
PERFORMANCE COUNTERS AND TOOLS
OPENPOWER TUTORIAL, SC19, DENVER
18 November 2019 Andreas Herten Forschungszentrum Jülich, Jülich Supercomputing Centre

Member of the Helmholtz Association

Outline

Goals of this session
Get to know Performance Counters
Measure counters on POWER9

→ Hands-on
Additional material in appendix

Motivation
Performance Counters

Introduction
General Description

Counters on POWER9
Measuring Counters

perf
PAPI
GPUs

Conclusion

Member of the Helmholtz Association 18 November 2019 Slide 1 18

Knuth

[…] premature optimization is the root of all evil.
Yet we should not pass up our [optimization] op-
portunities […]
– Donald Knuth

Full quote in appendix

Optimization Measurement
Making educated decisions

Only optimize code aftermeasuring its performance
Measure! Don’t trust your gut!
Objectives

Run time
Cycles
Operations per cycle (FLOP/s)
Usage of architecture features ($, (S)MT, SIMD,…)

Correlate measurements with code
→ Hot spots/performance limiters
Iterative process

Programming

Measuring

Member of the Helmholtz Association 18 November 2019 Slide 3 18

Measurement
Two options for insight
Coarse Timestamps to time program / parts of program

»The printf()method«
Only good for first glimpse
No insight to inner workings

Detailed Performance counters to study usage of hardware architecture

Instructions
Cycles
Floating point operations
Stalled cycles
Cache misses, cache hits
Prefetches

Flushs
Branches
CPUmigrations
…

IPC, CPI

Native
Derived
Software

Member of the Helmholtz Association 18 November 2019 Slide 4 18

Performance Counters

Performance Monitoring Unit
Right next to the core

Part of processor periphery, but dedicated registers
History

First occurrence: Intel Pentium, reverse-engineered 1994 (RDPMC) [2]
Originally for chip developers
Later embraced for software developers and tuners

Operation: Certain events counted at logic level, then aggregated to registers

Pros
Low overhead
Very specific requests possible; detailed
information
Information about CPU core, nest, cache,
memory

Cons
Processor-specific
Hard to measure
Limited amount of counter registers
Compressed information content

Member of the Helmholtz Association 18 November 2019 Slide 6 18

Working with Performance Counters
Some caveats

Mind the clock rates!
Modern processors have dynamic clock rates (CPUs, GPUs)
→Might skew results
Some counters might not run at nominal clock rate

Limited counter registers
POWER9: 6 registers for hardware counters (PMC1 - PMC6) [3]
Cores, Threads (OpenMP)

Absolutely possible
Complicates things slightly
Pinning necessary
→ OMP_PROC_BIND, OMP_PLACES; PAPI_thread_init()

Nodes (MPI): Counters independent of MPI, but aggregation tool useful (Score-P, …)

Member of the Helmholtz Association 18 November 2019 Slide 7 18

http://www.openmp.org/mp-documents/openmp-4.5.pdf#page=303
http://www.openmp.org/mp-documents/openmp-4.5.pdf#page=304
https://icl.cs.utk.edu/projects/papi/wiki/Threads

Performance Counters on POWER9

POWER9 Compartments
Sources of PMU events

Core-Level

Core / thread level
Core pipeline analysis

Frontend
Branch prediction
Execution units
…

Behavior investigation
Stalls
Utilization
…

Nest-Level
Interconnects

SMP
Memory Buffer; DIMM
PCIe; NVLink

Dedicated registers (PMUlet)
Analysis of

Main memory access
Bandwidth

POWER9

Member of the Helmholtz Association 18 November 2019 Slide 9 18

POWER9 Performance Counters
Instructions, Stalls

PM_LD_MISS_L1 Loadmissed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL

PM_VECTOR_FLOP_CMPL Vector FP instruction completed
Also: PM_2FLOP_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
Completion stalled because the thread was blocked

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_LSU Completion stall by LSU instruction
LSU: Load/Store Unit

Cycles
PM_RUN_CYC

Other
OTHER_CPI

Nothing to Dispatch
PM_GCT_NOSLOT_CYC

Other

Dispatch Held

Dispatch Held: Other
PM_GCT_NOSLOT_DISP_HELD_OTHER

Dispatch Held: Issue Queue
PM_GCT_NOSLOT_DISP_HELD_ISSQ

Dispatch Held: Store Queue
PM_GCT_NOSLOT_DISP_HELD_SRQ

Dispatch Held: Mapper
PM_GCT_NOSLOT_DISP_HELD_MAPBranch Mispredict

and I-Cache Miss
PM_GCT_NOSLOT_BR_MPRED_ICMISS

Branch Mispredict
PM_GCT_NOSLOT_BR_MPRED

I-Cache Miss
PM_GCT_NOSLOT_IC_MISS

Other

L3 Miss
PM_GCT_NOSLOT_IC_L3MISS

Run Instruction
PM_RUN_INST_CMPL

Stalled Cycles
PM_CMPLU_STALL

Other
PM_CMPLU_STALL_OTHER_CMPL

LSU
PM_CMPLU_STALL_LSU

Other

Dcache Miss
PM_CMPLU_STALL_DCACHE_MISS

L3 Miss
PM_CMPLU_STALL_DMISS_L3MISS

Off-Node Memory

Off-Chip Memory
PM_CMPLU_STALL_DMISS_REMOTE

On-Chip Memory
PM_CMPLU_STALL_DMISS_LMEM

On-Chip L2/L3
PM_CMPLU_STALL_DMISS_L21_L31

L2/L3 Hit
PM_CMPLU_STALL_DMISS_L2L3

L2/L3 Hit
w/ No Conflict

L2/L3 Hit
with Conflict

PM_CMPLU_STALL_DMISS_L2L3_CONFLICTStore Forward
PM_CMPLU_STALL_ST_FWD

Load Finish
PM_CMPLU_STALL_LOAD_FINISH

LSU Reject
PM_CMPLU_STALL_REJECT

Other

LMQ Full
PM_CMPLU_STALL_REJ_LMQ_FULL

ERAT Miss
PM_CMPLU_STALL_ERAT_MIS

Load-Hit-Store
PM_CMPLU_STALL_REJECT_LHSStore Finish

PM_CMPLU_STALL_STORE

NOPs
PM_CMPLU_STALL_NO_NTF

Next-to-Complete Flush
PM_CMPLU_STALL_NTCG_FLUSH

VSU
PM_CMPLU_ST ALL_VSU

Other

Scalar
PM_CMPLU_STALL_SCALAR

Scalar (other)

Scalar Long
PM_CMPLU_STALL_SCALAR_LONG

Vector
PM_CMPLU_STALL_VECTOR

Vector (other)

Vector Long
PM_CMPLU_STALL_VECTOR_LONG

Fixed-Point
PM_CMPLU_STALL_FXU

Fixed-Point (Other)

Fixed-Point Long
PM_CMPLU_STALL_FXLONG

BR or CR
PM_CMPLU_STALL_BRU_CRU

CR

Branch
PM_CMPLU_STALL_BRU

GroupWaiting
to Complete

PM_NTCG_ALL_FIN

Thread Blocked
PM_CMPLU_STALL_THRD

Other

COQ Full
PM_CMPLU_STALL_COQ_FULL

Other Thread’s Flush
PM_CMPLU_STALL_FLUSH

ECC Delay
PM_CMPLU_STALL_MEM_ECC_DELAY

HWSYNC
PM_CMPLU_STALL_HWSYNC

LWSYNC
PM_CMPLU_STALL_LWSYNC

Glossary
BRU Branching Unit

CR Conditional Register

FXU Fixed-Point Unit

VSU Vector-Scalar Unit

LSU Load-Store Unit

LMQ Load Miss Queue

ERAT Effective to Real Address
Translation

LWSYNC Lightweight Synchro-
nize

HWSYNC Heavyweight Synchro-
nize

ECC Error Correcting Code

Derived Quantity

Stall due to…

Thread blocked due to…

Nothing to dispatch due to…

POWER8 CPI Stack Tree

PM_RUN_CYC

PM_ICT_NOSLOT_C
YC

(PMC1)

PM_ICT_NOSLOT_
IC_MISS

PM_ICT_NOSLOT_IC_L2

PM_ICT_NOSLOT_IC_L3

PM_ICT_NOSLOT_IC_L3MISS

PM_ICT_NOSLOT_BR_MPRED

PM_ICT_NOSLOT_BR_MPRED_ICMISS

PM_ICT_NOSLOT_
DISP_HELD

PM_ICT_NOSLOT_DISP_HELD_HB_FULL

PM_ICT_NOSLOT_DISP_HELD_SYNC

PM_ICT_NOSLOT_DISP_HELD_TBEGIN

PM_ICT_NOSLOT_DISP_HELD_ISSQ

PM_ICT_NOSLOT_DISP_HELD_OTHER

Nothing to Dispatch (Other)

PM_ISSUE_HOLD

PM_NTC_ISSUE_HELD_DARQ_FULL

PM_NTC_ISSUE_HELD_ARB

PM_NTC_ISSUE_HELD_OTHER

PM_CMPLU_STALL
(PMC4)

PM_CMPLU_STALL_BRU

PM_CMPLU_STALL_
EXEC_UNIT

PM_CMPLU_STALL_
SCALAR

PM_CMPLU_STALL_FXU
(PMC2)

PM_CMPLU_STALL_FXLONG
(PMC4)

Stall due to single-cycle scalar
fixed-point and CR instructions

PM_CMPLU_STALL_DP
(PMC1)

PM_CMPLU_STALL_DPLONG
(PMC3)

Stall due to a single-cycle scalar
DP instruction

PM_CMPLU_STALL_
DFU (PMC2)

PM_CMPLU_STALL_DFLONG
(PMC1)

Stall due to a single-cycle scalar
DFU instruction

PM_CMPLU_STALL_PM (PMC3

PM_CMPLU_STALL_CRYPTO (PMC4)

PM_CMPLU_STALL_
VECTOR

PM_CMPLU_STALL_
VFX (PMC3)

PM_CMPLU_STALL_VFXLONG
(PMC2)

Stall due to a single-cycle vector
fixed-point instruction

PM_CMPLU_STALL_
VDP (PMC4)

PM_CMPLU_STALL_VDPLONG
(PMC3)

Stall due to a single-cycle vector
DP instruction

Stall due to execution slices (other VSU/FXU/CR

PM_CMPLU_STALL_
LSAQ

PM_CMPLU_STALL_LRQ_FULL

PM_CMPLU_STALL_SRQ_FULL

PM_CMPLU_STALL_LSAQ_ARB

PM_CMPLU_STALL_
EMQ

PM_CMPLU_STALL_ERAT_MISS

PM_CMPLU_STALL_EMQ_FULL

PM_CMPLU_STALL_
LRQ

PM_CMPLU_STALL_LMQ_FULL

PM_CMPLU_STALL_ST_FWD

PM_CMPLU_STALL_LHS

PM_CMPLU_STALL_LSU_MFSPR

PM_CMPLU_STALL_LARX

PM_CMPLU_STALL_LRQ_OTHER

PM_RUN_CYC

PM_CMPLU_STALL
(PMC4)

PM_CMPLU_STALL_
DCACHE_MISS

PM_CMPLU_STALL_
DMISS_L2L3

PM_CMPLU_STALL_DMISS_L2
L3_CONFLICT

L2/L3 hit with no conflict

PM_CMPLU_STALL_DMI
SS_L3MISS

PM_CMPLU_STALL_DMISS_
L21_L31

PM_CMPLU_STALL_DMISS_
LMEM

PM_CMPLU_STALL_DMISS_
REMOTE

Stall due to off-node memory
cache

PM_CMPLU_STALL_LOAD_FINISH

PM_CMPLU_STALL_
SRQ

PM_CMPLU_STALL_STORE_DATA

PM_CMPLU_STALL_LWSYNV

PM_CMPLU_STALL_HWSYNC

PM_CMPLU_STALL_EIEIO

PM_CMPLU_STALL_STCX

PM_CMPLU_STALL_SLB

PM_CMPLU_STALL_TEND

PM_CMPLU_STALL_PASTE

PM_CMPLU_STALL_TLBIE

PM_CMPLU_STALL_STORE_PIPE_ARB

PM_CMPLU_STALL_STORE_FIN_ARB

PM_CMPLU_STALL_STORE_FINISH

PM_CMPLU_STALL_LSU_FIN

Stall due to load/store (other)

PM_CMPLU_STALL_NTC_FLUSH

PM_CMPLU_STALL_NTC_DISP_FIN

Stall cycle other

PM_CMPLU_STALL_
THRD (PMC1)

PM_CMPLU_STALL_EXCEPTION

PM_CMPLU_STALL_ANY_SYNC

PM_CMPLU_STALL_SYNC_PMU_INT

PM_CMPLU_STALL_SPEC_FINISH

PM_CMPLU_STALL_FLUSH_ANY_THREAD

PM_CMPLU_STALL_LSU_FLUSH_NEXT

PM_CMPLU_STALL_NESTED_TBEGIN

PM_CMPLU_STALL_NESTED_TEND

PM_CMPLU_STALL_MTFPSCR

PM_CMPLU_STALL_OTHER_CMPL

PM_1PLUS_PPC_CMP

Other

POWER9 CPI Stack Table

Member of the Helmholtz Association 18 November 2019 Slide 10 18

POWER9 Performance Counters
Instructions, Stalls

PM_LD_MISS_L1 Loadmissed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL

PM_VECTOR_FLOP_CMPL Vector FP instruction completed
Also: PM_2FLOP_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
Completion stalled because the thread was blocked

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_LSU Completion stall by LSU instruction
LSU: Load/Store Unit

Cycles
PM_RUN_CYC

Other
OTHER_CPI

Nothing to Dispatch
PM_GCT_NOSLOT_CYC

Other

Dispatch Held

Dispatch Held: Other
PM_GCT_NOSLOT_DISP_HELD_OTHER

Dispatch Held: Issue Queue
PM_GCT_NOSLOT_DISP_HELD_ISSQ

Dispatch Held: Store Queue
PM_GCT_NOSLOT_DISP_HELD_SRQ

Dispatch Held: Mapper
PM_GCT_NOSLOT_DISP_HELD_MAPBranch Mispredict

and I-Cache Miss
PM_GCT_NOSLOT_BR_MPRED_ICMISS

Branch Mispredict
PM_GCT_NOSLOT_BR_MPRED

I-Cache Miss
PM_GCT_NOSLOT_IC_MISS

Other

L3 Miss
PM_GCT_NOSLOT_IC_L3MISS

Run Instruction
PM_RUN_INST_CMPL

Stalled Cycles
PM_CMPLU_STALL

Other
PM_CMPLU_STALL_OTHER_CMPL

LSU
PM_CMPLU_STALL_LSU

Other

Dcache Miss
PM_CMPLU_STALL_DCACHE_MISS

L3 Miss
PM_CMPLU_STALL_DMISS_L3MISS

Off-Node Memory

Off-Chip Memory
PM_CMPLU_STALL_DMISS_REMOTE

On-Chip Memory
PM_CMPLU_STALL_DMISS_LMEM

On-Chip L2/L3
PM_CMPLU_STALL_DMISS_L21_L31

L2/L3 Hit
PM_CMPLU_STALL_DMISS_L2L3

L2/L3 Hit
w/ No Conflict

L2/L3 Hit
with Conflict

PM_CMPLU_STALL_DMISS_L2L3_CONFLICTStore Forward
PM_CMPLU_STALL_ST_FWD

Load Finish
PM_CMPLU_STALL_LOAD_FINISH

LSU Reject
PM_CMPLU_STALL_REJECT

Other

LMQ Full
PM_CMPLU_STALL_REJ_LMQ_FULL

ERAT Miss
PM_CMPLU_STALL_ERAT_MIS

Load-Hit-Store
PM_CMPLU_STALL_REJECT_LHSStore Finish

PM_CMPLU_STALL_STORE

NOPs
PM_CMPLU_STALL_NO_NTF

Next-to-Complete Flush
PM_CMPLU_STALL_NTCG_FLUSH

VSU
PM_CMPLU_ST ALL_VSU

Other

Scalar
PM_CMPLU_STALL_SCALAR

Scalar (other)

Scalar Long
PM_CMPLU_STALL_SCALAR_LONG

Vector
PM_CMPLU_STALL_VECTOR

Vector (other)

Vector Long
PM_CMPLU_STALL_VECTOR_LONG

Fixed-Point
PM_CMPLU_STALL_FXU

Fixed-Point (Other)

Fixed-Point Long
PM_CMPLU_STALL_FXLONG

BR or CR
PM_CMPLU_STALL_BRU_CRU

CR

Branch
PM_CMPLU_STALL_BRU

GroupWaiting
to Complete

PM_NTCG_ALL_FIN

Thread Blocked
PM_CMPLU_STALL_THRD

Other

COQ Full
PM_CMPLU_STALL_COQ_FULL

Other Thread’s Flush
PM_CMPLU_STALL_FLUSH

ECC Delay
PM_CMPLU_STALL_MEM_ECC_DELAY

HWSYNC
PM_CMPLU_STALL_HWSYNC

LWSYNC
PM_CMPLU_STALL_LWSYNC

Glossary
BRU Branching Unit

CR Conditional Register

FXU Fixed-Point Unit

VSU Vector-Scalar Unit

LSU Load-Store Unit

LMQ Load Miss Queue

ERAT Effective to Real Address
Translation

LWSYNC Lightweight Synchro-
nize

HWSYNC Heavyweight Synchro-
nize

ECC Error Correcting Code

Derived Quantity

Stall due to…

Thread blocked due to…

Nothing to dispatch due to…

POWER8 CPI Stack Tree

PM_RUN_CYC

PM_ICT_NOSLOT_C
YC

(PMC1)

PM_ICT_NOSLOT_
IC_MISS

PM_ICT_NOSLOT_IC_L2

PM_ICT_NOSLOT_IC_L3

PM_ICT_NOSLOT_IC_L3MISS

PM_ICT_NOSLOT_BR_MPRED

PM_ICT_NOSLOT_BR_MPRED_ICMISS

PM_ICT_NOSLOT_
DISP_HELD

PM_ICT_NOSLOT_DISP_HELD_HB_FULL

PM_ICT_NOSLOT_DISP_HELD_SYNC

PM_ICT_NOSLOT_DISP_HELD_TBEGIN

PM_ICT_NOSLOT_DISP_HELD_ISSQ

PM_ICT_NOSLOT_DISP_HELD_OTHER

Nothing to Dispatch (Other)

PM_ISSUE_HOLD

PM_NTC_ISSUE_HELD_DARQ_FULL

PM_NTC_ISSUE_HELD_ARB

PM_NTC_ISSUE_HELD_OTHER

PM_CMPLU_STALL
(PMC4)

PM_CMPLU_STALL_BRU

PM_CMPLU_STALL_
EXEC_UNIT

PM_CMPLU_STALL_
SCALAR

PM_CMPLU_STALL_FXU
(PMC2)

PM_CMPLU_STALL_FXLONG
(PMC4)

Stall due to single-cycle scalar
fixed-point and CR instructions

PM_CMPLU_STALL_DP
(PMC1)

PM_CMPLU_STALL_DPLONG
(PMC3)

Stall due to a single-cycle scalar
DP instruction

PM_CMPLU_STALL_
DFU (PMC2)

PM_CMPLU_STALL_DFLONG
(PMC1)

Stall due to a single-cycle scalar
DFU instruction

PM_CMPLU_STALL_PM (PMC3

PM_CMPLU_STALL_CRYPTO (PMC4)

PM_CMPLU_STALL_
VECTOR

PM_CMPLU_STALL_
VFX (PMC3)

PM_CMPLU_STALL_VFXLONG
(PMC2)

Stall due to a single-cycle vector
fixed-point instruction

PM_CMPLU_STALL_
VDP (PMC4)

PM_CMPLU_STALL_VDPLONG
(PMC3)

Stall due to a single-cycle vector
DP instruction

Stall due to execution slices (other VSU/FXU/CR

PM_CMPLU_STALL_
LSAQ

PM_CMPLU_STALL_LRQ_FULL

PM_CMPLU_STALL_SRQ_FULL

PM_CMPLU_STALL_LSAQ_ARB

PM_CMPLU_STALL_
EMQ

PM_CMPLU_STALL_ERAT_MISS

PM_CMPLU_STALL_EMQ_FULL

PM_CMPLU_STALL_
LRQ

PM_CMPLU_STALL_LMQ_FULL

PM_CMPLU_STALL_ST_FWD

PM_CMPLU_STALL_LHS

PM_CMPLU_STALL_LSU_MFSPR

PM_CMPLU_STALL_LARX

PM_CMPLU_STALL_LRQ_OTHER

PM_RUN_CYC

PM_CMPLU_STALL
(PMC4)

PM_CMPLU_STALL_
DCACHE_MISS

PM_CMPLU_STALL_
DMISS_L2L3

PM_CMPLU_STALL_DMISS_L2
L3_CONFLICT

L2/L3 hit with no conflict

PM_CMPLU_STALL_DMI
SS_L3MISS

PM_CMPLU_STALL_DMISS_
L21_L31

PM_CMPLU_STALL_DMISS_
LMEM

PM_CMPLU_STALL_DMISS_
REMOTE

Stall due to off-node memory
cache

PM_CMPLU_STALL_LOAD_FINISH

PM_CMPLU_STALL_
SRQ

PM_CMPLU_STALL_STORE_DATA

PM_CMPLU_STALL_LWSYNV

PM_CMPLU_STALL_HWSYNC

PM_CMPLU_STALL_EIEIO

PM_CMPLU_STALL_STCX

PM_CMPLU_STALL_SLB

PM_CMPLU_STALL_TEND

PM_CMPLU_STALL_PASTE

PM_CMPLU_STALL_TLBIE

PM_CMPLU_STALL_STORE_PIPE_ARB

PM_CMPLU_STALL_STORE_FIN_ARB

PM_CMPLU_STALL_STORE_FINISH

PM_CMPLU_STALL_LSU_FIN

Stall due to load/store (other)

PM_CMPLU_STALL_NTC_FLUSH

PM_CMPLU_STALL_NTC_DISP_FIN

Stall cycle other

PM_CMPLU_STALL_
THRD (PMC1)

PM_CMPLU_STALL_EXCEPTION

PM_CMPLU_STALL_ANY_SYNC

PM_CMPLU_STALL_SYNC_PMU_INT

PM_CMPLU_STALL_SPEC_FINISH

PM_CMPLU_STALL_FLUSH_ANY_THREAD

PM_CMPLU_STALL_LSU_FLUSH_NEXT

PM_CMPLU_STALL_NESTED_TBEGIN

PM_CMPLU_STALL_NESTED_TEND

PM_CMPLU_STALL_MTFPSCR

PM_CMPLU_STALL_OTHER_CMPL

PM_1PLUS_PPC_CMP

Other

POWER9 CPI Stack Table

Number of counters for POWER9:

959

See appendix for more on counters
(CPI stack; resources)

Member of the Helmholtz Association 18 November 2019 Slide 10 18

Measuring Counters

Overview

perf Linux tool (based on perf_events Linux interface)
PAPI C/C++ API

Score-P Measurement environment (appendix)
Likwid Set of command line utilities for detailed analysis
perf_event_open() Linux system call from linux/perf_event.h

… Manymore solutions, usually relying on perf

Member of the Helmholtz Association 18 November 2019 Slide 12 18

perf
Linux’ own performance tool

Part of Linux kernel since 2009 (v. 2.6.31)
Example usage: perf stat ./app

$ perf stat ./poisson2d
Performance counter stats for './poisson2d':

65703.208586 task-clock (msec) # 1.000 CPUs utilized
355 context-switches # 0.005 K/sec
0 cpu-migrations # 0.000 K/sec

10,847 page-faults # 0.165 K/sec
228,425,964,399 cycles # 3.477 GHz (66.67%)

299,409,593 stalled-cycles-frontend # 0.13% frontend cycles idle (50.01%)
147,289,312,280 stalled-cycles-backend # 64.48% backend cycles idle (50.01%)
323,403,983,324 instructions # 1.42 insn per cycle

0.46 stalled cycles per insn (66.68%)
12,665,027,391 branches # 192.761 M/sec (50.00%)

4,256,513 branch-misses # 0.03% of all branches (50.00%)

65.715156815 seconds time elapsed

Member of the Helmholtz Association 18 November 2019 Slide 13 18

https://lwn.net/Articles/339361/

perf
Linux’ own performance tool

Part of Linux kernel since 2009 (v. 2.6.31)
Usage: perf stat ./app
Raw counter example: perf stat -e PM_BR_CMPL ./app

$ perf stat -e PM_BR_CMPL ./poisson2d

Performance counter stats for './poisson2d':

1638043350 PM_BR_CMPL:u (3.44%)

65.761947405 seconds time elapsed

Member of the Helmholtz Association 18 November 2019 Slide 13 18

https://lwn.net/Articles/339361/

perf
Linux’ own performance tool

Part of Linux kernel since 2009 (v. 2.6.31)
Usage: perf stat ./app
Raw counter example: perf stat -e PM_BR_CMPL ./app
More in appendix

Member of the Helmholtz Association 18 November 2019 Slide 13 18

https://lwn.net/Articles/339361/

PAPI
Measure where it hurts…

Performance Application Programming Interface
API for C/C++, Fortran
Goal: Create common (and easy) interface to performance counters
Two API layers (Examples in appendix!)

High-Level API: Most-commonly needed information capsuled by convenient functions
Low-Level API: Access all the counters!

Command line utilities
papi_avail List aliased, common counters

Use papi_avail -e EVENT to get description and options for EVENT
papi_native_avail List all possible counters, with details

Extendable by Component PAPI (GPU!)
Comparison to perf: Instrument specific parts of code, with different counters

Member of the Helmholtz Association 18 November 2019 Slide 14 18

PAPI
papi_avail

$ papi_avail
Available PAPI preset and user defined events plus hardware information.
--
PAPI version : 5.7.0.0
Operating system : Linux 4.14.0-115.6.1.el7a.ppc64le
Vendor string and code : IBM (3, 0x3)
Model string and code : 8335-GTC (0, 0x0)
CPU revision : 2.000000
CPU Max MHz : 3800
CPU Min MHz : 2300
Total cores : 128
SMT threads per core : 4
Cores per socket : 16
Sockets : 2
Cores per NUMA region : 128
NUMA regions : 1
Number Hardware Counters : 5

Member of the Helmholtz Association 18 November 2019 Slide 15 18

PAPI
papi_avail

Max Multiplex Counters : 384
Fast counter read (rdpmc): no
--

==
PAPI Preset Events

==
Name Code Avail Deriv Description (Note)

PAPI_L1_DCM 0x80000000 Yes Yes Level 1 data cache misses
PAPI_L1_ICM 0x80000001 Yes No Level 1 instruction cache misses
PAPI_L2_DCM 0x80000002 Yes No Level 2 data cache misses
PAPI_L2_ICM 0x80000003 Yes No Level 2 instruction cache misses
PAPI_L3_DCM 0x80000004 Yes Yes Level 3 data cache misses
PAPI_L3_ICM 0x80000005 Yes No Level 3 instruction cache misses
PAPI_L1_TCM 0x80000006 No No Level 1 cache misses
PAPI_L2_TCM 0x80000007 No No Level 2 cache misses
PAPI_L3_TCM 0x80000008 No No Level 3 cache misses

Member of the Helmholtz Association 18 November 2019 Slide 15 18

PAPI
papi_avail

$ papi_avail -e PM_DATA_FROM_L3MISS
Available PAPI preset and user defined events plus hardware information.
--

Event name: PM_DATA_FROM_L3MISS
Event Code: 0x40000021
Number of Register Values: 0
Description: |Demand LD - L3 Miss (not L2 hit and not L3 hit).|

Unit Masks:
Mask Info: |:u=0|monitor at user level|
Mask Info: |:k=0|monitor at kernel level|
Mask Info: |:h=0|monitor at hypervisor level|
Mask Info: |:period=0|sampling period|
Mask Info: |:freq=0|sampling frequency (Hz)|
Mask Info: |:excl=0|exclusive access|
Mask Info: |:mg=0|monitor guest execution|

Member of the Helmholtz Association 18 November 2019 Slide 15 18

PAPI
Notes on usage; Tipps

Important functions in High Level API
PAPI_num_counters() Number of available counter registers
PAPI_flops() Get real time, processor time, number of floating point operations, and

MFLOPs/s
PAPI_ipc() Number of instructions and IPC (+rtime/ptime)
PAPI_epc() Number of counts of arbitrary event (+rtime/ptime)

Important functions in Low Level API
PAPI_add_event() Add aliased event to event set
PAPI_add_named_event() Add any event to event set
PAPI_thread_init() Initialize thread support in PAPI
Documentation online and in man pages (man papi_add_event)
All PAPI calls return status code; check for it! (Macros in appendix: C++, C)
Convert names of performance counters with libpfm4 (appendix)

→ http://icl.cs.utk.edu/papi/

Member of the Helmholtz Association 18 November 2019 Slide 16 18

http://icl.cs.utk.edu/papi/docs/
http://icl.cs.utk.edu/papi/

GPU Counters
A glimpse ahead

Counters built right in
Grouped into domains by topic
NVIDIA differentiates between (more examples in appendix)
Event Countable activity or occurrence on GPU device

Examples: shared_store, generic_load, shared_atom
Metric Characteristic calculated from one or more events

Examples: executed_ipc, flop_count_dp_fma, achieved_occupancy
Usually: access via nvprof / Visual Profiler / Nsight Compute
Exposed via CUPTI for 3rd party

→ Afternoon session / appendix

Member of the Helmholtz Association 18 November 2019 Slide 17 18

Conclusions
What we’ve learned

Large set of performance counters on POWER9 processors
Right next to (inside) core(s)
Provide detailed insight for performance analysis on many levels
Different measurement strategies and tools

perf
PAPI
Score-P

Also on GPU
Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 18 November 2019 Slide 18 18

mailto:a.herten@fz-juelich.de

Appendix

Appendix
Knuth on Optimization
POWER9 Performance Counters
perf
PAPI Supplementary
Score-P
GPU Counters
Glossary
References

Member of the Helmholtz Association 18 November 2019 Slide 2 35

Appendix
Knuth on Optimization

Knuth on Optimization
The full quote

There is no doubt that the grail of efficiency leads to abuse. Programmers waste
enormous amounts of time thinking about, or worrying about, the speed of noncritical
parts of their programs, and these attempts at efficiency actually have a strong nega-
tive impact when debugging andmaintenance are considered. We should forget about
small efficiencies, say about 97% of the time: pre mature optimization is the root of all
evil.

Yet we should not pass up our opportunities in that critical 3%. A good programmer
will not be lulled into complacency by such reasoning, he will be wise to look carefully
at the critical code; but only after that code has been identified

– Donald Knuth in “Structured Programming with Go to Statements” [4]

Member of the Helmholtz Association 18 November 2019 Slide 4 35

Appendix
POWER9 Performance Counters

POWER Performance Counters

Further information on counters at IBMwebsite
POWER9 Performance Monitor Unit User’s Guide [5]
PMU Events for POWER9 in the Linux kernel
JSON overview of OpenPOWER PMU events on Github
OProfile: ppc64 POWER8 events, ppc64 POWER9 events

List available counters on system
With PAPI: papi_native_avail
With showevtinfo from libpfm’s /examples/ directory
./showevtinfo | \
grep -e "Name" -e "Desc" | sed "s/^.\+: //g" | paste -d'\t' - -

See next slide for CPI stack visualization
Most important counters for OpenMP: DMISS_PM_CMPLU_STALL_DMISS_L3MISS,
PM_CMPLU_STALL_DMISS_REMOTE

Member of the Helmholtz Association 18 November 2019 Slide 6 35

https://github.com/torvalds/linux/tree/master/tools/perf/pmu-events/arch/powerpc/power9
https://github.com/open-power/power-pmu-events
http://oprofile.sourceforge.net/docs/ppc64-power8-events.php
http://oprofile.sourceforge.net/docs/ppc64-power9-events.php
http://perfmon2.sourceforge.net/

POWER 8 PMU Stack: CPI (Tree))

Cycles
PM_RUN_CYC

Other
OTHER_CPI

Nothing to Dispatch
PM_GCT_NOSLOT_CYC

Other

Dispatch Held

Dispatch Held: Other
PM_GCT_NOSLOT_DISP_HELD_OTHER

Dispatch Held: Issue Queue
PM_GCT_NOSLOT_DISP_HELD_ISSQ

Dispatch Held: Store Queue
PM_GCT_NOSLOT_DISP_HELD_SRQ

Dispatch Held: Mapper
PM_GCT_NOSLOT_DISP_HELD_MAPBranch Mispredict

and I-Cache Miss
PM_GCT_NOSLOT_BR_MPRED_ICMISS

Branch Mispredict
PM_GCT_NOSLOT_BR_MPRED

I-Cache Miss
PM_GCT_NOSLOT_IC_MISS

Other

L3 Miss
PM_GCT_NOSLOT_IC_L3MISS

Run Instruction
PM_RUN_INST_CMPL

Stalled Cycles
PM_CMPLU_STALL

Other
PM_CMPLU_STALL_OTHER_CMPL

LSU
PM_CMPLU_STALL_LSU

Other

Dcache Miss
PM_CMPLU_STALL_DCACHE_MISS

L3 Miss
PM_CMPLU_STALL_DMISS_L3MISS

Off-Node Memory

Off-Chip Memory
PM_CMPLU_STALL_DMISS_REMOTE

On-Chip Memory
PM_CMPLU_STALL_DMISS_LMEM

On-Chip L2/L3
PM_CMPLU_STALL_DMISS_L21_L31

L2/L3 Hit
PM_CMPLU_STALL_DMISS_L2L3

L2/L3 Hit
w/ No Conflict

L2/L3 Hit
with Conflict

PM_CMPLU_STALL_DMISS_L2L3_CONFLICTStore Forward
PM_CMPLU_STALL_ST_FWD

Load Finish
PM_CMPLU_STALL_LOAD_FINISH

LSU Reject
PM_CMPLU_STALL_REJECT

Other

LMQ Full
PM_CMPLU_STALL_REJ_LMQ_FULL

ERAT Miss
PM_CMPLU_STALL_ERAT_MIS

Load-Hit-Store
PM_CMPLU_STALL_REJECT_LHSStore Finish

PM_CMPLU_STALL_STORE

NOPs
PM_CMPLU_STALL_NO_NTF

Next-to-Complete Flush
PM_CMPLU_STALL_NTCG_FLUSH

VSU
PM_CMPLU_ST ALL_VSU

Other

Scalar
PM_CMPLU_STALL_SCALAR

Scalar (other)

Scalar Long
PM_CMPLU_STALL_SCALAR_LONG

Vector
PM_CMPLU_STALL_VECTOR

Vector (other)

Vector Long
PM_CMPLU_STALL_VECTOR_LONG

Fixed-Point
PM_CMPLU_STALL_FXU

Fixed-Point (Other)

Fixed-Point Long
PM_CMPLU_STALL_FXLONG

BR or CR
PM_CMPLU_STALL_BRU_CRU

CR

Branch
PM_CMPLU_STALL_BRU

GroupWaiting
to Complete

PM_NTCG_ALL_FIN

Thread Blocked
PM_CMPLU_STALL_THRD

Other

COQ Full
PM_CMPLU_STALL_COQ_FULL

Other Thread’s Flush
PM_CMPLU_STALL_FLUSH

ECC Delay
PM_CMPLU_STALL_MEM_ECC_DELAY

HWSYNC
PM_CMPLU_STALL_HWSYNC

LWSYNC
PM_CMPLU_STALL_LWSYNC

Glossary
BRU Branching Unit

CR Conditional Register

FXU Fixed-Point Unit

VSU Vector-Scalar Unit

LSU Load-Store Unit

LMQ Load Miss Queue

ERAT Effective to Real Address
Translation

LWSYNC Lightweight Synchro-
nize

HWSYNC Heavyweight Synchro-
nize

ECC Error Correcting Code

Derived Quantity

Stall due to…

Thread blocked due to…

Nothing to dispatch due to…

Not all are
available

for POWER9!

POWER 9 PMU Stack: CPI (Table)

PM_RUN_CYC

PM_ICT_NOSLOT_C
YC

(PMC1)

PM_ICT_NOSLOT_
IC_MISS

PM_ICT_NOSLOT_IC_L2

PM_ICT_NOSLOT_IC_L3

PM_ICT_NOSLOT_IC_L3MISS

PM_ICT_NOSLOT_BR_MPRED

PM_ICT_NOSLOT_BR_MPRED_ICMISS

PM_ICT_NOSLOT_
DISP_HELD

PM_ICT_NOSLOT_DISP_HELD_HB_FULL

PM_ICT_NOSLOT_DISP_HELD_SYNC

PM_ICT_NOSLOT_DISP_HELD_TBEGIN

PM_ICT_NOSLOT_DISP_HELD_ISSQ

PM_ICT_NOSLOT_DISP_HELD_OTHER

Nothing to Dispatch (Other)

PM_ISSUE_HOLD

PM_NTC_ISSUE_HELD_DARQ_FULL

PM_NTC_ISSUE_HELD_ARB

PM_NTC_ISSUE_HELD_OTHER

PM_CMPLU_STALL
(PMC4)

PM_CMPLU_STALL_BRU

PM_CMPLU_STALL_
EXEC_UNIT

PM_CMPLU_STALL_
SCALAR

PM_CMPLU_STALL_FXU
(PMC2)

PM_CMPLU_STALL_FXLONG
(PMC4)

Stall due to single-cycle scalar
fixed-point and CR instructions

PM_CMPLU_STALL_DP
(PMC1)

PM_CMPLU_STALL_DPLONG
(PMC3)

Stall due to a single-cycle scalar
DP instruction

PM_CMPLU_STALL_
DFU (PMC2)

PM_CMPLU_STALL_DFLONG
(PMC1)

Stall due to a single-cycle scalar
DFU instruction

PM_CMPLU_STALL_PM (PMC3

PM_CMPLU_STALL_CRYPTO (PMC4)

PM_CMPLU_STALL_
VECTOR

PM_CMPLU_STALL_
VFX (PMC3)

PM_CMPLU_STALL_VFXLONG
(PMC2)

Stall due to a single-cycle vector
fixed-point instruction

PM_CMPLU_STALL_
VDP (PMC4)

PM_CMPLU_STALL_VDPLONG
(PMC3)

Stall due to a single-cycle vector
DP instruction

Stall due to execution slices (other VSU/FXU/CR

PM_CMPLU_STALL_
LSAQ

PM_CMPLU_STALL_LRQ_FULL

PM_CMPLU_STALL_SRQ_FULL

PM_CMPLU_STALL_LSAQ_ARB

PM_CMPLU_STALL_
EMQ

PM_CMPLU_STALL_ERAT_MISS

PM_CMPLU_STALL_EMQ_FULL

PM_CMPLU_STALL_
LRQ

PM_CMPLU_STALL_LMQ_FULL

PM_CMPLU_STALL_ST_FWD

PM_CMPLU_STALL_LHS

PM_CMPLU_STALL_LSU_MFSPR

PM_CMPLU_STALL_LARX

PM_CMPLU_STALL_LRQ_OTHER

PM_RUN_CYC

PM_CMPLU_STALL
(PMC4)

PM_CMPLU_STALL_
DCACHE_MISS

PM_CMPLU_STALL_
DMISS_L2L3

PM_CMPLU_STALL_DMISS_L2
L3_CONFLICT

L2/L3 hit with no conflict

PM_CMPLU_STALL_DMI
SS_L3MISS

PM_CMPLU_STALL_DMISS_
L21_L31

PM_CMPLU_STALL_DMISS_
LMEM

PM_CMPLU_STALL_DMISS_
REMOTE

Stall due to off-node memory
cache

PM_CMPLU_STALL_LOAD_FINISH

PM_CMPLU_STALL_
SRQ

PM_CMPLU_STALL_STORE_DATA

PM_CMPLU_STALL_LWSYNV

PM_CMPLU_STALL_HWSYNC

PM_CMPLU_STALL_EIEIO

PM_CMPLU_STALL_STCX

PM_CMPLU_STALL_SLB

PM_CMPLU_STALL_TEND

PM_CMPLU_STALL_PASTE

PM_CMPLU_STALL_TLBIE

PM_CMPLU_STALL_STORE_PIPE_ARB

PM_CMPLU_STALL_STORE_FIN_ARB

PM_CMPLU_STALL_STORE_FINISH

PM_CMPLU_STALL_LSU_FIN

Stall due to load/store (other)

PM_CMPLU_STALL_NTC_FLUSH

PM_CMPLU_STALL_NTC_DISP_FIN

Stall cycle other

PM_CMPLU_STALL_
THRD (PMC1)

PM_CMPLU_STALL_EXCEPTION

PM_CMPLU_STALL_ANY_SYNC

PM_CMPLU_STALL_SYNC_PMU_INT

PM_CMPLU_STALL_SPEC_FINISH

PM_CMPLU_STALL_FLUSH_ANY_THREAD

PM_CMPLU_STALL_LSU_FLUSH_NEXT

PM_CMPLU_STALL_NESTED_TBEGIN

PM_CMPLU_STALL_NESTED_TEND

PM_CMPLU_STALL_MTFPSCR

PM_CMPLU_STALL_OTHER_CMPL

PM_1PLUS_PPC_CMP

Other

Ex
tr
ac
te
d
fro

m
PO

W
ER

9
Pe

rfo
rm

an
ce

M
on

ito
rU

ni
tU

se
r’s

Gu
id
e
[5
]

Appendix
perf

perf
Sub-commands

Sub-commands for perf
perf list List available counters
perf stat Run program; report performance data

perf record Run program; sample and save performance data
perf report Analyzed saved performance data (appendix)

perf top Like top, live-view of counters

Member of the Helmholtz Association 18 November 2019 Slide 10 35

perf
Tipps, Tricks

Option --repeat for statistical measurements
1.239 seconds time elapsed (+- 0.16%)

Restrict counters to certain user-level modes by -e counter:m, with m = u (user), = k
(kernel), = h (hypervisor)
perfmodes: Per-thread (default), per-process (-p PID), per-CPU (-a)
Other options

-d More details
-d -d More more details

-B Add thousands’ delimiters
-x Print machine-readable output

More info
http://web.eece.maine.edu/~vweaver/projects/perf_events/
Gregg’s perf Examples: http://www.brendangregg.com/perf.html

→ https://perf.wiki.kernel.org/

Member of the Helmholtz Association 18 November 2019 Slide 11 35

http://web.eece.maine.edu/~vweaver/projects/perf_events/
http://www.brendangregg.com/perf.html
https://perf.wiki.kernel.org/

Deeper Analysis with perf
perf report: Zoom to main()

Usage: perf record ./app

$ perf record ./poisson2d
[perf record: Woken up 41 times to write data]
[nf_conntrack_ipv4] with build id ada66fe00acc82eac85be0969a935e3167b09c88 not found, continuing without symbols
[nf_conntrack] with build id 2911e97a3bde3302788e8388d1e3c19408ad86cf not found, continuing without symbols
[ebtables] with build id b0aa834b86d596edeb5a72d1ebf3936a98b17bcf not found, continuing without symbols
[ip_tables] with build id 23fe04e7292b66a2cc104e8c5b026b4b3a911cac not found, continuing without symbols
[bridge] with build id b7a0fcdbca63084c22e04fcf32e0584d04193954 not found, continuing without symbols
[perf record: Captured and wrote 10.076 MB perf.data (263882 samples)]

$ ll perf.data
-rw------- 1 aherten zam 10570296 Aug 26 19:24 perf.data

Member of the Helmholtz Association 18 November 2019 Slide 12 35

Deeper Analysis with perf
perf report: Zoom to main()

Samples: 263K of event 'cycles:ppp', Event count (approx.): 228605603717, Thread: poisson2d
Overhead Command Shared Object Symbol ◆
93.00% poisson2d poisson2d [.] main ▒
4.70% poisson2d libm-2.17.so [.] __fmaxf ▒
1.84% poisson2d poisson2d [.] 00000017.plt_call.fmax@@GLIBC_2.17 ▒
0.21% poisson2d libm-2.17.so [.] __exp_finite ▒
0.01% poisson2d [kernel.kallsyms] [k] hrtimer_interrupt ▒
0.01% poisson2d [kernel.kallsyms] [k] update_wall_time ▒
0.01% poisson2d libm-2.17.so [.] __GI___exp ▒
0.01% poisson2d [kernel.kallsyms] [k] task_tick_fair ▒
0.01% poisson2d [kernel.kallsyms] [k] rcu_check_callbacks ▒
0.01% poisson2d [kernel.kallsyms] [k] __hrtimer_run_queues ▒
0.01% poisson2d [kernel.kallsyms] [k] __do_softirq ▒
0.01% poisson2d [kernel.kallsyms] [k] _raw_spin_lock ▒
0.01% poisson2d [kernel.kallsyms] [k] timer_interrupt ▒
0.01% poisson2d [kernel.kallsyms] [k] update_process_times ▒
0.01% poisson2d [kernel.kallsyms] [k] tick_sched_timer ▒
0.01% poisson2d [kernel.kallsyms] [k] rcu_process_callbacks ▒
0.01% poisson2d poisson2d [.] 00000017.plt_call.exp@@GLIBC_2.17 ▒
0.01% poisson2d [kernel.kallsyms] [k] ktime_get_update_offsets_now ▒
0.01% poisson2d [kernel.kallsyms] [k] account_process_tick ▒
0.01% poisson2d [kernel.kallsyms] [k] run_posix_cpu_timers ▒
0.00% poisson2d [kernel.kallsyms] [k] trigger_load_balance ▒
0.00% poisson2d [kernel.kallsyms] [k] scheduler_tick ▒
0.00% poisson2d [kernel.kallsyms] [k] clear_user_page ▒
0.00% poisson2d [kernel.kallsyms] [k] update_cfs_shares ▒
0.00% poisson2d [kernel.kallsyms] [k] tick_do_update_jiffies64

Member of the Helmholtz Association 18 November 2019 Slide 12 35

Deeper Analysis with perf
perf report: Zoom to main()

main /gpfs/homeb/zam/aherten/NVAL/OtherProgramming/OpenPOWER-SC17/PAPI-Test/poisson2d
0.00 │ lwz r9,100(r31) ▒

│ mullw r9,r10,r9 ▒
1.01 │ extsw r9,r9 ▒

│ lwz r10,140(r31) ▒
0.00 │ add r9,r10,r9 ▒

│ extsw r9,r9 ▒
0.00 │ rldicr r9,r9,3,60 ▒
0.00 │ ld r10,184(r31) ▒

14.28 │ add r9,r10,r9 ▒
0.00 │ lfd f12,0(r9) ▒
0.00 │ lwz r10,136(r31) ▒
0.00 │ lwz r9,100(r31) ▒
0.00 │ mullw r9,r10,r9 ▒

│ extsw r9,r9 ▒
1.32 │ lwz r10,140(r31) ▒
0.00 │ add r9,r10,r9 ▒
0.00 │ extsw r9,r9 ◆

│ rldicr r9,r9,3,60 ▒
0.00 │ ld r10,168(r31) ▒

│ add r9,r10,r9 ▒
22.54 │ lfd f0,0(r9) ▒
0.01 │ fsub f0,f12,f0 ▒
0.00 │ fabs f0,f0 ▒
0.00 │ fmr f2,f0 ▒

│ lfd f1,128(r31) ▒
│ bl 10000780 <00000017.plt_call.fmax@@GLIBC_2.17> ▒

1.03 │ ld r2,24(r1) ▒
Press 'h' for help on key bindings

Member of the Helmholtz Association 18 November 2019 Slide 12 35

Appendix
PAPI Supplementary

PAPI: High Level API
Usage: Source Code

// Setup
float realTime, procTime, mflops, ipc;
long long flpins, ins;

// Initial call
PAPI_flops(&realTime, &procTime, &flpins, &mflops);
PAPI_ipc(&realTime, &procTime, &ins, &ipc);

// Compute
mult(m, n, p, A, B, C);

// Finalize call
PAPI_flops(&realTime, &procTime, &flpins, &mflops);
PAPI_ipc(&realTime, &procTime, &ins, &ipc);

Member of the Helmholtz Association 18 November 2019 Slide 14 35

PAPI: Low Level API
Usage: Source Code

int EventSet = PAPI_NULL;
long long values[2];

// PAPI: Setup
PAPI_library_init(PAPI_VER_CURRENT);
PAPI_create_eventset(&EventSet);
// PAPI: Test availability of counters
PAPI_query_named_event("PM_CMPLU_STALL_VSU");
PAPI_query_named_event("PM_CMPLU_STALL_SCALAR");
// PAPI: Add counters
PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_VSU");
PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_SCALAR");
// PAPI: Start collection
PAPI_start(EventSet);
// Compute
do_something();
// PAPI: End collection
PAPI_CALL(PAPI_stop(EventSet, values) , PAPI_OK) ;

Pre-processor macro
for checking results!

See next slides!

Member of the Helmholtz Association 18 November 2019 Slide 15 35

PAPI Error Macro: C++
For easier status code checking

#include "papi.h"
#define PAPI_CALL(call, success) \
{ \

int err = call; \
if (success != err) \
std::cerr << "PAPI error for " << #call << " in L" << __LINE__ << " of " <<
__FILE__ << ": " << PAPI_strerror(err) << std::endl; \↪→

}
// Second argument is code for GOOD,
// e.g. PAPI_OK or PAPI_VER_CURRENT or …
// …
// Call like:
PAPI_CALL(PAPI_start(EventSet), PAPI_OK);

Member of the Helmholtz Association 18 November 2019 Slide 16 35

PAPI Error Macro: C
For easier status code checking

#include "papi.h"
#define PAPI_CALL(call, success) \
{ \

int err = call; \
if (success != err) \
fprintf(stderr, "PAPI error for %s in L%d of %s: %s\n", #call, __LINE__,
__FILE__, PAPI_strerror(err)); \↪→

}
// Second argument is code for GOOD,
// e.g. PAPI_OK or PAPI_VER_CURRENT or …
// …
// Call like:
PAPI_CALL(PAPI_start(EventSet), PAPI_OK);

Member of the Helmholtz Association 18 November 2019 Slide 17 35

libpfm4
A helper Library

Helper library for setting up counters interfacing with perf kernel environment
Used by PAPI to resolve counters
Handy as translation: Named counters→ raw counters
Use command line utility perf_examples/evt2raw to get raw counter for perf

$./evt2raw PM_CMPLU_STALL_VSU
r2d012

→ http://perfmon2.sourceforge.net/docs_v4.html

Member of the Helmholtz Association 18 November 2019 Slide 18 35

http://perfmon2.sourceforge.net/docs_v4.html

Appendix
Score-P

Score-P
Introduction

Measurement infrastructure for
profiling, event tracing, online
analysis
Output format input for many
analysis tools (Cube, Vampir,
Periscope, Scalasca, Tau)

CHAPTER 1. INTRODUCTION

1.4 Score-P Software Architecture Overview

In order to allow the user to perform such an optimization of his code (typically written in Fortran, C, or C++
and implemented in a serial way or using a parallelization via an multi-process, thread-parallel, accelerator-based
paradigm, or a combination thereof), the Score-P system provides a number of components that interact with each
other and with external tools. A graphical overview of this structure is given in Fig. 1.2. We shall now briefly
introduce the elements of this structure; more details will be given in the later chapters of this document.

Application

Vampir Scalasca PeriscopeTAU

Accelerator-based
parallelism

(CUDA, OpenCL)

Score-P measurement infrastructure

Event traces (OTF2)

Sampling
interrupts

(PAPI, PERF)

Call-path profiles
(CUBE4, TAU)

Online
interface

Process-level
parallelism

(MPI, SHMEM)

Thread-level
parallelism

(OpenMP, Pthreads)

Instrumentation wrapper

Source code
instrumentation

(Compiler, PDT, User)

CUBE TAUdb

Hardware counter
(PAPI, rusage, PERF, plugins)

Figure 1.2: Overview of the Score-P measurement system architecture and the tools interface.

In order to instrument an application, the user needs to recompile the application using the Score-P instrumentation
command, which is added as a prefix to the original compile and link command lines. It automatically detects the
programming paradigm by parsing the original build instructions and utilizes appropriate and configurable methods
of instrumentation. These are currently:

• compiler instrumentation,

• MPI and SHMEM library interposition,

• source code instrumentation via the TAU instrumenter,

• OpenMP source code instrumentation using Opari2.

• Pthread instrumentation via GNU ld library wrapping.

• CUDA instrumentation

While the first three of these methods are based on using tools provided externally, the Opari2 instrumenter for
OpenMP programs is a part of the Score-P infrastructure itself. It is an extension of the well known and frequently
used OpenMP Pragma And Region Instrumenter system (Opari) that has been successfully used in the
past in combination with tools like Scalasca, VampirTrace and ompP. The fundamental concept of such a system is a
source-to-source translation that automatically adds all necessary calls to a runtime measurement library allowing to

4

Member of the Helmholtz Association 18 November 2019 Slide 20 35

Score-P
Howto

Prefix compiler executable by scorep

$ scorep clang++ -o app code.cpp

→ Adds instrumentation calls to binary
Profiling output is stored to file after run of binary
Steer with environment variables at run time

$ export SCOREP_METRIC_PAPI=PAPI_FP_OPS,PM_CMPLU_STALL_VSU
$./app

⇒ Use different PAPI counters per run!
Quick visualization with Cube; scoring with scorep-score

Member of the Helmholtz Association 18 November 2019 Slide 21 35

http://www.scalasca.org/software/cube-4.x/cube.html

Score-P
Performance counter analysis with cube_dump

Usage: scorep-score -r FILE

Member of the Helmholtz Association 18 November 2019 Slide 22 35

Score-P
Performance counter analysis with cube_dump

Usage: cube-dump -m METRIC FILE

Member of the Helmholtz Association 18 November 2019 Slide 22 35

Score-P
Analysis with Cube

Member of the Helmholtz Association 18 November 2019 Slide 23 35

Appendix
GPU Counters

GPU Example Events & Metrics
NAME NVIDIA Description (quoted)

gld_inst_8bit Total number of 8-bit global load instructions that are executed by all the threads across all
thread blocks.

threads_launched Number of threads launched on amultiprocessor.
inst_executed Number of instructions executed, do not include replays.
shared_store Number of executed store instructions where state space is specified as shared, increments

per warp on amultiprocessor.

executed_ipc Instructions executed per cycle
achieved_occupancy Ratio of the average active warps per active cycle to the maximum number of warps

supported on amultiprocessor
l1_cache_local_hit_rate Hit rate in L1 cache for local loads and stores
gld_efficiency Ratio of requested global memory load throughput to required global memory load

throughput.
flop_count_dp Number of double-precision floating-point operations executed non-predicated threads

(add, multiply, multiply-accumulate and special)
stall_pipe_busy Percentage of stalls occurring because a compute operation cannot be performed because

the compute pipeline is busy

Member of the Helmholtz Association 18 November 2019 Slide 25 35

Measuring GPU counters
Tools

CUPTI C/C++-API through cupti.h
Activity API: Trace CPU/GPU activity
Callback API: Hooks for own functions
Event / Metric API: Read counters andmetrics

→ Targets developers of profiling tools
PAPI All PAPI instrumentation through PAPI-C, e.g.

cuda:::device:0:threads_launched
Score-P Mature CUDA support

Prefix nvcc compilation with scorep
Set environment variable SCOREP_CUDA_ENABLE=yes
Run, analyze

nvprof, Visual Profiler, Nsight Compute NVIDIA’s solutions

Member of the Helmholtz Association 18 November 2019 Slide 26 35

nvprof
GPU command-line measurements

Usage: nvprof --events AB --metrics C,D ./app

Member of the Helmholtz Association 18 November 2019 Slide 27 35

nvprof
Useful hints

Useful parameters to nvprof
--query-metrics List all metrics
--query-events List all events
--kernels name Limit scope to kernel

--print-gpu-trace Print timeline of invocations
--aggregate-mode off No aggregation over all multiprocessors (average)

--csv Output a CSV
--export-profile Store profiling information, e.g. for Visual Profiler

Member of the Helmholtz Association 18 November 2019 Slide 28 35

Visual Profiler
Analysis experiments

Member of the Helmholtz Association 18 November 2019 Slide 29 35

Visual Profiler
Analysis experiments

Member of the Helmholtz Association 18 November 2019 Slide 29 35

Appendix
Glossary & References

Glossary I

CPI Cycles per Instructions; a metric to determine efficiency of an architecture or
program. 5

IPC Instructions per Cycle; a metric to determine efficiency of an architecture or
program. 5

MPI The Message Passing Interface, a API definition for multi-node computing. 8

NVIDIA US technology company creating GPUs. 23, 52, 53

OpenMP Directive-based programming, primarily for multi-threadedmachines. 8

PAPI The Performance API, a C/C++ API for querying performance counters. 2, 14, 18,
19, 20, 21, 22, 24

Member of the Helmholtz Association 18 November 2019 Slide 31 35

Glossary II

perf Part of the Linux kernel which facilitates access to performance counters; comes
with command line utilities. 2, 14, 15, 16, 17, 18, 24

POWER CPU architecture from IBM, earlier: PowerPC. See also POWER8. 60
POWER8 Version 8 of IBM’s POWER processor, available also within the OpenPOWER

Foundation. 60
POWER9 The latest version of IBM’s POWER processor. 2, 8, 9, 10, 11, 12, 24, 26, 29, 30, 31

Score-P Collection of tools for instrumenting and subsequently scoring applications to
gain insight into the program’s performance. 8, 14, 24

Member of the Helmholtz Association 18 November 2019 Slide 32 35

References I

[2] Terje Mathisen. Pentium Secrets. URL:
http://www.gamedev.net/page/resources/_/technical/general-
programming/pentium-secrets-r213 (page 7).

[3] IBM. Power ISA™, Version 3.0 B. Chapter 9. Performance Monitor Facility. 2017. URL:
https://wiki.raptorcs.com/w/images/c/cb/PowerISA_public.v3.0B.pdf
(page 8).

[4] Donald E. Knuth. “Structured Programming with Go to Statements”. In: ACM Comput.
Surv. 6.4 (Dec. 1974), pp. 261–301. ISSN: 0360-0300. DOI: 10.1145/356635.356640. URL:
http://doi.acm.org/10.1145/356635.356640 (page 28).

[5] IBM. POWER9 Performance Monitor Unit User’s Guide. Version 1.2. Nov. 2018. URL:
https://wiki.raptorcs.com/w/images/6/6b/POWER9_PMU_UG_v12_
28NOV2018_pub.pdf (pages 30, 32).

Member of the Helmholtz Association 18 November 2019 Slide 33 35

http://www.gamedev.net/page/resources/_/technical/general-programming/pentium-secrets-r213
http://www.gamedev.net/page/resources/_/technical/general-programming/pentium-secrets-r213
https://wiki.raptorcs.com/w/images/c/cb/PowerISA_public.v3.0B.pdf
https://doi.org/10.1145/356635.356640
http://doi.acm.org/10.1145/356635.356640
https://wiki.raptorcs.com/w/images/6/6b/POWER9_PMU_UG_v12_28NOV2018_pub.pdf
https://wiki.raptorcs.com/w/images/6/6b/POWER9_PMU_UG_v12_28NOV2018_pub.pdf

References II

[6] Brandan Gregg. perf Examples. URL: http://www.brendangregg.com/perf.html
(page 35).

Member of the Helmholtz Association 18 November 2019 Slide 34 35

http://www.brendangregg.com/perf.html

References: Images, Graphics I

[1] Sabri Tuzcu. Time is money. Freely available at Unsplash. URL:
https://unsplash.com/photos/r1EwRkllP1I.

[7] Score-P Authors. Score-P User Manual. URL:
http://www.vi-hps.org/projects/score-p/.

Member of the Helmholtz Association 18 November 2019 Slide 35 35

https://unsplash.com/photos/r1EwRkllP1I
http://www.vi-hps.org/projects/score-p/

	Outline
	Motivation
	Performance Counters
	Introduction
	General Description

	Counters on POWER9
	Measuring Counters
	Overview
	perf
	PAPI
	GPUs

	Conclusion
	Appendix
	Appendix
	Knuth on Optimization
	POWER9 Performance Counters
	perf
	PAPI Supplementary
	Score-P
	GPU Counters
	Glossary & References
	Glossary

	Glossary
	References

	References
	References

