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Scope of the Presentation

• Outline Tuning strategies to improve performance of programs on POWER9 processors

• The strategy is directed by program characteristics which can be assessed by hardware performance     
counters

• These strategies can take the form of compiler flags, source code pragmas/attributes

• This talk addresses overall summary of options supported by open source compilers such as GCC,  
LLVM and IBM proprietary compilers such as XL

• Tools used to measure performance counters- perf / PAPI



POWER9 Processor

• Optimized for Stronger Thread Performance and Efficiency 

• Increased Execution Bandwidth efficiency for a range of workloads including commercial, cognitive and 
analytics

• Sophisticated instruction scheduling and branch prediction for unoptimized applications and interpretive 
languages
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POWER9 Core Pipeline Efficiency
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• Shorter Pipelines with reduced disruption 
• Improved Application Performance for Modern 

Codes
• Advanced Branch Prediction
• Higher Performance and Pipeline Utilization

• Removed instruction grouping 
• Enhanced instruction fusion
• Pipeline can complete upto 128 (64-SMT4) 

instructions /cycle
• Reduced Latency and Improved Scalability

• Improved pipe control of load/store instructions
• Improved hazard avoidance



Tools Used in the Discussion
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•Open source compilers such as GCC, LLVM and Proprietary compilers such as XL
•[gcc| clang | xlc] -O[n] program.c –o program for C programs 
–[g++| clang++| xlC] -O[n] program.cc –o program for C++ programs 

–Optimization level ranges from 0 to 3, Ofast for GCC, LLVM and upto O5 for XL  

–Profile directed feedback 

• Perf tool 

–To record hotspots/profile application

•perf record  -e r<code> ./binary args > out (by default produces perf.data) 

•perf report (opens profile report stored in perf.data) 

–To measure hardware events 

•perf stat –e r<code> ./binary args > out 

–These counters can be read using PAPI API as discussed in the previous session
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Performance Tuning in the Front-End

• Front end fetches and decodes the successive instructions and passes them to the 
backend for processing 

• POWER9 is a superscalar processor and is pipeline based so works with an advanced 
branch predictor to predict the sequence and fetch instructions in advance 

• However if there is a misprediction, it causes wrong path instructions to be fetched and 
introduces additional penalty as these instructions need to be flushed from the pipeline 
and correct instructions need to be fetched and processed

– Counters to detect this: PM_BR_MPRED*

• Branches are caused even by function calls, Such branches affect instruction cache locality 
and increase instruction cache misses; Indirect function calls with no patterns make it 
difficult to predict with accuracy and can cause Instruction Cache Misses 

– Counters to detect this: PM_L1_ICACHE_MISS
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Tuning Strategies to improve Front End Performance-
Unrolling

• Unrolling loops (will reduce loop branches and in 
some cases branches within loop)

• Manual unrolling in source

• Language support to do unrolling in source 

• Place #pragma unroll(N) before the for loop 
which needs to be unrolled 

• Compiler support for controlling Unrolling

• Enable Loop Unrolling: -funroll-loops: Leave it 
to the compilers judgement to decide optimal 
unrolling for each loop

• Disable Loop unrolling : -fno-unroll-loops 

int x;

for(x=0;x<100;x+=5) 
{

func(x);

func(x+1);

func(x+2);

func(x+3);

func(x+4);

}

int x;
for(x=0;x<100;x++)
{

func(x);
}
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Tuning Strategies to improve Front End Performance- Inlining

• Shorter routines are best to be inlined to avoid call overhead and reduce branches 

• Broadens the window available for better scheduling

• Manual function inlining in source 

• Language Support– use inline __attribute__((always_inline)) in front of a function 
definition 

• Compiler Support

– -finline-functions(GCC, LLVM), -qinline(XL) :    Inline suitable functions

– Compiler supports inlining thresholds : number of instructions in a function before it 
can be considered for inlining

• Help Compiler to Inline more Functions:

• Convert Indirect calls to direct calls 
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Tuning Strategies to improve Front End Performance

• If you have a branch that assigns a different value depending on a condition we can convert it to a 
one line assignment statement with the ?: operator 

• Compiler generates isel instructions for such branches that essentially converts a control 
dependency into a data dependency 

• GCC/LLVM option to generate isel : -misel. To Disable generation of isel: -mnoisel
• For simple branches as below, we may leave the branch statement as it is; The branch predictor will 

automatically take care of the performance 

• Other techniques to improve performance: Provide hints in source code to indicate the expected 
values of expressions appearing in branch conditions (long __builtin_expect(long expression, long 
value);)  (hint whether branch is more likely to be taken/not)
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a=(val==M)?b:c;If(val==M) a=b; 
else a=c;
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If(val>M) M=val;



Tuning Strategies to Improve Backend Performance

• Backend of the processor is concerned with execution of the instructions 

• There are numerous ways we can tune performance in the backend 

• Using Processor Resources effectively-

• Registers, 

• Caches, 

• Prefetching

• Vectorization 
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Using Processor Registers Effectively
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• CPU Registers are an important resource 
for execution and are finite in number

• Compiler has to judge and allocate 
variables into registers to avoid spilling as 
much as possible

• Spill is a mechanism when a register 
value is saved on to memory for later use 
as the register is required to do some 
thing else

• Each spill will require one store + a future 
load (to use that value from memory)

• If distance between store and load is 
short it may cause a dependency chain in 
the pipeline

• Stalls due to spills can be detected 
using the following counters-
PM_LSU_FIN, PM_LSU_FLUSH, 

• Use other register resources like 
SIMD registers if applicable 
(Vectorization)

• Use multipurpose instructions such 
as andc (logical AND complement), 
orc (logical OR complement) which 
combines multiple math operations 
in a single instruction saving a 
register,

• Record instructions such as addi. 
That does the operation and also 
set the CR fields
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Using Caches Effectively
• Memory is organized in a hierarchy

• L1 cache : Closest memory to the processor and the 
fastest, followed by L2, L3 upto Memory

• Memory is most distant to the processor and slowest

• Data cache : stores data, instruction cache: stores 
instructions

• Data cache misses can stall load instructions in the 
pipeline causing a cascading effect on all those 
instructions dependent on it data 

• Counters- PM_LD_MISS_L1, 
PM_CMPLU_STALL_DCACHE_MISS, PM_ST_MISS_L1, 
PM_CMPLU_STALL_DMISS_L2L3, 
PM_CMPLU_STALL_DMISS_LMEM etc Memory

(~300+ cyc)

L3 $
(~26 cyc)

L2 $
(~10 cyc)

L1 $
(~3 cyc)
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Memory footprint reduction (enum=small)
• Use only as much memory as required 
• Game applications such as chess, GO contain data structure to represent board
• Each square has a fixed number of states, n, which is usually a single digit number
• Usually such a data type is defined as an enumerated data type such as
– typedef enum {BLACK=0, WHITE=1,…} square;
• Typically each element of square will be allocated as 
• type “int” (4 bytes)
• Compile the application with –qenum=small(XL) or –fshort-enums(LLVM, 
• GCC)  that allocates only minimum required memory to store each 
• element of square (1 byte),
• 1/4th memory will be used 
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Prefetching
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• Hardware prefetching

• Controlled by DSCR (data stream control register) settings; 

• –ppc64_cpu --dscr=<n> 

• Common DSCR configurations: n=0 (moderate depth, ramp) :  By default the 
HW prefetcher is “ON”

• n=0x1D7 (Achieve most aggressive depth, most quickly, enable stride N 
prefetch), 

• n=0x1 (no prefetch)

• Reference: https://developer.ibm.com/linuxonpower/docs/linux-on-power-
application-tuning/
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Software Prefetching
• Programmer inserted prefetch instructions __dcbt (load prefetch), __dcbtst (store prefetch)

• If you want to explicitly control prefetching via software *only*, you can turn off hardware prefetching using 

• ppc64_cpu –dscr=1

• Compilers provide an option to enable compiler to insert prefetch instructions wherever applicable. However this is 

only a directive that can be ignored by the compiler if it does not see adequate benefit  

• XL: (-qprefetch/-qnoprefetch) and GCC (-fprefetch-loop-arrays/-fno-prefetch-loop-arrays); Some compilers such as 

GCC may include further loop optimizations when –fprefetch-loop-arrays is invoked. 

• XL/POWER9 supports setting DSCR values at compile time for an application 

Example: -qprefetch=dscr=<value>

Compiling with the option –qprefetch=dscr=7 sets the prefetch level to 7

Compiling with the option –qprefetch=dscr=1 turns off hardware prefetching and is equivalent to     

ppc64_cpu –dscr=1 

• Useful in cases where we cannot obtain root privileges to play with prefetch settings on the command line
IBM Systems / version 1.0 / November, 2019 / © 2018 IBM Corporation
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Vectorization
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• Compute intensive programs whose computations can be parallelized can take advantage 
of vector instructions on POWER

• Advantages- reduces loads, stores and hence pathlength, reduces register pressure on 
GPRs, effective use of resources, Faster throughput  

• At a time- Vector instructions can work on 4 32 bit words, 8 half-words and 16 bytes 

– Amount of work done per unit time correspondingly becomes faster

• Clang/GCC: -ftree-loop-vectorize, -mvsx, -maltivec, -mllvm –force-vector-width=n(Clang 
only), 

• Help the Compiler to automatically vectorize loops

• Keep the loop simple 

• Avoid extensive branches, pointer references within loops (use restrict wherever 
applicable) 

• GPU codes can scale really well with SIMDization for performance

• Structure of arrays are more amenable to vectorization than array of structures  



Additional Ways to Improve Performance
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• Serial v/s Parallel Execution: tasks that don’t have dependencies can be done in parallel using a 
framework such as OpenMP that can perform Tasks in 1/Nth time with N threads

• If Mathematical accuracy is not important, use -Ofast
• This automatically substitutes expensive library calls to native implementation of the math 

function using target ISA
• Thread Binding 

• We can use OMP_PLACES=“{0},{5},{10},{15}" OMP_NUM_THREADS=4 time ./application 
<params> to bind first thread to CPU0, second thread to CPU1, … so on

• For GCC specific applications, we can use GOMP_CPU_AFFINITY="0 5 10 15" that inturn sets 
OMP_PLACES

• The ordering of CPU numbers determines performance of the application
• If all threads are bound to a single CPU execution speed slows down
• To choose the right CPU number on a POWER Linux system, we can consult the file 

/sys/devices/system/cpu/cpu0/topology/thread_siblings_list
• Large Pages- allow TLB to map to a larger virtual memory page thereby reducing TLB misses. 

Memory intensive applications that use large amounts of virtual memory can benefit with using 
largepages 18
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Flag Kind XL GCC/LLVM Can be simulated 
in source Benefit Drawbacks

Unrolling -qunroll -funroll-loops #pragma unroll(N)

Unrolls loops ; increases 
opportunities pertaining to  
scheduling for compiler Increases register pressure

Inlining -qinline=auto:level=N -finline-functions

Inline always 
attribute or manual 
inlining

increases opportunities for 
scheduling; Reduces branches 
and loads/stores

Increases register pressure; 
increases code size 

Enum small -qenum=small -fshort-enums -manual typedef Reduces memory footprint
Can cause issues in 
alignment 

isel
instructions -misel Using ?: operator

generates isel instruction 
instead of branch;
reduces pressure on branch 
predictor unit

latency of isel is a bit higher; 
Use if branches are not 
predictable easily 

General 
tuning

-qarch=pwr9, 
-qtune=pwr9

-mcpu=power8, 
-mtune=power9 Turns on platform specific tuning

64bit 
compilation -q64 -m64

Prefetching
-
qprefetch[=aggressive] -fprefetch-loop-arrays

__dcbt/__dcbtst, 
_builtin_prefetch reduces cache misses 

Can increase memory traffic 
particularly if prefetched 
values are not used 

Link time 
optimization -qipo -flto , -flto=thin 

Enables Interprocedural
optimizations 

Can increase overall 
compilation time

Profile 
directed 
feedback -qpdf1, -qpdf2 

-fprofile-generate and –
fprofile-use LLVM has an 
intermediate step llvm-
profdata Enables hot path optimizations Requires a training run 



Summary
• Today we talked about

• Tuning strategies pertaining to the various units in the POWER9 HW –
• Front-end, Back-end  
• Some of these strategies were compiler flags, source code pragmas that one can 

apply to see improved performance of their programs 
• We also saw additional ways of improving performance such as parallelization, binding 

etc
• During the presentation we were introduced to several POWER9 PMU counters that 

helps us understand bottlenecks of performance
• Get counter data either using perf stat or PAPI APIs 

• We concluded with a comparison of compiler flags on open source compilers such as 
GCC, LLVM with IBM XL compilers 
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Disclaimer: This presentation is intended to represent the views of the author rather than IBM and the recommended solutions are not guaranteed on sub 
optimal conditions
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