
INTERACTIVE HPC WITH JUPYTERLAB
Training Course – custom Jupyter kernel

2024-04-22..23 I JENS HENRIK GÖBBERT (J.GOEBBERT@FZ-JUELICH.DE)

HERWIG ZILKEN (H.ZILKEN@FZ-JUELICH.DE)

CUSTOM

JUPYTER KERNEL

TERMINOLOGY
What is a Jupyter Kernel?

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

▪ run code in different programming languages and

environments.

▪ can be connected to a notebook (one at a time).

▪ communicates via ZeroMQ with the JupyterLab.

▪ Multiple preinstalled Jupyter Kernels can be found on our

clusters

▪ Python, R, Julia, Bash, C++, Ruby, JavaScript

▪ Specialized kernels for visualization, quantum-computing

▪ You can easily create your own kernel which for example

runs your specialized virtual Python environment. https://jupyter-notebook.readthedocs.io/
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://zeromq.org

JUPYTER KERNEL
How to create your own Juypter Kernel

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

▪ run code in different programming languages

and environments.

▪ can be connected to a notebook (one at a time).

▪ communicates via ZeroMQ with the JupyterLab.

▪ Multiple preinstalled Jupyter Kernels can be found on our

clusters

▪ Python, R, Julia, Bash, C++, Ruby, JavaScript

▪ Specialized kernels for visualization, quantumcomputing

My Own
Virtual Environment

Python Kernel

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Notebook

Server

Jupyter

Kernel

hpc cluster

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

browser

JupyterLab

Client

Extension

ØMQ

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

You can easily create your own kernel which for example
runs your specialized virtual Python environment including modules of the system.

JUPYTER KERNEL
How to create your own Juypter Kernel

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

▪ run code in different programming languages

and environments.

▪ can be connected to a notebook (one at a time).

▪ communicates via ZeroMQ with the JupyterLab.

▪ Multiple preinstalled Jupyter Kernels can be found on our

clusters

▪ Python, R, Julia, Bash, C++, Ruby, JavaScript

▪ Specialized kernels for visualization, quantum computing

My Own
Virtual Environment

Python Kernel

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

You can easily create your own kernel which for example
runs your specialized virtual Python environment including modules of the system.

JUPYTER KERNEL
How to create your own Juypter Kernel

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

▪ run code in different programming languages

and environments.

▪ can be connected to a notebook (one at a time).

▪ communicates via ZeroMQ with the JupyterLab.

▪ Multiple preinstalled Jupyter Kernels can be found on our

clusters

▪ Python, R, Julia, Bash, C++, Ruby, JavaScript

▪ Specialized kernels for visualization, quantumcomputing

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

You can easily create your own kernel which for example
runs your specialized virtual Python environment including modules of the system.

My Own
Virtual Environment

Python Kernel

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

SHORT DIGRESSION:

What is the problem Lmod solves?

• On a “normal” workstation software is provided in general on system level once.

It is not required that any distinct shell can change fundamental settings.

• HPC systems need to support multiple versions software packages

• Compilers (e.g. gcc, icc, clang), libraries (e.g. MPI, HDF5), software (e.g. Python)

➔ Lmod calls each a module

How does Lmod allow to switch between modules?

• Switching between modules is done by

• Change environment variables (most prominent PATH and LD_LIBRARY_PATH)

• Ensure that dependencies to other modules are fulfilled.

➔ unload/load modules which conflict/required

Lmod (Lua-based Modules) for managing environment modules

https://lmod.readthedocs.io

SHORT DIGRESSION:
Lmod (Lua-based Modules) for managing environment modules

Toolchain dependency tree used at Jülich Supercomputing Centre

The module dependencies are organized a dependency tree (one tree per stage)

SHORT DIGRESSION:

How does Lmod knows how to load a module?

• Lua files in $MODULEPATH

• Exercise 1: echo $MODULEPATH

Where is the software installed then?

• /p/software/${SYSTEMNAME}/stages/<STAGE>/software/

• Exercise 2: check the Lua file for the OpenCV module

• Exercise 3: check the content of this Lua file

Lmod (Lua-based Modules) for managing environment modules

SHORT DIGRESSION:

Spack

• “Spack is a multi platform package manager that builds and installs multiple versions and configurations of software”

• https://github.com/spack/spack

Easybuild

• “EasyBuild is a software build and installation framework

that allows you to manage (scientific) software on High Performance Computing (HPC) an efficient way.”

• https://github.com/easybuilders/easybuild

Package manager for high-performance environments

https://github.com/spack/spack
https://github.com/easybuilders/easybuild

SHORT DIGRESSION:
Virtual Python Environment

• Isolation:
• Self-contained and isolated environment for Python projects

• Allows to install and manage different versions of Python, libraries, and packages

without interfering with other Python

• Reproducibility:
• Recreate the environment in which your code was developed and tested,

even on a different machine.

• Consistency:
• Ensures that same versions of Python and packages are used.

• Reduces the likelihood of compatibility issues and

makes it easier to collaborate on a project.

• Flexibility:
• Easily switch between different versions of Python and packages.

JUPYTER KERNEL
1. Create/Pimp new virtual Python environment (1)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Login to JupyterLab and open terminal

2. Load required modules

Lnode:> module purge

Lnode:> module load Stages/2024

Lnode:> module load GCC

Lnode:> module load Python

3. Load extra modules you need for your kernel

Lnode:> module load <module you need>

1. Create a virtual environment named <venv_name> at a path of your choice:

Lnode:> python -m venv --system-site-packages <your_path>/<venv_name>

2. Activate your environment

Lnode:> source <your_path>/<venv_name>/bin/activate

JUPYTER KERNEL
1. Create/Pimp new virtual Python environment (2)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Ensure python packages installed in the virtual environment
are always prefered

(<venv_name>) Lnode:> export PYTHONPATH=\

${VIRTUAL_ENV}/lib/python3.11/site-packages:${PYTHONPATH}

2. Install Python libraries required for communication with Jupyter

(<venv_name>) Lnode:>

pip install --ignore-installed ipykernel

3. Install whatever else you need in your Python virtual environment (using pip)

(<venv_name>) Lnode:>

pip install <python-package you need>

JUPYTER KERNEL
2. Create/Edit launch script for the Jupyter kernel (1)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Create launch script, which loads your Python virtual environment
and starts the ipykernel process inside:

(<venv_name>) Lnode:> touch ${VIRTUAL_ENV}/kernel.sh

2. Make launch script executable

(<venv_name>) Lnode:> chmod +x ${VIRTUAL_ENV}/kernel.sh

3. Edit the launch script for your new Jupyter kernel

(<venv_name>) Lnode:> vi ${VIRTUAL_ENV}/kernel.sh

JUPYTER KERNEL
2. Create/Edit launch script for the Jupyter kernel (2)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

#!/bin/bash

Load required modules

module purge

module load Stages/2024

module load GCC

module load Python

Load extra modules you need for your kernel

#module load <module you need>

Activate your Python virtual environment

source <your_path>/<venv_name>/bin/activate

Ensure python packages installed in the virtual environment are always prefered

export PYTHONPATH=${VIRTUAL_ENV}/lib/python3.11/site-packages:${PYTHONPATH}

exec python -m ipykernel $@

JUPYTER KERNEL
3. Create/Edit Jupyter kernel configuration (1)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Create your Jupyter kernel configuration files

(<venv_name>) Lnode:>

python -m ipykernel install --user --name=<my-kernel-name>

2. Update your kernel file to use the lauch script

(<venv_name>) Lnode:>

vi ~/.local/share/jupyter/kernels/<my-kernel-name>/kernel.json

{

"argv": [

"<your_path>/<venv_name>/kernel.sh",

"-m",

"ipykernel_launcher",

"-f",

"{connection_file}"

],

"display_name": "<my-kernel-name>",

"language": "python"

}

JUPYTER KERNEL
Run your Jupyter kernel configuration

Run your Jupyter Kernel

1. https://jupyter-jsc.fz-juelich.de

2. Choose system where your Jupyter kernel is installed
in ~/.local/share/jupyter/kernels

3. Select your kernel in the launch pad or click the kernel name.

One of the many alternatives: Conda

Base your Jupyter Kernel on a Conda environment.

(check 3-create_JupyterKernel_conda.ipynb)

Jupyter kernel are NOT limited to Python at all!
The kernel-endpoint just needs to talk the Jupyter’s kernel protocol (in general over ZeroMQ).
E.g.
- IRkernel for R (https://github.com/IRkernel/IRkernel)

- IJulia.jl (https://github.com/JuliaLang/IJulia.jl)

https://github.com/IRkernel/IRkernel
https://github.com/JuliaLang/IJulia.jl

JUPYTER KERNEL
Shortcut! – Do not use this approach – Just for educational purpose

You do NOT want to build your own kernel,

every time you QUICKLY need a package or module.

Hack No. 1:

os.execve(f"{venv_folder}/bin/python", args, env)

1. Create a Python virtual environment at any location.

2. WITHIN the notebook

− restart the kernel´s python interpreter

− of that Python virtual environment

− with the correct environment variables set.

Hack No. 2:

import sys

sys.path.append('/home/.local/lib/python3.11/site-packages')

Dangerous: You easily can mess up with version requirements
of Python packages installed at other places.

Can stop the communication of the running ipykernel
with the Jupyter server which will stop the kernel.

