
INTERACTIVE HPC WITH JUPYTERLAB
EDIH (European-Data-Innovation-Hub) -Workshop, Part 2

2023-10-23 I JENS HENRIK GÖBBERT (J.GOEBBERT@FZ-JUELICH.DE)

CUSTOM

JUPYTER KERNEL

JUPYTER KERNEL
How to create your own Juypter Kernel

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

▪ run code in different programming languages

and environments.

▪ can be connected to a notebook (one at a time).

▪ communicates via ZeroMQ with the JupyterLab.

▪ Multiple preinstalled Jupyter Kernels can be found on our

clusters

▪ Python, R, Julia, Bash, C++, Ruby, JavaScript

▪ Specialized kernels for visualization, quantumcomputing

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

You can easily create your own kernel which for example
runs your specialized virtual Python environment.

My Own
Virtual Environment

Python Kernel

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Notebook

Server

Jupyter

Kernel

hpc cluster

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

browser

JupyterLab

Client

Extension

ØMQ

JUPYTER KERNEL
How to create your own Juypter Kernel

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

▪ run code in different programming languages

and environments.

▪ can be connected to a notebook (one at a time).

▪ communicates via ZeroMQ with the JupyterLab.

▪ Multiple preinstalled Jupyter Kernels can be found on our

clusters

▪ Python, R, Julia, Bash, C++, Ruby, JavaScript

▪ Specialized kernels for visualization, quantum computing

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

You can easily create your own kernel which for example
runs your specialized virtual Python environment.

JUPYTER KERNEL
How to create your own Juypter Kernel

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

▪ run code in different programming languages

and environments.

▪ can be connected to a notebook (one at a time).

▪ communicates via ZeroMQ with the JupyterLab.

▪ Multiple preinstalled Jupyter Kernels can be found on our

clusters

▪ Python, R, Julia, Bash, C++, Ruby, JavaScript

▪ Specialized kernels for visualization, quantum computing

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

You can easily create your own kernel which for example
runs your specialized virtual Python environment.

My Own
Virtual Environment

Python Kernel

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

SHORT DIGRESSION:

What is the problem Lmod solves?

• On a “normal” workstation software is provided in general on system level once.

It is not required that any distinct shell can change fundamental settings.

• HPC systems need to support multiple versions of software packages

• Compilers (e.g. gcc, icc, clang), libraries (e.g. MPI, HDF5), software (e.g. Python)

➔ Lmod calls each of these “a module”

How does Lmod allow to switch between modules?

• Switching between modules is done by

• Changing environment variables (most prominent PATH and LD_LIBRARY_PATH)

• Ensuring that dependencies to other modules are fulfilled.

➔ unload/load modules which conflict/required

Lmod (Lua-based Modules) for managing environment modules

https://lmod.readthedocs.io

SHORT DIGRESSION:
Lmod (Lua-based Modules) for managing environment modules

Toolchain dependency tree used at Jülich Supercomputing Centre

The module dependencies are organized in a dependency tree (one tree per stage)

SHORT DIGRESSION:
Virtual Python Environment

• Isolation:
• Self-contained and isolated environment for Python projects

• Allows to install and manage different versions of Python, libraries, and packages

without interfering with other installations / configurations.

• Reproducibility:
• Recreate the environment in which your code was developed and tested,

even on a different machine.

• Consistency:
• Ensures that same versions of Python and packages are used.

• Reduces the likelihood of compatibility issues and

makes it easier to collaborate on a project.

• Flexibility:
• Allows to easily switch between different versions of Python and packages.

pip install --user

.local/lib/python${PY_MAJOR}
.${PY_MINOR}/site-packages

JUPYTER KERNEL
How to create your own Juypter Kernel

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

▪ run code in different programming languages

and environments.

▪ can be connected to a notebook (one at a time).

▪ communicates via ZeroMQ with the JupyterLab.

▪ Multiple preinstalled Jupyter Kernels can be found on our

clusters

▪ Python, R, Julia, Bash, C++, Ruby, JavaScript

▪ Specialized kernels for visualization, quantum computing

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

You can easily create your own kernel which for example
runs your specialized virtual Python environment.

My Own
Virtual Environment

Python Kernel

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

JUPYTER KERNEL
1. Create/Pimp new virtual Python environment (1)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Login to JupyterLab and open terminal

2. Load required modules

Lnode:> module purge

Lnode:> module load Stages/2023

Lnode:> module load GCCcore/.11.3.0

Lnode:> module load Python/3.10.4

3. Load extra modules you need for your kernel

Lnode:> module load <module you need>

1. Create a virtual environment named <venv_name> at a path of your choice:

Lnode:> python -m venv --system-site-packages <your_path>/<venv_name>

2. Activate your environment

Lnode:> source <your_path>/<venv_name>/bin/activate

JUPYTER KERNEL
1. Create/Pimp new virtual Python environment (2)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Ensure python packages installed in the virtual environment
are always prefered

(<venv_name>) Lnode:> export PYTHONPATH=\

${VIRTUAL_ENV}/lib/python3.10/site-packages:${PYTHONPATH}

2. Install Python libraries required for communication with Jupyter

(<venv_name>) Lnode:>

pip install --ignore-installed ipykernel

3. Install whatever else you need in your Python virtual environment (using pip)

(<venv_name>) Lnode:>

pip install <python-package you need>

JUPYTER KERNEL
2. Create/Edit launch script for the Jupyter kernel (1)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Create launch script, which loads your Python virtual environment
and starts the ipykernel process inside:

(<venv_name>) Lnode:> touch ${VIRTUAL_ENV}/kernel.sh

2. Make launch script executable

(<venv_name>) Lnode:> chmod +x ${VIRTUAL_ENV}/kernel.sh

3. Edit the launch script for your new Jupyter kernel

(<venv_name>) Lnode:> vi ${VIRTUAL_ENV}/kernel.sh

JUPYTER KERNEL
2. Create/Edit launch script for the Jupyter kernel (2)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

#!/bin/bash

Load required modules

module purge

module load Stages/2023

module load GCCcore/.11.3.0

module load Python/3.10.4

Load extra modules you need for your kernel

#module load <module you need>

Activate your Python virtual environment

source <your_path>/<venv_name>/bin/activate

Ensure python packages installed in the virtual environment are always prefered

export PYTHONPATH=${VIRTUAL_ENV}/lib/python3.10/site-packages:${PYTHONPATH}

exec python -m ipykernel $@

JUPYTER KERNEL
3. Create/Edit Jupyter kernel configuration (1)

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

1. Create your Jupyter kernel configuration files

(<venv_name>) Lnode:>

python -m ipykernel install --user --name=<my-kernel-name>

2. Update your kernel file to use the lauch script

(<venv_name>) Lnode:>

vi ~/.local/share/jupyter/kernels/<my-kernel-name>/kernel.json

{

"argv": [

"<your_path>/<venv_name>/kernel.sh",

"-m",

"ipykernel_launcher",

"-f",

"{connection_file}"

],

"display_name": "<my-kernel-name>",

"language": "python"

}

JUPYTER KERNEL
Run your Jupyter kernel configuration

Run your Jupyter Kernel

1. https://jupyter-jsc.fz-juelich.de

2. Choose system where your Jupyter kernel is installed
in ~/.local/share/jupyter/kernels

3. Select your kernel in the launch pad or click the kernel name.

One of the many alternatives: Conda

Base your Jupyter Kernel on a Conda environment.

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-

/blob/master/001-Jupyter/Create_JupyterKernel_conda.ipynb

Jupyter kernel are NOT limited to Python at all!
The kernel-endpoint just needs to talk the Jupyter’s kernel protocol (in general over ZeroMQ).
E.g.
- IRkernel for R (https://github.com/IRkernel/IRkernel)

- IJulia.jl (https://github.com/JuliaLang/IJulia.jl)

https://github.com/IRkernel/IRkernel
https://github.com/JuliaLang/IJulia.jl

SLURM WRAPPED KERNELS

WITH SLURM-PROVISIONER

SHORT DIGRESSION:

Slurm is an

• open source,

• fault-tolerant, and

• highly scalable cluster management and

• job scheduling system

for large and small Linux clusters.

Source: https://slurm.schedmd.com/overview.html

Simple Linux Utility for Resource Management (SLURM)

REMOTE JUPYTER KERNELS

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Server

Jupyter

Kernel

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

browser

JupyterLab

Client

Extension

Cloud or Login node

Compute node

Running multiple Jupyter kernels separate on the HPC system

Jupyter Kernel Gateway
• Web server that provides headless access to Jupyter kernels
• Remotely, through REST calls and Websockets rather than ZeroMQ messages
• Connect through “Select Kernel“->"Remote kernel”->URL to Jupyter Kernel Gateway
But,
• The Jupyter Kernel Gateway needs to run to connect and the token needs to be known, or
• A different KernelManager class needs to be used for the whole Jupyter Server.

Both ways are non-intuitive and limit the user – especially as integration with the scheduler SLURM is missing.

Jupyter Enterprise Gateway is significantly richer in functionality,
but a service users can connect to and primarily made for a cloud.

https://jupyter-kernel-gateway.readthedocs.io

https://jupyter-enterprise-gateway.readthedocs.io

Jupyter

Kernel

Gateway

HTTPS/WSS

ØMQ

REMOTE JUPYTER KERNELS

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Server

Jupyter

Kernel

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

browser

JupyterLab

Client

Extension

Cloud or Login node

Compute node

Running multiple Jupyter kernels separate on the HPC system

Kernel Provisioning

Kernel Provisioning enables the ability for third parties

to manage the lifecycle of a kernel’s runtime environment.

By implementing and configuring a kernel provisioner,

third parties have the ability to provision kernels for different environments,

typically managed by resource managers like Kubernetes, Hadoop YARN, Slurm, etc.

The kernel provisioner optionally extends the current metadata stanza within the kernel.json
to include the specification of the kernel provisioner name, along with an optional config stanza

https://jupyter-client.readthedocs.io/en/stable/provisioning.html

ØMQ

Kernel

Provisioner

[..]
"metadata": {

"kernel_provisioner": {
"provisioner_name": "slurm-provisioner",
"config": {

"kernel_argv": "Python",
"project": "zam",
"partition": "batch",
"nodes": 1,
"runtime": 3600,

}
}

},

REMOTE JUPYTER KERNELS

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Server

Jupyter

Kernel

JupyterLab

SLURM

Provisioner

Extension

UNICORE

JupyterLab

browser

SLURM

Provisioner

Extension

Cloud or Login node

Compute node

Jupyter SLURM Provisioner (by Tim Kreuzer & Alice Grosch)

https://github.com/FZJ-JSC/jupyter-slurm-provisioner

https://github.com/FZJ-JSC/jupyter-slurm-provisioner-extension

ØMQ

Jupyter SLURM

Provisioner

SLURM

Slurm wrapped kernels allow you to run kernels on compute nodes

while your Jupyter Server runs on a login node.

This has the advantage that when your allocation on the compute node(s) ends, only the kernel is stopped, but your

JupyterLab server keeps running. You will only have to restart the kernel, not your entire JupyterLab instance.

https://github.com/FZJ-JSC/jupyter-slurm-provisioner

https://github.com/FZJ-JSC/jupyter-slurm-provisioner-extension

REMOTE JUPYTER KERNELS

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Server

Jupyter

Kernel

JupyterLab

SLURM

Provisioner

Extension

UNICORE

JupyterLab

browser

SLURM

Provisioner

Extension

Cloud or Login node

Compute node

Jupyter SLURM Provisioner (by Tim Kreuzer & Alice Grosch)

ØMQ

Jupyter SLURM

Provisioner

SLURM

JUPYTER SERVER PROXY

JUPYTERLAB – WEBSERVICE PROXY
Extension: jupyter-server-proxy

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Notebook

Server

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

JupyterLab

Client

Extension

WebAppJupyterLab Extension

„jupyter-server-proxy“

Allows to run arbitrary external processes

▪ alongside a Jupyter notebook, and provide authenticated web access to them.

▪ launching users into web interfaces that have nothing to do with Jupyter.

▪ access from frontend javascript to access web APIs

https://github.com/jupyterhub/jupyter-server-proxy

Turbulent mixing with variable density,

subset of 1939x600x3584 grid points, Michael Gauding, CORIA

JUPYTERLAB – WEBSERVICE PROXY
Extension: jupyter-server-proxy

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Notebook

Server

Jupyter

Kernel

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

JupyterLab

Client

Extension

ØMQ

pvserverJupyterLab Extension

„jupyter-server-proxy“

How to use JupyterLab to integrate

interactive server side visualization into a Jupyter Notebook.

pvpython

simulation

JUPYTERLAB – WEBSERVICE PROXY
Extension: jupyter-server-proxy

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Notebook

Server

Jupyter

Kernel

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

JupyterLab

Client

Extension

ØMQ

pvserverJupyterLab Extension

„jupyter-server-proxy“

How to use JupyterLab to integrate

interactive server side visualization into a Jupyter Notebook.

pvpython

simulation

PORT TUNNELING – WEBSERVICE PROXY
Extension: jupyter-server-proxy

https://jupyter-server-proxy.readthedocs.io/en/latest/arbitrary-ports-hosts.html

Accessing Arbitrary Ports or Hosts from the Browser

If you have a web-server running on the server

listening on <port>, you can access it through the notebook at

<notebook-base>/proxy/<port>

The URL will be rewritten to remove the above prefix.

You can disable URL rewriting by using

<notebook-base>/proxy/absolute/<port>

so your server will receive the full URL in the request.

This works for all ports listening on the local machine.

Example:
https://jupyter-jsc.fz-juelich.de/user/j.goebbert@fz-juelich.de/juwels_login/proxy/<port>
https://jupyter-jsc.fz-juelich.de/user/j.goebbert@fz-juelich.de/juwels_login/proxy/<host>:<port>

Upcoming: Support proxying to a server process via a Unix socket (#337)

PORT TUNNELING – WEBSERVICE PROXY
Extension: jupyter-server-proxy

https://jupyter-server-proxy.readthedocs.io/en/latest/arbitrary-ports-hosts.html

Accessing Arbitrary Ports or Hosts from the Browser

If you have a web-server running on the server

listening on <port>, you can access it through the notebook at

<notebook-base>/proxy/<port>

The URL will be rewritten to remove the above prefix.

You can disable URL rewriting by using

<notebook-base>/proxy/absolute/<port>

so your server will receive the full URL in the request.

This works for all ports listening on the local machine.

Example:
https://jupyter-jsc.fz-juelich.de/user/j.goebbert@fz-juelich.de/juwels_login/proxy/<port>
https://jupyter-jsc.fz-juelich.de/user/j.goebbert@fz-juelich.de/juwels_login/proxy/<host>:<port>

Upcoming: Support proxying to a server process via a Unix socket (#337)

LET‘S TEST IF THAT WORKS

JUPYTER SERVER PROXY

ON THE EXAMPLE OF

REMOTE DESKTOP BASED ON XPRA

JUPYTERLAB – REMOTE DESKTOP
Run your X11-Applications in the browser

Jupyter-JSC gives you easy access to a remote desktop

1. https://jupyter-jsc.fz-juelich.de

2. Click on “Xpra”

Xpra - X Persistent Remote Applications

is a tool which runs X clients on a remote host and directs their

display to the local machine.

▪ Runs in a browser

▪ allows dis-/reconnection without disrupting the forwarded

application

▪ https://xpra.org

The remote desktop will run on the same node as your

JupyterLab does (this includes compute nodes).

It gets killed, when you stop your JupyterLab session.

Hint:

▪ CTRL + C -> CTRL + Insert

▪ CTRL + V -> SHIFT + Insert

JUPYTERLAB – REMOTE DESKTOP
Run your X11-Applications in the browser

Jupyter-JSC gives you easy access to a remote desktop

1. https://jupyter-jsc.fz-juelich.de

2. Click on “Xpra”

Xpra - X Persistent Remote Applications

is a tool which runs X clients on a remote host and directs their

display to the local machine.

▪ Runs in a browser

▪ allows dis-/reconnection without disrupting the forwarded

application

▪ https://xpra.org

If the connection got lost at some point,

just hit the “reload” button of your browser.

Hint:

▪ CTRL + C -> CTRL + Insert

▪ CTRL + V -> SHIFT + Insert

JUPYTERLAB – REMOTE DESKTOP
Run your X11-Applications in the browser

JupyterLab

Jupyter-XpraHTML5-

Proxy

JupyterLab

Xpra HTML5-Client
XServer

(dummy driver)

encrypted Xpra stream

passwd

Xpra

HTML5S

L

• Xpra-HTML5 by JupyterLab

o Access through JupyterLab-URL

by configurable https proxy

o Auto-generated one-time

password & encryption key is

communicated through https-

proxy

https <-> ssh-tunnel

Xpra-HTML5

JavaScript-Client

https://github.com/FZJ-JSC/jupyter-xprahtml5-proxy

S: socket, read-/writeable to user only

L: local port, choosen randomly

Plugin for Jupyter-Server-Proxy: jupyter-xprahtml5-proxy
https://github.com/FZJ-JSC/jupyter-xprahtml5-proxy

JUPYTERLAB – REMOTE DESKTOP
jupyter-xprahtml-proxy – behind the scenes

https://github.com/FZJ-JSC/jupyter-xprahtml5-proxy

1. Register jupyter-server-proxy plugin

Python entry_point in setup.py

2. Launcher entry gets created

based on the returned values of setup_xprahtml5()

JUPYTERLAB – REMOTE DESKTOP
jupyter-xprahtml-proxy – behind the scenes

https://github.com/FZJ-JSC/jupyter-xprahtml5-proxy

1. --tcp-auth=file:filename

2. --tcp-encryption=AES

--tcp-encryption-keyfile

JUPYTER SERVER PROXY

TWO MORE EXAMPLES

JUPYTERLAB – MATLAB
Web-based GUI for MATLAB

MATLAB – Web-based GUI

Based on an existing connection to the HPC system, MATLAB

can be accessed in the browser.

• From here- you can connect directly to the cluster [2]

• Integrates MATLAB the HPC resources into the workflow

(partool) [3].

[1] https://www.fz-juelich.de/en/ias/jsc/services/user-support/software-tools/matlab

[2] https://de.mathworks.com/help/parallel-computing/remoteclusteraccess.html

[3] https://de.mathworks.com/products/parallel-computing.html

JUPYTERLAB – NEST DESKTOP
Web-based GUI for Neuroscientists using NEST

NEST-Desktop

NEST Desktop is a web-based GUI application for NEST

Simulator, an advanced simulation tool for the computational

neuroscience.

[1] https://nest-desktop.readthedocs.io

[2] https://www.nest-simulator.org

Jupyter-JSC gives you easy access to a NEST-Desktop

With Jupyter-JSC using Jupyter-Server-Proxy

authenticated & authorized users get secure access to the WebUI

of NEST-Desktop running NEST-simulations on HPC.

Plugin for Jupyter-Server-Proxy: jupyter-xprahtml5-proxy
https://github.com/jhgoebbert/jupyter-nestdesktop-proxy

JUPYTERLAB – NEST DESKTOP
Web-based GUI for Neuroscientists using NEST

NEST-Desktop

NEST Desktop is a web-based GUI application for NEST

Simulator, an advanced simulation tool for the computational

neuroscience.

[1] https://nest-desktop.readthedocs.io

[2] https://github.com/jhgoebbert/jupyter-nestdesktop-proxy

[3] https://www.nest-simulator.org

Jupyter-JSC gives you easy access to a NEST-Desktop

With Jupyter-JSC using Jupyter-Server-Proxy

authenticated & authorized users get secure access to the WebUI

of NEST-Desktop running NEST-simulations on HPC.

