diff --git a/001-Jupyter/Create_JupyterKernel_conda.ipynb b/001-Jupyter/Create_JupyterKernel_conda.ipynb index ad40a504980e521ad10de39b06ead61b0791dff9..f34c40e8ba974807b4b0ba9b4434ed4dec6abb87 100644 --- a/001-Jupyter/Create_JupyterKernel_conda.ipynb +++ b/001-Jupyter/Create_JupyterKernel_conda.ipynb @@ -2,8 +2,8 @@ "cells": [ { "attachments": { - "09375636-629b-4ee2-9011-455f6157ab16.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAABgCAMAAACkLcFMAAAAwFBMVEX///8AO2EAOF8ANV0dVXddfZQAMlv7/P0ALlkAOWAALFgAJ1UAMFrp7vKttsDI1NxBaIRPbIbc5OkAIlIyUnGltsNSeJJxg5ePp7jFz9cAQmllhp2Woq/w9PYAAEQAB0gbTG8AFU4AGk42Y4K/xs41XHpYcIhzj6OwwMuZq7k9XXoASG7W4OaBkqPl6OsAHlGTqbldgJgAEUsAAD+dsb+LmqouVXR9maxofZJti6BYfJQnS2yeqbWAkKEQT3JAbYmctWnXAAAXrElEQVR4nO2dC3uiOhOAuVTuFIFiBUuX1hsqou1BrLXt/v9/9WWSgDdAPeuxflvnnKerGCCQl8lkMhMY5ipXucpVrnKVq1zllCKKvqX7IpLvrsnliBF/dw3OLWLUGSwaN7Ji2/bEtpvfXZ/LkVHjZz0YUbOXCpLAc7LMggjRd9focuSm9t01OJ/40UJTNZ5jV8LXzvMo+KuPol9e7HvlB7HQqXmazG4KH57jzNH47TOhn8PPt8+znPR4+Sks+GEqC9sksNxQP8O5HU8TNKmFP0859Fmbn+Gsx8sPYcEwFW4bBCRnaZQ45dGpZAG0gTWCanAj4wznPVp+BAv+fCQUkMCy6jksx0jB+kiboc+hgs8r3Z7hvEfLD2BBDANlp3cg1sLvc5w/UokO6iMzNaEsfJzjxMfKD2ChzxV1DyCKc47zWxImUYH2NyaEi4u0Hv96FvSGUkICshzP4mgTZwCDkFros9+QQC2YFzmu/NtZiIbFlgKI0D9PHfSFYtttF3+O321balymg+svZ8ENylFglSpr3j9h/yGKkS8WfL4w2ctCHCTMNL1MkPdKGPDlKHBflbtOBueq5aXIfhbqCeOY1lkqc2qJvTKrEUSaVu3bEPizWJYXJPv7CKTRLteFXilWt0IrsFxQZTkarMx5R1v7UQfE2N6wpVV9A29dc3laZL/SviMu/V03Bovf7W7jZWDsuFBFo+js5ecqZ8HvIAIilx62E8Of1ekMcsGie+u45J4aUVb0HH7dA0SsVaHACvdV3fYA7cuxR3aNUaBJkqRwOUPuSAIJNg2TuaxAMTNnMeqqUKyUPbELPyvyjiLTZ3VPEXie4wXJq0+3Lihh8W7djfYQU7yRK1CK5SxEzx2GWUjkiy89IKJ+5ZUVez04sfU2eXqcpHCp4u823W9yGYNnsVU6mCRSVU0dqxT+7rhBZ6JiT4Lwlm140eC7rDxsFPvCPZfMu9mGW+ILE95LjmvY5Petoag/4CU+96LJvMQNNmhoE7t5s6+jx+LN3Se2ggUb3ay+Qr7oHLDwnLtOCQu64IU++PoRNaJ5Q/dTL4MFp8pWQA99WtXxueQ2aseNOpsS1TjZhhY9zCYLHmk/eY0F0miNkuMaxHO51X5+Tdpyp3L8Yh2GOtGLnLP/WFj+iIU+18GV4rqXx4IVVLMgVQY01ehQVDrqWs7KgnVT0AVq9TUYzsmCn9IuN3mML46FRoVjARqCrRoa6dnOXHCM8XNOFnxTK7ourbWCoc6dj4UooM+WnuiXxoJbaTei9qoMaEqkvFz/CMfQOVnor6IxOH4tVktK8iLn1AuGtzrvhbEQD/ewIFdV0jdXeyudw896RhbCSVZBjR2+9VItq7Gs5nbQOVlwN1hoKE9YVOECWGjyxbPU+aOUVnURBrvam68fcdazsSBmtHJq34h934raasZGbgids49wt/RCeIsknB1nb/0nIu5BYU9AU2u9K1bdqqIbcj4WwozpIL/ZA9pP8Pns6yn0go61DGFBpZsq+wjwS15UHxFmD0mZqFXTUiK7TtLKW7BXzsaC+ElpXYvAEN+pwZsf9wQs6O9Yy1jAgvOLmE4RHLDUdoxM67JYWFQPIlgYBJeLs+Gkkr2DFcPZWNCJu2ozMEu3t/g4QR/h90z4x32M0J9nYjqFbKfAvzDsEVLmT+JFsaAPq30LrFQ57dTbtDsPdzidjYWIepn4DUwpIHlYxin6iFkAhtVC8eGuDqHD0E1walvPuU1NWHAm2KttaLXL6iPc0Z9YjtFykyRZOHRYeTYWaB/IpRsNOlcFECU7DGFB/iMWYrYbGnMVm1ehVE8MZ6jggG77PsHSEel8RF3pd4xmAOENKxbsb2fhds9MhDCu2nsmbRU/2Ho8GwvT7EQblOqzT5BxNqN2knGEawrqaOrTz57t9bCppQcjD0vdZ+7foBr+IOXV4A0OK7Zo32UFR4zI/xt5KHTJrbFQ1bh+d7uDEQ6N/TobC3163FlldbI+YuPZjI4dU/qRYa19jqj7IqKCfovpwMVCJQmceraH9e3RDuNqFribqp13xyDc8MArOhsLL+S4e0LrKQuyOe+v5IU/koX/bxH3DCOqp6UaBR7LA3u9s7FA66jtYYEqOA6bERr8rwn06n4MC/1KvSB7lZYju2t37tHFuVwaCxV++J/Cwh7bsTqgaVqgU4S3wzqJKwuXJ2GlXuAqA5rMAtcE1929cUVyaSxUeFl+DAtGUOFf4CstQbfI1JC9/08WrnphbRavSJRKy/Gl0OxUD8sJuFAWZG5N5B/GAuOUz01xX1XWgl+844FJuGdj4f2oPiJI14SqzJ/DgiiXdpVCUrVjUmx1Hrhmxw4LdHArnZqFYsa2hfqg5aYV5WLRibefw0K59bgdV74pfknnUpyF6zvN+XyerA64w8KcVGNrTEpdQF4+b340C8XHZXwimeIr9EEf73cMf3eHLWxvGw16rU3IL5w3kLSa2Ok4bVCJGXGBt8+pC9KfNtKGQ6sUT9tpK8RfrMYqMrMFycY62W8Kx/P71L5HZxTn2bEbLZ+ZwwyYk9VjTi4tatWHrVJfcpm7ifMq019cr9jo1BZF56jZGhJ1Ffi0w8KgaN5AJHPLXJBX5WgWaDzm1ljXCFRFUdQ8N/AkMW6+qdRms54NcZ/OP3Sn4ZvI+MtlzzRN7xlSdF54E76YZsT4wh3eTuYtoxuu9mk+k7OFHl97qz/hOYtwksc8uaqNqhh5ac/s1XkcHRHQG578isWxiTZzXXRQtGP7Bp3tfUI5+oKoVdHRvPvPrl2qu/WbIhi4Peu2zUvUidAqKGyRmErZzrfssJAr5PU2M7JJxn/PQjZPebPRoDNFBuFp0tJpWBioHXS//eTJhWiWNRbE5ScoIb0FU3cvNxbRSaioMMPbG5IBOUdBJIp+R4JL04Oh64t+ooI666jSJz3FWFMwC00R7Rf10ONqpVQRJ88x1naul5Cjt7siZCzQyfobYMFQ3y10joen0rb167sw7MuQ9MtycQtZ0GmHYud3lfo7hewimZjceHlDG1Hg+F4OyPGxLNQ5uhmHMaLxC5kSO8k8Zb2Oq+l7/R0W6Gwv9wIs5IfzBWLF+BzaY26TRhto6N8ZS3rFOSyT1VH7MrkrVtqC1K6IJfrM4JNNFvBGj14EYeGmR3IVMAs3N1hJiG9B6ahAb6hbcQhSsGdewSnzVwqFfcQbYUHJj0rhWEWf+jS8RFrTXz59XNdskKNZyOwaLl0rFdHaK9liASfRCw2SXybChGQhC2K7vckCtWj9Lrqcxg2Ni9OmjF+jvan12EEsTAybVDScuMoaC773UMQCNfkJC18RiajALLxSC9qpClycLdcW8pP5UX9fdmSpc0Z4KSp+T/MVTcpjSK2N1WpM4iKLS1wphhndtBYifHzs6weNsViLucoYk3M75CQsOM/TXH8VszBqAAt5oYwF3UMPkLyWuqN3X7IS6JfOU1wbkWq+x+oaCxb7sZeFETPAozBgIfp1UIxENPtSNQFnIatef++aimWWY9mYMtEoZeTXKCXkycpaGgPtqPghrbDYzOa+hFWpjIXS3Nqd9stjr/g+dYNZNS7zHGTNcpI+Qnx/7iX01hWyYDwjNdgaOSESaJ+MhSZEwWlrCZ65Qeh7L8CC7tpAbTwJY3uNBYcLD2BBTOEygQXj6cB4GT+atxp1NPI5ZGGcWek0hlLolBCzLoUbOrE7X2bTwe1VET/L2eHZl6lrhfNuFq2/HkWZzaV5jU3JGrGg/fKwfT7th3Hk9JeZebTSN6fJlRGd1POWTbh9Bbaj5QQQMNgSIMaJHcIlc3U00u63+YW/hwW9C/dgnsaEBa8JJmciIzW7nwXGgHFKzoLfXywW/dOtGBOXZ+PaxSPRVYMotqple2/kuA9yRybSTaoiZD5gLlireD6vym+I8ERPW9B+Vp42x2mqrSqrs69IPFXelGgkb/Zyx164Ux+RqCYojZcgdJFAfX056Ha7SoqR1PrlLMRMM9XR0zJjLMxCYMPx+DeLOYQFZJbGayx06/X0hIt7z7fjHFfCFVsaUdG4Q+itDyDFbrGjg1/XNGVz7Jnru6j9khIHCrvyuZwub4oRXYhv7jyS+yAO70Ev3BtISBTbur0gjHXdb8n4+GyWtiquswA6EViIUTfi8gZlwZtHcDy8rkfGwsAuZSFevq31EUilhN7Jgiv1Uala4L5K5ikL3Jvc1jpnZDXobZE2Bib/hgXmQS2wbjhu7X6cQi9YbXpAyKCLXsmTp9/NmNWYEmRnHBF5eBjebmfjiCbjvw1JCf0pISwwqSkuugxlgV0tlub3euTDfESOW8ACEz6FXUDtVzaOkE/GQrM8MI4vdVw3J1sNwivbvlCD2zmwrPQ2WuJfsSCO7R14+Q2HwylY8CXa4n0WAuRJiQ6X7GOBGWOfymxCngzsXxhT/8IM+xeAhdA2WCdnYW3ZoE86GOrSO1/EAtNYjoCFEQlfFRfcqViIKtbu0MalhueA3Xjste6uW9wytY1Dy7w82zzev2IB3cnlZq/GSZtnp30E/0d9RN/G8weGDJrsQ3FgEa8heA02WfiKRZG8vYv6miwZHO96mkaoO3E9GC7HXh2SJ0IejAjMQpzeQIrHLguWeq/Dmu4Cbd5CFqxUAhZctYYGBv5MYk/FwqIiFqoqQd/tKsiMk+E/ThBaRZ2J/+FBGTyYRIUkc/twtypXKDa9OOsJf9V6W+op6msajEvwgXlpNNs0pBsS7MVvmlTWa/GxmNL5CLs2+/jku3Bsvfbce/j0sM/O9z5XpV742j0IMvx8lcyY9W3QAq7Hvc3ulTauWSh744ea2gAbIMS2x/gZgLKegYWN5cQSKR2P60/ZQ2OwGQt4PsIjXxwbz0c0J+l4Vlfej193r1g6FSGS1WlWYlhfsrzAy95dKyrRH/G0vvQ4XuBYL110dgrptbtCWWTtNV7C13RH54jGfBiw6MAyG9Tn2wZu1IW9li+b5ys7VvmY8j1dtqnDSXR+L7sLcqLWmvmb1ImgNhffqVHxG7tf9X53Wc/mcuM5+jIgqdu/4bGJGlAPHf7q7xtVMtBZa25WdatBXRxz8OUkmSOmhYe6jNu6W7Yj/eU0K9IWW3hU+H3z+n7oDJywfHlGXMZ1cKGTVHddotBJBmF4gvvwl8YvHCliv2oZl2JP098nVxZAksr1GpSSEeXfJlcWkBjlrgXoIroXuq77qeXKQvVwEkzHb88VPpNcWWD0EjdxphYKRuJ/p1xZsOrVWdnVrxb4m+THsxCl1UnZHPvtSwicS346C0Z1B8HKP0ct/HAWxJCtciyAtdD4MWqhlAXfirJkB4sK+hpnZlQsMqKVi0+/xOS+6Wt7XLTo89JXV+YsVPu49eOv1L/Y21LCglsPhOAeu+FvAyoh47/TGQ3xK2RC2Jam6M/ogYlxiW4PJ8g8ZHtc5FubcxGNrz3LQLKsUr2en77kcATSMR3JrVq5ctifyR+9DaqYhalSb4bNpQCN+SHMm1giNPpSScyS/zpgYrRpOlzCLy4Tvy7Qv3MT37sxOyV7XPRgTF+UJ13mWqFbfW/9pdxtgxzxmrIP+z9koVM7fMXiHSlkweBqcA+iYYD+fqwMab0daPhc/jONQfmkixnE9PVDY8hOHy//fX3OJXozFaoXgWThffR77qy/ZKONFMYD5HAWROdou/Xh+Q/epFjIQmtEJmlvJy6wkD/eevfFxGEEOQv3Q/JjxgKOObh8FqIBp+xVCqys7nvckV5YTWfrbseg6yAajIVnLfXV6+bQRxf/+mHP/A6d1NRd/GLjDv7rWmJ+BPQNlb9ZZh/xLKTYcbGQS8jed4f2QyXw7K4fmlofB6DGHR9nt/guPhEuKhqRb0AloKJF8BaykEUWxeNwi4V+xEKkQikLeInoC2dBdBeptlcnwHBy//sa11gw6prN1uGrqLadO8iidofqRBnidnTris3V4GZ9qI2eonoP0BohflVJqMJ8vOs1WsLEq5HZ/brwPAm8OzhHTbbVEVBpTAQBWTh4ufYkkGwP52W4Srsl2TIEn4e2wHIS+Ennalgb1eDZhBQ4y4YwsOim22Jtvq+bvO0VXVohC95nFr0qbvYR3QWz4KIKFkIIqLpgFvQo7HuqsF8nsJDBsFfz+0vO1ZEwEOXL952aBPdDnHBqYFqMXufn7pS7Q5t0np8nbzYsSf4h8b2k701glsNRYMlUx4ZlUkNW6ybNQMXWalvpG0ZDAxbGSi1MUhUnAYzH864AQT2hkDYTU4VoEVflzWS2VGEh/7HJm2OIFVloPD+cQ2gaVCiawCt6o0AbTqeppNaT5tIuUHmFLLDr8X0fWq3Var1ABAmwwNy0xQIWXh0f3ZNOkKJiY+4F9ki+f+wUh6s3eMZROB2bI+UQlYC1wh67EcRf8t36cNiNcbwVpFhK8Eq+Cd+A5VGtdInOPn1HD890gppYDB4N0AvkwYX4wVC6X2NhZICOCBiIIoaTRxJ6qMR7yNd0f1PLxUrhaRNrkBGjLyFY0FVhjcJEwgrlQyWxFn1BCeHVDwaLWbDxQQOI1Usk24K0jfvdqzmABekLBEKSMAshQmqXBTut1+tdoQsd01i4gT3eL8BL46CG9/DI18PxiPveMbISvnVA9ZFeWCKBkN8WftKm9gOwYOOew+8p7SnxudzjNaVjR89sx9CGnJYNFmTomXUW1LDF3ljQypCMOlCDRU60XseBNfoXG8UxGtZBKaxtIhZHIj+opGH6dIHwTRYgXD+yOfS5IxW8FaOEhbUvG/YCwDwOLHGHhefGvN/iSMbUJfURjsSTpatkuWARz3KtoCwOIRmNI1wrwl65Nl4SfQCDbnFC38ZjmZOJ1AYK3lah8oQFA3fhjrLGAgfOG32Eb/dYMW8fAhvGEX5fmkwCEiTI1Cb4FussB69zUl6jFQtfGyyQPORtFiAlyYY+piMcGvsavFGXo2MUsKDzC39SaC8sSGLYJbHAdIK9DqVd4bj+QUptzXZs2PDATgkLHN0oGs02Dy63N6wXRBh7rrMQasBCohIWzBULicDx8nJOFhbQnZpHhjSJWsf3G5XCOWsweihmwSbByLssREeyUG/TsZHgFLDAhJNQLWTB4HENLooFJjIPtBBWwo8OjK5eY8EBiwD1BQ62F/CmuA/vXrm3byH5D27Y73+MTRZcFtq/r2yzYPAmzSZj/GnThy4FDzhYert9E5a69wcQnbzJgk2SiDIWIuz8dYgR8q9YcJ6xBSIuINJvaxzB4JeGC8XjiBoPt+ayWGD8ubpnAmpLKUjdQ53n+oqFiPUSq8kuoxULlsc7ojGEfI/4l+dEc0Xa0gv+nTa3HE/YZiH2htNkGsK9Fd/suW71J6ht/ZG0CB0HNMRA7bpRy25sszBQhk3IbVlQFsSeUovcLk/GEWssHJ4f0QOF4JNOZ1cvIDNXKWYhmmCDYgljUeb7hxGZOMMjVIMQHLaAH4jvKbl/oRM8PU3wuzPER4Vcezh6fX2SsOURwq84KeHjEbPw+IVL8ParVn8GGzFUMQsyD6PSvsp7nvIEY8Z4OHl9nZhgJf5SbGQl/AM7zgRkLuCIK/cRFmeJNJx5qJvqKyxYvPhFl3gzPPtpYk48EVoNcqWtRxkqOzmUBUa/Vx61XzKs0MV8PD0SSRg9pSmhg8eMBfqWG+sfolVnYM2M6R6/LmZuSp8q+z3OpHtQzGMyDTrh6pZGtzOH7BuG+ab5jJZAH28xN9YtFBJvqaN2NnDjW5wwEkLvL3bgsXakNyOKwhELRa1wPoMBCON3brHgHd2HGdYbjH+L84xpTeJOCLk40W2urwaDDvoRiuBfyIn18OBcGXSq2xnN67A6VGJGdOl9Ejs0RyeimS0+dbXG4E6Nsj0uaG7KevMO0A08v5Pf9i0yI2tAjavfkXZq+TmxLO7Mq56DgExH5zI6toGK9ULKnVWz/hwWkNJqpmyZt4kTuOUiugDvGBZ4ib3nyXx19MSp5SexgMT4MEfb0xEyJyh8dxxeCghYwsH0ITlNrujB8sNYgKg0t3/zbKuKJEmaJimqqnZfHGPfcn8/Qb7K1hT8u0U0wiRJmk0nNC42/PDsMrgIu/kqV7nKVa5ylatc5SpXucpVvkP+B7U7jCp8UStyAAAAAElFTkSuQmCC" + "67258d94-84e6-4a0c-ae8f-c74332ec082e.jpg": { + "image/jpeg": "/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wgARCAA/AWMDASIAAhEBAxEB/8QAHAAAAgIDAQEAAAAAAAAAAAAAAAcGCAMEBQEC/8QAGQEAAwEBAQAAAAAAAAAAAAAAAAECAwUE/9oADAMBAAIQAxAAAAG1OLym+/nbqzUsm6vIuTKPn64neBOuGo9AjQOdDKiXRPiTXXPXmCOZSJORKW5agvJk10RdQ/TN6mqto0aZ8q9DS4XdjAScOIq7ZFew10iKZQkxzujLABgAAAAAAAJWqVtaldrhFkK93umu7yuqheZ1q02/py+utxrOhCeN3N1FvBH+vxxu3lRLchT92pJ27Y891JR1+P2Vicacae+FfnDBLKVK3SFo6i1FxKtdzhsuBGJPGOd0ZLAGDGmR/bkWjcR7a630LXlsdIuREY6CrrkV64dMimYUlOZzRyUCaFwxyoi8oMaZRhlInrccsBX+695sBHPHR5PZpy+mbu7YpZQXI8CtjAZ2aLpSw7JGuVbXZJvcd6ic65nm/ngCJtqZa46o2z8m/YxJ4xncnVrS4jUJ6Eg6lpbb0k9cRfaknSVLLC3ga39Y5JCeMzwFnoNsYAZakKmo5rMrrRLLp8uvvthmttgrbGByewL1hfM2tdJqfdwqs7K9BN7jZ+GlNruSH1Ed+Gn8zood9o/QklLGAAqPprAZIxJ+RnfWWTOwgutRmbFyvMk/FShaeXIjIBFgAAAAAAAf/8QALBAAAQQCAQIFBAEFAAAAAAAAAwIEBQYAAQcSExARFTA1FCA0NiEjMTM3QP/aAAgBAQABBQLClQAczykzaKccnzRVVkzxzCffKyQoePj7sxkIat2dtZm/uMXRDvf+ExUAFcbiaxucrcVuam066dY8vw2Ft8ZB6mOY1e5gtBbVc2Ee7ZVyNZRsbZIivTNhnR12NrViFZWOWi5gq5Y96mRY2K8x9eKz5YZFK2cidgRf2q7DvfSmu35tYpHIv5LH8mlgVMhsYmD3T9v673Aim0rxDzS3/tcpyS2kN4cURHkPJR+iLjnB1uj8dzO5WA8LT+t8Sfn8kftw/wDG6/2Pyd+r8U/AZy3+fEuvoqbS4VNqnrVx+0cxnHkZJREeJaRcjElmOx8Y/tORfySvPy7bqXctxOXAodyRkNq2cRuPG7mY1HRn0Ev7XJsMWSh8ZszSDqEi0Q0VnK0v2WOcSG3qQyauEbAOrOvS6zxJ+fyVrptgVaUE39Tkfk79X4p+Azlv88KNk4+4lInUtISAItnDWJhP6kmCpS5q4leJTxl+05F/JYmebqL6oD6M88EJ1z4e6WcGIy51t0KnW30xLEzE0fygI7arE3GtMgJYzWIQsNPtmwfUQdYbA2OXwkOP4WQND1qOgtYQiRItMz69N5xI13t1nI9UcS+i2Geex3H1XNAMuQ6kabQ3t9ijWtBp7vclySEh6zDzc9Atq5bLE+nOVmpzva6Haa9M1mUp8s+m7Bbk0ut7rcUBi51yMT+R8bMnAbNkX8lgzqbFKXYI5DB2aTWIMZLOQvXEgyWCKcLc9Do7b1EuwunSWsS4fJM50wS4arC2nwkWYrAzabQ9KJn9i1pGm93pMijwo8HuCgcdvW7FDV2B6PxEYZ0e5F/JZ6yy07LPMQnG9AVRrDHgxdgYD0abYgG2cjeB9qxzL6DC45ccKTM2qTnfD++6LQ1oL4WxBCGkjnZrbyEhJE9XMOzxEmRzI1wzhkhrPmWcEi+SRT90+sLaWPq0RcitxJwE09dJhXTwhmDozOoPZEkPJN3j2RHXZN6c2RfyWMHrIMKyediUUNTQmv4gZBTxNgERIMZm0dt7czQYmYUfiMvW24jV1QlLi4JXjtOt4QSCp6defZH3dCRonbTrOwPr7acVVwqcdlHcS3EhaQoRmkJ1naRixIJmhp1mhpT4NGe2zrOyjuKahWry1nTry8tea24iaQhI0+z/AP/EACcRAAIBAwMDBQADAAAAAAAAAAECAAMREgQxUSEiQRATIDIzFGFx/9oACAEDAQE/Aa1YURcz+RVqNYGDoIrhr29CwBxmRZrKYj9vU7QEMLiZAnGGtTU2JhdV3hYKQDDuJtAbzIfPWX9yaOndsuJVf20LTSORV/2EheplT90lD9Kkp/SpNP8AksX9nlCmjUu6VrKqYdYzO1VMxaHcRreZa3mdvMBUS4mQMyEyHoyhvsIAFFhNXWD9izRpepfiVEDrZpToYtmTePQu2Sm0WiFTARKBS3fBTs5fmHTeFawjUQQoHiPTzZW4h3EYSwPmWXmAeAZhMIUvMOPQi46SrS1B6XvE0dQ/bpKdNaS4rGGQtMP7mJ5mBGxhRuZgeYEPMwt5gQ8w7iEXmExirj8v/8QAJhEAAgICAQMEAgMAAAAAAAAAAQIAAxESUQQhMRAiM0ETIDJCcf/aAAgBAgEBPwGqo2mCiqsZIhOTmMhXGfQKSNpqFXLCOnu7DzCCpwYVIG0FNjDIECM3iBSwJEHgwDMIImp/fpMfj7Tq3wuvMrTdws6lc1/5ApbsInwPL/jrj/zrl/yGN8SS+x1t9spyzPt2iqi1vqcweDFz9TJPbE93EIYzUzUzUzU+isV8GEljkzpaSnuadU2teOZWxRsrLLthqBiJfhdWGY1xZ9zGvDf1jWZQJxB1P2V7xbiCxP3Es0UrzB4MUzJ4mW4hP2RPyTfmB8Tfn0Bwe8rs6cd8YjdVWPHeWWGw5MU6nM3HE3HELg/UDrxNxxC44m4J8TccQfcBxN5vGbb9v//EAEMQAAIBAwEEBgUJBgQHAAAAAAECAwAEERIFEyExEBQiQVFhMnORobEjMEJSYnFygcEgJDNDs9FTdLLhFSVAY3XC8P/aAAgBAQAGPwKmeRgiLxLMcAUY7CE3rD+YTpT/AHrKGCAeCx5+NWs1+wa4lXWcLpwDy93zE15PndRDJ086utohZI47b+IjDtVLJbo8ZjbSyyfO7Qjc5WGUKnDu0Kf1/wCiaSRgiKMsx7hTRRMY9noexH9f7R6LW0+gzZf8I4msDgOg7Pl09TAEbS/Vk/t+xPdOCyQoXIHPhU8cVvJA0QDdsjjUmyryykukdBrxjGDUtnDaqLWb00JJ1ffTbEstnyxap920mrOW/M5pryWNpVDBdKedNcxRPCFfQVfogjlt5J2lBbsEcMVBcoCqSoHAbzrcPquLnvii+j957qC3FnNbp9cHXSTQuJYnGVZeRr/hXVpte+3O84YzWa6nHbTRNpLBnI7uja/r1/pr0RoyM2tXbh9kZqyuWeR0umVVjwvZ18R7K3yqVGtkwfssR+lQbi2eaebXpiyBgKcEk91QK0EkUrz9XZG+g2nV+YqW10nVHGsmr7yf7fNw2yHT1l8N+Ed3w6braTj0vkY/1/TouLuT0IULVJNKdUkjFmPmaVJG1TWx3TE947j/APeHTtP/AC7/AAraHql+NP6uOl+6j/5Af6hTeuSrj/MH4Do2f6p/iKtrj/Cs9fsWpGvWMkagzS8eLkmmbZdosV4mNKocBx3iri2v4jEgk1RAsDz50Wdgqi/bJJ4DjTfvlvy/xRS+pfo2v69f6a0cc6t99bPbGGKRZXb0SzDHZ8e81suze0kha0ZGlkbGjsjHZPfmuqyWV1q38nbCdjjISDnPnVncm2klCCaORE9JdT5Bx38vfVkZ7dooxd6tAbDrHoOCSDzz4VdtGr7l4YwGeQvxy2eZ+75uOeFdb2raio56Tz6I7e3QyTSHCqKtrNOIiXBPie89Fvs9D2pjvH/COXv+HRfw/RaJX9h/36Ft7uR1kK6uyhPCtosDkG3Y+6toeqX40xPLdRmkI4gijp4/8wH+qm9clXH+YPwHRs/1T/EUFHM2H/pV4ueLQDA/OpLq5fdwRjLNipTYzb3dY1dgrj21dWisEaa7dAzchxonrtvw+waX1L9G1/Xr/TXoA0S7ppN0LjR8mWzjGfv4VPdcd1CXD8PqnB+FSx7i4k3QBd44tQXIzWiGGe6+TWTVAmoYblW6FtdSOEWRhHFnSD4+yoTDrummTeIkC5Onx8qhmTXNviVSONMuSOYx3YoXEhdF3ogYMnaRj4ircTEgzyiFABnial1RTiKJzG8+77AP31cuM6bdir8PAZqH92unWbTu2SLg2RmppJhLHuYlmdSnEKSR+lWyhtXWMmMjkeGaQASiKRtEc7JiNz5HpMrWxhc8TuW0g/lR6nbBHPOQ8WP59DO5CqoySe6ri6H8LOmP8I5dG0LnHZCLH789EV9ZoZZol0PEObL5UNksJXTGjSITvCPA1LNdDTdXGMp9RRyqK8s113MK6Wj73XypbEa10DQu8g7a0Nq7QjeIJlo1k9J2P0jTrHG0jb1DhBmmgs45EjZtZBt88fZVnBcqxt3fD5ttPDHjWz2jhkkXduMohPeKsI5EwerqGVh5V1zZ4kaANmOaMatI+qwpLMxvKuc7uGLSCfOt3IQ1zKdcpHIeVa+ry6OvFtWg4xmm+6g0lvLGoifJZCOja/r1/pr0Ktpv4p2n7ezpE1JxbtEHHAfSznFbS2a0cnW5pJd0gQnWHYkHPLv91bREV11WM7sE7rJPY7iaki63c2UKW0KR7tc6gNX2TW0J7Ccwk20RTMYIkPb8at7jRLHZS2aRq7KSVYMSQ3n2qstoPavb23yyt2eK6iMOw7s499STbpza3V9HgMpGUEektjwqFp4n12c0NsOHpHeDU/3YC++r+N7gw2kl1LqiEXaYavredbWtZElM1w7PCFjJ3mpQOH51sSIrlopow2O7EZraumNjm1hAwOfyjVa26KeqMZpI3HKLKcV9vEVsu1TerPDuYZrU2+oDBALE45eB/ZLMQqjiSe6m2ds982/82YfT8h5dMUci6biX5WTyJ7vZ0B7meO3QnGqVgoreW80c8fLXG2ofsB43WRDyZTkfO7X9ev8ATXo6t1hN9nTjz8M8s+VPC0/yiHSwCscH2VMElVjCdMgH0TjNJruMawGU6W455VHqnxvF1r2W5cvCoXa4XTMMxlctqH5UJYm1IeRxj5vrEGz+vW4Hb0SYZPyxxFfIbOjQ+LyFv7Vpurg7r/CTsp7OmPaW0o9JXtQ27c/xN/bp2OsQiaQ3fATDs/w351s62nuYtlxSiQzT22FXUOQGrl/tWwEN01r1iCWWbQgy+kpjnyzn31uXvC8bT7pY4ypA7PJk9IeOrlUe92l+8PNMj7P0Z0hc4815Dieea2Hi5d4Lt5o2gIGlcamGPZWzLZroG5a+mjmi4atI14BHsqC6N67q+02tDAQNGjJ99Nbi7dTFfAaN6iJuhg40+kTRgkvDIjzMixxlSAMcmX0lP2uVXr2+02uoYUcR28joWlccyABnSOVTM9zvc2ZmcGRWMcnkAOyOfA+FbPjmvpZhf7P3zEhew/Z4rw+1UXVb9us9ZSIlsNusyYxioIbi9O4NnId5Nga5AR78VsKPr0sJuLFpZXjC5ZsL5edbIknumnF/bPI6FQFUjGNPt6Nr+vX+mvQLS6xJcCUq9r/ML6/D35raAO0ra3j63xgkA1Hsr36v0ram0YgTondJ0Xm0ekcfvXn7a2B+O2+FObIRNKLLOmXPHtmtkyQ7Qit95DO5lnQYyWUkYyMcfhSMJkuOH8SP0T840m6NrOf5kHDP3jlXyO0kK/8Aci4/Gv3jaQ0+EUX9zQkhg3k4/nTdpvy8P2BkZxWl1Dr4MM0DjiK3mhd5y1Y40X0jWebY40OyOHLhyrXoXX9bHGvRHPPLvrWZ5dzv+s7ns415zzxnn51vNC7zlqxxrUsaK3iFptKKNXFsDnQwo4cBR7C8Tk8KGpQ2OIyKGFHDgOFDCgY5cOXReylgRPIHA8OyB+nRvNC7zlqxxrU0SM3iVrlQGOArPfWGjVh5itKKFHgPmv/EACgQAQABAwIFBQEBAQEAAAAAAAERACExQVEQYXGBkSAwobHw0cFA4f/aAAgBAQABPyGhC9ZA3WmcFD4Xr4FIPypSasZaWLgR2exhlvEq8Ad0q1c8CG0QwzNEkkMSSSNvdKSLiEJvW6/4lWHZgC6tbACpZ+Q068I3LLzT/JI70IgAQBpwtXJGWvL3A7ZoZOOb3HYEwU1CZMAsaVew2wejdmi7It6ZqWahwqUFIJZEFFAhsCq50voLIsgM268AkTogEGvWsk8eAEw1YByYXRNbozSkkxDB1LPigfyakKjcpp2ztMTMSUaPATUlbeATofRPWYnrLX3mnI+ANxQ0Cd65/CTKNGZbYV6b7DHkqdKUdIrLEBZNyo4KJYQsfPz7a15amoy9zxZoF2C78w7PB4bhHWMHdgqTQDapLT+peJYJ8VuL9DdX7u+v1Nq+F+uBT93f0T+VrBgi63KJdNSLEF2l+KeL6uUXJYmLjQb0YCtqwST3pSn0ME8tGZNLw9a/E5cZ+hSNpxNJ8m8IKc2GptGtXukZk+RkjoZo6dgVhtQQKtzB2lD5Wcl7KXnSbIGxCWFqG9GS5kUYUs4fL20/smSihHSB88AGj1h/m7TJAIev3FeGhK3X+rgS++QQ8Aw3RFJRKnRqC0s7lf3d9NaiA8r/AMpEoFHe1fHNyE/Vfu7+ifyIGUwUQ4GNyL/soJd4Bi8YLt2kIFCd0xgbNAvmCUXmsAdNP6nL0Tz0MxPQj5EROtCTprZy0J1VAiWVCgYvjYovXMlpzJmGnOa8jYLs3WKINMAvrZaF4vF7UOZlMl3OoMzEa1K9eQSiNLIztepPpqjinY51fo6lMwyNJ1inu61wKN7NJrUxEjhfMT4qdyr0aLbyrU4OoOQL89KmnrLsfNvDh0nirw7uz4eKjw2EptpXjlwQix6AGVpZ1KG6WvLPfhJRCHmpfRwQwrV5I7kvbnUOQnELDRMVMbqlm4g82Ve1TV4LzJ1DNtZpm8wCWAFNOY0kwLD0oyBLnLRktOricwUwHqPEGXkKxh1IJL2WoUaYBHkFMetNncJSR7p2T/wbNJnJSQML/rFbr4ZIgO8GvWpwHmyDMxERRRBKr6oeEw6Y1TjPahF5PGcl0oHQvFM5wZBRwsM72lNJegobUK63hpzWs3irrcLeazQ49ACTZ+pJqz4QvBkkW7KNJY7qbICCdXa0Jp2Si6TAyEzC7FSLiqmBz5rykVeBDJQnHRigMguwIIIkCM4zin2RTyQK9Jp6m+uyEQp9chrjC7Eu4mlTkncspNmwdn0m/eTgG61IqWPy+516ZrLBd2KkvBHkI7AHnhDxhSHaWrvwYOQ0k4wVibASXjPrgKESzJ657I952P2Lprl9qULKQ1KkWHS+IezNLQYMMEzBC80+3QF5ndGF96dcYTARKQdyn9S5Fgxhv7ZgE5M5651DFIjQwzwFAZbZ+QZ7zwBABVsBrTImQGWgfXc8bgktL2BQqiYgwuGQrfNlJEnmSgAwS6UFYw3jdNBJwrhU5Y9CFW4LAk0WNSrCY8tKRJmb73mvjMgYkFuusBLOdzSYQXmr+dEEUmvXs9KDczv0xoAicl3Kwm8aBABLN76ZKudCakFoMvlTbIECRi2ZWZxUsu62Utw2Zh3ogANg2NgLjY8U34LQSFuouqutwuR0CSym7xntFuZRJbRJzmOVeaufY8uehE0iEJyZXZqjDkjWrBOhZ5K0Gl2xAhIqMjB4p55gm02lUk+gxyllIXXn7jtuFUm3yKCtoiHwpEvcB5/wrQ1RIPp2HoRQJSSYa1E5AFTwEEDFyuUjDt2mgSYwAkdaDEGcw+CgGJjLDLvVmMOi7utJ5MVHcGlyj6UCyCJRyNpp006QfNNNF2Anu70qwRsGDYqPsCXd6yL9iYd6scRsYGxWOliGDlwOguC4I7wbMDCs2mmaZpFoKYBN22axhoEYrSiyJi9ABRUDYo0B4GD2v//aAAwDAQACAAMAAAAQupSd8/0X33x43T9Ry388888xu4pxcpAarw/cCWZjX1w34wffHrtqRCtoBlUCXonEwTiCM7Ohm4qmHTgPF5F7Ok+88888/8QAJxEBAAIBAgQGAwEAAAAAAAAAAQARMSFBUaHR8BBhcZHB4SCBsfH/2gAIAQMBAT8QyUXBE6hbggQFuJh4afAanVxLUVBqb3tBUkuVYhhLGDodSVmjKi1XiPBS4jT1Phigtg6CebBHH5HXcVpGdmn9QENpQFgy2ickzA8z5nNv8nIRIpwP5GaM3b9whqg6a5/c3xXG5zvwwKhSmvt3UqlYd9IDQ99s0ruGEzPrNSr8B6BlIKIoJoZ9YnCwnxQAWwovaWT25reJXzv6xaio22h3UDahMkXKh6QUGo534YTVtd99II3V9wKzH1+/ODiaa17Mq7ygFOsMpeelRrdqv66eDIKnjNTUeVHLSK7E7wPgi1uz/OnOBN8Xn1gAOzTpzggC0PcXBBeEGAMK5fuAbe2nR94VQ2fhjqzzPeOnO9zCr4Tsen5f/8QAJxEBAAIABAUEAwEAAAAAAAAAAQARITFBYVFxocHwEJGx0SCB4fH/2gAIAQIBAT8Qr5gGbENiuMuAVcDRzLPRaDAzlKq1w4VrFCMGS44Ckg1GDlLhalxTLOHBYZwjyO5EVEEtm3ETP8luLbmD3H4Tej4huw1TbOsO06D6nTk6uETePeAxZVR/IkjZMdppluHOdJ3IhaLjZ8Hxl2vN59xG08P8mLVRHMm3BMQ9F7YloLYAli5coaa4HZ0VThzlEUGV6QKGWnKHtm3WLVQlAkZMHK0VFCLjpO5GLovzz7iZer+S6nPy5bbRc5w+T3ljTLz4l1wYRUNeXcL1S6/v36ECLOEw1Zvb1xhut6n0BBqx7/fSKlcFafUUV8Y7b9IpVpGnDRXmEXdEuNw5r4a/rSLCdm+257RAB4dyGKeftKjYaVCjdcesAZfl/8QAJRABAQACAgIBBAMBAQAAAAAAAREAITFBUWEQcYGRoSAw8LHx/9oACAEBAAE/EMavkMFyhAPbj1rMqeXH7QPTlGMU1Z4Wr9ZMI/YTT9ip8r/R5rtHABSqAqG94zyVeSCbNEGzdswKnlTwSkRL7o6/seMIYSREBTytfM6+b/fAybBih0ALnkqQq4D2vK6E1s5MAxCBeaP1+4GDfEFAGgDFguB+OfzKfhId2HomESIjwnyUwBSpVIVk3iLY1MWi2InfnC3JHhgACQBpEZGlxg5niIVZsAN6hJlCA/jCyAQN6LDIk9hFDaADbmoJbSgLREP7+OZlFmAWVXp4yUSRgwIKUs1ipAlkhBoCI02jciZ9xGZ9Eh5hfWChq+3wif7rNSg+7D7ADzN5cWpTbAuIUIMoKIiKNzr5BjdP4ABNeQw984Ug46wMApqLulqDhddqhorWorT0mTBbFFGDZg5VIOZKMs6DKGg1aI2tgKmiBNYOaNvo9/1qzlTG7vSV5BO8P3jkOYnTY4b6r4IFAlEsflge3PKVdEL+VzT8FJwp+v61fynZQv8AI8PjR/tef8NVjd4O4FGP1QxH3SIgF2JFnUEuairmSAe4IjSXbmnGBg0jiBGtr3g1GPEXU0HtxAFGBv2z/m+M9fAMsmhDNEavq4e+8UlkM84EAdkNNCZ0ZBu8ACjokbzupZNDtizW9ZPqb7lsKQIoEjHDDtB7dpJLoDK4dj44fgTipQ6bX+vSGl8ChtXEdC6wRBoj2YTxDKp2+AbTQCuEaGiU/aT7/CjhOXRtH1t+/AmCNUBdDP8An9Pissb9oAQ8BXWGkHvQiR/CfEUD6SdgC/lfjAJg1wEImOHmhyv/AAK/Gf7Xnjyq/FiNxfkaxEZeYkdPp+zCQCXCQABRAAFVy22LhFdbr0XjHFNQgNBtNdYiGER4C+M/3fGevgGsMgOlhcNNiEMOAVMCu+gntQZB51gdck8FqpsURwo0eGydHAY+mMgGutTCu+C67xLmhroIaCNqqBRMaTdHYAooLWZEaq8aXtgdslGxQFEcR/MGioHDNrRTzhhKoz7oUKi4OVAuVqhFiTl0hE5w1GeScNPDQmlGaorhoFK3diprznkT5XToDmPeM8BvFY7mgMCkdFGmJTE6TVZNVFK+QXFX3Yyg6PRD18FhIMKqHgAVcQ6B55pHh2Z5fw2g6Pph+Pz+/gvyUWkX2UJ2mmyPFd6MQLTQOBQiuEUhSW4QyxBxpyOGYcIFDY6XQuDDYCUZOK82QY0UEN6whTmohFOgY5IMhtewAJDsCwpvHH6DVodg1qxCNi2CsDog2+u8uamYCitGbjgWogApENmnY4nCldLRDoHZEQdOjkKMnUXUHegJZoxAL6NhKdNXkqNTCowhj9/YDbJirgYHK1i/wxWyCAt1M6+AfDFVON6ogbCK0NsDa7kxk9FtRehqjw6Y6ZARxwCfbFj7G6sGUdoj3twu1yAonEkNGzDUZzxbbSXbqAD5gpeAJxYr42ksHtj2mZCHBEABROEzo1yOV2v/AKnw29jA6FQLsukHhxtLRhJdABGlRXEsdLWGJxwV1s84I7CFiQNoIobBHFn9oYS/l3iF44cvERXahBYzS7hx/BScxphVGgDtx9VTUJfqbn4JywYCQKMAqvgO3KADdqIJ9ZHn4C2BEhWFBYLPTlLV5otWlKUuaMY40ur57yxs9KqUCjER9iYx7/eQ8v5wAeX84g9/vCec094cCB6w0gnY3IXn95TzgB3+8ePgG8ZOBNuFlHEPr7DIEAE1hDIMbnVMaZqhiQ8mr2MAyTqaKyIIgN9YSNXOI0xQhKDjAAv3fFSEF6WY8xwrtFpBseTJMmTIf5yZMmT6/n5QKpYP34ZzsjZN41rkGT5235xFT6d6pRudL+DrnAKp4A7fWHoRoTmhxOU3ZCBgQ+JHguNRNhJZO5grRr5dqBHFuMEnUkFkJQUNIBsSnDh569oGtCEBxTGj40ASqVaTeCJsSkCwkoJUPRDE+vZmaCKQowgGu8H0ZGEcQ2sdREcjkzaJEFYaG9KcUgfcm3UuLaGiTeXrMKCVDNWqwOCQxIoHk4Rko5iwlrlnCxQmoFD5MRqCU/RBLRtXRBMdRglJ0QsBFOFlCqHn9SbJhGpq4sGc08ghQBBW6zr4B8fuY26mSdQNUQ1HEXEE8E5tFSeBtJ3nHBqs0OwOxK2Mb7StDjrHILUR1hRK62e8NDwOe8AFlsDduEs/A5lGEOqnF/rS4xOG4Psil2sF84ypnU49rD9gxIKOXX+IYcF2lfmg+oT7wJ83wSwWEp4Yu/eI0REwpsYiaxRXYsQZQehh+DFAnMnB9LZ6uAL4UC4GKh4XCljCBTRdNLXjy4E2IFAILFUFPpkgCIDg5dfy5xxHhIpI05aPTww/Jwh5qbPVwsxIut50LvEQJS4aYm3tx4HVE4+jRo0eMNSEoavha26N85xGnQNwKafZjCTVALS6NGjR4zkuU4pyQaNGjHjHn0aFbTlVuuk+Fw2ha36Gz1cfMAq7ONpcF3CwBXFfOeIaySOIdTPxNLS2XxgGdK6WqCcrzleFRyu2Br+r/9k=" } }, "cell_type": "markdown", @@ -11,9 +11,20 @@ "toc-hr-collapsed": false }, "source": [ - "<img src=attachment:09375636-629b-4ee2-9011-455f6157ab16.png title=\"Juelich Supercomputing Centre\" width=\"360\" align=\"left\" style=\"float:right\"/>\n", - "<H1>Create your own Jupyter CONDA-Kernel</H1>\n", - "<HR>" + "| [Jupyter-JSC](https://jupyter-jsc.fz-juelich.de) ||[JuDoor](https://judoor.fz-juelich.de)|[Juelich Supercomputing Centre](https://www.fz-juelich.de/jsc)|\n", + "| :--- | :--- | :--- | ---: |\n", + "|||||\n", + "| </br>Author:</br> Sebastian Lührs ||||" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "toc-hr-collapsed": false + }, + "source": [ + "# Create your own Jupyter CONDA-Kernel</H1>\n", + "--------------------------------------" ] }, { diff --git a/001-Jupyter/Create_JupyterKernel_general.ipynb b/001-Jupyter/Create_JupyterKernel_general.ipynb index 0e7be26382679c7769eb68d4db690a3e1c8988db..5285f6682f83b42d7ca51ebdff0ed8f39042a204 100644 --- a/001-Jupyter/Create_JupyterKernel_general.ipynb +++ b/001-Jupyter/Create_JupyterKernel_general.ipynb @@ -2,8 +2,8 @@ "cells": [ { "attachments": { - "5ccbc8b4-5907-4292-aa1e-6e349c42db5b.gif": { - "image/gif": "R0lGODdhCwJgAKUAAP///wA7YQA4XwA1XR1Vd119lAAyW/v8/QAuWQA5YAAsWAAnVQAwWunu8q22wMjU3EFohE9shtzk6QAiUjJScaW2w1J4knGDl4+nuMXP1wBCaWWGnZair/D09gAARAAHSBtMbwAVTgAaTjZjgr/GzjVcelhwiHOPo7DAy5mruT1degBIbtbg5oGSo+Xo6wAeUZOpuV2AmAARSwAAP52xv4uaqi5VdH2ZrGh9km2LoFh8lCdLbJ6ptYCQoRBPckBtiSwAAAAACwJgAAAG/kCAcEgsGo/IpHLJbDqf0Kh0Sq1ar9isdsvter/gsHhMLpvP6LR6zW673/C4fE6v2+/4vH7P7/v/gHkHBx0SDR2Dg4GLjI0PLo2RkmAHLCQpORYECQoTni+eGJOjpHIrFgelqqtLLBgmNgYIBgMCCQkBubkGLKy+v2AEBcDEox0sOQwLDLW6zs4DBanFUh1KhNSRwtncfyQFGgy4z+S6AyjdTiwtOD00Ryg97ejpftv1+HMdKDYJBuPlyglQ0SBfkgrhDDBAsKEIDAEMFDK4YVDPvYoY0zyIoEBAwI+5JmYs4sLGAF3+6AGQsMJjLgErHoysc3GmTS8dbqwwALLn/oJeN1koABiAQY0hKBQ8Q+DgppyaTqNWOYACxNCeIAf8iMpiwTMGJ6bRUOoMAQ+pb6CiXevkhACXWD8qqBBVAgKiCs4KefDiq0q2adQCHlykgQWycT8OhOT0QI27u2xIGNLBAgJdCCJYI4xGMOfBLFTwTAzSwAm0DXJ0mjAiA0kdnhBYAPrZjOfaaDOAGE1arkwtHeiSGsQC0RHixnHbHubFBYh3MGzQVr6o6snein1wQfEiBfXvTW5bcQHhXYUIk8EDcqEBLvZyCGBwsUBLuPr7RMRbMY4Nfx8JJVz3nkAgMJbFAwEkIIAGf7FhCQkQkvAbEg9GOJ0SHTwQIYQF/iUhwYYSTjMeiA+I+EQDD2DywwglWBBDCg906MQBGm54oYckmuiEfk10QMJmLLhWxAEkMEakjEY8MKEQB2TgQAUZGLjXjUf6N2MBAg5IjgEX6GhFCtd5dCMaLICwEAIIdNTgEBmsgOabICyZxA2cvKlABFISwUIJC7yJAINXHFCCn0PJd2INEGigAC21DCCLBhDA4CUSNARAaAlIInGADYQKYCgUPDLBgggkCJEDAkZ0gAAHQkjwwZpMmmCCiBLg8EIIHrxgw4QHrGgECy/AauWQGyCmZTnCTtFAgOZQkCcaNCxAlAE4IBEDA85wwioTPriXwABCGuHAVboYoMMV/g9MMK1mPYKJwABEZTsAAgKkMGkRI/CWywD2JZEuUQNEkCkTobYyAT0nKGBEAwJsK4EITR0n6zQNGMCgNRspUCoAB0RAwK8LJDusEBW4d6wzAtiwWRYZ6FvUaWxgcJkzXCKxgcsMbLuEBvEmEG4R4z4zgAXoegWNwEx0UABkcQkwQA73DgFBlgEI0C8SDxhtDtKgMmcFCwcLkfDCDbcKsaYTiy3AxkJ0IEAJTHoMssjDSgCCySfngoAoWxTgsqV0hyHzMzUfcfNXOivB8zM+IxE0NERbkbXQXHtIANVxMQBB1ABM/YzVTEx+9MBLFKwE2AgrXFjZK50t8awAdGBD/pdF0OABJB1/XERXgftHX97k4JJeFhUTSDoZg9N8gc04J57E4tn+TMTj5kRehehbH992BNgOyMAGUUNgMuhLYL9v5Tt6XQXqYqtOBMMOu27EAWmXyff7NBSU+9wjI5EB5sAzgDS2QIOZbSksakheuZZnuOY1AXookd4QqLcv61HBfAEImPYAcIJ/BMRpzQgIAt6BBM+h7GpHwKAGo2C6JLCPg+4bAvzMFrH5pe0BGiChpuS2u5D1zwguUAEA85aA3jmhAxEYYgA0lkAD7oKBRjicM3L2wJ5JUAgUzKAFp6BC9BWBOwHBlgpwAAtmlCMBC1hZEUyoC/IpoYsbPEIL/ikUNhiSLX41HFLaMpDDaxwmBIAM5AIMYETwYABewPucZLaAoHhBAwJNJBwUiyBFXVCRCRDMReOOkMWhFY1yx+sY5gSwgBM8ogOFYMEItDbF+61xfChMEisz6EWCqY8KLxzb6vCINtjxUYfH8RgKHEBMB6DgMYWkzgEQmcgpUmQLG+jeRxZwRTEo8InMQ1wVGVfNTm5RCnBEAgoIJKwU4G0AKnhW56jmRn/NcoVdk8Ih9FTHEyzgjjTsZSpwCEwmbWZ/PUymclAwy2YuQE5WOECCekKtNFwzAIWLogMxaUXHGUuLnxzdcXogTV3MJQkH0MHfNrlGdsayCOGMJxQa/qADV0qgjhX4gI5YQL6H5ZEI9IOd/X6FHo7xUE8+/OEQcvA34L2NCxW46Bk1UE0wPDSilJzozirKyYt6UnLvrCUAGtAtoW1FCQ2YADk+agTxfe6kREjpE+bYARNEgAgZ8ABQMkCqLwZgYzbVpxBUADsi3CAEqQAoUAVamwaoAG/AQwBap2ACJU4RZmZ46iSJUMmQOA8JmUxQN636zSioVU9MM0dTh9BVmkGWCGx8yWL3ktU4GmGOAKgBCIanms0YVgUra0AEMGU2tumxrxV4wacA8AAGMEewQ+CdUIXQJkfmLWXDwwILdoDY4BmAc12QbDaneNkjZJakQONsRrMH/o9Zpsy1NxikAdZrAAV0NrUKWi1xW8vCWzbBBQEoAQoekN5nCgEFCCjPAyqgAgWo5KUXoIGCF0yCQaRNCBBQwAkkhAEQSCduuqMnYT+TxUQaoAVceAxpqHkG7TZQmxTlpkWF1lkofHYIMHAiRGm3hAbUoAc4xnELxmTWE4aOviqNQgYiYIAFrAAGagTAkDUwAQ2YYEkNAMEKNEDlKkPAGhfAgYg6kAKTLAAEOJDRATbwVSLYzbf940BHm2mA0UahAyWobjkEWGIZQ5WyUlUcVcUlXqyC8ggd/MpRuJDaqgWuK38O8ptZ8IDoEuEYDyjOr1hA6UqzID0ueJYEGC0B/h01wNGtSvLIWrBmo2Y4CwTtzUBE7VQ7T3YIlS1Kd43w3c2yeLznI10MXGaWLhQ6ARG4wQmGTexinyAGVIPnWu27XFYcgKjNxIwrsWABxwZkw1MwsURRPFUVV/XWftaoEar9Fb1soccoY+96I6KQdmNO2elrdjEOcIJSnywBGgD1+hbaG6NE1tXbteSsi1DrFUMO17QkHbmnaG4tFPpY8A4Ps+Wtig6fjEvYhQIMispQHLDaC9qOKrf17G0+g/t6QC7Cwi3Z8Cw8XEsRtyXFiYECex9LANg+gm7lrBjeIg/gJ+buNqNn8OohPOYAWHlIWo4FdOcN6UqA7cz98AAQ/jh3QOj8+BRaNiB8uzYLIcfzyJ+35/Ce/IIpJ4LSi8L0K7wc61qN+sSnPglRNlMB077CrrW0AH2DHOjbFnqKif7tg4ebvOOmGgPaboWHK+gtkI/8WxwJ9SRIne58qEBBByQAH2T8CR3YfGLIOoawwzrPZC+52Q2P8kQXQQeKZ3wVnJ4LC9vg9rjPvQ2s7vp4Y97ZCgpgP68wlmOJ5OeSRAK0yzJwIhS88EY/fK6DLnBfZ+kWGNi0pbcvgaT2XuK/90XN82YAdgEniccyDRWCg4EbuJ8GWje9EG6wZn8zgWr4RigW+9x6cReB/oJ2RKg0gMnxSmclKmkHflOwDz9Q/gIqsAF/8QAWIGoY4B3zZwEYaAEbgAFSAgMZ+IEWgDuZkIEbcAOdVgQd4IE2YAEV4CUuAAMjYAMQaCISoIH3sgGzIQSp8YEbAAMG0gEnsCYSiAg3AII8aA038CkVMIFGcANXwwIbAAEP6GZM8Gwc1zQaMCZVwEdXlzk5MAUHUAATwABkqAyQhATyBwAp4GrYdQBihTIgoIXedHRaVUCE43GhAwILoAB82CfDJTUm9WPfJ3PVwBEFUAM1YAITgEAAUAEzMDBjlAodsAM74FYREAEaIAKSIgTIFgGWeIkR0AsdYAAU8IkaIFx6QgACUAA9EAEigD4ooAHRgAMQEAJh/oYUL4AAsJIBCzABwsECGmADbmUCU1NTIPCFtfMBLnAALXCJxPg2lniLI0AA06ADLwA+ReADA8QxFcAAGnABPVACE+BfVNAABHCFIOE0OYcEAJh+DSEFEiBE2TIBSZCG3nc0WsdaiiSH/Id2gwgAqYYyBOBaNTAUt3ALAzACR1Bo7YQ1CUiIUZACC9BgbUMDISAkMQWJWsYxO9ADBNgAG0BiABADBCABBIhKbWMANfCRlvEbyxKHg+AjsiFDIKACGYAIHRAtgwYAJNAnPXAEpEZWwIgBhIBKLGACWbgSNnBaQkADIgAJBPhLBCgELDINfgMuRSAM05A1OtBphMAB/iGwjrEDAegoEIDCBR3QHhf3jlGgW1QzAcdTb4Tzk0fgArOEb1o4BO1oDibwcXMofQmnc/yGGfLVEoSDjAboY+XzkKUzd0oAAVf2aBoAMxlpBJHIkSBWBAIQA5w4kEgwis7jNjBzAxMgPSnAAEJSAwEgJ+kFFD15AglwIRIgg/wiBCwQAH/4AAPwDrPJlADglHmCQyhUlUJQAARgAiCAJFopBARAjTiFAyDweWBlAQvAcyiBACAglkdwj+mHmFBwADhANQaGBOjXSp9ZWphBjqlSaOpXdBVEh6SDROxkA62gVApggSV1gIv5j3I3BRagMjh1aSTzARoZWDuQmUNw/gAjoJAj6ZlH0AGXRBktIgSaMFMMIB9Kc4Zm5gEbQwIvkC74+V8vkAFCiZsoqAGs0ptGAJwo1Uf4UgJW6QNdQY7LCQAycFmap39SUAM70BEf8S0rcALq1HTWhhUGwJlTcAEuEzBeEovxwgDC8mylpgB5WQOlpotJ8Jf9h3hGwAMy9jJJ0AG/FocLGYj76X++FwUVoIkfV5lFcJkHcKBDcgqd+XEQ6jwNoAHImADYiATLgqSPxgDISAIh4AIFsAJrpAN2+YsmamYBcBYqWjtP2aLDR5wAcKhqSFLLyQIfgGZewAI14APLQAtOIwsLMJk6igVcmDfHJwU0sGbfop4s/mADJsMJ2oMCf4NOnnoAGDCY5aI9nXQugAl103VOJwBqElAAtkA5rEZ7DZlCjNmfUhBSImACNIBQbkoEcCqnaSUCfLMBK1ABKDCuKBAud1oEGFBXACCoUWM33tk2GoCkhNoAGTABtOECweICvmibjToEJYMOkUoELJpWLkoEloqpm2J+y/kAIeCpX3AMN4CDEKCBGFAc0jkFVgo8CjB8M6JUVaMCFeACGXADO/BuDPqZ8ig0ARADMJABEoACNxAgjgQWStBhGmCEOIuBsfRilGVvA7CUKOACLFABJ7ADRYWlZaqfbxStlueY11ABNkBlO0CU/kqglrmRceqRqNR9/haWHjdTZRoQACpAGQIAAe4nbCPwNJvBrh5yjKkSr0Iwr8sCWTdgA5m2rwAwlAPYADQAbKkQsEMwsEPAT0ZwsIhKXKgIAAvbsG1zAjnwuMc6Cs5hnXFhr1UQTeUwAJ2wDIhVm0ogkQFhqntoAMv6ObNVsx47AKq7uqzLugYQAjfCs0MgASH0OcowAXvIAJ17smVlpkvLn02bUA9AAzgwATuQHtk6BHBKAQvgAc7rAQsQARMSA9mZAdabAbTRAQkAAiXQvQpgA38BFu3qticqr4UKABhgAwXRASpwFC/1iyAwAc/rAQOAA+kBuE05qQRbqTBanIcLAKQJCYu7MXAG/pkmoZ1wcANfynlD2gTASLlb0pdLIChlmRUcOz0eSxqkN7hM+5sVrBgB0FTOKl+yK62BkgHGFbe3MyQqQDtxegFKoiQmSQQkaacf1gCHsAEJgCQBsI041SrkG6gwQ6iQ4AJ19T8y8b62qQE3wGgyTCtLaQQpMAHBWbBDYLhD4AI7UC0DTBmoFIsOCwgNYJjP5QNflwTjp2oXxgQlUaTw8a7QNyAbrI9oegQcIC3v8RZhDGG+607AiwSwJQEj4Km6xAIy0CANQAGDFqcIegQkeTznusRsCQALaqGi0AE4MLaFEQIkRMRCYAMR8GxwsxJ4e5shioKy0oQrkCmE+6JW/vm/ABmWJbCNH4CjCbDHfoABH4wVAZOPTYABL9CFQqMAVDi4ArDLmqQAJuBaFqfBKFTCCdoCEwDB5qBYS8CQJNzBcuS0D4oAjSw2ASAE+HVLJCAAJMTISvDInxmhANACSSkENfACF3KaQtICq1kENfATcXu+ADkBCCIcSpy3/XoEPUCmRFAC5je4VkyV/XupsJx0O7AC27gCp8YxObA2klAm1NwTDNACF5sEKZBBWMEAJVDMZsY9lPstCVADn9fMo/fM2vxfO7DA5CAACFDSTEB7nvu7dQyRUHACByMiD5AAiMkDcwEkKuCcmJnOPrCMiaAIsWMAiSMBCUBjDXB7/iwQWHxkPewBAUBBFQPAiJ4MACVBAOrbKqU80EYgAQtwAR2SEwbgqa1ssA2NqWbGKdvIiwVgHB0gYrjMB8nQTEWkBRlQAgrQDLiQ2MdsABtwxijIA4oSQgChILIQAYXkANUpeZq92ZA3AZ4qASEgeQwgwQ5cb8wwDpM9LytQA36ncvQCeaobOBIgA6JN2su2gBEwAYfIAz0wACUwPA1QANXKAT2gAdlJGRpAl9YSDRfQ3M1tv7GzADspNv7MJu2BAzVwAQowAtGFAvjWAhxQAAsQgkixwkLQAiKAoA/zi56yBAVkAy3QArXI0kkSAJWq1DqgAUZQAbo9DbyqKy2A/igKkN8IzAYkkMF5vEhaQBUQsAMZRAv4RgEbkNXjAQMN3h6O4hHBmAMUeSIFQAEgHuIiPuIkTgE5wGotsAMibgMmzST8pQIgUDWOggsgYLYN/CslIOI7EAOfl+Ir3uJDcHkHUAE6YAM7MAJINiQV8AM7UAI5kCcbcMFNCZlUDpnczTE6gMg/4EoNcAIlsAPlIWouELNgngJqxAI/ICMsYAHhYhhCwlJU+ABFvgMFkAGTUoMI5X6BK6yURLVssgEUcOQs0AAxkJd70MbNFA0PiwIVkALiWiJomQEV0OiPTgwswOg0kALjauh4cHnhxxb05sajJ+Wfzg2eXupSES3R/rZEjo3qrHDqrm4TD0DGieTbHx3rpQDruI4RGr3qGL3r9aDrwI4Py4LMcVF5w+4Lwp7s3CABEGBzxxIfzN4Nyz7tlh4Lq141AeDL1k4K1d7trPAAJWDscZEA0g7uxfDt6D4KVCHS2T403L7u2sDNGLJpJ/hoEpDv+p7v0+ACpLOMHLPvAj/DByDwLpBknzbw9y7vMnQDb5Ht+1LgMqTwt54FhVDxmOfpGQABuwECFxBdDgACIj/yIo8OHaADts0kPoAOVTHytzfyK8AqzkHyJWACLTgEHEDyJJ+q004jPkDuGuybV9AA1NW6544GmP3N3NAfeXB5MKAAEIABKIAB/kY7ITxgADeAAVq/9b2wLKVkIh0gA97hAlsPAyowtVvvGi4gAzmw9TfAEZBlzzCw9Vvf6q6eGsEH8RlUAvEOBZOYACWwoIIvX17AAxOg9NnwDUCuBlL3AKu4MqEBAkPAA9vupyNgJj/TASJwygDQA7hFEq9SBC3Qd+e9Awyvc+nrQXoPE4vfIw5eHASI8Vdg+IhPCRXwh2vAAZtvEfQeRSvgaA4wokJA+cfzpxEAy5rP+RdAEKDfIK2c4qevJ+bko3qfIAtA+NWwAwnQ2vQqIUmWAUkM6ToYIQPTABByk0Rg+CtJAvtlIvQ6PD4C/y7bJN6fKhlw/gRg+pRx/yQw/h1Ecr1AkBECiEQWifQoEjsZSZOUORQ7qAjjlGEVXaTOgSVhZh5TYrJ4eLA6j2gH0MgkzUv7nUgo4PnLUgRuyaUFhYgnoIGvoeSEJaCGSiTl7kIlUfCjcIkFBIOoZadPdJS01PQUNVV1leggI8eGISGAttb2FjcXNwFhj3W0YydBDO8BgmEiAIIY4GBhpIJCQwkgQ2XhRUFlqygDQmFCoOASgGfBwkRhQYOjDsXgxAxlQadbw2LD4EWjINAIwoCIFyA0UKBSIMGEBSsqFHnwwkBEWguW0ACBYIKGG0syKBixAWOCHPImGAggAEGESzcWoCiwwtcDDRACSZhAoAgL/gIlNgSYMOBEgwgDMvpKpWeVhh510pg55M/OohwAcgjg1kESJUt2XGSyg2JAQwCgfpU1exZt2lENWKA4oWGBAQG66Nali4WpWgDBBGRo8JecBBBAKxRAsLXZCwELQEQQ0wDCgBsZYAigcKnBAMk0cEwoUYQHggEmaLx9QaJIBQU4zFSY8KMIigAMStDAAGLBiSUjFJx48MACA4OfFBRAQcPGAtR7T7RocaOEAQ2xDdjAQCPCAk9EMiwYEIFGjR0LOBCR0GJohBYpAuVgoFnFRgAPEiBm8cJHThAMVMCAYQOBBSCwbYcJxEIFKVUCaCEvO3hgoIANJIwBAzOkymOE/imwmsSOSsghwgUZKugAMBJAsMGMFgSIQcINYqChQb1knJFGQVB44ENB2oIBvRUUkMWuIIUMgJcSoJIxmAFKgEAFFUpwgQjXfDkABwSWO+CFASxgwzwbdrgEBh24geEF3ZoBwQNqzFGJCJamIgIFBC5o7bXYAliBmnlAyEkDI41AIJRmLlBAkwx+yOAOCWwIqxXDNGlgBxsu6U4DYmjoxR9zaLDjBAMIbSCQBwKwb4I9jQAhAU0unYCYFBa4QJUEU1kwRtAQ8AFXXH/ArIQ3UTBwr6w6RIyLCWyAANnoSqBmLAMIyNUHHY6skdpq0apglgA0ONEGEAgiUoCIBsh2/shy6Rpgg2n14muHdnfQgJsNgCUChgnKS4zVJTpIZwQYXIDqggUQBbGCS3iYoIXYJhghNjnphA3OBAAhogFaagqAAGK6g6AIV0HIAUc8IFNgU4p9CIAFF1xYZAGNPcsJY3I4WIDDIk5QwAI7RCXVVAA4sYEbFsIpggQEcIjVKFQWHOWQHIu48BMQJDhA2CU85EoEC244YQMBRlqCLGvFHluvCkRLQIC0005gFnLNfXsXBXJQd90dAnCChTDMGGECTQBwNZ7EFEg0ghdeQGCEgQHAQQHFHUTYoZtSU2DOKOuEUwATAmlgBUSKaEGBCBzgAIQJYKDiBAQMB4E9Owp4/uFrik8KgfYQFJCBmwxeNiIAH2SmmdMF5HNo1EuE7vlnYmya7gwDND8q6VNAYM2ODipQ03ORe316gLlfqLmIqzHxOwepwQ6U7PTVX8VEk+B+P8i0T6C77mHwsGCCkgGAIbcpsBQAD2rAwAgGAAJq4EBgafiCISBHhAdIDk4MqBwAaLAAiAEABQKYWBw6Rw4ayGVcO7gBUw7QgMLA5UAUFNCHOBcAFAgBhmbQ3Wd457sizAx8ADjBBCCxhJ0Zr1T6sQExhMY8AJDAefTjg6xQAYERHCkDBhBL0xSxvdi8YB45BID4uOAVBw6gh59A3/rIWEZRsOAKboPfGmkxgBX4/s1awbDfHSpQpvAtQCxYGgBXTuCA8E3AjwC4wQRq9oMZqKmB84FgNQKwwZtdMIMbbOElHvCd30xNXzDAQCB+FTgMFq96ETDAwDqQAhgEYoYwsyEROGAvTvHQDpwwYJQYI0QiZoRoSYTeKiogAv01IwcKMFgA6Aa1Rg3AAFrkIoi8SIQCDIAZYTPjNKlJBZYMgI1sRMmy0gepOcZSWzSQAAYCsANu6NEOEtBAWNSgAgMspysaqAALbqAABDglkQ/ECRMowIAbSKACGjAAJDW4uQ6CSAP9oQEMUEAOKk3gBg2QwAle0MMOrAABOUBBBTjasQWUQAvysgAqd+ez3pEj/gXawAAKzJADWC7hAOkoAAsyUIIB5OdUQzQCLs/AgOchKHqm2JcUmXAC4YEme3cwphE0oABlEouZcLzPm8aygwPUoVbV1Cq1KqACIGXzbQYAwfDI1oGmMsMOJqLdQJbTDA8oIC8oWIEMZBCCjPoDBSBYqw0UxwMPJMyBHsApnIgiAwZAQAQcg9MCJJmAAVziAEYdgAaaGoLtAMAFKngBXV/gGO58ABy1m8ESamAA2oWOHBnwgA1ywoAVkEMoC5BBCS6Rgw+E0SEamEAIOrsPM7BAAztQngcSQLQX/PQUTERFAwblAQZ8IAEwqAMPQuAB617XA5tqgA2o2jEPKFNS/umcARwBUAPcfaK62PXAB5i1VfdSqwEwUIAB1AhWXQwgdNxYHwlQQD8WOKAG8/wKeY3ggBvUoL+xNLAD0CoBB+j3AA4g7wNqkIIMuMABimvAC81wAP62xmhraEvn9CsBFBy4YFQggQNY3GI7ZIADCP5QBxzQ1g7wFypdQAEJfstgPLAgBSnwAn+psOMOS/hpL0RaWTIA4BulEwlRjjKUXKHfNJAASrGUQvVIkKMuEFHKUnbae8msFwngQANftS8uNBMBApcZzquoAaHAhoAUxnmrysXznvkc5wzUoKlzWfNJDJCSCmS1z4m2g6twIGIU2EAA7VV0GfU8aUtfmmwuscCADQJggHGtMVwC2EEOuIRpU1PhCtrSgGPNdGr1VdrVsZZ1WR7AgwisIC6CtgvaPKUkQihx1n1GgSk5QAMrB7tasEb2spmtCAlk4AQEEIFC7IkABDCAAQhQxwI+GoPrZbnZ4RZ3WnyQs3GfG91peMBxaGAbDFTgRphM97zpbYoUvLne+db3vvndb3//G+ABF/jACV5wgx8c4QlX+MIZ3nCHPxziEZf4xClecYtf3OJBAAA7" + "67258d94-84e6-4a0c-ae8f-c74332ec082e.jpg": { + "image/jpeg": "/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wgARCAA/AWMDASIAAhEBAxEB/8QAHAAAAgIDAQEAAAAAAAAAAAAAAAcGCAMEBQEC/8QAGQEAAwEBAQAAAAAAAAAAAAAAAAECAwUE/9oADAMBAAIQAxAAAAG1OLym+/nbqzUsm6vIuTKPn64neBOuGo9AjQOdDKiXRPiTXXPXmCOZSJORKW5agvJk10RdQ/TN6mqto0aZ8q9DS4XdjAScOIq7ZFew10iKZQkxzujLABgAAAAAAAJWqVtaldrhFkK93umu7yuqheZ1q02/py+utxrOhCeN3N1FvBH+vxxu3lRLchT92pJ27Y891JR1+P2Vicacae+FfnDBLKVK3SFo6i1FxKtdzhsuBGJPGOd0ZLAGDGmR/bkWjcR7a630LXlsdIuREY6CrrkV64dMimYUlOZzRyUCaFwxyoi8oMaZRhlInrccsBX+695sBHPHR5PZpy+mbu7YpZQXI8CtjAZ2aLpSw7JGuVbXZJvcd6ic65nm/ngCJtqZa46o2z8m/YxJ4xncnVrS4jUJ6Eg6lpbb0k9cRfaknSVLLC3ga39Y5JCeMzwFnoNsYAZakKmo5rMrrRLLp8uvvthmttgrbGByewL1hfM2tdJqfdwqs7K9BN7jZ+GlNruSH1Ed+Gn8zood9o/QklLGAAqPprAZIxJ+RnfWWTOwgutRmbFyvMk/FShaeXIjIBFgAAAAAAAf/8QALBAAAQQCAQIFBAEFAAAAAAAAAwIEBQYAAQcSExARFTA1FCA0NiEjMTM3QP/aAAgBAQABBQLClQAczykzaKccnzRVVkzxzCffKyQoePj7sxkIat2dtZm/uMXRDvf+ExUAFcbiaxucrcVuam066dY8vw2Ft8ZB6mOY1e5gtBbVc2Ee7ZVyNZRsbZIivTNhnR12NrViFZWOWi5gq5Y96mRY2K8x9eKz5YZFK2cidgRf2q7DvfSmu35tYpHIv5LH8mlgVMhsYmD3T9v673Aim0rxDzS3/tcpyS2kN4cURHkPJR+iLjnB1uj8dzO5WA8LT+t8Sfn8kftw/wDG6/2Pyd+r8U/AZy3+fEuvoqbS4VNqnrVx+0cxnHkZJREeJaRcjElmOx8Y/tORfySvPy7bqXctxOXAodyRkNq2cRuPG7mY1HRn0Ev7XJsMWSh8ZszSDqEi0Q0VnK0v2WOcSG3qQyauEbAOrOvS6zxJ+fyVrptgVaUE39Tkfk79X4p+Azlv88KNk4+4lInUtISAItnDWJhP6kmCpS5q4leJTxl+05F/JYmebqL6oD6M88EJ1z4e6WcGIy51t0KnW30xLEzE0fygI7arE3GtMgJYzWIQsNPtmwfUQdYbA2OXwkOP4WQND1qOgtYQiRItMz69N5xI13t1nI9UcS+i2Geex3H1XNAMuQ6kabQ3t9ijWtBp7vclySEh6zDzc9Atq5bLE+nOVmpzva6Haa9M1mUp8s+m7Bbk0ut7rcUBi51yMT+R8bMnAbNkX8lgzqbFKXYI5DB2aTWIMZLOQvXEgyWCKcLc9Do7b1EuwunSWsS4fJM50wS4arC2nwkWYrAzabQ9KJn9i1pGm93pMijwo8HuCgcdvW7FDV2B6PxEYZ0e5F/JZ6yy07LPMQnG9AVRrDHgxdgYD0abYgG2cjeB9qxzL6DC45ccKTM2qTnfD++6LQ1oL4WxBCGkjnZrbyEhJE9XMOzxEmRzI1wzhkhrPmWcEi+SRT90+sLaWPq0RcitxJwE09dJhXTwhmDozOoPZEkPJN3j2RHXZN6c2RfyWMHrIMKyediUUNTQmv4gZBTxNgERIMZm0dt7czQYmYUfiMvW24jV1QlLi4JXjtOt4QSCp6defZH3dCRonbTrOwPr7acVVwqcdlHcS3EhaQoRmkJ1naRixIJmhp1mhpT4NGe2zrOyjuKahWry1nTry8tea24iaQhI0+z/AP/EACcRAAIBAwMDBQADAAAAAAAAAAECAAMREgQxUSEiQRATIDIzFGFx/9oACAEDAQE/Aa1YURcz+RVqNYGDoIrhr29CwBxmRZrKYj9vU7QEMLiZAnGGtTU2JhdV3hYKQDDuJtAbzIfPWX9yaOndsuJVf20LTSORV/2EheplT90lD9Kkp/SpNP8AksX9nlCmjUu6VrKqYdYzO1VMxaHcRreZa3mdvMBUS4mQMyEyHoyhvsIAFFhNXWD9izRpepfiVEDrZpToYtmTePQu2Sm0WiFTARKBS3fBTs5fmHTeFawjUQQoHiPTzZW4h3EYSwPmWXmAeAZhMIUvMOPQi46SrS1B6XvE0dQ/bpKdNaS4rGGQtMP7mJ5mBGxhRuZgeYEPMwt5gQ8w7iEXmExirj8v/8QAJhEAAgICAQMEAgMAAAAAAAAAAQIAAxESUQQhMRAiM0ETIDJCcf/aAAgBAgEBPwGqo2mCiqsZIhOTmMhXGfQKSNpqFXLCOnu7DzCCpwYVIG0FNjDIECM3iBSwJEHgwDMIImp/fpMfj7Tq3wuvMrTdws6lc1/5ApbsInwPL/jrj/zrl/yGN8SS+x1t9spyzPt2iqi1vqcweDFz9TJPbE93EIYzUzUzUzU+isV8GEljkzpaSnuadU2teOZWxRsrLLthqBiJfhdWGY1xZ9zGvDf1jWZQJxB1P2V7xbiCxP3Es0UrzB4MUzJ4mW4hP2RPyTfmB8Tfn0Bwe8rs6cd8YjdVWPHeWWGw5MU6nM3HE3HELg/UDrxNxxC44m4J8TccQfcBxN5vGbb9v//EAEMQAAIBAwEEBgUJBgQHAAAAAAECAwAEERIFEyExEBQiQVFhMnORobEjMEJSYnFygcEgJDNDs9FTdLLhFSVAY3XC8P/aAAgBAQAGPwKmeRgiLxLMcAUY7CE3rD+YTpT/AHrKGCAeCx5+NWs1+wa4lXWcLpwDy93zE15PndRDJ086utohZI47b+IjDtVLJbo8ZjbSyyfO7Qjc5WGUKnDu0Kf1/wCiaSRgiKMsx7hTRRMY9noexH9f7R6LW0+gzZf8I4msDgOg7Pl09TAEbS/Vk/t+xPdOCyQoXIHPhU8cVvJA0QDdsjjUmyryykukdBrxjGDUtnDaqLWb00JJ1ffTbEstnyxap920mrOW/M5pryWNpVDBdKedNcxRPCFfQVfogjlt5J2lBbsEcMVBcoCqSoHAbzrcPquLnvii+j957qC3FnNbp9cHXSTQuJYnGVZeRr/hXVpte+3O84YzWa6nHbTRNpLBnI7uja/r1/pr0RoyM2tXbh9kZqyuWeR0umVVjwvZ18R7K3yqVGtkwfssR+lQbi2eaebXpiyBgKcEk91QK0EkUrz9XZG+g2nV+YqW10nVHGsmr7yf7fNw2yHT1l8N+Ed3w6braTj0vkY/1/TouLuT0IULVJNKdUkjFmPmaVJG1TWx3TE947j/APeHTtP/AC7/AAraHql+NP6uOl+6j/5Af6hTeuSrj/MH4Do2f6p/iKtrj/Cs9fsWpGvWMkagzS8eLkmmbZdosV4mNKocBx3iri2v4jEgk1RAsDz50Wdgqi/bJJ4DjTfvlvy/xRS+pfo2v69f6a0cc6t99bPbGGKRZXb0SzDHZ8e81suze0kha0ZGlkbGjsjHZPfmuqyWV1q38nbCdjjISDnPnVncm2klCCaORE9JdT5Bx38vfVkZ7dooxd6tAbDrHoOCSDzz4VdtGr7l4YwGeQvxy2eZ+75uOeFdb2raio56Tz6I7e3QyTSHCqKtrNOIiXBPie89Fvs9D2pjvH/COXv+HRfw/RaJX9h/36Ft7uR1kK6uyhPCtosDkG3Y+6toeqX40xPLdRmkI4gijp4/8wH+qm9clXH+YPwHRs/1T/EUFHM2H/pV4ueLQDA/OpLq5fdwRjLNipTYzb3dY1dgrj21dWisEaa7dAzchxonrtvw+waX1L9G1/Xr/TXoA0S7ppN0LjR8mWzjGfv4VPdcd1CXD8PqnB+FSx7i4k3QBd44tQXIzWiGGe6+TWTVAmoYblW6FtdSOEWRhHFnSD4+yoTDrummTeIkC5Onx8qhmTXNviVSONMuSOYx3YoXEhdF3ogYMnaRj4ircTEgzyiFABnial1RTiKJzG8+77AP31cuM6bdir8PAZqH92unWbTu2SLg2RmppJhLHuYlmdSnEKSR+lWyhtXWMmMjkeGaQASiKRtEc7JiNz5HpMrWxhc8TuW0g/lR6nbBHPOQ8WP59DO5CqoySe6ri6H8LOmP8I5dG0LnHZCLH789EV9ZoZZol0PEObL5UNksJXTGjSITvCPA1LNdDTdXGMp9RRyqK8s113MK6Wj73XypbEa10DQu8g7a0Nq7QjeIJlo1k9J2P0jTrHG0jb1DhBmmgs45EjZtZBt88fZVnBcqxt3fD5ttPDHjWz2jhkkXduMohPeKsI5EwerqGVh5V1zZ4kaANmOaMatI+qwpLMxvKuc7uGLSCfOt3IQ1zKdcpHIeVa+ry6OvFtWg4xmm+6g0lvLGoifJZCOja/r1/pr0Ktpv4p2n7ezpE1JxbtEHHAfSznFbS2a0cnW5pJd0gQnWHYkHPLv91bREV11WM7sE7rJPY7iaki63c2UKW0KR7tc6gNX2TW0J7Ccwk20RTMYIkPb8at7jRLHZS2aRq7KSVYMSQ3n2qstoPavb23yyt2eK6iMOw7s499STbpza3V9HgMpGUEektjwqFp4n12c0NsOHpHeDU/3YC++r+N7gw2kl1LqiEXaYavredbWtZElM1w7PCFjJ3mpQOH51sSIrlopow2O7EZraumNjm1hAwOfyjVa26KeqMZpI3HKLKcV9vEVsu1TerPDuYZrU2+oDBALE45eB/ZLMQqjiSe6m2ds982/82YfT8h5dMUci6biX5WTyJ7vZ0B7meO3QnGqVgoreW80c8fLXG2ofsB43WRDyZTkfO7X9ev8ATXo6t1hN9nTjz8M8s+VPC0/yiHSwCscH2VMElVjCdMgH0TjNJruMawGU6W455VHqnxvF1r2W5cvCoXa4XTMMxlctqH5UJYm1IeRxj5vrEGz+vW4Hb0SYZPyxxFfIbOjQ+LyFv7Vpurg7r/CTsp7OmPaW0o9JXtQ27c/xN/bp2OsQiaQ3fATDs/w351s62nuYtlxSiQzT22FXUOQGrl/tWwEN01r1iCWWbQgy+kpjnyzn31uXvC8bT7pY4ypA7PJk9IeOrlUe92l+8PNMj7P0Z0hc4815Dieea2Hi5d4Lt5o2gIGlcamGPZWzLZroG5a+mjmi4atI14BHsqC6N67q+02tDAQNGjJ99Nbi7dTFfAaN6iJuhg40+kTRgkvDIjzMixxlSAMcmX0lP2uVXr2+02uoYUcR28joWlccyABnSOVTM9zvc2ZmcGRWMcnkAOyOfA+FbPjmvpZhf7P3zEhew/Z4rw+1UXVb9us9ZSIlsNusyYxioIbi9O4NnId5Nga5AR78VsKPr0sJuLFpZXjC5ZsL5edbIknumnF/bPI6FQFUjGNPt6Nr+vX+mvQLS6xJcCUq9r/ML6/D35raAO0ra3j63xgkA1Hsr36v0ram0YgTondJ0Xm0ekcfvXn7a2B+O2+FObIRNKLLOmXPHtmtkyQ7Qit95DO5lnQYyWUkYyMcfhSMJkuOH8SP0T840m6NrOf5kHDP3jlXyO0kK/8Aci4/Gv3jaQ0+EUX9zQkhg3k4/nTdpvy8P2BkZxWl1Dr4MM0DjiK3mhd5y1Y40X0jWebY40OyOHLhyrXoXX9bHGvRHPPLvrWZ5dzv+s7ns415zzxnn51vNC7zlqxxrUsaK3iFptKKNXFsDnQwo4cBR7C8Tk8KGpQ2OIyKGFHDgOFDCgY5cOXReylgRPIHA8OyB+nRvNC7zlqxxrU0SM3iVrlQGOArPfWGjVh5itKKFHgPmv/EACgQAQABAwIFBQEBAQEAAAAAAAERACExQVEQYXGBkSAwobHw0cFA4f/aAAgBAQABPyGhC9ZA3WmcFD4Xr4FIPypSasZaWLgR2exhlvEq8Ad0q1c8CG0QwzNEkkMSSSNvdKSLiEJvW6/4lWHZgC6tbACpZ+Q068I3LLzT/JI70IgAQBpwtXJGWvL3A7ZoZOOb3HYEwU1CZMAsaVew2wejdmi7It6ZqWahwqUFIJZEFFAhsCq50voLIsgM268AkTogEGvWsk8eAEw1YByYXRNbozSkkxDB1LPigfyakKjcpp2ztMTMSUaPATUlbeATofRPWYnrLX3mnI+ANxQ0Cd65/CTKNGZbYV6b7DHkqdKUdIrLEBZNyo4KJYQsfPz7a15amoy9zxZoF2C78w7PB4bhHWMHdgqTQDapLT+peJYJ8VuL9DdX7u+v1Nq+F+uBT93f0T+VrBgi63KJdNSLEF2l+KeL6uUXJYmLjQb0YCtqwST3pSn0ME8tGZNLw9a/E5cZ+hSNpxNJ8m8IKc2GptGtXukZk+RkjoZo6dgVhtQQKtzB2lD5Wcl7KXnSbIGxCWFqG9GS5kUYUs4fL20/smSihHSB88AGj1h/m7TJAIev3FeGhK3X+rgS++QQ8Aw3RFJRKnRqC0s7lf3d9NaiA8r/AMpEoFHe1fHNyE/Vfu7+ifyIGUwUQ4GNyL/soJd4Bi8YLt2kIFCd0xgbNAvmCUXmsAdNP6nL0Tz0MxPQj5EROtCTprZy0J1VAiWVCgYvjYovXMlpzJmGnOa8jYLs3WKINMAvrZaF4vF7UOZlMl3OoMzEa1K9eQSiNLIztepPpqjinY51fo6lMwyNJ1inu61wKN7NJrUxEjhfMT4qdyr0aLbyrU4OoOQL89KmnrLsfNvDh0nirw7uz4eKjw2EptpXjlwQix6AGVpZ1KG6WvLPfhJRCHmpfRwQwrV5I7kvbnUOQnELDRMVMbqlm4g82Ve1TV4LzJ1DNtZpm8wCWAFNOY0kwLD0oyBLnLRktOricwUwHqPEGXkKxh1IJL2WoUaYBHkFMetNncJSR7p2T/wbNJnJSQML/rFbr4ZIgO8GvWpwHmyDMxERRRBKr6oeEw6Y1TjPahF5PGcl0oHQvFM5wZBRwsM72lNJegobUK63hpzWs3irrcLeazQ49ACTZ+pJqz4QvBkkW7KNJY7qbICCdXa0Jp2Si6TAyEzC7FSLiqmBz5rykVeBDJQnHRigMguwIIIkCM4zin2RTyQK9Jp6m+uyEQp9chrjC7Eu4mlTkncspNmwdn0m/eTgG61IqWPy+516ZrLBd2KkvBHkI7AHnhDxhSHaWrvwYOQ0k4wVibASXjPrgKESzJ657I952P2Lprl9qULKQ1KkWHS+IezNLQYMMEzBC80+3QF5ndGF96dcYTARKQdyn9S5Fgxhv7ZgE5M5651DFIjQwzwFAZbZ+QZ7zwBABVsBrTImQGWgfXc8bgktL2BQqiYgwuGQrfNlJEnmSgAwS6UFYw3jdNBJwrhU5Y9CFW4LAk0WNSrCY8tKRJmb73mvjMgYkFuusBLOdzSYQXmr+dEEUmvXs9KDczv0xoAicl3Kwm8aBABLN76ZKudCakFoMvlTbIECRi2ZWZxUsu62Utw2Zh3ogANg2NgLjY8U34LQSFuouqutwuR0CSym7xntFuZRJbRJzmOVeaufY8uehE0iEJyZXZqjDkjWrBOhZ5K0Gl2xAhIqMjB4p55gm02lUk+gxyllIXXn7jtuFUm3yKCtoiHwpEvcB5/wrQ1RIPp2HoRQJSSYa1E5AFTwEEDFyuUjDt2mgSYwAkdaDEGcw+CgGJjLDLvVmMOi7utJ5MVHcGlyj6UCyCJRyNpp006QfNNNF2Anu70qwRsGDYqPsCXd6yL9iYd6scRsYGxWOliGDlwOguC4I7wbMDCs2mmaZpFoKYBN22axhoEYrSiyJi9ABRUDYo0B4GD2v//aAAwDAQACAAMAAAAQupSd8/0X33x43T9Ry388888xu4pxcpAarw/cCWZjX1w34wffHrtqRCtoBlUCXonEwTiCM7Ohm4qmHTgPF5F7Ok+88888/8QAJxEBAAIBAgQGAwEAAAAAAAAAAQARMSFBUaHR8BBhcZHB4SCBsfH/2gAIAQMBAT8QyUXBE6hbggQFuJh4afAanVxLUVBqb3tBUkuVYhhLGDodSVmjKi1XiPBS4jT1Phigtg6CebBHH5HXcVpGdmn9QENpQFgy2ickzA8z5nNv8nIRIpwP5GaM3b9whqg6a5/c3xXG5zvwwKhSmvt3UqlYd9IDQ99s0ruGEzPrNSr8B6BlIKIoJoZ9YnCwnxQAWwovaWT25reJXzv6xaio22h3UDahMkXKh6QUGo534YTVtd99II3V9wKzH1+/ODiaa17Mq7ygFOsMpeelRrdqv66eDIKnjNTUeVHLSK7E7wPgi1uz/OnOBN8Xn1gAOzTpzggC0PcXBBeEGAMK5fuAbe2nR94VQ2fhjqzzPeOnO9zCr4Tsen5f/8QAJxEBAAIABAUEAwEAAAAAAAAAAQARITFBYVFxocHwEJGx0SCB4fH/2gAIAQIBAT8Qr5gGbENiuMuAVcDRzLPRaDAzlKq1w4VrFCMGS44Ckg1GDlLhalxTLOHBYZwjyO5EVEEtm3ETP8luLbmD3H4Tej4huw1TbOsO06D6nTk6uETePeAxZVR/IkjZMdppluHOdJ3IhaLjZ8Hxl2vN59xG08P8mLVRHMm3BMQ9F7YloLYAli5coaa4HZ0VThzlEUGV6QKGWnKHtm3WLVQlAkZMHK0VFCLjpO5GLovzz7iZer+S6nPy5bbRc5w+T3ljTLz4l1wYRUNeXcL1S6/v36ECLOEw1Zvb1xhut6n0BBqx7/fSKlcFafUUV8Y7b9IpVpGnDRXmEXdEuNw5r4a/rSLCdm+257RAB4dyGKeftKjYaVCjdcesAZfl/8QAJRABAQACAgIBBAMBAQAAAAAAAREAITFBUWEQcYGRoSAw8LHx/9oACAEBAAE/EMavkMFyhAPbj1rMqeXH7QPTlGMU1Z4Wr9ZMI/YTT9ip8r/R5rtHABSqAqG94zyVeSCbNEGzdswKnlTwSkRL7o6/seMIYSREBTytfM6+b/fAybBih0ALnkqQq4D2vK6E1s5MAxCBeaP1+4GDfEFAGgDFguB+OfzKfhId2HomESIjwnyUwBSpVIVk3iLY1MWi2InfnC3JHhgACQBpEZGlxg5niIVZsAN6hJlCA/jCyAQN6LDIk9hFDaADbmoJbSgLREP7+OZlFmAWVXp4yUSRgwIKUs1ipAlkhBoCI02jciZ9xGZ9Eh5hfWChq+3wif7rNSg+7D7ADzN5cWpTbAuIUIMoKIiKNzr5BjdP4ABNeQw984Ug46wMApqLulqDhddqhorWorT0mTBbFFGDZg5VIOZKMs6DKGg1aI2tgKmiBNYOaNvo9/1qzlTG7vSV5BO8P3jkOYnTY4b6r4IFAlEsflge3PKVdEL+VzT8FJwp+v61fynZQv8AI8PjR/tef8NVjd4O4FGP1QxH3SIgF2JFnUEuairmSAe4IjSXbmnGBg0jiBGtr3g1GPEXU0HtxAFGBv2z/m+M9fAMsmhDNEavq4e+8UlkM84EAdkNNCZ0ZBu8ACjokbzupZNDtizW9ZPqb7lsKQIoEjHDDtB7dpJLoDK4dj44fgTipQ6bX+vSGl8ChtXEdC6wRBoj2YTxDKp2+AbTQCuEaGiU/aT7/CjhOXRtH1t+/AmCNUBdDP8An9Pissb9oAQ8BXWGkHvQiR/CfEUD6SdgC/lfjAJg1wEImOHmhyv/AAK/Gf7Xnjyq/FiNxfkaxEZeYkdPp+zCQCXCQABRAAFVy22LhFdbr0XjHFNQgNBtNdYiGER4C+M/3fGevgGsMgOlhcNNiEMOAVMCu+gntQZB51gdck8FqpsURwo0eGydHAY+mMgGutTCu+C67xLmhroIaCNqqBRMaTdHYAooLWZEaq8aXtgdslGxQFEcR/MGioHDNrRTzhhKoz7oUKi4OVAuVqhFiTl0hE5w1GeScNPDQmlGaorhoFK3diprznkT5XToDmPeM8BvFY7mgMCkdFGmJTE6TVZNVFK+QXFX3Yyg6PRD18FhIMKqHgAVcQ6B55pHh2Z5fw2g6Pph+Pz+/gvyUWkX2UJ2mmyPFd6MQLTQOBQiuEUhSW4QyxBxpyOGYcIFDY6XQuDDYCUZOK82QY0UEN6whTmohFOgY5IMhtewAJDsCwpvHH6DVodg1qxCNi2CsDog2+u8uamYCitGbjgWogApENmnY4nCldLRDoHZEQdOjkKMnUXUHegJZoxAL6NhKdNXkqNTCowhj9/YDbJirgYHK1i/wxWyCAt1M6+AfDFVON6ogbCK0NsDa7kxk9FtRehqjw6Y6ZARxwCfbFj7G6sGUdoj3twu1yAonEkNGzDUZzxbbSXbqAD5gpeAJxYr42ksHtj2mZCHBEABROEzo1yOV2v/AKnw29jA6FQLsukHhxtLRhJdABGlRXEsdLWGJxwV1s84I7CFiQNoIobBHFn9oYS/l3iF44cvERXahBYzS7hx/BScxphVGgDtx9VTUJfqbn4JywYCQKMAqvgO3KADdqIJ9ZHn4C2BEhWFBYLPTlLV5otWlKUuaMY40ur57yxs9KqUCjER9iYx7/eQ8v5wAeX84g9/vCec094cCB6w0gnY3IXn95TzgB3+8ePgG8ZOBNuFlHEPr7DIEAE1hDIMbnVMaZqhiQ8mr2MAyTqaKyIIgN9YSNXOI0xQhKDjAAv3fFSEF6WY8xwrtFpBseTJMmTIf5yZMmT6/n5QKpYP34ZzsjZN41rkGT5235xFT6d6pRudL+DrnAKp4A7fWHoRoTmhxOU3ZCBgQ+JHguNRNhJZO5grRr5dqBHFuMEnUkFkJQUNIBsSnDh569oGtCEBxTGj40ASqVaTeCJsSkCwkoJUPRDE+vZmaCKQowgGu8H0ZGEcQ2sdREcjkzaJEFYaG9KcUgfcm3UuLaGiTeXrMKCVDNWqwOCQxIoHk4Rko5iwlrlnCxQmoFD5MRqCU/RBLRtXRBMdRglJ0QsBFOFlCqHn9SbJhGpq4sGc08ghQBBW6zr4B8fuY26mSdQNUQ1HEXEE8E5tFSeBtJ3nHBqs0OwOxK2Mb7StDjrHILUR1hRK62e8NDwOe8AFlsDduEs/A5lGEOqnF/rS4xOG4Psil2sF84ypnU49rD9gxIKOXX+IYcF2lfmg+oT7wJ83wSwWEp4Yu/eI0REwpsYiaxRXYsQZQehh+DFAnMnB9LZ6uAL4UC4GKh4XCljCBTRdNLXjy4E2IFAILFUFPpkgCIDg5dfy5xxHhIpI05aPTww/Jwh5qbPVwsxIut50LvEQJS4aYm3tx4HVE4+jRo0eMNSEoavha26N85xGnQNwKafZjCTVALS6NGjR4zkuU4pyQaNGjHjHn0aFbTlVuuk+Fw2ha36Gz1cfMAq7ONpcF3CwBXFfOeIaySOIdTPxNLS2XxgGdK6WqCcrzleFRyu2Br+r/9k=" } }, "cell_type": "markdown", @@ -11,9 +11,20 @@ "toc-hr-collapsed": false }, "source": [ - "<img src=attachment:5ccbc8b4-5907-4292-aa1e-6e349c42db5b.gif title=\"Python Logo\" width=\"360\" align=\"left\" style=\"float:right\"/>\n", - "<H1>Create your own Jupyter Kernel</H1>\n", - "<HR>" + "| [Jupyter-JSC](https://jupyter-jsc.fz-juelich.de) ||[JuDoor](https://judoor.fz-juelich.de)|[Juelich Supercomputing Centre](https://www.fz-juelich.de/jsc)|\n", + "| :--- | :--- | :--- | ---: |\n", + "|||||\n", + "| </br>Author:</br> Jens Henrik Göbbert ||||" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "toc-hr-collapsed": false + }, + "source": [ + "# Create your own Jupyter Kernel\n", + "-------------------------" ] }, { diff --git a/001-Jupyter/List_JupyterExtensions.ipynb b/001-Jupyter/List_JupyterExtensions.ipynb index 9cced3419c40bf39ab204fa188a01a95c36a47f5..580f17b9e007c14fa5c3b47056778c2053f8ff3e 100644 --- a/001-Jupyter/List_JupyterExtensions.ipynb +++ b/001-Jupyter/List_JupyterExtensions.ipynb @@ -2,8 +2,8 @@ "cells": [ { "attachments": { - "09375636-629b-4ee2-9011-455f6157ab16.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAABgCAMAAACkLcFMAAAAwFBMVEX///8AO2EAOF8ANV0dVXddfZQAMlv7/P0ALlkAOWAALFgAJ1UAMFrp7vKttsDI1NxBaIRPbIbc5OkAIlIyUnGltsNSeJJxg5ePp7jFz9cAQmllhp2Woq/w9PYAAEQAB0gbTG8AFU4AGk42Y4K/xs41XHpYcIhzj6OwwMuZq7k9XXoASG7W4OaBkqPl6OsAHlGTqbldgJgAEUsAAD+dsb+LmqouVXR9maxofZJti6BYfJQnS2yeqbWAkKEQT3JAbYmctWnXAAAXrElEQVR4nO2dC3uiOhOAuVTuFIFiBUuX1hsqou1BrLXt/v9/9WWSgDdAPeuxflvnnKerGCCQl8lkMhMY5ipXucpVrnKVq1zllCKKvqX7IpLvrsnliBF/dw3OLWLUGSwaN7Ji2/bEtpvfXZ/LkVHjZz0YUbOXCpLAc7LMggjRd9focuSm9t01OJ/40UJTNZ5jV8LXzvMo+KuPol9e7HvlB7HQqXmazG4KH57jzNH47TOhn8PPt8+znPR4+Sks+GEqC9sksNxQP8O5HU8TNKmFP0859Fmbn+Gsx8sPYcEwFW4bBCRnaZQ45dGpZAG0gTWCanAj4wznPVp+BAv+fCQUkMCy6jksx0jB+kiboc+hgs8r3Z7hvEfLD2BBDANlp3cg1sLvc5w/UokO6iMzNaEsfJzjxMfKD2ChzxV1DyCKc47zWxImUYH2NyaEi4u0Hv96FvSGUkICshzP4mgTZwCDkFros9+QQC2YFzmu/NtZiIbFlgKI0D9PHfSFYtttF3+O321balymg+svZ8ENylFglSpr3j9h/yGKkS8WfL4w2ctCHCTMNL1MkPdKGPDlKHBflbtOBueq5aXIfhbqCeOY1lkqc2qJvTKrEUSaVu3bEPizWJYXJPv7CKTRLteFXilWt0IrsFxQZTkarMx5R1v7UQfE2N6wpVV9A29dc3laZL/SviMu/V03Bovf7W7jZWDsuFBFo+js5ecqZ8HvIAIilx62E8Of1ekMcsGie+u45J4aUVb0HH7dA0SsVaHACvdV3fYA7cuxR3aNUaBJkqRwOUPuSAIJNg2TuaxAMTNnMeqqUKyUPbELPyvyjiLTZ3VPEXie4wXJq0+3Lihh8W7djfYQU7yRK1CK5SxEzx2GWUjkiy89IKJ+5ZUVez04sfU2eXqcpHCp4u823W9yGYNnsVU6mCRSVU0dqxT+7rhBZ6JiT4Lwlm140eC7rDxsFPvCPZfMu9mGW+ILE95LjmvY5Petoag/4CU+96LJvMQNNmhoE7t5s6+jx+LN3Se2ggUb3ay+Qr7oHLDwnLtOCQu64IU++PoRNaJ5Q/dTL4MFp8pWQA99WtXxueQ2aseNOpsS1TjZhhY9zCYLHmk/eY0F0miNkuMaxHO51X5+Tdpyp3L8Yh2GOtGLnLP/WFj+iIU+18GV4rqXx4IVVLMgVQY01ehQVDrqWs7KgnVT0AVq9TUYzsmCn9IuN3mML46FRoVjARqCrRoa6dnOXHCM8XNOFnxTK7ourbWCoc6dj4UooM+WnuiXxoJbaTei9qoMaEqkvFz/CMfQOVnor6IxOH4tVktK8iLn1AuGtzrvhbEQD/ewIFdV0jdXeyudw896RhbCSVZBjR2+9VItq7Gs5nbQOVlwN1hoKE9YVOECWGjyxbPU+aOUVnURBrvam68fcdazsSBmtHJq34h934raasZGbgids49wt/RCeIsknB1nb/0nIu5BYU9AU2u9K1bdqqIbcj4WwozpIL/ZA9pP8Pns6yn0go61DGFBpZsq+wjwS15UHxFmD0mZqFXTUiK7TtLKW7BXzsaC+ElpXYvAEN+pwZsf9wQs6O9Yy1jAgvOLmE4RHLDUdoxM67JYWFQPIlgYBJeLs+Gkkr2DFcPZWNCJu2ozMEu3t/g4QR/h90z4x32M0J9nYjqFbKfAvzDsEVLmT+JFsaAPq30LrFQ57dTbtDsPdzidjYWIepn4DUwpIHlYxin6iFkAhtVC8eGuDqHD0E1walvPuU1NWHAm2KttaLXL6iPc0Z9YjtFykyRZOHRYeTYWaB/IpRsNOlcFECU7DGFB/iMWYrYbGnMVm1ehVE8MZ6jggG77PsHSEel8RF3pd4xmAOENKxbsb2fhds9MhDCu2nsmbRU/2Ho8GwvT7EQblOqzT5BxNqN2knGEawrqaOrTz57t9bCppQcjD0vdZ+7foBr+IOXV4A0OK7Zo32UFR4zI/xt5KHTJrbFQ1bh+d7uDEQ6N/TobC3163FlldbI+YuPZjI4dU/qRYa19jqj7IqKCfovpwMVCJQmceraH9e3RDuNqFribqp13xyDc8MArOhsLL+S4e0LrKQuyOe+v5IU/koX/bxH3DCOqp6UaBR7LA3u9s7FA66jtYYEqOA6bERr8rwn06n4MC/1KvSB7lZYju2t37tHFuVwaCxV++J/Cwh7bsTqgaVqgU4S3wzqJKwuXJ2GlXuAqA5rMAtcE1929cUVyaSxUeFl+DAtGUOFf4CstQbfI1JC9/08WrnphbRavSJRKy/Gl0OxUD8sJuFAWZG5N5B/GAuOUz01xX1XWgl+844FJuGdj4f2oPiJI14SqzJ/DgiiXdpVCUrVjUmx1Hrhmxw4LdHArnZqFYsa2hfqg5aYV5WLRibefw0K59bgdV74pfknnUpyF6zvN+XyerA64w8KcVGNrTEpdQF4+b340C8XHZXwimeIr9EEf73cMf3eHLWxvGw16rU3IL5w3kLSa2Ok4bVCJGXGBt8+pC9KfNtKGQ6sUT9tpK8RfrMYqMrMFycY62W8Kx/P71L5HZxTn2bEbLZ+ZwwyYk9VjTi4tatWHrVJfcpm7ifMq019cr9jo1BZF56jZGhJ1Ffi0w8KgaN5AJHPLXJBX5WgWaDzm1ljXCFRFUdQ8N/AkMW6+qdRms54NcZ/OP3Sn4ZvI+MtlzzRN7xlSdF54E76YZsT4wh3eTuYtoxuu9mk+k7OFHl97qz/hOYtwksc8uaqNqhh5ac/s1XkcHRHQG578isWxiTZzXXRQtGP7Bp3tfUI5+oKoVdHRvPvPrl2qu/WbIhi4Peu2zUvUidAqKGyRmErZzrfssJAr5PU2M7JJxn/PQjZPebPRoDNFBuFp0tJpWBioHXS//eTJhWiWNRbE5ScoIb0FU3cvNxbRSaioMMPbG5IBOUdBJIp+R4JL04Oh64t+ooI666jSJz3FWFMwC00R7Rf10ONqpVQRJ88x1naul5Cjt7siZCzQyfobYMFQ3y10joen0rb167sw7MuQ9MtycQtZ0GmHYud3lfo7hewimZjceHlDG1Hg+F4OyPGxLNQ5uhmHMaLxC5kSO8k8Zb2Oq+l7/R0W6Gwv9wIs5IfzBWLF+BzaY26TRhto6N8ZS3rFOSyT1VH7MrkrVtqC1K6IJfrM4JNNFvBGj14EYeGmR3IVMAs3N1hJiG9B6ahAb6hbcQhSsGdewSnzVwqFfcQbYUHJj0rhWEWf+jS8RFrTXz59XNdskKNZyOwaLl0rFdHaK9liASfRCw2SXybChGQhC2K7vckCtWj9Lrqcxg2Ni9OmjF+jvan12EEsTAybVDScuMoaC773UMQCNfkJC18RiajALLxSC9qpClycLdcW8pP5UX9fdmSpc0Z4KSp+T/MVTcpjSK2N1WpM4iKLS1wphhndtBYifHzs6weNsViLucoYk3M75CQsOM/TXH8VszBqAAt5oYwF3UMPkLyWuqN3X7IS6JfOU1wbkWq+x+oaCxb7sZeFETPAozBgIfp1UIxENPtSNQFnIatef++aimWWY9mYMtEoZeTXKCXkycpaGgPtqPghrbDYzOa+hFWpjIXS3Nqd9stjr/g+dYNZNS7zHGTNcpI+Qnx/7iX01hWyYDwjNdgaOSESaJ+MhSZEwWlrCZ65Qeh7L8CC7tpAbTwJY3uNBYcLD2BBTOEygQXj6cB4GT+atxp1NPI5ZGGcWek0hlLolBCzLoUbOrE7X2bTwe1VET/L2eHZl6lrhfNuFq2/HkWZzaV5jU3JGrGg/fKwfT7th3Hk9JeZebTSN6fJlRGd1POWTbh9Bbaj5QQQMNgSIMaJHcIlc3U00u63+YW/hwW9C/dgnsaEBa8JJmciIzW7nwXGgHFKzoLfXywW/dOtGBOXZ+PaxSPRVYMotqple2/kuA9yRybSTaoiZD5gLlireD6vym+I8ERPW9B+Vp42x2mqrSqrs69IPFXelGgkb/Zyx164Ux+RqCYojZcgdJFAfX056Ha7SoqR1PrlLMRMM9XR0zJjLMxCYMPx+DeLOYQFZJbGayx06/X0hIt7z7fjHFfCFVsaUdG4Q+itDyDFbrGjg1/XNGVz7Jnru6j9khIHCrvyuZwub4oRXYhv7jyS+yAO70Ev3BtISBTbur0gjHXdb8n4+GyWtiquswA6EViIUTfi8gZlwZtHcDy8rkfGwsAuZSFevq31EUilhN7Jgiv1Uala4L5K5ikL3Jvc1jpnZDXobZE2Bib/hgXmQS2wbjhu7X6cQi9YbXpAyKCLXsmTp9/NmNWYEmRnHBF5eBjebmfjiCbjvw1JCf0pISwwqSkuugxlgV0tlub3euTDfESOW8ACEz6FXUDtVzaOkE/GQrM8MI4vdVw3J1sNwivbvlCD2zmwrPQ2WuJfsSCO7R14+Q2HwylY8CXa4n0WAuRJiQ6X7GOBGWOfymxCngzsXxhT/8IM+xeAhdA2WCdnYW3ZoE86GOrSO1/EAtNYjoCFEQlfFRfcqViIKtbu0MalhueA3Xjste6uW9wytY1Dy7w82zzev2IB3cnlZq/GSZtnp30E/0d9RN/G8weGDJrsQ3FgEa8heA02WfiKRZG8vYv6miwZHO96mkaoO3E9GC7HXh2SJ0IejAjMQpzeQIrHLguWeq/Dmu4Cbd5CFqxUAhZctYYGBv5MYk/FwqIiFqoqQd/tKsiMk+E/ThBaRZ2J/+FBGTyYRIUkc/twtypXKDa9OOsJf9V6W+op6msajEvwgXlpNNs0pBsS7MVvmlTWa/GxmNL5CLs2+/jku3Bsvfbce/j0sM/O9z5XpV742j0IMvx8lcyY9W3QAq7Hvc3ulTauWSh744ea2gAbIMS2x/gZgLKegYWN5cQSKR2P60/ZQ2OwGQt4PsIjXxwbz0c0J+l4Vlfej193r1g6FSGS1WlWYlhfsrzAy95dKyrRH/G0vvQ4XuBYL110dgrptbtCWWTtNV7C13RH54jGfBiw6MAyG9Tn2wZu1IW9li+b5ys7VvmY8j1dtqnDSXR+L7sLcqLWmvmb1ImgNhffqVHxG7tf9X53Wc/mcuM5+jIgqdu/4bGJGlAPHf7q7xtVMtBZa25WdatBXRxz8OUkmSOmhYe6jNu6W7Yj/eU0K9IWW3hU+H3z+n7oDJywfHlGXMZ1cKGTVHddotBJBmF4gvvwl8YvHCliv2oZl2JP098nVxZAksr1GpSSEeXfJlcWkBjlrgXoIroXuq77qeXKQvVwEkzHb88VPpNcWWD0EjdxphYKRuJ/p1xZsOrVWdnVrxb4m+THsxCl1UnZHPvtSwicS346C0Z1B8HKP0ct/HAWxJCtciyAtdD4MWqhlAXfirJkB4sK+hpnZlQsMqKVi0+/xOS+6Wt7XLTo89JXV+YsVPu49eOv1L/Y21LCglsPhOAeu+FvAyoh47/TGQ3xK2RC2Jam6M/ogYlxiW4PJ8g8ZHtc5FubcxGNrz3LQLKsUr2en77kcATSMR3JrVq5ctifyR+9DaqYhalSb4bNpQCN+SHMm1giNPpSScyS/zpgYrRpOlzCLy4Tvy7Qv3MT37sxOyV7XPRgTF+UJ13mWqFbfW/9pdxtgxzxmrIP+z9koVM7fMXiHSlkweBqcA+iYYD+fqwMab0daPhc/jONQfmkixnE9PVDY8hOHy//fX3OJXozFaoXgWThffR77qy/ZKONFMYD5HAWROdou/Xh+Q/epFjIQmtEJmlvJy6wkD/eevfFxGEEOQv3Q/JjxgKOObh8FqIBp+xVCqys7nvckV5YTWfrbseg6yAajIVnLfXV6+bQRxf/+mHP/A6d1NRd/GLjDv7rWmJ+BPQNlb9ZZh/xLKTYcbGQS8jed4f2QyXw7K4fmlofB6DGHR9nt/guPhEuKhqRb0AloKJF8BaykEUWxeNwi4V+xEKkQikLeInoC2dBdBeptlcnwHBy//sa11gw6prN1uGrqLadO8iidofqRBnidnTris3V4GZ9qI2eonoP0BohflVJqMJ8vOs1WsLEq5HZ/brwPAm8OzhHTbbVEVBpTAQBWTh4ufYkkGwP52W4Srsl2TIEn4e2wHIS+Ennalgb1eDZhBQ4y4YwsOim22Jtvq+bvO0VXVohC95nFr0qbvYR3QWz4KIKFkIIqLpgFvQo7HuqsF8nsJDBsFfz+0vO1ZEwEOXL952aBPdDnHBqYFqMXufn7pS7Q5t0np8nbzYsSf4h8b2k701glsNRYMlUx4ZlUkNW6ybNQMXWalvpG0ZDAxbGSi1MUhUnAYzH864AQT2hkDYTU4VoEVflzWS2VGEh/7HJm2OIFVloPD+cQ2gaVCiawCt6o0AbTqeppNaT5tIuUHmFLLDr8X0fWq3Var1ABAmwwNy0xQIWXh0f3ZNOkKJiY+4F9ki+f+wUh6s3eMZROB2bI+UQlYC1wh67EcRf8t36cNiNcbwVpFhK8Eq+Cd+A5VGtdInOPn1HD890gppYDB4N0AvkwYX4wVC6X2NhZICOCBiIIoaTRxJ6qMR7yNd0f1PLxUrhaRNrkBGjLyFY0FVhjcJEwgrlQyWxFn1BCeHVDwaLWbDxQQOI1Usk24K0jfvdqzmABekLBEKSMAshQmqXBTut1+tdoQsd01i4gT3eL8BL46CG9/DI18PxiPveMbISvnVA9ZFeWCKBkN8WftKm9gOwYOOew+8p7SnxudzjNaVjR89sx9CGnJYNFmTomXUW1LDF3ljQypCMOlCDRU60XseBNfoXG8UxGtZBKaxtIhZHIj+opGH6dIHwTRYgXD+yOfS5IxW8FaOEhbUvG/YCwDwOLHGHhefGvN/iSMbUJfURjsSTpatkuWARz3KtoCwOIRmNI1wrwl65Nl4SfQCDbnFC38ZjmZOJ1AYK3lah8oQFA3fhjrLGAgfOG32Eb/dYMW8fAhvGEX5fmkwCEiTI1Cb4FussB69zUl6jFQtfGyyQPORtFiAlyYY+piMcGvsavFGXo2MUsKDzC39SaC8sSGLYJbHAdIK9DqVd4bj+QUptzXZs2PDATgkLHN0oGs02Dy63N6wXRBh7rrMQasBCohIWzBULicDx8nJOFhbQnZpHhjSJWsf3G5XCOWsweihmwSbByLssREeyUG/TsZHgFLDAhJNQLWTB4HENLooFJjIPtBBWwo8OjK5eY8EBiwD1BQ62F/CmuA/vXrm3byH5D27Y73+MTRZcFtq/r2yzYPAmzSZj/GnThy4FDzhYert9E5a69wcQnbzJgk2SiDIWIuz8dYgR8q9YcJ6xBSIuINJvaxzB4JeGC8XjiBoPt+ayWGD8ubpnAmpLKUjdQ53n+oqFiPUSq8kuoxULlsc7ojGEfI/4l+dEc0Xa0gv+nTa3HE/YZiH2htNkGsK9Fd/suW71J6ht/ZG0CB0HNMRA7bpRy25sszBQhk3IbVlQFsSeUovcLk/GEWssHJ4f0QOF4JNOZ1cvIDNXKWYhmmCDYgljUeb7hxGZOMMjVIMQHLaAH4jvKbl/oRM8PU3wuzPER4Vcezh6fX2SsOURwq84KeHjEbPw+IVL8ParVn8GGzFUMQsyD6PSvsp7nvIEY8Z4OHl9nZhgJf5SbGQl/AM7zgRkLuCIK/cRFmeJNJx5qJvqKyxYvPhFl3gzPPtpYk48EVoNcqWtRxkqOzmUBUa/Vx61XzKs0MV8PD0SSRg9pSmhg8eMBfqWG+sfolVnYM2M6R6/LmZuSp8q+z3OpHtQzGMyDTrh6pZGtzOH7BuG+ab5jJZAH28xN9YtFBJvqaN2NnDjW5wwEkLvL3bgsXakNyOKwhELRa1wPoMBCON3brHgHd2HGdYbjH+L84xpTeJOCLk40W2urwaDDvoRiuBfyIn18OBcGXSq2xnN67A6VGJGdOl9Ejs0RyeimS0+dbXG4E6Nsj0uaG7KevMO0A08v5Pf9i0yI2tAjavfkXZq+TmxLO7Mq56DgExH5zI6toGK9ULKnVWz/hwWkNJqpmyZt4kTuOUiugDvGBZ4ib3nyXx19MSp5SexgMT4MEfb0xEyJyh8dxxeCghYwsH0ITlNrujB8sNYgKg0t3/zbKuKJEmaJimqqnZfHGPfcn8/Qb7K1hT8u0U0wiRJmk0nNC42/PDsMrgIu/kqV7nKVa5ylatc5SpXucpVvkP+B7U7jCp8UStyAAAAAElFTkSuQmCC" + "67258d94-84e6-4a0c-ae8f-c74332ec082e.jpg": { + "image/jpeg": "/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wgARCAA/AWMDASIAAhEBAxEB/8QAHAAAAgIDAQEAAAAAAAAAAAAAAAcGCAMEBQEC/8QAGQEAAwEBAQAAAAAAAAAAAAAAAAECAwUE/9oADAMBAAIQAxAAAAG1OLym+/nbqzUsm6vIuTKPn64neBOuGo9AjQOdDKiXRPiTXXPXmCOZSJORKW5agvJk10RdQ/TN6mqto0aZ8q9DS4XdjAScOIq7ZFew10iKZQkxzujLABgAAAAAAAJWqVtaldrhFkK93umu7yuqheZ1q02/py+utxrOhCeN3N1FvBH+vxxu3lRLchT92pJ27Y891JR1+P2Vicacae+FfnDBLKVK3SFo6i1FxKtdzhsuBGJPGOd0ZLAGDGmR/bkWjcR7a630LXlsdIuREY6CrrkV64dMimYUlOZzRyUCaFwxyoi8oMaZRhlInrccsBX+695sBHPHR5PZpy+mbu7YpZQXI8CtjAZ2aLpSw7JGuVbXZJvcd6ic65nm/ngCJtqZa46o2z8m/YxJ4xncnVrS4jUJ6Eg6lpbb0k9cRfaknSVLLC3ga39Y5JCeMzwFnoNsYAZakKmo5rMrrRLLp8uvvthmttgrbGByewL1hfM2tdJqfdwqs7K9BN7jZ+GlNruSH1Ed+Gn8zood9o/QklLGAAqPprAZIxJ+RnfWWTOwgutRmbFyvMk/FShaeXIjIBFgAAAAAAAf/8QALBAAAQQCAQIFBAEFAAAAAAAAAwIEBQYAAQcSExARFTA1FCA0NiEjMTM3QP/aAAgBAQABBQLClQAczykzaKccnzRVVkzxzCffKyQoePj7sxkIat2dtZm/uMXRDvf+ExUAFcbiaxucrcVuam066dY8vw2Ft8ZB6mOY1e5gtBbVc2Ee7ZVyNZRsbZIivTNhnR12NrViFZWOWi5gq5Y96mRY2K8x9eKz5YZFK2cidgRf2q7DvfSmu35tYpHIv5LH8mlgVMhsYmD3T9v673Aim0rxDzS3/tcpyS2kN4cURHkPJR+iLjnB1uj8dzO5WA8LT+t8Sfn8kftw/wDG6/2Pyd+r8U/AZy3+fEuvoqbS4VNqnrVx+0cxnHkZJREeJaRcjElmOx8Y/tORfySvPy7bqXctxOXAodyRkNq2cRuPG7mY1HRn0Ev7XJsMWSh8ZszSDqEi0Q0VnK0v2WOcSG3qQyauEbAOrOvS6zxJ+fyVrptgVaUE39Tkfk79X4p+Azlv88KNk4+4lInUtISAItnDWJhP6kmCpS5q4leJTxl+05F/JYmebqL6oD6M88EJ1z4e6WcGIy51t0KnW30xLEzE0fygI7arE3GtMgJYzWIQsNPtmwfUQdYbA2OXwkOP4WQND1qOgtYQiRItMz69N5xI13t1nI9UcS+i2Geex3H1XNAMuQ6kabQ3t9ijWtBp7vclySEh6zDzc9Atq5bLE+nOVmpzva6Haa9M1mUp8s+m7Bbk0ut7rcUBi51yMT+R8bMnAbNkX8lgzqbFKXYI5DB2aTWIMZLOQvXEgyWCKcLc9Do7b1EuwunSWsS4fJM50wS4arC2nwkWYrAzabQ9KJn9i1pGm93pMijwo8HuCgcdvW7FDV2B6PxEYZ0e5F/JZ6yy07LPMQnG9AVRrDHgxdgYD0abYgG2cjeB9qxzL6DC45ccKTM2qTnfD++6LQ1oL4WxBCGkjnZrbyEhJE9XMOzxEmRzI1wzhkhrPmWcEi+SRT90+sLaWPq0RcitxJwE09dJhXTwhmDozOoPZEkPJN3j2RHXZN6c2RfyWMHrIMKyediUUNTQmv4gZBTxNgERIMZm0dt7czQYmYUfiMvW24jV1QlLi4JXjtOt4QSCp6defZH3dCRonbTrOwPr7acVVwqcdlHcS3EhaQoRmkJ1naRixIJmhp1mhpT4NGe2zrOyjuKahWry1nTry8tea24iaQhI0+z/AP/EACcRAAIBAwMDBQADAAAAAAAAAAECAAMREgQxUSEiQRATIDIzFGFx/9oACAEDAQE/Aa1YURcz+RVqNYGDoIrhr29CwBxmRZrKYj9vU7QEMLiZAnGGtTU2JhdV3hYKQDDuJtAbzIfPWX9yaOndsuJVf20LTSORV/2EheplT90lD9Kkp/SpNP8AksX9nlCmjUu6VrKqYdYzO1VMxaHcRreZa3mdvMBUS4mQMyEyHoyhvsIAFFhNXWD9izRpepfiVEDrZpToYtmTePQu2Sm0WiFTARKBS3fBTs5fmHTeFawjUQQoHiPTzZW4h3EYSwPmWXmAeAZhMIUvMOPQi46SrS1B6XvE0dQ/bpKdNaS4rGGQtMP7mJ5mBGxhRuZgeYEPMwt5gQ8w7iEXmExirj8v/8QAJhEAAgICAQMEAgMAAAAAAAAAAQIAAxESUQQhMRAiM0ETIDJCcf/aAAgBAgEBPwGqo2mCiqsZIhOTmMhXGfQKSNpqFXLCOnu7DzCCpwYVIG0FNjDIECM3iBSwJEHgwDMIImp/fpMfj7Tq3wuvMrTdws6lc1/5ApbsInwPL/jrj/zrl/yGN8SS+x1t9spyzPt2iqi1vqcweDFz9TJPbE93EIYzUzUzUzU+isV8GEljkzpaSnuadU2teOZWxRsrLLthqBiJfhdWGY1xZ9zGvDf1jWZQJxB1P2V7xbiCxP3Es0UrzB4MUzJ4mW4hP2RPyTfmB8Tfn0Bwe8rs6cd8YjdVWPHeWWGw5MU6nM3HE3HELg/UDrxNxxC44m4J8TccQfcBxN5vGbb9v//EAEMQAAIBAwEEBgUJBgQHAAAAAAECAwAEERIFEyExEBQiQVFhMnORobEjMEJSYnFygcEgJDNDs9FTdLLhFSVAY3XC8P/aAAgBAQAGPwKmeRgiLxLMcAUY7CE3rD+YTpT/AHrKGCAeCx5+NWs1+wa4lXWcLpwDy93zE15PndRDJ086utohZI47b+IjDtVLJbo8ZjbSyyfO7Qjc5WGUKnDu0Kf1/wCiaSRgiKMsx7hTRRMY9noexH9f7R6LW0+gzZf8I4msDgOg7Pl09TAEbS/Vk/t+xPdOCyQoXIHPhU8cVvJA0QDdsjjUmyryykukdBrxjGDUtnDaqLWb00JJ1ffTbEstnyxap920mrOW/M5pryWNpVDBdKedNcxRPCFfQVfogjlt5J2lBbsEcMVBcoCqSoHAbzrcPquLnvii+j957qC3FnNbp9cHXSTQuJYnGVZeRr/hXVpte+3O84YzWa6nHbTRNpLBnI7uja/r1/pr0RoyM2tXbh9kZqyuWeR0umVVjwvZ18R7K3yqVGtkwfssR+lQbi2eaebXpiyBgKcEk91QK0EkUrz9XZG+g2nV+YqW10nVHGsmr7yf7fNw2yHT1l8N+Ed3w6braTj0vkY/1/TouLuT0IULVJNKdUkjFmPmaVJG1TWx3TE947j/APeHTtP/AC7/AAraHql+NP6uOl+6j/5Af6hTeuSrj/MH4Do2f6p/iKtrj/Cs9fsWpGvWMkagzS8eLkmmbZdosV4mNKocBx3iri2v4jEgk1RAsDz50Wdgqi/bJJ4DjTfvlvy/xRS+pfo2v69f6a0cc6t99bPbGGKRZXb0SzDHZ8e81suze0kha0ZGlkbGjsjHZPfmuqyWV1q38nbCdjjISDnPnVncm2klCCaORE9JdT5Bx38vfVkZ7dooxd6tAbDrHoOCSDzz4VdtGr7l4YwGeQvxy2eZ+75uOeFdb2raio56Tz6I7e3QyTSHCqKtrNOIiXBPie89Fvs9D2pjvH/COXv+HRfw/RaJX9h/36Ft7uR1kK6uyhPCtosDkG3Y+6toeqX40xPLdRmkI4gijp4/8wH+qm9clXH+YPwHRs/1T/EUFHM2H/pV4ueLQDA/OpLq5fdwRjLNipTYzb3dY1dgrj21dWisEaa7dAzchxonrtvw+waX1L9G1/Xr/TXoA0S7ppN0LjR8mWzjGfv4VPdcd1CXD8PqnB+FSx7i4k3QBd44tQXIzWiGGe6+TWTVAmoYblW6FtdSOEWRhHFnSD4+yoTDrummTeIkC5Onx8qhmTXNviVSONMuSOYx3YoXEhdF3ogYMnaRj4ircTEgzyiFABnial1RTiKJzG8+77AP31cuM6bdir8PAZqH92unWbTu2SLg2RmppJhLHuYlmdSnEKSR+lWyhtXWMmMjkeGaQASiKRtEc7JiNz5HpMrWxhc8TuW0g/lR6nbBHPOQ8WP59DO5CqoySe6ri6H8LOmP8I5dG0LnHZCLH789EV9ZoZZol0PEObL5UNksJXTGjSITvCPA1LNdDTdXGMp9RRyqK8s113MK6Wj73XypbEa10DQu8g7a0Nq7QjeIJlo1k9J2P0jTrHG0jb1DhBmmgs45EjZtZBt88fZVnBcqxt3fD5ttPDHjWz2jhkkXduMohPeKsI5EwerqGVh5V1zZ4kaANmOaMatI+qwpLMxvKuc7uGLSCfOt3IQ1zKdcpHIeVa+ry6OvFtWg4xmm+6g0lvLGoifJZCOja/r1/pr0Ktpv4p2n7ezpE1JxbtEHHAfSznFbS2a0cnW5pJd0gQnWHYkHPLv91bREV11WM7sE7rJPY7iaki63c2UKW0KR7tc6gNX2TW0J7Ccwk20RTMYIkPb8at7jRLHZS2aRq7KSVYMSQ3n2qstoPavb23yyt2eK6iMOw7s499STbpza3V9HgMpGUEektjwqFp4n12c0NsOHpHeDU/3YC++r+N7gw2kl1LqiEXaYavredbWtZElM1w7PCFjJ3mpQOH51sSIrlopow2O7EZraumNjm1hAwOfyjVa26KeqMZpI3HKLKcV9vEVsu1TerPDuYZrU2+oDBALE45eB/ZLMQqjiSe6m2ds982/82YfT8h5dMUci6biX5WTyJ7vZ0B7meO3QnGqVgoreW80c8fLXG2ofsB43WRDyZTkfO7X9ev8ATXo6t1hN9nTjz8M8s+VPC0/yiHSwCscH2VMElVjCdMgH0TjNJruMawGU6W455VHqnxvF1r2W5cvCoXa4XTMMxlctqH5UJYm1IeRxj5vrEGz+vW4Hb0SYZPyxxFfIbOjQ+LyFv7Vpurg7r/CTsp7OmPaW0o9JXtQ27c/xN/bp2OsQiaQ3fATDs/w351s62nuYtlxSiQzT22FXUOQGrl/tWwEN01r1iCWWbQgy+kpjnyzn31uXvC8bT7pY4ypA7PJk9IeOrlUe92l+8PNMj7P0Z0hc4815Dieea2Hi5d4Lt5o2gIGlcamGPZWzLZroG5a+mjmi4atI14BHsqC6N67q+02tDAQNGjJ99Nbi7dTFfAaN6iJuhg40+kTRgkvDIjzMixxlSAMcmX0lP2uVXr2+02uoYUcR28joWlccyABnSOVTM9zvc2ZmcGRWMcnkAOyOfA+FbPjmvpZhf7P3zEhew/Z4rw+1UXVb9us9ZSIlsNusyYxioIbi9O4NnId5Nga5AR78VsKPr0sJuLFpZXjC5ZsL5edbIknumnF/bPI6FQFUjGNPt6Nr+vX+mvQLS6xJcCUq9r/ML6/D35raAO0ra3j63xgkA1Hsr36v0ram0YgTondJ0Xm0ekcfvXn7a2B+O2+FObIRNKLLOmXPHtmtkyQ7Qit95DO5lnQYyWUkYyMcfhSMJkuOH8SP0T840m6NrOf5kHDP3jlXyO0kK/8Aci4/Gv3jaQ0+EUX9zQkhg3k4/nTdpvy8P2BkZxWl1Dr4MM0DjiK3mhd5y1Y40X0jWebY40OyOHLhyrXoXX9bHGvRHPPLvrWZ5dzv+s7ns415zzxnn51vNC7zlqxxrUsaK3iFptKKNXFsDnQwo4cBR7C8Tk8KGpQ2OIyKGFHDgOFDCgY5cOXReylgRPIHA8OyB+nRvNC7zlqxxrU0SM3iVrlQGOArPfWGjVh5itKKFHgPmv/EACgQAQABAwIFBQEBAQEAAAAAAAERACExQVEQYXGBkSAwobHw0cFA4f/aAAgBAQABPyGhC9ZA3WmcFD4Xr4FIPypSasZaWLgR2exhlvEq8Ad0q1c8CG0QwzNEkkMSSSNvdKSLiEJvW6/4lWHZgC6tbACpZ+Q068I3LLzT/JI70IgAQBpwtXJGWvL3A7ZoZOOb3HYEwU1CZMAsaVew2wejdmi7It6ZqWahwqUFIJZEFFAhsCq50voLIsgM268AkTogEGvWsk8eAEw1YByYXRNbozSkkxDB1LPigfyakKjcpp2ztMTMSUaPATUlbeATofRPWYnrLX3mnI+ANxQ0Cd65/CTKNGZbYV6b7DHkqdKUdIrLEBZNyo4KJYQsfPz7a15amoy9zxZoF2C78w7PB4bhHWMHdgqTQDapLT+peJYJ8VuL9DdX7u+v1Nq+F+uBT93f0T+VrBgi63KJdNSLEF2l+KeL6uUXJYmLjQb0YCtqwST3pSn0ME8tGZNLw9a/E5cZ+hSNpxNJ8m8IKc2GptGtXukZk+RkjoZo6dgVhtQQKtzB2lD5Wcl7KXnSbIGxCWFqG9GS5kUYUs4fL20/smSihHSB88AGj1h/m7TJAIev3FeGhK3X+rgS++QQ8Aw3RFJRKnRqC0s7lf3d9NaiA8r/AMpEoFHe1fHNyE/Vfu7+ifyIGUwUQ4GNyL/soJd4Bi8YLt2kIFCd0xgbNAvmCUXmsAdNP6nL0Tz0MxPQj5EROtCTprZy0J1VAiWVCgYvjYovXMlpzJmGnOa8jYLs3WKINMAvrZaF4vF7UOZlMl3OoMzEa1K9eQSiNLIztepPpqjinY51fo6lMwyNJ1inu61wKN7NJrUxEjhfMT4qdyr0aLbyrU4OoOQL89KmnrLsfNvDh0nirw7uz4eKjw2EptpXjlwQix6AGVpZ1KG6WvLPfhJRCHmpfRwQwrV5I7kvbnUOQnELDRMVMbqlm4g82Ve1TV4LzJ1DNtZpm8wCWAFNOY0kwLD0oyBLnLRktOricwUwHqPEGXkKxh1IJL2WoUaYBHkFMetNncJSR7p2T/wbNJnJSQML/rFbr4ZIgO8GvWpwHmyDMxERRRBKr6oeEw6Y1TjPahF5PGcl0oHQvFM5wZBRwsM72lNJegobUK63hpzWs3irrcLeazQ49ACTZ+pJqz4QvBkkW7KNJY7qbICCdXa0Jp2Si6TAyEzC7FSLiqmBz5rykVeBDJQnHRigMguwIIIkCM4zin2RTyQK9Jp6m+uyEQp9chrjC7Eu4mlTkncspNmwdn0m/eTgG61IqWPy+516ZrLBd2KkvBHkI7AHnhDxhSHaWrvwYOQ0k4wVibASXjPrgKESzJ657I952P2Lprl9qULKQ1KkWHS+IezNLQYMMEzBC80+3QF5ndGF96dcYTARKQdyn9S5Fgxhv7ZgE5M5651DFIjQwzwFAZbZ+QZ7zwBABVsBrTImQGWgfXc8bgktL2BQqiYgwuGQrfNlJEnmSgAwS6UFYw3jdNBJwrhU5Y9CFW4LAk0WNSrCY8tKRJmb73mvjMgYkFuusBLOdzSYQXmr+dEEUmvXs9KDczv0xoAicl3Kwm8aBABLN76ZKudCakFoMvlTbIECRi2ZWZxUsu62Utw2Zh3ogANg2NgLjY8U34LQSFuouqutwuR0CSym7xntFuZRJbRJzmOVeaufY8uehE0iEJyZXZqjDkjWrBOhZ5K0Gl2xAhIqMjB4p55gm02lUk+gxyllIXXn7jtuFUm3yKCtoiHwpEvcB5/wrQ1RIPp2HoRQJSSYa1E5AFTwEEDFyuUjDt2mgSYwAkdaDEGcw+CgGJjLDLvVmMOi7utJ5MVHcGlyj6UCyCJRyNpp006QfNNNF2Anu70qwRsGDYqPsCXd6yL9iYd6scRsYGxWOliGDlwOguC4I7wbMDCs2mmaZpFoKYBN22axhoEYrSiyJi9ABRUDYo0B4GD2v//aAAwDAQACAAMAAAAQupSd8/0X33x43T9Ry388888xu4pxcpAarw/cCWZjX1w34wffHrtqRCtoBlUCXonEwTiCM7Ohm4qmHTgPF5F7Ok+88888/8QAJxEBAAIBAgQGAwEAAAAAAAAAAQARMSFBUaHR8BBhcZHB4SCBsfH/2gAIAQMBAT8QyUXBE6hbggQFuJh4afAanVxLUVBqb3tBUkuVYhhLGDodSVmjKi1XiPBS4jT1Phigtg6CebBHH5HXcVpGdmn9QENpQFgy2ickzA8z5nNv8nIRIpwP5GaM3b9whqg6a5/c3xXG5zvwwKhSmvt3UqlYd9IDQ99s0ruGEzPrNSr8B6BlIKIoJoZ9YnCwnxQAWwovaWT25reJXzv6xaio22h3UDahMkXKh6QUGo534YTVtd99II3V9wKzH1+/ODiaa17Mq7ygFOsMpeelRrdqv66eDIKnjNTUeVHLSK7E7wPgi1uz/OnOBN8Xn1gAOzTpzggC0PcXBBeEGAMK5fuAbe2nR94VQ2fhjqzzPeOnO9zCr4Tsen5f/8QAJxEBAAIABAUEAwEAAAAAAAAAAQARITFBYVFxocHwEJGx0SCB4fH/2gAIAQIBAT8Qr5gGbENiuMuAVcDRzLPRaDAzlKq1w4VrFCMGS44Ckg1GDlLhalxTLOHBYZwjyO5EVEEtm3ETP8luLbmD3H4Tej4huw1TbOsO06D6nTk6uETePeAxZVR/IkjZMdppluHOdJ3IhaLjZ8Hxl2vN59xG08P8mLVRHMm3BMQ9F7YloLYAli5coaa4HZ0VThzlEUGV6QKGWnKHtm3WLVQlAkZMHK0VFCLjpO5GLovzz7iZer+S6nPy5bbRc5w+T3ljTLz4l1wYRUNeXcL1S6/v36ECLOEw1Zvb1xhut6n0BBqx7/fSKlcFafUUV8Y7b9IpVpGnDRXmEXdEuNw5r4a/rSLCdm+257RAB4dyGKeftKjYaVCjdcesAZfl/8QAJRABAQACAgIBBAMBAQAAAAAAAREAITFBUWEQcYGRoSAw8LHx/9oACAEBAAE/EMavkMFyhAPbj1rMqeXH7QPTlGMU1Z4Wr9ZMI/YTT9ip8r/R5rtHABSqAqG94zyVeSCbNEGzdswKnlTwSkRL7o6/seMIYSREBTytfM6+b/fAybBih0ALnkqQq4D2vK6E1s5MAxCBeaP1+4GDfEFAGgDFguB+OfzKfhId2HomESIjwnyUwBSpVIVk3iLY1MWi2InfnC3JHhgACQBpEZGlxg5niIVZsAN6hJlCA/jCyAQN6LDIk9hFDaADbmoJbSgLREP7+OZlFmAWVXp4yUSRgwIKUs1ipAlkhBoCI02jciZ9xGZ9Eh5hfWChq+3wif7rNSg+7D7ADzN5cWpTbAuIUIMoKIiKNzr5BjdP4ABNeQw984Ug46wMApqLulqDhddqhorWorT0mTBbFFGDZg5VIOZKMs6DKGg1aI2tgKmiBNYOaNvo9/1qzlTG7vSV5BO8P3jkOYnTY4b6r4IFAlEsflge3PKVdEL+VzT8FJwp+v61fynZQv8AI8PjR/tef8NVjd4O4FGP1QxH3SIgF2JFnUEuairmSAe4IjSXbmnGBg0jiBGtr3g1GPEXU0HtxAFGBv2z/m+M9fAMsmhDNEavq4e+8UlkM84EAdkNNCZ0ZBu8ACjokbzupZNDtizW9ZPqb7lsKQIoEjHDDtB7dpJLoDK4dj44fgTipQ6bX+vSGl8ChtXEdC6wRBoj2YTxDKp2+AbTQCuEaGiU/aT7/CjhOXRtH1t+/AmCNUBdDP8An9Pissb9oAQ8BXWGkHvQiR/CfEUD6SdgC/lfjAJg1wEImOHmhyv/AAK/Gf7Xnjyq/FiNxfkaxEZeYkdPp+zCQCXCQABRAAFVy22LhFdbr0XjHFNQgNBtNdYiGER4C+M/3fGevgGsMgOlhcNNiEMOAVMCu+gntQZB51gdck8FqpsURwo0eGydHAY+mMgGutTCu+C67xLmhroIaCNqqBRMaTdHYAooLWZEaq8aXtgdslGxQFEcR/MGioHDNrRTzhhKoz7oUKi4OVAuVqhFiTl0hE5w1GeScNPDQmlGaorhoFK3diprznkT5XToDmPeM8BvFY7mgMCkdFGmJTE6TVZNVFK+QXFX3Yyg6PRD18FhIMKqHgAVcQ6B55pHh2Z5fw2g6Pph+Pz+/gvyUWkX2UJ2mmyPFd6MQLTQOBQiuEUhSW4QyxBxpyOGYcIFDY6XQuDDYCUZOK82QY0UEN6whTmohFOgY5IMhtewAJDsCwpvHH6DVodg1qxCNi2CsDog2+u8uamYCitGbjgWogApENmnY4nCldLRDoHZEQdOjkKMnUXUHegJZoxAL6NhKdNXkqNTCowhj9/YDbJirgYHK1i/wxWyCAt1M6+AfDFVON6ogbCK0NsDa7kxk9FtRehqjw6Y6ZARxwCfbFj7G6sGUdoj3twu1yAonEkNGzDUZzxbbSXbqAD5gpeAJxYr42ksHtj2mZCHBEABROEzo1yOV2v/AKnw29jA6FQLsukHhxtLRhJdABGlRXEsdLWGJxwV1s84I7CFiQNoIobBHFn9oYS/l3iF44cvERXahBYzS7hx/BScxphVGgDtx9VTUJfqbn4JywYCQKMAqvgO3KADdqIJ9ZHn4C2BEhWFBYLPTlLV5otWlKUuaMY40ur57yxs9KqUCjER9iYx7/eQ8v5wAeX84g9/vCec094cCB6w0gnY3IXn95TzgB3+8ePgG8ZOBNuFlHEPr7DIEAE1hDIMbnVMaZqhiQ8mr2MAyTqaKyIIgN9YSNXOI0xQhKDjAAv3fFSEF6WY8xwrtFpBseTJMmTIf5yZMmT6/n5QKpYP34ZzsjZN41rkGT5235xFT6d6pRudL+DrnAKp4A7fWHoRoTmhxOU3ZCBgQ+JHguNRNhJZO5grRr5dqBHFuMEnUkFkJQUNIBsSnDh569oGtCEBxTGj40ASqVaTeCJsSkCwkoJUPRDE+vZmaCKQowgGu8H0ZGEcQ2sdREcjkzaJEFYaG9KcUgfcm3UuLaGiTeXrMKCVDNWqwOCQxIoHk4Rko5iwlrlnCxQmoFD5MRqCU/RBLRtXRBMdRglJ0QsBFOFlCqHn9SbJhGpq4sGc08ghQBBW6zr4B8fuY26mSdQNUQ1HEXEE8E5tFSeBtJ3nHBqs0OwOxK2Mb7StDjrHILUR1hRK62e8NDwOe8AFlsDduEs/A5lGEOqnF/rS4xOG4Psil2sF84ypnU49rD9gxIKOXX+IYcF2lfmg+oT7wJ83wSwWEp4Yu/eI0REwpsYiaxRXYsQZQehh+DFAnMnB9LZ6uAL4UC4GKh4XCljCBTRdNLXjy4E2IFAILFUFPpkgCIDg5dfy5xxHhIpI05aPTww/Jwh5qbPVwsxIut50LvEQJS4aYm3tx4HVE4+jRo0eMNSEoavha26N85xGnQNwKafZjCTVALS6NGjR4zkuU4pyQaNGjHjHn0aFbTlVuuk+Fw2ha36Gz1cfMAq7ONpcF3CwBXFfOeIaySOIdTPxNLS2XxgGdK6WqCcrzleFRyu2Br+r/9k=" } }, "cell_type": "markdown", @@ -11,9 +11,20 @@ "toc-hr-collapsed": false }, "source": [ - "<img src=attachment:09375636-629b-4ee2-9011-455f6157ab16.png title=\"Python Logo\" width=\"360\" align=\"left\" style=\"float:right\"/>\n", - "<H1>List of Extensions on Jupyter-JSC</H1>\n", - "<HR>" + "| [Jupyter-JSC](https://jupyter-jsc.fz-juelich.de) ||[JuDoor](https://judoor.fz-juelich.de)|[Juelich Supercomputing Centre](https://www.fz-juelich.de/jsc)|\n", + "| :--- | :--- | :--- | ---: |\n", + "|||||\n", + "| </br>Author:</br> Jens Henrik Göbbert ||||" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "toc-hr-collapsed": false + }, + "source": [ + "# List of Extensions on Jupyter-JSC\n", + "--------------------------" ] }, { diff --git a/001-Jupyter/List_PythonPackages.ipynb b/001-Jupyter/List_PythonPackages.ipynb index 333fb47517179197ff05d6ace80904598339db45..3391b617e33127830df0849296ca08b2b119fede 100644 --- a/001-Jupyter/List_PythonPackages.ipynb +++ b/001-Jupyter/List_PythonPackages.ipynb @@ -2,8 +2,8 @@ "cells": [ { "attachments": { - "09375636-629b-4ee2-9011-455f6157ab16.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAABgCAMAAACkLcFMAAAAwFBMVEX///8AO2EAOF8ANV0dVXddfZQAMlv7/P0ALlkAOWAALFgAJ1UAMFrp7vKttsDI1NxBaIRPbIbc5OkAIlIyUnGltsNSeJJxg5ePp7jFz9cAQmllhp2Woq/w9PYAAEQAB0gbTG8AFU4AGk42Y4K/xs41XHpYcIhzj6OwwMuZq7k9XXoASG7W4OaBkqPl6OsAHlGTqbldgJgAEUsAAD+dsb+LmqouVXR9maxofZJti6BYfJQnS2yeqbWAkKEQT3JAbYmctWnXAAAXrElEQVR4nO2dC3uiOhOAuVTuFIFiBUuX1hsqou1BrLXt/v9/9WWSgDdAPeuxflvnnKerGCCQl8lkMhMY5ipXucpVrnKVq1zllCKKvqX7IpLvrsnliBF/dw3OLWLUGSwaN7Ji2/bEtpvfXZ/LkVHjZz0YUbOXCpLAc7LMggjRd9focuSm9t01OJ/40UJTNZ5jV8LXzvMo+KuPol9e7HvlB7HQqXmazG4KH57jzNH47TOhn8PPt8+znPR4+Sks+GEqC9sksNxQP8O5HU8TNKmFP0859Fmbn+Gsx8sPYcEwFW4bBCRnaZQ45dGpZAG0gTWCanAj4wznPVp+BAv+fCQUkMCy6jksx0jB+kiboc+hgs8r3Z7hvEfLD2BBDANlp3cg1sLvc5w/UokO6iMzNaEsfJzjxMfKD2ChzxV1DyCKc47zWxImUYH2NyaEi4u0Hv96FvSGUkICshzP4mgTZwCDkFros9+QQC2YFzmu/NtZiIbFlgKI0D9PHfSFYtttF3+O321balymg+svZ8ENylFglSpr3j9h/yGKkS8WfL4w2ctCHCTMNL1MkPdKGPDlKHBflbtOBueq5aXIfhbqCeOY1lkqc2qJvTKrEUSaVu3bEPizWJYXJPv7CKTRLteFXilWt0IrsFxQZTkarMx5R1v7UQfE2N6wpVV9A29dc3laZL/SviMu/V03Bovf7W7jZWDsuFBFo+js5ecqZ8HvIAIilx62E8Of1ekMcsGie+u45J4aUVb0HH7dA0SsVaHACvdV3fYA7cuxR3aNUaBJkqRwOUPuSAIJNg2TuaxAMTNnMeqqUKyUPbELPyvyjiLTZ3VPEXie4wXJq0+3Lihh8W7djfYQU7yRK1CK5SxEzx2GWUjkiy89IKJ+5ZUVez04sfU2eXqcpHCp4u823W9yGYNnsVU6mCRSVU0dqxT+7rhBZ6JiT4Lwlm140eC7rDxsFPvCPZfMu9mGW+ILE95LjmvY5Petoag/4CU+96LJvMQNNmhoE7t5s6+jx+LN3Se2ggUb3ay+Qr7oHLDwnLtOCQu64IU++PoRNaJ5Q/dTL4MFp8pWQA99WtXxueQ2aseNOpsS1TjZhhY9zCYLHmk/eY0F0miNkuMaxHO51X5+Tdpyp3L8Yh2GOtGLnLP/WFj+iIU+18GV4rqXx4IVVLMgVQY01ehQVDrqWs7KgnVT0AVq9TUYzsmCn9IuN3mML46FRoVjARqCrRoa6dnOXHCM8XNOFnxTK7ourbWCoc6dj4UooM+WnuiXxoJbaTei9qoMaEqkvFz/CMfQOVnor6IxOH4tVktK8iLn1AuGtzrvhbEQD/ewIFdV0jdXeyudw896RhbCSVZBjR2+9VItq7Gs5nbQOVlwN1hoKE9YVOECWGjyxbPU+aOUVnURBrvam68fcdazsSBmtHJq34h934raasZGbgids49wt/RCeIsknB1nb/0nIu5BYU9AU2u9K1bdqqIbcj4WwozpIL/ZA9pP8Pns6yn0go61DGFBpZsq+wjwS15UHxFmD0mZqFXTUiK7TtLKW7BXzsaC+ElpXYvAEN+pwZsf9wQs6O9Yy1jAgvOLmE4RHLDUdoxM67JYWFQPIlgYBJeLs+Gkkr2DFcPZWNCJu2ozMEu3t/g4QR/h90z4x32M0J9nYjqFbKfAvzDsEVLmT+JFsaAPq30LrFQ57dTbtDsPdzidjYWIepn4DUwpIHlYxin6iFkAhtVC8eGuDqHD0E1walvPuU1NWHAm2KttaLXL6iPc0Z9YjtFykyRZOHRYeTYWaB/IpRsNOlcFECU7DGFB/iMWYrYbGnMVm1ehVE8MZ6jggG77PsHSEel8RF3pd4xmAOENKxbsb2fhds9MhDCu2nsmbRU/2Ho8GwvT7EQblOqzT5BxNqN2knGEawrqaOrTz57t9bCppQcjD0vdZ+7foBr+IOXV4A0OK7Zo32UFR4zI/xt5KHTJrbFQ1bh+d7uDEQ6N/TobC3163FlldbI+YuPZjI4dU/qRYa19jqj7IqKCfovpwMVCJQmceraH9e3RDuNqFribqp13xyDc8MArOhsLL+S4e0LrKQuyOe+v5IU/koX/bxH3DCOqp6UaBR7LA3u9s7FA66jtYYEqOA6bERr8rwn06n4MC/1KvSB7lZYju2t37tHFuVwaCxV++J/Cwh7bsTqgaVqgU4S3wzqJKwuXJ2GlXuAqA5rMAtcE1929cUVyaSxUeFl+DAtGUOFf4CstQbfI1JC9/08WrnphbRavSJRKy/Gl0OxUD8sJuFAWZG5N5B/GAuOUz01xX1XWgl+844FJuGdj4f2oPiJI14SqzJ/DgiiXdpVCUrVjUmx1Hrhmxw4LdHArnZqFYsa2hfqg5aYV5WLRibefw0K59bgdV74pfknnUpyF6zvN+XyerA64w8KcVGNrTEpdQF4+b340C8XHZXwimeIr9EEf73cMf3eHLWxvGw16rU3IL5w3kLSa2Ok4bVCJGXGBt8+pC9KfNtKGQ6sUT9tpK8RfrMYqMrMFycY62W8Kx/P71L5HZxTn2bEbLZ+ZwwyYk9VjTi4tatWHrVJfcpm7ifMq019cr9jo1BZF56jZGhJ1Ffi0w8KgaN5AJHPLXJBX5WgWaDzm1ljXCFRFUdQ8N/AkMW6+qdRms54NcZ/OP3Sn4ZvI+MtlzzRN7xlSdF54E76YZsT4wh3eTuYtoxuu9mk+k7OFHl97qz/hOYtwksc8uaqNqhh5ac/s1XkcHRHQG578isWxiTZzXXRQtGP7Bp3tfUI5+oKoVdHRvPvPrl2qu/WbIhi4Peu2zUvUidAqKGyRmErZzrfssJAr5PU2M7JJxn/PQjZPebPRoDNFBuFp0tJpWBioHXS//eTJhWiWNRbE5ScoIb0FU3cvNxbRSaioMMPbG5IBOUdBJIp+R4JL04Oh64t+ooI666jSJz3FWFMwC00R7Rf10ONqpVQRJ88x1naul5Cjt7siZCzQyfobYMFQ3y10joen0rb167sw7MuQ9MtycQtZ0GmHYud3lfo7hewimZjceHlDG1Hg+F4OyPGxLNQ5uhmHMaLxC5kSO8k8Zb2Oq+l7/R0W6Gwv9wIs5IfzBWLF+BzaY26TRhto6N8ZS3rFOSyT1VH7MrkrVtqC1K6IJfrM4JNNFvBGj14EYeGmR3IVMAs3N1hJiG9B6ahAb6hbcQhSsGdewSnzVwqFfcQbYUHJj0rhWEWf+jS8RFrTXz59XNdskKNZyOwaLl0rFdHaK9liASfRCw2SXybChGQhC2K7vckCtWj9Lrqcxg2Ni9OmjF+jvan12EEsTAybVDScuMoaC773UMQCNfkJC18RiajALLxSC9qpClycLdcW8pP5UX9fdmSpc0Z4KSp+T/MVTcpjSK2N1WpM4iKLS1wphhndtBYifHzs6weNsViLucoYk3M75CQsOM/TXH8VszBqAAt5oYwF3UMPkLyWuqN3X7IS6JfOU1wbkWq+x+oaCxb7sZeFETPAozBgIfp1UIxENPtSNQFnIatef++aimWWY9mYMtEoZeTXKCXkycpaGgPtqPghrbDYzOa+hFWpjIXS3Nqd9stjr/g+dYNZNS7zHGTNcpI+Qnx/7iX01hWyYDwjNdgaOSESaJ+MhSZEwWlrCZ65Qeh7L8CC7tpAbTwJY3uNBYcLD2BBTOEygQXj6cB4GT+atxp1NPI5ZGGcWek0hlLolBCzLoUbOrE7X2bTwe1VET/L2eHZl6lrhfNuFq2/HkWZzaV5jU3JGrGg/fKwfT7th3Hk9JeZebTSN6fJlRGd1POWTbh9Bbaj5QQQMNgSIMaJHcIlc3U00u63+YW/hwW9C/dgnsaEBa8JJmciIzW7nwXGgHFKzoLfXywW/dOtGBOXZ+PaxSPRVYMotqple2/kuA9yRybSTaoiZD5gLlireD6vym+I8ERPW9B+Vp42x2mqrSqrs69IPFXelGgkb/Zyx164Ux+RqCYojZcgdJFAfX056Ha7SoqR1PrlLMRMM9XR0zJjLMxCYMPx+DeLOYQFZJbGayx06/X0hIt7z7fjHFfCFVsaUdG4Q+itDyDFbrGjg1/XNGVz7Jnru6j9khIHCrvyuZwub4oRXYhv7jyS+yAO70Ev3BtISBTbur0gjHXdb8n4+GyWtiquswA6EViIUTfi8gZlwZtHcDy8rkfGwsAuZSFevq31EUilhN7Jgiv1Uala4L5K5ikL3Jvc1jpnZDXobZE2Bib/hgXmQS2wbjhu7X6cQi9YbXpAyKCLXsmTp9/NmNWYEmRnHBF5eBjebmfjiCbjvw1JCf0pISwwqSkuugxlgV0tlub3euTDfESOW8ACEz6FXUDtVzaOkE/GQrM8MI4vdVw3J1sNwivbvlCD2zmwrPQ2WuJfsSCO7R14+Q2HwylY8CXa4n0WAuRJiQ6X7GOBGWOfymxCngzsXxhT/8IM+xeAhdA2WCdnYW3ZoE86GOrSO1/EAtNYjoCFEQlfFRfcqViIKtbu0MalhueA3Xjste6uW9wytY1Dy7w82zzev2IB3cnlZq/GSZtnp30E/0d9RN/G8weGDJrsQ3FgEa8heA02WfiKRZG8vYv6miwZHO96mkaoO3E9GC7HXh2SJ0IejAjMQpzeQIrHLguWeq/Dmu4Cbd5CFqxUAhZctYYGBv5MYk/FwqIiFqoqQd/tKsiMk+E/ThBaRZ2J/+FBGTyYRIUkc/twtypXKDa9OOsJf9V6W+op6msajEvwgXlpNNs0pBsS7MVvmlTWa/GxmNL5CLs2+/jku3Bsvfbce/j0sM/O9z5XpV742j0IMvx8lcyY9W3QAq7Hvc3ulTauWSh744ea2gAbIMS2x/gZgLKegYWN5cQSKR2P60/ZQ2OwGQt4PsIjXxwbz0c0J+l4Vlfej193r1g6FSGS1WlWYlhfsrzAy95dKyrRH/G0vvQ4XuBYL110dgrptbtCWWTtNV7C13RH54jGfBiw6MAyG9Tn2wZu1IW9li+b5ys7VvmY8j1dtqnDSXR+L7sLcqLWmvmb1ImgNhffqVHxG7tf9X53Wc/mcuM5+jIgqdu/4bGJGlAPHf7q7xtVMtBZa25WdatBXRxz8OUkmSOmhYe6jNu6W7Yj/eU0K9IWW3hU+H3z+n7oDJywfHlGXMZ1cKGTVHddotBJBmF4gvvwl8YvHCliv2oZl2JP098nVxZAksr1GpSSEeXfJlcWkBjlrgXoIroXuq77qeXKQvVwEkzHb88VPpNcWWD0EjdxphYKRuJ/p1xZsOrVWdnVrxb4m+THsxCl1UnZHPvtSwicS346C0Z1B8HKP0ct/HAWxJCtciyAtdD4MWqhlAXfirJkB4sK+hpnZlQsMqKVi0+/xOS+6Wt7XLTo89JXV+YsVPu49eOv1L/Y21LCglsPhOAeu+FvAyoh47/TGQ3xK2RC2Jam6M/ogYlxiW4PJ8g8ZHtc5FubcxGNrz3LQLKsUr2en77kcATSMR3JrVq5ctifyR+9DaqYhalSb4bNpQCN+SHMm1giNPpSScyS/zpgYrRpOlzCLy4Tvy7Qv3MT37sxOyV7XPRgTF+UJ13mWqFbfW/9pdxtgxzxmrIP+z9koVM7fMXiHSlkweBqcA+iYYD+fqwMab0daPhc/jONQfmkixnE9PVDY8hOHy//fX3OJXozFaoXgWThffR77qy/ZKONFMYD5HAWROdou/Xh+Q/epFjIQmtEJmlvJy6wkD/eevfFxGEEOQv3Q/JjxgKOObh8FqIBp+xVCqys7nvckV5YTWfrbseg6yAajIVnLfXV6+bQRxf/+mHP/A6d1NRd/GLjDv7rWmJ+BPQNlb9ZZh/xLKTYcbGQS8jed4f2QyXw7K4fmlofB6DGHR9nt/guPhEuKhqRb0AloKJF8BaykEUWxeNwi4V+xEKkQikLeInoC2dBdBeptlcnwHBy//sa11gw6prN1uGrqLadO8iidofqRBnidnTris3V4GZ9qI2eonoP0BohflVJqMJ8vOs1WsLEq5HZ/brwPAm8OzhHTbbVEVBpTAQBWTh4ufYkkGwP52W4Srsl2TIEn4e2wHIS+Ennalgb1eDZhBQ4y4YwsOim22Jtvq+bvO0VXVohC95nFr0qbvYR3QWz4KIKFkIIqLpgFvQo7HuqsF8nsJDBsFfz+0vO1ZEwEOXL952aBPdDnHBqYFqMXufn7pS7Q5t0np8nbzYsSf4h8b2k701glsNRYMlUx4ZlUkNW6ybNQMXWalvpG0ZDAxbGSi1MUhUnAYzH864AQT2hkDYTU4VoEVflzWS2VGEh/7HJm2OIFVloPD+cQ2gaVCiawCt6o0AbTqeppNaT5tIuUHmFLLDr8X0fWq3Var1ABAmwwNy0xQIWXh0f3ZNOkKJiY+4F9ki+f+wUh6s3eMZROB2bI+UQlYC1wh67EcRf8t36cNiNcbwVpFhK8Eq+Cd+A5VGtdInOPn1HD890gppYDB4N0AvkwYX4wVC6X2NhZICOCBiIIoaTRxJ6qMR7yNd0f1PLxUrhaRNrkBGjLyFY0FVhjcJEwgrlQyWxFn1BCeHVDwaLWbDxQQOI1Usk24K0jfvdqzmABekLBEKSMAshQmqXBTut1+tdoQsd01i4gT3eL8BL46CG9/DI18PxiPveMbISvnVA9ZFeWCKBkN8WftKm9gOwYOOew+8p7SnxudzjNaVjR89sx9CGnJYNFmTomXUW1LDF3ljQypCMOlCDRU60XseBNfoXG8UxGtZBKaxtIhZHIj+opGH6dIHwTRYgXD+yOfS5IxW8FaOEhbUvG/YCwDwOLHGHhefGvN/iSMbUJfURjsSTpatkuWARz3KtoCwOIRmNI1wrwl65Nl4SfQCDbnFC38ZjmZOJ1AYK3lah8oQFA3fhjrLGAgfOG32Eb/dYMW8fAhvGEX5fmkwCEiTI1Cb4FussB69zUl6jFQtfGyyQPORtFiAlyYY+piMcGvsavFGXo2MUsKDzC39SaC8sSGLYJbHAdIK9DqVd4bj+QUptzXZs2PDATgkLHN0oGs02Dy63N6wXRBh7rrMQasBCohIWzBULicDx8nJOFhbQnZpHhjSJWsf3G5XCOWsweihmwSbByLssREeyUG/TsZHgFLDAhJNQLWTB4HENLooFJjIPtBBWwo8OjK5eY8EBiwD1BQ62F/CmuA/vXrm3byH5D27Y73+MTRZcFtq/r2yzYPAmzSZj/GnThy4FDzhYert9E5a69wcQnbzJgk2SiDIWIuz8dYgR8q9YcJ6xBSIuINJvaxzB4JeGC8XjiBoPt+ayWGD8ubpnAmpLKUjdQ53n+oqFiPUSq8kuoxULlsc7ojGEfI/4l+dEc0Xa0gv+nTa3HE/YZiH2htNkGsK9Fd/suW71J6ht/ZG0CB0HNMRA7bpRy25sszBQhk3IbVlQFsSeUovcLk/GEWssHJ4f0QOF4JNOZ1cvIDNXKWYhmmCDYgljUeb7hxGZOMMjVIMQHLaAH4jvKbl/oRM8PU3wuzPER4Vcezh6fX2SsOURwq84KeHjEbPw+IVL8ParVn8GGzFUMQsyD6PSvsp7nvIEY8Z4OHl9nZhgJf5SbGQl/AM7zgRkLuCIK/cRFmeJNJx5qJvqKyxYvPhFl3gzPPtpYk48EVoNcqWtRxkqOzmUBUa/Vx61XzKs0MV8PD0SSRg9pSmhg8eMBfqWG+sfolVnYM2M6R6/LmZuSp8q+z3OpHtQzGMyDTrh6pZGtzOH7BuG+ab5jJZAH28xN9YtFBJvqaN2NnDjW5wwEkLvL3bgsXakNyOKwhELRa1wPoMBCON3brHgHd2HGdYbjH+L84xpTeJOCLk40W2urwaDDvoRiuBfyIn18OBcGXSq2xnN67A6VGJGdOl9Ejs0RyeimS0+dbXG4E6Nsj0uaG7KevMO0A08v5Pf9i0yI2tAjavfkXZq+TmxLO7Mq56DgExH5zI6toGK9ULKnVWz/hwWkNJqpmyZt4kTuOUiugDvGBZ4ib3nyXx19MSp5SexgMT4MEfb0xEyJyh8dxxeCghYwsH0ITlNrujB8sNYgKg0t3/zbKuKJEmaJimqqnZfHGPfcn8/Qb7K1hT8u0U0wiRJmk0nNC42/PDsMrgIu/kqV7nKVa5ylatc5SpXucpVvkP+B7U7jCp8UStyAAAAAElFTkSuQmCC" + "67258d94-84e6-4a0c-ae8f-c74332ec082e.jpg": { + "image/jpeg": "/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wgARCAA/AWMDASIAAhEBAxEB/8QAHAAAAgIDAQEAAAAAAAAAAAAAAAcGCAMEBQEC/8QAGQEAAwEBAQAAAAAAAAAAAAAAAAECAwUE/9oADAMBAAIQAxAAAAG1OLym+/nbqzUsm6vIuTKPn64neBOuGo9AjQOdDKiXRPiTXXPXmCOZSJORKW5agvJk10RdQ/TN6mqto0aZ8q9DS4XdjAScOIq7ZFew10iKZQkxzujLABgAAAAAAAJWqVtaldrhFkK93umu7yuqheZ1q02/py+utxrOhCeN3N1FvBH+vxxu3lRLchT92pJ27Y891JR1+P2Vicacae+FfnDBLKVK3SFo6i1FxKtdzhsuBGJPGOd0ZLAGDGmR/bkWjcR7a630LXlsdIuREY6CrrkV64dMimYUlOZzRyUCaFwxyoi8oMaZRhlInrccsBX+695sBHPHR5PZpy+mbu7YpZQXI8CtjAZ2aLpSw7JGuVbXZJvcd6ic65nm/ngCJtqZa46o2z8m/YxJ4xncnVrS4jUJ6Eg6lpbb0k9cRfaknSVLLC3ga39Y5JCeMzwFnoNsYAZakKmo5rMrrRLLp8uvvthmttgrbGByewL1hfM2tdJqfdwqs7K9BN7jZ+GlNruSH1Ed+Gn8zood9o/QklLGAAqPprAZIxJ+RnfWWTOwgutRmbFyvMk/FShaeXIjIBFgAAAAAAAf/8QALBAAAQQCAQIFBAEFAAAAAAAAAwIEBQYAAQcSExARFTA1FCA0NiEjMTM3QP/aAAgBAQABBQLClQAczykzaKccnzRVVkzxzCffKyQoePj7sxkIat2dtZm/uMXRDvf+ExUAFcbiaxucrcVuam066dY8vw2Ft8ZB6mOY1e5gtBbVc2Ee7ZVyNZRsbZIivTNhnR12NrViFZWOWi5gq5Y96mRY2K8x9eKz5YZFK2cidgRf2q7DvfSmu35tYpHIv5LH8mlgVMhsYmD3T9v673Aim0rxDzS3/tcpyS2kN4cURHkPJR+iLjnB1uj8dzO5WA8LT+t8Sfn8kftw/wDG6/2Pyd+r8U/AZy3+fEuvoqbS4VNqnrVx+0cxnHkZJREeJaRcjElmOx8Y/tORfySvPy7bqXctxOXAodyRkNq2cRuPG7mY1HRn0Ev7XJsMWSh8ZszSDqEi0Q0VnK0v2WOcSG3qQyauEbAOrOvS6zxJ+fyVrptgVaUE39Tkfk79X4p+Azlv88KNk4+4lInUtISAItnDWJhP6kmCpS5q4leJTxl+05F/JYmebqL6oD6M88EJ1z4e6WcGIy51t0KnW30xLEzE0fygI7arE3GtMgJYzWIQsNPtmwfUQdYbA2OXwkOP4WQND1qOgtYQiRItMz69N5xI13t1nI9UcS+i2Geex3H1XNAMuQ6kabQ3t9ijWtBp7vclySEh6zDzc9Atq5bLE+nOVmpzva6Haa9M1mUp8s+m7Bbk0ut7rcUBi51yMT+R8bMnAbNkX8lgzqbFKXYI5DB2aTWIMZLOQvXEgyWCKcLc9Do7b1EuwunSWsS4fJM50wS4arC2nwkWYrAzabQ9KJn9i1pGm93pMijwo8HuCgcdvW7FDV2B6PxEYZ0e5F/JZ6yy07LPMQnG9AVRrDHgxdgYD0abYgG2cjeB9qxzL6DC45ccKTM2qTnfD++6LQ1oL4WxBCGkjnZrbyEhJE9XMOzxEmRzI1wzhkhrPmWcEi+SRT90+sLaWPq0RcitxJwE09dJhXTwhmDozOoPZEkPJN3j2RHXZN6c2RfyWMHrIMKyediUUNTQmv4gZBTxNgERIMZm0dt7czQYmYUfiMvW24jV1QlLi4JXjtOt4QSCp6defZH3dCRonbTrOwPr7acVVwqcdlHcS3EhaQoRmkJ1naRixIJmhp1mhpT4NGe2zrOyjuKahWry1nTry8tea24iaQhI0+z/AP/EACcRAAIBAwMDBQADAAAAAAAAAAECAAMREgQxUSEiQRATIDIzFGFx/9oACAEDAQE/Aa1YURcz+RVqNYGDoIrhr29CwBxmRZrKYj9vU7QEMLiZAnGGtTU2JhdV3hYKQDDuJtAbzIfPWX9yaOndsuJVf20LTSORV/2EheplT90lD9Kkp/SpNP8AksX9nlCmjUu6VrKqYdYzO1VMxaHcRreZa3mdvMBUS4mQMyEyHoyhvsIAFFhNXWD9izRpepfiVEDrZpToYtmTePQu2Sm0WiFTARKBS3fBTs5fmHTeFawjUQQoHiPTzZW4h3EYSwPmWXmAeAZhMIUvMOPQi46SrS1B6XvE0dQ/bpKdNaS4rGGQtMP7mJ5mBGxhRuZgeYEPMwt5gQ8w7iEXmExirj8v/8QAJhEAAgICAQMEAgMAAAAAAAAAAQIAAxESUQQhMRAiM0ETIDJCcf/aAAgBAgEBPwGqo2mCiqsZIhOTmMhXGfQKSNpqFXLCOnu7DzCCpwYVIG0FNjDIECM3iBSwJEHgwDMIImp/fpMfj7Tq3wuvMrTdws6lc1/5ApbsInwPL/jrj/zrl/yGN8SS+x1t9spyzPt2iqi1vqcweDFz9TJPbE93EIYzUzUzUzU+isV8GEljkzpaSnuadU2teOZWxRsrLLthqBiJfhdWGY1xZ9zGvDf1jWZQJxB1P2V7xbiCxP3Es0UrzB4MUzJ4mW4hP2RPyTfmB8Tfn0Bwe8rs6cd8YjdVWPHeWWGw5MU6nM3HE3HELg/UDrxNxxC44m4J8TccQfcBxN5vGbb9v//EAEMQAAIBAwEEBgUJBgQHAAAAAAECAwAEERIFEyExEBQiQVFhMnORobEjMEJSYnFygcEgJDNDs9FTdLLhFSVAY3XC8P/aAAgBAQAGPwKmeRgiLxLMcAUY7CE3rD+YTpT/AHrKGCAeCx5+NWs1+wa4lXWcLpwDy93zE15PndRDJ086utohZI47b+IjDtVLJbo8ZjbSyyfO7Qjc5WGUKnDu0Kf1/wCiaSRgiKMsx7hTRRMY9noexH9f7R6LW0+gzZf8I4msDgOg7Pl09TAEbS/Vk/t+xPdOCyQoXIHPhU8cVvJA0QDdsjjUmyryykukdBrxjGDUtnDaqLWb00JJ1ffTbEstnyxap920mrOW/M5pryWNpVDBdKedNcxRPCFfQVfogjlt5J2lBbsEcMVBcoCqSoHAbzrcPquLnvii+j957qC3FnNbp9cHXSTQuJYnGVZeRr/hXVpte+3O84YzWa6nHbTRNpLBnI7uja/r1/pr0RoyM2tXbh9kZqyuWeR0umVVjwvZ18R7K3yqVGtkwfssR+lQbi2eaebXpiyBgKcEk91QK0EkUrz9XZG+g2nV+YqW10nVHGsmr7yf7fNw2yHT1l8N+Ed3w6braTj0vkY/1/TouLuT0IULVJNKdUkjFmPmaVJG1TWx3TE947j/APeHTtP/AC7/AAraHql+NP6uOl+6j/5Af6hTeuSrj/MH4Do2f6p/iKtrj/Cs9fsWpGvWMkagzS8eLkmmbZdosV4mNKocBx3iri2v4jEgk1RAsDz50Wdgqi/bJJ4DjTfvlvy/xRS+pfo2v69f6a0cc6t99bPbGGKRZXb0SzDHZ8e81suze0kha0ZGlkbGjsjHZPfmuqyWV1q38nbCdjjISDnPnVncm2klCCaORE9JdT5Bx38vfVkZ7dooxd6tAbDrHoOCSDzz4VdtGr7l4YwGeQvxy2eZ+75uOeFdb2raio56Tz6I7e3QyTSHCqKtrNOIiXBPie89Fvs9D2pjvH/COXv+HRfw/RaJX9h/36Ft7uR1kK6uyhPCtosDkG3Y+6toeqX40xPLdRmkI4gijp4/8wH+qm9clXH+YPwHRs/1T/EUFHM2H/pV4ueLQDA/OpLq5fdwRjLNipTYzb3dY1dgrj21dWisEaa7dAzchxonrtvw+waX1L9G1/Xr/TXoA0S7ppN0LjR8mWzjGfv4VPdcd1CXD8PqnB+FSx7i4k3QBd44tQXIzWiGGe6+TWTVAmoYblW6FtdSOEWRhHFnSD4+yoTDrummTeIkC5Onx8qhmTXNviVSONMuSOYx3YoXEhdF3ogYMnaRj4ircTEgzyiFABnial1RTiKJzG8+77AP31cuM6bdir8PAZqH92unWbTu2SLg2RmppJhLHuYlmdSnEKSR+lWyhtXWMmMjkeGaQASiKRtEc7JiNz5HpMrWxhc8TuW0g/lR6nbBHPOQ8WP59DO5CqoySe6ri6H8LOmP8I5dG0LnHZCLH789EV9ZoZZol0PEObL5UNksJXTGjSITvCPA1LNdDTdXGMp9RRyqK8s113MK6Wj73XypbEa10DQu8g7a0Nq7QjeIJlo1k9J2P0jTrHG0jb1DhBmmgs45EjZtZBt88fZVnBcqxt3fD5ttPDHjWz2jhkkXduMohPeKsI5EwerqGVh5V1zZ4kaANmOaMatI+qwpLMxvKuc7uGLSCfOt3IQ1zKdcpHIeVa+ry6OvFtWg4xmm+6g0lvLGoifJZCOja/r1/pr0Ktpv4p2n7ezpE1JxbtEHHAfSznFbS2a0cnW5pJd0gQnWHYkHPLv91bREV11WM7sE7rJPY7iaki63c2UKW0KR7tc6gNX2TW0J7Ccwk20RTMYIkPb8at7jRLHZS2aRq7KSVYMSQ3n2qstoPavb23yyt2eK6iMOw7s499STbpza3V9HgMpGUEektjwqFp4n12c0NsOHpHeDU/3YC++r+N7gw2kl1LqiEXaYavredbWtZElM1w7PCFjJ3mpQOH51sSIrlopow2O7EZraumNjm1hAwOfyjVa26KeqMZpI3HKLKcV9vEVsu1TerPDuYZrU2+oDBALE45eB/ZLMQqjiSe6m2ds982/82YfT8h5dMUci6biX5WTyJ7vZ0B7meO3QnGqVgoreW80c8fLXG2ofsB43WRDyZTkfO7X9ev8ATXo6t1hN9nTjz8M8s+VPC0/yiHSwCscH2VMElVjCdMgH0TjNJruMawGU6W455VHqnxvF1r2W5cvCoXa4XTMMxlctqH5UJYm1IeRxj5vrEGz+vW4Hb0SYZPyxxFfIbOjQ+LyFv7Vpurg7r/CTsp7OmPaW0o9JXtQ27c/xN/bp2OsQiaQ3fATDs/w351s62nuYtlxSiQzT22FXUOQGrl/tWwEN01r1iCWWbQgy+kpjnyzn31uXvC8bT7pY4ypA7PJk9IeOrlUe92l+8PNMj7P0Z0hc4815Dieea2Hi5d4Lt5o2gIGlcamGPZWzLZroG5a+mjmi4atI14BHsqC6N67q+02tDAQNGjJ99Nbi7dTFfAaN6iJuhg40+kTRgkvDIjzMixxlSAMcmX0lP2uVXr2+02uoYUcR28joWlccyABnSOVTM9zvc2ZmcGRWMcnkAOyOfA+FbPjmvpZhf7P3zEhew/Z4rw+1UXVb9us9ZSIlsNusyYxioIbi9O4NnId5Nga5AR78VsKPr0sJuLFpZXjC5ZsL5edbIknumnF/bPI6FQFUjGNPt6Nr+vX+mvQLS6xJcCUq9r/ML6/D35raAO0ra3j63xgkA1Hsr36v0ram0YgTondJ0Xm0ekcfvXn7a2B+O2+FObIRNKLLOmXPHtmtkyQ7Qit95DO5lnQYyWUkYyMcfhSMJkuOH8SP0T840m6NrOf5kHDP3jlXyO0kK/8Aci4/Gv3jaQ0+EUX9zQkhg3k4/nTdpvy8P2BkZxWl1Dr4MM0DjiK3mhd5y1Y40X0jWebY40OyOHLhyrXoXX9bHGvRHPPLvrWZ5dzv+s7ns415zzxnn51vNC7zlqxxrUsaK3iFptKKNXFsDnQwo4cBR7C8Tk8KGpQ2OIyKGFHDgOFDCgY5cOXReylgRPIHA8OyB+nRvNC7zlqxxrU0SM3iVrlQGOArPfWGjVh5itKKFHgPmv/EACgQAQABAwIFBQEBAQEAAAAAAAERACExQVEQYXGBkSAwobHw0cFA4f/aAAgBAQABPyGhC9ZA3WmcFD4Xr4FIPypSasZaWLgR2exhlvEq8Ad0q1c8CG0QwzNEkkMSSSNvdKSLiEJvW6/4lWHZgC6tbACpZ+Q068I3LLzT/JI70IgAQBpwtXJGWvL3A7ZoZOOb3HYEwU1CZMAsaVew2wejdmi7It6ZqWahwqUFIJZEFFAhsCq50voLIsgM268AkTogEGvWsk8eAEw1YByYXRNbozSkkxDB1LPigfyakKjcpp2ztMTMSUaPATUlbeATofRPWYnrLX3mnI+ANxQ0Cd65/CTKNGZbYV6b7DHkqdKUdIrLEBZNyo4KJYQsfPz7a15amoy9zxZoF2C78w7PB4bhHWMHdgqTQDapLT+peJYJ8VuL9DdX7u+v1Nq+F+uBT93f0T+VrBgi63KJdNSLEF2l+KeL6uUXJYmLjQb0YCtqwST3pSn0ME8tGZNLw9a/E5cZ+hSNpxNJ8m8IKc2GptGtXukZk+RkjoZo6dgVhtQQKtzB2lD5Wcl7KXnSbIGxCWFqG9GS5kUYUs4fL20/smSihHSB88AGj1h/m7TJAIev3FeGhK3X+rgS++QQ8Aw3RFJRKnRqC0s7lf3d9NaiA8r/AMpEoFHe1fHNyE/Vfu7+ifyIGUwUQ4GNyL/soJd4Bi8YLt2kIFCd0xgbNAvmCUXmsAdNP6nL0Tz0MxPQj5EROtCTprZy0J1VAiWVCgYvjYovXMlpzJmGnOa8jYLs3WKINMAvrZaF4vF7UOZlMl3OoMzEa1K9eQSiNLIztepPpqjinY51fo6lMwyNJ1inu61wKN7NJrUxEjhfMT4qdyr0aLbyrU4OoOQL89KmnrLsfNvDh0nirw7uz4eKjw2EptpXjlwQix6AGVpZ1KG6WvLPfhJRCHmpfRwQwrV5I7kvbnUOQnELDRMVMbqlm4g82Ve1TV4LzJ1DNtZpm8wCWAFNOY0kwLD0oyBLnLRktOricwUwHqPEGXkKxh1IJL2WoUaYBHkFMetNncJSR7p2T/wbNJnJSQML/rFbr4ZIgO8GvWpwHmyDMxERRRBKr6oeEw6Y1TjPahF5PGcl0oHQvFM5wZBRwsM72lNJegobUK63hpzWs3irrcLeazQ49ACTZ+pJqz4QvBkkW7KNJY7qbICCdXa0Jp2Si6TAyEzC7FSLiqmBz5rykVeBDJQnHRigMguwIIIkCM4zin2RTyQK9Jp6m+uyEQp9chrjC7Eu4mlTkncspNmwdn0m/eTgG61IqWPy+516ZrLBd2KkvBHkI7AHnhDxhSHaWrvwYOQ0k4wVibASXjPrgKESzJ657I952P2Lprl9qULKQ1KkWHS+IezNLQYMMEzBC80+3QF5ndGF96dcYTARKQdyn9S5Fgxhv7ZgE5M5651DFIjQwzwFAZbZ+QZ7zwBABVsBrTImQGWgfXc8bgktL2BQqiYgwuGQrfNlJEnmSgAwS6UFYw3jdNBJwrhU5Y9CFW4LAk0WNSrCY8tKRJmb73mvjMgYkFuusBLOdzSYQXmr+dEEUmvXs9KDczv0xoAicl3Kwm8aBABLN76ZKudCakFoMvlTbIECRi2ZWZxUsu62Utw2Zh3ogANg2NgLjY8U34LQSFuouqutwuR0CSym7xntFuZRJbRJzmOVeaufY8uehE0iEJyZXZqjDkjWrBOhZ5K0Gl2xAhIqMjB4p55gm02lUk+gxyllIXXn7jtuFUm3yKCtoiHwpEvcB5/wrQ1RIPp2HoRQJSSYa1E5AFTwEEDFyuUjDt2mgSYwAkdaDEGcw+CgGJjLDLvVmMOi7utJ5MVHcGlyj6UCyCJRyNpp006QfNNNF2Anu70qwRsGDYqPsCXd6yL9iYd6scRsYGxWOliGDlwOguC4I7wbMDCs2mmaZpFoKYBN22axhoEYrSiyJi9ABRUDYo0B4GD2v//aAAwDAQACAAMAAAAQupSd8/0X33x43T9Ry388888xu4pxcpAarw/cCWZjX1w34wffHrtqRCtoBlUCXonEwTiCM7Ohm4qmHTgPF5F7Ok+88888/8QAJxEBAAIBAgQGAwEAAAAAAAAAAQARMSFBUaHR8BBhcZHB4SCBsfH/2gAIAQMBAT8QyUXBE6hbggQFuJh4afAanVxLUVBqb3tBUkuVYhhLGDodSVmjKi1XiPBS4jT1Phigtg6CebBHH5HXcVpGdmn9QENpQFgy2ickzA8z5nNv8nIRIpwP5GaM3b9whqg6a5/c3xXG5zvwwKhSmvt3UqlYd9IDQ99s0ruGEzPrNSr8B6BlIKIoJoZ9YnCwnxQAWwovaWT25reJXzv6xaio22h3UDahMkXKh6QUGo534YTVtd99II3V9wKzH1+/ODiaa17Mq7ygFOsMpeelRrdqv66eDIKnjNTUeVHLSK7E7wPgi1uz/OnOBN8Xn1gAOzTpzggC0PcXBBeEGAMK5fuAbe2nR94VQ2fhjqzzPeOnO9zCr4Tsen5f/8QAJxEBAAIABAUEAwEAAAAAAAAAAQARITFBYVFxocHwEJGx0SCB4fH/2gAIAQIBAT8Qr5gGbENiuMuAVcDRzLPRaDAzlKq1w4VrFCMGS44Ckg1GDlLhalxTLOHBYZwjyO5EVEEtm3ETP8luLbmD3H4Tej4huw1TbOsO06D6nTk6uETePeAxZVR/IkjZMdppluHOdJ3IhaLjZ8Hxl2vN59xG08P8mLVRHMm3BMQ9F7YloLYAli5coaa4HZ0VThzlEUGV6QKGWnKHtm3WLVQlAkZMHK0VFCLjpO5GLovzz7iZer+S6nPy5bbRc5w+T3ljTLz4l1wYRUNeXcL1S6/v36ECLOEw1Zvb1xhut6n0BBqx7/fSKlcFafUUV8Y7b9IpVpGnDRXmEXdEuNw5r4a/rSLCdm+257RAB4dyGKeftKjYaVCjdcesAZfl/8QAJRABAQACAgIBBAMBAQAAAAAAAREAITFBUWEQcYGRoSAw8LHx/9oACAEBAAE/EMavkMFyhAPbj1rMqeXH7QPTlGMU1Z4Wr9ZMI/YTT9ip8r/R5rtHABSqAqG94zyVeSCbNEGzdswKnlTwSkRL7o6/seMIYSREBTytfM6+b/fAybBih0ALnkqQq4D2vK6E1s5MAxCBeaP1+4GDfEFAGgDFguB+OfzKfhId2HomESIjwnyUwBSpVIVk3iLY1MWi2InfnC3JHhgACQBpEZGlxg5niIVZsAN6hJlCA/jCyAQN6LDIk9hFDaADbmoJbSgLREP7+OZlFmAWVXp4yUSRgwIKUs1ipAlkhBoCI02jciZ9xGZ9Eh5hfWChq+3wif7rNSg+7D7ADzN5cWpTbAuIUIMoKIiKNzr5BjdP4ABNeQw984Ug46wMApqLulqDhddqhorWorT0mTBbFFGDZg5VIOZKMs6DKGg1aI2tgKmiBNYOaNvo9/1qzlTG7vSV5BO8P3jkOYnTY4b6r4IFAlEsflge3PKVdEL+VzT8FJwp+v61fynZQv8AI8PjR/tef8NVjd4O4FGP1QxH3SIgF2JFnUEuairmSAe4IjSXbmnGBg0jiBGtr3g1GPEXU0HtxAFGBv2z/m+M9fAMsmhDNEavq4e+8UlkM84EAdkNNCZ0ZBu8ACjokbzupZNDtizW9ZPqb7lsKQIoEjHDDtB7dpJLoDK4dj44fgTipQ6bX+vSGl8ChtXEdC6wRBoj2YTxDKp2+AbTQCuEaGiU/aT7/CjhOXRtH1t+/AmCNUBdDP8An9Pissb9oAQ8BXWGkHvQiR/CfEUD6SdgC/lfjAJg1wEImOHmhyv/AAK/Gf7Xnjyq/FiNxfkaxEZeYkdPp+zCQCXCQABRAAFVy22LhFdbr0XjHFNQgNBtNdYiGER4C+M/3fGevgGsMgOlhcNNiEMOAVMCu+gntQZB51gdck8FqpsURwo0eGydHAY+mMgGutTCu+C67xLmhroIaCNqqBRMaTdHYAooLWZEaq8aXtgdslGxQFEcR/MGioHDNrRTzhhKoz7oUKi4OVAuVqhFiTl0hE5w1GeScNPDQmlGaorhoFK3diprznkT5XToDmPeM8BvFY7mgMCkdFGmJTE6TVZNVFK+QXFX3Yyg6PRD18FhIMKqHgAVcQ6B55pHh2Z5fw2g6Pph+Pz+/gvyUWkX2UJ2mmyPFd6MQLTQOBQiuEUhSW4QyxBxpyOGYcIFDY6XQuDDYCUZOK82QY0UEN6whTmohFOgY5IMhtewAJDsCwpvHH6DVodg1qxCNi2CsDog2+u8uamYCitGbjgWogApENmnY4nCldLRDoHZEQdOjkKMnUXUHegJZoxAL6NhKdNXkqNTCowhj9/YDbJirgYHK1i/wxWyCAt1M6+AfDFVON6ogbCK0NsDa7kxk9FtRehqjw6Y6ZARxwCfbFj7G6sGUdoj3twu1yAonEkNGzDUZzxbbSXbqAD5gpeAJxYr42ksHtj2mZCHBEABROEzo1yOV2v/AKnw29jA6FQLsukHhxtLRhJdABGlRXEsdLWGJxwV1s84I7CFiQNoIobBHFn9oYS/l3iF44cvERXahBYzS7hx/BScxphVGgDtx9VTUJfqbn4JywYCQKMAqvgO3KADdqIJ9ZHn4C2BEhWFBYLPTlLV5otWlKUuaMY40ur57yxs9KqUCjER9iYx7/eQ8v5wAeX84g9/vCec094cCB6w0gnY3IXn95TzgB3+8ePgG8ZOBNuFlHEPr7DIEAE1hDIMbnVMaZqhiQ8mr2MAyTqaKyIIgN9YSNXOI0xQhKDjAAv3fFSEF6WY8xwrtFpBseTJMmTIf5yZMmT6/n5QKpYP34ZzsjZN41rkGT5235xFT6d6pRudL+DrnAKp4A7fWHoRoTmhxOU3ZCBgQ+JHguNRNhJZO5grRr5dqBHFuMEnUkFkJQUNIBsSnDh569oGtCEBxTGj40ASqVaTeCJsSkCwkoJUPRDE+vZmaCKQowgGu8H0ZGEcQ2sdREcjkzaJEFYaG9KcUgfcm3UuLaGiTeXrMKCVDNWqwOCQxIoHk4Rko5iwlrlnCxQmoFD5MRqCU/RBLRtXRBMdRglJ0QsBFOFlCqHn9SbJhGpq4sGc08ghQBBW6zr4B8fuY26mSdQNUQ1HEXEE8E5tFSeBtJ3nHBqs0OwOxK2Mb7StDjrHILUR1hRK62e8NDwOe8AFlsDduEs/A5lGEOqnF/rS4xOG4Psil2sF84ypnU49rD9gxIKOXX+IYcF2lfmg+oT7wJ83wSwWEp4Yu/eI0REwpsYiaxRXYsQZQehh+DFAnMnB9LZ6uAL4UC4GKh4XCljCBTRdNLXjy4E2IFAILFUFPpkgCIDg5dfy5xxHhIpI05aPTww/Jwh5qbPVwsxIut50LvEQJS4aYm3tx4HVE4+jRo0eMNSEoavha26N85xGnQNwKafZjCTVALS6NGjR4zkuU4pyQaNGjHjHn0aFbTlVuuk+Fw2ha36Gz1cfMAq7ONpcF3CwBXFfOeIaySOIdTPxNLS2XxgGdK6WqCcrzleFRyu2Br+r/9k=" } }, "cell_type": "markdown", @@ -11,9 +11,20 @@ "toc-hr-collapsed": false }, "source": [ - "<img src=attachment:09375636-629b-4ee2-9011-455f6157ab16.png title=\"Python Logo\" width=\"360\" align=\"left\" style=\"float:right\"/>\n", - "<H1>List of included Python packages</H1>\n", - "<HR>" + "| [Jupyter-JSC](https://jupyter-jsc.fz-juelich.de) ||[JuDoor](https://judoor.fz-juelich.de)|[Juelich Supercomputing Centre](https://www.fz-juelich.de/jsc)|\n", + "| :--- | :--- | :--- | ---: |\n", + "|||||\n", + "| </br>Author:</br> Jens Henrik Göbbert ||||" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "toc-hr-collapsed": false + }, + "source": [ + "# List of included Python packages\n", + "-------------------------" ] }, { diff --git a/001-Jupyter/Markdown_Tipps-and-Tricks.ipynb b/001-Jupyter/Markdown_Tipps-and-Tricks.ipynb index 02dfdbcdcadb45680249c91b78a9d94434d4eb09..20a6c4b64ebb485bc49b6b4cc05ed09b489c520e 100644 --- a/001-Jupyter/Markdown_Tipps-and-Tricks.ipynb +++ b/001-Jupyter/Markdown_Tipps-and-Tricks.ipynb @@ -2,8 +2,8 @@ "cells": [ { "attachments": { - "09375636-629b-4ee2-9011-455f6157ab16.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAABgCAMAAACkLcFMAAAAwFBMVEX///8AO2EAOF8ANV0dVXddfZQAMlv7/P0ALlkAOWAALFgAJ1UAMFrp7vKttsDI1NxBaIRPbIbc5OkAIlIyUnGltsNSeJJxg5ePp7jFz9cAQmllhp2Woq/w9PYAAEQAB0gbTG8AFU4AGk42Y4K/xs41XHpYcIhzj6OwwMuZq7k9XXoASG7W4OaBkqPl6OsAHlGTqbldgJgAEUsAAD+dsb+LmqouVXR9maxofZJti6BYfJQnS2yeqbWAkKEQT3JAbYmctWnXAAAXrElEQVR4nO2dC3uiOhOAuVTuFIFiBUuX1hsqou1BrLXt/v9/9WWSgDdAPeuxflvnnKerGCCQl8lkMhMY5ipXucpVrnKVq1zllCKKvqX7IpLvrsnliBF/dw3OLWLUGSwaN7Ji2/bEtpvfXZ/LkVHjZz0YUbOXCpLAc7LMggjRd9focuSm9t01OJ/40UJTNZ5jV8LXzvMo+KuPol9e7HvlB7HQqXmazG4KH57jzNH47TOhn8PPt8+znPR4+Sks+GEqC9sksNxQP8O5HU8TNKmFP0859Fmbn+Gsx8sPYcEwFW4bBCRnaZQ45dGpZAG0gTWCanAj4wznPVp+BAv+fCQUkMCy6jksx0jB+kiboc+hgs8r3Z7hvEfLD2BBDANlp3cg1sLvc5w/UokO6iMzNaEsfJzjxMfKD2ChzxV1DyCKc47zWxImUYH2NyaEi4u0Hv96FvSGUkICshzP4mgTZwCDkFros9+QQC2YFzmu/NtZiIbFlgKI0D9PHfSFYtttF3+O321balymg+svZ8ENylFglSpr3j9h/yGKkS8WfL4w2ctCHCTMNL1MkPdKGPDlKHBflbtOBueq5aXIfhbqCeOY1lkqc2qJvTKrEUSaVu3bEPizWJYXJPv7CKTRLteFXilWt0IrsFxQZTkarMx5R1v7UQfE2N6wpVV9A29dc3laZL/SviMu/V03Bovf7W7jZWDsuFBFo+js5ecqZ8HvIAIilx62E8Of1ekMcsGie+u45J4aUVb0HH7dA0SsVaHACvdV3fYA7cuxR3aNUaBJkqRwOUPuSAIJNg2TuaxAMTNnMeqqUKyUPbELPyvyjiLTZ3VPEXie4wXJq0+3Lihh8W7djfYQU7yRK1CK5SxEzx2GWUjkiy89IKJ+5ZUVez04sfU2eXqcpHCp4u823W9yGYNnsVU6mCRSVU0dqxT+7rhBZ6JiT4Lwlm140eC7rDxsFPvCPZfMu9mGW+ILE95LjmvY5Petoag/4CU+96LJvMQNNmhoE7t5s6+jx+LN3Se2ggUb3ay+Qr7oHLDwnLtOCQu64IU++PoRNaJ5Q/dTL4MFp8pWQA99WtXxueQ2aseNOpsS1TjZhhY9zCYLHmk/eY0F0miNkuMaxHO51X5+Tdpyp3L8Yh2GOtGLnLP/WFj+iIU+18GV4rqXx4IVVLMgVQY01ehQVDrqWs7KgnVT0AVq9TUYzsmCn9IuN3mML46FRoVjARqCrRoa6dnOXHCM8XNOFnxTK7ourbWCoc6dj4UooM+WnuiXxoJbaTei9qoMaEqkvFz/CMfQOVnor6IxOH4tVktK8iLn1AuGtzrvhbEQD/ewIFdV0jdXeyudw896RhbCSVZBjR2+9VItq7Gs5nbQOVlwN1hoKE9YVOECWGjyxbPU+aOUVnURBrvam68fcdazsSBmtHJq34h934raasZGbgids49wt/RCeIsknB1nb/0nIu5BYU9AU2u9K1bdqqIbcj4WwozpIL/ZA9pP8Pns6yn0go61DGFBpZsq+wjwS15UHxFmD0mZqFXTUiK7TtLKW7BXzsaC+ElpXYvAEN+pwZsf9wQs6O9Yy1jAgvOLmE4RHLDUdoxM67JYWFQPIlgYBJeLs+Gkkr2DFcPZWNCJu2ozMEu3t/g4QR/h90z4x32M0J9nYjqFbKfAvzDsEVLmT+JFsaAPq30LrFQ57dTbtDsPdzidjYWIepn4DUwpIHlYxin6iFkAhtVC8eGuDqHD0E1walvPuU1NWHAm2KttaLXL6iPc0Z9YjtFykyRZOHRYeTYWaB/IpRsNOlcFECU7DGFB/iMWYrYbGnMVm1ehVE8MZ6jggG77PsHSEel8RF3pd4xmAOENKxbsb2fhds9MhDCu2nsmbRU/2Ho8GwvT7EQblOqzT5BxNqN2knGEawrqaOrTz57t9bCppQcjD0vdZ+7foBr+IOXV4A0OK7Zo32UFR4zI/xt5KHTJrbFQ1bh+d7uDEQ6N/TobC3163FlldbI+YuPZjI4dU/qRYa19jqj7IqKCfovpwMVCJQmceraH9e3RDuNqFribqp13xyDc8MArOhsLL+S4e0LrKQuyOe+v5IU/koX/bxH3DCOqp6UaBR7LA3u9s7FA66jtYYEqOA6bERr8rwn06n4MC/1KvSB7lZYju2t37tHFuVwaCxV++J/Cwh7bsTqgaVqgU4S3wzqJKwuXJ2GlXuAqA5rMAtcE1929cUVyaSxUeFl+DAtGUOFf4CstQbfI1JC9/08WrnphbRavSJRKy/Gl0OxUD8sJuFAWZG5N5B/GAuOUz01xX1XWgl+844FJuGdj4f2oPiJI14SqzJ/DgiiXdpVCUrVjUmx1Hrhmxw4LdHArnZqFYsa2hfqg5aYV5WLRibefw0K59bgdV74pfknnUpyF6zvN+XyerA64w8KcVGNrTEpdQF4+b340C8XHZXwimeIr9EEf73cMf3eHLWxvGw16rU3IL5w3kLSa2Ok4bVCJGXGBt8+pC9KfNtKGQ6sUT9tpK8RfrMYqMrMFycY62W8Kx/P71L5HZxTn2bEbLZ+ZwwyYk9VjTi4tatWHrVJfcpm7ifMq019cr9jo1BZF56jZGhJ1Ffi0w8KgaN5AJHPLXJBX5WgWaDzm1ljXCFRFUdQ8N/AkMW6+qdRms54NcZ/OP3Sn4ZvI+MtlzzRN7xlSdF54E76YZsT4wh3eTuYtoxuu9mk+k7OFHl97qz/hOYtwksc8uaqNqhh5ac/s1XkcHRHQG578isWxiTZzXXRQtGP7Bp3tfUI5+oKoVdHRvPvPrl2qu/WbIhi4Peu2zUvUidAqKGyRmErZzrfssJAr5PU2M7JJxn/PQjZPebPRoDNFBuFp0tJpWBioHXS//eTJhWiWNRbE5ScoIb0FU3cvNxbRSaioMMPbG5IBOUdBJIp+R4JL04Oh64t+ooI666jSJz3FWFMwC00R7Rf10ONqpVQRJ88x1naul5Cjt7siZCzQyfobYMFQ3y10joen0rb167sw7MuQ9MtycQtZ0GmHYud3lfo7hewimZjceHlDG1Hg+F4OyPGxLNQ5uhmHMaLxC5kSO8k8Zb2Oq+l7/R0W6Gwv9wIs5IfzBWLF+BzaY26TRhto6N8ZS3rFOSyT1VH7MrkrVtqC1K6IJfrM4JNNFvBGj14EYeGmR3IVMAs3N1hJiG9B6ahAb6hbcQhSsGdewSnzVwqFfcQbYUHJj0rhWEWf+jS8RFrTXz59XNdskKNZyOwaLl0rFdHaK9liASfRCw2SXybChGQhC2K7vckCtWj9Lrqcxg2Ni9OmjF+jvan12EEsTAybVDScuMoaC773UMQCNfkJC18RiajALLxSC9qpClycLdcW8pP5UX9fdmSpc0Z4KSp+T/MVTcpjSK2N1WpM4iKLS1wphhndtBYifHzs6weNsViLucoYk3M75CQsOM/TXH8VszBqAAt5oYwF3UMPkLyWuqN3X7IS6JfOU1wbkWq+x+oaCxb7sZeFETPAozBgIfp1UIxENPtSNQFnIatef++aimWWY9mYMtEoZeTXKCXkycpaGgPtqPghrbDYzOa+hFWpjIXS3Nqd9stjr/g+dYNZNS7zHGTNcpI+Qnx/7iX01hWyYDwjNdgaOSESaJ+MhSZEwWlrCZ65Qeh7L8CC7tpAbTwJY3uNBYcLD2BBTOEygQXj6cB4GT+atxp1NPI5ZGGcWek0hlLolBCzLoUbOrE7X2bTwe1VET/L2eHZl6lrhfNuFq2/HkWZzaV5jU3JGrGg/fKwfT7th3Hk9JeZebTSN6fJlRGd1POWTbh9Bbaj5QQQMNgSIMaJHcIlc3U00u63+YW/hwW9C/dgnsaEBa8JJmciIzW7nwXGgHFKzoLfXywW/dOtGBOXZ+PaxSPRVYMotqple2/kuA9yRybSTaoiZD5gLlireD6vym+I8ERPW9B+Vp42x2mqrSqrs69IPFXelGgkb/Zyx164Ux+RqCYojZcgdJFAfX056Ha7SoqR1PrlLMRMM9XR0zJjLMxCYMPx+DeLOYQFZJbGayx06/X0hIt7z7fjHFfCFVsaUdG4Q+itDyDFbrGjg1/XNGVz7Jnru6j9khIHCrvyuZwub4oRXYhv7jyS+yAO70Ev3BtISBTbur0gjHXdb8n4+GyWtiquswA6EViIUTfi8gZlwZtHcDy8rkfGwsAuZSFevq31EUilhN7Jgiv1Uala4L5K5ikL3Jvc1jpnZDXobZE2Bib/hgXmQS2wbjhu7X6cQi9YbXpAyKCLXsmTp9/NmNWYEmRnHBF5eBjebmfjiCbjvw1JCf0pISwwqSkuugxlgV0tlub3euTDfESOW8ACEz6FXUDtVzaOkE/GQrM8MI4vdVw3J1sNwivbvlCD2zmwrPQ2WuJfsSCO7R14+Q2HwylY8CXa4n0WAuRJiQ6X7GOBGWOfymxCngzsXxhT/8IM+xeAhdA2WCdnYW3ZoE86GOrSO1/EAtNYjoCFEQlfFRfcqViIKtbu0MalhueA3Xjste6uW9wytY1Dy7w82zzev2IB3cnlZq/GSZtnp30E/0d9RN/G8weGDJrsQ3FgEa8heA02WfiKRZG8vYv6miwZHO96mkaoO3E9GC7HXh2SJ0IejAjMQpzeQIrHLguWeq/Dmu4Cbd5CFqxUAhZctYYGBv5MYk/FwqIiFqoqQd/tKsiMk+E/ThBaRZ2J/+FBGTyYRIUkc/twtypXKDa9OOsJf9V6W+op6msajEvwgXlpNNs0pBsS7MVvmlTWa/GxmNL5CLs2+/jku3Bsvfbce/j0sM/O9z5XpV742j0IMvx8lcyY9W3QAq7Hvc3ulTauWSh744ea2gAbIMS2x/gZgLKegYWN5cQSKR2P60/ZQ2OwGQt4PsIjXxwbz0c0J+l4Vlfej193r1g6FSGS1WlWYlhfsrzAy95dKyrRH/G0vvQ4XuBYL110dgrptbtCWWTtNV7C13RH54jGfBiw6MAyG9Tn2wZu1IW9li+b5ys7VvmY8j1dtqnDSXR+L7sLcqLWmvmb1ImgNhffqVHxG7tf9X53Wc/mcuM5+jIgqdu/4bGJGlAPHf7q7xtVMtBZa25WdatBXRxz8OUkmSOmhYe6jNu6W7Yj/eU0K9IWW3hU+H3z+n7oDJywfHlGXMZ1cKGTVHddotBJBmF4gvvwl8YvHCliv2oZl2JP098nVxZAksr1GpSSEeXfJlcWkBjlrgXoIroXuq77qeXKQvVwEkzHb88VPpNcWWD0EjdxphYKRuJ/p1xZsOrVWdnVrxb4m+THsxCl1UnZHPvtSwicS346C0Z1B8HKP0ct/HAWxJCtciyAtdD4MWqhlAXfirJkB4sK+hpnZlQsMqKVi0+/xOS+6Wt7XLTo89JXV+YsVPu49eOv1L/Y21LCglsPhOAeu+FvAyoh47/TGQ3xK2RC2Jam6M/ogYlxiW4PJ8g8ZHtc5FubcxGNrz3LQLKsUr2en77kcATSMR3JrVq5ctifyR+9DaqYhalSb4bNpQCN+SHMm1giNPpSScyS/zpgYrRpOlzCLy4Tvy7Qv3MT37sxOyV7XPRgTF+UJ13mWqFbfW/9pdxtgxzxmrIP+z9koVM7fMXiHSlkweBqcA+iYYD+fqwMab0daPhc/jONQfmkixnE9PVDY8hOHy//fX3OJXozFaoXgWThffR77qy/ZKONFMYD5HAWROdou/Xh+Q/epFjIQmtEJmlvJy6wkD/eevfFxGEEOQv3Q/JjxgKOObh8FqIBp+xVCqys7nvckV5YTWfrbseg6yAajIVnLfXV6+bQRxf/+mHP/A6d1NRd/GLjDv7rWmJ+BPQNlb9ZZh/xLKTYcbGQS8jed4f2QyXw7K4fmlofB6DGHR9nt/guPhEuKhqRb0AloKJF8BaykEUWxeNwi4V+xEKkQikLeInoC2dBdBeptlcnwHBy//sa11gw6prN1uGrqLadO8iidofqRBnidnTris3V4GZ9qI2eonoP0BohflVJqMJ8vOs1WsLEq5HZ/brwPAm8OzhHTbbVEVBpTAQBWTh4ufYkkGwP52W4Srsl2TIEn4e2wHIS+Ennalgb1eDZhBQ4y4YwsOim22Jtvq+bvO0VXVohC95nFr0qbvYR3QWz4KIKFkIIqLpgFvQo7HuqsF8nsJDBsFfz+0vO1ZEwEOXL952aBPdDnHBqYFqMXufn7pS7Q5t0np8nbzYsSf4h8b2k701glsNRYMlUx4ZlUkNW6ybNQMXWalvpG0ZDAxbGSi1MUhUnAYzH864AQT2hkDYTU4VoEVflzWS2VGEh/7HJm2OIFVloPD+cQ2gaVCiawCt6o0AbTqeppNaT5tIuUHmFLLDr8X0fWq3Var1ABAmwwNy0xQIWXh0f3ZNOkKJiY+4F9ki+f+wUh6s3eMZROB2bI+UQlYC1wh67EcRf8t36cNiNcbwVpFhK8Eq+Cd+A5VGtdInOPn1HD890gppYDB4N0AvkwYX4wVC6X2NhZICOCBiIIoaTRxJ6qMR7yNd0f1PLxUrhaRNrkBGjLyFY0FVhjcJEwgrlQyWxFn1BCeHVDwaLWbDxQQOI1Usk24K0jfvdqzmABekLBEKSMAshQmqXBTut1+tdoQsd01i4gT3eL8BL46CG9/DI18PxiPveMbISvnVA9ZFeWCKBkN8WftKm9gOwYOOew+8p7SnxudzjNaVjR89sx9CGnJYNFmTomXUW1LDF3ljQypCMOlCDRU60XseBNfoXG8UxGtZBKaxtIhZHIj+opGH6dIHwTRYgXD+yOfS5IxW8FaOEhbUvG/YCwDwOLHGHhefGvN/iSMbUJfURjsSTpatkuWARz3KtoCwOIRmNI1wrwl65Nl4SfQCDbnFC38ZjmZOJ1AYK3lah8oQFA3fhjrLGAgfOG32Eb/dYMW8fAhvGEX5fmkwCEiTI1Cb4FussB69zUl6jFQtfGyyQPORtFiAlyYY+piMcGvsavFGXo2MUsKDzC39SaC8sSGLYJbHAdIK9DqVd4bj+QUptzXZs2PDATgkLHN0oGs02Dy63N6wXRBh7rrMQasBCohIWzBULicDx8nJOFhbQnZpHhjSJWsf3G5XCOWsweihmwSbByLssREeyUG/TsZHgFLDAhJNQLWTB4HENLooFJjIPtBBWwo8OjK5eY8EBiwD1BQ62F/CmuA/vXrm3byH5D27Y73+MTRZcFtq/r2yzYPAmzSZj/GnThy4FDzhYert9E5a69wcQnbzJgk2SiDIWIuz8dYgR8q9YcJ6xBSIuINJvaxzB4JeGC8XjiBoPt+ayWGD8ubpnAmpLKUjdQ53n+oqFiPUSq8kuoxULlsc7ojGEfI/4l+dEc0Xa0gv+nTa3HE/YZiH2htNkGsK9Fd/suW71J6ht/ZG0CB0HNMRA7bpRy25sszBQhk3IbVlQFsSeUovcLk/GEWssHJ4f0QOF4JNOZ1cvIDNXKWYhmmCDYgljUeb7hxGZOMMjVIMQHLaAH4jvKbl/oRM8PU3wuzPER4Vcezh6fX2SsOURwq84KeHjEbPw+IVL8ParVn8GGzFUMQsyD6PSvsp7nvIEY8Z4OHl9nZhgJf5SbGQl/AM7zgRkLuCIK/cRFmeJNJx5qJvqKyxYvPhFl3gzPPtpYk48EVoNcqWtRxkqOzmUBUa/Vx61XzKs0MV8PD0SSRg9pSmhg8eMBfqWG+sfolVnYM2M6R6/LmZuSp8q+z3OpHtQzGMyDTrh6pZGtzOH7BuG+ab5jJZAH28xN9YtFBJvqaN2NnDjW5wwEkLvL3bgsXakNyOKwhELRa1wPoMBCON3brHgHd2HGdYbjH+L84xpTeJOCLk40W2urwaDDvoRiuBfyIn18OBcGXSq2xnN67A6VGJGdOl9Ejs0RyeimS0+dbXG4E6Nsj0uaG7KevMO0A08v5Pf9i0yI2tAjavfkXZq+TmxLO7Mq56DgExH5zI6toGK9ULKnVWz/hwWkNJqpmyZt4kTuOUiugDvGBZ4ib3nyXx19MSp5SexgMT4MEfb0xEyJyh8dxxeCghYwsH0ITlNrujB8sNYgKg0t3/zbKuKJEmaJimqqnZfHGPfcn8/Qb7K1hT8u0U0wiRJmk0nNC42/PDsMrgIu/kqV7nKVa5ylatc5SpXucpVvkP+B7U7jCp8UStyAAAAAElFTkSuQmCC" + "67258d94-84e6-4a0c-ae8f-c74332ec082e.jpg": { + "image/jpeg": "/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wgARCAA/AWMDASIAAhEBAxEB/8QAHAAAAgIDAQEAAAAAAAAAAAAAAAcGCAMEBQEC/8QAGQEAAwEBAQAAAAAAAAAAAAAAAAECAwUE/9oADAMBAAIQAxAAAAG1OLym+/nbqzUsm6vIuTKPn64neBOuGo9AjQOdDKiXRPiTXXPXmCOZSJORKW5agvJk10RdQ/TN6mqto0aZ8q9DS4XdjAScOIq7ZFew10iKZQkxzujLABgAAAAAAAJWqVtaldrhFkK93umu7yuqheZ1q02/py+utxrOhCeN3N1FvBH+vxxu3lRLchT92pJ27Y891JR1+P2Vicacae+FfnDBLKVK3SFo6i1FxKtdzhsuBGJPGOd0ZLAGDGmR/bkWjcR7a630LXlsdIuREY6CrrkV64dMimYUlOZzRyUCaFwxyoi8oMaZRhlInrccsBX+695sBHPHR5PZpy+mbu7YpZQXI8CtjAZ2aLpSw7JGuVbXZJvcd6ic65nm/ngCJtqZa46o2z8m/YxJ4xncnVrS4jUJ6Eg6lpbb0k9cRfaknSVLLC3ga39Y5JCeMzwFnoNsYAZakKmo5rMrrRLLp8uvvthmttgrbGByewL1hfM2tdJqfdwqs7K9BN7jZ+GlNruSH1Ed+Gn8zood9o/QklLGAAqPprAZIxJ+RnfWWTOwgutRmbFyvMk/FShaeXIjIBFgAAAAAAAf/8QALBAAAQQCAQIFBAEFAAAAAAAAAwIEBQYAAQcSExARFTA1FCA0NiEjMTM3QP/aAAgBAQABBQLClQAczykzaKccnzRVVkzxzCffKyQoePj7sxkIat2dtZm/uMXRDvf+ExUAFcbiaxucrcVuam066dY8vw2Ft8ZB6mOY1e5gtBbVc2Ee7ZVyNZRsbZIivTNhnR12NrViFZWOWi5gq5Y96mRY2K8x9eKz5YZFK2cidgRf2q7DvfSmu35tYpHIv5LH8mlgVMhsYmD3T9v673Aim0rxDzS3/tcpyS2kN4cURHkPJR+iLjnB1uj8dzO5WA8LT+t8Sfn8kftw/wDG6/2Pyd+r8U/AZy3+fEuvoqbS4VNqnrVx+0cxnHkZJREeJaRcjElmOx8Y/tORfySvPy7bqXctxOXAodyRkNq2cRuPG7mY1HRn0Ev7XJsMWSh8ZszSDqEi0Q0VnK0v2WOcSG3qQyauEbAOrOvS6zxJ+fyVrptgVaUE39Tkfk79X4p+Azlv88KNk4+4lInUtISAItnDWJhP6kmCpS5q4leJTxl+05F/JYmebqL6oD6M88EJ1z4e6WcGIy51t0KnW30xLEzE0fygI7arE3GtMgJYzWIQsNPtmwfUQdYbA2OXwkOP4WQND1qOgtYQiRItMz69N5xI13t1nI9UcS+i2Geex3H1XNAMuQ6kabQ3t9ijWtBp7vclySEh6zDzc9Atq5bLE+nOVmpzva6Haa9M1mUp8s+m7Bbk0ut7rcUBi51yMT+R8bMnAbNkX8lgzqbFKXYI5DB2aTWIMZLOQvXEgyWCKcLc9Do7b1EuwunSWsS4fJM50wS4arC2nwkWYrAzabQ9KJn9i1pGm93pMijwo8HuCgcdvW7FDV2B6PxEYZ0e5F/JZ6yy07LPMQnG9AVRrDHgxdgYD0abYgG2cjeB9qxzL6DC45ccKTM2qTnfD++6LQ1oL4WxBCGkjnZrbyEhJE9XMOzxEmRzI1wzhkhrPmWcEi+SRT90+sLaWPq0RcitxJwE09dJhXTwhmDozOoPZEkPJN3j2RHXZN6c2RfyWMHrIMKyediUUNTQmv4gZBTxNgERIMZm0dt7czQYmYUfiMvW24jV1QlLi4JXjtOt4QSCp6defZH3dCRonbTrOwPr7acVVwqcdlHcS3EhaQoRmkJ1naRixIJmhp1mhpT4NGe2zrOyjuKahWry1nTry8tea24iaQhI0+z/AP/EACcRAAIBAwMDBQADAAAAAAAAAAECAAMREgQxUSEiQRATIDIzFGFx/9oACAEDAQE/Aa1YURcz+RVqNYGDoIrhr29CwBxmRZrKYj9vU7QEMLiZAnGGtTU2JhdV3hYKQDDuJtAbzIfPWX9yaOndsuJVf20LTSORV/2EheplT90lD9Kkp/SpNP8AksX9nlCmjUu6VrKqYdYzO1VMxaHcRreZa3mdvMBUS4mQMyEyHoyhvsIAFFhNXWD9izRpepfiVEDrZpToYtmTePQu2Sm0WiFTARKBS3fBTs5fmHTeFawjUQQoHiPTzZW4h3EYSwPmWXmAeAZhMIUvMOPQi46SrS1B6XvE0dQ/bpKdNaS4rGGQtMP7mJ5mBGxhRuZgeYEPMwt5gQ8w7iEXmExirj8v/8QAJhEAAgICAQMEAgMAAAAAAAAAAQIAAxESUQQhMRAiM0ETIDJCcf/aAAgBAgEBPwGqo2mCiqsZIhOTmMhXGfQKSNpqFXLCOnu7DzCCpwYVIG0FNjDIECM3iBSwJEHgwDMIImp/fpMfj7Tq3wuvMrTdws6lc1/5ApbsInwPL/jrj/zrl/yGN8SS+x1t9spyzPt2iqi1vqcweDFz9TJPbE93EIYzUzUzUzU+isV8GEljkzpaSnuadU2teOZWxRsrLLthqBiJfhdWGY1xZ9zGvDf1jWZQJxB1P2V7xbiCxP3Es0UrzB4MUzJ4mW4hP2RPyTfmB8Tfn0Bwe8rs6cd8YjdVWPHeWWGw5MU6nM3HE3HELg/UDrxNxxC44m4J8TccQfcBxN5vGbb9v//EAEMQAAIBAwEEBgUJBgQHAAAAAAECAwAEERIFEyExEBQiQVFhMnORobEjMEJSYnFygcEgJDNDs9FTdLLhFSVAY3XC8P/aAAgBAQAGPwKmeRgiLxLMcAUY7CE3rD+YTpT/AHrKGCAeCx5+NWs1+wa4lXWcLpwDy93zE15PndRDJ086utohZI47b+IjDtVLJbo8ZjbSyyfO7Qjc5WGUKnDu0Kf1/wCiaSRgiKMsx7hTRRMY9noexH9f7R6LW0+gzZf8I4msDgOg7Pl09TAEbS/Vk/t+xPdOCyQoXIHPhU8cVvJA0QDdsjjUmyryykukdBrxjGDUtnDaqLWb00JJ1ffTbEstnyxap920mrOW/M5pryWNpVDBdKedNcxRPCFfQVfogjlt5J2lBbsEcMVBcoCqSoHAbzrcPquLnvii+j957qC3FnNbp9cHXSTQuJYnGVZeRr/hXVpte+3O84YzWa6nHbTRNpLBnI7uja/r1/pr0RoyM2tXbh9kZqyuWeR0umVVjwvZ18R7K3yqVGtkwfssR+lQbi2eaebXpiyBgKcEk91QK0EkUrz9XZG+g2nV+YqW10nVHGsmr7yf7fNw2yHT1l8N+Ed3w6braTj0vkY/1/TouLuT0IULVJNKdUkjFmPmaVJG1TWx3TE947j/APeHTtP/AC7/AAraHql+NP6uOl+6j/5Af6hTeuSrj/MH4Do2f6p/iKtrj/Cs9fsWpGvWMkagzS8eLkmmbZdosV4mNKocBx3iri2v4jEgk1RAsDz50Wdgqi/bJJ4DjTfvlvy/xRS+pfo2v69f6a0cc6t99bPbGGKRZXb0SzDHZ8e81suze0kha0ZGlkbGjsjHZPfmuqyWV1q38nbCdjjISDnPnVncm2klCCaORE9JdT5Bx38vfVkZ7dooxd6tAbDrHoOCSDzz4VdtGr7l4YwGeQvxy2eZ+75uOeFdb2raio56Tz6I7e3QyTSHCqKtrNOIiXBPie89Fvs9D2pjvH/COXv+HRfw/RaJX9h/36Ft7uR1kK6uyhPCtosDkG3Y+6toeqX40xPLdRmkI4gijp4/8wH+qm9clXH+YPwHRs/1T/EUFHM2H/pV4ueLQDA/OpLq5fdwRjLNipTYzb3dY1dgrj21dWisEaa7dAzchxonrtvw+waX1L9G1/Xr/TXoA0S7ppN0LjR8mWzjGfv4VPdcd1CXD8PqnB+FSx7i4k3QBd44tQXIzWiGGe6+TWTVAmoYblW6FtdSOEWRhHFnSD4+yoTDrummTeIkC5Onx8qhmTXNviVSONMuSOYx3YoXEhdF3ogYMnaRj4ircTEgzyiFABnial1RTiKJzG8+77AP31cuM6bdir8PAZqH92unWbTu2SLg2RmppJhLHuYlmdSnEKSR+lWyhtXWMmMjkeGaQASiKRtEc7JiNz5HpMrWxhc8TuW0g/lR6nbBHPOQ8WP59DO5CqoySe6ri6H8LOmP8I5dG0LnHZCLH789EV9ZoZZol0PEObL5UNksJXTGjSITvCPA1LNdDTdXGMp9RRyqK8s113MK6Wj73XypbEa10DQu8g7a0Nq7QjeIJlo1k9J2P0jTrHG0jb1DhBmmgs45EjZtZBt88fZVnBcqxt3fD5ttPDHjWz2jhkkXduMohPeKsI5EwerqGVh5V1zZ4kaANmOaMatI+qwpLMxvKuc7uGLSCfOt3IQ1zKdcpHIeVa+ry6OvFtWg4xmm+6g0lvLGoifJZCOja/r1/pr0Ktpv4p2n7ezpE1JxbtEHHAfSznFbS2a0cnW5pJd0gQnWHYkHPLv91bREV11WM7sE7rJPY7iaki63c2UKW0KR7tc6gNX2TW0J7Ccwk20RTMYIkPb8at7jRLHZS2aRq7KSVYMSQ3n2qstoPavb23yyt2eK6iMOw7s499STbpza3V9HgMpGUEektjwqFp4n12c0NsOHpHeDU/3YC++r+N7gw2kl1LqiEXaYavredbWtZElM1w7PCFjJ3mpQOH51sSIrlopow2O7EZraumNjm1hAwOfyjVa26KeqMZpI3HKLKcV9vEVsu1TerPDuYZrU2+oDBALE45eB/ZLMQqjiSe6m2ds982/82YfT8h5dMUci6biX5WTyJ7vZ0B7meO3QnGqVgoreW80c8fLXG2ofsB43WRDyZTkfO7X9ev8ATXo6t1hN9nTjz8M8s+VPC0/yiHSwCscH2VMElVjCdMgH0TjNJruMawGU6W455VHqnxvF1r2W5cvCoXa4XTMMxlctqH5UJYm1IeRxj5vrEGz+vW4Hb0SYZPyxxFfIbOjQ+LyFv7Vpurg7r/CTsp7OmPaW0o9JXtQ27c/xN/bp2OsQiaQ3fATDs/w351s62nuYtlxSiQzT22FXUOQGrl/tWwEN01r1iCWWbQgy+kpjnyzn31uXvC8bT7pY4ypA7PJk9IeOrlUe92l+8PNMj7P0Z0hc4815Dieea2Hi5d4Lt5o2gIGlcamGPZWzLZroG5a+mjmi4atI14BHsqC6N67q+02tDAQNGjJ99Nbi7dTFfAaN6iJuhg40+kTRgkvDIjzMixxlSAMcmX0lP2uVXr2+02uoYUcR28joWlccyABnSOVTM9zvc2ZmcGRWMcnkAOyOfA+FbPjmvpZhf7P3zEhew/Z4rw+1UXVb9us9ZSIlsNusyYxioIbi9O4NnId5Nga5AR78VsKPr0sJuLFpZXjC5ZsL5edbIknumnF/bPI6FQFUjGNPt6Nr+vX+mvQLS6xJcCUq9r/ML6/D35raAO0ra3j63xgkA1Hsr36v0ram0YgTondJ0Xm0ekcfvXn7a2B+O2+FObIRNKLLOmXPHtmtkyQ7Qit95DO5lnQYyWUkYyMcfhSMJkuOH8SP0T840m6NrOf5kHDP3jlXyO0kK/8Aci4/Gv3jaQ0+EUX9zQkhg3k4/nTdpvy8P2BkZxWl1Dr4MM0DjiK3mhd5y1Y40X0jWebY40OyOHLhyrXoXX9bHGvRHPPLvrWZ5dzv+s7ns415zzxnn51vNC7zlqxxrUsaK3iFptKKNXFsDnQwo4cBR7C8Tk8KGpQ2OIyKGFHDgOFDCgY5cOXReylgRPIHA8OyB+nRvNC7zlqxxrU0SM3iVrlQGOArPfWGjVh5itKKFHgPmv/EACgQAQABAwIFBQEBAQEAAAAAAAERACExQVEQYXGBkSAwobHw0cFA4f/aAAgBAQABPyGhC9ZA3WmcFD4Xr4FIPypSasZaWLgR2exhlvEq8Ad0q1c8CG0QwzNEkkMSSSNvdKSLiEJvW6/4lWHZgC6tbACpZ+Q068I3LLzT/JI70IgAQBpwtXJGWvL3A7ZoZOOb3HYEwU1CZMAsaVew2wejdmi7It6ZqWahwqUFIJZEFFAhsCq50voLIsgM268AkTogEGvWsk8eAEw1YByYXRNbozSkkxDB1LPigfyakKjcpp2ztMTMSUaPATUlbeATofRPWYnrLX3mnI+ANxQ0Cd65/CTKNGZbYV6b7DHkqdKUdIrLEBZNyo4KJYQsfPz7a15amoy9zxZoF2C78w7PB4bhHWMHdgqTQDapLT+peJYJ8VuL9DdX7u+v1Nq+F+uBT93f0T+VrBgi63KJdNSLEF2l+KeL6uUXJYmLjQb0YCtqwST3pSn0ME8tGZNLw9a/E5cZ+hSNpxNJ8m8IKc2GptGtXukZk+RkjoZo6dgVhtQQKtzB2lD5Wcl7KXnSbIGxCWFqG9GS5kUYUs4fL20/smSihHSB88AGj1h/m7TJAIev3FeGhK3X+rgS++QQ8Aw3RFJRKnRqC0s7lf3d9NaiA8r/AMpEoFHe1fHNyE/Vfu7+ifyIGUwUQ4GNyL/soJd4Bi8YLt2kIFCd0xgbNAvmCUXmsAdNP6nL0Tz0MxPQj5EROtCTprZy0J1VAiWVCgYvjYovXMlpzJmGnOa8jYLs3WKINMAvrZaF4vF7UOZlMl3OoMzEa1K9eQSiNLIztepPpqjinY51fo6lMwyNJ1inu61wKN7NJrUxEjhfMT4qdyr0aLbyrU4OoOQL89KmnrLsfNvDh0nirw7uz4eKjw2EptpXjlwQix6AGVpZ1KG6WvLPfhJRCHmpfRwQwrV5I7kvbnUOQnELDRMVMbqlm4g82Ve1TV4LzJ1DNtZpm8wCWAFNOY0kwLD0oyBLnLRktOricwUwHqPEGXkKxh1IJL2WoUaYBHkFMetNncJSR7p2T/wbNJnJSQML/rFbr4ZIgO8GvWpwHmyDMxERRRBKr6oeEw6Y1TjPahF5PGcl0oHQvFM5wZBRwsM72lNJegobUK63hpzWs3irrcLeazQ49ACTZ+pJqz4QvBkkW7KNJY7qbICCdXa0Jp2Si6TAyEzC7FSLiqmBz5rykVeBDJQnHRigMguwIIIkCM4zin2RTyQK9Jp6m+uyEQp9chrjC7Eu4mlTkncspNmwdn0m/eTgG61IqWPy+516ZrLBd2KkvBHkI7AHnhDxhSHaWrvwYOQ0k4wVibASXjPrgKESzJ657I952P2Lprl9qULKQ1KkWHS+IezNLQYMMEzBC80+3QF5ndGF96dcYTARKQdyn9S5Fgxhv7ZgE5M5651DFIjQwzwFAZbZ+QZ7zwBABVsBrTImQGWgfXc8bgktL2BQqiYgwuGQrfNlJEnmSgAwS6UFYw3jdNBJwrhU5Y9CFW4LAk0WNSrCY8tKRJmb73mvjMgYkFuusBLOdzSYQXmr+dEEUmvXs9KDczv0xoAicl3Kwm8aBABLN76ZKudCakFoMvlTbIECRi2ZWZxUsu62Utw2Zh3ogANg2NgLjY8U34LQSFuouqutwuR0CSym7xntFuZRJbRJzmOVeaufY8uehE0iEJyZXZqjDkjWrBOhZ5K0Gl2xAhIqMjB4p55gm02lUk+gxyllIXXn7jtuFUm3yKCtoiHwpEvcB5/wrQ1RIPp2HoRQJSSYa1E5AFTwEEDFyuUjDt2mgSYwAkdaDEGcw+CgGJjLDLvVmMOi7utJ5MVHcGlyj6UCyCJRyNpp006QfNNNF2Anu70qwRsGDYqPsCXd6yL9iYd6scRsYGxWOliGDlwOguC4I7wbMDCs2mmaZpFoKYBN22axhoEYrSiyJi9ABRUDYo0B4GD2v//aAAwDAQACAAMAAAAQupSd8/0X33x43T9Ry388888xu4pxcpAarw/cCWZjX1w34wffHrtqRCtoBlUCXonEwTiCM7Ohm4qmHTgPF5F7Ok+88888/8QAJxEBAAIBAgQGAwEAAAAAAAAAAQARMSFBUaHR8BBhcZHB4SCBsfH/2gAIAQMBAT8QyUXBE6hbggQFuJh4afAanVxLUVBqb3tBUkuVYhhLGDodSVmjKi1XiPBS4jT1Phigtg6CebBHH5HXcVpGdmn9QENpQFgy2ickzA8z5nNv8nIRIpwP5GaM3b9whqg6a5/c3xXG5zvwwKhSmvt3UqlYd9IDQ99s0ruGEzPrNSr8B6BlIKIoJoZ9YnCwnxQAWwovaWT25reJXzv6xaio22h3UDahMkXKh6QUGo534YTVtd99II3V9wKzH1+/ODiaa17Mq7ygFOsMpeelRrdqv66eDIKnjNTUeVHLSK7E7wPgi1uz/OnOBN8Xn1gAOzTpzggC0PcXBBeEGAMK5fuAbe2nR94VQ2fhjqzzPeOnO9zCr4Tsen5f/8QAJxEBAAIABAUEAwEAAAAAAAAAAQARITFBYVFxocHwEJGx0SCB4fH/2gAIAQIBAT8Qr5gGbENiuMuAVcDRzLPRaDAzlKq1w4VrFCMGS44Ckg1GDlLhalxTLOHBYZwjyO5EVEEtm3ETP8luLbmD3H4Tej4huw1TbOsO06D6nTk6uETePeAxZVR/IkjZMdppluHOdJ3IhaLjZ8Hxl2vN59xG08P8mLVRHMm3BMQ9F7YloLYAli5coaa4HZ0VThzlEUGV6QKGWnKHtm3WLVQlAkZMHK0VFCLjpO5GLovzz7iZer+S6nPy5bbRc5w+T3ljTLz4l1wYRUNeXcL1S6/v36ECLOEw1Zvb1xhut6n0BBqx7/fSKlcFafUUV8Y7b9IpVpGnDRXmEXdEuNw5r4a/rSLCdm+257RAB4dyGKeftKjYaVCjdcesAZfl/8QAJRABAQACAgIBBAMBAQAAAAAAAREAITFBUWEQcYGRoSAw8LHx/9oACAEBAAE/EMavkMFyhAPbj1rMqeXH7QPTlGMU1Z4Wr9ZMI/YTT9ip8r/R5rtHABSqAqG94zyVeSCbNEGzdswKnlTwSkRL7o6/seMIYSREBTytfM6+b/fAybBih0ALnkqQq4D2vK6E1s5MAxCBeaP1+4GDfEFAGgDFguB+OfzKfhId2HomESIjwnyUwBSpVIVk3iLY1MWi2InfnC3JHhgACQBpEZGlxg5niIVZsAN6hJlCA/jCyAQN6LDIk9hFDaADbmoJbSgLREP7+OZlFmAWVXp4yUSRgwIKUs1ipAlkhBoCI02jciZ9xGZ9Eh5hfWChq+3wif7rNSg+7D7ADzN5cWpTbAuIUIMoKIiKNzr5BjdP4ABNeQw984Ug46wMApqLulqDhddqhorWorT0mTBbFFGDZg5VIOZKMs6DKGg1aI2tgKmiBNYOaNvo9/1qzlTG7vSV5BO8P3jkOYnTY4b6r4IFAlEsflge3PKVdEL+VzT8FJwp+v61fynZQv8AI8PjR/tef8NVjd4O4FGP1QxH3SIgF2JFnUEuairmSAe4IjSXbmnGBg0jiBGtr3g1GPEXU0HtxAFGBv2z/m+M9fAMsmhDNEavq4e+8UlkM84EAdkNNCZ0ZBu8ACjokbzupZNDtizW9ZPqb7lsKQIoEjHDDtB7dpJLoDK4dj44fgTipQ6bX+vSGl8ChtXEdC6wRBoj2YTxDKp2+AbTQCuEaGiU/aT7/CjhOXRtH1t+/AmCNUBdDP8An9Pissb9oAQ8BXWGkHvQiR/CfEUD6SdgC/lfjAJg1wEImOHmhyv/AAK/Gf7Xnjyq/FiNxfkaxEZeYkdPp+zCQCXCQABRAAFVy22LhFdbr0XjHFNQgNBtNdYiGER4C+M/3fGevgGsMgOlhcNNiEMOAVMCu+gntQZB51gdck8FqpsURwo0eGydHAY+mMgGutTCu+C67xLmhroIaCNqqBRMaTdHYAooLWZEaq8aXtgdslGxQFEcR/MGioHDNrRTzhhKoz7oUKi4OVAuVqhFiTl0hE5w1GeScNPDQmlGaorhoFK3diprznkT5XToDmPeM8BvFY7mgMCkdFGmJTE6TVZNVFK+QXFX3Yyg6PRD18FhIMKqHgAVcQ6B55pHh2Z5fw2g6Pph+Pz+/gvyUWkX2UJ2mmyPFd6MQLTQOBQiuEUhSW4QyxBxpyOGYcIFDY6XQuDDYCUZOK82QY0UEN6whTmohFOgY5IMhtewAJDsCwpvHH6DVodg1qxCNi2CsDog2+u8uamYCitGbjgWogApENmnY4nCldLRDoHZEQdOjkKMnUXUHegJZoxAL6NhKdNXkqNTCowhj9/YDbJirgYHK1i/wxWyCAt1M6+AfDFVON6ogbCK0NsDa7kxk9FtRehqjw6Y6ZARxwCfbFj7G6sGUdoj3twu1yAonEkNGzDUZzxbbSXbqAD5gpeAJxYr42ksHtj2mZCHBEABROEzo1yOV2v/AKnw29jA6FQLsukHhxtLRhJdABGlRXEsdLWGJxwV1s84I7CFiQNoIobBHFn9oYS/l3iF44cvERXahBYzS7hx/BScxphVGgDtx9VTUJfqbn4JywYCQKMAqvgO3KADdqIJ9ZHn4C2BEhWFBYLPTlLV5otWlKUuaMY40ur57yxs9KqUCjER9iYx7/eQ8v5wAeX84g9/vCec094cCB6w0gnY3IXn95TzgB3+8ePgG8ZOBNuFlHEPr7DIEAE1hDIMbnVMaZqhiQ8mr2MAyTqaKyIIgN9YSNXOI0xQhKDjAAv3fFSEF6WY8xwrtFpBseTJMmTIf5yZMmT6/n5QKpYP34ZzsjZN41rkGT5235xFT6d6pRudL+DrnAKp4A7fWHoRoTmhxOU3ZCBgQ+JHguNRNhJZO5grRr5dqBHFuMEnUkFkJQUNIBsSnDh569oGtCEBxTGj40ASqVaTeCJsSkCwkoJUPRDE+vZmaCKQowgGu8H0ZGEcQ2sdREcjkzaJEFYaG9KcUgfcm3UuLaGiTeXrMKCVDNWqwOCQxIoHk4Rko5iwlrlnCxQmoFD5MRqCU/RBLRtXRBMdRglJ0QsBFOFlCqHn9SbJhGpq4sGc08ghQBBW6zr4B8fuY26mSdQNUQ1HEXEE8E5tFSeBtJ3nHBqs0OwOxK2Mb7StDjrHILUR1hRK62e8NDwOe8AFlsDduEs/A5lGEOqnF/rS4xOG4Psil2sF84ypnU49rD9gxIKOXX+IYcF2lfmg+oT7wJ83wSwWEp4Yu/eI0REwpsYiaxRXYsQZQehh+DFAnMnB9LZ6uAL4UC4GKh4XCljCBTRdNLXjy4E2IFAILFUFPpkgCIDg5dfy5xxHhIpI05aPTww/Jwh5qbPVwsxIut50LvEQJS4aYm3tx4HVE4+jRo0eMNSEoavha26N85xGnQNwKafZjCTVALS6NGjR4zkuU4pyQaNGjHjHn0aFbTlVuuk+Fw2ha36Gz1cfMAq7ONpcF3CwBXFfOeIaySOIdTPxNLS2XxgGdK6WqCcrzleFRyu2Br+r/9k=" } }, "cell_type": "markdown", @@ -11,15 +11,18 @@ "toc-hr-collapsed": false }, "source": [ - "<img src=attachment:09375636-629b-4ee2-9011-455f6157ab16.png title=\"Python Logo\" width=\"360\" align=\"left\" style=\"float:right\"/>\n", - "<H1>Markdown Tipps & Tricks (for Jupyter Notebook)</H1>\n", - "<HR>" + "| [Jupyter-JSC](https://jupyter-jsc.fz-juelich.de) ||[JuDoor](https://judoor.fz-juelich.de)|[Juelich Supercomputing Centre](https://www.fz-juelich.de/jsc)|\n", + "| :--- | :--- | :--- | ---: |\n", + "|||||\n", + "| </br>Author:</br> Jens Henrik Göbbert ||||" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "# Markdown Tipps & Tricks (for Jupyter Notebook)\n", + "------------------\n", "Markdown writing skills are essential to portray your work in the Jupyter notebook to offer the reader a sufficient explanation of both the code and the concept.\n", "\n", "I have collected informations for different sources. Thanks to them!\n", @@ -30,12 +33,14 @@ "\n", "## What’s Markdown?\n", "\n", - "Markdown is a lightweight Markup language with a plain text syntax. John Gruber developed the Markdown language in 2004 in a collaborative effort with Aaron Swartz, intending to enable people to “write with easy-to-read and easy-to-write plain text format and potentially convert it to structurally correct XHTML (or HTML).” Markdown is designed to be as easy-to-read and easy-to-write as possible. Readability, however, is emphasized above all else.\n", + "Markdown is a light markup language with a simple text syntax. Markdown should be easy to write and above all easy to read.\n", + "John Gruber developed the Markdown language in 2004 in collaboration with Aaron Swartz with the goal of enabling people to \"write in an easy to read and easy to write plain text format and possibly convert it to structurally correct XHTML (or HTML)\".\n", + "However, one should not assume that \"Markdown\" is a substitute for HTML. HTML is a format for publishing, while Markdown is a format for reading. \n", + "The syntax of markup is minimal and only applies to a tiny portion of HTML tags. The idea of Markdown is to make it easier to read, write and edit prose, without the intention of creating a syntax that only serves to quickly add HTML tags. Therefore, the formatting syntax of Markdown deals only with questions that can be expressed in plain text.\n", + "For everything else, use HTML. You don't have to make any preamble or delimitation to indicate that you are switching from Markdown to HTML - you simply use the tags.\n", "\n", - "Nevertheless, Markdown is not a substitute for, or even close to, HTML. Its syntax is minimal, correlating only to a tiny proportion of HTML tags. Markdown’s idea is to make reading, writing, and editing prose easy without the intention to create a syntax that’s just for quickly adding HTML tags. HTML is a format for publishing, while Markdown is a format for reading. Therefore, the formatting syntax of Markdown tackles just issues that can be expressed in plain text. You simply use HTML for any Markup that is not covered by the Markdown syntax. You don’t need to preface it or delimit it to indicate that you are switching from Markdown to HTML — you just use the tags.\n", - "\n", - "The following examples start with some examples of easy stuff and then show some tricks not that common. \n", - "Have fun!" + "The following examples start with some simple examples and then show some not so common tricks.\n", + "Have fun with them!" ] }, { @@ -179,7 +184,7 @@ "* Drop-in image \n", "You can attach an image (or animated gif) to the notebook and make it part of the .ipynb file. \n", "Simply drag-and-drop it to the notebook. \n", - " **ATTENTION** The image will be stored in the specific notebook cell. If you delete the cell it will be gone! " + " **ATTENTION** The image will be stored in the notebook. If you do not reference to them any more they will automatically be removed from the notebook! " ] }, { diff --git a/002-Methods/004-Dashboards/001-Dash/001-Getting_Started/getting_started.ipynb b/002-Methods/004-Dashboards/001-Dash/001-Getting_Started/getting_started.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..031c2153ae037c81c720c241d443e845c721cc25 --- /dev/null +++ b/002-Methods/004-Dashboards/001-Dash/001-Getting_Started/getting_started.ipynb @@ -0,0 +1,340 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# JupyterDash\n", + "The `jupyter-dash` package makes it easy to develop Plotly Dash apps from the Jupyter Notebook and JupyterLab.\n", + "\n", + "Just replace the standard `dash.Dash` class with the `jupyter_dash.JupyterDash` subclass." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from jupyter_dash import JupyterDash" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import dash\n", + "import dash_core_components as dcc\n", + "import dash_html_components as html\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When running in JupyterHub or Binder, call the `infer_jupyter_config` function to detect the proxy configuration." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "JupyterDash.infer_jupyter_proxy_config()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Load and preprocess data" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('https://plotly.github.io/datasets/country_indicators.csv')\n", + "available_indicators = df['Indicator Name'].unique()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Construct the app and callbacks" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']\n", + "\n", + "app = JupyterDash(__name__, external_stylesheets=external_stylesheets)\n", + "\n", + "# Create server variable with Flask server object for use with gunicorn\n", + "server = app.server\n", + "\n", + "app.layout = html.Div([\n", + " html.Div([\n", + "\n", + " html.Div([\n", + " dcc.Dropdown(\n", + " id='crossfilter-xaxis-column',\n", + " options=[{'label': i, 'value': i} for i in available_indicators],\n", + " value='Fertility rate, total (births per woman)'\n", + " ),\n", + " dcc.RadioItems(\n", + " id='crossfilter-xaxis-type',\n", + " options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],\n", + " value='Linear',\n", + " labelStyle={'display': 'inline-block'}\n", + " )\n", + " ],\n", + " style={'width': '49%', 'display': 'inline-block'}),\n", + "\n", + " html.Div([\n", + " dcc.Dropdown(\n", + " id='crossfilter-yaxis-column',\n", + " options=[{'label': i, 'value': i} for i in available_indicators],\n", + " value='Life expectancy at birth, total (years)'\n", + " ),\n", + " dcc.RadioItems(\n", + " id='crossfilter-yaxis-type',\n", + " options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],\n", + " value='Linear',\n", + " labelStyle={'display': 'inline-block'}\n", + " )\n", + " ], style={'width': '49%', 'float': 'right', 'display': 'inline-block'})\n", + " ], style={\n", + " 'borderBottom': 'thin lightgrey solid',\n", + " 'backgroundColor': 'rgb(250, 250, 250)',\n", + " 'padding': '10px 5px'\n", + " }),\n", + "\n", + " html.Div([\n", + " dcc.Graph(\n", + " id='crossfilter-indicator-scatter',\n", + " hoverData={'points': [{'customdata': 'Japan'}]}\n", + " )\n", + " ], style={'width': '49%', 'display': 'inline-block', 'padding': '0 20'}),\n", + " html.Div([\n", + " dcc.Graph(id='x-time-series'),\n", + " dcc.Graph(id='y-time-series'),\n", + " ], style={'display': 'inline-block', 'width': '49%'}),\n", + "\n", + " html.Div(dcc.Slider(\n", + " id='crossfilter-year--slider',\n", + " min=df['Year'].min(),\n", + " max=df['Year'].max(),\n", + " value=df['Year'].max(),\n", + " marks={str(year): str(year) for year in df['Year'].unique()},\n", + " step=None\n", + " ), style={'width': '49%', 'padding': '0px 20px 20px 20px'})\n", + "])\n", + "\n", + "\n", + "@app.callback(\n", + " dash.dependencies.Output('crossfilter-indicator-scatter', 'figure'),\n", + " [dash.dependencies.Input('crossfilter-xaxis-column', 'value'),\n", + " dash.dependencies.Input('crossfilter-yaxis-column', 'value'),\n", + " dash.dependencies.Input('crossfilter-xaxis-type', 'value'),\n", + " dash.dependencies.Input('crossfilter-yaxis-type', 'value'),\n", + " dash.dependencies.Input('crossfilter-year--slider', 'value')])\n", + "def update_graph(xaxis_column_name, yaxis_column_name,\n", + " xaxis_type, yaxis_type,\n", + " year_value):\n", + " dff = df[df['Year'] == year_value]\n", + "\n", + " return {\n", + " 'data': [dict(\n", + " x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'],\n", + " y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'],\n", + " text=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'],\n", + " customdata=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'],\n", + " mode='markers',\n", + " marker={\n", + " 'size': 25,\n", + " 'opacity': 0.7,\n", + " 'color': 'orange',\n", + " 'line': {'width': 2, 'color': 'purple'}\n", + " }\n", + " )],\n", + " 'layout': dict(\n", + " xaxis={\n", + " 'title': xaxis_column_name,\n", + " 'type': 'linear' if xaxis_type == 'Linear' else 'log'\n", + " },\n", + " yaxis={\n", + " 'title': yaxis_column_name,\n", + " 'type': 'linear' if yaxis_type == 'Linear' else 'log'\n", + " },\n", + " margin={'l': 40, 'b': 30, 't': 10, 'r': 0},\n", + " height=450,\n", + " hovermode='closest'\n", + " )\n", + " }\n", + "\n", + "\n", + "def create_time_series(dff, axis_type, title):\n", + " return {\n", + " 'data': [dict(\n", + " x=dff['Year'],\n", + " y=dff['Value'],\n", + " mode='lines+markers'\n", + " )],\n", + " 'layout': {\n", + " 'height': 225,\n", + " 'margin': {'l': 20, 'b': 30, 'r': 10, 't': 10},\n", + " 'annotations': [{\n", + " 'x': 0, 'y': 0.85, 'xanchor': 'left', 'yanchor': 'bottom',\n", + " 'xref': 'paper', 'yref': 'paper', 'showarrow': False,\n", + " 'align': 'left', 'bgcolor': 'rgba(255, 255, 255, 0.5)',\n", + " 'text': title\n", + " }],\n", + " 'yaxis': {'type': 'linear' if axis_type == 'Linear' else 'log'},\n", + " 'xaxis': {'showgrid': False}\n", + " }\n", + " }\n", + "\n", + "\n", + "@app.callback(\n", + " dash.dependencies.Output('x-time-series', 'figure'),\n", + " [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'),\n", + " dash.dependencies.Input('crossfilter-xaxis-column', 'value'),\n", + " dash.dependencies.Input('crossfilter-xaxis-type', 'value')])\n", + "def update_y_timeseries(hoverData, xaxis_column_name, axis_type):\n", + " country_name = hoverData['points'][0]['customdata']\n", + " dff = df[df['Country Name'] == country_name]\n", + " dff = dff[dff['Indicator Name'] == xaxis_column_name]\n", + " title = '<b>{}</b><br>{}'.format(country_name, xaxis_column_name)\n", + " return create_time_series(dff, axis_type, title)\n", + "\n", + "\n", + "@app.callback(\n", + " dash.dependencies.Output('y-time-series', 'figure'),\n", + " [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'),\n", + " dash.dependencies.Input('crossfilter-yaxis-column', 'value'),\n", + " dash.dependencies.Input('crossfilter-yaxis-type', 'value')])\n", + "def update_x_timeseries(hoverData, yaxis_column_name, axis_type):\n", + " dff = df[df['Country Name'] == hoverData['points'][0]['customdata']]\n", + " dff = dff[dff['Indicator Name'] == yaxis_column_name]\n", + " return create_time_series(dff, axis_type, yaxis_column_name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Serve the app using `run_server`. Unlike the standard `Dash.run_server` method, the `JupyterDash.run_server` method doesn't block execution of the notebook. It serves the app in a background thread, making it possible to run other notebook calculations while the app is running.\n", + "\n", + "This makes it possible to iterativly update the app without rerunning the potentially expensive data processing steps." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dash app running on https://jupyter-jsc.fz-juelich.de/user/j.goebbert@fz-juelich.de/jureca_login/proxy/8050/\n" + ] + } + ], + "source": [ + "app.run_server()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By default, `run_server` displays a URL that you can click on to open the app in a browser tab. The `mode` argument to `run_server` can be used to change this behavior. Setting `mode=\"inline\"` will display the app directly in the notebook output cell." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " <iframe\n", + " width=\"800\"\n", + " height=\"650\"\n", + " src=\"https://jupyter-jsc.fz-juelich.de/user/j.goebbert@fz-juelich.de/jureca_login/proxy/8050/\"\n", + " frameborder=\"0\"\n", + " allowfullscreen\n", + " ></iframe>\n", + " " + ], + "text/plain": [ + "<IPython.lib.display.IFrame at 0x7f664a42d198>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "app.run_server(mode=\"inline\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When running in JupyterLab, with the `jupyterlab-dash` extension, setting `mode=\"jupyterlab\"` will open the app in a tab in JupyterLab.\n", + "\n", + "```python\n", + "app.run_server(mode=\"jupyterlab\")\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "jupytext": { + "formats": "ipynb,py:percent" + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/002-Methods/004-Dashboards/001-Dash/001-Getting_Started/getting_started.py b/002-Methods/004-Dashboards/001-Dash/001-Getting_Started/getting_started.py new file mode 100644 index 0000000000000000000000000000000000000000..0e178a869d43e7670553bdb25ac78fd00ce58c96 --- /dev/null +++ b/002-Methods/004-Dashboards/001-Dash/001-Getting_Started/getting_started.py @@ -0,0 +1,223 @@ +# --- +# jupyter: +# jupytext: +# formats: ipynb,py:percent +# text_representation: +# extension: .py +# format_name: percent +# format_version: '1.3' +# jupytext_version: 1.4.2 +# kernelspec: +# display_name: Python 3 +# language: python +# name: python3 +# --- + +# %% [markdown] +# # JupyterDash +# The `jupyter-dash` package makes it easy to develop Plotly Dash apps from the Jupyter Notebook and JupyterLab. +# +# Just replace the standard `dash.Dash` class with the `jupyter_dash.JupyterDash` subclass. + +# %% +from jupyter_dash import JupyterDash + +# %% +import dash +import dash_core_components as dcc +import dash_html_components as html +import pandas as pd + +# %% [markdown] +# When running in JupyterHub or Binder, call the `infer_jupyter_config` function to detect the proxy configuration. + +# %% +JupyterDash.infer_jupyter_proxy_config() + +# %% [markdown] +# Load and preprocess data + +# %% +df = pd.read_csv('https://plotly.github.io/datasets/country_indicators.csv') +available_indicators = df['Indicator Name'].unique() + +# %% [markdown] +# Construct the app and callbacks + +# %% +external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] + +app = JupyterDash(__name__, external_stylesheets=external_stylesheets) + +# Create server variable with Flask server object for use with gunicorn +server = app.server + +app.layout = html.Div([ + html.Div([ + + html.Div([ + dcc.Dropdown( + id='crossfilter-xaxis-column', + options=[{'label': i, 'value': i} for i in available_indicators], + value='Fertility rate, total (births per woman)' + ), + dcc.RadioItems( + id='crossfilter-xaxis-type', + options=[{'label': i, 'value': i} for i in ['Linear', 'Log']], + value='Linear', + labelStyle={'display': 'inline-block'} + ) + ], + style={'width': '49%', 'display': 'inline-block'}), + + html.Div([ + dcc.Dropdown( + id='crossfilter-yaxis-column', + options=[{'label': i, 'value': i} for i in available_indicators], + value='Life expectancy at birth, total (years)' + ), + dcc.RadioItems( + id='crossfilter-yaxis-type', + options=[{'label': i, 'value': i} for i in ['Linear', 'Log']], + value='Linear', + labelStyle={'display': 'inline-block'} + ) + ], style={'width': '49%', 'float': 'right', 'display': 'inline-block'}) + ], style={ + 'borderBottom': 'thin lightgrey solid', + 'backgroundColor': 'rgb(250, 250, 250)', + 'padding': '10px 5px' + }), + + html.Div([ + dcc.Graph( + id='crossfilter-indicator-scatter', + hoverData={'points': [{'customdata': 'Japan'}]} + ) + ], style={'width': '49%', 'display': 'inline-block', 'padding': '0 20'}), + html.Div([ + dcc.Graph(id='x-time-series'), + dcc.Graph(id='y-time-series'), + ], style={'display': 'inline-block', 'width': '49%'}), + + html.Div(dcc.Slider( + id='crossfilter-year--slider', + min=df['Year'].min(), + max=df['Year'].max(), + value=df['Year'].max(), + marks={str(year): str(year) for year in df['Year'].unique()}, + step=None + ), style={'width': '49%', 'padding': '0px 20px 20px 20px'}) +]) + + +@app.callback( + dash.dependencies.Output('crossfilter-indicator-scatter', 'figure'), + [dash.dependencies.Input('crossfilter-xaxis-column', 'value'), + dash.dependencies.Input('crossfilter-yaxis-column', 'value'), + dash.dependencies.Input('crossfilter-xaxis-type', 'value'), + dash.dependencies.Input('crossfilter-yaxis-type', 'value'), + dash.dependencies.Input('crossfilter-year--slider', 'value')]) +def update_graph(xaxis_column_name, yaxis_column_name, + xaxis_type, yaxis_type, + year_value): + dff = df[df['Year'] == year_value] + + return { + 'data': [dict( + x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'], + y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'], + text=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'], + customdata=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'], + mode='markers', + marker={ + 'size': 25, + 'opacity': 0.7, + 'color': 'orange', + 'line': {'width': 2, 'color': 'purple'} + } + )], + 'layout': dict( + xaxis={ + 'title': xaxis_column_name, + 'type': 'linear' if xaxis_type == 'Linear' else 'log' + }, + yaxis={ + 'title': yaxis_column_name, + 'type': 'linear' if yaxis_type == 'Linear' else 'log' + }, + margin={'l': 40, 'b': 30, 't': 10, 'r': 0}, + height=450, + hovermode='closest' + ) + } + + +def create_time_series(dff, axis_type, title): + return { + 'data': [dict( + x=dff['Year'], + y=dff['Value'], + mode='lines+markers' + )], + 'layout': { + 'height': 225, + 'margin': {'l': 20, 'b': 30, 'r': 10, 't': 10}, + 'annotations': [{ + 'x': 0, 'y': 0.85, 'xanchor': 'left', 'yanchor': 'bottom', + 'xref': 'paper', 'yref': 'paper', 'showarrow': False, + 'align': 'left', 'bgcolor': 'rgba(255, 255, 255, 0.5)', + 'text': title + }], + 'yaxis': {'type': 'linear' if axis_type == 'Linear' else 'log'}, + 'xaxis': {'showgrid': False} + } + } + + +@app.callback( + dash.dependencies.Output('x-time-series', 'figure'), + [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'), + dash.dependencies.Input('crossfilter-xaxis-column', 'value'), + dash.dependencies.Input('crossfilter-xaxis-type', 'value')]) +def update_y_timeseries(hoverData, xaxis_column_name, axis_type): + country_name = hoverData['points'][0]['customdata'] + dff = df[df['Country Name'] == country_name] + dff = dff[dff['Indicator Name'] == xaxis_column_name] + title = '<b>{}</b><br>{}'.format(country_name, xaxis_column_name) + return create_time_series(dff, axis_type, title) + + +@app.callback( + dash.dependencies.Output('y-time-series', 'figure'), + [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'), + dash.dependencies.Input('crossfilter-yaxis-column', 'value'), + dash.dependencies.Input('crossfilter-yaxis-type', 'value')]) +def update_x_timeseries(hoverData, yaxis_column_name, axis_type): + dff = df[df['Country Name'] == hoverData['points'][0]['customdata']] + dff = dff[dff['Indicator Name'] == yaxis_column_name] + return create_time_series(dff, axis_type, yaxis_column_name) + + +# %% [markdown] +# Serve the app using `run_server`. Unlike the standard `Dash.run_server` method, the `JupyterDash.run_server` method doesn't block execution of the notebook. It serves the app in a background thread, making it possible to run other notebook calculations while the app is running. +# +# This makes it possible to iterativly update the app without rerunning the potentially expensive data processing steps. + +# %% +app.run_server() + +# %% [markdown] +# By default, `run_server` displays a URL that you can click on to open the app in a browser tab. The `mode` argument to `run_server` can be used to change this behavior. Setting `mode="inline"` will display the app directly in the notebook output cell. + +# %% +app.run_server(mode="inline") + +# %% [markdown] +# When running in JupyterLab, with the `jupyterlab-dash` extension, setting `mode="jupyterlab"` will open the app in a tab in JupyterLab. +# +# ```python +# app.run_server(mode="jupyterlab") +# ``` + +# %%