
JUPYTERLAB -SUPERCOMPUTING IN YOUR BROWSER
Training course "Introduction to the usage and programming of supercomputer resources in Jülich"

2020-11-25 I JENS. H. GÖBBERT (J.GOEBBERT@FZ-JUELICH.DE)

TIM KREUZER (T.KREUZER@FZ-JUELICH.DE)

MOTIVATION
your thinking, your reasoning, your insides, your ideas

“It is all about using and building a machinery interface

between computational researchers and data, supercomputers, laptops, cloud

and your thinking, your reasoning, your insides, your ideas about a problem.”
Fernando Perez, Berkely Institute for Data Science

Founder of Project Jupyter

https://jupyter.org

MOTIVATION
Rise of Jupyter´s popularity

https://www.benfrederickson.com/ranking-programming-languages-by-github-users/
https://github.com/benfred/github-analysis

If popularity can be counted by

 Monthly aggregated number of user interactions with GitHub

repos (= Monthly Active Users (MAU))

and

 Each repository is assigned to a single language

(by looking at which language has the most bytes in the repo)

Jupyter Notebooks have seen significant and steady growth over

the last years (still rising).

 Of course the popularity of Python in general is pushing this

trend.

TERMINOLOGY
What is JupyterLab

JupyterLab

 Interactive working environment in the web browser

 For the creation of reproducible computer-aided narratives

 Very popular with researchers from all fields

 Jupyter = Julia + Python + R

Multi-purpose working environment

 Language agnostic

 Supports execution environments (“kernels”)

 For dozens of languages: Python, R, Julia, C++, ...

 Extensible software design („extensions“)

 many server/client plug-ins available

 Eg. in-browser-terminal and file-browsing

Document-Centered Computing (“notebooks”)

 Combines code execution,
rich text, math, plots and rich media.

 All-in-one document called Jupyter Notebook

https://jupyterlab.readthedocs.io

TERMINOLOGY
What is a Jupyter Notebook?

Jupyter Notebook

A notebook document (file extension .ipynb)

is a document that can be rendered in a web browser

 It is a file, which stores your work in JSON format

 Based on a set of open standards for interactive computing

 Allows development of custom applications with embedded

interactive computing.

 Can be extended by third parties

 Directly convertible to PDF, HTML, LateX ...

 Supported by many applications

such as GitHub, GitLab, etc..

https://jupyter-notebook.readthedocs.io/
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks

TERMINOLOGY
What is a Jupyter Kernel?

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

 run code in different programming languages and

environments.

 can be connected to a notebook (one at a time).

 communicates via ZeroMQ with the JupyterLab.

 Multiple preinstalled Jupyter Kernels can be found on our

clusters

 Python, R, Julia, Bash, C++, Ruby, JavaScript

 Specialized kernels for visualization, quantumcomputing

 You can easily create your own kernel which for example

runs your specialized virtual Python environment. https://jupyter-notebook.readthedocs.io/
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://zeromq.org

TERMINOLOGY
What is a JupyterLab Extension?

JupyterLab Extension

JupyterLab extensions can customize or enhance

any part of JupyterLab.

JupyterLab Extensions

 provide new file viewers, editors, themes

 provide renderers for rich outputs in notebooks

 add items to the menu or command palette

 add keyboard shortcuts

 add settings in the settings system.

 Extensions can even provide an API for other extensions

to use and can depend on other extensions.

The whole JupyterLab itself is simply a collection of extensions

that are no more powerful or privileged than any custom

extension. https://jupyterlab.readthedocs.io/en/stable/user/extensions.html
https://github.com/topics/jupyterlab-extension

TERMINOLOGY
Bringing all together

Jupyter

Notebook

Server

Jupyter

Kernel

ssh
Terminal

ssh - tunnel
JupyterLab

browser hpc cluster

JupyterLab

Client

Extension

JupyterLab

JupyterLab

Server

Extension

ØMQ

Seite 10

Start Jupyter on the login node

Lnode:> module purge

Lnode:> module use $OTHERSTAGES

Lnode:> module load Stages/Devel-2019a

Lnode:> module load GCC/8.3.0

Lnode:> module load JupyterCollection/2019a.2.4

Lnode:> cd $PROJECT_<my_project>

Lnode:> jupyter lab

[I 20:44:05.916 NotebookApp] Writing notebook server cookie secret to

/run/user/12885/jupyter/notebook_cookie_secret

[…]

Copy/paste this URL into your browser when you connect for the first time, to

login with a token:

http://localhost:8888/?token=7f1f8d7d9414a8b72j2e2cc2c2866c29fb557677e9a08042

JUPYTER – START & TUNNEL
Start your JupyterLab (the hard way)

JupyterCollection is a meta-module,
which loads the modules:
 JupyterKernel-Bash/0.7.1-2019a.2.4

 JupyterKernel-Cling/0.6-2019a.2.4

 JupyterKernel-JavaScript/5.2.0-2019a.2.4

 JupyterKernel-Julia/1.3.1-2019a.2.4

 JupyterKernel-Octave/5.1.0-2019a.2.4

 JupyterKernel-PyParaView/5.8.0-2019a.2.4

 JupyterKernel-PyQuantum/1.0-2019a.2.4

 JupyterKernel-R/3.5.3-2019a.2.4

 JupyterKernel-Ruby/2.6.3-2019a.2.4

 Jupyter/2019a.2.4-Python-3.6.8

http://localhost:8888/?token=7f1f8d7d9414a8b72j2e2cc2c2866c29fb557677e9a08042

Seite 11

[I 20:44:05.916 NotebookApp] Writing notebook server cookie secret to

/run/user/12885/jupyter/notebook_cookie_secret

[…]

Copy/paste this URL into your browser when you connect for the first

time, to login with a token:

http://localhost:8888/?token=7f1f8d7d9414a8b72j2e2cc2c2866c29fb557677e9a

08042

Tunnel Jupyter port to workstation

Wrkst:> ssh -4 –N –L 2222:localhost:<jupyter-port> \

<username>@juwels<no>.fz-juelich.de

JUPYTER – START & TUNNEL
Start your JupyterLab (the hard way)

Open Jupyter in the local browser

Wrkst-Browser:>

http://localhost:2222/?token=7f1f8d7d9414a8b72j2e2cc2c2866c29fb557677e9a08042

 You will see the view on the filesystem from working directory of the jupyter command.

 You can only enter sub-directories – you CANNOT enter any directory above.

Please add softlinks to directories like $PROJECT, $SCRATCH, etc.

http://localhost:8888/?token=7f1f8d7d9414a8b72j2e2cc2c2866c29fb557677e9a08042
http://localhost:2222/?token=7f1f8d7d9414a8b72j2e2cc2c2866c29fb557677e9a08042

Jupyter

Notebook

Server

Jupyter

Kernel

ssh
Terminal

ssh - tunnel
JupyterLab

browser hpc cluster

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

JupyterLab

Client

Extension

JupyterLab

JupyterLab

Server

Extension

Jupyter

Notebook

Server

Jupyter

Kernel

hpc cluster

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

browser

JupyterLab

Client

Extension

ØMQ

ØMQ

JUPYTER-JSC WEBSERVICE
Start your JupyterLab (the easy way)

Start your JupyterLab (the easy way)

JUPYTER-JSC WEBSERVICE

JupyterHub

is used to make Jupyter available to a group of HPC users.

 Creates/manages JupyterLabs for single users.

 Connects JupyterLabs to users via a configurable HTTP proxy.

 Supports custom spawners

 UNICORE at JSC

 Supports custom authenticators

 Unity-IdM at JSC

JUPYTER-JSC WEBSERVICE

Jupyter-JSC first time login

 Requirements:

 Registered at judoor.fz-juelich.de
 (with “Connected Services” = jupyter-jsc)

1. Login at jupyter-jsc.fz-juelich.de

2. Sign in with your JSC account

3. Register to Jupyter-JSC

4. Accept usage agreement

5. Submit the registration

6. Wait for email and confirm your email address

1.

2. 3.

4.

5.
6.

First time login

=> https://jupyter-jsc.fz-juelich.de

Control Panel

JUPYTER-JSC WEBSERVICE

C. Jupyter-JSC -- Statusbar

 Upcoming maintenance

(mouse hover for details)

 System offline

A. Jupyter-JSC – Add new JupyterLab

 Name your new JupyterLab configuration
 Unique Jupyter workspace in ~/.jupyter

 => the JupyterLab Options page will open

B. Jupyter-JSC – Actions

If a configuration has been added

 Start/delete the named configuration

(workspace will not be deleted)

 Open/stop a running JupyterLab

A.

B.

C.

D.

B. Jupyter-JSC – Logout

 Logout will ask what you want to do with the running

JupyterLabs – be careful what you answer!

JupyterLab Options

JUPYTER-JSC WEBSERVICE

Jupyter-JSC – Options

Available options depend on

 user account settings visible in judoor.fz-juelich.de

 currently available systems in all of your projects

 system specific usage agreement on JuDoor is signed

Basic options

 System:

JUWELS, JURECA, JUSUF, DEEP, HDFML, HDF-Cloud

 Account:

In general users only have a single account

 Project:

project which have access to the selected system

 Partition:

partition which are accessible by the project

(this includes the decision for LoginNode and ComputeNode)

 Email notification:

Send an email when the JupyterLab has started

(useful if the JupyterLab starts on a compute node)

Extra options

 Partition == compute Nodes, Runtime, GPUs, …

 System == HDF-Cloud Image

1.

2.

3.

HDF-Cloud – OpenStack Cluster for running Virtual Machines

System: HDF-Cloud

JUPYTER-JSC WEBSERVICE

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

UNICORE

JupyterLab

JupyterLab

Client

Extension

Virtual Machine for JupyterLab Container

Jupyter-JSC Container

more Jupyter-JSC container

more Virtual Machines

Jupyter

Notebook

Server

Jupyter

Kernel

hpc cluster

JupyterLab

JupyterLab

Server

Extension

ØMQ

Helmholtz Data Federation (HDF)-Cloud

Any user having

 a JSC account (judoor.fz-juelich.de)

 the Connected Service “jupyter-jsc” enabled (default for HPC accounts)

can start

 Jupyter-JSC container images (containing JupyterLab) on the HDF-Cloud

 “base-notebook” – close to the installation on the clusters

 The Core Images of the Jupyter Docker Stacks

 https://jupyter-docker-stacks.readthedocs.io

 https://github.com/jupyter/docker-stacks

https://www.fz-juelich.de/ias/jsc/EN/Expertise/SciCloudServices/HDFCloud/_node.html

user storage
(local to Jupyter-JSC on HDF-Cloud)

System: HDF-Cloud

JUPYTER-JSC WEBSERVICE

1.

2.

Start JupyterLab on HDF-Cloud

 Requirements:

 Registered JSC account at judoor.fz-juelich.de

 Logined in to Jupyter-JSC at jupyter-jsc.fz-juelich.de

 Named a new JupyterLab configuration

 Start a JupyterLab:

 System == “HDF-Cloud”

 Select Image == “base-notebook”

 Click “Start”

 Wait for JupyterLab to be started

JupyterLab is running in a container on the HDF-Cloud
3.

System: HDF-Cloud

JUPYTER-JSC WEBSERVICE

Limitations on JupyterLab on HDF-Cloud

 max. 2 GB memory

 Installed Jupyter Kernel limited

 Storage in Jupyter-JSC container

 is local to the HDF-Cloud

 only accessible from a Jupyter-JSC container

 stored persistently in a personal data container if in

 ~/work (max. 10 GB)

 ~/Projects (max. 10 GB)

 backup of ~/work and ~/Projects every day to tape

 Depending on the load of the OpenStack you might be limited

in the number of simultaneous running JupyterLab containers

 HDF-Cloud has at the moment no GPUs

System: HDF-Cloud

JUPYTER-JSC WEBSERVICE

For more details please visit:

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/FAQ_HDFCloud.ipynb

How can I share/backup my work from JupyterLab?

1. Download the file

2. ~/Projects

for sharing data between JupyterLab-users on HDF-Cloud

3. Mount your HPC cluster directory with sshfs

 B2Drop – https://b2drop.eudat.eu

 Git / GitHub / GitLab

NEVER forget:

 Data is ONLY persistent in ~/Projects and ~/work

1.

2b.

3.

2a.

memory consuption
(keep an eye on that!)

logout & close all
running JupyterLabs

Type of Jupyter kernel
this notebook is connected to
(click to change)

type of active
notebook cell

sidebar with core
and extentions
features

no close, but
go back to Jupyter-
JSC´s controll panel

tutorials
& examples

open
launcheropen

filebrowser

Some comments about the UI

JUPYTER-JSC WEBSERVICE

notebook cell

[*] indicates that cell was send to
Jupyter kernel for execution

[] indicates that cell has never been
executed by the connected Jupyter kernel

indicates active
notebook cell

Very important to know

JUPYTER-JSC SECRETS

Secret 1: Support button

 Let us know, if something does not work.

We can only fix it, if we know it.

Secret 2: Reload on connection loss

 “Server Not Running” means, that your browser just

lost connection => Just hit “Dismiss” !!!

 You can safely hit the “Reload” button of your browser,

if the connection to JupyterLab ever gets lost.

(but that takes more time)

For experts only 

JUPYTER-JSC SECRETS

Secret 3: Jupyter-JSC logs

 Jupyter-Lab gets started by UNICORE on our HPC systems

 On startup UNICORE created the directory $SCRATCH_<project>/unicore-jobs/<random-hash>/

 In the terminal of a running JupyterLab, this directory is $JUPYTER_LOG_DIR

 In this directory you find

 stdout -> terminal output of jupyterlab messages

 stderr -> terminal output of jupyterlab error messages

 .start -> details how your JupyterLab got started

Secret 4: change to a different JupyterLab version

 In .start you can see, that

 $HOME/.jupyter/start_jupyter-jsc.sh

is used to load JupyterLab if available.

Here you can switch to an older/newer/other version of JupyterLab,

if the new one gives you trouble

#!/bin/bash

module purge
module use $OTHERSTAGES
module load Stages/Devel-2019a
module load GCC/8.3.0
module load JupyterCollection/2019a.2.3

Switch to a different JupyterLab with
$HOME/.jupyter/start_jupyter-jsc.sh

JUPYTERLAB EXTENSIONS

JUPYTER EXTENSIONS

https://jupyterlab.readthedocs.io/en/stable/user/extensions.html

List the installed JupyterLab extensions

 Open the Launcher

 Start a Terminal

 Run command jupyter labextension list

Extensions are installed in
JupyterLab´s Application Directory, which

 stores any information that JupyterLab persists

 including settings and built assets of extensions

 default location is <sys-prefix>/share/jupyter/lab

 can be relocated by setting $JUPYTERLAB_DIR

 is immutable

 any change requires a rebuild of the whole JupyterLab

to take effect!

 contains the JupyterLab static assets

 (e.g. static/index.html)

Some general information

JUPYTER-JSC EXTENSIONS

https://github.com/jupyterlab/jupyterlab-git

JupyterLab-Git

JupyterLab extension for version control using Git

Installed by default

https://github.com/maartenbreddels/ipyvolume

IPyVolume

3d plotting for Python in the Jupyter notebook

based on IPython widgets using WebGL

JUPYTER-JSC EXTENSIONS

https://github.com/jupyterlab/jupyterlab-toc

JupyterLab-toc

A Table of Contents extension for JupyterLab.
This auto-generates a table of contents in the left area when you have a
notebook or markdown document open.The entries are clickable, and scroll
the document to the heading in question.

Installed by default

https://github.com/cmd-ntrf/jupyter-lmod

JupyterLab-Lmod

JupyterLab extension that allows user to interact with environment modules

before launching kernels.

 Remember to restart the kernel after loading other modules.

JUPYTER-JSC EXTENSIONS

https://github.com/jupyter-widgets/ipyleaflet

IPyLeaflet

A Jupyter / Leaflet bridge enabling interactive maps in the Jupyter notebook.

Installed by default

https://github.com/jupyter-widgets/pythreejs

PyThreeJS

A Python / ThreeJS bridge utilizing the Jupyter widget infrastructure.

https://threejs.org - lightweight, 3D library with a default WebGL renderer.

JUPYTER-JSC EXTENSIONS

https://github.com/jupyter/nbdime

NBDime

Tools for diffing and merging of Jupyter notebooks.

Installed by default

https://github.com/matplotlib/ipympl

IPyMPL - matplotlib

Leveraging the Jupyter interactive widgets framework, ipympl enables the

interactive features of matplotlib in the Jupyter notebook and in JupyterLab.

JUPYTER-JSC EXTENSIONS

https://github.com/jupyter-widgets/jupyterlab-sidecar

JupyterLab-Sidecar

A sidecar output widget for JupyterLab.

Installed by default

https://github.com/plotly/plotly.py

Plotly

JupyterLab extension for the interactive and browser-based graphing library Plotly.

https://plotly.com/python/

JUPYTER-JSC EXTENSIONS

https://github.com/voila-dashboards/voila

Voilà

Voilà turns Jupyter notebooks into standalone web applications.

Installed by default

https://github.com/parente/jupyterlab-quickopen

JupyterLab-Quickopen

Quickly open a file in JupyterLab by typing part of its name

JUPYTER-JSC EXTENSIONS
Installed by default

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/List_JupyterExtensions.ipynb

https://npmjs.com

Presented JupyterLab extensions

 ipyvolume

 @jupyterlab/git

 jupyterlab-lmod

 @jupyterlab/toc

 jupyter-threejs

 jupyter-leaflet

 jupyter-matplotlib

 jupyterlab-plotly

 @jupyter-widgets/jupyterlab-sidecar

 @parente/jupyterlab-quickopen

 @jupyter-voila/jupyterlab-preview

More installed JupyterLab extensions

 @bokeh/jupyter_bokeh

 dask-labextension

 jupyterlab-gitlab

 bqplot

 @jupyterlab/latex

 @krassowski/jupyterlab_go_to_definition

 @pyviz/jupyterlab_pyviz

 @ryantam626/jupyterlab_code_formatter

 @jupyterlab/server-proxy

 itkwidgets

 jupyter-vue

 @jupyterlab/celltags

 jupyterlab-drawio

JUPYTER KERNEL

JUPYTER KERNEL
How to create your own Juypter Kernel

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

 run code in different programming languages

and environments.

 can be connected to a notebook (one at a time).

 communicates via ZeroMQ with the JupyterLab.

 Multiple preinstalled Jupyter Kernels can be found on our

clusters

 Python, R, Julia, Bash, C++, Ruby, JavaScript

 Specialized kernels for visualization, quantumcomputing

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

You can easily create your own kernel which for example
runs your specialized virtual Python environment.

My Own
Virtual Environment

Python Kernel

JUPYTER KERNEL
1. Create/Pimp new virtual Python environment (1)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Login to JupyterLab and open terminal

2. Load required modules

Lnode:> module purge

Lnode:> module use $OTHERSTAGES

Lnode:> module load Stages/Devel-2019a

Lnode:> module load GCC/8.3.0

Lnode:> module load Jupyter

3. Load extra modules you need for your kernel

Lnode:> module load <module you need>

1. Create a virtual environment named <venv_name> at a path of your choice:

Lnode:> python -m venv --system-site-packages <your_path>/<venv_name>

2. Activate your environment

Lnode:> source <your_path>/<venv_name>/bin/activate

JUPYTER KERNEL
1. Create/Pimp new virtual Python environment (2)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Ensure python packages installed in the virtual environment
are always prefered

(<venv_name>) Lnode:> export PYTHONPATH=\

${VIRTUAL_ENV}/lib/python3.6/site-packages:${PYTHONPATH}

2. Install Python libraries required for communication with Jupyter

(<venv_name>) Lnode:>

pip install --ignore-installed ipykernel

3. Install whatever else you need in your Python virtual environment (using pip)

(<venv_name>) Lnode:>

pip install <python-package you need>

JUPYTER KERNEL
2. Create/Edit launch script for the Jupyter kernel (1)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Create launch script, which loads your Python virtual environment
and starts the ipykernel process inside:

(<venv_name>) Lnode:> touch ${VIRTUAL_ENV}/kernel.sh

2. Make launch script executable

(<venv_name>) Lnode:> chmod +x ${VIRTUAL_ENV}/kernel.sh

3. Edit the launch script for your new Jupyter kernel

(<venv_name>) Lnode:> vi ${VIRTUAL_ENV}/kernel.sh

JUPYTER KERNEL
2. Create/Edit launch script for the Jupyter kernel (2)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

#!/bin/bash

Load required modules

module purge

module load $OTHERSTAGES

module load Stages/Devel-2019a

module load GCC/8.3.0

module load Jupyter

Load extra modules you need for your kernel

#module load <module you need>

Activate your Python virtual environment

source <your_path>/<venv_name>/bin/activate

Ensure python packages installed in the virtual environment are always prefered

export PYTHONPATH=${VIRTUAL_ENV}/lib/python3.6/site-packages:${PYTHONPATH}

exec python -m ipykernel $@

JUPYTER KERNEL
3. Create/Edit Jupyter kernel configuration (1)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Create your Jupyter kernel configuration files

(<venv_name>) Lnode:>

python –m ipykernel install --user --name=<my-kernel-name>

2. Update your kernel file to use the lauch script

(<venv_name>) Lnode:>

vi ~/.local/share/jupyter/kernels/<my-kernel-name>/kernel.json

{

"argv": [

"<your_path>/<venv_name>/kernel.sh",

"-m",

"ipykernel_launcher",

"-f",

"{connection_file}"

],

"display_name": "<my-kernel-name>",

"language": "python"

}

JUPYTER KERNEL
Run your Jupyter kernel configuration

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Run your Jupyter Kernel

1. https://jupyter-jsc.fz-juelich.de

2. Choose system where your Jupyter kernel is installed
in ~/.local/share/jupyter/kernels

3. Select your kernel in the launch pad or click the kernel name.

Conda

How to base your Jupyter Kernel on a Conda environment:

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-

/blob/master/001-Jupyter/Create_JupyterKernel_conda.ipynb

Project kernel

On request Jupyter kernel can be made available to a whole

project. They are installed then to

$PROJECT/.local/share/jupyter/kernels

JUPYTER KERNEL
Shortcut!

https://github.com/FZJ-JSC/jupyter-jsc-notebooks/blob/master/001-Jupyter/Modify_JupyterKernel_at_NotebookRuntime.ipynb

You do NOT want to build your own kernel,

every time you QUICKLY need a package or module.

You are lucky – we can show you a workaround / hack(!):

1. https://jupyter-jsc.fz-juelich.de

2. Click on the Github-Icon in the sidebar

3. Go to “001-Jupyter”

4. Open Modify_JupyterKernel_at_NotebookRuntime.ipynb

What´s the trick

os.execve(f"{venv_folder}/bin/python", args, env)

Workflow

1. Create a Python virtual environment at any location.

2. WITHIN the notebook

 restart the kernel´s python interpreter

 of that Python virtual environment

 with the correct environment variables set.

JUPYTER CAN DO MORE

JUPYTERLAB – REMOTE DESKTOP
Run your X11-Applications in the browser

Jupyter-JSC gives you easy access to a remote desktop

1. https://jupyter-jsc.fz-juelich.de

2. Click on “Xpra” (not available on JURECA, yet)

Xpra - X Persistent Remote Applications

is a tool which runs X clients on a remote host and directs their

display to the local machine.

 Runs in a browser

 allows dis-/reconnection without disrupting the forwarded

application

 https://xpra.org

The remote desktop will run on the same node as your

JupyterLab does (this includes compute nodes).

It gets killed, when you stop your JupyterLab session.

Hint:

 CTRL + C -> CTRL + Insert

 CTRL + V -> SHIFT + Insert

JUPYTERLAB – REMOTE DESKTOP
Run your X11-Applications in the browser

Jupyter-JSC gives you easy access to a remote desktop

1. https://jupyter-jsc.fz-juelich.de

2. Click on “Xpra” (not available on JURECA, yet)

Xpra - X Persistent Remote Applications

is a tool which runs X clients on a remote host and directs their

display to the local machine.

 Runs in a browser

 allows dis-/reconnection without disrupting the forwarded

application

 https://xpra.org

If the connection got lost at some point,

just hit the “reload” button of your browser.

Hint:

 CTRL + C -> CTRL + Insert

 CTRL + V -> SHIFT + Insert

JUPYTERLAB – WEBSERVICE PROXY
Extension: jupyter-server-proxy

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Notebook

Server

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

JupyterLab

Client

Extension

WebAppJupyterLab Extension

„jupyter-server-proxy“

Allows to run arbitrary external processes

 alongside a Jupyter notebook, and provide authenticated web access to them.

 launching users into web interfaces that have nothing to do with Jupyter.

 access from frontend javascript to access web APIs

Other possible examples:

TensorBoard, RStudio, Shiny, OpenRefine,

custom REST-APIs, …

https://github.com/jupyterhub/jupyter-server-proxy

JUPYTERLAB – WEBSERVICE PROXY
Extension: jupyter-server-proxy

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Notebook

Server

Jupyter

Kernel

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

JupyterLab

Client

Extension

ØMQ

pvserverJupyterLab Extension

„jupyter-server-proxy“

How to use JupyterLab to integrate

interactive server side visualization into a Jupyter Notebook.

pvpython

simulation

JUPYTERLAB – WEBSERVICE PROXY
Extension: jupyter-server-proxy

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Notebook

Server

Jupyter

Kernel

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

JupyterLab

Client

Extension

ØMQ

pvserverJupyterLab Extension

„jupyter-server-proxy“

How to use JupyterLab to integrate

interactive server side visualization into a Jupyter Notebook.

pvpython

simulation

DASHBOARDS WITH JUPYTER/VOILA
Voilà turns Jupyter notebooks into standalone web applications

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Voila

Notebook

Server

Jupyter

Kernel

Voila

JupyterLab

Server

Extension

UNICORE

JupyterLab

JupyterLab

Client

Extension

ØMQ

 Rendering of live Jupyter notebooks with interactive widgets

with the look-and-feel of a stand-alone web app.

 Voilà disallows execute requests from the front-end,

preventing execution of arbitrary code.

 Enables HPC users to develop easly

web applications from their Jupyter notebooks.

https://github.com/voila-dashboards/voila
https://voila-gallery.org

TUTORIALS
Get started with Jupyter

Page 49

https://ipython-books.github.io

https://github.com/ipython-books/cookbook-2nd

Possible start to enter the world of

interactive computing with IPython in Jupyter:

• Leverage the Jupyter Notebook for interactive

data science and visualization

• High-performance computing and visualization

for data analysis and scientific modeling

• A comprehensive coverage of scientific

computing through many hands-on, example-

driven recipes with detailed, step-by-step

explanations

BENEFITS

Some of the reasons …

• Jupyter allows to view the results of the code in-line without the

dependency of other parts of the code.

• Jupyter mixes easy for users who extend their code line-by-line with

feedback attached all along the way

• Jupyter Notebooks support visualization and include rendering data

in live-graphics and charts.

• Jupyter is maintaining the state of execution of each cell

automatically.

• Supports IPyWidget packages, which provide standard user

interface for exploring code and data interactively.

• Platform and language independent because of its representation in

JSON format.

Why Jupyter is so popular among Data Scientists

QUESTIONS?
https://jupyter-jsc.fz-juelich.de

