
1

Application Performance Tuning with
Compilers on POWER9-
Hands On Summary of Tasks

Archana Ravindar

Supercomputing 2019, Denver

Summary of Tasks
•The Tasks are designed to familiarize the users with various ways of tuning performance.

• There are three Tasks organized into Task-1, Task-2, Task-3
• Task1 – Basic Compiler Optimizations and Annotations
• Task2 – Impact of Software Prefetching
• Task3 – Impact of OpenMP parallelism and Binding threads to cores

•All exercises work with a single Makefile.

•Most Exercises are designed with GCC compiler. Some also use the IBM XL compiler. In such cases, the users can define CC variable that directs the
makefile to use appropriate flags; For ex: make CC=gcc <target>, make CC=xlc_r <target>

•The user can run

• Makefile Targets

• “run”: which will invoke bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS time ./poisson2d <niter> <ny> <nx>

• Alternatively, the same command can be invoked as !${SC19_SUBMIT_CMD} time ./poisson2d <niter> <ny> <nx>

• The default values make run will invoke is (niter, nx and ny = 1000)

• “run_perf” (prints cycles, instructions), “run_perf_recrep” (displays top routines execution time wise)

• Other Additional targets are defined as we go along with the tasks

• Helpful references for each Task

• Jupyter notebook : HandsOnPerformanceOptimization_Task.ipynb that describes the tasks that need to be done

• HandsOnPerformanceOptimization_Solution.ipynb that describes the solutions and results

• Solution/ directory contains the resultant binaries, makefiles, source files needed for the solutions

Supercomputing 2019, Denver

3

Task 1 (A) : Flag Tuning and Annotations
– This exercise uses the same Jacobi application that computes the 2-d poisson equation using the Jacobi

solver. The default parameters are set to the following- NITER=1000, NY=1000, NX=1000.
– This hands-on exercise illustrates the impact of the Ofast flag

• Ofast enables –ffast-math option that implements the same math function in a way that does not require
guarantees of IEEE / ISO rules or specification and avoids the overhead of calling a function from the math
library

– CFLAGS is the variable defined in Makefile.gcc that controls the compilation flags with which the application
is compiled; You may see flags such as
• -mcpu=power9 : This leverages POWER9 ISA
• -mvsx generates instructions that use vector/scalar instructions
• -maltivec generates code that uses altivec instructions

– Add –O3 to CFLAGS_O3 and compile the application to create the O3 binary (Makefile target: poisson2d_O3)
– Similarly Add –Ofast to CFLAGS_Ofast and compile the application to create the Ofast binary
– Measure performance of both the binaries with make run and make runstats and compare them

– View the performance profile of both binaries with make perfgenerate and compare them
– Why do you think one is faster than the other

Supercomputing 2019, Denver

4

Task 1 (B): Profile Directed Feedback Optimization
– Profile directed feedback is an advanced way of optimizing an application

• Involves using profile information to optimize the performance of the application

• The flags for profile directed feedback are –fprofile-generate and –fprofile-use
• The steps to create a profile directed binary are (make runpdf)

– Build using fprofile-generate (poisson2d_train is built)

– Run binary with a smaller input workload
– This generates a .gcda file
– Build using fprofile-use (poisson2d_ref is built)

– This uses information in the .gcda file and the final binary is generated
– Run the Ofast binary and Ofast binary optimized using profile directed feedback and compare their

performance
• make run

Supercomputing 2019, Denver

5

Task 1 (C): Compiler Annotations
– Compiler adds annotations in optimization passes to communicate the optimization decisions it has made during the

compilation process.

– These annotations are very useful inorder to understand why an optimization was made or why it was missed

– Newer versions of GCC introduce flags such as –fopt-info-all=<filename> that captures these annotations in a text file
which can be read; *all* indicates all the optimization annotations

– Inorder to view only the missed ones, we can specify –fopt-info-missed=<filename> that captures the optimizations that
could not be done either because the compiler thought it was not profitable to do in the given situation or the code
characteristic is preventing it from making the optimization.

– Use poisson2d_Ofast_record target to generate the annotations file for compilation at Ofast level; The annotations are
generated in file opt-record in SC19_DIR_SCRATCH.

– Use runpdf.record target to generate the annotations file for profile directed feedback optimization

– What differences do you see between annotations at Ofast and Ofast with profile directed feedback ?

– The steps to create a profile directed binary with annotations (generated in $(SC19_DIR_SCRATCH)/filename are make
runpdf.record

– Build using fprofile-generate (poisson2d_train is built)

– Run binary with a smaller input workload

– This generates a .gcda file

– Build using fprofile-use and –fopt-info-all=<filename> (poisson2d_ref_record is built),

– This uses information in the .gcda file and optimizes the binary and generates filename

– The annotations are in filename Supercomputing 2019, Denver

6

Task 2(A): Impact of Software Prefetching
– This hands-on exercise illustrates ways in which we can enable SW Prefetching and through

compiler flags also control the values of the Data Stream Control Register that directs the HW
prefetcher

– Compiling with a prefetch flag enables the compiler to analyze the code and insert __dcbt and
__dcbtst instructions into the code “if it is determined to be beneficial by the compiler”

– __dcbt and __dcbtst instructions prefetch memory values into L3
– The prefetch flag for GCC is -fprefetch-loop-arrays
– Add this flag to CFLAGS and compile the application with O3 and Ofast to create the binary with

and without SW prefetching enabled. For this purpose we have defined target poisson2d_pref that
is the binary with SW prefetching

– Check if the compiler has added the prefetch instructions by observing the disassembly using
objdump –lSd ./binary > assemblyfile.dis

– Check the performance and L3 misses of O3(with and without prefetch) and Ofast(with and
without prefetch) using target “l3missstats”

– At which optimization level does the compiler do prefetching ?

Supercomputing 2019, Denver

Task 2(B): Controlling contents of DSCR by compiler
flags
– POWER9 has an inbuilt hardware prefetcher that is transparent to the programmer
– If the application accesses regular memory patterns, the hardware prefetcher automatically starts

prefetching data
– The contents of DSCR register determine how aggressive or laid back is the hardware prefetcher in

its operation
– The contents of the register can be changed on the OS command line using the command

ppc64_cpu –dscr=<value> but needs administrator privileges
– Alternatively IBM XL provides a flag –qprefetch=dscr=<value> that sets the DSCR with <value>
– Default value of DSCR=0, DSCR=1 turns off hardware prefetching. DSCR=7 enables prefetching

with larger depth with other default settings. And so on.
– Add –qprefetch=dscr=1 to CFLAGS and compile the application
– For this purpose we have defined the target poisson2d_dscr in the Makefile
– Compare performance of the default binary with binary compiled with –qprefetch=dscr=1
– Does Hardware prefetching help the Jacobi application ?

Supercomputing 2019, Denver

8

Task 3(A) : OpenMP parallelization and Binding Threads
to Cores

– This hands-on exercise illustrates performance tuning with OpenMP parallelization and it consists of two
aspects.

• First we need to parallelize the application using compiler flags. The hands on exercise will show you how to do it for GCC
and IBM XL compilers.

• Second we need to decide the best binding and run the application

• The poisson application is modified to execute two sets of loops that are identical copies of each other- The
main loop is parallelized with openMP pragmas. The reference loop is not parallelized. The application
computes the speedup in execution between the main and the reference loops.

Supercomputing 2019, Denver

9

Task 3(A) : OpenMP parallelization and Binding Threads
to Cores
• Part 1: Parallelize the application

• Identify loops whose iterations are independent of each other

• Look for TODOs in poisson2d.c for placing #pragma omp parallel before any such loop such as

#pragma omp parallel for

for (int iy = 1; iy < ny-1; iy++) { …. }

• Look for TODOs to place appropriate compiler option to generate parallel binary

• Compile the application with GCC or XL using make CC=gcc or make CC=xlc_r to generate the
parallel binary

• Run the parallel binary with OMP_NUM_THREADS=1, 2,4,8,10,20,40 etc and compare speedup
with reference loop

Supercomputing 2019, Denver

Task 3(B): Impact of Binding Threads to Cores
• Part 2: Determine the Beneficial Binding and run the Application

• Run lscpu to determine the number of sockets, cores per each socket

• You will see the setting as SMT=4 on the system; You can verify by running ppc64_cpu –smt on the command line

• Run Cat /proc/cpuinfo to determine the total number of threads, cores in the system

• Obtain the thread sibling list of CPU0, CPU1 etc.. Reading the file
/sys/devices/system/cpu/cpu0/topology/thread_siblings_list

• Referring to the sibling list, Set n1, .. n4 to threads in same core and run for example-

• $(SC19_SUBMIT_CMD) time OMP_NUM_PLACES=“{0},{1},{2},{3}" OMP_NUM_THREADS=4 ./poisson2d 1000
1000 1000

• Set n1, .. n4 to threads in different cores and run for example-

• $(SC19_SUBMIT_CMD) time OMP_NUM_PLACES=“{0},{5},{9},{13}" OMP_NUM_THREADS=4 ./poisson2d 1000
1000 1000

• Compare Speedups; Which one is higher?

• Both GCC and XL binaries can use the same binding variables to obtain speedups as OMP_NUM_PLACES and
OMP_NUM_THREADS are variables specific to OpenMP. GOMP_CPU_AFFINITY is specific to GCC binaries.

Supercomputing 2019, Denver

11

Supercomputing 2019, Denver

Application Performance Tuning with
Compilers on POWER9-
Hands On Summary of Tasks

Archana Ravindar

12

Task 1(A,B) Result : Tuning with Compiler Flags
– This hands-on exercise illustrates the impact of the Ofast flag

• Ofast enables –ffast-math option that implements the same math function in a way that does not require guarantees of
IEEE / ISO rules or specification and avoids the overhead of calling a function from the math library

– It also illustrates the impact of profile directed feedback

• Profile directed feedback involves optimizing the binary around

hot paths

– Top functions in the Profile of O3 binary

This can be obtained by running the following :

> perf record –e cycles ./poisson2d.O3; perf report;

65.6% poisson2d.O3 libm-2.26.so [.] __fmax

21.21% poisson2d.O3 poisson2d.O3 [.] main

9.18% poisson2d.O3 libc-2.17.so [.] __memcpy_power7

– Top functions in the Profile of fast binary

81.12% poisson2d.fast poisson2d.fast [.] main

9.18% poisson2d.fast libc-2.17.so [.] __memcpy_power7

Niter, x,y=1000 Runtime (s)
O3 binary 4.73
fast binary 2.4

speedup with Ofast 1.9x

Niter,x,y=1000 Runtime (s)
fast binary 2.4
fast with PDF 2.3
% speedup with PDF 4%

Supercomputing 2019, Denver

81.12% poisson2d poisson2d [.] main 17.97% poisson2d libc-2.17.so [.] __memcpy_power7 0.79% poisson2d libm-2.17.so [.] __exp_finite
81.12% poisson2d poisson2d [.] main 17.97% poisson2d libc-2.17.so [.] __memcpy_power7 0.79% poisson2d libm-2.17.so [.] __exp_finite

Task 1(C) Result : Compiler Annotations
Compiler Annotations provide a wealth of information in understanding why certain optimizations were done or missed

The following annotations and more are obtained by building the application at Ofast with –fopt-info-all=<path>/<file-name>

poisson2d.c:38:5: note: vectorized 1 loops in function.

poisson2d.c:127:9: missed: couldn't vectorize loop

poisson2d.c:127:9: missed: Loop costings may not be worthwhile.

poisson2d.c:107:9: missed: couldn't vectorize loop

poisson2d.c:107:9: missed: not vectorized: control flow in loop.

poisson2d.c:110:13: optimized: loop vectorized using 16 byte vectors

poisson2d_reference.c:43:13: optimized: loop turned into non-loop; it never loops

Generating annotations with profile directed feedback generates additional annotations that contain details of execution
frequency which determine many of the optimization parameters as shown below

poisson2d.c:114:25: optimized: loop unrolled 3 times (header execution count 436550)

poisson2d.c:83:5: optimized: loop unrolled 7 times (header execution count 99)

Supercomputing 2019, Denver

14

Task 2(A) Result : Impact of Software Prefetching
– Compiling with a prefetch flag enables the compiler to analyze the

code and insert __dcbt and __dcbtst instructions into the code if it is
beneficial

– __dcbt and __dcbtst instructions prefetch memory values into L3 ;
__dcbt is for load and __dcbtst is for store

– POWER9 has prefetching enabled both at HW and SW levels

– At HW level, prefetching is “ON” by default

– At the SW level, you can request the compiler to insert prefetch

instructions ; However the compiler can choose to ignore the

request if it determines that it is not beneficial to do so.

– You will find that the compiler generates prefetch instructions

when the application is compiled at the Ofast level but not when

It is compiled at the O3 level

– That is because in the O3 binary the time is dominated by __fmax
call which causes the compiler to come to the conclusion that
whatever benefit we obtain by adding SW prefetch will be
overshadowed by the penalty of fmax

– GCC may add further loop optimizations such as unrolling upon
invocation of –fprefetch-loop-arrays

Niter, nx,
ny=1000

Runtime
(s)

Niter, nx,
ny=500 Runtime(s)

Plain Ofast 2.4Plain O3 4.72

Prefetch Ofast 1.9Prefetch O3 4.72

% speedup 21%% speedup 0

L3 cache misses 482546857

L3 cache misses with prefetch 457517865

% Reduction 6%

14

Supercomputing 2019, Denver

Task 2(B) Impact of hardware prefetcher

– POWER9 has an inbuilt hardware prefetcher

– The parameters of the prefetcher are stored in a special register “Data Stream Control Register (DSCR)”

– The DSCR has various fields such as depth, ramp, urgency, load prefetch enable, store prefetch enable, stride prefetch etc

– At the command line the user can set it using

– ppc64_cpu –dscr=<val>

– However this requires admin privileges usually

– Alternatively certain compilers such as IBM XL has an option to set the value during compile time, -qprefetch=dscr=<val>

– This internally generates the instruction mtudscr r[n] or mtspr 3, r[n] that sets the DSCR to value in register r[n]
– By compiling with –qprefetch=dscr=1, the hardware prefetcher can be disabled

– Comparing the performance of the binary with and without the hardware prefetcher we see that this particular application
benefits with prefetching

Niter, nx, ny=1000 Runtime (s)

Plain Ofast 2.26

Ofast with prefetching
turned off 4.57

Degradation ~2x

Supercomputing 2019, Denver

16

Task 3 Result : OpenMP Parallelization
– Parallelizing an application involves two steps

• Using openMP pragmas to parallelize loops, we see that increasing the number of threads, the
speedup also scales upto a certain point

• Using the correct binding

– Binding all threads to the same core causes bottlenecks
in execution thereby slowing down the application

– Binding all threads to different cores removes the
bottleneck and improves performance

– Though not compiler related, this hands-on illustrates
that system level tuning is also equally important
to obtain performance improvements

– Results are similar in the XL binary as in the GCC binary

Binding for
OMP_THREADS=4 Speedup
{0},{1},{2},{3}
(OMP_PLACES) 1.1x
{0},{5},{9},{13}
(OMP_PLACES) 3.4x

16

Supercomputing 2019, Denver

0
2
4
6
8

10

SPEEDUP

