
MAMBA: MANAGED ABSTRACT

MEMORY ARRAYS

V0.1.0

MARCH 26, 2020

CONTACT: TIM.DYKES@HPE.COM



Table of Contents

1 Overview 2

2 Mamba Abstract Memory Model 2

2.1 Memory Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Memory System Discovery . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Explicit Management . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Mamba Array 7

3.1 Array construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Array Tiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Explicit Tiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Implicit Tiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Library Implementation 22

4.1 Structure and Build Process . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Common Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Language Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Planned Features 29

5.1 Short term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Medium Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Long Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1



1 Overview

The Mamba library is designed to facilitate the use of heterogeneous memories by

providing a set of core data structures and abstractions for use by application pro-

grammers. Mamba defines an abstract memory model, implemented with an un-

derlying memory library; on top of this model a core data structure is built called a

Mamba array, which allows the programmer to transparently allocate, access, and

transport data across heterogeneous memory tiers.

This document describes the prototype design and implementation of the Mamba

library. The memory model and underlying memory manager are described in

Section 2; The Mamba array and related data structures are described in Section

3, along with two expected usage models, explicit programmer utilisation via our

user API and implicit utilisation via automatic, or user-guided, code transforma-

tion. Section 4 describes the current implementation, build structure, user exam-

ples, and expected future implementation steps. The prototype implementation

is written in C, and so code examples and listings are predominantly also C, with

discussion of language support in Section 4.3.

2 Mamba Abstract Memory Model

Mamba contains a memory management component, which provides an abstrac-

tion layer and uniform interface to heterogeneous memory. The Mamba infrastruc-

ture exploits this component for data management in Mamba arrays. This compo-

nent may also be exposed to the user, to provide a uniform interface to allocate, ac-

cess, and free memory, as well as for moving memory between tiers transparently,

outside of the scope of a Mamba array.

In addition to providing a high level abstraction layer for the programmer and the

Mamba infrastructure, this component also provides a generic memory interface

to which external memory management tools can be connected. An internal mem-

ory manager is included, as well as an exploratory interface to the SICM memory

manager1.

2.1 Memory Abstraction

The Mamba library is built on the assumption there are a variety of types of mem-

ory on a single node, with different characteristics. The memory abstraction layer

in Mamba allows heterogeneous memory systems to be described in a uniform

manner, to simplify the process of allocating and moving data across such systems.

1https://github.com/lanl/SICM

2

https://github.com/lanl/SICM


Conceptually, as illustrated in Figure 1, Mamba considers all the available mem-

ory as a single abstract memory space, consisting of a group of memory sub-spaces

each with a set of defined characteristics, from which data may be allocated. This

concept is represented in the Mamba library by four key interacting data structures,

illustrated in Figure 2. The remainder of this section describes the role and interac-

tions between each of these data structures.

Figure 1: A conceptual illustration of memory abstraction in the Mamba library.

Memory Layer

A Memory Layer, defined in the Mamba API as mmbMemLayer, represents a particular

type of memory with a defined set of characteristics. The memory layers available

to a user are defined by the available hardware in the system, and may have charac-

teristics such as high bandwidth or low latency. Such layers may be defined by the

user, or discovered automatically where possible during library initialisation.

Memory Space

A Memory Space, defined in the Mamba API as mmbMemSpace, represents a size-limited,

addressable, instantiation of space corresponding to a specific memory layer. The

size may be artificially limited by the user, or hardware-limited. Users will typically

3



Figure 2: An illustration of the four key interacting data structures that form the

memory abstraction in the Mamba library. Two memory layers exist, each with a

size-limited memory space. Each space has a corresponding memory interface,

from which an allocation object may be obtained.

obtain a memory space by specifying a layer and a size, and allocate a Mamba ar-

ray in this space as described in Section 3.3. A memory space has an associated

execution context, mmbExecutionContext, that determines how memory will be allo-

cated and made available in that space. The execution context provides the user a

means to choose the programming model through which memory must be made

available. For example, NVIDIA GPU device memory could be provided within a

CUDA, HIP, or OpenACC execution context.

Memory Interface

A Memory Interface, defined in the Mamba API as mmbMemInterface, acts as an in-

terface to a specific memory space, providing a mechanism to allocate, move, copy,

and free memory. A memory interface may have a specific strategy, that defines

the behaviour of the interface. For example, this may enforce thread safety during

allocation, or define the type of memory allocator used (e.g. pooled vs. slab).

Allocation

An Allocation object, defined in the Mamba API as mmbAllocation, provides an ab-

4



stract container for a memory allocation in a specific memory space. Allocation ob-

jects are provided by memory interfaces, and passed into generic allocation, copy,

and free routines. Allocation objects contain, if feasible, a real data pointer, along

with provenance information such as the interface through which it was allocated,

and whether the underlying data is owned by the allocation object or not. The con-

cept of ownership allows, for example, sub-allocations to be created as slices of

existing allocations.

2.2 Memory Management

The Mamba API for memory management is based on the abstractions detailed in

Section 2.1, and is utilised for managing Mamba array objects detailed in Section

3. A brief overview of the memory management API is presented here, for full API

details see the API documentation in the Mamba library.

2.2.1 Memory System Discovery

In order to allocate memory either via a Mamba Array object or explicitly using the

allocation API, an appropriate memory space is required. Mamba is able to auto-

matically discover the available memory layers on the system and create an appro-

priate memory space for each supported layer. This behaviour is enabled by default

when an appropriate version (>=2.0) of the hwloc library is found during configura-

tion, which is used to analyse system hardware topology during a discovery phase

of initialisation. Listing 1 demonstrates the request of an existing memory space

from the DRAM layer in the default execution space.

Listing 1: Requesting a memory space in Mamba

mmbError err;
mmbMemSpace *dram_space;
err = mmb_request_space(MMB_DRAM, MMB_DEFAULT_EXECUTION_CONTEXT,

&dram_space);
CHECK_STATUS(err, "Failed to retrieve a dram memory space\n");

Once a memory space is acquired, it may be passed to a Mamba Array during con-

struction as shown in Section 3, or may be used to allocate memory explicitly via

the API as shown in Section 2.2.2.

Automatic discovery may be disabled, either by default when the hwloc library is

not found or is at version <2.0, or explicitly by the user via configuration argu-

ment --enable-discovery[=yes|no|default]. In this case, the available memory lay-

ers must be registered by the user. When registering a memory layer, as demon-

strated in Section 2.2.2, the memory library will attempt to initialise an appropriate

memory interface and will return a memory space if successful.

5



The benefit of automatic discovery is that the user may query the existing memory

system and choose from available memories, whilst memory registration requires

the user to know which layers are available and specify them explicitly.

2.2.2 Explicit Management

The Mamba memory API is also available to the user for explicit memory manage-

ment. The typical process a user, or the Mamba implementation, must follow to

manually utilise the memory API is:

1. Acquire a memory space SM for memory layer M , via registration or request.

2. Request an interface IM from space SM .

3. Request a memory allocation AM from interface IM .

Listing 2 illustrates this process using the prototype Mamba API. This example demon-

strates the allocation of a memory buffer both on host and device in a heteroge-

neous CPU-GPU system, and the transparent copy between buffers.

Listing 2: Memory management API utilisation in Mamba. Error checking is omit-

ted for brevity.

size_t n_bytes = 1024;
mmbMemSpace *host_space;
mmbMemSpace *device_space;

/* Manually register two existing memory layers, returning two size limited
memory spaces for host and device. */

mmb_register_memory(MMB_DRAM, 8000, &host_space);
mmb_register_memory(MMB_GDRAM, 8000, &device_space);

/* Acquire memory interface for host memory */
mmbMemInterface *host_interface;
mmb_memspace_request_interface(host_space, MMB_DEFAULT_MEMINTERFACE,

MMB_POOLED, &host_interface);

/* Allocate 1KB of memory on the host */
mmbAllocation *host_buffer;
mmb_allocate(n_bytes, host_interface, &host_buffer);

/* Acquire memory interface for device memory */
mmbMemInterface *device_interface;
mmb_memspace_request_interface(device_space, MMB_DEFAULT_MEMINTERFACE,

MMB_POOLED, &device_interface);
/* Allocate 1KB of memory on the device */
mmbAllocation *device_buffer;

6



mmb_allocate(n_bytes, device_interface, &device_buffer);

/* Omitted: fill host memory with useful data */

/* Copy data from host memory allocation to device memory allocation */
mmb_copy(device_buffer, host_buffer);

3 Mamba Array

A Mamba array is an array-like data structure that forms the core abstraction of the

Mamba library. It is built on top of the abstract memory model described in 2, and

the underlying data in a Mamba array may be transparently distributed across mul-

tiple types of memory as illustrated in Figure 3. Subsets of the array may be dupli-

cated or moved between memories, either explicitly by the user or implicitly by the

Mamba runtime. The remainder of this section describes the process to construct,

access, and move Mamba arrays.

3.1 Array construction

The constructor for a Mamba array requires four key arguments as shown in mmb_array_create

signature in Listing 3.

Listing 3: The API to construct and destroy a Mamba array.

mmbError mmb_array_create(mmbDimensions *in_dims, mmbLayout *in_layout,
mmbMemSpace *in_space, mmbAccessType in_access,
mmbArray **out_mba);

mmbError mmb_array_create_wrapped(void *in_data, mmbDimensions *in_dims,
mmbLayout *in_layout, mmbMemSpace *in_space,
mmbAccessType in_access, mmbArray

**out_mba);

mmbError mmb_array_destroy(mmbArray *in_mba);

The mmbDimensions argument, in_dims, specifies array size in each dimension,

and data will be appropriately allocated during array construction.

The second argument, in_layout, defines the layout of the array in physical mem-

ory, represented in the Mamba API as an mmbLayout data structure. This object de-

fines the mapping of array indices to physical memory layout, and encapsulates

array characteristics such as:

• Number of dimensions

7



Figure 3: A conceptual illustration of Mamba arrays distributed across the different

types of memory in an abstract memory space representing a heterogeneous mem-

ory system. Array subsets may reside in one or more memory spaces, explained

further in Section 3.2.

• Object type (Element/AOS/SOA) and size in bytes

• Layout order (e.g. C vs Fortran ordering)

• Layout type (e.g. regular, block cyclic, irregular)

• Element and dimensions pre- and post-padding (in bytes)

Figure 4 represents how different layouts may map conceptual indices in an mmbArray

to physical indices in memory, and a series of constructors are provided for typical

types of layout as shown in Listing 4, although the prototype library implementa-

tion only supports regular layouts at this time.

8



Figure 4: Multiple mappings from mmbArray indices to physical memory locations,

due to varying mmbLayout configurations.

Listing 4: Various constructors for an mmbLayout object.

mmbError mmb_layout_create_regular_1d(size_t element_size_bytes,
mmbLayoutPadding *pad,
mmbLayout **out_layout);

mmbError mmb_layout_create_regular_nd(size_t element_size_bytes, size_t
n_dims,

mmbLayoutOrder element_order,
mmbLayoutPadding *pad,
mmbLayout **out_layout);

mmbError mmb_layout_create_block(size_t n_dims, size_t element_size_bytes,
mmbLayoutOrder element_order,
mmbDimensions *block_size,
mmbDimensions *block_order,
mmbLayoutPadding *pad,
mmbLayout **out_layout);

mmbError mmb_layout_create_irregular_1d(size_t element_size_bytes,
size_t *offsets,
size_t *sizes,
mmbLayout **out_layout);

The third argument for Mamba array construction, in_space, provides the mem-

ory space in which the array should be allocated. This may be obtained through

9



memory registration or discovery, as demonstrated in Section 2.2.

The fourth argument, in_access, indicates the access type for the array, represented

by mmbAccessType in the Mamba API. This describes how the array is intended to be

used and may be, for example:

• MMB_READ

• MMB_WRITE

• MMB_READ_WRITE

• ...

The access type may influence where the array is placed in a particular memory

space, such as using fast read-only memory where applicable, and is further ex-

ploited for array subsets as discussed in Section 3.2.

Finally, a Mamba array may also be constructed wrapped around existing user data,

using the constructor mmb_create_wrapped shown in Listing 3. This allows a user to

pass in pre-allocated data for management by the Mamba library, using the addi-

tional initial argument in_data.

3.2 Array Tiling

In the Mamba library, arrays may be decomposed into subsets for iteration or move-

ment between memory spaces, as illustrated in Figure 5. These subsets are known

as array tiles, and are represented by the mmbArrayTile data structure. The process

of decomposing an array into these subsets is known as tiling an array, and the set

of array tiles that constitute the full array is known as an array tiling.

Listing 5 shows the API provided to tile, and untile, a Mamba array. The only ar-

gument required to tile an array, beyond the array itself, is a dimensions object

in_dims, which defines the size of a single tile. The full array will then be decom-

posed into tiles with these dimensions by the Mamba runtime. As indicated by the

API, a tiling is an action applied to an array object, and only a single tiling may be

active on an array at any one time. Repeated calls to mmb_array_tile with new di-

mensions will result in removal of any previous tiling applied to the provided array.

Listing 5: Mamba API to tile an Array

mmbError mmb_array_tile(mmbArray *in_mba, mmbDimensions *in_dims);
mmbError mmb_array_untile(mmbArray *in_mba);

Array tiles may be accessed either directly by requesting a tile by index in the array

tiling, or indirectly by requesting and using an iterator over the set of array tiles.

10



Figure 5: An illustration of the concept of array tiling in one and two dimensions,

each tile may reside in one or more memory spaces.

Listing 6 shows the API for direct access by index, which will be demonstrated in

Section 3.3.

Listing 6: Mamba API to directly access a specific tile of an array via index.

mmbError mmb_tile_at(mmbArray *in_mba, mmbIndex *in_idx,
mmbArrayTile **out_tile);

Tile iterators, represented by the mmbTileIterator data structure, are a more conve-

nient way of iterating over a full array tiling. An iterator object contains an internal

schedule over tiles, and provides typical iterator operations (first, next, etc) to tra-

verse the array tiling. The current API for the prototype implementation of array

tile iterators is shown in Listing 7. It is expected that a full implementation of the

tile iterator objects would allow the Mamba runtime to automatically move array

tiles based on knowledge of the iteration schedule, for example pre-fetching one or

more tiles.

11



Listing 7: Mamba prototype API to construct and use an array tile iterator object.

typedef struct mmbTileIterator {
mmbIteratorSchedule schedule;
mmbIndex idx;
mmbArrayTile* tile;
mmbArray* src;

} mmbTileIterator;

mmbError mmb_tile_iterator_create(mmbArray *in_mba, mmbTileIterator** out_it);
mmbError mmb_tile_iterator_first(mmbTileIterator * in_it);
mmbError mmb_tile_iterator_next(mmbTileIterator * in_it);
mmbError mmb_tile_iterator_count(mmbTileIterator * in_it, size_t* count);
mmbError mmb_tile_iterator_destroy(mmbTileIterator * in_it);

Once a tile is acquired, either by index or via iterator, it may be used to access the

underlying array data. There are two mechanisms to do this, direct access or as-

sisted indexing via convenience macros defined by the Mamba library.

Direct access allows the user to retrieve a raw pointer from the array tile, and index

it directly using the indexing bounds stored directly in the tile structure as shown

in Listing 8. Alternatively, one may use the indexing macros provided by Mamba to

simplify the indexing calculation for common cases, as shown in Listing 9.

Listing 8: A partial list of the accessible members of a tile structure.

typedef struct mmbArrayTile {

// Lower and upper indices relative to the tile allocation pointer
size_t *lower;
size_t *upper;
// Tile dimensions
size_t *dim;

// Global array lower and upper indices, relative to the array allocation
pointer

size_t *alower;
size_t *aupper;

// Absolute dimensions, required when tile is not a contiguous allocation
size_t *abs_dim;
// ...

} mmbArrayTile;

12



Listing 9: Looping over a 2D array tile and accessing members using a convenience

indexing macro to zero-initialise the tile.

for(size_t i = tile->lower[0]; i < tile->upper[0]; i++)
for(size_t j = tile->lower[1]; j < tile->upper[1]; j++){

MMB_IDX_2D(tile, i, j, float) = 0;
}

Array tiles are the mechanism by which arrays may be segmented and transported

between physical memory tiers. The Mamba library provides features for three

types of movement:

• Array tile duplication

• Array tile merging

• Array tile migration

Array tile duplication provides a means of creating a duplicate of an array tile in

another (or even the same) memory space. A new block of memory is allocated

(or taken from an internal cache) to store the new tile, and data is copied from the

original tile. A reference to the original tile is maintained, however this tile is not

accessible to the user.

Array tile merging provides a means of merging a duplicated tile back to the original

tile from which it was duplicated. A strategy, mmbMergeStrategy, defines how this

merge will take place. In the prototype library implementation, the only strategy

supported is to overwrite the original data. Other strategies are envisioned such

as typical reduction operators or the provision of a custom user function to merge

array indices.

Array tile migration provides a means of migrating an array tile to a different mem-

ory space. A new block of memory is allocated (or taken from an internal cache) to

store the new tile, and data is copied from the original tile. The new tile replaces the

original tile, and the original tile reference is dropped, releasing associated memory

where possible.

Figure 6 illustrates the difference between duplicating an array tile, and migrating

an array tile, whilst Listing 10 shows the API available for tile movement. For dupli-

cation and migration, a target memory space is required, along with an access type

and layout for the new tile. The access type may be used for optimised memory

placement of the new tile, or to optimise the data movement requirements as illus-

trated in Figure 7. For a subset of layouts, it is expected that a new layout may be

provided here and an automatic transformation will occur during duplication/mi-

gration. The prototype library so far only supports passing a tile layout equivalent

13



to the existing array layout. In each case, the tile returned will be accessible in the

execution context of the memory space requested.

Listing 10: Mamba API for the three types of tile movement.

mmbError mmb_tile_duplicate(mmbArrayTile *in_tile, mmbMemSpace *in_space,
mmbAccessType in_access, mmbLayout *in_layout,
mmbArrayTile **out_tile);

mmbError mmb_tile_migrate(mmbArrayTile *in_tile, mmbMemSpace *in_space,
mmbAccessType in_access, mmbLayout *in_layout);

mmbError mmb_tile_merge(mmbArrayTile *in_tile, mmbMergeType in_merge);

Figure 6: An illustration of the difference between duplicating and migrating array

tiles. In the case of duplication, a copy of the original tile still exists, whereas in the

case of migration the original tile is discarded.

Figures 8 and 9 document tile behaviour when duplicating, migrating, and merg-

ing for synchronous, and asynchronous versions of the tile movement API via state

machine. The Mamba prototype library does not yet support the asynchronous API

version.

14



Figure 7: An illustration of the potential for simple automatic data movement opti-

misation based on the provision of access types during tile duplication.

3.3 Explicit Tiling

As discussed in Section 1, two use cases of the Mamba library are envisioned, ex-

plicit and implicit tiling. The explicit use case requires the user to directly modify

their code using the Mamba API, re-implementing part of their application to ex-

ploit the Mamba library. Using this approach, the user may:

• Allocate and transport data across heterogeneous memories in a uniform and

performance-portable manner.

• Implement general out-of-core algorithms using Mamba data structures.

• Experiment with tile-based kernel optimisation in a parameterised way.

• Benefit from limited automatic data movement via tile iterator objects.

The steps a user is required to take are, at least:

1. Initialise the Mamba library

2. Register/discover available memory

3. Acquire one or more memory space handles

4. Construct a Mamba array

5. Tile the array

15



Figure 8: A state machine describing array tiles during duplication, migration, and

merging. Only the maximum depth tile is accessible at any one time.

6. Iterate over tiles

7. Duplicate/migrate if required

8. Access tile data

9. Free tile

10. Destroy array

16



Figure 9: An asynchronous version of the state machine in Figure 8, where a com-

pletion flag is used to determine the state of array tiles during asynchronous move-

ment.

17



Listing 11 demonstrates current Mamba API to perform this set of steps. In the

prototype API, usage is more verbose that envisioned in the final implementation.

Error handling is also omitted for brevity, and discussed further in Section 4.2.

Listing 11: Prototype Mamba API for a typical user scenario, constructing a Mamba

array, tiling and iterating over the tiles, passing each tile in turn to a computational

kernel.

size_t array_size = 32;
size_t tile_size = 8;

// Initialise mamba and register some memory
stat = mmb_init(MMB_INIT_DEFAULT);
mmbMemSpace *dram_space;
stat = mmb_register_memory(MMB_DRAM, 8000, MMB_DEFAULT_EXECUTION_CONTEXT,

&dram_space);

// Create mmb array
mmbArray *mba;
mmbLayout *layout;
size_t arrdims[1] = {array_size};
mmbDimensions dims = {1, arrdims};

mmb_layout_create_regular_1d(sizeof(float), MMB_PADDING_NONE, &layout);
mmb_array_create(&dims, layout, dram_space, MMB_READ_WRITE, &mba);
init_matrix_buffer(mba);

// Request tiling of all arrays with chunkx chunky
size_t chunkdims[1] = {tile_size};
mmbDimensions chunks = {1, chunkdims};
stat = mmb_array_tile(mba, &chunks);

// Loop over tiles using standard indexing
// Duplicate each tile, write to it, and merge back to original
mmbArrayTile *tile;
mmbIndex *idx;
mmbDimensions *tiling_dims;
mmb_index_create(1, &idx);
mmb_dimensions_create(0, &tiling_dims);
mmb_tiling_dimensions(mba, tiling_dims);

for (size_t ti = 0; ti < tiling_dims->d[0]; ++ti) {
// Set tile indices for c array
stat = mmb_index_set(idx,ti);
stat = mmb_tile_at(mba, idx, &tile);
// Duplicate tile in DRAM; write to and merge duplicated tile
mmbArrayTile *duplicate_tile;

18



mmb_tile_duplicate(tile, dram_space, MMB_READ_WRITE, layout,
&duplicate_tile);

write_to_tile(duplicate_tile);
mmb_tile_merge(duplicate_tile, MMB_OVERWRITE);

}

// Cleanup intermediate objects, check result buffer, cleanup mamba
mmb_dimensions_destroy(tiling_dims);
mmb_index_destroy(idx);

check_result(mba);
mmb_array_destroy(mba);
stat = mmb_finalize();

return EXIT_SUCCESS;
}

mmbError write_to_tile(mmbArrayTile *tile)
{

// Fill array tile with 1’s
for (size_t i = tile->lower[0]; i < tile->upper[0] ;++i) {

MMB_IDX_1D(tile, i, float) = 1.f;
}
return MMB_OK;

}

3.4 Implicit Tiling

The second use case envisioned for the Mamba library is implicit usage. In this

case, direct modification of user-code is minimal, for example use of simple di-

rectives. The Mamba library may extract information about data movement from

these directives, and/or the code itself, and manage tile movement appropriately.

Furthermore, through compiler extensions, the Mamba API may also be inserted

automatically to take advantage of Mamba tiling and automatic data movement.

Using this approach, the user may potentially:

• Automatically exploit the Mamba API via a minimal amount of code markup.

• Benefit from automatic data movement where appropriate.

• Benefit from loop kernel optimisation where appropriate.

This use case is to be researched during the implementation and integration stages

of the project, and is not expected to be production ready by the end of the project.

19



This is due to both the complexity and immaturity of the approach, and the depen-

dence on readiness of existing and upcoming compilers and tools, for example the

new Fortran front end to the LLVM compiler. The current prototype of the library

includes a loop description API, and a loop analysis module based on the Polyhe-

dral Extraction Tool (PET) [1] and the ISL library [2]. Prototype tooling implemen-

tation has also been developed within the new Flang (formerly F18) front end for

LLVM.

The loop description API allows a user to describe a computational loop in terms of

data references and accesses to these data references. Internally, an incomplete ab-

stract syntax tree (AST) is built describing the loop. The tree is incomplete because

only ordered data accesses are considered, rather than describing the control flow

in full, e.g. a read and write may be considered, but not the assignment opera-

tor that caused them. Listing 12 demonstrates description of a simple loop using

this API. At the point mmb_compute_loop is called, the internal Mamba AST is fully

constructed, and translated to a PET AST, which is then used to perform polyhe-

dral loop analysis using the PET library. An extended example, including resultant

output, is included in the Mamba library, the loop_description example detailed in

Section 4.4.

Listing 12: Example use of the loop description API to describe a simple loop.

const int M = 100;
float *array_A = malloc(sizeof(float) * M);
float alpha = 2.0;

// Omitted: array_A initialisation

// Create array and data reference for array and scalar
mmb_data_ref_create_array(array_A, 2, sizeof(float), "A", &ref_A);
mmb_data_ref_create_scalar(&alpha, sizeof(float), "alpha", &ref_alpha);

// Create loop nest object
mmbLoopNest *loop;
mmb_loop_nest_create(&loop);
// Add outer loop
mmbLoopId *outer;
mmb_loop_nest_add_loop(loops, &outer);

// Create some reuseable expressions
mmbExpr *zero, *i;
mmb_expr_create_int(0,&zero);
mmb_expr_create_iterator("i",&i);

// Set init, condition, and increment expressions for outer loop
mmbExpr *init;

20



mmb_expr_create_binary_decl_op(MMB_OP_ASSIGN, i, zero, &init);
mmb_loop_set_loop_init(outer, init);

mmbExpr *cond;
mmbExpr *expr_M;
mmb_expr_create_const_parameter("M", &expr_M);
mmb_expr_create_binary_op(MMB_OP_LT, i, expr_M, &cond);
mmb_loop_set_loop_cond(outer, cond);

mmbExpr *inc;
mmb_expr_create_unary_op(MMB_OP_PRE_INC, i, &inc);
mmb_loop_set_loop_inc(outer, inc);

// Create array index access expression
mmbExpr * i_access;
mmb_expr_create_access(i, &i_access);

// Add read access statement to array A
mmb_loop_add_access(inner, ref_A, i_access, MMB_EXPR_ACCESS_READ);
// Add read access statement to scalar alpha
mmb_loop_add_access(inner, ref_alpha, NULL, MMB_EXPR_ACCESS_READ);
// Add write access statement to array A
mmb_loop_add_access(inner, ref_A, i_access, MMB_EXPR_ACCESS_WRITE);

// Loop analysis, dependency computation, output etc, all happens here
mmb_loop_nest_compute(loop);

// Actual loop
for(int i = 0; i < M; ++i)

A[i] *= alpha

The loop description API is clearly verbose, and it is not expected that a user will

write this code themselves outside of an interim experimentation phase. However,

this does provide a means of describing the accesses in a loop, which would be ben-

eficial to the development of cost models for data access. It is envisioned that the

main use case of this API will be exploitation in an extension to the currently under-

development LLVM Fortran compiler front end, to allow Mamba-based polyhedral

loop analysis on Fortran kernel loops. We are also exploring other mechanisms for

capturing array accesses in loops that do not rely on compiler extensions such as

this.

21



4 Library Implementation

In this section we briefly describe the structure and build process of the library pro-

totype, the common utilities, along with existing and proposed language support.

4.1 Structure and Build Process

Figure 10 illustrates the directory structure of the Mamba library. At the top level,

build files and a README file are provided, whilst most of the Mamba implemen-

tation is in the common subdirectory. Dependent libraries for loop analysis, stored in

the loopanalyzer subdirectory, are imported via git submodules.

Figure 10: An illustration of the directory structure of the Mamba library.

The Mamba library exploits the autotools build system for compilation; each of the

code subdirectories is built as a convenience library, and these are combined to

form libmamba. Listing 13 shows the typical user build process.

Listing 13: The typical user build process for Mamba.

mkdir build;
cd build;
../autogen.sh;
../configure [--prefix=/p/a/t/h] \

[--with-sicm=/p/a/t/h] \
[--enable-cuda[=yes|no]] \
[--with-loop-analysis[=yes|no]];

make;
make check;

4.2 Common Utilities

Library Initialisation

22



The Mamba library must be initialised before first use, and de-initialised after final

use. To this end, the library includes functions for initialisation, finalisation, and

checking the state of the library, in a similar way to the MPI library. This API is

shown in Listing 14.

Listing 14: API for one-time initialisation, finalisation, and state checking in the

Mamba library.

mmbError mmb_init(mmbOptions *in_opts);
mmbError mmb_is_initialized(int *initialized);
mmbError mmb_finalize();

The structure mmbOptions may consist of a series of flags for Mamba configuration,

although in the prototype library there are not yet any configuration options made

available to the user. A constructor for default configuration options exists, such

that the user may provide MMB_INIT_DEFAULT as the argument to mmb_init for default

initialisation.

Convenience Data Structures

Mamba includes various convenience data structures for interacting with the li-

brary. Commonly used in the public API are two wrapper structures for a simple

resizeable array used to store either a list of dimensions, or a list of indices,

• mmbDimensions

• mmbIndex

Listing 15 highlights part of the API available for this type of data structure, this may

be extended as necessary during the full library implementation.

Listing 15: A partial list of API available for convenience data structure mmbDi-

mensions.

mmbError mmb_dimensions_create(const size_t ndim, mmbDimensions **out_dims);
mmbError mmb_dimensions_create_fill(const size_t ndim, const size_t *values,

mmbDimensions **out_dims);
mmbError mmb_dimensions_copy(mmbDimensions *dst, const mmbDimensions *src);
mmbError mmb_dimensions_resize(mmbDimensions *in_dims, const size_t ndim);
mmbError mmb_dimensions_destroy(mmbDimensions *in_dims);

Logging

Mamba includes a logging infrastructure (./common/mmb_logging.h/c, used internally

and available for users to exploit. Maximum logging verbosity is defined by default

23



with a compile time switch, and reduced verbosity may be requested by setting the

environment variable MMB_LOG_LEVEL to one of the values shown in Listing 16.

Listing 16: A list of available logging functions with example usage and output.

/** log level for errors */
#define MMB_LOG_ERR 0
/** log level for warnings */
#define MMB_LOG_WARN 1
/** log level for informational messages */
#define MMB_LOG_INFO 2
/** log level for debugging messages */
#define MMB_LOG_DEBUG 3
/** log level for really chatty logging */
#define MMB_LOG_NOISE 4

/** error messages */
ERR(format, ...)
/** warning messages */
WARN(format, ...)
/** informational messages */
INFO(format, ...)
/** debug messages */
DEBUG(format, ...)
/** chatty messages */
NOISE(format, ...)

/** example usage */
ERR("Error with integer value: %d\n", errno)
/** example output in format:

[error type] (process id): function(filename:line) error message */
[E] (12083): main(example.c:25) Error with integer value: 1

Error Handling

Error handling is managed via datatype mmbError, used as the return type for almost

all Mamba API functions, and demonstrated in Listing 17.

24



Listing 17: A typical example of error handling in the Mamba library.

mmbError mmb_example_function_wrapper(void) {

mmbError err = mmb_example_function(arg1, arg2);
if(err != MMB_OK) {

ERR("Failed to run the example function\n");
goto BAILOUT;

}

/** ... */

BAILOUT:
return err;

}

4.3 Language Support

The prototype implementation of the library is written in C, based on the C99 lan-

guage standard. As evidenced throughout the code listings in this document, we

adhere to a programming style where:

• Functions are prefixed mmb_

• Spaces in function names are represented via underscore.

• Functions return an mmbError type for error handling.

• Typenames are camel case.

• Constructors are formatted mmb_(object_name)_create, with an optional fur-

ther configuration postfix (e.g. _2d) for overloading constructors.

• Destructors are postfixed mmb_(object_name)_destroy

• Object memory allocation/free routines are similarly formatted mmb_(object_name)_alloc,

mmb_(object_name)_free.

• Commenting in doxygen format is encouraged

Fortran

The Fortran interface is designed to mirror that of the C API and in most cases

uses identically-named types to the C API for declaration of opaque objects that are

25



passed to Mamba API procedures. The Fortran interface makes use of the latest In-

teroperability features defined in the Fortran standard (Fortran 2008). New derived

types are provided for objects where direct access to the components is needed, this

is true for example for the mmb_Tile type which provides corresponding elements to

the mmb_ArrayTile structure in the C API.

The C API provides access to tile information directly and to tile array elements via

indexing macros defined by the preprocessor. In the Fortran API we could provide

similar macros but that would not be natural for Fortran. In Fortran, we will provide

direct indexing of a pointer that points to the array elements. This pointer can also

be multidimensional since Fortran supports multidimensional arrays.

The following example illustrates some features of the Fortran API...

Listing 18: Memory management API utilisation in Mamba Fortran Interface

program array_copy_wrapped_1d
use mamba
USE, INTRINSIC :: ISO_C_BINDING, only : C_loc
implicit none
integer, parameter :: M=128
integer(mmbErrorKind) err
integer(mmbSizeKind) ntiles
type(mmbMemSpace) dram_space
type(mmbArray) :: mba0
type(mmbDimensions) dims
type(mmbLayout) layout
type(mmbTileIterator) it
type(mmbTile) tile
real, dimension(:), allocatable,target :: buffer0
integer :: i,itile,chunksize

print *,"Starting example 1d_array_copy (Fortran)"

allocate( buffer0(m) )

call mmb_init(err)
call mmb_register_memory(MMB_DRAM, 8000_mmbSizeKind, &

MMB_DEFAULT_EXECUTION_CONTEXT,&
dram_space,err)

call mmb_dimensions_create_fill(1_mmbIndexKind,[int(M,mmbIndexKind)],dims)
call mmb_layout_create_regular_1d(int(storage_size(buffer0),mmbSizeKind),&

mmb_layout_padding_create_zero(), &
layout,err)

call mmb_array_create_wrapped(c_loc(buffer0(1)),dims, layout, &
dram_space, MMB_READ_WRITE, mba0,err )

call mmb_array_tile(mba0, dims, err)
call mmb_tile_iterator_create(mba0, it, err)

26



call mmb_tile_iterator_first_with_tile(it,tile,err)

do i=tile%p_lower(1)+1,tile%p_upper(1)
tile_%p(i)=i*0.001+3.0

end do

call mmb_finalize(err)

end program array_copy_wrapped_1d

The Fortran interface requires the use of the mamba module to provide the defini-

tions of the API subprograms and support types. In addition to required types, kind

values are defined for integer declarations: mmbErrorKind for the return error value,

mmbSizeKind for memory counts and mmbIndexKind for quantities that relate to array

indexes.

The Fortran interface uses subroutines instead of functions with the last argument

used to return an error code. Returning the error code is optional. The example

allocates a buffer, registers it with mamba and then creates a layout and mamba

array.

A mamba iterator is used to get the first tile in the array, its location in the larger

array can be determined from elements of the mmbTile type. This type also provides

a pointer to the data (in this example we illustrate the initial prototype where this

is the full array.

The interface will define pointers that cover the relevant array range to return only

the tile. The prototype as yet does not support a large range of data types but this is

work in progress.

C++ Interface

The initial C++ interface will be a C++ wrapper of the C interface, due to the simi-

larity of the languages this will add a first phase of C++ support for little additional

cost. Following this, more advanced features of C++ will be explored to provided

a cleaner interface more suited to C++ programming. At the basic level, this will

include using function overloading, templates and, to some extent, object orien-

tated design to provide a lightweight and less verbose API than is possible in C.

As implementation progresses, we will also explore the effect of overloaded array

operators for tile indexing, while ensuring to maintain the possibility of compiler

vectorization of the array accesses, and investigate the applicability of more mod-

ern C++ language features, for example storing loop kernels as lambdas for delayed

execution in implicit tiling scenarios.

27



4.4 Examples

A series of examples are included in the prototype implementation, stored in the

examples subfolder (install_dir/examples/), each existing example is briefly de-

scribed here with instructions on use. As implementation develops, more examples

will be implemented here.

1d_array_copy

This example demonstrates the construction, tiled initialisation, and copy of a 1d

mamba array to another 1d mamba array with matching layout and size, with full

error checking.

Source file: examples/1d_array_copy.c

Usage: ./1d_array_copy

1d_array_copy_wrapped

This example demonstrates the construction of a 1d mamba array by wrapping an

existing user pointer. Similarly to 1d_array_copy, this is followed by tiled initiali-

sation, and copy of the 1d mamba array to another mamba array with matching

layout and size.

Source file: examples/1d_array_copy_wrapped.c

Usage: ./1d_array_copy_wrapped

tile_duplicate

This shows construction of a 1d mamba array, demonstrates a tiled array loop where

the tile is duplicated (in the same memory space), operated on by an artificial ker-

nel, and merged back to the original tile.

Source file: examples/tile_duplicate.c

Usage: ./tile_duplicate

matrix_multiply

This demonstrates a tiled matrix multiply using three mamba arrays constructed

on top of pre-initialised matrix buffers with random values or, optionally, identity

values. All arguments in the usage example are optional.

Source file: examples/matrix_multiply.c

Usage: ./matrix_multiply -v (for verbose mode) -t N (for tile size NxN) -m N (for

matrix size NxN) -i (use identity for matrix B)

28



loop_description

This example demonstrates the description of a loop using the loop description

API described in Section 3.4, followed by polyhedral analysis of the loop with de-

pendence computation. The loop description, auxiliary analysis information and

calculated loop dependencies are output to the terminal.

Source file: examples/loop_description.c

Usage: ./loop_description

report_mem_state

This example demonstrates dumping the memory system topology after automatic

discovery during Mamba initialisation. When run, this example will list the avail-

able memory spaces and configuration options found during memory discovery.

Source file: examples/report_mem_state.c

Usage: ./report_mem_state

5 Planned Features

Here we list a series of planned features for upcoming Mamba releases, sorted ap-

proximately by expected order of implementation. With each new release, this doc-

ument will be updated to detail the new features and examples as necessary.

5.1 Short term

• Full GPU tiling support: Whilst copying data to and from the GPU is pos-

sible using either the tile duplication or manual memory management API,

the tiling support is incomplete and requires tile metadata to be automati-

cally transported with tile data, and made available in the appropriate GPU

execution context.

• Fortran interface: A Fortran interface is under development, and expected

to be included in one of the next releases.

• Efficient non-contiguous tile management: Extraction and movement of

non-contiguous sections of tile data to be implemented in an efficient man-

ner.

• Non-volatile memory support: Integration of the uMMapIO software as an

external memory manager, to be completed in collaboration with KTH in the

context of the EPiGRAM-HS project, will introduce support for non-volatile

memory.

29



• Asynchronous tile movement: Implementation of async version of tile move-

ment API.

• Basic layout transformation: We expect to implement API to support trans-

formation of a subset of array layouts.

5.2 Medium Term

• Advanced layout transformation: We expect to implement API to support

transformation of a wider range of layouts, including distributed arrays.

• Inter-node transport: In collaboration with WP2 of the EPiGRAM-HS project,

we expect to add features for distributed arrays and transport between nodes.

• Advanced tile scheduling: Only a single tile schedule is currently supported,

we plan to extend this to allow customisation tile scheduling.

• C++ interface (native): Existing C++ support is a simple C API wrapper, we

expect to extend this to utilise C++ features where possible to simplify the

API usage in C++.

5.3 Long Term

• Implicit tile management: As detailed in Section 3.4, implicit tile manage-

ment is expected in the longer term. This may include directive based tiling

and automatic insertion of tile API.

• Compiler-integrated loop analysis: We are also exploring compiler integra-

tion for both C and Fortran to exploit advanced loop analysis to improve im-

plicit tile management.

References

[1] Sven Verdoolaege and Tobias Grosser. Polyhedral extraction tool. In In Second

International Workshop on Polyhedral Compilation Techniques (IMPACT’12,

2012.

[2] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Komei

Fukuda, Joris van der Hoeven, Michael Joswig, and Nobuki Takayama, editors,

Mathematical Software – ICMS 2010, pages 299–302, Berlin, Heidelberg, 2010.

Springer Berlin Heidelberg.

30


	Overview
	Mamba Abstract Memory Model
	Memory Abstraction
	Memory Management
	Memory System Discovery
	Explicit Management


	Mamba Array
	Array construction
	Array Tiling
	Explicit Tiling
	Implicit Tiling

	Library Implementation
	Structure and Build Process
	Common Utilities
	Language Support
	Examples

	Planned Features
	Short term
	Medium Term
	Long Term


