HandsOnPerformanceOptimization-task
November 18, 2019

1 Hands-On Performance Optimization

Supercomputing 2019 Tutorial “Application Porting and Optimization on GPU-Accelerated POWER
Architectures”, November 18th 2019

As for the first task of this tutorial, also this task is primarily designed to be executed as an
interactive Jupyter Notebook. However, everything can also be done using an SSH connection to
Ascent (or any other POWER9 computer) in your terminal.

1.1 Jupyter notebook execution

When using Jupyter, this Notebook will guide you through the steps. Note that if you execute a cell
multiple times while optimizng the code the output will be replaced. You can however duplicate
the cell you want to execute and keep its output. Check the edit menu above.

You will always find links to a file browser of the corresponding task subdirectory as well as direct
links to the source files you will need to edit as well as the profiling output you need to open locally.

If you want you also can get a terminal in your browser; just open it via the »New Launcher«
button (+).

1.2 Terminal fallback
The tasks are place in directories named Task[1-3].

Makefile targets are created to cover everything, from compile, to run and profile. Please take a
look at the cells containing the make calls as a guide also for the non-interactive version of this
description.

1.3 Setup

We are using some very fresh compiler features and use GCC 9.2.0 because of that. It should
already be in your environment. Let’s check!

In []: !gcc —-version

1.4 Tasks

This session comes with multiple tasks, each one to be found in the respective sub-directory
Task[1-3]. In each of these directories you will also find Makefiles that are set up so that you can
compile and submit all necessary tasks.

Please choose from the task below.
e Section ?77: Basic compiler optimization flags and compiler annotations

Improve performance of the CPU Jacobi solver with compiler flags such as Ofast and profile-
directed feedback. Learn about compiler annotations.

e Section ?7?7: Optimization via Prefetching controlled by compiler

Improve performance of the CPU Jacobi solver with software prefetching. Some compilers such
as IBM XL define flags that can be used to modify the aggressiveness of the hardware prefetcher.
Learn to modify the DSCR value through XL and study the impact on application performance. *
Section 77: Optimization via OpenMP controlled by compiler and the system

Parallelize the CPU Jacobi solver and determine the right binding to be used for optimal perfor-
mance.

e Section 2 Please remember to take the survey !

1.4.1 Make Targets
For all tasks we have defined the following make targets.

e poisson2d:
build poisson2d binary (default)
e run:
run poisson2d with default parameters

Section 7?7

1.5 Task 1: Basic compiler optimization flags and compiler annotations
1.5.1 Overview

The goal of this task is to understand different options available to optimize the performance of
the CPU Jacobi solver

Your task is to:

e Optimize performance with -0fast flag

e Verify the cause for performance improvement by viewing perf profiles of O3 and Ofast binaries

e Optimize performance with profile directed feedback

o Generate compiler annotations/remarks to understand the optimizations done by the compiler
with and without profile directed feedback

First, change the working directory to Task1.

In []: %cd Taskl

1.5.2 Part A: -0fast vs. -03

We are to compare the performance of the binary being compiled with -Ofast optimization and
with -03 optimization. As in the previous task, we use a Makefile for compilation. The Makefile
targets poisson2d_03 and poisson2d_0fast are already prepared.

TASK: Add -03 as the optimization flag for the poisson2d_03 target by using the corresponding
CFLAGS definition. There are notes relating to this Task 1 in the header of the Makefile. Com-
pile the code using make as indicated below and run with the Make targets run, run_perf and
run_perf_recrep.

In []: !'make poisson2d_03
In []: !'make run
Let’s have a look at the output of the Makefile target run_perf. It invokes the GNU perf tool

to print out details of the number of instructions executed and the number of cycles taken by
POWERY to execute the program. Feel free to add further counter to this call to perf.

In []: !'make run_perf
Next we run the makefile with target run_perf_recrep that prints the top routines of the appli-
cation in terms of hotness by using a combination of perf record ./app and perf report.

In [1: # run_perf_recrep displays the top hot routines
'make run_perf_recrep

TASK: Now add the optimization flag 0fast to the CFLAGS for target poisson2d_0Ofast. Compile
the program with the target poisson2d_0fast and run and analyse it as before with run, run_perf
and run_perf_recrep.

What difference do you see?

In []: !'make poisson2d_Ofast
'make run

Again, run a perf-instrumented version:

In []: !'make run_perf

Generate the list of top routines in terms of hotness:

In []: !'make run_perf_recrep

If perf is unavailable to you on other machines, you can also study the disassembly with objdump:
objdump -1Sd ./poisson2d > poisson2d.dis (feel free to experiment with this in the Notebook
as well, just prefix the command with a ! to execute it.)

Interpretation Depending on the application requirement, if a high precision of results is not
mandatory, one can compile an application with -Ofast which enables ~-ffast-math option that
implements the same math function in a relaxed manner very similar to how general mathematical
expressions are implemented and avoids the overhead of calling a function from the math library.
Comparing the files, you will see that the -0fast binary natively implements the fmax function
using instructions available in the hardware. The -03 binary makes a library call to compute fmax
to follow a stricter IEEFE requirement for accuracy.

1.5.3 Part B: Profile-directed Feedback

For the first level of optimization we see that Ofast cut the execution time of the 03 binary by
almost half.

We can optimize the performance further by using profile-directed feedback optimization.

To compile using profile-directed feedback with the GCC compiler we need to build the appplication
in three stages:

1. Instrument binary;
2. Run binary with training, gather profile information;
3. Use profile information to generate optimized binary.

Step 1 is achieved by compiling the binary with the correct flag — -fprofile-generate. In our
case, we need to specify an output location, which should be $(SC19_DIR_SCRATCH).

Step 2 consists of a usual, albeit shorter run of the instrumented binary. The can be very short,
though the parameters need to be representative of the actual run. After the binary ran, an output
file (with file extension .gcda) is written to the directory specified during compilation.

For Step 3, the binary is once again compiled, but this time using the gcda profile just generated.
The according flag is ~fprofile-use, which we set to $(SC19_DIR_SCRATCH) as well.

In our Makefile at hand, we prepared the steps already for you in the form of two targets.

e poisson2d_train: Will compile the binary with profile-directed feedback
e poisson2d_ref: Will take a generated profile and compile a new, optimized binary

By using dependencies, between these two targets a profile run is launched.

TASK: Edit the Makefile and add the -fprofile-* flags to the CFLAGS of poisson2d_train and
poisson2d_ref as outline in the file.

After that, you may launch them with the following cells (gen_profile is a meta-target and uses
poisson2d_train and poisson2d_ref). If you need to clean the generated profile, you may use
make clean_profile.

In []: !'make gen_profile
If the previous cell executed correctly, you now have your optimized executable. Let’s see if it even

fast than before!

In []: !'make run

Let’s also measure instructions and cycles

In []: !make run_perf

What is your speed-up? Feel free to run with larger problem sizes (mesh; iterations)

1.5.4 Part C: Compiler annotations/Remarks

Usually, all compilers provide an option to emit annotations or remarks by the compiler. These re-
marks summarize the optimizations done in detail, the location in source where these optimizations
were done. There exist options that also indicate optimizations that were missed and the reason
why they could not be done.

To generate compiler annotations using GCC, one uses -fopt-info-all. If you only want to see
the missed options, use the option -fopt-info-missed instead of -fopt-info-all. See also the
documentation of GCC regarding the flag.

TASK: Have a looK at the CFLAGS of the Makefile target poisson2d_Ofast_info. Add
the flag -fopt-info-all to the list of flags. This will print optimisation information to
stdout. If you rather want to print to this information to a file, use — for example —
-fopt-info-all=(SC19_DIR_SCRATCH)/filename.

In []: !'make poisson2d_Ofast_info

https://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html#index-fopt-info

Let’s compare this with the output during compilation when using profile-directed feedback from
Task 1 B.

TASK: Adapt the CFLAGS of poisson2d_ref_info to include -fopt-info-all and the profile
input of ~fprofile-use=.. here. (Be advised: Long output!)

In []: !'make poisson2d_ref_info

Comparing the annotations generated of a plain -0fast optimization level and the one generated
at —0fast and profile directed feedback, we observe that many more optimizations are possible due
to profile information.

For instance you will see annotations such as

poisson2d.c:114:25: optimized: loop unrolled 3 times (header execution count 436550)
The execution count indicates the dynamic execution count of the node at runtime. This informa-
tion determines which paths are hotter and subsequently facilitate additional optimizations.
References

1. https://gcc.gnu.org/onlinedocs/gec/Optimize-Options.html
2. https://perf.wiki.kernel.org/index.php/Tutorial

Section 77

1.6 Task 2: Impact of Prefetching on Performance
1.6.1 Overview

e Study the difference of program execution time of different optimization levels with and
without software prefetching.

o Verify the impact by measuring cache counters with and without prefetching.

o Learn how to modify contents of DSCR (Data Stream Control Register) using IBM XL com-
piler and study the impact with different values to DSCR.

But first, lets change directory to that of Task 2

In [J]: %cd ../Task2

1.6.2 Part A: Software Prefetching
TASK: Look at the Makefile and work on the TODOs.

o First generate a -0Ofast-optimised binary and note down the performance in terms of cycles,
seconds, and L3 misses. This is our baseline!

o Modify the Makefile to add the option for software prefetching (-fprefetch-loop-arrays)
— have a look at the TODO close to CFLAGS_GCC. Compare performance of -0fast with and
without software prefetching

In []: 'make clean

In []: !'make poisson2d CC=gcc
'make run
'make 13missstats

In []: !'make poisson2d_pref CC=gcc
'make run
'make 13missstats

TASK: Repeat the experiment with the -03 flag. Have a look at the Makefile and the outlined
TODO. There’s a position to easily adapt -0fast—-03!

In []: !'make poisson2d CC=gcc -B
!make run
'make 13missstats

In []: !'make poisson2d_pref CC=gcc -B
'make run
'make 1l3missstats

Do you notice the impact difference with optimization levels? At what optimization level does
software prefetching help the most?

1.6.3 Part B: Analysis of Instructions

Compilation of the -0fast binary with the software prefetching flag causes the compiler to generate
the dcb* instructions that prefetch memory values to L3.

TASK: Run $(SC19_SUBMIT_CMD) objdump -1Sd on each binary file (-03, -0fast with
prefetch/no prefetch). Look for instructions beginning with dcb At what optimization levels does
the compiler generate software prefetching instructions?

In []: 'make CC=gcc -B poisson2d_pref
!objdump -1Sd ./poisson2d > poisson2d.dis

In []: !grep dcb poisson2d.dis

1.6.4 Part C: Changing Values of DSCR via compiler flags
This task requires using the IBM XL compiler. It should be already in your environment.

We saw the impact of software prefetching in the previous subsection. In certain cases, tuning the
hardware prefetcher through compiler options can also help improve performance. In this exercise
we shall see some compiler options that can be used to modify the DSCR value which controls
aggressiveness of prefetching. It can be also used to turn off hardware prefetching.

IBM XL compiler has an option -gprefetch=dscr=<val> that can be used for this purpose. Com-
piling with -gprefetch=dscr=1 turns off the prefetcher. One can give various values such as
-gprefetch=dscr=4, -qprefetch=dscr=7 etc. to control aggressiveness of prefetching.

For this exercise we use make CC=xlc_r to illustrate the performance impact.

Task Generate a XL-compiled binary by compiling using the following cells. After you’ve generated
a baseline, start editing the Makefile: Add gprefetch=dscr=1 to the CFLAGS and rebuild the
application and note the performance. Which one is faster?

In general, applications benefit with the default settings of hardware DSCR register
(-gprefetch=dscr=0). However, certain applications also benefit with prefetching turned off.

It is to be noted that DSCR values are highly sensitive to the application. One value that works
well for Application A may not help Application B.

Measure performance of the application compiled with XL at default DSCR value

In []: !'make CC=xlc_r -B poisson2d
'make run

Measure performance of the application compiled with XL with DSCR value turned off

In []: !make poisson2d_dscr CC=xlc_r -B
!make run

Does Hardware prefetcher help this application? How much impact do you see when you turn off
the hardware prefetcher?

References

1. https://gcc.gnu.org/onlinedocs/gee/Optimize-Options.html
2. https://www.gnu.org/software/gcc/projects/prefetch.html
3. https://openpowerfoundation.org/?resource_ lib=power-isa-version-3-0

Section 77

1.7 Task 3: OpenMP
1.7.1 Overview

We add OpenMP shared-memory parallelism to the application. Also, we study the effect of binding
the multi-thread processes to certain cores on the resulting application performance. We do this
study for both GCC and XL compilers inorder to learn about the appropriate options that need to
be used. First, we need to change directory to that of Task3. For Task 3 we modify poisson2d.c to
invoke an exact copy of the main jacobi loop which is poisson2d_reference. We parallelize only
the main loop but not poisson2d_reference. The speedup is the performance gain seen in the
main loop as compared to the reference loop.

In [J: %cd ../Task3

1.7.2 Part A: Implement OpenMP Pragmas; Compilation

Task: Please add the correct OpenMP directives to poisson2d.c and compilations flags in the
Makefile to enable OpenMP with GCC and XL compilers.

e Directives: Look at the TODOs in poisson2d.c to add OpenMP parallelism. The prag-
mas in question are #pragma omp parallel for (and once it’s #pragma omp parallel for
reduction(max:error) — can you guess where?)

e« Compilation: Please add compilation flags enabling OpenMP in GCC and XL to the
Makefile. For GCC, we need to add -fopenmp and the application needs to be linked
with -1gomp; add both to CFLAGS_GCC. For XL, we need to add -gsmp=omp to the list of
compilation flags (see CFLAGS_XL).

Afterwards, compile and run the application with the following commands.

In []: !'make poisson2d CC=gcc

The command to submit a job to the batch system is prepared in an environment variable
$SC19_SUBMIT_CMD; use it together with eval. In the following cell, it is shown how to invoke
the application using the batch system.

poisson2d.c

In []: !'eval $SC19_SUBMIT_CMD ./poisson2d 1000 1000 1000

Inorder to run the parallel application, we need to set the number of threads using
OMP_NUM_THREADS What is the best performance you can reach by setting the number of threads
via OMP_NUM_THREADS=N with N being the number of threads? Feel free to play around with the
command in the following cell, using 1 thread as an example.

We added --bind none to prevent jsrun, the scheduler of Ascent, from overlaying binding options.
Also, we use —c¢ ALL_CPUS to make all CPUs on the compute nodes available to you.

In []: !'eval OMP_NUM_THREADS=N $SC19_SUBMIT_CMD -c ALL_CPUS --bind none ./poisson2d 1000 1000
1000

1.7.3 Part B: Bindings

Different CPU architectures and models come with different configuration of cores. The configura-
tion plays an important role in the run time of the application. We need to optimize for it!

There are applications which can be used to determine the configuration of the processor. Among
those are:

e lscpu: Can be used to determine the number of sockets, number of cores, and numb of
threads. It gives a very good overview and is available on most Linux systems.

e ppc64_cpu --smt: Specifically for POWER, this tool can give information about the number
of simulations threads running per core (SMT, Simulataion Multi-Threading).

Run ppc64_cpu --smt to find out about the threading configuration of Ascent!

In []: 'eval $SC19_SUBMIT_CMD ppc64_cpu --smt
There are more sources information available

o /proc/cpuinfo: Holds information about virtual cores, including model and clock speed.
Available on most Linux system. Usually used together with cat

e /sys/devices/system/cpu/cpul/topology/thread_siblings_list: Holds information
about thread siblings for given CPU core (cpu0 in this case). Use it to find out which
thread is mapped to which core.

In []: !'$$SC19_SUBMIT_CMD cat /sys/devices/system/cpu/cpul/topology/thread_siblings_list
'$$SC19_SUBMIT_CMD cat /sys/devices/system/cpu/cpub/topology/thread_siblings_list

There are various environment variables available within OpenMP (some specific to GCC) that
hold across compilers to specify binding of threads to cores. See, for instance, the OMP__PLACES
environment Variable. We also have a GNU specific variable which can also be used to control affin-
ity - GOMP_CPU_AFFINITY. Setting GOMP_CPU_AFFINITY is specific to GCC binaries but it internally
serves the same function as setting OMP_PLACES.

Task: Run the application enabled with OpenMP from Part A with different binding configurations.
Make sure to at least run a) binding all threads to a single core and b) binding threads to different
cores.

Adapt the following command with your configuration — or follow along accordingly in the non-
interactive version of the Notebook.

What’s your maximum speedup?

https://www.openmp.org/spec-html/5.0/openmpse53.html
https://www.openmp.org/spec-html/5.0/openmpse53.html

In [1: aff="{X},{v},{Z},{A}"
leval OMP_DISPLAY_ENV=true OMP_PLACES=$aff OMP_NUM_THREADS=4 $$SC19_SUBMIT_CMD -c
ALL_CPUS --bind none ./poisson2d 1000 1000 100 | grep "OMP_PLACES\|speedup"

In []: aff="X,Y,Z,A"
leval OMP_DISPLAY_ENV=true GOMP_CPU_AFFINITY=$aff OMP_NUM_THREADS=4 $$SC19_SUBMIT_CMD -c
ALL_CPUS --bind none ./poisson2d 1000 1000 100 | grep "OMP_PLACES\ |speedup"

Great!

If you still have time: The same experiments can be repeated with the IBM XL compiler. The cor-
responding compiler flag to enable OpenMP parallelism that needs to be used for XL is ~qsmp=omp

Task: In the Makefile add the OpenMP flag and generate XL binaries with OpenMP and run the
application with various number of threads and note the performance speedup.

In []: !'make CC=xlc_r -B run

Run the parallel application with varying numbre of threads (OMP_NUM_THREADS) and note the
performance improvement.

In []: 'eval OMP_NUM_THREADS=N $SC19_SUBMIT_CMD -c ALL_CPUS --bind nome ./poisson2d 1000 1000

1000
Now we repeat the exercise of using the right binding of threads for the XL binary. OMP_PLACES
pertains to the XL binary as well as it is an OpenMP variable. GOMP_CPU_AFFINITY is specific to
GCC binary so that cannot be used to set the binding.

Task: Run the application enabled with OpenMP from Part A with different binding configurations.
Make sure to at least run a) binding all threads to a single core and b) binding threads to different
cores.

Adapt the following command with your configuration — or follow along accordingly in the non-
interactive version of the Notebook.

We are mixing Python with Bash (!) here, so don’t get confused (because of this, if we want to
use Bash environment variables, we need to use two $$)

What’s your maximum speedup?

In []: for affinity in ["{X},{Y},{Z},{A}", "{P},{Q},{R},{S}"]:
print("Affinity: {}".format(affinity))
'eval OMP_DISPLAY_ENV=true OMP_PLACES=$affinity OMP_NUM_THREADS=4 $$SC19_SUBMIT_CMD
-c ALL_CPUS --bind none ./poisson2d 1000 1000 1000 | grep "OMP_PLACES\|speedup"

Likewise we see a higher speedup when we bind the threads to different cores rather than to a
single core. This handson illustrates that apart from compiler level tuning, system level tuning is
also equally important to obtain performance improvements

References

1. https://gcec.gnu.org/onlinedocs/libgomp/GOMP_005fCPU_ 005fAFFINITY .html
2. https://www.openmp.org/spec-html/5.0/openmpse53.html

Section 77

2 Survey

Please rememeber to take some time and fill out the survey.

10

http://bit.ly/sc19-eval

	Hands-On Performance Optimization
	Jupyter notebook execution
	Terminal fallback
	Setup
	Tasks
	Make Targets

	Task 1: Basic compiler optimization flags and compiler annotations
	Overview
	Part A: -Ofast vs. -O3
	Part B: Profile-directed Feedback
	Part C: Compiler annotations/Remarks

	Task 2: Impact of Prefetching on Performance
	Overview
	Part A: Software Prefetching
	Part B: Analysis of Instructions
	Part C: Changing Values of DSCR via compiler flags

	Task 3: OpenMP
	Overview
	Part A: Implement OpenMP Pragmas; Compilation
	Part B: Bindings

	Survey

