diff --git a/001-Jupyter/Create_JupyterKernel_conda.ipynb b/001-Jupyter/Create_JupyterKernel_conda.ipynb
index 181a713bf45b8ea933f8ae9ca5e4700d39057b69..6f178d8a6ba1baa3762fba549c8dda6d4628bab7 100644
--- a/001-Jupyter/Create_JupyterKernel_conda.ipynb
+++ b/001-Jupyter/Create_JupyterKernel_conda.ipynb
@@ -1,17 +1,26 @@
 {
  "cells": [
   {
+   "attachments": {
+    "09375636-629b-4ee2-9011-455f6157ab16.png": {
+     "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAABgCAMAAACkLcFMAAAAwFBMVEX///8AO2EAOF8ANV0dVXddfZQAMlv7/P0ALlkAOWAALFgAJ1UAMFrp7vKttsDI1NxBaIRPbIbc5OkAIlIyUnGltsNSeJJxg5ePp7jFz9cAQmllhp2Woq/w9PYAAEQAB0gbTG8AFU4AGk42Y4K/xs41XHpYcIhzj6OwwMuZq7k9XXoASG7W4OaBkqPl6OsAHlGTqbldgJgAEUsAAD+dsb+LmqouVXR9maxofZJti6BYfJQnS2yeqbWAkKEQT3JAbYmctWnXAAAXrElEQVR4nO2dC3uiOhOAuVTuFIFiBUuX1hsqou1BrLXt/v9/9WWSgDdAPeuxflvnnKerGCCQl8lkMhMY5ipXucpVrnKVq1zllCKKvqX7IpLvrsnliBF/dw3OLWLUGSwaN7Ji2/bEtpvfXZ/LkVHjZz0YUbOXCpLAc7LMggjRd9focuSm9t01OJ/40UJTNZ5jV8LXzvMo+KuPol9e7HvlB7HQqXmazG4KH57jzNH47TOhn8PPt8+znPR4+Sks+GEqC9sksNxQP8O5HU8TNKmFP0859Fmbn+Gsx8sPYcEwFW4bBCRnaZQ45dGpZAG0gTWCanAj4wznPVp+BAv+fCQUkMCy6jksx0jB+kiboc+hgs8r3Z7hvEfLD2BBDANlp3cg1sLvc5w/UokO6iMzNaEsfJzjxMfKD2ChzxV1DyCKc47zWxImUYH2NyaEi4u0Hv96FvSGUkICshzP4mgTZwCDkFros9+QQC2YFzmu/NtZiIbFlgKI0D9PHfSFYtttF3+O321balymg+svZ8ENylFglSpr3j9h/yGKkS8WfL4w2ctCHCTMNL1MkPdKGPDlKHBflbtOBueq5aXIfhbqCeOY1lkqc2qJvTKrEUSaVu3bEPizWJYXJPv7CKTRLteFXilWt0IrsFxQZTkarMx5R1v7UQfE2N6wpVV9A29dc3laZL/SviMu/V03Bovf7W7jZWDsuFBFo+js5ecqZ8HvIAIilx62E8Of1ekMcsGie+u45J4aUVb0HH7dA0SsVaHACvdV3fYA7cuxR3aNUaBJkqRwOUPuSAIJNg2TuaxAMTNnMeqqUKyUPbELPyvyjiLTZ3VPEXie4wXJq0+3Lihh8W7djfYQU7yRK1CK5SxEzx2GWUjkiy89IKJ+5ZUVez04sfU2eXqcpHCp4u823W9yGYNnsVU6mCRSVU0dqxT+7rhBZ6JiT4Lwlm140eC7rDxsFPvCPZfMu9mGW+ILE95LjmvY5Petoag/4CU+96LJvMQNNmhoE7t5s6+jx+LN3Se2ggUb3ay+Qr7oHLDwnLtOCQu64IU++PoRNaJ5Q/dTL4MFp8pWQA99WtXxueQ2aseNOpsS1TjZhhY9zCYLHmk/eY0F0miNkuMaxHO51X5+Tdpyp3L8Yh2GOtGLnLP/WFj+iIU+18GV4rqXx4IVVLMgVQY01ehQVDrqWs7KgnVT0AVq9TUYzsmCn9IuN3mML46FRoVjARqCrRoa6dnOXHCM8XNOFnxTK7ourbWCoc6dj4UooM+WnuiXxoJbaTei9qoMaEqkvFz/CMfQOVnor6IxOH4tVktK8iLn1AuGtzrvhbEQD/ewIFdV0jdXeyudw896RhbCSVZBjR2+9VItq7Gs5nbQOVlwN1hoKE9YVOECWGjyxbPU+aOUVnURBrvam68fcdazsSBmtHJq34h934raasZGbgids49wt/RCeIsknB1nb/0nIu5BYU9AU2u9K1bdqqIbcj4WwozpIL/ZA9pP8Pns6yn0go61DGFBpZsq+wjwS15UHxFmD0mZqFXTUiK7TtLKW7BXzsaC+ElpXYvAEN+pwZsf9wQs6O9Yy1jAgvOLmE4RHLDUdoxM67JYWFQPIlgYBJeLs+Gkkr2DFcPZWNCJu2ozMEu3t/g4QR/h90z4x32M0J9nYjqFbKfAvzDsEVLmT+JFsaAPq30LrFQ57dTbtDsPdzidjYWIepn4DUwpIHlYxin6iFkAhtVC8eGuDqHD0E1walvPuU1NWHAm2KttaLXL6iPc0Z9YjtFykyRZOHRYeTYWaB/IpRsNOlcFECU7DGFB/iMWYrYbGnMVm1ehVE8MZ6jggG77PsHSEel8RF3pd4xmAOENKxbsb2fhds9MhDCu2nsmbRU/2Ho8GwvT7EQblOqzT5BxNqN2knGEawrqaOrTz57t9bCppQcjD0vdZ+7foBr+IOXV4A0OK7Zo32UFR4zI/xt5KHTJrbFQ1bh+d7uDEQ6N/TobC3163FlldbI+YuPZjI4dU/qRYa19jqj7IqKCfovpwMVCJQmceraH9e3RDuNqFribqp13xyDc8MArOhsLL+S4e0LrKQuyOe+v5IU/koX/bxH3DCOqp6UaBR7LA3u9s7FA66jtYYEqOA6bERr8rwn06n4MC/1KvSB7lZYju2t37tHFuVwaCxV++J/Cwh7bsTqgaVqgU4S3wzqJKwuXJ2GlXuAqA5rMAtcE1929cUVyaSxUeFl+DAtGUOFf4CstQbfI1JC9/08WrnphbRavSJRKy/Gl0OxUD8sJuFAWZG5N5B/GAuOUz01xX1XWgl+844FJuGdj4f2oPiJI14SqzJ/DgiiXdpVCUrVjUmx1Hrhmxw4LdHArnZqFYsa2hfqg5aYV5WLRibefw0K59bgdV74pfknnUpyF6zvN+XyerA64w8KcVGNrTEpdQF4+b340C8XHZXwimeIr9EEf73cMf3eHLWxvGw16rU3IL5w3kLSa2Ok4bVCJGXGBt8+pC9KfNtKGQ6sUT9tpK8RfrMYqMrMFycY62W8Kx/P71L5HZxTn2bEbLZ+ZwwyYk9VjTi4tatWHrVJfcpm7ifMq019cr9jo1BZF56jZGhJ1Ffi0w8KgaN5AJHPLXJBX5WgWaDzm1ljXCFRFUdQ8N/AkMW6+qdRms54NcZ/OP3Sn4ZvI+MtlzzRN7xlSdF54E76YZsT4wh3eTuYtoxuu9mk+k7OFHl97qz/hOYtwksc8uaqNqhh5ac/s1XkcHRHQG578isWxiTZzXXRQtGP7Bp3tfUI5+oKoVdHRvPvPrl2qu/WbIhi4Peu2zUvUidAqKGyRmErZzrfssJAr5PU2M7JJxn/PQjZPebPRoDNFBuFp0tJpWBioHXS//eTJhWiWNRbE5ScoIb0FU3cvNxbRSaioMMPbG5IBOUdBJIp+R4JL04Oh64t+ooI666jSJz3FWFMwC00R7Rf10ONqpVQRJ88x1naul5Cjt7siZCzQyfobYMFQ3y10joen0rb167sw7MuQ9MtycQtZ0GmHYud3lfo7hewimZjceHlDG1Hg+F4OyPGxLNQ5uhmHMaLxC5kSO8k8Zb2Oq+l7/R0W6Gwv9wIs5IfzBWLF+BzaY26TRhto6N8ZS3rFOSyT1VH7MrkrVtqC1K6IJfrM4JNNFvBGj14EYeGmR3IVMAs3N1hJiG9B6ahAb6hbcQhSsGdewSnzVwqFfcQbYUHJj0rhWEWf+jS8RFrTXz59XNdskKNZyOwaLl0rFdHaK9liASfRCw2SXybChGQhC2K7vckCtWj9Lrqcxg2Ni9OmjF+jvan12EEsTAybVDScuMoaC773UMQCNfkJC18RiajALLxSC9qpClycLdcW8pP5UX9fdmSpc0Z4KSp+T/MVTcpjSK2N1WpM4iKLS1wphhndtBYifHzs6weNsViLucoYk3M75CQsOM/TXH8VszBqAAt5oYwF3UMPkLyWuqN3X7IS6JfOU1wbkWq+x+oaCxb7sZeFETPAozBgIfp1UIxENPtSNQFnIatef++aimWWY9mYMtEoZeTXKCXkycpaGgPtqPghrbDYzOa+hFWpjIXS3Nqd9stjr/g+dYNZNS7zHGTNcpI+Qnx/7iX01hWyYDwjNdgaOSESaJ+MhSZEwWlrCZ65Qeh7L8CC7tpAbTwJY3uNBYcLD2BBTOEygQXj6cB4GT+atxp1NPI5ZGGcWek0hlLolBCzLoUbOrE7X2bTwe1VET/L2eHZl6lrhfNuFq2/HkWZzaV5jU3JGrGg/fKwfT7th3Hk9JeZebTSN6fJlRGd1POWTbh9Bbaj5QQQMNgSIMaJHcIlc3U00u63+YW/hwW9C/dgnsaEBa8JJmciIzW7nwXGgHFKzoLfXywW/dOtGBOXZ+PaxSPRVYMotqple2/kuA9yRybSTaoiZD5gLlireD6vym+I8ERPW9B+Vp42x2mqrSqrs69IPFXelGgkb/Zyx164Ux+RqCYojZcgdJFAfX056Ha7SoqR1PrlLMRMM9XR0zJjLMxCYMPx+DeLOYQFZJbGayx06/X0hIt7z7fjHFfCFVsaUdG4Q+itDyDFbrGjg1/XNGVz7Jnru6j9khIHCrvyuZwub4oRXYhv7jyS+yAO70Ev3BtISBTbur0gjHXdb8n4+GyWtiquswA6EViIUTfi8gZlwZtHcDy8rkfGwsAuZSFevq31EUilhN7Jgiv1Uala4L5K5ikL3Jvc1jpnZDXobZE2Bib/hgXmQS2wbjhu7X6cQi9YbXpAyKCLXsmTp9/NmNWYEmRnHBF5eBjebmfjiCbjvw1JCf0pISwwqSkuugxlgV0tlub3euTDfESOW8ACEz6FXUDtVzaOkE/GQrM8MI4vdVw3J1sNwivbvlCD2zmwrPQ2WuJfsSCO7R14+Q2HwylY8CXa4n0WAuRJiQ6X7GOBGWOfymxCngzsXxhT/8IM+xeAhdA2WCdnYW3ZoE86GOrSO1/EAtNYjoCFEQlfFRfcqViIKtbu0MalhueA3Xjste6uW9wytY1Dy7w82zzev2IB3cnlZq/GSZtnp30E/0d9RN/G8weGDJrsQ3FgEa8heA02WfiKRZG8vYv6miwZHO96mkaoO3E9GC7HXh2SJ0IejAjMQpzeQIrHLguWeq/Dmu4Cbd5CFqxUAhZctYYGBv5MYk/FwqIiFqoqQd/tKsiMk+E/ThBaRZ2J/+FBGTyYRIUkc/twtypXKDa9OOsJf9V6W+op6msajEvwgXlpNNs0pBsS7MVvmlTWa/GxmNL5CLs2+/jku3Bsvfbce/j0sM/O9z5XpV742j0IMvx8lcyY9W3QAq7Hvc3ulTauWSh744ea2gAbIMS2x/gZgLKegYWN5cQSKR2P60/ZQ2OwGQt4PsIjXxwbz0c0J+l4Vlfej193r1g6FSGS1WlWYlhfsrzAy95dKyrRH/G0vvQ4XuBYL110dgrptbtCWWTtNV7C13RH54jGfBiw6MAyG9Tn2wZu1IW9li+b5ys7VvmY8j1dtqnDSXR+L7sLcqLWmvmb1ImgNhffqVHxG7tf9X53Wc/mcuM5+jIgqdu/4bGJGlAPHf7q7xtVMtBZa25WdatBXRxz8OUkmSOmhYe6jNu6W7Yj/eU0K9IWW3hU+H3z+n7oDJywfHlGXMZ1cKGTVHddotBJBmF4gvvwl8YvHCliv2oZl2JP098nVxZAksr1GpSSEeXfJlcWkBjlrgXoIroXuq77qeXKQvVwEkzHb88VPpNcWWD0EjdxphYKRuJ/p1xZsOrVWdnVrxb4m+THsxCl1UnZHPvtSwicS346C0Z1B8HKP0ct/HAWxJCtciyAtdD4MWqhlAXfirJkB4sK+hpnZlQsMqKVi0+/xOS+6Wt7XLTo89JXV+YsVPu49eOv1L/Y21LCglsPhOAeu+FvAyoh47/TGQ3xK2RC2Jam6M/ogYlxiW4PJ8g8ZHtc5FubcxGNrz3LQLKsUr2en77kcATSMR3JrVq5ctifyR+9DaqYhalSb4bNpQCN+SHMm1giNPpSScyS/zpgYrRpOlzCLy4Tvy7Qv3MT37sxOyV7XPRgTF+UJ13mWqFbfW/9pdxtgxzxmrIP+z9koVM7fMXiHSlkweBqcA+iYYD+fqwMab0daPhc/jONQfmkixnE9PVDY8hOHy//fX3OJXozFaoXgWThffR77qy/ZKONFMYD5HAWROdou/Xh+Q/epFjIQmtEJmlvJy6wkD/eevfFxGEEOQv3Q/JjxgKOObh8FqIBp+xVCqys7nvckV5YTWfrbseg6yAajIVnLfXV6+bQRxf/+mHP/A6d1NRd/GLjDv7rWmJ+BPQNlb9ZZh/xLKTYcbGQS8jed4f2QyXw7K4fmlofB6DGHR9nt/guPhEuKhqRb0AloKJF8BaykEUWxeNwi4V+xEKkQikLeInoC2dBdBeptlcnwHBy//sa11gw6prN1uGrqLadO8iidofqRBnidnTris3V4GZ9qI2eonoP0BohflVJqMJ8vOs1WsLEq5HZ/brwPAm8OzhHTbbVEVBpTAQBWTh4ufYkkGwP52W4Srsl2TIEn4e2wHIS+Ennalgb1eDZhBQ4y4YwsOim22Jtvq+bvO0VXVohC95nFr0qbvYR3QWz4KIKFkIIqLpgFvQo7HuqsF8nsJDBsFfz+0vO1ZEwEOXL952aBPdDnHBqYFqMXufn7pS7Q5t0np8nbzYsSf4h8b2k701glsNRYMlUx4ZlUkNW6ybNQMXWalvpG0ZDAxbGSi1MUhUnAYzH864AQT2hkDYTU4VoEVflzWS2VGEh/7HJm2OIFVloPD+cQ2gaVCiawCt6o0AbTqeppNaT5tIuUHmFLLDr8X0fWq3Var1ABAmwwNy0xQIWXh0f3ZNOkKJiY+4F9ki+f+wUh6s3eMZROB2bI+UQlYC1wh67EcRf8t36cNiNcbwVpFhK8Eq+Cd+A5VGtdInOPn1HD890gppYDB4N0AvkwYX4wVC6X2NhZICOCBiIIoaTRxJ6qMR7yNd0f1PLxUrhaRNrkBGjLyFY0FVhjcJEwgrlQyWxFn1BCeHVDwaLWbDxQQOI1Usk24K0jfvdqzmABekLBEKSMAshQmqXBTut1+tdoQsd01i4gT3eL8BL46CG9/DI18PxiPveMbISvnVA9ZFeWCKBkN8WftKm9gOwYOOew+8p7SnxudzjNaVjR89sx9CGnJYNFmTomXUW1LDF3ljQypCMOlCDRU60XseBNfoXG8UxGtZBKaxtIhZHIj+opGH6dIHwTRYgXD+yOfS5IxW8FaOEhbUvG/YCwDwOLHGHhefGvN/iSMbUJfURjsSTpatkuWARz3KtoCwOIRmNI1wrwl65Nl4SfQCDbnFC38ZjmZOJ1AYK3lah8oQFA3fhjrLGAgfOG32Eb/dYMW8fAhvGEX5fmkwCEiTI1Cb4FussB69zUl6jFQtfGyyQPORtFiAlyYY+piMcGvsavFGXo2MUsKDzC39SaC8sSGLYJbHAdIK9DqVd4bj+QUptzXZs2PDATgkLHN0oGs02Dy63N6wXRBh7rrMQasBCohIWzBULicDx8nJOFhbQnZpHhjSJWsf3G5XCOWsweihmwSbByLssREeyUG/TsZHgFLDAhJNQLWTB4HENLooFJjIPtBBWwo8OjK5eY8EBiwD1BQ62F/CmuA/vXrm3byH5D27Y73+MTRZcFtq/r2yzYPAmzSZj/GnThy4FDzhYert9E5a69wcQnbzJgk2SiDIWIuz8dYgR8q9YcJ6xBSIuINJvaxzB4JeGC8XjiBoPt+ayWGD8ubpnAmpLKUjdQ53n+oqFiPUSq8kuoxULlsc7ojGEfI/4l+dEc0Xa0gv+nTa3HE/YZiH2htNkGsK9Fd/suW71J6ht/ZG0CB0HNMRA7bpRy25sszBQhk3IbVlQFsSeUovcLk/GEWssHJ4f0QOF4JNOZ1cvIDNXKWYhmmCDYgljUeb7hxGZOMMjVIMQHLaAH4jvKbl/oRM8PU3wuzPER4Vcezh6fX2SsOURwq84KeHjEbPw+IVL8ParVn8GGzFUMQsyD6PSvsp7nvIEY8Z4OHl9nZhgJf5SbGQl/AM7zgRkLuCIK/cRFmeJNJx5qJvqKyxYvPhFl3gzPPtpYk48EVoNcqWtRxkqOzmUBUa/Vx61XzKs0MV8PD0SSRg9pSmhg8eMBfqWG+sfolVnYM2M6R6/LmZuSp8q+z3OpHtQzGMyDTrh6pZGtzOH7BuG+ab5jJZAH28xN9YtFBJvqaN2NnDjW5wwEkLvL3bgsXakNyOKwhELRa1wPoMBCON3brHgHd2HGdYbjH+L84xpTeJOCLk40W2urwaDDvoRiuBfyIn18OBcGXSq2xnN67A6VGJGdOl9Ejs0RyeimS0+dbXG4E6Nsj0uaG7KevMO0A08v5Pf9i0yI2tAjavfkXZq+TmxLO7Mq56DgExH5zI6toGK9ULKnVWz/hwWkNJqpmyZt4kTuOUiugDvGBZ4ib3nyXx19MSp5SexgMT4MEfb0xEyJyh8dxxeCghYwsH0ITlNrujB8sNYgKg0t3/zbKuKJEmaJimqqnZfHGPfcn8/Qb7K1hT8u0U0wiRJmk0nNC42/PDsMrgIu/kqV7nKVa5ylatc5SpXucpVvkP+B7U7jCp8UStyAAAAAElFTkSuQmCC"
+    }
+   },
    "cell_type": "markdown",
-   "metadata": {},
+   "metadata": {
+    "toc-hr-collapsed": false
+   },
    "source": [
-    "# Create your own Jupyter CONDA-Kernel"
+    "<img src=attachment:09375636-629b-4ee2-9011-455f6157ab16.png title=\"Python Logo\" width=\"360\" align=\"left\" style=\"float:right\"/>\n",
+    "<H1>Create your own Jupyter CONDA-Kernel</H1>\n",
+    "\n",
+    "-----------------------------------"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "---\n",
     "## Building your own Jupyter CONDA-kernel is a three step process\n",
     "Download Minconda installer\n",
     "1. Download/Install Miniconda\n",
diff --git a/001-Jupyter/Create_JupyterKernel_general.ipynb b/001-Jupyter/Create_JupyterKernel_general.ipynb
index 0a6da21bf3340f75eaff54e87fe8e64b561d1bb0..b7e3011886663cd5ce6414ee322814585ca1fa13 100644
--- a/001-Jupyter/Create_JupyterKernel_general.ipynb
+++ b/001-Jupyter/Create_JupyterKernel_general.ipynb
@@ -1,17 +1,26 @@
 {
  "cells": [
   {
+   "attachments": {
+    "09375636-629b-4ee2-9011-455f6157ab16.png": {
+     "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAABgCAMAAACkLcFMAAAAwFBMVEX///8AO2EAOF8ANV0dVXddfZQAMlv7/P0ALlkAOWAALFgAJ1UAMFrp7vKttsDI1NxBaIRPbIbc5OkAIlIyUnGltsNSeJJxg5ePp7jFz9cAQmllhp2Woq/w9PYAAEQAB0gbTG8AFU4AGk42Y4K/xs41XHpYcIhzj6OwwMuZq7k9XXoASG7W4OaBkqPl6OsAHlGTqbldgJgAEUsAAD+dsb+LmqouVXR9maxofZJti6BYfJQnS2yeqbWAkKEQT3JAbYmctWnXAAAXrElEQVR4nO2dC3uiOhOAuVTuFIFiBUuX1hsqou1BrLXt/v9/9WWSgDdAPeuxflvnnKerGCCQl8lkMhMY5ipXucpVrnKVq1zllCKKvqX7IpLvrsnliBF/dw3OLWLUGSwaN7Ji2/bEtpvfXZ/LkVHjZz0YUbOXCpLAc7LMggjRd9focuSm9t01OJ/40UJTNZ5jV8LXzvMo+KuPol9e7HvlB7HQqXmazG4KH57jzNH47TOhn8PPt8+znPR4+Sks+GEqC9sksNxQP8O5HU8TNKmFP0859Fmbn+Gsx8sPYcEwFW4bBCRnaZQ45dGpZAG0gTWCanAj4wznPVp+BAv+fCQUkMCy6jksx0jB+kiboc+hgs8r3Z7hvEfLD2BBDANlp3cg1sLvc5w/UokO6iMzNaEsfJzjxMfKD2ChzxV1DyCKc47zWxImUYH2NyaEi4u0Hv96FvSGUkICshzP4mgTZwCDkFros9+QQC2YFzmu/NtZiIbFlgKI0D9PHfSFYtttF3+O321balymg+svZ8ENylFglSpr3j9h/yGKkS8WfL4w2ctCHCTMNL1MkPdKGPDlKHBflbtOBueq5aXIfhbqCeOY1lkqc2qJvTKrEUSaVu3bEPizWJYXJPv7CKTRLteFXilWt0IrsFxQZTkarMx5R1v7UQfE2N6wpVV9A29dc3laZL/SviMu/V03Bovf7W7jZWDsuFBFo+js5ecqZ8HvIAIilx62E8Of1ekMcsGie+u45J4aUVb0HH7dA0SsVaHACvdV3fYA7cuxR3aNUaBJkqRwOUPuSAIJNg2TuaxAMTNnMeqqUKyUPbELPyvyjiLTZ3VPEXie4wXJq0+3Lihh8W7djfYQU7yRK1CK5SxEzx2GWUjkiy89IKJ+5ZUVez04sfU2eXqcpHCp4u823W9yGYNnsVU6mCRSVU0dqxT+7rhBZ6JiT4Lwlm140eC7rDxsFPvCPZfMu9mGW+ILE95LjmvY5Petoag/4CU+96LJvMQNNmhoE7t5s6+jx+LN3Se2ggUb3ay+Qr7oHLDwnLtOCQu64IU++PoRNaJ5Q/dTL4MFp8pWQA99WtXxueQ2aseNOpsS1TjZhhY9zCYLHmk/eY0F0miNkuMaxHO51X5+Tdpyp3L8Yh2GOtGLnLP/WFj+iIU+18GV4rqXx4IVVLMgVQY01ehQVDrqWs7KgnVT0AVq9TUYzsmCn9IuN3mML46FRoVjARqCrRoa6dnOXHCM8XNOFnxTK7ourbWCoc6dj4UooM+WnuiXxoJbaTei9qoMaEqkvFz/CMfQOVnor6IxOH4tVktK8iLn1AuGtzrvhbEQD/ewIFdV0jdXeyudw896RhbCSVZBjR2+9VItq7Gs5nbQOVlwN1hoKE9YVOECWGjyxbPU+aOUVnURBrvam68fcdazsSBmtHJq34h934raasZGbgids49wt/RCeIsknB1nb/0nIu5BYU9AU2u9K1bdqqIbcj4WwozpIL/ZA9pP8Pns6yn0go61DGFBpZsq+wjwS15UHxFmD0mZqFXTUiK7TtLKW7BXzsaC+ElpXYvAEN+pwZsf9wQs6O9Yy1jAgvOLmE4RHLDUdoxM67JYWFQPIlgYBJeLs+Gkkr2DFcPZWNCJu2ozMEu3t/g4QR/h90z4x32M0J9nYjqFbKfAvzDsEVLmT+JFsaAPq30LrFQ57dTbtDsPdzidjYWIepn4DUwpIHlYxin6iFkAhtVC8eGuDqHD0E1walvPuU1NWHAm2KttaLXL6iPc0Z9YjtFykyRZOHRYeTYWaB/IpRsNOlcFECU7DGFB/iMWYrYbGnMVm1ehVE8MZ6jggG77PsHSEel8RF3pd4xmAOENKxbsb2fhds9MhDCu2nsmbRU/2Ho8GwvT7EQblOqzT5BxNqN2knGEawrqaOrTz57t9bCppQcjD0vdZ+7foBr+IOXV4A0OK7Zo32UFR4zI/xt5KHTJrbFQ1bh+d7uDEQ6N/TobC3163FlldbI+YuPZjI4dU/qRYa19jqj7IqKCfovpwMVCJQmceraH9e3RDuNqFribqp13xyDc8MArOhsLL+S4e0LrKQuyOe+v5IU/koX/bxH3DCOqp6UaBR7LA3u9s7FA66jtYYEqOA6bERr8rwn06n4MC/1KvSB7lZYju2t37tHFuVwaCxV++J/Cwh7bsTqgaVqgU4S3wzqJKwuXJ2GlXuAqA5rMAtcE1929cUVyaSxUeFl+DAtGUOFf4CstQbfI1JC9/08WrnphbRavSJRKy/Gl0OxUD8sJuFAWZG5N5B/GAuOUz01xX1XWgl+844FJuGdj4f2oPiJI14SqzJ/DgiiXdpVCUrVjUmx1Hrhmxw4LdHArnZqFYsa2hfqg5aYV5WLRibefw0K59bgdV74pfknnUpyF6zvN+XyerA64w8KcVGNrTEpdQF4+b340C8XHZXwimeIr9EEf73cMf3eHLWxvGw16rU3IL5w3kLSa2Ok4bVCJGXGBt8+pC9KfNtKGQ6sUT9tpK8RfrMYqMrMFycY62W8Kx/P71L5HZxTn2bEbLZ+ZwwyYk9VjTi4tatWHrVJfcpm7ifMq019cr9jo1BZF56jZGhJ1Ffi0w8KgaN5AJHPLXJBX5WgWaDzm1ljXCFRFUdQ8N/AkMW6+qdRms54NcZ/OP3Sn4ZvI+MtlzzRN7xlSdF54E76YZsT4wh3eTuYtoxuu9mk+k7OFHl97qz/hOYtwksc8uaqNqhh5ac/s1XkcHRHQG578isWxiTZzXXRQtGP7Bp3tfUI5+oKoVdHRvPvPrl2qu/WbIhi4Peu2zUvUidAqKGyRmErZzrfssJAr5PU2M7JJxn/PQjZPebPRoDNFBuFp0tJpWBioHXS//eTJhWiWNRbE5ScoIb0FU3cvNxbRSaioMMPbG5IBOUdBJIp+R4JL04Oh64t+ooI666jSJz3FWFMwC00R7Rf10ONqpVQRJ88x1naul5Cjt7siZCzQyfobYMFQ3y10joen0rb167sw7MuQ9MtycQtZ0GmHYud3lfo7hewimZjceHlDG1Hg+F4OyPGxLNQ5uhmHMaLxC5kSO8k8Zb2Oq+l7/R0W6Gwv9wIs5IfzBWLF+BzaY26TRhto6N8ZS3rFOSyT1VH7MrkrVtqC1K6IJfrM4JNNFvBGj14EYeGmR3IVMAs3N1hJiG9B6ahAb6hbcQhSsGdewSnzVwqFfcQbYUHJj0rhWEWf+jS8RFrTXz59XNdskKNZyOwaLl0rFdHaK9liASfRCw2SXybChGQhC2K7vckCtWj9Lrqcxg2Ni9OmjF+jvan12EEsTAybVDScuMoaC773UMQCNfkJC18RiajALLxSC9qpClycLdcW8pP5UX9fdmSpc0Z4KSp+T/MVTcpjSK2N1WpM4iKLS1wphhndtBYifHzs6weNsViLucoYk3M75CQsOM/TXH8VszBqAAt5oYwF3UMPkLyWuqN3X7IS6JfOU1wbkWq+x+oaCxb7sZeFETPAozBgIfp1UIxENPtSNQFnIatef++aimWWY9mYMtEoZeTXKCXkycpaGgPtqPghrbDYzOa+hFWpjIXS3Nqd9stjr/g+dYNZNS7zHGTNcpI+Qnx/7iX01hWyYDwjNdgaOSESaJ+MhSZEwWlrCZ65Qeh7L8CC7tpAbTwJY3uNBYcLD2BBTOEygQXj6cB4GT+atxp1NPI5ZGGcWek0hlLolBCzLoUbOrE7X2bTwe1VET/L2eHZl6lrhfNuFq2/HkWZzaV5jU3JGrGg/fKwfT7th3Hk9JeZebTSN6fJlRGd1POWTbh9Bbaj5QQQMNgSIMaJHcIlc3U00u63+YW/hwW9C/dgnsaEBa8JJmciIzW7nwXGgHFKzoLfXywW/dOtGBOXZ+PaxSPRVYMotqple2/kuA9yRybSTaoiZD5gLlireD6vym+I8ERPW9B+Vp42x2mqrSqrs69IPFXelGgkb/Zyx164Ux+RqCYojZcgdJFAfX056Ha7SoqR1PrlLMRMM9XR0zJjLMxCYMPx+DeLOYQFZJbGayx06/X0hIt7z7fjHFfCFVsaUdG4Q+itDyDFbrGjg1/XNGVz7Jnru6j9khIHCrvyuZwub4oRXYhv7jyS+yAO70Ev3BtISBTbur0gjHXdb8n4+GyWtiquswA6EViIUTfi8gZlwZtHcDy8rkfGwsAuZSFevq31EUilhN7Jgiv1Uala4L5K5ikL3Jvc1jpnZDXobZE2Bib/hgXmQS2wbjhu7X6cQi9YbXpAyKCLXsmTp9/NmNWYEmRnHBF5eBjebmfjiCbjvw1JCf0pISwwqSkuugxlgV0tlub3euTDfESOW8ACEz6FXUDtVzaOkE/GQrM8MI4vdVw3J1sNwivbvlCD2zmwrPQ2WuJfsSCO7R14+Q2HwylY8CXa4n0WAuRJiQ6X7GOBGWOfymxCngzsXxhT/8IM+xeAhdA2WCdnYW3ZoE86GOrSO1/EAtNYjoCFEQlfFRfcqViIKtbu0MalhueA3Xjste6uW9wytY1Dy7w82zzev2IB3cnlZq/GSZtnp30E/0d9RN/G8weGDJrsQ3FgEa8heA02WfiKRZG8vYv6miwZHO96mkaoO3E9GC7HXh2SJ0IejAjMQpzeQIrHLguWeq/Dmu4Cbd5CFqxUAhZctYYGBv5MYk/FwqIiFqoqQd/tKsiMk+E/ThBaRZ2J/+FBGTyYRIUkc/twtypXKDa9OOsJf9V6W+op6msajEvwgXlpNNs0pBsS7MVvmlTWa/GxmNL5CLs2+/jku3Bsvfbce/j0sM/O9z5XpV742j0IMvx8lcyY9W3QAq7Hvc3ulTauWSh744ea2gAbIMS2x/gZgLKegYWN5cQSKR2P60/ZQ2OwGQt4PsIjXxwbz0c0J+l4Vlfej193r1g6FSGS1WlWYlhfsrzAy95dKyrRH/G0vvQ4XuBYL110dgrptbtCWWTtNV7C13RH54jGfBiw6MAyG9Tn2wZu1IW9li+b5ys7VvmY8j1dtqnDSXR+L7sLcqLWmvmb1ImgNhffqVHxG7tf9X53Wc/mcuM5+jIgqdu/4bGJGlAPHf7q7xtVMtBZa25WdatBXRxz8OUkmSOmhYe6jNu6W7Yj/eU0K9IWW3hU+H3z+n7oDJywfHlGXMZ1cKGTVHddotBJBmF4gvvwl8YvHCliv2oZl2JP098nVxZAksr1GpSSEeXfJlcWkBjlrgXoIroXuq77qeXKQvVwEkzHb88VPpNcWWD0EjdxphYKRuJ/p1xZsOrVWdnVrxb4m+THsxCl1UnZHPvtSwicS346C0Z1B8HKP0ct/HAWxJCtciyAtdD4MWqhlAXfirJkB4sK+hpnZlQsMqKVi0+/xOS+6Wt7XLTo89JXV+YsVPu49eOv1L/Y21LCglsPhOAeu+FvAyoh47/TGQ3xK2RC2Jam6M/ogYlxiW4PJ8g8ZHtc5FubcxGNrz3LQLKsUr2en77kcATSMR3JrVq5ctifyR+9DaqYhalSb4bNpQCN+SHMm1giNPpSScyS/zpgYrRpOlzCLy4Tvy7Qv3MT37sxOyV7XPRgTF+UJ13mWqFbfW/9pdxtgxzxmrIP+z9koVM7fMXiHSlkweBqcA+iYYD+fqwMab0daPhc/jONQfmkixnE9PVDY8hOHy//fX3OJXozFaoXgWThffR77qy/ZKONFMYD5HAWROdou/Xh+Q/epFjIQmtEJmlvJy6wkD/eevfFxGEEOQv3Q/JjxgKOObh8FqIBp+xVCqys7nvckV5YTWfrbseg6yAajIVnLfXV6+bQRxf/+mHP/A6d1NRd/GLjDv7rWmJ+BPQNlb9ZZh/xLKTYcbGQS8jed4f2QyXw7K4fmlofB6DGHR9nt/guPhEuKhqRb0AloKJF8BaykEUWxeNwi4V+xEKkQikLeInoC2dBdBeptlcnwHBy//sa11gw6prN1uGrqLadO8iidofqRBnidnTris3V4GZ9qI2eonoP0BohflVJqMJ8vOs1WsLEq5HZ/brwPAm8OzhHTbbVEVBpTAQBWTh4ufYkkGwP52W4Srsl2TIEn4e2wHIS+Ennalgb1eDZhBQ4y4YwsOim22Jtvq+bvO0VXVohC95nFr0qbvYR3QWz4KIKFkIIqLpgFvQo7HuqsF8nsJDBsFfz+0vO1ZEwEOXL952aBPdDnHBqYFqMXufn7pS7Q5t0np8nbzYsSf4h8b2k701glsNRYMlUx4ZlUkNW6ybNQMXWalvpG0ZDAxbGSi1MUhUnAYzH864AQT2hkDYTU4VoEVflzWS2VGEh/7HJm2OIFVloPD+cQ2gaVCiawCt6o0AbTqeppNaT5tIuUHmFLLDr8X0fWq3Var1ABAmwwNy0xQIWXh0f3ZNOkKJiY+4F9ki+f+wUh6s3eMZROB2bI+UQlYC1wh67EcRf8t36cNiNcbwVpFhK8Eq+Cd+A5VGtdInOPn1HD890gppYDB4N0AvkwYX4wVC6X2NhZICOCBiIIoaTRxJ6qMR7yNd0f1PLxUrhaRNrkBGjLyFY0FVhjcJEwgrlQyWxFn1BCeHVDwaLWbDxQQOI1Usk24K0jfvdqzmABekLBEKSMAshQmqXBTut1+tdoQsd01i4gT3eL8BL46CG9/DI18PxiPveMbISvnVA9ZFeWCKBkN8WftKm9gOwYOOew+8p7SnxudzjNaVjR89sx9CGnJYNFmTomXUW1LDF3ljQypCMOlCDRU60XseBNfoXG8UxGtZBKaxtIhZHIj+opGH6dIHwTRYgXD+yOfS5IxW8FaOEhbUvG/YCwDwOLHGHhefGvN/iSMbUJfURjsSTpatkuWARz3KtoCwOIRmNI1wrwl65Nl4SfQCDbnFC38ZjmZOJ1AYK3lah8oQFA3fhjrLGAgfOG32Eb/dYMW8fAhvGEX5fmkwCEiTI1Cb4FussB69zUl6jFQtfGyyQPORtFiAlyYY+piMcGvsavFGXo2MUsKDzC39SaC8sSGLYJbHAdIK9DqVd4bj+QUptzXZs2PDATgkLHN0oGs02Dy63N6wXRBh7rrMQasBCohIWzBULicDx8nJOFhbQnZpHhjSJWsf3G5XCOWsweihmwSbByLssREeyUG/TsZHgFLDAhJNQLWTB4HENLooFJjIPtBBWwo8OjK5eY8EBiwD1BQ62F/CmuA/vXrm3byH5D27Y73+MTRZcFtq/r2yzYPAmzSZj/GnThy4FDzhYert9E5a69wcQnbzJgk2SiDIWIuz8dYgR8q9YcJ6xBSIuINJvaxzB4JeGC8XjiBoPt+ayWGD8ubpnAmpLKUjdQ53n+oqFiPUSq8kuoxULlsc7ojGEfI/4l+dEc0Xa0gv+nTa3HE/YZiH2htNkGsK9Fd/suW71J6ht/ZG0CB0HNMRA7bpRy25sszBQhk3IbVlQFsSeUovcLk/GEWssHJ4f0QOF4JNOZ1cvIDNXKWYhmmCDYgljUeb7hxGZOMMjVIMQHLaAH4jvKbl/oRM8PU3wuzPER4Vcezh6fX2SsOURwq84KeHjEbPw+IVL8ParVn8GGzFUMQsyD6PSvsp7nvIEY8Z4OHl9nZhgJf5SbGQl/AM7zgRkLuCIK/cRFmeJNJx5qJvqKyxYvPhFl3gzPPtpYk48EVoNcqWtRxkqOzmUBUa/Vx61XzKs0MV8PD0SSRg9pSmhg8eMBfqWG+sfolVnYM2M6R6/LmZuSp8q+z3OpHtQzGMyDTrh6pZGtzOH7BuG+ab5jJZAH28xN9YtFBJvqaN2NnDjW5wwEkLvL3bgsXakNyOKwhELRa1wPoMBCON3brHgHd2HGdYbjH+L84xpTeJOCLk40W2urwaDDvoRiuBfyIn18OBcGXSq2xnN67A6VGJGdOl9Ejs0RyeimS0+dbXG4E6Nsj0uaG7KevMO0A08v5Pf9i0yI2tAjavfkXZq+TmxLO7Mq56DgExH5zI6toGK9ULKnVWz/hwWkNJqpmyZt4kTuOUiugDvGBZ4ib3nyXx19MSp5SexgMT4MEfb0xEyJyh8dxxeCghYwsH0ITlNrujB8sNYgKg0t3/zbKuKJEmaJimqqnZfHGPfcn8/Qb7K1hT8u0U0wiRJmk0nNC42/PDsMrgIu/kqV7nKVa5ylatc5SpXucpVvkP+B7U7jCp8UStyAAAAAElFTkSuQmCC"
+    }
+   },
    "cell_type": "markdown",
-   "metadata": {},
+   "metadata": {
+    "toc-hr-collapsed": false
+   },
    "source": [
-    "# Create your own Jupyter Kernel"
+    "<img src=attachment:09375636-629b-4ee2-9011-455f6157ab16.png title=\"Python Logo\" width=\"360\" align=\"left\" style=\"float:right\"/>\n",
+    "<H1>Create your own Jupyter Kernel</H1>\n",
+    "\n",
+    "-----------------------------------"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "---\n",
     "## Building your own Jupyter kernel is a three step process\n",
     "1. Create/Pimp new virtual Python environment\n",
     "   * venv\n",
diff --git a/001-Jupyter/List_JupyterExtensions.ipynb b/001-Jupyter/List_JupyterExtensions.ipynb
index 7c9f7e4ae009dace78accc4c448fc4ab72887e99..8fd53b97c3c3e3c5ee52f40714aea9691236510d 100644
--- a/001-Jupyter/List_JupyterExtensions.ipynb
+++ b/001-Jupyter/List_JupyterExtensions.ipynb
@@ -1,12 +1,19 @@
 {
  "cells": [
   {
+   "attachments": {
+    "09375636-629b-4ee2-9011-455f6157ab16.png": {
+     "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAABgCAMAAACkLcFMAAAAwFBMVEX///8AO2EAOF8ANV0dVXddfZQAMlv7/P0ALlkAOWAALFgAJ1UAMFrp7vKttsDI1NxBaIRPbIbc5OkAIlIyUnGltsNSeJJxg5ePp7jFz9cAQmllhp2Woq/w9PYAAEQAB0gbTG8AFU4AGk42Y4K/xs41XHpYcIhzj6OwwMuZq7k9XXoASG7W4OaBkqPl6OsAHlGTqbldgJgAEUsAAD+dsb+LmqouVXR9maxofZJti6BYfJQnS2yeqbWAkKEQT3JAbYmctWnXAAAXrElEQVR4nO2dC3uiOhOAuVTuFIFiBUuX1hsqou1BrLXt/v9/9WWSgDdAPeuxflvnnKerGCCQl8lkMhMY5ipXucpVrnKVq1zllCKKvqX7IpLvrsnliBF/dw3OLWLUGSwaN7Ji2/bEtpvfXZ/LkVHjZz0YUbOXCpLAc7LMggjRd9focuSm9t01OJ/40UJTNZ5jV8LXzvMo+KuPol9e7HvlB7HQqXmazG4KH57jzNH47TOhn8PPt8+znPR4+Sks+GEqC9sksNxQP8O5HU8TNKmFP0859Fmbn+Gsx8sPYcEwFW4bBCRnaZQ45dGpZAG0gTWCanAj4wznPVp+BAv+fCQUkMCy6jksx0jB+kiboc+hgs8r3Z7hvEfLD2BBDANlp3cg1sLvc5w/UokO6iMzNaEsfJzjxMfKD2ChzxV1DyCKc47zWxImUYH2NyaEi4u0Hv96FvSGUkICshzP4mgTZwCDkFros9+QQC2YFzmu/NtZiIbFlgKI0D9PHfSFYtttF3+O321balymg+svZ8ENylFglSpr3j9h/yGKkS8WfL4w2ctCHCTMNL1MkPdKGPDlKHBflbtOBueq5aXIfhbqCeOY1lkqc2qJvTKrEUSaVu3bEPizWJYXJPv7CKTRLteFXilWt0IrsFxQZTkarMx5R1v7UQfE2N6wpVV9A29dc3laZL/SviMu/V03Bovf7W7jZWDsuFBFo+js5ecqZ8HvIAIilx62E8Of1ekMcsGie+u45J4aUVb0HH7dA0SsVaHACvdV3fYA7cuxR3aNUaBJkqRwOUPuSAIJNg2TuaxAMTNnMeqqUKyUPbELPyvyjiLTZ3VPEXie4wXJq0+3Lihh8W7djfYQU7yRK1CK5SxEzx2GWUjkiy89IKJ+5ZUVez04sfU2eXqcpHCp4u823W9yGYNnsVU6mCRSVU0dqxT+7rhBZ6JiT4Lwlm140eC7rDxsFPvCPZfMu9mGW+ILE95LjmvY5Petoag/4CU+96LJvMQNNmhoE7t5s6+jx+LN3Se2ggUb3ay+Qr7oHLDwnLtOCQu64IU++PoRNaJ5Q/dTL4MFp8pWQA99WtXxueQ2aseNOpsS1TjZhhY9zCYLHmk/eY0F0miNkuMaxHO51X5+Tdpyp3L8Yh2GOtGLnLP/WFj+iIU+18GV4rqXx4IVVLMgVQY01ehQVDrqWs7KgnVT0AVq9TUYzsmCn9IuN3mML46FRoVjARqCrRoa6dnOXHCM8XNOFnxTK7ourbWCoc6dj4UooM+WnuiXxoJbaTei9qoMaEqkvFz/CMfQOVnor6IxOH4tVktK8iLn1AuGtzrvhbEQD/ewIFdV0jdXeyudw896RhbCSVZBjR2+9VItq7Gs5nbQOVlwN1hoKE9YVOECWGjyxbPU+aOUVnURBrvam68fcdazsSBmtHJq34h934raasZGbgids49wt/RCeIsknB1nb/0nIu5BYU9AU2u9K1bdqqIbcj4WwozpIL/ZA9pP8Pns6yn0go61DGFBpZsq+wjwS15UHxFmD0mZqFXTUiK7TtLKW7BXzsaC+ElpXYvAEN+pwZsf9wQs6O9Yy1jAgvOLmE4RHLDUdoxM67JYWFQPIlgYBJeLs+Gkkr2DFcPZWNCJu2ozMEu3t/g4QR/h90z4x32M0J9nYjqFbKfAvzDsEVLmT+JFsaAPq30LrFQ57dTbtDsPdzidjYWIepn4DUwpIHlYxin6iFkAhtVC8eGuDqHD0E1walvPuU1NWHAm2KttaLXL6iPc0Z9YjtFykyRZOHRYeTYWaB/IpRsNOlcFECU7DGFB/iMWYrYbGnMVm1ehVE8MZ6jggG77PsHSEel8RF3pd4xmAOENKxbsb2fhds9MhDCu2nsmbRU/2Ho8GwvT7EQblOqzT5BxNqN2knGEawrqaOrTz57t9bCppQcjD0vdZ+7foBr+IOXV4A0OK7Zo32UFR4zI/xt5KHTJrbFQ1bh+d7uDEQ6N/TobC3163FlldbI+YuPZjI4dU/qRYa19jqj7IqKCfovpwMVCJQmceraH9e3RDuNqFribqp13xyDc8MArOhsLL+S4e0LrKQuyOe+v5IU/koX/bxH3DCOqp6UaBR7LA3u9s7FA66jtYYEqOA6bERr8rwn06n4MC/1KvSB7lZYju2t37tHFuVwaCxV++J/Cwh7bsTqgaVqgU4S3wzqJKwuXJ2GlXuAqA5rMAtcE1929cUVyaSxUeFl+DAtGUOFf4CstQbfI1JC9/08WrnphbRavSJRKy/Gl0OxUD8sJuFAWZG5N5B/GAuOUz01xX1XWgl+844FJuGdj4f2oPiJI14SqzJ/DgiiXdpVCUrVjUmx1Hrhmxw4LdHArnZqFYsa2hfqg5aYV5WLRibefw0K59bgdV74pfknnUpyF6zvN+XyerA64w8KcVGNrTEpdQF4+b340C8XHZXwimeIr9EEf73cMf3eHLWxvGw16rU3IL5w3kLSa2Ok4bVCJGXGBt8+pC9KfNtKGQ6sUT9tpK8RfrMYqMrMFycY62W8Kx/P71L5HZxTn2bEbLZ+ZwwyYk9VjTi4tatWHrVJfcpm7ifMq019cr9jo1BZF56jZGhJ1Ffi0w8KgaN5AJHPLXJBX5WgWaDzm1ljXCFRFUdQ8N/AkMW6+qdRms54NcZ/OP3Sn4ZvI+MtlzzRN7xlSdF54E76YZsT4wh3eTuYtoxuu9mk+k7OFHl97qz/hOYtwksc8uaqNqhh5ac/s1XkcHRHQG578isWxiTZzXXRQtGP7Bp3tfUI5+oKoVdHRvPvPrl2qu/WbIhi4Peu2zUvUidAqKGyRmErZzrfssJAr5PU2M7JJxn/PQjZPebPRoDNFBuFp0tJpWBioHXS//eTJhWiWNRbE5ScoIb0FU3cvNxbRSaioMMPbG5IBOUdBJIp+R4JL04Oh64t+ooI666jSJz3FWFMwC00R7Rf10ONqpVQRJ88x1naul5Cjt7siZCzQyfobYMFQ3y10joen0rb167sw7MuQ9MtycQtZ0GmHYud3lfo7hewimZjceHlDG1Hg+F4OyPGxLNQ5uhmHMaLxC5kSO8k8Zb2Oq+l7/R0W6Gwv9wIs5IfzBWLF+BzaY26TRhto6N8ZS3rFOSyT1VH7MrkrVtqC1K6IJfrM4JNNFvBGj14EYeGmR3IVMAs3N1hJiG9B6ahAb6hbcQhSsGdewSnzVwqFfcQbYUHJj0rhWEWf+jS8RFrTXz59XNdskKNZyOwaLl0rFdHaK9liASfRCw2SXybChGQhC2K7vckCtWj9Lrqcxg2Ni9OmjF+jvan12EEsTAybVDScuMoaC773UMQCNfkJC18RiajALLxSC9qpClycLdcW8pP5UX9fdmSpc0Z4KSp+T/MVTcpjSK2N1WpM4iKLS1wphhndtBYifHzs6weNsViLucoYk3M75CQsOM/TXH8VszBqAAt5oYwF3UMPkLyWuqN3X7IS6JfOU1wbkWq+x+oaCxb7sZeFETPAozBgIfp1UIxENPtSNQFnIatef++aimWWY9mYMtEoZeTXKCXkycpaGgPtqPghrbDYzOa+hFWpjIXS3Nqd9stjr/g+dYNZNS7zHGTNcpI+Qnx/7iX01hWyYDwjNdgaOSESaJ+MhSZEwWlrCZ65Qeh7L8CC7tpAbTwJY3uNBYcLD2BBTOEygQXj6cB4GT+atxp1NPI5ZGGcWek0hlLolBCzLoUbOrE7X2bTwe1VET/L2eHZl6lrhfNuFq2/HkWZzaV5jU3JGrGg/fKwfT7th3Hk9JeZebTSN6fJlRGd1POWTbh9Bbaj5QQQMNgSIMaJHcIlc3U00u63+YW/hwW9C/dgnsaEBa8JJmciIzW7nwXGgHFKzoLfXywW/dOtGBOXZ+PaxSPRVYMotqple2/kuA9yRybSTaoiZD5gLlireD6vym+I8ERPW9B+Vp42x2mqrSqrs69IPFXelGgkb/Zyx164Ux+RqCYojZcgdJFAfX056Ha7SoqR1PrlLMRMM9XR0zJjLMxCYMPx+DeLOYQFZJbGayx06/X0hIt7z7fjHFfCFVsaUdG4Q+itDyDFbrGjg1/XNGVz7Jnru6j9khIHCrvyuZwub4oRXYhv7jyS+yAO70Ev3BtISBTbur0gjHXdb8n4+GyWtiquswA6EViIUTfi8gZlwZtHcDy8rkfGwsAuZSFevq31EUilhN7Jgiv1Uala4L5K5ikL3Jvc1jpnZDXobZE2Bib/hgXmQS2wbjhu7X6cQi9YbXpAyKCLXsmTp9/NmNWYEmRnHBF5eBjebmfjiCbjvw1JCf0pISwwqSkuugxlgV0tlub3euTDfESOW8ACEz6FXUDtVzaOkE/GQrM8MI4vdVw3J1sNwivbvlCD2zmwrPQ2WuJfsSCO7R14+Q2HwylY8CXa4n0WAuRJiQ6X7GOBGWOfymxCngzsXxhT/8IM+xeAhdA2WCdnYW3ZoE86GOrSO1/EAtNYjoCFEQlfFRfcqViIKtbu0MalhueA3Xjste6uW9wytY1Dy7w82zzev2IB3cnlZq/GSZtnp30E/0d9RN/G8weGDJrsQ3FgEa8heA02WfiKRZG8vYv6miwZHO96mkaoO3E9GC7HXh2SJ0IejAjMQpzeQIrHLguWeq/Dmu4Cbd5CFqxUAhZctYYGBv5MYk/FwqIiFqoqQd/tKsiMk+E/ThBaRZ2J/+FBGTyYRIUkc/twtypXKDa9OOsJf9V6W+op6msajEvwgXlpNNs0pBsS7MVvmlTWa/GxmNL5CLs2+/jku3Bsvfbce/j0sM/O9z5XpV742j0IMvx8lcyY9W3QAq7Hvc3ulTauWSh744ea2gAbIMS2x/gZgLKegYWN5cQSKR2P60/ZQ2OwGQt4PsIjXxwbz0c0J+l4Vlfej193r1g6FSGS1WlWYlhfsrzAy95dKyrRH/G0vvQ4XuBYL110dgrptbtCWWTtNV7C13RH54jGfBiw6MAyG9Tn2wZu1IW9li+b5ys7VvmY8j1dtqnDSXR+L7sLcqLWmvmb1ImgNhffqVHxG7tf9X53Wc/mcuM5+jIgqdu/4bGJGlAPHf7q7xtVMtBZa25WdatBXRxz8OUkmSOmhYe6jNu6W7Yj/eU0K9IWW3hU+H3z+n7oDJywfHlGXMZ1cKGTVHddotBJBmF4gvvwl8YvHCliv2oZl2JP098nVxZAksr1GpSSEeXfJlcWkBjlrgXoIroXuq77qeXKQvVwEkzHb88VPpNcWWD0EjdxphYKRuJ/p1xZsOrVWdnVrxb4m+THsxCl1UnZHPvtSwicS346C0Z1B8HKP0ct/HAWxJCtciyAtdD4MWqhlAXfirJkB4sK+hpnZlQsMqKVi0+/xOS+6Wt7XLTo89JXV+YsVPu49eOv1L/Y21LCglsPhOAeu+FvAyoh47/TGQ3xK2RC2Jam6M/ogYlxiW4PJ8g8ZHtc5FubcxGNrz3LQLKsUr2en77kcATSMR3JrVq5ctifyR+9DaqYhalSb4bNpQCN+SHMm1giNPpSScyS/zpgYrRpOlzCLy4Tvy7Qv3MT37sxOyV7XPRgTF+UJ13mWqFbfW/9pdxtgxzxmrIP+z9koVM7fMXiHSlkweBqcA+iYYD+fqwMab0daPhc/jONQfmkixnE9PVDY8hOHy//fX3OJXozFaoXgWThffR77qy/ZKONFMYD5HAWROdou/Xh+Q/epFjIQmtEJmlvJy6wkD/eevfFxGEEOQv3Q/JjxgKOObh8FqIBp+xVCqys7nvckV5YTWfrbseg6yAajIVnLfXV6+bQRxf/+mHP/A6d1NRd/GLjDv7rWmJ+BPQNlb9ZZh/xLKTYcbGQS8jed4f2QyXw7K4fmlofB6DGHR9nt/guPhEuKhqRb0AloKJF8BaykEUWxeNwi4V+xEKkQikLeInoC2dBdBeptlcnwHBy//sa11gw6prN1uGrqLadO8iidofqRBnidnTris3V4GZ9qI2eonoP0BohflVJqMJ8vOs1WsLEq5HZ/brwPAm8OzhHTbbVEVBpTAQBWTh4ufYkkGwP52W4Srsl2TIEn4e2wHIS+Ennalgb1eDZhBQ4y4YwsOim22Jtvq+bvO0VXVohC95nFr0qbvYR3QWz4KIKFkIIqLpgFvQo7HuqsF8nsJDBsFfz+0vO1ZEwEOXL952aBPdDnHBqYFqMXufn7pS7Q5t0np8nbzYsSf4h8b2k701glsNRYMlUx4ZlUkNW6ybNQMXWalvpG0ZDAxbGSi1MUhUnAYzH864AQT2hkDYTU4VoEVflzWS2VGEh/7HJm2OIFVloPD+cQ2gaVCiawCt6o0AbTqeppNaT5tIuUHmFLLDr8X0fWq3Var1ABAmwwNy0xQIWXh0f3ZNOkKJiY+4F9ki+f+wUh6s3eMZROB2bI+UQlYC1wh67EcRf8t36cNiNcbwVpFhK8Eq+Cd+A5VGtdInOPn1HD890gppYDB4N0AvkwYX4wVC6X2NhZICOCBiIIoaTRxJ6qMR7yNd0f1PLxUrhaRNrkBGjLyFY0FVhjcJEwgrlQyWxFn1BCeHVDwaLWbDxQQOI1Usk24K0jfvdqzmABekLBEKSMAshQmqXBTut1+tdoQsd01i4gT3eL8BL46CG9/DI18PxiPveMbISvnVA9ZFeWCKBkN8WftKm9gOwYOOew+8p7SnxudzjNaVjR89sx9CGnJYNFmTomXUW1LDF3ljQypCMOlCDRU60XseBNfoXG8UxGtZBKaxtIhZHIj+opGH6dIHwTRYgXD+yOfS5IxW8FaOEhbUvG/YCwDwOLHGHhefGvN/iSMbUJfURjsSTpatkuWARz3KtoCwOIRmNI1wrwl65Nl4SfQCDbnFC38ZjmZOJ1AYK3lah8oQFA3fhjrLGAgfOG32Eb/dYMW8fAhvGEX5fmkwCEiTI1Cb4FussB69zUl6jFQtfGyyQPORtFiAlyYY+piMcGvsavFGXo2MUsKDzC39SaC8sSGLYJbHAdIK9DqVd4bj+QUptzXZs2PDATgkLHN0oGs02Dy63N6wXRBh7rrMQasBCohIWzBULicDx8nJOFhbQnZpHhjSJWsf3G5XCOWsweihmwSbByLssREeyUG/TsZHgFLDAhJNQLWTB4HENLooFJjIPtBBWwo8OjK5eY8EBiwD1BQ62F/CmuA/vXrm3byH5D27Y73+MTRZcFtq/r2yzYPAmzSZj/GnThy4FDzhYert9E5a69wcQnbzJgk2SiDIWIuz8dYgR8q9YcJ6xBSIuINJvaxzB4JeGC8XjiBoPt+ayWGD8ubpnAmpLKUjdQ53n+oqFiPUSq8kuoxULlsc7ojGEfI/4l+dEc0Xa0gv+nTa3HE/YZiH2htNkGsK9Fd/suW71J6ht/ZG0CB0HNMRA7bpRy25sszBQhk3IbVlQFsSeUovcLk/GEWssHJ4f0QOF4JNOZ1cvIDNXKWYhmmCDYgljUeb7hxGZOMMjVIMQHLaAH4jvKbl/oRM8PU3wuzPER4Vcezh6fX2SsOURwq84KeHjEbPw+IVL8ParVn8GGzFUMQsyD6PSvsp7nvIEY8Z4OHl9nZhgJf5SbGQl/AM7zgRkLuCIK/cRFmeJNJx5qJvqKyxYvPhFl3gzPPtpYk48EVoNcqWtRxkqOzmUBUa/Vx61XzKs0MV8PD0SSRg9pSmhg8eMBfqWG+sfolVnYM2M6R6/LmZuSp8q+z3OpHtQzGMyDTrh6pZGtzOH7BuG+ab5jJZAH28xN9YtFBJvqaN2NnDjW5wwEkLvL3bgsXakNyOKwhELRa1wPoMBCON3brHgHd2HGdYbjH+L84xpTeJOCLk40W2urwaDDvoRiuBfyIn18OBcGXSq2xnN67A6VGJGdOl9Ejs0RyeimS0+dbXG4E6Nsj0uaG7KevMO0A08v5Pf9i0yI2tAjavfkXZq+TmxLO7Mq56DgExH5zI6toGK9ULKnVWz/hwWkNJqpmyZt4kTuOUiugDvGBZ4ib3nyXx19MSp5SexgMT4MEfb0xEyJyh8dxxeCghYwsH0ITlNrujB8sNYgKg0t3/zbKuKJEmaJimqqnZfHGPfcn8/Qb7K1hT8u0U0wiRJmk0nNC42/PDsMrgIu/kqV7nKVa5ylatc5SpXucpVvkP+B7U7jCp8UStyAAAAAElFTkSuQmCC"
+    }
+   },
    "cell_type": "markdown",
    "metadata": {
     "toc-hr-collapsed": false
    },
    "source": [
-    "# List of Extensions on Jupyter-JSC\n",
+    "<img src=attachment:09375636-629b-4ee2-9011-455f6157ab16.png title=\"Python Logo\" width=\"360\" align=\"left\" style=\"float:right\"/>\n",
+    "<H1>List of Extensions on Jupyter-JSC</H1>\n",
+    "\n",
     "-----------------------------------"
    ]
   },
diff --git a/001-Jupyter/List_PythonPackages.ipynb b/001-Jupyter/List_PythonPackages.ipynb
index f774f6919de12fc9eecfb34240873c474a05cd22..23da71d5eee2f2a86f26994bb53f73800751df57 100644
--- a/001-Jupyter/List_PythonPackages.ipynb
+++ b/001-Jupyter/List_PythonPackages.ipynb
@@ -1,23 +1,41 @@
 {
  "cells": [
   {
+   "attachments": {
+    "09375636-629b-4ee2-9011-455f6157ab16.png": {
+     "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAABgCAMAAACkLcFMAAAAwFBMVEX///8AO2EAOF8ANV0dVXddfZQAMlv7/P0ALlkAOWAALFgAJ1UAMFrp7vKttsDI1NxBaIRPbIbc5OkAIlIyUnGltsNSeJJxg5ePp7jFz9cAQmllhp2Woq/w9PYAAEQAB0gbTG8AFU4AGk42Y4K/xs41XHpYcIhzj6OwwMuZq7k9XXoASG7W4OaBkqPl6OsAHlGTqbldgJgAEUsAAD+dsb+LmqouVXR9maxofZJti6BYfJQnS2yeqbWAkKEQT3JAbYmctWnXAAAXrElEQVR4nO2dC3uiOhOAuVTuFIFiBUuX1hsqou1BrLXt/v9/9WWSgDdAPeuxflvnnKerGCCQl8lkMhMY5ipXucpVrnKVq1zllCKKvqX7IpLvrsnliBF/dw3OLWLUGSwaN7Ji2/bEtpvfXZ/LkVHjZz0YUbOXCpLAc7LMggjRd9focuSm9t01OJ/40UJTNZ5jV8LXzvMo+KuPol9e7HvlB7HQqXmazG4KH57jzNH47TOhn8PPt8+znPR4+Sks+GEqC9sksNxQP8O5HU8TNKmFP0859Fmbn+Gsx8sPYcEwFW4bBCRnaZQ45dGpZAG0gTWCanAj4wznPVp+BAv+fCQUkMCy6jksx0jB+kiboc+hgs8r3Z7hvEfLD2BBDANlp3cg1sLvc5w/UokO6iMzNaEsfJzjxMfKD2ChzxV1DyCKc47zWxImUYH2NyaEi4u0Hv96FvSGUkICshzP4mgTZwCDkFros9+QQC2YFzmu/NtZiIbFlgKI0D9PHfSFYtttF3+O321balymg+svZ8ENylFglSpr3j9h/yGKkS8WfL4w2ctCHCTMNL1MkPdKGPDlKHBflbtOBueq5aXIfhbqCeOY1lkqc2qJvTKrEUSaVu3bEPizWJYXJPv7CKTRLteFXilWt0IrsFxQZTkarMx5R1v7UQfE2N6wpVV9A29dc3laZL/SviMu/V03Bovf7W7jZWDsuFBFo+js5ecqZ8HvIAIilx62E8Of1ekMcsGie+u45J4aUVb0HH7dA0SsVaHACvdV3fYA7cuxR3aNUaBJkqRwOUPuSAIJNg2TuaxAMTNnMeqqUKyUPbELPyvyjiLTZ3VPEXie4wXJq0+3Lihh8W7djfYQU7yRK1CK5SxEzx2GWUjkiy89IKJ+5ZUVez04sfU2eXqcpHCp4u823W9yGYNnsVU6mCRSVU0dqxT+7rhBZ6JiT4Lwlm140eC7rDxsFPvCPZfMu9mGW+ILE95LjmvY5Petoag/4CU+96LJvMQNNmhoE7t5s6+jx+LN3Se2ggUb3ay+Qr7oHLDwnLtOCQu64IU++PoRNaJ5Q/dTL4MFp8pWQA99WtXxueQ2aseNOpsS1TjZhhY9zCYLHmk/eY0F0miNkuMaxHO51X5+Tdpyp3L8Yh2GOtGLnLP/WFj+iIU+18GV4rqXx4IVVLMgVQY01ehQVDrqWs7KgnVT0AVq9TUYzsmCn9IuN3mML46FRoVjARqCrRoa6dnOXHCM8XNOFnxTK7ourbWCoc6dj4UooM+WnuiXxoJbaTei9qoMaEqkvFz/CMfQOVnor6IxOH4tVktK8iLn1AuGtzrvhbEQD/ewIFdV0jdXeyudw896RhbCSVZBjR2+9VItq7Gs5nbQOVlwN1hoKE9YVOECWGjyxbPU+aOUVnURBrvam68fcdazsSBmtHJq34h934raasZGbgids49wt/RCeIsknB1nb/0nIu5BYU9AU2u9K1bdqqIbcj4WwozpIL/ZA9pP8Pns6yn0go61DGFBpZsq+wjwS15UHxFmD0mZqFXTUiK7TtLKW7BXzsaC+ElpXYvAEN+pwZsf9wQs6O9Yy1jAgvOLmE4RHLDUdoxM67JYWFQPIlgYBJeLs+Gkkr2DFcPZWNCJu2ozMEu3t/g4QR/h90z4x32M0J9nYjqFbKfAvzDsEVLmT+JFsaAPq30LrFQ57dTbtDsPdzidjYWIepn4DUwpIHlYxin6iFkAhtVC8eGuDqHD0E1walvPuU1NWHAm2KttaLXL6iPc0Z9YjtFykyRZOHRYeTYWaB/IpRsNOlcFECU7DGFB/iMWYrYbGnMVm1ehVE8MZ6jggG77PsHSEel8RF3pd4xmAOENKxbsb2fhds9MhDCu2nsmbRU/2Ho8GwvT7EQblOqzT5BxNqN2knGEawrqaOrTz57t9bCppQcjD0vdZ+7foBr+IOXV4A0OK7Zo32UFR4zI/xt5KHTJrbFQ1bh+d7uDEQ6N/TobC3163FlldbI+YuPZjI4dU/qRYa19jqj7IqKCfovpwMVCJQmceraH9e3RDuNqFribqp13xyDc8MArOhsLL+S4e0LrKQuyOe+v5IU/koX/bxH3DCOqp6UaBR7LA3u9s7FA66jtYYEqOA6bERr8rwn06n4MC/1KvSB7lZYju2t37tHFuVwaCxV++J/Cwh7bsTqgaVqgU4S3wzqJKwuXJ2GlXuAqA5rMAtcE1929cUVyaSxUeFl+DAtGUOFf4CstQbfI1JC9/08WrnphbRavSJRKy/Gl0OxUD8sJuFAWZG5N5B/GAuOUz01xX1XWgl+844FJuGdj4f2oPiJI14SqzJ/DgiiXdpVCUrVjUmx1Hrhmxw4LdHArnZqFYsa2hfqg5aYV5WLRibefw0K59bgdV74pfknnUpyF6zvN+XyerA64w8KcVGNrTEpdQF4+b340C8XHZXwimeIr9EEf73cMf3eHLWxvGw16rU3IL5w3kLSa2Ok4bVCJGXGBt8+pC9KfNtKGQ6sUT9tpK8RfrMYqMrMFycY62W8Kx/P71L5HZxTn2bEbLZ+ZwwyYk9VjTi4tatWHrVJfcpm7ifMq019cr9jo1BZF56jZGhJ1Ffi0w8KgaN5AJHPLXJBX5WgWaDzm1ljXCFRFUdQ8N/AkMW6+qdRms54NcZ/OP3Sn4ZvI+MtlzzRN7xlSdF54E76YZsT4wh3eTuYtoxuu9mk+k7OFHl97qz/hOYtwksc8uaqNqhh5ac/s1XkcHRHQG578isWxiTZzXXRQtGP7Bp3tfUI5+oKoVdHRvPvPrl2qu/WbIhi4Peu2zUvUidAqKGyRmErZzrfssJAr5PU2M7JJxn/PQjZPebPRoDNFBuFp0tJpWBioHXS//eTJhWiWNRbE5ScoIb0FU3cvNxbRSaioMMPbG5IBOUdBJIp+R4JL04Oh64t+ooI666jSJz3FWFMwC00R7Rf10ONqpVQRJ88x1naul5Cjt7siZCzQyfobYMFQ3y10joen0rb167sw7MuQ9MtycQtZ0GmHYud3lfo7hewimZjceHlDG1Hg+F4OyPGxLNQ5uhmHMaLxC5kSO8k8Zb2Oq+l7/R0W6Gwv9wIs5IfzBWLF+BzaY26TRhto6N8ZS3rFOSyT1VH7MrkrVtqC1K6IJfrM4JNNFvBGj14EYeGmR3IVMAs3N1hJiG9B6ahAb6hbcQhSsGdewSnzVwqFfcQbYUHJj0rhWEWf+jS8RFrTXz59XNdskKNZyOwaLl0rFdHaK9liASfRCw2SXybChGQhC2K7vckCtWj9Lrqcxg2Ni9OmjF+jvan12EEsTAybVDScuMoaC773UMQCNfkJC18RiajALLxSC9qpClycLdcW8pP5UX9fdmSpc0Z4KSp+T/MVTcpjSK2N1WpM4iKLS1wphhndtBYifHzs6weNsViLucoYk3M75CQsOM/TXH8VszBqAAt5oYwF3UMPkLyWuqN3X7IS6JfOU1wbkWq+x+oaCxb7sZeFETPAozBgIfp1UIxENPtSNQFnIatef++aimWWY9mYMtEoZeTXKCXkycpaGgPtqPghrbDYzOa+hFWpjIXS3Nqd9stjr/g+dYNZNS7zHGTNcpI+Qnx/7iX01hWyYDwjNdgaOSESaJ+MhSZEwWlrCZ65Qeh7L8CC7tpAbTwJY3uNBYcLD2BBTOEygQXj6cB4GT+atxp1NPI5ZGGcWek0hlLolBCzLoUbOrE7X2bTwe1VET/L2eHZl6lrhfNuFq2/HkWZzaV5jU3JGrGg/fKwfT7th3Hk9JeZebTSN6fJlRGd1POWTbh9Bbaj5QQQMNgSIMaJHcIlc3U00u63+YW/hwW9C/dgnsaEBa8JJmciIzW7nwXGgHFKzoLfXywW/dOtGBOXZ+PaxSPRVYMotqple2/kuA9yRybSTaoiZD5gLlireD6vym+I8ERPW9B+Vp42x2mqrSqrs69IPFXelGgkb/Zyx164Ux+RqCYojZcgdJFAfX056Ha7SoqR1PrlLMRMM9XR0zJjLMxCYMPx+DeLOYQFZJbGayx06/X0hIt7z7fjHFfCFVsaUdG4Q+itDyDFbrGjg1/XNGVz7Jnru6j9khIHCrvyuZwub4oRXYhv7jyS+yAO70Ev3BtISBTbur0gjHXdb8n4+GyWtiquswA6EViIUTfi8gZlwZtHcDy8rkfGwsAuZSFevq31EUilhN7Jgiv1Uala4L5K5ikL3Jvc1jpnZDXobZE2Bib/hgXmQS2wbjhu7X6cQi9YbXpAyKCLXsmTp9/NmNWYEmRnHBF5eBjebmfjiCbjvw1JCf0pISwwqSkuugxlgV0tlub3euTDfESOW8ACEz6FXUDtVzaOkE/GQrM8MI4vdVw3J1sNwivbvlCD2zmwrPQ2WuJfsSCO7R14+Q2HwylY8CXa4n0WAuRJiQ6X7GOBGWOfymxCngzsXxhT/8IM+xeAhdA2WCdnYW3ZoE86GOrSO1/EAtNYjoCFEQlfFRfcqViIKtbu0MalhueA3Xjste6uW9wytY1Dy7w82zzev2IB3cnlZq/GSZtnp30E/0d9RN/G8weGDJrsQ3FgEa8heA02WfiKRZG8vYv6miwZHO96mkaoO3E9GC7HXh2SJ0IejAjMQpzeQIrHLguWeq/Dmu4Cbd5CFqxUAhZctYYGBv5MYk/FwqIiFqoqQd/tKsiMk+E/ThBaRZ2J/+FBGTyYRIUkc/twtypXKDa9OOsJf9V6W+op6msajEvwgXlpNNs0pBsS7MVvmlTWa/GxmNL5CLs2+/jku3Bsvfbce/j0sM/O9z5XpV742j0IMvx8lcyY9W3QAq7Hvc3ulTauWSh744ea2gAbIMS2x/gZgLKegYWN5cQSKR2P60/ZQ2OwGQt4PsIjXxwbz0c0J+l4Vlfej193r1g6FSGS1WlWYlhfsrzAy95dKyrRH/G0vvQ4XuBYL110dgrptbtCWWTtNV7C13RH54jGfBiw6MAyG9Tn2wZu1IW9li+b5ys7VvmY8j1dtqnDSXR+L7sLcqLWmvmb1ImgNhffqVHxG7tf9X53Wc/mcuM5+jIgqdu/4bGJGlAPHf7q7xtVMtBZa25WdatBXRxz8OUkmSOmhYe6jNu6W7Yj/eU0K9IWW3hU+H3z+n7oDJywfHlGXMZ1cKGTVHddotBJBmF4gvvwl8YvHCliv2oZl2JP098nVxZAksr1GpSSEeXfJlcWkBjlrgXoIroXuq77qeXKQvVwEkzHb88VPpNcWWD0EjdxphYKRuJ/p1xZsOrVWdnVrxb4m+THsxCl1UnZHPvtSwicS346C0Z1B8HKP0ct/HAWxJCtciyAtdD4MWqhlAXfirJkB4sK+hpnZlQsMqKVi0+/xOS+6Wt7XLTo89JXV+YsVPu49eOv1L/Y21LCglsPhOAeu+FvAyoh47/TGQ3xK2RC2Jam6M/ogYlxiW4PJ8g8ZHtc5FubcxGNrz3LQLKsUr2en77kcATSMR3JrVq5ctifyR+9DaqYhalSb4bNpQCN+SHMm1giNPpSScyS/zpgYrRpOlzCLy4Tvy7Qv3MT37sxOyV7XPRgTF+UJ13mWqFbfW/9pdxtgxzxmrIP+z9koVM7fMXiHSlkweBqcA+iYYD+fqwMab0daPhc/jONQfmkixnE9PVDY8hOHy//fX3OJXozFaoXgWThffR77qy/ZKONFMYD5HAWROdou/Xh+Q/epFjIQmtEJmlvJy6wkD/eevfFxGEEOQv3Q/JjxgKOObh8FqIBp+xVCqys7nvckV5YTWfrbseg6yAajIVnLfXV6+bQRxf/+mHP/A6d1NRd/GLjDv7rWmJ+BPQNlb9ZZh/xLKTYcbGQS8jed4f2QyXw7K4fmlofB6DGHR9nt/guPhEuKhqRb0AloKJF8BaykEUWxeNwi4V+xEKkQikLeInoC2dBdBeptlcnwHBy//sa11gw6prN1uGrqLadO8iidofqRBnidnTris3V4GZ9qI2eonoP0BohflVJqMJ8vOs1WsLEq5HZ/brwPAm8OzhHTbbVEVBpTAQBWTh4ufYkkGwP52W4Srsl2TIEn4e2wHIS+Ennalgb1eDZhBQ4y4YwsOim22Jtvq+bvO0VXVohC95nFr0qbvYR3QWz4KIKFkIIqLpgFvQo7HuqsF8nsJDBsFfz+0vO1ZEwEOXL952aBPdDnHBqYFqMXufn7pS7Q5t0np8nbzYsSf4h8b2k701glsNRYMlUx4ZlUkNW6ybNQMXWalvpG0ZDAxbGSi1MUhUnAYzH864AQT2hkDYTU4VoEVflzWS2VGEh/7HJm2OIFVloPD+cQ2gaVCiawCt6o0AbTqeppNaT5tIuUHmFLLDr8X0fWq3Var1ABAmwwNy0xQIWXh0f3ZNOkKJiY+4F9ki+f+wUh6s3eMZROB2bI+UQlYC1wh67EcRf8t36cNiNcbwVpFhK8Eq+Cd+A5VGtdInOPn1HD890gppYDB4N0AvkwYX4wVC6X2NhZICOCBiIIoaTRxJ6qMR7yNd0f1PLxUrhaRNrkBGjLyFY0FVhjcJEwgrlQyWxFn1BCeHVDwaLWbDxQQOI1Usk24K0jfvdqzmABekLBEKSMAshQmqXBTut1+tdoQsd01i4gT3eL8BL46CG9/DI18PxiPveMbISvnVA9ZFeWCKBkN8WftKm9gOwYOOew+8p7SnxudzjNaVjR89sx9CGnJYNFmTomXUW1LDF3ljQypCMOlCDRU60XseBNfoXG8UxGtZBKaxtIhZHIj+opGH6dIHwTRYgXD+yOfS5IxW8FaOEhbUvG/YCwDwOLHGHhefGvN/iSMbUJfURjsSTpatkuWARz3KtoCwOIRmNI1wrwl65Nl4SfQCDbnFC38ZjmZOJ1AYK3lah8oQFA3fhjrLGAgfOG32Eb/dYMW8fAhvGEX5fmkwCEiTI1Cb4FussB69zUl6jFQtfGyyQPORtFiAlyYY+piMcGvsavFGXo2MUsKDzC39SaC8sSGLYJbHAdIK9DqVd4bj+QUptzXZs2PDATgkLHN0oGs02Dy63N6wXRBh7rrMQasBCohIWzBULicDx8nJOFhbQnZpHhjSJWsf3G5XCOWsweihmwSbByLssREeyUG/TsZHgFLDAhJNQLWTB4HENLooFJjIPtBBWwo8OjK5eY8EBiwD1BQ62F/CmuA/vXrm3byH5D27Y73+MTRZcFtq/r2yzYPAmzSZj/GnThy4FDzhYert9E5a69wcQnbzJgk2SiDIWIuz8dYgR8q9YcJ6xBSIuINJvaxzB4JeGC8XjiBoPt+ayWGD8ubpnAmpLKUjdQ53n+oqFiPUSq8kuoxULlsc7ojGEfI/4l+dEc0Xa0gv+nTa3HE/YZiH2htNkGsK9Fd/suW71J6ht/ZG0CB0HNMRA7bpRy25sszBQhk3IbVlQFsSeUovcLk/GEWssHJ4f0QOF4JNOZ1cvIDNXKWYhmmCDYgljUeb7hxGZOMMjVIMQHLaAH4jvKbl/oRM8PU3wuzPER4Vcezh6fX2SsOURwq84KeHjEbPw+IVL8ParVn8GGzFUMQsyD6PSvsp7nvIEY8Z4OHl9nZhgJf5SbGQl/AM7zgRkLuCIK/cRFmeJNJx5qJvqKyxYvPhFl3gzPPtpYk48EVoNcqWtRxkqOzmUBUa/Vx61XzKs0MV8PD0SSRg9pSmhg8eMBfqWG+sfolVnYM2M6R6/LmZuSp8q+z3OpHtQzGMyDTrh6pZGtzOH7BuG+ab5jJZAH28xN9YtFBJvqaN2NnDjW5wwEkLvL3bgsXakNyOKwhELRa1wPoMBCON3brHgHd2HGdYbjH+L84xpTeJOCLk40W2urwaDDvoRiuBfyIn18OBcGXSq2xnN67A6VGJGdOl9Ejs0RyeimS0+dbXG4E6Nsj0uaG7KevMO0A08v5Pf9i0yI2tAjavfkXZq+TmxLO7Mq56DgExH5zI6toGK9ULKnVWz/hwWkNJqpmyZt4kTuOUiugDvGBZ4ib3nyXx19MSp5SexgMT4MEfb0xEyJyh8dxxeCghYwsH0ITlNrujB8sNYgKg0t3/zbKuKJEmaJimqqnZfHGPfcn8/Qb7K1hT8u0U0wiRJmk0nNC42/PDsMrgIu/kqV7nKVa5ylatc5SpXucpVvkP+B7U7jCp8UStyAAAAAElFTkSuQmCC"
+    }
+   },
    "cell_type": "markdown",
-   "metadata": {},
+   "metadata": {
+    "toc-hr-collapsed": false
+   },
    "source": [
-    "# List of included Python packages"
+    "<img src=attachment:09375636-629b-4ee2-9011-455f6157ab16.png title=\"Python Logo\" width=\"360\" align=\"left\" style=\"float:right\"/>\n",
+    "<H1>List of included Python packages</H1>\n",
+    "\n",
+    "-----------------------------------"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "---\n",
     "This lists the python packages available and installed by the install script for Python, SciPy-Stack and Jupyter:\n",
     " - `$EBROOTPYTHON/easybuild/*.eb`\n",
     " - `$EBROOTSCIPYMINSTACK/easybuild/*.eb`\n",
     " - `$EBROOTJUPYTER/easybuild/*.eb`"
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "!ls $EBROOTJUPYTER/lib/python3.6/site-packages/ | grep .dist-info > ${PKG_DISTINFO}"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": 1,
@@ -313,7 +331,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 1,
    "metadata": {},
    "outputs": [
     {
@@ -321,264 +339,18 @@
      "output_type": "stream",
      "text": [
       "PYPI NAME            :   IMPORT NAME         REQ.VERS.|INST.VERS.     IMPORT TIME\n",
-      "=================================================================================\n",
-      "setuptools           :   setuptools           41.6.0                   0.385978s\n",
-      "webencodings         :   webencodings         0.5.1                    0.016903s\n",
-      "six                  :   six                  1.12.0                   0.000052s\n",
-      "decorator            :   decorator            4.4.0                    0.000052s\n",
-      "MarkupSafe           :   markupsafe           1.1.1                    0.006108s\n",
-      "more-itertools       :   more_itertools       7.2.0      != \u001b[31m7.0.0     \u001b[0m 0.030407s\n",
-      "pickleshare          :   pickleshare          0.7.5                    0.000044s\n",
-      "jedi                 :   jedi                 0.15.1     != \u001b[31m0.13.3    \u001b[0m 0.000032s\n",
-      "wcwidth              :   wcwidth              0.1.7                    0.000029s\n",
-      "attr                 :   attr                 19.3.0     != \u001b[31m19.1.0    \u001b[0m 0.017762s\n",
-      "parso                :   parso                0.5.1      != \u001b[31m0.3.4     \u001b[0m 0.000041s\n",
-      "jinja2               :   jinja2               2.10.1     != \u001b[31m2.10      \u001b[0m 0.028386s\n",
-      "pytz                 :   pytz                 2019.3     != \u001b[31m2019.1    \u001b[0m 0.093399s\n",
-      "pyparsing            :   pyparsing            2.2.0      != \u001b[31m2.3.1     \u001b[0m 0.049335s\n",
-      "packaging            :   packaging            19.2       != \u001b[31m19.0      \u001b[0m 0.027138s\n",
-      "urllib3              :   urllib3              1.25.6     != \u001b[31m1.24.1    \u001b[0m 0.019931s\n",
-      "certifi              :   certifi              2019.9.11  != \u001b[31m2019.03.09\u001b[0m 0.002952s\n",
-      "requests             :   requests             2.22.0     != \u001b[31m2.21.0    \u001b[0m 0.288162s\n",
-      "python-dateutil      :   dateutil             2.8.1      != \u001b[31m2.8.0     \u001b[0m 0.000026s\n",
-      "Pillow               :   PIL                  6.2.1      != \u001b[31m6.0.0     \u001b[0m 0.007693s\n",
-      "ply                  :   ply                  3.11                     0.019242s\n",
-      "pyrsistent           :   pyrsistent           0.15.4     != \u001b[31m0.14.11   \u001b[0m 0.013004s\n",
-      "lxml                 :   lxml                 4.4.1      != \u001b[31m4.3.3     \u001b[0m 0.055928s\n",
-      "idna                 :   idna                 2.8                      0.000051s\n",
-      "chardet              :   chardet              3.0.4                    0.000036s\n",
-      "pycparser            :   pycparser            2.19                     0.207475s\n",
-      "cffi                 :   cffi                 1.13.2     != \u001b[31m1.12.2    \u001b[0m 0.015289s\n",
-      "psutil               :   psutil               5.6.3      != \u001b[31m5.6.1     \u001b[0m 0.046984s\n",
-      "SQLAlchemy           :   sqlalchemy           1.3.10     != \u001b[31m1.3.1     \u001b[0m 0.994233s\n",
-      "certipy              :   certipy              0.1.3                    0.037884s\n",
-      "python-editor        :   editor               1.0.4                    0.007516s\n",
-      "Mako                 :   mako                 1.1.0      != \u001b[31m1.0.8     \u001b[0m 0.053407s\n",
-      "alembic              :   alembic              1.2.1      != \u001b[31m1.0.8     \u001b[0m 1.590335s\n",
-      "click                :   click                7.0                      0.018214s\n",
-      "appdirs              :   appdirs              1.4.3                    0.012561s\n",
-      "cloudpickle          :   cloudpickle          1.2.2      != \u001b[31m0.8.1     \u001b[0m 0.006038s\n",
-      "toolz                :   toolz                0.10.0     != \u001b[31m0.9.0     \u001b[0m 0.020046s\n",
-      "cryptography         :   cryptography         2.8                      0.000043s\n",
-      "prompt-toolkit       :   prompt_toolkit       2.0.10     != \u001b[31m2.0.9     \u001b[0m 0.000035s\n",
-      "oauthlib             :   oauthlib             3.1.0                    0.009413s\n",
-      "async-generator      :   async_generator      1.10                     0.009577s\n",
-      "smmap                :   smmap                0.9.0      != \u001b[31m2.0.5     \u001b[0m 0.005029s\n",
-      "typed-ast            :   typed_ast            1.4.0                    0.007294s\n",
-      "cycler               :   cycler               0.10.0                   0.007537s\n",
-      "numpy                :   numpy                1.15.2                   0.509992s\n",
-      "scipy                :   scipy                1.2.1                    0.028397s\n",
-      "sympy                :   sympy                1.4        != \u001b[31m1.3       \u001b[0m 7.210424s\n",
-      "pandas               :   pandas               0.25.3     != \u001b[31m0.24.2    \u001b[0m 1.315975s\n",
-      "mpmath               :   mpmath               1.1.0                    0.000075s\n",
-      "kiwisolver           :   kiwisolver           1.1.0      != \u001b[31m1.0.1     \u001b[0m 0.033678s\n",
-      "backports.functools_lru_cache :   backports.functools_lru_cache \u001b[31mIMPORT FAILED\u001b[0m\n",
-      "matplotlib           :   matplotlib           3.1.1      != \u001b[31m3.0.3     \u001b[0m 0.000086s\n",
-      "xarray               :   xarray               0.11.3     != \u001b[31m0.12.1    \u001b[0m 1.172104s\n",
-      "pyOpenSSL            :   OpenSSL              19.0.0                   0.000034s\n",
-      "entrypoints          :   entrypoints          0.3                      0.002844s\n",
-      "async_generator      :   async_generator      1.10                     0.000047s\n",
-      "absl-py              :   absl                 0.8.1                    0.012326s\n",
-      "cryptography         :   cryptography         2.8                      0.000051s\n",
-      "tornado              :   tornado              6.0.3                    0.000029s\n",
-      "bokeh                :   bokeh                1.3.4                    0.089318s\n",
-      "seaborn              :   seaborn              0.9.0                    11.679716s\n",
-      "nbformat             :   nbformat             4.4.0                    0.195660s\n",
-      "param                :   param                1.9.2                    0.209250s\n",
-      "pyviz_comms          :   pyviz_comms          0.7.2                    0.092592s\n",
-      "holoviews            :   holoviews            1.12.6                   1.424016s\n",
-      "alabaster            :   alabaster            0.7.12                   0.014988s\n",
-      "Babel                :   babel                2.7.0                    0.081024s\n",
-      "snowballstemmer      :   snowballstemmer      2.0.0                    0.351891s\n",
-      "docutils             :   docutils             0.15.2                   0.027402s\n",
-      "imagesize            :   imagesize            1.1.0                    0.004413s\n",
-      "sphinxcontrib-websupport :   sphinxcontrib.websupport 1.1.2                    0.889744s\n",
-      "Sphinx               :   sphinx               1.8.5                    0.000060s\n",
-      "pexpect              :   pexpect              4.7.0                    0.000043s\n",
-      "ipython              :   IPython              7.9.0                    0.000038s\n",
-      "ipynb                :   ipynb                0.5.1                    0.014553s\n",
-      "jupyter_core         :   jupyter_core         4.6.1                    0.000053s\n",
-      "retrying             :   retrying             1.3.3                    0.020777s\n",
-      "plotly               :   plotly               4.2.1                    6.939769s\n",
-      "tikzplotlib          :   tikzplotlib          0.8.4                    0.114980s\n",
-      "jupyter_client       :   jupyter_client       5.3.4                    0.000043s\n",
-      "traitlets            :   traitlets            4.3.3                    0.000031s\n",
-      "pyzmq                :   zmq                  18.1.0                   0.000028s\n",
-      "singledispatch       :   singledispatch       3.4.0.3                  0.062908s\n",
-      "ipyparallel          :   ipyparallel          6.2.4                    0.000068s\n",
-      "ipykernel            :   ipykernel            5.1.3                    0.000048s\n",
-      "terminado            :   terminado            0.8.2                    0.047164s\n",
-      "bleach               :   bleach               3.1.0                    0.469373s\n",
-      "mistune              :   mistune              0.8.4                    0.023354s\n",
-      "pandocfilters        :   pandocfilters        1.4.2                    0.001329s\n",
-      "Pygments             :   pygments             2.4.2                    0.000043s\n",
-      "testpath             :   testpath             0.4.4                    0.003176s\n",
-      "nbconvert            :   nbconvert            5.6.1                    0.042023s\n",
-      "ipython_genutils     :   ipython_genutils     0.2.0                    0.000036s\n",
-      "Send2Trash           :   send2trash           1.5.0                    0.010062s\n",
-      "notebook             :   notebook             6.0.2                    0.000031s\n",
-      "version_information  :   version_information  1.0.3                    0.047597s\n",
-      "lesscpy              :   lesscpy              0.13.0                   0.005995s\n",
-      "prometheus-client    :   prometheus_client    0.7.1                    0.025599s\n",
-      "jupyterthemes        :   jupyterthemes        0.20.0                   0.052266s\n",
-      "zipp                 :   zipp                 0.6.0                    0.000048s\n",
-      "importlib_metadata   :   importlib_metadata   0.23                     0.000036s\n",
-      "jsonschema           :   jsonschema           3.1.1                    0.000030s\n",
-      "jupyterlab_launcher  :   jupyterlab_launcher  0.13.1                   0.109656s\n",
-      "sphinx_rtd_theme     :   sphinx_rtd_theme     0.4.3                    0.008458s\n",
-      "future               :   future               0.18.1                   0.006830s\n",
-      "commonmark           :   commonmark           0.9.1                    0.095996s\n",
-      "recommonmark         :   recommonmark         0.6.0                    0.002422s\n",
-      "jupyterlab           :   jupyterlab           1.2.1                    0.002643s\n",
-      "json5                :   json5                0.8.5                    0.003840s\n",
-      "jupyterlab_server    :   jupyterlab_server    1.0.6                    0.004840s\n",
-      "ptyprocess           :   ptyprocess           0.6.0                    0.000037s\n",
-      "defusedxml           :   defusedxml           0.6.0                    0.000027s\n",
-      "widgetsnbextension   :   widgetsnbextension   3.5.1                    0.016441s\n",
-      "ipywidgets           :   ipywidgets           7.5.1                    0.000042s\n",
-      "ipydatawidgets       :   ipydatawidgets       4.0.1                    0.134411s\n",
-      "traittypes           :   traittypes           0.2.1                    0.000048s\n",
-      "bqplot               :   bqplot               0.11.9                   0.271027s\n",
-      "jupyter_bokeh        :   jupyter_bokeh        1.1.1      != \u001b[31m\u001b[31mNO MATCH\u001b[0m\u001b[0m 1.545438s\n",
-      "pythreejs            :   pythreejs            2.1.1                    1.858083s\n",
-      "PyWavelets           :   pywt                 1.1.1                    0.377231s\n",
-      "imageio              :   imageio              2.6.1                    0.387762s\n",
-      "networkx             :   networkx             2.3                      3.447984s\n",
-      "scikit-image         :   skimage              0.16.2                   0.284224s\n",
-      "ipywebrtc            :   ipywebrtc            0.5.0                    0.040460s\n",
-      "ipyvolume            :   ipyvolume            0.5.2                    0.409094s\n",
-      "branca               :   branca               0.3.1                    0.226449s\n",
-      "ipyleaflet           :   ipyleaflet           0.11.4                   0.070324s\n",
-      "ipympl               :   ipympl               0.3.3                    0.123354s\n",
-      "PyYAML               :   yaml                 5.1.2                    0.000082s\n",
-      "jupyter_nbextensions_configurator :   jupyter_nbextensions_configurator 0.4.1                    0.003318s\n",
-      "jupyter_latex_envs   :   latex_envs           1.4.6      != \u001b[31m1.4.0     \u001b[0m 0.005721s\n",
-      "jupyter_highlight_selected_word :   jupyter_highlight_selected_word 0.2.0                    0.020243s\n",
-      "jupyter_contrib_core :   jupyter_contrib_core 0.3.3                    0.002995s\n",
-      "jupyter_contrib_nbextensions :   jupyter_contrib_nbextensions 0.5.1                    0.002769s\n",
-      "rise                 :   rise                 5.5.1                    0.188142s\n",
-      "typing-extensions    :   typing_extensions    3.7.4                    0.037277s\n",
-      "idna-ssl             :   idna_ssl             1.1.0                    0.002152s\n",
-      "multidict            :   multidict            4.5.2                    0.004443s\n",
-      "yarl                 :   yarl                 1.3.0                    0.003127s\n",
-      "async-timeout        :   async_timeout        3.0.1                    0.003045s\n",
-      "aiohttp              :   aiohttp              3.6.2                    0.077788s\n",
-      "simpervisor          :   simpervisor          0.3                      0.003966s\n",
-      "jupyter_server       :   jupyter_server       0.1.1                    0.001706s\n",
-      "jupyter-server-proxy :   jupyter_server_proxy 1.1.0      != \u001b[31m1.2.0     \u001b[0m 0.004240s\n",
-      "jupyterlab_github    :   jupyterlab_github    1.0.1      != \u001b[31m1.0.0     \u001b[0m 0.000919s\n",
-      "jupyterlab-gitlab    :   jupyterlab_gitlab    0.3.0      != \u001b[31m0.2.0     \u001b[0m 0.001144s\n",
-      "jupyterlab-quickopen :   jupyterlab_quickopen 0.3.0                    0.002939s\n",
-      "zstandard            :   zstandard            0.12.0                   0.000029s\n",
-      "itk_core             :   itk_core             \u001b[31mIMPORT FAILED\u001b[0m\n",
-      "itk_filtering        :   itk_filtering        \u001b[31mIMPORT FAILED\u001b[0m\n",
-      "itk_segmentation     :   itk_segmentation     \u001b[31mIMPORT FAILED\u001b[0m\n",
-      "itk_numerics         :   itk_numerics         \u001b[31mIMPORT FAILED\u001b[0m\n",
-      "itk_registration     :   itk_registration     \u001b[31mIMPORT FAILED\u001b[0m\n",
-      "itk_io               :   itk_io               \u001b[31mIMPORT FAILED\u001b[0m\n",
-      "itk-meshtopolydata   :   itk-meshtopolydata   \u001b[31mIMPORT FAILED\u001b[0m\n",
-      "pyct                 :   pyct                 0.4.6                    0.076661s\n",
-      "colorcet             :   colorcet             2.0.2      != \u001b[31m1.0.0     \u001b[0m 1.035480s\n",
-      "itkwidgets           :   itkwidgets           0.22.0                   13.082362s\n",
-      "ujson                :   ujson                1.35                     0.037301s\n",
-      "jupyterlab_iframe    :   jupyterlab_iframe    0.2.1                    0.004151s\n",
-      "python-dotenv        :   dotenv               0.10.3                   0.056290s\n",
-      "jupyterlab_latex     :   jupyterlab_latex     1.0.0                    0.004882s\n",
-      "jupyterlab_slurm     :   jupyterlab_slurm     1.0.5                    0.002469s\n",
-      "jupyterlmod          :   jupyterlmod          1.7.5                    0.003136s\n",
-      "nbresuse             :   nbresuse             0.3.2                    0.001697s\n",
-      "colorama             :   colorama             0.4.1                    0.000065s\n",
-      "nbdime               :   nbdime               1.1.0                    0.020851s\n",
-      "smmap2               :   smmap                2.0.5                    0.000058s\n",
-      "gitdb2               :   gitdb                2.0.6                    0.025730s\n",
-      "GitPython            :   git                  3.0.4                    0.099233s\n",
-      "jupyterlab-git       :   jupyterlab_git       0.8.1                    0.016555s\n",
-      "sidecar              :   sidecar              0.3.0                    0.018072s\n",
-      "pycodestyle          :   pycodestyle          2.5.0                    0.007567s\n",
-      "autopep8             :   autopep8             1.4.4                    0.004303s\n",
-      "yapf                 :   yapf                 0.28.0                   0.025461s\n",
-      "toml                 :   toml                 0.10.0                   0.003055s\n",
-      "pathspec             :   pathspec             0.6.0                    0.077891s\n",
-      "typed_ast            :   typed_ast            1.4.0                    0.000055s\n",
-      "regex                :   regex                2019.11.1  != \u001b[31m2.5.65    \u001b[0m 0.087107s\n",
-      "black                :   black                19.3b0                   0.265862s\n",
-      "jupyterlab-code-formatter :   jupyterlab_code_formatter 0.6.1                    0.001970s\n",
-      "pamela               :   pamela               1.0.0                    0.081929s\n",
-      "certipy              :   certipy              0.1.3                    0.000066s\n",
-      "oauthlib             :   oauthlib             3.1.0                    0.000042s\n",
-      "jupyterhub           :   jupyterhub           1.0.0                    0.003949s\n",
-      "appmode              :   appmode              0.6.0                    0.001285s\n",
-      "HeapDict             :   heapdict             1.0.1                    0.000043s\n",
-      "zict                 :   zict                 1.0.0                    0.000043s\n",
-      "tblib                :   tblib                1.5.0                    0.000032s\n",
-      "sortedcontainers     :   sortedcontainers     2.1.0                    0.000033s\n",
-      "msgpack              :   msgpack              0.6.2                    0.000029s\n",
-      "dask                 :   dask                 2.6.0                    0.000039s\n",
-      "distributed          :   distributed          2.6.0                    0.000030s\n",
-      "dask-jobqueue        :   dask-jobqueue        \u001b[31mIMPORT FAILED\u001b[0m\n",
-      "dask_labextension    :   dask_labextension    1.0.3                    0.012876s\n",
-      "Automat              :   automat              0.8.0                    0.056752s\n",
-      "PyHamcrest           :   hamcrest             1.9.0                    0.317690s\n",
-      "Twisted              :   twisted              19.7.0                   0.044753s\n",
-      "autobahn             :   autobahn             19.10.1                  0.006888s\n",
-      "constantly           :   constantly           15.1.0                   0.039913s\n",
-      "hyperlink            :   hyperlink            19.0.0                   0.074022s\n",
-      "incremental          :   incremental          17.5.0                   0.000064s\n",
-      "txaio                :   txaio                18.8.1                   0.038220s\n",
-      "zope.interface       :   zope.interface       4.6.0                    0.138110s\n",
-      "backcall             :   backcall             0.1.0                    0.000064s\n",
-      "wslink               :   wslink               0.1.11                   0.007843s\n",
-      "jupyterlab_pygments  :   jupyterlab_pygments  0.1.0                    0.009341s\n",
-      "ipyvue               :   ipyvue               1.0.0                    0.025899s\n",
-      "ipyvuetify           :   ipyvuetify           1.1.1                    0.414047s\n",
-      "voila                :   voila                0.1.14                   0.010617s\n",
-      "voila-material       :   -                    0.2.5                    0.000001s\n",
-      "voila-gridstack      :   -                    0.0.6                    0.000000s\n",
-      "voila-vuetify        :   -                    0.1.1                    0.000000s\n",
-      "dicom-upload         :   dicom-upload         \u001b[31mIMPORT FAILED\u001b[0m\n",
-      "fileupload           :   fileupload           master     != \u001b[31m0.1.0.dev \u001b[0m 0.014791s\n",
-      "pvlink               :   pvlink               0.1.2                    0.012866s\n",
-      "julia                :   julia                0.5.0                    0.102546s\n",
-      "textwrap3            :   textwrap3            0.9.2                    0.023105s\n",
-      "ansiwrap             :   ansiwrap             0.8.4                    0.039140s\n",
-      "backports.weakref    :   backports.weakref    1.0.post1                0.020673s\n",
-      "backports.tempfile   :   backports.tempfile   1.0                      0.006095s\n",
-      "tqdm                 :   tqdm                 4.41.0                   0.101886s\n",
-      "tenacity             :   tenacity             6.0.0                    0.093667s\n",
-      "papermill            :   papermill            1.2.1                    0.417333s\n",
-      "patsy                :   patsy                0.5.1                    0.281202s\n",
-      "statsmodels          :   statsmodels          0.10.2                   0.000063s\n",
-      "cftime               :   cftime               1.0.4.2                  0.000048s\n",
-      "vega_datasets        :   vega_datasets        0.8.0                    0.124947s\n",
-      "arviz                :   arviz                0.5.1                    8.192571s\n",
-      "Theano               :   Theano               \u001b[31mIMPORT FAILED\u001b[0m\n",
-      "altair               :   altair               3.3.0                    0.572322s\n",
-      "cssselect            :   cssselect            1.1.0                    0.074927s\n",
-      "smopy                :   smopy                0.0.7      != \u001b[31m0.0.6     \u001b[0m 0.005187s\n",
-      "joblib               :   joblib               0.14.1                   0.000062s\n",
-      "scikit-learn         :   scikit-learn         \u001b[31mIMPORT FAILED\u001b[0m\n",
-      "memory_profiler      :   memory_profiler      0.55.0                   0.048130s\n",
-      "h5py                 :   h5py                 2.10.0                   1.163224s\n",
-      "line_profiler        :   line_profiler        2.1.2      != \u001b[31m\u001b[31mNO MATCH\u001b[0m\u001b[0m 0.041151s\n",
-      "pymc3                :   pymc3                3.8                      6.798788s\n",
-      "llvmlite             :   llvmlite             0.30.0                   0.000073s\n",
-      "numba                :   numba                0.46.0                   0.000051s\n",
-      "numexpr              :   numexpr              2.7.0                    0.101310s\n",
-      "ipythonblocks        :   ipythonblocks        1.9.0                    0.023981s\n",
-      "pydub                :   pydub                0.23.1                   0.209780s\n",
-      "multipledispatch     :   multipledispatch     0.6.0                    0.062537s\n",
-      "partd                :   partd                1.1.0                    0.168488s\n",
-      "locket               :   locket               0.2.0                    0.000052s\n",
-      "fsspec               :   fsspec               0.6.2                    0.136985s\n",
-      "datashape            :   datashape            0.5.2                    0.177264s\n",
-      "datashader           :   datashader           0.9.0                    13.161141s\n",
-      "selenium             :   selenium             3.141.0                  0.009461s\n",
-      "graphviz             :   graphviz             0.13.2                   0.088085s\n",
-      "vincent              :   vincent              0.4.4                    0.167066s\n",
-      "Shapely              :   Shapely              \u001b[31mIMPORT FAILED\u001b[0m\n",
-      "pyshp                :   pyshp                \u001b[31mIMPORT FAILED\u001b[0m\n",
-      "Cartopy              :   Cartopy              \u001b[31mIMPORT FAILED\u001b[0m\n",
-      "pandas-datareader    :   pandas-datareader    \u001b[31mIMPORT FAILED\u001b[0m\n"
+      "=================================================================================\n"
+     ]
+    },
+    {
+     "ename": "NameError",
+     "evalue": "name 'pkg_list' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-1-09245ef6496d>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"PYPI NAME\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mljust\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m20\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\":  \"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"IMPORT NAME\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mljust\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m20\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m\"REQ.VERS.|INST.VERS.\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mljust\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m25\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m\"IMPORT TIME\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      6\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"=================================================================================\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mpkg_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpkg_version\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpkg_importname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mpkg_list\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      8\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mpkg_importname\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      9\u001b[0m         \u001b[0mpkg_importname\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpkg_name\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;31mNameError\u001b[0m: name 'pkg_list' is not defined"
      ]
     }
    ],
diff --git a/001-Jupyter/Markdown_Tipps-and-Tricks.ipynb b/001-Jupyter/Markdown_Tipps-and-Tricks.ipynb
index eedf4e4f45b148e41fda99daa0798e6a24a8f0a6..2c33e48abb604dbf244c8b10903f0ced89bb5b9f 100644
--- a/001-Jupyter/Markdown_Tipps-and-Tricks.ipynb
+++ b/001-Jupyter/Markdown_Tipps-and-Tricks.ipynb
@@ -1,10 +1,27 @@
 {
  "cells": [
+  {
+   "attachments": {
+    "09375636-629b-4ee2-9011-455f6157ab16.png": {
+     "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAABgCAMAAACkLcFMAAAAwFBMVEX///8AO2EAOF8ANV0dVXddfZQAMlv7/P0ALlkAOWAALFgAJ1UAMFrp7vKttsDI1NxBaIRPbIbc5OkAIlIyUnGltsNSeJJxg5ePp7jFz9cAQmllhp2Woq/w9PYAAEQAB0gbTG8AFU4AGk42Y4K/xs41XHpYcIhzj6OwwMuZq7k9XXoASG7W4OaBkqPl6OsAHlGTqbldgJgAEUsAAD+dsb+LmqouVXR9maxofZJti6BYfJQnS2yeqbWAkKEQT3JAbYmctWnXAAAXrElEQVR4nO2dC3uiOhOAuVTuFIFiBUuX1hsqou1BrLXt/v9/9WWSgDdAPeuxflvnnKerGCCQl8lkMhMY5ipXucpVrnKVq1zllCKKvqX7IpLvrsnliBF/dw3OLWLUGSwaN7Ji2/bEtpvfXZ/LkVHjZz0YUbOXCpLAc7LMggjRd9focuSm9t01OJ/40UJTNZ5jV8LXzvMo+KuPol9e7HvlB7HQqXmazG4KH57jzNH47TOhn8PPt8+znPR4+Sks+GEqC9sksNxQP8O5HU8TNKmFP0859Fmbn+Gsx8sPYcEwFW4bBCRnaZQ45dGpZAG0gTWCanAj4wznPVp+BAv+fCQUkMCy6jksx0jB+kiboc+hgs8r3Z7hvEfLD2BBDANlp3cg1sLvc5w/UokO6iMzNaEsfJzjxMfKD2ChzxV1DyCKc47zWxImUYH2NyaEi4u0Hv96FvSGUkICshzP4mgTZwCDkFros9+QQC2YFzmu/NtZiIbFlgKI0D9PHfSFYtttF3+O321balymg+svZ8ENylFglSpr3j9h/yGKkS8WfL4w2ctCHCTMNL1MkPdKGPDlKHBflbtOBueq5aXIfhbqCeOY1lkqc2qJvTKrEUSaVu3bEPizWJYXJPv7CKTRLteFXilWt0IrsFxQZTkarMx5R1v7UQfE2N6wpVV9A29dc3laZL/SviMu/V03Bovf7W7jZWDsuFBFo+js5ecqZ8HvIAIilx62E8Of1ekMcsGie+u45J4aUVb0HH7dA0SsVaHACvdV3fYA7cuxR3aNUaBJkqRwOUPuSAIJNg2TuaxAMTNnMeqqUKyUPbELPyvyjiLTZ3VPEXie4wXJq0+3Lihh8W7djfYQU7yRK1CK5SxEzx2GWUjkiy89IKJ+5ZUVez04sfU2eXqcpHCp4u823W9yGYNnsVU6mCRSVU0dqxT+7rhBZ6JiT4Lwlm140eC7rDxsFPvCPZfMu9mGW+ILE95LjmvY5Petoag/4CU+96LJvMQNNmhoE7t5s6+jx+LN3Se2ggUb3ay+Qr7oHLDwnLtOCQu64IU++PoRNaJ5Q/dTL4MFp8pWQA99WtXxueQ2aseNOpsS1TjZhhY9zCYLHmk/eY0F0miNkuMaxHO51X5+Tdpyp3L8Yh2GOtGLnLP/WFj+iIU+18GV4rqXx4IVVLMgVQY01ehQVDrqWs7KgnVT0AVq9TUYzsmCn9IuN3mML46FRoVjARqCrRoa6dnOXHCM8XNOFnxTK7ourbWCoc6dj4UooM+WnuiXxoJbaTei9qoMaEqkvFz/CMfQOVnor6IxOH4tVktK8iLn1AuGtzrvhbEQD/ewIFdV0jdXeyudw896RhbCSVZBjR2+9VItq7Gs5nbQOVlwN1hoKE9YVOECWGjyxbPU+aOUVnURBrvam68fcdazsSBmtHJq34h934raasZGbgids49wt/RCeIsknB1nb/0nIu5BYU9AU2u9K1bdqqIbcj4WwozpIL/ZA9pP8Pns6yn0go61DGFBpZsq+wjwS15UHxFmD0mZqFXTUiK7TtLKW7BXzsaC+ElpXYvAEN+pwZsf9wQs6O9Yy1jAgvOLmE4RHLDUdoxM67JYWFQPIlgYBJeLs+Gkkr2DFcPZWNCJu2ozMEu3t/g4QR/h90z4x32M0J9nYjqFbKfAvzDsEVLmT+JFsaAPq30LrFQ57dTbtDsPdzidjYWIepn4DUwpIHlYxin6iFkAhtVC8eGuDqHD0E1walvPuU1NWHAm2KttaLXL6iPc0Z9YjtFykyRZOHRYeTYWaB/IpRsNOlcFECU7DGFB/iMWYrYbGnMVm1ehVE8MZ6jggG77PsHSEel8RF3pd4xmAOENKxbsb2fhds9MhDCu2nsmbRU/2Ho8GwvT7EQblOqzT5BxNqN2knGEawrqaOrTz57t9bCppQcjD0vdZ+7foBr+IOXV4A0OK7Zo32UFR4zI/xt5KHTJrbFQ1bh+d7uDEQ6N/TobC3163FlldbI+YuPZjI4dU/qRYa19jqj7IqKCfovpwMVCJQmceraH9e3RDuNqFribqp13xyDc8MArOhsLL+S4e0LrKQuyOe+v5IU/koX/bxH3DCOqp6UaBR7LA3u9s7FA66jtYYEqOA6bERr8rwn06n4MC/1KvSB7lZYju2t37tHFuVwaCxV++J/Cwh7bsTqgaVqgU4S3wzqJKwuXJ2GlXuAqA5rMAtcE1929cUVyaSxUeFl+DAtGUOFf4CstQbfI1JC9/08WrnphbRavSJRKy/Gl0OxUD8sJuFAWZG5N5B/GAuOUz01xX1XWgl+844FJuGdj4f2oPiJI14SqzJ/DgiiXdpVCUrVjUmx1Hrhmxw4LdHArnZqFYsa2hfqg5aYV5WLRibefw0K59bgdV74pfknnUpyF6zvN+XyerA64w8KcVGNrTEpdQF4+b340C8XHZXwimeIr9EEf73cMf3eHLWxvGw16rU3IL5w3kLSa2Ok4bVCJGXGBt8+pC9KfNtKGQ6sUT9tpK8RfrMYqMrMFycY62W8Kx/P71L5HZxTn2bEbLZ+ZwwyYk9VjTi4tatWHrVJfcpm7ifMq019cr9jo1BZF56jZGhJ1Ffi0w8KgaN5AJHPLXJBX5WgWaDzm1ljXCFRFUdQ8N/AkMW6+qdRms54NcZ/OP3Sn4ZvI+MtlzzRN7xlSdF54E76YZsT4wh3eTuYtoxuu9mk+k7OFHl97qz/hOYtwksc8uaqNqhh5ac/s1XkcHRHQG578isWxiTZzXXRQtGP7Bp3tfUI5+oKoVdHRvPvPrl2qu/WbIhi4Peu2zUvUidAqKGyRmErZzrfssJAr5PU2M7JJxn/PQjZPebPRoDNFBuFp0tJpWBioHXS//eTJhWiWNRbE5ScoIb0FU3cvNxbRSaioMMPbG5IBOUdBJIp+R4JL04Oh64t+ooI666jSJz3FWFMwC00R7Rf10ONqpVQRJ88x1naul5Cjt7siZCzQyfobYMFQ3y10joen0rb167sw7MuQ9MtycQtZ0GmHYud3lfo7hewimZjceHlDG1Hg+F4OyPGxLNQ5uhmHMaLxC5kSO8k8Zb2Oq+l7/R0W6Gwv9wIs5IfzBWLF+BzaY26TRhto6N8ZS3rFOSyT1VH7MrkrVtqC1K6IJfrM4JNNFvBGj14EYeGmR3IVMAs3N1hJiG9B6ahAb6hbcQhSsGdewSnzVwqFfcQbYUHJj0rhWEWf+jS8RFrTXz59XNdskKNZyOwaLl0rFdHaK9liASfRCw2SXybChGQhC2K7vckCtWj9Lrqcxg2Ni9OmjF+jvan12EEsTAybVDScuMoaC773UMQCNfkJC18RiajALLxSC9qpClycLdcW8pP5UX9fdmSpc0Z4KSp+T/MVTcpjSK2N1WpM4iKLS1wphhndtBYifHzs6weNsViLucoYk3M75CQsOM/TXH8VszBqAAt5oYwF3UMPkLyWuqN3X7IS6JfOU1wbkWq+x+oaCxb7sZeFETPAozBgIfp1UIxENPtSNQFnIatef++aimWWY9mYMtEoZeTXKCXkycpaGgPtqPghrbDYzOa+hFWpjIXS3Nqd9stjr/g+dYNZNS7zHGTNcpI+Qnx/7iX01hWyYDwjNdgaOSESaJ+MhSZEwWlrCZ65Qeh7L8CC7tpAbTwJY3uNBYcLD2BBTOEygQXj6cB4GT+atxp1NPI5ZGGcWek0hlLolBCzLoUbOrE7X2bTwe1VET/L2eHZl6lrhfNuFq2/HkWZzaV5jU3JGrGg/fKwfT7th3Hk9JeZebTSN6fJlRGd1POWTbh9Bbaj5QQQMNgSIMaJHcIlc3U00u63+YW/hwW9C/dgnsaEBa8JJmciIzW7nwXGgHFKzoLfXywW/dOtGBOXZ+PaxSPRVYMotqple2/kuA9yRybSTaoiZD5gLlireD6vym+I8ERPW9B+Vp42x2mqrSqrs69IPFXelGgkb/Zyx164Ux+RqCYojZcgdJFAfX056Ha7SoqR1PrlLMRMM9XR0zJjLMxCYMPx+DeLOYQFZJbGayx06/X0hIt7z7fjHFfCFVsaUdG4Q+itDyDFbrGjg1/XNGVz7Jnru6j9khIHCrvyuZwub4oRXYhv7jyS+yAO70Ev3BtISBTbur0gjHXdb8n4+GyWtiquswA6EViIUTfi8gZlwZtHcDy8rkfGwsAuZSFevq31EUilhN7Jgiv1Uala4L5K5ikL3Jvc1jpnZDXobZE2Bib/hgXmQS2wbjhu7X6cQi9YbXpAyKCLXsmTp9/NmNWYEmRnHBF5eBjebmfjiCbjvw1JCf0pISwwqSkuugxlgV0tlub3euTDfESOW8ACEz6FXUDtVzaOkE/GQrM8MI4vdVw3J1sNwivbvlCD2zmwrPQ2WuJfsSCO7R14+Q2HwylY8CXa4n0WAuRJiQ6X7GOBGWOfymxCngzsXxhT/8IM+xeAhdA2WCdnYW3ZoE86GOrSO1/EAtNYjoCFEQlfFRfcqViIKtbu0MalhueA3Xjste6uW9wytY1Dy7w82zzev2IB3cnlZq/GSZtnp30E/0d9RN/G8weGDJrsQ3FgEa8heA02WfiKRZG8vYv6miwZHO96mkaoO3E9GC7HXh2SJ0IejAjMQpzeQIrHLguWeq/Dmu4Cbd5CFqxUAhZctYYGBv5MYk/FwqIiFqoqQd/tKsiMk+E/ThBaRZ2J/+FBGTyYRIUkc/twtypXKDa9OOsJf9V6W+op6msajEvwgXlpNNs0pBsS7MVvmlTWa/GxmNL5CLs2+/jku3Bsvfbce/j0sM/O9z5XpV742j0IMvx8lcyY9W3QAq7Hvc3ulTauWSh744ea2gAbIMS2x/gZgLKegYWN5cQSKR2P60/ZQ2OwGQt4PsIjXxwbz0c0J+l4Vlfej193r1g6FSGS1WlWYlhfsrzAy95dKyrRH/G0vvQ4XuBYL110dgrptbtCWWTtNV7C13RH54jGfBiw6MAyG9Tn2wZu1IW9li+b5ys7VvmY8j1dtqnDSXR+L7sLcqLWmvmb1ImgNhffqVHxG7tf9X53Wc/mcuM5+jIgqdu/4bGJGlAPHf7q7xtVMtBZa25WdatBXRxz8OUkmSOmhYe6jNu6W7Yj/eU0K9IWW3hU+H3z+n7oDJywfHlGXMZ1cKGTVHddotBJBmF4gvvwl8YvHCliv2oZl2JP098nVxZAksr1GpSSEeXfJlcWkBjlrgXoIroXuq77qeXKQvVwEkzHb88VPpNcWWD0EjdxphYKRuJ/p1xZsOrVWdnVrxb4m+THsxCl1UnZHPvtSwicS346C0Z1B8HKP0ct/HAWxJCtciyAtdD4MWqhlAXfirJkB4sK+hpnZlQsMqKVi0+/xOS+6Wt7XLTo89JXV+YsVPu49eOv1L/Y21LCglsPhOAeu+FvAyoh47/TGQ3xK2RC2Jam6M/ogYlxiW4PJ8g8ZHtc5FubcxGNrz3LQLKsUr2en77kcATSMR3JrVq5ctifyR+9DaqYhalSb4bNpQCN+SHMm1giNPpSScyS/zpgYrRpOlzCLy4Tvy7Qv3MT37sxOyV7XPRgTF+UJ13mWqFbfW/9pdxtgxzxmrIP+z9koVM7fMXiHSlkweBqcA+iYYD+fqwMab0daPhc/jONQfmkixnE9PVDY8hOHy//fX3OJXozFaoXgWThffR77qy/ZKONFMYD5HAWROdou/Xh+Q/epFjIQmtEJmlvJy6wkD/eevfFxGEEOQv3Q/JjxgKOObh8FqIBp+xVCqys7nvckV5YTWfrbseg6yAajIVnLfXV6+bQRxf/+mHP/A6d1NRd/GLjDv7rWmJ+BPQNlb9ZZh/xLKTYcbGQS8jed4f2QyXw7K4fmlofB6DGHR9nt/guPhEuKhqRb0AloKJF8BaykEUWxeNwi4V+xEKkQikLeInoC2dBdBeptlcnwHBy//sa11gw6prN1uGrqLadO8iidofqRBnidnTris3V4GZ9qI2eonoP0BohflVJqMJ8vOs1WsLEq5HZ/brwPAm8OzhHTbbVEVBpTAQBWTh4ufYkkGwP52W4Srsl2TIEn4e2wHIS+Ennalgb1eDZhBQ4y4YwsOim22Jtvq+bvO0VXVohC95nFr0qbvYR3QWz4KIKFkIIqLpgFvQo7HuqsF8nsJDBsFfz+0vO1ZEwEOXL952aBPdDnHBqYFqMXufn7pS7Q5t0np8nbzYsSf4h8b2k701glsNRYMlUx4ZlUkNW6ybNQMXWalvpG0ZDAxbGSi1MUhUnAYzH864AQT2hkDYTU4VoEVflzWS2VGEh/7HJm2OIFVloPD+cQ2gaVCiawCt6o0AbTqeppNaT5tIuUHmFLLDr8X0fWq3Var1ABAmwwNy0xQIWXh0f3ZNOkKJiY+4F9ki+f+wUh6s3eMZROB2bI+UQlYC1wh67EcRf8t36cNiNcbwVpFhK8Eq+Cd+A5VGtdInOPn1HD890gppYDB4N0AvkwYX4wVC6X2NhZICOCBiIIoaTRxJ6qMR7yNd0f1PLxUrhaRNrkBGjLyFY0FVhjcJEwgrlQyWxFn1BCeHVDwaLWbDxQQOI1Usk24K0jfvdqzmABekLBEKSMAshQmqXBTut1+tdoQsd01i4gT3eL8BL46CG9/DI18PxiPveMbISvnVA9ZFeWCKBkN8WftKm9gOwYOOew+8p7SnxudzjNaVjR89sx9CGnJYNFmTomXUW1LDF3ljQypCMOlCDRU60XseBNfoXG8UxGtZBKaxtIhZHIj+opGH6dIHwTRYgXD+yOfS5IxW8FaOEhbUvG/YCwDwOLHGHhefGvN/iSMbUJfURjsSTpatkuWARz3KtoCwOIRmNI1wrwl65Nl4SfQCDbnFC38ZjmZOJ1AYK3lah8oQFA3fhjrLGAgfOG32Eb/dYMW8fAhvGEX5fmkwCEiTI1Cb4FussB69zUl6jFQtfGyyQPORtFiAlyYY+piMcGvsavFGXo2MUsKDzC39SaC8sSGLYJbHAdIK9DqVd4bj+QUptzXZs2PDATgkLHN0oGs02Dy63N6wXRBh7rrMQasBCohIWzBULicDx8nJOFhbQnZpHhjSJWsf3G5XCOWsweihmwSbByLssREeyUG/TsZHgFLDAhJNQLWTB4HENLooFJjIPtBBWwo8OjK5eY8EBiwD1BQ62F/CmuA/vXrm3byH5D27Y73+MTRZcFtq/r2yzYPAmzSZj/GnThy4FDzhYert9E5a69wcQnbzJgk2SiDIWIuz8dYgR8q9YcJ6xBSIuINJvaxzB4JeGC8XjiBoPt+ayWGD8ubpnAmpLKUjdQ53n+oqFiPUSq8kuoxULlsc7ojGEfI/4l+dEc0Xa0gv+nTa3HE/YZiH2htNkGsK9Fd/suW71J6ht/ZG0CB0HNMRA7bpRy25sszBQhk3IbVlQFsSeUovcLk/GEWssHJ4f0QOF4JNOZ1cvIDNXKWYhmmCDYgljUeb7hxGZOMMjVIMQHLaAH4jvKbl/oRM8PU3wuzPER4Vcezh6fX2SsOURwq84KeHjEbPw+IVL8ParVn8GGzFUMQsyD6PSvsp7nvIEY8Z4OHl9nZhgJf5SbGQl/AM7zgRkLuCIK/cRFmeJNJx5qJvqKyxYvPhFl3gzPPtpYk48EVoNcqWtRxkqOzmUBUa/Vx61XzKs0MV8PD0SSRg9pSmhg8eMBfqWG+sfolVnYM2M6R6/LmZuSp8q+z3OpHtQzGMyDTrh6pZGtzOH7BuG+ab5jJZAH28xN9YtFBJvqaN2NnDjW5wwEkLvL3bgsXakNyOKwhELRa1wPoMBCON3brHgHd2HGdYbjH+L84xpTeJOCLk40W2urwaDDvoRiuBfyIn18OBcGXSq2xnN67A6VGJGdOl9Ejs0RyeimS0+dbXG4E6Nsj0uaG7KevMO0A08v5Pf9i0yI2tAjavfkXZq+TmxLO7Mq56DgExH5zI6toGK9ULKnVWz/hwWkNJqpmyZt4kTuOUiugDvGBZ4ib3nyXx19MSp5SexgMT4MEfb0xEyJyh8dxxeCghYwsH0ITlNrujB8sNYgKg0t3/zbKuKJEmaJimqqnZfHGPfcn8/Qb7K1hT8u0U0wiRJmk0nNC42/PDsMrgIu/kqV7nKVa5ylatc5SpXucpVvkP+B7U7jCp8UStyAAAAAElFTkSuQmCC"
+    }
+   },
+   "cell_type": "markdown",
+   "metadata": {
+    "toc-hr-collapsed": false
+   },
+   "source": [
+    "<img src=attachment:09375636-629b-4ee2-9011-455f6157ab16.png title=\"Python Logo\" width=\"360\" align=\"left\" style=\"float:right\"/>\n",
+    "<H5>Jens Henrik Göbbert</H5>\n",
+    "<H1>Markdown Tipps & Tricks (for Jupyter Notebook)</H1>\n",
+    "\n",
+    "-----------------------------------"
+   ]
+  },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# Markdown Tipps & Tricks (for Jupyter Notebook)\n",
     "Markdown writing skills are essential to portray your work in the Jupyter notebook to offer the reader a sufficient explanation of both the code and the concept.\n",
     "\n",
     "I have collected informations for different sources. Thanks to them!\n",
@@ -470,13 +487,6 @@
     "from IPython.display import IFrame\n",
     "IFrame('https://arxiv.org/pdf/1406.2661.pdf', width=800, height=450)"
    ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
   }
  ],
  "metadata": {