Changes
Page history
added 3 authors
authored
Jan 19, 2017
by
Mohcine Chraibi
Hide whitespace changes
Inline
Side-by-side
docs/2016-11-01-inifile.md
View page @
40d6fd32
...
...
@@ -231,14 +231,14 @@ randomly distributed.
-
`patience`
: this parameter influences the route choice behavior when using the quickest path router.
It basically defines how long a pedestrian stays in jams before attempting a rerouting.
-
`premovement_mean`
and
`premovement_sigma`
: premovement time is Gauss-distributed $
$
\m
athcal{N}(
\m
u,
\s
igma^2)
$
$.
-
`premovement_mean`
and
`premovement_sigma`
: premovement time is Gauss-distributed $
`
\mathcal{N}(\mu, \sigma^2)
`
$.
-
Risk tolerance can be Gauss-distributed, or beta-distributed.
If not specified then it is defined as $
$
\m
athcal{N}(1, 0)
$
$:
If not specified then it is defined as $
`
\mathcal{N}(1, 0)
`
$:
-
`risk_tolerance_mean`
and
`risk_tolerance_sigma`
: $
$
\m
athcal{N}(
\m
u,
\s
igma^2)
$
$.
-
`risk_tolerance_mean`
and
`risk_tolerance_sigma`
: $
`
\mathcal{N}(\mu, \sigma^2)
`
$.
-
`risk_tolerance_alpha`
and
`risk_tolerance_beta`
: $
$
Beta(
\a
lpha,
\b
eta)
$
$.
-
`risk_tolerance_alpha`
and
`risk_tolerance_beta`
: $
`
Beta(\alpha, \beta)
`
$.
-
`x_min`
,
`x_max`
,
`y_min`
and
`y_max`
: define a bounding box where agents should be distributed.
...
...
@@ -264,10 +264,12 @@ new agents in the system during the simulation.
-
`group_id`
: group id of the agents. This
`id`
should match a predefined group in the section
[
Agents_distribution
](
#agents_distribution
)
.
-
`caption`
: caption
-
`greedy`
(default
`false`
): returns a Voronoi vertex randomly with respect to weights proportional to squared distances.
For vertexes $
$
v_i
$
$ and distances $
$
d_i
$
$ to their surrounding seeds
calculate the probabilities $
$
p_i
$
$ as
For vertexes $
`
v_i
`
$ and distances $
`
d_i
`
$ to their surrounding seeds
calculate the probabilities $
`
p_i
`
$ as
$$p_i=
\f
rac{d_i^2}{
\s
um_j^n d_j^2}.$$
```
math
p_i= \frac{d_i^2}{\sum_j^n d_j^2}.
```
If this attribute is set to
`true`
, the greedy approach is used.
That means new agents will be placed on the vertex with the biggest distance to the surrounding seeds.
...
...
...
...