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Tasks and Deliverables

• Task T3.1: Programming and abstraction of diverse 
memories (M1-M30)

• Leader: Cray. Contributors: KTH, UEDIN

• Task T3.2: Modeling of data access costs of diverse 
memories (M1-M30)

• Leader: UEDIN. Contributors: Cray

• Task T3.3: Runtime for optimal data placement on 

diverse memories (M1-M30)

• Leader: KTH. Contributors: Cray

• Task T3.4: Transport methods between diverse 
memories (M1-M36)

• Leader: Cray. Contributors: KTH

• Deliverable D3.1: Report on current and emerging 
transport technologies for data movement. (M5)

• Deliverable D3.2: Initial design of memory 
abstraction device for diverse memories. (M9)

• Deliverable D3.3: Final design specification and 
prototype implementation report of API’s and 
runtime system for data placement, migration, and 
access on diverse memories. (M18)

• Deliverable D3.4: Report on final implementation of 
APIs and runtime system for data placement, 
migration and access on diverse memories. (M30)

• Deliverable D3.5: Experiences and best practices on 
programming emerging transport technologies for 
data movement. (M36)



D3.3: Final design specification and prototype implementation 
report of APIs and runtime system for data placement, migration 
and access on diverse memories.

• Updated design document

• Streamlined software stack

• Prototype implementations made available within 

consortium (Milestone 6) via collaborative GIT 

repositories 

• Early feedback from application owners
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Mamba Overview

• Defines an abstract memory model

• Defines a Mamba Array object built on top of the abstract memory model

• Explicit and implicit memory management via array tiling and tile iterators

• Will include data reuse analysis and cost modelling

• Implementation in C/C++/Fortran
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Abstract 
Memory Space

● Mamba is built on the assumption 
there are a variety of types of 
memory on a single node, with 
different characteristics

● Conceptually, these different 
types of memory are grouped 
together in an abstract memory 
space for use in an application.

● Users will typically access these 
different memories via a Mamba 
Array object

Abstract Memory Model



Abstract Memory Model in Mamba

• Memory Layer: mmbMemLayer
• A particular type of memory with a defined set of 

characteristics

• Memory Space: mmbMemSpace
• A size-limited addressable instantiation of a 

memory layer 

• Memory Interface: mmbMemInterface
• A space-specific memory interface for allocating 

blocks of memory

• Allocation: mmbAllocation
• A block of allocated memory in a particular 

memory space

• Execution Context: mmbExecutionContext
• A specifier to determine how memory should be 

allocated and made available for user access

Mamba Resource Manager

mmbMemLayer: DRAM

mmbMemSpace: 
32GB 

mmbMemLayer: HBM

mmbMemSpace: 
8GB 

mmbExecutionContext: CPU

mmbAllocation: N Bytes

mmbExecutionContext: GPU_CUDA

mmbAllocation: M Bytes

… …

mmbMemInterface mmbMemInterface



General approach for memory management

• Explicitly register available memory 
OR 
• Implicitly discover available memory
THEN
• Request a memory space for a specific layer
• Request an interface to the space
THEN
• Explicitly allocate memory  
AND/OR
• Construct Mamba array

Registration/Discovery

Request Space & Interface

Allocate!



Managing Memory in the Mamba Memory Model

• Explicit memory registration for 
CPU & GPU memories

• Constructors and modifier APIs 
also exist for configuration options. 
Can typically be reused.

• Specify layer, execution context, 
configuration options

• Repeat for each memory layer you 
want to access

• Space can be returned here, or 
later via request_space API



• Optional automatic memory discovery 
via hwloc library 

• “--enable-discovery” configure option 
(enabled by default if hwloc is found)

• Requires hwloc >= 2.0

• Pre-registers memory for all layers 
found in memory topology during 
Mamba initialization.

• Spaces may still be customised, either 
by changing default configuration or 
using modifier API 

Managing Memory in the Mamba Memory Model



Managing Memory in the Mamba Memory Model

• Once a space is acquired, you 
can request a memory 
interface, which allows to 
allocate memory from the 
space. 

• You can configure the interface 
at request time, or later by 
using a modifier API

• The interface may then be used for explicit memory allocation or 
Mamba Array allocation
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Memory API – Explicit memory allocation

• Using the host interface, we allocate in 
DRAM, returning an mmbAllocation

• Using the device interface, we allocate in GPU 
memory, returning an mmbAllocation

• mmb_copy copies data from one allocation to 
another



12

Abstract 
Memory Space

mmbArray A 

mmbArray B 

● Mamba Arrays may be spread 
across multiple memories

● Subsets of the array may be 
duplicated, or moved between 
memories 

● Movement may be controlled 
explicitlyby the user, or implicitly 
by the Mamba runtime to exploit 
data reuse.

● A Mamba Array can consist of 
several tiles that are suitable for 
movement

Mamba Array Concept



• Mamba Array: mmbArray

• An array object, can be internally allocated via 

mmbMemInterfaces or wrapped around an existing user pointer

• May be spread across multiple memory spaces 

• May be tiled for loop iteration

• Maps indices to allocations in memory spaces

• Exploits a layout object to map to physical memory address

• Mamba Layout: mmbLayout

• Defines the mapping from array indices to physical memory 

layout

• Describes array characteristics such as:

• Dimensions (2/3/etc)

• Object type (Element/AOS/SOA)

• Layout order (e.g. C vs Fortran ordering)

• Layout type (e.g. regular, block cyclic, irregular)

• Element and dimensions pre and post padding (in bytes)

0 1 2 3 ...

mmbArray

0 1

2 3

Physical Memory

0 2

1 3

Physical Memory

mmbLayout 0 mmbLayout 1

Mamba Array & Layout



Basic Layout & Array construction

• Create a 1d array layout, 
specifying element size with no 
padding

• Define array dimensions, and 
construct array, specifying 
dimensions, layout, memory 
interface, and expected 
read/write policy

• Can also wrap existing pointer. 
Still required to specify a 
memory interface so Mamba 
knows where pointer resides 
and how to copy it.



Mamba Array Tiling
• A decomposition of the Mamba array into tiles 

(otherwise known as… chunks, blocks, pieces, 
subsets, etc)

• Currently required user-provided tile size in each 
dimension

• Being tiled is a property of the array – therefore 
only a single tiling may be valid on an array at any 
one time.

• Tiles may be iterated over by using a tile iterator 
object

• Tiles may be duplicated, or migrated, to alternative 
memory tiers

• Individual array elements are accessed using 
indexing macros

Abstract 
Memory Space

A2

mmbArray
A 

A1

B21
mmbTile

B22
mmbTile

B11
mmbTile

B12
mmbTile

2D mmbArray B

A4
mmbTile

A0
mmbTile

A1
mmbTile

1D mmbArray A

A3
mmbTile

A3

A4

Device memory

Main memory

Storage

Memory types present in 
abstract space (for example):



Creating a 1D Array Tiling 

• Choose a tile size, and tile the array 
‘mba’

• Shortcut to create a single tile covering 
whole array
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Iterating over 1D Array Tiles and Accessing Elements

• Explicit iteration
• User specified iteration

• Tiles are accessed by index in the array 
tiling

• E.g. tile_at(index)

• Tile iterators
• Simpler array iteration

• Contains a list of all tiles to iterate over

• Contains a schedule over the list

• Provides typical operations, e.g. next()

• Element accessors
• Accessor macro per dimension

• Evaluates to regular 1D C array access



Duplicating, Migrating, and Merging Array Tiles
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• Array tiles may be duplicated on other memories

• 2 copies of tile memory exist, only one of which is legally 
accessible at any time

• Duplicates may be merged back into parent tile

• Array tiles may be migrated to other memories
• 1 copy of tile memory exists, which is moved to a different 

memory

• User can choose to duplicate/migrate, or runtime may 

internally duplicate/migrate

• Tiles may have different access types to array as a whole 

• E.g. duplicate an array tile as a read-only object

• Tile metadata must be available in the expected execution space

Abstract 
Memory Space

A2

mmbArray 
A 

A1

A3

A4

Abstract 
Memory Space

A2

mmbArray 
A 

A1

A3

A4

Duplication of A2 Migration of A2



• Initialise Mamba

• Request memory space & 
interface to space, for array 
allocation 

• Create regular 1 dimensional 
array layout

• Create array of size dims, with 
specified layout, allocate data 
using dram interface, will be 
read/writeable 

• Non mamba function– initialize 
array data

Array Initialisation and Tiling, followed by Duplicating, 
Writing to, and Merging 1d Array Tiles on GPU



• Request a different space & 
interface, this time on GPU

• Tile Mamba array with 1d 8-element 
tiles

• Loop over array tiles (aiming to 
reduce verbosity of this part of API)

• Access tile at specified index

• Merge duplicate tile into parent tile, 
copies data from gpu tile to cpu tile, 
overwriting parent tile data. 

• Ask for device-local copy of tile 
metadata (accessible from within cuda
kernel)

• Duplicate array tile using GPU 
interface (copies data from CPU tile to 
GPU tile)



Multidimensional arrays: ND array construction
• A 2D Mamba array

• Create a regular 2d layout object, 
specifying element size, dimensions, 
ordering, and (lack of) padding.

• Create mamba array, specifying the 
memory interface to use for allocation, 
and the type of access expected (read-
only, read-write, write-only)

• Construction and tiled array access 
currently works for ND arrays, still 
working on optimized transport to 
support tile duplication etc.



Advanced Layout Construction: 2D Block-cyclic

• Continuous elements of array are organized into 2D blocks

• Improve locality, for example in dense matrix computations

• Combine with array tiling to optimize transport for tiled 
movement

• Each tile is now a contiguous block of memory from the 
outset

• Tradeoff – indexing for tiling that doesn’t match block cyclic 
layout is more expensive

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

Regular contiguous element indices

2x2 block cyclic
contiguous element indices



Construction of a 2D Block-cyclic Mamba Array

• A 2D Mamba array

• Create a block 2d layout object, 
specifying element size, dimensions, 
ordering, block size, ordering, and (lack 
of) padding.

• Create mamba array with specified 
layout, in DRAM, with the type of access 
expected (read-only, read-write, write-
only).

• Would also use block_dims during tiling 
for optimized transport

• Block-cyclic indexing used when tile does 
not match block size



New Ease-of-use features

• Initialisation options
• Configure logging infrastructure

• Configure memory management infrastructure

• Set default behavior

• Custom allocator settings

• Logging infrastructure
• Custom logging options

• Override library logging with user logging

• Proper release cycle & versioning

• Unit testing
• CHEAT



Fortran Interface

• A set of derived datatypes that match or augment the C API.

• Some examples provided to mirror the C examples

• To have a Fortran array object for tiles programmer will have to provide an 
appropriately typed/dimensioned pointer.

• Will also provide similar indexing macros from the preprocessor.

• Work is ongoing, expect to have version available in July.



C++ Interface

• Very early implementation stages, not released yet

• Three phase approach:

• 1: Utility: simple wrapper of C API

• 2: Ease-of-use: extensions to API using C++ syntactic sugar

• 3: Advanced features: enabled through use of higher level 
abstractions available in C++



Distributed Mamba Arrays

• Early design stages for connection with WP2

• Extend the Mamba array concept to multiple processes.

• Distributed Mamba Array built on top of local mamba arrays on each node

• Will rely on transport library UDJ for inter-node movement & redistribution

• MPI transport in UDJ will explore use of EPCC work on persistent operations where 

possible.



Summary: Current status and Next Steps
Current
• C interface

• Resource manager
• Can allocate and move memory on CPU, GPU (CUDA) using 

memory API
• Generic memory API with custom allocators, not yet 

connected to e.g. uMMapIO

• Array construction, copy
• N dimensional regular arrays

• Array Tiling
• Arrays can be tiled/untiled with explicit tile sizes
• Indexed tile access, simple iterator access
• Duplication and merging of contiguous blocks in DRAM & 

GPU (CUDA) (i.e. 1D arrays & contiguous blocks of ND arrays)

• Cost model
• Cost model API implemented, not yet integrated

• Loop analysis
• Loop description and analysis API implemented, not yet 

exploited

In progress / planning
• Advanced memory allocation and movement

• Cost model based movement

• Tile migration and merge policies

• Efficient ND movement

• Flash, storage, other execution contexts

• FPGA ?

• Irregular arrays
• Irregular element size or blocking

• Non-contiguous tile transport
• Efficient transport of non-contiguous tile data 

• Layout transformation
• Changing array layouts for efficient computation or data transport

• Fortran interface, C++ interface

• Asynchronous API

• Loop analysis

• Distributed Mamba Arrays



Early:

• Allow programmer to allocate arrays across heterogeneous memories

• Initial locations/execution contexts supported are: DRAM and GPU (cuda)

• Allow programmer to split array and transport chunks across memories

• Parameterised tiling

• General out of core:
• Storage to DRAM

• DRAM to device memory 

• Caching in fast/high bandwidth memory

• Splitting array across multiple GPUs per node

Upcoming:

• Integration with demonstrator applications

• Integration with other partners work

• Wider range of supported memories / devices

• Flash, storage, remote, …? 

• Wider range of supported execution contexts
• OpenACC, OpenMP, HIP, etc

• Optimized & overlapped data movement 

• Distributed arrays

Research area:

• Optimising data movement for/as well as loop execution order
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Example codes

• Array allocation and copy in DRAM

• 1d tile duplication in DRAM (from DRAM)

• 1d tile duplication in GPU (from DRAM)

• Entire array allocation on GPU

• 2D tiled matrix multiply in DRAM

• User defined logging override

• 2D tiled matrix multiply on GPU

• Multi-GPU offload

• Tile duplication in DRAM (from storage)

• Asynchronous duplication

• ….

Summary: High level capabilities

Available
Available but requires refactor/improvement
Under development



Key interactions with partners

• KTH
• Benchmarking
• Demonstrator applications
• Memory provision

• EPCC 
• Loop analysis/cost modelling  
• Distributed Mamba Arrays

• ECMWF
• Demonstrator applications
• First technical collaboration 

meeting earlier this year

• Maestro project
• Demonstrator application



Fortran Interface



Mamba Fortran Interface
• Designed to mirror that of the C interface as much as possible

• Assumes Fortran 2008 compiler

• Provides a module named mamba

• The module provides:

• Type definitions

• The mamba API

• Supporting KIND values



Module definitions
• Opaque types

mmbMemSpace
mmbMemInterface
mmbLayout
mmbLayoutPadding
mmbArray
mmbTiling
mmbTileIterator
mmbIndex

• These are passed around the API but not accessed in Fortran



Module definitions: constants
• For many enums provided in the C API and the LOG levels

• mmb_error is an example

• KIND values for INTEGERs

• mmbSizeKind (matches size_t in the C interface)

• mmbIndexKind (matches size_t in the C interface)

• Various kind values for enums used in Fortran user defined types
mmbProviderKind
mmbStrategyKind
mmbAccessTypeKind



Module definitions: user defined types
TYPE, BIND(C) :: mmbAllocation

TYPE(C_PTR) :: ptr

INTEGER(mmbSizeKind) :: n_bytes

TYPE(mmbMemInterface) :: interface

LOGICAL(c_bool) :: owned

END TYPE mmbAllocation

TYPE, BIND(C) :: mmbMemInterfaceConfig

INTEGER(mmbProviderKind) :: provider

INTEGER(mmbStrategyKind) :: strategy

END TYPE mmbMemInterfaceConfig

TYPE, BIND(C) :: mmbSizeConfig

INTEGER(kind(MMB_SIZE_INVALID)) :: 
action

INTEGER(c_size_t) ::  mem_size

END TYPE mmbSizeConfig

TYPE, BIND(C) :: mmbMemSpaceConfig

TYPE(mmbSizeConfig) :: size_opts

TYPE(mmbMemInterfaceConfig) ::  
interface_opts

END TYPE mmbMemSpaceConfig



Module definitions: mmbArrayTile type
TYPE :: mmbArrayTile

TYPE(C_mmbArrayTile) :: c_tile ! The C tile structure

INTEGER :: rank

TYPE(C_PTR) :: ptr

! Lower and upper indices in tile allocation

INTEGER(mmbIndexKind), allocatable :: lower(:)

INTEGER(mmbIndexKind), allocatable :: upper(:)
! Array lower and upper indices used for slicing and may be useful

! for other applications such as halo management and multi-level tiling

INTEGER(mmbIndexKind), allocatable :: alower(:)

INTEGER(mmbIndexKind), allocatable :: aupper(:)

! Tile dimensions

INTEGER(mmbIndexKind), allocatable :: dim(:)

! Dimension of allocation containing tile

! Absolute dimensions, required when tile is not a contiguous allocation
INTEGER(mmbIndexKind), allocatable :: abs_dim(:)

LOGICAL is_contiguous

END TYPE mmbArrayTile



General comments on Fortran interface
• API calls are SUBROUTINES with an optional final argument returning the 

error code, eg.
INTEGER(mmbErrorKind) :: err
call mmb_array_tile(mba, chunks)
call mmb_array_tile(mba, err=err)

• Some API calls (as above) use optional arguments where the C function 
takes a NULL, may need to use keyword arguments.

• The Fortran API uses 1-based indexing for array and tile index space

• Fortran examples are provided in examples/fortran

• The next slides outline other differences



Dimensions object
• The C API uses a Dimensions object which cannot be interfaced directly in 

Fortran. It is used in array creation, tiling and for tile dimension enquiry.

• The Fortran interface just uses an array …

integer(mmbIndexKind), dimension(2) :: chunks

chunks = [tile_size_M, tile_size_N]
call mmb_array_tile(mba_a, chunks)

• There is no mmb_dimensions_destroy() in the Fortran API



Iterators
• Mamba has been changed so that iterator positioning functions also 

return the array tile, the Fortran interface supports this..

call mmb_tile_iterator_first(iterator, tile)
call mmb_tile_iterator_next(iterator, tile)

• Note that tiles can be accessed in tile space via mmb_tile_at_* routines:
eg
mmb_tile_at( mmb_arr, tidx, tile )
mmb_tile_at_2d( mmb_arr, tidx_i, tidx_j, tile )



Accessing tile ‘data’
• Metadata is directly accessible in the tile eg tile%rank.

• A pointer to tile array data is set as follows

real, pointer, dimension(:,:) :: tp

call mmb_tile_get_pointer(tile, tp)
tp(tile%lower(1):tile%upper(1),tile%lower(2):tile%upper(2))=0.0

• Note that the pointer may actually point to a larger space than just the 
tile



Indexing support
• The C API provides index macro access to array elements

• We expect Fortran programmers only to use this for irregular layouts

• To do this in the Fortran API

• #include “mambaf.h”

• Pass a rank 1 array into mmb_tile_get_pointer(tile)

• The index macro should be passed the tile and the pointer…
MMB_IDX_2D(tile_c, tp_c, ei, ej) = &
MMB_IDX_2D(tile_c, tp_c, ei, ej) + &
MMB_IDX_2D(tile_a, tp_a, ei, ek) * MMB_IDX_2D(tile_b, tp_b, ek, ej)



Caveats and next steps
• Note that the support for wrapping arrays is not standard Fortran

• Next steps

• Implement C benchmarks in Fortran and check overheads

• Memory space and programming model support for GPU 
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