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Chapter 1.
INTRODUCTION

One of the key goals of OpenSHMEM has been to provide an interface that can be
implemented on the underlying hardware, with minimal software overheads. This
is one of the main reasons NVSHMEM is based on the OpenSHMEM standard. The
OpenSHMEM standard is also being actively improved upon for emerging node and
cluster architectures.

The current version of NVSHMEM extends OpenSHMEM version 1.4 to provide
an easy-to-use CPU-side interface to allocate pinned memory that is symmetrically
distributed across a cluster of NVIDIA GPUs interconnected with NVLink or PCIe.
It also provides a CUDA kernel-side interface that allows CUDA threads to access
any location in symmetrically-distributed memory through OpenSHMEM data
movement API calls or direct load and store (LD/ST) where the GPUs are P2P-accessible.
NVSHMEM is also a low-level interface over which higher level and easier-to-use
communication libraries and application frameworks can be built.

For more information on OpenSHMEM see the following web site:

http://www.openshmem.org

1.1. Features
NVSHMEM extends OpenSHMEM in the following ways:

‣ Symmetric heap allocation on GPU memory and support for GPU-initiated
communication

‣ A new API call to collectively launch CUDA kernels across a set of GPUs
‣ Stream-based APIs that allow data movement operations initiated from the CPU to

be offloaded onto the GPU with ordering with regard to a CUDA stream
‣ Threadgroup communication where threads from whole warps or whole thread

blocks in a CUDA kernel can collectively participate in a single communication
operation

‣ Differentiates synchronizing and non-synchronizing operations to benefit from
strengths (weak or strong) of operations in GPU memory model

http://www.openshmem.org
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1.2. Strong Scaling
One of NVSHMEM’s primary benefits is its utility in supporting strong scaling.
Strong scaling is how the solution time of a fixed problem varies as the number of
processors increases. This is a critical metric for scientific applications as they run on
increasingly large clusters with many powerful GPUs. Current state-of-the-art scientific
applications running on GPU clusters typically offload computation phases onto the
GPU while relying on the CPU to manage cluster communication, using Message
Passing Interface (MPI) and OpenSHMEM. Dependency on the CPU for communication
limits strong scalability, owing to the overhead of repeated kernel launches, CPU-
GPU synchronization, underutilization of the GPU during communication and
synchronization, and underutilization of the network during compute phases. Some
of these issues are handled by restructuring application code to overlap independent
compute and communication phases using CUDA streams. These optimizations make
the application code complex and their benefits usually diminish as the problem size per
GPU becomes smaller.

Addressing the apparent Amdahl’s fraction of synchronizing with the CPU for
communication is critical for strong scaling of applications on GPU clusters. GPUs are
designed for throughput and have enough state and parallelism to hide long latencies
to global memory. Following the CUDA programming model and best practices enables
developers to take advantage of these latency hiding capabilities. It is natural to also take
advantage of these capabilities of the GPU and the CUDA programming model when
tackling communications between GPUs.

1.3. Partitioned Global Address Space
NVSHMEM provides a Partitioned Global Address Space (PGAS) that spans memory
across GPUs and provides an API for fine-grained GPU-GPU data movement and
synchronization from within a CUDA kernel. Using NVSHMEM, developers can
write long running kernels that include both communication and computation,
reducing synchronization with the CPU. These composite kernels allow for overlap
between computation and communication owing to warp scheduling on the GPU. This
model avoids the overhead of additional kernel launches and calls to CUDA API and
CPU-GPU synchronization for communication, allowing for better strong scaling of
applications. When necessary, NVSHMEM also provides CPU-side calls for inter-GPU
communication outside of CUDA kernels.

NVSHMEM facilitates inter-GPU communication inside CUDA kernels, characterized
by highly concurrent fine-grained messaging. The MPI send-receive interface that is
primarily used in applications today for GPU-GPU data movement does not serve well
in such a communication regime. The main reasons for this are: locking (or atomics) for
shared data structures around network end points, serialization inherent to message
matching and queuing and handling of unexpected messages. While there have been
efforts to reduce the overhead of critical sections using finer-grained locking and
multiple network end-points per process, the problem with message matching is
inherent to the send-receive model of communication in MPI. One-sided communication

https://en.wikipedia.org/wiki/Amdahl%27s_law
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
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primitives avoid this overhead by letting the initiating process/thread specify all the
information required to complete a data transfer. They can be directly translated to
RDMA primitives exposed by the network hardware or to LD/ST on a fabric like
NVLink. One-sided primitives also make it programmatically easier to interleave
computation and communication, thereby having the potential for better overlap.
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Chapter 2.
PROGRAMMING, COMMUNICATION, AND
MEMORY MODELS

This section describes the programming, communication, and memory models
governing NVSHMEM usage.

2.1. Programming Model
NVSHMEM implements and extends the OpenSHMEM programming model.
NVSHMEM interfaces are intended for use in SPMD (single program multiple data)-
style programs. Each instance of the program is referred to as a PE (Processing Element)
in NVSHMEM and can be executed by an OS process or a thread. Only PE-as-a-process
is supported in version 0.3. Several executing instances of a program can declare their
participation in an NVSHMEM job by collectively calling an initialization routine.

An NVSHMEM job is created by an initialization API call and ended when a finalization
function is called. During initialization, each instance of the program is assigned a
unique ID, called the PE ID. PEs within a job can share data through globally accessible
memory that is allocated using the NVSHMEM allocation API. Memory allocated using
any other method is considered private to the allocating PE and is not accessible by other
PEs.
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Figure 1 PE Shared and Private Memory

Shared memory object creation in NVSHMEM is collective and symmetric across all the
PEs in a job. This means that each PE should participate in the allocation by making a
call to the allocation API and every PE should pass the same value in the size argument
for a given allocation. Each shared memory object creation involves allocation of a
memory region of a given size in GPU device memory at each of the PEs. The memory
region allocated at each PE is accessible to all the other PEs in the job (from inside CUDA
kernels as well as through the CPU-side NVSHMEM API) through the communication
API or direct load/stores (when supported by hardware).

The symmetric management of the global address space allows a remote address to be
simply referenced in terms of a tuple of <local_address>, <destination_PE>.
This simplifies communication in applications. The NVSHMEM runtime can translate
the local address to the actual remote address with little or no translation overhead.

NVSHMEM can be used in conjunction with OpenSHMEM or MPI, making it easier
for existing OpenSHMEM and MPI applications to be incrementally ported to use
NVSHMEM. The code snippet below shows a simple example of NVSHMEM usage
within an MPI program, where there is a 1:1 correspondence between MPI rank and
NVSHMEM PEs.
__global__ void simple_shift (int *destination) {
      int mype = shmem_my_pe() ; 
      int n_pes = shmem_n_pes();
      int peer = (my_pe + 1)%n_pes; 

      shmem_int_p(destination, mype, peer);
} 

int main (int c, char *v[])
{
    int *source;  
    int *destination;    
    int rank;

    shmemx_init_attr_t attr;
    attr.mpi_comm = MPI_COMM_WORLD;

    MPI_Init(&c, &v);
    MPI_Comm_rank (&rank, MPI_COMM_WORLD)); 
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    cudaSetDevice(rank);
    shmemx_init_attr (SHMEMX_INIT_WITH_MPI_COMM, &attr);

    destination = (int *) shmem_malloc (sizeof(int));

    simple_shift<<<1, 1>>> (destination); 
 
    shmem_barrier_all();

    shmem_free(source);
    shmem_free(destination);

    shmem_finalize();
    MPI_Finalize(); 
}

In the example, the CUDA kernel implements a circular shift of values in a global array
distributed across the PEs. It creates two shared memory objects of sizeof(int) bytes
using shmem_malloc and assigns it to pointers source and destination. Each of these
calls allocates a buffer of sizeof(int) bytes at each PE and the pointer returned at each
PE points to the buffer that is local to itself.

Figure 2 NVSHMEM in Conjunction with MPI

Data at the destination element at the neighboring/target PE is written using the
shmem_int_p API, by passing the local destination pointer and the target PE ID. The
runtime translates the local destination pointer to a pointer to destination at the target
PE. The value passed to shmem_int_p is assigned to the local element of the destination
array.

2.2. Communication Model
NVSHMEM provides fine-grained and low-overhead remote data access from inside
CUDA kernels and enables applications to benefit from the intrinsic latency-hiding
capabilities of the GPU warp scheduling hardware. In this spirit, NVSHMEM provides
APIs to move data to or from global memory allocations. It also provides APIs to query
virtual addresses that point to portions of a distributed global memory allocation. This
allows applications to issue direct loads/stores to global memory. The same API or load/
stores (when the hardware allows) can be used to access portion of the global memory
that is local to the accessing PE or is physically located at a different PE.

NVSHMEM extends OpenSHMEM in the following ways:
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‣ All symmetric memory that is allocated using the NVSHMEM allocation API is
pinned GPU device memory.

‣ NVSHMEM supports both GPU- and CPU-side communication and
synchronization APIs, provided that the memory involved is GPU device memory.
In other OpenSHMEM implementations, these APIs can only be called from the
CPU.

NVSHMEM is a stateful library. It detects which GPU a PE is using when the PE
calls into an NVSHMEM initialization routine. This information is stored inside the
NVSHMEM runtime. All symmetric allocation calls made by the PE return device
memory of the selected GPU. All NVSHMEM calls made by the PE are assumed to
be made with respect to the selected GPU or from inside kernels launched on this
GPU. This requires certain restrictions on PE-GPU mappings in applications using
NVSHMEM.

An NVSHMEM program should adhere to the following:

‣ The PE selects its GPU (with cudaSetDevice, for example), before the first
allocation, synchronization, communication, or collective kernel API launch call.

‣ The PE uses one and only one GPU throughout the lifetime of an NVSHMEM job.

NVSHMEM relies on data coalescing features in GPU hardware to achieve efficiency
over the network when the data access API is used. It is important that application
developers follow CUDA programming best practices that promote data coalescing
when using fine-grained communication APIs in NVSHMEM.

NVSHMEM also allows any two CUDA threads within a job to synchronize on
locations in global memory using the OpenSHMEM point-to-point synchronization API
shmem_wait_until or collective synchronization APIs like shmem_barrier.

CUDA kernels that use synchronization APIs must be launched using the collective
launch API to guarantee deadlock-free progress and completion. For information on
the collective launch API, see CUDA Kernel Launch API.

CUDA kernels that do not use the NVSHMEM synchronization APIs but use other
NVSHMEM communication APIs can be launched with either the normal CUDA launch
interfaces or the collective launch API. These kernels can still use other NVSHMEM
device side APIs such as the one-sided data movement API.

An NVSHMEM program that uses collective launch and CUDA kernel-side
synchronization APIs should adhere to the following for correctness, and all
NVSHMEM programs should adhere to the following for performance predictability:

‣ Multiple PEs should not share the same GPU.
‣ NVSHMEM PEs should have exclusive access to the GPU. The GPU cannot be used

to drive a display or for another compute job.
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2.3. Memory Model
The NVSHMEM memory model is defined in this section. It follows the semantics
defined in the OpenSHMEM 1.4 specification except in the cases described in
Modifications Of The OpenSHMEM Memory Model in this document.

Local or remote symmetric memory can be accessed in the following ways:

‣ Remote memory access (RMA: PUT/GET)
‣ Atomic memory operations (AMO)
‣ LD/ST (In the case of remote symmetric memory, using a pointer returned by

shmem_ptr)
‣ Collective functions (broadcast, reductions, and others)
‣ The wait function (local symmetric memory only)

Two memory accesses by a PE are guaranteed to be ordered only in the following cases:

‣ The accesses are the result of different collective function calls that happen in
program order.

‣ The first access is a wait call, followed by a read operation, both of which target local
symmetric memory.

‣ The accesses are the result of two different API calls or LD/ST operations and are
separated by an appropriate ordering operation based on the following table:

Type of first access/target
PE Same-target PE Different-target PE

Blocking Fence/quiet/barrier Quiet/barrier

Non-blocking Quiet/barrier Quiet/barrier

Two accesses from blocking operations may be ordered by the underlying system if
there is a dependency relationship between them, such as data or address.

One API call has a reads-from relationship with another API call when the second call
takes its value from the first call. For example, a GET has a reads-from relationship with
a PUT if the GET reads the data that the PUT wrote. A collective operation involves an API
call at each of the participating PEs and calls at PEs with target buffers have a read from
relationship with the calls at PEs with source buffers.

An update made using an API call is guaranteed to become eventually visible to another
API call. This prevents a runtime from buffering updates indefinitely. The update is
stable in the sense once it is visible to another API call, the update remains until replaced
by another update. This guarantees that synchronization as described above finishes in a
finite amount of time.

An access A at PE X happens before (and is visible to) access B at PE Y if any of the
following are true:
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‣ A is an AMO/shmem_p operation, B is a wait/AMO/shmem_g operation and B has a
reads-from relationship with A.

‣ A is ordered before an AMO/shmem_p operation C at PE X, a wait/AMO/shmem_g
operation D at PE Y has a reads-from relationship with C, and D is ordered before B.

‣ A is ordered before an access C at PE X and C happens before B.
‣ A happens before C at PE Z, and C happens before B.

An implication of the above is when an API call A synchronizes with an API call B, and
operations (LD/ST or API) that are ordered before A are visible to operations (LD/ST
or API) that are ordered after B.

Two accesses are concurrent if any of the following are true:

‣ The accesses are performed by different threads within a PE and are unordered.
‣ The accesses are performed by the same thread and are unordered.
‣ The accesses are performed by two different PEs and one did not happen before

the other.

Two accesses conflict if one of them modifies a memory location and the other one
accesses or modifies the same memory location.
Two concurrent conflicting accesses result in undefined behavior. AMOs, single-
element RMA (shmem_p, shmem_g) operations and wait calls are an exception to this
when the conflicting accesses are using the same datatype. In this case, it is as if the
two operations have been executed in some order, meaning, they exhibit single-copy
atomicity.

2.3.1. Modifications Of The OpenSHMEM Memory Model
NVSHMEM relaxes the memory ordering semantics as are defined in the OpenSHMEM
specification to allow more efficient implementation on NVIDIA GPUs. The changes are
described in detail in the following sections.

A blocking get operation (shmem_g, shmem_get, shmem_iget), as defined in the
OpenSHMEM specification, returns to the destination array at the local PE after the
data has been delivered. The OpenSHMEM specification also implicitly guarantees that
any two get operations are always executed in program order. This total ordering of get
operations requires the implementation to include an appropriate memory barrier in
each get operation, resulting in sub-optimal performance.

NVSHMEM relaxes the total ordering requirement of get operations and requires the
programmer to use a fence where such ordering is required. The completion semantics
of get remain unchanged from the specification: the result of the get is available for any
dependent operation that appears after it, in program order.

The examples below show how the ordering of get operations in NVSHMEM differs
from that defined in the OpenSHMEM specification. In the figure below, line c is data
dependent on the result of the get operation in line b. Lines b and c are guaranteed to
execute in program order. Hence, the output where j takes value 0 is prohibited.
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Figure 3 Completion semantics of GET operations. The Output in the
figure is prohibited both in OpenSHMEM and NVSHMEM.

In the figure below, GET (g) operations on lines c and d are unrelated and can be
reordered in NVSHMEM. Hence the result where j takes value 0 is allowed.

Figure 4 Another example of ordering of GET operations. The output
above is prohibited in OpenSHMEM but not in NVSHMEM. In order for the
above output to be prohibited in NVSHMEM, a shmem_fence() operation
is required between line c and line d at PE1.



Programming, Communication, and Memory Models

www.nvidia.com
NVSHMEM DG-08910_001_v0.3 | 11

NVSHMEM extends the semantics of shmem_fence to order get operations. The
shmem_fence function does not order non-blocking get operations as specified in the
OpenSHMEM specification.

2.3.2. Quiet Semantics
OpenSHMEM defines quiet semantics as follows: all put, AMO, memory store, and
nonblocking put and get routines to symmetric data objects are guaranteed to be
completed and visible to all PEs when shmem_quiet returns. The guarantee that
updates are visible when shmem_quiet returns requires synchronizing with and having
the necessary ordering APIs at the target PE, on all platforms.

NVSHMEM clarifies the semantics of quiet as follows: shmem_quiet completes all non-
blocking operations issued by the calling PE and ensures ordering between all accesses
(to all PEs) that happen before it in program order and all the accesses (to all PEs) that
happen after it in program order.
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Chapter 3.
PROGRAMMING INTERFACE

The API in NVSHMEM is separated into three parts: invoked on the host, invoked
on the GPU and invoked on the GPU or host. In the current version of NVSHMEM,
the APIs for runtime initialization and termination, memory management, querying
pointers, querying PE information, and collective kernel launch, are supported from the
host.

One-sided remote memory access, one-sided remote atomic memory access, memory
ordering, point-to-point synchronization and collectives are supported from both the
host and the device. In addition, there are CUDA-specific extensions of remote memory
access and collective APIs that are supported either only on the host or only on the
device.

3.1. NVSHMEM Extensions To OpenSHMEM 1.4
The following tables summarize the NVSHMEM extension APIs and their functionality.
The C11 form is used for all APIs.

Table 1 NVSHMEM Extension APIs Invoked by CPU Thread Only

Description NVSHMEM (shmemx_*) Notes

Initialization *_init_attr

Query *_my_pe(SHMEMX_TEAM_NODE
or SHMEMX_TEAM_WORLD)
*_n_pes(SHMEMX_TEAM_NODE
or SHMEMX_TEAM_WORLD)

Convenience API for
querying index suitable for
cudaSetDevice.

CUDA kernel launch *_collective_launch CUDA kernels that invoke
NVSHMEM synchronization
APIs such as shmem_barrier,
shmem_wait, and others, must
be launched using this API;
otherwise behavior is undefined.

Remote memory access *_put_<all_variants>_on
_stream,

Asynchronous with respect to
the calling CPU thread; takes a
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Description NVSHMEM (shmemx_*) Notes

*_get_<all_variants>_on
_stream

Memory ordering *_quiet_on_stream

Collective communication *_broadcast_<all_variants>
_on_stream,
*_collect__<all_variants>
_on_stream,
*_alltoall_<all_variants>
_on_stream,
*_to_all_<all_variants>
_on_stream (reductions)

Collective synchronization *_barrier_all_on_stream,
*_barrier_on_stream,
*_sync_all_on_stream,
*_sync_on_stream

cudaStream_t as argument and
is ordered on that CUDA stream.

Table 2 NVSHMEM Extension APIs Invoked by GPU Thread Only

Description NVSHMEM (nvshmem_*) Notes

Write buffer *_put_block, *_put_warp

Read buffer *_get_block, *_get_warp

Asynchronous write buffer *_put_nbi_block,
*_put_nbi_warp

Asynchronous read buffer *_get_nbi_block,
*_get_nbi_warp

New APIs for GPU-side invocation
are provided that can be called
collectively by a threadblock or a
warp.

Collective communication *_broadcast_<all_variants>
_block,
*_broadcast_<all_variants>
_warp,
*_collect__<all_variants>
_block,
*_collect__<all_variants>
_warp,
*_alltoall_<all_variants>
_block,
*_alltoall_<all_variants>
_warp,
*_to_all_<all_variants>
_block,
*_to_all_<all_variants>
_warp (reductions)

Collective synchronization *_barrier_all_block,
*_barrier_all_warp,
*_barrier_block,
*_barrier_warp,
*_sync_all_block,
*_sync_all_warp,
*_sync_block, *_sync_warp
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3.2. NVSHMEM Extension APIs Invoked By GPU
Thread Only
Table 2 lists the NVSHMEM extension APIs that can be invoked by GPU threads. Each
of the APIs corresponding to the entries in the description column have two variants
each – one with the suffix _block and the other with the suffix _warp. For example,
the OpenSHMEM API shmem_float_put has two extension APIs in NVSHMEM:
shmemx_float_put_block and shmemx_float_put_warp.

These extension APIs are collective calls that must be called by every thread in the
scope of the API and with exactly the same arguments. The scope of the *_block
extension APIs is the block in which the thread resides. Similarly, the scope of the
*_warp extension API is the warp in which the thread resides. For example, if thread
0 calls shmem_float_put_block, then every other thread that is in the same block as
thread 0 must also call shmem_float_put_block with exactly the same arguments.
Otherwise, the call will result in erroneous behavior or deadlock in the program. The
NVSHMEM runtime may or may not leverage the multiple threads in the scope of the
API to execute the API call.

The extension APIs are useful in the following situations:

‣ Converting shmem_float_put to shmemx_float_put_block enables the
NVSHMEM runtime to leverage all the threads in the block to concurrently copy the
data to the destination PE if the destination GPU of the put call is p2p connected. If
the destination GPU is connected via InfiniBand, then a single thread in the block
can issue an RMA write operation to the destination GPU.

‣ *_block and *_warp extensions of the collective APIs can make use of multiple
threads to perform collective operations, such as parallel reduction operations in
case of a collective reduction operation or sending data in parallel.

‣ CUDA supports only a subset of the atomic operations included in the OpenSHMEM
specification. The long type is currently unsupported for add, fadd, inc, and
finc atomic operations in NVSHMEM.

‣ Bitwise atomic support for and, fand, or, for, xor, and fxor is part of
OpenSHMEM 1.4 with names starting with the prefix shmem_atomic_ followed
by the name of the operation (cswap, add etc).These APIs exist in NVSHMEM
but with the shmemx_ prefix followed by the name of the operation. The other
atomic operations are named in the same way in OpenSHMEM 1.4. These APIs
exist in NVSHMEM but with the shmem_ prefix followed by the name of the
operation.

‣ The shmem_init_thread and shmem_query_thread APIs are in OpenSHMEM 1.4.
These APIs exist with the shmemx_ prefix in NVSHMEM.
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3.3. OpenSHMEM 1.4 APIs Not Supported In
NVSHMEM
The following OpenSHMEM 1.4 APIs are not supported in NVSHMEM:

‣ shmem_global_exit
‣ shmem_pe_accessible
‣ shmem_addr_accessible
‣ shmem_info_get_version
‣ shmem_info_get_name
‣ shpalloc
‣ shpclmove
‣ shpdealloc
‣ shmem_realloc
‣ shmem_ctx_create
‣ shmem_ctx_destroy
‣ shmem_fcollect
‣ shmem_alltoalls
‣ shmem_lock
‣ shmem_cache

3.4. OpenSHMEM 1.4 APIs Not Supported Over
InfiniBand In NVSHMEM
The following OpenSHMEM 1.4 APIs are not supported over InfiniBand in NVSHMEM:

‣ shmem_iput
‣ shmem_iget
‣ shmem_g
‣ shmem_atomic_<all operations>
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Chapter 4.
INITIALIZATION API

NVSHMEM provides two forms of initialization API. The first one is shmem_init
as is defined in the OpenSHMEM 1.4 specification. The second variation is provided
to enable easy porting of MPI and OpenSHMEM programs to NVSHMEM. It allows
initialization of NVSHMEM based on an MPI communicator or inside an OpenSHMEM
job. This is useful when an application is written to use NVSHMEM within a node and
MPI across nodes. Or, when an application uses another OpenSHMEM implementation
to manage communication across symmetric heap on the system memory.

4.1. shmemx_init_attr
The shmemx_init_attr function initializes the NVSHMEM library by allocating the
resources used by the library and assigning a unique identifier to each PE. This collective
operation should be called by all PEs before any other NVSHMEM routine.

With the SHMEMX_INIT_WITH_MPI_COMM option, the NVSHMEM library is
initialized based on the MPI communicator that is provided with each rank in the
MPI communicator participating as an NVSHMEM PE. A call to shmem_finalize
is required before the MPI communicator is destroyed. Do not make any calls to
NVSHMEM routines after the MPI communicator has been destroyed.

With the SHMEMX_INIT_WITH_SHMEM option, the NVSHMEM library is initialized based
on the OpenSHMEM PE underlying each NVSHMEM PE. In this case, you must use the
NVSHMEM APIs with nv_ prefixes, so nvshmemx_init_attr should be called. A
call to nvshmemx_finalize is required before shmem_finalize is called. Do not make
any calls to NVSHMEM routines after the OpenSHMEM shmem_finalize is called.

Parameters

SHMEMX_INIT_WITH_MPI_COMM
This flag is used to specify that an MPI communicator is provided by the user. A
value of 0 indicates initialization similar to when shmem_init is used.

SHMEMX_INIT_WITH_SHMEM
This flag is used to specify that NVSHMEM is used inside an OpenSHMEM job. A
value of 0 indicates initialization similar to when shmem_init is used.
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mpi_comm
This attribute is a pointer to an MPI communicator.

shmemx_init_attr_t
This attribute is a pointer to a structure containing input attributes, for example:

struct shmemx_init_attr_t {
      void *mpi_comm;
}

Returns

Returns 0 on success and an error code on failure.
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Chapter 5.
CUDA KERNEL LAUNCH API

NVSHMEM provides an interface that must be used to launch CUDA kernels on the
GPU when the CUDA kernels use NVSHMEM synchronization APIs.

5.1. shmemx_collective_launch
The shmemx_collective_launch call is collective across the PEs in the NVSHMEM
job. It takes the same parameters as a CUDA kernel launch API. It uses a single device
CUDA cooperative launch and hence provides all its guarantees. If a CUDA kernel
in a PE calls NVSHMEM synchronization API (such as shmem_wait, barrier, or
barrier_all), then it is required to be launched using this API. Any CUDA kernel not
using NVSHMEM synchronization APIs (or not using NVSHMEM APIs at all), is not
required to be launched by this API. Specify gridDim or set it to 0. When gridDim is set
to 0, the NVSHMEM runtime picks the largest grid size that can be used for the given
kernel with CUDA cooperative launch on the current GPU.

Parameters

func
A pointer to the function to launch on the device.

gridDim
The grid dimensions.

blockDim
The block dimensions.

args
Arguments to be passed to the device function.

sharedMem
The size of the shared memory.

stream
The stream on which the kernel should be launched.
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Returns

Returns 0 on success and an error code on failure.
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Chapter 6.
COMMUNICATIONS API

This section describes the following functions that can be called from a CPU or GPU
thread in the context of NVSHMEM:

‣ Remote memory access (extended by NVSHMEM)
‣ Atomic
‣ Memory ordering (extended by NVSHMEM)
‣ Point-to-point synchronization
‣ Collectives (extended by NVSHMEM)

The Atomic and point-to-point synchronization functions in NVSHMEM are not
extended and work exactly like the corresponding functions in OpenSHMEM. The
extensions for remote memory access and collective functions have two types.

‣ CPU only: all CPU only extensions have the suffix *_on_stream and include
the argument cudaStream_t, for specifying the CUDA stream (see NVSHMEM
Extensions To OpenSHMEM 1.4).

‣ These functions otherwise perform exactly as in OpenSHMEM. See
the OpenSHMEM Application Programming Interface, version 1.4, for
documentation.

‣ GPU only: *_<scope>, where scope is *_block or *_warp (see NVSHMEM
Extensions To OpenSHMEM 1.4),

‣ These functions otherwise perform exactly as in OpenSHMEM. See
the OpenSHMEM Application Programming Interface, version 1.4, for
documentation.

Ordering APIs (fence, quiet, and barrier) issued on the CPU and the GPU
only order communication operations that were issued from the CPU and the
GPU, respectively. To ensure completion of GPU-side operations from the CPU,
the developer has to ensure completion of the CUDA kernel from which the GPU-
side operations were issued, using operations like cudaStreamSynchronize or
cudaDeviceSynchronize. Stream-based quiet or barrier operations have the effect
of a barrier being executed on the GPU in stream order, ensuring completion and
ordering of only GPU-side operations.

http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
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Chapter 7.
USEFUL ENVIRONMENT VARIABLES

The following environment variables are useful in certain circumstances.

Variable Description

NVSHMEM_ENABLE_NIC_PE_MAPPING When not set or set to 0, a PE is assigned
the NIC on the node that is closest to it by
distance. When set to 1, NVSHMEM either
assigns NICs to PEs on a round-robin basis
or uses NVSHMEM_HCA_PE_MAPPING or
NVSHMEM_HCA_LIST when they are specified.

NVSHMEM_HCA_PE_MAPPING Specifies an HCA per PE as a comma-separated
list such that the GPU corresponding to the
PE uses the given HCA for all transfers. Each
entry in the comma separated list is of the
form hca_name:port:count. For example,
mlx5_0:1:2,mlx5_0:2:2 means that PE0, PE1
can be mapped to port 1 of mlx5_0, and PE2, PE3
can be mapped to port 2 of mlx5_0.

NVSHMEM_ENABLE_NIC_PE_MAPPING must be set
to 1 for this variable to be effective.

NVSHMEM_HCA_LIST Specifies a comma-separated list of HCAs to use
in the NVSHMEM application. This is useful to skip
disabled HCAs or HCAs operating in a different
mode than InfiniBand. Each entry in the comma
separated list is of the form: hca_name:port.
For example, mlx5_1:1,mlx5_2:2 specifies
use of port 1 of mlx5_1 and port 2 of mlx5_2 in
the application. A ^ before the list indicates an
exclusion list. For example, ^mlx5_1:1,mlx5_1:2
means not to use mlx5_1 port 1 and mlx5_1 port
2.

NVSHMEM_ENABLE_NIC_PE_MAPPING must be set
to 1 for this variable to be effective.

NVSHMEM_SYMMETRIC_SIZE Specifies the GPU memory per PE allocated for
the symmetric heap. By default, NVSHMEM would
allocate 1GB per PE.
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Variable Description

NVSHMEM_MPI_LIB_NAME Name of the MPI library that is used for
bootstrapping NVSHMEM. By default, NVSHMEM
looks for library with name libmpi.so.

NVSHMEM_SHMEM_LIB_NAME Name of the OpenSHMEM library that is used for
bootstrapping NVSHMEM. By default, NVSHMEM
looks for library with name liboshmem.so.

NVSHMEM_BARRIER_DISSEM_KVAL Radix of the dissemination algorithm used for
barrier and barrier_all collectives. By
default, NVSHMEM uses radix 2.

NVSHMEM_BARRIER_TG_DISSEM_KVAL Radix of the dissemination algorithm used
for barrier_warp, barrier_group,
barrier_all_warp, and barrier_all_group
collectives. By default, NVSHMEM uses radix 2.

NVSHMEM_DEBUG Controls the debug information that is displayed
from NVSHMEM. Values accepted are WARN, INFO,
and TRACE.

NVSHMEM_DEBUG_FILE Set the filename where debug output is written.
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Chapter 8.
EXAMPLES

Source code for the examples described in this section is available in the examples folder
of the NVSHMEM package.

8.1. Attribute-Based Initialization Example
The following code shows an existing MPI version of the simple shift program that
was explained in the Programming Model section of this document. It shows the use
of the NVSHMEM attribute-based initialization API, where the MPI communicator
can be used to setup NVSHMEM, where the MPI communicator can be used to set-up
NVSHMEM.

#include <stdio.h>
#include "mpi.h"
#include "shmem.h"
#include "shmemx.h"

#define CUDA_CHECK(stmt)                                \
do {                                                    \
    cudaError_t result = (stmt);                        \
    if (cudaSuccess != result) {                        \
        fprintf(stderr, "[%s:%d] cuda failed with %s \n",\
         __FILE__, __LINE__, cudaGetErrorString(result));\
        exit(-1);                                       \
    }                                                   \
} while (0)
 
#define MPI_CHECK(stmt)                                 \
do {                                                    \
    int result = (stmt);                                \
    if (MPI_SUCCESS != result) {                        \
        fprintf(stderr, "[%s:%d] MPI failed with error %d \n",\
         __FILE__, __LINE__, result);                   \
        exit(-1);                                       \
    }                                                   \
} while (0)
 
__global__ void simple_shift (int *target, int mype, int npes) {
  int peer = (mype + 1)%npes;
  shmem_int_p(target, mype, peer);
}
 
int main (int c, char *v[])
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{
  int *target;
  int rank, nranks;
  MPI_Comm mpi_comm;
  shmemx_init_attr_t attr;
  int mype, npes;
 
  MPI_CHECK(MPI_Init(&c, &v));
  MPI_CHECK(MPI_Comm_rank(MPI_COMM_WORLD, &rank));
  MPI_CHECK(MPI_Comm_size(MPI_COMM_WORLD, &nranks));
 
  mpi_comm = MPI_COMM_WORLD;
  attr.mpi_comm = &mpi_comm;
  shmemx_init_attr (SHMEMX_INIT_WITH_MPI_COMM, &attr);
  mype = shmem_my_pe();
  npes = shmem_n_pes();
 
  //application picks the device each PE will use
  CUDA_CHECK(cudaSetDevice(mype));
  target = (int *) shmem_malloc (sizeof(int));
 
  simple_shift<<<1, 1>>> (target, mype, npes);
  CUDA_CHECK(cudaDeviceSynchronize());
 
  printf("[%d of %d] run complete \n", mype, npes);
 
  shmem_free(target);
 
  shmem_finalize();
  MPI_CHECK(MPI_Finalize());
  return 0;
}

8.2. Collective Launch Example
The following code shows an example implementation of a single ring-based reduction
where multiple iterations of the code, including computation, communication and
synchronization are expressed as a single kernel.

This example also demonstrates the use of NVSHMEM collective launch, required when
the NVSHMEM synchronization API is used from inside the CUDA kernel.

There is no MPI dependency for the example. NVSHMEM can be used to port existing
MPI applications and develop new applications.

#include <stdio.h>
#include "shmem.h"
#include "shmemx.h"

#define CUDA_CHECK(stmt)                                \
do {                                                    \
    cudaError_t result = (stmt);                        \
    if (cudaSuccess != result) {                        \
        fprintf(stderr, "[%s:%d] cuda failed with %s \n",\
         __FILE__, __LINE__, cudaGetErrorString(result));\
        exit(-1);                                       \
    }                                                   \
} while (0)

#define SHMEM_CHECK(stmt)                               \
do {                                                    \
    int result = (stmt);                                \
    if (SHMEM_SUCCESS != result) {                      \
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        fprintf(stderr, "[%s:%d] shmem failed with error %d \n",\
         __FILE__, __LINE__, result);                   \
        exit(-1);                                       \
    }                                                   \
} while (0)

__global__ void reduce_ring (int *target, int mype, int npes) {
  int peer = (mype + 1)%npes;
  int lvalue = mype;

  for (int i=1; i<npes; i++) {
      shmem_int_p(target, lvalue, peer);
      shmem_barrier_all();
      lvalue = *target + mype;
  }
}

int main (int c, char *v[])
{
  int mype, npes;
  shmem_init();
  mype = shmem_my_pe();
  npes = shmem_n_pes();

  //application picks the device each PE will use
  CUDA_CHECK(cudaSetDevice(mype));
  double *u = (double *) shmem_malloc(sizeof(double));

  void *args[] = {&u, &mype, &npes};
  dim3 dimBlock(1);
  dim3 dimGrid(1);

  SHMEM_CHECK(shmemx_collective_launch ((const void *)reduce_ring, dimGrid,
 dimBlock, args, 0 , 0));
  CUDA_CHECK(cudaDeviceSynchronize());

  printf("[%d of %d] run complete \n", mype, npes);

  shmem_free(u);

  shmem_finalize();
  return 0;
}

8.3. On-Stream Example
The following example shows how shmemx_*_on_stream functions can be used to
enqueue a SHMEM operation onto a CUDA stream for execution in stream order.
Specifically, the example shows the following:

‣ How a collective SHMEM reduction operation can be made to wait on a preceding
kernel in the stream.

‣ How a kernel can be made to wait for a communication result from a previous
collective SHMEM reduction operation.

The example shows one use case for relieving CPU control over GPU compute and
communication.

#include <stdio.h>
#include "shmem.h"
#include "shmemx.h"
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#define THRESHOLD 42
#define CORRECTION 7

#define CUDA_CHECK(stmt)                                \
do {                                                    \
    cudaError_t result = (stmt);                        \
    if (cudaSuccess != result) {                        \
        fprintf(stderr, "[%s:%d] cuda failed with %s \n",\
         __FILE__, __LINE__, cudaGetErrorString(result));\
        exit(-1);     \
    }                                                   \
} while (0)

__global__ void accumulate(int *input, int *partial_sum)
{
  int index = threadIdx.x;
  if (0 == index) *partial_sum = 0;
  __syncthreads();
  atomicAdd(partial_sum, input[index]);
}

__global__ void correct_accumulate(int *input, int *partial_sum, int *full_sum)
{
  int index = threadIdx.x;
  if (*full_sum > THRESHOLD) {
    input[index] = input[index] - CORRECTION;
  }
  if (0 == index) *partial_sum = 0;
  __syncthreads();
  atomicAdd(partial_sum, input[index]);
}

int main (int c, char *v[])
{
  int mype, npes;
  int *input;
  int *partial_sum;
  int *full_sum;
  int input_nelems = 512;
  int to_all_nelems = 1;
  int PE_start = 0;
  int PE_size = 0;
  int logPE_stride = 0;
  long *pSync;
  int *pWrk;
  cudaStream_t stream;

  shmem_init ();
  PE_size = shmem_n_pes();
  mype = shmem_my_pe();
  npes = shmem_n_pes();

  CUDA_CHECK(cudaSetDevice(mype));
  CUDA_CHECK(cudaStreamCreate(&stream));

  input = (int *) shmem_malloc(sizeof(int) * input_nelems);
  partial_sum = (int *) shmem_malloc(sizeof(int));
  full_sum = (int *) shmem_malloc(sizeof(int));
  pWrk = (int *) shmem_malloc(sizeof(int) * SHMEM_REDUCE_MIN_WRKDATA_SIZE);
  pSync = (long *) shmem_malloc(sizeof(long) * SHMEM_REDUCE_SYNC_SIZE);

  accumulate <<<1, input_nelems, 0, stream>>> (input, partial_sum);
  shmemx_int_sum_to_all_on_stream(full_sum, partial_sum, to_all_nelems,
 PE_start, logPE_stride, PE_size, pWrk, pSync, stream);
  correct_accumulate <<<1, input_nelems, 0, stream>>> (input, partial_sum,
 full_sum);
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  CUDA_CHECK(cudaStreamSynchronize(stream));

  printf("[%d of %d] run complete \n", mype, npes);

  CUDA_CHECK(cudaStreamDestroy(stream));

  shmem_free(input);
  shmem_free(partial_sum);
  shmem_free(full_sum);
  shmem_free(pWrk);
  shmem_free(pSync);

  shmem_finalize();
  return 0;
}

8.4. Threadgroup Example
The example in this section shows how shmemx_collect32_block can be used to
leverage threads to accelerate a SHMEM collect operation when all threads in the block
depends on the result of a preceding communication operation. For this instance, partial
vector sums are computed across different PEs and have a SHMEM collect operation to
obtain the complete sum across PEs.

#include <stdio.h>
#include "shmem.h"
#include "shmemx.h"

#define NTHREADS 512

#define CUDA_CHECK(stmt)                                \
do {                                                    \
    cudaError_t result = (stmt);                        \
    if (cudaSuccess != result) {                        \
        fprintf(stderr, "[%s:%d] cuda failed with %s \n",\
         __FILE__, __LINE__, cudaGetErrorString(result));\
        exit(-1);                                       \
    }                                                   \
} while (0)

__global__ void distributed_vector_sum(int *x, int *y, int *partial_sum, int
 *sum, long *pSync, int use_threadgroup, int mype, int npes)
{
  int index = threadIdx.x;
  int nelems = blockDim.x;
  int PE_start = 0;
  int logPE_stride = 0;
  partial_sum[index] = x[index] + y[index];

  if (use_threadgroup) {
    /* all threads realize the entire collect operation */
    shmemx_collect32_block(sum, partial_sum, nelems, PE_start, logPE_stride,
 npes, pSync);
  } else {
    /* thread 0 realizes the entire collect operation */
    if (0 == index) {
      shmem_collect32(sum, partial_sum, nelems, PE_start, logPE_stride, npes,
 pSync);
    }
  }
}
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int main (int c, char *v[])
{
  int mype, npes;
  int *x;
  int *y;
  int *partial_sum;
  int *sum;
  int use_threadgroup = 1;
  long *pSync;
  int nthreads = NTHREADS;

  shmem_init ();
  npes = shmem_n_pes();
  mype = shmem_my_pe();

  CUDA_CHECK(cudaSetDevice(mype));

  x = (int *) shmem_malloc(sizeof(int) * nthreads);
  y = (int *) shmem_malloc(sizeof(int) * nthreads);
  partial_sum = (int *) shmem_malloc(sizeof(int) * nthreads);
  sum = (int *) shmem_malloc(sizeof(int) * nthreads * npes);
  pSync = (long *) shmem_malloc(sizeof(long) * SHMEM_COLLECT_SYNC_SIZE);

  void *args[] = {&x, &y, &partial_sum, &sum, &pSync, &use_threadgroup, &mype,
 &npes};
  dim3 dimBlock(nthreads);
  dim3 dimGrid(1);
  shmemx_collective_launch ((const void *)distributed_vector_sum, dimGrid,
 dimBlock, args, 0, 0);
  CUDA_CHECK(cudaDeviceSynchronize());

  printf("[%d of %d] run complete \n", mype, npes);

  shmem_free(x);
  shmem_free(y);
  shmem_free(partial_sum);
  shmem_free(sum);
  shmem_free(pSync);

  shmem_finalize();

  return 0;
}

8.5. put_block Example
In the example below, every thread in block 0 calls shmemx_float_put_block.
Alternatively, every thread can call shmem_float_p, but shmem_float_p has a
disadvantage that when the destination GPU is connected via InfiniBand, there is one
RMA message for every single element, which can be detrimental to performance.

The disadvantage with using shmem_float_put in this case is that when the destination
GPU is P2P-connected, a single thread will copy the entire data to the destination GPU.
While shmemx_float_put_block can leverage all the threads in the block to copy the
data in parallel to the destination GPU.

#include <stdio.h>
#include <assert.h>
#include "mpi.h"
#include "shmem.h"
#include "shmemx.h"
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#define CUDA_CHECK(stmt)                                \
do {                                                    \
    cudaError_t result = (stmt);                        \
    if (cudaSuccess != result) {                        \
        fprintf(stderr, "[%s:%d] cuda failed with %s \n",\
         __FILE__, __LINE__, cudaGetErrorString(result));\
        exit(-1);                                       \
    }                                                   \
} while (0)

#define THREADS_PER_BLOCK 1024

__global__ void set_and_shift_kernel (float *send_data, float *recv_data, int
 num_elems, int mype, int npes) {
  int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;

  /* set the corresponding element of send_data */
  if (thread_idx < num_elems)
    send_data[thread_idx] = mype;

  int peer = (mype + 1) % npes;

  if (  Int block_offset = blockIdx.x == 0)
  * blockDim.x;
  /* All threads in the block call API with same arguments */
    shmemx_float_put_block(recv_data + block_offset, send_data + block_offset,
 min(blockDim.x, num_elems, - block_offset), peer); 
}

int main (int c, char *v[])
{
  int mype, npes;
  float *send_data, *recv_data;
  int num_elems = 8192;
  int num_blocks;

  shmem_init ();
  mype = shmem_my_pe();
  npes = shmem_n_pes();

  //application picks the device each PE will use
  CUDA_CHECK(cudaSetDevice(mype));
  send_data = (float *) shmem_malloc(sizeof(float) * num_elems);
  recv_data = (float *) shmem_malloc(sizeof(float) * num_elems);

  assert(num_elems % THREADS_PER_BLOCK == 0); /* for simplicity */
  num_blocks = num_elems / THREADS_PER_BLOCK;

  set_and_shift_kernel<<<num_blocks, THREADS_PER_BLOCK>>> 
                     (send_data, recv_data, num_elems, mype, npes);
  CUDA_CHECK(cudaDeviceSynchronize());

  printf("[%d of %d] run complete \n", mype, npes);

  shmem_free(send_data);
  shmem_free(recv_data);

  shmem_finalize();
  return 0; 
}
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Chapter 9.
FAQS

Q: Does NVSHMEM require CUDA?

A: Yes. CUDA 9.0 or later must be installed to use NVSHMEM. NVSHMEM is
a communication library intended to be used for efficient data movement and
synchronization between two or more GPUs. It is currently not intended for data
movement that does not involve GPUs.

Q: Does NVSHMEM require MPI?

A: No. NVSHMEM applications without MPI dependencies can use NVSHMEM and be
launched with the Hydra launcher packaged with NVSHMEM. A stand-alone build of
the Hydra launcher can also be used.

Q: Can NVSHMEM be used in MPI applications?

A: Yes. NVSHMEM provides an initialization API that takes an MPI communicator
as an attribute. Each MPI rank in the communicator becomes an OpenSHMEM
PE. Currently, NVSHMEM has been tested with OpenMPI 4.0.0. In principle, other
OpenMPI derivatives such as SpectrumMPI (available on Summit and Sierra) are also
expected to work.

Q: Can NVSHMEM be used in OpenSHMEM applications?

A: Yes. NVSHMEM provides an initialization API that supports running NVSHMEM on
top of an OpenMPI/OSHMEM job. Each OSHMEM PE maps 1:1 to an NVSHMEM PE.
NVSHMEM has been tested with OpenMPI 4.0.0/OSHMEM and OpenMPI3+/OSHMEM
depends on UCX (NVSHMEM has been tested with UCX 1.4.0). The OpenMPI-4.0.0
installation must be configured with the --with-ucx flag to enable OpenSHMEM +
NVSHMEM interoperability.
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Q: Can I use NVSHMEM to transfer data across GPUs on different sockets?

A: Yes, if there is an InfiniBand NIC accessible to GPUs on both the sockets. Otherwise,
NVSHMEM requires that all GPUs are P2P accessible.

Q: Can I use NVSHMEM to transfer data between P2P-accessible GPUs that are
connected by PCIE?

A: Yes, NVSHMEM supports both PCIE and NVLink. Atomic memory operations are
only supported between NVLink-connected GPUs.

Q: Can I use NVSHMEM to transfer data between GPUs on different hosts connected
by InfiniBand?

A: Yes. NVSHMEM supports InfiniBand. Strided-RMA (shmem_put/get), single-
element get (shmem_g), and atomic memory operations are not supported over
InfiniBand.

Q: Can two PEs share the same GPU with NVSHMEM?

A: NVSHMEM assumes a 1:1 mapping of PEs to GPUs. NVSHMEM jobs launched with
more PEs than available GPUs are not supported.

Q: My NVSHMEM job runs on NVIDIA Volta GPUs but hangs on NVIDIA Kepler GPUs.
What should I do?

A: NVSHMEM Synchronizing APIs inside the CUDA kernel is only supported on
NVIDIA Pascal and NVIDIA Volta GPUs.

Q: Can I run NVSHMEM on a host without InfiniBand NICs?

A: Yes. Support on P2P platforms remains unchanged.

Q: Can I run NVSHMEM on a host with InfiniBand NICs where some NICs are disabled
or configured in a non-InfiniBand mode?

A: Yes. See the Useful Environment Variables section for how to explicitly specify NIC
affinity to PEs.

Q: When should I use the nv-prefix version of an API or APIs?

A: If your application will use OpenMPI/OSHMEM, use the nv-prefix versions of the
APIs. If not, either version can be used.

Q: How should I allocate memory for NVSHMEM?

A: NVSHMEM supports shmem_malloc and shmem_align memory allocation APIs.
Per the OpenSHMEM specification v1.4, these APIs only require the remote pointer to be
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from the symmetric heap (SHEAP). However, NVSHMEM also requires the local pointer
to be from SHEAP for communication with a remote peer connected by InfiniBand. If
the remote peer is P2P accessible (PCI-E or NVLink), the local pointer can be obtained
using cudaMalloc and is not required to be from the SHEAP.

Q: What does the following runtime warning imply?

WARN: IB HCA and GPU are not connected to a PCIe switch so InfiniBand
 performance can be limited depending on the CPU generation

A: This warning is related to the HCA to GPU mapping of the platform. For more
information, refer to the SHMEM_HCA_PE_MAPPING variable in the Useful Environment
Variables section.

Q: What does the following runtime error indicate?

 NULL value could not find mpi library in environment

A: This occurs if libmpi.so is not present in the environment. For example,
Spectrum MPI installs libmpi_ibm.so. For more information, refer to the
NVSHMEM_MPI_LIB_NAME variable in the Useful Environment Variables section to
specify the name of the MPI library installed.

Q: What does the following runtime error indicate?

src/comm/transports/ibrc/ibrc.cpp:867: NULL value mem registration failed 

A: This occurs if GPUDirectRDMA is not enabled on the platform, thereby preventing
registration of cudaMalloc memory with the InfiniBand driver. This usually indicates
that the nv_peer_mem kernel module is absent. When nv_peer_mem is installed, output
from lsmod is similar to the following:

~$ lsmod | grep nv_peer_mem
nv_peer_mem               20480 0
ib_core                   241664 11
rdma_cm,ib_cm,iw_cm,nv_peer_mem,mlx4_ib,mlx5_ib,ib_ucm,ib_umad,ib_uverbs,rdma_ucm,ib_ipoib
nvidia                  17596416 226
nv_peer_mem,gdrdrv,nvidia_modeset,nvidia_uvm
nv_peer_mem is available here
https://github.com/Mellanox/nv_peer_memory

Q: Why does NVSHMEM package provide installation script for hydra process
manager?

A: NVSHMEM packages the installation script for the Hydra Process Manager to
enable standalone NVSHMEM application development. Specifically, you can write an
NVSHMEM program and run a multi-process job using the Hydra Process Manager.
This eliminates any dependency on installing MPI to use NVSHMEM. The Hydra
launcher is called mpiexec.hydra and the default Hydra build system installs two
symbolic links, mpiexec and mpirun. Run mpiexec.hydra -h for help information.
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Q: Are there environment variables, configuration files, or parameters that need to
be set for mpirun?

A: Run mpiexec.hydra -h for comprehensive information on these topics. The
following is the minimum required command line for a multi-node run on 2 hosts with 2
GPUs on each host:

mpirun -n 4 -ppn 2 -hosts hostname1,hostname2 /path/to/nvshmem/app/binary

For a single node, run:

mpirun -n 2 /path/to/nvshmem/app/binary

Q: Why does my NVSHMEM Hydra job become non-responsive on Summit?

A: Summit requires the additional option --launcher ssh to be be passed to
mpiexec.hydra at the command line.

Q: How do I dump debugging information?

A: This is currently not available as a runtime switch in NVSHMEM. Report any errors
to NVIDIA for assistance.

Q: How is an MPI+NVSHMEM app launched on Summit? Should jsrun, SMPI's
mpirun, mpirun from local install of OpenMPI or the mpirun shipped with
NVSHMEM be used?

A: We have successfully tested with jsrun, OpenMPI’s mpirun and Hydra mpirun
shipped with NVSHMEM. Only jsrun is officially supported on Summit. The following
is a sample command line to use 2 nodes, 4 GPUs/node with jsrun:

jsrun -n 2 -r 1 -a 4 -c 40 -g 4 -b packed:10 -d packed /path/to/nvshmem/app/
binary

One possible way to query hostnames for using OpenMPI and Hydra’s mpirun is the
following:

jsrun -n 2 -r 1 hostname 

Q: My application uses the CMake build system. Adding NVSHMEM to the build
system breaks for a CMake version below 3.11. Why?

A: Device linking support was added in version 3.11 which NVSHMEM requires.

Q: What's the difference between, say, shmemx_putmem_on_stream and
shmemx_putmem_nbi_on_stream? It seems both are asynchronous to the host
thread and ordered with respect to a given stream.

A: The function putmem_nbi_on_stream is implemented in a more deferred way by
not issuing the transfer immediately but making it wait on an event at the end of the
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stream. If there is another transfer in process at the same time (on another stream),
bandwidth could be shared. If the application can avoid this, nbi_on_stream gives
the flexibility to express this intent to NVSHMEM. But NVSHMEM currently does not
track activity on all CUDA streams. The current implementation records an event on the
user provided stream, makes an NVSHMEM internal stream wait on the event, and then
issues a put on the internal stream. If all nbi puts land on the same internal stream, they
are serialized so that the bandwidth is used exclusively.

Q: Can I issue multiple barrier_all_on_stream on multiple streams concurrently
and then cudaStreamSynchronize on each stream?

A: Multiple concurrent barrier_all_on_stream calls are not valid. Only one
barrier (or any other collective) among the same set of PEs can be in-flight at any
given time. To use concurrent barriers among partially overlapping active sets,
syncneighborhood_kernel can be used as a template to implement a custom barrier.
See the following for an example of a custom barrier: multi-gpu-programming-models.

Q: Suppose there are in-flight putmem_on_stream. Does shmem_barrier_all()
ensure completion of the pending shmem operations on streams?

A: The StreamSynchronize function needs to be called before calling
shmem_barrier_all. barrier_all_on_stream appears to hang non-
deterministically.

Q: Is there any hint to diagnose the hang?

A: Check if there are stream 0 blocking CUDA calls from the application, like
cudaDeviceSynchronize or cudaMemcpy, especially in the iterative phase of the
application. Stream 0 blocking calls in the initialization and finalization phases are
usually safe. Check if the priority of the user stream used for NVSHMEM _on_stream
calls is explicitly set with cudaStreamCreateWithPriority. Check that the
determinism of the hang changes with single-node (all pairs of GPUs connected by
NVLink or PCI-E only) compared to single-node (GPUs on different sockets connected
by Infiniband loopback) or multi-node (GPUs connected by InfiniBand).

Q: Why does a CMake build of my NVSHMEM application fail with version 3.12 but
does not with an earlier version?

A: A new CMake policy adds -pthread to the nvcc device linking causing the linking
failure. Before 3.12, the default policy did not add -pthread . For 3.12 and newer, add
the following:

cmake_policy(SET CMP0074 OLD)” to CMakeLists.txt

https://github.com/NVIDIA/multi-gpu-programming-models/blob/6efae7cbe344e562fbe0a67136892c0bbcb1cb98/nvshmem_opt/jacobi.cu#L127
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Q: Why is shmem_quiet necessary in the in the syncneighborhood_kernel?

A: It is required by shmem_barrier semantics. As stated in multi-gpu-programming-
models, "…shmem_barrier ensures that all previously issued stores and remote memory
updates, including AMO and RMA operations, done by any of the PEs in the active set
on the default context are complete before returning."

Q: If a kernel uses shmem_put_block instead of shmem_p, is the shmem_quiet still
required?

A: It is required per OpenSHMEM's requirement of put semantics which do not
guarantee delivery of data to the destination array on the remote PE. For more
information, see multi-gpu-programming-models.

Q: I use the host-side blocking API, shmem_putmem_on_stream, on the same CUDA
stream that I want to be delivered at the target in order. Is shmem_quiet required
even though there is no non-blocking call and they are issued in separate kernels?

A: In the current implementation, shmem_putmem_on_stream includes quiet. However,
it is only required to release the local buffer and not necessarily deliver at the target by
the OpenSHMEM spec.

Q: Is it sufficient to use a shmem_fence (instead of a shmem_quiet) in the above
case if the target is the same PE?

A: In the current implementation, all messages to the same PE are delivered in the order
they are received by the HCA, which follows the stream order. So, even shmem_fence is
not required. These are not the semantics provided by the OpenSHMEM specification,
however. The putmem_on_stream function on the same CUDA stream only ensures that
the local buffers for the transfers will be released in the same order.

Q: When shmem_quiet is used inside a device kernel, is the quiet operation
scoped within the stream the kernel is running on? In other words, does it ensure
completion of all operations or only those issued to the same stream?

A: It ensures all operations that are GPU-initiated. A shmem_quiet() call on the device
does not quiet in-flight operations from the host.

Q: Does pointer arithmetic work with shmem pointers? For example, int* outmsg
= (int *) shmem_malloc(2* sizeof(int)); shmem_int_p(target + 1,
mype, peer)?

A: Yes.

https://github.com/NVIDIA/multi-gpu-programming-models/blob/6efae7cbe344e562fbe0a67136892c0bbcb1cb98/nvshmem_opt/jacobi.cu#L53
https://github.com/NVIDIA/multi-gpu-programming-models/blob/6efae7cbe344e562fbe0a67136892c0bbcb1cb98/nvshmem_opt/jacobi.cu#L53
https://github.com/openshmem-org/specification/blob/19f78867685ecfa3454bfe803bde58e1b3d51cc7/content/shmem_put.tex#L63
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Q: Can I avoid cudaDeviceSynchronize + MPI_Barrier to synchronize across
multiple GPUs?

A: Yes, shmem_barrier_all_on_stream with cudaStreamSynchronize can be
called from the host thread. If multiple barrier synchronization events can happen
before synchronizing with the host thread, this gives better performance. Calling
shmem_barrier_all from inside the CUDA kernel can be used for collective
synchronization if there are other things that can be done by the same CUDA kernel
after a barrier synchronization event. For synchronizing some pairs of PEs and not
all, pair-wise shmem_atomic_set calls by the initiator and shmem_wait_until or
shmem_test calls by the target can be used.
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