diff --git a/Documents/.ipynb_checkpoints/Working with a Neo object-checkpoint.ipynb b/Documents/.ipynb_checkpoints/Working with a Neo object-checkpoint.ipynb
deleted file mode 100644
index cc6f0726621cf367dbb7ed24ab2ab341dcb48321..0000000000000000000000000000000000000000
--- a/Documents/.ipynb_checkpoints/Working with a Neo object-checkpoint.ipynb	
+++ /dev/null
@@ -1,453 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [
-    {
-     "ename": "ImportError",
-     "evalue": "No module named 'elephant'",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mImportError\u001b[0m                               Traceback (most recent call last)",
-      "\u001b[0;32m<ipython-input-2-801d98b34a28>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m     13\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mneo\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mBlock\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSegment\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     14\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mneo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mio\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mBlackrockIO\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0melephant\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msignal_processing\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mbutter\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     16\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     17\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mreachgraspio\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mreachgraspio\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;31mImportError\u001b[0m: No module named 'elephant'"
-     ]
-    }
-   ],
-   "source": [
-    "import sys\n",
-    "print(sys.path)\n",
-    "#sys.path.insert(0, '/home/denker/Projects/toolboxes/py/python-neo')\n",
-    "#sys.path.insert(0, '/home/denker/Projects/toolboxes/py/elephant')\n",
-    "sys.path.insert(0, '/home/denker/Projects/scientific_data_ms_package/code')\n",
-    "\n",
-    "import os\n",
-    "\n",
-    "import numpy as np\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "import quantities as pq\n",
-    "\n",
-    "from neo import Block, Segment\n",
-    "from neo.io import BlackrockIO\n",
-    "from elephant.signal_processing import butter\n",
-    "\n",
-    "from reachgraspio import reachgraspio\n",
-    "from neo_utils import add_epoch, cut_segment_by_epoch, get_events\n",
-    "\n",
-    "# Specify the path to the recording session to load, eg, '/home/user/l101210-001'\n",
-    "session_name = '/home/denker/SciDataPubDatasets/DataNikos2/i140703-001'\n",
-    "odml_dir = '/home/denker/SciDataPubDatasets/MetaDataNikos2/odMLfiles'"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Open the session for reading"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "#session = BlackrockIO(session_name)\n",
-    "session = reachgraspio.ReachGraspIO(session_name, odml_directory=odml_dir)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Read the first 300s of data (time series at 1000Hz (ns2) and 30kHz (ns6)\n",
-    "scaled to units of voltage, sorted spike trains, spike waveforms and events)\n",
-    "from electrode 62 of the recording session and return it as a Neo Block. The\n",
-    "time shift of the ns2 signal (LFP) induced by the online filter is\n",
-    "automatically corrected for by a heuristic factor stored in the metadata\n",
-    "(correct_filter_shifts=True)."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "data_block = session.read_block(\n",
-    "    nsx_to_load='all',\n",
-    "    n_starts=None, n_stops=300 * pq.s,\n",
-    "    channels=[62], units='all',\n",
-    "    load_events=True, load_waveforms=True, scaling='voltage')\n",
-    "\n",
-    "# Access the single Segment of the data block, reaching up to 300s.\n",
-    "assert len(data_block.segments) == 1\n",
-    "data_segment = data_block.segments[0]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Block:  Reachgrasp Recording Data Block\n",
-      "{'arraygrid_col_num': 10, 'project_name': u'reach-to-grasp', 'arraygrids_tot_num': 1, 'avail_file_set': ['ccf', 'odml', 'nev', 'ns2', 'ns6'], 'subject_name': u'monkey_N', 'electrodes_pitch': array(400.0) * um, 'rec_pauses': False, 'subject_birthday': datetime.date(2008, 5, 17), 'project_type': u'electrophysiology', 'avail_nsx': [2, 6], 'avail_electrode_ids': [-1, 81, 83, 85, 88, 90, 92, 93, 96, -1, 79, 80, 84, 86, 87, 89, 91, 94, 63, 95, 77, 78, 82, 49, 53, 55, 57, 59, 61, 32, 75, 76, 45, 47, 51, 56, 58, 60, 64, 30, 73, 74, 41, 43, 44, 46, 52, 62, 31, 28, 71, 72, 39, 40, 42, 50, 54, 21, 29, 26, 69, 70, 37, 38, 48, 15, 19, 25, 27, 24, 67, 68, 35, 36, 5, 17, 13, 23, 20, 22, 65, 66, 33, 34, 7, 9, 11, 12, 16, 18, -1, 2, 1, 3, 4, 6, 8, 10, 14, -1], 'electrodes_tot_num': 100, 'setup_location': u'Inst. de Neurosciences de la Timone (INT), UMR 7289, CNRS - Aix Marseille Univ., Marseille, France', 'project_subtype': u'motor behavior', 'taskdesigns': [u'TwoCues'], 'array_serialnum': u'8596-001139', 'avail_nev': True, 'nb_segments': 1, 'subject_activehand': u'left', 'avail_ccf': True, 'connector_type': u'CerePort', 'arraygrid_row_num': 10, 'conditions': [1], 'subject_gender': u'male', 'avail_sif': False}\n",
-      "\n",
-      "Segment:  Segment 0\n",
-      "{'condition': 1}\n",
-      "\n",
-      "A Spiketrain: \n",
-      "[  16471.   21599.   58494.   65345.   76005.   90368.  110354.  112677.\n",
-      "  112969.  113317.] (1.0/30000 * s)\n",
-      "[  549.03333333   719.96666667  1949.8         2178.16666667  2533.5\n",
-      "  3012.26666667  3678.46666667  3755.9         3765.63333333  3777.23333333] ms\n",
-      "[  16471.   21599.   58494.   65345.   76005.   90368.  110354.  112677.\n",
-      "  112969.  113317.]\n",
-      "0.0 (1.0/30000 * s)\n",
-      "9000000.0 (1.0/30000 * s)\n",
-      "{'channel_id': 62, 'noise': True, 'electrode_reject_IFC': False, 'sua': False, 'electrode_reject_HFC': False, 'mua': False, 'connector_aligned_id': 48, 'electrode_reject_LFC': False, 'unit_id': 0}\n",
-      "\n",
-      "An AnalogSignal: \n",
-      "[-2.1 -1.1 -0.1  0.9  1.9  2.9  3.9  4.9  5.9  6.9] (1.0/1000.0*s)\n",
-      "[[ 42.25]\n",
-      " [  5.5 ]\n",
-      " [ -5.25]\n",
-      " [  2.  ]\n",
-      " [  3.5 ]\n",
-      " [ -4.5 ]\n",
-      " [ -6.25]\n",
-      " [ -2.  ]\n",
-      " [ -4.  ]\n",
-      " [ -8.5 ]] uV\n",
-      "{'filter_lo_pass_freq': array(250.0) * Hz, 'filter_shift_correction': array(2.1) * ms, 'electrode_reject_HFC': False, 'filter_lo_pass_order': 4, 'filter_hi_pass_freq': array(0.3) * Hz, 'connector_aligned_id': 48, 'electrode_reject_LFC': False, 'filter_type': u'butterworth', 'nsx': 2, 'channel_id': 62, 'electrode_reject_IFC': False, 'filter_hi_pass_order': 1}\n",
-      "\n",
-      "An Event: \n",
-      "[  39424.   51491.   63532.   72614.  102672.  108766.  136071.  144917.\n",
-      "  144918.  213943.] (1.0/30000 * s)\n",
-      "['65296' '65360' '65370' '65360' '65366' '65382' '65514' '65386' '65312'\n",
-      " '65296']\n",
-      "[[False, False, False, False, False, False, False, False, False, False], ['TS-ON', 'WS-ON', 'CUE-ON', 'CUE-OFF', 'GO-ON', 'SR', 'RW-ON', 'RW-OFF', 'STOP', 'TS-ON'], [255, 255, 255, 255, 255, 255, 255, 255, 255, 255], [False, False, False, False, False, False, False, False, False, False], [True, True, True, True, True, True, True, True, True, False], [1, 1, 1, 1, 1, 1, 1, 1, 1, 2], ['SGHF', 'SGHF', 'SGHF', 'SGHF', 'SGHF', 'SGHF', 'SGHF', 'SGHF', 'SGHF', 'SGHF'], [39424, 39424, 39424, 39424, 39424, 39424, 39424, 39424, 39424, 213943]]\n",
-      "\n"
-     ]
-    }
-   ],
-   "source": [
-    "print \"Block: \", data_block.name\n",
-    "print data_block.annotations\n",
-    "print\n",
-    "print \"Segment: \", data_segment.name\n",
-    "print data_segment.annotations\n",
-    "print\n",
-    "print \"A Spiketrain: \"\n",
-    "print data_segment.spiketrains[0][0:10]\n",
-    "print data_segment.spiketrains[0][0:10].rescale(pq.ms)\n",
-    "print data_segment.spiketrains[0][0:10].magnitude\n",
-    "print data_segment.spiketrains[0].t_start\n",
-    "print data_segment.spiketrains[0].t_stop\n",
-    "print data_segment.spiketrains[0].annotations\n",
-    "print\n",
-    "print \"An AnalogSignal: \"\n",
-    "print data_segment.analogsignals[0].times[0:10]\n",
-    "print data_segment.analogsignals[0][0:10]\n",
-    "print data_segment.analogsignals[0].annotations\n",
-    "print\n",
-    "print \"An Event: \"\n",
-    "print data_segment.events[0].times[0:10]\n",
-    "print data_segment.events[0].labels[0:10]\n",
-    "print [data_segment.events[0].annotations[x][0:10] if type(data_segment.events[0].annotations[x]) is list else data_segment.events[0].annotations[x] for x in data_segment.events[0].annotations]\n",
-    "print "
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Construct analysis epochs\n",
-    "In this step we extract and cut the data into time segments (termed analysis\n",
-    "epochs) that we wish to analyze. We contrast these analysis epochs to the\n",
-    "behavioral trials that are defined by the experiment as occurrence of a Trial\n",
-    "Start (TS-ON) event in the experiment. Concretely, here our analysis epochs\n",
-    "are constructed as a cutout of 25ms of data around the TS-ON event of all\n",
-    "successful behavioral trials.\n",
-    "\n",
-    "Get Trial Start (TS-ON) events of all successful behavioral trials\n",
-    "(corresponds to performance code 255, which is accessed for convenience and\n",
-    "better legibility in the dictionary attribute performance_codes of the\n",
-    "ReachGraspIO class).\n",
-    "\n",
-    "To this end, we filter all event objects of the loaded data to match the name\n",
-    "\"TrialEvents\", which is the Event object containing all Events available (see\n",
-    "documentation of ReachGraspIO). From this Event object we extract only events\n",
-    "matching \"TS-ON\" and the desired trial performance code (which are\n",
-    "annotations of the Event object)."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "start_events = get_events(\n",
-    "    data_segment,\n",
-    "    properties={\n",
-    "        'name': 'TrialEvents',\n",
-    "        'trial_event_labels': 'TS-ON',\n",
-    "        'performance_in_trial': session.performance_codes['correct_trial']})\n",
-    "\n",
-    "# Extract single Neo Event object containing all TS-ON triggers\n",
-    "assert len(start_events) == 1\n",
-    "start_event = start_events[0]"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Construct analysis epochs from 10ms before the TS-ON of a successful\n",
-    "behavioral trial to 15ms after TS-ON. The name \"analysis_epochs\" is given to\n",
-    "the resulting Neo Epoch object. The object is not attached to the Neo\n",
-    "Segment. The parameter event2 of add_epoch() is left empty, since we are\n",
-    "cutting around a single event, as opposed to cutting between two events."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
-   "outputs": [],
-   "source": [
-    "pre = -10 * pq.ms\n",
-    "post = 15 * pq.ms\n",
-    "epoch = add_epoch(\n",
-    "    data_segment,\n",
-    "    event1=start_event, event2=None,\n",
-    "    pre=pre, post=post,\n",
-    "    attach_result=False,\n",
-    "    name='analysis_epochs')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Create new segments of data cut according to the analysis epochs of the\n",
-    "'analysis_epochs' Neo Epoch object. The time axes of all segments are aligned\n",
-    "such that each segment starts at time 0 (parameter reset_times); annotations\n",
-    "describing the analysis epoch are carried over to the segments. A new Neo\n",
-    "Block named \"data_cut_to_analysis_epochs\" is created to capture all cut\n",
-    "analysis epochs."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "cut_trial_block = Block(name=\"data_cut_to_analysis_epochs\")\n",
-    "cut_trial_block.segments = cut_segment_by_epoch(\n",
-    "    data_segment, epoch, reset_time=True)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Plot data\n",
-    "\n",
-    "Determine the first existing trial ID i from the Event object containing all\n",
-    "start events. Then, by calling the filter() function of the Neo Block\n",
-    "\"data_cut_to_analysis_epochs\" containing the data cut into the analysis\n",
-    "epochs, we ask to return all Segments annotated by the behavioral trial ID i.\n",
-    "In this case this call should return one matching analysis epoch around TS-ON\n",
-    "belonging to behavioral trial ID i. For monkey N, this is trial ID 1, for\n",
-    "monkey L this is trial ID 2 since trial ID 1 is not a correct trial."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
-   "outputs": [],
-   "source": [
-    "trial_id = int(np.min(start_event.annotations['trial_id']))\n",
-    "trial_segments = cut_trial_block.filter(\n",
-    "    targdict={\"trial_id\": trial_id}, objects=Segment)\n",
-    "assert len(trial_segments) == 1\n",
-    "trial_segment = trial_segments[0]"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Create figure"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
-   "outputs": [],
-   "source": [
-    "fig = plt.figure(facecolor='w')\n",
-    "time_unit = pq.CompoundUnit('1./30000*s')\n",
-    "amplitude_unit = pq.microvolt\n",
-    "nsx_colors = ['b', 'k', 'r']"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Loop through all analog signals and plot the signal in a color corresponding\n",
-    "to its sampling frequency (i.e., originating from the ns2/ns5 or ns2/ns6)."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
-   "outputs": [],
-   "source": [
-    "for i, anasig in enumerate(trial_segment.analogsignals):\n",
-    "        plt.plot(\n",
-    "            anasig.times.rescale(time_unit),\n",
-    "            anasig.rescale(amplitude_unit),\n",
-    "            label=anasig.name,\n",
-    "            color=nsx_colors[i])"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Loop through all spike trains and plot the spike time, and overlapping the\n",
-    "wave form of the spike used for spike sorting stored separately in the nev\n",
-    "file."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
-   "outputs": [],
-   "source": [
-    "for st in trial_segment.spiketrains:\n",
-    "    color = np.random.rand(3,)\n",
-    "    for spike_id, spike in enumerate(st):\n",
-    "        # Plot spike times\n",
-    "        plt.axvline(\n",
-    "            spike.rescale(time_unit).magnitude,\n",
-    "            color=color,\n",
-    "            label='Unit ID %i' % st.annotations['unit_id'])\n",
-    "        # Plot waveforms\n",
-    "        waveform = st.waveforms[spike_id, 0, :]\n",
-    "        waveform_times = np.arange(len(waveform))*time_unit + spike\n",
-    "        plt.plot(\n",
-    "            waveform_times.rescale(time_unit).magnitude,\n",
-    "            waveform.rescale(amplitude_unit),\n",
-    "            '--',\n",
-    "            linewidth=2,\n",
-    "            color=color,\n",
-    "            zorder=0)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Loop through all events"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
-   "outputs": [],
-   "source": [
-    "for event in trial_segment.events:\n",
-    "    if event.name == 'TrialEvents':\n",
-    "        for ev_id, ev in enumerate(event):\n",
-    "                plt.axvline(\n",
-    "                    ev,\n",
-    "                    alpha=0.2,\n",
-    "                    linewidth=3,\n",
-    "                    linestyle='dashed',\n",
-    "                    label='event ' + event.annotations[\n",
-    "                        'trial_event_labels'][ev_id])"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Finishing touches on the plot"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "plt.autoscale(enable=True, axis='x', tight=True)\n",
-    "plt.xlabel(time_unit.name)\n",
-    "plt.ylabel(amplitude_unit.name)\n",
-    "plt.legend(loc=4, fontsize=10)\n",
-    "plt.show()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.4.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}