
HandsOnGPUProgramming

November 8, 2019

1 Hands-On GPU Programming
Supercomputing 2019 Tutorial “Application Porting and Optimization on GPU-Accelerated POWER
Architectures”, November 18th 2019

1.0.1 Read me first

This tutorial is primarily designed to be executed as a jupyter notebook. However, everything can
also be done using an ssh connection to ascent.olcf.ornl.gov in your terminal.

Jupyter Lab execution When using jupyter this notebook will guide you through the step. Note
that if you execute a cell multiple times while optimizing the code the output will be replaced. You
can however duplicate the cell you want to execute and keep its output. Check the edit menu above.

You will always find links to a file browser of the corresponding task subdirectory as well as direct
links to the source files you will need to edit as well as the profiling output you need to open locally.

If you want you also can get a terminal in your browser by following the File -> New -> Terminal
in the Jupyter Lab menu bar.

Terminal fallback The tasks are placed in directories named [C/FORTRAN]/task[0-6]. Note:
The tasks using NVHSMEM (4-6) are only available in C.

The files you will need to edit are always the poisson2d.(C|F03) files.

The makefile targets execute everything to compile, run and profile the code. Please take a look at
the cells containing the make calls as a guide.

The outputs of profiling runs be placed in the working directory of the current task and are named
like *.pgprof or pgprof.*.tar.gz in case of multiple files. You can use scp/sftp to transfer files
to your machine and for viewing them in pgprof/nvprof.

Viewing profiles in the NVIDIA Visual Profiler / PGI Profiler The profiles generated
pgprof / nvprof should be viewed on your local machine. You can install the PGI Community
Edition (pgprof) or the NVIDIA CUDA Toolkit on your notebook (Windows, Mac, Linux). You
don’t need an NVIDIA GPU in your machine to use the profiler GUI.

There are USB Sticks in the room that contain the installers for various platforms, but for reference
you can also download it from: * NVIDIA CUDA Toolkit * PGI Community Edition

1

https://developer.nvidia.com/cuda-downloads
https://www.pgroup.com/products/community.htm

After downloading the profiler output (more infos below) follow the steps outlined in: * Import
Session

In case there is confusion: The PGI Profiler is a slightly modified version (different default settings)
of the NVIDIA Visual Profiler. So you can use any of the two to view profiles.

1.1 Setup
Please select your language choice (C or FORTRAN) below by making sure your choice is
uncommented and comment out the other language. Then execute the cell by hitting Shift+Enter!

[]: # select language here
LANGUAGE='C'
#LANGUAGE='FORTRAN'

You should not touch the remaining code in the cell
import os.path
import pandas

try: rootdir
except NameError: rootdir = None
if(not rootdir):

rootdir=%pwd
basedir=os.path.join(rootdir,LANGUAGE)
basedirC=os.path.join(rootdir,'C')

print ("You selected {} for the exercises.".format(LANGUAGE))

def checkdir(dir):
d=%pwd
assert(d.endswith(dir) or d.endswith(dir+'p') or d.endswith(dir+'m')),␣

↪→"Please make sure to cd to the right directory first."

def cleanall():
clean up everything -- use with care

for t in range(4):
d='%s/task%i'%(basedir,t)
%cd $d
!make clean

#cleanall()

2 Tasks
This session comes with multiple tasks. All tasks are available in C or FORTRAN and can be
found in the [C|Fortan]/task[0-3] subdirectories. There you will also find Makefiles that are set
up so that you can compile and submit all necessary tasks.

2

https://docs.nvidia.com/cuda/profiler-users-guide/index.html#import-session
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#import-session

Please choose from the task below. If you want to go for the advanced NVSHMEM tasks you should
complete Task 2 but can skip Task 3 (or postpone it until the end).

2.0.1 GPU Programming

• Section ?? Accelerate a CPU Jacobi solver with OpenACC relying on Unified Memory for
data movement using –ta=tesla:managed

• Section ?? Fix memory access pattern of OpenACC accelerated Jacobi Solver

2.0.2 Multi-GPU with MPI

• Section ?? Use MPI to make OpenACC accelerated Jacobi Solver scale to multiple GPUs

• Section ?? Hide MPI communication time by overlapping communication and computation
in a MPI+OpenACC multi GPU Jacobi Solver

2.0.3 Multi-GPU with NVSHMEM (Advanced – C only)

• Section ?? Use NVSHMEM instead of MPI

• Section ?? Put NVSHMEM calls on stream to hide API calls and GPU/CPU synchronization

2.0.4 Survey

• Section 3 Please remember to take the survey !

2.0.5 Make Targets

For all tasks we have defined the following make targets.

• run:
run poisson2d

• poisson2d:
build poisson2d binary (default)

• profile:
profile with pgprof

• __*.solution__:
same as above for the solution (e.g. make poisson2d.solution or make run.solution)

Section ??

2.1 Task 0: Using OpenACC
2.1.1 Description

The goal of this task is to accelerate a CPU Jacobi solver with OpenACC relying on Unified Memory
for data movement using –ta=tesla:managed.

Your task is to:

• Parallelize Loops with OpenACC parallel loop

3

Look for TODOs in the code.

Look at the output generated by the PGI compiler (enabled by the -Minfo=accel option) to see
how the compiler parallelizes the code.

Code You can open the source code either in a terminal in an editor. Navigate to
(C|Fortran)/task0/ and open poisson2d.c in a editor of your choice.

If your are using the jupyter approach by following the link (for the language of your choice), This
will open the source code in an editor in a new browser tab/window.

• C Version
• Fortran Version

Before executing any of the cells below first execute the next cell to change to the right directory.

[]: %cd $basedir/task0

Compilation and Execution If you are using the jupyter notebook approach you can execute
the cells below. They will put you in the right directory. There you can call make with the desired
Section ??. Alternatively you can just navigate to the right directory and execute make <target>
in your terminal.

[]: checkdir('task0')
!make

[]: checkdir('task0')
!make run

Profiling You can profile the code by executing the next cell. After the profiling finished the
output file poisson2d.pgprof can be downloaded using the file browser. Then you can import
them into pgprof / nvvp using the Import option in the File menu.

[]: checkdir('task0')
!make profile

References

1. http://www.openacc.org
2. OpenACC Reference Card

Section ??

2.2 Task 1: Memory Access Patterns
2.2.1 Description

The goal of this task is to fix the memory access pattern of OpenACC accelerated Jacobi Solver.
Generate the profile, download the generated profiles and import them into pgprof / nvprof. There

4

./C/task0/poisson2d.c
.FORTAN/task0/poisson2d.F03
https://www.openacc.org/sites/default/files/inline-files/OpenACC%20API%202.6%20Reference%20Guide.pdf

use “Global Memory Access Pattern” experiment to analyze the issue.

Look for TODOs in the code.

Code

• C Version
• Fortran Version

Before executing any of the cells below first execute the next cell to change to the right directory.

[]: %cd $basedir/task1

Compilation and Execution If you are using the jupyter notebook approach you can execute
the cells below. They will put you in the right directory. There you can call make with the desired
Section ??. Alternatively you can just navigate to the right directory and execute make <target>
in your terminal.

[]: checkdir('task1')
!make

[]: checkdir('task1')
!make run

Profiling You can profile the code by executing the next cell. Download the tarball containing
the profiles (pgprof.Task1.poisson2d.tar.gz) with the File Browser. Then you can import them
into pgprof / nvvp using the Import option in the File menu.

[]: checkdir('task1')
!make profile

For the Global Memory Load/Store Efficiency the make profile command also generated a CSV
file that you can import and view with the cell below.
If you purely work in a terminal you can view the same output by running pgprof -i
poisson2d.efficiency.pgprof.

[]: checkdir('task1')
data_frame = pandas.read_csv('poisson2d.efficiency.csv', sep=',')
data_frame

References

1. http://www.openacc.org
2. OpenACC Reference Card
3. pgprof Quickstart
4. CUDA Toolkit Documentation - Profiler pgprof is based on the NVIDIA Visual Profiler

Section ??

5

./C/task1/poisson2d.c
./FORTRAN/task1/poisson2d.F03
https://www.openacc.org/sites/default/files/inline-files/OpenACC%20API%202.6%20Reference%20Guide.pdf
https://www.pgroup.com/resources/pgprof-quickstart.htm
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

2.3 Task 2: Apply Domain Decomposition
2.3.1 Description

Your task is to apply a domain decomposition and use MPI for the data exchange. Specifically you
should * Handle GPU affinity * Do the Halo Exchange

Look for TODOs

When profiling take a look at how kernel and communication times change when you scale to more
GPUs.

Code

• C Version
• Fortran Version

Before executing any of the cells below first execute the next cell to change to the right directory.

[]: %cd $basedir/task2

Compilation If you are using the jupyter notebook approach you can execute the cells below.
They will put you in the right directory. There you can call make with the desired Section ??.
Alternatively you can just navigate to the right directory and execute make <target> in your
terminal.

[]: checkdir('task2')
!make poisson2d

Running For the Multi-GPU version you can set the number of GPUs / MPI ranks using the
variable NP. On Ascent within a single node you can use up to 6 GPUs.

[]: checkdir('task2')
!NP=2 make run

Scaling You can do a simple scaling run for up to all 6 GPUs in the node by executing the next
cell.

[]: checkdir('task2')
!NP=1 make run | grep speedup > scale.out
!NP=2 make run | grep speedup >> scale.out
!NP=4 make run | grep speedup >> scale.out
!NP=6 make run | grep speedup >> scale.out
data_frame2 = pandas.read_csv('scale.out', delim_whitespace=True, header=None)

!rm scale.out

data_frame2b=data_frame2.iloc[:,[5,7,10,12]].copy()
data_frame2b.rename(columns={5:'GPUs', 7: 'time [s]', 10:'speedup', 12:
↪→'efficiency'})

6

./C/task2/poisson2d.c
./FORTRAN/task2/poisson2d.F03

Profiling You can profile the code by executing the next cell. After the profiling completed
download the tarball containing the profiles (pgprof.Task2.poisson2d.tar.gz) with the File
Browser. Then you can import them into pgprof / nvvp using the Import option in the File menu.
Remember to use the Multiple processes option in the assistant.

[]: checkdir('task2')
!NP=2 make profile

References

1. http://www.openacc.org
2. OpenACC Reference Card
3. https://www.open-mpi.org/doc/v3.1/

Section ??

2.4 Task 3: Hide MPI Communication time
To overlap compute and communication you will need to

• start the copy loop asynchronously
• wait for async copy loop after MPI communication has finished

Look for TODOs.

Compare the scaling and efficiency with the results from the previous task. Check for the overlap
in the profiler.

Optional: Try to understand how well communication and compute overlap is able to improve
efficiency when scaling to more GPUs.

Code

• C Version
• Fortran Version

Before executing any of the cells below first execute the next cell to change to the right directory.

[]: %cd $basedir/task3

Compilation If you are using the jupyter notebook approach you can execute the cells below.
They will put you in the right directory. There you can call make with the desired Section ??.
Alternatively you can just navigate to the right directory and execute make <target> in your
terminal.

[]: checkdir('task3')
!make poisson2d

7

https://www.openacc.org/sites/default/files/inline-files/OpenACC%20API%202.6%20Reference%20Guide.pdf
./C/task3/poisson2d.c
./FORTRAN/task3/poisson2d.F03

Running For the Multi-GPU version you can set the number of GPUs / MPI ranks using the
variable NP. On Ascent within a single node you can use up to 6 GPUs.

[]: checkdir('task3')
!NP=2 make run

Scaling You can do a simple scaling run for up to all 6 GPUs in the node by executing the next
cell.

[]: checkdir('task3')
!NP=1 make run | grep speedup > scale.out
!NP=2 make run | grep speedup >> scale.out
!NP=4 make run | grep speedup >> scale.out
!NP=6 make run | grep speedup >> scale.out
data_frame3 = pandas.read_csv('scale.out', delim_whitespace=True, header=None)

!rm scale.out

data_frame3b=data_frame3.iloc[:,[5,7,10,12]].copy()
data_frame3b.rename(columns={5:'GPUs', 7: 'time [s]', 10:'speedup', 12:
↪→'efficiency'})

Profiling You can profile the code by executing the next cell. After the profiling completed
download the tarball containing the profiles (pgprof.Task3.poisson2d.tar.gz) with the File
Browser. Then you can import them into pgprof / nvvp using the Import option in the File menu.
Remember to use the Multiple processes option in the assistant.

[]: checkdir('task3')
!NP=2 make profile

References

1. http://www.openacc.org
2. OpenACC Reference Card
3. https://www.open-mpi.org/doc/v3.1/

2.5 Tasks using NVSHMEM
The following tasks are using NVSHMEM instead of MPI. NVSHMEM is currently available as
early access software. Please read the following carefully before starting these tasks.

• NVSHMEM early access 0.3.2 is installed on Ascent. It is provided under the license in
LICENSE_NVSHMEM.md.

• If you want to continue using the NVHSMEM early access version beyond this tutorial you
need to apply for early access at https://developer.nvidia.com/nvshmem

8

https://www.openacc.org/sites/default/files/inline-files/OpenACC%20API%202.6%20Reference%20Guide.pdf
./LICENSE_NVSHMEM.md

NVSHMEM enables efficient communication among GPUs.It supports an API for direct commu-
nication among GPUs, either initiated by the CPU or by GPUs inside of compute kernels. Inside
compute kernels, NVSHMEM also supports direct load/store accesses to remote memory over
PCIe or NVLink. The ability to initiate communication from inside kernels eliminates GPU-host-
synchronization and associated overheads. It can also benefit from latency tolerance mechanisms
available within GPUs. The tasks illustrate that progressing from an MPI-only app to an app that
uses NVSHMEM can be straightforward.

NOTE: Covering all feature of NVSHMEM, incuding communication calls in kernels, is not easily
accessible through OpenACC and also exceed the scope of this tutorial. However, the OpenACC
examples should give you a basic introduction to NVSHMEM.

You can check the developer guide and the other presentations

References

1. http://www.openacc.org
2. OpenACC Reference Card
3. OpenSHMEM 1.4 Specification
4. NVSHMEM 0.3 EA Developer Guide

2.6 Task 4: Replace MPI with host side NVSHMEM
To replace MPI from Section ?? with NVSHMEM you will need to connect the NVSHMEM library
to MPI and replace all MPI communication calls related to the halo exchange with the corresponding
NVSHMEM functions:

• Include NVSHMEM API header (nvshmem.h)
• Include NVSHMEM API extensions header (nvshmemx.h)
• Initialize NVSHMEM and connect to MPI (nvshmemx_init_attr)
• Allocate symmetric memory (nvshmem_alloc) for A on the device and use the OpenACC map

function to tell OpenACC to use it as device memory for A
• Replace MPI_Sendrecv calls with SHMEM calls (nvshmem_double_put)
• Insert NVSHMEM barriers to ensure correct execution (nvshmem_barrier_all)

For interoperability with OpenSHMEM NVSHMEM can also be set up to prefix
all calls to NVHSMEM with nv. Please make sure to use these version, e.g. use
nvshmem_barrier instead of shmem_barrier. The developer guide mostly uses the unpre-
fixed versions.

Look for TODOs.

Code

• C Version

Before executing any of the cells below first execute the next cell to change to the right directory.

[]: %cd $basedirC/task4

9

https://www.openacc.org/sites/default/files/inline-files/OpenACC%20API%202.6%20Reference%20Guide.pdf
http://www.openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
./C/task4/poisson2d.c

Compilation If you are using the jupyter notebook approach you can execute the cells below.
They will put you in the right directory. There you can call make with the desired Section ??.
Alternatively you can just navigate to the right directory and execute make <target> in your
terminal.

[]: checkdir('task4')
!make poisson2d

Running For the Multi-GPU version you can set the number of GPUs / MPI ranks using the
variable NP. On Ascent within a single node you can use up to 6 GPUs.

[]: checkdir('task4')
!NP=2 make run

Scaling You can do a simple scaling run for up to all 6 GPUs in the node by executing the next
cell.

[]: checkdir('task4')
!NP=1 make run | grep speedup > scale.out
!NP=2 make run | grep speedup >> scale.out
!NP=4 make run | grep speedup >> scale.out
!NP=6 make run | grep speedup >> scale.out
data_frame4 = pandas.read_csv('scale.out', delim_whitespace=True, header=None)

!rm scale.out

data_frame4b=data_frame4.iloc[:,[5,7,10,12]].copy()
data_frame4b.rename(columns={5:'GPUs', 7: 'time [s]', 10:'speedup', 12:
↪→'efficiency'})

Profiling You can profile the code by executing the next cell. After the profiling completed
download the tarball containing the profiles (pgprof.Task4.poisson2d.tar.gz) with the File
Browser. Then you can import them into pgprof / nvvp using the Import option in the File menu.
Remember to use the Multiple processes option in the assistant.

[]: checkdir('task4')
!NP=2 make profile

References

1. http://www.openacc.org
2. OpenACC Reference Card
3. OpenSHMEM 1.4 Specification
4. NVSHMEM 0.3 EA Developer Guide

10

https://www.openacc.org/sites/default/files/inline-files/OpenACC%20API%202.6%20Reference%20Guide.pdf
http://www.openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf

2.7 Task 5: Make communication asynchronous
NVSHMEM allows you to put communications in CUDA streams / OpenACC async queues. This
allows the CPU already set up communication and kernel launches while the GPU is still commu-
nicationg, effectively hiding the time spend in API calls.

To do this you need to: * use the async and wait keywords in the OpenACC pragmas to ex-
cute the kernels asynchronously in the OpenACC default queu * replace nvshmem_double_put
calls with the nvhsmemx_double_put_on_stream version. use use acc_get_cuda_stream and
acc_get_default_async to get the cudaStream_t cudaStream corresponding to the OpenACC
default async queue. * make sure to synchronize before copying the data back to the CPU

Look for TODOs.

Compare the scaling and efficiency with the results from the previous task and the MPI versions.
Check for asynchronous execution in the profiler.

Optional: Try to understand how well communication and compute overlap is able to improve
efficiency when scaling to more GPUs.

Code

• C Version

Before executing any of the cells below first execute the next cell to change to the right directory.

[]: %cd $basedirC/task5

Compilation If you are using the jupyter notebook approach you can execute the cells below.
They will put you in the right directory. There you can call make with the desired Section ??.
Alternatively you can just navigate to the right directory and execute make <target> in your
terminal.

[]: checkdir('task5')
!make poisson2d

Running For the Multi-GPU version you can set the number of GPUs / MPI ranks using the
variable NP. On Ascent within a single node you can use up to 6 GPUs.

[]: checkdir('task5')
!NP=2 make run

Scaling You can do a simple scaling run for up to all 6 GPUs in the node by executing the next
cell.

[]: checkdir('task5')
!NP=1 make run | grep speedup > scale.out
!NP=2 make run | grep speedup >> scale.out
!NP=4 make run | grep speedup >> scale.out
!NP=6 make run | grep speedup >> scale.out

11

./C/task5/poisson2d.c

data_frame5 = pandas.read_csv('scale.out', delim_whitespace=True, header=None)

!rm scale.out

data_frame5b=data_frame5.iloc[:,[5,7,10,12]].copy()
data_frame5b.rename(columns={5:'GPUs', 7: 'time [s]', 10:'speedup', 12:
↪→'efficiency'})

Profiling You can profile the code by executing the next cell. After the profiling completed
download the tarball containing the profiles (pgprof.Task5.poisson2d.tar.gz) with the File
Browser. Then you can import them into pgprof / nvvp using the Import option in the File menu.
Remember to use the Multiple processes option in the assistant.

[]: checkdir('task5')
!NP=2 make profile

References

1. http://www.openacc.org
2. OpenACC Reference Card
3. OpenSHMEM 1.4 Specification
4. NVSHMEM 0.3 EA Developer Guide

2.8 Task 6: Use direct load/store to remote memory
NVSHMEM allows you to put communications in the GPU kernels. Howerver, the nvhsmem_put /
nvshmem_get calls are not easily avilable in OpenACC kernels. However, for intranode communi-
cation when all GPUs can use P2P (as in the nodes in Ascent and Summit) you can get a pointer
to a remote GPUs memory using nvshmem_ptr.

To do this you need to: * use the nvshmem_ptr to get pointers to your neighboring (top/bottom)
d_A allocation * when setting A to Anew also update the halos of your neighbors. You need to use
the deviceptr keyword to use d_Atop / d_Abottom device pointers in an OpenACC directly. *
add the needed nvhsmem_barrier.

• Additional task: Similar to the previous version you can use asynchronous execution here.

Look for TODOs.

Compare the scaling and efficiency with the results from the previous tasks and the MPI versions.
Check for asynchronous execution in the profiler.

Code

• C Version

Before executing any of the cells below first execute the next cell to change to the right directory.

[]: %cd $basedirC/task6

12

https://www.openacc.org/sites/default/files/inline-files/OpenACC%20API%202.6%20Reference%20Guide.pdf
http://www.openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
./C/task6/poisson2d.c

Compilation If you are using the jupyter notebook approach you can execute the cells below.
They will put you in the right directory. There you can call make with the desired Section ??.
Alternatively you can just navigate to the right directory and execute make <target> in your
terminal.

[]: checkdir('task6')
!make poisson2d

Running For the Multi-GPU version you can set the number of GPUs / MPI ranks using the
variable NP. On Ascent within a single node you can use up to 6 GPUs.

[]: checkdir('task6')
!NP=2 make run

Scaling You can do a simple scaling run for up to all 6 GPUs in the node by executing the next
cell.

[]: checkdir('task6')
!NP=1 make run | grep speedup > scale.out
!NP=2 make run | grep speedup >> scale.out
!NP=4 make run | grep speedup >> scale.out
!NP=6 make run | grep speedup >> scale.out
data_frame5 = pandas.read_csv('scale.out', delim_whitespace=True, header=None)

!rm scale.out

data_frame5b=data_frame5.iloc[:,[5,7,10,12]].copy()
data_frame5b.rename(columns={5:'GPUs', 7: 'time [s]', 10:'speedup', 12:
↪→'efficiency'})

Profiling You can profile the code by executing the next cell. After the profiling completed
download the tarball containing the profiles (pgprof.Task6.poisson2d.tar.gz) with the File
Browser. Then you can import them into pgprof / nvvp using the Import option in the File menu.
Remember to use the Multiple processes option in the assistant.

[]: checkdir('task6')
!NP=2 make profile

References

1. http://www.openacc.org
2. OpenACC Reference Card
3. OpenSHMEM 1.4 Specification
4. NVSHMEM 0.3 EA Developer Guide

13

https://www.openacc.org/sites/default/files/inline-files/OpenACC%20API%202.6%20Reference%20Guide.pdf
http://www.openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf

3 Survey
Please remember to take some time and fill out the surveyhttp://bit.ly/sc19-eval.

14

	Hands-On GPU Programming
	Read me first
	Setup

	Tasks
	GPU Programming
	Multi-GPU with MPI
	Multi-GPU with NVSHMEM (Advanced – C only)
	Survey
	Make Targets

	Task 0: Using OpenACC
	Description

	Task 1: Memory Access Patterns
	Description

	Task 2: Apply Domain Decomposition
	Description

	Task 3: Hide MPI Communication time
	Tasks using NVSHMEM
	Task 4: Replace MPI with host side NVSHMEM
	Task 5: Make communication asynchronous
	Task 6: Use direct load/store to remote memory

	Survey

