diff --git a/pytorch/jureca_job.sh b/pytorch/jureca_job.sh
new file mode 100755
index 0000000000000000000000000000000000000000..3959b01e88e2a16412126c8f10f0fee1abeb6416
--- /dev/null
+++ b/pytorch/jureca_job.sh
@@ -0,0 +1,25 @@
+#!/usr/bin/env bash
+
+# Slurm job configuration
+#SBATCH --nodes=1
+#SBATCH --ntasks=4
+#SBATCH --ntasks-per-node=4
+#SBATCH --output=output_%j.out
+#SBATCH --error=error_%j.er
+#SBATCH --time=00:10:00
+#SBATCH --job-name=TUTORIAL
+#SBATCH --gres=gpu:4
+#SBATCH --partition=dc-gpu-devel
+
+# Load the required modules
+module load GCC/9.3.0
+module load OpenMPI/4.1.0rc1
+module load PyTorch/1.7.0-Python-3.8.5
+module load torchvision/0.8.1-Python-3.8.5
+module load Horovod/0.20.3-Python-3.8.5
+
+# Make all GPUs visible per node
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+
+# Run the program
+srun python -u mnist.py
diff --git a/pytorch/jusuf_job.sh b/pytorch/jusuf_job.sh
new file mode 100755
index 0000000000000000000000000000000000000000..3ac149098de9708124d3e2ef494dafa8d18c772c
--- /dev/null
+++ b/pytorch/jusuf_job.sh
@@ -0,0 +1,25 @@
+#!/usr/bin/env bash
+
+# Slurm job configuration
+#SBATCH --nodes=2
+#SBATCH --ntasks=2
+#SBATCH --ntasks-per-node=1
+#SBATCH --output=output_%j.out
+#SBATCH --error=error_%j.er
+#SBATCH --time=00:10:00
+#SBATCH --job-name=TUTORIAL
+#SBATCH --gres=gpu:1
+#SBATCH --partition=develgpus
+
+# Load the required modules
+module load GCC/9.3.0
+module load OpenMPI/4.1.0rc1
+module load PyTorch/1.7.0-Python-3.8.5
+module load torchvision/0.8.1-Python-3.8.5
+module load Horovod/0.20.3-Python-3.8.5
+
+# Make all GPUs visible per node
+export CUDA_VISIBLE_DEVICES=0
+
+# Run the program
+srun python -u mnist.py
diff --git a/pytorch/juwels_booster_job.sh b/pytorch/juwels_booster_job.sh
new file mode 100755
index 0000000000000000000000000000000000000000..fd58b1d65fdc8b2267eeac3b31abfa6685f18554
--- /dev/null
+++ b/pytorch/juwels_booster_job.sh
@@ -0,0 +1,25 @@
+#!/usr/bin/env bash
+
+# Slurm job configuration
+#SBATCH --nodes=1
+#SBATCH --ntasks=4
+#SBATCH --ntasks-per-node=4
+#SBATCH --output=output_%j.out
+#SBATCH --error=error_%j.er
+#SBATCH --time=00:10:00
+#SBATCH --job-name=TUTORIAL
+#SBATCH --gres=gpu:4
+#SBATCH --partition=develbooster
+
+# Load the required modules
+module load GCC/9.3.0
+module load OpenMPI/4.1.0rc1
+module load PyTorch/1.7.0-Python-3.8.5
+module load torchvision/0.8.1-Python-3.8.5
+module load Horovod/0.20.3-Python-3.8.5
+
+# Make all GPUs visible per node
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+
+# Run the program
+srun python -u mnist.py
diff --git a/pytorch/juwels_job.sh b/pytorch/juwels_job.sh
new file mode 100755
index 0000000000000000000000000000000000000000..b91e237c068fba323ffa173eaccd5ab251367923
--- /dev/null
+++ b/pytorch/juwels_job.sh
@@ -0,0 +1,25 @@
+#!/usr/bin/env bash
+
+# Slurm job configuration
+#SBATCH --nodes=1
+#SBATCH --ntasks=4
+#SBATCH --ntasks-per-node=4
+#SBATCH --output=output_%j.out
+#SBATCH --error=error_%j.er
+#SBATCH --time=00:10:00
+#SBATCH --job-name=TUTORIAL
+#SBATCH --gres=gpu:4
+#SBATCH --partition=develgpus
+
+# Load the required modules
+module load GCC/9.3.0
+module load OpenMPI/4.1.0rc1
+module load PyTorch/1.7.0-Python-3.8.5
+module load torchvision/0.8.1-Python-3.8.5
+module load Horovod/0.20.3-Python-3.8.5
+
+# Make all GPUs visible per node
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+
+# Run the program
+srun python -u mnist.py
diff --git a/pytorch/mnist.py b/pytorch/mnist.py
new file mode 100644
index 0000000000000000000000000000000000000000..3fa9c4471fa0020c65d7e61b23e99fd229c208cd
--- /dev/null
+++ b/pytorch/mnist.py
@@ -0,0 +1,227 @@
+
+import os
+import sys
+import shutil
+import argparse
+
+import torch.multiprocessing as mp
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.optim as optim
+from torchvision import datasets, transforms
+import torch.utils.data.distributed
+import horovod.torch as hvd
+
+# [HPCNS] Import the DataValidator, which can then be used to
+# validate and load the path to the already downloaded dataset.
+sys.path.insert(0, '../utils')
+from data_utils import DataValidator
+
+
+# Training settings
+parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
+parser.add_argument('--batch-size', type=int, default=64, metavar='N',
+                    help='input batch size for training (default: 64)')
+parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
+                    help='input batch size for testing (default: 1000)')
+parser.add_argument('--epochs', type=int, default=10, metavar='N',
+                    help='number of epochs to train (default: 10)')
+parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
+                    help='learning rate (default: 0.01)')
+parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
+                    help='SGD momentum (default: 0.5)')
+parser.add_argument('--no-cuda', action='store_true', default=False,
+                    help='disables CUDA training')
+parser.add_argument('--seed', type=int, default=42, metavar='S',
+                    help='random seed (default: 42)')
+parser.add_argument('--log-interval', type=int, default=10, metavar='N',
+                    help='how many batches to wait before logging training status')
+parser.add_argument('--fp16-allreduce', action='store_true', default=False,
+                    help='use fp16 compression during allreduce')
+parser.add_argument('--use-adasum', action='store_true', default=False,
+                    help='use adasum algorithm to do reduction')
+parser.add_argument('--gradient-predivide-factor', type=float, default=1.0,
+                    help='apply gradient predivide factor in optimizer (default: 1.0)')
+parser.add_argument('--data-dir',
+                    help='location of the training dataset in the local filesystem (will be downloaded if needed)')
+
+
+class Net(nn.Module):
+    def __init__(self):
+        super(Net, self).__init__()
+        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
+        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
+        self.conv2_drop = nn.Dropout2d()
+        self.fc1 = nn.Linear(320, 50)
+        self.fc2 = nn.Linear(50, 10)
+
+    def forward(self, x):
+        x = F.relu(F.max_pool2d(self.conv1(x), 2))
+        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
+        x = x.view(-1, 320)
+        x = F.relu(self.fc1(x))
+        x = F.dropout(x, training=self.training)
+        x = self.fc2(x)
+        return F.log_softmax(x)
+
+
+def train(epoch):
+    model.train()
+    # Horovod: set epoch to sampler for shuffling.
+    train_sampler.set_epoch(epoch)
+    for batch_idx, (data, target) in enumerate(train_loader):
+        if args.cuda:
+            data, target = data.cuda(), target.cuda()
+        optimizer.zero_grad()
+        output = model(data)
+        loss = F.nll_loss(output, target)
+        loss.backward()
+        optimizer.step()
+        if batch_idx % args.log_interval == 0:
+            # Horovod: use train_sampler to determine the number of examples in
+            # this worker's partition.
+            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
+                epoch, batch_idx * len(data), len(train_sampler),
+                100. * batch_idx / len(train_loader), loss.item()))
+
+
+def metric_average(val, name):
+    tensor = torch.tensor(val)
+    avg_tensor = hvd.allreduce(tensor, name=name)
+    return avg_tensor.item()
+
+
+def test():
+    model.eval()
+    test_loss = 0.
+    test_accuracy = 0.
+    for data, target in test_loader:
+        if args.cuda:
+            data, target = data.cuda(), target.cuda()
+        output = model(data)
+        # sum up batch loss
+        test_loss += F.nll_loss(output, target, size_average=False).item()
+        # get the index of the max log-probability
+        pred = output.data.max(1, keepdim=True)[1]
+        test_accuracy += pred.eq(target.data.view_as(pred)).cpu().float().sum()
+
+    # Horovod: use test_sampler to determine the number of examples in
+    # this worker's partition.
+    test_loss /= len(test_sampler)
+    test_accuracy /= len(test_sampler)
+
+    # Horovod: average metric values across workers.
+    test_loss = metric_average(test_loss, 'avg_loss')
+    test_accuracy = metric_average(test_accuracy, 'avg_accuracy')
+
+    # Horovod: print output only on first rank.
+    if hvd.rank() == 0:
+        print('\nTest set: Average loss: {:.4f}, Accuracy: {:.2f}%\n'.format(
+            test_loss, 100. * test_accuracy))
+
+
+if __name__ == '__main__':
+    args = parser.parse_args()
+    args.cuda = not args.no_cuda and torch.cuda.is_available()
+
+    # Horovod: initialize library.
+    hvd.init()
+    torch.manual_seed(args.seed)
+
+    if args.cuda:
+        # Horovod: pin GPU to local rank.
+        torch.cuda.set_device(hvd.local_rank())
+        torch.cuda.manual_seed(args.seed)
+
+    # Horovod: limit # of CPU threads to be used per worker.
+    torch.set_num_threads(1)
+
+    kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
+    # When supported, use 'forkserver' to spawn dataloader workers instead of 'fork' to prevent
+    # issues with Infiniband implementations that are not fork-safe
+    if (kwargs.get('num_workers', 0) > 0 and hasattr(mp, '_supports_context') and
+            mp._supports_context and 'forkserver' in mp.get_all_start_methods()):
+        kwargs['multiprocessing_context'] = 'forkserver'
+
+    # data_dir = args.data_dir or './data'
+
+    # [HPCNS] Name of the dataset file
+    data_file = 'mnist/pytorch/data'
+
+    # [HPCNS] Path to the directory containing the dataset file
+    data_dir = DataValidator.validated_data_dir(data_file)
+
+    # [HPCNS] Fully qualified dataset file name
+    dataset_file = os.path.join(data_dir, data_file)
+
+    # [HPCNS] Dataset filename for this rank
+    dataset_root_for_rank = f'MNIST-data-{hvd.rank()}'
+    dataset_for_rank = f'{dataset_root_for_rank}/MNIST'
+
+    # [HPCNS] If the path already exists, remove it
+    if os.path.exists(dataset_for_rank):
+        shutil.rmtree(dataset_for_rank)
+
+    # [HPCNS] Make a copy of the dataset for this rank
+    shutil.copytree(dataset_file, dataset_for_rank)
+
+    train_dataset = \
+        datasets.MNIST(dataset_root_for_rank, train=True, download=False,
+                       transform=transforms.Compose([
+                           transforms.ToTensor(),
+                           transforms.Normalize((0.1307,), (0.3081,))
+                       ]))
+
+    # Horovod: use DistributedSampler to partition the training data.
+    train_sampler = torch.utils.data.distributed.DistributedSampler(
+        train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
+    train_loader = torch.utils.data.DataLoader(
+        train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
+
+    test_dataset = \
+        datasets.MNIST(dataset_root_for_rank, train=False, transform=transforms.Compose([
+            transforms.ToTensor(),
+            transforms.Normalize((0.1307,), (0.3081,))
+        ]))
+    # Horovod: use DistributedSampler to partition the test data.
+    test_sampler = torch.utils.data.distributed.DistributedSampler(
+        test_dataset, num_replicas=hvd.size(), rank=hvd.rank())
+    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.test_batch_size,
+                                              sampler=test_sampler, **kwargs)
+
+    model = Net()
+
+    # By default, Adasum doesn't need scaling up learning rate.
+    lr_scaler = hvd.size() if not args.use_adasum else 1
+
+    if args.cuda:
+        # Move model to GPU.
+        model.cuda()
+        # If using GPU Adasum allreduce, scale learning rate by local_size.
+        if args.use_adasum and hvd.nccl_built():
+            lr_scaler = hvd.local_size()
+
+    # Horovod: scale learning rate by lr_scaler.
+    optimizer = optim.SGD(model.parameters(), lr=args.lr * lr_scaler,
+                          momentum=args.momentum)
+
+    # Horovod: broadcast parameters & optimizer state.
+    hvd.broadcast_parameters(model.state_dict(), root_rank=0)
+    hvd.broadcast_optimizer_state(optimizer, root_rank=0)
+
+    # Horovod: (optional) compression algorithm.
+    compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
+
+    # Horovod: wrap optimizer with DistributedOptimizer.
+    optimizer = hvd.DistributedOptimizer(optimizer,
+                                         named_parameters=model.named_parameters(),
+                                         compression=compression,
+                                         op=hvd.Adasum if args.use_adasum else hvd.Average,
+                                         gradient_predivide_factor=args.gradient_predivide_factor)
+
+    for epoch in range(1, args.epochs + 1):
+        train(epoch)
+        test()
+
+    # [HPCNS] Remove the copied dataset
+    shutil.rmtree(dataset_root_for_rank)