
Application Performance
Tuning on POWER9- with
Compilers

—
Dr. Archana Ravindar
(@aravind5@in.ibm.com)

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation Supercomputing‘ 2019, Denver

Contents

2

Part One
Introduction and scope 03
Salient Features of POWER9 04
Tools used in the Presentation 06

Part Two
Optimizing Front End Performance 07

Part Three
Optimizing Back End performance 11
Additional ways of Tuning Performance 18
Compiler Flag Comparison – XL, GCC, Clang 19

Summary 20

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

3

Scope of the Presentation

• Outline Tuning strategies to improve performance of programs on POWER9 processors

• The strategy is directed by program characteristics which can be assessed by hardware performance
counters

• These strategies can take the form of compiler flags, source code pragmas/attributes

• This talk addresses overall summary of options supported by open source compilers such as GCC,
LLVM and IBM proprietary compilers such as XL

• Tools used to measure performance counters- perf / PAPI

POWER9 Processor

• Optimized for Stronger Thread Performance and Efficiency

• Increased Execution Bandwidth efficiency for a range of workloads including commercial, cognitive and
analytics

• Sophisticated instruction scheduling and branch prediction for unoptimized applications and interpretive
languages

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation
4

POWER9 Core Pipeline Efficiency

5
IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

• Shorter Pipelines with reduced disruption
• Improved Application Performance for Modern

Codes
• Advanced Branch Prediction
• Higher Performance and Pipeline Utilization

• Removed instruction grouping
• Enhanced instruction fusion
• Pipeline can complete upto 128 (64-SMT4)

instructions /cycle
• Reduced Latency and Improved Scalability

• Improved pipe control of load/store instructions
• Improved hazard avoidance

Tools Used in the Discussion

6IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

•Open source compilers such as GCC, LLVM and Proprietary compilers such as XL
•[gcc| clang | xlc] -O[n] program.c –o program for C programs
–[g++| clang++| xlC] -O[n] program.cc –o program for C++ programs

–Optimization level ranges from 0 to 3, Ofast for GCC, LLVM and upto O5 for XL

–Profile directed feedback

• Perf tool

–To record hotspots/profile application

•perf record -e r<code> ./binary args > out (by default produces perf.data)

•perf report (opens profile report stored in perf.data)

–To measure hardware events

•perf stat –e r<code> ./binary args > out

–These counters can be read using PAPI API as discussed in the previous session

7

Performance Tuning in the Front-End

• Front end fetches and decodes the successive instructions and passes them to the
backend for processing

• POWER9 is a superscalar processor and is pipeline based so works with an advanced
branch predictor to predict the sequence and fetch instructions in advance

• However if there is a misprediction, it causes wrong path instructions to be fetched and
introduces additional penalty as these instructions need to be flushed from the pipeline
and correct instructions need to be fetched and processed

– Counters to detect this: PM_BR_MPRED*

• Branches are caused even by function calls, Such branches affect instruction cache locality
and increase instruction cache misses; Indirect function calls with no patterns make it
difficult to predict with accuracy and can cause Instruction Cache Misses

– Counters to detect this: PM_L1_ICACHE_MISS

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Tuning Strategies to improve Front End Performance-
Unrolling

• Unrolling loops (will reduce loop branches and in
some cases branches within loop)

• Manual unrolling in source

• Language support to do unrolling in source

• Place #pragma unroll(N) before the for loop
which needs to be unrolled

• Compiler support for controlling Unrolling

• Enable Loop Unrolling: -funroll-loops: Leave it
to the compilers judgement to decide optimal
unrolling for each loop

• Disable Loop unrolling : -fno-unroll-loops

int x;

for(x=0;x<100;x+=5)
{

func(x);

func(x+1);

func(x+2);

func(x+3);

func(x+4);

}

int x;
for(x=0;x<100;x++)
{

func(x);
}

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation
8

Tuning Strategies to improve Front End Performance- Inlining

• Shorter routines are best to be inlined to avoid call overhead and reduce branches

• Broadens the window available for better scheduling

• Manual function inlining in source

• Language Support– use inline __attribute__((always_inline)) in front of a function
definition

• Compiler Support

– -finline-functions(GCC, LLVM), -qinline(XL) : Inline suitable functions

– Compiler supports inlining thresholds : number of instructions in a function before it
can be considered for inlining

• Help Compiler to Inline more Functions:

• Convert Indirect calls to direct calls

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation
9

Tuning Strategies to improve Front End Performance

• If you have a branch that assigns a different value depending on a condition we can convert it to a
one line assignment statement with the ?: operator

• Compiler generates isel instructions for such branches that essentially converts a control
dependency into a data dependency

• GCC/LLVM option to generate isel : -misel. To Disable generation of isel: -mnoisel
• For simple branches as below, we may leave the branch statement as it is; The branch predictor will

automatically take care of the performance

• Other techniques to improve performance: Provide hints in source code to indicate the expected
values of expressions appearing in branch conditions (long __builtin_expect(long expression, long
value);) (hint whether branch is more likely to be taken/not)

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

a=(val==M)?b:c;If(val==M) a=b;
else a=c;

10

If(val>M) M=val;

Tuning Strategies to Improve Backend Performance

• Backend of the processor is concerned with execution of the instructions

• There are numerous ways we can tune performance in the backend

• Using Processor Resources effectively-

• Registers,

• Caches,

• Prefetching

• Vectorization

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation
11

Using Processor Registers Effectively

12

• CPU Registers are an important resource
for execution and are finite in number

• Compiler has to judge and allocate
variables into registers to avoid spilling as
much as possible

• Spill is a mechanism when a register
value is saved on to memory for later use
as the register is required to do some
thing else

• Each spill will require one store + a future
load (to use that value from memory)

• If distance between store and load is
short it may cause a dependency chain in
the pipeline

• Stalls due to spills can be detected
using the following counters-
PM_LSU_FIN, PM_LSU_FLUSH,

• Use other register resources like
SIMD registers if applicable
(Vectorization)

• Use multipurpose instructions such
as andc (logical AND complement),
orc (logical OR complement) which
combines multiple math operations
in a single instruction saving a
register,

• Record instructions such as addi.
That does the operation and also
set the CR fields

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Using Caches Effectively
• Memory is organized in a hierarchy

• L1 cache : Closest memory to the processor and the
fastest, followed by L2, L3 upto Memory

• Memory is most distant to the processor and slowest

• Data cache : stores data, instruction cache: stores
instructions

• Data cache misses can stall load instructions in the
pipeline causing a cascading effect on all those
instructions dependent on it data

• Counters- PM_LD_MISS_L1,
PM_CMPLU_STALL_DCACHE_MISS, PM_ST_MISS_L1,
PM_CMPLU_STALL_DMISS_L2L3,
PM_CMPLU_STALL_DMISS_LMEM etc Memory

(~300+ cyc)

L3 $
(~26 cyc)

L2 $
(~10 cyc)

L1 $
(~3 cyc)

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation
13

Memory footprint reduction (enum=small)
• Use only as much memory as required
• Game applications such as chess, GO contain data structure to represent board
• Each square has a fixed number of states, n, which is usually a single digit number
• Usually such a data type is defined as an enumerated data type such as
– typedef enum {BLACK=0, WHITE=1,…} square;
• Typically each element of square will be allocated as
• type “int” (4 bytes)
• Compile the application with –qenum=small(XL) or –fshort-enums(LLVM,
• GCC) that allocates only minimum required memory to store each
• element of square (1 byte),
• 1/4th memory will be used

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation
14

Prefetching

15

• Hardware prefetching

• Controlled by DSCR (data stream control register) settings;

• –ppc64_cpu --dscr=<n>

• Common DSCR configurations: n=0 (moderate depth, ramp) : By default the
HW prefetcher is “ON”

• n=0x1D7 (Achieve most aggressive depth, most quickly, enable stride N
prefetch),

• n=0x1 (no prefetch)

• Reference: https://developer.ibm.com/linuxonpower/docs/linux-on-power-
application-tuning/

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Software Prefetching
• Programmer inserted prefetch instructions __dcbt (load prefetch), __dcbtst (store prefetch)

• If you want to explicitly control prefetching via software *only*, you can turn off hardware prefetching using

• ppc64_cpu –dscr=1

• Compilers provide an option to enable compiler to insert prefetch instructions wherever applicable. However this is

only a directive that can be ignored by the compiler if it does not see adequate benefit

• XL: (-qprefetch/-qnoprefetch) and GCC (-fprefetch-loop-arrays/-fno-prefetch-loop-arrays); Some compilers such as

GCC may include further loop optimizations when –fprefetch-loop-arrays is invoked.

• XL/POWER9 supports setting DSCR values at compile time for an application

Example: -qprefetch=dscr=<value>

Compiling with the option –qprefetch=dscr=7 sets the prefetch level to 7

Compiling with the option –qprefetch=dscr=1 turns off hardware prefetching and is equivalent to

ppc64_cpu –dscr=1

• Useful in cases where we cannot obtain root privileges to play with prefetch settings on the command line
IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

16

Vectorization

17

• Compute intensive programs whose computations can be parallelized can take advantage
of vector instructions on POWER

• Advantages- reduces loads, stores and hence pathlength, reduces register pressure on
GPRs, effective use of resources, Faster throughput

• At a time- Vector instructions can work on 4 32 bit words, 8 half-words and 16 bytes

– Amount of work done per unit time correspondingly becomes faster

• Clang/GCC: -ftree-loop-vectorize, -mvsx, -maltivec, -mllvm –force-vector-width=n(Clang
only),

• Help the Compiler to automatically vectorize loops

• Keep the loop simple

• Avoid extensive branches, pointer references within loops (use restrict wherever
applicable)

• GPU codes can scale really well with SIMDization for performance

• Structure of arrays are more amenable to vectorization than array of structures

Additional Ways to Improve Performance

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

• Serial v/s Parallel Execution: tasks that don’t have dependencies can be done in parallel using a
framework such as OpenMP that can perform Tasks in 1/Nth time with N threads

• If Mathematical accuracy is not important, use -Ofast
• This automatically substitutes expensive library calls to native implementation of the math

function using target ISA
• Thread Binding

• We can use OMP_PLACES=“{0},{5},{10},{15}" OMP_NUM_THREADS=4 time ./application
<params> to bind first thread to CPU0, second thread to CPU1, … so on

• For GCC specific applications, we can use GOMP_CPU_AFFINITY="0 5 10 15" that inturn sets
OMP_PLACES

• The ordering of CPU numbers determines performance of the application
• If all threads are bound to a single CPU execution speed slows down
• To choose the right CPU number on a POWER Linux system, we can consult the file

/sys/devices/system/cpu/cpu0/topology/thread_siblings_list
• Large Pages- allow TLB to map to a larger virtual memory page thereby reducing TLB misses.

Memory intensive applications that use large amounts of virtual memory can benefit with using
largepages 18

19

Flag Kind XL GCC/LLVM Can be simulated
in source Benefit Drawbacks

Unrolling -qunroll -funroll-loops #pragma unroll(N)

Unrolls loops ; increases
opportunities pertaining to
scheduling for compiler Increases register pressure

Inlining -qinline=auto:level=N -finline-functions

Inline always
attribute or manual
inlining

increases opportunities for
scheduling; Reduces branches
and loads/stores

Increases register pressure;
increases code size

Enum small -qenum=small -fshort-enums -manual typedef Reduces memory footprint
Can cause issues in
alignment

isel
instructions -misel Using ?: operator

generates isel instruction
instead of branch;
reduces pressure on branch
predictor unit

latency of isel is a bit higher;
Use if branches are not
predictable easily

General
tuning

-qarch=pwr9,
-qtune=pwr9

-mcpu=power8,
-mtune=power9 Turns on platform specific tuning

64bit
compilation -q64 -m64

Prefetching
-
qprefetch[=aggressive] -fprefetch-loop-arrays

__dcbt/__dcbtst,
_builtin_prefetch reduces cache misses

Can increase memory traffic
particularly if prefetched
values are not used

Link time
optimization -qipo -flto , -flto=thin

Enables Interprocedural
optimizations

Can increase overall
compilation time

Profile
directed
feedback -qpdf1, -qpdf2

-fprofile-generate and –
fprofile-use LLVM has an
intermediate step llvm-
profdata Enables hot path optimizations Requires a training run

Summary
• Today we talked about

• Tuning strategies pertaining to the various units in the POWER9 HW –
• Front-end, Back-end
• Some of these strategies were compiler flags, source code pragmas that one can

apply to see improved performance of their programs
• We also saw additional ways of improving performance such as parallelization, binding

etc
• During the presentation we were introduced to several POWER9 PMU counters that

helps us understand bottlenecks of performance
• Get counter data either using perf stat or PAPI APIs

• We concluded with a comparison of compiler flags on open source compilers such as
GCC, LLVM with IBM XL compilers

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Disclaimer: This presentation is intended to represent the views of the author rather than IBM and the recommended solutions are not guaranteed on sub
optimal conditions

20

