
The CoEC project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 952181.

The CoE RAISE project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 951733.

Interactive HPC with Jupyter (4)
training course, 26+27.05.2021

Jens Henrik Göbbert, j.goebbert@fz-juelich.de

Christian Witzler, c.witzler@fz-juelich.de

Jülich Supercomputing Centre (JSC)

Forschungszentrum Jülich (FZJ)

SURVEY

https://casedissemination.typeform.com/to/dOl1sSkd

Please take some time and fill out the survey.

https://casedissemination.typeform.com/to/dOl1sSkd

BUILD YOU OWN

JUPYTER KERNEL

JUPYTER KERNEL
How to create your own Juypter Kernel

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

 run code in different programming languages

and environments.

 can be connected to a notebook (one at a time).

 communicates via ZeroMQ with the JupyterLab.

 Multiple preinstalled Jupyter Kernels can be found on our

clusters

 Python, R, Julia, Bash, C++, Ruby, JavaScript

 Specialized kernels for visualization, quantumcomputing

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

You can easily create your own kernel which for example
runs your specialized virtual Python environment.

My Own
Virtual Environment

Python Kernel

JUPYTER KERNEL
1. Create/Pimp new virtual Python environment (1)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Login to JupyterLab and open terminal

2. Load required modules

Lnode:> module purge

Lnode:> module use $OTHERSTAGES

Lnode:> module load Stages/2020

Lnode:> module load GCCcore/.9.3.0

Lnode:> module load Python/3.8.5

3. Load extra modules you need for your kernel

Lnode:> module load <module you need>

1. Create a virtual environment named <venv_name> at a path of your choice:

Lnode:> python -m venv --system-site-packages <your_path>/<venv_name>

2. Activate your environment

Lnode:> source <your_path>/<venv_name>/bin/activate

JUPYTER KERNEL
1. Create/Pimp new virtual Python environment (2)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Ensure python packages installed in the virtual environment
are always prefered

(<venv_name>) Lnode:> export PYTHONPATH=\

${VIRTUAL_ENV}/lib/python3.8/site-packages:${PYTHONPATH}

2. Install Python libraries required for communication with Jupyter

(<venv_name>) Lnode:>

pip install --ignore-installed ipykernel

3. Install whatever else you need in your Python virtual environment (using pip)

(<venv_name>) Lnode:>

pip install <python-package you need>

JUPYTER KERNEL
2. Create/Edit launch script for the Jupyter kernel (1)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Create launch script, which loads your Python virtual environment
and starts the ipykernel process inside:

(<venv_name>) Lnode:> touch ${VIRTUAL_ENV}/kernel.sh

2. Make launch script executable

(<venv_name>) Lnode:> chmod +x ${VIRTUAL_ENV}/kernel.sh

3. Edit the launch script for your new Jupyter kernel

(<venv_name>) Lnode:> vi ${VIRTUAL_ENV}/kernel.sh

JUPYTER KERNEL
2. Create/Edit launch script for the Jupyter kernel (2)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

#!/bin/bash

Load required modules

module purge

module load $OTHERSTAGES

module load Stages/2020

module load GCCcore/.9.3.0

module load Python/3.8.5

Load extra modules you need for your kernel

#module load <module you need>

Activate your Python virtual environment

source <your_path>/<venv_name>/bin/activate

Ensure python packages installed in the virtual environment are always prefered

export PYTHONPATH=${VIRTUAL_ENV}/lib/python3.8/site-packages:${PYTHONPATH}

exec python -m ipykernel $@

JUPYTER KERNEL
3. Create/Edit Jupyter kernel configuration (1)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Create your Jupyter kernel configuration files

(<venv_name>) Lnode:>

python -m ipykernel install --user --name=<my-kernel-name>

2. Update your kernel file to use the lauch script

(<venv_name>) Lnode:>

vi ~/.local/share/jupyter/kernels/<my-kernel-name>/kernel.json

{

"argv": [

"<your_path>/<venv_name>/kernel.sh",

"-m",

"ipykernel_launcher",

"-f",

"{connection_file}"

],

"display_name": "<my-kernel-name>",

"language": "python"

}

JUPYTER KERNEL
Run your Jupyter kernel configuration

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Run your Jupyter Kernel

1. https://jupyter-jsc.fz-juelich.de

2. Choose system where your Jupyter kernel is installed
in ~/.local/share/jupyter/kernels

3. Select your kernel in the launch pad or click the kernel name.

Conda

How to base your Jupyter Kernel on a Conda environment:

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-

/blob/master/001-Jupyter/Create_JupyterKernel_conda.ipynb

Project kernel

On request Jupyter kernel can be made available to a whole

project. They are installed then to

$PROJECT/.local/share/jupyter/kernels

JUPYTER KERNEL
Shortcut!

https://github.com/FZJ-JSC/jupyter-jsc-notebooks/blob/master/001-Jupyter/Modify_JupyterKernel_at_NotebookRuntime.ipynb

You do NOT want to build your own kernel,

every time you QUICKLY need a package or module.

You are lucky – we can show you a workaround / hack(!):

1. https://jupyter-jsc.fz-juelich.de

2. Click on the Github-Icon in the sidebar

3. Go to “001-Jupyter”

4. Open Modify_JupyterKernel_at_NotebookRuntime.ipynb

What´s the trick

os.execve(f"{venv_folder}/bin/python", args, env)

Workflow

1. Create a Python virtual environment at any location.

2. WITHIN the notebook

 restart the kernel´s python interpreter

 of that Python virtual environment

 with the correct environment variables set.

