Tutorial @ SC2019

Application Porting & Optimization on
GPU-accelerated POWER Architectures

Best practices for porting scientific applications

Christoph Hagleitner, hle@zurich.ibm.com



mailto:hle@zurich.ibm.com

Acknowledgments

» CPMD team

* HPCG team

= SnapML team

* Many more working on next-gen HPC

Friday, November 8, 2019 IBM Zurich Research Lab



Agenda

» Recall: openPOWER for HPC - differentiating features
» Porting a complex application: CPMD

» Porting a scalable benchmark: HPCG

» Porting a cloud benchmark: prediction of click

= HPC application porting: Trends
— Libraries
— Containerization
— Jupyter
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AC922: IBM POWERS9 for HPC

<+—» HBM/DRAM Bus (aggregate B/W)
<—» NVLINK
<—» X-Bus (SMP)

«—» PCle Gend
«<4—» EDR B

135 GB/

42 TF (6x7 TF)

96 GB (6x16 GB)

512 GB (2x16x16 GB)
25 GB/s (2x12.5 GB/s)
83

HBM & DRAM speeds are aggregate (Read+Write).
All other speeds (X-Bus, NVLInk, PCle, IB) are bi-directional.

*.
6.0 GB/s Read

i /s Rea

2.2 GB/s Write
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AC922: GPU options

NVIDIA Volta GPU with NVLink 2.0

Graphics Memory

System Memory

Graphics Memory

-

System Memory
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AC922 w/ 4 GPUs

PCle slot (4x) . | Power Supplies (2x)
e Gend PCle | oW~ ¢ 2200W

e 2,x16 HHHL Adapter e 200VAC, 277VAC,

e 1, Shared slot 400VDC input
e 1 x8 HHHL Adapter

Memory DIMM’s

BMC Card (16x)

e IPMI e 8 DDR4 IS DIMMs
ket

e 1Gb Eth t per soc

e VGA o e 8,16,32,64,128GB

e 1USB 3.0 DIMMs

NVidia Volta GPU

e 2 per socket
SXM2 form factor
300W

NVLink 2.0

e Air Cooled

Power 9 Processor (2x)
e 18, 22C water cooled
e 16, 20C air cooled
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AC922: POWER9 IO & Accelerator BW

Extreme Accelerator Bandwidth and
Reduced Latency

— PCle Gen 4 x 48 lanes —
192 GB/s peak bandwidth (duplex)

— IBM BlueLink 25Gb/s x 48 lanes —
300 GB/s peak bandwidth (duplex)
Coherent Memory and Virtual Addressing
Capability for all Accelerators

— CAPI 2.0 - 4x bandwidth of POWERS using
PCle Gen 4

— NVLink 2.0 — Next generation of GPU/CPU
bandwidth and integration using BlueLink

— OpenCAPI - High bandwidth, low latency and
open interface using BlueLink
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Agenda

= Recall: openPOWER for HPC - differentiating features
» Porting a complex application: CPMD

= Porting a scalable benchmark: HPCG

= Porting a cloud benchmark: prediction of clicks

= HPC application porting: Trends
— Libraries
— Containerization
— Jupyter
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Porting a Complex HPC Application to POWER + GPUs

» Heterogeneous systems (eg, CPU/GPU) are key to reach exascale

— need to port computational science codes to heterogeneous systems

— requires algorithm rethinking and code reengineering in order to fully exploit next generation of heterogeneous
architectures

* OpenPOWER systems combining CPUs and GPUs address key issues on the road
to scalable acceleration

— Compute density
— Data transfer BW

— Coherent memory space

* Today's showcases
#1: electronic structure code CPMD

#2: HPCG benchmark
#3: cloud benchmark: prediction of clicks
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OpenPOWER EcoSystem

» POWER-optimized libraries & compilers
— Advanced toolchain

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40 9d82 446ebc23c550/page/IBM%20Advance%20Toolchain%?2
Ofor%20PowerLinux%20Documentation

— XL-compilers

https://www.ibm.com/developerworks/community/groups/community/xlpower/

— ESSL

https://www-03.ibm.com/systems/power/software/essl/

= GPU optimization
— CUDA

— CUDNN
— openGL

= PowerAl
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Agenda

» Porting a complex application: CPMD
— Introduction
— Refactoring the code
— Compiling the code
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11



Car—Parrinello Molecular Dynamics: CPMD

» Shown to scale to very large systems
* Numerous showcases, eg, Li-Air batteries

65K 262K 1.6M 3.1M 6.3M
number of threads

BG/Q Sequoia @ LLNL. 96 Racks
1.6M cores, 6.4M threads

C. Bekas, A. Curioni, Very large scale wavefunction orthogonalization in Density Functional Theory
electronic structure calculations, Computer Physics Communications, Volume 181, Issue 6, 2010.
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Simulations of Li,O. in Propylenecarbonate,
T. Laino, A. Curioni, A New Piece in the

Puzzie of Lithium/Air Batteries, Chemistry,
DOI 10.1002/chem.2071103057 (22 February
2012)
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Introduction: Kohn—Sham equations

Observation:

= some parts of the total energy (such as the
Kinetic term) are efficiently computed in the
Fourier (reciprocal) space, whereas other
parts, like the Hartree energy and the
interaction with external fields, are accurately
evaluated in the real (direct) space

»Each iteration step requires at least
N x 3D FFTs (inverse/forward)

We focused on:
= Construction of the electronic density

= Applying the potential to the wavefunctions

* Orthogonalization of the wavefunctions
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Parallelization: Distributed Memory and 3D FFT
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Limited Scalability in Standard 3D FFT

Each processor takes a number of whole planes ...

... very good scheme for small — medium sized
computational platforms

... but observe that scalability is limited by the
number of planes across the Z-direction!

... which is in the order of a few hundred

Thus: not appropriate for a massively parallel
system

Friday, November 8, 2019 IBM Zurich Research Lab
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3D FFTs Using Task Groups

* Loop across the number of electrons.
Each iteration requires 1 3D FFT.

o(r) = i (r)]?

Task Group a number of iterations

ALLTOALL

EIG 1: PROCS 1-2 EIG 2: PROCS 1-2
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» Hierarchical parallelism*: Assign to each
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3D FFTs Using Task Groups

= task groups of processors will work on different eigenstates concurrently

» number of processors per group: ldeally the one that achieves the best scalability
for the original parallel 3D FFT scheme

EIG 1: ONLY PROC 1 EIG 2: ONLY PROC 2
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GPU Porting: Construction of the electronic density

O;(r) = inVFFT(gB;(G))
N
o) = 3 16:0)1

* The reverse Fourier transform of the
N states @(G) is distributed over the
NS streams that work concurrently.

» Each stream is assigned to a CPU
thread.

» Each stream transforms a state ¢(G)
to the corresponding density (1D FFT
—all2all — 2D FFT)
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GPU Porting: Applying the potential to the wavefunctions

* The reverse and forward Fourier
transforms as well as the application
of the potential V to the N states are

distributed over NS streams that work
concurrently.

= Each stream is assigned to a CPU V(r)o;(r)
thread. ‘

» Each stream transforms a state ¢(G)
to @(r) (1D FFT — all2all — 2D FFT). — |
The potential is applied and the result (V@i)(G) — FFT((V@{)(I‘))
back transformed (2D FFT — all2all —
1D FFT).

0;(r) = invFFT(;(G))
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GPU Porting: Orthogonalization via block Gram-Schmidt

~

= we seek the orthogonalized coefficient matrix C' = ortho(C')

* the coefficients of the expansion of ¢(G) on the

Ty " C=1[C,Cs,....C)
plane-wave basis is block-partitioned column- C1,C2 |

wise into n blocks of size b. Cy,. ... C
» the block Gram—-Schmidt scheme loops over
the n blocks Ci and orthogonalizes them one C; = ortho((I — =L ¢.ET)Cy)
) = ort 1 C;00)C;

after the other
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GPU Porting: Orthogonalization via block Gram-Schmidt

BLAS (1 stream)

Friday, November 8, 2019 IBM Zurich Research Lab
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GPU Porting: Orthogonalization via block Gram-Schmidt

Two streams take care of D2H and H2D communication, respectively.

1]
1]

~

Cit1 Ciq
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GPU Porting: Orthogonalization via block Gram-Schmidt

Ciy1 = ortho((1 — 2321 C’jéjT)CiH)

T~

Ciio C,

Sillinil Niil

INIEE ik
GPU .

BLAS op time
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Compiling CPMD w/ GPUs

* CPMD is compiled using the IBM XL Fortran compiler [13] for Linux 15.1.5 with
optimization flags:
-O3 -ghot -gstrict -gprefetch=aggressive:dscr=7 -qgsimd=auto -galtivec -q64 -
gmaxmem=-1 -qtune=pwr8 -qarch=pwr8 -glanglvi=tspure -gsmp=omp

* The C-code was compiled with the IBM XL C compiler version 13.1.5.

1728 Atoms (Si-6 2744 Atoms (Si-7

Configuration CPU + CPU +
GPU (80 GPU (80
MPI + 16 MPI + 16

GP

GPU
Execution Time
VPSI
RHOOFR 6142 14931 | 150 |96 |
DISORTHO 30
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Comparing CPMD on 256 Water Molecules

AC922 +
V100 GPU

191.18 105 47
291.71 150.97
157.98 115.09

_ODIIS |

o
-
-

a1
333
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Agenda

= Recall: openPOWER for HPC - differentiating features
= Porting a complex application: CPMD

» Porting a scalable benchmark: HPCG

= Porting a cloud benchmark: prediction of click logs

= HPC application porting: Trends
— Libraries
— Containerization
— Jupyter
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HPCG Benchmark: Introduction

HPCG ... High Performance Conjugate Gradient
www.hpcg-benchmark.org

» Solves Ax=Db, A large, sparse, b known, x computed.

= An optimized implementation of PCG contains essential computational and communication
patterns that are prevalent in a variety of methods for discretization and numerical solution
of PDEs

» Patterns:
— Dense and sparse computations
— Dense and sparse collective
— Multi-scale execution of kernels via MG (truncated) V cycle
— Data-driven parallelism (unstructured sparse triangular solves)
» Strong verification and validation properties (via spectral properties of PCG)

Friday, November 8, 2019 IBM Zurich Research Lab 27



AC922: IBM POWERS9 for HPC

<+—» HBM/DRAM Bus (aggregate B/W)
<—» NVLINK
<—» X-Bus (SMP)

«—» PCle Gend
«<4—» EDR B

135 GB/

42 TF (6x7 TF)

96 GB (6x16 GB)

512 GB (2x16x16 GB)
25 GB/s (2x12.5 GB/s)
83

HBM & DRAM speeds are aggregate (Read+Write).
All other speeds (X-Bus, NVLInk, PCle, IB) are bi-directional.

*.
6.0 GB/s Read

i /s Rea

2.2 GB/s Write
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Optimizations

= Strong compiler optimization (-O95, -gipa=level=2, -ghot=level=2, etc)
— Little overall effect
» MPI configuration
— One task per core
— Binding policy: mpirun --bind—to core --map-by core
» OpenMP configuration:
— two threads per task (core)

— OMP_PROC _BIND=FALSE (no explicit binding to the hardware threads of the
core)

— OMP_WAIT_POLICY=ACTIVE (no need for yield)

Friday, November 8, 2019 IBM Zurich Research Lab
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HPC Benchmark: POWER9 results

MareNostrum P9 CTE (20 nodes):
= 40 MPI tasks/node, 2 threads each

» | ocal domain dimension: 160x160x96
» 744 .6 GFlop/s (37.2 GFlop/s per node)

Kernel Time [%] GFlop/s

DOT 3.5 359.9

WAXPY 2.7 475.4

SPMV : 771.0

MG : 815.7

Raw total 783.9

Total 744 .6
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Agenda

= Recall: openPOWER for HPC - differentiating features
= Porting a complex application: CPMD

= Porting a scalable benchmark: HPCG

» Porting a cloud benchmark: prediction of click logs

= HPC application porting: Trends
— Libraries
— Containerization
— Jupyter
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Machine

Learning: Principles

A

\ 4

Data
Sources

Automated, cloud-based deployment

Modular architecture that leverages
existing ML and analytics services

EA B e B

Model training time may dominate

time to insight in several cases:

A.

to adapt to events in real time

B

C.

ingested per day
=

snap.ml.distributed

Is needed, Large-scale data.

Distributed training

GPU acceleration.

are Spark** + MPI APIs

AN

are needed for best accuracy

Friday, November 8, 2019
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Snap
ML

NN X

snap.ml.local

Small/medium scale data.

Single node training
GPU acceleration.
Sklearn-compatible API.
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3 Key Ingredients for HP Machine Learning

GPU Acceleration Dynamic Optimized Efficient .Cluster
Memory Management Scaling
sa8gss
00000 I

g ~-
O0ccoo -

Power9 CPU V100 GPU

C. Duenner, S. Forte, M. Takac, and M. Jaggi. "Primal-Dual Rates and Certificates." In International Conference on Machine Learning (ICML
2016), pp. 783-792. 2016.

T. Parnell, C. Duenner, K. Atasu, M. Sifalakis and H. Pozidis, "Large-scale stochastic learning using GPUs," 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), Lake Buena Vista, FL, 2017, pp. 419-428.

C. Duenner, T. Parnell, K. Atasu, M. Sifalakis and H. Pozidis, “Understanding and Optimizing the Performance of Distributed Machine Learning
Applications on Apache Spark”, poster presentation at NIPS 2016 ML Systems workshop, IEEE Big Data 2017

C. Duenner, T. Parnell, M. Jaggi, “Efficient Use of Limited-Memory Resources to Accelerate Linear Learning”, proceedings of 2017 Neural
Information Processing Systems (NIPS 2017)

Friday, November 8, 2019 IBM Zurich Research Lab
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Tera-scale Computational Advertising Application

Criteo Releases Industry’s Largest-Ever Dataset
for Machine Learning to Academic Community

New York - June 18, 2015 - Criteo (NASDAQ: CRTO), the performance
marketing technology company, today announced the release of the largest
public machine learning dataset ever issued to the open source community,

with the goal of supporting academic research and innovation in

distributed machine learning algorithms. 4 2 billion

examples

Predict whether a user will click on a given advert
based on an anonymized set of features

Train: Fit model parameters using 4.2 billion examples

Inference: Evaluate model on 180 million unseen examples

Friday, November 8, 2019 IBM Zurich Research Lab

1 million
features
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Snap ML: Tera-scale ML benchmark

Criteo Terabyte Click Logs Benchmark

Comparison of Tensorflow** on Google Cloud
with SNAP ML on POWER9* (AC922) cluster

Workload: Click-through-rate prediction for

70

computational advertising, using Logistic

~
o

Regression

®))
o

___ 46X faster

o)
o

Dataset: Criteo Terabyte Click Logs
(http://labs.criteo.com/2013/12/download-

terabyte-click-logs/)

1.53

N
o

RN
o

NN

)

Tensorflow (Google Cloud) snap ML (IBM Power)

% https://cloud.google.com/blog/big-data/2017/02/using-

google-cloud-machine-learning-to-predict-clicks-at-scale

Dataset: 4.2 billion training examples, 1 million features
Model: Logistic Regression
Test LogLoss: 0.1293 (Tensorflow), 0.1292 (snap ML)
Platform: 89 machines (Tensorflow),
8 Power9 CPUs+16 NVIDIA® Tesla™ V100 GPUs (snap ML)

Friday, November 8, 2019
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https://cloud.google.com/blog/big-data/2017/02/using-google-cloud-machine-learning-to-predict-clicks-at-scale

Snap ML single-GPU performance

Snap ML on PCI-Gen3 vs. NVLINK CPU-GPU link

NVLINK 2.0 Limited by GPU memory bandwidth (V100)

3.5x faster

PCIe-Gen3 Limited by data transfer to GPU (PCle)

e

0O 25 50 75 100 125 150 175

Training Time [s] Dataset: 200 million training examples, 1 million features
Model: Logistic Regression
Test LogLoss: 0.131 (in all cases)
Platform: Single node experiment. 1x NVIDIA Tesla V100 GPU
PCIe-Gen3: Intel(R) Xeon(R) Gold 6150 CPU (SkyLake)
NVLink2.0: Power9 CPU (AC922 server)
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Profile (Intel x86™* + Tesla™ V100 + PCle Gen3)

Train chunk Train chunk
(i) on GPU (i+1) on GPU

Copy chunk Copy chunk

(i+1) onto GPU (i+2) onto GPU

Each iteration takes 330ms and the bottleneck is the time to copy next chunk onto GPU

Friday, November 8, 2019 IBM Zurich Research Lab
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Profile (Power9* + Tesla™ V100 + NVLINK 2.0)

Train chunk Train chunk Train chunk Train chunk Train chunk
(i) on GPU (i+1) on GPU (i+2) on GPU (i+3) on GPU (i+4) on GPU

Copy chunk Copy chunk Copy chunk Copy chunk Copy chunk

GPU | GPU | GPU i GPU

(i+1) onto ; (i+2) onto ; (i+3) onto ; (i+4) onto | (i+5) onto

Copy time completely hidden = Each iteration takes 93ms (3.5x faster)

Friday, November 8, 2019 IBM Zurich Research Lab
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Agenda

= Recall: openPOWER for HPC - differentiating features
= Porting a complex application: CPMD
= Porting a scalable benchmark: HPCG
= Porting a cloud benchmark: SNAP-ML

= HPC application porting: Trends
— Libraries
— Containerization
— Jupyter
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39



HPC Application Trends: ML/AI libraries

Auto-Al software: PowerAl Vision, IBM Auto-Al

Watson Watson
Studio Machine Learning
WML CE
Watson ML Accelerator
Mg:: m;::z:‘t Watson ML CE
Environment Runtime Environment

Train, Deploy, Manage Models

XGBoost Sb‘dff(? @ (tearn I Keras

PYTORCH ::' Chainer SnapML

=t | Iy
= 'S

Accelerated AC922 Storage
Power9 Servers (Spectrum Scale ESS)
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Watson
OpenScale

Model Metrics,
3ias, and Fairness
Monitoring
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HPC Applications: New Reference Architecture

Anaconda

Data Prep ... Parallel Training ... Model Tuning ... Model Evaluation ... Inference Services

Deep Learning Impact

Tensorflow Family (w/ Keras) TF, Caffe, PyTorch, Chainer, Theano, LSCikit-
Torch,... earn, ...
Caffe, PyTorch*

IBM Cloud Private IBM Public Cloud
Kubernetes

Friday, November 8, 2019 IBM Zurich Research Lab
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HPC Application Porting: Trends

= DEMO

Friday, November 8, 2019 IBM Zurich Research Lab
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