXxn%oHV=mEpKeq?!Z=;i+nn#>VAE_ z9AC#+xc$b;#d`bx{wjaPzS-s9^XvNa|8*98pMS6JZ~Xi{yN^DYE*7HVTYq`=UJFyf zCCkcQubdY0_qgfOc)la^D(e<~JF_xaTD|Sb|20>B&8y=7_qcAk^ZsJXlLtTYACH@} z&%=Jde~8y|wZ5i;6)!!4zx`?7|94fE!WEIcg>B~dH!HuJ=%%<<Am8v?#JwhEwyAe6 zFXM|^ea<~J?#t$DLe+J%Ls{qlKKp#xD`$m}S%3HKxtsKI5x-fACX4)CUHALd)ykSp zMap}{ZuMF@*vj7c+r)ZJ?jz%S*;mGnKPTobs%Kv@Ys#)gf2Y-yt&9F*Jl%J$g=D?` z-}C;LBtYjvE?nflG<l!U&e{aKkf0TPN2bqycaQTd_tKTFzr-}QrWCNdePSxwZqXb2 zfoJwHsg3tFJwjTqL>n(CIcWaMacipb*1L13^v*~&dB7mdYkSq}wa0oJo)rxV9<hoQ zg%>WL5^@xqHe&(LmITM^tHKN(1_k6#J~nB3ebnkc%L6l3O_5npvhYfip3V<D_T{Z> zx!mWz2+HqlJ)orUaZ9DZwaqK1KZ#11b&n-IP5Ep?+`(Dr=5|=;v;UaMzIR&(S59O{ zuBh3iQ`vRZJ||7w?>w6La{V1${m1j=Kl*f^3zJDG>{adlHRG{FJ8Ka8SqGju$Ku&v z?0fiIC6O(WZED84TW2<NF4EufYWlN1>c80*y(|gxu?SpVlhC*=BDr%}R%X-kww3Hl zCpT?zRT5hIgk`1feYw;3B<nPIFH~xFA8Yz@w`qZwR%lM?gM9~&EPizC`z@hHMc;sx zQ3?`|<xfw)8l*Ls`FG{M>7~J17WJvYXKyxNT_<|KrqVcwZGy$))E!D;Ld>r-0$<80 z>Y8-PWgX#{6Oj^J_Cl=7Up0GrG1n$G_Zf}`VQ$kSbBtbZ-m>w~i6_Un5A9vgnbw!c zc41cVb+)O}6Uuyc#gvyZtZ)3YFyrSz<7HJrq51E9b}PJE9MpT|>zQR<EH`uBNyvO= z-C?B}ls{czfrW#>xr+6Xv*&DOnGsvM;LiI3$LR$NEXo<DPk*t%LZ7jGy2L_@494x# z8y8ymOurwhWjOucLJJi}^XVTJD2a(rl`at2)X%$fj%&&JzfF_huat9Yd)>Qiy6i$F z$?4T$TB`L=jAyl~2*jLUb*Euky|5YIx7x$KlbwB4SFC%wEk0c~n^{M5jh{#BhV7@1 zZ4<XPk@#{>Ba}&ZcS8S9zt}~s9TAtBwN#j&?U-i7{9VvIVyh6h!NiAueVN3z1@2C` zAbRq|vvs$mJl>>c^=#8yaN($Oe&X@e)3dL<3V8iOciM6Gx_VR9Gh5a2)Rc4+4vDwj zJo-{>zwtfm?db)VdlP>eREv5266>4yiD{$$dA5dhWsi<!vl1seFkW<$zETxcqEn(= zebDIK%D4nMwKK<W%1FnuZQ0^`V^+b6t?@GyRldwEc8Xm5ku%~)jR3#n6C=Ur6~0m% zxR$M0%IbV0<COE_i(SVJOqa_(IWg7f(1B1}@sL@&6MSRE)f#%*FYstQQCro*nQ{8< zB16y#da<Dsyd%2Tm`pzxu4P!iqNU>S+<&5*r|_*(s`{K_l6vgKoxteH*P~=rW|?u= zOzE8bSLLpsLDa6JkqIYHPrtf1^yAL5kl)KM*(S2@j+04=`^a_2HZHsKWzJJ}qxV5M zt8NAf-R@p8ugbtT#XNN0s&}mSUCmA9w3BNDUPPr#nDrrc>H(+njoWvuPTq5uSEyd} zNZh)-5T829&F3!8C>3K`spRlNg1_U=#)5#Op1vF3eO^=EB(p+hl1(80(q$~a<5C<G z*M}W^Bf4gxPw2B7k<7Dh96NaGV&cP&rn#%q8ZRtOHAp;|dep_V#hrPc=aok@;-B#4 z-Z1;9u64NYr{~mJ?-RRI;udr9B<637-OInlQ?{djr+M}kt;e!!o$sf+ur4}P`65_4 zb;tKO)yxOw)2}R6vSxfYU0{ilc)gaJ%&rcDHJgIJ<gU%O(-B(I)|l^R^>|(=U(Xkb zo0gs`pZBV+58k(f>G;e5o~gHc3RhVl+$(9<Vt9#DT{dj@qovgrPg|^5R=Kyds4U== zI_Z4D@nlxA+N*r+P^VrKjdg*KI~NB9O*^Kt!7g>finpmuy===P*9(8lE6izSnRua| z<^G0_@7~JF3L95kDtge(crdX3^oLd37o|8Q`aZreJA8j;Z{2RuxazXV#)C82&g<Ab zs+@2mruB;8x9HCY+IX+8*_i0;RJ-m`@0s@pt4+VT8FL#Y9`1~L()QresuRLbmK`#1 z_1^O0+=&g{HnHD!+B{X8l(f+Fq#jqi1h3_)&zALKtsT1G)+w3U202A?AMJL}`p}#4 zAccFm;3B;o7QtB$W@OITJxM!KqPOnKL6_HN{JIBxP2Q-zIj~n}|C|0zt0ffu;?#Nm zTohp`<yh@kAL7*BvRtV4^JV$9K~}1pR3CkCmwhktY2CVCr`?z}*KNH2(m%3dm(2oZ zuB2a!?`(Z&nZPNn?BuYxp}=5iPt<Yq1kLK=ZE4I>=~)MN8}E8}IaS57VAI9)yQe!G z^hLjkr<+XM`9IZry0l2;_v*7^rsrN9Dt{(fQ7ZUwzD{+;p$?}1i^?CLIqo&Bt16_q zKGbPhX5Dn}Xf5;ln(jxY7oR+5;;DJ|BB+2Rwe_9YqraOHx$+7gE6ijuJ>j5IdT4h+ zor{&z)JeiF!T&bCnVVQtSTya@ME1K26CY(WxN$okJ*L%Y$L9Z<TkwMS*&uC8&6^X~ zP6*g5A;2eRx{ZzF^wK0b<B*+&_Ro51)_&N=pYdR;sr%dZsF|VJ!u9>up&P^ZzGXIA zuHBM<oBfI4$|DxLCwBxsu1x$cBc8FHk(;Sa&Nwf(>d=!{$;Gv|mCnB1Xma3<ZOgfw ziFph1ChF-ZK~A?*-ey*7o|E(Il9ul|VYNop_BYF<zRBJXk>|cAxlU2}-SG{Nmo^@F z!)2Bo5o85E+%8DaGqe7P%-ZXdL8sdVevbGhloZAx*|EXo+jj|`f=OcbB8%P30}Ve& z*)a((zjP)ruJ+awm)-k0Pd=Lbv##)pNwR~sDx2Ffmw?C%7i+{f+Zt`i%sMqmHS5&f zYb#ZkM(_8k(Ba)6$}~CmOvCIi{uQ3L+IT&qbtOHk^WQB9G7n?Dwo^!4@aG|m*OOQm z?G9a&zqMcryWlR{Te+XkPd~R@$<g3xR8Y$!xwNpAmy#SlT|9c~)Qv9Qz41M3dSb8N zDW07sCL_LJU-6<@Ga}yzq`cV~Bssk!R?Eut*Q)jF)z;_UWiu&jk`&)0JSX|`gSvy! zExjs_gHjAPP78LcO1P?<n4CVb!*$2n>6c7a9{+cF`uA8Z@6e^5#$UID?p8Q#%4$B% zH>a$7f>vhVt)E7l<J8V`g?P?5sk-XL1N)yRGc)!j{$78IH=|-(0?U^K;cq5emOpy3 zcAJ)(R@C>pw5Emi|K6_BU_H9aBmP?8^yzV0)r`lc|664d%&0m&XtjkIW8U=6)fU>^ zSJ!V@Fmu0{oYjkU)Az5o@MDyl&bP+m6yx^kH`iDg*Z(?J9P)BjOyq-fzl89MhN+no zW^G#4Z5m`IAZhOR^?uWFjZ>XHte2&(%sJD3Gos*xt<1r_ijKk}bJxx_NEP4jvzGJu zy*9+TVaNCE%g=VR_%^E|s8hx-U~cgwA>VID8eH!6c(HP}?UB&?bFSjV%KW3Xr_9Ad z`_ju&Gc@A56vO7N=J+tnipe{p=;5w9*T63aGOx~EE&G~7W$rGe=o1m*(%00Sf|V`% zlNWnWjX(CWb(M97se;(q*5ufo_e8gHbUm$$jEr2NEU22l{af~N;h<GjQU4_0uTq)A z!SSjy@apv4Yn0Tymhe58zDB2covPtSmi5_tU9bOWI2D!O$(^EUlB{o>Z_U&EQS#EH zPUYE#d5*j9`AI}yI(I%b@nOpKVgrWk<c0G>-435kexO*kuVK3OS|wS%?77VMr|Ulm zbrvm_R#p6H&}*`LWA7oxHG#*Y_Eibx-u2z`?eucFlK<7+56k{XOh1^UrB|;p+2S~R zYMLwC<Zmx_bKacry)Em=ZdbdL4|4=&Z%}EuQBhvpulnA>`+KPKyp-sRB^d>lN|(%4 zZuxf0Y`9Q+I<oohiSB1soffkW2pvp0so3LUv`z3WpXbKXC$5X{c3s-9zL<AP-oDDW zN|Q1Vx|Ad)Z(*3P$iDPc0>>3&&zff8`rTSaHxj-y=`1!6k-WRv<Ca?R1W(O$iCC?o z)v7^G%wacH{QtDlC1|H_6NB(R=4Gk9Q^TLdh7=jz<MOuqCe6Wf_NZI8iI>&J*BMto zKkj+hP<}P_;=)+2<#*St-QjvMAf~l~Rk-k|8`q~vlV&rD{F+-cRcLcuv+mNZ0d_~E zP1n}1a}eDrm=$F(>A>c9FL-A-%s<-fv@Ysd#4|RwK#wzDTD^p7CS^U$R`-2$yw1~w zcU_yBx>U#gIsOd0V#2xQSGo)BG~OHW;qIX$3k1USk6nm=@M_jkuJpNG+rTG#@w$Lc z_G-Moqj;&xwW-1(9&SweDhrlI2>s&DTr_o-k8k}lEuWLCrJ`0aYR;{?puc1lr!jY& zr_$6g@f&8}79<|s){u8|opGnAV27IZ3}#&m>4!&`Ka!frXR>i(sZwq1hPxl`KG>*z z+Bfv;ez$_0z^$&AE->yBOVr*ik&w0Z!L3)d(<3c<v!#}3wyULVE1v^8`Rh<?|0N!+ zimN$dN95LKUuWa(VczL`n2*~{sH^2ySak2+_|$VUa~liwo%Sp!omI8^SZnX)1H8ev z4tQlXuQS|G*1aWks;wdCc|&Fo8~K@6A9#caofbQw$hW?*QQ!KM)Sf+|mv&q*D9t$+ z<asEFFS%N;kMT1o3CT~l-)P~$_<nlBMhi(6=C2QfrqA7Ip~JIpPokdt5pj#p3r;_u z{x(%BqF%54uKm~BMLR;5{3_nV&MDB6<{}{Nb*ybRd&H^2RZE$@Cpn$jy^MbkL-Pqf zzJN|%*VwOz7WWB=h3~)M=d2K!(DL!0-)4!OyNlK{&P?E5`{?|o>#N;j1Qg=eZ&P<O zOPS6yHS5B)_H}WlQfId0UhrJHvheG(xpnpbL>7Gi6<s1Ref1^_FUI`o2R16HWLH06 zw>H{qBFcPxs?hYPhhJPQG=x<b-)mQNk=c|frY-Yxnw9ve!@rMREi9Op>afcBu+b*r z#s13opEOup(~@lIP7K@5aQl^$c<t(4SNpGiIAXW>c&*H4_d`?l3a^On-mhNJ%wTbs zrFg3G=lj$BHYr6gdQV@zNy$PeH__xs()<wJ4(ry(x?(Jg|E`$+ag&l-{kEgUM?IM? zC?`A?UL}@t$?~~s^o*x0$0wD|Xbtke)Mu=5z=2^~R@7Oe=Gi$H%Py_n)$AYa_$aEz zbHbnObF*4M#ym3lm*PEXZHuCy_~O$q{Cr|~Ox<~SnD=kGwD-M1c5qJb*=5K6h<q@b zK6}oe&y$WV{;fCH^u4&>J?(qv|HL1xS6!*EUSW`YU)cH(-|}8By;-m2EbUHe-0|u> z&?a-@=arI!H<H&>F)=>hqk2~$X!h5zrnctHE;qZ9V;e2EDzU%Ym3sN^quO`TU-_~f zj_lp+d^F;V@6iausH>IxosHPiPO5EeNz0yd!_0#%?#MmRnN~*xmHFP5yC}uv%qowK zwP|{P>qxXb=uoSw)copPhtFER8kTD-)AD|I&2>7WlbMux#X8M}lY__d<Hi&@j`q)j zF}Ve%J8h01EM}b^xJ5}@DMa&+)7e`R8f~HLV;?ZHpUF4AR`Xy%HdAM7vS+OftC@lD z^m$v9Wa=|S<N6q$tu<tJo3?JrSFJssypJtRmnBX1+#I%&MYAyZ%E^{#A@`qd=MzlS zHhr-*K5&y{b=c+bH)YJi9Adi*zc{em<=-6}^r+;Q<cwzPtSn<6rKOAq8npESSo@B< z^NK!u;_0hka#wY|{%JYY_V2r$r%co3KA`i|W2@r&Og4r3*shKw^BCQ$l0GKOPcSJ> zIKw$DCTs6xBhScJM<kmMF`jU!E76u=Td%nNTx#uM#$Q?sW{9m04{AJM7Ls{UFo-4c zgrn5LlUL^ou6k0}Z!3`&(VGZ5pz3p7-N7VnznvF!pKLj(Y~i9TJ$L_;<kFmTN868> zPm(AT@;zuW$0mAdJ!|-$%!AUad912k{bpC`UHW{abJ1jf&ak-cYYrVNcwv0Pdw;E7 z^@<xwZK1+<`-CMb=Bh0yE7mf$J-xp)_WYTH-`dVBSu_1&?`-vb5f*1ERP#ej3g`b2 zlUnmXPNtwcaIM77Mf1-uVpQ)cxn3f3JJ0b;kHy=g{LPvju?poE5<b^6&rbBsd9St7 z@xTJR=*<fCx4j?r-e<l4u%hQpbg-+4xR1lT^cx4S9W&Z{(AG;z;=lqs$Mo&?MsC^J zm$|bhc`aVZ-Tv5h=eC`dxj`=uT$y%kX8**n_PO(vW_oe2tBLI2cJ%udg%8^u-ZC6F z61!u{?EGVW&oNcgh$V{|e{)3NR;<4mowecbsz$LmnTJA;lU1r-D9&y){Fw4R>G{1W zEjtBU=XJQuKPDZ2%kvJi@JzRtR>hLnFJJk%QSJ51UgJA&<1AliIo)~Lv9XJLkFmOq z<f9^e-bmw=6`?VOk%h$?@!rl%N)eYrmbmg>xM49_^ZA)}@DWv2>b?$bqTwfsH`Slt zFqOwCI5x0QV^yKCl7IdzhKn=0H{AH!RKf9V`(hd2mn+us=_~0<@rYky@K)N_^{Ljx zu}%K-o)fVqK?Mq0kA!5_edhByE0b~Jxr)U%-MO0+!<UHNiMisd#(Gfn<t3Y^Zc40& z_PFi}Op{{`&PwnV$OwF;x_|AI!Zp*E_^dimzt{M0?i|yj`#9w5u1%^jFwHn4czr{k z442V)<}Ndt6uI(CCGOl-jayqY8?HEpPjg7w_eK2Fo#_*qrWKUAEPgWUZX?e*w<`uS za*tc=FFaVbaN~;z;R_)zjqY#AGjJ_bU1;2^>$3Zrf$=dX=CYG5W>ckdbWOPLev;+c zb4ixt%)a_pubStudbmk<zL@kTAtmF9l|YD>;r%O`ippmbnZu_wH|9=q7TvvP#YD~L zi!O3`9-a_nDONl2MdhxkF$pPKKExGWeq*!a=)ok1uIIirJBnUkk7;6SV{YHXS`#m^ z#`ER^6>~FlKa<0Emn@hN^PofEkxPL1eS5`~>6>NDo?H%_Uaz#-wPvM+S=nNbsRwJO zdETlpW4P!cEf8~Pi@?g&j*1c?S=qebe;G>23N4+$fAG2n<L4!ctyV^I!q+|5#ZGc@ zekG~*;arbe(YuT^MrGGi@sAJant=|fD*NiPUu+9c=8k9+f72@kwNsNEzxT9WmTt4^ zPI;KCY8qd-x-e;TuHw(A3##1TWm79P=dfHi@6_5<A^pZS^U3b^M8?z88hzUJr+4hK z$Y!jZ&X=#H5z;%k_>6_cMiKqT2izmGuN5Z9Z~Q#7ZPjCkX%R_0o~&`l6;H^T%9evp zhbr{o1)UC6Gy8Esp*T<Szf0o5d3{XRpMN&v%9z=6)spL%;lvleWm-N=@5<L&RR1g1 z^vpw!Ylqy7f{yEYRhF#pyH$02<9AjrDRTt{(TdQpzyFUWvBo7<bJs}BH9lB8X@1|7 zP5)fpZn-tNeBpt)jB~z(GT4{C)qfSFw`A2RVFuZA$((UF<~XLxF1Ys2>vDCvwjYz^ zn{zXsdq=(5zUQ91-}MhE(VMCmp7F{C$#3YWw`N{-!K||2pv}5`(-$dea-5267a3kY zFK=^XYyYg;(j8jDuwhT4gOFb5MMmd88HZaAa&HpObFQtN{A%$`y=D&Un<os^nbmst zM9j@`D16^{e_tD~l+WL1-{%x?hZeoJUgES_YQtXnB|2|DThB?ZE7~O}CLxjfXlh-e z$je#W$@NRZHJ@kAjnMA0oXX=?sBh*r*<9E$aC-Dl7yYCImbrP13;4IcvWix_D`4hk z+ObNaWlK}f{C{p{ZfSg+6MoprWbRb3V!n2&H0e^wi9>lu1455~HjzHHhjY%Vp6kUv z<(|!lcsm#GJ|wa4%QRQt8}5EySE@fx3K7#)>Qxe~NGuON7_%*2D9A!DD~dtv)>JX4 z!X_)lS!;Uow?CVFc{lH?Rz_jrZ_4V|rk$>loc;V)L6Vk45C1upoAM?a{b%kfu~wz? zu-+5rSoCxD74xSFNh|ULa=oYjDb&hf{5jogpM^=ipT_#~xFA6@5%Jvq#9ZZvg%^T< z^v$k%$zNu8*SWsn*xA@$!Ij?^o%=WA{xW-JQ=!BKnu3cNtrs;<iB*z&I(x6bpX-C< zNRz{-3LGrWQ`{vFe-<-&{$Pj6zBn;^Qv+qbJolQ=Am+%W#WPf1>|B3jo?)NVYyX<b zx(D{{4Y_#ZPrZ@D)F~$gbpk|Y8%jNUQ4}fK!Dkw8urH#x#y0T$HC5rrC$9Y#i&>t? zO1dbU>*g*kxTsmqw_J6d#NWlgMe}EB#KR6ey1=k{r-X~N>hr=xA(2jtv<<bhH+<(> zav=M-|N5)q={Kf1310dAGx2EztK7kiq6CJ$>u)MZ?e#3k)xP>cK=9YP<5lWHPxq{; zSspR%PhF>+Y5&B>we4n&Rz*psc1P7YEYEH;n#m#AqIaBQb(fIHpF>M5WjH@Xdp@yG z<m9j6|Ee&(Z=aGx>hp5-$t@K|`g<8ydI&`>xN7XjU|)DuD5%l$kYT;qPR4A89gD+a zcv%aUIw$-W@1JvGX>g#eUCtEo=8O!5A8SP}#r|65QSasa>iww{7R_>Qj+HmqR~^cI z*>(7>!Q<syUMhWdS+ILL_kJY>1(PQNCT2oPkG>qR@O2m1UN}+lv@7d|S6>7T4^0hV z{C|0R(*cV>!FxVmc`aAuw{bDr=_j%7*zY`j?S3UGMycs1_A6=Bv&wn|S~que)=W!W zeKq0Gvs<TUMELGmd?0O?!L}>hVaFzEuY2H9+`af*=d(hKyIUr^O*^+FU1|P(NvXnX zvu)%Lb(eeTG_xIw-Ndsa<7snAdViSRgKJ;2T%P4A*8NUDVI)#f=`fMsvno0uh+%H@ z!7Y!Jm5(a(C`DY~y!eLnxj^~3g8jD1Zppc>UR6i>?mgjL60kby)V?WS4*YF<^|62V z^dko?%<A>e@DxS62P=8|SKXcKI{WrT!xcR{pXkky@BBC4J~xB!;uXsaCXcd}#2wS( zWhGn=CtX_J!EME(Rm)|UuVHYfMreB(&oU9uxm~j?_bjw(_q9$_^XuAHsq?32`b?ca zclL|dEm<qutm!&mK7EG8>K*Spme$@Aklaw*#r;>UEPajc@3ajK-aTDsID6;wEV+|r zwc%it#wKy=jar)5B$U?fJ$aGYaYkEbP23j0H~;vi7aUZQt&f$d<L+H>eofK8D`BP{ z0wH_*t(xSuw}n{xNZq_)rtAO4n4e*}vt&rb%;0<bj<J^Jtaf>Bz9eCN`i7#UrRNmG za-;+H1u}EFW~)a>@ubFV5!kv)<mtQ10^y;aVnyf83qE%^{pCD#W|n<mQP5I}bs|Mk zURwPt`?8YqiUp?4csQN=kdhozHN$l6LrO~ZE)O;zVoPyy5qw`}o;_{y#>37DXNxM{ ztP%Cmj43}eO*8&Z{)7_lLa*sbt-Gd%7c?7&NLor9=-=6Cer4%jF>!`jw)^`xpZYL$ zPENcv@B6-WVtkuC?H8N$x}R6uUa(WKdTLBN>k`?hIlN`*I@5R5cDM)LUM1OiEHY-* zMY9xT4|^8|&ec!eCOUn1bMb`QccYH^Lg_45ULQQZHs$GWyCs`s^d*$8W%f>5B*EN! zLZj)s@PXVre^>q!xx*~`mbIZubvpN9B{in=@26)Tu`p*$p1$yig_PFcKL>;oh3(yz zsRpOn`F6bjGgWWX%Cz)}m$p5VY|6^~ySMn)rMQzvmgv?@XR6fla^HJa?dkLMWecZs zF6e5w@bnjhI{THnq+Sk%&WEbEgE%_E<}QwMow|5&jK&qliQYX?8;>P?KG0h_clN=J zlQLdrolx3Ra!@(q>Ga8!T1xegLXV|fF|F4#&Pb@))|2g##jr6&Ti{j9?~A=hT9-3C z`1WJVoB{?ze}`2Znm75IY!<C)_iU^XOg7PSK6meyl6PZosPN=>4||rp-1A(<;qYqT zDUrK``wkwrJ<!B`+Ux#d?GuSJzrQs+y5q4Ht8|p)37$1N4u`dvFDy8<A|&?NMV)sg zGuR6+$JQ+<d)>^r!siT22+uM`Q3c(nmO3{Sdv5k9>z!MZ=v%t-$n_Na=?PU@N`d#& z?9L=QX)teOoYK1X!^s0-A5yODb5i#?Y#`+J;Yp!HMZt$30nv^R5Aa{_x&Pzp=^mk3 z^M%gNIna^j=iszc@o^)w^ncz8C5`B0ktq*ds_%JCzg(rI$gcX1=OCkz{Pf>dT2b}i zIHd%FBEz2fM^;~ZZxVOUI3mTiIl4H6v2&(b)LafNts=u_$M<4erEV`;v$;^UdS!6> z^Fz<|*IYYh`fgAB9x=<9ulIP4F!;S+lf}E?+OF2TDNS3y+L~Nk-gJz?j-mL`A@)zf zB1*Ftc51##I8p3e(V>}s?XBQe5zWril9G>?*NaPj^0PSJEO7j|n^QzqSM$q_N_XQW zio}u*OclLxk74UkF_Sfh-8?U&Lsx68eYX6M=<@gHbUBZdzR8~NVVAARbvS}eS0QMJ zfVP_0(~mln_6R-eSpRJKf|yE`p6+DvQqVCsYo(nTCcOFXANR=B#hyj$?SThRTh#P< zjVdiy%hmhLJgXn~>1=b++}96O<F*(HFsSH0Tl?<BcdpZ27u)%}Ur${0UMBK|V}GQ? z6!Ayp7xcDw8eV&yGmCZK0q$eLMcmHb9Esc4KA9VMr)~Q7_tJj*&Z)-VGK`p=c(Qes zgUj0DMaoV~-ty=g7%V+;Y=J|qcXGw+SJuC_)W`o6?5sLiP``X%z!dj6jLagN?&yYo z^01D4p>~c<w6Jg1GsB~iN47{5u48PMw%l~pok=@UH9V44ly%zC)0eOB)r*kas@e3| z!{Xjv$9=1$``9A>e|lVyKbh-iXIFy4RK`1!9disBRUU7xXv_MtC)SCNZJjbZ+x?)X z>wMwHS-F~_=i{r5R4*_ZP5*mbNriWT)en=q3FXILaZEdxKfS3|OTB(J*IAA5CvRi( z7VjuHm?KlT(D+{I_7`3L4~ooYf)1)-vC!{|YnCxBEKpiwBw6lxVp`W_#WQivw-=s! z_{r~4_okKG6W?&=I_#@Ew$W+Y;%D0ml#b2FKYHJ3;)D8o-dz8^KTm%z{Cr2(d$z!J ze|TCpAG|Q@iECs*SE%Pv?IXV1LW<lL6n;F_rc&6wNP73u#Y-Mb7r5;>#pG%vdAvj0 zipiP#;)lDdVtu0o9v)_Dskm1!qbg9J{_>Du-wtNmA4eTrmv7s-fAMscqigPek!X0F zJ@=ti?ZoNvr!35+4xjF`xG#MySU~vjIbpRP>6@NhkEd+2SzEn*`i4^$9)hg<xX&E> z7{<!9<>Rf8$K^ZargNUQ&}X`DG2QC4g=78s_x`JA=05xCHgUzxG_DQb4wQPaq|PaD zdpFVUcjxOFf7v|Gg*<#x&U|0DCwY%i;MW|{d|sOaD)PT}i0UaG(tgU2eX-hpLV81b z4rh+a>rZMPXF1t(R9jc2F86OpsK4h4I?LtB)0)DJtt_lRi!CdSj5b6))b9Gwce-X% zu-1p^5)E4Z_4l_gxvnq0Ms4S}ub<Vsk13e{yJK!ru`~75w#UI+A8krBzMb!^nkjI- z`~7|Ed-|Nw*4)w}o_vcI$h|*z%2x8b>^crnGu!DWbOmorlDjEmqWflZQHeXd`|GFG z4?XTk8$D2X^||!j$r6_i->P%x&Wc+`i}EaS->P%u`OYAbcQF&{3lktGu;@qiH_c(Z z`_y{9>?$pOi<4`;${J=VgqsCu<^26s>R+{gV(t>}otK{867iIGnZO}l;IZ-d5wlgi z7FsM<4z;@Z+4YETns`l2Kjibob$`9><o9ehSm@XpGVP~g*9!Md$KD(A1bvm#$gN`x z>O9<=a9cq8qx7l0GUfFLrF(v;eipJ@YV)L}FyVh+{@J<jLwza&as;)lw!S^v5%caw zx?NLP`NCgG2aoR25chcR)7E)oebG_(^%j3BBp08PzGZZ|;%{<?t<m}LGMlD3i=Viy z-MLbN&2~!4f{j-`&RjX~Ez>r^En?OwS1j*!-xu4>s=qMegiyCqdi3^*IziwgST3sk ziM8U2+g|lU&fRj|TOOUZ!1)T|o6aV@DR_JvbOejv<cmEw+L$%Idwg0@zNEW(=DOA! zhXf|*ltrB4)YtE>P<SbnP`>dw<1s^v_tVACS=a~KeLGSnaM<+Sj_8O9tMA-vP^m1? zJ9)d;A!%!e%Cge=As)x1`yFnx^5%$iJz$x+QMj}Czwg3Was2|nvOI-;&O7(TU<awF zFkf?BecFBc(I%~g`qSHgS-hI@;*72S<o*4#Zyb0gawFyG^+z!qCw-UO@gy&0_s^9^ z`)Aw_j%O-NH2*m<Y>Bwit;h>Mmd!k^6L6u5;fKu$(;L<ju~Vl{+;I3{WH-afYdo*S zRPNk9mGF4_x*NI$7px`;s&-Ae%d|?9&2yg9qBRw)OB0^Y*tnsZRd|ct!Rh|zl=$mG zXPmU(VDojU_q(jg;Uruobw%?8=!lcTgHivRmwtRDqH|-`|KxzOoSu75r9IQ_4H}>F z_+(Tv2}?cOxwd-7$L_YLECq3M?#D7D+&pe*Uh*sa+$0lSpOl&ZnQ!;hGxK%VY~A2f zzBJ{qo%a1dZG7k6Y9#w!zi@K`>-3lV&+F8m*}A{}*J=CT+w1?@&#&pNDG~B#?cr9J zc)Zr8VqvKI+xp*M;$PVRKla|hJkGnI+Sa$xr|-l5|NZ{||Jv{QoByl0rufVJ6XC1P zSOgDAPdd7<=8)MV>6SmeD&OAj|M&Se-=E+6g*^FG{(gDAeE*+E_mg(K{5xa+zrT~8 zNBv)XMAq8l-2aIl|9?HbZ2$8QWEquBd`S!U^*guM|Nr#Ozb{1OKjZX}tu5uXU-|8g zd&DII&g;CF{C8SEF<)Fz{t?&Cw?TTMdf&IlPygPcWmtdzN8VPSD(#cpnF}unUH?(Z zEpF-5c&8(zEAC5M_&=-WU;g`E@Uj~C?f7%=;Zn^huAv;#OOEkQFmiB^IBUi>Rif^% zt0xQ3A<y|C`@%0dPh)8E{?o=6^)T$@K84M_)tmqIeK-E$#Sty+msU9I);%q;ivAB< zmJ0a)|B$M%OnXObz0GOmv&(KToqXuAcb#}Uhw@fU{)>KbVs~8Q3Z7m)R^Al**u>G; zZRuX)S!W7*%<S(a|Kno|sbkB$HieDZZS|)O3yd0~=Zd%)Fx;N8Onc(*es>3-^_A=I zRX@Fz5b&Vi#yF$MsNieJl_FanwhzCxid&dY<e5Bv8_{NX!jY|#%dx&<bJ3=Krbel^ z4L@zqFq*V$g?Uh}bynJeq^_CTldH?(B>iq%TDYgqUu#uYY*wFEdeVzi@7#$U8@)KU zOKlao`KoWtw2WNQzmF%!MC~@=4b-o9JY{Kl+0^c%xcE=~9R++FpM7oJ)^z%5C;P`v zeV1m%ca5jDmdBM?_8c=_cSzZ}KBevx_kULDWu5UMbLVfltbX%k{DU5`9H;a4KQ61Q zH*GdpdT48R$B{ap52r(y&hM+uZ$7wX&97;P+k0K!D&~DqE|cV&|N2yNz>i(k@^;I9 zSnNrEXw`LUrtW#q@ZPrg*w;$TO6J;ek^dday4>w93YX+MT{+Y^al@wji?tPR{8(6j zWBzRWuD?I|bNL(&=x$~$?~d_MzWlK5dcn`TUNLHimtE+aU^r1~j?A75$NxWiULz#; z^-WQ@&boD;e<q}Vwpewv-zh}p>SI~;2D$Bbj3kl{&HQqH1=madfUX@|mVG^w|M)}k z%NQ|ppG#IsqEC+XMeF=ozv_N4W8FE1@WzL~!u9IARxJryC0E|0a!0-={hFjo(2M^& znhvN`wK<yU{Z^V_%{-yb^<Vs&u9!Ex{7i?c&otJH?bCFa=QzKVK_%LxZSUSg?awL` zW4ACKdAjf5H>QM7Is7yDn02>!n4Xqyc#`%rXD7#orKi@I%IMd`)_gzO$JZSD&Tal< z4SnGc(G5Su>(l*aH|;cH-!ox-Xj+W;>!cIgexAv9IvTX4Qq}accMvDP|2n^?$L3_* z{5JnUOFQGHumyXZ_?CYDpwAmVF>7YQ&keGS793ZWtIVCbc<N76%cQfnrOw-|b&-3k z6D0LB{=2`MQJAB$^J+Kc{B5Pmv%7<okFNH2dyxD8?30K+Mwc_{3$OZES~I0pt-EL> zT-p12#>b?5n_c2LjZ2zYl~g1@D|g8~Q<o~t-4XBg>iOmP5ZC?Rr&s;)w%#_mum0!L zFXC4xzW<{t_y3c0NV_uY(;w55>py**{W;!lO>bE9{Vh7&_oH`9PIG_!Z2jSP2j()I zT~m<$_}TNzPGvE={iU+JlY;A|-Df}N-+FJ~p<92rKEKRxlsRcN>uh{t^YWT4g6G9n z)m$!kr=)cApL5swcP*xZ)qfS!eou@syO<KAGA}B#^zV&|I=={W=N~pd-1*<Qe91p? z?_yy^+k?AK|N7cKY@B$1!sE?*=ETlgEdSwGh2_MhN{JQeb9yH;eU4l0rE<JN{bhaf zrZ?)W+g)qU7-;`Ky8U~qe5L*MXZBH1J{K1CZdE-Vn0aVf)Z6<?v-ca$?z4JrV;)!9 z@_);(=SvdnlmFE&j@lG!$@k%V$lvw)9mo5Y?BBbqDZf`FooC_ZPnAX=(!L(;fBj_p z%Z>M?9;WJiKJD=H{F06PlVX4Ed;HUVjn5V~om2I7a#_*eZZ23hQK@IP-ko6SoVj9C zzQ)Uh-I}oVXxnc40;dk)e;@qyIit;ey*dA^+4+3A#Dvdpeq>3dyeWS&rA$SrN^_di zv~;<Ru@9T-WKPsS>))7^^j>D=*{YM)MrV_*`0)OjY+R6+cklJt`w3UMJo8SwNEz9` z@Q}E5SXTAGo_d>}u59m)4JtPk6sFIg;?5o=_(r$lFMFWWmuf$TV+R@TOJC;bU|e!Y zHF);)VD~`p-Zsf~JD+7`q-;1nbN5B@{$%lW36D>Go0a%#;reNg49Y%Sr#;!E{a)nz zu+Qnb<7m*{?&zm#@c6{?(uxINjRhNit4Hq%dDbelM)a{l<nhz>%cpV7u~_|S-F(#@ z4)S65WaDDBcTD%5mmHOIVB+>BYxgO=hYV$A6x(SWpSqQGcio(|$!&}a++Mz!Ae!>; z^KFB)1je$bYv*ixyxB1Bf9ILan!20UOk5SYa-w}^e9`A+3$&K%)M=ex?e6^{_x^Q} z$egI)%#X$AET7d}na%(FNlbJ77PXI3XASSFZaeaQ^Sb{{i*5*pi9D3=dIUlL<6RAf z>pocM8RgX^nkwvHCA0rkQj5v2v)?yZRvy<9mASK8;NgW?do~3ttrJ*V@mrx^eeNY+ zJ%zRFdOuX_TQEGB_)W3=Qc-rz6)m$nTh`jY|IztJW|GXGW5zRY*k&&?I#h3UFW)D6 z^Nu>^@<Wx*3dy{?*;XredB%U;e6Zv9@~^JWTH$)X7{h(|Ea#nhb#}sqlt0DO=4ov7 z?R#~(B>HaV9M-nl`8OYn9Xhe)di*E3{ta2R8zOdT#hux%vL-R=$hwDfYBw$BU-{z# z*HY7#|MI6#{rIlBv)fJ5d;`bP=(6zR2kW_H%9yqaO%70&zSz~H>@99y*J9aMs^&AN zNpFqS<NL?9*SzPJ`#14F(?x5evbesl>3g1Toc!j~Z<W`}&LoG|)ybc4ulm%eDivP2 z#$NVA{JrB>J*$@dZ;*e<(_VI((f-1G{-^#wR)2j_;V8p*>38D|wQIAzQ|=Zo^3-Oj zeEH{I{e?+$r>af3_vF9h=^x*ZZ&8@}M(N$b+T{OQ^F;e<B5x|sm9O!B)xWsse!iQ# z%<MwdKPx0<ZR55StJ)ba{oB2${?+gII-52Ya%j}_-Vkc>ef?>lMa|qBYVFeNb6WrZ zylpi@;BnXTonH@b-*N2H_V-#_I!jvq7p@LCWl{7ty4o$R-apn-N7&u;_x9_jejlFm z<6`lP=;vPRdbfMs3O_UTPC@YnyLb1k!i$c-RuV7$(|dWTMT}LI!sljx+jGTl7JXm4 zdFg}DHQikQ=3QQ@VtM2P@8qY;ujeeBTp*Xbd2;XfS5JN&ocuRhJ^W~~tN78cZ=NW% zOZa*HkXmWF&dtx?`)#;hecox-nYk~+K3vyc`m#*t6Ti~Wsf)fVa$9f9{2sTHnKQfi z@%GhUIO1bg&0+p!{kD68Nnb&FXC-&JSd3!NZhqe#!V!ggw}@6TwtP4*_Ex86wt>;# zFb#HzL-uAbf|F``%9xIr-*mBVT=*_$k#En>Czr+EvdsGVs#A1-63<1ypY79^Pta1R zmttG{VBy0jTqaTT*3VcXIY)G_$zqL<XN5j<m5J@!aZ~L0%9;0eZ9nMO(6KmI<$;WE z?_Z(UEIxZQ?jEyZRO%2nQ+sg6_n`MDvum6p6Axx2&t;HLn#;2-=Ca&t7N3yqImvT* zyiRnm&*T45uqOClX7b$CYbLIYTshJ1^1g|eJzojcKfk(E_4~HZ*=;&@YiDkeuu7kk z`ghi>;tAJy;+id={kopp^~c#8ivBNEU1zOyur+O)%Zu(EZ#xAVq%D3*{uazRKKJaN z=Lv^CwV2+Ud*ho6$J!gmGt&H7Zrl-hD4!PIQhz&FknLL7;Z+5>UN@Fq|8`WV=xx!O zb7y)5-qmloDUn!rW3C|6hq{WDY1t|kHW>l2<{=LvSXdNuqm^6S?j16SR_-a(d;G@C z@w3>XkC*fM*7%F%hhNPW(GkqvBepX;CVab@=MUNK?pzz6fBzI27JdJ0y5W=gPQRDm zIG=d>(Uz|ZJwNpS(0mp$uOvi)@zLKk=VD?-W0oAKPM<lYUMzmGfO3gpTx0F=!b%O@ zbKHEaegB1?A64=$^KkO6%r58&_<i5r)UhCSw~~b`uZA?o@{OE_&V*=8IU*2mzB;01 zgZLb-`2k%)_V(Tj1g=QEiVyJnq<DX-l7QZW2SKaXE%KFGp|v)#Ho`DIaQe%|!W^s5 zy(ya()ZMY}s&t2ydcExWdmD~>?##1uRXWzX+CeXdwdA4J0`73e*qvN&4uv|1uPgd% z9nKiL<J8i!b#V(;ZHe1)s`PD4>ZkH`MJwm77Vp@3%63=5)a=_kx_)<-t$UQUjys%l zSJBi3+Tn#u&rV&v!~D^q(57`Uu7AbX36(t6@`~ND%Q-Z2Z;@ze><+F^_4+ZcE4jnV zJ$7`-#qR976}I!ZbMv+-^=r=9o4k~N@rnP)?{>Lg>}EgM<9@QY{bFDDyM5tD{>RVd z*>2i*HPs79{8tFwyxRE_n|WJK)#;ZKaupsITH6g{Dt9P9P}I6r*<obOUl@7ioU@aj z%^iVfimz^hg*bP95ZHU8vctH3kGNdZi@EJ9svaw5Y_nN%KU}Vh??#2jszaXwM7o|n z?9;iLQmOIl^rwI+bDl2Da5{aM*U;+frvQ=lPZwsSpLPy>IIVrv3tj$H%MCVDOb>qu zxHk2ub7Z9szo5qc4+0m?IV)K6>v!DwTk}wH`pt?Hfj@iO9m?e1ajgHgBK@)A^qch+ z94XHgzb8FboWRXL^F?oa%+{xhmvbsQ?uW~r;@bZ)fQRw4v!S>Se|d_e+_d(jxe;<* zoXM3MWqnT{wn=oK{1k9T>$LO6y*m6y9X8v97@zwT&|`brc_Rle|Iw@%8<E{bj}`y^ zJ>`6-aO>xQ_nt;JcLewK?T!Nn!q2M<d+Xa<Vk&kho^igi`LjT3nVeA3L&d6%p9R+J z_#oi&-p1vsG{58Kr;2|gY*L;xne*KJP$c}$?2cI&*S%G4|B~eMCcT;OVsWg(`TK^@ z;x!i^Pdwv2w{TuXVc&YbJy!8MZmfUgcECG($Cr(h_5T*!VKx8R=Hd7K<Xo%E*9E?0 z+DUy{Qg3+YzFXdkdJBOT?RU-oPanEe?sSzouKDc1=lfIgSlSj<Tl9SX!Mg62%pXN| z1J-tLrF~QF<u@^|PdYL4jJEWxwGZabOtAWT`M1jpwi30#m8Qqrh3op8OHy8JwBLVr zdu5~xpI!d*JNwF>*rmv9<hlM_YFlsa51+}qZXWJ@d%&!|{=n*!=g*vdnAnnC!Z^MB z*}THsSF4rfJ~sFtD_*~o=aTz0)pZGP-aQO>`S^s~(~s*<y_dQCI5O_e1UDzq`7<Nm z?YyUQKG905!>Ui@^wO<f^7FU%f3<oie|>hBTJc&&J+JJ~a`}yG{dgjkLSG6#{2g(o z-csYb`f-D=YYNx8-p%Bx@6X+9V_Fw%aCvgi*{v~O^CTh}m!|EHjWjyvdp&5anT^Ly zF0ncXr(?yTC)8q$AM7xiD?aP;mb%h&Pts2wTiV^xxO-;mY{z3VQy%1t=AU2MfBfG` zSD87FwuJlh{dZq|_+Y}1fMnZEVd?oh9xhy)74ai>nVF|)+|#VGEbZPMTW8m|Y__?$ zy7^OG7@N1ptdG{I20V>jhUq!Zb$d?ix96XCRY~;&>m~2ve+89V23)t*4&RTTXSYnL zGS+xnM7{jUro8UmQFh+f0{{Orxh9zuZvMAAYFpON$En=szyIC0iM9Dn|MazT^*uRP z8<vZ2$nd=xRN1klxhQ{U9P85`?fuf)^(rSa!za4Gex4d<=j+Os)x5U!SAT5nyd}Fu z&mNd}>Hiyz?RQkt>p#Y>zgk?g(mu}h$A;7H%uDRf{}%h(+*=Zs>Ms5A#NWk+B`W`( zt8*S#bn%-z|IBrfi!J7=yF*vF&$PQ$cKlz)u9wNu@#&{!9<wXjA8$LCzcSC*;?JVJ zs-bu4z3O-5J-ImZchvr8oUi7bo1hwde4~U7*Tf3xzwMva?|Gd4TUPIGO=x?$_`0@l zdsMpKY)jI+XVvxb`j0=kXY_53iplT!(EsvV&7w?QoBfL))ceTHi+{T2xA>oZKHL&X zbLF*XO=sr0pK<@ozZcH)m>kl**YCTa5XXDAz9Z<j#k5!TK>>L-!mn#*_L;n6uD0X) z^JL1w;JB(ynSGA~Wxp-o`S8n@7cy(@9cvy6)|&;r`)go3-Tvc~?SV~8?3T(WpL?>> z*m~{quQNTrzma;{&9_MZ-|yp|{ob$He@nf0dD=JeP5wQllQJ6j-erHW&%J+b@vf@( zx4+%lE~j5+Uo&UkpB-iOy!o^9KNsKswEN@r{MW_z-JV?9`~U6Y%IBY7@~bx&>?%pw z6`CKri~rV-2_L3>QhxYy`^(=uF3pqE>V5prDTe*h{pdX_vsuq;+O2SK*RpC~Y+k3L z{Jfm)X{ngJ`|Ib=PaLSc%5GF=6<YP@@Wg$OGi)`Pp4#sGZ~LM;Xl6(#hjeZI@oRQJ z4j*5;^w*6j%hHE8wm+8d`?57(=Ge1)ihowf{d&poZqyeqlYZr6_hb3KCvrQ#EpdBw zqPsroSikYV6LXXw+Sf1s^y0nmx&3wfQy-nQd~vd*I&tm~2i3iYZZ0mdwfvN_f8XJQ z>ZQ+wj|I+1Y${&*_vFU9^_Q-%UB=!Ow_(<q`tADBzRzx}FU^Yd<$t?RiSxLAT>PYY zPrhxMHBa*2^tH<h?jHV;yhiQv_V*d4wwltXvy4(?uHJYp^>M|F`Ags1?)>j?_TN0I z>PX+VefJM$Ri!!Yc_$(J(%R^o=hf|NmgNg=UhMk$;IIGZ<omWg+qimv^VKg4Ztw4| zvkUv$So*8!YJCbveXP4ob;vyB!x6sceY)+JU;V=KbbYk%!hZ~_GedughFzYzD16Pb zuWu)RR7y78`)BROS=Y9&kM>=!|59FKLHL?w>TUl^S7(O(Iv(Y_I)DA<AJM$Q$)>SS zUx}LjK5UX?dHQep!uLBW>@*i0%ZmE)S1#<bu<#@6C|~!-kJsx**ZbZ#>Tx%+6WAQS z??+$bnd@tp9i8+4_?l&|KjgDbZ4Gt*EeX3UJY|2L>C%79YnFw+43F@A{aF36>#?k= zpV7&tYxCo`&zkq_QTfNM`%0JeT>ZlGaDBAz%Kw^cmR;TcULw0{lJv2xU8k;=8_wCk z`05vy+V%OivM;NPCLfCMeW_^sv)(<**Wah(`q`D&|ISx;E;^P~l_U|reOBMGi-o-Q zesiviJ}%!fORV^x{N`C=59`-l{i1vMQUBIi^A`LmUA^)b|6&z?DZ#&cz2?UpUwd_n zU7hW<lDB8I!!B>V%YXBCkL6dFrS}WhTAf>yt~)=~&(`tB>t|QieCan`9(F&@Jlw8e zQ+>SQaxux{Ui*{3JSr`I#rdnRzT&P-ZBVd8an{A})iZ+q{X5<#iPo=9PC2vE^~dYg zS6+L){yO0j`|ET4rpv{O?QZD&)l+-A(cRzg+`oHIYVOXlD*AJhW4Y<_c{9Z7gNk20 z{W>q-`B>_Sz3+?Ps!ikeo04OE_Hosd8*c;eJvM&3yuSSIdH%R`N!?9Pt9Y*3t^N1P z`ODt@Uh9gU&D9T?62Bt*o>g@18QUl7yVkLbe$s7giC(@w>`?WcOUfo+pPkt7B6~vp z<Fy|xwZBWJFv~GcJ)L}eclq(S_mXw5>>f&l^mxf%yjW1x^`RjC-Rbu;=gM(dKKS_M z&6#-qw{kD+FIKKPUcdK;$)lC??BCSxkiWZL{^Oc}4epc9vhTdTR7K`rLge1Riu3nv zICJm+1-|+XZ*KhmaQY?x$E&LzO<XnKPxj3EZ-@CV7wi1&`e^a(@s%GNd9_vd|F4*{ zW48aDv+kZYo1Q$sEdDN4(6-cI-oFBo`Jazietf0VdEC&x^uvw*#Rp{fTb!!D>i)?1 z%!be0DHVZD{K@N7zuXi*@$6N%w%&IC`Pa|Yi_}Gl`bGU~+5f}f<Hy$H@_TQ|o|1oA zQz&X<`=Vw`THTRV`Qi5;AK^G&d56E=;uTl@rAg_$WxpP+;5o1LD|K#p$Se1v!>75A z7fO08fBI%e-29n8+}AnQtKFTu`+Bytyh!~A?p?oseRwk8-F^S6$9(!rW#pIJSD5{4 znE!%v`E^ZytB+59&b`(aynDI(YyU5EN<L=tT2#(quj-S#+WEh1&!NYmQT68{f5!5B zT5M;f=cj)D<yTV;nbPlp>*xLY_{-sMvg^;_^%|<bXWujV{zJx)sp`MDY1^`|yj-by zDa9p4sncKW*W#P5<EF*MYG`R@YB2qmhZgwUK%{d~Opp%N0Ugp~ZUR5~19~os$@Iin zeT8~Mb5r<{AJB7AOyLLELC-}oM?S?0bS{cH{L~Q0DLv*E$Ool>PU*2gRslMt#}ZkE zxq_j&C0NDu(wXu;EQS^a(Bo8;J+vUlsW4hh|F~Q=efl0RE$A6n3Eo<eGp?8|3=OAm z+^1sCWMMcRe3nYPuNKl-DvTD>8^e_?r-RP9Vm7oe-0o<k%gQ)?k&l)T`0zQ9HbW0J z@$C+u6f7873@r>zrh^U|WVSFgoxX9GmTf)aR2ltrLj^+%#Gx|!;9~|YP)-#Ds{s3k zmy45AAAHQ91@f_ihNcRJ7Dn(u)K51w0|~$nGSW{sv;YZ!&Rzl?E>h2_4?3FA!U!H_ z`srXJ;1Q#r4mJUPm>BrvK?@^zr0b_!f((SmxqiAMh>zq*7X?ELV|dK#r@MjpP$y1) zF6=m+ccn7Vbh{V>k?9F$x+>G(uh7b1G@hPlp=vpe$xw;e(874SA?yGc`wnBC=^s{V zc~0+{rv*8-$if(MvS7e|trd*M(;sSTiBIQRs3kZ(V6_$}qw(~M-txlJ7g(u^O`o$# zi+lRbOX@t+Z5BcggRy`fD;WP%W6t#M&05^kXDOKRPG7tb6oa612`!ALGbS;LP5+=^ zHj%~9!q|MW;zP0NoQpu_hswz@8Cpz#Xr(6xI=ApGld;A0gJKGzU_l*KeMXDvkOKx+ zTgOee*rvrZeb!oKp6L^oY8f$_Ouwk7AU3(~Nyqd%+qAft4Gqnv*DcYK0iO@UXfb(X zo7nUMIpb3-h88A<lNn`1nGG$BrYm06(q}Z8KJlEKDD)&m3lk&AAvD^{wS=Z`IH;vC z-7$_)Z2E#2xjv9y<LQR6a-!4CS7~{G4?1Kvv@n_OxJ65Rx?{1T-t_R*T4K}l7&Z4X zTbP(m*Jsicn?7r`mix4|mTA*#)@boe&$zA5JAK+3Ey2kS{Or?@uF(>k{(;XhdV2m^ zEuQIC5~e)UJJxD>O#h%^7BPMIIxU{bFBN&FUs<Q+IXz*W^~C8_>$P|$Yd++gK6$;C zAmkLBstsDk(~qv#5}lsFqR6s6Z>N?9Ba^AY^m(tf#F#8hr*GJ$WhZQklw?iJ%@qtS zOhL!r)G#rcf=<4%oVL|cnc2|76mkB|1v8br=?mmdg~7rXbyfAIFW#ypF}-1x)^a9O zv+0Rys$k<EwyEn)589?BI^Dp?WU{QG1^DP9@UbF>MrPom55lo9g&u+vxmAm2`l^Fk zYSVePYl(qQ!TB=1YP%NCbkG4fEQS`QmY}?BSC5p&K^YZs-kyHCp|gUag&C5c3_-cV z43-T+xzGfp0x26Bfjn)7ln;$S8OsbQBN{n@w7_$sgnqgaC~uh|<waMJipdXzEvC;G zH8hyMdV##i^a(cdD${e0Xl-ILH-MZ38gW!hWx8UQmDuDBRl?I>>!?Xg-+NRmmC<ZE z<k%w%^XZL_x?<p<1RY^^TuWm5!3`=B(-l7{iGs5hvxT`a<d`MS{aS|88yD$`O?S|h zzr}B80Y1bH5~7xt(^(H_*-Q_7p)EGOLQnpXl%WOqNH>VIxhYcUPfyrjs?TI-F<J4R z*z`Xe<?C4tEzHfP@2@rhXRpEvb$uoa^XUr><fnmT%%?A`F#zQeGw``H{@;|ur++Y2 zo5gHlZZUnMv#Qwimj|@Cr*l=QtAey8rmBlge_v;Cg4xi*eENp7S`yRm9Ma;NELE?{ zWMKi$n$sVc%Fkdiw6HLM=>Kv^OAvf?;q(a`OvR_m8L4gqDLrsrOM=mS`bA6mS<}^z zYk|&zQkWieOiOI~1%3sV?fWliDKSnLIIhLTY-DacJ@L4f*z}#dv`keI^_YITi7_bN zERf>b#Kb_s(86N6V4Atf_6O3Y9E{UvUDirtw3yC#MJtxkVsfJi=+vjl)7h_TNlu@* z!&-0pnKN3F;24^|{;U@F^ei=1UXc419@NsG{^P8c*!0|MT63naIH$!s+4=zwlLh2} zo{#6W#6jf(_w>K@N?FtQp4Z};{_46G-}LU&T3pj-9+sQPY-nLIS+HJj`jQKvP`aV@ zdHREkT0GNl-_+ur{_~=iAox7S$qF5Ej26=$G+Q_@8(LU`vZc~=`Kwxj(-qEHE(8f} zcf74-z{qT2X*Suh>)~{@Ygz_O7M7sGRdjmZetC}VOYUm9GlGQP-qRAFKII0;<b}pE z(=SX@5CWB`8#_Q|TN+GPR54WqnFu;bXcOpsO~)8jbMQ%Y%!ZZ*(*<>nA%_r6=e(}P zJ-ymMUS;~>8(Navc^+vQGfuy7Q;U1L*JCZd=`U|;Nr8^#W1SusC@(Qx^_Er>oXa*X zNWOi#-EA#vQ02}t{b-Q9-1LGwT2j*ux)mg*iv-K(GMY|b@Kh^pde~hp_vyaRw7yM$ zb5DzFdZ(~H?{wz-S{k4;9Ob9G-q-2@v0$e;KG15LKB3dFh{?cmdSW4?-1G&Tbpod! zeyHU+z2L4U@AkS^T5^oj?H_A#Phb98i*I_wV=XDj$$JwXYe7%mTl_@Ja=QClExGAT zPqiRtuuf-vrscVP?>jAiM$nO57n;?@rbj=ARC0`#(<e%rh;7&YpcUZGXgIybTw7|o z)+;T6=>>jvT+=t0YxBa+TvV|@Ig}Jsj2Xa-6G(H;!T{QwvoM4gc#!6tg&{lzLz;6I zrqF7hlM`|dv<2c2I7oBO0_EsvP|E{+$P=h(0@4C%dRQXa?`E!GXlVd0HRV7pAWnTZ z3y=u15=#X`OGD%7pwp#U3@r^Urhiys>N|act}g%d<(AqLri;DQ5}3Z>sfEJyS+7Cm zdZ&>H=%{J0>04iG2~GzeH68UvOKAFp+u9n_OW$b;OkW^itix<*X*4}?iJm=}At-39 zI6e6-sJ)nIz7Q<bxKs~%q~4SFpj0nx{B8QF_gXyDy^9r9rVD@2lGqMDY<hZ?xi<Io zlWSD?rcX837Mw2Nr~*miEQXfGhSL*WwH>B!a8*;DZf2z|H2r{|>S88K<LL+Qo10I+ zAFL`f{eqRY;Pe0^U3Ty}ThlW@T<|%^meUP9)Wj$M|HQX_xwCc@qogsYG69#Y#wN&z zyID^ExL;Lj`T<r&&FQPHwVS3V%+r`Z{iuz$1>{WLx3=1n(;KW6B(S8@uXfs=+x0!P znHi^7I%snX7+WG0*_I{-(;s#l#!R2kugyMvgQqt8^u%5z;prE;OcbW?@7ET9v|Plt z3wmj@y7HTVszb2*49(3<ET`)@YRgXl&~2zb{eZoWI>-=va8qXc(|+w@ZfO%xw1br! zSsJ4F$7H%;s=6MdCFD@Y9kaDnY^O`PYI9A0c0*fm`cYSHfyw*Ni^01rrj|xX$r99M zu`~iX1)AvGjT8(mjX;*c1dKrf(;b(pD5x4*BF@}~Bzj9k(-xBGEsdvtyr~_@WMVL# zk;z(y#n2LVfa7y_ZE%l6Y5Em6ZGq_u$2B#lUjQB9XbC&Q(aTdCn(!7Ll>?Ve%FLFg zMvzniK8d*@T9ud4a{9svMpDx+IBLvbvNYZPu~R{f5mXK;o>G*U9&k_l1EcA5$NSp) z(-+Ow7K0|c+c&hir{9{d#y9;NC{z^KHFZHDc1F>G+0fE-dgFU_rRnvzK-NFhUNqfd zp_=>j%17Fz)1_`}3rzn1=E~%aH}x4UCqK9;G2PD5if_Bd6Kw@X&{^&G`8CC+Z@;ZA z4JoC*-qwbeQoMJyp=Y|8-P4wYBv<?U+Me4pUudf`GMY{Af2l1o{q_TGX!$1b5T?`M zkv8;X(KnA^Ixjxf_L$z^ZqB`Z=Ns)%Mo`=3qLrB_i=m~t;q-@U*0DS$yj-06!M=&b z*$Rf!9S<stKoVYEk0Bqkp{4ocKn~IEZ{BG)1~8gW&$HK&n$G@ATM(Y$(!h<D?KTcN znH*AxHj9y=u@Q0-pZriqkIB#y)GFD|>Zw!c$PYdzADk`?&CHFBraQjUmYHraLk*GO z%q-FS$d>4RWJ?oxhlx|)9hBfq4Zx@En^~fip@s^EmWZP_p$QJr(1et-mS$$t4QmX; zAYlVagdqP<4-iljnV$AWTM(4;_@+A~X$nsdd#x=v{l2$y7_*_J#q@{#CbH8$8oEwb zeWxu9DF8d{bp)q3SZnJ}hn&W22|bM&ln$ro*z0glx8hS5fF?!oam*H=3iBN(IWF98 zEk1pLg#3FD2i!(^>!AZJ2AM4_%phH1OAGVqpfg27ED^T`fcwIhh@L&9r)y~muW<C! zK|NhdOL#^GcVjIr;rUoU-C4oV(sDZEZY`6^3)onu2Tayk#S9WLFw(M|CM&N5<^(R% z5S?ByMJHssc8`w0WQBV9=~5GQAg7AvOw!?=o~fqFH$A3D2i*MuYhg@cgmfpFEG?%$ z<hB->ez-?RXnFv+GiW(|VT2sGGx&zt(h|}eoUYNU18Nq^gEU;+E-yCy{Q<ey=_jY^ zK>CAVQw?Y6=rbBjPn@B%hRMJH(xYST(-E33psXOrY-C_C{o-MH(doAQ)@3Y41_p-H z4Y~A1roWt^136k0Y=)wYu^veC!&W8m(V~2yll2Y=T8m9rnW-Z*oqvs~o`?bXCJ1oJ zrk`$NVys|fV6Z*0Slx$l`qH^N@t_l*4UM!cr`yldQD!ulE+}XWYG;B^7i9yTE-F0z z7s#xJU8eHWL#OG8Pd~t~zZ_&~VHBhI^ck~s45u%et|LCZY=O>fY49=TkgQ>h)V4P= zFfaojFADb8!zf0*>G3mk#HaHv()l)>ccu>HWKm`#1H<VHkEm)+f3Vg}nAyP4Xu4yT zzC9Dj@8X7{(-qux`4|nSA6%@niP3QS$4&){=?a!wl6=Mn1_~eyN-IW&)4wj!nKYeW zOkZZY`g|S1=>qH3q^CbfQQSVAbq+Li8I7hN%r%#&pL9E~*?_0*{b!MVZ}hY@+An!= ztV~{Y<S3uiZRQI{N+!B>I8`0It$)MTqnqW$=D)Z1%PiVenc4GApms;#wigSpyIIaT z);*a+-6mVvj8jAR@6;E%?dQ5QI&N2fvM^aD?;6SEGGEcU(){qN1;>Q#I$zw?EV(r& z@oVh%#@pRn_gmC2_$bi5imA2s#g|(*x92%@cx=lHIgxF@zWG_;N7Lw*mWso9PgWFc zn(K0Xrg4`M-}0tU5`L-|R@DELUG2B`&r6xm<qNI)Cht(PGP>&G={6;I2G_Elm1(zx zm)=o*uJ>}9X6h}&r%#?+S?>Q?al<Yk@=WbvgM)`NxY)Pns94{-6>KtLZ`(JKJC~Px zSo}ESI8A)_YUX)6b<%ep`Tgwa(VZJgc4glBwkbXL!$0F27xh*>{mJZDw!mR>;}3CO zaI+5_&Bg|n)8!WG$V|V`YzS%9fMRj7qlrD3ZZuJxesrOZ(DZ_pYKuW4(;psDG@E{7 zrH&kvq2+ePull@<(-SRJ^rwGas3SRDzrlomd(3JbRYqR$7#G+IBMXb^0*iIjrYEe> zQJ)^YSf?Iz66vhzMN4!nz<q$}OP1<LPB%!`|1rIDnU2?VgM3BK?Q7QSBrs0bU7^E0 z{p4Xwp6M<tbTp<bWa-OIZ(X6&i_|`!zf#9)`uRVGGSk1V)G@$l0R>NITdm{1-C(&M zC*$;nH99=gPZ${TPM^6(M`-#7HEX}=d$#KEG8r39FZ`izH2v>Z9eze*aK)pvO~*%e zdenLyuIUw*bp$|49(Eg=O+Rp1Ck=Wv#&(-4I>$Jtd#%&qVlgtYFr2ngM{K&5jIk<{ zfid{R;`+C>(fuhqC*G_6+f@^HK=q#ffkOwprhR$ymEl|UTGhiRwr%|MpIs*2WrE<D zHO8@5?;0Dexf%H;tnTb#ZvzQ)wv*SVsQ*8&d!hdS!>fPSsNT7^Z_l6K-2axg2;^yA zE%<%AzW(R>|0TcUTb^H^p;ez=f06xT+y8%G&zt{zoL^u2^KSk8!*AFBZ-3pH*%Iv^ zb2dKipYh-C@AX46yAt<3i+ef$QTCjjOQL73H{BL^>t@nA-KXbrmtOZ&O?$EZQru&W zng6^DzhA#s?C2loEMd;`@|%}vP`}@Ss&BvN$JKpTFL`I`FO_j(`}}`Sj}s=H`2YLm z>C^VYa{nH`UH<>4(BW*q#IX9T)_+g$=Y7#n{jh(_b;rM*Yv0zd_~lu{%W_`k?c`Jc zFU4m|XZHPR-1VgUla)~5vcA9kil6PDTn`FLd-a0-<*Lq=rWf~|75jWW`<1x-l>7B% zBH_L&D>L_;yA=KM<7?BY_OT`3W<3kvyLZ`@Q0Z`%mH$1frPF5`A6?(SJEmv%Htl-5 z9e>(S2gcL}{`*k3+-qmnqe+5#S-ai@_x|Cp|KoYo;g#y%W%Ke1uQ^;%?sN)L-2cp` zc=u8VmaNig&N4k0ozH0Pd6E8J_k7ju(4`U2v)4Eub$qquSMu(?&&*uqWI8xoW*p8w zTX?QeS+A);dFQla+Pn>JyEgo0o)%H{M7_qZ!{|KIL-$Rc|NI0@m-@Iq&+asBd3n+N z9kXs_hfe&g>S-BQ91gx#Ji@%RF68eYnL~e{*6*1v#UZE3EPCSZ^oCDbn)R2IH-9!+ zz|?fGv^QaKg38%R7j;+6Si<rp;qZlBVH+M^3wS@_nAeo3-RCS1#O#_9vw&ye*EU6o zn){QDF9o_TaP(QZ{i$1m@PrI2B`dSltEc~nN{G7060WAaw&AAZtdq?r)N{pu9GiU4 z-Hmmh&W&x{lAfP;-52!U^hWY~#j}6qa$I3key%@Xp}MqKWV#54vReI?I%!3>P5B3A zIf@@`<L1>;OUvlzeU`CmnplNoM3sP*s%P{OrAV*53Aef)?|d`&;qpri&QmsJ=$yP^ z+Y#rvwCg6rJ9ZzFti;;&x`H!Kv26`!Yclw_^UdF*z1Kq@c4YMKb&tFf-T8~<^OFrz zmh9T+arDT8i-#}WJHfcRsW9lp*69jiY7%_^8m6<nn<y!(yW+vwm9M6|tx&MmabVQ( zaof1iR9V<~(?#pWTQ68?{`>svmch?`qRnCTOHQ@&O=j+yB#|j#)%b7v+7${CjGoi$ zzG%tR^Y}hWn5(O0YrLa1&Csdmh-<T(@gdtPU)^b8r6;zkTs$b5CeSn0G$n2JsZVQU zmK4}jUTFFtQQbK6aR=j;>qc80m$L1U?Oyk7vdn>MrFxC(st;W+C%RmHJ2!Q@OHIkD ziEVK=Lr%Uhn{CZ^-0GcU*O%*JvuDXqZOstectz=Y?h3&UwN05@`QoKkJy}rNb0OLF z-}Db$atifz={4V0`M!%1I<szHfLwW%L%Uw$8HNvTO&u$b8=G$_d2mu;i~Ge~hvINH z&cfH9uG)(!n*3gLnB(l0npCmwtQL<myQj?Zi+eG7bxiAt&o^Q$w6}b;xUl$l+vJxA zHuxPC*v0Z;MOJ6;B*jag=gG7(-DEB{dzUJ{Z((L%AP;wmt*!W$<OL=6ll$s5ywj9t zaMqrx3{2*qlCwC#X~W0G{{@6)%NV{-IdDPrO_rJ452L_eyBri5)=GUj@L>0aR-Ngu zxRjOSN{@-CY+toJH1p~ClaDTGF1$KZ!Kym+G~Zr#<%`jW6tqq@P4QnXdAfn~A#cu% zZqF{UYX&Eq+cPr@TJ+AJ5)oi;YP&A@YToMBRUbHPIvko`m~=eK(Ve8(m=ds5E<Atw z#RxUw`fM+`xrg}+x#o08yNDc{RXj6>d*=O}=K5b6!X9n=qrv6;Z0p2d&74eg_B6B# z`)Y-HXmBpkSY&mv<e4Dr(ud(M*>@gVGI7hhYhG_+S*j&#y)v0*e`#6K8K*hx<dU1o zK805mElP5u&b&&zcFOU$Bb(!@MSJs&cC;MiRM^tOJSC+5u(ssFH9@!M=T`kbCA-6_ z=p66PIld|9|1zrI54LULx-RXz@ugqiJ)NFDs~N65qJ3J$8uk${-HiMsPF;U<@hbmH z=Z}-?__isQiT%*bbt+*|?TJ{ieskiyMT_H??`qRA`PmbuXvlIsd8+k=%lU`T9o#3s zqqu0rN~VjcdA}d8O0Lgjn0n|@iwj5f?wlO=jn0#u-}eNmPT0iezNTDCNK;Aaq>t7F znTX9Rjo8nNns12eWQjQO;a?d$k9AeH!LO+&Pdr=rORD2-YUY}4at<%W&+lnxo}O#I z(saQ!)2J24)vI{lMo2i{@o|ZAXwm1{+-+=ImtNzScm83X#OY6opCr7dPrIPPS8wHO zdRVQILCJOYm8wm35>+L)6J|cYB%d%(ZO!q!GSabpUuth}Fn<{Ex<;X`Byrx9$@6$; z&1X3(KDmP9(DYV~<5rmmPt8!8#>2Mx;-q#L<=*3_(}ka$m@0JWV63fpNYwHK=UDM~ z43hkr76H4WR|vg3V6eUWS%;6#%XOiSdWrcwi!$T5gN<Z0JZ6@kpRRvVMY4YF%sDGh zy-J#N<>jIx4*w9RJr6zWpK2|g+|^;JB<VZV(5U>%wUpS^lU+`;HMVan+%!Ms2CLiY zFBZl+l|L8Vbr+xi+NHGS)Lm)54X=+nruANb@NVNe)kT}9&Ofn7yK+T}wrh_5qbjL` zW)lyKRch_x-PfHXWfOkxhk`-R83j|p<@H>Q&i>oJSG>sHcUap(t8?$2!>eZeF;a_N zU^)8?OOPwmWy5&_JCmO+=<1%8WPC05J)32~PK(OLf=<5HGU>vthvL>YnQGk#zP(6i z!)CTE8+w_~8YVvMXt=xRn8S%n+d2{oHqThm_95et_Qt5V*WGs(GFyxNb4$Io(QakX zciWta^{1>>9Te!3vp)LUslDaLjH=yk`bPIAT79W?4N=gZzkKJ?z}9N{sguR(#BH9+ zt**L}a#)a8%ZVj-h5o&ua2~ht;Nl6>6i-j?>WFw}x^n(}fr;!9%4PmXq?Ux<6%}>= zvw=-EZ%)Z~3#NI_5^I#~mhiE(S8rUE^+ZC%_ykj+;UmurzB3M<%DeV`>#eE{dLF#o z_B|!Xl)GglURrK04(fRRTqAIL4L5I}@xmFa3M3wfls8syuHi^uBJ5|h#{cN;o`O@H zyc{9xIXDZaCvMdctv|-?zI2JsS<j@(QwhPhPqRwN`mK%=e{}cp4KB|^3t9Ii3csJ8 z=H{Rjs9q{Co7wT=kEn;C@~$Uan*1JLhz{9*GOd1(*)?1B^#>m4bf?M1eY7dad3))q z=(o+K4-U6&%c{9C;X=gj3gzF`7vg&NUhQ$z%h_>}eV^ivUcEmo`(7H<`&<;#yelio zH*@;wozu+krwHjRnY<_H$Dxc>k#o;46*1a&WBH~V-#j=|HK)ki1hvc0W%Jus5UKd; zn47>t*1nl-JFRz4>b)ovE_)~Q?lVPJ8<#_JXZUQoex=q=i9O0w*0n3)LH{(B42Ou) z-;0H;RQ7C<ali8~WBR3~6Lcp|x0kA~SU#b=^lE&WkVj$f-@N)$hi^Z1v{z8rW`D{# zdfwy-hRQ5kxHwq7SFR|nWuCOj{CRfSg5qU7c5^Q>-`7+A=s2O*?tNSuOV!GPngX}t z+rQ)Yl~lJX%>TIN=HhdbrhioCHRpD4{13T#SlG$rhj_77x?TCEkSmL$zPuJP(*12* zR3DLAe=hu;ga3Zs`R7&~{@WL={?q=>zD;Ykn{6-G%9^!@ZNl3dS;Yn)5BOyLlTy32 zXQGe#rX{~-9nD^J^gOFX#p4%2Tr8oj@8ll+-IU5D_u&EbfY!o8y9)|kt%9acl6DFH zxbqF@fYz+3mu9NlE=XLI&E(d#AUS#Jff>Q|Du111XRHlhId#qysS{xuE8=)M82Y86 znOm-2+t?@h>P|&Ww%fk2A2--bHsqcS{JpYVZEEhLj|;56t?I9JSXRRRS@w5>jq+TM z=jB3%*?aW<%v;=8C%r*2L1N>hoXf&$*JEbCJ}#Cidwwb7HHm{IdEH+aO1rOY=n0rN z!?WOvo?-p%FSZ-DzVwcoHAh{C>Aviy*;Q8MHQx1l73n*cckPfr+!)H-Xljyk&0x9D zHhoSO_o-@gj5;i$@>LYId0aM&E&Rm=I-iweGtam05<Uf!dgQtS7qhRnxUsDNz@e2U z)zfl)*yq3az^`U#wex-NqIHt&ReFU6MyiuOHJy95dxm`d#OB!G+0$#5o86afHqx^_ zcJ)$mX2W8^h?-<Rn;rFsk7crNvp5@7H0RsBTaHT;Gg+tY6apR3dRmCt@Q&WK?NJt9 z%{({f{Wbe3z5ZmwT$RGG2XhZ9tbAiX>%??ZhPM}Vrf2vne=C`k;i>Jtitndhk_-RV zdXBYAX1nbFFt2aMwR%4LT;~VY8S)!B@9ms6NpZ*YnOAphnK7Z}OG0XB&e3I-@;z(1 zVy|1hzL5qx*|o3;a<Xg4o1H;3SEPw)9$pnH{)TIncc7IS1H&Y@UhP-@$BKeNdU_8p zH~3>9VzZ~z(n`E7#b@KO`_8w^nl2?+S#uv*w0>Fb*37rB%NA^|7rwJ+!dwBS*=*n0 zYf^4_80q^?>D)d?>k{+sJWgxt?g*X3xwRU;-BoYx_ns5F?-*_$@{PN0()ojCE}v$; z;=3EJ64&z}CxnCZ$o%Dt?@rnKFL!a+S&`T7NBO>Nx&49pt&QD=B?mXR^rdHAc=WE| z-!1019&S2SKQ5`vOtV~NdLppi_h561^zFk+OT1?-=G*sn&2-<*Y=M)?iaNQhe)ty# zOHInZ`7dlIv+P+OHwS*RhdSO>T7LIly+~TL=&MAzn#3{j{Qjn(fETX6Hm$$ZS-vH* z!O3m;vD>%X?(^??lX9fB|In}5cXV82I}SKF%T73QqhhgZfYRbl9-9_3Ztb@kzf}$# z5M1<Vm-Nf>luD77HPY=a-0x+?K6p4DsN0~RyGL}z?hUL`(`P+Wma2DKm{{0ylvj06 zQOoK#iOM-lQ*>lHECg1rd$8%SaUrjSN#=VV{R{V;cZnN4*Y27yPsiD4?Y<*rYn&hM zNies)vT4s7&*mqWRG(-CN{clGzfw@IS(g#uxzvAcbI!^?6S|x;q-LFMUNiSZBU?jp zSD))5<u;{I9T`o>%#X(#r?1#lFUafnYE6N`rjm5)wu}{%^x3B_;oe^@vyyxAYP*C< zS%Jn39BZyDTFEUTx3eSY;#ckLB){#RF%!;QR%s8nTg)me|JRFu*Voq%Rh!>&^-sGf z8nn~U;Chg=@%J+?<8Gv%3d(m~W9iKoAvZ}ccEZXY1wp6X3n!nyyff$F2~me%DN6M= z*~(4=5gq!X2QJB6KDcYz^9elnSa-MDPyF|t$B#v{^njX*L7=bu>R1bdrK^(qLgxAM zO)2$Xp`JMXufn!fL1Am<W_|9dFpD~!+kP@(v#I~A%T7$Pw;B5OJlwQ6-D2zIo7(pc zZb(<YdlZ`|k+AxWK3~eE&IzijHkO%Ir4#Q7)rTvc7TS5`Nuk-7_QTvAZ-sbIZk?VH zyVUgNPWPq<yIt<NT~}zF(j*`{eVgNz)`F%DO^3NEawHaN7CgJa^O$w=UaO`PJ$HqE z-BM{th&2je(!5n3KkZse#Z$3Ug-;f&@(^3kb!^kjqRLpO4jHRo;Y=r#Zd`H}y1;v7 zCU<(^Lrz{ct{qZd({!fmZBvl1f6P*rDjPmcEmLFVvIyn33=<25L;gwbNelE#k?^s~ zV2R}4y-{RB^^T_M?q)L$qiFVrr=<4AtYv+EPwac~s;L}Gd=1=-pJ(0Yj}~m)s}>h> zs9ieb`J5dtlWh$ZXPPhea&A)8c0T;RXL;1KK$~g5POUlh@eC*D(Nz*TqC2}-*4Jk$ zZD>*B4gWjU^#Zf{+TB}aPjjfuZBvUraiN=eSLX$zj`N>yy$E_3URbm6HD8o}himb} zJG$3*FBWrL`0nhfRhO)j0zZ}gu92y5^t!6^Z2re}UI#lHmduj~l@(;uH;7ki+xo}& zBs-g**wnUPC+(AiXIyB?*=CwI>&`Nbmor|itXC;zs6TP4XvNAShq(95-gorEkA|+7 z(TkWOxenhv?Q@&+a6)a{mXt*&5__sIyuQtw>}_>qtr(B`?s?6O7kYc$u1Wf?7Zm2- z*3DZRb|m78m*)qKNpG(&tMzQ+UmZGW`Et2Xs|$y?O0(v2+g}y`ux?@3-rk@I6%k>x z?%r~H$Z%~{{oyOub(GdF@4i-7In(p|{(gyfJ?B%^-7h;uJhuyY-S~9rE}o;Alh=sq ztx&wk9_pWSkXx-Qt0dw;!IEue(h&!lr~T0i2AykM=E^tu+l$@2KPP-|%sNt?Vs}!o zMqu^^CE1T3-wDq1zSp=-a(A1}$!&|C8ayaUS(5LuW%d-A4JJH~SA;?iHeOl0W%~VR z%3}5RXJ6pcT3_fQt28Oo(S_%s!WM@72hG<~jaX()wWvGLxwT7X8%OR0^)HQD3)4mY ztSh)|G@r^WjCRl4>f)7gNJ{!^d|Z^;L~9j}4G*mog0gk?XuV%Fsk<=y%+DM73I@Fs z*fle!@FZQIc&+<&&%-AFi%&1A#!4-}dn0Vl*9^{e(QaFsIx{v-Y}>O$sEnbtZu*U- zN7h|WRNKPy)Ok<j<yTTJfe{PUnkTZvmAdC2WI3iKCsK4(>$nlWL8n8~B55tp53Z|P z*T<T4%KuiCG;NvJHYY=&s@RV4m*}#n=@*_WOV?kLI_UcC8^6Fuv57T&+bW-Xb*{Bm zUm?)1a?iuTd#7lR_#Ky7vwVEth2ENT-E_+Z;UKH83*xn6h0}PpsZ8{{#k#H6KI6tl z-38Ix%G5S0Ga06^7cb;ZS6=iZBu4pCquI7iekp6%e)HaEj@!NIPDuFwY}Vsz!rfJP znIB{e_HA-gWC&l)p1b;cY|=xMb=ec9$;_H?)vj=xZ_HF)b33oiRR^P{cfU|psW<z& z#_jO6%m<CCZxi0WYFJaafv<Z>=yY4qfy9g*w(~npA9$1`ou25R2tJTl{glw2yH=ht z9y9itrLR;;T)J$l?eyy{N1snBU*Mn0sa!tG+v(Q){aejr<}Z5k?3?JyLXDz(H+SY+ z)XteUUz%0ArX$k!?uv(8Q8QFk%I2<3sgM0zW-7Jq_OkW7vaetN?kw8UwST>gCCf2E zzhhzN&D}~T$(_CQz4u<@u`dB)iH{FVDS2CQ#w{}=z1?lvmW4~EeY0o|>XUH2wtDfM zV}IUAW&PQdWwYV#x8Hx-w$2fZe{iN*bAEm0NzR$uv|cO?vXhTye|~ym+RRyEM$b;M z9=|wCRP~6CN9iluVy)r@kqUxr@*9+oFQ5Fi@2=*yD5qyjv~nJwVEnXw`gEPII<oca zWmo=_dGE-?vQSj;NaLi+2hSLv70t<-d7x{Fz~^-@g>@YiHZ=>oJaV{rVey3wrIw>t zrL8i#RJeN#?%kJ^Q!WpGXR084=7Qcoo!VT}M@<YrZ{4~ladSejQOGXm<1w3VWtGgx zzP)hw^mT61XRROCReMgT{ydHOS@6wP{<Y0#8tW^&&c|=w@yy28HrH?3{tY@`RiCTw zyxF^`^QA}OG%+@JA4@6MjGL3JKNK;F&G53Y*?9VESn0$GzC0#{HCl`9Lw5(~OWxED zKJsrxld4}}(*5<_N)Mb@Yx4!DW*vHI!}-5MRzjpxsJ?m;yS33~-qhv;Q-!9wJ^tci zp&_lh*lt<<Q5Ts_l5*LgBbs@izT8__Dl;clZo;bz8_v8r_Tusxb4!K3RMp7=hHqc- zd{`@$^>_2D9GPn$j@>hOw6pJ~@<Xps8Q!Ds-*eg=U~n`)==A)|pW6{@7=8vNUSjYx z{``^W&E(5QZ)19F?jM`o_oP|1rH7-(cva3Ri{=xOD$LKf@1E|`tEeTH=gEHTpC!9^ z)Vu0G2}_ijomNWO9`iGw7(2PIJdkDb#--x*3ssh_-P(Fnpu6__DFr!^zU>tPEq$x^ z=`Bv5#In<MLGQ|QycbT*Yfr1udBnc6CBfz5e)h2L-&G4I>s~*V+x@(2GRuqphGzd2 zRTFlfv(&$O_>8*6w30(-rc_NTo9oEf#+R@<?TeOn#R;*uDmzzM|JWj;vhL_~mXq<- zS0#>RcV3=udqhLL-syYYAsye1rrTymy$(LmzSZW*llUnna(ByT>QwG8_!QS&`20VY zo@edW1I>}Y=iLzGv&g-YbvfqynU9`s55v4z%&xkeTfU6@+05eW!W<UQbzinUxV37# z5RZ&cu*v6z#(ig3ithYiU_0}j-2CeMS$+}Bhu%$=)jC!rbLv>v#IWb}fB8;I+)!;l zBGk6NF!{KO<qfN9@fkVGMcvO>Y_S*Y<fzQJSIW=2@3laFt*hWwx!H5~=H6~d(*+&= zT$-MDybpZ%b7JNd>u?uN4xg<bHm1z$XaF7l%(b^=*K@@pR+rz?9?xp)l-6e0R;yES z(x)}~k}><KDQur7GGF^3Y&ZRJZ|x%ogA+MtGb1HJx%LNaHWTa0yqYck;{fC3+h<MX zEoRJec=YhjsTlW0*)wxzom#Z_<F3cmN5xjG$$t<veg0cz)q2lsdQ%lt^Uhk$yfEoi zcHQeF!EHg4<9<(7on07aT6;9F+@MjRFv6X`<>KQ_w^ddBrq6G-+_89>+2JEWQVc#j z9x;VJsHnLXkf=NH2#eF@;7`9+y$LL;sAqG@yt#?tOiW*h^ru;63`SFWG`=0U8Z`N! zQ+Ah*0@KMk3FnqxQ|FvqAGFkOj$wvOgU=K9{$q(B=DnH`W5y@5;5}1UX5!*WTrA%f zdiAfHptP%1W{K#mEf3cOsP<RCJ!o*S%5R$Gd6qTLf3o&R&bf3!`ANwEZ3`FU+0Hd5 zj?cO==d^!k{t?4BD!ZCeEi3nV@ki}B`Jg$3@9tuy<-WG!l9dl#F8VHK($2513QA12 zI4k>P>HUq{j6>cSy07Y$JI*PSvz&9q-KblB=exGA{B=e)NB)G*sw&C5yDA@bw_olH z|KxU5;CpBO!p497j~c3bvW}iH{aYjMYZ16)_p;YFzIiC6AIZ!wl=Sg@!?d%RZMOUk z9_gg&a!+0+wvU!=>_2bc<jVgeRnz`>WBsQ5SkcHB1IEfZFIkR9Wc_MLpJrmv;91*r zGOs?Zr{who?yRn&#jnNrj&~QxR)4;=^g`o`#cPb^wb$}l+xi+!<#`7`7dm|bUqiAa zoB!DZ0>88u7JBkdDJgpplbCI<TIJ2VE#CCPp;Ll-hIVd?+T}JyN|eug6Zhs${q9Ky z=9|8#D_>0iaBMoC(Dwr=?-ujSUD@+G^VhG4$zQ)5la%}RW=`o=MY)n=F{#Y&eL6kb zcHHrHzQ!Y&B^w@7c1Pya^-BWH9APG+C##rE_|K)R+WP5Xww{ODgnOQoCnO#f{WNQi zb&l#}gOIQinJ%e2Js&Rn3M;S$3yM{nbS&3QsNa3+;-qu0UTqMPyqUOT0$YUOx6mo? z7ke80jd<?+ZqdXh?m)5W4+`#2x0$3UQ?I&RNK@chu2Ijn&l)?H^Ic<UoVYaZ)9t9} z<5iufmvG&&HqL*&M)RBNj}M!tJ!xL)ncTOdt@LTYgvxmVB@Yxn@0y&(7W9JU+r({* zm%{h2Vo`d1xI*zva<pawYr4CM*SedsCmzULk!D*hFY(-5>Wyfx`*c5t;M`MH&G#P2 zrFuKnKey|fvUgo#l8!5L(aEN=sa9u1dKbFyYi`!P+ju}~cb5DUod)A$UM|y9*pEAF zUvFG+ZPxE)`FxR?eC!#Ke0<+L`C{LETIRNFPPd!(5#Da^rx9P6-QQnc`-Dk(aqIU< z?P<>s>iWqsUsB3{ba?9K_-IyL9(KM|?jL!O<DcuzxAFOb&VPQPxbuLd;*s73di&~~ zg3gy&=A4+mSkJYr`$v#r&YQG{TJ1-*x=TJ}F)W&Brm&;sq`=B-2L+3eENSNNzYJ$F z!;XLMR#9A9o?;`mZgR|SrOq}JqnHP=lDbdsTs+0()-+}RvBv0}bxe<UtnGE#FSbQD zZ%2LgmOMif(D~1v-+NjwvA0>xPI)M+Y8wA>MPc&p+@Dbak6V9t8tpgnYnsjOZW?%x zuex9Q=exv+1DjG6PCq=|=HU0zc+R4Gs*`3XMN2&YY29;c#?11+mEp=0nH=kGw`iQ5 zn5_~%Yl~%a%H?g#46hywR9R3tCE|kYq_8>bTkf{h^DN)nkg6hd%9>|^S$TED?cFL# zsge8cnKr39ea}^1+BBzUO?<Zg%lXV3BX;k+c!E=V$7Hj2XSTI&+pD=HP))hx)Z31= z1qth(*Z3cAtox{umgF(_;nc~+cWhWTipW1}?BDcl)#n3tkDeIw#y)S<*?34|64#=0 z&XcUO)ZXzlDITi-9Kg0I`r*8z8=o(HtS52o(cy@gownRD@oSFjEJ!s9`>yli_?4p; z-&K~(=25++;=u4>!R5;;EZba;8FD%uDfDSN9CMuex%q3RnOf@}e!U{hdaX#1$NR#6 zvxR#v-YI1lIDP$s*QKaKLIpa)$!e1(eq>`U<;s6msrS^e;xM1TQb2uJZ`<2#iVR{^ zTq5mmYy1D7<rdj@;J4?32USZ876jdYquy25p7rI{ewnQ-)|pEqTy=ajS|7AcU*@xn zePws3H2+L*4{@fqT_P_hwcq`^`(4LjL7l^4MwgE0dX@67Uw`YF#m4WFTteoG3R5Gr zSO59{Xd~PDf;&R;ZqI!_L_JAYs9(6oKF~U|`jei>4&#Q&`?ww~fAw#f-crR_*Le&Q z1+iK;HtcPhCA;9-L$Axv6RiE1EZ>}qc;X%PXZxD>#>=x^Ht9y%Fm$hz50c-|W6iwl zOYY?djNLo-U0pbPMyYCxg$whN{P#Z1K77x;IYf7#U`Y6Spg|-?Xt8kHkBg0*jl7@g zx!*Y?@Amw9Q+N7R&iyw|7^pKZTeBx37Ia9qpUu8D-dQn!-+hlOXv->pufD`5nfJ%V z_3I?QedBvNW8R!R7FOoPK6@_d_bA0)HgHRuUbOIgZ||~*fO82V-;<KfDvbqgXBBDB zKjG?QvHYxL!@q}NcORUd65i4q$h%03PjRKf=lbRQC-w%;bYc>z<9CnB>p0i2rD*O9 zlew!VL>q>fezZB;Xp}3oT<h^y8S|J)3ksY+Nv#uT)8CsKCj4pQ<Vj!e?NOSV+V8R0 zgT?HPUc`!j-cC}-U1PZqT&j4(z0krjR=_vxQ2%v7?+d$me=#$fsXcM`TcaQT(`eg? zuMdxe6iLX}&(Yju{~}=C%-!x%PtMKa+M_?g<rDwP{LcrE1>AqNRloD~owfww!lb1> z^DcF%F>{JWb$5pzUnCwZ%ClGVhI>@c{9H5n>CHOA5no?To%x{CcTLg$9}P!UZV1`R z1z$`Sc(?qTL+Byj>>QoA1<@iE8J$cy#XhFNW%)w+`n|y-2kM{tscV(GIsHETeW8iw zPWQ(fOlPsmHeFdPP;$p%-o2v}*Ug!6Mg6W_%S*WjKmSTR%}D-lmbmMp%@d{kmHy8j zaHZCYtBO8!D7^S>*0qg7a^dw-_X{t}A8U?1^T9-JP9Zn{<ClA?FMhAMlW#t+)vB-H z!n2O64f8KvojO^0-p|>4{p-Q!c5gX!tH{C9{D}+b-0m&U9_-+Oo!kA+r6x3pIdVzy z43(EV*B^qO+Z}8RI=9>K#-AdG=~GUMLXYj9Q4}d^HMgqvz>lP}U%$F3M^C?VQcb_= ziL9!^`xA;%J0+iLw08Sd7Fg(h?6@dz9JMEPaZUYQDWkbJCNn4mGq1V+Odxm49QVU2 z8j}joJovFK;k~Fw^Yy;@fvfWmPF%Z0Eu-i6;d2|gY?=(89AI#}zuMWPO7K`<)&oVQ zp4k4cc`BzXBY*mB)cW~X$W}_w`1o(WWaiqZN3v?V`~`|;<v!0-N|~@sM)}PtFM$tj zp2ZeI0{xRt)Ymt0`PcA&ef8&<l3G&j-atFsi#t-%RgZKh>h!$lF1c}gcekgL&D79* zC#^{?Vjk7ccps>*i*nL3aJTq&UeP>3m!bSh*Xo4~>q<P{{C_l2cxQ>$>f`ObpPmWu z@-C^E;<W4ZmaZ?$O_uyyr{h-g^c~|%t#6IH0;1c53arok(#)-IJ7XgFLhr(nK$k`f z=Z<C`<4-KYyFUq<CG0gnIcHu)R6(nThl96#mY0;Yr(|JO!klHw9u_N3Ojy2%>4H_U zYfph{$f5tzZq7e7<x-z8&)V(cnDsiaRmshXwWmcoVzcaow{Leg=Cgisv61ko$U0H9 zW>&|cIw5y;r;-&_8M$)x8XF{cC%9gkEqiT3-g>=TZC1}CEIB-<zI?Vy{)FS+opBr= z(&maj_~-Y&-%!+3V&YPxX*X7C>dIFptDbtsdTGX_74}&%4I;7%a=H4+jF05DFDl=9 z(!FMlyPeaSPYkcZ?Ant2u6I`SpL@D%G3#6pLF?7R(v_1lU*Ao1dS-V!Dx%(b&*CF# zy9Bm<WnZH^ReRk7x7R0DpX<F=YH@dKaM-kS@6Nm3yEjv+@LIc#{Gn63MV>jbKh%q4 zbNcqjaZ_>HdHI6ZY2`Y_-v##n-CQBbw8wVgiFTEpx*D7fC)XxKew;W_Opr}5=he-? zH@w%^obxy`&v5b1el=C)BzN;lCe5$wX4FqwFJfCzzo6>R<8>LjI-Avb<=KOF%vD@6 zZ|A4A1(%c+zs*qocro*(^+{v5*%g(FAL1=mPk1fBAMMGwX5ETIYO@#dAMq)QK7PS( zTjZBr*8P12i?V|xxm9fv3RQpY-z$^hd-Lkf3!5Hg9}@Qri;tIxIGk*>tcTl5Ml0EC zqnw5T<DKcTm1@#K_G?lWKL5G*!eW`X7CzNqzU?`5B=Tsj`<b`D+fKC14UT!SeWP`< zF<-lCOwyGU-;6&gif>DoGh62@QLEl4{d!VTujZv&?J~9kEx$KRG=Kg2*t_@Bcd+Wp zGVSV~ew|fUzW!bXlZEW5g-)lUUVSvxTag^C+Fqf+TW#AtMLN6Ie`C_|mQTG>0vb`) zH!me=JYLkgCUmM!`TS)$p`w9LCgwkQCfWK!xTSMz{h}xDrY7wO(#X(UX)}G_s*|N} zJPpha^NP1=&YoIS6aC@Q(sS3{x_0G%n$db`R<hfUWbG=wYNl`QA;!0ts_5@Jm_4!m z-hm2-qmu)5HqH)SDwC(3%n-%OAGpTv!RBLZDUP7i$@%j^r;`UiI9pWlMn^OTb~^d{ z37=+7-@~Ts%yd_BIwQNT2_y4#Gj?5<`fqy8+>alhliTVZl(y`C2Oo#I+xLxsWiuCk z)V7p!R-U`Q)ZY8kQNPu@RBG=<JY1anqr~~F(<Z*R>vKFJxt;Z^C+yquP#{G8=FNRq z<iu8WUFz?B>vn&hhf>O;<0rPHtn^vV`*H4mBNwx)f3z;`yJ_Vdu=d7&f4_Ju?VB^U zw5~U+-*V&J1QkO$#Zm$0eD>uji=GJ{dK4$8sADb`e*4&tv)j{^3{s8aH|*G>zKHvr zCg1Y_LxIah%kP|@RZ*Y9=za0l`<pK1g;P&A?|Q5D^ttr+#BIC_x>_zQt!<dhoMpe! zg(cv~he^4bEH1m(1+HCm`eLBolwVCJRNdBIFuY;I;k~}T*w`X$Qtf`WO&qoR9|%VL zR1CB=ztH<Zbm#Bw!C`#Kmt9wf>`vRdqjw?C#}_(^Z|?GF-%Irii~YTPrX%;`&8acY zfy^D2(T!KOzdLTgC4P^m;r8Qh%ZCg_cN;<`dVQ2vsdS0tpUl*G=vYR`vN?NAUr%FV zUumXx_^_m>`HvHp4fTCt?ApfV;xf(W(;HaDr){ll3!iX!)BD?x<sSE~o>Y^Os%X6- zsi7@YY=Ps{(3QK+tiJo!VEwt=@}DcWAD4)6NKMvT@W_C71%u?$cbNzI64&L)6&9xX zZ@aQ|(v9x_Drfdx-}m=U<CNY?@iQBqO02CqTf6Dl-rue+v-;14YbNd7U7xQl|Exf9 zO6w1Xu0%1r$Qi8uVQ<B(9@^<BC$jp_Ti&S7-p|j=&81$qBkk|8^*76=T=+XB;~86+ zNinm~DPK{3nIAv$4+%S7m0tWp(r?T4#UaVo8t=MzA{2eu*DiR*SlG^O*1XuYjq$<W z>#|pTYD{No7p8OYP5A9G|IpSf*#-4e3^FbsS|B^am-XP!jE%Q_`*UZ7vgn<ySk2-2 zTT0|c%7y#0*?xbYwNYf(e18@5TOayginlee8;9?h8+l04JCH&8?8|wlwpUu-J^Z~i ze0lYcQ|}%Nn<&Jl#@)1c{eI*9rnq~>5owm7Gt?P6XKstS%b}H3WZ3NdUhb>V?ZrBq z>kCz@Uq`21KlWUI&y{1KL)3G;_`>({vl}*Cwhmj%>~meR>Wj#dx9=CW+KHN|Uto+7 z5VxB+f04jV9%rA649@eU4>|j6-IQ~F#Zphtm~$s2?Dw7s;Bm5?*Rsd1Oy*F`WhNi~ z?vnaMjf#%O3pyKW8M3-1x2!Sj*Lk;j)zqnLep;Wc*L|_O_*mnPzPsN#pKK1?B+yfN zf%#BtTZP$2jq~Y~pG@77erMMGo=+aiiZOA!SGZX$5$t)%!|1T-{`A|1%F^|-*`Hcn zclF+r@l=7qBWjKN-I?!2#d-~=gAPkCnj;fA!?QoqVv6WT>lagQACZ_{YkrpJ{sY#> znwEzz2szz&tWlXRvi;%J$G;mVuaAD}ZOtcbt&_RJ$mN=q`7R}wTjwS*abK4EDIrp2 ze`?mfyyW9E&b_y`SGp)~aA&2y?JDha^$na}q3@<;l`fqtQMF;SbL-sA%PMoq#LRO0 z=2jni=+>8WcIpAIh}E%M7A!ijs-p7OuItR#!g9MFSP1o%%Llx9)wY;%+WtQlcXGcw z)h$wz@W^E>XERFoVOUwAJ8$7U<^1Urnj2rAXgs)m%7fAaS9_wOHElm#pXkH6g=dZE zP8ZJl=l>1adsO!-Z`t}a^Y-ns?kjSsL7$g~mU^>FF6~QHUcqN~w&cd#jr*FG{*KN$ zJpC?1amR6=+Y+;WblhBLtiE=$=N-+jIxml>El8C6CGs(?Erx&nDU;PPled@e>=nDj z{OoZ@+q;VEcNdGzKkzhXQ<Y^4BOgZ~%U(9is)r9;HW}56g3em^x}dox(E0Yt_b<B~ zA9Zh9S)TBQQ`VvOPfv2|8Fyuwhc0If?|0R=C^`PGnkMpVyP*6&{W*`d_DM(V{A?_6 zklnd@qIjyKrkJYidIA2Mry?8O7Ek5(d?a>sLz#E@$phvO))Y)-pOs>?PBOfNwT<WE zhq+hRsp(n?PG-DRUwN-S26Wc?yF-F~HB82?$_o}n-@0>uqW7dEv-qzP4i6w_ttay@ zt(xF(x#8kreYVH5U-daN@Vq``X>HmVzV7SOy@o1N*`H@_zVqow`=>8u$6Gy>t~^<6 zyDz2gDCltZ+1G*vqz|7H7W0X?=?OiY{ky?O@%-Z|e$$We>N>JAg3f54zJ*Ceb-F&E zu9#cR(-I3y#f=X&x0^iDW8HG}e1XCBzUEf3W$8{kfA3S-v-rf-tBcI5n^orAZ*E_n zenVEO;$z9jUHAObTE4AjdM|&a`0t**`=@vF>8kS8d^hO(c*^PO=FmN+A6TaE<I|m3 zuk5wCVu97oKYul<{%$&4H8DH>ew@v$$#;Gf+g}iQI!*JwpU&OQryJkq>}Q_3#4$#{ zu1>yUzl!WziEULXmK{xQd#ts;r`+-1p&VlIB}Qqx%L9$7l;W=^H<&Md(W%$<t^Iwg z($Aa|jjMz6`?LM0DLdsD6_w@fJ8^T>69wB<PZg(^v#5w`*NB%o#QtPd-x+#BFF^Ro zEk>`_WV<@s?tA%9q-O@L^WACYdWl_7<q)e((Da=wD$@0JC!aT;7c<*Zr8G6Pu0!ed z#5G^5eVapag_oX{R+!3ihoj7AW7$84$|<k)D%u72ro<jvKBaw*0sou(AJ^{uy|;^Z zy<GK?&3^Lf#)qb>e>>)W;n&HKc$<tPr;8fDc&5zg_&jm_j~Alt^779zKDBLIV{)yY zXQR8=&r^Nr6N;xCT2;T5FZJ+}_DM2ZLS*O9oOM-u!(!)UZzcqaSLpu>C}WcjmPpFE z_$24G;pE=Omi>1wnsEMq(${u<?Yw=*1N)AbiA}q_%6~$8-tLnY4-alvH||+8M{)Da zjlApu?<PL+obMsdZg|+Ea>-GJ&^H@`xZ~o)zByb{Js|mM4fmPsqI*x*Os)SK`ZRZY zY4C29%@1RCGpm|vJb&i+M6^{g+|%!3w)Cmr-@;D@25oqI`lFeLl=Z2l`*w34*Iup7 zzI=_J{FGX`PI-l8*>?-mBPOlBljqQ7V-f!3t((HmY8Ro)X*#D=UiZ2$c+BXVBf|Aq zC32(m$?E^U3xma^cZge?2V7^GXa2gqo@r8@s%IqE$rj&<uRaO>G%3=YUscF`^0!~q zOs#`lMRyLJ^0}=3;_IwPKf}r9zPG1X2VRVt<XvUDNpos%)DOL-E8K*WomHQ4buDDv zIoa@(@20jTX0_L!xL($jtP1)bw@x84zyGu>^SkBS(ywK|d>CCTQ>t6CEN;qC`|G|r z3dQxFIh#IZ7cQ(kSIuv-FZyO)VfPvRci*Q?cW|=uty?1cvbCd5lxJV&vqVvi7q$#F z^PWh(5k9l<^l6V94<D>?ZAi&hE9K^Tmz!Gf!8`no7>kGO$qpgMQ+bS6r%YDyR}2i> z({yb^@tFv#y-mDT^Al?4PWLzPo_zkOM#}sJC9GTh>vJ|Nw+WlS;{Vp1<qDqj4K6M5 zbDV0UyU4@i-miF-v;BUJ2k-rfpInrb{f+0UrCEIf^D~~D6E=;!x}Wb{-+QLwb+aYo z9C2}fafXQA%C)?)|K@I1iRG3y{9K>d{_*{R)QQpDX}hxh`QG@x6yq-meCHx5y~?@V zS<dA0|Cq>#?E3o3pLgd!e!KqvbJcHW+|@sZ9N1ORWO(mXv-qvji~pui|L^nvul4@J zHWAYwe5;CL>XrI;yB@m7;LG`+VlVce317{}B6x}SWKw+GhTaP1$@e>w^Z);Pew*{p z+x1tLHt7BRw|x5jznb@os;>Svtp9b|`$^RQ<|DG|=l%<N|Nm0|^y&QMzx~_i|9kHJ zq`R-+VbqSlU-Gxt^QkQQAz$EmRiom1`2UCeJdat~u53Q--d6v8dC9i!4*tN_J7t>T zR?~k!_SbK$b~!x3e#P(D_*;{Y`y9A8!HZSDWWtsgHK8#*6Xl;|-v~X>x^TyT-Pgex zCzc=ky4rkS^x8>xv_3gSWi6?H#Acr_XymRjK{_z%a`(Ltr|zc&{D0DYFM#25%jx&b zakHEvLs~aDO5S1MWM*l(_$DF1`tbVw8RCqKAFKFV-Pe{p=*{4$TIbBZwqSKi{Dhmw z7H_OS{#&v}wPii0`eqB?w>hF*c1kvHt2>t0|1c6T7rEmU_jF>K`5QCO2Om}U*Sjem z^2j;myk+(@-tvj&F_onk<~}g6@V#(0Q2PBDHDQ^}XZyeJsAp%ivTxp!t<}x2I<zt( zfb+oGcXDY047X?GY0Ny{@9uDCMdf-sx23m~0v`1%31<Ww6@Cr55^Sr>^x?Nwb(_#G z+l-^Xclu;cn(Xr_t*PX5P11d<d7s`|{M$VJyp5b<eZG!fq{hLck&@<d8V|!32O34+ zoq1F!($kkEc*^XI+Yyu0u59_Y^wGJU5C6Hg+;k`kc5^%Zk6qAO_MNYrNzq^D6My)3 zbnqFzSYIDdSAVra@{@i|eu<1}?N&k2HUsto@9OfkQ$oXaO-z3>EARaGWYf=;p%d4w zs+jq^v8UtLmyY@?Q~67@PwYQXnRmnFKi{e=u2Xx0zn(Sy)E+9n)1>s<`s-g;`y|f| zzpHgA@y!(RI<N1yCAapS=8O09`gz&)bDavS;?cWaace~^T5IbT9G|{=;|VUe7J=)# zuJQjl>{uP~fA`d{ocq%g(oTJ~ui2`%$x&f(gn_(R`>E$|c>7eB?yZlBar$LqKCS25 zwPQjT<8)rn|GUNXn)|&g5mT$zF1Y(*`NEA>Z{G6A-U#5mayv8ahW%{5%~?Kof3o=+ zM_u2>wpDP(y3%CRwR<`rZTYS?&sbk(=3L(m>PIB`s~^qS_wwSlh{fNQwf4;N$w-fU zvEq1U#EBKZ3(8t~tj;E{`1L$7^hLe;MQPEf(oZhe{N{+YekpUw57@Hu^37+N0T1MR z<lh88mbu=xaYpH}h>KQlXI$$&xAFV3=4iI=n7V@!iGMFe1sCW!&Rn(E$v)k+XTur} z(TqPGF6Bxeg3SK)lztRdZels5{bNe}m7}KNZ<fsE*lD@v=85S=pW}PC2NsIBt@(Rn zL;dLptNlU3g<T@`4_QMmweGpxKe?}S{`0&Oe44&yf<}w@X2$#F?l2Pc4=TvqG_OEh z{=z-u`**sHg__MhCM-Ty@5vjYV7$ZbkfhA2Ro-h?Gw%7U&dcmtE|gy*yl>adAKTLF z>Y6W@D!mih?r^j)f~EfMNAY=PlbC)quD-Q=J&QuU<!P>WV#P;;C+zrip_E@CPkw!! z3WIk_=c8jhTUs?@qn|L|;NGvEGlj*1t9^^jO~&&^mkr%{imn_!n|AD~>YTer>Oa;# zS@%GI>&WcYg$9ZRALp3b&EVUab^F$N#gqvfUpE|E)Fl1u!G5u)Q#_pQCK_s)wujUT z)D@`j^1C~0v10w*sg;vGWxQ8@;5of@`;4y#clY(lmN}lc-0gHeZC&p9$-8GC+f!}Q zcRKe*onsEu&#jv^cZ$vOJEHU}YRb-CKR>=M_kR-gLTT5$$Fe$SPPH05uCwFV95CHL zo7rFTh;F0L8QXu}d;g?Kdc3c>thfK?;iu*gU&SZw`8B=Z=IcB4Dg5>8+^g<3&#?P{ z*7R=4GY{uKYuJ<zI-EIPbX)E3Dc@b+jy_uITKBS`&aXAqFSd#6@&1U`)D%velQwk` zZycK$pR|5e@Km3_BjfXgT|54;XIi$`%$sxS+H1{IoKKnBuN;q#U-9Y!zi?&iQoC0| zO&5<=ypXlwZacUkOG|OZJE7lPyXsdz3i`Kn_Xp;pjX$jzoNAVA-h1l%{mq4$wX18? zW3o^7FFMtm&%cXX!*iFJO)kSEm!7M^f(loTH=ksfp^}?ZS0?e~$DY~8PqleI&0qCO zFT9}JCj9ZV-gSlQZn5^;kCZasT6B~5Zp#kkOVhsf&5G8vIAs0z;j@g@QnQb&om9~l zSzrEf&E|JScM`15-8dGquy98BtYbaP;(D`vd8O;EYjd>^itN^vG-k*ttqeXWwn$QR zThiGd7pDI8wbCxu;#z*I)+PP#vebWeQEt;dT>o<V{E^aikJ{$1e`U3*R5JgU?u=i? z8&C4TdLOs!RsO&3uiO7@RkizDbL|d;=e8s4wwHcxsn5+j`&y>Kf0p!v&Cl4nnA-QV z34~TYz46oW+oD@F+Cc~WyQCG4De0xH4;1}g<ouB((CBEdynom3&kNhtkKV03|J|{W zxhCk&+-Af6E@_P~cOI57)dbyPxF2|@VZMlYbAQ+F&p&={T^ScrxVtI(-EOJvbp^fF zzK?$GEbWuNaLu<q@5QnsG84CLE533k>Z0Jim;UDN(U)(j<hAO|Tbfhu8hWQsdd-{- zzF+m8KiaVQ?%A$uj>(bI9fsSbH|jDg_pTLJUZ|_<pA+3`rn{-)`jMAG|I}K~_D(DK zA^kK;^Bn)m>3zZOpAQ!Q-6LEqdi{S*=zQ^;*P~wE+Pdr3<sH`yr_Zi;zW(adrl0Z7 z-T${u|F(7SmSmOv=fZBS-=D1J`Kj(W4@bVk4q4+REXmS~cJnfLy4Kw>eC%y;yW{NJ z8I09;3@>;4$(Nn^5W%{9%MMxNggL(+eY5=$*xgh8_D`SWh2yfu$8wJAv=$#f^Y`<; z#f4YjoSn1y;NG{7cWo<czr*p(Y?6Ha>wEb|i*9V2B6z;+jLpp4)u+{tY&(+kXvV&N z>$I9{4-=2`s7uI|pLsIt#c^5V7}Flz1$D*B6Xq_e;|cv|V|M15wRGC&xxAZy-fO#A zlYTg79q;C!8xqa>c{l$&*LJfe|8UN}&5367&CmRKAXA*LwZnBo$J6PjtAD4OF+OLy z^E<UZTh4xC{Io~+^n)cEj-UKIXJK7fPL0Ol$DddIik`FkG+%x5zF#v>yqv$~G;5W~ zxAod>+8_V>u8kLb;}sjb`eOFwXP<>@G9zp4N?%W&_)=s-Z2t+9zoM3sw#RoqiV2oo z9Q}+X%xul_s(_w@EYrLHJ<L%oa9eQeRq&lnCt0s9oByVMzv2wH8B+g)ZT2pV&o0UD z3f4HAAyUxwy<`33E^)s?6HBGOCnX=Vm;YEY)jNx25=)lbjQ;bFL!WH@thpyDOk;B0 zqxM}sySWl>T+H5W$ai9zto_})t5T0gmVa+t8ULJ(E5v#GY?T8g)kTx}ZcNx~zu3^> z?#DZm56-YyS$(Nsqfz}bk@yb_1?1jp9dCD0;oAH9@#_{<uD#OFR(GD<uXSrv$wdCl z3m<NuZDZ2e_-4D~=a*A7Ue0inTTsB1@8)V}cqmkR?`Dz7eji$1p80T7_}#mCR&6R= zu|L)-J!?Bse>c8|ea)PYU7_hQPo>TNZPt^T|8Am$^KV7z*V2VKof3k%y7iSsw^wcM z+;}xpct_aB?XC-j?`?RjZn`b%ckc5q|G&>L6YBpx!TbL8CG}y(_06%HibLnWnRNQk zqU`6NKUaN|4>`Sk;})BLLb~^V)dWd=S??buH{)IZOg1JBt@9zG8{BpI-$b5fzMAkL zZ1MrQtu{aT?j%@ku?Z;2wGic9b9%F>MZMj|DSt9Tr`r5Y^^&ufn`*NmUDbb|0Lzwd zAyuqBEIYr2RPpmD*~>m=`L*InW2Qw#Fy9QezTP7Yrib=CZ`#;yDgB3SXUVqJleQNv zQ(j|tS@qh6>sHrXFZ-K`TuwI2SpTudCfZa=)VEn`@7{G=XBw{Ev;5o?^Jk$`Y@S6; z`IE+2ubnn0X{)6F&$8a%Yub-3tyVa8uI|XOA8yjo3U1EPp7U;PdzKTIlY8sWTGKzi zR&t`(+zbET_WS%lJ8EXQ+{f1+E|)CyZK`<c+xM}}|F|}P{ZHoKOYCodl*p=i_fx(` z#Khj!@$=`MjZ@~I=Vho?=bClDvnh>J@8{!~8r^FB#q;U|FZ`*=W4Q5nCu73-=WGpj zu8yB2S<mtZUijlDVzOVD^($|bh>87N=>p{q7ZymbJ}O`y7_-7~zcB0B_iiAQ8E0E8 zdmk)fa(YE~e^VOgp;CF)vqrD#+#Ej_gY}<19~fZ6)~FvNAR@qbz?w<@ox?nL9ubZ5 zt4AF^Dz(?2NwrE|@Q42x&$pEud-IP-<dhz}QSkl7$Jf<@7ykIMnCus3ELHj1ohA4` zrpCy#I=4=bDe9V*f32&-$&KfCC_R4syQpevn{|NbKi8$P^8X~hn9uR}Gx1v4&*^(l zPdjk_Df6Vy$7L7pdH3P@-#M@U?#e#@CMvh4sy|=e<4o<bo0sa{)t<61vxz;vuYSE% z@s*iQ|2xwD+-R#lFMm_#Zy(Q-=V|*U_xFA7wLh$X-I_=K)hG7ZJO4eIbo6-K`kJ!^ z#}%8uFaLaF)8AVn6C^*^$g>LV`YEXOvvT|V<}(X^>s9~j`ZXu0FGcIxAvXJURi`Y( z0t>Ts>hAx2FL~r#a!LJHyIb{7H!WR%x1Vvw{d>XsP5-w=8>;Cw&pc7;S&(hqS;r~# z=w0vrn&)?A;xm7zPo41oMwrtn2iEufe)HK1D;Mbgb$pvHBwHi;D}3p3)8qAV9x==J z$Glo_THtEwqa*$POK+}bnB2&n`cW_H$Awaz4aIN%7tDF(kn`(f&>ddsKk-k_U#Wj$ zcPf1E5uWSUAJ24jnN{Gd$0L`Z>!Y&9H^y3WX@uve6Uq)nlfFC-NxA+?wE4KN_YVH} zcl~pBOgDIb^83xt^S7Jt+v~cnL4Cr0#{3}NnpzXR6U%o=I#<WaGj+7yEww3X?>jk} z@rB;EIh70s=Nj$?U9n%W+;ji);=UbjR_6}Z*0UU8(DTz-w@st`O1kb=sk9x}&s~YE zO)2=q`l(t+aC%9*SeC8ZS%Y4KGJl1JnLexDX`Xy=pxTf9BIER9`e8S}7@QFI-&y%& z_ua}xUyTzRes^p8F<f@C))8esVyw82|G<Zy$oQ$A^^A`v)#_?1pPtio$UIG2v?$}p z>Rc_OgAMhU+%xaVq%sD5eLI7dja^-72Pd=F+<70LEt~3iGw0}$$LjYN%YF5~6SSk^ z=qV}x$fd_>*HtD5zkcy7&3wVxZ^tiuXDST2#eH&O@!B2DAF4BNiM$nkv#e-sX`y{w zA^XO^@*bVSiJBAZCJXKN?7Y9^i2aHwH^dL0J#p;$na0$HKT`FJUtN7@V9)mVoQ1@h z?Mu{c7I)cB7A#bLFk$VgX&<lrao90`*U|QQg(ofTL+pQ@3!Kj@?s}O=@!DZ??!{aA z;?6LqfBW)W*1oV`y3FoCb@GEr8A@A1-EP$MR-8O<-kpByLs>zIY)X&YBlblzdP41^ zTXyWfAug<Mdu^F~!BLZHllrw4(+=)3_<8eW$kKIJZ_Zr(?%j=oWp0M2bNegq{=fHK zU!Z>CDLaEnQAgcs?z7HTd%ec@x!mOWf4B4RuwK8!;Ya<#;A{8!_1Mo%+Ve=3{mYLX ztObvl^5$Ie4tY57NB@L~qgTK2H>&5Hoi_WA{;Zh#^=oIH-c}HlWX5y$R@d!c`=siR zoxdKrT+U>R*7odA7ivox=Y6bdjGy>$)x65UeK8N}cdbZ|nX><YuKMrio=3m$VA<22 zy@hLk{r+=*j@#;1ocn0H?tk-1%Zcm#1n+IQplg-=z3JJ{uD1FghQ;NcxBbse+;!>v z-~9*le^(y#e%jQ&{}8kMG5hHL+|RYQjn2-Uzge!H{r%sU$u+Y-ZaRBdsytHZ{@M98 zF1tS__r*Uy|Knuko=J-PjsAKcUbw03(ud|R`n7X;f2Y2PU$E}{yx741U9-ejf1mXG z|Bs!YJ|>mbXXgF57n#rae*X9TnP0>Tx0cw5zu}+rrLA1S`S-re{Q+^|hrV^4nSSWM zS7*&M-@3$Yf8)&RUp{FsOG?{+z<Wo=>*ha~*)8|{?W*7R>Fp8a!|M4lQVikVADjf^ zHNSYv{itO9b#|M<&Z+CS&fzj_4ORcfYw@wQT=2{L(DdDFHuF~)v)^4;@&1y+&&tQ2 zXIJL9*{GD?`Zvw(^VIy0Rz<cyFIT(_@47WTEX;;){lVWAG1mlKi$B)ySfkkWViB{{ zLW{?Rkxn8NTIUb(N-a8JXRxsTS3%4*|5e<_Q`g>Vf4u42L!RTQZ`bl4Pvx|5`|EtT z@Y7?C<D5?xTkkfL=P2U+z2M@z#oc;uH~w&#!h7rZnjRayU8yA{6Ak=}#7#DzEPQA> z+m-jg(u|81KK})Kl^<A2v41d>Vy}NQH$&#Z@(h^+%QIp!zs}8&xd7qFG`~)BpKWl! z|Dgq&u1x!UslLhfwHD`~d2nCt<KWk?($dYBoc(tE!FQ&@l3Uy-1xwcMX#P^2c}wN3 z=o_`-wO{kQZ~a$Oh2*_@9nFstTh-%t?$}VvqbgVUTjG<;9%=o0k9QpgjdPhF-(>Bd z81vunh1~Z|N_WmJcMNlg(#yV@Vfw$|V)ehbhrjbgc-*;~aq;uwQtmCg=S4Z(>&;|; zTlqk*<9x}-z#66x+xX=2i>`{-mFu5btgYHpuJn_|-{nrG>8^#0b2deM|KZJ}H{-m0 zt;zk`$0u^O?$-QhTX;ErZ&|%??qlnU$KgD$o(D~1{(ADns<c_PS1s-{R%E|AY}nSh zS?TScZ-?z3W!txvKlT3qui1`GXqsF7e(n3u9=RsX*W>4lUi$2D?QD5b#ck_;{haDQ zaq?e_6X$=O+*+?5*b#qD^8Y<qh1=H(7VqL}kFVSwe(yv2%Hpl2Up`M<vfeLNOQpWk z&GJ~q*3!>`>#ZJUFjZfjpRTH&@auT^gYWO8qN43{u3uR7=V0((&c@5~X<uG*-{cfi z{vU3hYp*9;w$#2vdV&ti)Nf{w?r&rKzi}I5=gCh86Yoo>pG$r9_DA1pJB_18osDxg z82)`cZDMZ8Kcm$r%$)5vblIJ3o&U7$^wkQ(<@Fzx!s>T+t$X%p^4qw)^|4#3xAqr@ z{+k}9D|(#gr(lEp_PAFPHJ5U04p*(*vGtFmaQwUFHAVZMT^4%lwJCn5aroaq=W1o5 zUgmK9v@A0F_x=53p|kco?&!N-Pv0)7&vW|p+soZ$`>Ufj^<QVt`~BzL<L5i?l*!9Z zuQyuy=CWJz-+DVenTkhS{};trXkGnpc=_$++3)uYd_Q9_?Q}}*zZY$f@2&Y`^V{Nj z#<TeIrnhqcT3pWv|M|VRw@iHBQB$K&{~fMpg#Y5+>1Oume$3)}pX(=Xd^^6=?O5pi z^4_`|Mn&r`>Tl|rll|pu=$F~vpT8GodR%G^zEHc}-FeL~jgR#y%jy?>KD6&t*vG70 zdZ+$RVDayK7<Jz+<4Hl=^X;DOn+pqWJiWfDaLrozw8s%s=Z7)Rx0NY+8d7T}|8euP zuk7I$Z%sGsnsM?gGtZp8?vG#nKYQTkZYhiVxf>FW@3%Yil0CJ5rrNvP=eg(0)Z0GX zeEV17q4e;d-Q4rfvmN~xcPKshiFmz`UD*HheyKmrH`2FhzRCD{kvDbI`&8fC%jd^m zHvLnTUA6t|<7-<=|37CwcmBuznjp3q)=TyhDK|S+u036!B4T6wR^I-G$izJ-UEi$R z*v?W{m&Pj@B>H^0;I5-r<K;b`EdTY=ewN<P=HewrMN2LnxM*aQUwGQ3`g_sxCYI|y z%T)hz{3}z>n`eE0`JSlb?BYg~PV8GFvgZEZ?FGO6|Ig0;vp-~~aqQ&A9}?1_vva|R z2pL)$S)v?BWjtMRhMFq;h(I$-a|;Cn1@JLhociD+0+A0Q2Okk=VSuCpbYh!@A^60$ zOiK&+DP)}bZlDv}EZ}GKf=_HSGJqUm2|d9QbOx6p{2(*%xtK-<h9I{>?RPU(Ffu?s zv(U{9Bmh3-Eu7iF*bs8ippk*GDg3a@t<&eJsPHoz85mC&JgzA_eSx=}@br6|bOfi% zFEb5iG?+foS50bqLV~_Bvw?{r_+%|cgXw~PYD&|ix9SK_KOiQ*fZ52v1a$JG+4O`; zlaEXWCZOZZ*%_yIT-Fho?l40~VY=EC9kJ~Ts!gmJnGH-#rWf*<icOckry~eHYpmYD z1nvpYfo?_yCh%|oA8u}BU;+<i{d7Y^1tSB*F?ir3-;4|pN5+GXd^0jY9ES%!%iPGo z6du~3GvJI2OkqbiMsR}8GB+|X1)YNl4odxW3k4$s#G&*0>6Rcqk}DlSd?Z)8fcQv` zbOZ4xKM<Ziz28hX26X(Pp^=uwG$uo3CIhqSf*r;t)9cK2y%|lW2RiENGnzrpO%|}w zUCwAWePf(~`1DR~UBT%OEOa>;%_awO2u}|XFco7qFf*PmI88@%x|+VOz_c(ud5~#= zhN_~|<9}+*W-&4_GnxL8#ZYW|xW2C7^af{Lg~^4AV$<I%m`!FjFf*O3_)wI|$Y8qR z3?)5gBLg$=X;IS?taaZ`XS7ijpPpo(D>PleRaarU;{h$P=?bf@<G{)q73D>zyBX^m zF`7*e{H7!dI&l0nvw@k#bi-5wF(w1k>5R$>x*(GmR;Y_lQ!|^&Y+z;yIh^i<i7wCd zs$Hh4Oa|tYAKny&95`-dU~VwoFjfw%8FC(-`E>Bfbp?!?yP1s)%%|&t&KN&#uIo9y zPsKQm$-sR2e@9*M=@%??bwMYK$ACl@I_Zi}*S6Gk1Dz`#Ii1%^mwWmtLsg#Xs#dxl z(<f+{OrB<~t2O<BrF{4F6dPUR>E715;N!&kwuiXt$}&#(wbA9C{=z|vXF8XyF3)r; zMn%!-4^kQBKxy1x!vXA&KrTf^klzk&wB87!8<`Znrae~Yn(m-u%rU(nosnhww1sM7 zleOM(O;7aDT|8adL6>X#>-A<gr)%5ma!;>v)>WUL>YyvSUC&F`pAmG{zk{i%7?Xj; zbjP(i+K_XLjSL_MCmI=8OlQ2P4nDSyf4U)`x+M76GLYhf>2l`N*R~kSO!sur<(|HJ zyEQNP_%cu?1s&|H=c+5YeXgIb5hJ6;^b7vF64SffbOok=h+>qVesPzI=ysg|-IJmG z;L{VqrJIqVrLo2IJD$2S(-oHKii6JfEnI9GE^J^7Ps!jy4OBQJ#_B7Y8kiuJWp3bn zh<cK*k%2ipQ-IHyG%~Q5+;}078RV^tYvuf=J1APYPJggmcj9zrPhG+3ANWlar`LGv za!+6N)IwzXhfX8U=~KORg{EJ~Q3{%F<)bS+eM6U#`t(pgUGNFfT;QSzbSCmbYZcI8 zahB5qUn?n2ck$H~0-e7rHGM&aNe7dG<@QDkJ$1(E&;3EU=(;Ay^nzZa_lyS9KmIk) zpDrGtD-J7;EG@vr5y;4i=33UwMurB{1uIM(7!9W{%vDkX^BEmgB&R=ck)O_FWH>$0 zNy~it2OAaP>3JJ;7f$C{sVgvj!%rplY0i3Qr!QHdD*(zt@{ER)1HVg5zkke<bGyqX zT?^0=i?y3|C8n=hsVfCKlTLN|^Od^b6HsSOTdiv`U7*=ScDm*oT?ufUPB&bu3q8hk z`8M5HMqUF@lz?N+*u-G^!F9T_(?4_@`b_7)pv%DyKFid|a5`hM9P|`j`wO}PlOL6d zZGW^wcdM8TxY_{gHZ`|2LYz}-WN2tG{UP{#IeQ&7kYNtfAL^@!ZBM<R`<{i*5L9G> zwHX?j7)>wOtSdG>>x8l1bOmcORgh{9PN>y}CetS_HFjV!Gz49vAiCZ7nr^Z9bn7j; zT+F7H7SlU6>&k)Ls}4G{7h(@6d?gh`VK#xvR)kHKTXkh13AbgNuK4!DpLHui5n^ki zCpBGmhpqrhdNnmboc9S$ua-#Fq`Q%Vk%1-1C*ZOjd~B+bf#vkT8G4E;1}K++fKs$2 z(gCY(Mhc+h5NN6wDGWZN5^6$(p@Na2p)t5RWi~Q2oIWu|QJC4t&<J!gs=@U6Pc7sj zN%`Va3#;iHmYHfZ85&LhXr^Z|ec~258&E1*V6EZ+)&WYsV8%oNV@*ivH8cXHUJb_S zwV!nbrayqCUXU4qj=Fl&*L;R0-|5ySdfd}1c})4HhneUJPTyc+3^`7b(P%p38w*Ef zBakbbOq8a7Fx3;9u8^j`n90z1`aw6nkm=oKdf<dBKfPd~-oxol?=18fjizsWXCXP= z&r^$id$he?03(yJ@$`UpCDG~X=6W*IFRV3Fo}Ol|*9guG)9Wnstfw#F&=j2Bw_Jl` zdajdR&GeO)dJ@we4qBd?zTQgDYx)FtdEV_xE_zywjK<S_UG*fk``GBQGf#Ioq{zFy z(nC*`ar$ZpJ+A3D{dM`KA9m0a0;Q5DW<wKG(8-9#(;IpWc_#;Si*K*-($iy`e%4u! zYx<S|J%Q;Nj(UhQdDW-e_878H-#gXNoY8Pv5~JAmia@<M7Cvx00+Ol>EX}7oxax^b z{}rmI#%Qu#F-$MPkssWQfG99Cvox9h-&Icr^{{hLfoN<9K2{PM`R<^|M{Z?-5}2V8 zS^}HSILlJW+{n-f-lzb#@r(?O(9@SOvI=7bBST}$>4r6i;Y@}m(-~*#$upWvSDdLQ zI$hNR6kks*6s8Ni>j_QY&}qa6PGq2B`{GQ!l<C_&K`8)KS{@G26PiAu!B__*m$*dF zk<k=%LaWmBl>vI()43AOSAZnICy|3&Y=)-W1%-{-7(t@oV^-zE^q>Xg^oHrM6gGRh z9`Z5dMuuk4_MqW(K_xAv=_WJvguzLS(Qx{K`{u#Z&&|{mf*e5(K4mj~rk)_EIVjI$ zXg1x@LrrY@eRC7;?TZ)b#WPBpfkFWs6UHVe1=REj0>)C1L&#Un(rcRjV2R#>=|^Yl znNL6W$53|q+c|m?*bgBOn*MdJo(Jd%PA*0!Gt24w4GhJY4b2U}hd}cgA`XEzGBlrl zV1=F&qdDll6tV4+EA`rW8O^6J+@>cv-FyL3I@6dgwO!AS5pqOy-gdnPPDb<T?+@rn zPG6{}pa;s<pc^Z;`yJF%vYIZvM2~BF)o(q)>BpAnfld||Wic`|H=hnlQKp87<|(Ae zGDI{_!N=zt8N%DAoSgdZpmbq69elL7ks+dC3QbdH$kj5a%rXNVEglZC4|2FTGsuts z|LBQMzq(XUV7kI_O}^<9R_KaMw_2gcHC=L<Y3%f%70@)pY-j<AS0+P?>5c}vO4E04 z(-VR=^bIYL8v2G7poTshBctK;Kw~Yi{}0N_!y5XA7LbNM_?i{QHKsP9h8Cbw9-NK9 z?R-N-e+SZvHw3p$U<ynXj0};Fb_RJ2QPP7BZZ<NsG@SfU*m*i{vC=$dBSTBbWk9m> zN}#y-xKBlFdchQ(py{2z^@OG;IO@tzPi54H9z|?uIsKugme}-iA3GsXJDUS^_%!$m zAaF|?bk@1xG#!!Y!hiJyr-kV$fDTiaR1gKVmftWNTAEG2sB9)S-Sw{?xScHz)~&5o z40Z*my$ohJhRW%ID!K?cG0-(U)4-=^7jBjpWi*<6@vS~s4fu)?JAUiZ>ATtWd8S)( z>GMuEWz>gUf-_Y|UkG}%vys8%hd0HxKbWP%%Q(G?L!W#4NkMB~W+NkmX=_YvMT`vK zC6Io)iHV7Vk&yxDCY%7q>0fyD6BrFZ*Wp-A@8{E3o*uABLu^`|($wh&iV7T%)0$nm z^o78gbNT`{ND!?6_bsGM#HK&y(l?y`mR(<b`UwI3Ba8;qdj<6+rvGKthg|$IJ%UZ2 zXS$Y*vFh|y9Qxv*<Cz7f&k)jo&S)^bL0Dg6`ov`#THwQ(L9qgATY+fCCKDw_qv?g~ zbvJ>y6F(@KO*d$@5SeZzsxQTAWT0SVGFkAA+Vn}H`m?52@#}-@Do`Wq%v1$N14g6i z3rm#5rUzWn6kvX;s5t$=8*R~g4<%8~3p?k%wl?7F`V{i&+{Xup`8F{fzwM{Z{kUMW zPzCdKzs&}ZR!z=RtU0yMOy|S1EGgM9OY_*LrOsiWUsqaE_GopplvG9H!QG(=*0oPp zzhCqz=5Ei=R=F*Yo1R*RU-&gQF8g!X_XEsZ)_Om^Zf(AH@AJryrjic?i#+b0a6DL_ zk;S>~T6n_D58>xFckeG^i~1XVf5Pg_r~bJce?3~=+R;_B%s|CTc<zKp%t2EWR247w zX}ESJF9}I_w(0l3d0%sSPq}z$GVOijk>vQOZ;__Xk|{Hck_**)>?ZC|oTznK;%Lgt zso(BQu(iDJ9bmI)Mv(qXx%k^1E?JtYzst7Qh$__{{}cTDp}m?~{<U9;4>=ENp8fpN z#D;I8<e4|K-rFZWTMfF>OkaWr)boXuwZ;b1XA0`efG%I*0=G&*aRF&sgPOXpl@u9` zraxG#Dh=+1Fd9w&utnEmy24il>FHg9`aIKbUDpJ6LVkkE08rbcP)J__e7D3$X?=Uf z>Gi_;T+^*&_4%jI5Y`s}^+@Fzjiwv&S&P-*t-ZT$sb${XTHB-h_$C<t`p?+IFmvPa z>t#|Om_w4-53XY<yC=_aT}d_Y_my|+^v)k}T&BP5o7FFk&P5uN7A@(YqW=Fo$EW-C z{|fB0Is4b&-}mRW_@AXM0&<#HKm6GK|Krp7|1LkS=bmSuwCc~hKi+m7{C~dp*Z;pz z|L6ApnxBX3@3$Y{|405(XJ(7Lzsl$H@&6qE{l2d6WOCHNzG(fY<v#?|^<GYV=H8n- zrR@5QZ10_$*L^WudW7e1;4OC<)zkZf&iq~cJ?6rset~1mu~ju3j+qyE=S=(iak_r} z4`ZqC6PK5mJUOoaU+1ra_m}^5KfgWAXW{?<^yBIOzl09E`z40euXO$Q>Aw7@=|(@M ze=}TSyK(E^_N@6w`V~H$`B)S5bNau)+aASF<QFWBpVB|E#klm1eajj9C;dS|YUOX5 zzpU%ZoRV@Ut^4P8&9CP2Q|$lUi`%nWNptB(L+|{h$L}u-`S)kp#`l%~)@^-n`E^}i zInT=a?6tj{&&+(3|9$tKm*u(d>z_P$D}V3Xqr2iy{qN_8Xue-nq0N!6u{Srk_s`+` zf0MElzD}|W^6$6E7I@d`Cb)KjebKy~wm|}HTdhtn<vaF5F)cXm)8_Bf(ra^qG_U;> zd~HxVVb_^|H{|4Z`d(!hFA{M&^KkJqi{}*`B91#d<Gdd`TPfJa-uTSweMRo4u${WV zmGs6>!gp2v`vsUT^>KdgK7FpdzC6p%r}cHy56J6lPhTKu&^x_CL0^8dx{VCup2;pY zw%RIxR+=0T*s7!DeXE>*QK;9I4VN3AvvT)GMcj|}Wm>k$G5adx!5KexzWLle-O1Ku z_H+YZ9hT`2ZB61BCr)>;Gl^ilxP7LbNj&3pFMl10?E(%a3QUas(+!<WRx{ZtY`^DZ zQpY&Gr&KO=x=4tQ<aVwyIbKFkqu9rA_w>u<a`n@d+)aEKwI^S9^PAqBEU!A*%iViA z#{)%0mg71ft)~}0GPPu!Ieqmb)7#T`N9agSpa0nOJEP?E=}$~gGS%ozud`EH#V9{r z(_ZN!quuo1_DTVa#nXGA83!`%oPPhAu>+&v_WKS>rHtFxUDK0ioGxUdA3Ob3ypF;2 z`6l`{jMmcy7pN;v|7)UeG<{Wqjvk}X^n{m+V)|2`Ia==FpOjoM&1k`sfQ@}`jy<`2 zX10vLaVyoyMTWUW>>swuecAGUg7seu(fl{s+b2XAhB8jSUv6r;T`J1Znu+n*cKfRa z*37*AQkCBgbQ10wU3mE+cY4q#<8F@G?uJ6nnQi>jpMElqVf3Hw^w~I((R2Ee&&J-2 zwbNTys>@G5+$|Ru`fG0Dg@cLvT8cKV=3@xc=kYkGYG{_wAs;)#=!Zkyq1cQZe%1MR zOCozeO!nm|HcU8ms(b56Hj(e|j=avkvEbyz^8MditXG(RuXI*3S<ZC-_th!QwSTAI zexzs3^wVMT%c$V#*^l)knQD5bw>{Qto_s4>Zu;WY>OzybVwCI4HLmYov64f)t9#q^ z4SiET?6`Hg;<#`9Oa3y$!^{6Y=!vd)>Hqwl>;1ol`(x|HUa1^%j8+O`t#b(v&g=Z4 zbN`Fo%&r5;kw%Aa6*<h5E?Ru#!=BbNmKJ)=*H1rM&YE`R;M|V&Sy>99R)<wio~sqD zI%biTWB<|jD?@Fys$oW*<#d&=iURe$etY*N?1?C@-FwmF^`zdMUyI!D1u}i?lS!I5 zJ8)glju%tr9?t9x_xWe|xO02Xl<R91FL%ykVUU$d*lX4vvGkFRoKLfo<Z+&L`P|>) z8cizR{*dgg;qJ>-HFZtCBVTq*>jTHJ3(U+fYS;5^eBmk)zOu2s<3hRhwcQifJWu^< zZGL#wv+vnoGF*COzRMnC`*o^w>kkos0i(0qHqYdcT(a^w$L>xckv|8wSjlj9gnK@* zPvrF9(_UpdJvmn=%E|deU6$*!_pef1g6GLySe7KeLVNpGZN}|~*UXPfKk=l~$-h;t zPf6<tk0P67+7pKE9iKR)H{6?@=I3vtyTeIj(Sohh&9W8blIkCS2&iA>E?MbNJYB;h zcdv&;QAEap#D{FxGT2k9t1}<0b(q&VonfU9@7%ttLV+*T4Xp$hIiGdT{_NCv_J*kT ztb1=Zw3SpBUo^WiGx@24O6an7W%~)uzY5j{Jb0bChUxtK>F-kweVF#Wn$BWtpu@cW zzU1@=K}wp8{?oaFm2OV|m#<?y{nsy3en#u*8`BN#rkhIZRWqtj-zcr;#%MSFhqT_l z>2|O5%w?O~uB=SFk;;E-nwbn!(X6>|z2D|FhFmGj$qE1Ub$YjhfrtL<bhQb_GsSiE z-h2LND(*UL8N!kj^=``VNa649VjIM6eXcf(-R)6S8PFfQ^xvOT+l!M;{8<?Jr+4KU z9-Mx!T&H0=OQuOWll_e8xtS)8On?7PpPON<Hhq4pJS&IG*3F@Jq<*kWzmQ?<uFC1M zSKF!M6JO=pRWD>kDnj<XPkZTEZF6UO`0A?TmNIe&j?cBZHGO5Jjw|EW>F+CbM2%KG zPgw0bt9eDnk=>iC{EvNZvvz7dd`@+f8l(G0<=Lx!*?(ur?7evO;=fOOi&XB5S{9g2 zf45UzY5L?(dh-}hZP)fRn9MXiCs9ef{<(hrkKaFjO#lB`_1l@nlPk0mVl5ndqANc* z?e@L(|JzgfC;RK4TAyjo=FD6FeD0FRAM^h|K5hSZ`SJhL?4P?&_;0j6OqN4w3Hzj@ z`)UuGJz{qHC(v2@=ka~}ya)IHxy}-~u*Ck~r>Fe&ef@Ln-qf9m|M$~d<?8=6g~vNT z*DGDxUtjb4lljJf(~s-_f9?Im)qO{Su1(#~_x<}h7cKh19us8Bb?@s|`#+rqaS04_ zW9@|g9iD$VR$s~PkZ9rUtuc~1-^=&caOO-basID(Hhp&@>ssHR@3&cZDLEY8IDLWd zao1Hr?l*jSwtm#N$W^=c?PbV@S3i4<?mf4v=bTx8us4LG-c2@WZbf_I6v5*+mi$|> zWWw@DtGGG8etH$f*uLCxN_p-)mBmvN&V8Br_~){<zbb>%t-n6sx6kqY#@!#IzfRwm zVOn!3R{!)XZ{1CNPyR6XRQ^7B`_=M^lRSezx_nr-_?G+<alz^r_7~PHsBaX#zoGj3 z;l)ZuKO57<ekw@iX+DtIT`xHC5)1Rp^TD6uYfhMjE=e&y(`a~R>E{wbGu28>L!DW6 z(N{})I$jHNE{mC!H#sCtI$>{0mwo&cHVtL(Zia^%cW$}`*r-LZwEln9-7w{VZwSxf zM@f#;Sl7A*ym-82=ZzC9wr7Q25<7k6sPp@|?P9EMySt~Q<})OHp8H?F^=Df>x46*0 zuYrrFK2Qv~C-b)B!KQ~{#kDIZJU47UxVljI=b5!jS4&U6xw>#qiRAhltvB+&`7DVt ze=KR$&+b#WcE*=QdCQJpZPE;TZtK8c&#SsffhYV^d`<Ud(IZbQKjmKeCheJ$(G`DW z^4#53wfQQqJvUswawgo%$p7p+KSRYWra!Es+ZikT#n)HAdVWl6&ou4(8DEbD+j!_4 zNjxj_@A0Y@Ccl>w>o%UMS*DRH>mcpdaN$vg{r&q_W4Qml{yF_lh`v#M_+RtYVU^pn zOy|woHEr#ttHqK#CYbGe<rwI)f1k*wXM2vFZWX_He{apzFL^(^>VG@0eZg4Bu=-w4 z>-}GC?p@!_FV2ct@HP2=pWVOGqzdE3AGDf%jc0#5zAox$>E8W&6Q=BsuJ_z~EL-t+ z{pE-i#kGokwR7)AnrF>cG+bPAzdE|!oqdv>vC-eUXq#iV+4etwGXH+a|844(p+N#o z1#PE(v+WnXy(wp3-@<aWE7g4aO@-?Z)z$nyx!*sG?b5&f@z!%5zYh)C;QryZlHh%# zPkRk5?u2+Qv~K?0|5`uwiOB2kx%*b9?l+orPA2E0yT{+^<#+oxezHH{@$TpEoRx<; zf9$Wn?Irh~<xl$$p?^QB&!o$Je{y=|k8qiqwA>Y(3(fggMh1QrUA}C(+2K_hM>b5; zX0!GSOKphwYWlHBOrAR}=h>^b`!`rH%#=L1dX9Fk$ATZlm!#7(0z>q4w)p%AiF)@j zFnxjGVu{>{nzPbD8Sgo~il?hyWR7e9vSQD=cJW{7_v*7gANV~#EBZrv_-kcT_eHB0 zPI`B0*DaHkyV6Qc>()fx`m-)9$S2%=_pRVunZA;(yOT<LUS}=Z+I={-cjt@tMbFPW zA3I_6IR8iZqwe*~Wz52EymjUaxcd8h`QAMtervWQiDq+GdNT3sI{uQwAgXTN=>un6 zZ1z07S$peBd;5WelKQmcx$};<*RDF8`j~0TvNy^6GKy{%2CFnb{PeK%=DhsF<A7$l z%F_wfMo+cvE|t%!Sn{Rh>50v+KTrI9c#g3>pYVB?PjBpk-|?K8Ijj25HJ*Q(%`?`{ z>@APkBhhr<up>9{@4S^Z_v$|1+vAu2|I_mASMF_l8-C`;_uSu)ckgfcUSI$7a{tW7 zm5=rvnIW58|0Q_ilh1NJzYb5U`KKN6X?EJVZbjRkce+2z!=6<)KYFY6=eLsm2_dhZ zKOf>JzSOrkoOLh%&281bXE8?8d|NqrR@uDR+ORCD(P`@ELyMQTFa}K*-z&v%N@~Wd zA_wo)%unYt>eX9J@(J(S<>#{Jw6-bR()u0KL=NP{s;*hh?@-3Pw!Pf%RghJ2GLLq| zHH}8G6V`nN87bVBOIGjNvsid}YNflOpZF)f@*n%sdV97M&X{D{B(yv^Zd-!)r<`+A z(>gEndffXs+qht+^rGhY4|jB|cc0e%`~Jk!r5bDREt^pmr@c*V-Gn2DOOGUp-z~q{ zB=b7EKDn>e`PE^=i;vXKZociL6M8(G_e|F@n{y}Dt~lF#_|yx&_E{HY^_h1sm_E(- zg7>u5x4j?cJ)3y#uC)5Kb@%I-a>RbFOxhz;9hRu9H-Bo5uR~F0?}YiQZnJFG{2QDt zIs50LZBDhzkM}$M-lDbV@3Zi*N#C^}|K6&z=lAK~q858{>%X4=vV32B<Nw$G1<U{Z zo44=1f6eV}-|z2{Z~c&bI^)=8Dbvp))&F_}?yavVwtsl~|GuT`U-(Q~+W-I2rSJmB z1Kmth_g`xH(j_)Sa<;oNv&rg`)p-eNd-ZtZf4pH@8?#-6;i|#MNRx&}pR#W6lev*M z@+6tEw*83P(2&W0!7uK8{bAGfFAwSL%{5qYeO9~tGua%W19s~xb$x<Emq#90aJlAl zqvPMZvaG*0J!8BS+kDs}Vg5CnhFzkCZA~+xK3AWJ;@S4>V|>i#n4L>CWp}O(jNO}e zwpjO0_Pp08!d|R9?f2dK*_+TqhK2fSeRuQj7BX+1zQVYuTJ!OSqO*?!iq96;D{VM! z8F=%_oPeEObAP;5vogFJTgdd*>a9xs=Hq84?7g#d<&!XL^OxT)>^Qm8t>Em#`BAUC z;-39moPD?c&#N!@tbcck?TK&yul4$5{#vOy-RoB$>zbi1xX!XJ;rxGnDaktTH{bKa z_N;%Zzf1Guz5YLi>v!hz|2WRpm;UfSS6uP$`u-2I{_olypa0q7-nD=Gl=E4Csh7F` zpLF&AzrFjn&yLw2^w-*L-~Yq@B~SmZJ9;~Jr@TSB@VVPl<u9qdU%B`0jNcn=v(J2% zyf){pz0LXa=Jh)(_htV3zvcYj-RZy9his~zuT(Vgak+~6cgghM^>(Ts{)&BxSN!_c zxcmOPS@wyhf9j8fy?!5FY`^)yUSFdh3-|u<KK<9U=JWZhd;B9Rc2D^Ga_zAi>m!d@ z%v`>96dL}omHF}a&YJwUXSQ$pQdj=xd;fpWpnq$pGH$P%Iqm<({0}W3em>LRW+XG~ z<gtYhp8cxi{Zak;?{Srn?MZ?A;}`D<_0v|9_z)H4Zt{p-Z1Vh>dG-4Lz9#;V-TUAB z(~rGY^{bof>+LT4ulT%u@u%PI|7_*!-I({pGHxqwW0v?YF6umU<#b0*eevlwBKlmy zhNhMV#z<3fMn;B{H=b7p4cbBmiG>Z(7MFkqaT8<pm0XaQlz^sT4K2{7VT}xsCcxZ` zL1Tf)(+;4)!RY~}dd|})_%RBAhJ60N(HEVrBL*5}>oihiGBTR(7_Xl`{f>mb;B?Sb zEVGf3(e%bz3x(+ix{So9&z9B~oGy@PE;YR%L0@D#<6>n8kc!Emi@Um{^o6Fq*Izt+ z;YuCz>7e<A=^nEBg45$e7=JJtP5&6Gr#HPqRv$XQz+_}RJup>Yg3);T!Xv7Z;4vs> zBV+I#ZVrs#3*EtU;k?s%<MqKaSW6g<LASV>L1s*s$Aet5UX6XaLAw6W=??Mw0<iH? z@Qv<b+Y2)E3mK>LCg^i98=F{8w@T1gn-0Fyv?)O!Je@Fq`kX|43&?cB(IkDG(+Ovj z^}*8#oQ%``Q}v-YdS#^QgXgS#r%%Y!=VLN40?mUOPhZoj&j-1b^n0E@x0np#Qc_bh zBjouF(7Y;a0#+Sl2K)5$OZ2rM23$I(Dz^PXt3ETQw26s=fdY8U&dA8Z3_01DOb;w( zw3|Mm%S0ZepO4AJ4C02qetkahWZ0&D{kbBHCes6!=u1xjm8p+BaW)}OA8exq=+0F~ zBZ=(_OZAO8_`nNpAl4aJ7*1c2tuF%}yqo?#M_+upfQ<#q_U&u+SJ*O|PEUBPFExGP z5*1ZM$~7}WnGQ2lFfuX%jX8ox_94?7M#vLmpy>@GBh%@QfAkbojf~*41d!<sBV**m zY@}dhWDHr-Bw}QOBm<h1H8L@UPRbgYOb4fFnO0B=t}#?#0+}DLpUz}zGW}qVQsVU2 zefrSF1sO~9A=71yM$;dHE;=<bG6f}NW{{gczSG|{-C?1cCFr`!57Tqk>I;CA^5l&- z^`_5Wt1kgrNH9I_wLbS`>)X83D_-jhP2X@tl?$4d&7f)7Y`P)zIzry*!f#<|*$k4F zFYLCInZ5=jDgaN*Zf~J!naRiqw2Wta={NmSMqV>eUI#~wv8mB?hj;q2@EhfLn2gM( z7yQt7Vl<mR(a}hJ`>7xLPNIxv(|P#}B$>?2p;P^rb;76L+F-y38bq&97u)`Sg8?_k z^wS^oxu=WnG~j14GM~;UZlKR-zTHsVpw*h+92Cl68x2iC^CFyI^kpXRKaVt@WoCpj zeFchel<6x_q#>49LFTiJOd%02VuW&0DM+uGA!G*B$ZYySeq%Y1gC6o5i%i%1rY|_n zTu*TNgBnAD>2hE7A*<A;zx=MxJw0oYa^!TzAFxPO<uiassvvkNkCFLw&{Cf1Tzm#R z(@$@-7MMPv!ej=c(ey?pMQH3kTyG`;UMT{yvd~#qZ@Rv?0lcKLm@X(SFUDeIWMMQN zG@(^*WC2gr;0Y}w<jdL(4HS%w5Ct=2;hGW36d0&rMxO&SLZ1UOLY@ONv`{cIf=z<e zb8>>0vKb+kJLspIf)p6RmK^G*n}PU9&IB6(Dontc5xla^$P$#KpnOM=dUy`hPj><F z;fs3o(_KM)&|;JzUM?<>1KdCYlOG6sOy^yx%ro6C#$W-Hfx&dxdN)wPo~tA_c|(=- z^xRm3(CMBb2CyR9*Z{unZ5flX0chcy#Pn*A{C^2U4$zH=-$lR+-=^!N8*opToTkIW zWMnZNv|enwVw{}l^n{Hnb6Jdx4WO&u+(QinryC>~C`|u&##9Wv>}`5OyqqLR6KGzW z(Rlhpc6G7o2Lw$QOuv<Bz|CxEVlZ7Y%s>XTmTvk&T{Us={ND7MECcT8H<iu!rgKCZ z7)+n2rzSdmgRF5Pv$282^a(0vqD)4X)4`K_#?u#a>WhIF#7+0gG2otVnQFi{y(`Lq zdpeh^t}3JP^n*L(p_6~chR_RJ7eyIBCfk^d4I!)E7R1Q)O~09Iz%$)4R*rA_!B_+L z=?dbexzpFjfy`7f=AC{b&OmT_1L!_gMiVvh>7aFT)4Agfc&3{(Y4T22iZ}3>w$?I@ z#mLyuWSWz%D6^5J+4PSRhGHN)CT>#BoBkugfM+__W@Vn~f{6wmkQH-36AiehN2(d~ zP8UitaG##H+jJYVv7!0&L@hJ1=@*UF^r!bG8%R!1SZ6&EWU>Wl1>tn*6ayj1nmV^s z1EcA_DF$NG=lJRJZP(8;kY=2&pK8D*Xk?CDNf{d%Kyr*RV&Mch#~33j3jK6Yjxk15 z6p$QajHoE|(+!;!jEs$tQmdgGNB}9hf+h})jgZo-ks(M0G{Hi0j0s2t-X79VH!@c+ zGDcj_t)FgW2@(L6deBT^<OmW#%2h^AAOWOoW#j@9K+0D}t{?#<ry98_7>O7gBe~Vs z0Hnlx@<U<s>GMSmEv8>yp(Qk3LCcC|dcYAa#p%3ah8)uq3k}vY8c!E2GKgg~1{GkU zlQ&cePk*hWCNq6=kwM|~hdQcy%tpp0;Kh{(`1O}FgI0(IN|}f;8ygvclK`Xf<c)2R zoWx{oGQFV0Ky3P-3<Iv|T*?Y6Aibc452DaDq{b#j;5DR7#zxZ%cbV!<U$|FpC5w@< zi7_bh8I7h3idpM38cm<LPfmQggRcB7ej{T<>%`E~a=Ku)f!K7d1Ov6{591ldrhh9p zIK^l({a}TG#B|4EMLkfHZ{i;f@#zYc1_wc{6$e!XQE;0N)HVb;@S?Vs*z`H73bR1g znuA?4-80_+yp&QEqyW4K)u!5@k<n!OzG?%B=^I;>z~&~Ts*6vTtubg~G?~7j#z11a zO0j|a^#3&m)0j-5nNPC>n)#+Xml%jnFNl<5nZD0Re){y>5(A#;GwTfar?-_DxJ`do zXK;FYW~l-9^eiKJp6Lyx1|HMp6b+|Lk1jLdo!)J(#y!2b%)nzhpNr~U79(R*lj(&z z3Zfv-ZM4$UpMJmGKw|m>Q~4Rw_f;71PM=k0z&HJ7g@N02A6M1M)9+Ur@J{bCSL2!f zqtZZVdV_{>&-AZV21e7hs|-Y^tF^21ZGYTipvXA=Zj}Mo^p_hgd8hBLHsG0Vwa{1z zykL~s$k=pxp{J@nGpIGBsA8%FD%`dyOF<@Tji*nvw=$o;zTH5M(QLY)uCW-Xef)#T z*bH23O}}1eAiiC>(;y0Tzj|GlfyDH+4F+7GJGx~jZ+I^RHuPb$1;q5gMH-6JUp5-> zOqV)mDLVbZAEkb<0>|50mXifOa!=RkF<8!IW;T7}LDhSp04S_b*PFh##XxfM|4+Qz zIr|K(89}X&i*ib$)1})CpbN=j+6<rz$;#RdET><%t;se0>jZ<!>1W#w#HTsyotb{8 z!@y(v%t;0+jMHno47jErpKQQCeOi}+Afm;?Y;0~az3_*=!*sz7YU0~xPcfJ#&1VkE zcHjn!IcU+kcDDg|wWK=e7F}@Dhkvr-J#f2+hlA04I?ql6Nk;SOpc;b7*c{Yy5}WRS zP)}%k-A;o$w$o$#4Y;PKd^ZqeG@mZGOjiZDoofy+0wBwHjKDX-gG&u)I~VL0m;k84 zH#Y;fb0dsUmdb*fJt+GDj6j7H^12>l1tViqXgS8o30eMcY=&e%X!*Y}XiavFVK}p~ zIc#|%$VcGiiN@fI+YP4YPBajlzTv3_A9(rL^gWXexTmk`G!mKi(a>%B)yW1zkR`WX z8=ws+CS!}~kR<`e7Sln?6+uya@Q;!dxc$UrY_a{|Zvzd+>8d*okX9>B=h|t&4Jide zcN#z!1x=6qZU9}cSn}Nfy8Pc5)}8^iCP1Y%a&rb;Cm>dDLhA%exVQDw4M72eSjGui zNo0)Nq%kyAFfz78DtJMyC}T@#B>|}uKq}yY3vNXjBUXZfTTvzk@Yn$F4=_RWvB9k< z6XXRrjtWL5h|L?|R+I_yjq0u-c~B}1;^l<3qD-a>q?x-;e}7(`WBU3PS~AlU#Er$K z2QV6zF&a!~yrN|}jmc1j(O`0;38)GHx28g-8~ij7oE{J=2U;e$5Hz+RV4=H=(Pa8Z zT@`T_BV$WLPz4|kYJ@<_e`XU<BLr0No&IS6-kl-OWMVk|pooIl^n{-pvzU!c45xo! zF%)MqwuG+gHvumRhP0;s@EUSY)_ll2J^dG`*xF?ZwimP#2h^tGGcg233^?b3T2_p| z4P>Sp$QXmH*d8cj%*e=WVrT+cIrZVMfx+}dJ$Z5PHiPNX0){-(XQ-I*PJi(Sl)s}G z6{a`o%ZpF<;WRuAUND$yAU?g2O<$kUWIAJo(rOkX6GL;z7K5(;Ah$T{f~=Vit{Oni zDUbpS@E(KdE13)-%_(LRL(A!gD#oIWCesT!_4TKpWHuC?p2w)Um&M4$$Y8oYlcwl& zE*3*@Q)>EK7DJxt98S8t)7e=K1*iX)Fyx$W!D=W1+I|qrXf*vINcB%vLr7bS*#tC{ zp=K;P{TG`dq$xFBm&1^IdZv~c-*h()Ll1B>YWiyqLmqGtGIJUVO`m^Qu6w#3m!a`= zGfqQMcr!|hk<SF&4+e*&k-6D)Ms7o~>6~j!P3ldIkP@n)f{_VgNhu`pn;^GkKusnS zL=Rd&9n?ZHF-C67m?#*T7=t1XTuedQLner2sru<g79bUn<jR!*%BG+OkqL5J2GssB zF@|O-unJHTM{Fd}PY1PsOpKA5UB)1{BX$(%ryGMDVgg#xXTE*DsG%_<qX~FH-*g^v zLzU@<uhl`l2yoNKY<j=AVdV5b+=g7!t+));rYjm)iB12&WVnLS1iY+|*~r9bvLU}1 zlaUFi5dus5CZ?e6GoY~$NQ1#-a$vXE^a+xNZ$a%4@QS`we1_c9U#S?XO-o`FpMF=$ z@HQ{fGGa^1>5lw{V$-c==%_N8m_Sn70YOui>2vhu_e?*fXvj0&LsfwnWUt{=1wCdX z6O-wR$|hpdZL1CHr*kSBa!)^AZNN8OQqYil`t3wUwdn^JDTqy%sWE6`HZe7rzOcqX zY&wsSAva_}-N7_<@#z5?3MW~NOiT@@CmMm44o;t#rmoKn8ta&NPEK_C2UE3~VBP@* zLy76$B8K2S9}3eS=IM)pS}aqUOpT{EnyZOUe<p4SYp<9<+bhgQCdSjjJzaK5L(%De z%7$~9OiiaB1REu3=sMj?#jtjIt&|}bv!Q{>^e!pGpy}6j6*hw0V?Mp{zlJD_kqKzj z>#*F+=^tbaji)oo7>Z8cu)&gl`x7-oHAYErodrq878XbYS0>XRf|@G{D|A#DO{NP} zm^gys0JJP{`Ybs^?&-4?wFJP88IbTnH@#pGz3``!9%#M#15na9C#N@^P0>(d`hnGI zg4?aM4ZRtqz!f6cHe(}mWZTT93!bx-1dseN8=07aYcx<S1-w>Ln*LJRkZ1ZV0b>Es z^5XeSCT5cvf0=<t1VNTwysjyRV~sIrRLxOWfBHT(LkZAQV@}5DoEnDUu|dA+${L2? zp|&WHW5wm6TQll<4EdQ%%%?MUn}~0pYiM{M)C8%uGL)Qt5~^Muv`YeMO*=^S#B*|D z+r6y~Z?H(2gYquei-tx<2FQM#ZYX68Djypc>4{DEJE$kTeVT(|vK6EG^j}qmQqw(k z4bj&j8zT=TgI2a1Tfn<LkOqt~a;pS1PzP!R%+OPGGe!({K*s5e5d#&F?TaReei&pk zkclZg`$O6<CT7zEP4yx`fo#ZTDhKjtAe*Vk^lW`Y!RhB~43(xw=ot!3pKwbX)>ttx z<etvOZW=ZHs(~T2p)%FV5HixkYyw-kY+?afxm;~!$US}45mm@g50eSf>gDM+4u*oD z)#=|soA8Xa^rmM!7(xg0m`$K-m!}I?8w!H<6+s5`Kn5f((Q^RNf`Z0M)A!XFg2$v6 zgUr}vEj-=et%bw%@LEHm=>|Jh!DG@trhljbB?C}}c2HMAY`a36VIF9QR)4#p`1EhJ zhSK0PIo-I<5IP#|TW<&*jV^02#5o#W*JubGjh@yFOK?)nAe*`kqnJ%B%|NYU$OZ}~ z6U*t0NsOY~m-HCU;Fx~1)sTC-`&2`IuqwphGhz>g$@GO0a$?)Lrx|W!nSQbbRA$Wr zE4KuVAjVAJf5Mm@y7R}>z+n2p6?#U~%V!(%gW4&eR6TFD;X5wSI^ku8lGB&BLmUN7 z)%#Bv>rXG6Z72ZRwgyVn(aQ~UIi<mkCvc)RGPXpX7BMvdH$$c`?lP3vuCdWD+g29b zkOHeUG&MIs9!)njFh!k1F*PxVxBDP1bQ9!eH)!jI3Cb*sv4W9_`E<~3Hx(1)yaAeK zF+q&xK@+&;biq!e2w@XMYm-wSG!AWIIUSsyO%0}l({tEVL!s#xY77;o+e|g&p5Ap! z8@$)eYx>?<hFsHsFIUwE?-H7RZ5AX^YfN9Z%uo=#g@f7D5V{=S)NnfECqw1wJ<ANa z5Q&=6bb4dBvgLGv&xRiu4YxCXF=S_)&d6u2H(g*OJUyElLe}ClnofVXRu!`Uj0seq zEYWjdG@YKfPE~2T+Xq9)_6?8(cy9=3OB$o;bj1y-;?u!9I4VDYq7t;9Q1Gg{_;iIf zL;meMei|k+N*RJOHaJR*O^}OSQ={pOjw-6t6|(f@rtke|*a$9Qr(gR7N#b(Tz8H$* zC|akpe}$#+>7CyoNt}23qHl(f`4$0l<SiVgprPUwdPY;ZjQBx&pOP3w<KEt7uMj!< zoBe}`ki$|<S*I3{_X<p2oedfau7M(qt^rFTCeBY_bliAx$?Aq*;u{%)SXeTZWS4MU zVp-zs)UMJp;n%<WJ1wuPmUDXU*m-mJ-@17=m1eWGH(PJseE%)u^oR2eC8jSZVHBvJ zCn6ysAtW@(y8K-<0|Uc><E?FNpR!`hcLa1S?_1pc?j{cd1H-(9){!ezzi$y>U|{&c zdiSK0?##0#=aU&27(VcTcu&L_7#QjoSx2sDy~D)7@W8)BoqOwqXa<G@@v5q-vUW8U z>*F7DJ~?UPzx7?pLa`!l28JKnam(jhm)Gm*>iU*DhCK8H%lBWIt8>LEkCEYnw{coP zg#{~H*L|BD|LX7WzCOO7^pWLL%B<rr{KT>pw=*#Okmu97vz492qQ2tByo;)Lx$ee; zgd6<1`Ty&0IUz5X?0iD^ANx*Lh6Ddu*p{8wwK>+dXL9tjv$K!CzFhnJ+s=QlUtO(V z?K{iF)6>(_d|%?>Hp$wkii#gQi=UrK4qF?wweD|~rA^|Y7XAHyjP6E*{j+?k=489= zQ*>7D_OVJa-R|NVI9W|ZcJAi<mseH>FLvu~<B@#yYkjA%dY`QIH5)ZcOUuvx#b<Tj z@B97k#6;z%1vND_YooSa+RM6=m4Trq(5aq@SHgjvf0_M$Rg)`~b*C4(ib${CJtc0+ z)jOA#^Ru#c-oGg>E*`!q<>cSr-@{h~9Q?YUSK7>`=n04Ax0waoGH-9o{rTzX&-2mw zd#BbfU$*Sq%gf7?j&|urZOOR0>gt=Dn@>)RwqUxtE_Qd+)~w&(-ag(gt{v91e^J`m zS=ratJQS}ld2u1}^Ru%veU?FErlJ1F@BBx+g?^fkk9FF|u2=8sTQ)&JD{6|G@1ocF zKOS!X7rk)*Coa?6SI^oXd+o9fwmJ4S_0Kn+GcybqyZ6gI>ClMYo@e@B+t6^La=Xm4 zJBPBPA2+4WjJ8-&5cBYhkgRO%h6G3D?LG4L^VrpV>t|irobJD?uAW=kuI9&zz{Pj` zmo>v&vfkT!@%nv2))8Fd%UZdOt5x%tefF9Wes0gj^V**E`&}%!cP@2gp7<oC>fwEx zI~x+W6?xA#%blhheT@0>vEJ&xU$3A2Z&ms#<Y<@ZQ-kNzPMq*~9B;IJ&!<z`@r7qC zZ9bh)cB{{`to)?HpL1)=%F55ro=l2f<}>rs{`&gwlV2`?Cg%sQm-z~3-~Ijmx#-j0 z_%o5I7nN2;g}$k_Ec2;-xaHKP!bSJ?x+a~Rtj^xvr5Ceff_eTuqtsIcH#A~*l|)3$ z_*rHst{=zq|GSmmIo&x0J@u*cqM!WKjoy}%d1~UxdR0(J{Cm6o{<##RQfRKJnQn7O zSl(Y)ebQ-D?U@h7^KU(ose5mGYwzvPshgX0o=$U@Tez<_^Eltf+3lMjckAzaadq|d zkLi=ue8bkq<<>E_&unR7Ii;}u%q-Jx_hrkL&9kfB6|m4r^69j|#cnhGf7O0GDqjEN zVY`o7aDDlv0B%qg5nsCOlKT9Btyv=C<-zldKdFdnD10;d^1@NwuVO{Pw1vN{UYs~_ zLe+bkM17yM`MUD=_nwJ=d2uoM=clJr9P=I?`E-a||HS8_+2;9r{pLHLO#>y@^>KGC z^tYG2z4iS3eDiv4P_~b_`SS9WO-n7zu546}-B+`@e*Ur72d>8nUzd4$(z%)K=T%ns zTkoy6=ic77E_Qd?rzQ*ccTZ%3*2V06p%c@wxAu40b$*vTMh1q{QM*Fs*q)Mn+^ug@ zne_JI;VVnIMKvEaDx}EXD(3$E>9l_Ad+YR!TU#>E&N9^wU-#$h_4xFsm#67QtLd*X za|Ria{b)ha`})0)*4&ESJ*DQ~(e6j)>(g#;Tl#*Vu>0bgS)xVV;tJat7#gnr`OJTE z_X;=HPT|6-R+X13wP#qBo+vD9Tkn+j(f))k1H-lNf4@)BpKsCk*mUK}FK@S>dv3ff z$20w0#rxH^96OKx2N@F)86#u+dkqKw_q*=y{Z+qj3kzj@$@o}*_0vMD>+33aGnjM2 zR9@Rx8?tfHj`081?=SSq9bZ1d=C`@ov_pqh)YtDSaE$ic#J%(A|CW{(u(6kC8i#Dx z`}=M7yCRD@*6QE>6m)1s1l+ND_A2x)>nSGvC({-zSTO5<(cVkPt#hVEM`UEInD� zfg!KZsp7Tn^Ljq9)wWI<*Y&b4yUA?l;uhXMapR6PPsFaX2c&iHX`U0e?Ue3~`%DZ8 znybSCPfmKIS0HWnLeJ~ijtT4cK9jk(|9;WKQw4|b9CB>E-gs>Df=Y|s7g={6JzY@8 z&CuYgqJH_o!KB0comg+}i!IOG^z4S=skyV2lwbDSmxv#g{mf;1w_bRjy04J(;Y0tp zbw54tvp({p`1!i(Lbaa9F0xi70am&*9YAsQzWP_@#(Qt>{Y{g%eB#^LX_DBq<FwxN zJ;CaQlO?@(CgweyGDC0s2mVy`?FseW(?Rt>hI+pD?$qubu50zXIt8n{DpDt@^Ut+i zz1u|1+{RBOKOp(vL&KZ(O?Mupg5pprcCXjo>frr#yG}pk3=Dh}R(k2p&61~G*DhH+ z_#^he`3@7qg46HrhOC_x5z8l$a5p%*IN^VtVW6s4hq`^%p0_*?tCZ?n?l3VtsGSp3 zF?XK%`if1TC#ml8UVLCz>7$?hbK<l@7gc`Vvef8K`8jZksJMS}@}By+e*88L7ccJW zUc{3w>Zda&`qR_PW!<q)AXYx`{r%0d-0siU>7Pqt{!g3ZQ~ytstzy;v3TK~v=8D^Y z$b)L$_a2@L`Rx`wc<|pZZmX!D&d*PsC+i=w7P74`|G;H?cK$h;qIPuwP=#aj`if@O zHJ>@}KOPY-`MK%crHuNbZ#sLw2t7Tes&`w`X2zq(Q|li;JluYMuJ!Zd7hBbP)hDQ5 zwh4k35)NDA>z5vCJ$mZbY5l*ib}gLq^SQj>y;D;cXJ4OEA08AWwEpt<U#9aM=J|XM zc@3?lS8PjQyt>Boo5fY7)k#T5-meZnYRr^&&SlPL6;R8e9^?VnZ||4Cygc`?re;)k zQYbrr(AQUwK1A-VdKB6FKycUO)+kT}Y1Mr0-EnDWgkgNujR|6NUhMlf%WJyW%cZ5+ z&+8<1NWzrO6P5Ok-QBgdV6s}tqn3A<esru3e>vHIg|GB;M&*CPMLtl!9B5t_ySPiV zUQ?r^jrZ`zg*lTKs#-<OIc8I!5W8#1ZijuIFonuJ#@_0FOH8x3h#fud>KeE`?@^=U z_WOQ|-K!sOQnp_VttJXSpPM82JnhHR$!#S+Kl@jGa4g)hHYak9@)TQ`+sre67HP%J zDS9sUe0o#*+6YJI_Ij)K^7q%GMDBxHSfIw!gk(=olZ*)#ivo8Vy}h$?w@KaG_4|+1 z<XvpqmVZ4~<n(1|1L?%ZnZ`#Od!El<t{q+?e)N9qZnxxP9ma7LZT4S9V(XKucl1H4 zQ3t*`Hkx(Imp&AUS--2q^UZ@(liRt(T*A&wc$c!U9@H3f*mmUj<>K?5?$Yv>i*{?2 zl|EuQJ6D^{!o2P?Z{D{_^WLQ_4D;~dDB@;t5PN$^(=U~iXNmd!C9mhFvP<RMQsI-H zs--Fy(YgDnM2R~0QzvKVQc&Aa-XL?*j*Jx*g@qHjBaXbfT5{f2X>Z6{uWqr2KYN<q zMJyEiww<A#A?0H6`Oeu}=Gd;@EmL57PHS`e<=FDTP9cjl6;Mm>;U6)EhBIp;ovq6{ z8ndr!n1+^TDlmI`Zb|Q#@bFn89>0W{y+qtY9+a4#h%q$uELqZVoQIXQ^ZDP#^*8oJ z+H_in>%F?}f9Lp(Hdw3lj#Z(P%>_#Z2b(+fmS$n)nF`j67O(V|=i*y-J5Ttev0-3& z;~sBV{9j!c`$#N(&rQ49UGEk-`2GEBZu?8)>dNHZi>qM~yKd5?Be4Z<Yx-L5PuRZP zx_;iP>&q>Ra|#bmgvLQb;(fcqqXO$6A2|Q#>+~HT{Tvufb3C%IzpB^kO@f*7WXH6! zTPBa*Z74`AG&lZWfAXYBsn%2-%}d_Dzx}JZ)D1Q3z|+%TjtD1}URxtM*J|l*lLbLF zHnkrZZU1ihe13<;+NFWcP?s-A_b+^VvR(dB+{bU5>g}JN_s`$&YiPKu`%xg&%7p0p zl`9|pJoM&_<gE>k<(UUw_sK6mH}`1WwnMF%cP#!}7A=9M?r$QpzWg>0z0%3@-FI{E zYW49KRjrJ<=|6AkN~j96FR#~!Y|(gn);oCFjYo$fPRML;RQ1ky6Y+fh?d{pRXMJHQ zH`>!@2_y57W2IZO&K<A6$uMJWl<F+^)nQwTm%m%|WD3-mH@tj!TwMb0@2e;<*fD*A zgR)z|!6p$2kMlOp$NOID1$=u6DPS6W&&<~k^K|)F_K{;n!NaB-`qQn=r|RkE{dp7( zjqd~Rj~?yhecr$zWgAr<cwo7VwVU_!uEr@Mg<4bU&+NUn9O{FAxxdR+1vtL>EN^q; zyV;zBN@DtAJGc8t{(2@Yzk|US8mfP8@Y@GuXiU{o_1ng>LsC0D=<Y71y;oK!>e+4j zl$rqz*$2n}{foYH;Qt-VyH6SRPne}Oso>_Okd>2`e%}R3)r#908vg%$YhG3VGu1m^ zu=%~0&yxCog3KE?URf<JYqw^%gC5NB^HtO@Tfgtv9H|wy<n!~=>1=;)eR}%nTC1Ys zms8r;ZY_tozV7jhz+K<t3fT^AK7VPd_AYN`vw}}5w%=tydBM2uLt`kP94yT0J^YsK zez&OR=ZpH^?@Ps5bJEVsWnK5PdFOSht^ros*WA6j`caE#(VS~a{x%FB>?+HrFLqy9 zmiy~x`rMbU<(mSuRa97ZvNF_MUl$v)Rjc+>=er^Xi=2Bp@5Ds}9D1cL9_y_-wZJ-3 zLtIK~Rr)z5hC3|x=KXzRd}^}0&CSSrS40kQO`24n@hL?s%xB4Tzqxa)nfH2@uL<D( z9nEk+Ja&(VtaaB{r_<9)er<VoiD5@a_u_@lFSlNwQy;hQ&EECb=IUHI^i!ANLHD(_ z!qri3Jr_0@a!-hrHoug+{o?NTT?UU?VNu~66qIq4>$ySM=7#kaB^`3rK5yi7K>ZmZ z_DS_qE<p>__`**rckB1R_*4GoLaa!`o7-DDXPF4{{&=_hYFsWX8`vd2blUZp@6o$g zuh)OQFVC!yzT>4{ghPC-YFlvd(WCBKu*m(&E2FV3DEq3=c~6!P{F~Fe!~T9ayrp`3 zyL}`y9j(c~r1Ei2y-Q`hKEr<jd4Ksj4LJb;5f|I)uEPuF!TQqIrc87D|GnNMd)m7q zh7~36WcL1ARbi2Qb(Neo!zyUH6%!G5_P162wrG3y^4%H?uVn3X^xmo;ch*+(UzUA6 z@6}~kQp(zvv#^6><L5tnzpwe!5X<oX$GduK!Rx1|i85R6Gl!K`5vLlNljc`ONUV)r zy<3C9N+;IKG`s6d(DHNj<=Usj?w)kgeImxNf#Y#n%=~&kalH&(u7)shyH`Zc@B7{9 zlPAZ)EaaM|E4<evPlG+d!(+kY<3}ArrtEm|;>E=^`vRe%Q2)itOK5vKC(jbCP@8&X zZU%dU{CO2p;qUHz`Sm*TmME-rk&?CZ`TDxs`RCrM&fAd;4bjK@gTKF1x+kvVq3nL| z!2_7%GrpX&4q3pEcZq3&YW-i=wb8-T_0HKFd+EaxLv8pv3w};j)r%XGcX=~Es1Ftr zKKfqP`bet#{y&e@_QK+CdSQL^N};Km#hcBqGi}&>zkYeq(<6r0e!myrZevuu=3cYu zaqiR!(F_N&D-IVNVkxXj>=fEkwDjF2h95hQxJcR0;}REpxzwHCFzpymVXWNx+ssT( zrO&xTL0YWW#Vq{x)|LJCF4MX7pav<!KP9y`HvVP&b^;4quRq_@VOexqch~1utrNNo z4`f%ays}NVSMu@3_T!8VGn4&6{ip-Jo_=D{O`pC+dgw5`VqsI-&cJX-q))q7y1TFB z2*+Jl#t-G7W_yA0v$KnxT3>9tePnVNgM;au`%DZIlJD0j|2n^`^yLG`yY;S&8+ff_ z{HN%L>pc-;_^{wg$VY3nwtMyWE1Pu~KB#Rh`hNfS_6=T*jUuvZtIe1jyaEHSEa`lu zYOCA3%x`HM@6qC%gF<_P-Y4h=28uE>oqEwH_UglutGpZw>}pHSXD|eGPXD+-VX618 zrQTOoPPQ<+vWRuA{rY#+3f5PyTSxfS&$rtXwSJ{_?26#<XJS7OpWU4q{O19?ecji? zr?+nG(T={9oMnD@#_pHz8GZYw=FVDHJL%))E8buG<g@?&iGH~!N`Ey-ulqBxc{dih z9(@=4cC)PgkAwZ`^-?AR-rL_?xT5n?CS=<^wIc52;(sr9%l}-w@7~Aco%8Fp_pW=F zv9Lbm=z;}Sn?jS_l^XWHx*M(Yxbjm)jc0$?qSMol9+;^7$U-opds7wr>!J{=_1C&z z`-#7r!ojP1WbLl}_^Ky@cQ;EjTzRl`_Vkak);7DB=*RiEc3m(&U-9bmfy-B}SVzoS zeCabAi^#RPdRKPp=Eudb^D^9=G{fWX@9xL^rdb#6?XBPC&CGE9@zmY&@vObS&oMe| zld;ozr*?ed(s=ur_dE%%&~!UNSKTk*=ch+<{}>W{VPc{iH<}bJ`5d=HQxjy2B(#QY zkiNAm^i47+*P_zbCE~0Mc`ne*W;Ah{Tk^30500r?uB*de>+v$A)Hg!w+muH?pC8rS z@%HxPYkwK+U`>cSUf#m{udi9yDLnTu!vkSxzE+sKM5XGpuat>Lxg~>wJ5=<*n-hW` zCroZ&C~V=_9m!Aw%aRglXBRQCYSh>L`sjYwm9b$Cti*kJg!5GW+}W?Li<ci^Ww^f- zTAZo-Td`kTFRs3wp}`;OqYaz4n9Q=7`RU2RnZ~8!tPD0#A061H7bC#Gm!D$+yZn;N z%S)%TA*AMATf2CJL80=Uz{PX?WtkZML&tLx{O$jF2nudV?S5Cp&``e|S||S4D`~7@ zGlz-!==+b4Gw<0v|Ixy-_9zpBDb#m=q}#>fjxaO*`@QpPSXcMuSRIA{H+Us@pue>} zUOei@@)XazsZ0!0k=nr@He_GVc<dInH%dm%YkG7A55o_`yBnQ!-{doXQ1`B%cA<f> z<o(`9=eElPzT18N>_0I%W`;U&FXj1mh9B#mq}<v!SIuw9zrS;n<?3cQIj>A~uKHU# z%eZ~fqD%AdA3AKq#_(qbBoZ6+XIW35Wh$J0Lu&b&BgeZx%7m<o_5Ppq`Kt?uE<>F^ zBpDod6cn6!UT&6IZ`GFt^{1x3Jiuu9Y4!RQd9hU=U4Q+nwyFxbvreAD0UAvk7Tk!~ zRTIgxCfc2q+p2ukojU8Sna=fpm+mfLNXUgI#jpv}+}imrZoeNi-!5dc8Y}C?7Z;Oi zN=$73@42!2)A#!~Rx&X}LhG~z-cC(7=59*smFVkVULUjbh~LzjpDSFsrHop(<z9}p zWB33|;Bngu6!(6Uy1HI}Ugil$RijImb=P!m?VKDGv_*`Mp=LhR*Fm11k8ZX;KGw-S zc`3X65}V2ug~?Tqd1u+rKR4%MlpVtdYp5%`&dl-jogH*<&$-Q6r>7LgEtC<hckS%l z#m&y}58B*+@NDUlj?*=E|L4rBY&$i5xw89_6Pm#<=2gGA8t&R)Sr=0-$augEnkI^# zeM)`4^wjFGz<+<v&DC=43fNuts7#xI0oKM#35=Sx<N59Xf91cva=p5$^Y-~ZdHrMa zZ9Ml@UpBvg;b8NQ`VdKmFVIwe!llOM??3CcvD$6P$wzZTnV42MFjl=#lrr;)`NzzV zU<&odx@YH>PLEr(`+eEH;H9qI&woU2K4Q4wO32z)W`+|}Ac5kLq?CKhCHdHe2F7!S zXJ>UjS95o}6rJCBd+i+S<y&hQ7;Zv3ob^m)X31=K%jKV*duy}$+q&HvmXSUEePw(M z3_oP<f~)!soaYql|9MVU3%tHAWZfK#nbSVb=aufVK6G}ba^7kth6n7B;5g79yTifI zFe%}t(XO{<&;6!8I{NaWd*=VTyRFO&0nifVk7t(F+uQE(b)L4>K~GO9)i162HdCVh zjl|d2?)Pim+xZ^{r80adhWPZs>qn0=o_alBdP-a$p7IX2Uw(IY*J*Z!2eD99i_^|7 z+E=@>Ecdx>Xw>$yzWKJZ|NWD;4rMs759%^?6_pFSN==elD%v((*|E_gb!la>l+BE3 zI)e4pQ49<X6QUWm{Q8xhb)mt@X%2gXR=60yVajrUYjy^P1K_N<lXZ=<X6LpXLH@s$ zpFFwvmm8-a@%XnnP<i9*)PFV4B^Ve^w7`4G871%Ld=7f*+O3fv_uOx4(9#zlkH5U2 z2nvP|j=Lte7A;)3aMyFg8y;C&Z|iTl1}_Wv{w`!;lZWQzWt|`A1jW_Otot*uPyTwW z3j;&^GV8Dvt$%eNuo@aZI+y?YTIa*f>2s|^yF?b2y?ybx|EO#@1H*w}kUtCRxL17s z`~Axy?vTA!tZZEiF74Y}{O8Thk`D@cp==BRPLS+xqiQ!VZ2hu+yG4!6bCc_(Ocwn4 zxiZyT$|~ed{?3}n?4Jw_ZyX^?^X^?)8M0pP>8YnS3?ZAB6~~{NY5XWhjDg{U8YF3) zn0CbF)|O7YzacU2gLiGIC{UC(Zc|czdDcAhp;KY400Tn?wB>AG^2_Atv989Q#hU(d z&;6!;C@7phb+LPCy*M8O!#ZdmW?fKF#&Nz`HZymXE$!f#7_`h^{4u}Gf`5OHMs8L2 zf2F6yz>wkqaoQ5^=|_U=uB{h8yxh;Se3gj4U%#D~vU}GNCI$vOi1Uv=Tjsy~`Mkwi zp>rIcZahBcas97OKKWxyPcbm;a|fGpH0)9RqZixnXZ$EA<XaoET~AcYWo`83-|sJ< zn)-;9f#CtP<(!jrNo7^+?55_qze8VLEq>>1SuHkQi<#kvC?pvEPoALQ7c6P&HD^}P zswtmWwko>^eST(AVW1o5Bd!m2w+3XG=#jkN+@iQuHpObKZC2&0rfAo@$L_k&DGVxt z7~&vd^=R>=$(gs!W*IbEm5Xf;dN}3NVg95)`)a@J|9^2$<)dZV3=9d*kfd+-<WFUx z^DSQKBOfj<J~vlO)w?VDdY`0oJKsw^c?O1v25@1}{k8U|YUz7FQEjVcujl8IQle(< z2>E%#FlH4GLp{Uwi{K8>##u8YqV~;c<6XS{UQyr5xVc>7%eLhnT|BM+|J-#kpkkC^ zgBirTZ+m3b9v=(rl@gKAC|mX6{qJ|hefH&i)}agx3addWaYFQ#9aU4Wty$P_zpU)- z5l*cl@l)>dfv2aLlxXNiyG_@B4T{PiphQ%!`$TNLW!;@h^IQ4*m&WXzqrQ5IzW;d} z=ZhD?Ve$`>YF+0pQTg?lU&?x#Rq3KjOI^KwzEn4?`<^Fd(jlfJ@O>341H%U$i0jT< z6}LS*zr0ua=!b*N=jLjqp1LsE|I&|-j~=BmFfc5IxGyg*N~-psW$EjBH$lO33qGAO zKKHTs*@csnK?Ms#8KkC~#5`T^;v`j*6pp>0`-***dWEc!D1G6e>~`VS)<;`Fv!%Ka z(>5L2!BhFfV^!4E%9TX{0;bu|Wa|IffHEC}_l3DSSGYJi9rFrbpAwDQ+GY2n;ntRg zLaIlcr``PU@JjtE(Y^oe*2cW7=~HB2XjuBfPwZ4{TidI7$EQu0=H}jKk-zlQ)o>A+ zH#U(=gH&H#WWN57fuSM)f~@wHO+WulJL2+j#-YH)E0Wze2Db*EI&a_o(YpN7?flF7 z`!BR|@9O4YV3;5aN-JhI`&G5PVxDcT+$?c#_w}8@OJgiwU20XU_Z2E{XJ%md04_|; zPU>c6niMM8eigY}x!ib#&Hp_T^JjT|e)h0zD+9v=dysekm~NkA@82!f>8`~u`A9}s zP_d82_M1enobEgB^0%|DePU!_SOKbBo|^AGx`XHEVg92tw-hb+D%h~&kNd6)K~TnN z_z$Y`KE1pnR4?s)div$+_ZOY{J8LyNJCmMlNW8Lbt%v^p|L^u#a4;|&umf3IqrH8} z(u?;018Vk2{QFZ}_<VZ<L!tPNtg9=+^<#cBGcYvVS#)!2_M>w@=hryBy&ZgUk<tpC zIGtnp_x;}Q^Y)&8>FH^3U?hOYiLaf}RrkBFCUQ$^cfG{DotG;&dHwwK<;&$HbMAQ| zpdb?jC8gI-rcDunq__<R=>adVpSP?#$aH6&7z2ZXH^@;Y&&2wa?Em{PvtPQf@SI`l zsg4VujtHCN&AD-N(v&4jV;C41>_D~0>Di!wnAv<Pw%oFORZB}iJKwpF)AcHsD=;wB zGt_}v9^R#S4>dl$UjOJ>KEI8Fs&`P)CJD=m4JWje-8zKx*2jf@f6BnXunkm*JpFiQ z(lodF|8ISih1EK`r!X@eVLiPyD{#Kuj&JM?3=X;=xA#Ap*1}Rac{{)Tl6LuJ*6#!y zQ-2m2*1ZlZ4BjECeT4TBXsVyPM4h{SYtgjmOP5}}2>kW0dZN#XiT+PcYE9J&?3Xhs z)dB~`f_6~Fwyns!Xj6qo;_<#mKBAH#akZg6{$4`-hDY9JF)}c00YxVl?^&JgF7B7- zSehg>Sln^$yQ`z>6>xLYm8IOib2Q#XXrJHA%D}+TeF2ms`1YwPJec;OpnjI2v(K8s zm7i|sch@MDuWD)Qx_!{o(69<*EW;*H?td$God4-5*U(h~D}$!Y(pvUw?e-%d7hGJN z`Pl7aivnm30_U#c)~s`Pl)kUt^F`?B(U<ccGcYhr2nLD%e>&}e!`;tP3=9l;eeYrx z-m2fJY7_H)4;uqR!|cV@;q@z?ozdNX=aG%6I0FMi&GdIM3&Ro;I(}9ufeg+>)Yc3P z3>9tfA{K^ucywHP?#Rr*&|nVgI#m9tyuiS~umINEVQ8?26sU|03?I}%S#Mz<yY{Pj z#~BzH9)MHd!Gi~Pbu&n@u(7?;W2&!^*19_{;QfQ?CF#z*({v((7CN<dbaeFF{qiV} zG}(~2RNlVM#>i+>(bH3*t3o8L%htSml#y`QE1i>*^Xsdts{<FaUH?5n(YZw2ow@p& zwYR6|%Fxwev(0i##9f%rPCTStay~i#@wb?DF*}{x`Bc@^irTlOpO?F<`pHZ>tSY2F z<jS_(+Z76CX4`6hep*p7+r!(tyVyp@OjGmayy|y1cN8vuCsaAx_VwIeIon;u&(EFE z{pa=F=G!)2X|pXkH-q@<Uo6;eb1(g{mwEQ}b$2(Vo-Ubw=yp!r%a0#FZq2@aZ%gLn zcTE+uZD0RA(kXm)mTC0PBGsbq{g-U}_vU_kbJMoI`rDMlmzVp$zrKF{y-yYMdA08r zJUKCO!-fqrW=Py+{b+VOtjf#F>+CGk{JmeVncu5$28Bxc-tsp$3SVDayE<&GQ{Kn$ zUC%deSKNMM!=<G=cI>b!eRXE0v3t3r$%fpe-qZDByLx)=Y|WkyatH70+J}c)Ykz%t z$oNFeep$6#eYJF-@XZaEP8PN?U;q8$;^I<q7yjz7T{kx*9(L=KS-D%}UfSU*d6SHQ zl|f4n9X{MGsy)p-|DIm#t`~X}w`cZ=#4W6rtBx)zD!RETm0#XY=ltord#ksD!i-nj zR#$gz^!B{<dp>o&YsyGI?3JE=e%{`amqPq8d#knvE_U0aTEA|$%e}PoRns@@KidCt z-f^ivpHAyPJw07NeBGT74-c14cV(6i`*mw;cIB$o;p^irH%d1^%%1!9&d$wYYolV` zhprBjHOrX+N*3p<rca3eGvi$)&%HLU?TR70Y!}|k^(bEQf$Q#Pi9Nhi^PE?dR6Fgx zJ>i+hL(ZMW&-u9Oxr%=4S8`{d$_F&Ox4*AwVPWAv&qngE`Q-Y>{Z3173xHFq*^#O5 zUhi~$mow2Y=iZ)5n?3pW?TQU9i*PDBpSSy+Gf~NPRoL2Dd4GB&jaP-Qk6RnHwT)N$ z-HnaP$LIHZZC6|Rwa;t2n$DYVOR5sTf4x($bn@g&$kLfJ=f$}lR&Sekb#-|D?QLhb zdajS(|L@V!Zkr7iA0Jh}+o_Jl0RAUCA~Q}-QvLq^e*8iw*3T@@N{%%<x%bHw=3ZjU zyAd<h@?Sy7uGE#Q%R_dhCMIrIU&_6^Ug0?33OU=V4-SXhc<Z<4-OchzIQNW4V`}AO zIm@CYA6GQVI4q5xwyVm0X|$MFS#{8^4ZqpvO*6~Ab>jGgK56rJU$4iTs~MyhvrRd* z#Pk2R+xb(qLaplm)%4lROwEgY^-6YXUS!0Lx1KK#y^}{Q2x)0=pRN~crK6*xtJ`~F z)mp8^YI}>H*PknTdg|@{{r}VKFg5S{@u)j)Z<XZbt4lm5UtJw89JMucXYQrreX`vh z9TEHM{`%HgXx-g(<*K#T-Ax-d+@5@?^{%~(o10$brXw@f6+S-p_1)ds7gp)MJgGik zCvH#0x|p3_Q?*QUZ*4g*Q&Dq%o-Many^hBG4Z+*<?#k5LY2BSQ<(jqD-B}=`UbWt} zPcdq=ob&#{=75)GEneHzuk7Z1$tx{4<s?g0ab1(>f=js^Q}g^+luKWdHnTZYvp;6L z@QbrQIl~&@N$*6&``>zc_VfH%(pHp6J1xB}{OWGoj!S<PwzF6$ne$)ybG?3|vU^X$ zGE<3v>Hq%xyt+Dky1Me(*xhD#>+An~bpHnm+Itm`c`ehvzPh?K`#K*V-#pvuZ67!N z|NFlF&n&O0T6@1-^3Kf6{P^+X+UV`;A~q`Z%UBdFs5!ea`M8p@a`x3#N9BK<*5ChO z#^>kfKhKEH-@7$_f88<n+W&vQUtJaYxc<7$j|a`q&&_>o$jrv`p#PDftX0X5l9xjL zo?c#6zg{l?nfj+!zV64ukN2ib5&8EAlnU(US3a9*{eDmIxu5p`|4f$o?(~HJVgIV| z_4n4r?tXF_r4T=1^VUW;#>^75{zP0aCZg`jm6gH8W~<i*zg%ZjZ_{4?dd`!mXFm@c z_uk){d)w^sR6|3<rCw8wv`SuITl;6`AETQFPfmP%eEjsbgJ;|BTz&TO@$sFBA?sph z#v7NtiFkbY^4^Iu)Ah_UE;Jnfa9dbN=uVxo_>Q{2zc#hz-`g|u_?oD#TJ`__6cx4c zN~_s-?O%~~b=9B1`E|cm%6xve`~5VX`pBStKHF}{eDGVE9wK|@?V%UDMC5I&rX2q; z<<sdWGrKl!+~{_^^tfy}Xw}rGsmAH&ri5PJS)6XEcK4D0yI;NG@wK6KAwNGo<rdLU zaQ{@l+UmpWr!zQ()jouL@R@wN&TaCuU&lnX!%lp<Uw*%qonP*Wp^fMrp(itJtG|7i zk$Sp*+SQf8?e3r6Pt^`TWuCUQ^I1cw*tgo>-#!`%Nl951J@L5y|5MF_pT~+PO+WbL z$&;Qq`?NC>^Q8Z5QlDQFq?h4u`&FcTw#~Df>GPku&Nv>kujc2&cKLOIi`n*nTD^YX zr2Hp&b5`GeG5KVyZ?Bx~tZ0$z`J2<u?vOn-eW#h$%G}%a+m2mzSm&LQl$7-S-QAr| zJ0<qaI6Zym+9b2AD;kTJ?tCk}N&CR}@7q0WbdT-QzsvG0=UhchOw61$UU94+7G?bt zf8MoW!-mc2=RX;2&&tbxvZJFX{^r_f^To%b_t*X1`~BYRM+bQ4Ni&pB-T(KSv}IJ_ zVz*u~{kSuS&)fh1^W@~@`pSmi6Fz(>klRu8luKRpU0lyq8GQ@aE|H16ows$(z2zcy zm8^_eaIfG&BWMj_r}{hv_xWe!Q<pgA{l7DPR&lpw%tU1-URkRtGN;w_m7jE2Jv}wm zy5xm`_|)0E-rT=2O*eX1+1sphy3Y!x8edyk5<b&@-r-WeBK?mSocRk+->lzJxcKK+ z&;rNsM#J?M@}IbWr2a{|$+IKTB>&!@TU)bjYMz~uEDE0;7#LW@dvvv5+}V>}g|*7t zx!%1_IrV7UsnD0-q~$9fFj^i+&AYWl)AE-_vHK~DBSq;aSRb5!l0WgTrn&w0*xGFs z%P$$P;ww56dcE~xsphl)rz%g&GF?AZzcP6F8TmunRh7)`%<Oz0mNn*RZ4!$SuiyT+ ztx=hA{mY7ki;G-!qqaPdJoop&-SYcqJEyzn-QPF&^f6Y0qVCsAcGfCypS-vF`=<j- zJSXqiIZ4^+wEvHv&*xXZ)wGZC6A#~BsQ-P9$wiqB=MJ5l{NcEK{hqJaqSy6WnwoAc zd3otmeV=MGJO4bh+*!A;&$p?ZWFEaPZttnX{r3MX%G;i-m~O)EXS6B#|AS`!l>cW! z<5vVI<^?|S(Bu}=G0@LjXL{6lPP8Wfhvy})u5{ip)%tnQviMoS_oQ>WFV(Uh9qF7C z{UoGd@l#Hf@=%|?-o?{&qo-*GA3LG@@>h$@1!*&z4xRe>(LB;-IS&f5<qoe6Uw7x` zmzS4+e|eew=ky+>$L2-c55vyp_M2y>&Nlhbm2+x}rp<-b;p_YD|3&PZXa1^Je1<aP z^KXY*xr?7XGy8UkTfgSxQSoQ}v#iVY+G~p5On#VfURM13ggqiLI|>@z=UEgsd7qxm zKl6#$y$>;)(|To|?WiyM^(9k}XM3FGGiUaq7Rh_}o^M@VThx8<?PJTB=PK9Lt~bd% zJF7P@{K<`V4_T7VXv<})B-U-*Gg0t+_37#Q=Jiu<-!j>feckU~-mR~_cZ$niUOH-X z?5%mx-&1Rg<dn+=cYF)noOX5+|Ko)Bd%xdPpI_r-H#PcBSi5#|;*^-xQ|tfTjWT>L z7PtQ6E#JJmAFjFV`rEs%yI$=to26X2l6J|F4ndpMPd(=SG)_Nf5|?~VcirS?-+KS7 z_nmDvF<G<j^I7w=_fO<M7oAqg<IlZ5!g6NH#?EIASH;S<_s(QyD{n5EVSOxYZPd<M z+vj3=40{qjIi2F>%lDXNpK@k~p-j<<dc)^C*Hzw=v#YUCQgTXTD~h~hv{I9AnoPJx zb19d4*3Q>DlkZ&Go*$oAR5U~S;j^=|?}iz^zOhj`|C59+@6Mw=KF2$)N?s()J1~2W ztK5;whU{tLDS5ijKJMYt4qYXZ|F599_RB^0%BM+xv}60f|9ZV%Tq8iC{@<TXjM93s zyF%)><=k{`=bM;3H)w5?>AwR_tlU!PGnJ-$9FU)_AHVO>(Qfm+I}v$~(mNRL*ZtPD ze8jt6-tys{qSLx=+a8vkkk8Jmi}8qatC;-fYIywAX#YJkJ{a&9RP*uiJ-hz-x}^W& z2W<M@MrCgz;v`N^vD`T!M&+NzKQX>nH|HO3TB>EMT%RX@{-Kq6rJA(6=+62Zn^L*U zgMDY4J^hjqqS624ZP-t#ccQ6#KQtMnoDjHIkauYb=lTa4&9|oPc>B>RB+p{^zK@sv z?cd(os(pOYt*zOompuF?z4P*8{)c_jKhL<seYW?>x7+#a0~fQcKUento^Jf%iJjp$ z@A!ZEcDGx9pGRNZ#QNQ)^IoOTuMK;bc!KeL$gb?t9s7>$G4OghEh+DY&Bn^l&z|;% zeU@(Ll}@u+u%!0)H<{Rqr$PJcY9F5qc`5ea=NIq1|9fOkKAja_|HsniaOKg1tkR}g zQ$89M=M~O1*`EL8)ibN7@7Koc+_Z6dt9r}z(=lJ!`D6_I1^u_?s7K~3s<%wo+IlxP z?_p2iG9SsCQ5Khr{?EDidZ+i3a}&gac0SE`&^mp(-A+RZY3b9mt7G>6Ipx|dCb`~I zob%4LDM$Vu`~7~uetYb7%{xCotU6V5-Qv3H6zd7c<*Iw6<<iybe*4@1eX_0V`T6<h zFMBVW_UxAWlZJa69y&g;{v8cks(WR9ed56;);)iU{O|3ruYb3x=i@WE_YV#>uZ`Z` zSNtGc%GzYd#{y}Cb7B&<Ra@R9TF4f5n_jBe^;h?f>EF-i?e{p$ylo(DS7X6$zw_eu zyt`I$H9wA~pPTdWt7iF8ZgIUSvrC_)woDe<KkxcxfBU~%Y*J2kdwzd+cW3;guXpd3 z-~ao(et!L~XJYp*Jqgk8_mM0;o^7&o-@iYf&%fXQ|KFUmiQHjTR+6@$8e`WwUp1c@ z3WuGa?QH!m<H!0ZQ%3gvp3i=A1#5kOiskw3Icu7JPUh$G*U~%VpEABHOSuuTF{$-- ze$C6J(|7z<I^HSyY5yIbABRtFJpOFm?st>c&o|4Js+X-_{`B77>eI!Re)H|lW=G_$ zxKn(}S=#c!T(A9!d7j%1yz;(pFZjJae7&6iZo{_eVad+T`#Z#)*XhLR7sx%(c~bWA z{EGWOemw3^Rhv?=@LB6d*KV;p3};eL+ic%a`&hZ(Mrr#a_a2FfdKLBG@0Q=m>$R_3 zdnB>VTJltp@Y#fQ>Gj95xU1c)`FEP<U0ES`{m1S6{bx5{dHdQ@s9<^dw>OdN%Gdes z{HS63{Z8?*PX9a8ETTTVd8Bsm^Vt(BFN?h0OpnT+PK+qqyso$F_p5EWw=aDy-(4E( zv~%uh<CV9zW?x?wy1Mf7vz=jv<>GfN^yByWESvUhoBs*Dy@`jLPpsP6y1m}zNu0uG zzQlVKhP%2;ERN6e4>bN>@$BxlJwcPT^^fs(hD#ocUKO%3>CMUq`bK;*vx~bc`Hi1z zB=1+<-xj^zhRy5xd!8rx55Hbq;Mi<&pjcTaY>h;|!7}Tb2fO$ui0joEZV$cw*k#Ys z1M))e1SBLR1O*f8l=ap2a6Tv#yF1}qy;pf^9$RFkO}n9b?Du=0rBrludeU#nmfxAE zAHT1WnSIw?=id*S`A=QeJyE!#&)WI=Efx2sr&SNvWY=tcEnWZPA$xM|5#0&57v9c) z@@vv+xqoL_z0F;pg)aH>Y<9liER&NqYM<Fpr1@nomA-m>b^n=u;ib_Ms@r$E?z<te zKlyll->0XirT<qwY!&Yb)~gJB%4)XwXuQ|;{41+MPrqGz#k%}mj@@U=&yQW!<(tUA zw<vof!LIu`yJBye&SrJLIS)=gT%q&-Op<V^?g!q?_#2nMelWLrv9sjmrQ`DTcYa*{ zQ}sFUO8&l|$1FaWm%Iq*Gdw1?;-`kqbD2s$o7nq*(?aTlPfyo>uB(>3^uetaYX0+L z7P)ZdN!&T#-qLbH_$p7{^b4Tg>&?x_w|4#i^?JRMYu5=mI}3{$)oWk8$oMQB`@2O4 z)cfgJGb@^BPEP9jeYv-{O;Yt<c6-MJ-p<cv+v`6|oxSt;?~lj*G8vXHPVH6Qv+}62 z<zD+=FBZE^PTRAyUfuu2t=;AN+Z`TvpV`?ezVXq~?$dpb=9b@k*lSu8^ZxMJ+jpuz zgw3}3`RdeE?LYc)52gNlZQtK2ldXMEX+n6=hi40IqCpLVySqx2-R+(W9F^|>wC7Gq zHAn9*<Eqm;i=TgTb2NLtadN5F-Oy+K&kN>Gp7X9}vub7X**{6et+VRScTCn^2I{zf zcyKVqD*Mn@vr3igeH&%fckY`wJN50Yt-X^opRUWip8w=uz`X0*la6*-mA?AGP#(PL zXW{iMn^z%brStgjoIZK_T922!aaxZ}u?72{;FmK)*mp)tsD2JQqg_(@NcDVZ+~(r@ zddG`P`6Z2xRB-F}7-<(BKex4@{@<U<?cMut*CpTISG&i}K&<8-%Y^E0JC0Q@RsLS! z^-Q$=^^%?YCKg6bi#N%=Wil_KXpWPPePg%E`#a~Zo;tl_BfI}8FX6L(p%#(3iRU%8 zpP03)?CmTY%L{K`o9Es-5<Pd%f{$w++yV`v_0O>?)naG9nYIK};%IAvN}Sd8LW|kX z)^55z>(;(n>vqY{8*R4tdKtNkTvwgKeey1c<vQ8yJ3BW1S)VN`-Gh{MKkaP2E_Fw3 zXLaU<1&tf+uiZ%e@no`pSlNTzXv?<k8!SHFD>|*a{eGSG{)sYoIoc!QtUsKNtA1-* z^rg|J(dJmqLj(8w)$jLC|6R{3mptd@(X-0}7CPB<|1f@<s(dH&gY@d~_5VH`=0AO} z^ZN2T)hGHNowY5JajbZ=@%WG1Kcy{a&Q?FZr>EfA`mnW9=AZOpcb%wh0JS3RW^TVF zSNTNnaSv<WNt;RHa~>XUUq0K??JlpBNyq*^Zh1+`lXvsarEM+Mx;ypu@!~C6^;f;} z*6cjz8Mp5Dx3{N_dyg--)=E65`$xY{e1FgJ6YCm2E7o)LKRKcJ+w=OZCuJu-d&SMm z-*?FHuJp-``H^w+GIOr%u2Zg;Ixf0yclEoS?sD&E7$i2W@$FmS7Lt8sg`jwYyVUjl zC2wzq#!b4vE%$cMxstt#??ZOoel@{+<L%aq^`)B6>gFw<qCUTV_Iaa6A^CY9{<!Yx z`P}nJe^PDJYfvAPw`dJlFZaesC#R+w-s??!cFdFUFL>PaG0Y(U)`?~gaD#A<qvHCy zr@DoeD?UD*9zV@iT7Pp<^^?Ef??3l6(|b2<^&40hAUkE=(x0E6Y6mP};6HKL{8;@W z+k^uQ>#W}i^*%1ii$8yJ>Svqt!f_f;7Rszso|pNIyZt9KsC#oWP~!Ncij7(^I|}C6 zRQ_08_xEdfQFyRSV3(M#mc5r8PtolaD#dw)u}(kt+vxsr`{(m`Qr2}XGl`u?bLUTp zm73g^o@&%+IotTbZj{lKbR5GeOy|{`N)RepfBgGf)ZE<su|~<j8EGW$-0RxAOLu7Q zEPnpXvtahVrhiZW1~uv-jkWBm>^=Xw_AV=E$Db%i!<t|9axn~RCI@nf^Mf}ygSR~z zni!jzPPhGTC_DW_x1sv<1NJ)V)6ExH=}&KPG!g(Em*i+9Ss(jU_V~wq51+Y_x9?=@ ztX=7<9KHQi+QptpM%}_{k%CtQ4;t-WHC0L4@7mLT7EvwNCEw<YdR;$sH^aPs!RZZ` ztxjyoQwWL9d%O2%;_PQ?-_ND3DP}(XLMF8{_T1i`>QA1`DfzzhQ0=+Twfp~N^lktD z<-qO3m*;&67G!{cdIkoDfVV~otIxlb;rcWC+(L%A&dgTrY$bfWFJz=HSej^*|6A?f z))ilGU{LWUY~r(h#>=f=$gI;S-}i7^(DT>ApY}dhYL}aQEX}H2`%m%dUgxK)kHn{D z?pt^0#7h~o-BbLQZ$JBXkF{#Hzl_b)tVP8;lKy@EW4(O+)NdzCH>IoB&pj;q+3NqZ z8{w|g#9iK1bf0_JmGFFZ(d)hX@7GR~-Te||)xT5s|5<PR`ti8x*G#p^Vv)1uEaogI z-qG~k<wC=`g^b89mMEE5Q~l-brTLbAsYdx1ERzl__$*$vBt87&E2Z<rN17d<D{H45 z<(RAN$78i$A*j55VTI|;e-G@e+<8JS{j_$TSH1U`y>8tFt=!hx-uByd=dSy@mSN&5 ztL;A4H;#Um`DXm0=KGiT&ha1ggu0icmhjF!T*o#yzPjYg+$CF<r~FMQD|r3p`PO}+ z3PSHY7ofQ8f~CoV;tYr9NKO{C{$C$d|B7SoVM#&j|C|1%TD4mrD*u=I^y2OpGVeI< z|D3+>_WLEpJCtjl|DRXu^t{01$GQKXg<C(*-|O+b!1c(v{U2=Fy_L%Ty_E4YtnmMG z;KTE`OIM$p7{fnTnT^Nl|F2i})2-IaXJ?=J^!=|Ov)lW>=~nMwh`)ThwD`vQS?6{K zDb23`KFuzvpWDp%#$4{VbDmq~9NWn%6>_=q@DJbKo6#>o9{%&M)4Trt^w<9tHhp|^ zBY5-t>%YPpJpR~nqk0COV$gjFm*BW>zyG1XJg>dy^8&XY|9*DePWf1W)AXX}Wy?pZ zN&jnZz27f=@$(zG@Wc&U0^Of)i1B!S@88ca_4RvH78Td`dvod9oEPN&T>fwG-{Oh- z^Z(R6VRU^VV<^0@UN8J>e*d{U?`{4+Jegb4C&6*we*N#S=bb<Cy({!wt#dk0BX*ND z`|Q^D^Xq?qa!}j+vFrTjOzT~h^A6Y7U42t%syl62^4t=>-=Uk2U!8WAZ}ah1iwAq{ zG2#pE6Rcj;g2(WJPxH#>OIGaNS#i~J((8rAM;xEdy?<9>cUh(Q*W}#Zn>V*!jJnS$ zu=dlr<@I;}Px_whzTYEXf37lHk5&C=#rMb8O*!#wZwcS;*7twd{q7n6xw~_D+<NY^ zbMItw%uFwTxHI?vfs@t`9)4f1S@-l#(+!PqtMupg0Uu)K%EyN9%8=N<(y*F)t}@%R z@_Tc+=IwcYYVPTjZ`HetH+_5~vAejV^}^i$tk(TOudNvuvDVLjesu1C*7Le0eK&sk zFZg`vT>XP5zRx>$egIiA`<!5L&40{<i!UH}tmfaHtIbn&f3@H94f7nI|9dw_B&uSb zve=n(x=Zg`TDix}D2=-{ck-Wh_3dYC>JQ0@=Y)AaKX}(Nb86~MUYqlY_LHAiR+gXJ zym<DxMEmA*fA8*GcJxxon#nNUww$sVcP)=FLNZwMgLD6{-`oG>@3~LQ4?C}q@qJ$4 zy7Tj=bN@Hx+nV34%>L*7>DJ*AzVIK<#p=ax{hoa2TJgy?<?_pxF@pDY+Emtml-CcP zVLA73-1KK}|5VRazqj|@s>A#jEn@`#+0;Lnu4I45{ds|F#q-x~>sMNTVVQea^x)k8 zPlf;QGT7)c&(`?MY}XRL@DKAiKxHMCWZ`3V-*Upw$6t@G)?K_9oS$CSbe{14RxN(= zV@i^ZWBv0D^B(S8`d$29|7^YvnHw(8H_QusetxdBmS1#<z3!(T`v*a<qZyS#uk5rx zp}O}xn^k%_pP8}E_BC2{;`-0Uj<k3_j~A?5bbhzTGvUsfN#_!6C!eb~H~EmZddqSb zxwB8@KH7teunK<`Xo-&E%6dpyuT=JL_V06Z-YqEJp;Yrcp3hdT_iPDYc+2|^y|dRt zB`oJ2PJ1|ay=~!#kX4=M9(H}0`yWz#&pj;q@cieetP`#8Eh^rj^yt2NRsPmDH$aha z<lO&TUk*Gx(iD2xGN}bpR5v<4-@Lgvc;*@Dl0FH87kB2*t)JX&b6$`??fJAzZ)D~w z>-kvepFejp<yZ6X7czzcp3e{7w9K5k?a<k!^OHgTw%)!*Yk$b3=2%cVX+HP&=FTHZ znUb;2&o|6>eE#pvonHsvJh*oAe0Ht2gUUT&N0gcj#orKbzmTa%#G69W^Y~Z(vI~nX zl#`yvZ`<$lyukfP--}a=%P(5q5xiJ=|84mt%R7SmKG&bOi`?*eer%p*-CZNAU9IO5 z_kVc)6H+cq%>2pww_dYso{YcRvA;iGMBV2S(0p`9iQDe{?>t=*>-!}RPY$SAwSQGA z`zQY9&%JuvpjUf-XHHD_`X9aFIP2`tFY_|eD&GCL^mFcKoA$Fj_uA_oPj*WD^!Vwa zova%Zf85*u#l{~N)1S}X4p!=aR@DDv{#8(!Tq7@TvY>bcN*x2qsx^#_<$X`8UdV(^ zc3uCh?|y{uGjK^{T3^C9`(*#O)6MI{E>}W|p~GpH?kn>CU$c7AXJ|n*`{V_$i5tbN z+Aptq_ors<dxjm0R<1g)yLBJ)gZ~Ql^ZwPo$bL5SvgIR(b^mhTxk%4FoEs|Q_q>A_ z7RZP&ZaBBl@#<XvtH1afv}Zl4<l}XOv@)>94M^LHUB&hLRn_jlIHdoXTXb^#^Pj6g z>jxPa7#x=VV{dKpU;(wdq`~K3fm>Zh#-?beO@NLv0^N4XYbdt8-q%Rd%6I7;xecG} z1J<dmJyoBQ@<slR!KoVtkJ6vLYEC_B+jQl9SoDqtrb@4zuc;ANj3#AwpPgL3&ZOJ8 zZrzvPxB7pb{m;|C|L6TBKk6C!j&k^b>}NEd{<qyoYWm&Z7{}?D8koUO-i4etVrl?C z5({#ijw$#e=OA7#&=G#1<8(|7Ag7I(8p4m4gB+)0Y6v}W3#1Zs6S1k$biq!eNYFvn zj7-)t97d*)gTJPK_-m*zeM6^_()2ff3<ahK#OsGMn;Jupxz6}+C=5PG1at~iBIxiM zQ{(A^g2u{>#?u)S%{PLC8<*;tflq2@GBpO>1k27iec~ZiJ&;WY52=c84~R6dVq`Wo zwwzwbV=6ZNce@ey^x3{@0+17~O-&#Nlz@WWPfcmMXonH>0PG9-jI+S!ZQnOHpWZjo zNS4uLx}%XU<SfeR^E-_MrwjZuRDhh`rO;-`vz>RcQ5oZOt1crh0b?^$q_d4o5yza% zfzNzYe5b1`U~Xi=%f+ehlbV-alA&N^3OdfK{_WlNYLV*;|9$-5RxSKr$a?4XhsO#z z4aH|?Nh?k`D3aV&=wq0`b3-6GfOR1ohYR~f#|DOr)*LMwP7Ms6n`_h4S4`qwx3Mn0 ztmB=VP!i+Yc{gXi|6L<DFLCRec{dN*>0jQqvQxl`L$L)rQI90EG3ig;|N4K=>%Va> z4__bm_t#hJ`hPV#_g;KHZ@<6jsn=}#s`q=pe|vZL_l<A?<(!<Hns3ib5~{wvsr>fl zX2!ggnYS7knU6G`fByT&<Nn!)=KtZ=-y?AQqo5Oq;x)hSn+50R+5Z2%|G#v%`KwDy zy-Q0=XWMtxZ)%S)xcGg-vySK8_E%l_LGFw?+xGg}T4{@dgy173k~{xAIM@st%Z%Qh z=jrJ=zg1Z-W`Et^FE1}E$A5l4zkZ%&aoYO0z4t1g&)t}Oyzckg?Vq2YuYb4m`4Raw zD^>{PfB$+tzI*xKU$56cn)v$qdh_oSxW)DM{C>APfB)ZYKkA#^`(!c=ulUWiy1Tdf z`?a;vpn=fa51%}FvgPNT_`08}y1Hw#udjPl`tM_ZeaH2DuI+OxKR@f-D%_j#>B-6e zf1cYPZD!|}t9iY4`;ma)pdh{YeL8X{&!3mKtJzVJa%qX@qwU>dx<dI^mix~)Og@$| zOHFR&>eb$Ueq#O-=6Q4KD^{M6Q;PH5)3@`_G3op#&z^O)255YlzW>kB=bt-8#hHZ{ z|GN9WPW_%!&8MWqV?C0OzW)EVegE6r+x3fFkNozVV{tLYuKwR1iImy%&u`1Uea8LB zEmuAJi}x9wI22vNl=@Hq`MSPdH22|+jmf_KFBFsH#3wJFad7|7XS46^t)6XLzob-4 zTl;>^XWu~MBSm3h(`MMtR{GZ7!MS(GjtHG8)2Dxbe}DhW_}|V_Qc^Cuf{!z~<d0T- zy&B$pFyYDRS+dCon^=?HiS7UUZufgNpBV{Zv&7DWR?;kRY_9w9uwB0XPvDs!XKh_f z*o!~t@Bi~@rg8eK*RSKNUaDRcICHRLn?ik^N>#@Sfkj@O?A!D2>)ksPb8koC;|@XP zBTXw<W}D~dab0iz|D*qZ#~a1__5c6M|Nn9P*fF<_Vvnw#VKz)kbrsKgS3U8!^O20R zzX~55XuKX@Z(HR0?#@o-xL5!F{!WT4vES&HTW7bZde4tX-AOlmANpO|<HMoYqT&+u zhF@^5W4%v(QdZvP_KtUo&$2%s6x9y1S=HXr8DV3usi~>1e*DhK3nCYt{pMPw{(D{b z=f}sSMftzN`33(z=db_aJiq?w*6VTE8@-Rbk$A*vUH(o-t5KrCQgeIVxpw)wj4;-T ze}8{B|1R+Pt&5AdAghB(%d=X(XSX_wl&U;FSIw-pndM(UPcZc1y}i|ow*CEb+5egF zk!Ib#(=~rS9#2h8eSLks_<H449V<K+adh&pJu9aaHUH=GGkaBauetW*UR@QssP50t z^Y#C}-Oj)Lr^e-b#=YNyJE5MNzf|GZ;d!>zT3T9FUtT2I6@7Z*S^TQz`P_29`F6Q> z8p}?&e-)S*UswP0>7AX$NqS<Rf1H}CJzJ@&qtfEoo&O&W^V^&JUEMBYSF<C2f8E*j z3ja>tx4App(7G)`VDhJf&Ftyt=l!++|JnZ8xoKkO1ydL7Z0|@n`##~>=72L#w`N~= z`z8>mb!1kT;rUsnr)ymHoZD6U`pi@L`ad79t&RTv{=T@ai_UEReShn}-PWx-ac-{l za=*F1F1pLd?x`p|)WWH%stQUj=k5RBN#oD__vE%sxXYSZE8L#F6Zv@C%wGPYty`~D zs+|zbyJs5oroZ0*@Adv8>q|>ZAAPhgf7fwK;hAIct21ZMn)aWzsrcY<rZeeK?q}1Z z`!64L$(K8K;`C|b*IxD4*To*al4IvsA`$3)>GI{X_h+qj_|h&OUlX`R{G*4j@7d4i z?d3UGl;W?wktlwC?(C^kSzO;GKQHOHcK+t3)b1Y>Gq{s@772k;P3fCEJBvRTN^X1< zU;no>g&(w*ZbjU)iF_ZI9d6^z=K5~(dB>%ztHbMm-@d=?g<@}S@A|#<-)2QvUp#We z;K-)RPd=ZY$3#YIW<>;x*e=nm;qlmWrB~YgNYU*1{I)FuP99F`pZ*AZegTTtGxDh^ zDIJ+1UwT=&#b($(`Tc(Xe6!rBemPq<9tnf0FE8}>|Jk&1?dOoAB06<nj!EZtc*dN$ z`|P6d=c|76Y;KCoTT}me_Wh1+^~rYocPh@YEOy%y`~KeEqXysJ-@l)<;_UO4eDZcN zJ??vUXgHnSt)?_zdDf&Aymxn(i_cB`^W&qkdtXl0>h_M-O`D81UV9d(a#3K`q30{j zz6*S`TIAk&U2yfEgY5D%p0BLhd#{n1y-TpG?eec3JslGF?*ISyec1=eRY^9_ewv;2 ztzW!w;X#>*CmUzDf1Pl3b@*)cnKLr~{=DGKq1a-fzPtRrS$e3UV|V0^pEHgI@9CRy z&AKGxzu3jHvNtyp_0G?;y?v*CQo+xk&*!_|%wE^pBH+|<xcKuk-;d`%+tvQ+sJ~eM z^XYWmbN4%pK$Fq4^Y=xDhhKkqIJ<9I=HWKp*LQc<m-oxrs`<^i@o3hpmX04a|9<cP zf7^yjty%|1g$b@Nh4g!S`QP3BEylp0Vr97e^g2<08N)Zx+xM|CFm(EzdATY3sBpU+ z6GMaT1!o3^2AwYg3=9g~wk!+`FP#=vo0^)hUcLUt><IUb%jzd;`|&d}I9M4v?vAO8 z&7Wd7>4spo`nA9{nNON8exK0O({tYLx6U$F<x?P|%z|TUkKR)~q5@W+9QbX*r%#{G z&9%Pl%)rpmDz<rZudOTp&iem#MMa-ZP1R1m?(F65y}SJVy{*~TA3b_>+-{~E6T^m? zKfX`coUUK?>Plw)=Vx!%)^90D4D>v??u2_+R~Sd`zH_VB?<@QHsrQ8YG`-lZd3Vz` z1_T7`sQo?f+x07N6j!bKrF`ke4GGKl{j%2E_Ux&-y)D=9mEx>rr7thJZkhXj-|uzh z@9&kCmTs&N2Q@q*j2E$$ba~X()qU<a%fB~g+B7w>r0dRJUS7+5XV<6c=|^l>uwcQ0 zzt1<@voItWUwqI1(zLMsW#m1-(D$Y9{@6c1A7A<LsJMRYs?I-wQBl)&zD~ZsPdR_@ z*Ru6-wa0pYtJv1AQ;@r}Au;;;y8pLVhrjO>wwJZ9d$jh$zX_beYG2>neEs$MZaLei zed*^9{{OZ9f8Ecg;bm`c>DO5mKdTSd4j0?Ld0GEmd83>g8|K+oe|vfP`PS=k!i#-< zecyhN+f?!K(a+D%XP;j54Ybzcti6zOr_79XufGT|H2gI=f9^K_{W(*L*ZAi9-qU>L z{=R_IuwJx(%TJ$=N^key-Ilv_QE~@sp!&W)MP*O=tG>Jl4Gb*RzT^Dw$8q~zF{>iX z>Z?zjoqf;#|Iek_*I${gO+3<Z@vN<idHKQ!4V@UPtSb^573AW#X3hPXrK-By?ngq% z?Ch+re^oPYyye%_(dl`kXq<K?<6mH1UEPzuSyQG=QLEx$I8e6erQ+FYCneih{+|z; zC$h4(CMBMq$6Ws__<6#IywCl0|9{`#eb?<f$9w+z%HuT`-Y7<Idm~|4wB=_<hS6Eu zCy$P1Kl{wiQ}O-U{_hhmFF(Kk<FVPf>sFrRvR$%dNy@J;FP{~4KQ_vJ$1iDDz5nM! z@!Zvu{+Y8geCYX;x_YW*ZM1N|w|w*+m*SYT2R%lH-}nA~dG1;KQDy&+apw6|b-!=l z|Myg1znkmhDed+3|DKueH}uywwf+Bx+wT6_=!bC^_t$s*TyWDFRH5w@yy<-AbI9!Z z@;9Bev{vmZe}D1Ztf+@}Y0oNGmA}7N`{9A(e7jn`_<eW&eZDEr#IWs2q@C{sJ08tP zm31C<{}vr=Za4iOCerh4U!itQ%(FW?PjA2VO3^&O%C&ms%EFgbkLza`%KOhSco`OL zoAT(0|8)KM<bMZctxvi2NZdU)D{5i8N$dLCZ*Oi+-=253tE)@ycS;op!wn%@6{%-& z6PMo>POAER_MNKg?%DO#pO-x^-~T%{HFfLH+gGlfIodt_eio>R)Qv9N^YPg1z190o zv#zuUFZ0=dHH<%Uf8FWq^`$rKx2${;_QU4t)z#OxZ(b($Qqf-oV!;uvb@An@>iij> z-AhaDF1nelb=2{nZ<l;=(V}nhS`vG-rMwjimd`a^+RnhB(<GN9$jaIpy?xrYx|r+I z%l+ryTzgyk?(Xjr_H~Qy*YEy&{p9KBE5Ax#C^9f)FKV}7v}IvP@ckm7zM#IHfniOj z+#?oHdN#f2Jf{IvK&Vx92!o27YcBkSOrR7sYs!|CRKNJ}ZyO@^Ph>s1xjklI&ExI+ z|K|3~?VT07Ge|qz_oX5OLwCl%G|89Bo%>%@cf80vf8&}9f92P!*L5~60~ufP?9Q)% zs(SW!qMiHNZK|Uex7#GwzffdIFwU*JzwS%m(csT-WNfxxxA9+Q`gzAxBlVa6>wLZQ zKF@sQdaH81*zwe&VsVeiU}0Mp28HSCOf_CIM@<np{*FI$efyTH*XFHj-(deF(utpu z;r4~CzwhxzCfR*`uiZB%uJ-n)(yxAN?%%aqWU2T0!;8=#JFae)*}JISCiz9ZB0~bd z8)xMF#3>X09t%HgZ}V<~?V0`AGb0N0WyE(?#{N=x-2B;DNaKqD!v@CK-OppEr%jo_ zEPd8p>An1-IE%Nl%tJi=Ip^G1`nva$yL5Jp{$z)R?F<f!E<1nUb97~r9k0x-D}NHY zf6vI2o1gwv{E_87-kDVn)9s$kcx0ExDN<j>!JuNYxMj^;Sv|#QCHeeX`_S0z5AWlb zFZovdw3jb-w@&Sojn4d@3obY_C=|Y2xO<*yyrk-r6Whe>tFF}Ez50rK-5f!$sG<iK z(qi)`?Bm+#09EVw@|EoQS&?p>mQj~}Eq`0Hzvo@>-lN4mr$fT)S5`7#3SV;gqO(vv z$YUNZZk&;S`4_jy+`jls_}2e<*0K2_Z(TiKzn^6vvv$>leO9vGXU_Rq$cC>`wq;=u zsCVOxG`*~$c-&k5>zs^z`Q{<TM?*hMG*Ukqzb)$eJMZ}QeL=y+m!E#Ry}PSptMF@$ zYbKu@t2h`Gu9bY<mj09{P>xBxZ0qMO8C4ziAF~cd-#dHr*;*IV>F&R7m39QYm^Whq zyncjKk4L7+?Rgvdai@mj!O7LP>eHs!9ucwG8h)}Oe5Q58S{uDu*^gIVC^9tMF!Va{ z>7`dz(C_;dNmYyFlrpw%eRqiSnD2vfkyi_MUkVrVZ<J$V=n%B6IK4S%RiM+U`tR<a z|ERxJ+<qvWv0EtV4olrf^{CjjUqX*fUewOOkmSh!V&2mEnk)Y{J!QXDzifX_>FoO| z+H(D$_BK85(=2A!p2^(2{JUp-p^ab_2g8EHokEY|td43Zrt=?tE^9jd_KojG%h#8G zuCc9%{-xfaanYH9LDri;<J}_vsaKvnxOup~ur~hfzWVcCseY4oKUjR>>*`DP>@Ll6 zObjm^cG*9PGrFmvDC)kH$6;^DwW)viO}b}aP_lb({_#ZqF9Hk>?wr#nczQ)`s`7ib zb;~UCgnK)#M$ge|Q~8_hXblPvzJ<R-zCZGxvgKdaQ_i2w7p0ll%{5n^Tz6;U!dKjv zjyJn61m*vEa|4~Y)HPoIz4}>wDgUy_7g<xa^S4a8b$);S-q`&s%rAmmect0U+nw%X z(yC7mWxj0AbmY&t_x0s5-v{C6F4)+;eC){mMS$VJW&^JihYG!ZF?>zh`Q_l2lRp;S zd%QHMW!;;^X|hX_LB{y|e*STn+dk}4@D=a$rTok4YZppizsr4GYP<XGy)oC{9sTuI zK(&g4;laxcx%t%xk9)awMTIKX8eF_^_4dBCKacr7=(f8m;`*zipj(cKp+alc?bmug zJWf`GueDOIHSkxdc(!1YrN_xC{d3zRoo9o>KwZ_VV|7B$B+G!kF`Bgo{>J})RXw&- zFaGt*OYFs~dfAtc3ynY)c4p}HYum>-3H{tBQ}trr`Yk6c+%{*_ym-d@@^PUKDD_s& zI-PrGqH=M<i&L&In=8v+{S01L={&V(%7c@(cUa=MKx({ZJ>r@^!Exd0=}Y*R9S%G7 z_UoD-cXn|8Ii_Q~z+1lmGN@F&c;S_3_&X2P*LyEqt=D?l{4!$KwFmdZ*DO)n`RRDe zx=?TV{>315{Y$T2msU-Ammuwb`PEae@N*ohx|RhM+{ZH>sm+p`G<){#z1834Y^&Bp zY*gYieY_D=?$~6OmL6l#_3}6?`m(uG^X~Gh>*vh!nD(bld&cc0-!E*ltvw_pWXX~x zfBt+vf4}~JeeHC;SP|Dw|C<@=Uj!IBq}Q&yHuZC3_PYt7q{uGJe$4kle@^hFU)@{% zF07s;>}~Sfx$f6X^^e&K0-$jK=Y;`px{oD0@iR93xR8~<>luIfS!t<Vb-uq69%+UI z=iX6JH9fh%eC@iAu6qqrz6pee{uRv3$;mPN`uyor+y8&+KhLlIc60sye_D&HKqFK~ zw!OTx)O&fyljqO3*PUx-=WpYY+*J7Z*bn~ot~cbF7&eOSs=PbZ)<=N*61#HXhme_* zCO(>F9%5VX^eZ9f<;LI6uU@~-&dNIT^wFb7k(<*_YRU_Og2ksb?@Gta>r?;Mt(Yd= zE5*M2PV3{|*$3Xo)GuoPvFIM(w;P|GK?k^Q&%ZB!xbpws@8$3B$<E(&(eH&KgMjtI z*VlW5jOusHs9(x|OsV8+-};n=g~C5nCvW*x_44t?$r<N@&z?U0`rh8^^>KS|*~AI| z2Nl+CPNv~8#qB$a>@K{@TFQSct4Y*->YDFU&NLqU#C(Z8S^Ca#9)|h^uB##1#q7I_ z+%if_FR>^4&U#d&KQ~Ec@y$uA+4H^S`*}f0!RbZR)*r|BX_u=Um%X(-`}^PB;Tpx0 z?r_`j-7UEG^vp&Feny6tbzz#3%{@YkG%m4E7P!)#9&_{XlrM~p$<{kL|7>2+&d_kU zbzNML5&O<hZrNSlzY>Hxo_(yZ4m)eIZ$)|Su6O*N^8QVW+8G)qx2}r`F=CfeJ@Ry# z-HevSuX+D5OHaL$5`Ir3@cEK{b-|0y3<ow|dByF<c~XAyPMb^YlXtjG7q)fTB6!i$ z#dxCKyd$7mI6X)|Tubu(E-t%Ecj8_)dzS37e-b-AttRmOs+qHn>(|<Fw#YHnGw>}5 zn=7n(MAxh1xO%O@w}hI&_Z#PW{bC6J_WRXQ<4eaUYrIfocwmwh+B#|Cqqq--s!I;H z=EVrhuQ5_Txxcz~-QDSSa<3P+Gc+t-G5ws@OU-w!$(A(&%2gk><$JFy6#lU^*y8v1 zjUY2*UL7q`t!=2jXmM70f}KP)_cZx{dLwqN$oH(;eO~fCQ$hYxyu!VF%9nrdTpydp z2mDHy<FI;lvHrY_J1qNB7OuND(M~RVlOO-dvuArhReyP*$naswmCx!^w)}f{h;x_! zR6B|17o5M>SWlNYp22ne^WUSno1FN6{(8NBx$o?6zwiH_C&$FFaY2||_@zmAyX_aY zc>JpW<G<q>U!c)F-g#P+?Ic!jbmG6culDyORqvvrq8Ew`7ale}?~_zbIjQo_R&V07 zZ&lO$jq{lHXU>zmu(bcU)tU>=XP&fQesu8IF}He`lGyx3?F<fAnnc~FgakUN1v@Rd zyp`?$JyWl&NvjilRy^za@-f2YPqjy6<V|fsNvo0!>v~%kn@gHXnwpxR+#mGeO`_`7 z`MX~P+b-~w=kdw9Y8ifx-7D(<fr+^_f$w#{wKFvMvYwYQ@j7uyQ-*be)LHQ_Yi6d( zERM9EZCs{v&-oUQEepe~^gDZ$Oiymk(NaA!t7rBB`FpFDsO~OuTQOaGX}`M?sD116 z;fvkk7M=Oa>e=%><#}!i?h1Q*>VH6v&i{Q$vBfXMzeX)@cag8+V6gG}a3wCaPebwY z*9W;Tn-3<xWW2lE@br&G_eAGgf9~#osmPEZeQ<JhkI<$^#j#6URCr?ZP0V84y0Y&D zeEp;O@^Pne6$is>jay+?vmf<cJM#F_@wD1T;oUt#n~K;}RRrr>^X?VsOQqjo*|)`m z|L$bFc{>)iGi+GkX?dLG<zWwn#>Y#K?fV;Q{8Mi75!G#T*QYcVf-?SAP{!}%ui{|f zUes<g@xVq|Pzy>`^$1(f?tLk|K}PJX=Vd0@&9GR|&agqD%Hs=@yLXS!rnG5tyR>T! zUI@%uw4>Y3wC`e0{n^cb1I-}jxM&un+&+9eG0^Fa>-Bd(%k|CsF6zig?<$P_Rgu&# z$8@0Sh2ljHnOjLyCOisppL^|v#;c=6;ol5YZB+~QTv=z{xEyTRiDXv3JR`3YyG%av zr@w4=e3JocdGaJjuRp)x>35ck&I}O(wo7XNF-sp34z9OSJ;GVC_h5a(-buI4Pc^qH zxte!<!)1sX*?)gu_XurL48H!(Tb}2UT1f4|sn$WBzI-ybRAzO4`B)+Xakx!a{r#xL zEjecvwOCAe$6whUd^UTFX}-g+3M&>{mIl^~&bOZ2-+fF&arQIIZ`Kz<S^VN#ud4d% ze;(Fng|>eAXk!gAXp2IceEm(W#VtAW{5c(8{0c2U=zeOB%E#?W7r*yF9Ii4c(5Y;_ z!Mm)js>l7**&al`ICy)}6shAG(|oVS<h^`cne|10LCl3eGi}O**wb?Nq9zM9)r;Hg z^*<@I;*9K?dDeQh2L8~%R10*fuUYEq#(6W$fzxsJmR(WbANlv}SFz?2{<v)y#GIX} z(<aRI?)kYir7`yX(oR0bSM3^#$9x}f+Y4@W`BgEG1LDCRA)$GZHMhkBodkHl-YHCd zm!Mjl@ZpQy%jQlwkP6E^?GmafzYl$w_wA^khNA23RaL%sF3zf`kNI^&sQcNcifO*Q z@!?a~g0h3Z$qPjWof9W*U9L;lsB-rR1w}n+5fVCi^7h`vFK*S=-^_wE76Z<TzI<E> zYMO8ty{So=GGXn{MJ+$db&I1ocRqda_TIxQtGKTJdFWO3|G-6|?*FcfK*=Nhoclwe zN!e2-+||~xD?d`-VZ6P%C*xj2`q$~l3}-#E1eId*+(CIjf&HBOu4@nO&Pkp!!B%^2 zq*I<{(eC3@GPX53&z`y^CH$So)?ZCuK5pp*rOY{I@{+14!P^3zPK8--Yq?W&udKiS z!d0#Cdl{-*=hy$Y;;z$V00%^tosrjxV>{hAZ|)BJl~Dhr=t^0?y6u9>>**5ajqyKQ zpMCU{_g4X>hoW;eOR~T3mEP1Nv}t|BuY@JV=gRu+A9q*zzX`e&9CP#V74GFr`<F+W z*e+SHV1c{E%$YL_S4j5r+Oll0Z9n7g#>x3#`)Yl{-Y*9u8lAW8c7e1s?e-{m?^dt1 z*}mw7;&T7``Emvc2m0;*{kZIJ&ns#4<Uk|yM@{LsEpkjZ<_SMjHsr3jzO++Pv7lh_ zmxB>4!rOM2?5euG$Lvn5N#yGACH>Dg+Ai6)?c1fL-p@X*i3IJ>75%;F<BSW=47WG` zty$9kuChD0SEwjs^Ou7W?Qgg5E@e3{7i7e)8QI*F&VO3Av;L-YNa$DhB^x(x{QBm7 z*>2DzLS1k5dxaJYy<qWqA}Re%N33(ok1z9{t~Xa{(){`NA8~Hoy7iHzs;X*G+jXTk z{ERv0kNwxX=3H)@z0c@di_A^6T7$6U$8Ym|ca@#rpFOj%C+*>m3uj*k9TPbFZ^Gy2 z=l6fP1R4^YcEviXO|G8l#=O|)%CUPNM;f2jP;}q!E#Jd>vvha#oT`UYvhM|`+NxG0 zmH)|)|9s=Kvy1D?J3EUjD=TZP+)Ng>Gi*yg{qux|;_Cm2Qzj%^FXcZrD`)3j;ihLF zE5mB??y%H3Pm{aw_~*6$w~Cw7&(}R{760`|`}Otp{gB4yfp2fj<?AI?Q?B|fZjsTS zYA11e)BQ4k1!!aVTk+F+iCtxu*Yd-+tX*~ei0q*cH-D#I?^5Rj#qaF1?z^gPZ!T&x zQrE0V+WzHW#LTnXs+EFPpWj{NrjdEF(K-52aZlR0PsY%(*c<caK2x@>u-<drTC-x6 z&#wfXbAGpN3+rFnU5&OmzJv46tjJmV60f%}24#}lpwts-7wajinzH`O!HD^}+o~5C z=P}hUae;P<t;8>X2j{2iGwxL%rlsEuS==(^{dBt-EeZW^^Q0Hf(q7lpe<VKParT1b zZ?1bmWl2i&PY<Nt<Pv_hz#9qmyKncrxOC6=<}t%rPcNHHR~O57<Y!E9?6i|dbR|9I zeV9DIyv++g7+gKIr#!Z}eZ^FDt3O9yDl+J3EPSqPyI^OxU1-qcrS-+`hdf`r&C8F< zUAw!W$!Pid{NqWsCEJ<fXM!@RP`TZuzlz@{opj?|X`xkXz^PtXzkRpxi&wJuzquas zeIV|C<<%>zSE*og9iJ~Q;GDT+iR$X-ectjuN?sS<zSB5Ze0<8z=BZ~IWlO)Ag0i#f zqnahKKITS?ws!)ZJMPMQ6z}XU-thd(*W8mAo43#ZcokHhX*_(UytqZgFW}Pe)zAIC z<b57_?RfjHK4Mqd{r%}njnq%>eeiza>+AELE(NRJ_)Ph%bb-E9{*(#a%a`)2EmXZ$ z)?W2;jrQ-_kLLCTImd(Vv&;i~Dg#uYAbOoDyI5|$Gw9s^|CzW&)%B$>|6K^)!vuEf zshTB~f8MpqYroWdB;R(4J(;<4Q~g~*&+DLWu@<CTtS!FyPw>A@R~PN&h)>O(6stYY z;)}q6Z$e3Smu&35H}y~L5!t%R=~u!VMa6B_w?uYTot$d!<@xrx{RT&q$uIst2)DF` zr_tBv-C^BR^K18+o@rdW|1P8b9e?HZ<<jPj@utC_e=M&56AVrpAAfpG5ePphp<2A4 zYG=@|gf~YX-Inc7tqFYpF-WzxLA!cJ)khzb`WBFn*VxEsLi(z!^gZNz&PG)3R<2qo zZF;OSxOmc^-Qh28?fo|22b7AY&FwdtetW8U)RYM?&L4OFqO<$%$0a3Sx8-L;TE-?v z>#v?O21WOYS)V8VxSzSBg@-G4uS%`Kwv@AP`<9F8*eiJLp7b?t!=n?6=Q)Fn6r0n( zrRwNZ>!3gKrX^dwekHs))pT3-yvOSG=KD%A{o><KGR5w_{EHLptF1ph{_MY^p;*k` z4(itS^hW0HUhMp0VfDUCN{=PZF8a8z{+6_EofpX9X|wvb?6L|!$FaEOO3Xw%iR#T) z%G{3!ou6NFR(e&+5*Gh=oqITKKoJ?4Zg=TbR;;D`j%R$FvHP`Z4YsAvecKmt;ZEH7 zPoOag^K)03cl}fVt4*=H1n!oK|L>?imM`KuMQ77pL2FPMvpvkyx2XPUKj&2mcS~>> zaD5JZ@r*b8+iy3{oq@`KnF~3zbIOl2R_(kr^>gE-X)+djzOG(#7G9uy`KeLzd6#ze z3<a?z^-|{)Yj-Q>mCSz?`C0USG5dj8PtLh7lr~*g=^XpHeY@Ruc|%wJLJ`$!30sy1 zQ_ng5PS@AZRCTFey>{w9OAB7xBY`fQpjuZg@^j#dXI<Iv1j5g;N6D(XFjaLd-XZsn ze`0;ziJzaJ|Ni#&_HzIEiq35;OpV9w=7Z{~DL*wrg4dpreRE23;nnNj|5@gA$~|%j zyCHvRsrU5P*VlKq>PBy?`SGy5zt+x{Wy9Vd=iL`(U-i0Hz3xu^#3=%uFBJJyYU@w* z+yC2<e4MX%=dNA9)^5Mo^(Qkqd9l6Hu65=Yof+6WKG%rsidve&TlBQ|l8EcCUDlGe zM;g}@|DRC*@ALe{ZoOI>8XYwT_V)XOU4nvwX1!2sU_Mf8#}&JGNlKTH(XPMw>h3ZZ zoMklr*)CbL=FQX&9$Bj`n)Q3apG@|*leDY(;cx#}<Y&sac7}5z+ka}5JY6)&^1{^r z3!fEv$7f$~mN~)o+j-yLZ?_LNv-itdhi#ddG0$G__lhs)c^!QAnpUQ-@3dw+r_ud# z_lm3HJwibSZpD>L)*Iy=&E9=D$nD%s`PZ{P-sq7ue%7tO@5k5c@r!HzeYp91X?=Yj zLz0(|+p-&bTdQ^kovgSX`eEX;Z(i~7GahZYn`oNk*PnU3B4=If?rST9m&@5!ec?<$ z(jnOYS6TkdJ^g>vx^CsXJII`%{%n7T@7}}vk3F*g);Tj(*iL(vLG95aZ=5fMOHO{Y z^=_i(Gq>sYoaZSWK5XkU;h!Yai-NP01DEvG)^~T#tUjcgqN;kt3T)xCFux;mMn-QL z*aaAO3;oYD|KI)Nt-tlZ9LBGYBtgB`hY@F`C+yplA@=$$AGeYDFLurw&KCA88}>@f zRbLRNWA1fgQQ;JU>_>kD*u9SYRgBSRz7eOhZgznFoS;j;cXJ=l-nZb3sLSjfamO0h z6zr`(Gr8?Is3w=Qdv`!Q<ox`AOD>#0UB0ipbe*sN(!<-b)1K-_pZ)%pX~UYnx&2p8 zJ@$&)RQ=J#tK;ZJXPFG7>NSr2ocqDz<2^!~QYO9Q_l(!y(l7VO0aOZH3H%(m;Zet= zS#R`a`EYu2d=X&p+SFe2`K-BZ^|$&jzyEH0CvmYwj_F2R`x*Cxo7<;ese8A`|7(L< zZLa`tRR^={W#?6^R#km{_4Q8i`HRjBM~-hk?|#sjy;o>cNtfJ(rR(_?x$qY*$f!E; z<>h5<ZSCD9FP-=q1?10L$g`g2*I4N}FEv<Gv9nd~kwY4PVCYr(iN}r|yS90MX%&a! zk@{~lcYRo*P%WZzFLAfEfn@eM(^hLY==jsJ(khPM&J4G!U)77V`@ao+rcxPJvyMIA zJD%G{^IN+`fYLjDP&4Rz$>+ciPvjQ2toh><uBpfg%6%8(w|nz53YhyF%Cq{t;hH`{ za#xl6uOA;vUMTXp@G~Yj`di7f_D!$XD*ja!c6LdNib+)mbD_L3gV-0B&w&qa@GWjx z^KX*Sq!&>2vS;IKO%qQg9gGn>^0@z(a^qrEH_k|7Z~nVe?doilt2&rL{i6#l`qw!6 zYoi{VFbj0rlbs&y^rjIS4I;k$oY20bZHfP{hKq_Ilj}iF>3^%(*gU&OXp^4rbq&RD zj{JoRp!Rpx{`MdIIR;)QewBE2oW0;I(*de|ZoO3ehtw@pw-U2G(g>=uUj*77*`L2Q z(8(+<&?yHL2H@CF<Nx?RHhIbf-_Ip$9e;5Ma(@wE2eq6Qh=KYy^?y@W_XusOv{OBD z4CEe=b0*pz(NNqS-XZkp_N2wHrwCXtZnqEs73QYj1s1owiAtL?VQu9Uf!i?QnYJ!d z1mZI%20CpM4RD&%0QIm*;whoWzf+BZdW3>DIfw|oban!jKVVPH+W-9A_F6&JBlVV0 zTQyJZQT+eCcK6D^M>c6!&-fCkXa|u|n7hurWnI|M?`ul*rS!Xw|NlDS!zP8=mJWVM zn4eg*y8Oy#^_u9<v7g(eYn4q;ZmyX%$@0VhDvzrAZ|xRbkl=ab^O>zl{d+}s@Y%}& zt{*?F^X8s+YxVE?E6<*ryyu^27j;A!s?g!OwDVT;KkQ~z)9RL;@ih8Y^rYv*RGk3* zIoF)aqwVkSiEFb}^m7JBQp1glTYtZL>J^_kadkpZ<+AqOAB5{~z6$Uy{T+UA%jeqN z8w???EU~a%z<yrtTi&U%v!;4=ftM!Pu1;g?%d5X0^G+kaQSOlsBwAi*%sMS>vF-5Y zU-DkF3hP!Hm2W7&Y!m3=qFZ@s`l5CVs3YgK7Cv%6EBgPQ>AR!zXSm13{FMJyrWd&S z+{;^km)AvBbr@fCp0hY3I&^)fb<4xe-@z*+syGzp%I#Vmr}KTPPRY|Aj_ds@-|H`F z{$rMQGS4qL@z(#P;yD-oLIvo8iYg9;?svh>%fDA%Up~A1XTYW4J=y8({%@}BY3!?2 z23rA2kq<U*`St6-LfvD&$K>v1{H?uz&1UPTmUZ_!FIr!623Le%1Q>EJZEd?Swfo=Q z(|5V;>ncvZT~zqbR@*szb$!WR#cS{V_zTq_;pB4Z>g|KY$7`aCVs0Kj^gZhR^T>~t z4?cvg-DfxN@B+C1S<XJ@o^#`A<maiA>=bI&e|5aaJM-Wt=3VwGsWx8((iedfY=O?> zNw=j<|NVV^$91xNT+wXnOWPL*>@5l7zdPATrT*qCv;Fz?;Wm1IAHx!+Men-1!K<}u zti^VJa<jMjn0!*@|Gq~TzGll7oy=`duq#sAwi}es+b=LjeK_Oz{+N#H>%AXTxBs=x zPGjwxo|U)$%f_w8YM%Jyl!Nlvw`H2^4ou9QH`RE`m6XRPPVZTG@9gL1=Y6jZ-oAAF z8s9VJ^rZUT)&jOH8{}j2IbwIe(T{$rC-eWqiPKH{f0ye9uhxGNbw+>ZTY)p~=Z=(> zD^zhLNbjn0x2?alUH86eeZ`MSw^h!6%4~F=z2#Qa%jD`HxVi~1O!5^fR-K8Svnpjz z_Lcsg^1ZJwH7)=4$}aTRjd@a^CmL_OE88K*q*AZ3_FLM62X5y#t@O&8RQSmK9Q(dW ztgl*wH}1Y(Wn(CBDSZ2G;|oOxri)wIz7{QAzvV>ehl_`W?YY!{oDOSW7aIM1(rvzj zHBU6o#xve;s)+e@Lm>N$z=2<19;{6`D)|0c&h<NrZht+zzpa@iX%V$(=bcN(#gxAY z98i3r*pQl;mtX(j2H*Kt`ct?3bNf5P`o`|Uybo^_K~pu+Yc4u7v@d99n3i-Wd+)QZ z`u9=aA9eD--#X9y*7oAgsL+MkMenxivD&f}a8z+5uvWd8SGDoZ_S%Ko<taPrRCZ4H z`zRkFzpL_YntGi}ryP?7i!I9pkMAoFUjDu3wegfQjSs8WF0Z&=e~xe7jkT43E*)1B zhZrSLA5~lX;DXqB&_t&F;}hQB4DMfx+4^b6x~N}quRpr*Gs-l{F&$|yT>n*D{O|7Y z9pZhp6(`>wDtxqk;p*u}`j_yZ&w8QQ;C#WkVaBDaw_ojiyia%Mx;KdrtJi-2yyk~Z zK}C01ynby?m>WN%j8gq9xuB@1TYIa&uZ!I+CN6$_VVaHE7lDZR&pxvIz4^4}r<bRE z!j=9rj`zMw9{luom%U1D4rikrlf{wb>W*cZvAark*8l%ke!uqm?(+A$cJ1POFFJMV zRM0sA>*Myi^~>G8aN)y^=a-!me2=MaH(&Sr`}%V6+Er&b?`PYVFUkL{RR8snr0tUh z-g(w6wk!o5$G=UOG-*=i<z+KZbBpO{XlT4>c=qxA%UfGlN9I2}H+S~jxqrc?Y3?eE zU%TqV+n7hE{(pGbDetZJ^ZQ!f*!{20KuzM<+`eMftA3B<<mAsw_QTfj%r?*e_o!Rn zYES#0FPHtFt)Hx3?;p3TB(r_LoubM^qtb_-j^8vm6brpT2Y0!u*xT>_>E7DfI?*=e zSdZjJi37dT=KuaYx8MKil=dP)S35naz!b+zrF%R7Do*eUj%id@1!c7@h^!{+{`G<G z%jC_%-`W}YKHm7NsH&=ZdAYy&bn7QOe87Y7^^#U48K3*ja&8zT9B4S9-t8t5IUy)0 z=!Ig3{o^D3*;oH<y87-ACx8DQk(wvkv8%%7UpLj;*~?kQ@jxJO-twyN@9whm%YAuy z`T3`(r_bMTj(XBAUuRMAVZqKncgyeZ{cwnTqJ3&Thsvd^)~|jB@5^OfH;4bw^gC*m z(|mbl?ku@le{YJN+3m&c419u5OLyB=e|vLnZFFE@;PGjo)uBJ1KAj%Fujpx4#Jydm zuRlCIEdSg6g<^;1S#h3uTA#(1Ye~MB`l|dmcB72V)^HoW+MIKa{ERY(xV{@2ufP5F z^78X1CMr8GypTNKpWjg@W9!z&=Giu<muanh=$-eR|9h@>!1?<5m#$i0I{r)sJ|Y_P z>juM-Cef-BliTE)`W9vLW__)Ue;HJM(4F7^kH(w_`q8qx!p^F0XAofjB49B=Zjb01 zi&uB&yq#r!Wrcj^$$3+ancTfhj;hw?Fg(!sB4E+}>>FF(+b?VW1$n;DztX?v`yT1% zZ0BVzG0*z4k+GrP_@Z+{{xQ|<*Vq60zP40<W{O;8;nUu4Z(|mPg}#vb9>vaZ@`d6C zRofE(y%oo{*G`0H?{2%V@8jin70wm5XE<Q>LUDueU3so)@4v4*A7I2T`BmBW=<c$z z2S@bIKAvo6#^8|sMc_t5SiHQ&o}-%|6{~KYU-(3|dPaWsy85WfnDBgWd1;0PvR?#L zG(hF>-Y56>9@<-Q=dgF4c%SHg-q@WQbt<(L3=J6<oF_z-eBBmRd1t%n^{KWxHS53D z%@du^&X<4j)$67GybK?fyioMum~~v<X5;PMW!omrOS;m3rV%OcGBhlA<8MrroPOut zo_F>e?$z%t=`vEUS^xFU#C>nMuXaDJ>hR8EJizxtaf4Ls?)71FKg07_xB4$|9y_JF zogu;ai$Fw++=b?J{z~(6q0jjE?q~1apZ;}vW3si$boXC37#Iwl_#0zpotCwTdK76I z?CEXRx95!Pqq}ot*H|cJb$;2%$dJ@4*Hr(**zeDZmEWeXEfe>vs968C$#CB#rLRRx z*A<@BWw79|Whq?T{%)1H-%l^G9YuB=@kO(rM4Fiv6f6#_4hC5hbir95dzQY0&DQI? z^?XmtWPmH1qbm;vr_M50sLf$u*!e=SLvZanvx1Dt=|4?WO>0iR{qt~N?$1|0C-17N z2fJ0wk>8R1(pI*uznbc=8+~uuZ@=fswt_wTb3$L-N`1GLk0GO1t|@&vdp`Sl*{^x? z-p?{Osd?nSDg9~Bfr&!Cg`V=#3<plVP^`$Bbz9mZ?p36*H$1IvZc68S#pnxiDrciy zlX_B2QT5+h_3<04PcCVney9Ff@3*%RYhY>3MzV@yk)l;w)yp;c?hCc^uN)S(?^65y zeLeTx9q0C5V`T8}m1`<{@h@P*pN4YhWs^)#tdM`nY?Hl@YtD_Ol{J@+voUO7tm25e z{A%ifhim7F&evY~uzGDe|L5G3q330<U%d@hAza1bv+JI~uBfN?>o;H8n{nr`vOc%{ zxA$>!yNV`OuVrRPYLR<Xu&c^_t<A&Rv!0)-v#&XsYk&UJ%SPwuExW8<CNneKkh489 z6I90+^_RcRQMEm~LVhOm-q)9#mw$f=s^b|L&N=cI@;#n(dp4*kyJNav;Io$ZTjv=c z3f~m4H)37;J1==Th69cDFBG>e&;EY(^wfQGy<>hR%gy_-v0_pE`&$8LMfG;FGMsSb z->403y3SgDMmFb4|CWFAuKwqcxxH|w4aheQopMRWpmetD?&hpz8gh_&Tr*lkDA0RJ zKQBXr*b7CoggHL~i;wOv@7?`ja{KoveTm1~x<UHkuWr@XzC6s#@F4JoVy8F%-BA5G z-=^vmK-#9~FP;CxZq}BS?;$VEz;JOvyNb-+<!t_MzpnERHe#3hs;qo8dXALMPWR7j zV0+Y^_&r6UVq+g%NIU;2(<{sV@rl!jga%G$6;@vav@dUM3;4?Ve_iT3R(bpSJx|Im zR{Wngb>ZsJUEmnz?3YV&tol&);ZETDXEN9KEPPnKR=qmx9EZ%!Wtv@}d~>1kh2ph^ zl{Jlzm(DZYJmm|c+usvXPwq|-wJ8qZ&j5vqgU$u#Cq{ZZ_ZFVrzy8MFluw7f^FF)% zEE8EZ{oJctwjeJnEPJ6C)X`V3IIHc2^rBK5n~#e#Hr4;%b)i=Zl;8{asyu97Letqa zcsc{OGUeujTp>{ZWrD>85!Hf}+38Qky|OkHK1sb7aDUpI2RoCiK5PRiQ4q9MaVy!Y zShDrh{`95Q7k9L~$BEUvxxZB>q}K8J4$w`2^~|<Ql3%`({rZRV{<WIxe;z*c&YNs= zdO0g!?zLB0pdyW7b>%D2Vwc(T=ilGRs(dP9Lwm+OhYwHW@;}O`Dr2U*4QrOaP>iqt z`*lm^Wza%b>pkrf)9+ln_d))~i^yLyjnq$Cd{j<vS)bBa^>B+^{Vwg=3I>LV`@vr( zfHu`cZc<TKKR(me<@&qT)3s}tx~^+7<oEv*@u#!?{VZsje9$?=)+IEw-bG4UT0WZX z)8WqAmkKQcP90}2FZG`8C)lYYk(!#i-X-P5g@w-^3srmAd~eUt^9Q#y>oqd}_U@H0 zX0J9s%RSF_O+9<bOIaa?2AAm_znzorI`;_MXRZ73eO;mczb6m(Ui*CfhgbKN(^Geq z#s5-cW;kFr?^l)N@2>*3CE<G`-f2g^I3+2#PTup~(%?VrW-VFy1&`Pn7&bcaU#!jg z@Wt-^uM*Yb1%dWPL3@rCH>rQmxYzJyEi*&IUdwNGX^>WCJuInufBU^}?ax;~g+ap< zZj1~E6lJbDm#kGRdAg|nd(rnp{qk`|yEEq0pFefss#fgtxYrB}M`jCGb*#I`H_!Un z?MaVM$%*Z|UbQLxsd%IE?JZTVzn=3mG)%s^qdh||{=pHw^Rw0?rBogJ1;3py*_ScY zGZdUIvpuro$v3y&`u|qt7oW6Gzw@m3(_4)Y{kd12zb~o3#lWC2$+oIv-Cbc{=P$hB z_g=KC*XhiBb3a^WS7EPr9wWnsH7;)y5AqhDIry4Ux8m7?^5kigzRnA@zx2EM+8Hhx z{i`;1FXeR@7%D*O8bdELyKk!uI~Nc%xmQ`g{&QQE`E!=@vR9k8FRh=)z@SjYdCU3G z^u1p`zmF1IwQoUoOc6JOgOk?-Iiuz4zxeYrFxYgryiv?fZ+YKf<@0MfI|IYK*3zmI zTeGjvtA4jLW1eJ$Y3#4(Yzz$Z=DJp$XlCbU<B_<qGI)8$ygM~}c^DWxGQ?gg8mFJT zv%5Thif#Rp<o)^L3=AidTIGsfTv(_XysV@3n(dN}8!yTW#$E@lU}L!9io9eaDCm;; z{hG^Z{3p+!e=jm|$`sHfJi|7{+WHgE&dvrUe7lDo%M|NOtve;ZwKFgzBwwobNU^YI zVPF7F>oPDz>RfeR1X`!TP`#iXbjU^|Xj!m>SQY3XbXCFX6CZB=uJ*m7C?b|K<sTyx zL&NfE9kwlh6&V<AFoU)*oB%EEVb}y(mV~^sfoNfGrEe3C9b-?r!N8z!vA)wXwrnjZ z_i%u={*gjhFWItXOZE46vAfH3_4N8`_AFbrEdTz#ySqwf+tvO$Z~tE>yTb77;%j>s zEO@ZK{%`jDf~Y?y%zi$bonQ6s&CBn<mE}tgxz*=a9oc1_xVXFYji6szTH2GxemCCr zN0r~s|9<CA%*T4mjgPd$)^ya|;gtRx_&V=*Z=Ra6^5f0t?Ye7JBzX8_EI#y_-}~|5 zF#rC)*R<|iEY6IYt{406{{H`W%kO`EcX#)?b?bh*KdQenT`yLM`|>j1=<RuP_ZS}2 zdb<X6_OyOn{T_|NoQ-~=p`q*J_JR_SSn<ZU=2e#$U%&fJ8nnrgnT_Yi$K&$#zg{j^ zbZ!G3b^FtO+x>TM*X-WAz1r2))yu1Eh2;JE|9gMjpSwuoto^3HZu#kV-|oG5cFOeW z<?rt7bmf;c&ARgL?(U<9npn9vZQ7*5yEfI!%j-zIQ*k6uz0VexVoL#zJ^y~aepZy4 z`t-rU=BGXS(<-m*>i+Xozh2Tft!KvCw6n9m9_F|AkV@cD{>Q3fw)#iDagkoxAvaLy znOi0-zJBf6tj~QN5ywMUhs`_<4#Mwh>^bFuduJVr{&_V#p10NMS+n1b7ry-wAc>NX z?_WQ8@?@%ZeYo2<fsdJg9`e^4e6L-(>eu%De|_&U{MYRk*Pmx!zi;QB%FoaA_x(5& zBNiKI;#qw2@yC+a*L=_YNSf)s_BZIjrKBSq8?Pl*`_3|1`P1^7clXX4oYH$Ob+6sE zl#V^}wye8eqci^OeXFe9+at=`bH4A{v*-Ez`ZyoY{r`Tg{@GDqY*zKUwEU2pymeVl zW#!Lpxwn<7JJ!7h9pSxG=i1+$&*x1x*)>g5N2g~_clwzbiF)xn3KT!(zm(43qnKW^ z@yz0Dwno?2#a6#wyZw>%x*toA#=L3iy*KCDZ|7Ob?|b8-qqVQ?U9x1!Pr>Io-><!v zldR7F&dx8#BWaZK_*n0={Q9|@FV2oyTb+`#^WxExX`sC^QC|dnFDq4_`2V~9zyG-( zQLcZ~Eo*<36z@D*ICEX>?pdeH?q+{qQOeKO9K9{aaQgbVy|boFQAw}a=>Ph$(YE_9 z&Sq|W$9MC^^YioTUoM?~hWW_Z!V_ir#dmY}-+hg;I1&_5^)JAQ{Y&EEwy$q)ZuXyV zw|?)pTiyEmX3UzEWtS&6{pZu^@w0TwVvgB_e|~p&_aeit#Q1$RJAb+-xgM$Cne_1U zdHeWXB`ZN`x<9J?<B9qIzNpVX|NZs){eH8}az8#gT6A1;_m+F=3BP;q%@KS3uBBJ+ z-}%d+W6C~#x@Nzr{%=|Rm0h>%cFS9rt;xT?&%W*Rzu)iOuNmCV|Kh%O_gnL-V$eoS zNz0;?%*>S$5nD1YPLHqC%#6u(>GAs03hAv*{PDI!P<hqr)khC~eSO_E5Hz=-?l(tc z+u}Eg$5i^GzSsW#HnZP<uGQ6bukVQ%id$zbo}Ib(-M0HLHrFFBOejBBmY)s^r_Y~0 z?J9qNZ*}<kKY#wHwf{Z-Z$;_$zi#H2?>H~>pI`Ul!op=A>Nb48SM6V;cDS8CKO<v; ztpjMU6KDx5zKvsu@~y-9^M6LGRHg?DK)dw$O+Z`m!KVZmnwpy$O)uy+l9~P?icy}) z)MWZZM<cQN+Sv7}mU(xp|91VBQ7HfNmyw4lC8vM>WRnSdrYEx>T**@Q&t71itJk7) zd((IAT7A4v{hNew>9xDF7in}UX?p#(eR}eLHTS3a_5a`1T@$*uukQD!{`e2mg`6t9 zSGH}h|Mfop-|PL=zvG*pf1jas-}?U~@ki4CKF|OE&G-LD|NkHApO)84-~0FQ{{%lD z<vm|rjOzbCwLe+^?_;-sui=^RcUJ$=+;@DYca`_&y~oVFc1NGty7bP?u&Vi=j_~|l zyXCuu*R=YjGk#aU-`OzvyTCE&U0=TGv9vChwwUwx;d1@`zm;cHpAWW@`gGgBUjOd` zk1zFgzrH>F-qim8!?(--{|FtfuJ=m}%XIzssXYJFbfX{BzuC3Szj5oI^VaZ3)dCgI zD&kiD@vdK=yTtNS`Grg7r+#}V&9wR^@AORmQ?;gMu+=xGs;fs#yo~ZTAN})r%CBzm zQ}T70`f;Wcr(CL-zjXVh$LE8!>T3?Z$)36Y(YLKj;<kSDQuw;Q_qN69Ihy}!_Mh&q ztH1uui$Ct)!&Lpay@CH;6)*Fuyn4jjwZieGs=w(c{`$|8XEt8(uJX6tdo;4y!(XQ> zqV><b&u8B1vI+*Q-W>BRp+_#s?6InSb$;cw?Y>$^t?nnwrtt+$zbSwFc6DCx+k>q# z%>u<0>n+b&-gD_rxN~IP(vNzw6Xxl?`PiZw)&HlSalY`g%?EyT=1!_tpD`<F*}~6z zk4PQ*@*@0`La?0LX?x#ulfFo4l-RaZEIj1C_4<1~n|*)!^>5A4SZ1T)thzqyc#?S8 z^Fv9mk^-7n=+B;KsBxZs>PppbVk@>h`M}^<#8_Dob4<_m(7KI^kNDZR!dIR#lvxqm z;aqj$@8-x`^Bn8vpPi9x^njt8XK%pN(v&hjW)2RXwb@MaoNkekMmG)#P4;P!%XtxH z&Lo}3TheY8wkYVW*)xXXm%pAcZRK8TUh?ojzpaIGtV&Z!lGfd6vm1OJC%)`R$O&@~ z{}Por^Bz-pS76$KHv(r<)IaIoX03a=;QK_!1NPio-)gx<R^EMI-=P`#t)tpz^8a&r zuCo7s39jGtBBq}?Coy32l77?mg%%4+F7O^Xl=>&PK~B8RUx>?KrrYE#v(u$r;#02X zD<9GL#~WgNW66zziGD|2TEE>`;Km&}^FeCDtAj75EXnQcN~tYsz7!@SKfhMs-v^Te z0$(FdrfqpI#}e*!Wy9sh<E*0HJy8+wqrI7yZE}44szJc#&yP2cyQkZ4)E8wmpB}nV zU)}JyaGcN<clVMl32o-fv;N<CBP+0^`^@juz2bRELftY3A1#*{&0K3fadYT1U8|Fo zyKhdvaNSh3USO^3GtZCfuYYel_<gNR#>d4f;#PgK3R-DP4!&UdneOMMuyvZT?!+?> zFL7S8lh&Q6(bS<S9U1w&YT=KlHA&1rb6#$B>#*t(bI-~5JI&CQvWPGInAf8OY2C`I zw2bbaq!!6eZ#G}I7MZ=v#k^Nvdm1%q-9gDbfjLvJrmpf`YFn>8U1N@4+$I5=V{s3j zStK&N-RhHlVF_dI@g=MOim`u~ry_SMPHv8&ZP&`G-zm3LP32=Xysm4<PUYG5@|}gu z=N;^|OZIQSapvy|lSQs)gSwa02AKLjx-7-}-(=b(?`wuhvf97O18=9!W$aJ7^YvC~ z8<$isx1(l=>%u99l_8lu^%J*D?X~YXAGh|Tuj;|Kueek9Ulz8?;Ywy{FgJ9WBIllW z<8ouOVn+Y2ZH#B{il`jfJ5B#zhEvLyQeI(`(_gLz>TFYT3B0#;#mxt;cAiDHDie=i zI~2K5s-JuB4f`EC_*!x`+D@rDxaUs2vBE;h_WeOajShQ*bmi%>U)|a)-Ae0q4pix7 zJa0HvH_i0l%g93Mg+327pR4xX4gA>a#QE@x{GY=<B|jLSgdDiQ`{tRM+YzI{%Gd>5 z4r#m=79X6SD$Vl=wRp}kSt;SgoC!>BfjKi+8`dtmJ9{JB-UV}4&FJ!s<Otnk>=kfm z)jY9_r>-A;yh(B5&6x>S)u!k9?kt}8!nQt<BQ(eH)b{H=nGTK>?9%U&F1d4u&v<h1 z^j4dKBT@5wH52$mc;72uu?^!keJpsRQ(^9lOP!BubT?``<^+iLt^R(Rg~xJHzCmT$ z+++=-pGul1mOSt}dC&5X(eeYXI~;uz*H}*X)Ou9+{NA36%u%klKW*0JnOUs-Rb8BA zhYKTjz4*)!MU52_OI9qiI$7{cP;~0M@TbmBiIEd~%Cc3zt!vxcWA`<aadwf?C6@5E zw8G3X`QR86k>gRbr){d5vAW2>?uepCX!v{cw=qu7MFJv~7`(O}nk}(0V(GT{+n>H2 zk=-G&^SGPSxn<j)e{Au7lPT!r`l5H)i(TFe%(*WHvWM0`S+FWFmG5%<=MrJ*<y=oS zt4lsEG~wC*^!bC!NBx@TUlMb14|>GG{l!Z5v&h^(yDmssUHoD?vvrZclHv~Q3#aoB z>m8_z*}+}3WF^z((nH^#N4jS>sJ1?H@!?n;Yjr#D?}aB9*aH=rw5uO<{M3t`)av14 zG+9!G{aVd5Blh!C&Fd{fTv=wE==f*G%)Wbvt-+5|k5V?Tp4YTuuV3%gYr-pP3ZK}@ z{K%;eUd0#^p1;wiZo+kgV}~T9(v&VUDb^^T5lFB4<5=Uj?RmlV-lsnUY}iGsyB*G_ zG~Nkc!YuHTMf0+gq#Y;E1f4A>_bfkr+);lU|C+}!zl6^u9;&%>_TtN;`UTH(58rEL zzWP&zCpGcjq~LRHJ^qIdiBERpST)^M<+y3)!DTbDrt$HlPS)h_R@0W#oGzX6>=etx z2YC~@JFcy~vEf21Psis8ZOl{eD!H6EV39bzXX1{CQ|}ZN6%+G!UD_k=WfZI7GSfVr zz5V1l?HY9(wTFU7wkTd<j5^x>q{^&5YVJu5Z-daCF+LluVyDX-oNTl3;)f~qPgnV? z8w(b@6wcBzEG$2B{Yg}Iv&v<*&h~AEALnnm&FXjhi-l;|qMF#d?$>9$c3WG&?5;H5 zhu5YK&$_M)yenKQy72O8|3~+x+ML-mb<w`*8GFAZ>^_k=+s61Vd)<m$DH-kOH5?Ld zY8v&vM>5?WEZBal+UASty@#?=Q?JCoOB9^8qh}GfQQBm$1u8;Q`YN2B^_@~|>E4-S ze9gDK*(XHL_g+RzpmE#doLvhHR+(;aW3JA+J%yDm+kv}QW{r%nT%Xj9+$=th=v&hS z`0n`mT?wi%dJr0-yZ)!@!wapk!u5---prWqbY(Apef*N5-mHR_#mDnL@4K*2)6OeD z_>0<O;nm9T!&6u{y{w#dTPn2W`$dz?hx|u_-))R)(Y2d%Vu6zDg|?%QbW0CEC^0Q& zPnEhfFC^ti(fX5*{<QSi9FW>rz3AS8Gq3Viusxb?{^G-8PyT-8hn67+wLUqEIT+mS zjto^U4hWgR+GJ4w>4NXnhc>%I?+4p{ez;+Qh*+KF%OlFZd~?3ck(?uP@u#KN7R~!k z&JT1n+O%TM?YN-FksrqMa8Aj=qitU^D`pEi?p(mw`D&`7Ag@GMTBkrxz^b1!Tz^?d zT@P8z<0WyaA~DQs{!~NHEz4PE|BTbS_@ZFuS2IC*x#M9TLA<&hy!Er)_8S>-b#?60 zVc%#eAk_O_H1O-!6*~eVF3+gy7BioFQT}~z_W8Bi1s10#&1?_1<Cluwy=m8_x^%f8 zTOQ6dwaeAWSQEQ=;$ORz{B!rRo;m2{?zpJFS8zw~x?e1NUl#aWoTRhM+E~VD`Dxqf z+wY|q>TFW`>H1LmV#sFJ`PqRd9B(AeUzTL8BswKb!`^iX-~JhFdix3@HD9@@dt7Kb zaOTpTSf`V2CdXZyeQule>l|>_eY5n<fyH|Jd)y_p(pCg-;hcWtthH)=q{3m{@4Fvs z^1q+JUUR_VO~sVh=!uiN43$~8$OUjt3vw*o%RJF&*5@g*FPc^|-#_@G_5FmvFA6W* z=JV?t3+??>P{ZX`eEWC&zn9<mob4X_-dwCFVf#bZhJC)C(%;}xet*`B0`X^FHvPPF zG<ai2*2(qRr?$Mgu99%|uciN;#<==A>3z+C?Z0KW>wT-=QJXq9Klj~>km;G7QVQF$ zSD!t&h}n4N?`nhCv$JoM2zsx2AGug<=AW8|1L0}Yg9KJcefc2p{q!{Lii6FbM!s1c z%^J^Ib{7<;S_NHKH}6>X=y<w(i|Ub;q4Uqld}(NNUB@{?hecL;HPf*<i`M8LI*_wh zt3H%7C`%xIVZ$CP0Y*X7ZEP&7*Cxvezsj*$XSq0Ey5=pj)sLLBp1)U?cfHDav@uw= z`s#H%1=YI?Yp&ZVxG(8`@W)Tdt@rbx_m*-O@|n$4c$Cxb-2BpV+VuLfUt3+Hjvrsn zcuitqNnZCCrrho?36d*qN+%1v*n8yMviGfPed8nRm#S7AQu*+v<NlS)dml&tI?gWN zQoZWLZ$Z8oDV8-06F0ZbGI|-$#nG$fYns|o(32;kyqZg8vDn5hqEFULFbYVO?D@{2 z#^UKN*XFr+`YMYbJo6h`mzq>h@t?0}yYXGTSJ9Iv_w0pA&sto_?raX!oaiH-V`6`_ zreEgGtXsRD%&fmvRbKik<K@-$)9mbc3rrZh^UpL+|CawF<5sJ#ueGkF@9&&<4H*%u znR3^qx$F~Mu4}2V>-N>(X8gxfCM4e8d|&PVDND%>lb0OiT4ZdYGWFwQ!=F~{8?3ej zdv9qIthVwDKlyo$PU(vBK=rB_|CKYQZuPt_{_f?9?6)6oo3rejT>njQ_Jg@0UTqKK z^1@!<N^<&maq{%gjiR%k)f8>gDvN!+CV6)xM@+-9lTN0kn<WH7-t0VOeDRJ>B+u%J zdN)M3OjuNs!@w{_)O6jN{T8QB29%nuoAKzu^u-Sz?w!`W(_l+dm-fGRx4sGcuwDKc zDKKr1>G|mBYxA}-&z=9^nCqVw0gV?@HuFAAe5m|#he@o@p64NfayN3lZ~Tm0lq8w> z`toI?mDm4W{;l&-c>5YJi(_o{_M&2bk9V=9o?6H`_pNaHZIh6j1&;$~9c2wa`_S>t zMYrq=2Q4O8>%1*U5LuY9>irf|iNCW7zP-@t+3WF>^X=`c)*}4d{FwQDGTEh9GjBU~ z@S5(%u-NZMOl;j5JF4nLt~n@Nbk%ilYMBxDnE8I*6tO*fOE>P=U{ITT?$qR_sk7>@ zeT#`>7PGhe$?)r8<Uy4=&n9p9_C5b`+ZUdx2HV&B^g0KAKKEeX!!LzVg?S-49|ShL z?z(tM)X31=gJ<sf$)z9PYRKhm*UgtNS+iZ<{8WzU{q<*Ln3CHj-*{A$>=b<M;+j4A zUl>i6El;0l#y4e2_VMK9)7jthWR!TxhfG^~_k4ZABw^Q!KVPYAH?-fyZu@JKM%<0O z-^I0uW6qt>-|#8n)$9BFp0s#H8-MYd@;v!<!rnP+bS|HAIu^6_fko8jNi$fN`t41h zX2dSZYM9u;Xq{EFtK$8Qxr?p~8FjDP(7TxZ#QwUIg6UIc{Bxfw5!h+w_V6!rL<mpv zx5?)dzn_1!ZC3p~Yp=gE-#aq4ED)7E(y0FVz**)iMRT%d9_X4TP<;JMvyOto$7W%l zM+X)!bf0?Bg{%7szf~&77A_xyckg-nJ$J1BF4e(Zc46JeHG66`9yKx4{@$|J@T21L zuoWfkeLHi$E_`8deVeoS^u9+g&#M3Z_e=HQyR+M64CXD<v)RID$UgmMijgDZ_UV2{ z^=0(j-yC=_amCN={GSpOjBgv5a;RtpN%cPM<Ond+@~idn?wqknQZD;UjrQ5*qKf;| zXB^enU|c`_;8A_a`r8q!7=8ymyu{#X{JDbd+sV{fWp-*4^B*r;d?bNWQ<?E`Pugsw za|)Z9QXc#%yZ%|0%Q%AFW_P{RIho5}zU6EbUMa4Tx8>(lbDOOl7m|6^%bND}FX*(Z zPxiiMc<i~4-j+M%{}+0Mv$lAeR`ob;@3`C5_kFR)r7c_ETYc5p&#YYUuNTeECsU$7 zQGGQZkGp5=?aN|r&bHsqUTwUgDU<(Efkjq)@4CIqJ(}(*T{yPo0b54ulSEN@?;no( ziV}g>?{lv{x_9pd&+}V1<@UxDPGb0@VNv09wK-+3ss7c&SA=D}cO_~qox3D9J)ohH zG3RPeTqzs>-9>Yg!gJZ<mo+`x>QLc1;a~RoS<Qud8+-QuP(K=eXhKGZVQGo^GR3x? z%6x6j_cKf6&3&@F)^5CeW!8KyyR%Ohs{da!?c<Gor<Xkadu;mE+twxy8M#}dIobG@ zNzST#(X-R?vy!;nGV#lY9~ZxmKFgW!aJANGfzq_c2Bu~{VWscNGmajpE6UJItmu;7 z&35u&`_1<0o_DO3>ccY~RWsJ^F0w9rBchb9DSUd<y`4(l3JI%Pk594`V0^CZVb&Vw zboa4<r$fs9qL{-5g~_Z3w)L~>&(19HDSLKc%BKT1MF&Ld9u@7`=r5zeHapi;ms@yI z2lv{n<b@JpyUQBc`84v)uh|qBtZg`Qc<0oeeN5Ife0+m1-m`dLvA+HWlkZpl9ciaD zh39X3+pKl_Uirh$i5*oe8{&E`4T5)fT{Qi1N$Qb>X<AnB(M@HlO_O$*zIx=8z4Co$ z^z^O^-o9mT!>?r>i#+=^bpPFhOio7<Wo-jo`%mXzpJXw+jxVj~cuel0MM2XTe0Dry zQYo;pi(a*1nnoJa%9krkYeT<l)X%&(pD{A3N~~e!Q;n??S7fRyIG;R`#2=$;$|*K8 z_z@$g#yb|%@TmDoK3<`-ERrwGXz&qo?>}Zz;a}=wC(X`xp`7*VR*StsOkBT1mb!;~ z3Fa(h%Ur7FUmmt<(%-mh1CfaHFGJ1+H+;3*|6t?f<u)&-7VUa4Rc6w}vx;_ClYQ%R z&OPOC&0l25BXqYpm9=u-5_bQ6FAq##A+xJm)p53~-mTAvoG$7vXVTBF3QSD4I6L>r z)cYH^S%<zcRA1E_cbrqE#!uK|_tq`3^F;42Tbuqa;kQF-(ALv0uALRWZ!@QC-y~^K z=fmpvoSMJdXED4pT-Y@+``fQNlZP%7-_BZ>e7jzG<=l%4_8xs|p!${j3!hX@U4n7W ziuZT7ns7**c`hOMWcOy#ygzb38V@9g-nSBpbT(kUdA_7Mc}?oCru1t@1`Q{Znoe%8 z7oNPe^aiWx(JdE0wjTbN6?6RFo-)-Efma%@&m7lUeb~?cve#1P^0;fsxgY0Asr=*1 zkWJ8geBiQ{L4C+SwTzgcW>+igf^}QA$_wpY%65DGw2X(3IwnZyFTQY?@1{=AneO}D zbF06r-05BOCq?8JPhL%=dLh4$TK}z5FUjkdzkJ;!`ub+C@tbdN*6g|^U_I9`>}LbN zmr|GVy6=}d%$571j*Cv0HE;hEB^4-ev}>x8Y+l2&gI>#`wE5%ZK06jRzVVyY!lf<r zWX>Gx+@;M1XTnNkx}<X4zP>y=-R_)WVg0sqvy$Rl+ULLZl=JbOR(!;C&FVI%JD*$J z+4+ptTW6+CV2wRscd5+b*Q3>0N}KGyiXXGt7RnS>P<CX~ld!vuT;~+;2&~zcye8jf zLwttKu4^nNSC^eLUnBiQW4=<!CyStO*}SbA#iTmC)wd|W+OYY8%$HT=1s^oa1vVVZ zTg{)9CbmE_S#(kM#^%clLtiTdWS`x8d3)O$qjqkaP(HqIu6(h7Kc)FCo7e58y@=P_ z`)kCP$!_m2uN7iiyr{MM<l$AH1;o_*88au&{=xC|-1@yNx;*TBrQAOX4Jsz@a@0)B zk<~Fde0Rx%={Fu&%hg9c-4IbaiSHbn!n920Chr-1i?*=wG&xVbC9&gre+Hk%6enAj z^?^)cN1e3FAK8dqnsQ-X#=?bPc*HBh7r8cB&x|~9WWuLhnH@);X&F4r_4j|1>w5cA zTf6&fGiT=O;gZvG&PS-$CN8+Sh3kFQrB|Z*UDCI6U*GPMi><h$@pb9OdXBs}sjDR) z%WkCKI<dR`A>-?5jehO<(oGgq(^*{iW~-SW-DYs@r?t<m88dhPyK~iJQ^SINxre4a z^XL-tI-TX`Q*-N@&hlF`T$yIMce1|e*qXFgs7%<X=^NA3i#{6V5(>GSZ2fNk_Iz?` z)4si$PO47da~CghYU;_!m!AIVxq=qcwR_Xqa*Y%OXS*8;IcK(&i#^{_$ni?ku6Me5 zu8~3g{9lje-CpcawJ~mS!?dH3cNZt<b9WcMbM(l+HMN3`k*#5_pFEr51!2kS3M&MT zn{x0K_lRFJzs)i;ZJprPE7GjjiUN6pFZ{Q2t6seGHlM<>_l~P0vVFZ3HuxOr^K?5Z zEw<uz1^4rvQ`8^x+S{yjj1=MDcDs!+;ze$Nj8w1O|N3XVT>2mWB?J`g4cZZ~)ckjE z)BAw_J>T@zb&uvnN`_734)#>s`Eae~(Jv{bhS`r(i&<Z4E$}@tVO{BsyZ2uES)56b z%@I}hy|XAJ{QIv(X2*ML*9C0Y!O6MuNa)Qs|IPbNU0NUOel)PsKA3%RzGKg(zbvJZ zZ&i00JaA-CujM^Z?;rhpcIy=Omua6w9NJ$;HSupt53pumv3B>ZFL!VDO?Kd`7U<ry z<mmp>U+p%>D0k(1erC|IvYR5ep~sqe*Qaf%A6i^v?!UUAduA7xlS~rlrS<c9n)&!% ztA=#N<}z%kN_61T>)gob{O`q~kOS<Wgx@(OR|kK(={x;s%lw>2GrH@UgTrFi_?j)) zQLY}Bf0*63Z{P2|>USJ_?;hu!d1($?&3kce_TRrcpJ@0`lTK`G3|<!a(tMG|bsLF^ zH^1(@@cWpXvCfP%funnGNciTdH7#Db{nN_WBMqB#-Z4Dj-~Nj2zfYz6Es2x~p@kh0 ztg`mMd$W4HI5h))*vjPYRJ3NkSpTXt=~l@qt-QkyS&u%Oh<n{snWpvlwdK0qNsfYT zPp-y_^62kfx@zSQ6_1l;`Eh|sH<fQ`a5eIO3(yJqzf7UGGVnUn29tS}f+FfGxHp|t z`|;5(iL-3GW4+LUV<CT5bbdV_8h1?0lV5$=q{9^j%U=9j;B0Bc-*0kbuBph6eGWnO zr|qZQyVl&>c<<3I`_9*Q+LDATlP3GjyVWJiyiz2p+dK65B=MzOt@ni9DC-_QpKdaL zd9$Bz#aFSZvWJCdS3Rx!#Mte*F}2DjZP{~&9rJGqg>ss&y%<^3m>2wDVJg>#vxaAV zZ{AVK)9<}4qVUAee3i-K1%F@u4VY!Ov-<IdtF!A_W81DQHYmwa@Rxt2p>4kG%apgL zXT0OP_r5=Ho!Phd$v)<@+T)(A{Zhgcw=m}YqG?Jo8hW?l4qJsCeEewn$G+MBuE@Vh zYUBTVP;&c+EA!9Y?cVqMaoz5JI#)7Vnzy;FVf)je7naxiW5xX*yU4Bs$&p5fZ*e(9 zN*66Y@}ZJ@W^p}74BPtYNBzCeWHeY$jK6xxVOGg9&q;HCYxVRLUb#{CXznY<W8b`z zF8nQWxIXFRR2>76*@n}e&8UhLo#D6FE^$vp@!q``J>F09G5fp7{az$fXP->c%-MnK zmKR*qv~IsFbbiL4<YSZbZ)&WMc3vv1%*kM7a-b@gZ=;)Ph0P2#*LtHq$(Z+IZ}u`} zcHH`CEcH`t&JC}uu46mm-<%13pe*6c&$HnBUaKRU#1muud22d2YPTovl|ES&7k1xx zO;+vxw0^fECkpQ;<}6r0E8?{OM;67?Io3B_PAT}>y4~=dn(%;s+1ZC44twUg{1u+| z;Yjrg@z2uT5*=T^xm8vz`grmjk88)|M4g`RtX6McFW=snV8O&VUH-DZujtjp*LM@O zp4r`=72&*iv5R>u>+N5{(;F}AOE9jVKI^i+5~I!Zy_fZkgnaEAr&O7rITGF_yJLTV z^}mk>)0=DbOy&F!`BX(8H&DB+Q+9W*yZerdrYnv(ar#HZwEm0VA2a=0jh;>YWuLIh zd+%4<oVwa~xM%Tt`SclVt9QKbxV108!{>(O(bhWYYJu5>7CH}w7B4G4^hupN^Zjm_ z8;Q!Mcf0RKTo=mbnHVTv^~FK((}s!b+pqW9+CBXLYU;h0IeTwKJY4?u!&K+Z*Jo`w z7`NkZ%+6V6=3g!}+;`S~x!LpG{A;UJIVa5&{O+oJbZe6K$)}fI9NU&%nH)cTQLSDz zBlC2*Iz4wr+v#a_dd`gO(^u8$nK1fKzh9^4!t{Fibk%x2Ge+y_G4*=Vj9;f8EHm<8 zdhI^_P`#ddeg1CGzdxtioY}@W!NVhVo_Imgfj{a|E)1@+`gf-}Ic>QuV=5He-}h<Z z6>$|s!xc%r2cJ1cytbNsaO0#mKc!YEeW_7YvN+Fw_SMe5yq54M@9yVqERu*7SI(?E zn^kD-EcxtWrPGbwlFvV`OWu_6cK&hRD2emaCOR3icg)IlcvW5h*4>;-{vKDu?Z>A% z4>3O3#i%;b>!ZHP-;PbPYOF$`y%$&TSuWmscpBsM6=uus9+vdH{_}*CgZgUksVncY z9)Iw8Zo<LV)ZBY7MXzjl^ZVNg!*@HhPA(4<+a#>bzG2HLCY_a=I-*YOxpkNEb5dUW zY55&{e?1V=k}l>HZI5(fJ)sd^%FkWKQC#}CquaRJDmb?DNZcRo#Ba9W&!3;`adQU$ zLB4HFi(S9B_%AP%uj`!ftoTD{SJk_BcTXLb(QDl#FyF!QhUa{pH!A*OUng5B@}KsM zI61lh@PUKVYu;LG);Af?$yk3qxVJ9gP7B|LpjmuTo@cq04ztca_%Wr8@j>-^>y<Mr zOlMU;a^zr~P<_&_wfcnB0hPi9y4}ogkK|~1oI5^w_uWr7)<wEL`eczWs+sA3utAsY z_ukYE_3H(_7yka}Quz4gKhr;}1UeF)d2J6?mDwc5m9Ti{*5#kf^tXSj|FG}ft7~#` zH*5Dcu}ukmb?V>B?DIckuTB3hGc7Z{AiGaeq4aXtYH7xW%fyW>zB~-f-)QSKyI1>W z^nJ74X7l!c2$R0Pqj>)houVDDYAre#{NBrK;<L!U>!|Oic<Y~J)RR!x;wG5}R^Eq` zk7%-Wo;SE6%3JW{rhwg%5bfM*wyE{Y{2vv$CH?uLv``|XNTy{^T$z;9+DyiE$4{2j zD~s5;C~TR0V;{rkqkLQT820PDwO-;o)$eok|ELY`&&l#0DSeYZ-y>dHb@hQ2&2j;{ zHXY%@{Y5sj#nvyeeYE`NT8;BYK?k31?XF^JH)=ARtIXi>{r7gAkFG~{h^)GEVA9jJ zZS^{`n^Jdr>MwlrtY4?{^MbhNyHYy!qbxZXy2M_)T7Qm9j5U1Ll~`yS)Hiu%>&!PZ zTAg<a)HnI<_3gRwW_PAmjk8FP|4CUMUBy=0b?Wjih0<|*@5x*I+%>%>_jqFRa#j8; zu8F<R+``*V+=>iKNIW+2ykq0<z-u4AT`vFfvTlF<XJw(koQLQBIu#gO$;K0~s%m@4 z>eX+aESPR(9dgw&dgk%4^w7)CuIyBo$xBJgUdI%6FzW3tE-9`xSyR&EzgHc)wJ43F zPx)cRch;kMi55}|{ysha@Sd6YFX5I43R_uiI8wrV7*_s>vROD!dAqmDfdi#a4hTeN zeX@Fx<+eD?tG~X+x=XupTI1G5(={Icu|L)jvB}ygI(q%Ky}8?6-UfEfnjUsFS9Htt zYwf)aGD)*uZeZWIZ_?7=u{npQ-(@g8lAONPGUJipW?y6V#WzjfPpP{0>G9(Qi88-J zK9|Ytl)LAfd9B!Y|K8JPQ6By?&MV86Jl`!RXZw>g=G?N)(=~ZA9O^r=Ug(~@$URy3 zrA=_*^p?DpEYgRhbhpm^CAUt(WdDlURpQ4yUNF7-oP9<#sNZeJrA~?DdtLQQl@$M1 z*{}SRuWYwBKH~AJjnW}IKN|}iRClhvsDH{S$V62(UQuq>)XhS@?qPPSozWtPZ|TPR zv)yahd?{2eBkJT1w>uZ6N?3K&FMZEfTAX>%#fLrM+0Oqv<~jVEd#hDh<|kWPmwQ87 zUiRl7NAxl~Z`N#2W@x-_rCjoB*>O3quL}N_7hXOTZ~o|4dR&pAt@Pm?OVh^nF}J6G zKXxHVZqD+vRi}mdpWb}i$9>sp#mU9C|4#nt)3<(9lOHv|>4rqvJcGnTtNe^4mT#&5 zdU+Q=e|KG>wc5sl%u7{ASB39ou{Al?on)KA>SB4{;OTK;ZKtWT9TO{7KJcDaHFcub zQI#2A-6pPRch`97^Z8JJQ1ddKS%;f%)yevQa89&3F3zcv@wqs-`To;i2d+IhDqoeT ztv!A7YMvv#Vz0YT#u;#5(Q@43__%J`e4)8j$w4`1)z<PpO8E3I>1N|&>(dXvv>a($ ze(zGpZjlRO_J<wU%1-CfJ#(&QQtf}0MT<R(w%#~<Pk{4v^@oQqCC!|f<85Mh<!zrV z>-ame@xA<&>VGwVYqksLSj=Dwu)De@^lRwX+j*~-mFcD(-dV<;l^JmEZ1W0jF6Z@= z=ImORtMUGJ{8qP<2e#=SzrA41jX?dccYQ5lBiF>t+B9RI%I}Tp`<f-zl^(x)a8lgU zZ*0@~o*0T-w5VCNuCnk<f8+M)UcK>)ZAaPfOrFbo#kBGH?T3dMboXCcq|;n-U|CdY zt!I+d-YMr7?Pz^ctG<?R`m(RqTJ=X`JPl12lpDG2_57x=()awVx{D=Qt@AG3yDX~o z`fcT|#fSgKy<J(QYr8jF-aS@$?xk+4pU-!7@+RqZ>S^y66Q6Z`&-nw3%U9ph&71u5 z?B9FeggiX9pYGqJv|Hff`KE)j)8?f$Hrg>Ac<s6V;J$-0yXqu4t!36kv1sf|+q7Z9 zgX#X?tU1{dO1CI^@lKEXX01{GxRbB?RPslaKi4-kH!ZPQxcp>O)2h-arHK>veBbXf zYkqSRbM^On-c!A6FIunY{n*KFR?yVQJJ%z@`Lyl#Ez_mzD=ZutUO##y%fztSaQ)82 z%lkKbUD~=~;^Tk%Z;JlO?y&iE`B35A-pSm*vx>UKcd3*wKGL>!;ci8Kx$FPuMb4<t zuKy2Oe02Zc!~Zp%wx3_9*okh?o1<`St&PjVyJ~Oie}0<(#Qy&e)jh4|OY{O7#qa%l zxxfDB`v33V)^pCg|6%$W>rnPh>@RsklkV?(u;b?KpX>ks*`Duz!v1e_f$)i53(tH{ z{h(*|rY_anuTF9|Pu<(TxIctvUG+gbwtd;h*4Ha~)EstMc&4-K_vDAO4{@p2T8hrw zC(I+yCbQ=9L)rR{pAQ(GuX+Bs;;fNubNSw<9Y+m5am|_I+IBNuRW_{oKuh~NyW5X+ zOrMHP{j!?<z`dX=|BoIQ{F?h$De1ZB6zA@U`#+@bRTfTJl-H6{>tVevrJytQZJ%w^ z<k=#-r3E`5)L&>4JN1rFc-pz6?^2l!+E-qRb5gMgFfKVMU68q^%SzdK!j?M%MgJe@ z_I{n#_vdkUebp+39`?o7n!P0(4_Ht8bf?y!Ons^2`R64$K~lvrPBZ?5YkPNStv@+E zsQPo$T$TH`OxgDMta@j-;o+>5s$=H%%O>A_eBIda#g2#V$Bz6<=5(*fK3R7y^Rn8j zFYip=i<B5wefd%HLSxVSUo)lLz0$d43*YU0##*oTRBn-R`T2l#p8uw{bu4#1Uw_c% z4#!#NU*?}b<Uf0O|IFe4`Ogw9Wj&@m$`;yD`RDdO(dbQEOl0^fw@!cCY@|{@-T7Rb zjmqbxv%*uF|Ln<?v-ps2FaM)6Q{1}#@wT`-g2pzcjOzQ3Rd4UHa**-soaf!d%wFhU z&U0DrcD1)mzy9-H!$=Opdwfp~fATI4kP%M)R1)2NOY(8~10(&uTQ3DSSbk-`dF|!K z_g|v+e@Qc#dad$d$5#P6<p+@#&80JJ>zjA|ep1S?>*MCS<!j{s)az)zzJL7spTqv~ zb>EM7yf1#ao$2&#|N8%`lWy!!*S+Dvd|S_S-`_89Prq0F_vZh@x6A+kWSwud@`g2M zzWv|3(jR^@`RjiOFFE$Sf>*y_>3?(kzdqp~5<55!zMc1E|IdBq%K3Vy>IH))EM<H? z*G`;yb$xx|-`W4fMV`62<kq$QIq>%>^TaDk@~@uDEEk`&>G{EP+-LtvPF>o#mtDJN zenCMVyZqH}cb=d1t-So7-Td`^`}4kSviF}nlCR%T%zC~1Vb-?$eTS_Ia}H;_oUuQV zdid|_o7s+)3%4(;S^wd_i{|Ac=^V4KcTD$+{Ac4eQ~2HS+4a|V{QdZQiqYp;+p~}D zQv9FzFr~)b@Nf6I8*9wJ)Egz+&pP^k&Pk@d)m1;OTVt8BrpBFF|2|f$`oL=Wqf_EL z-upk^UzPNjd*>s=oHm1vkNbP4@Pw2<dBuJ1wEX`kN?!%v-``nraG~71<`3=fYl7XD zzx-5x@9$A&>u33v8|w4^Ot1f8ddrx{_4j1wFM|J9$1h`gcKuJ*(!SD9^Ol}1;IdzK zY2!m@<qc<MKgoY3kXxTUxjr@SG52iof4^E^#9#QC$eva0*#7jr$^2Ju=UlHlT>7fQ zZhzE-^&i61R{ojEGAHnkL9_UW)nDK3p4;*^zDDWK`>*<SA6FkYI%e=M$ait+TmSkS z$HF&8Ri=8!>o$KBKh~i?=W2M{!=-EMj-HSIn~<_md84v(`nvi%Dml)jFa8%>e^ak2 zvZ-0W^-kiX>hIOd=dID6vt|FItH#;E|GVdIy|vYT>cmP@>3@&AZ+^)7wtqozyv}X= zH;lRckG_0tpSxi0HcONK?7!MSrwH_1Jgz7i?^A#1$LyswGQaOzbM^~bzW=A@DS!R_ z&*;=znST8%@4_YK`~UiTS8U0a{Sn-YVt)s}ezscX?dq@F|2^mtGR>HE!s^W54_CG~ zoGSfZefg1fk=6TuT)bId<0rHIHO_dEFHmCT8u;-acZFNt+*>wB_W$#{YW4c!!~fOG zKg5-PTm3)EJiC5Q@4ece_k34BR`|DC{IF+Wy;|FS1=hGimCwJ`PS4k7?PFfh8+Sr- zUHr7y|8kc7*;V>X<>1{je-HMq7Aj0B|8jqdf6Qj_cP~FKjt+N?*{*I@pZ5BddEmjI zpD!Q1zkE=<@kIZt1jpExb<gc@e}DhgX!VMqA5+`*be*zUpSb_dUWxjr_wRJuFRotr z=&$&O8Rz!iu=&IF{n3a2&BtEskZqqUo-7#u<Y%1)kKMvI>UV$LlT;S_8h^Rxr>f%I z(zoAt7`;CJX4Y+g8<+jF7x%0`x%Er-z0${1F2%pG$h=<n->UVW(bvCCo&Ud2Dqr6J z()#b7<gMp+Z~Q;w<c+Y`6aKto5$gL?Kh3PI{`>Uo!p{1QQ88hhCs&{SJpI=9S3m7P zFZ=cI$M!qREGri||6jWOgI4LctnRn2o9y<@*uTE*`}~z}9`62Gxl(d{&Hs3h=TFs+ zb6<b*blTJIk5xNWe>u(5KmL?;{{D(*e-1vh*!?T=uxPuYo%F-k{QI)MOMjjI?_s;L z*~WX@m)8GOEsU(0H+lb^itQi7v-fPxu2-u5>Ro>Sbhp>_`8QpEe0BRf<L=$*_phvx z4^O*XpL*@{>c*cJJD&egXm5{SckHkE+Sk8tPV-M(w)M~N>$fXET3_D#NV;t8qe7GV z!!JMhgv4!A_S{h#HS4H5TanwFPHX>jl`mQ%LO9*-bQx&L`-|D!`jR`>>F3>g?)>_{ z`#nGXXYx<@CIeZYY@uMF09~JKVqh@cr`Jeky23JDQ5GXZbMxtii%r8-OpT4u?h`XM zMiMYmFfuis?zmJ%LBz<^82P#|Lj@yK6UcR8CZ^Lt*M%{I1SZBP3WIL-N}Q!8H+_M( zobdEt{YFC56_%NXO<yp<NP2ogg1$17sp<5KpB3zxjZ96aGhS2|ovz@n%R7D7BqPD; z4t(ld(<fAz%m68R$fs^GUEs6f2S(HB6MZzqrx)}ZeVD#_qLIM#hFzxejHZ(nCB?Qc zs5Y@?oIZPs5%=^;9#g*QW`~Ugr}M8d)vGr(1qA{4E;Rjgkc&+%VV=`ZH#AT%GBq<m z5&)?%Gei<F0jYookbb(MDM$bwK>F#179ar=gceYMnZd%To>M>F7^J`qp#W?o{K_`{ zbg+p?t~3LwM{=d5f|02?k|P~Kd?YuzfcQvGbOrIDF683m)K7N<37AZ0{HEbN-A3Ga z{qzY63RcsY43(Ko&8G*xRuY|lfX`HVdck)Mmg#j8#(~pi4jXYz-hESr*~rv<`a%PF zvFQR9y33|(${BM{pQWV0JAL*=Bc91t{Je}t)AuVWXt5ZXnp;d4oTei(ecMGNLq_xI z7q`ocPLKboF?+hFf-%qZpDc!ajHc5Q&&laA8<|>6et1)K`g;Yl$<r$pjkzalKICOK zGBumd_|H&(I#ZB_*z^Qz-8a*_m5jNk-&8i^oBoyGSa7<4vVt5)^Yn@5<V2?{thSDu zUa4%%Gg<oy&vZ2bV<BjInBK6-RD8M*r{O7PQw!tihN%W(jHc5IE7T!Z&B@A(O?OZ- znKqqA)tGyF<z{)_=|+OaLemo*b-{^AQ*8R&zZ&OQj7%*|r|19E5S=b2Vr(?M(O64t z`T<4b%}f?%(;NS5h=LuQ*k`0aSx{SS`hpm_zUkHK#yrz4W99g!&lEN0o^GS5017~h z>4D#rM5il=o8~f`T3AdsR52D~G@tGmDyKL7fUbi0w6&IL)44T`d8TtX>GCq0nj234 zC}AkZXgc|$uE_Kce1<X8_edIZPY>re<eh$15)=^s3>79n)DxTjLBlL^x}=mb_jIY< zro7W9>MH0@kC!r*n4Y)WbQ`m&rP1_6Ei<v{I?~4O(<f+{OrFjrW2`k@z)G!qdX}uQ z@pMBEHL=P3FL}2oY8s0%GMieOOy57*K#a-Ma{5F8W69|k)|x4UIEhR296&VaM!)Gc z^2S`#rPwtUrhjmeZ)Y|#wVV#V+RvcXLVUWJj`2;9O2wV3p3^@p)tSj?I(^}GdA;c? z6pbaeTj?1GgRHTfK0)7DoY7!9qoa!C^bK7G3e08(hSM)<89Oi<Om{TURhph)r64_B zV4~6#W+O9$=?Cwdn@vA((o$f$y`gc~^u$g>@#z<w6-1^VFf`si-C%}}{`7mQ#^Tch zUaGT9e|1=%d;1w9V^PNG{%Xct{6^-6NO%01O<x$RC^bD{g^ntdnZb0h*USt+mlY~a zzi6i*J^eyH<Lv2;_6p|HC&*jNfUQ^DsS3GH5TxT_6r&!a+4O~+`eNJ6jjb7(3@oP? zwwQ}f|D<bdJpJNfdC~2&ER6MCnG6l5pRP5QWHL0Gyz#s;qQDg~HHBwp=mn0ZhSMGY z=qb3Fn!>X&^nONDcsaqT?*=MaEMX-JC#Sxfv4WAA0g_>ECLn?7i3^njnT^a0r$6L3 z7MZ?G-&kn+g&ISJ>Fx%`&~muU$XIZC!6N10>5~nOg{BK6noCVDNYEE%GBcd)Xkri2 zJh{<C5kyb__)dQ#lbPXk$AxMZ(-VRj-%p=!Vk|hFzuEZ5^k2rt0@K3u<QdJT8}eDh z%Hf@6#@y4RQuX<!uQUaz1eL>PMsTlz%V9GkXbA->pg`rYnGsSMYG|lnWM%~Ss(!j5 z$g4(3g{UFOtKh5AVP(51NDERiYG?)$fR>|CU~4QDjLeMT;iaE$1mYu=q#z>@wV{4G z$OJ@XsGsf#Qjg?JHxPe%VzIi(<OOUj(+$jY1*Y?^ROXm&w@$@&x?8((4wJFjbVDO8 zi|MwDEtQy!%)r-Tica28B|SYi)_`lecZae2bZZM^uIW}YbW|D5ra!dO6Ptd3Uw=8H z+4O=aMv3Xc7RG|p|4SHhFq%yl)KwLk9w1;U#%yM62`+D$%#5ZN?lRS5GBcT;I73Hl zdcseQSxiP|(+@^7N=$!TYb-e3K*m^}(QNX@HZgFK%V;)zV+^CjbhmnA!RZ@BOcWSR zASLPnLDL0%W+tF$g0vV+45sJS8$<RpF`7+xjAMir%y0Uj1vAL@kD+>?{Ge!HB|cqW z#Vn55%*15+1Qj#U>8=gNg44Q<6{bIoXB3-UP}k04WM*PIeP6$^`1FmfN_vb&(<l7V zkeIHgXtIgf%*1T^#R<mZpc_M7bs_%YGF(0V%p_Pb&DvsY#ApI3O+n=?$TW-ThOu&D z(+#F7=rbFcnSiPtvFQSHjkzW#JWHHzIR#W8s~Gb#n;DycOV#NI7Ac5=3sq(_Q-kUL z{Dz`TX2#PMWsLQh%uK<#7gAE5nhL3xSd7e!&8AO0EH`ud^iE?T@ZPTJ2Rn?#w+l`) zR%e{v&}qyyea1^|-s!hHjd`YXt}!)HGc!d>A|@sV3Pxt8NJ-hm+#Dn_T`<kuWcveY zQy#|cUuPKGF*2G?XS||iIc=+@GP9AH>EuQe(P?!`GpC2^n`BL&CvPeSav><Lr^|ps z5R^uy@9sC|nI0u&!aMzBw=ws0Eg56g=`0hB#X;2#_w>K@N?Fs-PB7+Svb31Kug6$y z`YI6<wdoQQjm4+$s8F9EYh(s)>p-I0$PBrdG&KkNn#ss)^2VEb(|INtOH5B_RN|Rl zKi~KhDBcg6n20f%nN2t3Q<sDmr)JY1Hd}xS53}iki!?x`huL(&bC#0eGL_M6dg3e% z^XamSjAfb3%(g3j)#qhoG=tX6X44%HXo+o~u-LeYQQ8bt=z$%DdiAcEnZ@*n-G(vK z109X@r`uo9<p&kS73yO3Z|8QF3x`iT_J8)fFH5ZFzMJ{ZCw<xE3uhYzHt?$HG;V0q z<>uXZP})pl_E7<YgfgKdk28G-Cw;%0u;*dz{qpE(jQI{u3Y_`tVq|-j@>N&Pd$srV z@44>_T6CtrUS1v=zc(l}_Lzr?P^XL1L~K+&rl`};-@pH-*|@s8ii(LHYF_R?|JGlx z@^W*V`!{Z^Nc+jm%<Q%}u=3Btc6m1!mjlh>`f*2&9Ek`|`26gw)^#&8vv2F`|E@kI zzB~Be;!D-KAWNStk+ZM+lMv$S>N=rt>eQ*H>J?eky$;W>`^8xw_u+BB{i?`12ZsjJ zH*IZg^K2@a`19`WO64_ezx3he=Jb9!+n}FG<z1I1xF}65;CNOwq1NF2W;^3RDXS%g zhtHLDJr9uL()Mx|>U24@u=CP~Pft%9r=9t6SpMIJs;^m_Z=R{EU1DNuTl?<L&i()Y zzJF*MU-xtAU8BW|7OiQIyIHUA?ltwOR@3oqnKLF&e*E$!XZ`EF-|y|N{QT_3)GfUi zh1LD`e7zR^Vfo%Ydme}%-}mFy)z!x7=W4!Q4NpHmulD!1+^3#D7Dq-#Zfo$mbNE;N z->=uZ#r50v@5{KjXw@pMr>6RGdwx9X*1uQt`K<l_pXal$uglHN4V~A1UEZSL!P~%k zUVi>ysYxCxLVUhc+5`lyUcEYjZ-S1Uo!uEVUU}OpmdMX%&F_Et@<l~m{qW;Ie`;>0 zI$g-QxheJWv0i>Tn}q#K9)5m)UO#3B!$LOyL&@1vW~Qclzun3fNSr%&Zf9p_{m;|! zLPA1s!Y<8fn{cT9*X8-2K7C3^RZ><4T^adQqJB;2)~#FD@A<^FMs&^XrQXx)e&4>o zZTt4ko|ixL*Z)cO@$vEY=3XQ8=j+0SiWUDZEOeHWll%Vue*5#ohYu@?$=lbh*&`Ph zY^vo}432?CotHK&Tjuuj{mIGd&(F*}oO4M)h+S^Uk|i4Y8hUzlKRztHo0Pk}?%L*z zW41xBo<FY_myyZ&d-U>h|LW@M+q!3ebzi)A@q+`WMaPvpckZO0pLcVgk*@Ar&^>3a zuC1T$SAT!k+tahb^Rj_~K|rOP*pKb||MD7%Oyev*f9X=t>!kFvvzE^J&%FNr&f?{| zYD*P6U6d3rxMZ&IX?3_?_gmM6VYBDq>H6_?-)^RVkeJ8MThFVjtu4Jf;%nxPgo8{o zV)y;)R%m+=zk6w9z2LH?o72y?+1u9t`?J`+|JJ%~N*tS1y{8@EzE}G__Q&FD#tG`4 z&JjDlUcbI3lG)`{HB+(M>nO)VZLO`E>$lq)`DA)1P4uuZc^YYwd^w<U-@bkSuB;61 z7T2$PIyF3p*>&PClP_QDzqHIR`x8~>z4`Ca`E|cE_4V`b@2dsf^85d@{eR)G!|#p? zTr*hP-P1G2JYOzF+lT+=`pW`!cg=VoKYFxg|L&rvr#^i6uxpo91*6W9vZ+%hM?L)d zq3uRe5I9XSSx#&_6`pzR`tKh<YQ9`_FYDgA_t2qPZI9y;KmL3^zy8n1`s3H)_Y^%n zHP5#C&9pS%!*k}$dGR9S=}GzeKOg6o-?Oa#w&tyN;-acIHw<6bC(c_TbED;DdQHuq zPfxC{4$r+@@c!Q3Q=bji*F5euUl+fh&;D2c{~!HdzLY%uIlum&WSEh$@#J1lP|8qx zI6*k`$A^c9ugBN_y|B<ZHa6Cv@z?Qs`+tej4qb;19on;Z@6@AFmkm@^S=F-7o;_>- z=R>n8@9Nd7>%Z^5Ki95S>RG&}r{{(z8`W1vT{f_`mY&A2^V;RhlV{AZ_{JhPL(6GG z?4An2e<gW&@9O_vuh&#xsTaHJOEbS+gG~E%(50~Nbfgwv<gjmw_<#TZ-}t9nWIC!l zqUt%~BUVqCAP}M5keYm{AR|PIhZ$5>mP{>n_fia2coSFscI*DXZ}SbNR{#66^KO#j z<9k)Fbt?`wv-7XXv@kN-RPiyX!=S_Uw)08@?#~}SG(1;qI5)@g^QWiYyO-XS(`@}3 zsJEb@K5?4)G>)L4oxhmF9y~cY`PAgn(o$}5y_Wj>pFVx^^7Y;7>&&r_m0Rq<s&z3t zg^U6#Z3W)m-~a!t`TdsXiA|9~L5pnir?<)Xo!VGF2V9gNbaA)y1eNQHOjN*SIJkTS zm9{QQ6Yngz|L2)GGc)tG|HqCU%e%25agq38pS7!2t=h1m;N6{_!FoG4Z8B0(Y3Z$> z_igdBuUSvtzqkK(%M)Bp#E9%S*`fz2Z#|l_7n#)j`}6bO-s<P)=f8jWkWq3;%+vJg zZT<50-@blrJ^uOGS?hua4Y}E_lTUv6c02$7&-3+s92^bT59{aM-F5Zy<>GH|ZXP{) zbh1wU>1n#}_x;X`ikfvZ=iigb{$e^24E5ahwZFD(iU612N*@K5C?4s3uHVEFeCflF zkB<cf1y3z)ZReN2w>4W_dU9J`UERZn4?jqCY}=ZB{np*GV`X_6dxOhMO1_+$s;wUR zuTxlkN__mrq}HP9neuf%80FN})Qq4;Uvw!x+{!I}ZkDNc=LyT=XByWx++O;yzW)FB zdhNGbH!_O5o}Qk5TkobBZ(`u7$*iob0{bTG$j9;U@B963cX(Xo(ODOb)6caWNtx0H z3id~fJ1-R+Y+}6@x7UBZU1(hL^tNlyd~?36%k!S5voZG5j{DM4^8TA@Dn2|pIr;v- zZ`<$J|KIzG>Bq{VY$>RVF1TcJ)E963`ue(k{lA!<>ficgt#8aQ`SS52sM`DLvGVTS zfX9y>J@7Phl=9nD^K|NjwWn%tyScd~h-Df`{MauEa>uM?vov_;+g6K7N&UK4{r>Dc z+v?ZX);^x+YHVS_(a6!Sxc1QD!*AcU-MV@6=Q->5HJ?tZKVJ4w<#c%5&AWGbv+IrW z@7Y9DgoI4_loAkd;pyq=mHX8}=3;LyfKwVc{ehDTD7mGqK6r3>znraOvcjcW*^Z1~ z4+JKPxVg3Pup4<CXW1gU=1ent|3!(8l6ZEdS#}mKDy<U*6%Pk~ie(9u;>xQ}aXC@Y z;lZV>?9}F*dEz8b_}m8|rc027q@a<Em$P5mj#n)5f<`h*lMbEenD8(_s>tYYsQQnN z2@j$6v|pMqS#q7#LH8D(_Kqb6MoK9bQ`+X7DY)uc|DOZIgIc-J<Vi}~3cpvg<=1d} z|5RJaXB7B-YW>AiGuS#hQVc-~LE1K4>AY$4s9NRtVfDOu{&y~Vt7b3>o@Ef6=mPQ+ z*sf_-J2Td_$@KW<TZo6V^7GXe-|tZpxX2?Q=$QiYjs~yg%!Ml^KUx*HKDRA4{d0oX zk55leUp7CbDDb^LmP6R>?)9^-k0lh8CY?S}5B1XI{eHWu+poR%{auhA6#cxxiDl-G zt8cwHj%?8X>|1+y*ZPMh@(N0m&cT9U@_s+1<SxY@o4T#ubm$$6?wi{-XW#YgNfrWv zAa|t0+~FCgF3FlJP#GBRbzF7VoDgn%UW>x*%ga5!hnAk(#4k`UcrpW~_GFB@?%V!p ztm=8U=HJWy^?$==<y{lQ-ai!H{`bb*cXFD{fv*^qlstQTI3)R&Dykc2zFxAwUggJ? zy+3dFrkXB0*~t^>E4QyOT6weeZuZjnTzB2~41yE)z`||jmeL~It#$MKV|<d<N-a9F zTQ}}DPyOuuCqm9`nRwz8pMc=WY`9Y*)u(=~y;tY<e}#3jzSf)$4b%0d|H=*@7nIbM z?JtS1|2nOtp~E8!mTY_uSs8xituHeu_6%@Je(l`ev5D)p_zy|*H{SVK($B?@Zs}om zaoHpdOH)GEI*STxi}Jebg<Z<Kti^vFuNRqji(&s-^A4%g77i{dyFrN*lw#DP=ibqN z`{_ex_l|%kCV_R4-xnSDadmfa*6d%U$7f!;#48}E2v2iMR!#0(cQACJX7=GAbxZ3I z-oU`r^OF{|i0+=WTI$R$XWzV?Y#kj1@T47dwf^M2&#d$IwKaXpyWZ)ws@k5zFGg%q zNL+T%=c>Ir*BJx_`QUz>XVrN=bKY~|?@!lyt?fAV`q#AgK2f`r1t$fTTU{?qF%;~~ zhlQVKkUFm}zZkn(j^&iA>GK{fTg)dIYCa>pP3`a`Ztbd)^b%QjF5!tk-0Iz0ctDAI zCQoUSS$~f8tjz`r`<4~HTK`i<byfDOc;RWE>Ky*;y`*>7GxoUPeHWE|@PKiit8rH& z$ymxl&~%&KpA7$5+xLGw_m}T(V(f9jJID%a=Kk3|`MspKdVHPB*<60}ci!{&-<=V7 zVV(7+*Yy@kvpbHM!*bt|b;7&-_QiBYS<BTHDKJkme;T*?-Gg<HIkJ_6?!(f)@NU1p zBU5gaeR}G9<(}z>_0Ey=_O-QGpWU^2cc1dIPLCRRh&`}6sgcpHVN<sA%EJ3a6IX1m zzMyV&`>^@Dvb4qT-Z#9qV5*;mWV_2+VQ=;O6I6El?R%&A>Ye1L?p@4|HMVQxzJGVT z!KkF9H0kJx0#NSej8xxW^2zi@>8Da@L6?FHCu2B{cqji--*q#IPe2e<R)7mLpA%M% zo->zD&UfnVb6K|U;oS6338ss9L#_6S!qnA66z;KFnPpJ@Tl(*@*H2!jDRCV6u%1gn z;QZ0B6?^t2Tk(L*jB$e~-C#9y&*b&LJI_3u*zrP%<H+Rer%E_oF0yrWba+@PAAUHu z&3~TFOzZNz^78Lf)-N%6^2*p;cW%w(cYXIyhKnoBSS0svo5ZzOFO~{@XJ3?2&+Ovj zqB3{l!vf#KU0q$3pP%jh^=kE$wqLg{oxE<&_bh3Vpd*J{tY)i&O~uE3#mDno4_&+t zjogQ`+8iAnj~+d0oOWh`$(4&<>i10(H7A#Rx;l}A>EjpP(|bza|2(AmJ7a;2f)c3U z;5p8FUph$YRknwuf4uX*C39;^>(#C5cMCBYeu>$)^1N@O#yJMTizNz8d-wG;ZF4_- z|MfmKDXGg0wgQ^Go;D@h*Bmb@jQ84mPupl~UTX9#zV`Y0H6I`QSFPvnT(Y!n{vUyF zp^8(sZ?FGj?pb=@wtC@rsfk|%&+>lVbm`>xcrB}+TuvpbJNdRrFsi@%_Qk4fzKmgg z;hh{Mq02i}=W3U!p1+^hVHP4QW1E}vvhT=g&#igZJcrI(u${;%eAYIl?bfY3_P0)6 zx8E1#svck1k+;me;>VGLv&z5j_@cX9!Q!2XU}xG5Zd>u_hYzK{2UcVihOT!C3AxGq zly~M1Gab{1ew*X2-@e4qYr0fX{dJuB|94Mjud81*d3}IO+ZweS4LP=R?p{1<C{QY| zpmfOh%7sq{)QzO=nt$)p+cNLKGJ)Q@_8a>$>#hEjd={Ts-fdkPe>>B{A=x+lezDQz zt$tpsbm!KTuX^`HTPpC<U9pJ&=lRlB<?q)p>Z|r~d1Uc5?)9VvEv<|nH)NX&PP}PT zq`kQC=(>~>^+y&=-kG|U@4i(;`Dts1$FnX?m^`zt^pf$dljS>==hm>Qc%9Ckz5niq zLKiph<H~ZUuNO90%<OO}SfA;UDfjDT<C#}%zx6eb2_0Pib<xJEz=Wo!T@Scj4HjRK zW&F<In*^%Be_ieTlz2ufYx-OcfjxhFCcN>@^}FZmry+AsO{xBFY~+3R-}xV2cJB(h zl`ZvLWoBnb!g0|$*0TR%KP3HQ^`HNeJy;^Q;G}QniIYCdtpcrn%I%G5YS!4kq<CTd zpIaZU{7UQnKJ%-TLY<nD?A`nJLbESEc$*)yOWAPog0q&3b}jp7`<#2qWWQvg?Bi#H z7wTMOSZN5Vy=-4CS$g<V{mJshkLT93sxm#FUaHU46E8X|=<=0*hW7cL9{S~F{93k= z+hotq{Il*yR!7(Bs=w~Dlh)sxn{+0#=(8+$Am0S9V5uUb;_A5()<36N-8&iXqqO>c z_*WfHuZWG>J2&m)XXH~Co~Wm{>P@8Zv_~(qE#$*f&HN|Eyz1Q4b!%$#y7~2TXZ95D zcP{s-WcS#s$!j@t=U%_Op0ZDWudVdkmn3vkO6gzo1D6>;vr1ph-DhFr<C14~=GMN> z^&fAgMTpLt6Tj@$xpqFmgP(XKeK!<5ohCBpTah6DgvHBDo}@gxXH~dy^7;ms<k-OL z+iTJ<U6SoQ)p};r<BU9|qUE!1%d^Vt=dQQh`Z_1Bdit%&+vh60GUauArpM{^;X~)` z|D_9`#V<&fRZ#cIJaO_&Z)wsi>3e@#z30}rD$hD`wKwfXXq?Q9fB?lWz9&iz1$Umk z=_-5LX_D9v$@NRGS(kXOzw9EgLw()Uv-k5@=I;qxW>>%bIfG?7C_Ut@nQUyX9rNai zw$#OXm37(g;)SPeGEn#zmnqI9!|UskXYi(S-mW;l%UgJVUz%%?@m@*LhbOU$qh7YG zHu2Dj$0?RK*-waq13rAN#@w3k?&6CSXI(O2joYq%_V)c5j}P5see@tBRq4^&Tg(3G zwr@%}|G7K=UAc8>a;0yF*Q#n}zX-ld>$rRkQ(o3rURs&K{A3Y0=$HCg?Pd>ue{I3! z^%gE#cklemxcu+S&)dC|V{WSo_Nl2Ut@GP)d5?xcU0{OKB5w9X6P2degZ}&}PHJ^R z6DP(lIq$jLiFd+laNtj~y7|3S(T68=-g!0FiB;Q6`3_t=kUd+`a=R#F-)l7`zqZT= z2fM%5E0!lDMLfUdy8f2X!8I3V+-3QFcthU5z;YAI-9E<{FP#FlNq=1De6!}z@&_?F ztWrwucQ2YUNNf1VJJ<LbGs%eiy4b{oCEwbhfA_HZyDz;(*R6#<fnxHw$~8SsuZFb; z?|o)1JsWjziPIm(OBX=KSzPbjI(hx=s<uyRMfK<A-fgyXFG@%*)m|*f*r%<glzaES zeUa|cyvF&3l^#Lc+^+BctlVUKIQaVM#N6lk<}R_CPp|)Rox^zP4#=>IYn?mmQ+{u> zmMZ&nb?yn#^6z|_<(qa*i|S`Mo+&)BE$_Y5jZ(GqMK^zc+^zd|R%zfvUl!|=f)`yk z6m#r8C0^fq)z)wBD`mdE*`N&GlRmdbIG%a_<=MANLB_d$pVd}2=S=H&6}63GjD5vw zN^9qYU)!o>ax;52qg}?Wc^hBKE!rd%eBs6M#MF#WZ_gald@rtU(RUk^XnUgPet7X@ zwf;mkv#-4Gt+H><>^BQhJWzPZ<;gBZi*xtaefeTqzlPIWbIps1vtHyCK7XdKqdqt9 z*8F*qH_jy&H?DaCs_Q?loILN|Lf+q(roZ>edU~1p`d=5RUFU7~q;HveVCRi4P5a-E z9$RE76<zFI%fDUrY~wG^|En4<t9s|DHTgRpnw#cP)^Mxt&AGo?y`N<xPX<aA89feG zch@U?`DC^7#BKF$wZA*KT|bD;-4SM1so>T4ctYn1(dEy#>)xIC;%$D<*^CF}S6rtX z8hz!B_glqkrTQX!>+7C2h|>yJOg`fjH@D`i(xb%U|0f>KNUB)ecVvpsr=|Tm7O#9= z&h5NzQuC(h<qN^1JiO6uFFj1wC2p&JmbP>I{EOMM87oXJcht8)jLM8v*Ol#`)~=F! zXZpF{Hip{;KN`QeEx$kO=04dy5hfQkS%e<0FcGwT_=;_Fk-PYf@}k4J_NDTRk6mm3 zu<*l&-e?gC`P>yn@BS4%dXSL~%H^}Japv4}_A7q#<aM3Wy|!|noil&l`^;MVtWfXd z6mIw4&J%&hQ%&pjcsk;Rrc9_hKl8REr^k{@PfKeLE`N7$dGgV9Pi}l+TkdZq%HpmK z%Iuf7_~k7#FL(<w@B5FM7|}iX3!i^Fes8gZ+nkfWF0bz1wB7N&M)69Ue@dBi_irmU zE>pMfUc3L9RtbOV{e9{3=i76BYzxtlxeiKbKD(_}%DsKEyZ*1lald_eYDLQv#hL8h zZ&1%Em+=Xj<LTp~6&rK)cVNY;_VrKiJTB~)_Hci)MUipxyKQTD{aep>yq_rJuCFD? zd)yW5wiSMB=GNTZ$$on3iNE`11*Pv?`|;!MZTBag=r*3%nc;Q#n7!J@YuU3CkFI-i zXObU_%Pa{qqwq<u?dmzU%_-USJEpGpm32&K=i@D)f+#aYJ^k*blh^0E?6NT1d+@M& z-tCKX*3ENdv3NYIL#^EVxbjmz-Gj^D?R;)FZ%^lz()8~NKGXL8)m5J>w=?9@qDM=D zCl<~z09A6juT<9OY?=K2`W@?^yLvs`r8m#EspXC4OD`?qRXQM<tyDkjNO_m_^!Glq z_TMeATzT!RdEq0MBPV@x`T1*$<?S@zvmcqiKlbKb<C~t#A3e560mZD|_0CHt#ox4n zTFIC08XRr=d+$77+Mz29jD2%EGh)8aY(IZz&4&-2(c9J6F1dAAmZ4H$=fSC8YZaI4 zs?R;7ccgdAug-n3Q(4`YYVy`w&fFQJ{`>BYlh<uslq_`j^Qv*o{+7;T`_J+F)Qi_F z*gT>a{d&e8t-LvL^*;Mu7pf-2WGR(ftzVOUI`OpU^4H&&Eq%7NZ*K7ER^z3hpxYUy z-dP^KfaCnVl3?|CbAissZx-?8+dp2`(R1ut`>yppZEnU6QG%+^x9RZtRM;!j-<xrF ziFLP{%R6(GgrdCH?$wtPioaB*lsW!fUv_Tk;hEq<E@s8#wrT9%O+se%5BK@)+tcY% zoagy`(SaXZ6IU9PU#LypVzi90XyS_H<u5*LpSJsRZJ9yvU&%>I!Y{LL2*i4?jTf85 zlK*nu=E_jsw3UTwMxdxkfBodY_0M`UjxU;JtsXwt%XxITd?G|=DP6gCNmN-{VR@(4 zt6yes{oCJu`?z|k(_4QlUzLvCRc!lrg>ueT^N&CLaK@u&-`s;9_kh}y#_6wJrh|G; zM@$}wgnvCG^XKqf&pq$2zA;m}d)+a9(Z7F!KOR*4mbB;aJEL)7;rZ@oE=*ER0*mS| zWY11aboldhN|oTg-mBp1W{%eHNw4nxyv?h){Qb)cp&i>?4n-Z*Ty3b!?Z-0xWjS+1 zZl}Rb#YKJV4sOu@Jk_nvH@B%yxhJh>mDCxp;<u@ap4Wq3yUuR523Pid(`)_TUpQ9# z^0afwizlZ$JyN0z6OuSCJI_!#6cYHoe(R+cj^3-nq9G;g@6CPmGP}bp<YhIp^V*Ij z1+~8qJYT&0P2CoCUCZ)0ll`6=T{kh2>MeeDW~OCvnvW09(uY&*R+W6x75T`~U+kiE zTWtBVi+i+8DgzUm?rIhnN#0~wsnYajcfy));MS7Txu+iM1Uyp?G_v@d&5qrFz39@* z`fG=8R;I@8T0iyjv*~SVn=6m?NIE+^->>~Xx4qrHxY&5<LzQzuRzKq|EuXB<uXHfC zJ^22ggxrW%hZ-tk^Wsl7b2Khj$;zvKAzym@(y}KxaqiRY%%d+)^U#Yf{B`EA`K4FW z-*1^yB31Nj-jetupS=%9Z_i_8W7F#QpJP$@=SN|^*Wu1PtIE~m&vqX99x><Gwe}6& zuivJh*>`{8?^l^lD!bLyPibYvi_O__;CzMc+PG=SB`1!Z;9I^s{Y6d8)!&TMCj0T% z7RTSn&sR6vZ(>vY%qJyf$)_K`zP>(q@ZglT$G2{s4F7)HEz?z{_4v`u%=#^v^}qhS zJ@(~~+1={_!b&UaZ3QQ;%>Qv@tI<-!_{g<B%k34V7k{*Ok?rq`(fW8R?ZY?od3z%j zPxPu@oe?iJ&#v~C8LzXGlf_@fn^S`>FwTD+eKT0bQ*Ecavj6=2-ZO1;C+|5GxA%Ih zN#8Fy+pm_hnB`{*n`_Op{U7-Ls$%c@d+q*8diTQLmCTxO``2TC``7h*-Kt()TN~}@ z=y)pGD#&Ug>&qvr6({P<V_Cj9yWsRg9sl@di}Ei;6Fq|ZRlCk-#)(Mm*D!EwkxQQ? z;Q3awkW0I&raz)A_FCKWLlZdb9A<xyG+}0D1`W0@U!I<ts=9RHTzBiAX`L5NhHEQz z+F1Ife^;pKvaNZPWZbfwx2e9^#pu?w6}!_l9ytl-geST$UAHp+duj1pj>fAG9GI3p z-=2FXeW&$>{d}pNHPfWtYwJ8aH`hA*+M43$=X`%Y%AC>WrGDSV^IOsK+w41cm!J6m zBUWNTwr1(B^=s8!F5UDBiAs*zZ_Zoh=XYOY`Y)&al;kCH$8+R5ee)wWYDd1@Rv#0m z{>XEA$yZzT%`0E2>|YZ-$8X;(fs?7G7JHW|{&;fexw+axx9_6YT0HbNUp#$toyzsI z_w!=pCQVU(zH?uh%dYj!eHI(qC39CqiAeCz-q$SN?UJno8cEGr#a!rA`l)oTht=vM zjWa!7ypUaS?s(|SedlHgcs@CP-!{DJ9NWD56S<k<AK85Sq;5)BwqL&W@x_g&L8m>J z*SXDjQ(n@!iFb*~lN7T|P&51KuKdGKTrNf0`pvJbc>j~>hT8m{k&2%(8BVahh|9eG zYD374w7S^=%Kt3Ww0d)TVh*m%e8vC&)TfP6yOci$1+C>^KL9GBePh&_%087&^l-Co zNj9tRm)R4s#Dr7G3^ahc=XU(vRV{aqeyzUTtyNtTFVEYX*0bf%&iJdF|IT=t=ahXY zNa&r(>)#I-fn4P{x8vr?>!M1YZ#DRQ{FRb*cvBw68!p$fVB@e;IA!^>`kZ*p_cyKY zUN2r-*fVjP#e{~Lt#4<4OV_wN^S#LHvP+sv71irEe|+U~!*8FT@X2iTf(Oafk5)Yu z(_q&VIrzu5oaK6_OL0`(?Mt$q9~gJey~*+3j7iB_S^1IxyIp|63vFjz^|@?w&s<%4 zSZb-F`sR<Xp4?_}wEk)3tFnIX;YQyrMX@|*Vt$=TI{R*^+=95v8!jDwI=O@Awe9?+ zYEsuvbeJ4}`LbSimqh$t4TFP+)%BEioj5C=1Zqx52dgWUe=6<s$lBc`oV%jw?YDKC zE1hKDO)GCu_@}@!RZdT!o1;U`$Vkc0B6lwH@%7UVT`Ovw|MAM#qV1*Xpkd2zudM|4 zOkOYSvgx+#oEb-=ZdARun0Y%}XzAOI9%h#6w(Z8!;=hjT->siGV_JIs@)F5THFG1S zbrz+*e^2ea<J}~bB$Sm?KG|aCr3sU7u7CaHMe0K9pH_}4yJL^<oEF5M{7Sxbd329m z%q8A{^zRSmT|7JY{lqzi`bVbqWq2to7cu)4hOWPKsOalEk>oPr>%uocE$N$AJi{g~ zo%~*~(fX&ASIdD}500eOn^g4VopIgK-4w$d5^{61na<V2=I>TVPZgd!Nkx33l(KS> zv|m|Zdy&rH%gi(X<axSeo;dkty4A!*lh-@DSgaB4GhBZ1^7Rc*3#Pr>dp%WB;l|$o zW($u&T3XdhC*N&w5>xu>=Jv!-Mnl>;?DDD$A}5YCJT9*+X<iCSL-kSWn@T=~`nMdD zdZhAv+o5f;-=c0?edTe{WLvTHZ{UN@m>UZYK2JKe-J46Py{G5IUyHrV7Un<7p2iaC zXLa{`X=3f>Y3g%>q>7BB*G``OlJ~>G_J@~iYquylCFd3zaou{BZ=QE+{=GH#-<lki zUohvl>}lso4|;b^idp{bOxDLvnR-(rrM(5WcC-1#X*WAD&EFAqZQaF0NiSzVwneYl zK0E!d(6suwO65|mtjn>J`|dw{n;x^@+;_e8=WZK^W&0jpHb0eEUw3z&$=BnaE^0;R zPIP=Z+Ss}9Y1{e5>T?hE9R9j_w<fRU&*Ss!?)`DS_Q=7~>gOuM#r&T__J!ZtYM@Y; zTOW}XyP5B8Myu?CU7)`5=4U^TxW;I_dRLe*SygA^Wj8k!Ccn&H%?B+@`CqQO@MOmt zxA0|hQ`+XpOpf7ao>H(p^1JE9Q$7u+#O0SS*i#*tz*J+9Ep@l{v#lY!#>+hJJ&Nzy zk4P8KDiGM2l;ZN}!IL}he|&LRR;0gpjgq>4%Hn#HClCK@%JYvuJ$=uv^_^{LheGx} zus9mJ*SlOr@BYk`y@zMKaXGhhdHIVA=HC;UxBl$*dH#*pMY-tiiH?>-jgg9P3fJDt zwS0L+{}o>ik8CW{(uL2$tbVS$J6Y|JX@=CS&XAu?kEdLnHLX=em)o!8`PueXsRf^+ zE+4CXxgpl7aBcmWm%p!bx-RLQD9G7yIa_MqlnCzKi%*?xc|A+!$GN6U0mbk8x0QTa zn>+a{Uykt1&hVc~j}IIvIJ)kMsw3z3)pxEe^q;`^>b?BVc~SchoaeA+*1K2ZDWJsL z+v5>2r*GZC%jTyRazJ{`p_MO%moD7qC-wG8^|Lfq;jMmi%#7-l%pY7a`MRFVH&SHA zg!p^C%^6<hCA=;3&Ia>^nr`1&mA96|<(8D>#0M6<y8KFdA_woV*fopyUJbtYzvWVZ zv-vhVnYT}7XTFk7OS;}E?B@1FZqBb~?AeEd#o3NLpH}cban)}I#~04Os&kEF48pRD zLMOg+nI$bbQN$v3>#_xt>!(TEt+_F^MtgDLq;pHAv_(a}eDeBj{u-&bPfn+-5C$dr zT#F6;Tk7&>ZJ&SfW$;}WWvOh9e;LkGm#<I!`fdu-TeU+cy!hlNx>%HVTPMzAnz<vh zzRJz<_YU*=1twQcd8yx*&is1mYA2{vQ1|oxz1a7+@w0sMB~Ndg>rR?-qW+q1E`OrE zKv(_uoi(}n*Sgj``5<_*m6>x!!Sc%72(2rxwk@`Fo%${QMX*%Xqf1hgW7Xr;Lg%h9 zG*U8uyrq<{rp(}S_H4zMdE9(TM`yOam1j{ubmn_nRr9mlH4~@G*eOXC`qUntKKWnm zrOX@Cf0~+sGV88)ahER~`#a5VpKiU`+?ts!rA9j^3htB#H91~C%<+$JHoX1t^#xXy zrnRR&u3oyqv+<Gs`o~47s+%Sqc308&OaK00=Io~%#M!M^xa&{X@V%kQ8@v6|N%POw z)h8QgzD`k6R=&i#e06%k?Ta$}^LO0%!nU$=mGoJItF4>t|Ku9(4@(6H*&B=Awe|e` zaeM5mE@l3?UKpzOxucIWL)-Im!6LtXKA)^4vr}BE9+rIPW0l!{C+wqF(cC322HR`x z73vBToQm|;F9vm7XHOJ-ctCUgYi_$ze!EH0%9~4l9HLLoXq)D@&w8?1&-Ihj7p@RK z;$rpa%dEDk{`0r3-FL@<rTF&Wi>;^14)fNRtGS02{pc`wct`u~t-q=JKn{3$X~X{d zl;<;T*5^Jh|CHMCibZweK8t1h9$qN^DWLs4Km3#vOX<Em|5?XhoK^jG#_wK^uZGfh z@Z{RBdlxc~``tP@{oyL%8kb#<9TvQ?jkl<JzNpCe+_5L_EUU{cSC;)NJKSzP`JG7d z{@(fqi)0s<%Utc3E?9<}M_K*Mvz}#q(bil7G@+})#3yq8V7IG4M_{;DEWeANOYU6e zQ-yaIOy0RI-PeDzq0*w4&CZ!GT6}8{|F<%6RgZ65?e{^Dvx&K};z>|vQPHyQa^uI2 zQ=%{JObXw0-OSl1Y3;M=!l#VfTugimG<fHJ*jaz0OVj$NQA}x5zlV&B$IQvsPwA|E zxVT$wXXm2Xoxjc;4tOrNuQ2;?@ZD=|&No07HaKU#Sn>Jv?nL2@-~WirtpQIxtBCNi zEZWq)_4#V1<^BN|C#+cbw9!AsYz_aFoqf4hty0QLPW{fAFD4|O-k_$F`t{uuO>;r; zRCm3QfcmWfR>m!_edZOvE!?W)wfFii6^+D&^?%-;ajU&Az<9i)L*Q|Ml+}}t4Dao0 zs+YzF@0$b;+@wcGRIX_~U;Sm4%)W!&uU$U4_aBMacjV6#hqg;yuJPTLZZ0jN?d4K( zwpAutT3%<hkNO{uxB5A4b*14ZtAp+;I_JJ#sj6QZombwU-1tH%FtzsnaY4xs%ll*X z-kR=wT;z1mg-J?M&`72(^T&^mj}II;a6PV?*InvX*{9IYRVknlOPO<fX0P17Lc57K z`D)Xjn*`SX_sDT;-oC%^WuMDB+vPG_Pb9mz{3!Ub^x@mv+t1Ilt$uPskR>zYoqS_$ zX|{U2sat)R`i~Bl<DNS%zj>K`qe#QM_PE3I4uyil`?UhB_8rul|L(y$;m#b;yk>>G zX0O!LS>auC+6))Zty%y7(#i1NiB~!8ls*<tDvsW}P14SG!p&<dwFKrWXn_aZnLc0m zyj?qX=Z@ydN97l1`nB-5uQu`V^7^&AH*9Ux(+nxD)%Dx%J^XpQ_u+Hy_<c1izwer` zY<k!0Gu(fA=F6Rtsrln`TlN2+&!=y!N%OdUHF2fs+WsxE7M(6q+BcuKd8yw|-T&^% z>SH|D<Am*$A`6P%l~??hzW&y8_9ug7Rg0c|bN32gIXC@Nh@VaAMxA7n+|CIPFHF32 zvi8lUrMt`B9Ct6?-%-ED?}MOcOY!<Gum3ju08O8n2L^dgiM_&DUH*By^!lY&cK%Px z=8IfpIBT8@X!23rFvnbHZcXwV>z}J2@hI+>=z9LqftINYPhRa6o_E|-71X1<^0kP6 z{*JHJm%Xxmb~*cI?mU(uC8T(G;p+G5MbXa>v|CS3*loCNa{YQKV{qcPn)7JYy`|Pd z)8G57TJgHLX~njc^`{r=+}LehvGK%3ZON~jN|H_Pf>$f_z5e%aVytlar_f|@emmI_ z9G4v>HtCCF!J{3<yFELE-kIog^|1Tbt**SN^H{=H8@wdrv6b23ODDf4)oi`&od8<Y zF>#4SXg%*U(cP1#v#5%M-ugaOV)}~R<u4u_{T*=Tztt4h%g%SN-&gdua=Y9PT5|9( z;=0K!aW<c8C&POoxlW(2<<_gang$n7>%X2iXT_RhTN2}~Tppf$oqFyrXH5KQYq!fS zAe{^6{yuX!df6*bWPui#Op;>n`n>qVmDYdtAIrO~kE?=e@M%HY51ikjqoTQch4XjO zvU5TG7fTdCt5Pza>*t61-Gtj}?H7F8dB%6gd#R#ZZwqcM=Y3-}nLYJQ{hz$z-O1Na za;4rp&S48)yb>)wrM&u=)Ur1)i=7%SU;6msaYxV3+q{{TxnYay_iS1hy6|M&Z65K* zt79#%=r;-W2<CyqD@=QCO?d0Fl9J2|Z)SsYyhXt+D|WN`iJUj5S8RW}e181A{?$!) zcV68c%%%P2{KknFEsk**f-PRHtheGV+|p*|YS5~Tg(cfv($0VG<o<0GKl!euU{6}l zhI&w%FbSD6=e2`+yeVX@joO@b^A5f}{;uNp@%ujc0)Nu7`6Mq(EK~u7#g7Nm{r1h5 z4Y>^qjTWBcIdYZ1{&L?9caBz;R;~f3(zAb+|M8W<5{TkqMJ3H1@UoFapQN>m=hj@E z0rt>|f_muMALFx^H>^2kQoq~q#}(VN`*RaP2?Vj~$LG1p8&lrgqE(Zj>6Js0PtY?F zR4gnjmU4?N+=N9US4wMcjdF6ArS5#FZ7|DhFJCz7w=e5V!PR<BJEauZqNJH^nHevi zRA0Mva{G=`Cm{;Z<bS;P+voNil=n~<A*JtH`tX1GC)3Y+8%5D%qLwaPI{E#>HLiN_ z90L!KbM;%ioR?0{ujyNj6euuf)?WHB-ESZ3yUJv6a!0Ihx~#%$y_@}d+tRG7h<Jc4 ze!8r}yA=`lZO)LTRC8WV0F_vm%}rjz(?y%JOFd+r)tAf_C7=F=T*mbC!MSbM{Ps=# zTANpg?us3kKTNuG(meDrrY^@hZGS*r4b-4u&zAbPdvbn3lK1X!Q18}*(hJnT&8EEd zFQ43Ac3t{(0jOAq$BX04wwvE|=hpBSqqrU7^qS0!w@+@LU5l9jCM;c8jl~g>Quj_} z%y}+c-dL<2Uk^?5@bzUMybn*BB$S_@@9%$ps&@FdFJE>j@=o>Jx6geCDEdIv9wP1i zSo*L>()iWu*AEZ&N}HSI-a2B<yLN8P>)AUo)mkhCt<-+}=+Ttpp`oF1adCSte^`C7 z-f!QrIcj(B2OT}}iUnzz+lPPmK0Kdae{VzL;g64x@BBCQS0Cf~+%{)J)tLWWparTP zleIN9U%oes+L|RQJy)^r-_PgS*Vom4d~|e*cR^L&jjM}GKKYhKgERHFSsw)9Nse#- z&WD$m`-iWI*jV{Ft^S0I>H2ajUj7)3Pair@>%P45_v{u^Q2PLp+WuSut<mS><E#7m zY3Zr!*3;Wg?p*us{gc(lP~BYMb@<k;TcDMv@ArP6_k6{*wb93wdB1{6T~vi9s=w}C zI{E#_-S_J1tx7OTiM~Cc)VOz<JJ|6k!QwHiEp;oXW$X9s6{z}0%NIt=64z%|T>i%+ zi<v{+kC|NAi;+m`3zm2vmSMz9ChqG@a$d`T2I;<IChv(FyuW|DI~{$2oRuKSvGdZ0 zvSk|3)Qyz5mA$2|nS9mf>G&?V7|9j&&{AxPhx0`&j_5M^^J-fJ7Srma#6n7{e@T6- z30?5J`soC;fM{C2aOvdy9hXj)JAD6sN)cSeBa$tP|KVnFS8%0N52_BGV1<Ot#LEFM zpH#ovRe;6H94WJHb}_q@KVD{5!YtbRW@KtqU`ANS%(m&1+^l~tyYlkiKZ{&&djXyl z`x-LqHR`Zvn${MCC0S%-R{UADbaH;wz6)5K7Xm6<-fv$7%6VwkSY+O~YP=;W{L?O5 zAvAOAdpIQfEHW#e6s^2&cKGiqxx4p;eb1m4KZ5GK*V~r6Nv|rYciw`w_|$!l36Fie zf;SdVOl~{-mcO*#+{6U66m*|sGH1!{^*!LqwjNQ(k+8BAxl#g+_M!Th4>Y|5YSbZO z95nofS_guLh<U>2)+4XBExc4v@IiA8kJRRiHOIkAS)nB}v*eOwCeS7oaLGf`@?gkf z;mlj7GEC0RG){kZW~QN`;kNVFuU@UJu0B7j-c(yd<Hd3L`YYLA=Ui}cIo>Z{|9oz_ zjeF{M<%3_JoSeL~_<31*`E5JR_Y503JD$iYM1214R{G!o<L&29WfymLsK_o}?B0LK zjIm(fzhBuP!37{eh1E(*N`L<T&7J@9?c3OGIXB<j+-#nE>&q9-<F~iYJo`-2IE{yw zxAuGe-EuiOxwB`_UXwp~Y}KAUGIA_zY;n6vI`3O$toH0M%exa17Pjp1F3aVJ)p2Dv z6<;!J?CeyLU9e}*9#!vYHueAh9PJj@4qxZv?Y;S*$0fsAEgr`VwY0RNc9m$h+})gh zKH>3&Teq_QPF%ul!a1>rIVH5N?w@r2p2Yg;ZPI2r9v&VI?CO4VEGj-I?B8Ga`kJl= z^Hak=x;NGb$bJ9v<<IB&|3l=&#l_c0Y-|EKth2)bv_0hW$K&#c%PPLVy9?SZ;ivs# zL&AE|HioQwX4X$+70eg~CzmzMnl)>Rt`^6&KZjbmPbF6#&rniQdn@6%X7feC%GYbR z*Z=zUYl`|)m}&=u*2paxfh8qda;2D_fv(m|y_IJ)^WVq*`VY~K#_8u=+}yPK*T?Ud zlaX0t)3%rU#`gfZ@{*D>vrM}o4om3Tn|IeLq0#)>_3PJvNkyhim;J;yA+*e86TiTU zy?bT9<vfgkx}W3Ni9U~4hE`?uZ*Iu{|KWb)(!QFXL6vUb7^S>bzB1(A+avj`ZR5s` z+cIz5zyJUH{{OL+JOS(X{nFYmYEk=ZOKw?9ON&Oox3_oh>y&SAZvMIE813tlvijDo zD1CkX@9U<o-gKI;lKsT0jm6HZQ)Coo_%mKy8@+wa`4e_-$(=c>k0omV|NX8VzHU!_ z)z?*@;%~Bd^eS$e8pF(T`&I4lZwHxoo0!Z#yDjs_@B9Df-M4aB$<E5E+5fh0%DFj~ z!Ie7K4O==ps;aB=@9bD;vu@?e$Q=a>?Os1$b4*TiYDvSIP0Ew18oa!`?$vzueR`XB z^%A+og`Fz0i>FPSwriKw(?TDgGw<&1o_hQf-vyU?mq~mA8DC#rEq;FP>z6Mzzu#{E z|7rUEH+Of3SH@We{krULZ}`vMYih9{8yj1KJoB|Bn>Jngr5s`Y!{tD;taVw<&!^KN zzGpfA=j;0Vx36AR{rr@gknmupar&27e|OU|HPx34k*V$~?->rZf9W;9cjEkc`QOT( zpp@Wwyk0|H{rK(MzkjZ{wk9%J`r{<N3ob5`_$I7<^Q>*b*Vosjd)+DuUR_yv;X=T= zdf9&hQ;w{O+<b1XHT(bA?Rl}Gp`tb`)~|1m?JmDxd;R!v_It(aUN2ayrsU=6890xh zgJVK>$ITS>CdMF>X&#ptx%l}(8{};3FFrjzJym|OXNO9??Be9(eP?GHr{CLC85kJI zbF@7}Ny(G_gjTi`8!KySO3H?dnt$5m>o_)KUtcFHCwHxy)su_@sMAF#{6G6&h7%XS zTSbdYic%AEdAU-j>rXf4k_K(H2JhN5G%>X_2CD#bjm#j&9Wa@hPd5}d5T71!P*1SF zL-_XNCHfa^?JG^1YA<zs{@?g4YKcl#_|@7URws@WCd}XKC9fJN;u<vN%e+rd{@XVF zdA|Ps-Sbh09^d}H{eR8jcrT8J6N7mB?f;#={r}(U<MkZ#?kBJM^X`wgT?hZ4=kx!4 zxKRJ+<NbSepW8qD*#2K>?hLnzFD^#^e|_u!H2;6i^a=Mh#inaH8fxipx8L*k+4qb) z)$=Z0oFH%iXZ4q6os0i}KKy<AK8M`DZyyiu-+%POyx<w3SrhmF`RqJ>s+_(&lX1rM zgO<jk^|hf#O&}K(UY_zxTz<;^f0yEFLS2Kr9@kF0=hbiTyYkP!?qhXlKd+DaZMuBl zs>j-GSL!!hI~MuO=i~C<vHM<>=f<BrIKBSICh_>%z<>WfyG{KRDjLsqNPNn^oZ#L+ zhu_y3m`<qje7|zJ`y5k_?=Fiw!cM%mJby<{lcPCm?&O<RB3k{WGpsyf)9Q2jzu#H* zs+rr8OYzx<xZ*j*HZENY?zpUnT}k+}X?pb`D;YWSZH~)qLZ<1Tou>NIG~h%P$4957 zvRCc)@BUEpdw>3PC4HqGjK`+m)>o2aRGwbA#~_TYKXrbK{gmlv_ZX;1O{?9v^PiPa zU+3~o=PkH*h3?QdU~i8K%BT&W9zS2(bh^V{gHMe9+r3;3|1<Hi*YRdYNI2j1afv$6 z@_xI+L4#|I)9uvtMW)v+)qXOa?}$Mfqu=%(Z$lME#^mYmmTRjrPpcK0{z_ASvh;5u z>)HFnx0%(ZP8EC3Ir)IO`<rF+-pSs-WG^;dFib}_)^Jzglr>xvdZLb83K!Vybi$!E z^}>DS84pxs>m<~s#w~jEz_^A<Y}utZfp)dKo*da#&w29U<lp}au7o~z&{ySiTjpXE zx#8j;k<Ye88&+qXo|J!O+V0iC?q2Kbwtm?--EO6}nBwN0%!?A&a$VUeCHT{C&aNj7 zFY>})-`0_N?AVrfzHas(>B-mK{H8Z2%d1ZIa`&Fj@jy|L4Rl>g$=2ys?#61<t2|5u z8Bc8Q@i2MKI6Y8L|3BwJ%dEGzVk{q+Pmg-6s3f{hhxLivx(D|rE#O^sZkykZP3`f0 zS<{cqQa2YZ@6viaQ&_6Y+wh3iB$uY^CV~-8Q>XVuC>YnT(CB*lFCsEDT3t!&Uf%rm zvicq?XFdIqekWAZLU6(vVc|=Hi659gt1gN@ZGX8Y;XzVh<cjz|#<LDJiKT2_TX*__ znR9CI%6Z;i%s;%tra7OV6k&1jcVzxWQ@H@k*J}$Lby^?3N&QrI$RJ|AqHd%`k>q2! zFR$OWZB&(g6eq@~S6^n^%org(`^y?(-}i#d{2RM@bIqP~ywF^FaIwa=_}S0B18Zii zon>SDcEzPuF})R+GxYw%?Q1CK4t<k5rRm7wO_$zWGvi{8=sp&?FD)?FHg?Om-?x3X z{jWV*kp3s4%xIR_A*=6<tHh^Wzf>A9$LyqAfg^9Hor3K~*7Y;=LKYvM?lebTsGif( z=k?_GW>1{&iDwDEpIA9b`G>-`1Xt-tkMAni==@~4mG(yLlgMqaWrrJ1Pn@`K;l;ej zCk;y_-Pek}af>s_^m?4al+7}ElJbm>6gll%bGs6spXheo%{#R|-_3f(p5uaRyFHe% z3SVsPzQ|S6EVE@@^TG>jls+>1y-|F!;phwI>6hoI%P{`iE?6&T&dBIL-LpY1c6ywj zF`wLfb1&X|a<L|QCO+}AHwOi62)cZ0-s$WEkB(3BUm!pIQiEIvpZ#?6Gf#VdFd6eN ztNZtNx<!DA9n)Lg>GhkmWtjGsPoKL<Tb7Y|`tD8IJ_hQ4|9zXb;QKRW_MYXP-27{s z&o&wz{d_&-`kBjHE<a29x%z}xbWz-_*?CiVeB8S>Uz_f*KwX|C!+-0u=>{(q)#{n; zUz|8&=EK9($u-?Axk^c9N^e)7{AD4fww$)(Qp)$eJ};2D$9~e#!do(+Xhnp3S@NgM zXTE$L$#W-p?wnz^lley!f7Pw>6Lah4beVtSwVn5RhON-LoX*MXe*Cp<WoJ>ip%(Gt z%$fQgRjv#AqH4SoOpN=}6XwS(%S<=?SR-9;E_;;Sn?sUQBHiTfltQ+Nk}Ay4x9^_! zK48W<s|Po0GbM_7E=S)?QV-G(IFqqiJHH}JXyI`wzc(y@<@|(m{~epPCi%;G$(W3t z@BcYZSjWThIO~hV+`Poys<Q7FaUd?0@khQ>#@W;NcCfgcv+lRMA*+}-23y>F<Y-`} zR~1|BKaFLt>w@0QbG#S4&L1|i6Z_m8=VY*G-G1?~?%!1lCr`^xz58nCBNfJ5iyu7T z4CUYS@=WDQxn*-6L|ozx)_AM()~cC_hj)5pyn?;Rs%w8jKBVgL+x`?c?LGc2R?YN% z`E<QS>e(Ecd2ggt*ykUczHpJcOTFVJ%`ZZ)<k~%$4*j0?SgNg4TAN{8txm;DpXTIE z#_VcS*q=>gUiU$G`s3c(M-GNBa!zMP&Jbvg&xn-fKDy!7R&JXDhq~PxpEWjTa;nIk zTYIKd<i^3AD<*<(dq4Mm@6x^C^1mT_*&LIPnYZmuY<gR(K2M@^g*(IR(3#A}OIJ(q z$2RM)RO|~*Rx=AV$qrYV?i*}u!{{)*?v0{l<~Pk#OG1`*8ng8>o=~a#lEKsbJ>+=G zO^bqtecCIQ9ep`fDBwoBmhCR5t_-oF31JzZO43`kZoc2j?%eiuj^8sI$%yx#x#g@2 zPc_FWF6WLrs3>_;=8?DEwIk1B{!RFyCgiMsQB>#j$<Hd&FD5FO)W2H0^zD~5KW1#3 zx3l>z^GwgHdW)mY{cFA#-1_L17s69Izk-|h+W!@NJC3(#xvjhTe0Rp7PNmzXvB$T$ z2iY$6tL{FX;FTr*Le}KQp95((0&efl&Jr+Kao*78M1H#VogcOzg!_)4+E=QwX;%W* zrui?~jz^sS!g_v9W&*?HpDdH}>g(0ivR`lD&g$}9oGs3Ge07m*_2*klFEp-PyvA5w zdo7=}t*`M^zB`qX{a24xX9@hUUQpVwv4`3J^nrkX(u)f{dBtA7Ik5B4wK|VC)1-3t zM=faWR*p%k>2cw=PT6c=7WXFZ&7Iwo49queQ&+y2Uhw#|RcCdA(d`wn>eCBtedDJG zy;C$$&E&mcGvj1P_S1*iVj{vP-YxMwu|di4+{vAX!>l+Cm$)8ZxZ+^e^yTjq<AiPm zu}3!@IN=rkXWO-F8{;M#sZRf2B(G9`qDe17K2utucI)aag-!duh@Z0AHkAo<<H@2Y z)9yC%oKsw@7*TtC#{G(f{TC`q)^e^`<vTY&!u-afnn@RK9-Fu+KKn$^)(Z`>RtseV z+vm1ETM)jlx!HeLbAxGFbnS%A3@0VD1!E`6&f!@b!`>K`{ciR?)s&@{F%M1_6>RV? z(tnXP-Q3vdYm7;jU}i+ns^g2|RjTIaiHb`|>fZ5|n>LqyyG13BNB5m0?b_vaZ&jyX zD3%wO;6BQFjzckzWlP2XmSywa7TuVjFRtrc);oP-x{gHsQqu(jGOMl}JFvITrPyJS z$S1{$UZD*dQbEz`$C4F&3*UCBNqL<wXe?KaI<j-}OjaKe&Hcw3qjT0VCExk><;cFU zExMT%Ra^2*O$utKCZ7D(Gxf4K+brMBAJ$Epw!R|p&W&}^`@_DRIP}>~Q@_`<;Pa#v z%euE8wwvsB&z6TfVtYMLiB-*gfg3Ax+k&s`b}I_b;ZB~n|L~H&nLA&fkL^|A=J<45 zEhMvViN?AuYn~lBvMl#((yHD-l?9bkA}+{W3_BBkD9@?wa-4#Z6z5Yu<{f9#`h&mg zbw)&9TW{{#;qqc%-ja}x$rImZXD|I@+0n7J{dMoW4NcaSzvgB}N8Fw5JYC0DUy$Qn zV9$|&Sr6w<uUesQKfT3PUzpo@x6pY72gVJTUml*U8|fm~{i#iMUdTe7F814{&Wt)= z!Zi4L-TLc4bG3?B)CWxNk5rzX{l!#+S1;hg4o=3EM?!CY`CmT0A<CqH`M#ax^xcVu zfdbq8E!^vj?s9PR^ca2h+AlmkX0NvH_Qq(FBu3c_@^cEg_5Z%Sv-ibr`*+)4pLd$; zVv*r}WYvNG7g^I^M;kj%cZ@Z8#I)Uix@w%sANGB7k7<4Qvt+tPyory2Z~NNvcFozp zbF!0ozxD~8ElJIJtsfEXy>3^N^jc;8S<-7?7wlTSe2vcByYqT$ey2=db5L80al!QK z2esp-x8&=HOKfo47WrnEb$?&M;_QIVR-w2JJB0r3-y1tUQ%cX9>9@u7jfb=q6{_#Q zJisTt@@3qcW4o3`BzN@uy0DnNYXh(J&$3&)Ha=IMzA@d<j<I*T<py=t>Cw`9p^WU) zH%jZdGX_upDXq7M>22`z?J|01jDFMK$>>QleQTV~Evx6w^j3L#`d?EW#^mXZvU<-M z`KQ<XGfifc-~QmADLW(M{OK?Lo7yt^O;t0S#yEfLUNbeu=@IYs4hr~xnY3)i*>Y<( zfr_=pG0WdiU#O&K&e%8o-gb4%>8i|T=8VqMW0}qL8Rt&#Wj1qU+J1hzLz#jRBm49Z z%6f~Lwwq6%ct+bres<v(H*xphr@x<?SQGx_z||G`>x=!DD?8=fDz-Ae|8=^0oYF=P z>HY;@qgU*!p8g<CNoo3Ge|_WWKeA1D7=KLXKd0?9T{S@8fBNNkr9IQ_bBwtd-%Wqx zWpJt9{BiW23rBZKtD5ET-W9F<Fyr6%Glyb+U*CTJkD}ebxBKrUowu>-T+Vc@Rrtt` zsqFe&ZZG*8pZ{Ou|IhQ=KXCB3=uK!8m#hCXef$5v;r;&wZ0sTDGcRI)*{HMeef|ym z8i!r-N~`+oe;t0z_U}jjrD+Y@{(NiSe*e$Bi7qoG>h1r$j#fFk|60Q1BMa>XU&`;> z|JRqN{`ZfE_wOrICUtimX+O^Y|Id%v5~Ax)q)fbNDi$Z2p3imfWr)om*}^Akz4LCX zeYX7ip}N(2t^G%Jo@-w9pMRG~#hJdeUuU#*4cie5t9ds<_x!)MuXOIU)765P_rKUb zDW>-5<w~Q8kCh}Z)jwjCm!DMm_wicuYbHnH1SS4*8f~mOcuGHNrg-I?`Q5p_9vQp8 zCOvCCJ7K+>mf7{HInF<NYC7igP1XK)TB^Q6!S{Kln6j~L-}8C(F>|(DyZ`q?Tk-V% z&+#)j&6R=~BX<^Te$jQ<f6L>B_h|;lF3h~d`_xXb@5xkm#_Fcc%2{Uh51+W}MjTnN z#W`<->!jNGM;;~EaQHWx-)V7Mp6I7)Rd~|EsoeMfN^_Gvw@c#}eq4PnJUZxMVOYZw z{>yW=CQW74@O@czn?<_gsJ2P2S^N}-@DEO^2i&{9@$V7M68X}4;hc8l%^(Ms2kXTA z^<G^|*p{?A@6p~eqb&0&FH+w8E~(c{s#Y-x`g~Vi&$jpPBhd>o%X$waX<uwi*;UQc zFukqD(LT;)=eyqvpWc&Vzi$_^uwviNPd0Z~l<&zqbzs8MiM7TI*Vaw{u*>Z7%=L56 zyS#h%QqpU$b>ZhG$L2Pc#K&qs*+jng_P0MaaOO)iI=8dESwU}6^!?X2K5m+QtozP6 zj(Xua*BVk3d3Cma^WV|wo#S^?Illdcplkg9iMK9a(Y?FQyIL-0?)~6nA2ZME9=~A9 zt$*$P&sT1l{%?$Dc{A5MwmN(G%JcmTO!8V@r$37NCw})M3@zN1Ecxa}$^mbkq%{G? zFV^qbUXrlpao~qOnd2+AM@(z${ob=Y@N&IGm3Q1}3#K_6yF;!|?Rgr@FOYt(K7RK- zUG+^m&Qo;1t=p=2ZvuPXsSWe}{~TfInY+L6tf^kORNst*$?GHHuPW7wrSDplt+282 z@$2QvZJF_JHy`bIe*5R5hkA2w9eXU0S7>k}B1YK7z~GN=mj9ZKyo(Nfw7Q#FqwPI^ z>UKHvz4dL^ZZyVM&7ZgFRZT%e6^Hz@-)eIbt$J+_@BID5T|VgJ<a@JpwExtvF?oGo z-!AId>at&lo^>xa+h};`>?xTSt6CGz@yBtjx>013Y<cCr-tHgAGsVu#Zqt*QrI<f^ zm(7>|7w>${&wST^dCiXc*Li7Nv!95|{3x7MF>UkB%}?ZK|Ezy}zwGC?q{#nsQd8?1 zm+OC6|Ds2~O{J!B`TXns8p&6^cFdemzg@ChraETRivO(N?w#;AioCP-ySUi(^RwsN zdcI@o|H<u=D|r{q{84d1Zrz91O9H1geHTAz`2C-Mp4#@=UXPjiy3@|admMgWUvkC% z(ckBu%zTDZ8gGl-E%<xJQ@=i2zc1wO=11Bu|Nqwiu>bd>zwsT%!b@J+|9PSFYjV4- zdW@{4{=Yv_x>G7mllD!0nqQx4{qaG@E?2v{g;$dQO?{hh<4|>St!r^zP}-(_<sVzw z{t5rK`;ivA``5ktRC#s2??2q?6f4^Pf8pX>tx&hs>E9dC-Dl?SP5PgCrbPSay874G zwRUZuls_r{-23%md)J4Zl)qkYA75V+`j2~W^_NrU<8#ZO-%a`ddF{6LU*W6Y=GRM} z-v8#8eoWUPaqnBxb^f=$T@(N1`|3{*yJvpRUfZXlby$fdU1y)b_8+_FtJ_JgcR$Z? zwJhUb(ON~lW9y^l)o)s7e7HPxf7oj4=-SJFw$^K}zxiSQmXF8xOIJJz4S#d^)PFTr znM&cpeKUV%n-;hnNV@a(|DjL6iZdVB&sP1h-1qnVd2&40_ndemzUujNy-%9POMZ7h zJ?(q-V*S^UzgypZ%R97ws+D=G`Pubi|Mc5`PG2YYznS~byC?Ohnd(>6EB^dBU2jGF z##h?g|J0Xh)RhHR|I7LN%eeEEzG=+A-8>?{;$Cf+jr_Hh?bMxp*B9>GI`8PV!Y}d{ z&qf{jzEn53Cdf<X&OGrd=K`7ejxR-$9M)V;nzjF@{lky^|NBM$+pqo9#W6im%UGP> z+)x32zOaF@#dO8_#xj%lpBH5@GBY=xUbxsaT-D4Fe$XT2v`aHX`0;q0`tG137!6Iq z$6uP68JfXP$%Pz$X=Vg6KZuu$6Li`oNU153Vc_F0&5WlT))<B}gU*J796@Ym4nFsi z+05Kz`oS7QebBID;v!{>=?_HZbwLg@n|?4yDRFwo0%IBQS;W&%E--EcA2>Yy$wFg` z=?Rr4AE#R`GM1Qrz*6tSbkD`c9@_&V4XhZab1ns)wJI&o%VK0^VKkj_jj2t&nFZWQ zkb^BP;NH^*A24iYfpqvE_+U#5xHq8(TUvk)yaRhvKiv>?u%!j^IhLjhMrIbE!Bv<F z3k4%HO9Mzy)x!_Aw1kHh<X}rn&`FL^EuhmgEs@*_GSU*son{~tk(>!S=+Y9&l`bH8 zBuBb}_+U5kfFcKc#ITvACFqD@`{}EBO;x7LOQ;D>kB>1>o-QR}lE`FWfH($|$;f>A z!dxXW(5b`5lMmcwnI0gi#xuR1$xv##kEDqR=!8l&c|B$$bA#!Pj=GS;hnYZ}PGbos z3&=^1jOLRAzl%%<ABJgeU<^GB(*kmoqq)KKKtol?0mLju<_0FyKe8B#F_~FR4|LSk zV>F-s@r<b$<TOn4>5cJn64SN#Ot`1Niegk{G@t&EU0rNC_%uv&15g-%2eA!J45nN0 znaE5F(~}3eg)xaybUOH$;@$El+>m36)qU**r#Cq3f)zkc{atMx2XcVLbkK>IOlFqT zKPs8%PY+5|6q{ZkXMB44Pel{%>6WPmd>}bSSFqy_?vNLozF@2AW+rpP=@%v#OH8j4 zFcFyUFhfTkByvzhL2R0u*;Hn8L&NEXo8?8Bjm#{kGb$_Sf&%uTzKYoNx!@Cw%?*v9 zCm0Kw2u*JQotAArePM|b^tj?1swU9migyc|K#mCo84nIP&}qfftJO?E$33g@uo#(H znt{*H1Sy!fNjZ<%$lP!`<7Q>i>C=Qwgutg_f}|Eof=<^2ol5MfVZuE<Qq7nbbiyN> zzCNS*bjAuLG4RR6(`__OxTj}onek1x5;K8?nBjDAh)vKinKJ#BrU@71RA_U9=@%{K zXH8F&G7*|C;HoP>eS)Nk_;v*?6CK9s{!%7f)5Ek)_@}P{vA~CKnj?w~{d5x(Lj@yq z<dbJj%*{a}+ZlIjxiD_$)itqVWHg#?U<5mN)7%JjbS3EE&8gF^XB!txUm$NP0!kA) zs(RC3$(u-k&t{!|R>1^(?j|3j(R9NZI(pN^6ip<iue4BEJN>?*3Ey-XTUBmmBXc8g zv`p7fGLf7PIdIe52$X9eDar`>z)f=_6YznXU|pc|NT<syn}~ys+~l8r!Pw+Ilab~0 zgC-{8(;QWFreBz*AjD#1ZfrQ+F-zZ`$=n!xXflXictjO^+~zD0=iq(wpy^WTCOp%< zjC6UY8>H+1011N~oUCplK3$>BkZ1cVbCY~VDPvG+0CtzLsRh#9jXC6W)ajgBCgRg~ zSenR)d)jb(JE?H)KYLsD#7Qe+m*2UY$8OBuH~qDxiM;h^-g-^N7I!aGn}0vn=l}nl zFZW-uqOO1Cr`@0Re=690m|y?zuk-(p$L;t0ef9m}$M*m5d6{q1yY6esfM#TLbocyy zRgRdCnGKzfxqbUSr`*4PA5rFGPDAHogfZr09)ss&;{V@4nUC>X`R5(_e9Zlb?8iFA z%YHoms~7)e_qO#<9-OwXx!JvbpT_?mf6?b-^6LrB$EXoEA2Z!6!BVPz?-8j(UtX}^ zRtT2UIz2t@^rSCR8Y#9d6$>x*WzD}ITe0u&d-JtEEWuo-0!}W!weiN%oyCcUrGYCP zk4z6eFR|q;`_z@Hzr<EtdGdk5t%$L*D(0A;>!Ed<6yNZ(d94nbnQRfTTcG{Rg5R4W zU(Itoop#1hvY^4WEpEjrD<kW6MizCJwkxKM{OpU@=t!PDBs96FQ7-32lsS`h9&br| zSlFVVw`R{6ieE-ezq{E`Qtm^Ei%CwHd-#*6#F_V)!Z!t`9e9&)Hbwo@+1spj1=BC& z$}N=0U$?)nCHc|HH`Q}k?`qu<pV92BtGQ*L=Jd`yxmLz|)A{q|5*Vwe7v#%1FqVU6 ziFlZ&PhPCOcsiGw{-o*Mo`#DUWv4GNQ~ECaoooFsEiE;XYbI^?7X9>1|8l%~d*3}% zUPeae>2vOzCURAWt@l*3=N9;p0Gc`4Er>B;G@U(6N8N);(?oicyWO-IzfX^5)RSlA zpWgS-^ghe?$VcVV<Cyd;r%zm^eRunlN5=e&(`(mgpPIh+iLouC{PbORN_o?d>+6S4 zueVpKnLf)v-#upg%$)zfyB?nVvGYxeiEc~jJLV95o%Ks!FR;j+)cc@GN~qSMDv3MJ zFm{DoJ1dWS*7`JN<B9{5;#0YbYXZ`Qi)LI?zn^=eeUJVXrF+VsRop)~<{a!YJ92!t z`;VCE_D>ZRY%WbXc9P{9hnlLpf#6A-ur1c2htEwE?=F+p`hTydETFPqIZAw@54YMP zZt=yUKN?WxHm0AOqpq|aJgHIt-iUj7VQj0>(}31<-#RzvzFL*D<D<seEY|R|4;|lJ zbX$Glpv44hoi_yuDho4KyuV`l;;&Tkw--7+dp&-#zP)|LT7-X_A2YvCCVO-+dr5Ee z+UP}VcfIS(tmxwr`1t3{8b<d;-4T5(e1?0DG2PFbBDKeMS4K?6jD2S5OP3@pT_&;B zcKY>(qvuuUJJ?SZ^|_Ndt!3N(`si$r>C^p;)eKkP?R#{v?Cz(pj>mufs$AR?_VM?r z6N(0I7M*LS<@;ouvYNH^t#mC@@5`k+hmJMQDfv2GbiTU0u-H-V+okpK_Y9^RKjJ=P zGvn9K?bElsG`6ch9^GfL_{azQO-DMqwi|N2mp`y5Nn-JQo%Xx-pKoVXz4!Q<zK5Mt zpef8nfZgj^<7{?~rxsU@8by5-pRIeT9@pTQ#IC;LNaLb~?oTheaCAT6w@T$O;r20j z_nxP}bNA}+QXQOS7uNk-Q&X$)sEOh4uPb{EH!3bqTT#;9x3lEyLXj5+;oF_dwPlZ9 zp8fvI@5j21@6WnVe`2EVJ$+Szjvk}X^n{m+V)av>Ia==FpOjoM&1k`sfQ@}`jy<`2 zX10vLaVyoyMTWUW>>swuecAGUg7seu(fl{eq|Vk5nyjg(@oWvD$r=-~XKNT&O_yGz zUN<^51D=|hf-yD2_-cB`5_Qdb+RVEUJ?-L4)p?icUhfnwM(0}w(R|B3_1-<z5@H+j zSS4SS{Ma^qUc6y9<Js+635J4<eES?6AFHt}5eiSe{Qthq^uM2t3z%xsr{{k$4rG$Q zKix3OSbh7;FUDnzjKR|rz8NbpPTSu2%~*~RB)Rar@n3d}-p~g>=U$uMkf$Rxeg6+* z!^yYeM5f=*)8U@{Gfsf<-1I9G<hC*GflMY$=1mZpetNyS0OR}VZ+@9du+7<)_vYu^ z>0G}}?Lr?g7|5Plc<NNttFNYdD;BSv<h*A>+unIcPxWry*M4I|wnOD&Hj%DC@#rYt z)R-+3dP7cDea}4A9&)kO<`Y|9pT?E>N-5X=bxztH+V;?EVZzcW6?(N3r$_%(R8!%+ z;q1H7+cUnT`T8RMy^bFmR;edPESep>RVGhcxgnI5KX8rP^i2uI`T~t9X$B4bJ6D>U zZ2dQpzrk$!#{^?h)m0x~+<YdcXTBudQ%deaRZ3ymjmZ(YKYt1IFY0ra>^v44yDHRt z`iw#y1xBIiAMzCBn77=Mnx61WQH`-?I%AQJ*!KKK1{}=WFC5qY%{YC1nlb0}D<`%0 zGv1v(<&?HP)BeZPub$GLKRqJDm~VR1X>C)+kJC9Tb*k%yI;z531fI%%iVD4Gt?^++ z&Hb~NCV#8gp}#)tYhSU2O+&wR<(ANj1ySdNr{7s58y>ukVYPO*#;am~_PMjS{@QbG z3-hH}AHsJW*|W%~OFXOj?0ff(ucymi>yG>V>*KSFbG{s#|GahCitRo>tCC*E#pvav z|BhXu#`~!1<L}=G{!TJ2xmvv8s?u4<5R*rDBloI5t~@Ne@KEA&p~%S%i*HOkdv#fJ zt%Q4iN#U0LHS1+gmb>!B^!}=tZc(M9FkOF++*}TMo2F~|3x7SEuE1)d%xFB_h1JBC z@#XX;Rud<tecIcr=E`v~DzMA#jJ}yyxcW@~yYJVgJ2>s~ty>~`v$dm6jOU)oXCv<E zwv$X%IbUbEP0<S4#p*P@fmKPR{+gQ98_oW!YMJ%Aw>3R(seLh-8605h?`<J8Y5PBM z@6W4)3lj4Gt#{nH(X@(vtD)V$18jZ98x}t1%*mMfeBL*s$NtiN!Uy*3sMyVLAnQza z-i<Hs&rB*Y&3Q88KlkpQdUn0;KUWHT%Ck?l)=J!e)T(#xuExg1>=)}!G#~%6KV7W; z*{%J1|GxVE@nie{s&3F-oAbCL#Qg*whso`^kT>~T{hq&*|2((9e@NLzV3z}1T*aS{ z@%R5dzi;!;`NN+B@kZ}MWIN=Rux~oDZ*SuN4~#GCI#$^I`}w_J`p0AWCAy5cKfm(l z@BbyM+-YQ3_hb8ZkFNUF2ak0+*DGDJuc`jMTcRG)D|7sGL`<}kzhC~}(~sqbS}_w( zDs9fz*`sytp2(idD=U7mKRV$nWxL(?+3zcd-;2E4^6$ueg9z=vSKnXCthl=5|Bh2r z?lwrc9~a);^*#Rf_H~!5D)p0oiT@3sbkL(KwcT7+T;_9=@;8&udh^7xf2d9LDc82| zP}kspvZemdORxVr=W4Qk=5O_qd9qSzb2;;7JBQ%M{XKUjUw2B|JzDlz`smK+o4=MX zGtS{v{iVF<<Ls+4F(R_=KQAi@?@RhEu5)9tVDuA9$?UUVEaWC_`;@zNQ)j5mwm(Ol z{%p73^U&k@<3HkRH+xU$I3Lotv8ei4;P`gQ!`(L*8J47VC)eMd(NXfrY-z*WV>bmS z%<hnP(Tz9~w)JzdK{05uXGY=*&h<U!F`L}#Q$UkF^_Gj8eE+YUZolWYZxU#-hdnXq zp=V^n68_cmw<a;NgC=_>vPyT98k*#q$**<@|L_Ac*<<6JCGzFt#dEjgZh|IzIK}<- zUad>smQ;^4+Y|A(L^J8RDtNMIp2op>;SR+!%$T~@y0Cxx^3ISUPAW+7Z-wAe&xh^P zZkNf_{0?Y+^z+%N&kvTw$?w)=c4qSUc9tPx_r3S8Z=JDld|T64RPNuO{%UK_Z1Em< zlP7Z0<|oY;>^N0pBhxN<mSeKw6<ZmW!usQPf5jc|`~Je@o?yA#j0aoTRJx}nh;FYx z#2lMcd`j-8l}o?IuV4LF<}J&6Sr&Wi^MhA^<{9<*SLa!_t&6PKSa&|$+^afi{>2!n z2hC~>=QHR3Z@RQYQ15JK+M)Q;<1p0zs_!Xx!hfdzJsn$}&Mw&h>7H(re8cx+*3<0@ zO&&6qOjjr}F=O<d9$sXkCpG{4#5Q+^0**6ZSJhtp_0cu|wfNI|z4A-*pG==$WFpSU zIDLDOi8)tW+PPmc$HZs-JU{(Mk%<Z8lIgm|CMq&Nx!sS|u6--F{=?~(7>$QcJ7>Sp zk9&A+)=tfTt<!UhO(YpBr?(fID6`LBIQNL`&-c?e7MoNsKA)~tVj`U`wzhCZy<zvK z^K+Mi#^Aj_{C^wp=gGG}M}K`47rHusHSho3TjcKgmWKB0{0&-bzI}IPM&8<V#mbnr zh6OpgkKSF*(XsPY=UXPqu~*T8Ph?>Um!X17_QD(Sf7gHbarVFB(f{0&7aUqQ{bH+$ z_;ep_6E0RmQv*wr>5<wdGSdxasG$tMn}Y^+z{9}M;dgWRI4^Yg-P{a3{BB}q4j<u# z4!>K#hmaw+PnjD*N1egr@x}^9=F<f_jUwTL?;J+v#$eN@AJaEcn67YKlW+P0Z#j|a zcMVJgrpqrg4WItn&_r<h2YwU2X&(*U7|o{#Dp^Z`N8uUGr%zO}b^wiG8opLnnqFya zA~aoLw){e7BXg7OA3GJ)7{PLL6(m4+0KR85pT5vrUT?aTk%`3i1=S`tjEpAJFV0sJ z1F4@b$gXJ(Ql9854>qzfOJ8~VbrTcm=?`4wr-PL^E>!cGKC{jwd-@D>kn1+;UY=fS zY9a_4;hkQ1Oi^OHeuIe_qa^sYF7U{hk);9h$k_CSN9EL}A6TO!$!u<F1RjcGG@ouD zZYVarz|@3q`oalDTbRsEr+@5JFq<yWY$7*Z@sy%Cco=Rv<7q{GMx*Hlrxhh8|Nq3h zeNu}_7~}L=WhPwA#>S@850sh6PIuU&EIM5wOJ8pKgENYbj7HNH&nhZUH!3#~hDbTM zYI9GoXH#rvHZnJz{_u#R+4OUN3}r!9KG>wQ0CX`~Vj-j4^aY!Bf~L<Xhxm-qe7Xad zrqp)HP7`@XCNqP{?~O&LM^u{#O@H5Q=r?_<sj2?-4_zh#(<hvh6VIE=Ss~*3>%XOK zKuO@W<msi;dD~@}inIhoP8M-Au|=kc2Cz8B*6r4ili9Ut#e=mCk2c2rc6W6QQ!D3a z`OPJu!2U$R^SjL5-XdQig_Az#_p3clJ1#TX(^oz}bpQS3a`P1v?EbD@_4Avx>D{Y# z^3x4}TWC$+@YO=B{%C*Lx|quHt#Q?FO*i+mwmK~g&=9$OYisuPCnqOsYiVg|YcKbm zJ#E&ktZ#xKDX!L}h@U@y&YU^3@w)dkou7}o_0QPKiEx25)~wjEqvFB>$0z&K<T=11 z8qcQApKo9D;{&g>*^F8R4Y0Zy*BhDH+4$vT<mKh-&)M76?s~I)z87zHONPohC713S zPv&{t>)Exm>D?g}M<pRefzmF)>8DLIE-bjayS)A9`;!yr*t|4bBe-ayMYn)%(&XwS zg;ohsHBO<49E~f2dvs!VZSkLP_xS(n_51%xF*jB(a?L67KXQrb%>@O)&NTv!M>yD+ z*umCts0i1;Xz^@vQE^gW>J;Q*;p-6FxRNt4@SLoDT*a4+Zx<Iw_HKLgW=_FB$<Whk z?T&nEKW;RnFwHgaoRFcJ^usghti(Zw2Mrm5vu6qT&k^|i$xq|d&4Pa)UtUhNs#Ij3 zFg@IZPwhv$gHfa33>A+pB8GodHm3C?C=@ts>G1XKxOsDDz25be2LCtK&2*5m<S8;Z zXwNu_v*eJ9<D#V<57j$OlUsf}1cZhy*DKIid}Oiv=B%~yZ5g}Lm=J0o*?CUrIPyTO zZc>D?+Yi2$udh#Amwm~-x90JQS?@0DXe>Swm4Enx?{%LQ)dnDU)Tna`O^jIGI$z~l zk6<5jy<^~=+Fup3Oh1>td!woM?DFEy0Jl!JX<|o@u6sT&+9d1Bi{0<#%qu@lk+uHT zZYQBI(?Pv&GE1k&n%g}(x_vU1_x4to3n`oGYHRObsLUv&EW>{2*4C#>)>ZsSjQ{-X z)s>Z^F;ymlr!+2Zxa2hLyx$y)ms7*zig)@=wpUZnmo%w=v8|~oKBj=xSop<}!bu8( zou#u6E<L&-vAm^H#UZKXx<i1-_Xfs!e6o8)MfdG2)}JKxc=P#l#m_FrXe@R)?A3kb z$QJ8&5`J7gv*zdAnK5H}xX_~nP!v`83aKb<yw|qWHRGcc$Nl>E@tY#{{b5qHlKGeK zR`*r=>xV?;Gg8m$LFOEpwf*6#sn6N@*Kyr#<N4U~kNwGX6PBv)cfUVBQ)zUjnbQR1 z?KrTvx3liAERKm^di(#KfZMNT$UMr=minp6yD_U)@zcBAtEH?aO-=wgTVZ4U->-3j ze`f9|&(EA~_UgjI&`C%7-HR9Y2=Qv`hOPOL@a>KIA)ERc4$PA{OCFhmVzFxW!KJM0 zq8w&;n9Z&~`RM6%eHP*HH5UGLJ1Rc9+S$zFOP!K&LtJU)%IJ3f{n|giZCUC)T~$4w zvk)A!F`z7PBjB*Ui&OV$haHdmR(*TBS5<Ytf>zh>d)3;}TZ1M~{<>H6ghc-`XGvA5 zu&4=(l+5bC{YyQ4Z^9DeC;f$mn%nQ!{r>p)s3ISmhuVeC)1d4pofQ$)B39oxVM@rg zH8bBI71zI_DkieSy5z&Zhy3>zDQ&ZLYB2IL`Sk4apPIsVclQ5%>92geXXo!m_J5m- z)$i4CWg967c3$E2?!NFyU*O-D<*TyS{fz$@(4Db)>h_F<^?vhWPHu7M2ypA%kvh%q zkv=FK1bDZf;nF?Flz3U~|D>Z$tp9f}Sfuyy<?_GZ7u9{4825eAtG9w2Qv#KyiCJ}S z207B%Tu0Zbd$WUt@v={^R$o1ID8Oa<>AU;)KVP-_3Nw4j$93D?6$0EkBcfiYoSVeb z>A`b%!xj$Rc}$A7^>_ED7}o#Of5*6T`izNzx3;adDo7C3G`{hPgZ-3-pf~s2Bf+3l z*=q)}VY$N$gN2_?X<z;GXG6#8@ZaxUYoAHJeeZhps<Mp6VwajvEBzj6f_&g6ZTHh; z%MQ+#xz?v=nTP-Xw*A&pCyqx;Jg4eLttc#fx~77KHFe62*|Y1zLsHCbg-<X}IIO@f z{KpxT(DJ}eTn@>ic}$6qj+`>fy>jQytuiM8|2YN!|9!uA|L-~Jnq0P&{sjwqgj8Re zRH{$1vY#_;?p)z#`<G-qF*tFMMP7P>&jMj{Q0dlo`H;U*_Aw6m#tr59ncZTq9`|4W zTygorktIv&H%-&M`upAL5Rn&h3mqq}s061*WzPv6F4sC8l3My5W*9B~wCVJfHEXK& zn0Uo(I8d*j)zR+A@R5VJ%jGQC4tbCroBUXWlx0{BH8L+<8?|zC+SSb|f_#CK?rgsw zS9(<R)xO$WC9QIDj7~5s6hKz+b<{f~wKO}-FkAa*lJ^y5_gCgZe1^uGzr0#~bziNm zpL#$)!$OZMdl*l$SQSoC@o-UMcTq4rRHZOs)q>LO(qCVGP1iZ3UiWL||F|pr|Hn30 z2bzB85Qe$yHOO6`99e{v*RUU2+#j|jYpI;gjRoBwI{ED)F7Da+YyN+i`YQcZ&*Tze z&PuWcIm@nN*D;UG%$GMdCciDSzTY@uYG~EVrCOStCW>OBI~On7V}9?&+0)EV1a(9@ zXPN8h9^m5@ns|aMaKD6Q&5sW|3LjT}d2z5d(=gr7_4Ksfn7W%PkCyqSu8m%ueB7-> zf7Qp}>mnLLruh+34YKu8DoPVY7u6YVDtLIPr>E!P;r7q5QBR&s*_OH3Z`PF)k1x*l z`g7b~&m{X<_3yXb0ya)<N`ar-ma^Vh=%^$VsrX7(`Ob8);^%QW_hRmDT|Ln@WVY9o z)bAS-LziS^eleGRAZT>OW6`1=j~|`Vk9lzOv8RqM13%ccf*zR%SJc)2I$8d7>b{ec zOMgD~TmJr5cJ20iuXa}iPQTxuwMtC)lWF#|*SD{S2PJ)5xFA4dO6$?@tBwZy|J;7z z&bGB5TUo6h?f)O^SNC7ozh#$0NPho;g>8c3`rrD$&i@xudNp)k_PURC-{&6dpWOVw z@It{=cpbbZYJ&tvYwNq!_3J*x=d9HJIMH3}gk<j{m$W}uOj)yd3V#;;U#h=x<J3t{ z&Yk~W`ubVsMW@&;FBY|(uQ9xv?0Xnqn{V8*An&~W`~MQVD~ltpI|T@{9=yAC_48e? z_ms|Gmet@MY$YaD_|)saUD{&zaJDi})gzCRzSn*aoh08U8C>~@rJi4|S$djSLOWZh zM@lP)irWnCmPJbCyUSjkm>9|?aQX6Sy}eh?XI)Bva>91jrHvOl=GT_(bLBR*+T|ru z@2HZzvE*gzG~KH!G~V~gPMLm->0`udP+~Ql4oa-kL5Vd+fn{H%zaQWCIYNpbr-uLG z{&aep>BG1yVDlE#cVu6mwmokxpTq;jsVRGp^h%$u|C^mZ+w9f;e@kyFXZyYn1r-U; zKt;lnNgOI}H@I3JC6)jFcJJZg!?Bw>=6KjC_e%tp-b~H1nBJ4+WU@5bQPA^d!Oy2z z=jY99Y6>`_?C$mZ`}YZl-hVu<9iw;5=Gtvg^?1WeNJVL4xKjNDi9~IIe?R^IOF6~F z2<xrwnNYE*Dqrst<IZUFegz2^lYPk#1%iW5uiF#!_Rh`V??TgexwId)O>X<2bz9MS z)d_=*k2Wr3QxSe~Bn(te?h$G{!r|QLaPH0Z*yplVTR6SNqIh55+WN0LF#R0Q>$ni# z4!1HLnMd1lQ{UcNX@0l<iEYu6d6_o_3ZI_(JUw>Vzh~z6mZ<dV?={#F-k8EPR|4$L zWTgobi5ddabU*7y=G?fjWw)cUBHQ+xoBz)5+y84-;jS>3;G9_=cXn@|GNsS_&V#%A z_y4n$Y}!#-EUD?Cx6`HeaWA*jz3Ev6>zPinSQ$<M#m#Y0+;}O}-*}t%X=BNQ1IzBN zS@>|nB<2?v4`1H5*Iaw`M7hgd8C|}cJ7&&YDr;4-ey`aTU-^Zdm6h*yzgwmB^!^mh zsfl%^tZTu}jPL{nXFkZ8ssi_FF7HqI_;!0*UV`hns_F6T?p3Bw)sc2FIlAoQkvDHH zt<cE7y)7#$YDK<@RK2R#rSrG9e0%lOvcRFaGZ*5-jgvr5ybp4si-N`6ceC?8eS7<Q zVZ`fY%4S#YRUD3g_~-Ndh3{OiPRr=>RR*~!@2*YmtrZ_X-m=Mj_y6zyPpj7j-QF6k z$rV^!Eefj3J3-atPIabEK{cktqg?;j^<-bWFh}!6eFv{;(Cr?%*qghyN+szB<aRE* zVbT*3@<dJavFh{{udiiR3ZA~Vcj=Ot%zH7hJ3b`6P*n@q%LR&W7f^iP5pF!f@yDTH z=N(z=s{Ea;X(yff6K%`Zd})*3GuOJ>%Zo>8R?=mLMG8CGc~)lK4Ep=&^oDJFvxGM8 zxFIVYEqS9}eb0soy>YCQI7^!5t9ZC9676tEVyRQ8`OsK@^3mq=8s@P}6wGd2Td%J^ zzhk-Y>i=;ewjIlET$%c!U`KM&Di8B@akB4Dm`(M_x;Q<)FT=Z_8SG!qI*{YSK&|=* zjS8pV>BZXI-Br0_`qtTAJe$wXeZ4>C!{_s_Ep=bjgJQ+c#j~hi{(XE<#b@8U<pKRE zaAPVaxm=plH6w4n#?<9fnHLiJJ)X32sJJz-Gg-<`5Wa9+{<6LLqLoJsq<>zxyL<cc zSnIDJ9v(CAWx26YO~`YqMQYdnbrGAEaF)8N99itHxt+xvlByfjJyqT=D4yxtQST-4 z`^MA9d#YTN%v}@=nJfiPSgxop_h0TO_eoLw!G?D?gT3sy`DLR*Uw`<bJS!<UdeNdC z>1RLX+nLq>b5*vzl*^e1Ni&XqlRRd57pigWz5KS`Po#S3ZFQ|vng48*CaNn<kZ6?Q zh_87VzbRs?)*|<4v(6h=zTK<-ryNti=ZAQ@XKd%P8&@V+<j?!xy~MIu%V%f5#Rk<M zz2;TI!iRT#IrIP$KXX(jZgD<mp5qj<aZaNC@5Vg}^-s<#3sovHbqa21bnvs?TUGh* z1ABf8|5l#)9v4qI`ppQqxoYaHNuTxyPhIB{oRj6MVk)sxdzs(TmD*cAN!$?HQ(B+> z_3L%%`$Bghb}-FWnP@Wok(WT;-NgBV3h&C!Y~`Hm?{T~GQ-{krP|C<rsQJ6~e`mt` zJ(stvf7~m7?N3d4JKw!N*}bl=Y=XWUB`pho7X8ml-nen<mH7P3ryJ9}Kd{SXAYwFU zlFKEdx$keatWc`-Z+KB3G)ME%hLl2$%7eY`Dn)KALdpirjWu)LTtEML_x(y)KDM^2 zY1;W0om8J|9`0Cnqo-v@(bJy?#Dx9SIr<axV1a+oXHth+=OPuZzuRsvXBGDMu+DLs z9^0ob`c#HpZsG}fL64pTJT0ZK|9Fe7-!J!aQfuO2DGPtrcPaITZ5ds@R*%x>&sAR< zUQ#ku<ItxYFQz?U`>q9QzMWC&Tq0YxZWCwVl4&bkZJyM0|FJp#)fCCh+j*;ZeRNxY z_uQEcyJFt``)m8eru0L?N<)|6oFIYg>vZ$)M#&l+2>#qEsL{U=o&XcnI7=r_o$Pt2 z{=nLAnx&mxMQV5J>h~0MYdkl2E7%zWD#Z^t{CLRzf6`Iy^%)yd5}#~HOPLZ^xzws4 zAv9EUnwb6eUg^{N`(xhTyc`_Ba6P$0_aN^(a9!2lDdcJW>emT17g4Y1SE{$3?qOMY zKCQ56&77p`%0fF;m^uX;8U<uyzrK#IcCL?)XD^OmuAZbH*|fBE|I#H>CPu9;PWR7S zXIAWE-`}WvFna5!e9nEfyEDyyGn{0xV)PMurKWAK%DsL0ZS__Kx#G3zTaPn7U)@vX zqO=~AgLDOigif8f`E%*?Es>iH>LT9n-@nO~JAUzbcJqD7ylQ#3!>+BHTXos@p0c~i z?1cKN>Mb|x?g{;w?0;_drPU5bjeZv<sZ5&o^w*RrysVe>%f7AizVo=^lv)W_+|7g& z%0iW@Or3%mjRr|BSGQiT>h6w|y(X-FN7nk+3C*d$GH3hT;PJh)d;6DNulIl}qWIG{ zQyY%Y(mnY6%*T9KYH{=i`C<8_qYI<!k5p&hWe%FIp;@%b!X{GYP0*X1N*5(i?Zl)d z5ES&sTdZ5mw30i+;&9ca{fs--r+S;3ZJU&rtPz%D=5pqY&f5zIy<a)+YVV!(4wTjp zHm^>(*)`KaJ-}1Q^K{wY+iEUPJvko=bU(2zbh<wGTV&Op?p5>MRf>FAgp?OBCDwm= zaVq|=m#X}qo3hs!KK^{J@3zm?vSxN^{fxP>Qld|DZ-@DMU;d}9sBAlF<L);`U$^i7 z+PYJ9hZ?Vk+6B&#Nde}rmUETv?TnNO-yV|DQE_8u(-ftf>+~Z&cDU^8{B^YBY?`!j znvajqnOUaU5?n31(SN+f&f6@0I;r*JVJQW#`bq!)-PB$e@cpgvifY9@@t;23xx1_K z)|SA>k6ztZYtrqXZ9cv9%?s{g?*d<`X=2O#+hnerFY&X`%jKEBLL+_qt>s6!ZCQS5 z2+K`8VIH_#Vq$9Lj}H&i&&|=)*WdqqUNsjNR|IEE^}CfS^UFSezA1N2>d`{yrQz{w zzrB6kneyMW{)bt1RN%zfGxk0aD!pqJ`-&^rW}ekkX+xzox(7`&Bcf(lONu=8S!JQ* zD--*EyR>2l-%^9X7t_`HrcRyTQ0=1h-DPf4%HcL%ZZRE>J#kyJuAZ8zJ(Hv5?QKxM z@A=uw6(<k<NaR%m_fbM@eHu4;N?E?;lMK4LY3Z-0)2-_3*i*XPBg^dnmOPGb%D%K= zi$S^3lU>(twya3L^j+l0<4bOz{-;??XZYUX@~+eB=!tgux*y+e=d;Jvf4^JaEv}!Y zB#@M>eS1q_zwG6I31{Yd@Y_W=dM%T$yYRZ%hGjNiyS3V~t{X9XqwZ&W`+V7v=Bo^~ zrqD>^)J@;|M=N}jcq$#;@4T+)3laahe^09D6nB*<&`8>vxV=_8wp2W975}mzWAz@J z_-?U%>GKSKTa*N3u3TT79^cNlFL?PGJCWKaAAhL%ewxVtRlYXm+rk%XnwakEZvQdM z{QKTNo6f&B{hbjIbvksO6Bl#!P5vwU7oMuF>n={|`n#=rUj2L%8v_xpCbOIy8wwsC zI*=W<Phh6a&QG6CUwxAk+qWcc(L_1(T&?W8QL^TK_p1YaH)@`Krx~oZ+FapkPPcJ} zT=Rd4Bv9H|7d69FQsimOEDN(xnROb=l@-NKOBNnFYyGA_qey?%Ho1uzf{WHoFPvvp z`s&Zm&ySDy+ZR3I_)za~WB>jwsotgE-f-EqZH;@>tskfGd~x}`iy!}F@9_=&dUn>+ z`~MUF)hO$!86HiJO*%X6LH(b{`rBBpFG<Wyyq0oe@}t%H3bDeLA3I(<e_GwQ>mTb` zWg%UsD_@^o-k5y6PsZ}o<9_=#d5+-aVKG%JtG=v=YiCSUn&|)i;>FP1TlFh;mw!$! zzNi$RaNX;08C$c#l*X`fkcXy;E%RY>wcH*#XM&Pjd)>8&87`l0Z@ant80TH@C(Z>n zN*AqM6bzH{6lAPIZtdFo>x6QZZlr|$8eT!qw<Tvy??vZ*%=omV;&QHD+?)NGO;cL0 z-6{N%^0k3a;=_L3gQf>T-IR^d^-)i}|E<>96f-~DwM65n=b;AQM;eiqoJW*});hBY zDL-Rl($w<EbmZd6Ycpl}cv}DO_eFLeTl7k&Of;LW|Gj>{acWn6x&eo5w%Emo1@^yQ zoR4nGE?O!8s=O92ZCy0Sd;9(QI(&I0-d$>fpO>%%t$S0h)AT^Fa~i1CAk19fSo3c8 zm!Pi;+e>0VrM0uLeBF(DwO{Y7-{vQnoOyO?>T~AnhGAh$uOfsy-|w&g_v!Ri>HIHl z`&2C;R=759S^DczhrfyXyYf8&?>Bq&eD63iD{cDc)qCdHPm}WKnIXZkIX!$!&dRLc z1wNPCO-(i~IRfe;{(8N4=T52m-Dbz0rO%(6f6=M8Z=H~9glx86;pu6c?*G4cd)L-q zx3UFuIr%`X-HgnQSN}OoGVlniyE4b4E`64TRp5*F0bOUlb{uigo^t7N%e%}z>+YvK zakleVgq71+oyy8If37jFEK*HBd`rX7cJG@@-d6(`uiCQL>mbAI?CaAeZ+_muSU+!( zQip7|o}vBy{rM4_)9j3vuH4STK8dp=Y2y|P#oX<jf$lN#FI;pc8lT*mGyCttwrvlM z4k!yTul2Y$S>cP9=zFhH9<}C4kAKaw?{8#NaXZ7+qCS6(!u<O0Z!XS#*Ze)L@@MM* ztz4(4XIJX4x@Tsdr=z|!0n{~Q+98{*7g#^-?&s&f*XQkhD(3ITcJ>Gx#O51m^Ji&% znJ(gL|0wYK{zL2IzI^C7GWnm>`+!9k%w1)k1#szC)%k4yKa=N_-SI;gzO!t6x^Wp} zr(iJC!y6kfndM%&5pj3APLKSxf{w07a)yguZ8{yoYwmX8YMPhV&8gw5=2}-b?LW?V zV`IHQ$HW{+2*+dws=QZwKHcYe^)4aNr+4^%_gFkk>vH{Z!d7XbiQ_phAvQJ6?VUw= z4J$O38_)T#uz3GbIqxoBJ{vZ31;ZpSg)_6C|1Vhnv(H(e&D1BUtSs~Qw|jYaZ5DCd zeYPz(^@&R*xYDmP3{5E0VR>|K@6wc%+4bh(;yODtPW%3l2X!}RXzP~UkXM|aqUw5S z_KT1fmBfHm62i|ub+pO#z7NfC**#~v4xgvUuc;?yZtd8)uJogmzmZAnrLbkT*RmXv zj{I=Y&?wlR`}+QmTLz0JvK>}m7aQ&OYIWr1Eju0E)Mr1@sk~cyPde|zwY|5*a*jJG zT*|G7_&qE$Q0Kk6d=$UseWSJrh1^Y?bH7>5GrhF<<6f@b7Xe+tM;~%Jy-%u)-|G^T zKcQYgy~Os>uYk#WZz_J#njm3lCor$}+WwS{m75*Q8GbVCkCdxEQ?LIjJU+8Pf0dk> zv9Y&x$%nY=wdKeAs@S-Tjyr+Igr|nr-4m*>xxH;enl&gdMK3+-_gkmvSfQrh;SR}j z^^=mG?fBB1=<>K)ROI5)8<&q<{OHs#eCeBjixGR-4S7}P&8I(JU#6!$^WDaKY$|R% zd@aS#Yxe(|>ScFI((Mal-R6!(yQ|Cne}B8TW{rotWAW^pH<tzm-rJUYb<37t{@oL- z#rQ6!)obs6XZ3&D1Nr(pKc+nZHNSYKim855EYh-k5tH{MWx~|p*+&aIo$i0wf2V&! zM#1_fC9ke6k#hvp@5BT=m;4TDx|&`7+2{Mh#Y-^oT-woOXI_sU2^o&{`(D+5aLHO# zID6WUg#D3aZ!~tlF)ID>VU=2~=KAet_t=zg&yy>1s_*H}E^uY7IDSZR(yqb>4*zRc zZcY!kn7i<wDkw~xmmbwSF8uM3?vvoP2PZpD*nFb>#oBM|B2Rk^U6iXu`2xfI^0xYK z<BaX|mOiZh%v*EG2XBF@=bj%w*tTUjBpo^7prKc`J^%gg*Xy*Df8S*PclOh-*Z-;m zr|b2;hzsG(6{{EB`TN_~n4->Id9f?<vmTV|$SgYiaGvGnkGcmz2{J-cm*pqN&zh<O zJFiSRIpOWE@*mrmW;mJLTfEaH(sJuvySY4t>t5epCgl3_M_OUb*RE^XCD9WdUW6(b zCZ#Cs`7-IhjFf!-3%k{JAM(Xq3;X3_J^h|ejHzEV)z`6rUoxm3(hlj>d2slBM8=T= z(;k@Lx$poI6Kkf3?Uwy7uK%S#OBGTVUAD9Kdl9Ab-mooWkGpVZS5ejSWWN{fXIs@y zojPgTSNX&|XS;v)t6gFf;#h^0+gO<_)Bpaueos*O#=Kotg8j1Ed;eACKR-8bl8|xk zB>wA$hN1OmXRlrzZeEwjAS}z>D^cZL02=O6^WqLXw~;f}XwH9wLZclb?wc%BLicRG z_&aW^lGOW)B8wKy;SFJRpYz_`N#$w$wAaBw|CV+fHn|DzMuIFpw0ixo={no;QY&7) z@`~BNZ_b>{%Y7H`5jQQGJ?V*@{k{7APiE)0eZ9(4uMM&`31)4#ZQt_8EqQ!TTXs%f z7~r*?bMA@C3kHim%JHgAs!G_O9Qd_da(%XwjpBPBvApZhUS*GjFh|+$-^Zl)ZoeD$ zG`Z}Rl*6Cb@qf2Jt^4TuSetFu?J23>r)d7$^=RqzLwlbzFYIe|%gKP)_@jPlYpk80 zUDvx}ofZR0KC9^yKPRlqo}1|M*jCEZ=0VNWFX?Tc<$Lq|1??^_6bX;#lX?m197-6f z2{46g)qRiM*?)6oHp9h-1>fJj&AjfncI*44_sm3(+GbDtujE{`@A0POM4|n^R{eRk z`fqg8`q<x}pKb!>vk%_gwSCX)Ju?%he^&HiD_V6+>E3LGFKVp)h9Jw`&Xnx)=4#m6 zmwxExw^g1;Ug;i;?<#-{jPytdaQH3%UB3VGx7W`VmmA2>4!&;iXrArA<*RvQqf|YQ zIWqrVcYa>%#U<?<H(lLm(E0n@)Ux;g_Cu0%!*sDHdj!<)+`01CptOE2&!RcA6~1_F z_g8tYpWJb*+N7c4%2&^?ZQ=f}%DvwkUjOw<_aM8N*UJypq8=cN-|wrQH)rR*f4lDd z@JpL0@nYT4?%5j}1URQOaJ*aCJ}WGI!;OswovNzuI)&@+3GG?J;-Yqevm$fj{f!oW zFSN||xFnoPIZ;>}y!ZYO={CXo-tQ~44UcbaD|x{8yXV9H4GWaR@;U3K`@V46sJi3e z-mHn24m~aU|B(OQy}h=L#?$+^uFSTXSaRjZ$Ej<hR%&Yc?hv2Kx2tC7|L#>cZk$@C zH)+F-jR~D8N8)R*?pLiS*>e4eMn}K|Z|?RW5%rS$k1Mzyq}+Hr!`m-ntJ&gfQ#1C| zyU*=7zJ%9o;ped5B9T8YGAMlo#qTOtukO&*=h)+Cy-3b_HOuwP`SSnYw%-E}b67cr zud|W=u|cM)+hd-Un9;>FZF$pE$w?wE8Yh;zwiR<)vb*kRFP_}-(7fo7mtgzSj*F%8 z8H<E3R`gd1d|tZ5V&QAC>NQJFv{f#-EmVK!LEKiSOh-HJ@>fq@UOOASxqEB>+?CmS zg^!PY64Sk+8GNYrhF9>y`E^zE{``CKLhIG?UB<UIPUr+Bp#*R4<v~LFUv9je!ChuF zXF}PH7QL(C+<%gm#@a9XD7RHr%<E;L(|41P@6>D){IvUh??N-^F1AC*<$v3Y*MF)% z`TyOrFNQ{?iURYiPSuOLSoCkr(kgj->(jNhR~eaY9<J~DaAjix)VglwbKxhB`#9S1 zR2s<??aLHil$E=1f%e6U{wTrjC$^kU>q89NlDtFL+OXwv?%Q+mv^(#+PzA$9@d_t4 z{TB?6-Br=F|M>Tf2BnPxbN$Nq*Uej9zb=ShE~lpFP<!5;h&t$~Ig^0d#E8qFVe*7& zVtPmY{G6?2`<dtSJoz#uZ@+!q4%aEgJ&IEA1BH`1Ycv91%vRzv{u_4TmF~g$N>`7X z{l0P`x=H%ZYKJ73{SH6=6#t)elwJPMBj@e>f3C2)-r2wZ%PH-vj?Gg0#Z7%O>b<-q zf40uGt}ZG*XnRZ+>`w#l?&fpXJ%3C;!T!*nZTFn%3SaIi-HR^X+<edFv8|hj$dffH zi3yVmW@|im`Vg^K^+$RyWFV?ja4wT$;GOMv9=*JA@paM6n<r%iJagT&wmhGg{Uq*6 z!Ghb{rf$t%ey?Qm^dxV+e^z1&g7u(od_v~Kpcqc4`Lf?;uJLJ0UibBC_M6i@%2Mwq z&hqeDpHk?t=)!uJb1Y8{GrT{nSNO7Oo#Cf<yWg*i*r+t8er2%2n#f>3zmE5N!+%>b zo(LA#DSUL~)HL0z7yNs2MRt|vzbw68nZM)U?)v>^%I6%9J1Hk+E_{0-B>s$isLK2L z)C{AL^&88zrfidNGr6bCdU2u1@~*?eE%%OovTKlY29KG%5>d|EUVX5Mb#K*Iqm5ev zM9S~)ll$~?$Gh0xgyniENr?+*m#AevVU;y8-n_+`{r%SKRpoCkyy^TVQ=(&{G)+v3 zuXo9bC&KT_ejm>9Wh=VzL}r!_UzuiEa>udy>Kv_!C9bn9tm0k-zJDk0VAFO3lt`~? zy8Zh+|9{Pwi|+6DeD3R9dUX5!Y35%Td}joU+Zie@Tmv45IanR&?67&W_u@r+a&NE7 z%$#*q^iGM62H488iO;<zeO7-Gd&aj-snUPWh0^7<+g7b|D_c2H?yx$n5mO(du=LRP zi1*-3zs_*eqNrsoO^bH0^R4-HHh)jq?u&<`@*lVT`1AQ+b>RK_{r{>1rJJ5T{rUcK z=4H3uZte6#%cgclL}i$oOj@ME$-M2Rd`gLtOxZex(uo1T)=rGg+Hky}V^h(lU)^nb z$Cvi5so=RKR8yL;Sg5%=bh3n}k57FM-=!}vFEiWo@85DECVJbC6Osi_y@DUuoPPY# z)&2LaZC^#j+J5ifad%%MbM5q)N4K|lo>z8W*zoem&hsZ%{#?%e`>dUS*UDAp+y4YK z-PpY4Q_IccNwfB39gTY$IQzoMxNR5TBxlaj+WYRW`tu*_PyGG(KJ;GEW`1|?nLDx! zOERw3mtL=AJvgUpVm^3WCU)t!*UvehD~TDgIJbpt%~@IZGc{s%-ocHTkxJ{LGK@?% zeM+8G5WVZ~c^`ka_MjOl?;#^G3SU+obaA!Zd-<Wgb^1=b^oz-7r#+Z`Byj1}qi$uI z)8jji9R0a|Q^ckv^H%Hh$b|KE&aZj2U%d3*p88wg7hP+zl6f~{#;Rv$uU=hUx>Ebc z>j(}P9bFU2S&P@zPYe!foO0|-io)5@d0ss!7SkPGgerGF*|X=kVSk1Fo0y|pjvtuz zpfhQ{jpjK6jp<8|es~!A_I7o5w<C}C`Xl@QEN!~NWB=zvceZ-d!bwl+%d(uqFKtS? z+~lI8t0XTKS#LR2hwo-mf9|Wv>lgaAF%+(Uyz`Zj=WK0>#Hux4g^db+%XY8&{=H%@ zbN`~6n%UVkGeE;P4M#fK8Yj$&aq~;>7H_|G=OlZ=t4)47T1Edq_TRhz=h*D|@%$mv z?glUW@w#hz+@+1{9&AeXRR>LeF>2~=ijAKjaen%wi1|E>i|UtX%sw(hB~jq+XQLS( zB3`Sr&po~Bde*;%m4zA8-21;fA?!0KN(tRvmi0nC?k9s!EMLdUm8ol^R(`(|yi#L- z!zBB2vqBwTb^ZJ-eRJ<*&e>tgAln=@bVZ()bX6Qr`zU97&g-iX?}rGT^dp?+?>E>l zy1Y`X>3IFDX)kN~=QMq{ns@R18cn&wcZ6alv#Gdk;c7WM`}CGu{ZXG2pHBL5h#Qpt zE1x?Vl-#rV&!2vN-3m?1i0zr0N}yJH%O$1bUqvkqWvA!J__QTF61<-E==F-%@youf zN<4DF)#xh!^y?qHnT2iVO(<`@2e)8jvi9xzZK2Y&GnVy#-`t$&5?SW%9=<hm@w<Dm zQVn`>Z`NzeRh{VA)%3W}bRvg}@QakHOviKXD<8#XK9a~2yOiD0Ra7>+R?AY=^~VpM z6LQR{5BYxg?2=9`emv1+dC;f(x(CHyJQ4Be$q?eWz3u08oq1KOKDt)OzfWgZ?sV^) z5?9>2y*^yO|M0`Q|F!?ils0ah+H0pg)pGVVMNr_)jEj1*YoBUot<S9k$5U27hi6O* zx2*Y-k+NRu@x-24zAyG%wQ~(Ge^#|7^J;XH{>pnof9zhlA8yZZNOGC%u;cx{Q`+kS z`sLFTA}p2belGnVcLg+OTkqbxYSr%htny~M^-e64I7^JSZ&8^4+PqWQQ(6DV44%@? z${;37`M2ddW<41_$7?h-{a)-kDyOZv>Eqrkv5ogYBcl#UDxVx~Y+b#kvbgl!oek@x zzZ{eZo7Zu9`S10&Weg9gciG(D!X)UScH!imON)Lb=ZCEGK0bG2EyFVTmD(M?LCFP= zKQ8C~{iwcGF7we{y`!07>u0&H*{!<6ES5{zO^Lt7bF!BH{+P2TIbVPOaeznL+{LkA zeMI5DEmMkThbe%ACn9P>gxYhpNtgD-{R_XG^7Ob#VacKk_ZNy3KG^7SZ?eWWFVW<l zom;Po^e^mOvfx(Ye90XZp+O?P1rA9nha7HfUk@7gtN-?fORRmWG<cC9I4Cx5IWhT> zhsEovt9w6AUZ|+_bA_~e$^EqXtB!};yH)8-<X7dYy)0Ays&Fr(K>tI5|GQNyp8G!1 za6H!~!>;0{#M8nqzh=jmAX9DaJMoX0&DPX_*C>M0>EuYzfY@!Fdy|#!E!0?EIg3ZJ zqrP#rN&k+p&95iUah}}L=y@nNHI!*Woayu#`b*Wg{tC6+o0!kZr{bo>+0xAJ9lbS3 zzSiW9D))xNr>rh2ne7DU>6xKXPrN;!*vx+Wt7-E|fhLbtD`mfd#y)4|?@Q@%2aj1O zre6}W6!u#`%Wuo+<L2FuS8ZpB7dshVUGI>jGRa|v-QGo|*`~&uIrkrAFO8U~7Ij4J zy9=l%7VO1cH0f?qzv^?%z2?pabw({}R-%fY5>vE}Wqf7bn<yviRk+GxPK}NJwC|3u zLoau3Dl+<{d$92cN2!90Wl+^g)mK+m`bKPGuv_y+2((xe91xmIT^pyQoiUqwtlq!P zt&=q<>+8H5=Z&6BoTCRDW+<DnH_Phd^ysGd%MUPi3chlfVY+%zs<)}~;>`cM`M+&2 z^4ikj`wrY*S~f*2`t9V&Ew_1Yq@Vn8Qh?9!@XzzFde530Jq!$5a`sV+#lvS0*mp9$ z3FSEAv5kdYNVx>Oq~~VpE9QFskRr=9X9VF+`?%C~;g+qxvX1fZoWt`_Aob~$w8EH0 z7s6N1*7@>TLtA~d`Hpu%s|A>Dtaj+Q65YhyDY(m_;!$UpnC_Lm)wBQn|0N+Awyi^K z<4Id^;{S0eY4+cPDv1r-#HA0+<Vh4_{h6`nLh|arjK1H#TsWy*Z)u#j-G4jh+*j{1 z**1qa3cLh6P^59f?C4v|daVkRCQsM7Ar;n!F!I5rM_-Qm2<>d2t6e#l=b`ZC*!W57 zPL%9pzpQL&|E}bWqWg@ezve8AYjw6!tG&NO7Ze$;3V+__i_bO>FMp@A`OpR<M_Az1 z`>{<ItDZWu)5$)0o>k(h6pr~TG@h5;N<YpS+x^7$f{oUxo3?$GS6v@yZL1O$+2{%K z^2B9qPI2>opVGei@p0xf9SPa6AF%bbFH%xKLs_f;&H2Z7eDXq1m+6l@#M+m1mAge` zXTF{|hvmDqSZMy04_4iKxw<5_sMh}wUbvryMM&9~x8>(&eY5Om-u}xYHzkxuGz!Dx zWa3iRlQ&d8hE0F;sKUr(YJ^7aM$Wn4Eao*m{<xqx^6TQLc%F}r(iQ8Ql-hQxT1=40 z3{nsg+qHgQl&o=E(aENliLE{`|N6B}6+8Ng@xSc!^m|XMjRNWgn3sQwxo*WFXFT_P zX#Q?P`!7s(f8tu*a!R}l6bvsdafsM(V1LTSOyQ@KSlJJAP0kRUeMcBHGQ*>-TV^Ha zFHjX)v9;bpe8ouz$0<{TqmNXd^gOO7Z+<=bfu{Oy8Go~?`&@tGSUq_5f?URFFVNL> z=X%WJ-p-XwS5JCusqcd(;$u_9nrd#Sl~_HfIePqe$^zxCBE6NnFTMSK`EK{B&f_xI z!=J3#e)yk<#co4`i>nzrH+@QW2FJw*=7&ec^-Z#$dHXDh-}E3YVj&_i8!kPXcl`fR zZrizC4<6SV1qc_%+@D~4PVxEdWfeARxf?j=)^ESHyk)1WmiAt*381dT^TI=Cw}O*k zBAb(E=kD6-_Zt!gbt6BRtXY6af(@6PCTu>DseO3o5w6LKLXY&0$LBgtpY^;%;+bK* zSC{avyp6}(>KAi4@8y~tQ4R`7p)`d(e>T;hJd~#0e&^&gRagO2ug>fR8g%h!v6`Z! z?bGJbp?7qqlG|jrIEiN)1HAghtCn<@n{%EDSl^_2?Us;?M^B3|$D$Ye{#CtyaB!kt zWP#-x0l2$7-(PZ?(m&b%$Zy$hT_Z^)m3iPU>28^N)3yke_nrb(OS=r8m>e%$-=xZx z&#Ct}Vp08Z=|2Y=nKy3S`1pALe6!qHhaX;05tyd`T|aV7y!^{atm_YFK}y=BOu<EO zOKqgp@5FpoVU>SBS+VGm;`7;0VkSTS<(3cc2`;Yik}BTIHB;h-P|fP(J#zUU9v*I& zw=V116R|z-?i|ZvC4QFn!+&qzuloJ{y9QUi_uL#!aOHF4(xQcF(?36MS@&D!d~~{z zi(kkT<Coul3%A5AnzL9waKh$EEsmatau?0XZjEF0)0t>oZY6*5&)wL-z>kOd?OEdF zZL3NSwQx>kKXg0)_jH|oKi!&Dx!<*4)qxwo?fk|GQ^XG5HvLgCpJ$eUXTK^({od^z z-`jqMyjv#Zc@i?VJ<)hpX_cr&;B|?QReSqwzuh=BRa=>dW%=dW%f9#QYPUpg+Hh#Y zEGKY|iio;$Tjo@!#lqWi$1hKt#S<mizw;XVx3Eidz=PJiJzfUsyx$zP-bpP>NV&7K z^P=M{yV_mrtKKHv+f!+rc4kHWnl(KizSn<jT_0(D|5)!tc}=cXr;8fDzi1aaP2c1d ztLL}5$*8{SoLb4RkB8!T>(g7G`|NuCj%DNXmEG(nf3|9D(9+hPZB_c}&dy@bM!|FY z`9DTFPr4Hrcu&sOBzn^Zr=uBM;EM9mD%ZQuLcAWe%I%i@pT70v0>!|fCn1IP6`L$> zEVVFEgmuVb6qYi5>^L%OS#XcdzaNjg#r4BNO+PvO_;C31*;zmB{(iC9JvT=X7NmLB z4{B!CJQ91dIBYi0Eun7cEc?xg_BuXceqrwyU3j`<i{KP@6}DM&hLa{wzP!|X`tJAp zs%y5Uotxt+%dx5c&Ay*${@2&ZeQLVvw~Yhr)TGS7)s~`$aXV6{KjysL-o~8tAaKde zb^6MRr%tVW`|ahD8>dTaxi2US`8Rb=Y-4(O+5fM%*y`}?ohgZ}iKeaa66%YFE}zx( z$(s{9YfgMw_^<&!U;avuvDGtVim|n9as7#ol%00%F9kc*4<7N@+qgjEot&*rU|^hQ z((cK+kVpm%^~{<srgwCv!k2rQ^H~!!ekfQ?IpnhNeOh6R^Y=w<3X@K$d{}Yz@VU?l zwn~B?Jy)bT{{Jhl+?=*gRNEvDDY-yRYM+xoQ8@C0vaGIYy<~}!+;p=^ac2wuZT56= zwcLJx<BDHu*RDUT-eLhVikHQ;@cYZhJ721;zkISrJ-P+%y)C-BDy~ZN*KfZq&uC;~ zBlz8Fo~o<UUh{Gj7n>I`ZvUqL?Gty7XXQG+cxtCZ(vm!dHL<VbH&wh|%Pmu~$rV~? z)T>?aynRWj;B4Z=J<=yGd~lf}q8i%cDa3ZQc1pzFBL^bhl%Bc1XWfI9;SU8Gk9e$g z2oNd%|8L&?f7f0Ye7JB@Oc7R)sq=bs7rpZq`IW!fztz}ej$rrG9*c+1WWTv*g>sj6 zy2t)kDm|)qd~#P&n{NL!Ri@5~QH>kw_SV;*O!`?AJ56Ve!J1`=mSWq|qk`AjpOln2 z-Qr8n_@OLUxK?ehk5;?D5l}^Ne*%}v8TSbepEG=wCP=Il<!ELPkFDPuE@JsI1+pau z+{y}D+Pdb?3>BVRS@jH8E_`qgnX>uzo8ZSS?+*HlajVHqHoMVsu0Hy0@QDtCR~Kiw zC>RRKaDX-*B)tsUi|(MXrAGs=t6vqD%wsb(i4l_Z3S4x--d83z*yajsO!0T^Bqigw z7n>jkmEQ@xx^M6HB`xz|$r{vX&kTw>amxSXqX#9w|MtcizIa?;Yb4=(X0p(#{J#-0 zJ~~q_J%)A&PByx)7HmA?;j5scHqA8qS@px#Zky6guy|9u;5qq{(&?|3mY1J;YhGw; zOIBK`?J<9{l(K`)r0*&mdxMV7*!8`C!|RJdE((T0!W@Q%q1R&`>uNn(g`BJ>)=wAP zRHWtFb5F;Q<GGr<{QJoV4Hm8WGefP<Pl(N8%A;b@%1)<vBd)Tg4eI@%IqQiI3OTo) z#BYk&;Ba4+TbpOKrVD7t5~zD9QkgmNZB+2zkCt)|E`0FSnP~jD<=x9~o|@loPindC zVmaNu|C%CG=R^mE9?9U!uUE4Y74z$1g$bzd(Y0Yqz?91?AAK+>%$f1q=x4=z9yVd- z-{C5^f3x2=I5g9}8?<}Lvgb?5|4BzL`@i0Ymf@9jbc<rMPp*8s;|uedg%9U>Xjuit z?$G{Z@hwA8X@Z1eyJ4c!Q_=7hm6bAO(2%SLwNf=FU2+OMmnW2L*17lu_YCJ|7nMy; zEJDhXl26ahUS0otwxG9Im_%4GG|#AA(42JX(Tp#9eLGH-u4T41@o-Vnc2O`iO7}~h zZI+d{?ijxd+a=_@@d{-Avd+c9M+JSWyjuIepKNeZxn!zfc&UEl;$J@=i|&EB2jra2 zU0W>la<^~>TCQ8K$PZnt-c#~&QCh0x7Bnxv@Ztuok&v0LbZ@1`a)fG|?{f;#9NoEY z3rCL0+_%5XKS0*bGj&d!Q$NS3&-x~0*BK}dT>_&tPVLlvwD;trfUfki-xc$DJY1Aw znT3?2Y}X5<A(uZIla@GmZRHG%T<8A~?#hJBgN)!p9F*DvRXlgq25l<Xz2*-~ea3_i zmoU&0MsIG=HZw^7U}gPE&md59Hqbp*-p~*hl1)ol+2P6R$`zHHS@S2U@JyLH*@p)f z94Ho<YI^#4Sm!uhNqnvq*2V^1%D!RC1JKqqNON`86qVa=FAKHSO<J_U2x8CNBo*a) z<;VMezmqo4yYuGe=JWGxSLZ4iT!%$n_Y^VLPja&broOCcUkC}aS0c)WhK8)HtWS<g z=kNJ=Ejm9_f<p%udl!|K9_9Pp!}2g}`lF-_h>xv~dZebNKG^^H`T74(Ci|Q4u!z9| zJfrne{i29-8#n{o=j3lNg}CZ((vu$_A8)^3S6x!F<@D1_oQ+Nk14K?){7hMNWA~-% zb8na(7Y6WZ85$Z|d0bxZzy9ay{Cz*uK0P_v`;RSVE7Zq3<F{%|G|qKe-h3|g3@<p$ z0{bO)R(yQ4%y%}^`qQUR|NioFv8Td@`r9zizVq&m?c0A0)K)%l2eMW0YlmR}apRH~ z7uKxN`Be4y*H`1TGZ$0@ZoGw+viFy^Dx}|RIVX8;sSY2+mg}?qkN3;lXJ6CtoTS9h zvJB?e6Xls3Z-4w=v9LW@GqDg7G!98D^~k9~vt&|7(K_E3o9=&9S`5#H5mDgnf{?!M z!pSM?AJ4Q{INMn>r37vYiXkqOZam#%vGBFsai%i(wg!~6;H1I{UDQ)nk6ne7mr#3< zgnG&C*A;CqAu-R?DX61sp#ZDzmbXnx+5gye_664|#WUr=yI7PaNF2P>#0+j5fr_(L z=ALuBJoj8k-v0Rg8tggbYW-{#$#YB17H(EZ-)IL(01AdE$v?#0b556l{+ByXe`vE~ z50ui$PZku<^nDSclwM?j-4Jchm@Z?-7ke+;&F)9`Pd&mzQJzI7ezy5`XiYQzA%WFH zTz*2ZwaEw1LXt@15sqnMGVqE!xL{I>)%}f}fv%tA@~~&btVu3GQ(P9_FZ*pWuZ^u9 zTVBnY^khTvRNoFO#kUVKu}AU*l}$xPo)SB*+O=**_7B244wGa`Yg2?5aV^!I1IYn` z9z7_f#>D37Q|sqXYQ25=?c^WQSbeO-KL6>jD{3yH9xMM~H)QUgk3O3$O1dl7FPif> zAG>4yf8GNxLydvt5oCANgUZR=V!wMjea2}g4{=Rq?DSZY?U2NRoTM`+C*LT{R9=rg z_O0h$=84|4;ZTZ$lF&;jv^1z?GxNwttWkBj-(G5aN_}E0q%Mk0R#8`9?%pr=@Q*h< zoiFp|_7PH15@Z5x?W+Ix=gG;*yGvd+H73A108G$L#b3K8ipSR&YHD(NbH9e9hH0=( zMJs}PmMmRr`}@u2C$2M=vO@Mnhx7^w3omXqsjvO@rBhga+O%KYVli7c@PX@&N2}o5 zy9AZ**M7g-A*g&TynBk+ll_fG%*>7X;4F3oz6t7UpCDXsQYK>=Bo-o~6eebBK=+x! zV;8br8B!-0cuvslaN%%KFf962B55gfc-DHWrU@q)LA%;MrI{FVDT#pglyWqlDCt=+ zz0lE8dwPSTrA+;S)Xg`K^+*Z}3vW(4JL|#x=g*!UJ9ey3#<J+)q1MpQP&R?^bupFC z=a#d{{fm3OUMU>5m#+E)|JTnq1On~*pP1i|U3)#QTKC8EUzIr>E9M_Bzh683jEvKt zH=EBl)vud>yscx`xzI&VPfxf1ey8}LeWBId`k$xc-Fl@=>(kH8*<@5u{Vk~{p(n%p zN~w(QBo(z|9Xh8ExAWT<Kl7=q{Av6BPH;d#z~}H3yY#fQN#fjMIzL{mUeBX&Zl3M$ z3k#j28k<Uge0W&+_}JGM7Z+c%4pHw{?69i5gSqcL>T|eNC6D8klaKe+{+6qF!1$@Y zZhyf;rkPIaesfm*)She8rtr!<ytC~6J==^63!-LzxRKm{^!V|~;;X~fR{i~Yz0~P4 zXEIB&OYx$*#~Bk<49(rla&9>MGWalSg9oc<#oGc4w;l<>in$Xf8kW8a+1u&j+{RP+ z=i~8{(U~VFsfz2zUFq_0@d|j<)RXzaI>f%8w_dPzSLK=W=lS<2cbv%o_o!Q+X+0=d zFD`#>G3n38(AiREIWtr|8|7bF^?enpt*TO4e%f=gTJ67|&kxRY;Cp;6I-j?ur)XzP z`Q6g#ZAVVD8VXhP8ZHtA>HnoOL1o!-j8(>bd(=urR&HWi@9pK~R^KPH(tP8ZH961D z%xrP(vH$z!vgv;}=c`riubyvIT*N5X-QDfE)a#%0kHw5~*@9oc{kT{C{_DHDv-iY@ zg!2Az$?q@i+*LKlx?Jz)j*ox8-)B#6TBLFD;>E`6EM9iUvOIcXB$OMkODIPP@_sl` zK52%W^6K#Qe0A;nJ{;n1yw1*FFURxlN#J6)m%cn<etzd#IEA+;U0ZPt95#Z@OWWN) z2{s6vWZyMw{)@L8^$a7ddLRG%{Cv6Z>}_RlZyk{5l{g-CBq8(l#68M!wO>O&EecaR zu}NkQr)~AOD_tu(4cwU48@g>#V)I^J_~qkl6@jFdo@a+zxtZ5zuT432<OoY#efGXd zk@^>3maL23uJ^&p+PeDDk<KW=?2vNRVD)}p!P2i44-PaQY-VTQ=e~O4I=R=Xubyw* zu))CG-26k;*;%IE({woZTsxoa?DE&f?$3wA$;bO-?d$%?mftZ<IM5ItSE>5p^8v4A z#~*)m{OiP$e5BoQk!)ai{~dMC775N6-qQM4S2TlsCn{SOJ@GgjKQURk*)L8fYRiks z{&p8<d(;^fJa7mU2@Q?ikZ`bFzHWu+Mz_-L`nfh{E?3Sg&s1+_<Gr=Fy8Q0`ODDlD z$h*7C)XZ$#qNskGPaXwgFQ0&-uz2gW<GhO^H>cgqG5hqWncuGB<<jXU>TXIsf<1!u zxt+WE7MD&saz{c@;nI9%_r5<r9`~P=Pd_)O^2>|BPmgYFOkUC<Wn1+n*x%OG>Ig$p zQBl!@=jZMJ@7Z>wA?w~kwu+pN6_bxI^`8Fi<>mB0^<TeUkAMBvkR@<`Va@x!-;ec3 z8t2{FA*vnrgGcgsTSwLTtFwF*=AXTM=~B&A`IT~VRWB5a42;vxSX6&o^Xv#mt6`Jj zBHh62g<Cu(8Hg)SSNv^Z1v=b<jU!~num5H0IV->ixbT~S4p{-8FJfqJWMMS@LXC;o z^xt#kRhW&;&A{ha*T1ceUjKA|?%m%tU7uqVj_-<ZP;z*4q%Q9_`>pSubCqsfR(kiH z{nS<u&ntGDjm_E5IzKuvZ*O1St^g6&Ad#=2>l62~{ycww&+hqKTehE%xBGiq{m;@C zfqOx#9=_H8|M_zLfB*dd(I5WE1wSo+9{<U)=5YPL*Yodvk+1)`+<*UXqu`3)%m1IQ zN|JiGRz2+VbN~OY|32%_Uvf$0aLxI>r{+JZp0jhwc9Z+rIg7XKJ{l8!YHsdyM>%~F zPuoiV#65`~`R{`ketE&>cfRib?dA9X3eK%QAIv88>2`kow89B0zwGzd{`@kZmB0S? zx7+shT@P)S8?4@<RR8n1`A=`jKi<{ym*!6olrRvhFTb)he#-ZWEk>np>|4&*KlvUM zq*nT-`OB)#Ow*Hl&We5Bp8ZPSPGkT7i-CKxlrnuE*MhEKyuWVcpO3ET@t6OE=En!W z3YA{Z5%m9Fm2~<{<D>cgyZ1<x=dS<p;Hi9E-=nMIPx<5DhiI;!RdJF-Kdb8Ia;cx~ z^*_!Yad@S=clq>pa^?k$>C@xo&81kr?6=FDUMp|DgVA`pnS%KuiTQUbVnzEpmTz1i zDE2jM;l2ZNWV}3AzV4pBwoOx=>A3LpYi*h#(d-waQs#>MudL0VQFH%PV_5x`Q>}f< z>>XVanF3ah|7K1On-Fz+<|L161ut2$=l4$XkZ?RPWo^{W=T(Y7qt+-fM{fHPrR*W= z)~&qF{CFxut5M)`?PT@B4QHoKnO^lrJ&-YV`zCQker87Q>62A87jI9MRy1K0Tkj$J zbKfED3BBhp-?_Bn(4PKdp4{~s)8}QXS~FHmzm=)lJN?BaRVm@>*3eo}QBkgHso4CB zZ<ZPVe!O@3lq^-l>28-*l^C6-XI@r~o9>pa8pM^-^K9Gs{WUMY@lC(kr>QypbhfI+ zbbS^LHlEE4jpx7UEma6GeerO*Prs%FhpKtUvPZ`^@lQ9+QLQuTU&?q*;$X?UjxS7a zJH8}HuCoc9obY1rk#h^*x2|=Lzq#~i#UZ5+cLn#ZT>ksW_AmXc^3$K@s3wbvepW8p zke&5;()%mVc4r5)d#^79-O?DBt18Buoy|VAZL4;`vsLa-xTiPfstPlnpFTBL)o=P; z6?Kj2+<B@VYW?apDK9*%^nJ~R*IS0Ru$Ng2l~qmK5Ycw?S4foDSF8G}`KooS(<}2- z^+e`pJpb6J$~#ZAq-IH*&O5%x>uoPi-<_u#P@jLkDJbww_ovkOrNaJOG#wNd2S5J! z?V!APT$#b6L+%g%>86S8;d4q@u#nFqNoLPUC5?$0LahAj&K~l$er0J;uwz9;`Q*Q{ zfpV;Ruid6+JUp4m*e_!7hMhI@Vc>$fhs55TVE4CKP_H5PSfX6DAb8g4$6M4BBsg~0 zzMAt!!$_yTD&kJSA#2;1RDS6^;RTBxIvi>AD7Bm}JFhkSz=D%i<sX{vR%d*7O53xD z>!qjUq|~pfuQu|ver&q@CE)a?P0M*EE%iPTy4OskDfqR3a*bYofag;G)y^d=|A=%c zXGn>iZC)|g!=3qnWof_b0_C<vp*k{(j+q~iw@%O4B*^RcGImXo!J?A%-E9>C%JF<^ zp5p&LSU8ERt=^X~G3%ld1IwCAk8bKMsCcqycGueYSmEMb&X1ZB<}EYa^J}Kgiyt}R zRTtLA^Xp4~F{s$mv+l$+Y37|_QnPlZw^cu!qnW*TdZN0zf|MJJ`UatR?S^HR%bIg_ z&o30*!(GN*uk`1=@^r<Us`Z>7Vui97&z|hyJ$>a(Ro&oyYu0dXJ=L#$e4_Izp~yX2 z65i>jp4M_I8oqe4o~gra!_s!P1@aft^zOJ$RX?NoAWI{1@s1lc1qxO38K=EmCF}XS zB~@^m%3KA9`o~gR>vC7gd@!EwbVojo&C%wn(fUWz9l11IrhmF4FUn-cKb`ZgycLtZ z>vY$<@^*}J(_8M!yK#TYRI~oSuV#mFozC>DcjW__lTWfw*Ssfh$6qaTv8^K^N<h$g z2glk2>C?;Z$?FBg+ilfRDqkU-aG3wVrnP|;q4O4Xb$+~d;-^KvfI;ts_MA%^k|FCS z$Lg=MZsXqPI^BJGNhZ&3OZUR%?%oBa3q?bYJeJPv@YYJS4tP@D8S6d$&K=bU+*;Kf z53;^KuzdAbYx=~~YF5)3@2M&o%XgY4c$6fbp6H;s>w3h4)4f4W+qdfpi3=@Te>hT8 zGh$_??D?mri64_svR~j&Wfd--r8=E=rlxkf*R`wp;g1iN-G&^lT)6m4*vH>q=M@dA zEIQZD%lCOTrPd_-zWFZ(smsBUJ9?QlU*7t7L-MJkHLq0cCHASgnf=BRPg?>@_FA3F zJ#+q@Bme$2Qu;aD|CZJrjym^2-{4citLO1{Pp98AHn(N^H)Xo4iFpUB_TztlG^Z!< zYuLq3f4%mWlHgp4j79ZYi|w!O3chc&D12Gh-#}4sp1?(Kua_!6SbFs-`-)eli5C8c z<O`Xal>-0f%fE1RPTQ84BM`ANAk(Bx{gA`W6&ha+b=4M~PODgR@$=eJxha=_ADf=` zNM3`{czXXMc}YgI?fez0ij2}b61{?DdfzU)_ABH=rY`^9pW>!H$Ir#8slFGV?p>+s z#mGN>TBWKcqsaCHm8!ED`Taje2)7sibbc_qfT!0beEKY5jR3}@)7dYnc`~w354@zd zp0Rm4<7G7`9dqsmi6u%V-zpUR4*n~fI$3q@*((p#j5ZyfFo7*1@SEwBpBa<<?5|Z` zjxmXv9xSTiS3mX1(JLu-?n@G54Mi5sQx}olabi!=r85fByBcbjtZn#mb^WTo6TeL2 zI6mJ9<A^wTSMc+s=n{4%i}o*V3169$YaTcLb$fhqtNMbKW~F-*?<e$s;&e)vcRy9P zUeWNH8*|airn0G4Z*ol7_db%9sW~LevS#D$cg-_c3ywuJzL0uT|DYn{s1?VRsN(xy z&MIo3dC25HrMbCwf^+!ZJu@e*{J!X7SHa;&L3_pi9=Z6tZ1s!-9T^WJKW%tnGvnyV zWQV9HigrFbKWFDVavyGWwq>f5;kmU$E}%;?nw|OVgxMmtBElAjTXzUvIr>Lfs%qQm zhYtH<N+mZ%ADQ0vFu`0q+)}4LEOtrrYQ~PrTMY`FmmRmPV{Cj7ur`<H$yeoB%uGuK z_z#+R9a!Yy@pi68e`{%1X1K|P0Jk=lds8z6ANz%g83-=<BPE_!xPz;w?zXYe@2HF0 zc07D|ao5oc4!^VxPns*Ky;Ps4)U5Z=Zm+04k3t_GE4%$`>!NmXIdiYNOrECM;==Bx zclXGCGtEnRmzZ&&DrLdxho`3t87X!%#&4fzq$tQ(zwcbYgdLoGE04t9eDYts-!!82 zvF=ABE9HaP7w0>+Z2If+cGK<d(!>MJ40*q#8s=~NZf>l}f64cWW&`8(t*r7n>lc*i z1>7#!`m%b1ta+o%HwCeoOODo`{%dC(quiC}`H?|qS6xQ!0iz<elDD^)9TXOuxbN!1 z*)vL6TP%*qESb-=-)MT)bu|UYWmnU;$Aqc>NfJI9BQj&tqomx8jIQ_QR@Cy!n(X{_ z_x;`nd|7vE?@TZ}n|YwWuJmcb{QXXrmnJ`SyOFS9%F57Rt<w|jHFX)Sr}x`y=1%vL z(%_%Y?V$ODk$?IJ2TcXWiQ5GoHRTxVKZlD?-c_Ns{a#Ce%2%Be?`E1e%=g&Z5|B`3 z@$LLV$qix+GF!8<BpRmhb$-*Av%I(@_@<7X%oOwX8QBU)SBo5qeYWyMU6ym&`&UUW z;c{{p);*G0p}n<KgYjnKHUC`WluIrP+nt2N1x1ru1m^M>7d5rUR<`m+y!TaJu0BsJ zMqiIh@WQS3S(ARc1+~qWlQ>)=!YMAwS*az}5Sy;oFBs&c`scib$(8w8fo^dZ?x;@J zmemMge||ZVRWAPJ^w;m@y~XTaZ~6MpK(%;&uI`$J*8&&KTGx{Mmvg$$2YCsm`TM84 zIh$`|`n-Jlg*$4t)2&_1`54bn_i{0}VgLN{^)ZkkzN<848Lv#wUZp9YYFEr8!S^&k zHC6ZPFDcGfD^@=d&|mU!P5Q*5<hAcL&ECukNW0SDu<@4b^e|V+PO(j)p_`uB`Th(E zEm7`2bKtCG>yO};Be(1Wi@u*SSR%p|=B0gp>H4f9*=ixa*@}mc9_%^mwR7L}_p3C; z>g5}3ucqvt^2OCWLig7NX$k%nQATa5vn)eTD@IE)zR{}aNGfHTZ>lwcRnB$KZQDIj zdZ+l7A6Wf#!wpT*7|kWt%hFCA`OByIUNirl(VCMRUKQpEI8U8<j=}EPvTGNvd~>&B z_$Bkx?wsb~DRZu@Z{AscJwSSHj@7v}zK<_%_SIFXH(wHZ(#mGR+Y`^;Y+&Db>(f_7 zIak@`X)IFVrYpm4Kj>W|$H=m#Yim2}!K=yheEW=6&YiTK-Q?EM<EvBB_wlb?^Guyb z?sZYx$$&GBl_@+2e{(J{E2^Jm%li31+HZyzdrPl*B^cP8ZQ?w*n&0YKW>{6cp^=Ku zoKv;CZcnVpl$y@D?5pk_G3g(FLZ?5mRt#jaub*yiqv*l-XL^H;qAp|F_H{Oj!AxoU z+r)l`T%6;;p5W;FL#3?Cagi}ks4KHbrCCe+jI5<O=T|Jv^i)Y#IksG!^XP&pk5!(0 z-S}9b$d^07wr}}w?u8E&nHI_(|He8)uWZ56-pZ81`zvonyfoSWb3JQy`MUyzOB?4G zEB&3`zg|;{$>#F()$28bnc^L%ZO{~*zSm2$WBO!O4Xx?<-kNcYdDG8%YaWp8in%1P z`DfmB2Bynahf97fx-RGSRUzLp;N`>agFmKwe^*tnpY&5!-}+Hqew4ps4v)Hjgh8UK zx@1rEtzTQ-9X@<0-lor!CuY`^xQ$t>rZ1R&Y=*|QW-*5;pLr+O?b)cb^^<`HkH6@i zl$9%crf9hxTqEhaC{9jssqs;6`K4}iH)ZniXZ<d<Imq9-QYJq1faC1>v!!aLzjofv zCS0F!D9lYSU0hJIqetxZ(G>p~tXWeOt}G~=K7E6_h91*CmFcfGX{s=vkB^@&xLH$m zx{ij1^YpG~YEjb0TAM2tn%(?UC*r;T&4xIWx38c3%boQ!{%4~%{r@vHEr-Ixvg-~d zeiynqsbTSrsb{Y)Z>}}#y7yvHM*Xii%}MXuWOi76{aN|;Wl>AFue;ylXWjSKdhu;q z9VPducHN|@R{qm7pR1`d{+r(aTun?g=gq6F%;BvKZdI?8oB2NnZx_5aZT|FK&((so zpNVd%GrlU$FZU?bSD{u|QtMI8Gwry&i++F1>{H|4Qo6M8zp_iWj#27y_vz*@)Qos% zTF+vAc>m7D54*0mzn{M5m#S0R)Xia6!mn<>8@8;BH|_A=GWM*DfOBV?JG8l+gFXH3 zUN@Uk{w=&W&}hTkCl%6DWUaG;?%!>BJoW0-?%=TH`lsq-I^`9XWk20v9dRinFW;fd z&LaHFTQ`NB)h^7J({zrhyzX^h@R)Nt&o)g-!R?p%nN9w9HE-g%#5r5*>R09II@%iX zs$bUH_U#h0S}9)o@%+?I-W0t~E$#Sj?z6@Bt{*sDu6;{4Z{p9R(|-k+UrN|~Q8(_z zqC34p(%ahKwb@jJ{I5<;T>JOu<@f(Y?*DuFzpl&n^DC8kToIh=9UnFL!!owJ{=RSb zSN!Ms{WV<q4|&&dyF6&!zW>j8|NnpO_x{a4_*wejq?y5`2dXFB6Hxu;I{nWpwW|7K zTi$+JuTaI)R`9RuyUGlugIAlny?SnaI-9t?`@_{;bq^(FRE`zgb$5E#^}Xw_!|f?c z`%AXBD=~Hcakw<sd1u?4JG?9Bi}lW~lVMx@^jgk`z{&iZuPr;LDZjz8eyigAs8cb{ zac^A{jGk<hW7;%t>c(Sx*c+bwmH8x@A^AG~8=Jo1zn+STC&L^0A9`KyTD{mnZqa4M zj1CFB+fw^|f@%V9X=KgVlc&fHG6J(dS+r$_%&)vWh9_yOeAcm0CrZ6k6{=GXrd z*}3h1+swbuHFnf%SAENmxBHtO$o}tL{{6b&=@%EehCT4K)ckSVe&0#?QxD{SJTsS@ z?EPC`@w2|ie75s1e=ZVi_w94(`ub<#npIg7H$LC<KWOnk)`!QIK7P0*-|W+-b)Ve- zv9dR}>bJjh3)?@VzSm}6<CQOm*Z#kowRh>k=WF))uDkVfI^Scp!{R^Bx-F|!2-@@L z?5p^Nk57B9tiR!`nQ`pwdb7{``)dz{KHmO0{{L71eE$>i|6U3+UHtgQdawV7_!aT* z?%GZeOlmMQepv6`r~hMn^A?VN{y9+-k9OVgFIz6Ws{B&_<QLb!)IECmyS{DD`VAAF zU*S?WdX+t`{*U+OiF>lMtWz!@R^N~l$a}SWS?FPo)aJST;tTj=FR$8=-pcR1VS9}w ztMY-#3!C=7lvX>FIsHp^E!%eE_XbuRE&Cr%(p<M}#q#@++;81Dzn^+?bay?AI$!xY z3#GpQE>>5ndS`6t(JS+pX|VKB{k}-4{$QiW#qI|U-p)E}W=l1NWZsqebmfQd-21=s zef~b4tSvh`C@HEs$}oUMVd-jd2koG(*FzVUNm}@Q_?huiPBvhlRLMjovwy3fZp`r9 z#OP*M`}V6+!IS9j&0C+OH@{d>`$nteRfG3;^?#LWGc;yIr%%~m872L8e!qWvdd$Pa zG3%zQ`6_DFzq3ChSMZNp>9Lzj%Aa@sou^*cd-VOEAoE|*@}F~&Ly^vJk@T#JiWM0e z?SGy0<-c|BoKfWNp)ahdpl|oc$7oaa!!6TqnnoS#{oWI;RGO-w`@SmPF5TvP!0u&1 zBLAjU2~?e7=G(^h*P36YZR33YKSzps=I)<(Rd(l*w$(lxPS(5MUY{nY+o#=gv2?-> zhiz@f0*6c1e7mW1<niU7PA@t#c22zScUJVJuytO=e7h?RX97;N9$FZYpWX1X+0*(l zquEQ<o6hT=r<|zE{O7Us>dyxkzJ%1Qc)z>g*~^k|XP!$=nP30m==M9p?>DXe@PFgw zHTA{)3vV|)6A0_D)r{7w)~NTL!}6)bj?K8k=XcxEkiuj8L|@wPIq*L(^Ys6!Xi?9{ z@0J~s-~T>%kEHgMo%_$;|DHQNfBpNq|F!pd_r$pcU!1tCW-iOu@A1czf9~6+q;m3w zz4I)M;2TvnzkXO}3LEd#`+G^^b@?{dc8>!`9j>3ZuX(<G?)2LDo{xL?y!@Zcx~9JV zG}jNexy<@yJTBgEt%7fq?u!V$zoPh)>D~D=x#TuXGqb78s@wSJ-;boOU+X8Tq~>|- z{wq=6E3<<w#BJxYn%_$Ee%r<MY~82vfAJR2|5|759=-kjOjlhcpf>6CdlAE#oeufi z%-oM1FWkH6c6Z_4CC<N1<xV!QSJ<{*e|CP2b$y}k8RLk*rfk}bf~(A%Yu7)}5!|@K zUfrDgU1xjE$-eNO*tipCrx$%=Jv?2Ud&$3t*VVRsh<rG^@qA00`7;O36~+Inug;9W zX8G~M#j`hlUUjP8dLW*&<zu!@aO%ZKhe!OMeRNOcRT}^Q{>jHx;P`s2$o11cmtPP5 z|8I84UroKN`aRsDaUHGmXRmC#vPr*W`}{Yl2j?!Ief@EF>5tW$R&I5?YxTcp-)+Gk zf1LV%oLs1U_1T`U-8bqBJBn*UUd9{T`@X7b(W!m=C!Dlb@1D~+`I&jxeQ(u=;*}3) z*zM-NuWdHxW$~{6>sP<9Pr5bdUyXY9qnTlMP3tQ(CUzeAd^zOL*7`5A!fz*6G#-Ed z=8Iu;-HfnvIX?@NWIsPy@4q^K)6epoobi&Et>Y#+@3|cPgsaeg|K5Q9tp#p>vZQ~9 zo@P=1W*UFxub<=RU4Ap)E_eM}w7u4J&7bVUr#kjsjs3y%y7k}8{}0=F=e!qnuz$-w zvFzUbCx^eU+j?iluFRhK5!sRPv+Dl{O8&l_Cy>5r&bGJ{E8d%>_E~;9oUFfT+WaR! zAM&J$9^7p7EB?Vz>7Uz58youM-e*=W{J32Fk?x;WQ#+o!)_1L(ll#Rq@%!s5mSvZ= zul($k{xkGd$TRL8;^)>IE!jM|ZiZr}`rp|fl3XWTzs&Zz>(=@^e)g;C_H4RUUwUoM z-mmqCWA?sXRWCfR%<P)^N}0IG_4=od%YW&uIlS$6$A4+h1$rX&*Jj19+bF)v@z3w~ zCJS0l-`;%WZ=Cv<jZ?WEKeqe!uJ!g;=^y<wEK^;dO%<10JbmBf@T?E3tLm<#c-&vP zYku%l+iCBwZd>GWF6@x7;=j4KJ>I=}^yQ~Tecd~qrsFT_KQ20~Ki^#?ru*@>EwBG* z&sVOQ9d`WFjoKggJ~t&N${5vO7X2{!iTK$kGkNQ;&VRmUviytx<<aWxbM9vw&3Qci z^V{#Ucv$oA^=3=OZ#<)I`T5lH-$8nNt)zY(O}0;;RFk@{{u9fCIqPI3f4qOfvLNKi z`JI)&ck4E_y^%BLuiw5ha_gH3`}ZaM-**4ga*M+^+3HO-ADoN-XMf?Lbggv7_ZOZP z^~)dc@>^nCr|6@zW%a5@u^%sFhsjC3;}Uw8m02pgQr|7qw07EycZz@C)wgWl|KEPi z$N!AZx78j)Cn!KC$U`P5OwBDUruWvG$V^7Q<TXOY*aC7JDd=2ychH@S#_;<}Il*_l znwuDa51BVJH-TSM3OQun+yr#TCiH-MHzNfjb5mp$#vlQ+>EJtF&CLv_L+*G5O^mRa zicWt~Zz3@Le2t;vbmn>!!RZrjY4c70&}rn!WNtQ{k=-<9`oc~to9TNRO`1UWyUv_` zv&qC9bieDT>3Yp3;?u$RyV|yxK<{^DGB=-Iz+)=GWNrev+tnO#RzCP{S95c?TlLco z4HS&b&EZGpL#}c)H;0D=<SJKlb9hLAuVpp2fFGf+pAPbz1>Cp#>81)s=7=-*_0`hN zKmx|Fu+>j@1o1)90S+(lwX5b9(-Vu;O(rj3W0@AgC@}q$xQWc<3v6=J-}0KqF`HYM zK`vgE{;r|KY-DaRT~N?ibov24)0pXN+Drtd8^{>TGnrdV5B#Pi3clMC#3_to6lXR! zhurzeXg>X*t^(|;RSQe-Rjbo?wS&&_k7AT(G@txYSA2THPmNhDM&_0V)4^A*nwwAm z7^<hoXg>L&9^^9B>2J79xdjYOP>#?ypI+z;zVp;jRbC8yohq}rrP1_@%4TBIPwz1i zoThA|FkP10RBXC~lF9Vx`8=jv(<?X2^MZW>x-ON;+!8!R2D|dq(qwx6KMhevqv-+0 zTKddJAn61HvFR6-<a?(}@tZ<#JZ(H?V#sJYeW9d6BgoNa(+yROMVZYlAa~1x3}sAW z6rTQp&oBnWF_bVBn|_+bR1h3opqmFG<iw{Zth1gty+Y8GXR_u)-svf9rb5%_AC~K$ zJ`KeB5XC4D(pp%oD7IZ*%2bhYdZmyl_vG)!ywi^en+i?mUt_8-Vt^F+;Hyb342&i} z6gJ-eK-$!UiOIki9C_2WS}HReSr|-byr`}+oxe`0ZTbZ>mAvT-<V{7V?-4OInEnxT zpX~vD{pHLS2By;krA)-8zY;Yygj{92V7ukS>6VhFJj{khX4B7!naV)ixkTJl2y`v1 z0;9on@O8HOJ1xJk7+DyYPd_MOEjpb;z?5hDY%ODBCJTe<g`TSROhy*d1+|Tp87-zy zT&A&+*~r3hI^%o|v*{mfRD`EjN?G$w_g6LDI$c25_%V}(;dIAPIlbvCg-pe_>#3Ut zGEQGBY|1sgQ^S;hx&fcM)bt0l)L5s-1<Ff+%$@jH%K>a);35r0kbuBBON0`(X+iSs zU}?wOS{Bn2f*Dz+9}SY1V==NYG@Bk6!l*Z0Bv?L|(RBI)Ez>kcL+~}g(<+q2r}t=^ zexGh20kT+FpAY0J!-dAG;A<5aEv7Gg4z|^3x}u7y^7I8J#%j~yw<>@faqxwf`SkVe z2C~z)$eRjISI{+PpWa}tATfPHr(qH51q+eVrh?N0LgnO{ER3c<Y*iB5zER&)o^kpf z1yio+w+u}AL084{sY^~zSfQf|R?}=@&kUOI1^IZor;@4AbcJ)4T+=V)GtOePm@e>E z%VPS5b^{q^3nR1bieL4489}<hSHo5*nM!Q`U~KBg$Y?a(-qaKvf)Be5W2SF4HMM6n znywh8C$^p2%#=fe-w0IxKuT`|BO{CHchpR6r!P`f72RGEXS&mc(RjMvVpAz5W24C% z&nttj#|Gcq9ieOnFX|xohM1edi#lkLZZ^G<)l@0N3}gYgJc1VJ$TyCF3Umttc#+4c z54yD5!T?@Ka_YO8C>U87!pk^LeK%8(0I~`*1tSY1=sn*SMi$UIz`}U?`z5CDrq9qY z6`X#d#!z9pnI<R<LAQ*!X`2d6FIc1;%xq*~Je@JoTyuIsg1#`5h4ExZ6HurdPi{0( z1WPt9H{HZ&Jl%1j8aQ3OpYEn>DmXnpgz@|I**d0zpxZ#0EKIgf>@x~roSvy~$~`?Q zRiAHqsGg}HI1ksGfadSP{s-3)7AA1NK<Wq!6QlwgbpN-73HXi_$i>-)#tKFjh$;|L zX;_%R!&*Px5ELFJ@bJ)2H?#z4frWYoC%9g*0AEuAbq2^xL@lbH4hmvZBxiyG)D+2? zE(%5#rbw=I1@Vy_=?3CY7fds^nQrq<Ltwf{1f#_C7;$5%=>d#};?wOfs3$TTS(r{| zyrN|}-FC61()6h1rV^l9MtXX|cMY!T+t!(SPQNH^sLy0!Iz2H}efRXJm8Lw?Bc)9E zroS*S6`cNG!jNP7<W;7kpc}o#nam8pwG5Mm$@IcqruvL#(?PdhgDV+kBMY<XA6N{< zr>`(JH3VH#0=dbX*}}|dvf@M0>C=r&g{CKLGF4zSo8Gv|beohJ$fuATfKvNdm`o4c z3^IIs<7QJPMkX^8NW~Lo3W;_`i^+wGV$&5?TgOe0-e}4*eTIq|FW5=Wx_V3&W}xar z6m(Jd7A7;Z=@%y$i%mC}p#-|t#o>UK1o(<>3o~=@72VUd7n|}-=W^9m1?dCVwR8V! zoSQytiz(0a@_!n<)7=)E3W2Zq29-(`pbN+qjW<n?+-k}_z4N~Y@ATVCO@*clC@aV@ z8(El7zo@6sI6ZqCs5(<I<^=^RIGD_*FWhCC&uBhfaJQ-W^zvn<(E8oNeEP(5a-yKy zx3@Ey8%<BtG83DAdzq;qIGm;{eNqyeK0(7|GP8xbF(?dKj4Vver%yaAH*<Q@DpRBB zjf?cew~OvGRbT`)jXwHmiB4DBZ7MW<fq*d=xIAODnBMrt98`dtPrta|R2kG}Xg1u; zXfeHEsh-93w~i{()6eWR6`F3aQ<Z)C1|!p-psRm2o9a*3UvDZlU6n_je|z#FQxC@J zZ`Yf0F&i5hO}E=%DmMLPw_)(~k`tzO(<f{&72jTV#I&86$--j#|Kq0O%od=6w%afo zqTt~#CGqViPnZ@mOIujLW8A{b5b4Su3ybLo-|CuASFkoy1?keC{@{$M!1U8wOvSge zpEb>8ld-S>C3{F>F*7nn)f>3U)L{C&ZKk5ry=2X~w?DXSy3~HU=XO&bAu}Tj6BM-; zD5Yt*s)aGgN#N`WDNZfG7jDA@j1-J4j7_II{?SuVu`os|dEE>_c^%$LfLz05VLtui zP3>@1BMU@hl2bndq!iJ5<kXJ<nQAeeai*Rew}l1NP&>Qn^*c?)rk|`aRA;o9Zurwc z4$@+_u$;c|sf8@)S|%n?BX71mq|5}R$CK)ysI>&OKSZZ1xa;yVT1*e*SCj%Zs%J1- zO#kSk3vO0_1nHdUqahBtp~+&pqoAT5vyp}6bVFBN@$D0gbuAg0EiBEZ7xI{jF<V%g zgPPg4^_Iwmn}U&rC9G`Ygp{C`hzdkM9aMr^BDb4BC8(tVQt4)BqF`ic01t0S32JG8 zRK9^qP)h?)OoJjI5>kR%8bE`HlM~!Bw=_U1gv~%kB019q#7A<btAdfGp#h?y?gru; zPG|h4VLyGdjM)xG!|90@s*u8w*~rpxx}mtC#^eBXmg(PQ%|fRCJpd_km@Ew;%~?=e z4#at=sU<dj<zZ8v$yWTlV2u~O<%L0oq}cSG5@y`fC8z1|Oh0@W()Li8{z=kIY<m1p zjoDze6BW!PrWbPR>oZzTXRJ^H7nD<`$4Z-Vft#$NC!l2x$R=>1bU@H_!E`S<Gj3)> z6NBmcpjIW9vVsce^7)C9CXg07Nbv<_Gl}UTpuE$t%T%7xa=Ia(HMFE$EpG-cDft); zz^yPQOCwO>Ek0de(PSftvryGcV){fgc|B$$OCw0R<e+3SZTf6QGj3?(-qK+D!ze~Q zM$74rrRHMbw*B;3N@kFvlGzB<$pCdOET?ZYmlvC^Aa0rqGI*krn&@;(Q8S_G4bHkC zM?JWuE-}qnH=Nnh$aH$3nz88g98oiHBTa$P2vU0I?Ka&8(wm@VCNcf0sF}cY0asml zkjO=CEirHtpT)@1$Q)EEPPY&<gEsN+fLM^y*wP5pcM{v~uVW?;YL4aWnn_GwrC}y8 zeSx`_4zrP^@pQoo69*<s<LQh|CQ6K!(;QW#z_*Z1&y+RenLg`-k}jkHowq@kd-@bJ zE79p5`er%Pv$f3xrf>ME#6Hbg@67aaEi*$#<Eep+V$&O5D)DcBXJDqr$Yg9hJy2Om z6k^LcOUda6SQRzFyoJ^(_FzWfYb8Zc{C(W7DmDGV6218#mweo!Yd*d1sERaL$;IoM zVmO+$jF!_kTIuOeKdopczTMH(jE|AgczS@DnFOQp^o1tI+S4ygQxIY{vNVBu(gf_u z=@T8ab*Be3nRGB&noOVgLCI|Th254iV08<BD(OuxSg7}a(Q@)fDZS};)yyQe=UJL1 zGEU!kRZ|?S23AO?PQRsLCN_PxwV9loqZp&I-h)G{78zy*C?qju#3YFbn=Dw-;jPrU zNJ*pP%)a;1yBEFrY-_ALIdI0Z_Q+p*4*y=ceMMQ@?e7bhKR;=CxAxq|+lJEv-)mdc z&$!^}e}412b<5{<{b4%2+eAF3=)#ABla7ZsPoDhVVtyBA!3p_{t$Y<)pSX42Uy1?A z99CuLJ@0o;LocM6ZSjT&hamhuw&n<gEU~=$^M3f0%DrNn-92CPDXX}go@GWw*{2I; zGcH}r-*R^6`6-{8xcR5cnAliXW=Q)ay%e5NHRW2}=@Plk?Jv^3Di5}{d-F-nn``rg z_gdx~MOCA(uVjQ?&*w%q%reQKe%X>~cHjM$+Pc^WpW@cD0r~#Tlj2heOYT@t{U-3& zM^k?XG&s(iHt#IgQdd)}_+P^Gab{3l!NZ4>n%mOV=g($KK4oTesA&15XPcUBr5z7L zLd0%5Z<>UZ+FY-x?bcIGrpvy$$sq;xhGm|?G_Y7bLa@kW#&WP2lF%)lu-I5x+nN7= z@Bgo@qf@dsG%W1f$K&$G`E%`RXPv&c$4H`hxsc29OMKsQSa>19VVTQT?5Z`j?$^uZ zckkX^7akNGEN@%&<f`8u(;KVjdR3i9R$IT7EqZ5BYHjV_-`by_pZE9o@9*hR;oZD& zp`xDk%((|+=6W@+z5i_4rs$~beGzl@0w&B)nSBc>@Ga-EWoKn|b#@lkKfSp*{p87$ zSzD`0N=&r1SMS&{<8)n(;f%$>nQsCke)();d}O$2%~q$URSS(y|D2rjS;Nq}{>ElO z6KJTHNa-jmKfbiod)_@!4i@j}dQUgWf4;Ec;BzBB-g4glDH%PLM!D;JW<Orz(^)k= z=>7iv63qu&JlfjZ@7MqTd+?y+cX3{}!#j(g&v<+8+_|Txrx)Lx+MjFiJxV)3#N$eJ z%B{CTU&AJLZ8_pmKIz<ltw2x&)`Mek`3Bx=7cXv1I@)zT?#;V*b>HunZ;g6;<cN!( zpP#EM>-5;47ZZ*|xg^bQITh3SD|)7x|Dt<}VV8d*C4%J_62jNT+}u&P`1SmgCr=*9 zOj*2ep`wyf(#1utH*eltGWS?&c%4ba+EY`s0t7nOifims)Dm7PRsYp&-@M%$kW!7` z!h?S#?4^1pN@RAfeK}?F{FK>yluW*!(yh(P-ha?6q3G5bF_Gmr56<gd08M}H%|BPO zs2y)kG4h^&>ehPx4Hw=doOgre;>8D<LYUIIeUsj)I$ieV;zgEe3a)p_NLqf@qyBQz z=dHPE?A2yXZIFB;!z=bjXjYX+dhlcC!)K6_j8xC@B&jqn@A>ymx6MRK)I}x|s!y|K zNOqo0+r^rIVw77nr<(jF1v6ud<-cZT8CxSFz5Ypt!K~Ano8_LhExY%27n*qslH@Fd zBYv^D9q(CEDYk|^qq))vQU-0Fy!fEPwB%l)^z`6YGJ*$8&M&xeMs88ODku|MTT1aH z`KqeV_1$>$qRr)^-Qo^!IX#OHg3B#Xar5Sh&u1Sq%Y@55^^u=ZwN<*FGdVwHnq69f z@cXmI)g5(HHS~9Uc=IH~pu;q~sIgd9_~+@>>6h(SHO4Q!pbRPqK?c?-iu;(I51D+{ zSjx|17B{%8Dl(Bc!o_0wc?H|=$y<JeKAM}zcL?n4umvY=Z9Ti=RqshYt5>kGwrpkV z?(XL1=TE=(EH6L5eDA$0S41Qwf4*EkzbGc_Y#-a_V8Pj)f4;A1vvt|;HAOt8qO9l^ zkC~yNVg0{97cXAC9#{YI(b50^zT2-2^S<Zh<CBw<^JLR@r<vOV7HLj?eO{wC+;m!6 z?R8;ibEz}ai|QwpmGx)caQ?E|rSf2XYr6XKvk65z{~YGG_wn%P=<53Q^?H2ldUJF0 z^-){9ZmwIq_UyTH&o*r@O$vP@JhOW3t10;+TIHT5?N5JoUz^9)`}E-IDCWQ~JIY@z zmMZ=RG81BCzntx@O{u3JJV+=nFL!Y{GS|9%#&!MJT~nq`J(@H5-IG^WSMPlDwtmmj z*9(r#P`<3jExLZ?nY}_RpUwuIt=sx=#zChoW!v)|tbW}2zO?9hl%#q%yPSk<t(}>j zm7(B@%`DB06NJ_M-rU^WeskUG)y3u#FFlHGHvcZ&(BAe=I_mX%t>B$8``uTa6<Rsz z#@1_^=S5cTo0?HK>2-bZ%yrpo*Z$JGciU#m*7}1sQy*My^kd83zj}Wr|HWerPg%w1 z&7HH&EW+FS^xfU%Gv7Ww-v9po{`oi6_MZ6hqatl~wSLht?Vm1QF4-;tF2OEgF4?QC zpXx*@zn^qpkx8dKtM^a7{HKMczj%)+nOt(ZeEV1Pw;z!g_Q50W+x7T*&`uv`XJ`NU z^>)2oT}pGko|S$&<t|^lBy9EZW5*^<n)K@R>z!|M%f2ghUi0XFz2?-H#WDM%7u{3| zI=VSacVqCr$R)r0R;``zx;}l2*aPnD2Rvq?aT&kLOB^PI-=5Pf#K3#r&u{iY4=*n- zG5xqb85b8#R`;J&@8<44`)t}K$6IMfGM|)Q+B)Y!eOd3(e*a*b3+1twBmP~T6>xIh z)+K&F#U^I04~brBFei9sUe?<FKg+iY7~IHy8kKw5G*aOGV{>OurUeggp42p%AuoL4 z`N4S-yE?B)nM^a*3Z5CW-+R$bjgWOoSEDu+?|ol8IqG+CcJAz{*PPBLtmn@CG?O=N ztMB6{sU|X$?bsjI-#mFS;h*lJt!cH_Ll>DYotUvUV9`y5kYkl)vz)V;SQl?q<~m%t z^{4*Yt+i@vTlXAXCVcD3q!(v)s4tr<7PI!|K`#aq8*57`9S+wmW%2hz*KeE?CdGg9 ztF`K^uTD>|uZfCQ4oK;~df$7iy*5w%inH6}uHK3<zOhBL2BNnfq`7CkQq=C{?{_WQ z_-B>Lv{NP4DzkVNe$qbg7yZ#?npVIQi>+a)o35@n+iP_@Iph2zwqF~#)s8zDMqR$e zHsklax}B@i*tHoifD4ILT^VoJohyq>wtRZ!R@ug?xdA&THDBvmax0n3dF`z~=3k?@ z|0UMDW?%aknSGWojHw<Jj29EWh+mAFe6Gwh`KN29&cv5oM_zpu65W065=&Ri#$OFS z<uQpn7MT5Cyty=Bv8flIb@670oHCn>2LrRqHh|+AR0g%ok$Bm6E^N8k{1B<`)Lk_j ztJXSvT$;Xi;`U3dT%WSpQ+Ek_J$Bvt)673=@y`vr=k1xhZEIRRyLO|btwZrfaCxd; zl%(=VHA(%EM$#&qjaId4YuA=$^;%4rG2zDtzXw~{-fh@zwJ`Ru@)_Oc=~0UxF!Gy7 zNbw|9y889FR83r>?^!ivNxWy(^d<c}4{g5Y@&AkT!bx93J^QDAiS~Ry^-JPki(2;# znKCcA4-U->4=PN1|D?a3_ip{`oUK`(4O<s_tU4>WIyiFcx2wW8triyTj)>K|JU2*6 zKU=3fef3rWyEl4kJ=M1^Tke)!W+HK5!NEPN%ACs=pZhrH*m<tQ--B|uMeKDuU{=e1 zF{&+Kr}Ltpj>~?BX6{+E@y=s|o3~=D-@J<o{<PfGT8by(Lc%`ri??*we&w&<`g6sh z4e_h)ss%0GkoESp`lhc=PyLo(^V9DADs{Scj#Rmq?`qS<!P(ai@NjHhe2{^SS8PF+ zamoLsTjzz(?$_Y?z2w$frBI{Q*B)6tm2UA$JNBOY+Pjs;b<Har<jee{jDI^rUE37t zl3ky*_Ib!MuhvBU#irK^-@P-gs}Eo4^X2@Hv!@g1`(^9DZ>d^pYQ3IK`RtFH=W`1` zP0m?-(1MNkShcND$^9!)t3#J@Ex)!+VC_b~Ug`Uq_f<mPP0Oe&$$C5M*rlf6$9|gA zubq%wSFrWk9OH_LOS9(MHw&h&71g@VJvH*&{FK|;oxa}Z{`5Y1Z(7d#VeL!?HeR>H zdchyp)BfDk2~yp(?V3=>H5V<n?DU_rKhFMi_}}_#bBZ4t8L!>BCGGk7ge7-fkGR^U zE<0gXdGxaW?K^n|5o`LQ<qki7>~{SAqaVdvwlRJxpSZuTX6wm#uYYluOrAy?GxA9F z97>ugb-ni3d!Ibxy4_+%9EW=D3-Isu&c60g&@KB+eNFbkIU>_b<hFB7-I-L{=(0I> z(LKe$^zKl%OL-+$(>`R(i3_s2J^6^okpnC<1VuC-U)XTqv%JQ_^9iY`sSnTXP&-+^ z_aCT5to?8vs7bu;LW0P&@DI9q#&yO~-Ve+kmsc{R{o$K=*lz3AXXR^mR#mcP|7YB} z&SBL}y{k{W>#tZQl`iv`sUF5XM`E9R*)5)HSFVUiOIzF6*ccgY%DTGh_4W0;?|J$9 zmio><Z<t}gb-Mh=O5?iC{=KhfecbJoxZ+#lvG*73-dxT)Tl+`Ed--{zn~#kx*e9=A z^Y_xpIJuj-;1=H+QH^WX^^<Zxb?rZqX*?rDD>pkkc^fx3cm2$jpJtw!Z*OmFYindQ zX^)+W$&u9j3<EB0hv3IX#&zK<ecJcV{8+u-+_>)i*~9Oo-s+X}nJAPg9WD8lGR<z| z%$M)>zWG?06(*QEaq-?`m1p)|y593-i{u&6sa{|2RllD&|BU^7+v;g^=Bx=@?e6Zr zdDEt@?(Us$Sa{tMS&Oq`>aX|QZ{KnD$J|3!kIm)ExK6$_k;v?9ZEd}J<%-Ymbq)#< zyGk^t|DEwO?wC~fwoCgZgzT&9c5mN*?NY5v{!hQ9_f-OqSLUs?d^SNu^YhbNLA@_~ zPL{1*{r%zr<FlU?@BJ6hS$3lQ&iZ#Boui_o?SDLIK0RH3_x=n6iF0$UkLQ$^)tBkT z@0)Xa-3DH_#6XVsc8|aF$DRA}ck>~Jq+|J9{JY~%WM(%@_PSlFEYZFF)~mey`|kJq zR$t9hS5qr0D$>%@+VO^$*DcYpalX~#?`)m3VzV<v&i~+jx}n<JZ}vgZj^F%ydtRIj z2@O?MS1&IqnXp|-N=ivdNlZ6t%G|lOHuYy#zU%<^Vue4gG_I>RzU;&{<;)M>UmG^> z@t%F~kF<$IE35cD;h%5P{+#1}*K>bi`Hh)Q&5k;CCu?^apR=yHz_)w5aoyy$J5kRI zq`yn<FU-0ldGca{K(~95{CvMTkK5-Sm)!6Cb;II=3S#|FK$&Q(<BF85wVxTaG(MEb z)qevertI7@<GS`&iSEsgI&vpHpBL_(eei@?B`cTBg2VrA<Q~hv?!=~Z{?R#$$K@;J z%1k7V95TBRWBta*ckaj8wTjH&CHH6R+zn3u!xorfkmY}Zp>`Rg?jAn3=(APF-a8ll zm0UXUpXC0F2^;)8?%Q8>5Wm;GWdE{rKjtchY^u-bo%wNg<cSA7sm67S4>~<);gJLn z07zC`@3}v9vT>dIM!)-xCwuN^Y`9>p2<q^*d%Vjscz$y0WwROShL6kB3ex|$HMd^k z<eV#GVq;PCy?dHulIZvDY3tAan0xd!NaF-cMdt>Hr1bGfp|3i5GP}c97az<2-dfL- zHs|B)jNJb7VC$c?@Gur#`0(JwUHN;;Y_pFZt~L%kJw<Z=<G;3#&82iw{7wicd>6ZS z{P(=#KO25;=RLM@+5C^YoewSA`b2$`Za>TKJahTAyMwBqoUs3S(|=put0|c~Wk3Pe z<o!-`&-?T9&VD>>_xg3hzqQ+Le}Dh>#P0g7?|0AY>Uym1C-y&V?`OZyZPShy<|>7) z^_(fWzuxrbvU5M)YMDqJf$IPNIC1{RxReC%`&Tt5*xs7?-J&@5`7e{eS6MG#>8F0& z=;Qe~`SvB@{3m&T*Jk|hxBtIq^}4#lbJ^p!cSmlSrWBAPyz-m(R(H`h`zz0)qgEfd zQ-6AU8k2;HMC(!6d*2ObRNQFh@~^q7D0Xj;>MAR3J>6+f@+PVs-&ylC?nvw<U1=59 z>ZAMrDDA0=z3^*CaB^CiQR%Vwy=#IWuM=MV<C+fxXh3EIub9#YtJw=;HTL{l{^Cn! zVc|p-YwuZKzJA%~6`|<oEs(aZdeZKtweE4R`}Wj7WB$EY36yzuoowaNFo}qby*o+O zTTCzJ$E`zmoE93Wsij?9<hpa`&c%xt$CS0QE#C0KO2VV!QhfCnmm3AnC9kIZI8b-; zTJNPJQ!oG4da0dRwrt6hh8JffANKBN>2J-gzrWXi&DL!9&-e0A`fs{h_Iuy^Cue%@ zn}6MQpdw?MVg2m0iHV7O_wH?OZVn6#G@5zlYnY1*%Vvo@KfiM`jng67`{7;>h7VGk zA0)PK_&4jt6VH#|t5s*4?}*=Dbu|2B;iWseljOTx)6Y-(r~J~j%<sF7c3@a>;l;mi zcRpDj{%h96Ioq^<nwpxr1f2Qy@NoO-Q>SL+?v49@QhmO`?Rs5Z-NM4cm~U<1Lg29K ze8#w3p)FfD_2Wfl?e*?$cb~Mg@5}FH->=T9@cd`yd6R$9{d)0xzjg;J%)S<W(B{n+ z$u)}>9oi~aURqjOS7*2R?~99zMYY2WZf9+s^+k0jxO6IP5w{52_<rgP*`wCRcMiYH z`m<%~)IB+WG<cipfAhDNPItAJ7p>nOy{qu;mQ6)Jv~stmRQEkOZgg?y=cfJdOS(kn zep$Q8W%j{Sr%&JI4GRc3kYiu-<HFs9`L*99r|*3@>u$-ki;+(*zm$@DDJ%I_T2j@1 zcf0$HdOKO!YCAJK8#_BYLr1$Kot>PYx;pdII#lcLT-&7lJ@DVQ<CgW2{$@+KFNdAp z=lSi4_RU)=N8i0&l|1#;FYjC1+N-)<|1%x9^kmE0o4!>OckbMI=3DmO6Rq6hMz?Qt zvpDKi-0XWLIJ0W$G`pos{gb6H+-8gG>7AX!EcUwL>@$tkQ-dROn6<L)Z%WIRZJU(I z>U;LkE$&5KMJLz272-E%mwmgsRI~nx_>rkk7v17+vi@$pRO;Wu^wJxd+0BOGpLXxw zJ>R}wPFD8skB`aMqXh*8*REZgqO7m~{>8<`p!nkU6O1%mro<kT_%b;9cj-39=B@Qn z!4uE7F5bFK?B>EVm(&j&_UkHnp`vy0?e0ULO&`s#oATz&^mV?Uo@je|&B<_%dcN&U z{kJzd2lukiEt38Jr_Sol7RfX3YGyS>&i;L3qVkjZ>r8jMDqZ~a^t8Bs+?<&+JG09^ zfBOG>{mL_Y^@3mK`UT(Iv2EoWJBc%qf0rn#n|&-O>^U#o_QPw5fXO|<(D}mhdXsa` zPo1Q<aQU~Z$4XA#yZb2F-u_<bg<Z<;56+7{`}>=XPW`Rd74sJE=-6(rXwZJQym_XN zTC0<zSyy*=`TKi&)6dUaxKL64`^)tU4yJ|otZZ2pw{d59-b>}X=DL}|H`#i&F>byb zc&ECa(Lf@9?x_cJ4bC03I28TAqi(&Jyw=nw`IFame*dyzMagCJNww8S)cd&guXD?7 zDP7gG?(den``%Xx)UQtUU$~t=DKLo9RO02+z5oCH7T1qcxjnz`S7v17%~w}f_sd#8 zlV|)XV<J)Q8@H-xM%R~fA(N-C>dBLJxSuP`(fsk!N}em6&NW|Ml>TfEESV<RvpICu zrmU*?wf}-<ZM|nH@qEdKeFtj|`j*dn7N@d>YsEn!Vd3|8cOTEG|M&BG{gdSf6BKG~ z?>~J!eZj#QLOV(sW_G^{)(`!8H^k9k#^$E$E5DrQT)df6j=R<TpU_-OWj(tCW)kX! zOG{q6ooxL3D0q1buQ^Nqypk+ko5P<28BHZJ%Xe;@t`~bM$HmR<*Cv1aG(M@ETivg! zviD#7eY@U)=h=z}C0gmlhcebSZS$*tXqskl?)#**vzK(nSAMt}ekph6q(@2@UtT`+ zx}NJ+>yc8M!<PdYO(QBQc4Ys)xjFsJu}!I`Yi=%=7e2&Rynn^JT_I0*t;ple+uT*& zY$*D|@97!!o@0+BdWyf!dNDmdO{(YfR+IG2*#><JoZrO9pJkhOjcdiheLo&?Pd@qN zU)RO@jF_E8Oa1SCjCVSa5Ujr{JBPVBIk|4<3b`b<;%SS|N-pqw`dYo`mQF^dc-&4c ztHPK)|E)dK+KwNz&|IzZGg>uu>7x5}#XQGePGL(l;5)LpR_uwL)S6wpX8l;TdUf~D z^!WJrnwmdLy{G?4kgsQ%a4<&vs_VJ#S6<h;Uwu2^#ZbTHpp57Qzon;Eh<3M3U)Rwm zEByX%*sj90?(s|2EZ85*2!+ls<~b&Ks#3DY`SZ<p?nU?KFSDrl@Zfg-epzAR%{4zi zmEWsezGTS}{#PG^Uzp7J?fUily#HH@c88?8Hy3Kmx0=ee_d#6uhoreLP6(dd-g=4m zrJVdeFaIfT&Itc6iKzc_T)ydcx%E*ksT$YwH{~*l_S;<ax|Lu)XJdrUzV~PQA6`$W ztNbU-`z*Tfb;v%Mp5nleNX46boo8)4ws`$M&oaJaKRrW&U(56?UUoVBp#ANiO3OdY ztg%<iV5`<#9X|iR3G17nsj|G!eD_{jS;BKHkUQ_b@V`K1z5jth5ei>z>Tk?k;q&RO z-^Yty7hAiVs`<af9^6+UYQldZCc|KV{j#3*GrV7CJ^$=+>||Q#3NHqYJx4F)Ps{8n zfA=~oEA*-Tsj_FDmxXM9WjXJ9vOD(C{Qj<2dYtdJPwGoK;lW^HBX#EZ`71BAkFRw& zx@3LRe-Vv-AqJNBAEvsb{#fo={%+5&`VWe!j(s|&jim<Xwm%X+?h+m+-y>Wl#K7Cn z_W9L`9lyJFN@py3zmWC!9K#t8->W@c_x4k7_DTOuf4kP7sZE=B=t4#G_v)>`0#+K; z&(1mfrMWPLQ(I*A_0`?qUi$q_+EI4+#=VtSqSFhP3$0^uIK22^L|;#~QoynBGY?Yh zZim;^PiM$IDmzcZd*4gxqtkf1?&y9x`#SaYWs~K8ndj$)P8XXTo+20aY0}!bl{a<; z)_$nIyMDjay8oF~I$I=mFMoIE#hzeGcNGRHIo@Yl2cOJ!e3rTT`MKv#FTYRK7h14k z$AM@c+hyuPN3Z#Q+Uogf%hgRO{l;HU3hfU{OV9G+dvR_~z2TibsZ~nbB&sbATf7VD zvatWh70$Ha;qy%gpIoaux!=Ei-@l9%vTN8MO!DXUzvZ#4Y~jCOzHis>U&Z$(Jm;pz zt-yJ|nor%)oh9E@x__?eonOaQCPew{wfj_1|3?($<MXM_rKPs1nejIdRx#*VuKc)A zF*thpzK6TMO^*+`|GqwS!n=j-?YC1`@1L?<O~Y(mXx`lwXU-|fdb%b$Hmo>Ne|L&; zB@fu3!sgZ`><km5OTr!>=Bur3es-kr>OR{p-`6%jyH0rRv~~ZSJoDe3%E$J;X`Np8 zD~^}S_WV(~y*~EL_iDlZm23Ylxv01O%f$6<2c8@a?*vU=olaQ0wtlUlq2a}g7gvX^ zz4ZF)yL?HWw#v`XT&*Y1m~kRCKVyS~$nC$5y*F=MTDCuCy=9rt*7EIlK6}M|`r;Cr zxNqAd^;+Mx8(;2=T(&Xd*WO?Mxk_&4=&%3Ay`vU9YQ2F+OiWBosPn|JoyE^DUAlDV zepW_Cf$qLzh8YI?uWNs2-)vN$^7>kambR&T|B8LOQ`Y-`eX%-!Qt0k&+1jVSitF)l zS)b+lyJg>^P5)%4vw-4-Q8K5Z;>V#@?lWcX?(Ny9T-01$T{mvrczT*{cXzjN_tBWL z4z|zXmU3dDuX?{n$z1b_ep~VB)ZsJXeDSGER(*SOMQ*K0%&wfQJk!-Y7x=B~i?`nA z2xBs?YIw$!Vi11p`0?v&A|FTTOgg#Hx&7QcTW>QdX=(ePPlWqUizcQ`1RYR(Z=R#0 z`}?m|r#lz#vb7e`(O#-no2v2aT-CFb_{a0lr%u{<vQy7l-}&+5*u%;;>)v&lZv7Ga zaofIqb&b)F9zTA2ZrY7yzO#jdh27oUZ0i5=FJ820#yPd>4ZO!zHagx458C?hTkPGR z_E+rX!t%~ft&BRUoyeM5D>z%zJY8dZZqTzFHD9Br>)zTNV*k0}_MF2eN7Cf3RdHu{ zw>?WzU%r<2+nbxlmpsp$I5Fea5v$TyA^!gSn`I>>H7B1;yCW@?lV!>FxI?sU|N9rK z&KFAe)Nc;|e%jOdaOvg6>SBA({<XUC<{f|AvBdDtdmAjIdi<J~E?@rq`SZzfXRd7T zxHiMIVD{|UhYuh2^e;ZPcj3W~^*&59AFi+8vj6Y0e+yem4bDwJ;_;vFSf+Rs&t;xt z8-LZ*8>H~<zG<fLJfE@9M52{Vn1dyM&qub6!k<sL6crg&)^A+3YSor4Q*vgUeb&;_ z($Uc|V}^uYtjF&=#xs%){FWan_&n{K&(vK{8kDTPr<wdcWwGhV)Kj@LXFXapy}8iJ z<sQ#5P7a&Drc>|ST=|Cm;!2lhN1qJoGlmk&otNzYxcu9f%u8iKId@(5Jb9S(`}(On zXJ=h%?mK8v|JPUN`R@c7`}!&duS%uu5$q=07!w1ot#N5yc(9>vs!p5U@q{_q=3AE6 z8Om8LxUuKp<Ig;rg{S`H&e{}ITe@}Q$8DY(>b0Ktem2ULy?df|yP@fkpQ;p3(gUe8 zrV{SepIWm1mv{N}Hy5U4Kbp#FIZK}Z<#}uN#~o8cesWz){66u{vl$Ck#(SmKFBjrv zGYsHKyBO88_U$k2aMR=cE5Fs9Hj_}#-I|p??`g!+eantjJf9c2s_k=ub!oe;!;>Y! zE5D{)l9RG=C|-Cl<G0q#t7^%gmH#e1J!^jds&68vt}oxncTDp_*uN$F3oce{zo~QG zXy2o5n;CKoHtbO{w^rXR5b*g3s}xUChQW;b$V`KK*%xD1T$WiG@a~>s{PRLp{mNrf zSGS)#Xi+-d=X><Y{{~-F7^LdNp19p^xN>@C!o`FPgYc#tgX4$a7Oma5GBP}PwdQ}% z$Owh_*-uV}ckyPfdS8~=|37C(&Cx5LPAoDz%gWi%HeYvVx$(h82QMV7`*A&Cz3oX$ zONr<6-u2f@ef4jjYW?ZSJhsOI@wva;_LgsdccjqyZ)kA#Y}f3WvxOLV-*a1jhg$n5 z!=U!D?9E>$mMeQgj!VUL##heSW1HBjR6O_B@AoqfS{!Sa72Df8Z@tiaR`Gk~MVD6# z_g#F<IE$OttXue!p@h4J`JG?x-+#Y<CGRz*GCDG?-l>e|nB|7^mJ-jGt&B}DEV=kU z^wGu#hkkeNnLmBw!wiFthZzRlE3aSCH2rgP#oARt(`8bmdnRvinkThBV*auld*b%J zoSndTjPpQv=lmw__x?rE8;-XvKB&;veeg`s*5fB#C+`b-X2Je=j_qol6KdCjp5!UM zH4IvE_vza;MpNph)(gzD|CG?j>)!0hBi=l7UPt^lfys}jRGyo<r|$pV8$bFz6^iS3 z-2EPzn(<Fd(I)=Mx#K^Y!O5KGc-)f6Wrp3N#(c*f7GCXCsF^A-&;8R$kfTj*XfJ%& z85R+*+VXs&&4T2^7ZU_PUGoQr*c<1}EbtL(04LT92_p4kF+UbeWKTL|XcAEn6di3{ z|F0&k@7kkBN#D2s`u#gNC<ruvQ}onp_0?10aY1gqnh7V*E(y+j`#pTQ5U<#rH@CLF zzO>Z)^1jfBh=|C@%<`zb!)?5v4iac>#%HIzE#H2p=2%GSSp0m{tv_kfq(zGsZQ8Wy z*RQxl(D<XVRBuXhNy(SF<@XXJyU&V($Ghga7u^SiV$<ZU+1Iyi-|p|@BV$pZU~GK( z?^^TwHIsLA-;CRk(0DUvULk0#l3UMa{}Ve<AhIf5URQCt#pJ-h&-4H9`2Q)J?Qw-B zPc!FIp5Ff31$PUwuDz+#WoBkp_nVWjt-8AUetrG_+VAC_`j=9SZf+FkoGD{sWBTOW z#)olbS{r%AT6%hW&(61>|3&F!S!86SqhsUm-PYyrboBMrrN#B*d^|lLZgPgWSgWXe zIw+hEdU|`Gem=i`U&Y5qTeg^7Qc+$%W!ki`(9oN6*KWFU<;sT-A8y=;nCo{O5}NgT zHmy(8&Vh77W9YKyyPBT*XP{{8aBL2YD0rx;p8h^$(Ln{!c=^HB<@4t(4en%X1`XP< zip#NB8k^N*flHAL11@eo8--6RkxXk=E|-_?gR9oqnVhp@r#LSgXe1f5+@!uJ$lv{V zMZCET@3Y(s2_j-K6+52r*ch9|9Js&hVTM6IB-tEREpIosy3YIju6Krk9>iG>C;2zN zzg}r?2AZm0a8N@Bv`}Sv>-R!XS`ui2j%TDdKDR?rar2=iIHv5u&aJnJDeC(W=WEf% z#_a^N|IWj+UrMzuCM+y>I;6_Z%Rl{&c7;F4QwRB_dJch>-PDMEXpArit*yCwRn&Io zh7B7kKR?^KKifd!g!Y-;ot>R`$~xE<uLG?Ons2)2q}hT8yMsATB&_S{@2~&+^?GS( z={tQh6O%pL>c1WDfqCaQlfTtew%N%!7E(Rct5&aGzRoQqBt%47dUwvvO*?j2Y>YUQ z3URefOws*^p38$?f8O=5_((!>a`F;x%d3Iye6m*6-*j$f<mCK$GTFbaJw5KF5U*Pz zXf4n?{ff=G4w7FsJ~WZexn;UL|L!i+$EoY;SFF&O=piEF#>4j6Yekg#oK>c~XFhrQ zbgq4U-K*Ej{pP-U`7&{vva)ij(aoOShs-2eK}(S;86L<cA8x+9a>-6!vs@)5r7Kxq zuUt1aGU}7DbTXR-uA+}0Kc0R^6dGPO4j&FmO7opd$lv?*+Jy@fUe6B=4PCl)X-fU! z95Zzl6@mRnj~pp@<Fp7Gjm%v6MSd1yJJj_KNS^731rWR3KKlYtJisHyCgVe+gmfPp z_g-Nk(4vDKPY$+x|9zvtMB@E?%{!X~A38VNocM6=_>aHWR=PA_{4n#7t+b#W%ZbXy z@7F=9Z0jM)94CL~cn{W>3lb>oJA7F6x%fOuX}y`b%Y}H|9;S1B&zW=jL&3?+hWVu+ zk+)!x*&hl{zHBs~?6-95{ndV|Qazu}i@dvOas9!=NtfC3w|w)qTrb_n#{3av?{hwz zm?A4k>SO%n^Kf2oF{50)p5@jLF~`~#A55rSR&f5<g!XoCKT8|1Q;vYlk~s9C;H2UK z>*H<y*H^kUH~#f;o*)BSF{JTfNw8&Uj)fG@mvpJ5C!obJhnvjzT7eQf)BMa66PnxF zz4`d=?acdedgH?{(rdPC`Ep^Q^O>^x`g$*~Q;&{zhp&sttlt`Sw>~#1De3;c+WEEL zZcbA5j*5=n`9>0&Z1_a(J(^Q+#$)3_Ha51RqN00MuXU#%<l^Sm*494hmYe&wjaT|k z{m)ldSG(jre*D;LDd>RJ#fujkzmtcVAXS%A)0CQHv7b$OmeM{gP0d0{9UYxB877l> zl~&Z3->XbdNjdWM^v#<$pM0PBHgt8EZN-O#V}BPzlY--6;iB~AMZY#aH2I>$Z+SRp z|IcT$*B!gs#L9gpZS(8vLc+qcXU&@NcFmeKyLRo8{N4l2`0TvzmFAb_R2cA@z5TVV zEUbBFJXiGIs;#>Z>c#JqF)89<bM|yQUawx|=GJSnw&Hc3!KH4KnLcIwdrxqS>lxg> z(ftIpVg<C6&0ZH&Y;6wqjMguDes1p5r%zKJKRVj2sj2yHzuT+=PfyR}<m9ZazZUn~ zRegMPw5Qq)TyBCU3(^&@-(-7ot?vJ;46#D<i2VHgtgNhxii(_^HGa#L*Wan%Q)z5& ze%<b;iR%vI?fLhgZAu51=a6-BMbY0cJ9u<Xf|YJas}f;l6=eQgfE$wf7d!;5Cm?}m z&W%f>^X&v%+w&*nU#xuNchpg52RMa+miwvSFSHY#ZfLI~Gri!wHeY>0R8-V7-DojM z$(gfe-MW7Kf0ugP(yd!f)zs9itg5cA3a#2ZFJESTa8%T*C>chVSFc`8(}~<v@bJ*( z<^G?~J}RAOS1Tnbcu>cNQ6n`q^~^4b-{0RqpWS+F!sbA=$rF1QEn3vf&i|?RaqOW( zhg_5dZ(5YUi;0Sox^EGel8~UFUa$Uq?e=?2DF&Nw`tVic=f8jOAR#0~r1+MDXLYsp z&+}hq=kMb@o#5;1yK&>j!-o$mD=R;-zkGdt{PWozy9~MmC(WO2o^Mz6MdQ9jTuaTG zbxVz{t*oZ$#h%jd4_~=<?b<bKbTl;?Q#Q<+C6yGL_WQ%b!%K1x==X=8JbPC4E^kso zeFWQNucf)Uxo64}6Ca+Otp4-qLgS>3KlcCs`@V^lyT?uWzRu>8KYsj}WtyE(yKu%1 z{f+MRT3T9N-Q6?azIyfQ&!3vQ$~3_Owqn<%L3_X7tA3(>U%_TMth*MQKi9T;+LrLj zl-Y)t4^4*k-R_2)E!UmLXRXs*KXv-_-O_6oENF<I7s;~Xpoe$Qgvn+G_Z6<BW@NlL z)+>GH+k*!W_EdiU@${qF`FXb8-QA~8oKTQ^JUi8_G1cG`Z_>2bZOm_6jT$pHT)TFS z-|okQPft(RG+&spapOjQ`#&E}PF7F({paWBC8~$bCzgBq`>WT^?Cj*+=a?oL!Ir!( z{YiOwxqbaV8!M|{A0HpD5w4UiU^ABLUGll&`@7hEjxTsWo3L6c1_uTCs0rV<h;va8 z*z@t2^uvb_FP>9TSO4t$q%;9M>Z}A=Ea=`R^Kf>m8Dsi}ySvLL&kOvLvTD_;A8LoD zH@w%Dst*Dk<1BA~&PIB3%E?LZ_y3oB(Y#NBCyh_d-rinWIXU6LMyJ0I9wby%{d#tG z_RqFM2?jG}F20&|zwY<j<^J<`#chmQdwpH(V?oa5g9#SP7A{Qu`RQp*aDsuvnVh1( zzrLoPp7znV@nC|%=FXcrb!){v<2*e*D?dJB?GKUQVLPm2cxGyiThf#CsHj`hbfbTO z%$M+!l$HJauw7nBNompI#p3#LH4hFj*34pp=MhehfT{o4ZQs9aogBy|Hr-Rxj9bXi z(A3C?mn$_d1-!!qv}`)iQCDyJaxF9Q?N>6)xNR9traxF}CdFiev4O+_zS{u0fy5HN z-2k#5&%)9Wyn)2s!V<n20<t5|!V<odfm0u}BhM1NDG;>xffKSL&k}hz3TQ{3rLiS= z&oyZMHfRG0h^}95COW-c*9^MbPD{^BX!?S9^YH023_vT@pIY#NHjhl-tZybbU17Go z)bs+-mOD$+=@&mMfYzd$LiUeb5HsVO{?XD3vU`Nd(scSmK6U8cyX!_~g3}lHXmEfx zkWAMBaUnYlCM!ycZC_ArV$C@HmkDU20FNo(^k>Fqg3}!s75S$>NM)2`wluYv?wF-- z4>B{5OHq;8$kKHBLS<9U=^tF=+nJ3l&8AOu*D#xYz)Mwjdg6MshUt9fW&+dYH|k!V zo^EC)2;MiqWN9}2;$eC5>2{7*eA}frn#nUVnHf%hxY1H{x|oHT(DZ<{Ix^s8?@UIP z(=U8hZ~)PQUlf$U78ruIcwWe7oCPxHV7i?7^tCO9G9b=G9}ThT2I=}gra!j=*|p15 z9wb~Ss3^8QYO7fhBcs{$v)jxhn9R(lKLl-Sa@ua@z-TsoqN9;mTJ85@k??EZ>NoGt zx%%$kr)$x>x9*PLnU%eIj~i1X=P?N%qYt-cs3@`sai~mi@Ze}Ud2)urCX-2Smg-YJ zb4)3AVOhSl@Iv{n_0LwlocVI+-OJmTSC`D&wN$F@T5VqW{m(DvNS~WK*L8ZLwT0gF z2_MZl>JN$s2j7<puKW2k{E3s^lS=`AbcL?9C9ap=Ie~kp$@S(7Jg4`*JMdU)_K$7# zKbBr+njZOj-vn=cz5gej6%G`wxBjrhVc)ywrB%8GGq=9u-udOxr};K4Ogi6pG52@7 zJ_;(9IsbcE{ol9c+;_!`ULJkwUdzD{@vf9zZo1E-pkmqQ^>QY%yCQblF8px$u;uAP z#!cUr=-#popXQ!&X!^pFs+{K8`%mWRua}pRs?0q1+evTljz25-85zKCQW9c6HLYg( zztfXl6{~Yy&W61^e@A5YcI}lGk8&cP?EK{2AD#ESMD6~%{=HFql{aQwZPY1}<alsx z#~<TzX|7ej+uh@R>sLzN;hvE$aU-VgN;^Zt)41{ng{39_u5;H%2u|dz+FG)n_lfpD zx3j#_v#)R5F|ScvA$z*~_LjMNu|jFe`|DmfJw4o%zWuGNPIEQmXCCI+r|UlnaBR5q znonijzJoK@zca1dq0f9J^Yg_$!sglU)2gQ|YrGgf+1S3K=;XZb{<pR3tNQ9=cUxWJ z+p5dyeSc<1&AYnCdt=zW=3Lzg_viyD+3H&3#kG|#YArL_^+Vz+ZalgAvdZp*((YCF ze;;vKcR23mZsUy-A$(i%VoSb#T%R3Oe1}8UYfdOUuoxa_t$6qQO99^t|06d)E$cHp z=BnHy<i4(@e*X41Zw<p&g}HM%m#yYYIU2Ka-|ux779NRgJ>CCHfMLU(*V|0O!|#`T zS*j&8P3$_)1bs_S8BKu|^ZqQGrt#|3-<j^~LxcPIRL^O_LU6n5PBr!WOGItkPn3Ah zc>8Mdw2dFHf7!poOGb28@b=f&UAdjUe{`(A^w#PJn`%9hKGB_3Y;iJs0ysZyGG4jk z?ah`q^}G`-v`RS5v+aeP!wZyG&uY{C!Xs`pUH+>gL&DDMxr%z5>~wc85)VoBjQI6b zU3YJ@@w&+i_d2tA%4n7s%e3o<>hf-9eedbLFWBC|B>7o-M@+Cr;l6`K>u)>7JlNB^ zd`f-e=`GI|{C%`IEw^jQ?jsY6j5q7PtMa|@Zp+n)kuP0i1>9$UmQ=bf;x#896ck+7 zKi_-#meX}X{_aU#?<?ZoKGW~qt?y@kWoutuWl%;+Mv<rY^Bp(mDHdI<5}1{^^Lj4l zx=+6jUJWecVC%1sT|8as;{=P0S4W=A{=IXqc1z`i`Y)&Zquq|j&3+=OG<}O)OIpOc z(%EykmG<5K*7v~n<?N)-t7f&AhN$=nxqJEl@1CK3wfM3??_uuewUJGyp%G+eeEr6c z*N@G!95fc43+L$y<_w!?5yZ9X_jT9jEN}g+i?=`AZ~tHD!~4@(G5<t3ULP)6fBSvR zCL6hu`x*7GKXV$bn_9GfV|j+#)sU5*DtxCdoH%_Xy0po<Txb8LLJfv{;S2>oLlt%S zPw&m!UwpF0Sjl?2y!m>o30o~pVy%80TNnFmqD7F`Yc}&E&sg7j?*6bLa+lZ5uJ_su zJN~Q^nAZL@Zu|Y6F{*rrb}g;Wm4A2o$E&)<W^X@rAK~rU7gT>j&D`Ld+P75(R^NYi zI$eKyN~|iL@xasY)(ti~-*^2zr#g8@aJh8TcaGhQ)-Bzdbxm)-$DB{8E!q#$-gf<+ zdHP#w%9N7mFSV=;)8j=CecEv6^*3wrsXMB7_Ax&{b@2R6k=f<itLIL>@+17w0+Z6d z$*gsS*XNgg-G5<@TZQ5mUcdU7x=@bOkPvZs^zNBOnF?3i{^unxW6N*eU~+r(VAB;D z_M6K#>RCOH+I1&#scU8Yf2SAHbCA4tV8X$4=JUKhb^pVkemiBiE-0C;Q(0ap|7vT? z&1tRab9UZt5K31;I4?Z*_lx6!-yYaHJy4rk-_$UD$L~W&3c2r8UzoQ=dHU*rM?8-| zt#*o#n^t}I-_unY5>cfJ*)QXyzov*yIdWHgGG~78X>p}5PbP(!X0|Zz%l`mZUH7DF z!u6dNCbfSj-Z|YrJ9cS8qsN`vj};t7Cfi?T+%un4DK^Ez5AI?8n8nHK>rc-5U#poa zdv|i)(u9W|GMWO*xmTwydJ}#*D&WzMB3QgX-g#@c+J1{bj$dVFTMKI*ZM}V$mpkCm zf+b7Lba=(p6wcktcIbS392RZ7&rWH*j+C3YQ%T8q`=aSJ%|hzB;q$iCh|Cn-qi*}} zSTNij^+oG%8-R*R<>{@LH*HfFDJ${4^gi%W%G23rzV&Y0sq+6oi}$w&4R55`ieZjn z-l3*`KV@3k`o2y2e7@7?PBU#4dcN+?*}^wII&4$B_l20+e9~(8-4+jvB=h`rX~!#W zybRiK?SHraihSwPy$q`7a(7OD-B7>4G^78+9htk6SIyfQ`m1d}T#x;_cmKqf=Ur`n zzD-H#bKbV(nnSfhic>87S?BpYy!`K};LO#0DO0cVvIX7$pbv}PX9us^n-qUc{JiNy z&jZ_+>iO5cec2zdOG5SB<|79`XTFrVukvix?s@l4S(v0h+n30uSHEAY<!R#1>udGH z-yi7y%s*?Idx}F!)sLW1ZRaGDDHf@n%|;e~CY`w=^JCSX{0o0A*FJkM{p=wufm9V* z?oykae_fw<JL_A&?tKxF_sz6UN4#5k;?mT`M|OJMnPQR3e9+G2ue|&g@vC2=SLe^@ zJ-wbQu`=RaY4(Fjnc?-BcONY5o_etQQj_!LgEv=X$%R#G*?P?h?^Is8uJp_1<U?)O zg15gCO^Xuuu>Z0YQb1)tP+FLpweIl~^R3cJEut}siQD$3d#%46b<<Z))vx)8qoic* z)SBh<p3Kr-@y<B<{stCU_*^^i^u^4seIYwvIfzL}{b@O0zx~ZF)t9cF!P6{)w4~b1 z<VB6%xW=z3DLFZPiq3?(7v8oUXE)q=9d`8UB}+cVOPdN3%^3e|Z<)PyrJT{1MMny! z?$G==;pXbhwTjib-iI!oUuO1=|Ll%^>mA;<?}Id6@}_-yoxlHi*tbb7_6Y&*df{{H zFC6id40x0gXm_c*eu~@i9~ZOzo6DB3?KrXL%Ziz2wzFl~U+F%*UnsFO;$5ls^mqGS zzJ9q@`pBBc*?hOw+vL3z^ACBroJXTDtMXy#mF>N5bJsVNZ^?;w^U6B>qx(Jc8u?eJ zpQiV2u+aIw>+ZD9PIK0)e=mw_i?=W1cGsG-dc*Xu7xpgIC`_Ad@hMKK{`T<$2l?(z zmfPZP!K%D{k$C^oZz23n#ya13Wh#0*YRzu*zn{y{&O0Ud>Ay2aqD%dw-PF?S0wPYf z2|bVRoP2b%@7%}J=WSWnCv;E2W&QDWwp*uvFZsIvLQTrTgMTkD=-Fqt98KJL-Pdb# z@}EPC(-!48?!LV3$W!$@Yxd5*{4lJnzGS-86pPx*Ms3sMg|Eu~PFL@q*0OZ6;FXT` zr}A%Gzlw4{=xUy8Z_;-9yi{Ug#Ea7YzP(!OWG!aj^5FZ?yy>3@pNmy|`j$!~f4`u` z2aZlPZ&2;4+c){{#FE{4{zWHmy~z1A&Hm2xjlV-YKh6Dhob~+bS#6PJEs_e>Zbd&M zm38X*ChvdOxNy4aR%U3sYS(o(*}B3EtD1eY-)5BbRGUIgE?4xB(G@scR_4D{yj-;| zc>CiN!OGuD)>uvW`m^(pv$(eZ{mdORFXm~#(^@Oda$N38{-xW;>OX(4oMKU%xazvC z#<{Jj)5@BcxyG-$RiHAxBy&=$&d;*?+PcvD7f#$s*m_8X$!pI0=|5v1r8t-EZ8kPt ztGsQ}J8l1{N9(S)%+<UrF?+X3P26{n#{CW1e76>EZ<(*zyEBNl_Svh+)2esQjZC#& zx|R9DZngM-40q407Fu+Km8a*T`HMjNy??i+KXCp1x%1XF!Gbdm#}5ea{<7ldle4!@ z6pPNUm)DQkX+OE_%7VL@^X1NU+Qb)r4BWhT&+&`KPfM-$G@V><By-1^_d>@bZtGV6 zzI<)somKnTf1Y2rZ2P=@w+p`9x?HQ78b3#)MUTaCoe%R$p(gDe|2)q9m(}O+)oYZK zs9q|yE6FR1`A;S5d4UkawJ$2mD*Xd}>r)>G#J<k(e*U9=^E}N05qGzEL#-uo-=5}A z++Y^B=SSbtlCQqY?_}GQu9ow<wD#AL=+Xecy5Q*ro4*}7d+Ud^Y2o$xa(knA>&^M& zS9R?Q*!e%^=e;SLY?piOvx(fIyDuR)=U&^4nC+>*PcCA9uGLo`Tm7=|^x;40t^U7X z-*Ug~z02ry)fDgdAH3`R|A$^OI8(9o{q&PNc6`z*czMoyr$qMW*6VL;UmoS|lV5TF z?VG+&#}We$t?9bAduLzvwr$1yv;6L^Y+qOXqsX-6y6s8T3!>YPJgt7UV$-L{7`s2Q z|BN<DSpB?byflFMk89h7#~-G?y0QA|@pZPn`~R7|^ka@-zrhi~WjIsiVv`@=-F5b* z%NH(8?z#BukFL;k#)Vd@ppFq&{f^_^;`b#t2>+iRUuT+j+P+9JyrFRB@vfg+=WF*= zT5MMHzS9zOB2`rHbA;jkZ^f)$GDV8hXYM?ceDu$)^P(DsCt73Do*DIve$KWJUvNZG zylCdk(>7se*8h!Z6l#w-k(!2IV?EhAsiU!;6vu+B+#jW)uD<{Ozu*6Vp08gQyE|=C zyK(lxb*(WcQrYyxCdUT|g$D<3&bqoPzV7E!(D+&P`@Pq1-_CABR<=4mK#0BK_cz@? z^)ix@KcCzGx3sg%Ls2q0K0}DzqW0I9`Tzes|M20%{rdlRdHB<>HN|r8oN$^aM(5i; z235WfkNfS{#qKsUHJvKY%GBr}(KBzJT>D{1yZgIJUw?Rb_|)~q;*eMnTOA(|7vt%9 z^3qc8da;dle}A1h<6~@7KPQsAO!tYCo^ip(h`&vfc0?8`y!-q8e*Bh<i!+VWeLfYW z>E75nfqUnf14olSar-_BVN~VYIpOq~m}eW4>fS!*nqmRcTntSy0gpgR&!oy}Kf7MH z&Y{y;?}?G|^vX3e;(zaC!ltpFY@KKtk0u=rzRY%4WH};@My#o*_%b!|`_aXS#3-g+ zcg;HWM(xK8NOG+&nmM!kXqWV@<2<|d<q-ba7*XhXcLBQIa~dzr-t4Q`GG80&(W6O6 zw{NmS*ZML1yEHGlac8b(9e&sCjtB>xusyFs>O0ZxxF<2$+A8hR)%|;>bW3U!?wewD z+$E#v<ns372kDNb@dxgR7tL(%KH6n|<cZm=(o7limr1N%bDlBH+NNoifBE8`|JHE~ z_SfZ4K3rAA_>*U1_fom_44tQSOkeI2%)4}yYl_8LR-5f>KmMFQUqgj8q@HgdXTxtN zz2L%)5g(7;xYNx)n|HVA-P@q7J&XIua%-XP6-OHN+3&L)s8yW4a!14(3!9}m@m`Vt zKb+pk+5FD$J}A8BJZp-RDUv*JH0kKY>8qx>r`$PR+Hgv;tl4TCD5y-tWxAd9m_eF< z<{e&iH}iV#T8+YW4xOKu)<5XcD*E^=Y2%~(O;!$%`s!nwh2V*5W5mX_ORQDSZ2KKz z=rso^%x9+BMnC!#?w+>r$j(PcxwZG^J#kvsdhBS@QH8>G{ZPj>QMb*qZt%XkQMc}e z{JfbnDsrb@?~OUJ^}>#bH4-ZCvZA;>?ri-Mb~rDf{`j}zqnq!o{I>37<HPBb!z%7R zd#<(O-D4BRgD>~pF{^mENB?v2#t1`?JAe0_Gi85kJ-Lf_x1;Rs^P&ocYtO4Kuz5XK zPV({7b7!MAWM@8L>WrvYX}@eFB=`O4%7ffbY9pJvk9Kt)k+ley+hYATvVUjas)tKs z&MXjOU;6f^%lijs>YrSZzPvAQa&e<Fi_^hOLxcX`pRPP${j^W#;L)U`E{{Cc{Mx$q z?1t(qtN&(AoHXf^yx{SE`R`R5Lmqh)miY7a@0)e)>xY}5Jj@#-@UGGNNT#<qvJszL z9xcf6*SJ+<l3x^5uiu*eJ9OcuO+`;nO|}33=kx9D_4(J=#m=5SeR<8^)kg%&*X{m) z^hZk`f7UgbSnuzRn<BqF@~Mn(JaRPYYY3>@cwnNo>E*_leJf^0mz0*8nwm~L-_9?; zukdl(r>}XceN+0@om6}{C0Dj3?;1;N_i=}tI(<iHe%i;>*?siY$|JV#=f{;QyuQ%t zbvQ40`nPQ7`uh6+|Np)Jf5`vo>0|LV_C{alI?b&6`uKc){nP7yhXo4PC1uzAJGUe$ z=z(#~Vr%cY$xN&6O3Y@rf4KSG*VlZfO(h<7O=^4iW>uZWWMli7^BMg2CYzc4-Me4< zsQ81^poxfndHZiwOPj>qy{oT3d2qrz{?5)w;XhxW7zU)Z{dQV+p#E9X#`0H3zw+;| zxo5psMd$C6vr&iNUHSfPwQFtd-~0c*Z9j9yXIgipO5c=q`(75V?QTi;y|A@{XUfcn z`zB~_*cq{AhxnA-2dq;XFNQBDD!iWU@N|~d@v{>g{bqM)CgkMsJi5GUmDaJ>H&y#~ z6#sQL7JD1T)^qgdQ>f+{^;LySVtlhXZ%y8&zO&^=Y1`dR&%Uj8^6@zn|L@cE1od}! zb}p{jtJOI>I`opU<)Wg{lWQz@iM^K$t-mW?#A+bkef6{o->G#=9zC!<RJZQHWQ(mA z6be&9J;V2R?I^tluPnmeXcb<+9Np}Exm-nT;gP$iUS+(IxV)ffRsExDpu__z!wWV> zY+QZBk<&U>YK!&SO_?_~L|?m8x9*0(<lWB}{B2vi_NL)F-xpS`JHBo$x?_c?^R&yf z3(bvhPk*=dt!;4D4c+WK`|upAS=%$prKa>6?)+YC9c{IhL-xp8TV{PVn|$e+TNADu z8H?|)QR99tSs&HfeYESYm&_DraqWX!y0h7Mc4z0lectuz*~5;_PhFlasHt0Iuy{%I zZ0qG4q?5vyUq734D{E)XMDD%syhX*Y+ltif(SPzOq(8i3(vICXWwRG=-hNEf=f!r( z$?m^*Hu;#RO#lAIM`xK6dtgmn=zOz<uV2lTE1ual<Lcv5<5}CZ>h<KGI!*r_boywi z`WpH7+&gWqJ{Fy)!gp$M)ANLj{GaDbmOYlbbzbz6<kjP?=eHkuDm<0@*4(lWPOh1E z7fj3Sc>XD~BeL!K+pDubW!+lR#=Eid&A%D_MF)%Gb+#|->Q0^A*5A|feW|yj-ukZ< ztxZS1@}7O;q4Ue)l%2_=`71;7>MtGTy18iLv~wSCf8#UYRVwLrzWjKdeQQG4Ws@UU zPTaU-a%9c+>t`SNYR)!W%NVDz+y2?(b?YKMKfLe^`qHJHK69_deaXH1^lN<?c20Ty zk&CtSwR~OVT@#*dH7^4<Cw^bI?QhJ(ve=l($$wr=o_2L&q|1wGt?4TFSFX>NzG}m3 zSpWKM>E?>ydFvEE2?<TxSF)b>Ol5kI;cok7-Qvr2G=sQ)=x3;yT%BHMzn<$^waV+S zwJ)=oPArY-57+RP2`Ty!BwDiP`QFQIclWLOR@{2%(*0lGE>5}9#{WH4U}1Er!s|zi z(|EgI$iz;*|M$n{PkMF79-O|q<>mBl=gZStmg@6)*WcHPGGA=J>~zGOO-n9BH=kNq z>7?v@xkl!DaG!InzlA}zqb5g)o|yJGtwPz@$rnC8T7O-l?Dwi$=SAbn&97|fne!v+ z##Qf@ytfPA<Qv_d9lB0ea^^3;N^$$ej~`~;`XcVwHNEBLg1M)ajY4+n?K{6h%bP3r zq0z!tg+j9ot^I}d_TSo9a!=P&Ylu1ZwW2k=v$^P5p7VuyTbA`19-hZg{d;FqA#-@; zUxgpL4pu)~7GrNc>$|~!$=^y=6Ly4cl1}>Z^vROh&llXBz39^>MYZsf2`uKF8`<us zGp0%IvFMy{dEF*smHy+pIPSiqtU}`5qMJQp?myu9^R?e5Jn@EbLVmq{_=;PLqdsi0 zw^`b=PWR@#fGMHJwsiD)%z16nvL!=UX62rS5)S3q>RcVuAM2P4YLD#X%J^_?$DgOa za~ycN*zCjI({`S-=vdr($kgTjj;g|0^2^Nh?n6_9SZ8yQ?OxF{+cp)R*wB99M%}s# z8+h$kuX%oYvTMkTL+7V7)_>XP9ix3XkK@~;RUxH)oYUgJ7|v4O6aDye<M+wVHwBn< z_(Z!D3IofwuSz;<T5;lOxt^HzvY(G)xKAp$pZdJ-<<*JbWIJ7JosHX;PI{~nmvdoS zCX3S*ch>WE#d-gl7|ebJg;pLGSbSvSCBx}H5sw!y?mKlYx$=Q~V1Megwb?)GE!6x) zCY`wlnm_onJ@paC?AIaduT1^)B<ACdtqVUK*|V!`U-3#K#wS7Rj%$nTv52%R+R4T9 z?aJG#!$BuMUe<HVm~0U=%li2KlR5FybA4O#JR^Q}uFsxl)^Fe?qj|o1`SD|+yNkKx zF6u;I|8%iinafj!FVDtBhHc6!)!pZhCD&hXOB0LTab*@mk>>TsqHl!C&5v(<<sf$B z4QP5oCOPws#O^OEB<D#BS`}ml1xdfUeLvD=xk8~z9_#tYtAba#m`qP^+i~dlhKsAk zkLxY$2|xEM&1jX%U3a~$kR-*r`-o%b?tdb0Odh7aWts?@Tglz$DWh4MyLkC~6P<eQ z`Oz-ht&CounmkP{y-6*#Q~Bt@2~#@7S`CV)Rd%k?PyV!N<BkUxwwSWNeNyZ(<L%-T zIv-v?V4CJI!!Tvu*Rv@htk3L<R+>TrD8w@+Yu)3=8rD<hIqJ5He8{j5-&67N?ui?( z*X_$JSXv{#>(#S|KVF+YxFoQUS$S9P`;7XRGU*d{gqdCz(20|I|Mpdho9L>&pLR&r zHEn2rvvqC9i3LIb3q!=J3ge(jDpZJ_HOAt_obpYw$86aDGpX>+V%&H6$C20f4$l0x z&hvijx;1ql9<-iPcs}LzwH<$&qC{{1l;v>`+1zt<=hx^jXSbOB&NFYbIyilCw8R{% z`SrcYg>TLa?2LK+k!!0^x&C!VHHO+!7Xy=b=MU~z5OU|P2w+y$x2{&J?T`Ds`qv@9 z>6f;u?w-`OS-VQIe!H*D<pQUVIUN2;rmt^y->%Z}zweX1`F&Y(2G5Ut?<03N1)P{B z&=I}&)XL>I6Kj3h(nHpsIGS`cOO@}`%qwg!=9uTy=d#(b|94U=+|tvt@7=4bidAPd zUb0m#bP_Mzwr9n$(@IuR2bRi6)LE|Fn!WRv?gF`AZR<Ac#l;k4RGrv!<mR;2+c&N+ z(y)%&EN0^W<kC{P^%oQh0}chBn&zJJ<;(sDe`Wq~`wN+?x~)&Ha#^oC_wlz?|9TB~ zo^vgEX&AmrTiUi>Z_(tb>3c6Peyr8EV%}Gq#jk$<D|wp7BcgcDmM`V-8};^0H$y`z zcjR0v`21w9-QD=_sk(Y%+Sk+yuj(pa2=}i!Tb^%c{xYex>BvQ=Md9xKWecTe{#tj_ z@ZZ+8yoc(QN)%Yt^RHdowky)*xmsSW9i!Lj9jj8V6<@zp%XDb!>r?fQ(>i>_+m|)| zXZy8GODs&zrpF@upnrPI`_m0yUdG)QFY^63WyimV(+}PIb2rmeS2<>WbNxZ3!X-Xj z7hh}VUeul&nEOV;`u~E=qyK!AN=_>q?ca6(#)WfJ7Ic2>colg**4uq^=m~>0H-8oy zS4d3vm)>J)H-G-Q9d^#lmzG!8#@C-PJsSCltu1a{-<e;JTom^ombK^-m%gFeC!$y- zTff+>YO1aj<8$4YVX`j8=cbB&d;M~)&T^SeYqVyDzKPn!5<ky~XLHE9EYnZdk}E^f z%hW_yUy_uc?DA6XN_KTTD6(g%^1V8*^Oj9|&(xde-dp|<&r<CZQ>>D$d-)<w$f|z( z>qo0*we`o<dWm1m?KtUsws3<=Mv%p;(=+mXY-KXr62-&=-)5z(JjWou``nLxPv!So zOa`@-^o7hVe?B`9{?z+$ZbI0cdCm0;BOiG*z9_Bua@9Eh;_5?}?oYbac%oReL{N4{ zN>!nFcg`-`SKh_fgPwj4c&aGmKIQoIJ8$OIcYUb}jhpkH^LC-mIh7clus7XD94oIG ze|@;G=k9W^ik8(fN4t6Lyyk4)BPm&Z_wN5ie|J_dKll1w+nrN!6^BZ4PtFTg{m>ge zwb=HRcl7n3>~nd0EvB9D%l)FBJ7d*G3(1Si+go!}-#EV3Ik#d~Tldkf+9?(q{#>n_ zIrcx>;L}&XxMHKDdZ%#LAu-NlyfK-sv9}*_ztC)daJRAl`Pc0!mS*W!%XPQf_21rT zAs2UNic5OP*%e-$Eyl`6N_F1+o6(m3qMK7;dXa71!`(+5cT~MdQvEV{*R{aA^PB4z zE<SS6$na-czzros*Tvy(o!O$|7neS>xF&yc>2evlz2CO1I$3{Ov;9(LN95O7@52|Y z0_XKkk_=@HFR1(M6!Y)Z37y=F^H=?zWaj4MK4+QM?G0_|D|RYOzh1S+Nl|r~)5NsX zEll%H9uF)t*n94t=C7siGmU>{iYr%m$mp6>rB1g9nkDo2`lYCcjlv6~rSiOYg|gSj zPpR*Ia^uh6@At26oBYFOK|SZ`BU?Nca7On(&3ti8LFYrafKXe@Qf}+wyPo%7X;{ZB zR{S+PG}9;~{ATgIjAx&gLad)H{yZuus5Q0dwlLTGr&ckxwxF?)bwcJ(d*b5je@}M) zE7sZeZR7fPrh5G|PT$&CRR65C-8atPa?YHej#u+KGy{1L>{LoW-cjFvVo9Z!-?}@! zOS9ZIYpv}#5mS8O-R~<;)`U&IC?K2t%;?iTF%I!=(buYl0ZQk?8`d6;TkF<&`NOVu ziDz-K-oB?#oSeN?LEPnqgVnxs8Nn7$1#H|lNjqJ=De$0VV((}9cc&X>^aXaL#eQ2M zWVrBnqb~P(fpaAjegrP4TTsn)xc*1nW$q0knX2J(=BwvQhaO$(ecwT^wQ7%(d#Cr= z(j2>4;xe=N-m!SiS$6$x>btAKD>G!QiYot2IqbW!lK+#{UA;w%9Swi<9=<op=;ET> zrP*_noup<qX?tiXw(pvh^L*2s0}n19{5p^2`1h8#dD@CE-&{GjLMnK|>1^A$g^Q0k z*6*BolWigUAH{uBujWN{{(iUnz1@!o%?}?Yt`C>eD|EUzXWqIM%j_S$`J>q$uOgB* z?UcXel)m4bo-=>#RY_HHy&bcBf~=p=y+i&5M)u<V#R_&0jV`LI?0kG+@nRw08rN{8 zV=ZrY-S7VN+h|k1!gP?W>yJ2ER{L9oS4G!2&aXecNJs8%c=xks&s@93{(kJQH(7h+ z;-ai>7TudqZLNj7S6*nHt9N$&yUCt1KPuwYMCytz@Y&B7vHd=4isxak@C&`E56wKw zED|40s>t}TSE1_MkCLbV&Mdf_>F8IhoIY)$@#55XO5TUc)*t=8H~dY^pI>Z67pwL- zm3KA^)ov8Bs(<yhBtHDq&jl%R8|(l7+qG-g_j}dn{|LFCda`6%;;!SY=eNt81~n1X z-(F}vwdt3mQsIL9`7)d8t5niIU$ptbIbZ%+xm~c$EAJURy{GvF&s`E)798ov(2{@R zX0*$r1uUJbV?1iK>gHKTPOT_csZw<kSMiv`yU$UdZ|9zCk45WkRNlp{W7c8XwXVO? zqb9&eKVgc+=Lg^K*Z=>xeEVhndYQSu@><sN_}0x1yS4e?%uYTR<)3+vHy@n7d$PCr zF)ltK%@30M8ecDb7JmQVm)Gm}2VSx|?s8;jS3mzP=Wn;J$)3A8F=C6UU43wlT#dhe zL;a!Y>;ALu=eQTuG2wfV#hQA>8<M?;rUp!Xu)LLPom32S6PuN@QOc#t$xEwQRi}h; z?3jGp)975|FGtl)(-<DN-LUzg`ByYtV@u@2a0zYq83L-jhi``d-8EfZ^=|g!;sxP< zKHT5_Z=b9Ah6&>8x+;@B&mZ9ambgpp_>HH>b>&^H{4IM<Fw`<c{(ci-r}^NtWBn1Y z_2pmA_&Q&B5HjbxkNU*LXWj;W=txN}JYueF>akp+p{XKIp(^E~?2fVzz6BY-x;lKW z?_^sMEOMsg!Y=Lp*)QuGgEk(&xawQnPPUf|irBtzZLLjCEZQhx&9C1#<<P9U7pn`e z&o9c|Zx#{qC_{37#btAo%LjEzzP??oxsrE5y{<{gUyD<GkJyCRH@=$A*?Ot_<V^v? z>8rOL<4z7!*`+dZan1*?${25}#avS_OjZ2yAtUi~NJQ0!;789|^mvZwGK=JF-BH!z zHKA$FA@&c)Q~n=amwYOG*QX}^=Z~e27b|^vlw?>|Cv@HZ&!<C&(_U=9`PBB$t@XTN z(=CG3mS0h=m#MpDQ}in?d4sW|a0gFCc{X2~?TObVdn<}_-Zd6Ktv)}c>9PBBhnssX zZq|CPUlMo6DDjW(TpfkR^9%A1Rx5Cb9=ht!mwGzJh}H6M2+yLW|5-nsu&{qrs&;g0 zd2-IYFW0Z;9Xoz`U&)gs!?JZk=4St-s*bK=jueP4%-V0p(pG<D;-MLvI?t_`cAfv7 z*R1(PvC?z@u6Qu>wUSlA+iS<4w9M1vwT<1BRKHB1sB1H`g3G*Z@tQJ{%C~Ph@b!y{ zPd?Lr;8f=Hkjg@VCr0NqE9TY)e0a2FX-JUi{fEi-4K~UDYVAIHW2cwQmW3;md3F{4 zDb-zW^Ft|V*8w4+=Q{Zje)U_Iy?(?s?_2x)nei^)pPp2zj_m*9W%cpb&yP*A>aCVd zM;Gb4_smkAzW&X=lxnUA>J`}m3v;;lsOS4yd}m|{yCcl_N#phjed+GsCw88>@%og& z`fLx8V~?h^E7{tLg{}@Oc_r=k&DnWp#F`n~k2wB(Ri`Ww=z3V7|66hEQWZaq`X@04 ztv@+#PW!)R)4R8vt|2eJEuA82`*!*&nOHk^DT%smIsQeRP45+j4L_9aS!P&%H-mvM zVuQr7NgJ&*FC`TGKVn+y)UlWENqCUuiN27a8@8&`v{S2G?@w3X81(Jkh3?A}yN`D9 zPT28qV)*Mt#oLaFuDB(B@<!dd4RelMG_w0xzpOsvSZVqG>@Z=DK>26(w`)xL^>*9V ztmOJ9cT$geVe=0Yo273K{OpqL%-htlyKT{HzSGAq$8^6g3;YqQl=Q$PDBo9$JH@$0 z=kV<{-N#p4kC=1l_a%Yg)u~S|nuCV@x_Bp8Xl$FLXE48KQXXhr`Px)a%4@k(a_J|B ze`o#dS=Pt%)3!D5IWxCNBF*|^X|C_-Kbq|iPB>opb#r4)!E>eap>KS&_&(dDxvGgw zb5B_j6{mf7Iln1O=VtztxYDgEA5^9~PYiqai|6aCz|e~Lc}Kcbe;kzz-TUezSMJY8 zSDsCIEjx?xbws_&_Vj`_+kP4Qw@EEmRr^GY<UhvDsqYUs=X?EzVcEw-<Jf2+ot*9! z3d?1@zPqgHKl$^Ki(_H#{wc0m*Ha=nW;Tino$dVXzjxN=Eo_fgIUe!4qMWkc;JDY4 zemPTZ(Fu{~AJ^r1)_Qu|{eEZCm2JB(e}Tc8{D`^TN4tJj7H%r~G&}0W%#Y^tHszmx zzC5;vgQrtDwJNIK<B;XwSME=La!lA{%D(wU<T{rZeQ|5^ih3?D+}UfmQ#!fGOy*?c zgl$X88m_#**1cH!{)s-_0=}13vDcN>D!SMt8=lyydf)QzEVq6Y;qTc?E{n|F{Qgwm z^~rl8`k0gFxE1PJ$;Bo6+~1%l-YqJvR`|V0R^I*Qb=T(`!0xE;;ZW&Z9FyFY>Eq$R z#TPwcg?EU5nETE5H>{(qj;BV)Y(M&3{OXtHx?Qr}i+?)Lu@-NM<&0}T`e1qS(|H@- z=XCB!lz+9*^a8U^Mwj2qK4#w64k_Xr^xHm$e6iYd?7_Z7OFc1dGoMEbWOfFz+HOAa zvpjzKw_;ZZFPWbTOAH13>L<*|DV`a|@Ro~Hz0<K}YeCS$+fvi_TbfPhIW>`Kez~ex z>h$jiPP3*)3xbx}FxS=XIKS<aL)e8m|IM~b%4@aU2v*EeKE*J-lesW6WpCkx;0rJQ zajYsbaa~?=yz%<N4gE@+PpmUB%70zOczROWUY9d1wTGQzbi#6$9J#x#+@bz?&(5H= z$-j3hHK_JYn|QH2?6RP~->h34E^TuP9rj0x>8<Ho932z>?mWx>yxSj}n4h2CepFnC zPk7qbro0Am^^-D>&IpRnduUoI81v!f!#78rWM+NKi?G^$I`odP;e3zDZ!8wfVrKFd zx?DNyLQ92ZL{amClSWrV#ZE@rxL-AisRz5n@#e$`mikKfmfm~6w#?TSYdYe)cXo^L zqks?l#5`@x1y)=Qj8v%IHc4+o#;?DhI1V;5+5Qm-@ebLeTln(>Z^ymkkCOObHC$XV zc@6VK&c5Xjt9Citd(3#~JAEFThf>(9E1YuSPKvP>>Qj?`94n2ywTgMB$rV-k6y=t< z`n?vi>LNb(%ze%sO*+cv9rI~!)r-JyM$2MX|Jl+l$nEkdL($Wse2z}cqmubYY8PjE zJ6%3$cWv6ak4K_Q4=#LPQL>;k#ob=y!bZ{GInv3+=JKbb_vshEjGG;z6<e;l<7?}S z@0(=fp7=b!>NF!$SXl4o1L;rQ@hT#Xvo5Yt+w!sgQj5xxhB=ew%-O^cQ`LKYqs9Ht zSyAiqXG{haThn%2i8<~*G16Tx{N>fUbrBgt?x)1nxs=a`*Ay;F`1#Lgk&r-_*YVfy zo?2b&w!FWhtnpNCmuN^{<_-bowwBumf|>3{Nb@Epw=FMKjx%@I`R+rL)ypYI?zBZ3 zx;}5aVPkl*euJ-6(r&e@DoZY9KYJd0&o^h0&El@OIi5Qr*4#+wY!<5CT2<-tOyY20 zIXFCmA03D~$j)sW%jC5Eea_8mKWZYksRl{iI)2VRBT8_hXDi>oidvDGobq-edvz|z zcSMw{iM7ttE7fL_`qtjGVCU6o9mS$4r<r-}PckgXp8KHw%Fb8Ph3+@Y%^yTSEUoDD z))p(XnqqWj^{2~vZaO}llW*ytIPos{Xl3Z$d15oKZ0l3GyDIw8oSp{$+mAkp2ebRz zoRreKIXNaM=CZ!>r49C1CTm@@RC8*1taz_8$hNXjdrtd#ujfWF!LFM2&T|4ynL#Ci ze&P9F%NAPKFI{5x;!@qZh#5lWPtVnP3i<gvh2OLgsa|STalS@v*Vgt;_N@^?J<;|& z=PP19tVw^s8lseZvEWs2bZE<OrIj8pcvvk;*A?>y`&|z-6Mba%aCz&!>rGFSHYPn* zU044j^~TFfYYSO-fl~FFBb8dhlMlVCo0J<dtG&g?P2@UX{hR-*Vx)epwVtEwJBN=; z^Y-mU*Tg?9>DnxGp6gL6$Nbdf>@62w-a5MIx!Ycg?Z>5d<<4up7k;34W5mXIm3LKD z+Fw?$+n0GCJYSi|%@ONZ`hVMxKVJ<$AFsH0<zRH*(^e0)Am<~zVL{XT<@gu&-gUpZ zQ0eE(hdD-N?tKi!U+Yz-KE2}fUb|su#F`uWLgBZqm}0f}?l}D&JgvE0sBT%w^_7oK zaEtEtpPJLFKS7Scv8-Zk->FIKBs#6)1Eb6xLi=R+4bK&LZS}ceQ(3#}UH3-6)&)0; z-fIUyj5Ig=nD+GFnIF<|L5#(d^}-e$snkkw$*y(^yfO3AiF)p-3zvJF$()?{^iquU z+`Wcs&mU`8%Pz1kdz%@0*<kOQzduv%UpTWQy_}DQ{gLmc3*vQp_tT?gQ_HQ(j#tF5 zdX(fJEFD%8-+1b1($Tt!78$n>a!-A|s8~&Oa!L`@wjloJ-NLQ$YGOxYR!&<Qs@^$! zmdxYu%TeLht$Fp46~|WI{#v?r@#n(q?@uPQ?+{gr+4RNyh-Kb33!S@fdEUI)y?M@u z?&!y#QiGP2l`-$N0MCc+uPHoL`6Mr8i(~)VZ0V(zPnWblnetdIc8x>l=a4(6j{Y%R ze_lQHrMdL2<L8!{>6Nd$CUCB*?_8YnJ8tIb{vFZP%O936zgN1YzGL4+-9IL8N_Y45 z$z*txy=#8#ZZzRU-^>pxk@I4#Wx9>+L8<lq(TPQ#F^!d9qP8|IKkmO<LU4u9^3${Q zTD^{`$9?BN+v9usa{jd~Jt}wB#Ohc+EtvXbit`7C&#S7+)x>f;Pphxml<|(^rOC@W zmRVvF`{Kp&nDgH*KCwoiu)g2ka+AS{nXR2`m=^{;ld5QvIJBPoWx$ah4Hvmot>?dc zR>i$E?|mtK?NQRkq<YUgdt=zY9C*vws!_Q4SefqOuxI~&z0S|;ul&3JN6oA~(>d-g zn-NoVO3|WJ!EU0s)}eD#>J-yN3h%aUc;%pWve$BcX7T!5L(b&6(lRIb!e*7#Te$d4 zQ#$Ry^p$0A^k$9aFCXx}`mwKK`TZ-~^CSAYk9Pf4Eeu$|uit-yWvz3k@uuvRcjH&y z<W&6rwCaqur>FYaAU@WAH&UmSP5ysNDqNsym&vD^qt|xq`5F6XcdN~F?bh7QFQ0Vi zz1k+|$X%o*UHG#@T;29`+F8fy4Ljr{>@L@*C|`2=R@2&Yv!o`TZOQ#D8TMCJ%dP*g z_{h<im13W6*kn3_Z9O&VVfShG_uO@=pJIN_dorn6TuWZuX0iHR4oOq~=N{r08y9bV zHev1`@h!eHR`i}^wPbp#SjBplA)dSL(wPG;7mnPGF7B>qp0jiIiLlztTdDz;o3t!W zxZbZ{;mxTxzwiC&*O${g_h&}j-ykF2E&4m~kzV)V!j0i~d5$kU^6_!d)1#RlD;@Xl z0~MZEZ@$vltznue?|$=O^zMoGcKyuI^X>h2Qt|go>#qwkKi^hzINSGR!v9}?Dh}S8 zvZ*%x^fq;o+IKcD<19`+yel#7$P90nc3!*n-RJH}O|SP~qT{h<!U~x{i9#jiv!?es zIIAC)Pu&|9`u_B5<}b7AE}ww3VZJRsGV$RKeSfiqM<j1<4Y5qi5?<`7eP2pn#jfe~ z$p`x_EYvvePFLsl&idUSv+h=rPJVmw=kVg^Ki01KR(jDgq`<E4)UK&F`Tp-VyY<i2 z>0#q%(Rekn+<Jlj$$Wyf##TY<*YxMSRJgmvHEPq9N>vY~$RzPcF-=N$H~Y&TQuwGI zqc*$u>Ysgk>~g<6s#$Yf`;SIpz>&a-I#Vo~cZ>c0AhlcEy+2mr^Q4qDJ?|zg;<jHh zQQ_nPP22OkP8yc|EIjRgZp+~h;vdf3ZL|Kyr?{>6T%S#RT#U9%eXH}PB%w&<==ZHx zj`-D1-o{cgsptAcgK2K-58V_<+UNV~bZg5}&*iBn*M)BXzWQ6OrhTqV_vejr>p!eN z;u^oI<zDICYh6O==hhv4@yYYkmt~&(F$)eSg*>{`_ncdJz0ktd`O>VZ(PDPyl8jyK zyVzg3i%m-j|KcF<>*2ngH(8A87drG!UT}G(WAX7iPVZL7r!V%f-OTncTB0w;H)+Gf zlQ&D--?#|1*32tD?!)nQ_t&WOuYSu~j92Zu@>ulW)E&j&r58R{y|c!((|BLDp_Jz7 z)GIe9`%UsXE#z78qAc{-lPM1_mU^_j%lusMr&mg<cb)Z|V(rzB>()J<>|FM+r6ak% z^7W$4)8F}u`)~AAk38EP+kV}Jz5mD(Z>Q(wZWCl)9<t*oJki(jS?J^`VaIna&xQ4h z@A7wR8u}hOnsoHv)E&Dm`CfQbpP#bmh~%BEUrd9nQrI6U7eDN9cKtr{)U|7Vo+>7P zd@>8)I{e=q`SR2&cK+BkOCCPCRB-#%iZ$o^p02O&-BvF&m)A*Mu66QW8>PuQzrLFI zdo5F0qJC=vM~K!r?>Xwlo=ZP1KH+oy?}iyS?tq7g<2##~=BEFh7z2v@Y5Ux?*7|Nc z(<5W}_#}Tx=&eP|{|ZmeZ+U!R-g)lWx>ET+vP(>xFF58tx;4qB!|?F=X=^PrrqA1} zI$NFfr%=6G;#}@0OD3s`reC+@5PCI9%<KE%M;}ep9wu!}+V356<7Lo`sFjxQbr{?_ zAD?}C(qk*Hq36^to#zbh9dpE)wG^%Icm3m<D^gIpZh?=_o@KXVJx}VqoyK<PgJjdS zUc;RNrIQZxhQBM{ykL5m-*!und|$0|0i2OeK8vsH+#G*jwtmWNSN(G)pn>o5&hGsm zMSeXz>V8(E(5+~vX;A#4>pykm3xA$gHu6aEVmoD5<at1Q?mPu;t0k|mExGDv!C#@O zRc?P>G4H{w?_0~}YyG=*ZJVl|y^4>A(H=vy{7RQ)S6V+;nYFx`rZ}bTyh@&Gw@-_1 z+WV?P3$b(|(4_M2`Xdwn{wTaYUrM>qZ1&r~-|zpwzW-n8>ub8}#o0F;*=ZWIcaCt- z)mhCq6{~Xv6nDL9$YJS`%YENjSd(N|Qaj=L&c7}PyE=HRgc%=|eRI70c1_s_&;<J$ z`$@ay?B1N_;Pn1HCH~yjtygv{=PDO!XG(uGPQCrXbjNO~x}*BFhn?zUbkyFLgN9ml z%4QZmP$?7^7Jk3?`@PlS>+60zY+tZo!Mk^PPhT@fJX&@qa*m#}&z4(L**7h@eQ)Wf zr&dgEHmZwM<}FEx;fZ}2cl}u3MsEJunFU<y9xv>ks{Jj!={{?GU762>3$HVErCLtB z4P0xtPd~SB{{CNWp*teh-1|{eSidecy5``!U{$s!-PM176uP*u{H*!*=H`?sB2Qm4 zM?Z?`ejj(oy16Lnl3CS-%_TeXU0WvTw&>+dUUxQN8q=gn>vq@2y?7Pn?tgb({4<%w z%I(|p?6l@Y?|ob0cxI~B&5iLoPftBg%TNqqwSTx-@4ff!&8GhM4b;WEul~N<-Mq=T zer3hgMxETZ;jP@_dMc`_6VHEtf4{${CuCpULeDwxoqd9w*|u|q^r_@d=KVg=ciEw5 zOob=sJkUJ)R9k)B6fuEa7e8LVq;hyJv+?nDwo~;EGqV>3=e$#AfBQCevcQu~bA%86 z5ZJO;KUZ#3<*zo&oe^v9@d&YhWGy+p@1P{_+wj)<&(F_$tLkZKd6jdmUVP3_uy9>c za*o`emh)Nlwaz*B`i?05n9a%>qbbyK$UOS-XY-@aCZ2j|{PX^Vy)RST7^bAmol(Rh zWAKCXzly0t<NelSCuVJT%!zxv`K0{6-(^M5+9$4j?{TwklZVw)F2UE=elUHCUmSdY zZ_VfX+xP!@^;N9igL`4+>7x(#r9RwtUYP5u9lQV4OTU}Wf9QRGRcX(nC5aZhSKZ(L z^v`0k7Zcv@)vvg(!?No4_xI}a4FjGAF0qr4F!GFhlDVV*S<PbQqSJ>?hP<h%(Ej?! z=4bff#p~7LYW(^CM-{)AYg!cD_cY&fn)|ux+MpkM@-vn#DO0dndgXFGgKW+Jmk)D_ zPHEko$mplmcXa0D?xU~HJ~$fdE3EP^@t-m8+i+H+y9UO_pC9+zv$3;p-?Bv`zF%nh zwjF6w6Mf}#Y^S-KPB>%KaNqS==*ef-5}tnxYORb2|N8su_WLK@!mAp-K3lxgWVuYN z3%lyivb)oE?Ae=s+TrOn*Ywk$CJWSyZIU^+Q_t_mO7Cy{a{{l<1zE08xYCmE#f|6k zCYc%gqi*DE18wNO|Nr0jrQXx`#PtX*U%2C0_v9-5)r;Sx_-p)`Y?b3Zhdqb2^P=iS ztLs-wxDH2dE|zS&|Al}5lI|B#R>#e`W`DW7)M<Op`nQ*rEg#&<?LPlsNALY)=bPH~ zN=8efxa>W@SuV==K4My}V|nL>XwTnM46mhk6>preM^c54YtK97>8nk)fL1a_bg4J1 z#;jX+{o0N{0nY;)QtnFiYM+$Ter2&UcH^^a-IMQKKk{U@-E+6_g6C#OpLOlte(&Z? z(M{8jEX>U2Pi+nspBJ>vHAi$MW0Z%CrP1@(X7%l}*W|t_T(PR->Z{sjbMbD`*)EUD z<_fV*GX-0?M~t;uHRhCYr;Emc_0dm!c1fG4J3cyiAxY@;1KZ;2pAW@XvcEW`dQ~QI z@#-BNd9ydXR=j)pTg^nlk~7<0hn#HuEP7j*%l7V-smIT5`DAsx<u&VquArZ#vMozo zuf7uW{$9_^4C?8s2#MFOyp)@y_n%4iT=vITk%mzw9xT2l?nOIvi{=?<+!f*9<><n1 zC$l%mHTAh)-tyI##IAp7&RT0d$GLAq;rgQLOLl_(-4XJWg$uXk6g+wQWXT1&l?hGz zE}nASopDX%<+Uh*pjA(t?5qs$l)YZQGRijT<-SA)@$Pz%e<$T#cb-3UPR-(NpoO~6 zw^qo?C;PARO!h3gAvRTE*7Q!dO`9HXVQCdC?>gBMa>petzSQAF+m>emWgo1+?w@@6 z-QpELAIHerPHwv3dCM)d%5V3PMCY5=ZcQ+d4*it+`;HDr$y(mM7O}5Ba!vNQbJYEi z-_?m1!?Qr0#`?mzZuMr?lU)|!9|Kdwc0>ylO)6e5;&%OE^(+xTt->esg*t`R5@S<a zbSx%n>TVFW6uLC8ySeTIZ=&Mn)t9!aO7}fUn^JOljhaG<^Wya#7Xl^4J)eh$pD=rK zCu;ZC2)WQt3H-OMUd(-EB(^;HR^sb#&SKhTokwD~Z*|=MQnsRgA=J-1Od~!$wJI!? zym^fE-Ly@*yY;Rv_@&mX{j#mLh>gXPXI9R0{%I;-RlT(HglF5&ZB$`bTj}A{@|M4> z;Pxi%s&ZA)%fFl_dw*W_E5)h&gVWKp!sDy6!xDcSE6rZ}#wRP>{_J<jP`Q<UYi{sI zuDPKiRIYxTQTEuydefC)2OJNI;hnalETx>mmfg`(X|nE)seA{|c6z?JBO%+#n;Iu` zQ%2Fa@`Lol@RVIDJqwRM>3Z!}<e9?t)brx!wS_-JLL4uzTfTkL*HUYLvDm5`B2~Lm z+=B#dZwBl-)v9`adD`EPU-ng~tl6AopRzG&vd5jfGLDa|0v<8dH+8#|xva@Z^32@x z%v02n*J1aISMdV2MNwidQv{MP6^q3je`I#_ne5&m)!WwmrH5EA>Bb&97+wAB&dv{; zQ|HU;FVMPv$+GVFJx1SI@h;*MHwKD0e_V2X*WdW5oXJ(}n_mj@FQ~YnwcX!gy~d@> zzaLF3yV3P`!qF~YrNZr-tQOSYws}7{>^5kv`sJ`Gdo5aTgl$u~@m5anhfmv&Fqf1A z{+pa`yzN<KqAT=~VS0!CNt1)(oUOb4M32X;oTMg}SJV?<dudaI(M`s$&PV<(t+@C4 z(%z<Jj;+~?S(gjyHL&f_n$fp7W!^pUs=_UD>kT@O+&v+1>`~RPLLEJU9aD}!suxMq z=rC%rNY`2!tUhnQfqA;4IFI*LokuaPMROl89@6i6dCmBlHvjn_26x1Ycb<y7=RA3u zL!|IjS9P@$4YxnlO5XMtsd+JHUc^rO;^Z7Ti;4%&JRb-AU~oD3DDm=xreAhm&tBF( zjF4G-T-!&fF#c|SOP-C{zo=Z$I&{C{iS_4JoO%|tmo3sHBlgd`1u+voKd26u&v(v| z^M0Tf|4;GE;d8wYM6Z4+|8{0)@u8Df6cjdAuAb8#re8EKTx0IP2)T)pA44l6yk0gI zKMnS~skr*ti%CNAf3;h`w;HbszUJA<`Sius<q3S3YG(9+SJ%tM#5L=z67{}!cZP!8 z%hdX4lkKXC&a2Ym_FC*Z+x2F~f_IV=y>{5W*-~J8^O2X)w1!i;cC)^FmVCQZ5Ix~^ zjMl_E=lh=4*X?<5`pBY*8?R4%e#-NohX3<h5npP-EBSpN9jz_X$<Hk@`{}c3mN9t! zc|}2`RQKde!I|Nzmc~mzFLXS|>AP~)RZF!g$Lk-RnAcI-{wAfKW$w~aTe0+-N51C| zbi1>jKhdKl*{WT0OaJy$FBNeWz9|Ch8ZEwew;Ve0S@iW0O(7@spe4Iy*KfY?+sGJF zY)^Afsj1w=p?a=D@9tySX}^<h9`>7KJ1IRgZ|m9@M<*(8Oi^ESZr^VAP^%Z}wi#+3 zcLdq)*K5dk8{7WXtw=pzwfyA^na;TIcjqVUD*jN}yQ5`>&*?*~(#gdSpHJJdr+@LA zl&?moXE|K{#tRyP*(j;<u5HJ=?;n<GO|fX+S<w@fy+eQdLhVfH7tFD@#h!%pTz$kO zv~t$Yr%KIrmmV`^PI&z-Lgwarf4^F5gHM|d&z#livVL_vUy9dWFOA)kx=u^Cy<nZ+ z^;svy$;IZp)%od?{`TK^y+LbTBvsx$G2eP26ukY_c!u}qTg+nj&%dtS>9_Ed8h3`A zP{&uhJL$^GKb>}c+EH^;%i`2mzhAzFzuQX+e7-P0Z;H9O(PEyIrJ-g0zQj*&cd0IP z5_+JTc&IVHB(UBvq~g)*S<BBVn<ze?bYaWZi{IvY9-a7HOKG3h{fQAva$U~#*B%xE z4cN1FHqR5-biK^{c%x9d!SrpSOM3Rr|5R(J*HT<<yCbOk+2{0S?Cs0$o_t%9E0LjG z5qwG0uW)~}&55ZScT9b^vGaQD-^;rvbsg|*zW?`4gq_HTYu8-U>n}%!7w`oKNxw@g z&*?e2@X~fOtKX-OEV^)6b=^w=-+SiZb@+ADcU*~K|I(}PCvqttv~&5=v!jOprhTgQ z)E1onOiQ!>&98*#7i0?0KPV6HQs1%DbAP3d|F(d$rYDxVM($d^eE;8|l4A#2xjDBx z`e>cmF1O|S*4}yhE^pAWsXuI*$)LG<@umllj<=q#VvFnP+uv5Da}jQ@ak=yYX_@_j z%|hum)3<H3aJ%pSb6?8ThJOxcRtWs`T0h-y!z9OT4=$7x3WZJBo%-7-<@1uBV69V^ zeAOziTbO^E+{-U8ZPG;W!ar$K$M<@gGe5sOWc<Qx<F@C*=d0_Nx6ifoIdcbQpM|0y z=k~iN-#K)C=APar8Txe3{hsejuQi5zd(^S!=Z-gFk-HwQJ6ZC|NKrCPZwmk6+>qTK zKP`;1FYeZ2XSK0?X}Tn3N{Q^=DBgpo?-?(hapTVPsy&DH3zggM72V}q;WhJ%_Y@1` zVoT$SCD!RGtsyz}c6~=RkN0nSeX=chSK0KQqk>DPuH#pXtXvveDO#L*RrPUQ%DJYT z+y;lMrHP&$6&eq%XDfV5O$q<vrLSDP{&jLunX2e}+vsh^8(&mKb>H3=xjJ9sJfv^F z;quZ8lIxajU2r6FX|`u@(*(vXYma~0Qg}9Bp>+G(D{sG+B;?k+w&<RaTpd?=$H%;2 zqG|quMg>!&+G6QR)m{njZt)m$`7PG|;_)xB!<_x-VcwNxYwyhW{Iv13+Y_a8)5NcS z@iy<6XxXiM{FC{yXH8LUb2aalu8KIeI{$uvSS738<vg+EjY;-iG8)n)ZF4=3Zh9a1 z=**d~fhpHEec+Lj*77;DslIq4``US77uMQL5Y>@vEneHGVyV7~$Nr&lY}NLYhYd|G zo&Ea3|2l8XYrdN&SyfB_w(E!H_6TmXRJp&dncw@!8a3&@Cv$d%Zr3zB|FU?Q{LYxr zixw(!pJ%zN@OgFY5Pj6$a_Gb6)QQiv_t`{xludql+k8*o?y5&dpQqJ}X@6T>f23CN zS>E2nZ0Ann23K)Ct0n$M@AUY*)uSFNPhak65dQq&SFZ^%hO1A;>{7X;5^k*GdG00S zca^Ks-CKm1+3%kTeRN>y67d7;<t@VZDX+}9`!MGwL+s|{KiSdJTe2p8F4$-q_-$+Z z=9Nbp{UtV;&#h^*ZZd0`r#E*_)#Cj7AFAp%&)ack&W=v-K<CNwSFG><t}eR%->K7B zSKQOc^VsfZVvpW!&5Zk{z4qGWcWm2t?^+VRu0z0Yeq%&K+lsvJEt6E9r&Kj<nIpsG z!75x=8@c0w@5v;?NB?%dlD1)4bXXwuvSz=&pGbqcSlzNKrF9E8CcpX9yiC+@Ws8BB zU4B=+Xi%P0=<3CrRy;arZtW-L^x?L-$>+<r<3n|g0yW~EAGF=8Z@m0|%EqMq9(Q!B zt@qr&8d&zyMayf>&z&Cm<?lX<7zwWZHsM>CsQBVp7w6=sXf?*{jQa9untRG5$+(** zziyeJ^4w+S^p3?@t5xG<?w)5g+@T}ZeCx$5^Ox^JRy5XkEZlK3@t$RiMrnFd;Q0gG znM_tuucF*1=Uvq;eKxnbYQeuH(OXS6a(Wv1{5^1S<@;T~mbtsd8{2udHpR`E$olWu zq4<sK-<j|F8$ZS3a?#3HZ&&Tub8Lx%^%EV5NpEHBnjghh-tqCfSoH3U(3b8a{p)nq zJ<oLt9ZFxhm}BaNoCEcnemC(S)U$MJsW3j{cFV_P@;kxi`5%_v?)|eR#FSTl@3$$- z^djq3%s<Y)^;VtBBWd!J+odKaJ^i*CIA8phvuJaAQNoj_M|LkSSf#~XrgN^Lrf{#b zzNeB!(7UH)hq8V5T~_!T6lD-UCv#`W*E0E?DMel;F58M7cQvF;{M?hdz210FN$~y^ zX-y6jKg)Lbcy4Aqon)B!qj0_MiKE@k@#@`;p7VT!SoOuqH(W|rnw>v&Dr8mVmNW%l z{dbd=t@<7E#bc>*_1oCVdz+1ug<oy+@Q`OZx8jq=742rGKC6-$w#&UzIO|NegSu}q z+|~KtCwi+bKj`E$T~}66X?eY|aHwLo<q6YyZe0#jT6TIHN=^0k)TmzWzCPq+jKvSP zS=)mxP6hbzZja!(m&(r`qwim+J>|}+ID__|t|fw!*?c!&?vOcoPUW}g3a|AquI~Cf z;o4(SH?NrY2e>PKf0(}I_g!PDnoQ7U!=KY%&)uSU{8P$mJEtSTd#9c4<w_H%-x|34 zL5q-P#qv$8>aY2@9rISG{Qh-ED<e@pQYz+U6lZ6&b@j44t7N8ZS+p+qBWuvY+X9oh zg|_S3-GBRxBmIjNYn;-|YSY8Njpl(SOegPncro1CPwe3Qi?5y~g0`t?6uK3i410L0 z#`TArjhE@%H1Wp&OO>3bZQAiJV}jVz`k9Wb??b+Is~8LYowTlr&7JRyZ{mWYqEELO z4GVWgpUiqG<A1iW#ll!fUx@!;r2aCIZz?^-&m+5w*FP5a@tb=nch=5)jVq5uk9o-0 z{AZ4z>TEJG_TK9J-#e8URQ#?j-C6XrC_c!Z>rc%lt>zWiUY*b>65sTb$w<syP2ogU z|JwS(pFO+ZNKQVw^Pkd`wI6?8>7L9b^-*iD-a3WO%eF_?elL>I{&qfn5%W!!!z;68 zL&Gc+XT1BV62iT2(IJDmn>J_N+P5&KKU_kgaIdrRNAs))wFh5c-upKuv9z=J?WNK_ zPUd$Whig4Wm5<B}Ge089+%#+F*Mln>+~=(RuqtFz?7I4ZwYQ5IV*kqAOui#BJN$v3 zr1i-In$b@mT}ut>i<akD{fK+o``O}F1<%jfXJoyR_^efOYNpSWcA1}Fo#lVG71_oe zjDGa)sa0RSuFBWFKQ_#C|Go3jE1~DNmO66r>`><Yt{Q4!b<!g|Nub=jN?$-|($?Lp z_5>@%E1vWHrPExbQlBzy-ZYQ@J|~U@%!^PswJ*vh{MO|+#-4NDY38*CT{bHE=4i|t zd$92Dt!vlbNPO2Sar$!0meX-#&cx2573bE=|GHrg+V-<fi2c{L?>?G)=1#fN=K0mT z3bcrNjb7op*sA0;zjZ&i-JQOCqr%Fji>;C+>P$C-{aIPQ=tkHaajbtf*XZ0gt%zN# zCrql0z8PpSFKe2bm_Snc(cH~T9PZq@``$25cIK~jiwZTKd6j;cXL(+%#$&^pX?|)8 zC+iwH>id<~a{FsGPoGq<Ijnh~;kJ0@Ns}j^pJRErXz5keb2)Ky4n<5Tac%$nW>v{9 z;l_7ts!U9LqAzB@*|((d#hqIZlItt8Caayi;_qWIL2Y+XReYZ7)GaM3)(cO*7Wrn& zS@`;e_J`d|Hflxw-EF;d%9?KNb&?$x(SGSl`z!)yMBX~PsOXZbn(EfS(nr?>TZk>6 zypQwW?RUXPYn_e%+*;3dzwURgi_4Mu|Gq3|RVqxA?*6<)cT?%kM@})1_H*{l$+ok) zP|vkvo}cZ3^bdZ{v3(+6Ob)JEuw|22*QD&pKdZm&v(eqcJyoXP<9yGzUGFoCye!z+ zpLp#0Ri2!)uEajPtn&Q1BS~5%iOan|ul^O$>KBs|^ka+tucW8TZrIETysBz<w{{ha zo%i&AukO`_R(yJL@@TiX|6HrB4k~%4QjAy4Q*tq{za7~BRI_EygDWS^=G09Lcv7`Q z!P4Qv+6@(4nW?YXxzviqSBfv6P}2JDiE5Jfr*+2fs-+~WYaguM^z~d$(IMrcNb^rS z9{ilPqekkS{GNcwF#8i4C6`>)Hth`m|Bd(T*NWD6LhQ5H>SG=}eD5jt<?X-SyQNF= z_p{9rJh-x`g-M})&K;@w`;Ax55c$D#|G;<Yq|aq4Vi(^(G_FYH`dTwDKqHHLqLE|z z1L+`353V1v55f+9Kdo%EC+sO#LCHd`AG$v()wc`F$gL22)j0oy<iF|nx_9KpKTs-J zu&$;1-m_=PKTjX!QP<{AxfuVYOV;x!yMEXkFD<s(=1sbG^>-i6nOMK_{gTv*Pq)8p zk_!k-za<>~>F%-gX8qLZno};me7`LI?~lj+`St(*mWQ4{UZjyJac<qK>#J{Q|K^*s zT40mP+|>=|pPW89Q~pm;cG>Q~@<MB(xA)bY*DGXvaCBzZ>EM<XX46}Dd@`GzXWnpL z`e>`no8#si@|}zKPP#LFMq^4Hvt51R)g^`7pVht&IJxaHEBm?dmbsdLAGs`CE$;3; zIr+_}$J6@fu)8%}nz!$A!2M^nf^$n|yo-GQ<-&{ACq2DEV>#C@b}#-X{YT}WwC1(1 zj{+W*JP(qXpMIUi|FQ<_q%+U+uJ1YdVvnECj$HeKiJJXWe;eB_J@+~FepO?I72B1c zh4mp~I|`)xo}4JkIptORJHsoB`Nss87h$p|c70hPd8I%0#R;X!=J)?T@m3Sw|HWBM z`<nNo7e8kE+z)ufQ+;>Zv!JD%r!H&6tuC@QeE79S<`lQ1#?2-{87-YtQ<v&}+{+<k zUVdn6fPF@VUuysIP}MCqxpJ0ui_<!buYS4p;!VC${q5N|uT9%xCB9<I>YLnY5%&Yu z9oPOcX~*AqPUBk(&wVtXV(~csd()#&sZvKvlbYr{Sy~hJbxN>wxtgf(d%+ODU4J6h zM^FB>;sEP>{yEz6lC^JNeB9wNW7?-*2VZ!HI-biFoG*K}ddB~rLP1#%nV$~dntFTp zU(|kRuz%mdq@z7Q>mQ|9-cNaYYO+|xyp7?jtJ~8=KJABW&SzB-zbNo%&qP<*b3L<O zo@#D%kzRS^<)lZqg}J9%oN@}ES|Pf+Y5CuW>8D=YnxyY9cJp-A4b?ur%cWnrR=<?+ z-}=q_e!|8iH+{c@!qq`PWaJ({^bQpkwqpMT+EJlV`0U9i6V?Ou|6XtE<eYR_=#N$E z+ewv$yO#VY%bi_u#zo4qZFWUr(6oz%{U=*eRadX6u67a>-BqiZ+Uo!NrfQzwi+R2c z-(Tz!KciCHe6*`}%8pID9A8K$F87WMiunXSU0~*f({JyzMCsi;!Xo*D$usbp-phzN zahm&LU&j|;*mt9n=et#5{lv|$pIxgv?>Tb`t5XO^h`IdI<uY9BJSq<h>^^dlsYGCJ z(}7n)dtY5Ok63d<ytA2oN74QQwI2=F{&MdFH)(uMJS}VOG}C)IEoj>2Rm)Y3SN-bS ze=@K4$pUUM@hg={GiOw+-LNw>3c5#5d)W%5$W?wdvC)@}7I{6&sQ<ER!pS2)K#?&^ zH811I(`7gI^eb()+NJij_9AGPrADFJlcL?OhsyO13vFAy%k=3M&PUI#U7yQySzzrW z&318lv*t9Rh0P8Ys#_N>to50C<l-Z<$(<iTVY1cp&XXsz7l+Shd+VvaR{F`8U6P<7 z*TS^NO3tC{ByHBz#V@JP@SA-=V!PAIY-!(p!T$ZeF|spDzj}I4p0U7l>XC~tLT?vZ zR@s8my;@;E*Sv$DcmCPYS|0yNKj4wiQP=X<yX9)u_j=!EiWSq#HT^xwjPcR6b^kJ_ z?GW`U{akS8>(5}mg>%c_$R3`2f7MhAslBUg_1xEkJS(O0F7mv{AKv=b^5wrpR<(UA zX7!r0a>t6vkE=fHWz#!*d(EDrpPL#_Pybq1>^bwsqc9DDCfPj(^`{;_=XCYwnx7rK zGi>Vdr!PS96487Fbdch%>&Nmr{6awkYv)2@xK`?1Evn?Ih}ADHJ+`N4W6sXhlFueK z&H*#_Eu8u7`5LF`;jFrvOY5_}%Tz_5hkVHr+ZARw*>nGPU7@P4ykgp6+J!qs_kNJs zw{7do+trZftIyG;3bLzqNCbyf6&>4Cr1_jbd`0B(bPKb8&n$0$vJ5iv+EuQ0Hht0U z|DlzIZyWTTme<7e#et$C)Kf;o_y|XI-_y?#tjpJehS}4#^jK2^>W?0svFXy}MO9Bf zy*j!vJ?!I0Nv9h(4w~^Yf=cDzJLgKz<($>@eaZ2dmFsd!_ILD|R(;)Y!UY_Lt5n_v z?lU+&A$sMb1rGPXqkEeRE4$u@6dEpD^W{lT<<n2EmQ<F0E~#ldl`iGQJu@)3tmpoQ zt!pha=3BGmuGjrIdsqFfu%Aj+S1-Qa-R<+`m9$RS8NI>>JJ)ufyE!jl#ajh7KajCI z8lD8r*j7+IGfF@2)a`)TiE%QTJ(mS8xhnU{CO?-qIhd^I#4dmCZvG^_MVBS^PI6Uy zoDVZB)Adl?m8Ms9%D>mvHwvW->8)@6ylRI;`yrG5qc5*A)Yr~mcs=&dy4Q~mRC@0T z-F~I=)WhR}pj~D?%Vo6O*H1RK|FO?C$t%3`we+mU>mP4!tT`NGaSWVXBzHuxIO>W& zZdtZXGE`Q2!SCNeH;%r~e3_s6IN;6ItX&;^G54!2`Hr#po+{$HsQtt5vE3Tm<c&#g zou}8oYu;Tw;rhz=^~~S*f@6bCZ`uaGnWv}A>}mYSv((jM(XG3A98d4^s%~XwKX-P1 z(T|@WouWOb_Y1i%4nHgXCvwe<z(;&>YhrfV3)grbj?+s9r#qe)o#xM6F?REo2uPg2 zu$5!C;;&`5XQ=i~nbURe?(%2XryZEzWAiMSZ|c)4Gw1ouJ+z@d!qD664BPP^lQw*5 znZ0$^<mjxr{r_0K=1A_?cI@forLromv!e9-o?hR2clsI2E7!wSw&oU;KUi7!^z4Nf z+U=L;Cf{E?E9^^6bj`s#n(ezUFFF@K<=V<<m*<_{ca#iI?r=@=ve$oi;i%V+>D~Ra zOqXk1zcc+0_Y{l$#S=G2Ju3>Y@6x;y<KGwdph-LPQc;l)b48)uvRA4xM$ZMLUTVrt zW_!7K>U$5JM-ylGMX9Mh51YE;R@?ncmUZU08F`hR*!_Rp*t$H__pqIpjP5yIp}3a5 zqg{KwK#R2YSnrtr+iuRG1v~YBifa_sJy&8bRH>H=T($Q2ohRZ<dfUC2=67;GuRoKh z_vgyd?#aCZlYYgr^K5NBxus}Q;tcny#7x1ksXcq=Reaogt77v>!#dryqF)+0?p`Xm z4PG#J&)+g-O7JFEr^FdxOJlsUm`&tVq*VLv=SuzbSbOy74zF$J3?GJhp6FcNeY7_! zWw)3`>8_rmC#BqMe6E+RvQ-KzyI$||D1xu^gRRfMuiNkczM7M_bm_v{H*fYHdn#DW zIV<el`8^*t?A+*_DL7ZFKTwfhy<4<;Drgl_>zl22x0NqA@^QDXvi!=eJ0w(<9>uiY zJ}oiVf%p5-7e_bdrxa9Q?}?kE7p(PU-!Zi-xp_;ME=yH;n3n5t<BrlUf4<cFXFgP% zs$bZ4r)2HBPX(JIHf}m{_e>7=y~+F3ce?EAJ?$a=Q9t0(pL0hu_DCmvJ~2<H@cGL- z2j;Hod7AaUyHLk(w)pZg9Y5*rL%)Nz?hK96l4|RVS;tj2uV{y+*?Y&h<*${ja)r#r z_gZcDaQJd6>F6mT@zRA%w<=#28hgoHziskqVpLyuy($Z{KHnX-sxO<3FDIJ`%CAp% z$lk3#O)~WCKhc%B%C~z~nZ*bGtnKyRlV~G-Xsd|r+xz8Z|E3&%%h@_}>D?+%ncleF zRm<yt{S;pxwnhOoam=yWv3=?79X}#lZl}MCUvMO{^|fD~y6;;L|JhM$a#AaPNBmvG z-uby?um0kcp8E3v<@$Xh1(Vy{;~gtj__n@zYWtw|lKH0ZKADcC`{RV%PnFyMdvmo* zROQ`|Ua5?TM{BL7Slrv5`9zu5M(+ae4`&&bbr%<PZ*@8nG4*)kxy|pGLSN1MnX2B} zmt456^>0Vk_NRddH=pl&dVcS8+st;ouxVHMXE}npjMv=K>t*Uw+xayL_vBwb;VxAX zqo5Z3_;cnzbEQHRZW(+1b88<zIX+ippZ98`>n9{$3tnBfbZ7COu(0F1UdU9PN-WBH zd^zo!YsnlHy`O%zCeL16&3ZXqqi{|h#IS_x0s<HR<aawi7h61OqlMVqz@_|~---1K z#0O4qxVYtgH^_1IOQGw-CI$1IzmvNn|MR|%zV;)H&)H<tTwR{sox?Z9Vt={rlOVk# z-IJfyM~ms{@Fh;s*}Crfnsj}?>527|_pdK3EMA=!$mGkM`uoDp4n7h768<aa6FQsC z7=BMY9SR!s{BvXLgww%_$%V5HJA<@7-?-zzw?`^Z=bo)!D|Kq~!Rg2IuUy!f-;tP~ zS{dVV-1(8&u_t={Cw9!f+bER2X<ci~JMX#4PM<xdL|yN`H$A&z^>3M$nfJx--dW}N z=tPNg<X_O?j*jPCOXka-t`GTehM`kg@6JQ-B5^*|b1JdiJHI@=^z3M*)|*}84Ce!U zX8zkX`R9|cnMWp0im$)B{rj0en(fv?-EW@S{!!`cIi%ZvqNMa;z@sylw@&bO*UL>V zd~<aAi>q4aH{^TVT_tqgRe9#pySIh8R$h2(9Ub;%OT2iev`j7UAy;oROEuHQvA<Mx zXXu~HiRIo|^6-+u;!|-oGn+SDFb*j#T7A2;P<QTQ{!dosN1t6hdfQzuygt-KV{Xw2 zrNYC>pVb%n`R%(oGvv?7g>NnzD))J&RzCX&I&kghxvc_wEP`65yj1pC?IkkppILd| z{WBTtqO+`@8l0I{uzB0EqklEqvsBmZC}ViFXZBlzH!G`ZpZ!|2Z(rTZOG^(PJeYlb zovftf$0}PdnWCTPL=Pkv=5<dn+WUWQ{gjuhRQjesmJWr#n{WNJpwi{o&FbED%Vkzg zwfOOP)3XJ&C1)-$OHG--b6>^#z2B{@tsfq4X6N6QclXuTswoyvF12baq=$%}y7MgT z{AGb2=^fDJKvH(~ryg$Ia!u`|X8S4?z8J?9EHN&J<up$lUl+9h|ED-AO6upG`dhbl zReVfZzrP7|THMl|K7M;&ex8sVd{yr1s$~z8ug|*_%y*D?-(=hJQwy~^t!q|t?K$X} z{M=`+U9sGcx7+XA{eH7~$`ld5ugU@(UGwYyrM`OFzaZ0Y+Ou^lZ)E#tE^B?O-p%#8 zEkY&l*VX<HpO3zlZ+5=C{^qTp_cs=9xc&Bj{e*<OyGl1N(%+taeI2i~*`C_p*RpwE z990xAdKvg+x1ve9)XCLCPIbGswcPFAJ?k3R_3ifa4c=55*%jA*{QLcW{il=ax3}lB zFHGJk2Rh%(d%e<K-iOIXs?na;|I6wpOt)C@?@NK-jh8`(<<x!~Ul+f<Ew{U;=g;5o z_a)c6cRJVWJ-M`T!s2~a)yrzmi(kKFIWO+cQH{dT-op#p3-%`RPyRdebw^)cpZ%YQ z{Gb!(np|^kZ8`aR{Q}TYdmlB{@Biz0I52))Yv7}xAZfAoW&AudGZr=475`@fxu#oq z`m@FRu6W(K@M85>_adcp)1=GFSIuj#2cOM%bn@%o`e%#x-B4Zk^k>V;GLsW<nc1hO zFWwiSaxUx^v(WV$c4;^6uB_q%r$xo-j4??;YD@15?DM!2{#`o!-T5hU2D$SN1@5`g z0E)v@3Gth}3s22Wp19-0=c#HjdQS79_N5wJzwtx*8_3{1@0z+xZ>tXH)%(6J{-6&& zO|9p7lK-hAN`=x%Mf*>hT)b9&6DITL=+Q}2Is+fQ5w&f*JL}f-2k~I<|D2eur#U&j zye|;6g`an~>DKcH_k+)z`(!=+P+)wI(Di$^nK#z1tc5w<bH|BiVZ1`y4b`^iXB^uQ z9sIjq2GkmP0y+Tg>;BovlMCIhK3L2gYRe7@z|%P~m(H%$5&G`xB<M9qeZdjM>7hGJ z<oOdn{r(if<{oFYOD$3*FFnW*Dyh1o#`4MOGvAlSsHxrm^X0RC+}aBNB2FaPRaeh^ zKN{2@{>C=AOXxXgy++}QR8GAP|AY05h1lmmoXxO9e_GX^r299GrdarcJmX!kP<(mA z-{)EZk8D6^@97-eYH<9~vKuN&ubfoD2J33*9rN@ozIWYecHq*l6|P@EGs6B3ozWIC zZ~7)|eWwjNrs~IusaaqXL86BvukBiY0CehF{o?SzM>b5Vc@GOV`g=va-p4e%`)Jqt zW!rmwB}(FLz(+iCw{!2c&@S2-QJB>ydH!BfK4>&sS4K~!d$W>wx2U~VMIP)xJzWhw z@AE74eDuV$&uN%uo{9&zlp#k(My#<|?{!*8>M$&orKahL)obgmlr}*>Q}60oHQODH z8$k_Y=;?*pd2b}l(Ur;G4Q{(D-VbVw!>rg*eql-aWdrcE{{-%xXU-f=I;xz!9{n`F zk5{%hnjc;HcU65rc(}Nb(58%wi*%#6?Wy~F>-AUYp_WM-tCH8ui2oh>F#i9q@bYr= z8V?T-4<8?slZQb^SUKrEF=7_)zN)X$S^fK)?oUZ6sj8o!QYYJ>ov3JWU~~HUf4{Ep z|Myt_zl5~3F^cy3lk6Lg+<g13-eW`FU8`U5<?rvs?krl`4=T@EDnDHIw}1Nl`Q-EV ze?A<J|My9J{eI9vd!Pe2BY5l^_F72R{r!3!bjoCIZtjPl4-dCXo8=gwSnyC^rgL_w zo)jk^-@QGRpMU(=;VE}+4eM^PBE{*FJ0j}W)H!<2i2~;*(oXIK9fk=?2qYi*iK4Nd z)blqfw-Uw1dIIN@qBs^sCv`OXkaL#m(bLoKAO8F>_C&P7G6nG>@WE1`f)8}xg=T%k zjTNg`b8~V=ZppYfO*cAjf8E)stI=8l4^O#Hm@}v5*%`^YueWoyeZOD-KmPx(>uaO8 z|JWE%^ZjnQe9ec0A3hl5FPbuC%Kr|Fx<3~A>momz9!zH0m3@7kq=UG;yu6%T9)sW^ z9){0v-o0z%=j7z<?Cgx$S%0tk{oZru{C<3RaIkr8^!B2szrNkhS5{K`_hq^L$H_Z7 zJ2`hO4qqSl_rqa+M@PpehM$~^i;e%N{(3C`|3vg7Ep6@abum9bpSRy%`&;av#M7rw z3zx25xiWHV)>Zxee?Hy+|4)2gdVaos_^wr}R{j5b|G#Tzv_(UnPhDGETim{ynf3C5 zGkm~pi(BBPMO{pTy8pbGJry6XtPK96^6ul~;|mr&`FwM8`oYf+U0gQQ|F0|9>Bv&y z9TOfN9vm$Ev*yQ#htlSG1xsg_mN^x?0oA&F{r#VnoA$e(p02;Y?yr^Cou)%*nY!WK z_WO0e-)uf#QP0hEP*QM?*8YNrPC-FJKWqN~`+MSqho4K3ghHXn-@kt!d^q6Gyu)w4 z-QVZ-|0Sn9|9-#z`SDG)zso*6lC!O95fWbkYM6lAC13WxySJD7A!okcho@z4Z*5IH z%=W2$w)S<M^iJ#ge|th6En2k5LeMjD2Iz>+m<KDR4!C}(f81~H6f<YmtWzuND%_9v z$u{$A6mqlM|NRnNS7-P0&tZQ1KTq}RA9{U<HeWtW7isC!7Gw?YWd7X#U}BA#LV&7) z+oM;nU;qEMeSd0N+9x%pFJHb`$nbsod2Ma9fK;*4uP>MV?SDLIe(>PI|L_0*-T(jR z{C^qSswu*PhivM9e7zq3|KIoh+qZ5#_`IE8zNz@=)V$l<as|#7_PV4z&?-#Xm6(>s zc8A|!&a`P_kZ?&(P8OK&<Zygy>!Kw~QeIwKYTq5Pziuz%uCBN{O-zv{Ok%q#Kc}rz z-YY9BTmR#*Jm_jlmhKx{GKKB+xYh}oYwJld9)AE{BCO^;{l`X+#D*hBj~r>Rmw$6) zu66m2OJ}>73*Ybm|8J3N_l|u!TvIHjH-0o%<q)j+@xS@-J_qofMn9LDakCnk85tN( z?^tdo1HL|II^z><@$Fu+<_!*v=F?BdnoBX68&2MMUYW(n%-nc-;bPNpRZ9~~1p@`> z^+WE43PzTuXm=S|nnLa}Qn55OLMU|uD@DJ{$ZT@s1*ho(@#f-8X6DlwnXF}4j4aJ8 zr#CD&6PZ4F1?;*avz4&xilo<=2~0nqqZG_+WNAKqqJXgtqviC*H|7ptzM!D7()2lN z&A6v?C7Q3C-mp~9e0oBq$;auD>&yhFD+n8ZpT2dinc(yfQH=6Tmgdt7ixtJT2SgfJ zF)~}4TTU<JF%@IBv@n>?xW?2b#L~hL=6wBhkn1hr-qBAtG*K|Jv@k|eU<wj2K?oRu z_@)THGl)N3FwOiCvyr96bjB-MmeXYAK^G5MOl~w0onA0SCuq9GCNrMtT&}vRjF!_6 z>MDp$KftfQoXOH+dVrLPIJ2dN(e#fJhGNr=Wz9vW2MCyoO+OiH&OKdnnhwwOADhes zrwb@6$T1mNPJXB-K0QBN?hTWr;q;5jX5!O@x0)GDH&m4uo360hI&OM&ygASG87gLc zj26=sWsLP0EhjU+6Pxa!WHOD}($aW(;bwW!>8G}t@l20$)Kz7&w45Gjs46<$mfyOJ z#mLgqWV#`jzUcHP+sp)~&p#~J4ffH;P(3}6%8TCeV%s0g(&1&C9-Uy$J^iGhH7~P~ zrR8+Sd~+KyBTGwoBG6AaF#!derN!ij!p7SlNSi7!PG44F9tX0+a=M|BmgRKELUZM5 z>*ckl2W++Mnr>sPB|QC6vbh1Xv4O$#i-+Y!Cnr=do4z~UoM(EZlnLMT+ezkvlNIXa z!15E%$%#&{E;fH4X#k2k$h}<##>kg=O<%ZEem0Y_!Sq4{c|9g$gUNy4#i#Qv(&3+; zUTXfF$-sDeqp-f{^vo=Cq3H_eETyI!{81AE8@|w5#U9Lf_`yPHx<<CS;PeFo#$3}A zS}bNxXI!moIeh_#rr@;4>Ri*kMfEwSTUVINO#igW+I0Gc11e6_FI1QdPXC%?E-?MU zbxrB%4^kAjgPbwZOkNLcYT!2|vB~@|IqOS&_z!;4K6y|=N}W;u*MdB|1JkapTrjP5 zjm)3#Q_DX$aH$yXHr{+XFXU?bt&H=F{moCY*}UHx$hYj{E0qs?dbc)MJoNIecm8o| z;Z_~4M``nHc(%TD4-=W=9<OL!Y5w`@YANfA#Eb3054P<5aCK)EQ{K93{|+%6D?WH? zlJ<+{%k|OO_ir;+v}`I}>lF99Qr5)(*!P@9^^W9MZhc&8x4jD1?qtw*u~60bdpL!s z=hyW66IQ)`>i>GeT()fjof?93IYK)g&A1>KxXF3S(~h81sZ+d9s)|Q^em3uZwr%un zW#5n|yOrOv1@2Pq7HN)j`*!5c5fPhvni6-C4bE#;9LS%oa>r`HtkVqBTy2+WuRqs% z@R3>JqSHEC8;>7)n<0L+=s&~F*|W}1|CnJe&TC+yV4whwWMc!P>GLzp#iq|*rXesr zz|KmQ$-r=WVy+S>#tf$$&aqNrG?<>~ttB;m!6~^}Ajydzl+35wvnxt78ygr-U-(l= zZ@Phs^#ewOsfvtx)5EjPCAQbsnHw@P8cyF>Z!R(YZjL$Ebg6TeqSFPetYkqZKof-F zbWnm|G?@Nyt*ZR=1FY&3K_*US{N*t{z0rK`biE>^IG3O9*JN(aY;0;gy>Y#o`1JWr z=KhR^(<d&q)&m&{O$5B#otn*cK~@*Em`hAADKQtAzQM#;X1YMHg)pPRbip7-2WF6; zK^~hfP--qXUBFRgF(^GLe$+6Zeqpzz?DVJ-bMEP@ek!Sg{WV>>*qnR%YaLaU>Gq}O zlH2>+%_|wF`<0n<F&mqjPmeA$SDSu-RZ(;L;xhB5=?U{R=1t#IZf-e!Z<o2;^oJGZ z;?o<f6(pul=rk;1GO(PUSjZ?heZgj(!0Cr8%{{mO{G}wwI6bb~oM*abp(gM2@@jLT z=?f&~<w1_+H599VTYG!mlAXElYVBQP**zkkGYhbM@X3i+uWqn$P(SAuAggfhH}h<H zexcCpzn8b}I({-I<<Wt6zoym6YIG@ScI{ej^YedR<G;__%fD})R`C1J)64aBhvL0B z9!?A5-M;_N>*e+TX5X$CnD^c=^k3fpZo3ZiKhNj?E16vX=jnaBzwhMyAAZaKfAs4S zlS6CO*F8Hw|KG%apXbkCaY^Lxp678dr`^|4@LMlZy#M<=?y4gG#5)E{ZqL<PA~*NI zyPN#>wZHDlU))(e&*Z{{eEYvMj~!H*`2Xk2)64fO+x+?ac6t4Ok;Asj4Yap9)&HC> z{dXzPKkwcAucp5%RTQsxiv8rev)^UP%H+R_DgT`JO`l{G>~8N7?(4I*^I7h;8T;dc z_y1V%=flOo7}JSMmKDxly8Y7Q>)BfMdtSUTJ-fcD+IQt@vvnLn{~fEP(`OnVUEjYu zrf2syZMz+R4nNgcw@<@<-~E+A>t^jpY3ZJ&_d7)S|3iNJl@cC%msG!cDVAQ(>tZ`e zLq+tH?em$pby<}HR&SPhl+YuW6!y^7zB<41+U-?ZN3Gs(<P&9IdHGfU+p_byT{adI zbOn<5zR!9*=doK1%R{#!-Ck?n2Dhvmk2$?{Y(GiY_;s9Tdg#8X^WR*BEU%ee=c+qR zTV7r~e}_HllR)G?lkYkgS2Q+VckW>Knl8X0$L_cM|8Gwz<zq{lOhUh`<k2a6_0B|R znIDs>!0)2V#%wP?yJcoh+{5anYiZLkVNautjbHI}rNiqsIzHj&3R)jDGua}bO@O_3 z!S78oZ_RT&HC=9kxkddHlYq7hRfh%4{zObRz7*)Xz|m*r_NQ(M!V@yAl&s8Fub%!R zDk16~OSqcy+J>8svraajP|xN4b7t~AcQ@93Iybg)OJ+VV-LE_?CDQoa$1{K5+pN*} z9Do1ORI|B@Ee?pW6^r$5Oq<=#dx_z$i-h0j^}=5)J`_(hV4PfJ68`quO#voDv0Gnn za~MvlW4^|-OG9k>+E6vg`k<o5D`7JEr|l%_f~68Vg2Z}NC3mx5)Lt2~(YE0@qi}E3 zhWA@lnSvu1e9LN9@TrOZ_VHxz_0WeMJEW`oH?7z%^p*43$wW=h(%Ok#od*}UFWozl zIgIu3mW9{PvAj!t5+Tv6x+GBKt<_N_>BW3UKWv%y{V}IL=N)BZtEhm3vxDQW)~|b) zD-bFk^<8Z*Z@AG!7ruxeHcPk6C^eZFuDv#zXVUezuh<%6Tt6#>Wo>VL@bHZC%;z2% znMn#4`;!xx4Sd`-D$JhPDH-{q`C?SYT#^5kd(D0J<)=DdlV5r1!p5i5?KqXSr~7ir zDc8F-yBQy{-L+iId$rY*s7Y@QN@fX65tTOD?3-E{#usEU&nCmMqGzwe*}@|Xx3Xv6 zS`fs1r_VL~w<q5N+ljVQY;7x!e(_lJ>f5<Z-b!{>S3R89uUVB+GW)7*d$R0z1=nAD zk1l)Vo~jt-qO<ixX?}={@XIYx?fSiIpDZZtxpBOU<<Hz3*QN__Da+Jz*BjVXUsVg& z<;)5<pK^TeybBAxC5##NOjJmE_3;d^u55)7$J@YfW(#&|H@EEgR`goFTVPi0&BGjL zx74JHb-&}7IODpR>D)aR)Wb7dPkf4qvCuAiT)4pfySd*g=EGK^&M$-xEZ*g<Geu<L zyz5UiL_FkYY%bK_{ejoFxMxwsg8J7x7tH1L`fmL8qkpPrE{pL(e@ki8YYv{~T&gX$ zbzkI@7CG}jm?tE$t10&CF^*_8uXtV&rVFba`OW?a?3$n!%zDn!X^DV@mA(g)vZ2`# zrUPLY-`(8EwlBdlbfd`R62*{9=Vmmegndn!8uo9FiQZhHsJWbrHiut*bD`QqXs=p5 z&!R~>9zU<l+Q>6QAnst>t{F=*9?Gg!ehAPtm)STyJ(a72+3|2~%dTgq0z~B+*#$EM z=CTFOS?6k`I)P`^mB+8X8ZkNdNl3fQ^Lj49rMvHh>4ilP=1y{d{=s<;llmhz!Pbq> zV$`lXy()iqmfLp0)E&C^-G?Sr<}UfSq=`XY`#^ocBG08<oT`l?t|98P&e<$lVDd-n zuR`#QGL^Nvw+dB@AB=OGA2jQLnyq5iqVTS?pv-F$!CS0Yj>paJiL^blyXZpQ1g8nB z-rO^nj5+jxMIh=BgV(OZ+L9Y1mu|C*{_<_A^#!Y<bG$R>_@<nH%&C4mSht1ivb68U zSAK2xbb9)%>Swr`X~~2>3#hxXRQjYvqDK5?_qFmt?T^&|%Is;s5&2;G7LJP#r`$N= zR6AGnvxw|ptE;9d3s0tR;p$Y}F)wx}v+ZB8H#~2SH(D#V&(aczy`57ZSE|FiVd(}7 zMZrVY^t5jWe!1}E0{h|+&LwZ!l&@LycA6<Eo%GR~AQSQV-YJ<-o3r^FvQ>o=6c7K3 zmc4P~;%(l=@iV97$gNu6cq49F+t#lvUi&Ma*~;w5+3mTOaqF#&jkfz1Ucb=SYIx*K z%W_tiABPNPTU>t3f9&~_Z!+)N5@+#GPG3Cz9<Q9V&2D*V+g*DTXFk6)KVhEQn&Vex zv}5_c)JAUze;Dw(MyahNao&{4^LS^?Z|T)n+bGbY&mGwJU8Q-dp{q{r^qp%IG`)|R z?at`)I6CRwJFOEcZ+y#URVR8aV`kO-{Oaa0#Z8-MzUS#b`GG^_R>CWWwM(2o)tN=j z^~_dFUiGQW(DPNv%_0u}5T`W{J^!By^_s4`RzY0qkZ1j*L~#w>%a6}&NO^kto!zb* zG3u)x2fvG(9=BFOzCJ>$C_>5K^?RGV(rmW#Q-kd|c$AGje2=VjN?5FZyV|B?_WJ^M zch!s2t2cC=)Jwj^I&1SuAB9jA1KG!%^Q_bOR_$1!WtJTKRd0gq)MF>Pdj+y?J+zpe zqmgq}D`Ihz?N-%OOw!p7+^;QeSgM)G2yXDck|VHbi=?30oo)Uhu@#Oc52r@x-u|Uj z{Ng}g>;8b5Wo!IbU8&`dUGhop>H-e;{<)9tUQpDtTXt{N#qOT+C49B<4@FO$dY-A5 z8IpL<{i({~>9*?>taQ!QZEg74p9`?9{=mPI@!-3-HLIj<vLEG1QqXFX-^FSCW>fdq z+O^fTZ}dEP+osD4$SD~bN*~gE*)o~ub?`?s<(?uZW|^zc6cza-n$k82lmxAMHKX;I zb(DCxvagrKm5RjmQ>IM+7Ne%mv{++$;tX@c`d@Ne!c))Bx;dd(TJK9|K1beSZu`c3 zE0N$WF0<c#;%Pr~`f1GR?tCLov0Ib>Ec?)UF=VsU{B4>kG8_F<H>OS$Iu)d0AGw6j z-imil$-^YQSI4{r7P7X@+_lqs=A_<>GHdzXZISzYfz8I{klYzQn^WITf76)VCHY3A z^xy$GUC#@G4BKCAaz9$?QITocx8u!4y`|HYW}0i&GdUd$(#qPJ?+~=@S<P9#l4Doe z{FA>Nn10fuM&QYU^RuT*_Qh$*%<s8)=i1Nd`gh+6JTabUT75-wv9x{X^9QyrJL*@> zdB~|K^`_f$uHk&^Os%Xy$-ldH_?-UL!xLsX|MOJq3zzc`E;oEtQ2*$f=Rf}Pbvm!t zo=u&5%FH*6`9ztw%vQ@86$xsg_2z23E0t&ZrFedwcQk9!(etblKhE4+D#Edf%hu+| z^VDTravu`ZXIhwgII0vLT3&F`Ms}t5N!CRxe{6fxoM=>-HTBZ;3PEL~`is|kYSw-z z<a_a;*2Mko@_REwehc)oUo8x)ox^Oj)OyBy3-%|HFI_C^Cv`+VE`4}j#{5M;qqIz$ zpmv^omDAH%WjpF*CSLov&E$ZT@{Dt`6Xh1jP0Z6dJXJkQh-a^Nj{GmV8M41F>G>WL z7HfRZ_tMvPuKK>E`*nXL>{!mVU;glP=f7I|^|!tR^hnu896eb5i$h1oYjav<|H}u$ zvi}aM%=UZt+c)rf53}ub3yFzBo|TU2pJUJTpE$T~<x%f_!QJos9CP(-k6pcV`x1k@ z@`fMBWGV{&H<>S&ol$rz?_}Yv>TLF@Y_~-to^`oD;eM>+ZPxLy?Bc%A!+}yMC%(Pu zKWYDY7LP@}r%*EMHA#_4r@lQF`?-m2gY_0!@080O#&cD6Khg7!mVFfK(kZv<zd%%G z{-nRH=Sy6+mi<^M%@ptVyTkdzxvf)p4(4Wsy}p#>^x@*<X`zK8v!B%jZPN0KeZ3}m zWu!q&!?BZ%S&Py(ItCOz^GaQ`Dsqct*xFqWLIQldE)_B`Ot34vk`Y%QG;Q*tML9BN zN00Hl9z2|_@BaMIgbvMnAFp4SHgAE+48QYC8(*y6xj$;lw^Hj1FFEt#Jp4HtLz|Ba zPhay-OQOD3%eVX1x%uxlA1M!b-F~X>p#LY!3jT>X%XY<l7i|<*wvZKdV*2;|Wrq3F zHT5r7geo8X6}XYv_N~|-7wdk0oy-q93m@y6W)zl7)W7X4Q&H}b+h^jrEV3`l{K<-C z4;(kOu1yrYq<SWh{eIY$(~BaTH9WO<xUkB;S-wMq_hkAmoB!+XH1?%Qw>k4$J=9UN z6;;nJEeQ;~Sk<E~#Phg&d%B~h#y8hro1$MHQNN|*ptv~r@#D9>_I!KRB)A-&o+_g3 zS}*Ni<M3a==9u9*uLsLQrXSDiKVTqG_WO$Et-y?kH;IMLoaNsNrkdvL@NJmX#w^IL z6k4ojZ6kcW!Ey4pyvMA&zfXAAdgf!7(h~L46MR<dZ<Ko-Afa#J%fEHTRNKr6F}qq~ zj%FWrD)5p`Y4QKeHZ|ne6)TVFr~DUMv@BbA(WYa%rl>MsIM-o8p(#D~e0yA`_GT0W zrMET<F15aGc%)bBXHkG>){n!FIbvtTd}W**(k;d4kg!zjdl}<VW$~LKC4W!NnsHfH zNSx)fN$10<=QA9Sr|-VhocFitM#=@}>3yQg+Vy(TH;P#&*v%|B|4#5Ar_Pb-TnjS$ zUM9qzF7{wqe=zT%f6M>9tm<>RtRCp97zFydua31aSh^~yFJzuC-<0q30{jon`lqmK zRZ!Sgxmlli>dm4~=k7eYV6&<JtYBv*+1m_#J05P@lfGl?<(pdZ1~;S&-zCNBNhGY! z(dToy)Hz{ky>CU)g_2iFdylSnnWdVv^5mnO7yP@$AKX@znv|)3Z<km0rs95<gXNuT zde`|eX|gJ6spU4W;C{%mkd?i-LPuhqX2G)y9Ldd|@v@F7$FewUb00a}h`qJIB52F| zeL8D7H=f$AeSBi`Dy7IAQJ%{)i+0WyP-^b`=f#l8;$7vz@QanL^x2`v>9O<8HQ4Qo z8Fp{#)1KZl-&{v5)qHQvTGsFPdVX78@nR9QKG1rx`0oAb=jNNM)IZvI#d@>WZ)0^8 zk^G|xt51ZgMEDB#shaF8yt{uBN7aKZuh-q}OJ!;DbDpf6@}`@)T6kfq!2ERU7eNoh z3u_m?=8W?H;9C6fPWhU0cipC>-S?xyrrs0mp0xG$^UnvkomQpY{3bbnmB<|qkF3tX ztAcqSn7*neMWoI5v@s~SwBkzrRsV02s}Hq^xop0<BeQ7sqAkZm{8d*n{|FA5=KOtH zL`CEGz4wzcY8+GFZ+Bt6B+_<y`pj*@U5&ME8&VdXSlCm2;r({*V-rg{vZHTUy!`rx z=fJ%i87Xrwmh{i4*btlZVzbh0*K*B5IoC^nZ{3NX^x$yT)CVtDhEL_&@}bRYtKZ@J z^KZE;!o!bRxoL9P=!m7IAJ=$uV3XCiZ>HTIuV3!j8gF-Y$@BZ|{N=~Cr>a+9cG^%a zzvAnGO}VksM{_5y5tX_k@S=H@dfx-q$-P-683zoOT+1`t(8O+1sU2)_j6F5Xm2dL5 z7rR+2r+;r;b-X%d-$}te!m~Fh$$tFzPVnBe8ix8@<FeAqNqMfP6AwH&!Es+8-#oYI zz@?tWVWnltdb3_HId_psj9;yoFY(Bv${E|OMUQ@)D*m-h+v|T^OIg6q<AS9f9Lrb* z4O^NoFx9ZhZ_%5qcwx<vkIZgw)}2Und%;`jB)>waD(vBw=H&+_2b~k#ReB_>dwGl6 znvFsKp9Y^+sV{1`U=;hq;B#Awd;O{9D^il~NEO?iljiVIe&RUW#Eb3X>x}E&Wydc( z2rj9-vc&uGhS{|u+pANWRtv6Opp<vt!#O61^K_%re(yIyNmpNQ(A{EoYI?=ywyUNc zixSo?<5lL^^Qv>+L6&1$Vj@XbwSF7%8+1A(Ey@pRde9xh9lhH=L%{x=w^0^{E$_~Y z4qu*CFn!VXx%xq{N@bq4c^9v}jSq`gX8)mO|2W?zR;($!veF~lLj2|}dxsy<E}twb z&QIr-QkJeiS{WP5ZL7E>SpV13OQs2Fhpj!9Tz<!N_gK8i8w;@u%C~FPHy&m-e8O`1 zLfdY^z#Of0f)5?IH?I(ueBJi9@jc`1l{)5Eul_T7e&gNMhn|NSEOZYAmI)uY`s!fq zmEU?B3#6}`dU*5sp2(WN<F?weQ%%zGOE<=SSZ8U|VSH-^uT{N-cv1T<S+gDmk;1QU zx3NX<_nKpB-S$x<sLttk(ATnF>CLwfFnixRc<U--<l_WcG0)X{=}C{~B{K<B?^C_j zpm?!U*PW^L#@=JB`{rnPe<*vcQmB}?OZHrl=OHiOGMnkShaTOY#J?c_l#tsqlj$v6 z?CZ1hci6d}JoEP1%0i8#`g=Eb<nO4RbLL!c6YstwYo_Iel(Xud5fYkxZg<Moy4_Od z+iopeZ*KMG_3_S4+q?F!e`CpVOwRAvn&;e$tup1$Ui#i@*Kq7hh*;j^15--gR^;>- zEuPCO6?sW|X>Mk(vBuMmz?8jKr*zMpf9GbtKcbg?+pW6!_cu&4{=+R(Y4G&3lm7f7 zrzLB-s#Z>UfBf3Pk40NH`|xs0UQRk#xb@ha8LSKa_NMct@|kd}97<p=JMyFC(!D~f zqfy=`WI|e#Wp+CJ`x!j_H=DLikTbVH$Cn2z6D<NvzG#@tDo8B+Dm~YPRfyG1V*Y!c z{)s!aD|tOwZ)b>CPuq9TRLQZSX7BAdiI)?Cl|ptoA2*5In_V&^`}V@s)7KrdomGD9 z@6X`rzOr(P^0S|$8F#5IQ$7+ICGo~EHD6?5s^_}{r&%Ksv>tvsqBZ>lyS7Tbsl9{f zdd~LGDt`pk4K##~{{Pk{mviEb*%V%;aIX-l-owI)3v{MT`8A`b^G2$%&9xh!bxZT6 zEdPG&>c-+}l@6<%4;yXfUhHq2Ueq9;J>AFY=$2Kt8}dsR@2=my%eL?CheLMBM=r0s zsr<leyM<Jj{e9tz2F512rq**4e{N4)!yxc8XyGLWPvg&DdFD*MZ1gr}`q@1S%Jr85 zp55?WpW1!T!`2~aap-!RhnkKpa@jjJ3O}iq@LluSJkOK;*f&dS@u+v%e-f4`GdZo4 zvOVTzJ~6hrFFep9bJpD5emhUUKXAf)dMSf6U(vJ^=Bv$kTs=c>-xW)9Hu-jSHSfm- z1$&P+E0k>cwX0{Ir;tjwgLH7O^n$6n{JlSn3?8w2IvFf_v!6Yz`}eI2Cue0p-FCF- zs4vqO_X7vbLu^mPKA$oDRpK+@7;me@G_Sp$+0!lMlx6FqOr;-hJ(Bq6=ya7>&R`|A zV^eO%&X^&ws?S1#t1f-vZ;Qlf%Pgd#eQ*8}`H-p0zw@WKYLEN*ST*l^`Z9a2C&hf+ z-{c(-ue%}P%^hL&LyX&dqjIHQ&%0@VQsa!*#{<h|o%nI3;Gj+MyDDbJ?|W452*gC2 zY9Bms)Wp>|-YWV2ocgSZZS5~le);et=6P7Lle9qD{G0&8X^#WU!g|U|?cPu5Xbdgt z&`<m!C0^z;skuB|o@w&Cl)585-oJ(CbxdeK7W+LQVK?8#YiGMx{JQZbC-*&b#=WJS zs*AU-JMs2LVGzfBRb8F0RnNKf85>uM?VEN+Sg^ppX|?ad=>gYmT-G(DW!x{?k~!l< z1mlLa*$35(Mf*J8%V-4W%~&t<fzN)TO#T{a_9n-)Y@hDL5Y0DEy|)ZRF0aZI|8a=% z^6j&x@fI_r93DNqb85@#1ANc?d{ZyptGHVjXUIJDt9gcYYI~=@?Kj6Mx$m{7U*OVK zsNWo^E*j-jyZvsK&Y`HROIzY27fGgvUJd_J#xBeu#J;;qp-0X)fBFQA*gC$n=Y6Yg z@d$gbWHwMd%DU>n*B@)v9g0%w<lM1r`H`=omWxxq|Ks^^X;T{GjGZzI%~DKt*;6zm z<K8r037UM+DZ9%=fyr}j!nvi_)Hx>yE%m!&nDHj6!6(JN|5)CKd9P-~nDNCdc+b?8 zwb5Nwl;ch8R5{b>O1oMmREmAyJ)E(6((&AM1D_4^F89qzXS(+JU(@kz^NSX@pMKeJ z*3!jzwsTF_@mUsgPUkb-??}GkQNlVse5JX+v^f9rr|X|IcPTy-PG5NNpZrmV?-EzL zW@i8TsWtuJN^=d#e`VVavG13zJMdw{i|BAyF<~DExpb?8hB?zu98i$2x7t&tSfcPs zqwM+NL$3-hT~-OoJUn;u*No^n%h~$&^S)xZF@591m4XsZ^{OV5t|Ux8$2aHMwr|0U zBC`tqtm+fHCzB}jIGLsDg{t)79iNwcfAr+u)RtWnm)c7<+BNg<E17VDdGgMFqmpGt zmoAt5j%faB@|cIex~y+klmNd~^14r<Z1O&x9$h=0ELF^H6WQ7)GF^72v!yPtVMl_i z^Te|JhGz#S`fLr`S96xtll9UZ6HdXf7{&D`cissz;&e`RJ-&3s!LuCpcTE_Q3`7@h zJkI-3WKI5Bnd!R^D#$Q$O&3~i?pwcACEmyPRk4dySocDOuQm%`9B@rL?P<)M`-0`$ z#A!^I*2ag*O#GU;N8s7UNREhucLl#r$}VA7vS9z(cJLMZv5&pd-=urpbNwBHb5B(r z-gnUUlr_iP-xfjNs(FPEn@LUZ7TdD=N@Dfmn=b_4KX@Sf&LN>Uwp{**PJ?k9>mu(B z{>_gSyGs>TY<;%xWw*1=nTHJJQ<|G=Cpe4m-LrC%=J!PxxeA*LSH^VLJ$g~Pd#X=@ z%a#w3pDw(xnQ`=FvP0Ap=b9NszpvkF;yK*vY{^uYGkpP{wy37!itf+;9xrZcwKM-L zy0Y{{mSDVATk~C=n5P>eQYZ4o@j6_&%*Nt5!)&_IVFi==e^TOkg*&)<{%)&Q`L%Vy z*&PobUfgx$g2OMZqm$-IaxdlQDK+anWbKu;=TYF}Lt(c+ZCx;1Tu%MepGy`Td2%vW zQ$Cm7sJ?SzXZu3N(-RwY+V#1aESH`)=&BO;&+9sC(D%7qVymI?{9m6}x-H^m`Isxb z$i#i!M4!xCXC;;AZZoa_y3*{M664v$N1EPE*z%}Cb>!#9LM!<#_>ii40qJ-cH`W z*XvODw5P8_l_Qi&?wdJjoj7sg*Vb>7{>gM4y>+(NEidBWoI8)tt%=UK-R;DkYSgsi zPTvbI_GeY+Dy{gwbh{f0JHO&7=Q~&US->T@W)}OtQ@2*1W4_%n`MpWWT=wZ#ROO_# zpDk1t=SlvUsk83REY@}U*OJ997-_D~7W<O?Drru(&?VnCq3<dV3?CL;o;^KOKwH^h zZ|gUw;_Jc=I`@0SCS7|pts!xy#BC)>!TcKw{2uz+o?mLing8OUCrj7W9UHHju{2Eo zb3{SL>eaIAzn-p8z2T{SRI4V@Nz=l7k4dVLt!M0-TNNi_oOTIhgf8)zZt-T_{Ze<C zZwa|)nkK4k(g>A~+de($sDeek`K8b&oDGcOx0}qjg$3LeUs1Z_(ih7ceX||-stv>} zJ-h!;`~LgPL#c@+-eUX*7QJr2!mgv7?l66yu9Qup;LB*)T^*6S3P%)QDg6C&&g8_C zf;}w(8@qWJ!uWYS94AT4HTcob=fkl_asLB8lWns@=HD&a==bBOTbHG#!O=%arEwb> zUGL4UsNt10+4<}4`>hYmR^6?gGr{O=-huvmyEbh+|30Aa<;jO`Hxd?1=?wkV8rYJZ z*E8|v(wG;uiHkMGrWi}O#^sz*lUG~h9=z#OXUvh7;v09^F4(7B<=yAA^YHY)YRXo& zW-*F9>U&eegg;H3ILS0WZsMs;?n?q$nDXB!My&Yf?IiWvHJ1CprHXgl3wJoiKJX1Y z)c?CfH6yS2pG!mQ^bR3yx%!PO5Bz5GRQW&QmzcZ`&)3NHwVq3grJH<zbWSy@^wO5% zQ3=V=m0HcWSUgyiXRpQ$ccWwHtIg(5Z`Kjc_?k5}_n`3XjHh)U8M{3Vgl*-5FK$+R zvOLT^)M=S%n3(<rRW6&9MGVJfg0D`wI{V0R@5dsn20Jfzdd;19;op~94PP&|br&tp zxFt{jpdlw3w~le%{r<o{vup2leZ*(At9+XFD}`@ez`gg2T9jlogmQ0h;p48@^3UX4 z;pO?qnuE`LNVD1TSZv<0%Rj#?TK{p!{XCmCtG<E@k2taqoL^D;^hw9|KWDG0w<~?v zsuPuXcKUo_ZL9jsb4;#<5{vWtG*7O&@bb!Q;bWbqZ(p~%UDMk+**EUXiPPQ=*Csk& zDK<V8$kpjrS+GO*W6wqVv^)Q%wHEC%b+Ov0%IL6+En@vy#akMZ{nEnAJ&u_+Kfc|x zIb4A^%(~8P?LJobZIfm#FkHuP{afn;$FT|A%o4Th`2yd&O1Q6V<ZbUTDBF8&_XM5q zsZXt^f8J=WtKy~fk2AXBk<FEBKU-aWT59(O?6bYNBjveohxlQGp3kgSZ$9sy?y||; zTHal=W%rrbiT|dwUAZ^)XvaDm8->`TmI2~frvsQa9lkMLKvY}V_Sqr@M%~&Knk(~F zQh&T`ES%A&@Nj{W^SmyugzGb(89I5bX!$QWyX{l3&Z!gPCgGh;7p^Vlay8==y`d7* zFug!j+n}Dcv~OdPK$F(xv!V6^%~i#F1s;5Uw}zp=ysExurN@B|ovDdQ%a^5?eLCbd z<uG@Pq3X?lD+(EdN*W@z?B!uTVw2}uy!E7e&02T6rt_Z|UfrrO>$2P`{ZVdi+OEZ{ zb3FvDuXVQ8Ov`+IH__>t-E7@8iq`^@Ok+82{}R5Ib6PZ5v|wRr%Ie~USM`?fF6(lA zx#pkFlh4-En=8~**?Oic9=I(%eO-l`iujV0miI5z{1uko6Ak_}b&>cx{*d+cHX_s8 zwUzaaLqBWjY|{MYaz^E*Ra@Dnvx{E7v#~nVd25N0m{-N2MXbN-|CKB-O$}eZ@aUiH zL*kxc@#fPH>d2|puXaCfC06xp`Ba@RHv7e^rYx3i&+NC`ADfu8M(Ms_@$XXtGYg8k zTI#r~4a^=FL^ug8R?Bw!tKPQdHy3-^4G-UQN#fU3k4ObC*~-7ON`d2hqT>AWc=2x) z%l{u=p|X5)Ushu4{A-7`+qKpoO>Ev=@HcbcEHm*h0?qfGpM8l8U8g+%)+#H`NnPcu zm0fRdT<R5^`6S`?);$}}+c3)TJq=Jy)&2Todf--bn|jso^&-w*3l}V1@+oFl=;YTC zlQ-Ptk<>F=mJ@dBWA4H3=~nUFnpyi!CX0Dxf0I-^9`+^X8(T#1*_`Q<_Pk(Q?J8Hr z{FqVH+il~KG{31uC&G>~l!@B7B+fmM-Ya^7sbA^dTe&!0_0;y|2Ub7ba3fM{N03MP znOU0Z@5()PF5j~w$a|yP;Z?VH9+X&h<_*t-<9Cio&ARmOgtWta<^BDePZxOkU0dJ0 zt2}o_@7x@tb2`3{FK%|#RWVOlJ?Zs_hAqysHy@VkxjL<%|D(pM8>Y$^c652BPFJW_ z6R)pySR7Yl<5hO<yW-TVe_9SE$9~h%?6M5#?@_9-XT0L}&VTFj1i2SE`3!rnpUdLp zY4hKl;Pl}tyX5B(?Y+@GJi=;z5AANgol%jgHC^quSY9`4P2Kc^tsf_DcK<qY%FLJI zi<q5`y|A0MS6SDjPW5<l#**Tw@0(TB%Qn55^rbSfzIFY!hnHEmzMWK>v46AD)@X@Y zZybMJYI6>l>yrLEC_7?>mY2QQHmSdV+Ekp>>Uw;<r=2Q^5_tY+s^X?q&%!5u%Uy45 zarM-{-%ma)-8`w)Gx|rC<FPVn&qt31gV+N<Oe^+M%aYU6dH3|;p`zr%t-3w8|NNQ8 z;WP6Lr`XvlrCkqP=RGQ56J<7>Y5BD7+L7nVY&YC?*PmCb77x!9yOL|FX>VUFpBBxq z%A+9m9e+Ww!&mib9SmI>aYZ_;?HSiiSA~}Bv^v!~eaCilnflnej_~umC5m&D%Kw(l zo_aW<^rBYi`i)}KjixBd%~fmJJbPnz`Ap%}*?;e3O-QWS-jl7dioq~ld%~|<zYTj1 zwTd$<RM*^evuKDBR|s7a^oQM3F7VpvB@T-=7)njmOwZ0O_ik(s;hy~PVc!zznkNzt z?yH-p&fLwt?%?yw2b)^zQ*-CN6FstFO-=Qk<R?3{PVNrliR_!oyCV81L+PrBrCCPN zyH6)<JEvRx(>K50(4zg+p*hY+6JG@|8hOQDZW2BebJs?xFwMVurMK!v@&BGPYS;e# zTWlF5_RM!f@65!MuX&#{&EK8XSGrVVw$DrO?A_YvpGNJ)3nd=OYDnLHCoFJy+vg)$ z_ty!(Yu4m^W>aZB{m~9{!}_4!uM2i)-D=orBAeoOmiZB%xD4Czw~}lP-{YnS8y9Ao zgg-hcz@zYeqFw9m)ujzVNzUD3(ouakLmtfOzg@oj#m11$T*se=-P4M>w2zHdO!CY3 zMF)T78c%cj{<-tPG21`MzgiU&4*C>tH}<wTV#bxQc<0{bMP~ZjzZdL#_v)J*i{H)K zn(5Pang`ccXDsw*J<D0bAa<n1KV`Xwi`8L)P!orV&)Yr-1h3V(ZJd=EBy>_z^6_$U z$u38Y<C7=6O+K!8##Gng>y3Hu^m$nM4FztM<;XX@N|H9pJ)?ZAc6V0l(z|~i?HBuU zcjwtgkK_B!cRtx1xJjU=@&farR_Tv9j{@hNS39VkdG<$MUA^Hc<KC8nn|^`j4+Y!| zmIbpgoUHu6NHxx-=UBi~mY!+cQCmt*EPA@?R>!7U_qRMb(>&?i)r?N@wK6OWj@@5Z zSQp17-ZWfxbAw0!l*cLO5BXG`J+yF-;QnU6lWNCqyjh)@_Jd7Z!vAD0kM6-%+rCNs zZWDRe%iZU{QxhA#Z_DEi^&9U@k`8S<5%t{Ztn-q$Geiu0s-M&by!fkOwzsxlHrZ<b z`#&8n^@k<|$5(}%J>S6T6<XxIH7ikF+V;lHg@?{X9<~v)=ALbK{G9E>BIW9B%UCxE zUCWvt8xWWfy2hsV?rYBMu-QsG`dVJ!Wf$2!>tRO2Q+<2B^60%2=C9!33No&LaM0md z2d9GQ`lH5Iil00dGBTLZCnJ<^Pr{B<;#Aua^_|_bu^Skeaa8LrC?`|Kl<S(@fkm zvcF|UA1`yu>Ni?xnHd@z<mk3CIf7$Vv#+u2w}dsbH<#3QC;!+amB9D$#=Ts#SwFgN zt}<3%ySeke=2xAE$D<t&+kDY{l&f82D}HBc=9-wv+sk+Mid_<Z_P0Yi_TRd8_wCaS zP2@!Cx10`nGHHVH)CIv2i+61cj=wD0{6qX{!21I?gsd8V{gM35HM8H%;!fv`<a1s1 zJCq#%S4|W7wOw%jK7E<TTHB-}c78S%IB4x$JyAT>QBzD+cD(?<<tan=$IGUcdn$D& zZMYnyEos5rw{x}41(it`(_#XPd2(IumhUbL&Aiw-!>nFm?(@&?+Km6Li^bO!JQ1Fu zna8BHYsuNivO852(>|}e&cL+1wC&{=*LAj2UODc2dccc+zeG>|s@;5y1`&sL)@C!U zk9mE%I@v>m|J~)Zlb?=E|75azaiS21>Cdcw{h9A8ZVG;{o@~py(O`~E;z5>fzaWY2 zTb^d#ZEx?~|HDG9aQcnQ3W@dH)rL2Pk2!P-wMdzq+w^D3izz)DO|`d*b#$M6eRLD= zaqITOCwV(r{ZC%%h~diUp8qgmoh&=I<g#+7oxk^~tXX{G>eWRv_c{voy+3&Pvhf-| z-aQprd)D1NX}0k1ssq2-zsA_lzaJl_eM=|HZQ`1XX<Qq=I9RDRY2{fcfAg6C*JZk& zsWLY&KmTK?^*SMYqmQ~X=TAS@q-I`UuV?PB!<22}7uZrBb8Yh6Ajc^&f+3pECrn?~ z^<=?;#h+?Rz4LB8ez-4Z?<?8w1wWYViavR)|KPCo&T_q-u6x(1r7(u+c4?d{_LrX9 zz2(!MYgf2034I8!=&p3j6ypz3pS@q+^|HS88gb9xzkW`3FP_w6-_PtDxXI^dS<=gS zv7&rAuD@khu<$DF{qeK*!RJXOTQ(cMo<94kf~4`XubIj7r!G>@5_#)?pWF4*%?ZqF zgXhn`K2OJe$BmRHId^I%?hZZaSQUEOxn}<Al!fPnlcoon%SmxbtzayA%dqs2;r!_v z6}83dxvi_-I;<AB;Nf5U<iX)TS8`jnK3yL7dFr~)-uvWhwrx;&-5C=0Q?YAJ_@+18 zeVaq}s(a18-w+}+LGaCtq_=+>KWXTS?>XENw@EKC_>{BX4EAmBEwbNLtxr05ExEtq z+RMi|Za+R9vHL8#rOxQ8IDg)wR8NIkAxW)AHP5v7RUM6fcYL|!teOS7+P&ZH+ioaz z&)M`?_k^L>!K}5;Hw|7cRbjswcD#I9+E?it7Z>imsklh*L*$>0H*+hDkGh#fo9w(@ zbtWab{+w~S3GX5Mor@oqt~S5_SnGJPb=%XF>3^;%DA!9ihg>}DrCU)Md4t(;Iz#%2 z%~CURi|#$u>Hf9q)3({ES<@5D?qruQXkmML$EIV)A_JAFPo~u7I##CEPnA$*z3tVv z-Qm{8#VTK8eJ$cPu9KOQG}lh!cbQ6E!wkLCh1)l(th|%w&}Cy0{^YHj!p>?JrpswM zr&PWjQ@-%AMJ<fWs<m*^nj5W8O8+gppxJG{L(JMdAeZs{?RV`=LUpQ+kz6NRd?&v8 zBzV(g(iH!-7S5ked1?o%MmY9FZ<v1bx`ImmGRvbE8lI%|O!6#KUg>+^wDMw!SIfLB zd#7o8T)X|b=y=2Lowto&Z~gLRtzBOh_uQ4@sUQ7MA7L|^end-qznJ)}=X<^%I9o3E zR&4r-KacA4D>+q`1V43;n5gFRWpzTqvYE?67cAJ$@S$>&$qn@x&eNw)EI4#9u$#g2 zx=)sv$dlaZH8&KL>shO2AJ}&;P58{EC&htWH`O#^9p4ITztQA>E&O%=v{Vt5m%?td zu4t?fTJ9>sc{2OI+oeA_A~`o!|2NZAPusjbaPH$=ew_qqX6{?l4mA1LelMLZwg2~q zUWUHz?&X{eYmVh)J5R5FuHkw8kkhtb`8O8+vA$sP>F%MhyIa-SzeT>R7vsO8QNE~$ z_pWoev)r9k|95WMaP8lpm*w?c+v|U?_urVl&#H4dlg>ky<eDk$+FM>P`fCqaEc=J= z^Mk!CH(y(}-rV!|X}ta4&-d^AYyLMUzwzH>%dM{(gca`!=zM!B+$Wfy@JYJx&D;6^ zN~|0A|B)`$T;Og0=gZ6T`kw7`>fg<h|GeD3zANVS{jU3kkN(MT{Nf*P_cwM;ef{s3 z_w8N%N?Ka7AAY;M|IR<X2_28@6+EwMR9p}L|3Ue1MI+<aHJ>Ivy#Lp5?%P9;okJ8i z$DW#c^69@1mzN)~U6gpje#P(D_*;{Y`y9A8!HZSDWWtsgbF}o1o#6juI!8+(QRCD8 z)cRU3-j7#2_E$Z=lQs28*hKM5L5p?sK71Ba+}zHzQE;iL@0Ygle`?LY{QbVPG0jj{ z+0S2*$(0%?dWS8wfLVp-fq>iQX2-WY`~NM9W$EdgZ1ZwXxKYz|h9<8+ZG2G=!#wvZ zZ0&X5{J-zJv4v{OdQS7r7CvutM5Sw5s&9Q4@c&<5U?gBJlA^f&lgDQ1ve_yhEKa^( zCXlFN_Ehnf>*=<bC%l^L`F07*u(fmUvdnrs_hw2{^0uEJ<-V5-Eck5fv3gk&%Z9M0 ziH@oa+jmvXaAc54-nB4A&R&kOaPhOvza*w+xh*&%@2YlTQOcuND_1P9GGhAhTPwRw zXqRoq(ce3L%s5VZs#O{~?y8)Aw$EC<zVzR<tbb=7O==bLk?G#?(TOv%*X`t*(sVKJ zC90)@K8^D;Br-i`1x)_KDtKw><F)3$y-)lRUoy4Xy|Vt};;U1wbNSv*-Suk6pYDz` zjRLEBcFbJ<%yY-xk8$ez*R+?2>#Xr_ITG7)F5u_f%g6Yc?>{+M8T+-uW&86c5#@?Y zwjqA?`Mn!_XU$W3zvsA@_2dPb;&*2MJ+uDM@>vrj6qGg}n{fT4w2h>P`AH4QPRm!( zA635Z+<EN(o2b^QCvt1AUs|QR{i@sPYi0p&1z(-GbNQG-Rlmy}-On>DTJ`3Ad${Te zPs9JO4=y)cxnXj4Qp(0jr8E1YKJ>V(-f6SdLh4Y~CyQO}_2!%zf9EJm3iztdZC2aR zdgHRAf(nby+s<hxxFT*;)(Fgtx0>;Cj%q{jr0{n?pL~4n$o#osiQJW@t=z0jzDK3L zb?VqPOI)BO!*}-ebzya1mc59a!ncY~?Z}F}A1x2%H@^DrrRh?A(cN`l_$(!jH73{Y zng3mQDj>XT?&B9Rp>^NuwNfn$F1}oo?fm%Wx<hMP|9}1QB=YdoJ26jQmFSe0957t* zdTnx=xxw+D?4oz93Pp;uPYGUMdmvfuTT$ueXJOlBCro8jQog^+MaT4X>lK%&TelQ; zoL!V8{PCSfxy<yETdS_0Kb2%BSS%WM@`{d>{FL-1^4{K#Jed*VOg2rG<%;#@lUL4( z-IF_WR`~XhajZ&4`_wMyF4$4wGXINio3~+RJonq|%KuAGnajql>v3MWzP{+@pDU|8 zF0S9a|EBB%qxXV^_4*~+C*mJe=5$y@&FA^uk|PvlT793Z{z{&xiTv;DzpHQlIxq0) zlfHcZ(@)%qoHEJ^-#<TF^m^{j6E_6wL+XDteiGmIruop}xBow?#x6<^zy5wDcNXix z3+d?}uUo!p?>GPQahG3P=I6huAq8Dum@evNel|W+VmkM}!TI}_HfPU@4SHs(XP;Si z^HhKMn#!XM_YIOCw)d}?IXB*5;_|HaRWs+VpK$82khk_rjz_C*T;KMKNvF%`naNze zjTg^qyVlP=Jlp+DTrHEw?wr}}%UHKOuB=`^xwKDo-qQd*>ve~p2Kl@4YkXZFwqAs3 zNu$ZNe<$j=Rz*JIth}g`o*t^wb*?kMg8#sE#-6f|C1&Q<uN`j1zLj(c;^W&Y6yccn zCV7j4=gW-tIL--ICK%XqGG1!C>6gSjcSp<HWvv^Z|9t$t{?%ri+bK~?wRcSIi+vpC zUv@iga^c-OS^d%%u1&aeW3ScLlUqXd-OsOGntQ3bH_!jlwSRX^@@yxj?>x15x1*`o zalxxUqr~37(K4U?^O&sryE?0Tca@8B-m$-*c0}z;ob~KQ+fL0}k<Y#9XJ?Uj`S}%V zKjsH12R=@$(Es{2ve{%~{qMfKNWK4;?EZ=07P|NIwE35{aoI<vZ;j2qs5SNePw#zs z&ySzp*V_O6?Jo9@lk%?Lzw&KTsDo0g{L+H5MxIqCH+uizySnAyJsnP!$C7^OJFXS4 z`*t(??_<-yr?Zz$uim-!VE*f)U%oQdtye0~_$R-;U9Yn=^>EDphnu3O`)!>6v;Ilc z{ylS!@=t!6ex~F4o5bg{Wsdzejb6%{{`_3jUX{b=zdZhKwrtvi_j>iB!Jj7CO_%-W zy7m3_FOT+bdpTRlZ^hgXv%gJG-~S<8@~`sbBHP3F51hZ=owml)d0X?e=iZlVa_egE znCN}=Vv8-lytQPP(dYOQ?>%W=|0l7{PCnBX5>_9-U0Gjx=bLL^zw9>=%2=##@J96I z`t*O&XI>Xa_I!$U`?z{dd-JyM9%hp!bJzWOF2C=5c)$eF=d0KL?~3UE@wE1u^MXI$ zd!CqH`+PS3{GZg<_b)u;_rGS|^JLf8`hczNI`72dvz`d#=<d_!JLh&uG<4m|um5F> ztN*TfIPDet)sXu8e-^$A{(ax@n6t=SnM%#Vy4h8izk1cC%76HhwRMk?+tgR<qnR|> zHnXhDIoO}Q$9}O=Y?jmgf=i`0*S`;Ci8rdKceGYGHa)GkxZ&g9^|sm80gtb8p1*7N z_u-E%aX-DK@*c{>t4aTsxNtV!Lh5((Cowrg`M+mtT7Dn-9rbnX#`<pc8;|B(m5(|Z zUtqo~JYTY=l<(uK<6mA^Tk6i^FTDPyEuAk*tMstTn}EN+F4S+FwXWT8$}Z8sw1;zr zPYPtrE2>O<aNW4ba>DDdZ?ldSZ~WUUabRjP%j#w8|2saO_u*8)i^bE|2fvPvc-?hq zdT-3x#Mtb)`ZYg#jc><S>06{%n3hYqXS~1hQZl(;|4l}nm)8gGcU5oJO%!}Q+rHpK zj{B(<<v02Gn`-uc_5QW)tRSbtr{9}@ubZxV+FYsr`u_sob^ktIE%2SXQf8vV!}3Ft z_6K6Gf7!Jz+y8^`_L{>^hH}fIyi24C|2qDk@S^)g*f-59QT5sFO?oLRJM&`of1Z}y zH;Gk$71xqVC0;+PZ@=Z=2A`|DJnzuu#sY)&-G2UCi#_s79k(11xOltoM#+;<XNUaa zg)ir1uYDkUOSb+nH_!hy?g>?^g6)b5Umn;|B<{q+b9aS%h*dzzj-3lij{Vri)~>x= ztZzoi_vfM?-mHq;c+tICyXRKv*+XmZa)c#plYh<i@Se-fh4*GxSc~1AT**G+J?G7d z&#E8I*!NabK$fHb*R$1*|14P|-WZf5NR-+yx)7`@<9;_kk7dqrruyp=cLKQoUv^)h z%qz2RN9Cc^I=KVF7RBs+7m7XQEZp||lss)Ub<WX~=S%ig#+@)a(VV@b*QS5R=d0q! zTdyS^UsoN|w_co4=D+mZKVE`eeag3LF8_<EHgeC-tkbw=vo*>6-s_4jm(Ts~;{TPt zW~uh==hM4q?l!U7uek5yuN80k>%V!v+A=++EvRzx8)+ss{kz-jlW*6l{`;r9SFiu| zKkH}TSF2CR?~mNC*zx(2>xW6&|4)^@zni<;zBpoUh0&!~UcCN~e%MF-VD#*mA-&{a z_|5nAR)0P(b^iDL(5Hg_9gkhVZa>Y+z0&&Vy)8={m$N+PHr(iwkvZS^2ip?;zXHkg z>Z|5F-~Tbn=b3l*dyA^yujfwvt-ScXowmHb&&TZcr}|Z4|F!r+ZaI2q<VEQ%F4>pn z<f5W~=5F983tfN1IN4<RbDzV1Jhj^Ptswh<f$Pcq&Z@ZNOx8``r+!|4`sDssAJ6aj zU4QWN`r^i|{|+S{-+7=<IZ(aomiNQUaRJMo95U3a|Nr6Yt`j#Vt-cg+GvV>WjgvlH zlFigu^n1UB!Y_w!x|ufjiw>*))&F$fMD_5wSmW*`Gk?65S8;W^W%c66fv6cC+-4KG zwY)Y?dh%4YVau^Ek6ZSLXmt2;z2yJEuvDdV_J=D^d*<8?{CCnb<jZ-6pVAo{Lb`1# zPTe#RO3vUve}<vEUiDP=lRJic9yhl;80$?GYGZV$W-Id!{O@S%`^)xufpgw*3-<4V z0?a4ULSk|Qg^s7`rt%u|JohQDO)2ntR3z=~^6bn7r?tmdNG=mR_KuUq;PSF7wyKgc zQ|G@baAA*;vRB@?yxs8}+rwuQh1Y#@d7XZUq2GU<1)~r5+YKQxmi7E1k0zAMYo+&} z`qcF3UH;Q{iJxWn<Rl%w{i@Kqa^QbfcbAXBf-ixy%-tg!LTatk8Xb4<*^$m;@U`lN z&WSxnC#G4Sx2Y>CyS(DR%R7bSX|ZL-SJ#zno}XWD{OaASN9pEEj{Z3Q;JQ#@NtE|V z!7JD9IR4sd@m*!D=^M4nVY?$b>i-;i_fP*sr*NX>#Jb7C`%iY>e{$r1l;uXFZD%wj zqqCm8IrgjgRq^pf%{;$iKb~TJuJ6jA7Nmc^%O{ulrmR{};zPk3kvo@XF13HEo|4{M zlg?4;_4C7wXBnS<UyqG$w%6s~Gj*N4{Eto^?Tw%Ff3<$;E!}a7WA^tB^Rk-F6%MTR z>wmdkcRa@SZr__m4YlN}=fzaz=6_RX+3<eOkEH9p*1B_w*6ql95GOjL;ePckTQ!T% zyh<in&0Q5miM*Dln0ed;{&D`2-YRi}rPMU<mi*fHnMJmDKfgRyQos=Lcy*V?Tjf9h zZ$!Ph@2^=^(EO)Q=X3{$os*c_rDUZP#p7w;ch&pOo~IJ}X!eYG<~wc)=AWMb-B$1S z1vNdTt&92f_Pg#p`9HbhTmJ5hlF0PsR<*U7YkujS`1<)P@4g39fB&xi^D|%FXHH?w ztp6WwEjPTdeNxbm$8UG-R4rSQfB(#cYhMCoLXJrLe9!pL8a3}kxaO<0*sAtl_5bU3 zuZ$_UvFE{w?yCAP1@E4IeAfNx^_TZM?ZYen-soB-|0aFcs{f1ZpC0dDn^L-Mzu)%m zPvLJ@ZGV|+6~9$l|3zi!zADe@cQn@-Ju>g^j(KJqzK7@KjNkq1b#M1f_7XJxeOr8b z&9cy`!hYB6|E(1k-}-0PQCHn~LGhnmbJyK?pR}_!BxcF#r)67Z^nTU<58U=Y_ve46 z)Ay(UzjxK&yYtGwX}0V4?fUh3&*xkB<M-|Qw*Ab{58LzJevkip>;3*)TmK*YrT@El zW0~EWU4QiBn>%$HoTkNov-$i;N~Qago^-+gA5OD8gnXa<-Cna>?BSXH&s;4&Ul)6L zH6=bLWcsf!ti?4`I_slt<YR1D_i38fpI@&h6BK(|<3>~3KaKCo%X*E^)E?fR{Zv8s z%=+@D8Sm@zp8h%Z@xQSQf4<Jf`yYzG6uvusu_oi;)_l*~)xSPTN3DH$=ERS(uxHt& zVmtO$^1id$zWUYgaHgix`MYHFwzbr3RgHNWEUvdmJN=pa+&R<N&F%gd^Rh6U`$_%W z-q8Ab&A;b1{_pP2ds*JcyZ`e2Jzw|5KL7q}j`2JhF5SKN&#$kMKFjj==@RDI%W@L_ zl`dhH-f;eN(N_Pu3r{~jO#Kxe=O%x3g8un9y%)tRGvg~S=^y)=eSf=lu4a+lr$WPk z!uv|sl6&8L70vs8%CTq8UBCaie_!gqIh7k#uji+!w|!Rqdy(Gi>9MgDp*a?zrRD#{ zqk^Wd`TID#w%bA}_3o3oiFZF%vB=5qa#fr5`{z|l<%cEtMNZG%{(k;9Cx6}?52tl2 zL;ipG;xg;j@{>RF?N;}0IdA*X{ZG4i`P~g6Z}|D|=xYD^H{J9@T%6#gPx>1szB~LR z_PPGfiR+l3$NtUF`j%gx_09a{g6RG`Z~m{!o&7}PaN)!9tebw!v88p}r|sQ(uKd@} zLxH;T+y50EQv81M`{d*Co)#%KkKehz%)j)|{N;z<?B%V6^OIWYBdoSqy!$*|l%F?q z%TbQ_(qr#M_;rKlKD_fk{+jHm9sTJKf6jfhaBHJ?&ClA8AExG87xm3I`M*^x<NKVq zd#>i+%CI_nkyTl7)wlnQXRq&=&iLC<OwicC*Z{UQ-O$|9)NHzLow>~9{pUpy2WzNU znuE?LKt5Q*9Dck6r@lMrI0^IVj!RV(>WwVT;pa+l>Vpr~umG74)$0aQYH0>Ld4f~l z%~-+Mz`z7azyu_KbdHCcse-YAA+icHkN~m@a|L4qBe06;VWxVv(+{kb6JRzlvYf8S zWGy^hqt;w-`i4#;1<;=Ji&ol}(;tY+>rFpVZ!R?b0h4v`^y~(6>FFP4TPlN(RJdvG z$Y?xWP|#R$`kN+mq3HsN<_npPL5D3Y)iaxZ;g<O)M&s>*!p5wO)0vvgg(fSA%Yh6& zct}-zdqJ<26(h5OvE}rIy$Yfr;fcO#Qs7Pg%myZg(;s$P*@L#3`>82ScWXBnn!e$P zDi?H{zsdB2_sv5XO{O~<>55Hvs5SpN-J;E0U~+*VXlJ^jftA?wdumFY+e;prCo=My zfV>MiPr$@*`hiY!+v)O;%|#eZrZ?U+cbvY^Ra<HL+ir8A=@*&}#il#BYI9GoXH#rv zHa0Ms-ndjR2+UC2sVatRul&s}h~K~p3yT%Swr^OV!NCaT@;x_~n0_#oQGU9>2}LOu zV*^u&*O&}Ur*CvsQ=GozD#UO6(;xg%>Ss1KFa>$eZ2EzdmV(pwzc9Zyz4V5;!1Mqk zU5?2gKAr$6n4Bo6$7nG9pg8DYk=1H^+b_Q|4`-Zy_l7wav$3(+bhDf0YSR_|s3}da zyJ_A8Imu$?EpyB12ImyTroVh^E;0SkZF7m~4hJnyPd|Cb++(}Wdvhkn=|1<&xu;ux zFz1_|de2;N`iE{q-|0&~nA<a&O*a%b5a0gigZXB!>D>3txu);5wh)}I`q12Pav+E3 zb^#lU-5^zGsx71#&89P!ny4|E8&5YBRti%!HZVrb5XJ_^s2Kv3U_cqd-PphwHA5I1 zn4o3|V*?Xp6`%}(d~A&yC_|V||5#%Y$z)~#I)_G<$-r!S;xSEOW@7`h>5a7(hSO(0 zHW!>;pllU3efLvy!RZrjY4c6{Xy`h9*%MGAXH?{Zrf;+9g`TRQgC@+UE2@|(PUn7Z z&NF>=r<KBVfm`OCjONoB=W9R``Sjz@%>||_=o)iOU$Dgb{dCpm=7Q4$LghfGmzYma zoS`JX-Qkmh1t>w7Pk*?;QhfTHm*#@g9r)DwCo6Qwg3|uQE(6ff59ZSk?y^*xuKC8C zdpdWUi2yk67|o|U-qv!P?$BznZu;{#<^t2>&8;po8ccqu13F{Gd^%$iqv-Sm7Dblr zGVK<QjEv^f<2o!PrXSpB4M}w%3kp0{K^9nm{Q?qToM0diOL7(vzZ^JeDKMR{%Oa1- zz+$?fuCdnig44=dr@MYI7lL`m0_>gX-S%pH+qZUGh%!z;X>GyHY-DaceSfuu*mNsC zb=W~27SkU#TR1XWK)m#{+Cp%;!Z}M=7Pgq4I7`EPy24ilX%=Gx3$yKkGZc6jr`Oe5 z2u(MLl2e%OxLRI(`|Ey-SjOp+br#$L#>NJS17C~{ET&&%RFnf}s_DDyESjbZOjMdO z{Yt%s_4Exd%=wr9o@Bu|{a=HHBq-BNXKk|ZoPOWjgm=5qREso5J_AconuL@IrbgSR zHCrrVoGu-p;=lb(tA!rp_6xpRvW(NCJ1lsn|Mb)1onF#mAp|{+#&Wu1n4b7{*Vz`k zJU~ZgFg~%6nx5ciCpA5R&xDr=n(Wn#4a|^Is=J|rv4I&<S?+EG5-^`WQA$-l!q~tJ zbmR%F+y|*ON6I2@AhqVmDnRKTacB{zJ~-W5AgeG{FgCE9K0)3p2;@e^nR>$0tGg_O zrf+y^p)~z;j|JECRh>p6(?2}5@S6Ul$3hTNx_9<kfJ=83MuX{)V^9nYK*yjcPhZk+ zApklTM+%hqJGQOX)nH^YHk|zMmjooqPwul2oW5YGwfy$PwYq_fEXIZg7T|(?I^!e@ z8E~o2WM~LIy2TK3bj$R+Q!F4SoG=?38cv`1LCI{oK(mPqm<K<(W%}>Q7J}0!oV1Z= zG@QP$L`iJALYpD~_UrE~GC?P)IDW8@m>xFWLJEA$2}CRSL?1)&0WQkZYiB}S&ILaG z1f*ax<1e%6cI=7}i!NT*#96RUpJ5>c_7%wO7Y}NQZx_hbXJ?%LdzJ;ybn)lre9VT1 zmeU`08%9rm_r=0tx*?yn*mjq%7F#l=OFyyT5->6|w?I0k$awk#9aVj1V?(3q6VJ(s zZ;y_%d}+mR1W$^FrUqt4)AgQN$V~s>XU8@<p^zV>cyeK3go>d7{1hureNb{T1fPWj zO*5e6WN0uwaE6|Ovaumb8^KV)*w6sE1z@CLJl)?^FA@|K(+$~7Wm$|3jSM06zteLI zp@|Ce(^X$t2u;sdwhEsv_YxHP&@vL_8c@EI1Qn4g(;H*e9hi&_rz@zKDosD|+Cpa9 zE%O;nhQ^T6<iaiUk06equCX{Ik)*$|fRu}j#?vRLsfuo6x3*;jDS5cSQi93Yc)Fs7 zyiL8KF{r)<dkl15m$4zDQqWH~G*&P+G=^s+{d7Z9kO0zAREFjt0eD`}PdBs#3BW@@ zKix>d*bq^#=%<^2`0&sT(@zH(X#$EBs3Xik3g8)1KOJNsxKRO>cLd49bGv@J3y6>8 zMmGgx!|59f3@oPyOxEF;{$5#?XL{r!%T?143Mp7mw_9wf%xE$_kV{c?@`ftO=@S-P z22YRtU?DKQV80wF(H~r-AO<=fi^bT`)L{C<Me?H4nLb(wO`ovVl9SPN`o+WY!qXR6 zsfvQ+4X0ncq%J&N^|OW1^uGC)V$%-@n$DkoZ-FJxbhBla{L?2MQq==R*~2`2@DXD1 z%!a1M(<i8yi7*=*8c!Ci*9FNQ6jzX#9=lDY4rHXs^!wXXL_yNiCrZleF&a)cJgq1; zeZf}KP19d2vE-S)a-A|SNY_LW1(4a36(zwZkWB??HiH~NCKzXFG(9O$Pi(q_o9af8 zg!%Nw{~DqoZ5O2tLE5G>${31GUl1eL&unOFG2Jj$4lFCEYOT*?XgdAkc6qVs0&|VI zCMP^g1Q}pC-B86?WcpQKJE7^IfSP>&ruekAmKmUmKjF5z$n>kTETLg!1_`4Ne1_4} zU$3;}VKO(E{&$w83^;2u8cv^ZPEKt42Mx0b7Gpy*qsb2yL4jd1Sx{V;+1Su*`av^! zvFQoxtS2!Wni)@4d?-5o%4|!a=?XFm-P0@PSVB%jVlp(FZs-9z`e~~&@Amy0EEO21 z?^<KYHT~sAOMWIZQ*hcAHAK__`spU-prmSMJ{fvwnj6z}#>JL4)3#cwPETBHsXCp% zPN{AB1v8br=?mmdg{Ld5voxA6yu|YQ^jqsJ4W=_MwG^3dU}Q3Ry3SHd9%e%$v*`!d zTi%>ry3|r^y8cefZ_{;_S#nK3DPhew{nau{ZbaS8XgD3x-Y^8WH<YKJUT(<+YH!F) z-_UE(&u9**o9_p!O0yUnnnUYmaCxtzH(h#_rNs0J-xT<^2ko`=V3aTiWj;t%YGjC1 zMNc>MRJCO^o}TZi3hE_n^i)*_MK|LFgN@9_hR`O*2OAaPX^+)8r^g<!JT;wjohA2l zDP7|mAcYR0a(dGP)>%q`3Vgop35P6W8JP?%rtd#&DGs6y`P3z$6^q66kJDgH4P{1) z>4N7hB_Uk}Lufk#>KAxB<J(3{a61E(zd$XG=^xH(a&Lcm%+i!`dgOLX?&+E*EcvE; z@30h{{(w=DAKcCWyBg9aG_(Y_qozOK0g8TeEm-5-&=OqsZ9j0*l8KSY&=S##Vm3Ck zobDJZr#oGIr={ffH>WMr7^Mu6njyxPNMUC<J&<2f3w%i3^qO6kP16geTg;q3bGN1W zbcY!hk<;JpwiKVfVTQ%o>Hqdvx^F-4t0l)cea1dZNOOhJczOYwKB%IBHdg*$v^4h- zFth{}g5a1kv^23ao_5GmW_p329oN(kHoS~RplU|d&<I|RL8}=fctHm4y&4-DL0T>K z#)d}lQWo5OH8w<U*n?UvhRAIoQ1{gkrCkFmcv0Flpn?~rT>~n4QQ9@29AgPCil<MN zxAJ8+w6vK1VTq~lbO%K%m+fT=R@<4TYaFx`05x<JnT!mkFYGjuoqnO#!gKny!<OL2 zjq-G{BbJSzs%pC7QA-O@H}&K6wxgC3(-%m{f0#b)n5EbDfF=tI#_4h=EV-wz>{Z~M zZgv7xmaLK2tv5D8RHpjrh6W18MuzY{ihjDGAxHpTnLz3%BSWOh1XMp68G^mQ%f-p5 zpKbxtfmG!=g81-Q&`);*@nMlL^_HQ|^as+WGSlB_TFqlL1fM@SeL{-560@<9A?N_g zY1&pX({G-z6qpV=sBQYQi<aV$%EJiMQ~^~Ui%(k`fto7f(-VGb%wjP%GBTL_QCw`Q z0;4{YvC;GkhvmhlzgIAuG+kTSif6LsLtc<5BcHWClM%S#A__WtGM?GU$Ov3<OwT$C zDh>6m6s9|tnu|?W$W(7&Ha0Sves7zK7|2!A6ZgyMF&a(ZXf7`{y?{}3_w-B^E1v0D zo0NH{n_d6~>{?3>u-TiG^T0Y8H!F*Rb%GDjGcuaKP*MR}1REKdfr?-jV<SWJ=@Spj z&6>XLqNU;VdUY%D?QO<ZqKu42)9092NlbsGVI?qqgR-d($n}txiV>ux5~Xb=G<|`& zmellu7K;uhBWQcYpw&Wgdct0Lf$7C&R(C+-8oI_0rzh%I8BL$4rYbW1!5KN$>Gvlq zac^(8unJ_90(Wb{xe2vvVq`qskWXE1x`36H-1LhYrVh-;M#j?%t*n$mW}dT@n+`cl z(8w6nt+SinYHj5|U9eM0eEJ1v1!J^>1oLgI{HOC8S_yzUMe<;`f;xKvFV$J5zd9_> zy<OPWii?rac)FaOl?0>lbi;+l+S5PuS&2-4r~|gy1X56W=veVgUu9yv5)>MVy-McO zC&*jNG8vhGN+|FU$`3}P>7W{XdV`*o#Ps_D>O$N79IeC|CBZErus@B=&5+6{qv@c! zdAfpumH74}PF4vnvfwrmSf!!42};A)$i#Gd;!I0bNGT&?gx;7nGB5&ng*=Rn4B%M< zQm7b#kAnoav^e!ag^CeMv16=YY=lzmn1BQ<rcac&3IesN*i404jEzjpCJO3JpJ`&n zGrfAYr9Na-YqN<JbW|(c)Cy8GFd3Ob`zS`H(+%fXDT9V?q(Ef_NCw<P0XJ)nOhHFW zia|;YKXWTc2W9$$Jbm%)0(Z@=8JUetjUoM?Nmf?i{*OAeM`dIR>QO08-)mz9J!uqt zbfuB$^p9I~AsyoB(soun({EkZ<OPjw{g{5)8l-fowLGH{xRtd1)I_UHMqX1;@e2-a zV-thv7woKzK!aDZ%*IA$Fi)64Jn_xJN&s|}B+BTPkr}AVWj=jhm$?j+kr~KC3qYMk z#2JuJ?5%{rJufCBv#EiMV%x#zL9!SdnHf)4EYt*LQ8Q3o3+aY~?S=Fjjm*G)WHg#S zLBLoF+%*Tw7XDSTpDs7k%4YhN4lD49sTaWFplr@)H2uOsEs5<dv#f*}r`vQ|aWNa2 znoXbDX$2k2y4z_59?P0B{d<>{)pUosRxZ;Od#u32SZAhd_FB1bUq8=Eka7CzJ}d6& zr{`PoO+V6S1s%pRUtncFJ@AFL*!G?UR#WAtXZ2fgu~-<GnM|*kXk`l?LD}AT!0Nv} zqxsZEYbhpk3#9a_Vq^j<e>owwqLB%x(F0ACpw5?($@E56Qw0xWBjj_H-9WX0DZFfl zre9M~H4N1YsuYdPkX3-vubJg^#s${lOh)F@8E5K&V$^)P0+Y4qbf3vqf}sA{*U47G z(+iZX!lz430~K>mEg)l9EK{w7rYp>rmzp-mQkc<b`a)$TQ1N3io$;c&=yZh{R{Wr{ zNfMHvEv7%@Q@5C&5X|^)y3PzxndqYd9l`3EZY2nARWlk*Ke)phJX&kbINfHJ6&IvJ zjF@R9G+kdqUN6K5Q9pybYep7u@9Be%S2i}XM6MrA6^xB6k?Kby5Fe>}bO!OKGw#+h znY@6F1=L|$#cXV3Io-ere9p2mlab~0z(pF6bC#KnjVwTY7O;wik_wPhge?zP@l1cY zNS+rgZOAV^J?ns#D7cF>wa%Jn`YUd0p6S7Jtl)jo1rc)M(=V*mdOdZfHP7^uVhX&| z)8<(jL;4)=56H!VES<PkS#)~STq~i;1%e8U2GbK~=&WKf1|44vI%JvAczU6(nm)6! zG2}R7&=JcOOa_La1C~XmU!QL!1Ug{32V{_9lpN@U;^_}tmB8mK^Du&S9T2pZn0|xV zS^ylZBF2bLJm`33GX-N~gYAjM>Jg07n}n_7LBpDcpmUXFM68uT!{ma-qSNY>rcO6d zRN#Reue^)R+Iae8JvHI!3$(3Pf`<GGqZq}eZ(_BEwtS7JFXYshm>wl&T{3+Rw>8)F z8)DXcAcMixY8Z#LAY{Pac>2K|@?z6@7wHI0zbS70jL~rV0SRjf&~VHVRZVasmBkn| zr~w+X2esS{#SKNLE3}$}dxZxV>ui{Qn$wzR`mas}{pkxhGzCPB4HTjkj7*IbVik-n z6rvT(EKC&)rf-z8UN`+LzqP=0f%R&Tqm-wA<+C;dbyvLQ#p}=J9ai8u{@#Z5_`3ks zPZ!?_xJK;`JC!IOwT<25;L8bOO&qpQ-m;h7_H<_Yvia|JUF+N1&#yIYOn+Y&B+Fta zvD)^`<)hjU)Gee>r<~gw_|WUes*UA3-H-BSGWV>NRSUa5Ctd!cHT(V#S0~T&`*2{B z`TB#>)z4P1uNB|9+u}R3a{Y}1tl3iQ5<6zbReitJf53Rk+GyFoYC5l1{OtY_BlAHf zGRQpZlELn{#`kX}BXl2SR@C+^PfYk~|6h5fU-Pebwr=8vQ5`WRolh87-cWohy=0R@ zmCCA)K9}kxPC~LB8tJW;OFbg{tQ9xT&wl#p+VQ<_o4Q1!F9n_5v?tW_zS|`Ij|JS0 z%3q^GQ<j{_t<!aTd0FPtzIV=H;_n~V6t1+mVG@-5a9_Fk&Lv*o#S<UTv7D}`WGy~D zOTd~-z}UbPsp2*^oPMy`P#b*eFsM`KXkyQ7Y-~8aQO;VK(Qta=O0`X3{=*}RkopM3 z+a54OftPW*2Cp^GWT|?U>H2)u64UGJ%tf|KC|WBpPQS-z%{ATgu@*0A9LI69st(wA zaBB{dER3cjB@3hJj%#%`fs}seR4@mR`c3B)wH5-!JUgV)yDn%gI9);CN*>f=0i8uY z`Tr;0?WwBPiHyA9P71W<Gn;-(%vxspdo}A`Q1zI^D7t-;y0x7FqtWz>;nq@&MxX*> zx`UXtME%>^==Do2^X^vv?fNXEkY2K%!Hwa3#j*3AQXcoTH#R4PGg<$a=eVw<8u)w8 z-Po&lli53LkNLbU{qoW&P{cFvO7*G9|G$epvH$<??%y@4dusoFdpdvL1AWz&57UBp z^Z)<3zyHtl`tRTNvz&i#7+P2UPgVYi`Jd<ZfB(+@_jvyQkEW;P|Jm*N`}lvNtzqwn zYr?C4w(I{7{P)>Ee#s?~!!_sko|^xtdd|)z+fD9g=Pcf``)Ew`skyn+9p&^z>TN6e z6Za%~<i8JE_~iwg-}!$(E>E}r!#cP6d@!5Tr`!Jj6&@>ieyOkf_3dds3;+LzZ<qi7 zsoM5^&Y?Azy8b-fzxQPPsR!}5eoy#!<k~m+RkcF*n-3Tt|LplR{#SLb^4W>|7wi39 zw5MNX%F5*biYfmT_fMZ>v@%(KNw}}iYR_l6+ahPw?_BopQS+zc^0G%)t4+FQaxeYm z+Alv&n@-)o=f#`sS^HnT&Gy=x^;p#L)&0o)$2!H!ew==+r++N=wzgfx&-UqyE55q^ zy!?Ew*3(d7eaVNezWSh3jXyk}zdiGW$uCB}o=q#ZbA4rf_9Vc|EB5|$p>y&YjPs^j zpOX*e?6{`%ddZLTudAoeJSXqSwAXUFV~VOA<Gkq!DXR8NZzoS*n4&7qxOe)_6jgfx z`6KD;uRU3(>iG5*_tPDhg{O0*s+Kd(pWcwFYQX3`ePgO>I#Y%Gbg48|Zw?(U=V!M( z{(4T&O;h!&zkE=Y$B%KTD$jxx>pc?%XNP9}-t3znzmqxK{oPK%$(vWcskC{RR6VOT zAhBw(=Bjr|FU~rZTyYe$Tu~G<^YD*{Q}UD^Pgz)VRxbAM1uLHYFP}d!KH}Fn|B{+Z zd+;Lx?ysd<&or%mm9ETw;dJ?YiYS-!hIzp|nQi}?fsQF{wXRoopQR-bdmMC5=@hmb zK^lH8Ef;Pr-6R{z@5@&!Fx5*Tm0xD#y;P4)f}EadMvYGn%sL<T?7_}IY|FzG8O4m& z?7!RC9J|-n;MY{wlg|Qbc@KTtWfB(czu;T9@%x7dHof)D=3P<RD|Y)adlm2N2npx2 zJ{3_8E%_~(k9_*=JI>di1RYbl(L{dI^94%zi7zB|AN=kLVNjZ?@OH};p1CYc9%i>v zZe4zP+;M%Le8lseU({z@Zuz=n_To!V9qw=Etrq3mdQLqlL;RVq<=dMRetO>ckrc%3 z_;VA-(;e!%Hzb0OUTQp;v+0TA#gya8XP>gY+-c-wv19hrCa>2aIWt}!;;ZlYG@*@o z>uy)AMD}BbyHomHj$V2<PwR-v8{hI--<`acakFZEes}Yr;-=3=_c{ALD_8_`4N4or zE-LPv-y4>`Y1YvhtM2G6^O(CXy6=If*9udcr|~<pUZyA|^=WtotE#=~dpYY)cJ8E< zn+HB#Fw^@rnQym4=1e*D!(CI?@BaNF%dGhBir(`(st+?(?Ug!l=cCja+jm=?O0s@> zUfDgV-E&(|$akT2(*<)xEpsNOFZz9ef2wbD@zW{OC&bB%*S|V#yQb@?p7P74GdER) zGekLk+-(jPyFZ)I)x9#w_*(3HwwEhn=Ipu1u`o@xZ}ZDGr`6XENb$Z|nHwmUv4&Ci zO5uiLp9~AFgzYOV6;d*zT`UT$?E;G*o@@zE+`8x5^cl|LWx9WQUu{XQ^;-I_`i0We z>X2q78QZe%@2z~LA1BsV?RL{QvYTl2skSv-L3;l3ol65-E9HA9i~S3*c`CO$^2VaW zoV;2wEV(mu?**Cjc!e96224|Y>e=e9^L^HtbN(MrFs~6@uD*)*)T(!Fs}$=poB8bL zeEDD@GtXIa%^~{~HkP}4BSK9tvAeQGf{#koG@i3*_Sf3A>9%w9GI;B`_fIK#G*OA& ztLmJIU)P5}GOD*G<u5!~ASMzls+St`O3xsF8t=m?B?n#GzGha;7IfRWfU)n@Q$;~O ziLSJb0y#meUe0hmW*rqCzSzf0;!?%JaIe#+=BS(sZaQ0{|2(5)$C|3>4*vef8Y-IY zVmI1+*T&D3WNmec-PU|VhNJ74@OQ4&zqGWpM828qy0_@2Z~C|6)zd{UtE$xhliOmR znr~XH@Z9Xq3*q}5cih73nC_QoEX(jTyZcs>Z|3Qzai?eJZ{iTU2|9kYH)GY!p7UEZ zLC3EqZ_J&@<)t}gzD`hk{9HD@T?LVPuiR8UE-)QFbLUR1&q+6v<Du-<xyNlbG4fB{ zAikNof7jnja!XgvIOum#jOWe8Ng})g1*`L_Lt@*TrcZm^aa-<f)btaVRkb*^7KrF9 zU3Bd$@ATi7Rb{vieLN{~Hg|sg&r8$KFl%T#*b6s@o_}8Rl<&)z+aGd!tnSR;Q9AMe z;knwctFnuum+$iJzRIvE);*U`Om4=>EBBjU=G}8y#vK_{dp^tb<fC-P>E<jNO7-4( z0=`H4Q{`KZ9$6Xco$goVaM<ZOi;r1TUvns9vR~jg@s|g3_GYb3T5?5Umy_eyRSql> zS1hCi)@<u5^;xm`<Bn@Rb-5o(`CdFIHc@}O{GR8k;*R5vrE@~#pEoQiVgDTaykX8n zy_V1Foij|=ao0bqaH!|G@xY)bqVV|zVXf=+G3~Ff3uem7do!;wY<hV|@FnXl!IuY( zVk%du9lTK8IoJ6<cXa!{P2SxfTU;OPR;~*6|K6GZQl8t6<9o=%@5(YeOgSQ)4=3_k zrUva75s(R;Rdh<=QN-TBmNiBb&O{x#7XDy!(`kp9sTb}k&qz>_t&&jdja&2RfpIO9 zSlgvHk;Zn(yM7#Lt2aEkaPsee0ar{PJDgYLb6etK6u05#ACb?>MH{lSK2Lgo<=O7+ zfOhZog<HRDoF12}DptRFYqQtkTcR4pSCv2YTBM$2G`zF!*7i&bw`QK3^ZpwC3}1J$ zVX}&8Si)RK#g$v+`%hdqZMeH|Zp0$fUW?0~yS(RZ+H_U%p6k>XiNE?6gnm=I8(*<( z@v5zd^Y04$D7)n@(^P&f$cW{8(B`P?V!}=R^R}$%T71Lg`Q%BVg|DL0Wu>CeHa%oA z@nc)Ha+YiJf=6dUPq_qdPBC5+Ryv(sRb8QeF1NGtvK^1#FU++)m|-w?9&6Ic@Xs|{ zGvB^0TX0$U&Yq5W0!*OuRPBsPROU`!HoNos9IZplyJb18ZM`FO4(HTr>2_DmwcmSQ z$lfvB-shWk-Q@EJ(>s!kufE;2o@0;1!Ivupgg)5&yYF6^{x{lvt(fMu^<A<rGPgfe zzg1b2AnMti&MGUvQn7pY;UC%lTZAPyzIf<8{pUnYuln1Y7lerXUQ}~4{N)khT&{o< zFRoPVsr_)gb-HZNjt_x5>bqyMu5T8Q$XLNVNrF9p6Ni_|ESH1L*_#V4_f_%n$mnTZ zyPHz)KE=K9^sbAlQ58iI2b5X)emgowRfuFP-@t19>7X$G3;C|&7RO>a?@W32$>J@i z1lys!`Bv)IT|C`Ua$@FFKKSv6-#pxQn`K3Yg+QS~Q0%$X_VkBR1{s^~$?i$`E_ZA1 z1j+R)oT`G_QX*?RtJXLt?s;Hhdu7v_H=4~UFNKOi*YmbMxMFpLWBzIBkf4{BUkSu& z*|$!YnXGBXXfr){vZh*nof@~5-R-GzC9kg^_GYu?k<(qQz3J&Ohjmli(%#K{7-x}w zDk{Hqy=68}gq)OKtiVbhb-|e33%k!=j@)*km^A=&a_T(6gPd!QT!);T8hyGrgXMkG z-9z&^{{QCivk=Wa;O>#IXjbpFT?L75p@(Hw+RTp8_&zTn|B&8a$NJLH#cMKcjh;*X z%h@vRcG+ad^z3;i+uK;IwlT^S9!{-3Uy!~0vetd@(WzOnc@hb$w}`VVy$m^VO3g;n zWbQ7n{IA-bX`K;S8!e=NIe%xW+3n<P`1Wdac&cyNHxI#@=|^t8c&2h8NMKRcC9{rQ z0(k;a1rdDxyoXI$&&h}-I_ycf815c0b7Qnq{A?=$zv+A{`b1vu*4NH<TKnnoslq1{ zR=J3+=Q?(2W>ICllLwF0&(#cz1an?4WPHKCWhQrd;Pf?|8oJZh6sjh13ixk5v${g( z>)h$$MXF(p=cnftsaiAoPhVA}YR9zKefp~+RewhL=~l(6LCg`K7^n9atJ*QjO+Qzx z>gLA0AtzfTZtC(CNlAN5i|o!xv-l`KQ3M^PdG&S5_3qbw51aBYKE0?KD|I;UT;QFT z7lmScGgw7G{&16eG|B4*pUBVHr0YV{J9so6aGjE4+7V@2(N|?Z-KA93no)RqL#e8w zuJT4Uo=&|SOCb%H?^4_~y92#Ge7olQ$m!6RQVVTWR&CR@k9Y1-)2Y+>$?$98^o$4c z4zhVu?rGJ<zqDj=<5%B!^>eT1+)e#yZ-2YVJ0w?WO+WfTUYpT=dU%;?*7QAhO|rS{ zB)?zR=Pb(K_jG#xEKSSl`Q@rYjMJu{JFBL`=rH~BSv3`H^Dy`4I+YHqoex`WmY(cy zY;1X;ztl@@Y0|B$vIn+TUAVkI_^#yf%!=fA!|D37H6=v0Z;W94wA5)S<D|4_pi>S{ z8@<(;9w?xpG~Gd8U9tYgB;KBHmUFpvzuVRsToPqW4C$3yd{H-L`+~=@B7U>Bor_(5 z?`e6$le4MP2O68_seVek+PF|-WmfgALpdvs?W-<T;N!X;ZNuSoJT(6L#mOp;n>n@^ zp54J1m01~a<hWAZ1r-+MSO2OLx9(UkZnbh}*tWIPwDW`(*mLpS3;3$AyZ#*LAj40b z>s0R=%)FF$X`QvkfeVZ>S9{`0S@~@j%~cA2%Mw4W>DSg7Djxs0hMzsSW17UV_!`fP zQw>zJl6>ag?OoZK_^P9M;e&FnyT^HhXFbZuG2eP^d6R#3<%_fXS0vh$y))9R+;3R1 z{^*X!^`h4o?2Ae`xTe^D4hQ=kv#hQDk!z}#)lbqm<Ms8xvROxdYyqEdSjNoweUB;V zd_!IE`G(HM`g1Rur$;?Gbofh3RYlFa;?<T5c{O(XONAUMk~wy)?c}<1pZR(vZm4cI zeWaSjSU;_oS^UNBrd3gM0y9~;s>7GMPxltQ>%?=Z$amgDop9CTd(S0!Y?ybsbB;RW z>)QH*$;bUGFPwf_a`3dJiZT2|K6$45Ey)=wyP8rZEBATv%hg|Q)DN;O>G$d}+Z<E! zq_uI;Y(Lhhdta6uI#@94_DSvi$+_EC-$?EYNtWKbPT1nd9kmH%*_qZh+WUNOpTBeT zTjPl(StnnFJ?qSu^Sd2?vbk&FGvUn_68`sRHB|d#9X(_EyGGo1M_|hGWv_32^UzAa zl96Ai>Erp8>8xY(VSbr5-m80ex3Muc|ByM{{AYUO6V<AenjQ!K-6@+5%HqDn&AGFC zQh@oUZ|cey(my;n&DLpSFthf`!pWyR{4ZZWF199JGTq|MP07-&ihQ6G`WWSxxQMvM ze7@9SrrZ_f-gUa~%t9Y;Wu8S58v~YHmR?Y4FlptrQ>U-%Opkx6DlM=#lHrJg=)#T1 znG3nTZC^cSde>7`nffMfL$UDZ1@|otbc+%c<^?~nSzmCjF?iy=2|F`(d2lsaA6mNe zNtgobojtzo7t3T=t6wE>3rIx17TvveYw6nX9X_ia?#=wU?cJ<LF)h>QuT{}sruNxV ziT8EaLIKE$e$S>(PGh@yf%T1YF6)x@b)ls$*Oq^DnsI!a(*dq`ef2Y@-&tfWaL{sz zIm>E!iO16XZ_K6o*V!`qZe97B_cvSh6n_D$-{2$tIyZuj^b-di>6gCP@`dR82M>hb zDJ1mXEdw9vcZ|#BdII}#XYFf_3$D%jy)2(EGLcWbVv&r@n`W6^ub!Tr;<H!0H>^ck zZ2GIMFVy?)ZI3?6;#Tj%eST8A>+^#;esav0l=wd;o|+q9%^fA7C-X}1!{dYtYF`_I z&fKt)$Y{H><i)}n2PE~5^e)hQHvhtf&9Qv!pPsHdJ>jm>J`*1H-H|&_C2oABBpbu) za0YzBAK#)<UJjP_tlVUU_3{^G1T<PJIF<!6iMcvuy?3e9SrhEDdy!mYn~{;qhjlL9 z66KpVHFPRGy}qNM`*3K&m)r9u-nc&9@wuv`R_LWiqU)v1x81(BUetEahaG{Rypsj) z?6Fw&^4Z%B=XXp59sc)vVxwMr{`8jTssS?Ihr*|QeH{xsu<yu;6W_Le4f-e3a`e{h z>B|;rDhPbmNK49?`*7|-%RITJtS<lQX0PN8>rKSM^UgE9?*2N9b&JlaSMykZN9>Y# zKCk7=GUv{8Aq57D7he*Em`o=Y`Zfs_#!P--aQ)+<A8FAFmyejPnOC*=K$KorBImFB z?iu+e<<^WxKG|l7X0FZSl$h3eL-1rr#bLHm?);aPdQUwoocaB=0>XOPZ|6EQ=zI~= z;Oh;O|6l)%l}osyUO>ZRy@+1O>)C(ZF1`=o-}_D9UH52Slw{aL?qIKjJ0C99Jo!bX zbYs?I)ne9{UJGI;D#kwEu)FrUY~hQ8RyVlZW}R3Ra{a@vRk?lAzvnDeC=`|n>fF8Q z<o|rR><wJUqaUS~xHVm0WZ%q@`n&U1>UQzhhZ@)!?|d<3m@a-@O^MNQy47_xIU#i& zrP|fb=7z7iI0`!~J@(fbP0zZnrXacOYWnt=F!eu4!bf97W^8(tl)I4;bShu%^ma)N z{rYL#d-HQl4mTCD1wJ`?Ea#JfpzW+#Q~jSRsm)0&W_S2MA=Lbb(No#H<PhfdUCu6A zFaF%jcS#Nj@@PEty<p2zw)Z?9t6v`3@-k%VowkLmI-h6iP1)kf6MF2mW!?@Y$HcZL zrZK8KlkZKsI;AFQNy_Qj;afJn5zG~7JiuP9A-3wjf6xTC{VTE=Bc#sP3W}Jo;NEl6 z?Z-#EB+hBK7uX9XBzx5zIr6J$>d6~QuMhXGd}0tcN3+WAMZmc;hn0DY(tTO)iF;`M zY`?bsXF~Fd{I9pBPw!i*slxbt`sSsYs*K{(Z!Xo8W&LG0Wtr;q-%B;+>hJdlt~2}g zUfIWdR=e7#YrjhP;uhX{zo<<qMnfofeWtATgTk-N4UhZQOY!>|9&Z2mpf9>Y%K!OG z*ZYqP_us7$du4IRakg?8bDdjwcwXO+6Zf~+Np>B`j@)$UmXU*`bkX7?ANI7av6Rqj zewq65vW#)o1HT{PrX~}V=H^XG`M$57OE)>jbldzN%c>f-?F}<rQD?az`^1wXF^R6j z62-+nzG1C?%j4!7s9lSR&o>F$ouWQ_-;0Ucr#q}sZlCcyZOUp9p}9o`J9IzxoU~7~ z`8TcC=&qE~+zd~K3o99~WfymtY8`ug@QUW7!m|&4ZF}%W)T8-o-~5ZK@()g2yJT5L z&+q!fe(|hw2PLW!85Y04s`zX#$73zi4+4V6@~&5zPx`uVO<j7#)gN_V<$612KHhow zhC{sJ#%J>%@jA8LEGrY%Yc}~Rm1rK;)L=iutX-S&qgLk+^_+*Dl`F!Zn~NC=zJA^N z>6=UP$#cFP-HAFqKbd5|eZ72iiQc?ZYt0o!JZ-r*P4AJ>(5u&KEtp=ZwQ2sX2{(7| zlDIgvoqfw{3-(uDxw2jkWi!48-{zTV68K`_g(IOZtrChZ>W6#gBqWB%B{E;DzI@_k z=W^ER-A*i9zAapqvTx#)hs)WI8OXXGa&>i@*Tt4_edg)pmMH<8|Bd;0zb=oOGEv;5 z9CW(hYA$C!PF@R@I|pV>cV3}sp;LU7|Hy)UJL5Dyd@TuUJg&ZX|FIC01efWjB9fLb z+miF7cj}6EagJoKU4K0vPtUedmz%y@R%7CH$+sroraQ@Ncuu!<)hwL;M_xl>`Y~5c zJ*G<k>EB#6_b^@epU$&JQ(^iQH%(Ed`sLGKyJ<=@{c4=f;jZb<^xA!Tpu46zTmEj( zzdxr=uXERY!MJcb$7fZg>75>$j*R`=PkU&xGqUjLep)$QZ@s4c^sk<pQjF%)1-vw; zG1)s#+n^~reXo~h$Mngn8d}ryy*1+)^QNEk);uu%j+%zd^i@8ZTGN%(HF~E@{E`=D zd_Vo{CQa$-6MQw*n696np8rc;ZTdZ5O&&&u>92h?7frvdp&>Ut>9@S7!<~Zm)de^9 zx@=Q<pi!1u{Pkr*eD5OjT^hIM?+fpGvRjdTonLKjT=g!Qhe?+wUf%I@S^4To&2Lss zYp<BUI%VlO;py9d%d6<l-#_o@C+VMV%cf-qUtX5+Lt&1K$AN`M<)n94y*&`BxM1SE zUnk&a=uGGMBOj;}U&*@mzR%aQ&FvMD!XEcs+PW;}|Lh81|DvvD*5Z@Qxv`md{&QSZ z>h`($QE+<eA9*9mXMJgoKg`Qb_T+tiSRM1UA}>ABa_ujX%2(4b{E;_hoIjoIue`lu zzw$@sBPDBP%GteVoqEgbagqIb*S@<PD&_qd3AcKV&Pdt&k)y<BVW-zZBfm?cyC?2B zf1hVp>PN=!N$Jd`x(|MqO}BWdmZG-jj^Ts4_uo?XPMf!H>+!(rPU>G5>HXVjw6XDw zYGCTq?81eW=YI1{Fa2fmsouWk=i&Rux7Yu%k54+k2Xx*_*dfj&n^VoAw{kE3dkz`v zuW7F=(0BY+70Ki)_3!!re^2-S*}eV0YW=x<$A6P&MwK4uoN!M-=i6KEKEeA3p5!0e znE(If`}=th=Kl}eC30b@{l70y`RhCLE%!#(otgjdp?AvK|8al&gunl9sb5+T8vRfD z%b#!m_q_hZ&b|o+x_kb9xqt7UT1Uqt`3Xz1ME1PSuKyvNxaUAaRoPFEAN=*6<-0%p z;0QgEbG_(ke&oCJ_O+aECh|D{SG@cF+ogGSX-wbRLbNItIxlfeU$sL*S^i13MX1A} zfG72*zllgaS~;=qYwymht4^$4q`#zosao`%2cN|hFFQBh=(sdXwd$~T{p1CICwJZp zVEEkf<U6Cj??RnbO}7{Dm?<1$;7c^I=7>uF@vFO3(7;OX(-PzLDJ=SoEK`59@kJ%B zUKHPP>)6FP`yc=1S=REw^kJIV;VbXLHXd}}vAmZ5;}`zPjXM@9a93V+pLKV`ZIQ;~ zD*Nl(otiptTxriR*Oe}sXuf36t`~X*5<J2s#aE80Z}tQoxKh#o+nVFTPo7KbR_ZXV z3HzGpsLT+3*Y=D8L!aT@0Hfpm?hbcWREEhf4$KwQ__)}EDc4IaOyAY^>SZN{`{6f@ zr(AfesD1BzYSiR8C6mmBmzbYde;$22c%SU?`sM!heZl_kWy60r?h-BNcy#U5vU&00 zeV6KZ-$m{WUw!s|+}U_dJ<TZzkJfZZ>ra_*HDij;TI*n)llN|g7>K5AmpoLYmf2GM zb9$q|vYs7NzqT8F5l+kNTfFS^^iBVQx_M0J=Vv{Sx8j-4WB*h?T+HZy)05H<(e>`i z>-Vkbx@^}`p;rI-%F-mU^fj&h8{YXp%Tg)7`TW+)FyGaix<YD_|9p~&|MprnFph8I zm8(_G$9}&1_i4Jg^G{Kcy1OS{bB5U+I-C4cW!d|O)BdfRIi022_xF!i`r)y*^~X!5 z+V5NST8{h5v-44!ALQ2Ar@WRBQa!b2$=-wQDN`M#ruM0S{$`$A+E9OU;q2eu@%JYr zDczrMrC|NfT5jXh;>jl%oq3<Rxv*<Ya1!Nz{V~3#b-Bn?{ki=~-(!CKQ=6B&*5_wm zK$>9WQlTCXKW~GlO{<^82Z}BdQ#d^#JMGLV^Na~S*&B3(oV$Kp=X$kZ@6@mHclS+a z^1R5?oUln_)hU*xRZBi;w4M!HTOYDZ>Hl%AE!`6hcJ<1{9%W+=sN?;&UL?&gB%`PG zc5H7Llm1fG+I@dQny$Zz@;%R+w7C0@K<sm?k}GV%M|qtO2<`0uEm%J1_%SoRM+x34 zp0<*La}G%E^z7UI`oZ>{%h(^ZcRope-hAKX+~3FD+7Sy2Lt1)wYiVEF!{*ardS9eo z#4BZ$<GR&T^&LcQo>Z}gvTGWylHcFJ%K3M7Xu=k!H_06vxWz-Y9UT)+-{MKp<qR^| zk$raBH-}$yC#-twlX3Tz?DO4P^ZEY0{&@6bn|8&H6QPwB@3Q_CEPws#VY2y(!=J<% z&wVO5V#R%O;#Zwr*<9zCN-vjA+cY~O`tvG{nl1I*E3Br7uVUUUa(t=P6y2Uv4yWE% zJb4mx=tcV1iA=WZ-RJy#>lOdbQ{TKhesRg44P1%JPJHGznO_~f4_)l-QQ7+bW!Q!N z2bk{({QS0MFUQRVSHJR`MTM`ms}f$j`q%xvYB$dY?cm+A&dv4vx5)6<kB!dnx~2Jd z+qqq{OpZ#Y$NJXKKW+9pOZDq*lh;`Ry!kUrqYIa9{;q!b&7Yqcf0xfnR`|izuUoil zTW+6mQ}Wy$8|AFigpb~|o?UTHp*W>1?8-cW^t`v7%C+_p$+261KI`4+w>7?uFTJ}o zisS9JBUZVc58rH9r*_=b&(!ZyYD=kc@*du6SMPa>w_Y{z+Rl3IYJFGNJ%-n(8D9Id zMeOI<@OkB9>FXVjH{6vy-nsjBU;5o2GUfVCJ6sd4d|I6vd{uw7>%Z!sFHPQF{h4fb z{f61~_-%!P(ei(rS$?=g{*&$Pejk!=zfojg@a~>7`Fw9D{eNV;J>vGQgyhSy<uAUa z><+&iJH1-ORL4chbouK7?a8tH^*Z-TZa+1?Jl9HW$DWmZORW_{bsT<(FMhZ)|J1%S zdO2r#G+t#zt<@~N)4TNPf~$+{V_w|Z6MB}ZZ(n$*h|l>hnS)RMdlhCl_OSPLY@F5` z!M)|+TC2FJA4H$ddL7&?z_p0??CR<XT)#dvOLH!9dUElYX^sb5pwlX40r~W2zj^xV zCv}8PHN2v}Y5PjA3G<Z_M9$UeRX>P1t^VVBLctA9i(gXz*X4ilZN2*?;O?@B)7QM! z&T&UtXEsZ&(hs$Nw{X?e+8hz7RV^<!^iFZ!y7kpcySCD%&)asH9h3Vv>!9Jc7m{us z`x2Jf82x(K8hl~n*_9VQ&e%G)*H_$mUY^xG+sBsmHSgHoi5*d#7;W7?EpMUZ&Fe-R zO)J$-ti5MDaoef-sdgv%BKO>w*8R2r{!+6^>>;@_`&XFlyLRZ`j=T02Yad8kxeM$s zN#7%~UH`AV{?WJRD~$h@edVs4?DjWY@SD7J<;&!ikDtcJz1p?D)@S|q1L1Nf<-d#X zz4E;N=!1CkPq)(QD_?q4opk?r{@H!+4#_w2Humzd{`QyucyE8c`da<5)?b(2@0cFf zWwFujS>oTzzr3{<{Nuj%dwTgb+4b*>kJlYj{+;z_z4+1fGyYz0`Kc$C|MBzDqW*vJ zZO7_5F6_2XJ~h#1cZ^ZWlJlB9GamV?KV9|OdM>MO-}@KgRagJ0>a5#eUnBmJd(*Bz zRh#}iT2ixI%6>(qWAF3*D~|Oq`4;eT*8D$`QqI|at}>o?L;byM5{h$W&k8TFJUFe* z>QdSC%2=@tJFoTK;}$TjWUW;BdVOp3Og5drtEYeC3vf$X^~)n!^ZlN_i*Ghw^O&9# z_*d5cVcDK9-w&`0haN5eRsCRcyJBqpUuCUbGfN9HKQt;@tJ<ypaKQEX=1Z#%GYda8 zIOE;P&gK7hvXFemROZOuej)!im3oz(7p_$7PFnQ%e(Lsr<*#h29%bIs{<Lnj`|pxu ztEyGX4Z)eR8~Z-Jeo=Mhi7|WJZ2QZlQ}WFhyZdh6ZTDnKBG=yJ{@4p2FRm-xcxUMu z`Fr(uYD;YPus^=>m*=)_x39wXIy2R~LB&~nqNh|>-FX$ed574~^_Lz+-ap_h;wQX* z{hmXwBVG&Ff1DrpH<fc|e|_i2tMNXkYOgh4mwO$5vDv6@54+*tALd_G@Ah2VpJBji z^HQB>!v5n)RWD!G<*xg)A?}}k(z-u8zW?7U`2G2Gvy=7w(p~FKU*5m?;iq<#_I_Qr z$ED}j{Ebg~_Bi0^!fBR#b#vy|-G4Fdzxm7u@hOaZQW`@;`zvy{)v>ehd(taW=5k~L z-(!g)^UvFFr+8afYTi$*|2xZg_w+3_nO^nx4cLXw*-nh-XPB7w-j0E#NqFiTK8E0J z#iHd)7~ec*RQP;oYrWuXYX+9KVo~{%$9hWk27I(RuBUmOpS|J0Jbs48S{nwIUo{LK zZ)6zM+*0QpR{8$C_QjJ`H;)I0H~&^RU79<$e5c@>W<&dHwGCw*MSVB<KAvM-p#Ir% zr?qgA-;Z-gChmLrl3@a;xN(s3k1UH<ckVJO81(FlS8q7+z9Zw%zh`ds2OO1WT;~n_ z|FWN9BD-+>4q*p}j=$wBes3J+UH>T`P<D0h|ARSKclvy``u|v-&v=eM|Lq@ce9ddm z$(Y@-E&Ef&_DrHW_<(MMtH%BiKF`04qK@nrpYL}mZnk~NpXpv3?rP=xu5Z7%_xPLR z&Ohp|H|&Yu7`?Zo?r&Y-r2R?}kFVDs(f{}1-LG(kE{?jrdl=q1-eX<D&v(Bxn=$** zAMwAI;zjRt6&7v^Irlj7kFn|AZGZF1|4w+yd2>f$u5_o$28)KypZ6wyW7xiVv6!}J z@j~V~iZ_q1H1P5)t2?3><}01rKjYD_ymON?=l}4J%idzo{KP!MCy0CV8ioEVM{eJ2 zT3Ej~@8_nZ&R=#5%6yEo7w+ESa+)zgk-6IY;y*=O-*2{?wG?i9&1tS>abfu0-Mv~j zOKW+~(y+rVyJx()`*q@jlzB^Sr**`bEo_ZiA1FLc5PWz__rt5Us+@dFZ1;BX?J!X* zv%Ty*;rr%0Hb$&M>bLBI*(z!ZkFqN0t~nfK=un?>`Sd<v25n>2=-gY02Rz(D@87w= z;8*>)Zt}thx_xaf=iJ<acvjR*c{W>F*J0(p*vk$VoHXuEVQky4y>Dly>WYO0Gphci z99o$1|48Y*qq@uAJX{t0@}d3xe-E!*zIygTp2zIZ>kqy+ee`0>^-0PvqDs7e<-9++ z=IYC|%=Jm;bF=IBzAif&zW!XjW6&KARo7qUo*(lkJ-V-Q^#AcmN%t4eDZIP*$`S2f z#XVUo%NDfr{G2<ndRk<w&^*}#dw(Bfe=zZK%A+Q$d1+G2JKd_6#mjp({@5^Cg8B4+ zTgeQa$t=u`Gc7JiEq4BVfV=J6=f?RvzH97hzW<5aGxW$itErr3_m%67;(w=2ye5&K z>vG*OiP`aPx<cE_h_{=4JC9HQ?78G<M4|t$E4m4jPx2b=y4>5*^5GC`sCJBP-w7N2 zLry6tBt;IM6y46=w><H_&g7H7R`So&K6}T!eaE_Q#{A*_=ceq8o4>R4@$MarIiI?_ zR=&~tQ=en<`o914j6$O}_pVB#!uq?5=6WOu|ICTswfJ0Oc<7S0s!!36b2jgJ`G4`r zukTBzeB89QN%WfA_uQM3%&%$;d*-j-{OIqK-M`b!YTo>tZ+Bc*<)QMtxCiS`d|v$Y zH20o;2mXIzx^MW_-d~IN&EaaH_OOTj_kZTjFS~uKcJ}`Fw+|<sSfO>lPQtOmFnNE& z|D^iURSTESomSt+{fPV3zFB)eE}CcmZ=0*o#{CJsbM%&fxP8sTN9t^O=&b*Hv|SJV z{=VZMcj)~S`sNcpn*H&8{-LS+Gq=_Ls9bxW|KFO@U*#(+T{fHAw)WA7po)vv;`bG& zs;EqNl32C)cK`ZSGXJ)Qg~su1|J3wKKmBW~&g%7PUs>yy#;?8g_}Txdt3MQck$apU z*S6`uX`tXbulnn$8nYk9{yy#cqdEH0YS+~Cu=}xg`x4ssZwvTwwmW{C{jM3ZnfuFo zyOXr0DL*;()9ioU<ax`k$k#pI^8X|2&-hFw{S$wJ7FS+;$G`bx{LI{X?b#v|rKDIM zsXWfVqwF=etogI?zn}H*Y!^+hUu)|W{ZG>Nx9asj59B^_OC4N)pL@=)E$olYn(qhK z-uk*f=Fs|xUsI!gH~oFY-T6D~QM}$>`JC@dTk0;p(+>Qw>QB7yU+HXii{LMNtq<I> zKJfF~@$e6K5>xAc<^IvR^DX3YzUiU<#QIk?nXUVyuG;6@{#RO>Qdf0N(yD&SFTdAi zN-fXc{ada3D127`{&uBZzrXE1CAWOaxj)>8o-a**boJlwMSt>Rdji$obgJFoE731$ z{<&Yzt*Y|<(%`t<Ed3uxnpW<M53M|!U;o|v+=BSy`F^o~d+yiGePg5bO5OW&IG16H z`#i>Fp9PckZy5Y@D?6>!THN~h&GDbQr$c}JRhafEUuO53n>xD>nST2xeLUi$+VS+? zXO3U}&D3B2&u<dXv%a0n-c5L7xi!V#$$3fo`lGIyOCr|V?ejIz@>X~IS|2^{z5So- zAHJ3UpKbat-e$SY704>ib7Iz9LWbsMh8D={IE|+#`q@b$?cOpnhp)Ycu2V-oPz1bA z-NF#O(IUdw$ifKeBoWX;bql05?Vybo#wc4cj1`QH4dDy7Il+6*jSbC^%rI3jHa42J zz&euAX!=2ZV_9ZnW25PcpsnZEB&>xeD#%Z-lC%adTMq-R`~>gc`!L%Qv@Hg*O~%+5 za#lc`G-&DPIZH0^I(1|4J{ib5b&x*rRvFM%Ef5E?nA#Y!fFH8+!r0gxyz_$D*w}b_ z;~IIJ6k}s!c({Pqs2d}1{{`(JHa3C#47~l<7`*8PyhdL?9klk^#2DsL@b+J0@KzV7 zyqkitvB~trVs(>gE3DTsnV3yCG}5w|CMyr}*+N%svB?{%gr}RXw054pPTpEzdchWJ z1<=-%Z%UB$>Mz5sd8SuIG4iq)gEn$BuCf-NE*)Vl0$#BW60@8R+SJQrY&`j+lpe^} zpdG=WO;`zxrqlaX%tWVuRkDVxO9yWU7KLo1H8wQ_Z=;>guWD_?XbReME;?O7+%$*9 z*x1wvynU9@c>2Y91ARv0=^IN8K-*{2nT<`2r-Sy-f~>m;TB&XfIcP*-z2#(PV^b5z z?ki&xv+1B^;!MWieX<}&8J<=Y-~M5}wFu+%HH)md_>D}>kQ3{40d`FrM&s#<r{tWN zj7`C-ji+}ku@;!_0NP;rV59Yv=?)9k{H7n;WW8&;_Ht{1>G{&uS0-<~sRusPq;QLx z^7buTtW_DA%nYVq^w$+-G@hPtPR?L@|2aAF`m?pS*QHtpy{)c0T4g7+yLP_^M<?5^ z`46WYVOJ?p-Xhfb?Eg~XWS1L!>*uaswaLM~#I|JJ#^*e@9~Rt^`S!=7@>6}k!vDWl z+kZ!TSJeFd_SAkqcww){%C_V2|Gu8K|3CkDJ;yxzq*XQV|9HoB@c;SlUtjaW{@<tP z`ul$;R|x<4x!*&5nV_8Q#542v{aO6y`~3Ln9EYtP>VMDQ_van|i#zV~j4n)&xBu&T z%yHU_|9`){Jsr<2_wU)q%lqp)A1W_5SiME5{^#`eKTCQ3Ev@Bw>7SGPf8j0dkIEc2 z#Ww3h{w=M)Vs=U9XZVFn=BJK(9GYqMP2TC5{3mx!&B@l^oT{!LG4V3W-+c7X=_$Wv zi=TR5Un25;mWNknjmMcw(Jwzv*PLp<=jEH~dHY|#t@hiS{aDud)&1yv*gD<(W3jib zEh~PvZ(m&T-R<Y@_vNdml>6=xZ84v6@7qeZe-GvBjHZ8$x2&nJpJnT9l(k^OSAj>Z zUiPc@*6~05`Skw2jAW%5pBDH`-Ls0hJ9d|~xLB}wtCUO4%`ZKUziR>_qZZ{idU^Bl zC#dkAxcu0tTvMp5mp8HAAfRgMDVf8KRxK7OEO+f^FMTWd<z|nmnlRsn6IZxHH!5!~ zmU3`N@Q4-uQDD%Odh&%BqtA4?!&VaYuP1X~QQUIRpoQ7~`;(rMi5x~9D@&sDn9NvP zmn$zy-fXo?={ncxPhvYJ^=@KHW6xG&pO}A7?}N7b-hLjYe~}%z;bvV=OZO{JOSx(M z?&Fz%<$T(&{#-v_A-cHOmTyC=<H<>e*Y-Sn*kI&fF33Io=XTDjxF35xP8>)P^1YNd zH<wc&S#b4zw~oL+)At>=lCS^ugl*|s3p@MYDt}&PHYmQ@oT2mbhHXcjX5is-4D-Zw zY_byf=Ie6KIK{R$oSh~4(ew2A@pmd@IgcN?eB-+X_pZ<#`UdLlQ9&8C!H1L{Ts(a1 z-U-IlO*<sM+&cLn&aJOCLr1YUDPy~4*j<TS4Q~JHO8fW^lN4;N7B6NE-eVbB|NHs7 zdyI~|PV9=mRsHao+Qk!$-1CFAx^KD(?~F>ln=~P2`)+BbNiLri!m{GI4<4SWJoCFp zN@kM6#s1_23_3pU8yA`?3mb2`sD3djWv<Bos=paCYVMzE46C2=#Oe4&W*6696OFkF z|Ic`GF1c2;Ol^{BjMc$g>5J8b90kl$m9^!{)`@Rge^kqA!ue@&*(|FMXA~a!RuIG% zU?E((%SdN>;bTqFdgZMVQCk(SPrAaEzQeH~?AioPv#Gz<#H=YWs{H8mL87{G_Tw3h zTdo_eb$raWM7Dd~x7o4>swY)wRM!<8{i3nz)yKK1(?e=Y7HT-JF9|i;<y(IIVZ?FU z7s`JZA5DAbzEnte)wC#;x6P}vgyvt%_^~|EOE2y?hjrMO_e$Hmt(oQOk5*mJzAmbj zu_cbfYnc|;!k&|hy^?#Dtj+o3S@SK+H&2T*FFao3_}sV)iQW>%40}42l)hUOAD+iI zhsUux<Tjg0x$p#m?Yi-Q7jsR#87{4sG41K<%@JpmTm<i>Udj37G+$+>+@ur9-VfJo zIQH0S{X6-X81_SEqRu~s6c(qcnuTfgd7Q5<;^BJ4f9B?m)9Z?qFUu^p5_?glm+`#e z)?Xd7e@`O|r4@Z%1fT1cu3qp+x>e|qr2Q{`(~A$;H!Npr%S$ldZm2Y^^VW4%E#{P~ z3)tD~wBnCUo^G0AsZ@VY(o!Qa)W199>FY;@H>aF<<r6S>@2vFpdy6N&uuU`wEpa@x z{d!NTgIfi=^t+@>?%cXQpB_AolCwB8EnS#v1+(kn;~b^uuR8fwvhXRLP}s$@$Rggm z#7jUnWa;s%zf+moWDLz#*jzqmC=yvSQ6wesLQqi&-~KC_1&Mh9p%U5k=Tawi?YO_w zeEpY(u!-CLtb#18Kg!Ce7kJ=Mt9mF0mll`is#ShQb1Pk3Q-6g1R$RCtLS^yYsLs8s zlk^w+*G3&!W-FMtD7-DLF!P&4aEysa`&wV`2wR`kGHc`?2`pK4?f1fFZ;3ffr@UDl zPU`I0D0ob3>)%_?wyVE8aCKsRb)L$ToK@BH^miPYC#D$EaxbH6-ENku%>uHe0WN&2 zghHPgR9g6(Uo6xLn77G2+<r>iL-YSKHElOmeh9wR^TNYRCap1UdGfqPkK@IooW*DD zQ(GOt(p17%$X@j?_Xg{Y^W5c*eI}s`cKO}-x9imk-h`kPelD#Bx0Y^}y~^*)S6?e6 zs&ru!dtbzRBNaoJLz8CuC|YiKmV8RaCj8!m08z07Mde?&Wi4)8z0JHhK5|YD-_>A& zjn|iMyj8`xHGWPdKfB#+IWN<OS5mrX9;?@Zm**e$Nr^hplHVc;TAtr|9<n;$Mt;-t z1&i_pUr6dt_}x{)pfp$E?UsPHdVeNXl{T}P-%EZKURZsb{aU5oU)E<PiMH>ay(qD~ z@ICkNy;kO{KM(P|J+#MixvjL3J!hM~TCYHeUUxyCS>{2t8LOu8@gz=G<?mG!>z{I( z*QhwPr=Vc_309ZaAvqB*4)Jw-hAhtS*uea_CDzFOQBr0(KPM+=b+Gs6z!UW+OBN=i z-m|r~2q}wuX#LQTvtMBq??S!{T6QXLZ)TLLE!H_0vUKN+MWwrD$sC+)v+&}FDfLfR z`Kt#D7P}PA(lRV8KXZM_+O3|GQk#!B-`?@V-|7w1^3<w1Oxl6_qP|}=eYPu5dcNoP zHs(K7yc04%N*%Jj6_seU_m9fE*pr7%qU$wZRd-%F&9SXpX4@&_tF;f7zgl*1XVJO# zhQySnOD=PkvG7%O?>+7u|5?^fA<*;hQ#rB3&eJD$DHNM&vUn*uzUWX-d8Z-cv}1<0 zS@PWy^Aj#lCq3zP(=dHqFvpjdYjG5Fw#kO&+d?A~Hn45EaJ=#9j1L7N2lGOU9bR18 zHlyG{eOb|>X@@3ru2;&cT&vI7uJ<PDhxFCV<G(}}y{rA9G}Ua?LBT$`-B*7*wJ-Z| zVz2MT)jjVsWGnY8X;1Jyclpk(6-s;h)jYZDwdNJ|UscNa_^^dtRI|xUM=XD(G~4pk zGp#jFPx!S&NqJheuh?_-lqZbWI_?U8WlIe$cQzH+zsIq@UEZ^*N`~|NLZ+~Z@|zf% zUdF9iB{j2oQG<>^%f$9PEuQB$b$`u!70JJx+bi+m^vQlUK~E2Oo}YQpQ*h?|#V*mG zbWK>!H6^V&^t6ZjZPSOeqXOqV#bZh$=C^H^6r92>HDN`Zq|n5Mg&EU04yrAk)gPI% zXK|^o>8T|xioN1#OY6Tx&YbL0>$PF#`=>&^eA7eoxj()v%xP7bdZFpYhRiS8#)}th zSkZ0SaklY6#-9}(tJb?8ZEf;Rex)0ArzEYu#^lz#=&%O`(~cVRudk6)*;e-UmDlgN zr4KH*rC<HAW#NL2Wxa0Sem~f2S-pBD^Uf^~-Qu6PJuusKO8CjL!-lTjN%bY=X%;DZ z)2ns!cb;4naYU_h@rT}wRX3Z?r-~SDyRp3UMxO`kQn6F|f-4WN_hS~1-?2udbg{5X zhGRln<~zNGDax}RFFNRV+pJ&W!9uBTLS+vE&+0!8Z0nMIB$9hjK~C56V#AhKeeR~E z8WowAeLEgsT<1SsX`f5n$BYMlishyCx^ZPvCkjsgeOGbnu=Nv1`vnSRHm4S@J>hwC z#zdwlehqf-l?!&=WAv6hTX~AF<lvRY_X%GPm7mZk5-3@GzJ0o6XI!PlK9<Eh-~QGA zU-G*_Y5vD$Zvw@8<o=}1Yd$Y9@!!f_?aO;II`p5F9IScwXk~=U)*shRQ=`6R3vGDy zZ;pEXJBRc8dG8-warkdvwD@29JNq`R+iq4~vMMcV5!;5hx3Y>ioH*d~?4O*^+DhTM zdO4n7m9wv?bkFA(_;Kn@5EoNu^E|mnbvKJx^(zcKmwECQ3b@WK5Z7Dh<NoT`6Sj*X zfBw9gyrIQn>#NH%C(B*f@WGT(*!jZ7jamt3G`ngi@|~%_wmN94!cw-6qFg6dGYbj? zCTBZrxMg+CaN)UQkE4u#Z990~Zb9?;Yjd{DuTo!qPEC&e>c;Tex6G3+%N{C!%UtBP z%i!F5m85Gs^#06y%=p(V!TFFu($TrT{ySodbJxX3FDb35lS=3nbb7wcL;u1y5B_Nr zPX(KEHr|VVlk+R?#;x!#qT0F#g~b}*_x<p-y=%R1X?@)X&mGIV_Q*eUxU7)C%RAe2 z$`sH4K@J`vnOd68Gm=XdYeb4F%-qUxIefxqr&A8CsRs9yX9%ds)`7MWEP`w!m^R(# zjiw~WQWvAh4LASjP5*G#O2p#xWd?WQ4L^>_RCxYx>t7OkW73w(lO}I@zgAX&_q0~P z^DMU~(uJ=kF(>Va-JAcppod*@m+kM|PwS_vU$A~ye;>5s{=0VF=JN;BJA{m{&fT?M zV~@napDO}{PT2b&-@UT>?``+BVVc+U5Al83bNd7LdmFnAOB6RZ^_{;n;pkn#KU>A` zb@oO4`QYE3HtVTUwZd^zX8mcoIsD!e)}{8D{n)lT&g{HYi07@Ns>@yo*dINcnX&Kb zZ}~@jB{tRuLRIx2IMX9<T`uSha}O66U3+|o_CbSvKPp0}bRE(=HM`b!?vBO2tX#5l zrM7S9|F`GErfxxTJFd6eTOv<baWpr!SuN<?_))EUfy*LK8Ji_$+`VO2Y7-uK1Wqgy z{@th5-!!E(*=tL|^9>GeTteTPyS5Z)UnooD*7<Z$*!;zO(4zeqUzSWS@5(vfSa_II zx9iUp?p8XS)OM6twZ`CZ=(i0M%^0=h_(Ei6goGE}d>FZejcL}Ja(4X<_ndc&8@(0{ z_4I!=L1(r8#r{%_Ch<4R+M~jz*rraX+0_zbn(eGQy)f2DzCJ{{+sU2B)l)}C)iLwr z@z&`Xy99atUas*nSXGj~yR9N1Ii7Esr})1w7GC0Np79$pwq}SjFok7)oWX4&w{u0{ z#;>chll-=O#sr+XyrnHXeln|U{9`ZvU0+{6T-rR3t$*4@QNx{v0a;5I&a6(`DgJHd zrb}y2n5M5~JnejXDYsVr)QKuiS>`33l~(h0&%`iJ30J$cIo-vBN&E9u2Ai{nvN_q6 zd}|-XZixON{Iq`l!OkU%cz<Yc`h;x07$vTEW=GbH<f-D5xtG4>{F?UWll+x%({r<~ zD;Lk3c-}30=UWrWnr+V_i>o~zBugI%G><9!#<RT4YVjvt=RJYX*Ij(t##q1YR7K%} zNq$q;NIX2b=;f8r>g+gA8}BPY-bZd;kY6S~;kKxpSH}9AyR@=5ZFcW^uvg`x+jf;k zJ66?Iin-0JxF51TWNn}N;f6s_@PspoqQ|(!>PuO!O72$uvNe<GVadyeSsokr{Z3Ey z%?POrvh0&}@+$eLWH9agl+(w9oP;i%l!#{)=ugPz*LAR8a5iR#eCW&#OBxmjYzmvc z`h%u?{Z!UBYF6(eXD&%xGwW6F7H*fLz6O8GADDJmDLp=r)a-WQ>jr6W#;xtzJGZN3 zG_Ts6EAZ~-VSV?l5ANKaR5vYZrBV`846E(+&;Km6l?<{TEef){vw-!vl4{tSPR^5e zdbD_1+f3Tn>xKNco_YN-;uX8=)SqWKd0m5fHg>5@6fmv#Rhf3-$-%RAsi9vE9DS9S z?JnE6=<<aUZppI317@62Z6_+@q+^%;(dyGLx$XFxb7zL#oZl<IzFV+J<ILZWn^t}E za|u~=*DjttE+EMCbm#dUtAh%Z6e3mBmMC9(!1~Vn$cC_*WnT{*IJ$UK$o?bgC9SNw zE7GDLPdl00*44Xmo_D<$^AGRPY0mwgIx!Fa-iYSuWe@4wE2`JA++farpL>25Y_CnH zsB*jOrQd13cP~#O`jTSa=7NHcuV?Z!<mMP{@-wM*@v%9gXZGdh1m#7~HGSn=KmNUC zli&5|aMsmFFEibz>TS8Oz;E%+54UR=-%ne0<F*ECYkTU{n`?7L)HaCq+9mHx3(U2R z-S+MF^qD#Tf1i4I?#IuYCv&1WUf*F~5f>4+?DYbR+)2F;nxwdD9jcPJ;|xth79VDI zQ`oxp<^ith+cNbO>&uQj-|hb6&lBN{*&Cxz1=nat@-ZvAyZvlS+kNx|qqlKil<v*m zT^X0AoIA;MjYmz@-9Yf9P1rVT(ZlB^ik~i%*7|?1r!3%Shw?3fKp$?kBo6V#qCdDS zGh)@97e=~1VsE<Pd?K;?BKxPFeF4c|)@Wr;_i<GFYI*#{wZQ1LGllABZg5-v@AmX* zu21=VnR0$`Mx2qF8vayoRf|Nw+sWf~%?+6?Hb*=jpIlHkH)8LOa}s(#!eZrOZ!O*U z=2_0sxpKNkueO922>RzOS*W+NWv;`-`>JKNNta7+1V*txRlJvzTFSdhV@=5A#z2<1 zT=)EgOvhFUiez2YDxN7mBSdlH%X;>!N<S8*2xg0GKRRCL$<}(|@&#euL;2T)7sMyd zYVW_KeD==HK$#ye6B7fx(nYdg#Xpd1J1(`_FEm<t=ZTE}OcV11&pv-({9Z*X>2Bl# zC8J3@CN@kf(w5L);;FNB$E-J@w<cZJ-FiXT%j)fdc&)o!X?!(ZF1sScf0+GSka&FC z^h<~IrR!fr@V_yy(XV)WYSYTRkJr8W=ElX&G~sEut`u`#j?H3~oK5uJ`>A4nk9V=9 zo?OTo`&Kypwn@m%g2#cgu5w46edze+qFeTbgBBC4b>0>vh%C%l^?r+~#9yi6Z*O#Z z7JK|;eS7<=wFv(<KW2WNO!nw-_LAP_+=xYMcfIS(tm@;j7Wnw*%$i1rMcom7EPRH0 zkFoE&t6^GEU2<{91%uk$bEhUZO`Ub^TTGm=n7#c^mR~O;530<0Hu=K0@A<E%a|Br^ z)F)1xAYnCM{q?Kuiz_zV-L|Lp!p3`b_cS(#*6cSb=ID|1OIrP0T6k8H`{r-8i~ScE z?zQROQmCLFYb|HJ*d`<0VX^nG1xeGsSu_{=vAAAe{rJwYKX2r|oH)IxB60WI_ot<= z6}i<lPGt{{|Nl)@J>=G`Md6EV<fGYNKRvR^N1I!6`m`5Dg3Mwrt<!f0S*X_^SRrxj zjr#n<@8%!PHLWd~^2_*sGZTlSwowPO|Fg!~>>5ukt{OFp>MA~4_fkEs!SNBh`idis z?#}(E7I%t>os=&*C6XaJBjL_{Nx8`d;qOfa#NRB4eH>Z&JKzW_<F9X-)ya>X{niG& z<dZFa`O5iX;=0`ScX3u-=_dEV+kfJ#^6iQa)XduP;eyo-8I53@df(EsR=(D`dh_;o zt@)z*eCbX}x06RordVWiH%kVmEoRY;E@sygPiTxe^sw`9O#W4|&L2k{gg*yM{#|)( z?ynOo;%2V;<{qlE(WP@^e7N)U1Hl%e^^e$@XWne<bW{j@cqv22-=$$wVBxFeD5oP+ z&VGnUeiof6H|6qg1xvMbO=d4X-q&aHeB#dTImuYL=5tDr-ZI~J4EwG&&-*7^lrFRU zVQ=lxj^|cs{Y~1&g+?O#_b>m@z`$~wg?sMQpZyzM7=JB21m1o0k>}0i(?)M=e3b4V ztM_&9JSY_8#&k^5*F1HOV+!lZ13%xcdu}a~wt=sr?7ztz%VjU$-b_*t(hs<k@mV{+ zB1>@LaVftyEVc5E!nOa7P0LB>IX^QdW9R#i&J)&gaXilYBGH_exLZ{Az5B!^nc4SC zUq#ljyUmN)#wcU)B2LLaOje?A(yndGb<ea_z1dwK&i-gY!Jebd2_-RKcJ<BE;jHR* zkiOg`y<qCZ_Rt!gXY6}h5?r?K7Z2;Mu3k8KUUuqjshy8h7=JB(@PIRvf79zVl`G|z z&3O=Ui8ol|t;$=gW+ool17T-hgob~(pnFTR>T21CRLzXI?&&Nq_kUYuDREus^pEcP zpc+-5&NhkQbdB<4siYa!j}k0?%=P+SdHBk*8&bD@*M433;B=H+)hGQd$^N&yeX{Q5 zPk)kTWNLRMZ1>cJ2MMzl&TKz7W45t=(Zj?lGh17`@B6OK`M?%(N1a(K$&ybv`S6id z#rvJL*}hG7F6KNOeCLL#C!gKi>EY={%JrAMxV0R!?@qnFF?qRwrFUe+w6EtxBbgY3 zb#11d>Ey7Gcig1;Md;PMb`PdQzo$K()z&Gk&9JRjr{bkgbMhu*cC{(&&n7ZQ{pdXX z@t9rV0*R7sSGVZ+bSUX<S=HN`6!rENtDJ?x{<|@s4;<XWB*gzb?3oqUn}o8gSsmYw zl^(CIKPr~7sQ$p#AitSEw&co(-2AqW+rP)<igLr(tTT->FNOB3J2?G{!10xa!n3tz zZPgZ>a%63!xOkLzt^b`}E-i6co3i(B3Nt>JwQl{dw|rs(I()BRG;&qN)a{;j<mRVh zgUQy<vV_GZZemF|Br2}Z`1s?^pw_J}fx;fX{%c>a-sP@!^2<M-6PGS+X7JH;U)k&8 zYt1O><tA4BAZw-Ph7+@d_&pp7)irir`X!P&-6GsVre1QYP{57lTDH4_x?YH7O$f{S z#FM^M%kte;cIURQbNrs#NJhN>%q?eKd8#>1b2)e1NyV8rWgdCkUOVzE=3mGUHKD@_ z7i}ZLCOr47`tW2nU(Lo-3#&tfwnRQzq^z$aa<@k7!>48GqGoNE?|8=jl+E59d{nM@ z&8-)ua}FGQZqm4gBij4+)5wp8XQ!WfYa}iCrv3`Uon$9b<Lhs}{>?blsdU>k_V_mU zAlvEsMS2p9E2i6>H598an)8zFctqN-ru1t@1`Q{Znoe%87Z$#4^`>c7(xn%_S`U9* z6?6RFo-);vgjX7`&m7lUeb~?cve#1P^0;fsxgY0Asr=*1U{26`eBiQ{!Ib~UGGc<5 zmFLP@gx|X5-+4Ev`E9uOmJ1e2D#uQ1eA(b^#-059==-DR_ErnMbG!C0Ma1P7PhQPU zg+hLxH2KmOPmI<rfB8C9``Tt{(8jMw_{OjKPh3RYW8N<n%y*O7+NZ5&oyYfdtBI0A zm#DU@)!ykJ-WiEHW*5ENGS%;pLF~msjjRolQ<t}kI`9+;%2nG4EKk_Kd){Q#xw=;t z3QFEg+%bVIBJiW>l<yZ+=GLwGysZ4<i)L;^!Rfi@3>E4pMYoE0d^VGHyIm^sW@YnQ zhlG@++J({CuOrrb%$#&!ukq)N=Vm3vx3tfH>nZ2sJFWPL>6+DTPIo@HxU=&at+&oh z6KK{;kk7PMsQtP+OKH=-9`RE)+d`Sb3d)XbdJ=ZGk?Wk|Ud4#N2O{oQB;;q<?8;%9 zl@)wl`VDC7m!MTWXz$mywlfiJY;P{HzU{DjBQdKv?kgXk-BUiMYd6mRT9C##$uLZD zmzcGMWYktZrmffRSl4==&???>Ao%Hng!m^HuIlGMOL?_3V~f(I4NF4$UH5x@vAe6K zXrL9fW4g^6EB?g7PZATvc6Rm$y!&%YEhEvQU`6zS^UVimU*YxQtWSQOuu$@ynk&C5 z%Q+9lJeDmL|68Wbd;5HYV!U2d+Z(Zu%Mx$gII9)P*BvVU@<A3u(o8dj9W5^vys{k> zEkaiIHdg=bc-G*gdBypIlxjkt$&zn=bB;UB61pX-YcgfxL#Fp$TRaNXwYg_#1nui( z-hLy7_1K=blAU|kW<+25@Fin<`3FV5dXw2<4`cnK_C9hgOx~Sa8+}ok`@HnhJtkrY z&w4MKC6(V^>n~OL-M}W{uF-|3A99@&mVc9U417Q9r0+)Ep3;AOlg-ket+OvTog^V} zWxMZ+OER8;PMI5@9XYZ*_iWLs-bj@Nl~W=v$X*Ov6MiVq$?Za%g3&C_r+myi&gS)B z{#I8nv~$y%{QNF~&I`4-HC9egP`-Wpn)lCQ0l{p3b1B=z)`Cwx)|a<$*k;~t=4IBj zGRM8PmAlyXxvi}Dud|D1bS^YG%-&sm$A;yrNc^)#_sHt4l?go-mCF|1w&_q0>sYu# z;g*fc-o<H;&M8<Z&1p9ZxZCwXr_YvOw)~(#w|;VA{rR_%3VS2gM>?E-wB}vphUrVY z3*UKq@XLDHOlDv`;JDm>vcQYZo@}8hosVa+wD0T_zh-`$Y38zZf?uylvtBC-<ng}n z-_EOg@y^?P3e(;@uFlBz^;X#6bEMD9?Wi=*m9=}8KHoV-{3)-!%}S?85&mtr+n6F= ztPPNn>XrNdOq6T-n*>At`uhvz>fXlpMR(oZW3)y|eAyhQqQlw2n_jxUPP%%``#IO8 zsgAQJD8|0tuzT-y+2R=ot!`+!&D!C*a^1tPuDN~EzxO#fK2}p%BD8kXOVD1l4zA<M z9}TRu4`yGS?>J@CUzXC1--Kc%KBzQI-pBS}`OSZ6iccMPt+Zh^c(BXo!@+O$Tv^W< zw(^G0-p78sQ0PRWf6~P1TYi*hzBfK?y6DHW5dH&;UbkOjo>rLdaD88{+@1u%>)WkL zj5n`q5@?TT`trJbnWK99SD{l!*I6+{>@`qeoqps-i(-9A;;9GBKUvEcZnT|JQ+7JF z^pL(;;hCe2nydA$iAe|C*)6<&`@?26_xnnJ?{U9daP97M-kBHXu>E-v9?tjetMwdZ z`^Y>NX6EHSi!bGG=Xhd$kx3wa|Lz$kM}sq~guN!3Y*x57z4n`tb-m#tZGZlZ@QwUe zrrx%i(r`QRnt!fw$|skF%bkSX1x1ru1t#+t7d5%YRJQO&y!X{!u5PEhBS>V?g01|f zs;7IG^w`)MOna#zq^BqJDaM2$EPY*%;JOyCANva{R@j>^>akg{bH0W~?p_axqKJ$G zi4WPX<*<iTS7$z0>oBi#Is?l}AKuvMTZ@eJ>h}gbc>Qt>)A{#b{z(O2Y!ZysN?tj4 z)}^kA=3$HS;uiF1uKYRqn5f4^MyZS6jKmf^EYvOwpS|x$vh6RSqG{p*+do=rJS&;o z@%=^2LhGmvogrH{TWy@U-YR#mwa?8v>CxQT86{I*EYnVou0MFoXr~lc-j=>S8F^dQ z9e%lP?xs~G^=0*DpT1fLFFyF|!uj?K71Nz0O9b9cQWe-Vo&Vxo<LaLd5$3yvXD)C5 z@piuI>3|1sg}bUeF5d3yVw#b|db-QqEy_j8Wn*T#`$qGa&8*6T)yG_l<$dS(oRGEs zBJ8oU{BTe0(i@Gxxwk%+_jk@-cy69ijf_X4wR5Cx@zb>hx0Dl8zs*qo_+rbq*e{Y7 zmj%Xg{1HE=^~B2LkXabRYVFk<Zl=B9HlBR%n&FzsxnjHDom;GY=f$j$q=hZwI_sSN zuaDQ;vg}QU-j+3gW}R}qboIJ8+r<wv`ZOOm@wLC25wu2}i^qJrbgQKT-~I5qDXV4M zBm4K&#U)Bj-@RU4vVI-s>G?WKYTpzkwD(>q(JxDm^<HD>>Q?*WBD3p__TC!X+PgPC zTmRkfwzS;p_6oDGADOl_PcMAgs+O}sJkLIS-LkX1wx$ohU-0^sGwJv8ty!K;DX(fT zdK5<HsP2rBx_hHcH~)>cdc)HIzR<91LF=~{I?C2gm3h=^^5&~fSl*iYueL|qVueph zn=T0G+4bYnD~-pCT630oUEA#+Y`3IK>eC779hQp&>boXH{#KuNXRi@YI2UWRSLgFf z;xl88&udXm+wt&Gf?C?rnD=5eA1^)2Rz7;j{O^p`kFzY5?`#y^JEfNCTS)MmpiBC@ z6tgb!?{)mpkfo9wku)RttL2?AH-`E!R{2E{a}Q+q@})Ss3EqDzcTZP5y*>EB-6EGa zSGeA3#+3V<pCbO<dP&WaJxfn-P&>RzeWxRjit%K|KQm^#IS1dC|H<&8_{sOebH;ln zP5xK9;mbRztmH|)$7gQMtof2t%spM&Xq5^te};9^9NBLwVbS~Ij<^RNU)baHc$MPS zta|B96HSyGnnF9jZBW=zrL*~DpjvP6r*jQ%);}t2Z&u!K7h3(3)%n=2Igv&p#R-y< z&L94=6iAoXN7=M~IFR<6;l<w4Yx52y?3mpu(Bv*(a^~`)FZ;4mPRy_f{dMKm#LCQB zQ<i<zyCf$4<5w(W_`&0IZJ+fo@mYAkgO|hH?fb^Z^|HAOKWbabIV;b-zU#jKr=;bs zdYSXh!z#A$uFqRBcgh;)-|Vt0FCW@)T5gMet_91JEmpVfx3;qe1^(W+@$QT3{yKqX zACptQrL25%xvk>)dcKM4X2rW++rIhSgb?lL?<YU?HlNs=8C{X>?EQvslF9MKYxrJ0 zc>83E-<3T<5pSMOtv^(hTzJLonA!fiG$zZ*l?NYn&1=!OSZ)#H;Ht1p)Nki})57`` z#?u$(-QT?Ot<p(RN87T=zdmdKHn`2^prlw@8F%0$<LCJ+1Q|t2_mo6)abC>JzT#10 zYjvtUD1JiAkp*1R&1ai8ys?^naO0#mzfA*NU;J+Ecwl31vidpOF2T6^iM#8qlb;&w z(sR4?XV%q6Wo<@R7JqKpP;PwgaqRPyi?{6irMDQ&(^YOw;uBE4-Ed|5+v5gY^7oh; zZa+TFd5H1JE=JXfULW;U{&sAVRbv$j?YX$Z&vNnB%eu^ZVYxo-?Z%VxK1?)i=nJ2& z5xk4L@8EOmgH7D0Z|%9Py(01E_qU82r?0(jD6PA?*gEFlmD|}odJ8uhP7f%Yp&HWA z6ZCycLc2k@dH)WJ&C54mnd<T8=zgKJ``ObUrdf!x7-a5aoBk`!LWcWWq9vzx<)=z1 z3(M(yZs==@ec@5R_4;ebVtEnsh0JTFENc!6`rLG5dTpbgeEl4Y3(t-=mL-{qsyu&u z@@`&T&h<4)g_U!*cTL%{JmElE^WS?mH}+reS$g4b&7vJ2dH&C;6XkF*C|-J7Q;09J zjp;_lxo;u&o;}UsfB$;jxo;m%y?ZTcvLJTpnm6;as?WXOv~SPz4L-Kb(ZxQDD`#(u zy34^~x_8FGh5r3jy>A0w<xD^D-&C;v_=$(BzCTo8ve;XE!s@||UCnW}tl7W6Ur<`F zHB0yhgH8s=d=)=KkD9iH>oOXY&$oS0To$$Rw($y+TA}I2LXVe=a~@qV=dsF@ubU<d zc=>V{*!nH|Exqu8BGbaTN4~Mn&@Wr?w6`+F^S)y4qLNwnKV5ICEq~{surAsDx67|v z8j)I(ZjxUbydFC4nNcz2^UW<4s&6Ij&*nQ;KAmW!w?6jDVT&n(JuhV#9d_NH{<F(c zx_&nMSF7tsy=yL>a%2eD5}|)<=69~uM`via9sTNI>6a#!wkcVRZ>i!xKC7>0hDn>> zFVp<M8)#ssT5hnVMdaI#c{M^ub1S}9)jxRh+U)18zQf1-yydR2C`q5~UB@$V>*g&7 z4y|#wV{g6JziHX_`5TjczW<&pKk<dW#Jelk<*rUmuRp-DbXB?c)?KIk_^LWLJBQBM zJhd{XFw8L5Z%*~0hi+-xo@phBuDQA{>_R|7=wh4SyRLIz6Ek%#kl{SOTVJD$`|w4E zuln|U-*4=_FkgX%eWmULPle4%OddzCKjQo<voltSk!_tad)tkm$=4afjit5*RXw>K z7{j@RXN~Ay7tZJP{|(uXOu8$0>sHm)x4FBIX7x|Hx@XI(ytNA!Z!yeac_MJxr`@*m z>r|b)?~|nWy<yW(l(W9}Y(b~{8MCu<deScM34RrMy1&1<t@1_i)!T(ns(u(Oj684p z_nY4B48^?(cKsC>=Dx40`tn4*z;gDwxMc<kjEbukZC7#E_wifu+2?3|tkABdLOER7 zTdtJ7s@|1!;m@MHSFsYx3%OUUUvC)hVJY>{OFgNtQv2W3E|&kV|1SBozxT(dy2Req z$MOW8o;&ZrGN0$I>wXPxzrd*_HLVpd!p?b_$i@AfqLLTLlfAvfR<eTmoL6||f=t!N zvkINVlU^uH+h={{>{3_tB&&w9d8)trUvoaWuNiA`XkvcCvI>ce7uU?rzki{sYdBlJ zj7Q-^RC<fw{q6oAtz{Yc>*^!lW^K+e?@C#1X54UVx<ZbHr1ckrzK^e*wr&o+BlUx& zyXMC6wFR7l`-1p3nD741T*~&NXKjOXO6-2lOW6k*qjeWbnch%$*kCWe<%`#p=_NT9 z+K%t@UV2v7?9g8y_qDIs!lt3$x^heS4~MPumh0_wwO+R@hcPT%H1NuKTiKGlYp<Sf zT_!u>TGM_f;m=*CbmCU{n%$q?w^Lm~c<cSvtcwck#P{FlzoYLNZp|KTJALgveJSr> zB^%ZsyC@wi^H%@8w)>~M6PUx7@7uS|Hnz`W<I5A0cWN$g4n65u7INCz=6vX;qUWrU z>}g-ktq$z^m{!7*!usXP_eH!bX4^ba*{(T#O1qv){j06a;*Ji=d%sLP+WvFtZH?^H z`g@;ET=&~|9{;}R8y8-63a$Pl;JQsY^7Z#wY^t?tr)JqV2yyNZd^0QQ^`F+FDX;Y^ z+Bx@^#40Vj!f%-<CvpGdwL5?JcJZ#4t3J~0Ctq%?HQoH%RQC(NbVKgjRLq$EmFeZ| zlLdm$SI2yOA$qyLUccC6=fbtxz2Eu;lsBEwwzg|t6Ufz_C9BqUl26q#W2V)-nX|4+ zZ&>Yo{KmpXdIkFbjLO*UoC+r>i}{}47H52O#`(&reQB;gwwIXH+<kTVx5cTCx6U0Z ziuxi_`EuLr9%;EfwlfV@6}6p9J7y;1u-ARkWV=8;zO=T9pFF%BR{au9Tq;&m8F`f1 zbvi@(iOqTj>reh%monYsfxe7J$nI?m_vF`Kl~QHCy-y~;IcekKxL3Pp7i`+JtH|@z zt1m}yo>vC#?w;QBKwr{9P35(8zr%6vSuaFZJy40=D1EZ}|Jeo6;_?OhWo7}_ndbFh z=4amW$E$l2&n3>;tFC@k?acfVWY_&jY|{6+TdYE-Td*2y)=L$u9=*_T@1(?6wVTaL z%xbTH>0TDB{bkCxxOEAU`Rh;1GQZotb@_{}Up}p?l_}LNDbj!SX#Q(8vkf~{cCGmn z6_XM7X&<}X&giRog{#lxzx#e|x`WfM*t#jAH(NXEM0xI+eBQ*x^F@#$&cBNH8}G9V zUr&47c$jci$>F2v<W^SJ`tRF>Wd2+dJ>0~wcCl#SDi299j-_+9RB*L!k`mq0Ha9ux zWgnN>i{z%SWpRcFb$sK)mrpQse90Cy|HX#oHevIZ{NMU!fkNhdgG(unj#sU8A9{G) z`yH=ycD>`l#=XDyt35q-?Tze}XFrZGOIsW~(B`MIVd2wx)wfRf+Sgh*GQ56N|45dJ zVYT7<t%;}iZ}z&hb;HER|McG!{gd5c^Xc-T!n<qL#lKzsA*Nqa_|C19ck{yCiu`id z|Hnl}WY_=twA=pJ@%jH>d%v0KuKsalL+L{n!@Q@8TyM8!{C_{ae#-xUpS>$u*n`AZ z9N_NX|L67e`hWKQ{{?L9KTJPk9m>9m{bi$8{l@(G4fQ`7O6*-i<o|y;ew_Eu)AN_6 zH|+cKZ@K>d-_A8pz9fn#|NF9Be`3ggFX296_Wv%^K>OX-C;y#&-2eYS)g<$!A%UA7 ze!RTj=AV_%As<P<isNkNwYwJcFi+npDZ{C}UO9RCgFnyb|7*U~XK_gH^ofACC+z>Y zoMYh$_^(*c{JMbil>629vmG8~YA>+;I5Xy+oOtpP^IsKgh7b4xV>qXOeVy?`!(&?D z?WskfA(0o~YcDf<^guV)GDS`I$IdftU7hEIMVoJ}UR(d^oq4swvVC#RelZ@3lMg7l znKj64G~>Qtb(sH9gt)TzTji|zRZ-1~E1ci(6i%x3QtwbdUJu&pK3Qsy>Y?C6iMnCy z?yf!b?D)axo&NkEO%?9(KWc00KB>L`_M7&*%U(F#`(16JG9x1>&c3ALW`S+xVciJv z`>cG;Q=9YpZv8lyGwI=s+`99}|K62&p!smujn2~{VXG%9ND6GddiO93TSEF}Ue&@s zKlD1JOCQ-UF3dI5__VbCh`YIZrgy>It<S4sVjrr9f8*KsFQ-H3L$Ty_75BMMbXh(= zeEMY1>y%U5A3u5j<)r7UmwP8?*#~TA;tReLb@R^W*QW|^tv_h1{XJ`|<NK?Brb<nD z#dYw6)}fEDxWr|9nQBFkesWIid^{y|t%G}i-|Wf0%`HJ+^mi!7{hIsvpLb|IFKaue z_?6D;4fkKZ*5@r>^8HWtij_%+4Z|u`^Ny<3K9(<7C|h*%dF%erAW_rXwO2m3e_0nF z`t_khYnWT)xp&v>*W`7!c0FEk_5Ovm-`DPcdfhr|e`o(MKldFoC(8bN8h+2rzIRH* zov!!Y`#%WoTrC&a@L7A8=(M{+{e02?e^0Id$h}7VHS5cDAFqaOEb^b0^<~>CHN6jJ ze`c-f<gVFrJM8Knu^rJXO^X|E+b-R<iuKRDwX0g!UwxGus+;4`v*EJ#)(ys0h3_sp zGA(}mi*v`)Wm%?wLtp1E`Ov=j_nqDD{&8<*=Dzy1W$OCZe=c6GTj0J_exAkM`W?^L zOn$y)vu1i&{hY6spWVfdhre#&7k!w`aX4DNkZmEm`{!#bKka&A^(lAmsU>xxzcZa5 zimxh?n(nLjx%%2lo_!*#xBIm|=luAQ>-blr8=`;TJ(#)BXkYT&QyXsTKHlc{<M2eD z@9!oqT0K{}aGk%qS?v3MnRsSfqxUn4!j3<j7w_43x$f%Q$eq`h*Pp!~x8FW(uF3=B z*H@;=J-PbwY^2oJ>Oh0wAFglzw(qb0-oErg^^x8aU&A#P{lEL`BfHOK>&qYRrR`Py zTE04br?=0IOY1k*KW=~fDf-<1A6xcs{g5C3Q}X|_eDRIb*zEuOtet)J`0BH-nqS*i zPrkZ*UDf_`ERPrM=M`JmHQn_7p1t*lo^zy}j6W?CAMvjB=>k9Ho)gn2nTIJ)s`wO@ z=2Eu!-m)y0vK^J)tUVVuWSMNWa=$v)UVd)H37M}irEO+?E6L4%V%)TN_uYv8Y4?2! zuO%3tpQ(L3Ej{^Li$(Glb-q7O_rz^m#oxE9I=J=r*5k5nU)R0*ye)W#mfWmsGgsbQ zF|mHRyk>sgdc#<^RpFtZ@40Pc5pb>RJHA5wFz=q}jfY%cDP6yKd-=XS{c-ufudLqg z|NN@5#kyYQ#O22BLjKG9&-}V5`_it)Vs*mi)9a@nj@Z8`hwUBf3gNBSpZDKXQT#1s z_*FqL_;>2vFUGSz&Q1DvKey85bZ6x8uy@WsI%{t0f2cQf`gUZo!z?>}yKh&y_K90u zTE9`{{nz*Bzx>RN`SN@F**)st7PGz1-SF$)uRj&__f6;Jwgn1=>o5NCI56ex>aR_E z*Z$Ma`IJB5_x*(XuXhLB3|hS7x$m{E(>Z%muUF?6=giA=TTy+n`gZgE2@`(IjA@ki zJG@rzzO<jC;pzJJ|MvBp)ymc@?|&Hd*QfeDyL(&yd-fBnzfUgu_vA0b?>B!x^t|r= z&iv-;?}smM`QP(D^=;DUx`v56jFS#r=&h@?cet7O{I7uZJ^xd0Kh@otzx`lo%C^*f zQg_Vml;+N?GH-e-{9|L@^M?jce@L`f9{>F@$1d;m%n6V0&FNIGzuf)(@ZrbxlBxIR z@wm_3U0mOgc;#<VeL<M)w>|cEI4oXVS-<d={oe1*#(yggTiQ2l=zl3O=SHKA{(W|h z-LGooW7aGvJ}E7BC*(1|yTrNG?m0Ee?gzrs`y}4USy$RJ7dP#-d?0opX-d3S`_j5V z-Dmf^{nazqpOybq6U4dy#m_xkQ$L%#bl2Oz68_tE<azbfzxNpao^O3@pIm$Y*~)qg z_m9SoZ<bB1>Yd*E|L-%kvJ2iWBHwO1f4a*zXKUc4^#a}BAJ^PIbGvSD|JD1&Khw|r zsXqTAyg+KP<I|)1r_O9#vTL(!Vc!hvGjAtacUh~P`z0!Ur|$Q!yHfXWU$<<HFF93z z_{^UVQ~uVsbv!x#_uY57bN$vw|JQFyv0wM&UjIk)CwuOxU8sxM|5q*iXYIEO{rkWF z(6)K>-?Q(p)Ykv6qyA5I{!=>h_V-(Fb2+}&?Yp<`LDJu@J<SXD@YTK6FR9YrkU!n3 z`d$2vLXWz4>GAciFaQ6>djG1(x}@hF^Gn$Fvbn2YTX^ELo6Gz9wf;+E-tRlyEX$c? zqjJ~n-rFsm$xHr3?KOMM;D2`iPrmJ8b)K!v&yKc-?LAyS|I`v8E3JP=&Ch$D?$>^A zbFJh|{rRdtPM7VoLu>X=i>%a7G~CB|>A(AC<M-G9R!8NFCY`$NbvACfv2On4;`;nm zi%!b7MY|c^kk;f{`ry~s@7t6<T$=FVm}>OB)m`_K7Sz|QfAe<Dp7|%fZ{<1sy6ZoC zvd}D9$WFLhtE{<L4NXlg&8PRQw#K|DQ^eR9zLg8I2hP|Sa<`D0u`$X;L52#(#>N(~ zZC#MNS&U81KsN^kG8>y2g6<V_onFsm6Txq3s%L3vX=$NgVrHUeY(D*?rMByIZDt!i zMziUGhN_~|^O<d=>NhF~tzzj_nV_&xwS^&xF+_xCMS|moKplk$rzS7KUQy|;uYry| z5sHge+_>@P-h2DayA@q7KChhr{qMf}?|*N+{@>QP__>c|@v}2Ccba?jbTDNYo(wTb zDk;nRxn*{r(o=;1tID*<um02jf722?t<Lp7^V6QF!<G*k{X3M3JHFI&2CveezcYCL zFQ&jlTuP<Co*Ik!bavkQD;9X_y-VQn<zZ8%*8lcC&)xZHziZ{*WlD+$dP|yK$S{Ar zveGzv{SSlBM|XDcE1s&Zcf0yz(^l~u4wY4%N?kJzH^1q6wPCkYmEhWlra#BlY?>*W zynol*<RkJbn`Bn5n-%O`<lw)^I=ueV^Q)$!SMB3Igt9#P>T>Y?q(wT*>VK!_i_f!O zy{9R7^H=#9Df*8(PES0v&$*{_htM{8qmzLhYj`dxY2Q?MUJ>Q-I>R=10s9Nbst&nj zzFTI>E!5pIRc`6=7ll<#uQH`gFO^kInzv|qCi~kZv0G-(TWI@5$JX8Vi_KmK{Y$66 zaMizE8vfF>YVN%S<}Y(^`M<xg`-@$zgZ!oaFO+}H;7gFPU+Vlt()9B4k{SCJ=)ctd zHEZ9({FfYCFO-+`)Gc`YMftCb{bkNyt#wQ9zbOCJ>=&fH^MtQjvQMhj=VZn+=b9o_ zx>G;uOibM@b8YU|gxU!EY3F5f1f&mf-K>05W7gE0Qos0SM4934mZ=*$*Yt#Ln3-cX z`~13u@Xf6`g1cMqo(kJ|`-auFM%#0*Zq9zA@Vn>lL7$ToCN1$<*?z_Qm9D6V@{*51 z8^6r>((+}~m#!`0RiRbBzovibEOD^XsMV^~pJ_B%HFBEnrcl3W!A}G~9sRWQlgm!8 zdD`)s@yhyB@~2EcRbTpv>!;bzvY&dDy?Y$%JnACWP2Ya9_tWH0#YL0<H2s<MXVagq zKhyrK{<Hhd6yH{ndQ}I>g(8~MwNy{JJe7Lt_B1SYYSHeZ<wessh3)jexxi+D%`y`$ zf9>5<w@=wVwO&(R`@V+zl=vz4r`U@G^9DIz<$dM$m9upDF7MjFTF<+y>*YfIGd4Y2 z{xh2~YJu3Y*6fW@P19DWW}b}dnzm|b=F2GcwVS6cEWK#7RcGz$Yrdzi6>WJJweFhp z>C07Fd$-(+l3%<2ntyQy>n(-c4Q4LVt3<P&XFbn+o-LlSc+19H6>p7lcbPfQUU~M? zsx3F8dd=KdUwxMKdCSjRqPLjddcD<pTc7n-DtF;FkLWeAt7DhPuGhVocOmb}w5-!x zW^b{|-MP(acjRu@-J#Jd*IvrIoOk`*g?CrNvdc5Gw`{$2_m=Igy|-#_{k>(CyLVe) zwL^74wMTWt?IpR_<SuT@h~DbH_4t<KTh+Hz<<7pgz%=XjR`spRw=CZ(d&@6(`nKq5 zx7&+tSJ&GvH_g<~)X!d@QN1;M>-8<yx0-J;-&%Vs`qu4Rb#G<g#=f<ETl<!It?O?; z>t(g;|1S8u=I^S%3+G;$6Sex;HJ`m6@+<o<xxY^SvhkP2-=x|-aclf9=wH;o>iy;P zm(Hq{am)NKslR?&)oSOuKW6@_@K=|=y!^#eoAzhRkCz|ykL|CQ%U9F!+M)PxUW>eN zo!<{-LmNZ8!i+~Bj&uum3+sF8c<xavtbXL(`Ce7d<B#G;mqoWf7&r9@D4*dlSL*Rl zzSUuv)LWr^(8GjB`J{*0rCuN9(=XDVNZ9t+ES^6xpU0q0V!EVpuU7KJ!uE|9D-Kj# zsJL+>#U?4oaGO-Wl)ps%?H={XSC(8@(y`>kk|#^PEXnf}SMBxOrIYD-X|Ct&$xBmo zEj27HELALREUhfnEEO#cEtM^ef9`p5>B*)iT_T!C=S`a8mKijwewMASj;@xjp025` zwywUeeXiTBM_W`gPhSdKa(CV~yIkj6*S5G{mbz57)OPZ>pj)pq^Ox+M`K`X}*73~v z<<FN}Ut(W6eVM=C{7H7Ud$qFNuKmfII6KKq)lxOR$@pTXh4GxdbAFy<Jje80;5o;0 zkLMBT8#f<`e72?_%qra~-TJwexW)RyxYv8`RW=u|{H*r8==s@m)^oGxez!EYkT0-% zQgdVH$)6p?-JcDgn>}wo*FR^z1;3SjX?@+ZKX-n%ewKc|{hYGj^vgMOpGdv<b@J*f zzryXa)-Kb`S$#CykavyWous@!(cL#c^oxC7$|qJl|9aBC>*tc{K5ZBKykf(Q`|}Sb zS?v{@JmZK-TH-$)0Wsqi*Nqm_4)7!z7DvjxKK*NRaRj6EnYK;EiH7<Kt~nyohmURi z_$H`KvR*rN@(mHQ?yCoq^b)QgNYZON8pGLLX&rsuY?Jy8vu*vgr)J&s>`XA6yi`Y% zUu<)~iHBCx(K!mXdRMncp1HoXe~;Mb316Ch4kc-Am|+%iCS<3Foc{C^ON(@Mo`r6h z;hkVO{b15PrtV61oo7)$86(d4ZkWOQsqCj_#F^($#aoZo-_d?Qy?*ll3DJp$k~(P$ zI?p^J&YYeSl)7+}Pvpuw%kC^(6Lw9bT>HDW^i=k#$EUtM#rIS);>_Pu?x)mGZ9f(G zH2i7#(<NT3Vq;mme>Oz%ckh%I`<z<3zba<2S-0eu`UJ!F%*9&^qc(=!N;6#jzhC!R z+y7HZcK`Du&hX#Xc~)5ew&mOG>q)!*d3Sqmm|^@VzN=h4;LxKMY2j<?f2I^DO%z%z z)O+N!Q1>3O;-p89jw~07_xxk<@$!-RLiMI6KC~a@`5JXbBhm1&-{u*y35L55B|STo z^euPujLSWd8)j(tem#_A$I`v?X11Zc@vGi8KC$A8OD~pqCm4qRTYOYUT&(`GMe|Xe ztj#mDTaVuPBrf(@IpR!RuGnU!S}C2h%rIS@v?pqZPtN&xC`rw7x5e)RNmg^3=eC|x zdam)@;yKIn)N`KaG|y$8i##Xw+~)bzbFJrI&+(pPZZ+NV^&IUv+bzPa-<REcf9FL_ zK*X7|8)ih$?YF*P{O|P7jh`8Go++kp{#?J|vv;Cl^xSvXPRB5}95uPq-Fh_Tnf$Z& z&-9;7e<uDcvDnD-Sz_k&pUReJ&YxL7@zds)$3CBY<|vi9FI{dK<Fn%)wbS($guG&1 zC%?k{tIG@S&(@bb4f|((pS^ze_l0w+eW$-<D-B*!xjb{xw*IrB9Pdr$Y80~m3~tzY zbdB-!ndbGC?{^=m&Ak1$ym0@;>U<;lgSDNN&6Q{V+`Hqt`eFKiC+)NH6W>>_a-N-U zV!ufB+3IJ_CiBE*zrXDCIktH2&iT(~=3h*hmHf`s`^@yrWj~cdXMLY>eP;EFGc}XE z&Nx1M{OqZT-`11mtHO+ZwtB2zJ!^}5=#!kMEuXq81AZR-wD?oK?YsGrcAN4xnQFcF z%-4D!wM^^x-Lmp2pQc%R+<cyvck^k<<W1Kn9n1@s&Dm!)!8e?JgVa}<zsaYy{?=|? zJ!|2z$mv_xmHU_Xm--in?^?d=+7A8lyAS6*T34W3I(_%LLjSVZr+UTvU+R^fEsB3O z>!n`cx7W{Kw11sHW$!zm)a|?LyEh$}yYNg&dDt>-<0&uK-OpTDWEs0Q<ib=h$+N*~ zmw1-WSf-V%yLalwl7&XI*ff;4hNZTsI#|Y+pIo1{_{rY2^Rxa&^PlRC`hM;2+WZ5r z|Lofu8N2%4(shQyQTIdnx9z+8Yg+cA)mK8F&3ZEH&8$be?wFo6y=!{f^mgd$S?_mU zsxO`TI_tXWy4H2svEDJ>v8C%~$7;uJ-+t}$?(D7EYhTA*x4Q0j-FaPm?CdD{vihZQ zYw~hpZ|~Ys+FL!ny8k!tm;Cv^Qy=Jlzy0p-yYf5lcmIF-@5tZG*KFU@-yMFp{?7ef z(Rc3eu6Oy9{(b$s`*-&5{$DV^#JTpa-uBzPTTLH+n_XY9+jr~NvS3rw%UQo>JEnC= z=DE$dm^No-hT81Rv~=UerJXYq(`MdGTX%EwSF6q2Z=Sa~UNWQktkdV3&rZcHmZxO0 z`;7I?)OYNfCA>g!`b^=oL7UIaVOgtht{tU)maDicGSkmEeb(kPTAO!mWq&vMOysHV zQ{HQ@UF!(bP7-|<QeV95)09gKY&x%IZU409)1FV0HicKl-c;Z7_wT9dQ|%vq@N3Q2 zY@fP*L)TV^#dR%pf0xY(iRp?q-2eXT-#PMA<lFuWT;BAed(t%4c<uK3KT%nn`JB0& zd7N3C86WdMW^ddY5&cDMt!wVY=p|xSS=;uM{z&jn{`|N7dEMV5&p)31UT<pu>F4XS z<)-#`Hm$4-`uyuz*E8vT9)Feoc29X`ZNGoX({ImI&(_!M+gbUq{4(EmnSZN(zI^{n zZtt4PE6<zz<8JNw^g^{=d0)l)n{_3BE?#>7Xx8gl>wng~yC`ly``gW?XR*4!_npYv zw>0%^`fU5?+KjIYd)ueUN0q%eu&|xqwy8egZThkFiS23fvnn)x2Yg;Q$GOkhmT#$? zj*Z2agntM3u~*B!DKvPVaO~id=8f!!`8F}%m(Q^L@V0S1pN!pyhmDUp_7*;v%6wk7 z;@g4C^K0r8ZihdYsrY%onSGvx!IuLIm|59__*LXRtR{STdh40(S%2AEwyH&59lzGx zKU(+rYkm9M>@UB+RDZ4hvis}SUsA8j%`U}nj$Ctm?b>VlxktANNk`USm*2eYmdWgt z;5GYSN#}I!<9n%`yLoMN4tI|J&2=00W@v8U*>X4Sv-_)p+Z@?TbEo8Xyk)v=k==N8 z;rFZc7yB}pnd~?#j{jfb^(p0i-rqOxVetM>!`}K^XVfOED6LFpQ;G~Uy_>Z4=TCMP zwwuk)PKOUED=l7>ob>pSuu$)kCsVF$`QkU%cvnhV>Dy^@FWYW+k2@c?_xG2#*X{q$ zVPuwNZD!+_jH-B7`8?j>&7p_ly&6)MSzl&se5@xIZ}V`Hx3}Kxh$y$oYSY7gcGhG) z-SW~n?cAzW^Xg-bmzTZU^D|s$$EQ`R*GKNi__*~Gvv=N(oUhl-?``_C&s}cI^^0G( z%m4rQZ1=Q{&GvWpKYc#mFQ?|q)o{7lCY7l_UyD}9SHJEx|6XhSbnf==_H{qMufA9R zeeX*5sJvNWmbK4%B44jg3%`D5X0&zwzwO~MJ0GmdURPIjcu{NjdfWP6cm0$~#gB64 zEV59Y`{=>$x|hwnFa4Qh|2V{otMN$ngTJO17Jt#dHdFG-3BMqfzvmW3mRrpi`PG|J z)f7{r-g;3Y>a5d)$?g{-tmbQ;nCz*2!}giYXO6kf+b_C(&Mcd|ll6T5((o7MTOLd} z^k8><%b(<xO?@Zg12<NhM`mdL46Lu0I;ymy$L`2i?pp=ccOB1fT7C9@V75eT`=?JU z8@SFqKO6SSNqfrFSMJx;GezH~N$pwY<+UJX)nucy{AbT=%<X!~SS6BsD#iCy<rJ68 zFWI6FFM1j-uxqlMiuvd1UQZ6bDqiujM#_D2hTYYRVpVfnHz<8o{<@=b>QCNG5wE!y zm(_b&9je;&@RD=ae#--YTJ#pq{i5~j^m?_YLaCFhI;$5{&i~2OdinC1WAhTvuip7e zcU|^b-e-?*lr9M__jsao#kh0b^5-v2>$H@0jl?fjnn;=MKl5nj!ApuC`Ily7F5D7O z*S~AwcGZlxF;VVcB?RmIwy<xqbU6D(lskFj8z!^Pwe?B%p8tY&e%V&jzbCdXKJk?D zgmSK>j&57O2-vFn_1{ZdWpPzA>2ieV?(VzCXDzLIY5mgt=%SeQ7NXN<y~``JKHI%v zcjqFBT@%(Vah>p%`BBM#-CquK6#t%jvxa~6DYFe#*Us#lye4RqiPNfSVcz_n{U^mw zu72`->bz45Z-l;S&aYo#zUuTw|MJ7)`|tjp@muzD=4aU#ehR1jmpgfUiOM+Y{AG^C z<zF-GmL86&52&j*Ym9A+dbT0;4c|A3>X~~F_br;PvMy!ieiN3hVV<TFE|*?<dr5Z1 z-`tqrOZ}JlFBN+!9yxXL)3{GLmCZ5w?<age9j{%c8vAltNw}Ma@PmENAJtoh%dX7} z+rCPF#qq5*YhzYl+jn*S<>?XkN=gf5izZjE+I{aX$K9<Clh?JVyj$LT;rCmK=Ie?V zw_kXaX4M$jk?6Tb_}1O&qMH(PEOyU`J*9P{G)HrH@7l!g8+zXqeqpGcP_o4~SZjit zcWO}U7MCckyE?hYw|ZCk{tEczVbwOxz5bMD(Xu<ScJcER;+4)j$!8t)ysi}!{bc*o z?@#id<UdW8*y^F`ICFK($~B>8nzyHxU*WzwbBEcg^DBK{S!b=jwaPQ9M{Id&_T?>S zZzaZFu72tI%lFssU+1S~i5=gy;Hg{nWDVD3J~fZ%B?hU2)@>~n%K`+d=5-cI^hSO( z=ACl4UShh#Kbc(a>5HZYoLgx*rRu}=O?R(M-s{tC;@MUkI%{R4?37tk#g`VpU=BOA zXsYigov)>uo!bsct(`J&V%cWLEwQJjAM^Zv>d3yN*)O$U{1z=?pMCDxg|M=ougTXp z+{+Q%tM7VZ@lByq=H^~pn>T&FS?I+5B5LUzz2EIy7wF3_saJmYdn&`ztQ*T^ZyXjs zysP$@+``E|ru&;qCnxrvN=OZJxSy|(_tnebyjY^0+u^1&7w#>4TjP4MI-7Zl_DhSu zj_y}tFRXCfu;l&@?Ww<~>Tfvyx=XSx(rvck`(>AQ&M=I3^!}!BE_r&=vfByXMTV=p zGnl4cHr-IQ`b^d5xX)F^^^K9P`3>JyPA93~tUA*n`{2a#@WQ)Z@|&N|Xn+3i{57X? zOVf*iVn;7U=si1ZSUPW4(A`CO;qybkXWmtOt6IWu^2=b$%{DooW#un4{vOkjn4NKI zk<FIv{I~4prFk6vBqwzyX@ykrHsd!x6!QI_Etv9JVQ;nJ{O<{QGVODBOqsW|zJJCM zrHhMCuDIV+)aH0jc;fHGo(Eso2x>mva4U8N>tDW<+9gp}o;!H1PTV@{!m{Qsrb}|W z%2E&N@gzPDxRzgHICXJbT*#4ai7fLL?c1=%`H8vW`;fHdjyf}KIrasex!};XeBUc^ zpG7*~UDM=O2Hk5mJ?8SOYE9h66295JVJr*l<@LDIl~*jU7P<97Zt~QsZ|gFSMy)&) zqjkRg`~veAf<2wiGnex#7K!u}^2ikU)%~xl{r%<L%<IbAtNqHhuZx@+Yh+dK<?rq5 z>1QM){OEB~@}k8`%7+d+IXAs^Y-IdbXSUk)dWh>ZiBw)+O&!x$m%U$4{W9hAx!0#2 zYo>Z=WY<p*h{{)3`QeMrSGScX(&o&&+&CxL>PbmOk=3mtqumqzf5vX^S*Ypucb}r> zF+Q`zClxLEa+88`uE+~Ne5kZ1sD)X;&x@(q&?M`Xz~XsRrJP@LKlfcL9c9IGH23pn zUO&m0#MiT2Z|Br;{89{&pBc2b*Of0pNx_xx?RH-!Zw9IQQ2EJ5DH*jTrv&abRaxd{ zL{`>bJn_-F{fL^XX!+Sy>CNiPeO4`>;`r5ZrV=-=*wri9&96%Xdjn5aJD={&jr1+m zF1wK#l)0?F(yQ|3(#Nl#Zc2)CFHn0W8zf)(bb8?OMH)6KAAT%-JO9|JQs>25ymD(- zM`v9z@0Gd#FH>m0c)j>yo)2D`txHQ=S5&dKSmbPJytPES>-hD}(g8~kRv)T<`ZC`2 zRKUC-tFtS%FXQo=8D+j!#925v+<&o{is_Lf7G<-}iWpy6A#H4@y0R`I$E)z>gdMqw zA?8_*$y*M0*!}gqz9#ouLVv<`R<=s!e~fRLMRU))c%(dEn7H_s%IS*w?x1t+PFJKS z^KMD0;rex@{l3<(fV)rZPPD}vGKbe%x-Hps&uYh(bNBj}7yqj=Jv%Sy%3r4o4O5cu z&z%?a%=hA@H~R(ni)=H4O>MrnzBV>~y}RV0)*}96GZytSyX;B7zNXT8Nu1`@GG>-X zi<M4nTeBnH?8y8nN7yTV^0E6mEvc*jc;e%{9gdTeq)$wo8yTZN^^>~qKJ|ymKPMmE zr=I&}spf?zZ<F!`;_^N7f9s!+6SOMH+FvF1(Y#;V=6rjvpQKsQp^D^;*p=bi4j-E% z_SxqB<!@)CSMkf*#Pv<xqo^4s=D%>t^lhonCVu?))l2H%<(8o7*G~s{O+3(ZsH*y9 z<-Gdpjk=mIdu*&rysekXJ}W$@dP37IU;Fj%)Om96>!bc`x%Tt=$&B@r^mwI>7p^;3 zc5Abf#DZPB4v8$@ux`t`oc5g+L0yUdD{pJ&PBOb1%CGyC_XS_^^-ni`9TGkI;z-Cf z{!>~P7vyT@+&q!Xw=L&O%SY?CF2^<*K9*Kd<JFT5iK)LMx{g&|KvX;|Yc5;v^cm5Y z%RQK77cSAto0+rgQJP5Z#gOeP_J=Q><YG7NT4eNg|Fhkn^f%2vA^+~w@<xu^(S@() zO%|IYGH05|oFf}vY?mquUd`NUeKKH{jkRk<;O>CQy`pba?*2KE`1Y>3|LdOF`wr(6 zMOc47b6IAG;<t&5HR@Li&wDt{F?NbxR(kZddihst`M%6|yS#*}vdijf(ayKgmM@rk zJ;k&q=Z39b6fG%MZOdcVnieYJeDzRB=;j+Th98-8_HgZ=@xvy1mdfc_Np}y<D`d&q zwM6TNP2?YC<>ZX^kY^vfQw}YSKa;Y}*{d`{c&*OyT{pBM%RN^vQE0zfA23tuZTZb7 zD|}8YNZFzN>-wad>RxH?JN2ZZ44-6ksNA1tZ&3eZ<AVwNZvI?%=FFd^S=-Mny}oD5 zmS_?6UAFf1FTM41FE2Tmd@O(avq<Jo8k=`i^GS!jH?NAQWxA58esbCFgNtsI&CK&y zRXTgwmxue4%yz2;|G6|NB}PZ{O8?69^*iUszNyM;{4KiD{`KvrU&A|i%gtBqj(V+f z_^M9X)76T<^(O3<w|(HTS!<Q=v^CpIRG)CpJZY4<ifio!T`~JjE5w|uqtgSLpZ2A= zI|MppHpIwouy8P9Dq_0EZo;a;IB7nk=JN!>>53bl_Wry3yh`QZ)x;fpQ_9Y+SB*O> z&~%`lw@Kq*$)mejSsm}SlXaw$SZ<2l65p%Y_Upu|x#_J^U)!X9uDiNsvq?*7S^bkL zHtGE9#X$#8I=zg#u5>>0uvW#%i!Y|{7kT>O^W@9AFY7in*(ENrSX21-Q;ysIf0fr{ z(~1{Qx0365-4=4kWcAT+tzWHYFN(<B7NF_3F<LlRGpK%AQpD!m>E6Lpxn7&xu6fDz z)bX|0?a9|-x5ckj&lP+<W$LxkZQ*Oy-~6XqyQC)L?~QN0U)Fw_`gMhF!oIIux4&NE zdRq0G>$aDt{QGc4-(bD%ep}B@7Ss48kU7KXh}D_0jZc$aSIm}6J<WG!@-NNGYyY-2 zHty2-sXgmz7Wed|DIWE!-v#ozFIwWTHncwW{8gsE#fH9bH>GH9VtMlO<Lnoy3*sH- z9TmKxdA|Stgp&1#&oS4D<%o&&tm2K<?Kybh&w~jk_Q~DVOuTvg&3pOBoExpr{Oen{ z;%I<QSoXR#EhjfA{k)m8b5qNLmZX$=*GYeJXT<MPHJrfuE`hQ4&h=ZWUlr@G=49<z zqT>IwSi9)U3>(w%@)zAYXEvn^x+V6{fB0Pg?Sx+zP6?SZCp`F47Ts~Fe|El`^TDiS zd&A!mY0GT?S6A2hY`JTC+tk`#?Nnc8Gt2Mkn=e-E4p83m?Mvm8xyB0@FANvkTseFG zL3NMLA7|G+lwEq}rfPti_TyPCys00ww$)3=tv@%fP`<eS)xSfv99CDQRO_oZ1?)Vx zbAofu%@;MFqu*q+C+wepI?a07E5m6Prglotnr?i4bk5&8;lIv}TiUw}em(l4d2#yk z`!njIzq~c%KmMlYuJq@uHT##bwzy|p6r8)I=fk5HKQHxOI(%#LE$vzVi!0@CFa2@l z&bxz=j4SK=&g50D?0a%<hwJg@p-Z<d^IF;ZF{a0|(XsOR5#z4y$FCp%FS!25@$`*y zPaLuYR2O9?PnIb>$UIqQW7(ZWNuMT_d2IF9+Ew46%l)ReLQO-CyGthW#KVG?pQ<JP z+fyQ}*+tZUt^YjTfK9FKprFLW=kmr%{ZFSR+1;IVSmO1>iS;IilWN6Iy1DrEtm&Gf zytq0<tRn5ln^_N!8^oxJ-}J6K`{l^KC&IGKGb|1271(q?yLdjEUbE}`xi1-o&Sf^U zV{6U`-}GFWcKPzgkCn+mr-PSHI+K)lHbL#FgHO$wni=L=GtXM_CfF7UN9>Rh6P!8a zp61?Q1#eHk_cP5KzP@X%k9Dl_+SJzDyRNm}^~(v@p!M_C96D3;{cU;~&*bFGcijKJ z*;R9|S(X2tWcm4A{rHFw(;S}NYp!3sa_@0_jK!AryZ%;p-oCT$%CEY$H~A>9__42j z+eF07bY>TP-mt?&Iq%7ZfA7kjixyiw{VqR!_C4#ZPA?7zy*Mnp!Prs6{rlVcB?6zz z-OKmy+nap8cdFB|%*Q#8m5#ZJ9{;;6+ji<d#=p+h$M{0qSb4Z*rK;QaUCa8+f26H9 z$$*D<mE19R<tyj)J8~v^PMh(HWm>}d2~WN(kkvW-@cgPw!&lvX@-HU-$k9<=_h-HS zrt|+we;E3-HXbi<3^3W<GL=W}{fF6$d^gtncFqtAm0UheB-m4J``o=%Pm<zY1R|Gz zxUj+F#ER+e8Qzg!N_q8n++8<!dQNf6lezmBJo%+MJ^aoI-q#<k@7&+<zd*jczR2_A z-k|C2ZXxS$|GLuldx3EB#qW(XxG#R$nf&C(f=3e`b*yxpsyJ2fx{GedKJQ(p|BL?C z4*b8VUZS+##X8ASs7mEex$YMKjQJn9o%A|1dbGZ+|8o6z>zBS4va099pR?<R=JV{* ztSUaStYfaCziR|@Yu~YFg}+ifBH|MI8RiMiouHl(P!M-OZ`lN1BW})b%IupaG5=g~ z+$-ai9-DN#yW5g;6<Xel-Z02<ct|mNiwdt+Z*@K1^Sz^}{>R4dH~XjY*iWl`6rsjj zGFRiLkkxCei8DF58lB!M1aFl#IlDM~Z`JCUw;Yq+Oq5<&QofzVPcE?X?4p;h!G|Iv zo^{r`-_g~1bb~wI^ZwI5xy@Op=T+;kJXQCNb=o<Rh#6aaWAeEacKc0;l{mVQy=;<f zRq%`J<!isbYq<LD>?^hU+j+0wHOLx@c}rOPTZL<H>GilF^I^)jkTY?&SO1g0W%ucS z?0;Pa1w9SDJB^mY?>KnQadXw{{drqp8RMazxL`r!#08hm^8H_MV8WsUmmD+=v|1h> z48FLra*aF3N1Kms^A?<xl$&+)s`KJUETt?553G4Ew@dcyJP9Et-Q18rPK)YyY+Ls0 z<&-0v4%<4N^_wvxVCn`vM^6r~O%_Z|pL8yMjQc&|WNOTz)*7Z$RXp1Jlyy#Bw9HAE zqO8baF0oW2Z|{y=J-HV`a*iBQjWUXR3{QwWGL4&K_G8nb4;`)E1_E*|U!L~nbv#+J z?_!p;!Xj2r=EP4E|9j^Jd%1jV<nz#+P#-RJVl{t>Lxc*K=sL-1oi$>2n5QjIF-zlr z?3`EP_5S4XIZu|b+*la5Fh;#ZH^}PbqAJ<SLwAduRk^F*OK@L|;rqF3lcTWJ$?%@t zCie3;2Hq^suPC~@{LCSvyVZBA*G1OJ%`SYp=wS2nf_POfu8&)P$+=$ObI;RnEe+(^ zEf`b3MyD@G_f&CUP=(6|5iub_83`$uZwCV0$~4bpaehh`{_A6ZvY)@jH~FBW;F+ET zL7Q0&^XJLBUyRC_arRd7f>f3{%r`IHoF{8z7{PV#poqIeLdGr;vx(Q-O<X+$W7OCD zs}#IAG5pOGt&_%S28MU4^L0<!2MYaFbv<}u%9(TJ^^DAguV+iQ%)f5b{_TO;4)?qz z=hk}KycV3tR6JRzH2?nA;`K8o+f^K}w7p+@{qNbmUR4)+z1^1YOL=cybYuBi|I^Pu z|GV$DMC5RrTR^k2afj-reQVmU9JcG=<+3~SFCi?pHz0WF$AiJmp~se7*zjONfTd58 z<DTUoH}UD~>f8~lcYKoWy*)zKE$g0eSX$IfQ?;(w`7T9S_fD<&8W>c1<)g;Sc8xc| zhb}1}YRyu9|Er+PW=^ZSJKve_H?Gd|dABI;$lj}G;`bWn#kZcWT9beOfyYLT$RCSZ z<{9UO2rnrpG4EgPtnk=zTj|Yto2uQ9?A~waHZRy>b^CAWh)e6Q%?+>L`zGwV*2>?@ zIBnbSlq`O2T_QF4RT;;_K$f3z+5h}DElOo>&SjRprnGv?ji~(GP4Bk<O9&NSyY!mt zwXYrlslLbEeE5`}E%<wd=bX?Q<yos<cKKdPOh2+tQ`6MHb6dsl(pB=zM+N2;tukyd zow;z&#RG43ZvEx$4x5+Mwfkyi<D~j`e_VcCUVh7>O1=D@jO3oytchB>VXv>MmG1x5 zyh?4=(pO5Qwn7_n9m1r;^xgJt3)u2$`L>Ge_itB9o<4ihssBG;xpy@4?;D+8?|VvW zEM)n*a@I5Xb*?|2pRAm=XT_c=ikAXTUs$22`LAuxT*F&Yvo=~J#~y3GrS>=Rzxr17 zzpv|!zona`vjn-7xe3bIO#c|!Htk_Y=V|GVA4wkru1*%QRh#EOi*5Eim1lj6ZZ|hu zA3b(-Y569{6^`G&Oh`E1GH>a@HC#%!6h*C?l9Dbzemo&e^tjjK2$@UUmM>jio)ocC zy2FZ7I7jxx%EjWh?s7(2TXHqjC~OUmQ+MBA{ArW*-uk;QH~SR@EI;DcZGG~}$rn>D zpM0~Vr0d-u*L~+#e%kSL!t}p0?oRE$o1&)nWc`g-Pv-}DJ!DD#nr@KG;;_tgW=+th zGZ&T=WTd;O%%3GVQP9cLdg<>eU#9HSOZoI^nda(ZF7r66^5pc4+?wSR|1K{puAgkM zA^hN#b?@@0d<pIEk*v2aJ9EUleNCaLxA6P-)9UYix|-*ywI|&v?BS%X>%z{@^VU2z z!}Wrd`xH4TNvnfKR~NkrkZ?O~cf?5LMMvz_BTIO%F*BRg+uO5=CcYF@QPVXPZk>~P z>DHf1f0=jIFf;wR{cN4RHJ|_2FFUnWzAk^MZN|mi|M97e)bz4jDWXn?>P5o3?%rS0 z_olioS8Z9tu0MMx?RGz~-mhZIBL9n%*vc18s(b(KVDR)9)j#_JBlf>{i)ViD_s&y` z_tD>apKiZ!|IpOEm$t7G5nAgOy)^0fjthl?M+3_}v$vQ|+x@3J!hQnZ3ih?~Kk66P zEv}VLxSvw#Toqh>@l)4+tLsIRw;fSpujjV?(*4AVEBMQXeN{f0Ii+hvq-VG+->EIP z{QZm<0_8u_4nN);c58WyPv?rBAc^uH5uO=w99C`*6AOL>UA}zCZ)f%5S25rJo%nQT zeQo*d-`lOy*32_~ea<@lY?Q9*`h=*t)$jT3cg4pf<?XBg{Os%ZynAP!KMs0hSiN|E z*{wG(>T9N-TGN=b#maT=>QgrrA2Tm!3v1Uf%brlbXn)D-{V(--zsNt-|M`BxGi##~ z*~L2Ev(_3%zP%=sy)|^>F&(Z*aV1}#NRdx2C;kbj9`Sp5W7grbUneg)nqxcX(TfL- z){!zlWA1Kq{JT}9YDc=}p^T)S-_NSfe8`asleesjs69WiUieu4=BM8p8Gcj-SKMB7 z#D07H`QxP@z9=p|Dn7s3?|<OUB}?v`)_R<e-zAz;`2WR5YfFi6>t8ors}5dV!kVo) z&2QqtiJI9?*IMpgeR)nV%yx}|57$lE4aNoem%=sov;Ud3CY7a!cLm3e%kS4s@I7h$ z_iK}g`>P3GPES64d3u{pJ@0PApT9z~-+x&cweUVGqjD41WH!~;Cs)qBRQ>zA&#Ret zjF+abT6gnGLUvGygZlp`Po9X_n%<mfdi;Oa2G)n4jh>Z7itSr+`tHN>vYYev*s3NN z?lvuQy>d&hzhve4OG=ZKWIQ!11^ad!*>i;Bo8+{Aa?_S9+7f+viHUniO<a^u{j?i3 zhyRJBZk(etZSK)cLX(Q#oVmyRZo_pq&MqA}?X&!I78$R<aq#FpuHDMtO788PVmbSG z!o<Fb-$fQJKQ`l-QbbkJ`Xz^!7_PC{G$+*UUsr9(k|jq}RK4dqGyhq7&QMr%nMm0; z?XE<_)`eCz?0=5;OVnu0l-)gf(phsU>+*xk>aRLa{&~^INvq%7Ty0s^ql<=0?>bx) zsu*5RjhV4W?Lps@>67mJUz;@PFSCeh+xN$w72B^g|K8a<F_ztEy|TumlbMxstR8LT z5;&d67j|Sy(6$+}=|+auNlObZRi3-R@g(Jp;T#dOK+AO=d$<MpL}V{2UurB;menx1 zba8WeoXY+B&F)s0j0&80I!^3Ns$S#L*IRg?kM-z=MH0qtpUUdY?sIhCpFY#3O6hX; z^PTypS|3(My!p5$?Q!@cOGR(f_~MAaPHb$Y$9Ri=yj$6@?_c7-+R6<F_v@>al+2Eg ze|X5~!(qLaWrgOVvlAr#`UUKoSD9oQV4Ih1Vb;J^AHFQnK6A$5B&Rgrc{i<fb^g?R zUp!ss&y&^u_ujwxr(5yp$0`|Ry}7pWHvf+B%kPdTd$wZZ+{c@GKWuoA$b4+=+UjT1 zp5A5W@#^vL<mjJWbZ~=oe)aaaGmBk5M`up0l3(-K&b`f%&3j`i%UA9_3e)H5*vK>1 zPT!|vqv$8Nt!ek>xr?8CIWb}5L*~QRT5Sc@rnl+xMN4k8e^W8TEAg9wvW~jX!M68Z zU-z|^M%3m<bpLzgVtOX$Rq&gSrT$Z%-1g^)|31TFuiG{Kjnj2?ZDi_mKD`#X{<3L> zXLx)?YP|jHt=Bh6sP4UK`)t>l9XI@UeUY%-@_X)^x6i)ImE33fsd9K;-HIiX=knf{ z`!ws&g5qV1ciUQ=KUQ#g=25l3$Lh9w?)`gi>)hA&^LnRiMK0Z<apcp?P51w^FTEMR zF;!do%iSQ||G^q&Y{l2JE=Fwo&-PHPp8e+Al-;3`>|0GQ?S86h9r3Je_1bpZ6V`7n zOP74CluzL|YAR}yaqMo|vOvO}BfH6Unp254f7F}(lcWoMEVNHu_^VvmlWJyA#`gLl z|7*dTqoH=M51uXaOzZv2qGN9V>#3&tr~cGyA0}I0*N=Zx*Ar}ZyPWOFnZJDw*&%Y= zO7+ovD}1*X^ta{TI@0o>P41R$^cnV(Ht#n4{Q7nCZ)QfPkKHTF{jaUwzHGJa<U=#> zt#%KpFxs6ORQ6rzyYDBR?^~juAKU0=bs%o_xoI;?Qr26)miue|sb<$QukH6{U$)6l z3izi#Eu*_)^8SzAH6L5Axj)bS%eMP;{#Mf)OAR;8`&ECX*F*lnz7Dq6C(`#VS^M(G z+X4swv$Ivceof+jJK_F<tW>^MhSmo<Vc##YeB+JnO26EAu*l}9X8)y#C-b|1$XvL+ zbl)=WpT`-c8|4lZD9G+$*>R)$q61?^9P_pXJ)L`G9QQBC{AFjwUMjdjN`v`b!10T7 zE6S!{o38e;<jPj2)YK&kd&FLT&y3CxJ(T@n&y44yQ$F`E=Kf&A{qXkH!euM(`&eD# zNEE-M9PmGP&)EepSJd|z9k*#K5T8<OH&35cmfPys?Ry%6|C&B`?E7SQ@5tc^=be_U zXL4ga-RP|#e{MeWK9?i;Zqrxk+bGwY9{codEBmb@ze`zeu)oQ_zO8S^Pm?nX6^r-{ z>-L;ybg0ji=WU9)vnT#l__KVO3w!!6tiRi^YD#c9_sr-E=Ney?MKxFGP0%-JpHZYA zdQ#nh?e<HrT+>_!E6=-)@tVHB`jWPoyyE@Y>;6-mSybb*>q7pgdw8FfFX%iKF4DZo zE449m#c$L3b9Uqi*z-TOlB<mV+0zg+onh*PgHj9Hw)1~YFP@ovr#|`doqmOU<5!Z$ z8m)v`FO;9(aVh4*dACTPD~~1F`B^{INTvL;_#pGaCcl~A>HHpn)Lg~LTS@<Tq_~bS z{B8)HzR|!&A|(99tBiYP{_;m+BHqn4Ha=L-DZpEDO>U|8-WNT4V(cdGIQQx2BkkF* z#jZ=ri(1*nzWBR(&-|F>w=P;=QIk4(Tj5n}-cODB<r?LT%ZqkoT)z8>eaocjvW7M) z^}gkc&lKL$dXdQ;yQIcR{AB(m*H=szZeQ3x*TcDf3V*_3qs*42okj-Jln?CQ#vFTi zVf}$+3)e+YT|40@d&&F>ui1k(ePRs0y7rmi)En8a!ZH_f{O>Gd$^K;Xc*^3xoBx~q zt!H}aT&nHs_+!Pd#>_?b+do<^+`d8Pz=yyk<_z79^?K8MwjDE?`}V@|NwLaSj3JtQ zua;Y_*nY`{d1^tCgI}hH{OY;dZ{B%L**|^jg|iatrN0(<P3%8lwn*=#^BR5zefg3K zYg;Sd=T@&K_5b>^Rr#sa;kSA#xTJb3w{zd%t$B3x`GLe2k1G%CtjT@wEpiS2hKmQz z%GH|oZ+-bZyF~v5qwaJEBOA&3wD|u!YoD0)-S)_P{^Qp3)AuKCd%RzG+vE5{eD4=? z-m9F;_=Mr6#$(C#vNv_#8~7*m)vex}{_Yz4tldwqpS^o4>T_c4uAi&6-Q6Sp_gqGF z@NAoHJ?GW$N1b|l<htv9t5wS`i>$ZZ9sR`hZ<4I6`WuE!ZiD~JE~-rVtrj2t(`L&1 z`lEZAZ36F=o=TgwP-fZGjOq!0TGV4DeZ>oBuQ=l@@p8k<KRf5|39^x2`p4(<6rL9I z=6lWuXZd~JB5u*Y(|<|r!^&fquW*)#f6<HH*(n#Y{bGe(*dF;H|Iej%-)4L^oOZNi zzTbt1hfB5>3DxE~$$#gn>c60V?smq!Cx0*h4ql>FzqsCp|3KvieS<xpB6L$Os-%=G zzmRyMY5K~&`hR$X?4ACVmh>KVE04B1X!qC2&?={MMYeQoP9eum?WDc`1V1lkwKAJF zZDry!d8hyKroKN_o&|6}6K6lXxu7d7`i0z?rKwJKa=Yf7m*3fXXlLJo`s5b-i%hch z9a&q}ZgI+Px>sM@u=N3RPc-*0qq)Bn_ITaQvYJ?~aY`Z1{E|D@|CaT^e8u+j^{a$k zU-Dh)x7ovc=)d#cPvIHw-)`aAw&cJiC;p5-%v?!#GJP0!RVzIDbD8a*R8=dx(%E+l zbvRRF4qsl%RVBK1!h?PzJMk&*2H)Q;WU3UtIYsk>eBY(gAT!;m_4-ZsWDn0$yliT- zE+sJirv&fhdhyrigRZ*mb=}9Y=JEZYi9tO7)U?8-R>YVI_A$L{v1{_b>nMEX<cH0A z&X#c=dk-WpRm!zIbo1F_oB1mqmm4=ZM>_0mS}*GoUHc&S-i>u<%NK=TcapED7R<XJ zckkM^vZ~uZ!ru!2ee$%)|A}S21M7s#jtXa;?<y~yovFPc?iWj4g|KeQ>a(#EvJ=_o zT(?`NlXAL2$sthe(%%KKj{QvX4Bwf~Gu+p<eaSZEuT6&XeenX1^M}eBAN_PbAopOx z`^f4KRsXd1+D=)2Humk~EWNK!Cu~Z%yxFf_?bCh#%2T2n4qHCc<ExarX|cuO)PeeQ z+Rj!zUkV?*76`Y#9P1_esZZ(W{99kj59lwSD<k{%_X}zM3mx^$?6(7(gU_sAS5x~h z|JHYV#$)Az1v@AFuX?3c@*?`jlU+ZRs@wFE&pz|KQQUi2c)5h)`QMs1%>6v#)h=20 z$d@b?pI&*qq~)_^&BwmSzx)fQMBkLNv;E+BzFw8Ry@=yyV_)GKc0Rt|*Ads|KhFI+ zk26_=zep?O*aF@5|1#I#OgXC<s=SZw{QhNrGPxfOryM-^xyWIgrp$z|dVDVpR0~fm z{*W`}gnh%}xiQC!cb@W{6aJz5<Hwhk$3HUaYw91AtL2<u$#b-1$=l~S$186eo=x}u zr{&+ib7JwbdZYjUS<cM8-njRG_W$Ky9nMQShBI0pTwcxp&&{^xD*J}xHO+ZyMY_sG zcK%na1j{(G3tlICNOu=lz36ukxuoT|QOa_*;JRa*zc<z%s8XG_?!&LC7d!aBe%K}V zZQAr_51-elKYVLZUHN0KcVo3c9e2Yt%XpT(%wNQxtY?om)TpU%xc1uNvw%L+0{*q{ z73>%e?7Dx8--2nu+_eSCQJW9e+Z*)%R<7U3|M&jV^c(emc3&xGb5K3>+@;$3o#MaT zSJLO}7s!5>+V}Cl`m5XCe>$t4GR%Kp+E-RRfB)UbKQxYg=GXUQu-7o3srO^bt`CbJ zp5~fA`*(kw)}OchE%qn(q<7Uf72Titd;OjAXaBTc>`j{g-RzceyWW%EH5c{nTU|Q0 z%_}m5(WQcMw|n!%=doL!Tjcl){5Ow$5WVin2f32CXN^DEuB}tJap(CB<7fH{ehc&; zk4pQxHq-9*FLmkP&rRR{H~BYz-NgURrll?7Q)M4`&wu24{Q1o|mEw|^?*GAmF5jyE zYae&|{06t}@yq|;-jP4|`$4OQBFhr?TW^1Cj=y!0|Htwl_CI(2&)l>4{zbigy^r(f zbyv9WKO+9V!`}A)=698UW=fnfm$y2z`@hJH<;_#HJ}2L=`MP!CW1GC$`S*5g>u6(e zuAP#*?A!)r$pc*P_i3{xu4#NWwWfCSmY{V{4Ntk&|MC2|z3tGm8As=BJs)#$+u`Z| zeE-aS%G>e!l-<PgJ>p0IFF7y!b=vRehwNL<xZDm;((wy0yCBcOxQ)^H_A#s3_1q8Z zLXVv~{e9=B>Cf~vUQajv*_6KM#`CKm{>nXa>|j4Ac0B90M&tbKj=$x?-`2+;(0jM^ zRB(FDGVg4WN<Go^`qT3-xNi6yyg_|k&^`ls(f0+5He6ltaj&~zdUp2S_d!WNZ%+8f zT>m}U?wRd;>E-T;vVUeC%VM3PaL>8o+@sSI%Z==3PqKSnzgXwogvEQdXxq<!^m^(v z#cMMTls!N3w;^e%cq!wrs{6sQO7mTAO0&K%`sjDe^XsW(lfM1jn{yXh*RQF5$;bUG zS=Rmg%fgcRLC)K6|GFr}ZSUN-IJ9Q(r?smm?ES5O?%$8dw5;96z89bO*)?Xw>)*J# z@7b|$Uw{43X;z#aIIrCKUh%j6UvmTe@)u|qF#Y(o{=D_s+Iz+4kKQx=_i3By{>PSo z|6cJuDe$%OT*}6@)&De($8U)}u_HOUroPlsZ=LZ^C%gMcs@;y>-yHkAmVG*VOXcNb z9QzkE=pCu(eUP5^DyS>yRmPMpM{8E<^4F*p9{Vxv!cD7ten&sw)4R61c)Ry(LwEaS z28C)r_f@o)H;Z#GT+ZKJo~HXqCuhnw(Ff1_)OwrN?6YG%v({`zymoY;czebB^nFi` z+Me>LUpW6_+})ngy5*mzo^?uh+Vh^Jc}gh5^jOo9Ez`w|f9y8@Smz(0xLWMQ-afYu zyHA^UuDuX_!hK)-9R9dRr?VwJlE2Jeu-@OHe4X>&)+sC2GWrEfxhDKCQTCUu$e!yL zjb6H+dYZ6(M!PC&qDhOh+Nsb7GY@|gsQ-TYK4<m))n{4j-#OI(*u8dsrQO8qpY^6M z=5F88s#<wp_}8I@^EP-?-|e2iw_=Cvg!6x73cQa0IH`DQ`h|7xZF48Ry>OL};k=4| zio(48%prPhYy6Hs=wr}dep9xw#P71zq1kem1wEdZ1h^~IUWniF*yrcDD}BaGmzT3# zy8K`KR^hUuU@NAVn)R3K_a(|Ueo6fAXnjuQ`ISD0s#o{7JYLl2@XJ;9HskLvEFWaP zt?>W!RXF>r=z>4@g)P{(a8<}8zNtQ|dGE*Sdo{uSjsMTM=(jP{==XlT@rQ4RxI`t_ z9zEkbzw?bMUK=h~{v-Ti=e%7O>#Mgf&tuG=`>uU&Zmrafn|kMN_wBmdZu_;qbJs<_ z?|S|6$@ku#y?;OYy_)~-yAu~|o%iRD<@?1CZkKSWEt}72{q9k%bS>AOw|Q^=p5>LB ze{%0(?bE&Us$y@b&${Rk{{D07@;6L-weE?2EVqtWtt%wB{LVG5+0mYfZ?9?Hw|>2Q z$KJ~qq*UiWGW}7YaroF@w!Fhf>x9bU->CnuSG~7-I`@(!*-H73=L3&by+~Ae^GxW~ znb!jEQ=ff!A9<$t&hrWPmrs;AbUi~TyOc4WKj(SC#%uh!R*r@m_F?tiVHwjuzV|*d z>-lnj*FQx+WdF#{^!u#y{W8~IWt-_M1zulGh~Jf;zxr;%tSqsgKUc)tYi)by_)F+V zkfBM>_2u8|RqB>qz8zjZTSo5b?-;{(G5?|)j(0>EH*&kqz8H5Q;X=gya%LyB^@;v^ z!P6?9mq?tKWX+g3BYf?Z$nA&rS9DE_RE=8gFH-&8DD`gUeeRN{@8@qR*Yw^y?@(=Z z`CH)=rD`>q`cKo9_kCvgYPT!8QZ)6hdt1f&r?&hVi}xA*_+7tEY*%}|_Qi|qKmH8N z{nz`wXTe&&{CbP0+3CCgao;+3|HB;3oW<QgcN_kb^Zy|$yJEfXA6vQl>1{=N!vC%_ z?DE+!l>It6WW`>W=Bo!kT-IN3aGHeCmv)U=ztew-yiogo{fA_qW9-#xj^aBqJs&H1 zOY8#P&%OV6Pw~6>1B>Hs8`htitoKaqQcQXE<>idw%v0w*|1)#v3E{H84>aR#cHf$O z|7fmgJ-hlxV=4WZdBxI(>GjVamKDY6*8H*$zQ6mo^`5%d_b=Cf=IK43_|Nxh{GP|} zJ%0Xv_-~)Zv*)|z3gXYzoPO?JzGU9_zlYkNzW*D&=S#4DZS!lX?_aGh_1#}T=Vg8M zG~?eJ?^QlqyuAMVrHNwOYo~wa56S#K_e}i7`tNW2_N;H8`{|;6ef<O5$=QqJ_V0OI zZn6AD?uW~Km49zIoZqQ*S7+bZpVC`u4}abKbMm+1YA$Kc5BXL9xT2UosS3R8pKbrL zfBvFJ(#`uD%d~&w9sM;a<6nwrj=yFPb8g(r#-H^fAA|}xe(+_m%t}f7r}B?=b?7ty zQ>(s-WFObsX#aEd``2!n-xuEd9dJJ43cL2Y{cYb4adqTN{bT!Z)3dxef6|M`=WBHT zMDJ;>dY~JT=VEK#^jzhYrRIzCGIl$EKY1~k``5Q#3H|ulwO^}G|II%xn7ZzV^_<F> zGxII~ZU6PRJhwjl`>gj2^FJ9pyX5$O-;)K;Z`)2OteTxK`1YSvEz6f~TY>wRat!M~ zJxV|ERr>+M_Q1G35B{dTj9wRQRMNowwW6`g>ea#XaTSl}z0dcV{%z~eiFJ)XHRrSc zxh>E4&in7wnlD_RWnVm4{wwRk_5;SgZzk?|fAqfn=grdpdUI!9|E5|W`91OPuE;qj zC2H1gzv8@|^V{>vSw*|fr}urkmGDni=l?Pdm+U2mn`Y}BtE-&)h=2B%g+EQ%UqwAS znjN?1(~r7mrw?@B%U7xVrTkX0d@&1O%kPDDSCZ~M|GIsreDveS-_riSR+eq8Rp#`U zsE&2If6CyV<DvS<?rm$2%FVgR^-jOO!&Hgm_s7Z-?wV5$AJ6ud-`77USI6>IfwM?* z@g22&lCru5EI)sgn>PGVJN|j@B@f-HZdzv_{gyg!zW-13{qqg;5B!#`Ik$27zO@fi z3+gBQcKswiK{=;uk6?97#ko(+3zBUEQZB6C=)S(Ozl!5wl>+0-lM6mKY76+W?-km? zQc-_pcAe<cRf!tjt}~dcGoNbmPu=@FYvcC1+sro|WId+Gx$je*qW-sK%V!4Zf_>sP z=Z!yn{IS_lDSllEOKFUUndLQUxt{d-3}Wa1#m>?G^Q89KY2z0ma$hAxZ(TdEoQpNj zsC*^sGrh7Fp(%!cek&R?9Prrnv+hOadimCyS$z!e>YqPfU;j(*!1sA~ysw6@Twf*q zG)u5#u9WZL4dNOXnl|wDFF&`z{?G5%8|T?hoc;dovQO_je{MhWiG5yi{`;RhII@4Q zoL$QKZSRr)>iUmnCp#`(JFh-uTCZsK@*mUY6~511eOy`izJKz%pMPTZPRYAweqj0? zhv^l$fiu6a(VnsXHAnq-(R3$ClM|nLr&^wP{CIYaT~AwXhIRGRDfO3+m7adh{pnBt zDZxLpwKtpBhbzuMy#Kn;p686unYs5G?O}L&@BX{LmxE<w_uu?c|NC#)@$bRuRq<c^ z@2CB_yj`lk>wo+E5UaY~AN}ta{R#f#|32a0!`hjjT7TMnU$|5D>f_2Ae;Dd3BHd;% z@5*^}Q~knHl_$I7tokgg1ztB#7TTM>Xrl*z^IxvuI`LoIuLR5e`D{}7?9};Zt8f3E zd${Pwy5Jr0TJMeGAC>vlw0k@{^XX4n`c~H5=UbRFmTcI%VdcHew`Tve^Sz-kyW!Yd zp6!lrEN(J9Ds!9TeNAcJla1asI%f~(>|m{bsAOY*KY95M-bw0B=}MRUs&b}nn0aU0 z$4ZWBRqKY+0`{+1b0&OI)ljg1o!S0Hw?6#wzO&5xp6$5)ajWMIzmvi1EZSXe{Qj;{ z^Y-!mwbK>j58D6qj{AS<dGfw1hX4HQ6hG~`CMP?8``*Jpd+J~F*C*<`R{VQ*bocvD zb<%6U3jD4YO)NK<w(;$``=9rupQ}vTleZ}0#*`cOZ@E)eJxYFk`?9m&`ilL!A1`*w zb(GFJ{ZTqmTXJfLRl?&vRm(Z|x4nP=<6dI-^VpX1_s?&icC9E~ZTxGS)awUE|K{#5 z-&^0dKmX$+N4|S`Ay;45zqGpeFKOvM@2HROV?W7ybp)-yvf5uIb8ms|(&!^kHynuw zi_(3x>(==XtL;mF#ut9Gs-C;|TwMD4&DW=2aJEsd|MmaVqxw&B7baI#{O{i+bW?M7 zz3+m#JayN9Z(lB`Goj}HyEy$%fBQ2eS9VnX|7aVuV!ydguo&-`HqlKNOY$R@D$IJ# zoBhP!dr#tAuZ*SUISVzcp7BO!Y6S0n$Y3@twqerDB-fl-Th2*8`~PX}Rq1Ibl-jEf z8}&|4-kaEZ=!s?hy$xQRpMvru7Hj-e%#T<e`$;bUhLh!~n*1AHrKi;LEgWtwDyx4e zsBEsje7a#;R;%Hjtgz6xO|Q6;3qpNMLwzH2Q?IVcb3520d2Ge0)61`&Gjt0*vvS4E z@W6X(7cAS9b8NvX$)|SH>XeQ?@cer$^vW5=<rg<c`;{;L{NdC|)6n|jRm-lV%{g_+ z&VBnG?IX?W7VR*c=QFjq$7u1kWoz~%rA3}CS)6rB@^*U2IiswPId9gSy46*bT#_4^ z%Q_={YI^upiO`CmWS@1jtXFSawkgSPyRqn{X=ZKr+pbJGyM9jTPQ#>AQ%;=}bqh}p zxvFxdDDdf%m7&I`o~1~-rfTFBrPj|h+?DfgP0^R5FYayk&nvtdlbm*wDf!(Tt}Pt4 zGlEQ4Ut6)(=#=*Jkn;zaO-`*?x6<WNip@#}-Py?@;aASAS@YC){uYOl6t-7$j&>hl zj&tkvSi5ee)_m)o)4rGe3o%&|%e!FeX0`J(qWcOBYkF7AGEHv0xYOwHiW!!isoPK6 zzOK*D7QcDA@_n|}vk!4aALpz(pq!f@`Pa4IDtytjTU|3_rkPG%v2{<@zcrGfsZW=4 zFFbR(l*j${j*zo!*UpR1o)UiMagy7-m7>P0{HF()SGDk*S}GH>S3t@+cqLPbMd(GH z1=GX=wt7hRMDQN^6W8{|YvN+*c_J5hV%U0}ZasalzJ95tQW#@Y<DJh1`r`k!?@K+= zaK7jGU~c1<zO7%frytKaeYO8sXVJ5Y*Cs2}y-qKD$5HAgIn_kcfAxnwUCS1%>DjOI z)F-vX`ThEg;}^HazCJc5ENJPAaLEAelz={=^rmYE5+oPB`yW%c=St)v7ykPZN3;YV z3mIpaIHf8*TUjYqAGFz(vrVIV)r-lE|H2OjoD+JxN@VBmzsGfd7Vk66U8tz^yyoJy z(}MDi`}_opp8N0ay0~tU=e>O~D)W3qgLIsuH%$mr$yz1ouhq)q{@5=3%L!vWwquL* zzaGpG>Aol7w2j;0IhXCH6DN$>f?cAsU86+bJyqHpb!Gbk-ypW2ESLJ(S$mCUsiwT_ zoZdNUmFrvM)-$z1^HolL=sm%cZ=b$(>!HIBv)z4n@44#4fBNF1lZ*KJZJu?P6?gtA zmA5IJS8kLwTU#YaFD=a7v!G8>>5Ak}V~3q=exJ7eUVnPt*Z41gLtZ}3O^#Roa@u^F z-P@n5<+faZd-?X&{dXlk&a3zpq+S2&^Gj9z`<Jg5Ejc4@yIyGXyZ0sw-)sq7|KZ$} zzR#`RTg84p<MO+At1|c28_o9Ta~fspmpk9J*?0Q>AEv52>CHP79O|abV|bwPFpuFi z<4l=Pi+iga)+MuNc+6P9D>!qf^;tERUta}Y#=buh`=@8mRJ9;}mHb?Z)04NGS+zak zx>dh;e|uWF_?Cl@D%Z3>RTDeXpesE=<Ak&n;~lOw%=4H{Ofs}<*=988<WDm<6H!~# z(jE{H;3zRiwk^!gC7*d&K`qan`3!X*mT6>MW$q2DkNeBqq#ahr5aYPxcH_|l!Ut|Q zc!lm*&+OyimZ3Z^SH<(5Mt;Ty^;_IIpZ;#)nDC^2w`Rx3`b~R0<1S~2Z;HGvAu{W= z#)i}7L4pc_du`^-V&FWwj_J16qzSbV&ez{LwH%hpZQNP*B)-p0-`#oI;!|ID7z>s& z*!=%=>;gyJpRc@*2b<onYMW!@zu=<W)MysX0}rQaKZ%^;)cMKj0?UPy3qCHG{G^CW z;BAQs+s$I}#dh@-n?5;M%4p5i5I-SkkkR=`z_KmLb=ywf#(7oG%u3!(>Xzf5w%BEw zf@Q-e2i;BgCd|%wGfmd%$7!jxb$e=0OTBrxv-*j2%G^T}vJHz|)!5!n%$10o{o>>d zw`_-Zr<m$1d3IT{C3(6?OD?hT7BN}P$STTm+WDzP*MZG1i)>n(>%~rSHswt+4^Vtj z+xxPx(|7mN+pO1f_XLF4A6Oj4EXB-JJezCHCkC6f)AJ89+)>hszd7Tc`gE>KPtQ$Z z_L%TdsYQ%)>3ZiCe2c@{C$2i|adlx}=>@w<`G+RYo}eDRZ_=u#Keq@)v>Sx4{=mjj zvYcZ{*}1!#?xzC<dTPyGPEL@jznsDQM7KMOgH!b8BB{U3#q94IpW87_xbWlFu@fuq zth!qyesSuWV=E%g1>9vQy{qhA)yCE%SmW{SM4<qSxX+$B7X;=-#82q32!G;|bm{e_ zIz5$_wlA6O?p(UvQT(fI`n%7Uw%c6Ene?q%t@VrE^0Takm%=r27JboN>+CV9%v-<y z&~J|^b`#4!gn7t&TW@6bnqud)N2WwQga1M-ujhKTcN5A?nijnMZo=a7;hdMgSxQ<p zb7$r~hm<wu0zwm`C#daJu=Ow0coe^2<%09xzEgO9$z+IROb+p0-(;uxwZ+kI%C_p4 z-j|GHjxJrkbomAub+2CD#yy;0d9Bp_O)}=#)ZcTM7ZF(Y$oSIZOJQA(*N#hFN}jN5 zr=hK>VTSps<V(&$xz0679*w@Y4jkJod}7NyyGK);mh|%OtyI*Oo@Xdj?xnqSYTt@` zeJ1YV#}60zMfqKy)1Io#ySw?`vBPeSvAbB=Qs%b&)Yd(|*IZI)3wr^B_R`r>Q|^6b z)%()<-Fs2}(H-l>7Y5x~?b=bWeY>r#o)hy@=?oTyg*~kYloAXJbjupGmufezZdl!z z?c$|tApYR@-mHR<=EYJnSDQe@gB5J<TOX_t+j^eW!d=tC>tG;PUl5omn9{U3q~OE1 zX&_3ZaWRLC>jMoT5W(awXwk(2A`a9Cs#wT8C}=p$$kz^`*ezt54m0wBC}nmT%LgYI z-TOcUpGDDuiOL{?xliU`V#8sEc1Awu0*MC(2ND|&3&^lp@DxZi9p>Y+ws`Yk12=?f zKCEZ)CaLBb)11YUGG`xTu(@vr5ylp?4qns&5%oNMX_^1bD(erPPPoZG?Qg<O{fKYP zsrDdZKUC!X+p4t!Z7f?OIdquBnCEQg+~fNomnnbpgIu9krs5Cwe0{Kj-QCvW6)T81 z7|7pO1ttovaQA(E5Wx>3^ewJ6C)<LEy$>SvMauOKSpF+s`lr9W-fh>k-t7r%r;2Un zaTLE;-lVsrpJi{`HqI(jTb&o7C36>q2jx3H58kyv!~a5**Om=!NA5YY3K}pfH*`8& z{U3bm>JhU-mxnVqKE5k4$9~ZjRp0cvZ*Lum78X*K5D{75%d2I_Q0TDxkB4V~iiPM& zvlY`FCQj(mQV3e=6}og%oKk&AROMc=mr_Bjny)sVGPRxRoX5LpdEDjiX>VIr?JJ#| zzwhSveKXDHNuIB&Il(ZGL94;EL8VB#!Jff7=Z?gea<BBI>OrnilW%EV%I+*>JI6MU zMXPbEL$vA#s{>O??72HjMW%^;ida&vP|MxW&ap&uqW4C_4r{j8Z!Gp4yD{Tp{a?3A z>E+UeyTq1HwWyU@{<5rW)~};p%O|Kbw*_CmAwT!Y?1mH*GfwTxi>JQ*zC+mdRP3%- z7bh%a&SzfLkb1z@LCAp1gTaJBe4E7!-{cK}Pqh@-Iv7NF9Dn_Kpq=EuJ?Bbfhu-x% zUO}7Zw>o8;iuC8+5LCF{IhXa<&CatQORVc-6%GG{xy(O&!j^fRMGf~I`^qni563gv zmi~~q5UO4#@nVzk@80FkUzi@&=~&%;z_cg-iDr8|%gxGm{z4m16*1RR8K%q!vWwJi zGF_8eYWGQLCEt7osgfUsA*WT^nEjbm6lYy$bNF_3fn)ybD_??><?9dce{?(GkN=B^ z8FKrz>(|L=I2XTkRX!0ee817+?A#K8uODhwnB8!zJ2!nR`=96)-C5dyr0Ztbd+jiq zA@8(XzC(a-|MDGgW)?Qwf9hVLx$$WCAD;P7ga52zD{GH`xcY`qQs89U=!ef29P)n< zo55$lcITqb<v-HzJTR<_i9GsG_4uBu$(^BZ7>!=J{+IYwZ@zA)#c_R=*ju?rmhNBT z`f}5hiE1jLQd8`vuq}z(>Hcn#^^?Cv0n?r~yqP}J=SiH+F4yDnPSwmm>KAz)=wBKC zWVgh!GrxCE37k36_=w$u)0=A)oj-qDovmWO{6@Wa$aJ>z@tba6;n`aKNyUEd#{QR; z;kRaPnp|~n+PPS>)l=*?)gQ>(tRLgG%y;^`1uyIN-z^rJ^W@**e^v{>{Qb?Z+uiaz zZ|R|x^G?2dynK`Hq?vB3-p4*H-^~2&`p>4!{{{&+7tgpUx#82d=d4e=BGc#UOgVim zl6_L@wZG<(>3Ljl|ILo%PKkD6+q{!GMWv0!$kJJ4%E78hj*>kSmv=iAUT~e@P%q9i zam5AKX2pe{gRg{|PmS5OO2cWf;3iFz*;1A6%*Je|(pFzw5wMcWG|<&IRFGF%NVJe| z5{tMH*ZtQnu5-E)zI~YIlI?M<T=lWiwElOQJC?t+y>jJ?98>Q<`}IG2{IZpwwtl^{ zXV&b%;?E6|zfVVBKm6^krRz$)DHj*s*!SX0{hh6^Pi+2N7CHC)E$*zam3?cr7pz}g z?Q%BkWL4g+HS455N2VW<IJt6j<mzcwiOc?rzCM_z^Vy~QlwU%s+A*)C(K{}`@Jn1{ za?C4v&6J5k8;i^f?#(w|ZFDk1eSJkt^6w^t_Vi!MVawLPex~C0;+Koco(umE`M(I> z<iGvR->hSN^^6y$dZ=G|(R5yNm(_tgHw#+D)s+6~zqs7Cn)}S%tTvO~(-v^_uRncz z;vrSx<z2aFw#jW)iaR8$wo^LtNAvGV414Z{PD(nx`pPS<>8D+NPE}2uut!$^$=k&h zGv=u{u9&%ob=zUz+2_@Bu73MAXZL5WIaVf3(+p&um2|Oxl5)IJTJM>oxk1J7j@Fbc zc6K-WzpV2flrwDTPu@N^abs=T_UvY<cky0Z9~Sl}?(TXc)6?@vGT2k2YfWWNiMqn( z6}oC-lf7>RC22|?5YCx?@Wk|wfv<S<e|vc9n^`k$QthsI&f>i1{ak)Fmj|k6UhG;b zzVgNT|7B*mWxw){i%D-4bN#Bi^jSm2x1_~F5}f)~J0sWJ(NLL_8hB#$k=?g_zv=Bz zej+cuQvcj^MI~!-MziU1!8ZPr3l+ttHwW8j)gR;S;XPK^V<?-`WtjT1kj<Gxz${_% zgqD=eoTs0iKBPAxCHUW;9EDbqoZf%M@3oB=Cpqu?`~832k=fzzEWh6?ewX?E&hL4G zZX7Q!I38K_ZrxVZr_I)U_xb$)$@cAQH2k0P*S`L-fYS~}#b<4e*-lNb^fmjHj_l)m zdhg-Mi5pke_XgYT_|KwvRo~t1J74|p%VGLXoc696!RNmz{$KEI=|{nqHgCp#Rn|5J zIpO;4zuy+j-&?D*CH<uQw!hMM<lQ^6CFV+excxt9o8Us(`>o%)j{T`tlU)1jHAnA1 z&Ihf9|8HC{4|}%GDdSAjgpadMb|!FaywP=`@$r(HqO6Qhg<tFMmhGq)dl#<ISG?%_ z-}s_4U)Oy+s93b`L=0o+)V>mz9~~dI7PP;#ZU6mX58qFLew``D*)Q;fJr0R!i~bn3 zhx7MG#v1m|vd^l|)NfeNEp|{bg-h?C@)WL8r_~?UTz>jxhs5+#sRc7*_`;X1zHs&7 zt76`#d!BN}q@<-~{I*hAU|c`rux3EEa9p$bBfCB9S+&Ahe>JaUi3PQkI4;<F?cA!X z62Y$()`~i>t$22MX8f6$89$$$xjC~sz3<$c`8Q3Azn)n(v#-N6sdL4$&Gt3F57+<u z&@TV)a(jMl#lOST?Rn~VylF1C`|<I2eck{5_y6C2umAl||K9%(f6MRHzx>;N-@g8D z+}+*$D=H=$|Nr|xQM7A))x3>KmT^n3We5vRE~#?fbTMUHMDDjKA?{ICZfVmVl<eGG zY_qfSCu^(g(R-6FZTi%8YSpV*u3JmL@^(v4|1oP;bkyxz)5~<C_bn=Zx@z6KtJ&Aq z?aun!Ht$~VY_t5EyVjnsKWg`lpNEgPKZpO#4a<5fGdsh|uOS9oUeCH){q5cD`nRR* z>+CCDv`O>dFL~nazQ5+pv&Y-#?D)Fv_WK>5*X@44^ZS#Pzu(nAICz<VZsm`O?()Ce zkI%38v~v0U%5U1~`=#pM-TACv^Y-Za{a-$5->>*8zyIg0*UukIRde3uVgG4+ZoX4T zed}M5g(rgl1RKxi{II^@&l!28a>eQE!)!$PtIB75&fzJ}on192Fa6fW>6gQ7R5<S4 zRp#M7-uH9*|1cX9jpl>7FSGe>w_RfF(`_<hoRxBm?a+?3``2%^ICJuRz{1~_qSG&{ zZ;>sY9vyCD5p1a&V?Uk2J~5}5J3#UZzd(%N=Z(osTV$Vc&v|F??ez6bAv>8b`^0ZW zbFI~R%Ps$=|I#NJr?m2HiR~?ck1cx)O+sbD#1$9vzpAn`6kPl)x%T|Z>CeJ#%o$^+ z%SG6zaq0)$%+4**uhN_D8)2hp{9GdCwBVjYL0UXM=QbrDpSElIuD^d1-{jd%@7Z{j ziFZaqM9zVdAM>ZR6+XORxIS7ys?Txy!U!8tHXH2%r(2(=?}@NE#5iYqeWZ=5q+*U? zJ8!|<ND;F`Cu2p-M9<yU_Yb@gQ^7NRZ={Vp<DBVtBW-5Ziystzwm>VSTWoR1`E5HE z?ps$D=v$gv=@_?7Tl;WMP$B25L!u9J@7nGYYmsa*7CfEMcJwJnG0!uP2d6f496Z4s z`bnx!Jv>U6MgFG8Qm->kQoXZcR$ukZa-6+Q$%ZS`^lbc8uFQ#E-3yw2YK3YUtzh+? zmH+d8XnWLJ#}jL>xYqmm<>u#C1TNe;ajnMrlr>_u=?C7$_$!BpzAW7RrRVn4>~(9V zoqBMtd9GVJugv_V*S3{aPVdn<eO_msUTN{MTF*I)cPtBu2%EiML*LfWG;_hmE7PVY znxs9s=_ReqzuA6INZdKTn5qf4Q$MFj+}-Efowe&Vx2@&31A5`EiSxGW)vsT4Fva+$ zUaZbXN#oCNzwPmPEc9;UdAC(Rm81^twf<cFN8cdL>WK?`O;wB0WnHx$msf`FvGL37 zV5_?+v%~9wJ@XyLpvY@1zf?cki=GmA$op_IQ$i}M+1ck^+R2T359mv_&6y+fRNRco z{7RmFbZUyW^h}NVJv?@&S8Z9fw_rnkYufVb4?pZWlO}FyefH1Fm-(XW?{8SSspxXs z*P}j%)BkfV72}?=OjLM9lGk(3Zz9D4FMJ%rO7@?hGNU74k?F-OlLM1kM3)C;Y*ooL zWS^!txnxGb+08QCCCUn^u0PBfCarF`pv3i5Y~cf=*^2vHR+z*awz3ErH?pqbU{7!B zkf{G8P$tBpa_F;=@RcearNE}%b1ziad8A$5EF-xp<&X5wE_>0+|8)o7ioH9&?uF<| zo{XcSQ?6az$Fg8v(1}wbx3;*PaXjbxNkT{Px$qJuHg6NdkFrnFzUtpvd1D>JlZhv) zdBP+U{FZ$yoW?RIqC;1$TFrugD&ye~haOzJ5WThQVEws|Z?*j9-`J{jVam*#A`us- zuJGsRG2C4zB>B54X_H%i&~&!?fAja>+y32r|BuQQKDn2q&*;0kWj>$oe(&)8X}2%V z^0c1nvu^pSO;w!dQaazPDBdfPm%Yk&M}p1-f%`nmZ`tv^eXu*uM0&x@O&8ABf1JJd zcirFl_WaYFjAuPLvcCSYb*6Q+^8Vv@Uno!M-1ajhbEQ__#L7&g1fQ+V1)Psnd|FdV z@;V!*{J3<aeah;*r4#0;h_2|ISZ%s+$+C%S6}dKCoe}!vgw9E?vMGAH=dQdI-qd0; z^<3bD)I0g-&l}w=(l+Y;d)utaXwsz8Uq|L#vRZyJ(&v}m2^GWa8SaVG=F~q97Tnmp z@AsQ6nJV8HJ8Ky>9~D~sbc+@H$M;HV&n{MbCi35Czv{4Ca_!fZlfD{mdA<0`%nb)T zN{-uXowPhCy7)!v^9$Z5-ppKk=W%hV<oQ3D&kCQN|5Lf)^ijL1VP_4u_-}W3?YZQ1 z=!J&9ZF3!@R<q1;YTJ@_{jpPzbfIlsM11|^jZH7FPPGb;xU2W?K8yH9L0;qi&#itg zZ@3n-<@WRmZ;O@)bXm?!Vvo@6G)oqnVIF8cfm1WhfK{$>SFrrTDbXv-ER(wr1Pb+? zP|)d;a^!aYa=LrwDz9K=wr2^GcU?Lyus?BY3e$Ee$#unFKVCm}?ElA#^6ww(W#p^h z{&+P#yMEi7?7Vy1cP>jaw#;9dSob08$^N((FDn^m$JdHR@4I&S^VSpY>+QZBy!h+a zVtJcyH-10)W0!a>`oWIPKiC^O-v6HDb1bDfZh2_(k{fm9LKTi|Yglivy{NX_pkUZ7 zVasQDv*Yn3i^l04;wb??)-IXT-)P)XaHLM`4Eymy7rDh8^-rFJEdA;AjDdN(#SyUy zG0iH63?*L0ojNMBeB-9J={%zA44MKS>tv*}sYYyR6S=DN=gZq0hP{28?De$j{1;!# z41cuR{`U(F-{J*t15(XSII>n<oZb@{=(z24lHaw3TrmrObUqR~v$6Anv6^t>({xJ? zi6akNHZU|+BqT`m=rY&;QeUCMCwk6R>4F1?_Yo&YLxTf4@lQn;tTfmqs#8?7%0+RK zF9%0;>*hPt8s{G2dgQiY?;?$pZhI!CR+-P`Gn>Bd=1qa0LHDHi{}~)EU3oR($o=(q zZ%vweec#qyRi7_yV(ESGK=^9(m%G2^AI)DSw=+BY`^DE~x_vSpS9V@<6Q5oGx#!3H zS7m*EI+2^!8hWpY4W0DxfW^-L_a15;I)8DdzlHvXV#`jB#H9Nn@zG&XkG`fXUplKd z!!mANsM4XbHDRg=ecO{ec#H&D6tztGosMsO;C5QD-=gg~$5$=Uhg;pAn4Wgyo#@ub zp&u`LFl6P#t}CKzLsxR-OqWtRw0|{ULH*Z7Mct(nCkG4L>mB*oDW<=jjmc5E!ns<_ zyJR+Bz|}p>rn_G5>vSu>{Os1_?Q3>C)MgIu_bFRa7PWSo4)0;ZUwf`C6xCiA_wZy? z?dvDYoU@CHqPI_2sO@`+W97w#tKV4f+E)7fmFuxNo6Y&=%v-Tu_D|9F1*Wqsbmwn8 z6CSc{RsH%U>(<-87x-q9A9rQPPQ~CAZ$G)QPj;+aAYCgEt)eXbYo34pW;JP{tx{XL zJi<$qFEjn(xhSZ%M?sObbB3jqWs}i~Z9y}{wN^3CNzwb{YO&~^4DW(xjq2*^D|{kt zbb7eDD_7}qob6sL^p<s9!wr@s>FpOaqj;vR=$`!d(*BwCy3gh2>^nK>;LI7*<?AOr zUH+e`>lnZKZKe1_)o+jazG<GAZz0w4vMTW0O^y%8y6wKGR(F3c-fSeJxh#dZaF$X2 ztI9Kv7df>(&6PO9ktS`!zESy%nLx=D@!e8$Upu55rgn5PHi}4w?+y^vnzeZ8Hpi7d zD-U>`nXvvR_d_Edca{3cb<J}+T9@W|JuTaGb>qI-UYlMlaCsQIviPjux3`yWc_e>+ zvh8HL)7QJ^`>nRAnC!S0nS074yyQo8*qfcFX5TLL4KH0$XmrHp;Q9|!T>F-pwEN}H zta^Fu+m)tQXZ+l!sjuGh{nk|7#dBHJx+h!erp@d0)nt#eZn(`as2w}w{h9hr(ZX9# zG|G0Vq%EJ|F!zK+M1afH$v@UxG%N1b=M;ODrj;z1l*`l+@zE*a^UB&imTECVZw*=$ zJ~ZoYd~?b8%*L<ZTcfP`_F9<zx|$t*E%%W1*QbYGb}W2!>xBQOFh8BQ9BXy;Ud_vS z$+1>1<#_gSIVrh{Uk>iKzsAqL^Xr`5pZfhiD=(YxE>@nK8=T#>H(PD??e*`pG@`B5 zer+k-bdULu(Lz}jucpl>8Ro@x=ITt6Z{%n-;8>_4(wiE&$hza;q7o^A&b3CFD_ohR znx3a^l#w>PSTN1yPnM2rtm%TNZo}&d7kuhNpP$`3@8$|`W54L0%s(sh!Y4j_6y?rW zZnd@kz?`%@+<N=?k6mZBQ|8|DA?S<l{Kcy-X(nt*DSUcq)za3VPOY1np5;Yacz=|= zC&J5YXB5o*_^^@8)v9^nk4#NVChXwZa7`s?a%|DW7S|*57AMI!%Xc#e%JkHI6+Q6M z=DKXN`?*OHA1-~Etl25^ZIw#+1Zib9l{3cYccn*_&8xS*QFnXd>gL{H{;$8!`<S+= z_21d{<yW!wZS}Bc)7Q$bT`wOSJ#Bx{qP?{X4Da52^8M!@-*aD%H9ol|`#sP0+n(hQ zIs>k6e7I}Z!{pe7>RdMG<!@KL@4F?u)0<st8vCrxn`SYemS&sw%;@2vrL#|;s-9&# z@7cUho6dT3cdon3x+%C`xA$nX%XP1V<;!n5UT^px7<+m`j(!2_n*2GhBvfzfzn<mY z#2S4r(JII=V$#>|qTUV*GD9~`;P4Fd?Ao?NquVgG@QjR?pq=fp&5JVB(!aia?E9Ae zT%LSok^khq8HIUI0%J3;CI4WZeLSL=XSrAz+ccB@wK^wa#WG&acyT7#s(v-|a<*-D z+t%+by?<G`SJ;}VTS;p3+?D57l!#P*T&$Zs_h;)|>uFow#k|vuG}XDave}^i*6DrT z&qdVJ&uVUZIj2d@rK9y)`q8s1I{x2wdoIHBf?2uRaOs@TXEL9sL~pcs-k}+laLw|* z$r+2+{~o-_yg7AQ=9;p7GG`8UoapwMQSWB+(py9GT;b%KTMl*mSlP~-F7LT$uG$}u z<pG~B%xRf=Bgs*Mx$)!EGkWv-&Hu#QJK}pX{rQSM9Shg+vuW2;pS?M=^yZx83E9uS zpNV(;|0#gE>hkjSYc(~`oh{^4nZ7C`p0zVy=RxxfOHQAQVv16l#V+SJ9n_mup*l|^ zTEbMV{;{TVRHcynm0CTSdDBfokEp6^*3FnI%{upKO0oOq#UIy{rmlS<oB85b(Emk` zwwZcsTU_3^<k7Zu+mga#!#_Ua<+b!&`D^#{C9J{5TA$zCE3FPI>02Kg6Z_WYYekY{ zaBgn2zjI>sOl4#1%XJ^m#Kf(iZ@B8xPrWTtKMU9TN9?X=TkN|x`%m^?@7u4kS8H`V z^)8p-&5~PtY;|eNZ`}ij@{IiwsuKDp1T<HQwuEYN*oGPeUvLmuD)^Xh$^j$Jf~iYb z^HhyIjs|5PUwzdkQRw_?&dFDvJW-iE<GsUP=_OTLr>_myzSg}}=h7vCCtg>xFW1<{ zuSr|s?S0qY$3s7UYrVz)vdW@NDd$bc%&b>$I@eXUMl4uuoyK~##ALCs!o2Wp?G42S zpJXI|$}p@mtagczE`PnMF81!lP+r@wlD_QmyVs?zsOY{qWoo|u>&%mH_x_LnCj0a4 z&4Y9G|G&L9`TuJz=SilDrRh%|udh-4H2M3w)si;<-ppP+`!K)Uy|Aqn_0Qi5s%3lD z&fI8xefOhXy`pE=uZh^Y%eMYz!rjpLojZ?bb>7*%NN2Z-ZsNrcYo+`CzIe9nq4>X= z-<K!O+-!SR^wyMTeWs89_jK>G{B|uoUw-A;Xwf~tUt7EHuUk^wzqF=S_}o=JNxM7O zHa6bc#nSR4)nt91>-wLQc&cK97KI%(uD^K3tBrHn_mXu^cVv<}cKe)BihRB#!^x8^ z$#R<!muCZy$4teiM;R`@DHd%=v|@b3VH06er1VlGKc|*u8e??Nf%WIR71Dzf*k+x! zihSj*oe<^17JgQL_i@FHKA-q<m$zPf+av$HJt5okH{C3Iktw64PDS#Q!eFcVSC{J2 zGV8y-`eXK?_=QfzJL3bw+%7__FH+~9&2n9#a9%ZH^O~8OW)*p98{MAy2MR5lD7O6A z#R9)gDJ6QHnJunw_sN_U^{_Zl!`E3nL!(UOu!Hi?uG37(I%|VHJbX;%tv9qv_kCh$ zqd4hp;qw#X=QjVSZjZkm|2{`DtM-G>>4o`kI&0YL!`I*4YxMhIyVCvR8E5C|oj++j zalhifkktEUrC0sBZW_H=&U(|!c^9jmP3t&!dE45uM;A8c++X&J`8vZ@>2$k?TOTm* zc`?66t>?rYqoZzbCx};1y_vdHa&jq$oZ#j&6L)&<<O=@ewb<CPfY~c1=TMil#(o|> z=IuP<;(^he*K5Dl&*$e%J{i<;;)#mCisSdioabNVBxz@yJAC>mTej)dJ2O*a)6XA$ z{%(KCI{Od4Yix^uP2cN%MQyR3^7^XE{rW#{ZJer|UuF0}`rd{^$ww-8Z9N=peLnfG za(}|#*13OQR|%IqD^a|Ar}X%3bD7HD-~5^bo*6laJF5L$tT5SAW9pOonq0BXfve}) zKc6iz`LpjXr*qdouomx2_%}zvd5*8oH>;I4AKlyIJ7cVD|4OSpHF*{%`Ook8!|>*b z=^sK5hVz#j*jHG5x*qQSBUt&r#Lw4<+v`iBpC4_v&i^YobE=?iF_UlSi=Oi?TUb@q zCdlyeKW-F_JUP)yeO=C{4iC%o!Sza(lj=K8zumQvXVtTpQgI^wjHU%D>$IX6x|nw^ zSkisriHd%C<Xja?Z~k+Zch8FW|K}FoSHfNYszl{?%8|NRIcvI>dUof1o7meNwIo2~ zto6}Ams^hv&suNH2`X7>G*^9EpUh?t!wXkW#cWcG6lFgwP;IS!QR;r}_8ULXy%fJ! zuVCwMV_Q3^EapnI{EJ-GUrWzB6`izv*JHBTP&06`)6^Y78_T}>6&zlm644&X@@_`B z;RD@MfhCXDDp{Hx$~Kz5^pMKhgIbjfSyw$cu)bL9;$rWqM?(@)JLR_5D8^_VewU&8 zMCGM%=`A<&nXjyStHO$2g={pI+#SVwaqje~rnBpH*L`09{>z^HZI7p~D!*H@>3ide zrQyuV>k|)84!>J?moLB9Q1|AXTQ_!>zrB|)8@=z-kJsB(Zf(-pad4WA-QT>t*mX0r zek4cK*STkTdOP|@Ewa-;ezEj<f4;@9_2p|PJ#CA3DSbG{Uw$#$#hlcxH{lc8j~nVm z%!{{tbXqXhcxt^#%$NNNX)2ojcc0rVc;XY*%)K&p$^r?l)+0v~RDPK$#j-fetbVei z*JYd5gY8Z6Uyd#H&fjyeC|}{(kCG01)7p-maaVe`KYXsYV4~~lsit-lx2asr39MSA zT~hK^Kl<d88xyzOTP-qS@)jrd*cAuLV|O&DROZe2+455^=Jv(#ntIN%4-UUnPDWXA ztiLitPq#Z~N_hWMQKL)B%V%{6W@ttJOh2WWQqq>>)OGaa6oyEiiCi--oYI&wqwC~c zZiTdX5eLifO1C1cHfJ0$O$j{f#vGW;`g!lK2a}WkF)-(Bj`HPwdRE!H_}t_E?=_!~ zef!dLt7P%jDcj#2>wOdH^_x|qey-JmyRG*=y^Qr!)Ha@5!L6qD+4o9&n~1>*mA(fr zr*ZNfPv7^vS?S!&14mQ#al2SN(mlF#-cNxOGnegK>Seh8fETyxqf0D8;xjg6988jM zb}BGb=5&lz+je<_t$20hEdKQe%=JEtM1QEi@u{_bM&12c$-ep<j7$Az$v#W*Ju;&{ z!>@GNmpS(5pUrsdQ?;t}SKRIi3(oq@eiy2$l0Ea5O0tl>t>#I-f{B02cRahez+X9Q z;U?{aJxlg1mZ&?Xw{&*qI@2hXbxW6f`zMQSk}Oo5J@HN!-^Med6_X_Qe)-nwF0VRw zL2ZC+lec-*-RUYRX-jUOQ85Z%^r<B54vWgH-9`0_mZt1A*4sV7Qk?Dbm6cQCCoKA8 z8DL^oe!SswXt~60p=mdoeNtz3&k(RGY-3becUgG9pMJj#kJt%gS!)T+NfBY9N#S}n z+b2zI_TbtqT$SzA<lA4r(!2c5FO$PAYgQh8d35DOmT9%W!rXW9)t^}rwCd6&ZJ9S$ zzqOoq+rg8aS^sKj^U<Skdi#oAAC3R8T<FbozXcZ2S<dA@Cgp^6TXMe1JQKCCQF-0O z4c%S4a|(LqOc7stGPOCv!D5OZm&B&-JF?tP=louEcCw#aT*-PdYtn-`K2sh&iP$uC z#)Q{L7hE~=Tf^sontPVf?Gr}+-*0c`nSL)}#&Y(b!B(e_zPCE{rv6R5owTP}vFXaC z)4X*i^0Vd6`)T`s^Z)PF3{zeje4SGiAt5aA*}nP4het0jPxM~T!@s|2=jG*w`feQy zAFMVnExGe0%Rt4ovwqKp;^(Yus(&P|sZK8W(tAQ)-tN!0x2wbM{`>auu>HQ;r>Ab$ z`@CSgeJqw==Yq40kMf$3-4_|k>#gkU4kcCU<i;xnyQ&)Wb$6WHEoq=BFx_?0hoX=< z-nUkFwJw}}@J`S(et`(JH2W#hGjn$qAN|wFzHFiSyyN~dfA2k9_D#R``-Sy&TfhDK z>gsR%Sz9gjm-(NSstb>|vB}@RTofO8z2fuq_rjky%vQD!ooM>EB&194*Q74)yXQit zdl%S*t4!W|qHbkb{pqQ#xi5~g^G|bWnii5{6uC~JWYL+wLMeKzR=*jiA1km4^QirD z*131-?7W!SbNl2gw`rLc-I+1H{Q39wR$CUnSgC$5@tVK=+4-w();(W#?r`JNwCsCd z%0Ed?N!qJgfApIwd%i$!$=x&RZ>p!K6xxJH?zlE7M<?&|c2nMMJ6`?$&HwiM_21v@ z?MpvTzgTD^<y2X0`F+#D2dBz+N{3B1DbYQpzbbP3`tsNIZ?fg1_FG;Ih>3lZ`FeGJ z)NT#){Z)S#=FU|=Hrv{I!TXmA``I1puD)=bu3Kc|Qtz<jjnk4A`>!vKvb;OrA5>{+ z{Mj&{RVs*+S0eJvFO{uaOCMd);9VnfxQj1p3dc+~?cOA<WUjS6M*63MxH4Vd^*IHK z^M~x{beSL<`=%-2Q-}x8jowd2Ry)t6%=li_|6BW9`Q4xA9v*&w=W6M`L-nU?c^7}r zNpaVkyX)KB-_=$1@9LjN?bw(9*miNZ>)#6wJe#MiYkvPN)8|-<t*~%&R>qOGjZ+eQ zx-LoTCIu|r;iMUyIVUuPL+{)w#h*@DGpC;PUby8(+Ooz-pEqrHXZ@CKV!OX~yL#5z zs+#4urv5tc#XJ6~zopLfl6CJ69m*5`?VfxrT{%GZ#LQpUFZ{PDS*~BNsXzUUW6!S{ zYc}1@y*y!p(qzG8LnT4aHBRm^hTU488yiD2Hl7Ric~Lm&xs0&CAp1jemNf=7ISaEG zZ=G1H+ZN;#eEi1R`Wp{}9@_N!ExnfgF>9)I=|tvbZLw;5wH%v2SC+rpJ8{|OiMthz zu78?neLg5|$#T<OG2Sw7>ZOcN#MY;FZ)VK%c`2}UTk6y3A|CPmj>mtvJYkl3xO^g? z?xL!d&bwH8XDzRKS$s5ywd-b&-YX4DYfGn&i<<8^Rw?X$?)TuN$?ahOo0pX2R~X;U zU0MHoc}Vqc4S(r{Yqw`ai|%8Y;i<Bsvac~?;<~+B)oMptIE8W<1<O}TR;QYF-aVRA z-&wr)2FJXfJKyH1#)eKz%l!ZPe5TJY&fWdNi)%u<PuFfc)U@eR)2&0dWXjX3R^3hV zyJFPwuIYrxWCxk(L(Myv?`D&fFrDNQwEDp7%MBr$K1|c$75jc6@nZd|r2(lQpRa3R zsogSd=j`{dp093E&u{NKS-RBf!|{!w9k<_EJv;1HueHfO^Inw65*JpUzH3V+ncY2k zT3mI;lSN0Ku8?|a%Cl*G-!4IIwanF8w%(hAe(#cD%0Kx!X8YQ8bxSty_<8QWt+mO8 zE4M?E%$H`il!~w0`RapP{*pZ@p|>ZU`Fp-^nq`+%z^3HvvfOn?Z`xeBX0UNz+v{Cv z>y7VcUc0{TU7Se;<D=<0r8bg`Hq+ZmZKirZ`Rpyn`(=*An!FvqE<XIHAD&?<x2NiG zuj$g=R(^9z%)cxC`}0Nlbk*#9oBD)Le{@${N1IpQxO?}s(za)>w(m16ND5}GRZo1z z|K{uTv@)A~oxc3)693zi_C9a2mWw`QrmD6yZCM!aycaiXR_|9jJvlWeYVV@I%eb${ z{rz=zI%By_pXreoY^#j=dvYveD)lx=h%C#weo0t8c7cKA@7>$B-YH<b^7P0n)vZ21 z)4lUv#I@Dmj$!>(#6A5;xlImZ{&d3%8wtDTe5EFDx&38#oj&qp*R1V@e;z#uUd;Nk zR(;#ll+<RXr&p`bc<=vnt=Bs4*QHa^@9pkbY*LEv$(Av&DF2uqIK92Xrj2u|XZEd` zn|#@KPZz7SQQ>}ZNz%pn=%*8N-~68LT4}RG<=Iy6=^W>F?W?{1{`G3+(m69KlJ=zC zzICW8C4J?FN2_i<jQ)^2U9rkWt3LL<Y1E!=Z|0=<Woy6B%)hmL?Y4}a`?FjXPG8z| zBJ7c_hu)6L)1UT+SL*M3_;H!qM=jr5tFppt6IU(XGBa{&<laRUr+@sI_DJ;VBkl#| z4GaFV|M1rSHD%rE=!sXStnpUbxO|dfQB+1-SP$po*;Trc3-k(aS8Yyl@OjK)$+0Bi zQvI%Lx*NZ0CWtukeNPfQFs02fR<&dGbe&_uHY$66Kiqm@uXT!O>&i)D@9!G^ZksC0 zxai#ZUhb1pT#|NMKlT;-E_c5cS08$D=Yfpt(_ec$_?~n7)~toXua|!}HfLS`K4;c8 z$Ia#r+U!4{JMMY&f@x-Eln<wr(eBAc4o8xgy4`Oxt52I~Uia1T<fq(^47)5DT2^Lm zW?a<0-N-rE;^oxX3sW@=JOh8+QPFRC`n~sP>Aeiql7-V>_b$^o+qI$F+Mw|K&hoW+ z>kkLM*%oo<C|~>a+*JF$Q%=-%Nl#5zeG=pJc>T=xZtoV^Y+PW|)9EtNc3(ldVUv%h z;Rbi@^}^cKQWZY+<$tuYkC_=hiZYYmlBbyQ>)0Ze-lNy26+c_h`Kii#OVXxC4iO=C z@_ch^rkrEz*_YJtQfNu^OD?yKH_MW9c3pB)llr_NB18IhN!apCiM@`=m)2&@Ykw>r zA1@OTI%mR#<-w0rS6kk<xpVx5%8O6&j?;}d8XikuF0?Xb@y(J+3jOubwQ77J(_Lem zwgl+DE<V?^z;N|dBje914=lT{viRMLTk?47b%)a~6%}2QaUoYDJ2dJhO5Z8@dB@CR zXEOKtqHblw^H$s2pFCK3=doy9x3c7Ko|!BAUGlCim-Lmis`=BS>n&e-Z^F#Te>V01 zE;V<$?NPib#3?1q=@~iAW75TzdihPSlwSU+G)$|KsjGU><|_PUZ*>;ulsAj|SR{5u z&Nf`c&-=*vkSBB3zFF%RN1FsazJId+_7cU_dMmW*|7}*?Vti%YXZg#O8MDr_`Evz0 z=JlPP`A(tQY)h7ywxn`;os$0%SvRLSA1<6(Xy?7S?f9o-n!9+EnUxIJ2tVgt;ykTh zV}p{Fk-?PJ8}?jM_X~DOV3v;U=)893qR&ky50gT+UoVt7vYHO8j?_^2?V<JJ^o$VE zgJ+X7FAFVCTjF)%yQM;&Li($Zs;~JCO|Say-l81)iRqU`{f5Jn7etqQem3#-<+Zu5 z|31BYJ@>=B+jaq0u0F84zJKe_S3*bXW^LZPHvLq6{N>o0K^N;^r#(_Hdw)Lb#ubNk z-`+;<s)!Q*y4^sp?2G%W{I@6gKFioj3Qo0Ak~E7eseW|JU|HgpH`!BrO^gII_sj_n zV|ZRXukg0-6sbtJM~_qY=rSCyh@LjtaNUz!)w=X^&(`nzd2z0xp16e7zMRK8)3wjN zx3v9mo@cG?W8?ZrU5Uol;^@1bQ7OmLjvij(edck7$tmsp<wy5LZdT|q-F5x2BiGbe z^Nj)zVm3eKKB{~8&m8lI&-O9jI5ETX+{wjz?uD9s{8Or{d)?OF@Z+DxYuA|1``;<P z9{at-Z{3NLk%lKfp6;J_fA90Ji%(CJt*t%(?z8*!_*<X%itqatmioVbt+e^P58;<C z?o|FHlK$X|$@`7jVR{qO7Tn0tyEyyVgUETCo9?C>O*LVkx+z2JuuF0INu95&`_6Z# z_8wK*x7$Xn`_!wN$`cVjsr&49?`561M8ZM-E?1<`^{gDfNo!a)tN3;KdN$cyKlVM? z#CfyOWS#RaZzqNXnjFsPo0@y_t#tik;~tlDyuSWD7kf@VS$sG;f7JoESq3k6w5CWX z`+uBkS-tC5RNfwk;GW*Cg7V)F{}55W*mxrN&Gw}m_dVmPeEdTu+~?YLA!~t+zeQ!{ zOP`i%-s*FzXQPprq{QDjEw^-hQr9FK>bEPeU9-7LME12sjOz8Jlf?W3{c3`IPxT%B z7C2eF{Lzu+Cr_AhMR~tzT4i+O$irjHk7upYE~u$`bNhKsKiiWh5&x&Jo-AZDQQgDt zr<9@XvASP3xqs}RmOsTf<?X(8bG)}tV41nz&1*tn{lOZy>4FV5amu|STheY^)%>;V zl<sxWhUN`R=ib|RJ7<sPRU0d#z4BW5bAGl=pVVOE$&z#PW6t#Z4K@-|k@i0VWOtuR z^WJ>>^Quin+P0GC_O$VK-!9LeF4$<J$jtefYr1KpO}Fj&g|#QQ9sevjyHNS(xA5f1 zs=8&Ni~ZMpxi_Ka34?LgHl3}HqM9u~y;%6tc%NJI$%H+tHuUt}w!1JffAf5&>3<t- zvSL?TyC+{fUbbd$U9IBpmtXchXncD1%>R8;W*Bc<vpwy@k*a4LPnFNCzxkiZE-q2N z^Iv_5eCJEP>|I=L%8_dgUpoG|q+{;RCdcNTIfE~?e8*kcn`b_zyk6>3D9`!daQcxZ zo5<)Lx^wq0xcFJh`;q^Tkk4M-&HoD*1s+z<zW?O%S$8G<yN^761WZ2gnR8aWN}Aln ziffOGwx$?wm(&qE{AJ1Rt1sW25VCxcv@c74<8AM^m$P5A32hSZsg-`B$ZPv{dPTF1 zyUVW=#^-P7%-WyT`(7=Ar{8tnLFV%}f=rFG{<?FPop$b#`tP^CTgK1-xZPgENp^oX z#`fo*+~7X%!enu;F9M6}nEq^7_;)&Ui;a`|htm_+e!nTJm2=@$#U^ggwWkc`b^KYa z%6k9czNG8^_Y<@?-R^#KrgVBvi;b@|`x*5&!D-v;ZWVtnnrl7t=L3tm`Y(3=p7Hfh z-SjIhHfD@D)45x1^w`??HqNMJnQq@|BUArvyVYL1hl+deEvW8ze)+Xm+FfHU>wTKB zxtAp;D~ku0R7F2obZm*|^`(zzi)jdaSH8pi_mbm&AA_eYbx$KE3w~MMR_DPa!vBSL z-L!<wrpHg6tNRfcTXo3Us&>-Dg)Lup?SHsu|IvH$O=>-EXO^p|S{dY<9Li1Ee>boH z&HQMF!}Wy>d)d{tu&Z9mPyJ-EG2rxytrp?k*;{7(jeg>JXTNTdRndPl8;Qy!>32tM z-^^F`cawW{`0qsaUmq0Sz3sN?s}`6wQ!trhf;#`Jg_T=nUj%Ed;Wx1Q7W(X({+G2U z*&`laYCp5qd;(|K`7`f-e*F?XdFP6GZ`@-;-s(<T8ru2Lw_b(Y_2|?bq5i+$o~#kd zF0s#L(-gG-B*^Y;|K;GM@Xt%87oV738~O3{z9V_Z>TOdNo^KMUJh$`E-#PlxMStF? zU%njvYmL_}(RW8ntH1sJlP%EP|MSHDriU(1Y`6A&*&?!Qb9m?J?%tCszO6?+H_y4Y zs5)|y_xG$B$4?eJ9{P1iqF#kbao_nDokyn!K6&x}^CFM??KQ<>T$+z}uKH;xsamjR zR=3dhH~yWAPX9|$WU8wuyt&`=Q1Hi#rS+zF3iog=TPqVTxckrf&zC;!k6^d#bo_ni zYyC^vGNbyl2TDF~-NC*<@5|H$%e9@4Mx5!?Y<n)3#&+KI+R5DvV!1o(HyJ7>)_42$ zzTdO@QIObecXK9zrw99tbMA+q%QZHs=?c1Pue9vxTI=n8lRo=f&-?lHOu2ITs`|A` zui2uW#y@4S`Px14>xbXZXTCr8$MbJ?RPdSlh|^COB|YT}nPAy{FID!1O1Vhr;f>By zd#!#jXYl@Gv^x1^fpURPI_nko)aD<aTc%dlPn=gh<NmonobyZ%d=!(p{ZOJ++23k% zvJ78Sx%fYAD-XUR-s83ffBJmg^{#3}oiAU^64!t3lk`Qmf6rg&l=Jij?x+`iSKoZj z=<ti&GXAUw*B5Zhw4Yn$y^v?#YN-op?|e%d=T!1eNnLF9j&aJl{SD_F=1P5?KXG1o zqx>J;O9l1vi@rJ>=X_RfEPt?4c}x8)R^P^5wr}PyoVWIc%5RG(zUO>;th(uPj(lcK zrw*3gV_dVBF@DxhJsW$@>;0?C7FeGswy@ffXTi+(+Od2?^NNW-b+wwF|4ulT{zzZZ z_BW^3bB{@%7_acX6+8G*+oEd0-w9``ci6GHtID)LTww6#ef<TIFTVU+wi=yZboNaq zSF!j*+gh_89fP#DDLykMXYk6resFWU$L$(ft%R5tQ9JB;&VM(U@A%(uarKYe7YuCQ zIjlYKTj|vIO1{$1XYx-(Tqx|Yobhm`yu;k@2Y)78{9B;q@br_#8M_7X>@Rjq*w|tD zBI3Y|Lh%dQE$=_euClY3T))wy(_X^lv-yMndkgBM`{oyB2P`+@+syxfdrobMP7=Qa zw^dq!+LlS*IM#02d%VH#7GKqz?3ThEjG@B6JfvscUJ#$}v{!aTUyt!b)2eAH-97K; z7{3tu!0p-2%E#Cz{y^b;|AEA&WbN;KTCHYs3_GhBzO3Tw>wS_?*Y)awLVCT@`s*IY z`+sa+;eL7nUmCv^+i_b1v9%xW9G&lI_fI{;HYWd>dgDI1D;&qIRu%uAAinN(L}J^E zxQI)Ri@NtWKUS#t!6EL%_n?va*O%s*<!N?~YhO&9*`H?D6nW13h13Vb)hDc<zli<F zzy8quN&gepZR?O+TAy#YKUMpt-M84h3HAPu{x7gvu`cX?z~hTGOKhi2nDb%HkLfq& zm$*z{W4-$RivQCNW?M|#WApRs6MG4D-;>Ksm-(Oh`|P{!>NT3zxVPDED}S5)=6O)m z(*3m`zOVT)z3Nh-b5!vz<-g&Q{%QMWZ*@;-xjvVDZvL)!1=Dx$pZVA6+-14>&(H77 ze;zye`{Y0M%&e=LPBzKwd<nnd@xL$j;rsUb=lAFT+x@TWLjCLc2Ji2;p8p^I=grf9 zFVr}-U$wtD<-VL-?}PPL1;_0x>okuwYY6vi|9d&($=4J5?B$P4nI}Hud^yXN^+n#x zS<ap>Okd7&uYB?Q(pIi{{{wf0Ee<kKj?E6>(wn$$>xqWxUe`J6&+LEv^-`&l*TTrW zPw_%G{yn|4mG8~ft(UgSS^jYQbW3k}YhRSZ@*~+jCJ#;@$(~WY(&>_E_qCOI6V_Qy zS@f&3<m}?StM8X&i+Tl~E?pHkziMyETF0fY#Fu94o(lQzwaf28{H20RrAk^?_iDwe zFLb=?erYS8{IzoL>s29{70XlWlZxJlB&1Y(oRB^te#-l_SNFr^J}>TTw|pz}@A-9{ zz4ctI_1}ZFPOtYJxbR@#frbs%0=M+mNOJM{#u}SwZ1L}DZwdXkQSso_m;Amv_Bf>{ zBxKldxIU3Dnl0pXyS-)WX{*+CCl?k9Mlop!UE}v<Wfp$yG;{kI?+Mp=df!NW^{+pv z+s%9W?KMsomk9~4Jkn1m%|8+n78R+VBf-_yw(J=9!c`6hyA2rEva6T*^707IN#bmO z#NN~t&*A%%z5UpqVC&Y-hpe98^+F7OhpjYw!S1x2Y00UR3lskzm|*Zmp1bFrC|i3| z<HW**poEww7uIbwOc0Y~JoJb6-^vB`<%Rp}=YI%nnmfx_s8Z>4>qf;4w}Q^n9UfDa zuKtWmjO6g(=3!-haj~I3E2HAN#+G~U*|ioJALNwSezNnzg$j)a>LC9dUfkFikWk|? zV-A;(535r{j5>>xQ^D^e>n=JfT9}xq#q8A<Xkuhv*2}KG@Y=@--Z%Ej9xD$IP+3`@ zB%o5Ck>T(0;=ZU*S@4;I4h2P5_J`+)WXW;%{C4Mj%)Btc#;oTI#{_AfH_}{Ht)&O% zH3rrjNJudJIJvU(WamnOo{|k74cnX>8I2}g_@2#l(Bc1!31=?GPM+)>%v`6GuH2a2 z_G0tJg#sK$KODId5g^miQ15l)-F&Ip68E(y6v|4;)=MeQ`N-v~*d?ekNtUa}QFqDg zgBKSroO>})cJ7QDnms?und;luaq=+9YY6d}?EKK~GV$(P{$su7l24QzB$Q<5-Z0%X zcSCsrla}Os4$i~Eix&&;UTAJ0wR_pJjJY4IHH?%jOvE(i%~Dw9%A)*)zlUw*39T!v zu0@%r>k=z6GN#n?s5QJ{vvR)O-Eg%raH8zN3s+dC9L&7#ka7KrK%$-^^9!DzzZ<O; zCu+Cc=!`x1abd!R-L@jL)@W<q+*@s)aaiRl+xr7YB2GG;PkqQct>e;e-)Z+I?LYqQ ziS8AjfB$7SFENpjnZf1L)^sl+;fl4PY0#ys_h!D2-NCbU0jEjlw?*}uA`Z$K)?A8= ze=ahdYA?2|SYTw)wRE*n#Wns7Ob%~d?>1O={mGEwJv7;G3-{ZW-3qtZ%h!I8c5n`G zI>-DW#e9x)!2X772R<vv1Pe^%4ZKsfB6H5RJzQB5&C8i8Zu{-vbL`}<%>27#o?-*H zSH$j&(@W$Uula1awkVZBbAjH1`pyH#uF1wb3))2bZ*2Zh({yN>qxX{u(Q3A`jb$8D zgNrlzmR6YUE!|?fQ7kdcwv;RVv{=i`{pm|r2wgpVm+jO+fmTWP)}ZxFA9_BNJ1w&1 z2;a@nbU|l(u+8eZ8NXSg8>|nV*0c~l*B3Zr?v`^8_a|T38!z$LYiV({^b*tVPa^dJ zRh||GJgUqgT5T&sSQm)9l(B1m@7U7sJxOGNP2Z^tdJS@uRlKh;Mt(96m^UG;oZ0+$ zX8h5pN3ZAplChd7uKtuMH+V_giTWJ-7%%<g<5u&tju~m)RrLBVa8$I?#G%^jhl5-6 zlDS{PWw<9AySTa3&Td&PFm<-TmB--*Y%5sm`7WEWXWX<1@OZF%MTuYFUa{zPi}&(e ztlA#@QhMneMH!__DhpOWjBMEEtRbS>d%;@s>(njp7F|o)y=4Dxk$+uZzB})2p2REV zRGpFimqBz<#6>f9&3-k_t<{e;=1$0wUD<y@)7$1{_=ioo-B!j*y?T<bYp3KHalKY~ zDY+oPG0M+M;i`XysiUQhYo)1Urrsjex|cT_7EM;VzkcCgeumt|Tkcgz-esLJd5b*r zB$i3HIDD^PD3a`Z(5B*T=yO|sv5A|hlEZBghI{_rp7*~6O&6SK<H%GNJUwKhjS}Pb z>E#n`EEuOv-!Rd}nyKva^tTgj{1{WG+f1@ikl)Iw6a1ql$>^u)tq0q`%S>OM6@8iO zyu~tszw&_<fnwl|Is9g(3I+=KNm;yHhGvFF#?u#0vT<fKo4!y|L3H}BNj4&iPhB_V zoc_J8;`B3>b526(hc~S~;<e{!P?(2;qJxxz&eEmR^(WgX)SuohaQgjx%jX`O9t*tq zey{fa?|tHhCC}#k{9m8;FZW-4T8e-h$I}Jcg5AHu*RJL1dt>v>Xiuf=x`Piteh4{z ze!fkUK%Q%drPUsDJ&pR5-O`HRBv<g~%)e!5w>Q&@<@|f4B^AZTZ#2HGxBT_gnIm;? zTfqDJKDR^4k=r^CbFBSWuX*5l{~_+X{Zpz1qYfY3oL*wHul{Svf4vGl*N$x2*)n|c z@rB2~3q;v7z5RLo@bBdx+D}P1N#`?FBr4g+RX+Rpdwt7u7N=jP!IL*yByE&jIJae< zfvN0FtEGRMMCaLl*dtSTN8#6%|3${9s@2?-p8PW`7E}q_#U=1i`Ox&k!prK<%c$k9 zcUC;2Ed2CiqDlAE8*Qr#&EvYw9~;>9<R|`{_|x!n^*70bDmPf$9|-MnntDN}g!_Kk zt~qhykArrU=rx~ySG1#Mo$5Nr@FhQ7^S>mgl}+0=znP`P{8@oqKy1tP2fh^o@7Y)B zGhDsiuqyC`Fc(W>Q0^@E(D{y~EkQ>e>P650EB)rb`TSWs+us-7<ZeEmu0Q*(@$Txf z&u=CzvCQ<+O0!9ixBUHiv;N$_H*bocx2yivxw&(*_x}&8?f*RL-M{zaLFxY=k45MI zdD*);|Ie%5<M($w@3pSK{^z!}$et53|Ns5Jf$6O3-i9?1ec>9RuXKFN`ogBKHka^C z>oz@~R)1b!qeO($Z~E=vH@cd-+TVX_GffS>dT`dQUBB9nEqgZY+O}_f7Z#mc_io<3 zqu$f>qVH`_db;W#c%M$n-?m<6@HU;dmkxe#{cT}lBXo0LvdOOE>o<NJd2;35%ZQru z_iBIh%j|jc$+>;~j!!2puI`JiJ-hX|efgtZuk$S`AJ_Yu-~aS8djE%`xA%Q{y8cex z@$mP1Ucak;_xINI{e`dg{oeoc!1jHAA2{=?``LebVPErn<9oY*N50Sd^Do%{|AU$7 z&rQs_=QVZL*q@#6)bU@FUB+|XGx^!I;-}hfexDTYq|x~2kcX4Rop*i<{`F35>|$vX zcX~AQAItN*Qyx^A<(Jg&n)_4TjH~nCzut2$84B?pCX<35A842m@V&)dXz7!{yUHr7 zJQj92*j(NpctdZFg`k*F<X>s_hrJH3HhHX^H{})kXLfcrwok$*%ncN_^7b14Yq@lH zX25~g6IZ7Ol&rlsBcSZ39OJ_>-ZC|viA)X2e*@GVCi|Q(VEWF(TNbWjQU6o+(@uZw z9giFrK5w!1VROFi_H#)+r=t8Zh3zvEy6-;BJMi=`r;Wyeie1wtN@?t{W*3TllF4h6 zdNA14$x+I~;ON|-c)!&PYpl5U3Eg-k)*x|#onzgO&qp{JZ~1+A>Q~Ox{<LUc3%_`+ zT*EgpXYFow;c&jC$BU#C7w@)i+$~hU;;$fR*U-d(UlR>Dw#Z%0FnDESSP^ybhnA3* z{hlj4T(K9<C@kdtzxLh>v8aa^=Nh<heVXg{V&|>-0Y8OSed=<V7B3*i{c_u#hi=;o z9!=`~9REz%q*wmn38BcRoH^@Od8GVqwOSB8@kHbIH5}Y$rd{+9jQrR5Dz1F@?vEvA zX7$e9QTs1&T?szY$o}wHSIas14co$0io{p6PUL59xmQ2Saaxk1g3hv22SoI33zIfh zZ?v|Va^T%L_aZ~H*$Wt%JB~8>wExe@W%{k8&XnhvVapiO^D;`&;dLtu|CJ5?9y~&x z?P2*fQ$#Hk{|8<>eUshF+Huk<JpoD9vhRFqKlJJa&MREh4qSY5-9f?frq^8k4SQ~` zE3liw-l@kJA#scKbm4a<?z;}lr=M`S>YB;OIdRJDR~j}vLi0YlNOI^sU@Q%YS#a)< zc}DKO+m;iSaVQy1eAvM3{~<2Z;$4`;(wY1GR@|8zaQ$_h&kJF_=oc>{7l|q5U)a^l zxKLCl>Wb)0#rn)=nq3bwHLnKTF@7UA$;9c=^4Tj|L$lU+r@c@pR4`ze`Mk1jyMTi7 zd)CL9vK({5l7%%^>wev3|9NYz-j^nWpBI)yUST${o3Pt(!iA<c+<G7OU8t8zoNTzT zdDG$f7Y?6&>n~Bm{q6K?e~DW41@B!96MCK>Zdk#@Y1&W~bW3G(y}StL8DEZuece~) z{JX66fnk2^Yq5GWSLIlhW4B+iC7%`8RqXJp<AM6G2^vj{x_e^f@(d-{UDoXle^s8< z;+oQ8dw_YN_?~GtD}?F~O;HN)k`t;7&|0i2J>`^U@`HnX{C4$+<}`hq%+3|-=*?o~ z;LWn-()<le99ExTW?j2Xm8o88i7HdnWB-WY1zVpqHeI_Y#JG03D$}h8?d#p@7dd{3 zIig&+LS`RVf?CO9wku6m0Y)h=GxD=@GxM_6@J^e)tL0Elt={nz&Dzt#)4%2Olq#N4 zc;lecEGfn=_)OwV=)?m}t~_pW3MW@v%$ss0i^I;wW8no6#i?GNr@T_P1qD2>*Y|g6 zxU#6#Q*(lp<`oVO9TyW<kL4mEKNqIfi}NlGYE3v|q+3+Hik(fU*Dl$59jBGVX3x_v zH|#!g``p#5Rd@AtAD2y)$i6MPQb>-Or|i{S-h#jV%VxJ%FAtk0I)$A%@7^chy@#U0 zf&)WDKZI0&DqVM{ZnJtsL_lngnRvLkNIaYEvnS>^zn{+(-*~Zjd*O6et39?4r?rLZ zK0PXT`awzI-1R%w9DDmMyLfA>u_~)$lbDXinr}1C&dYjt#C>+v52ubtb%wv~njP}8 zLOSkoWeRS3{xs{M=h<SLiBqK{=JZdOpKT*r&tTZCP$|B==;hIs0*SX5@CiB!EKFhA z@Kf>n94oOD&O;LuPn<o;JE2}devP^2ly?m4E^q$4wD8)3-TvtxqE1V-E;@E;&z?)i zlooD0b87x9%gsL@E?n4dZoF3huVLurfUK?4%mkz#1m1pQ&1L#uHpNACh1AytjC)j5 zBKNP$k4#@tzj5ELOY!dt1>b2|WU;au%+i{4Uc*!Dv8&gTAnni@eB8$zXD-lZdi&h) zabUu{^UqjW3m6}*4S0L>Bf~reZ3ao7;|m0)2u+q2Kl0S#RDlzNZqNEjDi>I8ib=3D zyD|A3yP_tx=)~t;JWOeq8Uy^friU}H77<^}sF0=PGLvVgWoZ2-9@WmPo<bql*d&sY z(k3&{yDfRAFWTT*lKegimCv)=blI(^%gAuBvGeIg7TsL-fL}+ol+S(b^_*|ltYk`6 z#h$&(>HqNJxPGemZTaW@XV~j+c^&N5otDIv_jKAC%Wb9-cdByE?s|MXD{Gr<{PjJX zPUWnNx_M`ZO@a~Yw8x&Y_4nMvpUnDb#js{&B*%t+hHs4S>yq-1%s$|@`NFFJv5Y9O zQ$Yo5-gxR}J=%4kymQ-Of!mHpWLQ=<aZC-_=_#tj<o1N^m;<ll%A<MHw+p@gsJ433 zjyu8YHhfq<DgFJ2@UUO+4=_2r^O=`eB%*g>^HjxiQ(8?AR5f2^WNdV5XV!UGpT%4o zq9q|Cb#v7d-&>uji|4w!&Ru+3ZOgJby2?IpmOlA%*ivlk$z`u*{repKUe4;vz36<u z@>Mx*i~l}+l6ULp)04(OWOvGLowz0V^puL%S+A`(G^?_$(qWvuc5VI&^9Oq->RJ}h zemFJS)B4A;_P1_}eXm;neHQ&**6Pc<==yo@>Vt0jWO<)E{6i%-o#p@3n<s7frNU)` z1oRJT)GBIU5jg*F+7FM)mN`0w&-^wQw*;Q4Ib!o)Xl0DmZ@VXdT@#+WJ8>nQ?|GxS zwIfJTE#&}{vgPrf?P(u#?=@|h$eOUUE^%Xg#2ayr{;53+66gJnvbvuyJOBNv4{xkD zf8Wsh$J?X6S<8v5H|o{@+ZU?LB;#aFCOF?dr__7Z>9Aefmei}861<PBs#~r1VTzRd zOx0fju2Z(|T66Qy`qSDcRyh=Wi_NqBFY&eUw^QV%<BwBvx1KLF($RjUY_woX`}xyf zIE(hq%-T}CZg&D_c#1$+NajUD1DEB@5<K@D)RS^%<bS&J>uSBZ-TvzDo7I2+_P5(z z{r$7~x_P{7Bv!7Mez$tX3+Z*M<s$_X>VAfNx-Ty+QNa^Eze+0FL-Xgg%ki}@6H31x zoW4)%F6ZHWj2rz~>+N|SeO{Q;Y!|-#Y@oK`qo;<uH!IFcIN)?pZsB{!gvMnYR{RTD zEKK`OKVylL+N02Xs9g7HT|L{Jz5}hN#F-wRm^H_m*E`RT^{Ly&;P~4L(w6HkHXAip zbl;p_{HfT-@2c0IBmM^E@7@T%`Sj{nyNTA`H1T`iH~!;Xu!nEO)h3<Q7m^po^qlgx z)thW+&K~+utJP*3m;JK{-Y@Ni3Vla)*bh$D5aO69&>?YnfukMI<g*uEcK2MWFSiqF zOtVx9%9nCIK7sLi9Lp@NDb}s7d6zD1Op)*kxFwZ-A*f^Sk?IF!A0l03MW*OZ{ct8n z%5v-W%|%zwJ$v$f)wU^*BQl>_9?Us<KljFkpeGqIfu;hRv;OGKeYhg;@5J9fjz=Ba zw`J@9A5TACd$Kqx*7f7s?3}M*e<~h-n<(pBzjgJi&*on%=dLOJvihRcBKg?|)T|o& z=c;HOTd{TLKC^&_-yP>=7{3Zse;2ZR(WA08At{M{+mkpVWIR?r5cQH1X-l?jYmF2x z<T*bvP+O$sxYoquI<w1EKAG%&G1*hlr&UPvh0okYvy@o&u`hcKsyKR74~t|@l%BcS z_^G2Bcm2iqsU}yhv*?Dgd-qK8TH5Dv+}hn@xBI)9dD>Y!m;8G%_3v?cS;_t7|E-Q! zI4<1lll)=py1X|xt_7yN+?$p3`QK62;D^11*=0Mm!>5G=Kl!n0-iuRJ&Nu&t_sqR@ zS4PHa=T@cLNoD2NEl*p8Prn*>>6KT)!j=28+)G|x+H&K-^!movPu+g}4$#}QV6x)c zqjOeYUJ>fW%459rKcBFKd|89jrWt<QeYB=AwN9^{#p3#AQyHJe)k3}=E9Qn31+x81 zUv{jpYN+CneyEpS#_O}spmO(Dzl&=k7hU)Jw($6yZL8yE@4Wo%Y3`Zk{JqCMp5*&u z@p#Y0kQsZp+q>7a-#D*+y`Jl|SNcAO>7{}4FP4cVam!mtpZYp=x`?>wt<O9=wTv`R zB<E;8mXw>GG;Mo=fNhHB1epyoocAikE{AZ4C{A5m_+b8upHdQ1C6^X_bW#y1$(?zt zuq&dgVdjpWfamFlQYHE_=KD0?nd6li6|iG&PVKWC&#nG*1Xi5W^zQNd_C2;<d-CP2 z&a0Qp-?_c(*E0EIyZPVUdh_zM_SUN<`CO&_-*(uSmzF#a|7NWJDYta)$#9>$zu(`K zs{VB=m33<FI*psbAJ$9pzukN5b^1K9@Kfdt{nMHHxfQi{bXQzzxc_+5EYk_a4-ZXI ztNdixzCx{Wy7L@~3)wD@(^MW$Th7TTmSJ4KbtZ>qgmEKpXbgwWVHe4ZE;B3jf_bKQ zt`}*}NVRskXteyu$|*aG&%UjmuCx2u%9lSLyH{V!JHXsFuj~5c?5*40d@A_Ff6ld8 zR`+nX_ujqEy1LD_N8fDy`uKaFtDpSq=(4YqFW-*ueLVm9&NRCV)<tJ4Pxf7VcyH1r z)rZTzJ(R2WfBDGZ>RHDZAB7&wmV2u*k@L>iTRB^eM7?LI%;y(mOcZgtsp2JInUc`i zsc2*>@b-$L(0PlD3TGw`@E)`73A1Hv8WJ^+u35N`v1c`JvG<us<NepSU$;FKva{B> zHcY%eD?GIO<zxMwt9M?#dsXjsZOL!uwJetA&GYr0rmm>xp38Z2_3AlHZo0mqu~%bL zRh^b@4qET*x<ljXd*(_lwr9reTu+WP<#ksEYuN=kv3Jg9=l51psr>cDJHq9y<*ILz zKW178m^O-CiD#L!?94kJo1*Dg8mC`rXt`UoVC956<()aETtXp|#wN`+#&?7LWumKo zyqbG)-QVxMJ$JV6ug^~Z^6Id6zpdfbZA+ak#QNoht+s91x{h<!+pT|jdH<H06&LvC zy*?t_96s;c&-ZiVij8hv60+Ty_A74x`!7?Q%YC-kz0Ql5zf=C<!M+E-%FK(~w<m91 zpA$Lx^wlkE&TQXxSo_wkzzZ|$w3@TNgkHS1M{c%g4)2e7+qOELyvt-RQO|dF=C3c4 z-cQRtt9r2M_A`U20c_LW?AKON*sx`nk4KA2zKW|$%&e^z%8H`RBCAT??r`ib?3ySx zYrfR9`&)KbpS*ZnP0e5a)uvxj-IMQMEdTkhW&Ty`EeHQbJb!s7=KhYAhf6iC?J|9m zB6ig+U!K>#;OVA&hdC4er)<%Sob^0qRsGqeY6m<0x99Ng>|%U;K=j@@-wUZ97XNvE z;9OC{JZrgAZ68dfH!;ogbl=eG#&Ph)7nin9i9>q6f{~dg{n+0b37p=zHPeG>iL%4O zOFdO=mtC3<FX)_NKci*sj5|*@h(5Y1bnRr&GK<74?gv5z&VQcAm4&DDo~<eN34QsC z^>RmV{mI!M&I{dajmoX#E4p3i`N=#?zy8&or$6Sm@|v1T&s~&zk7-f`-?0oACM{?G z79BNVr&QIv<(>wjk!L^1*|d4dt+$sB?tVDMB6nJl)}$!)KnJV2y}@CTdJh?lEmh9B zX1+0L>#KS;%b(>~MAWWH6IN6U-MqA*{M4^Qf%d%*TkBIQkD4B=GVqY!$68<T>9~88 ztn5R*n0wV{XC6NJ|G=-O6Svj4XQUK<x*Kj^{^``?dbd9-e@&dsY#JS29<@7d`<;!} zM`V2RzHIpx9-_Bi`^UW#Ki)Y?6#jm*yT<HBFzc_#6Agi$g^6|ZT-OJGTEP^)M5!f8 zKvyMgMtVoZNgLsi`UI;jtG?v;iBG-MxJpKf#h!6`qkG%z$D(Ij9xt5c-`>)>yLkD8 zlfHaxO|B6KcgD);dkVd_RpD65`23E^#)Y!Qh2HPZ^`5+0zeC;fcSOY-o@@1w=Y7AH zA9Pda+N#vu<~jebrP|t7zrT0MV8fo%GgA*vf06w7W2dpj_j&6R@6P;KFFRf4lv%|o z+wOkbt=}J9cCX&_HkEIy+n3M<lmCc2s&Agy`{b0^<iPb|dULe1jf$SW>3(u**ZCRR z%+hlfxXd|vKv=gZsP)nQ9iL}D`5iyMvRCu3)it}##y`t4-kX=J{TIDmR#%+g@$+fy z$^EvQg`XXiSNUIdec$qRuWXmU*!xPeUcvhf&olQWj^*t<N1`UEbssrnbAo00m!%P} z=Iq#XPT57=;-!M6ko&olop%G+h0Xn^mtL;W4Djeaxci4b!_mgP3k$n1JbCtH>CAhc zlM<^6*Ui-aP_H`m%*5j0KP%(a)$8Zo`KWdChPz~P(BjulPabqhEp?l6j`>+n$CjhX zv)DJ(=af}_-PNG}uP^3v+oHwXH&jz*?#koiasKms&y%va@0rhM9-3*ddS5v<{`;#l zi<dlK^mg0DKYz~(JP}_Smmav!cm3%gZHq~Vm+y)7R-D14!Er4?%(3RIw#0{jj#Ky+ zh^RbQ+@og58LF1~)K2t%d;?2+gTINRkKk#AgtSiG^4fZ}m{o`0nFtn5&e>%VaeqPi z<Oye2Uf(ox+u6veT-#Tx95}V@?6mxS+umB2vHyGCR(riJ^})F(_vcC9|7o+$rb24- z?69c4m1YaGOP3U1Z)Ufy=C}XSv{^u#`)vHIpLv<x*EJ-|-_6|kVpsFgoo@M!i6>3( z_sduPn{`yP_TlwlX^VQ9OKB_Wt+LNde(wI{Y2mRDE%)``c7E+x_xjW{-dV2K>|X5I z$sn@R`&g{c7Uy3dUQd31HpgpUd+8a?HO^=L&3yc4<;>_AoEy*gAG*HzLb}*mzqOrR zwP(fd^1qF*nmS2s`Mi*nT-Qrd#jBd`oX}c&h4)X+r`k2D*1ihIZkEryz96OEk-zD> z@$;-=lS$W$CvIGA5PMGSrqcR|)7mXd-2FrY**92hT6vg7Q$=WTxM09H89vSlM+GJ} zXs_{g?p#=S@+U)*$sDFB$q&D@HE&<ixJL8Rfi-^bQ{uAkem`;V*F`nm;D`nJ8u_<w zJUU>>Q~cpfXR76`-MT-co=>_V^^I{sv3326qkRADo;cX^Wy-d){`_Y1=;O?ut1U7H zj8bA7cw+B9dg&+8{(OxZ2e+eP$!qs6_vz|k6FOX4lsC`Y;j&GDX{U9gXsA%2oUzT+ z$2Br0;;zp)kI1}Kx!AZiW$s26c7-hEsP^~oKd|xsaEo^SxnDK++9#XzxxD}1&Ruot z&J(`idV>PbPt0=;>lsFWtmoV|^EcO?n>XvOpLteeoxCwRz3=1qli!Z~6a3QZuB<pU z!*k_be&tC;_J$2Aj5Bjw+-7}Wwz_1AR*1shvk`C7j~uO2OEo>R`qAzg>xwz&d_E=} zlD?3?%Y8wJn^H>uY0Vot0_xd8f<=tlc?#X@v^;tyt@&7giEn9G<GJ>OCbdgzl?6Xl zGMM<4r8`{m<;-Ma$aCJ-aQmj%CIOd8r9wKw-<+G+@;%ZLkG@$U*Oc5YS0BC9{5G$B z<?PhSr%OYfHU=#9{#Nkjw!PtvvuvV%2GXr^+n0wY%(ZIn`k5hIed?axoZp#_fq{&- zAG|qXzrEA`=n9@)^~L+oe<-ZX(3mneed~;^H)pNsG0m5CU#4}4Y1OVxk1rGl?em;m zCcBbDbV50gWx$JbYgEfmHYQjJY>JLvT%O*;FE071hmH5MV$UP1g?CIQpWT#y|G@mD zt5t7zs+ET;TK~MLHhFGs+=~tKnakOG-ZohlKKuXg-;p~Pg8B9uG5Ockw;hX*_uu#Z z&AGYflkQ$Ws_{l&R-pB5O+viJmiLWw1v*P7c)ZywuBIM;VAt+<hjxjpEw7tV!>_a{ zdGFri^KQ8-84FD}Jo3FDo|!KraG%7{2_6jdihk@2<l+A2@8@_Sbw|kuOZ8VO&+`)x ziA|q$>BFZ#Ax?YJV%2!=Hmk2m$PlYPv*F5f59yERLfjtfO`JYm;puMqn8T~h|G#oc zfB$v;oez(?PpeI<u<=%#wzngFl1}}q-w&84zBt@o9k2OLGB5kywU=&>Br5riWi-d# z_g>`Rzxn{5|AW+@mKT?Yoq8wo;L|hRT}zfd3i+bRxLnNN=)$F)xehIhF6YOp=^UB+ zh>4-zJJ@pCou{k~JqxvUHIHi+AJjH{*cn}4ncJTKb>F^ONqaummT$HDxoO`Tld}5z z@0QM+z5he*vb<;Ne^zem)X$HsDoL-8OZ<B#nzigt@$RRQ`PZklb?$ZfopwL<KbO`0 zwm6Q==vk+{yYI4=ZJm@HRJ1;`*~jw$&+!SWMlY14m(*uV#E34^oWd@#B)%eb`>#VQ zRFa>4WYXSsc0Sj0;jp6TDp_4$ves3+YFl=Yv319eq>Y>6uZhg^Ir#4E+urQiT(h>l zwck=79ejP_`?v3RKHC)gRNK_mE&B7S*we}F3tttjcx5r+M(xw=+B>mg&J(w5>|eEd z%d*|4UT5DbsJMJ#`#SxIS@Lhb%3hQ@-IV(H_UvgPyS=2%W3BhR>i&4|pX!D0HXDpT zICylby^LEY<asdu)O5RbHj?!nXZ%ZLDo+RL?+n=B{+V&_=DyvEJC%Mq7FpK6`Yvx? zVE=Eg#C=)D{o$^;$>kp16Hl%<8>TgZ_x7c~NlPP~zZ_UJ<!Rl_msf&k2WF~GUAX8< zwUoim%M4d)y@gjvXuf=!ni^DMa3)(@fA<om=WF&p?tQ(k`ti4|7R!_FrtV*Px2*nb zRN0F=bKUF8uOB!NyWg7W>F#TB#hNoWc!nK~_rBiD?xa<_POtrB2Xjctt0NIn3r_ld zw~alzAgb^vU)8$#-><3rnYt}9Oi7!%Sjzmn^!E7X>o2>vgo($k=G#$c{P_p_AI<Q8 zJ16gx_1)O}X3N#z7u7E9&uIzqlTvnZzL~nzsea;OhxKP8TsK$gXc@^`NEGI&6rD*6 z{yQi5?4qb3-Dj=OShI|NXHQXPd|~i%U#pGe(Ray(cX@Vi{{LcK$Y0;J!K-?tViv3_ zSzE+@<woAg&{rY#!C^b=X1@8MQ0X>tal`*f=MQnrWqtlmXxjAY`r<b>T=kykr0qRT zWMkrN_NM0R^}Tho&*s}a7yQbtT7P<08o$%~T`wd>r}=P&SUp+O+{gAQ>CgmkVYb_M zf;DGqGDnt~S-+0BymNm{@%Ot5^R7PF|L*yj6(Uz3f19v$&ze=6*6iDJ?{SgHjWueE z-OeiPTJ)}ATGZSbPniuCH(n3gkaBoNqUEg9TB1Ecb2h8Cr)dQx))z{PcI(C4DT@Bm zF*$L?gLCeF*4uTARyIFZw(PhxeG!MSr<!Qt|I(kV915&Azei1&&~?S((i=bFU=QgH zpH^k5s-4`p<Hwx|R?|4vA6;wcGi~pyEo*M3B)*?tGCeKQYufkxtO%2hr|y@1(&x{Q zxP9xsP{|FOSzVXqb9W`KP}8iaclIs)nQWe~6W4g=P*C~Y;}71+zRkS1cjwgXyM{3g zlY0xV?$x~*ZKlF|t7%gc`_Dh0+@3FT+r?J)_DyvR^M9cqON(kkPfW^pKcRZ#^ykwj z_xN6ulq?LLHfQllwT~@}Cp@$?R?*b)Y$)oQVj;SG#tA0nk9HFd1ie?4pZ+_iBTcY= zVun*Jo6>HDMNKz0^yuw!txQ`pv!5sI#K$BLmlpydcVj{>=~=c5|6vJ{Gh|sDp?H?5 zMa+BB&1?QnNs_ySxMnFYFD}}>XU<vA*QZT?UAY-r7^Zr9(T$}6uVf?o&aeBs;jOmy zwOH}YjQ(2Ppq)ln5-w|S<?hHmT9Nv*!1!jTM*W)j#vjwu<f6AMdVZt0JvluuDz_xm zy6TNs+1W+YQgU-6fBss{W+ofu8MMCd=Jy-BEtx+ht1Z#h7nP|Ln<Vc2k#k~AuRIf* zb=w35<phTRhf<EHt3CR*G*ydvy3w=qU0KgAEj-&AcsbEaO^GwtPL!`V^Nwark@CW` zKR5E8WzDK@a+Or`cAn*Jk~aCG@SBy9CR;oT%JZ@_Bc*h<S(S93W-Ir(5?}Ry;nHrt z`u7fR4$5uwnVqe>B`nWoOV-(`(pp@1Td(<sc6$|x%m07)@b3A07xu4lkLk{1mfXWz zHlzL2hfNcX<~7TS-aPdtHB5_pO8e&(vO&d0$@4UI5>~ulSTFr4$FEIp_KMbk{i_mI zB>T?1d{p4%vedF=jWaL*W-<LdF){6_L|n;nOOa4>e$!MxahK3ZyhTlcYbGo*a_U*f zyET@lGsT2UYIW!PC2f{Ew}n4$Uw5i<5%cdwucrvSIGsK5_39F}h2>wb{VKiQ?0WQl z?;87vuZckshGC(0cdqQHpDA(KE5z_krr!2%akbArm`DUWHx$;0{PA1C`hUx^J%5Cf zyjExMx#YaOe_&cyAj9*vPhNW@rcSS9R&6{~Gud(a;=sj8F>9v1U3JZiZ`b6n`imAl zabZn6S;Ba^W5<2hYmxd15%VR@4{vHJE@Tv%Ao9p9qU&7E<*c729`jS8H$~SMcdg@j zGBGnUtf0v6Ltc;lpRIf6*7UjB7xzB9*1T3)EHt`Q?CPXVZzpg3727W#f3x;z`S*U= zE03qY{hDpz{Cgj}I(OIESJwHu1)?e0E}wV3OTX?m|3}RKm(9VU(_6ZZN}S|ks+#hj zQOjld%X=P*O4$u&lN*mbTKVS6a^>H(GwRh(20n{ov3>Mh(f!XBSIOfCIjy~o0$zNx zJ$d|PqQg9vvvEx89(&G<n%vehT_)a~-R`r9qL9DfvhT9qOgnh5cVy}0P0gI?<a6zm z5OeE0{p-B*Wg_kzGj?3QfBC64)02`%^e%qt`{Qx{*z5MJ-s$35y;HSk?Gk>z&zr~B z<KD4<_3G(PXERi9wXr+1{#|WwYe(JHZU1slPuF|(VMk77TTGwp*&UI}^QXNJOkTR` z*a?GEe)2w#*C=yq3m(>5`c*9M;HO7cOQ-z_Xj!o!D&*jmZ>_D14@OE0L>tYQIKbSe zwZq_||B~{TPIG^!RB;^<R607dB~;~Ebg7~hi_21%CozBOSv`tUwjY`MN_OYTLU~W_ zIbZf{tNF6dW#UY$<>xCr%wwb<DCB$0T{^$`8uS0`^gUeDpNQt2ytL)*uRp(@wXIsV zwp#!G?yW0dcOC!!?&r66$9lE*HpZl1*jlt8_YZeP`|{ei*B&}l`qrJ^_HN!p*S;s! zjqkW#r~OD@`{JR`&u_Y6_15dRn{(GrU%UQ_NL3ft=9@avf3GdQ8{W4iR7ZYQv{6XL zyWA~d;Xl7Ty`KMicaHOe$IE5oip9=ruaQmtIaP1*&K+$x^FD7E|IW+vrSg_`&Z4uj z&QB5^d7tQsTT)$~mSXngS<2)cMzvBct(~`ArY$|fpkFI?B!p#}(RULMHl1bl#=B+C z1$tzD{rk2uBzS^|N8ha@la*)oChy|1YB#v~T{*(z*3a4EOD49)S49NXzd3wu_Mz8( zc`JSt9B#W1GQlO@KIc{Lt-{B@W=a$v-X?qYpyY0g>&F)^Wce=~AgjG=_L`s>Jds+4 z$=**_ZTr%nUDS2L-)qZfF~-l&nU{QT<~UKGow9Vw<RY7Z&n5<E_a(k^;fa0q;gmyO zUY^p4ll!j}zJC6{jye9jqTYtzv*tPl?>rlJPsL((ZCT$>3(j@-)lDXq_kQTRGrRG| z)&<OG7cldE$$nKX+mW;H#)%a-zpPS-d@+0TYNtJEeuAaym)LsNupAX<IeVk^p{lLM z)Q0o70~G5EK3yy4^LOgY5)_H6Ip!;2d$ZM0Zx1)~8*7;jqEF7f+Ur{HW4HSIjI&O9 zasS&7UApt+xK;b&kIw&=7V~HI?l_v_8<$%4{Ds$A&$XKT@wr#kPB-RW>C0<f|N23r z>*UX$st@g!F<SZL%xx8){Z~5mIn7Hn{u)o6)4i5uiRc5X7xhov9dAiyUG7Snq`#ot zNvz_r`@c;>{kH=XP8+{6%@SK4#_V-6ZWq7vr8g%U53C7LWL;Lm=oY;ssHs`i+hEU= zBY!_Xm}qgcYoYARd78bGt$NM**$;?B#QhRW_7Ze=-@Ikl=UES4^nGi+;NdyV_=fEg zrnfqs$|uWj{o7h>b1*lwe%GBp)7FVLept9@kLv5gSEtL|4*B`;*VcQkS6TlTzkRi9 z?a~J#+P`ER`z?1ZOv^kFWL<PQ?2&3)+uN(BS9xR}-?r;OkKN&Rrv14u+^@9Xns7Gh z(sLm{?G!(5n-zKUUK~53%kQHsdb9pi_4au@7D4|#_n8ToDNfgzzxTAt$xEpx>ir)( zs`^<yEB1@OvN<U^w@sNfY^_+<-er~RrabeB(fx3=qwB(UC$`O;${(~`pDA^0>b)`J zR2;WTUx7*0gW%<UC!;2wna+J^#^vAbWkEA<9X#8ju$<{xSeN^WAD{hp%&R}PeXil9 z<m8gP?FMHzs`u+g7QHzc@#c59er(m(@5$lyab-8By6f+sW2|Fc_l)7@)wr@pXAUx_ z_vu@IznVYa>g$EW_kSE~KG2<f^6~+0<1-pdf83gIbXvQ>laEWc1yv-A+U8ctvWv)y zJ~6gQUwGPZWy!=WA1is23#yZ1E?#*vpYh_HPLHO&yDB?EzKTULoN}2aJhzQCYOlh) zE%GaT<$LQn&*fVeOLpX_ZcM2=6T_;MZTY-3;)~E{v8IT5p1Zj_!>V+TuUO9M_pGRI zyG#C@-BXI+Y_k#1&)T2v6L;=r!Gc%!Ut0A|saoeT?^$^Cn(2D?Zd8B$T%x*sozc$L z-Rbv?`d+9<Fu!PE)n8n9s7c4IcHOiS^KLN-E(~7G;B9i5wO%O9sz|4j%g4V~Fjf7y zLzgkb${m-MZ|z)tV5M@BNjg(P7+YFIU+Ssz-}RKdUYUDvFG#84{mC)iFXyS?q>p-6 zxK7V~UZ4_USk2U5FDE6w$0F`n(;OWa!`G8+uAYr!U!T3B)H^;P!M7@QZT?Y~o5tD& zv2`z7esebaRiB(SQ@MW8f4%v&({)+xRp0)fT6Nd2`rgmq^?m;L{u|dG`gi}(iurr~ zmj}-A-}rxdM8)s^tg@{C{guY27nx7F`aMK1_IdQ4%-hS3?)!C7pZ~h+wsl1&nKEJ7 zk$*3_)w|EUxV_@@(%Is_n;y>Azxy-5`1YLH$(v^0YCgvmzAxa~#*MW%7oM#*bqiOh zpM5W({KnaJT{iv<t7_&p-<7>Q{mK_J$NS!C_f!9!*sdgg?8zBfOWkZ0d(Ja~1s~42 z)-LFC;mzuaWIX0o+O$&j;QB3pRF-{zu<0dNm*U=<Fk^o9i4K7W*`GgHWVu39GnQfM z23hS0o%sb~f@eFtUS58npfY#E)Pj?-arJo*WA9mgw3#O{`_kjCN1bJbPgx(=@A|bY zF!-T))=sC>QzK^A>|b>yD#dh#Y1GwCzg`#T@1B*p`F8uK!g(hr)o2-hUcIWycbnVd zoAH7QRkoZ}f6b0N*nC<fGkpfn&B!d#^UEF!y%08GnY^Dli9xe>;`#Y0$5fvmcC=;m zlP{a{xL)YJO@!z6QppQxQm;doFuuIsuV8ExnEbQn#2n+EnpgV55gsP~{kxWk@qewb z=5@1EVeGoFH)%oI-HE-TGRDI9w=LE@@#p8`l%rA$*WI{dQuVm%SycwdCaZM<70C+K zOWR`d&dpq@qw`nKX6n_Y-@JlDAMw{86_))~nZI=J@g(#5b2n<2D5b5loGtS=vToxi z*1e%?w@KA4`f_6)d+@f|X>sds3324COtMk4{^HMB9M5^?9%D(YhV_GTPS@7r?_S<( zB&(O+`uxqyc(w6&uj%S_KHFA{ulRP*A?H)|riF3d-_IYl(ljzUCx3pAdx5p;C4Rw( zR(|dCA{9T+r@x*eHM{;BW2<_;&HcqY?2pe`dgXad=l5IleC&SqH+|#W+83U2)j!L7 zzR=HrjrX2M#~-ZlEvu-yxqa7}?RE}3J{4X%zeX=dvt)}!n&0oGn^~AnY-pGhqP0P~ zXzR@h@=GjIu4y)GzO-z6m|do7@d>l#R*#Q}p4?~r`bh6@o&`N~tG8+-RM!8<nibYm z*t!4Ijp;Q%=GIhSTfN8cbHcW}KbAjnuJ|ywX8E)2ukNIqINf_MX<O&N+`lgP{iWo! z7bk2v|Hr$L(cPx<Wcb%s7j}g-ou<5q3lScvh7<401j(uj&h|WQTs*}jJS6CsIR6qW zm48a}nmXz~D)hRnKKH+y{nDF<hmU;@sTbeBy0BWVUQM#@tm2Bg<tIZ|^vs$ba`c+` zr21{oAK$)toQub}extdV$Te{Tw^fH7uGW3OKHvLW+^X!q+M6^_-Y;^|udBN)vUC5o zC(-|{e*1kgn;QI(DWde1{ximTpEf?JY6%hD{Qk_p-KRRA{XJ{9=2_Lr`<Exq>uXA= zYpgr?t$yL^9gkPAtdn!q&w8Bis`$rhSJ%ysvO`<vhz7`C$vt*{Vcj!T6Q=J=*Cc(D ztq^Z{EnTp-Ia@d;YzN01wjFE_qd2bz9&0F@%zf(m!BUxZ<~NtFh%oHi_2c!#rtOQO zf0$i4x4$dzA>RR0p7YBe{Jeib*GI<o)Vr2F%6)myH(k&@RiC$_`Fj`Nm7{+J@A|#l z!~ANM;z7&SPd`|!m`p4~Sx-F+KNM>5JN}OL3fW_V$;D~^TYK1V*`Jt|@TNUI-BLU1 z?9q!`-+T{XzjJ#B*Oh}dtdB1!G~Vv*Ypm`y{&rJ*N9c<vjr*&1h{`Izf0*^S?4WGH zjjR%$UlHfD8rpYXRC(@PALYuRxzlY5d#dVh-7Bnb#SVQ9-Z9PTx3kgvg*7ve{N~(Y z!qQeNpWD2zcF78t(ld`UOn(P+70>xFZ=ZFK&l+h{ftd#Jj<yB5&E@yib3e0Bn7p#( zd;7xo@s86sX}!4bf6@1k?~497^TlirYDJ&^W}3b!|66>A&I%bLJvF;(^%M1vIPTOl zUXOHTT{Zcs!T+YZw@Zo?H=Wqiq2rKt=YBxbr`kqu!RC)bks)XHN*sT)y5)aCz0|t! z9hz5WPCERD`v+6G{8ZOxteX}XHCsz+XZH6@-B!-qGkIHc-qSDz@nWv4lRi!~3o(?q zZqImk>w_Z>=UlFzh`pw(bpP`^h2#kj=hq+Qp84R?;ZpsW=7LyO@wV0N;Rj7NO4ss! zd6k_I?p&}|U3|5xbHT*lRVVkIC{_M%7PaczLbGQYyLi^ko>4z1mi2x2&-}$||J*YS zr|kZr?)ZND0;wI>0;+d2rfg+py)o_P?*~6uPvRAdt`S~$m*cG3PIrgr@s43HE^}|@ zKl{&kRlT$M`F%#exhkgrz9@3$r*Frfsi&?V<+szSo6-K@GvDi^>)!MCzFBYCXMJYx z(fJ{7LiVh)S*aB+8(O~l{*2!zU!DKe{Y?92%r}>B-Imv%%()u1W%~=JU7C0QpNXCR zd(%E)JAKJM$v88%UU%P&d+G^XGq`p5PDj3;xhFcO@|)f7_4S{_4?Vxz^sA|yi{C0h zka_;}mgIA3&--I4*RkIz`+o5M|DW&wUXah7adD|i&vNcmy%0vLmJ5PMXJ7jA_<-=r zpD$S^{pZlJ>@IiGG7hlQoEjO@lsEB|OvY2;pqcJVUs$g6`M2y=bWmjHstfEvk*%LL zL~E^{$hY0&sm`;~Jw965^#{VMmlm0w$$lGT$!^QO&rK(L;@l@19K~5LR&>6fd`e=a zNORE4#!o9k(k^-(of7hFg5$?6A<qK$KT2J>#({0A!qll50h*V?7ivA#4T|iQIrV%= zk=XwopVow2Td-=5zUR{%lS!YISI%kf&-@z{*_~C|x$fjj=F1ml7Z)xp+2O-c9~K%O zdLVqOL5V|${EPWA-2Ocrwbf;<$?UD~nlGL>aqz{44f;~@qSsuKCcfM|QE*{-k&@mT zo_=?h@OTTmms}jR7ayK*;aPP;K60Meqs4-WZ!g&;UJXfcYMI9H=g_YcB|27?iXrT) zm|1of7v;F*h2@0iZHZL)%EXwVc6W`RZGGB>6{~Uu&0LZ`p7_$j-{F$H_>hW;)a*OP zwlazwqAZO`Zpls&9scd^N{=7Dj6L+^8#kYM!NRVe{hFIL8t~*<d3pG`ZfkE>KJ@KF zMai261EEgWavz4|MZ!wq-+KC)n>ns?9yV`Tp8T*@)H(5xHD}o`n|IT@a>R})U+8%t zlv%%n!?W;2Dq~`%Oq*Em5tbJh3o5KO)t;BwVkgoT=#ZW?Sz-0clNBjSa=eqf9-i!c zn|$$MMM+Y-fvN1=Ieo_%cSd#`YrXN}$-Iq%iejBT+`GTKJXT0axaE?=wZiX6?4f;u z6JE}nVX<W4Nx=)VPW;<puti<(&Egr#7jImN_|b4fqdwrC;9QP=!DH@^H}1TV{P3l$ z!JUXN2`XX&*BGnYjvv|>Q6lkR`7-t8YRexhJev{Uu<h~1hqes-wfCiaUE7Z-8M%M= z@pWC+e%NJunag*#7rQrl$e1Mke)6TlN5sX%Mz^PJ`Ehl1J`R_46E~jVJ2bOlgNC1B zlFRJJ7Yi3S?UIzP?{+C$y41?da;LWh|9hr?Zr|M88~8;yS$w%3?pU$%_o0oJpVXYb zF*~)CloXxs3p{jhqNjq9p``dW|Gr+|cg^=2OuqT}2haLot7N1kCfOh6<1bXK)FsI8 zemp58HF$A%=i#Ng?X7Poo{$h!Yk1RKc+CCpfmbhPoal?FsS<kipnhAr#lCbary1UD zjE{TT+Z(J4Cu*l`m|UGCJTXGYK&s#0G(7Cx?d|+)61$?D6Do@Kd~$l9`m{H+>sIy3 zHG8Ml_wU!-8(^IJKRqUJ)xjGdN=mfkxQ{GKZan!?cIxV?-=~<w*Ez>#2q`UM&X97w z$Y;{^$fLnBLt^SdTaL|srZM%RK`W*1@iMMq2w)GePv~1{Fv~&t!!rK2j=LXdw(%Vb zHm`9HWXU>FD{=2lbG6J1?hM{N{Rd5ZzXfqHeq~z9dFzwc0t3E$))|Sv7s#|riE{<~ zYVl)vkR)_X?v~L)<$zNx*}73&6PTh{la)5i-10o=!{OOqMXcH0t83<%ZgJ78-}%(f z>d?f`ZnG_~{Z!6frrY_$smrOjYxY&{D|&bOwL-e19%M2<4WDz!M`8Yz$r^i<@64Iv zCe?gNu0cV0O7sektrPMlKj8e}Qennhe&}G~4*$a)99!Skx0f)_mwcSG_4#)*H_h%U zVc)NldTOn&@C3iiUw%utHBLZQc43Wjlx@9Yrq7fj^R?R53{^3g6e6#u^4@o-bc(vm zUL&)pR&?c=rPhBnOZJ!anQ?FNEi`dCZ~XhA*H@$9Q>j;&rUmKtUH<5<vF^m;#9P6K z+HD&Y`{sTLpVE3la*^z!SYJm?KT|cnl0%w3iL0t_XU;ynC6CF?<H7Qkael$SMWgeU z?d=J!-?cd8{V|Pnj`j{S&Izq=7YZy=?Vja!%vu$^&nhl4WYc9^&3|2w<(YOVPg>u( z;O~~LiVa=CYf5G-PjL?}*~0#;rzGf8W{aHU@--iq#BcP^sqXn!)UFb%^t!p^jtkdo zmA8`10t}<9buOy!nYBb_-m*QjmLz|>JZr<3ycyr-)Z28{-1q)1-@36ka943@34em$ z#X25uDUTHs4c{*PY9w>8*V``1I=6mKpJA?G;H_m09}=Uyf0Z@dnwGI%&@0*9EB!=- zxTlo4*2@WRW}mb;wshZ#J3WDaIKC=9zx_&Li@E3Pj`cTHU*@;;)wx`1FY#XFdOH8m zr0>&e580jS<i1_MJ?CWI%2toA#V*-p0qZrh-gE2`tTu97>$G5x^y0mD)jzsz;e8aj z-1wK~H1}s2E<La6MD`pt$@QEwH>F>2`7Cp{=*fHE{M^)ic4A)DnZ#S$Ii^m^nW;3j zc9IRJ>HZ~G13jl-n$&&SuCwCNWw}!iZA(-(Jv()&!!sc9f>&VqqvHA!*J*E5w$9<~ za$J)<r7xN5kF#pcw~PJ`pDw@LspwF9*21AC?8nb}=4|hcYTqw?{`20c|J!~n`(oU` zjOXuu5z)E!ha?^duJa4z7g!*XTrhvhzRf~WuUTKEK7V<1`C;Mz{BGiZ+Rys0n83x$ z&H3h?n9!PPt;AP?EiNw~lzp-n@>KsnUs<SU_wT?`vC}`~u0ENRzn66%yWB%BQQPcY z4`q-4xbUBeU$0aMyd90vY<m1jo51Og2eibdA3JFyTVK`L$iUR3;Id(X(hUbCuC63U zR?&c*7P+p5F3~`pe%_Xb4lcI9iSF~yzN<NZCXeaIl=Gi||BKsSU$_2z+uq{$bIYFJ zDZcl-_S_xT#FhZIs0NJ?^NftVgI6!l@?Q9yqefc&oP>S$<MPf*j)z<=KDKK2ERKI( zR5giF@iSA)67PDo^RtW=f9p+57bsdSFv(}WQSG}Yo8`|}aV<P>mgDZ-!m~?0hS$g6 zf9=<D?R?|wsWHs5r)Hlt$=J{H_JFDJvpYS<=gV=vb>@h?<}=^2a8LWYgNk3+Wbz|z zlmDFEeB+{*#QDS>>YrlF>yD}XzN=r)_*SVUWpditIkxP9s~kCMe=9H9P=D>~<g~YO zd#~`mz009#rZmg0<KJukYR|uIuh-2}$@$qgo#nKRa(!#q;`9r}8N5;5*A_m%$em$Z zCAhaG&TajI@QZ9$n#>lR&EUS(wQb?s6{2q)tS{<qk>1<(ZNc6Q`6}7HjrUyg7jD03 z{UY{@T$Q}6gZzU23yNP1f3eiI{cE#xk6)mFG5m$WnaAcYG_2ZgT_`MJs_ph$^!|e8 z7u#Qqe>=`Cm>*y*@k?^9^Zo_#7xQ1({F04zsCTblV1Lm*fPMPD(>BKS>yGnQ$jJ4p zKa||TdA}w9*!G9FKi2$Vi0hI+!v8SzhvXlvyo2%&lz&M46aIX}d5?+{mnY{+#l<Hw zK5^Z2xTlmqx%|ZLC$^thf6kIob3bAJM8(p(f-AUXk%pw|@|r30rCfTKtXp&}(0HZv zis%)$SGHbJS~WAu$<{@8x!h8@#q;VHUJH7?LM%&p>&#nTZ<l@x%n$gza{G$yEBRM) zUy%=)^C;70^$VUVfmru=SMv*xUsQf^s?z+cuy;;fOWl;ZIdxriZFPNht@nKLmzQ6Z zzZ8EV{^I@1_Lufwu3!FtN`}gLk9kvbCcK&OX38GToBEaRMNvib7D}itPBM}(O-|_P znOk3In0M^-4+(qWgeIR3PUD$AVw2Ch%+L@{E}9Xe)_*dcYlhRZ4$U;L89~c>G}Ct( z$^;+&l8`lXo{#=A^J3P^?JrM%Np3T6o|$;2AWg)0+RkY+&z(tFmz-v_d4}4vsx&j> z_MMG8C+_UrIdkUeJBRL^x^wJIa$fo~W9}K&GpuLsuAi}cX7!BLGfL0m(hM)3xpQ16 z@m;!H!Zf4PGuUUg&v<&~@EPSZT+afZ89pm~#+j!2S>?0HXOqock!NiV+nlyJz9#XS z(d!w{XNu4GdZzn~_nFgYw9l+Q!?vvT=82pnGvnwPYtNXaSzkW&CZWt|_l&z|vd_q+ z>2L0@oLkvkIr--KJ@rTToZWMH&*?qK_nenWuuI@Gk~fk!Y@g9T(|?Bl%=0t$8{Rik zpIP=y=d<x=>EgzplYg=cr(4ZXIqdy<N%K<YCC*C^FFCwad5QAU#Y+}1O<wZ#(&{C= zmo{E1yyW(>;w8&VmzP&Bd0sksN%K<nlHjG6mt6N+?wxM2+;V;CzL&G!?>b)pwIh4! zYw_#(>+J8kZNGf?wCw@gOSZRS-{%#aFU~J~Uta&p?#;iOwfE+J$*{5NKbZVwhHY5? z+2rpQwtD@yAAhW{wevqQ`MKs7k;+|_S~j8c=FQtU@8`UB+w)cPKCk(>=CjTF$oG{O zKTmp|dfx4P*!m-@zt7rZmw#gRW7%i2uWOIg|8DC4Au<2h@~<yz+~!|R|Gcv%FMgW- zqt}nKzx00h{UmJv`a4_T1eQ=ovkZ=?roIFP30^T)?WW7k+)d@|?|Jn&_4wEE*$LNZ z{wOL4E=VsZFR1_U_d(+W_JjRR@vQ!>T23)5+*cTy7@Am?<YuJxS^7O%x5N5fXZlg^ zN1`8B)mQlLNv{d0DX6KaDcPfFXJ@BrXKJT>Ph`KMow=QUo%^44KWsm`emwf|_oMH} z<vZ==>b3T1{fnu|t%?2f^T)3r-5<jrNk5){e1A{9ti8~GwK|<Tn}4}~e*ftI=rZU1 zgz^>EC9<rtw$^N=J?~~*FkG7)cAQt%+gk2T#g63I<J|SK`el3WT)gygd*6BMeQ$oK zO`N{M@6PNWrWYrEQMaCCbN}FHrF*9?X}n_WS6%R8^M65C^S}KXyZ-BIR2lRxnjhD+ zDE_~@h^_9T7dPvh7kxD8Qt~lqPK{{2+OWtf=OEvkLvn(y+y#Pq$L|)Zt~<DOhxk6G zfGzUt4m*D^uwm*y6kh*u;|@Xp1Cu|N{-|=exU)iT!3!pbi>VEZPJhh$qjRsp{894{ z={s%z9R(Jw=y&lH)Ko5QSd@HX^^&FBuJ_gBmj!;&_}Tf#M^Vr<(;<*`K}N%>#cqMT zA<CxiE*Ez*y1r)>sbvWGlIU>p_{!%DuJhSN?z-eI+{W0o&u_2hq8HXz>J?wTzcN3B zeSrp>NGNj`ADf7*xA~>*m%m>+{i6Lv`%BR;$zO!OT>i58i`1{sD(<^p@0amkjK36r z+5W=vm)u|Eg;Xj90=`&!axZwH=WubmO1sK)i7Ty(X8q?6*itX$>Ta-j=CS|ri(Wi$ zSaiQrqpHvH{2$xiMV<erYjiQVF5f+&KD#k{;p@QbS=ZOE`<(Y=+YZ}zcJFqXboCYM z7vvZ3fBWyw-`?Nh-&y;)0z&i`t#EY-JRTpgg&|<eA0d(0XOX&#UPL)u6u+eLt1JC- zs)p5-==ZVT>=(Vbs?=5WkGJbu>B1LAg0As@#5I1YF38xfCo)%Lmf9kXK5JKzug5k& zPHm`P6tl<do^_nKypX)0ys*6Ve1Z8g^Tqb-)z$tv_CxpM?Z@TE-uLPE+?USp)9<tw zh!?C^`d3m@TGQLHNS~o=pGdvwzsx_~Kf*sAZdm00IQOIQ$H^b%AIW}9Y4>rt_^0nx zU!&||t7A-E=U&XX`>~;8k$>637u8B#b-Wr;6Ws#+>x&$vTn+!L|7ZViT|epnH2Z`8 zE-m(sdr$svviK)a&sA0Tc=CpNrFs_LXZBD17ij&{e({&(t21K=Q~KW?uRy~q`<~W2 z1-X1){&V@y??0D6u=4-JX~%h6#prYYheLPwJ(6$v#b?JC9@7+}(Of?<|JnPe;>%CZ zP1?C)^&e*)@nxs$YyVVfynpuo;q9NB|M+cT`tjp^hU9;4nQ}4H!!yJ`#V^|Zv;3!N zhDg+b`nJ61_7B59wqNM|)4oFN?6dn1rGIR{!1K@7WNQ4$`zQCe9s3*|$b7%Ke(L-t zHxH95MV+(EJ&aCN3#s1JofvHR%m0`BAHiRHa#a3GPucsV<KLt`{`HE}lP=px*U$dY z`^C+sH}9bD7q-l;U$$(K-rE)DX@6^@Rb_5bMNw2y)~8uVl22-Owojfsd9qOVq;U0T zs_JTazJ3066LNfFrpwHpF)?RBwZVDM-QK@1KRwAI>zx*yJ}L6b#uT-$yrolqseNSM z)%%O<u2XGe-ZDGa;uZZDO<pm~;<@pg@0EM~-d3#@<})8QoY=i0Z_@M?pZfAu_{(J$ zHcfig=Pb*v5_D2jHrK>o{e{Z<_di^M?tBb9-riZ*dF;rKBP~ac9C>nN%8@NcwsyW2 z^6j+joGr9nCC~THv>DTP*cQ4!dUs@zOYx(BM>ZY#)F-ykXN`x=yb7a@S|4+ga+6{o z{p>64JS$s2+xpvu^%p<(9k&)Mv6*IZkpET0#g9cr=|$nkKRsFZ<lU3(leQ=Ko;077 zuX^8C?nQ-Kr9q{}&&*GspM;-OKAC*MZl2A|KYEo~KWjg=Kj}Yt`K0m5`IFwB+<bEW z<mZ$2tJM4cW4r!Sx6<zC_b2v~IORTyoc~Z1cQo7T+2^Qx2cj!^qmSR+(_8*Y?%w%! zt9R4cui7Zr_dh%S;p?B!1-i*U3u~0^_a$rD&zpb1|B?FV;Gda)w*L9j=k$Z^XZA}S zE9o6QE1mh=x!hx%cW0<pSnK94IJ>2{?2_Cq|MnLKb2*Q@y^Pt_pttPwi+3fWvCiL@ ztY7f^BJ%-rzNPLLlwStE_1{)su<hX&{rhHf?23P#(JXp2J@`famqnMq&)N6-i|q2} z^Y{Jzvgh*lx%<9;xpUck{=S!Ac$Yt)v+rNY<xb`FHM#!tcRbv&`R&SWUyt9<uilb- zcV^Ev&fL|v)wbTf{O!cYUzh8*-M#zm`A6|vc~+m(Zhtf8ul=5Td&1+b_hs{=zs26> zyu5w>mW}soi=VY^d$z6ec)o?%+Z*+Fw#~ioc1zCU+o6r3?%^`E-(J+ZzqhUW@nYBF z*9*;_&v-uLXU64=h3>`u+hosLpOV$Jk+Qh-+he`5sQan@DKeTilgd?Icf9ZT+wqXY zuIAf^nTPFV{=NIqd3e6O9s5@1_WO2wzJHi^`1XFg>WarFx3=H6+Vky0+u^-@-z{Q_ zEeh&yl;5bnQ7R;F>hVqExW?<HuT4B(247NNs=d_TLw>rQnyrStcCCM%V_isH)W6P> z_D5bnBY$eX)V^S)Z?FD8v@YmZ&!6y@T1OpR`H!+3z1kJorFPWks7_?>ny8NrHVY*d zyjcB0U!L=~rEC6Cftx0oJHM1?t}{_OJ4H*O?T4(AL$~})VIS#Y5t|p$54_8p>+f>b zl}T5;DEe?kyHP&GQ_thwd5uusi3(Pp{{F7N{{Q}Y|NQ^Df8Rgvpa1_he_DX}^t9_X zG4)cm%l@ru+xS@O_+n1s_47<BPniZUkF~BnR%)DX8f#yDj@SHN$>%%Kd3$s3z5OhH z$I-U@yKQjToTwiMYW>&7A2wUOd)oZpPye~UKk8mr_v`5WI@|wmPQTyx_f$*g>2-DW zm#p8{Ry=5KzVH9<$71L8ewM!<q|dLZI@_Nv=0CgYZGF$n>ucxTG<p5&rumtjAD7AJ z?Mr>P_H*9te`o&O7Qa*YYq>1P#ruc9E2gxs?Vi;TbD*$)>3;P|+n0Z1zW(r}xWdH5 zm-(-ZdH%@>o=&WA$m(9_Hh-by3&$@SUqm1AU#vQ!$or+fO{3?7Mo8nd#j`Kmzfh2H z{_q5G+x9xQz>vOmjP=*nxqc25I`4cwk*Rp0W9o}w6HZ-a(U2B9=FJm(Kd+enVXg*S zxFlQ7ogTX;?X=Ha8To2{L5%6V&g?4+H)+g2{=e({#rGeDFKph?RO7e5%g*8L4fn-Q zV*k`0I6B`Yt7Kl0+C7#$Gv;$reNq>BUzkZ8Wcp%a)!{zbYt!_2o@A+d*5n!e+ZHoh zI4SQEe0f2@;#b}miCc}|7W7}3{=&LvBU}0-)*r!tX0oV$Q~%C<c=mzwE_*LHgtUtt zh*Rf#BxTel<-FIacH$4So5yxPxOMnK?~Ak&?WnG43#VTYcRD5$?Bduq@!=Ki6Mb42 zB}^EX?36jSMQ(3<U!tVmp}Pj{;*aX5pX@c6dZS;%MOoQnL%+sf_KRK<UPf(Ud@FA3 z8NVRjVVTIbM;vl}>kobYVEcpdk3n2_{IT_qj9r}eEzx+z_bd08&!^(JgZ2m4xBtF1 zk-0KJ?2M1(E}>_i6|8vAPw!p4L#p0MNyRHMYO04C_fPE~KmSDk5kJv?s31r673X;y zhWg%?!1J!<3u9m8T6|adB{0{io?SCAqOnwgoB!Km#R`pmjBX#f{z<BLa6Vh#<D)+N zM0!Yz6~~z`SC33vVz`rYhxz&aN49^+|0Lh>IhyJF%2vq?hs_sq3Xg3&RC~`!{bK)% z@*V8WcMY!D?Xb6bpIq=ac?a_qPq#dEec^elmP`w*e}6IT*TyFYp7cCPK6&=Q8TN*} zK#!(1D>(k`YBb|@U;OY^d6UU};o_><j@5SV=^I&h7s$QSPCF{~(X>KsUhC`+Yk!zc zcvZEB_5Gpwj}QOQS;*<!qp+M~rpG&#(<j9?&9CwE3+j;a>RmKzMfA$2SHxZkd}Th% z<b0ml?w-f_rTG)<6*!O1NRcm@VV&mS^2O!R*%ZG`>PPawtH!r$JY`w`<ol=lifm60 zO1Ll9G&olI;Scvk=8UN`YX8W{y5C=HoTT=le8M)F+X+YV3h!kl-eFF7qWm$#M)Kdf zgO?rtaewfx5Wd&@{o(bG)jt^ivB)2^7v@=fzH$G%1lGeRQ!3ijPk7faX{}+c-#^)Y zrGV&Ct`$zJy0Ti93mTOivhGv9Qf{)ax5Vy<*yoq!DpQ_ho#Z;{b+Yc{?n#$<PG4DW zm~>;Qf_JS$-15~cUS^oCQWhzlRpX@f!A9u#d13WB*>}&Dyjo!u<h@I|sl0L8c?Y(a zUdK*XbTV$d<n~bNNukhUw@Zp%t@Y0u_9_~+>8SK($lmLHw1hw7R__(ZO|yCyhh5^o z82W?TME+f;2iv}etN`A1O*?;!m>%Rgx`Ovh`yo+PqgBpE%_$$cU%Xds`NdMOK}h&j ztqt4u$5u&9nWgId3iewf@9^E;m(UpB`0V`w<v_{1Zn}zpPb9vW-8b#=^@oz>3ty(x zi`R)gTgvn1V^vK1{3V|*zTLsOB(QJU#P*5(XO!$NJb(DYyhh!u>FKe=Jf;+*MJsuX z1Z&;g4zH0vWHqTdpWSwD<GaIWHM)c=<bO5Tba;JG$?|VEo#<KMZhg<=tD|(`oVxzH z{tE?5uRG4FY><=5I8odnc=({v-Vly0%XmCJMC!lnXB7D0wM2FQ<J%`nOhoP7{&rlS zBxS<kyC`k)y$aV)<-6LnSUTUbn5;}amFf|sSa`|R;PL&%S{IIKau{B}a9pLFtMpay zE1M%*?>({Tw5nve%XH}_^NTY18$t44OwAr{tS~q``Jc)8eh2-Dyk7+G^@QH&wtIH) z(4^=>R=y8%^>>bFe@wXWVdI%!M;?Ev{bKut_e<`B*^e4#abI+P!TE))VzTLj?S~YO zYdg*gXZ+^FDnGHEE5OhuR`eC)iYwyZt}Ya8Sl-((Y4XL=6`T{kYko1h#UZ!K{zS6Q z9CJzE=6^RIEX;G=-uzeJ$(w;WY(eRZ<WEYGu9YYEKG7{wp4qjp-Yq`(eSnNyqupZh z%bza>h&VKFlzSJ$wfRZg=V>42AG*6~g6xI;9BV|r%(FjSe{TPT9~|qp^BwyqaG7~- zVpgD<REz!vGo6Q7ZG~4ur;6U)J$3q2F>z6`C(oZgJF;lvn>A+&G$cO!-XpjD^veym z*NAOCnQ`IumNjm37Y1oPG163CSg+X>xMlkO^2N(luiS8I|5N+xNXxc*o06XWOBQcD z${f2_-+tNA%NlaecK-3;>znguy7JB|6JxGVobfeeL080;%ctLGTHd()KJ#cYTYuB9 zzqWrD+v>hes%?mfSG#7s;N90lob%$QWmi>26)avJ?)_eRedfEXH-z=J2d-T4^}1is zk@`g$i=8+_Rj)*y`4=g@aVJ-|Xwti@xyp{4cqBr)&)(l0-hK6cu!JMG=o{02ucqxf zxVY-;mg>EWlP`+JSYNbX$ojK-ONP=T#T8+De7S>fD~aYmo~dQSyX*XB!(HnuJ+-^l zOx!}kf3KITzq&#!>rci*xmz4}wx@UhoHlt{x9^S}_3O&6Eb{(-Yvr@JX)EOx-n_Ht z#N|y@A69sOuWBv&lCgtrj(5{u>DkqX*G_K`_|5<Iz}*wJi`}<AsD3a_?xAPPaxdHa zD)sscmlw`j?)vWi!~M%Dqm+Gm*Y0HHo%#B1%H~4rA7&}9pJvLLoqC_Ua@%kB{`W6$ zWH_94ewMebNbdF1>iVRMy=%-=Z}evQ?pkze#}=cN+4CcW`NgyTwwHK{aVvlN&f1#s z(dWwn54WEWXP#<F3X;s47s1wkFx{kWbJV&v$(gs5*5~G=?dJS@=%?-^h1cIr{`WaB z|9NX4d(YVJ?qQaj_a_F3ep%vuHK9Izuc}by$#Y^ME>YaYT*+&MZXexP|Dtzo%Bp&? z*Nwa#{8t-uj`zQt#{KAfRV(Md^;4aN7hK$w@L@&B?Pj$b=8AgeM!Q-~xT?REzBA+# z|EBZe&gIgo#quVV-4fms(J2ep)k|Gl^1jq}yI9UI{@v<JzkQc~_1?bXjE4XEXUDeW z{N~@iX6mi@Yg_eWvoBunTl7XHR=KR+>khY9W$5*TPRUbNwelUZcMEy7I(n(m1+R_l z)m7U!^wtJF&1k*;JAU4kQ}cz-37L!gd-HEz8vW!`+4s}8rt|t=^*Pw^QsAY1j!*IC zN1JN*GB(bdUH#j3?`-MW$G3mtR{LSQW`8BSz=VL$YvOw68s9qge$V-Pm#R-@RCHt) zm|v(5YpTlm^0=Bk|H+5F&c}Oh9aMU<v;4*iUx(Z*>FORiS!O-Xe_ivG1h1X<2z=k$ zvqg0EHij0jjD=2$tjdk2%(|4!c80vT-8M1Q>_wP&ibD0iB!@*w3e^jf7-p|<xGLJo z^>Ft5@Ks;4n&Z}%bM;!;T-nFRmys${`J&dr>x1OKdKOE?i45<{7dy^*R{XTwOKGx} zK=;?;oPy@JbL^OJPFWUyQ)|tNqJ3SjCyIENPu_Rn=;R88O)fXMdEcu0Z&LSP^y*dF zHredbryum~`8_n29;=Jj@M-Pp_Tu6`U>%Tj(q)7H3#Hr6N7h`O={e!aufLX)4^2F^ zDreyWd9R+2H*)0aH=SGb<>`|jqOzM#d2Cr^WF4m16X`f_dE9b)M<a>S$8KAfOx1ZJ z5}`P~*-m@kg!d}h6DGZR7$WyJ?ydW+<XiK%3cdBqacX&UQ-^ukRj+F~XD6SXB6u_J zlf@Cg{SS6sDV~#`F8smd`EAE4(HvF}5xK*&>$<u{cZBC3OWs-~VdGlACMrjc^RMS6 zv7+71KSHv&i+6VKpL@-#YJqk@{hj&RYc5~643iAIX)a-Q!|cY=@C9}Y6Yfi`Gm+9> z`Tq3F?%#Q*-_P?esIOlz-)CL1)t9e-qkh)Tt~vThZNe>!qi4;E3-{+f<N55?c7;zm z^|_Yn>caC^W3IiLkzUGh{k!|u+8y=3F1`A-Y1O4gcCLTBOS-Do?um<D`gl{g$V-d( zjeW+Y&0WhX=J36a@{|>qo)8=_vs$0?+IQY7-?i6iX}*dMxz7Jx`_k>#yr*?m>mCV= zPmf58$X&n_S|!1>yv2Ltuhd^xtGxEl{=*dWOgzC=;rM6XiSwmyN#7`2G1vaTa87Xj zg?j$^^N+mx`B`@EUG?Dl#esQxvjzG*LOA5ZbdK)xwoY)8Dwr<CX)MGSnzYwGR9o-r zZ`Z4@`t-wA6(|}AYlc>ARGati`!B_q4=?5w-ppC|eD8v;sMY2D?GX`kMXSv?_C}Zb z@5(j%zWH9s^Xx}~W^eB5yz%|_ZB`w><;*{a*Ib`nKRIxE>$MvuKMr@BE|fog<dgC8 zscE`7n;s<j+Pvn!aC34E@7LxO1F5#<g{*e-yVkyY{$6~?O?&eV;<DQe57(Ce-u7!7 z+l#<WC1vhXW!HJ7EFPTt_jgHcd&u@l%(GARea}1kbv75*rtFX>d{dfxp4cuqCYhkj zQO|vG2lMs(iEmr$XTKGkEw&+9Ht3LM)Y^5T={bDjJ}2{3<?~+O+isL29T>8>fjR5p zZP|5(Eb9XMQ=atszB{G3e&S3ApZN!QVjjP$K9D7pVEX*_ZN>_=hMx|5oo0khsouBH zX~vz;Z+AMK|5;}6r3jP-t*5Wvku<|tTjGs;5nplfiD>qtQycfm)bCT`=DHrh-rlZw zK0*G?r>nfL#H9{AZ1{hQvDT=%SVMdE+Kz_8GEqSpLHqJMjlZ{Rw13OzWZIR#^U&4% z7qa;;@az8<E;@Am=>HJ4I=98k*hCI$`V=|oaDDMz)9BSud3gT);}X1S!ntLM7lc;^ z-U;k<PHgUAm>OYmHK*xrD{H;#QP)S7iGmk*aZkQg9KyOS<EvQrJkyIlHz&;WJ)Qlj z@cX7+j<e^9f3r6X%{p}<@=R51+Z=<{@Am$`$)#8QQ2Ous80Y;~z8AJ<_E=xe+PL%C z&K$SwycJL0Ep%SI@15EIvxnE$yZ$bJ*s)*xn9EnG+1b6P=P8zppO3NF_1j?gHL3bl zD`pt~b>$Fctgc(YTOy-5QPQ>H|Mf?5G5^cg&iME+J5_TRpGe%jsrpmWcj++S`IlVx z=(~9EKE^d)Crpi48}j{9(!OOT*CV_>&I;PODuh|<$ZM~eVSj9oe=7+!oEe(Bbe2Zn zr_iOWYoBa?Yx`6q-14KUH_IKyH2p2=2do>UI_gD_Y-?^h5FS47HUpR9l!yzRTf%s{ zuO=0{28OD=3JaRnxzlFF*AtCW+Lu$6wmMDi<TbhC!;&?%^{#PYrKZT$pQbZcn6b5n ztvY!`(o5ruP_mj)vPOW)--B~S0|R|BT^~NNmANaU)_yB6Q2F`6&c;;*8&V%;Kk%Pc zTF0{1Gt;Bqt8j^{rm0~gSIUEs`b^JEgQqW+@O;hhQ(Z1M*DCjDSLWrgkTY^N727@> z4KIrc@SYmA(#2i#iV<tboqoUBzcggNWTZZKydr;DzB=dE7kBx&b|vTLEc{?QWkIP{ zYg6K-+bY(7FCJef$|q%3eeQyyImha5POneLSE%SdS)O%)wSL|0+)KBgY@fQn-~NNg zuJryBvmec$RK5DkyH!U`UoSl$wl{Jq$CI?eqdV{JXuI$s&qqPu{(gKMvr1qbTk-8v zPsPR8x8yt4IY#cgKYzZwLlN_vHJlG@qTcB*-!yaGs<u-r`P-e>-q?0j^r=Z>Y=x!) zn~$eOv1Cw)yJl+H#<ka?>(}3k5KLWTTX!=z^Jrr=i<mLP2B!qW6;%$^rAI4gZ@oJy zJ6qg9WvOOnYvdH+!1Kx9qbKzEhBT=~8vOQt_w#Re%elWB62EirW765HDB*YBCDZTL zi?b^|lT0kwm*>RB2Wgcx)*1&D-?C3I6??vBiqx^*$_LMKxBI<+9%Fd*`sI4@z>Kw7 z$-TReUC%x>Ltg8zbBtN9;+*i%y4DwBS?#`i(qF9Em+|OswU~eO<DDz(pB-`Mahn{v z+(_du-|r`{W-UFrbhG@{7e+ptzVa$Fu<N)a?kN4SggsB(=+6&}NUw7j?lYIA7p_T> zF4^lP=d@mL>PMwi$%ZH5E3cnqS&{R5X}!tQ9S)v*#1hoMeDA!!Y45$9hoMf+o0@Mi zT;H<TN^j26Q)!(?)?CvrQEQvHA#L)#h^5ncCY=7d`YL1MRddI%<G-ypvN+t+I_Gt` zp@rj3f%$@|3A+y2Oqt&OZpVo>Z|ke`BzUbhYuLtHxHv6Y_~_^cueF=K)=OJ|vsxLt zJd8E|LH&pIn+*>-|MBV$TUcd(b5~mKrmwc59HB1{|DCjmC+Q@gk-hCb9m|Qg8G3WJ z7^Lm&Gn^g4$^1A}BjJWY67PiYrkr!8)*l<r3C0V!)d;oe@cr2IQA#A@R_2CXkCcS` zX0E)s#CYP*|3!QDpYi*2GQ37hyXU*@o%FL&cb?Zu=x?}O|HQ0t&kL4`LH7?;B=6|h zefmMd-#L%VZ_6`!t}UHd*VtHe`);E)b4b|&!^c^Fdk(NayI=DB?Q^D08Qc1uW^y%0 zrG0p{=w@QClM{QOju;0U&%p!*h8u7AE#9!TAI{r;Q+8WJT>6FArA0G!7F?DpvC7qv z_+YJ~ae3MG%%?(IbsFkRK1uX8tra=?a!XL`UZ1uljf`de?@S*szY6=qvV3CUH%6;| zk-nw>&m37H8eVkDai+1c=Q7jhbGzGa7&y%N=+b)j)VA9?In~a)12#7}wEBKM`KqY# z<zv6&e#?D}CR!aAn)o-kwT(-tUsp%uxsoeefpc@inp+_)3w$4|D^FdrwO(U;@w!!o z2D$swg3=ggAB@`Dv^695<oxTK!`7bMQMdQvip^Qq)z3$573&T1*FBndFkG#_KW$A^ zucz5B_Tsj4ul{^=UmiL=@n2%knH3kKW?qTjnz~}zx+UxlN>_`2UaQ(JtvK^x<+gcs zam!XtKb_jAydo}b-SsTpuR7X?zXq**Q|~d4YxNqr$h)!+-V}Xw?K~JRB4Z(VF-1t7 zb=e`VuvNa5tZU7mO6{53|JGNLuQH%w!xJG!w+}KO6`ymIKJtrG{kB%{<de-xXL>|m zHLZ1-G=E}$A>RQf#q>(%+NN6<EFV<d&iEr;DO<Z};;yAGyQJ;gL^9aQ;*Rv*DZ41M zXYRdv?)QgpJrVyl;i~_`IY*|m)~$9@J&~q9@lutMd{U6~a;M)1E~y;x;<l?(sQ4DF zQQlCXxOn@FYvnfn&+gY4_q<f7Z#wisd`hE?!0g;fnlJUIhJEdkz0s<pIYm5CyQ0#; z!X_Zhd`E~zon*+h+yx(6f6ss99<*H5m|<F4!QCfC!u8uutuzYJd*A!})a$3$Pvsvm zKP`S*>~#2p<4?0cR{b>F!n?ou{^a^T|A+EV#XrawZ4T<2y7tH2wNo~6T|FKBQB5Lb z@0+bLT*2`f(I40K?ml`zm2scC?(}7CY?ad!T$(r@W=B8L(!HR=TIrV=kiB-&0ed&r zwNg_9KQ%?>Ue#c1so&T9{GX%Jp6w@(uFtt9*jlgtUwhGy&$E*@=_p9-U*z-8hU;^^ zyV?(_pZoKRS3J#{IqS`n{|x6ozE)dqr8Z~c+5e}0ZdT#j8vXY2*$F#ktfn*{p2Rah z{_WZ;uG*?rohpaJI5)mwzx|1MYF73=V{2DGIbZ9*gqQ;dShVzJMeW>XQ{P(eu=&^o z8MBm)v(~DuzL>SaOQQX5X8Fy#WwSWjjhrJFz7aU95y~|+Mm5+oRH%*X=N3l3$}eVo z?lTnHlS=g3|4Qk%zYWuHTBXrm#33SH8D>_aRKCFPSIcR=zgOZ+yNt79tFpHqTxuGg z-FoOr(aTk}Yis5_ULa&<u_fR}q(=Q3DUCC)vi1kG@Gj$7;piy&z~a=>;IQK&0W(@= zT~7GQCH}M1*x5DNV0Y{0J6Bx}X01Nsbnz&Y{!fm>a=pE4I!qEL7zfmZm1H`6Jj+z; z?aIoM#3KBm?g7iLq*v|MYPJ{OuaimF@0HB@`~FPf*A(BwS)13+d>Vdd|1PtnlRED= z*Qc0T)@b}ZeR+GS{x`c2%cO6LXSho5JBunmyI->5QvO%<+uz>qczM`szG=hW-$4;2 zLW-~0fAN2)l{SBw@-6Hizu)522|jtx-<0mMvev!+M&<QHuJuoztnpf!`29qx%ZrH) z{e0dkEbk{Sz5Fp~?%fTOYZ|wtoGMe9cse93=?1G{{UWiMC)?*R`CiQWC~_p}o2e1E zrNX-321}it!j?PnJa=KgHSf{O72Vl?>+1fe_WrTCqHwNQeM+g~oF(1TlT&XfD}*QQ z>PVgUB(gasIrPMuFY+H(vxuc!e0jFy9tY!E<CLO6G5toJeGJuI3I19)H{M;><B_po zuE6`e&=ovW?KtZdJWG|H`o6I~u&%EtuzJCY{%2xe4}CavrZw`l(e>1~LAfWVrN0na zmJ}LkHuvfIGFP6&@MZEEGZ*MeE-!t%tp0_NnpN;M&C|-aFE5(1r_G;fhnAwqF#)&J zPr0V975%@{b<cM_j^2YGT0i{SvCSxAGULZW9;N=OCryv1rm%HAVz0N>oxHao&fv^v zrv@IQwQQX8Q*IYVP0&#F*bvZey<qc<rg;-CW<Q*8Z~fB^H*+6s&|`4Db?Ds=W!1tT z3)Jq2NXEW;%aghHXyYZVARRZ^AhoylmnD`R3sUi&P|foE(nm?R{bszy`>S4;>PJcL z?7BK@`8$dKS2_d!_MX%)=ljfcxxVCZ?(%cz_M`<o`%=2yJYor#@$BtsZ?2!cd+hwY z$u^&SyyEXa@xP#;#WHz+WtF4=*MW71nwpYww>#W-*q@Ml^J~Y<_puS*IQH(TaJ_l! zQE9667wfa^U)Xur&$fTPKcoKA|HEgVXSIIbCRJlldMj*(GkeIU6sc5|VDG1g0(3kc z)t4)*K0R5oD=P7md9}^14DEgO#Va-mRGj@AT{^XA|E49P=>=TLs!t211aHgRX`Lt} z^Q7;sS9ayXmXkj+)#E12;!?B`ZTR%$WaAsn3I7-r-5Xneddz8ACNP(4f##~c4pBiD zUTSFZv3zBV64Lop>@?xzLx;i+;X^@w9VQzM^abkU-IP*!eN$Jg;q2CAF<d`EZD!Ib zhYsr_e4A%D2t4!by<9e_sB=o)Io<u+{r)SuC#OXoJ{2xkmHlTM+w`+pZ!d58(|Oy? zP9$}!*V@!4chtjb4I1}^Y$-jo_<sD<<F6vR)4qL+{5zdj^bM!^_5Rqfz?2EIZ=N~z zu=>5+Hm4p=`+D<{tm{D=!|8Vf#_aUs$Q?xBW0nlkL{CFYhE@k|<rfW8&qNSF3yE z)|YcF<Y@^w^7>oDi|xT8x*vBL#W<bgTzQbQ@qUpNOR#|=@0Xc9A=*2;FDG<XbzOex zCMC{RT<})qx}yHN=Tj2gZ@gNZxtMFuHFX2U#&w*TQWJJuxS;Z+{<o0mnga`1*iOw8 zwVXO*if>59X;lZ)qYwNI=H0hn{o+p6r_Zw-eits>HaR?lTfcSjyBl49XDkw$|H$9` zi`a?8{Ea^Qw5RyHPFDW7<73E<$IOmZC+}Mua`r197m5qK{+)Xl-=^+Gi|6=fPPeZ4 zq?2vltun1N_1ca#uQ$n^t~y^;f1~J_(q^u%93hcNe$m~>^^G^oYdD#EIB&W5UbaPC zTp3KCEKZ)BJJn>Z!@>poMC(tVJUf*uT2=e#rMXY!rnoN4Z&hB-!o2p!?6+%7#g>T9 z&8i8^a<FmqS}D`*VBUJCYeu%G;FqGn>8`xnB4mViIy23?qtt%roP}l1)S3EO`ZMYa zRW4m<*_wGkKzZlst>RxoXFc2a(xb9&f3^1ff46t)n#Y<?;Es$~`|qOf>F;Z!3$Dk` z<KbBKi_^i$e#)FDW%74_y^}wBFlfDJ`qjJt?|tUqbE$jl3=ba%Wk>Ukd{45Obv`b( z`J=S_)JI7sSG({dPfJ_NK8d%mCd}D2<DK5>rN8S>w_Q$7@ey#@BdPMnGr#uHwRn+? zr}mFUnA#59WQ=svo?|(GS?0_}vlC7w9@EyoU-o|e`s@Ce&tJX2dcXPx@BOA9wtmXK zJCkRxkatQDzwo9krg;m>C#5ecUss;@?9H9X%GtHMH`#~J4VV-3^4N(6hK*5k-SZ2i zW7U@5JQZbBqmeXWA(xgj*PQ9zMT;KzZdx)ir*mdtI?Jbne%JDPLxZN=x!2WSq*lJv zQE1(i^oTy=sT#A-eoJ|tdim!1iOnk*SPK|dp4jzv-zgi8+iQOAE|A=}xci<dho_L) zMFqD14?J3K+RdDv@zq9-aqaZ>uQr;DozpjdwGpp(4&N3MAZJti;Fc#h|J%yCW7(=( zuU4-9Uv_(gQMc#pg{N2581K9;Rh9Q_P3UU%Uio0hFPqm}Z%aEmpZk6F)5*)<&)t<Z z$v^q(OwqO{$KLOi&#x{zJZX2FTohN?PtEyD?AUjkEMk>@I_1Fu$%geghYUn+Du<`0 z_!ufRU+m~9YN-!RTN>D^AvRglt2OMfRz}#;JDl4(PI5<|DO&w<x%Y}MCmEGkSBV{D z-{9`!(D{rdFjtH9tN8!k?!9v*lh+HDAF?WSPnz4HE;6+yG%e`04v(#^iqx@Htsl#C zqqtXJU=*t7|9JR&(jNhrpA~}FgTL>2Ut1zJH<Z(Uv4LBXvhw8m4wse7bj!9Lyp&TZ zVXs*2w9{sf)~A#l+d92HQ{RNX33=Ni6S7DC;`yW5dsXfWFt=?!`LKNJr~5glK0kl+ zWPjs<$Njodk!fiTFHWEP^7cu+ljFZH%Ql?XzMvSZGI{b(?aiAc(wD|fiawe0Bl=^w z%<QSDNzPNR6h^0R&79CVBdW08db!S*kWI%IPc6zm81E$T@Tf!cjGy}FZB?~aEm*!N z>)FvyZ}ZkpoVK$>j?a>(!NoGDL;jP>1E0H52UK<ocFoY4?)+0ACx%Cd<@>Mmfvi~v zczsuJKI)RyIP`ymq!M$*1bH*(0}44iZ92qN#4<c}0uDRzMjx?jUUe&@@o=xx{QAHb z#$2`2TR9i+-m_zZ>l+ql!~3CCo>}4bo^vnx@7<RB_0_iQ<*`%mzRlN``@1GO?3l6n znaZ@Qz2<9;_U}nJczXSr`Tx0guK)1!nESqeza|!*7Z;t*Kkveyi|%KIU+wy9QTufA zWi_4nc~j2CY<{-ub$kV5K_LH*47R--i=1MPAFW?vWECytXsORu#x`RD!=!&2B3axb zl3C%76Hl?bHm)>~>XTx%TekB2f4}d`|8IZu*>ciej_2GOnscsd`Rw9+_TNN{!Sd(> zonsqJ>+An5|M?{%(v6|@%Bl@U!Si@0DqJygx-ii(n<;WCS7$@|93^oE--l~WQd`QH z(o!ds&QS`eU%65AcAvNQ;`I~711`G0NII|X*QMWeuD(6!R>7uSwsRe{_H)EMEa*G$ zFKv89%QSI|L)MoyjY}mx4Wjw1Caq+V<!rAx*3b}AHOHB|ak&n+)zyF>k@{cqT@BT? zbMMw;)W0Gi$grBTJW=8btMXefKJL$}#5Vg)udoe?5%E*+u5W#*tGn>qwH!I?Pdkt8 zUA_K(Y)G_RRNd9L-}^MTM{dz7-ti%S$AN%9SFU8wuPrP3ezP_1)3-O4;rs30b{=8w zj{BK+xwlliXm#xx*X*!Yg%7{qjF*ep_w?V<*_L`tpLL%3uHe*QUbMf)Z{5w5pi^dw zZrizMGYDto+*%b9wYIOjzH>?!V~*A=fz1b|FAe_kUvFp8#sz9urk2TT)Cha;HqvX7 z*L%EKQ>E{4lUw1f+E>o6^lzGd?SEtWb^e+wJT6a<o~@KxlX=w4k5Bo^pJV&-7DaFD zJRKmm(*EL%4KK5`lP*1Wxf)R;ImfGOtF!6U&b>JeQ?_&KoZOIbbHT144Yv6D*3^^l zd&1TpJse|ngMU(`-Q3eFE^*JvVOq8D^h-v8%lD4%G&71&o6as^rm&NVb2Sr_2Y0FD zrBkmq8ssclasAqfkKG=P<<0%Ej2l0Cd$g73CzU-2`y`ZM5_5T#bMw0mTaxSpbh7of zb@+WxskZ*(eC_kJGHvdoN|9ENHBWEs5Uqc>@QXz+Z_%7@^};Ju)s|j+^?HZH$=a~B zmt58z_#Y6tHLP}%UgYxjF0Us~Cl?soP7UfTj^E`e)o}68!JEB|y_d3zFEy7){L3ua zxhqR{>1L}--F8w9I^6l*MUCd&?-?%@mTPtFSmXM<yknyI*9`%2LF%_z|EVsMvlpGz zm6Rk{zqs9T-Sw`b*b_g$8Og7%3k{rp@^g^o^=#LhO+DFD6rvs1HPu|+#CrXg&~hj1 zBFQri8L#tLFIMS`=018-uXt-+%N&{Ix|8>9OYYN%_PY4-`<9%^JsQz>nxc25Xg^Rd zZOdbfo7w-Zz|=PNhvwJIQIi(NEsdDz*!tA*|J;APSysVnlNIel*+t^hFVAQyUgUK- z%QxilsZv34U-#G@`}it$hD^KJwY&J&o!zOMnw&zfWNTl!9=(S3Jm<;Jt1sX4KVo_C z>s)c8Lk?$JtMmf4y(*hH!F<Vdfj>5?^~~>5#2cJm-uO6a-W1Q+yvQes9Z5RvuanN- zz4^E;k%_y~DE+~K=lo}U>kM?FBInxb1Vy@@C~%a2CvRhMt@xT&_%)7=SG||kfB(3V zU#&f6(?7N^j2Ek4wg;G<I(U1BN2l0}3467oq;@-9zh0KQrF@NFc)C=&wD{WYzZ2JX zE_fsSCWB8+Wm!V>NvU&FHku@dvRO`>e*BM(4O?UN%-L2?rgQ$aF{?kaI6x%4u<gx+ zxtC9@o+y_6Ca-$--#K&HF3H`U=I(SW!ehH|xT5a<{LNv3YemHlZzx#f);+Oo!nbtY z^-B**ESg<h?aN;4p?Y~%f>P@i|5dXDHfK4dXzybYpPqG4Mt@RA;#;MFpRS+v>bKs! zFr~WgfBe1Df8TvS=4b{)Je=+It3J4%v&ULkDDKa6S+6(CS40cPn{~cUnUv3+$~*6G z`;5cYa`u7BW&4#`F07vZ|AAefxGH}c+qo;5j9!oOOIR;;pEz<P_|U6u6Bjryc5Ii? z=;8X1@@^~dO?}sUVSASTaZ-$&byueH)Mld{TA#8e>@+p7x3Dg9&RLnX^5MP%mlotm zSXg(?T|eXKxl89RoxSA!yOOQqH`_0Fu~pMU|Jf*sZQ9NJ{z=eY+uCOHDzU0rpXENT z`I_@}dhb6Q6SFy4%e+=)9W5`6+^BGAQ`Dl1dY9i_mb<hq^L(b{+O-;UULJa+eYLnL zTJw#$`BGt~SEftD-<Wnx|NhU$ge5pQn0dPXe;bARBjN#Xg7eqzeLZd0*2lt+POscv zaBYX<R9pFdnmZ-e%hwcNeX;z#cb$=r>D}o3%A}Zglat%;nmf)Y3VKxTqb*zF-@fwv zmZEphv;+>-{FA6v{mZ50e0<03WVSiot1c?Ic>1_q=J>2~`0BEimYaDt`)<~WKGPNC z?iptvynj+vac%ualh39{zgx(i4;6WqZBr)iHpM5`Xu4R%A3a~TMI~PUr*-H>tlHCG z#;Uwj#8;`P)Z^L<-qxJEZxns^S=*cMx0-)$`!xMsDMCRWb3Hg7t$!D@X4<kPFTdY; zR@69`DQ58%ro{&y7z(6YD6C@g-(kFUU&iW_DP<8pb62~vtYGtgUw`IA+@>uaTFX)v za(CJo9TjDHBz$h6R^ddxsulXdaS_>SlLU+9<m{Wczj9a`>`wjVT^hCcoQPymLDt_J zcFE%6cRv4J<h*6~ZUa^OUAbbvH_W;ySf2A>$GyeV-uumyv_6+{X;$(2tPi(;@A>lJ z#PqzwS85yX`!~P6%dzb_%ZlK_`g`mm-BZ865_>H!JxyZzuIW{?_I_`ly?I*N>M1iV z-kdCQV7Pkhq&$EA*GW+`Z)!eRdudv0j+uJVtW=i_aqmq>Vs-{EJ9}|QtlH$usnc9z ziYyCHdMGSmT(sh2M#r&f!lgSmu&2#d$j%YhJHDygvbXz~!i7i!ri}uN-v0k`i!o<m z{fWtI4OW>-N=<cJxo~EHfy^16G}cVF^~Nta9`mMYGg;n9{__060<}rawN~YRR(DnR zEb~&oRCqb{o8q2lg3o-b1UXq(H%M}EukScuH0Mzk|DO6=ZF3wW&%J&>vm$+y(~HQ? z&&%ItY+$Qmna1N+H^r<gF!k{=-WgWU`{Iv(5m-~d=;zms{k&^rV#VKbe>32ErY!z! zvBYbO+ZNw_((Ifwr@rd&dmi#j=3UbM`!5$f;rTK1tW@~c4Nn(IWt$o|HH4eoI3u|C zUZ(abL6JF6+`GExT0WdH!C&d-#DEi$#oHgfjA`wCFyWFs$IY%ljTcTHnaW->^_LVr zm@m7h*&=I&z@+-eRzI_TDpt<^Gbct#pRctjpr?0Ygm#5XumMNPc~$vE=db=<W33)= zVN#v3?#r3k;@2{`Oc~a<sVV&M%{1{|6144*y~FylBmeGwh;$8C?afFs7J7N-;#K`U zA%|{#$>v?WtypeXn&<7AX*(-?cCquTbF*$N?-5U1;(5d%Yukm%dJ*kMa~2=y@F={b z`)lKqY2Ej<Dt%s9&Uj<*cc(Z^<9O%J`=JK@#R>DeF6iI6;WqsnlWko6)o;#9!V_<_ zXV~hvy<sYotnOPHnf<X<wn??rQdGcx_B=twT)idhg+#^EAFu!9KK-2Y;r%n%?tGa3 zy=v~{fM4^|AD+Czy?@ExVlfjh@vl=9ejV9!dig`6V-ptsFrVCTk?Di%_lEZ?4k)h6 z>3q(~e=>FTO-G%p;a9B<oNg|V5{#%{9wUC^?3<92nfq_b2etlP=-}C)>G<??K&55T zG?C|A6GB&L9$;0qWM$oHc`m8-jBHwR)f=Pe1CB?%Hr@4`_UV?klj_celTIEzy5*j9 zNU#IL@*=rrNB>RDTke=zs;fUcByn@qA;sP^y2?h`PZ!OsFVuOIR1@ZNxvN9%!`{i_ zvh_ZdRjNHR0`~B{kP7mcp2hL-yz0K?ZjBKitc3pAbbVSLC{|<q^Kvw^+WeFEUp5|K z<?OycYeSe%-h?gLhT^f?ZiM<|cHHX_+Y|VFmx$*pU&Xn%ca+~*)XdKlRa17dQ8h?0 zJM&`Z*%?27T(jKGHa(%_&nav7Wy`pnWll<cSoS2j{-|o{X*1orMUvjL(w|A2m|d6K ze)WxvUF{`iUUR#DA6fm?^jbByC2Y1ktRnjMRn&&nGZVtM{^0dnT7B$G*1NRJ_hPI> z^)!r?UTPeCCV12S^^tQO*I$0An7b{b@kVP=VP05bUY_GZ<EV?yFOp2JzRL=dUAcDM zyTI3LJdO%^sZFZqQw?ftxin>JpR$tUM=OE6R5zxXGY>WxU)me-VwG#^4xONou&|gX zZ{B_1DR8VP+fhTRx58;#f`*XiQC`uzyR{WoXq2#a#WY5pd#D!`x_jX?owc@M-dWKn z_0HY%e*URy>pGi56H{BHT=)bRDLy{o<23PZiukL}Uk}d*cRxQ^R<C{J>L=fcT!x#K zZ{)NJ=yvRxAS&*(EaOr9)Ti;={?$IVpZoQCc87$*vhd=Ae@~dUWeKyp>RBv)n`LXV zz+<V`-ul|7%ihLx-v8-!?zg{fy=C(*?T;%tZk|+L^iZ7h;L-U?Z4++jOh5bTU+@b} zsq2+JS8cnesKichmsOe(-?_b{{+hMV+~1DR_cbd#alc?`{;R3`=_N~{{ih}?{_&r- zvo9um>XLw|=_icCtXIV{t8UdgcR=#DHJc^-&Yq&)6_%@n3Lmm&Op4C2_L^|`p_^ZJ z7r!Rs@8Fsfi-d0_CU;)TxRN<nto+0(?nvF1mXui&V)TTW0^cf#Z4Ns>DS4WnoJ#!} zE1zu!uiySZ8}e`U&0ou>N=#R6{`2JE{x!!kggf`mkY2P}kL&d!gQH(18um*&<SBm9 zF2DWuO3h#0wxcPWTSM;W{5Y&KS$L^q=8|~|{+{tu>dx1t|2TK#!kd&b>D^}?#7{WM z)f=)z%B{X#cq6HB*HWpuL7vrjT-YnJ47n3drPgPx7F?dR`nEtE!}rapS!%0ejb?`2 zP!uiGnUJ*7^v@N(Kijt)W|mT4@aAOWO9Sh_zn7OKUQO3q@OnSj{F*hL25yrXz1F%g z?^vC<r0SH+VI5|T9Hm_mT?$<@r@tu?xH=(jpSa)pTZ>!Fqnyrs5kDCu?Pq73_q*ia z)`yJ!-=r^Xuis*~Gd3W?$WrxA%iE9JCJGmJuGqIfuF!Sa>&AmmuDBW=F79XZsgZed zr#a@VX++XAp=jR)8+L5i@`NkD_N>VJFSBOv*?!fe_^fGvv39oEl{c#_16EvLFzHZS zt8#ZnuYS;_-7A(=xcvL~%6w<7snPE9^X#vhoBn^eh<D>xRr??R>U;i1F4B0>7*My| z&Ry?vx@l2@`$G1RTaUM-J@3qv_Ropzd2+NsXPb__*y+>dY0no=*|vHji#L~kaE0oG zc~cIh|7<Ob^$;#<|Kt>+@rc_|;K`X!mDyc8gm&#}*Oz}e;q+_cioJGE&VIirH%I)` zxAsk&H?8?;H=kXH&F7fYDKF>x(5qLCB&8ocF}mWFck|KLs3)vzE3TCJ_sjiU;l3h4 zy^itc3Eep}SD(&5Gk>c8!WzB(dh@eR+q0k9v8+T~uGMCR)bxT|^WypwDm#uoXL-E( z?RH`Q-4b0Ljg_vgQ*HCTBNp6D5f*Fb*pR)s>&5N7mD{#<ADFX3;IK$xYkKR3D98Ge zx7|fbhosE4AH|3+INukfv4%BZMsk3J(dyv+UJ`pfjP$o^Tr0}lruN-F`P<UUd2P%7 zbKDLxjSid`WwDj{=Z|e?uQ^N<IG@|3%agc;K_qFxuY3pVwU-z!{?MPH`zP;M$~zz9 zNdXf55t@2SBWfoWK6YD}uKKca>W|r?3r|niNt#iVU%H@h)sNk)c5l}?^j>}Tf5|MN zLZz37K6KvPetxB;x?aZ2Ux8&=XD>2s=nqVgk29I8-JGy8f@2zs65o%c_Jo%OR%Tja zNy<V&w^|F_m5&!m7i3M3OaHodZuQB2HGflv>6%=&($R}Q?0COV`_#kTegQ|BS<|P= z{1#6*dV=ZvX8w80ds=qpsn1y+v&8&W_%?o7r}>ZcW#z5)7jXY*3Kn!pOur$jwfm6a zrH@V7?XQi$Nd7xhDfR!s8HuNdv@U-8vbtsZd@kECM(yd}xNQCEcYHYWq3y%H4Jv0^ zH+LPHvo1n7PRdRsk9&UezObS>##VPLWYoMry3a`Pv6eAW+_HJ<nWsKg{I1d&*A@P{ z|4RNf|Lc}}QUBbm%48L0Y}~OfHhSLdU)L|NoNe=1a`Mo;O`WfMTjCUZyq2tqxe=ls zWbY+%%_D5dikTDk#hU1UJ>?W@)PGlg<DcrPt6%DmU!3J~zs}a+x7wTI|LVQBKKXH9 zx8c&Slb3r>UcWJQ(dWu|jrAI0r}zs+_5KGu30-L#$R1N>5I1+jkC*Fn6a-c0$NH^Y zaanWs8AjWE%wH_J(u<}m@Yp6W=1y<qv6Zbayg2jX(u>J~YFVchr+BA}^Id;^>}C3^ z>95Ye%<PqWy>?^X^)l9SU#D};zE4-P94gduy{UC+itbl#2E%RM)l9t87+)nfUt?s= z7QZguBR2WZ|NfVE?SqR24>kX*XMc3}qy0fk-(~7@o)5n=7D~?PxbA-9%Ty-2r87>7 zc9@li{Hs@;`rr2JHC3C|1=$V!am*hp*fu@l>#O(wJZ<U=znOlK|5E;6nQK0GyV3g@ z`;zuws?Ga#=#%pA#eP}IxmJr$rYyXF@vn2Sqra_cz020NHPhEjUmv*l{2u+ucU`A> zyqm5YpnFZ<%+4pwD`lzA$~6IT3tt@*d&T8@S7%d>P~g)|j??Gx+HyFUR^Rm9<@?L` znAqjG(|)Vph@M^jChG3yU(b88eWZ2tqf(W>Hv95U3w@*f>*+Fe-Tvs*y<hhB?DhGp z6CQOu<JgAjPk3!D>a$cF%_W<HUZ+LB)qOeNoWuKL%k)pN`}0L6eRyfJ=R@~&whLWr z)mojS*JeM}&uP=Wed_<l$n=$FoZS1avQ=+AnN$=O-QvWjSH1a|)*CC`9M!ddp2y}c z^~>0=nDg}I+PE7`iDq2Smu`D*X*wZ&vAT2k(sIYf)~AM5*`;n(-YxaI*=xd<ZWl|u z>d_V!-+DD*MUB(j`1NzdO(abdm>KhWw&*aaUh(YixbNQM)EDg@U;O@jH@^!1gGbEW z=k?_3zHRL-)QSClEArCs)+ZmYR+xk(^U7_ts!aOpc*pwZy@{7k>KEucZZ~6|c7=J` zk3gQek9D^6Zu5>kv3C3GJC4;G>-SEtb$6M#mV5iBbjxpSx9^$>O-nuf&%ZiePTqB* zZQNDc?-O@cy<7eKjE`EmnxcW?O94Js%O?U#F6RoI6*!eD1g?K|VdWPQX^kxncU6p$ z;%i<1Xf5~e*bnzuV_nL_r`&bjzi!r(@2hsD8*x6^b^rYL{`>MizOu2Qv9YmVUtO)Q zULO~F|9RB&^j|?+pFcn4W#p1&_w=OG32{T|L#BypGGz?eV*L^gJY}My3=1<##OiKu z&X^z;D(q?c&`3%^_HiQPEjyk&h89uG58Gca4VI|0yY04RXQ#n0CZ_FQ1eRsp6)c>q zCdKvO+rCL=3#|54d|RBjRQVXsjzzEIBd&kAQQxt={$eT5{1;hoZI|5N_xDr0i&pHk zkB`@_ocB{Bvs|gaPVm-VhOdYB-)d&M+ujmbv%u=$P1&oHPp41U(N3J&$*6kRdtHgI zR_4>_&+9e!um01yXSp|@d;ib>2ju(Zw0~G-F@4*X(ovuBVAh}6f6JfTfBb)Iz4yP@ zf213OIrrwr*MBef=;e9-cJaL)msQLA|J1}OE#MG)(*CD)h0`N0t_kZ`Ofacd%=~!B zNz_2*;vSnrk-xtiX$LZHj=Z2;Avk}d&LhV_nYRaccZXMAt4Q!WVCcd9$nfCVgUSbu z9U~_MsIpB?IO2ND*zMShH8T4)e9wwKd}%VTy7Y^6JG6EkZhKTyzpIPeS@A4S%KE#1 z@AR#AQNDF{QcZq){PFj1?YMR8%fg+)^FA}T-I(~qJ7LT6uXj~G$_4WO$h;KGSyCl7 zRZjDC!<m-imtW=OE8jos4c~TGb;4>@>Fp+^wV!W3nmgTo>!R1XZkJ8>m_OK4_IK*+ zQ>)GYH48oaCVu*Oe`JJZo$ZBshUx^r2MK->J$6E$*rvrklZ(9;u<cG+_uH`RZ{Jz} z&X-uSbBcV_X@Ln9tG=CdJpN|+oBKDW=6#wZ=FS>8bDclO$41TRhZUX+yqg{zC6mNG zIi>gf64mNElb3nSE!(=Lpft}&Xhm|W!3XA&mFweER;@pI{6~!Q&W->fUf0%J%YM|a z`Z4RrvLD-a*u0bZbRzD}`AdszE2Y%33)ipM@o#z@!yA)}x(thq)~;~K74J7y+|@oK zFY?XaZR(osKP9U48dm(69Cq5nE4uU79I=3~Q}@*UmZe!wv;TJbYQK1#S?;%Kw>rNr zkNfvR?b4d0Q~TWIYwKQ2c=UDue50rQ=eM0+WxJ%l{NC4zPxnP%^U;@$er8^|XJ>iL z)^BTXcY9tEPf;y6)!eTqV{$ybv{i5ClV|b!JTf+$8mwEbVYfH>gz<{frzszmUVIFn zz^dk^s;~Z9RBZWLrV7pU6Fg7knGc`1**JTiv6Qc!22&GL{uhzTWtDu@DQy0|>08oQ zrE~Ty%boXFu72useL<%%Vaqd-p7s0N7VWp==6bH9KZp5H;~BS;B@L0k6{m&;>U}!A zPJN}`+s#XUR&lT1_0MC0l>Yl&bAKIpyReX<|N6md@y8GBo-kf{{Qh5F`~4S+(eLgU zTxXlU+h5DC^53if;-7mTNq;Z@CttC3+C<F_(XaR4{JX&^v8?0I<oc@_scTaGR$qPi zWtQtk4?e8}tc4)~0X=&v)p|8H_O1R})q5*jC{_OOqSQ%e7E2feYe@B5FG};hl9RN@ z!IOpAu4ndwd<kZ$-er?~r!DoH?!Q!O?YvcaLF<Fo2cEuqZj#Qe&5c|;IIfs|>DXoD z^8CNo2k-CJL0f_}Pwn6;tUS+D?>}p@!mR$QFI(g?!=F#zAG@jaslj}0_vgZz$J^uo z9NlsIc>tet&xFu&zFT!^$Fi>*=wEs&d&-$7>hGo0{&PzVZHx35n|xO(*!v(*Y3X8# z*k=;+W<1+_z2eAk{p0(EW~pDC9OrhtGn?_4(dvsQBKKOY)}7(Lh~cPyr;$chk6(Aa zT<57p7b}#c&U#lgb1qrh&CsW&s%D)ud&+^>Ba%xerS6GhW1pk)F=+kvGY`L7$=+)? zoX4tniG6*>=15u22Ptp)&gGTg$gRA%z*y?RA}h01ylhNXbEi2*u$ub0bjv2oyzMjQ zo7t@MAoH!ymJ?Q2s}7usdRUddUH10(N3$pNTGnqep8tw%B6G;Od07^>9ZZ)>zsT?` zo_s_^bZO<O&nsBIhW=b=^VHwXLzZ_=(~5Udy$gk1btkYKOMTv*Ixpf{XngkbFIDII zep~DOlIi{%{zHs)U*YEFW^VR%BDIVsS6vO8dv2B3UHRNM@tfB#%x{dFX3JMAo%~O) zYY9vH)q^+Q)EBk#biAI?9qdvmyO_`T+763Kp(}x|{n87nf43C+u2U<Yy!>SK?6+dS z9e+B$<DOkLt8iB4tjbxgWit-C&AzC2gJt)bgFD{ZEx-S|`{-LypVqZU?50R&t=@Y5 z@yTtT-)_J0zjZ$$ZhI}qdROr#pJRq@IXcgK+_;}#ExzWU*ZH-z{^y5D2F-_#eVFm# z;D?DDZ1$Lm@jXAbr%~dPW`@{S$G73eY+o6_7Jj|{Do<in_S3AbPVcUsOx@F+@^DY^ z-W$>HzEs8f>Ax>gs7Tzm_;s~n=G2Wg>eElwg!OHX+9}a6<M2sK89z2-oo|+J1hyIL zG)K<A%4V74bLHN_7~LN-fh~sh*}a>LLi0=>DAmu~?((&3McnZR;)QlSD(q(h{Uic- zon9uYf3w~gd_udN>txrG&1*TB78YF6bSa*EZbd@J&*b3b)k)b&vy<AB<Bx}ItUbe} z!2I@r^6lJ$*}fV~+}m%lgzr4~%{27S{4L#ri=H}cUVB6F`C9!0k1dWITAaGWVMF~d z%bE#?W3Ff%_ppoF=T;Y?H+et9%0iQtQ<3SNUWLmUUG^7A`R_WR>F>>{{?Ov7Nts@$ zrC;}~o4o3ZR}=qmr5eoHqUGeWc5cWcCw_?u%l)Mk8s$W-H2A-YuK715=<ZIzM>8ZZ z%CTP3;rH15e5Tp4)bg7#LV{+C?oJKlNZPf({?5S_Z)ESLZ@b--snp96E-m#+S#gp3 z^>*&^$42Jwgpcq0etP}CPp4o15vdHDWceoG^8EZirx%60<ajCl=~(;o<NlPZGh5dx zM1Ohw{-%BE+RFyayRB}PZaP1alUH<+TJAY}0j;ZtWd8H_c!x&y2Bx}MtTD^#GEFvF zb1XBjMytC1<H~0>lg@vUxmz4@@b;9a7K)qXHdXJpcbKR5fAx-;+>7nY<ImOU&2Q#; zvFYxs8P{gA%==vH$j`X-*2=h^=POezWq*8)?V4Dzsq4+j>kCi567MQ1I9Kg<G`spk zbcfs;g}0~QyL{Qv<f61VTvwCvG2@wJspTh=U*#~I*OmYBS7mnnu@^lj=5NaC<&)3~ zjh%bu?-t!vto!n#CAOw*RqM%Kac=t!F8gKC3-hH<RGauO5tU!|Z0(z?n{z)!ZF=?D zcB%W3%eSogPv3jVrD%KUeURU=sK~&H75g0W&%P<Ow{g3@;o$p{GP!dlD$UoJ-WIXm zZcAFhbY4KOKI-R=|1X`)R`t~X2;LNSy6F1VcV_R>uJ65LbzSUf+PlK**B0G9_1E(D z&e(Of`?eRIn-*buqw}-D?+GvK#EWwu%C_>0+s)m)^uyFi$*S|Gu1GrYF-J6J;vxqX zAs&|GwDm{j)^jZAvPe5!^6F0)Uyaiaq5ERavo<lT4rTACJ2k1s%zoabmq~Zrk`L6c zR^hBV@|n>wf3+b?LEr*411kg54VoKt3ls`$7I5v*dYj$F%r)uWk{e4b7FevCpgHI7 zr*B^;m{=HY`aESzgSuH=RdjUV;Y_Fd7h+u`qxS4ySug*ObBFqJ69Ik&Re`dT?~GT- ztl9kgjo;=~0aNXcu1s9H#N(jjwb~QxkvezTm)3utE2Z?*cDdQj&1P1U-o9RRBVLMC zXW{p$FYhY6S@OK!=Es-L?`(I>cCF1lRu-4LCA%msPiAxGaUr9Gc+bC|E<JzV6LoJ- z#(keHj~4R!YR@;8$d@+Sz5iIEStifAJ??2`a!YfrtoJ>3aplJ8XXjdo{@Tazt4`^_ zTK1y_71lFXZL8;sN*0{Etf{KMHzs<HYuNJ3X}nc6USiolSFCfq-I)HakL^kg!;7yo zo#b9Sc7(3ldar>oYF^-uPfm{~_H8e6Ie7DcY2k6pX~oCZ@3P))?V&!$r`sayM5n&G zY(v#tby;=Q-l_AgxDs4;`@P~x{8MA9cTKFl{ph-mvt72LHA;W#ZSF0;`@UN5`-DHb zR|9VzUp4vD{#8C^k(_!{`LA4ic=48ZZTJJuPi(2pWn%Mm<5$EUi&?$%+V(^ByYtuo zZ+-BtgZIOUnX*yIJU<@3wVS<zc^{+x+T&_3lvADxJlyM4dn0kqR%`C(YwOoDYw!A( z{{8s(y_1$IetXgW{oZfIjhoI}*Z=>Jb=_QF_LbG=SHfQ+nzDAS`21^`{l7xth$(U0 z@{GyG{Bv*0UdZ5eIrDAp1pdbBYvkSSPS`%Q7yJ?ZWc|)l8%(d8&5)OroN3*d-w`v@ z`o6(^OZ}qV!Rg9Q+r+rT^LHNFrC?<JJ$ib~!y>7*>vkCC_3e0PV3$*KVB@*3Enhk7 zPe?OOJNV$qosjoeUvBLFW3cP2NQd@T>r}4u>)$p`FjHT;>i(PK*?-yp_S~O(o^{cZ z+2-zskqxoZsf*7YS-56i+ef#rQ>3Q#*=W!6WO%k@$=oZ8e`#&n*W#{l`a$Qs%b$-p zFRyyrGpX!YYtssw&W7W)t$HoNxnW1Q{r<l9%e%|Q9`~fOO=rF7?ce(^>^gtM?`!oN ztN10=^?${dec!Nczuk`;7rl=alm#bUU^=t!o7lCB%vUe+Ubq*1!d!8|QTxhwm-g(e z<Pnt06`g)U##V;OI(hmt8C%8rcRo+HF5UWlx|gm?i(P1luf((ClRwydA3M}KbIqir zk8>=I1j?SRIHT2+R(0%{+!S^Z=JQX5+)Qr${dsPJ)|)dAH0Rtr9JlU-z_X>_Of1s# z&88SC&D!~W^0WKvBR>9~)-S){y7#^K?+1Rrx8Lxt_U3bY9i<mfx36DsvGLEW$J+77 z>*c#H?D_e)-&{B&ZADzH;DJrTA76AB_$S{^NcEcOcqSrE?X%YBRZo4Nw?E^bE5G~y zn;&QX@AZBE<w@lvpQZUbejEK4`9AfZ+IOe_yzi{<O4~@+oIlNbI;YyU{f6^1bDR7h zBCEoE^yal!-gv@$W9p^`&(+fJy>i_uIF;J{Yt?SlH`j12H!I%JX?;MJtwiPVoW?!r zn;J@<WbP__^yTCiy`WVp_qi{=*-*&kz`gs<ocqU1Jko8i1;5JH<O{gzy=~K0j@cfX zS_e*Y)zw`3b~8Bq@49P~l1n7I_wW4pcirO~AAY^xkhbXajoR<Br4QZZs@Lv1^T1?g z&r;!yzk8oER{!~Iee7!V{GHx0->dj5W@|H=O@5)PsPy94iQ7-iU*_rDTyuNj?Wq-- zg(eF(uI9<Q``RrzV6Kjf>W(GN6K&h4@0YVxmrvxH^O~i0V(13FjdB}LtvUB8wfe*D zNqT2IRy9SZ+PF?<mA6%{7jjy@q<P1sCOxLExH-$XyA6&mo9la|_O<0ByYFZ2p3c|Z zY-KU^>A{`d(;wf~+;z2_&zn1MhAoRy_}Tjz!8gyOS!c&vq)hd2H+u1Fopg#hL(a2B zMsI|@+6ufao;^MwuN2Sb=T^rthgVzdh`8t(omr9Fg6d;yGH=fPxNVdBqwn=oay#?& zZofXA7{VfdW`Ty2?)24H9NB&fsq)>+c)rlQxaRv*mI_~`hIidsp_*=uq887d8m_-6 zadr09w^`Q~s4be2`|9w4yE{*DGv_Ycy7276Zxh})yeN3#^1{bMtVr$ivhPgcUHTn% zj3sP}D%pNQTcRf4yLoXx|Ev>Dk84ldt>qQlx$FG96Twr<O6s>Co^GsQYg{jVRMOy0 zgi)$W=$5~~KRn&JExO<K_hJ6?a=X8--TkiW^V!|+s=6!xDs~xv>ye*QAKH^u5LcEN z_qM;<;ND*8#p?vW@Be$Q_WS<Nd_Aq424Z3dBUT(a>vWLqI=_wb;V>KTjXoR2?w`*& z)^Gf_LVa<i(?{v2dO!1?u0HjB>hV~w>Gh{lme06-;HPEV>_-nQb}MIei3e^{ulFjf zs|zeN$h*=Z5#Rqcc*P9e43U))xhY*PM<*TD+RnA`lTuY!>IR|7zC4>MblC33cBXhO zc3b*v?r~X(w65bUZy7`$c=L(K>!o#Bf4E=vP2S9Qb9VOvNvlOFOZ;7pmvJxpGk<j} zr)OsUT$wwy6XrxUcKY?5RDJp6K!eGyJ4H*C9!<0Udt>RB4(Ca8&RyK>wSir8*ZFtP zO6&ZVG`@1(XkxpaneCaSQRu{3p>Y{I8Tw_5?>~{;?!S{OLZJTo^%SO^ua>0-XLXCE zy-v71k@w0)e&KfBNaJ0f>x~{ypSx#ML;Ss;sn2AVzxq-?Q|<+81N-bdEfEV+!Z|A) z(^m!;^p&0~*=AM$G9>EDF;AHbo4MvzO^T7ba?|EqY1o4Fo8dF~YW^3?wZ<)XtdLh* z6v%dCqRdR6bJ6a_Gm5M9<F6jxDrKE%A9}T>dKdrau1#NWtX)`i+H%&!AYp^-_0g^E zlg;0k1Z>OuVeZ22RG;_jLG!xP^?%&O)-iRtE%7WXy?Y?+Qu*gazD|cc`Yt8)yh(B1 z%f7<KfAvD%tq;wX^~R>3kX#zI_|}qJk8Zx6SRInL>A>SgLEY<2?|;83Hi`_;-nVJO z;?Nz(tSdLG9xt2U&vAD-ms(q5<ox*M&-dQDXrxp8>)WHdKfa&1s4TF|tNvi-!s_QI zXXRU0mjzCkER-On@_t_B^EGRAQ$JnmDth*#)V%EF$xrsiIhU3+KHj}=q3?pY58j{t z&9%RD(Z2ZLEhc-}Kjr5Ze!j=};`Z-^HPek{s{>>jZZ2EjIeD(uoW5U&GB$5Z>w9W0 z_AEf?d12+mLltpGVfXA~ge4``d!Bp#tiFBAW?hSvl^YB=^Gg0SpI|?!uN<#d-|=Tc z2yX|E$2tD<`u7jza%vuWx==u9;!d;XleQ@@-aFO3`98V*RgY=iE?MD>g8x${+?VHJ zwN(rWa4U2x{CFXyurSgnVuFr&W~QU1>#R94Yt=H8ZuuSX?Of&8#~X58^TjirpMgU5 zI&$^%g*uNfo|sUlBE#AK^OH(=+&rE_vCXaSihK(NHce@_tmI%1mg_ft8s-xGGj(NC z)1Ml**+#P`Xthf6y5Gnw4d!T<>uOP-^8V=TK$fI0-ji}Y+x*4Um#f}XIp}$>PHX`~ z0$<dkykKKD)Af373^RL0veJ**{o%+GZq2Yg)%B!)N7bg!ZC;Z)clb=26lj{{DSh<b z|1il=_nXW%?=Q~Xr?p6<pk(>-`7f-!UGK*^{FSxM>YDLF^HQ+Q)904O+qYlXsefyC zL7YRz^OW~XH)OoD+jv>juPEgA!6{n=R5<Ny*Y$fnt<rcY5O8UZmQ$afPg(u!z5f}D z9M%~It$SbQHmBaxZnJa$3X?AarnZgyf-Fn#$8MB(e?Cbj{$MYsRn!-jN}u<y4$NM5 z`RG++6|<{f7543V-KS&rsd|oo0LR_J|DoZvY1KL0vcbO-d<qSg$*genIJaS2ME)iw z!9}xOGTax4sSA2te6wMl@ysSZ78a#LdroG^<k}>p^!lZn`7Lp;{~jwL9w)$m@3J)a zzvhI4Cc+bY?-*{HwD*C-Y~IvQEn3d@&Z&O&hZ&rwCN6L^xFXrM;%s1SYu@x~_kB9z z;R$I?>1{=A%R_Izni#I(ZR<S6*+zKEr=-yRjU_E|@(t`fYvl|Q5=uABzv{54W{+gQ zp}gUIgZYN1C)~^sJF})TqrUHE&I!&a<vK5e1q%#Mu(bbba@?;ku~I`!`E*aJ&&>;q zHf?&eDB);8ql=l``opEp*{@!;%t~;act~7Vr=!xAYt5P0>Ps#JxW+Y<vR=swySaXm zlF-JiFP3}ms{J_KottZR>|64c*N=-AKe4(cmb%D3Y_Zb5WwScA27GONb@*yd{np}$ zdz<@oIJtg4a|}IpI_K$xkl&ZHPe1$jqJE?L;)gL;?|<15C}88$*|qOTt4r*MjXMsn zym<1-EsvOKua6hC1}A@iJj3REzpT}C`Ndy4{lDy(+s39~eaCiozscQrMahWN@9iJf z@Hck+be_d_^pT{ER}gc!>D|p7b}LWveK^`&Zzio1rWL>VPmbG?X#$#4cp4|Y@ZRWg zB!~a#r=v}+TaB5f>N2Z^^DM45l$Q$)v)Emx!P}>&c|tzIeX;%0TRA2t&ds=Bl=9+& z;>y$O-rVu!zgHI^VZUVKXMU3!|GO^vHPb3C9-eZ+aHqh78l?l3s{2A;l=~F=9F+-@ z2{P<oSyr!6w&KRpQ)a5h!Is{pr_b8GsdG9Q^ZI^gx#61Q_V>>#=p;+bKc#a@l_zZf z)Qx;gyH7Y4$G-}jGp*=E;92LTGd-8&^=c&b7}R>i)cy>ZctqDXRO>@r4b#VpWeFeI zQoI(FolTqUw)SD{@wqoV)kKw5ORkIMvpHS&TyaP4lINnrde;wcY`BGw)$dDwVZXG% za=ZJwpj9GTZVx9ipV%21H}TZj#Ubmg7jqvzxVHY*yJs#8(O%m(o0~AGx<6dre(7yv ze_TO{-a_lbOLxCsb_@4gCh(CnwEoZ0MTOea(=P86+OlSqyv+Bt`?h?3EoZg;->qG< zt^e2Ybuj2w_<t{q6g|*UFLv{zs?*Y&YMTqoq<^#3Ial}m^!Vrg)NpN5W6`|M%oM5A z&mo^pK7Zx*?VWbBY^v!2DW<Hj)nTugI^KOQy%u19+^^O#UpL?VMn~6069rT28PTlm zmJ0+<=p`_IGSTGI;M4ZgIH&QXi|@}%KlTL+P57CE@4P(MwzQ?zV?M{7?0Vyeb}7tW zQ(oKcK7Hb8!MDA4=O5bh`=#IB^G{ws)IIr5ylT(11zQEbhW1&gDZSewQDYj#Co`2z zMzzrA35TKng<3Da>^7HzoH-}s&I%qsBxy0}@q~o71~+Dv*<BVq*&o6mvb<WH5YgXh zVy?UP<h07r(z$gn1FnbPsCl89GxNjA`e$e73v_RnePh+^%YGv8TKd1&7wu*1QyzCd zcA0jslv#HFlaQ@U3zxYhznIUxZO?-uo5suw=MP;_?_&KGR+Af7yzpD<QOC3Fr}(eP zKdTEU^7=T_?P<#Ao7q##H%Z?}k7zyX%)WN>iPt4ndmLw51ZSRI|9#f9tY+6sJuP29 zDmkC3f8}{I=h~b_4PnCk4}Pb3J@I!Hx!B;?8oF*%&6LBxdG1}jxALCa`ZKR}&Warm zX42Q~v5$3a<$OL__0N{B$ZZ>RmT9Z~ac2xQxcqs>mnzTi^4p)cRprX7-d=g6&`rhG zWlh~d$E)7E>>kZbz5ch{JN!BK{5zWK1kF-8Z_58X{EN5Vy+5zwgNAkT;U}7F+h>=T zm)hT7D)4n~!#0n=O&RxW+xyq-eSRWQX?DxLYN=m(EnOc{pVVy6FPHdrobyAd)USNk z{iXT68<H=ET-Vuh!_@vl)4Jl=*b3oYr%Sybw!Jv^hn;(Vm)+$5vz;zKR{T>?!@Xbi zTvv>X-!>1ABj=)CzYZ5l5)=Fw(bREShpFhPm_<;U)4As&EH+Z66UCmgU8r?Tm9W0* zx6ikkcb4!hW2vymS|_<DFlU<mzWsO8;eW#ajO(tw*YWF~vU#aX2{V&I{ELu9b`im) zcGESrZ58TS%Q-t9{VtFXylA{WV5iYky>i`!kM>@j|L*;(BX7FZ!{lT4|I^rbMq1i~ z|KA6%UG5*hpHJTNd*{1#g5PEAYR=ob_jNqCI=wDsI`h8mTz5(>E#hsXjPLI`RI~dh z<56X?rS2jxf5cC(u-IOzzgaXw&N0AyjpWTuyF(>prCq<jW}ALO+g3?zO3$Ux1`E3! zj$Y2rLwk%BT~ExsU%7pnj;&(-?L$v*oSA1Ls@k{fOXsXbQ+_!~9pw4^BiY&Q&WkM> zMLG+YY`%Y(y+B*_zPMoCKiyTA&Y!cW`rqO<{piXqEisd~m8fPupW$1UR^N8a(r2G2 z^Wz+Yf4d8$!ym6qJu`h_l}Y{w<3GlK>q38Sd)n(*ziCf)_4Z$j9qTvG@u@R>;eML& z=JbU+w!+G<9_)Hz*Ic&f>8VqdQ$Gi5Yv+61jjODF#hJ&xe5du++vj7}O~0;Vt0fz; zPe8ov0XvKT79{}(&8IE@8ZX){dUf(wjI;N#_UUrEwvybQ&3&)Rz2;{g=)64LN!K<| zY@NvTD;3|$>-*jq)Uh8vu=d%ngFo&{PG6~OYfwK=eF>}koHd?e&%S?_4RN+>n!5Dd ztiNBiqt7?4+j((ANtsgh+!I$PP2G2D<Mw-|TBcimOv`Ov?*I30_WHF!kw^36EZ;8V z_3h8!SCex+dwXozmwjt<4smbTb?x~k%hg5NztvBzPLgXrD!A+2B-Z`8JVlmz_ct>f zxaL$}c=pu6#a;DXKc3uK)w-Hv&pqxhVO?)bo$@&z%HN52U$%4Rans$V`kDV0SgxEH zKeyQX+^#wIpX^yx8@_tO>Jycxq9^j0bB9g!Sr)>&abj?^FWcgiXHL%DRl#28WAHQR z;Rc}_)k`k0&WU<w7Rg@c_2ARz&@4Nt3en0QxqF+B6dzD#mwK>yE~{|MUFG=83%d2v zFCVv=;G6j9(o4(fuk>tn>NhPFj(dCjWiOxYe|zuux4lC3<<;gMJg0DY_vi1^&uKjV z`XuJ>ffLr#3|&<w&8u;`RcN#&+18r*DU;r{%#_`^K4;ouwVG!=N{F54wLExr6I)?o z=xaGu-8IkHPLwiQuBy<G=VSkoptnuZ!ft}oPO06>Prv`<(JDQa5m3MwcKUNY$IaXp z{=nnCYH_6zol{-z$i3FiTfa)EfAgAGKJV9y7QR0}Ti`NB_=SYV1=0Ja2i(n3T;36t zqGoTTZL#s`(Zr02Z4bFma2-C+_GH4&-@%!z6SZ2Oq?y{kon2=;J#+4a=y{cYqY~$6 z2+p#8HCK0w^uA?lSay{q-(8a0)Bo*QY;yhc_u|cq0wjMauzr5H_X4}3O{m7rrtLH4 zZ``n_?fR!D5lu4p4lsY8c4+D|#%VXt$XvF`i_4Hssk)UU_GgC7l#QVqUQN8WLjTg{ zUx8l^^ei}*BDOrRBHI3(Q2V6I2HPf0{<`eKV}qtFw(dvgrP?+A%S;ulpC!>#`O(`s zhC}h*p~8AG?sUWCB@<cZ<|TU_US^Wzs&TaR!Ox~^hn95tm@dmzyS7FAyt~*Mu`f-M z;<IO;nSIv%jL~QA3h4trEbJ<_4hpS)fxI^^Yk2qXT=q(RYW(k2pXR#fzqhHX`BI#) zaNi-@RX=ZOw`K0%{d)Ts78jrM*P?nS3&v>FO<Ufzrr*b5O}$-hTH14iiJWK7ES`Gz z?xx=h^^<e<eQ-H5Eqi}!?X7Pudz)`2-%brzJa%HurnMV$H}B1`&U?LSrJ3>DGl^}X zCqu&8&m{I57Dk?#mA!sSXq5iM*rd4{vrqVL@+<P|I(v*erFd=eo8mdeN!L%U+qiDK zZNh)v&92{;ly0sy-|T-au|9XZ{reibZ*6Z)f4gs6{B8dYzgxmlvu{sJ5Zc!AH|+V^ zjp;eRbJm}Ve`>d_wsHT4`s05RexJ(|GVLzvk-VxD$XvF1!hV&Wz#079iQjlQbNS>s zH+vt-O>A3n#OUD%wpIMnQ@$i_=lZxZByp~4)W*eE-(1hy)4S@}rj+MftC&N3>v_Fa zZDg1pmoIp=oA;C7ajRA0w{2rId|w~^B)K=j&Rc)l`AgkTRrlUt{=u^0&RPb4^$riA z`2tQxCUVJTdweF(=GqaoM|ElVk`l&w*I$=*sj-*sd2=Ks(zfeeG1t+jeu~pPtXe(v zEaK!X{KPHTf-lV!T6VM`NB*B~Xh*E>jof-+iG@q*Cn^4vnA9)WvrOf3W4-o^r+-Ye zx9vM~^4;U0BBf7Sdg}Mio%-ilHB&(Uq2ZNwp%wh!gXOuD_a$t*Il1Uy)IP6$Zs!F4 zM!NlD`X_R9^RYAAd3k5v{B3e^Vs3$_y#G?JExehmw~pKlRuQzUdOh{}oV7;tOfLBw z{%hCT@?5Cnx3tu>d5g>I_IY^ro9UL`ke#kzY%7sId-w9>ch@W=`{oO$AKW!}v(>dT z>Orr9TR!wEo~f|%f3(KXYW72`{V8&<O#P%8pPy?lj5>Ztd(G$Bf6|V{WX{S+y5n-` z5x?Kz?lZoP%Pwr$HT~o1WA|s)i&t2GDSPRCa{4PCttSqzo2Sn=wvDV8kN+OfJ5fhw zr{T2MOpLSr)ZNW;n3LWrHt*qVIBdE^<WhN?+$qz`HI3~>uX*n&dCpMyZpEH$qUSqL zX{p6lac$%I_MXCr)s5TV302*&{IsO`O$LkC4NtRulmA)!hHUY-?oszt>6}m_UL@f^ zU#)sYmF1`CrLJnl-)E-;p48D5(Q5pE#!pWzufnvw<G<#_g2w;LWv6$W*y^ZmKe^Cc z<+RnV{Wlo*m0V(t<zFPK{rX=>!0fH2YV)tf1iRVs8p=$+V`6J7=xp69GqF)#=!*bH zXrr*gIo9b~rnd6+W{;&8&ta_iT0bFi<F0J~>vmS1rL}L1C3OO8lCNJ*<X%$m_H0X} z!HqqePbmEAS<?1VJ2v}8d)CWKA^+E1cbU2T-ZGYNUxY+`6(`MFztK}B%xZR5-|Es> z^Apz&@6bB>yK#vF-)7|*7uerC-EqexO8-XvhCkXXLZjUx+Ss2z+PO?STjx4U{^mPk zcap0PZZiLo^<i%UpGcCP>1;1urPRllUw0d+^jg2j{+xKfZTe?ZTSaLBQRb@>6PsBQ zZfz95y>V}coSHyMq}S&|DrJGw_04SU>VM2o-6y=yxW(SLPjR+FPf^@HmpZ39w{;V& zPk;Ir<fB)YuqbimN09{wwro)BW|?GSa5C~n5vTJ1*-x*}_ZC~K-&<R(9ePY_>W`;a zIHv8BE=^>3y;mzrEJ3VnZON~gs?~2rM1MT&tk6+yxBtAmCnoXvbo0O$i=`zPg&FJ2 zUawWj>RRA#eA`un>BlQU*}w{`UV-1D2PVt@b-nOJAki@FX~qokUDE~3ZGBiz3tj7- zGCk4UR<3^ke&&KODc`UE5<Kp&Z@=(9N@auSa{u5Ewo`@Ax|QDSp1XRc*Q&;goim=D z%Xd}FcX{scYvGCO?gsj%lMiHbJT8r$`-b7>^A#*>@7JEG(K(^Pc+u{?_I6g=gG>6~ zY<{XBz}3d>o2HyS;kmz9R>REK2{O9{*U!?CP*7nJc<;2+-G;l=J@u2pg@5j`uB{Ip z8tl7b+{7OjO{?3_9zXx0-4ZU1E4G<7opW4W9i~~tET8+pv|;|wE6$#Vv57HV)2%FQ zHS6`{%~qUA-ds6p>-C=U9bdBcZ82;6FUTtvQl9&we&w9d*9@go`DS)L|0b=NoIB^} zu~Tke4i~TAbuZEEwaJ>Aiv8=pnkqNOC{(+=Yut8e@d3Gp<wlO{T`f8fc}+ETza<@P zYV>z)?91EdlJ3r^-mpdD$%Nd$|H3Z)_$1npw=zy+U;X~q?%V9&HYYc!>UV^*-RJpd zdcscj$h<!uj+Y$w1x;aQ%omWcFMKn_MaLuRq`K9C<@YCWIUI1$n=ny1H*>n=lYJAn zP3#DFT0fEB@IsuokC?}Q&bW=&m#iyFwc;<ZExA?q%rd0y`$b+ehHF9fo%eRmWwZPH zCw|vsqbceFd1o!^wZ2B2S6`G--xcpCzFTK+qthF|wAz`RRujTs&pl^&GO;u@Z};7~ zG9_m%mIp8QEKjI2ofmBxb8OYuw9SiiKCD^ybqlku%-aL&zFue)+w6Dt)I#&;S9*j> z3%)-ro7rmFr<BoZV6&)e)nmJD_pI;lxVJ-HC)jeM+taVoPuHA%eQjmEh}3?)2j8pI zvqR>%Eq3}ZJ7dj_te^RJQ_6+Ad2@tMZ&(*I+j!Q`Q<@1c7EPR+e!gs;%Kg8B`%}Hk z7kPL@S$T4QpLA2J+U~X6(Vb;4k63)mcRPN~n|qnhi}^(ru?rjH7FfMm=UD9hC^<{Y zTjubw3d^*`hb4Z6-kj03V4}3xg&Xz0#}3?>b>|=Ny_<rvNrB1Vmv7pcA^mq>HOE;& zz0msyquv{^yertv%NF)}NAvfGN%I+u183)Ne&6B$@OMNxyZ?=XgEq(RxJ4GW{!A`$ zpSZ})FzVv68*3(L&w2R8UDfT9a?R1?8si#g&q9^gi=TbsZYj(Rja#%zYhrk-yprC| zL-o?09BRi`c^_R;GOfq|yO*M+(`x%4zjm%{Ta_P@<>aIACF04amq+UVPtu*=y?f=8 z?gv4>pS%C|iTIc1F+}~7Ez+!3pFHW`MgenoFJ<#TyxAA*N`!L6|FvWuV0{t1MNIud z+#f!xR=egYx-U|{=vlR#eZl{tIOpK|2VN%3KU#m+Z)Dxu?vtSu)hg#Y`GVS&Hn9V; z(E+v>PdK$^=-uKh6S~!WZ9(A)jtv%UXI+lZXnb*gM_0{F;rH&@fsA(wneTj*+a>4g zpuZsY1;dqNU1E!>71r_w@h`5vm@>s_>W3?(FHGW&hdlhP*w1-JOJlxGrp%Np$=eRp zF1o2L85DKPXIlN4{vSmvj+SQd<}KQ~>@3rY1#I(@+ji+SO-ftv`(Rw>tw5&G1@{;E z7x1`Wbf}oE`a<NN^q%K$Gpw(q%IvwRwWI$^re1{cuI0bqfA}Z=&`+kZNUm+x`Ic$n zi&)Q8Olj76!JcuF#fmX?<^$P|xh!kdXYIVwvp7wET~m74Lq?uMx9dN~EpX^_dL7Gn z{tmNlG0)tzRlBS&_6Gd2s)%F!634es%Kw1zQaSa%MYdBsi`F-NSNYcV?!1J=mH_=E z`PSEd6;;w(a|4QQi8<{Sv=)!b6}scDqnXb8g=6F61)`m;Q31QT?tSpeSbz6M@3qCs zFK)d%zd`blWk+LY;HD$4{*KZ0xenQq`iudfW39Dsec_MiU#VjLH&&zOp}euWEJN~y zH(@W{YdqjtWFOsa^*~p$V!!VVhOc4H>m5wKT(|Q`{$OLnpUZkfA$LmN&JyiT-O}1) zdJH#W8&)lx`#trh_=CP!hDi1WYcIXMskSwJm+#SUF*7qyZ|P;&Guf`T-|jw7y?{BJ zZeyV5qswBK827EZkQ-1f`{c5c`C_IYH`+rzUi=fhw_J?l@Sb;zU&xm%F*_vOe=#tM zf34%O7qtQXkqqYT3;2v5a>j+Qt~9>L^J44O3i(+bsTmsknAW;kOENon=}PstJys0( zZocrI@IwCf1*sNn3#$+4EuOH4>x>-N@#uO6dF77CzE2M|m$0!!^SDpmRqt?CgDuVS zNr6M}k*GCIQBN*cU0G}~sZp`kTyVi{wy&|=x#hYCu1<YWTwuy@#&iYG&xil24+!~u zl3ww@sN(#@3=OUZNyerB+5R%MUi2-vez(B<pt?ST+YQz^@53)7Uq2wr{ov&5#Fps` zcKWdJ*B_t$$a|(io!ptKJ#tRUGYo<m1NP2anG~+P>F5)VDv{`m$r;9Refq8U=5|Lf zSYNiVxxqBA?c;OD#fpFUzu5i~{$*OlYTJCzZT7<H`E6I2U(_$C-{0`(wMLCx%NE-! zatqaBi<A>?%`3`ZmO4qu`02x^7nFA^Jd<3;cfWJ_LxZ|{-u-QL2?+rY`#&}(*dOa} ztQD?ru|KexVe{Oht3OoS;a|N$==mach3}ea7XNJjsb6~>lcUt`n|kd2Y?louHvG8$ zqi_$a{-I>WJmq<f%NgIeW{Bwu*-PfD+z)KHAC*yQwC#jHbK9SJY(AB2wjAGho>Yk( zW0F|GdGK=5pXMKGHT67M|5WOPKUFW37m~D>{b&Ef@viwLNj^nBx1DTzS#`fCIQ(<m zBVX_S+H)dn%hK<M*FTO=yJsq^zW24|zr{a_k}{<QRtwx#d;I<H%O&3?*1T!@clOie zT<#0M^}d!LtWbZcwPngL>koWV_gMpc*Zt=#Rkg2>|E1@@c=gM#G7^jT*E{TYl4hLT zkUHnWZ3giSt6e-%Pm~*YZ5<9IUl8K$a4&k%Zhlav`Q8rBpp(I7i+X>o{~`T{x92@; zg}Gh#|DMHXd@{C{Ntkcd=<;_sGyh}wkNpddTwfq6*P6bUz2xxw3)U5Od970Wn!h>A zu4b5)&(2}8a6QAV@6DCGwk$s$i}}=ld%cGv&AyI9{(a_KA8i2-#kX&kerWh$U@-ZD z{l)el)-TrIcN96eyuo}SpLD_%xkLF6n;Y2U8Bg40)=81D{t#MWP;FZ^_uhWa{SEUE z=wCLRw?NI!xBQq)lh}!U?+lw2%x|3e^Rqbj+nqwY-;xQcM(In^+vjKhJ|}atOl_&P zOTG6ihk1pK)dhmjE|@1UiZj(cW9W}_e#>NF{GcxBI77;D#_f}S<_TPpJjGP8L)ib= z^asoddJEGmWnEc>E?>BjF7h|#f79Z(_j?X~zQumfZjPywe#-B@JN3p*=Os7(Kc}v2 zmHV{ioV!M|>C(WuzWK+N{Xcd-p`H6jX3od=e|)OznZg)XeV%W^V|U}a@!u-N?1n(C z#Nd_xU42~sXuCS6$vjX~JGiDuAV1B-;B=wK;T@9vaSVpKKXUJIJ&O!++Q9Vq82j&U zPP?u$PJX{&?eRlC`vq<1A1l5oc1oII%bl}5GYg$%-?{xiROQue<B=(<eZeuUVf*RE zUlSTtL$>e+ao4X<wcN%~>yvcrLY~CRvmb7lJ#b%RFzcVs%H6dMtZN0lHFj%B#G38M zS6}*ukMV7ZenOa&e)vHRWqT*h|6Q~C8>B2*49fMj80I}IzQQ5X%GJa6YH`!YRV<4e z(+{3F>MChv;9ERNeR<)5^%v$cXg}Jk;>&ERa3wANj`E`!d-rP82P9ptQ1HE*&!~K9 z%k~B5GkY&DoggUxy0xAoZzi`*jNH-#&zw6x6fb_kV=sP}>sggS^o7S0%9+l%7hm9Z z@D}2#lrNa7mSMU2N)@xhag7<N?;Lfn<TQ%?lDM<`pbVQ`_l*0_Z#nFL*nDAs$eI1{ zl}SNb`J!~jLuHM3nf&*P&8zpim%tyzGbL8q_o7Fdo7xwVg2`zH-35&2n1dVkHQW?n z&Si;_ewR`-L*~JDmQ$?jT(oC$%?SL~9L@UqN}ZAT1)0|?S00+(_*v_)a-pr>ai*AX z#_#NU9~@fBS2u2)d?>WwyWt1+2F3Fo8~mcCMI3r=yL4i?>URd){o?XV&+|;Ezw~16 z0e&Txr$O@f{)*fQZ=HY4?vIi4qwmhP$pO2%?yz4!zQCohZg&6t>1+XdF`|zRExO+B zuuog4UdO+7LX+fzm@03{Ed~?yb(;QZwC<es<*U|<cHab+2ORHOB4>V?!=Zh8!P@T( z>Yt3B-pprNans*<_k(@9FX9=j4R^>fJpNP9xZw2f;6IrvyW|=e9~-O}sAui*&@T{q z;;H9R?D<mrfz$`)J(@eKMW^iKj@ro;p8Sc|lt-1nVb{53%H~az44kfCnt7V9#Qxz4 zQ-i)sGIyj7?6xvU5u41sPU+j`Gd1E&bxDmW9(?Sd9y87iba9iHWH$JG(fUMjTw9sK zd37_}dZj#;E^T=?*ISb&NocGVb!!v+`C`RBnGXxv`ojCR318vPm@4=q`GJE~gIT3K zKg)NO8|pW_FD~ym9R5IhfxIGHEz^~2!UcO-*IheodMLfYTa(H8*N^@mQJm3B3TJd2 z-zMPqU#8m5D@FLhS-ExFwyTP89aLcXy(D+rnT7~<2Uo6J%ThURZfeQdJ$d?N7h5IH zhTqzXdAfUE_e}riVk=SK5alZ$DARbmdK1sibmbY&ciUgwnUWh&t}S8Sv+*8VY5mPw z))~?VcI=+I<lUCO0P#C*+b<NU2koo5xxe~&{dYb4=QktUdaMrZo-JV;%=ng}U}mV9 z@=Vq#&-xkJo@KliDpZ{)?J#S`q|8S1g97zx5=H6(CJlF!BENc0k34!rqTcp{4Y$!% zb)%yi54JPD5ShryVE;Q?!d#tE{yn?ToTlgdoBu0GHYMsGRcD;f$H3S4q{zTB$dbh? z_&~i2gHWeP<BY8@Dti)TWZmkls{b;*5o_2cz<2rDf8Jf3XYwzI1}L+iaY{L6#aq7B z`Bv4AD2B|q1D5j_lsEo1OO#GXwyuAAE}dERAM>`wi(kBV(45I=9Mh&<z>$4X{-s9x z#rnm12W}s2SnqvcL&NFhhQq-P7grx}Q#55wjb;1rm-kL&zg45r^TcV=%oX?e3RRZ1 z9QpFa<TP_^Dfd3{^$pe14f-_`3mJ3gKg+(npV5QAqI-_*W7eqS?3u?e@~sGDy0t>B zesXuflGPk+tf$H)B!rJT<{A|7J4?qLUe{Jv@c3-U8;Lm8nO_?&cN|HzjO({!i~A6K zDs&I?h7XEYKL79PKJo0T>aI=t|7#sr+4-*g{_*mkiuiqhWKLQ6c7A_qCUB-&zsWo8 zOZ&x;1FMA>PIXIEzc7d6#hJ+rwc!i63i2D|OjGKYJYf|P+s>?G>hw>0p?_Y3-HMh? zQ$zmkkbSpLc)?<OGY0XPru4?d#vqBqB9BuO(ilo(SpSxDXsk{aIM4W|pu$GZb>VZN z9LBuA(tD=NQdy@wp>;nCM|Jxp{=kNPMK6Ml^w%{-F65uqILT$Puy6dCwx<c39&;Z3 z$8=>!kkR)=^}#=?&2+j?N>=XsGyPM)=<lg|PYa&vJe55qoaI(K`<Ykn%5NR(eD@o& zOP08$$mG<VxRENARdvkfn$5LKr%a>0*WSNfmmdE*;^m#EQje!qzWe^?#q4MEkK7lM z5Rnj>BdEn=E1TD?bB@<Lt?b?9o$*iV1cQ%;6uSPoyJxp>XlH-@=l2>j0xkA`_`Aqc z)#v1rOWRNXn^LpvPhZ!yx~o(9zsO(sf1GiCm~FW2;%9t{T5rVnt*9*#`2K(4&WDS3 zX6Vi8enybumfYmCQo2{oV^=hf(ITayOXj;hH^)Yu-uQ6NnS1r!TrEos+@f|Ix)kdb zqTL!9(x5l-kkN_FK3u|gTg)`qI9O)%ii9ni`9e^0jT7G-z4+du4bEJzKYI9>+}-HI z8~%Bwm}bw!-k*y_(gOHC`)i(Aq#dc#ntI}x-?T$TPm-s5C9;0nkiBGs(B4yd6Ax*H z=y*R5RPKKh9u#rjMy2{;{nF(>E<JkWRrlwPTV2ZKN6W5>dQ1J>wd|Ry@7c@I&rNmp zo@9&bJvn}Ew(<6@t@5{TT)I(H`gqNuUCUC>ewLd3GqCscakF!g+X||Rf8Aq@^kiO_ zmy_3M^yAZ^M@e>OMfc7;TQ+Uk&9xub*o3E~YU=ED^J;7{eC*bD{?zgF*$<b0u3vlh za=NMBtb2PJ@@Lf^)cX8c?DN_QW{Ds7Tss!|XUDadYkLbmKZ<nqJzFEZ#N@N_>}k4r zt&5_$^g~Xl`kr2He*TfW$+m5JIXUa{qmJp%+Se3+?GlHpb7-2mZr;=7+dp_q%@#kK zt=d0xW0PIUiI&q@id$#K>15{3+M1K5z4F4R`kkNC&Yj&Q{-?4#T`$IrJ1;l)QTo~J z$V~!r3|m`vKXYuGIbn5SVYcG=<?{EoR6OLeGt)n3t~bl^-7C%PLaXnUt6esqpS8V$ z@BW<|O!>Bx_rza&oLTIdx-^3~>GK24wY}XQ$tLHUm!Hdu+E<Zy`OBMjr=`ogLtDR{ zG0C~S>6&W&>8PKPz2WC)-}Lx&CO2lslJn9FmkacJ1scxq;^=iR4pjc394H*cvrTlZ zgLj6HY>cV%j2)L1>*US`a%gVNP?V7CZQWs6P_Lb}FueDHxzoGV2j{X{dUBqAP$k#< z^rFUx>6dGY73vhH+^RWO%pUV#9pjcOX%$To{Blzd3!jMoP_MzZ^h|T&eI8BSgmmZ3 zkK9v=kFt7cwwUc)cHZ`pZ1M#Qjru>Vryf6?wdZfihP7LkraAsm`jyA6(0ApTeST`t ztE8w!757<o%wi8;5?i^#U;FHB4ckh?BVreYDx$u{tZXyR>=nOUb$0Pi?*ETx#W1}q z`epXyq_RS~_KemqoL{%p*Ua1Zmg~dxi~q#4b+?_$iE`6ktGYAJ>3y`zebv8a#xM51 zG?!(1UnS`<qawdJ?3B>0{hJ?X8fSJUaqBKWKa2C-&-vPMllK@eymmU{{h39Tvk%O5 zy*xc2B4%Qy_s7W3ON7$AQcZ)VAF!`KH+!-Sccup0_oD~Z4Gfe&ulam6`=e!j>i<7s zuQY4LbTj#mm|m6>`(2f`?Eks{-)t{j-5s}bjhRBe(mrqP+BhjAkDrfrpIfxS@!p=! zLw|qX56OA?a&Oeuz^1GF1iYiRihj~vTt4YmobUZ*hQWL%cM25!DUlD{^-#TT*Tw3K zKi)OJIVdZ9s)g?ZTR?ug-;OQ4KcZ~EmanKkot4#nqd9}~Ms5Os^VEeaAFP{{6!C<8 zJDW~ttn+2_&A$VzZ!{<LH>es`E2ilmdDA*$uR!qOGKDjC=k2yDziD@Wf9oaB^t#yB zN#%?3Ht<yQ@0Ma+@Mg72{i-MH8SVN1Y@JjuzPrl(RQ`(4!=`TW&9`}{HJ0Drk$mID zC0mmV>+8GN<ou4?>=91-v(>Lm`AQZHy~-{yobt=yh&|6oe&;`jP5vbo8L5hhc6hsb zHuhTcm}#;xZI#+KZ!c58%K39uehS~zE}Qa;|B7F-y2HiWD|XM6_1|agdw1m(S>L;% zCZ(dh<`)Zud9Pn6=oL}R3!L_P`MSm(Zz9TMVjI@X-#bUv@2}w-0TIS}lNjN8k!sDa z?wby;sFyrqeL$Y^=a~om=_}*3t2JZz+5QXdQ2S?4_M-3Lzel%J3v5L%NmR&n%JY;; z@RUmN^tvQnYq-nv&7yZE*E_8Z?FXkn^0jrXXM1C^!9jWR&w_ZnE86n&CY%>rU@%2A z;hl@jk3CO*&%AnqeP4g%-owwuv#y@eGXbggKCsPjciD-vZBcxmChl=faBrT=RVI4F zH(`5Y=t3z&*9%6bKD^emB+s5=*!9?Y^(wEG@nMR;<kr7<9kaCUR+<^#SrPZy2Q~#f zwFt4~6IefM->2qOhLWO-j2qey%CS%1=4WeG|M)>t6}zWAa~baq=AftvOvMwJ(gjX& zIpuaASi4Y>c}Jbuj^;pVs|B?m8Ju(NGrnI;P@K4vJL<Du#`fJDEe0t9;*MUuQ<8aa z<R(0QBWF-(urnbkp(%kWp~B!o^BVrDeBBwQ3Gdj7#b;O_T+?>%!8TPsl^H9a`aWHK z>iU#?t@`_6bqiv4_Rr)?lQQ<bpfH<v!lIi?impmYO3q^9x%B-??X+EIuZXV57LN)3 zqQ3k^{QO1t4P5u<b=6%G`MW~%*TUd0uEAeqE7}tLU)X!SxUTjkT;+=>XKkfZ{Im<l zg?~i}uRAV0QEsotUB@fBOY<h|inA$fms|P$@kxyZOdZE}n(byX|7Fiza^eHuf8Rzv z(Te>7>(#pBx?Jp@>+_xY_`KUN@FF*R+yqC?45m6Z%|fRW;rkZOSv6fDz}Bvw*Zr+n z8H;h!9R-_3e;@dmB(dH9_jX4B`?Z+5)ZI2F9NTBRFA#jpZh7mss#}T1?&I6S)!eqM zKJGJbi|pgwuOF_OyK^n`;*XQ93d}oq-MpK(PMMwY@t@i6i@fV<ZFi<$DwEvzdR<k@ z?p?<Mlh>JjmACp~bI#=CSu5RB6KhLER(95J|Jx||SZ%BQ+qL=ns*QR1e>pOC7XF#y zSv|vRS<;CIwm$ZcuKM3voSCfE-lO_)*0zIRZGQ^ze{BA~fZ=0?-I2*P9q%WfKmJAe zr_vGO&p$Kl;@8*QW@l^TxhKc5<TKBbO15w3jF*?svotv`qsg!Rj5FnF;5-M$S?UXH z3jO5npRYe5Y?(iA&9xkvl6MbdZ0+~3^B#Ynw?5i(iJ?hKRECH0jm)>J*Ux*Mkw5$3 z=js62y6Gw(-{zFu;z<ZRIRD;_#{0ace0l4+d7o|PkFU(D`t3Ez#>S+=I?6KT&yu&= zt;Y^pw{ahCZ&}8_?!IMC)xFJo<;tsn72f{5Z2s~MFPChvvHP?p@%%jXpOKSndTd@t zep-`$a&sH!;TM}Vt}sWey0GBaF3m;zCtu8BXjs0J`D=5|G1aRgvw|6q^S;|_)H2^? zx@3^8bbVXMfxY7PnyQkDw?w2`WSpPzw$*!gi~N}Rf7-NZ*H%ZZ%Tl!ayM2ouv$ub6 zwxjM^j(ZEj+@G7<CnPt`4sYH&`BBEUrAzmP+LWwKl~h`~RcQJ04?Y=^Q+lGS=3c#a z>ASmva-$3P(XBd%zqpulcqCkQ+IH8;up=Z$i*@0D_Ul4S8+@lLDp`w9=UH#f#cOP8 zU~0z8m7155pOiIyXNsH^ld;+Kz;8;T^>6l8)(D4wx37D5CS}tWU$x9jYMN&+nY^5| z&C@&TR?rCt%?nBaWnE#X_MKR#w8$fng+(+*pn%z2#QfAEu@8bG<*t=SSXmZoH8qKb z98mRrR{c&Tlkw|koAvkKfB*aZ`>!)k^^D7BT0fun+3xwBnQRIS6Igl=IK4ffxNp(N z;OXV{2esV|%z9?qrCs~}aQZq11yKggr;ne-J+JsQD|ITv%FhfTw>meg`O2GoKX{+v z&1r@yrIVN4wJ3ZYyx*SdfhAu++B}=YGe0JO?~7(M*u{HXduETgkeHFGMG3=sV|D-i zdGqpa?o6z(6FTtc$(EUqkFAmVapN<?=M8%+4}UTIoHnz5lh2L+^V&D=O+Gf`rLf!6 zIkH{P*FXCEeunAiTdx~@WjH=0#7Eg@pKFPX&#e$S&F{x%AldNv+rj!;4)Lk$=Nr~B zon5-^|Ao%pqkaxAIhHZZ6Z|>HcqXHWttEr$%g*pC3mmPMAJ*L<XLca@1B(r(|3SA3 zsd<gQA9QTk&mZRgpj4mJrgnqrc7pXD7X8E87kI1_)Za9PKaBq%^`_1CgVi3!>W8`& z()Sw6AKF&P+coe%OuoVYzs>(a@DColcKrtmGEIkf^u-?xv|!WyU|Pd`|4`u%KEDH= zKji8fE`Lzoa!AsG+y1cr2kkk{p9>i4n(sg4{~>%!fk$uxha%S^6;74<P7W9UAWtbz z^|D9GbwM6hlY@f%v^qShCdDl=f9bvIq=QihkK*AI97U=t)fb<XFlzKs-+YocMQ-QJ zJ5FMgcAxYr;@>%aje7q?aZll&6J!*RpOAM+lIfZJ(P-{Wp=IpGlU63jC72oK8|E9o zH+XOK-Z0)E-l%=1@|o~6h0oO8>XSH6Z_rttbTx<VbrSm~<r}MSTzup6t*XqfntOLk z>?ytU_bKmF-zQ(+kbU#`jpa9bbA)%d-aWSO$h)-f8}c{gZ_3}8zgd2x_>KEF1+)tf zs1|wNaacEPch~CYZpGX?RPT7blY3{EXS%&D`nc^O+heu|_a4Z79QUxSP`)s}pnb>W z`aAr0D&LvE<8Sr*IO9>_(X^v{N8^sp?kX2qF7mu$n*RggpDJ;ur7MN!AG=*){r-t@ zh4}oFyDRzUA5H&kS)=#<>E|Cc`x?G~tlKw1|B>})#(gvNAMXCJv_>-iTz3usKK1yM z-yg01aj!;xpMLz=>mQnbD*g$mldzw(f7brC`N#a9*Qb9l{u%ivr;e{)w_dj1)_(f_ z#`(wZpE&<K|55%k@ekWSaQ}3x6Rg*+m)<{P|J?XP`cJ2SEdOx&r|6%#e`5dK{o_?9 zTF+mvUoT&8zkgPJL;T_OPp^OE|HS{1|8xI`{!g!e^8QKw^Z1YOpUHoM|G53j{3lr_ z{9ot4%zvBzO#hYk*U!v<wEaW$&)h#{|5X2_{uA9d^Zvp2Ps%^8|MdS+{NwV^)jzKP zH2<;p&+I?Ze{TP={<Hf}^`GB=*#ETuvHPd|FS*YCfBrw=e+>UM|4aVYt)G+swEofg z5Boof|FHjI|5M=pG4~43$kj4SWY)+ml369QOlF<TLYb9og8PEvR_^hNTwlK@$};Na z0-41!t7VqUte>-B&Wbrp=B$~sXwIrVZkE25wzXNmOkY;#a_4Tp9d=u8)8CxmSHHF2 zP4V9ze)IQj_ZzR@gx`Aomix`^xB0jDZ}8tff8+d3WxlzG9~fBq^o6t^O)Onvc}do+ z{qDm83t36N{=@HIyy37oB`ezZt}m`{wQN1N?00Lqa+`-0mo{GfxFvb=<H+O1ea~g1 zW%MmY&!wby86SRGC}z=awZ3d!ncd`rDIX+v@zk~{9-fkTazok;qc@V4lJ|P{N%Bf2 z8>#J(nEs$>*TJ(pgzq-peqpxTdZ+Q-%6ARB580l*`y%d5+_Qa`Yv)%t|2F(y{O<YP z=)2Z;*Vpg5U$X!GzXN|4{!ad`_?^?g)&0wtFD4boD%GmieLSP%!E2}(eL}9NrN~Kj zVOPNSfc}8>7Y<xlaA8A0><T**H4{Y>RTEni>yp|R$1XHoSaczG;caJc=kk`YmUmoh z`POpV3Ps6RDSZjaNPhA1!m<mS7m7PYJI!zBYum>o%ULU0ZzcB2>Pzm6lo#y*7Ajj; z-rkbiwr$b2xLoGjuWlXN=9@eFYFX{=Q`@R<z01FS<D1Xz&AI2dn{KVW_O0^v!ENgg z{VOooqw~jmhwh`UEv_mneJ7=C2|a3XrSVr+(u>FcmD}?E_DlSFmMXDJzilDA-k}Tn z|J`|PRg+)%|8H2hP@;{gK9R#eL}g-zpfm3gA1guW!V?lvE=)^$N>uN9@CSLW@{m7r zK`O|bZSukt3rWv)O5u~)jHdah7@v?iazXke(~%2qM=peREc`x^_etTVnK_ETPlPXN z{d1BbDT8hDah4fD%ft*zL_RBBzS6hwy)k>TMAej^6D<!n^(>T0TES*$GP!<js{5v| zIn32_dlq&JI!{+@yVomGWuNrI>Ko^g3(Ezaw{N<AbGo2&eERoO62JI%&;Q%|w>j6D zN3~;N)R7C09Sg&YdGF}nG0GDy*DtsK&ai!2^@Qpv)pM#RRZqNq&a`-a(eItjcc$O@ zen;~i)A!v>BHtC->=tGOy>a5H_1+j?SU;`3jOXg#_yZT}40&YFUH{1YfB%sS=LMbj zPd5CbQ{VSrw{79W|I;P7Iu>5eNyy%!yK(Kt+zo$|tkc<d-+Z^>`_}8n3`(}_z4&j_ z-`wBNzpa0>|AxMWkf8JAR36jQ61QF&@#s47=<eol4!1NrA@NHj>4mW&Pwl~tUxj#N zAMLrcv;LKR(u)d7XW9P^3%9<N*yVNXLi&F;XMUx&Y1@-uu$&K(boSJUJr<CzVII;Y zq1C44yw`c_!h;JRE(~0_+Bw--*g4qQ*s0j5*!i>b_Le+eT|Qk-U2a|eyOO)Czc{=& zcwzBE-i7L^Jhg0wUv^&TUdX&q->KcHUC_C|Ez0SBOJ9BaKK`w(O1WB+&fK?~a+z<r zZHw)du-g0f*0$ZLJheMyo$pUJ{NjD&LYG9Fl~S)EkLo4)OYbjLzTEL;?U!B?K8cso zW$V8fcU&@j$rAT7v@7AS#Y+yJNqipn9m-z{#QkN-QV{mqa9#2R)6s}uVZQ{Y9PnJe z#C_@arS1iD+Lvw+sXu7LwDM9`=e@TRO8BRhdnn3$^z&#@c^R3xbBoU|<!SGxTweP2 z<@=&tD%0LgG)vqSu`4!fYTcx=L(Cc7^V>r&oxkx;J)*BTPD!@q=%wA4CL0JzE%kpW z_EI==?-u!IUh<BrG1_~TuX^VnEXmaOnJ70YZ|XnR<R#M=#J$qotKr*J|By?zdcKpk zq^Rea>MoXNp{=vdKL7XN-;}<B=OM~F;tkgZF_%xMod4VDr{MQUmyQ`bnFVFPd$zdT zD9~WK(|#w~YfH+`wJCbrTYa9+I+2sN*=U8$Ql015iunt(Z<)EQ>*VS7>GkRK;alJ9 z!*ySNro>EvI4Mc_H~~rVeVRsUpXw8rDB36&l~z<OnfLmn{lYh^-W;Fmx+kViWxB2G z$;5uwO*hxySo|jZ;r)kc-vrL2?{BDl!?>gGuendEeM4u*p7##Czr{i}RR2uuIKKNv z(b3|Z$lKw$?h)IQDsTVW#xLUKI)9s(-=jk@E?#-RT>|fXE4=Og@Z!U^4>La8_^{){ zk@^oyK3w@=`cU%W&4;fKnYTP|&*!=?6DP1wb&tj#i#;ZLY-++QLVxVrrZ%fho?|_? zy-b{Zoz0(+isT<JxAi{E&Aojq?(x5)t+%diHQlzBw_ceyr+UHLpC`_pShwxB(r%^o zZvR9pbvIdma(lA&#O{gwx8%Ctbie7B>8O#j6tNVttZ#cB@80LWuX|3%oSqu_pNd6V zMOL4ZmzaJEe&X{a=gIRE`V->|=fo>NSK9CTuct+ILPY2ED?y8vWJhbfR9&1haZPTw z>gp+amMYVqWbO_<HEmB&V~7Up61||ESA2z*dac|Zq8qEo%k$j3dC9^{2ANAj)O#nb zo3hR+ZfBH~uBk_T@~vea$xAj~V#!=&;yOz!R@pcEb<aiJ*uzf?c4i!3vSsB))m+1w zn+rKty!<j}qW9A^F;>qX#LQ_w{b<w1T)F3uyLKe4oAUZp>GP_By*un;c(2QUeI$@) zVcsNt^H;&^cKfUIfBn4uD|os8T)TrcpFeY2Z2fZO?eaY9tuL+|3f?}aKC0l=vtaYN zyFOmo6Kp<b*S{;J%b(4e_4n+=%hRU0@89|F^_OYxQD(J&>rT&_*1LRi)Uj<j88a^w zRiA#fe!b0C_tTH2+3%}c_O$JCb#$C%?fdfk+j#!%`m}p}bXe{6Prj$N&)>pvzqa(( zuW3(px%ch+cjHR3`L;KIuH7#BzA?SewxIq?<Klk#*us*V7Z1Ce%iV2R`nu1uZ>ike z+LAAU_b*Oc{BQB2i|5>p`@h%)l`eVYadYA%<+=So`k%<0w3t+Oq@qRU-^&j#58s#n z_wIvvyS;sln76!4-R}?Y4zHK3dwP04U%utPD-XBx*_T#)ez@weE&q3mIh7WVH+<gk z*1|F?WKaDx1FeT%Pu*f&es+9HeCm9Ped_Be*;9XCvDdsG93LPbIzOm>(Vc}mo&HY# z)$)ne#(KHk>VK}aF+XSg5`S8CmciHmY{c1$vpQ#U&ib6y3FQwBDBf<h=H>d8*S-Yz zAE*kv9Bmw78XCFGX8jk<y{B@Pvi)uU{37(vf%?PSKez|h@2hW}^(FMmI_tpG`+9!u z<oWu=IYYK2JSO1I)GMlm8<=)*nCrfJ{Qv#O{m1{y{jdJ>{^S2Q3N~AqH4`Nmo_%6t z&{_Uqs@7IDMMKZk!e81_7Hg_r&DprD)NA`q*>gPM%WhAeI(PExv#0ex{N(PoV(;?a zHD%h=^0hCn*=l@y5qWd<s`C2z`>vY)UH8I1A>r+UgU)Sy(soHHcUNeyU$wug<gkQ< zb>5$r&dF;2Gpo*Sd1;(>ZkFxyTd&v6uRgp-`uY8m&rQ){W_n5UBWivxVfWM7S$$M_ z_B@ekhjYKr{rhvB>FE;_jr;9>zt(>)SO4$s_IL^FysJOHtMB=I&t1M|$NMKo>g((G z{6FexfA{lCb#}G?1;6@M2CtiGmwT*j=H~RXJHP#U{p{X{zk7a~-`n!wS-4zuh4<q{ z!S?SM9{45g5x-=xePi;$wr_7YM*LAL>W<0pYME#eui*OaXwsJ%9KSup=3V~4VAGu` zdu-{3DLRT`KVQ{u;Jo~EgTy=ctXBz&8y+YtKdh`jaqxBf0q(<zylwU$&M@RB|Fzq) zqWTb{gx2=+$Fj3O{PEq?;F<nrhtqEha~TDp@>vo$mM7>%deo)5KmL(j(894fdR5!O z0&AN!rzXd-@OK!<=CxHn5L~1zd5Pzxz=sJ<-`7o=H|buhVZ?6MStq%3bhkT1_1m@| z;MpO*Z8Fok#`<dgKe<oLGS#YNI}6xzR5*{Ee83{I^Ag7kmZbtMs~<GKxGc;*y*clA z_$4u!``oq#OIj<gS3lsr!EZk~?g_*5K!+BOvX{&+y}v~4O1^)!<*330o=dZBjxX6H zzq!7N>C6T8>UdV+1fer6mLE*oo)=C__h=BA9Ot9IY+mHCHEG}KH+?VU-Vt4pDt1VZ zsYQ9Gi^|^<0-t1lw$wCT*)=g%fN@Sg^Ze~Xs~&KzIQ~4gQ~T>Wo7c_)YAopn6VIq{ zpKwlLzUjU%?OsZIQSHvl8Krt`zjm-KnJ&C(fpnjN$o228H`uH<e7|1d&V6pLG3TSt zcTdF}Jd?_tqg$<7ZM?gywyXZHi0)}|<;D~KFDz}<_G;DY$xe$Zw6RTbu>0cd#qV1G zQY~g@^@Bp0ucbej>J;@ZO+KTrebVofkDsu9QmUL<<EP{!^jRkQ(7ogP&ItNF2`kQb z|1wcs>Fh+~AkkZAbAQw%KQxPIyYr1D$EELf-(p$i+7qHF0+Oy$1xHk$@O?6=zv*3< zV)0Dtnd-H}=hB{UHs84V=I1%HXP>WKHbZ)4{~ht0ia(cT7alvkB-kQcHsZqhH3w(L z@di&YPCFPgqrG^aWM-ZAxj$u=cUt{FFx~qsdZV=@vr+z`P2gmeMXE24^e>!Ja(uaz z=Q`!`Nu^IbKk-_6)+KYCJ92u80rL#c9rOC@4fBoIXRN=u@XhBptKTqwW0>9~_RHYO zq2)WpMHgK7d^beCjc;o%-+Eqqi9{vKiB+DOOFic<vAdL(ssC$-{lX_!3j9Bd7*1U| zyMb$G+dH$m2ALi5*MC`CblNPLaDQ%!5dTa6bxPe6E_qM5#y?rzAjj$4O`lnYd%6<& zE4$ygzpAfyj5<-S;xeI9lK=5x$@rr_DS1ir68{~2ld6=%H2c`D3G+nXuq=7WRHnIG zaQ;K#Z|UF6zj#c#$o=w^?}K+w=RJ;l&R3}DD(_l<ly}d({gdM*o%_7+^-R=KYj|wD zgzu@npyofJ&t{YRg*Lwb@3f=&58L}m^FGLODo?-Pm?&7&UsP|>v{FTV!elx1*b{r7 z7`COVCET_xSw6jXUd_2XY~_o-h#$!G;WVBpG9lGR-Q{rgjNA{pMaS%>OrJl~F5+Ih zc5Ykk8#^QJI`#b%c0b^;^JY$N@_Zt!p?cawf5x#V4czOLe@{64A)rGhFs8G@x-&_C z`z*_&Yt+&g@NbTr_jztgJx`8;<%#^?C#G(gX?bjF!G9;cx4l7GN3S(Y&b!mG=cmEp zgO|_TKCwGG;2hh6kTs4k?=}=&VosmSd)-l0lBMO3+m!|C<qF&5dnZ-0pL=du(bsa5 z<KF7+TY~%U8`nMge077^^6kt<4<ldZRrL0_THf<B`Cw4P8@}PWg>Y8S=9pdei@cJQ zk{>QG;kf61MCiui3*vl}MLVQxA9_z>;`h9~grVrM-AcaaJ0;W(8@Tef@?NaqG3Jd6 z&vWo!(WL*RGihJao}>+n<}V7m=o+}<M4*MJSgYT{hvy373xDstzC(RybYK~`h4Azf za;|^w99owgzQOqBznlrW4)c7{EuZl}Q?Gx<{*0q|!p*}uNn(@K<~&V&8Jjsbq<de5 zxTd90=bZjGy?Z1oH8xoll`k<g(!L~6xB2brZOpmRx8^B{A7U5WAE*A_-Dw5$I(PlQ zTrZhU%?{k<|4Qs<)0!jcCC(C0UppVU`nw=@p3AL1mlolf`&=40=Cp?`x$rz<Kl40C zx!sIX^$8aCB5aSUssoJjy9*z)9J#gpW6#m8Mhn<Dl#Z@HV7ik_!sVsTl`Z*)K3__H zV<3~<t)t^_EHCW-g!6>cl$njcR?63S?>el>b33v6hvS~x#(yqXT$lZ$W^vyBP+P$f z*$quAgI-w5f2x@=)AQY=bv-eiGs=YDJlNNq$nZ#1*`23e-mK)r1IMk*>{mkAcbBhz z5fvA9YpKPBohvT9*FJIn^Rs6u>6Le8uH#vLIM4h2l(elgf`fgIr8LJ~$eb)BY?3u~ zQh0%mv%>mQS9c%0_#`vqk<Ge&wVz+^%;t%cD8AU*rp6xksy1`BntSt|GliMng3*3^ z)-09C)!epSrD-vf)~EW<GNF3zm-of#xf@HGW~fYi|LW<gVw0_>p8hME`T2ypXT_tE zB!2g)l|}mQ!kGmjreEh-S5}5P>&xVOH!ZsqYUwz6K6|tYXN1pzpx{;6*Tg2>ntOs( zZR@HUZst`gb3!Lyy}EkU$w#kTmtQ!tYxS|7{8h3hn^uL-x*R!u{&g3v<Mlg_nKiCX zpL|Z+ywU5YnQu+%<e+`M$y~KE5f5)n+MfP%?pdau+z)Df<-PL7S5K&w`N-~Vzt{c! z?bRt(|99+sEW&Oc(ic-zm@Bn=&ncUuj{ej2<6mXmGRSyxbgSR2YgZpi+?ZbYJul*( zbbhV+(nUAhg%@64-Y-<Uf^(f#)zZXO^@}~<zIr)pPfZrHUPo!AFwee=JFjMmmV4+X ztS!=!x4QH+hilo+SI54*+H#cRH2eJ>XO*mUreAyVJXi2bU{>D6S4pi$mUMFq-+KLI z(w#Zee(~n1t1mPz3RRXiu{>s3pr#!ALt&}O%mA*_$EPM4+q~lVmL=7H+F+???9B}^ z8q2TOXZ}}fjV`d9HlIDFEc|u<^f*c3-G_FwPI)4)>3U&Fhq1)9<EMS&@`LmAo^q$E z>ZzRDxVt89&V2LjGjBehrD|c|{K@gH$D6S5ch0k{=az(qn{*q9`OlJK@9mjqose@Y zOrZAOF12Ni*WPqqpV4-4*0BoT>hEmgo8Fh*Txe*z(x(3H{}Ly!qN`6nsZIK1AL8F} z?Ys1&SLPX4JlwB-YLm$Q&Aa!BPE`D@IB{)L)$qQQ%QGT6J(HhCJvp-amh|Px6FYt9 zNdNz6q~4z&wrYatQ|%)ccY9{MkoJ9T;`hA%=E_Jb@9LA0?%Qve%s#bu`n>YJPyS4L zsj8P=cxX=hOY@Q|pX#5^@?LIt;P#Xkc|p4;YR{T<$2V%{oHzGoEs}j!YLY2^heKi4 zw<&5a5@w$+o21W8Ua~kdLr=-O_2-)RIj+IFUDd%&(m$sz<Eqq|J4fwg^Q=3*EAxy6 zwQgyh+V%5{ZhEG1@9cYV>dUptCqKx$bo!~t_pt7H=N$C!-@Y*K63ag$=6Wl}g^%pd zJF5TpE;Wz5lO~`Qk}EK~yNBOb#p}<liM*M~uU0&{SkLu+!$jXbK5^=;7bW&?`J~J8 zGrr`;LXGXd%zJ<EFWr(C7-BT{VxG9H1=DLqr_$?xY{aKI=vmt6{b>)^2)2?6;JJI+ z`*O^=U1^?K3sz_eH)IxAXMFv{rn9SlR@;+HQT@ui4;LH^ZoeCmb6Yy}<fo^5WBcx% zmY&w1IZf*LE}5q6pL}MmzL9pTS1IZ(IeY1xXr}Mp_iLQ@&G9)U*dXy@=TX;bytkAl zr8>Ly-ce+*n8qu+Q<V4DskV8gQ(|YFTBxi)P2{KI>rX3>r8PvAP8RtRt*crhn!D$d zPFB4qYxy)*-t`uzH}!<BeR57{!-`*bQ@-&DoD2QJAI>A77xG2?kf^{Kj_?Z+FWxUI ze|6VyZ?O=2E?=4d?2diO95Q$0wuptCx%@`&opHdz?N@`(T+rfca$Bp$B5`(Ei_>4V zug6n_gIC;o;w;_5*!}R9>=E`)XJ7rE&pm&4fnJTw`+AiN4*9Ng)=b-BWD_aNDjN7T zz+!DCAFHH)cb|z)(R|k+8?)K7=kz_hGDltB`*?)d+IuVoU7fG)<}@`(e9_GJywiEk z!|}_yztOK1Z$!N)m#&oAYY}j1r$%ck`}eojGmd#aWoDa_JmqEkJ&S_ejE~P8<TktQ zIi~$8$FYBVclo6H?_%%0-dD%nd#ZZ=#r^ZvEH8F*%zw=v#TVuO>|ff&o((=p%U-BQ ztyBG6^!%Cb)%#hIZ}!^e$G&5(^yI3Y<T`it3GJ)p8#|V;2hY6X{9?8Ixt=TPPiGa@ z*zWDz7-^-Ib=iuwg~#WM$wm|J>LWoqOQMP-`t7bi+P16MX6I3-m8tbB7py$-cFyr9 zX)k&lPkeng!Djt*L0^@9Q&nD+8}S?Q8}jc@S}kUqG;4+vyRk}VmSLbz(6;wFj{J(Z z`2OzB%H)qQtTI@Z=yPyJ$6leyKlmnVo2^-Kys$J$=yKxhquG;kt_qmmy|gCG`?$%T z$}0WCCdSu0q#W~)NJj0kwES`<v3{$>#-(=Wg$#__?(i5qNp0v8aC-UZ@Sd5R-JGv@ zmIpU~-tgwKxpC>DS)b#cr|yYUY@e5TKr6y{?c%j_O2t1L|MKGr{@xY-LU)hi1}Eds zpSS%9U7DtEl%U<)X4Jj@-kn=g&kq%E-uqQ_?F#NPhk0AlXD4tyQ{1}k;oYZu=Bv+2 zua|yWqdn=4cfXb5Ep_u->gLy===&tQgOAsGi?ZHZ%6%^;Dq)%Ai_>R{rV3pQjttz` zx}0g>-PyBMSPn$De|orfzOMO)YuB$Iep97is5P<K_rzJhnRA0Zd)A6B(fGRPb*v}T z;l9p{?yjt+gR@Tbn;x7OK4G5s3(lLa*S^*J>b}s6=e;JPTbZT2GBO}+LVQ?QK)|^T zk~5}GG~4??XW{fur#*Np6^u-GWovrfFF3v9@C#8nfw`Y|30S8d$~0*0IWINec<X83 zCv2BXBR}tYvtiGic@IwCXf<mT-(4y^dD7;t$g|QqlczlmWsWtIeSev4EA!UHTaCAJ zZ{1TS9$e3EqcQXLww-HJSFV2;sW{{575%rBk?9;a{vNsSv+sVGRkE_)^VX_-*VPxg zK3x4D<C?v<f%}%%;X=lxd*dgs`{rh-te>z&?8m2Cp8TTnZxNr*>`dTU@~r9T^l99h zt|xaMd96BS$IfoCiB<YnCck4@IonSoBBjzmM4|F!TDRfS;`+eplk|$Vo?P){Y7z4? zX-)|v%|$ko=j6L4J$)Xb)9Dp_uGTc%*5Z5j-C{N|7MYnVE$<fZHr1*6@wEDRUW{+Z z_v^MtbT>!szP=|y*vFUm*|KNTujK9j`R(`pZPHz`C+`*)|J}RU`&Xzy+1)PQBVQc) ze9B*XA6aIQ6fF4rp?88<{h6M~XB+l71aAKF_w>`Ft<OFs>Fm?7OS#C(?dszuvNyV9 zLr3TmwFsY;nPTT=Wo>%0Y?tnwgZgRH*&EdA3=j9J`utgRwNcfl#Nmw9{)Dm_uAl2R z7pboKvR)%5aEsiv-`7RgX;%rxeX)=KQFAfx#@l?u`KH{$T+7Ao_VK>cuGvukqVrIC zx1GLC$daEXUpszoczXI!vMX0de&K69$Ic&i+Yd|b&vFV0?3N1Dezl{o_Wj-I4pXK% zP3n7Dz@#r{#OK!Z?$PSP`b#f6;zMt*(*1YHu64<V$gG>wVnsBTY~h*W{`rBxnVE-^ z)Hff^FpCaaxFTOrvnXM+lHhHT&KnCl%<46amM1lbcrV<qG4;n$#iOq$IyOGjP+!^V zsx|j!-|LjHrEEb=*BV+ikL2y|;8gLSI(O>Qu+<?u+H|9(yPoEFn5^zi+q*cjbx!W< zNXZ2|Z!F!Sb6{rgvyabypS^wd_}S-YycSztwz;w=V&8{lKZ7@GU6wh(y@k~_bXK8m z?U#)`o%N2hy0e^}E<ES{B@u6I9Ajc7HTU;i9t+mxhhLT#`57+1(dne7^v^<rE7@Er zN!%$qnq}^d%~}hDi$61ImmXR7`K83%rJt*%7jwx?<kID8S;h5`=~0;L4mte@p45Go z95EM}&lEnbU#L{^?oMIt%=PyI!qPNmKR#OTqBl)fcY$wx`tby#u%1Ut%)2I7AL!|y zG-X0tO*iKWPS*&RGdI5q9QTo2xbdl3_<IGR4S`pzs#*RjsW}L1IW01?7u8Q>GU<$S zdf+DM_|!`{@<Pe9jL<5jwO&g?XNb%c=7~6T#9w%)t5E2vMSW)7kN>5*%lZ}e`S9f1 zUW{*gHuo!QOWMk;`bk>x;jg;&7)xzmE6tOVyi~uIv+RA~CDn+}rk<*8`PofNkJ|2f z{55`6^TAhj%eQa(_dz)@;JkjavB=V$9Iqalo(Tzxnh?Dz!#Zl7{MzJWt>@h~)*2+8 zu{k0k{!+{8V!?*4m5U;`EN}?g=(FIMv(xe4t9F>Eo_1r~mT)^h#<9QN?`=@Du(8&P z!iimi)0uSwJ=sj%c#pNL*vRM^vMX5Vzt&yZ?=NofcU`}kW2$#Sdd1#^1uEt#OCkjo zLc+RdteE<CMR?GprfKh6xA>LR3Vlpc7hGTRYu<};!^0m>vTAX7Ff^J7g(+-4p|z>~ zjl1-ubvD~v?(Hv~{o6M3b-+Hit@X-toUct2-lBXV>zI=(Yiw}J0q^M|*UzMONzJcn zjngYpKJ)wZQ`3?QU-}l8NLuvo2}r-ySEh4Ideg2rSEbFF4|%g5U-xw1x%JKEjKyV+ zYoq3@R`|!XNW)XJa4Ji2^Sy+)?SEe0n!Pov_3)F3#kWrHfBs{N{keFJK*lZa*BsSM zuip~-dh*|$u|^F#ClxJs#xixX@h+Ws{uu|ytSDaPEGg5TW0qF^JZF?ED=pm&_iH4~ zNf4N0mfE+>(1FQMPm%NL&yKg}E=sB>^BG94I5_>+?3sy+95t6^HJ2@Qei^>W%RBSK zQ;o2S-|Z{kxvhEOU)z7}=0OG16)tlXp7nEam6+DI&S1E@wMx)A?R@53TXn6ACyZ`y zn5dRkd~)XmvD3aq_Y#W(9WGAiv=^!si799mkPl$Fd-T?dw=G;YTP+?GrfMwKb1E0Q z{P|;R%2TV!hN8U<ll0c?{eMn--meag{p;u37d)H#eaelZQ#~_N!)>(Q**#eFy5!rk zliY4omx=bSxLF^{`)|&iv%%uEsX96u=Y3v9C461NrFJ@4TX}KH;jCplqr=K}9gK`~ z`P+Z_lHohXR=HNS>1%|zMSG&wdZxsO?OkiN@>lTLo05tb=V?~d^eA7P{_?||Z*$J& zKE5pzloqsX#Whx2qpuq$Xl4m9eVQrBovAc^qFP$Ejn<2bvo#x=>RZ0mUi%T+z1HgF z#3^gDU3d@Nys+T;6f56t!IKk~duOpMRan1##hTDhzFwCWsd)XoSLGX!d6s#*n52`* zGN&%(qw_x%p4vFYSTm@rsFusK)7*Pw#qqm3#ZBeg&M=7@8J}7AUjKIC5C3>G>F_ls zeLwV7J2{;iyq;WR$&wCUv3^f|;Ff1ktmbfS4NlxXS;kb2&+f2aQRvMw6PuN}+cPdI zt&po)tWmK^NXWMHrk<Ym!M9CERFpy#7>;Mh&g7YWGG&K|o>;czr8w=`_gH-M7cKW; zR8tPnzxpIg{GCRD@F|BA%2QlV{HWvS{nL};?l(tf&$jb7XDx_$JIS(Hc3WxS<N9m7 z-|zjN;Uv!~BIdU5&VRorHF<s$b>5j@*z)#ZtFN#5`F+pjjy$&1c	ZEu0wn|hD> z13z4!EnFkdqu!%#RDXg?(pj(f)QU1g)i%ywo^71VI&Us?u~VEVv5NQa=2txNlKiRj z%>GSSxg~0nkmEu1=u1IDlUcS-aJw|Cv$&eA{>=G<t-p$QKR6S(YPM(ZinJdh>26H+ z2i&H6ZV)-YY3q#{QMc=)lQ%z8KmEw&wDW<-AAZ<wwwZH$()WvJ4X@spUutQ@e)Lzx z6+V7>@e4xhmpio!w(4)~;gS<AbW~Ma%3^8~cv+=aPpio##(dFiXD_QWADAXx^}EH# ze5dnSc_Bmninn_&&YjxcFmraEkvPw;r}NI9f0HZoME>2Ww_*EjiXNVMd)xEb%f#=S zCdV9nb=36k*|wRP|I+j4Za<{;<^8<dt8Y(zoM&G-<A$tA^zOxf{t8UqAGyeX@`6iR zK5r~_1%=+I?RGv<s`A6fu3h>2hUW$AbZUQXSgafTe8Hz_+MCV9>SaR2o*EmAT{@DY zRqLrITC!qmeQeI<MaPuuMIAS<joR!ob&}6g{m7M0FTK4yd_6a=UYYSSK`l!&jXzV7 zXXCS-FHc3hJ>-zM#UOZws*LbCj!6q{=?WZtv^Gw2y}(o*k&VArY~U1q8>IH<hF+4C zR+8rQ?in|yE;Zf3lV_chX?U{!%HoE~5^>Imkfx#{VWDE-fPF<mZ}lcE*cq}<#&7Y- zM5mucQX8*L`BeT%)HPavVxi=s?%7c?lh;4#e$xH=*(x!?^y>A}HAY2EDfMB$6YL}R z#RPub^}Mjv?u*vcWsBy-O!{!H?vbX>lvAI$^(N`<x@TLscln~4rOs-V9#>4HXVv$v zU$S@dG1b86-Mc318qAxSR@45!$v(p-!}4T({-1lFw2SBczj`6<&)t9R-r<M7Ka@Ny z@>t|^$m@{bF4zB_srs#T{qr~V*!n1;OH;Yb6fG~ig@ounoyH!r>1*Oi4wF^iR?pb1 zwMIcxUot1DYNJm6u9A>lW=glDa?f~4Z!{I&Tpz)+=%8zFs7{I2Hs*^59ezkebXGm; z+{GZ3<F`s{Zb+!rTurZYnkqMD&1_p+;LIeo=gNnvpX=miJ^mXzvvC^Bq=c_2_ZrfC zn=^dGVvl}%5_!_cXx6&Ml<wVCQ6ke<cG>wwvW2hsZz(zL;u*(g*~D41)~_vUWBNPE zcZ)@{+0B#nC;FaQWLlO>KB>tri;@1XV$JE~$|K;hcg+RKm%&%KRytP8sjW+Ud3o)O z%g;o(CfLp~bGrL}#*1RvJB<fbe!ti=Y4)XWU5`6Oi~pG(m=>IMx^K_^Pfkw+IN!y8 zcz>?8wlBXnd$~{CYxVH!eYz&oo~M=<g-@Eo&nI;E#5vQ;>m};#%b#=zDyK?Um`?g) zcckImlKn42mMvYDy0p~u@wG~h#lk#u8>0@^Z+`0<8_s)cdBo|`h!eI#`X6IW4ZF=9 zw>j<n5gzNHS6aCEYW?F!-!_D%cZJq6%}n~QI74K5a?`VjXDvDDRuadam$!ZVSy|b1 zv%jx;?aqUDGM=5?leZ`8Y<*97=7HDt>oe4rA8~p0+|Vz3<MbDttitV~24}r{IIdis zt+__rjC(gLUrW>(J28ucLK$i)-ZIZ73iok~uHDfz#rT)Jy`HjX>jkMfz1I(Ixo}IW zyu@LFM{wf~dv;mb=TE~5*C@O{d8<Qn*YhUtnSM#WGdWczca>I{`abVp`tnBo_cDHK zF`cuX-*jZGH`=dUaDB#I!Q49;YWpvg9GIm0?UGG=_|m1({}`$q<D#|Kz5Tpn+tLq< zGc1>>*~~wb{!!<v_KX#YQ@Z&6`#tOK+sj-je(3pk@qetF7QbI?`r=r8j<;*>n-^)$ z#|;8*Emir|XML?~_u5?|GG|jJuTXw|`Qo1XQzy?|d(GN=)F<2}fH!1v<g2r<#7tLj zo7Oxz?#i#fy{$*$Jh*gInbnU@bH2B8xwfHomfPulr5nD+WQW{YaZL4V;AvLPHT~}d zsyLU{OrI1|>#%J5C;jV>&Cb?7%AFc)?kAt{t$e*@sO*>MU+KTry)s>zmyngX;aU5v zgoTw2J-h2O&VKp4<F}oO`KEw${l(mYS>hZ!%N87twlTU?adGR4iOn}|cVu7Wzuwg9 zx1pR}fTg=-$vd8-8p2{(S6zIBw)z}jK5;si=at|TD?5%I6@ojyoo9O#Zn`Z?UO0u# zNN4k8$;Ka@b-T9doDkY$+rN6njn?qq0|v_5CRNT^ljN(`UVkw^$6%A2_pcS|i@z*; zVt3tZyOeg*!J8cof$i((WjRe={UhIIzlP$>WyLN#6gC&h&x)()dZpj`@4~_pz7OT5 zZ_@kpQfbLqQ4eY3J4$K?;%)PO_0;cYW~+Bp+q(8vPp_%M>0P1v7tYE=UXyK#&k!&R z5Zr!5KH%PgiLtlpi&B&8`M12!pQpB}$l52e^8P1{hNcbY9sJ9BW)%6jn|(UJ)PDMQ z?b`O-@O%5d@P7(ndu5fgc~{EqxRO~hjE8-GpJ{6S*2=2=R-60U?d#$)o8`4Hh^*?H zD#vZ)cq?ix@03f|PDU7X%y9T~`NlfY|4G;4wN`vw?_P3C?pF8fC*d+xJ#6(oO?%d_ z=%}wu+Wyx!I(CcfTV*vVk&pdhT%XF_X1j$iNavqecRlE$X<6y&wNcxdyZO83=KS1w z)aB;oS67}`?UXh-HLs>n;X&DKlO4NuSm`fa*5P_|Q}>i-ntp=0PaAi<KVrJ%j8~>l z<kUlwL9<Rq2Id#v_*-_&@A^f*a1q(fg7y08k~S6%Z+@g!b=iJmn3p`ySnlLu(*+0b zy@+gevwr({VXckDrLYtF2i8Svx2)TA^p$4Z{i!c@<-Mp{lkI(dbF8TRY1XiHXQZdf zztJk=X4}<eTgA4^EbQCCp!;<ZyOKDjWwj?2rPeN3z0^p;STTwH?!VXO6;HO!jP<-O z>%*c|Kk@Rb6zeZcwd)1%uBblgY@TZKX_|M{mFd2Rq^n+pZFBG0$$oDaS7rT2rneKE ztWP}gIx45RC6Oz4hSPk5R=dQU{l5EHwU(DP@B}GdJ3Y@cGE{$#RP2JUp}sehtFE4m zec|2s>qpq)NlC#`XTJNqHt3OkRuUSdUcSiMH`lwpWOlt*rl*Im`b({Bt8Bkb%Y<(_ zEHnQSWNexCnniQw#n&e@jx3p=Cb{U`g}oEh94nt6x?pRT-|;r#5@&*Sr8QTv$c)9e zdon-$3_G(pH(mL{?3C{sQ<rrx|C(XDw*OtOhQ8%{i{4zDV+!`$GXe_#ow)PpWoq%S z7~Qh>ahuH#Po4NquYOv$UU=GjCqdUb_Pf<fcK5!S`?U4lo;^1C+iyiHA1(2o82Re7 zNyI9p$BWci-~Bn2VaZjv#ig_`{fNb`{!kyEB&pCN*_Uo6ze+B1yLRkjE!VEViwoTr z#~*$!F7o5wqTa{y?JGm;S9ax91<u^(qI&$u^>6`auPMROp(m<}?07}%iwx&K{m9Ye zH+hzmYw%Jx<5=DOZm!!cR?RBSTC}ZfV`FUCc~;h5yQJ@e^Orse`s(xb^BcaDUL%E7 zFTA&H_MEf*1)rJLlp9fTTe>!;{;HmOcVA7m*L1#`%2xrqOg>4a{#y60`0Rrn`@YR) zcN1TG>ivA%SNBfjzFqZvn^$$&^j#<FbFHE)LqcCa@^0N#W%0|?{9)9~fbji_aeuik zpQ&GGx#aJq4>MmDe@>sKf0?h$YUSVFpUwVNw?CChC1?2B<yj?K&OKI}`ESo<{xhEc zTApqB#@<}Cr!s5#auNU4=4v*xzx4Q7w$41^e<5b^+$@Rthot9rdaa)9EwDm=^+NlQ z#|`yj4-&+S<)#}=mHgHf`!xJ)(8g7=6{@nn^TMQ_o@HCr^l?EoH)p1#Rp|u>VPR3> zGrBYKkJ@OdU6C^i5?2bo_wsejk);~Uk>Wq6nco%TykEMU#e15k_B)j~k7{d=+3ZSs zzPenee(D~R@2hW%$?pBQ>{_a}pT2~7%C&2+rRUX2)z6)7JaOTjtR?;IOivcP;J$r6 zwWavb&*y)hGug~v_R&D!`hJ<*nV(Akf6o#AxyRP`!;ecca_1)8U*XB|<7GAHF8}tv z1?Ijwr_Kb&F8QRtwd%^0#isv1e0#k<uJdYGuHoTHKI@I|R^2nwkIj76J!fWyLFQ(S zsj+qKFIJRpcpxCdSMT24oLwZ)zEvf6-_@**4bR1|<Zil{aIx8;x3xc6n)}q(lH`RJ z+v>${?^|u*m|OdB$C)>u^x|0WCOYIV4E+)4cHo8@^95hF*H35jY&+NZCT6zw@yQQQ zZcV-EnJ%t&vuyobmN~8;*S2++eg4y$*MC3w$s?}2cH%<+Cf#Loj&qEvUtUx0IP3b- z6R%soW?svvEjjFXEW|!(rJMYh)32P@azE>?2y>WRv#UPXVe*b&3vLU4eOJGsb(fo} z=!*2NaF2#vi%<RVd+=oTliGh*Wvd&~f7@BS5T3O6=e=+?yAu-CcTKDAuE?7$e)rd- zHy)F9dVjK}zFEBG%I*vDKezpCK5EQWf8y@F+ppKjM%eyX$ewDSCY7ZAbi0hvdr@}9 z?8>AGz3SVyMkrt5IFpvRSuU6P-J<ViU48c2yUu9u{c@N4`}ObIMp6Hs-fcV@Hh0Dn zqZhJ2_cg@5xyUZO+<L+Fs8rpj`jf6cHJj~zF5WDPNyUBk1)oc<%ct$K-g9*k<5XtX zU13-28<Nhh4-%Yu)tli9+o|GTJQLzQu31UX**s^@<w?~O#iec^l2Vv6BUpd-qrcJ7 zfm0txxdvCR{$Et!+t-vm#j%9xFjvpDr583<iE~s{9yUMc^x|odh9TFLMHeo+Y@7bo zq_gqFo3e^&@h?tv{Q3SbH+@;s#aD8V*Ng40v~`|)@3~aHeqrWQ^U61Kd%xbz?qaIE zyKaV=?x%yP?-<s7mpXEvE9Sl3nb%1hZygYi=FvPV{MY*r|Bv}PH{v#Ie^C5&`K<HY z{ww^&=6UaVa5=jpXkm!9_olz9`|K?D)~@n7CA(Ru<V);Qy%mhIfjf6Oe4lgg!0!W7 zXU4vH{r2_dEd{<0<rOB@-;b4QR%-MO`7QK!CFijtC7bUieU(0y?;r8-zskc6{?&`# zy#8cgvqpL9598pQ=U6+X9_%^glkT<X=y?%~g13K7JeTCJ<L+Xb6*12vb>E%{;j>R} zP1=;9`)o^D^xFvyYST`CHDzA>b;jwvzc1XgUL4syBOvn4@!7?Z0iklc+0VMxZ#C5p zh&!m3Wpeh6$;MOh315D5N2H4{-J6wob*5HWxao$jjo}luE<WW8=~O)$I=}pN*umvp znLit^R5E>v?w-t=e&M8r{r0R)bB?hHzL*x(<xw`&XpX;tgIILf<%ane-!8Pu)Eu zG2?uS5pPnHZf(Qf&5JkhH@+QtkH2ge)7*O9TK084xhpUFhd#*<6Hq+A_0;SQYd62{ zufC|0G4<_}gx5j2jpdCW)K09)(J)>zE%w{5iaxttbNl|MoqoSbV{??_6%|(P%uBP? zLQP(}3jgxUlYTaH;~l}%b1(jVwPeBkSr<QL+nY+A-^Vjob%x4nKkmC-lLL*Er&%ZO zbawOA38@b{@Wy%aJ(HD-PTt@9>Dx8IT_4@Ie}44A<NLdym)rVzW=DS7y(7=%pPjzx zuDjtf6YLLmN?90gp0-b9g7t>IU1=eAF5I5?ddAPhw^J;W!(`S*3tvf<_@iO{PHAoa z#}B*Nc64`}|1(SR_^T`bZRc90n=8-iips>^S$gJhS@kqIb%pvDR;5Mvtux%tnwCXR zGK&Zf6+WYR>fA|h!}RF2Y}vkFO^sI_UtW4CDKv2D&IJvp9{ttmw%*yVz(4PPR-onV zlVKO%`7tg({?_mL)#svqwTE=LH%9dQw6shKOY&BltT9>4@?O+~b3MBr&MTSC*;7)# z@Y;=pIjK2D?+mv|oR>0Xs*hVDF4fDmShZeVaf!sEsBKEC(%CueD_?(2wR^%ZzbO9y zhmQ#*&)@D?<H71|ba-P%%!HDJNun<W?k-lZ`uX<h(drfR9(iwn5M=f3E>q^t%W^yS z7FU&pyC*)mvE%OU)H$mr2EJT&qwjXhJhk+tTMx~i`%e1D6`M`d!`>|@wZ8TJc72Y= z>e4rJS1b=nYEyHbEfdl`BV$Y0TamLO$64Ez+@n|RJzCr&bES6u<JpV9Ro&U~azkFp zwk*TBB^k@SegE{R7`mEtx*0~AbX5JE-0GLKYlZioh|F5S`)ozGigfk_JzlbGpIhy{ zXFfgwsVNpO!*=kcO+34#b;Fmf%dft^b9BYQdaleXJFdT$<~@?9z~=pK>9N0@H}5Uf zR?csk=RA4&p$iMEx2+Z|NDi}=`Wj*y`)5+KQTcDB7pdI~y<_qV!m?Jqm)*JWear8? z-&VX7cyqD#>697gIKD6Vwo~7_I%5AMM;EoK9~b5Ba=Cu0@X5b$zx2t!-Y?%b-0!%) z#%PU^VV2wR`cHY>$?3s&vL{`a;x}aHjh|sxK0j%n`5cqE1>F3T*k`a$x-NNrr~HQx zZMJQ;%aS+T-*CT#Es951jq{vTouR5j^3N9x0bg3&W;0LrJ9;5Q*R1Q>qm&-CUxyZ+ zf6<^gZMH_%l+(|P^yWt|dj2RkVu8M?6mRdwXwA0@5-gW9R+!dbnRShM?slu`g}YDB z5Gpsle7kmPoyV!QC(EVm)!rMwm%Qim@4}C5FLl4motJmHBz?6d{Yu`wWJNQ#_kJHs zROi~7E}5Qgv2$L=_sPj8fA=0=QIImDVAT%>xsAbwTLa==hRjLYJca$s*-PfP4a$@M zaXsVNt6{v%@>}KF1=pp^jQs1j&UX8_|LVDt_i6L~tX`YfA^E!G@yC<j{4QRvU8$+L z>_))t+^aM5%&&$^1$SL+5ww|?_H4omGs%xvPF(6w-*{<(xfIW@lm+*X$_Z`0=xHV~ z$@uO~xBgCF#%U+L%ml*t*$g(yDXVaw^eHl0Y-Toj<)VbmOP6PxWXUb;O6*WeRj>c7 z`eLTO>vE2*2Ha8$Ic?W%Ua(|cxbD1lhq!GV%C5OvpOEEn7UQy9v9|BH{iCkhQ>8Kc z;u?Q>T=V|4uWOEO?*A*IqET<Uuiu!t^YBmCeuueosa$6?gL97B{4))YX*_W*wkvYB zl#iME%a`Jp-!JaW<5ru#rQUvSf2rh*6SEzv>aFCS?U>*mZ#bj5M{;ua7r|FiGmL)= z$+BMLl@cz}z328U?#$Cp#VpCBoi%;N21km5-|U^PIBj-P{8EXeojSZfH-7vSy!iQw zXx@!6dGm8RxB2(YeH_EP@s7%FuhcIk-iMxUbMV=|NYbW#gI?IbiZ$AuPJ6U_OZ=2S zWq-P18h5gO*Nl_p`~THsMs7$e_cbuiebCUVZ+<N<@f&+~+<MM3&B|w{M)sRpZl0Z1 z`E-4w?6VVkm+Uw7h8+F&q4?B}0{*VIaYv>t7mPkN<8@g>+^@JR;bO044klgeF{_vI z-DTo^KbW1Nx9$B=y$Fw!)ynT@yxVNEE<fu1p7SE}Gx=2IjOuIB{+#)g`fd6@`%=!o zC5ub6OXOeNI~9B*yZPwLqyVwAYY#r!l(y1S=WvYajtEYzXmKM~YyZ_Va^kboeU41Z z+bFLPpVhxieyhAjaP1riHnkqVh?yHK6U&>F6dkqezumYyMe4)PPl_`;PHsKfds2GR z>`9_0PdfE=h+0~%P&?gHZ=-+G|N70XPBV3F@2^vh+P$~%#t(<Rb8oEtAi3vA2S?nr z`Sbkr`Tf*ie);s-X=b3nsg5v@?JI*!Q-50Tv3|2n$^8GmZ@Le2-&g<4y;Yp?yY*A( z_bU05_m|X0RfO*Lz47ku)c*_1)_+*`z4?#J-s{uee-V39{w?fDc-8t7@e5;h>UBQq zo%fenC#%Zyz3<fg6?3(GzWAMuUmmNR5wtb!;0xc=>o0y2`%x3R|4~i-{3OTFzKxqA z3chF`ljNGS^+@!U^*7$BM)jS(FjZh>%akbvpZLP|C;6TEz`|DK@?h2uTba`*<NYL= zVy<xca2Lc}@8MbfM>i$+qu1-I*J-cwULOyuZ@n7+{_UH~<=-lwzQ1Js`&D{y<o8#P z(_YQ7+?*afU+2%=@=x-ULqaa_-+TRdlD>FJ#e{Qd^TYMOzn9TIa>3zw0C%I!uaB#( z_SrZ5v9(rP_-S^!%@vorWQp5iuO}_t^JK~n{b?;%^rm+(Owe1p^ix?x-L+lqwU&3Y z{jRZidw1H`f66YLo^V#qW@n|HSlnVJM?SZ6?yU!>-*nwvQJ54st-mfi=-8wq!ZDG0 zVNXg+{bx<OdQ*NXU!<9m^Um}Dvrmz3F?WK^dDmUly;x}VYm-=pkxlKo+|GApw_laC zuA3NF!yp{1{8!{Rqfgq)cb9F~-DbR9n*X}uT-p}ht9A=&kJm5zFp(*@?}NjyzuVMv z^_SN(<S(DUA(Q8IqeV&UF1cL?cV+H6`=RL_&zy@ZV|OLpb&6QAJG`8wLN@k<v{2V) z7XPZ&ZQJu&@}?LZD&zIJ=(p)?`_Egx8$8RU{9gWJsGT(-r+6Yy?#gxB*G+$`P?Huc zEtA!LY~llt5|y7k`%>m#tWOX6{l(GcKtj<42@_r)xr`9rEBq!rCcW4C&3gRga%FOZ zUY10uxYq3x`1@?qk@^=dt9R!#n@v1Y|3&3)*~k0SITrP0{{K7K+icgrB!zt<e+z7? z)VDp>{vbE&^nTgp?+cE&G`{`8{kS{lOilEz1($`EUQ&MY+}zmRWvlMp4zJ+))t4`B zE>Up1!1*KKV%dUE3z)(m=Gf%v-g-6rz_B%=ttE;@sxizwI(HW+@9LN)HH&lerOpZa z4ECzdbv+UB`IFNe>svF{PikMl(Da0R!vA@RW!Zn<Y<L>8cjwlBI|}^nIZhVUIdv^4 zv@u*Tcv0YU1JiHq%5h5<tO^Kq+3t|~cWPh#hS^!m@5k0ioqoEV^<{`)l3vP-Q(GeL zE$Y^sY$X!${>?ATqI55L-EU1&A*H+AW}VPz=;G;%E^(YY=g7W}V}D+pwpik~$HUNd z|AR%UO`Eui?>te8T;iqqI4N__pZ>5DJ5MOPHYS|aGbyV6TeMAm)~@y8?A~3<JO8en z)b(Y-vG?`uUdv|cpVgbN-BZc(N%xCsoL=#_Z>*SiN?*g7slVq<Vt&921$nWKopxLG zKZpI0+##cTGh<Ie;uJA{H91rEmGcDs93y9DocMD<^X7t?IrnDGI&EsaIPThNdygq! zw#`j3dT}x(@U6$!<wh%~HBGiYG4<pAEbF=$j_q7uF0-FW?XSQ0X!V5c3ocl@w~PP3 zSpMEkTKKNcBD4Ah4HNep>mE$HqUyZw@kYV(Yff#s)jqA{bLhR83HM&EI&`S2x9+e= z{q{)@IonJ=75n{vIB~9}UTS4toa_8s4x%$3m8wj6@^re2ie&N050d?%Po7R$y=B>) z6X#adeaU~qrpTLi(qxD0m)!a-^UN>qZ#8^+<0j8m<IjE^hv!GNUYfkxEHcMPc8anP z>+^c0Bilk&ub;~zuD9G_L+Augfxln;|D95Q_2c-w=(1<QNg|#0<$q2`&s6eRsr`0- zN5Vpv6)Jm+V^)2VnaQzN>3r4PS(E<Q%;cD8YJ9uXp^AUM)4$CrtOwqehVM0t3a>AW zTN-xKzTm@=4Kr;s>NdPDR$uC`<Sgp4@c6b@ee-jf9+<aYUpRNO|1Xzc0gnGZovzT? z-v95cYOZ2=#ncrEb~!EX53@g+PUhR6P-#%f6Q?SFSncQa+35#@BG|hhDy%uWS^tDx z(f$&qq6Cc^rrS&X6?k1d+;>Rv+ZG(1cko+g{RQt|K~~+l&z#M!>9!o4p!7G|id8eC zd99*gg_!uq%uM4-p;t>T8?f(k_K)bjs1^Msbc2T#*WAP%C2YSAnM5#uKfV9(mA1Wm zH?;P+$jGvAf8ew~Sbh76^-_nsu8DkoqP)Eu8y0V6kJkCqo$}CU*I|nw9_|B5e>)#q zeo{HvB2)j;SmvXbM329f$orXm;m)cv7D`QV@h_Rs_?7hoPi3f;%KxULOmm9mXYdF= zwS4L^-+O-Y{k<P7-lz*s>OKE|g3b5#r~2QXE0^*e%Jw*!bA$ipjl*urZRtsh?tGd> z87gIyJd8TJYux43Uw2I2<MHMK_x#L-f1(4UC6r_j?!5G|{<-&;?;&<7&K`<_OOHQ^ z|FG!wCE?>s*19g?>Ak!3?3vjW=dGkZzTEYg!z{-&SwBLg-{a;vlSeUa$*VJqmOSP; zCc4m&wfaKG<_XE=G4C4<I4qyuHxMs7tdVJK<HGZ0`s5Q$6-zXWJo#cYWs`DRJnW5M z`dIlcHk5mjA9L~A#m)8gTK|g^)E@pdoL;}(Q@mUM(AftIwR??UGM@EtWt*RAyY8ii z$CP~&_9Y0-V42cZzR|A#$-(X=5z7MS6cuV+yzzL^jQ%~d`8hqFAM<|1^W?e7lfFY1 zwiCPAPJHRPY~po(_U%l`?n^5r_OG9I{iX3tW$qJpRkm`OwqBPx_x#tGvc7))68WX~ zPv$?d+$6{MpmK-u0lCN^;ip>{1<h(x4w9VP^!bFF<<kAa&s;VCGFv6C6~F%B{)_ph z&h-|YJD0G`|Ks;b@6%5C=P{l#7T=!>@cvTv{pG-%xY0x=nfYAwA$8G@E9Xtz*x=}S z?ZFMs399EAHZs0XXWm-k7}t7m!GwKBB<r6h%<2D|aoVQllFO8h!Iv0UvZ}JaRF^&Y ze7$ql#ebnc_IOsr+qM}lU=sVycl_h|2RiJ|dZ$*2|L)#mzwYJy8_Sn}(Pc@gdD)tK z?L@}~mA`E<`9}qd6uH-bXEL{omVK;dx@1;}@ysWpJlQ9sbiO7V%@nFRx0PqZ>IC+m z0%4A}^^fi+?3g;GxyApTN^Am0OuNxU_HY5?J^X4rWaFCm7O2N?Z&x()X}sB?dUt_z zWcwCfcR6V$=Owlo5AODrUfkftC*FU@@SW(V8MhPNk5}ASB=`E;p^9ab?s!Uhs8#mv zVe?OBDQfUJR?%>$uTb@8&l>eF-^=X|UEy2)k#GJ1%^me}(RPPfPDppSW@cp6I1B0j zdb@J!lQlAN>eVO2jCgi36l__!L@L~*N+aoKV1?7U=?9PS`3j%j{lGZ?(9cCj`(~vJ z?P+*e`GfgsZpfQoDMiNjvQ;JB!;V#L+IUC%`2T*sPYRV$*9x}$k+OS#Jw<b;;Jrrv z6UtARE9Y%l#(H|=^Lk}tkL%ykd!M@}9=`wdN!6oefy)jaEqSqkz1p+x=SE4s_({hz zz3UhE$!T>+F`hoCd_P}AQgy!hp@N?^^5>??{jmA8xy13@GI#SUF_#17mMd!|t1K_v zI#EAhR^EZDe|TQbYm+Ikj`A!H404F;e35mh$HsK>nImzRPcA>fx_<Gx`e?Uxs?~zE zSAE!~wH@y5P{|ePeQLn5Q~6f9Zrj@rVtZVdO@6sT@xEj4q?TXr*d$z^DYCbHw2^8% z$g`+1EaPZsMT>=kOP2nkvN>E+g4K?`aGzhM&{j32KlurBjQ+1&o1?);d^dH)^nP^Y zSslO>Hc?e#uZrZwKUqbl)y%ha`s+RWC+<G^x#(>OkEg_*57wRsD>m7#QCh8M`JRK> zQ_C$srvBgdk3x4pmK&}!est^M{@&@Cecp?<E1xLt=>Kn?D=6D{Xt{)@*ebz9c4hX9 zGx`<nxVAnp5?H=+ANQj<g*rui*KH=JOqP|{l-%eg`1FW{d7Pf>|J;B4m%hzkvcdLS zeecs)t94twU)Ue5xBBPVq(A+}|0%(peeSNmuf7nR{^|7RAF}_0<(%8=&m?Djl>cmD zD;Ro0Lg=fgfqM8v$+xe6`A>XceDs3Jwts;ti+--iaLC=lzpiP0L9N&VnYx}`M>(X_ zdSANy(b%Y(VtVb1>l2MdQoWwa-nTSGme=*Xijc2A>iFulkNaJ@!#lf`*X`?`;%I*C zz><eDZHxc?Wv#4`*b(r!`%>VRW`@0!4`%FUvin~1#gn1%?G_o=3r(Jj{=bjnytO@h zqy67lr@3G9YrL`^2fWS`{P8mU@TR3}Ce}_hw)o`R;eA!WarQ~I+o$ISRK3Uw@}60x z!Tmr_W;J^o<B$3`Ei4M{dv5)kGpkJUg{SItj<;nAcb+XN?@K-)GpT!8+Lr~TH{!S5 z(?34%w4qww)#HT<d3WzOG@hzRce$tjvgfw@LLvQ_CVLU_u8C%y9=cha>B$o9#yjM4 zO%D7j+R|Bd$R}ogPC*mDv+}J;`KMp}=REh>`K9xN4NJLsZrt*$ujd!=GF<X-kDS~7 z3E$2iw!C2J>v&4_^uGr=TXwDRe{sC<{h`lwJB*4qmgz-BTHg3xwI|tbPfuCAevD>R z@y~?|D?CJAT-0?6*})**Ay}tarPerQ;%|Y&N<8O3ERlYxR^6yqV5s^+)~+*??QEdb zx0AZpPAN9Wcy6(9Q<dydp0=?5`n1M-^2=U454x`_yw_ZPWAgj+2IYwz7pgbNRq9wd zu~u$NHu<%sX#V{R&#MKiLoeKu$T;s}rPZhXJi{>mP~DB$H$04)udF{dq2ty!hRN<) zAO0B27zXkMpVZ#C{QRMfMIQc>ytk;#-{8XNE+D`8VfY-|+EX@L{+zxrxnBIGxlBFF zimBIU{c?D0xFbNm`$PVex%`2B>z%yHr`MZqWO`aBb>`3?*Efc|(dLQ!pI>;kd7<h( zVcl;mGN$6pavIJJaVO4Sl9$*wW#6H?%@>(Fi?09AeE+L?@rqA>Ucd89V=`7@;W?PG zOr4RL?NV}pSerxIr^7p3W=v?ApfHPbrlO?erTW6ONgdg&ue`qB`8;LkuFJO`_bV6e zQca)g$Cj;KvFOgc*PPF%&UtjID$jIYOlSDLMyW7X-}}#Nm#h0YS=_w!`}wN0eKq&a zzyDpg@BP>6^}kI|s{9RZ{gZRz^p#n^3-sL<J4C3jdHh;#+Ve{{o95T2Z<PLeKl$0o zHQw_*Ha|QjdAi<Ly(P^`@YC*ySD$U}zRyd~HVD=!+5eb{caE>h!jeyV=fdUVng5(? z7d!HqBm2ppC(c=}AB0cktmzWjvGnqV2v7AVs=w+Ja>X`(^Q_~4ruFC0$+dw$IMgQ? zKD2yjl6J57P~-#4m&f1Szge@;SK?Ty3+KETd&f%YFXtCMvCOFxuP^XA**t|&{-I}k zS@%g>ot^!yKRy3zo%y2j==iGLMXTm^UEw=aK40Y0J;@7}-<{8Ni}aLp1m9C#(j33J zJ!3zQFXR2rWy)XgCI0%|{-yZyeyPt|rEYo#^P+Yvxffh;=fuA*zYDT2UN2j@X#X1Z zFI=@V=PjPC-sdlK{BKgw7s0>z^<SjF9_s8Cj!$%1-tli;U6B4|@nWAEtB;!JeAg!) zH7(fiUD0R$h5J|TE7+{DpYzRcm9PC8exE&-AK7l+H3<D8Ug|krt*&=&Vb=@)m-{*| zc24K0H#c;-SFHb#``xPZlb-UH=zag2AYZ>g|N7C|qrY}*3hp~5_r>&n^`)HpMe`5T z-?Te7?Xlf|ku1H<-d|RI(qZ`?GUtrxn*;Tov#v<&VR&d*-}jg4ae33;_PcMNnbh~a zc>X2*Yx+&!q=f|&|C-*m+_~$A_0gC+nLl<L{98~UP$X6)@Out((ow&EGZjN8$aAM} zoIj1r-E(!onPa7g^Sn1tS#E!H4*zD|2~lhQ+b7Pif8ZC_y?oM6iMLV-`l~OTe=z5q zd;Gz5Mb^(=vCVlcS^vM?()^TMQh&1iipRSROmc1%-@2*z>)&T3N0G1u_iYdJHU$b4 z`u*#Ob@(Z>P;U3;&gR;-xwjjwuhnnj58N!WiD45<b*1LF4@_@foNkQ%ShAJn?Ym>e zm%=;dA2_#xbGbtOzqyaP3zz@u@(TMjNqhE^ifMaWCdcpFFf&#pt3dCLdQI!@fLALm zzjh}6k7*Kpa>#Y|VX+1E=@Cv7Hq7IH)T#bg_?flFJ3$>o{+tD4Q?>!p{f7qaFY z;@FaBkjCaGcjNL8>FItCpT99pR4hBVc*6FF$FpZJ*8kCLx)<zY$yvX|?(+Hj*Q-|T zKc-$PH@{AAzm}hEr@wXXi}wlobzGm@66ZMGnEa`5zf`KFlV0ulFSFll_-9$xbbjOH z=^yU@Si1d*e6qi-fBuP|H}}i<Xa0F_sHfP>`{M8F8U4;4=8N|Kk$Zo{=B7jXR_TJ$ z?p8$)&3Om1KkoTxJxiVSjrEziOY1Az3NOEj?7hSE&Geaz`L&ZyiMC(r)NA@8zv+MZ zQ=mOhY?=}O{ldc1___N|Z}9d!XrnxH-{y_Q6W%MVw5d<J&mBE=@}~!;DNm|g*0lWj zesz+n|3v-usyEZmJl9dSw4YyEP?l46=2n{R>7(21w(I6c-dkOK{CVH=dOQ2V!?CQ> z1em-Zo@&h(u?_oj!*{bn{k-W?XKiKcJ>34)bN*lNwR-y9)IY5`6Q3HkmKvmS-kp&D zr`)g6ApKLhe%Pif^4G*}<UC<nJhij3XUh?-$h{NI4&ItD@m$i*H~zgPX0wmaGrN>_ z?JS>UCbzc88aJ!<vw~uhnX@-Iu4qX;IHmc{-$!!Fx*M228Y}A>b+3@l?EI;^d7_zN z<gNP5C7UBQe%UecT-tVz_MR;>_iFA<UZQ&@v+9(`^9{3o_M2TYE8PF`alGs#?YZYd zi?Z__?k)JX^5WgUj61`4zps9{E+gRW>It?BC)|;F^Rn0N$ukEP0Xd!@+F4f{3k(FN znX|QJU728i^}^IJz0X|N6BJ|`MSu2jEf0>{q<BL%Ou7D5--}BxyK*zDM5ppgU0soz z73s&b_N8u<;7;$pw%vakV`CrA-L&iRtaqmm+F5q(I$L`%<ADBlm)(mPP2PRh&WZ>N z6rQ&GYU4f)A9t;FsZaDuS7^VPF3o%~Lqp(Q0Q-~J*xgSXJs6ffJjJ(FU#r~p$v=mR zaD!8s+uo~P`gOLvx;{X9nNNMhSN;<BozBjC55Bv%Wm`vc?cIfp_OskVZ_4+4X?I}I zzo^C0nwP=)Ymw-tIZENbopwJ}J-D<e;d<G<S6yrOP5IWNH*uH!jqA$o%z|Hb&Hk?6 zJFo5ZhOKQj5kf59CL6l>-7Gl5_FG*M588dn^I=K&rO=+|PY$eNzWA@Pe#IMp9=6@g zG0V*bUd_LztRo_M`ZQ-`Yl!yiRK_FHGfw?#(71i}*UBZ+{vD{WZ;jR9pXA1xWuwC~ zG1B-{)djm#N>jKM_%8I%VVxmA>&_vDPmWqsZ@L|E{<1h<@rr+XNvw1Hyqt$hrxQ1* z)K0u9oAA(f;!U9&+)2_Li`AIkG~BIUYM-(3t<*QI7xq!hxA|?$P14P&jFOL9e^PKs z;7g`OCQWry-aE;pSqC1o{d3qoewn?=IbF5exo&zLGV=K|>kJol7kNIjo1&HCsCIjA zTl?K7h4Mc|Ro-^l-<Z5xfG;rLqFC8v@dN?Gk_ojlt9DC&WH{Ts<oe0Ln~r9So~WMx zULU+W_R92-{B6OvL;PP~yuRD;^Q7FvnWleB&i+k!sn&f`P)ccCUW@T(wa+ozrQ`T7 zT>UtCUDpNwuYXr~ep9fV=DBV`;=<b-L>Ek0&;4`Nyy9MgrPD5~7dvUfzRkbr?33{O zq1)EiPgxi7eezPdDXlNL)Yq4OfAV$q&hO!A*F*MSTT<V9Q0UjyIZKxu{~2W5eB1xq zRsZ7V?=ed&?Th^<E8jIu4PibOGuJNp=L)xl<_@|$w>MvzePD^~x|8)6KGpAcdvnUa z?fj38Rqoqw*k=1O1v98C1g?_$z%;jkzk>Zj!{>(9lWp(p9yA0_KKf?TIgtaJAKkmM zTIM#G&AiPn!{FAyUGE@P>@D1$etzYaYN;ihCUX=19$-AsvMjvl`O1{}6Qvndre&W> zy7N+J$1GO&O%I~PY`536f3kUL6x=BI<Q#)q#C{fa3q51~B>9I%A7ra#KYBi3GVr!n zt1Yew_E!BI;(7njh3y|cMPFn2!d%^GQNVV<LLp?y`-_kB6Ms}+`ovgo_@MMjzoK1c z#`!kcbsud__ND7Hel*ctSIBsR@$dFdQ~z+eg)O;ys(Nx|p`r7>oSCk-DBqB)SWwHs z^a1NPMt#Pc3ncxYM6A49k+gO7rNg^T&aJw^RjdC<?8piEdsli2_1zpzAFx(D^;F<4 zJO1#A#f)Q;`B_Z2EhLT^{(HPbs$Qe9Q(ss+_Q<Eyq~z?S>B{~agH!%`f14-x|569P z)JOl`AA!p6j331*=NUf|Q;thNlHI%GREKu&4>RSsoFl4kI?@~GKGGM`)lQnX^pd!Q z#r!Xl>z<^)(5vUjbD9w+#O&5!QNUxt`DDY4lSlSX5LEm#X`k5kg#2xX-?46rR*9`w z*!?`=smz)=%DbO0n{uQ<P=QZ|+0W~_kmb)!$8~L+Zhq!?TqvC2wEAzxR{6Ex7GJIV z*Zh&=GlOISQ{Dp36K-eOSNvq?|CqkyyFvZE$LvBal?^-=jOG(eRn<NJYm_DVZ}dLj z^<C{x8S7<*#>@!^Ogs*JH@>8K!^(A=-@$8|Tk7pvuPwjuOXTLRNt2hX<vf`$Ke=w| zil-OtWy*fM-8t{}lBgN$kNT`~ZO_V#y_PVcPtk_CV@9CqinWasr82H8IBlxqoi*Xq zP2G%0)ol+i9?@Gn@swtn=V^_&+#{=(d^#fgKy%`p4Udl8DfwjUsO7wlXQ$CAU8g+3 zqV5OFgdZwx(W!Ud!}L*U<&@`zf=`d^X*KD8+LF9+;))e(Y_u$ooZZ1+AbR}auQspw z>Dx+#|LozsH{H|q4YPwwYT%=7URhyNc5FWAk?{Y+nW<tOijQ_V?&;{vnEp&TuB&36 z;BDcfrr(sC+;fhHCd_aT>)9sioO<*}l%YvjOuBa4ajq!sv=&k0`a@lnDMxKKB^j)p z;ePFK@u$yslOKINvPhIYPVj!x^P}7E%yzx0D09MUzN(zTT=P!$C7&l%IN0cStxw;d zC-(N{)thr~W_{cDMrZfVTX!<U&i+0Vc{OS46VbhsJoTn|KQXGDd1u1Z@Hx*<XrI(R z9X;*(gu5>}yQ~WZt&jH4P^eQ`RWH_-_g3^jZ|bHW(Jg*0c@8OdEq|xn>Nap&DcDlz zC99l!FHQgHXSLgfXD1(!bXZiBrTs6AM{u^zJhs!B8S~R7RYcXy^ZI;*Kj83nM*g`C z(iu!XkJum8U8;=x!z<0~$2{qWbfLP~wAdQ^!s>N*Kkxmq?}ppY?TY_-EEz5ND!J>K zXL(yV?zQ5(-)}5?z?S!^-2(Xz#^Vh-J?A*T<hs<%zCTZ37o+@vul^fq54>i0x9LLI zgjH(Mb2(VIx!26FRq1QW?Ej&#LArwD2dCHtIYTZUhUNnTQ@=3tGbAcFsVXLjUtnJm za*3Oz@pt1~jlhF~3Vfn6S{5M%D~>E|a%OFxKIf{foXP8hiV8IXH+XGW{<NH0e1O4# zgD23_{sV&mn^K4nQyF7zgO}=F2Z0^(55C2w+-Lo*ccc8^^tV@S<?2;eEmoWE&fdt) zq9?GU!$FaWm4%B#L_ou3L4yNhBNJ0Ah@%kTut1=Z2_pBZf$2Bb8|@A2C)D=7$=<O3 z;6AqBQa7(B#5dRSely(!;lIgFf$(o!KLL^lDV+G%Hi=*D68C}b88OvI@(%E`G{_o; z+~@q!pqF4h^$v3m^E=jeizn$iSYKewSvpB<f#?mMEf<%*PyF7j?qH);5%OWhgTT(| zd#>3k*IOODtSOfieekHbxA_BhrUQJd-m}y=h;Nwd^^S2H<9DX-fhWZl$i86M7Uao& z;nl%rtr=FGC%M)1XIvAWEbbF$P<il)s+#_cJqe$hPI^Q5tdplh_}psxhLs1Oxc2XP z@KMO$v?At#z{FQ<e;gQYIF`<B;D5oiEqFTPbz2dk#<LF6XLrk$X%}id2sp5?!C7&7 z%XM32-U|mlDi&ruxNu-$qqFk#E!S<8>dz_K>HKl}(^;S#b~1I%H17!0^9i{<3B580 zqCO^{%{h1~;{eynqh2cybrmMX>Ky+S(N-GN_H~oQ>P0N84>yJ?C2tk!w%xFk*^K$k zrsX1W@lD^)A2=@fql&@q_ru>}6*n0CvmX|U+LRyK|MWw#<R9JU``r&?Iro$th>pxD z)Yqx6`z5{qZ@Pm-1;Y;B6%5B(r0<qLIQhcJfXRd*v_V*dS&Uh=fk%XS%>st@&3|@^ zZBK995q6}QVKb+@<{kHklSTLfE6iJYMRwico|WT1JE#6yO7QHQxxU-_)Nar9H4C5o z_I)d-8BeeOU3321^Q5-@ExEBR_r|um8)3#dpLuSF)$`vD<GU@gB=uqOLar`$&6-(< z_CHYE?eoxFWZuFLc3i79rfBMjtr9YuW~>(DV{vWK{l}c`;uq^xWo`?~dRgRc->>zj z$+9463-@_7nePj~<O}zux!7_Zm+dH1k=d@e%F`lCurjX9;_Y;qWVM5Hv;W@^+_wL9 zM1H?@*zNfbQ#tE@Gp?GI%Wr+^E#vXEW%ZjXyp2{py{P{-TUP(Zban4(s@`VjPtTk# zEG^u(BYZ~k|CGL;XAGBHhUN9$&FZ_G)Te87{LQl)XP^C?R^vS{weM)w%+!q$n{?H> zGZLr${3E@4`p4}*KX3kAF~v82Vfvzyc_*9=f1ZjL(NT&%U$ed=`(yo#4P_yJ0&C`7 z(J<R~g`@Xl^4&FsyJh~@dcT}ukbU`DMObF9!1?@?-nFJrCmuTX<IuEY6{nZ2eVhE~ z){lF;+$87!IFxouZuRSq`%Whf8x><Sm)!N(-SZ`GiFA+27wbp%TKO`@ug`uAecJnR z&a&!T?yL__@;!O<D0#!BTXt$M_PnUSxTvB|_di?J!GAA=U2U$(*DhMzEXorm9`=0w z?A^c4?UH1gFSxAsc>2SsD$nz7z1?;z-sJY{v)@G1s#ngOZoX}S!M8=0VflRzom9BF z^ZV@Y-nb-pJ>TtkkBjoUsO~*$|8_*^u3Nj_T4~+mK=<DhTa}YaZT}}*T;+DZaMIIO z=Ujc(i^SY8>8c#V>&e~AUrz0Ky(3Pte^Qm|l5iu}{4ECq<IP_cEGd!lSf04*+=-C6 zf|n!>OO`C@Q}#{2r}a!h_V}LA@Rw6!+Wl_!SQ*#NwEWMKwJvh%Kf%5YX^zsd#u4%w zYrjvu#?BD`=i|Y9hko39yQ!vSt)NMq>hYz~HMe(H*H_*Vl@Q)?$sxAJH*>DdEt`tc z+L{UB=F_kBZaVnu+P902<qPyKzR6ps|8~`Di#Kmq^7$_O9odz)Wmh^|vhAG+)90Vs z(pK<&%+i0(Rk%*z`KMibkA%uUS-pN`?Uh4WR$1FsA0K}7CUVBteM;``zK(JKt)iH+ zWm*rru7B|2zs>B}`g?-gr(HXe%dkG`UF5rmp%Fj!Wbt(s_pUnh(6nz+c+2zNRW>5$ zb=M|FFooB?dj0Rcs@MDzr8Vo^Cog@qxb^G7U0>?AtT?^+so)=N`57iHGCZ3*0tI@f z82>Xp5f(o)f986}PolqNl2k4o<nDhIa@61UPmSsVpN?h!Qn>6gGHMcxRc9vLk@?@3 zD$&nzvST+#@OlF^-oqa40-byg$qlNHCGA#rrJQkQXbbLaEIRg&z4&sx6ZlYaaWe}A z1BLvgEM6`nV>44zUf9XxaVO-grY~P<Enfe&hP@>E_|z9?v>9$NG->E0R5IKM<oKo~ zl(Q&QCrEXYMx>CVkc#5QPKK+oOLn-v+k2$%v5Vgui)_cDH>I7jmb2&ko==<nC*|>x zi)rSsbIf)h|F~}R>>DiK?^V8MOqi(p{LTO8e~S05csRT0{oI|Y@9yk;@7W^cWORbJ zMV<L?bp7fqx9|5Om~HLbjZBP0XXO6<w_2TZVQx#oayLF#m9y5C{Q`&L8w%gwc=O}R zopqM>Tkb2me184$<l^M#HRdrYDqokk{3sDVcwoi18zpjzx)<D~)D}3u_x-P`xYqK5 z-n<!IGK#6U*%t7AY29{m=EMW(`zznYI$8A{sCl>Yz{E(s`dDeTC7*c?cwcT@`9OaD zWS$HEq!f?+-E91j<KfEI32W_S=FjCmSLgTJ!E8&T+D!+Rf2*H#{ZCQ5`h2;2^N*VO zyLp7xPpN4tQu)HNMI)QLgk#?Aj`<x&&ZN}HMlOk(<-IzS|E^d0Wrn?d_fG#c{qFlt z{159%ou{6ylbp4t)&zCeUs0~T_-?~=D~tAHi3KT^pJZD3ra#s?K0!I+)7ncHe&2bd zG~2$}<H_Za1(pt5C+98P{X)Q&DP%uiNIh4GZ&2S9eb1h(&qk|`sjOPuqs6+a<m29> z^$~wwJ$l`JUe|6*#p_2OkN!N`+`U_TeOF}Cvl(d%e>}P$_vhcy_pyK89nFueuX+6F zwD@B2>wiDF@Bec!y1wG|{rkVBZ?F4(&3;em$F=f%zg~*=-}iN;d34>k8E#WlKimIr z&pHuwY4wXPahKk(>62zno43$BMQXE8TDPgSy7~EO@c|JkH)YQ~nsjN?r!KGQw;!+l z6ng#2wX5bPW~SS>Y+IZ8{zG|L>Gv<|-tNx2TmOq!di}jC_8TfsU(1!hy)XIsgLQYW zzqz?PU!&lrDPMmN+wo)SPQUqm{Cv-!k(<Nq{)}JNuIS5+kHXjE%K!4J``7+CHal<M z(`){7_PzaP{cg|ech&FqzW>KASM%bbyWHO=$^G@OI{oc`&OAS_@>TKt`d>5kZGIo! zU-2&I%blOk_t$?p)LsAc(&_bkem%V&_y1I@`81zzHamH_{_TrxvDMmlXurG18_AC| zkCq<^XQ}&m_r~8Am(FOZUN7h5a~hI2BxSz1XqI?f<Yo?BSP~xc;_lwd@3!3bdp~6n zGqd&E!2b(;yUY^TW)=i=E&Iaew)p7{pO;e?*{%5@@aWJ1zf2#i+IlMm*I@QCKF9u+ z<dqTG2ciy7$jvAyxFDvw?x168-i$fL?px2TTfxS4@RID+lKgv;SIc&vYcAT|zH8C7 z1iJ$t^CTuGc&#f}@v3fbud)ere5<VY+_E>oNagFiGPVhlX673o{#rDNw;~|D=acF= z2mS|L?=)m5HOzna)q+Vh{dz*ZiD-26f~j1({vpl6E;}dbrRqKpT2QAaTIag*swSi1 z0)7D}&+9KQ3!RY_)qZ<UgLg&g>?Z!!t?Y^W>}D*@*Qh#N&@{ccWyT!az+1AaZ=Y)} zHJGZts#G|WBg1z7G&j%dFBcX|oqO8(>du9kW-6tJO`JWX|K;6#Ipx-Zmpy5$pX+nW ztk>8amA$%i(Jn84ldHO(wLwXG=?hM3&i!}e+|#*cF5bn$4|HZlNiG$euRiPDv{#Mm z)MqjN-NVCuDD2_}uQl;W+pb@Jmt!^EPuF1aJ>9L0Uo8qJI4(FTY`SCb&D?nz&$JdF z_{rfQare1JlJ3MkLGs3I>r(E%yj*+EE<M4*tA1|mb7Re|GZLG00=h+8`08(FOxe}6 ze6OEpmNjpPPiNrC)5n&s;JC8FyNhq(vcI#-?aq5QrBu(;7yZPxdzZuHU3meL%w_9j zySnZ!n5Vc!`{tsb?-mB8hrHnHY1;SmT?6kc=L~NKv4+aT=N8wSIOaN}>%MZiel~-V zbLN!EH#JP^+XB**q?jKu$px?<W_@Mzhi&y%%eT#(T?>SaH!<_sXid|4V{yB|oBMU& zt2wa-+pgVg{}OmA?3itTn&RoUoZBy_-b!#ky=@VfilU7#=ay@R+)MW=pG!QdBvNU0 zQD@WCle<D2`4%!WvW3iizGLnram#q_*~@b;RO_|QIv7#>_-;M($-9-_3&UGC9-Ja} zlP}?O<2~PdE96S%*LVJ7`fllTcG(KXSFP_>2+H}Do1EVIYM0mDz{#&o*2wZQSHy5K zulnQ`%&^5G&v(_2gA)>Vd&X@jpE>JptslGGgT>LY_uY+6VwCdknW^VoQ(1bOeQK*m z-j?<Z!4TOKyHDkDZptp#s{f<)y018*Mdn)*&yuYVwuUS_btkZRj)SGyBFli)30q@U zgc==mQ0AA?E59PtUY6YKSRKK;aPOM71)=X&nDV_k%*MPn&6H(rqAAPTQuob|7nI&e zSnzdC+XCJ-Z3}wyeq4RhXLf2Hx9uc{2M71_t0!7!D&-2aAN><n@BVw%wrkVspB<~} zU%lpt;>=AZPOGkMRos=IuzdgQfW8Y(hl-~>&g5Ol<j%^YV>z#2$`mHgK=qCYZ_maD zi)Un*WV*U6znm1i+V{Gb<~H7oo(flYT50lnD$WvNVhK~0Qct<yWi`A0?|fJ1)mH@{ z^;|yGZkt+QaO;WD*3Vl_Tjv~IBhGUr@>%`TucdFDYGYSkUif@YpHXmZvk}kQpe*xS z(hL7+Zr{25{%ym3>lR(O{GgcYSn^64-7i<Fxvrarn@oMa{OPj(Ex*@1Wpzt-+<Eo7 zT=k^?_t;HM|D0g&=l*={64T<#`**J_TyQlsYLYD1j7zPHR(%S}501=@o@RRb*TLVR zb;*gYWo7l13pYAjd|v*M?c!M{>rcl20;}f#5b#v}`!D2$r|L?n#&FYA&xIR)a!aac zK6`M&M_DNUv-rus7Y@43v0$2-loOaF9>6o@`YX+X9c{B-)E?!_4RoBh)ul$`+i8C> zOBvVsOUm4~s(q`D@~Lw#I$^h8?Y2_E9INs$wxwn*j=QETs}G(L5%z17Aamc3+#>bp zc4NB^{s_Kx%MBIFb0alhv}Ctjy;@=>Qq^r#y!v`om(h|_M!8k7&p)ox%Z|)lsJ<aT zJkzl%ttzuNKUM$2C!K%urX7s(O<5g3dF6GEk6T{}uRgg*X!#oBmDij0{(E!v`f=^o z+0TXA9zL~EYd=2idEt!uvwZ&Z&OSEqeO|foVJfeL%kG$#6Co8m-{ROdPFnxtGViaR zFIz-<PY4FaMmKhH*}Mp7xXI$RBk0iQOxJ{SDsw%WHid|Gi2vBdqQWGZvfw^LK&6mC zd(9PQ3DE*+4i5f54-T)}_;c^cF9Oq)D{ilim36c}p%TFKOXKm|J@a;HtgT;KcF+6t zmk@26vhuurJ2D?GHP%$U`MoH<QumtQ|EF%faaY7sCd3%umHzEB&9~-BbMl>Md)8gL z^v-6F=Ao&M98EE2mUM(nn*KM8`%awpY1v6jPXx_KZmkpcFJ0Ah=j9af0Jo@9#TyE4 zJXoY5ZNhl|@WO@S*&3UjdX+YLv9jwi)ISiLQSOnTZg9ZLb@u*m&W)N+FK9gS_^~BB zWwpW0(8an-&X`<Uv3J>A=lY-^?eG|rf<8Oj-%nh8PyU+uRo(yV-9N`JzAw43=btk3 zQ}a1Jf1lr;-JhptU-;^N$B&Nm*AGkoo%nF<O;dH6`#h^lNAHRXYn%Iie`j5>`1Pxk z=ROwRsh_N|+iyZF*UpRc=PkON<-%B#Jjs=jr^3tcTQAcudq)Ptk2O~E+cl*57OZ2` zU_AGkO|D$~ip4%V$rk72;zM;0Cdjq(?>^ze(3WuhR^{@OdKKdDUOXt$<=%hy$1Tf! zUMhy~9=5V4E}hbI=<aHlnzk(y_J5vzaP5y6Q9jM%S!b@)XL@kwc4qI|IHhY=$c$EP zl|^mMbAy<_M|N2?gl3p9rQVU~-m*bPPTFSvQSYeM)xSb7ure`SGH_khGHHUYO+?TB z$6X&Q&SYB%vwUcjX8F#(V)sRs*-P$SKNo6#$nD|9z$@2NO+^+zKas|_{mkjdp2>#d zMR!_v#r}QWb^70}45oT-pN0Kp<}LX<ichbUx7%U)CwJE0E7zizvwPnP(ydBfwzcl? zKi=c}tM5;{cCtO+bF<jYO#f+irnXz_ABv~yrY^Ic|NrdE>6vf!`<`C^G9~}ih2?1> zQ*L~-``+HpSNC#P-WJI-v48nY4o*H>#~bB+$9!3{-$9ERyFDx1Y%FhlGpZN3X{@F0 zS;HXTm9A4bE9>Pf{rP{54!$<q>|e*TN=fqT>y+C)^CQ%5xaOGM+^ZrlZQ!zF*O3V| zc~7+W=ESAfh{&Hh7|3*uoqGk-P5l?=_x@Vx|4_?-+lc*`d{f)J8z=VGZ9d3w=LSz@ z<jf0`6%TFN@@iE=en-N^9hZW5S?{aQujg77@hEOa0Pinf#$KgHMQ_e)QGJ`Q=`%h` zNI$r#l0}D&r)Je}w(UJt3zh`ljI6L!pZl)rsm|WqcQ04AeJ!u~zwE@X{XcK4oEztU z-bH`<_7DD#lzA6#&$s_^Yi)S({^*KbdFM~|>RvCglH9*|<NS{DLvp9p?LNuY?>hc; z%kwnpdZQAlXOcPx95QEdY!v=gyG`yw>&A{FH_tki8FPMK@O#q2n}M6Gybj$L({E(E z$RYE2USS0H=PmQR8w01zFy_<Ku$$(|byqueIsdx_OLUjIHfrwXWYxGAx%>Mv-7Ehl zEVg@HZz_|s`(r!*m-DrgXU#ius&&~%_HQ!3e$8d}ef<4>z2&E`*1vzwT5MnYvT@gq z#9%#Bsm<T&{>``hIDN~vwZgyW)&1^US*%|5&Gr9}7a?C<zTewif8^;h{e6f3NBpsg zbl&&w`gXJF)2-hAtkjHZyu6|;WH%enW`Ql|73&X($20RBy7-9spX(EEk(ob40@Df$ z&xh7#hS<Dx(K;RExTWAl{nn^;9PN)q4xZZaBS1!M>e7`Q0gGGqr1riQNnI_mWZ67c zyK6cBf-}?hZroBD-Cn<C`;G0I7J_%4MF0L6u4G=bd9(NQ#pXM!-ORt7i-~=C+eAp} z=9ACzKOa3Q*%Db1nqLrRak_f_%Jr{T>#klAX}_`VO=~oJ({1+4U*@^>S6>dP4}ZLC z)})~OzfS&}JKu6+-EFIg--S1J_aC@-b<*+3Im=W}8H(FK)u~YU_@KKXkz>ZRpF%H= zY-pR#um44Lj*zP8!p|$j3poB+3C`Z|VCK{HZ=24>H+|<k6uPP*VM$9j^Qp?bJBNK* zKApU-VUyIyYxnI`@<v&;j}wpI7jNO0OW*gZUgN_@yYAw?-=%3gQVUJqai4wZ5XE=- z@jACuh0LA{R#y+7kV(;%FK&FlF-bkf^TCofyQ7nLwH(~Bdf^J^V8yd}%X_!X-4^t2 z=f3dYN#^x>=KkOFS5_JBJ>aq4ck}a_Nzt1>gvV&_H^08+!_}r;d-m*NT4yVKcSHWi z*ng6Z>N}6ryZ(D{e#=wQ+n;01!ndjFwkqfFTO^dOi`lWjQ|Wjz$H~vFoQqAxJEzFb zKN`}P=X&&FNG%6fSL;L7JsqzK^_tTn8lUAy_AxFu*WqyH*`WL7hSIi+sp<tkRs35N z3u+fvt=rD65qzqzRzF8|Z-U|Hec5w%Mjnm+-ebCr_xrS}ZS`*NtTwOyTygsl|LX5~ z(bL~=+NG1b`7rZYA<c8Y*VQM*R$hHKd)xb}Zx3I8zY_Jy&SHPsr$)!B-V@W;^19gF z`(6F)`ftZ~`^D}v?A-m*asO2|#*&T7=W~ml{rgVNSoHLXhb3#uqlp!MB05uqFRD-A z>6rY8PhyEu)90sMiVO++*y~we{_yY+)2p)z(f0VW%0o&Zepi>4^_m^ack3)lRDC47 z;=PIs@4q(VJ#7IF;!iJ!smLsvD)7yYgKzdV)!@LO?N(9@3)@4UA7S79SwpZ+w_lQ3 zTaD*}ZIX!l!PKmuPBvQ%OE1*_dvos6TxVfk_4j2ZJbrgKlzl#~ZCtXm^^1Ic&Eehb zTuUzf?Jd2Yle2n5p86wc?$Ye0?9==H9GYg#Kj+T%3zsj>oPPZL_P6`X-QV={%6)H3 z_)&5Dq417dW*2@NyxFexDRuw7$6C7Q&Y#})U~kystle7NYc~u05&aavJY77F<+=R! zD&u*kr))L5kC=W4yr9$ZEI&fFIf+3<{(ein#`2z?c79WxzI^ero{Z@-Ru!iX=xHsg z$-O&o@4;zvx4&7p>(`gp#f!IJGt1m`>5Ex-dhYv=*{?p&HZ!ldW)^ZIw`%jfze%6n z{KIZvQNAwo|7x*tt?k`iSMDsj!@K-k|5o<jr+j{XtC_sfv5)b!_<d26ocAG@81Gn% zeD_<r)=0hn_MEA!ly{nhFRxmcr7ddd`G7?*La3r=l2M9x$Q&*yt>Sp8zMuM~+E?QF z0-OKo-8^?t_UL+@@TQyyR>|!yZ;euT)7V&UF79NSWqK!)#d4OG<0+dw?*Cnymiyja zT2XN~QfOM{)U|<&tPTfV6+aZG>AAx>V8hhk{ORjfmRvv4Sbr?I{A6|V-@@?sH^r0B z?mO`AA5-<qe{KI>v)A4}DEn_i@&C52>-)AmJ=3iI-E50V!94rYIXS#{H_u&mefM{} z50@T1%ub!V?a)38j^B$WnM|JkXJ+2?)i>|Pge9FemAoAMxcczp=8j8ED|?;x9AT0+ z-Eg1v>8;~_9WElv<TS(kRO;OmO0^$;OlmNc*ey{oXOiEfjUN`O@J0BnHf(OWB0HgG zl}M55i^N-%djvnQOTYW~;C0Er3Hi>emxr7>W3(fiIobH1?DF<kZ)A5re}ALq>zmMX zH@;ha%g;Pn^JQwF=H;75o|m8HDVup&C)50XqF#a6jNaa_(pj6L`E2%-Uslhzuiv!z z*xk)bSLc2IXct^s99|eUGiBoEUfJ%bch--Jk9Y?EiF|YHX~~Vxn;kc0DxH7lZCc@N z?i@0OOHfy$_k{jVzl;?cL1I$_SLp{CO<tq;TfXd`zAL*3Q@x?s;-a=qDxFH_53%%A zznXTIt57m^I{Sg(%miD@tDM*FEn2{N`eHzR@*6*Gg>4F_7A6U8s`~q2tCYBD;<6nZ zw+WtSy4kt0XJg~Ftd|QHT;GxSR(G-6=6CbHY&kda_4TdSrFOnqBjUX)J2rTwUhTmX z>~=do{N+8=$76VUM`p!w-RhcW*<Ye&-QKdg_&o0$(Z7#gZ~Xl;zqvhARr*BShcL_R zTV?!tckkS;zq>8*Y}>9|Qt_3Uc6Z_;=iOub^df87qGb|(Z=Ed8{5T|%!1O4&OnIrx z>Sn*PR0iD)6He}HFGbGhsZQck+0Cc%Rc|Sao#SEdS+lNc)=6wUIra3ff+Q=a5}${h ztE6lS%+~p_B<1&>NDg{->4}E-@6)djwZ|@B5vc#Daq+YKtDoyRKL6+KeYIEU_olZC z;+SLBteA9SvaRG=ZQbtOrh8;Q+Rb{aQJxYW5?&%}ZN2sJx`fBmX3v+^c~`t_$;>rN zt8Yg&N#FgN%+Keazf4Uw-6(eYB&pr&61|HbK3LYK>&t4r!Zh^yhV@0KC;BdRPv5m{ zU0I?1ddU}=*{?NLzS;RIS+~CSI={Ji`P<A_^P}Hi=vdY@XVJQ@J%28JHGaK*SMI9S z>#oi?AN_e&^8K~Ds#a7z*Zcl!@7CSlj&Xgqc_tFuxc+eARk!rhYFnPv8LV4>P%=aL z{jZOY<)k-8p8dt6%b{OaJoU!B36D2EabWOc>hpenLvGF<nK_PahnrUhv>ncyx7xp+ zOC%y=S=t)ykSu{&M;#?YeN0ZWHS+sJhJP$NHS6G`xzoiB%uifh*SFA@@4g22eUqpi zY+Hj}7f0>;|L5o0zxgbO)h+5C|Lm37zwGqp{Oik_{CX~KlePNw!8R@Y+o8gDYQ>#} zryahodu^_}=j^%pwHw;<yU#c4rcLIquuh%G;$MH|w&py$oh_+#7Z&uo7RIl5GU=Nx z>xl?PgGx^Z)w}&l=K}AjHr}1g@YF!?=@Dt|-Hg*$Iru%35MF7WXi#Um<)Ugd)4QqL z<*cjU#CBhvJNfOl*=PC6%ld9-KD+;0p|`$&+w;mfX`3%kp8mWv>dZN<pLZCXAJ;RP zg{_z)-MVChLjC<|-IE>)SDG!CTOXcbYxDWg(u$~*2X|xnb@U9koNiRRIV;&xqfJxh z*&A<(NfO)5*Yj}h4OtUBY1g?F8yBsx2^U|yny#?IZF-A_in5TTzqEL6u5WYA^<`D7 zT34H&P7Ktas{iEqck!8@jWX-g63;!}xVVied6{YNFS(7kE+uWO@3~Xsp8bXOV=up) zzwss6na?6DE>D}KH#6zwOtoJvk@Bb6GlMq?xBTb2Qn9IjuY5|F#Ce014Yj9E>bqTe zlD8=MWY+>7;|QaLarfrUIXnN@H%X?QJC3;B`uXSP^ThH$E1O^L>35Jlr!BwsOZ39y z?ltSUmM=b#wpGF?Xp4<+pz`bbq#m8iAMW*<n_G6Itrz&>YPI&n@pzvHvrbP=;B;ES z85z@K$+%wXl;}Zep+J|fLKTfmKU>b4vU%!eFCPAE38xb7kY<ahBZ6CPdJYC2xh}Nm z;wFZEp<ain<*ZH9f?qsXoo+GX!%03x*B(=`wQnX)`WxhYM_2b_VC`|X+h3&5_1E|C z=hx&WmAO4IpLch~%FNPS`4?MD-PS*AT@`jeq29la{o(%$-wu_kzyI+g*Zl79&Nouh zR_k7U;;mh`_BgxPzrNikpKbo~^+#EK&FMqdUGIKecMxQqlAP|usCi;znp8mcN1whH zPors@^;A0d^xD;_t&r08YdZXq-`ZY}d-a>_`YTh^C8s?Xaa89Msu6CrXqmh<MECIK z5)JhOflarA9fd+vYGl=tR`@;nk+;(?Y>rT^JNs>(+52rvKSX_<@#0Hw%;ov_n}q(~ zI=kJjX8lg1I-f7s-|kL*eW<C%KeMI!RJTBwR08MrUz>YoPPtKJJl8F~YnsFg#k$~= z{qti4f*R{z3OtQvjPtp2`N1Ruv6heGo6qM4PFecn*tC;coLzUVTYh-2a`Blw_sLg7 zgGJ)kWN$v3J1?TXVs?2}!Rwb7mo?swn>}s*`grSt%f-L*_HUN2zh4^t`APC(^FOb+ z51*af-yidTwSLbDo9D;pJ*;Oeo9Y}>viSb2>D=o5w%4aVZ<<#x)2*r7>i=Zb4L=<r z%fJ(D4*mK)@#|+!Rb6)=Qb%*j$>X0x!@Dv(-Hupnuai_VJ~;K{x}_&xx$Z5T8mZs8 zyya+>%lGYTXM~kmpDqgDb3*kGzd+(W_pO1_sb;h0bUd1#y71F{sT|`&q1Br_eVubH z0&hC#FW4#Ov6TIaOvoF_kM*y%%`cO^5wTEhVU%?8-b3ZL)ZX70>^4<<y1?QQb8XVO z?E-s#*Z(qJx~S`t()=f<&!4`cZ5cnUU26$b_#`enQG1)nnV(~yvR>Y$?Y>!Mq3^mj zwfa{Ztn^O*He1&<an6^e@{_(SEoy3BZC;!4D16S;PX`*eTCtb$Ue`VS_t&?a-St}c zlLL$QZ%p?p`st(mX8Zgt@80Ug&0@;CU4Ng?YSJ90X@5<>E7vh9oy*_&UGb*M?K!C@ z9z5;XEWIS@yiaRwz7KPG=f8gM9FCgei6sZ7=`f~PyZzhLD7lGg&9B#|nKv)K`aYKH zxaPOBb~+vsTNg-do$+CJ#@RV<YBq0uFwNx6nflYy4IaF$DcZ0pXjKur+`3$*{MqTk zJTqT@S$bRkT-CKNw^}9kE%1!3X+ORs+4yH${QZdds2u%Mrz3y)t(zHSIKSvn`<}_h z>;L(^TfAsf%+~!+FGbWJi?&Ssy1l5Ws`hE!iqk&VZ?CSZnfH~K^=<X?Z`;iK?r+xq z;4n2h-89W>Uwx_X)xW(420OR!Eqft+yZnCG;e22J&9^oc-(CA{)v~Tj(_+Kd?p3^S z>Gp-m3(uE76Ten6{o1yv*3#wcKFjZ0R@nQ;t?vFK>pR>@)<>#L|DDm|-}n2>*^}F% ze5`zJw4am)_Ac1hDD*MeW?|d%PnNuwE-qeTGNo2;#?nsp<~yqs7S`Vs5cHX$9ow|H zszLkM#uFA2zE|S;+G}GT^*nxbnD14N?=j^)9Exr>|Igmz`Sc{{#>W}!{r(!TXvtn_ zF=zUAwr5^=5a)uEO3S`qQrB32u|(#KLD7RQx!Vd6#@}~ku2TGVPb%<9W~ggiWn<)W zZ$a;x>t!ry`xhCCZV$Qmop)wUeOQ^_tX4B=pN;3|^}N*1;=26vR+jTL$LXI8!@t&D zc_?s1+5Xx6=FoqQM{E2Z>1>eX{lzm^P42VklV=;sy9L5E&HZZB4_#JeoL?&`z@wzn zpYMM|+;r9V2+oWM&W=+nLl{EOH*%cZ*R1%U`Di5vk5;0(`kXbUtAEdC=~Jsyyj&mb z`k-QV;9V>4e^ZjgPPnv3${motv3KQy$9Fc)b>$0aF8gf$ZS#x%`uvA2J8$erUGQvH zF!P*;&0GF3z0xSZa8^CP>Pub+(@yD|aW{FsFPi@Ize?PvCi}au%RF3JAG{L2pPo8B z^|gVMM#wscuG69Mf7hAiOlaTV_<rx?_R664!}WS!uNJJc>fk(M_02DutwG{qUozA3 zo`>7kIPY)19<`9~%EO?eDN+BHRYVHgCk5^MyI4y6Zp~!N>9?8lbZy0ttllVjefHWr zjvpScRI|O){b_Sv$J-sM(Zw>)#DceOH2+$;{Kxk*$67l!2T!t^d*?3O=9?P~UccGo zeb?{ZH=on&ne}|{a+cX%){qq6W^v=^_8+zZFDf_OttmP-zbi7J)+*+DNavx}$*}@l zPnrD<!$TLW?vdK@<93Prr4=$3!Kww%t{%AgY`ufRH#VNlTArTFo8G+BS6lZ_!DNEO z?KhgAj%!Qlrr!7S`}12kZSgnmq*?E-XGTi;ACp`1OZ`mP+wh>v^-24^&z`L6*?d`k z>C5EwOJ_2-c&+c>DW(_o<qKnW+MB$+k$voD&N1JlC$zWLTw1?*#sep<`@am=7^QQ3 ze9!g8>y60tR-<J#4^N%!tPB+kVw&8${zt)$XZo%JCQ4sd2mY~$KDSSG`CU=NgnKnd z+u66A4Jv$f_Qw2on<HAzcS-5hAD!X$cNf!P*^T?xF8KaYKiWv#FH%caK)3LE`mBgN znf-4?@4mTx&*)Ou{T36`in~Yq_RRV5JK&qI(LFZF<R6vcpSJHi?WWWD-jS=o<=>lf z&YnLn*Pnf#bnHNlwP5AX*Po7Px2Vc<b#s=_|Fg8<Wa=&LeJam(h}!Ns`R;76y}`Nq z&$q&Ba&vb3%ufBAac_C|raGIQ=P!Jd^St<vx9eN<_qTJ8KKEZ=^)0uCS#h7@KE^*w zkNg)^e2^L6ldJ9$yyeHQN4Afo8@{to`qI9PBlU=I{#>R?S#|#c@ssCUqCJ_X*nR9y znVz9?_6zru^cYLaV^j72iTB*+Pfq;Bv+|+eB!+q$+dJ`k^IG@SY3y$cVol{2;h!R> zAsi6bx{37^zkpm<c)>*V1-0xp>!1FccSqx&?9QkkA0J5{dhY4)Bicx-?ZL~YBo)Su z;<q-d959_Qx#sJm--qlcTmGvQx=<r^EN#IaAGcOcBlUeO=Zy`%F;CJfneaG?eP{R& z@gk?)-E&0d)yLJi?r4?~^_$@H;OM!%9%_yA?;n<`JM{PcQT3f_MW+AtK5|wrnJ=%F z>twg`xxDJyJ93u}+VA|aE5PU1%iAgPwZ(;V{&U@Qxvyev>bivg!LJ|ns=ZEDC*5n_ zm1ZoT6!K30gxvzuBl}&<I<`+d`^UKZe)F%iI&q5yML}oZs+>Pm|L6UIKWDq%1g=}Y zP-1}%_fxBuhw~duO(yQ0WtzfY-g4)tyn^|`8^IdYFK%-uZ{Fkau4P};yTl@)Q^7I9 ztsb)^j)oOA6i@ois3!gE|HR!6?^ymEeiT1(z2i@{DZh8@kFS}1vUcjC%CwJ}S6DAQ z2Qk{_xW_t39#_BNxqemqQ`T$srkqtD7wS#ozI>FW(l5e2D==@h=*QwE9Hos_9(oJf zO?|}kh1sWQ{bOFHzpVW!Yp&=#sVlBUj<FnKL5JoY(EcyK;P?GWfy=5N1kOyC|9@U( zzO;(;MEg0;zttqKzUUCo<@vhCF7&q3-*pxDxDI9s-{g6!@QVA?-37|RHt}sito5l( zr=GVecmL<Bst))gTRCB#+Ipv*&34@Le(_X_o@%}`^XPo;yiXic^cMWw_Cx05i(e=8 z@~n4qo=RL-Y{>sh`>58Z%tHQ?%yw2sw;Yx4Xnx}OFn;D*TU8lF>DK!bP4C$2%C&#% zJ|%aDRh8xIZjMMBU6F}p3;VYmp7ra*@e^mC)ThnzJ$9n^iOyP;{7LR7%vXrT9E;Yj ze_#?;uk_*buc?0uUhlkr!oFrYLu2oSBXxcn_Wu><37*d=%Zv-J-*WVHo!+auc}20W zTxOZRb(d6moLS5J=g;heb7#)_nVRezmUwNw&*ijs*A078Do<MF{LTIL;s5`gljh4j ztbf&B+mfeP|J$JQ^rl`ui}G0uzfE{{{nW=`kL8`e`XBlWf0aKLe86Ju70X46<yxil zLMHs4y366xiEOV}m8Vany<(aFzSk(#{W$Ua)Lnf~0;UJ~E3(~MdnI`1{L8vtw!Kd{ z;+D?y%WB!`W!qdM`mI0a`ed7pte3Ytap_#q$qRlp<%Nl`*IecLm$M?5o|~*YOV}$` zA?)n;DZ4z_O#ZL9VtQoN+Td4FMoVJXUnxDZ{BKi`zhdjH`I=utKB~U0*ZgYo=yZqH z*Ak;yg@G&6FGzp2^@{a>#dH6~yqUIE;!^WFJf13x2KBDL^}I3u>ZK2XnnfiEX+{RN zTDf!V1vum<SM{|vEk5p~e5w9nK#J2XAs+VUe5~$Ew;Ep-%nVM@(y%mRQ!?gTzs1l* zXb#_Dfq%z^i-S^>G;(9N2fmum>v#GBS3~qIxjEeJY0H*o<!=?Ac-@t0@<PGVq{_I` zTVkAwDw0cBr$^1bGSTH^_;szf9Bs-6cV>zUaJ8y0k(^;=V{C6O<Ra4Fb7(`obE2k# z>ocas2Ui}r!<d=&W>QYIzUhWNlIqfY43mo$RV<}txO-TZZaff@@o9yL6i@rH<&F*u zGb61&2L~%?OtIstb5GEdv3MiNw}40V#!k^Fjp;{qeOVKwPAXn5Q1G1jl1smXErOf% zu+W+e6$5dZ+4Ea&wlg1K)lsuywwgV+zLRCS@<Il_o-;oE3x7CYethXoOh%fX2;&nm zO_7O*gpEH>UL0g0F=rCrxpt)mIRdvzD#TX!xyxL7$a&#yO+;E|MViPO^$Haw-t+ED z4)YY7h|HVIBQsT<_0;2qFAu12*@<xKADzc@rk8p5!wVY|ZfNH+f9&yLJM{1Z$AR<b z&Yr11cgEG>V&Zm|Vs|Iy&kX$8_99&EZR*XdT%M<=Hy0~2ZrS+p!a{}Dvw7SOs2xjt zw(QU*C8tKqOeF(zQ{&nYr@d_I&5t!C*I$uLlt|q2$|Hko#RH?mlMg;<Yzb3OPvi3l zZe&)t|6t(-jT4QEjf*x4b)5KCWg!r^C_iMAv_R92`U^9Ee&iH+|AI$g=DbdiWaG(` zjoTAV7xezzY3U|h*MF*sgMGQvyq%JF!ZIW#I%F7~@i99W8<95stjvUCO$R+g)EZ>i z?39J`1WGf4#M~{6%$buv%#iOqbDlMD#|gF%lAJuvB}$t@CfuC)^FxV&%r`$5rOmpb zq3!(gZFdb$m(@3yr=+cV74&!2$F|ieukS98%D+1Qarr5IQ{SWiC8vwbH?T1hpViy4 z_u+*l<!O0)R@J{f#`S*baS!vEikqKk%v4r1@>BC@@hA}MJz%MNF!r|ls)ZF(qD;T= zGOu9?a6ieA;5Uh3rrP2Qn<t)`%zS}sa`J^&jrSFWS_EtQ9L^_J)Vnq8bJ^xlFL6r7 z@`!@UCNT})%`?pzTQy%yeX!&%$5)OXi;n3R-K`uOxV0lb=cFxBHayj_b?O>skIpa5 z{v5M?sx?{7zvQIfNPICral=&uVX@L@r5~&rY?SU5^-ca6doGuIw(l}U-G!Hgre}Rs zRS1ip+<#?aSjO9gP2C1FG9T3kg^4uTO?lIEs8k~BGehH@RhuiOotZR4x==M^A<y#% zokDY)p34-piyZ&QlUr?XbnK~H_&T#Q8mG%dy4DN*ly9CWn8urYW|q?it}QnM)vULC z$~@ZS<a3Dg_DuE{nnxFf+z!{RW1q}<u1X@s^2{}@;7G6XcU<3`ehR&wc4Ll_d40zB zldlVogwI^_l53mtHN(|?2LGCQ!lzy2h}JxnC})szuYKmTLcU0&48>1&vs<HDB7Iq2 zuso7bKJ)L`qig-ECDK0>pD}xWqi$MyUgGK=gI&UBzNyVj32@5r6|&^0RW#!-(ukJ& zWW9QgXnMJUzTv_*w}0-aN&VN}_-@6c>ZT|49J6yJ7AWy(8$Q>Vd{O7|w--Ww=_2y& zUnclpeN-6xkbiFVq_ssc7xiBKl6Wk=b%XE5d4g=BX^WM)YNuS~nfyU!@>QP4H_y5; zdEMuTw%nGoQ$Fc6KV$yno_9ggbJ@>CZtD{~$}~~xQ%Ohf>VgjGz&}SMX4iLpoN+@? z(QG-(2gZ7{u59a5-=^(}Z|*r(aVKrUb-$yJ)I_9%YE3^GE?wg~HEqU2_L<_5JHyoz z_eq+y?R(acwBPaA-xW#xoim@vuKmU$lE3a(%V8g(>G$rx@+;FeW_c{+x>_=QUhuYi zfiEV88=Wm{J(6O6GORjcV(%XF3%k#$t_@z-ueY(oVDn#riu!I#v&l74E9I0A>Eus3 zyR7Qw)Lq>A7xS8)Gek#E$n?BB(`f49F1v}dqBp*pkmSvI*7e4$6q}u<=T&UZTLkKc zUv-OU<Z1{#wM{rONqbdV`i*ll(<F9St4YXjejvZ<!E=M(AGPYN3e75JuAj-&(a*L2 z&gZs;`ZvG7i+)(W`rrDa_0~`2XU^vO^gn3ImPv;V9xMz=pUM8gsK>M7oWcD_*3D~K zUx{kJd35T-lX}+bllE6WZR&e*qC;fqIXTT!*6E9%#d&s3<L`Y~ziZl$_-%{kY<~W8 zO31uo+xgQv_xFbVu&s#Gxc(*YWuskV@x=dZJ=Y$!fS14)mlUNY=7N~h4V0`o#LX;W z%VZ4=EDbC{5-IsfS<}6b%Slf!*e@qPeflbE(P{C@EYrE}+KSgZTs|YnTFk)6>S}Oc zrH|opkJD<w+RMFswby5~MP)|LoOU?+<`T`!#Z#j4C&#|Cy`TTSSnrYV=6m1&|KIog zr<~=#bGHuP`g|*U{oeC#9fE-jqLY1^+4yp$CtDVtbZMExa>+<-x&P11L;3FoHp;nt ztv@v*Y{`1=e><91Bw8!w-l+efDXg}?_;lAc7sbz=S3V0DrT58iU-naVQHRo!^JmX_ zowqSRwNdI{(GTlXWrYv-cF7BwX0z09esj{*xK1{C#{-vt=JhjX&!1@b;`71Mj-cj_ zSx@}@<{K{U3lm<`y7|MU&zIEGS@+i{N&Zvsd^6wwq`r=l<pSl4I)e5~6|%ja)Vni( zJJkO}YW>8d#ryvYhn%%F)i>@AUi`_bGll!$k>3+v)$+>=*Dbwg_{Gz@^+f-|?I-&G zTs*I6GW*(vs3>>;%f?@Hau@V&>72Lt?3UJf%f(-~-tzLh<#s!heXoo4%T%q!v0G+; zyP*9=Yp+{%ru<&N{0nte-S?I;f8mo|;`~Lgey_XxONqbT_m=a&w5WBFzpVa6bM66) zI=|&FOr~BIFKIh>Y5Et@THpH@wttZgz3}}DbL@idFUo&i{x6&VQvBD{y2bZj3jKAQ z`b3Rivd3`h%?Mtx15FXR*Cv>zDxNubYg5@8+t&wnZOB{0-kthUr%`p|zBgfJ6L`~{ zBaNgFzDrnKe=}m*xlK1x%G76{OWP2cV>bJ+Tmt{5_8W(Dc%zTUrTBf5vp(s!+560d z5>213X;vO{mz)clV-nysF=(mylC_tjFWtVx_)_-ef-f7t%q(%T(yY~+JDq3d$w@k= z%WnGfO;>)>_=%%(icQ$L>B~=*pZtDe^V8N(N;_TRl<alvmF)HE*H5^9^86|3l;wMT z@9FJVc|Z00$@~-fr}9tcpLTx||MY(9^c;;PS3;PkG@epOonjOvx%$pxoe;SYxgfbf zxnQ~QFfD)0*He~H6`%6<)ag@lPdkc2en$KZ`RVr4@2Bfe-<?Y&vKB;z$1YzNzJ1m1 zD|cVjef9m?Q04bGa`INGC|})rht*53UVfGByEWkK!q&`(Q7zYey00wSGJDIjDDJgO z#nx`U6qTL3Wm}Z>+Pz|nOE2VIv&x#g<y@5b+SS*5yRSalQn7aXv<0eJo>B5^*O#rn z<}bZSHCywRMDC<%t9`G1+EVk@Z>@v&m98x-Z<*xoGIO52^6t{RYtLSKcQGxycuP`l z{kpRCX8yC+>s}Dc>fUnnR&7*g+5T-V(W`71*sjpMEO$xnn%qUXt8$m8W%p-mZ<%^a z>n-P7&$pVnTerDIuU>n7-nDrb=Up|+klyNhtN2!0Zuhr6-<rNH+7?=zb$d%t?(S{Q z)t<Lk?p-rAbN80Jx8&Z6z72hAn!A3Re|2!RcXhON{er!VWv}pMzR!A}*}hfzR^Zzi z-}K+szGZ&v{B}p!!rJwJ7tFn`m+}8v-BrEJ`V76bL7y|)awp_&$nD5okvl{8rr8~{ zL(`JHxAtzin<$+sohzLzo$bAO>Fr}TjdEsg)45%7n<aXi?s2n=W+$g*&z3PVObI&i zZ-TR;+lx6DSQq-&xBQd%_5Ol)->*Ia_eIGK$t}uP3)_>oJeE7ocYJmqzl^$!xQxBE zO%<<g!1~44FTZ}x`=zZad2i>v5dMqKrS0opCsyr{Tk8IL?H98u>%Gl&oA3F)U-<os z@E5~hDYo(R7u&B|e|`S7`4`P!NPm6)<?Ju9zm>JC_xaXq`tYunzNS#WCNZKSA|zt= zhTDhRT6;NX%YTcwv8+HdhMS*fy=<KNp1O+1AJiT$eAxFv?BT_SwTCYsx_o%E(vpq^ z9UDBlrYL2*vAJIB&JmH6xv8@$^vT(Ywo1jy-OA71_4;CjetJB)b)s})w9@>3o!&dL zKfRvJp4hH*zqdyJQ^u3!6XV^#cGP$EcJ+I8pX!j3H`UbIADXxNWv*0S&L+b%sym%x z`KG_idid(etB0>%b``7cVB5vEds6Jmbr;u_giq5xZhEtHdG@O8Wv}I~$6U9$&U9Vr zdhNR3vEH%$JHvL(D_UD@`?l)Z)`MFwew~xO`8Dfxv+M5b{A1?t^xI`uKDVs)q1EeO z$LhbXeQiDcc4|mp@%N(tPu6{LsnF{6IxMj3YF?&~>}uibGhY7>N}d)Mp1kknVnhCD zsn5+>QlB^PzcS-_%Q2gJ-rkp+Ow<fJGtZpM+7xwRMrnky*cqppdM0T+yJwcB-o2@- z)Au#4a}B>qn!Q;EZ{pz_1=9|>Z8X&B?M;3hDW}~~e{9alca6t%+K$Dr_5S3DK7DQT z+8k-?Gj{1u-|%-XFg(08?9$l_Gh&xiWD1x(^LXicGIFUQzvui2sn1hN9Mu*Yie~uK zXPim<q+sbPr@Q>5>xCKR&dKN6kHzrx{$wzDw)nyf?WfBZ8k##LPdjD(WbTC->rek~ zJ!YdIKe>Lg{>iEJ7iRECZ5A_mmXLAA&})`abmSVHV7V~4&}rJ*Q$kN=rSARI^J&p0 zXU*Wa#$z_iY8KTjt64oKxGuCV{9k}4Z;*V`v6`q-r{s5y$7;N7m&ILK;g!txPe0?# zzgq#hJEpB#8k%`V^Z#k7;=A=r4deeyOMPCf)ms_(JM#D0OEcd652{ZVGD*ujF<Wt7 z0GBRbti&#}FUv2?mwl4)<brIiY_m?U<+Z>!H(plU{y6b*@p1pY_|i++PRZA{nxrW& zG;CgfVTSHP!)WK^V-Cq>YcI_Z{%VtPCiPd;Lc{s3$L^$Lo)Iru9`|aoA$toi?`~$P z;+v(WY0ECm_+@JHY=KtqPM?f3^=HE`&Y16zT(<hsjL1OYg@%`-L>-gO?yT57L)#_e zj6t|}xOm2yi17UIN!b&!JF<6VFUju7o|C;Ndy)3}&<C@g?K*9GyL5f_zU+nB8&@CM zdgN<E_Rj37*;}*szLs2QXzrMtSGf1ZuLEB<z7D?5nQ<m~UD0*P>(iZ*!*<zBO}=AW z-+Jtd?NO&>qsNmz?*7>QacSW-i{z9EDRU;4N!tglDZKSVO7Xv$O~-iyze@>^nIH3f zHL-Jj@%u{utU&c8yBy}ORE|mSeSgxetMFVzu8h$<Cp&+syu-||7PcKrZfm?`XDZiJ zJ^i6mpZ5wiR*BiYLdhEo=YPGYd#`)dz5U(aonF`PJzv51{^v2K$Lx>yY@9vq@VS4j z(<JSi-rG!FaE`mzKV#p=zK=Xh12%qCJZpB({F=n^j9G;(Rly4j4@l(hah=@zcS^EN z;+^b0UN4V%o80O!k26ubP;fQA&gZM~tCeLhC#>>ZzpCp_*w4tHM=e&yZ1}%o&hg({ z{tEB!{dapR|B~<ZQ@+2wdCJg#!t#klM}$|%d^6~OQ&#C=nUH@_E-d+G$yV{%OTMMB zzS7<1|CaxzT}bq5-76mZk50|DoosV*Ugta+|83Q+=}o@_&sX?QtDdNSxwc>ZaP4;W zyPxN&pPl<$^6|Vkl51r)-%YYk{_Sb`pfl`SMU<AYt?rbQ^PZhjQ4O!3`Q+c+G;QIG zX_H*bHD8+eN_y|~(n{4n`R$yS(cNV{OXr<RSQ{jn!5@&fb?4LaEsCESPo3ZTZmRmz zw^6@OB~N{S=#@=;<hpes^5NkU3#Yzct*+f4CRf;Bx_sy5yN~ZkzWex&^IhjV&v!Q8 z=e|?=Uh+Nm-R`@a?|k2pzWe#E=ex!0cY5FPzI*yke~8u3+k5Zqz4UiUb#L|F-;v+h zz8^cqJ8%6J!B@XdO`Upls<zE;+x1oVTz~Ub-(%{l=&S0h{P*<dh0hzG8=rqZ^|j4% z+jN`w%6(r$D$Z5cwfw(7FWz>4W!?9fPk$aZ{;0Ym*Uz4mec+9GLYZ{dQ{}d-jJElK zmpM%8UrBuJWphhbzEL3Y&~3@ZI~jqN_cIc=7~PUGbUS{ky7!!$`C~EVYcFzDB)3a# zmt^i$blYTjM<TJOWV@N0lhZMY<X#iyyAtdx&zo%0D(=xq-ZL@T$3#uK(rusN(oM|w z9{1R!?*EjwG(NT2%l^lvo}A=Kn}Rh%;|^tQb+7cTtdFe>wp<_+#K)cef5xZAPl7uC zCZEcD+Ve>?Y$KP)mHr9q?@zH8+5RZ7=kwfi;&B0bJUcEdNji7)qNwryuycQYYz+zA zzbMc3ZP$UWhOSwnrdofr|7hiiMzuyMhI@#XoLga0^epA*w@+8om(}h4+CAaZ@>BDF zKMMHy_^Gs(*|dJ``uOO1q5B@>Y~CE0u6#=V_oKcp_fyZO$Nx$S{`uv-`n;7EpF@A1 zzF%%@zO3ei_}=rqTJdG?`iyzc)dk3v=sk_O_5I*e)u-QU48Pv_cUjo~yw3gD!XG)S zKe20t&AC@n^>gLZ<=5u#`hVq7u)1Ha#aEda*X3U?^ZMVd%zCqO+wxQX^;@k)t5+Rf znWjG3Pi@|t!cDJF`l(yb$tmA-^yG)hzW&#&Px{TV4=j9iTR48MMe(D>!r~9Bz8|@* z{%u~x+assv&$Zw9c6GGhp3+A*g`@pd=5^Q$mM^;5`9U~Q-D!VJ<iD(+=Yp$`najkx z*RDO*A*H#E*HJsi|K_|cwu#ZH(V5Zp55MoVzsdLO_FuhUp}%Th&VOZpYyO|Q?Ry`D zzg+**`(M}n_1jASb>;FNV*h>r<@THP%l^;)XZ+{;?Z<ES{*nK-zVia(Kjyzhf7*Yj z|M>n{{+;-9@$A=Gzg>U(y_WnCd0>CmykO6B2Ia5K>+=5G`LXk3@#E+3{}}YHx}r8& zMd{@9#(Iyikh5vuKd%ooUJ#ZL@YbsI_0{|f8v-Az`8GQ{$yP;FxNJVLV)m@<8IpHb zmCoMw_SW%|9XpekpNrj9_WIuAY4i3bJ$_WJuA=t!Wp(!cf7^L?)IL~n(7BDzTh2~N zwe*SXVz++D+0*<U8yRgr=6~YcObgBOqPTxkthu?mm-)@Mt51FwTYi35`nNfcc7D42 zS-dCm-`7Lz@9JOeOmFhaxTh>$AM@)+QrV|Nug?De_wxDI^ZP%4<9=*3EmiK6Rl$c7 zyWh+HOZ&6GPp-P~(9d?en*Ysj-fO*^J;OM&DDU2_Ki11dMErDTnf<*jS$=lU?|G5> z>t`G9u6VceeYxPu-75_*xYXbE=$)#O#d7<r^n++WTgzkHZRQ2Pl&M;BhUubORpZkO z+*_vKOAw!!rTuo1>=!=MB`j5w(k?FE(qSUiIpKE(hn(oc{!Pb@@nw0x_F&^{E@wHr z?CzBYQ=@&0Ew?!QV^}E`z|a~j!@H;^>QtWbvP&9PYtJ;B)=NLVC=!;lM1o(Uo?rUU zo0RE)`W`Nmy3%6wLB{Od>iG%w7o;@h7EdjiW&7s4(9uOxk_zlxS+{t}tu;t)`pBLo z;C4BXy_M}k;x_*-w|9|Wc(aeBo!mR|^yRk86~ZwGO=fM%6n&c}8!4~pBb&-&z!%Is z#gKXDx+OukI+ypvEj=IM`*qRBp2CSz!P@n^MBm<YbiZMD^YOgbFI(k;FM8{)&`$dF z($vb~cmzvz?5XhVRfbt>s>I7!zpk)VUA#?t;-~CyvrVMW%lyn$J=w85>c#Z-iu}vb zUs$sb-P+Wcv*U`>sp(;-SyS9Q-+oL9;`>$2T4aB8(M`XV%SuA(qHZqQu|>dtXCSw- zkgNZN;QB9C+z#HQVJF_D%5U5pl%KigOG}AcT}Y*0<^5@WVf_nFZke*}LjD@Q*N50P zTSu79J}S1c{f1ZB4B6!SUWJzoGAETdo}2c5N_^;}k36AVQ!8INeXV;N?cep>H{$&M zgWF;~nictr1AiaSFpb*Q-FInuh2Le#Wt*hdh{?@u-I!8VZ$9s4j%M_EvyIPh@J%V| znVWcj<NO=?XH*lbyk=bqnZw`eEf~~j5?d8g6=c=*e8!i(C7yX2?WZpmx$kVBqxF1o zSof3EinvMp17;mKXL{kh;j5z3-d&z|7wuaZcO~oAyRDP|?me~quI}CCHcukoM84Df z`o>`2f?pDc)n2f&e|30UfBB=&kqZ6xBe_fYBYeNa3SXP_HD&w4^kbVk-}sp^+gi?F zn{>Ww*Zvc6j{3D{^cI|B4BD`wSbF7R5q;hx#%`x3y_+)4li%BVN&gc2l-V)Pd{bVZ z)_rRCDZ|oRZ&LcH)2Yk<%=@#m#_eC|x+BRN|GJzx!xv4-SlVwCHgnaQuzi8``vTop zzF!re`R`Ur?!vHTe=}aEyw>z{bGt3K<?WW*4FBemcgv^0c&aTDz0)S#Z%X_k_9c8? z$uB!fSU%ZIGkVG>q!N1Th?w{H4YEPTrES+@U!BWa-t8sw>sM}O@0ZnAV&x9}+Pu&t zFf0Grva7*n&0hk(UFJWfopD?6iH-B>lWFzd;#+2gobq_pWpsbiZOx0Hc7K^!GwbG* z(h{eS>AW}jFS%6;EO`*Rbonf~pIEUHo8-5xhdsPj+kH`NJ`Z{JLN(VD2!_E%3@ z#e2JRm(}U?OgZ04b_?YV`o%9l))C%)mVE{DY}fl2*v@o`WzD-5wE8@sm!(%{$n>`g zo|SxSU)P_SWf-~E{qxO?%Bf|Jzosm^6nJ#L-^uffzqv0Jf692uwUp!ZF`gamVwdI~ zi<z}@na2CgoGP0iimaUCy!-5=<S7OhEH7v+UU0cAsqB55T*qW~g(ZS2&&^J_8kro? zve90kF5(fu_v{Bp#zy5W&eCdAFS2YEYrdu!bnh$A!imS&qUt;U*3J89u(i!DBIS%z z-|QFKRTIoMvd-I`$<><lY);blm7bRZO;2X%PW71Y<-GK1c%Oci^(50p#T9Wa%a`wJ z_nOk5sqxiln#6I%yJr_BhF`LH<sQFi>hnOS_)7WG4|nu(jVC?P%y^$Em6Ky4b7uag z-WVy5^%pjqO}&(RQ6gErzFPk6-r1X$D7sCY^Yo;ny-i14hikrX>%X1)+sZ#}*l{Dy zHvi?tz0ue8=33voqqwYg_qN=q?Ok~{7ya}NoOo90(BTsI43C1#YQ55?IRX3Q?pkea zX3A#0vgYCY^zE6el)QVQRNYjTzC5?WWVw*&#qIgo@A^I59jdlAm@MyGutdAQa!%E( zgv;xn^sqj!kUtkO*?3#mWY(9qE8Jg)RVB5&vza5XaQeoH&A|`iW(iDOWnC}uj`7f5 zpB>B(__&>!Y&Qm$HN8v8tXgE88CB+)6vedZcG%(l<u31a{$E?0F}t4EBKyG890|iz z>FgVmIoq!oY`ksO`G#@Dl+B(lPK!1dy3{kRZw&79@i||@CpBl%j0+|@I$KM%)nCsQ zG(6`i`0?C<jDt>lT@C%#ZojP7b+Nc2`$b)C^y*qw?^8_~F;OLF&vcym5~%5CX*+d# zptaOfH4Eu`UsD&Kj!TJKUVduPtBt--CmnIKwE8}6iq56E+3d?h`gtF}zY_AKaZ6B2 zP?V=oeOFwQ-y8c7_smO8S47mK8<a}#3Ek7$TpKCaX`_<6=-rp@j{XyRGiS6d%nW+8 zMA7)L*KCu{yQx!xC%f!TiSTlnu{r#5$CWQF4|2b*NI7xlZEy0|W8ufP<ZabmvF+x@ z+gYqpeX|&^%0`A39#XxrbM^lTtLCNdaTDC`q%fzdt#4NS5|;(Ou|Kp|b5BhvVU(^5 zk_@smHdM0o+kY=p)$wkHh5!2y<z}TXlj1pq1U?@A9^SSjS}`i+g8q@YF@CFDct6H% zH@3QUbCasLV03<u=BpdQKdiUqnXdKe>X;$4q<O*b41r%}wp*j4OX?#e<RAP#os=nK zbMDbW&1Lb+3w^yc>$l~WtP1veZ1{VR;n&HPJ{!%KX;ntCs8qIZ=z4AaHZb%*Q?t|+ z-!t!?rSSe!vO3-K-ri)<{|6H_tCBotUETh-J@%pT<J}=gBlXhn-qS1!K3U}Hn<~h? zP$u-~8Cy-$xn3&&GM!c!pUx@sSjv%DHOW|G?fRd7U-`Lz&+a_c(`{2fRbl$%$g3q~ z-TN-x|I77X^y=zJrNxILw0`qTM+QBrca?EDtMehO+u>1Wgx8FFw>?kJm^txBc-ouS zhbG>-BH69?`mCfvecFVldz&_{eCl_UfBLy=YbPyu;pH_+>C2KyTPA%mT3iv+A}12K z$-BzAYH^BJ(yZ`;Q$2UTo0qETdb-xfr*6)hAtH1%zdNCuJ-<7(yS>lnrl`vjeYt5t zT81mjqiVF?d#wDvValt;>dRcRvOSuQv^1{%v|HJ1(TQ7$Ta^!IwHxYGP2II;y^&a; z-leIvN#Ujw=54Zk8dK-k+PbOjYqnvu%kp!HvWIVNn7w5e_dSVu8>`<n7z*p{U0S+- zZM}QB<@bfhm7}*;=iEGaXU!MG%Pn74UTUttBeW+yC!s(7jqlr}qtW%>mQ9;ecd7ie zxkh7--_+{Adifs(u3av+{>t{>K`N#A*SwjmC0Euc<gJe=@RGkQv2?;K=IytfGIm+b z3A&*qrJ1`dQl^OGsMh&l#tQSp^6a~2FK4YcDv)|n&&b0*D<YA(p(H`$dvm$Cf49xD z4>c^hOD2}FKV5y8*ZfrUI=KZO4`l7QuAQDa`Px*q!~c0My$$WKDwbOkxh{8^C`Y}} zM@f!o-dRllt#-I8##*0#n;zX|E3dIYaS!XKo%gfe`+j<T#Z%K{pF?!e#B}=v#ZwY2 zvsk{c`^R3WNT?UIcIdvzm~8vVF;nhT{E@?rEZyH+?YIT*bHAK*(4POD+KP5IDUKG# zvrC_^TpiLM$C%swt>54_ugrp+d(T#xE&LZY_aD#ZzQ3!PQ}=PXc*ORuclf*N>RIv6 zH3h5hG<G?vGx|0jyp%X=%^f$MzgvU;cBSxn2)$n(d_dPr?QY)l`gX3^%oV$u!wT&U z92Q(C(DuI+^)vld(~jL+o@ThK{gM{j@<n^=)P2jZMX8)^tWj0?zw<!Wlb>rRwEIZ4 zeY)LH7O+pqXp2BZ(<Z%&-<{ui{}dapa}EeooiFHNFY=<fP?N2wvNoVD`rh-JJ2wmb z!#~t<&I^>`$k%AtRy^}bW<`C~6Vc3*4}YDWa;-UC^Ve3H5XM)Zttu3soMC!&&&{rv zk(Yz<7DGJa>qbup^9A-7WKxAsO>N!dl(r*>>t{pG3ib=_D`roK+|0ZBXvM7Jw7FBo z_0@f<=cz?<Jg)ro^H8c->CI<nXP?*9Gmg`GQax$H@6UVY#w=T<@oZj@V{L`(k$Rby zoJ!64<tvQm^PgUt62-HNtH`GRw9fkZ(?8Wc+@$u4rTEYy+f`e)&YhvWz$maq_4VgH zS8j`kn#`W(I4|>-#fvFhuY_wh@%|U+4b}^4y3=%P#an^4Zw=QqLoWzezo}mL^FjPe z=kS6XeVaR9*=;H2{`J|yw$*NLu%%wB_VJmk>hlcu1$WAZZ1>pQ`rH4Cc+Pyu<C^YY zchpP$oA2<;<1W+OokuN}%bD|Rd7fyeo+G+Oc0sk~A@9bd1xsybt=-_Cl)5d2>rzJ@ z+o!1!ua+GPN?#Mbcgn8|pJ#A$_=oLZu=i8YE`Q6snp0gXBdq+mbH8fJ{@&maH|>ky z*~brlHv6rtS91?PF=xF_<;w85TFvV}r}<bqn4a0MEVggU2kj5sPgdBcY%+|O-ccv^ znz_Ve!-Xl~kNdTL+IXCAy7zvnzr5w#C(83pYoA`4-nEtW*IjG>!2aKR-ah{|@wLS| z<(=~$R~<Y3-h1^@{fTDIeLLmse3aK#%H}PUe^qg8*6$04CEg3xw=Gnal-??POl@c1 zM$hiX-@*>2W{d6`uex?c<Z$xZ<+^*aS4#Ss?s>i9R-;<<uQ!ql^XnG5AGNZIxpLnB zwpVe8_%T_lfGg!|P1!HbU-4Z<mA7_Z*R%z)y-!_d^mDMgeY6uycD&NDp1a0(ioCP^ z=dBr<XD9m~h<lJ}9gw>*?o0h5!4<z91=~!g2Foq$TktiC^{B?l3tN9{Ozs!WXJ5}R zU;R6TYs2;Sc@}<er#?RrJpa$Z?O|UWb#g_D4qo<a@@(C=A$0<;QMGkNMcr$cSrMy} zzaBSUr0-I7Ln)@MGG4)dtsSr6Hy75mfs->?o?WntHe7polHv1Lm(`wp)VZYkxqg>I ztnkJ-d$;n0I^DLsD4w~_PXFAc^eVY;88cVOPUybq9=&2>RFB;pm0R-`%&;mGoNxar zt?QA|B3m}wGjBVOuW;#H=8`L<>v|(7qTy`dyT2T>`+wf%EB<b`q&%W(cEGn<j^~-x zh0$%dIcoOZNLslrOy>=QQ0ap*u2a+ZFD|VwvXA1i?AvVLRu|#0p-$3V%DM5IT1)-5 zR#i2ZhzXvNGh|%8e<)bVytiK{OF*)Q_wLd&OJ!0mj-GgHSe_l6{WN~Y>gg{yEhik) zYJb7Gv}anu{-EizPH%YfRCa@I<&QwABZrrMe;DtmJXOwP|BO#lHil^AH@~U%_;;$J z$Mn)l{(1+$S&D!CPh4lR_EvuSa7Hxu!+j|>=YP6LTK5Rbc*SSwUJ7kqv0B`&blR`Q zp??jQt<W!z4~)OEb=ACkR&h(~7R|MZU-H=Il<*biza>H)CM(l7Y?-o+A$#fh729nZ z(l+@X%lnc&iT_vFcWv35ItzL)O^joEcIYnG7t@5*FWcW<tDoq{z&+vn>jk%e?rU)F zTJASTDaUjJQ^j@ZaM?X`R=0+?-@0<6w)Ma28dHYfH*cJMc)GvtUCSpc&FvDqEfu=| zT5PclId9hc>ZG}%jmXQIKUu+NmQP<X)8|<J_0^Z-8SUS$`kI{c)vW3`^Ol4651h;j zd445I`rqSSf0rNlagNcgyZ)c8|5snhMNw~*AFI45_$J7DGFY*h;m_KK>tDb1e{Z4q zM^Nycaoq&bN44*y-@X1Wd;Rs#rEg8PS?wtbQ03<j_UBtF{(~`o|6hf#PcGbZx)WXh zO<Q_>^TaDbaYtXXNbY%gzAjhc?h!>(=h)dFOlA~2O#QD>!g8R}^%ujd!v~-1)wge9 z{%yKIYoD@eQON7-etY7dhNkT)ui5kXk+t25_%%f>d91xmZ@H{Qw#=U%Hh=TJ&)3Y) ztoB}a?6I-=tyt~z|K~UCEatFa*z<RPteEl%EdiDc^~ClsO|q3T-%iS!^q=634Z10I zgTdB>=Sy-+;@59m7?>Wc>)pV)z+Z4@UE}V0hKI*}B_>^(axJPXHM!;OmP@zR{%M=_ zGWNZ|-;c%{uKK*c#pBcR+nwR{&ez2kt~-V|{Fk|Omc90HPkDc9z0?P;KcXL=Gies+ zGq2^p#kGR_isP@RGI!*DUbg#EKPRsC|HpF8oM}8)E+0I<$07aaJH>xyU;Cbyu6Q4J z*!th~#aGYO^VF=k$$!ImZsXnOYxaHrx!SgGdXkOp)rBh3c{iq*?vy>78<}U%{rlpg zr2lGfBBpqUocG@O_RQPxJnQ1$q9t=Jj00S2C;haGzj8XteAVl)Z^mocni`gg&1ISA zeaZKj;EQ<<b>foMi_<M0tY_shPn0=&OSEHap8l72`U~10@-x=|J-T~YW$EkrC2vZv zZTX-1-#%9Pf3vCSu|pB^G1_;!^~Ca?eu(Y<ueok}+5h9&KTWT_c=h^A{p;`RKF9s| zx<rC6dd<e!hp+4Xoh(}*`~T~kJN2)=Z?*on@&0kWkH2a^F0Y8c`T3Ty?+Q=RnrC<I zS?@<{=*MpRySMbi+~c92&wg55-!HV9xoW}At!?Yt_ci>@Z()d7+|w>-c010~@SC^> z+rQ}yYi7@rcQCG$c_FoJ%KUukydUpd?L91YDuQ)V;{4~;KAm>^`5`-(`JA>pdalpE z#dNpP>VR3ort&pE<%Ck}wGyvB{T-9K<YRXc%ZH7O>%FZn%{{>Vf&Gv?M{JD$YTo+2 zvfk1^D{WTTudx5}`@!k-nzrcO-XFdQr=NDcB3@<ZZ+Y(gz8>?VGv~E4<(eKXpHdm& zEPJom>c{KPn-yoDJMZ0N^twjR_c!P32OMkK>uTOQ>^ywbe4!_o{qet@a#OPdno8SZ z&R0)6bAI`cs-;^UrRw?u|H}N-*&6N^$aKNmuzr8A>gUhmKea!uO%t>)pPs)we9il4 zzyD{q+<MQjc3XPTq}sk8_qN2;O?syI#`8AwmnCAl`_`*eUk}}<7Wec`|NK<5l~$Lx z+<KEO-0`b-(d{3VK3|LWzI@{u;axBEJm8t-v(g;tH6K+Smi^p&=*QPr&*vVizP2-c z+ty?LtD`>Gp09uDelela>|5<U<D0w-<S$C3Dkgm0m>;_*bz%IS>zi8lY~#G6d?a%I z&%N#Q9j~taCadT9<#Tz`p1h~Y%h(e5*gt(VFVlSXeP=}~+Yi;OH8BilHoJeU?VHd0 z+1P_G)AU(}+%v9}fJ&E|!?W`l_Z(xJsCWHO-ZEa+s)ccn1J9-XtABffJE}nP*mN(W zsT>`}rpbFl&fj2-QrN4#&yX$ZK9jVzx52s0M=`g4`)-(cDP~Tzd3YP6M16wVpR+Ev zb+vwJiM?dnxc+hOll0=;4uSOPyQ9;Wh^>E{>b2>pQ(Shyq+N4oo&32W{+r`<*5o(8 z5@VP%=hd`1P1T#Cczu}<-?Wr^nMBbA8?IO`DdzYu@<s8-&+Yg7Gkd=8o>gh*tJmnf zL6qTjw4S?I`<9ulk@q=+b;~<mx<!QF(tL0>**JFv+Xu;XhUs54PW3JKS;>>S#x*ve zPp0MPbLJ(I=?iy;`pKuVJi9UV#ar$rPq(bq7dV%>M1Rc(wS5j2%RlaOsQ455s<2*n zU-s3<Q4a(6IaFNv?_j%bYJQ8pfZRv%udm;8w|xK4{&h!~z4>R>L$m+7+U9*{J(T}_ zE&CVYZyV=r-)LSd_eD5+?|;58W&s}apZo6ExZmJd^gn-{ea9K!)b~zh_;$)|59<q? z=J$=_jdlD9@wq(vc+NXsNcb$*wq542-~v^HJM}u<%fG%cJT122)R!Fd%e&(@yox^i zK9iv)cbfXCXS>SHGgvm9dK8~C^|i_Cca=|!?E9bRioBdNJ@Lc=fg{!q?Qw0-RfUh$ zT@Yui)2m{rI9}8q_4nZIKSt+YZ;D%Be`LGTzg+h0t+~b%BR0QZcDv=AZPn4J)Vj@f z-m_cw887%<RUgnJ#$f$Kv+H>o^Yw>W(;n=PKYQes%Lf0p?)R0GrxXQE-M(VuFVWu6 zPa2N*ICt;h|Dt<J;C|`^^Xs?oJe%--F=NAzFwK3OAM@3XGbaA$OWe=WxP0Cx-dDRP zeM>sOZAQKQ<6n2KvHeTUIBhj+;XU8-o9dV2-YUJSnsY39Z&60_%KFt+`d`1k%iVhN z$?|J0u?ZKYdW`-w37&heR^!WA*PU=(cCq7&&FAiITK(&w+gE{o2W{d%E_iMu@%vQ9 z1GB*NE8=A{n)a63zTeAOYVu1Z_{#ILk7r+625oRx|H^djUG&PGXZg2<M@PN6-f=B! z{~}qbQ(f!I;v4Fh-}edJ#(5<!w%#T1-rn8cRDV@U{H)geFZbM*zv1mRzmsC$l4L)| zp0?s&vFM)7kMG-(q7J?H`f<xN&U)3UWgE_MtU4#N=Pl#Y*Xg0Zb)(MSGdM5u?V#OS z|BHXD=UE7UTpBj_Nco=H396^(ZGF46&P=j|x%ax*rGQd~UrY6Px4vC&waxBI$L(~p z+4UP<t9>?&+RGAMqT%ZJtvdR1t<{0&LGsys;);KgA5<3GefoLy@X<RiGpeVG+6m5J zeKO;t&AA!LyY7mg`Qv&=XY&2t%8U>B1wmUk&$_I3#Li`X-twsOm16%o<NlSMf2#g+ z*O&Zx3qM+(c^?w{RC>RDEsM$R*X?u5rHa2KF1gBhwm#eachJ#2^NnsVIb`<aOJuj* z+0@?KRr{`d|95KZyUl-EWwXy2>+k(^uX}pm#*C1wd*{5q@alVtUhv@!f42U6cXMv( zvuj7Z*BAXiU^98Q&sO`l^H&8Ms;NYm>1@CMyYu~@KY8ck7rf%TzIQ^Sw&9%S`|3NS zOxCE#Y`deKc=PA=mT&b6ml(_1^?T}z7o02hmGF;Pv0=kJ=V$vx*){lo9{REUz}5HH zRWtk-#vHhJtL5zi&cy%!Sue1s9Ol_}T`=Tv_QQClFt+x$O|8H88u0Mt@2~!S@wR@( z?duukWubHTK8^nQZ~NmP_xn!&583^H)w`>ScQ1Ypsw?;3owe7{j_JRd;=B4wIm>p5 znS6OIm%v?c;*he;3~k>Zv8tBbpQfn3(+*qubFz%i(R))4e~SK|Z^Aom?%Ii#{6Fr> z3s0%q`fp?E%ungNPrgwv%s;+m?>;AMrZv{v9_!w{ekNaF?dEqUt#;%c+;#eSrS;QN zsrsd7(|Jt4Up`i~X0q0g?A5MQRQ6`uti4yyI=A3rh5KCQXa<MK&$=>OHeB2Cw`c7& zTMyqm?Du@mhq8a$woqmc`%_V-^HJZ-wkLD@RO~Z6tbhIV>guQWFY<|-ihcJ^KKid} z!lY)~T0YZh+5-I5jrIAHE^GF!mn>4h5%%ZYS)SMXbnL4wShJKE{u+7Q3(2kf{M+<T z9IwK=C-ol+tE96Tp4Ue&`Tp+x?C#G?Juf^~KcV>UpMu|=myU9O)(LO#PI;qorEx;{ z!3VNAf4t)uZ(Tq1-a+n_^_-$5Kd(f|_5b}~c*FXuV4eB|{&M9D4ho_bLNnany6)gE z`o#W&F|zT$ZGdQXwP@mW9Ua4ikB`<>tEV1PJLgiTcE509{jnCenQwRl!<NbP|2d$Z zxLoD%q6x2~^LRgUPsm%pv;O&Wt~v2XDl7l!eO_T7FzJ7V*QHlX-z9fnwMaJq-B+cd zywdEL3B!wyjdn?I<#))Iia6v;u6}5*^79_|hdTA`D}FIOU9mkN`zr762P#h%%&A(j z|B`T)e%3nPLss8x3L{_D^L^NRx1w%-#2r<;JeiO4YO5D64XE9}eFguq2|xbw>QCJ^ zW53VYNk^+v{{55Res9|hv6(yUbI+M3KEEZDA@{6M=)(0~-)-;xv15}KDfTyfztSvx z-co_feUGa(_^VDo_?)Ow;(Ya{_VPb|($jTMi@5|nu6$Yh@&BiiXZN+1IR4pJKh2}M zeW$+ZkIJu$8SFRLY`XP*`BRzy>-Xn-+TCBc?(5zcRprL(%EKS~|EvGud-VIeV_)AD z#aw^?`RvoG`==FF-*NLhv};rN?Hrl*|EUiYUtCYO5HaE@w9C4c{r#k=!S?PA?0cuq zicDYhXO4-;FYS;>rE_1zXZ;L}eX*?KbI!dL^;_!BJI-1DX|rYC^i#b@-aDFXtXtps z{Qh~X{i6HL155p?ja7?dPnWKWF#d5j@6F`}`9?eQCh`Tbue@}{@y!l~!dR7as*eMY zS2(stXJx*eQt@fB)dJoA855X$o1N6J8kJ7-IkCRywegz$%l2_ioIT^0_pb|A94~2p zsQ74H&{w~@UhwzJ@H3{zKhKGn{m<a*k_)YWWQ6iQ{?>T*PjkX~$A8rZ*Edhsxn0!F zfA{gy>zldPnnbTLseiV8-`xb=mD<;yFkfk!?;G-VcZXHS?u+r=f4$<56iYwZH21x2 zzWC!7L!<p~jqleo{-1aF__f{3&Cj2;kq=v(?AuW~>-%H#4X6KXbbohG?Nmdb@cnA8 z-uY{*KK=DfKJoHzXtn+OxO2O&E4*5_W?A|Z&JC@%K3aPw?X6#W>)$s?KE3pS?Ywz5 z=JWoa_Fpc2zW4dD;^|zRcB=LN=iBuB*RKk>{cHXeRjx(b{+RnteIvC#^8d*==CJNP z|KG={fBMJ%rYFRBt4HeMchjQXepQ@a+wk1)^x7Z=-_3WVeuzipN%t;Oop#%=_l5Q8 zx9*)ik?$C$otg9_erw2|2eUP76L(7fJiY4av=!52GIpj)DYr-DvD%bJ=S_8b%341y zn)(0bX}8^WKh2$X+wbiZ&uO>&y+raO884-oe(HVxWk%UstCxp2ZT`aev+}2_@$!_H zdp~n8dm_F>{OObDTQ5E?D*mcyDZHth>#Jg9Yb5LCO-8qmh(1~JobTi;15@+82WGFD z&2eSzg}lR?xwt0Ay}z+6wtDZ+hB-Y=e-8cm=&D=K68`msnW3@EjfTWDHp|wkU2!23 z=FK#<+?z0Ip8daBrI(98eNj51`uwR#YU(TJ?n~X9CRpfi&aG>l*FS^FR=GYaF3{00 zEOB;rYLKW|&we4UOUs`>@x8#_CqIAk#HHJ>wLj^1*4+L)CFS|^W#Zc|u`gBL-7}}8 zHpA+F@iNxds`}sSVv~YCFMl=pa{8-a?#%(pTM}yO;wHvTS)cw)#P6gli`G(q%@d9Z zY)P9OE^~j?jAWf$+*NV)_*oI&lddx>ZMa=N*l@YLn9}s;%t}euJzFnt4xE^!+VJd2 z>Jz`SM`paZ=k?_I({op5Ki_g;vs%CNy{kJu|Jzh@aNf!2_z9sWqU%rYeqO|wmLFYN zDz2L~uQ{k|liKHfIwu@g&ir}#bJ6F^#_Qj-lx%(}(YLDb<oqa;)U1i~W}5bv8&_=F zT(msqrgQEK%S)PVw;sM^xo&W3na%~qDgKoXf@ha#DlIXuVJ-MvZgr@b#a;Tykw87U zxorwLOqaw17k)@>Olz!`x;OJdeNVGBduFlg9hO;K;Z}!gPQME44gUV{Et~4$&pKO9 zU0<nOl;{5TVOHOqA`Rw^KReDZ|9E1f>()K%rf%ZBWxrVJKEoHMuToDszAa&PUG#S5 ziS$h?&Z@M0Ec#cu|6|N&m%g-JDL;xHJhokWIbg@7*7G`+{0nnk`F5SKj^5(p9{u@Z zy>aEDILoHpXYJRWod2^ebf*x@^OC^poFDjIqK|jmJ=?hU=!++pEmrGp@1Bv<@?oRa zk}wWw6)!CTL(4_{?T>6jx15mSl~uklbyosUkZX3y#qGw9%ej6U{yrho{BhAbS0x?! z_dbGlu2al6uUcNxBGO?c8d*C<{nw>0%e&_+>$p^}-fj2&+b@fW?d2{-Ys;R6UOnXV zaIL$e={-%SXGVdKc>>#R%3pTfTiGA8mv`Cx&uI&`tX$-7bhPKwTh4h(;X7tE?`PGR zexNXH@A`S=_v$ZxJH0bKthcstg8uu6s-@4fbXVxz4!^d#daL0hUBlZ!DyKf5Qayh^ zCtJ;FS@*Q(-I4X*!zWFsJGvr0()eikz7KJ_O!q@3PP$$eHPvMH&w_I?1%IaUY&Cp4 zb^i~}7dyJ!PM+QFZdxQ$?V9KKv_WONMlWCCn@RbToV|8iC!K!M@wW8Uah79Sr<F#i z<Q|PaZY_U<>kX@jly<w44aa*+2g41bH@Ib(O+r*cj=XZP+rXyryxy>=LndaGb<?A~ zNz%%>$q`nKMb5hzBpQ79_S|M-ZrpgF`GAyzaE*<M{0!zdta@EDB6cReJS-dVy>01t z?oG8xc|9MN&Au17xV8LuN62J8iJVI<(Z1XA)S`dSKKsDzquSn;Q$1h191|&iB`>g9 ze_i7phTfcpF8_nGJ@bPUe5~u)*G_#sS$IOqS+35huXFOnL^r3cUnB7U@GYL?*9PBC zt}$6q<}+u1iih|LKFcMaFY%}Kd^!9rYHRYfBVQ+<yAYP3ui%~jp+>RRv3N<*z2_C* znXWNZH!eQF>M;4#$2rG}y{udtFFn5^_JXyC6(qym;QLGFy~0bC?e0fs@2+O7pHw3B zUg0IntWu`;4lj*&*iE)`zG|oO_Ks=V^a7XdTV?t@PG8)x^684p3d?+|_J0ZD_6QMi zlM>qM&bNHt6-Pe(-kkRulclGAJ5e~rGkyE(i+x)Q-!9=l$@#&)?u(+=zX>G?0u$JL z7)^HAHN95WVw=X8&8W_xdDxoc!cyl0)d%X`ukdxSvN4vujL_`ToZL6f?Wpx5DG&E0 z%vS_#>msV$FMMCJowYW+%KJj|f`tp(mu&ZTmK6zS{@7yTxWI8iuHbsF_4)Z>#}kiS zo%U_fdzp&utW}KQXlqb=JN1yav25vtlX6xm>IKs-l{e)r_*&LA_eDqVD_+JcKebog z)~zpixYaFQSoNrzZak-cy{qj9gP1>}ruCdLe?&{K$L#o_tyL}+^G9^5rJ&xwE-6bf z5NW}qx98N7tNP}<PhPBipt9^ZtJmd=-caN@aoOi~J<UCN{!_N)bjn4GO5a_yba92b zc3rC|f8x>Ck%eN~^UiiX-}FdsO$ATAc3;}jgKI3Nh#uec$aW3)u0=DBzT0u=w&^xO zZM!2~@d-y;*I0Ckx^H@vwk9HdZu03R8!km#b4=1W@y){Sr9=Kp&bPuEtqa``D|}A8 zz*+s#j!WW@IJcVZos>M8Q<*=$P21~JKReIxXJPHqzaBf}4{w<7$IQi+VSgmU-somO z4^#cecdR|E-x$Rim@gcV?d!7FxYq~{!{kQG1FR0hS9daaOvw)|T)iS9di5pdo&LA_ z+y5_IV4$gErlMh?VYOoYp9BMLo>XS%-hh?HrWp)#W0r5*TPDeU<7f1N_xo8V#Lt=k zrQwT0Yl6bG$S(&kc`NoAZChlL)vvtHu6mA>XuXH*Yp*~Zp)K5^T=ni;+ls4<S-qnj zlD(SSl_L`}L$r_Qy{Vj-wfu3=hv|Lqn@+1(?B~7r_(z0(aKy^T7EasVl+;Mn%zvD4 z+sN7}u2U;nVRz}lUD`XkAGbO;mFg*lO|?oZ-gLRpzd-)@k_5qtsct=*E&65`3{|q0 zEY|<z&0#3_yhGPzp0(`WrsEb>Gh$>bXU**^Tj8|jWlra*Z5(2)ZY^CrldY$3d~+jg z+tY0#w;iTm6|{4xw=cRj^|$xm_G6p>ovW3+Qa|V2pVAB$$<OjOmsYwRF;1WR?@E2d zp3UAR|BYrF9=U0`YyV}l7kyK5du%6k1uWmPqvzs=DMo1@7O?vMysv-LwdZQwhAo=Q z&x-5#`Yv_jUG_EW%4)y!w_+y?t^4G)`QF9p^-{49`3m*k+nXHSX{mBmTk^21n@3jt zbLBt$bKWG`Z|v^m+<l{e&XQ$sCRJ~mFVy~_U}w5hR@Q$bvzY1oh3rISefD`QVUIWV zJMjFu`@|;wOXvMRX!d;0)y|nVW5e3%ABF6Uxj&rN$<>|qdsW0c;pzIqcH+smcP~%t zc~mc>rmJMg?NNNsUU&Dz%@uRj<)8N0`Y+2T<d#LwVaLmx=d2Wr<UH5Y!BQLjJutje z?&#v(?kYKp13M1~ZR_ni>!tBl?zXL=lC5HC^?XP3@_mce{9bixSLKCJBk3d4R|?z7 zss)@fvp%}~n_TLpw?Vx1C$gh1Z@BV<%`v!&>)~6uYZ+yi?`{Y)3!MH&*iOdo=H0`y z-lff6vqFL8dSA!#7mHT52CocE@@x9JUcjD1Yt||2J2md&aj)46JI~$t(sD>?(Z6%k zoPS$a^UBTKbauL%h@D!<){J~R?yjY_w<B{jv=<!;xhZ+8eg;dZ!I@vd+Pf3IKR#V( zAj+$ga&gUt+3lfkUt}2lJ#zbv>&1}Msb5_ux}Kfl5%l8iq*e0wA}@y8hPCj#{Lj$7 zaryxfI|(LZ^Xa!l>=dW(P*oC`ZV)9WKb>>6wfJ;LQ9BhiA(oIB2FC4YRHuiWT4HqD zd-KtyB^QG3T=Kcydr8MPIEE|!@+Fhg)4N3N<mwq@Qd0SPd$s3;T<xv$6MQ1-b5?)% zI@w}5hRGZ+cQ#2*J#^_d|8~|7mV6HiYie$`tXv&lUoNF^fN{Z^*#@cKepFsNtjf^F z+7fKJQDgsx#K@~s47Yis*1vXn^&#fK3Mpad$RkHqPTjm__tokZb6Fq!{yODS)1Q6v z%L8|Zi)`)psXseE^jT^EFYAdtzCWBi|6N(+|1SO?qeGZPLso8NrmJefs%{3$-%CGk z`m|`1TJp=?SJo~6?8`pSp6CCs#o3|r<ANeorapT6->9?LS;C`)Wqs%sr=4f3&n{Xh zuxl-s^9pxfsYRO^pB+5Cf$iEMs|wM$=Ial6Blx8glyjQQAL`zy=ZQYRXu5&-UR!yB z^_zyM8=Sin%-=Nb{h;@z`R@lgnTGEV1!@@N54nFZtYMmeC_R8Z{=oDCmVHghA53eQ zk3VFYqheRbzWgE2mBW!1?9U%E)$rRpFvqm~KhR$wx$eOE0?~B`^$TS44y-Q_u4}&k zQ0x!m_Jy2t6qFV*O?}aMZ$-Uxd`|Pi3<u$3N$zi2KHiWOHspLeqbc(S`|rg1Ge-_u zh_pZCkZDaW(0P_D=yx>JLOA_lvjzY2$H_Z{<d3U=NR8>9eX()=Lrt6J?ExuF#>Ud! z>9LXd(+(HijLzY<K4O<3zp4Mm@i)@nbgfVNZG3-&^_#G;<r9hHg<5`RTZ_f&^(IRn z?0t5uXz87jcZ_**-wn1;S^Y@v>AVN?p3HkT@8Pwg^@Zz;`PQ}FKDPJp+sEIE*>^PG zQGCbzuK1nWckAmXI&BPlzdtknsZ(cS-zI<h{8Ra7;h*|H`+xHP=>PfrC;d;^KTH2a z|1qm$-#`2Rod0e12hBhHe^~#t{&BwMmaeT`_2DAXBG#hswfVH{LSlmM82A|ZnC;1* zlOK~*bFboT#odb2A_+z_F8MP1D*NnQ7P!oC+0JF#ec658ebs&KXXnkB(-ihW_={7+ z1vd^cr<Q<&3KFc76*$rqV>(2vxIQ|iD+YQ9RdHq>`g^D*aq5Sz4Sp4&6|oi0HxzP2 z%sBJ8>P-(>r?uX^FO$J%?mo+U#^$r%XU{iU&!7HK?%}P1`vv<yG<<mQVM0Oj4$VEW zJ9PKNSHxA+RZMJ+ED_r*y5`KQ)T@zSuPJ2DFg+xd{5HpTlix<Y4SL)3Hrr*@UfOkR z*R@?Ie=RFrT{^wA|LcOU!mpQKJHMv%n(#GwrO8TfCu&ZtWShu3@v*Y{bahEP9og`I z{&#QuiZ6ZqAa+;bjkVJ5(Jzl}|GzvhW>V?n<<ko!?TqX1^;cT(9Z%+*HaYLiv7Jk# zxjoERd795VV)}zC@1T@T&;3N(e+L^%l;<4XaBhwDX{EaoC(VrAyYp%e_3bWwY_j`I z-7|-4yz@$&op%WyOf9s$Bca#7dP-@s;mc!2mwJzTn1@ZwvpKz1`EEsXNwW5Lv+Z+B z9^1aFjWoA=vhP9N<NCb9?VjcnN)ES|BpbXu_P0jPzCZq0_-FqQtAAYmWBjN1kM|$# zKdb+w{mb1q?f&8VgYwV!Kh^&<{m1M-@3{hO{B~{hdl>LW?XJa=A5Mi=8J0)~_aww5 z)ZEx{>__*<HclT$wS!mAPkDN+cjGeFWp9`9`^3-QXZ$y5muAJpydS4`3D&E;cDoU~ zOVEAS#0y^Lt6EJr<?V6Xwej9s>3q)U_ZNB>J_~&I>i;U~)=haF{})I{>h22EeSPfM z{)@ejmq>T&?g|vK^t{HKV{&3wVqQ<)8^2wN`98UCE?+sVd16=NBi)bXAHzR3Rm9n- zi!lhF-^lpLbVGOg5&0F*cfDBhk?ErdPrX=w*YgF_E1IhM8`NDK!e@OoE@{>avDS}c zQ~mHr^`q)X;g7CS&sjHmmIS?QF?$re$Yb|h0r};>{5DPus}b3AAo`9*Sm)^@Pv6x{ zpQE39vVQvK_Pamp3YnjFA60!M`cb`5e9f}$pTk#(trxuKAK;o^7h%KKeYF2bxFWk) zNBqHhn~xnoHvM2dBVgYivO>UK<akGW!m1y3BHib^xsUFhpudkf`G`p2W(&r)%_(BX zsyeH#32%<z_etgaVU~S-(a~TXr;Sr0HRiv2cs#^nie{yHutn)Pg=3amdn_-WG&Qwi z%zwQ8j~&OM;w0gDqU#g){;;0+(EI1@KPqbu`+q!qJG*|)<hh6EOrCS}T&M4O3w4vV zMSbOBrn;qKW@k&qOwJZQv$ijOW;)g4eg3RhGR;r#1lB3ovvtoklX={8EFj(biq+y5 zOTRe2Uv}S>b=Av>L6?M2S<V)idwt=>pT;*Q+@ItAF#NgVj&r^WuRkgKBvmi`@onbq z<%ts255G;k-L79-_OkxV();?e&iC(>s7m~~Gh2L`*_(`t<%!YGzK5r^o#o9p-E(up z%0%bGzuL^D;<78YKAhUN^|@dCn~?vPcD_vK{i=U0-{QCD-^*Xu$8WjTzdAlRK4kxr ze=9dH*86o$f8GAlvf96Ay1!q4zvITgJ@tPlY+m`i_Vw!Xug|g0J-zn&-0%D9SFB#Y zYJPRuubH0dY1iLd?cVxtqw(wWYwY&^`l7vD-g57oFDEarpMTF`>nY<yGtHJSpDR~w z^{wRZ%f97rmp}G*pYy6%>u<=Vl`X-s{zvD(s#tY*<%i&f%fBrD@Wfxe-lp>7lke*1 z=l=QiBy?46)u-mkzy0=A7aiYjKX;8~^_wRPC)cl^d#A|gZ_25Y_tcgB+UA?gH<|bL z%UiLdyH}})_-kFSX4i@j+qa}9@MqJf%BRI|HdHC@e)nnXyIK(Z_sfw#BTyhkq<+J0 zK@Gi!qH<nSqaMF}`gZZvpTB;-W@ft0!rI=_CfTEQP$sW)gWI;=Eb-j#%=?Pll9%uJ z0p8V7KX1Yf<(28{Q>x!jxw7SpUG49$@)HX0A8?!*+1$=^R?e)(#qZsTz{SV!*qiCg z9}^W3>z!|~vEtGb&0ue@)61rYhxpAmEWY-J{h5tL`Mp1^{DrT@^nYf4<>$BmcA{H4 z?rP}4Me6J0qCbAw#Js$&F7xr%_`E%zp1I5KF<rM{*N4gVi}>yT{keRe&%EdVrgz<E zh3l&RtX6hc|M&d()5%@x{&RyiEh~wNtUUVVl%%o#xvGS3b9VB-i?FW0*VL{Tdyn&g zxquDh!VsyQg$YZ(zvz)ZXZd{RvAMpBPV7_c;wfx?ZQK%M_H)wBDNAmN$vE02oB62S zH<|rt_tXlONiSN@s`b}@@|4nSnkS;#n|AYwbD2VxdxO~21r6JtOwW4xw3^rYu*MIe z#R`tAF3-+hTG~Eo{%_4QN7#SJzcjtmRrW6So{xUHzQrk%1+5YvTEA_XF2-&kyuYvP zOq<P&)?&?Lm7z70l!EzRtn5<M|6#DI@nPV<WUj>GM83WD%rh8IolO46Qg7F;Ez!4g z$CNOWz$cY$Zn`_Bye-xfGM~6#mY?~7<c+quJGE=(F&*h&sn2HRD0xOPzQ)jo?fhZI zS;pZeo!d{eb1b~g+xYZJqkP-?r$6)=(}TB|_0D~sR@A<e%}}^0Q(b$>=`FJvyI+V* zUy?B?$-_RU{o;;^r76ylqUMvTyUpuA|NXh}PsKm?)@?8M6tDlWVuz;<=ibb3H4$!c zN7Pm<{b4-g&x`hroxYEQI=td)jP`fDSlw!9AeVNL&p*hdw!!a<>f1}5kIpGi@!R<L zPQ<+D)gR?MYL9Y0+Afkh<A9q<ukw5i!FP*4`?h#~V6gEGJf_#hc23~`xnvdB%`cy< z?5|f@zlX`(IECw4`<}PYBY1Bg*MDOEQQoRvy!ptxN32oW6VJ_Z(the_7!nZ0ryuZU z-|VFR!v%dylsZ<-_YEwN+t;=Jp>#!)^r_I|{huy`ynXXD=H;LM2=`wdDyFgvt=CTV zym!&#g!(R9hT?~UT}@`EH=d4M^w75;=t-@;-|_Sh_0nCOb&De^b(St&)3x{Pw;+`d z%I3{Ucg0UO=P#H&d(Qoi)<--abuUc*<9^BVeRHA8+M@=+akYYL8je4-eDq=YC%NUC zpMK6%lI;w)Icl0^RjcKyvs2{wegE<q4iira)l6A5sr;kuAIW^fd6fpTmp2EP_4p<n z%@LaWnB%D8_8l4Z>)5YP&fC?N)S-N5`<|)(Pl7elDjJkp&;HTuVz&_~?5dP&Ty=g{ znH9U$ajW<xm!po}e4u{3(QMKoK9|WZ5`IRu6E$`>o!i-I@@k9BdeeZMvbpD0y4c>j zb8*^SKWo9~fjnC|rUy;>H}@gyqMy+su5S-Ii+I*H-hZU&)mu`;>{=fzCZ>5jcy9#P zYwwlz(g%wo1ZN+8wz1Xa>eVT6N!d58zDZTLzfGLKS^uW1*LKZqpB5~65)#9Z{xoT) zUyO|S`LEA@6)|gEI`#0_>B4JX?>O_+zf0TC(SOqYL;a_zitX(mpS!M#FvotnQ0X%{ z_pE?KVSDAd#tJd#PZrIt!74ji>s2(ww#;JrA(E_-bT;ktN5N@*(|3F?<ez(kS>GVu zBQd(b*l$tB=C<zvFDie^Zx&g+<DJetxd#4?d_f)E{l&*`Nbd0v`frlWA2_EgWs&}p zBms^)eli|+wof<`xWx1C>;ieuhx`}#ofCx31-KUUZNB{P{R5d53EvNEM_u{Dk^He< zL+??Mr_%bvPIHbbU2rh5KhT>hpOBw+)KsTq>v5eIefu}X7id+_c=1zUS^>K&^Y2+E zZ#d5_k#M>9&-B74`%m_(l6L&wVKVKi%Qvxhi{}UAm6ZR~-k5H(SiR=h++#X<M&1Xt zzqHhz*jx2`=Cbc1oOguZFxhc));K>d?|onV@KOB}HPNFY4--m^WHjs!glf%+Nq=!l zd_vv%r8o8pzkJSfX}QEEqtz?dDob`Xd+%ViJJ`8IdS6QHnv_W28*{%n9Z=S3SMhh< zRVaT`#(LkuI5yt8R!NoExElRUPu}0T$HcwkoQ0%ySN2c!9j0#tpQ}^|7rp#*`9}4J z$;G18Ewz^=>h)Lcw5j0sb-7+P<7{4_&K8Mh-Taez{<(=IsP6SY?~va*Pv?EIoaP<v zF1-u4l|_v{s>wHTy<1V6kaw=*;o(i~e3EmfTCRw{|0K?Ka+Qi&$@^<di)&(*_idED zb^OMn+pb%Cx41<dI@@$IgM*uwlP^nHV!`+CpRZ=t?%8W&nl-illJmi09!0ggm(=|W zT%K9}@bKPW_jc(v)%jMRqD!Axvb=g#tlsB*V)DfnYs0rKmjCp8c5`38*VJjH$T{iO zagLW_2MaCEDqVSW;-F<n{KT}AqB7x6emU$s=YEPeKWoNW6K4<pSu@lu4E#OHzsxk; zsAa3)du{c{D@&q+x=r3DFQ|8W>>296%JNpksjLmY`ct&m_*NzHGEX(1drC0L)4QA{ z`qC0*3ybWkx`oQw1%6dgD{juYZFj73CF`_8z70z(wwOt>20hJ{kz2{PbWd-9PAt2e zU{=z%aNDTW&4ra_>z%w4|Gki5pFUsv?ZfQFwU=db<#q^sNuMnC-TQ3httylHDXYEs zwZxXBg<cIhxG}B3?{(njDbJr>k}{bd`TI%e*M)24r>>9?@n)acryqN?bfuE_t}Bzx zJquRoYEJ76o&2doQ8AQH!szxMQ<Wq8g4eW9C|RgweLSg5r9G<X^W{TXUjj^1zHLj` zEl~5^<M#}yx$C=Unc78_A3eRhbm@vzpLO*oUj*qUdvIF@T1{MP-`VJ_A@D-QQf!w; zxu*6jzEIY?oV|8CJvPg<9%)Nzw=!MtHC^MY_h(tI)#sE#{&F2DJ3aMu`L`##t8Lco zig#S)b?Bl}g2}y@@*6pQFETv!rmQ^TVU?`E^X}5xGd)q?7A^Hr4{&_ayhdi$wAm8g zCg!tM>(|)@Ww#ezDbSIa^Eiv!K(9pmMsn^>zG>>cZ}R0hCDeL#GUPI6&P!MPSR4KA z471Ft6Vuj*iNBa{XLzx(@&ECHiP<*ED^!y|oRCr6t99P@cF!B@sC6IT=_bFMb=cmt zojdiN6!+67fs>A0)IAZTeEjsm=$Ee*y^9jp2DvWM_`ab2!tsTtUq3%pY?}6Y|C|u* zxT$F;kIuh*=Xi<At#>)!cPy?w{&CML3o8TplSZ4|!$LFP*;wUowFn6lG7@T12zWWm z!-i#*bCA>d8wxuYZdmj#VolG=4VTIz&h-Xt)(f9x-G1)d)SvZHM<462K9TM5?c_tv z^$#?At!mcrt({XHEt^%p)9=1nn7hH+_1-~u%htx!hlb^_?^-c!>SXa*^R-v@e3|;K zpyEVH;oA4A`cIYf7f#;4E_Ji#Lz$Uoza~{ZwR;kzxj8#(HUHWJu8Y>y_kS}KTh$mN ztfc#8shsDm7Mn}**`eP9x-GYdiF{Tmo{_F9eCE@dCX<+{?xEeu8Cy)GH0xU?$vt;{ zcFDx=kZj82kc$hqe4E(kC9Xax=;;2LQc*9@IBq;#w2#a5xzNo?0p+IK?uV^Sn{n3X zwDqRNszsNcntZZZJ7@Kp@Yofeo_#vE?cY375C0P8-ryq^|MT_rP2rQ?>F<6RzpYsC z>$|tVE*uUEy?R{f%gR%$Ppuaf@7c^@<z0W(FVDn$*D4*`^*2+lbnTYoEd5eB<=s?s zLE)1!Mjk6SKG<~7v@FJ~B;}l6(dm}do0id<t31wnpFEqZ@A_O=Lu&4V33YudSYABK z{<d{i?OEZ99l8a-^KYLN&17l3uWwnxbGzg7kGWkU5-iReR@Xj#-I3{;Su5ef@Adu2 zHl4e{^~x(Q+kS1@wY<Jzfgg_v=PQfkkZ7^=9C2HXb2nBd-?vEa@2eGNo^18)?aTYi zlkb<DKl8%T_V4CJ?5b>hd8dV#+qb0J{uO3s);(si_oBq~cP}$PzF+zM`+LnTz3*0} zHUC;=q{Jj_d--S1V#5pfjrBIB?>Z%?vqHCL>)NB+%KYcoKiDU$d+}m4+e3w{{I^Np zSGfM=3ua6EGb!%QW-;meAGcSlm3>=(^hs{x(PQ5(X}G*lia4TQxO;<O&!f8CQFCwH z{Bi8U_5IwNUgq7>yCYHTc)jFu+2T$uf!S9~)I6_GaakJj<JVSC2hGU|EB)DT$J}+) zYFZLheSLYbyNog0&L0-_CuKivP<-AzZQI0HtMbp=x2$UOPQ5PYVOqXa{Ft}#l$e^; ztFi^VZ#wn;-_3kYA|x*DvvhZ;+uU>h8#CSuO?7<!`uWBJ?-{o)=hUSi;7(+G_$*v( zb?n}1@zaO9TyGy*l6mfRweh!2+~@93m5Ob+D4ERjXzv!O`agR@Ltn1EEFD<?RQ+kZ zWK*Sn{MPx#>q4)ZelL&oORx{qw6W0t&}Q)BE8haI%!5&WyOk9bE<Ad?n0ICB`n=CP zhMz+AJr>W|@gZeG?u2*84sbV@n6rDSs2zHhC!`{H@{Ez>qqBvVYIjbXR#W@$!CTG5 zUj>cPqRY&mdzWsW`Km;7TXSF5r^)9^uGCL2n(8K<Fy)YRp<A%*{{@$wK313Sj%!`; zY_BMX*w$PAPh}si=D2qC(W6<%momp*_{*?yrDgQ%5DQ)NOa)o5XIpBP@!j|(!Py(k zywxS+-${e5;T6GigPyN6KP6Ilaj~Dx;t!9cHMVVecy;aq@&5eFt0psNt^9J;Bei_@ zEGrXkjrz-%i?{l|pQ;nE^QyX|)*I0{&IO;Ys6{vL5x&IKW$Lr~rOX9qkBiG$Z>(kg z#q_%7?4uXYZRcP5@Ba9$;9M1z*_Un9AF!NNN%V}q`sIbz{pq#ae(XuTC$Q15iv7*U zdyhBY-gEj_=Lg=J-svX$AIe{weeoY7V^z1?+K(aZt3tUxovqKlc}8|wT>{5K?V!7I ziLb;Lu=g(CKmF#S%xvBV2hvP9rC76=uVyJX$q8~?%&tyIo5JW2e0t_v*BO#agR*<l z^!@eq*Ee`<-Y=BAh@mvARBctK^sBNo$L#BAnLAfU$*k7BdhYtZHFp<<W;7>n;60Wx zp&)R<4J&R@he)|N*L_m;vJv{B221u@rTR}e`|W_j-JOP)Pn}fV`f^gvF6j{Yiq=&U z+0_o^+jdsltHgi&>fPbHZ_=EU-Av*d`AzcEv{IH%jr5LJ;Q6KYLrvwvA@9&#D)V=; zhpKc;c=$nP*24{xR&NMRR+%^Vw$#$?SG%U)H)Q8N_~7c@uP2WhUQRe;B7Lj=z_VW- zQtyL)<jHOF`|Ud6+peqDa*wMv>djTweJHSiKcwRBEVYv#*afTi)jwOjbw$;SD^m^` zd6v&L`1G`WQ{3$6$2k?fOlMb4^4b6KV)}YL$N%Z}hw@bu^Y`c{uS@>2=lWdxoajGo zuj8Z62Z-1;Jz2+HlmA|P8J8c&M90|+_`cS6RG#`a>+RhO<+*YK426LLPjBmOsebY8 z#rMViZr9zj71(zF_}TVi*ALeA7giJWyJVX}vh>%U3m5Czr|XpT-S}&_qsc3$FIKS} zg|}yAu6o*27Hqwl@$W8)W~+)9yWCn|lsr_t`ys$5?Sx{ibZmI<x@kOX#ZT_^YfrVh z!dia!XuZux&I!7V7yTdII3VqtB2<@=7I*2uvL#Qn%{!`v&ewEg9$A=n*orqbX!n_x zqcU~V1>d?&GhWv#xYTjehG_--y1TYsKh(F@Y33W>r9uB*u6i4^(RRz(hf|kw@A^5b zX-b`c&-`yQ{5ABZpVfSR_e%Jp{V6;*{W`yVR<~at{=1T0qJF1Y@a1Q#O|GcE{;OCO z?aLKk6@AzsL0#iW_oTGRZSh-PuUz!(D&xVLf&)hxTBmP67cc)nY3=suvmPZ+|MxNR zV2NAjnSECRG<tq9?2VH@u%WFvO7F-!*<;lemDyj~Rxs@CdwcLWqamL~&7F7gYCAu> zG0&G=aN^3#+b?*fZdLp@tG7?y6!WWXr`Pn8H}m-?`K4V~fARJo=K}r9)?dC>#mVPf zc$>8RBg;qEw4Uf?oyyx9@3Yr`wPo{^GHu&&>Cn<AOJ;vD+jX^T+071H$v%bc@7|~g z*Q{*go?_Z+v207p=lzqjKR!#l``}vXjLQc<S@BJnDXj9;BH`-#Np>1F{&NcW>i7LU zJ-22;%Dzb%^UmuwxV+gad}bYYo3~l$W9{kDwZai=Bl6|Frd`)z$)0R)ILGLYS;4$E z180kE<|W7GwJF8)=u2#qD3i3^T6asqz?sEm_8%WdtIc|gHoMFBulkVs@w{Zsq0U2M zxeb~PKYy{Zu(t2`A)fpCf~MZR(C?qWe!Nn@LiJzeB*Wb9Z7;S7PAk}+>-*-KrCr~v z+rEF#bUqM_)85EC-)Ls#()IJ>OSbqfHpxD0utrRNYj%^dqwwm;l@Cp}zWKd&+L;|u zZxX*Zy_S6}ekA;Oz2N!FeXX~v&P3>2>K+mJ6!xOJRbtWNDK$$wzpx4Cn02-$PqBLv zd#z%_l^oWYieICfr&k)-snyp#Y1S6G{L9P7T0OOPxz@3M*^PTv<*d0<^iSn!a`?%| zcXs?-93&?G+Id!8-b3~4Y773~u;ZS+?(W${&-LfJ(|>F|l6-Q%#ZKXpN3M@nO<xk$ zT`MdSxR3Mk;ex*FGIyJQy-Ym6arqT#Tk~J<KHYixd*XBVebYtl*?zLLef$1u{o{I* zD%Xg0O2?B^W}p1^F_Hg8dYkR~c+p=o|Fb9F6XeRiz}&@tODE7~QM}L=i#Pm#*E^aY zwy8byKr$gr>+hM9vwVDKrgcB-aa+h~*fzs>r?JfACf?4&v1&OFL_eizEO%G`*|mo0 z?D^wyAB6H9q(2I=bWY#)i@ojLqO=(mhyONQsDIsf`Iv*{Mu&@kVg#m2-Zxt(eyZhr z;+L=u7uVNrWxKtm=IiR`b9q0fnVh-5$K-!+`zG_*`(t)<Y}K#(_{ZpZZ}_I^bF}7e zFMRNZS6O_o=dQvzFTM#})a5q6!Tx#D_1E8X?zHXbe{ARX-2U8wt|{qF*A7bm(tUd^ zbuVxA?Y(oi%GcXvmTSE3*LZ(AFn#k3vs1H5<F6<lepqs}Vc*M@50`Ba2z{ck-rbUa zx8<eH*}BVaU43iX_{{NCNb!!8=snDnpI-8QueCL(v+!GlY09cUMpu6>IAnCSE_Cm! zRbAn&Je-F78!pdbEOXjp#lXI%H-Eb1^eK}2yK|ysZfexWW*8kwtj~<8y>rz<Pp_ij z(Mp9+pQi7)-_vNm?!~$jZeGj&nv~Dxc=@PlN{pP0?X$+byqtcnE9`76-&Tq0@4c(O zVZPi8&-}X6p5n(YT%KfQb^KlCm5Gd;uRS8?M@|2qRxn*n>#bdg;j1gRo@`LiTwOZz z*S>c_1=BSrnTz{~PImZi;uUFM?>IX_$w0_tH;=CT%XaxZ-788*IaK)Xdi-3%?(<S` zLB8;b)A_S(E?ske`AL7$?BypUJ{FoRWWK+2^PQ91KO6kY{9C#B(u4Pp`)_P~-}KyV z>DLX32|?c`XfBu6tXS54>U8+~$LAw$ds-e|Ouq0cw|dvq&db4V^)}^4gwCaLeEc3% z|2s_D`Olu3&{OLk&JDIIeJv%Ia;d#<JAcGfarx`#yk9?Gdu?wj&&Tg!l2bXiwH*KD z@@;$Tw$txs*;t$3`uaGL%fk6t{(0HezQ013hMlypjF`T)YH^6%`|T?oKV1@4*0_|i z;NR!tCmH0VXU$XnT^BJ&@mxTU!tOPD9;cs{sgLNYPgmusJf!<)<{b~yoxOK&GKMkx z?vS+ID6)8ioSmz6Oq*|k*x3sWp9|F87IpqPWmzEg?Xa6oE1O62#sbcH%{Dh!?>n-_ zG@gGT7{SK$<Zz&c;{<;84Z>{A9Q&R5jvY39c93Cj;ZBR@uWhzZD*rN;elV>}I=-Oi zPot;Fe}$urQ|nU>pF3Q5gYCFsZ_LC04$MBR$}tDkrnR`<kZa2P?!CqMt;_58nN$BQ z_!{%F!8+8--nv9}*IMn|6wL^i*Yd}*OD@-R%005vYjC~z)@dPs4Zr`P*#UijU*_>u z@Mk4<S9GbQi+pMMXE4vHS)Vi6(uUX9faTl83d^~gGv57Cc(S<Oe9D8}J0=7_%KOst z{Gdm9y|B&>p7;gU<p<?*3}TvdCA^G3rJPWHwewP-X5xk^4;U^RA7i=J8=JDaQ1SAn zZEMtRd`zqyu2`~#M+n{Vzwyy!_T5L7kM6O}X?EVgl;+6kGySJigwZ$EMQ2oJ-rHYn z+gVlZu;_O2m3{Ne{ztW?ZkayS)J~;7(?aW<LwyWm<AH)aV-HKut5OwW_Z-;Qh_5$f zHul)bJxlmpDjVnRtG|~2vR5}_bn{YudrV_m>A|!|zABZoW#%q1FU(>5>f1OykXzZ2 z)oR8Oz6owmCiWP2&0lvYZI9aJl{1UZhD>r;lx-X`;f<HV#h?BbF1Hj;epddF$89U_ zRKL~deA=v2Us~qR&b;Y#`M&3Km3i|fe&<*1e9ip$X3EO_l1mCFtv|ixl*bHi<3v84 zBk3P1zsY%R_DVEa(|mlTjO!$=%q-5izh|sj+V9Y`X0iSyODzw7ey{zye!o^Wmt5LV z@hCAo;+#gt($9B~EZrdEd&a}cfGO*N)wD}D(~}u`>-Vwy-RSlWvG(6E{aSthgE=+T zC&gSE#lNmmI5}T)eu7S~5~K3om%f>-ks6JD53G)=E;=&X<)+Mprg+|^wTnE8uLUre zb*v}|nJ4ckk+?ySEqE2vWSjpsArrR#V6Ic_d#7w2$Y_7+bNHnn5fzd;1`TObFTSz& z;OD#eQ_WFnZBV_NwvIxM=kIIHb9V$gZMo6jxanK$QP(MIk6g~R<VKjv9pl>8we*93 zqHbJ+{)1AUgEcFXZD&q%de5iRm~&We)08-gvsTG0Y!0%14sG0pHV>x>ue}z$WL~4> z8g9SV7@PLR1p+lrEBlVcyyUjr8Gda0$G|rY^*gTjPP;ZGJSVchKIh<TlVcCKr+MwD zY*F0HcJ|YCoy`9{n-yN4|28*BLvP|`zQWEsedXKVd*oP1ADXt&DAMb{c*a`KdiMX% z*vhkJ^XUFkKD(D&r8bl8C(orh`|sRhJ#%W;>67R7q`pj0(be{dQd!Z!6?M3?+4Eje zg4Ww_i`V?szq~WkcG>}>7qVyT7nFY%+8fO_>A<^`a<Pde%O{?-bo>^7iAD20kNhR+ z>e+AJ8>`gEA9}uI<NXf#Ly|pB7Ln~*8T*@;l;?MLr+DuX+BSK5lz*}7qyLU+M@t@6 zN|h;Vi*fEg67PAqzC|@9F<w2^ickEZ>JQgHz4y+rX&j1vz+GoBL8qwUhwa@H8ueB$ z&$w_;yP1^k=R7gzvdZq#o)tO=g)|g;3(rnHcBoTslIiZ*v(L`S$bHBWwc}Bp?F#+i zWf7_}2j7{z-&8#{+32s%+MPPZug%`5t$oK7KXL1{f7=gy4zczydyxA>?A_%5{%0d6 z{f!X%Yjm<(A^NLvuYA(Kl-zmCMAY{A{!YErRlol7AMp+~{lIzsrysJgmS{gPeB{k{ zb3f+?jWV}R@9hD~|KCmMJy$dH-YTYuuI3Y`>!!cCDY)q0>Hz<s3;cGA%)eQ@QIB8I zJ}1seSmbiFkXoFIY}n(lJ8kk0wKhp?U2^t$0q;*{ZqBk|ud+Fl<{lM3YJSMe=c&-i z-!FQ5OZper@0fJ&&*LSrsudF}7kBV)oVcU$=tKSr#@7+nn-u5mm|ernSU0`4S!3I* zn&x>iO4g45oXW5HezHk<-+XP6?EeH!8Ta4%YX1`yk6oHup6DOr{{E=bwQ1k3D7z+P z9Q>!^`%uFB-{ZI%0ePj@zf3Bdo}c(UyH)W`Vj0)9jrU6Y+_dZGCpz}1?@7-*d)uc~ zyp#QQqTbKWI03h~P~pf6**-@tYWiOo^sXonUH?ElhT*OrN4v6st>&$T=6U>Y6kh)4 zs#C7K%Q}CO{HcdL%bHa(+BGGZ|7{5Sbn}7cqVL~7XvZ8AnzfNl%2TU<($Q>%n=gHf zOeEAMoG)R^Ynoben&<C=dfSsF=@MT09qgXBQ><<p-g;^C>g7Kc6MbR3w#iExXa3k| zbK7$@f67UnDK8}a?#%Tsn$DV>v0eDfu^uJfNWZ%KOs~ohm~=E|WH7(=kjk4p$3#$c zuSfgy$#3^N=D(MbTzBG{@^qX0#x;(bXA~soI_|zdp>A?lY4$}W&)+J#lit*Km?T@C zJnA}W&%F|T&RJWNcoX+{Mm=OZ`R{^t=A!T0`@$qxr5`Xx{Z_ausW5fRH|8Jn{#?x8 zFllT0bPMC#z3Vq9huC+tZ)mY~vSq%|uAB0=(0<;6@}~^fHZ<pm?K`k;<KrJ(GKsx0 zD&C8yoS1ZjKgZU4@_BDFA046VC%5^0>Z?C7c}dx(H-Tn{<8yx-F8VbyZM|oV;<}8F z^J3(#DBf(E@Kw-W?E0?LqC#7KEN%K@oxxVA7pbT<f8XKoTwbB`Dhk>v^8_t9XZ_Wy z+8=hRZsY2G&YOH5$!H~?oTqi?pRWIv+?=P=J3q)5ZnKE~wExMZH~asvd4zS<BowNy z)%<xVwLZmFYDGT(-O~H9nrG(*apVYe$Nu-(Fl$faLzP(BjH^$}mtJ+5{oA8T>4fy6 z$}<)2K_`l5A3wW<@p<&p)|AIVC#o*p;wV?!WY3+kJz~;)>tHJzm3wOSkyhQkON!?| z5%-#>__K{`)5ahZ)=l@ff8T%i<Nmu(@4xwLzIypa*_7t8`U%Un<!&vLOPQ=AxPd*= zvRmEz3+p-s?X9Bw3*95;Z@hk!drdSqYuaRc?W>PE`)?;GtvUAo1CRLqS2jWUyQb`T zH)qRr`4>mm9@5C$DYJRqQNb;Xzeul(e-u^I@nsd;bz|<x+s_T=Jl!PqO;YZF|Hb}4 z+yA}E-1O$-4)NC<-O1B4>;LO})@xQZ^K=DqJrupPv|O{+Ik3!7Z6dot+ml*@i`CQ5 zoPNJh<oKkmmfka%4H)Ydt~lQv_x5(tl$zF*Jo8A7lS*L%$HWtq^tbI6F`n4IgX4VA zmH$$YB`00gJ6dG*kjduwpO2w6ZLS8wm9wvF#4fBpqqzI7%iH-MtM{B@dn{d_a(Mg2 z8~Q(_9l5@)j4+T>ymS6zZB^}_4UFX%tp$Cv?K(wwbS5zKEsw7C{8z3u_ajfta`R8# zo3?LV;yqi#Nl!8VsLDJA+xmHNH%%rbu<I->u6GWz=&^a5`K0o_K>p<TVD}k8ORS{g z73Tk0CGy-U{FSBiwFIlZ?{6pQ{$#%GS<jyTAjv{u-m(>1em3q~B3vrkIo~_pdRlvE zoxu77VHU3Xhg2_hXty}lD6h5k*!E3&)3n<O)^pcMtbY0QmiGtSy0-O~bFGEmOn>Bb zt#$3fP1F3!S%f>)^aVrtCcM4lw)gm*%&6jC%|dzUzUiIMw{OtjyK3<U4tW*s8&my? zC7s{ZUz42_7QXA5U-?Vz!l$--d{#zQ@t^#^P54K;65pTqnb-ceZ`o?OasCbeJ87C9 zg=bGrTJmU_wx;m=rPVLvc1?eWl~TR_{__gGLjm98I}#Q&M@V>1?VnQm?*4O5m-*A~ z|9i=GwmyRC;N++m^PV!+@4Z{fXXPAUK9}8o#^ZI~|HJEBckBJ#^qKqJE+MW3$6~`B z1zz1PHT{v$v-@2yvti(`)m3|DMNPgDR4%JHA-4FsWJRG@`P}BtIs12?b7nC=9vj{; zvHE80_lAtT^}E-#@b6$Nk7bqpx&2P5Y0Jm^J73>>WBKn|Bd=4;@xHsQZ#wH;4;{EP z>C&m2sjg00nU#^5m366wnV#$mzfaLTG~p4au(o!KqN}LuQ{yf!>m}3t^!4?$#Mwm8 zzKNe{zjVif%B-Z-f(K2fSS((#rzuQmSILVTfgMs2F#&N=fmZuA-Hi`y-+t)Lh0JNv zjmI{(Z7Y92`EFHMVe16_kZI4w#eC1|*U#6P()a&(Hpfv_C)HkFZOwH$S|V*>&%(tn zKACjr#-*Z#Q`}CqHeGtDI(18lYkPgvlK7Wr{(N#$T)bjakyl`4-pi82tbaL)Rjz`% zzV4FoQ9+td!Z}i1p9XhpFU>u6cAB}bd|7<Hl<sut)Tc{ZFLP@xWj;G6BF13j)flaA zZ?5`fKKe^mPF?DhSm=6F<W_^9=jJZXg$*0JytJ%2oIXEWsv4Ze9eDI@%c7N!mqgaD z3%%6ycf0$fi`?DbY8+2pMN3{Yy{uciZTiWlajV;FnpPy;TDmD?l}pd3q+44zl%$=U za_P^t*_Rf6j&)b9+9t5Aq$>617q5jIGTaIsC$<=G%&7Oe8Ef9etKcA0GUb0l3&TwV z!LAiD97_Y70ysA>^m*sGG|ckq(wJWdLpSzZY;>zSEaJt)vv41$$$lZNCt-q9U0ZCM zKRF$m5;nu{ZPL#02FH+dE&o38A6gcWe=xqx_fNa!A=%ABPi0SKnqQyE@<QqV#`eCD z?nS1mbBd%^DoFU(f4=p1b!hwl!?R=;2%p)N&3gThj#2H~_q+VR*}n_b3D%syAZS^J z;#dErn`G32=a*diKUezFD%DS2>nabg2=&qJ{Kqu++*jq}O5e|^UXj*buW%yUzhwRf z2fM<~nsrH%yAS`bnN&CB{FHp<w{sk4Or5gqg!PkCuem?vrUzTbP7}UfzcMyNQh$A* z=KP?n=_fxgJ5`>!@2o{--e=#-FV}sasIu$XwCz%wlPlvrc8i?Q-lbs@d~bEbr~UV@ zU!7LK{o=~y)ORAMb}XGDe(G_m$)jD3-P6|X?YgTivg5keq+(D1mi>2P4$V-yz9=Kk zT1!<@;`*lR_vfyDqM!Z0TI=u5s)c(d)qi3BS2XjmUYz)r5AWaS|6g8mw{o4_+6;xe zM@pxARqjtaIpJFQ-K_!BcwatSy6MjUzrL|k&h2kr<(e0{H#$jmRhZDdlFDTzw<JI1 zc12yAXs}%1*#EQ21%JQZt^cz^FYoNv%iqk3TA%1237Y3K!Sg`lv`;ooSxtXgY-a5E z*s^r7P5sOSRYrF19UpIBu`B!*mG>v??VKHR??jm8XD{^J-L1>=<lXjYKk-?wcuJq` z`mn2G*Nt6gc3mvJ9$MO1ddw;~He~MFb@_K2cSXI)`W|{UlCRu$PN?~gJdfD2*o{HA zcXOLJnMwQI?qg^?6`>`Xusllb>NDXzJ{w%$^*(L8xUlVF{RsoB5V`5RsVqIuQk~tI ztR2N1Kc8S~%4#xY;nTbQZmDP5$r!cMPb&7`xM%zF!%3E8&M=`j$^i~?v-!C>Bzn(I zkN(a1inF34^>cz9BeU+)AnnNsYj&4&JK8n|$$6IbKigR?nxnY%=agp~E3K1wQ<tq{ z**atQ)rhoPot72n<mzM7tR{q}NeM)!y-LwEZoS;lSs)<b*xU1GlUZ)Z?7Dqg)%o&f zQ&=Y{R2bW99{*RAH|4WHwMXOknN08bx%b@H{ty@VU~cRK+bsvGJsQhP8q0P2HnsPB z*k^I5`UA)Nf699%yH}LUKfIgTQhtZy{Ws-3)xVSUo;8@uO!&-LbkDQ?+~KEpS}ddY zI>vTuZ~InzX$!l%bNn{XU&4k##o}eG%>B20um65$COSKN>8p&xEWyhfS4I1pZH{r- z$<=*j=V6mIn|E#A75z2und6kz$L@Yxcj{H?saL<JUgbRXD(}=QzEiKtPQBW8>Xk?8 z*3d{@jjvkvQ~jPU{uGoMqBXU>E8MVNbj6oT|Ces^^xJvQSzT0a&y>$avBw?$y$;&+ z{9M4%1O|&gJ9(xVny?zn{N`3jp7UUb<&~iBSqGJ6xxBfo{un7JTdSV9cy?OgYLRw} zUAK*7UabkVH0|hr8g%;Lw5v)f&#x@fDAnbh`ftfezel0BRkfX#ep;xiT~w@C;8ql{ zDZXC+ev4gZ{p6=RKZpIls`R4of5pU!rq%K@A`C7bYnlC|X0dHRW|4+(zLszElx1~Z z!Tw8EZoYIS@MhMvfLWos=T}Wj4?VqkmF%fk=2NdWPr3Sc%2nH`SLaT>x;C9vQf9Sr z+cOI@sUq3JAXk$oX%>1sqHdS>{@S$gWu~>~s}(2C-mE|Q%i;bP#iIK8TkhQ9Nm|-- zylv-)O?NA#tfkc+ZcLP_&bBcKs=wuD;N9B8?pA60IJSaqn(jkak5=yU3Xdi4RA@=A zS35mtURbi(X$wY%NF%>6h7%TZxR2lAa*yOslRUm=&42E`hw%?w{^<H?pA%hr=kNTC zsQOFYswYpMS{dkA@0Ir|BV2NY_G?w|iREeQpF5QwG<+viajQsH%De0E<w;B@Pda|8 zSNry%s3KtcB!@%q68UC{@9Jic(NC@p+`hefMeX}<dzUI+V$D3^{wvz<-NFTxwr3XZ zF4$Y`;eL1DmgDm;O^BQG>{nQb-})767C66~_;#M>rUucS0gYFp13l#>HiTYa**SIA z=I(nFH#SV&xuoaAe}>i7FIlH6Dp`w9Z&+>3#cF6|Zecoo;UpX3=@&fhoP7;U6$})D z6pTzQz_hUelr}X2^G!@3d{aZvZAn22W(MY9aWfNRFdfUw#i<{VSd^MqqF`n@{UN`x zFteGZ;pC0yC8qaz*-6G*K=hd#LCiBZh3GT4FahhgFoD=_VPOX5TN*;tSy~u^`Gy82 zFoq>WCl(v0FO5(Yn!Nu!7syJ93`0Xph@pl?#t_#U8p9dp5K|0I3?U9MG%<(x(9jg> zRYOyAsFWEra170$y0F>(s9F=*ZgZHq<|Ysy8Cn=X8J0!{5I<SMq%6%L?lUrgy3fb} z8eT?*&;U0wG==EGv|D8Qi)DI((+y^*K|O9{Xb!Q;$jAs1YDPw;ForoKV2zB;Au(cP zVh#x<BU7k1jZBT9icL+RYRsU~fyHtrGxO;W{p>`iKk&Ab$uKg5nQspBin$rod<$c! z)fN_zpf<9E2DOo;ImAX|1E|%;24;}JH#RiD<!|BXbDvoVO@H8NCp!I)uN|M05hPBH zji6eLji9N@*a#ZA#>U1F(~OPHAc`@4Bs^V}M^SKkfuEh0hnXeBU5191kPtOAH-!4e z5Ef^!L}6@b1aWdKFPEJi>>4p%E@NYJqsbf3i%kFKXD7%6%^cG$*IM&T*YLN~XEruB znI7eDCoO4YVhRc>0|NsCg*;v^0|NtNOA}KAGt=#T{&t_)S<H>hjJLOj+f8MbFf=wa zQ~)VNs5Cb<Hn!aE7H!AHTyJKCB57b?W?*J)iY{ho1o8sN6sUCu24;rF2B-#u#7s;r z(e)Y`SYp^=Xklg!Ru>0zm4ShokqM?HMy8mS7@2`09Mv(#hL)HXTN+JwjJFeJgi!UM z@(D$kg^>v;ouP|?$~9CmV<QZ2Sr~)MJv4PDXkl$&U}0<uO6CRz2K5N9T9_CcpgY&X z!~m4XQ4KUP0~KLtV&;aButPG>6r4p-)tQ<Zqu5bzU|?WjYHoz7*%DL+plUWVGBg86 z5RxTkrl356rp_EQ1kEhX&=ZD*xsgG=3A%yirUsZ|<|YOh>MSiV#4HSrF&t=W2Fh`$ z4m33f6;&XydU(>cFtx-?3ucBG$<)Hk6jUgJG$ZtynPWzsnI)(MLse&Pi00^e0|N_l z6Es1Pm^o%pn_HS<_|C!vR2HIIVqpp@ZPCQQr3|W=rLm=HJ$kTO8k$*Ph*=n65yJ>A zO9KN#^eC}3Fhxyp1_lO}2F9Su4eS_r5L$x50nK7d0}IRP8<XsW>oL-frJ*UPL<O4x zDeDXjEDeo~&<iO`LraWYYH4U`VT@vxp{1D#daehHnL+#m&!vWz7KSEh7K6l0LCq2* z#~4~#7=hag=whJe37VJ*sH#R2GXquD2(fwtkduuqP;)6r3|wa*6oS>6gDOLGF;G(m zRm{W$BNQx5%t7rjG<6on^{83b(9*)x04>de#Ed}=6I9KnW}qejnwSMzE;Y2YFf#x( zCs5Uy!OJgLE(Iw>3mTA*&A_cbRL$lFpq3w+m=RhrVrYq(`9NZ3Xb!A5w6riW2eqV7 z4K%Sp%l4p9FhI+tATcA%G-GOpmRLdREDX^TriGb-si`_zYPB#kHbqV8;E*wz{xAiU zSx{?MkcSM=sxOe35n7D_5;MVcySXK1`m`{>bf<+OsJV+=r5RdUSXdZfc*w#Ot!6Q_ zw6Fv>xljYw(g@TZLKDN12P`d7Gaop!Sek(vtSFi-4U8}nyrqFLs3U@;&d9*P+z@o7 zE4mn31~M@)G%!U=??wg&7M2$EkTL^SM;d_&JR_7!*8n7Dh*n2}#Eh_r8KYJ9Mh1ok zhM-m`ssk-yjVA+GW&tTQg%`AtLJ}-yj9Qo*85kNGqNNXzn28~#I#W;|1jS-QLvRNL zNlXi**%GbgWn^GzWQ<me7#U1=ylf|2Z(wMIUfY3`TcS0aj6mKtM-N;>V<RKfS`lQu zu_bC70wiVv>MA0+6C?)eP6~s>5V2)wXlZUbeNl#;T0L6b4{{WG(+ea9?v8*AfmUW< zhnk?4)gUqSbPp0U19dgf^qNC!V0f)#WMF7wj8><E#K65hRLv%4W*DJiVrGdEY9<z- z4m7G>Q)AS&M7@ELfuX4(S}_3<vp{Q{fW^?tRwDyrV@$^w8=Ikps)>QIi7{Fzm>8It z8XKdv4UG(pO)!0IY+`^`r-IZOqLo=7F=Ny^)xgNW*wg^6N(HI2fE7E4jAU$Tf>x)3 zG@GCm2}TCSW`<}5BS_2`)ayqHYGX4qj6`c}W{Fm&*MqwAh9;<`IY`Xd0=4i5iJ74_ zN<m^4s0Aa)#})<{(P?a9gcc=62F4a9CKjk|L$FWKDszySnE{3a%`8E^a8w_gg9jqe z#Ej9}bs$HZTEcQpJ*><!HaEv8PK?bhG4i;vg%LFCAhNTug*is*H@2|AC>M<_&CwdK zM)d~9mX;U=j)?(!Wol#qN|)$a%*4P9qfj+5urxt0m`n@}q1|4DqfHD=%#0L3eKUAh z-pIhj5WSND60^ie)h0$pXu|+T1|~-6eFBgecn}RGN=%H9YWsTd7=n?3iLoI@(P?6A zjMh>FsWZWhCQI-j6{;l$259Xoa0sGxbU}SX12bcc;4%OYf1w&^Xo%?;Llca8&cx6R zBj=bHT4H2H6C)$gXdyWK;bpps5qeh(9E2D(yNQt{X7C#uVx)8vWAx@SC<HB#%9(o5 z5Dr)nqo6S{MIRS10u`AUwX=z-2}UjfjS^ubR#PJj^lWTWkEPTzF||Y+X8~DkiCS?O z7#WzD8Df+bCT8Xs1&xUr`k0lGfr+^x*fF5+M+CpQ5vK3VjWJqkCgzrC;|CxE&5Ti- zp+*KKSjq|$)RGWnKS-eoT2B`wW{K8a0g0hEgp3SKER8W5Q6`qg7)82?rHLhaW6RW_ z-T<TgHnB7ZjXR>Gep3VVo~Dt3DX1z!=`<J_n3<bmv~|ruqkb6bpgE!*sqir~w*(FI zqF8KZVE`HyMH4eZ>+c&Gm|38YC4t1uF=|RPOJit%8&VS18yFZFm{}TQ6h7t#1{jr& zxq%VdsHKsCxq&I#*bhj|0;32vHv|tGqj<#J(5N2Tp@Fyt<QQ{9Q}jy0z}(OrqoHbU zXo-<n&5aDvdZb1M<`{znAO{*j3ofMgpSghvXe1fcg$5QF{SR|P1JJ|^syag>j5@;H z&;+B^WNv7NnvFs2KXXG1v`!Pq)rO|9IvQ3*n;V&7<Op*kbF|){k%74}mJl>H$Ean^ zO$?0d(X)iP3Hp$$k%761DP~$QF~=x;%uOsY+5zUK#;|cfcsXNkY6{Eli1weksX0b3 z%-jq-#ef>rW=5D%VvJcXn41`2G(gNvjL?SI*+9NCF`uqjYA0NeHdp|XvczcWo0}S8 zrZH1fjDDB7sX0c$X>MkK(SkQO!x*PFGB7toA9@3cnPVmijB!mP19NjDjDCl?xg}-{ znnTMVSP{fwU}Ru!0U8ffE3;Fb{=dvlq}~#3P{qgqWD<JSW^Rc-<_b~=?=2%D-V(F1 zVPRkd9j8Z>0Tu?(!5rk`(Gp`&*vP=r%oL*&XlZ7Nkv}cXEHT2)(%b;0C<GNgmga^i zV&LM@(%cxM;csby*+R86H^*p1SX!81)I^pRCK##8($WB<2)48|uE!`xEiDm^cUZw- zX^9q-21bSk1{mEWLjwb2w6Q0UI#cupgQ0-|EGr_4M?(Vxj24KYfuRw4RcUBoXo5C~ zXJlY$iP;Xbv^2%&vsqfACDVGaPYlpY6_8KRhj9!I3{25`CLo`n7keO&pf?^t9zm~C z4Gj#<&CmvAjX;9v&09kQBk&X?aw%nKU}T9lIA&yMU~GVCiLo&jb!M<x4S4ZrXkd&! z0BZ!AZ%1!!7#f&>r%zEGV}d>o3eszV8Cs@>Xwg}3WN2Uto^?kx(9|4lM#{+0z{~)B z#KO?P41E9;qz<F64hk)_*)ecv8JeSYj|~lsjj<>+LvQAQLJPg6VrXDufL_glLJPeS zVQ64t2A}$bb&m}VOfZ@>h6bjFnDJ?9Vrqig*fTURHAgQ$3=K>zF|(bSA$mum-q64d zqn-tcp=TXK19J=XhN7W?g(0+=120+)4J?c?<K4m(HXZ{jszG`UP0+f>AkF9nlA(cx z1uV59X|_P`iy0bN8em#tX^J*;WMpVyX@qDZLA%F>29_9|0YgL3<U3kW8yaAA0u2of z(5Ewu3=KiObqu|h7->e=(7+PC5oc&<Xoz0v7#bRynHW#!s<Tt8M=#qA4Gl4xMTSNe z#^|jGLn8|ljO=V=VSzSoXJlw(VS(QCGBmP)&8#97*+!NIuyz(aYK$z6Fmj8LCB_Jc zp^>E-`na8;v4JuASOG{3bqEGjWE&fR*C3&k8ODZ&7{#u!fh9%)H8wOwZ%P{)L)Q7A znFn6If+}WYWL}Tf$2J5lH9?(QGcq(bGDEMVKw{`49EQe5;1xlrmKYm@MlR6A3}E#P zqR2KjHiwV1L91#*V`B@9vcT9FGjSW6pwIam85)~l)S`yQCg_cwdXPd(jM~xI)BwGC zZD?$2hUq|46PQonX~x*h0He|~HZw$<moqXnH8C+aL@%;UO-wK>F*UJ3@Any+nplF? z2B8G2si^__z>%S;sUa3IBY0x1hXu8%8D@cFYHE&AFqxW}ptlzdP0i4!s*May%}mjo zcZR0s7}G@chNfl~7^Rx2xheX1oS~_?DN1A0z`)4R)Eu*}Ftxy}F-<KD(Z})(O)bn# zF^X(c3v-Nm!PLSMBL$mUnxIV?8X1~e8lm^y3{5R9Fhjx85|Nu=MYb8J6^T~Fni*is zRv4OrS}f@53^67l49yG;Frv=P&<K5O(6HXj&>W+71dWuT^>hu*j0`d2-3(MTpgYFM z2&4UJW`tQ{ni-jcI*_0dEkt!|hNXRHW^9Z;&SPk1jF~>nObjrxv6-<2MwFPDAkS1o zMl?ay5&B?(p@oqJMpgt3$DxkfnHZR3SYl#eZe#&(6~S_tg|RV)11;)}F>5vpV~mMG zLknY5^d66)g)wHk5;RMKUZh)?7$FiIWCY#N!o&hx^Mb-3UUFHOSYX7Rg{c8XliR}7 z45RR|Ff~T+{2E%AVm1dX%utr(fb2Iiv@kQoNQ4$<<`@ai!psDt^<-ggh><-l%rR?E z3v**kM_c$AU^F5?MF2(+T9}{@Sr}SaU<|_=PTzRQPPpFC!qO0Z)Wy)k!UCg8v9L73 zXd78rV$AFr8JL-(7fVJ4W@hNa%Am1HGgGu?C}{i+eQ3wXz#L-|6+DWDHi!lq9mBNP z!VrB76EqTnXgfj6G$R8GjM*0>0}E61STHiMFhft<pv9QzDZ<FW5@U)1G^SyKR#X|) z8(4zZ>>^i=Mh2D^XoFcspk5Pt?G5VUqfZ$b85)?Qm-e925WT4hYK?<hcc3&4FVl=b zD;dxxM~w^(QOA`H42(d_qS1>WBSRwt^zlj~LnA}<`3@sPBk+=BsD~kCnvtQADSC6! z$j}&LY7ZoaK9Xx>WNC>${BLAzfYCxQGB&`N`86`GH!wkO_!=1-n4;%gBVz-2&mC3- z85tXxV_IxziV=0jh8W{uM#hGaiWL<82m=i*(c7s;#-M&RYQ1G-Y-EOBj2Iak8Dpdm zW0058^%@%>_k}?A8yOiJ8)2k$P+^Z&v=|v1o1!-tjf_nU(F<ZDV-q8cY;0^|j6ND@ zWNccGQ4ty$n^>Tib4JFdCg^ieATjijKO<vPGxRAVBV#j+^$bSFrqCWC(lDfvG3IO< zNDO^3gpsL{33@dH5<^>QZDL?*iM}$}$jB7bJw%EU&@d!O5Z=gz*1$%lMi^a7BU59H z@iHS*WANqzXm$e6c^a7-V+`mSnHq!JFsSNGjO#Jt#MA_%ax^kEL0^AtWMpaz-rj&} zAjpMCz5|sNrlw{XS=-dq0@R>FUhZaOWNK!BK7L_jYG#B{(12R-=!KN2sUdp%2joD^ zP&G9}O_-orLQ_)<^dWSRW6;M#K#oBlWHmB1Ge__5fW$D$1yj(Z0eZ-oTNu})tv50< zwZN=6Of8Hs9cXTWzNQJJ7b6>+T42oL8JU6_KoG~k`?N-;7Ume0gsCNR`xBbDEDh0{ z7e=O*7(-bgF^pQ#)Y1~IuM}ovWCohDhPVb^5}JV)`C*7*bR&(-3@p(bB}Qh3hKAD_ zC)f$wq0iD7nHi!j(lRhIGBd&$y9J4v8Be#HV5g>uK5l1ZW@LtGuCcMf^o0{Z6HVx? z5;J3rg%3t%phh>k?~K8luu!s-nTZKT31?<vf<C-tWMO0h?JOaNh(Lm9E24~yEI>5} zn#C5z#^}RFMi#~<=p(*H7RIJn#LQ4jJy3SCFahuCLh*@(i6KUjX<>p{eOj1cthzF? zFhO5%Ze(O(YKrMOQ)46aNlzmSQ%h(`gJ|Vgm|CKbvKd*J8DeB73o|o}#ARV-jM2QZ zFtdbpoDtc{!rTD8BV%L%U7CT|Vq|1wVUE7{1SDpHJ_KN7VSyzCEez4RoApLU78V$5 zi;OHREHH{f3k&eJGSq0YG(ul{W@KS$gc;P9CYWi)($W}xR3FqU#RyhQ1B|I9Bhcz% z^qga90N(b9;y_D71B|G%G(e;o*btGCr6Fd6!O{>TI~f~T8lv}fj14R?`k=-JmKdQ0 z5<?%is5dsSG)Hgp8iPif(WVYS8|%;$rm>-cIda<!v`)hq<YBbs&&Hr(YP5O-BxY`a z)}1moG&DwUHW?clVoVPi8yaFvJsN`sU@$BOH8WAm5753lM1chDP8k~-8=wznfLg(5 zyB>^;LGD8v!3Bw-Cpcq6%)-am(8LgZ+`_ot&=_O<(b&)geUpfhv7w16dI~l+HZ(%- zPJzlsjA#P&OVH-Yjg1Y#8yrB*X?Q_nY;1@~nb3Bfv9TfAf_no{>l<VK%GlTlV||LT zv5_fyeE=G#LF!sVx>F!Q^g7zu*w_+%d>S;|jfgwQXp6D2i4l7JW^8PNzD38#*w_SP zL8Y-Vi;1O$;q<2IcB=Iz=p&%U#-?WI`Ni1S)DnFb-54|gjh-ls%`leO85^5nag~`F zWDo$UVGr^qX1JLcp%?DP#wHjG$&8In%+RNajEzk&)*Kico1$*Q05$B5LERSgjB1S8 z9tMR1dbh>c*bHNRn6a@L#u6T5V>2v{Ha7^s^qsi@((*`fV-B=A7JZ!0*x1|xeWKIY z*xYP-!3;Z*dd$eOFai(GA=PQd#ug^f_6Sm5u)tXQXl!hOu_3_N*b-w|Ge`{D?L@S1 zjEyb9Tg8#92V)ZhjI|cV#+K;Yf{ct!F!t4f#n7h6L1N~p^<ljMsK0B3R_lVqK>i20 z1>s{8Lo@WH$)IKx`uK&hi6O?MpD}2~F?zx=F*345U$tOtVq}RC)Fwuj=*xtRO^gju zJ3b(f7@K1h$e;md)Inn-V-pj2GXvhf0SRIhmS)Cg82QZ1*bIGc-q_3(V^I+}FQZpC zW~S()(Dk4WImQHzv6-nUMlEh;hOu12*v!lTBTCH7z=s8Z;ttmRFg7zYNAI&5o0%IM z7$>7uerD#T7>UNr+zcc5&CD&)hYgL*EHDO=jm<1f45we5V<%jXn(hpYjLj^}(c5sw zparNHfo5)ozQ4)X%p83mC&)aEHO8Q*f`%hfMl%C#FGTmZr6Kxi4P!G)L&Uf$v@$WX z#F&pVHU}+mMl;Xc0DKMtA`(Cu&D_8Yqi`}eFhm~^Fg7<ZL7!JPHplE3g2d2AJB-ai z!<*=iF*G+3MX%sNi&u@Ncg?d?tvAFd9?gv~=5LM7jVwR|tOzd|7=eahFe($!P(NDJ z*Vx<`V>zy|xiNHDKLNI?4`iS*#xh1@(6Vmy)~30M3HqF_vAGGx&?jh;#?o|p)qIdI z(MJP}%|U}0=wW4Q4qj~zD*j+i9CK5QT?@wMW*BqD#^z?2Ee&%s3&<D?a{X;?W`WU6 zu{6h6QekXqj_D&ya|`sICumY0qvdF6f!bmP*WZ>F7@HZ5EiEiDg3{8$41Lv<v8AOE ztXBvxSFo&>Gcmy25o2OtU|f&hSTiv&FhTE2nHU(LAKYMM0@^W&mY_@w4AIwr8G#nj zqC3#U0KUfqQ2>}27+RvQ+cp7BXron7CI&_(=p~Pd0p@6liGh&?`pA$8Xayb0pkBR! z5onSW(wIY}c<_EV6onvlutlZF>I{t02W~;3g}$r{)M7wSz@X5=SUwF3F7yF*P;jBQ zXiW?ZEuf7RcvAorTIl6DD74VKNTASyjXJ_>T2OGI_jy6Vg}!Va6k6!@j){RW#v&t- z7<!k+!~m46QL=WukqM|wMw_n!Z!JVC8cjeudC_JHKw{_>1h~<K*0ul*l4FJpXg!87 ziffEa49tv;r!y|W+@Nh_Vq}iK_8TmQ-jy~nGPgiqr(|MeZizlYXabrKN2^s$j4WWY zq(~V9G{%Nj(wcyVGBCs}%+WhTCPtPf7@5k*(gc0-$i&zHZGZxlF^mn+x0-{p9>#)c z6VMD5x=)M^4bZ#SCdQy{Gg^RyR%W3WBcKj#J$e)x8yTRFy_*;t8KVvKg3g68MPDLs zVr+!b&;qS;Mc=t&0_sXbLlu!RjEylCJeq*IL+Is_v9Se4QDBU5Gz=&NO)%1;u>tx5 z%6gDOj6r`BW6&aCj36||NQ9t8a2O$Ih%pihS`dcbSOJBqA^IvT6VUt*hL4Rf+O#Id zMwXb-WQ@8f9yDue4C)4>d&C&AK^8W|W&-NILE{8g!I>DFm>`WtfcuyrG4w8qiLojA zQ9nkYo(FpW)C4qSfL65Bn;4s7Y+f}nHpAGqX<}@Ku`%An*vt|$5t<vKcVSIH+fFb% zXAaur3LfG?6z#_5mKb^4*aCdw6>`(h#MlC3u)+kiyA~trEHFB6ppZd~2SbP0KtY31 znSrJ?G4i_^`nerOCdOtM>)JsfgHaM1W3E>*sW&z^!L%6EZbMHr=9ZYHnFYoU787F& zjHV$dWH8f$C3v$2IQ$U_&e9kWG>}e*iLoWdE-4ce14E43+t?Cg?8(H$0AuAINDQe) zhYYcqm>8I&w<}FdK#O(JLIE^LiC&DF7@A?xYlc3tU;-K$Kui55CiO<f=)HCm6VMV5 zbc>BJ&KWQ<F|t5kIA8)gJ^;fKV^fSQ3o4gE1s5p%;lU3|))>Asw!mmnfr<t6lx|{z ze!7j3i3!Ln=pF%W$3%#M>^Cw2oy>+dMrdMYY=Ax_VPa;CzNQp3_hyMc3SeSp3_fiS zCCi$D3L1pPpy7BEGvj)UZFwf3rF-awg_*G>`fRp|nF+=+F%vV8pV2KbH9((sG%+)U z9sz*VF)}d&EhoUxj4@3L+9r(A)HgFT#we=I%#1PO-OLR2qy|vO$i&Rt0DWS?#LNt1 z1+IyiIcA^5%p7B3oQat^#!((7W)>I+x`6gT*Q3v^g9d0Zno?$<Lw?Xh#sXuZBj_+V zjKa*!5@VFe#LUthIzo%o{xbu0IMFS!#MnV?Vs2o9QM8&HV5~|pF*m?CQvf7}+6Mx) z|3IS~=y}%M5VK8aZfJx)4`5<$XpYeuGB?CH(!s>S5@Q!GNX%FTR0tq-_f0Gfj4^_6 zdg4Vp;d&EG&>n8I0J1bN#Yo(i2IlBvB_@`J7~|R|mWD>?tF=rlL5myF?JxxO(Lp5z zQjgHm2xC0f#L~zTqswY(Y=F`Cwgfd)(JjGJNLm^rZI6+M)<>2m7|T*kEKQ6or(fJ) zCtQzF&smySU?gWtQ;aRICYGi~7~=t!pp`o4?li?XO2fp`)B-w^kCdE2Q=I61J4-Y0 zQJpB|B51oNhC0xW6m*M?Fc#*SSQ;Clu7Lz4XG>%BQwxnuERE66IWsb`G%>*FR9b?% zf9MvQm|`>vEKSUjDsf25)Y8P#68*d>6H8M=#4aUR3}T+;U}9;CvEvmKtk6;d(Ll5` zGr%Z&EzOK!<I9Nd3}{;pdUqSN;}s*nnPaT*G_kb6Si}OFiNj3W7NDb1K(PsPV7-xv zrG+_0VQy)OacYT)r6tC83KL7reZMA_mKNwO6jKAx@l&YLWNKhwY;IDIA&7p&k&&r^ z0mfQ5Qv=McTA)xspX30A0{Ut~6H5z34FvDbSXy9K&X%Bq5>Xv!VhKu_7-DAVV}hVi zK<{URLIHiurydjx=;J%4pm9C4b`>ZT(1$Nf4Ghtb(*&LFijn$F4GckD7vy+1G6hXM zo1?85Fa_<(Me9MB8W@?Q7c?L-^fj`k21b_XD}YT6Kodo%p=D}dj5Mms1<7Kj2F4cC zA8fG`wZZT<XhaR&1QYP-&>;W7nxdwlg}l=Zw}Pfl(Ar|A1|}HOAE2EA=*!+s4NNf> z{FoY;nxNMPrl6Ib7<QP#4sAn}sHO&H7{jin24)zCkbq7ZM(-+_8kl43MFfeV4+@wX zfkctRr{2H_B#7QjG6gM&L~AmG#L(*>Q_%WFv=LTQBU6kr$JEFaqbqG{WM+nOf}bg9 zwK7`c-_*$50KLx*5<{OHH3jXw!ElVZ1^N;jQzLWusgv*$6?7^OY&aF3OpGirCLK(T zEHK91OhHSR&`MrYBhaEQ<e&zHv?cmhje5}9U1QW*4y+L4I6+g;DjBqPoT-r|#;mNV zv4IJCj|C)#zR%dy*uc!x7`;RVt@uH!u0hLm(I>G?jSVrjc7nt(LeSU{qo6c3HZp>z zH&}^kY7E-WffiiGm?xc>8XK9T_e4xhEX>e5k)W-G=%uWwiKPMDV(9!+y(y^eh*pz= z_8_9qPMVrn8l#Vxn}X_p^diXAzzBU_+tkF;5;|21t4WPaO$|T?@}o98L4xQVK~qx$ z@M-KQ<(H`;`dQsZpbe22RfDM^#wfO_sUgy4DChu@si_hAS*oBC0Hg73YHDPRKHh3- zYGjGtrU!{(WII#PsxGuBt~UkE$D;|Fg0=);h+&*TVrmMSD?wLhVu(KTZE9+Qv7Fu1 z)Wif7o#60?=XX<6jH5zLO-(V5;4w8d#W-xr6tt=Uz3?$L#aQ+PTH%h=#()eEfdtWK zuT4Sc`J$JEpwqO`3mQ{1*!p;+#AS}L=F-&E9OIZaQ}cRI-a!jOa}$icouGZI=(C_8 zG4zosQ*%=jjD`&8oF8<Ln46k|YgAD9!-L=43}YP_XrnIr_B&H^GYj-4J4g(paxyo^ z*nwhdZf=2G+Jfu{)mNA)*xbSpqk=KV+~j3y4m#HuJp?T<2Axeo$Lye&Gv=1{7zc%! znp<L=a%F06312k~4=oD=%!FxSfUzmv6m&!ldIQA5z#KBRhcrM03L5ks0jB2Wmgoz) zP0cMZhQLkDK?|=jLctu<JPS*d1%sdgB2dtvZ)Gwyw=}^h)6GG>9&}4E&y6$%otccD zODqhG(U0Q<g-kvA7Hv}t(7_I9mRMje{4lkET-1S5EL#|1R@)Xv=8#1Sh|vX83nNSD zf>JX?p0zN-Sb1t{VT87(%)rRh!q~`Y`o;Zr!u1%nvW2k;I9DN!xR_cPTcQt_n1T-f zK+lmDpeYb^f14O%G#e~TOhE-F%61%63sa2EMy8;hxESfq6k|P>sf8)VN^4WlMqKpf zr-hjjYJVBjcC|3Y?Cn{YnW9(orWR%xJA2IxP&OBWd-)(SbRU};7-JkKXJ%k*gnm@J zk(q(9F?!3~40Pl!T2PxA7-I}zg0{b-&ozNg2}2*|2kn1>oqGUpyMhGKOJdMj=I9CD z%)k_*xoBo!ihK|zG!)DX(Q_{7S`xIyRC-3B6>{iH3(O46EYYh9Gtkj}(;prN?Ri0K z!kQVFV=VLqEoMdUy_y+V7@)77Gc&L-MqjxKI->%;;b&$5Uk-=pZ<&EEM?h=pni*JP zv>rf#hF+zC0u8wq0gd*X8JJ<TE<u5Ynn~FVK!Ij9eZpZok$TkaFd!LojC~ts2Ij`- zQ?Z~hL!U7Rg&CwsN0c+5Fhg&dfx-;hf<q1q3lsDKFHoSNPe_Bp41G)jG-8FB_$)C_ z;5IV=t-?YsVCoHw%s_`%p%oHlh6aY{3*XE@2N9u17U&!zv=)~c=r|y>g2T+v5dC5d z(6%olvwF0qyP2UO#v~+241LPh%+LsZp2*0|5aU)HkQhes3A(ihR@Wi&uc0x<ZbmcE zY3pc%D`tkq7<Gx6A!vFWIaooVYJ#z}*$lJ;0@b{FBQrx2BlOi(W`-sf7^RM(i5W(E zH#EgK0@}<F)E7W=3}~waT5W7*Y;0(1pp2mqV;6(j^u%t^Djv|;IOxg57&NPjZiETO znW$#QCK%`Hm>HXZFNZ>|yun9rpeH9|Q)5f?jWVDMA<%1dGh@)^LUhM~+6d@kX6Q>q zj6e&a(K~Ktpydeg^bYN$nHifK!O{+_6=-G*TI7muiMc6yTiDFl9OEcSGh=g%rAB7P z78qmrX7$Dvh8Pu_v4uJMLRvFp3v=|<?q;T-8Ba6^nwpqll<%NJe&9ZajPse9nu5<$ z0yWa%?Ibf(Q`q$v$YL1F?9EI;o0HKkHp5sE3|bD3KH&!1+l}NvNGA;>h`xE<%oMb! z8{HCfBlJltGgEVn6Nb%9&CM}NXVB0YdO|m?$6Op?25MfRSEZn>zvyiZQwt09t%YW$ z78s}4nVDLmE@?F|FajNP1fKW-g+DyOnOYj7_Xt4kEtFP0M6(4(D41a`Uj?nQM_;cC zIsgRP#so(($bKU;GtiDVw4er+_vppFxdq1bmzlW*_)<cY{BCZ6(ML8jw=ltIWSCpj zo1zb>nVDOdp%2uUnOk5C)PUB~qYuKGnOkD4XEHOl#Av01#2~vNkUD8*76urHb(vWh zU@R*#vjCk-h!$EFpkvxF#4yg@GqV7l^Mazzz{t$P$Pj%H-^{|u1f$VvVPtMN{oz^g zX)!2f7@1js4u8WCGeKWFZf0R@iqZ10Ft)(73iBvOGYb>g3MQoHjfDYb#cp9}fIi)A zW&yft6WxJ^rs&hipa4Q2kOqYh>cj`Ad1GOOF_~`$It?AQA_fI6W@fPf?JY%j4Ca|p zpwNQN55hAk=vcve^vcY_1mmz;&_D`CV;wZ@hhB_;_Ftoy&Y*(<(90?dQ~1~bqIqKh zD%H?^0_vq>h+(X?F|#lO-*t(Sb1lq_(B~k{EX*v>x+nEUW)@}`>nqGG%)xaEs)6Qa z=tnY{f#x|eLcziSwK)&U7Z&LEX&ISWSQwcYpl$y#vjFYNM)$FWDf;>fGYd;YNVZ36 z$b)WeLK{3Xv#>NapUwzcI)Tyrwy?w)c`>sDby?A@w=}?*dH^jeK^mU~_Xj~@=y|~0 zz#KNCgUDzgLG&up+`s~3ffDG(F!XtDbI?_dX!*k2z!GDXmO1F8QIw=zZ(syk<AUCS zF*m?m+Gh?rK?yC*f{&y}t4hI#yJM;|M?YD^+|a<>2)!R+ZfJmUB9=Mm-VC&w${chV z6uOTM4b9QJh31Ba7-x=v?s$P!K=6!a4my4wEzN>f^<c!Ep%LUjA*694b3-GH3scNN zcbB3BHE4DhbfXSRI;uA^2OVgMVX-l6k`r8sgZjwkhM=7cD4Icwj}0-R&d>y-Wom9{ zf>98Iy30oBm*;>4ky{TCi%l_x|I7_dEzpOS%?(X4>UDENGmMT7NDMxs1DnG#2kqBJ zk7HwFv{5Sq(7}2bR}Gniw(FuNIAdco^z&lOjg2u5a;!Hu1}zRo3s%sgb+m4mxv_~k zdeLHTY=SY92f8@`y*&pKLvPQS8=D%NTA-~8FgG^E=x>=Dn_?`0H8(ahM(?G7#4w@+ zbkY)f_A~}%P?(3I-6L~jGxW<djm(YBF^**eiJ^C9%|Z7fpl3y6(4mMhOCUWG(2<Df zHNSbiu?5CrF>}y%WeitaK=-R5N_KN&%xxUz#+F7HMX<3Y#z9x+#+Kj)C#ZRh$YQ2u zM(~sgo#X`VJ4GKCHa9iHSUY2GYGw{@@FSNCrl2+gS}2&BA)llJ=^laloakeL=BAh% z>OdO<(P!w)O)bFpej``PATjh-pt-39#zHT1(|RnGgsCOQL1X5iTW8Uu#MBaFxr(_d zW?S6c%)k)69d8aA1O}xUQ24`IUgoBj1{itP)Dq)xI?%R9^kF?v4;_6q8OSl{Z5@zf zkP|S-ej{_xSS(r#4J3w9&4SKAMK7ex3_(Z6f<hmWj?9eE?;SNVH#5SFCNsl&bM$q< z=4M71`-aTTj9?Q7$d+K7|7dPzgqaA<Ks)%+5}_IBXbq4UQuoLl%j#;77^VY_F(%Z^ z%|JKdfeb{-o@ORS=$rOHyHiox0XYVsnFJF{^yP-;W|)U9o12-Mq3;_4Z2?E0hB7xZ zGe93o0S%NJOy79RPFNJvO=gys(;07r#>&tuY*3y?uUX8@P0)v&%t0%%(JKry3yd=v z%|ZQF^t#>*J~4{a7&NoMICR0>0(AH+S{PecV2mi3TUcO>jex|^8_VVxhmV39gBF<6 zujUq(7#DAvTUc74PZXJ3V6IUFU3G%KA>SNyohc~uBNvsHh6Wb(n1aUWYe~#44NcGo z@<8*f7<m<R-Vj=|-`vv32z_&kxup?&;vCT!v^2sj;4O_T(I>UdL2HuGM#9Z4jWLda zHn%i3Ltm+BZfT5uP)EIyxuuCAM!{`qVvK(5zqzG}DSEHV+|mTIp<sz|xH)JeCdLgA zpinh3KwHoR3RcYEGK5XPB1$6A6}ad*#}c&p2`#Z=Sr~3^X@uBV4{r>DHXxzbHkP2q z7P^6;_6>#@#(D%$sG@iC%`HLuaZvR-nOmA*oU#lGR@kf|yr!}=#n^aeZfR<4U_8C- zzMWb<`k<V-r5VOv5pzpW?+(=g=9Xq==)>cniF=HkW@(ObcBHwbIcxzXQaJ*;;2XUF zv&7s7W^QR=icx)nHsGTdYM^7vG0d|>yMq^0j#z^3Do6L7CB{gNg@FP3-StKm1_l^6 z{#Y0oKo-3ql^GV`3+U19urR^6zX0Srq#<cYzueLS<F*fTOG~5$v(Q$nr6tDI#^#om z7<V6-TUuJc+Wqiy1mrvP;ZKn7&?lEI3=GWB3or`<L-6&Epq2$J-GRi=o6r`ZE2mI1 zOTCc=Xw5NNmb3t^e?Tj&EDS)QjT(fYo1@TI;epIU-zxz!5524c-9%+>hE|SP7#L%m z%L@`iZ^MBW;GkE|ps{E4HX&#UKKdFa3j-5VcnJ$DM?fchqEES67?_}6Ja1%S09vPs z9tx%y2k2XXu1CTMK~s!Ya6M?*5PJU%GzE{Ik1Y&92W6sLY=$wvW&ygw2Cab#8q7xT zGk}&RVRR}j3@}ea1YL=UK7tDpL+|@r7+7GOu4rLkfpI#Tg@J_;Vj!X(l664$prMaX zgT&AeMX&&^Jw|I*gTzp`V;LA(7@1?-2xS3Ezvz1FjX)##Xu%3P<_)ds1v<_XeagbZ z$if7@F$!98gprMnEHD<~TNqh_o9UoV1-y0y31a%h(j0xcuZ1zlhiHyAHb6NTA2b|e zVQheLCnZP>se*%aDnVo5=&Ly_K<DwHhXR&$%NE9l=IHAPEI><n(1Y5<(i|g)nbccC z&xS*E1}s2V{-Ik8S`Us|av52Gj-^4XU_fH%EiVf*3yg!FKqJ=R;W|+G!;4HaON<+w zEI_p}T3Zt&hCX~^VP*+$8^X;4ovMVM70pnO+XdMVTEcFM5rpOjW*B+a+yG<Z*TUQo z<B)L+&@d=^Xqg*grXzF1dW>rmEzB{OXIPjUnV>IVurN0=LZ8#HFh@H|+W>T~jFAOK z&M`MOfb<oSI+YgY#uyWTpi37pYCCgdjKydcp!+A$D=|wGlr^Z}906MHh@3EWKrRIB zBSjX3h+zy4Sx#5%vJ<YiG&C_luk=7Y4fJdeI@%Py_O=9FgN<gDrJ;#Abg2-$Bmjw_ z&9i`xPX!%C4@xnJ%wh?;{|2q)Woc-NaVemsA!xxEYLNjFLmz9jG&I8)nFY0U5S?jg ziEU|!In{1yXl{%?abpP@^FYg`mWH4kGSM9aYVBZ%VO%g~S#Jp13yiMN3}X-+<QPaA zLk=x-Q}hu!kYmtWe3qcYKhScnrJ)7*URH4U!?HL?5WNZj^(N6POiM#cQ}lAl($EsN z;S(v|EwOmS(iEvB2Pv^ZnlTcWk%2M#5(`Ts17q|FUC=#4=$kt%jSL}IR3kN-EsYE; zF{0C`-p~|%#jvH3p&9x}s-+R;#Xy!uM#ku6nxzruS>KjMMrP>qTcG|p*mI!phX+6C zXl3;51UmT<t;7Z$p^UzQ(bCA+0=*3b5<{<mEkTDaA(;oV-^kJkbZt0VA_N_$gPv$W zn`Y6orx9pRDw<wnBQx}#prx^q8TyJyOJmb|jD<s>9W&@7HkPI)7*z%6a88sFH3QJS znV^j-XpS*8#kkwk($o}sCkj%DZD|Tx;*74@3}a0qXj?Aoq&>)DGw5{>NZHfW%o2Uf z+7fg}7gF#WfR?gbf>!FIRdAN378ob?TAEs5EETpiwZIq*wKTQBI8F_eVbPnUmZp}* z_2}nWSb{E)N2_}*O)V|Z$FeLzS9YQeGg*QbDWkP@EX@os?l-msE$xMP7|~+~?_x%` z7<AG;L?NP3F*V1S@CSt!`hrVPXrcGqK%s@2OX@*!XMu5^nk8sN9^EIVmd5BkGEit? z6v3vJ7<agVLJNKH4is7@f#|+7Gr-uXZV9@!0yC&F&K0l(t->^%-uK>4rQXmCeE`eS z40IwVTJknCGQ=oP&5SVaK(hp0l7Zm@BlKZBBTF-5aIFGL)`$o*Gd4osCT<B@^@p4f zK$+Lf7-QiDC?wHmGC*P&k!=B5EQjzMq*w#3-$yUPEX>T&#}q9=I|0#Co&{(<2Ess4 za|^V88@>B&3A!H(J)u~b*JB*TWNBf6F&P9BLmvyU1Wi_<R{|E67&jk*Msd)``YkO$ zL#rT1BNuBHmayS5M3h)qnqm}9mIj9C9aPXzH)?({09_hmiau0lX=z}JQs9G&HA^!y zj7r_o47256X@PN>wxy+o0a_oz*ucQV7_Hm|i5X$4Gc~VAt7<^oV9ilnXkcJ$U<A6& z2NYcJLK`fGHrovngWYKj3qg>W1zLs%iNR(#;l-M<fswHR^1K`9;#mVD&=Gm)78|2) z8#V?XJc*i1K<1&}a|cpqjM}fL2l>tfeP0hqA$r%$*ucot5G_Z5)LEd-KY-MsuZRbW zq3zfNiJ7C{l3@(GkO6I@0Z0t}nsJaAdiDg1q0Kvi#L!PwG&V3Y2k*`VjT^!SB0+-a z`*1*F7H9<$SPUc0fJW$1%MVaT5B*RMV*_IY^mUl^U_rDx(-<@Y2OBDdHu}I~Xx(p6 zf-yq7S{f{dmhC`d=r^Z<#7xZ4j_?BsnxbxlG60F8Z-6#70G%3xS|fqP&?mt_Vist# zFkmrwQ4Jl41PP+|0E`VxF>XHtiJ_ma2NJVHtHi)!s43k5bYC!h`5-J*>kUi|(Fcn_ z3K6GrKvp?`4qr4tTagYHLn~U14M4ZQqKAyBsX5w?8e;>{g{x>6se%O2*Q**En1c@V zM=JwB3w2QQJ80bx`XVHdUURgC1t2k`s~{lVT9BY6+7ynlfw>9#wmXm*W{xm7LGGx5 z<_?Sv%uS8Z)^UTyFtT>Nxv2%Xe}m|N85@{`wi}`Q*bIH*0i@0pZ72pLhJKzPNX!y# zaj~(1IcOo50=WHwD67rQ(brCcG#jARY#=f8i*Z3>=#!ctG4!Q7ATdj%$_d=91-k~V zKMfK?Ka>tEhSst)HUMooMo(~{ZNsPy70~&s=)?8K2Ilpa=-0u63`Czu0&7NcH8hSb zP0_lwAa&?h%!0(wuk$iCurM$IkBWlYU$DFg8c9c6od{BBfsrsl<Ljs`A7cXxLj$xn z1V{}1Y9^4F5puN+vL7Ufeku!C45L`KG`B?SCxb53LEqW{62mNREiKSb*#)VqN8i#5 z5;Vie5tg9VC|ZsHHvrMaFm}d)4kE;C4Ov=3d!dN-A4nm3HxzU=kRf{NHv~<^p#{Go z=tOYT0?F9Wz|aseeg>ZK0E?kiPW1)`AVKu$c90nQ?KvPZ^sTqXhTtneQ9}VFhF;u) zcle>@5<>$EgL<^hXvT(y2Iz~XL1GwDVrU53`G;n)p_u{Nhy-Zn0DXrgNX!Jf0~XQ# zGXx!~j~=YXCKv^hA!v6QY8T5GBnDfr3(HN0#wHf%Wk2X9chmvxdIQjfMh57u9MC04 zXk(-xb(Y}C1EiuFbh|rx)oW;MhJFQsF-Q#USbC6{sUg}eBF3Omee^b*p|KhIs%4Nm z6SS?=ATd+)GQiNp82$7xV~`kZ(>lEUXJ}$-g5J6XiJ{l|pdmku#0B0mi<TD53=Prt zUm1gv3|jiA2MMAtsRW4`V+6k$=%OeLOE43rnGyO;iN=OzMh0l(uplvW6ZH0<p_!36 z(x5B2oCjSSj^1`RGy@$hjP4j?OZ2v*p_vK#VYkMHW+sTOQLy%(p_vK#U53VnW}s8b z&@C}VKR5%V&IE1T6eNbx<T5lfwM1{O)f<BPp6Df)nHl;<Eo0CG0ov3%NX!D7kKt_y z(0B^kpfG49A=2D0v?Me$2Mu?D>K{a>($Ea!@M2?7P@@fBg2m8Vx1gZL$YN$D=(kLQ zg5L}=vkGnh8G`P_KpmX`1tI#vQjnMl+N=Rc4E;zEkQn;i^`Ou)MDIBn)|-Kxh#tpg z=r<gLG@GN1K!U{3uVVxUHQJaDNX!)NG&o~JGYbPy#}yp@@FLU9!T`Mi0-AO~nmC5$ z2uox1hNq#KCHi)3(AjcGK@E#{(0~lw!;tnLXi^Cyj?E3w?*RuLcV&*Y2nlrCn*rL; z97xOvBg>i_V&)R_dPB@?Vs40j|GcrGxsefiYsk<XbXzdoCy<aaH$p!=$Jo#ubUh)u zI%CNE3@H5J!EX-QOpT_{%+d&>iZ-(}M(-UPnqe$B0tLSX+VUGv2pS?sG01+9pb2`j z+R)qp{ct=`uo|E@%?!;A(Km&I)M4flb3@ErVs2QEew#5ksL|Hzg2XUWu(^>1+Hrv3 zphjC&0}?}@9s`M4K&ow|_Mf4-G5X0&#)jr51{kHDxrr%8Rx}6QpMVy1=AbhnF~v|4 zs|2Y12b!HkZ~07L7-BD6Z)k3620hCLQNo&=8DZo|&;>rI6Hdm4=4R;YRE!PHL5ma6 z-DGBt(UdSZH?}ZV0HqG3(%IY`{nSxV;{yHSIItMnthliu=zckL2U?h6bUTa;jF4tf zprx~sfsrM8Ps_-_7^9j8PkN$t`-}{XP0`l47#kUY?lnXW1&|oJqmAkfj4jZc@J0qE z===YTjSN8dd!QSLaWx@Goh8~Vs<9E~u`$L*2A~sb(0b=aprv4_Q|cgv#^}SkMh0eP zXfxm-b?8$!pd$f|(3^`!pg|AB`ZY-DY-C_=jy}p}WMFOysy{$uh_Ld@$N=L|FJmJE z&<RQCA!A{Nw#osd&H}ky0*(F}8Pr>%pQQ`B;lv2N%>kOQMz4=RH=!V^c}U%31UkGH zEu(>g8okv93Tbe91Eqh2@66DzLj(n@8QPRONX!Dg1~xJ<M_<DV3Vu))0|g*FYa1Du zqs#|KLW02@ee(k-xG;wDKtYXO_!${kn4!((gY;UMPJhU0FI<man1fo$=tY|m==wIa zrV%J`(at?EHZlZl*F}qILj#Pqy^*0IY|kE|^Jipeh<=y0v5}#nDS8La$j}gd>dV;3 z&<OpKV2~L4>UWTsIqETh^#&k8^dV_uBST{&luo(<NS(1MMjiki7=t$K4VorI?}-|L zI$UTyRwK}U%LGh8^qb_3jSNjt&vXMj2IGKvaA=`-9F3-5w6GVhH!?KB800cCG%`UR z2LdNFLnCwarn`}$ktKYv8afmV3LlJ85!BsA&sv6{TlN${nFvvdfC318KFG+>1WPi( zxE2@`7U&l*8XJKQ5WomWQ)5IoA6AJNnqo}LfETbJiaT%<&d3mSavgd)HbcF60UQZt z=!=SsjSMkvb1^omH#EnnuZ=+MHMHRvBSX;UJ#>pPZeuVuGBPkgp9leoK^injA#G#` z9u5G9KfDw(GBm{qe$ZW^Xk9=f@CBV{jxol#YQosa7__q-Lml!tU(iYfbPFSTJb`Xf zM6a)n%`xk1V+$jUv~3JpvyW~u##IxbgXApCFv?@ly(s8q8tA%P^y<~v(g3|_WCYqP zik|C@EzwU2H8uim&<5E73V(R;n;2jQKj^MG^h9W4fPQehu@PuG0zI@$jM1+NF*br- z4+9;i0@-hDWMYER{051k&kGotV4PZH3=%^h_%bpzKwtA`3=)H{u!ofuW@ex+7Fs-+ znW5g$49ZSspd)B7)L}*)=x!7AXfgvGWPza<db>AL6W_?p9AmcJ$jlsLgxv^q?htzR z1f4;GMGPYZ%`8k%dfT8OUL!LL^xIcKOTRFNe2mO2jWL==pnI|~d~9ioK9pl*ZeWPE zpcFJyZc&f66a#$5GkOmTbnY{H2iFL6?j*X!7NAqp(Sq8-+zg{FXkiXp;f<)}L6gVm zT{e&y`n12X0q90~R7*f&=tFqM2FB<Ydm0;qu0R20J80@RFc3EY38LR6Wo$g%(a~PG z-q^sz0DU|YbjCM&s~R-_3~m#`%>@~2g3)L-HZVm$l*Sk`p^EMw@X3&%%!w$nK@*_p zMLXz(1B?JNGPFRCeq+#WvnU=19hhm3zBS1hbi@H7wxE?G=%#V>0T^RrbM$LxjE#*g z(9d@PiJ{+;0un>N`2ck5y&;C@>WwXpFp`9c0mfXGG3f41v{KjD!~p$_1JI}n`cb4H zF$?rTU1JkNL(pCuaQMSYXJZpXjNwAiJ>h68fIyenV>F74O^l2%(h=zHa12KqnIqL@ zkjfEscR2bq6X>3Bw4-N?jX}3BqV=MUO)y7|j7^Numw|$=5;Q>X=op*SBQ6w2go1$) z`Zy&hs4)^D=*CdA8r>LlG$L9v5ERsi))=HG1`28L039g&5f&Sop^sM?n;2T6FQ5Pg zHAYr6F+x9M)7Thv9}Qah1qx~8&N0Y-P_Uxkp$!r<LYu1qiJ|X@0EwZW)CUqnKan03 z{HExmHpV6<_2`$DgA|&h&xISCn4;h3Yiw*{YJ`zxO-#|x@dBwsKc(K-*u=~LGOLVK zIU1Xop&#fCQfQ1`RT!I~oKFF6G=s#@`)Z(hI!qsfHo_y7grLgN*u)(Ds!C&H6VT2# zB!vbBU@?qh+04`eeb~m>%oKeWsWIqS9i(grakQD45&E)TkV4ez8)UJW8TwjNkUI1o z6W{}7FcK^1PJ8r3Xl8B>o!&yK9L+#yqNDlP%mQPq$=J-o0=+e6Y-VAJwj|Nm*bKDA z0o^=Hw54wK1|Ws#_Z=D=n;RHl_{7`*Tx5bqEZ|wz95nKUW(nvBFtm0m=)!l5!VGlE z655?l#>VD`7&Cvy=7#7CDM9Km=0l9l4K308?V!*?AN~V{7A)t$=RZNgg{T&xr4(pR z1KlTPmgqM|f<h2uA_jbND0;k`Lsxwu+7R`iphn;M4-&&zj$~|ZXox=b1PU$mZXYPL zP=`4Tz@ddcz;A4BWNd^!{|ORAZ!Us5Y3M@*#^#_~S<&O&7-Kls*xUqtx0o^L(o)#; zvjS}X6J#JpI{?&pK@Wa&6GQa*5Rg;QM^%l@LD%)6JJ1CEwsYfpV{=mzjLO8^6l3n% z7<AhKS|=GKhTdp42HjYQ)|)f7G(f*r#Tay2pfUOgJ4g_%uL@e%hB4D`Vqk`Td8;w# zT5gnnhXH5{keLbkh>nSY8Pd=gwEbsdU<TdifoP1HfNn8B>+qO>u0leq^GyuQ(eF$K z9UhD^Gi+jDfiW&^Qg2{kf!@P5F|feMP9_GH=r@ZSn}9|pF&txQj$S&NfL83FwTw*+ z4Zvf3p!y#^{AvQaj~gw)nSjp0Mr*^F7-Afj3TotF^xRB9i)7Fp2-<Lk2-WG+742o} z4bg`TO$?1p(DR{*A*dILnxsM3++wIRu)wGiK|zX^ut33Q1ljk2)Cd5DDSAuP#K02$ zq7`FMn4&Lc1cfPj$pZ>f^u;xxAO$aegB63IMgS;G(Q613Lqm)~1`|U=Q?wJfKw*!W z0u2q(k8L$JF*GtnpA!Iuv@Lqc0}5(z^AzSnP+l?w4ey}`zp;_YbVnt7;d=CSaVDTc zz0q32CWfGEGtrGOHAEkwH!(Ct-!NwkG7o)4sfnS91+;I1Xh)bBni?Xva6u!xCWfYF zXh%#NgTyeB1Za~VMouv^#taKHv~jU|(A6kr7U*-8CWdAf=xspIed_2lI3O|fl}4a5 zZP14*L1GxOZ){|0iFQh)u?cwS11+eHjWFiJLATVy+5)gfjfpX+|B9~H*b;r^fr+t+ z0nEejc7%zs3CaXJIQT*5{h*fvpf){vxngW;h~7vwF~&HM+Zc3bJIXAwfk8b;5dF9k zkeC_ztc8iO8TxI*#vn0_G-C`}euN$h<_2gRDnWY9&C%NtpiA4)+m9eI^r-|B&;?=W zC9WxGaXp&F<^~v({h%A1;eAqAJHo^q<4hD#Kg0-q=*R@r&P2Buv_b?u^@A>?M~^0R zBaBt*^(N*<hUoo&6LTZ<GZKtV%#AG2+Z!gJqa)GF3Ug4q3q2H!F@~8zeJ69YyCXpz zDr1bGHpe&?9;6OqV%-F^bRDhXY67}=3T@oM#N5;ju^%4RjsPuZM{6a44jV=9)|;4{ zVa(Z?n1gx=m_EkHp5`XtrAx^D5EB-26Jvwv7d7mK>(O!s$deZ6-A2$kSm?cbkSEbL za2ta>i5ZZl=ID#hKz@V{1S6Hi=4OZ!XQ1QZCZMC|Fw&hl#)5MbP@4)P#6h<rp$CwK zF>2cvR1%w;V@ztAm|I|sxto|<n1KetP(sq&0{wJj(7C3tdIr%}G6!w%MR$y)u`$}g z*v2O27<Wj4#V~>pbmJC!y0b7qnGXjSrWOY1+w?$#1@QZg5hXF`407}!v@pb&3N^7X zgkIN$)b_P7#8|;(VgXt|faYTh&_pVVSiP}{g^>~ZdQ210NiyhFfQ1o8zt+UU82$8Z zV~`lU!vsr5p!4F;%PLDye-QO(C1X=VLu2#~lc}L0#u$gGp^*W4HE(JNnwLlMov|rs zwjIqQriMnw@Z|uok{GmE4!zq5x&RQp>Ibz}(1(~z4M8`4pj&K=v7yY=(8L72cmVAv zK)?S2RIj4n?P6?dXo@k$VQOe<gx(4@H3VIhf$kX4&0pwZW}wqezhHZe8CtZhvV zL04~JXhuJl095f~3`?3Cg3duk*K2NySjhn`iA_O=ZJ?!oQ$q`kxeil93q$l4l_{w0 zidN}??!-hd2|=wDj3}-*G&O>ZEh4fLsELbON*REHAN{6#V^c%W9Tw=m1MR8C5Hm#| z?=m%n98e4ne^^rvw7CsEfq;S#y;BToW1%+@Kp}|UF9U@jdhKm$Xkm&pas(OC2MMCD zXEHUkFh_6Dni^Ufp>MY}HMBH9AG0zwv^0Yb86u@EOLKU(gO&@XM)ja=L}<ZfWPmZn zX=-GMQ7f7n8DcaCOpQSEO6cYpo1@q0rl7VkXxsx7{_x;8F+e}z)Yuesj1F2kZweaF zz!Wn_uZ~Sk3@p&wsir0dD1+@F`;ARaK=}mC)u1jETH6G4qclbknqc-4O-+n2hLlZB zjM1-%G&VIct~Y`=N?~zgVr+_bqy$JIW?C=-Eg3*}G-%2PLk#_@abr^x6LZMq+Vp=$ z_Pq55XeUh@n}W`FM{9V1ZWBfCZ-A}~#K`9+W(F9k-o(rZz29nTVg?;cLmE*41rz$H z0O+1VjQnc?YHgwW)Yu$-&I)wz5c*iAsfmd(N<RlQqF`!bVuE&P063V?*T|WgfbL{R zw-|I~GKLstp<{w^2Q4V1E$h)6oTesbMwltr4E-1`V^b3|*wg?bpPQIrH0MlB%uUf3 z3YeOJj*$mD8qo+fH8IB+l?92Rk6W6WSYYf<0AKTr7^?zLnwXkcm|zs|CYEUFtsb;G z1T+!~b`6qGEHPR)rY4r?$1NIzdVuKb5KT=DFq&?lTdgp%ubH8x3Hr7wQ!_(LjI!L^ z9J8HZZjOGeuQBLGR*X8t+`<s4%!h=GxdnJg5!9N7H$qL#EsPPpB*?S^=-77j5hqj7 z1-58iKvQ!ION<0;ZfS<z0|%e;f*MWr#-`?$=!dx*n}W{3L@xs@42;mH8$n0vU=+Qe zO{eJX3DBlf^b!@6jLgv+p%#W18-PqL4B>5dczt1EWPsj2G&2BQI)s{zKw{|4G&9ih zBbWnWjZlyv`XCpm+(PfEgT&CYEa*ga^k%%7ktxRZYBM8K3-tN&dNc6-UTCg10^Q7q zA!dnQ|C<?^8=#bC1_s7vM&=lONi!pJjH5L`Z6#y$ZS`hG7Dng`Ak2&`OwcFG%s@vH zq9!C`Gb0Q1JBp3Xj4Tb%XY@giK@`={MkvTN=oJUZG3X=5AjhEB5oSgfX6P*_Gb7B| z0y85^6GODNgIT?ir3w1(Lo?8c8?Xcdt(wh1OLNe=QD(-VyK>N?3A8&HJ!C+KHlSr$ zkY3Q3I;ar>FZIlf4UN&;b09JFc?vUQLlgAwxEW~B8N*^jjE$&f#zx3{y&;WIkRbYk zJTqe>bMzSlGh<_n-A!i3#s=s+-p!1S&Ct7QATjj1#LT$f*aE$jGBY+ozkwOlp~F~e zVg}l`iyoiGCKl-R0q6uJ^!ZRTV^cHm92hA4VTB6l>PhtF%Agx1F$xf4&^A`|csDb` z^ay4Z4Z39#k@|VLK=y-gU_l>@0^Q1j;c8P;BaEOnHO1IgWoBxMu|CGk6ytDVV>46J zdJFWq0`NtQp!PY^l!lq9nE^)O1G?}YJyn~6tU(JI&=vC-=7HvvLF$m&e`cnjn^Zu8 zi2k6NDd@a=3^6nG0SGhDL33z>4InY}4l8Kk3W{D(`ww)05=P+zy5a<_1~fATo#~G5 z7)y+mK4zvEmluE*NgJb2Z<(1H7}}!m3ISg@fgW6-V?NOHHt43)>4|ps!u1%Xvzeh0 zdaVrFyo)$h8PdEkGc&|kk7owDcO5-bSr{5(6vUS1rqI?Mq6ukcX%0TL7}T(VXDUl` zOSI!%jm<1USHq(Pq@{%+`X(bYOAFWz5JVYiiDewq%+eBLMXQ;mg$4Rxn3<&|(v&td z6f7-G(fcuGmX_$(JAxLv7^C-r%nb|-jnJEr<^~4nC+UJTW3=GS4Gho^oCB=|!8qpv zv|1N^M#<d35I%<kZ$g5W-GB=<q?`-d#fQEH)Es=pHEQsiW1jL3TEvfjHzQaKZQ8dU zBxr<Qvzi+iTcYo>HU}-kL~90u)&*hu4r${%v;sB<?WRM^7v=`0hUoW>8H08Mqj#ds z4M05<bRV0Vq8Fy-MkYoWA!uZRe%K!90${|c{jesaxe?~he9*bb=nWuqBNL1hJIq0C zQnd2R+{hIDjxo?S8I1H%Z*F9UF?a$JL!Y-WHv-+6j1~%@r2=Se9djcyGxTnUxskas zdOHauW`^E`G&eFgMV~=7Hv%2%j&8BJ1$x^Rv?m(9mj)6;pNcm(HAUL6>I})pAVKtT z2GDjy^btIe7+QnM#9+E3D`;xo+z|bYbYpXKL-e!sKw_8yZf=Ni-j=yJXulGgzs*5g zdeFrTEe%Z3_CJ}MqcqgOJx7ojdOOYB+}Ide62l8gb8};ivsuhR7qg*_)q-w5M)Yu? zZE<sR(5eP>7lNjjF~rO;Eyg@c#oQb;OpLDA)EK=wGPf}|#o}sHjGbKO;9I-U44lp= z3ywiEj7bc0(8W&ZNgQ;RI9fFa3Lx|zI4FS7n+BlpLGR|9gSK^>VZ<P4I1J65<|Y^o zUQhsG<TrCujFXYf%}q_wn}p`(rbxT*;W226vC7lj+{_TYZ((k3W{lpr1&wQ9<V$li zOZ0}ZIp{8Dv<{JZy*cQn0CXQ)m||LDVU9lQZ*C5{F9B08W)ibBKtF#5bX+*7ZU(ic zkurg$5n{FjT1c2%nxj=;#-Js(=#5*@<<%HL4Z6PqJp);Q#;@RxhV-V)EetUhKbTv9 z_B_KCLUOYO=3Z9Na1loETNq-jxihygg09IzG?vXR>J2T?7tw(BEMcTp3nMf1p&WAy zBa9O>KtodK?Nf6LWAyuqjLj{KA^l8H_`@20AVKs#An2}d^kEy&UEk=#wB{Bj7^~XM zElds2+i4&%<Tf72eq+#8E$D;VATji2kcELM@&R+;C;^F~PgsD?QbivWu`n>hXcSl& znAKw(uL!zs1wB433_zt1YFYq^p(jGnjVb807pNjdU&sp@aD(jULh4Of7=Sigp<7~M zi9P^jVPI*9UZsF;3P$NA85kIYE;mQdiWUZli;BR}4(d%=7=o^y$FSH4y)kHEfN^(} zG04&A9bwQlFX)92$kA9lVp5OZL;<-PJ@tcJjozZLFf>3viP{(>hCY@6x(o)rH)CN4 zy0aJTVMJHR!qCtFBheTdqF={j4C?e?_!zWz9j(H$Ff=kjubeCljnGaw03AbN2x@GB zT>~!(L4&I3S;xZA2;&@43qxa5=;9P4y`W>}(apm+SK8RZ(Ad%l?bbcenHU(yu~--z znxglFLHEI+HwP??G42^Lwg8>Tf!2Yr0PXgM7R&Ii5NL4(ddX#BY;1rL@1VjAsu`Su zK`9-yEeDGjMuG#~6^uFnQg3VlS}uv<LSu|oF&4%qrs!kF7RDxK=oOX)XiW`THEUsP zim_<R!r0Wn6n!+^0(4;thGR@ImY7=@n_}$zu`o6>MxW@mFgC;3SzuvoW)81&c%Yp% zkf7Q0kA9#t1<?9z7RI1canRBeXg2|BNE%xhn_HlF#Xw@{0~;15=qpSOj4e#e455Q; zNIBBX2xE(kg_#k?L5UV-#u%$TKw`-C3}|_g1?b{av_TmQGh-vv;sKN+%|QFh(0puW zf^lS+1?aSP^lWctf-$0EVP=AUL4mP_8E8QYx*et_hUkl|EI=zt(9;uWqztX|3EB#e z5!7a&J7Li+F*8B$zFU}?nZZhXM2<8wHO5HrW~LZtOIVnhVk`~@IR+y)o0(y3^|t^W zM~B*~uLoTUjd4nsg_$|VJhg=xsPT&KI|~E!Aw&x^3uBZ;>7XJ5bU8CdS^%v{Lz~|M zor{lA&6|NvyvMK@GxeKUpkLDfy4~6gqpf3xG|vGWoUkwlITOti(CiU<f&<;!gI;8S zPWVF4#-L#qwDD2!wNhwe^&mlv1`Ft-dh|qS4qEhr?m$B`jN02A<Bk|(&_YB+Hx|;; zx3Dk)m1&?BA)<v05=7rbVhI`zLo0khV(6(Kbki()6<`TElNHU!mIk1shhQEFhq%TP zw6zK?s4WdZ+ZJF7;p!|v9U0^iR7(RBjPva*ryu+ax@yV*v}zCC2vdwMu%!WLxd4Vb zq-D7<>rE{ni$f4$W@%t%h(4ZXX<%k#iFV^WXg`xF`Y^Gjff>faQA-0;j9w?mf#`L! zrGcp#daDI=D*|F!2DH0tX@EH&19BmHufo#6%oKgL1H9o1BL+bm6VXG<+z4&d$k?*p zz#KGg1Bxtod&$zk9Ah@p5_F{@TJd0M0J>=p%@WX2An1-UGBJQO?vbLz#1woGEjV$* znk|-Qh8PC`f;zis1*eIDp#k~^XcGft6ZF9=69W@dBedo(XdgH7ss|%bpUK3)+z36F zg7%_WqRrES#Vn_XM%pXX8=IT(a&hVh<>!|u7#oB311ki91U&Q7@<9T|3I<RC7lmjA z8*>)}BLhnpH#Z|=BLf3-12YR3(AqFlb2B$*M;8N2J7Sc?@^abP@p2WHBo>L5R1~GA U@p6GSt{Iq^@N%iDy862T04PH8tN;K2 diff --git a/Introduction-to-Pandas--solution.ipynb b/Introduction-to-Pandas--solution.ipynb index 87ee2b2..29854d0 100644 --- a/Introduction-to-Pandas--solution.ipynb +++ b/Introduction-to-Pandas--solution.ipynb @@ -1 +1 @@ -{"cells": [{"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["# *Introduction to* Data Analysis and Plotting with Pandas\n", "## JSC Tutorial\n", "\n", "Andreas Herten, Forschungszentrum J\u00fclich, 26 February 2019"]}, {"cell_type": "markdown", "metadata": {"exercise": "onlysolution", "slideshow": {"slide_type": "skip"}}, "source": ["**Version: Solutions**"]}, {"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["## Outline\n", "\n", "* [Task 1](#task1)\n", "* [Task 2](#task2)\n", "* [Task 3](#task3)\n", "* [Task 4](#task4)\n", "* [Task 5](#task5)\n", "* [Task 6](#task6)\n", "* [Task 7](#task7)\n", "* [Bonus Task](#taskb)"]}, {"cell_type": "code", "execution_count": 2, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import pandas as pd"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 1\n", "<a name=\"task1\"></a>\n", "\n", "* Create data frame with\n", " - 10 names of dinosaurs, \n", " - their favourite prime number, \n", " - and their favourite color\n", "* Play around with the frame\n", "* Tell me on poll when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "nopresentation", "slideshow": {"slide_type": "skip"}}, "source": ["Jupyter Notebook 101:\n", "\n", "* Execute cell: `shift+enter`\n", "* New cell in front of current cell: `a`\n", "* New cell after current cell: `b`"]}, {"cell_type": "code", "execution_count": 21, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [],\n", " \"Favourite Prime\": [],\n", " \"Favourite Color\": []\n", "}\n", "#df_dinos = "]}, {"cell_type": "code", "execution_count": 22, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>Dinosaur Name</th>\n", " <th>Aegyptosaurus</th>\n", " <th>Tyrannosaurus</th>\n", " <th>Panoplosaurus</th>\n", " <th>Isisaurus</th>\n", " <th>Triceratops</th>\n", " <th>Velociraptor</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Favourite Prime</th>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>15</td>\n", " <td>16</td>\n", " <td>23</td>\n", " <td>42</td>\n", " </tr>\n", " <tr>\n", " <th>Favourite Color</th>\n", " <td>blue</td>\n", " <td>white</td>\n", " <td>blue</td>\n", " <td>purple</td>\n", " <td>violet</td>\n", " <td>gray</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": ["Dinosaur Name Aegyptosaurus Tyrannosaurus Panoplosaurus Isisaurus \\\n", "Favourite Prime 4 8 15 16 \n", "Favourite Color blue white blue purple \n", "\n", "Dinosaur Name Triceratops Velociraptor \n", "Favourite Prime 23 42 \n", "Favourite Color violet gray "]}, "execution_count": 22, "metadata": {}, "output_type": "execute_result"}], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [\"Aegyptosaurus\", \"Tyrannosaurus\", \"Panoplosaurus\", \"Isisaurus\", \"Triceratops\", \"Velociraptor\"],\n", " \"Favourite Prime\": [\"4\", \"8\", \"15\", \"16\", \"23\", \"42\"],\n", " \"Favourite Color\": [\"blue\", \"white\", \"blue\", \"purple\", \"violet\", \"gray\"]\n", "}\n", "df_dinos = pd.DataFrame(happy_dinos).set_index(\"Dinosaur Name\")\n", "df_dinos.T"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 2\n", "<a name=\"task2\"></a>\n", "\n", "* Read in `nest-data.csv` to `DataFrame`; call it `df`\n", "* Get to know it and play a bit with it\n", "* Tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 30, "metadata": {"exercise": "task"}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["id,Nodes,Tasks/Node,Threads/Task,Runtime Program / s,Scale,Plastic,Avg. Neuron Build Time / s,Min. Edge Build Time / s,Max. Edge Build Time / s,Min. Init. Time / s,Max. Init. Time / s,Presim. Time / s,Sim. Time / s,Virt. Memory (Sum) / kB,Local Spike Counter (Sum),Average Rate (Sum),Number of Neurons,Number of Connections,Min. Delay,Max. Delay\n", "5,1,2,4,420.42,10,true,0.29,88.12,88.18,1.14,1.20,17.26,311.52,46560664.00,825499,7.48,112500,1265738500,1.5,1.5\n", "5,1,4,4,200.84,10,true,0.15,46.03,46.34,0.70,1.01,7.87,142.97,46903088.00,802865,7.03,112500,1265738500,1.5,1.5\n"]}], "source": ["!cat nest-data.csv | head -3"]}, {"cell_type": "code", "execution_count": 31, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>Nodes</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>...</th>\n", " <th>Max. Init. Time / s</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>420.42</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>88.18</td>\n", " <td>...</td>\n", " <td>1.20</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " <td>46560664.0</td>\n", " <td>825499</td>\n", " <td>7.48</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>200.84</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>46.03</td>\n", " <td>46.34</td>\n", " <td>...</td>\n", " <td>1.01</td>\n", " <td>7.87</td>\n", " <td>142.97</td>\n", " <td>46903088.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>8</td>\n", " <td>202.15</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>48.48</td>\n", " <td>...</td>\n", " <td>1.20</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " <td>47699384.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>89.57</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>20.41</td>\n", " <td>23.21</td>\n", " <td>...</td>\n", " <td>3.04</td>\n", " <td>3.19</td>\n", " <td>60.31</td>\n", " <td>46813040.0</td>\n", " <td>821491</td>\n", " <td>7.23</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>164.16</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.20</td>\n", " <td>40.03</td>\n", " <td>41.09</td>\n", " <td>...</td>\n", " <td>1.58</td>\n", " <td>6.08</td>\n", " <td>114.88</td>\n", " <td>46937216.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 21 columns</p>\n", "</div>"], "text/plain": [" id Nodes Tasks/Node Threads/Task Runtime Program / s Scale Plastic \\\n", "0 5 1 2 4 420.42 10 True \n", "1 5 1 4 4 200.84 10 True \n", "2 5 1 2 8 202.15 10 True \n", "3 5 1 4 8 89.57 10 True \n", "4 5 2 2 4 164.16 10 True \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "0 0.29 88.12 \n", "1 0.15 46.03 \n", "2 0.28 47.98 \n", "3 0.15 20.41 \n", "4 0.20 40.03 \n", "\n", " Max. Edge Build Time / s ... Max. Init. Time / s Presim. Time / s \\\n", "0 88.18 ... 1.20 17.26 \n", "1 46.34 ... 1.01 7.87 \n", "2 48.48 ... 1.20 7.95 \n", "3 23.21 ... 3.04 3.19 \n", "4 41.09 ... 1.58 6.08 \n", "\n", " Sim. Time / s Virt. Memory (Sum) / kB Local Spike Counter (Sum) \\\n", "0 311.52 46560664.0 825499 \n", "1 142.97 46903088.0 802865 \n", "2 142.81 47699384.0 802865 \n", "3 60.31 46813040.0 821491 \n", "4 114.88 46937216.0 802865 \n", "\n", " Average Rate (Sum) Number of Neurons Number of Connections Min. Delay \\\n", "0 7.48 112500 1265738500 1.5 \n", "1 7.03 112500 1265738500 1.5 \n", "2 7.03 112500 1265738500 1.5 \n", "3 7.23 112500 1265738500 1.5 \n", "4 7.03 112500 1265738500 1.5 \n", "\n", " Max. Delay \n", "0 1.5 \n", "1 1.5 \n", "2 1.5 \n", "3 1.5 \n", "4 1.5 \n", "\n", "[5 rows x 21 columns]"]}, "execution_count": 31, "metadata": {}, "output_type": "execute_result"}], "source": ["df = pd.read_csv(\"nest-data.csv\")\n", "df.head()"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "subslide"}}, "source": ["## Task 3\n", "<a name=\"task3\"></a>\n", "\n", "* Add a column to the Nest data frame called `Virtual Processes` which is the total number of threads across all nodes (i.e. the product of threads per task and tasks per node and nodes)\n", "* Remember to tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 54, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>Nodes</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>...</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " <th>Virtual Processes</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>420.42</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>88.18</td>\n", " <td>...</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " <td>46560664.0</td>\n", " <td>825499</td>\n", " <td>7.48</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>8</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>200.84</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>46.03</td>\n", " <td>46.34</td>\n", " <td>...</td>\n", " <td>7.87</td>\n", " <td>142.97</td>\n", " <td>46903088.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>8</td>\n", " <td>202.15</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>48.48</td>\n", " <td>...</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " <td>47699384.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>89.57</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>20.41</td>\n", " <td>23.21</td>\n", " <td>...</td>\n", " <td>3.19</td>\n", " <td>60.31</td>\n", " <td>46813040.0</td>\n", " <td>821491</td>\n", " <td>7.23</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>32</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>164.16</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.20</td>\n", " <td>40.03</td>\n", " <td>41.09</td>\n", " <td>...</td>\n", " <td>6.08</td>\n", " <td>114.88</td>\n", " <td>46937216.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 22 columns</p>\n", "</div>"], "text/plain": [" id Nodes Tasks/Node Threads/Task Runtime Program / s Scale Plastic \\\n", "0 5 1 2 4 420.42 10 True \n", "1 5 1 4 4 200.84 10 True \n", "2 5 1 2 8 202.15 10 True \n", "3 5 1 4 8 89.57 10 True \n", "4 5 2 2 4 164.16 10 True \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "0 0.29 88.12 \n", "1 0.15 46.03 \n", "2 0.28 47.98 \n", "3 0.15 20.41 \n", "4 0.20 40.03 \n", "\n", " Max. Edge Build Time / s ... Presim. Time / s Sim. Time / s \\\n", "0 88.18 ... 17.26 311.52 \n", "1 46.34 ... 7.87 142.97 \n", "2 48.48 ... 7.95 142.81 \n", "3 23.21 ... 3.19 60.31 \n", "4 41.09 ... 6.08 114.88 \n", "\n", " Virt. Memory (Sum) / kB Local Spike Counter (Sum) Average Rate (Sum) \\\n", "0 46560664.0 825499 7.48 \n", "1 46903088.0 802865 7.03 \n", "2 47699384.0 802865 7.03 \n", "3 46813040.0 821491 7.23 \n", "4 46937216.0 802865 7.03 \n", "\n", " Number of Neurons Number of Connections Min. Delay Max. Delay \\\n", "0 112500 1265738500 1.5 1.5 \n", "1 112500 1265738500 1.5 1.5 \n", "2 112500 1265738500 1.5 1.5 \n", "3 112500 1265738500 1.5 1.5 \n", "4 112500 1265738500 1.5 1.5 \n", "\n", " Virtual Processes \n", "0 8 \n", "1 16 \n", "2 16 \n", "3 32 \n", "4 16 \n", "\n", "[5 rows x 22 columns]"]}, "execution_count": 54, "metadata": {}, "output_type": "execute_result"}], "source": ["df[\"Virtual Processes\"] = df[\"Nodes\"] * df[\"Tasks/Node\"] * df[\"Threads/Task\"]\n", "df.head()"]}, {"cell_type": "code", "execution_count": 55, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"text/plain": ["Index(['id', 'Nodes', 'Tasks/Node', 'Threads/Task', 'Runtime Program / s',\n", " 'Scale', 'Plastic', 'Avg. Neuron Build Time / s',\n", " 'Min. Edge Build Time / s', 'Max. Edge Build Time / s',\n", " 'Min. Init. Time / s', 'Max. Init. Time / s', 'Presim. Time / s',\n", " 'Sim. Time / s', 'Virt. Memory (Sum) / kB', 'Local Spike Counter (Sum)',\n", " 'Average Rate (Sum)', 'Number of Neurons', 'Number of Connections',\n", " 'Min. Delay', 'Max. Delay', 'Virtual Processes'],\n", " dtype='object')"]}, "execution_count": 55, "metadata": {}, "output_type": "execute_result"}], "source": ["df.columns"]}, {"cell_type": "code", "execution_count": 56, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import matplotlib.pyplot as plt\n", "%matplotlib inline"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 4\n", "<a name=\"task4\"></a>\n", "\n", "* Sort the data frame by the virtual proccesses\n", "* Plot `\"Presim. Time / s\"` and `\"Sim. Time / s\"` of our data frame `df` as a function of the virtual processes\n", "* Use a dashed, red line for `\"Presim. Time / s\"`, a blue line for `\"Sim. Time / s\"` (see [API description](https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot))\n", "* Don't forget to label your axes and to add a legend\n", "* Submit when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 61, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["df.sort_values([\"Virtual Processes\", \"Nodes\", \"Tasks/Node\", \"Threads/Task\"], inplace=True)"]}, {"cell_type": "code", "execution_count": 62, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VdW5//HPQwgJCIqSaJHBgOIAgoFGxOKQioiiFfWK0ksVbr1X2+rtVaut3taK/sSrVdFarcNVXmC1WpwqdWSoQ/WqGChaBJSoKFCUQUAZJfD8/lj7kJPknOSQ5OScJN/367Vfe5+19vDs7OQ8WXtY29wdERGRurTJdAAiItI8KGGIiEhKlDBERCQlShgiIpISJQwREUmJEoaIiKRECUNERFKihCEiIilRwhARkZS0zXQADVFQUOBFRUWZDkNEpFmZO3fuGncv3N3lmnXCKCoqoqysLNNhiIg0K2b2aX2W0ykpERFJiRKGiIikRAlDRERS0qyvYYhI49u+fTvLly9n69atmQ5FGig/P5/u3buTm5vbKOtTwhCRKpYvX06nTp0oKirCzDIdjtSTu7N27VqWL19Or169GmWdOiUlIlVs3bqVLl26KFk0c2ZGly5dGrWlqIQhIjUoWbQMjX0cW2XCWLAAfvlLWLs205GIiDQfrTJhLFkCN94In32W6UhEJJGcnByKi4s5/PDDGT16NJs3b27wOu+9914eeuihBq/n4osvpri4mL59+9K+fXuKi4spLi7miSee4Ne//jWzZs1q8DYSuemmm3jkkUfSsu5UtcqL3gUFYbx6dWbjEJHE2rdvz/z58wEYO3Ys9957L5dffvmuenfH3WnTJvX/eX/0ox81Smx33303AEuXLuW0007bFSfA2Wef3SjbSOSll15i2rRpaVt/KlplC6Mw6kFFCUMk+x177LGUl5ezdOlSDjnkEM4//3wOP/xwli1bxowZMzj66KMZNGgQo0ePZuPGjQBcddVV9O3blwEDBnDFFVcAMGHCBG699VYASktLueyyyygpKeGwww7jnXfe4ayzzqJPnz786le/qnes48eP54knngBC10VXX301xcXFlJSUMG/ePEaMGMGBBx7Ivffeu2uZW265hSOPPJIBAwZw7bXXJlzvV199xTfffENhYdXun1599dVdLZyBAwfy9ddf1zv2VLTKFkbsZ75mTWbjEGkWSktrlp1zDvzkJ7B5M4wcWbN+/PgwrFkD1f/rfuWVlDddUVHBCy+8wMknnwzAkiVLmDp1KkOGDGHNmjXccMMNzJo1iz322IObb76ZSZMmcfHFF/P000+zePFizIz169cnXHe7du0oKyvjt7/9LaNGjWLu3Lnss88+HHjggVx22WV06dIl5TiT6dmzJ/Pnz+eyyy5j/PjxvPHGG2zdupXDDz+cH/3oR8yYMYMlS5YwZ84c3J3TTz+d1157jeOOO67KembNmsWwYcNqrP/WW2/l7rvvZujQoWzcuJH8/PwGx1ybtLUwzCzfzOaY2btm9r6ZXReV9zKzt82s3Mz+ZGbtovK86HN5VF+Urtj23htyctTCEMlWW7Zs2fWfec+ePbngggsAOOCAAxgyZAgAb731FgsXLmTo0KEUFxczdepUPv30U/baay/y8/O54IILeOqpp+jQoUPCbZx++ukA9O/fn379+tG1a1fy8vLo3bs3y5Yta5T9iN/GUUcdRadOnSgsLCQvL4/169czY8YMZsyYwcCBAxk0aBCLFy9myZIlNdbz4osvcsopp9QoHzp0KJdffjl33nkn69evp23b9LYB0rn2bcAJ7r7RzHKB183sBeBy4HZ3f8zM7gUuAO6Jxuvc/SAzGwPcDJybjsDatIEuXZQwRFJSW4ugQ4fa6wsKdqtFERN/DSPeHnvssWva3Rk+fDiPPvpojfnmzJnD7NmzeeKJJ7jrrrv461//WmOevLw8ANq0abNrOva5oqJit2NOpK5tuDtXX301F110Ua3rmTNnDvfcc0+N8quuuopTTz2V559/nqFDh/LSSy9x6KGHNkrsiaStheHBxuhjbjQ4cALwRFQ+FTgjmh4VfSaqH2ZpvBm8oEAJQ6Q5GzJkCG+88Qbl5eUAbNq0iQ8//JCNGzeyYcMGRo4cye233867776b4UiTGzFiBJMnT9517WXFihWsWrWqyjzvv/8+hx56KDk5OTWW/+ijj+jfvz+/+MUvOPLII1m8eHFa401r+8XMcoC5wEHA3cBHwHp3j6Xv5UC3aLobsAzA3SvMbAPQBUjLlYbCQiUMkeassLCQKVOm8P3vf59t27YBcMMNN9CpUydGjRrF1q1bcXcmTZpU722MHDmSBx54gP3337+xwq7ipJNOYtGiRRx99NEAdOzYkYcffph999131zzx13Cqu+OOO3j55Zdp06YN/fr1S3jaqjGZu6d1AwBm1hl4GrgGmOLuB0XlPYAX3P1wM1sAnOzuy6O6j4Cj3H1NtXVdCFwI0LNnz29/+mm93gPC6NHhAb5Fi+q7VyIt06JFizjssMMyHYZEhg8fzkMPPUTXrl3rtXyi42lmc929ZHfX1SS31br7euBl4Gigs5nFWjbdgRXR9AqgB0BUvxdQ41lsd7/f3UvcvaT6LWa7Qy0MEWkOZs6cWe9k0djSeZdUYdSywMzaA8OBRYTEEbvPbhzwTDQ9PfpMVP9XT2Pzp6AAvvwSduxI1xZERFqWdF7D6ApMja5jtAGmufuzZrYQeMzMbgD+DjwYzf8g8AczKwe+BMakMTYKC8E99CcVd7pQRESSSFvCcPf3gIEJyj8GBico3wqMTlc81cU/vKeEISJSt1bZNQioexARkd2lhKGEISKSklabMNRjrUj2mjhxIv369WPAgAEUFxfz9ttvA/Dv//7vLFy4sMHrP+qooyguLqZnz54UFhbu6sBv6dKljBw5Mmn/Uw11yimnsHz58rSsuym0ys4HQQlDJFu9+eabPPvss8ybN4+8vDzWrFnDN998A8ADDzzQKNuIJaApU6ZQVlbGXXfdtavu+eefb5RtVLdlyxbWrl1L9+7d07L+ptBqWxjt2sFee6nHWpFss3LlSgoKCnb1vVRQULDrSevS0lLKysqA8FT0lVdeSb9+/TjxxBOZM2cOpaWl9O7dm+nTp9d7+0VFRaxZs4alS5dy6KGHMn78eA4++GDGjh3LrFmzGDp0KH369GHOnDlA6JLkhz/8IYMHD2bgwIE888wzCdf7yiuvUJqg598777xzV1fsY8ak9ebQBmu1LQzQw3sidbn0UkjQB2CDFBfDHXckrz/ppJO4/vrrOfjggznxxBM599xzOf7442vMt2nTJk444QRuueUWzjzzTH71q18xc+ZMFi5cyLhx43b1FNsQ5eXlPP7440yePJkjjzySP/7xj7z++utMnz6dG2+8kT//+c9MnDiRE044gcmTJ7N+/XoGDx7MiSeeWKWjRAhdfJxxxhk1tnHTTTfxySef7OrBNpu12hYGqANCkWzUsWNH5s6dy/33309hYSHnnnsuU6ZMqTFfu3btdvWx1L9/f44//nhyc3Pp378/S5cubZRYevXqRf/+/Xf11TRs2DDMrMo2ZsyYwU033URxcTGlpaVs3bqVzxK8//mNN97gmGOOqVE+YMAAxo4dy8MPP5z27skbKrujS7PCQqhnV1QirUJtLYF0ysnJobS0lNLSUvr378/UqVMZP358lXlyc3OJdWgd3314Oronr20b7s6TTz7JIYccknQ9H3/8MT169KBdu3Y16p577jlee+01/vKXvzBx4kT+8Y9/ZG3iaNUtjMJCXcMQyTYffPBBlZcIzZ8/nwMOOCCDEdVuxIgR/O53vyPWk9Hf//73GvMk63F2586dLFu2jO9+97vcfPPNbNiwYVdX59mo1SeM1atDFyEikh02btzIuHHjdl0IXrhwIRMmTKjXuv75z38yMtErZBvRNddcw/bt2xkwYAD9+vXjmmuuqTHPiy++mDBh7Nixgx/84Af079+fgQMH8tOf/pTOnTunNd6GaJLuzdOlpKTEY3dM1Mdtt8EVV8D69eGOKRFR9+aNbdu2bQwdOpSGfFc1RLPr3jxb6VkMEUm3vLy8jCWLxtaqE4a6BxERSZ0SBrrwLVJdcz5VLZUa+zgqYaAWhki8/Px81q5dq6TRzLk7a9euJT8/v9HWmZ03+zYRJQyRmrp3787y5ctZrT+MZi8/P79R+65q1QmjQwfIz1fCEImXm5tLr169Mh2GZKFWfUrKTA/viYikqlUnDFAHhCIiqVLCUMIQEUlJq08Y6rFWRCQ1rT5hqIUhIpIaJYxC2LQJtmzJdCQiItktbQnDzHqY2ctmttDM3jez/4rKJ5jZCjObHw0j45a52szKzewDMxuRrtji6WlvEZHUpPM5jArgZ+4+z8w6AXPNbGZUd7u73xo/s5n1BcYA/YD9gVlmdrC770hjjFUe3uvRI51bEhFp3tLWwnD3le4+L5r+GlgEdKtlkVHAY+6+zd0/AcqBwemKL0Y91oqIpKZJrmGYWREwEHg7KrrEzN4zs8lmtndU1g1YFrfYchIkGDO70MzKzKysMbou0CkpEZHUpD1hmFlH4EngUnf/CrgHOBAoBlYCt+3O+tz9fncvcfeSwti3fQOoPykRkdSkNWGYWS4hWTzi7k8BuPsX7r7D3XcC/0vlaacVQPxVhO5RWVp17gw5OUoYIiJ1SeddUgY8CCxy90lx5V3jZjsTWBBNTwfGmFmemfUC+gBz0hVfTJs20KWLEoaISF3SeZfUUOA84B9mNj8q+2/g+2ZWDDiwFLgIwN3fN7NpwELCHVYXp/sOqRg9vCciUre0JQx3fx2wBFXP17LMRGBiumJKRj3WiojUrdU/6Q1qYYiIpEIJAyUMEZFUKGEQHt778kuoqMh0JCIi2UsJg8pnMb78MrNxiIhkMyUM9PCeiEgqlDBQwhARSYUSBuqAUEQkFUoYqIUhIpIKJQwqWxh6eE9EJDklDCA3N3RCqBaGiEhyShgRPbwnIlI7JYxIQYEShohIbZQwIuqAUESkdkoYEZ2SEhGpnRJGJNbCcM90JCIi2UkJI1JQANu3w4YNmY5ERCQ7KWFE9PCeiEjtlDAisYShC98iIokpYUTUwhARqZ0SRkQJQ0SkdkoYEfVYKyJSOyWMyB57QPv2uoYhIpJM2hKGmfUws5fNbKGZvW9m/xWV72NmM81sSTTeOyo3M7vTzMrN7D0zG5Su2JLRw3siIsmls4VRAfzM3fsCQ4CLzawvcBUw2937ALOjzwCnAH2i4ULgnjTGlpAShohIcmlLGO6+0t3nRdNfA4uAbsAoYGo021TgjGh6FPCQB28Bnc2sa7riS0QJQ0QkuSa5hmFmRcBA4G1gP3dfGVV9DuwXTXcDlsUttjwqazLqsVZEJLm0Jwwz6wg8CVzq7l/F17m7A7vVe5OZXWhmZWZWtrqRv93VY62ISHJpTRhmlktIFo+4+1NR8RexU03ReFVUvgLoEbd496isCne/391L3L2kMPbwRCMpLIRNm2DLlkZdrYhIi5DOu6QMeBBY5O6T4qqmA+Oi6XHAM3Hl50d3Sw0BNsSdumoSenhPRCS5tmlc91DgPOAfZjY/Kvtv4CZgmpldAHwKnBPVPQ+MBMqBzcC/pTG2hOIf3uvZs6m3LiKS3dKWMNz9dcCSVA9LML8DF6crnlSohSEikpye9I6jHmtFRJJTwoijFoaISHJKGHE6d4acHCUMEZFElDDimOnhPRGRZJQwqtHDeyIiidWZMMzsN2a2p5nlmtlsM1ttZj9oiuAyQf1JiYgklkoL46SoS4/TgKXAQcCV6Qwqk5QwREQSSyVhxJ7VOBV43N03pDGejNM1DBGRxFJJGM+a2WLg28BsMysEtqY3rMwpLIR162D79kxHIiKSXepMGO5+FfAdoMTdtxO67RiV7sAyJfYsxpdfZjYOEZFsk9JdUu7+pbvviKY3ufvn6Q0rc/TwnohIYrqttholDBGRxJImjOhdFq1OfI+1IiJSqbbeat80s+XAi8CL7r60aULKLHVAKCKSWNKE4e4l0bu4TwbuMLNuwOvAC8Cr7r6tSSJsYl26hLFaGCIiVdV6DcPdl7r7ve5+BuFOqb8AJwJ/M7PnmiLAppabC3vvrYQhIlJdyi9Qim6p/Ws0ELU4WiQ9vCciUlO975Jy9xWNGUg2UfcgIiI16bbaBNRjrYhITSknDDPrkM5AsolaGCIiNaXSvfl3zGwhsDj6fISZ/T7tkWVQrIXhnulIRESyRyotjNuBEcBaAHd/FzgunUFlWkEBVFTA+vWZjkREJHuk2pfUsmpFO9IQS9bQw3siIjWlkjCWmdl3AI/euncFsKiuhcxsspmtMrMFcWUTzGyFmc2PhpFxdVebWbmZfWBmI+q1N41E/UmJiNSUSsL4EXAx0A1YARRHn+syhfCUeHW3u3txNDwPYGZ9gTFAv2iZ35tZTgrbSAslDBGRmup8cM/d1wBjd3fF7v5a1LVIKkYBj0XdjXxiZuXAYODN3d1uY1AHhCIiNdWZMMysF/CfQFH8/O5+ej23eYmZnQ+UAT9z93WE1stbcfMsj8oyQi0MEZGaUuka5M/Ag4R+pHY2cHv3AP8P8Gh8G/DD3VmBmV0IXAjQs2fPBoaTWIcOYdBFbxGRSqkkjK3ufmdjbMzdv4hNm9n/As9GH1cAPeJm7R6VJVrH/cD9ACUlJWl7UkIP74mIVJXKRe/fmtm1Zna0mQ2KDfXZmJl1jft4JhC7g2o6MMbM8qJTYH2AOfXZRmNRwhARqSqVFkZ/4DzgBCpPSXn0OSkzexQoBQqiFzFdC5SaWXG0/FLgIgB3f9/MpgELgQrg4tg7xDNl/vzw8J6IiATmdfR/Ed2x1Nfdv2makFJXUlLiZWVlaVm3WRirexARaWnMbK67l+zucqmckloAdN79kJq3MWOge/dMRyEikj1SOSXVGVhsZu8Au17L2oDbapuFtm2hXbtMRyEikj1SSRjXpj0KERHJeqk86f1qUwQiIiLZLWnCMLPX3f0YM/uacFfTrirA3X3PtEcnIiJZo7YWxh4A7t6piWIREZEsVttdUrqhVEREdqmthbGvmV2erNLdJ6UhHhERyVK1JYwcoCPhmoWIiLRytSWMle5+fZNFIiIiWa22axhqWYiIyC61JYxhTRaFiIhkvaQJw92/bMpAREQku6XS+aCIiIgShoiIpEYJQ0REUqKEUYuKCr1ASUQkRgkjiSOOgM8+g4kTMx2JiEh2SOV9GK3S5ZfDe+/BNdfA3nvDxRdnOiIRkcxSwkiiTRt48EHYsAEuuQQ6d4axYzMdlYhI5uiUVC1yc+FPf4LSUhg3Dp59NtMRiYhkjhJGHfLz4ZlnoLgYRo+G117LdEQiIpmhhJGCPfeEF16AoiL43vdg3rxMRyQi0vTSljDMbLKZrTKzBXFl+5jZTDNbEo33jsrNzO40s3Ize8/MBqUrrvoqLIQZM8K1jJNPhg8+yHREIiJNK50tjCnAydXKrgJmu3sfYHb0GeAUoE80XAjck8a46q1HD5g5M0wPHx5uuxURaS3SljDc/TWgegeGo4Cp0fRU4Iy48oc8eAvobGZd0xVbQxx8MLz0Urh7avhwWLUq0xGJiDSNpr6GsZ+7r4ymPwf2i6a7Acvi5lselWWlgQPDHVPl5XDnnZmORkSkaWTsore7O7DbHW+Y2YVmVmZmZatXr05DZKk59ljo2BE2bcpYCCIiTaqpE8YXsVNN0Th2QmcF0CNuvu5RWQ3ufr+7l7h7SWFhYVqDFRGRSk2dMKYD46LpccAzceXnR3dLDQE2xJ26EhGRLJC2rkHM7FGgFCgws+XAtcBNwDQzuwD4FDgnmv15YCRQDmwG/i1dcYmISP2kLWG4+/eTVNV4V3h0PUPd+4mIZDE96S0iIilRwhARkZQoYYiISEqUMEREJCVKGCIikhIlDBERSYkShoiIpEQJQ0REUqKEISIiKVHCEBGRlChhiIhISpQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDRERSooTRQCtWwFdfZToKEZH0U8JogAMPhMcfh4ICGDYMbrsNFi0C90xHJiLS+JQwGuDtt+HVV+Gyy2DVKrjiCujbNySSSy6B55+HLVsyHaWISOMwb8b/DpeUlHhZWVmmw9jls8/ghRdCopg1CzZvho4dYd486NMn09GJiARmNtfdS3Z3ObUwGlHPnnDRRfDMM7B2Lfzud7BxIyxblunIREQaTgkjTfLzYcCATEchItJ4lDBERCQlbTOxUTNbCnwN7AAq3L3EzPYB/gQUAUuBc9x9XSbiExGRmjLZwviuuxfHXXi5Cpjt7n2A2dFnERHJEtl0SmoUMDWangqckcFYRESkmkwlDAdmmNlcM7swKtvP3VdG058D+yVa0MwuNLMyMytbvXp1U8QqIiJk6BoGcIy7rzCzfYGZZrY4vtLd3cwSPiDi7vcD90N4DiP9oYqICGSoheHuK6LxKuBpYDDwhZl1BYjGqzIRm4iIJNbkCcPM9jCzTrFp4CRgATAdGBfNNg54pqljExGR5DJxSmo/4Gkzi23/j+7+opm9A0wzswuAT4FzMhBbo+rUKYzvuw+GDIEOHTIbj4hIQzR5wnD3j4EjEpSvBYY1dTzpVFwM118P114LixfDU0+FjglFRJqjbLqttsUxg2uugeeeC/1JlZSEjglFRJojJYwmcMopUFYGRUVw2mlw3XWwc2emoxIR2T1KGE2kd2944w047zyYMAFOPx3WpdjxyZw58MknaQ1PRKROmXoOo1Xq0AGmTIGjjoJLLw2nqJ5+umavttu2wccfQ3k5LFkCP/tZKG/Gry4RkRZACaOJmcFPfgIDB8LZZ4e7py6/PLQ2liwJw2ef6ZSViGQfJYwMOfro8Ca+c8+FiROhc+fwVr7vfAfOPz9Mx4YhQ0JrREQkk5QwMmi//eDll+Grr2DPPUPrQ0QkWylhZJgZ7LVXpqMQEamb7pJqJnbs0EVvEckstTCagXbtYNo0mD4dunaFb30rDLHp6mX77gu5uZmOWkRaGiWMZmDKFHj1Vfj8c1i5Mow//DCUffllzfnNoKCgZmIZNChcZBcRqQ8ljGagpCT5XVLbtsEXX4QkEp9QqieXlSvhm29g1CjIz2/a+EWkZVDCaOby8qBnzzDU5je/gV/8Am64Adq2DYnmm2/COH66qAjOPBMGD9ZdWyJSlRJGKxFLKBMnhnFubkg27dpVjtu1gyefhJtvhu7d4ayz4F/+BYYOhZyczMUuItnBvBnfelNSUuJlZWX1W3jxYujYMXwzthKbN4cv/nbtkrce1q2DZ58NieOll2Dr1nAR/YwzQvL47nd1QV2kuTOzue6+248Dt86E4Q7HHAPvvw933hl6BNT5lxo2bgzdsT/5ZOiifdOmkGxGjQqJo0MHaN8+jOOnq4/z8/XjFckmShi766OPYPx4eP318A14333h0WtJaMuWkDRGj67f8u3bV00kZ58NN97YuDGKSGqUMOpjxw644w745S/D6amXX4b+/RsvwBZox47Q0tiyJZziio3jp+saT54c1vX731deO4m/jhI/JCqPL8vNVetFZHfVN2G07oveOTmh7/BTTgm3ER1ySCh317dQEjk5od+rPfes/zr22gtuvz302tsYcnNrTzpt24Z5qg+x8k6dYJ99wrD33pXT8Z87ddKvhEjrbmEksn49jBgRXsQ9cmTjrluAkI/XrYPt2ytv6Y0fEpU1pLyiImyr+lBREeq//jo8ALltW/KYc3KSJ5T/+z9YuDCc0ezYEfbYo/7j9u3DNZ+8vDCu7QYFkfpSC6OxrFkTzpucempIGhMmZDqiFscsfNlmmy1bQuKIDevWJf/8+echSaxbBxs2hOWPOy7cKLBpUxivXVv186ZN9XvPSX5+1SQSP6RStrvLbdsGU6dWttwStd7qOlVY22fdot18KWFUd9BB4QXcgweHO6j22Qd++tNQV1YWvh06dgznKDp1Crfl6l/AFqF9e+jWLQy7o6IijNvW8dfkHm5Tjk8g1cdbtyYetm1LXv7VV7BqVfJ5s+0kQps2u59k6pOYEp2abNMmJKzqQ2OVt/Svgqw7JWVmJwO/BXKAB9z9pmTzpuWUVMzNN8PVV4dOmP75z1D2ve+FhxSqz/fzn6cnBpEGcg+n35IlnWSJqGPH0O9YbPnaTv9VL6vrc2PNE/u8fXumf8pVpTMhxZePHh1u9KyPFnFKysxygLuB4cBy4B0zm+7uC5s8mF/8Aq68Mvz1xEyaFJLD11+HYdo06NIl/It3+umVRzM2Pv98GDMmnJvQAwmSAWaV/2HXd/m8vDBkq/ikliypbNsWTgfu2FFzaKzyxlxXovLq+/D1103/s86qhAEMBsrd/WMAM3sMGAU0fcKA8MXfoUPl59g7U2NiXb/GTmLHruLGjvjmzaG8tBQWLAh/tZ07h2H4cLjrrlD/85+HHgQrKsKyFRWhP47LLgv1ZmG44YbKz2edFe7q+vhjePzxyphiCemcc0LHUB98AH/5CyxdGk6p/eQnIZmdfno4pfbBB+EBxjZtqia8E04I3xKffALLl1fWVVSE8iOPDNv58MNQHx87hNYYwN/+BuXloTw2T14e/Md/hJ/Rxo01Y4+dU4j/GcbXx+6n3bmzakKPiZ1/2LkzfFtUl5sb9mXHjqr/nsZ+zrFzFzt3Vp7PidU1JOHHt+bNwvpjFzXi69q2rayP32/9s5FQfFLs2DHT0bRw7p41A3A24TRU7PN5wF3J5v/2t7/tzcJDD7nfeKP7z3/ufuGF7uec43799ZX1RxzhXlTkfuCB7occ4t63r/uVV1bWh6+TqsOTT4a6F15IXD9jRqifNi1x/ccfh/obb0xcv2pVqL/66sT1O3aE+osuqlnXvn1l7GPH1qzfd99Q9/nnidf9m9+E+iVLEtf//vehft68xPV/+EOof/XVxPV//nOof+65xPWzZ4f6Rx9NXP/226H+gQfc27Rxz8mpOixaFOonTUq8/LJlof666xLXr18f6q+4InF9RUWo//GPq26/bVv3vfaq/NmPG+eel+eenx+G9u3D71nMmDHunTqFYc89wzBwYGX96ae777135bBXSsZRAAAKN0lEQVTPPu7HH19ZP3y4e0FB1eG00yrrhw4Nxzp++Nd/rawfOND9W98KQ9euYbjoosr6Qw5x33//MHTrFoYrrqisP+AA9x49qg7XXRfqNm0K9fFDUZH7bbeF+tWr3Xv1qjncd1+o/+QT9969aw4PPxzq33/f/aCDag6x3605c9z79Kk5zJwZ6l95Jexf9eHNNyt/Nw89tObw3nuh/sMPvSGAMq/Hd3S2tTDqZGYXAhcC9Kyri9Zscd55tdfPn197/c6dlf8Je/SfaOwK6/Dhlf+Fx+qg8hzCmWeGtqt7uAMs9l9trA+tCy4Id4TF2rqxcefOlfXDhlW2g1evrqyD0Ar6/vdDPPFDzKRJocfDnJya9R07wm231Yz9uOPCuEsXuOWWmvVDhoTx/vuHa0jVDRwYxkVF8D//U7P+sMPC+JBDKutjX8cAvXuHcf/+cP31Vb+uofKq+BFHhOtcseVjLYAuXSrj/PWvw3R8KyH2EEtpaVh/9RZE7NiddFLlv8zx24/Nd/LJlbebxerjO/o6+eTK3gti9fH/gp94YnhZSmy97uFFKvH1BxxQWRe/7xB+L+Jb3AAHHlg5PXx4zQdh+/WrWr9+fdVjO2hQ5fRJJ4Vb1+Lr45cfNqzmFf1YPDk54ecbE5uvqCiMc3ND90DVxfavfXv4zndq1sd+nh06hBtjqosd+44dE7+TIPa306kTFBfXrI8dn86dYcCAmvXt24dxhs4RZtVFbzM7Gpjg7iOiz1cDuHuCv/o0X/QWEWmh6nvRO9ve6f0O0MfMeplZO2AMMD3DMYmICFl20dvdK8zsEuAlwm21k939/QyHJSIiZFnCAHD354HnMx2HiIhUlW2npEREJEspYYiISEqUMEREJCVKGCIikhIlDBERSUlWPbi3u8xsNfBpkuoCYE0ThtNUtF/NT0vdN+1X8xPbtwPcvXB3F27WCaM2ZlZWnycZs532q/lpqfum/Wp+GrpvOiUlIiIpUcIQEZGUtOSEcX+mA0gT7Vfz01L3TfvV/DRo31rsNQwREWlcLbmFISIijajFJQwzO9nMPjCzcjO7KtPxNJSZLTWzf5jZfDMri8r2MbOZZrYkGu+d6TjrYmaTzWyVmS2IK0u4HxbcGR3D98xsUPI1Z1aS/ZpgZiuiYzbfzEbG1V0d7dcHZjYiM1HXzcx6mNnLZrbQzN43s/+KylvCMUu2b836uJlZvpnNMbN3o/26LirvZWZvR/H/KXp1BGaWF30uj+qL6txIfV7Tl60DoUv0j4DeQDvgXaBvpuNq4D4tBQqqlf0GuCqavgq4OdNxprAfxwGDgAV17QcwEngBMGAI8Ham49/N/ZoAXJFg3r7R72Qe0Cv6Xc3J9D4k2a+uwKBouhPwYRR/SzhmyfatWR+36GffMZrOBd6OjsU0YExUfi/w42j6J8C90fQY4E91baOltTAGA+Xu/rG7fwM8BozKcEzpMAqYGk1PBc7IYCwpcffXgC+rFSfbj1HAQx68BXQ2s65NE+nuSbJfyYwCHnP3be7+CVBO+J3NOu6+0t3nRdNfA4uAbrSMY5Zs35JpFsct+tlvjD7mRoMDJwBPROXVj1nsWD4BDDOLvf83sZaWMLoBy+I+L6f2X4TmwIEZZjY3ep85wH7uvjKa/hzYLzOhNViy/WgJx/GS6NTM5LhThs1yv6JTFQMJ/7G2qGNWbd+gmR83M8sxs/nAKmAmoTW03t0rolniY9+1X1H9BqBLbetvaQmjJTrG3QcBpwAXm9lx8ZUe2pPN/la3lrIfkXuAA4FiYCVwW2bDqT8z6wg8CVzq7l/F1zX3Y5Zg35r9cXP3He5eDHQntIIObcz1t7SEsQLoEfe5e1TWbLn7imi8Cnia8EvwRay5H41XZS7CBkm2H836OLr7F9Ef7k7gf6k8fdGs9svMcglfqI+4+1NRcYs4Zon2raUcNwB3Xw+8DBxNOD0Ye7tqfOy79iuq3wtYW9t6W1rCeAfoE90V0I5wIWd6hmOqNzPbw8w6xaaBk4AFhH0aF802DngmMxE2WLL9mA6cH915MwTYEHcaJOtVO3d/JuGYQdivMdHdKb2APsCcpo4vFdG57AeBRe4+Ka6q2R+zZPvW3I+bmRWaWedouj0wnHB95mXg7Gi26scsdizPBv4atRqTy/SV/TTcKTCScNfDR8AvMx1PA/elN+HujHeB92P7QzjPOBtYAswC9sl0rCnsy6OEZv52wnnUC5LtB+Fuj7ujY/gPoCTT8e/mfv0hivu96I+ya9z8v4z26wPglEzHX8t+HUM43fQeMD8aRraQY5Zs35r1cQMGAH+P4l8A/Doq701IcOXA40BeVJ4ffS6P6nvXtQ096S0iIilpaaekREQkTZQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDmr2o59ER1couNbN7zGx/M3siyXJFZvavDdz2K2ZW4x3JUfkHUc+hb5jZIQ3Zjkg2UMKQluBRwkOa8cYAj7r7P9397OoLRE+2FgENShh1GOvuRxA6eLslQQw5ady2SKNTwpCW4Ang1Lh+/ouA/YG/Ra2IBVH5eDObbmZ/JTx8dhNwbPTug8ui+rtiKzWzZ82sNJq+x8zK4t8zsBteAw6K1rPUzG42s3nAaDMrNrO3og7vnrbK90scZGazohbKPDM7MCq/0szeieaPve9gDzN7Lpp3gZmdG5XfZOGdD++Z2a31+cGKxGtb9ywi2c3dvzSzOYQOGp8htC6mubsn6K15EDAgWqaU8P6D0yAklFo288tomRxgtpkNcPf3Ugzxe4QniGPWeuhQEjN7D/hPd3/VzK4HrgUuBR4BbnL3p80sH2hjZicRuqUYTHiyenrUGWUh8E93PzVa515m1oXQvcWh0c+hc4qxiiSlFoa0FPGnpcZEnxOZ6e6pvr8i3jlRq+DvQD/CS3Xq8kjU1fRQ4Iq48j9B+GIHOrv7q1H5VOC4qP+wbu7+NIC7b3X3zYS+xE6KYphH6Im0DyEZDY9aLse6+wZCV9VbgQfN7Cxgcz32WaQKtTCkpXgGuN3Cq0E7uPvcJPNtqmUdFVT9JyofwisuCV/4R7r7OjObEqurw1h3L9vNGGpjwP+4+301KsJ+jwRuMLPZ7n69mQ0GhhE6lruE8CIdkXpTC0NaBA9vGnsZmEzy1kV1XxNe0RmzFCg2szZm1oPK7q33JHzJbzCz/Qinvhoj5g3AOjM7Nio6D3jVw1vglpvZGbDr3csdgJeAH1p4jwNm1s3M9jWz/YHN7v4w4eL6oGievdz9eeAy4IjGiFlaN7UwpCV5lPDOkOp3TCXzHrDDzN4FpgB3AJ8ACwndQsde4/mumf0dWEx4Q9kbjRjzOODeKCF8DPxbVH4ecF90XWM7MNrdZ5jZYcCb0bWZjcAPCBfUbzGzndG8PyYkwmei6x8GXN6IMUsrpd5qRUQkJTolJSIiKVHCEBGRlChhiIhISpQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDRERS8v8BI85P8OPxUh8AAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, ax = plt.subplots()\n", "ax.plot(df[\"Virtual Processes\"], df[\"Presim. Time / s\"], linestyle=\"dashed\", color=\"red\")\n", "ax.plot(df[\"Virtual Processes\"], df[\"Sim. Time / s\"], \"-b\")\n", "ax.set_xlabel(\"Virtual Process\")\n", "ax.set_ylabel(\"Time / s\")\n", "ax.legend();"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 5\n", "<a name=\"task5\"></a>\n", "\n", "Use the NEST data frame `df` to:\n", "\n", "1. Make the virtual processes the index of the data frame (`.set_index()`)\n", "2. Plot `\"Presim. Program / s\"` and `\"Sim. Time / s`\" individually\n", "3. Plot them onto one common canvas!\n", "4. Make them have the same line colors and styles as before\n", "5. Add a legend, add missing labels\n", "\n", "* Done? Tell me! [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 68, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [], "source": ["df.set_index(\"Virtual Processes\", inplace=True)"]}, {"cell_type": "code", "execution_count": 69, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAADTCAYAAAC7p6aqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3X+cXHV97/HXe2Z2Nz93k8CSZJdoKqT8CiWlC7VXpVArAlqxrdVwey229lJ9YFtsvb22fdxWbXsv9ofeVixIKwV7KdWrptKKCkUU5UJliUASfoNBsgnJQshufu/uzOf+cc4kk81MdrMzmV95Px+Pfcw53/M953znHMe8+Z7vOUcRgZmZmZkdW5lGN8DMzMzseODQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdZBrdAPKOfHEE2P58uWNboaZmZnZlB566KGXIqJ3qnpNGbqWL1/O4OBgo5thZmZmNiVJz0+n3pShS9JNwFuBbRGxMi37PHBaWmUBsCMiVpVZdyOwE8gDExExMK3Wm5mZmbWZ6fR03QxcB3yuWBAR7ypOS/orYOQI618UES/NtIFmZmZm7WDK0BUR90paXm6ZJAHvBH6mts0yMzMzay/V3r34BmBrRDxdYXkAd0p6SNJVR9qQpKskDUoaHB4errJZZmZmZs2l2tB1BXDbEZa/PiLOBS4FrpZ0QaWKEXFjRAxExMD8BYuqbJaZmZlZc5lx6JKUA34B+HylOhExlH5uA9YA509n27vH8jNtlpmZmVlTqqan62eBJyJiU7mFkuZKml+cBi4G1k9nw/scuszMzKzNTBm6JN0G3A+cJmmTpPemi1Yz6dKipD5Jd6Szi4HvSnoE+B7w1Yj4+nQatWfcocvMzMzaiyKi0W04zKylK2LkhSfoymUb3RQzMzOzI5L00HSeRdqU714M4OmtuxrdDDMzM7OaacrQBbB+6EjPWzUzMzNrLU0ZujIS6xy6zMzMrI00Zeia3ZFl/ebRRjfDzMzMrGaaM3R1Znl8yyjj+UKjm2JmZmZWE80ZujqyjE0UeHbYg+nNzMysPTRn6OpMHhWxbpPHdZmZmVl7aMrQ1ZXLMKczywaP6zIzM7M20ZShC+DMpd1+bISZmZm1jaYNXSv7e3hsyyj5QvM9Md/MzMzsaDV16NozlucHL3kwvZmZmbW+Jg5d3QCsH/K4LjMzM2t9TRu6Tu2dR1cu43FdZmZm1hamDF2SbpK0TdL6krKPSBqS9HD6d1mFdS+R9KSkZyR9+GgalstmOGNpN+s3O3SZmZlZ65tOT9fNwCVlyj8ZEavSvzsmL5SUBT4NXAqcCVwh6cyjadzK/m42DI1S8GB6MzMza3FThq6IuBfYPoNtnw88ExHPRcQY8M/A5UezgZV9PezcP8EPt++Zwe7NzMzMmkc1Y7o+IOnR9PLjwjLL+4EXSuY3pWVlSbpK0qCkweHhYSC5gxHwJUYzMzNreTMNXdcDpwCrgC3AX1XbkIi4MSIGImKgt7cXgB9dPJ+OrHwHo5mZmbW8GYWuiNgaEfmIKAB/R3IpcbIhYFnJ/Mlp2bR15jKctmQ+G9zTZWZmZi1uRqFL0tKS2Z8H1pep9iCwQtKPSOoEVgO3H+2+Vvb1sG5ohAgPpjczM7PWNZ1HRtwG3A+cJmmTpPcCfy5pnaRHgYuAD6Z1+yTdARARE8AHgG8AjwNfiIgNR9vAs/p72LFnnKEde492VTMzM7OmkZuqQkRcUab4sxXqbgYuK5m/AzjscRJH4+ziYPqhUU5eOKeaTZmZmZk1TNM+kb7o9CXzyWbkcV1mZmbW0po+dM3qyLLipHms8+uAzMzMrIU1fegCOKuvh/UeTG9mZmYtrCVC18r+bl7aNca2nfsb3RQzMzOzGWmJ0HVwML0vMZqZmVlraonQdcbSbiQ8rsvMzMxaVkuErrldOV5z4ly/DsjMzMxaVkuELkhefu3HRpiZmVmrapnQdXZ/D1tG9vHSLg+mNzMzs9bTMqHrrL5kMP2Gzb7EaGZmZq2nZULXmX3dgO9gNDMzs9bUMqGrZ3YHrz5hjkOXmZmZtaSWCV2QDKZf78H0ZmZm1oKmDF2SbpK0TdL6krK/kPSEpEclrZG0oMK6GyWtk/SwpMFqG7uyr4cXtu9lZM94tZsyMzMzq6vp9HTdDFwyqewuYGVE/BjwFPD7R1j/oohYFREDM2viQSv703Fd7u0yMzOzFjNl6IqIe4Htk8rujIiJdPYB4ORj0LbDrOzz64DMzMysNdViTNevAV+rsCyAOyU9JOmqI21E0lWSBiUNDg8Pl62zcG4n/Qtms96PjTAzM7MWU1XokvSHwARwa4Uqr4+Ic4FLgaslXVBpWxFxY0QMRMRAb29vxX2u7O9mg3u6zMzMrMXMOHRJeg/wVuCXIyLK1YmIofRzG7AGOH+m+yta2dfDcy/tZuc+D6Y3MzOz1jGj0CXpEuD3gLdFxJ4KdeZKml+cBi4G1perezRW9ifjuh7zJUYzMzNrIdN5ZMRtwP3AaZI2SXovcB0wH7grfRzEDWndPkl3pKsuBr4r6RHge8BXI+Lr1Ta4GLo8rsvMzMxaSW6qChFxRZniz1aouxm4LJ1+DjinqtaV0Tu/i8XdXR7XZWZmZi2lpZ5IX7Syr4d1Dl1mZmbWQloydJ3V38Ozw7vYMzYxdWUzMzOzJtCSoevs/h4KAY9v2dnoppiZmZlNS0uGruLrgDb4dUBmZmbWIloydC3pnsUJcztZt8mhy8zMzFpDS4YuSZzV3+PHRpiZmVnLaMnQBXB2fzdPb93JvvF8o5tiZmZmNqWWDV0r+3qYKARPbfVgejMzM2t+rRu6ik+mH/IlRjMzM2t+LRu6Tl44m57ZHX5IqpmZmbWElg1dkljZ3+3HRpiZmVlLaNnQBcm4rie27GQ8X2h0U8zMzMyOaFqhS9JNkrZJWl9StkjSXZKeTj8XVlj3yrTO05KurFXDIXkd0Fi+wNNbd9Vys2ZmZmY1N92erpuBSyaVfRi4OyJWAHen84eQtAj4Y+AngfOBP64UzmZiZV/yZPr1HtdlZmZmTW5aoSsi7gW2Tyq+HLglnb4FeHuZVd8M3BUR2yPiFeAuDg9vM7b8hLnM68qx3uO6zMzMrMlVM6ZrcURsSadfBBaXqdMPvFAyvyktO4ykqyQNShocHh6eVgMyGXFmX7d7uszMzKzp1WQgfUQEEFVu48aIGIiIgd7e3mmvt7Kvh8e2jJIvVLV7MzMzs2OqmtC1VdJSgPRzW5k6Q8CykvmT07KaWdnfzb7xAs8OezC9mZmZNa9qQtftQPFuxCuBr5Sp8w3gYkkL0wH0F6dlNXPwyfS+xGhmZmbNa7qPjLgNuB84TdImSe8FrgXeJOlp4GfTeSQNSPp7gIjYDvwJ8GD697G0rGZO6Z3HrI6MXwdkZmZmTS03nUoRcUWFRW8sU3cQ+PWS+ZuAm2bUumnIZsSZS7t9B6OZmZk1tZZ+In3Ryv4eHts8SsGD6c3MzKxJtUfo6uth1/4JNr68u9FNMTMzMyurPUJXcTD9Zo/rMjMzs+bUFqFrxeJ5dGYzbPAdjGZmZtak2iJ0dWQznL50vgfTm5mZWdNqi9AFcFZfD+uHRkkejm9mZmbWXNomdJ3d38PI3nE2vbK30U0xMzMzO0zbhK6V/d2An0xvZmZmzaltQtePLp5PLiOP6zIzM7Om1Daha1ZHlhWL57POrwMyMzOzJtQ2oQvg7P5uNgyNeDC9mZmZNZ22Cl0r+3t4efcYL47ua3RTzMzMzA7RVqHr1JPmAfDcsF8HZGZmZs1lxqFL0mmSHi75G5V0zaQ6F0oaKanzR9U3ubLObPJ1Cr68aGZmZk0mN9MVI+JJYBWApCwwBKwpU/U7EfHWme7HzMzMrB3U6vLiG4FnI+L5Gm3PzMzMrK3UKnStBm6rsOynJD0i6WuSzqq0AUlXSRqUNDg8PFyjZpmZmZk1h6pDl6RO4G3A/y2zeC3w6og4B/gU8C+VthMRN0bEQEQM9Pb2VtssMzMzs6ZSi56uS4G1EbF18oKIGI2IXen0HUCHpBNrsE8zMzOzllKL0HUFFS4tSloiSen0+en+Xq7BPs3MzMxayozvXgSQNBd4E/AbJWXvA4iIG4B3AO+XNAHsBVaHHxdvZmZmx6GqQldE7AZOmFR2Q8n0dcB11ezDzMzMrB201RPpzczMzJqVQ5eZmZlZHTh0mZmZmdWBQ5eZmZlZHTh0mZmZmdWBQ5eZmZlZHbRV6MpkBMBf3vkUn3/wh4zuG29wi8zMzMwSbRW6zu7v4fcuOY3RveP89y+t47w//Xd+87bvc8+T25jIFxrdPDMzMzuOqRkfED8wMBCDg4MzXj8iePiFHXx57RD/+uhmduwZ58R5Xbx9VR+/cO7JnNnXXcPWmpmZ2fFM0kMRMTBlvXYMXaX2T+S554lhvrx2E/c8uY3xfHD6kvn84rknc/mqPk7qnlWT/ZiZmdnxyaGrjFd2j/Fvj27mS2uHePiFHWQEr1/Ryy+e28/FZy5hdme25vs0MzOz9ubQNYVnh3exZu0Qa74/xNCOvczrynHpyiW887xlnLd80THdt5mZmbUPh65pKhSC723czpfXbuKOdS+ya/8Ed33wAlYsnl+X/ZuZmVlrm27oqvruRUkbJa2T9LCkw5KSEn8j6RlJj0o6t9p91lImI177mhP483ecw1+vXgXA7rF8g1tlZmZm7SZXo+1cFBEvVVh2KbAi/ftJ4Pr0s+lkpEY3wczMzNpUPZ7TdTnwuUg8ACyQtLQO+zUzMzNrGrUIXQHcKekhSVeVWd4PvFAyvyktO4SkqyQNShocHh6uQbPMzMzMmkctQtfrI+JcksuIV0u6YCYbiYgbI2IgIgZ6e3tr0CwzMzOz5lF16IqIofRzG7AGOH9SlSFgWcn8yWmZmZmZ2XGjqtAlaa6k+cVp4GJg/aRqtwO/kt7F+FpgJCK2VLNfMzMzs1ZT7d2Li4E1Su76ywH/FBFfl/Q+gIi4AbgDuAx4BtgD/GqV+zQzMzNrOVWFroh4DjinTPkNJdMBXF3NfszMzMxaXT0eGWFmZmZ23HPoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoKiN5tJiZmZlZ7VT7RPq2ks0IgHfccD8L53SwYE4ni+Z0smBOB4vmdrJwbicL53SwcE5n8je3Mymf00H3rA4y6fpmZmZmkzl0lfjJ1yziT96+kq0j+9i+Z4wde8bYvnuM51/ew8Mv7OCVPWOM58v3gmUEPbM72LF3nPUfeTNzu3xozczM7CAngxJduSzvfu2rKy6PCHaP5XlldxLGXtmT/G3fPc6OPWN86pvPAPDNJ7bxc+f01avZZmZm1gIcuo6CJOZ15ZjXlWPZojmHLS+Grlf2jNW7aWZmZtbkPJC+hj52+VkAvO7UExvcEjMzM2s2Mw5dkpZJukfSY5I2SPrtMnUulDQi6eH074+qa25z65nd0egmmJmZWZOq5vLiBPC7EbFW0nzgIUl3RcRjk+p9JyLeWsV+zMzMzFrejHu6ImJLRKxNp3cCjwP9tWqYmZmZWTupyZguScuBHwf+o8zin5L0iKSvSTrrCNu4StKgpMHh4eFaNKthRveON7oJZmZm1mSqDl2S5gFfAq6JiNFJi9cCr46Ic4BPAf9SaTsRcWNEDETEQG9vb7XNaoiTF84hmxHv+swDfPhLj/Lc8K5GN8nMzMyaRFWhS1IHSeC6NSK+PHl5RIxGxK50+g6gQ1Lb3tr3E69eyLc+dCGrz1/Gmu8P8cZPfJurb13L+qGRRjfNzMzMGkwzfc+gJAG3ANsj4poKdZYAWyMiJJ0PfJGk5+uIOx0YGIjBwcEZtatZDO/czz/c9wP+8f7n2bl/gjesOJH3X3gKP/WaE0gOnZmZmbUDSQ9FxMCU9aoIXa8HvgOsAwpp8R8ArwKIiBskfQB4P8mdjnuB34mI/zfVttshdBWN7hvn1gd+yGe/+wNe2rWfVcsW8P4LT+FNZyz2uxrNzMzawDEPXcdSO4Wuon3jeb740CY+c++zvLB9L6eeNI/3/fQpXL6qj46sn1FrZmbWqhy6mtREvsBX123h+m89yxMv7qSvZxb/9YLXsPq8VzG7MzutbUQEO/aMs3XnPl4c2cfW0X1sHd3PZ779LLvH8jz7Py8j6140MzOzuphu6PK7F+ssl81w+ap+3nZOH996cpi//dYzfPRfH+NT33yG9/yn5aw+bxl7x/NJmNq5n60j+3hxtBisitP7GZsoVNzHvvE8c7t8as3MzJqJ/2VuEElcdPpJXHT6STy4cTvXf+tZPnHXU3zirqcOqzurI8OS7lks7p7Fjy9byJKeZHpxd9eB8pO6u/iH+zZy7deeIOOB+mZmZk3HoasJnLd8Eee9ZxGPbxnl3qeGWTS3k8Xdsw6Eq+5ZuaO64/GprTuZ25UjmxFZiUwGMhLZjA58ZiWUgeyk8ozw3ZVmZmbHgENXEzljaTdnLO2e8fqzcsmA/Ms/fV9V7ZBIw1oSworTB8KaRDZzaHlG4gcv7QZg47VvqWr/zW7/RHL5d/OOfbw4upfNO/axZWQvL47s522r+njbOX2NbqKZmTUhh6428s7zlrF0wWzG8wXyhaAQQb4AhQgKhSBf/CwEhSBdfrC8EJSsl5RHWlYsP7DNQ9YL8sGB0PXrtzxI9+wOumd10DP74F/37EPne2Z3MKsj01Q9a2MTBbaO7mPLSBKktozsY8uOvWweKQarfby0a+yw9RbM6WDP/jwQDl1mZlaWQ1cbmdOZ481nLWnY/left4zrvvkMm3fs4/EtOxndO87O/RNHXKczm6F7du5AIFswu4NFc7s4YV4ni+Ymfycc+Oxi0bxO5nZmZxTUJvIFtu7cz5Ydew+Eqs07kjtAt4wkweqlXfuZfENv96wcS3tms3TBLM7uX0BfT3Lpt2/BbJam03M6c7zlb75z1G0yM7Pjh0OX1czrTj2R15166Fue8oVg575xRvYe+je6d2LS/Dij+8YZ3rWfJ1/cycu7x9hf4Q7NzlzmQBA7GMqSoNY9K8eiuV0He6lKgtW2nfsoTApU87pyLO2ZxdIFszl9STdLF8yir2d2GqpmsaRnNvN8J6iZmdWA/zWxYyqbEQvmdLJgTudRrRcR7BnLs333GC/vHmP77v28vGuM7bvHSsqSz40v7+blXWPsGcsfso3ZHdkDIeoNK05kadoztTTtpVrSM4vuWR21/LpmZmYVOXRZU5LE3K4cc7tyLFs0Z1rr/PDlPTw7vCvppeqZTffso7vrs1obNo+yYfMo//jA82SU3DFavBu0OJ2R0IGy8nVUYZ3MUdRJpqeuc9h2qe54ZbMilxGd2Yxfc2VmNolDl7WNV50wh1edML2Adiz9j39Z3+gmNIWMoCOboTObIZcVHdlM+idy6XTngenDl3dmM+QyoiOXoSOTLi+ZLq7XmcuQyyT7iAjG88mNHxOFIF8oMFEIJvKHzufT+YlCctPJRLrOeLFOyTYmJs3nC3HgZpXSsnwhyGZELg2eHen3zmWS71E8Bsl0+j3TdndkDh6j4jZKy8qukxXZTHI8ctnJ2ymtl2yzuKzctrMZNdUNLWbtyqHLrEae+bNL2bF3nIjk8mjxDtFCehdooaRsqjox6bNSncO3e+g+yu+7fDvykwe8HaUguat1LJ+ElPF8gfFCgfGJZHqiUGBsIgkx4/lDp8fzwa79EwfWO2Qb6edEOj2Wr/w2hqkUA0bx80DIySjtpTsYQnJpqMmly7s6MswpWd5Rsrz4OJXSkJZ85zS4pd9n18TEocvS71Rc50BZ+lnlKTkqHZMCYi5bPtAdLD8Y7HKZJBAe2puafmZKe1or9/AWg1/FXuKMDj7OZvJ+yqx7oAc3c+R9ZzNT9yxnMlP1PB/8DkdaPrlN5Y5XsRfb2pNDl1mN5LIZTpzX1ehmtL2IYm9TpKHuYDArBqhcaZgq+Wy1f8wKheQ7TuST3rjxkkCXLxRD66HLSkNbMdAVj1fpskrrHOwZLFRY5+D0nokJJkq2HRwa9POF0tBf5j8k0uX5Csub8NXAdVEMYtkKoaw0BKqknkjmVRrgSKYplpVsH0qDXulyTZpPy8rUP2QbHBocS/d1aFlxOMPBtomDQyeK9ZlcVtK2yfXLbiM9mJlJy8ptQxw69KO0naXbUHHoxqT601VV6JJ0CfDXQBb4+4i4dtLyLuBzwE8ALwPvioiN1ezTzI5vUrEnBmYzvZfEt6pMRnRlshyvN9CW9ubmy/XaFg4PdPni8ikC35SBsOQ5hVP1GBf3d6TlceB5icX9TOqVLhy6bn6K5aXtLH6XgAO916UBuDhNaQ83xXaVr1967EvrHzgelPTIl9QPgkKhTFmUzpeum9RnclnaNjj03FTcRgCT9lXPnuLpmvFPWVIW+DTwJmAT8KCk2yPisZJq7wVeiYhTJa0GPg68q5oGm5nZ8eFAjwvyZRmbscnDNYLi0IpJgRCIwuFlBwPrwXUPDs9IypZ/fHptqeZ/x+cDz0TEcwCS/hm4HCgNXZcDH0mnvwhcJ0kRx2unsZmZmdVTcgkWqPLu7FrIVLFuP/BCyfymtKxsnYiYAEaAE8ptTNJVkgYlDQ4PD1fRLDMzM7PmU03oqqmIuDEiBiJioLe3t9HNMTMzM6upakLXELCsZP7ktKxsHUk5oIdkQL2ZmZnZcaWa0PUgsELSj0jqBFYDt0+qcztwZTr9DuCbHs9lZmZmx6MZD6SPiAlJHwC+QfLIiJsiYoOkjwGDEXE78FngHyU9A2wnCWZmZmZmxx01Y8eTpGHg+Ua3o02cCLzU6EbYAT4fzcXno3n4XDQXn4+j8+qImHJAelOGLqsdSYMRMdDodljC56O5+Hw0D5+L5uLzcWw0zd2LZmZmZu3MocvMzMysDhy62t+NjW6AHcLno7n4fDQPn4vm4vNxDHhMl5mZmVkduKfLzMzMrA4cuszMzMzqwKGrzUjaKGmdpIclDaZliyTdJenp9HNho9vZriTdJGmbpPUlZWWPvxJ/I+kZSY9KOrdxLW8/Fc7FRyQNpb+PhyVdVrLs99Nz8aSkNzem1e1L0jJJ90h6TNIGSb+dlvv3UWdHOBf+fRxjDl3t6aKIWFXyjJUPA3dHxArg7nTejo2bgUsmlVU6/pcCK9K/q4Dr69TG48XNHH4uAD6Z/j5WRcQdAJLOJHljxlnpOn8rKVu3lh4fJoDfjYgzgdcCV6fH3b+P+qt0LsC/j2PKoev4cDlwSzp9C/D2BralrUXEvSSvvCpV6fhfDnwuEg8ACyQtrU9L21+Fc1HJ5cA/R8T+iPgB8Axw/jFr3HEoIrZExNp0eifwONCPfx91d4RzUYl/HzXi0NV+ArhT0kOSrkrLFkfElnT6RWBxY5p23Kp0/PuBF0rqbeLI/8dntfGB9HLVTSWX2n0u6kjScuDHgf/Av4+GmnQuwL+PY8qhq/28PiLOJemav1rSBaULI3lGiJ8T0iA+/g13PXAKsArYAvxVY5tz/JE0D/gScE1EjJYu8++jvsqcC/8+jjGHrjYTEUPp5zZgDUkX8NZit3z6ua1xLTwuVTr+Q8Cyknonp2V2jETE1ojIR0QB+DsOXiLxuagDSR0k/8jfGhFfTov9+2iAcufCv49jz6GrjUiaK2l+cRq4GFgP3A5cmVa7EvhKY1p43Kp0/G8HfiW9S+u1wEjJZRY7BiaNCfp5kt8HJOditaQuST9CMnj7e/VuXzuTJOCzwOMR8YmSRf591Fmlc+Hfx7GXa3QDrKYWA2uS3xM54J8i4uuSHgS+IOm9wPPAOxvYxrYm6TbgQuBESZuAPwaupfzxvwO4jGRQ6h7gV+ve4DZW4VxcKGkVySWsjcBvAETEBklfAB4jubPr6ojIN6Ldbex1wLuBdZIeTsv+AP8+GqHSubjCv49jy68BMjMzM6sDX140MzMzqwOHLjMzM7M6cOgyMzMzqwOHLjMzM7M6cOgyMzMzqwOHLjOriqR7JL15Utk1kq6X1CfpixXWWy7pP1e5729JGqhQ/qSkRyTdJ+m0avZjZlYLDl1mVq3bgNWTylYDt0XE5oh4x+QVJOWA5UBVoWsKvxwR55C8RPkvyrQhewz3bWZ2GIcuM6vWF4G3SOqEAy/Q7QO+k/ZmrU/L3yPpdknfBO4meSjmGyQ9LOmD6fLrihuV9G+SLkynr5c0KGmDpI8eZfvuBU5Nt7NR0sclrQV+SdIqSQ+kL/hdU3zBr6RTJf172lO2VtIpafl/k/RgWv+jadlcSV9N666X9K60/FpJj6V1/zIt65X0pXQbD0p6XVr+0+lxeFjS94tvljCz9uIn0ptZVSJiu6Tvkbxk/SskvVxfiIhI345Q6lzgx9J1LgQ+FBFvhSSUHWE3f5iukwXulvRjEfHoNJv4c8C6kvmX05fCI+lR4Dcj4tuSPkby1PprgFuBayNijaRZQEbSxSSvPzkfEHC7khfK9wKbI+It6TZ7JJ1A8hqV09PjsCDd918Dn4yI70p6FfAN4AzgQyRP+b5PyUuI903zu5lZC3FPl5nVQuklxtXpfDl3RcT2GWz/nWnv1PeBs4Azp7HOrekrTl5HEmqKPg9JOAIWRMS30/JbgAvSXqb+iFgDEBH7ImIPybtML07bsBY4nSSErQPelPagvSEiRoARkuD0WUm/QPIaG4CfBa5L23U70J2GrPuAT0j6rbRNE0d7gMys+bmny8xq4SvAJyWdC8yJiIcq1Nt9hG1McOh/CM4CSF+w+yHgvIh4RdLNxWVT+OWIGDzKNhyJgP8VEZ85bEHyvS8D/lTS3RHxMUnnA28E3gF8APgZku/32oiY3JN1raSvptu4T9KbI+KJGbbTzJqUe7rMrGoRsQu4B7iJyr1ck+0ESscubQRWScpIWkZyGQ+gmyQojUhaTHIZsxZtHgFekfSGtOjdwLcjYiewSdLbASR1SZpDcinw19KeKST1SzpJUh+wJyL+D8mA/XPTOj0RcQfwQeCcdB93Ar9ZbEP6cmEknRIR6yLi48CDJL1oZtZm3NNlZrVyG7CGw+9krORRIC/pEeBm4H9AKxUnAAAAsElEQVQDPwAeAx4nuYRHRDwi6fvAE8ALJJfiauVK4IY0VD0H/Gpa/m7gM+k4r3HglyLiTklnAPenY9V2Af+FZJD+X0gqpHXfTxImv5KOBxPwO+l2fwv4dDqWLEcyyP99wDWSLgIKwAbgazX8jmbWJBQRjW6DmZmZWdvz5UUzMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOvj/r1L+SfYYynAAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 720x216 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Presim. Time / s\"].plot(figsize=(10, 3));"]}, {"cell_type": "code", "execution_count": 70, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAADTCAYAAACyTAbQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuQXGd55/Hv0z0zuljSyLbGsjQSyPiKJcCwinEwBGPuJFnDFrAmWeIkZJ1kTQIBdheyVZuQCllTCXiTTeKNCS4cQgyuAGVtMBfHmGsCeGyMrQuOhS/YkmzJli3J1m1m+tk/zulRazSjmdFMq7tH309VV59+z3vOeacPLf943/ecE5mJJEmSZlal1Q2QJEmajQxZkiRJTWDIkiRJagJDliRJUhMYsiRJkprAkCVJktQEhixJkqQmMGRJkiQ1gSFLkiSpCbpa3QCAJUuW5KpVq1rdDEmSpAndeeedT2Rm30T12iJkrVq1ioGBgVY3Q5IkaUIR8fBk6jlcKEmS1ASGLEmSpCYwZEmSJDWBIUuSJKkJ2iJkbXl6X6ubIEmSNKPaImTtfPYgzx4YanUzJEmSZkxbhCyATdt2t7oJkiRJM6ZtQtb6Lbta3QRJkqQZM2HIioi5EfGDiPhRRGyIiA+X5WdExPcjYnNEfC4iesryOeXnzeX6VRMdo6sSrN9qT5YkSZo9JtOTdQC4NDNfBFwAvCEiLgI+ClyTmWcBTwHvKuu/C3iqLL+mrHdU87qr9mRJkqRZZcKQlYVnyo/d5SuBS4F/LMtvAN5cLl9WfqZc/+qIiKMdY15Plfu3P8P+weEpNl+SJKk9TWpOVkRUI+JuYDtwK/AT4OnMrF8S+CjQXy73A48AlOt3AaeOsc8rI2IgIgYO7nuW4Vpy32N7pvfXSJIktYlJhazMHM7MC4AVwIXAedM9cGZel5lrM3Pt0lNPBmD9VocMJUnS7DClqwsz82ngduBngcUR0VWuWgFsKZe3ACsByvW9wJNH229PV4Xeed2s3+Lkd0mSNDtM5urCvohYXC7PA14LbKIIW28tq10B3Fwurys/U67/embmRMdZ07+IDfZkSZKkWWIyPVnLgNsj4h7gDuDWzPwn4L8D74uIzRRzrj5Z1v8kcGpZ/j7gg5NpyJrlvfx42x4Gh2tT/RskSZLaTtdEFTLzHuDFY5Q/QDE/a3T5fuBtU23I6v5eDg7XuP/xZzh/+aKpbi5JktRW2uaO72vKYOXkd0mSNBu0TchadepJnNTjTUklSdLs0DYhq1IJVi/vNWRJkqRZoW1CFsDq/kVs3Lab4dqEFyNKkiS1tbYKWWuW97J/sMYDO56ZuLIkSVIba6+Q1d8LOPldkiR1vrYKWWf2ncScrop3fpckSR2vrUJWV7XC85ctcvK7JEnqeG0VsqB4vM7GrbupOfldkiR1sPYLWct72XNgiJ/u3NvqpkiSJB2z9gtZTn6XJEmzQNuFrHOWLqS7Gk5+lyRJHa3tQlZPV4VzT1/IBnuyJElSB2u7kAXFvKz1W3aR6eR3SZLUmdoyZK3u7+WpvYNs3bW/1U2RJEk6JhOGrIhYGRG3R8TGiNgQEe8py/8wIrZExN3l600N23woIjZHxH0R8fqpNmrN8kUA3i9LkiR1rK5J1BkC3p+Zd0XEQuDOiLi1XHdNZv5ZY+WIOB+4HFgNLAf+OSLOyczhyTbq+csWUa0EG7bs4vWrT5/sZpIkSW1jwp6szNyWmXeVy3uATUD/UTa5DPhsZh7IzAeBzcCFU2nU3O4qZ/UtYP1WrzCUJEmdaUpzsiJiFfBi4Ptl0bsj4p6IuD4iTi7L+oFHGjZ7lDFCWURcGREDETGwY8eOI461ut/H60iSpM416ZAVEQuAzwPvzczdwLXAmcAFwDbgY1M5cGZel5lrM3NtX1/fEevXLO9l+54DbN/t5HdJktR5JhWyIqKbImB9JjO/AJCZj2fmcGbWgE9waEhwC7CyYfMVZdmU1O/8vsEhQ0mS1IEmc3VhAJ8ENmXmxxvKlzVUewuwvlxeB1weEXMi4gzgbOAHU23Y+eUVhvc6ZChJkjrQZK4uvBh4J3BvRNxdlv0+8I6IuABI4CHgNwEyc0NE3ARspLgy8aqpXFlYt2BOF89bcpLzsiRJUkeaMGRl5neAGGPVLUfZ5iPAR6bRLqC4KeldDz813d1IkiQdd215x/e6NcsXseXpfex89mCrmyJJkjQl7R2yRia/O2QoSZI6S1uHrNUjj9fxCkNJktRZ2jpkLZ7fw4qT57HenixJktRh2jpkQXFT0g1eYShJkjpM24esF6zo5aEn97J7/2CrmyJJkjRpbR+y6vOyNnrnd0mS1EE6IGQVVxh6U1JJktRJ2j5k9S2cw+mL5voMQ0mS1FHaPmQBrOlfZE+WJEnqKB0RslYv7+UnO55h78GhVjdFkiRpUjoiZK3p76WWsGnbnlY3RZIkaVI6JGQVVxj6eB1JktQpOiJknb5oLqee1OO8LEmS1DE6ImRFBKv7e32GoSRJ6hgThqyIWBkRt0fExojYEBHvKctPiYhbI+L+8v3ksjwi4i8iYnNE3BMRL5mJhq5Zvoh/e3wPB4aGZ2J3kiRJTTWZnqwh4P2ZeT5wEXBVRJwPfBC4LTPPBm4rPwO8ETi7fF0JXDsTDV3T38tQLbnvMSe/S5Kk9jdhyMrMbZl5V7m8B9gE9AOXATeU1W4A3lwuXwb8XRa+ByyOiGXTbeiakTu/O2QoSZLa35TmZEXEKuDFwPeBpZm5rVz1GLC0XO4HHmnY7NGybPS+royIgYgY2LFjx4THXnnKPBbO7WK9VxhKkqQOMOmQFRELgM8D783Mw7qTMjOBnMqBM/O6zFybmWv7+vomc3zWLO9lg1cYSpKkDjCpkBUR3RQB6zOZ+YWy+PH6MGD5vr0s3wKsbNh8RVk2bWv6F7HpsT0MDtdmYneSJElNM5mrCwP4JLApMz/esGodcEW5fAVwc0P5r5RXGV4E7GoYVpyWNf29HByqsXn7MzOxO0mSpKaZTE/WxcA7gUsj4u7y9SbgauC1EXE/8JryM8AtwAPAZuATwH+ZqcauHpn87pChJElqb10TVcjM7wAxzupXj1E/gaum2a4xnbHkJOb3VNmwdTdva8YBJEmSZkhH3PG9rloJVi9fZE+WJElqex0VsqAYMty4bTfDtSldzChJknRcdVzIWtPfy96Dwzz4xLOtbookSdK4OjBkLQJggzcllSRJbazjQtZZfQuY01VxXpYkSWprHReyuqoVzlu2yGcYSpKkttZxIQtgzfJFrN+6i+JuEZIkSe2nM0NWfy979g/xyM59rW6KJEnSmDozZNXv/O7kd0mS1KY6MmSdc/oCuirh5HdJktS2OjJkzemqcs7Shazf6uR3SZLUnjoyZEFxv6wNW5z8LkmS2lMHh6xennz2INt27W91UyRJko7QsSFrdX3yu/OyJElSG+rYkPX8ZQupBM7LkiRJbWnCkBUR10fE9ohY31D2hxGxJSLuLl9valj3oYjYHBH3RcTrm9Xw+T1dnNm3gA32ZEmSpDY0mZ6sTwFvGKP8msy8oHzdAhAR5wOXA6vLbf46Iqoz1djR1vT3eq8sSZLUliYMWZn5LWDnJPd3GfDZzDyQmQ8Cm4ELp9G+o1q9fBGP7z7A9j1OfpckSe1lOnOy3h0R95TDiSeXZf3AIw11Hi3LjhARV0bEQEQM7Nix45gasKa/mPy+wXlZkiSpzRxryLoWOBO4ANgGfGyqO8jM6zJzbWau7evrO6ZGrF6+CMB5WZIkqe0cU8jKzMczczgza8AnODQkuAVY2VB1RVnWFAvndtO/eB7fe2Cyo5mSJEnHxzGFrIhY1vDxLUD9ysN1wOURMScizgDOBn4wvSYe3Zan9/GdzU808xCSJElT1jVRhYi4EbgEWBIRjwJ/AFwSERcACTwE/CZAZm6IiJuAjcAQcFVmDjen6YVXntPHN//t2OZ0SZIkNcuEISsz3zFG8SePUv8jwEem06ipWNY7l6WL5hyvw0mSJE1Kx97xXZIkqZ0ZsiRJkprAkCVJktQEhixJkqQmMGRJkiQ1gSFLkiSpCQxZkiRJTWDIkiRJagJDliRJUhMYsiRJkppgVoSsA0M1nnzmQKubIUmSNKLjQ9Z5py/k6b2DvOzqr/OhL9zL5u17Wt0kSZKkiR8Q3e5+9eIzuPisJVz/3Qf5/F2PcuMPfsqrzu3jP7/iefzsmacSEa1uoiRJOgFFZra6DaxduzYHBgamvZ8nnjnAZ773Uz79vYd44pmDPH/ZIn7j5Wfwiy9aTk9Xx3faSZKkNhARd2bm2gnrzaaQVbd/cJib797C3377Qe7f/gynLZzDFS9bxS+/9Dksnt8zY8eRJEknnhkLWRFxPfALwPbMXFOWnQJ8DlgFPAS8PTOfimJs7s+BNwF7gV/NzLsmasRMh6y6zORb9z/B3377Ab59/xPM667y1n+3gl9/+RmcseSkGT+eJEma/SYbsiYzhvYp4A2jyj4I3JaZZwO3lZ8B3gicXb6uBK6dbIObISJ45Tl9fPpdL+Ur730Fv/iiZXzujke49GPf4DduGOD7DzxJO/TkSZKk2WdSw4URsQr4p4aerPuASzJzW0QsA76RmedGxN+UyzeOrne0/TerJ2ss2/fs5+//9WE+/b2HeWrvIC/o7+UDrz+XV57Td1yOL0mSOttM9mSNZWlDcHoMWFou9wOPNNR7tCwbq4FXRsRARAzs2LHjGJsxdactnMv7Xncu//qhV/Mnb3kBj+/ez598adNxO74kSToxTPuSuyy6wqY85paZ12Xm2sxc29d3/HuR5nZX+aWXPoefWXUKww4ZSpKkGXasIevxcpiQ8n17Wb4FWNlQb0VZJkmSdEI51pC1DriiXL4CuLmh/FeicBGwa6L5WJIkSbPRhHd8j4gbgUuAJRHxKPAHwNXATRHxLuBh4O1l9Vsobt+wmeIWDr/WhDZLkiS1vQlDVma+Y5xVrx6jbgJXTbdRkiRJnc5nzUiSJDWBIUuSJKkJDFmSJElNYMiSJElqAkOWJElSExiyJEmSmsCQJUmS1ASGLEmSpCYwZEmSJDWBIUuSJKkJDFlALZPiiUCSJEkzY8JnF8523dXggR3Pcv7//CrLF8+l/+T59C+ex4qT59G/eB79J89j+eJ5LF04h66qmVSSJE3OCR+y3v+6c3nhisVseXofW57ax5an97F+yy52PnvwsHrVSnD6orn0nzyPFYuL4NVfBrEXrVxM77zuFv0FkiSpHZ3wIWvlKfP59ZefcUT53oNDbH16f0P42jsSwr7/4E627dpHrRxhfMXZS/j0u156nFsuSZLa2QkfssYzv6eLs05bwFmnLRhz/dBwjcd27+fd//BDnjkwdJxbJ0mS2p2TjI5RV7XCipPns3CuOVWSJB1pWgkhIh4C9gDDwFBmro2IU4DPAauAh4C3Z+ZT02umJElSZ5mJnqxXZeYFmbm2/PxB4LbMPBu4rfwsSZJ0QmnGcOFlwA3l8g3Am5twDEmSpLY23ZCVwNci4s6IuLIsW5qZ28rlx4ClY20YEVdGxEBEDOzYsWOazZAkSWov0521/fLM3BIRpwG3RsSPG1dmZkbEmLdSz8zrgOsA1q5d6+3WJUnSrDKtnqzM3FK+bwe+CFwIPB4RywDK9+3TbWQ7q0Rw32N7+J83r+dffvIEQ8O1VjdJkiS1gWMOWRFxUkQsrC8DrwPWA+uAK8pqVwA3T7eR7ew9rzmbV57Tx00Dj/BLn/g+F/7JbXzoC/fwzX/bwaCBS5KkE1Yc64ORI+J5FL1XUAw7/kNmfiQiTgVuAp4DPExxC4edR9vX2rVrc2Bg4Jja0S72HhziG/ft4MvrH+Prmx7n2YPD9M7r5jXPX8ob15zOy89ewtzuaqubKUmSpiki7my4q8L49Y41ZM2k2RCyGu0fHObb9z/Bl9dv49aNj7Nn/xAL5nRx6Xmn8cY1p3PJuacxr2dmAtfGrbtZNK+LFSfPn5H9SZKko5tsyPJ25U0wt7vKa89fymvPX8rBoRr/8pMn+Mr6x/jqhsdY96OtzOuucsm5fbzxBcu49LzTWDCnOA2Zyf7BGnv2D7J7/yC79w+xZ/9Q8Xlf8T7yuXz/503FlLeHrv75Vv7JkiRpFENWk/V0Vbjk3NO45NzT+OM3r+EHD+7klvXb+OqGx/ny+sfo6apw+qK5IwFqqHb0nsVKwMK53Syc28Wiud0jZZIkqb0Yso6jrmqFl521hJedtYQP//s13PnwU3xl/WM88cwBFs3rOiw81d9Hl8/vqRJxKFW95uPf5NylC1v4V0mSpLEYslqkWgkuPOMULjzjlFY3RZIkNYEhaxbYtG03H/vafcztrjKvu8q8nrHf5zYsz++pMqerclivmCRJmjmGrA734pWL+dK92/jL2zdzLBeKHh7CKszrqTK/u4u5PVXmdVdG1tcD3PyeI8PaxWctYWE5P0ySJBW8hcMskZkcGKqxf3CYfYPD7Ds49vv+keXayOe9B4fYd/DIbcfa11gT83/n0rN4/+vObcFfLUnS8ectHE4wEcHcckhwcROPMzhchrMyeL36Y9/k/3x9M9+4bwfDtaSWOfJeSw4t15Lhsqy+PFxLSFiycA4rT5nPc0+Zz3NOmV8sn1osnzTH/4lKkjqT/wXTlHRXK3RXKyO3j7jy557Hhq27qVaCShTPcqxWgkoliuWgYbleTlk/iIDtew7w0yf38qNHnmbXvsHDjrdkQQ8ry/D13DKAPeeU+Tz31JM4beEcKt6/QpLUpgxZmpb/9obzZnR/u/YO8tOde/npzr08vPNZHimX73z4Kf7fj7bSOFrZ01Whb8Eczjt9IS9csZiuahHcuipF0Ouqlu+VoFqpHCo/bP0Y5ZXKYdtXY/T+KiP1u6sVerqm9Zx1SdIsZchSW+md380L5vfyghW9R6wbHK6x9el9PPxkEbwe2PEs13/3QbY8vY/bfry9Ba2Frkrw+d9+GS9a2cxBWklSJ3Liu2aFWi0ZqhXzvIZqtfI9R5Unw7UaQ7VkaLix7PBthofHKW94DdWSjVt38/m7HgWKqzSrlWL4sz4UWrwaPlcohkwbhk3r9UaGW8ues3r9+rqoD72W21Yb1h+qc/j+qw3rizocduxqlPstP0dDm+tDuSOfyzZUGo5R/1t7uir0lD16c7qq5Xvxaiyrl3eV+5KkTuXEd51QKpWgZ2R+1sw8fHsiw7Xk7KULeGrvQWq1QxP9M0dN8i/XFRcDZFmn4aKAHLtOLWFouFZ8zuIK0nrIy6Q8Ro557OEah9rRsO/GbYcneIRTs0RAT7UewqqjAlmlIZBVG8LbkYHthz99im279jOvu0pXNehuGObtrhZhrqtaDO/W1xefg65q5bBtuqtlWeXQ+u6GbUf2UV8u6zQOM9fDbrUC1UplJAhXK4cPO1fKbUbql8FX0uxjyJKOUbUS/NYrz2x1M6alVkuSQ+EuR4Je8Z61huA3en0Z+AaHaxwYqr+GOThU42D5+eBQjYPDNQ4MDpfvxeeDQ4e2OdiwXf3z/sEau/YNHrGvxn3WvercPobKdgzVauwbLHogh8oeyaHhGoPDh3olB4fLsnJdi7LmEboqh3opR4JZ5VAvZFelcqg3dJx6E+2jWs5PrDb0mtbnMjbuo1pp7DEdHSSLELnu7i1F0GwIk2P24Db2tFaO3rM6cpFMQ8/soZ7cht7esXqCG/czxkU29WPW9zV2mw4d49DFOhy+ruG7GqtXuBpBHNZrfXibdGIxZEknsPo/+lU66x//Wi05OFwb6VGa7r6GyqHhwfowckMIqw8vD5bLw2W9oTK41bJYrpU9iEUvYY3h2uG3K6m/6j2K9eHsem/jUMPycBluh8bbT8M2jevqbRmq1TgwVPSATqYtw437qO+3oUf1aC563inUakWv65E9uHl4KB/pfYXRPbiNt3up1XtqG24HM1scLYAeCmtjTyWoB796/QgIivVEUL6V7+U0AIqCQ+uK4BcU21PWjbJt0bAfqE8lOFT/8OUjj3nY+lHHZFR5ZWT7KNtx6O9p3D+jyxv2Q8Pfedgxx2lLZeRYh7e9UomR/cVYbWn4Huv7mIymhayIeAPw5xRjN3+bmVc361iSTiyVSjC3MjPDwvWh5h68SnQsI8PUZThqDGOL53cfl/l1mYcPc48eLh9zuL0e5LIcRq+NCnONQ+y1Qz21hw/jM27wGz30njlWOw5tP/o+gaOH+hu3OXqbDu0n698NUCunFBTfFySHep6Lz5A1SGrkcFk+UrdYqDVsN7LNyPZ5eFl928P207DtGOVFWD58P7WGuowub6hL+bk2at/trikhKyKqwF8BrwUeBe6IiHWZubEZx5MkNUeUQ4qtHPao90pUCLqPz5RLdZDRYe2IwDdGsGOc8iyTXuN+Rvad9ePBcz86ubY163dzIbA5Mx8AiIjPApcBhixJkjRj6ldf04bTHprVP94PPNLw+dGybEREXBkRAxExsGPHjiY1Q5IkqTVaNgkhM6/LzLWZubavr69VzZAkSWqKZoWsLcDKhs8ryjJJkqQTQrNC1h3A2RFxRkT0AJcD65p0LEmSpLbTlInvmTkUEe8GvkpxC4frM3NDM44lSZLUjtri2YURsQN4uNXtmEWWAE+0uhEa4floH56L9uL5aB+ei6l5bmZOOKG8LUKWZlZEDEzmwZU6Pjwf7cNz0V48H+3Dc9Ec3uJYkiSpCQxZkiRJTWDImp2ua3UDdBjPR/vwXLQXz0f78Fw0gXOyJEmSmsCeLEmSpCYwZEmSJDWBIavDRcRDEXFvRNwdEQNl2SkRcWtE3F++n9zqds5WEXF9RGyPiPUNZWN+/1H4i4jYHBH3RMRLWtfy2Wmc8/GHEbGl/I3cHRFvalj3ofJ83BcRr29Nq2eniFgZEbdHxMaI2BAR7ynL/X20wFHOh7+PJjJkzQ6vyswLGu5x8kHgtsw8G7it/Kzm+BTwhlFl433/bwTOLl9XAtcepzaeSD7FkecD4JryN3JBZt4CEBHnUzzya3W5zV9HRPW4tXT2GwLen5nnAxcBV5Xfub+P1hjvfIC/j6YxZM1OlwE3lMs3AG9uYVtmtcz8FrBzVPF43/9lwN9l4XvA4ohYdnxaemIY53yM5zLgs5l5IDMfBDYDFzatcSeYzNyWmXeVy3uATUA//j5a4ijnYzz+PmaAIavzJfC1iLgzIq4sy5Zm5rZy+TFgaWuadsIa7/vvBx5pqPcoR/9HTjPn3eUQ1PUNw+eej+MkIlYBLwa+j7+Plht1PsDfR9MYsjrfyzPzJRRd7VdFxM81rsziHh3ep6NF/P7bwrXAmcAFwDbgY61tzoklIhYAnwfem5m7G9f5+zj+xjgf/j6ayJDV4TJzS/m+HfgiRXfu4/Vu9vJ9e+taeEIa7/vfAqxsqLeiLFMTZebjmTmcmTXgExwa8vB8NFlEdFP8B/0zmfmFstjfR4uMdT78fTSXIauDRcRJEbGwvgy8DlgPrAOuKKtdAdzcmhaesMb7/tcBv1JeRXURsKth2ERNMmpez1sofiNQnI/LI2JORJxBMeH6B8e7fbNVRATwSWBTZn68YZW/jxYY73z4+2iurlY3QNOyFPhi8duhC/iHzPxKRNwB3BQR7wIeBt7ewjbOahFxI3AJsCQiHgX+ALiasb//W4A3UUwg3Qv82nFv8Cw3zvm4JCIuoBiWegj4TYDM3BARNwEbKa68uiozh1vR7lnqYuCdwL0RcXdZ9vv4+2iV8c7HO/x9NI+P1ZEkSWoChwslSZKawJAlSZLUBIYsSZKkJjBkSZIkNYEhS5IkqQkMWZKmJCJuj4jXjyp7b0RcGxHLI+Ifx9luVUT80jSP/Y2IWDtO+X0R8aOI+G5EnDud40jSTDBkSZqqG4HLR5VdDtyYmVsz862jN4iILmAVMK2QNYFfzswXUTx0+E/HaEO1iceWpCMYsiRN1T8CPx8RPTDysNnlwLfL3qr1ZfmvRsS6iPg6cBvFTShfERF3R8Tvlev/sr7TiPiniLikXL42IgYiYkNEfHiK7fsWcFa5n4ci4qMRcRfwtoi4ICK+Vz4M94v1h+FGxFkR8c9lT9hdEXFmWf5fI+KOsv6Hy7KTIuJLZd31EfEfy/KrI2JjWffPyrK+iPh8uY87IuLisvyV5fdwd0T8sP7kBkmzi3d8lzQlmbkzIn5A8VDymyl6sW7KzCyfPtDoJcALy20uAT6Qmb8ARQg7ymH+R7lNFbgtIl6YmfdMsom/CNzb8PnJ8iHqRMQ9wO9k5jcj4o8o7gj/XuAzwNWZ+cWImAtUIuJ1FI8SuRAIYF0UD2DvA7Zm5s+X++yNiFMpHklyXvk9LC6P/efANZn5nYh4DvBV4PnAByjuoP3dKB7Yu3+Sf5ukDmJPlqRj0ThkeHn5eSy3ZubOY9j/28vepx8Cq4HzJ7HNZ8rHhVxMEWLqPgdFGAIWZ+Y3y/IbgJ8re5H6M/OLAJm5PzP3UjwL9HVlG+4CzqMIXfcCry17yF6RmbuAXRRB6ZMR8R8oHgsD8BrgL8t2rQMWlaHqu8DHI+J3yzYNTfULktT+7MmSdCxuBq6JiJcA8zPzznHqPXuUfQxx+P/RmwtQPoz2A8DPZOZTEfGp+roJ/HJmDkyxDUcTwP/KzL85YkXxd78J+OOIuC0z/ygiLgReDbwVeDdwKcXfd1Fmju6pujoivlTu47sR8frM/PExtlNSm7InS9KUZeYzwO3A9YzfizXaHqBx7tFDwAURUYmIlRTDcgCLKILRrohYSjEsORNt3gU8FRGvKIveCXwzM/cAj0bEmwEiYk5EzKcY2vv1sueJiOiPiNMiYjmwNzP/nmKC/UvKOr2ZeQvwe8CLymN8DfidehvKB/ESEWdm5r2Z+VHgDopeMkmzjD1Zko7VjcAXOfJKw/HcAwxHxI+ATwH/G3gQ2AhsohiSIzN/FBE/BH4MPEIxtDZTrgD+bxmiHgB+rSx/J/A35TytQeBtmfm1iHg+8K/lXLNngP9EMan+TyOiVtb9bYrweHM5nyuA95X7/V3gr8q5YF0Uk/J/C3hvRLwKqAEbgC/P4N8oqU1EZra6DZIkSbOOw4WSJElNYMiSJElqAkOWJElSExiyJEmSmsByDSdqAAAAGUlEQVSQJUmS1ASGLEmSpCYwZEmSJDXB/wf2YrBLjrhXigAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 720x216 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Sim. Time / s\"].plot(figsize=(10, 3));"]}, {"cell_type": "code", "execution_count": 71, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHvdJREFUeJzt3XuUnHWd5/H3p6+5dCCBdLIhQRIgjMIKgW0ZZhFEkYu4GtxVJl4go+zEmQUVR52jssdBHM/gemHG0WVE4QguooiwicgoGFFGVoEGQwj3DIRDYkiCQCD3vnz3j+dXSXWnuru6qypV/eTzOqdOPfV7flX1fbqSz/PUr56LIgIzM8uvpnoXYGZmteWgNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnXUu8CAKZPnx5z586tdxlmZuPKAw888EJEdI7UryGCfu7cuXR3d9e7DDOzcUXSs+X089CNmVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnXGEH/6vP1rsDMLLcaI+i3bABfu9bMrCYaI+ijH3ZsrncVZma51BhBD7B1U70rMDPLpcYJ+i0b612BmVkujRj0kiZIuk/SQ5IekfT51D5P0r2SVkv6oaS21N6eHq9O8+eWVclWB72ZWS2Us0W/E3hLRBwHLADOlnQS8CXgyog4EngJuDD1vxB4KbVfmfqNbIuHbszMamHEoI/MlvSwNd0CeAtwc2q/Djg3TS9Mj0nzT5ek4d9F3qI3M6uRssboJTVLWgFsBO4E/h14OSJ6U5e1wOw0PRt4DiDN3wwcPHwVLf4x1sysRsoK+ojoi4gFwBzgROC1lb6xpCWSuiV19wYeujEzq5FR7XUTES8DdwF/BkyVVLhC1RxgXZpeBxwKkOYfCPyxxGtdHRFdEdHV0jbBQzdmZjVSzl43nZKmpumJwBnAY2SB/+7UbTGwNE0vS49J838ZMcJhr02t3r3SzKxGyrlm7CzgOknNZCuGmyLiNkmPAj+Q9PfA74FrUv9rgO9JWg28CCwa8R2aPUZvZlYrIwZ9RKwEji/R/jTZeP3g9h3Ae0ZVRVML9LwCO7dAe8eonmpmZsNrjCNjm1qze4/Tm5lVXWMEfXP6YrH1hfrWYWaWQ40R9E0p6P2DrJlZ1TVI0HvoxsysVhoj6AtDNz5oysys6hoj6BFMnOYtejOzGmiQoAcmz/AYvZlZDTRQ0Hf6oCkzsxponKDvcNCbmdVC4wT95Bn+MdbMrAYaJ+g7OmHnZujZUe9KzMxypXGCfvKM7N7DN2ZmVdU4Qd9RCHrveWNmVk2NE/SFLXqP05uZVVUDBf307N5DN2ZmVdU4Qe+hGzOzmmicoG+dCG1TPHRjZlZljRP0kA6a8ha9mVk1NVbQ+3w3ZmZV11hB79MgmJlVXWMFvbfozcyqrsGCvhO2vwh9vfWuxMwsNxor6Ds6s/ttvki4mVm1jBj0kg6VdJekRyU9Iuljqf0ySeskrUi3c4qe8xlJqyU9IemssqvZfXSsh2/MzKqlpYw+vcAnIuJBSVOAByTdmeZdGRFfKe4s6WhgEXAMcAjwC0lHRUTfiO/kg6bMzKpuxC36iFgfEQ+m6VeBx4DZwzxlIfCDiNgZEc8Aq4ETy6pmchq68UFTZmZVM6oxeklzgeOBe1PTxZJWSrpW0rTUNht4ruhpaymxYpC0RFK3pO5Nm1Kwe4vezKzqyg56SR3Aj4FLIuIV4CrgCGABsB746mjeOCKujoiuiOjq7Exb8m0d0DLRY/RmZlVUVtBLaiUL+Rsi4haAiNgQEX0R0Q98mz3DM+uAQ4uePie1lfNG6SLh3uvGzKxaytnrRsA1wGMR8bWi9llF3d4FrErTy4BFktolzQPmA/eVXZHPd2NmVlXl7HVzMnA+8LCkFants8B7JS0AAlgDfBggIh6RdBPwKNkeOxeVtcdNweQZsHlt2d3NzGx4IwZ9RPwGUIlZtw/znC8CXxxTRR2d8IcHx/RUMzPbW2MdGQvZFv3WF6C/v96VmJnlQuMFfccMiL7snDdmZlaxxgv63QdN+QdZM7NqaNyg93npzcyqovGCfvfRsQ56M7NqaLyg99CNmVlVNV7QT5wGTa0+aMrMrEoaL+gLp0HwGSzNzKqi8YIefBoEM7Mqasyg90XCzcyqpkGD3mewNDOrlsYM+sLQTUS9KzEzG/caM+gnz4C+XbBjc70rMTMb9xoz6H3QlJlZ1TRm0PugKTOzqmnMoPdFws3MqqYxg35yCnofNGVmVrHGDPpJB4GaPEZvZlYFjRn0Tc0w6WAP3ZiZVUFjBj2ko2O9RW9mVqnGDXqf78bMrCoaN+h9vhszs6oYMeglHSrpLkmPSnpE0sdS+0GS7pT0VLqfltol6euSVktaKemEMVXWMcM/xpqZVUE5W/S9wCci4mjgJOAiSUcDnwaWR8R8YHl6DPA2YH66LQGuGlNlkzuhZxvs3DKmp5uZWWbEoI+I9RHxYJp+FXgMmA0sBK5L3a4Dzk3TC4HrI/M7YKqkWaOuzBcJNzOrilGN0UuaCxwP3AvMjIj1adbzwMw0PRt4ruhpa1Pb6Ph8N2ZmVVF20EvqAH4MXBIRrxTPi4gARnVOYUlLJHVL6t60qUSY+3w3ZmZVUVbQS2olC/kbIuKW1LyhMCST7guJvA44tOjpc1LbABFxdUR0RURXZ2fn3m/q892YmVVFOXvdCLgGeCwivlY0axmwOE0vBpYWtV+Q9r45CdhcNMRTvt1b9B66MTOrREsZfU4GzgcelrQitX0WuAK4SdKFwLPAeWne7cA5wGpgG/DBMVXW3AoTp3mL3sysQiMGfUT8BtAQs08v0T+AiyqsK+ODpszMKta4R8aCLxJuZlYFjR30Pt+NmVnFGjvofQZLM7OKNXbQd3TCzs3Qs6PelZiZjVuNHfSTfXSsmVmlGjvofdCUmVnFGjvofZFwM7OKNXjQT8/uPXRjZjZmjR30HroxM6tYYwd960Rom+KhGzOzCjR20IMPmjIzq1DjB73Pd2NmVpHGD/qOTv8Ya2ZWgcYPem/Rm5lVZBwEfSdsfxH6eutdiZnZuNT4Qd+RrjS1zacrNjMbi8YP+t1Hx3r4xsxsLBo/6H3QlJlZRRo/6H2RcDOzijR+0HuL3sysIo0f9G0d0DLRY/RmZmPU+EEv+SLhZmYVaPygB5/vxsysAiMGvaRrJW2UtKqo7TJJ6yStSLdziuZ9RtJqSU9IOqsqVfoi4WZmY1bOFv13gbNLtF8ZEQvS7XYASUcDi4Bj0nP+t6Tmiqv0Fr2Z2ZiNGPQRcTfwYpmvtxD4QUTsjIhngNXAiRXUl5k8Ixuj7++v+KXMzPY3lYzRXyxpZRramZbaZgPPFfVZm9oq0zEDoi87542ZmY3KWIP+KuAIYAGwHvjqaF9A0hJJ3ZK6N20aYfx990FTHr4xMxutMQV9RGyIiL6I6Ae+zZ7hmXXAoUVd56S2Uq9xdUR0RURXZ2fn8G9YCHqfl97MbNTGFPSSZhU9fBdQ2CNnGbBIUrukecB84L7KSqTo6FgHvZnZaLWM1EHSjcBpwHRJa4G/A06TtAAIYA3wYYCIeETSTcCjQC9wUUT0VVxlYYv+6bvg9e+u+OXMzPYnioh610BXV1d0d3cP3SECPj81m75s874pysyswUl6ICK6Ruo3Po6MlbL7N/5NfeswMxuHxkfQA6gZNH7KNTNrFE5OM7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzo2voO/vqXcFZmbjzvgJ+lnHwr1Xw9O/qnclZmbjyvgJ+vf9CA46HL7/57D6F/Wuxsxs3Bg/Qd/RCYt/AtPnw43vhSd+Vu+KzMzGhfET9ACTD4YLlsHMY+CHH4DHbqt3RWZmDW98BT3ApIPggqVwyAL40WJ45NZ6V2Rm1tDGX9ADTDgQPnALzHkD3PwhWPmjeldkZtawRgx6SddK2ihpVVHbQZLulPRUup+W2iXp65JWS1op6YSaVT7hAHj/zXDYyXDrEljx/Zq9lZnZeFbOFv13gbMHtX0aWB4R84Hl6THA24D56bYEuKo6ZQ6hvQPedxPMOxX+7/+AB66r6duZmY1HIwZ9RNwNvDioeSFQSNXrgHOL2q+PzO+AqZJmVavYktomwXt/CEe+FX7yUbj/OzV9OzOz8WasY/QzI2J9mn4emJmmZwPPFfVbm9pqq3UCLLohC/vb/xZ2vFLztzQzGy8q/jE2IgKI0T5P0hJJ3ZK6N23aVGkZ0NIOR50N0Qd9uyp/PTOznBhr0G8oDMmk+42pfR1waFG/OaltLxFxdUR0RURXZ2fnGMswM7ORjDXolwGL0/RiYGlR+wVp75uTgM1FQzxmZlYHLSN1kHQjcBowXdJa4O+AK4CbJF0IPAucl7rfDpwDrAa2AR+sQc1mZjYKIwZ9RLx3iFmnl+gbwEWVFmVmZtUzPo+MNTOzsjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLuXwG/YZHoL+v3lWYmTWEEa8wNa5MPQwQXP9OmHAgzD0FDj8tux18JEh1Lc/MrB7yFfRHnQmffBKeuRue/hU8/Wt4/LZs3pRDUui/Cea9CQ6YVcdCzcz2nXwFPUDHDHj9u7NbBLz0zJ7Qf/Jn8ND3s35v+Z9w6qfqWqqZ2b6Qv6AvJsFBh2e3rg9Bfz9seBhueA9sfLze1ZmZ7RP5/DF2KE1NMOs4aOuodyVmZvvM/hX0Zmb7oYqGbiStAV4F+oDeiOiSdBDwQ2AusAY4LyJeqqxMMzMbq2ps0b85IhZERFd6/GlgeUTMB5anx2ZmVie1GLpZCFyXpq8Dzq3Be5iZWZkqDfoA7pD0gKQlqW1mRKxP088DM0s9UdISSd2Sujdt2lRhGWZmNpRKd698Y0SskzQDuFPSgH0WIyIkRaknRsTVwNUAXV1dJfuYmVnlKtqij4h16X4jcCtwIrBB0iyAdL+x0iLNzGzsxhz0kiZLmlKYBs4EVgHLgMWp22JgaaVFmpnZ2FUydDMTuFXZicJagO9HxM8k3Q/cJOlC4FngvMrLrLL2jux8OM/8G8w7pd7VmJnV1JiDPiKeBo4r0f5H4PRKiqq5d/4z3PwhuO4d8MZL4LTPQktbvasyM6uJ/fPI2FnHwYfvhhPOh99cCdeeCS+srndVZmY1sX8GPUDb5GzL/rzvwYvPwLdOgQevz854aWaWI/tv0Bcc/U746/8Hc7pg2Ufgpgtg24vlP3/TE/D8qtrVZ2ZWoXyfprhcB86G85fCb/8Zln8B1nbDu/4lu0jJYDtegZefhZfWwEvPwh2XZu2Xbd6nJZuZlctBX9DUBCd/DOadCj/+73D9QnjDhdkpjYuDffsotvbNzBqAg36wQ47Pfqj92Wfg/u9AUytMfQ1MOyybN/UwmDY3ezxtbrb3zs5X6121mdmQHPSltE2Gd34dzrgc2qdAU3O9KzIzGzMH/XAmTq13BWZmFfNeN9XQ35ddj9bMrAF5i75SzW3whwfhC9Nh8nSY3Fl0P6NouhM6OvdMt06sd+Vmtp9w0FfqzC/C4W+GrRth6ybY+kJ2/9Ia2LIJeraWfl5bR1oJzBi4cjjsP8ORjX0GCTMbXxz0lZp+ZHYbyq6tKfzTCmDrprRSKHr88rOwrjubXnEDfOLxoV/PzGyUHPS11jY5u007bOS+t30cuq+Fu78CfT3Qtwv6e/ZM9+1K0z3wH/4jHHU2zDgasjOImpmV5KBvJFNfk93/8gvZfVNL9htAc2u6T9MR8MgtsPxyOGAOHHVmFvpzT4G2SfWr38wakqIBTuJ1yJHHxOOrVnDAhNZ6l1J/O7dkYd7Umh2tO5RX1sNTd8CTP4enf5X9FtAyITuyd/6ZcNRZe1YcZpZLkh6IiK4R+zVC0LfPmh/HXXwVn3vH0bz99bOQhyJGp3cnrPlNCv6fZT8EAzS3w+mfy7byWyZCS3u2t0/LhOzWOiFrb51Q1DYx++bgz8Cs4Y2roD/m2ONj3l9+nVXrXuFNR3Vy+cJjOOzgyfUua3yKgBeegl9eDo/9ZIwvoqIVwYRsBTFlFrz/R9mRwmbWEMZV0Hd1dcW9993P9b9dw1fveJKevn4+8pYj+ctTD6e9xacfGLPendCzLd1vh94d2a1nB/RuL7/9kaWwczP8pw9mF23Z/ZtBGmLa/TtCmt7920IbNKfppta9nzfc0JSZjWjcBX13dzcAz2/ewRdue5SfPryeIzon88V3vZ6TDj+4zhXu5567D645o/qvq+a9VwgDVh4t2UqjqTXdN6f5hbb0uK0DJhyY3SZOhQlT9zwuvvkgNcuZcRv0BXc9sZHPLV3Fcy9u57+dMIfPnvNaDu5or1OFxq6t2Vb+7l09e9Kun7ugr3fP7p8DdgftGdSvaF5/0XMKzy/53N69b3096bQTqc+uLbBjc/btYzjN7aVXAIXbPf8Ikw6G9gOyXWJbJ0LrpOzWNmng43LaCsNeze3ZNYmb27MVk3//sCoZ90EPsH1XH9+46ymuvvtpJrW18L0LT+TYOT7RmA2hZ0cW+ANuL6fb4PbNsP3lgf36e7NvEkcvzFZqhZVbz7Z0K2rr2znGIpW9R8uEPeG/1337MH0K80r1GTyvfU97oW3zc9meWi3tew+n7R56G669jGG65jaf8XUfyUXQFzy14VXOuPJu/nTeQZz+uhlMamthUlvz7vvJ7c1MbM2mp09pp6PdhwfYKEVkv020Tiivf19v9nvGrm0DVwQ921Lb1uz1endm31B6d2Yrh73aiuftGqJP8bx0399b2fI2tVT+GsPSECuAoVYMLXuvRIb6DWjI9kGvo6ZshaPmoumm7HFT057pAfMG9StrXnP2La0O39TKDfqaJaKks4F/ApqB70TEFWN9rfkzp3DMIQdw7zMvcu8zw1/hqaO9hfsvfSsT27xFYaMglR/ykEJqSv32QurvG3olULySKF7BFNoOmgeHn5adcbV4CK3UcNq+at+1pbz+/T31+XuXQ6VWHmklUO7Ko6mw0ii1cioxr0w1CXpJzcA3gTOAtcD9kpZFxKNjfc2ffvQU+vqDbbt62b6rj627+ti2q5dtu/rYtquP7bt6uePRDdzy4DoWfft3tDc3ZX9fieYmIUFzk2iS+OXjG5kzbSI//cgpdExoobnJY6Y2zjQ1p6OgKzgSuqkJmtqyoZ/xIqLM33d2QfRnK8Toh0j3/cXTZc7r78vet+S8/kGvMdK84vcqNS9K1FV43A99g+oqU6226E8EVkfE0wCSfgAsBMYc9JAF9ZQJrUwZ4gjaIzo7eHlbDzt7+7KNlQh6+/vZ1Qd9/UFE0J9Gqta+tJ3jLr8DgEltzUyZ0EJHe0t6/RamTGhhUltL9nePoLc/6O8P+vqDvkj3/cGvn9wEwKfO+pO96in+JidUom1g30f/8Aovb+/hHccekv0flIpuoHTfJA2Yv3tFJtHUtKd/X3/Q1tK0u9a+ovoLy7N7uYqWacC8CHr7gvbWJt5x3CEMXiUOPrit1Cqz1DdalehZ6TdfaeDfWbvbs9bC61d6QF5huLMw6hmD2wfXNaiOQn3VqGW/I+0ZrsHH2vBX5f37qVXQzwaeK3q8FvjTGr3XbvNnTuHav3jDiP2e3PAqK557mVd39LJlRy+v7ujJpnf28sqOHrbs7GX95h1s29mLUpBm3wZI0000N2XBWvDlnz9RteX41RObqvZa1XTpravqXULVDV4hwN6Bva9+xtod/kW1FK8Ydq8mBvQrTJdewe3uPvCpe6+gh9gAKdl3iLpL9Rg8b6TnDt4AGO75I60kh5o9ZPsoNj6GeuehairZWqXXLkfdfrWUtARYAvCa1+zbc7IcNXMKR82szthqRNDTVwiGKGov1bdoukTf/ghe2tqze7ov9nwL6Y/Y/S2lf0BbNl34xtKX5m3b2UtfBBNammluFs0SLU3ZFv+Ae4mWNL+wQhtwk9iys5czrrybvx30rWXwMsZe27JD/B1K/h1L9Ss/YQf8bSMGbG1H7HmtbHrPk4rDPIi9vnnt/q9VInizx6X7Fx4PrqN4uQbXUk6/AfNKfKPY+1vGwNcppXiHjMFdRvqM954/9LzBr77Xc0fxXqOtc8gnDtM81I4qQ/2rHPLvW4XXLjUjCJYP1X+Qmux1I+nPgMsi4qz0+DMAEfEPpfqPtNeNmZntrdy9bmp1DPr9wHxJ8yS1AYuAZTV6LzMzG0ZNhm4iolfSxcDPyXavvDYiHqnFe5mZ2fBqNkYfEbcDt9fq9c3MrDw+faCZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeVcQ5ymWNIm4Nl611EF04EX6l3EPuTlzTcvb+M7LCI6R+rUEEGfF5K6yzlKLS+8vPnm5c0PD92YmeWcg97MLOcc9NV1db0L2Me8vPnm5c0Jj9GbmeWct+jNzHLOQV8BSWskPSxphaTu1HaQpDslPZXup9W7zrGSdK2kjZJWFbWVXD5lvi5ptaSVkk6oX+VjM8TyXiZpXfqMV0g6p2jeZ9LyPiHprPpUPTaSDpV0l6RHJT0i6WOpPZef7zDLm8vPdy+RrmLk2+hvwBpg+qC2/wV8Ok1/GvhSveusYPlOBU4AVo20fMA5wL+SXWTpJODeetdfpeW9DPhkib5HAw8B7cA84N+B5novwyiWdRZwQpqeAjyZlimXn+8wy5vLz3fwzVv01bcQuC5NXwecW8daKhIRdwMvDmoeavkWAtdH5nfAVEmz9k2l1THE8g5lIfCDiNgZEc8Aq4ETa1ZclUXE+oh4ME2/CjxGdq3nXH6+wyzvUMb15zuYg74yAdwh6YF0DVyAmRGxPk0/D8ysT2k1M9Tylbog/HD/kcaTi9NwxbVFQ3G5WV5Jc4HjgXvZDz7fQcsLOf98wUFfqTdGxAnA24CLJJ1aPDOy74C53a0p78uXXAUcASwA1gNfrW851SWpA/gxcElEvFI8L4+fb4nlzfXnW+Cgr0BErEv3G4Fbyb7abSh8pU33G+tXYU0MtXzrgEOL+s1JbeNaRGyIiL6I6Ae+zZ6v7+N+eSW1koXeDRFxS2rO7edbannz/PkWc9CPkaTJkqYUpoEzgVVkF0FfnLotBpbWp8KaGWr5lgEXpL0zTgI2Fw0BjFuDxqHfRfYZQ7a8iyS1S5oHzAfu29f1jZUkAdcAj0XE14pm5fLzHWp58/r57qXevwaP1xtwONmv8g8BjwCXpvaDgeXAU8AvgIPqXWsFy3gj2dfZHrIxyguHWj6yvTG+SbZ3wsNAV73rr9Lyfi8tz0qy//yzivpfmpb3CeBt9a5/lMv6RrJhmZXAinQ7J6+f7zDLm8vPd/DNR8aameWch27MzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRWF+lMgmcNartE0lWSDpF08xDPmyvpfRW+968k7XVt0NT+hKSHJN0j6U8qeR+zRuGgt3q5EVg0qG0RcGNE/CEi3j34CZJagLlARUE/gvdHxHFkJ/T6cokammv43mY14aC3erkZeLukNth9oqlDgH9LW+2rUvtfSFom6ZdkB/JcAZySzh3+8TT/G4UXlXSbpNPS9FWSutP5xz8/yvruBo5Mr7NG0pckPQi8R9ICSb9LJ8K6teic7UdK+kX6RvCgpCNS+6ck3Z/6fz61TZb009R3laQ/T+1XpHOmr5T0ldTWKenH6TXul3Ryan9T0XnUf184UttssJZ6F2D7p4h4UdJ9ZCeEW0q2NX9TRER2tPoAJwDHpuecRnb+8P8C2YpgmLe5ND2nGVgu6diIWFlmie8gO2Ky4I+RncAOSSuBj0TEryVdDvwdcAlwA3BFRNwqaQLQJOlMssPnTyQ7unRZOvldJ/CHiHh7es0DJR1Mdhj+a9PfYWp6738CroyI30h6DfBz4HXAJ4GLIuKedLKuHWUum+1nvEVv9VQ8fLMoPS7lzogo9zzxxc5LW+G/B44hu5jESG6QtAI4mSxIC34IWSADUyPi16n9OuDUtDU9OyJuBYiIHRGxjewcSGemGh4EXksW/A8DZ6RvCqdExGZgM1lYXyPpvwLb0nu8FfhGqmsZcEAK9nuAr0n6aKqpd7R/INs/eIve6mkpcKWyy9JNiogHhui3dZjX6GXgBssEgHQiqk8Cb4iIlyR9tzBvBO+PiO5R1jAcAf8QEd/aa0a23OcAfy9peURcLulE4HTg3cDFwFvIlu+kiBi8xX6FpJ+m17hH0lkR8fgY67Qc8xa91U1EbAHuAq5l6K35wV4luxRcwRpggaQmSYey5zSzB5CF82ZJM8mGiKpR82bgJUmnpKbzgV9HdtWitZLOBUhnPZxENszyobQFjqTZkmZIOgTYFhH/h+xH3xNSnwMj4nbg48Bx6T3uAD5SqEHSgnR/REQ8HBFfAu4n+7Zgthdv0Vu93Uh2Lv/Be+AMZSXQJ+kh4LvAPwLPAI+SXR6ucLm4hyT9Hnic7EpB91Sx5sXAv6Qgfxr4YGo/H/hWGrfvAd4TEXdIeh3w2/TbwxbgA2Q/9H5ZUn/q+9dkK7ClaXxfwN+k1/0o8M3020AL2Q/FfwVcIunNQD/ZGVT/tYrLaDnis1eameWch27MzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzv1/xWTkwD2+JnsAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Presim. Time / s\"].plot();\n", "df[\"Sim. Time / s\"].plot();"]}, {"cell_type": "code", "execution_count": 72, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmcFNW5//HPMzvMjKIwcEFEUEEFwYGMiMEFN1CSiOYXI14TMZprcn9m05h7NZvGaC5ejSbGXL1GeYlxSRQ14I7gwpWfigNBZVOI4mUQZVGQbWCW5/dHVQ89Mz0zPdPd09M93/frVa+uPnWq6qlp6KfPqapT5u6IiIg0lZPuAEREpGtSghARkZiUIEREJCYlCBERiUkJQkREYlKCEBGRmJQgREQkJiUIERGJSQlCRERiykt3AIno06ePDx48ON1hiIhklMWLF29297K26mV0ghg8eDCVlZXpDkNEJKOY2Yfx1FMXk4iIxKQEISIiMSlBiIhITBl9DkJEkq+mpoaqqiqqq6vTHYokqKioiIEDB5Kfn9+h9ZUgRKSRqqoqSktLGTx4MGaW7nCkg9ydLVu2UFVVxZAhQzq0DXUxiUgj1dXV9O7dW8khw5kZvXv3TqglqAQhIs0oOWSHRD/HzE4Q2z9OdwQiIlkrsxPEjk9Az9QWyTq5ubmUl5dz9NFHc95557Fr166Et3nXXXdx//33J7ydyy+/nPLycoYPH06PHj0oLy+nvLycWbNm8ctf/pJ58+YlvI9Ypk+fzoMPPpiSbbfEPIO/YCsG5HrlP7ZAj17pDkUka6xcuZKjjjoqrTGUlJSwY8cOAC688EK+8IUvcOWVVzYsd3fcnZyc9P3GXbt2LV/+8pdZtmxZp+zvlFNO4ZFHHqGsrM0RMhqJ9Xma2WJ3r2hr3cxuQQDs3JTuCEQkhU488UTWrFnD2rVrOeKII7jooos4+uijWbduHXPnzuX4449nzJgxnHfeeQ1J5eqrr2b48OGMGjWKq666CoDrrruOW265BYAJEyZwxRVXUFFRwVFHHcWbb77JV7/6VYYOHcrPf/7zDsd68cUXM2vWLCAYCuiaa66hvLyciooKlixZwqRJkzjssMO46667Gta5+eabOfbYYxk1ahTXXnttzO1+/vnn7N27t1lyeOWVVxpaMKNHj2b79u0djj2WzL/MdcdG6DM03VGIZKVfPbmcFR99ntRtDh+wH9d+ZURcdWtra3n22Wc588wzAVi9ejUzZ85k3LhxbN68mRtuuIF58+ZRXFzMTTfdxK233srll1/OE088wapVqzAztm7dGnPbBQUFVFZW8vvf/54pU6awePFiDjzwQA477DCuuOIKevfunfCxDho0iKVLl3LFFVdw8cUXs3DhQqqrqzn66KP57ne/y9y5c1m9ejWLFi3C3Tn77LNZsGABJ510UqPtzJs3j9NOO63Z9m+55Rb++Mc/Mn78eHbs2EFRUVHCMUdLWQvCzIrMbJGZvWVmy83sV2H5EDN7w8zWmNlfzawgLC8M368Jlw+Oa0c7N6bqEEQkTXbv3t3wy3vQoEFceumlABxyyCGMGzcOgNdff50VK1Ywfvx4ysvLmTlzJh9++CH7778/RUVFXHrppTz++OP07Nkz5j7OPvtsAEaOHMmIESPo378/hYWFHHrooaxbty4pxxG9j+OOO47S0lLKysooLCxk69atzJ07l7lz5zJ69GjGjBnDqlWrWL16dbPtPPfcc5x11lnNysePH8+VV17J7bffztatW8nLS+5v/lS2IPYAp7r7DjPLB141s2eBK4Hb3P0vZnYXcClwZ/j6mbsfbmZTgZuA89vcyw51MYmkSry/9JOtR48eLF26tFl5cXFxw7y7c8YZZ/Dwww83q7do0SLmz5/PrFmzuOOOO3jxxReb1SksLAQgJyenYT7yvra2NhmH0eY+3J1rrrmG73znO61uZ9GiRdx5553Nyq+++mq+9KUv8cwzzzB+/Hief/55jjzyyKTEDilsQXhgR/g2P5wcOBWYFZbPBM4J56eE7wmXn2ZtXsRrakGIdFPjxo1j4cKFrFmzBoCdO3fy3nvvsWPHDrZt28bkyZO57bbbeOutt9IcacsmTZrEjBkzGs6drF+/no0bG3+nLV++nCOPPJLc3Nxm6//jH/9g5MiR/Pu//zvHHnssq1atSmp8KT0HYWa5wGLgcOCPwD+Are4eSc9VwEHh/EHAOgB3rzWzbUBvYHOLO8jJ00lqkW6qrKyM++67jwsuuIA9e/YAcMMNN1BaWsqUKVOorq7G3bn11ls7vI/Jkydzzz33MGDAgGSF3cjEiRNZuXIlxx9/PBBcvfXAAw/Qt2/fhjrR52Ca+t3vfsdLL71ETk4OI0aMiNkNlYhOuczVzHoBTwC/AO5z98PD8oOBZ939aDNbBpzp7lXhsn8Ax7n75ibbugy4DOCYAYVfWHrLV+GCh1J+DCLdRVe4zFX2OeOMM7j//vvp379/h9bv8pe5uvtW4CXgeKCXmUVaLgOB9eH8euBggHD5/sCWGNu6290r3L0ir6BIXUwiktVeeOGFDieHRKXyKqaysOWAmfUAzgBWEiSKr4XVpgGzw/k54XvC5S96W82bnPzgMlcREUm6VJ6D6A/MDM9D5ACPuPtTZrYC+IuZ3QD8Hbg3rH8v8GczWwN8Ckxtcw+5OgchIpIqKUsQ7v42MDpG+fvA2Bjl1cB57dpJTh7UfA57dkBhSUdDFRGRGDJ7qI2c8ClJOg8hIpJ0mZ0gcsMG0M6Wr4QVEZGOyewEkRMmCJ2oFskqN954IyNGjGDUqFGUl5fzxhtvAPDtb3+bFStWJLz94447jvLycgYNGkRZWVnDgHdr165l8uTJLY7flKizzjqLqqqqlGw7FTJ7sD51MYlknddee42nnnqKJUuWUFhYyObNm9m7dy8A99xzT1L2EUk49913H5WVldxxxx0Ny5555pmk7KOp3bt3s2XLFgYOHJiS7adCZrcgIl1MGo9JJGts2LCBPn36NIxd1KdPn4Y7mSdMmEBlZSUQ3HX8k5/8hBEjRnD66aezaNEiJkyYwKGHHsqcOXM6vP/BgwezefNm1q5dy5FHHsnFF1/MsGHDuPDCC5k3bx7jx49n6NChLFq0CAiG+LjkkksYO3Yso0ePZvbs2TG3+/LLLzNhwoRm5bfffnvD0ORTp7Z98WZnyuwWBAY9DlALQiRVnr0aPn4nudv8p5Fw1vQWF0+cOJHrr7+eYcOGcfrpp3P++edz8sknN6u3c+dOTj31VG6++WbOPfdcfv7zn/PCCy+wYsUKpk2b1jCSaiLWrFnDo48+yowZMzj22GN56KGHePXVV5kzZw6/+c1v+Nvf/saNN97IqaeeyowZM9i6dStjx47l9NNPbzSwIARDZpxzzjnN9jF9+nQ++OCDhhFeu5LMbkEAFPfVOQiRLFJSUsLixYu5++67KSsr4/zzz+e+++5rVq+goKBhjKKRI0dy8sknk5+fz8iRI1m7dm1SYhkyZAgjR45sGOvotNNOw8wa7WPu3LlMnz6d8vJyJkyYQHV1Nf/7v//bbFsLFy7khBNOaFY+atQoLrzwQh544IGkD9edqK4VTUcUl+lmOZFUaeWXfirl5uYyYcIEJkyYwMiRI5k5cyYXX3xxozr5+flEBnyOHk47FcN1t7YPd+exxx7jiCOOaHE777//PgcffDAFBQXNlj399NMsWLCAJ598khtvvJF33nmnyySKzG9BlChBiGSTd999t9FDc5YuXcohhxySxohaN2nSJP7whz8QGRno73//e7M6LY3IWl9fz7p16zjllFO46aab2LZtW8PQ311B5ieI4r46SS2SRXbs2MG0adMaTtyuWLGC6667rkPb+uijj5g8eXJyA2ziF7/4BTU1NYwaNYoRI0bwi1/8olmd5557LmaCqKur4xvf+AYjR45k9OjR/OAHP6BXr14pjbc9OmW471SpqKjwylvPhxdvgJ99AvnJfR6rSHek4b6Ta8+ePYwfP77h6qvO1uWH+06p4vDBGupmEpEuqLCwMG3JIVGZnyBKIglCVzKJiCRT5ieISAtC5yFEkiaTu55ln0Q/xyxIEH2CV3UxiSRFUVERW7ZsUZLIcO7Oli1bKCrq+LnZrnGxbSLUxSSSVAMHDqSqqopNm/SjK9MVFRUlNPZT5ieI/B5QUKouJpEkyc/PZ8iQIekOQ7qAzO9igvBmObUgRESSKTsShMZjEhFJuuxIEBpuQ0Qk6bIjQagFISKSdFmSIMpg96dQl5wRHEVEJFsSRElZ8Lprc3rjEBHJIilLEGZ2sJm9ZGYrzGy5mf0wLL/OzNab2dJwmhy1zjVmtsbM3jWzSXHvrOFuanUziYgkSyrvg6gFfuzuS8ysFFhsZi+Ey25z91uiK5vZcGAqMAIYAMwzs2HuXtfmnnSznIhI0qWsBeHuG9x9STi/HVgJHNTKKlOAv7j7Hnf/AFgDjI1rZ8VhF5NulhMRSZpOOQdhZoOB0cAbYdH3zOxtM5thZgeEZQcB66JWqyJGQjGzy8ys0swqG4YCUAtCRCTpUp4gzKwEeAz4kbt/DtwJHAaUAxuA37Zne+5+t7tXuHtFWVnYcigogbweOgchIpJEKU0QZpZPkBwedPfHAdz9E3evc/d64E/s60ZaDxwctfrAsCyeHQXdTDt1FZOISLKk8iomA+4FVrr7rVHl/aOqnQssC+fnAFPNrNDMhgBDgUVx71DjMYmIJFUqr2IaD3wTeMfMloZlPwUuMLNywIG1wHcA3H25mT0CrCC4AuryuK5giijuC9uqkhe9iEg3l7IE4e6vAhZj0TOtrHMjcGOHdlhSBh8t6dCqIiLSXHbcSQ1BC2LnZqivT3ckIiJZIXsSRElf8LpgTCYREUlY9iSIhpvldKJaRCQZsi9B6LkQIiJJkT0JouFuaiUIEZFkyJ4EoS4mEZGkyp4E0eMAyMnXzXIiIkmSPQkiMtyGRnQVEUmK7EkQoOE2RESSKLsSRHFfnYMQEUmSLEsQGtFVRCRZsitBRLqY3NMdiYhIxsuuBFHcF+r2QvW2dEciIpLxsitB6GY5EZGkya4EoZvlRESSJrsSREMLQglCRCRR2ZUgisMEoZvlREQSll0JoueBYDk6ByEikgTZlSBycqFnb3UxiYgkQXYlCAjvplYLQkQkUdmXIDQek4hIUmRfgtB4TCIiSZGyBGFmB5vZS2a2wsyWm9kPw/IDzewFM1sdvh4QlpuZ3W5ma8zsbTMb06Edl/TVSWoRkSRIZQuiFvixuw8HxgGXm9lw4GpgvrsPBeaH7wHOAoaG02XAnR3aa3EZ1OyCPTsSDF9EpHtLWYJw9w3uviSc3w6sBA4CpgAzw2ozgXPC+SnA/R54HehlZv3bvePI3dRqRYiIJKRTzkGY2WBgNPAG0M/dN4SLPgb6hfMHAeuiVqsKy9pH4zGJiCRFyhOEmZUAjwE/cvfPo5e5uwPtGpvbzC4zs0ozq9y0KUYS0HhMIiJJkdIEYWb5BMnhQXd/PCz+JNJ1FL5GvsnXAwdHrT4wLGvE3e929wp3rygrK2u+U43HJCKSFKm8ismAe4GV7n5r1KI5wLRwfhowO6r8ovBqpnHAtqiuqPg1tCDUxSQikoi8FG57PPBN4B0zWxqW/RSYDjxiZpcCHwJfD5c9A0wG1gC7gG91aK+5+dDjALUgREQSlLIE4e6vAtbC4tNi1Hfg8qTsXDfLiYgkLPvupIagm2nn5nRHISKS0bIzQWg8JhGRhGVngtCIriIiCcvOBFFSBnu2QU11uiMREclY2ZkginU3tYhIotpMEGb2n2a2n5nlm9l8M9tkZt/ojOA6TDfLiYgkLJ4WxMRwiIwvA2uBw4GfpDKohEVaEDoPISLSYfEkiMi9El8CHnX3bSmMJzmK+wSv6mISEemweG6Ue8rMVgG7gX81szKga5/9VReTiEjC2mxBuPvVwBeBCnevIRgGY0qqA0tIfg8oKFUXk4hIAuIaasPdP42a3wnsTFlEyaKb5UREEpKdl7mCxmMSEUlQiwkifJZD5iop00lqEZEEtNaCeM3M/mZm3w0fGZpZ1IIQEUlIi+cg3L0iTAxnAr8zs4OAV4FngVfcfU+nRNhRxWWw+1Ooq4XcVD72QkQkO7V6DsLd17r7Xe5+DsGVTE8CpwP/Y2ZPd0aAHVYSPllul4b9FhHpiLh/WoeXuL4YToQtiq6r4W7qjVD6T+mNRUQkA3X4KiZ3X5/MQJJON8uJiCQkiy9zDbuYdLOciEiHxJ0gzKxnKgNJOrUgREQSEs9w3180sxXAqvD9MWb2XymPLFEFJZDXQ5e6ioh0UDwtiNuAScAWAHd/CzgplUElhVnQzbRTVzGJiHREXF1M7r6uSVFdCmJJPo3HJCLSYfEkiHVm9kXAw6fKXQWsbGslM5thZhvNbFlU2XVmtt7MlobT5Khl15jZGjN718wmdehomiruq5PUIiIdFE+C+C5wOXAQsB4oD9+35T6Cu7Cbus3dy8PpGQAzGw5MBUaE6/yXmeXGsY/WqQUhItJhbd4o5+6bgQvbu2F3X9COMZymAH8Jh+/4wMzWAGOB19q730aK+wbnIOrrISd7r+gVEUmFNhOEmQ0Bvg8Mjq7v7md3cJ/fM7OLgErgx+7+GUHr5PWoOlVhWWJK+oLXBWMyRR5DKiIicYlnqI2/AfcSjMNUn+D+7gR+DXj4+lvgkvZswMwuAy4DGDRoUOuVG26W26gEISLSTvEkiGp3vz0ZO3P3TyLzZvYn4Knw7Xrg4KiqA8OyWNu4G7gboKKiwlvdYSRB6LkQIiLtFk/H/O/N7FozO97MxkSmjuzMzPpHvT0XiFzhNAeYamaFYZfWUGBRR/bRSMPd1EoQIiLtFU8LYiTwTeBU9nUxefi+RWb2MDAB6GNmVcC1wAQzKw/XXwt8B8Ddl5vZI8AKoBa43N0Tv9ci0oJ4/yUY+bWENyci0p2Ye+u9NOEVRcPdfW/nhBS/iooKr6ysbLmCO/yqVzB/3bbOCUpEpIszs8XuXtFWvXi6mJYBvRIPKQ3MgtcTrkxvHCIiGSieLqZewCozexNoeMxoApe5di7LBdM9ECIi7RVPgrg25VGIiEiXE8+d1K90RiAiItK1tJggzOxVdz/BzLYTXHXUsAhwd98v5dGJiEjatNaCKAZw99JOikVERLqQ1s7etn79q4iIZLXWWhB9zazF60Pd/dYUxCMiIl1EawkiFyghOOcgIiLdTGsJYoO7X99pkYiISJfS2jkItRxERLqx1hLEaZ0WhYiIdDktJgh3/7QzAxERka5FgxSJiEhMShAiIhKTEoSIiMTUPRJEfU26IxARyTjZnyD6j4I37ob3X053JCIiGSX7E8Q/PwoHHgoPnQ9r5qU7GhGRjJH9CaKkDKY9CX2GwsMXwLvPpTsiEZGMkP0JAqC4N1w0B/qNgL9+A1Y+le6IRES6vO6RIAB6HggXzYYB5fDoNFj+RLojEhHp0rpPggAo2h++8TgMPBZmXQJvP5ruiEREuqyUJQgzm2FmG81sWVTZgWb2gpmtDl8PCMvNzG43szVm9raZjUlVXBTtBxfOgkPGwxOXwdKHUrYrEZFMlsoWxH3AmU3Krgbmu/tQYH74HuAsYGg4XQbcmcK4oLAE/vkRGHIS/O3/wuKZKd2diEgmSlmCcPcFQNMB/6YAkW/jmcA5UeX3e+B1oJeZ9U9VbAAU9IQL/gqHnw5P/gDevCeluxMRyTSdfQ6in7tvCOc/BvqF8wcB66LqVYVlqZVfBFMfDJLEM/8G1Z+nfJciIpkibSep3d0Bb+96ZnaZmVWaWeWmTZsSDySvEIadCV4HdXsT356ISJbo7ATxSaTrKHzdGJavBw6OqjcwLGvG3e929wp3rygrK0tpsCIi3VlnJ4g5wLRwfhowO6r8ovBqpnHAtqiuKBERSYO8VG3YzB4GJgB9zKwKuBaYDjxiZpcCHwJfD6s/A0wG1gC7gG+lKi4REYlPyhKEu1/QwqJmz7oOz0dcnqpYRESk/brXndQiIhI3JQgREYlJCUJERGJSghARkZiUIEREJCYlCBERiUkJQkREYlKCEBGRmJQgREQkJiUIERGJSQlCRERiUoIQEZGYlCBERCQmJQgREYlJCUJERGJSghARkZiUIKJ9shzq69IdhYhIl5CyJ8pllF6HAAb3nw1F+8PgE+HQCcHU+3AwS2t4IiLpoAQBMGwiXPUefLAA3n8Z3n8FVj0VLCsdECaLk2HIybBf/zQGKiLSeZQgIkr6wsivBZM7fPbBvmTx3nPw1kNBvVN/Dif9JK2hioh0BiWIWMzgwEODqeISqK+HT96BB8+DjavSHZ2ISKfQSep45ORA/2OgoCTdkYiIdBolCBERiSktXUxmthbYDtQBte5eYWYHAn8FBgNrga+7+2fpiE9ERNLbgjjF3cvdvSJ8fzUw392HAvPD9yIikiZdqYtpCjAznJ8JnJPGWEREur10JQgH5prZYjO7LCzr5+4bwvmPgX6xVjSzy8ys0swqN23a1Bmxioh0S+m6zPUEd19vZn2BF8ys0bWj7u5m5rFWdPe7gbsBKioqYtYREZHEpaUF4e7rw9eNwBPAWOATM+sPEL5uTEdsIiIS6PQEYWbFZlYamQcmAsuAOcC0sNo0YHZnxyYiIvuko4upH/CEBQPg5QEPuftzZvYm8IiZXQp8CHw9DbG1rrAkGK/pg/+BISemOxoRkZTq9ATh7u8Dx8Qo3wKc1tnxtMvZf4BZl8DMr8AJP4IJP4W8gnRHJSKSEl3pMteur/8x8J0FMOab8OptMGMibF6T7qhERFJCCaK9CoqDlsTX/wyffgD/fSIsuT8YAVZEJIsoQXTU8LPhX/8fDKyAOd+HRy6CXZ/Gv/6md+HjZamLT0QkQRruOxH7HwTfnA2v/QHm/xqqKuHcu4KHCzVV/Tls/RA+WwuffQhzfxaUX7etU0MWEYmXEkSicnJg/A9hyEnw2Lfh/ilw7KXB0ODRCWF3O1oXIiJdgBJEsgwYHZzAfu4aePMeyMmHXoPggEOCZb0OgQMGB+8PGBxcDbVne7qjFhFpkRJEMhUUw9m3wxnXQ2Ep5OSmOyIRkQ5TgkiFHr3SHYGISMJ0FVM61dcFz7sWEemC1IJIl9wC+GgJ/LoPFPeB4rKo175R82VQUrZvPr9HuiMXkW5CCSJdJt4Ih54COzfCzk2wc3Pw+tla2LEJanbGXq+gJEwefRsnlUO+CId37ZFKRCSzKEGkS5/Dg6kle3eGSSNMHDs3hckk6v3WD2F9ZTC/9EH48aqWtyci0k5KEF1VQXEwHXBI23WfugIqZ8CCW6CuBur2Qn3Nvvm6veF8DfzT0TDsTOg7HIIRdUVEYlKCyAa9BgWvL/46eM3JC85x5OaHr+G8Oyx/HOZfD/sNhGETg2Qx+EQo6Jm++EWkSzLP4EHmBhw+wlctW8p+RfnpDiX99uwIkkBOfnB3d0s+3wCr58J7z8P7LwfnOvKKgjvBh06EYZP2JRwRyUpmttjdK9qsl8kJorD/UD/me3fyy68M50sj+2PqMmmf2j2w9tUwYTwXnCAHyC2E034ZtCryekBeYXD1VF5RMOUXBeX5RVFlPYKWij4DkS6vWySIEaNG+5B/uZ1l6z/n5GFlXD9lBIf0Lk53WJnJHTavhhevh5VPdnAjFpVAioLEUtofLnw0uLNcRLqEbpEgKioq/I1Fb3L/a2v57dz3qKmr5/unHs6/nHQohXka5qLDavdAza7wdTfUVgdTTTXU7o6/fPls2LMNvvCt4GFLDedEwq6whvMk4XzDuZMCyA3nc/Kbr9daF5qItKnbJIjKykoAPt5Wza+fWsHT72zgsLJibjx3JOMO7Z3mCLu5dYvg3jOSv13LbZ5IGiWdvCDZ5OSHr7nh8khZ+L6gBIr2D6YevaCo17730ZNuTpQs0+0SRMRL727kl7OXse7T3fyfMQP56eQj6V1SmKYIhb07g1ZFwyW3NeEluHuhrnbfZbiNLsutaVIvall91DqR9WOuW9t8qqsJhzcJ6+zdAdXbgtZOa3ILYyeOyLTwd9CzNxTuF1yanN8D8nsGU0HPxu/jKYt0z+UWBs88zy0MEprO70iSdNsEAbB7bx13vLSauxe8T8+CPP586VhGDdQAetKCmuogUTSatoZT0/JtsHtr43r1tUHLZfiUIBlGkmLNrnCKKqvb08EgLdhHXtG+pNHstbCVOpFlseo0XVa4rzxStm1dcOVbXmHzbr+GLsLWyuPoTswt0AjInaRbJ4iI1Z9s54zbFnDckAM57ai+9CzIo2dBbsNrcWEuPfKD+T6lhZQU6rYQaSf34NxLflF89etqg/M1e3c1TiA1u8KyncH2avcELaLaPUFSaVYWvWxvC3Wil4Wv9bWJHW9OXuLbaJW1kDhaSih5zZNPS+e4Wixvsh3LCRKV5UbN5wTvc3L2zTda1qReXMtyg1ZhGlqG8SaILveNaGZnAr8HcoF73H16R7c1tF8pIwbsxxsffMobH7T+RLeSwjze/Nnp9CjQLxhpB7P4kwOEX26l6buqq76u5eQRnVyiE1Ok7MAhcOiEYATi6K6+WN1+nVW+d0d89etr0vP3jofFSjph8og36eREkk2spBZjWZy6VIIws1zgj8AZQBXwppnNcfcVHd3m0z84kbp6Z9feWnbvrWPn3jp27a1l1946du2tY/feWuau+ITHl6xn6p9epzA3J/hczMjNMcwgN8fIMePFVRsZeEAPnv7+iZQU5ZGboz5hyTA5ueFd8wncOZ+TAzkFQRdVpnCP8/zVXvD6IJF6PXj4Wh89H+ey+rpgvzGX1TfZRlvLovcVa5nHiCvyvh7qmsQVpy6VIICxwBp3fx/AzP4CTAE6nCAg+IIvLcqntIU7rg8rK2Hrrhr21NYFP47cqa2vZ28d1NU77k592BNX9dlujrl+LgA9C3IpLcqjpDAv3H4epUV59CzICz4vd2rrnfp6p67eqfPwtd555b1NAPxk0hHN4olucRoWo6xx3RUffc7W3TV8ZdSA4P+uWdQEFr7mmDVa3pAAzcjJ2Ve/rt4pyMtpiLUuKv7I8TQcV9QxNVrmTm2dU5ifw1eOGUDTVNr0psZYqTZWy9t7RxCtAAAJPElEQVRi1Ey0hW7W+O9sDeVBaWT7id6IGenOjfTqetPypnE1iSMSXzJi6XbM9nUroXul+G58/366WoI4CFgX9b4KOC7VOx3ar5QZFx/bZr33PtnO0nVb2V5dy47qWrZX1wTze2r5vLqGHXtq2bCtml17arHwCzhofRDO55CbE3whR9z8/LtJO46X392UtG0l08+eWJbuEJKuaSKB5l/0nXV6ryFpRMUSnVAa0kujepH52ImxoXrjVZsn9hZ+uMSs20LcsWo0XdbWuk1/OLS2flvJtaXFLZa340dLS3tuKaaYpUnadjy6WoJok5ldBlwGMGhQ544ZNKxfKcP6Jafv2N2pqYt8oXhUeay6UfMx6ta789nOmob5Ot/X6ql3b2gV1TcqC+YjLaS6cNmuPbXUuVOUl0turpFrRl5O0MJo9GpGXrg8kggbTWbs2FPLGbct4N+atJKaHqM3++3cwt8h5t8xVr34v5kb/W3dG/26d9+3rWB+30rRScDxZi29hv+SMb6wg/ex60feN40j+riaxhJPvUbLYrRgmrdqGm8nlugLXJpWaeszbr685WVNt95s3Xbsq71xtrhiK8UtXfjT0r/KFv++Sdh2rAWOM7+l+k10qauYzOx44Dp3nxS+vwbA3f8jVv22rmISEZHm4r2KqauNWfAmMNTMhphZATAVmJPmmEREuqUu1cXk7rVm9j3geYLLXGe4+/I0hyUi0i11qQQB4O7PAM+kOw4Rke6uq3UxiYhIF6EEISIiMSlBiIhITEoQIiISkxKEiIjE1KVulGsvM9sEfJjuOJKgD7A53UF0Ih1vdtPxdn2HuHtZW5UyOkFkCzOrjOeuxmyh481uOt7soS4mERGJSQlCRERiUoLoGu5OdwCdTMeb3XS8WULnIEREJCa1IEREJCYliDQws7Vm9o6ZLTWzyrDsQDN7wcxWh68HpDvOjjKzGWa20cyWRZXFPD4L3G5ma8zsbTMbk77IO6aF473OzNaHn/FSM5scteya8HjfNbNJ6Ym6Y8zsYDN7ycxWmNlyM/thWJ6Vn28rx5uVn28zHj59TFPnTcBaoE+Tsv8Erg7nrwZuSnecCRzfScAYYFlbxwdMBp4leKjaOOCNdMefpOO9DrgqRt3hwFtAITAE+AeQm+5jaMex9gfGhPOlwHvhMWXl59vK8Wbl59t0Ugui65gCzAznZwLnpDGWhLj7AuDTJsUtHd8U4H4PvA70MrP+nRNpcrRwvC2ZAvzF3fe4+wfAGmBsyoJLMnff4O5LwvntwEqCZ8ln5efbyvG2JKM/36aUINLDgblmtjh8xjZAP3ffEM5/DPRLT2gp09LxHQSsi6pXRev/ATPJ98JulRlRXYZZc7xmNhgYDbxBN/h8mxwvZPnnC0oQ6XKCu48BzgIuN7OTohd60FbN2svLsv34QncChwHlwAbgt+kNJ7nMrAR4DPiRu38evSwbP98Yx5vVn2+EEkQauPv68HUj8ARBE/STSNM7fN2YvghToqXjWw8cHFVvYFiW0dz9E3evc/d64E/s62bI+OM1s3yCL8sH3f3xsDhrP99Yx5vNn280JYhOZmbFZlYamQcmAsuAOcC0sNo0YHZ6IkyZlo5vDnBReLXLOGBbVFdFxmrSz34uwWcMwfFONbNCMxsCDAUWdXZ8HWVmBtwLrHT3W6MWZeXn29LxZuvn20y6z5J3twk4lOAqh7eA5cDPwvLewHxgNTAPODDdsSZwjA8TNLtrCPpgL23p+AiubvkjwdUe7wAV6Y4/Scf75/B43ib40ugfVf9n4fG+C5yV7vjbeawnEHQfvQ0sDafJ2fr5tnK8Wfn5Np10J7WIiMSkLiYREYlJCUJERGJSghARkZiUIEREJCYlCBERiUkJQjJKOLLmpCZlPzKzO81sgJnNamG9wWb2zwnu+2Uza/bs4bD8XTN7y8wWmtkRiexHpKtQgpBM8zAwtUnZVOBhd//I3b/WdAUzywMGAwkliDZc6O7HEAxUd3OMGHJTuG+RlFCCkEwzC/iSmRVAwwBqA4D/CVsJy8Lyi81sjpm9SHAD13TgxHDs/ivC5XdENmpmT5nZhHD+TjOrDMf//1U741sAHB5uZ62Z3WRmS4DzzKzczF4PB3h7IuqZCYeb2bywBbLEzA4Ly39iZm+G9X8VlhWb2dNh3WVmdn5YPj18ZsHbZnZLWFZmZo+F23jTzMaH5SdHPcfg75E7+0Waykt3ACLt4e6fmtkigoEOZxO0Hh5xdw9GRWhkDDAqXGcCwfj9X4YggbSym5+F6+QC881slLu/HWeIXyG4wzZiiwcDM2JmbwPfd/dXzOx64FrgR8CDwHR3f8LMioAcM5tIMEzDWIK7keeEgzqWAR+5+5fCbe5vZr0Jhns4Mvw79Ar3/XvgNnd/1cwGAc8DRwFXAZe7+8JwELrqOI9Nuhm1ICQTRXczTQ3fx/KCu8f7nIZoXw9/9f8dGEHwEJi2PGhmS4HxBF/AEX+F4Isc6OXur4TlM4GTwl/vB7n7EwDuXu3uuwjG6JoYxrAEOJIgYbwDnBG2TE50923ANoIv+XvN7KvArnAfpwN3hHHNAfYLE8JC4FYz+0EYU217/0DSPagFIZloNnCbBY+v7Onui1uot7OVbdTS+AdSEUA4wNpVwLHu/pmZ3RdZ1oYL3b2ynTG0xoD/cPf/brYgOO7JwA1mNt/drzezscBpwNeA7wGnEhzfOHdv2kKYbmZPh9tYaGaT3H1VB+OULKYWhGQcd98BvATMoOXWQ1PbCR4ZGbEWKDezHDM7mH3DNe9H8KW+zcz6EXRlJSPmbcBnZnZiWPRN4BUPnlJWZWbnAISjgPYk6A66JPzFj5kdZGZ9zWwAsMvdHyA4GT4mrLO/uz8DXAEcE+5jLvD9SAxmVh6+Hubu77j7TcCbBK0TkWbUgpBM9TDBszSaXtHUkreBOjN7C7gP+B3wAbCC4DGSkcdKvmVmfwdWETwZbGESY54G3BUmgPeBb4Xl3wT+OzwvUQOc5+5zzewo4LXw3MoO4BsEJ8BvNrP6sO6/EiS+2eH5CwOuDLf7A+CP4bmPPIIT6N8FfmRmpwD1BCMKP5vEY5QsotFcRUQkJnUxiYhITEoQIiISkxKEiIjEpAQhIiIxKUGIiEhMShAiIhKTEoSIiMSkBCEiIjH9fy/Jv8wSJryMAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["ax = df[[\"Presim. Time / s\", \"Sim. Time / s\"]].plot();\n", "ax.set_ylabel(\"Time / s\");"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 6\n", "<a name=\"task6\"></a>\n", "\n", "* To your `df` NEST data frame, add a column with the unaccounted time (`Unaccounted Time / s`), which is the difference of program runtime, average neuron build time, minimal edge build time, minimal initialization time, presimulation time, and simulation time. \n", "(*I know this is technically not super correct, but it will do for our example.*)\n", "* Plot a stacked bar plot of all these columns (except for program runtime) over the virtual processes\n", "* Remember: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 92, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["cols = [\n", " 'Avg. Neuron Build Time / s', \n", " 'Min. Edge Build Time / s', \n", " 'Min. Init. Time / s', \n", " 'Presim. Time / s', \n", " 'Sim. Time / s'\n", "]\n", "df[\"Unaccounted Time / s\"] = df['Runtime Program / s']\n", "for entry in cols:\n", " df[\"Unaccounted Time / s\"] = df[\"Unaccounted Time / s\"] - df[entry]"]}, {"cell_type": "code", "execution_count": 93, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Runtime Program / s</th>\n", " <th>Unaccounted Time / s</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Min. Init. Time / s</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " </tr>\n", " <tr>\n", " <th>Virtual Processes</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>8</th>\n", " <td>420.42</td>\n", " <td>2.09</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>1.14</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>202.15</td>\n", " <td>2.43</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>0.70</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Runtime Program / s Unaccounted Time / s \\\n", "Virtual Processes \n", "8 420.42 2.09 \n", "16 202.15 2.43 \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "Virtual Processes \n", "8 0.29 88.12 \n", "16 0.28 47.98 \n", "\n", " Min. Init. Time / s Presim. Time / s Sim. Time / s \n", "Virtual Processes \n", "8 1.14 17.26 311.52 \n", "16 0.70 7.95 142.81 "]}, "execution_count": 93, "metadata": {}, "output_type": "execute_result"}], "source": ["df[[\"Runtime Program / s\", \"Unaccounted Time / s\", *cols]].head(2)"]}, {"cell_type": "code", "execution_count": 94, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAEXCAYAAAC9NcJWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8TPf+x/HXTCYJsYSSiK262KqKFEWpXK6tCKqqWqXUEm3DrSpqV0qoqEt10dqKqrVUVWmv3upPI7VUbcW1t7ZsUkksSSYzvz/U1AgyiZMxiffz8ejjIWe+530+ZzL3cT858z3na7Lb7XZEREREROSWzHe6ABERERGRvECNs4iIiIiIC9Q4i4iIiIi4QI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAvUOIuIiIiIuECNs4iIiIiIC9Q4i4iIiIi4QI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAssd7qA6yUmXsBms99yTIkShUlISLntYxmVY2SWJ9ZkZJZqcm+Op2apJvdnqSb3Z6km92epJvdn5dWazGYTxYsXyna2xzXONps9y8b56jijjmeU/FyTkVmqyb05npqlmtyfpZrcn6Wa3J+lmtyfld9rupamaoiIiIiIuECNs4iIiIiIC9Q4i4iIiIi4wOPmOIuIiEjekJFhJTExDqs17bZyYmPN2Gy2267HqBwjszyxJiOzPL0mi8WH4sUD8PIypuVV4ywiIiI5kpgYR4ECfhQqFITJZMpxjsVixmq9/YbJqBwjszyxJiOzPLkmu93OhQtJJCbGUbJkaQMq1FQNERERySGrNY1ChYreVtMskltMJhOFChW97W9ErqXGWURERHJMTbN4MqM/n5qqISIiIoYoUrQgBXyNby0up1pJTrpkeK5Idnl84+xf1AcfX99M2wMCijj+nZaayvkk4y7Di4iISPYV8LUQOuhLw3O/mtqe5CzGnDlzmv79w1ix4iun7Y0a1WHz5u2G15RbvvzyC/z8/GjevJXL+3TqFMp7782idOkyjm3Dhr3BmTOnuXTpIufOJVC2bHkAXn65P3v27KJatYd5/PEnDK19w4Z1pKSk8PTTnQ3N9SQe3zj7+Poyc1jPW44Jj5gHqHEWERGRvG3v3t0EB9e+7ZyIiEgAfvllO3PnfszMmR87XqtXr4GhN/VdFR0dRe/e/QzN9DQe3ziLiIiI3K51677i55+jSEpK4vTpU9StW5833ngTq9XK1KmTOHr0COfOnePeeyswceI7WCx+LF36GatXr8TLy4vHH3+CV14ZwNmzZ5g48S0SE89RoEABhg4dRcWKlfj66zUsWbIIk8lElSoPMXDgEPz8/Khf/1HHFe91675i584djBgxlk6dQmnZsjVbt27h0qXLjBz5FsnJSWze/CM7dmyjRImSVKpUmSlTJhITE4PZbOaVV/rz6KN1SUo6z7hxo4iNjeG++x4gLS17Fw8nTBhL7dp1qFnzUYYNe4MyZcpy9OhhqlR5iODg2nzzzVqSk5OYODGS++67n/379zFjxrukpl7G378YgwcPp0yZsk6ZNpuNs2dPU7ZsOaftS5Ys4ptvvsZsNvHQQw8zZMiI2/tF3mG6OVBERETuCnv27GbChHf49NMlREX9H0eOHGbv3t1YLN7MmjWPpUtXkZp6mS1bfmLfvr2sWrWCTz5ZwPz5n3Pw4AEOHNjP1KmTCAlpysKFy3jppb58+ukcjhw5zIIFc5k582MWLFhKgQIFmTfvkyzr8ff355NPFtChQ0cWLpxL3br1aNSoMb1796NevQZMnx5JmzbtmDt3EZMmvcvkyRO4ePECs2d/ROXKVVmwYCkdOz7DuXMJOX5Pjhw5RI8evVi8eCUHDvzG2bNnmDVrHs2atWTNmi9IT09n0qS3GTNmAnPnfkaXLi8wefKETDn79/9G1aoPO22zWq0sWjSfOXMWMmfOIsxmM3FxsTmu1RPoirOIiIjkeSZT5muBdrvd6akKjzxSAz+/QgCUKVOWpKTzBAfXpmhRf1auXMbvvx/n5Mk/uHTpEr/++gsNGz5B4cKFAZg+/QMAfv31F8aOvdI4NmjQiAYNGrFy5VIaNnwCf/9iALRr9xQREW9lWXO9eo8D8MADFdm06b+ZXt++fSsnTpxg9uxZwJVG9NSpk+zcuYOxYycCUKvWo5mu/mbHPfeUoHLlqgAEBARSu3ZdAIKCSrNz52n++OMEp0+f5M03X3fsc+HChUw50dE/Ub/+407bLBYL1avXoHfv7jzxRAgdOz5DQEBgjmv1BGqcRUREJM8rWrQIFy6kOG1LTDxHkSJFHT/7+Dg/bMBut7N58yZmz57FM890oXXrdvz555/Y7XYsFucWKT4+Dl/fAk4r0Nntdo4fP4bNZr+uGjsZGRlO40wmE1ar1WmUj4+P05jrZWTYmDHjQ4oW9f/rfBIoWrQYJpPJaYU9Ly+vG70lLvH29nb6+fqsjAwbZcqUZf78xX/9nEFi4rlMOb/++gsvvNAj0/aIiKns27eH6OgoBg0awOjR4w2Zw32naKqGiIiI5Hl+foUoX/5efvhho2PbmjWrqFPnsVvut337Vpo2bUabNu0oUaIEu3btxGbLoGbNYKKjo7h48SJWq5WxY0dw4MBv1KoVzH/+8+1f+/7MO+9MIDi4Nps3/0hS0vm/jrua4OA6ABQrVoxjx4781aT/mOV5eHl5OZru2rXr8MUXywE4duwoL7zwLKmpl6lT5zG+/fYbAPbv38epUyez+W65rkKF+0hKSmLXrp0AfP31GsaOdZ6n/Oeff1KwoB++1z0FLTExka5dO/HAAxXp3bsfdevW48iRQ7lWqzu4fMV58uTJJCYmMmnSJPbv38/IkSNJSUmhTp06vPXWW1gsFk6fPs3gwYNJSEjg/vvvJzIykkKFCuVm/SIiIuIhLqda+Wpq+1zJdcXYsW8zefJE5s2bjdWazoMPVuL114fecp/Q0Kd4660R/Pe//8Hb24eHH67O6dOn6dChIx07dqZfv57YbHZCQppQt2497r23ApMnv82qVSv+ujlwJPff/wDduvUkPLwvVquVKlUeYvDgYQC88soAhgwZyD33lKBGjVqcP//nLeupU+cxZs36gMKFCzNw4BDeeWcCL77YBbvdzpgx4/HzK0SvXmFMmPAWL7zQmQoVKtzWVI2s+Pj4MH78JKZPjyQtLQ0/v0KMHOk8DWXr1i3Uq1c/077FixenffuO9OnTHV/fApQqFUTr1qG5Vqs7mOw3+m7gOlu2bGHgwIH84x//YNKkSbRt25a3336bWrVqMXz4cKpXr87zzz9PWFgY7dq1o02bNrz//vtcvHiRwYMHZ6ughIQUp688AgKKuPQ4uri4rJ7wmFlAQJEc7ZebWZ5Yk5FZqsm9OZ6apZrcn6Wa3J91N9S0Z89egoIq3HaWUY9GM/IRa/m5JiOz8kJNZ8+eyPQ5NZtNlChRONvZWU7V+PPPP5k2bRr9+l15Lt+pU6e4fPkytWrVAqBjx46sX7+e9PR0tm3bRsuWLZ22i4iIiIjkB1lO1Rg9ejQDBw7kzJkzAMTGxhIQEOB4PSAggJiYGBITEylcuLBjMv3V7dmVk+7/yvGKZD3IwP1yM8sTazIySzW5N8dTs1ST+7NUk/uz8ntNZrMZi8WY26U8LcfILE+sycgsT6/JbDYb9rm/ZeO8fPlySpcuTYMGDfjiiy+AG9/1aTKZbro9u240VcMVmqqRN7JUk3tzPDVLNbk/SzW5P+tuqMlms3nU1/15YdpAfsvKCzXZbLZMn/ucTtW4ZeO8bt064uLiaN++PefPn+fixYuYTCbi4+MdY+Li4ggMDOSee+4hJSWFjIwMvLy8HNtFRERERPKDW14PnzdvHmvXruXLL79kwIABNG3alIiICHx9fdmxYwcAq1evpnHjxnh7e1OnTh3WrVvntF1EREREJD/I0USSyMhIIiIiePLJJ7l06RLdu3cHYMyYMSxbtozWrVuzfft2XnvtNUOLFRERERG5U1x+jnPHjh3p2LEjAFWrVmXFihWZxpQtW5aFCxcaV52IiIjkGcX9fbBctzqfEaxpqSSeTzM8VyS7tOS2iIiIGMLi48vRCU8bnvvAiJWA643z0aOH6d69C2+/PZl//OOfhtbSqFEdhgwZQbt2Tzm2hYf35aWX+vLoo3UMPVZ2deoUSoECBbBYvLFarQQFBTFixFsUL178pvts3ryJAwf207t3Pzp1CuW992ZRunQZpzE3Or+pUyezZ88urNZ0Tp78g/vuewCAZ57pQnr6ld9Vhw6dDD2/Xbt+ZfPmTbz66r8Mzc0ONc4iIiKSr3z99Vf84x//ZPXqlYY3zgAff/wB9eo1oFSpIMOzb9eUKdMdje/06VP5/PMFvPLKzRvNRo1CaNQoJNvHGTToyoqMsbFneeWVPsyfvzhnBWdDdPRP1K//eK4f51bUOIuIiEi+YbVa+fbbb3j//U94+eWXOHXqJMeOHWHNmlW8886/AVi5cil//PE74eEDmTJlIrt3/0pAQCAmk4kXX+yV5ZXjZ57pwuTJb/PuuzMzvfbNN2tZvvxzbDY7VapUZciQYXh5edOoUR02b94OwLp1X7Fz5w5GjBhLp06hVKtWnUOHDvLBB7OJitrMkiWLMJlMVKnyEAMHDsHPz4/27VvSpEkzdu3aiZeXhXHjIm651LbNZuPixQuOK8Fz5swCoFevMAA6dGjDe+/NYufOHY5arkpLS2Py5PEcOLCfoKAyWS4Tfr1rj9WuXUsaNnyCXbt2UqJESZ566hlWrFhCXFwsw4ePITi4NidP/kFkZARJSUn4+voycOBgKleumil3z55dvPRSX6dt3367nsWLF2A2mylTpgyjRo3HYimYrXqzw7gnVouIiIjcYVu2bCYoKIh7763AE0/8gy+/XEn9+g05ePAASUlJAPznPxto0eJJVq9eweXLl1i8eCXDh49h//7fXDpG164vcv78edasWeW0/ejRI3z11Wo+/HAu8+cvpnjxe/jss6zv/apf/3E+//wLzp07x4IFc5k582MWLFhKgQIFmTfvEwASEhKoW/cx5s1bTM2awaxcueyGWYMH/4sePZ7nqadas23bzzRp0sylc7rWihVLAfjssxW89tobnDp1KtsZV507l8Djjzdi8eKVAPz443/54IPZvPRSX5Yt+xyACRPG8MorA1iwYDFDhoxgzJjhmXISEuIpUqQo3t7eTts/+eRDpk2bydy5i7j33vv4/ffjOa7VFbriLCIiIvnGunVf0axZSwD++c/mvPXWKPr0eYWQkCZs2vQ9devW4/z581SrVp1PP51DaOhTmEwmgoJKU7t2XZeOYbFYGDFiDAMGvEy9eg0c23fu3M7Jk38QFtYTAKs1nSpVMl85vV61atUB+PXXHTRs+AT+/sUAaNfuKSIi3nKMuzpN4YEHHmTXrp03zLp2qsbKlcsYNCicRYuWu3ReV/366w7atbvyQIjy5e/lkUdqZGv/69Wv3xCAoKDS1KhRC4BSpYJITk7i4sWL7N//GxMnjsNkArsdLl26xPnzfzreB4Cff97i9F5f1bDhE7z8ci+eeOIfhIQ0pVKlKrdVa1bUOIuIiEi+cO7cObZs+YkDB/azfPkS7HY7yclJ/PDDRlq0aM3s2R+SnJxE8+atADCbvbDbc7ZS3QMPVHRM2bgqI8NG06bNeO21wQB/LRz392rIdrsdk8mE1Wp1yvL1vfIkkmtXTv5rDzIyMpzGWa22m67YfL2WLVszbdo7nD9/PtM+GRnWW+xpcnpfvLy8sjzWrVx7lfj6LJvNho+PL/PnL3as+BcbG0PRov5O46Kjo244V/u1197g8OH2bNmymfHjR/HSS31p06btbdV7K5qqISIiIvnC+vXrqF37MVatWseKFV+xcuVaund/iS+//ILq1R8hPj6eDRvW0aLFkwDUrVuP//znW+x2O/HxcezcuQOTyeTy8a5O2di3bw8AwcG1+fHHH0hMPIfdbmfq1AiWLPkMgGLFinHs2BHsdjubN/94w7zg4Nps3vwjSUnnAVizZjXBwTl/UseOHVsJDCxFsWLF8PcvxrFjRwH47be9TqtAX69Oncf47rsN2Gw2zp49w549u3NcQ1YKFy5MuXLl2bDhygJ627ZF8+qrzvOYMzIyiIuLJSjI+WZMq9VKly5PUaxYMbp160mrVm343/8O5lqtoCvOIiIiYhBrWupfj44zPtcVX3+9hj59XnHa1rHjMyxevIATJ47zz3825+eft1C2bDngylSIQ4f+R/fuz1KiREmCgko7rv5269aFKVOmU7JkwE2Pd3XKRq9e3QCoVKkyPXv2YcCAftjtdipVqkL37lembfTrF86QIQO5554S1KhR64Y33FWsWIlu3XoSHt4Xq9VKlSoPMXjwMJfO/arBg/+FxeKNzZaBt7cPb701EYBmzVqwadP3vPDCM1SpUpXKlW8+paFjx2c4duwIXbt2IiioNA888GC2asiuMWPeZsqUiSxevACLxZtx4yY6/QGzb98eHn74kUz7WSwWevUK47XXXsHXtwCFCxdh5MixuVqrye7KtX43SkhIcfqqIiCgCDOH9bzlPuER84iLS872sQICiuRov9zM8sSajMxSTe7N8dQs1eT+LNXk/qy7oaY9e/YSFFThtrOufkXv7pyoqM3Y7XYaNnyClJQUevbsypw5Cyha1P+O1ZTXsvJCTWfPnsj0OTWbTZQoUTj72bddnYiIiEgedN999zN+/Gg++eRDAHr3Dss0t1bkWmqcRURE5K5UpkxZPvxwzp0uQ/IQ3RwoIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gLNcRYRERFDFCnmSwFvH8NzL6enkfyna4+kE8lNLjXO06dPZ8OGDZhMJjp16kTPnj0ZNmwYO3bsoGDBggCEh4fTvHlzoqKiiIiIIDU1lSeffJKBAwfm6gmIiIiIZyjg7UPnpS8bnrvs2Q9J5taN85kzp3nmmXa0a/cUQ4aMcGw/dOggPXt2ZfjwMbRuHUqPHs8zf/7ibNdw5sxpnnuuI/fd94DT9tDQDjz9dGenbevWfcXOnTsYMWJsto9zrQkTxrJjxzaKFvXHbrfh7e3NwIFDefjh6jfdJz4+jkmTxhMZOYMJE8YSHFyb1q1DncbMmTMLs9lEz55/LzTy9ddrWL58CQDHjx+lXLnyWCzePPJITdq0CWX16pW8+eao2zqf66WlpfH66+HMnPmxobm5KcvGeevWrURHR7NmzRqsViutW7cmJCSEvXv3smjRIgIDAx1jL1++zPDhw1m4cCGlS5cmLCyMTZs2ERISkqsnISIiIuLvX4yff95CRkaGY2nnjRu/o1ix4o4xOWmarypZMuC29s+J3r37ORrfn37axL///Q6ffLLgpuNLlgwgMnJGto/Tpk072rRpB0CnTqFMmTKd0qXLOF5/881q2c7Myq5dv1Cr1qOG5+amLBvnxx57jAULFmCxWIiJiSEjIwNfX19Onz7NqFGjOH36NM2bNyc8PJzdu3dToUIFypcvD0BoaCjr169X4ywiIiK5rmDBglSqVJldu3by6KNXlqreujWaOnUec4xp1KgOmzdvZ86cWcTHx/HHH78TE3OWtm3b8+KLvXJ87PXrv+bTT+dQqFBhgoKCKFjQD4AdO7YzdepkvLy8ePjhGhw/fpSZMz/m5Mk/iIyMICnpPL6+BRg4cDCVK1e95TFSUlIoXrwEAL/8sp25cz92XK29enU5OLg2/fuHsWLFV077Ll68gDVrVuHvX4wiRYrc8qr19a49Vnh4XypXrsL27VtJTU1l0KChLF36OceOHeHZZ5/n2We7cvHiRd59dzJHjx7BZrPRtWt3mjdvlSk3OjqKJk2aOW07fPgQ77wzgYyMDHx8fBg+fAzly9/rcq25zaWpGt7e3syYMYO5c+fSqlUrMjIyqF+/PuPGjcPPz4+wsDBWrFiBn58fAQF/L00ZGBhITExMtgrKySoucGUFI3ful5tZnliTkVmqyb05npqlmtyfpZrcn5XfazKbzVgs7nnOQFbH8fK68vqVpaU38thjj/Hbb/uoVKkSdvuVleKuZlgsZsxmE0eOHGbWrDkkJyfTqVM7OnfuQpEif78/1x7Ty8tMfHwcPXs+73TcMWPG4+9fjA8/fI8FCz7H39+fQYMG4OdXCMjgrbdGMXXqdCpVqsy7707BZLpSx4QJY3njjaFUqVKVY8eOMnToIJYtW+WUbTKZmDNnFsuXf86lS5eIiTnLlCnTsFjMeHmZHVlXx5rNJsf7YLGYHdsOHTrA11+vYcGCzzGZTPTu/WKW76mX19+/22uPdTVz8eLlzJ49i3ffncyiRUtJTEyke/fn6Nq1GwsXzuWhh6oxdux4LlxIoU+fntSoUcOx1PlVv/22jwEDBjpqBli+fDFdu3bjn/9sznffbeDAgb3cf/99t/zd38i152Y2mw373Lt8c+CAAQPo06cP/fr1Y8uWLbz//vuO17p168bq1atp1SrzXxPXrjXuihstue0KLbmdN7JUk3tzPDVLNbk/SzW5P+tuqMlmsxm23HJWsjpORsaV1xs0aMRHH31AWpqVb7/dQJMmzdm48VtsNrsjw2q1YbPZCQ6ujcnkRdGixShSpCjnzydRsGAhIPOyzRkZNkqWDGDevMxTNf773/9Qvfoj+PtfmRLSvPmT7NixjYMHD1G8eHHuv78iVquNJ58M5X//iyQpKYX9+/cxfvxYR8bFixdJSDiHv38xxza73U6vXmGOqRpHjvyPl1/uw/z5i8nIsGG3/31Odrsdm83ueB+sVptj27Zt26hfvyE+PgUAaNKkGXb7rX93GRl/v37tsex2O4899jhWq43AwCAefvgRLBZfAgKCSE5Oxmq1sXXrz6SmXuarr74E4NKlSxw6dJhSpf6e+nHmzGkCA0tht5scx7FYzNSv35DIyMlERf3E448/QdOmTbP9Gbv+d2ez2TJ97nNtye0jR46QlpbGQw89RMGCBWnRogXr1q2jWLFitGzZErjyy7JYLJQqVYr4+HjHvrGxsU5zoEVERERyk59fISpWrMTu3b/yyy/b6NcvnI0bv73hWB+fv58AYjKZsNvtNxyXFZPJ5HTR7+r8arPZfMNMm82Gj4+v03zp2NiYLJf7rlKlKmXLluXgwf1O87YBrFbrLeuz2/9uJL28vG7rDx6L5e/20csrcytps2UwatR4qlS5MvXk3LmETOcWHR1F/fqPZ9q3SZNmVK9eg59++j+WL/+c6OifGDp0ZI5rNVqW36+cPHmSkSNHkpaWRlpaGhs3bqRu3bpMnDiR8+fPk56eztKlS2nevDk1a9bk2LFjnDhxgoyMDNauXUvjxo3dcR4iIiIiADRt2oyPPppJlSrVnJq83FKjRi1++20PcXGx2Gw2vv/+OwDuu+9+kpKSOHLkMADffbcek8lE4cKFKVeuPBs2rANg27ZoXn21703zrzpz5jRnzpymYsXK+PsX4/TpU6SmppKUdJ5du3bedL86deoSFbWZlJQUUlNT+fHH/xpw1jf36KN1Wb16BQDx8fG8+OJzxMScdRqzdesW6tVrkGnf0aOH8dtv++jQ4Wl69+7HwYMHcrXW7Mry0xQSEsKuXbvo0KEDXl5etGjRgvDwcIoXL85zzz2H1WqlRYsWtG3bFoBJkybRv39/UlNTCQkJueH0DREREcl/LqensezZD3MlNzsaNmzMpEnj6d27X7aPFR8fxxtv/ItFi5bc8LUePZznONeqFcxrrw3+679XKFCgIPfddz9w5R6xsWPf5u23R2Mymbn33gr4+voCMGbM20yZMpHFixdgsXgzbtzEG05vnT37I5Yt+xyAtLRUXn31NcfNcg0aNKRbt86ULl2GmjWDb3pOlSpV4ZlnnqN37+4UKVKEUqVKZ/t9yY6XXurD1KmT6datMzabjVdeGeA0vzktLY3k5GTuuadEpn27devJ5Mlv8+mns/Hy8qJ/f896rLHJntPvJXLJjeY4zxzW85b7hEfM0xznPJKlmtyb46lZqsn9WarJ/Vl3Q0179uwlKKjCbWddPyf1TucYlWWz2Zg1ayY9evShYMGCLFmyiLi4uBw3g552fkbmGJl1fc7ZsycyfU5zbY6ziIiIiGSf2WzG39+fPn26Y7F4U7p0acMXERH3UuMsIiIikku6d+/J88+/eKfLEIO45+GLIiIiIiJ5nBpnEREREREXqHEWEREREXGBGmcRERERERfo5kARERExRPEiPlgK+Bqea72cSmJy9p7lLJIb1DiLiIiIISwFfPmp/dOG5zb8ciVk0TifOXOaZ55pR7t2TzFkyAjH9kOHDtKzZ1eGDx9D69ah9OjxvNNS19nRqFEdNm/eftPX4+PjmDRpPJGRM9i8+UdOnvydF17oftPxw4a9wZkzp7l06SLnziVQtmx5AF5+uT979uyiatWHaNQoJEe13syGDetISUnh2We7GJp7t1DjLCIiIvmCv38xfv55CxkZGXh5eQGwceN3FCtW3DEmp02zK0qWDCAycgYABw/uz3J8REQkAL/8sp25cz9m5syPHa/daDlqI0RHR+VoRUW5Qo2ziIiI5AsFCxakUqXK7Nq1k0cfrQPA1q3R1KnzmGPM1avGc+bMIj4+jj/++J2YmLO0bdueF1/s5dJxfvllOwsXzqNAgQIcP36MBx+syJgxE4iPj6N//zCmTJnOl19+AUDZsmVo1So02+cyYcJYgoNrExxcm2HD3qBMmbIcPXqYKlUeIji4Nt98s5bk5CQmTozkvvvuZ//+fcyY8S6pqZfx9y/G4MHDKVOmrFOmzWbj7NnTTstfAyxZsohvvvkas9nEQw897HTFXpzp5kARERHJN5o0ac5//7sRgP3791GxYiW8vb1vOPbw4UNMm/Y+H388n0WLPiU52fXlyPfu3c3AgUP47LMVxMSc5eeftzheu//+B2jfviPt23ekbdv2t3dCwJEjh+jRoxfLlq3iwIHfOHv2DLNmzaNZs5asWfMF6enpTJr0NmPGTGDu3M/o0uUFJk+ekCln//7fqFr1YadtVquVRYvmM2fOQubMWYTZbCYuLva2a86vdMVZRERE8o1GjZ7gk08+xGazsXHjdzRt2pyNG7+94dgxBRekAAAgAElEQVRHH62Dt7c3xYvfQ9GiRblwIYUiRYq4dJz773+QwMBSAFSocD/JyUmGncP17rmnBJUrV8VsNhMQEEjt2nUBCAoqzc6dp/njjxOcPn2SN9983bHPhQsXMuVER/9E/fqPO22zWCxUr16D3r2788QTIXTs+AwBAYG5di55nRpnERERyTf8/ApRsWIldu/+lV9+2Ua/fuE3bZx9fHwc/zaZTNjtdpePczv7Ztf1V8yvzt++KiPDRpkyZR3ztzMyMkhMPJcp59dff+GFF3pk2h4RMZV9+/YQHR3FoEEDGD16PMHBtY07gXxEUzVEREQkX2natBkffTSTKlWqYbHcmWuEXl5eZGRkuOVYFSrcR1JSErt27QTg66/XMHas8zzlP//8k4IF/fD1dX5cYGJiIl27duKBByrSu3c/6tatx5Ejh9xSd16kK84iIiJiCOvl1CuPjsuF3Oxo2LAxkyaNz9HTI+Lj43jjjX+xaNGSbO97rVq1HmXChLGULFmSatWqM3v2R44nbhjNx8eH8eMnMX16JGlpafj5FWLkyLecxmzduoV69epn2rd48eK0b9+RPn264+tbgFKlgmjdOvs3M94tTPbc/G4hBxISUrDZ/i4pIKAIM4f1vOU+4RHziItzfUL/tdk52S83szyxJiOzVJN7czw1SzW5P0s1uT/rbqhpz569BAVVuO0si8WM1WrzmBwjszyxJiOz8kJNZ8+eyPQ5NZtNlChRONvZLk3VmD59Oq1bt6ZNmzbMmzcPgKioKEJDQ2nRogXTpk1zjN2/fz9PP/00LVu2ZMSIEVit1mwXJSIiIiLiabJsnLdu3Up0dDRr1qxh5cqVLFy4kAMHDjB8+HA++OAD1q1bx969e9m0aRMAgwcPZtSoUWzYsAG73c6yZcty/SRERERERHJblo3zY489xoIFC7BYLCQkJJCRkUFSUhIVKlSgfPnyWCwWQkNDWb9+PadOneLy5cvUqlULgI4dO7J+/fpcPwkRERERkdzm0s2B3t7ezJgxg7lz59KqVStiY2MJCAhwvB4YGEhMTEym7QEBAcTExGSroJzMN7lyLNeeu2jUfrmZ5Yk1GZmlmtyb46lZqsn9WarJ/Vn5vSaz2YzFYswDujwtx8gsT6zJyCxPr+nK86+N+dy7/FSNAQMG0KdPH/r168fx48czvX6zZxiaTKZsFXSjmwNdoZsD80aWanJvjqdmqSb3Z6km92fdDTXZbDaPusEsL9yolt+y8kJNNpst0+c+pzcHZtk4HzlyhLS0NB566CEKFixIixYtWL9+vdPDt2NjYwkMDKRUqVLEx8c7tsfFxREYqNVnRERE7gb+RQvi42v8k27TUq2cT7pkeK5IdmX56T558iQzZszg888/B2Djxo106dKFd955hxMnTlCuXDnWrl3L008/TdmyZfH19WXHjh3Url2b1atX07hx41w/CREREbnzfHwtjBu01vDc0VPbZjnmzJnTPPdcR+677wFMJkhPt1KyZEmGDx/jWBo7p2bP/oiqVR+iUaOQHGccOXKY8eNHAxATc5aCBQtStKg/3t7efPLJp/To8bxj5T8jvf56f8aNi6Bw4ZxNhRVnWTbOISEh7Nq1iw4dOuDl5UWLFi1o06YN99xzD/379yc1NZWQkBBatWoFQGRkJCNHjuTChQtUq1aN7t275/pJiIiIiJQsGeDUfH700UymTZtCRETkbeXmZCGV6z34YEVHbRMmjCU4uLbTQiO50TRfvHgRmy1DTbOBXPo+ZcCAAQwYMMBpW4MGDVizZk2msVWrVmXFihXGVCciIiKSQzVrBrN5848AdOoUSrVq1Tl06CAffDCb6Ogoli//HJvNTpUqVXn99aF4eXkREfEWR48ewWQy0aFDJ9q1e8rR6AYH12bYsDcoU6YsR48epkqVhwgOrs0336wlOTmJiRMjue+++3NUa6NGddi8eTtz5swiJuYshw8f4s8/E+nT52V27NjGb7/tpVKlyowdOxGTycTChfP573+/IyPDRr169Xn55QGZ7iv75Zdt1K5d12nbhQspjB07gnPnErDb4aWX+tzWlfS7jXG3QYqIiIh4CKvVyvfff8cjj9R0bKtf/3E+//wLEhMT+eqr1Xz44Vzmz19M8eL38PnnC9mzZxdJSUnMm7eY9977kD17dmXKPXLkED169GLx4pUcOPAbZ8+eYdaseTRr1pI1a74wpPajR4/w8cfzGTVqHBER4+ja9UUWLFjKwYMHOHz4ENHRURw8uJ9PPlnAvHmfERcXx7fffpMpJzo6ivr1H3fa9uOPPxAUVIZPP13M6NHj2bXrV0NqvlsYP4NfRERE5A6Ij4+jR4/nAUhPT+Ohhx7m5ZfDHa9Xq1YdgJ07t3Py5B+EhfUEwGpNp3Llqjz1VCd+//0Er78eTsOGjXj55f6ZjnHPPSWoXLkqAAEBgY4rukFBpdm587Qh51G3bj0sFgtBQaUpUaIk99//gON4yclJbN++ld9+20uvXt0ASE29TKlSQZlyDh8+RMWKlZ22Va9eg1mz3ichIY769RvSo0cvQ2q+W6hxFhERkXzh+jnO1/P19QUgI8NG06bNeO21wcCVucAZGRkUKVKEhQuXsW3bz/z8cxQvvfQCCxc6r4Ds7e3t9PO1TxkzisXyd3t2o3ybLYPOnZ+jS5cXAEhOTs407vjxY9x7b4VM0zfKl7+XxYtXsG1bND/+uIklSxbx2Wcrsv344LuVpmqIiIjIXSU4uDY//vgDiYnnsNvtTJ0awbJli9m8eRPjxo3i8ccb8frrgylYsCCxsdlbyM0dHn20Lhs2rOPixYtYrVaGDRvEDz9sdBoTHf0T9es3zLTvypVLmTNnFv/8Z3MGDXqTxMREUlJS3FV6nqcrziIiImKItFSrS4+Oy0mukSpVqkzPnn0YMKAfdrudSpWq8MILPfDy8uK//91It26d8fHxJSSkKQ8+WDHb+bNnf0TJkiXp0KGToXVf1ahRYw4f/h99+/bAZsugXr3HefJJ5/d927atjB07IdO+rVq1YezYEXTt2hkvLy9eeqkvRYoYt5pkfmey32i5vzvoRisHzhzW85b7hEfM08qBeSRLNbk3x1OzVJP7s1ST+7Puhpr27NlLUFCF2866m1axy29ZeaGms2dPZPqc5nTlQE3VEBERERFxgRpnEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF+g5ziIiImII/6I++Py1Op+R0lJTOZ+UZniuSHapcRYRERFD+Pj6Zrn2Qk6ER8wDsm6cv//+P8yfP5eMjAzsdhutWrXh+ee7A/DGGwN4881RlCwZkOM6vv56DcuXLwHg+PGjlCtXHovFm0ceqUmbNqGsXr2SN98cleP8G0lLS+P118OZOfNjQ3MlZ9Q4i4iISJ4XFxfLjBnvMmfOIvz9i3Hx4kXCw/ty770VaNQohMjIGbd9jDZt2tGmTTsAOnUKZcqU6ZQuXcbx+ptvVrvtY1xv165fqFXrUcNzJWdcapxnzpzJN998A0BISAhDhgxh2LBh7Nixg4IFCwIQHh5O8+bNiYqKIiIigtTUVJ588kkGDhyYe9WLiIiIAH/++SdWq5XLly/j7w9+fn6MHDkWH58rU0c6dQrlvfdmsXPnDqKiNhMfH0dsbAydOz9HTEwMv/yyjaJF/YmMnIFvDqab/PLLdubO/ZiZMz8mPLwvlStXYfv2raSlpfKvfw1mxYqlHDt2hGeffZ5nn+3KxYsXeffdyRw9egSbzUbXrt1p3rxVptzo6CiaNGnmtO3w4UO8884EMjIy8PHxYfjwMZQvf2/O3jjJliwb56ioKDZv3syqVaswmUz07t2b7777jr1797Jo0SICAwMdYy9fvszw4cNZuHAhpUuXJiwsjE2bNhESEpKrJyEiIiJ3t0qVKvPEE/+gc+f2VK5cheDgOjRv3opy5cpnGrt//z4WLFhCcnIynTqFMnXqe/zrX4Po3z+MrVu38MQT/zCkpgULljJ//if8+99T+PTTJfz5ZyI9elxpnD/9dA5VqjzEyJFvceFCCv36vUS1atUpW7acU8Zvv+3llVf+5bRt2bLFdOnyAk2bNmPjxm/Zt2+PGmc3yfKpGgEBAbz55pv4+Pjg7e3Ngw8+yOnTpzl9+jSjRo0iNDSUGTNmYLPZ2L17NxUqVKB8+fJYLBZCQ0NZv369O85DRERE7nJDhw5nxYqv6NChEzExZwgL68mmTd9nGvfIIzUpVKgwQUGlAahduy4AQUGlSU5ONqSW+vUbOjIffvgRChQoQFBQaVJSruRv376VL79cSY8ez/Pqq325fPkyx44ddco4c+Y0gYFBeHl5OW1v0KAh06a9Q0TEOCwW7xteqZbckeUV50qVKjn+ffz4cdatW8fixYvZunUr48aNw8/Pj7CwMFasWIGfnx8BAX9Pug8MDCQmJiZ3KhcRERH5S1TUZlJTL9GkSXPHXOQ1a1axdu2XhIQ0dRrr7e3t9LPFYvwtX9dmXt/4AthsGYwaNZ4qVaoCcO5cAkWL+juNiY6Oon79xzPt26RJM6pXr8FPP/0fy5d/TnT0TwwdOtLgM5AbcfmTcujQIcLCwhg6dCgPPPAA77//vuO1bt26sXr1alq1yvwXj8lkylZBJUoUztb4qwICirh1v9zM8sSajMxSTe7N8dQs1eT+LNXk/qz8XpPZbMZicc+SEFkdp1Chgvz731N4+OFHKFOmDHa7nd9/P0aVKlUd+3p5mTGbTZhMJqe8q/82mUyYzX+/ltUxvbzMTtlXc00mk9NrNzpenTqP8eWXKxk+fBTx8XG8+OJzfPLJPKepJdu2RTN06IhM+44YMZTmzVvSqdMzPPjgA/z731Nz9Hsw6ndn5GcgN2oym82Gfe5dapx37NjBgAEDGD58OG3atOHgwYMcP36cli1bAmC327FYLJQqVYr4+HjHfrGxsU5zoF2RkJCCzWZ3/OzqicbFZf+rlYCAIjnaLzezPLEmI7NUk3tzPDVLNbk/SzW5P+tuqMlms2G12hzb0lJT/3p0nLHSUlOdjnMjNWvWplevvgwaNACr1QpAvXoNePHF3o59MzJs2Gx27Ha7U97Vf9vtdmy2K68NHvwvevUKo2rVmz8pIyPD5pR9Nddutzu9dqPj9ejRm6lTJ/Pcc52w2Wy88soAgoLKOsalpaWRlJSEv39xxzaLxYzVauOFF3oyefLbzJ37CV5eXoSHD8zy/bne1azbZVSOkVnX59hstkyfe7PZlKOLtVk2zmfOnOHVV19l2rRpNGjQALjyAZg4cSL169fHz8+PpUuX8tRTT1GzZk2OHTvGiRMnKFeuHGvXruXpp5/OdlEiIiKS91xZpCT7C5UY1TC1aRNKy5ZtbvjaihVfAVC6dBlatw51bN+8ebvj3yNGjHX8e9q0925Z09W8qx59tA6PPloHwOmZy23btqNVq7aZjleoUGFGjx5/03wfH5+bPru5UqXKzJ694Kb7Su7JsnGeM2cOqampTJo0ybGtS5cu9O3bl+eeew6r1UqLFi1o2/bKh2LSpEn079+f1NRUQkJCbjh9Q0REREQkr8mycR45ciQjR954wnnXrl0zbWvQoAFr1qy5/cpERERERDyIe2b0i4iISL5kt9uzHiRyhxj9+VTjLCIiIjlisfhw4UKSmmfxSHa7nQsXkrBYfAzLNP7BhSIiInJXKF48gMTEOFJS/rytHLPZjM12+zcHGpVjZJYn1mRklqfXZLH4ULx4QBZ7uE6Ns4iIiOSIl5eFkiVL33aOpz5uL7/WZGRWfq/pepqqISIiIiLiAjXOIiIiIiIuUOMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLlDjLCIiIiLiAjXOIiIiIiIuUOMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLnCpcZ45cyZt2rShTZs2vPPOOwBERUURGhpKixYtmDZtmmPs/v37efrpp2nZsiUjRozAarXmTuUiIiIiIm6UZeMcFRXF5s2bWbVqFatXr2bfvn2sXbuW4cOH88EHH7Bu3Tr27t3Lpk2bABg8eDCjRo1iw4YN2O12li1blusnISIiIiKS27JsnAMCAnjzzTfx8fHB29ubBx98kOPHj1OhQgXKly+PxWIhNDSU9evXc+rUKS5fvkytWrUA6NixI+vXr8/1k3CFf1EfAgKKOP0HZNrmX9TnDlcqIiIiIp7IktWASpUqOf59/Phx1q1bR7du3QgICHBsDwwMJCYmhtjYWKftAQEBxMTEZKugEiUKZ2v838cqkuWYmcN6ZjkmPGIeAQG+txxjTU/H4u19yxpuNsYVrpxLXs5STe7N8dQs1eT+LNXk/izV5P4s1eT+rPxe07WybJyvOnToEGFhYQwdOhSLxcKxY8ecXjeZTNjt9kz7mUymbBWUkJCCzfZ3jqsnHheXfMvXs/MGupKVVRMeHjEvy5ybZedkv7ySpZrcm+OpWarJ/Vmqyf1Zqsn9WarJ/Vl5tSaz2ZSji7Uu3Ry4Y8cOevTowaBBg3jqqacoVaoU8fHxjtdjY2MJDAzMtD0uLo7AwMBsFyUiIiIi4mmybJzPnDnDq6++SmRkJG3atAGgZs2aHDt2jBMnTpCRkcHatWtp3LgxZcuWxdfXlx07dgCwevVqGjdunLtnICIiIiLiBllO1ZgzZw6pqalMmjTJsa1Lly5MmjSJ/v37k5qaSkhICK1atQIgMjKSkSNHcuHCBapVq0b37t1zr3oRERERETfJsnEeOXIkI0eOvOFra9asybStatWqrFix4vYrExERERHxIFo5UERERETEBWqcRURERERcoMZZRERERMQFapxFRERERFygxllERERExAVqnEVEREREXKDGWURERETEBWqcRURERERcoMZZRERERMQFapxFRERERFygxllERERExAVqnEVEREREXGC50wXc7fyL+uDj6+u0LSCgiNPPaampnE9Kc2dZIiIiInIdNc53mI+vLzOH9bzlmPCIeYAaZxEREZE7SVM1RERERERcoMZZRERERMQFLjfOKSkptG3blpMnTwIwbNgwWrRoQfv27Wnfvj3fffcdAFFRUYSGhtKiRQumTZuWO1WLiIiIiLiZS3Ocd+3axciRIzl+/Lhj2969e1m0aBGBgYGObZcvX2b48OEsXLiQ0qVLExYWxqZNmwgJCTG8cBERERERd3LpivOyZcsYM2aMo0m+ePEip0+fZtSoUYSGhjJjxgxsNhu7d++mQoUKlC9fHovFQmhoKOvXr8/VExARERERcQeXrjhPmDDB6eeEhATq16/PuHHj8PPzIywsjBUrVuDn50dAQIBjXGBgIDExMdkqqESJwtkaf9X1j3C7HUZleUJNnlBDbuUYmaWa3J+lmtyfpZrcn6Wa3J+lmtyfld9rulaOHkdXvnx53n//fcfP3bp1Y/Xq1bRq1SrTWJPJlK3shIQUbDa742dXTzwuLvmWr2fnDTQqK6sco7NulJ2T/XIzSzW5N8dTs1ST+7NUk/uzVJP7s1ST+7Pyak1msylHF2tz9FSNgwcPsmHDBsfPdrsdi8VCqVKliI+Pd2yPjY11mgMtIiIiIpJX5ahxttvtTJw4kfPnz5Oens7SpUtp3rw5NWvW5NixY5w4cYKMjAzWrl1L48aNja5ZRERERMTtcjRVo2rVqvTt25fnnnsOq9VKixYtaNu2LQCTJk2if//+pKamEhIScsPpG2K8Gy3dDVq+W0RERMQo2Wqcv//+e8e/u3btSteuXTONadCgAWvWrLn9yiRbXFm6G7R8t4iIiEhOaeVAEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF6hxFhERERFxgRpnEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF6hxFhERERFxgRpnEREREREXqHEWEREREXGB5U4XkBVrehrhEfOyHCMiIiIikptcbpxTUlLo0qULH330EeXKlSMqKoqIiAhSU1N58sknGThwIAD79+9n5MiRpKSkUKdOHd566y0slpz35xZvH8YNWnvLMaOntgVSc3wMEREREZGsuDRVY9euXTz33HMcP34cgMuXLzN8+HA++OAD1q1bx969e9m0aRMAgwcPZtSoUWzYsAG73c6yZctyrXgREREREXdxqXFetmwZY8aMITAwEIDdu3dToUIFypcvj8ViITQ0lPXr13Pq1CkuX75MrVq1AOjYsSPr16/PvepFRERERNzEpTkUEyZMcPo5NjaWgIAAx8+BgYHExMRk2h4QEEBMTEy2CipRonC2xv99rCI52i83szyxptvJys/vi2pyf5Zqcn+WanJ/lmpyf5Zqcn9Wfq/pWjmafGy32zNtM5lMN92eHQkJKdhsf+e4euJxccm3fD07b6BRWVnlGJll5PndLD8n++VWjpFZqsn9WarJ/Vmqyf1Zqsn9WarJ/Vl5tSaz2ZSji7U5apxLlSpFfHy84+fY2FgCAwMzbY+Li3NM75C8w7+oDz6+vpm2X9ucp6Wmcj5JTzMRERGRu0eOGueaNWty7NgxTpw4Qbly5Vi7di1PP/00ZcuWxdfXlx07dlC7dm1Wr15N48aNja5ZcpmPry8zh/W85ZgrjwhU4ywiIiJ3jxw1zr6+vkyaNIn+/fuTmppKSEgIrVq1AiAyMpKRI0dy4cIFqlWrRvfu3Q0tWERERETkTshW4/z99987/t2gQQPWrFmTaUzVqlVZsWLF7Vf2l/T0jL+e03zrMSIiIiIiucnjVw709vai89KXbzlm2bMfuqkayQ5X5kqD5kuLiIhI3uDxjbPkXa7MlQbNlxYREZG8waUFUERERERE7nZqnEVEREREXKCpGpIn6NnSIiIicqepcZY8wchnS9+oCdcNiyIiIpIVNc5y19ECLyIiIpITmuMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLtDNgSI5pCXFRURE7i5qnEVySEuKi4iI3F00VUNERERExAV3zRVna3raX1f+sh4nIiIiInK9u6Zxtnj7MG7Q2izHjZ7aFki95RhXmnA14JLXaZlzERERZ7fVOHfv3p2EhAQslisx48aN4/fff+fDDz8kPT2dHj160LVrV0MK9SSuNOGuNOAiRjPyhkWtsCgiIuIsx42z3W7n6NGj/PDDD47GOSYmhoEDB/LFF1/g4+NDly5dqFevHhUrVjSsYBG5Od2wKCIiknty3DgfPXoUk8lEnz59SEhIoHPnzhQqVIj69etTrFgxAFq2bMn69esJDw83rOCcSk+z/nUVOOtxIiIiIiLXy3HjnJSURIMGDRg7diyXL1+me/fuPPnkkwQEBDjGBAYGsnv37mzllihROEf1XP9V9PUy0ly7umbGlmVWenpGlk14enpGljng+nxpV7JcZVSWajIuy5qejsXb+5b73GhMbtaU2zme+LvyxJqMzFJN7s9STe7PUk3uz8rvNV0rx41zcHAwwcHBAPj5+dGpUyciIiLo16+f0ziTyZSt3ISEFGw2u+NnV088Li75lq8HBBSh89KXs8xZ9uyHhmS5knM1y5X50q7U5CqjsvJiTUZmGX1+rswnzqvv+Y2yc7JfbmZ5Yk1GZqkm92epJvdnqSb3Z+XVmsxmU44u1ua4cd6+fTvp6ek0aNAAuDLnuWzZssTHxzvGxMbGEhgYmNNDiEg+caObFnNyw6JWaxQRkTspx41zcnIyM2bMYMmSJaSnp7Nq1SqmTJnC4MGDOXfuHAULFuTbb79l/PjxRtab77gy91rzriWvM+oJHbr5UURE7qQcN85NmjRh165ddOjQAZvNxvPPP0/t2rUZOHAg3bt3Jz09nU6dOlGjRg0j6813zHabIWO0wItI9hh1FVxERO4et/Uc59dee43XXnvNaVtoaCihoaG3VdTdxMvXx6X50lk9E9rIBV5E7gZ6TrWIiGTXXbNyoIhIbtC8axGRu4ca53zClUfkXR0nIsbRvGsRkbuHGud8wtvby+XH7YmIZ3Ll6rW7r1zrirqIyN/UOEsmri7KIiLGMnLetVE3P+qKuojI39Q4SyZ2u9mQMXrSh8ido5sfRUSMp8ZZMjHqEXl60oeIXEuPABSRvE6Ns2Ri1CPyjLxh0cjpI5qKInJnGHUV3Mh51544r1xEPJcaZ8k1Rt6waMfLkDHg2pVwV66CayqKyJ1h5LxrT5xXrhsyRTyXGmfJE1xpwl19YogrV8JduQruaqPu6jgjGNnM68q8SPZ44tLymh4jYiw1znLXMaoJ98RHABrZzBt5lV9E7gxNjxExlhpnEQ9g1NVdI5t5I6/yG3V+mh4jcmdoesztZekqf/6hxlnEA1i8jbkh01O5+wq3K+M0FUUk7/PE6TGeeJVfjKPGWURynSdOjzGqUc/v88p1lV/kzvDUxYfu9ivqapxF5K5kVDPvyrcFf2fd+hsDI6+6G9WEG3l+njhlxxP/WBExmpHzyu/2xZXUOIuIeAgj55V74vQfT5yy44l/rOT3Pww8sab8zhOb3bw6FUWNs4iIuIUnTtkx8o8VU9YLqro0xhO/xTCymdcfK/rDAPLuYxdzpXH+6quv+PDDD0lPT6dHjx507do1Nw4jHi7Nmu7S/+GkWdPdUI2ISO4yatVVI3nilCRP/GYlv/+x4omr7xp5fu68om544xwTE8O0adP44osv8PHxoUuXLtSrV4+KFSsafahsMbKJcyXL1WbQqKw0a5qL5+e+v3J9LN6EDvoyy3FfTW0PXM79giRbjPycG8UTP+eeWJOI3Dme+MeKkVO3jMrKq09JMtntdrshSX9ZtWoV27ZtY+LEiQC8//772O12wsPDXdo/MfECNtvfJRXx98XH4n3LfdKs6SSfv/UvqESJwvR6+9ssjz9nZAsSElJuO8uVHCOzihf1weztk+XxbOlpJJZQ2ZgAABiSSURBVGbxVYUnvudG1WRklis5Rma5uyYjP+dGnZ8nfs49sSYjs/L751zved6tycgsTzw/T6zJyKw7fX5ms4nixQtlefzrGd44z5o1i4sXLzJw4EAAli9fzu7duxk/fryRhxERERERcSuz0YE36sNNJpPRhxERERERcSvDG+dSpUoRHx/v+Dk2NpbAwECjDyMiIiIi4laGN86PP/44W7Zs4dy5c1y6dIlvv/2Wxo0bG30YERERERG3MvypGqVKlWLgwIF0796d9PR0OnXqRI0aNYw+jIiIiIiIWxl+c6CIiIiISH5k+FQNEREREZH8SI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAvUOIuIiIiIuMDwx9EZbcuWLRQoUIDg4GDmzp3L1q1bqV69On379sXHx+dOlyciIiIidwmvsWPHjr3TRdzMO++8wxdffMEPP/zATz/9RExMDJ07d2bfvn388MMPNG3a9E6XKLdgtVpZuHAh69evp0CBApQpU8bx2nvvvUe9evXcmuOpNYl4Kn3ORSQvSkxMpGDBgrmS7dFTNf7v//6PJUuWsHjxYn7++WciIyMJCQlh7Nix7N69O1tZVquVJUuWkJCQQFpaGjNnziQsLIwZM2aQmpp6R7KMrOl6r7/++m3tb0TW6NGj2b9/P4GBgQwZMoSPPvrI8dr333/v9hxPrclms7FkyRJefPFFWrVqRevWrenRowdz584lPT3d5ZyUlBSmT5/OrFmzOH/+PGFhYQQHB9O9e3dOnTqVrZqMyvLEmozOup4n/G/PqCxP/JwbmZWcnMzUqVM5e/YsSUlJDBs2jLZt2zJ06FDOnTuXrZqMyvLEmozOyisuXrzokVn5waVLl4iMjKRZs2Y88sgj1KxZk+bNmzN+/HiSk5OzlXXmzBkGDx7M6NGj+eOPPwgNDaV169Y0b96cAwcOGF67Ry+A0rZtWz777DMuXrxIq1at+OGHHyhe/P/bu/e4nu89gOOvRNJxzbSZHi7nMM3CkNpxKYyU7uVUIuKRU0dzOS7lEnKkYmZum0c0nFy21FJoPWyKTYXK8XBbbpHZyi3XdO/3OX84/R5M7Pfju/od+zz/WX1//V69f79VPr/6/j6/NpSVleHu7k5qaqrGrVmzZgEQGhrK+vXrn2o+ePCATz75pN5bSnV8fX3R09N76tiZM2cwNzcHIDY2VtObpmjL2dmZPXv2AHDnzh38/Pxwd3fHz88PV1dXkpKS6rWjqzMtXLgQlUqFm5sbJiYmANy8eZPk5GT1DxdNBAYG0qVLF8rKyjhy5AhjxozBy8uLAwcOsHv3bjZv3qzxTEq1dHEmJVu6+r2nVEsXv86VbPn7+9OjRw/+/ve/s2TJEkxNTXF0dCQtLY3s7GxiYmI0nkmpli7OpHRLpVKxa9cuUlNTuXHjBo0aNcLExARra2t8fX1p0qSJRp2SkhK++OILDA0N8fb2Jjg4mOzsbHr27ElkZCQdOnTQeKa6uLm5sXv37ldqvEpLqfsJHi8uly5dyvXr1xk+fDgBAQHo6+sDEBAQQHR0dL12goKCeO+993B3d6ddu3YA3Lp1i6SkJI4fP86mTZs0vm3jx4/H1taW0tJStm7dSlhYGLa2thw/fpxPPvmEnTt3atzSiNBhSUlJwtLSUvTv319s27ZNuLq6iuXLlwtXV1exadMmrVqOjo7qt52cnIRKpVK/b29v3yAtpTrbt28X1tbWIjExURw7dkwcPXpUjBgxQhw7dkwcO3ZM447SLUdHR/Ho0SP1+9evXxdDhw4Ve/bsEa6urvXe0dWZRo4c+dzLRo0apXHHxcVF/fagQYOeuszZ2VmrmZRq6eJMSrZ09XtPqZYufp0r2Xry/7WTk9NTlz3587k+W7o4k9Kt0NBQMX/+fJGTkyOuXr0qrl69KnJyckRoaKiYNWuWxp2AgAARFRUlFi9eLGxtbcWWLVtEaWmp2LNnj5g4caJWM5mbmwszMzNhZmYmunfvrv5v7dsN0VLqfhJCCD8/P5GQkCBOnz4tAgIChL+/v6iqqhJCPP3zsL46L1rjODg4aNz59ecdPHjwU5dp+2+DJnT6VA0XFxe+//57Dh48yLhx44iKiqJt27bMnj0bf39/rVpGRkZcvHgRgI4dO1JUVATAjRs3tH6SoVItpTpjx47liy++ICEhgcLCQqysrPjTn/6EpaUllpaWGneUbo0bNw43NzeOHDkCwJtvvklMTAyrVq0iPz+/3ju6OlPz5s3rPPXoxIkTGBkZadxp3LgxGRkZpKam8ujRI86cOQNAQUGBVvMo2dLFmZRs6er3nlItX1/fZ77ON23a1KBf50q2WrZsSWZmJgA9evTgxx9/BOD8+fMYGhpqNZNSLV2cSelWTk4Oy5Ytw8LCgo4dO9KxY0csLCxYunQpeXl5GneuX79OSEgIYWFhlJaW4ufnR7NmzXBycqK4uFirmeLi4nj//fdZs2YN586dIy8vDzMzM/XbDdFS6n4CuHfvHh4eHpibm7NhwwZatGjBnDlztGoo2TE2NiY1NRWVSqU+JoQgJSWFNm3aaNVq3rw5X331FTExMdTU1HDw4EEA/vOf/9C0aVOtZ/stOn2qhpJOnDjB1KlT6du3L82aNSMzM5PevXtz9uxZlixZgo2NTb23lJwJoLKyklWrVlFYWEh+fj4pKSlaXf/3aF25cgVDQ0Pat29PfHw858+fp2fPnty9exc/P7967+jiTHl5eQQHB1NRUaH+k9Xt27cxMDDg448/xszMTKPO2bNniYiIQKVSMXfuXBYsWIChoSHXr18nIiICa2trjWdSqqWLMyndAt383lOiFR4ejouLC2+88Qbt27dXH3/06BHx8fEN8nWuZOvy5ctMmTIFIyMj2rVrR3Z2Np06deLOnTusX7+eXr16aTyTUi1dnEnp1ujRo1m0aNEz1zlx4gQRERHEx8dr3JkxYwYPHz5kwYIFxMbGYm5uTkFBAdOnTyc5OVnjmQDKy8uJioqioqKC0NBQxo0b99KnaijRUup+qm1FRkbSrVs3AKqqqvD396dTp06cOHGCvXv31munqKiIJUuWkJOTQ4sWLYDH59H379+fRYsWPfVE5N/yyy+/sGbNGlQqFdOnTyckJITLly9jaGjIunXr6Nmzp8YtTfxhFs7w+HyorKwsrl69Sk1NDW+88QaDBg3irbfearCWUp0DBw5QVFSEjY0NP//8M/v27SMiIoK4uDi8vLwapLV161a2bduGSqXigw8+oKioiBEjRpCenk6fPn346KOP6rWjqzPVKiws5ObNmwghiI+PJyIiQuvGkyoqKpg8eTKfffaZ+gdTQ7d0caZXbR0+fJjevXvTsmVL4uPjOXHiBP369cPDw0PrOXStZWFhQdu2bZk1axa2trZaz/BrR44coXHjxjRp0oSMjAyys7OxtLR8qe1FlWp9++236t2bAN555x2WLFlCnz59tJpHyZYuzqRkq64HPrdu3aJp06ZaPfD58ccfWbZsWZ0PgCMjIxk8eLBWc9VKT09nw4YN3L9/n2+//falGkq0XnQ/rVy5ku7du2vcOn78OHPmzOGf//wnTk5OwOMnLM6ePZuDBw9q/BtspTq1qquruXv3LkIIjI2NadxYmV2S79y5g7GxsSKtX/vDLJwLCwtfeLk2j26UainVWblyJWfOnOEvf/kLqamphISE4OLiAmj/hAQlW05OTiQkJHD79m0cHR05evQoTZs2pbKyktGjR6ufdFRfHV2dad68ec8cS09PV2+3GBkZWa+d130mJVvLli0jLy+PTz/9lJ07d3Lq1Ck+/PBDfvjhB0xNTQkNDdV4Jl1subq6snLlSsLCwqioqGDixIkMGzZM6z/Nw+PtRXNzc6mursbU1JRGjRrh5uZGeno6NTU1hIeH13srOjqakydPMmjQINLT07GwsMDQ0JCEhATGjx+Pp6enxjMp1dLFmZRu1XrylwVvvvmmVv8O16WiooILFy7QqVMnWrZs+UqtW7ducejQIf72t7+9UkeJlpL3U1VV1TNPKszLy+Pdd99tkM6TZs6cyapVq7S+XnV1NUlJSTRr1gxbW1uioqLUTxINDg6mdevWLz1TXXT+BVCUEhAQQEFBASYmJtQ+VtDT00MIgZ6eHmlpafXeUqrz/fffs3v3bho3boyvry+TJk3CwMAAe3t7tH1cpGRLpVJhYGBAhw4dmDRp0lPnGtXU1NR7R1dnat26NUlJSQQGBqp/2B89elTr81p/3RFCvFRHyZYuzqRkKzMzk71796Kvr8/BgwfZtWsXBgYGeHl54ejo+H/f0tPTo2vXrmzfvp2srCzi4uJYtmwZnTt35q233tJqN6LDhw+TnJxMZWUlNjY2ZGRk0KRJE6ytrdUPzuu79c0337B7924aNWqEh4cHkydPJjY2Fg8PDzw9PbVaDCrV0sWZlG5VV1ezY8cOioqK+PDDD+nfv7/6snXr1jF16lStO8OHD8fCwkL9Z3ltOnVp164dR44cUWTh/LKt6upqEhISGDFiBD169GDjxo2cPn1a/SJw2py/q1KpiI2NJS0tjVu3btGkSRM6duyIg4MDo0aNqvfO83b+GT9+PKDdLkKhoaGUlpZSWVnJtm3b6NWrF59++ikHDhxg0aJFrF27VuOWJv4wC+cvv/wSHx8fFi9eTL9+/XSipVSndqEN0LlzZ6Kjo5k4cSLGxsbPfGHWZ8vW1pZx48YRGxur/gF27tw5QkNDsbe3r/eOrs4UEhKCtbU1q1evZubMmVhZWfHvf/8bNze3V+7ExsZq3VGypYszKdkyNDSkuLgYExMT2rZtS2lpKQYGBpSVlWn9J0ddbD35YHnAgAEMGDCAqqoqzp8/z7Vr17SaSQjBw4cPKS0tpby8nJKSEtq0aUN5ebnW+zgr1aqoqKC8vBwjIyPKy8u5d+8e8PiJ240aaffceaVaujiT0q1FixahUql45513CAkJwdPTk8DAQODxX340XfA+2QkODn7pDii7kFOqFRISAsDIkSNZvnw5paWl+Pj4cOjQIebPn6/VA9eoqCj1+cj79+/HzMyM9u3bExsby5UrVwgKCqrXjp2dHRs3bmTGjBl06NABIQQLFy58qdMcz549y969e6mpqcHGxoavvvoKgK5du2r9oFwjiu/TocNOnjwpQkNDdaqlRGfdunVizJgx4uTJk+pjubm54oMPPhB9+/ZtsJYQQmRnZz/1fn5+vjh06FCDdXR1JiGEuHv3rpg2bZqIiorSenun36Pzus+kRCstLU0MHjxYREVFifDwcOHo6CiWLVsm7O3txddff/1/39q1a5dWn/dFlNxeVKlWdHS0cHZ2FitWrBDOzs5iy5Yt4ueffxYuLi7i888/12ompVq6OJPSrSe3sysuLhZOTk5iy5YtQgjttjRTqiOE7m4HWetVt9F98r6qqakR3t7eQgghKioqXri94+/VEUKIixcvCh8fH7F7924hhNB6i8tazs7O4vLly+LkyZOiV69e4tq1a0KIx18T2m51qYk/1ML5dZaVlSUuXbr01LHCwkIRHh7eoC1Je7t27dJ6D9Lfs6NkSxdnetXWTz/9JDZv3iwWL14sQkNDxerVq5964Pk6tJRSVlYmSkpKhBBCnDt3TsTExIiMjIwGbWVlZYmYmBiRlZUlhBCipKREnDt37qVmUqqlizMp2dLF/fSFUG4hp1TL09NTXLhwQQghRFBQkPjll1+EEI9vp7YPDEaNGiVu376tvn7tPCUlJVrtm6xUp1ZFRYWIjIwUU6dOfelF7uHDh4WNjY0YPHiw+O6774SdnZ2YNm2aGDp0qPr+V9If5smBkiRJkiQ1vLi4ODZv3kxYWBh//etfAcjPz8ff35/i4uI69+j+PTtP0qXtIJXcsjYxMZE1a9bQp08fTp48yaxZs+jZsycTJkxg6tSpGu+2o1QHlN8NrLCwkCFDhmBkZERubi7dunUjNzdX69ZvkQtnSZIkSZLqVUFBAQYGBk/tEFFSUkJCQoJW+4Mr1fm1zMxMUlJSXnlb0FdtKbmN7pUrVzh//jxmZmZ07tyZyspKSktLtd51QomO0ruBnT17lj//+c+v3NKEXDhLkiRJklRvdG1LV11tvc4zOTk5qXfwKigoYNKkScyZMwd7e3tcXV1JSkrSqKN0SxN/mF01JEmSJElqeHVtxVrrVbd0fZnO81qvy5a1z2vVaoj7XOjobmCafkJJkiRJkqR68fDhQ+Hk5CRyc3N1oqOrrdd5Jl3eDey36IeFhYUpvxyXJEmSJEl6loGBAe+99x6JiYnqV+tsyI6utl7nmSwtLXn77bdp06aN+qWx3377bRwcHCgvL8fa2rpBWpqQ5zhLkiRJkiRJkga0e7kfSZIkSZIkSfqDkgtnSZIkSZIkSdKAXDhLkiQBvr6+REdHP3N88+bNBAYGcvr0aaZNm1bndU+dOsWiRYte6fMPGzaM06dP1znXsGHDcHFxwdXVFQcHB0JCQigrK3ulzydJkiRpTy6cJUmSgLFjx5KYmPjM8V27djFu3Dh69uzJ2rVr67zupUuXuHHjxu82W3BwMMnJySQlJbFv3z7KysqeO4skSZL0+5ELZ0mSJGD48OGUlpaSm5urPpadnY0QgoEDB3Ls2DEcHR0BmDt3LoGBgTg4ODB//nzWrl1Lbm4u8+bNe+rjgKfev337NlOmTMHLy4thw4bh6+tLcXGxVnPq6elhZWXF5cuXATA3N2f69OmMHDmS06dPk5ubi6enJ05OTri7u/PDDz+orxsdHY2dnR2Ojo4EBQXx8OFDAOLj43F3d8fV1RU/Pz/y8/MByM3NZfTo0bi7u+Pu7s7+/ftfeLyyspKIiAjc3NxwdnZm7ty5lJSUALBz506cnZ3x8PDAx8eHS5cuaXW7JUmSdIFcOEuSJAGNGzfGy8uLhIQE9bG4uDh8fHzq3ES/vLxc/TK606ZNw8LCgsjIyBd+jpSUFN5//33i4uJIS0vD0NCQ5ORkrea8f/8+qampWFlZAVBVVcXQoUPZv38/pqamTJs2jQULFrB3716WL1/OnDlzuHbtGmlpaSQmJhIXF8e+ffswNTVl+/btZGdnk5SUxI4dO0hKSsLf35+pU6cCsG7dOiZOnEhiYiIREREcPXr0hcc3btyIvr4+iYmJ7NmzBxMTE1auXElNTQ0RERHExMTw9ddf4+npyfHjx7W63ZIkSbpAvnKgJEnS/3h6euLg4EBJSQnV1dVkZGTwvK3u+/Xrp3V/woQJ5ObmsmXLFgoKCrh48SK9e/f+zeutWLGCDRs2qF+pa+jQoYwfP159uYWFBfD4XOuOHTuqm926daNv375kZ2eTl5eHnZ0drVq1AmDevHnq9tWrV/H29lb37t+/z71797C3t+df//oX6enpDBgwgJkzZwI89/ihQ4d4+PAhWVlZwONFfdu2bdHX18fOzg5vb2+GDBnCwIEDcXJy0vr+kyRJamhy4SxJkvQ/JiYmDBgwgG+++YbS0lJGjhxJixYt6vxYIyOjOo/XviRuraqqKvXbH3/8MadOncLDwwMrKyuqq6ufednaugQHB2NnZ/fcy2tnUalUz1wmhKC6uhp9ff2nfnP+4MEDHjx4gEqlwsXFhTlz5qgbN2/epFWrVnh7ezN06FAyMzM5fPgw69evZ8+ePc89rlKpmD9/PjY2NgA8evSIiooKAFauXMmFCxfIyspi06ZNJCQksGHDht+87ZIkSbpEnqohSZL0BB8fH/bu3UtSUhJjx47V6Dr6+vpUV1cDYGxsTGFhIcXFxQghOHDggPrjMjIymDBhAq6urrRt25asrCxqamoUm713795cuXKFU6dOAXDx4kVycnKwtLRkwIABfPfdd+pzjtetW8fWrVsZOHAgKSkp3Lx5E4Avv/ySCRMmAODt7U1eXh7u7u4sXbqUBw8ecP/+/eceHzRoEDt27KCyshKVSsXChQtZtWoVd+7cwcbGhtatW+Pn58eMGTM4f/68YrdbkiSpvsjfOEuSJD3BysqK8PBwWrVqRffu3TW6Tp8+fVi9ejVBQUF89tlneHt74+HhQbt27RgyZIj644KCglixYgWff/45+vr69O3bl59++kmx2Y2NjVmzZg1Lly6lvLwcPT09IiMj6dKlC126dOHSpUuMGTMGgK5du7J06VKaN2/O5MmTmTRpEnp6ejRv3pz169ejp6fH7NmziYiIYPXq1TRq1IiPPvoIU1PT5x6fMmUKy5cvx83NjZqaGt59913mzp1L8+bN+cc//oGfnx+Ghobo6+sTHh6u2O2WJEmqL/IltyVJkiRJkiRJA/JUDUmSJEmSJEnSgFw4S5IkSZIkSZIG5MJZkiRJkiRJkjQgF86SJEmSJEmSpAG5cJYkSZIkSZIkDciFsyRJkiRJkiRpQC6cJUmSJEmSJEkD/wWuO0zueGt2dQAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[[\"Unaccounted Time / s\", *cols]].plot(kind=\"bar\", stacked=True, figsize=(12, 4));"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 7\n", "<a name=\"task7\"></a>\n", "\n", "* Create a pivot table based on the NEST `df` data frame\n", "* Let the `x` axis show the number of nodes; display the values of the simulation time `\"Sim. Time / s\"` for the tasks per node and threas per task configurations\n", "* Please plot a bar plot\n", "* Done? [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 101, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAELCAYAAAAiFru1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4U1X+x/F30tCNFlFIi5aCyCI6M4KCQAGpOlhEqGUVBEFEAZVFcGOx7FvFKoIs4wKiCEjZyg4qKAIVWZyBYQZRBgpFoKUFutC9ye+PzkT7KzRpSZeUz+t5fJ7k3pNzv8kB/OTm3HMNVqvVioiIiIiIXJexvAsQEREREanoFJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7TOVdwP93+fJVLBZreZdRKmrU8CEpKa28y5AS0Ni5No2fa9P4uS6NnWurzONnNBq49daqxXpNhQvNFou10oZmoFK/t8pOY+faNH6uTePnujR2rk3j9ztNzxARERERsUOhWURERETEjgo3PUNERERuXnl5uVy+fJHc3OzyLuWml5BgxGKxlHcZN8RkcufWW824ud145FVoFhERkQrj8uWLeHp6U7VqLQwGQ3mXc1MzmYzk5rpuaLZarVy9msLlyxepWfP2G+5P0zNERESkwsjNzaZq1WoKzHLDDAYDVatWc9qvFgrNIiIiUqEoMIuzOPPPkkKziIiIiIgdN/WcZt9qXnh6FP0RZGblkpqSUUYViYiIiEhFdFOHZk8PE6GvrS+yzcZ3w0gto3pERESksPfff4d//OPvAMTGnuT22+/Aw8MTgA8/XGx77IiNG6OJidnNzJnvFquGQYOe5f335/PMM0/RvHkL3nprkm3f0aP/ZOrU8axcGV2sPvv06c7o0eNp0qSpQ+1//PEHFi78AIBLl5KwWPKoWdMPgGefHcju3bto3PgennqqT7HqKKlXXx1Ohw4d6dDhiSLbRUUtJyMjg2+/3QFARkY6Fy9epE6dugC0bBnESy8NL/bxBw8ewLPPPk+bNg8Vv/gSuKlDs4iIiFR8I0e+YXvco0coEydOo3Hje8vs+BcunMfXtxpVq/oAsGPHV7Rq1Zq//jWkzGqA/HDZsmUQAB99tICMjAxeeeU12/7du3eVaT2O2rPneyZMmMqzzz4PwIEDPzJ//hyWLFlezpUVj0KziIiIuKwNG9axcWM0ubk5pKSk0L//QMLCupGYeJGpUyeSmpoMQJs27Xj++SEFXrtjx1d89NECIiPn4uXldd3233//HQ89FGx73aBBLxMZGcGf/vQXatUqvJTZokUf8u233+Dm5kadOncyatQb3HZbDU6ePMHMmVPJzs7mzjvvJDMz0/aaw4f/wd/+9gFZWZkYjW48//xggoLaFvvzOHz47+zY8TWXL1+ifv2GTJw4DZPJRIcOwQQFteE//znBlCkzcXMzMWfOu6SmpmCxWOjVqw8dO3YmLy+PuXPf5dixf5OefhWAMWMm8Oc//4WEhHimT5/EpUtJ1Kp1O1euXLId96OPFrBnzy6qVHHnlluqEx4+idtuq0FKSjI5OdnUrGkusu6rV9N4552ZnDv3G8nJV6hWrRqTJs0gIKA2O3Z8xRdfLMFodMPNzY0RI17lz3++z/banJwcJkwYg69vNUaPDsfNza3Yn5sjHLoQcM6cOTzxxBN06tSJTz/9FICYmBhCQ0MJCQlh9uzZtrbHjh2je/fudOjQgbfeeovc3NxSKVxERERublevprFly0befXcun366nAkTptmmL6xfv5a6deuyePEy5s37mNjYU7YQCLBt22Y++2wRH3zwIYGBdYpsv3fv9wVCc/PmDxIa2oXJk8PJy8srUNOGDes4dOgAn3yylM8++5LAwDpEREwFYNKkt+jWrSeffbaCrl17cvFiAgDJyVeIiJjCxInTWbx4GTNmvMOsWTNISIgv9meSlJTE3LkLWb58DefPn2P37u8AyMrKIjj4UVasWEu9evWZMGEMw4aNZPHiL/jggw9ZuvRTfv753xw9+k+uXLnC3/62mC+/XEP79h1YtuwzACIjI2jS5H6WLo1i+PBRnD4dC8C5c7+xbt1qFi36gkWLltKsWXP+/e9//fez203r1vanT+zdu5uaNc189NESVq6Mpl69+kRHrwHggw9mM27cRBYtWsqzzz7P3//+k+112dlZjB37GnfcUZuxYyeUWmAGB84079+/n3379rFhwwZyc3N54oknCAoKYty4cSxdupTbb7+dIUOGsGvXLoKDg3njjTeYNm0aTZs2Zdy4cURFRdGnT9nMrREREZGbR9WqPsyc+S579+4mLu4Mv/56nIyMdABatmzN6NEjOX/+HM2bt2Do0Ffw9q4K5M9BjonZw6hRb+Dn519k+5SUZLKzswqdKR08+GVefHEgS5Z8QsuWrW3b9+2LoVOnJ/H0zJ9n3bPn03Tr9gSXLiVx+nQsISEdAWja9AHq1r0TgH/+8zBJSUmMGfOqrR+DwcDJk/+x1eeodu0ets3xrlfvLi5fvmzb16TJ/QDExp7i3LnfmD59km1fTk4Ov/xynCef7Er16tVZv34t586d5dChg1SrVg2Agwf38+qrbwJQp86d3H9/MwD8/Py58856DBzYl1at2hAU1IYHHmgO5E8ZGTToJbt1h4R0JDCwDqtWfclvv8Vx5Mhhmjd/EIC//jWE119/hdatH+LBB1vSq9fvufL9998hKyuLCROmlvpShXZDc4sWLfj8888xmUzEx8eTl5dHSkoKdevWJTAwEIDQ0FC2bdtGgwYNyMzMpGnT/Ant3bp1Y+7cuQrNIiIi4nQXLpzn5ZdfICysG02a3E9w8KPs378PgD//+S+sWrWBAwf289NPB3jhhf68/Xb+L+O33HILEyZMZdKkcbRq1ZZatWpdt31c3OlrTpMwmUxMnDiNQYP628I4gNVa8A56VquFvLw8W6CzWq22ff87K5qXZ6F+/fosXLjYtu/ixQRuvfW2Yn8mJtPv0S7/mL8fz8vLGwCLJY9q1W4pMKc4KSkRHx9fdu/+jvnz59CrV1+Cgx8hICDQdgGfwXDt+k0mEwsWfMKxY//i4MH9zJ49ixYtghg8+GXOn/+NevXuslv3ypXL+Prr7XTt2oOQkI54eXmTkpI/VWb48FF06dKdAwd+ZOPGdaxYsZSPP84/+x0a2pXU1BTeeWcmU6dGFPvzKg6HpmdUqVKFuXPn0qlTJ4KCgkhISMBs/v0bl5+fH/Hx8YW2m81m4uOL/9OCiIiIiD3Hjv2LGjVq0L//QFq2DGLv3u+xWPJD6/z5c1i6dAnBwY8wcuQb1KlTl7NnzwAQGFiHBx9sSZcuPZgxYxJWq/W67Xfv/o62bYOvefzAwDoMH/4qH3+8wLatRYsgNm/eYJuvvGrVl9x/fzNuvfU26tdvwObNG2y1x8aeAuAvf7mPU6dOceTIPwA4fvxnnn66G5cuJZXK53bnnXdhNBr55pvtQP6Xj379enHixK8cOPAjDz30MF279qBx43vYvXsXFkv+FJSWLVuzYcM6AM6fP8c//vGTrd5nn+1NvXr16d9/ID17Pm3rq3nzlg7V9OOP++jcOYxOnZ6kdu1AYmL2YLFYyM7Oplu3TlitVrp168krr7xObOxJ27SYe+75Ey+9NIJffvmZbds2O/ujKsDhCwFHjBjBoEGDePHFF4mNjS2032AwFPj28cftxVGjhk+x2pcFs9m3QvYlZUtj59o0fq5N4+e6ijt2CQlGTKaiz+m5ueW3adv2IbZu3USfPt3x8vLiT3/6C76+1bhw4Tf69HmGKVMm0L9/L6pUqUKjRo0JCenAli2bMBgMmExGBg0azHPP9SMqavk12z/88MOsXLmMRo0aXvP4AGFhXThwYB8///xvTCYj3bv3IDExgUGD+mOxWKhTpy4TJ07FZDIybVoE06ZNZu3aKAID61CnTl3c3Az4+ZmZOXMW8+bNJjs7G6vVypQpM7jjjtvJy8tjwIC+jB8/mUaN7rbVYDQaMBop8FkZDPnb/7ft/z83mYz//c+Td96ZzfvvR7J06afk5uby8svDadLkPnx9qzJx4ls8+2xv3NzcaNLkfnbv/g43NwOjR49j2rRJPPNMT/z8/GnU6G6MRgN/+tO9PPzwo7zwQj+8vLzw9PTktddGExX1JZ07P1loPN3cjBgMBWt/9tkBzJo1kw0b1mI0Grn33nv57bezeHt7MmLEKMLD38RkqoKbm5Hw8El4eFTBYAA3NwM+Pt6MHz+ZN98cRfPmzQtdnGk0Gp3yb4jBeq2k+wf/+c9/yM7O5p577gFg2bJlbNu2DTc3N5YsWQJAdHQ0P/74I8OGDWPAgAF8/fXXABw8eJC5c+fy+eefO1xQUlIaFkuRJTmN2ezr0DrNFy86Z6Vms9nXaX1J2dLYuTaNn2vT+LmukozdhQunqVWrbilV5JoWLJhLhw5PUL9+gzI9rslkJDfXYr9hBXetP1NGo6HYJ2rtTs84e/Ys4eHhZGdnk52dzY4dO+jduzenTp3i9OnT5OXlsWnTJtq1a0dAQAAeHh4cOnQIyA/T7dq1K1ZBIiIiIpLParUSGFinzAOzFGZ3ekZwcDCHDx+mS5cuuLm5ERISQqdOnbjtttsYPnz4f5cwCebxxx8HIDIykvDwcK5evcq9995L//79S/1NiIiIiFRGBoOB0NAu5V2G4OCc5hEjRjBixIgC24KCgtiwYUOhto0bN2b16tXOqU5EREREpAJwaPUMEREREZGbmUKziIiIiIgdDi85JyIiIiK/863mhaeH86NUZlYuqSkZTu9XboxCs4iIiEgJeHqY7C5dWxIb3w3DkYX68vLyGD9+DBMmTCUtLY0ZMyZz6VISRqOBoUNH0qzZgw4dLzx8NPXq3cXzzw8hPT2dadMmMnVqhN31sm82+jREREREXFB09GpatGiFp6cnCxbMoU2btixZspxJk6YzeXK47a55Rdm0aT0//XTQ9tzb25vmzVuwfv3a0izdJSk0i4iIiLgYq9XK6tUrad++AwDBwY/w2GMdAQgICCQ7O4uMjKKneJw9G8fWrZsIC+tWYHv79iFERa245p2eb2YKzSIiIiIu5sSJX/Dx8cHHJ/+udsHBj1KtWjUAVqxYSsOGd9v2XUtubi4REVN5/fWxmEwFZ+tWq3YL3t5enDjxa+m9ARek0CwiIiLiYuLi4jCb/Qttj4pazvr16wgPn1zk6xcv/ojg4EepV++ua+7397+duLgzTqm1stCFgCIiIiIuxmg04ObmVmDbggVziInZy/z5H+HnVzhQ/9F33+2gShV3Nm/ewKVLSQB4eXnRp0/+nZxNJhMGg6F0indRCs0iIiIiLiYgoDYXLpy3PY+KWs5PPx1i4cJF+Pr62n398uVrbI8XLfoQwBaYAc6fP0ft2oFOrNj1KTSLiIiIlEBmVi4b3w0rlX7tadCgEcnJV0hLS6Nq1aosXvwxVatWZfjwIbY2kZFzSEy8yCef/I3IyLkOHz81NZW0tDQaNmxEbq6lRO+hMlJoFhERESmB1JQMh9ZTLg0Gg4GePZ9m+/bNdO/ei23bvr1muxo1amI2+xXZ1/PPDynwfOvWTfTs2dtptVYWuhBQRERExAV17dqDAwd+JDMz87ptEhLiCQnp6HCf6enpHDy4v9AydKIzzSIiIiIuyWQyERHxXpFt/P1r4e9fy+E+vb29mTVr9o2WVinpTLOIiIiIiB0KzSIiIiIidig0i4iIiIjYodAsIiIiImKHLgQUERERKYFbb3HH5O7h9H5zs7O4nJxtt11eXh7jx49hwoSppKWlMWPGZC5dSsJoNDB06EiaNXuwyNcvX/45W7ZsBKBz5zB6936G9PR0pk2byNSpEZhMOrf6RwrNIiIiIiVgcvfg5PTuTu/3rrfWAPZDc3T0alq0aIWnpyezZk2nTZu2dO/eizNnYhk2bAjr1m0pdKvt/zl7No5161bzxRdRWCxWnnmmJ23bBlO7diDNm7dg/fq1PPVULye/M9emrxAiIiIiLsZqtbJ69Urat+8AQHDwIzz2WP56zAEBgWRnZ5GRkXHd11ssFnJycsjKyiYnJxur1YrJlH8utX37EKKiVmC1Wkv/jbgQnWkWERERcTEnTvyCj48PPj4+AAQHP2rbt2LFUho2vNu271rq1KlL+/Yd6NEjFKvVSmhoGLVq3Q5AtWq34O3txYkTv1KvXoPSfSMuRGeaRURERFxMXFwcZrN/oe1RUctZv34d4eGTi3z9vn0xHD9+jOjorURHb+HYsX+zY8fXtv3+/rcTF3fG6XW7MoVmERERERdjNBoKzVdesGAOGzZEM3/+R3bvArh3724efvhRvL29qVrVh/btO/CPf/xk228ymTAYDKVSu6tyKDTPmzePTp060alTJ2bNmgXA2LFjCQkJISwsjLCwML7+Ov/bSUxMDKGhoYSEhDB7tm7DKCIiIuJsAQG1uXDhvO15VNRyfvrpEAsXLsLPr/AZ6P+vQYOG7N27h7y8PHJzc/nxxxjuuede2/7z589Ru3ZgqdTuquzOaY6JiWHPnj2sW7cOg8HACy+8wNdff83Ro0f54osv8PPzs7XNzMxk3LhxLF26lNtvv50hQ4awa9cugoODS/VNiIiIiNxMGjRoRHLyFdLS0qhatSqLF39M1apVGT58iK1NZOQcEhMv8sknfyMycm6B14eGduHMmVj69XsKNzc3goLa0rFjZwBSU1NJS0ujYcNG5OZayvR9VWR2Q7PZbGbMmDG4u7sDUL9+fc6dO8e5c+cYP348586d47HHHmPYsGEcOXKEunXrEhiY/80kNDSUbdu2KTSLiIhIpZObnfXf5eGc3689BoOBnj2fZvv2zXTv3ott2769ZrsaNWpiNvsV2m40Ghk+/FWGD3+10L6tWzfRs2fv4hdeydkNzQ0bNrQ9jo2NZcuWLSxfvpz9+/czZcoUvL29GTJkCKtXr8bb2xuz2Wxr7+fnR3x8fOlULiIiIlKO8m9AYn895dLStWsPwsPfpFOnMDw9Pa/ZJiEhnpCQjg73mZ6ezsGD+5kx4x1nlVlpOLzk3K+//sqQIUMYPXo0d911F/Pnz7ft69evH9HR0Tz++OOFXlfcSeQ1alx/eZTyYjb7Vsi+pGxp7Fybxs+1afxcV3HHLiHBqDvROchkcicy8v0i2wQE3EFAwB0O91mtmg/vvTfnD8dw/bEwGo1O+TfEodB86NAhRowYwbhx4+jUqRPHjx8nNjaWDh3yF9T+34LY/v7+JCYm2l6XkJBQYM6zI5KS0rBYymYxbUc/wIsXU512PGf1JWVLY+faNH6uTePnukoydhaLRfNoKwiTyVgpxsJisRT6c2g0Gop9otbu14fz588zdOhQIiMj6dSpE5AfkmfMmEFycjI5OTmsXLmSxx57jCZNmnDq1ClOnz5NXl4emzZtol27dsUqSERERESkorF7pnnRokVkZWURERFh29a7d28GDx7M008/TW5uLiEhIXTunH/FZUREBMOHDycrK4vg4OBrTtkQEREREXEldkNzeHg44eHh19zXt2/fQtuCgoLYsGHDjVcmIiIiIlJBOHwhoIiIiIj8zre6B55V3J3eb2ZONqlX7C87J2VLoVlERESkBDyruPPUypec3m9Ur4WkYj805+XlMX78GCZMmEpaWhozZkzm0qUkjEYDQ4eOpFmzB+32cfFiAi+80I/167fbti1e/BE7d36DwQBBQW14+eVXSE9PZ9q0iUydGlHo9t03C9dfR0RERETkJhQdvZoWLVrh6enJggVzaNOmLUuWLGfSpOlMnhxOXl5eka//4Yc9DB/+IklJSbZtBw78yIED+/j002UsXbqC48d/Zteub/H29qZ58xasX7+2tN9WhaXQLCIiIuJirFYrq1evpH37/OV/g4Mf4bHH8m9iEhAQSHZ2FhkZGUX2sWnTembMmFVgW40aNRk6dBRVqlTBZKpC3bp3Eh9/AYD27UOIilqB1Vo2SwNXNJqeISIiIuJiTpz4BR8fH3x88tcaDg5+1LZvxYqlNGx4t23f9UyfXviuf3fdVd/2+MyZM+zc+TULFy4GoFq1W/D29uLEiV9p2LCRM96GS9GZZhEREREXExcXh9nsX2h7VNRy1q9fR3j45Bvq/+TJ/zBixEsMHTqSwMA6tu3+/rdz9uyZG+rbVelMs4iIiIiLMRoNhS7IW7BgDjExe5k//yP8/AoHakcdOfIPwsNHM2rU6zzyyGMF9plMJozGm/Ocq0KziIiIiIsJCKjNhQvnbc+jopbz00+HWLhwEb6+viXuNz7+AuPGvc7kyTNp2bJlodtonz9/joCAwBL378oUmkVERERKIDMnm6heC0ulX3saNGhEcvIV0tLSqFq1KosXf0zVqlUZPnyIrU1k5BwSEy/yySd/IzJyrkPHXrHiC7Kysvngg9nMmwdWK3Tp0o0uXXqQmppKWloaDRo0LPF7c2UKzSIiIiIlkHoly6H1lEuDwWCgZ8+n2b59M92792Lbtm+v2a5GjZqYzX5F9rVnz0Hb45EjX2fkyNcBMJmMBc40b926iZ49ezuhetd0c05KEREREXFxXbv24MCBH8nMzLxum4SEeEJCOt7wsdLT0zl4cD9hYd1uuC9XpTPNIiIiIi7IZDIREfFekW38/Wvh71/rho/l7e3NrFmzb7gfV6YzzSIiIiIidig0i4iIiIjYodAsIiIiImKHQrOIiIiIiB0KzSIiIiIlcKuvO2azr9P/u9XX3aHj5+XlMW7cGwVWz0hPv8pTT4Xx008Hi3hlQfPnz2H69EkAWCwWxo59nfT09GJ9FjcDrZ4hIiIiUgImTw/2hnV3er9t1q+BVPs3OImOXk2LFq3w9PS0bXvvvVmkpqY6fKyDB/ezdetGgoLaAmA0GnnyyS4sWfIxI0aMKn7xlZjONIuIiIi4GKvVyurVK2nfvoNt244dX+Ht7U39+g0c6iMlJZmPPlpAv37PFdjeokUQu3Z9y9WraU6t2dUpNIuIiIi4mBMnfsHHxwcfHx8ALly4QFTUCoYOfcXhPmbNmsHgwS/j61utwHY3Nzfq12/IoUOOT/G4GSg0i4iIiLiYuLg4zGZ/IH8eckTEFEaNehMPD087r8y3cWM0/v7+NG/e4pr7a9WqRVzcGafVWxloTrOIiIiIizEaDbi5uQFw+nQsZ86cJiJiKgC//RbH229PY/TocB54oPk1X79jx1ckJSUyYEAfUlKSycjIYO7cdxkx4jUg/26DBoPOrf6RQrOIiIiIiwkIqM2FC+cBqFfvLtau3WzbN2zYYAYOHHzdwAzw/vsLbI+3bNnI3/9+yBaYAc6dO0fTpg+UQuWuS18hRERERFxMgwaNSE6+Qlpa0RfrJSZeZMCAPsXqOy8vj19++ZkWLa49deNmpTPNIiIiIiWQm5mVvzxcKfRrj8FgoGfPp9m+fTPdu/cqsG/evI9sj2vWNHP33Y2L7OuJJ0J54olQ2/OYmN0EBz+Kp6cXubmWYlZfeTkUmufNm8fWrVsBCA4O5s033yQmJoaZM2eSlZVFx44dGTUqfy2/Y8eOER4eTlpaGs2bN2fy5MmYTMrmIiIiUrlcTs12aD3l0tK1aw/Cw9+kU6ewAms1/1FGRgatWz/kcJ8Wi4VNm9YzYcJUZ5VZadidnhETE8OePXtYt24d0dHR/Otf/2LTpk2MGzeOBQsWsGXLFo4ePcquXbsAeOONNxg/fjzbt2/HarUSFRVV6m9CRERE5GZjMpmIiHjvuoEZwMvLi+DgRxzu02g08vbbs6la1ccZJVYqdkOz2WxmzJgxuLu7U6VKFerXr09sbCx169YlMDAQk8lEaGgo27Zt47fffiMzM5OmTZsC0K1bN7Zt21bqb0JEREREpDTZnTfRsGFD2+PY2Fi2bNlCv379MJvNtu1+fn7Ex8eTkJBQYLvZbCY+Pr5YBdWoUfG+2ZjNvhWyLylbGjvXpvFzbRo/11XcsUtIMGIyaZ2CiqIyjIXRaHTKvyEOTzb+9ddfGTJkCKNHj8ZkMnHq1KkC+w0GA1artdDrDAZDsQpKSkrDYincT2lw9AO8eNHxe7jbO56z+pKypbFzbRo/16bxc10lGTuLxaKLzyoIk8lYKcbCYrEU+nNoNBqKfaLWoa8Phw4dYsCAAbz22mt07doVf39/EhMTbfsTEhLw8/MrtP3ixYv4+fkVqyARERERkYrG7pnm8+fPM3ToUGbPnk1QUBAATZo04dSpU5w+fZratWuzadMmunfvTkBAAB4eHhw6dIhmzZoRHR1Nu3btSv1NiIiIiJS1W6p54e7h/BXCsrNySU7JcHq/cmPsjvSiRYvIysoiIiLCtq13795EREQwfPhwsrKyCA4O5vHHHwcgMjKS8PBwrl69yr333kv//v1Lr3oRERGRcuLuYWLKa5uc3u+Edzs71C4vL4/x48cwYcJU2woa6elXGTCgD2PGjC/yjoAA27dvYenSJQC0atWaYcNGYrFYeOutNxk/fgrVqlW868zKk93QHB4eTnh4+DX3bdiwodC2xo0bs3r16huvTERERESuKzp6NS1atCqw5Nx7780iNdX+PPLMzEzefz+SFSvW4uPjw0svPc+BAz/y4IMtefLJLixZ8jEjRowqzfJdjutfEikiIiJyk7FaraxevZL27TvYtu3Y8RXe3t7Ur9/A7ustljysVguZmRnk5eWSl5eLh4cHAC1aBLFr17dcvVr0LbpvNgrNIiIiIi7mxIlf8PHxwccnfwrFhQsXiIpawdChrzj0em/vqrzwwov06dODLl2eoFatO/jLX5oA4ObmRv36DTl06GCp1e+KFJpFREREXExcXBxmsz+Qv6RaRMQURo16Ew+P698d8I9OnPiVzZs3sGbNRtav34bRaGTFiqW2/bVq1SIu7kyp1O6qFJpFREREXIzRaMDNzQ2A06djOXPmNBERUxkwoA/Hjx/j7ben8dNP1z9TvH//DzRr1oJbb70Nd3d3nngilL///ZBtv8lkwmBQTPwj56+TIiIiIiKlKiCgNhe5VgL8AAAXkklEQVQunAegXr27WLt2s23fsGGDGThwcJGrZzRo0IgFC+aSkZGBp6cne/d+T+PG99r2nzt3jqZNHyi9N+CCFJpFRERESiA7K9fh5eGK2689DRo0Ijn5CmlpabZ5zdeSmHiR119/hSVLlhfY3qJFK3755Weef/4ZTCYT99zzJ555ZgCQv5TdL7/8zKRJU27ofVQ2Cs0iIiIiJVCeNyAxGAz07Pk027dvpnv3XgX2zZv3ke1xzZpm7r678TX7eOaZAbag/EcxMbsJDn4UT0+vSnEbbWfRZBURERERF9S1aw8OHPiRzMzM67bJyMigdeuHHO7TYrGwadN6Bgx43hklVio60ywiIiLigkwmExER7xXZxsvLi+DgRxzu02g08vbbs2+0tEpJZ5pFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFRERESuCWau6Yzb5O/++Wau4OHT8vL49x494osHpGevpVnnoqrMi7Af7R1atp9Ov3FOfPn7NtW79+Lf36PUXfvk8xY8ZkcnJysFgsjB37Ounp6cX7kCoRrZ4hIiIiUgLuHh7MG/uc0/sdNvNTINtuu+jo1bRo0QpPT0/btvfem0VqaqpDx/nXv44ya9Y04uLO2LadOXOaFSuWsmjRUqpV82Xy5AmsXRtFr159efLJLixZ8jEvv/xKsd9TZaAzzSIiIiIuxmq1snr1Stq372DbtmPHV3h7e1O/fgOH+ti4cR2vvjqamjXNtm3u7u689toYqlb1wWAwcNddDYiPvwBAixZB7Nr1LVevpjn3zbgIhWYRERERF3PixC/4+PjYbqF94cIFoqJWMHSo42eBx4wZT5Mm9xfYVqvW7Tz4YEsALl++zNq1UbRtGwyAm5sb9es3dHjqR2Wj0CwiIiLiYuLi4jCb/YH8u/hFRExh1Kg38fDwtPNKx1y8mMCwYUPo3DmMBx5obtteq1Yt4uLinHIMV6PQLCIiIuJijEYDbm5uAJw+HcuZM6eJiJjKgAF9OH78GG+/Pa3EZ4RPn47lpZee54knQhkw4IUC+0wmE0aj4Ybrd0W6EFBERETExQQE1ObChfMA1Kt3F2vXbrbtGzZsMAMHDi5whthR6elXGTVqKEOGDKVTp87k5loK7D937hz33df0xop3UTrTLCIiIuJiGjRoRHLyFdLSir4oLzHxIgMG9HG4340bo7l8+RIrVnxBv369GTCgD5988jcgf4m7X375mebNW95Q7a5KZ5pFRERESiA7K+u/y8M5v197DAYDPXs+zfbtm+nevVeBffPmfWR7XLOmmbvvblxkX6tXb7Q97tWrL7169QXAZDIWONMcE7Ob4OBHCyxxdzNRaBYREREpgeSUbBxZT7m0dO3ag/DwN+nUKey6QTYjI4PWrR+64WNZLBY2bVrPhAlTb7gvV6XQLCIiIuKCTCYTERHvFdnGy8uL4OBHbvhYRqORt9+efcP9uDKH5zSnpaXRuXNnzp49C8DYsWMJCQkhLCyMsLAwvv76awBiYmIIDQ0lJCSE2bNv7g9XRERERCoHh840Hz58mPDwcGJjY23bjh49yhdffIGfn59tW2ZmJuPGjWPp0qXcfvvtDBkyhF27dhEcHOz0wkVERKRyslqtGAw357Jm4lxWq9VpfTl0pjkqKoqJEyfaAnJ6ejrnzp1j/PjxhIaGMnfuXCwWC0eOHKFu3boEBgZiMpkIDQ1l27ZtTitWREREKjeTyZ2rV1OcGnbk5mS1Wrl6NQWTyd0p/Tl0pnn69OkFniclJdGqVSumTJmCt7c3Q4YMYfXq1Xh7e2M2/37/cj8/P+Lj44tVUI0aPsVqXxbMZt8K2ZeULY2da9P4uTaNn+sq7thVr+5JXFwcFy+eLaWK5Gbi5eVJgwb1qFKlyg33VaILAQMDA5k/f77teb9+/YiOjubxxx8v1La4P68kJaVhsZTNt0tH/yJfvJjqtOM5qy8pWxo716bxc20aP9dV0rHz9TXjq+9J5a6y/N27ciUTyCywzWg0FPtEbYlubnL8+HG2b99ue261WjGZTPj7+5OYmGjbnpCQUGDOs4iIiIiIKypRaLZarcyYMYPk5GRycnJYuXIljz32GE2aNOHUqVOcPn2avLw8Nm3aRLt27Zxds4iIiIhImSrR9IzGjRszePBgnn76aXJzcwkJCaFz584AREREMHz4cLKysggODr7mlA0REREREVdSrNC8c+dO2+O+ffvSt2/fQm2CgoLYsGHDjVdWQVhysx2a+5ybncXl5KLvCmTJtt9XbmYWl1PL7+5CIiIiIlKY7ghoh9Hkzsnp3e22u+utNdi7labR3Z29YUX31Wb9GlBoFhEREalQSjSnWURERETkZqLQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2GEq7wJESsq3mheeHkX/Ec7MyiU1JaOMKhIREZHKSqFZXJanh4nQ19YX2Wbju2GkllE9IiIiUnlpeoaIiIiIiB0KzSIiIiIidig0i4iIiIjYodAsIiIiImKHQ6E5LS2Nzp07c/bsWQBiYmIIDQ0lJCSE2bNn29odO3aM7t2706FDB9566y1yc3NLp2oRERERkTJkNzQfPnyYp59+mtjYWAAyMzMZN24cCxYsYMuWLRw9epRdu3YB8MYbbzB+/Hi2b9+O1WolKiqqVIsXERERESkLdkNzVFQUEydOxM/PD4AjR45Qt25dAgMDMZlMhIaGsm3bNn777TcyMzNp2rQpAN26dWPbtm2lW72IiIiISBmwu07z9OnTCzxPSEjAbDbbnvv5+REfH19ou9lsJj4+3omlVmzZeTmYzb7lXYaIiIiIlIJi39zEarUW2mYwGK67vbhq1PAp9msqAne3Kjy18qUi20T1WuhQXwrfzuWsz1Pj4to0fq5N4+e6NHauTeP3u2KHZn9/fxITE23PExIS8PPzK7T94sWLtikdxZGUlIbFUjiAl4aK+gfh4kXdw84Rjo6fMz5Ps9lX4+LCNH6uTePnujR2rq0yj5/RaCj2idpiLznXpEkTTp06xenTp8nLy2PTpk20a9eOgIAAPDw8OHToEADR0dG0a9euuN2LiIiIiFQ4xT7T7OHhQUREBMOHDycrK4vg4GAef/xxACIjIwkPD+fq1avce++99O/f3+kFi4iIiIiUNYdD886dO22Pg4KC2LBhQ6E2jRs3ZvXq1c6pTERERESkgtAdAUVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxw1TeBYjIzce3mheeHkX/85OZlUtqSkYZVSQiIlI0hWYRKXOeHiZCX1tfZJuN74aRWkb1iIiI2KPpGSIiIiIiduhMcwWTm5OH2exbZJvsrFyS9bO1iIiISJlRaK5gTFXcmPLapiLbTHi3cxlVIyIiIiKg6RkiIiIiInbd0Jnm/v37k5SUhMmU382UKVM4c+YMCxcuJCcnhwEDBtC3b1+nFCoiIiIiUl5KHJqtVisnT57ku+++s4Xm+Ph4Ro0axdq1a3F3d6d37960bNmSBg0aOK1gEREREZGyVuLQfPLkSQwGA4MGDSIpKYmnnnqKqlWr0qpVK6pXrw5Ahw4d2LZtG8OGDXNawSLFYcnNtnthZW52FpeTs4vuJ9t+PwC5mVlcTi26LxEREXE9JQ7NKSkpBAUFMWnSJDIzM+nfvz8dO3bEbDbb2vj5+XHkyBGnFCpSEkaTOyendy+yzV1vrQGKDrpGd3f2hhXdD0Cb9WtAoVlERKTSKXFovv/++7n//vsB8Pb2pkePHsycOZMXX3yxQDuDwVCsfmvU8ClpSTcVR856iuOc+XlqbJxH4yL/o/FzXRo716bx+12JQ/PBgwfJyckhKCgIyJ/jHBAQQGJioq1NQkICfn5+xeo3KSkNi8Va0rKKxZX/IFy8qHulOXP87H2exTmWxsY+Rz9PZ32WZrOvxsWFafxcl8bOtVXm8TMaDcU+UVviJedSU1OZNWsWWVlZpKWlsW7dOt555x1++OEHLl26REZGBl999RXt2rUr6SFERERERCqEEp9pfuSRRzh8+DBdunTBYrHQp08fmjVrxqhRo+jfvz85OTn06NGD++67z5n1ioiIiIiUuRtap3nkyJGMHDmywLbQ0FBCQ0NvqCgREam4fKt54elR9P8+MrNySU3JKKOKRERKn26jLSIixeLpYSL0tfVFttn4bhiVcyakiNysdBttERERERE7FJpFREREROxQaBYRERERsUNzmuWml52X49JrdouIiEjpU2h2Qbk5joW87KwsklN0S2d73N2q8NTKl4psE9VrYRlVIyIiIhWRQrMLMlWpwryxz9ltN2zmp4BCs4iI5HNkuUDQkoEi16LQLCIicpNwZLlA0JKBItei0CwiFZIlN9uhaUi52VlcTtYvKiIiUroUmkWkQjKa3Dk5vbvddne9tQZ705As2fYDeG5mFpdTFb5FROTaFJpFpNIzuruzN6zoAN5m/RpQaBYRketQaBYRERFxAY5cyKmLOEuPQrOIiIiIC3DkQk5dxFl6FJpFnCg3J8/u3NnsrFySdRZARETEpSg0iziRqYobU17bVGSbCe92LqNqbg66o2PF5MjqJ1r5RERciUKziLg03dGxYnJk9RNHVj4BrX4iIhWDQrOIiFRoWv1ERCoChWYREREpQNNrRApTaBYpY7k59ufgZmdlkZyi/xmJSPlw1vQaR6bWgKbXiGtQaBYpY6YqVZg39rki2wyb+SmOzPUU53Fk5RPQ6ifOpIs4Kz9HptaAptc4kyO/EoB+KSgJhWYRERxb+QS0+okzOXIRJ+hCTpHicORXAnDeLwU3068ECs0iIuLytEZ62dMvBa7N0fHTRbi/U2gWESkGzUmvmLRGetlz5nKP+tJT9rRcZ/EpNIuIFIPmpLsuR77wgL70lAd96XFdN9MXHoVmERG5KTjyhQf0paei0q88FdPN9IWnVELzxo0bWbhwITk5OQwYMIC+ffuWxmFERETkJqFfeVxXZfmVx+mhOT4+ntmzZ7N27Vrc3d3p3bs3LVu2pEGDBs4+lIiIiIhUcJXlVx6nh+aYmBhatWpF9erVAejQoQPbtm1j2LBhDr3eaDQ4u6Qi+d3qZbeN6RazQ32ZvW+z28bDz35ftzhQk2/1Gg7VVNafZ1lz1vg5a+zAeeOnsauYf/dA4wdl+3cP9G+nMzkydqB/OysqV/23s6L93SvJcQxWq9XqzCI+/PBD0tPTGTVqFACrVq3iyJEjTJ061ZmHEREREREpM0Znd3itDG4wVO5vfSIiIiJSuTk9NPv7+5OYmGh7npCQgJ+fn7MPIyIiIiJSZpwemlu3bs0PP/zApUuXyMjI4KuvvqJdu3bOPoyIiIiISJlx+oWA/v7+jBo1iv79+5OTk0OPHj247777nH0YEREREZEy4/QLAUVEREREKhunT88QEREREalsFJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFruGbb75h6dKlnDlzpsD2lStXllNFUhyxsbHEx8cDsGrVKqZNm8aWLVvKuSopiYiIiPIuQRx05MgR2+MffviBiIgIIiMjOXz4cDlWJY7avXs3KSkpAERHRzNlyhTWrFlTzlVVLFpyTuT/iYyM5OjRo9SvX5+tW7cyevRowsLCAOjatSvr1q0r5wqlKEuWLGHp0qVYLBZatWrF+fPneeyxx9i5cycPPPAAQ4cOLe8S5TrGjh1baNvOnTt59NFHAZg5c2ZZlyTF8L9/H5ctW8aXX35J9+7dAVi3bh09e/bkmWeeKecK5XqmT5/OsWPHmD17NsuWLeOf//wnf/3rX/n++++pXbs24eHh5V1iheD0m5tIvnPnzhW5/4477iijSqS4du3axbp16zCZTPTr14+BAwfi7u5Ox44d0XfMim/NmjVs2bKFxMREOnfuzL59+/Dw8KBnz5706NFDobkCq169OtHR0bz44otUq1YNgH379tGiRYtyrkyKIyoqis8//5xbb70VgB49etCjRw+F5gps7969bNy4ETc3N7777juioqJwd3enV69edO7cubzLqzAUmkvJkCFDiI2Nxc/Pr1DQMhgM7Nixo5wqE3usVisGgwGAO++8kw8//JDnnnuO2267zbZdKi6LxYK7uzsBAQEMHDgQDw8P2768vLxyrEzsGT16NO3ateP999/n1VdfpWXLlnz22Wd07dq1vEsTB+Tm5mKxWKhRowbe3t627e7u7hiNmg1akXl6epKUlISfnx81atQgPT0dd3d3MjIyMJkUFf9H0zNKSVpaGn369GHixIk0a9asvMuRYpg3bx4xMTGMGTPGdgv4Q4cOMWzYMLKzszl06FA5VyhFmTNnDvv37+fzzz/Hzc0NgJ9//pnw8HAefvhhhg0bVs4Vij1Xrlxh4sSJ3HHHHezZs4eNGzeWd0nigP79+3Pq1CkMBgOtW7cmIiKCH374gXfeeYeHH36YESNGlHeJch07d+5k0qRJdOrUidzcXPbt20dQUBB79uzhhRdeoFu3buVdYoWg0FyKjhw5wqpVq5g6dWp5lyLF9MMPP+Dn50f9+vVt286fP8/ixYt56623yrEyccSBAwd48MEHbc9PnjxJXFwcwcHB5ViVFNeqVavYunUrixcvLu9SpBhOnjxJSkoKTZs25dChQ6SmpvLwww+Xd1liR1xcHN988w2nT58mLy+PmjVr8sgjj9hOHolCs4iIiIiIXZpkJCIiIiJih0KziIiIiIgdCs0iIuXo7Nmz3H333axatarA9kWLFjFmzBiH+7l06RJ33323s8sTEZH/UmgWESlnRqORt99+m1OnTpV3KSIich1afE9EpJx5enry3HPP8dprr/Hll1/i7u5u25eamsrkyZP5+eefMRgMPPTQQ7z66quYTCa++uorZs+ejZeXF3/+858L9Llq1SpWrFiBxWKhevXqjB8/nvr163Pw4EEiIiKwWCxA/pryHTp0KNP3KyLiinSmWUSkAnjppZfw8vJi9uzZBbZPmzaN6tWrs3HjRtasWcPx48dZvHgxiYmJjBs3jg8++IC1a9cSEBBge83+/fuJjo5m2bJlREdH88ILLzB8+HAAPvjgA5577jnWrl3LjBkz2LdvX5m+TxERV6UzzSIiFYDRaOSdd96ha9eutG3b1rb9+++/Z8WKFRgMBtzd3enduzefffYZdevWpVGjRjRo0ACAXr168d577wHw3Xffcfr0aXr37m3rJzk5mStXrtCxY0emTJnCzp07ad26Na+++mrZvlERERel0CwiUkHccccdTJo0idGjR9OlSxcA2zSK/7FYLOTm5mIwGPjjMvt/vNWtxWIhLCyMN954w/Y8ISGBW265hd69e/PII4+wd+9edu/ezbx589iwYQO+vr5l8A5FRFyXpmeIiFQgHTt2pF27dnz22WcAtG3blmXLlmG1WsnOziYqKorWrVvTvHlzTpw4wc8//wzA2rVrbX20adOGzZs3k5CQAMCKFSt49tlnAejduzfHjh2jW7duTJ06lZSUFJKTk8v4XYqIuB6daRYRqWDCw8M5dOiQ7fG0adMIDQ0lJyeHhx56iBdffBF3d3ciIyN5/fXXqVKlSoHbhj/00EMMGjSIgQMHYjAY8PHxYd68eRgMBl5//XVmzJjB+++/j9FoZNiwYdSuXbu83qqIiMvQbbRFREREROzQ9AwRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMSO/wPgkCk9ZX0M6wAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df.pivot_table(\n", " index=[\"Nodes\"],\n", " columns=[\"Tasks/Node\", \"Threads/Task\"],\n", " values=\"Sim. Time / s\",\n", ").plot(kind=\"bar\", figsize=(12, 4));"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "source": ["<a name=\"taskb\"></a>\n", "\n", "* Bonus task\n", " - Use `Sim. Time / s` and `Presim. Time / s` as values to show\n", " - Show a stack of those two values inside the pivot table"]}, {"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["<span class=\"feedback\">Tell me what you think about this tutorial! <a href=\"mailto:a.herten@fz-juelich.de\">a.herten@fz-juelich.de</a></span>"]}], "metadata": {"kernelspec": {"display_name": "Python 3", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2"}}, "nbformat": 4, "nbformat_minor": 2} \ No newline at end of file +{"cells": [{"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["# *Introduction to* Data Analysis and Plotting with Pandas\n", "## JSC Tutorial\n", "\n", "Andreas Herten, Forschungszentrum J\u00fclich, 26 February 2019"]}, {"cell_type": "markdown", "metadata": {"exercise": "onlysolution", "slideshow": {"slide_type": "skip"}}, "source": ["**Version: Solutions**"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "source": ["## Task Outline\n", "\n", "* [Task 1](#task1)\n", "* [Task 2](#task2)\n", "* [Task 3](#task3)\n", "* [Task 4](#task4)\n", "* [Task 5](#task5)\n", "* [Task 6](#task6)\n", "* [Task 7](#task7)\n", "* [Bonus Task](#taskb)"]}, {"cell_type": "code", "execution_count": 2, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import pandas as pd"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 1\n", "<a name=\"task1\"></a>\n", "\n", "* Create data frame with\n", " - 10 names of dinosaurs, \n", " - their favourite prime number, \n", " - and their favourite color\n", "* Play around with the frame\n", "* Tell me on poll when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "nopresentation", "slideshow": {"slide_type": "skip"}}, "source": ["Jupyter Notebook 101:\n", "\n", "* Execute cell: `shift+enter`\n", "* New cell in front of current cell: `a`\n", "* New cell after current cell: `b`"]}, {"cell_type": "code", "execution_count": 21, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [],\n", " \"Favourite Prime\": [],\n", " \"Favourite Color\": []\n", "}\n", "#df_dinos = "]}, {"cell_type": "code", "execution_count": 22, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>Dinosaur Name</th>\n", " <th>Aegyptosaurus</th>\n", " <th>Tyrannosaurus</th>\n", " <th>Panoplosaurus</th>\n", " <th>Isisaurus</th>\n", " <th>Triceratops</th>\n", " <th>Velociraptor</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Favourite Prime</th>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>15</td>\n", " <td>16</td>\n", " <td>23</td>\n", " <td>42</td>\n", " </tr>\n", " <tr>\n", " <th>Favourite Color</th>\n", " <td>blue</td>\n", " <td>white</td>\n", " <td>blue</td>\n", " <td>purple</td>\n", " <td>violet</td>\n", " <td>gray</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": ["Dinosaur Name Aegyptosaurus Tyrannosaurus Panoplosaurus Isisaurus \\\n", "Favourite Prime 4 8 15 16 \n", "Favourite Color blue white blue purple \n", "\n", "Dinosaur Name Triceratops Velociraptor \n", "Favourite Prime 23 42 \n", "Favourite Color violet gray "]}, "execution_count": 22, "metadata": {}, "output_type": "execute_result"}], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [\"Aegyptosaurus\", \"Tyrannosaurus\", \"Panoplosaurus\", \"Isisaurus\", \"Triceratops\", \"Velociraptor\"],\n", " \"Favourite Prime\": [\"4\", \"8\", \"15\", \"16\", \"23\", \"42\"],\n", " \"Favourite Color\": [\"blue\", \"white\", \"blue\", \"purple\", \"violet\", \"gray\"]\n", "}\n", "df_dinos = pd.DataFrame(happy_dinos).set_index(\"Dinosaur Name\")\n", "df_dinos.T"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 2\n", "<a name=\"task2\"></a>\n", "\n", "* Read in `nest-data.csv` to `DataFrame`; call it `df` \n", " *Data was produced with [JUBE](http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html), Pandas works **very** well together with JUBE*\n", "* Get to know it and play a bit with it\n", "* Tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 30, "metadata": {"exercise": "task"}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["id,Nodes,Tasks/Node,Threads/Task,Runtime Program / s,Scale,Plastic,Avg. Neuron Build Time / s,Min. Edge Build Time / s,Max. Edge Build Time / s,Min. Init. Time / s,Max. Init. Time / s,Presim. Time / s,Sim. Time / s,Virt. Memory (Sum) / kB,Local Spike Counter (Sum),Average Rate (Sum),Number of Neurons,Number of Connections,Min. Delay,Max. Delay\n", "5,1,2,4,420.42,10,true,0.29,88.12,88.18,1.14,1.20,17.26,311.52,46560664.00,825499,7.48,112500,1265738500,1.5,1.5\n", "5,1,4,4,200.84,10,true,0.15,46.03,46.34,0.70,1.01,7.87,142.97,46903088.00,802865,7.03,112500,1265738500,1.5,1.5\n"]}], "source": ["!cat nest-data.csv | head -3"]}, {"cell_type": "code", "execution_count": 31, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>Nodes</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>...</th>\n", " <th>Max. Init. Time / s</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>420.42</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>88.18</td>\n", " <td>...</td>\n", " <td>1.20</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " <td>46560664.0</td>\n", " <td>825499</td>\n", " <td>7.48</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>200.84</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>46.03</td>\n", " <td>46.34</td>\n", " <td>...</td>\n", " <td>1.01</td>\n", " <td>7.87</td>\n", " <td>142.97</td>\n", " <td>46903088.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>8</td>\n", " <td>202.15</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>48.48</td>\n", " <td>...</td>\n", " <td>1.20</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " <td>47699384.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>89.57</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>20.41</td>\n", " <td>23.21</td>\n", " <td>...</td>\n", " <td>3.04</td>\n", " <td>3.19</td>\n", " <td>60.31</td>\n", " <td>46813040.0</td>\n", " <td>821491</td>\n", " <td>7.23</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>164.16</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.20</td>\n", " <td>40.03</td>\n", " <td>41.09</td>\n", " <td>...</td>\n", " <td>1.58</td>\n", " <td>6.08</td>\n", " <td>114.88</td>\n", " <td>46937216.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 21 columns</p>\n", "</div>"], "text/plain": [" id Nodes Tasks/Node Threads/Task Runtime Program / s Scale Plastic \\\n", "0 5 1 2 4 420.42 10 True \n", "1 5 1 4 4 200.84 10 True \n", "2 5 1 2 8 202.15 10 True \n", "3 5 1 4 8 89.57 10 True \n", "4 5 2 2 4 164.16 10 True \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "0 0.29 88.12 \n", "1 0.15 46.03 \n", "2 0.28 47.98 \n", "3 0.15 20.41 \n", "4 0.20 40.03 \n", "\n", " Max. Edge Build Time / s ... Max. Init. Time / s Presim. Time / s \\\n", "0 88.18 ... 1.20 17.26 \n", "1 46.34 ... 1.01 7.87 \n", "2 48.48 ... 1.20 7.95 \n", "3 23.21 ... 3.04 3.19 \n", "4 41.09 ... 1.58 6.08 \n", "\n", " Sim. Time / s Virt. Memory (Sum) / kB Local Spike Counter (Sum) \\\n", "0 311.52 46560664.0 825499 \n", "1 142.97 46903088.0 802865 \n", "2 142.81 47699384.0 802865 \n", "3 60.31 46813040.0 821491 \n", "4 114.88 46937216.0 802865 \n", "\n", " Average Rate (Sum) Number of Neurons Number of Connections Min. Delay \\\n", "0 7.48 112500 1265738500 1.5 \n", "1 7.03 112500 1265738500 1.5 \n", "2 7.03 112500 1265738500 1.5 \n", "3 7.23 112500 1265738500 1.5 \n", "4 7.03 112500 1265738500 1.5 \n", "\n", " Max. Delay \n", "0 1.5 \n", "1 1.5 \n", "2 1.5 \n", "3 1.5 \n", "4 1.5 \n", "\n", "[5 rows x 21 columns]"]}, "execution_count": 31, "metadata": {}, "output_type": "execute_result"}], "source": ["df = pd.read_csv(\"nest-data.csv\")\n", "df.head()"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "subslide"}}, "source": ["## Task 3\n", "<a name=\"task3\"></a>\n", "\n", "* Add a column to the Nest data frame called `Virtual Processes` which is the total number of threads across all nodes (i.e. the product of threads per task and tasks per node and nodes)\n", "* Remember to tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 54, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>Nodes</th>\n", " <th>Tasks/Node</th>\n", " <th>Threads/Task</th>\n", " <th>Runtime Program / s</th>\n", " <th>Scale</th>\n", " <th>Plastic</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Max. Edge Build Time / s</th>\n", " <th>...</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " <th>Virt. Memory (Sum) / kB</th>\n", " <th>Local Spike Counter (Sum)</th>\n", " <th>Average Rate (Sum)</th>\n", " <th>Number of Neurons</th>\n", " <th>Number of Connections</th>\n", " <th>Min. Delay</th>\n", " <th>Max. Delay</th>\n", " <th>Virtual Processes</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>420.42</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>88.18</td>\n", " <td>...</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " <td>46560664.0</td>\n", " <td>825499</td>\n", " <td>7.48</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>8</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>200.84</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>46.03</td>\n", " <td>46.34</td>\n", " <td>...</td>\n", " <td>7.87</td>\n", " <td>142.97</td>\n", " <td>46903088.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>8</td>\n", " <td>202.15</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>48.48</td>\n", " <td>...</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " <td>47699384.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>8</td>\n", " <td>89.57</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.15</td>\n", " <td>20.41</td>\n", " <td>23.21</td>\n", " <td>...</td>\n", " <td>3.19</td>\n", " <td>60.31</td>\n", " <td>46813040.0</td>\n", " <td>821491</td>\n", " <td>7.23</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>32</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>164.16</td>\n", " <td>10</td>\n", " <td>True</td>\n", " <td>0.20</td>\n", " <td>40.03</td>\n", " <td>41.09</td>\n", " <td>...</td>\n", " <td>6.08</td>\n", " <td>114.88</td>\n", " <td>46937216.0</td>\n", " <td>802865</td>\n", " <td>7.03</td>\n", " <td>112500</td>\n", " <td>1265738500</td>\n", " <td>1.5</td>\n", " <td>1.5</td>\n", " <td>16</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 22 columns</p>\n", "</div>"], "text/plain": [" id Nodes Tasks/Node Threads/Task Runtime Program / s Scale Plastic \\\n", "0 5 1 2 4 420.42 10 True \n", "1 5 1 4 4 200.84 10 True \n", "2 5 1 2 8 202.15 10 True \n", "3 5 1 4 8 89.57 10 True \n", "4 5 2 2 4 164.16 10 True \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "0 0.29 88.12 \n", "1 0.15 46.03 \n", "2 0.28 47.98 \n", "3 0.15 20.41 \n", "4 0.20 40.03 \n", "\n", " Max. Edge Build Time / s ... Presim. Time / s Sim. Time / s \\\n", "0 88.18 ... 17.26 311.52 \n", "1 46.34 ... 7.87 142.97 \n", "2 48.48 ... 7.95 142.81 \n", "3 23.21 ... 3.19 60.31 \n", "4 41.09 ... 6.08 114.88 \n", "\n", " Virt. Memory (Sum) / kB Local Spike Counter (Sum) Average Rate (Sum) \\\n", "0 46560664.0 825499 7.48 \n", "1 46903088.0 802865 7.03 \n", "2 47699384.0 802865 7.03 \n", "3 46813040.0 821491 7.23 \n", "4 46937216.0 802865 7.03 \n", "\n", " Number of Neurons Number of Connections Min. Delay Max. Delay \\\n", "0 112500 1265738500 1.5 1.5 \n", "1 112500 1265738500 1.5 1.5 \n", "2 112500 1265738500 1.5 1.5 \n", "3 112500 1265738500 1.5 1.5 \n", "4 112500 1265738500 1.5 1.5 \n", "\n", " Virtual Processes \n", "0 8 \n", "1 16 \n", "2 16 \n", "3 32 \n", "4 16 \n", "\n", "[5 rows x 22 columns]"]}, "execution_count": 54, "metadata": {}, "output_type": "execute_result"}], "source": ["df[\"Virtual Processes\"] = df[\"Nodes\"] * df[\"Tasks/Node\"] * df[\"Threads/Task\"]\n", "df.head()"]}, {"cell_type": "code", "execution_count": 55, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"text/plain": ["Index(['id', 'Nodes', 'Tasks/Node', 'Threads/Task', 'Runtime Program / s',\n", " 'Scale', 'Plastic', 'Avg. Neuron Build Time / s',\n", " 'Min. Edge Build Time / s', 'Max. Edge Build Time / s',\n", " 'Min. Init. Time / s', 'Max. Init. Time / s', 'Presim. Time / s',\n", " 'Sim. Time / s', 'Virt. Memory (Sum) / kB', 'Local Spike Counter (Sum)',\n", " 'Average Rate (Sum)', 'Number of Neurons', 'Number of Connections',\n", " 'Min. Delay', 'Max. Delay', 'Virtual Processes'],\n", " dtype='object')"]}, "execution_count": 55, "metadata": {}, "output_type": "execute_result"}], "source": ["df.columns"]}, {"cell_type": "code", "execution_count": 56, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import matplotlib.pyplot as plt\n", "%matplotlib inline"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 4\n", "<a name=\"task4\"></a>\n", "\n", "* Sort the data frame by the virtual proccesses\n", "* Plot `\"Presim. Time / s\"` and `\"Sim. Time / s\"` of our data frame `df` as a function of the virtual processes\n", "* Use a dashed, red line for `\"Presim. Time / s\"`, a blue line for `\"Sim. Time / s\"` (see [API description](https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot))\n", "* Don't forget to label your axes and to add a legend\n", "* Submit when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 61, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["df.sort_values([\"Virtual Processes\", \"Nodes\", \"Tasks/Node\", \"Threads/Task\"], inplace=True)"]}, {"cell_type": "code", "execution_count": 62, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VdW5//HPQwgJCIqSaJHBgOIAgoFGxOKQioiiFfWK0ksVbr1X2+rtVaut3taK/sSrVdFarcNVXmC1WpwqdWSoQ/WqGChaBJSoKFCUQUAZJfD8/lj7kJPknOSQ5OScJN/367Vfe5+19vDs7OQ8WXtY29wdERGRurTJdAAiItI8KGGIiEhKlDBERCQlShgiIpISJQwREUmJEoaIiKRECUNERFKihCEiIilRwhARkZS0zXQADVFQUOBFRUWZDkNEpFmZO3fuGncv3N3lmnXCKCoqoqysLNNhiIg0K2b2aX2W0ykpERFJiRKGiIikRAlDRERS0qyvYYhI49u+fTvLly9n69atmQ5FGig/P5/u3buTm5vbKOtTwhCRKpYvX06nTp0oKirCzDIdjtSTu7N27VqWL19Or169GmWdOiUlIlVs3bqVLl26KFk0c2ZGly5dGrWlqIQhIjUoWbQMjX0cW2XCWLAAfvlLWLs205GIiDQfrTJhLFkCN94In32W6UhEJJGcnByKi4s5/PDDGT16NJs3b27wOu+9914eeuihBq/n4osvpri4mL59+9K+fXuKi4spLi7miSee4Ne//jWzZs1q8DYSuemmm3jkkUfSsu5UtcqL3gUFYbx6dWbjEJHE2rdvz/z58wEYO3Ys9957L5dffvmuenfH3WnTJvX/eX/0ox81Smx33303AEuXLuW0007bFSfA2Wef3SjbSOSll15i2rRpaVt/KlplC6Mw6kFFCUMk+x177LGUl5ezdOlSDjnkEM4//3wOP/xwli1bxowZMzj66KMZNGgQo0ePZuPGjQBcddVV9O3blwEDBnDFFVcAMGHCBG699VYASktLueyyyygpKeGwww7jnXfe4ayzzqJPnz786le/qnes48eP54knngBC10VXX301xcXFlJSUMG/ePEaMGMGBBx7Ivffeu2uZW265hSOPPJIBAwZw7bXXJlzvV199xTfffENhYdXun1599dVdLZyBAwfy9ddf1zv2VLTKFkbsZ75mTWbjEGkWSktrlp1zDvzkJ7B5M4wcWbN+/PgwrFkD1f/rfuWVlDddUVHBCy+8wMknnwzAkiVLmDp1KkOGDGHNmjXccMMNzJo1iz322IObb76ZSZMmcfHFF/P000+zePFizIz169cnXHe7du0oKyvjt7/9LaNGjWLu3Lnss88+HHjggVx22WV06dIl5TiT6dmzJ/Pnz+eyyy5j/PjxvPHGG2zdupXDDz+cH/3oR8yYMYMlS5YwZ84c3J3TTz+d1157jeOOO67KembNmsWwYcNqrP/WW2/l7rvvZujQoWzcuJH8/PwGx1ybtLUwzCzfzOaY2btm9r6ZXReV9zKzt82s3Mz+ZGbtovK86HN5VF+Urtj23htyctTCEMlWW7Zs2fWfec+ePbngggsAOOCAAxgyZAgAb731FgsXLmTo0KEUFxczdepUPv30U/baay/y8/O54IILeOqpp+jQoUPCbZx++ukA9O/fn379+tG1a1fy8vLo3bs3y5Yta5T9iN/GUUcdRadOnSgsLCQvL4/169czY8YMZsyYwcCBAxk0aBCLFy9myZIlNdbz4osvcsopp9QoHzp0KJdffjl33nkn69evp23b9LYB0rn2bcAJ7r7RzHKB183sBeBy4HZ3f8zM7gUuAO6Jxuvc/SAzGwPcDJybjsDatIEuXZQwRFJSW4ugQ4fa6wsKdqtFERN/DSPeHnvssWva3Rk+fDiPPvpojfnmzJnD7NmzeeKJJ7jrrrv461//WmOevLw8ANq0abNrOva5oqJit2NOpK5tuDtXX301F110Ua3rmTNnDvfcc0+N8quuuopTTz2V559/nqFDh/LSSy9x6KGHNkrsiaStheHBxuhjbjQ4cALwRFQ+FTgjmh4VfSaqH2ZpvBm8oEAJQ6Q5GzJkCG+88Qbl5eUAbNq0iQ8//JCNGzeyYcMGRo4cye233867776b4UiTGzFiBJMnT9517WXFihWsWrWqyjzvv/8+hx56KDk5OTWW/+ijj+jfvz+/+MUvOPLII1m8eHFa401r+8XMcoC5wEHA3cBHwHp3j6Xv5UC3aLobsAzA3SvMbAPQBUjLlYbCQiUMkeassLCQKVOm8P3vf59t27YBcMMNN9CpUydGjRrF1q1bcXcmTZpU722MHDmSBx54gP3337+xwq7ipJNOYtGiRRx99NEAdOzYkYcffph999131zzx13Cqu+OOO3j55Zdp06YN/fr1S3jaqjGZu6d1AwBm1hl4GrgGmOLuB0XlPYAX3P1wM1sAnOzuy6O6j4Cj3H1NtXVdCFwI0LNnz29/+mm93gPC6NHhAb5Fi+q7VyIt06JFizjssMMyHYZEhg8fzkMPPUTXrl3rtXyi42lmc929ZHfX1SS31br7euBl4Gigs5nFWjbdgRXR9AqgB0BUvxdQ41lsd7/f3UvcvaT6LWa7Qy0MEWkOZs6cWe9k0djSeZdUYdSywMzaA8OBRYTEEbvPbhzwTDQ9PfpMVP9XT2Pzp6AAvvwSduxI1xZERFqWdF7D6ApMja5jtAGmufuzZrYQeMzMbgD+DjwYzf8g8AczKwe+BMakMTYKC8E99CcVd7pQRESSSFvCcPf3gIEJyj8GBico3wqMTlc81cU/vKeEISJSt1bZNQioexARkd2lhKGEISKSklabMNRjrUj2mjhxIv369WPAgAEUFxfz9ttvA/Dv//7vLFy4sMHrP+qooyguLqZnz54UFhbu6sBv6dKljBw5Mmn/Uw11yimnsHz58rSsuym0ys4HQQlDJFu9+eabPPvss8ybN4+8vDzWrFnDN998A8ADDzzQKNuIJaApU6ZQVlbGXXfdtavu+eefb5RtVLdlyxbWrl1L9+7d07L+ptBqWxjt2sFee6nHWpFss3LlSgoKCnb1vVRQULDrSevS0lLKysqA8FT0lVdeSb9+/TjxxBOZM2cOpaWl9O7dm+nTp9d7+0VFRaxZs4alS5dy6KGHMn78eA4++GDGjh3LrFmzGDp0KH369GHOnDlA6JLkhz/8IYMHD2bgwIE888wzCdf7yiuvUJqg598777xzV1fsY8ak9ebQBmu1LQzQw3sidbn0UkjQB2CDFBfDHXckrz/ppJO4/vrrOfjggznxxBM599xzOf7442vMt2nTJk444QRuueUWzjzzTH71q18xc+ZMFi5cyLhx43b1FNsQ5eXlPP7440yePJkjjzySP/7xj7z++utMnz6dG2+8kT//+c9MnDiRE044gcmTJ7N+/XoGDx7MiSeeWKWjRAhdfJxxxhk1tnHTTTfxySef7OrBNpu12hYGqANCkWzUsWNH5s6dy/33309hYSHnnnsuU6ZMqTFfu3btdvWx1L9/f44//nhyc3Pp378/S5cubZRYevXqRf/+/Xf11TRs2DDMrMo2ZsyYwU033URxcTGlpaVs3bqVzxK8//mNN97gmGOOqVE+YMAAxo4dy8MPP5z27skbKrujS7PCQqhnV1QirUJtLYF0ysnJobS0lNLSUvr378/UqVMZP358lXlyc3OJdWgd3314Oronr20b7s6TTz7JIYccknQ9H3/8MT169KBdu3Y16p577jlee+01/vKXvzBx4kT+8Y9/ZG3iaNUtjMJCXcMQyTYffPBBlZcIzZ8/nwMOOCCDEdVuxIgR/O53vyPWk9Hf//73GvMk63F2586dLFu2jO9+97vcfPPNbNiwYVdX59mo1SeM1atDFyEikh02btzIuHHjdl0IXrhwIRMmTKjXuv75z38yMtErZBvRNddcw/bt2xkwYAD9+vXjmmuuqTHPiy++mDBh7Nixgx/84Af079+fgQMH8tOf/pTOnTunNd6GaJLuzdOlpKTEY3dM1Mdtt8EVV8D69eGOKRFR9+aNbdu2bQwdOpSGfFc1RLPr3jxb6VkMEUm3vLy8jCWLxtaqE4a6BxERSZ0SBrrwLVJdcz5VLZUa+zgqYaAWhki8/Px81q5dq6TRzLk7a9euJT8/v9HWmZ03+zYRJQyRmrp3787y5ctZrT+MZi8/P79R+65q1QmjQwfIz1fCEImXm5tLr169Mh2GZKFWfUrKTA/viYikqlUnDFAHhCIiqVLCUMIQEUlJq08Y6rFWRCQ1rT5hqIUhIpIaJYxC2LQJtmzJdCQiItktbQnDzHqY2ctmttDM3jez/4rKJ5jZCjObHw0j45a52szKzewDMxuRrtji6WlvEZHUpPM5jArgZ+4+z8w6AXPNbGZUd7u73xo/s5n1BcYA/YD9gVlmdrC770hjjFUe3uvRI51bEhFp3tLWwnD3le4+L5r+GlgEdKtlkVHAY+6+zd0/AcqBwemKL0Y91oqIpKZJrmGYWREwEHg7KrrEzN4zs8lmtndU1g1YFrfYchIkGDO70MzKzKysMbou0CkpEZHUpD1hmFlH4EngUnf/CrgHOBAoBlYCt+3O+tz9fncvcfeSwti3fQOoPykRkdSkNWGYWS4hWTzi7k8BuPsX7r7D3XcC/0vlaacVQPxVhO5RWVp17gw5OUoYIiJ1SeddUgY8CCxy90lx5V3jZjsTWBBNTwfGmFmemfUC+gBz0hVfTJs20KWLEoaISF3SeZfUUOA84B9mNj8q+2/g+2ZWDDiwFLgIwN3fN7NpwELCHVYXp/sOqRg9vCciUre0JQx3fx2wBFXP17LMRGBiumJKRj3WiojUrdU/6Q1qYYiIpEIJAyUMEZFUKGEQHt778kuoqMh0JCIi2UsJg8pnMb78MrNxiIhkMyUM9PCeiEgqlDBQwhARSYUSBuqAUEQkFUoYqIUhIpIKJQwqWxh6eE9EJDklDCA3N3RCqBaGiEhyShgRPbwnIlI7JYxIQYEShohIbZQwIuqAUESkdkoYEZ2SEhGpnRJGJNbCcM90JCIi2UkJI1JQANu3w4YNmY5ERCQ7KWFE9PCeiEjtlDAisYShC98iIokpYUTUwhARqZ0SRkQJQ0SkdkoYEfVYKyJSOyWMyB57QPv2uoYhIpJM2hKGmfUws5fNbKGZvW9m/xWV72NmM81sSTTeOyo3M7vTzMrN7D0zG5Su2JLRw3siIsmls4VRAfzM3fsCQ4CLzawvcBUw2937ALOjzwCnAH2i4ULgnjTGlpAShohIcmlLGO6+0t3nRdNfA4uAbsAoYGo021TgjGh6FPCQB28Bnc2sa7riS0QJQ0QkuSa5hmFmRcBA4G1gP3dfGVV9DuwXTXcDlsUttjwqazLqsVZEJLm0Jwwz6wg8CVzq7l/F17m7A7vVe5OZXWhmZWZWtrqRv93VY62ISHJpTRhmlktIFo+4+1NR8RexU03ReFVUvgLoEbd496isCne/391L3L2kMPbwRCMpLIRNm2DLlkZdrYhIi5DOu6QMeBBY5O6T4qqmA+Oi6XHAM3Hl50d3Sw0BNsSdumoSenhPRCS5tmlc91DgPOAfZjY/Kvtv4CZgmpldAHwKnBPVPQ+MBMqBzcC/pTG2hOIf3uvZs6m3LiKS3dKWMNz9dcCSVA9LML8DF6crnlSohSEikpye9I6jHmtFRJJTwoijFoaISHJKGHE6d4acHCUMEZFElDDimOnhPRGRZJQwqtHDeyIiidWZMMzsN2a2p5nlmtlsM1ttZj9oiuAyQf1JiYgklkoL46SoS4/TgKXAQcCV6Qwqk5QwREQSSyVhxJ7VOBV43N03pDGejNM1DBGRxFJJGM+a2WLg28BsMysEtqY3rMwpLIR162D79kxHIiKSXepMGO5+FfAdoMTdtxO67RiV7sAyJfYsxpdfZjYOEZFsk9JdUu7+pbvviKY3ufvn6Q0rc/TwnohIYrqttholDBGRxJImjOhdFq1OfI+1IiJSqbbeat80s+XAi8CL7r60aULKLHVAKCKSWNKE4e4l0bu4TwbuMLNuwOvAC8Cr7r6tSSJsYl26hLFaGCIiVdV6DcPdl7r7ve5+BuFOqb8AJwJ/M7PnmiLAppabC3vvrYQhIlJdyi9Qim6p/Ws0ELU4WiQ9vCciUlO975Jy9xWNGUg2UfcgIiI16bbaBNRjrYhITSknDDPrkM5AsolaGCIiNaXSvfl3zGwhsDj6fISZ/T7tkWVQrIXhnulIRESyRyotjNuBEcBaAHd/FzgunUFlWkEBVFTA+vWZjkREJHuk2pfUsmpFO9IQS9bQw3siIjWlkjCWmdl3AI/euncFsKiuhcxsspmtMrMFcWUTzGyFmc2PhpFxdVebWbmZfWBmI+q1N41E/UmJiNSUSsL4EXAx0A1YARRHn+syhfCUeHW3u3txNDwPYGZ9gTFAv2iZ35tZTgrbSAslDBGRmup8cM/d1wBjd3fF7v5a1LVIKkYBj0XdjXxiZuXAYODN3d1uY1AHhCIiNdWZMMysF/CfQFH8/O5+ej23eYmZnQ+UAT9z93WE1stbcfMsj8oyQi0MEZGaUuka5M/Ag4R+pHY2cHv3AP8P8Gh8G/DD3VmBmV0IXAjQs2fPBoaTWIcOYdBFbxGRSqkkjK3ufmdjbMzdv4hNm9n/As9GH1cAPeJm7R6VJVrH/cD9ACUlJWl7UkIP74mIVJXKRe/fmtm1Zna0mQ2KDfXZmJl1jft4JhC7g2o6MMbM8qJTYH2AOfXZRmNRwhARqSqVFkZ/4DzgBCpPSXn0OSkzexQoBQqiFzFdC5SaWXG0/FLgIgB3f9/MpgELgQrg4tg7xDNl/vzw8J6IiATmdfR/Ed2x1Nfdv2makFJXUlLiZWVlaVm3WRirexARaWnMbK67l+zucqmckloAdN79kJq3MWOge/dMRyEikj1SOSXVGVhsZu8Au17L2oDbapuFtm2hXbtMRyEikj1SSRjXpj0KERHJeqk86f1qUwQiIiLZLWnCMLPX3f0YM/uacFfTrirA3X3PtEcnIiJZo7YWxh4A7t6piWIREZEsVttdUrqhVEREdqmthbGvmV2erNLdJ6UhHhERyVK1JYwcoCPhmoWIiLRytSWMle5+fZNFIiIiWa22axhqWYiIyC61JYxhTRaFiIhkvaQJw92/bMpAREQku6XS+aCIiIgShoiIpEYJQ0REUqKEUYuKCr1ASUQkRgkjiSOOgM8+g4kTMx2JiEh2SOV9GK3S5ZfDe+/BNdfA3nvDxRdnOiIRkcxSwkiiTRt48EHYsAEuuQQ6d4axYzMdlYhI5uiUVC1yc+FPf4LSUhg3Dp59NtMRiYhkjhJGHfLz4ZlnoLgYRo+G117LdEQiIpmhhJGCPfeEF16AoiL43vdg3rxMRyQi0vTSljDMbLKZrTKzBXFl+5jZTDNbEo33jsrNzO40s3Ize8/MBqUrrvoqLIQZM8K1jJNPhg8+yHREIiJNK50tjCnAydXKrgJmu3sfYHb0GeAUoE80XAjck8a46q1HD5g5M0wPHx5uuxURaS3SljDc/TWgegeGo4Cp0fRU4Iy48oc8eAvobGZd0xVbQxx8MLz0Urh7avhwWLUq0xGJiDSNpr6GsZ+7r4ymPwf2i6a7Acvi5lselWWlgQPDHVPl5XDnnZmORkSkaWTsore7O7DbHW+Y2YVmVmZmZatXr05DZKk59ljo2BE2bcpYCCIiTaqpE8YXsVNN0Th2QmcF0CNuvu5RWQ3ufr+7l7h7SWFhYVqDFRGRSk2dMKYD46LpccAzceXnR3dLDQE2xJ26EhGRLJC2rkHM7FGgFCgws+XAtcBNwDQzuwD4FDgnmv15YCRQDmwG/i1dcYmISP2kLWG4+/eTVNV4V3h0PUPd+4mIZDE96S0iIilRwhARkZQoYYiISEqUMEREJCVKGCIikhIlDBERSYkShoiIpEQJQ0REUqKEISIiKVHCEBGRlChhiIhISpQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDRERSooTRQCtWwFdfZToKEZH0U8JogAMPhMcfh4ICGDYMbrsNFi0C90xHJiLS+JQwGuDtt+HVV+Gyy2DVKrjiCujbNySSSy6B55+HLVsyHaWISOMwb8b/DpeUlHhZWVmmw9jls8/ghRdCopg1CzZvho4dYd486NMn09GJiARmNtfdS3Z3ObUwGlHPnnDRRfDMM7B2Lfzud7BxIyxblunIREQaTgkjTfLzYcCATEchItJ4lDBERCQlbTOxUTNbCnwN7AAq3L3EzPYB/gQUAUuBc9x9XSbiExGRmjLZwviuuxfHXXi5Cpjt7n2A2dFnERHJEtl0SmoUMDWangqckcFYRESkmkwlDAdmmNlcM7swKtvP3VdG058D+yVa0MwuNLMyMytbvXp1U8QqIiJk6BoGcIy7rzCzfYGZZrY4vtLd3cwSPiDi7vcD90N4DiP9oYqICGSoheHuK6LxKuBpYDDwhZl1BYjGqzIRm4iIJNbkCcPM9jCzTrFp4CRgATAdGBfNNg54pqljExGR5DJxSmo/4Gkzi23/j+7+opm9A0wzswuAT4FzMhBbo+rUKYzvuw+GDIEOHTIbj4hIQzR5wnD3j4EjEpSvBYY1dTzpVFwM118P114LixfDU0+FjglFRJqjbLqttsUxg2uugeeeC/1JlZSEjglFRJojJYwmcMopUFYGRUVw2mlw3XWwc2emoxIR2T1KGE2kd2944w047zyYMAFOPx3WpdjxyZw58MknaQ1PRKROmXoOo1Xq0AGmTIGjjoJLLw2nqJ5+umavttu2wccfQ3k5LFkCP/tZKG/Gry4RkRZACaOJmcFPfgIDB8LZZ4e7py6/PLQ2liwJw2ef6ZSViGQfJYwMOfro8Ca+c8+FiROhc+fwVr7vfAfOPz9Mx4YhQ0JrREQkk5QwMmi//eDll+Grr2DPPUPrQ0QkWylhZJgZ7LVXpqMQEamb7pJqJnbs0EVvEckstTCagXbtYNo0mD4dunaFb30rDLHp6mX77gu5uZmOWkRaGiWMZmDKFHj1Vfj8c1i5Mow//DCUffllzfnNoKCgZmIZNChcZBcRqQ8ljGagpCT5XVLbtsEXX4QkEp9QqieXlSvhm29g1CjIz2/a+EWkZVDCaOby8qBnzzDU5je/gV/8Am64Adq2DYnmm2/COH66qAjOPBMGD9ZdWyJSlRJGKxFLKBMnhnFubkg27dpVjtu1gyefhJtvhu7d4ayz4F/+BYYOhZyczMUuItnBvBnfelNSUuJlZWX1W3jxYujYMXwzthKbN4cv/nbtkrce1q2DZ58NieOll2Dr1nAR/YwzQvL47nd1QV2kuTOzue6+248Dt86E4Q7HHAPvvw933hl6BNT5lxo2bgzdsT/5ZOiifdOmkGxGjQqJo0MHaN8+jOOnq4/z8/XjFckmShi766OPYPx4eP318A14333h0WtJaMuWkDRGj67f8u3bV00kZ58NN97YuDGKSGqUMOpjxw644w745S/D6amXX4b+/RsvwBZox47Q0tiyJZziio3jp+saT54c1vX731deO4m/jhI/JCqPL8vNVetFZHfVN2G07oveOTmh7/BTTgm3ER1ySCh317dQEjk5od+rPfes/zr22gtuvz302tsYcnNrTzpt24Z5qg+x8k6dYJ99wrD33pXT8Z87ddKvhEjrbmEksn49jBgRXsQ9cmTjrluAkI/XrYPt2ytv6Y0fEpU1pLyiImyr+lBREeq//jo8ALltW/KYc3KSJ5T/+z9YuDCc0ezYEfbYo/7j9u3DNZ+8vDCu7QYFkfpSC6OxrFkTzpucempIGhMmZDqiFscsfNlmmy1bQuKIDevWJf/8+echSaxbBxs2hOWPOy7cKLBpUxivXVv186ZN9XvPSX5+1SQSP6RStrvLbdsGU6dWttwStd7qOlVY22fdot18KWFUd9BB4QXcgweHO6j22Qd++tNQV1YWvh06dgznKDp1Crfl6l/AFqF9e+jWLQy7o6IijNvW8dfkHm5Tjk8g1cdbtyYetm1LXv7VV7BqVfJ5s+0kQps2u59k6pOYEp2abNMmJKzqQ2OVt/Svgqw7JWVmJwO/BXKAB9z9pmTzpuWUVMzNN8PVV4dOmP75z1D2ve+FhxSqz/fzn6cnBpEGcg+n35IlnWSJqGPH0O9YbPnaTv9VL6vrc2PNE/u8fXumf8pVpTMhxZePHh1u9KyPFnFKysxygLuB4cBy4B0zm+7uC5s8mF/8Aq68Mvz1xEyaFJLD11+HYdo06NIl/It3+umVRzM2Pv98GDMmnJvQAwmSAWaV/2HXd/m8vDBkq/ikliypbNsWTgfu2FFzaKzyxlxXovLq+/D1103/s86qhAEMBsrd/WMAM3sMGAU0fcKA8MXfoUPl59g7U2NiXb/GTmLHruLGjvjmzaG8tBQWLAh/tZ07h2H4cLjrrlD/85+HHgQrKsKyFRWhP47LLgv1ZmG44YbKz2edFe7q+vhjePzxyphiCemcc0LHUB98AH/5CyxdGk6p/eQnIZmdfno4pfbBB+EBxjZtqia8E04I3xKffALLl1fWVVSE8iOPDNv58MNQHx87hNYYwN/+BuXloTw2T14e/Md/hJ/Rxo01Y4+dU4j/GcbXx+6n3bmzakKPiZ1/2LkzfFtUl5sb9mXHjqr/nsZ+zrFzFzt3Vp7PidU1JOHHt+bNwvpjFzXi69q2rayP32/9s5FQfFLs2DHT0bRw7p41A3A24TRU7PN5wF3J5v/2t7/tzcJDD7nfeKP7z3/ufuGF7uec43799ZX1RxzhXlTkfuCB7occ4t63r/uVV1bWh6+TqsOTT4a6F15IXD9jRqifNi1x/ccfh/obb0xcv2pVqL/66sT1O3aE+osuqlnXvn1l7GPH1qzfd99Q9/nnidf9m9+E+iVLEtf//vehft68xPV/+EOof/XVxPV//nOof+65xPWzZ4f6Rx9NXP/226H+gQfc27Rxz8mpOixaFOonTUq8/LJlof666xLXr18f6q+4InF9RUWo//GPq26/bVv3vfaq/NmPG+eel+eenx+G9u3D71nMmDHunTqFYc89wzBwYGX96ae777135bBXSsZRAAAKN0lEQVTPPu7HH19ZP3y4e0FB1eG00yrrhw4Nxzp++Nd/rawfOND9W98KQ9euYbjoosr6Qw5x33//MHTrFoYrrqisP+AA9x49qg7XXRfqNm0K9fFDUZH7bbeF+tWr3Xv1qjncd1+o/+QT9969aw4PPxzq33/f/aCDag6x3605c9z79Kk5zJwZ6l95Jexf9eHNNyt/Nw89tObw3nuh/sMPvSGAMq/Hd3S2tTDqZGYXAhcC9Kyri9Zscd55tdfPn197/c6dlf8Je/SfaOwK6/Dhlf+Fx+qg8hzCmWeGtqt7uAMs9l9trA+tCy4Id4TF2rqxcefOlfXDhlW2g1evrqyD0Ar6/vdDPPFDzKRJocfDnJya9R07wm231Yz9uOPCuEsXuOWWmvVDhoTx/vuHa0jVDRwYxkVF8D//U7P+sMPC+JBDKutjX8cAvXuHcf/+cP31Vb+uofKq+BFHhOtcseVjLYAuXSrj/PWvw3R8KyH2EEtpaVh/9RZE7NiddFLlv8zx24/Nd/LJlbebxerjO/o6+eTK3gti9fH/gp94YnhZSmy97uFFKvH1BxxQWRe/7xB+L+Jb3AAHHlg5PXx4zQdh+/WrWr9+fdVjO2hQ5fRJJ4Vb1+Lr45cfNqzmFf1YPDk54ecbE5uvqCiMc3ND90DVxfavfXv4zndq1sd+nh06hBtjqosd+44dE7+TIPa306kTFBfXrI8dn86dYcCAmvXt24dxhs4RZtVFbzM7Gpjg7iOiz1cDuHuCv/o0X/QWEWmh6nvRO9ve6f0O0MfMeplZO2AMMD3DMYmICFl20dvdK8zsEuAlwm21k939/QyHJSIiZFnCAHD354HnMx2HiIhUlW2npEREJEspYYiISEqUMEREJCVKGCIikhIlDBERSUlWPbi3u8xsNfBpkuoCYE0ThtNUtF/NT0vdN+1X8xPbtwPcvXB3F27WCaM2ZlZWnycZs532q/lpqfum/Wp+GrpvOiUlIiIpUcIQEZGUtOSEcX+mA0gT7Vfz01L3TfvV/DRo31rsNQwREWlcLbmFISIijajFJQwzO9nMPjCzcjO7KtPxNJSZLTWzf5jZfDMri8r2MbOZZrYkGu+d6TjrYmaTzWyVmS2IK0u4HxbcGR3D98xsUPI1Z1aS/ZpgZiuiYzbfzEbG1V0d7dcHZjYiM1HXzcx6mNnLZrbQzN43s/+KylvCMUu2b836uJlZvpnNMbN3o/26LirvZWZvR/H/KXp1BGaWF30uj+qL6txIfV7Tl60DoUv0j4DeQDvgXaBvpuNq4D4tBQqqlf0GuCqavgq4OdNxprAfxwGDgAV17QcwEngBMGAI8Ham49/N/ZoAXJFg3r7R72Qe0Cv6Xc3J9D4k2a+uwKBouhPwYRR/SzhmyfatWR+36GffMZrOBd6OjsU0YExUfi/w42j6J8C90fQY4E91baOltTAGA+Xu/rG7fwM8BozKcEzpMAqYGk1PBc7IYCwpcffXgC+rFSfbj1HAQx68BXQ2s65NE+nuSbJfyYwCHnP3be7+CVBO+J3NOu6+0t3nRdNfA4uAbrSMY5Zs35JpFsct+tlvjD7mRoMDJwBPROXVj1nsWD4BDDOLvf83sZaWMLoBy+I+L6f2X4TmwIEZZjY3ep85wH7uvjKa/hzYLzOhNViy/WgJx/GS6NTM5LhThs1yv6JTFQMJ/7G2qGNWbd+gmR83M8sxs/nAKmAmoTW03t0rolniY9+1X1H9BqBLbetvaQmjJTrG3QcBpwAXm9lx8ZUe2pPN/la3lrIfkXuAA4FiYCVwW2bDqT8z6wg8CVzq7l/F1zX3Y5Zg35r9cXP3He5eDHQntIIObcz1t7SEsQLoEfe5e1TWbLn7imi8Cnia8EvwRay5H41XZS7CBkm2H836OLr7F9Ef7k7gf6k8fdGs9svMcglfqI+4+1NRcYs4Zon2raUcNwB3Xw+8DBxNOD0Ye7tqfOy79iuq3wtYW9t6W1rCeAfoE90V0I5wIWd6hmOqNzPbw8w6xaaBk4AFhH0aF802DngmMxE2WLL9mA6cH915MwTYEHcaJOtVO3d/JuGYQdivMdHdKb2APsCcpo4vFdG57AeBRe4+Ka6q2R+zZPvW3I+bmRWaWedouj0wnHB95mXg7Gi26scsdizPBv4atRqTy/SV/TTcKTCScNfDR8AvMx1PA/elN+HujHeB92P7QzjPOBtYAswC9sl0rCnsy6OEZv52wnnUC5LtB+Fuj7ujY/gPoCTT8e/mfv0hivu96I+ya9z8v4z26wPglEzHX8t+HUM43fQeMD8aRraQY5Zs35r1cQMGAH+P4l8A/Doq701IcOXA40BeVJ4ffS6P6nvXtQ096S0iIilpaaekREQkTZQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDmr2o59ER1couNbN7zGx/M3siyXJFZvavDdz2K2ZW4x3JUfkHUc+hb5jZIQ3Zjkg2UMKQluBRwkOa8cYAj7r7P9397OoLRE+2FgENShh1GOvuRxA6eLslQQw5ady2SKNTwpCW4Ang1Lh+/ouA/YG/Ra2IBVH5eDObbmZ/JTx8dhNwbPTug8ui+rtiKzWzZ82sNJq+x8zK4t8zsBteAw6K1rPUzG42s3nAaDMrNrO3og7vnrbK90scZGazohbKPDM7MCq/0szeieaPve9gDzN7Lpp3gZmdG5XfZOGdD++Z2a31+cGKxGtb9ywi2c3dvzSzOYQOGp8htC6mubsn6K15EDAgWqaU8P6D0yAklFo288tomRxgtpkNcPf3Ugzxe4QniGPWeuhQEjN7D/hPd3/VzK4HrgUuBR4BbnL3p80sH2hjZicRuqUYTHiyenrUGWUh8E93PzVa515m1oXQvcWh0c+hc4qxiiSlFoa0FPGnpcZEnxOZ6e6pvr8i3jlRq+DvQD/CS3Xq8kjU1fRQ4Iq48j9B+GIHOrv7q1H5VOC4qP+wbu7+NIC7b3X3zYS+xE6KYphH6Im0DyEZDY9aLse6+wZCV9VbgQfN7Cxgcz32WaQKtTCkpXgGuN3Cq0E7uPvcJPNtqmUdFVT9JyofwisuCV/4R7r7OjObEqurw1h3L9vNGGpjwP+4+301KsJ+jwRuMLPZ7n69mQ0GhhE6lruE8CIdkXpTC0NaBA9vGnsZmEzy1kV1XxNe0RmzFCg2szZm1oPK7q33JHzJbzCz/Qinvhoj5g3AOjM7Nio6D3jVw1vglpvZGbDr3csdgJeAH1p4jwNm1s3M9jWz/YHN7v4w4eL6oGievdz9eeAy4IjGiFlaN7UwpCV5lPDOkOp3TCXzHrDDzN4FpgB3AJ8ACwndQsde4/mumf0dWEx4Q9kbjRjzOODeKCF8DPxbVH4ecF90XWM7MNrdZ5jZYcCb0bWZjcAPCBfUbzGzndG8PyYkwmei6x8GXN6IMUsrpd5qRUQkJTolJSIiKVHCEBGRlChhiIhISpQwREQkJUoYIiKSEiUMERFJiRKGiIikRAlDRERS8v8BI85P8OPxUh8AAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, ax = plt.subplots()\n", "ax.plot(df[\"Virtual Processes\"], df[\"Presim. Time / s\"], linestyle=\"dashed\", color=\"red\")\n", "ax.plot(df[\"Virtual Processes\"], df[\"Sim. Time / s\"], \"-b\")\n", "ax.set_xlabel(\"Virtual Process\")\n", "ax.set_ylabel(\"Time / s\")\n", "ax.legend();"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 5\n", "<a name=\"task5\"></a>\n", "\n", "Use the NEST data frame `df` to:\n", "\n", "1. Make the virtual processes the index of the data frame (`.set_index()`)\n", "2. Plot `\"Presim. Program / s\"` and `\"Sim. Time / s`\" individually\n", "3. Plot them onto one common canvas!\n", "4. Make them have the same line colors and styles as before\n", "5. Add a legend, add missing labels\n", "\n", "* Done? Tell me! [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 68, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [], "source": ["df.set_index(\"Virtual Processes\", inplace=True)"]}, {"cell_type": "code", "execution_count": 69, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAADTCAYAAAC7p6aqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3X+cXHV97/HXe2Z2Nz93k8CSZJdoKqT8CiWlC7VXpVArAlqxrdVwey229lJ9YFtsvb22fdxWbXsv9ofeVixIKwV7KdWrptKKCkUU5UJliUASfoNBsgnJQshufu/uzOf+cc4kk81MdrMzmV95Px+Pfcw53/M953znHMe8+Z7vOUcRgZmZmZkdW5lGN8DMzMzseODQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdeDQZWZmZlYHDl1mZmZmdZBrdAPKOfHEE2P58uWNboaZmZnZlB566KGXIqJ3qnpNGbqWL1/O4OBgo5thZmZmNiVJz0+n3pShS9JNwFuBbRGxMi37PHBaWmUBsCMiVpVZdyOwE8gDExExMK3Wm5mZmbWZ6fR03QxcB3yuWBAR7ypOS/orYOQI618UES/NtIFmZmZm7WDK0BUR90paXm6ZJAHvBH6mts0yMzMzay/V3r34BmBrRDxdYXkAd0p6SNJVR9qQpKskDUoaHB4errJZZmZmZs2l2tB1BXDbEZa/PiLOBS4FrpZ0QaWKEXFjRAxExMD8BYuqbJaZmZlZc5lx6JKUA34B+HylOhExlH5uA9YA509n27vH8jNtlpmZmVlTqqan62eBJyJiU7mFkuZKml+cBi4G1k9nw/scuszMzKzNTBm6JN0G3A+cJmmTpPemi1Yz6dKipD5Jd6Szi4HvSnoE+B7w1Yj4+nQatWfcocvMzMzaiyKi0W04zKylK2LkhSfoymUb3RQzMzOzI5L00HSeRdqU714M4OmtuxrdDDMzM7OaacrQBbB+6EjPWzUzMzNrLU0ZujIS6xy6zMzMrI00Zeia3ZFl/ebRRjfDzMzMrGaaM3R1Znl8yyjj+UKjm2JmZmZWE80ZujqyjE0UeHbYg+nNzMysPTRn6OpMHhWxbpPHdZmZmVl7aMrQ1ZXLMKczywaP6zIzM7M20ZShC+DMpd1+bISZmZm1jaYNXSv7e3hsyyj5QvM9Md/MzMzsaDV16NozlucHL3kwvZmZmbW+Jg5d3QCsH/K4LjMzM2t9TRu6Tu2dR1cu43FdZmZm1hamDF2SbpK0TdL6krKPSBqS9HD6d1mFdS+R9KSkZyR9+GgalstmOGNpN+s3O3SZmZlZ65tOT9fNwCVlyj8ZEavSvzsmL5SUBT4NXAqcCVwh6cyjadzK/m42DI1S8GB6MzMza3FThq6IuBfYPoNtnw88ExHPRcQY8M/A5UezgZV9PezcP8EPt++Zwe7NzMzMmkc1Y7o+IOnR9PLjwjLL+4EXSuY3pWVlSbpK0qCkweHhYSC5gxHwJUYzMzNreTMNXdcDpwCrgC3AX1XbkIi4MSIGImKgt7cXgB9dPJ+OrHwHo5mZmbW8GYWuiNgaEfmIKAB/R3IpcbIhYFnJ/Mlp2bR15jKctmQ+G9zTZWZmZi1uRqFL0tKS2Z8H1pep9iCwQtKPSOoEVgO3H+2+Vvb1sG5ohAgPpjczM7PWNZ1HRtwG3A+cJmmTpPcCfy5pnaRHgYuAD6Z1+yTdARARE8AHgG8AjwNfiIgNR9vAs/p72LFnnKEde492VTMzM7OmkZuqQkRcUab4sxXqbgYuK5m/AzjscRJH4+ziYPqhUU5eOKeaTZmZmZk1TNM+kb7o9CXzyWbkcV1mZmbW0po+dM3qyLLipHms8+uAzMzMrIU1fegCOKuvh/UeTG9mZmYtrCVC18r+bl7aNca2nfsb3RQzMzOzGWmJ0HVwML0vMZqZmVlraonQdcbSbiQ8rsvMzMxaVkuErrldOV5z4ly/DsjMzMxaVkuELkhefu3HRpiZmVmrapnQdXZ/D1tG9vHSLg+mNzMzs9bTMqHrrL5kMP2Gzb7EaGZmZq2nZULXmX3dgO9gNDMzs9bUMqGrZ3YHrz5hjkOXmZmZtaSWCV2QDKZf78H0ZmZm1oKmDF2SbpK0TdL6krK/kPSEpEclrZG0oMK6GyWtk/SwpMFqG7uyr4cXtu9lZM94tZsyMzMzq6vp9HTdDFwyqewuYGVE/BjwFPD7R1j/oohYFREDM2viQSv703Fd7u0yMzOzFjNl6IqIe4Htk8rujIiJdPYB4ORj0LbDrOzz64DMzMysNdViTNevAV+rsCyAOyU9JOmqI21E0lWSBiUNDg8Pl62zcG4n/Qtms96PjTAzM7MWU1XokvSHwARwa4Uqr4+Ic4FLgaslXVBpWxFxY0QMRMRAb29vxX2u7O9mg3u6zMzMrMXMOHRJeg/wVuCXIyLK1YmIofRzG7AGOH+m+yta2dfDcy/tZuc+D6Y3MzOz1jGj0CXpEuD3gLdFxJ4KdeZKml+cBi4G1perezRW9ifjuh7zJUYzMzNrIdN5ZMRtwP3AaZI2SXovcB0wH7grfRzEDWndPkl3pKsuBr4r6RHge8BXI+Lr1Ta4GLo8rsvMzMxaSW6qChFxRZniz1aouxm4LJ1+DjinqtaV0Tu/i8XdXR7XZWZmZi2lpZ5IX7Syr4d1Dl1mZmbWQloydJ3V38Ozw7vYMzYxdWUzMzOzJtCSoevs/h4KAY9v2dnoppiZmZlNS0uGruLrgDb4dUBmZmbWIloydC3pnsUJcztZt8mhy8zMzFpDS4YuSZzV3+PHRpiZmVnLaMnQBXB2fzdPb93JvvF8o5tiZmZmNqWWDV0r+3qYKARPbfVgejMzM2t+rRu6ik+mH/IlRjMzM2t+LRu6Tl44m57ZHX5IqpmZmbWElg1dkljZ3+3HRpiZmVlLaNnQBcm4rie27GQ8X2h0U8zMzMyOaFqhS9JNkrZJWl9StkjSXZKeTj8XVlj3yrTO05KurFXDIXkd0Fi+wNNbd9Vys2ZmZmY1N92erpuBSyaVfRi4OyJWAHen84eQtAj4Y+AngfOBP64UzmZiZV/yZPr1HtdlZmZmTW5aoSsi7gW2Tyq+HLglnb4FeHuZVd8M3BUR2yPiFeAuDg9vM7b8hLnM68qx3uO6zMzMrMlVM6ZrcURsSadfBBaXqdMPvFAyvyktO4ykqyQNShocHh6eVgMyGXFmX7d7uszMzKzp1WQgfUQEEFVu48aIGIiIgd7e3mmvt7Kvh8e2jJIvVLV7MzMzs2OqmtC1VdJSgPRzW5k6Q8CykvmT07KaWdnfzb7xAs8OezC9mZmZNa9qQtftQPFuxCuBr5Sp8w3gYkkL0wH0F6dlNXPwyfS+xGhmZmbNa7qPjLgNuB84TdImSe8FrgXeJOlp4GfTeSQNSPp7gIjYDvwJ8GD697G0rGZO6Z3HrI6MXwdkZmZmTS03nUoRcUWFRW8sU3cQ+PWS+ZuAm2bUumnIZsSZS7t9B6OZmZk1tZZ+In3Ryv4eHts8SsGD6c3MzKxJtUfo6uth1/4JNr68u9FNMTMzMyurPUJXcTD9Zo/rMjMzs+bUFqFrxeJ5dGYzbPAdjGZmZtak2iJ0dWQznL50vgfTm5mZWdNqi9AFcFZfD+uHRkkejm9mZmbWXNomdJ3d38PI3nE2vbK30U0xMzMzO0zbhK6V/d2An0xvZmZmzaltQtePLp5PLiOP6zIzM7Om1Daha1ZHlhWL57POrwMyMzOzJtQ2oQvg7P5uNgyNeDC9mZmZNZ22Cl0r+3t4efcYL47ua3RTzMzMzA7RVqHr1JPmAfDcsF8HZGZmZs1lxqFL0mmSHi75G5V0zaQ6F0oaKanzR9U3ubLObPJ1Cr68aGZmZk0mN9MVI+JJYBWApCwwBKwpU/U7EfHWme7HzMzMrB3U6vLiG4FnI+L5Gm3PzMzMrK3UKnStBm6rsOynJD0i6WuSzqq0AUlXSRqUNDg8PFyjZpmZmZk1h6pDl6RO4G3A/y2zeC3w6og4B/gU8C+VthMRN0bEQEQM9Pb2VtssMzMzs6ZSi56uS4G1EbF18oKIGI2IXen0HUCHpBNrsE8zMzOzllKL0HUFFS4tSloiSen0+en+Xq7BPs3MzMxayozvXgSQNBd4E/AbJWXvA4iIG4B3AO+XNAHsBVaHHxdvZmZmx6GqQldE7AZOmFR2Q8n0dcB11ezDzMzMrB201RPpzczMzJqVQ5eZmZlZHTh0mZmZmdWBQ5eZmZlZHTh0mZmZmdWBQ5eZmZlZHbRV6MpkBMBf3vkUn3/wh4zuG29wi8zMzMwSbRW6zu7v4fcuOY3RveP89y+t47w//Xd+87bvc8+T25jIFxrdPDMzMzuOqRkfED8wMBCDg4MzXj8iePiFHXx57RD/+uhmduwZ58R5Xbx9VR+/cO7JnNnXXcPWmpmZ2fFM0kMRMTBlvXYMXaX2T+S554lhvrx2E/c8uY3xfHD6kvn84rknc/mqPk7qnlWT/ZiZmdnxyaGrjFd2j/Fvj27mS2uHePiFHWQEr1/Ryy+e28/FZy5hdme25vs0MzOz9ubQNYVnh3exZu0Qa74/xNCOvczrynHpyiW887xlnLd80THdt5mZmbUPh65pKhSC723czpfXbuKOdS+ya/8Ed33wAlYsnl+X/ZuZmVlrm27oqvruRUkbJa2T9LCkw5KSEn8j6RlJj0o6t9p91lImI177mhP483ecw1+vXgXA7rF8g1tlZmZm7SZXo+1cFBEvVVh2KbAi/ftJ4Pr0s+lkpEY3wczMzNpUPZ7TdTnwuUg8ACyQtLQO+zUzMzNrGrUIXQHcKekhSVeVWd4PvFAyvyktO4SkqyQNShocHh6uQbPMzMzMmkctQtfrI+JcksuIV0u6YCYbiYgbI2IgIgZ6e3tr0CwzMzOz5lF16IqIofRzG7AGOH9SlSFgWcn8yWmZmZmZ2XGjqtAlaa6k+cVp4GJg/aRqtwO/kt7F+FpgJCK2VLNfMzMzs1ZT7d2Li4E1Su76ywH/FBFfl/Q+gIi4AbgDuAx4BtgD/GqV+zQzMzNrOVWFroh4DjinTPkNJdMBXF3NfszMzMxaXT0eGWFmZmZ23HPoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoKiN5tJiZmZlZ7VT7RPq2ks0IgHfccD8L53SwYE4ni+Z0smBOB4vmdrJwbicL53SwcE5n8je3Mymf00H3rA4y6fpmZmZmkzl0lfjJ1yziT96+kq0j+9i+Z4wde8bYvnuM51/ew8Mv7OCVPWOM58v3gmUEPbM72LF3nPUfeTNzu3xozczM7CAngxJduSzvfu2rKy6PCHaP5XlldxLGXtmT/G3fPc6OPWN86pvPAPDNJ7bxc+f01avZZmZm1gIcuo6CJOZ15ZjXlWPZojmHLS+Grlf2jNW7aWZmZtbkPJC+hj52+VkAvO7UExvcEjMzM2s2Mw5dkpZJukfSY5I2SPrtMnUulDQi6eH074+qa25z65nd0egmmJmZWZOq5vLiBPC7EbFW0nzgIUl3RcRjk+p9JyLeWsV+zMzMzFrejHu6ImJLRKxNp3cCjwP9tWqYmZmZWTupyZguScuBHwf+o8zin5L0iKSvSTrrCNu4StKgpMHh4eFaNKthRveON7oJZmZm1mSqDl2S5gFfAq6JiNFJi9cCr46Ic4BPAf9SaTsRcWNEDETEQG9vb7XNaoiTF84hmxHv+swDfPhLj/Lc8K5GN8nMzMyaRFWhS1IHSeC6NSK+PHl5RIxGxK50+g6gQ1Lb3tr3E69eyLc+dCGrz1/Gmu8P8cZPfJurb13L+qGRRjfNzMzMGkwzfc+gJAG3ANsj4poKdZYAWyMiJJ0PfJGk5+uIOx0YGIjBwcEZtatZDO/czz/c9wP+8f7n2bl/gjesOJH3X3gKP/WaE0gOnZmZmbUDSQ9FxMCU9aoIXa8HvgOsAwpp8R8ArwKIiBskfQB4P8mdjnuB34mI/zfVttshdBWN7hvn1gd+yGe/+wNe2rWfVcsW8P4LT+FNZyz2uxrNzMzawDEPXcdSO4Wuon3jeb740CY+c++zvLB9L6eeNI/3/fQpXL6qj46sn1FrZmbWqhy6mtREvsBX123h+m89yxMv7qSvZxb/9YLXsPq8VzG7MzutbUQEO/aMs3XnPl4c2cfW0X1sHd3PZ779LLvH8jz7Py8j6140MzOzuphu6PK7F+ssl81w+ap+3nZOH996cpi//dYzfPRfH+NT33yG9/yn5aw+bxl7x/NJmNq5n60j+3hxtBisitP7GZsoVNzHvvE8c7t8as3MzJqJ/2VuEElcdPpJXHT6STy4cTvXf+tZPnHXU3zirqcOqzurI8OS7lks7p7Fjy9byJKeZHpxd9eB8pO6u/iH+zZy7deeIOOB+mZmZk3HoasJnLd8Eee9ZxGPbxnl3qeGWTS3k8Xdsw6Eq+5ZuaO64/GprTuZ25UjmxFZiUwGMhLZjA58ZiWUgeyk8ozw3ZVmZmbHgENXEzljaTdnLO2e8fqzcsmA/Ms/fV9V7ZBIw1oSworTB8KaRDZzaHlG4gcv7QZg47VvqWr/zW7/RHL5d/OOfbw4upfNO/axZWQvL47s522r+njbOX2NbqKZmTUhh6428s7zlrF0wWzG8wXyhaAQQb4AhQgKhSBf/CwEhSBdfrC8EJSsl5RHWlYsP7DNQ9YL8sGB0PXrtzxI9+wOumd10DP74F/37EPne2Z3MKsj01Q9a2MTBbaO7mPLSBKktozsY8uOvWweKQarfby0a+yw9RbM6WDP/jwQDl1mZlaWQ1cbmdOZ481nLWnY/left4zrvvkMm3fs4/EtOxndO87O/RNHXKczm6F7du5AIFswu4NFc7s4YV4ni+Ymfycc+Oxi0bxO5nZmZxTUJvIFtu7cz5Ydew+Eqs07kjtAt4wkweqlXfuZfENv96wcS3tms3TBLM7uX0BfT3Lpt2/BbJam03M6c7zlb75z1G0yM7Pjh0OX1czrTj2R15166Fue8oVg575xRvYe+je6d2LS/Dij+8YZ3rWfJ1/cycu7x9hf4Q7NzlzmQBA7GMqSoNY9K8eiuV0He6lKgtW2nfsoTApU87pyLO2ZxdIFszl9STdLF8yir2d2GqpmsaRnNvN8J6iZmdWA/zWxYyqbEQvmdLJgTudRrRcR7BnLs333GC/vHmP77v28vGuM7bvHSsqSz40v7+blXWPsGcsfso3ZHdkDIeoNK05kadoztTTtpVrSM4vuWR21/LpmZmYVOXRZU5LE3K4cc7tyLFs0Z1rr/PDlPTw7vCvppeqZTffso7vrs1obNo+yYfMo//jA82SU3DFavBu0OJ2R0IGy8nVUYZ3MUdRJpqeuc9h2qe54ZbMilxGd2Yxfc2VmNolDl7WNV50wh1edML2Adiz9j39Z3+gmNIWMoCOboTObIZcVHdlM+idy6XTngenDl3dmM+QyoiOXoSOTLi+ZLq7XmcuQyyT7iAjG88mNHxOFIF8oMFEIJvKHzufT+YlCctPJRLrOeLFOyTYmJs3nC3HgZpXSsnwhyGZELg2eHen3zmWS71E8Bsl0+j3TdndkDh6j4jZKy8qukxXZTHI8ctnJ2ymtl2yzuKzctrMZNdUNLWbtyqHLrEae+bNL2bF3nIjk8mjxDtFCehdooaRsqjox6bNSncO3e+g+yu+7fDvykwe8HaUguat1LJ+ElPF8gfFCgfGJZHqiUGBsIgkx4/lDp8fzwa79EwfWO2Qb6edEOj2Wr/w2hqkUA0bx80DIySjtpTsYQnJpqMmly7s6MswpWd5Rsrz4OJXSkJZ85zS4pd9n18TEocvS71Rc50BZ+lnlKTkqHZMCYi5bPtAdLD8Y7HKZJBAe2puafmZKe1or9/AWg1/FXuKMDj7OZvJ+yqx7oAc3c+R9ZzNT9yxnMlP1PB/8DkdaPrlN5Y5XsRfb2pNDl1mN5LIZTpzX1ehmtL2IYm9TpKHuYDArBqhcaZgq+Wy1f8wKheQ7TuST3rjxkkCXLxRD66HLSkNbMdAVj1fpskrrHOwZLFRY5+D0nokJJkq2HRwa9POF0tBf5j8k0uX5Csub8NXAdVEMYtkKoaw0BKqknkjmVRrgSKYplpVsH0qDXulyTZpPy8rUP2QbHBocS/d1aFlxOMPBtomDQyeK9ZlcVtK2yfXLbiM9mJlJy8ptQxw69KO0naXbUHHoxqT601VV6JJ0CfDXQBb4+4i4dtLyLuBzwE8ALwPvioiN1ezTzI5vUrEnBmYzvZfEt6pMRnRlshyvN9CW9ubmy/XaFg4PdPni8ikC35SBsOQ5hVP1GBf3d6TlceB5icX9TOqVLhy6bn6K5aXtLH6XgAO916UBuDhNaQ83xXaVr1967EvrHzgelPTIl9QPgkKhTFmUzpeum9RnclnaNjj03FTcRgCT9lXPnuLpmvFPWVIW+DTwJmAT8KCk2yPisZJq7wVeiYhTJa0GPg68q5oGm5nZ8eFAjwvyZRmbscnDNYLi0IpJgRCIwuFlBwPrwXUPDs9IypZ/fHptqeZ/x+cDz0TEcwCS/hm4HCgNXZcDH0mnvwhcJ0kRx2unsZmZmdVTcgkWqPLu7FrIVLFuP/BCyfymtKxsnYiYAEaAE8ptTNJVkgYlDQ4PD1fRLDMzM7PmU03oqqmIuDEiBiJioLe3t9HNMTMzM6upakLXELCsZP7ktKxsHUk5oIdkQL2ZmZnZcaWa0PUgsELSj0jqBFYDt0+qcztwZTr9DuCbHs9lZmZmx6MZD6SPiAlJHwC+QfLIiJsiYoOkjwGDEXE78FngHyU9A2wnCWZmZmZmxx01Y8eTpGHg+Ua3o02cCLzU6EbYAT4fzcXno3n4XDQXn4+j8+qImHJAelOGLqsdSYMRMdDodljC56O5+Hw0D5+L5uLzcWw0zd2LZmZmZu3MocvMzMysDhy62t+NjW6AHcLno7n4fDQPn4vm4vNxDHhMl5mZmVkduKfLzMzMrA4cuszMzMzqwKGrzUjaKGmdpIclDaZliyTdJenp9HNho9vZriTdJGmbpPUlZWWPvxJ/I+kZSY9KOrdxLW8/Fc7FRyQNpb+PhyVdVrLs99Nz8aSkNzem1e1L0jJJ90h6TNIGSb+dlvv3UWdHOBf+fRxjDl3t6aKIWFXyjJUPA3dHxArg7nTejo2bgUsmlVU6/pcCK9K/q4Dr69TG48XNHH4uAD6Z/j5WRcQdAJLOJHljxlnpOn8rKVu3lh4fJoDfjYgzgdcCV6fH3b+P+qt0LsC/j2PKoev4cDlwSzp9C/D2BralrUXEvSSvvCpV6fhfDnwuEg8ACyQtrU9L21+Fc1HJ5cA/R8T+iPgB8Axw/jFr3HEoIrZExNp0eifwONCPfx91d4RzUYl/HzXi0NV+ArhT0kOSrkrLFkfElnT6RWBxY5p23Kp0/PuBF0rqbeLI/8dntfGB9HLVTSWX2n0u6kjScuDHgf/Av4+GmnQuwL+PY8qhq/28PiLOJemav1rSBaULI3lGiJ8T0iA+/g13PXAKsArYAvxVY5tz/JE0D/gScE1EjJYu8++jvsqcC/8+jjGHrjYTEUPp5zZgDUkX8NZit3z6ua1xLTwuVTr+Q8Cyknonp2V2jETE1ojIR0QB+DsOXiLxuagDSR0k/8jfGhFfTov9+2iAcufCv49jz6GrjUiaK2l+cRq4GFgP3A5cmVa7EvhKY1p43Kp0/G8HfiW9S+u1wEjJZRY7BiaNCfp5kt8HJOditaQuST9CMnj7e/VuXzuTJOCzwOMR8YmSRf591Fmlc+Hfx7GXa3QDrKYWA2uS3xM54J8i4uuSHgS+IOm9wPPAOxvYxrYm6TbgQuBESZuAPwaupfzxvwO4jGRQ6h7gV+ve4DZW4VxcKGkVySWsjcBvAETEBklfAB4jubPr6ojIN6Ldbex1wLuBdZIeTsv+AP8+GqHSubjCv49jy68BMjMzM6sDX140MzMzqwOHLjMzM7M6cOgyMzMzqwOHLjMzM7M6cOgyMzMzqwOHLjOriqR7JL15Utk1kq6X1CfpixXWWy7pP1e5729JGqhQ/qSkRyTdJ+m0avZjZlYLDl1mVq3bgNWTylYDt0XE5oh4x+QVJOWA5UBVoWsKvxwR55C8RPkvyrQhewz3bWZ2GIcuM6vWF4G3SOqEAy/Q7QO+k/ZmrU/L3yPpdknfBO4meSjmGyQ9LOmD6fLrihuV9G+SLkynr5c0KGmDpI8eZfvuBU5Nt7NR0sclrQV+SdIqSQ+kL/hdU3zBr6RTJf172lO2VtIpafl/k/RgWv+jadlcSV9N666X9K60/FpJj6V1/zIt65X0pXQbD0p6XVr+0+lxeFjS94tvljCz9uIn0ptZVSJiu6Tvkbxk/SskvVxfiIhI345Q6lzgx9J1LgQ+FBFvhSSUHWE3f5iukwXulvRjEfHoNJv4c8C6kvmX05fCI+lR4Dcj4tuSPkby1PprgFuBayNijaRZQEbSxSSvPzkfEHC7khfK9wKbI+It6TZ7JJ1A8hqV09PjsCDd918Dn4yI70p6FfAN4AzgQyRP+b5PyUuI903zu5lZC3FPl5nVQuklxtXpfDl3RcT2GWz/nWnv1PeBs4Azp7HOrekrTl5HEmqKPg9JOAIWRMS30/JbgAvSXqb+iFgDEBH7ImIPybtML07bsBY4nSSErQPelPagvSEiRoARkuD0WUm/QPIaG4CfBa5L23U70J2GrPuAT0j6rbRNE0d7gMys+bmny8xq4SvAJyWdC8yJiIcq1Nt9hG1McOh/CM4CSF+w+yHgvIh4RdLNxWVT+OWIGDzKNhyJgP8VEZ85bEHyvS8D/lTS3RHxMUnnA28E3gF8APgZku/32oiY3JN1raSvptu4T9KbI+KJGbbTzJqUe7rMrGoRsQu4B7iJyr1ck+0ESscubQRWScpIWkZyGQ+gmyQojUhaTHIZsxZtHgFekfSGtOjdwLcjYiewSdLbASR1SZpDcinw19KeKST1SzpJUh+wJyL+D8mA/XPTOj0RcQfwQeCcdB93Ar9ZbEP6cmEknRIR6yLi48CDJL1oZtZm3NNlZrVyG7CGw+9krORRIC/pEeBm4H9AKxUnAAAAsElEQVQDPwAeAx4nuYRHRDwi6fvAE8ALJJfiauVK4IY0VD0H/Gpa/m7gM+k4r3HglyLiTklnAPenY9V2Af+FZJD+X0gqpHXfTxImv5KOBxPwO+l2fwv4dDqWLEcyyP99wDWSLgIKwAbgazX8jmbWJBQRjW6DmZmZWdvz5UUzMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOnDoMjMzM6sDhy4zMzOzOvj/r1L+SfYYynAAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 720x216 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Presim. Time / s\"].plot(figsize=(10, 3));"]}, {"cell_type": "code", "execution_count": 70, "metadata": {"exercise": "solution"}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAADTCAYAAACyTAbQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuQXGd55/Hv0z0zuljSyLbGsjQSyPiKJcCwinEwBGPuJFnDFrAmWeIkZJ1kTQIBdheyVZuQCllTCXiTTeKNCS4cQgyuAGVtMBfHmGsCeGyMrQuOhS/YkmzJli3J1m1m+tk/zulRazSjmdFMq7tH309VV59+z3vOeacPLf943/ecE5mJJEmSZlal1Q2QJEmajQxZkiRJTWDIkiRJagJDliRJUhMYsiRJkprAkCVJktQEhixJkqQmMGRJkiQ1gSFLkiSpCbpa3QCAJUuW5KpVq1rdDEmSpAndeeedT2Rm30T12iJkrVq1ioGBgVY3Q5IkaUIR8fBk6jlcKEmS1ASGLEmSpCYwZEmSJDWBIUuSJKkJ2iJkbXl6X6ubIEmSNKPaImTtfPYgzx4YanUzJEmSZkxbhCyATdt2t7oJkiRJM6ZtQtb6Lbta3QRJkqQZM2HIioi5EfGDiPhRRGyIiA+X5WdExPcjYnNEfC4iesryOeXnzeX6VRMdo6sSrN9qT5YkSZo9JtOTdQC4NDNfBFwAvCEiLgI+ClyTmWcBTwHvKuu/C3iqLL+mrHdU87qr9mRJkqRZZcKQlYVnyo/d5SuBS4F/LMtvAN5cLl9WfqZc/+qIiKMdY15Plfu3P8P+weEpNl+SJKk9TWpOVkRUI+JuYDtwK/AT4OnMrF8S+CjQXy73A48AlOt3AaeOsc8rI2IgIgYO7nuW4Vpy32N7pvfXSJIktYlJhazMHM7MC4AVwIXAedM9cGZel5lrM3Pt0lNPBmD9VocMJUnS7DClqwsz82ngduBngcUR0VWuWgFsKZe3ACsByvW9wJNH229PV4Xeed2s3+Lkd0mSNDtM5urCvohYXC7PA14LbKIIW28tq10B3Fwurys/U67/embmRMdZ07+IDfZkSZKkWWIyPVnLgNsj4h7gDuDWzPwn4L8D74uIzRRzrj5Z1v8kcGpZ/j7gg5NpyJrlvfx42x4Gh2tT/RskSZLaTtdEFTLzHuDFY5Q/QDE/a3T5fuBtU23I6v5eDg7XuP/xZzh/+aKpbi5JktRW2uaO72vKYOXkd0mSNBu0TchadepJnNTjTUklSdLs0DYhq1IJVi/vNWRJkqRZoW1CFsDq/kVs3Lab4dqEFyNKkiS1tbYKWWuW97J/sMYDO56ZuLIkSVIba6+Q1d8LOPldkiR1vrYKWWf2ncScrop3fpckSR2vrUJWV7XC85ctcvK7JEnqeG0VsqB4vM7GrbupOfldkiR1sPYLWct72XNgiJ/u3NvqpkiSJB2z9gtZTn6XJEmzQNuFrHOWLqS7Gk5+lyRJHa3tQlZPV4VzT1/IBnuyJElSB2u7kAXFvKz1W3aR6eR3SZLUmdoyZK3u7+WpvYNs3bW/1U2RJEk6JhOGrIhYGRG3R8TGiNgQEe8py/8wIrZExN3l600N23woIjZHxH0R8fqpNmrN8kUA3i9LkiR1rK5J1BkC3p+Zd0XEQuDOiLi1XHdNZv5ZY+WIOB+4HFgNLAf+OSLOyczhyTbq+csWUa0EG7bs4vWrT5/sZpIkSW1jwp6szNyWmXeVy3uATUD/UTa5DPhsZh7IzAeBzcCFU2nU3O4qZ/UtYP1WrzCUJEmdaUpzsiJiFfBi4Ptl0bsj4p6IuD4iTi7L+oFHGjZ7lDFCWURcGREDETGwY8eOI461ut/H60iSpM416ZAVEQuAzwPvzczdwLXAmcAFwDbgY1M5cGZel5lrM3NtX1/fEevXLO9l+54DbN/t5HdJktR5JhWyIqKbImB9JjO/AJCZj2fmcGbWgE9waEhwC7CyYfMVZdmU1O/8vsEhQ0mS1IEmc3VhAJ8ENmXmxxvKlzVUewuwvlxeB1weEXMi4gzgbOAHU23Y+eUVhvc6ZChJkjrQZK4uvBh4J3BvRNxdlv0+8I6IuABI4CHgNwEyc0NE3ARspLgy8aqpXFlYt2BOF89bcpLzsiRJUkeaMGRl5neAGGPVLUfZ5iPAR6bRLqC4KeldDz813d1IkiQdd215x/e6NcsXseXpfex89mCrmyJJkjQl7R2yRia/O2QoSZI6S1uHrNUjj9fxCkNJktRZ2jpkLZ7fw4qT57HenixJktRh2jpkQXFT0g1eYShJkjpM24esF6zo5aEn97J7/2CrmyJJkjRpbR+y6vOyNnrnd0mS1EE6IGQVVxh6U1JJktRJ2j5k9S2cw+mL5voMQ0mS1FHaPmQBrOlfZE+WJEnqKB0RslYv7+UnO55h78GhVjdFkiRpUjoiZK3p76WWsGnbnlY3RZIkaVI6JGQVVxj6eB1JktQpOiJknb5oLqee1OO8LEmS1DE6ImRFBKv7e32GoSRJ6hgThqyIWBkRt0fExojYEBHvKctPiYhbI+L+8v3ksjwi4i8iYnNE3BMRL5mJhq5Zvoh/e3wPB4aGZ2J3kiRJTTWZnqwh4P2ZeT5wEXBVRJwPfBC4LTPPBm4rPwO8ETi7fF0JXDsTDV3T38tQLbnvMSe/S5Kk9jdhyMrMbZl5V7m8B9gE9AOXATeU1W4A3lwuXwb8XRa+ByyOiGXTbeiakTu/O2QoSZLa35TmZEXEKuDFwPeBpZm5rVz1GLC0XO4HHmnY7NGybPS+royIgYgY2LFjx4THXnnKPBbO7WK9VxhKkqQOMOmQFRELgM8D783Mw7qTMjOBnMqBM/O6zFybmWv7+vomc3zWLO9lg1cYSpKkDjCpkBUR3RQB6zOZ+YWy+PH6MGD5vr0s3wKsbNh8RVk2bWv6F7HpsT0MDtdmYneSJElNM5mrCwP4JLApMz/esGodcEW5fAVwc0P5r5RXGV4E7GoYVpyWNf29HByqsXn7MzOxO0mSpKaZTE/WxcA7gUsj4u7y9SbgauC1EXE/8JryM8AtwAPAZuATwH+ZqcauHpn87pChJElqb10TVcjM7wAxzupXj1E/gaum2a4xnbHkJOb3VNmwdTdva8YBJEmSZkhH3PG9rloJVi9fZE+WJElqex0VsqAYMty4bTfDtSldzChJknRcdVzIWtPfy96Dwzz4xLOtbookSdK4OjBkLQJggzcllSRJbazjQtZZfQuY01VxXpYkSWprHReyuqoVzlu2yGcYSpKkttZxIQtgzfJFrN+6i+JuEZIkSe2nM0NWfy979g/xyM59rW6KJEnSmDozZNXv/O7kd0mS1KY6MmSdc/oCuirh5HdJktS2OjJkzemqcs7Shazf6uR3SZLUnjoyZEFxv6wNW5z8LkmS2lMHh6xennz2INt27W91UyRJko7QsSFrdX3yu/OyJElSG+rYkPX8ZQupBM7LkiRJbWnCkBUR10fE9ohY31D2hxGxJSLuLl9valj3oYjYHBH3RcTrm9Xw+T1dnNm3gA32ZEmSpDY0mZ6sTwFvGKP8msy8oHzdAhAR5wOXA6vLbf46Iqoz1djR1vT3eq8sSZLUliYMWZn5LWDnJPd3GfDZzDyQmQ8Cm4ELp9G+o1q9fBGP7z7A9j1OfpckSe1lOnOy3h0R95TDiSeXZf3AIw11Hi3LjhARV0bEQEQM7Nix45gasKa/mPy+wXlZkiSpzRxryLoWOBO4ANgGfGyqO8jM6zJzbWau7evrO6ZGrF6+CMB5WZIkqe0cU8jKzMczczgza8AnODQkuAVY2VB1RVnWFAvndtO/eB7fe2Cyo5mSJEnHxzGFrIhY1vDxLUD9ysN1wOURMScizgDOBn4wvSYe3Zan9/GdzU808xCSJElT1jVRhYi4EbgEWBIRjwJ/AFwSERcACTwE/CZAZm6IiJuAjcAQcFVmDjen6YVXntPHN//t2OZ0SZIkNcuEISsz3zFG8SePUv8jwEem06ipWNY7l6WL5hyvw0mSJE1Kx97xXZIkqZ0ZsiRJkprAkCVJktQEhixJkqQmMGRJkiQ1gSFLkiSpCQxZkiRJTWDIkiRJagJDliRJUhMYsiRJkppgVoSsA0M1nnzmQKubIUmSNKLjQ9Z5py/k6b2DvOzqr/OhL9zL5u17Wt0kSZKkiR8Q3e5+9eIzuPisJVz/3Qf5/F2PcuMPfsqrzu3jP7/iefzsmacSEa1uoiRJOgFFZra6DaxduzYHBgamvZ8nnjnAZ773Uz79vYd44pmDPH/ZIn7j5Wfwiy9aTk9Xx3faSZKkNhARd2bm2gnrzaaQVbd/cJib797C3377Qe7f/gynLZzDFS9bxS+/9Dksnt8zY8eRJEknnhkLWRFxPfALwPbMXFOWnQJ8DlgFPAS8PTOfimJs7s+BNwF7gV/NzLsmasRMh6y6zORb9z/B3377Ab59/xPM667y1n+3gl9/+RmcseSkGT+eJEma/SYbsiYzhvYp4A2jyj4I3JaZZwO3lZ8B3gicXb6uBK6dbIObISJ45Tl9fPpdL+Ur730Fv/iiZXzujke49GPf4DduGOD7DzxJO/TkSZKk2WdSw4URsQr4p4aerPuASzJzW0QsA76RmedGxN+UyzeOrne0/TerJ2ss2/fs5+//9WE+/b2HeWrvIC/o7+UDrz+XV57Td1yOL0mSOttM9mSNZWlDcHoMWFou9wOPNNR7tCwbq4FXRsRARAzs2LHjGJsxdactnMv7Xncu//qhV/Mnb3kBj+/ez598adNxO74kSToxTPuSuyy6wqY85paZ12Xm2sxc29d3/HuR5nZX+aWXPoefWXUKww4ZSpKkGXasIevxcpiQ8n17Wb4FWNlQb0VZJkmSdEI51pC1DriiXL4CuLmh/FeicBGwa6L5WJIkSbPRhHd8j4gbgUuAJRHxKPAHwNXATRHxLuBh4O1l9Vsobt+wmeIWDr/WhDZLkiS1vQlDVma+Y5xVrx6jbgJXTbdRkiRJnc5nzUiSJDWBIUuSJKkJDFmSJElNYMiSJElqAkOWJElSExiyJEmSmsCQJUmS1ASGLEmSpCYwZEmSJDWBIUuSJKkJDFlALZPiiUCSJEkzY8JnF8523dXggR3Pcv7//CrLF8+l/+T59C+ex4qT59G/eB79J89j+eJ5LF04h66qmVSSJE3OCR+y3v+6c3nhisVseXofW57ax5an97F+yy52PnvwsHrVSnD6orn0nzyPFYuL4NVfBrEXrVxM77zuFv0FkiSpHZ3wIWvlKfP59ZefcUT53oNDbH16f0P42jsSwr7/4E627dpHrRxhfMXZS/j0u156nFsuSZLa2QkfssYzv6eLs05bwFmnLRhz/dBwjcd27+fd//BDnjkwdJxbJ0mS2p2TjI5RV7XCipPns3CuOVWSJB1pWgkhIh4C9gDDwFBmro2IU4DPAauAh4C3Z+ZT02umJElSZ5mJnqxXZeYFmbm2/PxB4LbMPBu4rfwsSZJ0QmnGcOFlwA3l8g3Am5twDEmSpLY23ZCVwNci4s6IuLIsW5qZ28rlx4ClY20YEVdGxEBEDOzYsWOazZAkSWov0521/fLM3BIRpwG3RsSPG1dmZkbEmLdSz8zrgOsA1q5d6+3WJUnSrDKtnqzM3FK+bwe+CFwIPB4RywDK9+3TbWQ7q0Rw32N7+J83r+dffvIEQ8O1VjdJkiS1gWMOWRFxUkQsrC8DrwPWA+uAK8pqVwA3T7eR7ew9rzmbV57Tx00Dj/BLn/g+F/7JbXzoC/fwzX/bwaCBS5KkE1Yc64ORI+J5FL1XUAw7/kNmfiQiTgVuAp4DPExxC4edR9vX2rVrc2Bg4Jja0S72HhziG/ft4MvrH+Prmx7n2YPD9M7r5jXPX8ob15zOy89ewtzuaqubKUmSpiki7my4q8L49Y41ZM2k2RCyGu0fHObb9z/Bl9dv49aNj7Nn/xAL5nRx6Xmn8cY1p3PJuacxr2dmAtfGrbtZNK+LFSfPn5H9SZKko5tsyPJ25U0wt7vKa89fymvPX8rBoRr/8pMn+Mr6x/jqhsdY96OtzOuucsm5fbzxBcu49LzTWDCnOA2Zyf7BGnv2D7J7/yC79w+xZ/9Q8Xlf8T7yuXz/503FlLeHrv75Vv7JkiRpFENWk/V0Vbjk3NO45NzT+OM3r+EHD+7klvXb+OqGx/ny+sfo6apw+qK5IwFqqHb0nsVKwMK53Syc28Wiud0jZZIkqb0Yso6jrmqFl521hJedtYQP//s13PnwU3xl/WM88cwBFs3rOiw81d9Hl8/vqRJxKFW95uPf5NylC1v4V0mSpLEYslqkWgkuPOMULjzjlFY3RZIkNYEhaxbYtG03H/vafcztrjKvu8q8nrHf5zYsz++pMqerclivmCRJmjmGrA734pWL+dK92/jL2zdzLBeKHh7CKszrqTK/u4u5PVXmdVdG1tcD3PyeI8PaxWctYWE5P0ySJBW8hcMskZkcGKqxf3CYfYPD7Ds49vv+keXayOe9B4fYd/DIbcfa11gT83/n0rN4/+vObcFfLUnS8ectHE4wEcHcckhwcROPMzhchrMyeL36Y9/k/3x9M9+4bwfDtaSWOfJeSw4t15Lhsqy+PFxLSFiycA4rT5nPc0+Zz3NOmV8sn1osnzTH/4lKkjqT/wXTlHRXK3RXKyO3j7jy557Hhq27qVaCShTPcqxWgkoliuWgYbleTlk/iIDtew7w0yf38qNHnmbXvsHDjrdkQQ8ry/D13DKAPeeU+Tz31JM4beEcKt6/QpLUpgxZmpb/9obzZnR/u/YO8tOde/npzr08vPNZHimX73z4Kf7fj7bSOFrZ01Whb8Eczjt9IS9csZiuahHcuipF0Ouqlu+VoFqpHCo/bP0Y5ZXKYdtXY/T+KiP1u6sVerqm9Zx1SdIsZchSW+md380L5vfyghW9R6wbHK6x9el9PPxkEbwe2PEs13/3QbY8vY/bfry9Ba2Frkrw+d9+GS9a2cxBWklSJ3Liu2aFWi0ZqhXzvIZqtfI9R5Unw7UaQ7VkaLix7PBthofHKW94DdWSjVt38/m7HgWKqzSrlWL4sz4UWrwaPlcohkwbhk3r9UaGW8ues3r9+rqoD72W21Yb1h+qc/j+qw3rizocduxqlPstP0dDm+tDuSOfyzZUGo5R/1t7uir0lD16c7qq5Xvxaiyrl3eV+5KkTuXEd51QKpWgZ2R+1sw8fHsiw7Xk7KULeGrvQWq1QxP9M0dN8i/XFRcDZFmn4aKAHLtOLWFouFZ8zuIK0nrIy6Q8Ro557OEah9rRsO/GbYcneIRTs0RAT7UewqqjAlmlIZBVG8LbkYHthz99im279jOvu0pXNehuGObtrhZhrqtaDO/W1xefg65q5bBtuqtlWeXQ+u6GbUf2UV8u6zQOM9fDbrUC1UplJAhXK4cPO1fKbUbql8FX0uxjyJKOUbUS/NYrz2x1M6alVkuSQ+EuR4Je8Z61huA3en0Z+AaHaxwYqr+GOThU42D5+eBQjYPDNQ4MDpfvxeeDQ4e2OdiwXf3z/sEau/YNHrGvxn3WvercPobKdgzVauwbLHogh8oeyaHhGoPDh3olB4fLsnJdi7LmEboqh3opR4JZ5VAvZFelcqg3dJx6E+2jWs5PrDb0mtbnMjbuo1pp7DEdHSSLELnu7i1F0GwIk2P24Db2tFaO3rM6cpFMQ8/soZ7cht7esXqCG/czxkU29WPW9zV2mw4d49DFOhy+ruG7GqtXuBpBHNZrfXibdGIxZEknsPo/+lU66x//Wi05OFwb6VGa7r6GyqHhwfowckMIqw8vD5bLw2W9oTK41bJYrpU9iEUvYY3h2uG3K6m/6j2K9eHsem/jUMPycBluh8bbT8M2jevqbRmq1TgwVPSATqYtw437qO+3oUf1aC563inUakWv65E9uHl4KB/pfYXRPbiNt3up1XtqG24HM1scLYAeCmtjTyWoB796/QgIivVEUL6V7+U0AIqCQ+uK4BcU21PWjbJt0bAfqE8lOFT/8OUjj3nY+lHHZFR5ZWT7KNtx6O9p3D+jyxv2Q8Pfedgxx2lLZeRYh7e9UomR/cVYbWn4Huv7mIymhayIeAPw5xRjN3+bmVc361iSTiyVSjC3MjPDwvWh5h68SnQsI8PUZThqDGOL53cfl/l1mYcPc48eLh9zuL0e5LIcRq+NCnONQ+y1Qz21hw/jM27wGz30njlWOw5tP/o+gaOH+hu3OXqbDu0n698NUCunFBTfFySHep6Lz5A1SGrkcFk+UrdYqDVsN7LNyPZ5eFl928P207DtGOVFWD58P7WGuowub6hL+bk2at/trikhKyKqwF8BrwUeBe6IiHWZubEZx5MkNUeUQ4qtHPao90pUCLqPz5RLdZDRYe2IwDdGsGOc8iyTXuN+Rvad9ePBcz86ubY163dzIbA5Mx8AiIjPApcBhixJkjRj6ldf04bTHprVP94PPNLw+dGybEREXBkRAxExsGPHjiY1Q5IkqTVaNgkhM6/LzLWZubavr69VzZAkSWqKZoWsLcDKhs8ryjJJkqQTQrNC1h3A2RFxRkT0AJcD65p0LEmSpLbTlInvmTkUEe8GvkpxC4frM3NDM44lSZLUjtri2YURsQN4uNXtmEWWAE+0uhEa4floH56L9uL5aB+ei6l5bmZOOKG8LUKWZlZEDEzmwZU6Pjwf7cNz0V48H+3Dc9Ec3uJYkiSpCQxZkiRJTWDImp2ua3UDdBjPR/vwXLQXz0f78Fw0gXOyJEmSmsCeLEmSpCYwZEmSJDWBIavDRcRDEXFvRNwdEQNl2SkRcWtE3F++n9zqds5WEXF9RGyPiPUNZWN+/1H4i4jYHBH3RMRLWtfy2Wmc8/GHEbGl/I3cHRFvalj3ofJ83BcRr29Nq2eniFgZEbdHxMaI2BAR7ynL/X20wFHOh7+PJjJkzQ6vyswLGu5x8kHgtsw8G7it/Kzm+BTwhlFl433/bwTOLl9XAtcepzaeSD7FkecD4JryN3JBZt4CEBHnUzzya3W5zV9HRPW4tXT2GwLen5nnAxcBV5Xfub+P1hjvfIC/j6YxZM1OlwE3lMs3AG9uYVtmtcz8FrBzVPF43/9lwN9l4XvA4ohYdnxaemIY53yM5zLgs5l5IDMfBDYDFzatcSeYzNyWmXeVy3uATUA//j5a4ijnYzz+PmaAIavzJfC1iLgzIq4sy5Zm5rZy+TFgaWuadsIa7/vvBx5pqPcoR/9HTjPn3eUQ1PUNw+eej+MkIlYBLwa+j7+Plht1PsDfR9MYsjrfyzPzJRRd7VdFxM81rsziHh3ep6NF/P7bwrXAmcAFwDbgY61tzoklIhYAnwfem5m7G9f5+zj+xjgf/j6ayJDV4TJzS/m+HfgiRXfu4/Vu9vJ9e+taeEIa7/vfAqxsqLeiLFMTZebjmTmcmTXgExwa8vB8NFlEdFP8B/0zmfmFstjfR4uMdT78fTSXIauDRcRJEbGwvgy8DlgPrAOuKKtdAdzcmhaesMb7/tcBv1JeRXURsKth2ERNMmpez1sofiNQnI/LI2JORJxBMeH6B8e7fbNVRATwSWBTZn68YZW/jxYY73z4+2iurlY3QNOyFPhi8duhC/iHzPxKRNwB3BQR7wIeBt7ewjbOahFxI3AJsCQiHgX+ALiasb//W4A3UUwg3Qv82nFv8Cw3zvm4JCIuoBiWegj4TYDM3BARNwEbKa68uiozh1vR7lnqYuCdwL0RcXdZ9vv4+2iV8c7HO/x9NI+P1ZEkSWoChwslSZKawJAlSZLUBIYsSZKkJjBkSZIkNYEhS5IkqQkMWZKmJCJuj4jXjyp7b0RcGxHLI+Ifx9luVUT80jSP/Y2IWDtO+X0R8aOI+G5EnDud40jSTDBkSZqqG4HLR5VdDtyYmVsz862jN4iILmAVMK2QNYFfzswXUTx0+E/HaEO1iceWpCMYsiRN1T8CPx8RPTDysNnlwLfL3qr1ZfmvRsS6iPg6cBvFTShfERF3R8Tvlev/sr7TiPiniLikXL42IgYiYkNEfHiK7fsWcFa5n4ci4qMRcRfwtoi4ICK+Vz4M94v1h+FGxFkR8c9lT9hdEXFmWf5fI+KOsv6Hy7KTIuJLZd31EfEfy/KrI2JjWffPyrK+iPh8uY87IuLisvyV5fdwd0T8sP7kBkmzi3d8lzQlmbkzIn5A8VDymyl6sW7KzCyfPtDoJcALy20uAT6Qmb8ARQg7ymH+R7lNFbgtIl6YmfdMsom/CNzb8PnJ8iHqRMQ9wO9k5jcj4o8o7gj/XuAzwNWZ+cWImAtUIuJ1FI8SuRAIYF0UD2DvA7Zm5s+X++yNiFMpHklyXvk9LC6P/efANZn5nYh4DvBV4PnAByjuoP3dKB7Yu3+Sf5ukDmJPlqRj0ThkeHn5eSy3ZubOY9j/28vepx8Cq4HzJ7HNZ8rHhVxMEWLqPgdFGAIWZ+Y3y/IbgJ8re5H6M/OLAJm5PzP3UjwL9HVlG+4CzqMIXfcCry17yF6RmbuAXRRB6ZMR8R8oHgsD8BrgL8t2rQMWlaHqu8DHI+J3yzYNTfULktT+7MmSdCxuBq6JiJcA8zPzznHqPXuUfQxx+P/RmwtQPoz2A8DPZOZTEfGp+roJ/HJmDkyxDUcTwP/KzL85YkXxd78J+OOIuC0z/ygiLgReDbwVeDdwKcXfd1Fmju6pujoivlTu47sR8frM/PExtlNSm7InS9KUZeYzwO3A9YzfizXaHqBx7tFDwAURUYmIlRTDcgCLKILRrohYSjEsORNt3gU8FRGvKIveCXwzM/cAj0bEmwEiYk5EzKcY2vv1sueJiOiPiNMiYjmwNzP/nmKC/UvKOr2ZeQvwe8CLymN8DfidehvKB/ESEWdm5r2Z+VHgDopeMkmzjD1Zko7VjcAXOfJKw/HcAwxHxI+ATwH/G3gQ2AhsohiSIzN/FBE/BH4MPEIxtDZTrgD+bxmiHgB+rSx/J/A35TytQeBtmfm1iHg+8K/lXLNngP9EMan+TyOiVtb9bYrweHM5nyuA95X7/V3gr8q5YF0Uk/J/C3hvRLwKqAEbgC/P4N8oqU1EZra6DZIkSbOOw4WSJElNYMiSJElqAkOWJElSExiyJEmSmsByDSdqAAAAGUlEQVSQJUmS1ASGLEmSpCYwZEmSJDXB/wf2YrBLjrhXigAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 720x216 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Sim. Time / s\"].plot(figsize=(10, 3));"]}, {"cell_type": "code", "execution_count": 71, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHvdJREFUeJzt3XuUnHWd5/H3p6+5dCCBdLIhQRIgjMIKgW0ZZhFEkYu4GtxVJl4go+zEmQUVR52jssdBHM/gemHG0WVE4QguooiwicgoGFFGVoEGQwj3DIRDYkiCQCD3vnz3j+dXSXWnuru6qypV/eTzOqdOPfV7flX1fbqSz/PUr56LIgIzM8uvpnoXYGZmteWgNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnXUu8CAKZPnx5z586tdxlmZuPKAw888EJEdI7UryGCfu7cuXR3d9e7DDOzcUXSs+X089CNmVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnXGEH/6vP1rsDMLLcaI+i3bABfu9bMrCYaI+ijH3ZsrncVZma51BhBD7B1U70rMDPLpcYJ+i0b612BmVkujRj0kiZIuk/SQ5IekfT51D5P0r2SVkv6oaS21N6eHq9O8+eWVclWB72ZWS2Us0W/E3hLRBwHLADOlnQS8CXgyog4EngJuDD1vxB4KbVfmfqNbIuHbszMamHEoI/MlvSwNd0CeAtwc2q/Djg3TS9Mj0nzT5ek4d9F3qI3M6uRssboJTVLWgFsBO4E/h14OSJ6U5e1wOw0PRt4DiDN3wwcPHwVLf4x1sysRsoK+ojoi4gFwBzgROC1lb6xpCWSuiV19wYeujEzq5FR7XUTES8DdwF/BkyVVLhC1RxgXZpeBxwKkOYfCPyxxGtdHRFdEdHV0jbBQzdmZjVSzl43nZKmpumJwBnAY2SB/+7UbTGwNE0vS49J838ZMcJhr02t3r3SzKxGyrlm7CzgOknNZCuGmyLiNkmPAj+Q9PfA74FrUv9rgO9JWg28CCwa8R2aPUZvZlYrIwZ9RKwEji/R/jTZeP3g9h3Ae0ZVRVML9LwCO7dAe8eonmpmZsNrjCNjm1qze4/Tm5lVXWMEfXP6YrH1hfrWYWaWQ40R9E0p6P2DrJlZ1TVI0HvoxsysVhoj6AtDNz5oysys6hoj6BFMnOYtejOzGmiQoAcmz/AYvZlZDTRQ0Hf6oCkzsxponKDvcNCbmdVC4wT95Bn+MdbMrAYaJ+g7OmHnZujZUe9KzMxypXGCfvKM7N7DN2ZmVdU4Qd9RCHrveWNmVk2NE/SFLXqP05uZVVUDBf307N5DN2ZmVdU4Qe+hGzOzmmicoG+dCG1TPHRjZlZljRP0kA6a8ha9mVk1NVbQ+3w3ZmZV11hB79MgmJlVXWMFvbfozcyqrsGCvhO2vwh9vfWuxMwsNxor6Ds6s/ttvki4mVm1jBj0kg6VdJekRyU9Iuljqf0ySeskrUi3c4qe8xlJqyU9IemssqvZfXSsh2/MzKqlpYw+vcAnIuJBSVOAByTdmeZdGRFfKe4s6WhgEXAMcAjwC0lHRUTfiO/kg6bMzKpuxC36iFgfEQ+m6VeBx4DZwzxlIfCDiNgZEc8Aq4ETy6pmchq68UFTZmZVM6oxeklzgeOBe1PTxZJWSrpW0rTUNht4ruhpaymxYpC0RFK3pO5Nm1Kwe4vezKzqyg56SR3Aj4FLIuIV4CrgCGABsB746mjeOCKujoiuiOjq7Exb8m0d0DLRY/RmZlVUVtBLaiUL+Rsi4haAiNgQEX0R0Q98mz3DM+uAQ4uePie1lfNG6SLh3uvGzKxaytnrRsA1wGMR8bWi9llF3d4FrErTy4BFktolzQPmA/eVXZHPd2NmVlXl7HVzMnA+8LCkFants8B7JS0AAlgDfBggIh6RdBPwKNkeOxeVtcdNweQZsHlt2d3NzGx4IwZ9RPwGUIlZtw/znC8CXxxTRR2d8IcHx/RUMzPbW2MdGQvZFv3WF6C/v96VmJnlQuMFfccMiL7snDdmZlaxxgv63QdN+QdZM7NqaNyg93npzcyqovGCfvfRsQ56M7NqaLyg99CNmVlVNV7QT5wGTa0+aMrMrEoaL+gLp0HwGSzNzKqi8YIefBoEM7Mqasyg90XCzcyqpkGD3mewNDOrlsYM+sLQTUS9KzEzG/caM+gnz4C+XbBjc70rMTMb9xoz6H3QlJlZ1TRm0PugKTOzqmnMoPdFws3MqqYxg35yCnofNGVmVrHGDPpJB4GaPEZvZlYFjRn0Tc0w6WAP3ZiZVUFjBj2ko2O9RW9mVqnGDXqf78bMrCoaN+h9vhszs6oYMeglHSrpLkmPSnpE0sdS+0GS7pT0VLqfltol6euSVktaKemEMVXWMcM/xpqZVUE5W/S9wCci4mjgJOAiSUcDnwaWR8R8YHl6DPA2YH66LQGuGlNlkzuhZxvs3DKmp5uZWWbEoI+I9RHxYJp+FXgMmA0sBK5L3a4Dzk3TC4HrI/M7YKqkWaOuzBcJNzOrilGN0UuaCxwP3AvMjIj1adbzwMw0PRt4ruhpa1Pb6Ph8N2ZmVVF20EvqAH4MXBIRrxTPi4gARnVOYUlLJHVL6t60qUSY+3w3ZmZVUVbQS2olC/kbIuKW1LyhMCST7guJvA44tOjpc1LbABFxdUR0RURXZ2fn3m/q892YmVVFOXvdCLgGeCwivlY0axmwOE0vBpYWtV+Q9r45CdhcNMRTvt1b9B66MTOrREsZfU4GzgcelrQitX0WuAK4SdKFwLPAeWne7cA5wGpgG/DBMVXW3AoTp3mL3sysQiMGfUT8BtAQs08v0T+AiyqsK+ODpszMKta4R8aCLxJuZlYFjR30Pt+NmVnFGjvofQZLM7OKNXbQd3TCzs3Qs6PelZiZjVuNHfSTfXSsmVmlGjvofdCUmVnFGjvofZFwM7OKNXjQT8/uPXRjZjZmjR30HroxM6tYYwd960Rom+KhGzOzCjR20IMPmjIzq1DjB73Pd2NmVpHGD/qOTv8Ya2ZWgcYPem/Rm5lVZBwEfSdsfxH6eutdiZnZuNT4Qd+RrjS1zacrNjMbi8YP+t1Hx3r4xsxsLBo/6H3QlJlZRRo/6H2RcDOzijR+0HuL3sysIo0f9G0d0DLRY/RmZmPU+EEv+SLhZmYVaPygB5/vxsysAiMGvaRrJW2UtKqo7TJJ6yStSLdziuZ9RtJqSU9IOqsqVfoi4WZmY1bOFv13gbNLtF8ZEQvS7XYASUcDi4Bj0nP+t6Tmiqv0Fr2Z2ZiNGPQRcTfwYpmvtxD4QUTsjIhngNXAiRXUl5k8Ixuj7++v+KXMzPY3lYzRXyxpZRramZbaZgPPFfVZm9oq0zEDoi87542ZmY3KWIP+KuAIYAGwHvjqaF9A0hJJ3ZK6N20aYfx990FTHr4xMxutMQV9RGyIiL6I6Ae+zZ7hmXXAoUVd56S2Uq9xdUR0RURXZ2fn8G9YCHqfl97MbNTGFPSSZhU9fBdQ2CNnGbBIUrukecB84L7KSqTo6FgHvZnZaLWM1EHSjcBpwHRJa4G/A06TtAAIYA3wYYCIeETSTcCjQC9wUUT0VVxlYYv+6bvg9e+u+OXMzPYnioh610BXV1d0d3cP3SECPj81m75s874pysyswUl6ICK6Ruo3Po6MlbL7N/5NfeswMxuHxkfQA6gZNH7KNTNrFE5OM7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzo2voO/vqXcFZmbjzvgJ+lnHwr1Xw9O/qnclZmbjyvgJ+vf9CA46HL7/57D6F/Wuxsxs3Bg/Qd/RCYt/AtPnw43vhSd+Vu+KzMzGhfET9ACTD4YLlsHMY+CHH4DHbqt3RWZmDW98BT3ApIPggqVwyAL40WJ45NZ6V2Rm1tDGX9ADTDgQPnALzHkD3PwhWPmjeldkZtawRgx6SddK2ihpVVHbQZLulPRUup+W2iXp65JWS1op6YSaVT7hAHj/zXDYyXDrEljx/Zq9lZnZeFbOFv13gbMHtX0aWB4R84Hl6THA24D56bYEuKo6ZQ6hvQPedxPMOxX+7/+AB66r6duZmY1HIwZ9RNwNvDioeSFQSNXrgHOL2q+PzO+AqZJmVavYktomwXt/CEe+FX7yUbj/OzV9OzOz8WasY/QzI2J9mn4emJmmZwPPFfVbm9pqq3UCLLohC/vb/xZ2vFLztzQzGy8q/jE2IgKI0T5P0hJJ3ZK6N23aVGkZ0NIOR50N0Qd9uyp/PTOznBhr0G8oDMmk+42pfR1waFG/OaltLxFxdUR0RURXZ2fnGMswM7ORjDXolwGL0/RiYGlR+wVp75uTgM1FQzxmZlYHLSN1kHQjcBowXdJa4O+AK4CbJF0IPAucl7rfDpwDrAa2AR+sQc1mZjYKIwZ9RLx3iFmnl+gbwEWVFmVmZtUzPo+MNTOzsjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLuXwG/YZHoL+v3lWYmTWEEa8wNa5MPQwQXP9OmHAgzD0FDj8tux18JEh1Lc/MrB7yFfRHnQmffBKeuRue/hU8/Wt4/LZs3pRDUui/Cea9CQ6YVcdCzcz2nXwFPUDHDHj9u7NbBLz0zJ7Qf/Jn8ND3s35v+Z9w6qfqWqqZ2b6Qv6AvJsFBh2e3rg9Bfz9seBhueA9sfLze1ZmZ7RP5/DF2KE1NMOs4aOuodyVmZvvM/hX0Zmb7oYqGbiStAV4F+oDeiOiSdBDwQ2AusAY4LyJeqqxMMzMbq2ps0b85IhZERFd6/GlgeUTMB5anx2ZmVie1GLpZCFyXpq8Dzq3Be5iZWZkqDfoA7pD0gKQlqW1mRKxP088DM0s9UdISSd2Sujdt2lRhGWZmNpRKd698Y0SskzQDuFPSgH0WIyIkRaknRsTVwNUAXV1dJfuYmVnlKtqij4h16X4jcCtwIrBB0iyAdL+x0iLNzGzsxhz0kiZLmlKYBs4EVgHLgMWp22JgaaVFmpnZ2FUydDMTuFXZicJagO9HxM8k3Q/cJOlC4FngvMrLrLL2jux8OM/8G8w7pd7VmJnV1JiDPiKeBo4r0f5H4PRKiqq5d/4z3PwhuO4d8MZL4LTPQktbvasyM6uJ/fPI2FnHwYfvhhPOh99cCdeeCS+srndVZmY1sX8GPUDb5GzL/rzvwYvPwLdOgQevz854aWaWI/tv0Bcc/U746/8Hc7pg2Ufgpgtg24vlP3/TE/D8qtrVZ2ZWoXyfprhcB86G85fCb/8Zln8B1nbDu/4lu0jJYDtegZefhZfWwEvPwh2XZu2Xbd6nJZuZlctBX9DUBCd/DOadCj/+73D9QnjDhdkpjYuDffsotvbNzBqAg36wQ47Pfqj92Wfg/u9AUytMfQ1MOyybN/UwmDY3ezxtbrb3zs5X6121mdmQHPSltE2Gd34dzrgc2qdAU3O9KzIzGzMH/XAmTq13BWZmFfNeN9XQ35ddj9bMrAF5i75SzW3whwfhC9Nh8nSY3Fl0P6NouhM6OvdMt06sd+Vmtp9w0FfqzC/C4W+GrRth6ybY+kJ2/9Ia2LIJeraWfl5bR1oJzBi4cjjsP8ORjX0GCTMbXxz0lZp+ZHYbyq6tKfzTCmDrprRSKHr88rOwrjubXnEDfOLxoV/PzGyUHPS11jY5u007bOS+t30cuq+Fu78CfT3Qtwv6e/ZM9+1K0z3wH/4jHHU2zDgasjOImpmV5KBvJFNfk93/8gvZfVNL9htAc2u6T9MR8MgtsPxyOGAOHHVmFvpzT4G2SfWr38wakqIBTuJ1yJHHxOOrVnDAhNZ6l1J/O7dkYd7Umh2tO5RX1sNTd8CTP4enf5X9FtAyITuyd/6ZcNRZe1YcZpZLkh6IiK4R+zVC0LfPmh/HXXwVn3vH0bz99bOQhyJGp3cnrPlNCv6fZT8EAzS3w+mfy7byWyZCS3u2t0/LhOzWOiFrb51Q1DYx++bgz8Cs4Y2roD/m2ONj3l9+nVXrXuFNR3Vy+cJjOOzgyfUua3yKgBeegl9eDo/9ZIwvoqIVwYRsBTFlFrz/R9mRwmbWEMZV0Hd1dcW9993P9b9dw1fveJKevn4+8pYj+ctTD6e9xacfGLPendCzLd1vh94d2a1nB/RuL7/9kaWwczP8pw9mF23Z/ZtBGmLa/TtCmt7920IbNKfppta9nzfc0JSZjWjcBX13dzcAz2/ewRdue5SfPryeIzon88V3vZ6TDj+4zhXu5567D645o/qvq+a9VwgDVh4t2UqjqTXdN6f5hbb0uK0DJhyY3SZOhQlT9zwuvvkgNcuZcRv0BXc9sZHPLV3Fcy9u57+dMIfPnvNaDu5or1OFxq6t2Vb+7l09e9Kun7ugr3fP7p8DdgftGdSvaF5/0XMKzy/53N69b3096bQTqc+uLbBjc/btYzjN7aVXAIXbPf8Ikw6G9gOyXWJbJ0LrpOzWNmng43LaCsNeze3ZNYmb27MVk3//sCoZ90EPsH1XH9+46ymuvvtpJrW18L0LT+TYOT7RmA2hZ0cW+ANuL6fb4PbNsP3lgf36e7NvEkcvzFZqhZVbz7Z0K2rr2znGIpW9R8uEPeG/1337MH0K80r1GTyvfU97oW3zc9meWi3tew+n7R56G669jGG65jaf8XUfyUXQFzy14VXOuPJu/nTeQZz+uhlMamthUlvz7vvJ7c1MbM2mp09pp6PdhwfYKEVkv020Tiivf19v9nvGrm0DVwQ921Lb1uz1endm31B6d2Yrh73aiuftGqJP8bx0399b2fI2tVT+GsPSECuAoVYMLXuvRIb6DWjI9kGvo6ZshaPmoumm7HFT057pAfMG9StrXnP2La0O39TKDfqaJaKks4F/ApqB70TEFWN9rfkzp3DMIQdw7zMvcu8zw1/hqaO9hfsvfSsT27xFYaMglR/ykEJqSv32QurvG3olULySKF7BFNoOmgeHn5adcbV4CK3UcNq+at+1pbz+/T31+XuXQ6VWHmklUO7Ko6mw0ii1cioxr0w1CXpJzcA3gTOAtcD9kpZFxKNjfc2ffvQU+vqDbbt62b6rj627+ti2q5dtu/rYtquP7bt6uePRDdzy4DoWfft3tDc3ZX9fieYmIUFzk2iS+OXjG5kzbSI//cgpdExoobnJY6Y2zjQ1p6OgKzgSuqkJmtqyoZ/xIqLM33d2QfRnK8Toh0j3/cXTZc7r78vet+S8/kGvMdK84vcqNS9K1FV43A99g+oqU6226E8EVkfE0wCSfgAsBMYc9JAF9ZQJrUwZ4gjaIzo7eHlbDzt7+7KNlQh6+/vZ1Qd9/UFE0J9Gqta+tJ3jLr8DgEltzUyZ0EJHe0t6/RamTGhhUltL9nePoLc/6O8P+vqDvkj3/cGvn9wEwKfO+pO96in+JidUom1g30f/8Aovb+/hHccekv0flIpuoHTfJA2Yv3tFJtHUtKd/X3/Q1tK0u9a+ovoLy7N7uYqWacC8CHr7gvbWJt5x3CEMXiUOPrit1Cqz1DdalehZ6TdfaeDfWbvbs9bC61d6QF5huLMw6hmD2wfXNaiOQn3VqGW/I+0ZrsHH2vBX5f37qVXQzwaeK3q8FvjTGr3XbvNnTuHav3jDiP2e3PAqK557mVd39LJlRy+v7ujJpnf28sqOHrbs7GX95h1s29mLUpBm3wZI0000N2XBWvDlnz9RteX41RObqvZa1XTpravqXULVDV4hwN6Bva9+xtod/kW1FK8Ydq8mBvQrTJdewe3uPvCpe6+gh9gAKdl3iLpL9Rg8b6TnDt4AGO75I60kh5o9ZPsoNj6GeuehairZWqXXLkfdfrWUtARYAvCa1+zbc7IcNXMKR82szthqRNDTVwiGKGov1bdoukTf/ghe2tqze7ov9nwL6Y/Y/S2lf0BbNl34xtKX5m3b2UtfBBNammluFs0SLU3ZFv+Ae4mWNL+wQhtwk9iys5czrrybvx30rWXwMsZe27JD/B1K/h1L9Ss/YQf8bSMGbG1H7HmtbHrPk4rDPIi9vnnt/q9VInizx6X7Fx4PrqN4uQbXUk6/AfNKfKPY+1vGwNcppXiHjMFdRvqM954/9LzBr77Xc0fxXqOtc8gnDtM81I4qQ/2rHPLvW4XXLjUjCJYP1X+Qmux1I+nPgMsi4qz0+DMAEfEPpfqPtNeNmZntrdy9bmp1DPr9wHxJ8yS1AYuAZTV6LzMzG0ZNhm4iolfSxcDPyXavvDYiHqnFe5mZ2fBqNkYfEbcDt9fq9c3MrDw+faCZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeVcQ5ymWNIm4Nl611EF04EX6l3EPuTlzTcvb+M7LCI6R+rUEEGfF5K6yzlKLS+8vPnm5c0PD92YmeWcg97MLOcc9NV1db0L2Me8vPnm5c0Jj9GbmeWct+jNzHLOQV8BSWskPSxphaTu1HaQpDslPZXup9W7zrGSdK2kjZJWFbWVXD5lvi5ptaSVkk6oX+VjM8TyXiZpXfqMV0g6p2jeZ9LyPiHprPpUPTaSDpV0l6RHJT0i6WOpPZef7zDLm8vPdy+RrmLk2+hvwBpg+qC2/wV8Ok1/GvhSveusYPlOBU4AVo20fMA5wL+SXWTpJODeetdfpeW9DPhkib5HAw8B7cA84N+B5novwyiWdRZwQpqeAjyZlimXn+8wy5vLz3fwzVv01bcQuC5NXwecW8daKhIRdwMvDmoeavkWAtdH5nfAVEmz9k2l1THE8g5lIfCDiNgZEc8Aq4ETa1ZclUXE+oh4ME2/CjxGdq3nXH6+wyzvUMb15zuYg74yAdwh6YF0DVyAmRGxPk0/D8ysT2k1M9Tylbog/HD/kcaTi9NwxbVFQ3G5WV5Jc4HjgXvZDz7fQcsLOf98wUFfqTdGxAnA24CLJJ1aPDOy74C53a0p78uXXAUcASwA1gNfrW851SWpA/gxcElEvFI8L4+fb4nlzfXnW+Cgr0BErEv3G4Fbyb7abSh8pU33G+tXYU0MtXzrgEOL+s1JbeNaRGyIiL6I6Ae+zZ6v7+N+eSW1koXeDRFxS2rO7edbannz/PkWc9CPkaTJkqYUpoEzgVVkF0FfnLotBpbWp8KaGWr5lgEXpL0zTgI2Fw0BjFuDxqHfRfYZQ7a8iyS1S5oHzAfu29f1jZUkAdcAj0XE14pm5fLzHWp58/r57qXevwaP1xtwONmv8g8BjwCXpvaDgeXAU8AvgIPqXWsFy3gj2dfZHrIxyguHWj6yvTG+SbZ3wsNAV73rr9Lyfi8tz0qy//yzivpfmpb3CeBt9a5/lMv6RrJhmZXAinQ7J6+f7zDLm8vPd/DNR8aameWch27MzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRWF+lMgmcNartE0lWSDpF08xDPmyvpfRW+968k7XVt0NT+hKSHJN0j6U8qeR+zRuGgt3q5EVg0qG0RcGNE/CEi3j34CZJagLlARUE/gvdHxHFkJ/T6cokammv43mY14aC3erkZeLukNth9oqlDgH9LW+2rUvtfSFom6ZdkB/JcAZySzh3+8TT/G4UXlXSbpNPS9FWSutP5xz8/yvruBo5Mr7NG0pckPQi8R9ICSb9LJ8K6teic7UdK+kX6RvCgpCNS+6ck3Z/6fz61TZb009R3laQ/T+1XpHOmr5T0ldTWKenH6TXul3Ryan9T0XnUf184UttssJZ6F2D7p4h4UdJ9ZCeEW0q2NX9TRER2tPoAJwDHpuecRnb+8P8C2YpgmLe5ND2nGVgu6diIWFlmie8gO2Ky4I+RncAOSSuBj0TEryVdDvwdcAlwA3BFRNwqaQLQJOlMssPnTyQ7unRZOvldJ/CHiHh7es0DJR1Mdhj+a9PfYWp6738CroyI30h6DfBz4HXAJ4GLIuKedLKuHWUum+1nvEVv9VQ8fLMoPS7lzogo9zzxxc5LW+G/B44hu5jESG6QtAI4mSxIC34IWSADUyPi16n9OuDUtDU9OyJuBYiIHRGxjewcSGemGh4EXksW/A8DZ6RvCqdExGZgM1lYXyPpvwLb0nu8FfhGqmsZcEAK9nuAr0n6aKqpd7R/INs/eIve6mkpcKWyy9JNiogHhui3dZjX6GXgBssEgHQiqk8Cb4iIlyR9tzBvBO+PiO5R1jAcAf8QEd/aa0a23OcAfy9peURcLulE4HTg3cDFwFvIlu+kiBi8xX6FpJ+m17hH0lkR8fgY67Qc8xa91U1EbAHuAq5l6K35wV4luxRcwRpggaQmSYey5zSzB5CF82ZJM8mGiKpR82bgJUmnpKbzgV9HdtWitZLOBUhnPZxENszyobQFjqTZkmZIOgTYFhH/h+xH3xNSnwMj4nbg48Bx6T3uAD5SqEHSgnR/REQ8HBFfAu4n+7Zgthdv0Vu93Uh2Lv/Be+AMZSXQJ+kh4LvAPwLPAI+SXR6ucLm4hyT9Hnic7EpB91Sx5sXAv6Qgfxr4YGo/H/hWGrfvAd4TEXdIeh3w2/TbwxbgA2Q/9H5ZUn/q+9dkK7ClaXxfwN+k1/0o8M3020AL2Q/FfwVcIunNQD/ZGVT/tYrLaDnis1eameWch27MzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzv1/xWTkwD2+JnsAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"Presim. Time / s\"].plot();\n", "df[\"Sim. Time / s\"].plot();"]}, {"cell_type": "code", "execution_count": 72, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmcFNW5//HPMzvMjKIwcEFEUEEFwYGMiMEFN1CSiOYXI14TMZprcn9m05h7NZvGaC5ejSbGXL1GeYlxSRQ14I7gwpWfigNBZVOI4mUQZVGQbWCW5/dHVQ89Mz0zPdPd09M93/frVa+uPnWq6qlp6KfPqapT5u6IiIg0lZPuAEREpGtSghARkZiUIEREJCYlCBERiUkJQkREYlKCEBGRmJQgREQkJiUIERGJSQlCRERiykt3AIno06ePDx48ON1hiIhklMWLF29297K26mV0ghg8eDCVlZXpDkNEJKOY2Yfx1FMXk4iIxKQEISIiMSlBiIhITBl9DkJEkq+mpoaqqiqqq6vTHYokqKioiIEDB5Kfn9+h9ZUgRKSRqqoqSktLGTx4MGaW7nCkg9ydLVu2UFVVxZAhQzq0DXUxiUgj1dXV9O7dW8khw5kZvXv3TqglqAQhIs0oOWSHRD/HzE4Q2z9OdwQiIlkrsxPEjk9Az9QWyTq5ubmUl5dz9NFHc95557Fr166Et3nXXXdx//33J7ydyy+/nPLycoYPH06PHj0oLy+nvLycWbNm8ctf/pJ58+YlvI9Ypk+fzoMPPpiSbbfEPIO/YCsG5HrlP7ZAj17pDkUka6xcuZKjjjoqrTGUlJSwY8cOAC688EK+8IUvcOWVVzYsd3fcnZyc9P3GXbt2LV/+8pdZtmxZp+zvlFNO4ZFHHqGsrM0RMhqJ9Xma2WJ3r2hr3cxuQQDs3JTuCEQkhU488UTWrFnD2rVrOeKII7jooos4+uijWbduHXPnzuX4449nzJgxnHfeeQ1J5eqrr2b48OGMGjWKq666CoDrrruOW265BYAJEyZwxRVXUFFRwVFHHcWbb77JV7/6VYYOHcrPf/7zDsd68cUXM2vWLCAYCuiaa66hvLyciooKlixZwqRJkzjssMO46667Gta5+eabOfbYYxk1ahTXXnttzO1+/vnn7N27t1lyeOWVVxpaMKNHj2b79u0djj2WzL/MdcdG6DM03VGIZKVfPbmcFR99ntRtDh+wH9d+ZURcdWtra3n22Wc588wzAVi9ejUzZ85k3LhxbN68mRtuuIF58+ZRXFzMTTfdxK233srll1/OE088wapVqzAztm7dGnPbBQUFVFZW8vvf/54pU6awePFiDjzwQA477DCuuOIKevfunfCxDho0iKVLl3LFFVdw8cUXs3DhQqqrqzn66KP57ne/y9y5c1m9ejWLFi3C3Tn77LNZsGABJ510UqPtzJs3j9NOO63Z9m+55Rb++Mc/Mn78eHbs2EFRUVHCMUdLWQvCzIrMbJGZvWVmy83sV2H5EDN7w8zWmNlfzawgLC8M368Jlw+Oa0c7N6bqEEQkTXbv3t3wy3vQoEFceumlABxyyCGMGzcOgNdff50VK1Ywfvx4ysvLmTlzJh9++CH7778/RUVFXHrppTz++OP07Nkz5j7OPvtsAEaOHMmIESPo378/hYWFHHrooaxbty4pxxG9j+OOO47S0lLKysooLCxk69atzJ07l7lz5zJ69GjGjBnDqlWrWL16dbPtPPfcc5x11lnNysePH8+VV17J7bffztatW8nLS+5v/lS2IPYAp7r7DjPLB141s2eBK4Hb3P0vZnYXcClwZ/j6mbsfbmZTgZuA89vcyw51MYmkSry/9JOtR48eLF26tFl5cXFxw7y7c8YZZ/Dwww83q7do0SLmz5/PrFmzuOOOO3jxxReb1SksLAQgJyenYT7yvra2NhmH0eY+3J1rrrmG73znO61uZ9GiRdx5553Nyq+++mq+9KUv8cwzzzB+/Hief/55jjzyyKTEDilsQXhgR/g2P5wcOBWYFZbPBM4J56eE7wmXn2ZtXsRrakGIdFPjxo1j4cKFrFmzBoCdO3fy3nvvsWPHDrZt28bkyZO57bbbeOutt9IcacsmTZrEjBkzGs6drF+/no0bG3+nLV++nCOPPJLc3Nxm6//jH/9g5MiR/Pu//zvHHnssq1atSmp8KT0HYWa5wGLgcOCPwD+Are4eSc9VwEHh/EHAOgB3rzWzbUBvYHOLO8jJ00lqkW6qrKyM++67jwsuuIA9e/YAcMMNN1BaWsqUKVOorq7G3bn11ls7vI/Jkydzzz33MGDAgGSF3cjEiRNZuXIlxx9/PBBcvfXAAw/Qt2/fhjrR52Ca+t3vfsdLL71ETk4OI0aMiNkNlYhOuczVzHoBTwC/AO5z98PD8oOBZ939aDNbBpzp7lXhsn8Ax7n75ibbugy4DOCYAYVfWHrLV+GCh1J+DCLdRVe4zFX2OeOMM7j//vvp379/h9bv8pe5uvtW4CXgeKCXmUVaLgOB9eH8euBggHD5/sCWGNu6290r3L0ir6BIXUwiktVeeOGFDieHRKXyKqaysOWAmfUAzgBWEiSKr4XVpgGzw/k54XvC5S96W82bnPzgMlcREUm6VJ6D6A/MDM9D5ACPuPtTZrYC+IuZ3QD8Hbg3rH8v8GczWwN8Ckxtcw+5OgchIpIqKUsQ7v42MDpG+fvA2Bjl1cB57dpJTh7UfA57dkBhSUdDFRGRGDJ7qI2c8ClJOg8hIpJ0mZ0gcsMG0M6Wr4QVEZGOyewEkRMmCJ2oFskqN954IyNGjGDUqFGUl5fzxhtvAPDtb3+bFStWJLz94447jvLycgYNGkRZWVnDgHdr165l8uTJLY7flKizzjqLqqqqlGw7FTJ7sD51MYlknddee42nnnqKJUuWUFhYyObNm9m7dy8A99xzT1L2EUk49913H5WVldxxxx0Ny5555pmk7KOp3bt3s2XLFgYOHJiS7adCZrcgIl1MGo9JJGts2LCBPn36NIxd1KdPn4Y7mSdMmEBlZSUQ3HX8k5/8hBEjRnD66aezaNEiJkyYwKGHHsqcOXM6vP/BgwezefNm1q5dy5FHHsnFF1/MsGHDuPDCC5k3bx7jx49n6NChLFq0CAiG+LjkkksYO3Yso0ePZvbs2TG3+/LLLzNhwoRm5bfffnvD0ORTp7Z98WZnyuwWBAY9DlALQiRVnr0aPn4nudv8p5Fw1vQWF0+cOJHrr7+eYcOGcfrpp3P++edz8sknN6u3c+dOTj31VG6++WbOPfdcfv7zn/PCCy+wYsUKpk2b1jCSaiLWrFnDo48+yowZMzj22GN56KGHePXVV5kzZw6/+c1v+Nvf/saNN97IqaeeyowZM9i6dStjx47l9NNPbzSwIARDZpxzzjnN9jF9+nQ++OCDhhFeu5LMbkEAFPfVOQiRLFJSUsLixYu5++67KSsr4/zzz+e+++5rVq+goKBhjKKRI0dy8sknk5+fz8iRI1m7dm1SYhkyZAgjR45sGOvotNNOw8wa7WPu3LlMnz6d8vJyJkyYQHV1Nf/7v//bbFsLFy7khBNOaFY+atQoLrzwQh544IGkD9edqK4VTUcUl+lmOZFUaeWXfirl5uYyYcIEJkyYwMiRI5k5cyYXX3xxozr5+flEBnyOHk47FcN1t7YPd+exxx7jiCOOaHE777//PgcffDAFBQXNlj399NMsWLCAJ598khtvvJF33nmnyySKzG9BlChBiGSTd999t9FDc5YuXcohhxySxohaN2nSJP7whz8QGRno73//e7M6LY3IWl9fz7p16zjllFO46aab2LZtW8PQ311B5ieI4r46SS2SRXbs2MG0adMaTtyuWLGC6667rkPb+uijj5g8eXJyA2ziF7/4BTU1NYwaNYoRI0bwi1/8olmd5557LmaCqKur4xvf+AYjR45k9OjR/OAHP6BXr14pjbc9OmW471SpqKjwylvPhxdvgJ99AvnJfR6rSHek4b6Ta8+ePYwfP77h6qvO1uWH+06p4vDBGupmEpEuqLCwMG3JIVGZnyBKIglCVzKJiCRT5ieISAtC5yFEkiaTu55ln0Q/xyxIEH2CV3UxiSRFUVERW7ZsUZLIcO7Oli1bKCrq+LnZrnGxbSLUxSSSVAMHDqSqqopNm/SjK9MVFRUlNPZT5ieI/B5QUKouJpEkyc/PZ8iQIekOQ7qAzO9igvBmObUgRESSKTsShMZjEhFJuuxIEBpuQ0Qk6bIjQagFISKSdFmSIMpg96dQl5wRHEVEJFsSRElZ8Lprc3rjEBHJIilLEGZ2sJm9ZGYrzGy5mf0wLL/OzNab2dJwmhy1zjVmtsbM3jWzSXHvrOFuanUziYgkSyrvg6gFfuzuS8ysFFhsZi+Ey25z91uiK5vZcGAqMAIYAMwzs2HuXtfmnnSznIhI0qWsBeHuG9x9STi/HVgJHNTKKlOAv7j7Hnf/AFgDjI1rZ8VhF5NulhMRSZpOOQdhZoOB0cAbYdH3zOxtM5thZgeEZQcB66JWqyJGQjGzy8ys0swqG4YCUAtCRCTpUp4gzKwEeAz4kbt/DtwJHAaUAxuA37Zne+5+t7tXuHtFWVnYcigogbweOgchIpJEKU0QZpZPkBwedPfHAdz9E3evc/d64E/s60ZaDxwctfrAsCyeHQXdTDt1FZOISLKk8iomA+4FVrr7rVHl/aOqnQssC+fnAFPNrNDMhgBDgUVx71DjMYmIJFUqr2IaD3wTeMfMloZlPwUuMLNywIG1wHcA3H25mT0CrCC4AuryuK5giijuC9uqkhe9iEg3l7IE4e6vAhZj0TOtrHMjcGOHdlhSBh8t6dCqIiLSXHbcSQ1BC2LnZqivT3ckIiJZIXsSRElf8LpgTCYREUlY9iSIhpvldKJaRCQZsi9B6LkQIiJJkT0JouFuaiUIEZFkyJ4EoS4mEZGkyp4E0eMAyMnXzXIiIkmSPQkiMtyGRnQVEUmK7EkQoOE2RESSKLsSRHFfnYMQEUmSLEsQGtFVRCRZsitBRLqY3NMdiYhIxsuuBFHcF+r2QvW2dEciIpLxsitB6GY5EZGkya4EoZvlRESSJrsSREMLQglCRCRR2ZUgisMEoZvlREQSll0JoueBYDk6ByEikgTZlSBycqFnb3UxiYgkQXYlCAjvplYLQkQkUdmXIDQek4hIUmRfgtB4TCIiSZGyBGFmB5vZS2a2wsyWm9kPw/IDzewFM1sdvh4QlpuZ3W5ma8zsbTMb06Edl/TVSWoRkSRIZQuiFvixuw8HxgGXm9lw4GpgvrsPBeaH7wHOAoaG02XAnR3aa3EZ1OyCPTsSDF9EpHtLWYJw9w3uviSc3w6sBA4CpgAzw2ozgXPC+SnA/R54HehlZv3bvePI3dRqRYiIJKRTzkGY2WBgNPAG0M/dN4SLPgb6hfMHAeuiVqsKy9pH4zGJiCRFyhOEmZUAjwE/cvfPo5e5uwPtGpvbzC4zs0ozq9y0KUYS0HhMIiJJkdIEYWb5BMnhQXd/PCz+JNJ1FL5GvsnXAwdHrT4wLGvE3e929wp3rygrK2u+U43HJCKSFKm8ismAe4GV7n5r1KI5wLRwfhowO6r8ovBqpnHAtqiuqPg1tCDUxSQikoi8FG57PPBN4B0zWxqW/RSYDjxiZpcCHwJfD5c9A0wG1gC7gG91aK+5+dDjALUgREQSlLIE4e6vAtbC4tNi1Hfg8qTsXDfLiYgkLPvupIagm2nn5nRHISKS0bIzQWg8JhGRhGVngtCIriIiCcvOBFFSBnu2QU11uiMREclY2ZkginU3tYhIotpMEGb2n2a2n5nlm9l8M9tkZt/ojOA6TDfLiYgkLJ4WxMRwiIwvA2uBw4GfpDKohEVaEDoPISLSYfEkiMi9El8CHnX3bSmMJzmK+wSv6mISEemweG6Ue8rMVgG7gX81szKga5/9VReTiEjC2mxBuPvVwBeBCnevIRgGY0qqA0tIfg8oKFUXk4hIAuIaasPdP42a3wnsTFlEyaKb5UREEpKdl7mCxmMSEUlQiwkifJZD5iop00lqEZEEtNaCeM3M/mZm3w0fGZpZ1IIQEUlIi+cg3L0iTAxnAr8zs4OAV4FngVfcfU+nRNhRxWWw+1Ooq4XcVD72QkQkO7V6DsLd17r7Xe5+DsGVTE8CpwP/Y2ZPd0aAHVYSPllul4b9FhHpiLh/WoeXuL4YToQtiq6r4W7qjVD6T+mNRUQkA3X4KiZ3X5/MQJJON8uJiCQkiy9zDbuYdLOciEiHxJ0gzKxnKgNJOrUgREQSEs9w3180sxXAqvD9MWb2XymPLFEFJZDXQ5e6ioh0UDwtiNuAScAWAHd/CzgplUElhVnQzbRTVzGJiHREXF1M7r6uSVFdCmJJPo3HJCLSYfEkiHVm9kXAw6fKXQWsbGslM5thZhvNbFlU2XVmtt7MlobT5Khl15jZGjN718wmdehomiruq5PUIiIdFE+C+C5wOXAQsB4oD9+35T6Cu7Cbus3dy8PpGQAzGw5MBUaE6/yXmeXGsY/WqQUhItJhbd4o5+6bgQvbu2F3X9COMZymAH8Jh+/4wMzWAGOB19q730aK+wbnIOrrISd7r+gVEUmFNhOEmQ0Bvg8Mjq7v7md3cJ/fM7OLgErgx+7+GUHr5PWoOlVhWWJK+oLXBWMyRR5DKiIicYlnqI2/AfcSjMNUn+D+7gR+DXj4+lvgkvZswMwuAy4DGDRoUOuVG26W26gEISLSTvEkiGp3vz0ZO3P3TyLzZvYn4Knw7Xrg4KiqA8OyWNu4G7gboKKiwlvdYSRB6LkQIiLtFk/H/O/N7FozO97MxkSmjuzMzPpHvT0XiFzhNAeYamaFYZfWUGBRR/bRSMPd1EoQIiLtFU8LYiTwTeBU9nUxefi+RWb2MDAB6GNmVcC1wAQzKw/XXwt8B8Ddl5vZI8AKoBa43N0Tv9ci0oJ4/yUY+bWENyci0p2Ye+u9NOEVRcPdfW/nhBS/iooKr6ysbLmCO/yqVzB/3bbOCUpEpIszs8XuXtFWvXi6mJYBvRIPKQ3MgtcTrkxvHCIiGSieLqZewCozexNoeMxoApe5di7LBdM9ECIi7RVPgrg25VGIiEiXE8+d1K90RiAiItK1tJggzOxVdz/BzLYTXHXUsAhwd98v5dGJiEjatNaCKAZw99JOikVERLqQ1s7etn79q4iIZLXWWhB9zazF60Pd/dYUxCMiIl1EawkiFyghOOcgIiLdTGsJYoO7X99pkYiISJfS2jkItRxERLqx1hLEaZ0WhYiIdDktJgh3/7QzAxERka5FgxSJiEhMShAiIhKTEoSIiMTUPRJEfU26IxARyTjZnyD6j4I37ob3X053JCIiGSX7E8Q/PwoHHgoPnQ9r5qU7GhGRjJH9CaKkDKY9CX2GwsMXwLvPpTsiEZGMkP0JAqC4N1w0B/qNgL9+A1Y+le6IRES6vO6RIAB6HggXzYYB5fDoNFj+RLojEhHp0rpPggAo2h++8TgMPBZmXQJvP5ruiEREuqyUJQgzm2FmG81sWVTZgWb2gpmtDl8PCMvNzG43szVm9raZjUlVXBTtBxfOgkPGwxOXwdKHUrYrEZFMlsoWxH3AmU3Krgbmu/tQYH74HuAsYGg4XQbcmcK4oLAE/vkRGHIS/O3/wuKZKd2diEgmSlmCcPcFQNMB/6YAkW/jmcA5UeX3e+B1oJeZ9U9VbAAU9IQL/gqHnw5P/gDevCeluxMRyTSdfQ6in7tvCOc/BvqF8wcB66LqVYVlqZVfBFMfDJLEM/8G1Z+nfJciIpkibSep3d0Bb+96ZnaZmVWaWeWmTZsSDySvEIadCV4HdXsT356ISJbo7ATxSaTrKHzdGJavBw6OqjcwLGvG3e929wp3rygrK0tpsCIi3VlnJ4g5wLRwfhowO6r8ovBqpnHAtqiuKBERSYO8VG3YzB4GJgB9zKwKuBaYDjxiZpcCHwJfD6s/A0wG1gC7gG+lKi4REYlPyhKEu1/QwqJmz7oOz0dcnqpYRESk/brXndQiIhI3JQgREYlJCUJERGJSghARkZiUIEREJCYlCBERiUkJQkREYlKCEBGRmJQgREQkJiUIERGJSQlCRERiUoIQEZGYlCBERCQmJQgREYlJCUJERGJSghARkZiUIKJ9shzq69IdhYhIl5CyJ8pllF6HAAb3nw1F+8PgE+HQCcHU+3AwS2t4IiLpoAQBMGwiXPUefLAA3n8Z3n8FVj0VLCsdECaLk2HIybBf/zQGKiLSeZQgIkr6wsivBZM7fPbBvmTx3nPw1kNBvVN/Dif9JK2hioh0BiWIWMzgwEODqeISqK+HT96BB8+DjavSHZ2ISKfQSep45ORA/2OgoCTdkYiIdBolCBERiSktXUxmthbYDtQBte5eYWYHAn8FBgNrga+7+2fpiE9ERNLbgjjF3cvdvSJ8fzUw392HAvPD9yIikiZdqYtpCjAznJ8JnJPGWEREur10JQgH5prZYjO7LCzr5+4bwvmPgX6xVjSzy8ys0swqN23a1Bmxioh0S+m6zPUEd19vZn2BF8ys0bWj7u5m5rFWdPe7gbsBKioqYtYREZHEpaUF4e7rw9eNwBPAWOATM+sPEL5uTEdsIiIS6PQEYWbFZlYamQcmAsuAOcC0sNo0YHZnxyYiIvuko4upH/CEBQPg5QEPuftzZvYm8IiZXQp8CHw9DbG1rrAkGK/pg/+BISemOxoRkZTq9ATh7u8Dx8Qo3wKc1tnxtMvZf4BZl8DMr8AJP4IJP4W8gnRHJSKSEl3pMteur/8x8J0FMOab8OptMGMibF6T7qhERFJCCaK9CoqDlsTX/wyffgD/fSIsuT8YAVZEJIsoQXTU8LPhX/8fDKyAOd+HRy6CXZ/Gv/6md+HjZamLT0QkQRruOxH7HwTfnA2v/QHm/xqqKuHcu4KHCzVV/Tls/RA+WwuffQhzfxaUX7etU0MWEYmXEkSicnJg/A9hyEnw2Lfh/ilw7KXB0ODRCWF3O1oXIiJdgBJEsgwYHZzAfu4aePMeyMmHXoPggEOCZb0OgQMGB+8PGBxcDbVne7qjFhFpkRJEMhUUw9m3wxnXQ2Ep5OSmOyIRkQ5TgkiFHr3SHYGISMJ0FVM61dcFz7sWEemC1IJIl9wC+GgJ/LoPFPeB4rKo175R82VQUrZvPr9HuiMXkW5CCSJdJt4Ih54COzfCzk2wc3Pw+tla2LEJanbGXq+gJEwefRsnlUO+CId37ZFKRCSzKEGkS5/Dg6kle3eGSSNMHDs3hckk6v3WD2F9ZTC/9EH48aqWtyci0k5KEF1VQXEwHXBI23WfugIqZ8CCW6CuBur2Qn3Nvvm6veF8DfzT0TDsTOg7HIIRdUVEYlKCyAa9BgWvL/46eM3JC85x5OaHr+G8Oyx/HOZfD/sNhGETg2Qx+EQo6Jm++EWkSzLP4EHmBhw+wlctW8p+RfnpDiX99uwIkkBOfnB3d0s+3wCr58J7z8P7LwfnOvKKgjvBh06EYZP2JRwRyUpmttjdK9qsl8kJorD/UD/me3fyy68M50sj+2PqMmmf2j2w9tUwYTwXnCAHyC2E034ZtCryekBeYXD1VF5RMOUXBeX5RVFlPYKWij4DkS6vWySIEaNG+5B/uZ1l6z/n5GFlXD9lBIf0Lk53WJnJHTavhhevh5VPdnAjFpVAioLEUtofLnw0uLNcRLqEbpEgKioq/I1Fb3L/a2v57dz3qKmr5/unHs6/nHQohXka5qLDavdAza7wdTfUVgdTTTXU7o6/fPls2LMNvvCt4GFLDedEwq6whvMk4XzDuZMCyA3nc/Kbr9daF5qItKnbJIjKykoAPt5Wza+fWsHT72zgsLJibjx3JOMO7Z3mCLu5dYvg3jOSv13LbZ5IGiWdvCDZ5OSHr7nh8khZ+L6gBIr2D6YevaCo17730ZNuTpQs0+0SRMRL727kl7OXse7T3fyfMQP56eQj6V1SmKYIhb07g1ZFwyW3NeEluHuhrnbfZbiNLsutaVIvall91DqR9WOuW9t8qqsJhzcJ6+zdAdXbgtZOa3ILYyeOyLTwd9CzNxTuF1yanN8D8nsGU0HPxu/jKYt0z+UWBs88zy0MEprO70iSdNsEAbB7bx13vLSauxe8T8+CPP586VhGDdQAetKCmuogUTSatoZT0/JtsHtr43r1tUHLZfiUIBlGkmLNrnCKKqvb08EgLdhHXtG+pNHstbCVOpFlseo0XVa4rzxStm1dcOVbXmHzbr+GLsLWyuPoTswt0AjInaRbJ4iI1Z9s54zbFnDckAM57ai+9CzIo2dBbsNrcWEuPfKD+T6lhZQU6rYQaSf34NxLflF89etqg/M1e3c1TiA1u8KyncH2avcELaLaPUFSaVYWvWxvC3Wil4Wv9bWJHW9OXuLbaJW1kDhaSih5zZNPS+e4Wixvsh3LCRKV5UbN5wTvc3L2zTda1qReXMtyg1ZhGlqG8SaILveNaGZnAr8HcoF73H16R7c1tF8pIwbsxxsffMobH7T+RLeSwjze/Nnp9CjQLxhpB7P4kwOEX26l6buqq76u5eQRnVyiE1Ok7MAhcOiEYATi6K6+WN1+nVW+d0d89etr0vP3jofFSjph8og36eREkk2spBZjWZy6VIIws1zgj8AZQBXwppnNcfcVHd3m0z84kbp6Z9feWnbvrWPn3jp27a1l1946du2tY/feWuau+ITHl6xn6p9epzA3J/hczMjNMcwgN8fIMePFVRsZeEAPnv7+iZQU5ZGboz5hyTA5ueFd8wncOZ+TAzkFQRdVpnCP8/zVXvD6IJF6PXj4Wh89H+ey+rpgvzGX1TfZRlvLovcVa5nHiCvyvh7qmsQVpy6VIICxwBp3fx/AzP4CTAE6nCAg+IIvLcqntIU7rg8rK2Hrrhr21NYFP47cqa2vZ28d1NU77k592BNX9dlujrl+LgA9C3IpLcqjpDAv3H4epUV59CzICz4vd2rrnfp6p67eqfPwtd555b1NAPxk0hHN4olucRoWo6xx3RUffc7W3TV8ZdSA4P+uWdQEFr7mmDVa3pAAzcjJ2Ve/rt4pyMtpiLUuKv7I8TQcV9QxNVrmTm2dU5ifw1eOGUDTVNr0psZYqTZWy9t7RxCtAAAJPElEQVRi1Ey0hW7W+O9sDeVBaWT7id6IGenOjfTqetPypnE1iSMSXzJi6XbM9nUroXul+G58/366WoI4CFgX9b4KOC7VOx3ar5QZFx/bZr33PtnO0nVb2V5dy47qWrZX1wTze2r5vLqGHXtq2bCtml17arHwCzhofRDO55CbE3whR9z8/LtJO46X392UtG0l08+eWJbuEJKuaSKB5l/0nXV6ryFpRMUSnVAa0kujepH52ImxoXrjVZsn9hZ+uMSs20LcsWo0XdbWuk1/OLS2flvJtaXFLZa340dLS3tuKaaYpUnadjy6WoJok5ldBlwGMGhQ544ZNKxfKcP6Jafv2N2pqYt8oXhUeay6UfMx6ta789nOmob5Ot/X6ql3b2gV1TcqC+YjLaS6cNmuPbXUuVOUl0turpFrRl5O0MJo9GpGXrg8kggbTWbs2FPLGbct4N+atJKaHqM3++3cwt8h5t8xVr34v5kb/W3dG/26d9+3rWB+30rRScDxZi29hv+SMb6wg/ex60feN40j+riaxhJPvUbLYrRgmrdqGm8nlugLXJpWaeszbr685WVNt95s3Xbsq71xtrhiK8UtXfjT0r/KFv++Sdh2rAWOM7+l+k10qauYzOx44Dp3nxS+vwbA3f8jVv22rmISEZHm4r2KqauNWfAmMNTMhphZATAVmJPmmEREuqUu1cXk7rVm9j3geYLLXGe4+/I0hyUi0i11qQQB4O7PAM+kOw4Rke6uq3UxiYhIF6EEISIiMSlBiIhITEoQIiISkxKEiIjE1KVulGsvM9sEfJjuOJKgD7A53UF0Ih1vdtPxdn2HuHtZW5UyOkFkCzOrjOeuxmyh481uOt7soS4mERGJSQlCRERiUoLoGu5OdwCdTMeb3XS8WULnIEREJCa1IEREJCYliDQws7Vm9o6ZLTWzyrDsQDN7wcxWh68HpDvOjjKzGWa20cyWRZXFPD4L3G5ma8zsbTMbk77IO6aF473OzNaHn/FSM5scteya8HjfNbNJ6Ym6Y8zsYDN7ycxWmNlyM/thWJ6Vn28rx5uVn28zHj59TFPnTcBaoE+Tsv8Erg7nrwZuSnecCRzfScAYYFlbxwdMBp4leKjaOOCNdMefpOO9DrgqRt3hwFtAITAE+AeQm+5jaMex9gfGhPOlwHvhMWXl59vK8Wbl59t0Ugui65gCzAznZwLnpDGWhLj7AuDTJsUtHd8U4H4PvA70MrP+nRNpcrRwvC2ZAvzF3fe4+wfAGmBsyoJLMnff4O5LwvntwEqCZ8ln5efbyvG2JKM/36aUINLDgblmtjh8xjZAP3ffEM5/DPRLT2gp09LxHQSsi6pXRev/ATPJ98JulRlRXYZZc7xmNhgYDbxBN/h8mxwvZPnnC0oQ6XKCu48BzgIuN7OTohd60FbN2svLsv34QncChwHlwAbgt+kNJ7nMrAR4DPiRu38evSwbP98Yx5vVn2+EEkQauPv68HUj8ARBE/STSNM7fN2YvghToqXjWw8cHFVvYFiW0dz9E3evc/d64E/s62bI+OM1s3yCL8sH3f3xsDhrP99Yx5vNn280JYhOZmbFZlYamQcmAsuAOcC0sNo0YHZ6IkyZlo5vDnBReLXLOGBbVFdFxmrSz34uwWcMwfFONbNCMxsCDAUWdXZ8HWVmBtwLrHT3W6MWZeXn29LxZuvn20y6z5J3twk4lOAqh7eA5cDPwvLewHxgNTAPODDdsSZwjA8TNLtrCPpgL23p+AiubvkjwdUe7wAV6Y4/Scf75/B43ib40ugfVf9n4fG+C5yV7vjbeawnEHQfvQ0sDafJ2fr5tnK8Wfn5Np10J7WIiMSkLiYREYlJCUJERGJSghARkZiUIEREJCYlCBERiUkJQjJKOLLmpCZlPzKzO81sgJnNamG9wWb2zwnu+2Uza/bs4bD8XTN7y8wWmtkRiexHpKtQgpBM8zAwtUnZVOBhd//I3b/WdAUzywMGAwkliDZc6O7HEAxUd3OMGHJTuG+RlFCCkEwzC/iSmRVAwwBqA4D/CVsJy8Lyi81sjpm9SHAD13TgxHDs/ivC5XdENmpmT5nZhHD+TjOrDMf//1U741sAHB5uZ62Z3WRmS4DzzKzczF4PB3h7IuqZCYeb2bywBbLEzA4Ly39iZm+G9X8VlhWb2dNh3WVmdn5YPj18ZsHbZnZLWFZmZo+F23jTzMaH5SdHPcfg75E7+0Waykt3ACLt4e6fmtkigoEOZxO0Hh5xdw9GRWhkDDAqXGcCwfj9X4YggbSym5+F6+QC881slLu/HWeIXyG4wzZiiwcDM2JmbwPfd/dXzOx64FrgR8CDwHR3f8LMioAcM5tIMEzDWIK7keeEgzqWAR+5+5fCbe5vZr0Jhns4Mvw79Ar3/XvgNnd/1cwGAc8DRwFXAZe7+8JwELrqOI9Nuhm1ICQTRXczTQ3fx/KCu8f7nIZoXw9/9f8dGEHwEJi2PGhmS4HxBF/AEX+F4Isc6OXur4TlM4GTwl/vB7n7EwDuXu3uuwjG6JoYxrAEOJIgYbwDnBG2TE50923ANoIv+XvN7KvArnAfpwN3hHHNAfYLE8JC4FYz+0EYU217/0DSPagFIZloNnCbBY+v7Onui1uot7OVbdTS+AdSEUA4wNpVwLHu/pmZ3RdZ1oYL3b2ynTG0xoD/cPf/brYgOO7JwA1mNt/drzezscBpwNeA7wGnEhzfOHdv2kKYbmZPh9tYaGaT3H1VB+OULKYWhGQcd98BvATMoOXWQ1PbCR4ZGbEWKDezHDM7mH3DNe9H8KW+zcz6EXRlJSPmbcBnZnZiWPRN4BUPnlJWZWbnAISjgPYk6A66JPzFj5kdZGZ9zWwAsMvdHyA4GT4mrLO/uz8DXAEcE+5jLvD9SAxmVh6+Hubu77j7TcCbBK0TkWbUgpBM9TDBszSaXtHUkreBOjN7C7gP+B3wAbCC4DGSkcdKvmVmfwdWETwZbGESY54G3BUmgPeBb4Xl3wT+OzwvUQOc5+5zzewo4LXw3MoO4BsEJ8BvNrP6sO6/EiS+2eH5CwOuDLf7A+CP4bmPPIIT6N8FfmRmpwD1BCMKP5vEY5QsotFcRUQkJnUxiYhITEoQIiISkxKEiIjEpAQhIiIxKUGIiEhMShAiIhKTEoSIiMSkBCEiIjH9fy/Jv8wSJryMAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 432x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["ax = df[[\"Presim. Time / s\", \"Sim. Time / s\"]].plot();\n", "ax.set_ylabel(\"Time / s\");"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 6\n", "<a name=\"task6\"></a>\n", "\n", "* To your `df` NEST data frame, add a column with the unaccounted time (`Unaccounted Time / s`), which is the difference of program runtime, average neuron build time, minimal edge build time, minimal initialization time, presimulation time, and simulation time. \n", "(*I know this is technically not super correct, but it will do for our example.*)\n", "* Plot a stacked bar plot of all these columns (except for program runtime) over the virtual processes\n", "* Remember: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 92, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["cols = [\n", " 'Avg. Neuron Build Time / s', \n", " 'Min. Edge Build Time / s', \n", " 'Min. Init. Time / s', \n", " 'Presim. Time / s', \n", " 'Sim. Time / s'\n", "]\n", "df[\"Unaccounted Time / s\"] = df['Runtime Program / s']\n", "for entry in cols:\n", " df[\"Unaccounted Time / s\"] = df[\"Unaccounted Time / s\"] - df[entry]"]}, {"cell_type": "code", "execution_count": 93, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "subslide"}}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Runtime Program / s</th>\n", " <th>Unaccounted Time / s</th>\n", " <th>Avg. Neuron Build Time / s</th>\n", " <th>Min. Edge Build Time / s</th>\n", " <th>Min. Init. Time / s</th>\n", " <th>Presim. Time / s</th>\n", " <th>Sim. Time / s</th>\n", " </tr>\n", " <tr>\n", " <th>Virtual Processes</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>8</th>\n", " <td>420.42</td>\n", " <td>2.09</td>\n", " <td>0.29</td>\n", " <td>88.12</td>\n", " <td>1.14</td>\n", " <td>17.26</td>\n", " <td>311.52</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>202.15</td>\n", " <td>2.43</td>\n", " <td>0.28</td>\n", " <td>47.98</td>\n", " <td>0.70</td>\n", " <td>7.95</td>\n", " <td>142.81</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>"], "text/plain": [" Runtime Program / s Unaccounted Time / s \\\n", "Virtual Processes \n", "8 420.42 2.09 \n", "16 202.15 2.43 \n", "\n", " Avg. Neuron Build Time / s Min. Edge Build Time / s \\\n", "Virtual Processes \n", "8 0.29 88.12 \n", "16 0.28 47.98 \n", "\n", " Min. Init. Time / s Presim. Time / s Sim. Time / s \n", "Virtual Processes \n", "8 1.14 17.26 311.52 \n", "16 0.70 7.95 142.81 "]}, "execution_count": 93, "metadata": {}, "output_type": "execute_result"}], "source": ["df[[\"Runtime Program / s\", \"Unaccounted Time / s\", *cols]].head(2)"]}, {"cell_type": "code", "execution_count": 94, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "-"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAEXCAYAAAC9NcJWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8TPf+x/HXTCYJsYSSiK262KqKFEWpXK6tCKqqWqXUEm3DrSpqV0qoqEt10dqKqrVUVWmv3upPI7VUbcW1t7ZsUkksSSYzvz/U1AgyiZMxiffz8ejjIWe+530+ZzL3cT858z3na7Lb7XZEREREROSWzHe6ABERERGRvECNs4iIiIiIC9Q4i4iIiIi4QI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAvUOIuIiIiIuECNs4iIiIiIC9Q4i4iIiIi4QI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAssd7qA6yUmXsBms99yTIkShUlISLntYxmVY2SWJ9ZkZJZqcm+Op2apJvdnqSb3Z6km92epJvdn5dWazGYTxYsXyna2xzXONps9y8b56jijjmeU/FyTkVmqyb05npqlmtyfpZrcn6Wa3J+lmtyfld9rupamaoiIiIiIuECNs4iIiIiIC9Q4i4iIiIi4wOPmOIuIiEjekJFhJTExDqs17bZyYmPN2Gy2267HqBwjszyxJiOzPL0mi8WH4sUD8PIypuVV4ywiIiI5kpgYR4ECfhQqFITJZMpxjsVixmq9/YbJqBwjszyxJiOzPLkmu93OhQtJJCbGUbJkaQMq1FQNERERySGrNY1ChYreVtMskltMJhOFChW97W9ErqXGWURERHJMTbN4MqM/n5qqISIiIoYoUrQgBXyNby0up1pJTrpkeK5Idnl84+xf1AcfX99M2wMCijj+nZaayvkk4y7Di4iISPYV8LUQOuhLw3O/mtqe5CzGnDlzmv79w1ix4iun7Y0a1WHz5u2G15RbvvzyC/z8/GjevJXL+3TqFMp7782idOkyjm3Dhr3BmTOnuXTpIufOJVC2bHkAXn65P3v27KJatYd5/PEnDK19w4Z1pKSk8PTTnQ3N9SQe3zj7+Poyc1jPW44Jj5gHqHEWERGRvG3v3t0EB9e+7ZyIiEgAfvllO3PnfszMmR87XqtXr4GhN/VdFR0dRe/e/QzN9DQe3ziLiIiI3K51677i55+jSEpK4vTpU9StW5833ngTq9XK1KmTOHr0COfOnePeeyswceI7WCx+LF36GatXr8TLy4vHH3+CV14ZwNmzZ5g48S0SE89RoEABhg4dRcWKlfj66zUsWbIIk8lElSoPMXDgEPz8/Khf/1HHFe91675i584djBgxlk6dQmnZsjVbt27h0qXLjBz5FsnJSWze/CM7dmyjRImSVKpUmSlTJhITE4PZbOaVV/rz6KN1SUo6z7hxo4iNjeG++x4gLS17Fw8nTBhL7dp1qFnzUYYNe4MyZcpy9OhhqlR5iODg2nzzzVqSk5OYODGS++67n/379zFjxrukpl7G378YgwcPp0yZsk6ZNpuNs2dPU7ZsOaftS5Ys4ptvvsZsNvHQQw8zZMiI2/tF3mG6OVBERETuCnv27GbChHf49NMlREX9H0eOHGbv3t1YLN7MmjWPpUtXkZp6mS1bfmLfvr2sWrWCTz5ZwPz5n3Pw4AEOHNjP1KmTCAlpysKFy3jppb58+ukcjhw5zIIFc5k582MWLFhKgQIFmTfvkyzr8ff355NPFtChQ0cWLpxL3br1aNSoMb1796NevQZMnx5JmzbtmDt3EZMmvcvkyRO4ePECs2d/ROXKVVmwYCkdOz7DuXMJOX5Pjhw5RI8evVi8eCUHDvzG2bNnmDVrHs2atWTNmi9IT09n0qS3GTNmAnPnfkaXLi8wefKETDn79/9G1aoPO22zWq0sWjSfOXMWMmfOIsxmM3FxsTmu1RPoirOIiIjkeSZT5muBdrvd6akKjzxSAz+/QgCUKVOWpKTzBAfXpmhRf1auXMbvvx/n5Mk/uHTpEr/++gsNGz5B4cKFAZg+/QMAfv31F8aOvdI4NmjQiAYNGrFy5VIaNnwCf/9iALRr9xQREW9lWXO9eo8D8MADFdm06b+ZXt++fSsnTpxg9uxZwJVG9NSpk+zcuYOxYycCUKvWo5mu/mbHPfeUoHLlqgAEBARSu3ZdAIKCSrNz52n++OMEp0+f5M03X3fsc+HChUw50dE/Ub/+407bLBYL1avXoHfv7jzxRAgdOz5DQEBgjmv1BGqcRUREJM8rWrQIFy6kOG1LTDxHkSJFHT/7+Dg/bMBut7N58yZmz57FM890oXXrdvz555/Y7XYsFucWKT4+Dl/fAk4r0Nntdo4fP4bNZr+uGjsZGRlO40wmE1ar1WmUj4+P05jrZWTYmDHjQ4oW9f/rfBIoWrQYJpPJaYU9Ly+vG70lLvH29nb6+fqsjAwbZcqUZf78xX/9nEFi4rlMOb/++gsvvNAj0/aIiKns27eH6OgoBg0awOjR4w2Zw32naKqGiIiI5Hl+foUoX/5efvhho2PbmjWrqFPnsVvut337Vpo2bUabNu0oUaIEu3btxGbLoGbNYKKjo7h48SJWq5WxY0dw4MBv1KoVzH/+8+1f+/7MO+9MIDi4Nps3/0hS0vm/jrua4OA6ABQrVoxjx4781aT/mOV5eHl5OZru2rXr8MUXywE4duwoL7zwLKmpl6lT5zG+/fYbAPbv38epUyez+W65rkKF+0hKSmLXrp0AfP31GsaOdZ6n/Oeff1KwoB++1z0FLTExka5dO/HAAxXp3bsfdevW48iRQ7lWqzu4fMV58uTJJCYmMmnSJPbv38/IkSNJSUmhTp06vPXWW1gsFk6fPs3gwYNJSEjg/vvvJzIykkKFCuVm/SIiIuIhLqda+Wpq+1zJdcXYsW8zefJE5s2bjdWazoMPVuL114fecp/Q0Kd4660R/Pe//8Hb24eHH67O6dOn6dChIx07dqZfv57YbHZCQppQt2497r23ApMnv82qVSv+ujlwJPff/wDduvUkPLwvVquVKlUeYvDgYQC88soAhgwZyD33lKBGjVqcP//nLeupU+cxZs36gMKFCzNw4BDeeWcCL77YBbvdzpgx4/HzK0SvXmFMmPAWL7zQmQoVKtzWVI2s+Pj4MH78JKZPjyQtLQ0/v0KMHOk8DWXr1i3Uq1c/077FixenffuO9OnTHV/fApQqFUTr1qG5Vqs7mOw3+m7gOlu2bGHgwIH84x//YNKkSbRt25a3336bWrVqMXz4cKpXr87zzz9PWFgY7dq1o02bNrz//vtcvHiRwYMHZ6ughIQUp688AgKKuPQ4uri4rJ7wmFlAQJEc7ZebWZ5Yk5FZqsm9OZ6apZrcn6Wa3J91N9S0Z89egoIq3HaWUY9GM/IRa/m5JiOz8kJNZ8+eyPQ5NZtNlChRONvZWU7V+PPPP5k2bRr9+l15Lt+pU6e4fPkytWrVAqBjx46sX7+e9PR0tm3bRsuWLZ22i4iIiIjkB1lO1Rg9ejQDBw7kzJkzAMTGxhIQEOB4PSAggJiYGBITEylcuLBjMv3V7dmVk+7/yvGKZD3IwP1yM8sTazIySzW5N8dTs1ST+7NUk/uz8ntNZrMZi8WY26U8LcfILE+sycgsT6/JbDYb9rm/ZeO8fPlySpcuTYMGDfjiiy+AG9/1aTKZbro9u240VcMVmqqRN7JUk3tzPDVLNbk/SzW5P+tuqMlms3nU1/15YdpAfsvKCzXZbLZMn/ucTtW4ZeO8bt064uLiaN++PefPn+fixYuYTCbi4+MdY+Li4ggMDOSee+4hJSWFjIwMvLy8HNtFRERERPKDW14PnzdvHmvXruXLL79kwIABNG3alIiICHx9fdmxYwcAq1evpnHjxnh7e1OnTh3WrVvntF1EREREJD/I0USSyMhIIiIiePLJJ7l06RLdu3cHYMyYMSxbtozWrVuzfft2XnvtNUOLFRERERG5U1x+jnPHjh3p2LEjAFWrVmXFihWZxpQtW5aFCxcaV52IiIjkGcX9fbBctzqfEaxpqSSeTzM8VyS7tOS2iIiIGMLi48vRCU8bnvvAiJWA643z0aOH6d69C2+/PZl//OOfhtbSqFEdhgwZQbt2Tzm2hYf35aWX+vLoo3UMPVZ2deoUSoECBbBYvLFarQQFBTFixFsUL178pvts3ryJAwf207t3Pzp1CuW992ZRunQZpzE3Or+pUyezZ88urNZ0Tp78g/vuewCAZ57pQnr6ld9Vhw6dDD2/Xbt+ZfPmTbz66r8Mzc0ONc4iIiKSr3z99Vf84x//ZPXqlYY3zgAff/wB9eo1oFSpIMOzb9eUKdMdje/06VP5/PMFvPLKzRvNRo1CaNQoJNvHGTToyoqMsbFneeWVPsyfvzhnBWdDdPRP1K//eK4f51bUOIuIiEi+YbVa+fbbb3j//U94+eWXOHXqJMeOHWHNmlW8886/AVi5cil//PE74eEDmTJlIrt3/0pAQCAmk4kXX+yV5ZXjZ57pwuTJb/PuuzMzvfbNN2tZvvxzbDY7VapUZciQYXh5edOoUR02b94OwLp1X7Fz5w5GjBhLp06hVKtWnUOHDvLBB7OJitrMkiWLMJlMVKnyEAMHDsHPz4/27VvSpEkzdu3aiZeXhXHjIm651LbNZuPixQuOK8Fz5swCoFevMAA6dGjDe+/NYufOHY5arkpLS2Py5PEcOLCfoKAyWS4Tfr1rj9WuXUsaNnyCXbt2UqJESZ566hlWrFhCXFwsw4ePITi4NidP/kFkZARJSUn4+voycOBgKleumil3z55dvPRSX6dt3367nsWLF2A2mylTpgyjRo3HYimYrXqzw7gnVouIiIjcYVu2bCYoKIh7763AE0/8gy+/XEn9+g05ePAASUlJAPznPxto0eJJVq9eweXLl1i8eCXDh49h//7fXDpG164vcv78edasWeW0/ejRI3z11Wo+/HAu8+cvpnjxe/jss6zv/apf/3E+//wLzp07x4IFc5k582MWLFhKgQIFmTfvEwASEhKoW/cx5s1bTM2awaxcueyGWYMH/4sePZ7nqadas23bzzRp0sylc7rWihVLAfjssxW89tobnDp1KtsZV507l8Djjzdi8eKVAPz443/54IPZvPRSX5Yt+xyACRPG8MorA1iwYDFDhoxgzJjhmXISEuIpUqQo3t7eTts/+eRDpk2bydy5i7j33vv4/ffjOa7VFbriLCIiIvnGunVf0axZSwD++c/mvPXWKPr0eYWQkCZs2vQ9devW4/z581SrVp1PP51DaOhTmEwmgoJKU7t2XZeOYbFYGDFiDAMGvEy9eg0c23fu3M7Jk38QFtYTAKs1nSpVMl85vV61atUB+PXXHTRs+AT+/sUAaNfuKSIi3nKMuzpN4YEHHmTXrp03zLp2qsbKlcsYNCicRYuWu3ReV/366w7atbvyQIjy5e/lkUdqZGv/69Wv3xCAoKDS1KhRC4BSpYJITk7i4sWL7N//GxMnjsNkArsdLl26xPnzfzreB4Cff97i9F5f1bDhE7z8ci+eeOIfhIQ0pVKlKrdVa1bUOIuIiEi+cO7cObZs+YkDB/azfPkS7HY7yclJ/PDDRlq0aM3s2R+SnJxE8+atADCbvbDbc7ZS3QMPVHRM2bgqI8NG06bNeO21wQB/LRz392rIdrsdk8mE1Wp1yvL1vfIkkmtXTv5rDzIyMpzGWa22m67YfL2WLVszbdo7nD9/PtM+GRnWW+xpcnpfvLy8sjzWrVx7lfj6LJvNho+PL/PnL3as+BcbG0PRov5O46Kjo244V/u1197g8OH2bNmymfHjR/HSS31p06btbdV7K5qqISIiIvnC+vXrqF37MVatWseKFV+xcuVaund/iS+//ILq1R8hPj6eDRvW0aLFkwDUrVuP//znW+x2O/HxcezcuQOTyeTy8a5O2di3bw8AwcG1+fHHH0hMPIfdbmfq1AiWLPkMgGLFinHs2BHsdjubN/94w7zg4Nps3vwjSUnnAVizZjXBwTl/UseOHVsJDCxFsWLF8PcvxrFjRwH47be9TqtAX69Oncf47rsN2Gw2zp49w549u3NcQ1YKFy5MuXLl2bDhygJ627ZF8+qrzvOYMzIyiIuLJSjI+WZMq9VKly5PUaxYMbp160mrVm343/8O5lqtoCvOIiIiYhBrWupfj44zPtcVX3+9hj59XnHa1rHjMyxevIATJ47zz3825+eft1C2bDngylSIQ4f+R/fuz1KiREmCgko7rv5269aFKVOmU7JkwE2Pd3XKRq9e3QCoVKkyPXv2YcCAftjtdipVqkL37lembfTrF86QIQO5554S1KhR64Y33FWsWIlu3XoSHt4Xq9VKlSoPMXjwMJfO/arBg/+FxeKNzZaBt7cPb701EYBmzVqwadP3vPDCM1SpUpXKlW8+paFjx2c4duwIXbt2IiioNA888GC2asiuMWPeZsqUiSxevACLxZtx4yY6/QGzb98eHn74kUz7WSwWevUK47XXXsHXtwCFCxdh5MixuVqrye7KtX43SkhIcfqqIiCgCDOH9bzlPuER84iLS872sQICiuRov9zM8sSajMxSTe7N8dQs1eT+LNXk/qy7oaY9e/YSFFThtrOufkXv7pyoqM3Y7XYaNnyClJQUevbsypw5Cyha1P+O1ZTXsvJCTWfPnsj0OTWbTZQoUTj72bddnYiIiEgedN999zN+/Gg++eRDAHr3Dss0t1bkWmqcRURE5K5UpkxZPvxwzp0uQ/IQ3RwoIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gLNcRYRERFDFCnmSwFvH8NzL6enkfyna4+kE8lNLjXO06dPZ8OGDZhMJjp16kTPnj0ZNmwYO3bsoGDBggCEh4fTvHlzoqKiiIiIIDU1lSeffJKBAwfm6gmIiIiIZyjg7UPnpS8bnrvs2Q9J5taN85kzp3nmmXa0a/cUQ4aMcGw/dOggPXt2ZfjwMbRuHUqPHs8zf/7ibNdw5sxpnnuuI/fd94DT9tDQDjz9dGenbevWfcXOnTsYMWJsto9zrQkTxrJjxzaKFvXHbrfh7e3NwIFDefjh6jfdJz4+jkmTxhMZOYMJE8YSHFyb1q1DncbMmTMLs9lEz55/LzTy9ddrWL58CQDHjx+lXLnyWCzePPJITdq0CWX16pW8+eao2zqf66WlpfH66+HMnPmxobm5KcvGeevWrURHR7NmzRqsViutW7cmJCSEvXv3smjRIgIDAx1jL1++zPDhw1m4cCGlS5cmLCyMTZs2ERISkqsnISIiIuLvX4yff95CRkaGY2nnjRu/o1ix4o4xOWmarypZMuC29s+J3r37ORrfn37axL///Q6ffLLgpuNLlgwgMnJGto/Tpk072rRpB0CnTqFMmTKd0qXLOF5/881q2c7Myq5dv1Cr1qOG5+amLBvnxx57jAULFmCxWIiJiSEjIwNfX19Onz7NqFGjOH36NM2bNyc8PJzdu3dToUIFypcvD0BoaCjr169X4ywiIiK5rmDBglSqVJldu3by6KNXlqreujWaOnUec4xp1KgOmzdvZ86cWcTHx/HHH78TE3OWtm3b8+KLvXJ87PXrv+bTT+dQqFBhgoKCKFjQD4AdO7YzdepkvLy8ePjhGhw/fpSZMz/m5Mk/iIyMICnpPL6+BRg4cDCVK1e95TFSUlIoXrwEAL/8sp25cz92XK29enU5OLg2/fuHsWLFV077Ll68gDVrVuHvX4wiRYrc8qr19a49Vnh4XypXrsL27VtJTU1l0KChLF36OceOHeHZZ5/n2We7cvHiRd59dzJHjx7BZrPRtWt3mjdvlSk3OjqKJk2aOW07fPgQ77wzgYyMDHx8fBg+fAzly9/rcq25zaWpGt7e3syYMYO5c+fSqlUrMjIyqF+/PuPGjcPPz4+wsDBWrFiBn58fAQF/L00ZGBhITExMtgrKySoucGUFI3ful5tZnliTkVmqyb05npqlmtyfpZrcn5XfazKbzVgs7nnOQFbH8fK68vqVpaU38thjj/Hbb/uoVKkSdvuVleKuZlgsZsxmE0eOHGbWrDkkJyfTqVM7OnfuQpEif78/1x7Ty8tMfHwcPXs+73TcMWPG4+9fjA8/fI8FCz7H39+fQYMG4OdXCMjgrbdGMXXqdCpVqsy7707BZLpSx4QJY3njjaFUqVKVY8eOMnToIJYtW+WUbTKZmDNnFsuXf86lS5eIiTnLlCnTsFjMeHmZHVlXx5rNJsf7YLGYHdsOHTrA11+vYcGCzzGZTPTu/WKW76mX19+/22uPdTVz8eLlzJ49i3ffncyiRUtJTEyke/fn6Nq1GwsXzuWhh6oxdux4LlxIoU+fntSoUcOx1PlVv/22jwEDBjpqBli+fDFdu3bjn/9sznffbeDAgb3cf/99t/zd38i152Y2mw373Lt8c+CAAQPo06cP/fr1Y8uWLbz//vuO17p168bq1atp1SrzXxPXrjXuihstue0KLbmdN7JUk3tzPDVLNbk/SzW5P+tuqMlmsxm23HJWsjpORsaV1xs0aMRHH31AWpqVb7/dQJMmzdm48VtsNrsjw2q1YbPZCQ6ujcnkRdGixShSpCjnzydRsGAhIPOyzRkZNkqWDGDevMxTNf773/9Qvfoj+PtfmRLSvPmT7NixjYMHD1G8eHHuv78iVquNJ58M5X//iyQpKYX9+/cxfvxYR8bFixdJSDiHv38xxza73U6vXmGOqRpHjvyPl1/uw/z5i8nIsGG3/31Odrsdm83ueB+sVptj27Zt26hfvyE+PgUAaNKkGXb7rX93GRl/v37tsex2O4899jhWq43AwCAefvgRLBZfAgKCSE5Oxmq1sXXrz6SmXuarr74E4NKlSxw6dJhSpf6e+nHmzGkCA0tht5scx7FYzNSv35DIyMlERf3E448/QdOmTbP9Gbv+d2ez2TJ97nNtye0jR46QlpbGQw89RMGCBWnRogXr1q2jWLFitGzZErjyy7JYLJQqVYr4+HjHvrGxsU5zoEVERERyk59fISpWrMTu3b/yyy/b6NcvnI0bv73hWB+fv58AYjKZsNvtNxyXFZPJ5HTR7+r8arPZfMNMm82Gj4+v03zp2NiYLJf7rlKlKmXLluXgwf1O87YBrFbrLeuz2/9uJL28vG7rDx6L5e/20csrcytps2UwatR4qlS5MvXk3LmETOcWHR1F/fqPZ9q3SZNmVK9eg59++j+WL/+c6OifGDp0ZI5rNVqW36+cPHmSkSNHkpaWRlpaGhs3bqRu3bpMnDiR8+fPk56eztKlS2nevDk1a9bk2LFjnDhxgoyMDNauXUvjxo3dcR4iIiIiADRt2oyPPppJlSrVnJq83FKjRi1++20PcXGx2Gw2vv/+OwDuu+9+kpKSOHLkMADffbcek8lE4cKFKVeuPBs2rANg27ZoXn21703zrzpz5jRnzpymYsXK+PsX4/TpU6SmppKUdJ5du3bedL86deoSFbWZlJQUUlNT+fHH/xpw1jf36KN1Wb16BQDx8fG8+OJzxMScdRqzdesW6tVrkGnf0aOH8dtv++jQ4Wl69+7HwYMHcrXW7Mry0xQSEsKuXbvo0KEDXl5etGjRgvDwcIoXL85zzz2H1WqlRYsWtG3bFoBJkybRv39/UlNTCQkJueH0DREREcl/LqensezZD3MlNzsaNmzMpEnj6d27X7aPFR8fxxtv/ItFi5bc8LUePZznONeqFcxrrw3+679XKFCgIPfddz9w5R6xsWPf5u23R2Mymbn33gr4+voCMGbM20yZMpHFixdgsXgzbtzEG05vnT37I5Yt+xyAtLRUXn31NcfNcg0aNKRbt86ULl2GmjWDb3pOlSpV4ZlnnqN37+4UKVKEUqVKZ/t9yY6XXurD1KmT6datMzabjVdeGeA0vzktLY3k5GTuuadEpn27devJ5Mlv8+mns/Hy8qJ/f896rLHJntPvJXLJjeY4zxzW85b7hEfM0xznPJKlmtyb46lZqsn9WarJ/Vl3Q0179uwlKKjCbWddPyf1TucYlWWz2Zg1ayY9evShYMGCLFmyiLi4uBw3g552fkbmGJl1fc7ZsycyfU5zbY6ziIiIiGSf2WzG39+fPn26Y7F4U7p0acMXERH3UuMsIiIikku6d+/J88+/eKfLEIO45+GLIiIiIiJ5nBpnEREREREXqHEWEREREXGBGmcRERERERfo5kARERExRPEiPlgK+Bqea72cSmJy9p7lLJIb1DiLiIiIISwFfPmp/dOG5zb8ciVk0TifOXOaZ55pR7t2TzFkyAjH9kOHDtKzZ1eGDx9D69ah9OjxvNNS19nRqFEdNm/eftPX4+PjmDRpPJGRM9i8+UdOnvydF17oftPxw4a9wZkzp7l06SLnziVQtmx5AF5+uT979uyiatWHaNQoJEe13syGDetISUnh2We7GJp7t1DjLCIiIvmCv38xfv55CxkZGXh5eQGwceN3FCtW3DEmp02zK0qWDCAycgYABw/uz3J8REQkAL/8sp25cz9m5syPHa/daDlqI0RHR+VoRUW5Qo2ziIiI5AsFCxakUqXK7Nq1k0cfrQPA1q3R1KnzmGPM1avGc+bMIj4+jj/++J2YmLO0bdueF1/s5dJxfvllOwsXzqNAgQIcP36MBx+syJgxE4iPj6N//zCmTJnOl19+AUDZsmVo1So02+cyYcJYgoNrExxcm2HD3qBMmbIcPXqYKlUeIji4Nt98s5bk5CQmTozkvvvuZ//+fcyY8S6pqZfx9y/G4MHDKVOmrFOmzWbj7NnTTstfAyxZsohvvvkas9nEQw897HTFXpzp5kARERHJN5o0ac5//7sRgP3791GxYiW8vb1vOPbw4UNMm/Y+H388n0WLPiU52fXlyPfu3c3AgUP47LMVxMSc5eeftzheu//+B2jfviPt23ekbdv2t3dCwJEjh+jRoxfLlq3iwIHfOHv2DLNmzaNZs5asWfMF6enpTJr0NmPGTGDu3M/o0uUFJk+ekCln//7fqFr1YadtVquVRYvmM2fOQubMWYTZbCYuLva2a86vdMVZRERE8o1GjZ7gk08+xGazsXHjdzRt2pyNG7+94dgxBRekAAAgAElEQVRHH62Dt7c3xYvfQ9GiRblwIYUiRYq4dJz773+QwMBSAFSocD/JyUmGncP17rmnBJUrV8VsNhMQEEjt2nUBCAoqzc6dp/njjxOcPn2SN9983bHPhQsXMuVER/9E/fqPO22zWCxUr16D3r2788QTIXTs+AwBAYG5di55nRpnERERyTf8/ApRsWIldu/+lV9+2Ua/fuE3bZx9fHwc/zaZTNjtdpePczv7Ztf1V8yvzt++KiPDRpkyZR3ztzMyMkhMPJcp59dff+GFF3pk2h4RMZV9+/YQHR3FoEEDGD16PMHBtY07gXxEUzVEREQkX2natBkffTSTKlWqYbHcmWuEXl5eZGRkuOVYFSrcR1JSErt27QTg66/XMHas8zzlP//8k4IF/fD1dX5cYGJiIl27duKBByrSu3c/6tatx5Ejh9xSd16kK84iIiJiCOvl1CuPjsuF3Oxo2LAxkyaNz9HTI+Lj43jjjX+xaNGSbO97rVq1HmXChLGULFmSatWqM3v2R44nbhjNx8eH8eMnMX16JGlpafj5FWLkyLecxmzduoV69epn2rd48eK0b9+RPn264+tbgFKlgmjdOvs3M94tTPbc/G4hBxISUrDZ/i4pIKAIM4f1vOU+4RHziItzfUL/tdk52S83szyxJiOzVJN7czw1SzW5P0s1uT/rbqhpz569BAVVuO0si8WM1WrzmBwjszyxJiOz8kJNZ8+eyPQ5NZtNlChRONvZLk3VmD59Oq1bt6ZNmzbMmzcPgKioKEJDQ2nRogXTpk1zjN2/fz9PP/00LVu2ZMSIEVit1mwXJSIiIiLiabJsnLdu3Up0dDRr1qxh5cqVLFy4kAMHDjB8+HA++OAD1q1bx969e9m0aRMAgwcPZtSoUWzYsAG73c6yZcty/SRERERERHJblo3zY489xoIFC7BYLCQkJJCRkUFSUhIVKlSgfPnyWCwWQkNDWb9+PadOneLy5cvUqlULgI4dO7J+/fpcPwkRERERkdzm0s2B3t7ezJgxg7lz59KqVStiY2MJCAhwvB4YGEhMTEym7QEBAcTExGSroJzMN7lyLNeeu2jUfrmZ5Yk1GZmlmtyb46lZqsn9WarJ/Vn5vSaz2YzFYswDujwtx8gsT6zJyCxPr+nK86+N+dy7/FSNAQMG0KdPH/r168fx48czvX6zZxiaTKZsFXSjmwNdoZsD80aWanJvjqdmqSb3Z6km92fdDTXZbDaPusEsL9yolt+y8kJNNpst0+c+pzcHZtk4HzlyhLS0NB566CEKFixIixYtWL9+vdPDt2NjYwkMDKRUqVLEx8c7tsfFxREYqNVnRERE7gb+RQvi42v8k27TUq2cT7pkeK5IdmX56T558iQzZszg888/B2Djxo106dKFd955hxMnTlCuXDnWrl3L008/TdmyZfH19WXHjh3Url2b1atX07hx41w/CREREbnzfHwtjBu01vDc0VPbZjnmzJnTPPdcR+677wFMJkhPt1KyZEmGDx/jWBo7p2bP/oiqVR+iUaOQHGccOXKY8eNHAxATc5aCBQtStKg/3t7efPLJp/To8bxj5T8jvf56f8aNi6Bw4ZxNhRVnWTbOISEh7Nq1iw4dOuDl5UWLFi1o06YN99xzD/379yc1NZWQkBBatWoFQGRkJCNHjuTChQtUq1aN7t275/pJiIiIiJQsGeDUfH700UymTZtCRETkbeXmZCGV6z34YEVHbRMmjCU4uLbTQiO50TRfvHgRmy1DTbOBXPo+ZcCAAQwYMMBpW4MGDVizZk2msVWrVmXFihXGVCciIiKSQzVrBrN5848AdOoUSrVq1Tl06CAffDCb6Ogoli//HJvNTpUqVXn99aF4eXkREfEWR48ewWQy0aFDJ9q1e8rR6AYH12bYsDcoU6YsR48epkqVhwgOrs0336wlOTmJiRMjue+++3NUa6NGddi8eTtz5swiJuYshw8f4s8/E+nT52V27NjGb7/tpVKlyowdOxGTycTChfP573+/IyPDRr169Xn55QGZ7iv75Zdt1K5d12nbhQspjB07gnPnErDb4aWX+tzWlfS7jXG3QYqIiIh4CKvVyvfff8cjj9R0bKtf/3E+//wLEhMT+eqr1Xz44Vzmz19M8eL38PnnC9mzZxdJSUnMm7eY9977kD17dmXKPXLkED169GLx4pUcOPAbZ8+eYdaseTRr1pI1a74wpPajR4/w8cfzGTVqHBER4+ja9UUWLFjKwYMHOHz4ENHRURw8uJ9PPlnAvHmfERcXx7fffpMpJzo6ivr1H3fa9uOPPxAUVIZPP13M6NHj2bXrV0NqvlsYP4NfRERE5A6Ij4+jR4/nAUhPT+Ohhx7m5ZfDHa9Xq1YdgJ07t3Py5B+EhfUEwGpNp3Llqjz1VCd+//0Er78eTsOGjXj55f6ZjnHPPSWoXLkqAAEBgY4rukFBpdm587Qh51G3bj0sFgtBQaUpUaIk99//gON4yclJbN++ld9+20uvXt0ASE29TKlSQZlyDh8+RMWKlZ22Va9eg1mz3ichIY769RvSo0cvQ2q+W6hxFhERkXzh+jnO1/P19QUgI8NG06bNeO21wcCVucAZGRkUKVKEhQuXsW3bz/z8cxQvvfQCCxc6r4Ds7e3t9PO1TxkzisXyd3t2o3ybLYPOnZ+jS5cXAEhOTs407vjxY9x7b4VM0zfKl7+XxYtXsG1bND/+uIklSxbx2Wcrsv344LuVpmqIiIjIXSU4uDY//vgDiYnnsNvtTJ0awbJli9m8eRPjxo3i8ccb8frrgylYsCCxsdlbyM0dHn20Lhs2rOPixYtYrVaGDRvEDz9sdBoTHf0T9es3zLTvypVLmTNnFv/8Z3MGDXqTxMREUlJS3FV6nqcrziIiImKItFSrS4+Oy0mukSpVqkzPnn0YMKAfdrudSpWq8MILPfDy8uK//91It26d8fHxJSSkKQ8+WDHb+bNnf0TJkiXp0KGToXVf1ahRYw4f/h99+/bAZsugXr3HefJJ5/d927atjB07IdO+rVq1YezYEXTt2hkvLy9eeqkvRYoYt5pkfmey32i5vzvoRisHzhzW85b7hEfM08qBeSRLNbk3x1OzVJP7s1ST+7Puhpr27NlLUFCF2866m1axy29ZeaGms2dPZPqc5nTlQE3VEBERERFxgRpnEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF+g5ziIiImII/6I++Py1Op+R0lJTOZ+UZniuSHapcRYRERFD+Pj6Zrn2Qk6ER8wDsm6cv//+P8yfP5eMjAzsdhutWrXh+ee7A/DGGwN4881RlCwZkOM6vv56DcuXLwHg+PGjlCtXHovFm0ceqUmbNqGsXr2SN98cleP8G0lLS+P118OZOfNjQ3MlZ9Q4i4iISJ4XFxfLjBnvMmfOIvz9i3Hx4kXCw/ty770VaNQohMjIGbd9jDZt2tGmTTsAOnUKZcqU6ZQuXcbx+ptvVrvtY1xv165fqFXrUcNzJWdcapxnzpzJN998A0BISAhDhgxh2LBh7Nixg4IFCwIQHh5O8+bNiYqKIiIigtTUVJ588kkGDhyYe9WLiIiIAH/++SdWq5XLly/j7w9+fn6MHDkWH58rU0c6dQrlvfdmsXPnDqKiNhMfH0dsbAydOz9HTEwMv/yyjaJF/YmMnIFvDqab/PLLdubO/ZiZMz8mPLwvlStXYfv2raSlpfKvfw1mxYqlHDt2hGeffZ5nn+3KxYsXeffdyRw9egSbzUbXrt1p3rxVptzo6CiaNGnmtO3w4UO8884EMjIy8PHxYfjwMZQvf2/O3jjJliwb56ioKDZv3syqVaswmUz07t2b7777jr1797Jo0SICAwMdYy9fvszw4cNZuHAhpUuXJiwsjE2bNhESEpKrJyEiIiJ3t0qVKvPEE/+gc+f2VK5cheDgOjRv3opy5cpnGrt//z4WLFhCcnIynTqFMnXqe/zrX4Po3z+MrVu38MQT/zCkpgULljJ//if8+99T+PTTJfz5ZyI9elxpnD/9dA5VqjzEyJFvceFCCv36vUS1atUpW7acU8Zvv+3llVf+5bRt2bLFdOnyAk2bNmPjxm/Zt2+PGmc3yfKpGgEBAbz55pv4+Pjg7e3Ngw8+yOnTpzl9+jSjRo0iNDSUGTNmYLPZ2L17NxUqVKB8+fJYLBZCQ0NZv369O85DRERE7nJDhw5nxYqv6NChEzExZwgL68mmTd9nGvfIIzUpVKgwQUGlAahduy4AQUGlSU5ONqSW+vUbOjIffvgRChQoQFBQaVJSruRv376VL79cSY8ez/Pqq325fPkyx44ddco4c+Y0gYFBeHl5OW1v0KAh06a9Q0TEOCwW7xteqZbckeUV50qVKjn+ffz4cdatW8fixYvZunUr48aNw8/Pj7CwMFasWIGfnx8BAX9Pug8MDCQmJiZ3KhcRERH5S1TUZlJTL9GkSXPHXOQ1a1axdu2XhIQ0dRrr7e3t9LPFYvwtX9dmXt/4AthsGYwaNZ4qVaoCcO5cAkWL+juNiY6Oon79xzPt26RJM6pXr8FPP/0fy5d/TnT0TwwdOtLgM5AbcfmTcujQIcLCwhg6dCgPPPAA77//vuO1bt26sXr1alq1yvwXj8lkylZBJUoUztb4qwICirh1v9zM8sSajMxSTe7N8dQs1eT+LNXk/qz8XpPZbMZicc+SEFkdp1Chgvz731N4+OFHKFOmDHa7nd9/P0aVKlUd+3p5mTGbTZhMJqe8q/82mUyYzX+/ltUxvbzMTtlXc00mk9NrNzpenTqP8eWXKxk+fBTx8XG8+OJzfPLJPKepJdu2RTN06IhM+44YMZTmzVvSqdMzPPjgA/z731Nz9Hsw6ndn5GcgN2oym82Gfe5dapx37NjBgAEDGD58OG3atOHgwYMcP36cli1bAmC327FYLJQqVYr4+HjHfrGxsU5zoF2RkJCCzWZ3/OzqicbFZf+rlYCAIjnaLzezPLEmI7NUk3tzPDVLNbk/SzW5P+tuqMlms2G12hzb0lJT/3p0nLHSUlOdjnMjNWvWplevvgwaNACr1QpAvXoNePHF3o59MzJs2Gx27Ha7U97Vf9vtdmy2K68NHvwvevUKo2rVmz8pIyPD5pR9Nddutzu9dqPj9ejRm6lTJ/Pcc52w2Wy88soAgoLKOsalpaWRlJSEv39xxzaLxYzVauOFF3oyefLbzJ37CV5eXoSHD8zy/bne1azbZVSOkVnX59hstkyfe7PZlKOLtVk2zmfOnOHVV19l2rRpNGjQALjyAZg4cSL169fHz8+PpUuX8tRTT1GzZk2OHTvGiRMnKFeuHGvXruXpp5/OdlEiIiKS91xZpCT7C5UY1TC1aRNKy5ZtbvjaihVfAVC6dBlatw51bN+8ebvj3yNGjHX8e9q0925Z09W8qx59tA6PPloHwOmZy23btqNVq7aZjleoUGFGjx5/03wfH5+bPru5UqXKzJ694Kb7Su7JsnGeM2cOqampTJo0ybGtS5cu9O3bl+eeew6r1UqLFi1o2/bKh2LSpEn079+f1NRUQkJCbjh9Q0REREQkr8mycR45ciQjR954wnnXrl0zbWvQoAFr1qy5/cpERERERDyIe2b0i4iISL5kt9uzHiRyhxj9+VTjLCIiIjlisfhw4UKSmmfxSHa7nQsXkrBYfAzLNP7BhSIiInJXKF48gMTEOFJS/rytHLPZjM12+zcHGpVjZJYn1mRklqfXZLH4ULx4QBZ7uE6Ns4iIiOSIl5eFkiVL33aOpz5uL7/WZGRWfq/pepqqISIiIiLiAjXOIiIiIiIuUOMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLlDjLCIiIiLiAjXOIiIiIiIuUOMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLnCpcZ45cyZt2rShTZs2vPPOOwBERUURGhpKixYtmDZtmmPs/v37efrpp2nZsiUjRozAarXmTuUiIiIiIm6UZeMcFRXF5s2bWbVqFatXr2bfvn2sXbuW4cOH88EHH7Bu3Tr27t3Lpk2bABg8eDCjRo1iw4YN2O12li1blusnISIiIiKS27JsnAMCAnjzzTfx8fHB29ubBx98kOPHj1OhQgXKly+PxWIhNDSU9evXc+rUKS5fvkytWrUA6NixI+vXr8/1k3CFf1EfAgKKOP0HZNrmX9TnDlcqIiIiIp7IktWASpUqOf59/Phx1q1bR7du3QgICHBsDwwMJCYmhtjYWKftAQEBxMTEZKugEiUKZ2v838cqkuWYmcN6ZjkmPGIeAQG+txxjTU/H4u19yxpuNsYVrpxLXs5STe7N8dQs1eT+LNXk/izV5P4s1eT+rPxe07WybJyvOnToEGFhYQwdOhSLxcKxY8ecXjeZTNjt9kz7mUymbBWUkJCCzfZ3jqsnHheXfMvXs/MGupKVVRMeHjEvy5ybZedkv7ySpZrcm+OpWarJ/Vmqyf1Zqsn9WarJ/Vl5tSaz2ZSji7Uu3Ry4Y8cOevTowaBBg3jqqacoVaoU8fHxjtdjY2MJDAzMtD0uLo7AwMBsFyUiIiIi4mmybJzPnDnDq6++SmRkJG3atAGgZs2aHDt2jBMnTpCRkcHatWtp3LgxZcuWxdfXlx07dgCwevVqGjdunLtnICIiIiLiBllO1ZgzZw6pqalMmjTJsa1Lly5MmjSJ/v37k5qaSkhICK1atQIgMjKSkSNHcuHCBapVq0b37t1zr3oRERERETfJsnEeOXIkI0eOvOFra9asybStatWqrFix4vYrExERERHxIFo5UERERETEBWqcRURERERcoMZZRERERMQFapxFRERERFygxllERERExAVqnEVEREREXKDGWURERETEBWqcRURERERcoMZZRERERMQFapxFRERERFygxllERERExAVqnEVEREREXGC50wXc7fyL+uDj6+u0LSCgiNPPaampnE9Kc2dZIiIiInIdNc53mI+vLzOH9bzlmPCIeYAaZxEREZE7SVM1RERERERcoMZZRERERMQFLjfOKSkptG3blpMnTwIwbNgwWrRoQfv27Wnfvj3fffcdAFFRUYSGhtKiRQumTZuWO1WLiIiIiLiZS3Ocd+3axciRIzl+/Lhj2969e1m0aBGBgYGObZcvX2b48OEsXLiQ0qVLExYWxqZNmwgJCTG8cBERERERd3LpivOyZcsYM2aMo0m+ePEip0+fZtSoUYSGhjJjxgxsNhu7d++mQoUKlC9fHovFQmhoKOvXr8/VExARERERcQeXrjhPmDDB6eeEhATq16/PuHHj8PPzIywsjBUrVuDn50dAQIBjXGBgIDExMdkqqESJwtkaf9X1j3C7HUZleUJNnlBDbuUYmaWa3J+lmtyfpZrcn6Wa3J+lmtyfld9rulaOHkdXvnx53n//fcfP3bp1Y/Xq1bRq1SrTWJPJlK3shIQUbDa742dXTzwuLvmWr2fnDTQqK6sco7NulJ2T/XIzSzW5N8dTs1ST+7NUk/uzVJP7s1ST+7Pyak1msylHF2tz9FSNgwcPsmHDBsfPdrsdi8VCqVKliI+Pd2yPjY11mgMtIiIiIpJX5ahxttvtTJw4kfPnz5Oens7SpUtp3rw5NWvW5NixY5w4cYKMjAzWrl1L48aNja5ZRERERMTtcjRVo2rVqvTt25fnnnsOq9VKixYtaNu2LQCTJk2if//+pKamEhIScsPpG2K8Gy3dDVq+W0RERMQo2Wqcv//+e8e/u3btSteuXTONadCgAWvWrLn9yiRbXFm6G7R8t4iIiEhOaeVAEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF6hxFhERERFxgRpnEREREREXqHEWEREREXGBGmcREREREReocRYRERERcYEaZxERERERF6hxFhERERFxgRpnEREREREXqHEWEREREXGB5U4XkBVrehrhEfOyHCMiIiIikptcbpxTUlLo0qULH330EeXKlSMqKoqIiAhSU1N58sknGThwIAD79+9n5MiRpKSkUKdOHd566y0slpz35xZvH8YNWnvLMaOntgVSc3wMEREREZGsuDRVY9euXTz33HMcP34cgMuXLzN8+HA++OAD1q1bx969e9m0aRMAgwcPZtSoUWzYsAG73c6yZctyrXgREREREXdxqXFetmwZY8aMITAwEIDdu3dToUIFypcvj8ViITQ0lPXr13Pq1CkuX75MrVq1AOjYsSPr16/PvepFRERERNzEpTkUEyZMcPo5NjaWgIAAx8+BgYHExMRk2h4QEEBMTEy2CipRonC2xv99rCI52i83szyxptvJys/vi2pyf5Zqcn+WanJ/lmpyf5Zqcn9Wfq/pWjmafGy32zNtM5lMN92eHQkJKdhsf+e4euJxccm3fD07b6BRWVnlGJll5PndLD8n++VWjpFZqsn9WarJ/Vmqyf1Zqsn9WarJ/Vl5tSaz2ZSji7U5apxLlSpFfHy84+fY2FgCAwMzbY+Li3NM75C8w7+oDz6+vpm2X9ucp6Wmcj5JTzMRERGRu0eOGueaNWty7NgxTpw4Qbly5Vi7di1PP/00ZcuWxdfXlx07dlC7dm1Wr15N48aNja5ZcpmPry8zh/W85ZgrjwhU4ywiIiJ3jxw1zr6+vkyaNIn+/fuTmppKSEgIrVq1AiAyMpKRI0dy4cIFqlWrRvfu3Q0tWERERETkTshW4/z99987/t2gQQPWrFmTaUzVqlVZsWLF7Vf2l/T0jL+e03zrMSIiIiIiucnjVw709vai89KXbzlm2bMfuqkayQ5X5kqD5kuLiIhI3uDxjbPkXa7MlQbNlxYREZG8waUFUERERERE7nZqnEVEREREXKCpGpIn6NnSIiIicqepcZY8wchnS9+oCdcNiyIiIpIVNc5y19ECLyIiIpITmuMsIiIiIuICNc4iIiIiIi5Q4ywiIiIi4gI1ziIiIiIiLtDNgSI5pCXFRURE7i5qnEVySEuKi4iI3F00VUNERERExAV3zRVna3raX1f+sh4nIiIiInK9u6Zxtnj7MG7Q2izHjZ7aFki95RhXmnA14JLXaZlzERERZ7fVOHfv3p2EhAQslisx48aN4/fff+fDDz8kPT2dHj160LVrV0MK9SSuNOGuNOAiRjPyhkWtsCgiIuIsx42z3W7n6NGj/PDDD47GOSYmhoEDB/LFF1/g4+NDly5dqFevHhUrVjSsYBG5Od2wKCIiknty3DgfPXoUk8lEnz59SEhIoHPnzhQqVIj69etTrFgxAFq2bMn69esJDw83rOCcSk+z/nUVOOtxIiIiIiLXy3HjnJSURIMGDRg7diyXL1+me/fuPPnkkwQEBDjGBAYGsnv37mzllihROEf1XP9V9PUy0ly7umbGlmVWenpGlk14enpGljng+nxpV7JcZVSWajIuy5qejsXb+5b73GhMbtaU2zme+LvyxJqMzFJN7s9STe7PUk3uz8rvNV0rx41zcHAwwcHBAPj5+dGpUyciIiLo16+f0ziTyZSt3ISEFGw2u+NnV088Li75lq8HBBSh89KXs8xZ9uyHhmS5knM1y5X50q7U5CqjsvJiTUZmGX1+rswnzqvv+Y2yc7JfbmZ5Yk1GZqkm92epJvdnqSb3Z+XVmsxmU44u1ua4cd6+fTvp6ek0aNAAuDLnuWzZssTHxzvGxMbGEhgYmNNDiEg+caObFnNyw6JWaxQRkTspx41zcnIyM2bMYMmSJaSnp7Nq1SqmTJnC4MGDOXfuHAULFuTbb79l/PjxRtab77gy91rzriWvM+oJHbr5UURE7qQcN85NmjRh165ddOjQAZvNxvPPP0/t2rUZOHAg3bt3Jz09nU6dOlGjRg0j6813zHabIWO0wItI9hh1FVxERO4et/Uc59dee43XXnvNaVtoaCihoaG3VdTdxMvXx6X50lk9E9rIBV5E7gZ6TrWIiGTXXbNyoIhIbtC8axGRu4ca53zClUfkXR0nIsbRvGsRkbuHGud8wtvby+XH7YmIZ3Ll6rW7r1zrirqIyN/UOEsmri7KIiLGMnLetVE3P+qKuojI39Q4SyZ2u9mQMXrSh8ido5sfRUSMp8ZZMjHqEXl60oeIXEuPABSRvE6Ns2Ri1CPyjLxh0cjpI5qKInJnGHUV3Mh51544r1xEPJcaZ8k1Rt6waMfLkDHg2pVwV66CayqKyJ1h5LxrT5xXrhsyRTyXGmfJE1xpwl19YogrV8JduQruaqPu6jgjGNnM68q8SPZ44tLymh4jYiw1znLXMaoJ98RHABrZzBt5lV9E7gxNjxExlhpnEQ9g1NVdI5t5I6/yG3V+mh4jcmdoesztZekqf/6hxlnEA1i8jbkh01O5+wq3K+M0FUUk7/PE6TGeeJVfjKPGWURynSdOjzGqUc/v88p1lV/kzvDUxYfu9ivqapxF5K5kVDPvyrcFf2fd+hsDI6+6G9WEG3l+njhlxxP/WBExmpHzyu/2xZXUOIuIeAgj55V74vQfT5yy44l/rOT3Pww8sab8zhOb3bw6FUWNs4iIuIUnTtkx8o8VU9YLqro0xhO/xTCymdcfK/rDAPLuYxdzpXH+6quv+PDDD0lPT6dHjx507do1Nw4jHi7Nmu7S/+GkWdPdUI2ISO4yatVVI3nilCRP/GYlv/+x4omr7xp5fu68om544xwTE8O0adP44osv8PHxoUuXLtSrV4+KFSsafahsMbKJcyXL1WbQqKw0a5qL5+e+v3J9LN6EDvoyy3FfTW0PXM79giRbjPycG8UTP+eeWJOI3Dme+MeKkVO3jMrKq09JMtntdrshSX9ZtWoV27ZtY+LEiQC8//772O12wsPDXdo/MfECNtvfJRXx98XH4n3LfdKs6SSfv/UvqESJwvR6+9ssjz9nZAsSElJuO8uVHCOzihf1weztk+XxbOlpJJZQ2ZgAABiSSURBVGbxVYUnvudG1WRklis5Rma5uyYjP+dGnZ8nfs49sSYjs/L751zved6tycgsTzw/T6zJyKw7fX5ms4nixQtlefzrGd44z5o1i4sXLzJw4EAAli9fzu7duxk/fryRhxERERERcSuz0YE36sNNJpPRhxERERERcSvDG+dSpUoRHx/v+Dk2NpbAwECjDyMiIiIi4laGN86PP/44W7Zs4dy5c1y6dIlvv/2Wxo0bG30YERERERG3MvypGqVKlWLgwIF0796d9PR0OnXqRI0aNYw+jIiIiIiIWxl+c6CIiIiISH5k+FQNEREREZH8SI2ziIiIiIgL1DiLiIiIiLhAjbOIiIiIiAvUOIuIiIiIuMDwx9EZbcuWLRQoUIDg4GDmzp3L1q1bqV69On379sXHx+dOlyciIiIidwmvsWPHjr3TRdzMO++8wxdffMEPP/zATz/9RExMDJ07d2bfvn388MMPNG3a9E6XKLdgtVpZuHAh69evp0CBApQpU8bx2nvvvUe9evXcmuOpNYl4Kn3ORSQvSkxMpGDBgrmS7dFTNf7v//6PJUuWsHjxYn7++WciIyMJCQlh7Nix7N69O1tZVquVJUuWkJCQQFpaGjNnziQsLIwZM2aQmpp6R7KMrOl6r7/++m3tb0TW6NGj2b9/P4GBgQwZMoSPPvrI8dr333/v9hxPrclms7FkyRJefPFFWrVqRevWrenRowdz584lPT3d5ZyUlBSmT5/OrFmzOH/+PGFhYQQHB9O9e3dOnTqVrZqMyvLEmozOup4n/G/PqCxP/JwbmZWcnMzUqVM5e/YsSUlJDBs2jLZt2zJ06FDOnTuXrZqMyvLEmozOyisuXrzokVn5waVLl4iMjKRZs2Y88sgj1KxZk+bNmzN+/HiSk5OzlXXmzBkGDx7M6NGj+eOPPwgNDaV169Y0b96cAwcOGF67Ry+A0rZtWz777DMuXrxIq1at+OGHHyhe/P/bu/e4nu89gOOvRNJxzbSZHi7nMM3CkNpxKYyU7uVUIuKRU0dzOS7lEnKkYmZum0c0nFy21FJoPWyKTYXK8XBbbpHZyi3XdO/3OX84/R5M7Pfju/od+zz/WX1//V69f79VPr/6/j6/NpSVleHu7k5qaqrGrVmzZgEQGhrK+vXrn2o+ePCATz75pN5bSnV8fX3R09N76tiZM2cwNzcHIDY2VtObpmjL2dmZPXv2AHDnzh38/Pxwd3fHz88PV1dXkpKS6rWjqzMtXLgQlUqFm5sbJiYmANy8eZPk5GT1DxdNBAYG0qVLF8rKyjhy5AhjxozBy8uLAwcOsHv3bjZv3qzxTEq1dHEmJVu6+r2nVEsXv86VbPn7+9OjRw/+/ve/s2TJEkxNTXF0dCQtLY3s7GxiYmI0nkmpli7OpHRLpVKxa9cuUlNTuXHjBo0aNcLExARra2t8fX1p0qSJRp2SkhK++OILDA0N8fb2Jjg4mOzsbHr27ElkZCQdOnTQeKa6uLm5sXv37ldqvEpLqfsJHi8uly5dyvXr1xk+fDgBAQHo6+sDEBAQQHR0dL12goKCeO+993B3d6ddu3YA3Lp1i6SkJI4fP86mTZs0vm3jx4/H1taW0tJStm7dSlhYGLa2thw/fpxPPvmEnTt3atzSiNBhSUlJwtLSUvTv319s27ZNuLq6iuXLlwtXV1exadMmrVqOjo7qt52cnIRKpVK/b29v3yAtpTrbt28X1tbWIjExURw7dkwcPXpUjBgxQhw7dkwcO3ZM447SLUdHR/Ho0SP1+9evXxdDhw4Ve/bsEa6urvXe0dWZRo4c+dzLRo0apXHHxcVF/fagQYOeuszZ2VmrmZRq6eJMSrZ09XtPqZYufp0r2Xry/7WTk9NTlz3587k+W7o4k9Kt0NBQMX/+fJGTkyOuXr0qrl69KnJyckRoaKiYNWuWxp2AgAARFRUlFi9eLGxtbcWWLVtEaWmp2LNnj5g4caJWM5mbmwszMzNhZmYmunfvrv5v7dsN0VLqfhJCCD8/P5GQkCBOnz4tAgIChL+/v6iqqhJCPP3zsL46L1rjODg4aNz59ecdPHjwU5dp+2+DJnT6VA0XFxe+//57Dh48yLhx44iKiqJt27bMnj0bf39/rVpGRkZcvHgRgI4dO1JUVATAjRs3tH6SoVItpTpjx47liy++ICEhgcLCQqysrPjTn/6EpaUllpaWGneUbo0bNw43NzeOHDkCwJtvvklMTAyrVq0iPz+/3ju6OlPz5s3rPPXoxIkTGBkZadxp3LgxGRkZpKam8ujRI86cOQNAQUGBVvMo2dLFmZRs6er3nlItX1/fZ77ON23a1KBf50q2WrZsSWZmJgA9evTgxx9/BOD8+fMYGhpqNZNSLV2cSelWTk4Oy5Ytw8LCgo4dO9KxY0csLCxYunQpeXl5GneuX79OSEgIYWFhlJaW4ufnR7NmzXBycqK4uFirmeLi4nj//fdZs2YN586dIy8vDzMzM/XbDdFS6n4CuHfvHh4eHpibm7NhwwZatGjBnDlztGoo2TE2NiY1NRWVSqU+JoQgJSWFNm3aaNVq3rw5X331FTExMdTU1HDw4EEA/vOf/9C0aVOtZ/stOn2qhpJOnDjB1KlT6du3L82aNSMzM5PevXtz9uxZlixZgo2NTb23lJwJoLKyklWrVlFYWEh+fj4pKSlaXf/3aF25cgVDQ0Pat29PfHw858+fp2fPnty9exc/P7967+jiTHl5eQQHB1NRUaH+k9Xt27cxMDDg448/xszMTKPO2bNniYiIQKVSMXfuXBYsWIChoSHXr18nIiICa2trjWdSqqWLMyndAt383lOiFR4ejouLC2+88Qbt27dXH3/06BHx8fEN8nWuZOvy5ctMmTIFIyMj2rVrR3Z2Np06deLOnTusX7+eXr16aTyTUi1dnEnp1ujRo1m0aNEz1zlx4gQRERHEx8dr3JkxYwYPHz5kwYIFxMbGYm5uTkFBAdOnTyc5OVnjmQDKy8uJioqioqKC0NBQxo0b99KnaijRUup+qm1FRkbSrVs3AKqqqvD396dTp06cOHGCvXv31munqKiIJUuWkJOTQ4sWLYDH59H379+fRYsWPfVE5N/yyy+/sGbNGlQqFdOnTyckJITLly9jaGjIunXr6Nmzp8YtTfxhFs7w+HyorKwsrl69Sk1NDW+88QaDBg3irbfearCWUp0DBw5QVFSEjY0NP//8M/v27SMiIoK4uDi8vLwapLV161a2bduGSqXigw8+oKioiBEjRpCenk6fPn346KOP6rWjqzPVKiws5ObNmwghiI+PJyIiQuvGkyoqKpg8eTKfffaZ+gdTQ7d0caZXbR0+fJjevXvTsmVL4uPjOXHiBP369cPDw0PrOXStZWFhQdu2bZk1axa2trZaz/BrR44coXHjxjRp0oSMjAyys7OxtLR8qe1FlWp9++236t2bAN555x2WLFlCnz59tJpHyZYuzqRkq64HPrdu3aJp06ZaPfD58ccfWbZsWZ0PgCMjIxk8eLBWc9VKT09nw4YN3L9/n2+//falGkq0XnQ/rVy5ku7du2vcOn78OHPmzOGf//wnTk5OwOMnLM6ePZuDBw9q/BtspTq1qquruXv3LkIIjI2NadxYmV2S79y5g7GxsSKtX/vDLJwLCwtfeLk2j26UainVWblyJWfOnOEvf/kLqamphISE4OLiAmj/hAQlW05OTiQkJHD79m0cHR05evQoTZs2pbKyktGjR6ufdFRfHV2dad68ec8cS09PV2+3GBkZWa+d130mJVvLli0jLy+PTz/9lJ07d3Lq1Ck+/PBDfvjhB0xNTQkNDdV4Jl1subq6snLlSsLCwqioqGDixIkMGzZM6z/Nw+PtRXNzc6mursbU1JRGjRrh5uZGeno6NTU1hIeH13srOjqakydPMmjQINLT07GwsMDQ0JCEhATGjx+Pp6enxjMp1dLFmZRu1XrylwVvvvmmVv8O16WiooILFy7QqVMnWrZs+UqtW7ducejQIf72t7+9UkeJlpL3U1VV1TNPKszLy+Pdd99tkM6TZs6cyapVq7S+XnV1NUlJSTRr1gxbW1uioqLUTxINDg6mdevWLz1TXXT+BVCUEhAQQEFBASYmJtQ+VtDT00MIgZ6eHmlpafXeUqrz/fffs3v3bho3boyvry+TJk3CwMAAe3t7tH1cpGRLpVJhYGBAhw4dmDRp0lPnGtXU1NR7R1dnat26NUlJSQQGBqp/2B89elTr81p/3RFCvFRHyZYuzqRkKzMzk71796Kvr8/BgwfZtWsXBgYGeHl54ejo+H/f0tPTo2vXrmzfvp2srCzi4uJYtmwZnTt35q233tJqN6LDhw+TnJxMZWUlNjY2ZGRk0KRJE6ytrdUPzuu79c0337B7924aNWqEh4cHkydPJjY2Fg8PDzw9PbVaDCrV0sWZlG5VV1ezY8cOioqK+PDDD+nfv7/6snXr1jF16lStO8OHD8fCwkL9Z3ltOnVp164dR44cUWTh/LKt6upqEhISGDFiBD169GDjxo2cPn1a/SJw2py/q1KpiI2NJS0tjVu3btGkSRM6duyIg4MDo0aNqvfO83b+GT9+PKDdLkKhoaGUlpZSWVnJtm3b6NWrF59++ikHDhxg0aJFrF27VuOWJv4wC+cvv/wSHx8fFi9eTL9+/XSipVSndqEN0LlzZ6Kjo5k4cSLGxsbPfGHWZ8vW1pZx48YRGxur/gF27tw5QkNDsbe3r/eOrs4UEhKCtbU1q1evZubMmVhZWfHvf/8bNze3V+7ExsZq3VGypYszKdkyNDSkuLgYExMT2rZtS2lpKQYGBpSVlWn9J0ddbD35YHnAgAEMGDCAqqoqzp8/z7Vr17SaSQjBw4cPKS0tpby8nJKSEtq0aUN5ebnW+zgr1aqoqKC8vBwjIyPKy8u5d+8e8PiJ240aaffceaVaujiT0q1FixahUql45513CAkJwdPTk8DAQODxX340XfA+2QkODn7pDii7kFOqFRISAsDIkSNZvnw5paWl+Pj4cOjQIebPn6/VA9eoqCj1+cj79+/HzMyM9u3bExsby5UrVwgKCqrXjp2dHRs3bmTGjBl06NABIQQLFy58qdMcz549y969e6mpqcHGxoavvvoKgK5du2r9oFwjiu/TocNOnjwpQkNDdaqlRGfdunVizJgx4uTJk+pjubm54oMPPhB9+/ZtsJYQQmRnZz/1fn5+vjh06FCDdXR1JiGEuHv3rpg2bZqIiorSenun36Pzus+kRCstLU0MHjxYREVFifDwcOHo6CiWLVsm7O3txddff/1/39q1a5dWn/dFlNxeVKlWdHS0cHZ2FitWrBDOzs5iy5Yt4ueffxYuLi7i888/12ompVq6OJPSrSe3sysuLhZOTk5iy5YtQgjttjRTqiOE7m4HWetVt9F98r6qqakR3t7eQgghKioqXri94+/VEUKIixcvCh8fH7F7924hhNB6i8tazs7O4vLly+LkyZOiV69e4tq1a0KIx18T2m51qYk/1ML5dZaVlSUuXbr01LHCwkIRHh7eoC1Je7t27dJ6D9Lfs6NkSxdnetXWTz/9JDZv3iwWL14sQkNDxerVq5964Pk6tJRSVlYmSkpKhBBCnDt3TsTExIiMjIwGbWVlZYmYmBiRlZUlhBCipKREnDt37qVmUqqlizMp2dLF/fSFUG4hp1TL09NTXLhwQQghRFBQkPjll1+EEI9vp7YPDEaNGiVu376tvn7tPCUlJVrtm6xUp1ZFRYWIjIwUU6dOfelF7uHDh4WNjY0YPHiw+O6774SdnZ2YNm2aGDp0qPr+V9If5smBkiRJkiQ1vLi4ODZv3kxYWBh//etfAcjPz8ff35/i4uI69+j+PTtP0qXtIJXcsjYxMZE1a9bQp08fTp48yaxZs+jZsycTJkxg6tSpGu+2o1QHlN8NrLCwkCFDhmBkZERubi7dunUjNzdX69ZvkQtnSZIkSZLqVUFBAQYGBk/tEFFSUkJCQoJW+4Mr1fm1zMxMUlJSXnlb0FdtKbmN7pUrVzh//jxmZmZ07tyZyspKSktLtd51QomO0ruBnT17lj//+c+v3NKEXDhLkiRJklRvdG1LV11tvc4zOTk5qXfwKigoYNKkScyZMwd7e3tcXV1JSkrSqKN0SxN/mF01JEmSJElqeHVtxVrrVbd0fZnO81qvy5a1z2vVaoj7XOjobmCafkJJkiRJkqR68fDhQ+Hk5CRyc3N1oqOrrdd5Jl3eDey36IeFhYUpvxyXJEmSJEl6loGBAe+99x6JiYnqV+tsyI6utl7nmSwtLXn77bdp06aN+qWx3377bRwcHCgvL8fa2rpBWpqQ5zhLkiRJkiRJkga0e7kfSZIkSZIkSfqDkgtnSZIkSZIkSdKAXDhLkiQBvr6+REdHP3N88+bNBAYGcvr0aaZNm1bndU+dOsWiRYte6fMPGzaM06dP1znXsGHDcHFxwdXVFQcHB0JCQigrK3ulzydJkiRpTy6cJUmSgLFjx5KYmPjM8V27djFu3Dh69uzJ2rVr67zupUuXuHHjxu82W3BwMMnJySQlJbFv3z7KysqeO4skSZL0+5ELZ0mSJGD48OGUlpaSm5urPpadnY0QgoEDB3Ls2DEcHR0BmDt3LoGBgTg4ODB//nzWrl1Lbm4u8+bNe+rjgKfev337NlOmTMHLy4thw4bh6+tLcXGxVnPq6elhZWXF5cuXATA3N2f69OmMHDmS06dPk5ubi6enJ05OTri7u/PDDz+orxsdHY2dnR2Ojo4EBQXx8OFDAOLj43F3d8fV1RU/Pz/y8/MByM3NZfTo0bi7u+Pu7s7+/ftfeLyyspKIiAjc3NxwdnZm7ty5lJSUALBz506cnZ3x8PDAx8eHS5cuaXW7JUmSdIFcOEuSJAGNGzfGy8uLhIQE9bG4uDh8fHzq3ES/vLxc/TK606ZNw8LCgsjIyBd+jpSUFN5//33i4uJIS0vD0NCQ5ORkrea8f/8+qampWFlZAVBVVcXQoUPZv38/pqamTJs2jQULFrB3716WL1/OnDlzuHbtGmlpaSQmJhIXF8e+ffswNTVl+/btZGdnk5SUxI4dO0hKSsLf35+pU6cCsG7dOiZOnEhiYiIREREcPXr0hcc3btyIvr4+iYmJ7NmzBxMTE1auXElNTQ0RERHExMTw9ddf4+npyfHjx7W63ZIkSbpAvnKgJEnS/3h6euLg4EBJSQnV1dVkZGTwvK3u+/Xrp3V/woQJ5ObmsmXLFgoKCrh48SK9e/f+zeutWLGCDRs2qF+pa+jQoYwfP159uYWFBfD4XOuOHTuqm926daNv375kZ2eTl5eHnZ0drVq1AmDevHnq9tWrV/H29lb37t+/z71797C3t+df//oX6enpDBgwgJkzZwI89/ihQ4d4+PAhWVlZwONFfdu2bdHX18fOzg5vb2+GDBnCwIEDcXJy0vr+kyRJamhy4SxJkvQ/JiYmDBgwgG+++YbS0lJGjhxJixYt6vxYIyOjOo/XviRuraqqKvXbH3/8MadOncLDwwMrKyuqq6ufednaugQHB2NnZ/fcy2tnUalUz1wmhKC6uhp9ff2nfnP+4MEDHjx4gEqlwsXFhTlz5qgbN2/epFWrVnh7ezN06FAyMzM5fPgw69evZ8+ePc89rlKpmD9/PjY2NgA8evSIiooKAFauXMmFCxfIyspi06ZNJCQksGHDht+87ZIkSbpEnqohSZL0BB8fH/bu3UtSUhJjx47V6Dr6+vpUV1cDYGxsTGFhIcXFxQghOHDggPrjMjIymDBhAq6urrRt25asrCxqamoUm713795cuXKFU6dOAXDx4kVycnKwtLRkwIABfPfdd+pzjtetW8fWrVsZOHAgKSkp3Lx5E4Avv/ySCRMmAODt7U1eXh7u7u4sXbqUBw8ecP/+/eceHzRoEDt27KCyshKVSsXChQtZtWoVd+7cwcbGhtatW+Pn58eMGTM4f/68YrdbkiSpvsjfOEuSJD3BysqK8PBwWrVqRffu3TW6Tp8+fVi9ejVBQUF89tlneHt74+HhQbt27RgyZIj644KCglixYgWff/45+vr69O3bl59++kmx2Y2NjVmzZg1Lly6lvLwcPT09IiMj6dKlC126dOHSpUuMGTMGgK5du7J06VKaN2/O5MmTmTRpEnp6ejRv3pz169ejp6fH7NmziYiIYPXq1TRq1IiPPvoIU1PT5x6fMmUKy5cvx83NjZqaGt59913mzp1L8+bN+cc//oGfnx+Ghobo6+sTHh6u2O2WJEmqL/IltyVJkiRJkiRJA/JUDUmSJEmSJEnSgFw4S5IkSZIkSZIG5MJZkiRJkiRJkjQgF86SJEmSJEmSpAG5cJYkSZIkSZIkDciFsyRJkiRJkiRpQC6cJUmSJEmSJEkD/wWuO0zueGt2dQAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[[\"Unaccounted Time / s\", *cols]].plot(kind=\"bar\", stacked=True, figsize=(12, 4));"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 7\n", "<a name=\"task7\"></a>\n", "\n", "* Create a pivot table based on the NEST `df` data frame\n", "* Let the `x` axis show the number of nodes; display the values of the simulation time `\"Sim. Time / s\"` for the tasks per node and threas per task configurations\n", "* Please plot a bar plot\n", "* Done? [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 101, "metadata": {"exercise": "solution", "slideshow": {"slide_type": "fragment"}}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAELCAYAAAAiFru1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4U1X+x/F30tCNFlFIi5aCyCI6M4KCQAGpOlhEqGUVBEFEAZVFcGOx7FvFKoIs4wKiCEjZyg4qKAIVWZyBYQZRBgpFoKUFutC9ye+PzkT7KzRpSZeUz+t5fJ7k3pNzv8kB/OTm3HMNVqvVioiIiIiIXJexvAsQEREREanoFJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7TOVdwP93+fJVLBZreZdRKmrU8CEpKa28y5AS0Ni5No2fa9P4uS6NnWurzONnNBq49daqxXpNhQvNFou10oZmoFK/t8pOY+faNH6uTePnujR2rk3j9ztNzxARERERsUOhWURERETEjgo3PUNERERuXnl5uVy+fJHc3OzyLuWml5BgxGKxlHcZN8RkcufWW824ud145FVoFhERkQrj8uWLeHp6U7VqLQwGQ3mXc1MzmYzk5rpuaLZarVy9msLlyxepWfP2G+5P0zNERESkwsjNzaZq1WoKzHLDDAYDVatWc9qvFgrNIiIiUqEoMIuzOPPPkkKziIiIiIgdN/WcZt9qXnh6FP0RZGblkpqSUUYViYiIiEhFdFOHZk8PE6GvrS+yzcZ3w0gto3pERESksPfff4d//OPvAMTGnuT22+/Aw8MTgA8/XGx77IiNG6OJidnNzJnvFquGQYOe5f335/PMM0/RvHkL3nprkm3f0aP/ZOrU8axcGV2sPvv06c7o0eNp0qSpQ+1//PEHFi78AIBLl5KwWPKoWdMPgGefHcju3bto3PgennqqT7HqKKlXXx1Ohw4d6dDhiSLbRUUtJyMjg2+/3QFARkY6Fy9epE6dugC0bBnESy8NL/bxBw8ewLPPPk+bNg8Vv/gSuKlDs4iIiFR8I0e+YXvco0coEydOo3Hje8vs+BcunMfXtxpVq/oAsGPHV7Rq1Zq//jWkzGqA/HDZsmUQAB99tICMjAxeeeU12/7du3eVaT2O2rPneyZMmMqzzz4PwIEDPzJ//hyWLFlezpUVj0KziIiIuKwNG9axcWM0ubk5pKSk0L//QMLCupGYeJGpUyeSmpoMQJs27Xj++SEFXrtjx1d89NECIiPn4uXldd3233//HQ89FGx73aBBLxMZGcGf/vQXatUqvJTZokUf8u233+Dm5kadOncyatQb3HZbDU6ePMHMmVPJzs7mzjvvJDMz0/aaw4f/wd/+9gFZWZkYjW48//xggoLaFvvzOHz47+zY8TWXL1+ifv2GTJw4DZPJRIcOwQQFteE//znBlCkzcXMzMWfOu6SmpmCxWOjVqw8dO3YmLy+PuXPf5dixf5OefhWAMWMm8Oc//4WEhHimT5/EpUtJ1Kp1O1euXLId96OPFrBnzy6qVHHnlluqEx4+idtuq0FKSjI5OdnUrGkusu6rV9N4552ZnDv3G8nJV6hWrRqTJs0gIKA2O3Z8xRdfLMFodMPNzY0RI17lz3++z/banJwcJkwYg69vNUaPDsfNza3Yn5sjHLoQcM6cOTzxxBN06tSJTz/9FICYmBhCQ0MJCQlh9uzZtrbHjh2je/fudOjQgbfeeovc3NxSKVxERERublevprFly0befXcun366nAkTptmmL6xfv5a6deuyePEy5s37mNjYU7YQCLBt22Y++2wRH3zwIYGBdYpsv3fv9wVCc/PmDxIa2oXJk8PJy8srUNOGDes4dOgAn3yylM8++5LAwDpEREwFYNKkt+jWrSeffbaCrl17cvFiAgDJyVeIiJjCxInTWbx4GTNmvMOsWTNISIgv9meSlJTE3LkLWb58DefPn2P37u8AyMrKIjj4UVasWEu9evWZMGEMw4aNZPHiL/jggw9ZuvRTfv753xw9+k+uXLnC3/62mC+/XEP79h1YtuwzACIjI2jS5H6WLo1i+PBRnD4dC8C5c7+xbt1qFi36gkWLltKsWXP+/e9//fez203r1vanT+zdu5uaNc189NESVq6Mpl69+kRHrwHggw9mM27cRBYtWsqzzz7P3//+k+112dlZjB37GnfcUZuxYyeUWmAGB84079+/n3379rFhwwZyc3N54oknCAoKYty4cSxdupTbb7+dIUOGsGvXLoKDg3njjTeYNm0aTZs2Zdy4cURFRdGnT9nMrREREZGbR9WqPsyc+S579+4mLu4Mv/56nIyMdABatmzN6NEjOX/+HM2bt2Do0Ffw9q4K5M9BjonZw6hRb+Dn519k+5SUZLKzswqdKR08+GVefHEgS5Z8QsuWrW3b9+2LoVOnJ/H0zJ9n3bPn03Tr9gSXLiVx+nQsISEdAWja9AHq1r0TgH/+8zBJSUmMGfOqrR+DwcDJk/+x1eeodu0ets3xrlfvLi5fvmzb16TJ/QDExp7i3LnfmD59km1fTk4Ov/xynCef7Er16tVZv34t586d5dChg1SrVg2Agwf38+qrbwJQp86d3H9/MwD8/Py58856DBzYl1at2hAU1IYHHmgO5E8ZGTToJbt1h4R0JDCwDqtWfclvv8Vx5Mhhmjd/EIC//jWE119/hdatH+LBB1vSq9fvufL9998hKyuLCROmlvpShXZDc4sWLfj8888xmUzEx8eTl5dHSkoKdevWJTAwEIDQ0FC2bdtGgwYNyMzMpGnT/Ant3bp1Y+7cuQrNIiIi4nQXLpzn5ZdfICysG02a3E9w8KPs378PgD//+S+sWrWBAwf289NPB3jhhf68/Xb+L+O33HILEyZMZdKkcbRq1ZZatWpdt31c3OlrTpMwmUxMnDiNQYP628I4gNVa8A56VquFvLw8W6CzWq22ff87K5qXZ6F+/fosXLjYtu/ixQRuvfW2Yn8mJtPv0S7/mL8fz8vLGwCLJY9q1W4pMKc4KSkRHx9fdu/+jvnz59CrV1+Cgx8hICDQdgGfwXDt+k0mEwsWfMKxY//i4MH9zJ49ixYtghg8+GXOn/+NevXuslv3ypXL+Prr7XTt2oOQkI54eXmTkpI/VWb48FF06dKdAwd+ZOPGdaxYsZSPP84/+x0a2pXU1BTeeWcmU6dGFPvzKg6HpmdUqVKFuXPn0qlTJ4KCgkhISMBs/v0bl5+fH/Hx8YW2m81m4uOL/9OCiIiIiD3Hjv2LGjVq0L//QFq2DGLv3u+xWPJD6/z5c1i6dAnBwY8wcuQb1KlTl7NnzwAQGFiHBx9sSZcuPZgxYxJWq/W67Xfv/o62bYOvefzAwDoMH/4qH3+8wLatRYsgNm/eYJuvvGrVl9x/fzNuvfU26tdvwObNG2y1x8aeAuAvf7mPU6dOceTIPwA4fvxnnn66G5cuJZXK53bnnXdhNBr55pvtQP6Xj379enHixK8cOPAjDz30MF279qBx43vYvXsXFkv+FJSWLVuzYcM6AM6fP8c//vGTrd5nn+1NvXr16d9/ID17Pm3rq3nzlg7V9OOP++jcOYxOnZ6kdu1AYmL2YLFYyM7Oplu3TlitVrp168krr7xObOxJ27SYe+75Ey+9NIJffvmZbds2O/ujKsDhCwFHjBjBoEGDePHFF4mNjS2032AwFPj28cftxVGjhk+x2pcFs9m3QvYlZUtj59o0fq5N4+e6ijt2CQlGTKaiz+m5ueW3adv2IbZu3USfPt3x8vLiT3/6C76+1bhw4Tf69HmGKVMm0L9/L6pUqUKjRo0JCenAli2bMBgMmExGBg0azHPP9SMqavk12z/88MOsXLmMRo0aXvP4AGFhXThwYB8///xvTCYj3bv3IDExgUGD+mOxWKhTpy4TJ07FZDIybVoE06ZNZu3aKAID61CnTl3c3Az4+ZmZOXMW8+bNJjs7G6vVypQpM7jjjtvJy8tjwIC+jB8/mUaN7rbVYDQaMBop8FkZDPnb/7ft/z83mYz//c+Td96ZzfvvR7J06afk5uby8svDadLkPnx9qzJx4ls8+2xv3NzcaNLkfnbv/g43NwOjR49j2rRJPPNMT/z8/GnU6G6MRgN/+tO9PPzwo7zwQj+8vLzw9PTktddGExX1JZ07P1loPN3cjBgMBWt/9tkBzJo1kw0b1mI0Grn33nv57bezeHt7MmLEKMLD38RkqoKbm5Hw8El4eFTBYAA3NwM+Pt6MHz+ZN98cRfPmzQtdnGk0Gp3yb4jBeq2k+wf/+c9/yM7O5p577gFg2bJlbNu2DTc3N5YsWQJAdHQ0P/74I8OGDWPAgAF8/fXXABw8eJC5c+fy+eefO1xQUlIaFkuRJTmN2ezr0DrNFy86Z6Vms9nXaX1J2dLYuTaNn2vT+LmukozdhQunqVWrbilV5JoWLJhLhw5PUL9+gzI9rslkJDfXYr9hBXetP1NGo6HYJ2rtTs84e/Ys4eHhZGdnk52dzY4dO+jduzenTp3i9OnT5OXlsWnTJtq1a0dAQAAeHh4cOnQIyA/T7dq1K1ZBIiIiIpLParUSGFinzAOzFGZ3ekZwcDCHDx+mS5cuuLm5ERISQqdOnbjtttsYPnz4f5cwCebxxx8HIDIykvDwcK5evcq9995L//79S/1NiIiIiFRGBoOB0NAu5V2G4OCc5hEjRjBixIgC24KCgtiwYUOhto0bN2b16tXOqU5EREREpAJwaPUMEREREZGbmUKziIiIiIgdDi85JyIiIiK/863mhaeH86NUZlYuqSkZTu9XboxCs4iIiEgJeHqY7C5dWxIb3w3DkYX68vLyGD9+DBMmTCUtLY0ZMyZz6VISRqOBoUNH0qzZgw4dLzx8NPXq3cXzzw8hPT2dadMmMnVqhN31sm82+jREREREXFB09GpatGiFp6cnCxbMoU2btixZspxJk6YzeXK47a55Rdm0aT0//XTQ9tzb25vmzVuwfv3a0izdJSk0i4iIiLgYq9XK6tUrad++AwDBwY/w2GMdAQgICCQ7O4uMjKKneJw9G8fWrZsIC+tWYHv79iFERa245p2eb2YKzSIiIiIu5sSJX/Dx8cHHJ/+udsHBj1KtWjUAVqxYSsOGd9v2XUtubi4REVN5/fWxmEwFZ+tWq3YL3t5enDjxa+m9ARek0CwiIiLiYuLi4jCb/Qttj4pazvr16wgPn1zk6xcv/ojg4EepV++ua+7397+duLgzTqm1stCFgCIiIiIuxmg04ObmVmDbggVziInZy/z5H+HnVzhQ/9F33+2gShV3Nm/ewKVLSQB4eXnRp0/+nZxNJhMGg6F0indRCs0iIiIiLiYgoDYXLpy3PY+KWs5PPx1i4cJF+Pr62n398uVrbI8XLfoQwBaYAc6fP0ft2oFOrNj1KTSLiIiIlEBmVi4b3w0rlX7tadCgEcnJV0hLS6Nq1aosXvwxVatWZfjwIbY2kZFzSEy8yCef/I3IyLkOHz81NZW0tDQaNmxEbq6lRO+hMlJoFhERESmB1JQMh9ZTLg0Gg4GePZ9m+/bNdO/ei23bvr1muxo1amI2+xXZ1/PPDynwfOvWTfTs2dtptVYWuhBQRERExAV17dqDAwd+JDMz87ptEhLiCQnp6HCf6enpHDy4v9AydKIzzSIiIiIuyWQyERHxXpFt/P1r4e9fy+E+vb29mTVr9o2WVinpTLOIiIiIiB0KzSIiIiIidig0i4iIiIjYodAsIiIiImKHLgQUERERKYFbb3HH5O7h9H5zs7O4nJxtt11eXh7jx49hwoSppKWlMWPGZC5dSsJoNDB06EiaNXuwyNcvX/45W7ZsBKBz5zB6936G9PR0pk2byNSpEZhMOrf6RwrNIiIiIiVgcvfg5PTuTu/3rrfWAPZDc3T0alq0aIWnpyezZk2nTZu2dO/eizNnYhk2bAjr1m0pdKvt/zl7No5161bzxRdRWCxWnnmmJ23bBlO7diDNm7dg/fq1PPVULye/M9emrxAiIiIiLsZqtbJ69Urat+8AQHDwIzz2WP56zAEBgWRnZ5GRkXHd11ssFnJycsjKyiYnJxur1YrJlH8utX37EKKiVmC1Wkv/jbgQnWkWERERcTEnTvyCj48PPj4+AAQHP2rbt2LFUho2vNu271rq1KlL+/Yd6NEjFKvVSmhoGLVq3Q5AtWq34O3txYkTv1KvXoPSfSMuRGeaRURERFxMXFwcZrN/oe1RUctZv34d4eGTi3z9vn0xHD9+jOjorURHb+HYsX+zY8fXtv3+/rcTF3fG6XW7MoVmERERERdjNBoKzVdesGAOGzZEM3/+R3bvArh3724efvhRvL29qVrVh/btO/CPf/xk228ymTAYDKVSu6tyKDTPmzePTp060alTJ2bNmgXA2LFjCQkJISwsjLCwML7+Ov/bSUxMDKGhoYSEhDB7tm7DKCIiIuJsAQG1uXDhvO15VNRyfvrpEAsXLsLPr/AZ6P+vQYOG7N27h7y8PHJzc/nxxxjuuede2/7z589Ru3ZgqdTuquzOaY6JiWHPnj2sW7cOg8HACy+8wNdff83Ro0f54osv8PPzs7XNzMxk3LhxLF26lNtvv50hQ4awa9cugoODS/VNiIiIiNxMGjRoRHLyFdLS0qhatSqLF39M1apVGT58iK1NZOQcEhMv8sknfyMycm6B14eGduHMmVj69XsKNzc3goLa0rFjZwBSU1NJS0ujYcNG5OZayvR9VWR2Q7PZbGbMmDG4u7sDUL9+fc6dO8e5c+cYP348586d47HHHmPYsGEcOXKEunXrEhiY/80kNDSUbdu2KTSLiIhIpZObnfXf5eGc3689BoOBnj2fZvv2zXTv3ott2769ZrsaNWpiNvsV2m40Ghk+/FWGD3+10L6tWzfRs2fv4hdeydkNzQ0bNrQ9jo2NZcuWLSxfvpz9+/czZcoUvL29GTJkCKtXr8bb2xuz2Wxr7+fnR3x8fOlULiIiIlKO8m9AYn895dLStWsPwsPfpFOnMDw9Pa/ZJiEhnpCQjg73mZ6ezsGD+5kx4x1nlVlpOLzk3K+//sqQIUMYPXo0d911F/Pnz7ft69evH9HR0Tz++OOFXlfcSeQ1alx/eZTyYjb7Vsi+pGxp7Fybxs+1afxcV3HHLiHBqDvROchkcicy8v0i2wQE3EFAwB0O91mtmg/vvTfnD8dw/bEwGo1O+TfEodB86NAhRowYwbhx4+jUqRPHjx8nNjaWDh3yF9T+34LY/v7+JCYm2l6XkJBQYM6zI5KS0rBYymYxbUc/wIsXU512PGf1JWVLY+faNH6uTePnukoydhaLRfNoKwiTyVgpxsJisRT6c2g0Gop9otbu14fz588zdOhQIiMj6dSpE5AfkmfMmEFycjI5OTmsXLmSxx57jCZNmnDq1ClOnz5NXl4emzZtol27dsUqSERERESkorF7pnnRokVkZWURERFh29a7d28GDx7M008/TW5uLiEhIXTunH/FZUREBMOHDycrK4vg4OBrTtkQEREREXEldkNzeHg44eHh19zXt2/fQtuCgoLYsGHDjVcmIiIiIlJBOHwhoIiIiIj8zre6B55V3J3eb2ZONqlX7C87J2VLoVlERESkBDyruPPUypec3m9Ur4WkYj805+XlMX78GCZMmEpaWhozZkzm0qUkjEYDQ4eOpFmzB+32cfFiAi+80I/167fbti1e/BE7d36DwQBBQW14+eVXSE9PZ9q0iUydGlHo9t03C9dfR0RERETkJhQdvZoWLVrh6enJggVzaNOmLUuWLGfSpOlMnhxOXl5eka//4Yc9DB/+IklJSbZtBw78yIED+/j002UsXbqC48d/Zteub/H29qZ58xasX7+2tN9WhaXQLCIiIuJirFYrq1evpH37/OV/g4Mf4bHH8m9iEhAQSHZ2FhkZGUX2sWnTembMmFVgW40aNRk6dBRVqlTBZKpC3bp3Eh9/AYD27UOIilqB1Vo2SwNXNJqeISIiIuJiTpz4BR8fH3x88tcaDg5+1LZvxYqlNGx4t23f9UyfXviuf3fdVd/2+MyZM+zc+TULFy4GoFq1W/D29uLEiV9p2LCRM96GS9GZZhEREREXExcXh9nsX2h7VNRy1q9fR3j45Bvq/+TJ/zBixEsMHTqSwMA6tu3+/rdz9uyZG+rbVelMs4iIiIiLMRoNhS7IW7BgDjExe5k//yP8/AoHakcdOfIPwsNHM2rU6zzyyGMF9plMJozGm/Ocq0KziIiIiIsJCKjNhQvnbc+jopbz00+HWLhwEb6+viXuNz7+AuPGvc7kyTNp2bJlodtonz9/joCAwBL378oUmkVERERKIDMnm6heC0ulX3saNGhEcvIV0tLSqFq1KosXf0zVqlUZPnyIrU1k5BwSEy/yySd/IzJyrkPHXrHiC7Kysvngg9nMmwdWK3Tp0o0uXXqQmppKWloaDRo0LPF7c2UKzSIiIiIlkHoly6H1lEuDwWCgZ8+n2b59M92792Lbtm+v2a5GjZqYzX5F9rVnz0Hb45EjX2fkyNcBMJmMBc40b926iZ49ezuhetd0c05KEREREXFxXbv24MCBH8nMzLxum4SEeEJCOt7wsdLT0zl4cD9hYd1uuC9XpTPNIiIiIi7IZDIREfFekW38/Wvh71/rho/l7e3NrFmzb7gfV6YzzSIiIiIidig0i4iIiIjYodAsIiIiImKHQrOIiIiIiB0KzSIiIiIlcKuvO2azr9P/u9XX3aHj5+XlMW7cGwVWz0hPv8pTT4Xx008Hi3hlQfPnz2H69EkAWCwWxo59nfT09GJ9FjcDrZ4hIiIiUgImTw/2hnV3er9t1q+BVPs3OImOXk2LFq3w9PS0bXvvvVmkpqY6fKyDB/ezdetGgoLaAmA0GnnyyS4sWfIxI0aMKn7xlZjONIuIiIi4GKvVyurVK2nfvoNt244dX+Ht7U39+g0c6iMlJZmPPlpAv37PFdjeokUQu3Z9y9WraU6t2dUpNIuIiIi4mBMnfsHHxwcfHx8ALly4QFTUCoYOfcXhPmbNmsHgwS/j61utwHY3Nzfq12/IoUOOT/G4GSg0i4iIiLiYuLg4zGZ/IH8eckTEFEaNehMPD087r8y3cWM0/v7+NG/e4pr7a9WqRVzcGafVWxloTrOIiIiIizEaDbi5uQFw+nQsZ86cJiJiKgC//RbH229PY/TocB54oPk1X79jx1ckJSUyYEAfUlKSycjIYO7cdxkx4jUg/26DBoPOrf6RQrOIiIiIiwkIqM2FC+cBqFfvLtau3WzbN2zYYAYOHHzdwAzw/vsLbI+3bNnI3/9+yBaYAc6dO0fTpg+UQuWuS18hRERERFxMgwaNSE6+Qlpa0RfrJSZeZMCAPsXqOy8vj19++ZkWLa49deNmpTPNIiIiIiWQm5mVvzxcKfRrj8FgoGfPp9m+fTPdu/cqsG/evI9sj2vWNHP33Y2L7OuJJ0J54olQ2/OYmN0EBz+Kp6cXubmWYlZfeTkUmufNm8fWrVsBCA4O5s033yQmJoaZM2eSlZVFx44dGTUqfy2/Y8eOER4eTlpaGs2bN2fy5MmYTMrmIiIiUrlcTs12aD3l0tK1aw/Cw9+kU6ewAms1/1FGRgatWz/kcJ8Wi4VNm9YzYcJUZ5VZadidnhETE8OePXtYt24d0dHR/Otf/2LTpk2MGzeOBQsWsGXLFo4ePcquXbsAeOONNxg/fjzbt2/HarUSFRVV6m9CRERE5GZjMpmIiHjvuoEZwMvLi+DgRxzu02g08vbbs6la1ccZJVYqdkOz2WxmzJgxuLu7U6VKFerXr09sbCx169YlMDAQk8lEaGgo27Zt47fffiMzM5OmTZsC0K1bN7Zt21bqb0JEREREpDTZnTfRsGFD2+PY2Fi2bNlCv379MJvNtu1+fn7Ex8eTkJBQYLvZbCY+Pr5YBdWoUfG+2ZjNvhWyLylbGjvXpvFzbRo/11XcsUtIMGIyaZ2CiqIyjIXRaHTKvyEOTzb+9ddfGTJkCKNHj8ZkMnHq1KkC+w0GA1artdDrDAZDsQpKSkrDYincT2lw9AO8eNHxe7jbO56z+pKypbFzbRo/16bxc10lGTuLxaKLzyoIk8lYKcbCYrEU+nNoNBqKfaLWoa8Phw4dYsCAAbz22mt07doVf39/EhMTbfsTEhLw8/MrtP3ixYv4+fkVqyARERERkYrG7pnm8+fPM3ToUGbPnk1QUBAATZo04dSpU5w+fZratWuzadMmunfvTkBAAB4eHhw6dIhmzZoRHR1Nu3btSv1NiIiIiJS1W6p54e7h/BXCsrNySU7JcHq/cmPsjvSiRYvIysoiIiLCtq13795EREQwfPhwsrKyCA4O5vHHHwcgMjKS8PBwrl69yr333kv//v1Lr3oRERGRcuLuYWLKa5uc3u+Edzs71C4vL4/x48cwYcJU2woa6elXGTCgD2PGjC/yjoAA27dvYenSJQC0atWaYcNGYrFYeOutNxk/fgrVqlW868zKk93QHB4eTnh4+DX3bdiwodC2xo0bs3r16huvTERERESuKzp6NS1atCqw5Nx7780iNdX+PPLMzEzefz+SFSvW4uPjw0svPc+BAz/y4IMtefLJLixZ8jEjRowqzfJdjutfEikiIiJyk7FaraxevZL27TvYtu3Y8RXe3t7Ur9/A7ustljysVguZmRnk5eWSl5eLh4cHAC1aBLFr17dcvVr0LbpvNgrNIiIiIi7mxIlf8PHxwccnfwrFhQsXiIpawdChrzj0em/vqrzwwov06dODLl2eoFatO/jLX5oA4ObmRv36DTl06GCp1e+KFJpFREREXExcXBxmsz+Qv6RaRMQURo16Ew+P698d8I9OnPiVzZs3sGbNRtav34bRaGTFiqW2/bVq1SIu7kyp1O6qFJpFREREXIzRaMDNzQ2A06djOXPmNBERUxkwoA/Hjx/j7ben8dNP1z9TvH//DzRr1oJbb70Nd3d3nngilL///ZBtv8lkwmBQTPwj56+TIiIiIiKlKiCgNhe5VgL8AAAXkklEQVQunAegXr27WLt2s23fsGGDGThwcJGrZzRo0IgFC+aSkZGBp6cne/d+T+PG99r2nzt3jqZNHyi9N+CCFJpFRERESiA7K9fh5eGK2689DRo0Ijn5CmlpabZ5zdeSmHiR119/hSVLlhfY3qJFK3755Weef/4ZTCYT99zzJ555ZgCQv5TdL7/8zKRJU27ofVQ2Cs0iIiIiJVCeNyAxGAz07Pk027dvpnv3XgX2zZv3ke1xzZpm7r678TX7eOaZAbag/EcxMbsJDn4UT0+vSnEbbWfRZBURERERF9S1aw8OHPiRzMzM67bJyMigdeuHHO7TYrGwadN6Bgx43hklVio60ywiIiLigkwmExER7xXZxsvLi+DgRxzu02g08vbbs2+0tEpJZ5pFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFRERESuCWau6Yzb5O/++Wau4OHT8vL49x494osHpGevpVnnoqrMi7Af7R1atp9Ov3FOfPn7NtW79+Lf36PUXfvk8xY8ZkcnJysFgsjB37Ounp6cX7kCoRrZ4hIiIiUgLuHh7MG/uc0/sdNvNTINtuu+jo1bRo0QpPT0/btvfem0VqaqpDx/nXv44ya9Y04uLO2LadOXOaFSuWsmjRUqpV82Xy5AmsXRtFr159efLJLixZ8jEvv/xKsd9TZaAzzSIiIiIuxmq1snr1Stq372DbtmPHV3h7e1O/fgOH+ti4cR2vvjqamjXNtm3u7u689toYqlb1wWAwcNddDYiPvwBAixZB7Nr1LVevpjn3zbgIhWYRERERF3PixC/4+PjYbqF94cIFoqJWMHSo42eBx4wZT5Mm9xfYVqvW7Tz4YEsALl++zNq1UbRtGwyAm5sb9es3dHjqR2Wj0CwiIiLiYuLi4jCb/YH8u/hFRExh1Kg38fDwtPNKx1y8mMCwYUPo3DmMBx5obtteq1Yt4uLinHIMV6PQLCIiIuJijEYDbm5uAJw+HcuZM6eJiJjKgAF9OH78GG+/Pa3EZ4RPn47lpZee54knQhkw4IUC+0wmE0aj4Ybrd0W6EFBERETExQQE1ObChfMA1Kt3F2vXbrbtGzZsMAMHDi5whthR6elXGTVqKEOGDKVTp87k5loK7D937hz33df0xop3UTrTLCIiIuJiGjRoRHLyFdLSir4oLzHxIgMG9HG4340bo7l8+RIrVnxBv369GTCgD5988jcgf4m7X375mebNW95Q7a5KZ5pFRERESiA7K+u/y8M5v197DAYDPXs+zfbtm+nevVeBffPmfWR7XLOmmbvvblxkX6tXb7Q97tWrL7169QXAZDIWONMcE7Ob4OBHCyxxdzNRaBYREREpgeSUbBxZT7m0dO3ag/DwN+nUKey6QTYjI4PWrR+64WNZLBY2bVrPhAlTb7gvV6XQLCIiIuKCTCYTERHvFdnGy8uL4OBHbvhYRqORt9+efcP9uDKH5zSnpaXRuXNnzp49C8DYsWMJCQkhLCyMsLAwvv76awBiYmIIDQ0lJCSE2bNv7g9XRERERCoHh840Hz58mPDwcGJjY23bjh49yhdffIGfn59tW2ZmJuPGjWPp0qXcfvvtDBkyhF27dhEcHOz0wkVERKRyslqtGAw357Jm4lxWq9VpfTl0pjkqKoqJEyfaAnJ6ejrnzp1j/PjxhIaGMnfuXCwWC0eOHKFu3boEBgZiMpkIDQ1l27ZtTitWREREKjeTyZ2rV1OcGnbk5mS1Wrl6NQWTyd0p/Tl0pnn69OkFniclJdGqVSumTJmCt7c3Q4YMYfXq1Xh7e2M2/37/cj8/P+Lj44tVUI0aPsVqXxbMZt8K2ZeULY2da9P4uTaNn+sq7thVr+5JXFwcFy+eLaWK5Gbi5eVJgwb1qFKlyg33VaILAQMDA5k/f77teb9+/YiOjubxxx8v1La4P68kJaVhsZTNt0tH/yJfvJjqtOM5qy8pWxo716bxc20aP9dV0rHz9TXjq+9J5a6y/N27ciUTyCywzWg0FPtEbYlubnL8+HG2b99ue261WjGZTPj7+5OYmGjbnpCQUGDOs4iIiIiIKypRaLZarcyYMYPk5GRycnJYuXIljz32GE2aNOHUqVOcPn2avLw8Nm3aRLt27Zxds4iIiIhImSrR9IzGjRszePBgnn76aXJzcwkJCaFz584AREREMHz4cLKysggODr7mlA0REREREVdSrNC8c+dO2+O+ffvSt2/fQm2CgoLYsGHDjVdWQVhysx2a+5ybncXl5KLvCmTJtt9XbmYWl1PL7+5CIiIiIlKY7ghoh9Hkzsnp3e22u+utNdi7labR3Z29YUX31Wb9GlBoFhEREalQSjSnWURERETkZqLQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2KHQLCIiIiJih0KziIiIiIgdCs0iIiIiInYoNIuIiIiI2GEq7wJESsq3mheeHkX/Ec7MyiU1JaOMKhIREZHKSqFZXJanh4nQ19YX2Wbju2GkllE9IiIiUnlpeoaIiIiIiB0KzSIiIiIidig0i4iIiIjYodAsIiIiImKHQ6E5LS2Nzp07c/bsWQBiYmIIDQ0lJCSE2bNn29odO3aM7t2706FDB9566y1yc3NLp2oRERERkTJkNzQfPnyYp59+mtjYWAAyMzMZN24cCxYsYMuWLRw9epRdu3YB8MYbbzB+/Hi2b9+O1WolKiqqVIsXERERESkLdkNzVFQUEydOxM/PD4AjR45Qt25dAgMDMZlMhIaGsm3bNn777TcyMzNp2rQpAN26dWPbtm2lW72IiIiISBmwu07z9OnTCzxPSEjAbDbbnvv5+REfH19ou9lsJj4+3omlVmzZeTmYzb7lXYaIiIiIlIJi39zEarUW2mYwGK67vbhq1PAp9msqAne3Kjy18qUi20T1WuhQXwrfzuWsz1Pj4to0fq5N4+e6NHauTeP3u2KHZn9/fxITE23PExIS8PPzK7T94sWLtikdxZGUlIbFUjiAl4aK+gfh4kXdw84Rjo6fMz5Ps9lX4+LCNH6uTePnujR2rq0yj5/RaCj2idpiLznXpEkTTp06xenTp8nLy2PTpk20a9eOgIAAPDw8OHToEADR0dG0a9euuN2LiIiIiFQ4xT7T7OHhQUREBMOHDycrK4vg4GAef/xxACIjIwkPD+fq1avce++99O/f3+kFi4iIiIiUNYdD886dO22Pg4KC2LBhQ6E2jRs3ZvXq1c6pTERERESkgtAdAUVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxw1TeBYjIzce3mheeHkX/85OZlUtqSkYZVSQiIlI0hWYRKXOeHiZCX1tfZJuN74aRWkb1iIiI2KPpGSIiIiIiduhMcwWTm5OH2exbZJvsrFyS9bO1iIiISJlRaK5gTFXcmPLapiLbTHi3cxlVIyIiIiKg6RkiIiIiInbd0Jnm/v37k5SUhMmU382UKVM4c+YMCxcuJCcnhwEDBtC3b1+nFCoiIiIiUl5KHJqtVisnT57ku+++s4Xm+Ph4Ro0axdq1a3F3d6d37960bNmSBg0aOK1gEREREZGyVuLQfPLkSQwGA4MGDSIpKYmnnnqKqlWr0qpVK6pXrw5Ahw4d2LZtG8OGDXNawSLFYcnNtnthZW52FpeTs4vuJ9t+PwC5mVlcTi26LxEREXE9JQ7NKSkpBAUFMWnSJDIzM+nfvz8dO3bEbDbb2vj5+XHkyBGnFCpSEkaTOyendy+yzV1vrQGKDrpGd3f2hhXdD0Cb9WtAoVlERKTSKXFovv/++7n//vsB8Pb2pkePHsycOZMXX3yxQDuDwVCsfmvU8ClpSTcVR856iuOc+XlqbJxH4yL/o/FzXRo716bx+12JQ/PBgwfJyckhKCgIyJ/jHBAQQGJioq1NQkICfn5+xeo3KSkNi8Va0rKKxZX/IFy8qHulOXP87H2exTmWxsY+Rz9PZ32WZrOvxsWFafxcl8bOtVXm8TMaDcU+UVviJedSU1OZNWsWWVlZpKWlsW7dOt555x1++OEHLl26REZGBl999RXt2rUr6SFERERERCqEEp9pfuSRRzh8+DBdunTBYrHQp08fmjVrxqhRo+jfvz85OTn06NGD++67z5n1ioiIiIiUuRtap3nkyJGMHDmywLbQ0FBCQ0NvqCgREam4fKt54elR9P8+MrNySU3JKKOKRERKn26jLSIixeLpYSL0tfVFttn4bhiVcyakiNysdBttERERERE7FJpFREREROxQaBYRERERsUNzmuWml52X49JrdouIiEjpU2h2Qbk5joW87KwsklN0S2d73N2q8NTKl4psE9VrYRlVIyIiIhWRQrMLMlWpwryxz9ltN2zmp4BCs4iI5HNkuUDQkoEi16LQLCIicpNwZLlA0JKBItei0CwiFZIlN9uhaUi52VlcTtYvKiIiUroUmkWkQjKa3Dk5vbvddne9tQZ705As2fYDeG5mFpdTFb5FROTaFJpFpNIzuruzN6zoAN5m/RpQaBYRketQaBYRERFxAY5cyKmLOEuPQrOIiIiIC3DkQk5dxFl6FJpFnCg3J8/u3NnsrFySdRZARETEpSg0iziRqYobU17bVGSbCe92LqNqbg66o2PF5MjqJ1r5RERciUKziLg03dGxYnJk9RNHVj4BrX4iIhWDQrOIiFRoWv1ERCoChWYREREpQNNrRApTaBYpY7k59ufgZmdlkZyi/xmJSPlw1vQaR6bWgKbXiGtQaBYpY6YqVZg39rki2wyb+SmOzPUU53Fk5RPQ6ifOpIs4Kz9HptaAptc4kyO/EoB+KSgJhWYRERxb+QS0+okzOXIRJ+hCTpHicORXAnDeLwU3068ECs0iIuLytEZ62dMvBa7N0fHTRbi/U2gWESkGzUmvmLRGetlz5nKP+tJT9rRcZ/EpNIuIFIPmpLsuR77wgL70lAd96XFdN9MXHoVmERG5KTjyhQf0paei0q88FdPN9IWnVELzxo0bWbhwITk5OQwYMIC+ffuWxmFERETkJqFfeVxXZfmVx+mhOT4+ntmzZ7N27Vrc3d3p3bs3LVu2pEGDBs4+lIiIiIhUcJXlVx6nh+aYmBhatWpF9erVAejQoQPbtm1j2LBhDr3eaDQ4u6Qi+d3qZbeN6RazQ32ZvW+z28bDz35ftzhQk2/1Gg7VVNafZ1lz1vg5a+zAeeOnsauYf/dA4wdl+3cP9G+nMzkydqB/OysqV/23s6L93SvJcQxWq9XqzCI+/PBD0tPTGTVqFACrVq3iyJEjTJ061ZmHEREREREpM0Znd3itDG4wVO5vfSIiIiJSuTk9NPv7+5OYmGh7npCQgJ+fn7MPIyIiIiJSZpwemlu3bs0PP/zApUuXyMjI4KuvvqJdu3bOPoyIiIiISJlx+oWA/v7+jBo1iv79+5OTk0OPHj247777nH0YEREREZEy4/QLAUVEREREKhunT88QEREREalsFJpFREREROxQaBYRERERsUOhWURERETEDoVmERERERE7FJpFruGbb75h6dKlnDlzpsD2lStXllNFUhyxsbHEx8cDsGrVKqZNm8aWLVvKuSopiYiIiPIuQRx05MgR2+MffviBiIgIIiMjOXz4cDlWJY7avXs3KSkpAERHRzNlyhTWrFlTzlVVLFpyTuT/iYyM5OjRo9SvX5+tW7cyevRowsLCAOjatSvr1q0r5wqlKEuWLGHp0qVYLBZatWrF+fPneeyxx9i5cycPPPAAQ4cOLe8S5TrGjh1baNvOnTt59NFHAZg5c2ZZlyTF8L9/H5ctW8aXX35J9+7dAVi3bh09e/bkmWeeKecK5XqmT5/OsWPHmD17NsuWLeOf//wnf/3rX/n++++pXbs24eHh5V1iheD0m5tIvnPnzhW5/4477iijSqS4du3axbp16zCZTPTr14+BAwfi7u5Ox44d0XfMim/NmjVs2bKFxMREOnfuzL59+/Dw8KBnz5706NFDobkCq169OtHR0bz44otUq1YNgH379tGiRYtyrkyKIyoqis8//5xbb70VgB49etCjRw+F5gps7969bNy4ETc3N7777juioqJwd3enV69edO7cubzLqzAUmkvJkCFDiI2Nxc/Pr1DQMhgM7Nixo5wqE3usVisGgwGAO++8kw8//JDnnnuO2267zbZdKi6LxYK7uzsBAQEMHDgQDw8P2768vLxyrEzsGT16NO3ateP999/n1VdfpWXLlnz22Wd07dq1vEsTB+Tm5mKxWKhRowbe3t627e7u7hiNmg1akXl6epKUlISfnx81atQgPT0dd3d3MjIyMJkUFf9H0zNKSVpaGn369GHixIk0a9asvMuRYpg3bx4xMTGMGTPGdgv4Q4cOMWzYMLKzszl06FA5VyhFmTNnDvv37+fzzz/Hzc0NgJ9//pnw8HAefvhhhg0bVs4Vij1Xrlxh4sSJ3HHHHezZs4eNGzeWd0nigP79+3Pq1CkMBgOtW7cmIiKCH374gXfeeYeHH36YESNGlHeJch07d+5k0qRJdOrUidzcXPbt20dQUBB79uzhhRdeoFu3buVdYoWg0FyKjhw5wqpVq5g6dWp5lyLF9MMPP+Dn50f9+vVt286fP8/ixYt56623yrEyccSBAwd48MEHbc9PnjxJXFwcwcHB5ViVFNeqVavYunUrixcvLu9SpBhOnjxJSkoKTZs25dChQ6SmpvLwww+Xd1liR1xcHN988w2nT58mLy+PmjVr8sgjj9hOHolCs4iIiIiIXZpkJCIiIiJih0KziIiIiIgdCs0iIuXo7Nmz3H333axatarA9kWLFjFmzBiH+7l06RJ33323s8sTEZH/UmgWESlnRqORt99+m1OnTpV3KSIich1afE9EpJx5enry3HPP8dprr/Hll1/i7u5u25eamsrkyZP5+eefMRgMPPTQQ7z66quYTCa++uorZs+ejZeXF3/+858L9Llq1SpWrFiBxWKhevXqjB8/nvr163Pw4EEiIiKwWCxA/pryHTp0KNP3KyLiinSmWUSkAnjppZfw8vJi9uzZBbZPmzaN6tWrs3HjRtasWcPx48dZvHgxiYmJjBs3jg8++IC1a9cSEBBge83+/fuJjo5m2bJlREdH88ILLzB8+HAAPvjgA5577jnWrl3LjBkz2LdvX5m+TxERV6UzzSIiFYDRaOSdd96ha9eutG3b1rb9+++/Z8WKFRgMBtzd3enduzefffYZdevWpVGjRjRo0ACAXr168d577wHw3Xffcfr0aXr37m3rJzk5mStXrtCxY0emTJnCzp07ad26Na+++mrZvlERERel0CwiUkHccccdTJo0idGjR9OlSxcA2zSK/7FYLOTm5mIwGPjjMvt/vNWtxWIhLCyMN954w/Y8ISGBW265hd69e/PII4+wd+9edu/ezbx589iwYQO+vr5l8A5FRFyXpmeIiFQgHTt2pF27dnz22WcAtG3blmXLlmG1WsnOziYqKorWrVvTvHlzTpw4wc8//wzA2rVrbX20adOGzZs3k5CQAMCKFSt49tlnAejduzfHjh2jW7duTJ06lZSUFJKTk8v4XYqIuB6daRYRqWDCw8M5dOiQ7fG0adMIDQ0lJyeHhx56iBdffBF3d3ciIyN5/fXXqVKlSoHbhj/00EMMGjSIgQMHYjAY8PHxYd68eRgMBl5//XVmzJjB+++/j9FoZNiwYdSuXbu83qqIiMvQbbRFREREROzQ9AwRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMQOhWYRERERETsUmkVERERE7FBoFhERERGxQ6FZRERERMSO/wPgkCk9ZX0M6wAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 864x288 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df.pivot_table(\n", " index=[\"Nodes\"],\n", " columns=[\"Tasks/Node\", \"Threads/Task\"],\n", " values=\"Sim. Time / s\",\n", ").plot(kind=\"bar\", figsize=(12, 4));"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "source": ["<a name=\"taskb\"></a>\n", "\n", "* Bonus task\n", " - Use `Sim. Time / s` and `Presim. Time / s` as values to show\n", " - Show a stack of those two values inside the pivot table"]}, {"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["<span class=\"feedback\">Tell me what you think about this tutorial! <a href=\"mailto:a.herten@fz-juelich.de\">a.herten@fz-juelich.de</a></span>"]}], "metadata": {"kernelspec": {"display_name": "Python 3", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2"}}, "nbformat": 4, "nbformat_minor": 2} \ No newline at end of file diff --git a/Introduction-to-Pandas--tasks.ipynb b/Introduction-to-Pandas--tasks.ipynb index 0b507a7..99c2eb0 100644 --- a/Introduction-to-Pandas--tasks.ipynb +++ b/Introduction-to-Pandas--tasks.ipynb @@ -1 +1 @@ -{"cells": [{"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["# *Introduction to* Data Analysis and Plotting with Pandas\n", "## JSC Tutorial\n", "\n", "Andreas Herten, Forschungszentrum J\u00fclich, 26 February 2019"]}, {"cell_type": "markdown", "metadata": {"exercise": "onlytask", "slideshow": {"slide_type": "skip"}}, "source": ["**Version: Tasks**"]}, {"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["## Outline\n", "\n", "* [Task 1](#task1)\n", "* [Task 2](#task2)\n", "* [Task 3](#task3)\n", "* [Task 4](#task4)\n", "* [Task 5](#task5)\n", "* [Task 6](#task6)\n", "* [Task 7](#task7)\n", "* [Bonus Task](#taskb)"]}, {"cell_type": "code", "execution_count": 2, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import pandas as pd"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 1\n", "<a name=\"task1\"></a>\n", "\n", "* Create data frame with\n", " - 10 names of dinosaurs, \n", " - their favourite prime number, \n", " - and their favourite color\n", "* Play around with the frame\n", "* Tell me on poll when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "nopresentation", "slideshow": {"slide_type": "skip"}}, "source": ["Jupyter Notebook 101:\n", "\n", "* Execute cell: `shift+enter`\n", "* New cell in front of current cell: `a`\n", "* New cell after current cell: `b`"]}, {"cell_type": "code", "execution_count": 21, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [],\n", " \"Favourite Prime\": [],\n", " \"Favourite Color\": []\n", "}\n", "#df_dinos = "]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 2\n", "<a name=\"task2\"></a>\n", "\n", "* Read in `nest-data.csv` to `DataFrame`; call it `df`\n", "* Get to know it and play a bit with it\n", "* Tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 30, "metadata": {"exercise": "task"}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["id,Nodes,Tasks/Node,Threads/Task,Runtime Program / s,Scale,Plastic,Avg. Neuron Build Time / s,Min. Edge Build Time / s,Max. Edge Build Time / s,Min. Init. Time / s,Max. Init. Time / s,Presim. Time / s,Sim. Time / s,Virt. Memory (Sum) / kB,Local Spike Counter (Sum),Average Rate (Sum),Number of Neurons,Number of Connections,Min. Delay,Max. Delay\n", "5,1,2,4,420.42,10,true,0.29,88.12,88.18,1.14,1.20,17.26,311.52,46560664.00,825499,7.48,112500,1265738500,1.5,1.5\n", "5,1,4,4,200.84,10,true,0.15,46.03,46.34,0.70,1.01,7.87,142.97,46903088.00,802865,7.03,112500,1265738500,1.5,1.5\n"]}], "source": ["!cat nest-data.csv | head -3"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "subslide"}}, "source": ["## Task 3\n", "<a name=\"task3\"></a>\n", "\n", "* Add a column to the Nest data frame called `Virtual Processes` which is the total number of threads across all nodes (i.e. the product of threads per task and tasks per node and nodes)\n", "* Remember to tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 56, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import matplotlib.pyplot as plt\n", "%matplotlib inline"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 4\n", "<a name=\"task4\"></a>\n", "\n", "* Sort the data frame by the virtual proccesses\n", "* Plot `\"Presim. Time / s\"` and `\"Sim. Time / s\"` of our data frame `df` as a function of the virtual processes\n", "* Use a dashed, red line for `\"Presim. Time / s\"`, a blue line for `\"Sim. Time / s\"` (see [API description](https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot))\n", "* Don't forget to label your axes and to add a legend\n", "* Submit when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 5\n", "<a name=\"task5\"></a>\n", "\n", "Use the NEST data frame `df` to:\n", "\n", "1. Make the virtual processes the index of the data frame (`.set_index()`)\n", "2. Plot `\"Presim. Program / s\"` and `\"Sim. Time / s`\" individually\n", "3. Plot them onto one common canvas!\n", "4. Make them have the same line colors and styles as before\n", "5. Add a legend, add missing labels\n", "\n", "* Done? Tell me! [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 6\n", "<a name=\"task6\"></a>\n", "\n", "* To your `df` NEST data frame, add a column with the unaccounted time (`Unaccounted Time / s`), which is the difference of program runtime, average neuron build time, minimal edge build time, minimal initialization time, presimulation time, and simulation time. \n", "(*I know this is technically not super correct, but it will do for our example.*)\n", "* Plot a stacked bar plot of all these columns (except for program runtime) over the virtual processes\n", "* Remember: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 7\n", "<a name=\"task7\"></a>\n", "\n", "* Create a pivot table based on the NEST `df` data frame\n", "* Let the `x` axis show the number of nodes; display the values of the simulation time `\"Sim. Time / s\"` for the tasks per node and threas per task configurations\n", "* Please plot a bar plot\n", "* Done? [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "source": ["<a name=\"taskb\"></a>\n", "\n", "* Bonus task\n", " - Use `Sim. Time / s` and `Presim. Time / s` as values to show\n", " - Show a stack of those two values inside the pivot table"]}, {"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["<span class=\"feedback\">Tell me what you think about this tutorial! <a href=\"mailto:a.herten@fz-juelich.de\">a.herten@fz-juelich.de</a></span>"]}], "metadata": {"kernelspec": {"display_name": "Python 3", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2"}}, "nbformat": 4, "nbformat_minor": 2} \ No newline at end of file +{"cells": [{"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["# *Introduction to* Data Analysis and Plotting with Pandas\n", "## JSC Tutorial\n", "\n", "Andreas Herten, Forschungszentrum J\u00fclich, 26 February 2019"]}, {"cell_type": "markdown", "metadata": {"exercise": "onlytask", "slideshow": {"slide_type": "skip"}}, "source": ["**Version: Tasks**"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "source": ["## Task Outline\n", "\n", "* [Task 1](#task1)\n", "* [Task 2](#task2)\n", "* [Task 3](#task3)\n", "* [Task 4](#task4)\n", "* [Task 5](#task5)\n", "* [Task 6](#task6)\n", "* [Task 7](#task7)\n", "* [Bonus Task](#taskb)"]}, {"cell_type": "code", "execution_count": 2, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import pandas as pd"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 1\n", "<a name=\"task1\"></a>\n", "\n", "* Create data frame with\n", " - 10 names of dinosaurs, \n", " - their favourite prime number, \n", " - and their favourite color\n", "* Play around with the frame\n", "* Tell me on poll when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "nopresentation", "slideshow": {"slide_type": "skip"}}, "source": ["Jupyter Notebook 101:\n", "\n", "* Execute cell: `shift+enter`\n", "* New cell in front of current cell: `a`\n", "* New cell after current cell: `b`"]}, {"cell_type": "code", "execution_count": 21, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["happy_dinos = {\n", " \"Dinosaur Name\": [],\n", " \"Favourite Prime\": [],\n", " \"Favourite Color\": []\n", "}\n", "#df_dinos = "]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 2\n", "<a name=\"task2\"></a>\n", "\n", "* Read in `nest-data.csv` to `DataFrame`; call it `df` \n", " *Data was produced with [JUBE](http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html), Pandas works **very** well together with JUBE*\n", "* Get to know it and play a bit with it\n", "* Tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 30, "metadata": {"exercise": "task"}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["id,Nodes,Tasks/Node,Threads/Task,Runtime Program / s,Scale,Plastic,Avg. Neuron Build Time / s,Min. Edge Build Time / s,Max. Edge Build Time / s,Min. Init. Time / s,Max. Init. Time / s,Presim. Time / s,Sim. Time / s,Virt. Memory (Sum) / kB,Local Spike Counter (Sum),Average Rate (Sum),Number of Neurons,Number of Connections,Min. Delay,Max. Delay\n", "5,1,2,4,420.42,10,true,0.29,88.12,88.18,1.14,1.20,17.26,311.52,46560664.00,825499,7.48,112500,1265738500,1.5,1.5\n", "5,1,4,4,200.84,10,true,0.15,46.03,46.34,0.70,1.01,7.87,142.97,46903088.00,802865,7.03,112500,1265738500,1.5,1.5\n"]}], "source": ["!cat nest-data.csv | head -3"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "subslide"}}, "source": ["## Task 3\n", "<a name=\"task3\"></a>\n", "\n", "* Add a column to the Nest data frame called `Virtual Processes` which is the total number of threads across all nodes (i.e. the product of threads per task and tasks per node and nodes)\n", "* Remember to tell me when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "code", "execution_count": 56, "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "outputs": [], "source": ["import matplotlib.pyplot as plt\n", "%matplotlib inline"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 4\n", "<a name=\"task4\"></a>\n", "\n", "* Sort the data frame by the virtual proccesses\n", "* Plot `\"Presim. Time / s\"` and `\"Sim. Time / s\"` of our data frame `df` as a function of the virtual processes\n", "* Use a dashed, red line for `\"Presim. Time / s\"`, a blue line for `\"Sim. Time / s\"` (see [API description](https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot))\n", "* Don't forget to label your axes and to add a legend\n", "* Submit when you're done: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 5\n", "<a name=\"task5\"></a>\n", "\n", "Use the NEST data frame `df` to:\n", "\n", "1. Make the virtual processes the index of the data frame (`.set_index()`)\n", "2. Plot `\"Presim. Program / s\"` and `\"Sim. Time / s`\" individually\n", "3. Plot them onto one common canvas!\n", "4. Make them have the same line colors and styles as before\n", "5. Add a legend, add missing labels\n", "\n", "* Done? Tell me! [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 6\n", "<a name=\"task6\"></a>\n", "\n", "* To your `df` NEST data frame, add a column with the unaccounted time (`Unaccounted Time / s`), which is the difference of program runtime, average neuron build time, minimal edge build time, minimal initialization time, presimulation time, and simulation time. \n", "(*I know this is technically not super correct, but it will do for our example.*)\n", "* Plot a stacked bar plot of all these columns (except for program runtime) over the virtual processes\n", "* Remember: [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "slide"}}, "source": ["## Task 7\n", "<a name=\"task7\"></a>\n", "\n", "* Create a pivot table based on the NEST `df` data frame\n", "* Let the `x` axis show the number of nodes; display the values of the simulation time `\"Sim. Time / s\"` for the tasks per node and threas per task configurations\n", "* Please plot a bar plot\n", "* Done? [pollev.com/aherten538](https://pollev.com/aherten538)"]}, {"cell_type": "markdown", "metadata": {"exercise": "task", "slideshow": {"slide_type": "fragment"}}, "source": ["<a name=\"taskb\"></a>\n", "\n", "* Bonus task\n", " - Use `Sim. Time / s` and `Presim. Time / s` as values to show\n", " - Show a stack of those two values inside the pivot table"]}, {"cell_type": "markdown", "metadata": {"exercise": "task"}, "source": ["<span class=\"feedback\">Tell me what you think about this tutorial! <a href=\"mailto:a.herten@fz-juelich.de\">a.herten@fz-juelich.de</a></span>"]}], "metadata": {"kernelspec": {"display_name": "Python 3", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2"}}, "nbformat": 4, "nbformat_minor": 2} \ No newline at end of file -- GitLab