Application Performance
Tuning on POWER9- with
Compilers

Dr. Archana Ravindar
(@aravind5@in.ibm.com)

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Supercomputing® 2019, Denver

Contents

Part One

Introduction and scope
Salient Features of POWER9
Tools used in the Presentation

Part Two
Optimizing Front End Performance

Part Three

Optimizing Back End performance
Additional ways of Tuning Performance
Compiler Flag Comparison — XL, GCC, Clang

Summary

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Scope of the Presentation

Outline Tuning strategies to improve performance of programs on POWER9 processors

The strategy is directed by program characteristics which can be assessed by hardware performance
counters

These strategies can take the form of compiler flags, source code pragmas/attributes

This talk addresses overall summary of options supported by open source compilers such as GCC,
LLVM and IBM proprietary compilers such as XL

Tools used to measure performance counters- perf / PAPI

POWER9 Processor

Modular Execution Slices

4 x 128b 2 x 128b 128b 64b
Super-slice Super-slice Super-slice Slice
i N L

BRI R il

.Ex_ec Exec. et | e At
Slice|.Slice Vsu | vsu vsu
ow | ow | ow
Lsu Lsu Lsu

i = Lsu
POWERS SMT8 Core POWERY9 SMT8 Core POWER9 SMT4 Core

Reference: IBM Power9 Processor Architecture, S. Sadasivam, et al, IEEE Micro, Volume 37, Issue : 2, Mar-Apr17

* Optimized for Stronger Thread Performance and Efficiency

* Increased Execution Bandwidth efficiency for a range of workloads including commercial, cognitive and
analytics

» Sophisticated instruction scheduling and branch prediction for unoptimized applications and interpretive
languages

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

POWER9 Core Pipeline Efficiency

* Shorter Pipelines with reduced disruption POWERS Pipeline

Fetch to Compute

« Improved Application Performance for Modern N Rediootiny 5 cyries
Codes e POWERY Pipeline
o Terr P
 Advanced Branch Prediction Torz_| C—em
T bco | (DT
« Higher Performance and Pipeline Utilization [.—;’Xii‘; | -
: . . T osP_| [Poo|
* Removed instruction grouping AP CPor)
[Bo[ve|xo] Lso 50| [__XFER
* Enhanced instruction fusion I’E{F'“i%; ' N |M::}= (50
. . f'__x_:aj__:,_s_:f_l [Ls1 | vs1 |(B1
* Pipeline can complete upto 128 (64-SMT4) Qizw [AGEN| ——»(AGE mENH; =
o o F1| | CA | IBRD
instructions /cycle B) N\ ()
|F3| 3 IFM'T [Fe |
* Reduced Latency and Improved Scalability :?ﬂ i SR
. . . Fs) MEa) @ Reduced Hazard
« Improved pipe control of load/store instructions S
o Improved hazard avoidance Reference: IBM Power9 Processar Architecture, S. Sadasivam, et al, IEEE Micro, Volume 37, Issue: 2, Mar-Apr17

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

*Open source compilers such as GCC, LLVM and Proprietary compilers such as XL
[gcc]| clang | xlc] -O[n] program.c —o program for C programs
—[g++]| clang++| xIC] -O[n] program.cc —o program for C++ programs

—Optimization level ranges from 0 to 3, Ofast for GCC, LLVM and upto O5 for XL
—Profile directed feedback

« Perftool
—To record hotspots/profile application

*perf record -e r<code> ./binary args > out (by default produces perf.data)

*perf report (opens profile report stored in perf.data)

—To measure hardware events
sperf stat —e r<code> ./binary args > out

—These counters can be read using PAPI API as discussed in the previous session

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Performance Tuning in the Front-End

Front end fetches and decodes the successive instructions and passes them to the
backend for processing

POWERO9 is a superscalar processor and is pipeline based so works with an advanced
branch predictor to predict the sequence and fetch instructions in advance

However if there is a misprediction, it causes wrong path instructions to be fetched and
introduces additional penalty as these instructions need to be flushed from the pipeline
and correct instructions need to be fetched and processed

Counters to detect this:

Branches are caused even by function calls, Such branches affect instruction cache locality
and increase instruction cache misses; Indirect function calls with no patterns make it
difficult to predict with accuracy and can cause Instruction Cache Misses

Counters to detect this:

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Tuning Strategies to improve Front End Performance-
Unrolling

Unrolling loops (will reduce loop branches and in int Xx;
some cases branches within loop) e 535 for (x=0;x<100; x+=5)
for (x=0;x<100; x++) {
{
func (x) ; func (x) ;

. }
Language support to do unrolling in source func (x+1) ;

Manual unrolling in source

* Place #pragma unroll(N) before the for loop func (x+2) ;
which needs to be unrolled func (x+3) ;

Compiler support for controlling Unrolling func (x+4) ;

Enable Loop Unrolling: -funroll-loops: Leave it :

to the compilers judgement to decide optimal
unrolling for each loop

« Disable Loop unrolling : -fno-unroll-loops

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Tuning Strategies to improve Front End Performance- Inlining

Shorter routines are best to be inlined to avoid call overhead and reduce branches
Broadens the window available for better scheduling

Manual function inlining in source

Language Support— use inline __attribute__((always_inline)) in front of a function
definition

Compiler Support
-finline-functions(GCC, LLVM), -qinline(XL) : Inline suitable functions

Compiler supports inlining thresholds : number of instructions in a function before it
can be considered for inlining

Help Compiler to Inline more Functions:

Convert Indirect calls to direct calls

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Tuning Strategies to improve Front End Performance

If (val==M) a=b; a=(val==M)?b:c;
else a=c;

If you have a branch that assigns a different value depending on a condition we can convert it to a
one line assignment statement with the ?: operator

Compiler generates isel instructions for such branches that essentially converts a control
dependency into a data dependency

GCC/LLVM option to generate isel : -misel. To Disable generation of isel: -mnoisel

For simple branches as below, we may leave the branch statement as it is; The branch predictor will
automatically take care of the performance

If(val>M) M=val;

Other techniques to improve performance: Provide hints in source code to indicate the expected
values of expressions appearing in branch conditions (long __builtin_expect(long expression, long
value);) (hint whether branch is more likely to be taken/not)

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Tuning Strategies to Improve Backend Performance

« Backend of the processor is concerned with execution of the instructions
« There are numerous ways we can tune performance in the backend
» Using Processor Resources effectively-
* Registers,
e (Caches,
» Prefetching

 Vectorization

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Using Processor Registers Effectively

CPU Registers are an important resource
for execution and are finite in number

Compiler has to judge and allocate
variables into registers to avoid spilling as
much as possible

Spill is a mechanism when a register
value is saved on to memory for later use
as the register is required to do some
thing else

Each spill will require one store + a future
load (to use that value from memory)

If distance between store and load is
short it may cause a dependency chain in
the pipeline

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Stalls due to spills can be detected
using the following counters-

Use other register resources like
SIMD registers if applicable
(Vectorization)

Use multipurpose instructions such
as andc (logical AND complement),
orc (logical OR complement) which
combines multiple math operations
in a single instruction saving a
register,

Record instructions such as addi.
That does the operation and also
set the CR fields

Using Caches Effectively

Memory is organized in a hierarchy

L1 cache : Closest memory to the processor and the
fastest, followed by L2, L3 upto Memory

Memory is most distant to the processor and slowest

Data cache : stores data, instruction cache: stores
instructions

Data cache misses can stall load instructions in the
pipeline causing a cascading effect on all those
instructions dependent on it data

Counters-

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Memory footprint reduction (enum=small)

Use only as much memory as required

Game applications such as chess, GO contain data structure to represent board

Each square has a fixed number of states, n, which is usually a single digit number

Usually such a data type is defined as an enumerated data type such as
typedef enum {BLACK=0, WHITE=1,...} square;

Typically each element of square will be allocated as

type “int” (4 bytes)

Compile the application with —genum=small(XL) or —fshort-enums(LLVM,

GCC) that allocates only minimum required memory to store each

element of square (1 byte),

1/4% memory will be used

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Prefetching

* Hardware prefetching
« Controlled by DSCR (data stream control register) settings;
« —ppcb4_cpu --dscr=<n>

Common DSCR configurations: n=0 (moderate depth, ramp) : By default the
HW prefetcher is “ON”

n=0x1D7 (Achieve most aggressive depth, most quickly, enable stride N
prefetch),

n=0x1 (no prefetch)

Reference: https://developer.ibm.com/linuxonpower/docs/linux-on-power-
application-tuning/

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Software Prefetching

* Programmer inserted prefetch instructions __dcbt (load prefetch), __dcbtst (store prefetch)

« If you want to explicitly control prefetching via software *only*, you can turn off hardware prefetching using

ppc64_cpu —dscr=1

Compilers provide an option to enable compiler to insert prefetch instructions wherever applicable. However this is

only a directive that can be ignored by the compiler if it does not see adequate benefit

XL: (-gprefetch/-gnoprefetch) and GCC (-fprefetch-loop-arrays/-fno-prefetch-loop-arrays); Some compilers such as

GCC may include further loop optimizations when —fprefetch-loop-arrays is invoked.
XL/POWER9 supports setting DSCR values at compile time for an application
Example: -qprefetch=dscr=<value>
Compiling with the option —qprefetch=dscr=7 sets the prefetch level to 7
Compiling with the option —qprefetch=dscr=1 turns off hardware prefetching and is equivalent to
ppc64_cpu —dscr=1

» Usefulin cases where we cannot obtain root privileges to play with prefetch settings on the command line

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Vectorization

« Compute intensive programs whose computations can be parallelized can take advantage
of vector instructions on POWER

« Advantages- reduces loads, stores and hence pathlength, reduces register pressure on
GPRs, effective use of resources, Faster throughput

» At atime- Vector instructions can work on , and
— Amount of work done per unit time correspondingly becomes faster

« Clang/GCC: -ftree-loop-vectorize, -mvsx, -maltivec, -mllvm —force-vector-width=n(Clang
only),

* Help the Compiler to automatically vectorize loops
» Keep the loop simple

« Avoid extensive branches, pointer references within loops (use restrict wherever
applicable)

» GPU codes can scale really well with SIMDization for performance

 Structure of arrays are more amenable to vectorization than array of structures

Additional Ways to Improve Performance

» Serial v/s Parallel Execution: tasks that don’t have dependencies can be done in parallel using a
framework such as OpenMP that can perform Tasks in 1/Nth time with N threads
« If Mathematical accuracy is not important, use -Ofast
» This automatically substitutes expensive library calls to native implementation of the math
function using target ISA
* Thread Binding
« We can use OMP_PLACES="{0},{5},{10},{15}" OMP_NUM_THREADS=4 time ./application
<params> to bind first thread to CPUQ, second thread to CPU1Z, ... so on
For GCC specific applications, we can use GOMP_CPU_AFFINITY="05 10 15" that inturn sets
OMP_PLACES
The ordering of CPU numbers determines performance of the application
If all threads are bound to a single CPU execution speed slows down
To choose the right CPU number on a POWER Linux system, we can consult the file
/sys/devices/system/cpu/cpuQ/topology/thread_siblings_list
» Large Pages- allow TLB to map to a larger virtual memory page thereby reducing TLB misses.
Memory intensive applications that use large amounts of virtual memory can benefit with using
largepages

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

Unrolls loops ; increases
opportunities pertaining to

Unrolling -qunroll -funroll-loops #pragma unroll(N) |scheduling for compiler Increases register pressure
Inline always increases opportunities for
attribute or manualjscheduling; Reduces branches |Increases register pressure;
Inlining -ginline=auto:level=N |-finline-functions inlining and loads/stores increases code size
Can cause issues in
Enum small [-genum=small -fshort-enums -manual typedef [Reduces memory footprint alignment
generates isel instruction
instead of branch; latency of isel is a bit higher;
isel reduces pressure on branch Use if branches are not
instructions -misel Using ?: operator [predictor unit predictable easily
General -garch=pwr9, -mcpu=power38,
tuning -qtune=pwr9 -mtune=power9 Turns on platform specific tuning
64bit
compilation |-q64 -m64

Prefetching

gprefetch[=aggressive]

-fprefetch-loop-arrays

| dcbt/__dcbtst,
| builtin_prefetch

reduces cache misses

Can increase memory traffic
particularly if prefetched
values are not used

Link time Enables Interprocedural Can increase overall

optimization |-qipo -flto , -flto=thin optimizations compilation time
-fprofile-generate and -

Profile fprofile-use LLVM has an

directed intermediate step llvm-

feedback -qpdfl, -gpdf2 profdata Enables hot path optimizations |Requires a training run

Summary

» Today we talked about

« Tuning strategies pertaining to the various units in the POWER9 HW —
* Front-end, Back-end

« Some of these strategies were compiler flags, source code pragmas that one can
apply to see improved performance of their programs

We also saw additional ways of improving performance such as parallelization, binding

etc

During the presentation we were introduced to several POWER9 PMU counters that
helps us understand bottlenecks of performance

» Get counter data either using perf stat or PAPI APIs

We concluded with a comparison of compiler flags on open source compilers such as
GCC, LLVM with IBM XL compilers

IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation

