
Notebook

November 17, 2019

1 Hands-On: Performance Counters
This Notebook is part of the exercises for the SC19 Tutorial »Application Porting and Optimization
on GPU-accelerated POWER Architectures«. It is to be run on a POWER9 machine; in the
tutorial: on Ascent, the POWER9 training cluster of Oak Ridge National Lab.

This Notebook can be run interactively on Ascent. If this capability is unavailable to you, use it
as a description for executing the tasks on Ascent via a shell access. During data evaluation, the
Notebook mentions the corresponding commands to execute in case you are not able to run the
Notebook interactively directly on Ascent.

1.1 Table of Contents
• Section ??
• Section ??

– Section ??
– Section ??
– Section ??

• Section ??
• Section ??

1.2 Task 1: Measuring Cycles and Instructions
Throughout this exercise, the core loop of the Jacobi algorithm is instrumented and analyzed. The
part in question is

for (int iy = iy_start; iy < iy_end; iy++)
{

for(int ix = ix_start; ix < ix_end; ix++)
{

Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - (A[iy *nx+ix+1] + A[iy *nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}

}

The code is instrumented using PAPI. The API routine PAPI_add_named_event() is used to add
named PMU events outside of the relaxation iteration. After that, calls to PAPI_start() and
PAPI_stop() can be used to count how often a PMU event is incremented.

1

For the first task, we will measure quantities often used to characterize an application: cycles and
instructions.

TASK: Please measure counters for completed instructions and run cycles. See the TODOs in
file poisson2d.ins_cyc.c. You can either edit the files with Jupyter capabilities by clicking on
the link of the file or selecting it in the file drawer on the left; or use a dedicated editor on the
system(vim is available). The names of the counters to be implemented are PM_INST_CMPL and
PM_RUN_CYC.

After changing the source code, compile it with make task1 or by executing the following cell (we
need to change directories first, though).
(Using the Makefile we have hidden quite a few intricacies from you in order to focus on the
relevant content at hand. Don’t worry too much about it right now – we’ll un-hide it gradually
during the course of the tutorial.)

Section ??
In []: !pwd

In []: %cd Tasks/
Use `%cd Solutions` to look at the solutions for each task

In []: !make task1

Before we launch our measurement campaign we should make sure that the program is measuring
correctly. Let’s invoking it, for instance, with these arguments: ./poisson2d.ins_cyc.bin 100
64 32 – see the next cell. The 100 specifies the number of iterations to perform, 64 and 32 are the
size of the grid in y and x direction, respectively.
In []: !./poisson2d.ins_cyc.bin 100 64 32

alternatively call !make run_task1

Alright! That should return a comma-seperated list of measurements.

For the following runs, we are going to use Ascent’s compute backend nodes which are not shared
amongst users and also have six GPUs available (each!). We use the available batch scheduler IBM
Spectrum LSF for this. For convenience, a call to the batch submission system is stored in the
environment variable $SC19_SUBMIT_CMD. You are welcome to adapt it once you get more familiar
with the system.

For now, we want to run our first benchmarking run and measure cycles and instructions for
different data sizes, as a function of nx. The Makefile holds a target for this, call it with make
bench_task1:
In []: !make bench_task1

Once the run is completed, let’s study the data!

This can be done best in the interactive version of the Jupyter Notebook. In case this version of
the description is unavailable to you, call the Makefile target make graph_task1 (either with X
forwarding, or download the resulting PDF).
In []: import numpy as np

import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
import common
%matplotlib inline
sns.set()
plt.rcParams['figure.figsize'] = [14, 6]

2

poisson2d.ins_cyc.c

Execute the following cell if you want to switch to color-blind-safer colors
In []: sns.set_palette("colorblind")

In []: plt.rcParams['figure.figsize'] = [14, 6]
df = pd.read_csv("poisson2d.ins_cyc.bin.csv", skiprows=range(2, 50000, 2)) # Read in
the CSV file from the bench run; parse with Pandas
df["Grid Points"] = df["nx"] * df["ny"] # Add a new column of the number of grid points
(the product of nx and ny)
df.head() # Display the head of the Pandas dataframe

Let’s have a look at the counters we’ve just measured and see how they scaling with increasing
number of grid points.

In the following, we are always using the minimal value of the counter (indicated by »(min)«) as
this should give us an estimate of the best achievable result of the architecture.
In []: fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)

df.set_index("Grid Points")["PM_RUN_CYC (min)"].plot(ax=ax1, legend=True);
df.set_index("Grid Points")["PM_INST_CMPL (min)"].plot(ax=ax2, legend=True);

Although some slight variations can be seen for run cycles for many grid points, the correlation
looks quite linear (as one would naively expect). Let’s test that by fitting a linear function!

The details of the fitting have been extracted into dedicated function, print_and_return_fit(), of
the common.py helper file. If you’re interested, go have a look at it.
In []: def linear_function(x, a, b):

return a*x+b

In []: fit_parameters, fit_covariance = common.print_and_return_fit(
["PM_RUN_CYC (min)", "PM_INST_CMPL (min)"],
df.set_index("Grid Points"),
linear_function,
format_uncertainty=".4f"

)

Let’s overlay our fits to the graphs from before.
In []: fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)

for ax, pmu_counter in zip([ax1, ax2], ["PM_RUN_CYC (min)", "PM_INST_CMPL (min)"]):
df.set_index("Grid Points")[pmu_counter].plot(ax=ax, legend=True);
ax.plot(

df["Grid Points"],
linear_function(df["Grid Points"], *fit_parameters[pmu_counter]),
linestyle="--",
label="Fit: {:.2f} * x + {:.2f}".format(*fit_parameters[pmu_counter])

)
ax.legend();

Please execute the next cell to summarize the first task.
In []: print("The algorithm under investigation runs about {:.0f} cycles and executes about

{:.0f} instructions per grid point".format(
*[fit_parameters[pmu_counter][0] for pmu_counter in ["PM_RUN_CYC (min)",

"PM_INST_CMPL (min)"]]
))

Bonus:

The linear fits also calculate a y intersection (»b«). How do you interpret this value?

We are revisiting the graph in a little while.

Section ??

3

common.py

1.3 Task 2: Measuring Loads and Stores
Looking at the source code, how many loads and stores from / to memory do you expect? Have a
look at the loop which we instrumented.

Let’s compare your estimate to what the system actually does!

1.3.1 Task A

Please measure counters for loads and stores. See the TODOs in poisson2d.ld_st.c. This time,
implement PM_LD_CMPL and PM_ST_CMPL.

Compile with make task2, test your program with a single run with make run_task2, and then
finally submit a benchmarking run to the batch system with make bench_task2. The following
cell will take care of all this.

Section ??
In []: !make bench_task2

Once the run finished, let’s plot it again in the course of the following cells (non-interactive: make
graph_task2a).
In []: df_ldst = pd.read_csv("poisson2d.ld_st.bin.csv", skiprows=range(2, 50000, 2))

df_ldst["Grid Points"] = df_ldst["nx"] * df_ldst["ny"]
df_ldst.head()

In []: fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)
df_ldst.set_index("Grid Points")["PM_LD_CMPL (min)"].plot(ax=ax1, legend=True);
df_ldst.set_index("Grid Points")["PM_ST_CMPL (min)"].plot(ax=ax2, legend=True);

Also this behaviour looks – at a first glance – linear. We can again fit a first-order polynom (and
re-use our previously defined function curve_fit)!
In []: _fit, _cov = common.print_and_return_fit(

["PM_LD_CMPL (min)", "PM_ST_CMPL (min)"],
df_ldst.set_index("Grid Points"),
linear_function,
format_value=".4f"

)
fit_parameters = {**fit_parameters, **_fit}
fit_covariance = {**fit_covariance, **_cov}

Let’s overlay this in one common plot:
In []: fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)

for ax, pmu_counter in zip([ax1, ax2], ["PM_LD_CMPL (min)", "PM_ST_CMPL (min)"]):
df_ldst.set_index("Grid Points")[pmu_counter].plot(ax=ax, legend=True);
ax.plot(

df_ldst["Grid Points"],
linear_function(df["Grid Points"], *fit_parameters[pmu_counter]),
linestyle="--",
label="Fit: {:.2f} * x + {:.2f}".format(*fit_parameters[pmu_counter])

)
ax.legend();

Did you expect more?

The reason is simple: Among the load and store instructions counted by PM_LD_CMPL and
PM_ST_CMPL are vector instructions which can load and store multiple (in this case: two) val-
ues at a time. To see how many bytes are loaded and stored, we need to measure counters for
vectorized loads and stores as well.

4

/edit/Tasks/poisson2d.ld_st.c

1.3.2 TASK B

Please measure counters for vectorized loads and vectorized stores. See the TODOs in
poisson2d.vld.c and poisson2d.vst.c (Note: These vector counters can not be measured to-
gether and need separate files and runs). Can you find out the name of the counters yourself, using
papi_native_avail | grep VECTOR_?

Compile, test, and bench-run your program again.

Section ??
In []: !papi_native_avail | grep VECTOR_

make bench_task3 will submit benchmark runs of both vectorized counters to the batch system
(as two subsequent runs of the individual files).
In []: !make bench_task3

Let’s plot it again, as soon as the run finishes! Non-interactively, call graph_task2b.

Because we couldn’t measure the two vector counters at the same time, we have two CSV files to
read in now. We combine them into one common dataframe df_vldvst in the following.
In []: df_vld = pd.read_csv("poisson2d.vld.bin.csv", skiprows=range(2, 50000, 2))

df_vst = pd.read_csv("poisson2d.vst.bin.csv", skiprows=range(2, 50000, 2))
df_vldvst = pd.concat([df_vld.set_index("nx"),
df_vst.set_index("nx")[['PM_VECTOR_ST_CMPL (total)', 'PM_VECTOR_ST_CMPL (min)', '
PM_VECTOR_ST_CMPL (max)']]], axis=1).reset_index()

In []: df_vldvst["Grid Points"] = df_vldvst["nx"] * df_vldvst["ny"]
df_vldvst.head()

In []: fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)
df_vldvst.set_index("Grid Points")["PM_VECTOR_LD_CMPL (min)"].plot(ax=ax1, legend=True);
df_vldvst.set_index("Grid Points")["PM_VECTOR_ST_CMPL (min)"].plot(ax=ax2, legend=True);

Also here seems to be a linear correlation. Let’s do our fitting and plot directly.
In []: _fit, _cov = common.print_and_return_fit(

["PM_VECTOR_LD_CMPL (min)", "PM_VECTOR_ST_CMPL (min)"],
df_vldvst.set_index("Grid Points"),
linear_function,
format_value=".4f",

)
fit_parameters = {**fit_parameters, **_fit}
fit_covariance = {**fit_covariance, **_cov}

In []: fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)
for ax, pmu_counter in zip([ax1, ax2], ["PM_VECTOR_LD_CMPL (min)", "PM_VECTOR_ST_CMPL
(min)"]):

df_vldvst.set_index("Grid Points")[pmu_counter].plot(ax=ax, legend=True);
ax.plot(

df_vldvst["Grid Points"],
linear_function(df["Grid Points"], *fit_parameters[pmu_counter]),
linestyle="--",
label="Fit: {:.2f} * x + {:.2f}".format(*fit_parameters[pmu_counter])

)
ax.legend();

Let’s try to make sense of those numbers.

Vector loads and vector stores use two 8 Byte values at a time. When we measured loads and
stores with LD_CMPL and ST_CMPL in part A of this task, we measured total number of stores and
loads; that is: vector and scalar versions of the instructions. In order to convert the load and
store instructions into bytes loaded and stored, we need to separate them. The difference of total

5

poisson2d.vld.c
poisson2d.vst.c

instructions and vector instructions yield scalar instructions. We multiply the scalar instructions
by 8 Byte (double precision) and the vector instructions by 16 Byte (two loads or stores of double
precision). That yields the loaded or stored data (or, more precisely, the instruction-equivalent
data).

To formualize it, see the following equations, as an example for load (ld), with b denoting data
loaded in bytes and n denoting the number of instructions.

bld = bscalar
ld + bvector

ld (1)
bscalar

ld = nscalar
ld ∗ 8Byte (2)

bvector
ld = nvector

ld ∗ 16Byte (3)
nscalar

ld = ntotal
ld − nvector

ld (4)
⇒ bld = nscalar

ld ∗ 8Byte + nvector
ld ∗ 16Byte (5)

= (nscalar
ld + 2nvector

ld) ∗ 8Byte (6)
= (ntotal

ld − nvector
ld + 2nvector

ld) ∗ 8Byte (7)
= (ntotal

ld + nvector
ld) ∗ 8Byte (8)

We are going to print this in the next cell. In case you look at this Notebook non-interactively, call
graph_task2b-2.
In []: df_byte = pd.DataFrame()

df_byte["Loads"] = (df_vldvst.set_index("Grid Points")["PM_VECTOR_LD_CMPL (min)"] +
df_ldst.set_index("Grid Points")["PM_LD_CMPL (min)"])*8
df_byte["Stores"] = (df_vldvst.set_index("Grid Points")["PM_VECTOR_ST_CMPL (min)"] +
df_ldst.set_index("Grid Points")["PM_ST_CMPL (min)"])*8
ax = df_byte.plot()
ax.set_ylabel("Bytes");

Let’s quantify the difference by, again, fitting a linear function to the data.
In []: _fit, _cov = common.print_and_return_fit(

["Loads", "Stores"],
df_byte,
linear_function

)
fit_parameters = {**fit_parameters, **_fit}
fit_covariance = {**fit_covariance, **_cov}

Analagously to the proportionality factors, this much is loaded/stored per grid point.

Not really a TASK C: We can combine this information with the cycles measured in Task 1 to
create a bandwidth of exchanged bytes per cycle.
In []: df_bandwidth = pd.DataFrame()

df_bandwidth["Bandwidth / Byte/Cycle"] = (df_byte["Loads"] + df_byte["Stores"]) /
df.set_index("Grid Points")["PM_RUN_CYC (min)"]

Let’s display it as a function of grid points. And also compare it to the available L1 cache bandwidth
in a second (sub-)plot. Non-interactive users, call make graph_task2c.
In []: fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)

for ax in [ax1, ax2]:
df_bandwidth["Bandwidth / Byte/Cycle"].plot(ax=ax, legend=True, label="Jacobi

Bandwidth")
ax.set_ylabel("Byte/Cycle")

6

ax2.axhline(2*16, color=sns.color_palette()[1], label="L1 Bandwidth");
ax2.legend();

As you can see, we are quite a bit away from the available L1 cache bandwidth. Can you think of
reasons why?

1.4 Task E1: Measuring FlOps
If you still have time, feel free to work on the following extended task.

TASK: Please measure counters for vectorized floating point operations and scalar floating point
operations. The two counters can also not be measured during the same run. So please see the
TODOs in poisson2d.sflops.c and poisson2d.vflops.c. By now you should be able to find
out the names of the counters by yourself (Hint: they include the words »scalar« and »vector«…).

As usual, compile, test, and bench-run your program.

Section ??
In []: !make bench_task4

In []: df_sflop = pd.read_csv("poisson2d.sflop.bin.csv", skiprows=range(2, 50000, 2))
df_vflop = pd.read_csv("poisson2d.vflop.bin.csv", skiprows=range(2, 50000, 2))
df_flop = pd.concat([df_sflop.set_index("nx"),
df_vflop.set_index("nx")[['PM_VECTOR_FLOP_CMPL (total)', 'PM_VECTOR_FLOP_CMPL (min)', '
PM_VECTOR_FLOP_CMPL (max)']]], axis=1).reset_index()
df_flop.head()

Again, the name of the vector counter is a bit misleading; not floating point operations are mea-
sured but floating point instructions. To get real floating point operations, each value needs to
be multiplied by the vector width (2). We can plot the values afterwards (non-interactive: make
graph_task4).
In []: df_flop["Grid Points"] = df_flop["nx"] * df_flop["ny"]

df_flop["Vector FlOps (min)"] = df_flop["PM_VECTOR_FLOP_CMPL (min)"] * 2
df_flop["Scalar FlOps (min)"] = df_flop["PM_SCALAR_FLOP_CMPL (min)"]

In []: df_flop.set_index("Grid Points")[["Scalar FlOps (min)", "Vector FlOps (min)"]].plot();

In []: _fit, _cov = common.print_and_return_fit(
["Scalar FlOps (min)", "Vector FlOps (min)"],
df_flop.set_index("Grid Points"),
linear_function

)
fit_parameters = {**fit_parameters, **_fit}
fit_covariance = {**fit_covariance, **_cov}

With that measured, we can determine the Arithmetic Intensity; the balance of floating point
operations to bytes transmitted:

AIemp = Iflop/Imem, (9)

with I denoting the respective amount. This is the emperically determined Arithmetic Intensity.

In the non-interactive version of the Notebook, please plot the graph calling make graph_task4-2
in the terminal.
In []: I_flop_scalar = df_flop.set_index("Grid Points")["Scalar FlOps (min)"]

I_flop_vector = df_flop.set_index("Grid Points")["Vector FlOps (min)"]

7

/edit/Tasks/poisson2d.sflops.c
/edit/Tasks/poisson2d.vflops.c

I_mem_load = df_byte["Loads"]
I_mem_store = df_byte["Stores"]

In []: df_ai = pd.DataFrame()
df_ai["Arithmetic Intensity"] = (I_flop_scalar + I_flop_vector) / (I_mem_load +
I_mem_store)
ax = df_ai.plot();
ax.set_ylabel("Byte/FlOp");

Thinking back to the first lecture of the tutorial, what Arithemtic Intensity did you expect?

1.5 Task E2: Measuring a Larger Range
If you still still have time, you might venture into your own benchmarking adventure.

Maybe you noticed already, for instance in Task 2 C: At the very right to very large numbers of
grid points, the behaviour of the graph changed. Something is happening there!

TASK: Revisit the counters measured above for a larger range of nx. Right now, we only studied
nx until 1000. New effects appear above that value – partly only well above, though (nx > 15000).

You’re on your own here. Edit the bench.sh script to change the range and the stepping increments.

Good luck!

Section ??

8

	Hands-On: Performance Counters
	Table of Contents
	Task 1: Measuring Cycles and Instructions
	Task 2: Measuring Loads and Stores
	Task A
	TASK B

	Task E1: Measuring FlOps
	Task E2: Measuring a Larger Range

