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SURVEY

https://casedissemination.typeform.com/to/dOl1sSkd

Please take some time and fill out the survey.

https://casedissemination.typeform.com/to/dOl1sSkd


BUILD YOU OWN

JUPYTER KERNEL



JUPYTER KERNEL
How to create your own Juypter Kernel

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

 run code in different programming languages

and environments.

 can be connected to a notebook (one at a time).

 communicates via ZeroMQ with the JupyterLab.

 Multiple preinstalled Jupyter Kernels can be found on our 

clusters

 Python, R, Julia, Bash, C++, Ruby, JavaScript

 Specialized kernels for visualization, quantumcomputing

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

You can easily create your own kernel which for example
runs your specialized virtual Python environment.

My Own
Virtual Environment

Python Kernel



JUPYTER KERNEL
1. Create/Pimp new virtual Python environment (1)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel 
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Login to JupyterLab and open terminal

2. Load required modules

Lnode:> module purge

Lnode:> module use $OTHERSTAGES

Lnode:> module load Stages/2020

Lnode:> module load GCCcore/.9.3.0

Lnode:> module load Python/3.8.5

3. Load extra modules you need for your kernel

Lnode:> module load <module you need>

1. Create a virtual environment named <venv_name> at a path of your choice:

Lnode:> python -m venv --system-site-packages <your_path>/<venv_name>

2. Activate your environment

Lnode:> source <your_path>/<venv_name>/bin/activate



JUPYTER KERNEL
1. Create/Pimp new virtual Python environment (2)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel 
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Ensure python packages installed in the virtual environment
are always prefered

(<venv_name>) Lnode:> export PYTHONPATH=\

${VIRTUAL_ENV}/lib/python3.8/site-packages:${PYTHONPATH}

2. Install Python libraries required for communication with Jupyter

(<venv_name>) Lnode:>

pip install --ignore-installed ipykernel

3. Install whatever else you need in your Python virtual environment (using pip)

(<venv_name>) Lnode:>

pip install <python-package you need>



JUPYTER KERNEL
2. Create/Edit launch script for the Jupyter kernel (1)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel 
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Create launch script, which loads your Python virtual environment
and starts the ipykernel process inside:

(<venv_name>) Lnode:> touch ${VIRTUAL_ENV}/kernel.sh

2. Make launch script executable

(<venv_name>) Lnode:> chmod +x ${VIRTUAL_ENV}/kernel.sh

3. Edit the launch script for your new Jupyter kernel

(<venv_name>) Lnode:> vi ${VIRTUAL_ENV}/kernel.sh



JUPYTER KERNEL
2. Create/Edit launch script for the Jupyter kernel (2)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel 
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

#!/bin/bash

# Load required modules

module purge

module load $OTHERSTAGES

module load Stages/2020

module load GCCcore/.9.3.0

module load Python/3.8.5

# Load extra modules you need for your kernel

#module load <module you need>

# Activate your Python virtual environment

source <your_path>/<venv_name>/bin/activate

# Ensure python packages installed in the virtual environment are always prefered

export PYTHONPATH=${VIRTUAL_ENV}/lib/python3.8/site-packages:${PYTHONPATH}

exec python -m ipykernel $@



JUPYTER KERNEL
3. Create/Edit Jupyter kernel configuration (1)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel 
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Create your Jupyter kernel configuration files

(<venv_name>) Lnode:>

python -m ipykernel install --user --name=<my-kernel-name>

2. Update your kernel file to use the lauch script

(<venv_name>) Lnode:>

vi ~/.local/share/jupyter/kernels/<my-kernel-name>/kernel.json

{

"argv": [

"<your_path>/<venv_name>/kernel.sh",

"-m",

"ipykernel_launcher",

"-f",

"{connection_file}"

],

"display_name": "<my-kernel-name>",

"language": "python"

}



JUPYTER KERNEL
Run your Jupyter kernel configuration

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Run your Jupyter Kernel

1. https://jupyter-jsc.fz-juelich.de

2. Choose system where your Jupyter kernel is installed
in ~/.local/share/jupyter/kernels

3. Select your kernel in the launch pad or click the kernel name.

Conda

How to base your Jupyter Kernel on a Conda environment:

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-

/blob/master/001-Jupyter/Create_JupyterKernel_conda.ipynb

Project kernel

On request Jupyter kernel can be made available to a whole 

project. They are installed then to

$PROJECT/.local/share/jupyter/kernels



JUPYTER KERNEL
Shortcut!

https://github.com/FZJ-JSC/jupyter-jsc-notebooks/blob/master/001-Jupyter/Modify_JupyterKernel_at_NotebookRuntime.ipynb

You do NOT want to build your own kernel,

every time you QUICKLY need a package or module.

You are lucky – we can show you a workaround / hack(!):

1. https://jupyter-jsc.fz-juelich.de

2. Click on the Github-Icon in the sidebar

3. Go to “001-Jupyter”

4. Open Modify_JupyterKernel_at_NotebookRuntime.ipynb

What´s the trick

os.execve(f"{venv_folder}/bin/python", args, env) 

Workflow

1. Create a Python virtual environment at any location.

2. WITHIN the notebook

 restart the kernel´s python interpreter

 of that Python virtual environment

 with the correct environment variables set.




