From 5cb7798cec4ab618a6b8165ac6e548a4716ccedd Mon Sep 17 00:00:00 2001
From: Andreas Herten <a.herten@fz-juelich.de>
Date: Thu, 7 Nov 2019 20:14:15 +0100
Subject: [PATCH] First version of 2019 tasks

---
 .../Hands-On-Performance-Counters.ipynb       | 3751 +++++++-------
 .../Handson/.master/Makefile                  |    7 -
 .../Handson/.master/README.md                 |    2 -
 .../Handson/.master/common.py                 |   20 +
 .../Handson/.master/copyNotebook.mk           |   12 +-
 .../Hands-On-Performance-Counters.html        |  392 +-
 .../Hands-On-Performance-Counters.ipynb       |  345 +-
 .../Handson/Hands-On-Performance-Counters.pdf |  Bin 63835 -> 73490 bytes
 2-Performance_Counters/Handson/README.md      |    2 -
 .../Hands-On-Performance-Counters.html        | 3590 ++++++++------
 .../Hands-On-Performance-Counters.ipynb       | 4403 +----------------
 .../Hands-On-Performance-Counters.pdf         |  Bin 254641 -> 357396 bytes
 .../Handson/Solutions/Makefile                |   45 +-
 .../Handson/Solutions/common.py               |   20 +
 2-Performance_Counters/Handson/Tasks/Makefile |   45 +-
 .../Handson/Tasks/common.py                   |   20 +
 16 files changed, 4871 insertions(+), 7783 deletions(-)

diff --git a/2-Performance_Counters/Handson/.master/Hands-On-Performance-Counters.ipynb b/2-Performance_Counters/Handson/.master/Hands-On-Performance-Counters.ipynb
index 5c1e55d..4bbe06a 100644
--- a/2-Performance_Counters/Handson/.master/Hands-On-Performance-Counters.ipynb
+++ b/2-Performance_Counters/Handson/.master/Hands-On-Performance-Counters.ipynb
@@ -48,7 +48,7 @@
     "\n",
     "For the first task, we will measure quantities often used to characterize an application: cycles and instructions.\n",
     "\n",
-    "**TASK**: Please measure counters for completed instructions and run cycles. See the TODOs in [`poisson2d.ins_cyc.c`](/edit/Tasks/poisson2d.ins_cyc.c). You can either edit the files with Jupyter capabilities by clicking on the link of the file or use a dedicated editor (`vim` is available). The names of the counters to be implemented are `PM_INST_CMPL` and `PM_RUN_CYC`.\n",
+    "**TASK**: Please measure counters for completed instructions and run cycles. See the TODOs in file [`poisson2d.ins_cyc.c`](poisson2d.ins_cyc.c). You can either edit the files with Jupyter capabilities by clicking on the link of the file or selecting it in the file drawer on the left; or use a dedicated editor on the system(`vim` is available). The names of the counters to be implemented are `PM_INST_CMPL` and `PM_RUN_CYC`.\n",
     "\n",
     "After changing the source code, compile it with `make task1` or by executing the following cell (we need to change directories first, though).  \n",
     "*(Using the `Makefile` we have hidden quite a few intricacies from you in order to focus on the relevant content at hand. Don't worry too much about it right now – we'll un-hide it gradually during the course of the tutorial.)*\n",
@@ -65,7 +65,24 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "/autofs/nccsopen-svm1_home/aherten/OpenPOWER-SC19/2-PAPI/Compiling/Solutions\n"
+      "/autofs/nccsopen-svm1_home/aherten/OpenPOWER-SC19/Prototyping/2-Performance_Counters/Handson/Solutions\n"
+     ]
+    }
+   ],
+   "source": [
+    "!pwd"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "/autofs/nccsopen-svm1_home/aherten/OpenPOWER-SC18/2-PAPI/Compiling/Solutions\n"
      ]
     }
    ],
@@ -76,14 +93,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "gcc -DUSE_DOUBLE -Ofast -std=c99 -lm -lpapi  poisson2d.ins_cyc.c -o poisson2d.ins_cyc.bin\r\n"
+      "gcc -DUSE_DOUBLE -Ofast -std=c99 -lm -lpapi  poisson2d.ins_cyc.c -o poisson2d.ins_cyc.bin\n"
      ]
     }
    ],
@@ -100,17 +117,21 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 1,
    "metadata": {},
    "outputs": [
     {
-     "evalue": "Error: Failed to connect to Jupyter notebook. \r\nhttp://localhost:8888/\r\nError: Invalid response: 500 Internal Server Error",
-     "output_type": "error"
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
+      "100,64,32,0.0011,3324225,33235,33960,1859440,18357,25033\n"
+     ]
     }
    ],
    "source": [
     "!./poisson2d.ins_cyc.bin 100 64 32\n",
-    "# alternatively call !make run_task1, one of our shortcutts"
+    "# alternatively call !make run_task1"
    ]
   },
   {
@@ -126,7 +147,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 80,
+   "execution_count": 2,
    "metadata": {
     "scrolled": true
    },
@@ -135,554 +156,523 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "gcc -DUSE_DOUBLE -Ofast -std=c99 -lm -lpapi  poisson2d.ins_cyc.c -o poisson2d.ins_cyc.bin\n",
-      "bsub -W 60 -nnodes 1 -Is -P GEN110 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.ins_cyc.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv\n",
-      "Job <4318> is submitted to default queue <batch>.\n",
+      "bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.ins_cyc.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.ins_cyc.bin.csv\n",
+      "Job <24059> is submitted to default queue <batch>.\n",
       "<<Waiting for dispatch ...>>\n",
       "<<Starting on login1>>\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,4,0.0012,548153,2735,3888,266504,1243,4753\n",
+      "200,32,4,0.0012,572978,2861,3639,261330,1235,4684\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,8,0.0014,1082153,5405,6558,668070,3227,6573\n",
+      "200,32,8,0.0014,1082978,5411,6189,601962,2914,5099\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,12,0.0014,1442153,7205,8358,872094,4181,12974\n",
+      "200,32,12,0.0014,1442978,7211,7989,811603,3992,5761\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,16,0.0015,1802153,9005,10158,1074585,5230,7975\n",
+      "200,32,16,0.0014,1802978,9011,9789,1017305,4988,7017\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,20,0.0015,2162153,10805,11958,1281118,6236,14107\n",
+      "200,32,20,0.0015,2162978,10811,11589,1221559,6002,7999\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,24,0.0016,2522153,12605,13758,1479347,7222,10037\n",
+      "200,32,24,0.0016,2522978,12611,13389,1435167,7037,9259\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,28,0.0019,2882153,14405,15558,1682827,8251,11219\n",
+      "200,32,28,0.0016,2882978,14411,15189,1633061,8054,9789\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,32,0.0017,3242153,16205,17358,1871170,9210,12109\n",
+      "200,32,32,0.0017,3242978,16211,16989,1842895,9092,10889\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,36,0.0018,3602153,18005,19158,2075730,10193,13063\n",
+      "200,32,36,0.0018,3602978,18011,18789,2042894,10108,12457\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,40,0.0019,3962153,19805,20958,2272736,11258,14491\n",
+      "200,32,40,0.0019,3962978,19811,20589,2261332,11191,14233\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,44,0.0019,4322153,21605,22758,2491982,12249,17554\n",
+      "200,32,44,0.0020,4322978,21611,22389,2458267,12112,14375\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,48,0.0020,4682153,23405,24558,2692600,13292,16003\n",
+      "200,32,48,0.0020,4682978,23411,24189,2658621,13164,15613\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,52,0.0020,5042153,25205,26358,2878730,14277,17055\n",
+      "200,32,52,0.0020,5042978,25211,25989,2866175,14190,16864\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,56,0.0021,5402153,27005,28158,3084915,15295,18583\n",
+      "200,32,56,0.0021,5402978,27011,27789,3080357,15237,21565\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,60,0.0022,5762153,28805,29958,3291836,16330,19233\n",
+      "200,32,60,0.0022,5762978,28811,29589,3283103,16278,18799\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,64,0.0023,6122153,30605,31758,3622134,17946,20887\n",
+      "200,32,64,0.0022,6122978,30611,31389,3587582,17820,19681\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,68,0.0024,6482153,32405,33558,3930512,19200,22297\n",
+      "200,32,68,0.0025,6482978,32411,33189,3893368,19284,20847\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,72,0.0027,6842153,34205,35358,4270649,20402,22797\n",
+      "200,32,72,0.0025,6842978,34211,34989,4289441,21278,22715\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,76,0.0025,7202153,36005,37158,4209408,20894,24035\n",
+      "200,32,76,0.0024,7202978,36011,36789,4208700,20936,22677\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,80,0.0025,7562153,37805,38958,4410712,21911,24986\n",
+      "200,32,80,0.0025,7562978,37811,38589,4409613,21897,23855\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,84,0.0026,7922153,39605,40758,4631259,23020,25649\n",
+      "200,32,84,0.0026,7922978,39611,40389,4611755,22921,24910\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,88,0.0027,8282153,41405,42558,4814218,23914,26743\n",
+      "200,32,88,0.0026,8282978,41411,42189,4821904,23974,26087\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,92,0.0027,8642153,43205,44358,5039020,24944,37612\n",
+      "200,32,92,0.0028,8642978,43211,43989,5104722,25036,38488\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,96,0.0030,9002153,45005,46158,5247046,26072,29012\n",
+      "200,32,96,0.0028,9002978,45011,45789,5238952,26060,27927\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,100,0.0029,9362153,46805,47958,5426721,26963,29831\n",
+      "200,32,100,0.0028,9362978,46811,47589,5441545,27049,29275\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,104,0.0029,9722153,48605,49758,5619647,27963,31679\n",
+      "200,32,104,0.0030,9722978,48611,49389,5920763,28136,72679\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,108,0.0030,10082153,50405,51558,5828776,28956,31626\n",
+      "200,32,108,0.0030,10082978,50411,51189,5853554,29106,31403\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,112,0.0031,10442153,52205,53358,6033005,30029,32674\n",
+      "200,32,112,0.0030,10442978,52211,52989,6053498,30123,32279\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,116,0.0031,10802153,54005,55158,6244763,30994,35257\n",
+      "200,32,116,0.0031,10802978,54011,54789,6296056,31338,33377\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,120,0.0032,11162153,55805,56958,6425499,31972,34572\n",
+      "200,32,120,0.0033,11162978,55811,56589,6468115,32146,33869\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,124,0.0033,11522153,57605,58758,6654149,33094,35931\n",
+      "200,32,124,0.0032,11522978,57611,58389,6675248,33233,35075\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,128,0.0033,11882153,59405,60558,6851733,34090,36755\n",
+      "200,32,128,0.0033,11882978,59411,60189,6894325,34338,36207\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,132,0.0034,12242153,61205,62358,7052529,35058,39834\n",
+      "200,32,132,0.0034,12242978,61211,61989,7093543,35299,37463\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,136,0.0035,12602153,63005,64158,7241645,36039,38957\n",
+      "200,32,136,0.0034,12602978,63011,63789,7312105,36353,48105\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,140,0.0035,12962153,64805,65958,7438548,37024,39702\n",
+      "200,32,140,0.0035,12962978,64811,65589,7503757,37375,39247\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,144,0.0036,13322153,66605,67758,7649807,38039,46041\n",
+      "200,32,144,0.0036,13322978,66611,67389,7692611,38277,40419\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,148,0.0037,13682153,68405,69558,7837686,39006,41671\n",
+      "200,32,148,0.0037,13682978,68411,69189,7968094,39656,42113\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,152,0.0037,14042153,70205,71358,8039582,40031,42707\n",
+      "200,32,152,0.0037,14042978,70211,70989,8122466,40468,42706\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,156,0.0038,14402153,72005,73158,8272212,41195,43645\n",
+      "200,32,156,0.0038,14402978,72011,72789,8328043,41484,45104\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,160,0.0040,14762153,73805,74958,8471858,42200,44594\n",
+      "200,32,160,0.0040,14762978,73811,74589,8547674,42493,54216\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,164,0.0039,15122153,75605,76758,8657085,43103,45699\n",
+      "200,32,164,0.0039,15122978,75611,76389,8738805,43542,45427\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,168,0.0039,15482153,77405,78558,8856462,44110,46863\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,168,0.0040,15482978,77411,78189,8948025,44560,46819\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,172,0.0040,15842153,79205,80358,9050337,45084,47600\n",
+      "200,32,172,0.0040,15842978,79211,79989,9186567,45735,47659\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,176,0.0041,16202153,81005,82158,9267755,46142,55546\n",
+      "200,32,176,0.0041,16202978,81011,81789,9391949,46573,70131\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,180,0.0042,16562153,82805,83958,9452041,47058,49763\n",
+      "200,32,180,0.0042,16562978,82811,83589,9549568,47559,54271\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,184,0.0042,16922153,84605,85758,9655929,48043,50875\n",
+      "200,32,184,0.0042,16922978,84611,85389,9766306,48609,58645\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,188,0.0043,17282153,86405,87558,9906002,49331,52491\n",
+      "200,32,188,0.0043,17282978,86411,87189,9974165,49613,56721\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,192,0.0043,17642153,88205,89358,10089481,50268,52937\n",
+      "200,32,192,0.0044,17642978,88211,88989,10187263,50734,52953\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,196,0.0044,18002153,90005,91158,10292606,51256,54507\n",
+      "200,32,196,0.0044,18002978,90011,90789,10386920,51763,53773\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,200,0.0045,18362153,91805,92958,10466174,52144,54851\n",
+      "200,32,200,0.0045,18362978,91811,92589,10593326,52744,54962\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,204,0.0045,18722153,93605,94758,10710242,53145,77999\n",
+      "200,32,204,0.0045,18722978,93611,94389,10791966,53796,55775\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,208,0.0046,19082153,95405,96558,10872705,54177,57081\n",
+      "200,32,208,0.0046,19082978,95411,96189,10993938,54691,56692\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,212,0.0047,19442153,97205,98358,11284063,56244,58937\n",
+      "200,32,212,0.0047,19442978,97211,97989,11183564,55716,57663\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,216,0.0047,19802153,99005,100158,11267668,56162,58869\n",
+      "200,32,216,0.0047,19802978,99011,99789,11413409,56842,65317\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,220,0.0048,20162153,100805,101958,11510801,57350,60362\n",
+      "200,32,220,0.0049,20162978,100811,101589,11747337,57952,85917\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,224,0.0051,20522153,102605,103758,11730908,58406,61013\n",
+      "200,32,224,0.0049,20522978,102611,103389,11967444,58993,147575\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,228,0.0050,20882153,104405,105558,11891323,59260,62051\n",
+      "200,32,228,0.0050,20882978,104411,105189,12176974,59986,107137\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,232,0.0050,21242153,106205,107358,12083458,60220,63113\n",
+      "200,32,232,0.0051,21242978,106211,106989,12243039,61011,62843\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,236,0.0050,21602153,108005,109158,12290078,61234,68599\n",
+      "200,32,236,0.0051,21602978,108011,108789,12454738,61985,74677\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,240,0.0051,21962153,109805,110958,12547828,62267,88616\n",
+      "200,32,240,0.0051,21962978,109811,110589,12632612,62912,64911\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,244,0.0052,22322153,111605,112758,12674066,63146,66333\n",
+      "200,32,244,0.0052,22322978,111611,112389,12844679,63954,74316\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,248,0.0052,22682153,113405,114558,12882346,64155,67081\n",
+      "200,32,248,0.0053,22682978,113411,114189,13049050,65048,67067\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,252,0.0053,23042153,115205,116358,13140221,65490,68231\n",
+      "200,32,252,0.0054,23042978,115211,115989,13274577,66113,68093\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,256,0.0054,23402153,117005,118158,13331460,66431,69187\n",
+      "200,32,256,0.0054,23402978,117011,117789,13479975,67191,69232\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,260,0.0054,23762153,118805,119958,13531478,67456,70141\n",
+      "200,32,260,0.0055,23762978,118811,119589,13702476,68321,70257\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,264,0.0055,24122153,120605,121758,13710546,68246,81094\n",
+      "200,32,264,0.0055,24122978,120611,121389,13885554,69178,71473\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,268,0.0055,24482153,122405,123558,13890638,69208,72412\n",
+      "200,32,268,0.0056,24482978,122411,123189,14091173,70236,72538\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,272,0.0056,24842153,124205,125358,14130816,70366,88752\n",
+      "200,32,272,0.0057,24842978,124211,124989,14277355,71142,73153\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,276,0.0057,25202153,126005,127158,14355067,71208,93990\n",
+      "200,32,276,0.0057,25202978,126011,126789,14477479,72149,74585\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,280,0.0057,25562153,127805,128958,14513593,72251,85857\n",
+      "200,32,280,0.0058,25562978,127811,128589,14807542,73365,106386\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,284,0.0059,25922153,129605,130758,14800806,73802,76775\n",
+      "200,32,284,0.0059,25922978,129611,130389,14919273,74349,83988\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,288,0.0059,26282153,131405,132558,14959572,74579,77267\n",
+      "200,32,288,0.0060,26282978,131411,132189,15262342,75369,108903\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,292,0.0059,26642153,133205,134358,15130033,75389,78361\n",
+      "200,32,292,0.0061,26642978,133211,133989,15457489,76550,112579\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,296,0.0060,27002153,135005,136158,15314583,76370,79151\n",
+      "200,32,296,0.0061,27002978,135011,135789,15587890,77470,113796\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,300,0.0061,27362153,136805,137958,15515700,77373,80055\n",
+      "200,32,300,0.0063,27362978,136811,137589,15736737,78474,80976\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,304,0.0061,27722153,138605,139758,15739536,78395,81351\n",
+      "200,32,304,0.0062,27722978,138611,139389,15931699,79424,85309\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,308,0.0062,28082153,140405,141558,15910915,79341,82085\n",
+      "200,32,308,0.0064,28082978,140411,141189,16127895,80426,82181\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,312,0.0063,28442153,142205,143358,16119259,80297,83271\n",
+      "200,32,312,0.0063,28442978,142211,142989,16353667,81487,91316\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,316,0.0063,28802153,144005,145158,16376727,81668,84481\n",
+      "200,32,316,0.0064,28802978,144011,144789,16544730,82526,84583\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,320,0.0064,29162153,145805,146958,16575917,82685,85800\n",
+      "200,32,320,0.0064,29162978,145811,146589,16778054,83692,85621\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,324,0.0065,29522153,147605,148758,16752101,83529,86861\n",
+      "200,32,324,0.0065,29522978,147611,148389,16975790,84670,86933\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,328,0.0065,29882153,149405,150558,16931954,84456,87199\n",
+      "200,32,328,0.0066,29882978,149411,150189,17193806,85651,95908\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,332,0.0066,30242153,151205,152358,17129562,85462,88022\n",
+      "200,32,332,0.0067,30242978,151211,151989,17391042,86658,92746\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,336,0.0067,30602153,153005,154158,17522378,87337,90235\n",
+      "200,32,336,0.0067,30602978,153011,153789,17579650,87566,101073\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,340,0.0067,30962153,154805,155958,17525540,87379,89947\n",
+      "200,32,340,0.0068,30962978,154811,155589,17823659,88601,131503\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,344,0.0068,31322153,156605,157758,17811817,88413,169057\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,344,0.0069,31322978,156611,157389,18045749,89720,131352\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,348,0.0069,31682153,158405,159558,17999372,89772,92601\n",
+      "200,32,348,0.0069,31682978,158411,159189,18233228,90790,129666\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,352,0.0069,32042153,160205,161358,18204371,90776,101494\n",
+      "200,32,352,0.0070,32042978,160211,160989,18429938,91908,93827\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,356,0.0070,32402153,162005,163158,18393456,91621,107055\n",
+      "200,32,356,0.0071,32402978,162011,162789,18723870,92891,169000\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,360,0.0070,32762153,163805,164958,18567077,92476,114024\n",
+      "200,32,360,0.0071,32762978,163811,164589,18839189,93872,104313\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,364,0.0072,33122153,165605,166758,18749614,93562,96291\n",
+      "200,32,364,0.0072,33122978,165611,166389,19052230,94828,108456\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,368,0.0073,33482153,167405,168558,18957503,94465,97467\n",
+      "200,32,368,0.0072,33482978,167411,168189,19224348,95828,106832\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,372,0.0072,33842153,169205,170358,19137907,95471,98421\n",
+      "200,32,372,0.0073,33842978,169211,169989,19409746,96825,98825\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,376,0.0073,34202153,171005,172158,19350029,96457,99505\n",
+      "200,32,376,0.0074,34202978,171011,171789,19635914,97934,100015\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,380,0.0075,34562153,172805,173958,19657158,97897,122483\n",
+      "200,32,380,0.0075,34562978,172811,173589,19901265,99194,108856\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,384,0.0075,34922153,174605,175758,20019224,98872,199167\n",
+      "200,32,384,0.0075,34922978,174611,175389,20087150,100132,113306\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,388,0.0075,35282153,176405,177558,19999785,99747,102911\n",
+      "200,32,388,0.0076,35282978,176411,177189,20289560,101187,111225\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,392,0.0077,35642153,178205,179358,20188679,100586,121054\n",
+      "200,32,392,0.0076,35642978,178211,178989,20478069,102158,104431\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,396,0.0076,36002153,180005,181158,20368637,101583,105060\n",
+      "200,32,396,0.0077,36002978,180011,180789,20703541,103136,118462\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,400,0.0077,36362153,181805,182958,20628698,102607,152896\n",
+      "200,32,400,0.0078,36362978,181811,182589,20889687,104097,116051\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,404,0.0078,36722153,183605,184758,20759711,103503,111551\n",
+      "200,32,404,0.0078,36722978,183611,184389,21103371,105019,150497\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,408,0.0078,37082153,185405,186558,21008339,104552,136230\n",
+      "200,32,408,0.0079,37082978,185411,186189,21343392,106235,146574\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,412,0.0080,37442153,187205,188358,21248565,105961,109252\n",
+      "200,32,412,0.0080,37442978,187211,187989,21499750,107213,116228\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,416,0.0080,37802153,189005,190158,21446394,106998,110446\n",
+      "200,32,416,0.0081,37802978,189011,189789,21769516,108354,153304\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,420,0.0081,38162153,190805,191958,21618503,107795,119989\n",
+      "200,32,420,0.0082,38162978,190811,191589,22016040,109333,166344\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,424,0.0081,38522153,192605,193758,21778142,108604,112064\n",
+      "200,32,424,0.0082,38522978,192611,193389,22124948,110298,112586\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,428,0.0081,38882153,194405,195558,21989784,109653,120306\n",
+      "200,32,428,0.0083,38882978,194411,195189,22375892,111391,164691\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,432,0.0082,39242153,196205,197358,22191881,110730,113916\n",
+      "200,32,432,0.0083,39242978,196211,196989,22605417,112244,161120\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,436,0.0083,39602153,198005,199158,22373426,111587,115657\n",
+      "200,32,436,0.0084,39602978,198011,198789,22698406,113231,115888\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,440,0.0084,39962153,199805,200958,22596402,112638,130342\n",
+      "200,32,440,0.0084,39962978,199811,200589,22946025,114347,124840\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,444,0.0084,40322153,201605,202758,22868323,114041,124888\n",
+      "200,32,444,0.0085,40322978,201611,202389,23138571,115404,122324\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,448,0.0085,40682153,203405,204558,23084361,115132,128588\n",
+      "200,32,448,0.0086,40682978,203411,204189,23382319,116666,118990\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,452,0.0086,41042153,205205,206358,23255449,115787,156348\n",
+      "200,32,452,0.0086,41042978,205211,205989,23582320,117634,123005\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,456,0.0088,41402153,207005,208158,23400730,116742,119985\n",
+      "200,32,456,0.0087,41402978,207011,207789,23777586,118606,121054\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,460,0.0087,41762153,208805,209958,23616057,117782,125672\n",
+      "200,32,460,0.0088,41762978,208811,209589,24021078,119638,157473\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,464,0.0088,42122153,210605,211758,23845815,118769,150383\n",
+      "200,32,464,0.0089,42122978,210611,211389,24177273,120536,137152\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,468,0.0089,42482153,212405,213558,23982677,119580,123029\n",
+      "200,32,468,0.0089,42482978,212411,213189,24354431,121510,124378\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,472,0.0090,42842153,214205,215358,24183894,120688,124270\n",
+      "200,32,472,0.0090,42842978,214211,214989,24680874,122798,163001\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,476,0.0090,43202153,216005,217158,24479273,122149,125974\n",
+      "200,32,476,0.0092,43202978,216011,216789,24806941,123695,126112\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,480,0.0091,43562153,217805,218958,24768939,123125,164217\n",
+      "200,32,480,0.0091,43562978,217811,218589,25036974,124855,131240\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,484,0.0092,43922153,219605,220758,24828983,123895,127390\n",
+      "200,32,484,0.0092,43922978,219611,220389,25277560,125834,159926\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,488,0.0091,44282153,221405,222558,25011559,124768,128788\n",
+      "200,32,488,0.0093,44282978,221411,222189,25492002,126931,169890\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,492,0.0092,44642153,223205,224358,25219550,125760,132732\n",
+      "200,32,492,0.0094,44642978,223211,223989,25799993,127811,292316\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,496,0.0093,45002153,225005,226158,25447017,126853,140428\n",
+      "200,32,496,0.0094,45002978,225011,225789,25879076,128748,186367\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,500,0.0093,45362153,226805,227958,25586059,127650,131094\n",
+      "200,32,500,0.0094,45362978,226811,227589,26021482,129705,143377\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,504,0.0094,45722153,228605,229758,25796559,128739,131932\n",
+      "200,32,504,0.0095,45722978,228611,229389,26309697,130875,185497\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,508,0.0095,46082153,230405,231558,26122261,130275,141242\n",
+      "200,32,508,0.0096,46082978,230411,231189,26445482,131853,134810\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,512,0.0095,46442153,232205,233358,26303806,130890,135216\n",
+      "200,32,512,0.0097,46442978,232211,232989,26722882,133313,135480\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,516,0.0096,46802153,234005,235158,26441241,131860,137807\n",
+      "200,32,516,0.0097,46802978,234011,234789,26902984,134116,143429\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,520,0.0097,47162153,235805,236958,26620814,132726,144193\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,520,0.0098,47162978,235811,236589,27143327,135173,182663\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,524,0.0097,47522153,237605,238758,26895547,133979,180810\n",
+      "200,32,524,0.0101,47522978,237611,238389,27899728,139067,143412\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,528,0.0098,47882153,239405,240558,27103175,134594,195038\n",
+      "200,32,528,0.0099,47882978,239411,240189,27539695,137281,153792\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,532,0.0099,48242153,241205,242358,27216804,135653,148537\n",
+      "200,32,532,0.0100,48242978,241211,241989,27665652,137957,156345\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,536,0.0100,48602153,243005,244158,27609711,137157,225927\n",
+      "200,32,536,0.0102,48602978,243011,243789,27888664,139123,142069\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,540,0.0101,48962153,244805,245958,27856165,138525,222412\n",
+      "200,32,540,0.0102,48962978,244811,245589,28116288,140162,167093\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,544,0.0101,49322153,246605,247758,27949313,139206,146089\n",
+      "200,32,544,0.0102,49322978,246611,247389,28395864,141365,191687\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,548,0.0102,49682153,248405,249558,28071639,140106,144061\n",
+      "200,32,548,0.0105,49682978,248411,249189,28539300,142352,144923\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,552,0.0102,50042153,250205,251358,28221254,140771,147826\n",
+      "200,32,552,0.0104,50042978,250211,250989,28772000,143499,153080\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,556,0.0103,50402153,252005,253158,28466442,141994,145849\n",
+      "200,32,556,0.0104,50402978,252011,252789,28943938,144344,160802\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,560,0.0105,50762153,253805,254958,28785863,142904,194917\n",
+      "200,32,560,0.0105,50762978,253811,254589,29192011,145318,205574\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,564,0.0105,51122153,255605,256758,28851831,143902,156411\n",
+      "200,32,564,0.0106,51122978,255611,256389,29371768,146296,173660\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,568,0.0106,51482153,257405,258558,29223120,145608,162476\n",
+      "200,32,568,0.0107,51482978,257411,258189,29607085,147402,185216\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,572,0.0108,51842153,259205,260358,29438332,146788,151895\n",
+      "200,32,572,0.0109,51842978,259211,259989,29760468,148529,150992\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,576,0.0108,52202153,261005,262158,29557331,147210,151262\n",
+      "200,32,576,0.0108,52202978,261011,261789,30001693,149671,152448\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,580,0.0108,52562153,262805,263958,29704990,148198,158557\n",
+      "200,32,580,0.0109,52562978,262811,263589,30194219,150474,161954\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,584,0.0108,52922153,264605,265758,29996452,149016,250006\n",
+      "200,32,584,0.0110,52922978,264611,265389,30465237,151575,196784\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,588,0.0109,53282153,266405,267558,30123135,150270,154069\n",
+      "200,32,588,0.0112,53282978,266411,267189,30866027,152658,345805\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,592,0.0110,53642153,268205,269358,30283611,150978,165439\n",
+      "200,32,592,0.0112,53642978,268211,268989,30806266,153631,162459\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,596,0.0110,54002153,270005,271158,30512807,152128,156216\n",
+      "200,32,596,0.0112,54002978,270011,270789,31013348,154624,161083\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,600,0.0111,54362153,271805,272958,30713954,153227,157015\n",
+      "200,32,600,0.0113,54362978,271811,272589,31227644,155782,158034\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,604,0.0113,54722153,273605,274758,31116246,155098,162946\n",
+      "200,32,604,0.0115,54722978,273611,274389,31534633,156837,219588\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,608,0.0113,55082153,275405,276558,31292429,155792,166047\n",
+      "200,32,608,0.0114,55082978,275411,276189,31675474,157869,168332\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,612,0.0113,55442153,277205,278358,31367681,156312,187819\n",
+      "200,32,612,0.0115,55442978,277211,277989,31953436,158989,218652\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,616,0.0114,55802153,279005,280158,31509163,156923,173955\n",
+      "200,32,616,0.0116,55802978,279011,279789,32108644,160138,180416\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,620,0.0115,56162153,280805,281958,31751550,158349,162413\n",
+      "200,32,620,0.0116,56162978,280811,281589,32277424,160849,182393\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,624,0.0116,56522153,282605,283758,32010052,159426,164990\n",
+      "200,32,624,0.0118,56522978,282611,283389,32423394,161797,164245\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,628,0.0116,56882153,284405,285558,32270071,160471,206182\n",
+      "200,32,628,0.0117,56882978,284411,285189,32609412,162678,167394\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,632,0.0118,57242153,286205,287358,32379821,161317,166154\n",
+      "200,32,632,0.0118,57242978,286211,286989,32869379,163975,168634\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,636,0.0118,57602153,288005,289158,32621237,162719,174455\n",
+      "200,32,636,0.0119,57602978,288011,288789,33151217,165037,223167\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,640,0.0118,57962153,289805,290958,32760054,163283,174727\n",
+      "200,32,640,0.0119,57962978,289811,290589,33341299,166215,181218\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,644,0.0119,58322153,291605,292758,32895462,163973,168568\n",
+      "200,32,644,0.0121,58322978,291611,292389,33649260,167751,199967\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,648,0.0119,58682153,293405,294558,33046462,164805,176098\n",
+      "200,32,648,0.0121,58682978,293411,294189,33719599,168221,178799\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,652,0.0120,59042153,295205,296358,33305627,166069,179927\n",
+      "200,32,652,0.0122,59042978,295211,295989,34067206,169536,235514\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,656,0.0121,59402153,297005,298158,33611780,166989,248127\n",
+      "200,32,656,0.0122,59402978,297011,297789,34164102,170144,235618\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,660,0.0121,59762153,298805,299958,33791922,168433,184984\n",
+      "200,32,660,0.0123,59762978,298811,299589,34456636,171594,235316\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,664,0.0121,60122153,300605,301758,33927065,169140,182483\n",
+      "200,32,664,0.0124,60122978,300611,301389,34541178,172177,211827\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,668,0.0124,60482153,302405,303558,34476798,171567,188679\n",
+      "200,32,668,0.0124,60482978,302411,303189,34905159,173832,222673\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,672,0.0123,60842153,304205,305358,34350802,171240,175365\n",
+      "200,32,672,0.0126,60842978,304211,304989,34988298,174422,188003\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,676,0.0123,61202153,306005,307158,34529315,172118,202239\n",
+      "200,32,676,0.0126,61202978,306011,306789,35263092,175911,185984\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,680,0.0124,61562153,307805,308958,34716545,172878,244909\n",
+      "200,32,680,0.0127,61562978,307811,308589,35503073,176323,305860\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,684,0.0126,61922153,309605,310758,35111667,174820,186347\n",
+      "200,32,684,0.0128,61922978,309611,310389,35672483,178036,180851\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,688,0.0126,62282153,311405,312558,35200811,175517,179013\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,688,0.0128,62282978,311411,312189,35790039,178289,217803\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,692,0.0126,62642153,313205,314358,35391859,176015,252609\n",
+      "200,32,692,0.0128,62642978,313211,313989,36045752,179866,188983\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,696,0.0127,63002153,315005,316158,35696188,177815,200506\n",
+      "200,32,696,0.0130,63002978,315011,315789,36175144,180438,195986\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,700,0.0128,63362153,316805,317958,35825556,178736,191521\n",
+      "200,32,700,0.0131,63362978,316811,317589,36529049,182248,184897\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,704,0.0129,63722153,318605,319758,36008866,179237,218743\n",
+      "200,32,704,0.0130,63722978,318611,319389,36611747,182765,185703\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,708,0.0129,64082153,320405,321558,36282257,180511,214158\n",
+      "200,32,708,0.0130,64082978,320411,321189,36811496,183626,191140\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,712,0.0129,64442153,322205,323358,36251857,180793,191833\n",
+      "200,32,712,0.0131,64442978,322211,322989,37060383,184588,255521\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,716,0.0131,64802153,324005,325158,36828270,182903,229477\n",
+      "200,32,716,0.0132,64802978,324011,324789,37267356,185684,240236\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,720,0.0130,65162153,325805,326958,36775140,183107,213910\n",
+      "200,32,720,0.0132,65162978,325811,326589,37393434,186562,204926\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,724,0.0131,65522153,327605,328758,36946255,184028,240244\n",
+      "200,32,724,0.0133,65522978,327611,328389,37611724,187635,203956\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,728,0.0132,65882153,329405,330558,37189420,185485,206103\n",
+      "200,32,728,0.0135,65882978,329411,330189,37844476,188685,217329\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,732,0.0133,66242153,331205,332358,37526856,187108,192940\n",
+      "200,32,732,0.0136,66242978,331211,331989,38097715,189879,238003\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,736,0.0134,66602153,333005,334158,37747623,188004,201070\n",
+      "200,32,736,0.0136,66602978,333011,333789,38249665,190960,193797\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,740,0.0134,66962153,334805,335958,37844347,188709,198675\n",
+      "200,32,740,0.0137,66962978,334811,335589,38496135,191882,202980\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,744,0.0134,67322153,336605,337758,37874634,189009,203611\n",
+      "200,32,744,0.0136,67322978,336611,337389,38643004,192776,211409\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,748,0.0136,67682153,338405,339558,38360815,190893,193995\n",
+      "200,32,748,0.0138,67682978,338411,339189,38834497,193752,204307\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,752,0.0137,68042153,340205,341358,38702052,192377,222451\n",
+      "200,32,752,0.0139,68042978,340211,340989,39026422,194674,207102\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,756,0.0136,68402153,342005,343158,38548177,192033,249435\n",
+      "200,32,756,0.0139,68402978,342011,342789,39292510,195755,242534\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,760,0.0138,68762153,343805,344958,39152996,194437,272148\n",
+      "200,32,760,0.0140,68762978,343811,344589,39445808,196904,199749\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,764,0.0138,69122153,345605,346758,39070056,194876,204988\n",
+      "200,32,764,0.0140,69122978,345611,346389,39707448,198140,208159\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,768,0.0138,69482153,347405,348558,39192485,195337,208507\n",
+      "200,32,768,0.0141,69482978,347411,348189,39961335,199314,213386\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,772,0.0139,69842153,349205,350358,39509976,197063,216644\n",
+      "200,32,772,0.0142,69842978,349211,349989,40195551,200268,262442\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,776,0.0140,70202153,351005,352158,39643299,197720,238164\n",
+      "200,32,776,0.0143,70202978,351011,351789,40369481,201262,243178\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,780,0.0141,70562153,352805,353958,40047395,199611,212284\n",
+      "200,32,780,0.0143,70562978,352811,353589,40454251,201889,204769\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,784,0.0142,70922153,354605,355758,40474213,201350,218018\n",
+      "200,32,784,0.0143,70922978,354611,355389,40804167,203132,292206\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,788,0.0143,71282153,356405,357558,40369690,200941,270257\n",
+      "200,32,788,0.0144,71282978,356411,357189,40880258,203888,220805\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,792,0.0143,71642153,358205,359358,40667289,202430,244792\n",
+      "200,32,792,0.0145,71642978,358211,358989,41141375,205195,222680\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,796,0.0145,72002153,360005,361158,41245212,205315,244622\n",
+      "200,32,796,0.0145,72002978,360011,360789,41346667,205890,276619\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,800,0.0144,72362153,361805,362958,41042713,204407,249254\n",
+      "200,32,800,0.0146,72362978,361811,362589,41586665,207290,248916\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,804,0.0145,72722153,363605,364758,41137099,205254,211445\n",
+      "200,32,804,0.0147,72722978,363611,364389,41696398,208106,211465\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,808,0.0145,73082153,365405,366558,41267168,205869,210553\n",
+      "200,32,808,0.0148,73082978,365411,366189,41978951,209272,255137\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,812,0.0146,73442153,367205,368358,41538016,207083,242270\n",
+      "200,32,812,0.0148,73442978,367211,367989,42187366,209918,283393\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,816,0.0147,73802153,369005,370158,41856937,208198,257079\n",
+      "200,32,816,0.0149,73802978,369011,369789,42482639,211214,322437\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,820,0.0149,74162153,370805,371958,42581251,211598,220361\n",
+      "200,32,820,0.0149,74162978,370811,371589,42512865,212010,227823\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,824,0.0148,74522153,372605,373758,42106929,210144,214780\n",
+      "200,32,824,0.0151,74522978,372611,373389,42861251,213412,278868\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,828,0.0151,74882153,374405,375558,42954101,213100,216189\n",
+      "200,32,828,0.0151,74882978,374411,375189,42979335,214191,262439\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,832,0.0150,75242153,376205,377358,42591682,212393,217281\n",
+      "200,32,832,0.0152,75242978,376211,376989,43402619,215543,296991\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,836,0.0150,75602153,378005,379158,42833889,213607,225147\n",
+      "200,32,836,0.0152,75602978,378011,378789,43382253,216450,232179\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,840,0.0151,75962153,379805,380958,42888365,213833,258282\n",
+      "200,32,840,0.0154,75962978,379811,380589,43665001,217538,261020\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,844,0.0151,76322153,381605,382758,43234463,215605,228741\n",
+      "200,32,844,0.0154,76322978,381611,382389,43762162,218196,232967\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,848,0.0152,76682153,383405,384558,43340508,216058,240778\n",
+      "200,32,848,0.0156,76682978,383411,384189,44077885,219619,233562\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,852,0.0154,77042153,385205,386358,43964132,218702,263707\n",
+      "200,32,852,0.0155,77042978,385211,385989,44269902,220266,357562\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,856,0.0155,77402153,387005,388158,43738562,218168,230126\n",
+      "200,32,856,0.0156,77402978,387011,387789,44458368,221658,275183\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,860,0.0154,77762153,388805,389958,44071523,219837,238185\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,860,0.0156,77762978,388811,389589,44599845,222530,244104\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,864,0.0155,78122153,390605,391758,44411093,221177,232408\n",
+      "200,32,864,0.0158,78122978,390611,391389,44856987,223898,229495\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,868,0.0157,78482153,392405,393558,44526424,222013,237960\n",
+      "200,32,868,0.0157,78482978,392411,393189,45070339,224667,268426\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,872,0.0158,78842153,394205,395358,45188815,224084,346189\n",
+      "200,32,872,0.0158,78842978,394211,394989,45243346,225686,238504\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,876,0.0156,79202153,396005,397158,44700630,222996,237268\n",
+      "200,32,876,0.0160,79202978,396011,396789,45425044,226467,285843\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,880,0.0158,79562153,397805,398958,45208957,224813,328325\n",
+      "200,32,880,0.0160,79562978,397811,398589,45637897,227585,255503\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,884,0.0159,79922153,399605,400758,45474656,226439,239215\n",
+      "200,32,884,0.0163,79922978,399611,400389,45922301,228540,294854\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,888,0.0160,80282153,401405,402558,45766475,227867,240911\n",
+      "200,32,888,0.0161,80282978,401411,402189,46210377,229936,317062\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,892,0.0160,80642153,403205,404358,45940503,228819,243891\n",
+      "200,32,892,0.0161,80642978,403211,403989,46224897,230736,244030\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,896,0.0161,81002153,405005,406158,45973712,229111,241548\n",
+      "200,32,896,0.0163,81002978,405011,405789,46706945,232252,393574\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,900,0.0162,81362153,406805,407958,46447521,230613,346027\n",
+      "200,32,900,0.0163,81362978,406811,407589,46846573,233803,243774\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,904,0.0163,81722153,408605,409758,46859527,233117,305572\n",
+      "200,32,904,0.0165,81722978,408611,409389,47211102,235424,247115\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,908,0.0164,82082153,410405,411558,47123610,234871,284329\n",
+      "200,32,908,0.0165,82082978,410411,411189,47420647,236067,308146\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,912,0.0166,82442153,412205,413358,47816182,237201,366650\n",
+      "200,32,912,0.0167,82442978,412211,412989,47664515,237299,252663\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,916,0.0166,82802153,414005,415158,47456504,236767,248921\n",
+      "200,32,916,0.0166,82802978,414011,414789,47825500,238210,307878\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,920,0.0165,83162153,415805,416958,47592162,237459,265738\n",
+      "200,32,920,0.0168,83162978,415811,416589,48024315,239591,249230\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,924,0.0167,83522153,417605,418758,48057683,239541,276783\n",
+      "200,32,924,0.0168,83522978,417611,418389,48204506,240348,286103\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,928,0.0167,83882153,419405,420558,48171706,239841,277682\n",
+      "200,32,928,0.0168,83882978,419411,420189,48474452,241766,272232\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,932,0.0170,84242153,421205,422358,48721591,242883,245719\n",
+      "200,32,932,0.0169,84242978,421211,421989,48643328,242408,310910\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,936,0.0169,84602153,423005,424158,48377712,241387,254877\n",
+      "200,32,936,0.0170,84602978,423011,423789,49041567,243670,350571\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,940,0.0169,84962153,424805,425958,48721762,242855,255300\n",
+      "200,32,940,0.0171,84962978,424811,425589,49009612,244295,313509\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,944,0.0170,85322153,426605,427758,49035991,243372,370914\n",
+      "200,32,944,0.0171,85322978,426611,427389,49257311,245620,259650\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,948,0.0171,85682153,428405,429558,49070436,244800,262067\n",
+      "200,32,948,0.0172,85682978,428411,429189,49415667,246533,254714\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,952,0.0171,86042153,430205,431358,49234273,245636,258683\n",
+      "200,32,952,0.0172,86042978,430211,430989,49711139,247671,319628\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,956,0.0172,86402153,432005,433158,49586922,247001,316148\n",
+      "200,32,956,0.0174,86402978,432011,432789,49856592,248552,271876\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,960,0.0172,86762153,433805,434958,49640943,247637,284307\n",
+      "200,32,960,0.0174,86762978,433811,434589,50136102,249978,265617\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,964,0.0177,87122153,435605,436758,51436885,256453,266477\n",
+      "200,32,964,0.0176,87122978,435611,436389,50925446,253713,295499\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,968,0.0178,87482153,437405,438558,51146832,254991,267861\n",
+      "200,32,968,0.0178,87482978,437411,438189,51035835,253858,318894\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,972,0.0177,87842153,439205,440358,51377929,256333,274159\n",
+      "200,32,972,0.0177,87842978,439211,439989,51188317,255334,306288\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,976,0.0179,88202153,441005,442158,51360933,256336,265049\n",
+      "200,32,976,0.0178,88202978,441011,441789,51436023,256205,289239\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,980,0.0179,88562153,442805,443958,51845435,258521,293602\n",
+      "200,32,980,0.0179,88562978,442811,443589,51703656,257814,300077\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,984,0.0180,88922153,444605,445758,52129373,259818,262711\n",
+      "200,32,984,0.0179,88922978,444611,445389,51801305,257947,349721\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,988,0.0181,89282153,446405,447558,52262963,260903,278224\n",
+      "200,32,988,0.0181,89282978,446411,447189,52056854,259676,262216\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,992,0.0182,89642153,448205,449358,52407317,261432,272849\n",
+      "200,32,992,0.0182,89642978,448211,448989,52237864,260535,269494\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,996,0.0184,90002153,450005,451158,53286503,265403,275404\n",
+      "200,32,996,0.0183,90002978,450011,450789,52526126,262024,274178\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,1000,0.0182,90362153,451805,452958,53051777,264487,273734\n",
+      "200,32,1000,0.0182,90362978,451811,452589,52578843,262284,265526\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,1004,0.0183,90722153,453605,454758,53153647,264834,340140\n",
+      "200,32,1004,0.0183,90722978,453611,454389,52896370,263840,273834\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,1008,0.0183,91082153,455405,456558,53025643,264711,274578\n",
+      "200,32,1008,0.0183,91082978,455411,456189,53074476,264385,308471\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,1012,0.0185,91442153,457205,458358,53709439,267192,353247\n",
+      "200,32,1012,0.0184,91442978,457211,457989,53382079,266422,284446\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,1016,0.0186,91802153,459005,460158,54036527,268786,339099\n",
+      "200,32,1016,0.0186,91802978,459011,459789,53434221,266486,275700\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,1020,0.0186,92162153,460805,461958,54154888,269844,327020\n",
+      "200,32,1020,0.0186,92162978,460811,461589,53712164,268036,277528\n",
       "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,1024,0.0183,92522153,462605,463758,52875104,262839,332332\n",
-      "mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .\n"
+      "200,32,1024,0.0187,92522978,462611,463389,53754294,268076,276795\n",
+      "mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.ins_cyc.bin.csv .\n"
      ]
     }
    ],
@@ -694,17 +684,18 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Once the run is completed, let's have a look at the data!\n",
+    "Once the run is completed, let's study the data!\n",
     "\n",
     "This can be done best in the interactive version of the Jupyter Notebook. In case this version of the description is unavailable to you, call the Makefile target `make graph_task1` (either with X forwarding, or download the resulting PDF)."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 1,
    "metadata": {},
    "outputs": [],
    "source": [
+    "import numpy as np\n",
     "import seaborn as sns\n",
     "import pandas as pd\n",
     "import matplotlib.pyplot as plt\n",
@@ -714,9 +705,25 @@
     "plt.rcParams['figure.figsize'] = [14, 6]"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Execute the following cell if you want to switch to color-blind-safer colors"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "sns.set_palette(\"colorblind\")"
+   ]
+  },
   {
    "cell_type": "code",
-   "execution_count": 77,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [
     {
@@ -750,8 +757,7 @@
        "      <th>PM_RUN_CYC (total)</th>\n",
        "      <th>PM_RUN_CYC (min)</th>\n",
        "      <th>PM_RUN_CYC (max)</th>\n",
-       "      <th>Instructions / Loop Iteration</th>\n",
-       "      <th>Cycles / Loop Iteration</th>\n",
+       "      <th>Grid Points</th>\n",
        "    </tr>\n",
        "  </thead>\n",
        "  <tbody>\n",
@@ -761,14 +767,13 @@
        "      <td>32</td>\n",
        "      <td>4</td>\n",
        "      <td>0.0012</td>\n",
-       "      <td>548153</td>\n",
-       "      <td>2735</td>\n",
-       "      <td>3888</td>\n",
-       "      <td>266883</td>\n",
-       "      <td>1237</td>\n",
-       "      <td>4793</td>\n",
-       "      <td>21.367188</td>\n",
-       "      <td>9.664062</td>\n",
+       "      <td>572978</td>\n",
+       "      <td>2861</td>\n",
+       "      <td>3639</td>\n",
+       "      <td>261330</td>\n",
+       "      <td>1235</td>\n",
+       "      <td>4684</td>\n",
+       "      <td>128</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>1</th>\n",
@@ -776,14 +781,13 @@
        "      <td>32</td>\n",
        "      <td>8</td>\n",
        "      <td>0.0014</td>\n",
-       "      <td>1082153</td>\n",
-       "      <td>5405</td>\n",
-       "      <td>6558</td>\n",
-       "      <td>668819</td>\n",
-       "      <td>3214</td>\n",
-       "      <td>6623</td>\n",
-       "      <td>21.113281</td>\n",
-       "      <td>12.554688</td>\n",
+       "      <td>1082978</td>\n",
+       "      <td>5411</td>\n",
+       "      <td>6189</td>\n",
+       "      <td>601962</td>\n",
+       "      <td>2914</td>\n",
+       "      <td>5099</td>\n",
+       "      <td>256</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>2</th>\n",
@@ -791,44 +795,41 @@
        "      <td>32</td>\n",
        "      <td>12</td>\n",
        "      <td>0.0014</td>\n",
-       "      <td>1442153</td>\n",
-       "      <td>7205</td>\n",
-       "      <td>8358</td>\n",
-       "      <td>872913</td>\n",
-       "      <td>4187</td>\n",
-       "      <td>11640</td>\n",
-       "      <td>18.763021</td>\n",
-       "      <td>10.903646</td>\n",
+       "      <td>1442978</td>\n",
+       "      <td>7211</td>\n",
+       "      <td>7989</td>\n",
+       "      <td>811603</td>\n",
+       "      <td>3992</td>\n",
+       "      <td>5761</td>\n",
+       "      <td>384</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>3</th>\n",
        "      <td>200</td>\n",
        "      <td>32</td>\n",
        "      <td>16</td>\n",
-       "      <td>0.0015</td>\n",
-       "      <td>1802153</td>\n",
-       "      <td>9005</td>\n",
-       "      <td>10158</td>\n",
-       "      <td>1077532</td>\n",
-       "      <td>5254</td>\n",
-       "      <td>8147</td>\n",
-       "      <td>17.587891</td>\n",
-       "      <td>10.261719</td>\n",
+       "      <td>0.0014</td>\n",
+       "      <td>1802978</td>\n",
+       "      <td>9011</td>\n",
+       "      <td>9789</td>\n",
+       "      <td>1017305</td>\n",
+       "      <td>4988</td>\n",
+       "      <td>7017</td>\n",
+       "      <td>512</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>4</th>\n",
        "      <td>200</td>\n",
        "      <td>32</td>\n",
        "      <td>20</td>\n",
-       "      <td>0.0016</td>\n",
-       "      <td>2162153</td>\n",
-       "      <td>10805</td>\n",
-       "      <td>11958</td>\n",
-       "      <td>1277957</td>\n",
-       "      <td>6209</td>\n",
-       "      <td>9015</td>\n",
-       "      <td>16.882812</td>\n",
-       "      <td>9.701562</td>\n",
+       "      <td>0.0015</td>\n",
+       "      <td>2162978</td>\n",
+       "      <td>10811</td>\n",
+       "      <td>11589</td>\n",
+       "      <td>1221559</td>\n",
+       "      <td>6002</td>\n",
+       "      <td>7999</td>\n",
+       "      <td>640</td>\n",
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
@@ -836,28 +837,28 @@
       ],
       "text/plain": [
        "   iter  ny  nx  Runtime  PM_INST_CMPL (total)  PM_INST_CMPL (min)  \\\n",
-       "0   200  32   4   0.0012                548153                2735   \n",
-       "1   200  32   8   0.0014               1082153                5405   \n",
-       "2   200  32  12   0.0014               1442153                7205   \n",
-       "3   200  32  16   0.0015               1802153                9005   \n",
-       "4   200  32  20   0.0016               2162153               10805   \n",
+       "0   200  32   4   0.0012                572978                2861   \n",
+       "1   200  32   8   0.0014               1082978                5411   \n",
+       "2   200  32  12   0.0014               1442978                7211   \n",
+       "3   200  32  16   0.0014               1802978                9011   \n",
+       "4   200  32  20   0.0015               2162978               10811   \n",
        "\n",
        "    PM_INST_CMPL (max)  PM_RUN_CYC (total)  PM_RUN_CYC (min)  \\\n",
-       "0                 3888              266883              1237   \n",
-       "1                 6558              668819              3214   \n",
-       "2                 8358              872913              4187   \n",
-       "3                10158             1077532              5254   \n",
-       "4                11958             1277957              6209   \n",
+       "0                 3639              261330              1235   \n",
+       "1                 6189              601962              2914   \n",
+       "2                 7989              811603              3992   \n",
+       "3                 9789             1017305              4988   \n",
+       "4                11589             1221559              6002   \n",
        "\n",
-       "    PM_RUN_CYC (max)  Instructions / Loop Iteration  Cycles / Loop Iteration  \n",
-       "0               4793                      21.367188                 9.664062  \n",
-       "1               6623                      21.113281                12.554688  \n",
-       "2              11640                      18.763021                10.903646  \n",
-       "3               8147                      17.587891                10.261719  \n",
-       "4               9015                      16.882812                 9.701562  "
+       "    PM_RUN_CYC (max)  Grid Points  \n",
+       "0               4684          128  \n",
+       "1               5099          256  \n",
+       "2               5761          384  \n",
+       "3               7017          512  \n",
+       "4               7999          640  "
       ]
      },
-     "execution_count": 77,
+     "execution_count": 2,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -865,40 +866,171 @@
    "source": [
     "plt.rcParams['figure.figsize'] = [14, 6]\n",
     "df = pd.read_csv(\"poisson2d.ins_cyc.bin.csv\", skiprows=range(2, 50000, 2))  # Read in the CSV file from the bench run; parse with Pandas\n",
-    "common.normalize(df, \"PM_INST_CMPL (min)\", \"Instructions / Loop Iteration\")  # Normalize to each grid cell\n",
-    "common.normalize(df, \"PM_RUN_CYC (min)\", \"Cycles / Loop Iteration\")\n",
+    "df[\"Grid Points\"] = df[\"nx\"] * df[\"ny\"]  # Add a new column of the number of grid points (the product of nx and ny)\n",
     "df.head()  # Display the head of the Pandas dataframe"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Let's have a look at the counters we've just measured and see how they scaling with increasing number of grid points.\n",
+    "\n",
+    "*In the following, we are always using the minimal value of the counter (indicated by »(min)«) as this should give us an estimate of the best achievable result of the architecture.*"
+   ]
+  },
   {
    "cell_type": "code",
-   "execution_count": 78,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzkAAAF/CAYAAABqjAdBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xl8VPW9//HX7JOZ7CskIYGACOKCivsOWquiVmvr2l61Xr1ea70tVa+Vn1vRXpfWqq1WrbS2UlvbqgVRsVqt4tYisgjKvmQj+zqTWc6c8/tjwphAIAkkTBLez8fDh8mZOed8Z/IlOe/5fr+fY7Msy0JERERERGSEsCe7ASIiIiIiIgNJIUdEREREREYUhRwRERERERlRFHJERERERGREUcgREREREZERRSFHRERERERGFIUcEREREREZURRyRERERERkRFHIERERERGREUUhR0RERERERhSFHBERERERGVEUckREREREZERRyBERERERkRHFmewGNDUFME0rKefOyUmloaE9KeeW4Uf9RfpKfUX6Sn1F+kp9RfpjJPUXu91GVpa/3/slPeSYppW0kLP9/CJ9pf4ifaW+In2lviJ9pb4i/bG/9xdNVxMRERERkRFFIUdEREREREYUhRwRERERERlRkr4mZ6hZ+OFm7DYbZx1bmuymiIiIiAy6WMygqakOw4gkuykyQGpr7Zimmexm9IvT6SYrKw+HY2DiiULODpatq8cChRwRERHZLzQ11eH1+vD7R2Gz2ZLdHBkATqcdwxg+IceyLAKBVpqa6sjNHT0gx9R0tR1EDJOOsJHsZoiIiIjsE4YRwe9PV8CRpLHZbPj96QM6mqiRnB1EDZNQRCFHRERE9h8KOJJsA90HNZKzg6gRoyMcS3YzRERERPZLhmHw61//iksuuZArrvgml19+EY899jCGsWcfQn/3u9fy/vvvDWgbL7/8Itra2rptq66u4pxzZgzoefrqxBOnEQwGAXjhhT/Q2Ng44Oeorq7ib397sdu2H/7we1RWVgz4uQaCRnJ2EDVMwtEYMdPEYVcGFBEREdmX7rvvbsLhEHPn/h6fz49hGCxcOJ9IJILTmfxL140b15Obm09aWlqym9KjF154nmOOOZb09Mx+7WcYxm7f3+rqKubPf4nzz78wse2hhx7d43YOtuT3lCEmGosv0uoIx0hNUcgRERER2VfKy7fy7rtv8+KLr+Lz+QFwOp2JC+tvfeub/OhHdzJ58hQA/vjH59iyZQu33no7mzdv4pFHHqKxsQHLsrj00m9x1lkzux0/EGjnscceZsOGdUQiEQ4/fBo33vh9HA4Hc+c+xZtvLsLt9mCzwaOPPtljkHnvvX9y0kkn9+t1vfbaKzz//O+x2WwUFhZzyy0/Iisrm1gsxhNPPMbHH38AwDHHHM/119+Iw+Hg3nvvwul0UlVVRW3tNqZOPYIf/OBWXC7XLs/z7LPPUF9fx49+dAsul5s775xDcfEYnnrqcZYt+4Ro1GD8+PHMmnUbPp+Pe++9C5/PR3l5Oc3NTcyd+xx33z2brVu3EI1GKCoaw2233UF6ejo/+9kDVFdXcuWVl1FcXMycOQ9w0UXn8sADD1NWNoGKinIefPA+mpubcDgcXHvtDRx77PFAfKTp2mv/m3fffYeWlhZuuOF7nHrq4I56KeTsIBLdHnIMUlN23YlERERERpr3V1azeEX1oBz7xENHc8Ihu6+ctXbtGoqLS0hPT+/x8a9//Zu89NJfmDx5CpZl8fLLf+XHP74fwzD43/+dxbXX/jfTp58OQEtL8077P/bYw0ydegT/+7//D9M0ufvu2SxcOJ9TT53B888/xyuvvIHH4yUYDOB2e3psw+LF/+THP76/z69748b1/OpXv+CZZ54jNzeXp59+gocffpB77vkJ8+e/xLp1a5k7dx4Qn/41f/5LXHDBRQCsXv0ZTzwxF7fbzc0338T8+S/y9a9fvMtz/cd/fIcFC17mvvseoLS0DIDf/vbX+P1+nn76dwA8/vij/P73v+G6624A4LPPVvKLXzxFSkoKADfd9EMyM+OjQE899Tjz5j3L9dffyA9+cAu//OUjPPPM73s89913z+b88y9g5syvsWnTRr773f/kuef+QlZWFgB+v59f//p3rFixjDvuuE0hZ18yTYuYaQGowpqIiIjIPmft9tGvfnUmv/nNr2ltbWH16lVkZWVzwAET2bhxA7FYLBFwADIydp6utXjxu3z++Sr++Md4qAiFQuTnF+D3+ykpKeWee/4fxxxzPMcff1JiJKmrurpaYrEYo0b1vczx0qVLOO64E8jNzQXg/PMv5MorLwNgyZKPOfvsmYnRmbPPPpd33307EXKmTz8Dn88HwFlnzeSdd/6x25DTk/fff5dAIMA77/wDgGg0woQJByQeP/XUGYmAA/D666/wxhuvYxhROjpCjBlT0us5gsEA69ev5eyzzwNg3LgyJkw4kFWrVnLiifFRrxkzzgRgypRDqK+vIxwO4/H0HCQHgkJOF9Eu9cQVckRERGR/c8IhvY+2DKaJEydRUbGV1tbWHkdzvF4vZ5zxVRYuXMCnn37ChRd+o/OR3YejL1ncd99DFBUV7/TIk0/+hpUrl7N06RK+850r+OlPH+sWBiA+Ve2EE/o3Vc2ydq4ctv3bnh/rucqYZVnsSQEyy4JZs/6XI488qsfHfb4vA87y5Z/y8st/5Ykn5pKVlcUbb7zO/Pkv9rjfjm3rSdfX4na7AXA4HADEYoNb6EuLTrrYvh4HUIU1ERERkX1szJgSTjjhZB588D6CwQAQvxh+4YXnE9XDLrzwG/z5z8+zZs3niSlPJSVjcTgc/OMfbyaO1dN0tRNOOJnnnns2cYHd3NxMVVUlwWCA5uZmDj/8SL7znesoKxvPxo0bdtp/8eJ/ctJJp/TrNR155FF8+OH7NDTUA7BgwctMm3Y0AEcddQyvvroAwzAwDIPXXnsl8RjA22+/RUdHB4ZhsGjRaxxxxLRez+f3+2lvb098f+KJJ/OnP80jHA4B8VGXzZs39bhvW1sbfn8qGRkZRCIRFi6c3+W4qQQC7T3u5/enMmHCRF577RUAtmzZzIYNaznooIN7be9g0UhOF5Hol8FGIzkiIiIi+97s2Xczd+5TXH31t3C5nFiWxbHHnpAYCSgsLKKkpJSDDjo4Mc3L6XTyf//3Ux5++AF++9unsdnsXHrpFXz1q+d0O/ZNN83i8ccf5corL8Vms+Fyufne92bhdDq5/fZbiETCmKbJxImTOOWU07rtGwi0U1VVycSJk3bZ9ra2Ni644OzE9yUlY3nkkce57rob+P73b+gsPFDEzTf/CIDzzruAiopyrroqPn3t6KOP49xzL0jsP3Xq4dx22yxqauKFB84770J6c9FFlzBnzl14PF7uvHMOV1xxJc888yTXXPNt7HY7YOPqq/+TsWPH7bTvsccezxtvvMZll11Efn4+kyZNZvXqVQCMHz+BkpJSvvWtb1JaOpY5cx7otu+dd87hwQfv44UX/oDD4WD27HsS63GSwWbtanxpH2loaMc0k9OEvLw06uq+rHFe0xTktic/AuDyMyYy48idhzJl/7VjfxHZFfUV6Sv1Femrwewr27ZtYdSo0kE59mAIBNq57LKLePrpZ8nPL9hn533zzUWsXLmc73//ln1yvnvvvYtJkyb3ew0OgNNpx+iyDGO46Kkv2u02cnJS+32sPo3k3H///SxatIjKykoWLFjAxIkTaWpq4pZbbmHr1q243W5KS0u55557yM7O7ncjhopo9MvOEIpoJEdERERkKHn55b/w7LNzueSSK/ZpwAE4/fQzOf30M/fpOWXP9WlNzowZM5g3bx5FRUWJbTabjWuuuYZFixaxYMECxowZw0MPPTRoDd0Xuq7JCWq6moiIiMiQ8rWvXcRLL73KpZdekeymDLrbb79rj0ZxJK5PIWfatGmMHt290kZmZibHHHNM4vupU6dSVVU1sK3bx7qvyVHhARERERGR4WhAqquZpsnzzz/P9OnTB+JwSdO9uppGckRERGT/kOQl2iID3gcHpLraj3/8Y3w+H1dc0f+hwz1ZSDSQ8vLSEl/7auJl8ew2iFndHxMB9QnpO/UV6Sv1FemrweorbW0+OjraSEvL2OU9WmT4cTqHz51iLMuira0Vv983YP18r0PO/fffz5YtW/jVr37VWZauf4ZSdbX6xng99jSfm5a2kCreSDeqgiR9pb4ifaW+In01mH3F58uiqamO1tamQTm+7Ht2ux3THF7V1ZxON1lZeTv180GtrrYrDz/8MJ999hlPPfVUonb5cBbtLLWX7ndrupqIiIjsFxwOJ7m5o3t/ogwb+gCljyFnzpw5vPHGG9TX13PVVVeRmZnJz3/+c371q18xduxYLrnkEgCKi4v55S9/OagNHkyRzpCT4XdT3RBIcmtERERERGRP9CnkzJ49m9mzZ++0fc2aNQPeoGTqOpKzoao1ya0REREREZE9MXxWJO0DUSNeNjrd7yYUNjBVaUREREREZNhRyOli+0hOms+FBYQjuleOiIiIiMhwo5DTRcQwcTnt+DzxWXwqPiAiIiIiMvwo5HQRNUzcTjspCjkiIiIiIsOWQk4XUcPE2W0kR9PVRERERESGG4WcLqJGDLfTjrcz5AQ1kiMiIiIiMuwo5HQRNUxcToemq4mIiIiIDGMKOV3sVHggopAjIiIiIjLcKOR0Ee0MOSkeB6CRHBERERGR4Ughp4uoYeJy2PG4HNhsCjkiIiIiIsORQk4X20tI22w2UtxOOkKqriYiIiIiMtwo5HQRMWK4nPG3JMXjVHU1EREREZFhSCGni+3V1SAeckIqPCAiIiIiMuwo5HSxvfAAgM/j0JocEREREZFhSCGni+1rckDT1UREREREhiuFnC6iMbPbmhyN5IiIiIiIDD8KOZ0sy+o2XS0eclRdTURERERkuFHI6WTETICdRnIsy0pms0REREREpJ8UcjpFjHjIcSeqqzmImfHRHRERERERGT4UcjptDzNfVldzAmhdjoiIiIjIMNNryLn//vuZPn06Bx54IGvXru11+3AV2SHkeDtDjiqsiYiIiIgML72GnBkzZjBv3jyKior6tH242nEkJyUxkqPiAyIiIiIiw4mztydMmzatX9uHq6gRDzM7TVeLaCRHRERERGQ40ZqcTtGdCg90hpyQQo6IiIiIyHDS60jOYMvJSU3q+fPy0gCobOqIf5+bSl5eGpYjHnacbmfiOSLqC9JX6ivSV+or0lfqK9If+3t/SXrIaWhoxzSTcy+avLw06uraAKhrCAAQaA9RV9dGMBQFoLa+PfEc2b917S8iu6O+In2lviJ9pb4i/TGS+ovdbtujQRFNV+tk7Fh4wK3qaiIiIiIiw1GvIWfOnDmcfPLJbNu2jauuuopzzjlnt9uHq0hn4QF3Z8ix222k+Vw0t0eS2SwREREREemnXqerzZ49m9mzZ/d5+3D1ZQlpR2JbQbaPmsZgspokIiIiIiJ7QNPVOu14M1CAUVk+tjUp5IiIiIiIDCcKOZ12XJMDUJCdQkt7hA6tyxERERERGTYUcjr1OJKT7QOgtrO8tIiIiIiIDH0KOZ2ihonTYcNusyW2FXSGnG1alyMiIiIiMmwo5HSKGLFuozgA+Zkp2EDFB0REREREhhGFnE6GYXarrAbgdjnITveq+ICIiIiIyDCikNMpapi4HDu/HaOyUzSSIyIiIiIyjCjkdIoYJm7Xzm9HQbaPbY0dWJaVhFaJiIiIiEh/KeR02tVITkG2j46wQVswmoRWiYiIiIhIfynkdIoaMVw9jOSMUoU1EREREZFhRSGn0+5GckAV1kREREREhguFnE7xNTmOnbbnpntxOmwayRERERERGSYUcjpFYz2P5NjtNvKzfAo5IiIiIiLDhEJOp2jU7HFNDkBBVgo1TR37uEUiIiIiIrInFHI67WokB+LFB2qbgpimykiLiIiIiAx1CjmdItEYbufOa3IgXnzAiFk0tIb2catERERERKS/FHI6RWMmLueuR3JAZaRFRERERIYDhRzAsiyiholzVyEnJx5yqusD+7JZIiIiIiKyBxRygJhpYVng3kXISfe5Sfe5qFDIEREREREZ8hRyiN8IFNjldDWAorxUKusUckREREREhrpeQ87999/P9OnTOfDAA1m7dm1i+6ZNm7j44os588wzufjii9m8efNgtnNQRTpDzq5GcgCKcv1UNQQwLVVYExEREREZynoNOTNmzGDevHkUFRV1237nnXdy2WWXsWjRIi677DLuuOOOQWvkYIsaMYBdrskBKMzzE47EaGxRhTURERERkaGs15Azbdo0Ro8e3W1bQ0MDq1evZubMmQDMnDmT1atX09jYODitHGTRxEhOzyWkAYpzUwGo1LocEREREZEhbY/W5FRXV1NQUIDDEQ8FDoeD/Px8qqurB7Rx+0pf1uQU5sYrrCnkiIiIiIgMbc5kNyAnJzWp58/LS6MhEI1/nZNKXl7aLp+bm+Glvi282+fIyKafvfSV+or0lfqK9JX6ivTH/t5f9ijkjB49mpqaGmKxGA6Hg1gsRm1t7U7T2vqioaEd00zOYv68vDTq6tqorW8HIBgIUVfXtsvnj8rxsbGiebfPkZFre38R6Y36ivSV+or0lfqK9MdI6i92u22PBkX2aLpaTk4OkydP5pVXXgHglVdeYfLkyWRnZ+/J4ZJue+EB127W5EC8wlp1QzBpoUxERERERHrXa8iZM2cOJ598Mtu2beOqq67inHPOAeCuu+7iueee48wzz+S5557j7rvvHvTGDpa+rMkBKMpNJWqY1DV37ItmiYiIiIjIHuh1utrs2bOZPXv2TtvHjx/Pn//850Fp1L7W55CT5wegoi5AQbZv0NslIiIiIiL9t0fT1UaavtwMFKAwJx5yKjvX8IiIiIiIyNCjkMOXIzm7uxkogMftIC/TS5XKSIuIiIiIDFkKOXS9GWjvb0dRbiqVdQo5IiIiIiJDlUIOXaur9SHk5PnZ1hjEiJmD3SwREREREdkDCjnE1+Q47DYc9t7fjrGj0omZFusqWvZBy0REREREpL8UcogXFJg4JrNPzz24LBu3y86SNbWD3CoREREREdkTCjnAcQeP4uZLD+/Tcz0uB4eW5bB0TZ1uCioiIiIiMgQp5OyBaZPyaQlEWF+pKWsiIiIiIkONQs4eOHR8Di6nnSVfaMqaiIiIiMhQo5CzB7xuJ4eU5bBkTS2mpSlrIiIiIiJDiULOHpp2YB7N7RE2VrYmuykiIiIiItKFQs4eOmxCLk6HTVXWRERERESGGIWcPZTicXLwuBw+/ryGqKEbg4qIiIiIDBUKOXthxpHFtLRHWLyiKtlNERERERGRTgo5e+GgsVmML0pn4UdbMGIazRERERERGQoUcvaCzWbj/BPG0dgaZvHK6mQ3R0REREREUMjZa1PGZVNWmM7CDzSaIyIiIiIyFCjk7CWbzcZ5J4yloTXEB59tS3ZzRERERET2ewo5A+CQshzGjU5jwfubVGlNRERERCTJFHIGgM1m48KTx9PQGuadZZXJbo6IiIiIyH5NIWeAHDQ2i0klmSz8YDOhiJHs5oiIiIiI7Lf2OuS88847XHDBBZx77rlcccUVlJeXD0S7hh2bzcbXTxlPazDK35dUJLs5IiIiIiL7rb0KOS0tLdx666387Gc/Y8GCBXzjG9/grrvuGqCmDT/jizKYOiGX1z/eSntHNNnNERERERHZL+1VyNmyZQu5ubmMGzcOgFNOOYXFixfT2Ng4II0bji48uYxQ2ODl9zYmuykiIiIiIvulvQo548aNo76+nhUrVgCwYMECAKqr998bYxbnpzJjWjH/WFrJ2vLmZDdHRERERGS/Y7Msy9qbA3zwwQc89thjhMNhTj75ZObNm8dzzz3HgQceOFBtHHZCYYPvPvQ2druNR2editftTHaTRERERET2G3sdcrqqr6/ntNNO4+OPP8bn8/Vpn4aGdkxzwJrQL3l5adTVtQ3KsT/f3MiDf1zGV48u4ZvTJwzKOWTfGsz+IiOL+or0lfqK9JX6ivTHSOovdruNnJzU/u+3tyeuq6sDwDRNfvazn3HJJZf0OeCMZJPHZnPK1EIW/XsrKzbUJ7s5IiIiIiL7jb0OOT//+c8566yz+MpXvoLL5eKHP/zhQLRrRPjmaRMoyU/jFy9+xqpNA1eMobE1xL2/X8LfFm9iAAfiRERERERGhL1eLHLvvfcORDtGpBSPk1mXTOWBP3zKo39dwfe/cRiTSrP26pj1LR088IdPaWwNs6GyldZAhMvPmIjdbhugVouIiIiIDG97PZIju5ea4uKHl04lLzOFn/9lOas27/mITl1zB/fP+5RgyOBH3zqSs44t4e1PK3lqwSqMmDmArRYRERERGb4UcvaBdJ+bmy89nPxMH4/8eTlL19bt0XGeWrCKUMTgh5dOpawwnW+cOoFvnDaef31ey6J/bR3gVouIiIiIDE8KOftIht/NrZcfTmlBGo+/9BnvfFqJ2Y/1NNUNATZUtjLz+LGMHZWe2H7WMaVMnZDLwg+30NIeHoymi4iIiIgMKwo5+5Df62LWJVOZVJrJ7xatYc6zS1iztalP+364ahs2GxxzUMFOj108fQJRw+Sl9zYOdJNFRERERIYdhZx9zOt28oOLp3LNzMm0BCLc/4dP+c2rn+92TY1pWXz4WQ0Hjc0mM9Wz0+MF2T5mHFnMe8ur2VozMmqii4iIiIjsKYWcJLDbbBx/8Gh+cu2xnHNcKe+tqObhF5YTDEV7fP668mYaWkMcP2XULo957glj8ae4+MPf1xLYxXFERERERPYHCjlJ5HY5+Pop4/nOOZNZW97Mfc8tpbKufafnfbhqGx6XgyMm5u3yWH6vi4tOHc/aihZ+8Iv3eWbhatZXtug+OiIiIiKy39nr++TI3jvhkNFkp3t5/KWV3Dn338w4spjzTxyHz+skasT49xd1HDExD4/bsdvjnHxYIWNHpfHOsio+XLWN91duIz8rheOmjOKoSfmMzvFhs+l+OiIiIiIystmsJH/U39DQjmkmpwl5eWnU1Q2dNSxtwQgvvruRd5dV4fU4GZOfittl57ONjcy6eCpTxmX3+VgdYYMla2r5aFUNX2xpwgLyMr0cOj6XssJ0inL9jM7x4XLuPjjJl4Zaf5GhS31F+kp9RfpKfUX6YyT1F7vdRk5Oar/300jOEJLmc/MfX53EqVOLeGtpBTWNQcpr2ynJT2VyaVa/jpXicXLSoYWcdGghja0hlm9oYPn6et5dXsVbn1QAYLNBXmYKRbl+ygrTmX5EMSkedYm9Vd0QIMPvwefVeykiIiKSDLoKG4JKR6Vx9dmTB+x42eleTju8iNMOL8KImdQ0BqmsD1C1/b+GIJ+uq+fv/y7nayeXcfKhhdjtmta2J6JGjB8/u4SjJ+dz5VkD9zMUERERkb5TyNnPOB12ivJSKcrrPuy3qbqVP721jt+9voY/vbWe1BQnfq+L/GwfZaPTKStMp3RUGh6XprftzpqtzYQiMT5dV8+3z7QUFkVERESSQCFHABg3Op1bLz+CT9fVs2ZrM8FQlLaOKJuqWlnyRS0QL31dnOenrCiDKWOzOWhslqa37WDFhgYA2oJRNla3MqEoI8ktEhEREdn/6ApVEmw2G0dMzNupVHVLIMKmqlY2VrewqaqVj1Zt451PK3HYbYwdlUZuZgo56V4cdhttHVHaO+L36XE77XjcDg4ck8nB43L2izUqKzY2MKE4g01VrSxbV6+QIyIiIv0WNUx+9/oXHDYhl2mT8vu0T0fY4JM1dSxbX8+Fpx1AYZZ3kFs5tI38q07Zaxl+N1MPyGXqAbkAGDGTDZUtrNjQwKbqVjZWtbDki1pM08Kf4iLN5wLi/0ADoShvL40HooljMuPHmZBLXmZKMl/SoKhpDFLb1MEZ08bgcthZtr6ei04dn+xmiYiIyBCxtryZDZUtbGsMEo7GmHncWIrzd64c9ud31vP+Z9v4cFUN33XYE9dgOzJiJqs2NfLhqm18uq6eqGHidNj5bGMDN33jsH4XrhpJFHKk35wOOweWZHFgyZf/cEzLAoud1qCYpsWGqhaWra9n2bp6nn9zHc+/uY50vxuXw4bDbiczzcOY/FTG5KdSUpBKUa6/x9LWze1hgiGDUdm+IbnWZftUtUPH52CaFs+/tY6apiAFWb4kt0xERESSbV1FM/83bykA6T4XRszikzV1nH/iOM46tgSH3Q7Aig31vLmkgpMPK6S8to0n/vYZP/jmYRxYkkUgFKW6Icim6lY2V7fy2aZG2oJRUlNcnHjoaI6fMoq8rBR+9sJyHvnLcn7wzalMHJOZzJedNAo5MiDsNhv0kDvsdhsHFGdyQHEm3zh1AjVNQZavq6eqIUjMNDFiFvXNHSxeUU04Gksca1SOj9KCNMaOTsPlsPOvz2tYs7UZi/g0uOL8VEoK0igpSKW0II28zBT8XmdSb3a6YkM9o3N85GWmcNgBuTz/1jqWr6vnK0eXJK1NIiIiMjT8/d/l+L1O7v3PY0n3u2kNRpj3xlpefHcjH6+u4dgpBRxYksUzCz+nOC+Vy884gFAkxv1/+JSfvbAcl8NOMGwkjpeR6mZSSRbHTingkLIcnA574rE51x3PzY+9x8MvLOfwiblMGZtNXmYKG6paWFfeQlN7GMuysCwIR2MEQwZRw+SGCw7m4LKcZLw9A04hR/apgixfjxf9pmVR19RBeW07W2vbKa9pY/Xm+PArQEG2j/NOHEduhpetNe1srWnj49U1vPNpZeIYHpeD7HQPOelestO9pPvdOO02HA4bmakeygrTKcj2xQNZp46wwbqKZqrqg3jdDrweB7kZKYwbnZb4RKUvQhGDNeXNzDiyGID8zvsPLVuvkCMiIrK/a2gJsXRtPWcePYZ0vxuAdJ+b6792MEd9UctrH2/lr//cCMQ/zP2vy6bgcjpwOR3MungqL727EZfLTl5GCgVZKYwdnU5WmmeX58tK93LLpYfz53fWs2pTIx+tqkk8VpCVQkG2Dxvx9dgetwOfx8my9fW8vHgTU8ZlJ/VD44GikCNDgt1moyDbR0G2r9sCu6a2MMELOtRdAAAgAElEQVSwQWGOL/EP7oRD4o9ZlkVdS4jymnYaWjpoaA3T2BqioTXE1po22oJRrB3Ok+Jxku5343basSyLyvoA1o5P6nzeQWOzGJOfSlqKC3+Ki+LmELGIgc/jJGaaRA0Th8NOXqaXz7c0YcQsDu3y6cfUA3J57aOtVDcESPO58bgcuJx9D04iIiIyMvxjafxG7NOPKN7psWmT8pk2KZ/6lg6Wrq2nMMdHYa4/8XhWmoerz+n/vfey0jxce+4UTMuioradxtYw4wrTyegMWTsqzvPz+zfWsra8uduShOFKIUeGtKw0zy4/qbDZbORnppC/myIGpmlhxEzqmjvYWN3K5m1tBDqiRKImpmVx+AF5TCrJZExBGkbMpCNsUFkXYOXGBlZtbuSTNXW9ttHpsON1O/C4HRzQZd7r1ANyWfjhFm5/+uN4e4nfmHV0jo9ROT5G5/gZne0jO8NLqteJ1+PsNsrUE8uyKK9tZ9WmRsLRGOl+N2k+N+k+F6k+N5mpbvxeV69tFhERkX0jHInx7vIqjpiYS07Griue5Wak8JWjxgz4+e02W+cU/7TdPu+EQ0bzt8WbWPjhFoUcgLfffptHHnkEy7IwTZMbb7yRr3zlKwPRNpG9ZrfbcNsdiRugnnTo7p+fmephdI4/MZpkxEzaO8tiO90uKqpbCIYNHHYbLqedSNSksr6ditp2JpZkdZsPO74wg5suOpTm9jARwyQYMqhpDFLdEGRdxZdrkLaz2cDlsGO323A67KT7vwwtUcMkHI1R1RCgpT2y29cwOsfHpJIsxo5Ow+dxJQKY1+3A69r+tROnw5YYHTNNi/WVLSxdW0dVQwCn3Y7TYSPD76Eo309xXrwgxN7eF8m0LGIxE5vN1u29EhER2deCIYPG1hA+r5PMNA92m42mtjCrNjVS19zBoRNyKBud3uPULdO0sNlIPGbETBrbwtQ3d1DfEqKuuQOX087E4kzKa9sJhAxOnzbwAWYguV0OzjhqDH/950a2bGujdNTuQ9FQZ7Osnibr9I1lWRx99NHMmzePiRMn8sUXX3DppZfyySefYO/jeoaGhnZMc4+bsFfy8tKoq2tLyrll+BnI/mJZFk1tYaobgzS3hQl0RGkPRTEMi1jn6FNLIEJze/wxt8uRWHN08LgcDinLJtXnor3DoC0QoTUY/6+hJcTa8hbWVjQTjsR22waH3YbHFV+HFInGw5zTYaMoLxXLsjBiFo2tIUJdjpOT7qUw14/X7cDpsGO3x0uFR6ImToeNvKz4yFq6343X5cBut7G+soVVmxrZUNVK1DABcDpslI1OZ2JJJoU5fjwuB26XA7fL/uXXnfdZcjsd3QLZdoFQlKWd9wOIxkxS3E58XicFWT4Kc32MyvaRlebpsVLf7hgxk/qWENsag7QHoximSSxmkZPhZdzoXQ/zd6XfLdJXI6GvNLSEWFvRzFGT8vXhxSAaCn2lJRDB73X2++ccNWI4HfZBW+cRihjMf38z5bXtBEMGoYiBx+Ug1efC43TQHAjT2Bqf/u5y2HG77ITCsW6L+N3O+IeL9S2hbsfOy/QyoSiTqBEjFI3RFojS1B6mNRDBbrPh8zpxOe20tEfilWY72W22+ML+zu9LC9K448pp+2yty572l2Aoyg8f/4BDx+fwX+cfPAgt6z+73UZOzs5ltnuz1yM5drudtrb4m9jW1kZ+fn6fA47I/spms5HdWSBhb2T43TtddJ9zHMRMk4aWeEAJRWKEo7HOrw3C3b6PxcOQDQ4el80hZTndRmssy6KhJURFXYCKunYq6trZ1hikrtnEiMWn/Lmd8XASjpp8uq6eWA8fWozJT+WUwwoTfwzaO6KsLW/h1Q+3dvujsCt2mw23y94Z9uy4nA5qGoPETIucdC9pPhf1zaHEqFtXqSkuUlNc8f2dDmw24n90LPB5naT5XHhcjkSwqW8O7bZNWWkeMlPd+DxOfF4XPm88XPk8Tvyd349u6CAciuB1OzBNi4hh0h6MsraimTVbm6isCxAz44E2I9XNYeNzOGx8LkV5fjxuJ163A4fdFm+rBaFI5x9jyyIrzbvT2q7a5g5WrK9nTXlzlyBppzDXR3FeKqOyfWSmekj1ubpNiTRNi9ZghGDIIDfDi9u1cyAMRQw2VLbS2BoiGDYIRWJkproZ1bmGLsPv3uM/2g0tIVqDEXIzvKSmuAbkj39LIMK/VtewaVsrU8Zmc8TEvL0egQSIRGOsrWhmbXkzGf54IZMx+akDdlEficaw2WyDsm7PsqxBubCyLIvFK6p5/q11hCIxXvlgM5edMZEpY7MH/FwjxfbfzXmZKd1+Jo2tIYIhg6I8/z65CG7viGK3ga8P05tXbGjgg8+qWV/ZQmNrmFHZPq6ZeRBlhem97tsRNnj9460s+vdWpozN5trzpuDp4fdMT4Ihg0/W1lKY69/laArAxqpWnlqwirqmDsaOTsPvdZGT7iEUjRHoiNIQCZGZ6uGg0iz8KfGZEREjhtvlIDfDS3aal2AoSk1TB01tYU49vIiDx2WTk+Fl6do6/rW6hjXlTXg6P2xM97spHZVGZqqbmGkRDBtEojGy0jzkZqSQl+ElNzOF7HQPoUiMdRUtbKhs4fAD8obFYn6f18Vphxfx+r+2cvXZsR7/LgwXezWSA/Dhhx/yP//zP/h8PgKBAE8++SSHH354n/fXSI4MF+ovvTPN+OhPeyhKOBIjapgU56eSmdrzuqpQxKCpLUwkGp+OFzFiX34dje1yezhqkp+ZwlGT8xk7Kq3bH472jihV9QFqmuKjZE3tEQId0cSUv64XfIFQlLZgvK05GV4Ksn2Myk6hICt+AR+/n1N8CmFNY/y+BNuLWgTDBoGQQUcoSiBk9BjuduSw2xhfmM7Y0em4nHbsNhvVjUE+29jQbcSsNxmpblLcToxYvABGSyA+hTE3w4s/xYWNeEnQmsaOboFt++jd9rcrGDYShTdsNuLBJcuH02HDbrfR0BJiU3XbbkOf1+2gINtHTroXt9OeuEg3YvES8W6XHZ/HRYon/ofStKAtGOHzLU3UNnV0O05eZgp5mSnkZngTX2emumluj1Df0kGgI4rPGw+tKR4nLocNp9NOY2uYirp2Nle38vmWZkzLwu91EggZuJx2JhRl4HHFRwTT/e749NVcPxEjRkNLiKa2MC6nHW9nwPS6naR4HARDBpu2tbKpqjUxEmmDxCezLqed0oI0ygrTKS1IIzfTS066F7vdRn1LiMbWEB6Xg/ysFHIzUghFDFra4yO0ze0RWgJhWoIGX2xuoKo+iN1uo6wwnYljMijM9ZObnkJOhpeMVHe3cLo9cC35oo5l6+rwp7g4dsoojjuoAH+Ki46wQUNriGXr6/l0bT0NrSEOLMnkkHE5TCjOSHww0JcLru3rAMtr22loDdHYGsa0LJwOOzWNQT7f0sSkkkxOOrSQvy3eRG1zB0dOzOOCk8u6LZze3QiAZVlsrWmnpimY+OAlN8PLhOIM0ny9j5z25TU0tYWpaQwSMUwyU+NrPfv6HvTG7LzQTU35MjA0tYVZvKKq83XHpw1vrG5l9eYmOsIGY0el8bWTxjFudDoLPtjM20sriZkWxXl+TjxkNGl+NzWNQeqaQ6SmuMjL9DJuTBahYASnw4bX7SQv05sIKTEz/kGKy+kgxePo9rq2j8yHozE2VLbw7vIqlq9vwGaDSaVZHH5ALnZbvM+2d0Q5eFw2h03IIWpYPP/WWt5fuY10v5uJYzIpyU/lnWWVNLdFOOe4Uo6YmIc/Jb6edENVK2vLm6lv7oiPwrscLF9fT1swyuTSLL7Y0kRZYTrfu+hQ7HYbH6+uYW15M+l+N9lp8X7u98Z/VyxbV8/bn1Ymfi8W5/k55qACooZJXXOItmAEOj8E+nxzE1lpbq6ZedCIWEcyUPbmmiUSjbFqcyNTJ+QOiWC2pyM5exVyDMPgmmuu4cYbb+TII4/kk08+YdasWSxcuBC/39/7AURERgDLil9ABDpHkoIdBsFwlGDIwOmw4XY58HlcjCtKx+veeVQhaph8vrmB+uYOOkIGHZEYpmklwsX2USOIl1qvbeogFDFwOu047XbGFaYz7aACCnNTdzhujIradqrqAzS1hhLTD63OY6f53GSle/F5nVTWtbO5qrVzhMzENC3S/R4OHp/DweNzKc5LjU/96Bz1qqxrp6quncradirr2qlvCWF0BkmbLT6S5HTYO9+XCB3h+MWKzRZ/PQeV5XDYAXnkZ/mobQpS0xhkW0OAbQ1BahoCRDpHpPrKbrdRnJ/K0QeN4tQjiykpSOOLzU28s7Sc9RXNGIZFNBajvjlER5cpKr1xOmyMHZ3OQeNyOPzAfA4uy6ElEGHtlibWbG1i7dYmNlQ097u922WmehhfnMGE4kxCkRirNjWwsbKl24d/ToeN3MwU/CkuGppDNLeHAUjxOJg2eRSNrSFWbWzY6dgOu41DJuRSmOtn+bp6KuvaE4+5nXbyslLIy4wXPzEMs3PKrEleVgqFuamEIgaLl1dRXR9I7JeR6sbpsGPETBx2G1+ffgAzTyjDbrcRicZ46Z31/PXtdYQjMU6bNoZ0v4cln2+jvKYdpyPeV8cVZpDiceJ22WlqDbN0TQ2NreEe35/CXD++FBcOuw27LR6+u35tt8eDa3F+KoW5qcRMk5b2CE1tIarrA1TVBaisb+9x+m66382BpVmUFWVQ19TBuvImquuDlBSkMbE0i7LCdPKzfeRn+XA67LQGwrQFo7QG4lOVmlrDrK9oZl15Ex3hGHlZKUwem00kGuNfq2uwLAu/10UgFMWyICfDy5GTCijKS2XhB5uobQzisMenNJ1xTCnjCjP4x5KtrN3aDMT/reSke2nviO7yQ5A0nwuHw05re5jtXcbtcpCR6iYWMxMj9l37U2aqh+nTxmCzwQcrqqluCCT6i8cdD/d+rxOP20Fze4RvTD+Ai884MPEBRqAjylMvr+QfS8p3ao/H7aAw108kGqMjbFBSkM63zp7MxJIsPlxZxUPPfYI/xUV75wdPuRleAqFo4vfDdnYbHH9oIeedNJ4t21pZ9NFm1le0YLdBdkYKWWmexEh3WVEGV86c0i1kisBehpyVK1dy66238uqrrya2nXXWWdx///0cemgvK7w7aSRHhgv1F+kr9ZWdmZaVuCdDbyzLoiUQoa65g5b2CBmpbnIzUkjzuQiEDAIdUToiBoZhEo2ZZPg9jMr29Wmql2VZNLSGqKoP4nHZyc1IITPNjWladERihDqn5IUiMVxOO8V5qb0e14iZ1DR10NASL2FvWVZ8Gky6l1AkRm1TkPqWECkeJ5mp8emOGakeMv1uigozd+or4WiM+pZQ4njb/x8IRclOi98LrDg/lSljsxNTSeqaO/h0bR2mFQ8/aT43B5Zkdqu2WNfcQUVd+5fHbQ3T0BIPTS6nHb/XicNup64l/r7bbTYml2YybVI+k0qyyE7v2xq31mCE1z7awlufVGJZFgeWZDJlbDZtHVE2V7dSWR8gEo1PefW4HEwZl82h43MoHZVGijsefrY1BllX0cKm6tZENUzTtDqLHFmYFsQ6w3pL58hYV3abjdxMb2J0clR2/L4gHpeD5vYwjW1hymva2VDVQnVDkDSfi7LR6eRn+aiqb2djdVuvYdjRGazLCtPJTfeyaVsb6yqaMU2LEw8dzSlTi8jPTMG0LELhWLcRFiNm8v7KarbWtjP9iGKKuox6beucipuf6cXldGBZFm3BKKbDTl19O4ZhEggZ1LeEqG3uwDTj/wYyUt1EoiYtgTCtgfgaS09nsRm3K154JjfT2+2mkZZlUdsUXyC/fcT98y1NfLhqG01tYS46dTzjRvc8LW3LtjYaWkOJwDJudDolBbufwrmuopl5b6xlQnEGJx1amFjYHgwZtATCBEMGgVCUUTn+nSqn7ul6oP3VSPo7lJSRnLq6Os4880z+8pe/UFZWxoYNG7jkkkv4+9//TmZmZu8HQCFHhg/1F+kr9RXpq6HaV0IRA9OMr1vbU8FQFJvNNiBronrTETaoberA6bST5nOR6nVht/dtmk0kGg+0XQO4aVk0t4UTITNmWvH1fT4XaSlfTpncMbRvv6QajCk+Q7WvyNA0kvpLUgoP5OXlcdddd3HTTTcl/kH/5Cc/6XPAERERkaGnp2mV/dWXRe0DJcXj3ONytz0trLZ3KQ5zwM73btylobB+QUTi9vq32Hnnncd55503EG0RERERERHZa5rYKCIiIiIiI4pCjoiIiIiIjCiDvxqwF31dGDhSzy/Di/qL9JX6ivSV+or0lfqK9MdI6S97+jr2+magIiIiIiIiQ4mmq4mIiIiIyIiikCMiIiIiIiOKQo6IiIiIiIwoCjkiIiIiIjKiKOSIiIiIiMiIopAjIiIiIiIjikKOiIiIiIiMKAo5IiIiIiIyoijkiIiIiIjIiKKQIyIiIiIiI4pCjoiIiIiIjCgKOSIiIiIiMqIo5IiIiIiIyIiikCMiIiIiIiOKQo6IiIiIiIwoCjkiIiIiIjKiKOSIiIiIiMiIopAjIiIiIiIjikKOiIiIiIiMKAo5IiIiIiIyoijkiIiIiIjIiKKQIyIiIiIiI4pCjoiIiIiIjCgKOSIiIiIiMqIo5IiIiIiIyIiikCMiIiIiIiOKQo6IiIiIiIwoCjkiIiIiIjKiKOSIiIiIiMiIopAjIiIiIiIjijPZDWhqCmCaVlLOnZOTSkNDe1LOLcOP+ov0lfqK9JX6ivSV+or0x0jqL3a7jawsf7/3S3rIMU0raSFn+/lF+kr9RfpKfUX6Sn1F+kp9Rfpjf+8vmq4mIiIiIiIjikKOiIiIiIiMKAo5IiIiIiIyoiR9Tc5Q8MmaWhb9u5xZF0/F43IkuzkiIiKyn4rFDJqa6jCMSLfttbV2TNNMUqtkuBmO/cXpdJOVlYfDMTDxRCEHSPO5WV/RwmsfbeFrJ5UluzkiIiKyn2pqqsPr9eH3j8JmsyW2O512DGN4XbRK8gy3/mJZFoFAK01NdeTmjh6QY2q6GjBxTCZHT87n1Y+2UtfckezmiIiIyH7KMCL4/endAo7ISGez2fD703cawdwbCjmdvnnaBOx2+ONb65LdFBEREdmPKeDI/mig+71CTqfsdC/nHj+WT9fV89mmhmQ3R0RERCTpLrroXDZuXL/H+z/zzJNEo9EBbFHPx/31r3/FW2+9MeDn2ZXLL7+Itra2btuqq6s455wZ+6wNXZ144jSCwSAAL7zwBxobGwf8HNXVVfztby922/bDH36PysqKAT/XQFDI6eIrR5WQk+7ljX+VJ7spIiIiIsPeb37z9C5DjmEYA3bca675L2bM+MoeH68/Nm5cT25uPmlpafvkfP31wgvP09TU/5DT28+jurqK+fNf6rbtoYcepaiouN/n2hdUeKALl9POmPxUGltDyW6KiIiIyJDy3e9ey+TJU/jssxXU19czffrpXH/9jQDMnfsUb765CLfbg80Gjz76JE899TgA119/NTabnccee5JHH/0pPp+P8vJympubuPfeB7jmmm+xcOFbQPxCuuv377//HnPnPoVhGNjtNm6//e7EaMKOx500aTJf//rFBINBfv7zB/n881UAnHnm2VxxxZV79Bp6CjLvvfdPTjrp5H69d6+99grPP/97bDYbhYXF3HLLj8jKyiYWi/HEE4/x8ccfAHDMMcdz/fU34nA4uPfeu3A6nVRVVVFbu42pU4/gBz+4FZfLtcvzPPvsM9TX1/GjH92Cy+XmzjvnUFw8hqeeepxlyz4hGjUYP348s2bdhs/n49577+r285g79znuvns2W7duIRqNUFQ0httuu4P09HR+9rMHqK6u5MorL6O4uJg5cx7goovO5YEHHqasbAIVFeU8+OB9NDc34XA4uPbaGzj22OOB+EjTtdf+N++++w4tLS3ccMP3OPXUwR31UsjZQYrHSTC8558siIiIiAyE91dWs3hFNQA2G1jWwB37xENHc8Ih/a9iVVOzjV/+8mmCwSAXX3w+M2eeT0ZGJs8//xyvvPIGHo+XYDCA2+1h1qxbeemlP/PEE3Px+XyJY3z22Up+8YunSElJobq6apfn2rp1C/ffP4df/vJpxowpIRKJYBjRXR53u9/+9teYpsnvfvcngsEA1113NePHH8Bxx53Q79fQk8WL/8mPf3x/n9+zjRvX86tf/YJnnnmO3Nxcnn76CR5++EHuuecnzJ//EuvWrWXu3HlAfPrX/PkvccEFFwGwevVnPPHEXNxuNzfffBPz57/I179+8S7P9R//8R0WLHiZ++57gNLSssT74ff7efrp3wHw+OOP8vvf/4brrrsB6P7zALjpph+SmZkJwFNPPc68ec9y/fU38oMf3MIvf/kIzzzz+x7Pfffdszn//AuYOfNrbNq0ke9+9z957rm/kJWVBYDf7+fXv/4dK1Ys4447bhv0kKPpajvwe50EQwo5IiIiIjs67bQZ2O12UlNTKS0dR2VlBX6/n5KSUu655/8xf/5LBIMdOJ27/hz91FNnJC6od+ff//6YY489njFjSgBwu934fP5e91uy5F+ce+4FnRW7Ujn99K+wZMm/BuQ11NXVEovFGDWq7wFx6dIlHHfcCeTm5gJw/vkXJtqzZMnHnH32TFwuFy6Xi7PPPpclSz5O7Dt9+hn4fD6cTidnnTWTTz5Z0ufzbvf+++/yxhuvceWVl3HllZfx/vvvUlX15TqaHX8er7/+CldffQXf/vbF/P3vi1i3bm2v5wgGA6xfv5azzz4PgHHjypgw4UBWrVqZeM6MGWcCMGXKIdTX1xEOh/v9WvpDIzk78HmddIQNTMvCruomIiIikiQnHPLlaMtQue9J19ENu91OLBbD4XDw5JO/YeXK5SxduoTvfOcKfvrTx5gw4YAej+HzfXlB7XA4MM0vh6gika4lhPd06Mpix0u4rpW79uY1vPfePznhhP5NVbOsnSuHbf+258d6vv60rJ1fV1/PP2vW/3LkkUf1+HjXn8fy5Z/y8st/5Ykn5pKVlcUbb7zO/Pkv9rjfjm3rSff33Q3Ef+YAsVisz69hT2gkZwc+jxMLCGnKmoiIiEivgsEAzc3NHH74kXznO9dRVjaejRs3AODz+QkE2ne5b3Z2DoZhUFERL/r097+/nnjs6KOP46OPPqC8fCsQD0DBYKDX406bdgyvvPI3LMsiGAzw1ltvMG3a0Xv8GrpavPifnHTSKbs91o6OPPIoPvzwfRoa6gFYsODlRHuOOuoYXn11AYZhYBgGr732Sre2vv32W3R0dGAYBosWvcYRR0zr9Xx+v5/29i/fmxNPPJk//Wke4XAo8Vo3b97U475tbW34/alkZGQQiURYuHB+l+Om7vI99/tTmTBhIq+99goAW7ZsZsOGtRx00MG9tnewaCRnByne+FsSDBn4vLte2CUiIiIi0N7ezu2330IkEsY0TSZOnMQpp5wGwCWXXM73vvdfeDxeHnvsyZ32dTqd3HTTLL7//RsoKBjV7SJ+zJgSbrnldu688zZiMROHw87tt9/N+PETdnvcK6+8hocffoBvfzu+duXMM89OLIDfk9ewXSDQTlVVJRMnTtrlcdra2rjggrMT35eUjOWRRx7nuutu4Pvfv6Gz8EARN9/8IwDOO+8CKirKueqqy4B4sDv33AsS+0+deji33TaLmpp44YHzzrtwt68D4KKLLmHOnLvweLzceeccrrjiSp555kmuuebb2O12wMbVV/8nY8eO22nfY489njfeeI3LLruI/Px8Jk2azOrV8QIO48dPoKSklG9965uUlo5lzpwHuu17551zePDB+3jhhT/gcDiYPfuexHqcZLBZuxpf2kcaGtq7DVPuS3l5adTVda9xvnRtHb94cSV3XnkUpaOGZmlASY6e+otIT9RXpK/UV2RH27ZtYdSo0p22D5XpavuzN99cxMqVy/n+92/ZJ+e79967EhXj+mu49pee+r/dbiMnJ7Xfx9JIzg58ns6RHE1XExEREZFOp59+JqeffmaymyF9pJCzA1+X6WoiIiIiIslw++13JbsJw5oKD+zgy5DT8915RURERERkaFPI2YHPEy82oOlqIiIikgxJXi4tkhQD3e8Vcnbg9TiwoelqIiIisu85nW4CgVYFHdmvWJZFINCK0+kesGNqTc4O7DYbPq9TIUdERET2uaysPJqa6mhvb+623W63Y5rDr1qWJMdw7C9Op5usrLyBO96AHWkESfE4CYa1JkdERET2LYfDSW7u6J22q9y49If6i6ar9UgjOSIiIiIiw5dCTg/8XhcBFR4QERERERmWep2u1tTUxC233MLWrVtxu92UlpZyzz33kJ2dzbJly7jjjjsIh8MUFRXx4IMPkpOTsy/aPah8HifbGoPJboaIiIiIiOyBXkdybDYb11xzDYsWLWLBggWMGTOGhx56CMuyuPnmm7njjjtYtGgR06ZN46GHHtoXbR50KV6nSkiLiIiIiAxTvYaczMxMjjnmmMT3U6dOpaqqipUrV+LxeJg2bRoAl1xyCa+//vrgtXQf8nmcBHQzUBERERGR/9/evQdJVd99Hv+c093T3XO/AjOAXBLgQVGJwxOTMht1xsU1OGi5W2qCYHmJm7KSeCkrMVFDorg6miq1AgpJ3K2trajPpXzcKEnEBEISYyIoGskSQG6OzABzg2Hu031++0f3zHTPtWcYOH15v6om3f075/zO98x8k+aTc/p0SprQZ3Icx9HLL7+sqqoqNTQ0qKKiYmBZcXGxHMfRyZMnx5ghNeQEvOrtcxQKp9at9wAAAABM8BbSjz32mLKzs3XLLbforbfempICSkpyp2SeySoryxs2Nq00UlN2bkAFuf5zXRKS2Ej9AoyEXkGi6BUkil7BRGR6vyQccmpra3XkyBFt3LhRtm2rvLxc9fX1A8tbWlpkWZYKCwsnVEBzc7scx51v9R3tHuJOX1iS9MnRk/WDAnwAABsPSURBVJpRnH2uy0KS4p7zSBS9gkTRK0gUvYKJSKd+sW1rUidFErpc7ZlnntHu3bu1YcMGZWVlSZKWLFmi7u5u7dy5U5L0yiuv6JprrplwAckoOxDJfnxXDgAAAJB6xj2Ts3//fm3cuFFz587VzTffLEmaNWuWNmzYoKeeekpr166Nu4V0OhgIOT3cfAAAAABINeOGnAULFmjv3r0jLrvkkkv0+uuvT3lRbsv2cyYHAAAASFUTurtapsgO+CQRcgAAAIBURMgZweDlaoQcAAAAINUQckaQ5bXlsS2+EBQAAABIQYScEViWpeyAV11crgYAAACkHELOKLIDPi5XAwAAAFIQIWcU2X6vOjiTAwAAAKQcQs4osgNe7q4GAAAApCBCzihyAl4uVwMAAABSECFnFNl+rzq5uxoAAACQcgg5owhGL1czxrhdCgAAAIAJIOSMIifgU9gx6g05bpcCAAAAYAIIOaPI9nsliZsPAAAAACmGkDOK7EB/yOFzOQAAAEAqIeSMYiDkcIc1AAAAIKUQckaR7fdJ4nI1AAAAINUQckYxeLkaIQcAAABIJYScUQzceIDL1QAAAICUQsgZBTceAAAAAFITIWcUXo+toN+jUx29bpcCAAAAYAIIOWMoyQ+q6VS322UAAAAAmABCzhjKCgNqJuQAAAAAKYWQM4bSgqAaT3XJGON2KQAAAAASRMgZQ2lBQL19jk53cvMBAAAAIFUQcsZQWhiQJD6XAwAAAKQQQs4YygqCkqSmU10uVwIAAAAgUYScMZQUcCYHAAAASDWEnDEE/V7lBn1qOsmZHAAAACBVEHLGUVoQUCNncgAAAICUMW7Iqa2tVVVVlRYtWqR9+/YNjG/btk3XX3+9rrvuOtXU1GjLli1ntVC3lBYEuFwNAAAASCHe8Vaorq7WmjVrtGrVqoExY4y+853v6Be/+IUWLlyof/zjH/rqV7+qq666SradXieHSguD+uDjJjnGyLYst8sBAAAAMI5xQ86yZctGHLdtW6dPn5YknT59WtOmTUu7gCNFzuSEwkan2ntVlOd3uxwAAAAA4xg35IzEsiw9++yzuvvuu5Wdna2Ojg5t2rRpqmtLCqUxt5Em5AAAAADJb1IhJxQKadOmTXr++edVWVmp9957T/fdd582b96snJycCc1VUpI7mRKmTFlZ3pjLFzqRxx5n/HWR/ugBJIpeQaLoFSSKXsFEZHq/TCrk7NmzRydOnFBlZaUkqbKyUsFgUAcOHNBFF100obmam9vlOGYyZZyxsrI8NTaeHnMdOxyWJB2qa9WS8wrPRVlIUon0CyDRK0gcvYJE0SuYiHTqF9u2JnVSZFIfopkxY4aOHTumgwcPSpIOHDigpqYmnXfeeZOZLqll+TwqyMniNtIAAABAihj3TM66deu0ZcsWNTU16bbbblNhYaE2b96sH/7wh7rnnntkRe849sQTT6iwMD3PdJQWBvhCUAAAACBFjBtyHn74YT388MPDxleuXKmVK1eelaKSTWlBUAeOnnK7DAAAAAAJSL97Pp8FpQUBtbT1KOw4bpcCAAAAYByEnASUFQblGKPWth63SwEAAAAwDkJOAkoKApLEzQcAAACAFEDISUBFSeS7f442trtcCQAAAIDxEHISUJTnV2Fulg42tLldCgAAAIBxEHISNK88X4fqCTkAAABAsiPkJGh+Rb6Ot3apvavP7VIAAAAAjIGQk6D55fmSpMNcsgYAAAAkNUJOguaW58uS+FwOAAAAkOQIOQkK+r0qL83hczkAAABAkiPkTMC88jwdbGiTMcbtUgAAAACMgpAzAfMrCnS6s0/NfCkoAAAAkLQIORPQf/MBPpcDAAAAJC9CzgTMLMuRz2vrIJ/LAQAAAJIWIWcCvB5bc6bn6RBncgAAAICkRciZoHnl+Tpy7LRCYcftUgAAAACMgJAzQQtmFag35OjA0VNulwIAAABgBIScCVoyv1hej6339jW6XQoAAACAERByJiiQ5dWSecXata+R78sBAAAAkhAhZxIuWVim5rYeHTl+2u1SAAAAAAxByJmEpQtKZVuW3tvLJWsAAABAsiHkTEJu0KdF5xXqfT6XAwAAACQdQs4kXbKwTA3Nnapv6nC7FAAAAAAxCDmTdMnCMknibA4AAACQZAg5k1SU59f8inzt3HvC7VIAAAAAxCDknIEvXjBDnxxv18ef8sWgAAAAQLIg5JyBL11YrpyAV2/u+MTtUgAAAABEEXLOgD/Lo8uXztT7+xp14mSX2+UAAAAAECHnjFVXzpJtWfrtzjq3SwEAAACgBEJObW2tqqqqtGjRIu3bt29gvKenR2vXrtXy5ctVU1OjRx555KwWmqyK8vz6/OLp+uPfGtTZ3ed2OQAAAEDG8463QnV1tdasWaNVq1bFjT/99NPy+/168803ZVmWmpqazlqRyW75P8/WO38/pu0f1OuaL8xxuxwAAAAgo40bcpYtWzZsrKOjQ6+99pq2b98uy7IkSaWlpVNfXYqYMyNPF8wr1uZ3juiyi8qVn53ldkkAAABAxprUZ3Lq6upUWFio9evX64YbbtDq1au1c+fOqa4tpdxcvUA9fWG9uv2A26UAAAAAGW3cMzkjCYVCqqur0/nnn6/vfve7+vDDD/WNb3xDb731lnJzcyc0V0nJxNafamVleVM2T81/mq//+4cDuu6KBVp4XtGUzIvkMlX9gvRHryBR9AoSRa9gIjK9XyYVcioqKuT1enXttddKki6++GIVFRXp0KFDuvDCCyc0V3NzuxzHTKaMM1ZWlqfGxtNTNt9/vmSmtu2s0/p/3aWH1iyTHb2UD+lhqvsF6YteQaLoFSSKXsFEpFO/2LY1qZMik7pcrbi4WJdeeqnefvttSdKhQ4fU3NysOXMy+0P3Qb9XN175WR1qOK1t7x91uxwAAAAgI40bctatW6cvf/nLOnbsmG677TatWLFCkvSjH/1ImzZtUk1Nje6//3499dRTys/PP+sFJ7svXDBdF84v0b9s3a9DDW1ulwMAAABkHMsY4861YlHpdLlav/auPv3of70ry7K09rZ/Vk7AN+X7wLmXTqd+cXbRK0gUvYJE0SuYiHTql3N6uRrGlhv06RvXL1Hr6R79/PX/J8fdHAkAAABkFELOWfKZigLdXL1AHx5o1iu/3S+XT5gBAAAAGWNSd1dDYqoumanGk13asqNO/iyP/uvln3G7JAAAACDtEXLOIsuydFPVZ9XbF9bmd44oy2ur5rJ5bpcFAAAApDVCzllmWZZuuXqRevoc/ccfD6mts09frV4g2+Y7dAAAAICzgZBzDtiWpTtWLFZetk9bdtSp8WSX/vvKCxT08+sHAAAApho3HjhHbNvSzdULtHr5Qu0+2KL/8X/e06cn2t0uCwAAAEg7hJxz7MpLZum+my7W6a4+Pfq/d+qtHXXceQ0AAACYQoQcF1wwt1iP3v55XTC3SC//br+efnmXjjZ1uF0WAAAAkBYIOS7Jz8nSt//bRVrzXxap7kS7fvg/39W/bftYXT0ht0sDAAAAUhqffHeRZVm6YulMXbKwTP/++wP69V8/0R8+rNdXvjBHVZWz5Pd53C4RAAAASDmEnCSQn52l27+yWFd+bqb+448H9W+/P6A3d9TpqspZuuJzM5Ub9LldIgAAAJAyCDlJZF55vu6/can21Z3UG38+rFf/cFBvvHNYly0p1+VLK3Te9Dy3SwQAAACSHiEnCS2cXaj7b1qqTxvbteXdOv3xbw3atuuo5szI02VLZqhy0TQV5fndLhMAAABISoScJDarLFe3r1ism6o/q7/8/bj+8GG9Xvrtfr302/367MwCLVtUpspF01RSEHC7VAAAACBpEHJSQE7Ap+rKWaqunKX6pg69t/eEdu5t1CtbP9YrWz/WvPI8XTCvROfPKdJnZhbI5+WmeQAAAMhchJwUU1Gao4rSeaq5bJ6Ot3bqvb2Nen9foza/c1hv/Pmwsry2Fswq0OK5xVp0XqHOm5ZH6AEAAEBGIeSksOlF2frKF+boK1+Yo87ukPbWtWrP4VbtOdKqf//9AUmS12Np9rQ8za/Ij/yU56usKCjbslyuHgAAADg7CDlpIjvg1ecWlOlzC8okSafae7T/01M62NCmg/Vt+uPf6vW79z6VJAWyPJpZlqPZZbmaWZar2dNyNbMsRzkBblUNAACA1EfISVMFuX4t+6dpWvZP0yRJYcdRfVOnDjW0qe54u+oa27XjHyf0+w/qB7bJDfo0vTio6UXZml4U1PTibE0vyta0oqCCfloFAAAAqYF/uWYIj21r9rTIWZt+xhi1nu7Rp40dqm/q0PHWTh1v6dSeI6368+5jcdsX5GSptCCgovyASvL9Ks4PqCQ/oOLo87ygTxaXwAEAACAJEHIymGVZKs4PqDg/oIs+UxK3rKc3rBMnu3S8pTMafrrU3NatuhPt+vDjJvWFnLj1fV5bRbl+5edmqSA7K/KYk6X8nPjHgpws+byec3mYAAAAyDCEHIzIn+UZduannzFGp7v61NLWrZa2HjW3daulrVsn23vV1tGrhpZO/eOTVnV0h0acO+j3Kj/bp9ygTzlBn3IC/c+9kcfo68hzr3KCPvmzPNwsAQAAAAkh5GDCLMtSfnaW8rOzNHfG6OuFwo7aOnrV1tmrU+29OtURCUGnOnp1urNXHV19OtXRq/qmDrV39am7Nzz6PiUF/B4F/d7Bnyyvgn6PsqOvA35v9HlkvUCWV4Esj7J8HgV8HvmzPPL7PPJ6LC6tAwAASGOEHJw1Xo89cDlcIkJhRx3dIbV39akj+tPe1aeO7pC6emJ+esPq6gmprbNXx1v7x8MKhZ3xdyLJtqxo4LHljwk//Y8Bn0dZ0edZXltZPo98HlvFRdnq6e6Vz+uRz2sry2tHHz3yRl/3j/m8hCkAAAC3EHKQNLwee+BzO5PRF3JiglAk+PT0hdXTO+RxlOcdXX1qaetRT29IPX2OunsTD04jsaRo4BkMQz6fLZ8n8trr6f+xBh49nshyz8BYzHLbkje6nce25PPa8tjR5d7o8mFzDs7rsS3ZtiVP9IcABgAA0hUhB2kjEiYiNzmYKo4x6gs56gs5yi8IquF428Dr3r6w+sKO+voc9YUd9fY56guFI8uiP6GQo97oWP945Hlk266ekEJho7DjKBR2FAqb+MeQIzNlRxPPtix5PJHg4x0SgDy2HXntGWEs5ieyjp3Q9rZtRfYZDViR14q8ji6zLUu2rYF1bWtwO9uOLosdt2O2GTauEdaLjtvxc1uWCH0AAKQRQg4wBtuyIpey+TwqKQjK6R35Zgpnk+MY9YUdheNC0AiBKPo8HHai60fHnchjOGzkmMjysGMUdoyc6OPAT9gZNuY4RiEnOh6O1NLdGwlmceuOM3+yiw1Lg6ErEoisaBCyhzxGxgcDVf+Yz+dROOwMzGHFLLOHPI41d2TfkqX4eeJqUuyYhsw38v7tmP3Grh/5PUiyLEUfIsslKWad2PG4eaLLpP6xSO0Dz2Pmits+Zs7+v4VG2j76PH6d4bVa0f+wh9Xd//uM7mvocY9Rd9w+NTgGAEhOCYWc2tpavfnmmzp69Khef/11LVy4MG75+vXr9ZOf/GTEZQDOjG1b8tseyZe6t942JhKAHCcS2pyB10aOiY4NHY9dNtJ43OvI3MZEw5UZHDdGA4HLMUYmun3YceQYRV9HA5pjZBwNPo9uH6l/8Dj6x0x/HTGvjTHy+bzq7ukbtq7pr0tD5nZi9qHovDH7H5hHJjo+tCaNWSvOjtiQJw0JeNEVrP5UNLB+dJ3oc9u24v5Gg9vGBELFh6qBdRS/7/59WTErDu5zSMiMOYqR6o2tNb6uIesMHviwfQ09noHZhgRWa8j6g+UPqXfI8Yx8TDHHM8YxjV5X/19n4NDj5opuHVdDbN2JbDv8OONXsoaNR+Tm+NXR2TvCnIMbjLatZVlD1h1S77DjUPzvZoT9DQ361hj1jLvtKHWN9HuazO84dp9W3Fj8xsOPYex9Dv3vyIS2HVLE0N6OrXl4vcPnHbrvls4+tZ7sHPX3Mep8Ufk5WSrK8w/fKIUkFHKqq6u1Zs0arVq1atiyv//97/rggw9UUVEx5cUBSA+WZcljWfLYbldybpSV5amx8bTbZQyID0ujh6JIkBp8HrutMWZwmSRF55MkJ7JgxO0H14ksNDFBzgzZ3onOO7iv+P1G9hlZaei++udU3PzD6zb9tcbOP9pxj3j8Q+qO3Zeix6j4Ogb/DsPXCQR96uzqja7QPx5Ta8yx9l+7GjvHwDqx22uwRjNkztHWiT3muFpHrWtw+9j9GCe6zkCNJqbukY8p7ncyyjENq3XYMcX+7QaqGlZv3O+gf85RjmnY/vrnHDoW+3eJez28nvjXsfOPvC3gFo9t6fn7v5zS322YUMhZtmzZiOO9vb169NFH9eMf/1i33nrrlBYGAJgasZe2IbkkWyBGcjLGqKwsTyf6e2VIOBopOA0NVaOFsjG3HTY+WM/Icw5uMN62Q/c5akiMWWm0/Y0bTmO3T3DbwV0N/z31vx41nI7xOx5tnyPWOsKcsfPGj8XXX1AQ1KlTncP2n+h8hXn+lA440hl+Jue5557TypUrNXv27KmqBwAAADEGP/83yjVRwBD8HyhnEHJ27dqljz76SA888MAZFVBSkntG25+psrI8V/eP1EK/IFH0ChJFryBR9AomItP7ZdIhZ8eOHTp48KCqq6slSceOHdMdd9yhJ554Ql/60pcSnqe5uV2OS3deIuViIugXJIpeQaLoFSSKXsFEpFO/2LY1qZMikw45d911l+66666B11VVVdq4cSN3VwMAAADgqoRCzrp167RlyxY1NTXptttuU2FhoTZv3jwlBdi2u9eTur1/pBb6BYmiV5AoegWJolcwEenSL5M9DssMvcUDAAAAAKSwDPnWCgAAAACZgpADAAAAIK0QcgAAAACkFUIOAAAAgLRCyAEAAACQVgg5AAAAANIKIQcAAABAWiHkAAAAAEgrhBwAAAAAaSVjQ86hQ4d000036eqrr9ZNN92kw4cPu10SXNLa2qqvf/3ruvrqq1VTU6NvfvObamlpkSR98MEHWrlypa6++mrdfvvtam5uHthurGVIf+vXr9eiRYu0b98+SfQKhuvp6dHatWu1fPly1dTU6JFHHpE09vsP702Za9u2bbr++ut13XXXqaamRlu2bJFEv0Cqra1VVVVV3HuONPneyJi+MRlq9erV5rXXXjPGGPPaa6+Z1atXu1wR3NLa2mr+8pe/DLx+8sknzfe+9z3jOI656qqrzI4dO4wxxmzYsME8+OCDxhgz5jKkv927d5s77rjDXHHFFWbv3r30Ckb02GOPmccff9w4jmOMMaaxsdEYM/b7D+9NmclxHLNs2TKzd+9eY4wxe/bsMUuXLjXhcJh+gdmxY4epr683V1555UCPGDP5/y3JlL7JyJDT1NRkKisrTSgUMsYYEwqFTGVlpWlubna5MiSD3/zmN+bWW281H374oVmxYsXAeHNzs1m6dKkxxoy5DOmtp6fH3HjjjeaTTz4ZeMOhVzBUe3u7qaysNO3t7XHjY73/8N6UuRzHMZ///OfNzp07jTHGvPvuu2b58uX0C+LEhpzJ9kYm9Y3X7TNJbmhoaND06dPl8XgkSR6PR9OmTVNDQ4OKi4tdrg5uchxHL7/8sqqqqtTQ0KCKioqBZcXFxXIcRydPnhxzWWFhoRul4xx57rnntHLlSs2ePXtgjF7BUHV1dSosLNT69ev117/+VTk5ObrnnnsUCARGff8xxvDelKEsy9Kzzz6ru+++W9nZ2ero6NCmTZvG/PcK/ZLZJtsbmdQ3GfuZHGAkjz32mLKzs3XLLbe4XQqS0K5du/TRRx/pa1/7mtulIMmFQiHV1dXp/PPP16uvvqoHHnhA3/rWt9TZ2el2aUhCoVBImzZt0vPPP69t27bphRde0H333Ue/AGcgI8/klJeX6/jx4wqHw/J4PAqHwzpx4oTKy8vdLg0uqq2t1ZEjR7Rx40bZtq3y8nLV19cPLG9paZFlWSosLBxzGdLXjh07dPDgQVVXV0uSjh07pjvuuEOrV6+mVxCnoqJCXq9X1157rSTp4osvVlFRkQKBwKjvP8YY3psy1J49e3TixAlVVlZKkiorKxUMBuX3++kXjGisf8uO1RuZ1DcZeSanpKREixcv1htvvCFJeuONN7R48eK0O02HxD3zzDPavXu3NmzYoKysLEnSkiVL1N3drZ07d0qSXnnlFV1zzTXjLkP6uuuuu/SnP/1JW7du1datWzVjxgy9+OKLuvPOO+kVxCkuLtall16qt99+W1LkbkbNzc2aO3fuqO8/vDdlrhkzZujYsWM6ePCgJOnAgQNqamrSnDlz6BeMaKy//2SXpRvLGGPcLsINBw4c0IMPPqi2tjbl5+ertrZW8+fPd7ssuGD//v269tprNXfuXAUCAUnSrFmztGHDBr3//vtau3atenp6NHPmTD399NMqLS2VpDGXITNUVVVp48aNWrhwIb2CYerq6vT9739fJ0+elNfr1b333qvLL798zPcf3psy1y9/+Uv97Gc/k2VZkqRvf/vbuuqqq+gXaN26ddqyZYuamppUVFSkwsJCbd68edK9kSl9k7EhBwAAAEB6ysjL1QAAAACkL0IOAAAAgLRCyAEAAACQVgg5AAAAANIKIQcAAABAWiHkAAAAAEgrhBwAAAAAaYWQAwAAACCtEHIAAOdcVVWVXnzxRdXU1KiyslL33nuvenp69NOf/lQ33nijQqGQJOmll17SihUr1NPT43LFAIBUQsgBALji17/+tX7+85/rd7/7nfbu3atXX31Vd955p3w+n1544QUdPnxYzzzzjJ5++mn5/X63ywUApBCv2wUAADLT6tWrNX36dEnSlVdeqT179si2bdXW1uqGG27Qr371K9155506//zzXa4UAJBqOJMDAHBFWVnZwPNgMKjOzk5J0qxZs3TppZfq6NGjWrVqlVvlAQBSGCEHAJBUtm/frl27dumLX/yinnrqKbfLAQCkIEIOACBptLS06KGHHtLjjz+uJ598Ulu3btX27dvdLgsAkGIIOQCApPGDH/xAVVVVuvzyy1VUVKTHH39cDz30kFpbW90uDQCQQixjjHG7CAAAAACYKpzJAQAAAJBWCDkAAAAA0gohBwAAAEBaIeQAAAAASCuEHAAAAABphZADAAAAIK0QcgAAAACkFUIOAAAAgLRCyAEAAACQVv4/q6a0DgnDTo4AAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAF/CAYAAAChV+O/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8ZHWd7/9XLakktWSrLVslvZ+mF5amka0RBhHXdmVGGWVUuAooOjPOZXAEl58biKIjotI/RVHRGZ2rM9eZ0VHHO47gggJyZT3dSLqzV1X2WpJUqurcP6pS3U1300lnqVTyfj4eebSpc6rOt/JJMO98v+fztVmWhYiIiIiIiJwae7kHICIiIiIiUskUqkRERERERBZAoUpERERERGQBFKpEREREREQWQKFKRERERERkARSqREREREREFkChSkREREREZAEUqkRERERERBZAoUpERERERGQBFKpEREREREQWQKFKRERERERkAZzlHsAyqgbOAQaAXJnHIiIiIiIiK48DaAF+B0zP9UlrKVSdA9xf7kGIiIiIiMiKdxHwwFxPXkuhagBgdDRFPm+VZQB+v5fh4WRZri2nRjWrPKpZ5VHNKo9qVllUr8qjmpWP3W6jsdEDxewwV2spVOUA8nmrbKFq9vpSWVSzyqOaVR7VrPKoZpVF9ao8qlnZzet2ITWqEBERERERWQCFKhERERERkQVQqBIREREREVmAtXRP1XHlcllGR+Nks5klv1YsZiefzy/5dWTxzKVmTqeLxsYgDsea/3ESEREROYplWWRm8uQti2wuT9fABI89O4LZPUZmJkfesmjwVfO3V56F01G58z1r/rfA0dE4NTVuPJ5mbDbbkl7L6bSTzSpUVZKT1cyyLFKpCUZH4wQCLcs4MhEREZGVa2A4xa8eH+TXTwwyMnH0dk8up50tkQa87ips2Giqq8a+xL+HL7U1H6qy2cyyBCpZnWw2Gx5PHcnkWLmHIiIiIrLs8pbFwYEEjz87zP7eMUYT04wlM0xOZ7HZYMd6P5fuasdht2Gz2WgLeNgSqafK6Sj30BfVmg9VgAKVLIi+f0RERGS1y+ctumMJnuga4alDo4xMTDOVyZKezpKZyWMDOsI+2gIetq1rItxYyzlbQ9R7q8s99GWhUCUiIiIiIkcZTUzz6DNDPHVwhIGRNNGRSbK5wi0R7UEvkZCXGpeDGpeT9S0+tq1vos7tKvOoy0ehaoW54oq9uFwuqqpc5PM53vKWa7jsspfwyCMP8Z73XMeVV17Fu971l6Xzb7jhHTz66CP85Ce/wO12H/c1H3nkIW688S+JRDrJ5bLU1zdw443vp7NzXek1rrzyKi688KLSc2655W+54IKLePnL93LPPfv42te+zL5997J9+w4A7rlnH5OTk9xww1+d8L1YlsU//dM/8oMf/DNgkc/nOeOMs3j726/nPe+5nne96y85//wLARgfH+Ntb3sTn/zkZ9m8eQtPPfUE+/Z9gb6+PmpqqmloaOSaa67lzDN3HXOdoaE4t9xyE1/84lew2+d+g+PTTz/Jd77zbT70oY8973mjo6PcdNNf88UvfgWnUz8yIiIisnok0hke7xrhia4REukZsrk8qckZumNJAPx1NURCXnau9xMJe9nW2bhmZp/m46S/IRqG4Qe+CWwEpoFngGtN04wbhmEBjwGzd/JfZZrmY8Xn7QU+VbzGw8DbTNNML9Wx1eRjH/skGzZsYv/+p7nuumvYvftcADo6Orn//p9z3XU34HA46O/vY3p6ak6vuW7dBu6555sAfPGLd3LnnZ/hjjvunPOYmptbuPvuz/P5z++b83O+/OUv8eijj3DnnV+iqclPPp/n/vt/zuTkJDff/CE+8IH3ce+9/4DX6+Uzn7mdV73qtWzevIU//vEZbrzxr/jABz7CueeeD0Bvbw/PPLP/uNe5996v8PrX/9m8AhXA1q3bThqoABobG9m+fSc//vEPecUrXjWva4iIiIisFNOZHPt7x3i2f4KB4RT9Q2n64kkswOeuwl9Xg9Nhx+uu4rUv3MCuLUFa/W7d6jAHc/mzuwXcbprmzwEMw/gUcBtwTfH4BaZpJo98gmEYXuDLwEWmaR4wDOMrwP8EPrIUxxbyBXiuXz42wAN/GFjMlyy5+KxWztvWPOfzt2zZitvtZmCgD4DaWjfr1q3nt7/9Neefv4cf/ejfeOlLX8FTTz05r3GcddbZ/OpXD8xv7BdfysMP/44HH/x1Keg8n3Q6zT/+47e4995v0dTkB8But3PxxZcC0NbWzuWXv4w777yDPXsupq+vlw98oFDKb33r67zyla8+6jrt7RHa2yPHXGd6epr/+q//5N3vfm/psT17dvP2t1/P/ff/N+Pj49x008089NBvefDBX5HNZvnoRz/JunXreeSRh/jCFz7HPfd8k4GBfv7H/7iKV73qdfzmN79kamqK973vg5x9dmFm7LLLXsJdd31GoUpEREQqwlhymh/9pptEOsNMLk8ileHZgQmyOQsb4K+voTXgYdeWAGdsCtDZ7Kv4DnzldNI/7ZumOTIbqIp+A3Se5GkvAx4yTfNA8fO7gTcs4bFV6ZFHHiKTydDe3lF67OUv38uPfvTvWJbFz372Ey677CXzes18Ps8DD/w3l112+byeZ7PZeMc73sm+fV/AsqyTnn/w4LO4XFV0dKw74Tlve9vbMc2n+dSnPsHNN3+4tLRu//6n2bZtx5zG9fTTT9LWFqG6+uhpaK/Xx1e+8g2uv/7d/N3f/Q2nn34mX/vat3npS1/BN77x1eO+1vj4ODt2nM7XvvZt3va2t3P33Ydn8gxjKwcO7GdycnJO4xIREREpB8uyePDJKB/4yoP81+97i7NSaXJ5i8vOjvDeN5zBF997MbdffwF/9adn8JqLNrC+pU6BaoHmdYOIYRh24HrgB0c8/HPDMJzAj4APm6Y5DXQAh444pxuYnWZYimOL5sKdLVy4c2n2G5rrPlW33HITLlc1Ho+Hj3/8k/h8vtKxXbt2c8cdt/GLX/ycDRs2Ul/fMKdrHzz4LG99658zNBSjrq6eu+8+HCxONKX73McvuGAP9913L//n//znSa83h9xFVVUVf/qnb+CXv3yA9es3HPHcOTy5KBaL0tTUdMzjL3pRITQaxlbAxgUX7Cl+fhr//d//ddzXqq11l+4r2759J3fd9felY06nE4/Hy/Dw0HFnzERERETKxbIsBkfSPHVolEcPDPF41wgbWuu45hWn0eL3lHt4a8J877r/PJAE7ip+3mGaZo9hGHUU7rv6AHDLIo5v0fn93qM+j8XsOJ3Lt3vzXK51662fYuPGTUc95nDYsdmgqsrBZZddzu23f5wPfODDpddzOk/8PhwOO+vXb+Dee7/FzMwMt9zyPu644zY+/vFPAtDU1EQyOXHU88fHx/H7/Tiddux2G3a7DafTzjvf+W4+8YmPcOmll5UeO57NmzeRyWTo7++ho+PEE5tOpxOn03HU62zdehqm+QSXXnrpSb9WbnctMzOZY8bhdtfgdNqpqnLicrlKx6uqnOTzOZxOe+lrOvu/n3teLpcrjrHw2MxMBre79rjv2W63Ewz6jnlcykO1qDyqWeVRzSqL6lV5TlSz6ZkcXX3j7O8Zpatvgp5Ygt5ogtRUFoBAQy1vecU2XnvxRhyO5fsdd62bc6gyDOPTwGZgr2maeQDTNHuK/04U73GavbGlG/iTI57eAfQs4bE5Gx5Oks8fngnJ5/Nzmj1aDHOdqcrljh1TLpfHsiCbzbN372uprq5h9+7zSudlsyd+H0c+12Zz8Dd/8z7e+MbX8dRTT7F5s8HZZ7+AH/7w37jkksuorq7mwIH9dHU9i2GcRjabJ5+3yOctstk8O3acQXt7hB//+EdcfPGlJ7ymy1XDn/3Zn/OJT3yUj370Nhobm7Asi5/+9D/Yvn0nbW3tQGHPA8uyjnqdN77xKv76r9/JmWfu5pxzCk06ursPsn+/ecxyx3XrNnLo0KFjxjH79cjl8sDh1z/ya/Hc//3c8wq3ExaOj4wMY7c7aGz0H/c95/N54vHEcb8WsryCQZ9qUWFUs8qjmlUW1avyzNZsKpPlj30THOgdoy+eon84RXRkknxxVU+du4rWgIcXnBamI+zltM5Ggg212Gw2RkZSZX4Xlclutx0zCTMXcwpVhmF8HDgbeEVxeR+GYTQCU6ZpThaX/10BPFp8yn8AdxmGsbl4D9R1wHeX8NiaEgyGeNOb3nLKz29q8nPllW/mq1/9Mrfe+mle+cpXE40O8va3/wV2u4Pq6mo+8pFbT7i08B3veBdXX/2mk17n2mvfxXe+8y3e/e5rgcLU9Omnn8X55+953udt3ryF2277LF/+8hf51Kc+QU1NTbGl+nXHnNvW1o7X66O7++Dz3r+1UA8++Gte+MJL1P1GREREFl0un6c3luKZvnH64kkSU1kGh1IMDKfJWxY2G4Qa3bQFPJxthFjX7GN9Sx2NPrU2XylsJ7t/xTCM7cDjwH5g9i79LuB2YB+FP+dXAb8C/mq2E6BhGK8unuMAfg+81TTN1FIdm4N1QNdzZ6oGBw/R3HyyvhuLY64zVTI/P/3pf/DEE4/zV3/1Pxf9tWdrdsMN7zhqb6/nWs7vI3l++ots5VHNKo9qVllUr5VlIpXh6e5RDvSMEx+fZGRimthYmsxM4XdEb20VoSY3dbVVtAU9GJEGNrbVU1utvTKXwxEzVeuBg3N93klD1SqyDoWqVet73/sOr33tn857r6qTcTrtxOPD/O53D3L55S894XkKVSuHfnmoPKpZ5VHNKovqVR6WZREfm+Tp7jF6Y0liY5NERyeJjhS2WK12OQg11OKvqyHQUMPG1no2tdXjr69RzcroVEOVIu8qcs01V5WaK8zavn0HN974/iW75r/+67/wve8duwrz5ps/xObNxpJd97le//ql667f2Nj4vIFKRERE1jbLsoiNTtI1MEHfUIr+oRQHBxOMJqaBwwGqPeBhz85mTutsorPZi2OR/xgs5aNQtYrcc883l/2ae/e+hr17X7Ps1xUREREph8npLE8fGmVgJM3wxBRDY1N0DUyQnJwBwGG3EWqsZXN7PUakga2djTQ3uXVf9iqnUEXhrwv6RpdTtYaW0IqIiKw5lmXRP5zmsT8O89izw+zvGSNXvJXEU+Okqa6GMzcF2NhWx4bWelr8bpxqZb7mrPlQ5XS6SKUm8HjqFKxk3izLIpWawOl0lXsoIiIisghmsjm6Y0kODiR4tn+C/T1jDE9MAdAW9HD5ORF2bvDT2exT8wgpWfPfCY2NQUZH4ySTY0t+LbvdTj6vRhWVZC41czpdNDYGl2lEIiIisljyeYuBkTRd/RN0DRQ+emLJ0kxUvcfFhtY6XnFBJ6dv8NNUV1PmEctKteZDlcPhJBBoWZZrqZNL5VHNREREVgfLshiZmC6Fp66BCboGE0xnCk2+alwO1rfUcfkLImxoqSvtA6WVTDIXaz5UiYiIiMjqYVkW46kMPbEkvfEk0ZFJYqNp+ofTTKQyADgdNiIhLxfuaGZ9MUA1+93YFaDkFClUiYiIiEhFyuXzHBxMsL97jJ54kvhoYS+o2U58AD53FeFGNzs3NLGuuY4NrXW0B71UOdVMQhaPQpWIiIiIrHjZXJ5DgwkO9I4zMJxiYCRNTyxZWr7nr6sm1Ohm15YgbQEPHWEv7SEvnpqqMo9c1gKFKhERERFZUSbSGfZ3jzEwkmZkYor42CR/7J8oBag6dxUtfg8X7mjG6GhkS6SBeo868Ur5KFSJiIiISFnkLYuRiSkGhtMMDKXoH07zbP8EvfFk6Ryfu4qmuhou2NHMacUAVacAJSuMQpWIiIiILLnk5AwHesfoi6foH04xMJRmYCRFZubw1iXe2io6wl5ed9oGtnY2Egl5qa5ylHHUInOjUCUiIiIii2pobJJD0QSx0Umio7OzT6nS8aa6alr8Hl4YaaXV76HF76Yl4KHOrRkoqUwKVSIiIiJySizLIjY6ycBImthImt54iqe7RxkanyqdU+euIhLycs5pYYxIA5GQl9pq/Qoqq4u+o0VERETkpCbSGQaH0wxPTDE0PkVX/wTP9I0f1b7cW1vFlkgDl58TYVN7PeFGtwKUrAn6LhcRERGRklw+T188xeBImmhx9qlrYOKo2SeAUGMtZ2zys7m9gdaAh3BjLd7aKmzaQFfWoJOGKsMw/MA3gY3ANPAMcK1pmnHDMM4D9gG1wEHgzaZpxorPW9ZjIiIiIjI/k9NZoqNphsamiI6mOdA7zv6eMaaKrcsBAvU1rG+p49Jd7bQHPfjra2jy1VDtUgMJkVlzmamygNtN0/w5gGEYnwJuMwzjfwD3AW81TfMBwzBuAW4DrjYMw7acxxbriyEiIiKyGlmWxWhimvjYJLHRSbqjSfb3jtEbS2IdcV5zk5vztjezJVJPW8BLqLFW3fdE5uCkoco0zRHg50c89BvgemA3MGWa5gPFx++mMHt0dRmOiYiIiKx5lmUxkcoQH58qbZrbO5Tmya5hEunD9z5VVznY2FbHq/asJxLyEqivIVBfg7umqoyjF6lc87qnyjAMO4VA9QOgAzg0e8w0zSHDMOyGYTQt97Fi8BMRERFZM2Y773UNTnBwIEFPLElPLHlU4wiA1oCH0zf4Wd9aR7jRTbCxFn9dNQ67vUwjF1l95tuo4vNAErgLeO3iD2fp+f3esl4/GPSV9foyf6pZ5VHNKo9qVnlUs+VlWRbx0UkO9I7xTM8YB3pGeaZ3nFQxQLmcdjpb6rjg9FY6W3y0+D0EGmoJNrrx1mr2qRLpZ6yyzDlUGYbxaWAzsNc0zbxhGN1A5xHHA4BlmubIch+bzxseHk6Sz1snP3EJBIM+4vFEWa4tp0Y1qzyqWeVRzSqPara0LMtieGKKnliSQ4MJugYSHBycKC3fc9httAe9nGMEWddSx7pmH60BD07HsTNPk8kpvLVVqleF0c9Y+djttlOahJlTqDIM4+PA2cArTNOcLj78MFBrGMae4n1O1wHfLdMxERERkYozOZ2lbyhFbyxJTzxJbyxJbzzJ5HSh+57NVli+d8bGAOtafKxvqaM96KHKqeYRIivJXFqqbwfeD+wHfmUYBkCXaZqvNQzjKmCfYRg1FFucAxRnspbtmIiIiMhKNtt9rzuapDuWoKf4b3zs8N5PtdUO2oNeztveTCTopT3oJRLyqnW5SAWwWVZ5lsKVwTqgS8v/ZD5Us8qjmlUe1azyqGbPL5vLMziSpjuaoDtaaB7RHU2QmsoCYANCTW4ioUJoigS9tIc8+OtqlmTjXNWr8qhm5XPE8r/1FCZx5mS+jSpEREREpGhyOlvqutcdTdAdS9IXT5HN5QGoctppD3o42wjRGfYSCftoD3qocelXMJHVRD/RIiIiIieRtyyGxibpiaXoiydLQSo2Nlk6x1tbRWfYy2W72+kIFQJUc1OtWpeLrAEKVSIiIiJFs/c+9Q+lCh/DKfriKXrjKaZnis0jgGBjLR1hLxee3kJHyEtH2EeD17Uky/dEZOVTqBIREZE1KTaa5pH9Q8RG04ynMowlpxkYTjOVyZXO8bmraAt4uOj0FtpDheYRbQGPmkeIyFEUqkRERGTVi46m6eqfYDQ5zWhimv3dY3THkkAhONV7XNR7XFy4o4XWgJvWgIeWgIc6t6vMIxeRSqBQJSIiIqvGRDrDk10jTKRnmJ7JMZac5omuEWKjh+99qq5y0B7y8IZLN3G2ESRQX1vGEYvIaqBQJSIiIhUnb1n0xpL0DaVITs6QSM+wv3uUA33jHLlbTHWVA6OjgRfvjmB0NOCvq6G2Wr/+iMji0n9VREREZEWbnsnxx75xhsenGE0Wmkg8dWiURHqmdI4NaA952XvBOs7cHCDYUEt1lQOnQ533RGTpKVSJiIjIipGeyhIdTTOamGZ4fIonD47w5KFRZrL50jmNvmp2rG9i27omNrTW4XO7cFc7sdvVeU9EykOhSkRERJadZVmMTEwzkphiZGKa3niSJw+OcnBw4qjle4H6Gl54Riunb/TT3OSmwVtNlVOzTyKysihUiYiIyJKxLIv4+BRDY5NMpDOMJTL8sW+cA71jTByxfM9ht7G+tY69F6yjM+yjwVdNo6+aeo/2fhKRlU+hSkRERBaNZVkMjU/RNTCB2T3G413DxMemjjonUF/D9vV+NrXVEWiopdFXTbC+Vns/iUjFUqgSERGRUzaeyvBM7zgHByc4OJjg4MAEqaksUOi8d1pnI5ef00F70IPP7aLO48JbW1XmUYuILC6FKhERETmpvGUxMj5F/3CK8cejmAeH+WPfONHi/k8Ou422gIezjSDrmutY1+KjPehV9z0RWRMUqkREROQoyckZemLJ4keCvniKgeE00zO50jn1XhcbWuq4+Mw2NrXX0xHy4qrS8j0RWZsUqkRERNaofN4iNjZZCk890SQ98SQjE9Olc+rcVbQFvVx0egutQQ+tfg+nbw0zlZp+nlcWEVlbFKpERETWgKlM9ojZp8JHbzxJZqaw/5PdZqPF72ZLewORkLf0Ue+tPua1fG6XQpWIyBHmFKoMw/g08HpgHbDTNM3Hi48fBKaKHwA3mab54+Kx84B9QC1wEHizaZqxpTomIiIiBampGboHExyKJjkUTXBoMEF0JM3s9k+eGieRkJcXntFKJOSlI+SjNeCmyqnleyIip2KuM1X/AnwOuP84x66YDVmzDMOwAfcBbzVN8wHDMG4BbgOuXopj833TIiIiq4FlWYwmpumOJumOJjgUTdAdTTI8cbiFub+umo6wj/O2h+kI+egIe2n0VWvvJxGRRTSnUGWa5gMAhmHM9XV3A1OzzwPupjCzdPUSHRMREVnVEukM0ZFJoqNp+odSxRCVJDlZ2EDXBoSa3Gxsq+NPdrXRGS4EKJ/bVd6Bi4isAYtxT9W3irNIDwDvN01zDOgADs2eYJrmkGEYdsMwmpbimGmaI4vwPkRERFaE1NQMBwcSdA0U9n7qGphgNHH4Hianw0ZbwMtZmwN0hH10hn20hzzUuHSrtIhIOSz0v74XmabZYxhGNfD3wF3Amxc+rKXj93vLev1g0FfW68v8qWaVRzWrPGu1Zvm8RWw0TVf/OF39ExwcmKCrf5zB4XTpnNaAh52bAmxqbyAS9tEa8BBqcpd9/6e1WrNKpXpVHtWssiwoVJmm2VP8d9owjC8CPyge6gY6Z88zDCMAWKZpjhiGsejH5jPm4eEk+bx18hOXQDDoIx5PlOXacmpUs8qjmlWetVKzqUyW3niq0HXviO57U5nC3k+zy/ciIS8X7mhmXUsd65p9eGqqnvNKFqMjqWUf/5HWSs1WC9Wr8qhm5WO3205pEuaUQ5VhGB7AaZrmeHH53xuBR4uHHwZqDcPYU7wH6jrgu0t4TEREZEWwLIuh8amjwlNPLElsbLJ0Tm21k0jQw4U7WmgPeYiEfLQFPVRr81wRkYo015bqdwKvA5qB/zQMYxjYC3zPMAwH4ACeBN4JYJpm3jCMq4B9hmHUUGx/vlTHREREysGyLOLjUxwcmCjdA9UdSzA5fcTsU2MtHWEvF+xsLu395K+rUfc9EZFVxGZZ5VkKVwbrgC4t/5P5UM0qj2pWeVZizX77VJTHnx1h27pGztgUoLbaSS6fZzQxTU80SddgohCkBhOl7ntOh41IyMe6Zh+RsJdI0EtbcHU2j1iJNZMTU70qj2pWPkcs/1tPYRJnTlbff+lFREROUXoqy30/NfnNE1FcTjsPPDaA02Gj3lPNaGKafPEPkXabjbagh7M2B1jfUsf6ljragp6yN48QEZHyUKgSEZE1a3I6S2x0ku7iprm/fybOWCLDa/as5+Xnd9I1MMHDZpyJdAZ/XQ3++hraA14iYa/ufxIRkRKFKhERWRPyeYueWJInD47w5KFRemNJxlOZ0vFql4P1zT6uf/UONrbVA7C5vYHN7Q3lGrKIiFQIhSoREVl1Jqez9MSSHIom6Ikm6YknGRhKkcnmAWgLeti5wU+4qZZwo5v2kJdQYy12NY8QEZFToFAlIiIVy7IsxlOZUtvy7miCQ9EksZE0sy2JfO4qIiEvl5zVRmezj9M6G2nwVpd13CIisrooVImISEXI5vIMDqfpjiVKIaonliSRnimdE6ivoSPs4/ztYTrDPjrCPhq8LrUvFxGRJaVQJSIiK05ycoae6NHhqX84RTZXmH9yOuy0BT2csSlAJOSlI+SlPeTFU1NV5pGLiMhapFAlIiJlk89b9EQT/MGMHhWgRhPTpXPqPS4iIS/b1zcVNs8N+2huqsVhV/tyERFZGRSqRERkWcw2jyh8FGah+uKHm0c47DZa/G62djQQCfkKASrkpc7jKvPIRUREnp9ClYiILCrLshiZmOZQNEH3EUv4hsanSud4apyl5hHbNgZoqHXS4vdQ5dTsk4iIVB6FKhEROWV5yyI+NsmhwUQhRA0Wuu8lJwvNI2xAuMnN+pY6XnhGa2n2qdFXXWoeEQz6iMcTZXwXIiIiC6NQJSIic5LPWwyMpIvBKcGhwQTdsQST0zmgsHyvPehl15ZAofNes4/2gJdql6PMIxcREVlaClUiInIUy7KYSM/QH0/SN5SifyhVWsI3e/+Ty2knEvJy3vZmOsM+OsM+2oIenA4t3xMRkbVHoUpEZA3L5vIMjqQLy/cGE3THkvTFk6SmsqVz3NVO2oMeLj6zjc5mL51hH81+t7rviYiIFClUiYisEampGXqihRmn2Q10+4cO7/1UXeUgEvKye2uI1oCHtoCH1oCHeo82zxUREXk+ClUiIquMZVnExibpiRbDUzRJTzzJyMThvZ/qins/Xba7sPdTZ9hHc5Mbu13hSUREZL5OGqoMw/g08HpgHbDTNM3Hi49vAb4O+IFh4C9M0zxQjmMiImvVbPe93liK3niSroEJ/tg3Xlq+Z7cV9n7a0t5Q6rwXCXmp91aXeeQiIiKrx1xmqv4F+Bxw/3Mevxv4gmma9xmG8WZgH3BpmY6JiKx6E6kMvfEkvfFCgOorNpLIzBSaR9iAloCHXVuCbGyrpyPspS3gocqp7nsiIiJL6aShyjTNBwAMwyg9ZhhGCNgFvLj40D8AdxmGEaTw/+ulFSo2AAAgAElEQVTLdsw0zfg837OIyIo2PZOjf6gQnGZnoPriSSbSM6VzfO4q2oNeXnhGK+1BL+3BQoBS+3IREZHld6r3VEWAPtM0cwCmaeYMw+gvPm5b5mMKVSJSsaYzOboGJjjQN073YILeeJLY6CRW8XiV005rwMPOjf5CeAoVAlS9x1XWcYuIiMhha65Rhd/vLev1g0FfWa8v86eaVZ6VWrOJVIau/vHixwTP9o3TE02QyxciVGvAw4b2Bi49p4POljrWtdTR7PfgWAPNI1ZqzeTEVLPKonpVHtWsspxqqOoB2gzDcBRnjRxAa/Fx2zIfm5fh4ST5vHXyE5dAMOgjHk+U5dpyalSzyrMSajbbPOLI7nvdsSSjicPd9+q9LjpCPl56bgeb2+vZ0FqPt7bqOa9kMTKcXN7Bl8FKqJnMj2pWWVSvyqOalY/dbjulSZhTClWmacYMw3gUuBK4r/jv72fvb1ruYyIi5TI9k6MvnjrcujxWaF8+nckBh7vvGR0NdIR8pe57dVq+JyIismrMpaX6ncDrgGbgPw3DGDZNcztwHfB1wzA+CIwCf3HE05b7mIjIkrIsi/FUprBxbrSwcW5PLMngSBqrOPldW+0gEvSyZ2cLHSEvEXXfExERWRNsllWepXBlsA7o0vI/mQ/VrPIsRs1y+TyDw+lCgCqGp55o4qjue4H6mtKsU0e4MAMVqK/BZlv99z8tNv2cVR7VrLKoXpVHNSufI5b/rQcOzvV5a65RhYjIkdJTWXrjyaNmoPqGUsxkC3s/OR022gJeTt8YIBL2FmagQl7cNc+9/0lERETWKoUqEVkTLMtieGKqOOs0OwOVID42VTrHW1tFR9jLpbvaSvc/NfvdOB32Mo5cREREVjqFKhFZdWayefqHUsXle4cbSKSns0ChnWioyU1ncx0Xnd5KR9hLJOSjwevS8j0RERGZN4UqEaloiXSm1DSiO5pkYCR91N5Prio7kaCXF5wWIhL20RHy0hb0UOPSf/5ERERkcei3ChGpCHnLIj46WVq2112cfTpy76cGr4tNkUa2r2ssNZAINdRiXwOb54qIiEj5KFSJyIozPZMrNY+Y3UC3N5ZieuaIvZ8CbrZ2NBAJ+YiEi3s/uV3qmCQiIiLLTqFKRMpmdu+nwqxTorSELzr6nL2fQj4uOr2lNPvUGnBr7ycRERFZMRSqRGRZzO79dOS+T92xJInj7P30gtNCdBTvf/Jr7ycRERFZ4RSqRGTRze79NLvvU3csSV88RTZ39N5PZ2wKFGaftPeTiIiIVDCFKhE5ZaW9n4pNI7qLG+gOjR+799NlZ7cTCXmJhL00N2nvJxEREVk9FKpEZE5m937qLt77dLy9n8JNbta31HHxma2FAKW9n0RERGQNUKgSkWPM7v0027a8J5ZgYDh97N5P28KlpXvtQS/VLjWPEBERkbVHoUpkDTty76fZ+5+eu/dTo6+aSKhw/1NH2Eck5NXeTyIiIiJHUKgSWSOmMzl6h2b3fSrMPj1376fWE+z9JCIiIiInplAlsgpNpDJ0F1uWd0cThb2fRtIUt36ittpJR8hb2Psp7KUjpL2fRERERE6VQpVIBctbFkNjk3RHk3THCuHpUDTBeDJTOmd276dzj7j/SXs/iYiIiCyeBYcqwzAOAlPFD4CbTNP8sWEY5wH7gFrgIPBm0zRjxecs+jGR1W56JkdfPEVPLHF4A91YkunM4eV7LQE32zqb6Ax7iYR9dIS9eLT3k4iIiMiSWqyZqitM03x89hPDMGzAfcBbTdN8wDCMW4DbgKuX4tgivQeRFWM8OV0KTrMNJAZH0ljF9Xs1LgeRkJcLdzQXNs8N+2gPerR8T0RERKQMlmr5325gyjTNB4qf301hZunqJTomUpFy+TyDw+nSxrmF/Z8STKRnSuf46wrL987ZGipunusjUF+DXcv3RERERFaExQpV3yrOJD0AvB/oAA7NHjRNc8gwDLthGE1Lccw0zZFFeh8iSyY9laU3fnj2qTuWpC+eIpvLA+B02GgNeDh9Y6A4++SlPaTleyIiIiIr3WKEqotM0+wxDKMa+HvgLuCfF+F1l4Tf7y3r9YNBX1mvL/M335pZlkVsdJKu/nG6+sbpGpjg2b5xoiPp0jk+t4sNbXWcZYRY31rPhrZ62kNenA77Yg9/TdLPWeVRzSqPalZZVK/Ko5pVlgWHKtM0e4r/ThuG8UXgB8DngM7ZcwzDCACWaZojhmF0L/ax+Yx3eDhJPm+d/MQlEAz6iMcTZbm2nJqT1Wwmm6d/KEV3LEFP9HDziPR0FgAbEGpy01G8/6kj7CUS8tHgdR3TfW90JLWUb2XN0M9Z5VHNKo9qVllUr8qjmpWP3W47pUmYBYUqwzA8gNM0zfHi8r83Ao8CDwO1hmHsKd4DdR3w3eLTluKYyJKbSGeK9zwlSx34BofT5Ioh3VVlJxL08oJt4cLyvZCX9qCXapeaR4iIiIisZgudqQoD3zMMwwE4gCeBd5qmmTcM4ypgn2EYNRTbnwMsxTGRxTSTzTE4Mkn/UIqRVA/mwRG6ownGjtj7qdFXTSTk5cxNATrCPiIhL6GGWux2NY8QERERWWtsllWepXBlsA7o0vI/OdLkdJZn+sY50DtOXzxJ/3Ca2Ojh1uUOu40Wv6fUOCJS3DzX53aVd+ByQvo5qzyqWeVRzSqL6lV5VLPyOWL533oKkzhzslQt1UVWFMuyGE9l6I4m6RtK0j+UojeeoieaJG9Z2G02wk21tAc9vGBriLagh1a/hx1GiLHR9MkvICIiIiJrlkKVrDr5Yve97miCQ9FCA4nu5+z9VO910er38PLzO9na0cDGtnqqq46990mb6YqIiIjIyShUSUWbyeboG0rRHU2WAlRPLMn0TA4oLN9rC3jYudFPR9hXaB6hvZ9EREREZBEpVElFyOYKrcv7hlJER9JERyfpiycZOKL7Xo3LQUfIy0WntxAJe+kM+2gNeLT3k4iIiIgsKYUqWXGmMll6YsnS7FN3NEH/UIpsrhCebIC/vobWgIczNwfoCPnoCHsJNNRit6n7noiIiIgsL4UqKauJVKZ071N3NEl3LElsJM1sf0ZvbRWdYS+X7Y4Uuu8FvYQaa3Wvk4iIiIisGApVsiwsyyI+PkX3YILuWDFAPWfvp0B9DR1hH+dvCxfufwp7afRVY9Psk4iIiIisYApVsuhmsoX7n3piyeIyvgTdsSST01kA7DYbLQE3p3U20RH2lgKUmkeIiIiISCVSqJJ5yVsW/fEUNrsNd3Xh26cvniwFqJ5YoXlEvrh7rstpJxLyct62cKl5RFvAg+s47ctFRERERCqRQpWclGVZ9MVTPPhUlN88McjwxPRxz2v0VRMJeTlzc4BIyEsk5CXc6MZu1/I9EREREVm9FKrkuCZSGZ48OMITXSM8cXCEsWQGu83Gjg1NvHrPBlxVdtJTWXJ5i9aAh0jIi7dWy/dEREREZO1RqBIyM7Mb6CboiSV5pm+c7mgSAE+Nk23rmti+vokzNgWo97jKPFoRERERkZVFoWqNGU9l6CmGp+5iE4nBkTTFW6CocTlY1+zjdS/cwPb1TXSGfVq+JyIiIiLyPBSqVql83iI6mi7u/VQIUT3RJOOpwy3M/XXVREI+dhuhwh5QYR+B+hptoCsiIiIiMg8KVavAVCZLbyxVCk/d0SR98SSZbB4Ah91GW8DDjvVNRMI+OkJe2nUPlIiIiIjIolCoqiCWZTGamC4t3ZtdxhcbnaS4eg9PjZNIyMslZ7WVOvC1Bjw4Hfayjl1EREREZLWquFBlGMYW4OuAHxgG/sI0zQPlHdXiy+byDA6niwEqQXe0sAdUcnKmdE6ooZZI2MsFO5qJhAob6Db6qrFp+Z6IiIiIyLKpuFAF3A18wTTN+wzDeDOwD7i0zGNakPRUlt54oWlEd/Hep76hJNlcYf6pymmnPehh15ZAKTy1B73UVldi+UREREREVpeK+q3cMIwQsAt4cfGhfwDuMgwjaJpmvHwjmx/Lsni2f4JHnxni0QND9A2lSse8tVV0hr1ctjtCR6jQPKK5qRaHXcv3RERERERWoooKVUAE6DNNMwdgmmbOMIz+4uMVE6p++dggX/3hU9htNrZE6nntCzfQGfYSCflo8Lq0fE9EREREpIJUWqhaML/fW9brB4M+Lj3XRWvYx/YNfrxubaa70gWDvnIPQeZJNas8qlnlUc0qi+pVeVSzylJpoaoHaDMMw1GcpXIArcXH52R4OEk+b538xCUQDPqIxxMAbAh7mUxNM5maLstYZG6OrJlUBtWs8qhmlUc1qyyqV+VRzcrHbred0iRMRd2oY5pmDHgUuLL40JXA7yvpfioREREREVldKm2mCuA64OuGYXwQGAX+oszjERERERGRNaziQpVpmk8D55Z7HCIiIiIiIlCBoWoBHFBYJ1lO5b6+zJ9qVnlUs8qjmlUe1ayyqF6VRzUrjyO+7o75PM9mWeVp2lAGe4D7yz0IERERERFZ8S4CHpjryWspVFUD5wADQK7MYxERERERkZXHAbQAvwPm3KZ7LYUqERERERGRRVdRLdVFRERERERWGoUqERERERGRBVCoEhERERERWQCFKhERERERkQVQqBIREREREVkAhSoREREREZEFUKgSERERERFZAIUqERERERGRBVCoEhERERERWQCFKhERERERkQVQqBIREREREVkAhSoREREREZEFUKgSERERERFZAIUqERERERGRBVCoEhERERERWQCFKhERERERkQVQqBIREREREVkAhSoREREREZEFUKgSERERERFZAIUqERERERGRBVCoEhERERERWQCFKhERERERkQVQqBIREREREVkAhSoREREREZEFUKgSERERERFZAIUqERERERGRBXCWewDLqBo4BxgAcmUei4iIiIiIrDwOoAX4HTA91yetpVB1DnB/uQchIiIiIiIr3kXAA3M9eS2FqgGA0dEU+bxVlgH4/V6Gh5NlubacGtWs8qhmlUc1qzyqWWVRvSqPalY+druNxkYPFLPDXK2lUJUDyOetsoWq2etLZVHNKo9qVnlUs8qjmlUW1avyqGZlN6/bhdSoQkREREREZAEUqkRERERERBZAoUpERERERGQB1tI9VceVy2UZHY2TzWaW/FqxmJ18Pr/k15HFs1g1czpdNDYGcTjW/I+ciIiIrGHpqSw9sQTd0STd0QTdsSSZbJ6PXvMCnI7Kne9Z87/hjY7Gqalx4/E0Y7PZlvRaTqedbFahqpIsRs0syyKVmmB0NE4g0LJIIxMRERFZuSzLYjQxTXesEJ56okkORRMMjU+Vzqn3uIiEvWzrbMJuX9rfw5famg9V2WxmWQKVrF02mw2Pp45kcqzcQxERERFZdPm8xeBIujTz1B0tzEQlJ2dK54Qba1nfUsfFZ7bSEfbREfJS760u46gX15oPVYAClSw5fY+JiIjIajA9k6M3nqTniOV7vcUlfABOh422oJezNgcK4SnspT3opbZ6dceO1f3uRERERETklCTSmWOW7w2OpLGKW2i5q510hL1cclYbkZCXzrCPZr+7ou+NOlUKVSvMFVfsxeVyUVXlIp/P8Za3XMNll72ERx55iPe85zquvPIq3vWuvyydf8MN7+DRRx/hJz/5BW63+7iv+cgjD/GFL3yOe+75JgB79uzm3HMv4I477iyds2fP7tJrPPLIQ3zpS59nZmaGmZkMfn+Av//7L3LzzX/LwEA/AM88s5+NGzdhs9lpamriM5+564Tv6cEHf829936Z0dFRnE4nra1tXHvtDWzcuIkrrtjLzEyG73//hzgcDgD+/d9/wK23foS//usbef3r38APf/iv3HnnHTQ3t5LNztDZuY6bbrqFurp6brjhHVx55VVceOFFz/t1nZqa4l3vejt33fX/U1tbO7diAPF4nA9+8P18/vP7nve8TCbD9ddfw+c+9yW8Xu+cX19ERESk3CzLYmh8qrRsb3YGajQxXTqnqa6ajpCPc7aGSsv3/PU1Wo1TpFC1An3sY59kw4ZN7N//NNdddw27d58LQEdHJ/ff/3Ouu+4GHA4H/f19TE9PneTVjq+7+yC///3DnHXW2Uc9ns1mufnmv+Xzn9/Hpk2bAdi//2lsNhu33vrp0nl79uzmS1/66gmD3Kzf/vY33HbbR7n11k+zdeu20usNDw+xceMmAPz+AL/97a85//w9APzoR/+GYZx21Ovs3v0CPvax28nn83zwg+/j61+/h3e/+71zfr//63/9I5dccum8AhVAMBg8aaACcLlcvOQlL+M73/kW11xz7byuISIiIrJcsrk8/UMpemKFmaeeaJLuWJLJ6SwANhu0+j0YHQ10hArL9zrCPry1VWUe+cqmUPUcv3xsgAf+MLAkr33xWa2ct615zudv2bIVt9vNwEAfALW1btatW18KID/60b/x0pe+gqeeenLeY7n66newb98XuPvurx71eDqdZmpqkqampqPGcaq+9rUv85a3XFMKVMd7vZe9bC8//OG/cf75e0pBccOGjcd9Pbvdzq5d5/DrXz8wr3H84Af/zJ133l36/Ior9nL55S/j4Yd/Rzwe47rr3s3Y2Ag//el/MDExwfvf/yHOOOMs+vv7edvb3sS///vPgEKYfMc73skvfvFzxsfHede73sMll7wIgMsuewnXXHOVQpWIiIisCJPTWXpiyaMaSPQPpcjmCuv3XFV2IkEv520LEwkXlu+1BTy4qhxlHnnlUahawR555CEymQzt7R0cOGAC8PKX7+V//+/vc955F/Kzn/2EL33pHj772U/N+7UvvvhSvv/973L//T/noosuKT1eV1fH3r2v4Y1vfB1nnrmLnTvP4PLLX0o4PPcweKT9+5/mve/92+c9Z9eu3fzzP/8TExMTpaD49NNPHffcTCbDAw/8gq1bTzvu8eOJRgeZmpqiufnoduYzMzPs2/c1nnrqCd797mu5/vr38OUvf4Of/eyn3H33XXzpS/cc9/U8Hg9f+co3+MMfHuWDH/y7UqhqavLjdFZx6NBBOjvXzXl8IiIiIgthWRbjqcwxy/dio5Olc3zuKjrCPl68u6nUQCLc6K74VuYrhULVc1y4s4ULdy7NXkJz3fPolltuwuWqxuPx8PGPfxKfz1c6tmvXbu644zZ+8Yufs2HDRurrG055PNdeewOf+9ynufDCFx71+HvfexNveMObeOSRh/jNb37Jffd9ja985ZtEIh2nfK3nY7PBpZe+mJ/97CeloPjcUPXQQ7/lrW/9cwB27jyDq65625xfPx6P0djYdMzjL3rRi4HCzNnU1BQvetHlAGzdehp9fb0nfL0XveglAGzfvpOhoTjT09NUVxdagvr9fmKxqEKViIiILIm8ZREdSR+9fC+aYCJ9uH15qKGWSNjLhTtb6AgVlu81eF26/2kJKVStQLP3VB2PzWbj0ktfzO23f4z3v//DC7rO7t0voKkpwI9//MNjjrW1tdPW1s7eva/hb/7mPfzyl7/gjW9887yvsWXLVp588gk2bzae97yXveyVXHvtWznzzF3HDYqz91SdiurqajKZ6WMed7lcAKUGGbOf2+12crnsCV/vuc/L5XKlY5nM4YAlIiIishAz2Ry98dRRy/d6YymmZwq/ezjsNtoCHk7fGCgt32sPenHX6Ff85aaveAV69atfR21tLeeee/6CX+v662/gAx/4u9Ln6XSaxx//A+eccy42m41EIsHAQB8tLW2n9Ppvecs13H77x9m6dRuGUbiX6sknH2d8fJzzz7+wdF5bWztvf/s72bZtx8Le0HF0dHQyPDxMJpMpBaKlkMvl6O/vO2EgFhERETmR5OQMPcXwFB2f4kD3KANDafLF/uW11Q4iIR8Xnd5SWr7XGvCsyfblK5FCVQUKBkO86U1vWZTXKoQdo9QMAyy+//3v8tnP3o7LVU0ul+Pyy1/GxRf/ySm9/nnnXcCNN/4dn/nMJxkfHy+2VG/luutuOObcV7/6dad0jU984sO4XIdnhz71qc+VOhcCVFfXsGvX2fz+9w8vShA9kcce+79s27ZDLdVFRETkhCzLYnhiqrTv02wjieGJw6tq/PU1tAU8nLU5WFi+1+wjUF+DXcv3ViybNbt71+q3DugaHk6Szx9+z4ODh2hu7lyWAcz1nipZfI899n/59re/wa233jGv582nZh/+8M284hWv4pxzzj3u8eX8XlvLgkEf8Xii3MOQeVDNKo9qVllUr/LJ5fMMDKePaiDRE0uSmiq2Lwea/e7SxrkdYR+RkJeN6/yqWZnY7Tb8fi/AeuDgXJ+nmSpZE3buPIMLLriIycnJee9VNReZTIYzzzzrhIFKREREVrepTJbeWIruWKIUonrjKbK5wh9nq5x22oMedm8NlZpHtAe9VLvUvnw1mFeoMgzjQ8CHgZ2maT5uGMZ5wD6glkKSe7NpmrHiuct6TOCaa646qmkCwPbtO7jxxvcv6XUPHDD5+Mf/v2Mef/3r/4y9e1+zpNeej6Uci8vl4jWvuWLJXl9ERERWjvFUhp5oorR871A0SWwkzexaKE+Nk46wjxed3Va4/ynkpdnvxmHX/U+r1ZxDlWEYu4DzgO7i5zbgPuCtpmk+YBjGLcBtwNXLfWwxvhCrwT33fLMs19282eDee79dlmuLiIiILJW8ZREfmzy891M0SXcswXgyUzonUF9DJOTl/CM20G30Vat9+Rozp1BlGEY18AXgz4H/Kj68G5gyTfOB4ud3U5g9uroMxxbEsix948uSWkP3LoqIiFSkmWye/qHUUeGpJ5ZkKlNYBWS32WgNuNm+rqm0fC8S9uKpqSrzyGUlmOtM1UeA+0zT7DKM0n5DHcCh2U9M0xwyDMNuGEbTch8zTXNknu+7xOl0kUpN4PHUKVjJkrAsi1RqAqdz6dq5i4iIyNylp2ZKy/YKy/iSDAynyBWbmVW7HERCXi7Y0VxqX94W8FDl1P1PcnwnDVWGYZwPnAO8b+mHs/SK3TxKGhpq6OnpIR7vLdOIZC2ora1h06b1VFXpr1nLIRj0lXsIMk+qWeVRzSrLWq2XZVkMj0/xbN84z/aPF/7tGyc6ki6d0+irZn1bPeef3sL61no2ttXT7Pdgt5f3j+1rtWaVai4zVRcDW4HZWap24MfAnUCpP7RhGAHAMk1zxDCM7uU8Np83/NyW6gA+XxDfMnzfqqVp5VnMmo2NTQFTi/JacmL6Oas8qlnlUc0qy1qpVz5vMTiSPmr5Xnc0SXJypnROuLGWjrCPPTubSw0k6r3Vz3kli+Hh5PIO/jnWSs1WoiNaqs/LSUOVaZq3UWgIAYBhGAeBVwJPAu8wDGNP8T6n64DvFk97GKhdxmMiIiIiskZMz+TojSfpmW0gEUvSG0uSKe4t6XTYaAt6OWtzoLR8rz3opbZauwnJ0jjl7yzTNPOGYVwF7DMMo4Zii/NyHBMRERGR1SmRztAdK26cG01yKJpgcCTNbA8od7WTjrCXS85qK22i2+x343SofbksH9sa6kq2Dug63vK/5aKp3MqjmlUe1azyqGaVRzWrLJVSL8uyGBqfOrx8rzgDNZqYLp3TVFdNR6gw8zS7fM9fX7Pqmo1VSs1WoyOW/62nMIkzJ5oDFREREZFllc0V2pcXOvAVZqC6Y0kmp7MA2GzQ6vdgdDQcFaK8tWr4JCuTQpWIiIiILJnJ6Sw9scMzT93RBP1DKbK5wsohV5WdSNDLeUdsntsW8OCqUvtyqRwKVSIiIiKyYJZlMZ7KHLN8LzY6WTrH566iI+zjxbubSg0kwo3usrcvF1kohSoRERERmZe8ZREdSR+9fC+aYCJ9uH15qKGWSNjLhTtb6AgVlu81eF2r7v4nEVCoEhEREZHnMZPN0RtPHbV8rzeWYnomB4DDbqMt4OH0jYHS8r32oBd3jX7NlLVD3+0iIiIiAkBycoaeI8JTdyzJwFCafLFbdG21g0jIx0Wnt5SW77UGPGpfLmueQpWIiIjIGmNZFsMTU6V9n2YbSQxPHG5f3uirJhLyctbmYGH5XrOPQH0Ndi3fEzmGQpWIiIjIKpbL5emNJ49qINETS5KaKrYvB5r9bja21XPpLh8dYR+RkJc6j6u8AxepIApVIiIiIqvEVCZLbyxFdyxRClF9QylmsnkAqpx22oMedm8NlZpHtAe9VLvUvlxkIRSqRERERCrQeCpDTzRRWr53KJokNpLGKh731DjpCPt45Z4NBHwuOkJemv1uHHbd/ySy2BSqRERERFawvGURH5s8vPdTNEl3LMF4MlM6J1BfQ0fYx/nbwqUGEo2+amw2G8Ggj3g8UcZ3ILL6KVSJiIiIrBAz2Tz9Q6mjwlNPLMlUptC+3G6z0Rpws31dU2n5XiTsxVNTVeaRi6xtClUiIiIiZZCemikt2yss40v+v/buPDbS8z7s+Jf3NbPcXXJmuCRnrLWOx5HsldaSEMlH7QpWrkZwE6dJ3NjKAQOxkQNtkjZAkKQH4NawXaRJ7FRu0qSK3RhwEcAJCjQpitR1VCdAmlpJ3DRPfEi73EMcHrtcDof3vP1jXs5ydezyHg75/QALct/nnZmX+9uXwx+f3/N7uDqzwHqtXsDX091BMZ/hLW8cacw+jQ0P0NXp+ifpsDGpkiRJ2kdJknBtfrkx87RRxjc9t9Q4Z3Cgm2Ihw4P3DFHM1zfQzZ3qs3251CJMqiRJkvZIrZZwdbZa30B3UxJVWVxtnFM41cfZMyd4x0Oj9RmofIbBTE8Tr1rSbplUSZIk7cDy6nq6/9PN8r3LUxVW0vblnR1tjOUynL93uFG+N57L0Nfjj1/SUeNdLUmSdAfz1ZVXlO+9NFslSfuX9/d0UipkeOf5sUb53shQP50dti+XjgOTKkmSpFSSJEzNLTVmniYm57lYrnBtfrlxzukTPZTyWR59Q75Rvjc02Eub65+kY8ukSpIkHUtr6/X25fUOfPUZqIlyhd8pxQoAAB62SURBVMXlNQDa2mB0aIBQOkkpXy/fKxWyZPpsXy7pViZVkiTpyFtcXmOinG6em368Mr3A2nq9fq+7q51iLsNj9xcoFurle2PDA3R32b5c0p2ZVEmSpCMjSRLmFlZubp6bJlHla4uNc7L9XZQKWZ585HSjgUThVD/t7ZbvSdqZLSVVIYTPA2eBGlABfiLG+HwI4T7gWWAImAGejjF+NX3MgY5JkqTjpVZLmLxWbZTvTaRJ1I3qzfbl+ZN9FAsZ3vqmM5Ty9fK9k5lu1z9J2lNbnan6wRjjHEAI4d3AbwJvBp4BPhlj/EwI4X3Ap4An0scc9JgkSTqiVtfWuTS1cHMGqjzPpfICy6vrAHS0tzE2PMC5u4cb5XvjuQz9vRblSNp/W/pOs5FQpQaBWgghTz2xejI9/lngEyGEHNB2kGMxxqmtf8mSJOkwqyyuNrrubZTvXZ2uUkv7l/f1dFDMZ3n7uTON8r3R4QHbl0tqmi3/+iaE8BvAt1BPbr4NKAKXY4zrADHG9RDClfR42wGPbTmpGhrKbPXUfZHLZZv6+to+Y9Z6jFnrMWatZy9iliQJU9cW+caVOb5xOf1zZY6pTeufhgZ7OTs6yNseHOPs2CB3jw2Sd/3TtnmPtR5j1lq2nFTFGD8AEEJ4P/Ax4Bf266L208xMhVotacpr53JZpqbmm/La2hlj1nqMWesxZq1nJzFbr9W4OlO9pYHERLnCwlLavhwYGern7EiWdz44SqmQpZjPcGKg+9YnqtWYmans0VdyPHiPtR5j1jzt7W07moTZdqFxjPHTIYR/D1wCxkIIHemsUQcwCkxQ/954kGOSJOmQWFpZ41J5gYvl+UYSdWlqgbX1GgBdne2M5zI8smnz3PFchp5u25dLak13TKpCCBngVIxxIv37U8AsUAaeB94LfCb9+OWN9U0hhAMdkyRJB29uYYWJyfl6971yhQuTFcqzVTZqQgZ6OykVsrzr4XGK6ea5I6f76Gh3/ZOko2MrM1UDwH8OIQwA69QTqqdijEkI4YPAsyGEXwSuAU9vetxBj0mSpH1SSxKmri9ycbLC9J9N8DcvzHKxPM9cZaVxzvBgL6VClsfvLzQaSJzK9ti+XNKR15YkzVlf1AR3AS+4pkrbYcxajzFrPcbs8Fldq3Fl+tb25RPlCksr9fbl7e1tjA71N0r3SoUsxUKGgd6uJl+5Xo33WOsxZs2zaU3VWeDFrT7OzRskSTrGqkurjbK9ehlfhaszC6ynv4Ds6e6gmM/wljeONGafHnzDCHPXq02+ckk6PEyqJEk6BpIk4dr8cmPmaaMD3/TcUuOcwYFuioUMD94zRDFf30A3d6qP9peV73V32VBCkjYzqZIk6Yip1RKuzlbrG+huSqIqi6uNcwqn+jh75gTveGi0UcY3mOlp4lVLUusyqZIkqYUtr65zaarCxU3le5enKqys1duXd3a0MZbLcP7e4Ub53nguQ1+PPwJI0l7xO6okSS1ivrryivK9l2arbPSc6u/ppFTI8M7zY43yvZGhfjo7bF8uSfvJpEqSpEMmSRKm5pYaM08Tk/NcLFe4Nr/cOOf0iR5K+SyPbtpAd2iw1/blktQEJlWSJDXR2vpG+/KbM1AT5QqLy2sAtLXB6NAAoXSSUr5evlcqZMn02b5ckg4LkypJkg7I4vIaE+XKLfs/XZleYG29Xr/X3dVOMZfhsfsLFAv18r2x4QG77UnSIWdSJUnSHkuShOuVFSbKm8r3JiuUry82zsn2d1EqZHnykdONBhKFU/20t1u+J0mtxqRKkqRdqNUSJq9Vby3fm5znRvVm+/L8yT6KhQxvPXeGUr5evncy0+36J0k6IkyqJEnaotW1dS5NLdxSvnepvMDy6joAHe1tjA0PcO7u4Ub53nguQ3+vb7eSdJT5XV6SpFdRWVxtdN27mH68Ol2llvYv7+vpoJjP8vZzZxrle6PDA7Yvl6RjyKRKknSsJUnCzI0lJiYrXJicbzSSmLlxs335qWwPxXyG8/fm6uV7I1mGB3tpt3xPkoRJlSTpGFlbr/HSbPVm+V6aRC0spe3LgZGhfu4ZP8kT6dqnYj7DiYHu5l64JOlQM6mSJB1JSytrXCovpM0j6l34Lk8tsLZeA6Crs53xXIZHNm2eO57L0NNt+3JJ0vaYVEmSWt7cwgoTk/ON8r0LkxXKs1WSdHygt5NSIcu7Hh6nmG6eO3K6j4521z9JknbPpEqS1DJqScLU9cVG6d5GB765ykrjnOHBXkqFLI/fX2g0kDiV7bF9uSRp35hUSZIOpdW1Glemb21fPlGusLRSb1/e3tbG6HA/D9x1urH3U7GQYaC3q8lXLkk6bkyqJElNV11abZTtTaTrn67OLLBeqxfw9XR3UMxneMsbRxqzT2PDA3R1uv5JktR8JlWSpAOTJAnX5pcbM08XJytcnl5gcrbaOGdwoJtiIcOD9wxRzNc30M2d6rN9uSTp0LpjUhVCGAI+DdwNLANfA340xjgVQngM+BTQB7wIvC/GWE4fd6BjkqTDpVZLuDpbrW+guymJqiyuNs4pnOrj3tIp3vamkUYHvsFMTxOvWpKk7dvKTFUCfDTG+AWAEMLHgI+EED4AfAb4oRjjcyGEnwc+AvxICKHtIMf26h9DkrQzy6vrXJqqcHFT+d7lqQora/X25Z0dbYzlMpy/d7hRvjeey9DX00kul2Vqar7JX4EkSTt3x6QqxjgLfGHToT8FPgQ8AizFGJ9Ljz9DffboR5owJkk6IPPVlVtmni5OzvPSbJUk7V/e39NJqZDhnefHGuV7I0P9dHbYvlySdDRta01VCKGdekL1+0AJuLAxFmOcDiG0hxBOH/RYmvhJkvZQkiRMzS01Zp4mJue5WK5wbX65cc7pEz2U8lke3bSB7tBgr+3LJUnHynYbVfwqUAE+AXzX3l/O/hsayjT19XO5bFNfX9tnzFqPMdu+1bUal8rzfP3SHC9cmePrl+sfq0trALS3wXghy4P35nj92CCvHx3k7NggJwa69+T1jVnrMWatxXi1HmPWWracVIUQPg7cCzwVY6yFEC4Cr9s0PgwkMcbZgx7bzhc8M1OhlrboPWiuG2g9xqz1GLM7W1xeY6J86+a5V6YXWFuvf2/s7mqnmMvwzd9UoFiol++NDQ/Q3XVr+/Ll6jJT1eVXe4ltMWatx5i1FuPVeoxZ87S3t+1oEmZLSVUI4cPAw8DfizFuvIP+OdAXQnhbus7pg8DnmjQmSXqZJEm4XllhorypfG+yQvn6YuOcbH8XpUKWJx853WggUTjVT3u75XuSJG3VVlqqPwD8HPC3wJdCCAAvxBi/K4TwfuBTIYRe0hbnAOlM1oGNSdJxV6slTF6r3tJAYmJynhvVm+3L8yf7KBYyvPXcGUr5DKVClpOZbtc/SZK0S21J0pxSuCa4C3jB8j9thzFrPcchZqtr61yaWrilfO9SeYHl1XUAOtrbGBseoFTINsr3xnMZ+nsP537vxyFmR40xay3Gq/UYs+bZVP53lvokzpYczndYSRIAlcXVm9330hmoqzNVaukvxPp6Oijms7z93JlG+d7o8IDtyyVJOkAmVZJ0CCRJwsyNpca+TxfTJGrmxs1GEKeyPRTzGc7fl6uX741kGR7spd3yPUmSmsqkSpIO2Np6jZdmqrdsnjtRrrCQti9vA0aG+rln/CRPpGufivnMnrUvlyRJe8ukSpL20dLKGpfKC2kCVS/juzy1wNp6DYCuznbGcxke2bR57nguQ093xx2eWZIkHRYmVZK0R+YWVtL1T/WZpwuTFcqzVTZa4wz0dlIqZHnXw+MUC/UZqJHTfXS0u/5JkqRWZlIlSdtUSxKmri/esv7pYnmeucpK45zhwV5KhSyP319oNJA4le2xfbkkSUeQSZUk3cbqWo0r07e2L58oV1haqbcvb29rY3S4nwfuOt3Y+6lYyDDQ29XkK5ckSQfFpEqSUtWl1UbZ3kYb86szC6yne9v1dHdQzGd4yxtHGrNPY8MDdHW6/kmSpOPMpErSsZMkCdfmlxszTxtlfNNzS41zBge6KRYyPHjPEMV8fQPd3Kk+25dLkqRXMKmSdKTVaglXZ6tMbCrfuzhZobK4CtTbl+dP93P2zAne8dBoowPfYKanuRcuSZJahkmVpCNjeXWdeGGWv4jlRvne5akKK2v19uWdHW2M5TKcv3eYUiHL6wpZxnID9PX4rVCSJO2cP0lIaknz1ZVXlO+9NFslSfuX9/d0UipkeOf5sUb53shQP50dti+XJEl7y6RK0qGWJAlTc0uNmaeJyXkulitcm19unHP6RA+lfJZH35DnjffmOdnbwdBgr+3LJUnSgTCpknRorK1vtC+/OQM1UZ5ncbnevrytDUaHBgilk5Ty9e57pUKWTN/N9uW5XJapqflmfQmSJOkYMqmS1BSLy2tMlG/dPPfK9AJr6/X6ve6udoq5DI/dP0KxUC/fGxseoLvL9uWSJOlwMamStK+SJOF6ZYWJ8qbyvckK5euLjXOy/V2UClmefOR0Y/+nwql+2tst35MkSYefSZWkPVOrJUxeq95avjc5z43qauOc/Mk+ioUMbz13hlK+Xr53MtPt+idJktSyTKok7cjq2jqXphZuKd+7VF5gebW+/qmjvY2x4QHO3T3cKN8bz2Xo7/XbjiRJOlr86UbSHVUWV29230tnoK7OVKml/cv7ejoo5rO8/dyZRvne6PCA7cslSdKxYFIlqSFJEmZuLDX2fdrovjdz42b78lPZHor5DOfvy9XL90ayDA/20m75niRJOqbumFSFED4OvAe4C3hTjPEr6fH7gGeBIWAGeDrG+NVmjEnavrX1Gi/NVG/ZPHeiXGFhaQ2ANmBkqJ97xk/yRLr2qZjPcGKgu7kXLkmSdMhsZabq88AvA3/8suPPAJ+MMX4mhPA+4FPAE00ak3QbSytrXCovcGFyvtGF7/LUAmvrNQC6OtsZz2V45A35evlePsN4LkNPt+3LJUmS7uSOSVWM8TmAEELjWAghD7wZeDI99FngEyGEHPVfcB/YWIxxaptfs3SkzS2spKV7Gw0kKpRnqyTp+EBvJ6VClnc9PE4x3Tx35HQfHe2uf5IkSdqJna6pKgKXY4zrADHG9RDClfR42wGPmVTpWKolCVPXFrm4eQPdyXnmFlYa5wwP9lIqZHn8/kKjgcSpbI/tyyVJkvbQsWtUMTSUaerr53LZpr6+tu8wxGx1bZ0LL83zjctzvHB5jq9fnuPFq3MsLtfbl7e3t1EqZHn4mwqcHR3k7rFBzo6eINN/PNc/HYaYaXuMWesxZq3FeLUeY9ZadppUTQBjIYSOdNaoAxhNj7cd8Ni2zMxUqNWSO5+4D3K5LFNT8015be1MM2JWXVplolypty9P25hfnVlgPf1/29PdQTGf4fEHRhqzT2PDA3R13rr+aXFhmcWF5Vd7iSPN+6z1GLPWY8xai/FqPcasedrb23Y0CbOjpCrGWA4hPA+8F/hM+vHLG+ubDnpMakVJknBtfrmxce5G+d703FLjnMGBbkqFLA/eM0QxX99AN3eqz/blkiRJh8hWWqr/CvDdwAjw30MIMzHGB4APAs+GEH4RuAY8velhBz0mHWq1WsLV2SoTjeYR9Y+VxVWgPhWbP93P2TMneMdDo40OfIOZnuZeuCRJku6oLUmaUwrXBHcBL1j+p+3YScyWV9e5NFWpb5w7udG+vMLKWr19eWdHG2O5TH3j3EKW1xWyjOUG6Os5dksc94X3WesxZq3HmLUW49V6jFnzbCr/Owu8uNXH+VOctAvz1ZVXlO+9NFtl43cV/T2dlAoZ3nl+rFG+NzLUT2eH7cslSZKOCpMqaQuSJGFqbqkx8zQxOc/FcoVr8zcbQZw+0UMpn+XRTRvoDg322r5ckiTpiDOpkl5mbb3GlekFLk5WmJ5/kb95cZaJ8nyjfXlbG4wODRBKJynl6933SoUsmb6uJl+5JEmSmsGkSsfa4vIaE5s3zy3Pc2V6gbX1m+3Lx4cHeOz+EYqFevne2PAA3V0dd3hmSZIkHRcmVToWkiThemWFifKm8r3JCuXri41zsv1dlApZnnzkdGP/pwfuKzA7U2nilUuSJOmwM6nSkVOrJUxeq97SQGJicp4b1dXGOfmTfRQLGd567kyjC9/JTPcr1j91tLseSpIkSbdnUqWWtrK6zuXphVvK9y6VF1hera9/6mhvY2x4gHN3DzfK98ZzGfp7/a8vSZKkveFPlmoZlcXVm9330hmoqzNVamn/8r6eDor5LG8/d6ZRvjc6PGD7ckmSJO0rkyodOkmSMHNjqbHv08U0iZq5cbN9+alsD8V8hvP35erleyNZhgd7abd9uSRJkg6YSZWaam29xksz1Vs2z50oV1hYWgOgDRgZ6uee8ZM8ka59KuYznBjobu6FS5IkSSmTKh2YpZU1LpUXuDA53+jCd3lqgbX1GgBdne2M5zI8smnz3PFchp5u25dLkiTp8DKp0r6YW1hJS/c2GkhUKM9WSdLxgd5OSoUs73p4nGK6ee7I6T462l3/JEmSpNZiUqVdqSUJU9cWubh5A93JeeYWVhrnDA/2Uipkefz+QqOBxKlszyval0uSJEmtyKRKW7a6VuPKdFq+N1nhQrm+/ml55Wb78jNDAzxw9nSjfK9YyDDQ29XkK5ckSZL2j0mVXlV1abVRtrcxA3V1ZoH1Wr2Ar6e7g2I+w9veeKax/9PocD9dna5/kiRJ0vFiUnXMJUnCtfnlm+3L0yRqem6pcc7gQDelQpYH7xlqzEDlTvXZvlySJEnCpOpYWa/VeGl2sd62fLKSduGrUFlcBerty/On+zl75gTveGi0kUANZnqae+GSJEnSIWZSdUQtr65zqXxr+d7lqQora/X25Z0dbYzlMpy/d5hSIcvrClnGcgP09fhfQpIkSdoOf4I+AuarK+n6p5vd916arZKk/cv7ezopFTK88/wYxXx9/dPIUD+dHbYvlyRJknbLpKqFJEnC1NwSE5P1jXMn0jVQ1+aXG+ecPtFDKZ/l0U0b6A4N9tq+XJIkSdonLZdUhRDuA54FhoAZ4OkY41ebe1V7b2293r588wzURHmexeV6+/K2NhgdGiCUTlLK1/d+KhWyZPpsXy5JkiQdpJZLqoBngE/GGD8TQngf8CngiSZf064sLq8xUa409n+6ODnP5emb7cu7u9op5jI8dv9Io3352PAA3V22L5ckSZKaraWSqhBCHngz8GR66LPAJ0IIuRjjVPOubHtqtYS//MYMf/3CLH994RpXphcaY9n+LkqFLN+ysYFuIUPhVD/t7ZbvSZIkSYdRSyVVQBG4HGNcB4gxrocQrqTHWyap+uJfXuG3/yDS1dnOfcWTfPM3peufCllOZrpd/yRJkiS1kFZLqnZtaCjT1NfP5bJ859+5h3P35Tk7OmgJXwvI5bLNvgRtkzFrPcas9Riz1mK8Wo8xay2tllRNAGMhhI50lqoDGE2Pb8nMTIVaulbpoOVyWaam5gE43d/F3PVqU65DW7c5ZmoNxqz1GLPWY8xai/FqPcasedrb23Y0CdNSGxXFGMvA88B700PvBb7cSuupJEmSJB0trTZTBfBB4NkQwi8C14Cnm3w9kiRJko6xlkuqYox/A3xzs69DkiRJkqAFk6pd6ACa3pq82a+v7TNmrceYtR5j1nqMWWsxXq3HmDXHpn/3bXWTa0uS5jRtaIK3AX/c7IuQJEmSdOi9HXhuqycfp6SqB3gUuAqsN/laJEmSJB0+HcAZ4M+A5a0+6DglVZIkSZK051qqpbokSZIkHTYmVZIkSZK0CyZVkiRJkrQLJlWSJEmStAsmVZIkSZK0CyZVkiRJkrQLJlWSJEmStAudzb6A4yKEcB/wLDAEzABPxxi/2tyrOn5CCC8CS+kfgJ+NMf5hCOEx4FNAH/Ai8L4YYzl9zI7GtDMhhI8D7wHuAt4UY/xKevw176H9GNPW3SZmL/Iq91s65j3XJCGEIeDTwN3UN7b8GvCjMcap/YiLMdu9O8QsAf4KqKWnvz/G+Ffp454CPkb9570/B344xljdzZi2LoTweeAs9dhUgJ+IMT7v+9nR5EzVwXkG+GSM8T7gk9TfYNQc3xNjfCj984chhDbgM8CPpfH5IvARgJ2OaVc+D/wd4MLLjt/uHtqPMW3da8UMXna/wc7vK++5PZMAH40xhhjjOeDrwEf2Iy7GbM+8asw2jb9l0322kVBlgF8Hnoox3gPMAz+zmzFt2w/GGB+MMZ4HPg78Znrc97MjyKTqAIQQ8sCbgc+mhz4LvDmEkGveVWmTR4ClGONz6d+fAb53l2PaoRjjczHGic3HbncP7cfYfn1tR9WrxewOvOeaKMY4G2P8wqZDfwq8jv2JizHbA7eJ2e18O/C/N81WPAN83y7HtA0xxrlNfx0Ear6fHV0mVQejCFyOMa4DpB+vpMd18P5TCOEvQwi/FkI4CZTY9Bv2GOM00B5COL2LMe2t291D+zGmvfPy+w285w6NEEI78CHg99mfuBizPfaymG34Qgjh+RDCvw4h9KTHbvm3By5y8/vbTse0TSGE3wghXAQ+DPwgvp8dWSZVOm7eHmN8EHgUaAM+0eTrkY4y77fD71epr/UwNq3j5TErxRgfoV6Cez/wC826ML1SjPEDMcYS8HPU16npiDKpOhgTwFgIoQMg/TiaHtcB2ihRijEuA78GvJX6b+EaZRQhhGEgiTHO7mJMe+t299B+jGkPvMb9Bt5zh0LaYORe4PtijDX2Jy7GbA+9Ssw232c3gN/gNe4z6jNQE7sc0w7FGD8N/F3gEr6fHUkmVQcg7XL0PPDe9NB7gS/HGKead1XHTwhhIIQwmH7eBnw/9bj8OdAXQnhbeuoHgc+ln+90THvodvfQfozt/1d09N3mfgPvuaYLIXwYeBj4+2nSC/sTF2O2R14tZiGEUyGEvvTzTuB7uHmf/QHwaAjh3vTvm//tdzqmLQohZEIIxU1/fwqYBXw/O6LakiRp9jUcCyGEN1BvdXkKuEa91WVs7lUdLyGE1wO/C3Skf/4a+MkY49UQwluod8rp5WbL38n0cTsa086EEH4F+G5gBJgGZmKMD9zuHtqPMW3dq8UMeIrXuN/Sx3jPNUkI4QHgK8DfAovp4RdijN+1H3ExZrv3WjEDPkr93zYBuoAvAf8oxlhJH/fu9JwO4MvAD8UYF3Yzpq0JIRSA3wMGgHXqCdXPxBj/j+9nR5NJlSRJkiTtguV/kiRJkrQLJlWSJEmStAsmVZIkSZK0CyZVkiRJkrQLJlWSJEmStAsmVZKklhNCeCaE8Au3GU9CCPfs8Wv+QAjhv+3lc0qSjgZbqkuSmiqE8P3APwbeCCxQ33/nWeDfxRh39CYVQkiAe2OMX3uVsS8AjwFrwBLwReDHNvbQ2gshhB8CPhBjfNudzpUktT5nqiRJTRNC+Gngl4GPUd88uAB8EHgr0P0aj+nYg5f+8RhjBrgPOAn80h48pyTpmOps9gVIko6nEMIg8C+Bp2OMv7tp6MvAD2w67z8Ci8DrgHcA7w4hvA+4FGP8+fScfwL8FJAAP7/Va4gxzoYQfhf40KZr+lXg24Eq8OvAv4ox1l4++5TOhn0I+GlgGPgd4MeBNwDPAF0hhAqwFmM8GUL4DuDjQBG4AfxSjPHjW71WSdLh5UyVJKlZHgd6gN/bwrn/EPgwkAWe2zwQQvg24GeAJ4F7gXdt9QJCCMPAe6gnclBPqAaB11NP4J4Gfvg2T/GdwKPAg8D3At8aY/x/1Gfb/iTGmIkxnkzP/Q/Aj8YYs9RLHf9oq9cpSTrcnKmSJDXLMDAdY1zbOBBC+BJwP/Vk61tjjF9Mh34vxvi/0s+XQgibn+d7gd+KMX4lfY5/Drz3Dq/9KyGEj1Nfw/UF4KfSssLvA87HGOeB+RDCvwHeTz0hejUfiTFeB66HEP4H8BDwB69x7ipwfwjhL2KM14Brd7hGSVKLcKZKktQsM8BwCKHxC74Y41vSmZ0Zbn2PmrjN84y+bPzCFl77J2OMJ2OMYzHGH4gxTlFP8rpf9vgLwNhtnuelTZ9Xgcxtzn0P8B3AhRDC/wwhPL6F65QktQCTKklSs/wJsAy8ewvn3q4L4FXq65Q2lHZ4PdPUZ5Ne97LnuryD53rF9cYY/yzG+G4gD3we+NxOLlKSdPhY/idJaooY4/UQwr8Afi2E0Ea9bK4KnAMGtvFUnwN+K4Tw28CLwD/b4fWshxA+B3w4hPA0cJp684udNJOYBMZDCN0xxpUQQjfwD4D/EmOcCyHcANZ3cp2SpMPHmSpJUtPEGD9KPXH5p0CZejLyKeBngS9t8Tn+K/BvqTd++Bq7awDxE9TXWX2DekOM3wF+cwfP80fA/wVeCiFMp8feD7yYJlQfBN63i+uUJB0ibv4rSZIkSbvgTJUkSZIk7YJJlSRJkiTtgkmVJEmSJO2CSZUkSZIk7YJJlSRJkiTtgkmVJEmSJO2CSZUkSZIk7YJJlSRJkiTtgkmVJEmSJO3C/wen+hhFIJHd4gAAAABJRU5ErkJggg==\n",
       "text/plain": [
        "<Figure size 1008x432 with 2 Axes>"
       ]
      },
-     "metadata": {},
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
+    "df.set_index(\"Grid Points\")[\"PM_RUN_CYC (min)\"].plot(ax=ax1, legend=True);\n",
+    "df.set_index(\"Grid Points\")[\"PM_INST_CMPL (min)\"].plot(ax=ax2, legend=True);"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Although some slight variations can be seen for run cycles for many grid points, the correlation looks quite linear (as one would naively expect). Let's test that by fitting a linear function!\n",
+    "\n",
+    "*The details of the fitting have been extracted into dedicated function, `print_and_return_fit()`, of the `common.py` helper file. If you're interested, [go have a look at it](common.py).* "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def linear_function(x, a, b):\n",
+    "    return a*x+b"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 25,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Counter   PM_RUN_CYC (min) is proportional to the grid points (nx*ny) by a factor of  8.1021 (± 0.0057)\n",
+      "Counter PM_INST_CMPL (min) is proportional to the grid points (nx*ny) by a factor of 14.0630 (± 0.0003)\n"
+     ]
+    }
+   ],
+   "source": [
+    "fit_parameters, fit_covariance = common.print_and_return_fit(\n",
+    "    [\"PM_RUN_CYC (min)\", \"PM_INST_CMPL (min)\"], \n",
+    "    df.set_index(\"Grid Points\"), \n",
+    "    linear_function,\n",
+    "    format_uncertainty=\".4f\"\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Let's overlay our fits to the graphs from before."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAF/CAYAAAChV+O/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XecXHW9//HXlJ3ZMrNtdnZne0k5CakkgRC6oahgQAQUFJQmgijqT7ggRbkoAooNgUsucMUr2K56VfQiYKEjJRClnpTts312ts6WmTnn90c2MZBAdpPdTCZ5Px+PPJI933O+5/udzwzsZ77lOGzbRkRERERERHaPM9UNEBERERERSWdKqkRERERERPaAkioREREREZE9oKRKRERERERkDyipEhERERER2QNKqkRERERERPaAkioREREREZE9oKRKRERERERkDyipEhERERER2QNKqkRERERERPaAkioREREREZE94E51A/YiL3AI0A4kU9wWERERERHZ97iAUuBFYGyyFx1ISdUhwFOpboSIiIiIiOzzjgKenuzJB1JS1Q4QjQ5jWXZKGhAI+IhEhlJyb9k9iln6UczSj2KWfhSz9KJ4pR/FLHWcTgcFBTkwkTtM1oGUVCUBLMtOWVK19f6SXhSz9KOYpR/FLP0oZulF8Uo/ilnKTWm5kDaqEBERERER2QNKqkRERERERPaAkioREREREZE9cCCtqdqpZDJBNNpNIjE+4/fq6nJiWdaM30emz0zEzOl0kZXlw+fLw+FwTGvdIiIiIvsS27YZj1tYtk0iadHQPsCr9b2YzX2Mx5NYtk2+38u/nX0wblf6jvcc8ElVNNpNZmY2OTmhGf8F1+12kkgoqUon0x0z27ZJJhMMDvYRjXZTWFg8bXWLiIiI7CvaI8M8+1oHz73eQe/Avx735MSi3DPIiuAo2T5oyF5CYa4XZ5p/0XzAJ1WJxPheSahEABwOB253Bvn5ATo7W1PdHBEREZE9Ytk2je2DvFYfYUNrH9HBMfqGxhkZS+BxJDBqS1i9rILKnmcp6nuNnNFOHFYCRsDhDnL8mrNT3YVpccAnVYASKtnrHA4noK1SRUREJD1Ylk1z1yCvN/TyZlOU3oExRscTxMYSjMctfI5RVhQNc2hWPyVZPRQmu/DGB/CffjcOl5uxl14m6cjHGViEK1CFM1CNMz+U6m5NGyVVIiIiIiLyNtHBMdZv6uHNxl7ae2N09o6QSFo4sFhUlOCo3EGCVg9NgVWUV4Q4KPYCjlf+CDFw5BbjKqnDGaiCZBxcbrwrTkt1l2aUkqp9zBlnrMHj8ZCR4cGyknzqUxdy/PHv5+WXX+Lyyy/h7LPP5bLLvrDt/M997mLWr3+ZRx99kuzs7J3W+fLLL3HllV+gsrKaZDJBXl4+V155DdXVNdvqOPvsczniiKO2XXPddf/G4YcfxUknreG++9byox/dw9q197NgwUIA7rtvLSMjI3zuc198177Yts3//M/P+f3v/xewsSyLJUsO5tOfvpTLL7+Uyy77AqtWHQFAf38f55//CW699XvMmTOXN998nbVr7yQcDpOZ6SU/v4ALL/wMS5cu2+E+PT3dXHfdVdx11704nZNf4PjWW2/wi1/8lK997RvveV40GuWqq77EXXfdi9utj4yIiIjsPwZj47zW0MvrDb0MxuIkkhbDI3Gau4bwEKcwN5NQcQFHlY6wpO9vZI104EjGYQBwulm6+jjcoRDW4OFYlfNwFVbi8GSlult73S5/QzQMIwD8BJgFjAGbgM+YptltGIYNvApsXcl/rmmar05ctwb49sQ91gHnm6YZm6my/ck3vnErdXWz2bDhLS655EJWrFgJQFVVNU899TiXXPI5XC4XbW1hxsZGJ1VnTU0d9933EwDuuut2br/9u3znO7dPuk2hUCl33/1DfvjDtZO+5p57/oP161/m9tv/g8LCAJZl8dRTjzMyMsK1136N66+/mvvv/xk+n4/vfvdbnHLKacyZM5fNmzdx5ZVf5Prrb2TlylUAtLa2sGnThp3e5/777+X00z86pYQKYN68g3aZUAEUFBSwYMEiHnnk/zj55FOmdA8RERGRfcXYeJINrX3Utw3QHhmmrSdGuHsIGyjIdrDYFyFEhGIilIUiZI33knn0eXjmLSYZbWPsmedx1q6emL5XhbOgFIdzSzrh9Bfh9BeltoMpNJmv3W3gW6ZpPg5gGMa3gVuACyfKDzdNc2j7CwzD8AH3AEeZprnRMIx7gSuAG2eibE9egHd65tV2nv5n+3RWuc0xB5dx2EGTnzs6d+48srOzaW8PA5CVlU1NTS0vvPAcq1YdycMP/4EPfOBk3nzzjSm14+CDl/Pss09Pre3HrGbduhd5/vnntiU67yUWi/Hznz/I/fc/SGFhAACn08kxx6wGoLy8ghNP/CC33/4djjzyGMLhVq6/fksoH3zwx3zoQ6e+7T4VFZVUVFTucJ+xsTH+9rc/8/nP/79tx448cgWf/vSlPPXUE/T393PVVdfy0ksv8Pzzz5JIJPj612+lpqaWl19+iTvv/AH33fcT2tvbuOiicznllI/w978/w+joKFdf/VWWL98yMnb88e/njju+q6RKRERE0kLf0BgP/72Zwdg48aTF4PA49e0DJJNJip2DGLlDnJg9gGthJaHlx1KVZxN7YMtsKIe/CFegGmfgaFzBOgBcBWVkf+iqVHZpn7bLr/ZN0+zdmlBN+DtQvYvLPgi8ZJrmxomf7wY+NoNl+6WXX36J8fFxKiqqth076aQ1PPzwH7Ftm7/85VGOP/79U6rTsiyefvoJjj/+xCld53A4uPjiz7J27Z3Y9q43WGhsrMfjyaCqquZdzzn//E9jmm/x7W9/k2uvvWHb1LoNG97ioIMWTqpdb731BuXllXi93rcd9/n83Hvvf3PppZ/nK1/5MosXL+VHP/opH/jAyfz3f//XTuvq7+9n4cLF/OhHP+X88z/N3Xf/ayTPMOaxceMGRkZGJtUuERERkVSwbZvn3+jk+nuf5+lXGulpC9MeiZFMWlwTepzvBn/JNfm/43TnX1gy/jIHB4apLc3FlZ1H1inX4PvUnfjOvo2sEy/Hu/xUXIEdv9SWHU1pgYhhGE7gUuD32x1+3DAMN/AwcINpmmNAFdC03TnNwNaIzETZtDliUSlHLCqd7mqByT/z6LrrrsLj8ZKTk8NNN92K3+/fVrZs2Qq+851bePLJx6mrm0VeXv6k7t3YWM95532cnp4ucnPzuPvufyUW77b74TuPH374kTzwwP389a9/3uX9JpF3kZGRwZlnfoxnnnma2tq67a6d/K54XV2dFBYW7nD8uOO2JI2GMQ9wcPjhR078PJ8nnvjbTuvKysretq5swYJF3HHH97eVud1ucnJ8RCI9Ox0xExEREUkV27bp6I3R8torDDS9hbu/lS/n9FNo9+EqmUXOqdcBMPrk6+Ceu930vXIcrn+lA+7Q3FR1Ie1NddX9D4Eh4I6Jn6tM02wxDCOXLeuurgeum8b2TbtAwPe2n7u6nLjde+/pzZO51803f5tZs2a/7ZjL5cThgIwMF8cffyLf+tZNXH/9Ddvqc7vfvR8ul5Pa2jruv/9B4vE41113Nd/5zi3cdNOtABQWFjI0NPC26/v7+wkEArjdTpxOB06nA7fbyWc/+3m++c0bWb36+G3HdmbOnNmMj4/T1tZCVdW7D2y63W7cbtfb6pk3bz6m+TqrV6/e5WuVnZ1FPD6+QzuyszNxu51kZLjxeDzbyjMy3FhWErfbue013frvd56XTCYn2rjlWDw+TnZ21rS9X5xOJ8Ggf9cnypTpdU0/iln6UczSi+KVft4tZqPjcRrf2kTHprcYa28gMRTlJwOHMTya4CLfX1npaWXMn09+1Wy8pXVkls0me2tdp39+L/bgwDLppMowjNuAOcAa0zQtANM0Wyb+HphY47R1YUsz8L7tLq8CWmawbNIikSEs618jIZZlTWr0aDpMdqQqmdyxTcmkhW1DImGxZs1peL2ZrFhx2LbzEol378f21zocLr785as566yP8OabbzJnjsHy5Yfyf//3B4499ni8Xi8bN26goaEew5hPImFhWTaWZZNIWCxcuISKikoeeeRhjjlm9bve0+PJ5KMf/Tjf/ObX+frXb6GgoBDbtnnssT+xYMEiyssrgC3PPLBt+231nHXWuXzpS59l6dIVHHLIlk06mpsb2bDB3GG6Y03NLJqamnZox9bXI5m0gH/Vv/1r8c5/v/O8rc+RSiQsensjOJ0uCgoC0/Z+sSyL7u7BaalL/iUY9Ot1TTOKWfpRzNKL4pV+tsZsJBajdcNGXh/IIdwzQmXP06yy15HpSFAFJG0HUVeAw+YFqAjlM6doDjmBfPxZW5KoJDAMDCv+k+Z0OnYYhJmMSSVVhmHcBCwHTp6Y3odhGAXAqGmaIxPT/84A1k9c8ifgDsMw5kysgboE+OUMlh1QgsFiPvGJT+329YWFAc4++xz+67/u4eabb+NDHzqVzs4OPv3pT+J0uvB6vdx4483vOrXw4osv44ILPrHL+3zmM5fxi188yOc//xlgy9D04sUHs2rVke953Zw5c7nllu9xzz138e1vf5PMzMyJLdUv2eHc8vIKfD4/zc2N77l+a089//xzHH30sXpQtIiIiEy7pGXR2jVMS309ztb15Ix04B/roNDuI+Sw+a/+UyGvlAp/iC73MrzF1QRq5pJfXk2+20NtqjsgOHa1fsUwjAXAa8AGYOsq/QbgW8BatnydnwE8C3xx606AhmGcOnGOC3gFOM80zeGZKpuEGqDhnSNVHR1NhEK72ndjekx2pEqm5rHH/sTrr7/GF794xbTXvTVmn/vcxW97ttd02JvvvQOJvpFNP4pZ+lHM0ovitW8ZGBpl84Z6ok2bcA+G8Y928vDwQWwaK2JhRjOf9j/OoMNH1F1MPLeM3LJZhBauINuvKZx7w3YjVbVA42Sv22VStR+pQUnVfuvXv/4Fp5125pSfVbUrbreT7u4IL774PCee+IFprVtJ1czQLw/pRzFLP4pZelG8UsO2bbojAzRt2Ei4L0njcCaJaBuftH5DljMOgIWDflchG4LH45+9jNklWRTkOCipLFPMUmR3k6qpblQh+7ALLzx32+YKWy1YsJArr7xmxu750EO/5de/3nEW5rXXfo05c4wZu+87nX76zO2uX1BQMO0JlYiIiOw/bNumKzpCQ1sU18bHcQ+E8Y12ECTKPIdNx/hCotlHUxooIWovIVE+m6K6OWQEKslze6ja9S1kH6ekaj9y330/2ev3XLPmw6xZ8+G9fl8RERGRVIiNxtls1hPraMDZ10rmcDstI1n8anAZYHNT/pPYThcD3hK6CheSXz2Hk+rms8ZfNFHDslQ2X2aIkioRERERkZ2wkwmS0TA9HZ2sHw7xan2EE6M/o87dBYBlO4g68ikqMPjUEQZ1ZXkU+VeSkeWjLMVtl71LSZWIiIiIyITRzS8xYL6AFWkhc6QTFxZYHn7Z9zHKgz6Gy1cSDWRSVDMHX6iaPLeXmlQ3WlJOSZWIiIiIHDBs28Ye7sXqaSbR00SsowEr0sKjxRewqXOEJQOPc4hnM62JQnqcC7HyKwjUzuW2gwwK87KAlanuguyDlFSJiIiIyH7JthJYfe1YPc24KhYSjXuJvvQwJZt/B4BlQ6+VSzhRwPreFoKhEPFFp9BeVsDs0lwO8Xv1jEqZFCVV+5gzzliDx+PB4/ECsGzZci6//Mvce+/d1NbWcdxxJ/Lyyy+RSCQ49NDDJlXnM888xb33/ge2DbZtccEFF3PMMat3OO+FF/7O2rV3Ul+/idNP/xif+9wXt5Ulk0m+//3beP75Z3E4HJxzznk73aDCtm0cDgc33XQD1157w7af96aNG02+//3b6O/vA+Cyy77IqlVHsHGjyc0334hl2SQSCRYtWsKXvnQlHo+H//mfn/PHP/5+Wx1tbWHWrDmVL31px2dfvdfr+c74XXrp51m5ctVe6LWIiMiBbevvHMm+DobWPUS8q4mMoQ6cdgKAB+Mn8MJgKcVOMLwrSeZWkFNaQ1V5EXNKc7klkI1TCZTsJiVV+6BvfONW6upmv+3YRRddsu3fr7yyjpGRkUklVbZt8/Wvf5W77rqHurrZbNq0kUsvvZCjjjp2h2c6lZWVc9VV1/L4439lfHz8bWWPPvow4XALP//5/9Lf388FF3yCFSsOpbT07csw//CH3xGJ9DA2Nsbf//4sf/3rY1x11XW4XK6pvgw7OOOMNfzqVw+95zkjIyNcc82/8bWvfYOFCxeRSCQYHh4CoKqqmrVr7ycjIwPLsrj++qv43e9+w5lnnrXtD0AikeDDH/4gJ5yw4zbqk3k9dxY/ERERmR62bWPH+rAiTSS6mxgM12P3tvBq5nL+Pm6Q7Gvn056XCCcLaU0YRFxBxv3leMtK+URpPnVluVQEfWS4p/fZlnJgU1KVJm666QbmzZvP0qXL+d3vfoNlWbz00gscd9yJnHvuee95rdPpZGhoS2IxNDRIIFC004fkVlRUAvDUU0/sUPbXvz7GmjUfxul0UlBQwFFHHcPf/vZnPv7xT77tvDVrPsyzzz7Nj350D263m+uvv3GHkaqmpka+9KXLuOuuewmFSrnvvrU0Nzfy7/9+81Rekp167LE/sXjxEhYuXASA2+0mLy8fAK83c9t5iUSCsbExnM4dv5F65pknCQQCzJt30E7vMdnXU0RERPaMbSWx+juwIs1YGTm0uqupb+rksNe+ue2cwaSf1mQhm0acePJdBGfP5rWia6kK+Tmh2EdOZkYKeyAHCiVVOxF7aMdf7t11h+JZcBx2YoyRh7+7Q3nG3CPJMI7CGh1k9LE7diw/aDVuY3LTwK677qp3nT42a9ZsTj31I4yMjLxtet4VV1zORRddskMi4HA4uPHGm/nKV75MZmYWsViMb3/7+5Nqx/Y6OzsIhUq3/VxSEqKrq3OH8/7wh9/S09PDMces5sQTP8itt36DK6+85m0jVdXVNVx88Wf56le/wkUXXcKf//wI997731Nu0840Ntbjdru54orL6enpwTDmcdllXyQ3NxeAnp5urrjiC4TDraxadQSnnPKRHer44x9/z8knn7LT+ifzev77v18P2CxatJTPfOYy/H7/tPRNRERkf2ZbSRzOLb8vDDz5AKNhE89QO66J6XuvJaq4Z+BYANr8R4G/BG9xFbNqQiypzOfoHE+qmi6ipGpftDvTx2677fadHk8kEvzkJ/dz883fYfHipfzzn+v56le/wgMP/A/Z2dnT0dy3OfnkU7etqTrssMNZuXLVTtdUfeADJ7Nu3Yt85Stf5s477yUnx7fT+q666kt0dm5J3np6ujnvvI8D4HK5dvqw42Qyybp1L3L33T+isLCQH/7we9xxx/e45pqvAVBUFOT++3/KyMgIN954PU888VeOP/79267v6elh3boXueaaG3banl29nnfeeQ8lJSHGx8e5/fbv8L3vfYuvfvXrU3oNRURE9ndWrB+rp4lEpInRjkasSDOjeHg0cC71bQN8YOQtvI4E4cRcelxBYtml5FdX8dnqIuZW5pObs+PacJFUUlK1E9lrvvKuZQ639z3LnZn+9yzf2zZt2kAk0s3ixUsBWLx4KVlZWTQ1NTB//oJJ11NSEqKjo33bNe8cudpqawJ17bU3vO3nd4rH4zQ01OPz+YlGI+9631tv/d62f59xxhruv/+nu2hnKcuWraCoaMtTy0844f3cfPONO5yXlZXFccedwKOP/ultSdXDD/+BVauOID8/f6f17+r1LCkJAeDxeDjttDO5+ur/957tFRER2Z/ZloU10IHV08xopJ1NhUcS7h6mdtPPqBo1AYgmfYSThTQming50k1ViY/e+Rcxr7qAhcU+vBl7vi5bZKYpqUpDOTk59PR0T+rcYLCYrq4umpsbqaqqobGxgUgkQnl5xZTu+b73Hc9DD/2WY45ZTX9/P0899QR33PGfu9N8AO688wcYxjyuueZrXHHF5dx9939RXFyy2/VttXr1CVx55eXEYsNkZ+fw/PPPMXv2XADC4VaKi0vIyMggHo/z1FNPMGvW20cEH374IT7/+S+9a/3v9XqOjIyQTCbx+XzYts2f//zItnuLiIjs7+zEGDgzcDid9L76NInXHp2YvhcHIGE7ubcvkxHby8Lc+ZTkLSIjWEVxMEBpIJvFRTmck60pfJKelFSloaOPfh/XXnsl55338W0bVbzbmqpAoIgrrria6667Codjy2YK11zzNXJz84C3r8X6xz/Wc8MN1zA8PIxt2/zlL49y9dXXs3LlKt7//pN4443XOOus0wA477yLppyYbfXkk4/zyivr+M//vB+v18sFF3yaG264lttvvxu3e8/ekqFQiI9//JN85jPn43Q6KS0t49/+7VoAXnvtnzz44I9xOJxYVpKlS5dz3nkXbrv2n/9cTywW49BD37727a233uDee+/mtttuf8/XMxxu5brr/g3LskgmLWpqavnyl6/eo/6IiIjsi+zxGMnOzSR7mohNTN/LiHXzWPF5PN+eQeWIyRHeMcLJ2UScQeyCCoLVdXyhuojKYh9ZXv0KKvsXh23bqW7D3lIDNEQiQ1jWv/rc0dFEKFS9VxrgdjtJJKy9ci+ZHjMZs7353juQBIN+ursHU90MmQLFLP0oZullT+Jl2xZ2fxfJSDMjHQ1E8ubT4SjGan2VxU0PAhBJ5hBOFhJOFvCqYz4lFRXMq8pndkUeJQXZSqB2gz5jqeN0OggEfAC1QONkr9O7XERERESwE+OQGMfyZNPW3Ibnuf/EO9yOy9oyfc+yHfw5FuW5sbl4SbKoYA2+slpqqkKUFeWwuCCLM7My3nU9tcj+bJdJlWEYAeAnwCxgDNgEfMY0zW7DMA4D1gJZbMnkzjFNs2viur1aJiIiIiKTY9s2yfAbjHU2MNLRANFWPLEu3vAu4b8jBxMfH+dS/xhtyVn0e0pwBaooqKhlVUkeH8rLpNCfidejDSREtprMSJUNfMs0zccBDMP4NnCLYRgXAQ8A55mm+bRhGNcBtwAXGIbh2Jtl0/ViiIiIiOxPbNsiHu0gXv8Gw231DCdc1BccTnPnEO9rvAs/w8SS2bQmCwknF9FDFYctCDG3Mo9g0SoWFGRp9z2RSdhlUmWaZi/w+HaH/g5cCqwARk3TfHri+N1sGT26IAVle8S2bQ1Vy15l2xag95yIiEwfOzGONdjDUEaA7v5RPOsexN+1niFrfOIEB03xcn40VIg3w8V46FRKyssJlRVTkZfJ0rxMsjMzUtsJkTQ1pTVVhmE42ZJQ/R6oApq2lpmm2WMYhtMwjMK9XTaR+O0Wt9vD8PAAOTm5Sqxkxtm2TTKZYHAwiseTmermiIhIGkv0NNG/6Z/E2utx9ofJGe8hbru4OnoWNg5WZyYocNYynFWKO1BFQVUtxYE8binIIpDrxeV0proLIvuNqW5U8UNgCLgDOG36mzPzJnbz2CY/P5OWlha6u1tT1CI50LjdLgoKCigqKsKp/6HNiGDQn+omyBQpZulHMds7bNsm0d/FWEcD0caNDLZu4uXiU3mrbYSajr+yOmM9MSuLcDLAcPYyHIFqLjr6IEqLcinKP5ZgQTa+LI0+pSN9xtLLpJMqwzBuA+YAa0zTtAzDaAaqtysvAmzTNHv3dtlUOvzOLdUB/P4g/r3wvtX2mOlnJmMWiQzPSL0HOn3O0o9iln4Us5lhJxNY0TAOX4DeMRe9rz9H0Ru/IMMaA7bsvtdn5fLExtfxBsoZqTmKV0tOoqKylGVFObhdO35RNzI0ii8rQ/FKM/qMpc52W6pPyaSSKsMwbgKWAyebpjk2cXgdkGUYxpET65wuAX6ZojIRERGRtGKNDjLy5tMMtzdgR5rJHOnCicWDo8fyQqyKUleUI73VDGeV4irasvtedUUR/x7MIcOtzSNE9iWT2VJ9AXANsAF41jAMgAbTNE8zDONcYK1hGJlMbHEOMDGStdfKRERERPZFtm1jD0VI9jQx3N7ASEcjzd7ZvDQ2i/6uNj7v/AVxK5PWRCGdLGDMV0ZhxVw+WRqiIuijsvjD2rpcJA04bNve9Vn7hxqgYWfT//YWDeWmH8Us/Shm6UcxSz+K2c7ZVgIr2k4ykaDLGaS5vY+5L3wTrxUDwLKh28rlydH5bMw5mMpgDrMKoaSslIriHAK5mTOyaZbilX4Us9TZbvpfLVsGcSZlqhtViIiIiMiE4dceZ6j5TezeFjJjnbhIYsbLuGvweAA+lDMHV04+jsIq8sprKS8L8PFgDpke/Qomsj/RJ1pERETkXdi2jT0cJdHTxFC4ntHOBsZGx/i/zFNo6RrizOSfKHX10ZosoJuDiOeW466u5eKKaipL/IQKj9XW5SIHACVVIiIiIoBtJUlG2xhsayScPZ+2SIzQxl9TO/wPADKAvqSflkSAFs8gVSV+OoIX4C4pYE4ol0N8Hj3zUuQApaRKREREDkhd0RgbX3mZ3PYX8Y12kJ/swU0SN3Bf9Az67WwO9oVo8eXjDFThL6+jLBTgsKIcjtHmESKyHSVVIiIist+ybRs71kekaSP9zZtx9beQOdzOb+3jeLE7m+Week7PeYseRxFhzxKSuRV4Sqq5pKKG0qCf3GxPqrsgImlASZWIiIjsF2zLYrCzhVbzTSLOIvrcRbh6NnJUx4NkAplAd9JPvVWIy+fiY6tns3zOSgL5FxLStD0R2QNKqkRERCTtJC2LcPcw7R0RApv/QOZQG9mjXWSQoBJ4NbaER0aXkJcB7uJjyaucTflcg9JAAXVeN0ekugMisl9RUiUiIiL7tNH+Xto2vkm8uxlXfyuZw+28OVbCzwYOwYHFDflv0JnMZcCzgKxQDeVz53FyRQ2nZ3pxu7TznojMPCVVIiIisk+wLYtYdxt9LZuIxUZozFrIG429nBq5h6BzCIBI0kebI4AjUM2FR82nriwXX9bRlGdm4HRqCp+IpIaSKhEREdnrrESc6HCS3sFRePMxMtv/QfZoJx7i5AJjST8/6/dSlJfJprIPEi8vIr9qFuWFhdS4NfokIvsWJVUiIiIyY2zbprsrwmDrRqxIM66+VjIGw2RtPt56AAAgAElEQVQlBrg6ehYWTtZkNVKbEacx8yA8wWp8ZXVkh6r4bl4OeTl69pOI7PuUVImIiMi0sG0Lq7+TvpbNDLRu5nl7Ca80x1g6+gIfyl4PQG8yh05nEXH/PM5dVkthIJ8C/6EE87Lw6tlPIpKmlFSJiIjIlNmJcQAGxqD19X/gN39PzkgHHuJ4gALbQWMsi/LKeVSWvY+erMPxFlcTKCykOisjtY0XEZlmSqpERETkPdmJcRIdGxkK1zPa2UDXQBveWCd/sI/lL9FKyly9nJEzRkPGPKz8CrJLaympncUVoQLtviciBwQlVSIiIgJsWf9kD3Yz3N7AQMtm2u0A/xivpK+ri4vj9+MGElY2TYkCelxLoLCcjy6dzeyKPKqKT8OToel7InJgUlIlIiJyALKTcZKxQXrimbR0DhJcdzf+WBgPW6b1+WwHraPzedWRTXlRLs8GPk5OaQ3FoWKOnVfC6PBYinsgIrLvUFIlIiJyAIi1mkQb3mS8qxH3QBh/PEJDopgfDpwIwDk5TlzeOSRyy/EU11BYWcf7Sgv4sM+7Q13+bI+SKhGR7UwqqTIM4zbgdKAGWGSa5msTxxuB0Yk/AFeZpvnIRNlhwFogC2gEzjFNs2umykRERA50tm1jD0WItdfT37yJ4f4of8s4lqaOQT48/nvme9rot7LosAPUZy4jUVLL+UfOo6rYT1nRMWS4NX1PRGR3THak6rfAD4CndlJ2xtYkayvDMBzAA8B5pmk+bRjGdcAtwAUzUTbVTouIiKQ7O5kgGQ0zkBGkuSsGr/+Jiu6n8NpbRpB8Ngwn86hnMRUlefQXnE5jSSHllaUs93v17CcRkWk0qaTKNM2nAQzDmGy9K4DRrdcBd7NlZOmCGSoTERHZrw12hhnYuI5EdxPugVZyxrpxYXFz32lELD9LM+Is8c8i7i/HW1JDoKqOyrIAt2Z7Ut10EZH93nSsqXpwYhTpaeAa0zT7gCqgaesJpmn2GIbhNAyjcCbKTNPsnYZ+iIiIpJRt29jDvcTaG4g2byLe3cTfnctZ151F1egGLvA/waCVSThZyIB3KVZ+OScvXUBFWZCK4qPJ9GiptIhIKuzpf32PMk2zxTAML/B94A7gnD1v1swJBHwpvX8w6E/p/WXqFLP0o5ilnwMxZnYywVhPmN4RaBrMoGPzRua98Z947S3LlHNt6LH8jLjrWDS7krmllUQLP0BpRRkLCrNT/vynAzFm6UzxSj+KWXrZo6TKNM2Wib/HDMO4C/j9RFEzUL31PMMwigDbNM1ewzCmvWwqbY5EhrAse6pdnRbBoJ/u7sGU3Ft2j2KWfhSz9HOgxGxkZJTelx9jrHNi973xbtwkeXRkEX8cORgvcc4urGHcV463uJpAzWyqK4JcmJnxjppsor3DKenDVgdKzPYXilf6UcxSx+l07NYgzG4nVYZh5ABu0zT7J6b/nQWsnyheB2QZhnHkxBqoS4BfzmCZiIhIytm2jTUcpa95EwPheqyeZjoSfh4aXkp3X4yb83+PEyftdoBG72Ks/ErKyudwXWU15cEcvBnvT3UXRERkN0x2S/XbgY8AIeDPhmFEgDXArw3DcAEu4A3gswCmaVqGYZwLrDUMI5OJ7c9nqkxERGRvs60kVl870e5u6q0yGtsHObj+XkJWBx6gCOhO+hl21lFV4uPwRSHa86+lvLyYg/OytPueiMh+xGHbqZkKlwI1QIOm/8lUKGbpRzFLP/tizF54s5PX6ns5qKaAJbOLyPK6SVoW/W+9QGzzKxBtIWe0EzdJBqxMru/7KG6Xg5MCTRT5M/CGaghUzqasLLBfbh6xL8ZM3p3ilX4Us9TZbvpfLVsGcSZl//svvYiIyG6KjSb41Z/W0bl5A1UZUcbqI7Q+2cd99hn0DCY4NesFDvFs3rL7nmchVn4FOWWz+FrdbMqLfSnfPEJERFJDSZWIiByQbMtipCdMf8tmGqigIWKRsflvnOZ6DiY23UpkBehxhpif48VXUEauv5ahYD4LQ368Ga7UdkBERPYZSqpEROSAYFk24fp6RtY/jLO/lYJENx5HEh/w7OBqNjuqWR6sY7C2lOJZBq7CChzeHAqAOaluvIiI7NOUVImIyH7FGhlgpL2BvpZNjHc14hls41l7CX+JVhGwI1zu/yc9ziIafQdjF1TgLa7hnJo6igN+nNo8QkREdoOSKhERSUu2bWH1dzLY1kB3zMXGRIiO9i7O7L4TgFygN5lDKwEsn49jDy6nusTAW30yC/yZqW28iIjsV5RUiYjIPs+2LZIWdERijL/wC1y9DfhHO8kgjgvoGK/iV0PHUpSXyXO5x5MZLKOgcjYVFSVU+Tys1AiUiIjMICVVIiKyT7FHhxhqq6eveSPx7iY8g20MJjL4Xv+JJJI2n/Vvwu2waPLMI5FXgbekhuKqOn4YyicnMwM4PNVdEBGRA4ySKhERSQnbtkj2d9O0+UXaNtfzD+8KWrqGOCLyG+Y5m8gHosls2iliILuCE1ZUUlnso7RkJaHCLFxObV8uIiL7BiVVIiIy4+xknJG4TWt3jOG3niM//Az+8U68xAEosh38rb+AwkAeLcEjSOQdS37lLMorQlTleFLcehERkfempEpERKaVNRajr2kjfS0bSfQ04x1qIy8R4db+NXRa+RziaeXIrHHaM+dj51cQqDPIDlbwveICMtwafRIRkfSjpEpERHaLbdskB3voa97IQGs9pqOWN6LZZHW/zrnePxME+qwsepxBwjmzWG3UUVxRQWXx4RT4vTgmNo8IBv10dw+mtjMiIiJ7QEmViIjskp1MYMXH6BiCtqZWgq8/iG+0Ay/jeIGA7aB1ZBVDeQcTqlvAhuwKCmpmU15eSqXHlermi4iIzCglVSIi8jaWZTHY+DoDLZuJdzeRMRjGH+/hqbH5/O/wcjJI8LncEcLeuVj5FWSFaglWz+b80gLcLk3fExGRA4+SKhGRA5Rt28QHeuht2shgaz09MXhi7CDC3YNck/lT8p1jDFiZtFsBNmcejLd0PhfVzqe6xE8ocLx23xMREZmgpEpE5ABgWwmGI120xrJo6RoiaP6KsthbZDFGDpBlQ2+yEss/nxXzSmjIOo/CUCmh8lKW53i2rX8SERGRHSmpEhHZz9i2TXfTZgY2v0qipwnvUBv5iR7GbDff6vsY4OCUXDfj2XOw8irJDNVQXDuHQ4oLWOlU8iQiIjJVu0yqDMO4DTgdqAEWmab52sTxucCPgQAQAT5pmubGVJSJiByIbNsmOdRLtHkTQ+F6rEgzD7uOw2yLsdrxPMdnvc6Q5aXbGaTLtwJnYRX/7/hFVIbyyPOtTnXzRURE9huTGan6LfAD4Kl3HL8buNM0zQcMwzgHWAusTlGZiMh+zbaSDLa3EB7x0BJNYjevY2nkT2QzSiaQCXQn/Yy5IyybW0VJcA29wbMoLS+lNEOTEkRERGbSLv9Pa5rm0wCGYWw7ZhhGMbAMOGHi0M+AOwzDCAKOvVlmmmb3FPssIrJPG4snaQ93MrLhOaxIC5nDbRQkI2Q4kjwyeCz/jFcxN8emwDeLRG453pJaCqtmUR4K8GVtXy4iIrLX7e7Xl5VA2DTNJIBpmknDMNomjjv2cpmSKhFJS7ZtM9bfS/smk4HwZpzRFtaPVfJ4tJwi5wDX5T/EsOWlxxUk6l+Go7CK99cu4vyKMvJyPKluvoiIiEw44OaEBAK+lN4/GPSn9P4ydYpZ+tkXY2ZbSaLhZsId/WyO+Whq7WV14w/JIUYRUAREyaUiv4azDjGoDvnw5B5DVVXFAfHsp30xZvLeFLP0onilH8UsvexuUtUClBuG4ZoYNXIBZRPHHXu5bEoikSEsy97Nbu+ZYNBPd/dgSu4tu0cxSz/7Qsws26a7b4T+fzxOsmsTnsE2ChLdZDiSNI6Xc9/QceT5PFT75+PJKyKvoo7SOfOoysuj6h11RXuHU9KHvWlfiJlMjWKWXhSv9KOYpY7T6ditQZjdSqpM0+wyDGM9cDbwwMTfr2xd37S3y0REUmV0oJfu+o0MtdVDbzMjo3HuGTiKsfEkl/sfp9TVR7eziF7fUpyF1RRUzOb7dbPJzfEAR6a6+SIiIjINJrOl+u3AR4AQ8GfDMCKmaS4ALgF+bBjGV4Eo8MntLtvbZSIiM8qykgx0hIk01/OWXUNL1xALOv/AUt4iH8gHei0fIxmlHLkwRFWJn4LCBRSEApRo9z0REZH9msO2UzMVLgVqgAZN/5OpUMzSz3TELGlZdERi9Gx6HVfzC3iHtkzf8zoSAFwbPZPM3AJW5XdRlR0jO1RHUe1sioIBHA49PHeq9DlLP4pZelG80o9iljrbTf+rBRone52+PhWRA9pwX5Tuhg0Mt9VDbws5I+3cP3QUzeP5HOrZxEdy/knEGaTZtwRnURX+8jpurptDTnZmqpsuIiIi+wglVSJyQLCsJL1trfQ2baJpNBezPxNX11uc4/wjASAA9Fk59HmKWTk/yPsr51BZtJyCogspduvZTyIiIvLulFSJyH5nPJ6kPRIj3NaDb8MfyBxqozC5ZfpeKbAudjDh7JXMKq5hs/tEsktrCdbOpSJQSKXDwaJUd0BERETSipIqEUlrg9Feuuo3EGtvgGgLvtEOXhsJ8b+xFTix+Eb+a/S7Cmn1L8ZVVE1uxSw+XDOLs7OzJmo4JKXtFxERkfSnpEpE0kLSsoiEW4k0baS3b4gXR7bswPcF54MUu2IA9NvZDHpDBIvruGTuAqpK/ATzVhM6AB6eKyIiIqmjpEpE9jmjY+OEIyO0dA3h2fhXCvvfpDDZTZYjTgXgSeYS8XyCeVX5dHrWEC/KJ1g7h4rCIu2YJCIiInudkioRSRnbtumP9k1M36uHaCu+0Q581iDf7PsYNg7O9LdT5LXoyF2Eq6iavIpZVNbO4uuZW6fvLUhpH0RERESUVInIXpFIJulqDdPbtJHxrkaeji9gc3ecI+0X+UDWPwEYtLPp9xTTnTuPzx0zj8rSQgJ579Ozn0RERGSfpqRKRKbd8PAo4e4hmntGiLW8xeyexwlY3fgd4/gBy4YX3cUsmT2bUO6xRLJWEaybS1lBgLJUN15ERERkipRUichus22bSHSQ7k1vEmtvwNHXgn+0gyKiPDJ8BK+M12JkD3JQTpIe/0JcRVXkVc6iqHo2n9k2fU9EREQkvSmpEpFJGY8n6WwN09u8kfGuJjbH8ni6N4g33scN+b8BYJhM+r0h2nPnccLKFZwzax75Pg8Ox0dS3HoRERGRmaOkSkR2MDgUIxzuprHPQUvnIId1/Iyg1U2+c4x8tkzfG3YfzKEHLaQqWEefo5hg7RxK8goJaf2TiIiIHGCUVIkcwCzbpjs6QtemNxhp24SzrxX/aAdBRy+DiRJ+OXgCBX4vh2ZnE80+iMHglt33AlWzODYze7uaKlLWBxEREZFUU1IlcoAYHUvQHm4j2rSJ8e5Gxgf7+VnfMsbiST7rf5T5GR3EyGQgs4SuPINA2Ry+v+hwcrM9wBGpbr6IiIjIPktJlch+aGBwhPaGejYP59DcNURp51McYv2DIucoRRPnRB0FHLXog1SGcinJqsRbnI8vt4gSTd8TERERmRIlVSJpzLJtevpGaG9sZqz5HzgmHp5b7OilzJFkbd/puP0BKvIKGXTPY7SohrzKWRRUzcLvzebjqe6AiIiIyH5gj5MqwzAagdGJPwBXmab5iGEYhwFrgSygETjHNM2uiWumvUxkfzcWT9LW0k5f80bGuhrxDIZ5aHABTaN5LPM08CnfU4zgZSCzhJ68Q8ksqeXGhSvx5ealuukiIiIi+7XpGqk6wzTN17b+YBiGA3gAOM80zacNw7gOuAW4YCbKpqkPIvuM/oER2poaCfcl2NTrYLSziTOth942fW/Akcthtcs5ttqgunAB3tw1+PKCFGv6noiIiMheNVPT/1YAo6ZpPj3x891sGVm6YIbKRNJS0rLoiMRo7ejD2vwMzr4t0/dKHFEqHAleHVnM5ozDmFUUZMg2GC2qnpi+Nxt/Zg7lqe6AiIiIiExbUvXgxEjS08A1QBXQtLXQNM0ewzCchmEUzkSZaZq909QPkRkTG03Q1tpOtGUT411NeAbDNMR8/Cm2CAcWtxY8hu1wMpBZQm/eIWSW1HDSnIV8NLg1dTo0pe0XERERkZ2bjqTqKNM0WwzD8ALfB+4A/nca6p0RgYAvpfcPBv0pvb9M3VRjZts2nb3DtGzcTEdrO68OFVIf7ufs+K+pzeimZOK8IaefrIrFzF++jLryPEqzj8aTW4hD0/f2mD5n6UcxSz+KWXpRvNKPYpZe9jipMk2zZeLvMcMw7gJ+D/wAqN56jmEYRYBtmmavYRjN0102lfZGIkNYlr07Xd1jwaCf7u7BlNxbds+uYhZPWLT1DNPcNchYwytkR0z8Yx2EnL0EHAmcyWx+5/okVcU+kq7lRHwe8itnk1teiz/LT+l2dQ2Me6BnaOY7tZ/T5yz9KGbpRzFLL4pX+lHMUsfpdOzWIMweJVWGYeQAbtM0+yem/50FrAfWAVmGYRw5sQbqEuCXE5fNRJnIjBuIjRNu7aCveTPx7kY8Q23kxSN8Z+AkLJx81PcqhmczA9kh+vMOYTxUQ7B6DjeX1k3UsDCl7RcRERGRmbGnI1UlwK8Nw3ABLuAN4LOmaVqGYZwLrDUMI5OJ7c8BZqJMZDrFE0k6IsN0t7aS6G3mxWghm7vGWRJfz0dyXqJi4rwhh4+RvFI+e9QsyspLCOYcjtPjIeBwprT9IiIiIrJ3OWw7NVPhUqAGaND0P9neyFiCTeF+Nrb2M9DRQlXfixTGuyh3R8l0xAH4pXMNVsl85vsHqSZMfuUscsrrcGZqrvO+SJ+z9KOYpR/FLL0oXulHMUud7ab/1bJlEGdSZmpLdZF9im3b9A+P09raxUB4M8nuJjxDbeSPd/Hk6AJeic9iccEwSx0mw7khYvkrsEpqqV28iAvcARxuT6q7ICIiIiL7KCVVst+xbJuu3hjtzc0MhOtp7YcXI7kkRwb5ZsG/luENO3KI5ZXywUPmcdHSVXjcDuAkCrebvpcT9BPTN0UiIiIi8h6UVElaiyeShLuHaO4apqlzkMrWR8gfbaPUGWG2c8v0vWzHbEZnfYSqkhr6Y3HyK2rILq3Fn5Wb4taLiIiIyP5ASZWkhURyy9bl7R09jLQ3QLQVz1CYgng3w7aX+wdPINPj4tDcdjJzXMTyDsYuraWwajYrglUc4vZO1FSZ0n6IiIiIyP5HSZXsc0bHE7R0DtLRGmaorZ7xaCd/jM4mkbS52PcXlnvCAIw4shnOK8UbnM0thxxGUX4WDo7Ww3NFREREZK9SUiUpNTA8TnN7H01dwzR3DZPTtZ4F8dcod/USco4DYOEgsewIyksLqXEUkJHlwFNcgz87P8WtFxERERFRUiV7iW3bdPeP0hKO0N+ykUR3E96hNoJ2D+WuPn7cfyoOf5Dj8hyEEi4ShctIltbiK6/DFaji9Iyt0/dCKe2HiIiIiMg7KamSaRdPWLR1D9HR2sZQWz12bzPP9JfSNOpnSUYTF/ifAGA0I4vRnDJGAkv42vLD8AVKgMNT23gRERERkSlSUiVTYtk2bd3DOJwOsr1b3j7hzn7CnX00ReL0dbazevwvlLt6Ocg5tu26jMqTsWcZ1OTPw20txVtSgy87X+ufRERERCTtKamSXbJtm3D3MM+/2cnfX2/HH2ulwtVLuStKubuXUlcfG0bnY7pXURvMIzQK8fzFjIVqyauYjbuokmM8WdvVWJayvoiIiIiITDclVbJTA0NjbNjYROfmDYx3NdI75uK58XksrC3gvMHHcSVHSbiyGM4uZaxwESfMWcZH6hZPXH1IStsuIiIiIrI3KakSxsbidITbaBxw09I1RE3z76hL1GM4RzEA3NBfZHDGyUeQl+Mh0fFlnL5CHDmFFGj6noiIiIgc4JRUHWD6h8fp2LyRWMub2L0tZI+0E7QjZNgZ/LjvTDI9bioKchjKnYejfBZFNXNwB6vwe7K31eEOzUlhD0RERERE9i1KqvZTlmXT1d5BT+NGRjsbcfWH+enQKiLDFh/Oeon3Zb3BiO2hL6OYDv8KMopruGXRYRQVZON0HJPq5ouIiIiIpA0lVfuBkbFxOhqaaBp00hSJ42lbz1HjT5DnHCFn4px+/Cyv9FBYXkmtvwYC2QSLSijW9D0RERERkT2ipCqN2LZNdHCMcGsnY/UvQW8zOSMdBIlQ5Ejwm8HVNLpqWB7IZSBrDsOBSvzlswjWzsGf7eesVHdARERERGQ/lHZJlWEYc4EfAwEgAnzSNM2NqW3V9EskLTrbOok0bWK0swF3f5gXhit4YbickKuPr+Q9xKjtoc9TTLd/GZ7iGs6fezAFJaGJZz+dlOouiIiIiIgcENIuqQLuBu40TfMBwzDOAdYCq1Pcpj0yPDJOR1Mz7T0DbBjIor0jyifHHyDfGSN34pwBfMwPVTOnbi5Vxdm4slZRFAgR1PQ9EREREZGUSqukyjCMYmAZcMLEoZ8BdxiGETRNszt1LZsa27YJv/AX+ptMHH0tBO0IxY447eNVrE+eQHWJj76cBYwWFOOvmEVRzWz82bmUp7rhIiIiIiKyg7RKqoBKIGyaZhLANM2kYRhtE8fTJql65tUO8tb9iZCrj6grSCR/KZ6SGhbUzOcHFbUT0/cOTnUzRURERERkEtItqdpjgYAvpfcPBv2sXunBzL+CynmVHJSTmdL2yK4Fg/5UN0GmSDFLP4pZ+lHM0ovilX4Us/SSbklVC1BuGIZrYpTKBZRNHJ+USGQIy7JnrIHvJRj00909CEBtVYjRWJzRWDwlbZHJ2T5mkh4Us/SjmKUfxSy9KF7pRzFLHafTsVuDMM4ZaMuMMU2zC1gPnD1x6GzglXRaTyUiIiIiIvuXdBupArgE+LFhGF8FosAnU9weERERERE5gKVdUmWa5lvAylS3Q0REROT/s3fn8XHV9f7HX2cmmayTZSYz2Zq1aU5XurIvZV+UCiqKICCXooIs1yvXDRTRHyggKigIXHFBuC6oXFwAkYuyyiKUHXqaNvs6yWSyZzKZmfP7oyG3QClJ02Yyzfv5ePRR5nzPnPM5+WRI3j3nfI+ICCRhqJoBJ2y/TjKREr1/mT71LPmoZ8lHPUs+6llyUb+Sj3qWGDt83Z3TeZ9h24mZtCEBDgOeSHQRIiIiIiIy5x0OPDnVledTqEoD9gc6gFiCaxERERERkbnHCRQD/wLGpvqm+RSqRERERERE9rikmlJdRERERERkrlGoEhERERERmQGFKhERERERkRlQqBIREREREZkBhSoREREREZEZUKgSERERERGZAYUqERERERGRGVCoEhERERERmQGFKhERERERkRlQqBIREREREZkBhSoREREREZEZUKgSERERERGZAYUqERERERGRGVCoEhERERERmQGFKhERERERkRlQqBIREREREZkBhSoREREREZEZUKgSERERERGZAYUqERERERGRGVCoEhERERERmQGFKhERERERkRlQqBIREREREZkBhSoREREREZEZUKgSERERERGZAYUqERERERGRGVCoEhERERERmYGURBcwi9KA/YEOIJbgWkREREREZO5xAsXAv4Cxqb5pPoWq/YEnEl2EiIiIiIjMeYcDT0515fkUqjoAQqFh4nE7IQV4vdkEg0MJ2bfsHvUs+ahnyUc9Sz7qWXJRv5KPepY4DodBfn4WTGSHqZpPoSoGEI/bCQtVb+1fkot6lnzUs+SjniUf9Sy5qF/JRz1LuGndLqSJKkRERERERGZAoUpERERERGQGFKpERERERERmYD7dU7VTsViUUKibaDSy1/cVCDiIx+N7fT+y58ylnjkcTjIyssnOzsUwjESXIyIiIjJtwwMDBOothtobaB9O4enBBUSicb618QBSnMl7vmfeh6pQqJv09Eyysor2+i+qKSkOotG58Qu6TM1c6Zlt28RiUQYH+wiFuvF4/IkuSUREROQ9xeNx+kMDNIeiNHcNUrrtXgpGG8k3BikACoChWCU5nmqWVObjcCT3PxjP+1AVjUZmJVCJzIRhGKSkpJKX56WrqzXR5YiIiIhMisdtAi1NhBo2E+luwjXQSn60m/5YOjcNfAiA8/Ij9KcXE8o7gMyiKnzVtRzs83NwgmvfU+Z9qAIUqCRpGIYD0BSrIiIikhhjoyN01W9joG0r48E2HogcSEvPMB93Pc7+afVEbQdBw0tXVi1GQSVfWbaGMn82GWlHJ7r0vUqhSkRERERE3mUw1EtLKEZz9yhG03PU9j2Fx+4j37DJB0ZtF9lZq1i/spQc94cY8GTgr6wiP9WV6NJnnULVHHPaaRtwuVykprqIx2N86lMbOfbYE9i06XkuvfQCzjjjbC666N8n17/44s/w0kub+NvfHiczM3On29y06XluueUmfvrTuwA47LB1HHjgIXzvez+cXOeww9ZNbmPTpue59dYfMT4+zvh4BK+3gBtv/DFXXPElOjraAdi6dQsLF9ZgGA48Hg/f//7N73lMzz77NL/4xU8IhUKkpKRQUlLKZz97MQsX1nDaaRsYH49w770P4HQ6Abj//j/xne98i//4jy/y0Y+ezgMP/Jkf/vB7FBWVEI2OU1FRyZe//DVycnK5+OLPcMYZZ3PooYfv8usaDoe56KJPc/PN/0VGRsbUmgF0d3dz5ZWX86Mf3b7L9SKRCBdeuJGbbrqV7OzsKW9fREREJNFs2yYYCBKse4WxQAPO/jZyI13kGsPc0/8BmmMFHJgTYUFGPgM5K0gvqsRbWUtBcQn/7kjeySX2JIWqOejqq6+jurqGLVs2c8EFG1m37kAAyssreOKJR7nggotxOp20t7cxNhberX00Nzfy4osvsHr12rctj0ajXHHFl/jRj26npmYRAFu2bMYwDL7znRsm1zvssHXceuvP3jPIvf/rgNsAACAASURBVOW5557h2mv/H9/5zg0sXrx0cnvBYA8LF9YA4PUW8NxzT3PwwYcB8OCDf8E0l7xtO+vWHcDVV19PPB7nyiu/wp13/pRLLvnClI/397//DUceefS0AhWAz+d730AF4HK5OOGEk/jtb/+bjRs/O619iIiIiMyW8fEIgcZ6+pu3Mt7dzMvj5TzXk0NJrJVLcv5G3DboNfIIZZTTm1/GJ45YR2n5AtyZ8+/s03QoVL3DU6928OQrHXtl2+tXl3DQ0qIpr19bu5jMzEw6OtoAyMjIpLKyajKAPPjgXzjxxA/y5ptvTLuW8877DLfffgu33fazty0fGRkhHB7F4/G8rY7d9fOf/4RPfWrjZKDa2fZOOmkDDzzwFw4++LDJoFhdvXCn23M4HKxZsz9PP/3ktOr405/+hx/+8LbJ16edtoHjjz+JF174F93dAS644BL6+np5+OG/MjAwwOWXf4OVK1fT3t7Ov/3bJ7n//keA7WHyM5/5HI8//ij9/f1cdNGlHHnkMQAce+wJbNx4tkKViIiIzAkjQ0N0dIVo7DPoau/kgI7f4LV7yTHi5AAR20lDaiYHLF1EpbeMUMYK/NU1VE3zH6FFoWpO27TpeSKRCAsWlFNXZwHwgQ9s4I9/vJeDDjqURx75G7fe+lN+8IPvTnvb69cfzb333sMTTzzK4YcfObk8JyeHDRtO5ROf+AirVq1hxYqVHH/8iRQWTj0M7mjLls184Qtf2uU6a9as43/+53cMDAxMBsXNm9/c6bqRSIQnn3ycxYuX7HR8Z7q6OgmHwxQVFb9t+fj4OLff/nPefPN1Lrnks1x44aX85Ce/5JFHHua2227m1lt/utPtZWVlcccdv+SVV17iyiu/OhmqPB4vKSmpNDU1UlFROeX6RERERGaqf2iMwOv/YrSzHqOvlZxwJx5jgLpwLfeMHIQ7w8l+7mya3YtI9VfgKV+Er6ySU1OciS59n6BQ9Q6Hrijm0BXF77/ibpjqM4++9rUv43KlkZWVxTXXXIfb7Z4cW7NmHd/73rU8/vijVFcvJDc3b7fr+exnL+amm27g0EOPeNvyL3zhy5x++ifZtOl5nnnmKe6+++fcccddlJWV7/a+dsUw4Oijj+ORR/42GRTfGaqef/45zj33TABWrFjJ2Wf/25S3390dID/f867lxxxzHLD9zFk4HOaYY44HYPHiJbS1vfe05ccccwIAy5atoKenm7GxMdLS0gDwer0EAl0KVSIiIrJXxOIxelqa6W2qI9LVSGg0zn39yxkYjvD13Hupcg4Rst0MpBXRn7eWygVL+Z65H3nZLgxjfaLL32cpVM1Bb91TtTOGYXD00cdx/fVXc/nlV81oP+vWHYDHU8BDDz3wrrHS0gWUli5gw4ZTueyyS3nqqcf5xCfOmvY+amsX88Ybr7NokbnL9U466WQ++9lzWbVqzU6D4lv3VO2OtLQ0IpGxdy13ubZfG/zWBBlvvXY4HMRi0ffc3jvfF4vFJscikf8LWCIiIiIzEQmH6WppomHETXPXINUtf6Y2uplMI0omELUd4FjAiuojKPe7iWddhGNBKeU5OYkufd5RqEpCp5zyETIyMjjwwJk/Lu3CCy/m61//6uTrkZERXnvtFfbf/0AMw2BwcJCOjjaKi0t3a/uf+tRGrr/+GhYvXoppbr+X6o03XqO/v5+DDz50cr3S0gV8+tOfY+nS5TM7oJ0oL68gGAwSiUQmA9HeEIvFaG9ve89ALCIiIvJehsPjtG/dQrjxFZz9baQPt+OxQ2Ti4JehM3C5UvHke2jLXUVKQQW5ZTX4K6tZmZbGykQXLwpVycjn8/PJT35qj2xre9gxJyfDAJt7772HH/zgelyuNGKxGMcffxLr1x+1W9s/6KBD+OIXv8r3v38d/f39E1Oql3DBBRe/a91TTvnIbu3j29++Cpfr/84Offe7N03OXAiQlpbOmjVrefHFF/ZIEH0vr776MkuXLteU6iIiIvKe4vE4oc5Ogo0W4c5GnP2t3DN6CC0DBselv8rJmS8yYGfS5yqkKWcpaf5Kvr30AAo8bhy6fG/OMmzbTnQNs6USaAgGh4jH/++YOzubKCqqmJUCpnpPlex5r776Mr/61S/5zne+N633TadnV111BR/84IfYf/8Dd6fEKZvN79lk5PO56e4eTHQZMg3qWfJRz5KL+pU40eg43U0NtAyk0BCKYbe9xlEjfyXT2H5bQtyGkJHHM55TyFlQTWU+lBZkUbO4Sj1LEIfDwOvNBqgCGqf6Pp2pknlhxYqVHHLI4YyOjk77WVVTEYlEWLVq9V4PVCIiIjI3jUVitLYHGN38T+LBZjJGOvDGe8g24rwwdCgvxhaxoiCLzuwlOL1luBfUUFi1iMqsTCoTXbzM2LRClWma3wCuAlZYlvWaaZoHAbcDGWxPcmdZlhWYWHdWxwQ2bjz7bZMmACxbtpwvfvHyvbrfujqLa6755ruWf/SjH2fDhlP36r6nY2/W4nK5OPXU0/ba9kVERGTuGAj2EKi3GOlowAi18PpYMQ/3lpNtjHJ1/p8ZsdPoTfHRkrs/qb5KTlm4gs8sKMHpcADHJ7p82QumHKpM01wDHAQ0T7w2gLuBcy3LetI0za8B1wLnzfbYnvhC7At++tO7ErLfRYtMfvGLXyVk3yIiIiJ7Syweo7ethc6uPupG3DR3DvLh0E/xGIMUTqwTst34swr50NIqyguziWSvxldYRKHDkdDaZXZNKVSZppkG3AKcCfxjYvE6IGxZ1pMTr29j+9mj8xIwJiIiIiKy26KxOG3dw/S/+U/sri2kD7XjifWQbowzPl7IA0MnUlKQSYd7OQM5uWSVLsRfvYjy3Dz2zpM8JZlM9UzVt4C7LctqMM3J5w2VA01vvbAsq8c0TYdpmp7ZHrMsq3eaxy0iIiIi89TwwACBeouhtgbsUDOx0SF+HFpPLG7zmezHqUntIuj00Z6zAmdBJb7yRdy6sJbUFCeg+6fl3d43VJmmeTCwP/CVvV/O3jcxm8ekQMBBSsrsnZ6dzX3JnjHXeuZwOPD53IkuY07T1yf5qGfJRz1LLvO1X/F4nGBHB63Wm2yJlrKtfZDKtr9yEC9TABQAg3YG/WlFfHh9NdWl+VT5DqKouIAlTmdCa5+vPUtWUzlTtR5YDLx1lmoB8BDwQ2ByXmfTNAsA27KsXtM0m2dzbDoH/M4p1ePx+KxNcz6V6blPO20DLpdr8rlLa9as5dJLL+OOO26jqqqaY445nk2bnicajXLAAQdNab8333wjjz32dzo62vnlL3+z04fT/uxn/8XPfvZf7zkeDof59re/iWW9idPp5KKLPs+hhx4+Of773/+Ge+/9HSkpKTidTn7+83ffY2XbNoZhcM01V3HFFVdNvp4tdXUW3//+dWzZYnHwwYdy9dXXT47deuuPePbZpydfNzc3cuGFl3LGGWcyMDDE9753LXV1FtFolJNPPpUzzzwb2P6w5Pca21FzcxPf/e63CQZ7cDqdLFmyjMsu+zJpaekA3HXXz3nooQdxOp1kZmbyxS9eTnX1wp0eRzwe1zSru6Cpg5OPepZ81LPkMl/6FY/bdPaO0FVv4Wj6F66BVvKj3WQZYXKBB/s+jDPXjy+vhoY0LxnF1fiqaynx+SkBluywrVDvSIKOYrv50rO5aIcp1aflfUOVZVnXsn1CCABM02wETgbeAD5jmuZhE/c5XQDcM7HaC0DGLI7tU66++rp3BZvzz79g8r9ffPEFRkdHpxyqDj/8SD72sU9w0UWf3um4ZW3m9ddfo7Cw6D238etf30VmZia//e19tLQ0c9FFn+Y3v/kfMjMzeeyxv/OPfzzCHXf8kszMLILBnp1u4667fk5mZiaxWIy//e1BNm9+g0svvWxKx/B+TjttA7///Z93uU5+voeLL/4CdXUWzz//7NvGLrzwEi688BIAQqEQp512Mkcffexk3ampqdx5528Ih8NccMF57LffKpYvX7HLsR2lpqZyySX/QW3tYuLxOFdddQW//vXdnHvu+dTVWdx33x+4++7fkZGRwe9+9xt+/OObuOGGH+6Rr42IiMi+Jjw6QqB+KwOt24gFm8kYbucPQ2upGytgZWoT52Q/S9Dw0pVVi8NbTnZpNd+sWUJm5p5/rIoIzOA5VZZlxU3TPBu43TTNdCamOE/E2HxwzTVXsXjxElatWssf/3gv8Xic559/jmOOOZ6zzz53l+9duXLVe45FIhG+//3r+MY3rubSSy94z/UeeeRhvva1qwAoKytn8eIlPPPMPzn66GP5zW/u5vzzLyQzMwsAr7dgp9s455zzuO++P/C3vz1IYWHRTgPVpk3Pc/3113DHHXeRnZ3NNddchcfjnQw8M1FQ4KOgwEdTU8Mu13vooftZt+6AyePYunULJ520AcMwyMjIYPXqNTz88IMsX75il2M7Ki4uobi4BNh++d6SJct2qMMgGo0SDofJyMhgeHgIn68QERERgcFQL4F6i9YhF1Z/OmNdDZwT/wP5hk0+MGq76HX6WFPj5YjKJZT71pDt/ST5qa5Ely7zyLRDlWVZlTv89z+BFe+x3qyO7Uu+9rUvT17+d+GFl3DggQdPji1cWMMpp3yE0dFRLr7485PL//M/L+X88y9g8eKl09rXHXfcxvHHn0RJSeku1+vq6qSwsHjytd9fRCDQCUBDQwOvv/4qP/nJrYyPj3PKKR/hQx/68Lu2cdddvyA9PZ3jjz+Jqqpqbr75xrcdA8CaNes48cQPcu213+LQQ4+gpaWZL3/5a9M6ppl64IE/c/75F06+Ns0lPProIxxxxJEMDQ3x7LNPU15e8b5j72VsLMz99/+JCy64CIBFi2o5/fRP8rGPbSA72012tptbbvmvvXeAIiIic5Bt2/T0h2np6MP5xgOkDLSRG+ki1xjGD7w8uhwr5WAW+otpdBxOelEl3spaCopL8DscLE70Aci8tttnqvZlI3/+zruWpVQfgGvZMdjRMUYf/P67xlNrDyPVPJx4eJDwwze/e3zp0aSYB79r+c7s7PK/97M7l4q99torbN78xozPAsXjcQKBLn784zvo7+/jwgs3Ul5ewapVa9623llnfWrynqrjjz+J4447cafbO+ec8/j85z/HLbfcyB133E1Kys6/TXd82HFPTzfnnnsmAIWFhVx33Q9261jeeOM1QqEQhxxy2A51n8stt9zExo1nk5eXz+rVa+nv73vfsZ2JRqN84xuXs3btOg47bD0AnZ0dPPnkY/z2t/fh9Rbwq1/9kmuuuYrrr79xt45BRERkrhsfjxBorKe/eSvj3U2kDbXTOJbLPYPrAJtr8p4j7MgklFFOb34ZmSXVHFdt8pH8/IktrE1k+SLvolA1j7344iaamhr52Mc+BEB3d4AvfOESLr/8G++6X6uwsIiurg7yJ/5nFgh0smbNuomxQo499gQcDgf5+R7WrTuQN954/V2h6q1JKa644qq3vX6noaEhuro6SU11MTDQR1HRzu/12vFhx6edtmGPPID4/vv/xAknfOBtQS49PZ3LLvvy5OsbbriWioqq9x17p1gsxre+9XXc7hw+//kvTi7/+9//l+rqmsnLDU888YP87Gc6UyUiIvuGkcFBAg11BLuDvDy2gJauIT4R/hUlzhA5QMR2EnQUkOfzcc4hJuWFbvK9h5Gelpbo0kWmTKFqJzI3fPU9x4yUtF2OO9LduxzfE7Kysujp6Z7xds4++9y33Y912mkbuP76H+z0LNlRRx3DH/94L4sXL6WlpZk333yDq666BoDjjjuRZ599mlWr1jA6Osorr7zI+vVH7nZd3/nONzn55FNZsmQpV111xeQEGHvb2FiYRx75G7fe+rO3LR8eHiIlJYW0tHS2bq3jiSf+wU9/evf7ju0oHo/z7W9fhcPh4Ctf+frbAmVJSQkPPXQ/o6OjZGRk8PTTT1FVtfOZ/0REROayvqExmruGGLX+SWb3q+SEO/EYA3gBVzydO8fOpKLQTcCznlheOp7yRfjKKvGmJHb6cpGZUqhKQkcccRRXXPFFzj33zMmJKnZ1T9WNN36Xxx77B729QT7/+YvIycnl7rvff+LEc889kxtuuImCAh9nnnkO11xzFaeffioOh4MvfenyyaBz+ulncv3113DWWR8H4MQTP8D++09tZsJ3uueeXzE2NjZ5qeBRRx3Lddddwze/+e3d2t6OOjra+dznziccDhOJjPHhD3+AjRs/w8knnwrAY4/9g/LySqqqqt/2vvb2Nr7+9a+SkuLE5XJx5ZVXU1Dge9+xJ598jCeffJyvfOXrPPPMP3nooQeprl7Ixo3bp1xfsWIll132ZdavP5o33niNjRvPIjXVhdvt5vLLvzHj4xUREdlbYvEYPS3N9DbVEelqJHWwjZzxbr4V+jBRnJyS8Sar0zsYSCuiP28t6UVV+KpqudHnx+FwAKsTfQgie5Rh2/b7r7VvqAQa3vmcqs7OJoqKdj2xwJ4yledUydwyF3s2m9+zyUjP9kg+6lnyUc+Sy0z7FQmH6WrYPn35a9FytvXEqQw9w4b0fwEQtR0EDQ8jmUUEF55MSWkhC3xZZGVo9r3dpc9Y4uzwnKoqts82PiU6UyUiIiIiAAyNRmgJDNPdVE9+0yNkjXbisUPkGTZ5wCOjx+LwLiFr4Wqa08rJLavBX7mQ/DQFKJnfFKpERERE5pl4PE6os4Ng4xbCnY04+1vJiXTx4MgKnhlbRKGjj4tzG+lPLaQpdylp/iq8lTVcVLoAp0P3P4m8k0KViIiIyD4sOj5O+7Yt9DVvo2PYwaZBP91dPXw9878pBuI2hIw8+tIXsLx6EYfUrKTcl01O9kfY9VMsReQtClUiIiIi+4hweJzW4AjNXYPkbb4P93Az3ngPbiOOG+gdryCcfTJLzTIanB8ht6ScwqpaKrMyE126SFJTqGL7E7zf65lJInOJbccBfa+KiAgMBHsI1FuMdDRghFpwj3XRP57KTYMnAfC53E6iLhcd3oMw8svIL6/hoIpKDktJndjC4sQVL7KPmfehKiXFxfDwAFlZOQpWMmfZtk0sFmVwMITLlZ7ockREZBbF4jF621oINm5lpKedx6Mrae4a5KM8xH6uFgBCtpsBl5+4v4pLlq2g3O/Gk3MUhmFoJjmRWTDvQ1V+vo9QqJuhob69vi+Hw0E8Prem55Zdm0s9czicZGRkk52dm+hSRERkLxmPjNEeDNPcPcx4/b8o7XkGT6yHdGOcUiBmGzzgrGJJhRcj+0S681z4qxdRnpuX6NJF5rV5H6qczhQKCopnZV/6l6Lko56JiMjeMjw4RGDbmwy1NWCHmska6cBr93Jb/wa64nkclBGkNAvac1bgLKgkt6yawsoavpauKxZE5pp5H6pERERE9qZ4PE5/d4Duhi2EO+p5bbyMl3sz8A9v5TPuv1MADNoZ9KX6aXKbfOyApZRUlOPPPwqHbk0QSQoKVSIiIiJ7SCwao6u7j+bQOF1tHdQ230t+tJssI8xb18W8aR9ORdGBLCzYn07XQvxViyjx+SlJaOUiMhMKVSIiIiK7IRyJEqh7k4HWrcSCzWQMt+ON9/B82OS+0XWkO+MszRsjkFWL4S3HXVqNv7qW07OzE126iOxhClUiIiIi72Mw1EtX/RZG2+vpGYrxyHAtHcEh/l/u76hwhBm1XfSm+GjNWUtFyXK+aa6h2JtJivPYRJcuIrNAoUpERERkQjweJ9gVoHnASXPXIMUNf2ZBeAu5xjCFk+uU4C9YyTrTRyjtPFylJRQUl+B3OBJau4gkjkKViIiIzEvRWJyupib6G15nvLuJtKF2PLFubBtu6TsdwzD4eL6DrIxyevPLyCqpxl+1iJUeLysnt1KdwCMQkblCoUpERET2eSNDQ3Rt28JQez12sIk/Rw6mKTjGia4XOC7jNSK2k6CjgA73MpwF5Xxt6RoWFObgSj060aWLSBJQqBIREZF9Sl93gJZQlKaeCNGWV1jd9794jAEKgAJg2E6nKHsli9ZVUpFbzHD+h/GVVeJNcSa6dBFJUlMKVaZp3gdUAXFgCLjEsqyXTNOsBe4EvEAQOMeyrLqJ98zqmIiIiMwvcdsmEOglZL1ApKuR1ME28sYDuI1RHhlczyvjFeyXZ1OTXkh/3lrSi6rwVdXi9/nZqPufRGQPmuqZqk9ZltUPYJrmKcDPgDXAbcAtlmXdbZrmWcDtwFvnyWd7TERERPZRkXCYroatDLRuI9rTxOaxQh4NFuGOhfh63n1EbQe9hoeerIUE88s5eeFqPlNZRWZ6CnBKossXkX3clELVW4FqQi4QN03Tz/ZgddzE8l8DN5um6QOM2RyzLKt76ocsIiIic9lQfx/t7T00DLpo6eznqM5f4LV7yTNs8oCwnUqnK53D91tNmX8hA+m1+CpryE9zJbp0EZmnpnxPlWmadwDHsz3cnAiUAW2WZcUALMuKmabZPrHcmOWxKYcqrzexD9zz+dwJ3b9Mn3qWfNSz5KOeJZ890TPbtunuG6X1xacZatqMHWwmJ9xJrjFEb6SU3w4dgycnnTXuUsZyl5NdWkPRosVUVFaw1Kn7n6ZDn7Hko54llymHKsuyzgcwTfNs4LvA1/dWUXtTMDhEPG4nZN8+n5vu7sGE7Ft2j3qWfNSz5KOeJZ/d6Vk0Ok6gqYG+5m2MBxoJjwxzd/8BDIejXOJ+iOqULnqNPELpC+jNX4B3gcmN5kpyslzAIW/bVm/vyB48mn2fPmPJRz1LHIfD2K2TMNOe/c+yrLtM0/wvoBUoNU3TOXHWyAmUAC1sP6s0m2MiIiIyR4SHR+hsqKM+4qW5a4iytr+xOvYSbiOOGxi3nQQcftbW+qgocpPrriKtpJCqrMxEly4islveN1SZppkN5FuW1TLxegPQCwSAl4AzgLsn/n7xrfubTNOc1TERERGZfQPDEdrrtxJp2IQRasE91kW+3YfXgB+EPkY8zU2Op5CW9P1J9VWSX16Dr6IST0oqixNdvIjIHjKVM1VZwO9M08wCYmwPVBssy7JN07wAuNM0zSuBEHDODu+b7TERERHZS2LxGMG2Fnobt/JGbzMEW/jj6GrqBrPZ37WNs7KfImS7GXD56c9bRXpRJVfWrsHjcWMYRqLLFxHZqwzbTsz9RQlQCTToniqZDvUs+ahnyUc9m3siY2MEGrfR2g/b+lMIt9fxofB9pBvjAMRsg14jn1c8J5BZvoRyr4sFBelk5+YluHLZGX3Gko96ljg73FNVBTRO9X3TvqdKRERE9h0j4SitHUHG3ngUu7eFrNEOvHYvuYbNEyOreTK2ikW+XNpzVpBSUEFO2UKWrVtF3lCU6kQXLyIyRyhUiYiIzAPxeJy+QBc9jXWMdtTj7G+jPpzLfX1LcRDn+vyHCJNGX6qfJreJq7CSo6uXcXppCQ7DAA6b3FZaRgYM6V/RRUTeolAlIiKyj4lFY3Q3NxLoDLB5zEdz1yAb+u6ixNFL8cQ6QTsXT3YBH11ZTZnfjTNvNSVeLyUJrVxEJDkpVImIiCSxsfEYrd1DDGx+Dmfn66QPd+CN95BlxHDHsvnfoY9SWpBNIH81kZwM3KXV+KtrqczOpjLRxYuI7CMUqkRERJLEYG+QroY6Rtq3YYRaSQ93c13oROK2g49nPseatCZ6U3y05qwlxVdBXlkNP65eRIrTAeyf6PJFRPZZClUiIiJzTDwep7e9jWDjFqzxEhp6IizoeYrjnc9ROLFOv51Fv6uQUw8sprjYT4V3LR6PG7/DkdDaRUTmI4UqERGRBIrG4rT3DNPV1ICr/gnShtrxxLrJMCKUAH8YPJ6R3IWU+k0aXHlklVTjr1rEAo+XBcCyRB+AiIgoVImIiMyWkaEhurZtYahtG3ZvM5kjHfx1eBmbxiqocHZzcc6LBB1eOtzLcBaUk1Naw2XVi0jLSE906SIisgsKVSIiIntBX3eA7nqL9kGD1wdz6Q108e/G3RQABcCwnU4oxc+yRcWsq15KhT+LvLzT8KY4E126iIhMk0KViIjIDMRtm0BolOauQVyv/xnXQAt54wHcxihFQPNYNU2px1Lu97PNcQyZRRX4qmrx+/wUORwsSfQBiIjIjClUiYiITFEkHKarYSsDrduI9jSRPtxB71gqPxk8EoAv5ryBK8VBT9ZCgp5yskuqOai6lmNycia2sF/CahcRkb1HoUpERGQnBvv66K7fQn9XO89Ha2kODPKh8B9ZnNpOHhC2U+l1+nD5yvi3wxdTUeimyHMErlT9aBURmW/0f34REZnX4vE4vQNhWgLDDG/9F/ldL5AT6SLPGMIHeGyDX49/ipLCfEaK19PmduKtXISndAE+h+5/EhERhSoREZlHotFxAk0N9DVvYzzQiGuoDU+0m+v7P0gons36tAbWZwXpS19AKH8BmSXV+Ktqud5bMLGFlQmtX0RE5iaFKhER2SeNDg8RmLj/afN4CW8GUyjoe5WzMx/HDYzbToIOL13Zi/nIflUUlZdTWnAE6Wn60SgiItOjnxwiIpL0BgZHae4eobO1jcKG+3GPdZFv9+ExwANsGjuUjIJ1lCxdRUtqMfnlNfgqKvGkpCa6dBER2QcoVImISNKIxeME25rpbdzKWFcDqQNt5I4H+Ge4hgdHV5FuRPhKXjsDLj/9eatIL6qkoLKWswuLcDgciS5fRET2UQpVIiIyJ0XGxgg0bKO/ZSuBoRjPDJfTGhjkm1l3U2pEidkGvUY+vZlVVFYv50u1qykrzCYr/cREly4iIvOMQpWIiCTc8PAorcEwzV1D5Nbdj3eoDq/dS65hkwtEY4XY7nIOXl5Mq+sMvEWFFFbWkJeenujSRUREFKpERGT22LZNKBCgp8FitKMeZ38bOZFOiMW4rv80AD6Z20d2WjZNOYtx+SvwVixieVk5KyenLzcTdwAiIiI78b6hyjRNL3AXsBAYA7YCn7Usq9s0zYOA24EMoBE4y7KsCF0/gAAAGvBJREFUwMT7ZnVMRETmllg0RndzI6HmOiLdTTwSXUtjYJQTjCc5It0CIGjnMpRZSjSnhM8ft4KKohxys49OcOUiIiLTM5UzVTZwvWVZjwKYpvld4FrTNM8H7gbOtSzrSdM0vwZcC5xnmqYxm2N76oshIiK7Jzw6QltwlJbuMOHGl6nueQxvvIcsI0YWELUdOFOrWb1oAXk5JxDMOQF/dS2V2dn4fG66uwcTfQgiIiK77X1DlWVZvcCjOyx6BrgQWAeELct6cmL5bWw/e3ReAsZERGSWDA4M0lX3OiPt2zBCrWSHO/HYffx+8BisaAnLMwaozE6h1b2WFH8FeWU1+Cur+PdUV6JLFxER2SumdU+VaZoOtgeqPwHlQNNbY5Zl9Zim6TBN0zPbYxPBT0RE9qB4PE5vexvBxi2Euxqxxvw8G/KQOdLBl3L/AkC/nUW/q5CB3BWcdMBqNlZV481NxzA+keDqRUREZs90J6r4ETAE3Ax8eM+Xs/d5vdkJ3b/P507o/mX61LPko55N33gkQktrgIZgnMaWbsy6X5I/HiDDiFACxG2DNucBrFxkUl1UyYhrIaWLl1Dt8+2R/atnyUc9Sy7qV/JRz5LLlEOVaZo3AIuADZZlxU3TbAYqdhgvAGzLsnpne2w6BxwMDhGP29N5yx6j+waSj3qWfNSz9zc6FqXTepWh1q3Yvc1kjnTitYO8EinjzuH1uFIdVOY66XAvw1lQTk5pDYXVNXwgI2OHrZQShT3ytVbPko96llzUr+SjniWOw2Hs1kmYKYUq0zSvAdYCH7Qsa2xi8QtAhmmah03c53QBcE+CxkRE5B1s26a/p5vueovRjgYGh0b48/BKAqFR/jPnL1Sm9DJspxNK8dOccyDeYpNrluxPYX4mDseRiS5fREQkaUxlSvVlwOXAFuCfpmkCNFiW9WHTNM8GbjdNM52JKc4BJs5kzdqYiMh8F4vH6G5ppXkknaauQXxND1MbfgW3MUrRxDqdtpcy/6EcurwII+tcosV+/D4/RQ5HQmsXERFJdoZtJ+ZSuASoBBp0+Z9Mh3qWfOZDz8ajMdobmxisf4VYsJmM4XY8sR7SjChf6j2DqMPFSZ4GatJ7MTzlZJdU46+uJSsnJ9Gl79R86Nm+Rj1LLupX8lHPEmeHy/+q2H4SZ0qmO1GFiIjMosG+Prq3WQx11GOEWvjr2GqsYAqHuN7kY1nPEbZT6XX6aMtdRUpBBV/94FpKijykOI9KdOkiIiLzhkKViMgcEI/H6e1sp603SkMoTrhtC4f2/4U8Ywgf4AMG7EwWuJexsLaaqvxKwnkfxFO6AJ/DmejyRURE5jWFKhGRWRaLx+no6mNg8zOMB5pIG2ojPxog04jw4vD+PDG2hFqPk2XpCwjll5FZUoW/qpZSbwFnJLp4EREReReFKhGRvWh0eJhAfR0Dbduwg83Uh/N4oLcKR2yM6/LvIYaToMNLV/YSHN5yjqzajzOqqklzOYHjEl2+iIiITIFClYjIHtIf7KGzrZOtw9m0BIZY33UXJXYXHgM8wIidRihtBcesLaW80M1I5iJ8ZWV4UlITXbqIiIjMgEKViMg0xW2b7r5RejZvItr2JqkDbeSOB8gxRrCj+fxhYAMFueksz65kPHsxaUVV+Cpr8RUWUajpy0VERPY5ClUiIrsQGRsj0LiN/uatRHuaMYZ7uG3gSMKROGdnPcFqVyO9Rj69mVX05peRVVrDj5asJCs9FTgk0eWLiIjILFCoEhGZMDzQT6C+jq1jXpq7R/F3PMHh8WfINWxygTE7haDTxxFLPZQUF1CRZ5JZ6CUvPT3RpYuIiEgCKVSJyLxj2zahwTHaGxuJbXsGZ38bOWOd5BuDFAA/7/8gg+nFHOgpoSntYFz+SrwVi/CWlVPgcGIm+gBERERkTlGoEpF9Wiwao7u5kVBzHZFAE6mDbTw8spSXh/0sSung4pxHCdq5DKQX05d3AJnFVVy2aAW5+bmJLl1ERESShEKViOwzwqMjbHnBYnPrCHUDGfR1tvPJsf8my4iRBURtB0GHF7Mki+WVtZT79sPpOYXK7OxEly4iIiJJTKFKRJLS4EiE5s5BYq8/hBFqITvcicfuI8Ww6QvX8lzsMCr8ObRmrCPFV05+WQ2+yiryU13UJLp4ERER2acoVInInBaPxwm2t9HbuIVwVyMpA60Ewmnc1X8AAFfmPkWKA/pdRQzkrsBTZbJ/YRUnFhdjGAawLrEHICIiIvs8hSoRmTPGxyMEGrYR7OzgtcgCmruGOH7g9yxytlMCxG2DXiOP7JyFfHxNDeWF2Xg9B+DOyWbBxDZ8Pjfd3YOJPAwRERGZZxSqRCQhRseitASG6N/yAmkdL5E50oHX7iXHiJNuO7l16JMs8OXQV7iOpmyD3AU1+KtqqMrIoCrRxYuIiIjsQKFKRPYq27bp7+mmu95itKMBo7+VnHAn3+07kRE7nePTX+XIjDpCqX6a3Ytw+SvJL6/h5vJKnE4nunxPRERE5jqFKhHZY2KxGN0tTYSat1IX8bE1aODp3sRHXY9TNLFOyHYzkFbEhw4soXDBAsp9B5HrTqfI4Uho7SIiIiK7S6FKRHbLeDRGa/cwHc0tZG17hIyRdjyxHrKMKFnAY8OHMZC7HyVli2lMzSa7pBp/dS3lOTkALE9s+SIiIiJ7jEKViLyvwb4+urdZDHXUY4RayBrt5KmRav4RXkqOMcIVea/S6/TRlruKlIIK8spr2Fi5kFSXK9Gli4iIiOx1ClUiMikej9Pb2UFv4xY6+8d5eaSI1q4+vuL8BT4jjg8YsDPpcxVSVVPBkprllPuz8OSdhM/hTHT5IiIiIgnxvqHKNM0bgI8ClcAKy7Jem1heC9wJeIEgcI5lWXWJGBOR6YvGYnT2jtLcNYhr81/J7t9GfjRAphGhGBgcL6LTdSpVpR4aUk8mx1+Ev6qWUm8BpYkuXkRERGQOmcqZqvuAm4An3rH8NuAWy7LuNk3zLOB24OgEjYnILowODxGo38pA2zbsYDMZIx3EolGu7z8ZgPPdDThdEbqyl+DwluNeUMOyqkWszcqc2ILugBIRERF5L+8bqizLehLANM3JZaZp+oE1wHETi34N3Gyapg8wZnPMsqzuaR6zyD6tv6eH7gaL4Y5Gno7vR1NgmGPGHubAtG14gBE7jd4UP2Peaj59+BLKC90UetaT4tTleyIiIiK7Y3fvqSoD2izLigFYlhUzTbN9Yrkxy2MKVTIvxeIxevpGaQ6MMFT/Mv7Of5I33kWOMULhxDp/iRVQ4i8mxX0k7e7D8VXW4issolDTl4uIiIjsMfNuogqvNzuh+/f53Andv0zfXOhZZGyM5s2b6dlmEe5sIHWglfxoN7cPHkNj1M/KtDY2ZA/Q517IkK+C/MpayhYv4UaPJ9GlJ8Rc6JlMj3qWfNSz5KJ+JR/1LLnsbqhqAUpN03ROnDVyAiUTy41ZHpuWYHCIeNzezcOeGZ/PTXf3YEL2LbsnET0bHugnUL+FwbZ6to4V8FLITXpfPZe4/4ofGLNTCDp9tOes4MT9TPxVCyktWE9qytsv3xuLMS+/3/Q5Sz7qWfJRz5KL+pV81LPEcTiM3ToJs1uhyrKsgGmaLwFnAHdP/P3iW/c3zfaYSDKKx+P09Q/T3DNGW0cPFfV/IGesk3xjkAKgAKiPriWv4HCqq1fS6vTgrajFW1ZGgaYvFxEREZkzpjKl+g+BjwBFwP+aphm0LGsZcAFwp2maVwIh4Jwd3jbbYyJzWjxu09VUT6ipjvFAE67B7ZfvvRpZwK+HD8HA5iv5IQbSi+nLO4DM4ip8VbWc6vPvsJUlCatfRERERN6bYduJuRQuASqBBl3+J9OxOz0Lj47QVV/HQGs9/QPD/GNkMW3dQ/xn1r0UOgeI2g56HF5GM4qJFi3FvfggFviyyUibd7c47hX6nCUf9Sz5qGfJRf1KPupZ4uxw+V8V0DjV9+m3OJEZGOzrozkUpzkwiHvbw5QOvY7H7sNj2HiAQDyXtJylHLm6lKG008ksLMBXWUV+qivRpYuIiIjIHqJQJTIFtm3T3dlFaNvrhLsaSRloJTcSIItRbgydQQwnp+SOkp+ez0DuCtILK/FW1lJVXMKXJqcvX5TQYxARERGRvUOhSuQdxscjBBrq6WvZCqFW/je8nC3dMQ42XuaUzE3EbYNeI49QRjm9+WV84ZjllJUWkJ1xdKJLFxEREZEEUKiSeW1kaIi27mGaghGGmi2W9/wVr91LjhEnB4jYKbjTSjloaS1VeQX0uY/CX1VDVUZGoksXERERkTlCoUrmBdu26esbomfLS4x0NODobyUn3InHGODvQwfzbGQR1VmjmFmZNLsX4fJXkl9ew5I1yzkvNJro8kVERERkDlOokn1OLBaju6WJUNNWIoFGGsK5PBoqITY6yLfz7wEgZOcwkFZIf95aDj9gDR9fWEtetgvD2PC2baWk6CMiIiIiIrum3xglqUXCYTrau2gcSKG5c5C1rXfjj3WSZUTJAqK2g17HCvZbuB9lhZX0uIrxVy6kPCcn0aWLiIiIyD5CoUqSxtDoOF3Wqwy3WhihFrJGO/HYIfqiBdw5eBIZaU4W5eYxnl1ESkEFeeU1+CurOcqVxlGTWylL4BGIiIiIyL5IoUrmnHg8Tm9nO8HGOsKdDYwP9vLb4YMJDoxxfvbfWeFqZcDOpM9VSFPOUlxFNVy77EAKctNxGOsTXb6IiIiIzDMKVZJQ4+PjdDc10DiaRXNghLyWx1k99hyZxhglQNyGXiOP2tJsFqxZgMddhl2UT6m3gNJEFy8iIiIigkKVzKJwJEp7UwvDWzdh9zaTMdKBN96D24jzp75TCDnyWe9x0+VegsNbjru0msKqWqqyMvl0oosXEREREXkPClWyV/T39BBosLZPXx5q4dGxpbzU62ZZagufdv+DETuN3hQ/LbkHkOqr4BJzHUVFXpwOR6JLFxERERGZFoUqmZFYPEawtYW23gj1/U762ls4ceAecowRiibWCdluynMWU7G0iooCk/Hc4/AVFlGoACUiIiIi+wCFKpmy8Wic9u5BBl97jFhPE+nD7XhiPWQY4zSNLuPB8DrKvS56M6vozS8jq6Qa/8JaynPzKE908SIiIiIie4lClezU8EA/gfotDLY1QG8zHeE0fh9aTiwe55q8+0k1YgSdPtpzVuAsqGRN1RI+WFlNaooTODTR5YuIiIiIzBqFqnkuHo/TF+iiq7WdurCH5sAQh3TfwyKjhQKgABi0MxhNW8SJB5ZT5s/GmbOE/OJCChzORJcvIiIiIpJwClXzSCwep7N3lKD1Enbba7gGW8mPdpNlhMmPu/hj3+n4PVmE3LU0ZNWSWVyFr6qWEp+fEuDARB+AiIiIiMgcpFC1jwqPjtC1rY6BtnriwSYyhjv4Uf9xDEcdbMh4gSPT36TH4SWQVYvhLSendCE/ql1GZroLOCjR5YuIiIiIJA2Fqn3AYG+Qrvo6GsZyqQ/Gye38FyfZj+ExbDzAqO2iN8XHMSvy8ZWUUOFZQbY/l/xUV6JLFxERERFJegpVScS2bbr7w3Q0t0DdE6QMtJIbCZBrDFMI/GnwSNozFrHSU0aj63DSC6vwVi6ioLgEv8PB4kQfgIiIiIjIPijpQpVpmrXAnYAXCALnWJZVl9iq9rzx8QiBhm30tWwj2t1E2lA7T41W8dRwNT7HAJfnPkmvkUcoo3xy+vJP1yzFnZuT6NJFREREROaVpAtVwG3ALZZl3W2a5lnA7cDRCa5pRkYGB+mqr6OzL8ybQ/m0d/XyufGfkmPEyQEitpNeRwHVJfksXGhS4c8iPf8EqjIyEl26iIiIiMi8l1ShyjRNP7AGOG5i0a+Bm03T9FmW1Z24yqYnHrdpeuw+Iu0W6cMdeOinAOiILODl+AmUF7ppSDmCzIJi8str8JVV4k1xsijRhYuIiIiIyLskVagCyoA2y7JiAJZlxUzTbJ9YnjSh6vFX2sl742lynaP0uQrp96whvaiKJdWLudHnwzAMYFWiyxQRERERkSlItlA1Y15vdkL37/O5OfmIGpprvknVAi+uVD1Ad67z+dyJLkGmST1LPupZ8lHPkov6lXzUs+SSbKGqBSg1TdM5cZbKCZRMLJ+SYHCIeNzeawXuis/nprt7EABPdgb9fSMJqUOmbseeSXJQz5KPepZ81LPkon4lH/UscRwOY7dOwjj2Qi17jWVZAeAl4IyJRWcALybT/VQiIiIiIrJvSbYzVQAXAHeapnklEALOSXA9IiIiIiIyjyVdqLIsazNwYKLrEBERERERgSQMVTPghO3XSSZSovcv06eeJR/1LPmoZ8lHPUsu6lfyUc8SY4ev+7RmkzNsOzGTNiTAYcATiS5CRERERETmvMOBJ6e68nwKVWnA/kAHEEtwLSIiIiIiMvc4gWLgX8DYVN80n0KViIiIiIjIHpdUU6qLiIiIiIjMNQpVIiIiIiIiM6BQJSIiIiIiMgMKVSIiIiIiIjOgUCUiIiIiIjIDClUiIiIiIiIzoFAlIiIiIiIyAymJLmC+ME2zFrgT8AJB4BzLsuoSW9X8Y5pmIxCe+APwZcuyHjJN8yDgdiADaATOsiwrMPGe3RqT3WOa5g3AR4FKYIVlWa9NLH/Pz9DeGJOp20XPGtnJ521iTJ+5BDFN0wvcBSxk+4MttwKftSyre2/0RT2buffpmQ28CsQnVj/bsqxXJ963Afgu23/fewH4N8uyRmYyJlNnmuZ9QBXbezMEXGJZ1kv6ebZv0pmq2XMbcItlWbXALWz/ASOJcZplWasm/jxkmqYB3A1cNNGfx4FrAXZ3TGbkPuAIoOkdy3f1GdobYzJ179UzeMfnDXb/c6XP3B5jA9dblmValrUfsA24dm/0RT3bY3basx3GD9nhc/ZWoMoG/n979x9qd13Hcfw5pzPZZFOWhrYJ4nqJRqY5yB8RQWFKssraNH8GQkompasglH7AKmxhaayFplmkMBAygqQ/bMnSoB9aWPEOKXWamnP+/lXbbn98v9PjdTu7O99zd+7ung+43O/5vD/fz/nc8+Fzv7zP53s+5zrg9Ko6AngOWN4lpp12flUdU1XHAiuBG9pyr2fTkEnVLpDkIOA44Ja26BbguCRvHl2v1ON44OWqWtc+Xg0s7RjTgKpqXVWt7y3rN4cmIzZZf9t0ta0x2wHn3AhV1caqWttT9DvgMCZnXByzIegzZv2cCvyhZ7ViNbCsY0w7oaqe6Xk4F9ji9Wz6MqnaNRYAj1TVZoD297/bcu16P03ylySrkswDFtLzDntVbQD2SnJgh5iGq98cmoyYhmf8fAPn3JSRZC/gYuDnTM64OGZDNm7Mtlqb5N4k30iyb1v2utceeIjX/r8NGtNOSnJ9koeAFcD5eD2btkyqtKd5T1UdAywGZgDfG3F/pOnM+Tb1XUvzWQ/HZvcxfswWVtXxNLfgHgVcOaqO6Y2q6sKqWgh8ieZzapqmTKp2jfXAoUlmArS/D2nLtQttvUWpql4BVgEn0bwL9+ptFEnmA2NVtbFDTMPVbw5NRkxDsJ35Bs65KaHdYGQRsKyqtjA54+KYDdE2xqx3nj0LXM925hnNCtT6jjENqKp+ArwPeBivZ9OSSdUu0O5ydC9wVlt0FnBPVT0xul7teZLMTjK3PZ4BnEkzLn8E9ktyclv1ImBNezxoTEPUbw5NRmzy/6Lpr898A+fcyCVZAbwL+HCb9MLkjItjNiTbGrMkByTZrz3eG/gYr82z24HFSRa1j3tf+0FjmqAkc5Is6Hl8OrAR8Ho2Tc0YGxsbdR/2CEmOpNnq8gDgKZqtLmu0vdqzJDkcuBWY2f78Dbi0qh5NciLNTjlv4rUtfx9vzxsopsEkuQb4KPAWYAPwZFUd3W8OTUZME7etMQNOZzvzrT3HOTciSY4G7gP+AbzUFv+rqj4yGePimHW3vTEDrqJ5bceAfYC7gM9W1fPteUvaOjOBe4ALquqFLjFNTJKDgduA2cBmmoRqeVX9yevZ9GRSJUmSJEkdePufJEmSJHVgUiVJkiRJHZhUSZIkSVIHJlWSJEmS1IFJlSRJkiR1YFIlSdrtJFmd5Mo+8bEkRwz5Oc9O8qthtilJmh7cUl2SNFJJzgQ+B7wdeIHm+3duAr5fVQNdpJKMAYuq6v5txNYC7wY2AS8DdwKf3vodWsOQ5ALgwqo6eUd1JUm7P1eqJEkjk+Ry4LvAt2i+PPhg4CLgJGDWds6ZOYSnvqSq5gBvA+YBVw+hTUnSHmrvUXdAkrRnSjIX+BpwXlXd2hO6Bzi7p96PgJeAw4D3AkuSnAM8XFVXtHU+D1wGjAFXTLQPVbUxya3AxT19uhY4FXgRuA74elVtGb/61K6GXQxcDswHbgYuAY4EVgP7JHke2FRV85KcBqwEFgDPAldX1cqJ9lWSNHW5UiVJGpUTgH2B2yZQ9xPACmB/YF1vIMkHgeXAB4BFwPsn2oEk84EzaBI5aBKqucDhNAncecAn+zTxIWAxcAywFDilqv5Os9p2d1XNqap5bd0fAp+qqv1pbnW8Y6L9lCRNba5USZJGZT6woao2bS1IchdwFE2ydUpV3dmGbquq37bHLyfpbWcpcGNV3de28RXgrB089zVJVtJ8hmstcFl7W+Ey4Niqeg54Lsm3gXNpEqJt+WZVPQ08neTXwDuB27dT93/AUUn+XFVPAU/toI+SpN2EK1WSpFF5Epif5NU3+KrqxHZl50lef41a36edQ8bFH5zAc19aVfOq6tCqOruqnqBJ8maNO/9B4NA+7TzWc/wiMKdP3TOA04AHk/wmyQkT6KckaTdgUiVJGpW7gVeAJROo228XwEdpPqe01cIB+7OBZjXpsHFtPTJAW2/ob1X9vqqWAAcBPwPWDNJJSdLU4+1/kqSRqKqnk3wVWJVkBs1tcy8C7wBm70RTa4Abk/wYeAD48oD92ZxkDbAiyXnAgTSbXwyymcTjwFuTzKqq/yaZBXwc+EVVPZPkWWDzIP2UJE09rlRJkkamqq6iSVy+APyHJhn5AfBF4K4JtvFL4Ds0Gz/cT7cNID5D8zmrf9JsiHEzcMMA7dwB/BV4LMmGtuxc4IE2oboIOKdDPyVJU4hf/itJkiRJHbhSJUmSJEkdmFRJkiRJUgcmVZIkSZLUgUmVJEmSJHVgUiVJkiRJHZhUSZIkSVIHJlWSJEmS1IFJlSRJkiR1YFIlSZIkSR38H+HveVaPjaRDAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 1008x432 with 2 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
      "output_type": "display_data"
     }
    ],
    "source": [
-    "# Plot Cycles and Instructions - both per grid cell\n",
     "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
-    "df.set_index(\"nx\")[\"Cycles / Loop Iteration\"].plot(ax=ax1, legend=True);\n",
-    "df.set_index(\"nx\")[\"Instructions / Loop Iteration\"].plot(ax=ax2, legend=True);"
+    "for ax, pmu_counter in zip([ax1, ax2], [\"PM_RUN_CYC (min)\", \"PM_INST_CMPL (min)\"]):\n",
+    "    df.set_index(\"Grid Points\")[pmu_counter].plot(ax=ax, legend=True);\n",
+    "    ax.plot(\n",
+    "        df[\"Grid Points\"], \n",
+    "        linear_function(df[\"Grid Points\"], *fit_parameters[pmu_counter]), \n",
+    "        linestyle=\"--\", \n",
+    "        label=\"Fit: {:.2f} * x + {:.2f}\".format(*fit_parameters[pmu_counter])\n",
+    "    )\n",
+    "    ax.legend();"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "What is your result? What value do the graphs come asymptotically close too?\n",
+    "Please execute the next cell to summarize the first task."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 38,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "The algorithm under investigation runs about 8 cycles and executes about 14 instructions per grid point\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(\"The algorithm under investigation runs about {:.0f} cycles and executes about {:.0f} instructions per grid point\".format(\n",
+    "    *[fit_parameters[pmu_counter][0] for pmu_counter in [\"PM_RUN_CYC (min)\", \"PM_INST_CMPL (min)\"]]\n",
+    "))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Bonus:**\n",
     "\n",
+    "The linear fits also calculate a y intersection (»`b`«). How do you interpret this value?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "exercise": "solution"
+   },
+   "source": [
+    "The y axis intersection; that is, `b` of the linear fit, is the inherent overhead of the program execution. Even if our program would not compute any stencil operation at all for any grid point, it would still complete this many (~1800) instructions and run this many (~680) cycles. Interestingly, it is also the unparallelizable overhead of this (toy) example."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
     "We are revisiting the graph in a little while.\n",
     "\n",
     "[Back to top](#toc)"
@@ -915,7 +1047,10 @@
     "\n",
     "Let's compare your estimate to what the system actually does!\n",
     "\n",
-    "<a name=\"task2-a\"></a>**TASK A**: Please measure counters for loads and stores. See the TODOs in [`poisson2d.ld_st.c`](/edit/Tasks/poisson2d.ld_st.c). This time, implement `PM_LD_CMPL` and `PM_ST_CMPL`.\n",
+    "### Task A\n",
+    "<a name=\"task2-a\"></a>\n",
+    "\n",
+    "Please measure counters for loads and stores. See the TODOs in [`poisson2d.ld_st.c`](/edit/Tasks/poisson2d.ld_st.c). This time, implement `PM_LD_CMPL` and `PM_ST_CMPL`.\n",
     "\n",
     "Compile with `make task2`, test your program with a single run with `make run_task2`, and then finally submit a benchmarking run to the batch system with `make bench_task2`. The following cell will take care of all this.\n",
     "\n",
@@ -924,561 +1059,530 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "gcc -DUSE_DOUBLE -Ofast -std=c99 -lm -lpapi  poisson2d.ld_st.c -o poisson2d.ld_st.bin\n",
-      "bsub -W 60 -nnodes 1 -Is jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.ld_st.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv\n",
-      "Job <4032> is submitted to default queue <batch>.\n",
+      "bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.ld_st.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.ld_st.bin.csv\n",
+      "Job <24416> is submitted to default queue <batch>.\n",
       "<<Waiting for dispatch ...>>\n",
       "<<Starting on login1>>\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,4,0.0012,95115,474,789,21343,106,249\n",
+      "200,32,4,0.0012,119819,598,817,32902,164,266\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,8,0.0014,137115,684,999,33343,166,309\n",
+      "200,32,8,0.0013,161819,808,1027,56902,284,386\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,12,0.0014,197115,984,1299,45343,226,369\n",
+      "200,32,12,0.0014,221819,1108,1327,71902,359,461\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,16,0.0015,257115,1284,1599,63343,316,459\n",
+      "200,32,16,0.0015,281819,1408,1627,86902,434,536\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,20,0.0016,317115,1584,1899,75343,376,519\n",
+      "200,32,20,0.0015,341819,1708,1927,101902,509,611\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,24,0.0016,377115,1884,2199,93343,466,609\n",
+      "200,32,24,0.0016,401819,2008,2227,116902,584,686\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,28,0.0017,437115,2184,2499,105343,526,669\n",
+      "200,32,28,0.0016,461819,2308,2527,131902,659,761\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,32,0.0017,497115,2484,2799,123343,616,759\n",
+      "200,32,32,0.0018,521819,2608,2827,146902,734,836\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,36,0.0018,557115,2784,3099,135343,676,819\n",
+      "200,32,36,0.0018,581819,2908,3127,161902,809,911\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,40,0.0020,617115,3084,3399,153343,766,909\n",
+      "200,32,40,0.0018,641819,3208,3427,176902,884,986\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,44,0.0019,677115,3384,3699,165343,826,969\n",
+      "200,32,44,0.0019,701819,3508,3727,191902,959,1061\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,48,0.0020,737115,3684,3999,183343,916,1059\n",
+      "200,32,48,0.0020,761819,3808,4027,206902,1034,1136\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,52,0.0021,797115,3984,4299,195343,976,1119\n",
+      "200,32,52,0.0020,821819,4108,4327,221902,1109,1211\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,56,0.0021,857115,4284,4599,213343,1066,1209\n",
+      "200,32,56,0.0021,881819,4408,4627,236902,1184,1286\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,60,0.0023,917115,4584,4899,225343,1126,1269\n",
+      "200,32,60,0.0022,941819,4708,4927,251902,1259,1361\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,64,0.0023,977115,4884,5199,243343,1216,1359\n",
+      "200,32,64,0.0023,1001819,5008,5227,266902,1334,1436\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,68,0.0024,1037115,5184,5499,255343,1276,1419\n",
+      "200,32,68,0.0023,1061819,5308,5527,281902,1409,1511\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,72,0.0025,1097115,5484,5799,273343,1366,1509\n",
+      "200,32,72,0.0025,1121819,5608,5827,296902,1484,1586\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,76,0.0025,1157115,5784,6099,285343,1426,1569\n",
+      "200,32,76,0.0028,1181819,5908,6127,311902,1559,1661\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,80,0.0025,1217115,6084,6399,303343,1516,1659\n",
+      "200,32,80,0.0025,1241819,6208,6427,326902,1634,1736\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,84,0.0026,1277115,6384,6699,315343,1576,1719\n",
+      "200,32,84,0.0026,1301819,6508,6727,341902,1709,1811\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,88,0.0027,1337115,6684,6999,333343,1666,1809\n",
+      "200,32,88,0.0026,1361819,6808,7027,356902,1784,1886\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,92,0.0027,1397115,6984,7299,345343,1726,1869\n",
+      "200,32,92,0.0027,1421819,7108,7327,371902,1859,1961\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,96,0.0028,1457115,7284,7599,363343,1816,1959\n",
+      "200,32,96,0.0028,1481819,7408,7627,386902,1934,2036\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,100,0.0029,1517115,7584,7899,375343,1876,2019\n",
+      "200,32,100,0.0029,1541819,7708,7927,401902,2009,2111\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,104,0.0029,1577115,7884,8199,393343,1966,2109\n",
+      "200,32,104,0.0029,1601819,8008,8227,416902,2084,2186\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,108,0.0030,1637115,8184,8499,405343,2026,2169\n",
+      "200,32,108,0.0031,1661819,8308,8527,431902,2159,2261\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,112,0.0030,1697115,8484,8799,423343,2116,2259\n",
+      "200,32,112,0.0030,1721819,8608,8827,446902,2234,2336\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,116,0.0031,1757115,8784,9099,435343,2176,2319\n",
+      "200,32,116,0.0031,1781819,8908,9127,461902,2309,2411\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,120,0.0033,1817115,9084,9399,453343,2266,2409\n",
+      "200,32,120,0.0032,1841819,9208,9427,476902,2384,2486\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,124,0.0032,1877115,9384,9699,465343,2326,2469\n",
+      "200,32,124,0.0033,1901819,9508,9727,491902,2459,2561\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,128,0.0033,1937115,9684,9999,483343,2416,2559\n",
+      "200,32,128,0.0033,1961819,9808,10027,506902,2534,2636\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,132,0.0034,1997115,9984,10299,495343,2476,2619\n",
+      "200,32,132,0.0034,2021819,10108,10327,521902,2609,2711\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,136,0.0035,2057115,10284,10599,513343,2566,2709\n",
+      "200,32,136,0.0035,2081819,10408,10627,536902,2684,2786\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,140,0.0035,2117115,10584,10899,525343,2626,2769\n",
+      "200,32,140,0.0036,2141819,10708,10927,551902,2759,2861\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,144,0.0036,2177115,10884,11199,543343,2716,2859\n",
+      "200,32,144,0.0036,2201819,11008,11227,566902,2834,2936\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,148,0.0036,2237115,11184,11499,555343,2776,2919\n",
+      "200,32,148,0.0036,2261819,11308,11527,581902,2909,3011\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,152,0.0037,2297115,11484,11799,573343,2866,3009\n",
+      "200,32,152,0.0037,2321819,11608,11827,596902,2984,3086\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,156,0.0038,2357115,11784,12099,585343,2926,3069\n",
+      "200,32,156,0.0038,2381819,11908,12127,611902,3059,3161\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,160,0.0038,2417115,12084,12399,603343,3016,3159\n",
+      "200,32,160,0.0040,2441819,12208,12427,626902,3134,3236\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,164,0.0039,2477115,12384,12699,615343,3076,3219\n",
+      "200,32,164,0.0039,2501819,12508,12727,641902,3209,3311\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,168,0.0039,2537115,12684,12999,633343,3166,3309\n",
+      "200,32,168,0.0040,2561819,12808,13027,656902,3284,3386\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,172,0.0040,2597115,12984,13299,645343,3226,3369\n",
+      "200,32,172,0.0040,2621819,13108,13327,671902,3359,3461\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,176,0.0041,2657115,13284,13599,663343,3316,3459\n",
+      "200,32,176,0.0041,2681819,13408,13627,686902,3434,3536\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,180,0.0041,2717115,13584,13899,675343,3376,3519\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,180,0.0041,2741819,13708,13927,701902,3509,3611\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,184,0.0042,2777115,13884,14199,693343,3466,3609\n",
+      "200,32,184,0.0042,2801819,14008,14227,716902,3584,3686\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,188,0.0043,2837115,14184,14499,705343,3526,3669\n",
+      "200,32,188,0.0044,2861819,14308,14527,731902,3659,3761\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,192,0.0043,2897115,14484,14799,723343,3616,3759\n",
+      "200,32,192,0.0044,2921819,14608,14827,746902,3734,3836\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,196,0.0044,2957115,14784,15099,735343,3676,3819\n",
+      "200,32,196,0.0045,2981819,14908,15127,761902,3809,3911\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,200,0.0045,3017115,15084,15399,753343,3766,3909\n",
+      "200,32,200,0.0045,3041819,15208,15427,776902,3884,3986\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,204,0.0045,3077115,15384,15699,765343,3826,3969\n",
+      "200,32,204,0.0045,3101819,15508,15727,791902,3959,4061\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,208,0.0046,3137115,15684,15999,783343,3916,4059\n",
+      "200,32,208,0.0046,3161819,15808,16027,806902,4034,4136\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,212,0.0047,3197115,15984,16299,795343,3976,4119\n",
+      "200,32,212,0.0047,3221819,16108,16327,821902,4109,4211\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,216,0.0047,3257115,16284,16599,813343,4066,4209\n",
+      "200,32,216,0.0047,3281819,16408,16627,836902,4184,4286\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,220,0.0048,3317115,16584,16899,825343,4126,4269\n",
+      "200,32,220,0.0048,3341819,16708,16927,851902,4259,4361\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,224,0.0049,3377115,16884,17199,843343,4216,4359\n",
+      "200,32,224,0.0049,3401819,17008,17227,866902,4334,4436\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,228,0.0049,3437115,17184,17499,855343,4276,4419\n",
+      "200,32,228,0.0050,3461819,17308,17527,881902,4409,4511\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,232,0.0050,3497115,17484,17799,873343,4366,4509\n",
+      "200,32,232,0.0050,3521819,17608,17827,896902,4484,4586\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,236,0.0051,3557115,17784,18099,885343,4426,4569\n",
+      "200,32,236,0.0051,3581819,17908,18127,911902,4559,4661\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,240,0.0052,3617115,18084,18399,903343,4516,4659\n",
+      "200,32,240,0.0051,3641819,18208,18427,926902,4634,4736\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,244,0.0052,3677115,18384,18699,915343,4576,4719\n",
+      "200,32,244,0.0052,3701819,18508,18727,941902,4709,4811\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,248,0.0052,3737115,18684,18999,933343,4666,4809\n",
+      "200,32,248,0.0053,3761819,18808,19027,956902,4784,4886\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,252,0.0054,3797115,18984,19299,945343,4726,4869\n",
+      "200,32,252,0.0053,3821819,19108,19327,971902,4859,4961\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,256,0.0054,3857115,19284,19599,963343,4816,4959\n",
+      "200,32,256,0.0054,3881819,19408,19627,986902,4934,5036\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,260,0.0054,3917115,19584,19899,975343,4876,5019\n",
+      "200,32,260,0.0055,3941819,19708,19927,1001902,5009,5111\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,264,0.0055,3977115,19884,20199,993343,4966,5109\n",
+      "200,32,264,0.0055,4001819,20008,20227,1016902,5084,5186\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,268,0.0056,4037115,20184,20499,1005343,5026,5169\n",
+      "200,32,268,0.0056,4061819,20308,20527,1031902,5159,5261\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,272,0.0056,4097115,20484,20799,1023343,5116,5259\n",
+      "200,32,272,0.0057,4121819,20608,20827,1046902,5234,5336\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,276,0.0057,4157115,20784,21099,1035343,5176,5319\n",
+      "200,32,276,0.0057,4181819,20908,21127,1061902,5309,5411\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,280,0.0057,4217115,21084,21399,1053343,5266,5409\n",
+      "200,32,280,0.0058,4241819,21208,21427,1076902,5384,5486\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,284,0.0058,4277115,21384,21699,1065343,5326,5469\n",
+      "200,32,284,0.0059,4301819,21508,21727,1091902,5459,5561\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,288,0.0059,4337115,21684,21999,1083343,5416,5559\n",
+      "200,32,288,0.0059,4361819,21808,22027,1106902,5534,5636\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,292,0.0059,4397115,21984,22299,1095343,5476,5619\n",
+      "200,32,292,0.0060,4421819,22108,22327,1121902,5609,5711\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,296,0.0061,4457115,22284,22599,1113343,5566,5709\n",
+      "200,32,296,0.0061,4481819,22408,22627,1136902,5684,5786\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,300,0.0061,4517115,22584,22899,1125343,5626,5769\n",
+      "200,32,300,0.0061,4541819,22708,22927,1151902,5759,5861\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,304,0.0061,4577115,22884,23199,1143343,5716,5859\n",
+      "200,32,304,0.0062,4601819,23008,23227,1166902,5834,5936\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,308,0.0062,4637115,23184,23499,1155343,5776,5919\n",
+      "200,32,308,0.0063,4661819,23308,23527,1181902,5909,6011\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,312,0.0063,4697115,23484,23799,1173343,5866,6009\n",
+      "200,32,312,0.0064,4721819,23608,23827,1196902,5984,6086\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,316,0.0064,4757115,23784,24099,1185343,5926,6069\n",
+      "200,32,316,0.0066,4781819,23908,24127,1211902,6059,6161\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,320,0.0064,4817115,24084,24399,1203343,6016,6159\n",
+      "200,32,320,0.0065,4841819,24208,24427,1226902,6134,6236\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,324,0.0065,4877115,24384,24699,1215343,6076,6219\n",
+      "200,32,324,0.0065,4901819,24508,24727,1241902,6209,6311\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,328,0.0065,4937115,24684,24999,1233343,6166,6309\n",
+      "200,32,328,0.0069,4961819,24808,25027,1256902,6284,6386\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,332,0.0066,4997115,24984,25299,1245343,6226,6369\n",
+      "200,32,332,0.0066,5021819,25108,25327,1271902,6359,6461\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,336,0.0066,5057115,25284,25599,1263343,6316,6459\n",
+      "200,32,336,0.0067,5081819,25408,25627,1286902,6434,6536\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,340,0.0068,5117115,25584,25899,1275343,6376,6519\n",
+      "200,32,340,0.0068,5141819,25708,25927,1301902,6509,6611\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,344,0.0068,5177115,25884,26199,1293343,6466,6609\n",
+      "200,32,344,0.0069,5201819,26008,26227,1316902,6584,6686\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,348,0.0069,5237115,26184,26499,1305343,6526,6669\n",
+      "200,32,348,0.0069,5261819,26308,26527,1331902,6659,6761\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,352,0.0071,5297115,26484,26799,1323343,6616,6759\n",
+      "200,32,352,0.0070,5321819,26608,26827,1346902,6734,6836\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,356,0.0070,5357115,26784,27099,1335343,6676,6819\n",
+      "200,32,356,0.0070,5381819,26908,27127,1361902,6809,6911\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,360,0.0070,5417115,27084,27399,1353343,6766,6909\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,360,0.0071,5441819,27208,27427,1376902,6884,6986\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,364,0.0071,5477115,27384,27699,1365343,6826,6969\n",
+      "200,32,364,0.0072,5501819,27508,27727,1391902,6959,7061\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,368,0.0072,5537115,27684,27999,1383343,6916,7059\n",
+      "200,32,368,0.0072,5561819,27808,28027,1406902,7034,7136\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,372,0.0073,5597115,27984,28299,1395343,6976,7119\n",
+      "200,32,372,0.0073,5621819,28108,28327,1421902,7109,7211\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,376,0.0073,5657115,28284,28599,1413343,7066,7209\n",
+      "200,32,376,0.0074,5681819,28408,28627,1436902,7184,7286\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,380,0.0074,5717115,28584,28899,1425343,7126,7269\n",
+      "200,32,380,0.0074,5741819,28708,28927,1451902,7259,7361\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,384,0.0074,5777115,28884,29199,1443343,7216,7359\n",
+      "200,32,384,0.0075,5801819,29008,29227,1466902,7334,7436\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,388,0.0075,5837115,29184,29499,1455343,7276,7419\n",
+      "200,32,388,0.0076,5861819,29308,29527,1481902,7409,7511\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,392,0.0076,5897115,29484,29799,1473343,7366,7509\n",
+      "200,32,392,0.0076,5921819,29608,29827,1496902,7484,7586\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,396,0.0076,5957115,29784,30099,1485343,7426,7569\n",
+      "200,32,396,0.0077,5981819,29908,30127,1511902,7559,7661\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,400,0.0078,6017115,30084,30399,1503343,7516,7659\n",
+      "200,32,400,0.0078,6041819,30208,30427,1526902,7634,7736\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,404,0.0078,6077115,30384,30699,1515343,7576,7719\n",
+      "200,32,404,0.0079,6101819,30508,30727,1541902,7709,7811\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,408,0.0078,6137115,30684,30999,1533343,7666,7809\n",
+      "200,32,408,0.0079,6161819,30808,31027,1556902,7784,7886\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,412,0.0079,6197115,30984,31299,1545343,7726,7869\n",
+      "200,32,412,0.0080,6221819,31108,31327,1571902,7859,7961\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,416,0.0080,6257115,31284,31599,1563343,7816,7959\n",
+      "200,32,416,0.0081,6281819,31408,31627,1586902,7934,8036\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,420,0.0080,6317115,31584,31899,1575343,7876,8019\n",
+      "200,32,420,0.0081,6341819,31708,31927,1601902,8009,8111\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,424,0.0081,6377115,31884,32199,1593343,7966,8109\n",
+      "200,32,424,0.0082,6401819,32008,32227,1616902,8084,8186\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,428,0.0081,6437115,32184,32499,1605343,8026,8169\n",
+      "200,32,428,0.0082,6461819,32308,32527,1631902,8159,8261\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,432,0.0082,6497115,32484,32799,1623343,8116,8259\n",
+      "200,32,432,0.0085,6521819,32608,32827,1646902,8234,8336\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,436,0.0083,6557115,32784,33099,1635343,8176,8319\n",
+      "200,32,436,0.0084,6581819,32908,33127,1661902,8309,8411\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,440,0.0083,6617115,33084,33399,1653343,8266,8409\n",
+      "200,32,440,0.0084,6641819,33208,33427,1676902,8384,8486\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,444,0.0084,6677115,33384,33699,1665343,8326,8469\n",
+      "200,32,444,0.0085,6701819,33508,33727,1691902,8459,8561\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,448,0.0085,6737115,33684,33999,1683343,8416,8559\n",
+      "200,32,448,0.0087,6761819,33808,34027,1706902,8534,8636\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,452,0.0085,6797115,33984,34299,1695343,8476,8619\n",
+      "200,32,452,0.0087,6821819,34108,34327,1721902,8609,8711\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,456,0.0086,6857115,34284,34599,1713343,8566,8709\n",
+      "200,32,456,0.0087,6881819,34408,34627,1736902,8684,8786\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,460,0.0087,6917115,34584,34899,1725343,8626,8769\n",
+      "200,32,460,0.0088,6941819,34708,34927,1751902,8759,8861\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,464,0.0088,6977115,34884,35199,1743343,8716,8859\n",
+      "200,32,464,0.0088,7001819,35008,35227,1766902,8834,8936\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,468,0.0088,7037115,35184,35499,1755343,8776,8919\n",
+      "200,32,468,0.0089,7061819,35308,35527,1781902,8909,9011\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,472,0.0089,7097115,35484,35799,1773343,8866,9009\n",
+      "200,32,472,0.0090,7121819,35608,35827,1796902,8984,9086\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,476,0.0090,7157115,35784,36099,1785343,8926,9069\n",
+      "200,32,476,0.0091,7181819,35908,36127,1811902,9059,9161\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,480,0.0090,7217115,36084,36399,1803343,9016,9159\n",
+      "200,32,480,0.0091,7241819,36208,36427,1826902,9134,9236\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,484,0.0091,7277115,36384,36699,1815343,9076,9219\n",
+      "200,32,484,0.0092,7301819,36508,36727,1841902,9209,9311\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,488,0.0091,7337115,36684,36999,1833343,9166,9309\n",
+      "200,32,488,0.0093,7361819,36808,37027,1856902,9284,9386\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,492,0.0092,7397115,36984,37299,1845343,9226,9369\n",
+      "200,32,492,0.0094,7421819,37108,37327,1871902,9359,9461\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,496,0.0093,7457115,37284,37599,1863343,9316,9459\n",
+      "200,32,496,0.0095,7481819,37408,37627,1886902,9434,9536\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,500,0.0093,7517115,37584,37899,1875343,9376,9519\n",
+      "200,32,500,0.0094,7541819,37708,37927,1901902,9509,9611\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,504,0.0094,7577115,37884,38199,1893343,9466,9609\n",
+      "200,32,504,0.0095,7601819,38008,38227,1916902,9584,9686\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,508,0.0095,7637115,38184,38499,1905343,9526,9669\n",
+      "200,32,508,0.0096,7661819,38308,38527,1931902,9659,9761\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,512,0.0095,7697115,38484,38799,1923343,9616,9759\n",
+      "200,32,512,0.0097,7721819,38608,38827,1946902,9734,9836\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,516,0.0096,7757115,38784,39099,1938343,9691,9834\n",
+      "200,32,516,0.0098,7781819,38908,39127,1961902,9809,9911\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,520,0.0097,7817115,39084,39399,1953343,9766,9909\n",
+      "200,32,520,0.0098,7841819,39208,39427,1976902,9884,9986\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,524,0.0097,7877115,39384,39699,1968343,9841,9984\n",
+      "200,32,524,0.0099,7901819,39508,39727,1991902,9959,10061\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,528,0.0098,7937115,39684,39999,1983343,9916,10059\n",
+      "200,32,528,0.0099,7961819,39808,40027,2006902,10034,10136\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,532,0.0099,7997115,39984,40299,1998343,9991,10134\n",
+      "200,32,532,0.0100,8021819,40108,40327,2021902,10109,10211\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,536,0.0100,8057115,40284,40599,2013343,10066,10209\n",
+      "200,32,536,0.0101,8081819,40408,40627,2036902,10184,10286\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,540,0.0101,8117115,40584,40899,2028343,10141,10284\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,540,0.0101,8141819,40708,40927,2051902,10259,10361\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,544,0.0101,8177115,40884,41199,2043343,10216,10359\n",
+      "200,32,544,0.0103,8201819,41008,41227,2066902,10334,10436\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,548,0.0102,8237115,41184,41499,2058343,10291,10434\n",
+      "200,32,548,0.0103,8261819,41308,41527,2081902,10409,10511\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,552,0.0103,8297115,41484,41799,2073343,10366,10509\n",
+      "200,32,552,0.0104,8321819,41608,41827,2096902,10484,10586\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,556,0.0104,8357115,41784,42099,2088343,10441,10584\n",
+      "200,32,556,0.0106,8381819,41908,42127,2111902,10559,10661\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,560,0.0104,8417115,42084,42399,2103343,10516,10659\n",
+      "200,32,560,0.0106,8441819,42208,42427,2126902,10634,10736\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,564,0.0105,8477115,42384,42699,2118343,10591,10734\n",
+      "200,32,564,0.0106,8501819,42508,42727,2141902,10709,10811\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,568,0.0106,8537115,42684,42999,2133343,10666,10809\n",
+      "200,32,568,0.0107,8561819,42808,43027,2156902,10784,10886\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,572,0.0106,8597115,42984,43299,2148343,10741,10884\n",
+      "200,32,572,0.0108,8621819,43108,43327,2171902,10859,10961\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,576,0.0107,8657115,43284,43599,2163343,10816,10959\n",
+      "200,32,576,0.0109,8681819,43408,43627,2186902,10934,11036\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,580,0.0109,8717115,43584,43899,2178343,10891,11034\n",
+      "200,32,580,0.0110,8741819,43708,43927,2201902,11009,11111\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,584,0.0108,8777115,43884,44199,2193343,10966,11109\n",
+      "200,32,584,0.0110,8801819,44008,44227,2216902,11084,11186\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,588,0.0110,8837115,44184,44499,2208343,11041,11184\n",
+      "200,32,588,0.0110,8861819,44308,44527,2231902,11159,11261\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,592,0.0110,8897115,44484,44799,2223343,11116,11259\n",
+      "200,32,592,0.0111,8921819,44608,44827,2246902,11234,11336\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,596,0.0111,8957115,44784,45099,2238343,11191,11334\n",
+      "200,32,596,0.0113,8981819,44908,45127,2261902,11309,11411\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,600,0.0111,9017115,45084,45399,2253343,11266,11409\n",
+      "200,32,600,0.0113,9041819,45208,45427,2276902,11384,11486\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,604,0.0112,9077115,45384,45699,2268343,11341,11484\n",
+      "200,32,604,0.0114,9101819,45508,45727,2291902,11459,11561\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,608,0.0113,9137115,45684,45999,2283343,11416,11559\n",
+      "200,32,608,0.0115,9161819,45808,46027,2306902,11534,11636\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,612,0.0113,9197115,45984,46299,2298343,11491,11634\n",
+      "200,32,612,0.0115,9221819,46108,46327,2321902,11609,11711\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,616,0.0114,9257115,46284,46599,2313343,11566,11709\n",
+      "200,32,616,0.0115,9281819,46408,46627,2336902,11684,11786\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,620,0.0115,9317115,46584,46899,2328343,11641,11784\n",
+      "200,32,620,0.0116,9341819,46708,46927,2351902,11759,11861\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,624,0.0115,9377115,46884,47199,2343343,11716,11859\n",
+      "200,32,624,0.0117,9401819,47008,47227,2366902,11834,11936\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,628,0.0115,9437115,47184,47499,2358343,11791,11934\n",
+      "200,32,628,0.0117,9461819,47308,47527,2381902,11909,12011\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,632,0.0117,9497115,47484,47799,2373343,11866,12009\n",
+      "200,32,632,0.0118,9521819,47608,47827,2396902,11984,12086\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,636,0.0118,9557115,47784,48099,2388343,11941,12084\n",
+      "200,32,636,0.0119,9581819,47908,48127,2411902,12059,12161\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,640,0.0119,9617115,48084,48399,2403343,12016,12159\n",
+      "200,32,640,0.0119,9641819,48208,48427,2426902,12134,12236\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,644,0.0118,9677115,48384,48699,2418343,12091,12234\n",
+      "200,32,644,0.0121,9701819,48508,48727,2441902,12209,12311\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,648,0.0119,9737115,48684,48999,2433343,12166,12309\n",
+      "200,32,648,0.0121,9761819,48808,49027,2456902,12284,12386\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,652,0.0121,9797115,48984,49299,2448343,12241,12384\n",
+      "200,32,652,0.0121,9821819,49108,49327,2471902,12359,12461\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,656,0.0121,9857115,49284,49599,2463343,12316,12459\n",
+      "200,32,656,0.0122,9881819,49408,49627,2486902,12434,12536\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,660,0.0122,9917115,49584,49899,2478343,12391,12534\n",
+      "200,32,660,0.0123,9941819,49708,49927,2501902,12509,12611\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,664,0.0122,9977115,49884,50199,2493343,12466,12609\n",
+      "200,32,664,0.0123,10001819,50008,50227,2516902,12584,12686\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,668,0.0123,10037115,50184,50499,2508343,12541,12684\n",
+      "200,32,668,0.0124,10061819,50308,50527,2531902,12659,12761\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,672,0.0123,10097115,50484,50799,2523343,12616,12759\n",
+      "200,32,672,0.0124,10121819,50608,50827,2546902,12734,12836\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,676,0.0125,10157115,50784,51099,2538343,12691,12834\n",
+      "200,32,676,0.0126,10181819,50908,51127,2561902,12809,12911\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,680,0.0124,10217115,51084,51399,2553343,12766,12909\n",
+      "200,32,680,0.0126,10241819,51208,51427,2576902,12884,12986\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,684,0.0125,10277115,51384,51699,2568343,12841,12984\n",
+      "200,32,684,0.0127,10301819,51508,51727,2591902,12959,13061\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,688,0.0126,10337115,51684,51999,2583343,12916,13059\n",
+      "200,32,688,0.0128,10361819,51808,52027,2606902,13034,13136\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,692,0.0126,10397115,51984,52299,2598343,12991,13134\n",
+      "200,32,692,0.0128,10421819,52108,52327,2621902,13109,13211\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,696,0.0127,10457115,52284,52599,2613343,13066,13209\n",
+      "200,32,696,0.0129,10481819,52408,52627,2636902,13184,13286\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,700,0.0128,10517115,52584,52899,2628343,13141,13284\n",
+      "200,32,700,0.0131,10541819,52708,52927,2651902,13259,13361\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,704,0.0129,10577115,52884,53199,2643343,13216,13359\n",
+      "200,32,704,0.0131,10601819,53008,53227,2666902,13334,13436\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,708,0.0129,10637115,53184,53499,2658343,13291,13434\n",
+      "200,32,708,0.0130,10661819,53308,53527,2681902,13409,13511\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,712,0.0129,10697115,53484,53799,2673343,13366,13509\n",
+      "200,32,712,0.0131,10721819,53608,53827,2696902,13484,13586\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,716,0.0130,10757115,53784,54099,2688343,13441,13584\n",
+      "200,32,716,0.0132,10781819,53908,54127,2711902,13559,13661\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,720,0.0130,10817115,54084,54399,2703343,13516,13659\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,720,0.0132,10841819,54208,54427,2726902,13634,13736\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,724,0.0132,10877115,54384,54699,2718343,13591,13734\n",
+      "200,32,724,0.0134,10901819,54508,54727,2741902,13709,13811\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,728,0.0131,10937115,54684,54999,2733343,13666,13809\n",
+      "200,32,728,0.0134,10961819,54808,55027,2756902,13784,13886\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,732,0.0133,10997115,54984,55299,2748343,13741,13884\n",
+      "200,32,732,0.0134,11021819,55108,55327,2771902,13859,13961\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,736,0.0135,11057115,55284,55599,2763343,13816,13959\n",
+      "200,32,736,0.0135,11081819,55408,55627,2786902,13934,14036\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,740,0.0134,11117115,55584,55899,2778343,13891,14034\n",
+      "200,32,740,0.0137,11141819,55708,55927,2801902,14009,14111\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,744,0.0134,11177115,55884,56199,2793343,13966,14109\n",
+      "200,32,744,0.0138,11201819,56008,56227,2816902,14084,14186\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,748,0.0135,11237115,56184,56499,2808343,14041,14184\n",
+      "200,32,748,0.0137,11261819,56308,56527,2831902,14159,14261\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,752,0.0136,11297115,56484,56799,2823343,14116,14259\n",
+      "200,32,752,0.0138,11321819,56608,56827,2846902,14234,14336\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,756,0.0136,11357115,56784,57099,2838343,14191,14334\n",
+      "200,32,756,0.0139,11381819,56908,57127,2861902,14309,14411\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,760,0.0138,11417115,57084,57399,2853343,14266,14409\n",
+      "200,32,760,0.0140,11441819,57208,57427,2876902,14384,14486\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,764,0.0139,11477115,57384,57699,2868343,14341,14484\n",
+      "200,32,764,0.0140,11501819,57508,57727,2891902,14459,14561\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,768,0.0138,11537115,57684,57999,2883343,14416,14559\n",
+      "200,32,768,0.0141,11561819,57808,58027,2906902,14534,14636\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,772,0.0140,11597115,57984,58299,2898343,14491,14634\n",
+      "200,32,772,0.0141,11621819,58108,58327,2921902,14609,14711\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,776,0.0140,11657115,58284,58599,2913343,14566,14709\n",
+      "200,32,776,0.0142,11681819,58408,58627,2936902,14684,14786\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,780,0.0142,11717115,58584,58899,2928343,14641,14784\n",
+      "200,32,780,0.0143,11741819,58708,58927,2951902,14759,14861\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,784,0.0141,11777115,58884,59199,2943343,14716,14859\n",
+      "200,32,784,0.0144,11801819,59008,59227,2966902,14834,14936\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,788,0.0143,11837115,59184,59499,2958343,14791,14934\n",
+      "200,32,788,0.0144,11861819,59308,59527,2981902,14909,15011\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,792,0.0143,11897115,59484,59799,2973343,14866,15009\n",
+      "200,32,792,0.0145,11921819,59608,59827,2996902,14984,15086\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,796,0.0146,11957115,59784,60099,2988343,14941,15084\n",
+      "200,32,796,0.0145,11981819,59908,60127,3011902,15059,15161\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,800,0.0144,12017115,60084,60399,3003343,15016,15159\n",
+      "200,32,800,0.0147,12041819,60208,60427,3026902,15134,15236\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,804,0.0145,12077115,60384,60699,3018343,15091,15234\n",
+      "200,32,804,0.0147,12101819,60508,60727,3041902,15209,15311\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,808,0.0146,12137115,60684,60999,3033343,15166,15309\n",
+      "200,32,808,0.0148,12161819,60808,61027,3056902,15284,15386\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,812,0.0146,12197115,60984,61299,3048343,15241,15384\n",
+      "200,32,812,0.0148,12221819,61108,61327,3071902,15359,15461\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,816,0.0146,12257115,61284,61599,3063343,15316,15459\n",
+      "200,32,816,0.0150,12281819,61408,61627,3086902,15434,15536\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,820,0.0148,12317115,61584,61899,3078343,15391,15534\n",
+      "200,32,820,0.0149,12341819,61708,61927,3101902,15509,15611\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,824,0.0149,12377115,61884,62199,3093343,15466,15609\n",
+      "200,32,824,0.0150,12401819,62008,62227,3116902,15584,15686\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,828,0.0149,12437115,62184,62499,3108343,15541,15684\n",
+      "200,32,828,0.0151,12461819,62308,62527,3131902,15659,15761\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,832,0.0149,12497115,62484,62799,3123343,15616,15759\n",
+      "200,32,832,0.0152,12521819,62608,62827,3146902,15734,15836\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,836,0.0151,12557115,62784,63099,3138343,15691,15834\n",
+      "200,32,836,0.0152,12581819,62908,63127,3161902,15809,15911\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,840,0.0150,12617115,63084,63399,3153343,15766,15909\n",
+      "200,32,840,0.0153,12641819,63208,63427,3176902,15884,15986\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,844,0.0152,12677115,63384,63699,3168343,15841,15984\n",
+      "200,32,844,0.0153,12701819,63508,63727,3191902,15959,16061\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,848,0.0152,12737115,63684,63999,3183343,15916,16059\n",
+      "200,32,848,0.0154,12761819,63808,64027,3206902,16034,16136\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,852,0.0153,12797115,63984,64299,3198343,15991,16134\n",
+      "200,32,852,0.0155,12821819,64108,64327,3221902,16109,16211\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,856,0.0153,12857115,64284,64599,3213343,16066,16209\n",
+      "200,32,856,0.0156,12881819,64408,64627,3236902,16184,16286\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,860,0.0155,12917115,64584,64899,3228343,16141,16284\n",
+      "200,32,860,0.0156,12941819,64708,64927,3251902,16259,16361\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,864,0.0156,12977115,64884,65199,3243343,16216,16359\n",
+      "200,32,864,0.0157,13001819,65008,65227,3266902,16334,16436\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,868,0.0157,13037115,65184,65499,3258343,16291,16434\n",
+      "200,32,868,0.0158,13061819,65308,65527,3281902,16409,16511\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,872,0.0156,13097115,65484,65799,3273343,16366,16509\n",
+      "200,32,872,0.0159,13121819,65608,65827,3296902,16484,16586\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,876,0.0157,13157115,65784,66099,3288343,16441,16584\n",
+      "200,32,876,0.0159,13181819,65908,66127,3311902,16559,16661\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,880,0.0158,13217115,66084,66399,3303343,16516,16659\n",
+      "200,32,880,0.0160,13241819,66208,66427,3326902,16634,16736\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,884,0.0158,13277115,66384,66699,3318343,16591,16734\n",
+      "200,32,884,0.0160,13301819,66508,66727,3341902,16709,16811\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,888,0.0159,13337115,66684,66999,3333343,16666,16809\n",
+      "200,32,888,0.0161,13361819,66808,67027,3356902,16784,16886\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,892,0.0160,13397115,66984,67299,3348343,16741,16884\n",
+      "200,32,892,0.0162,13421819,67108,67327,3371902,16859,16961\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,896,0.0161,13457115,67284,67599,3363343,16816,16959\n",
+      "200,32,896,0.0163,13481819,67408,67627,3386902,16934,17036\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,900,0.0162,13517115,67584,67899,3378343,16891,17034\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,900,0.0164,13541819,67708,67927,3401902,17009,17111\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,904,0.0163,13577115,67884,68199,3393343,16966,17109\n",
+      "200,32,904,0.0165,13601819,68008,68227,3416902,17084,17186\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,908,0.0164,13637115,68184,68499,3408343,17041,17184\n",
+      "200,32,908,0.0165,13661819,68308,68527,3431902,17159,17261\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,912,0.0165,13697115,68484,68799,3423343,17116,17259\n",
+      "200,32,912,0.0166,13721819,68608,68827,3446902,17234,17336\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,916,0.0165,13757115,68784,69099,3438343,17191,17334\n",
+      "200,32,916,0.0166,13781819,68908,69127,3461902,17309,17411\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,920,0.0165,13817115,69084,69399,3453343,17266,17409\n",
+      "200,32,920,0.0167,13841819,69208,69427,3476902,17384,17486\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,924,0.0168,13877115,69384,69699,3468343,17341,17484\n",
+      "200,32,924,0.0168,13901819,69508,69727,3491902,17459,17561\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,928,0.0167,13937115,69684,69999,3483343,17416,17559\n",
+      "200,32,928,0.0169,13961819,69808,70027,3506902,17534,17636\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,932,0.0169,13997115,69984,70299,3498343,17491,17634\n",
+      "200,32,932,0.0175,14021819,70108,70327,3521902,17609,17711\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,936,0.0168,14057115,70284,70599,3513343,17566,17709\n",
+      "200,32,936,0.0170,14081819,70408,70627,3536902,17684,17786\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,940,0.0169,14117115,70584,70899,3528343,17641,17784\n",
+      "200,32,940,0.0171,14141819,70708,70927,3551902,17759,17861\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,944,0.0169,14177115,70884,71199,3543343,17716,17859\n",
+      "200,32,944,0.0171,14201819,71008,71227,3566902,17834,17936\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,948,0.0170,14237115,71184,71499,3558343,17791,17934\n",
+      "200,32,948,0.0172,14261819,71308,71527,3581902,17909,18011\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,952,0.0171,14297115,71484,71799,3573343,17866,18009\n",
+      "200,32,952,0.0172,14321819,71608,71827,3596902,17984,18086\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,956,0.0173,14357115,71784,72099,3588343,17941,18084\n",
+      "200,32,956,0.0173,14381819,71908,72127,3611902,18059,18161\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,960,0.0172,14417115,72084,72399,3603343,18016,18159\n",
+      "200,32,960,0.0174,14441819,72208,72427,3626902,18134,18236\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,964,0.0177,14477115,72384,72699,3618343,18091,18234\n",
+      "200,32,964,0.0176,14501819,72508,72727,3641902,18209,18311\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,968,0.0177,14537115,72684,72999,3633343,18166,18309\n",
+      "200,32,968,0.0178,14561819,72808,73027,3656902,18284,18386\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,972,0.0177,14597115,72984,73299,3648343,18241,18384\n",
+      "200,32,972,0.0177,14621819,73108,73327,3671902,18359,18461\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,976,0.0179,14657115,73284,73599,3663343,18316,18459\n",
+      "200,32,976,0.0178,14681819,73408,73627,3686902,18434,18536\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,980,0.0180,14717115,73584,73899,3678343,18391,18534\n",
+      "200,32,980,0.0179,14741819,73708,73927,3701902,18509,18611\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,984,0.0180,14777115,73884,74199,3693343,18466,18609\n",
+      "200,32,984,0.0179,14801819,74008,74227,3716902,18584,18686\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,988,0.0180,14837115,74184,74499,3708343,18541,18684\n",
+      "200,32,988,0.0180,14861819,74308,74527,3731902,18659,18761\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,992,0.0181,14897115,74484,74799,3723343,18616,18759\n",
+      "200,32,992,0.0181,14921819,74608,74827,3746902,18734,18836\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,996,0.0184,14957115,74784,75099,3738343,18691,18834\n",
+      "200,32,996,0.0182,14981819,74908,75127,3761902,18809,18911\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,1000,0.0182,15017115,75084,75399,3753343,18766,18909\n",
+      "200,32,1000,0.0182,15041819,75208,75427,3776902,18884,18986\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,1004,0.0183,15077115,75384,75699,3768343,18841,18984\n",
+      "200,32,1004,0.0183,15101819,75508,75727,3791902,18959,19061\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,1008,0.0184,15137115,75684,75999,3783343,18916,19059\n",
+      "200,32,1008,0.0183,15161819,75808,76027,3806902,19034,19136\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,1012,0.0185,15197115,75984,76299,3798343,18991,19134\n",
+      "200,32,1012,0.0184,15221819,76108,76327,3821902,19109,19211\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,1016,0.0185,15257115,76284,76599,3813343,19066,19209\n",
+      "200,32,1016,0.0185,15281819,76408,76627,3836902,19184,19286\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,1020,0.0186,15317115,76584,76899,3828343,19141,19284\n",
+      "200,32,1020,0.0185,15341819,76708,76927,3851902,19259,19361\n",
       "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,1024,0.0183,15377115,76884,77199,3843343,19216,19359\n",
-      "mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .\n"
+      "200,32,1024,0.0186,15401819,77008,77227,3866902,19334,19436\n",
+      "mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.ld_st.bin.csv .\n"
      ]
     }
    ],
@@ -1490,12 +1594,12 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Once the run finished, let's plot it again with the following cell (non-interactive: `make graph_task2a`)."
+    "Once the run finished, let's plot it again in the course of the following cells (non-interactive: `make graph_task2a`)."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 8,
    "metadata": {},
    "outputs": [
     {
@@ -1529,8 +1633,7 @@
        "      <th>PM_ST_CMPL (total)</th>\n",
        "      <th>PM_ST_CMPL (min)</th>\n",
        "      <th>PM_ST_CMPL (max)</th>\n",
-       "      <th>Loads / Loop Iteration</th>\n",
-       "      <th>Stores / Loop Iteration</th>\n",
+       "      <th>Grid Points</th>\n",
        "    </tr>\n",
        "  </thead>\n",
        "  <tbody>\n",
@@ -1540,29 +1643,27 @@
        "      <td>32</td>\n",
        "      <td>4</td>\n",
        "      <td>0.0012</td>\n",
-       "      <td>95115</td>\n",
-       "      <td>474</td>\n",
-       "      <td>789</td>\n",
-       "      <td>21343</td>\n",
-       "      <td>106</td>\n",
-       "      <td>249</td>\n",
-       "      <td>3.703125</td>\n",
-       "      <td>0.828125</td>\n",
+       "      <td>119819</td>\n",
+       "      <td>598</td>\n",
+       "      <td>817</td>\n",
+       "      <td>32902</td>\n",
+       "      <td>164</td>\n",
+       "      <td>266</td>\n",
+       "      <td>128</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>1</th>\n",
        "      <td>200</td>\n",
        "      <td>32</td>\n",
        "      <td>8</td>\n",
-       "      <td>0.0014</td>\n",
-       "      <td>137115</td>\n",
-       "      <td>684</td>\n",
-       "      <td>999</td>\n",
-       "      <td>33343</td>\n",
-       "      <td>166</td>\n",
-       "      <td>309</td>\n",
-       "      <td>2.671875</td>\n",
-       "      <td>0.648438</td>\n",
+       "      <td>0.0013</td>\n",
+       "      <td>161819</td>\n",
+       "      <td>808</td>\n",
+       "      <td>1027</td>\n",
+       "      <td>56902</td>\n",
+       "      <td>284</td>\n",
+       "      <td>386</td>\n",
+       "      <td>256</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>2</th>\n",
@@ -1570,14 +1671,13 @@
        "      <td>32</td>\n",
        "      <td>12</td>\n",
        "      <td>0.0014</td>\n",
-       "      <td>197115</td>\n",
-       "      <td>984</td>\n",
-       "      <td>1299</td>\n",
-       "      <td>45343</td>\n",
-       "      <td>226</td>\n",
-       "      <td>369</td>\n",
-       "      <td>2.562500</td>\n",
-       "      <td>0.588542</td>\n",
+       "      <td>221819</td>\n",
+       "      <td>1108</td>\n",
+       "      <td>1327</td>\n",
+       "      <td>71902</td>\n",
+       "      <td>359</td>\n",
+       "      <td>461</td>\n",
+       "      <td>384</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>3</th>\n",
@@ -1585,29 +1685,27 @@
        "      <td>32</td>\n",
        "      <td>16</td>\n",
        "      <td>0.0015</td>\n",
-       "      <td>257115</td>\n",
-       "      <td>1284</td>\n",
-       "      <td>1599</td>\n",
-       "      <td>63343</td>\n",
-       "      <td>316</td>\n",
-       "      <td>459</td>\n",
-       "      <td>2.507812</td>\n",
-       "      <td>0.617188</td>\n",
+       "      <td>281819</td>\n",
+       "      <td>1408</td>\n",
+       "      <td>1627</td>\n",
+       "      <td>86902</td>\n",
+       "      <td>434</td>\n",
+       "      <td>536</td>\n",
+       "      <td>512</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>4</th>\n",
        "      <td>200</td>\n",
        "      <td>32</td>\n",
        "      <td>20</td>\n",
-       "      <td>0.0016</td>\n",
-       "      <td>317115</td>\n",
-       "      <td>1584</td>\n",
-       "      <td>1899</td>\n",
-       "      <td>75343</td>\n",
-       "      <td>376</td>\n",
-       "      <td>519</td>\n",
-       "      <td>2.475000</td>\n",
-       "      <td>0.587500</td>\n",
+       "      <td>0.0015</td>\n",
+       "      <td>341819</td>\n",
+       "      <td>1708</td>\n",
+       "      <td>1927</td>\n",
+       "      <td>101902</td>\n",
+       "      <td>509</td>\n",
+       "      <td>611</td>\n",
+       "      <td>640</td>\n",
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
@@ -1615,59 +1713,130 @@
       ],
       "text/plain": [
        "   iter  ny  nx  Runtime  PM_LD_CMPL (total)  PM_LD_CMPL (min)  \\\n",
-       "0   200  32   4   0.0012               95115               474   \n",
-       "1   200  32   8   0.0014              137115               684   \n",
-       "2   200  32  12   0.0014              197115               984   \n",
-       "3   200  32  16   0.0015              257115              1284   \n",
-       "4   200  32  20   0.0016              317115              1584   \n",
+       "0   200  32   4   0.0012              119819               598   \n",
+       "1   200  32   8   0.0013              161819               808   \n",
+       "2   200  32  12   0.0014              221819              1108   \n",
+       "3   200  32  16   0.0015              281819              1408   \n",
+       "4   200  32  20   0.0015              341819              1708   \n",
        "\n",
        "    PM_LD_CMPL (max)  PM_ST_CMPL (total)  PM_ST_CMPL (min)   PM_ST_CMPL (max)  \\\n",
-       "0                789               21343               106                249   \n",
-       "1                999               33343               166                309   \n",
-       "2               1299               45343               226                369   \n",
-       "3               1599               63343               316                459   \n",
-       "4               1899               75343               376                519   \n",
+       "0                817               32902               164                266   \n",
+       "1               1027               56902               284                386   \n",
+       "2               1327               71902               359                461   \n",
+       "3               1627               86902               434                536   \n",
+       "4               1927              101902               509                611   \n",
        "\n",
-       "   Loads / Loop Iteration  Stores / Loop Iteration  \n",
-       "0                3.703125                 0.828125  \n",
-       "1                2.671875                 0.648438  \n",
-       "2                2.562500                 0.588542  \n",
-       "3                2.507812                 0.617188  \n",
-       "4                2.475000                 0.587500  "
+       "   Grid Points  \n",
+       "0          128  \n",
+       "1          256  \n",
+       "2          384  \n",
+       "3          512  \n",
+       "4          640  "
       ]
      },
-     "execution_count": 6,
+     "execution_count": 8,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
     "df_ldst = pd.read_csv(\"poisson2d.ld_st.bin.csv\", skiprows=range(2, 50000, 2))\n",
-    "common.normalize(df_ldst, \"PM_LD_CMPL (min)\", \"Loads / Loop Iteration\")\n",
-    "common.normalize(df_ldst, \"PM_ST_CMPL (min)\", \"Stores / Loop Iteration\")\n",
+    "df_ldst[\"Grid Points\"] = df_ldst[\"nx\"] * df_ldst[\"ny\"] \n",
     "df_ldst.head()"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 79,
+   "execution_count": 9,
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAF/CAYAAACL5xIQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xl8VPX97/H3WWYCWSABBgyLAi6YIqjIoj/E+7OiUBtMrGIV7cVa4Soqyq8ICEhAURusK0VpcUF/1gVQQBZRufxuBURahCoCIiCLQAIhJJiEJZnl/hEyEBLIzCRhcpLX8/HIIzPnfM853xk+trz5fs/3GIFAICAAAAAAaGDMaHcAAAAAAKKBMAQAAACgQSIMAQAAAGiQCEMAAAAAGiTCEAAAAIAGiTAEAAAAoEEiDAEAAABokAhDAAAAABokwhAAAACABokwBAAAAKBBskNpNGzYMO3evVumaSo2NlaPP/64UlJSyrUZNWqUNm/eHHy/efNmTZs2Tdddd52mTp2qd999Vy1btpQkdevWTRkZGTX4MQAAAAAgPEYgEAhU1aigoEAJCQmSpKVLl2ratGmaO3fuadt///33Gjx4sJYvXy63262pU6fq8OHDGj16dM31HAAAAACqIaRpcmVBSJIKCwtlGMYZ28+ZM0cDBgyQ2+2uXu8AAAAAoJaENE1OksaNG6eVK1cqEAjotddeO2274uJiLViwQDNnziy3fdGiRVqxYoU8Ho8eeughXX755WF1NC+vSH5/lYNYtaZ583jl5hZG7fpwDmoFoaJWEA7qBaGiVhCq+lQrpmkoKSku7ONCmiZ3snnz5mnRokWaMWNGpfsXL16sGTNmlJtGl5OTo8TERLlcLq1cuVIjR47U4sWLlZSUFHaHAQAAAKAmhDwyVCY9PV0TJkxQXl5epWHmww8/1C233FJum8fjCb7u3bu3kpOTtWXLFvXs2TPk6+bmFkZ1ZMjjSVBOTkHUrg/noFYQKmoF4aBeECpqBaGqT7VimoaaN48P/7iqGhQVFSkrKyv4ftmyZWratKkSExMrtM3OztbXX3+t1NTUctv37dsXfL1p0ybt2bNHHTp0CLuzAAAAAFBTqhwZOnLkiB5++GEdOXJEpmmqadOmmj59ugzD0JAhQzR8+HB16dJFkjR37lxde+21FYLS888/rw0bNsg0TblcLk2ZMqXcaBEAAAAAnG1h3zMULXVhmtzuPfl6+cNv9b/7d1KrpNio9QV1W30ackbtolYQDuoFoTpbteLzeZWXlyOvt7jWr4XaYZqm/H5/tLsRNtt2KynJI8s6Ma4T6TS5sO8ZasgOFhzVpp152p71M2EIAAA0aHl5OWrUKFZxcedU+dgV1E22bcrrdVYYCgQCKir6WXl5OWrRIrna5wvpOUMo5bJKvy6v1xGDaQAAALXG6y1WXFwTghDOKsMwFBfXpMZGJAlDYbDt42HI56wEDQAAUBsIQoiGmqw7wlAY7OMjQyWEIQAAgDrl1lsH6Mcft9bKuRcvXqDx40eFfdzMma/pww9nVdj+4INDtXLl8proWlieemqiPvzwA0nS2rVrtHr1qlq5zqxZ7yov72Dw/bx5c/TBB3+vlWtVF2EoDMFpcoQhAAAAVGHFii909dXXRLsblVq37mutXv1VRMf6fL4z7p81671yYSg9/Vb99rd3RnSt2sYCCmGw7dIhOafdaAYAANBQbdq0QS+++GcdPXpEjRo11iOPjFRKSmd5vV6NGvWIDh06pGPHjukXv+isRx8dK5fLpZKSEr3wwhStW/e1PJ6WOvfc9sHzrV//jV54YYr8/oC8Xq8GD75H11/fv8J19+/fp0AgoFatzgm5r7t3/6Rnn31a+fl5sixLQ4c+oCuv/A9J0ldffam//vUv8vv9SkxM0qOPjlXbtu20du0avfTSc+rU6WJt3fqDLMvS2LET1aFDx9NeZ9u2rZo//yMFAn7985+rdd11N+h3v7tbq1at0Ntvv6Fjx4rlcrn00EP/pUsu6aK1a9fo5Zef16WXXqZNmzZq8OA/qKioSLNnvyevt0SS9MADj6h79556663XdeBAjsaPHy23O0YZGZO1bNnnOnLkiB588BH5fD69+upUrV79pSSpV6//0P33PyTLsvTUUxPldrv100+7tH//PnXu3EXjx0+q1emYhKEwWKYpw5BKfCygAAAAUGbl+iyt+DarVs59dddk9e4S2aphJSUlGjdulB57bIJ69OilNWv+qXHjRumDD+bJtm1lZExW06aJCgQCmjw5Q4sWzVd6+q2aP/9DZWXt1X//9yx5vV498MAQJSeX9uHvf39Lt902SP37/1qBQECFhYWVXnv58n+EPSo0adJ4paXdrNTUdG3f/qMefHCI3nlnjqSAJk+eoKlT/6YOHTpq4cJ5mjRpvGbMeEuStG3bFj3yyEhdfvkV+uSThZo8OUOvv/7fp73O+edfoLS03+jYsaMaNuxhSdKePbs1c+brev75qYqLi9ePP27TyJHD9dFHiyRJP/64VSNHjtGIEaXTBQ8dytf11/eTYRjatWuHHn54mObOXazBg/+gBQvmafLkTHXseEGFa3/88Vxt2fKD3nijdNrcyJHD9fHHc3Xzzbcev842vfjiKzJNU7///Z1as2a1evS4MqzvMRyEoTC5LJNpcgAAAA6wa9dOuVwu9ejRS5LUvXtPuVwu7dq1U+3bd9B7772jr776Un6/TwUFBWrUqJEkae3ar/WrX6XKtm3Ztq1+/X6lb7/9tySpW7fueuedmcrOzlKPHleqc+dLKr32ihX/CAaNUBw+XKStW3/QjTfeJEnq0KGjLrigkzZsWC9JOv/8i4KjPTfeeJOeey5Thw8XSZLatm2nyy+/QpLUr9+NmjLlKRUVFSouLvTn7qxevUp79uzWAw8MDW7z+Xw6eDA3eI1LLuka3Ldnz25NnDhOOTk5sm1bBw/mKjf3gJo3b3HG66xZs1o33pgql8t1/LMM0Bdf/E8wDPXp85+KiYmRJHXq1El79uxWjx4hf4ywEYbCZFvOW48dAACgNvXuEvnoTW0KBAKVTrEyDOnzz5fo22//rVdemaHY2Di9/fYb+umnXcHjTue22wapd+9r9K9/rdaLL05Rjx5XaujQYeXaFBYWKisrSxdeeFFYfa2MYRgKBPyq7YX7AoGAevW6So8//kSFfTt2bFfjxuWfsTlx4jg9+OAIXXPNf8rv96tv36tVXFz1cteBQMXV4E5+HxPjDr42TavK+5OqiwUUwmTbjAwBAAA4wXnntVdxcbHWrl0jqXQFNa/Xq3btzlNhYYGaNk1UbGycCgsL9fnnS4LHde/eQ0uWLJbX69WxY0fL7du1a6fatGmr9PRbNHDgHdq0aUOF665atSJ4r0+o4uLidcEFF+mTTxZKknbu3KFt237QL35xiTp37qqtW3/Qzp07JEmffLJQF17YSbGxcZJK7zX65pt1kkpDXseOF1Q5KhQXF1duil/Pnldq9epV+vHHbcFtlX22MoWFhUpObi1JWrhwfrkgdOq5T9ajRy8tXrxAXq9XXq9Xn3yyUN279zxjX2sTI0NhclkGS2sDAADUQY888oAsywq+f+ut9/XUU1PKLaAweXKmXC6X+vdP1fLlX+iuu26Tx+PRpZdermPHjkmSbrrpN9q6dat+97vb1LJlK1122RXKytojSZoz532tXfu1XC5bLpdbI0Y8WqEfy5f/Q2lpvzljX59+eqLc7pjg+2effUkZGZP17LNPa9asd2VZlsaPf0JJSUmSpPHjn9CkSePk8/mUmJikCROeDB574YUX6fPPP9VLLz0nyzI1fvykKr+ra665VuPHj9Lddw8KLqAwYcKT+tOfntSxY8fk9ZaoS5dLlZLSudLjhw//L40dO1ItWnh02WXd1LRp0+C+W2+9XU8//YQaNWqkjIzJ5Y676aabtXv3T/r97wdJknr2vEoDBtxcZX9rixE40zhgHZKbWyi/P3pd9XgSlJNToMf+ukrtk5vo/9xUeWEAZbUCVIVaQTioF4TqbNVKdvZOnXPOebV+HacpKSnRHXf8Ru+/P1e2XfvjDmvXrtG0aS+dccGE07Ft597+cWr9maah5s1Dv0eqDCNDYXJy0QAAAKB2uVwuzZmzINrdQIi4ZyhMtmUyTQ4AAAB1Qrdu3SMaFUIpwlCYWFobAAAAqB8IQ2GyLYNpcgAAADrzEtRAbanJugvpnqFhw4Zp9+7dMk1TsbGxevzxx5WSklKuzdSpU/Xuu++qZcuWkqRu3bopIyNDknTkyBE99thj2rBhgyzL0ujRo3XttdfW2Ic4m2zbVNERb7S7AQAAEFW27VZR0c+Ki2tS6bN8gNoQCARUVPSzbNtddeMQhBSGMjMzlZCQIElaunSpxo4dq7lz51Zol56ertGjR1fY/vrrrysuLk6ff/65duzYoTvvvFOfffaZ4uLiqtn9s49pcgAAAFJSkkd5eTkqLMyPdlcQIdM05fc77++1tu1WUpKnZs4VSqOyICSVPmAp3PT/ySef6E9/+pMkqX379rrkkkv0xRdf6Fe/+lVY56kLLMIQAACALMtWixbJ0e4GqoEl+8NYWnvcuHFauXKlAoGAXnvttUrbLFq0SCtWrJDH49FDDz2kyy+/XJK0d+9etWnTJtguOTlZ2dnZ1ex6dLgsQyXcMwQAAAA4Xshh6KmnnpIkzZs3T1OmTNGMGTPK7b/99tt13333yeVyaeXKlRo2bJgWL14cfGpudUXyEKWa5vEkKD4uRv5A6WvgdKgPhIpaQTioF4SKWkGoGnqthP3Q1fT0dE2YMEF5eXnlgo7Hc2LeXu/evZWcnKwtW7aoZ8+eat26tfbs2aNmzZpJkrKystSrV6+wrpubWyi/P3orlpQNI3q9PhWX+Br8kCJOjyFnhIpaQTioF4SKWkGo6lOtmKYR0eBJlUtrFxUVKSsrK/h+2bJlatq0qRITE8u127dvX/D1pk2btGfPHnXo0EGS1L9/f33wwQeSpB07dmj9+vXq06dP2J2tC1w8dBUAAACoF6ocGTpy5IgefvhhHTlyRKZpqmnTppo+fboMw9CQIUM0fPhwdenSRc8//7w2bNgg0zTlcrk0ZcqU4GjRH/7wB40ZM0bXX3+9TNPUE088ofj46E97i4RtmTxnCAAAAKgHqgxDLVq00KxZsyrdd/J9Q5mZmac9R2xsrF5++eUIulf32JYhnz8gfyAgkzX1AQAAAMeqcpocynPZpV+Zj6lyAAAAgKMRhsJkW6VfWYk3eos5AAAAAKg+wlCYysIQD14FAAAAnI0wFKayaXKEIQAAAMDZCENhsq3SRRMIQwAAAICzEYbCFLxnyMc9QwAAAICTEYbC5Cq7Z4hnDQEAAACORhgKk809QwAAAEC9QBgKE6vJAQAAAPUDYShMruA9Q4QhAAAAwMkIQ2Gy7eOryfHQVQAAAMDRCENhYpocAAAAUD8QhsLENDkAAACgfiAMhclmaW0AAACgXiAMhYmltQEAAID6gTAUJpdVuoBCiY8FFAAAAAAns0NpNGzYMO3evVumaSo2NlaPP/64UlJSyrWZNm2aFi9eLMuyZNu2RowYoT59+kiSxowZoy+//FJJSUmSpP79++v++++v4Y9ydrCAAgAAAFA/hBSGMjMzlZCQIElaunSpxo4dq7lz55Zr07VrV91zzz1q3Lixvv/+e911111asWKFGjVqJEkaOnSo7rrrrhru/tkXnCbHPUMAAACAo4U0Ta4sCElSYWGhDMOo0KZPnz5q3LixJKlTp04KBALKz8+voW7WHaZhyDINVpMDAAAAHC6kkSFJGjdunFauXKlAIKDXXnvtjG3nzZunc889V+ecc05w25tvvqkPPvhA7dq10x//+Eedf/75kfc6yizLYJocAAAA4HBGIBAIayWAefPmadGiRZoxY0al+//5z39q1KhReuONN9SxY0dJ0r59++TxeGSapubNm6eXXnpJS5culWVZ1f8EUXDH+MX6z25t9X9+0zXaXQEAAAAQobDDkFR6f9A//vGP4IIIZdatW6dHHnlEr7zyijp37nza43v16qWPPvpIbdq0CfmaubmF8vujt4Kbx5OgnJwCSdKIqSt06QUtdPevLo5af1B3nVwrwJlQKwgH9YJQUSsIVX2qFdM01Lx5fPjHVdWgqKhIWVlZwffLli1T06ZNlZiYWK7dt99+qxEjRujll1+uEIT27dsXfL18+XKZpqlWrVqF3dm6wrZMpskBAAAADlflPUNHjhzRww8/rCNHjsg0TTVt2lTTp0+XYRgaMmSIhg8fri5dumjSpEk6evSoJkyYEDx2ypQp6tSpk0aPHq3c3FwZhqH4+Hi9+uqrsu2Qb1eqc2ybMAQAAAA4XZWJpEWLFpo1a1al+06+b+jDDz887TlmzpwZfs/qMJdlqISltQEAAABHC2lpbZRXOk0uevcvAQAAAKg+wlAEmCYHAAAAOB9hKAIuy+ShqwAAAIDDEYYiYFumvNwzBAAAADgaYSgCtmUwTQ4AAABwOMJQBFy2qRIWUAAAAAAcjTAUAabJAQAAAM5HGIpA6dLahCEAAADAyQhDEXARhgAAAADHIwxFwLYNHroKAAAAOBxhKAJMkwMAAACcjzAUAZdlyucPyB9gdAgAAABwKsJQBGy79GtjRTkAAADAuQhDEbCt42GIqXIAAACAYxGGIuCyDEniwasAAACAgxGGIhAcGWKaHAAAAOBYdiiNhg0bpt27d8s0TcXGxurxxx9XSkpKuTY+n0+TJ0/W8uXLZRiGhg4dqoEDB1a5z4mC9wwxTQ4AAABwrJDCUGZmphISEiRJS5cu1dixYzV37txybRYsWKBdu3bps88+U35+vtLT03XVVVepbdu2Z9znRK7jI0MlhCEAAADAsUKaJlcWhCSpsLBQhmFUaLN48WINHDhQpmmqWbNm6tu3r5YsWVLlPidiAQUAAADA+UIaGZKkcePGaeXKlQoEAnrttdcq7M/KylLr1q2D75OTk5WdnV3lPieyjy+g4PWygAIAAADgVCGHoaeeekqSNG/ePE2ZMkUzZsyotU5Vpnnz+LN6vcp4PKUjZC0OHZMkxSXEBLcBJ6MuECpqBeGgXhAqagWhaui1EnIYKpOenq4JEyYoLy9PSUlJwe3Jycnau3evunbtKqn8aNCZ9oUqN7dQfn/0RmI8ngTl5BRIkgoLj0qSDuQWKadpo6j1CXXTybUCnAm1gnBQLwgVtYJQ1adaMU0josGTKu8ZKioqUlZWVvD9smXL1LRpUyUmJpZr179/f82ePVt+v18HDx7U0qVL1a9fvyr3OZGLpbUBAAAAx6tyZOjIkSN6+OGHdeTIEZmmqaZNm2r69OkyDENDhgzR8OHD1aVLF6Wlpembb77RDTfcIEl64IEH1K5dO0k64z4nsoMPXSUMAQAAAE5VZRhq0aKFZs2aVem+k+8bsixLkyZNqrTdmfY5Ec8ZAgAAAJwvpKW1UV5wmpyP1eQAAAAApyIMRaDsOUMl3DMEAAAAOBZhKAI8dBUAAABwPsJQBFz28YeuEoYAAAAAxyIMRcBimhwAAADgeIShCJiGIcs0WEABAAAAcDDCUIRs22SaHAAAAOBghKEIuSyTh64CAAAADkYYipBtGfJyzxAAAADgWIShCNkW0+QAAAAAJyMMRchlmyphAQUAAADAsQhDEbItk2lyAAAAgIMRhiLENDkAAADA2QhDEXJZBmEIAAAAcDDCUIRKnzPEPUMAAACAUxGGImTznCEAAADA0eyqGuTl5WnUqFHatWuX3G63zjvvPD3xxBNq1qxZuXZ333238vLyJEk+n09btmzR/PnzdfHFF2vMmDH68ssvlZSUJEnq37+/7r///lr4OGePi3uGAAAAAEerMgwZhqF7771XvXr1kiRlZmbqz3/+s55++uly7WbOnBl8vXTpUr344ou6+OKLg9uGDh2qu+66q4a6HX22zWpyAAAAgJNVOU0uMTExGIQk6bLLLtPevXvPeMycOXN0yy23VL93dZjNAgoAAACAo4V1z5Df79d7772nX/7yl6dtc+DAAa1atUppaWnltr/55psaMGCAhg0bpm3btkXW2zqk9J4hFlAAAAAAnKrKaXIne/LJJxUbG3vG6W5z585Vnz59yt1TNGLECHk8HpmmqXnz5unee+/V0qVLZVlWyNdu3jw+nK7WCo8nIfg6IT5GPn+g3DagDHWBUFErCAf1glBRKwhVQ6+VkMNQZmamdu7cqenTp8s0Tz+g9NFHH2nUqFHltrVq1Sr4Oj09Xc8884yys7PVpk2bkDuam1sovz96IzEeT4JycgqC773FPpWU+MptA6SKtQKcDrWCcFAvCBW1glDVp1oxTSOiwZOQpsm98MIL+u677zRt2jS53e7Ttlu7dq0KCgp0zTXXlNu+b9++4Ovly5fLNM1yAcmJbNtgaW0AAADAwaocGdqyZYumT5+u9u3b6/bbb5cktW3bVtOmTVNaWpr+9re/BYPNRx99pPT09ArT30aPHq3c3FwZhqH4+Hi9+uqrsu2wZujVObZlKhCQfH6/rDOMlAEAAACom6pMJBdeeKE2b95c6b758+eXez958uRK25287HZ94bJKA5DXG5B1+sEyAAAAAHUUQxoRso+HIabKAQAAAM5EGIqQbR8fGSIMAQAAAI5EGIpQXKPSGYaHCouj3BMAAAAAkSAMRejCtomSpO935UW5JwAAAAAiQRiKUFJCjFo1i9WmnYQhAAAAwIkIQ9WQcl6SfvgpXz4/9w0BAAAATkMYqoaLz03U0WKfdmTXjyf3AgAAAA0JYagaLj43SZL0PVPlAAAAAMchDFVDkzi32njiCEMAAACAAxGGqinl3CRt2X1IJV7uGwIAAACchDBUTRefl6Rir1/bs36OdlcAAAAAhIEwVE2dzk2UIbHENgAAAOAwhKFqimvk0rmtErRpx8FodwUAAABAGAhDNeDSC5pry+5D2p1TGO2uAAAAAAgRYagG9O3eTjFuS/NXbI92VwAAAACEyK6qQV5enkaNGqVdu3bJ7XbrvPPO0xNPPKFmzZqVazdmzBh9+eWXSkoqffZO//79df/990uSDhw4oFGjRmnPnj2KiYnRk08+qUsvvbQWPk50xDd26YYe7fTxyh3amV2g885JiHaXAAAAAFShypEhwzB077336tNPP9WCBQvUrl07/fnPf6607dChQzV//nzNnz8/GIQk6bnnnlP37t316aefasKECRo5cqQCgUDNfYo64IYe7RTXyNa85T9GuysAAAAAQlBlGEpMTFSvXr2C7y+77DLt3bs3rIssWbJEt99+uySpe/fuiomJ0fr168Psat0W28ilfj3P1TfbcrVt76FodwcAAABAFcK6Z8jv9+u9997TL3/5y0r3v/nmmxowYICGDRumbdu2SSqdZhcIBMpNq0tOTlZ2dnY1ul039e3eVvGNXXrn0x90rMQX7e4AAAAAOIMq7xk62ZNPPqnY2FjdddddFfaNGDFCHo9Hpmlq3rx5uvfee7V06dIa62jz5vE1dq5IeTxV3wv0yO2X66mZ/9Tbn/2gMf+7h0zTOAs9Q10TSq0AErWC8FAvCBW1glA19FoJOQxlZmZq586dmj59ukyz4oBSq1atgq/T09P1zDPPKDs7W23atJEkHTx4MDg6lJWVpXPOOSesjubmFsrvj959Rh5PgnJyCqps17FVvH577QV6f9lWvTrn37rt2gvOQu9Ql4RaKwC1gnBQLwgVtYJQ1adaMU0josGTkKbJvfDCC/ruu+80bdo0ud3uStvs27cv+Hr58uUyTTMYkPr376/3339fkrRmzRodPXpUl1xySdiddYrre7TTtZe30ZLVu/Txyu3y17PFIgAAAID6oMqRoS1btmj69Olq3759cBGEtm3batq0aUpLS9Pf/vY3tWrVSqNHj1Zubq4Mw1B8fLxeffVV2Xbp6f/4xz/q0Ucf1bx58xQTE6MpU6ZUOrpUXxiGoUHXX6gjx7yat3y7dmQV6N7UFMU2ckW7awAAAACOMwIOWePaKdPkThYIBLT0692atWyrmjdtpN/166TO7ZtVfSAcrT4NOaN2USsIB/WCUFErCFV9qpVanSaHyBiGoeu7t9Ojd1wuvz+g597/t16c/Y32HCiKdtcAAACABo8wdBZc1C5RTw3ppYHXnq8tuw/p8ddW6/lZ/9a/tx6I6mgXAAAA0JCFtbQ2IueyLf2q13m6ukuylq3do//37z16ec63SkqIUbeLPOreyaML2yayFDcAAABwlhCGzrKEWLfSru6gX191ntZtOaCvNmTrH//eq//79W41jrF18bmJSjkvSee3aaq2nji5bCvaXQYAAADqJcJQlNiWqR4Xt1SPi1vqaLFX327L1cYdB7VxR57WbTkgSTINQ61bxOq8Vgk695wEndsyXi2TYpUY75ZhMIIEAAAAVAdhqA5o5LbVM6WVeqaUPpfpwKEj2pldoJ37CrQzu1Drf8zVyu+yg+3dtilPUmO1TGyslkmN1SyhkZrGu5UYH1P6Oy5GMW5GlAAAAIAzIQzVQS2aNlaLpo11RaeWkkqX6M4vLNaenELtzz+i/XmlP/vyjmj9jwfl9fkrnKNxjKWmcTFKjHerSZxbcY1cimtsKzam9Hd8I5diG9mKa+xSXCOXGrktxbgtmYw4AQAAoIEgDDmAYRhKSohRUkJMhX3+QEBFR0p0qLBY+UXHlF9QrENFx5RfWKxDhceUX1SsHdkFOnzUq6KjJarqqVJul6lGbluNXFYwIDVy28d/W2rksuRymXLblly2KZdlyuU6/tsu/QnuO/nHMuV2WcF2LBQBAACAaCMMOZxpGEqIdSsh1q22OvODpvyBgI4e8+nw0RIVHQ9HZb+PHvPpWIlPR4u9Olrs07Fin44Wl74vOFysA4dOvC/x+uX1VW9JcEOSZRmyLFO2acgyS1+X/S63zTJO38YyZJnm8d+lP6ZhyDQNGUbZ+9IHcZnGSduObzeOby87zjBLv9OybUbwfDqxzTCC5yvbXnY905COBaT8vMMyjNIgaxgKXrv0z+zE9rJjTuwzKjlO3CMGAABQCwhDDYhpGIptZCu2ka0W1TyXPxBQidd/0o+v9LfPr+KS0t+oSiT7AAAgAElEQVQV9p304/UH5PP75fMFSn/8x7f5/PL5y7YF5A2+P36cz1t63PE23rJzlJ3PH5DfXzq10FfPnuFk6DQhyjgesHS6fce3q2LACv4+fgHj+JWMstfHjyvbZxhV7FdpoxNtTwS5E8cY5Y4Ntjulbdmx5fpWybkj73v5Y09uq5OOP3Gtss0ndVjl25+8v7L8apzSOC7OrcNFxRXaBr+HU85dflv5NuGdwzil7ZnPfepnrSyc18g5KrSt/Lus8GdRyfmrPscp/avk/JXtrfTPtZJzVLbx1O/99O0q71PTA4d16NDhM7aMWv8qvcYZ/oyrbnqadqE1rPx7iPzzhfp9hf45QjtfqMeeqrDEr7y8wxW2h/7ZQrvwmf/7ObMz/m9ACDtC7WPI14ikXQiNavLPNVTh/AOq6baVV3DsDOeq4njTUJNYd8jXq4sIQ4iIaRiKcVmKcdXthRr8gYD8/oACgdKQ5D8ekvyBgAL+gPwBye8PyBd8X9q+bPuJ92faXnreQCCgQECKT2ikn38+EnzvP/677H1AOsO+E+/9J28/ZX+F40567dfJ+0rPo5PPWck1dFK/JAWnUwYCAZVFyrLrl7XV8X0ntz3RTgr4j+8PHnPydVS6J3iu0+wP7qt4/rLrlx17oh8njq3wOULs+/Gt5fp3Uo90yq+Tpp8GTnl/QqCycxiVtwUAwCmGDviFrux8TrS7ETHCEOo10zBkWjX4zy0h8HgSlJNTcFavCWeqrFaCwSy44aR9pwlbpwtjp54jcHLUq+ocp213clw89fzlDwrlHKde/7SB8zTnrrTtKeev+H2Ef47TCTXMBnT6zxzqNZKSYoP/2l/Z+ULcdJp21elf9b6ryvtYSX9CPrayTZF/X5X3O7TvK1r9a9Kk9B/lqmoXYveq9WdcrVo9bdvI6zUUoZyr0s9VsVFo1wutWWjnCqHzJ7dIiG+kgsKjVTc8DdM01PX85qF1ro4iDAFAHXKm6W2hT/BAfeTxJCinMf+3jarxj3IIFbUimdHuAAAAAABEA2EIAAAAQINEGAIAAADQIDlm8nFdeEhnXegDnIFaQaioFYSDekGoqBWEqr7USqSfwwiEukQIAAAAANQjTJMDAAAA0CARhgAAAAA0SIQhAAAAAA0SYQgAAABAg0QYAgAAANAgEYYAAAAANEiEIQAAAAANEmEIAAAAQINEGAIAAADQIBGGAAAAADRIhCEAAAAADRJhCAAAAECDRBgCAAAA0CARhgAAAAA0SIQhAAAAAA0SYQgAAABAg0QYAgAAANAgEYYAAAAANEiEIQAAAAANEmEIAAAAQINEGAIAAADQIBGGAAAAADRIhCEAAAAADRJhCAAAAECDRBgCAAAA0CARhgAAAAA0SIQhAAAAAA0SYQgAAABAg0QYAgAAANAgEYYAAAAANEh2tDsQqry8Ivn9gahdv3nzeOXmFkbt+nAOagWholYQDuoFoaJWEKr6VCumaSgpKS7s4xwThvz+QFTDUFkfgFBQKwgVtYJwUC8IFbWCUDX0WmGaHAAAAIAGiTAEAAAAoEEiDAEAAABokBxzz1BdcPioV8+887X+T1pntfXER7s7AAAAZ5XP51VeXo683uJodwU1YP9+U36/P9rdCJttu5WU5JFlVT/KEIbC8PPhYu05UKTd+wsJQwAAoMHJy8tRo0axios7R4ZhRLs7qCbbNuX1OisMBQIBFRX9rLy8HLVokVzt8zFNLgy2VfoffYnPWUUDAABQE7zeYsXFNSEIIWoMw1BcXJMaG50kDIXBZZV+XV5fw16CEAAANFwEIURbTdYgYSgMtl36dZU4bDgRAACgPlq2bKl+//tBuvvuQRo06BZNnDguuO/11/+qkpKSKPZOmjnzNX344awK2x98cKhWrlx+1vvz1FMT9eGHH0iS1q5do9WrV9XKdWbNeld5eQeD7+fNm6MPPvh7rVyrurhnKAwnRoYIQwAAANF04MABPf/8n/T66++oVatzFAgEtHXrD8H9b745Q3fc8Tu5XK6wzuv1emXbNfNX5BUrvtBTT02pkXPVtHXrvtaxY0d1xRW9wj7W5/PJsqzT7p816z11795TSUnNJEnp6bdG3M/aRhgKQ9nIkNNuNAMAAKhvDh48IMuy1bRpoqTSqVMXXthJkvTcc5mSpPvvv0eGYWrq1L+qpKRYzz77jPbu3a1AIKA77vidfvWrVEnSrbcOUGpqmr7++l9q3bqNHntsgj75ZKE++mi2fD6f4uPjNXLkGJ17bnutX/+NXnhhivz+gLxerwYPvkfXX9+/Qv/279+nQCCgVq3OCfkz7d79k5599mnl5+fJsiwNHfqArrzyPyRJX331pf7617/I7/crMTFJjz46Vm3bttPatWv00kvPqVOni7V16w+yLEtjx05Uhw4dT3udbdu2av78jxQI+PXPf67WddfdoN/97m6tWrVCb7/9ho4dK5bL5dJDD/2XLrmki9auXaOXX35el156mTZt2qjBg/+goqIizZ79nrze0tG3Bx54RN2799Rbb72uAwdyNH78aLndMcrImKxlyz7XkSNH9OCDj8jn8+nVV6dq9eovJUm9ev2H7r//IVmWpaeemii3262fftql/fv3qXPnLho/flKtTs0kDIXBNAxZpsECCgAAoMFbuT5LK77NqpVzX901Wb27nHmlsAsuuEi/+EVn3XLLr3X55Veoa9fL1K/fjWraNFF//ONozZ07W6+++oZiY2MlSRMmPKaOHc/XM8/8WQcOHNAf/nCnOnW6WB07XiCpdKRp6tS/SpK++Wadli37XNOmzZDb7daqVSv1zDNP6NVX39Df//6WbrttkPr3/7UCgYAKCwsr7d/y5f/Q1VdfE9bnnjRpvNLSblZqarq2b/9RDz44RO+8M0dSQJMnT9DUqX9Thw4dtXDhPE2aNF4zZrwlSdq2bYseeWSkLr/8Cn3yyUJNnpyh11//79Ne5/zzL1Ba2m907NhRDRv2sCRpz57dmjnzdT3//FTFxcXrxx+3aeTI4froo0WSpB9/3KqRI8doxIhRkqRDh/J1/fX9ZBiGdu3aoYcfHqa5cxdr8OA/aMGCeZo8OTP43Z7s44/nasuWH/TGG6XT5kaOHK6PP56rm2++9fh1tunFF1+RaZr6/e/v1Jo1q9Wjx5VhfY/hIAyFybZMpskBAABEmWmaeuaZ5/Tjj1u1bt1aLV/+//Tuu/+tt99+X02aNK3Qfs2af+rBBx+RJLVo0UJXXXW11q5dE/wLe//+vw62XbnyC23dukVDh94tqXQ554KCnyVJ3bp11zvvzFR2dpZ69LhSnTtfUmn/Vqz4RzBohOLw4SJt3fqDbrzxJklShw4ddcEFnbRhw3pJ0vnnXxQc7bnxxpv03HOZOny4SJLUtm07XX75FZKkfv1u1JQpT6moqFBxcaE/Cmb16lXas2e3HnhgaHCbz+fTwYO5wWtccknX4L49e3Zr4sRxysnJkW3bOngwV7m5B9S8eYszXmfNmtW68cbU4PTFG28coC+++J9gGOrT5z8VExMjSerUqZP27NmtHj1C/hhhIwyFybYMeb2sJgcAABq23l2qHr05Gzp2vEAdO16gW265TXfdNVDr1n2t//W/fllp21OnW538Pja2cfB1ICD9+tc36d5776twjttuG6Teva/Rv/61Wi++OEU9elypoUOHlWtTWFiorKwsXXjhRSF/jkCg8r9fGoahQMCv2l7ELxAIqFevq/T4409U2Ldjx3Y1bhxbbtvEieP04IMjdM01/ym/36++fa9WcXHVy10HAmf+c4iJcQdfm6Yln88X7kcJC6vJhcm2TabJAQAARFlOzn599923wff79+9Tfn6ekpNbS5JiY+NUVHRiClv37j318cdzJUm5uQe0atVKXX5590rP3bt3Hy1Zskj79++TVDpC8v33myRJu3btVJs2bZWefosGDrxDmzZtqHD8qlUrgvf6hCouLl4XXHCRPvlkoSRp584d2rbtB/3iF5eoc+eu2rr1B+3cuUOS9MknC3XhhZ0UGxsnqfReo2++WSdJ+vzzJerY8YIqR4Xi4uLKTfHr2fNKrV69Sj/+uC24rbLPVqawsDD4XS9cOL9cEDr13Cfr0aOXFi9eIK/XK6/Xq08+Waju3Xuesa+1iZGhMLmYJgcAABB1Pp9Pr7/+V2VnZykmppECAb/uvfd+XXTRxZKk22+/U8OH36eYmEaaOvWveuSRkXr22ac1ePDtCgQCuu++B9Wx4/mVnvuyy7pp6NBhGjPmv+Tz+eX1lujaa/vq4otTNGfO+1q79mu5XLZcLrdGjHi0wvHLl/9DaWm/OWP/n356otzumOD7Z599SRkZk/Xss09r1qx3ZVmWxo9/QklJSZKk8eOf0KRJ4+Tz+ZSYmKQJE54MHnvhhRfp888/1UsvPSfLMjV+/KQqv79rrrlW48eP0t13DwouoDBhwpP605+e1LFjx+T1lqhLl0uVktK50uOHD/8vjR07Ui1aeHTZZd3UtOmJqYm33nq7nn76CTVq1EgZGZPLHXfTTTdr9+6f9PvfD5Ik9ex5lQYMuLnK/tYWI3C6MbmTbN++XWPGjFF+fr4SExOVmZmp9u3bl2uTm5urxx57TFlZWSopKdGVV16p8ePHy7Zt+Xw+TZ48WcuXL5dhGBo6dKgGDhwYVkdzcwvl90dveprHk6CcnAKN/dtXatcyXvenVz4/FCirFaAq1ArCQb0gVLVZK9nZO3XOOefVyrnri5KSEt1xx2/0/vtza2yJ7jNZu3aNpk176YwLJpyObZuOXSX51Fo0TUPNm4d+j1TwuFAaZWRkaNCgQfr00081aNAgTZgwoUKb6dOn6/zzz9eCBQu0YMECbdiwQZ999pkkacGCBdq1a5c+++wzffDBB5o6dap2794ddmfrApfNyBAAAAAq53K5NGfOgrMShFB9VYah3Nxcbdy4Uamppeuwp6amauPGjTp48GC5doZhqKioSH6/X8XFxSopKVGrVq0kSYsXL9bAgQNlmqaaNWumvn37asmSJbXwcWqfbXHPEAAAAOqGbt26RzQqhFJVhqGsrCy1atUq+JRZy7LUsmVLZWWVX1d+2LBh2r59u66++urgzxVXXBE8R+vWrYNtk5OTlZ2dXZOf46xxWYZjhxMBAAAAnFBj43dLlixRp06d9NZbb6moqEhDhgzRkiVL1L9/xSfyRiKSOYA1zeNJUGxjt46V+OTxJES7O6jDqA+EilpBOKgXhKq2amX/flOWZVRYGhnOZdvOW1w6EAjINM0aqfMqw1BycrL27dsnn88nyypd63v//v1KTi6/rvw777yjp59+WqZpKiEhQb/85S+1evVq9e/fX8nJydq7d6+6di19UNOpI0WhqCsLKPj9fh0+WsJNrDgtbnJGqKgVhIN6Qahqs1ZM09ahQ/mKi2tCIKoHnLiAQiAQUFHRzzJNu1ydR7qAQpVhqHnz5kpJSdHChQuVlpamhQsXKiUlRc2aNSvXrm3btvriiy/UtWtXFRcXa9WqVbr++uslSf3799fs2bN1ww03KD8/X0uXLtXf//73sDtbF7C0NgAAaKiSkjzKy8tRYWF+tLuCGmCapvx+5/291rbdSkry1My5Qmk0ceJEjRkzRq+88oqaNGmizMxMSdKQIUM0fPhwdenSRWPHjlVGRoYGDBggn8+nXr166bbbbpMkpaWl6ZtvvtENN9wgSXrggQfUrl27GvkAZ5ttmypxWIIGAACoCZZlq0WL5KobwhEYcQ7xOUN1QV2ZJvf6oo3atDNPfx7WO2p9Qd3G/7AgVNQKwkG9IFTUCkJVn2qlVp8zhBNctuW4uZUAAAAAKiIMhcm2DJX4HDGYBgAAAOAMCENhYgEFAAAAoH4gDIXJtkqXIHTIrVYAAAAAToMwFCbbNhWQ5IviYg4AAAAAqo8wFCaXVfqVMVUOAAAAcDbCUJhsq/RpyzxrCAAAAHA2wlCYbLtsZIhpcgAAAICTEYbCVDZNroRpcgAAAICjEYbC5CobGWKaHAAAAOBohKEw2SygAAAAANQLhKEw2UyTAwAAAOoFwlCYXMdXk2OaHAAAAOBshKEwsZocAAAAUD8QhsIUnCbHyBAAAADgaIShMLlYQAEAAACoFwhDYSpbWpsFFAAAAABnIwyFKbi0NtPkAAAAAEcjDIXpxAIKhCEAAADAyexQGm3fvl1jxoxRfn6+EhMTlZmZqfbt25drM2rUKG3evDn4fvPmzZo2bZquu+46TZ06Ve+++65atmwpSerWrZsyMjJq7lOcRWVLa5ewmhwAAADgaCGFoYyMDA0aNEhpaWmaP3++JkyYoLfffrtcmylTpgRff//99xo8eLD69OkT3Jaenq7Ro0fXULejx2YBBQAAAKBeqHKaXG5urjZu3KjU1FRJUmpqqjZu3KiDBw+e9pg5c+ZowIABcrvdNdfTOqJsmhxLawMAAADOVmUYysrKUqtWrWRZliTJsiy1bNlSWVlZlbYvLi7WggULdMstt5TbvmjRIg0YMED33HOP1q1bVwNdjw7TMGSZBiNDAAAAgMOFNE0uHEuXLlXr1q2VkpIS3Hb77bfrvvvuk8vl0sqVKzVs2DAtXrxYSUlJIZ+3efP4mu5q2DyeBEmly2u73HbwPXAqagOholYQDuoFoaJWEKqGXitVhqHk5GTt27dPPp9PlmXJ5/Np//79Sk5OrrT9hx9+WGFUyOPxBF/37t1bycnJ2rJli3r27BlyR3NzC+X3R2/RAo8nQTk5BZJK7xv6ueBo8D1wspNrBTgTagXhoF4QKmoFoapPtWKaRkSDJ1VOk2vevLlSUlK0cOFCSdLChQuVkpKiZs2aVWibnZ2tr7/+Onh/UZl9+/YFX2/atEl79uxRhw4dwu5sXWFbTJMDAAAAnC6kaXITJ07UmDFj9Morr6hJkybKzMyUJA0ZMkTDhw9Xly5dJElz587Vtddeq8TExHLHP//889qwYYNM05TL5dKUKVPKjRY5jW2ZKvGytDYAAADgZEYgEHDE3+rr0jS5cTO+UltPvO5PvyRq/UHdVZ+GnFG7qBWEg3pBqKgVhKo+1UqtTZNDRbZlMk0OAAAAcDjCUARKp8kRhgAAAAAnIwxFwMUCCgAAAIDjEYYiYNumSghDAAAAgKMRhiLgskx5WU0OAAAAcDTCUARsmwUUAAAAAKcjDEXAZTFNDgAAAHA6wlAEWFobAAAAcD7CUARs25SXpbUBAAAARyMMRcC2DKbJAQAAAA5HGIqAyzJVwmpyAAAAgKMRhiLgOr6aXCBAIAIAAACcijAUAdsq/dp8fsIQAAAA4FSEoQiUhaESFlEAAAAAHIswFAGXXfq1sbw2AAAA4FyEoQjYliFJ8vqYJgcAAAA4FWEoAiemyfmi3BMAAAAAkSIMRaBsmlwJI0MAAACAYxGGIlA2MuRlAQUAAADAsexQGm3fvl1jxoxRfn6+EhMTlZmZqfbt25drM2rUKG3evDn4fvPmzZo2bZquu+46+Xw+TZ48WcuXL5dhGBo6dKgGDhxYox/kbGIBBQAAAMD5QgpDGRkZGjRokNLS0jR//nxNmDBBb7/9drk2U6ZMCb7+/vvvNXjwYPXp00eStGDBAu3atUufffaZ8vPzlZ6erquuukpt27atwY9y9gRHhghDAAAAgGNVOU0uNzdXGzduVGpqqiQpNTVVGzdu1MGDB097zJw5czRgwAC53W5J0uLFizVw4ECZpqlmzZqpb9++WrJkSQ19hLPPVbaAAmEIAAAAcKwqw1BWVpZatWoly7IkSZZlqWXLlsrKyqq0fXFxsRYsWKBbbrml3Dlat24dfJ+cnKzs7Ozq9j1qbPv40tpeFlAAAAAAnCqkaXLhWLp0qVq3bq2UlJQaPW/z5vE1er5IeDwJkqTDx0NQbFxMcBtwMuoCoaJWEA7qBaGiVhCqhl4rVYah5ORk7du3Tz6fT5Zlyefzaf/+/UpOTq60/YcfflhuVKjsHHv37lXXrl0lVRwpCkVubqH8/uiNxHg8CcrJKZAkFfx8pLRPB4uC24AyJ9cKcCbUCsJBvSBU1ApCVZ9qxTSNiAZPqpwm17x5c6WkpGjhwoWSpIULFyolJUXNmjWr0DY7O1tff/118P6iMv3799fs2bPl9/t18OBBLV26VP369Qu7s3WFzT1DAAAAgOOF9JyhiRMn6p133lG/fv30zjvvaNKkSZKkIUOGaP369cF2c+fO1bXXXqvExMRyx6elpalt27a64YYbdNttt+mBBx5Qu3btavBjnF02S2sDAAAAjhfSPUPnn3++Zs+eXWH7jBkzyr2///77Kz3esqxggKoPXDx0FQAAAHC8kEaGUJ7r+GpyTJMDAAAAnIswFAEr+NBVltYGAAAAnIowFAHTMGSZBvcMAQAAAA5GGIqQbZsq4Z4hAAAAwLEIQxFyWSb3DAEAAAAORhiKkG0ZrCYHAAAAOBhhKEK2ZXLPEAAAAOBghKEIuWxTJawmBwAAADgWYShCLstkmhwAAADgYIShCNk20+QAAAAAJyMMRYh7hgAAAABnIwxFyGUZLK0NAAAAOBhhKEK2xUNXAQAAACcjDEWo9J4hVpMDAAAAnIowFCFWkwMAAACcjTAUIds2uWcIAAAAcDDCUIRcrCYHAAAAOBphKEIsrQ0AAAA4G2EoQrZtqMTLAgoAAACAU9mhNNq+fbvGjBmj/Px8JSYmKjMzU+3bt6/QbvHixXr11VcVCARkGIbefPNNtWjRQlOnTtW7776rli1bSpK6deumjIyMGv0gZ1vZNLmyzwoAAADAWUIKQxkZGRo0aJDS0tI0f/58TZgwQW+//Xa5NuvXr9df/vIXvfXWW/J4PCooKJDb7Q7uT09P1+jRo2u291FkW6WDal5fQC6bMAQAAAA4TZXT5HJzc7Vx40alpqZKklJTU7Vx40YdPHiwXLuZM2fqnnvukcfjkSQlJCQoJiamFrpcN5wIQ9w3BAAAADhRlWEoKytLrVq1kmVZkiTLstSyZUtlZWWVa7dt2zb99NNPuvPOO3XzzTfrlVdeUSBw4p6aRYsWacCAAbrnnnu0bt26Gv4YZ5/LLv3qWF4bAAAAcKaQpsmFwufzafPmzXrzzTdVXFyse++9V61bt1Z6erpuv/123XfffXK5XFq5cqWGDRumxYsXKykpKeTzN28eX1NdjZjHkxB8nZQYK0lq0iRWnqTG0eoS6qiTawU4E2oF4aBeECpqBaFq6LVSZRhKTk7Wvn375PP5ZFmWfD6f9u/fr+Tk5HLtWrdurf79+8vtdsvtduu6667Tt99+q/T09ODUOUnq3bu3kpOTtWXLFvXs2TPkjubmFsrvj97qbR5PgnJyCoLv/SVeSdJPe/Mlrzda3UIddGqtAKdDrSAc1AtCRa0gVPWpVkzTiGjwpMppcs2bN1dKSooWLlwoSVq4cKFSUlLUrFmzcu1SU1O1YsUKBQIBlZSU6KuvvtLFF18sSdq3b1+w3aZNm7Rnzx516NAh7M7WJQmxLklSweHiKPcEAAAAQCRCmiY3ceJEjRkzRq+88oqaNGmizMxMSdKQIUM0fPhwdenSRb/+9a/13Xff6cYbb5Rpmrr66qt16623SpKef/55bdiwQaZpyuVyacqUKeVGi5woIbZ0pbyCwyVR7gkAAACASBiBk1c5qMPq2jS5gsPFevjlFbqj74W6vnu7qPULdU99GnJG7aJWEA7qBaGiVhCq+lQrtTZNDpWLa+ySYTAyBAAAADgVYShCpmEoobGLe4YAAAAAhyIMVUNCrJuRIQAAAMChCEPVkBDLyBAAAADgVIShakiIdetnRoYAAAAARyIMVUNCrEuFjAwBAAAAjkQYqoYmsW4VHfXK6/NHuysAAAAAwkQYqoaEWJckqfAIU+UAAAAApyEMVUNCrFsSzxoCAAAAnIgwVA1lI0M/c98QAAAA4DiEoWo4MTJEGAIAAACchjBUDU3ijoehIqbJAQAAAE5DGKqG2Ea2TMNQwZETI0Mbth/Uj3t/jmKvAAAAAISCMFQNpmEovrFdbgGFmZ9s0uz/2RrFXgEAAAAIhR3tDjhdQpxbPxeVjgwdPupV7s/HdKyE5w4BAAAAdR0jQ9WU0NilguPPGdp7oEhS6XOHygISAAAAgLqJMFRNTeLcKjgefHbnFAa37znpNQAAAIC6hzBUTQmN3cF7hnbnFMoyDUnSnuOjRAAAAADqJsJQNSXEunT4mFden197corU/pwExcbYwSlzUum0ub99vIGpcwAAAEAdElIY2r59u37729+qX79++u1vf6sdO3ZU2m7x4sUaMGCAUlNTNWDAAB04cECS5PP5NGnSJPXt21fXX3+9Zs+eXWMfINoSyp41dLhEu3MK1cYTr9aeuHIjQ2s279dXG/fp6837o9VNAAAAAKcIaTW5jIwMDRo0SGlpaZo/f74mTJigt99+u1yb9evX6y9/+YveeusteTweFRQUyO0uDQoLFizQrl279Nlnnyk/P1/p6em66qqr1LZt25r/RGdZQmOXJOmn/YUqOupVW0+cTEP61/f7FQgEZBiGvt+ZJ0natCtf13Zz/mcGAAAA6oMqR4Zyc3O1ceNGpaamSpJSU1O1ceNGHTx4sFy7mTNn6p577pHH45EkJSQkKCYmRlLpiNHAgQNlmqaaNWumvn37asmSJTX9WaIiIbY0DJUFnraeeLVuEaeio14dKiqWPxDQpuP7Nu/KUyAQCB77+Zqf9P7/3XL2Ow0AAACg6jCUlZWlVq1aybIsSZJlWWrZsqWysrLKtdu2bZt++ukn3Xnnnbr55pv1yiuvBP/in5WVpdatWwfbJicnKzs7uyY/R9Q0OT5NbtOu0sDTxhOnNi3iJJUuorA3p0gFh0t0UbtEFRwuCU6f8/n9WvTlDn3+/9u79/CoynvR49+5XzIzyUwySSYkIdwJKGKDou3uVoENtIKye9Fqy+7ZFfv09KrnafeR+rTaY30q9bDQ0OQAABo6SURBVNnbdler1vr0nL1p9dTqsRar2yoUiwJyiRBiCCEh98wkmWQmM5n7zHv+GBgMYBLwEmB+n38ga61Z77ve9Zt55zfvWu/a20XwlHuJ4sn0R3gEQgghhBBC5KcP7KGr6XSa5uZmfvOb35BIJNiwYQMVFRWsW7fuA9l/cbHtA9nP++F2209bZrJmR786fSGcdhMzpxfjdGWToZFoimA0BcA/r13Ixl++Qbc/yuULPNQ39zNyfBa65p4Rrv/EDAD6hyLc8W/b+do/LmLFldUfxWGJD8GZYkWIM5FYEWdD4kVMlsSKmKx8j5UJkyGPx4PP5yOdTqPT6Uin0/T39+PxeMZsV1FRwerVqzEajRiNRpYvX87BgwdZt24dHo+H3t5eFi1aBJw+UjQZfn+YTEZNvOGHxO22MzAQOm15Rim0Gg0ZpagotjIwEEIphc1ioLl9iGA4TqnTQpnDRLHDzL53vFw1380ru9oxG3UU2kxs3dPJlXNLAHhm21HiiTR/eO0Ii2qK0GiyU3Vv29/NG4e8/M9bP4ZBf3JAL5lKo9dpc9uJqfdesSLEqSRWxNmQeBGTJbEiJutiihWtVnNOgycTXiZXXFxMbW0tW7ZsAWDLli3U1tbicrnGbLdmzRp27NiBUopkMsmuXbuYP38+AKtXr+aZZ54hk8kwNDTEq6++yqpVq866sucjrUaD7fh9Q9Pc2ROg0WioKCmgqz9Mc1eABdOdAMyfXsThzmESyTT7mgf42Fw3Vy8oo6UrwHAoTjyR5vW3e7FbDfQMjnK4MwBAJJbk2e1ttPWO8PqB3lzZI5EE//LYTv7v1qNj6hSOJnnzUB8ZNTZ5VGrqkkkhhBBCCCHON5OaWvvee+9l8+bNrFq1is2bN/OjH/0IgNtvv52GhgYArr/+eoqLi/n0pz/NunXrmD17Np/73OcAuPHGG6msrGTlypXcdNNNfOMb36CqqupDOqSPnj2XDBXklk0rKeBY3wixRJr5J5KhaiejsRQvv9VJNJ7iytoyrqgtRQF7D/ez8x0vkXiKr65diM1i4LV93QC8sqeLSDxFmcvKlp3tJI7fU/SHv7YSDCf4y54uOrzZrF4pxeMvNPLrLU28urc7V59EMs0Dv93P4y80jkmSgqMJnt3eetozkILhOP2B6GnHemqCJYQQQgghxIVqUvcMzZo164zPBnriiSdy/9dqtWzcuJGNGzeetp1Op8slUBcjh9VID6NUuk8Ozb07MTqRDNUe//fFnR3YLAYW1DjR67RUum281eQjlkhTXWZjQY2TT17m4eXdnXR4Q7yyp4sl89ws+1glP32qnr++3cvMCgc7DvZx7eIK9h8ZYPNfmtn4pTq21/fQeGyIYoeJZ7e3culMF57iAjb/5Qgt3UEgSHWpjU9dNZ14Ms2//+Egx/pGONwxzPduuRyjQUd/IMpPNu8jlkjzvS9czswKBwCHjvl57PlGViyp5Ma/m4FGo0Epxat7uzncOcx/+9R87NbshBLJVJoXd3Ywp6qIhTUnRxGHQ3Eajw1x1cIy9LqTuXjP4CgWow6Xw5xbppTCPxKj2GEecxlgJqPIKDXm9UIIIYQQQpwt3b333nvvVFdiMqLRBFM5KFFQYCISSZxxXUObn97BUb6wYk7uC3oimeaNBi+Vbhurl2YnQrCY9Ow85CUUSfLxS8q5fG52GvLRWJI3jy//7DWzmF5up8xp4dW93ew7MkA0luK//+OlzKxwcKQrwP7mfo50BdBqNXz7c4sospnZur+HjIIX3jhG7XQn3/n8Zbz+di/NXUGUUvzpzXbWfLwGR4GRrft6mFtVxLPbW2lqH2bFkkr2Nw/QH4gys8LBT39XTyKZpsBs4G8He1k0q5i2vhEefq4BrVZL47EhkukMtdOd/H7rUf644xjeoQj1LYMsnlVMMq146JkD7Gr0savRS4FZzwyPg8OdAf716Xp2vePjcOcwl84sxqjX8eLODh57vpG/HuilxGGmstTGyGiCJ/70Dv/5X0fo9Ueone7EaNDR0h3god8f4OXdnZS5rJS7rGQyitf2dfOLZxsYCEaZM60Qg17HyGiCp7e28MpbnbjsJtxFFgBae4I89VoLPQOj1JTbMei1pDMZdhzs49W9XTgKjLmkLDia4KVdHXT6QlS5bbnz29ob5K/1PVhNBops2Uk0UukMu5t8dPrCuGxGdMe3DYbj7Gz0YdBpc7MPnthHW88I7iIzOm1222QqQ0ObH6VULrGEbBLZ2hvEaTej02YTQ6UUXf1h4qkMBWZDbttkKk2HN4zdakCrPZlEBsJxIrEUFtPJ30CUUvQHopiNujHbxpNpIrEUJqNuTKyHo0m0Ws2YbTNKEY2nx9zLduJYIHtP3bul0pkxrz9RDwV5d+/beJ8rQpxK4kVMlsSKmKyLKVY0Gg3Wd313mvTr1AVyI8n5OoECwBsNfRzuGOa2NQtyy0KRBN/59x2svKKKLyyfk1v+v19q4vUDffzLLZfnRox8wxE2Pr4Lm8XAv37j4xj02S+gv3j2IPUtg1y9sIzb1y4EoKU7wE827wfgazcu5MraMjJK8ZP/3Edr7whWk577NizFaTfxVpOPx/7YCMDCGid33rSYeDLN//o/exkMRElnFDcvm82qK6t5aXcHz2xrxWLSo5Tie7dcjs1i4Ceb95HOKCKxFFWlNv7HzYt57vU2/lrfg6fYSp8/woolldTNdfOLZxsw6LXodRpCkST/tHoe+5oHqG8ZZEGNk6aOYcpdVq65rILn/taGxain3GWluSvAkvmlBMJxjnYHqZvr5kh3gGg8xRXzy3iryYfNYuCSGS7ePOTF5TBjNuroGRzlytpSfMNROrwhqkttdA2EsVuNXL2wjNcP9JFIprFbDQTCCZbMc6PRaNhzuB+rSU8knsJRYOTaxRXsburHNxRBr9OSSme4fE4JpU4L2/b3kExlUIDDamB5XSVHugI0tg/nzumiWcXMqSxkW30PQyNxIHvp5PKPVTI4EmNXo5dUOhu7C2e4uGxWMTsbfRzrG8lte83iaSileP1AL6HjswzWTndyRW0ph9qGeLtlkMzxiTn+bpGHogIjf2voo2cgO1X7/OoirlpYToc3xO53fETiKWwWA1ctLMuNPDa1D6OAuZWFXLWwnKFQnN3veBkIxLBZDFwxv5TZ0wppaPNT3zJIPJlm9rRCli4oI51R7Dnso7VnhAKznrp5bhbUuGjpDrL/yADDoTizKhzUzSulwKynvmWQxvYhjHoti2eXcOmsYnoHR6lvGaS7P0yNx87iOW5KiywcavNzsM1PJqO4dFYxi2YWExxNcLDVT0t3kEp3AYtmFVNVaudIV4CGNj/haJIFNU4unVlMOqM41ObncGcAl8PEpTOLmVnhoMMborF9iIFAjLmVhSyc4cJs1PNO+xCHO4exGPUsqHExp7IQ33CUw53D9AyEqS6zs6DGhctuorkrQHNnAKUUc6uLmFflJBRJ0NwVoN0bwuOyMq+6CE+xlbbeEY50BYjEUsyuLGRuVRHptKKlO0Bb7whFdhNzq4qoKrXRMzBKS3eAkWiSqpIC5lQWYTToaO0J0tobxGTUMWdaITUeB4PBGEe7g/iGI1S6C5hVUUihzcixvhCtvUFQMLPCwQyPg3A0SVvvCD0DYdxOC7MqCnEXWejqD9PWGySaSFNTbmemx0EqozjWN0KnL0RhgYkZHjuekgK8/gjt3hGC4QRVpTZmeBzo9Vo6vCE6vCHMRh015XamldoYGonR4Q0xGIxR7rJSU27HZjXQ1R+m0xdGKcX0cjvVpXbC0SSdvhDeoQjFhWaml9lx2U30+iN0+kLEk2kq3Taqy2yk0tlEv2dwFIfVQHWZndIiC/2BKF2+MP6R2Gn3QE6USE+UZ5/6+tM214z752kFnLr+gyjfbDIQiyfPvP6UJaeWN97xaCY4uImP5WzLfn9tfbb1PX39+PU97eUTvP6jLv+09j7D9lariUgkPv6Oc9tP8N6ZcAfva/WEDTCZn8je7+9oH34bvL8KThgj72MHNpuJ0fAEsTJOATqthitry7BZDO+90UfkXCdQkGRoks5lto36IwPMmlY4ZjSgwxtiR0MftyyfM+bX8d/8uYkZHgfXXj4tt6y1N8ivtzRx5+cXUeq05pY/8adGUmnF125cmHsDd3hDPPT7t/niynlcMb80t+2TW96hpTvI9/+pDsfxbLm7P8xPfruPjy/0cOs/zMld7vYf/9XMzkYvd37+MuZVZxO1nsFRNv12P2UuC3d+fjFWczZZeurVFl7d183nr53F6qXVaDQaegbC/NvvDwDwrc9eSk25g4xSPLu9lZd2dbJknpt//nQtFpOe7v4wD/+/BgKhOLf+w1w+uchDRin+uKOdF99sp6rMxoY1C6h02+j0hXhiyzv0DoyyrK6Sz14zE71Oy5Y327OXHFoN3LJ8DlfML6XDF+I/Xm6m3Rvikhkublkxh2KHmZff6uTPOzsAWL20mtVLq+kdjPD01haOdgepKCngs38/k9oaJ3/Z283LuzuIxdMsXVjGDZ+YQSiS4Pm/HaOpYxiH1cCqpdVctaCcHQ19/GVPF+Fo9llSn76qmlK3nadePkxDmx+jXssnFnn45CIPjceGeHVvN8HRBGVOC8vrKikvtrJ1Xw8Hjg6CBi6bVcLfL66gZyCcS65OJECzKgrZ1eil/nhiNMPj4JOLPISjSf52sJeBQAyDXkvdPDcLa1wcaPXzdssAqbSipNDMxy8pR6fTsvOQF+9QBI0mm3BdNruE1p4gb7cMkkhlKDDrWTK/FKfdxN7D/XQfT7iqS21cPteNbzg7ChhPZEeDLpnhYprbRkOrnw5f9j1S7DCxeI6bSCzFgaODROIpNBqYPa2QWRWFNHcFcslggVnPpTOL0Wo1HGzNJjqQve9ublURXf1hWnuDKAV6nZb51UU4Cow0HhvKPaPLaTcxv9qJPxjlaM8IGaXQaGCGx0Gp00JzZ3aSEsiO0M6vLiIaT3G0J5hLVMtdVipLbbT3jTAYjAHZ8mZPc6DRaDjaEzw+2gWFNiMzyh30+kfpH87eW6cBqspsFJgNtPWO5J4XZjHpmOFxMByK0+eP5N6bpU4L5cUFtHQNE42nj5enYXq5nVg8nXsmGWSfZ1bustIzEGY0lp2uX6OBaSW24+/TcG7k3GzUMa2kAN9wNNeWACWFZiwmPT0Do7l7//S67GQvgXBizH2Ddmt2xLN3cJT08c9dDVBebCWWSOfaEsBk1OEuNOMbjuba50QMAPhHTm6r02oodVrwj8RIJE9ua7MYMBt1uXY/UZ67yMJIJEEscfLZayaDjlKnZcyIY3Zc8V3G//MMVxmocf6azP7G75tOXX36/idXvk6nJZ3OnHa8E/XiZ3u84+3v1GM927aa6FgnPpb32dYTtN3Ex/MBx9pZnruzLV+Ij8KJH+enmiRDH7LzaepBpdQZf8U4Mc33qdtmlMpdhnVCMpXOjUC9e9tEMnPapVHReAqTQXfapU2hSGLMpVwAsUT2i5rZOPZ2tOFQnCKbcUy948k08UR6TLII4A/GKLQZx9wTlEpnCITilBy/1O2EoZEYVrN+THmZjGI4FMflMI0p78QXw3f/enHiMjF3oWXM8UViSeLJDE67aUx5vuEIRTYTJsPJNoolUgTDCcpc2YT1RKz0B6JYTfox5SVTGbxDEaa5C8acK38whlarGVNeOpOhu3+UipKCMZegBcJxYok05a6TCXJGKbp8YdxFFqzmk20RjiYZGolRVWrLtYVSip6BUWzWk5f4QfY89/pHmV5mH9P2ff7R419iT5aXSKbp7A9T6S4Y0/YDgSixRJpKd0GuvFQ6Q7s3RKnTkkvIIRsTQ6EYNeX2XHxmMooOXwi7xTDmXIciCfr8EaaX23Ntn1GK7v4wOm32C/2J8qLxFJ2+ENPctlzbK6Xo80eIJ7P35Z0oL55M0+ENUVJoHnO/2kAgSiAcP34Zpe74uUvT7g1htxopc1py5Q2H4viGIlSX2XNtn0pn6OoPo9VoqCq15WJrZDRBz0CYipICCm0m3G47Pt8I3QNhEqkM08tsufJGY0k6fWFKCs2UFGbvm8sohW8owshoguoye+6SxxPHbLMY8BQXoNVmf+AYCMYYDESpdNty77N4Mk2XL4xOp6HSbcOg16JU9j3TNxSh3GnNvXeSqQzdA2GSqQzVZbbcuQ6G43QPjuKymyhzWdFqNKTSGfr8EcKRBFVl9lzbh6NJunwhCiwGKkoK0Ou0ZDIK71CE4VCcipKC3GdDJJaie+B43UpsmIw6MkoxGIhm36dFFtxFltM+5/LF+dQPifPbZGNlwuRywh1MtPrsktdzMfE+3l8dzvc2eL/HX1xsY9AfPuf9azVgNU/9qBBIMvShk05ITJbEipgsiRVxNiRexGRJrIjJuphi5UN7zpAQQgghhBBCXIwkGRJCCCGEEELkJUmGhBBCCCGEEHlpUg9dPR+cevN+vtZBXBgkVsRkSayIsyHxIiZLYkVM1sUSK+d6HBfMBApCCCGEEEII8UGSy+SEEEIIIYQQeUmSISGEEEIIIURekmRICCGEEEIIkZckGRJCCCGEEELkJUmGhBBCCCGEEHlJkiEhhBBCCCFEXpJkSAghhBBCCJGXJBkSQgghhBBC5CVJhoQQQgghhBB5SZKhCRw7doybb76ZVatWcfPNN9Pe3j7VVRJTZHh4mNtvv51Vq1axdu1avvnNbzI0NATA22+/zQ033MCqVav4yle+gt/vz71uvHXi4vfwww8zb948jhw5AkisiDOLx+Pcc889rFy5krVr1/KDH/wAGL8Pkv4pP23bto1169Zx4403snbtWl555RVAYkXApk2bWLZs2Zg+B849NvImbpQY1/r169Xzzz+vlFLq+eefV+vXr5/iGompMjw8rHbt2pX7+4EHHlAbN25UmUxGrVixQu3Zs0cppdQjjzyi7rrrLqWUGneduPgdOnRI3Xbbberaa69Vzc3NEiviPd13333q/vvvV5lMRiml1MDAgFJq/D5I+qf8k8lk1JIlS1Rzc7NSSqmmpia1ePFilU6nJVaE2rNnj+rt7VXXXXddLkaUOvfPkXyJG0mGxjE4OKjq6upUKpVSSimVSqVUXV2d8vv9U1wzcT54+eWX1Ze//GV14MABdf311+eW+/1+tXjxYqWUGneduLjF43F10003qc7OzlzHJLEiziQcDqu6ujoVDofHLB+vD5L+KT9lMhl15ZVXqr179yqllHrrrbfUypUrJVbEGO9Ohs41NvIpbvRTPTJ1Puvr66OsrAydTgeATqejtLSUvr4+XC7XFNdOTKVMJsNTTz3FsmXL6Ovro6KiIrfO5XKRyWQIBALjrisqKpqKqouPyM9//nNuuOEGqqqqcsskVsSZdHV1UVRUxMMPP8zu3bspKCjgO9/5Dmaz+T37IKWU9E95SKPR8LOf/Yyvf/3rWK1WRkdHefzxx8f9viKxkt/ONTbyKW7kniEhzsF9992H1WrlS1/60lRXRZyH6uvraWho4NZbb53qqogLQCqVoquriwULFvDcc8/x3e9+l29961tEIpGprpo4z6RSKR5//HF++ctfsm3bNh599FHuvPNOiRUh3gcZGRqHx+PB5/ORTqfR6XSk02n6+/vxeDxTXTUxhTZt2kRHRwePPfYYWq0Wj8dDb29vbv3Q0BAajYaioqJx14mL1549e2hra2P58uUAeL1ebrvtNtavXy+xIk5TUVGBXq9nzZo1AFx22WU4nU7MZvN79kFKKemf8lBTUxP9/f3U1dUBUFdXh8ViwWQySayIMxrvu+x4sZFPcSMjQ+MoLi6mtraWLVu2ALBlyxZqa2svuuFBMXkPPfQQhw4d4pFHHsFoNAJwySWXEIvF2Lt3LwBPP/00n/rUpyZcJy5eX/3qV9mxYwdbt25l69atlJeX8+STT7JhwwaJFXEal8vF0qVLeeONN4DsDE5+v5+ampr37IOkf8pP5eXleL1e2traAGhtbWVwcJDp06dLrIgzGu/8n+u6i41GKaWmuhLns9bWVu666y5GRkZwOBxs2rSJmTNnTnW1xBRoaWlhzZo11NTUYDabAaisrOSRRx5h//793HPPPcTjcaZNm8aDDz5ISUkJwLjrRH5YtmwZjz32GHPnzpVYEWfU1dXF97//fQKBAHq9njvuuINrrrlm3D5I+qf89MILL/DEE0+g0WgA+Pa3v82KFSskVgQ//vGPeeWVVxgcHMTpdFJUVMSLL754zrGRL3EjyZAQQgghhBAiL8llckIIIYQQQoi8JMmQEEIIIYQQIi9JMiSEEEIIIYTIS5IMCSGEEEIIIfKSJENCCCGEEEKIvCTJkBBCCCGEECIvSTIkhBBCCCGEyEuSDAkhhBBCCCHykiRDQgghzlvLli3jySefZO3atdTV1XHHHXcQj8f51a9+xU033UQqlQLgd7/7Hddffz3xeHyKayyEEOJCIsmQEEKI89pLL73Er3/9a1577TWam5t57rnn2LBhAwaDgUcffZT29nYeeughHnzwQUwm01RXVwghxAVEP9UVEEIIIcazfv16ysrKALjuuutoampCq9WyadMmPvOZz/DnP/+ZDRs2sGDBgimuqRBCiAuNjAwJIYQ4r7nd7tz/LRYLkUgEgMrKSpYuXUpPTw9f/OIXp6p6QgghLmCSDAkhhLggbd++nfr6eq6++mp++tOfTnV1hBBCXIAkGRJCCHHBGRoa4u677+b+++/ngQceYOvWrWzfvn2qqyWEEOICI8mQEEKIC84Pf/hDli1bxjXXXIPT6eT+++/n7rvvZnh4eKqrJoQQ4gKiUUqpqa6EEEIIIYQQQnzUZGRICCGEEEIIkZckGRJCCCGEEELkJUmGhBBCCCGEEHlJkiEhhBBCCCFEXpJkSAghhBBCCJGXJBkSQgghhBBC5CVJhoQQQgghhBB5SZIhIYQQQgghRF6SZEgIIYQQQgiRl/4/PkImeef1mHAAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAF/CAYAAAB+GZmgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt0XGd97//3XDQjzeyt61x0m5Fv8U6cOHESO7FJQkhIuAQCpFB+TUkgJEDNIacF1oL20JTScllcF7cASdu0J4SWFvrjV25JG05aFglQICSBcoCdFBJLlmWNJMvSXCSNZmb//pjRlhTb0UiWPBrp81ory9HsRzPP6JFtffzs7/fxOI6DiIiIiIiInJq31hMQERERERFZ7xScRERERERElqDgJCIiIiIisgQFJxERERERkSUoOImIiIiIiCxBwUlERERERGQJCk4iIiIiIiJLUHASERERERFZgoKTiIiIiIjIEhScREREREREluCvZpBlWS8H3g94KIet99m2/TXLsnYC9wIdwBjwetu2n6p8zqpfExERERERqYUlg5NlWR7gPuAK27Z/YVnW+cD3Lcv6F+Au4HO2bX/JsqybgLuBqyufuhbXlhIE9gFDQLHKzxERERERkc3DB3QBPwFmqv2kqnacgBLQUvn/VsrBJAJcBFxbefzLwJ2WZUUp70yt6jXbtkeqmOc+4OEq35OIiIiIiGxeVwCPVDt4yeBk27ZjWdZrga9blpUFTOBlQAIYtG27WBlXtCzrSOVxzxpcqyY4DQGMj2cplZxqvwarqqPDYGwsU5PXlpXRmtUfrVn90ZrVH61ZfdF61R+tWe14vR7a2sJQyQ7VquZWPT/wv4BX2rb9fcuyLgP+Cbh5JRNdY0Vg7gtRMx0dRk1fX5ZPa1Z/tGb1R2tWf7Rm9UXrVX+0ZjW3rNKeam7V2wN027b9fYBKeMoC00CPZVm+ys6QD+gGBijvHK32taqNjWVqtuMUjZqMjKRr8tqyMlqz+qM1qz9as/qjNasvWq/6ozWrHa/Xs6LQWk078sNAr2VZFoBlWecAncBTwBPAjZVxNwKP27Y9Ytt2arWvLfudiYiIiIiIrJJqapyOWpb1VuCfLcsqVR5+o23bxyzLOgjca1nWe4Fx4PULPnUtromIiIiIiJxxHsepzS1ta2QL8PSzb9UrFguMj49QKOTXfAJer5dSqbT0QFk3nmvN/P4AbW1RfL5qG1DKmaDbG+qP1qz+aM3qi9ar/mzkNSs5DqnxKfqH0xwaTjMwnCFfKPGuG/fg81Zzw9vaWnCr3lbgmWo/b1P8NDg+PkJjY4hwuBOPx7Omr+X3eykUFJzqyanWzHEcstlJxsdHiES6ajAzERERkfVttlBkcDRL/3DGDUkDqQwzs+W+Cz6vh+5ImHP62mo809O3KYJToZA/I6FJNhaPx0M43Ewmc7zWUxERERGpudz0LP3DGfqH0/Snyr8OjeUoVu70CgZ8JGMGl5/fRTJmkIybdEfCNPhrv8u0GjZFcAIUmmRF9H0jIiIim43jOIynZ04ISaMT0+6YlnCAZNzkgh0RknGTZNwg2tqEdwP/7LRpgpOIiIiIiCxWKjkcPZZbFJD6hzNkpmbdMfG2JrZ0NXPlnu5ySIoZtBjBGs66NhScauA1r7meQCBAQ0OAUqnIG95wG9dc82Iee+xR/vAPD3LjjTfztrf9kTv+9tvfwhNPPMaDD36PUCh00ud87LFH+dznPs0999y36PGhoSP83u/dwNat2ymVihQKBS644ELe+MY3E4vFn3OeY2OjfP7zn+HnP/8ZjY1B/H4/N9zwu7ziFTdwzz1383d/99d89KOf4nnPuxyAXC7HK1/5YpLJLe48Lr98L9u37wA8eL0e3va2t7N37yXcf/83+cEPHuYDH/jokl+vz3zmE+zefQFXXXXNkmMX+vCH389LX/pyLrjgwucc99nPfoodO3Zy7bUvWdbzi4iIiNST/GyRwyPZRSHpcKrcuAHA7/PQEzHYc1aEvsouUm/UoCmoyAAKTjXzgQ98hG3bdvDkk7/m4MHb2Lv3UgCSyT4efvi7HDx4Oz6fjyNHBpmZmV7i2Z6bYRj87//9DwDMzs5y7733cPDgrXzxi/+EYZz88K/p6Wluv/0tXHfd9fzpn74Pr9dLOp3moYcedMfs3GnxwAPfcoPTf/zH/yGZ3HLCc33hC39LKBTi4Ye/y5//+f/im9/8TtVzT6WGefTRH/M//+c7l/GOy/7kT/6sqnE33fQG3vKWN/LCF74I7zro9CIiIiJyujJTs+7uUX+q/OvQWJa5htpNQR+JmMnz93TTFzdJxAy6I2H8Pv0sdCqbMjh9/7+GeOTnQ2vy3Fde2M3+XZ1Vj9+582xCoRBDQ4MANDWF2LJlKz/+8Q85cOByHnjgW7zkJS/jV7/65arMr6GhgTe96SA/+cmP+Ld/u59Xv/q1Jx33ne/8K83NLdx88xvdx0zT5FWverX78YUX7uWHP3yEyclJmpubeeCBb3HddS/n/vu/ddLn3LdvPxMTE0xMTFQ93/vv/yYveMEL3Vqje+65m/7+Z8hmswwM9GNZ53DTTW/gzjs/xdGjQ1x55dXubt3tt7+FG2+8mcsuu4IPfvB9BAIBBgb6SaWGOffc3dxxx1/g8Xhoa2uju7uXn/70x+zbt7/quYmIiIjUmuM4jE1Oz9cjDWcYSKUZm5xxx7SZQRIxg4t2RumLGyTiJtGWRtVyL9OmDE7ryWOPPUo+n6e3N8lTT9kAXHfd9Xz9619j//7LeOihB/nCF+7hk5/82Kq+7jnnnMvTT//2lNdt+9fs2nXecz6Hx+Ph6quv5aGHHuTSSw8wMzPN1q3bTzn+3//9O8Ricdraqm9H+fjjP+XGG28+YW5/8zf30dTUxK233sRdd93Jxz/+GYrFIr/7u6/gFa+4gUQiecJz/fa3v+FTn/o8Xq+XN77xdTz66I/coHTeebt59NGfKDiJiIjIulUslRgayzFQaf3dP5xmIJUhO10AwAPE20Ns72nh6otMEnGDZMykORyo7cQ3iE0ZnC7b3cVlu9fmXJ5qz3G6444/JhAIEg6H+eAHP4Jpmu61iy7ayyc+8WG+973vsm3bdlpaWtdgpksdfFzdwcgvfenL+cu//DOOHRvjJS952UnHvPWtt+LxeGlvb+dDH/r4smaZSg3T3t6+6LFLLtnv3mK4Y8cOtm/fSSBQ/gMhmexjcPDwSYPTFVe8gGCwXMhoWRaDg4fZt698rb29g5/97PFlzU1ERERkrczkixweyVQOkS3vIh0eyTLr1iN56Y2GudiKubtIiahBMOCr8cw3rk0ZnNaDuRqnk5nbyfnoRz/Ae97zvjV5/V/96pe8+MXXnfK6ZZ3Dt7/9jSWfp6enl4aGBr7xjf+PL37xH/nNb/77hDFzNU4rEQw2ks/nFz0WCMx3cfF6fQSDgQUfeykWi6d4roXjfIvG5fN5N1SJiIiInEmTuTwDw3MhqbyLdPRYzq1HCgX9JOMGV13YQzJePh+pqyOET7XZZ5SC0zr1ylf+Dk1NTVx66YFVfd7Z2Vnuu+/vGBlJ8aIXvfSU46655sX8/d/fyz/8wxe58cab8Xg8pNNpHnjgW7z2tTcuGnvw4O0MDh5ek52x7du3099/iPPOO3/Vn3uhQ4eeZseOs9b0NURERGRzcxyH0Ynp8plIjx7m10+P0Z/KMJ6er0dqbw6SjJnsOzvmno/U0ax6pPVAwWmdikZjvO51b1jW5/zmN09xww3zu0h7917Crbe+hUwmwy23/D7FYsFtR/6FL9xzyo56AE1NTdx551/x+c9/hte+9pU0NTXh9/v5nd/53RPGnnfe+SsKNj/84fcXzfe6667nzW9+66Ixz3/+1fz7v3+H6667ftnPXy3HcXj00Z8saoQhIiIicjoKxXI9ktvZrtICfGqmXI/k9UBnRxgr2UoyZro7SUZTQ41nLqficZzqalnqxBbg6bGxDKXS/Ps6evQQnZ19Z2QC1dY4SXWKxSJvfvPr+ehHP00kElmT13j00f/kgQe+zZ/92ftPev1Mfv9IdaJRk5GRdK2nIcugNas/WrP6ovWqrel8gYFUZlFnu8HRDIVi+efRgN9Lb8wgGTMqu0gmF5wTJz0xVeOZb05er4eODgNgK/BMtZ+nHSdZ13w+H+9613sYGhpcs+CUzWZ561v/cE2eW0RERDaWiWy+Eo7md5JS41NuWy2jqYFk3OCaixPuLlK8vemEeqTGgB9F3fqi4FRnbrvt5hOaH5x77nm8613vWdHz/fEfv4Ph4eFFj8XjcT7ykU+ueI6r7Zxzzl3T53/hC6/VLqGIiIgsUnIcRo5PLdpF6k+lmcjMN62KtDSSiBkcOLfTrUdqM4OqR9qgFJzqzD333Leqz7eeApKIiIhILRSKJQZHsvSn5neRBlIZpvPlf6z2ejx0R0Ls6mt3W38n4wbhRtUjbSabJjg5jqP0L8u2wWoARURENr2pmXI9knuA7HCGwdEsxUp9fKDBW95FOq+TvrhJImbQGw3T4Nf5SJvdpghOfn+AbHaScLhZ4Umq5jgO2ewkfr9O2xYREak3juNwPJNnIFU+QHYuJKWOzzdkMEMNJOMmL9rW7na2i7eF8Hr186KcaFMEp7a2KOPjI2Qyx9f8tbxeL6WS6mXqyXOtmd8foK0teoZnJCIiIstRchxS41PzB8hWgtJkbtYdE21tJBk3uez8Lre7XasR0D+qS9U2RXDy+fxEIl1n5LXUDrT+aM1ERETqx2yhyOBolv7hjBuSBlIZZmbL9Ug+r4fuSJjd2zvcXaREzCTUuCl+7JU1pO8gEREREVmXctOziw6P7R9OMzSWc+uRggEfyZjB5Qt2kbojYRr83iWeWWT5FJxEREREpKYcx2E8PXNCSBqdmHbHtIQD5YNjd0Tc1t/R1ia8utVOzhAFJxERERE5Y0olh6PHcosCUv9whszUfD1SvK2JLV3NXLmnuxySYgYtRrCGsxZRcBIRERGRNZKfLXJ4JLsoJB1OZchXDp73+zz0RAz2nBWhr7KL1Bs1aArqR1RZf/RdKSIiIiKnLTM16+4ezR0kOzSWZe5IxKagj0TM5Pl7ut3zkbojYfw+1SNJfVBwEhEREZGqOY7D2OQ0A8Nzh8hmGEilGZuccce0mUESMYOLdkbpixsk4ibRlka1/pa6VlVwsiyrEfgkcA0wDfzQtu23WJa1E7gX6ADGgNfbtv1U5XNW/ZqIiIiInDnFUomhsdyCkJRmIJUhO10AwAPE20Ns72nh6otMEnGDZMykOazD42XjqXbH6aOUA9NO27Ydy7LilcfvAj5n2/aXLMu6CbgbuHoNr4mIiIjIGpjJFzk8kqkcIlveRTo8kmXWrUfy0hsNc7EVc3eRElGDYMBX45mLnBlLBifLsgzg9UCvbdsOgG3bw5ZlxYCLgGsrQ78M3GlZVpTyP0Cs6jXbtkdO652KiIiICACTuTwDz2r9ffRYzq1HCgX9JOMGV13YQzJePh+pqyOEz6t6JNm8qtlx2k75lrk/tyzrKiAD3AFMAYO2bRcBbNsuWpZ1BEhQDkCrfU3BSURERGQZHMdhdGJ6fhepEpTG0/P1SO3NQZIxk31nx9zzkTqaVY8k8mzVBCc/sA143Lbtd1mWdSnwTeB313Rmp6Gjw6jp60ejZk1fX5ZPa1Z/tGb1R2tWf7Rm9aWtPczAcJrfDk7w2yMT/HZwgqcHJ9x6JK8HemImF5wVZWt3C9t7Wtja06J6pBrS77H64nHm9mRPwbKsCDAEBOZu1bMs65fALcCDQEdlZ8hHeWfqLMo7R0+u5rUqb9XbAjw9NpahVHru97VWolGTkZF0TV5bVkZrVn+0ZvVHa1Z/tGbr23S+wEAqU279PZzmyLEch4YmKRTLP/8E/F56YwbJmFHZRTLpiYYJNqgeab3Q77Ha8Xo9cxstW4Fnqv28JXecbNsetSzrPyjXHT1Y6XoXoxxwngBuBL5U+fXxuYBjWdaqXxMRERHZbCay+cr5SGk3KKXGp5j7J2KjqYEdva1cc3GCZKVpQ2d7k+qRRFZZtV31DgJ/a1nWJ4BZ4Gbbto9blnUQuNeyrPcC45SbSCz8nNW+JiIiIrIhlRyHkeNTbjiaO0h2IpN3x0RaGknEDA6c2+nWI7WZQWKxZu1eiKyxJW/VqzNb0K16skxas/qjNas/WrP6ozVbW4ViicGRLP2p+V2kgVSG6XwRAK/HQ3ckRCJmuq2/k3GDcGPDSZ9P61V/tGa1s2a36omIiIjIyk3NlOuR3ANkhzMMjmYpVv6RN9DgLe8inddJX9wkETPojYZp8KseSWQ9UXASERERWQWO43A8k2cgVW79PReSUsen3DFmqIFk3ORF29pJxsq7SPG2EF6vWn+LrHcKTiIiIiLLVHIcUuNTlfOR0u5hspO5WXdMtLWRZNzksvO73O52rUZA5yOJ1CkFJxEREZHnMFsoMjiaXdS0YSCVYWa2XI/k83rojoTZvb3D3UVKxExCjfoxS2Qj0e9oERERkYrc9Ox8QEqVfx0ay7n1SMGAj2TM4PLdXSTj5V2k7kiYBr9af4tsdApOIiIisuk4jsN4euaEkDQ6Me2OaQkHSMZNLtgRcVt/R1ub8OpWO5FNScFJRERENrRSyeHosdyigNQ/nCEzNV+PFG9rYktXM1fu6S6HpJhBixGs4axFZL1RcBIREZENIz9b5PCzzkc6nMqQL5QA8Ps89EQM9pwVcVt/J2IGTUH9SCQiz01/SoiIiEhdykzNurtHc0FpaCyLUy5HoinoIxEzef6ebjckdUfC+H2qRxKR5VNwEhERkXXNcRzGJqcZGJ47RDbDQCrN2OSMO6bNDJKIGVy0M0pf3CARN4m2NKr1t4isGgUnERERWTeKpRJDYzk3JA1UapKy0wUAPEC8PcT2nhauvsgkETdIxkyaw4HaTlxENjwFJxEREamJmXyRwyOZyiGy5V2kwyNZZt16JC+90TAXWzF3FykRNQgGfDWeuYhsRgpOIiIisuYmc3kGntX6++ixnFuPFAr6ScYNrrqwxz0fqasjhM+reiQRWR8UnERERGTVOI7D6MT0/C5SJSiNp+frkdqbgyRjJvvOjrnnI3U0qx5JRNY3BScRERFZkUKxXI/kdrarhKSpmUo9kge6OsJYyVaSMdPdSTKaGmo8cxGR5VNwEhERkSVN5wuVRg3zB8gOjmYoFMv32gX8XnpjBpeeM7eLZNITDRNsUD2SiGwMCk4iIiKyyEQ2T//YMP/1ZMoNSqnxKSrlSBhNDSTjBtdcnCBZadrQ2d6keiQR2dAUnERERDapkuMwcnxq0flI/ak0E5m8OybS0kgiZnDg3E63HqnNDKoeSUQ2HQUnERGRTaBQLDE4kqU/NV+PNJDKMJ0vAuD1eOiKhNjV105f3GC3FaM56CPcqHokERFQcBIREdlwpmbK9UjlXaQ0A8MZBkezFEuVeqQGb3kX6bxO+uImiZhBbzRMg3++HikaNRkZSdfqLYiIrDsKTiIiInXKcRyOZ/IMpBa0/h7OkDo+5Y4xQw0k4yYv2tbudraLt4XwenWrnYjIcig4iYiI1IGS45Aan6qcj5R2D5OdzM26Y6KtjSTjJped30UyVm793WoEVI8kIrIKFJxERETWmdlCkcHR7KLW3wOpDDOz5Xokn9dDdyTM7u0d7i5SImYSatRf6yIia0V/woqIiNRQbnp20eGx/cNphsZybj1SMOAjGTO4fHeXe4BsdyRMg1+tv0VEziQFJxERkTPAcRzG0zNuy++5sDQ6Me2OaQkHSMZNLtgRcVt/R1ub8OpWOxGRmlNwEhERWWWlksPRY7lFu0j9wxkyU/P1SPG2JrZ0NXPlnu5ySIoZtBjBGs5aRESey7KCk2VZfw68D9ht2/YvLMvaD9wNNAHPADfZtp2qjF31ayIiIutNfrbI4Wedj3Q4lSFfKAHg93noiRjsOSvitv5OxAyagvq3SxGRelL1n9qWZV0E7Af6Kx97gC8Bt9i2/YhlWXcAHwZuXYtrq/WGRUREViozNevuHs0FpaGxLE65HImmoI9EzOT5e7rdkNQdCeP3qR5JRKTeVRWcLMsKAp8Dfh/4j8rDe4Fp27YfqXx8F+UdolvX6JqIiMgZ4TgOY5PTDAzPHSKbYSCVZmxyxh3TZgZJxAwu2hmlL26QiJtEWxrV+ltEZIOqdsfpL4Ev2bb9tGVZc48lgUNzH9i2PWpZlteyrPa1uGbb9rEVvkcREZFTKpZKDI3l3JA0UKlJyk4XAPAA8fYQ23tauPoik0TcIBkzaQ4HajtxERE5o5YMTpZlHQD2AX+y9tNZHR0dRk1fPxo1a/r6snxas/qjNas/62HNpmcKPHN0kt8OTrj/HRqadOuRGvxe+rqauXxPD1u7W9je08KWrmYaN2k90npYM6me1qv+aM3qSzV/E1wJnA3M7Tb1Av8GfAbomxtkWVYEcGzbPmZZVv9qX1vOmxoby1CqnH9xpkWjJiMj6Zq8tqyM1qz+aM3qTy3WLJ3Ln3A+0tFjObceKRT0k4wbvODCHvd8pK6OED7v4nqk9OQUm/G7Tb/P6ovWq/5ozWrH6/WsaKNlyeBk2/aHKTdoAMCyrGeAlwO/BN5iWdbllZqkg8BXKsN+CjSt8jUREZETOI7D6MQ0/cNpDg1nGKgEpfH0fD1Se3OQZMxk39kx93ykjmbVI4mISPVWfO+Bbdsly7JuBu62LKuRSuvwtbomIiJSKJbrkdzOdpWQNDVTqUfyQFdHGCvZSjJWDkiJmIEZUj2SiIicHo/j1OaWtjWyBXhat+rJcmjN6o/WrP6sZM2m84VKo4b5A2QHRzMUiuU/3wN+L70xg2TMqOwimfREwwQbfGvxFjYd/T6rL1qv+qM1q50Ft+ptpbxRU5XNWe0qIiLrykQ2XwlHc2ckZUgdyzH3T2BGUwPJuME1FyfKu0hxk872phPqkURERNaKgpOIiJwxJcdh5PjUovOR+lNpJjJ5d0ykpZFEzODArrhbj9RmBlWPJCIiNaXgJCIia6JQLDE4kqU/lWZkcoYnnzlGfyrDdL4IgNfjoSsSYldfu3uAbDJuEG5sqPHMRURETqTgJCIip21qplyPdKhyu93AcIbB0SzFSr1pMOCjNxrmwHmd9MVNEjGD3miYBr/qkUREpD4oOImISNUcx+F4Js9AakHr7+EMqeNT7hgz1EAybvKibe1uZ7tzd8Y5Npap4cxFREROj4KTiIicVMlxSI1PVc5HKu8i9Q+nmczNumOirY0k4yaX7e50O9u1GoET6pF8XtUniYhIfVNwEhERZgtFBkezi1p/D6QyzMyW65F8Xg/dkTC7t3csOB/JJNSov0ZERGRz0N94IiKbTG56dtHhsf3DaYbGcovqkZIxg8t3d5GMl89I6o6EafCr9beIiGxeCk4iIhuU4ziMp2fclt9zYWl0Ytod0xIOkIybXLAjUr7VLmYQbWvCq9bfIiIiiyg4iYhsAKWSw9FjuUW7SP3DGTJT8/VI8bYmtnQ1c+WebjcktRjBGs5aRESkfig4iYjUmfxskcOV85HmdpEOpzLkCyUA/D4PPRGDPWdF3NbfiZhBU1B/5IuIiKyU/hYVEVnHMlOz7u5Rf6rc2W5oLEfJKdcjNQV9JGImz9/T7Yak7kgYv0/1SCIiIqtJwUlEZB1wHIexyWkGhucOkc0wkEozNjnjjmkzgyRiBhfujNIXN0jETaItjSe0/hYREZHVp+AkInKGFUsljo7l6K+EpIFKTVJ2ugCAB4i3h9je08LVF5kk4gbJmElzOFDbiYuIiGxiCk4iImtoJl/k8Mji1t+HR7LMuvVIXnqjYS62Ym7r70TUIBjw1XjmIiIispCCk4jIKknn8iecj3T0WI5KORKhoJ9k3OCqC3vckNTVEcLnVT2SiIjIeqfgJCKyTI7jMDoxPd+0oRKUxtPz9UjtzUGSMZN9Z8fKrb/jBh3NqkcSERGpVwpOIiLPoVAsMTSWOyEkTc1U6pE80NURxkq2koyVA1IiZmCGVI8kIiKykSg4iYhUTOcLlUYN8wfIDo5mKBTL99oF/F56YwaXnjO3i2TSEw0TbFA9koiIyEan4CQim9JENl8JR3NnJGVIHctRKUci3OgnGTe55uJEeRcpbtLZ3qR6JBERkU1KwUlENrSS4zByfGrR+Uj9qTQTmbw7JtLSSCJmcGBX3K1HajODqkcSERERl4KTiGwYhWKJwZEs/anKAbKVeqTpfBEAr8dDVyTErr529wDZZNwg3NhQ45mLiIjIeqfgJCJ1aWqmXI90qHK73cBwhsHRLMVSpR6pwVveRTqvk2Ss3Pq7Nxqmwa96JBEREVk+BScRWdccx+F4Js9AKs2hyi7S4GiOobGsO8YMNZCMm7xoW7vb2S7eFsLr1a12IiIisjoUnERk3Sg5DqnxKfqH0xyq7CL1D6eZzM26Y6KtjZyVbGP/rvnOdq1GQPVIIiIisqYUnESkJmYLRQZHs4tafw+kMszMluuRfF4P3ZEwu7d3LDgfySTU6CcaNRkZSdf4HYiIiMhmsmRwsiyrA7gP2A7MAP8N/IFt2yOWZe0H7gaagGeAm2zbTlU+b9WviUh9yk3PLjo8tn84zdBYzq1HCgZ8JGMGl+/uIhkv1yN1R8I0+NX6W0RERNaHanacHOCjtm1/F8CyrI8BH7Ys603Al4BbbNt+xLKsO4APA7daluVZ7Wur+aZFZG04jsN4esZt+T0XlkYnpt0xLeEAybjJBTsi5VvtYgbRtia8utVORERE1rElg5Nt28eA7y546D+BtwJ7gWnbth+pPH4X5R2iW9fomoisI6WSw9FjuUUBqX84Q2Zqvh4p3tbElq5mrtzT7YakFiNYw1mLiIiIrMyyapwsy/JSDk3fAJLAoblrtm2PWpbltSyrfS2uVQKciNRAfrbI4QXnI/UPpzmcypAvlADw+zz0RAz2nBWhL26SiBkkYgZNQZVRioiIyMaw3J9qPgtkgDuBG1Z/Oqujo8Oo6etHo2ZNX1+WT2s2L53L89vBifn/jkxwOJWhVKlHCjX62drdwksObGFbTwvbelrojZlnvB5Ja1Z/tGb1R2tWX7Re9UdrVl+qDk6WZX0cOAtpU9euAAAgAElEQVS43rbtkmVZ/UDfgusRwLFt+9haXFvOmxobm/8h70xTt6/6s1nXzHEcxianGRguHyI7UGnaMDY5445pM4MkYgbn7+8rHyLbaRJtaTyh9ffx8eyzn35NbdY1q2das/qjNasvWq/6ozWrHa/Xs6KNlqqCk2VZHwQuBl5m2/bcT1U/BZosy7q8UpN0EPjKGl4TkRUqlkocHcvR/6yQlJ0uAOAB4u0htve0cPVFJom4QTJm0hwO1HbiIiIiIutENe3IzwXeAzwJ/MCyLICnbdu+wbKsm4G7LctqpNI6HKCyI7Wq10SkOjP5IodHFrf+PjySZdatR/LSGw1zsRVzW38nogbBgK/GMxcRERFZvzyOU5tb2tbIFuBp3aony1HPa5bO5U84H+nosRxzv61DQb8bjuZ+7WwP4ffV9/lI9bxmm5XWrP5ozeqL1qv+aM1qZ8Gtelspb9RURS2vROqA4ziMTky7Lb/ngtJ4er4eqb05SDJmsu/smBuUOppPrEcSERERkeVTcBJZZwrFEkNjuRNC0tRMpR7JA10dYaxkK8lYOSAlYgZmSPVIIiIiImtFwUmkhqbzhUqjhvkDZAdHMxSK5XvtAn4vvTGDS8+Z20Uy6YmGCTaoHklERETkTFJwEjlDJrL5Sjiq7CSlMqSO5Zirxgs3+knGTa65OFHeRYqbdLY34fPWdz2SiIiIyEag4CSyykqOw8jxKfd8pHJISjORybtjIi2NJGIGB3bF3XqkNjOoeiQRERGRdUrBSeQ0FIolBkey9KfKAWmgUo80nS8C4PV46IqE2NXXTl9lFykZNwg3NtR45iIiIiKyHApOIlWaminXIx2q3G43MJxhcDRLsdL6PtDgLe8inddJMlZu/d0bDdPgVz2SiIiISL1TcBJ5Fsdx3HqkQ3O7SMMZUsen3DFmqIFk3ORF29rdznbxthBer261ExEREdmIFJxkUys5DoMjGZ741TCHKrtI/cNpJnOz7phoayPJuMlluzvdznatRkD1SCIiIiKbiIKTbBqzhRKDo4tbfw+kMszMluuRfF4P3ZEwu7d3LDgfySTUqN8mIiIiIpudfiKUDSk3Peu2/J5rAT40lnPrkYIBH8mYweW7uzh3R4S2UAPdkTANfrX+FhEREZETKThJXXMch/H0jNvye243aXRi2h3TEg6QjJtcsCNSvtUuZhBta8JbudUuGjUZGUnX6i2IiIiISB1QcJK6USo5HD2WWxSQ+oczZKbm65HibU1s6Wrmyj3dbkhqMYI1nLWIiIiIbAQKTrIu5WeLHF5wPlL/cJrDqQz5QgkAv89DT8Rgz1kR+uImiZhBImbQFNS3tIiIiIisPv2UKTWXmZploNL6uz9V7mw3NJaj5JTrkZqCPhIxk+fv6XZDUnckjN+neiQREREROTMUnOSMcRyHsclpBobLh8gOVBo3jE3OuGPazCCJmMGFO6PlQ2Q7TaItjWr9LSIiIiI1peAka6JYKnF0LEf/s0JSdroAgAeIt4fY3tPC1ReZJOIGyZhJczhQ24mLiIiIiJyEgpOctpnZIofn2n5Xfj08kmXWrUfy0hsNc7EVIxk3SMZNElGDYMBX45mLiIiIiFRHwUmWJZ3Lz3e0q4Sko8dyVMqRCAX9JOMGV13Y44akzvaQ6pFEREREpK4pOMlJOY7D6MS02/J7LiiNp+frkdqbgyRjJvvOjpVbf8cNOppVjyQiIiIiG4+Ck1Aolhgay50QkqZmKvVIHujqCGMlWt2AlIgZmCHVI4mIiIjI5qDgtMlM5wuVRg3zB8gOjmYoFMv32gX8XnpjBpeeU95FSsQNeqMGwQbVI4mIiIjI5qXgtIFNZPOVcFTZSUplSB3LUSlHItzoJxk3uebiRHkXKW7S2d6Ez6t6JBERERGRhRScNoCS4zByfMo9H6m/cpDsRCbvjulobiQZNziwK04ibtAXN2kzg6pHEhERERGpgoJTnSkUSxwZzboBaaBSjzSdLwLg9XjoioTY1ddOX2UXKRk3CDc21HjmIiIiIiL1S8FpHZuaKdcjHarcbjcwnGFwNEuxVKlHavCSiBkcOK+TZKzc+rs3GqbBr3okEREREZHVpOC0DjiO49YjHZrbRRrOkDo+5Y4xQw0k4yYv2tZOMlbeRYq3hfB6daudiIiIiMhaW5fBybKsncC9QAcwBrzetu2najur1VFyHFLjU5WQVN5F6h9OM5mbdcdEWxtJxk0u291Zaf9t0moEVI8kIiIiIlIj6zI4AXcBn7Nt+0uWZd0E3A1cXeM5LYtTadiQOj7FyPgUg6PZck1SKsPMbLkeyef10B0Js3t7h7uLlIiZhBrX67KIiIiIiGxO6+4ndMuyYsBFwLWVh74M3GlZVtS27ZHazWx5fvCLo9zz7V+5HwcDPpIxg8t3d5GMl+uRuiNhGvxq/S0iIiIist6tu+AEJIBB27aLALZtFy3LOlJ5vG6C0/nbO3jLK3bRbjYSbW2ixQjg1a12IiIiIiJ1aT0Gp9PW0WHU9PWjUZMosK2vo6bzkOpFo2atpyDLpDWrP1qz+qM1qy9ar/qjNasv6zE4DQA9lmX5KrtNPqC78nhVxsYylCotu8+0aNRkZCRdk9eWldGa1R+tWf3RmtUfrVl90XrVH61Z7Xi9nhVttKy7AhvbtlPAE8CNlYduBB6vp/omERERERHZWNbjjhPAQeBey7LeC4wDr6/xfEREREREZBNbl8HJtu1fA5eu4FN9QM0Pha3168vyac3qj9as/mjN6o/WrL5oveqP1qw2Fnzdfcv5PI/j1KYWaI1cDjxc60mIiIiIiMi6dwXwSLWDN1pwCgL7gCGgWOO5iIiIiIjI+uMDuoCfADPVftJGC04iIiIiIiKrbt111RMREREREVlvFJxERERERESWoOAkIiIiIiKyBAUnERERERGRJSg4iYiIiIiILEHBSUREREREZAkKTiIiIiIiIktQcBIREREREVmCgpOIiIiIiMgSFJxERERERESWoOAkIiIiIiKyBAUnERERERGRJSg4iYiIiIiILEHBSUREREREZAkKTiIiIiIiIktQcBIREREREVmCgpOIiIiIiMgSFJxERERERESWoOAkIiIiIiKyBAUnERERERGRJSg4iYiIiIiILEHBSUREREREZAkKTiIiIiIiIktQcBIREREREVmCgpOIiIiIiMgS/EsNsCyrA7gP2A7MAP8N/IFt2yOWZe0H7gaagGeAm2zbTlU+b9WviYiIiIiI1ILHcZznHGBZVjtwvm3b3618/DGgHXgT8BRwi23bj1iWdQewzbbtWy3L8qz2tSrfTxDYBwwBxWV9JUREREREZDPwAV3ATyhvDFVlyR0n27aPAd9d8NB/Am8F9gLTtm0/Unn8Lso7RLeu0bVq7AMernKsiIiIiIhsXlcAjyw5qmLJ4LSQZVleyqHpG0ASODR3zbbtUcuyvJUdqlW/VglwSxkCGB/PUio9907aWunoMBgby9TktWVltGb1R2tWf7Rm9UdrVl+0XvVHa1Y7Xq+HtrYwVLJDtZYVnIDPAhngTuCGZX7umVAE5r4QNdPRYdT09WX5tGb1R2tWf7Rm9UdrVl+0XvVHa1ZzyyrtqTo4WZb1ceAs4HrbtkuWZfUDfQuuRwDHtu1ja3FtOW9qbCxTsx2naNRkZCRdk9eWldGa1R+tWf3RmtUfrVl90XrVH61Z7Xi9nhWF1qrakVuW9UHgYuBVtm3PFVD9FGiyLOvyyscHga+s4TUREREREZGaqKYd+bnAe4AngR9YlgXwtG3bN1iWdTNwt2VZjVRahwNUdqRW9ZqIiIiIiEitLNmOvM5sAZ5+9q16xWKB8fERCoX8mk/A6/VSKpXW/HVk9ZxqzbxeH01NBobRgsfjqcHM5FR0e0P90ZrVH61ZfdF61Z+NvGa56VkGUhn6hzP0D6fpT2XIF0q8/7ZL8PuquuFtTS24VW8r5Y2aqiy3OURdGh8fobExRDjcueY/APv9XgoFBad6crI1cxyHYrFAOn2c8fER2ttjNZqdiIiIyPrkOA7j6ZlyQEql3aA0OjHtjmkJB0jEDXb1teP11vc/RG+K4FQo5M9IaJKNw+Px4Pc30NrawfDw4VpPR0RERKSmSiWHoWM5BobTi4JSZmoWAA8Qaw+xtauZK/d0k4ybJGMGLUawthNfRZsiOAEKTbIiHo8X2FC3s4qIiIg8p5nZIodTGfpTGQaG0xwazjA4Ur7dDsDv89ATNbhoZ4REzKQvbtITDdMU3NjRYmO/OxEREREROaXJXJ6BBbVI/cNpjh7LMdcGIRT0k4wbvODCHpJxg2TMpLMjtC5qlc40BacaeM1rricQCNDQEKBUKvKGN9zGNde8mMcee5Q//MOD3HjjzbztbX/kjr/99rfwxBOP8eCD3yMUCp30OWdnZ/n0pz/BE088hs9XbnZw88230tLSwhe+8FkAjh0bo1QqEYlEAXjjG9/MlVdeddLny+Wy3H335/jP//wBgUAAgGuvfQmvf/2t3H//N/nQh/6Cd7zj3bz61a8Fyve4vva1ryKXy/Dtbz+05Pv83Oc+zT333Lfk1+orX/kyhUKB3//9m6v86pb9zd/cxdat23jhC1/0nOO+9rWvMjWV5XWvu2VZzy8iIiJSTxzHYWRimv6j8wFpIJVhPD3jjuloDpKMm+w7O0Zf3CQRN+hobtSdWxUKTjXygQ98hG3bdvDkk7/m4MHb2Lv3UgCSyT4efvi7HDx4Oz6fjyNHBpmZmV7i2eCrX/0yk5MT3Hvvl/H5fORyOcbGRkkkklx66QEA7rnnbqamprj99rc/53M5jsO73vV2tm/fwZe+9FUaGhqYmZnmm9/8F3fMzp0W//qv33aD0+OP/5Tm5mZyuUxV77Ma09PT/PM//yP33fdPVX/OnDe96WBV417xiht43etew6te9RrCYZ3eLSIiIvWvUCxxZDTLoeF0eTcplWEglWZqpgiA1+OhKxLi7GSrW4uUiJsYTQ01nvn6timD0/f/a4hHfj60Js995YXd7N/VWfX4nTvPJhQKMTQ0CEBTU4gtW7by4x//kAMHLueBB77FS17yMn71q18+5/OkUina2zvw+XwAhEIhQqHkit7Do4/+mKGhI3z601/A7y9/iwSDjbzmNb/njunu7uH48eM8/fRv2bp1G/ff/02uu+7l/O3f/lVV77Ma3/3uQ+zZcxHBYCMA99//Tb7znX/FMEx+85uniEZjvP3t7+Lzn/80AwMDnHPOLt773vfj8Xj44Affx9lnn8OrX/3/cM89d9Pff4hsNsORI4P09PTy/vd/hMbGRvx+P5dcsp+HHvoOr3jFDSv6eomIiIjUSm66wEBqwS7ScIbB0SzFytE8gQYviZjB/nM7ScYMknGTnkiYQIOvxjOvP5syOK0njz32KPl8nt7eJE89ZQNw3XXX8/Wvf439+y/joYce5AtfuIdPfvJjz/k811//Kt75ztt57LGfsHv3BVx66fN4/vNfsKI5Pfnkr7Gss93QdCovecnLeOCBb3HLLW/iv/7rZ9xyy5tOGZxO9j6X8vjjP2XXrnMXPfarX/2SL37xH4nF4rz73W/nL/7iDu68869obGzktttu4tFHf8y+fSfuatn2r/jrv/4ihmHwznfezoMPPuAGpd27z+f7339YwUlERETWLcdxOJ7Jl2uRFtQjjRyfvzOpOdRAMm5y7rb28q12MYN4W6ju24CvF5syOF22u4vLdnetyXNXe47THXf8MYFAkHA4zAc/+BFM03SvXXTRXj7xiQ/zve99l23bttPS0rrk823fvoOvfOXr/Oxnj/Pznz/Bpz71MX70ox/wrne9Z9nvodpDka+++lpuvfUmEokkV1zxAne3a6Hnep9LGRlJ8bznXbHosfPPv4BYLA7AWWdZdHZ2YRjlW+x27DiLwcGBkwanSy7Z7772rl3nMTg432K8o6ODVCpV9bxERERE1lKp5DA8npu/1a4SlNK5WXdMrK2Jvs5mrji/0vo7btC6gVp/r0ebMjitB3O1Pyfj8Xi4+upr+ehHP8B73vO+qp8zGAxyySX7ueSS/Rw4cDnveMfbVhScLOscvva1r1IoFJ5z1ykUCnHuuedx112f5bOfvfukY57rfS4lGAySz88semyuUQWA1+slEAgu+NhHsVg86XMtHuddNG5mJk8wqD9oRERE5MybmS0yOJJdtIt0OPWs1t8Rgwt2RNxdpETM2PCtv9cjfcXXqVe+8ndoampyGzss5Wc/e5xEIkl7ewdQvt2uq6t7Ra+9d+8lxONx7rzzU7ztbX9UaQ4xw1e/+mVuuumWRWNvuukWdu06j23bdjA0dGRFr3cq27btoL//0Ko+58k888zT7Nixc81fR0RERDa3zNSsu4s0fHyapwbGGRrLuq2/m4J+kjGDK/dUWn/HTbo2aevv9UjBaZ2KRmO87nVvqHr80NARPvWpjzE7W8Dn89La2s573/v+Fb22x+Ph4x//DHfd9Tle97rX0NhYbs5w7bUvPWHs1q3b2Lp127Jf4ze/eYobbrjO/Xjv3kv40z9936IxV155FZ/4xEe47bY/WPbzL8ePfvQD3vzm/7GmryEiIiKbh+M4jE5MV+qRMgykMhwaTi9q/R1pbaI3EmavFa0cImvQ0aLW3+uZp9p6ljqxBXh6bCxDqTT/vo4ePURnZ98ZmUC1NU5SnXe+83YOHrydnTvPXpPnP3ToGT7+8Q/x2c+evKkFnNnvH6lONGoyMpKu9TRkGbRm9UdrVl+0XrUz1/p7LhzNtf+emikA4PFAV0fYPTw2GS/faretr0NrViNer4eODgNgK/BMtZ+nHSdZ197xjndz+HD/mj1/KnWUd797+XVgIiIisvlMzRQYSGUW1SMdGc1SKC5o/R012L8rTqISlHqjav29USg41Znbbrv5hAYI55573oqaQHzsYx/i//7fXyx6zOfzcc89953WHFdTIpEkkVjZeVTV2Ldvv3YJRUREZJG51t8DqfKtdnNBKTU+5Y4xK62/r93b7na1U+vvjU3Bqc6sZqhZSdgSERER2UjmWn/3D2forwSlgeE0kwtbf7c2kYgbXLa7yz1EttUIqB5pk9k0wclxHH1zy7I5TgnQ942IiMhGkJ8tMjiadZs29KfSHE5lmZkt383j83roiYQ5f3uERNygL27SGzUINW6aH5nlOWyK7wK/P0A2O0k43KzwJFVxHIdisUA6PU4g0Fjr6YiIiMgyZaZmGRhOc2g4495yNzSWo1RpjNYU9JGImVxxQZfbtKE7ElbrbzmlTRGc2tqijI+PkMkcX/PX8nq9lEqql6knp1ozr9dHU5OBYbTUYFYiIiJSDcdxGJuYdps19FeC0tjkfOvvNjNIMmZw4c4ofXGDRNwkqtbfskybIjj5fH4ika4z8lpqB1p/tGYiIiL1oVAscXQsV277vSAo5Ra0/u5sD7Gjt5WrK13tEnGD5lCgxjOXjWBTBCcRERERqS9TMwUOj2QWdbUbHMlSKJbvEgn4vfTGDC45J0YyXg5IvVGDoFp/yxpRcBIRERGRmprIzLi1SIcqXe1S41M4letGUwPJuME1e3vdrnbx9iZ8XtUjyZmj4CQiIiIiZ0TJcUiNTy3qatc/nGEym3fHRFsbScZMDpzXWT4fKWbQZgZVjyQ1p+AkIiIiIqtutjDX+nth04bMotbf3ZEwu7e1u13tEjGDUGNDjWcucnIKTiIiIiJyWrLTs4sCUn8qzdDofOvvxoCPZMzg8vO7SFaaNnRHwjT4daud1A8FJxERERGpiuM4HJuccZs1zAWlsclpd0yrESAZN7nwrIi7kxRpbcKrW+2kzlUVnCzL+jjwamALsNu27V9UHn8GmK78B/DHtm3/W+XafuBuoAl4BrjJtu3U6VwTERERkTOjWCoxNJZjYDizqP13drrS+hvo7AixvaeZqy/qIVHZSWoOq/W3bEzV7jj9C/Bp4OGTXHvNXJCaY1mWB/gScItt249YlnUH8GHg1pVeW8mbExEREZGlTecLHE5l3WYN/cNpDi9o/d3g99IbDbP37Jjb1a43ahAMqPW3bB5VBSfbth8BsCyr2ufdC0zPfR5wF+Xdo1tP45qIiIiInKaJbJ6B4bS7i3RoOEPqWM5t/R1u9JOMm7zw4h63q11nR0itv2XTW40ap7+v7BQ9ArzHtu3jQBI4NDfAtu1Ry7K8lmW1r/SabdvHVmGuIiIiIptCyXEYOT51QtOGicx86+9ISyPJuMmBXfFySIqr9bfIqZxucLrCtu0By7KCwKeAO4GbTn9ap6ejw6jp60ejZk1fX5ZPa1Z/tGb1R2tWf7Rm9WO2UGRipshvByd4enCC3wxO8MzQBFMz862/E3GTi8+Os62nhW3dLWztacFoUuvvWtLvsfpyWsHJtu2Byq8zlmV9HvhG5VI/0Dc3zrKsCODYtn3MsqwVXVvOvMbGMpRKztID10A0ajIykq7Ja8vKaM3qj9as/mjN6o/WbP3KzbX+XtDVbmgsS7Hys08w4CMRM3jeuV0k4gZ9cZPuSIgG/+J6pKnMNFOZ6ZO9hJwB+j1WO16vZ0UbLSsOTpZlhQG/bdsTlVv1fg94onL5p0CTZVmXV+qVDgJfOc1rIiIiIpuG4ziMp2fmb7WrBKXRifmw02IESMZMDpzfRcQMkowbRNX6W2RNVNuO/DPA7wCdwP+xLGsMuB74fy3L8gE+4JfA/wCwbbtkWdbNwN2WZTVSaSt+OtdERERENqpiqcTRsdyiXaSBVIbM1CxQbv0daw+xrbuZK/d00xc3ScRNWiqtv7V7IbL2PI5Tm1va1sgW4GndqifLoTWrP1qz+qM1qz9as7Uzky9yeGTxLtLhkSyzhXLrb7+v3Po7GTcqXe1MemNhGgOn/vdurVf90ZrVzoJb9bZS3qipymp01RMRERGRk5jM5ekfTi86RPbosRxz/2491/r7qgt73KDU2R7C71Prb5H1RsFJRERE5DSVHIfRudbfCw6RPb6g9XdHcyPJuMEl58TdQ2Tbm9X6W6ReKDiJiIiILEOhWGJwJOsGpIHhNAMjGbf1t9fjoTsS4py+dncXKREz1PpbpM4pOImIiIicQm66wEAqvWgn6cjogtbfDeXW3wfO7XQPkO2JhE9o/S0i9U/BSURERDY9t/V3pVnDXE3SwtbfzeEAybjB7m0d7k5SrE2tv0U2CwUnERER2VRKJYejx3KLutr1D8+3/gaItzWxpavc+jsRM+mLG7QYwRrOWkRqTcFJRERENqyZ2XLr74EFh8geTmXIu62/PfREDS48K+LeatcbNWgK6kckEVlMfyqIiIjIhpDO5d1apLlb7Ra2/g4F/STjBi+4sIdEzKAvbtLZodbfIlIdBScRERGpK47jMDIxzcBwmkOVrnb9qQzj6Rl3THtzkGTMZN/ZscohsgYdLY1q/S0iK6bgJCIiIutWoVjiyGh2UVe7gVR6Uevvro4QZydbScRMt2mDWn+LyGpTcBIREZF1YWqmwMCCZg39qTRHRrMUiuV77QINXhIxg/27Ot2A1BMJE2hQ628RWXsKTiIiInJGOY7D8Ux+UVe7geEMqeNT7hgz1EAybnLtvnaSlZ2keFsIr1e32olIbSg4iYiIyJoplRyGx3PlHaQFQSmdm2/9HWtrIhk3uPz8LncnqSUcUD2SiKwrCk4iIiKyKvKzRQ6PZOdrkYbTDIxkyM+WW3/7vB56omEu2BEhGSsHpERMrb9FpD7oTyoRERFZtszU7KJapP7hDENjWbf1d1PQTzJm8PwLuumrBKTuSFitv0Wkbik4iYiIyCk5jsPYxHS57XdqPigdm5xv/d1mBumLm1y8M+reahdR628R2WAUnERERAQot/4eGsvRP5xmJP0MTz5zjP7hDLmZAgAeD3R1hNnZ21q+zS5ukIwZmKFAjWcuIrL2FJxEREQ2obnW3wOpDIcqXe0GRzMLWn/76I2GuWRX3K1H6omGCar1t4hsUgpOIiIiG9zxzMwJXe1S4/Otv42mBvriBtfuTVR2kUzOs+IcG8vUcNYiIuuLgpOIiMgGUXIcUuNT800bKkFpMpt3x0RbG0nGTS47r5Nk3CQZN2k1Tmz97dN5SSIiiyg4iYiI1KHZQqX1dyUcDQyXb7ubmS0CldbfkTC7t7WXA1LMIBEzCTXqr34RkZXQn54iIiLrXGZqloEFt9n1pzIMjeYoVXp/NwV9JGImV5zfVdlFUutvEZHVpuAkIiKyTjiOw9jktHub3UAlKI09q/V3ImZw4VnRctOGznLrb69af4uIrCkFJxERkRooFEscHcu5h8fOBaXsdKX1N9DZEWJHbytXV7raJWIGzWG1/hYRqQUFJxERkTU2nS9wOJUtt/1OpTk0nGFwJEuhWAKgwe+lN2qw9+yYW4/UGzUIBtT6W0RkvVBwEhERWUUT2Xylq11lJymVIXUsh1O5bjQ1kIwbXHNxL8m4QSJu0tnehM+reiQRkfVsyeBkWdbHgVcDW4Ddtm3/ovL4TuBeoAMYA15v2/ZTa3VNRERkPSk5DiPjU5VdpPlDZCcWtP6OtJRbfx84N04yVm7a0GYGT2j9LSIi6181O07/AnwaePhZj98FfM627S9ZlnUTcDdw9RpeExERqYnZQonB0cyis5EGUhlm8vOtv7sjYc7b2u52tUvEDEKNDTWeuYiIrJYlg5Nt248AWJblPmZZVgy4CLi28tCXgTsty4pSrmdd1Wu2bY+s9A2KiIgsR3Z6loEFAal/OM3QWI5iqXyzXWPARyJmcPnurnJXu7hJdyRMg1+32omIbGQrrXFKAIO2bRcBbNsuWpZ1pPK4Zw2uKTiJiMiqchyHY5Mz9KfKt9jN3XI3OjHtjmkxAvTFTS7YEaEvbpKIG0Rbm9T6W0RkE9qQzSE6Ooyavn40atb09WX5tGb1R2tWf2q5ZsViicMjGX47OOH+9/SRCdK5WQA8HuiOGJyztYNtPb/crd4AABgHSURBVC1s627h/2/v3mMjvc77jn95X5Izu9wlOcNdLofW9ci6rLSyZEuyFCWChTRBDbexa1u1rDhBgMjNBW3i1kDgpBfAreG4SOLYroSkSZQ4MSDAqB0UqF0UqeuqToHUlWK7aY/t2FpybxySe+PwtiRn+se8HA5Xu0suOdyZIb8fYLHknHdmzu6jV8Nnz3l/7y3D+zmY3le3OTcCz7PmYr2ajzVrLlttnMaB4RBCW7Iy1AYcSR5v2YGxGzI9XaBYLG184A4YHEwzOTlTl/fW1liz5mPNms/NrNni5RXGJwuMT5Rjv8fzM5ycnGVpuTr6u5fjdwwymqTajVwl+nt5YYnJhaWbMudG5HnWXKxX87Fm9dPa2rKlhZYtNU4xxnwI4TXgGeDzye+vrl6LtBNjkiRd6dJq9HdyLdLYRIGJqujv3n3t5LJpnnpwuJJqN9TfY/S3JOmGbSaO/NPATwFDwH8JIUzHGO8BngdeCiH8BnAeeK7qaTsxJknao4qlEpMX5tddi3RiYoaLhbXo7/79+8hlU7zt7iy5bIpcJs2h/UZ/S5Jqo6VUqs+Wth3yJuCHbtXTjbBmzceaNZ8bqdnScpHTU7PrVpLG8wUWkujv1pYWjgz0lGO/k1S7kWyKXqO/a8rzrLlYr+ZjzeqnaqveLcDrm33ergyHkCQ1h7mFpWT1qHxN0li+wOmp2Ur0d1cS/f3YvUOV+yMND/TS0d62wStLklRbNk6SpB1Xjv5eKN9ANj9TuZHsuujv3k5y2TTHbutnJJNiNJtm8KDR35KkxmDjJEmqqWKxxJlzc+UVpKRROjk5y6XZ8vVILUDmUA+3HN7Pkw8cqWy5O5Dqqu/EJUm6DhsnSdKWLS6tcHKywNjEWvz3qckCl5Po7/a2VoYHe3nk3sMM7u9iNJtmeLCX7i4/fiRJzcVPLknSplyau8x4ssVuNbTh7Lk5VjOGerrayWVT/Ojx4Uqq3VB/D+1trV4ELUlqejZOkqR1SqUSkxcXGDu7PtXu/Mxi5Zj+/V3ksmkevivDaJJq179/n9HfkqRdy8ZJkvaw5ZVy9PeJiZnyalK+wHh+hvnFtejvwwM93JXrq1yLNJJNk+o2+luStLfYOEnSHjG3sMx4vmoVaaLAqero745y9Pcj9wxV7o80PNBLZ4fR35Ik2ThJ0i5TKpW4ULhcvhap6nqkyQtr0d/7ezrIZdPce2t/+XqkbJpMXzetrW61kyTpamycJKmJFYslJs7PrW21SxqlmbmlyjGZg92MDu3niWNHKjeR7TP6W5KkG2LjJElNYnFphVOTs+tWkU7mq6O/WxgeSHH/7QPlwIZMipFMyuhvSZJqwE9TSWpAhfmlN6winZmerUR/d3e1M5pN8eQDw5WtdoeT6G9JklR7Nk6SVEelUompiwuMTazFfp+YmFkX/X1ofxe5TJqHwiAjmTSj2RT9B4z+liTpZrJxkqSbZDX6e7U5Wo3/nl9cBqClBQ739xJyfeQy5WuRRjIp0j2ddZ65JEmycZKkHTC/uMx4vrDueqTTU7Msr5T32nV2tDIymOKRu7OMZFPkMmmODhr9LUlSo7JxkqRtWI3+Hs/PVLbbjeUL5M/PV45JJ9HfTz90qJJqlz3YY/S3JElNxMZJkjZpNfp7bKLAWNIojU/McKk6+ruvm1w2xdvvO1y5iWxfqtPrkSRJanI2TpJ0FZeXVjg1lUR/J43Syfwsi0srALS1tjA82Mux2wYqqXZGf0uStHv5CS9pzyvMLzE+McOJiUJly92Z6TmKSfZ3d1cbI5k0T9x/uBLacGSg1+hvSZL2EBsnSXtGqVRi+uJCJaxhLGmUpi+tRX8fTHeRy6Q4fucgo9kUI9k0g0Z/S5K059k4SdqVlleKnJ2eK8d+VzVKc1XR30OHerjjaB9PVW2122/0tyRJugobJ0lNb+HyavT3WqrdqclZlleKAHS2t3I0k+Ktb86UG6RsiqODKbqM/pYkSZtk4ySpqVwsLDI2Pce3v5uvNEr58/OUkvFUdwe5bIp3PHS0kmqXPdRNW6vXI0mSpK2zcZLUkIqlEvnz8+tS7cYmClyavVw5ZrBvH7lMmsfuHWIkmyaXSXEw3eX1SJIkqeZsnCTV3dLyavR3dWhDYV3095GBXu679RC5TJpjIUO6s42eff4vTJIk3Rz+1CHppppdWFrXII3lZzgztRb9va+zjVwmxePHDpfvj5RJc2Sgl472ta12g4NpJidn6vVHkCRJe5CNk6QdUSqVOHdpsRLWsNooTV9aqBzTl+okl01z/I6Byv2RBvq6aXWrnSRJajDbbpxCCK8DC8kvgI/GGL8aQngEeBHoBl4Hno0x5pPnbGlMUmNaKRY5Mz3H+ERhXfz37EIS/Q0M9fdw2/B+nnpwmJFkJWl/r9HfkiSpOdRqxek9McbvrH4TQmgBPg98KMb4SgjhY8AngJ/d6liN5ilpmxYuL3MyP1sJaxibmOFkVfR3R3srRwd7eeiuTCXV7uhgiq5Oo78lSVLz2qmteg8BCzHGV5LvX6C8evSz2xiTdJNdnL3M+MRMZRXpxESB/Lm5SvR37752ctk073jL0WQVKcVQf4/R35IkadepVeP0p8lq0SvArwE54MTqYIxxKoTQGkI4tNWxGOO5Gs1V0hWKpRKTF+bfENpwsbAW/T1wYB+5bJpH786Sy5avRzL6W5Ik7RW1aJyeiDGOhxC6gN8GPgP8hxq87pb196fq+fYMDqbr+v66cXupZkvLK5w4O8MPT13kB6cu8oPTF/nh6UvML5avR2prbWEkm+Ytd2W5dfgAtx45wC3DB0h1d9R55uvtpZrtFtas+Viz5mK9mo81ay7bbpxijOPJ74shhM8Bfw78DjC6ekwIYQAoxRjPhRDGtjJ2I3Oani5QLJY2PnAHGJPcfHZzzeZWo7+rUu3OTM+ykpwfXUn092P3DJWjv7Npjgz00NG+/nqk+cIC84WFq71FXezmmu1W1qz5WLPmYr2ajzWrn9bWli0ttGyrcQoh9ALtMcaLyVa99wOvAd8EukMIjyfXKz0PvJw8batjkq6hVCpxfmZxbatd0ihNXVxrdg6kOsll0tx/e39lq92g0d+SJEmbst0VpyzwxRBCG9AG/A3wj2KMxRDCB4EXQwj7SGLFAbY6JqlspVjk7PTculWk8XyBwvwSUI7+zhzq4dYj+3nygSOMZtOMZNMcMPpbkiRpy7bVOMUYfwAcv8bYN4D7ajkm7TWLl1c4Obl+Fenk5CxLy+Xo7/a2cvT3g3cOVrbaHR3sZV+n97aWJEmqJX+6khrEpbnLjE3MrLuJ7Nlzc5SSy/VWo79/7PhwsoqU4rDR35IkSTeFjZN0kxVLJaZWo7+rbiJ7oSr6u3//PnLZFG99c7ZyE9lD+43+liRJqhcbJ2kHLa8UOTU5W2mQxidmGJ8sML+4AkBrSwtHBnp48+ihyla7kUyq4aK/JUmS9jobJ6lG5haWGc/PrFtJOj1VFf3d0cZIJsWj9wxVUu2GB3rfEP0tSZKkxmPjJN2gUqnEhcLl8nVIE2uN0uSFtejv/b2d5LIp7ru1v7KSlDlo9LckSVKzsnGSrqNYLHH23Ny6VLuxibXob4DswW7eNLSfH7n/SHklKZPiQKqrjrOWJElSrdk4SYnFpXL093jVTWRP5gtcrkR/tzA8mOL4HQOVrXZHB1N0d3kaSZIk7Xb+xKc9aWbucmWLXf7CIt8dO7cu+runq51cNsWPHh9mJJNiNJtmqL+H9jajvyVJkvYiGyftaqVSicmLC4xPzHAiSbUbyxc4P7NYOWbwYDfD/b08fFemstWu/8A+o78lSZJUYeOkXWN5pcjpqdl1qXbj+Zl10d+H+3u4K9fHSCbNaDbFSDbNLblDTE7O1Hn2kiRJamQ2TmpK84vLjFeFNYzlZzg9NcvySnmvXWdHKyOZFI/cPVRJtRse6KWzw+hvSZIk3TgbJzW01ejv6lS78YkC+QvzlWPSPR3ksmmefvgQuUw5tCF7sIfWVrfaSZIkqTZsnNQwisUSE+fnyitIVY3SzNxa9HfmYDe5bIrHjx2urCQd6O30eiRJkiTtKBsn1cXlpRVOTc0mN5FNVpImC1xeKkd/t7W2MDzYy/23D5DLlBukkYzR35IkSaoPfwrVjivML627Fml8osCZ6TmKSfZ3d1c7uUyKJ+8fJpdNMZJJcWSg1+hvSZIkNQwbJ9VMqVRi+uJCOfY7v9Yonbu0Fv19MN3FaDbNg3cOVm4iO2D0tyRJkhqcjZO2ZHmlyJnpucpK0mqjNLe4DEBLCxzu7+XOo33lbXbZFLlMinRPZ51nLkmSJN04GydtaDX6ezxfqFyTdGqqsBb93d7K0UyKt96drVyPNDzYS5fR35IkSdolbJy0zoXC4htS7fLn16K/U90djGZTPP3QCCPZFKPZtNHfkiRJ2vVsnPaoYqlE/vz8WmhD0ihdmr1cOWawbx+5bJq33zuUXI+Upi9l9LckSZL2HhunPWBpeYWTk7OV5mh8orztbnFpBUiivwd6OXZrf+VapJFMmp59/uchSZIkgY3TrlOYX2K8apvdWL7Amanq6O82RjJpnjh2uJJqZ/S3JEmSdH02Tk2qVCoxfWmB8YkksCFplKaviP4eyaQ4fsdgObRhKM3AgX20utVOkiRJuiE2Tk1geaXI2ek5xvJr1yON5wvMLqxFfw8d6uH2o308laTajWRT7Df6W5IkSaoJG6cGs3B5mZP52WQVaYYTEwVOTc6yvFIEoKO9laODKR6+K8NIstXu6ECKrk6jvyVJkqSdYuNURxdnLyepdslKUr5A/twcpWQ81d1BLpviHW85Si6bYiSbZuhQN22tXo8kSZIk3UwN2TiFEO4EXgL6gWnguRjj9+o7q60rlkpMnp9fC2xItttdrIr+HjhQjv5+9J4suUx5Jelgusvob0mSJKkBNGTjBLwAfDbG+PkQwrPAi8BTdZ7TDVkpFvnr70/z2vem+NbfTnFpbgkoR38fGejl3lsOVVLtRjIpevZ11HnGkiRJkq6l4RqnEEIGeBB4OnnoC8BnQgiDMcbJ+s3sxrzyrTO89JVIT1c7993Wz5tHDzKaTXNkoJeOdrfaSZIkSc2k4RonYAQ4FWNcAYgxroQQTiePN03j9La7s+V0u0zKeyRJkiRJTa4RG6dt6+9P1fX9BwfTAIwMH6zrPLR5qzVT87BmzceaNR9r1lysV/OxZs2lERuncWA4hNCWrDa1AUeSxzdlerpAsVja+MAdMDiYZnJypi7vra2xZs3HmjUfa9Z8rFlzsV7Nx5rVT2try5YWWhpuD1mMMQ+8BjyTPPQM8GozXd8kSZIkaXdpxBUngOeBl0IIvwGcB56r83wkSZIk7WEN2TjFGP8f8LYtPLUNystv9VTv99eNs2bNx5o1H2vWfKxZc7Fezcea1UfV33vbjTyvpVSqz7VAO+Rx4L/XexKSJEmSGt4TwCubPXi3NU5dwMPAGWClznORJEmS1HjagMPAXwGLm33SbmucJEmSJKnmGi5VT5IkSZIajY2TJEmSJG3AxkmSJEmSNmDjJEmSJEkbsHGSJEmSpA3YOEmSJEnSBmycJEmSJGkD7fWewG4SQrgTeAnoB6aB52KM36vvrPaeEMLrwELyC+CjMcavhhAeAV4EuoHXgWdjjPnkOVsa09aEED4FvBt4E3BfjPE7yePXPId2Ykybd52avc5VzrdkzHOuTkII/cCfALdRvrnj94GfjzFO7kRdrNn2bVCzEvBtoJgc/sEY47eT570T+E3KP9N9E/iZGOPcdsa0eSGELwG3UK5NAfilGONrfp7tTq441dYLwGdjjHcCn6X8IaL6eE+M8YHk11dDCC3A54FfSOrzdeATAFsd07Z8CfgR4MQVj1/vHNqJMW3etWoGV5xvsPXzynOuZkrAJ2OMIcZ4DPhb4BM7URdrVjNXrVnV+GNV59lq05QCfg94Z4zxdmAG+Mh2xnTDfjrGeH+M8TjwKeAPksf9PNuFbJxqJISQAR4EvpA89AXgwRDCYP1mpSoPAQsxxleS718A3rvNMW1RjPGVGON49WPXO4d2Ymyn/my71dVqtgHPuTqKMZ6LMX6t6qH/CYyyM3WxZjVwnZpdz08A/6tq1eEF4H3bHNMNiDFerPr2AFD082z3snGqnRHgVIxxBSD5/XTyuG6+Pw0hfCuE8LkQQh+Qo+pfymOMU0BrCOHQNsZUW9c7h3ZiTLVz5fkGnnMNI4TQCnwY+HN2pi7WrMauqNmqr4UQXgsh/JsQQlfy2Lq/e2CMtf+/bXVMNyiE8PshhDHg48BP4+fZrmXjpN3oiRjj/cDDQAvwmTrPR9rNPN8a3+9SvvbC2jSPK2uWizE+RHm77N3Ar9drYnqjGOPPxRhzwK9Rvm5Mu5SNU+2MA8MhhDaA5PcjyeO6iVa3E8UYF4HPAW+n/K9plS0PIYQBoBRjPLeNMdXW9c6hnRhTDVzjfAPPuYaQhHrcAbwvxlhkZ+pizWroKjWrPs8uAb/PNc4zyitJ49sc0xbFGP8E+DHgJH6e7Uo2TjWSpAe9BjyTPPQM8GqMcbJ+s9p7Qgi9IYQDydctwPsp1+WbQHcI4fHk0OeBl5OvtzqmGrreObQTYzv/J9r9rnO+gedc3YUQPg68Bfh7SWMLO1MXa1YjV6tZCOFgCKE7+bodeA9r59lXgIdDCHck31f/3W91TJsUQkiFEEaqvn8ncA7w82yXaimVSvWew64RQriLckzkQeA85ZjIWN9Z7S0hhFuBLwJtya+/AX45xngmhPAY5QSafazF5U4kz9vSmLYmhPBp4KeAIWAKmI4x3nO9c2gnxrR5V6sZ8E6ucb4lz/Gcq5MQwj3Ad4DvAvPJwz+MMf79naiLNdu+a9UM+CTlv9sS0AF8A/jHMcZC8rx3Jce0Aa8CH4oxzm5nTJsTQsgCXwZ6gRXKTdNHYoz/28+z3cnGSZIkSZI24FY9SZIkSdqAjZMkSZIkbcDGSZIkSZI2YOMkSZIkSRuwcZIkSZKkDdg4SZIaUgjhhRDCr19nvBRCuL3G7/mBEMJ/ruVrSpJ2B+PIJUk7LoTwfuCfAPcCs5TvT/MS8O9ijFv6IAohlIA7Yozfv8rY14BHgGVgAfg68Aur95iqhRDCh4CfizE+vtGxkqTm54qTJGlHhRB+Ffgd4Dcp30A3CzwPvB3ovMZz2mrw1r8YY0wBdwJ9wG/V4DUlSXtUe70nIEnavUIIB4B/RfkO91+sGnoV+EDVcX8EzAOjwJPAu0IIzwInY4wfS475p8CvACXgY5udQ4zxXAjhi8CHq+b0u8BPAHPA7wH/OsZYvHIVKVnV+jDwq8AA8GfALwJ3AS8AHSGEArAcY+wLIfwk8ClgBLgE/FaM8VObnaskqXG54iRJ2kmPAl3Alzdx7D8EPg6kgVeqB0IIfwf4CPA0cAfwjs1OIIQwALybcrMG5abpAHAr5SbtOeBnrvMSfxd4GLgfeC/w4zHG/0t51ewvY4ypGGNfcuy/B34+xpimvC3xLzY7T0lSY3PFSZK0kwaAqRjj8uoDIYRvAHdTbqh+PMb49WToyzHG/5F8vRBCqH6d9wJ/GGP8TvIa/wJ4ZoP3/nQI4VOUr6n6GvAryRbA9wHHY4wzwEwI4d8CH6Tc9FzNJ2KMF4ALIYT/CjwAfOUaxy4Bd4cQ/jrGeB44v8EcJUlNwhUnSdJOmgYGQgiVf6iLMT6WrNBMs/5zaPw6r3PkivETm3jvX44x9sUYh2OMH4gxTlJu5DqveP4JYPg6r3O26us5IHWdY98N/CRwIoTw30IIj25inpKkJmDjJEnaSX8JLALv2sSx10vXO0P5uqFVuS3OZ4ryqtDoFa91aguv9Yb5xhj/Ksb4LiADfAl4eSuTlCQ1HrfqSZJ2TIzxQgjhXwKfCyG0UN7iNgccA3pv4KVeBv4whPDHwOvAP9/ifFZCCC8DHw8hPAccohw4sZUAhwngaAihM8Z4OYTQCfwD4D/GGC+GEC4BK1uZpySp8bjiJEnaUTHGT1JuTv4ZkKfccLwIfBT4xiZf4z8Bv005bOH7bC904ZcoX/f0A8ohFH8G/MEWXucvgP8DnA0hTCWPfRB4PWmangee3cY8JUkNxBvgSpIkSdIGXHGSJEmSpA3YOEmSJEnSBmycJEmSJGkDNk6SJEmStAEbJ0mSJEnagI2TJEmSJG3AxkmSJEmSNmDjJEmSJEkbsHGSJEmSpA38fxuQeZJ2rtAMAAAAAElFTkSuQmCC\n",
       "text/plain": [
        "<Figure size 1008x432 with 2 Axes>"
       ]
      },
-     "metadata": {},
+     "metadata": {
+      "needs_background": "light"
+     },
      "output_type": "display_data"
     }
    ],
    "source": [
     "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
-    "df_ldst.set_index(\"nx\")[\"Loads / Loop Iteration\"].plot(ax=ax1, legend=True);\n",
-    "df_ldst.set_index(\"nx\")[\"Stores / Loop Iteration\"].plot(ax=ax2, legend=True);"
+    "df_ldst.set_index(\"Grid Points\")[\"PM_LD_CMPL (min)\"].plot(ax=ax1, legend=True);\n",
+    "df_ldst.set_index(\"Grid Points\")[\"PM_ST_CMPL (min)\"].plot(ax=ax2, legend=True);"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Also this behaviour looks – at a first glance – linear. We can again fit a first-order polynom (and re-use our previously defined function `curve_fit`)!"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 29,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Counter PM_LD_CMPL (min) is proportional to the grid points (nx*ny) by a factor of 2.3437 (± 0.000037)\n",
+      "Counter PM_ST_CMPL (min) is proportional to the grid points (nx*ny) by a factor of 0.5860 (± 0.000019)\n"
+     ]
+    }
+   ],
+   "source": [
+    "_fit, _cov = common.print_and_return_fit(\n",
+    "    [\"PM_LD_CMPL (min)\", \"PM_ST_CMPL (min)\"], \n",
+    "    df_ldst.set_index(\"Grid Points\"), \n",
+    "    linear_function,\n",
+    "    format_value=\".4f\"\n",
+    ")\n",
+    "fit_parameters = {**fit_parameters, **_fit}\n",
+    "fit_covariance = {**fit_covariance, **_cov}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Let's overlay this in one common plot:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 28,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAF/CAYAAAB+GZmgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8Y3W9//HXSdI9aZuk6b5vZ1YYhhn2bdhEEAUREGRHEQRR7714FVC5KgqICwICV7mKG+rvuiAKCopeZBOGVQXOdDpt0z1puqV7k5zfH9MZZ4ShnaGdNNP38x/o+X5zzufkM51H3vM958SwbRsRERERERHZNUeyCxAREREREVnsFJxERERERERmoeAkIiIiIiIyCwUnERERERGRWSg4iYiIiIiIzELBSUREREREZBYKTiIiIiIiIrNQcBIREREREZmFgpOIiIiIiMgsFJxERERERERm4ZrLJNM03wV8ATDYGrZusCzrF6ZpNgL3AX4gAlxgWVbTzGvmfUxERERERCQZZg1OpmkawA+AIy3L+rtpmvsBT5qm+SvgbuBOy7J+aJrmecA9wLEzL12IsdlkAOuBbiA+x9eIiIiIiMjS4QRKgOeAybm+aE4rTkACyJv5/3y2BpMCYC1wwsz2+4E7TNMMsHVlal7HLMsKz6HO9cBf5nhOIiIiIiKydB0JPDHXybMGJ8uybNM0zwIeME1zFPAApwAVQKdlWfGZeXHTNLtmthsLMDaX4NQNMDAwSiJhz/U9mFd+v5tIZCQpx5Y9o56lHvUs9ahnqUc9Sy3qV+pRz5LH4TDwenNgJjvM1Vwu1XMBnwbeY1nWk6ZpHg78FDh/TwpdYHFg2xuRNH6/O6nHl92nnqUe9Sz1qGepRz1LLepX6lHPkm63bu2Zy6V6a4BSy7KeBJgJT6PABFBmmqZzZmXICZQC7WxdOZrvsTmLREaStuIUCHgIh6NJObbsGfUs9ahnqUc9Sz3qWWpRv1KPepY8DoexR6F1Lo8j7wDKTdM0AUzTXA4UA03AS8A5M/POAV60LCtsWVZovsd2+8xERERERETmyVzuceoxTfMK4H9N00zMbL7Ysqx+0zQvB+4zTfOzwABwwQ4vXYgxERERERGRvc6w7eRc0rZAqoGWf71ULx6PMTAQJhabWvACHA4HiURi9omyaCxEz1yudLzeAE7nXB9cKbtDlzekHvUs9ahnqUX9Sj37cs/iiTjhYBsDwc10jTh4OVrAVCzBNeeswemYywVvC2uHS/VqgNa5vm5JfKobGAiTmZlNTk4xhmEs6LFcLgexmIJTKpnvntm2zejoMAMDYQoKSuZtvyIiIiKLzdT0NJ1947SHRnC/9gA5I234433kGDFygL6pKoayT2F5lTfZpb5tSyI4xWJTeyU0iQAYhkFOTi4jI4PJLkVERERk3owMDRLa0sRoZzP2QDs5490MTadzR/READ6aG4R0g868NbgKqsirqOPg6jqOzMhIcuXzY0kEJ0ChSfYq/XkTERGRVJVIJBgM9RJu2cRoqIsnYysJ9o5weuIhVqd3EACidhaDaUVQUM1HjltFRZGbQP4GHPvwZ6AlE5xERERERGRnsViM3oEJgqERJpufoyj8LN5YiBxjklIgYRs8YJRRV+YjnnMCvbkuArWNlBYEKE128XuZglMSvO99p5Kenk5aWjqJRJwLL7yU449/By+8sJGrr76cc845nyuv/Nj2+VdddRkvvfQCjzzyONnZ2W+6zxde2Midd97Gvff+YKft3d1dvP/9p1NTU0ciEScWi7H//gdw8cUforCw6C3rjET6+Na3vskrr7xMZmYGLpeL008/k3e/+3Tuvfcevvvdb3PLLd/gsMOOAGBsbIz3vOcdVFZWb6/jiCPWUVdXDxg4HAZXXvlx1q07iIceepCnnvoLX/ziLbO+X9/85ldZvXp/Nmw4fta5O7rppi/wzne+i/33P+At591++zeor2/khBNO2q39i4iIiKSSifFxerdsItrRTDwSJHu0G1+ij9uH3kUokcdhmd2U5UwQcpsYvkpyy+sprK3nv3L0Rb2g4JQ0X/zizdTW1rNp0+tcfvmlrFt3MACVlVX85S9/5vLLr8LpdNLV1cnk5MTbOpbb7eZ73/sxANPT09x3371cfvklfP/7P8XtfvNfhImJCa666jJOPvlUrrvuBhwOB9FolD/+8ZHtcxobTR5++Dfbg9Of/vQHKiur37Cvu+76H7Kzs/nLX/7M5z73aR588NE51x4K9bJx47N89KP/thtnvNWnPvWZOc0777wLueyyiznuuBNxLIInvYiIiIi8XdGBfnqbNzHWvYVXp8r4W38GgejrXOr+Mz5g3E6n3xWgI/dA3rvWpLSqkmL/Mbic+iy0K0syOD35t26eeKV7QfZ99AGlHLKieM7zGxuXkZ2dTXd3JwBZWdlUV9fw7LNPc+ihR/Dww7/hpJNO4bXXXp2X+tLS0vjgBy/nuef+yu9//xBnnHHWm8579NHfkZubx/nnX7x9m8fj4bTTztj+8wEHrOPpp59geHiY3NxcHn74N5x88rt46KHfvOk+168/hKGhIYaGhuZc70MPPcgxxxy3/Z6he++9h2CwldHRUdrbg5jmcs4770LuuOMb9PR0c/TRx25frbvqqss455zzOfzwI7nxxhtIT0+nvT1IKNTLypWruf76/8IwDLxeL6Wl5Tz//LOsX3/InGsTERERSbZEIkFkYIRg3wQ9Hd1UBx8gb6qXPGOUbdcW/T1+BEWBg6itX0dnehUF1Q0UlJRSqH8w3i1LMjgtJi+8sJGpqSnKyytparIAOPnkU3nggV9wyCGH88c/PsJdd93L17/+lXk97vLlK2lp2bLLcct6nRUrVr3lPgzD4NhjT+CPf3yEgw8+lMnJCWpq6nY5/7HHHqWwsAivd+6Po3zxxec555zz31Dbd77zA7KysrjkkvO4++47uPXWbxKPxznzzHfz7nefTkVF5Rv2tWVLM9/4xrdwOBxcfPEH2Ljxr9uD0qpVq9m48TkFJxEREVm0pmNxQi2bGWzfTCzURsZIJ754mKcmGvj1+IGkGzE+6R1gIKuSfm8F2aW1FNU0cK7Pn+zS9wlLMjgdvrqEw1cvzPfrzPU7ga6//j9JT88gJyeHG2+8GY/Hs31s7dp1fPWrN/H443+mtraOvLz8Bah0ti8+ntsXI7/zne/i85//DP39EU466ZQ3nXPFFZdgGA58Ph9f+tKtu1VlKNSLz+fbadtBBx2y/RLD+vp66uoaSU9PB7Ze6tjZ2fGmwenII48hY+ZxmKZp0tnZwfr1W8d8Pj8vv/zibtUmIiIislDGRkYItTQR7WimbyTG4yN1dPZF+bznJ1Q6ppiynUQcBXR7VlLZuIrrzAMpD7jJSDsx2aXvs5ZkcFoMtt3j9Ga2reTccssXufbaGxbk+K+99irveMfJuxw3zeX89re/nnU/ZWXlpKWl8etf/5Lvf/8nNDdvfsOcbfc47YmMjEympqZ22pae/s/vAnA4nGRkpO/ws4N4PL6Lfe04z7nTvKmpqe2hSkRERGRvGuofJDgYJ9gbxdf8ECWjFl6G8BvgB4gXkeM1Of7ASsIZF2CXlBCorMLv0kf5vUnv9iL1nve8l6ysLA4++NB53e/09DQ/+MF3CYdDnHjiO3c57/jj38GPfnQfP/7x9znnnPMxDINoNMrDD/+Gs846Z6e5l19+FZ2dHQuyMlZXV0cw2MaqVfvN+7531NbWQn19w4IeQ0RERJa2hG3T19lJf8vrvNofxI4E8U73YtgJvj54FmBwdv4EnswAw3kHkFlcQ0FNIysLi1i9/X6kN/+Hd1l4Ck6LVCBQyAc+cOFuvaa5uYnTT//nKtK6dQdxySWXMTIywkUXnUs8Htv+OPK77rp3l0/UA8jKyuKOO/6bb33rm5x11nvIysrC5XLx3vee+Ya5q1btt0fB5umnn9yp3pNPPpUPfeiKneYcddSxPPbYo5x88qm7vf+5sm2bjRuf2+lBGCIiIiJvx9TkFKHWzQy1NxMLt/FIbB0t4UlOdD7LcVn/IG4bRAwffdm14K3gk+/Yn8qSPLIzj0126bILhm3P7V6WFFENtEQiIyQS/zyvnp42iour9koBc73HSeYmHo/zoQ9dwC233EZBQcGCHGPjxmd4+OHf8pnPfGFe97s3/9wtNYGAh3A4muwyZDeoZ6lHPUst6ldyjQ4P0xEZJ9g3xWTbKyzvfwyfPYDL2PqZcNJ28f8yz8ZTUkl93hRleQ5Wrtuf4ZFYkitfmhwOA7/fDVADtM71dVpxkkXN6XRyzTXX0t3duWDBaXR0lCuuuHpB9i0iIiL7Dtu2GRwYJrzpZcZ7WnAOduCZ7MFnRPlt9Bj+Pl3JSvcEtdlugh6T9KJqfFUNFFRUcoXDudO+MrKyYERhN5UoOKWYSy89/w0PP1i5chXXXHPtHu3vP//zE/T29u60raioiJtv/voe1zjfli9fuaD7P+64E7RKKCIiIjuJx+KE21vpD25mOtSKNRHgif4A2ZN9XJf/AAD9di7DmSUM5h/ESYeu55KaGvLdGcAZb71zSUkKTinm3nt/MK/7W0wBSURERCQZJsfH6e7uo3XYQXvPEAe3fx9/oo8cI0YOELMddDvXsaZhOZWBSvrSqyiqa6TqLe4Xl32PgpOIiIiILBkj49P0vP4yYx1NMNiOe7wbnz1I13QZ3x85lqwMJytzPYx7KnAVVJFfWUdhdR0npafvsBfdw7wUKTiJiIiIyD4nkUjQ39NFpKWJid4WxkZG+cXIWiLDk3zM8zC1aWGG7RwG0wtpy11FfkkjN61YRyAvE8M4OtnlyyKk4CQiIiIiKS0WmybU1kbreA7B3hEK2//AyskXyTamKAUSNoQNP3Wlx3Ds2lwy3ZdilwQo8/spS3bxkjIUnEREREQkZUxOxelqa2Wk+SXsSJCssW78iQgeI879A2cx5czmRF8Ove7lOPyVeMrrKKpppD4nW18dK2+LglMSvO99p5Kenk56egYAa9ceyNVX/zvf+c7d1NTUctxxJ/LCCxuJxWIcdNAhs+5vaGiQL3zhs3R2dpCenk5ZWQXXXHMtXq/3DXPvu+9eHnvsURwOB7YN559/Eccdd+JOc154YSMf//hH+NjH/p0zzjj7DfuwbRvDMLjxxhu47robtv+8t3zve9/hD394BKfTidPp5MMfvpKDDz4UgImJCb70pf/Csl7D6XRy5ZUf5/DDjwQgGGzl1ltvYmhoEICrrvo469fv+v2dnJzk0kvPIyMjc/tDOZqaLL72tZvZtMni0EMP54tfvGWBz1ZERGTpGo5ECLVYjHVtwRjo4PeT+/NafwYHpTdxrvtpxux0+l2FtOeuI62wmk+Z6yku9uF0OJJduuyDFJyS5ItfvJna2p3/3eODH7x8+/+/+OLzjI+Pzyk4GYbBuedewNq16wC4887buPvu2/n0pz/7hrlnnHE2F154KQB9fWHOPfd9rF9/CLm5uQCMjY1y1123c8ghh+3yeLff/jWWLVtBPB7n5z//KaOjo1xwwSWzn/Qsuru7uPHGG7jjjv9+y3nLl6/k/e8/j8zMTJqaNvHRj17GAw/8joyMTO6//wdkZ2fz05/+ivb2IFde+SF+8pNfkp2dzZe+9HlOO+0MTjrpFNrbg1x99eXcf/8vcLuz3/Q4//3f32LlytVs3ty0fZvX6+Oqq/6NpiaLjRv/+rbPWURERLbejxTp7KBjYJqWQRjtbObY4V+Ra4xRNDNn0HZTlbeK+uXV1PjqmfKeSqC4mCKFJNlLFJwWkRtvvIFly5azZs2BPPDAL0gkEmzc+CzHHXci559/0S5fl5ubtz00wdbvdfrlL3/+pnPdOzw2c2xsDMMA2/7ndxjdfvvXOffc83nqqSd2ebyrr/537rnnTh555GH23/+ANw1Nv/vdb/n5z3/GXXfdi8Ph4BOfuJING47jtNPe91ZvwZxsW10CqK9vwLZthoaGKCzM5I9/fJTrr78BgIqKSpYtW84zzzzFsccez+bNmzj44MO2j+Xm5vLMM09y/PEnvOEYL7/8Ih0dQc4++wNs3nzb9u0FBQEKCgK0tbW87fMQERFZimLxBF29g0RffYpYXxsZI53442EyjWleHVvLnyZXU+dLoz+7mn5vBTkltQTqTCry86lIdvGypC3Z4DT24JffsM1VexDpK4/Djk0y/vDX3jCe1ngEaeaRJCaiTDx6xxvHVxyLyzz0DdvfzPXX/+f2S/WuuOKjO4WBurp63vOe9zI+Ps5VV318+/b/+I+r+eAHL2fZshW73G8ikeCXv/w5Rxxx1C7n/OpX/8vPfnY/oVAvn/70Z8nLywfg6aefJBqNsmHD8W8ZnO644xs0NDRy4onvZHp6ih/+8Hucd95FO8056aRTePHF57nrrttxu93k5ubNS2j6V7/73W8pKyunsHDrv0f19vZQVFSyfbywsJhQqAcA01zOo4/+jrPOOofXX3+NYLCNnp7uN+xzfHyc2277Kjff/DXa24PzXrOIiMhSMRaN0rtlE9HOLdAfpG3Cw6/7GyAR4xbvL0jgIOIsoMuzCmdBFUfUrOLM6hrS05zAhmSXL7KTJRucku3NLtWbza23fnPWOV//+lfIzs7ijDPO2uWc0057H6ed9j6amzfz+c9fz7p1B+FwOLn77jv4xjfunPUYV175MQzDYOPGZ3nf+96PbdtvOu/f/u2TXHrp+cRisV1+ce/AQD+f+MRVwNYn4vT29nDRRecCW1fOrrnm2l3W8eKLz/Ptb981p5oBrr32c9x++9d46KEHqa6uYb/91uByvfFX4M47b+O97z2TQKBQwUlERGQObNtmqC9MT2c3TWN5tPdGOTr0IyqNHgqAAmDEzmQ4YyUnrq+gssjDpLuRQGk5fpcz2eWLzMmSDU7Zp356l2OGK+Mtxx2ZnrccT5Y77vgGHR1Bbr756zjmcL1vXV09fn+AF198Hq/XTyTSx4c+dCGw9YETTz75F4aHh7n44g/t9LptD4K47robdvr5X0UikZnLAQ1GR0fJyXnjt2t7vT6+970fA3O/xwng739/hS984bN8+ctfpbKyevv2oqJienu7tz8YIxTq2X4ZY1lZOTfd9M+VxPPOO5Oqqpo37Ptvf3uJZ555ku997ztMTU0RjQ5z4YXv5777fjJrXSIiIvu6hG3T2z9GxHqReOerpEU7yZ8O4THGSYt7+OXQ6QTyM+lz1xNzLyeruIZAjUlRIECJ7keSFDan4GSaZibwdeB4YAJ42rKsy0zTbATuA/xABLjAsqymmdfM+9hSkpOTQ19feM7z77nnTizrNb7yldtI3+mbrXfW2tpCdfXWsNDV1UlTk0V1dS3V1TX85jePbp+37X6rN3uq3lxMT0/zuc99mo985GomJyf53Oeu5fbb73nTFZ7d9dpr/+Czn/00X/jCzZjmsp3GNmw4jgce+AXLlq2gvT3Ia6+9yg033AhsXd3Kz/diGAYPPfQgaWlprFt30Bv2v2NAeuGFjdx55227XDETERHZl01NTNDTsploRzOxvjbSRkPcMXQ8E9MJzsl5ivXpzUQMH305dUS8lbjLarlj2RqyM13Arh80JZKK5vop9ha2BqZGy7Js0zS3PeDkbuBOy7J+aJrmecA9wLELOLZkHHXUBq677houuujc7Q+H2NU9Tlu2NPODH3yXiopKLr9864MaSkpK+fKXbwXgoovO5dZbb6OgIMC9995DS8sWXC4XDoeDj3/8P7YHqfn0rW99k/p6k+OPfwcAL7zwHN/+9l1cccVH3/a+v/rVm5mamuQrX/nS9m2f+cznqaur59xzL+DGG2/g7LNPw+Fw8MlPXkt2dg4ATzzxOD/60X2AQVlZOV/60q3bV8u+8527KSgomPU+rO7uLj7ykQ8yMTHB1NQkp59+Mpdeehnvetdpb/u8REREkmlkeIhQ8ya2THppCU8R6HmSYxJP4TVsvMCEnUbEGeCYlV5KSgJUeVeQXeQlPyMj2aWL7BXGru5P2cY0TTfQAZRbljWyw/ZCYBPgtywrbpqmk60rRA2AMd9jlmXNZfmlGmiJREZIJP55Xj09bRQXV83h5W+fy+UgFkvMPlEWjYXq2d78c7fUBAIewuFossuQ3aCepR71LLXsTr9s22YgOklnaxt289M4hjrInezFa2x9/W3D7yCSWcF63zAr07vIKKrGV92Av6wcp0P3I80X/Y4lj8Nh4Pe7AWqA1rm+bi4rTnVsDS+fM01zAzACXA+MA52WZcUBZoJOF1DB1gA032Nzv25NRERERIjFYoSDrQy0NTEdbiM92sljY8t4frSEaleIj3n+zICRx3BmKYP55WSX1vLRhlXk5eclu3SRRWcuwckF1AIvWpZ1jWmaBwMPAmcuaGVvw0yC3C4UcuBy7b2bEffmsWR+LETPHA4HgYBn3vcrW+m9TT3qWepRz1JLTraDjtdfoz0yxevDOfS0d/KB0e/hNuK4gWnbQb+zgJXVeaxvXE1tiZuSwnOo97zx4U2yd+h3LLXMJTi1ATHgfgDLsv5qmmYfW1ecykzTdO5wWV0p0M7WlaP5Hpuzf71UL5FI7LXL53SpXupZqJ4lEgktwS8QXd6QetSz1KOeLW7RsSmCoRFif/89jv4gnokevPYgLsMmNFnH47GjqSzMod17EGkF5Xgr6glU1+BLS2fHL0MZm7AZm1Cfk0G/Y8mzw6V6u2XW4GRZVp9pmn8CTgAemXnq3bb7m14CzgF+OPPfF7fdi2Sa5ryPvR22be/ysdki8222ewdFRETmIpFI0N/VSaStiYmeFlzDnfRPOvnu4KEAfDrvGbIcMaKZxQx5VpNZVM2aGpPjSkpnPvccmNwTENmHzPWpepcD/2Oa5leBaeB8y7IGTdO8HLjPNM3PAgPABf/ymvke2yMuVzqjo8Pk5OQqPMmCs22b0dFhXK5dPxZeRETkX01PTxFqbaG/q4O/T1cS7I2yYeiXLHe1UwokbIN+I59xdw1nHVBPRZGbYt96PLkerV6I7AWzPlUvxVTzJk/Vi8djDAyEicWmFrwAh8NBIqFL9VLJQvTM5UrH6w3gdC7Z75heUPqAkHrUs9Sjni2siakY7aERBpteIqPzBbLGu/EnIqQZCeK2wXXR8ygpzOMQdwfFOTae8jqKahvIzMp60/2pX6lHPUuehXyqXspzOl0UFJTslWPplyD1qGciIrKQhsJhwi2bGOvegjHYgWeih28OnsCgnc2GzH9wQpbFgKuQ9ryDSC+sJr+yntuqqnE5XcC6ZJcvIjOWRHASERERWWjxRJxIezv9wc00T/rY1O/EE36Zs9Meo2hmzoDtYTijiHeuLyFQUUVl4GDyc7ModuiJvCKLnYKTiIiIyG6ajiXo6hulq72L7M2PkDnahS/eR5YxTRnwxOihDOSuoaiskRZXOu6yOorqGqnM3fr9SKuSW76I7AEFJxEREZG3MDo8TGjLJkY6t2D3B8kZ7+bZ8SoeHV9FtjHJDfkvE3EG6MpdjaugityKOi6oric9M3NmD4cktX4RmR8KTiIiIiJsffT3UDhEuGUT4cEJXhorIRga5hrjuxQYMQqAqJ3FYFohlTWVXN6wksoiD978EylwOJNdvogsMAUnERERWXLi8QShwXHaeqM4X38U90AT3liIHGOCEmAiVkC78wyqivNoSTuF/IIAgdpGSgOFlCa7eBFJCgUnERER2adNjo8Tat3MUPtm4n1Bska7MGKTfHno3QBc5G7Gmz5GKKcBw1eJu6yO+toGbvJ4ZvagO5JERMFJRERE9iHRwUHCzRYj3Vv4a2IVwdAYh409xhGZFvnAuJ1OvzPApLeSSw4zqSzOpcR/NGkuXWonIm9NwUlERERSTiKRoH94nGBojOGWvxPoeoLcqV7yjRECQAD47XQu/sJy0iqOpDPnIPzVDRSUllOoR3+LyB5QcBIREZFFLRabJtTWwmBwM9OhNtJHOvHFwnw3ehSbYiWsSOvkDE+EwaxyBvIryCmtJVDTwKf9BckuXUT2IQpOIiIismhMjI7R27KJ4Y5mWibyeWkwF/rb+IT7N3iAadtJxOGnx72cY1Y2cmZNI+WBo8lIPz/ZpYvIPk7BSURERJJiODpGsG+c9u4Bypv+F89kD157EJ8BPqB1ej+yfBuo3m8l7c4cvJX1BKqq8bnSkl26iCxBCk4iIiKyoGzbpq+znUhLE5OhFlzDneRP9dI0Vcj3R48CbD7pjTCS7mcof38yi2ooqGnklKJiTt1+P9LyZJ6CiIiCk4iIiMyf6akpQq3NDAabGRoc4vHJ5bSHonw041eUuQaI2wb9hpf+7Gpyq5ZxzbI1VBR5cGcdl+zSRUTekoKTiIiI7JGxkVE6BqYJ9kbJaP4TJUOv4Lf7yTUS5AKDiWzi2Y0csqKY0az3MhjIp7C6ntqsrGSXLiKy2xScRERE5C3Zts1QpJ9w86uMd7fgGOzAM9lDHlG+NvB+pkjjZM8w/qxsgp5G0gur8FY1UFpexXXbvx/JTOo5iIi8XQpOIiIisl08EaevPUjbs20Mtm3i6dgKXg/brIm/whk5zwEwYHsYzihmKP9ArjxqBeXlheS7N2AYRpKrFxFZOApOIiIiS9TUxARdfVGCkWkGg02Yvb/DHw+TbcTIBnJtBxudflbXLacm/2j6cg6msLaRytzcZJcuIrLXKTiJiIgsASOj44SsvzHatQV7oB33eDc+e4DHxtbzxOQySjPGaPQYdOatwVVQRcXKVeT4yrg0Iz3ZpYuILAoKTiIiIvuQRCLBYG8P4dYmJntaCI5n8fhQBdGhKLf47icADNvZDKUV0pa7nPVr13JK/XIC+Vk4jHdt308g4CEcjibvREREFhkFJxERkRQVj8Xo7QnRNuSgvXcEs/V+iqY7yDEmKQUSNgway6ktXUnFmlJ60q6gsLqOsoICypJdvIhIilFwEhERSQGT03F6mi2iba+TiATJGu3Gn+hjMJ7Ht4ffhctpUObNwHCbGL4qcsvrKKyt56gcN0dt30t18k5ARCTFKTiJiIgsMtGBfnq3bGKsq5nYYIifTxxKT/8YF2T/H2sz2hi30+l3BWjPPRBXYQ2fX3kQxf5sXM4NyS5dRGSfpeBp9YxBAAAgAElEQVQkIiKSJIlEgv6uTtqiaQTDY2QGn2b16FPkGaMUzcwZsnMo9x3B+mXVeN3FTBbmUlBSSqHDkdTaRUSWGgUnERGRvSAWT9DT2cNw0wtMh4NkjHTii4fJMqb41dApdCX8HOFzUZ5VSb+3guzSWopqGyn3+rgi2cWLiIiCk4iIyHwbHx2ht3kT0c4t2JEgz0zWs7HfQ53RyUdy/8CU7STiKKDbsxKnv5JLGtdTWl5CRpoz2aWLiMgu7FZwMk3zc8ANwGrLsv5umuYhwD1AFtAKnGdZVmhm7ryPiYiILDZDfWE6Q1Fahhz0dXVzdN9P8DKE3wA/MGpnUJhdwvEHrqCqoI5R96EUVFbhd+nfLkVEUsmc/9Y2TXMtcAgQnPnZAH4IXGRZ1hOmaV4P3ARcshBj83XCIiIieyJh24QHxhj4x9NM9raQNtxJ/nQvHmOclgmTn48dTGFeOmuzihjKO4Cs4hoKahopLCziNN2PJCKS8uYUnEzTzADuBM4F/jSzeR0wYVnWEzM/383WFaJLFmhMRERkr5ianCTU2sxQcDOxviB94wY/H1zFxFScG/J+QbFjnIjhoy+7lj5vBcuqVnBHw3KyM9OAI5JdvoiILIC5rjh9HvihZVktpmlu21YJtG37wbKsPtM0HaZp+hZizLKs/j08RxERkV0aHR6mJ9jGlvF8gr1RVnb/CjOxmTwjQR4wabuIuWo4bFUxlUUecP8H2eWl5GdkJrt0ERHZi2YNTqZpHgqsBz618OXMD7/fndTjBwKepB5fdp96lnrUs9ST7J7Ztk3/8ARtf3+FkaYXsCNB3BPdeImSZ7v4ycD7yfNkUeUtpzu7iJyyOooal1NVU8Nyp5OTklp9ciS7Z7J71K/Uo56llrmsOB0NLAO2rTaVA78HvglUbZtkmmYBYFuW1W+aZnC+x3bnpCKRERIJe3deMm8CAQ/hcDQpx5Y9o56lHvUs9eztnsVjccLtrfQHNzMdaiVtuJP7Ro8iPObgnVkvcVLWK0TsPIYySxjIP4jsklq+uuwA8nOzgcN32ld//9heq3sx0e9ZalG/Uo96ljwOh7FHCy2zBifLsm5i6wMaADBNsxV4F/AqcJlpmkfM3JN0OfCzmWnPA1nzPCYiIvIGk+PjhFo30zqaSWskQVrXS5ww9Sg5RowcIGY7iBg+DqzKwldWSZXXxFl0GdXu5F6dICIiqWWPn4VqWVbCNM3zgXtM08xk5tHhCzUmIiIyMj5NZ3s3k9aTGANBciZ68NmD5Bs2L48cyWtGPfsX+OjIOgBXoIr8ijoKq+vwpqdTn+ziRUQkpRm2nZxL2hZINdCiS/Vkd6hnqUc9Sz2727NEIkF/Txf9rU2M97TgHOrkpYkyHhuqxusY4Yb8XzBs5zCYXkgst5yMomp89asIFBViGMYCnsnSod+z1KJ+pR71LHl2uFSvhq0LNXOib98TEZGkisWmCbW10BuOYo3m0t4zxHkj38FtTFACJGzoN/Ipya/mzAPqqCx0Y+cdTpnfT1myixcRkSVDwUlERPaayak47eERRv/xOEZ4M1lj3fgTfXiMBF3Txfxp/CTKAzkE8w4kJ9+Hp7yeopoGanKyqUl28SIisqQpOImIyIIY7u8j1Gwx1t2Ca7iTibEx7uw/Ghv4iOcpKlz99LsKac9bT1qgmrKqBr5VXYvT4WDrt2CIiIgsHgpOIiLytiQSCSJdHURaN/NqvJJgaJRVfb/nYOerFM3MGbTdxDNKePfh1VQWeaj0rcXry6XI4Uhq7SIiInOl4CQiInMWiyfo6hsl3Pw6ruBfyRjpwh8Pk2lMUwZ8Z/AMsvyFjBesoCWrAndJLYE6k7UNFYTDUVYn+wRERET2kIKTiIi8qbFolN4tmxjpbMbubydnrJsfjxxMy5SfA9JbODfnJSLOAro8q3EWVJJXUc+NtQ1kZGQku3QREZF5p+AkIrLE2bbNUF+Y8BaL4FgW1mAGsVAzFxu/ogAoAEbsTAbSCjl4WYATq5dTGVhHvvci/C5nsssXERHZKxScRESWkIRtExoYp70rQvprD5MW7cQ73YvbmKAYeGl8P9oyDqEuUE6LcwOZxTUEakyKAgFKHA5WJPsEREREkkTBSURkHzU1MUFv62aG25uJ97WRMdpN84SX/x1Zh4HNl/I3EnXkEs6pp89bibuslpNrTc7M9czsYV1S6xcREVlMFJxERPYBI0ODhLY0EQn389JkBe2hKBdM/Ygi5zD5wISdRsQZwFtcwsUNy6gs8uD1HUVRelqySxcREUkJCk4iIinEtm0GopMEe0eYtJ4gJ/w3cqdCeI0oASAtkc2rsXOpLPTQm3UssXw3vuoG/GXlBBy6H0lERGRPKTiJiCxS8ViMULCVwbYmpsJtpEc7yY1F+NzAe0ng4L3Zr1OU2cdQZikD3gpySrbej/T1goKZPeyf1PpFRET2JQpOIiKLwMT4GL1bmoh2NPO3WA2b++I0Dj3FyZkv4AambQcRRwERdwPnramivKyQssCRZGXoUjsREZG9QcFJRGQvi45NEQyN0Ne6GV/wT7gnevDZg/gMGx/wx4l3kFFgktOwjmBGHd7KBgJV1fjS0pNduoiIyJKl4CQiskASiQT9XZ1EWpuY6G3BNdxJ3lQvD46u4bmpOsqc/Xw4N8hQehHDeavJKKqhoLqBj5aU4nA4kl2+iIiI7EDBSURkHkxPTxFqbWGwfTOdo2m8FC2gvzfMdTn3UwokbIOIkc9AViVr6hs4qm4/KgvdeLLfR3myixcREZFZKTiJiOym8YlJOvrGCfaO4Hv9F7jH2vEnIuQaCXKBvulapjwns2J5Fa3OM8grraawtp7arKxkly4iIiJ7SMFJROQtDPX1Ed5iMda9BWOwA89EDwOxTG6PvgOAq/J6iKVn0p53MOmFVXgrGzi8soqjXdv+el2WvOJFRERk3ig4iYgA8UScSGc7/a2bGe3r5vHp/Qj2RjnbeJiV6Z0ADNgehjOKobiGq1fsR2WRG69nA4ZhJLl6ERERWWgKTiKy5ExNTtLdP0kwNEJ8y18piTyLPx4my4hRBsRsBw85a1lZ4yORczLh/HSK6hqpzM1LdukiIiKSJApOIrJPG42OEGp+jZHOFuyBIDlj3fjtfu4ceg99iVwOz+6jJBs6c/fDWVBNXkUtRdX1fCYzM9mli4iIyCKi4CQi+4REIsFQOERfyybGu7fwt+kqXunPoGR0E5d6/kwBELWzGEwrpC13Ge8/eDmllRUUejfg0KV2IiIiMgsFJxFJObFYjO7efoKRaUIdHdS3/wpvLEyOMUHxzJx/2EdTVbyeWt9B9GQ2EKhpoDRQSGlSKxcREZFUpeAkIova5FSMUPNrDLVvJtEXJHO0C38iwtMTy/jN+FqyHDE+kT9BKKcBw1eJu6yOorpGznG7k126iIiI7EMUnERk0YgODhButhjpaqFvNMGfRurpjozyxbyfUOWYYtxOp98ZoMe/jtqildzQuIbSghxczhOTXbqIiIjs4xScRGSvSyQS9If7aB8yaOuNUtLyIGXjm8gzRgkAASCRKMPvX8UBjQEi6ZfgLC+joLSMQoeDQMBDOBxN9mmIiIjIEjJrcDJN0w/8AKgDJoHNwIctywqbpnkIcA+QBbQC51mWFZp53byPiUjqiScS9ASDDLW8xnSolYyRTryxEHHbwe2DZ2JgcLbPJjuzgn5vBTmltQRqGlnj97Nm+15qk3gGIiIiInNbcbKBWyzL+jOAaZpfAW4yTfODwA+BiyzLesI0zeuBm4BLTNM05ntsPk9aRBbGxOgovVuaiHY2k4gEeXDqENr6Jjkl/VmOzXqVadtJxOGnx70Cp7+S61atpbwwl4z0Y5NduoiIiMhbmjU4WZbVD/x5h03PAFcA64AJy7KemNl+N1tXiC5ZoDERWUSG+/to758m2DdFLPgSqwf/hNcexGeADxiz0wm496f+wArKct/FiPd0AlXV+FxpyS5dREREZLft1j1Opmk62Bqafg1UAm3bxizL6jNN02Gapm8hxmYCnIjsZbZtE+4boP/1F5kMteAa7iR/qpdcY4zfRTfwj+kK9s9NUJPlZyh/fzKLaiiobiRQXMxlDkeyyxcRERGZF7v7cIjbgRHgDuD0+S9nfvj9yX0McSDgSerxZfepZ1tNTU7SsWkToc2vM9nTwj8mi/m/sB/PVB/X5v+auG0w4PAy6KllJFDFucsPocasx5OdvtdrVc9Sj3qWetSz1KJ+pR71LLXMOTiZpnkr0ACcallWwjTNIFC1w3gBYFuW1b8QY7tzUpHICImEvTsvmTd62lfqWao9G4tG6eqO0DrspKNnkCO67sNv9+MyEhQCk7aLtrSDOHj5CioLaxjMbKSwup78rMyd9jMxOsnE6ORerX2p9iyVqWepRz1LLepX6lHPksfhMPZooWVOwck0zRuBA4FTLMva9gnpeSDLNM0jZu5Juhz42QKOicgeGhyZJPTaC0x0NuEY7MAz2YPPGKZ3qoIfj2zAk53Gfp4CRt2NpBdW462qJ1BexTtdzh32UpG0+kVERESSbS6PI18JXAtsAp4yTROgxbKs003TPB+4xzTNTGYeHQ4wsyI1r2MiMrt4Ik5fe5D+tiamelsZGx3jp9F1DI9O8fHch6hx9dFv5xLNKGIw/0AKyky+uuwA8t3pGMaRyS5fREREZNEybDs5l7QtkGqgRZfqye5I1Z5NTUzS27aFlok8gr1RyjoeYfX0y2QYMQBitoNeo5AnS8+nsjiXGvcEJaVF5OTmJrnyty9Ve7aUqWepRz1LLepX6lHPkmeHS/Vq2LpQMye7+3AIEUmC0YlpurdsYXzLCzDQQc54Nz57gHzD5mcDZ5FIy+F4n4/OvDW4CqrIq6insLqOZRnpLEt28SIiIiL7AAUnkUUkkUgw2NtDX2sTEz0tOIc6eHB8LZuGMjkko4lzcp5m2M5mMK2IttwVZBRV85llBxIoyMdhGMkuX0RERGSfpeAkkiTxWIxQsJXOoQRbBhxMdG3ixNEHyDEmKQESNgwY+TQUOFi9ppZqfyMJ3xmUFRRQluziRURERJYYBSeRvWByOk5HTz/jr/6FRCRI1mg3/kQfbiPO62NreXx6NQ0F2YTcJoavitzyOgpr66nOcVOd7OJFRERERMFJZL5FB/rp3bKJ8a4tMNDOlok8fj3QiMOO8xXvg0yRRr8rQHvugbgCVWyoWcX7KytwOR3AMckuX0RERETehIKTyB5KJBL0d3XQ2x2macJLsHeEd/R9n1JHH0UzcwZtN76sXE49rJqKQg+x3FUUFBVR6HAktXYRERER2T0KTiJzEIsn6ImM0f/6c9hdr5Ix0oUvHibLmCI9nseDw++hxJ9DKHcFk54ssktrKKptpMLr09fGioiIiOwDFJxE/sX46Aih5iaGO5uxI0HSxvv4+uAJxOI25+Y8yQHprUQcBXR7VuL0V5JbUc+3GlaQkeYEDk52+SIiIiKyABScZEkb6gvT9Y/neHkwj9bwFCWhJ9hgP4PPAB8wamfS7yrkpDUBSksLqPTtR14gH79LvzoiIiIiS4k+/cmSkLBtwoPjdLe2YDQ/RdpwJ/nTvXiMcTzAc8MnMZJTic9XTWt6JlnFtRTUNFBYWESxw8GKZJ+AiIiIiCSVgpPsc6YmJwm1NDPUvplYpI3MkS5+P7qSl8ZLqXX1cpXnKSKGj77sWvp8lRQ3Luffi2vJ8biTXbqIiIiILFIKTpLSRoeHCW2x6BqyeX3EzUBPNx+M/ZA8wyYPmLRdRJwBllfls6ZmGZWBA8j2nU5+Zub2fQQCHsLhaPJOQkREREQWPQUnSQm2bTM4MkWwZxj+8RDOwQ5yJ3vwGlEKgM2T9fyNY6gs9NHqPJyMwip8VQ0UVFRQ4HBiJvsERERERCSlKTjJohOPxQm3tzIQ3MxUqJX0aCd9k2l8d+hwAK7Nex6Xw2Aos5SB/HKyi2s4qNbkhEBgZg8HJK94EREREdknKThJUk1NjNO7ZTP9PZ28Ml1DsDfKSSO/oNHVRQ4Qsx1EDD+ZecWcu76ByiIPpf7DyM7OnHXfIiIiIiLzRcFJ9pqR8Wnae6NEm54nq/sF3BM9+OxB8g0bt+3g3rHzKC3MZ6jsUIJug/yKegqra/Gmpye7dBERERFZ4hScZN4lEgkGerqJtG5ivKcF11AnuVO9fHXwJIbtbI7LfI2js4IMpRcynLuKjKIa/NUNfKO0DIfDAaxN9imIiIiIiOxEwUnellhsmnBbC4Ntm7GmCmkacOLte4mzM/6PEiBhG/Qb+QxmlfPu5eUUVVRSETiMXHcm5ckuXkRERERkjhScZM4mJmN09I3S095JbvPvyRrrxp/ow20kcANPjR/GRP4BeKpX0JaWh6e8jqKaBmpyspNduoiIiIjI26LgJG9quL+PULPFWHcLxkAHnskenh6r4dGJ1eQYE1yf/zr9rkLa8w4iLVCFt7KeC6uqcbnSkl26iIiIiMi8U3Ba4hKJOJGuTiItmwgNT/PCWCmdoWE+5foeRUYcgEHbzVB6EVWNdXy0fjWVRR68npMocjiSXL2IiIiIyN6h4LSETMdidEfGCfaOkGE9TO7QZnzxMJnGNGXA5HQhkcwzaKz00Zp2Gt7CQgK1JhX5+VQku3gRERERkSRScNpHjUWjhLZsItrZjN0fJGesB+JT3Dh0GgAXejrIzUjQ5VmNs6CSvIp6llXX84Wsbd+PtDJ5xYuIiIiILDIKTinOtm2GwiHCLU2M9bTwVGJ/2kKjHDP5Jw7P3IQfGLEzGUgrZNrbyIePWk5lcS5F3g04HEayyxcRERERSQkKTikkHo8THhwnGBplZMsrFPc+gXe6F7cxQfHMnIcTBVQUlZPhOZpu9xEEakyKAgFKdD+SiIiIiMgeU3BapKYmJ+ltaWK4vZl4XxuZo1344n38T/RYNseKWZXew7vdo4RzGujzVeAuraWw1uRTuZ5kly4iIiIiss9RcFoERocG6W3exGjXFjZP+XlxIBfXYJBPeH5LPjBhp9HvDNCZt4YT9l/GB6obKC04hjTX+ckuXURERERkSViUwck0zUbgPsAPRIALLMtqSm5Vb18ikWBwcIRgZIqO7gg1W/4fuZM95BsjBIAA0BI/AF/BMVTV7keny4uvugF/WTkBhzPZ5YuIiIiILFmLMjgBdwN3Wpb1Q9M0zwPuAY5Nck27JRZPsOnvrzHR24JjoJ3MkU68sTD/mCrjh6NHYGDzH74og5ll9HsryCmpJVDbyLv9BTvsxUxa/SIiIiIi8k+LLjiZplkIrAVOmNl0P3CHaZoBy7LCyats9zz+chdlz3ybBtcg07aTiMNPr9vEW7ica5cfSHlhDpnpxyW7TBERERERmYNFF5yACqDTsqw4gGVZcdM0u2a2p0xwOmr/UnozLsb25pJfVIHPuRjfahERERERmYt98tO83+9O6vEDga1PtispPiKpdcjcbeuZpA71LPWoZ6lHPUst6lfqUc9Sy2IMTu1AmWmazpnVJidQOrN9TiKRERIJe8EKfCuBgIdwOJqUY8ueUc9Sj3qWetSz1KOepRb1K/WoZ8njcBh7tNCy6L4V1bKsEPAScM7MpnOAF1Pp/iYREREREdm3LMYVJ4DLgftM0/wsMABckOR6RERERERkCVuUwcmyrNeBg/fgpU7YuvyWTMk+vuw+9Sz1qGepRz1LPepZalG/Uo96lhw7vO+79UWphm0n516gBXIE8JdkFyEiIiIiIovekcATc528rwWnDGA90A3Ek1yLiIiIiIgsPk6gBHgOmJzri/a14CQiIiIiIjLvFt1T9URERERERBYbBScREREREZFZKDiJiIiIiIjMQsFJRERERERkFgpOIiIiIiIis1BwEhERERERmYWCk4iIiIiIyCwUnERERERERGah4CQiIiIiIjILBScREREREZFZKDiJiIiIiIjMQsFJRERERERkFgpOIiIiIiIis1BwEhERERERmYWCk4iIiIiIyCwUnERERERERGah4CQiIiIiIjILBScREREREZFZKDiJiIiIiIjMQsFJRERERERkFgpOIiIiIiIis1BwEhERERERmYWCk4iIiIiIyCwUnERERERERGah4CQiIiIiIjIL12wTTNP0Az8A6oBJYDPwYcuywqZpHgLcA2QBrcB5lmWFZl4372MiIiIiIiLJYNi2/ZYTTNP0AftZlvXnmZ+/AviADwJNwEWWZT1hmub1QK1lWZeYpmnM99gczycDWA90A/HdeidERERERGQpcAIlwHNsXRiak1lXnCzL6gf+vMOmZ4ArgHXAhGVZT8xsv5utK0SXLNDYXKwH/jLHuSIiIiIisnQdCTwx66wZswanHZmm6WBraPo1UAm0bRuzLKvPNE3HzArVvI/NBLjZdAMMDIySSLz1StpC8fvdRCIjSTm27Bn1LPWoZ6lHPUs96llqUb9Sj3qWPA6HgdebAzPZYa52KzgBtwMjwB3A6bv52r0hDmx7I5LG73cn9fiy+9Sz1KOepR71LPWoZ6lF/Uo96lnS7datPXMOTqZp3go0AKdalpUwTTMIVO0wXgDYlmX1L8TY7pxUJDKStBWnQMBDOBxNyrFlz6hnqUc9Sz3qWepRz1KL+pV61LPkcTiMPQqtc3ocuWmaNwIHAqdZlrXtBqrngSzTNI+Y+fly4GcLOCYiIiIiIpIUc3kc+UrgWmAT8JRpmgAtlmWdbprm+cA9pmlmMvPocICZFal5HRMREREREUmWWR9HnmKqgZZ/vVQvHo8xMBAmFpta8AIcDgeJRGLBjyPzZyF65nA4ycpy43bnYRjGvO5bdHlDKlLPUo96llrUr9SzL/dsdHiY0BaLka4t/H/27jw+rrre//hrZpLJnklmMpN9b3O6t0ApLbIji0BZpIooIIJXQZHrAupFUFCLInhdAIXfBZULyL2ouKAgiD8VKz+QtYLA6ZJ9m0wyM9kzycyc3x8JsYUuaZp0Msn7+Xjk0cz5fs/3fE4+OU0++Z7znY5BB8/0VzAajfPVy9eR4pjSDW+zapdb9aoZn6iZkgNdHCIphUIB0tMzycoqmvVfYlNS7ESjKpySyUznzLIsYrEo/f1hQqEAbrdvxsYWERERmSvi8Ti9oV6aQjFa/P2U7Pwl3uEG8m39FAAFwFCsklz3IpZW5WO3J/cfkxdE4RSNjh6SokkEwGazkZKSSl6eB7+/NdHhiIiIiBy0eNzC39xEuPFNRrsacfa3kR8NMBB38v3ecwG4NH8MZ3oJ4bwyMoqq8dbUcZTXx1EJjn2mLIjCCVDRJIeczWYH5tWtsCIiIrIAjAwP4a/fTn9rPdFgK78dXU9rYJDz0/7K+rSdRC073XYPXVl12Aoq+Y8Vh1PmzSYj7aREhz6rFkzhJCIiIiIiu+sP9tAcjtEcGMbW+AJG7xbcVhi3zcINDFtOXFlrqF1TSn7u2fTlp+OrqiY/1Zno0A85FU4JsGnTRpxOJ6mpTuLxGB/+8OW8+92n8dJLL3D11Vdw4YUX88lP/vtk/6uu+hivvPISTz75NJmZmXscc2xsjO9979u88spLOBzjix1cfPFluFwufvjD2wEIBnuIx+MUFHgB+MhH/o3jjz9xj+MNDQ1y99138uyzz+B0jl8Yp5xyOpdcchmPPfYoN998E5/5zOc5//z3A+PP9bz//ecyNDTA7373x/2e5513fo97771/v1+rhx9+iGg0ygc/ePEUv7rj7rnnLqqrazj55FP32e+RR37G8PAgH/rQpQc0voiIiEgysSyL7kAPwW1bGfE3ktLXSt5oF7m2QR7pO52GqI91rjHK0930uVaSVlhNQdViCopL+JQ98Qs6zAUqnBLk61+/hZqaRWzb9iZXXHE5a9eO3/1ZUVHJX//6Z6644iocDgft7W1EIiP7He9nP3uIvr5e7rvvIRwOB0NDQ/T0dFNeXsFRR20A4N5772Z4eJirrvr0PseyLItrr/00tbWLeOCBn5GamkokMsKjj/5qsk9dncHvf/+7ycLp5ZdfJDc3l6GhgSmd51SMjIzw85//D/ff/79T3uctH/3oFVPqd/bZ5/GhD23i3HM3kZWld+8WERGR5Dc2OkpX407CzTuJdjeydbSC53ryKI618e+5TxCzbARteQQzKujJr+D9xx5JaVUF2RmpiQ59TluQhdPfXu1gyz86ZmXs4w8rYf2yoin3r6tbQmZmJh0dbQBkZGRSVVXN3//+/9iw4Rgef/y3nH76mbzxxuv7HKerqwu324PD4QAgMzOTzMyKaZ3DCy/8nY6Odr73vR+SkjL+LZKWls6mTR+Y7FNSUko4HKahoZ7q6hoee+xRzjjjLH70o/8zpfOcij//+Y+sWXM4aWnpADz22KP84Q+/Jzs7h507t+P1+vj0p6/lBz/4Hi0tLSxduowvf/lr2Gw2Nm++kSVLlnL++Rdw771309zcxODgAO3tbZSWlvG1r91Ceno6KSkprFu3nj/+8Q+cffZ50/p6iYiIiCTKUH8/7f4QjWEbne0BNnT+FLcVJNcWJxcYtVJoSs1i/TKDCm8F4YwV+KoWUZORkejQk47m3RLspZdeYHR0lLKyfxU5Z5yxkccf/x2WZfHHPz7Ju9992n7H2bjxXP70p6e45JILuPXWm3n66T9PO6Zt297EMJZMFk17c/rpZ/L4479laGiIV1/dylFHHb3Xvns6z/15+eUXWbZs+W7b3njjdT71qc/w05/+grS0NG666Xq+8pXNPPDAw9TX7+CFF/6+x7FM8w2+8pXNPPjgz4lGozz55OOTbStXruLFF/e8n4iIiMhcYFkWof4I25/7K1t/9d+89pPNNN19NbGHPkXD4//NT5/azguNAwyl5NLsXk+rcSGDp36ZvMvv5uzLPsLFpxkcf3gV5UtXkqaiaVoW5IzTu1YW866VxbMy9lTfE+j667+A05lGVlYWmzffQk5OzmTb4Yev5dvf/paWB3cAACAASURBVCZPP/1nampqcbny9jtebe0iHn7412zd+jL/+McrfPe7t/Lcc89w7bXXHfA5TPVNkU866RQuu+wiyssrOPbYEyZnu3a1r/Pcn0Cgi6OPPna3batWrcbnKwRg8WKDoqJisrPHb7FbtGgxbW0tHHnkO28HXLdu/eSxly1bQVvbv5YJ93g8dHV1TTkuERERkdkUi8YItDQSat7BaFcj4aEYv+xdSd/QGNe5fkWNo4+glUt/WhHhvLVUlC/l23WryMt2YrMdl+jw560FWTjNBW89+7MnNpuNk046hW996+tcd92NUx4zLS2NdevWs27dejZsOIbPfOaT0yqcDGMpjzzyM6LR6D5nnTIzM1m+fAV33XU7t99+9x777Os89yctLY3R0chu295aqALAbrfjdKbt8tpBLBbb41i797Pv1i8SGSUtLW1Pu4mIiIjMqsjwMP7mJuqHc2jxD1DT+luWRF8nyxYjC4hadmz2MlbVnkhFYTa2rE/iKCuh8gD+GC0zQ4XTHHXOOe8lIyNjcmGH/dm69WXKyytwuz3A+O12xcUl0zr22rXrKCws5I47vssnP/nvE4tDRPjZzx7ioosu3a3vRRddyrJlK6ipWURHR/u0jrc3NTWLaG5umtEx96SxsYFFi+pm/TgiIiKysA0Mj9Gxw2S48R84+trIHGzHbYXJwcaDoQtxpqWRn++hNetwUr2VuMpr8VXVssrpZFWigxcVTnOV1+vjQx/68JT7d3S0893v3srYWBSHw05enpsvf/lr0zq2zWbjttu+z1133cmHPrSJ9PTxxRlOOeU97+hbXV1DdXXNAR9j587tnHfeGZOv165dx5e+dONufY4//kS+/e1buPzyjx/w+Afiueee4d/+7ROzegwRERFZOOLxOMH2NnqathPxN+DobePh4Q209Dk4Kf01zsl8iV4ri15nIX25K0gvqubmJWspcOfoVrs5zDbV51mSRBXQ0NMzQDz+r/Pq7GyiqKjykAQw1WecZGo++9mruOKKq6irWzIr4zc1NXLbbTdz++17Xg3wYB3K772FxOvNIRDoT3QYcgCUs+SjnCUX5StxxsZG6WpsoKXfQUPQgvbXOHn4cTJsowDELRs9tjxe8JxNTlkNVW47pZ5Mao0q5SxB7HYbHk82QDXQONX9NOMkc9pnPvN5WlubZ238rq5OPv/5A38OTERERBae4UiUtvYuRt78G/GeZjKHOvBMLP39j4ENvBQ3WFGQQ0fOchyeCnLLFuGrqaUmI5MDvz9H5hoVTknm8ssvfscCCMuXr5jWIhC33noz//zna7ttczgc3Hvv/QcV40wqL6+gvHx670c1FUceuV6zhCIiIvIO4UAXgfptDHfUY+tt5Y2RQp4IVZNpG+Hm/N8xaKUTSvHRnLuYVF8lG2tW8tHSEux2G/DuRIcvs0CFU5KZyaJmOsWWiIiIyHwSi8fobmnG7w+ybSiP5s4+NvXeS75tgKKJPiErB29WEeeuqKa8MIdozhH4vF6K7HpL1IVEhZOIiIiILAhj0RitgUH633gGy7+NjMF23LFuMm1RrDEvTwyeQWlBFm25q+nNdZFdWoOvpo6K3Fxm7/4XSRYqnERERERk3ukPhwnsNBnsqIdQC/Hhfm4PnUTcsvho9hYWp/oJOry0udaQUlCJp7KOH1QvJjXFDqxLdPgyB6lwEhEREZGkFY/HCXa2E2zYzuuxcloCQywO/JF32bfiBbxAn5VF2OnjzPWllBfmUeFejbsgD6/dkejwJYmocEqATZs24nQ6cTrTADj88CO4+urPcc89d1FdXcPJJ5/KSy+9QDQaZd269VMas7m5ic2bb6S3txeXy8X119+0x0UV7r33bn75y59TUOAFYOXK1Xzuc1+YGKOR2277Jr29YQCuuurTHHnkO49vWRY2m43Nm2/kS1+6cfL1obJ9u8l//uctbNtmsmHDu/j617812fbss8/wwx/ejs1mIxqNcuyxx/Oxj30Cm82217a3i8fjXHnl5YyMjADg8RRw7bX/MfmGwq+99iq33nozkUiE4uJivvzlr5Gf7z40Jy8iIrKARWNxOoNDdNVvw9H4LGkD7eRHu8i0jVIM/Dh8Dvb8Yso9Bg1pPrJKavBW11Hq8VAKLE/0CUhSU+GUIF//+i3U1CzabdtHP3rF5Ocvv/wiw8PDUy6cbrvtG7z3ve/jtNPO4IknHuPWW2/m+9+/a499Tz/9TK666tPv2H7zzV/l3HPP5/TTz6SlpZmrr76Chx56ZPINcN9y//0/JjMzk1gsxpNPPs6bb77O1Vd/bkpx7s+mTRv5+c8f3Wef/Hw3V131WbZvN3nhhed2a1u1ag0/+tEDOBwOotEoV155GcuXr+CYY47fa9sJJ5y42xh2u51vf/t2srOzAXj44Ye4/fbvcPPNt2JZFl/72g1cd92NrF69hp/85B5++MPbue66r8zI+YuIiMi44cEBunZup69tJ1awmYyhDn7RfwTbRn2sSG3h0uwX6bEX4M9Zht1TQU5pLV+pNUjPSN//4CLToMJpDtm8+UaWLFnKmjVH8OtfP0I8HueFF/7OySefysUXX7rX/UKhINu2vcl3vnMnAO9+92l85zvfIhQKkZ+fP+Xj79ixjaOOOhoYXwY8NzeXZ5/9GyeccPJu/S655DJ+9atf8OSTj1NYWLTHoumll17gW9/azD333E92djabN9+I2+3hyis/NeV49qagwEtBgZempoZ3tGVmZk5+PjoaYWwsis1m32/b271VNAEMDQ1OLC0Kb775Ok6nk9Wr1wBw7rmbeN/7NqpwEhEROQi93QEC9dtoGUzlzd5MRroaucz6OW4buIFBK41Qio8jDC/HVy2jwruWXPcHcaekJjp0WUBUOCXI9dd/YfJWvSuv/BRHHbVhsq22dhHnnPNehoeHd5sZuuaaq/noR69gyZJlu43l9/spKPDhcIzfp+twOCgo8NLV5d9j4fTHPz7J888/i9vt4fLLP86KFasAMIyl/OEPv+f977+QN998g+bmJjo7O96x//33/4T09HROPfU9VFfXcMcd333HDNbhh6/l9NPP5Jvf/CrvetdxtLQ084UvXD/Nr9aBefPN1/nGN75KS0sL5513PkcffcyU2t7ummuuZts2E5fLNVmU+v2dFBUVT/bJy8sjHo/T19dLbq5r9k5KRERkHohbFoHQMM2dYZyv/47Uvjbyxvzk2IYpBF4bXkaD8xiqfSU02U8gvaiaguo6fL5Ciux2lib6BGRBW7CF09Cj33jHtpSadTiXn4wVjTD8+H++oz217hhSjWOJj/Qz8oc73tm+7CRSjA3v2L4ne7pVb39uu+37B9R/T84993w+/OHLSUlJ4fnnn+WLX/wcDz74M1yuPK677ivcfvt/8thjj1JVVc2qVWtISXnnt8hFF3148hmnU099D6eccvoej3XJJZfx6U9/gjvv/C733PPAHseC3d/Ut7s7wKWXfhCAwsJCbrnlOwd8jkuWLOO++/6HcDjM9dd/nq1bX2bNmsP32rZ27do9jnPbbd8nHo9z//0/5ic/uZdrrvniAcciIiKyUI1GIvgbttPbUk+su5H0wQ6aI7k81H8UYPHVvJeI2DPpzqyl211BTmk1p9TUce7kHyIPT2T4Iu+wYAun+aSwsJDu7i5isRgOh4NYLEZ3dwCfr/AdfT2egsnPjzxyPT5fIfX1OznssCMoLS3jm9/8V8F40UXvo7Ky+h1jvLUQxJe+dONur99uYGAAv7+T1FQnfX1hioqK9thv1zf13bRpIz/5yU/3f9JTkJeXx1FHHc2f/vTUZOG0p7a9FU4w/rzTWWedwwc+8F6uueaLFBYW7TYLFw6Hsdlsmm0SEZEFbaA3TNfObQS7u3lltIpmfz8XRv6XspQgeUDESqHH4SXXV8xHjllCRWEOPvfxOJ36VVSSx4L9bs3c+B97bbOlpO2z3Z6es8/2mZCVlUV3d2BKffPz3SxaVMdTTz3BaaedwVNPPcHixcYeb9MLBLrwen3A+Op0nZ0dVFRUAuPPSuXl5WOz2XjssUdJTU1l7drpv4/BN75xE2eddS5Lly7jxhu/xD33/DeZmVnTHm8qmpubKCsrx263Mzw8zHPPPTM5I7avtl2FQiHsdhsuVx4Af/rTU9TWjs8OGsZSIpEIW7e+wurVa/jVr37OSSedMqvnJCIiMlfE43FC/aM0d/Uzuu0Zsrr+gWvUT55tAC+QGXfyYPRiKgtz6ck4EZsrA3fVIjyl5RRo6W9JclMqnAzDuA04H6gCVpqm+drE9kZgZOID4AumaT4x0bYeuBvIABqBi0zT7DqYtoXkuONO5EtfupZLL/3g5OIQe3vGCeDaa6/j61//Cj/+8T3k5ORwww03Tbbtut/dd9+Jab6B3e4gNTWVG264aXIWasuWp3nwwfsAG6WlZdx8823TXmb84Yd/SiQSmbyt78QT380tt2zmpptuntZ4u+roaOcTn/goIyMjjI5GOO+8M7j88o9x1lnnsmXLX3jssd/icDiIx2Mcd9yJbNx47sT57btty5an+eIXbyAY7GHz5huJxaJYlkVxcQk33PBVYHwG6oYbvsqtt97M6OgoRUXjy5GLiIjMN9HoGIGmRkLNOxgLNOLsbyMv2s2NofcyRgobM7ZzWEYP4fRSQvnlZBZX4602+E7BW3e3rE5o/CIzzWZZ1n47GYZxDNAE/BU4622F0+TrXfrbgO3ApaZpbjEM43qgxjTNy6bbNsXzqQIaenoGiMf/dV6dnU0UFVVOcYiDk5JiJxqNH5JjycyYzZwdyu+9hcTrzSEQ6E90GHIAlLPko5wll4PN18jgIP6G7fS37uTVaBU7euJU9T7Puel/B2DMctBj9zCcWUx40RmUlBVRWpBJRppWtZsuXWOJY7fb8HiyAaoZn6iZkinNOJmmuQXAMIypjrsWGHlrP+CuiaAuO4g2ERERETlIfQMjNAcGCTQ1UND0B3IifvKt8OTS309HTia9YAV5dUfQklZNfsUivJVVWvpbFryZeMbpwYmZoi3AdaZphoEKxmeoADBNs9swDLthGO7ptpmmGZyBWEVEREQWhFg8Rk9bC8HGHUT8DaT2teMa8/P7oZX8LWLgtfdxlauNXmchvXmrx5f+rqrjisIi7PY9v8+hyEJ2sIXTsaZpthiGkQZ8F7gDuOjgwzo4E1Nvk7q67KSkHLr/AA7lsWRmzFbO7HY7Xm/OrIy90OnrmnyUs+SjnCWP0ZER+trrCew0aRuw8/e+Qtrbu7kp6wFKgZhlI2h3E86pZe3KVZy5fC3VJblkZ16c6NAXNF1jyeWgCifTNFsm/o0YhvED4DcTTc3A5IMdhmEUAJZpmkHDMKbVdiBxvf0Zp3g8fsieO9IzTslnNnMWj8d1//Is0H3hyUc5Sz7K2dw1ODhMa88ITf4BCrb9EtdgEx4riMNm4QP80UpGc8/m8OXlNDouIK+0gsKqWvLS03cbZ3gwwvBgJDEnIbrGEmiXZ5wOyLQLJ8MwsoAU0zR7J27V+wDwykTzi0CGYRjHTDyvdAXw8EG2HRTLsqa9QpzIdFhWHND3nIiITI9lWYS6/HTXmwx3NuDobSU34qc/5uTbfWcC8DFXkEhaNu2e5djyy/BULuao8gqOnlz6e8rPp4vIfkx1OfLvA+8FioCnDMPoATYCvzAMwwE4gNeBTwCYphk3DONi4G7DMNKZWFb8YNoO6iRTnAwO9pGVlaviSWadZVnEYlH6+0M4nen730FERBa8WDRGV3MD4eYdDHe383+jh9HsH2CT/SkOS2sibkHI5qI3vYRYfiWfWbGaCl82ruyTAM1eiBwKU1qOPIlUsYflyGOxKKFQgGh0dNYDsNvtxOO6VS+ZzEbO7HYHGRnZZGe7VKzPAv2CkHyUs+SjnM2ekeEh2oIRmruGiNf/nYrgs7jj3ThtMQDGLDv/x/kRiooKMLL6KMlz4q1ZTGb23m8tUr6Sj3KWOLO6HHmyczhSKCgoPiTH0kWQfJQzERGZLX3hXgI7XmewvR5buJXskQ7cVi8/7juT9pibozJ7Kc1KpTV3LaneCvLKF+GtquaLqc5Ehy4ib7MgCicRERGR2RSPx+hpb6OnYTuRrkb+MVrOK8EsCkfquTLnjwCErWz6nIX0uVZxwYZVFFeW48k9UXcmiCQJFU4iIiIiB2BsdJTOrhCNwRhdbZ2saPs57liAdNvY5NLf2+3HsaRiHdUFRxFw1uGtraM8Lz/RoYvIQVDhJCIiIrIXg8NjdJlbGWivxwo2kzXUgdsKsTVSxyND60hPheUuaM9dicNTgat8Eb6qWjZlZCQ6dBGZYSqcREREZMGLx+P0BrrobtjGcGcD3YNxnug3CIRHuCnvZ1TZhxmw0gmlFtKcY1BVtpzNdWsozM/Ebj8p0eGLyCGgwklEREQWlFg0RqC9jcYBJy3+AcqaHqU6YpJlG6Fooo9llVFZdCTHriphMONj5JSVUuz1cWiWmhKRuUiFk4iIiMxbkbEYnQ319De8RqynmYzBdjzxbhzY+K/QhTgcds7LT6crazE2TyXZJTUU1taxOjub1ZOjVCXuBERkzlDhJCIiIvNCfziEf6fJcHs9hFr4ZWQDTcEo70l/mdMyXmXYchJM8dKacwSp3gpuXL6WYm8OKY4TEx26iCQBFU4iIiKSVOLxOMH2Nlp6LRp7olit/2Bd/x9w2QYpnOjTa2VR5TqSVUuqqHJVEPFcQEFxCT67PaGxi0jyUuEkIiIic1Y0FqejI0C/+TxjgSbSBtpxxwJk2EbZMnAsr4xVs8qdyuKMCoL55WSV1OCrXkyZ28MliQ5eROYVFU4iIiIyJwz19+Ov385A206sYDP/jBTxp2AJOVY/N+Y9wqjloMdeQGfOcuwFFWysOYyPV5bjTHUAZyY6fBGZ51Q4iYiIyCE1vvR3gE5/DzsHMmnp7OX0wI8psIUpAAqAQSudrgwXp6wtp8KXzWDmcrzlVXhSHIkOX0QWKBVOIiIiMmvicQt/aIjg638n2rmd1P428sf8ZNtG6B8r5pH+U/DlZRDIqqYvJ5+Moiq81QY+r5d363kkEZlDVDiJiIjIjIgMD9PVuIPelp3EupsYHR7iR+GjiYzF+GTOk9SkdBG0uQlkLabbXYG3fDF3LF5BZnoKsCHR4YuI7JMKJxERETlg/eEQgfptbBstoiUwQHXHH1hrbSXPZpEHjFipdDsKOXZVERWFufhcBtnFXvKdzkSHLiIyLSqcREREZK8sy6Knd4TO+h3EGp8npbcN12gnLtsgXuD20PnYs90U5JXTlJ5DemEV7qrFeErK8NrtLE30CYiIzBAVTiIiIgLA2NgogcYGQi07INSKI9zMLwbWsnPYxRHOei7K+htBWx6hjAqC+WVkldRw0+KV5OZmJzp0EZFZp8JJRERkARoaGKCrfhutAylsD6cS6dzJBWOPkGOLkwOTS3+vqczmXZUG5QUrSSv4INUZmYkOXUQkIVQ4iYiIzHO9AxGa20NYb/wBW7iVnJFO8unFY4O/D63mZdtaFvkKaM5eh9NXRX7FIpYevgJPeIS6RAcvIjJHqHASERGZJ2LxGN0tzQSbtjPqbyS1v436kTwe6VuNjTi35P+FITLoSyuiz3UY6cU1vLtmCe/zerHZbMD6ybFSUlOBkYSdi4jIXKPCSUREJAmNjozgb9xBt7+Hf0aKaPYPsGngfoodYTKBmGWjx+bGnV/OhUcupqIwm4z8DRTkZCU6dBGRpKTCSUREZI4bGB6jpWuAwTf/H86uf5I93IHbCpFns4jHsnhm+P1U+LLxFx7NWG46rvJF+KpqyUtLozbRwYuIzBMqnEREROaIeDxOqLOT7sZtjPgbcIRbyRrtZnNoI3HsbMrcyuq0FnpTC2lyLSPNV4WnajF3lFVgt9mAIxJ9CiIi85YKJxERkQSIRsfoamog3LSd16MV1HePURV8hvc4X6AEiFsQsuXRn17MBceUUlzqo6JgPbk5mZQmOngRkQVIhZOIiMgsGxmN0to1SFfTTrIb/0zGUCeeePfk0t+PDZ5KxL2Y1IpVNDmLySmrpbC6jqqs8aW/VyY2fBERQYWTiIjIjOrt7ibQYDLY0YA91EJOxM9jAyt4YbSGMkcPn8w1Cab4aHGtI9VbSX7lIj5dUUVKSmqiQxcRkX3Yb+FkGMZtwPlAFbDSNM3XJrbXAfcBHqAHuMQ0ze2z1SYiIjKXxOIxelpaCDbvoH3AztZ+Dz1dfr7g/CmFE31CVg79aYWsXFbF0bWrqPBlkZdzPoV2e0JjFxGRAzeVGadfAd8D/vq27XcBd5qm+YBhGBcBdwMnzWKbiIhIQoyOxejoGaLJ30/OG78mc6AZd6ybDNsYpYB/tJpQxnuoriqj3n4WOcWVFNYspsKVl+jQRURkhuy3cDJNcwuAYRiT2wzD8AGHA6dMbHoIuMMwDC9gm+k20zQD0z1BERGRAzHY14t/5zYG2ush2EzWcCehMSc/6B//8fTvrkZItdORuwpHQSWu8lo2VC3i+PS0iRGWJSx2ERGZPdN9xqkcaDNNMwZgmmbMMIz2ie22WWhT4SQiIjMqHo8T7vITaNjGQKCDZ8aW0dI1wPmx37HM2YYX6LcyCKcWYi+o5sqTV1BRmI0378SJpb9FRGQhmZeLQ3g82Qk9vtebk9Djy4FTzpKPcpZ8Epmz6NgYrd1DNLb30ff6M7g7nsU16ifLFqEEiFk2fusoY2m1F0f2GQzkp1G6ZCk1RUUJi3ku0HWWXJSv5KOcJZfpFk4tQKlhGI6JmSEHUDKx3TYLbQekp2eAeNya5qkdHK83h0CgPyHHlulRzpKPcpZ8DmXORoaG8ddvo791J/FgMxmD7XjiPXyj92x64jkck97CsVkjdGUvweapILe0Fl/NIr6S9dYf3cZvTY/Dgv4+03WWXJSv5KOcJY7dbpvWRMu0CifTNLsMw3gFuBB4YOLfl996Fmk22kRERN6ur6eHrgaTofYGXhsr45/BNAr73uAjOX/BDQxZTkIpPlpyj+CCtQZFFWUUe07AoVXtRETkAE1lOfLvA+8FioCnDMPoMU1zOXAFcJ9hGF8GQsAlu+w2G20iIrJAxeIxeoL9NHeP4m9rpar5UfJG/eTahiaX/n41dhxFvrXULj6SDmcVnqo6vEXFWvpbRERmhM2yEnNL2yypAhp0q54cCOUs+ShnyedAcjYWjeHfuY3elh1Eu5tIH2jHHQvw9MgSfjd8GOm2KNfk/56BjGJs+WVkldTiq60jW0t/zyhdZ8lF+Uo+ylni7HKrXjXQONX95uXiECIikhwG+/roqt/GQFs9gcE4fxmoob17gK/nPkSFfYyIlUKPw0tH7kpqlqziy8bhlBZkkZpyaqJDFxGRBUaFk4iIzLp4PE4w0ENzr0Wzv5/CnY9SPLydfFs/BUABEIuX4HIvYWVNJQHnpXhLSygoq6DA4Uh0+CIiIiqcRERkZsXjFv6WZkINbzAWaCK1rw13tIuYBd8Pvx+AC/OjZKUXE847ksziGrzVdazx+lgzOUptosIXERHZIxVOIiIybSPDQ/jrt9PXWk+8p5nHxtbTFBjmDOdznJj+BlHLTo/dQ49rCXFXGf9x5hrKfLlkpJ2U6NBFREQOiAonERGZkv5gDy3BMZp6IkSbtrIi/CfcVhi3zcINDFtO3FkrqT6snBLXmfS7zsVbVU1+qlMPQYuISNJT4SQiIruxLItAIERo28uM+BtJ6WvFNdqFyzbIY/0n8fpYGWtyx6jJyKfPtZL0wio81XUUFJXwcS39LSIi85QKJxGRBWxsbJSuhp2EW3YSDTTxeqSYLUEPrmgP/+H6DXHLRtCWRyijgmB+BWcfs5YrqqvIzkgFzk90+CIiIoeMCicRkQViqL+f9o4eGvoctHWGOab9PjxWkFxbnFxg1EqhPTWV9cuWU+GrJpy2GF/1IqozMhIduoiISMKpcBIRmWcsyyI8MErgjRcZbt+BI9xCTsSP29ZH52gFDw2cQG5mKqtzPAxmLybNV0VexSK85VW8J0VLf4uIiOyJCicRkSQWi8YItDQSbN7BWFcTg4ND/G/fEfQPjfGZ3MeoSekmaOXSn1ZEb95afGUG/7lkDa4sJzbbsYkOX0REJGmocBIRSRKR4WH8jfXUR/Jo9g9Q3voEq6L/IMsWJQuIWnY67YWsrvVQWZRLZlY5jtJCKnNyEx26iIhI0lPhJCIyBw0Mj9G+cwcjDa9gCzWTPdKJ2wqTb7P4WegCcGaRm++hNeswUr2VuCoW4ausYanTydJEBy8iIjIPqXASEUmgeDxOsKOdnsZt40t/97bx6+Ej2NGXzoa0bXwg61n6rCzCzkL6cleQXljNjUuOoMCTi81mS3T4IiIiC4YKJxGRQ2RsbJSuxgZa+6A+ZGe0fRvvGf41GbZRSmBy6e8lhSkcfsQiKtwGeN5HqdtDaaKDFxERWeBUOImIzILhSJTW9h5G3vwr8Z5msoY68Fg95NrimENreSa6AsObTWfOcuwFFeSW1lJYs4jqjEyqEx28iIiIvIMKJxGRg2BZFr3dAQL1JsMdDdh6W9k5ks9vQgYpxPhW/u8YIY1Qio/m3KNweis5tXYFF5WWYrfbgOMTfQoiIiIyBSqcRESmKBaPEWhuosvfjTnspsU/wMbQfRTZQxRN9AlZOXiyPJy3soYKXzZW7hp8BR6K7PaExi4iIiIHR4WTiMgejEVjtAYG6X3zOWydb5A+2I4n1k2WLUp61MWTA+dSWpCFP281I7mZ5JTU4K2poyI3l4pEBy8iIiIzToWTiCx4/eEwgZ0mAx312EItpAwH+XboVOIWfDDrWVY7mwk6vLS51pBSUElexSJ+WGuQ4rAD6xIdvoiIiBwCKpxEZMGIx+MEO9vpadyOOVZCYyBCZeBpTnK8gBfwAn1WJmFnIRvXFVNW4qHcfRhuTy5euyPR4YuIiEgCqXASkXkp7TMjKwAAFd1JREFUGovT2TOEv3EnKQ1/I22gnfxoF5kTS3//b997iLgqKfXW0ZCWT1ZxDd6axZS6CygFlif6BERERGROUeEkIklveHAAf/12+lvriQebyBzq5LcDK3k1Ukptip8rc16kx+7Bn7MMu6eCnLJaPl9jkJ6RnujQRUREJEmocBKRpNIbCND+z+fZ7h/j9b5cev3tXMlP8djAAwxZaQRTfKxe7GND9TIqfEeSm78Jd0pqokMXERGRJKbCSUTmpLhlEQgN09TZR9rrvyWlr5X8MT85tmFygJGRxTSknkilr4hGx4lkFFVRULkYb2ERhXY7SxN9AiIiIjKvqHASkYQbjYzgb9hBb0s9se4m0gfb6Yqk8+P+YwH4D9er2B0p9GTW0OOuoLBuKcf4KjjNlTcxwqrEBS8iIiILggonETmkBvp66dq5jbC/kxfHamnp6ue8yCMsSvGTB0SsFHocXjK8pXzk2CVU+HIodh+H0/mv/6683hwCgf7EnYSIiIgsOCqcRGRWxONxQv2jNHf1M7z9eXK7XiI34iff1o8XyLfs/HTsUsoKXfRnnUBbTiqeykW4y8op0NLfIiIiMsccdOFkGEYjMDLxAfAF0zSfMAxjPXA3kAE0AheZptk1sc+02kRkbopGx+hqaiTcvIOxrkacA224owFuDp9Nv5XByek7eFdmN73pJYTzy8ksrsZXbXBbQcHECKsTGr+IiIjI/szUjNMm0zRfe+uFYRg24AHgUtM0txiGcT3wTeCy6bbNUJwicpCGBwfpathBX+sO3hgr480eO0XhrVyYuYUcYMyy02MvwJ+9hPetrqS4vJzSguNIT9MEt4iIiCSv2fpNZi0wYprmlonXdzE+e3TZQbSJyCHW2z9CS2AQf2sLvobfkxPpJN8K47aBG3g+ciwZBYdTuPQwWp0l5FUswltZraW/RUREZN6ZqcLpwYnZoi3AdUAF0PRWo2ma3YZh2A3DcE+3zTTN4AzFKiJvE4vH6WlrIdi4nYi/kZS+NvLG/Pxl2OCpkZVk24a5Nq+VXmchfXmrSS+soqDa4NLCIux2e6LDFxEREZl1M1E4HWuaZothGGnAd4E7gF/OwLjT5vFkJ/LweL05CT2+HLiFlLPRkRGaTZPu+m109MZ4dqCUpvYwN2X+N6W2ODHLRsieT29OLSuXr+aklRuoLsklO/MDiQ59NwspZ/OFcpZ8lLPkonwlH+UsuRx04WSaZsvEvxHDMH4A/Ab4HlD5Vh/DMAoAyzTNoGEYzdNpO5CYenoGiMetgzmtadMyyclnPudscHCI1p4ITf4B8rc9intwJ24rRIotjg8IR0sYzT2f9ctLaEn9AJ7iUnxVteSlp+82zvBghOHBSGJOYg/mc87mK+Us+ShnyUX5Sj7KWeLY7bZpTbQcVOFkGEYWkGKaZu/ErXofAF4BXgQyDMM4ZuJ5pSuAhyd2m26biOyFZVmEurrorjcZ7qzH0dtGbqSTaBxu6T0PgA+7QmSl5dCca5BWWI27YhFryis4YnLp77rEnYCIiIjIHHewM06FwC8Mw3AADuB14BOmacYNw7gYuNswjHQmlhUHmG6biIyLRqMEmpsINW9ntKuZP0TX0hIY5Ezb0xydvh2AHlz0pRcTzyvns6euorwoF1fWSQmOXERERCR5HVThZJpmPXDYXtqeAVbOZJvIQjMyNERbzwjN3cOMNr5Mdfdf8cS7ybbFyAailp0UZy2H15WQm3s6wZwz8NUupiorsc/5iYiIiMw3emMVkTmir7ePru2vMdTegC3cQvaIH7cV5n/6T2VntJA1mX1UZqXSmnsEqd7KyaW/P5PqTHToIiIiIvOeCieRQywWjxNsa6WncTuRrgbeiBTz96AL13Abn3U9DkDYyqbPWUi/axXnHLWG4upq3Llp2Gy2BEcvIiIisjCpcBKZRWOjo3T6gzSG4nR09LCq5SE8sQDptjFKgbhlo8m+nqWV1VR6iwk4q/HWLKY8Lz/RoYuIiIjILlQ4icyQoZEofnMrA607sUItZA514LGCbBut4sHBY0hLtbPMlUJ77gpSCqrILauhsHoRZ6dn7DJKbcLiFxEREZG9U+EkcoDi8Ti9gQCBBpPhzgZ6ByL8bmAFgfAIX8z9DVUpYQasdMKpPppz6igqXcLNS9biy8vAbj8h0eGLiIiIyDSocBLZh1g0RldbK00DaTR3DVDU9HsWR14j2zZC8USfVstHZdHRHLe6hHjGZcRLCiny+ijW80giIiIi84YKJ5EJkbEYHY0NDNS/SqynmYzBdjzxHjKI8ePQhViOVM5ypxPIWkyPp4Ls0lp81YtZmpPD0kQHLyIiIiKzSoWTLEj9oSD++m0Mtdfj6GvjN4OHsSNk5/i01zkv8wWGLSdBh5e2vMNIKajkhqVrKSrMI8VxYqJDFxEREZEEUOEk81o8HifY0U5LKEpjME6k9Q2O6X8Ml22Qwok+vVYWla5VLF1aQ3V+NZG8cygoKcVntyc0dhERERGZO1Q4ybwRjcVp7wzS/+ZzRAONOAfa8cQCZNhGeXFwPc+OGix1pxLKqCCUX05mSQ2+mjoOq6ukLNCf6PBFREREZA5T4SRJaai/H3/9dgbadmIFm9ke8fBEsJLUeIRv5v+MUctB0F5AZ85yHAUVnFKziksqq3CmOoBTEx2+iIiIiCQZFU4yp1mWRTgQoKO9i51D2TR39nFq4D6KbD0UAAXAoJVOMD2TU44sp8KXw2CmgbesAk+KI9Hhi4iIiMg8ocJJ5ox43MIfGiL4xgtEO0xS+9vIG+sixzZMPOrhl31n4svPIJBZy3DOKjKKq/FW1+Er8FGk55FEREREZBapcJKEiAyP0NW4g96WHcS6m7GGQtzVezyjY3E+kv1nVqS2ErS56c6qpcddQXbZYu40VpKRlgJsSHT4IiIiIrLAqHCSWdcfDtO102THmI+mwBClnX/hXfHnybNZ5AEjVipBh5cTVvooL86nwrWE7KIC8p3ORIcuIiIiIgKocJIZZFkWPb0jtDfUYzU8R0pvG7mjfvJsA/iAH/VuZCSzCLe7nCZnGumFVXiqFuMpKcVrd2Ak+gRERERERPZChZNMy9jYKF2NDYRbdjAWaCZ9oI3fDazkn8NelqW28m/ZTxOy5RHOKCecX0ZmSQ1fXLyCnNycRIcuIiIiInLAVDjJfg0NDOCv30Z7v41tven0d7Zw0dj/kGuLkwuMWQ567AUsr8zliEqDioLVpHk2UZWZmejQRURERERmhAon2U14IEJzZx/WP3+PPdxKzkgn+fRSYIPXRpbysnU01T43rdnrSPVVkV+5CG95Fe6UFBYnOngRERERkVmiwmmBisVjdLe0EGzaxmhXE6l9rbRFsniody0AX817hrgthb60Qvpch5FRXM0xNUs5y+vFZrMBaxN7AiIiIiIih5AKpwVgdGSEzoYdBDs7eXWsnBb/AGf1/y/VKV1kAjHLRo/NTa6rmAuPXEyFL5t891FkZWclOnQRERERkTlBhdM8MzA8Rou/n/7tz5PeuZWs4U48Voh8m0V6PJV7hj9EmS+XUPEGUnJScJXX4quuJc+ZRm2igxcRERERmaNUOCWpeDxOsLODnsbtjHQ24OhtJXe0i2+EziJCKmdmvMaG9EbCqYU0uZaR5htf+vt7peU47Hbg8ESfgoiIiIhI0lDhlATGxsYINDcSbt7Om6PF7OixKA6+wLnOZygB4haEbHn0ZpSyaVkJRWWllHs3kJudQUmigxcRERERmQdUOM0xI6NRWrsG6WhuwtXwRzKGOvDEe8ixxcgB/jR0ApH8FWRVrqDJ6SGnrJbCqsVUZel5JBERERGR2aLCKYF6e7rpqjcZ6mjAHmohJ+LnT4N1/DWyBI+9n2tcbxBK8dHiOhKnt5K8ykV8vKKKlJTURIcuIiIiIrKgzMnCyTCMOuA+wAP0AJeYprk9sVFNXyweo6e1hWDTDjr747w8UEiHP8iXnPdRZBvvE7ay6UsrpK68hsMWraLCl0VezkYK7fbEBi8iIiIiInOzcALuAu40TfMBwzAuAu4GTkpwTAckFo/T+uSDxDpNciJ+MmxjlAJ9Y6WEM87BqC6kIeVcXIUl+GrqKHflJTpkERERERHZizlXOBmG4WN8ybdTJjY9BNxhGIbXNM1A4iI7MFv+0YFzh0m2Y5RQzgrSC6twlS9iTdUi1qWnTfRaltAYRURERERkauZc4QSUA22macYATNOMGYbRPrE9aQqno5YV0lH4ecp92aQ4dLudiIiIiEgym4uF00HzeLITenyvNweA8tL8hMYhU/dWziR5KGfJRzlLPspZclG+ko9yllzmYuHUApQahuGYmG1yACUT26ekp2eAeNyatQD3xevNIRDoT8ixZXqUs+SjnCUf5Sz5KGfJRflKPspZ4tjttmlNtMy5e8hM0+wCXgEunNh0IfByMj3fJCIiIiIi88tcnHECuAK4zzCMLwMh4JIExyMiIiIiIgvYnCycTNN8EzhqGrs6YHz6LZESfXw5cMpZ8lHOko9ylnyUs+SifCUf5Swxdvm6Ow5kP5tlJeZZoFlyDPDXRAchIiIiIiJz3rHAlql2nm+FUxpwJNABxBIci4iIiIiIzD0OoBh4HohMdaf5VjiJiIiIiIjMuDm3qp6IiIiIiMhco8JJRERERERkP1Q4iYiIiIiI7IcKJxERERERkf1Q4SQiIiIiIrIfKpxERERERET2Q4WTiIiIiIjIfqQkOoD5xDCMOuA+wAP0AJeYprk9sVEtPIZhNAIjEx8AXzBN8wnDMNYDdwMZQCNwkWmaXRP7TKtNpscwjNuA84EqYKVpmq9NbN/rNTQbbTJ1+8hZI3u43ibadM0liGEYHuB+oJbxN3fcAXzcNM3AbORFOTt4+8mZBbwKxCe6X2ya5qsT+20EbmX8d7oXgY+Ypjl0MG0ydYZh/AqoZjw3A8CnTNN8RT/P5ifNOM2su4A7TdOsA+5k/IeIJMYm0zTXTHw8YRiGDXgA+OREfp4Gvgkw3TY5KL8CjgOa3rZ9X9fQbLTJ1O0tZ/C26w2mf13pmpsxFvAt0zQN0zRXATuBb85GXpSzGbPHnO3SfvQu19lbRVM28F/ARtM0FwH9wDUH0yYH7MOmaa42TfMw4DbgRxPb9fNsHlLhNEMMw/ABhwMPTWx6CDjcMAxv4qKSXawFRkzT3DLx+i7g/QfZJtNkmuYW0zRbdt22r2toNtpm69zmqz3lbD90zSWQaZpB0zT/vMumZ4FKZicvytkM2EfO9uU9wAu7zDrcBVxwkG1yAEzT7N3lpQuI6+fZ/KXCaeaUA22macYAJv5tn9guh96DhmH8wzCMHxiGkQdUsMtfyk3T7AbshmG4D6JNZta+rqHZaJOZ8/brDXTNzRmGYdiBK4HfMDt5Uc5m2Nty9pY/G4bximEY3zAMI21i225fe6CZf/3/Nt02OUCGYdxjGEYzsBn4MPp5Nm+pcJL56FjTNFcDRwI24I4ExyMyn+l6m/tuZ/zZC+Umebw9ZxWmaa5l/HbZZcANiQpM3sk0zY+aplkBXMf4c2MyT6lwmjktQKlhGA6AiX9LJrbLIfTW7USmaUaAHwDvYvyvaZO3PBiGUQBYpmkGD6JNZta+rqHZaJMZsJfrDXTNzQkTi3osBi4wTTPO7ORFOZtBe8jZrtdZH3APe7nOGJ9JajnINpkm0zTvB04EWtHPs3lJhdMMmVg96BXgwolNFwIvm6YZSFxUC49hGFmGYbgmPrcBH2A8Ly8CGYZhHDPR9Qrg4YnPp9smM2hf19BstM3+Gc1/+7jeQNdcwhmGsRk4Ajh3orCF2cmLcjZD9pQzwzDyDcPImPg8BdjEv66z3wNHGoaxeOL1rl/76bbJFBmGkW0YRvkurzcCQUA/z+Ypm2VZiY5h3jAMYwnjy0TmAyHGl4k0ExvVwmIYRg3wC8Ax8fE6cLVpmh2GYRzN+Ao06fxruVz/xH7TapPpMQzj+8B7gSKgG+gxTXP5vq6h2WiTqdtTzoCN7OV6m9hH11yCGIaxHHgN2AYMT2xuME3zvNnIi3J28PaWM+BbjH9tLSAVeAb4tGmaAxP7nTPRxwG8DFxqmubgwbTJ1BiGUQj8GsgCYowXTdeYpvmSfp7NTyqcRERERERE9kO36omIiIiIiOyHCicREREREZH9UOEkIiIiIiKyHyqcRERERERE9kOFk4iIiIiIyH6ocBIRkTnJMIy7DMO4YR/tlmEYi2b4mB8yDOPJmRxTRETmBy1HLiIis84wjA8AnwFWAIOMvz/NfcAPTdOc1g8iwzAsYLFpmjv20PZnYD0QBUaAp4FPvvUeUzPBMIxLgY+apnnM/vqKiEjy04yTiIjMKsMwPgd8D7iV8TfQLQSuAN4FOPeyj2MGDn2VaZrZQB2QB3xnBsYUEZEFKiXRAYiIyPxlGIYL+Crj73D/i12aXgY+tEu/nwDDQCVwPHCOYRgXAa2maV4/0eda4LOABVw/1RhM0wwahvEL4MpdYrodeA8wBPwXcLNpmvG3zyJNzGpdCXwOKAB+ClwFLAHuAlINwxgAoqZp5hmGcQZwG1AO9AHfMU3ztqnGKiIic5dmnEREZDZtANKAX0+h7weBzUAOsGXXBsMwTgeuAU4BFgPvnmoAhmEUAOczXqzBeNHkAmoYL9IuAT6yjyHOAo4EVgPvB04zTfMNxmfN/p9pmtmmaeZN9L0X+LhpmjmM35b4f6cap4iIzG2acRIRkdlUAHSbphl9a4NhGM8AyxgvqE4zTfPpiaZfm6b5t4nPRwzD2HWc9wM/Nk3ztYkxbgQu3M+xv28Yxm2MP1P1Z+CzE7cAXgAcZppmP9BvGMa3gYsZL3r25JumaYaBsGEYfwLWAL/fS98xYJlhGFtN0wwBof3EKCIiSUIzTiLy/9u7Xxcp4jCO42/LFQ0iYvBE46fZ9U+wXBCTP7JFo8bDYDGZBIuCwbDJINgEiwaz4QGRW0Q89Q7UcKBwYPiuoivsd51jYYX3Kw2zM88+bfjMd+YZaZG2gcNJft2oq6rTkxWabf68Dr2dUefo1O/jOf77alUdrKrVqjpfVZ9oQW5l6vwxsDqjzuZv2zvAgRnHngXOAOMkz5KcmqNPSdJ/wOAkSVqkF8A3YG2OY2dN13tPe2/op+MD+9mirQqdmKr1bkCtv/qtqpdVtQYcAR4BoyFNSpKWj4/qSZIWpqo+J7kB3Emyj/aI2w5wEtj/D6VGwP0kD4ANYH1gP7tJRsDNJJeAQ7SBE0MGOHwAjiVZqarvSVaAc8DjqvqS5CuwO6RPSdLyccVJkrRQVXWLFk6uAR9pgeMucB14PmeNJ8Bt2rCF1+xt6MIV2ntPb2hDKB4C9wbUeQq8AjaTbE32XQQ2JqHpMnBhD31KkpaIH8CVJEmSpA5XnCRJkiSpw+AkSZIkSR0GJ0mSJEnqMDhJkiRJUofBSZIkSZI6DE6SJEmS1GFwkiRJkqQOg5MkSZIkdRicJEmSJKnjBz1szN6HVdfNAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 1008x432 with 2 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
+    "for ax, pmu_counter in zip([ax1, ax2], [\"PM_LD_CMPL (min)\", \"PM_ST_CMPL (min)\"]):\n",
+    "    df_ldst.set_index(\"Grid Points\")[pmu_counter].plot(ax=ax, legend=True);\n",
+    "    ax.plot(\n",
+    "        df_ldst[\"Grid Points\"], \n",
+    "        linear_function(df[\"Grid Points\"], *fit_parameters[pmu_counter]), \n",
+    "        linestyle=\"--\", \n",
+    "        label=\"Fit: {:.2f} * x + {:.2f}\".format(*fit_parameters[pmu_counter])\n",
+    "    )\n",
+    "    ax.legend();"
    ]
   },
   {
@@ -1676,9 +1845,12 @@
    "source": [
     "Did you expect more?\n",
     "\n",
-    "The reason is simple: Among the load and store instructions counted by `PM_LD_CMPL` and `PM_ST_CMPL` are vector instructions which can load and store multiple (two) values at a time. To see how many *bytes* are loaded and stored, we need to measure counters for vectorized loads and stores as well.\n",
+    "The reason is simple: Among the load and store instructions counted by `PM_LD_CMPL` and `PM_ST_CMPL` are vector instructions which can load and store multiple (in this case: two) values at a time. To see how many *bytes* are loaded and stored, we need to measure counters for vectorized loads and stores as well.\n",
+    "\n",
+    "### TASK B\n",
+    "<a name=\"task2-b\"></a>\n",
     "\n",
-    "<a name=\"task2-b\"></a>**TASK B**: Please measure counters for _vectorized_ loads and _vectorized_ stores. See the TODOs in [`poisson2d.vld.c`](/edit/Tasks/poisson2d.vld.c) and [`poisson2d.vst.c`](/edit/Tasks/poisson2d.vst.c) (*Note: These vector counters can not be measured together and need separate files and runs*). Can you find out the name of the counters yourself, using `papi_native_avail | grep VECTOR_`?\n",
+    "Please measure counters for _vectorized_ loads and _vectorized_ stores. See the TODOs in [`poisson2d.vld.c`](poisson2d.vld.c) and [`poisson2d.vst.c`](poisson2d.vst.c) (*Note: These vector counters can not be measured together and need separate files and runs*). Can you find out the name of the counters yourself, using `papi_native_avail | grep VECTOR_`?\n",
     "\n",
     "Compile, test, and bench-run your program again.\n",
     "\n",
@@ -1687,16 +1859,16 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 9,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "| PM_VECTOR_FLOP_CMPL                                                          |\r\n",
-      "| PM_VECTOR_LD_CMPL                                                            |\r\n",
-      "| PM_VECTOR_ST_CMPL                                                            |\r\n"
+      "| PM_VECTOR_FLOP_CMPL                                                          |\n",
+      "| PM_VECTOR_LD_CMPL                                                            |\n",
+      "| PM_VECTOR_ST_CMPL                                                            |\n"
      ]
     }
    ],
@@ -1713,15 +1885,15 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 1,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "bsub -W 60 -nnodes 1 -Is jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vld.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.vld.bin.csv\n",
-      "Job <4097> is submitted to default queue <batch>.\n",
+      "bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vld.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.vld.bin.csv\n",
+      "Job <24641> is submitted to default queue <batch>.\n",
       "<<Waiting for dispatch ...>>\n",
       "<<Starting on login1>>\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
@@ -1731,9 +1903,9 @@
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,12,0.0012,174000,870,870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,16,0.0013,234000,1170,1170\n",
+      "200,32,16,0.0012,234000,1170,1170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,20,0.0014,294000,1470,1470\n",
+      "200,32,20,0.0013,294000,1470,1470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,24,0.0014,354000,1770,1770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
@@ -1747,11 +1919,11 @@
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,44,0.0017,654000,3270,3270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,48,0.0017,714000,3570,3570\n",
+      "200,32,48,0.0018,714000,3570,3570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,52,0.0018,774000,3870,3870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,56,0.0020,834000,4170,4170\n",
+      "200,32,56,0.0019,834000,4170,4170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,60,0.0020,894000,4470,4470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
@@ -1761,123 +1933,117 @@
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,72,0.0022,1074000,5370,5370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,76,0.0023,1134000,5670,5670\n",
+      "200,32,76,0.0022,1134000,5670,5670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,80,0.0023,1194000,5970,5970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,84,0.0023,1254000,6270,6270\n",
+      "200,32,84,0.0024,1254000,6270,6270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,88,0.0024,1314000,6570,6570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,92,0.0025,1374000,6870,6870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,96,0.0025,1434000,7170,7170\n",
+      "200,32,96,0.0027,1434000,7170,7170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,100,0.0026,1494000,7470,7470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,104,0.0027,1554000,7770,7770\n",
+      "200,32,104,0.0029,1554000,7770,7770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,108,0.0027,1614000,8070,8070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,112,0.0028,1674000,8370,8370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,116,0.0028,1734000,8670,8670\n",
+      "200,32,116,0.0029,1734000,8670,8670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,120,0.0029,1794000,8970,8970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,124,0.0030,1854000,9270,9270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,128,0.0030,1914000,9570,9570\n",
+      "200,32,128,0.0032,1914000,9570,9570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,132,0.0031,1974000,9870,9870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,136,0.0032,2034000,10170,10170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,140,0.0032,2094000,10470,10470\n",
+      "200,32,140,0.0033,2094000,10470,10470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,144,0.0033,2154000,10770,10770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,148,0.0034,2214000,11070,11070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,152,0.0035,2274000,11370,11370\n",
+      "200,32,152,0.0036,2274000,11370,11370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,156,0.0035,2334000,11670,11670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,160,0.0036,2394000,11970,11970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,164,0.0036,2454000,12270,12270\n",
+      "200,32,164,0.0037,2454000,12270,12270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,168,0.0037,2514000,12570,12570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,172,0.0037,2574000,12870,12870\n",
+      "200,32,172,0.0038,2574000,12870,12870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,176,0.0038,2634000,13170,13170\n",
+      "200,32,176,0.0039,2634000,13170,13170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,180,0.0039,2694000,13470,13470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,184,0.0041,2754000,13770,13770\n",
+      "200,32,184,0.0040,2754000,13770,13770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,188,0.0040,2814000,14070,14070\n",
+      "200,32,188,0.0041,2814000,14070,14070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,192,0.0041,2874000,14370,14370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,196,0.0041,2934000,14670,14670\n",
+      "200,32,196,0.0042,2934000,14670,14670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,200,0.0042,2994000,14970,14970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,204,0.0043,3054000,15270,15270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,208,0.0044,3114000,15570,15570\n",
+      "200,32,208,0.0045,3114000,15570,15570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,212,0.0044,3174000,15870,15870\n",
+      "200,32,212,0.0045,3174000,15870,15870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,216,0.0044,3234000,16170,16170\n",
+      "200,32,216,0.0045,3234000,16170,16170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,220,0.0045,3294000,16470,16470\n",
+      "200,32,220,0.0046,3294000,16470,16470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,224,0.0046,3354000,16770,16770\n",
+      "200,32,224,0.0048,3354000,16770,16770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,228,0.0047,3414000,17070,17070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,232,0.0047,3474000,17370,17370\n",
+      "200,32,232,0.0048,3474000,17370,17370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,236,0.0048,3534000,17670,17670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,240,0.0048,3594000,17970,17970\n",
+      "200,32,240,0.0049,3594000,17970,17970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,244,0.0049,3654000,18270,18270\n",
+      "200,32,244,0.0050,3654000,18270,18270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,248,0.0049,3714000,18570,18570\n",
+      "200,32,248,0.0052,3714000,18570,18570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,252,0.0050,3774000,18870,18870\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,252,0.0051,3774000,18870,18870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,256,0.0051,3834000,19170,19170\n",
+      "200,32,256,0.0052,3834000,19170,19170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,260,0.0052,3894000,19470,19470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,264,0.0052,3954000,19770,19770\n",
+      "200,32,264,0.0053,3954000,19770,19770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,268,0.0053,4014000,20070,20070\n",
+      "200,32,268,0.0054,4014000,20070,20070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,272,0.0053,4074000,20370,20370\n",
+      "200,32,272,0.0054,4074000,20370,20370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,276,0.0055,4134000,20670,20670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,280,0.0055,4194000,20970,20970\n",
+      "200,32,280,0.0056,4194000,20970,20970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,284,0.0055,4254000,21270,21270\n",
+      "200,32,284,0.0056,4254000,21270,21270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,288,0.0057,4314000,21570,21570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,292,0.0056,4374000,21870,21870\n",
+      "200,32,292,0.0058,4374000,21870,21870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,296,0.0057,4434000,22170,22170\n",
+      "200,32,296,0.0058,4434000,22170,22170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,300,0.0059,4494000,22470,22470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
@@ -1885,384 +2051,366 @@
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,308,0.0060,4614000,23070,23070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,312,0.0060,4674000,23370,23370\n",
+      "200,32,312,0.0061,4674000,23370,23370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,316,0.0061,4734000,23670,23670\n",
+      "200,32,316,0.0062,4734000,23670,23670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,320,0.0061,4794000,23970,23970\n",
+      "200,32,320,0.0062,4794000,23970,23970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,324,0.0062,4854000,24270,24270\n",
+      "200,32,324,0.0063,4854000,24270,24270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,328,0.0062,4914000,24570,24570\n",
+      "200,32,328,0.0063,4914000,24570,24570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,332,0.0063,4974000,24870,24870\n",
+      "200,32,332,0.0064,4974000,24870,24870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,336,0.0063,5034000,25170,25170\n",
+      "200,32,336,0.0065,5034000,25170,25170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,340,0.0066,5094000,25470,25470\n",
+      "200,32,340,0.0065,5094000,25470,25470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,344,0.0065,5154000,25770,25770\n",
+      "200,32,344,0.0066,5154000,25770,25770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,348,0.0067,5214000,26070,26070\n",
+      "200,32,348,0.0069,5214000,26070,26070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,352,0.0068,5274000,26370,26370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,356,0.0067,5334000,26670,26670\n",
+      "200,32,356,0.0070,5334000,26670,26670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,360,0.0067,5394000,26970,26970\n",
+      "200,32,360,0.0069,5394000,26970,26970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,364,0.0068,5454000,27270,27270\n",
+      "200,32,364,0.0070,5454000,27270,27270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,368,0.0069,5514000,27570,27570\n",
+      "200,32,368,0.0070,5514000,27570,27570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,372,0.0069,5574000,27870,27870\n",
+      "200,32,372,0.0071,5574000,27870,27870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,376,0.0070,5634000,28170,28170\n",
+      "200,32,376,0.0073,5634000,28170,28170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,380,0.0071,5694000,28470,28470\n",
+      "200,32,380,0.0073,5694000,28470,28470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,384,0.0071,5754000,28770,28770\n",
+      "200,32,384,0.0073,5754000,28770,28770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,388,0.0073,5814000,29070,29070\n",
+      "200,32,388,0.0074,5814000,29070,29070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,392,0.0074,5874000,29370,29370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,396,0.0073,5934000,29670,29670\n",
+      "200,32,396,0.0076,5934000,29670,29670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,400,0.0074,5994000,29970,29970\n",
+      "200,32,400,0.0075,5994000,29970,29970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,404,0.0074,6054000,30270,30270\n",
+      "200,32,404,0.0076,6054000,30270,30270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,408,0.0075,6114000,30570,30570\n",
+      "200,32,408,0.0077,6114000,30570,30570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,412,0.0076,6174000,30870,30870\n",
+      "200,32,412,0.0078,6174000,30870,30870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,416,0.0076,6234000,31170,31170\n",
+      "200,32,416,0.0079,6234000,31170,31170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,420,0.0080,6294000,31470,31470\n",
+      "200,32,420,0.0079,6294000,31470,31470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,424,0.0079,6354000,31770,31770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,428,0.0078,6414000,32070,32070\n",
+      "200,32,428,0.0080,6414000,32070,32070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,432,0.0079,6474000,32370,32370\n",
+      "200,32,432,0.0080,6474000,32370,32370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,436,0.0080,6534000,32670,32670\n",
+      "200,32,436,0.0081,6534000,32670,32670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,440,0.0080,6594000,32970,32970\n",
+      "200,32,440,0.0082,6594000,32970,32970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,444,0.0083,6654000,33270,33270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,448,0.0082,6714000,33570,33570\n",
+      "200,32,448,0.0084,6714000,33570,33570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,452,0.0082,6774000,33870,33870\n",
+      "200,32,452,0.0084,6774000,33870,33870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,456,0.0083,6834000,34170,34170\n",
+      "200,32,456,0.0084,6834000,34170,34170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,460,0.0086,6894000,34470,34470\n",
+      "200,32,460,0.0085,6894000,34470,34470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,464,0.0084,6954000,34770,34770\n",
+      "200,32,464,0.0086,6954000,34770,34770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,468,0.0085,7014000,35070,35070\n",
+      "200,32,468,0.0087,7014000,35070,35070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,472,0.0086,7074000,35370,35370\n",
+      "200,32,472,0.0088,7074000,35370,35370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,476,0.0086,7134000,35670,35670\n",
+      "200,32,476,0.0088,7134000,35670,35670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,480,0.0087,7194000,35970,35970\n",
+      "200,32,480,0.0089,7194000,35970,35970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,484,0.0088,7254000,36270,36270\n",
+      "200,32,484,0.0090,7254000,36270,36270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,488,0.0088,7314000,36570,36570\n",
+      "200,32,488,0.0091,7314000,36570,36570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,492,0.0089,7374000,36870,36870\n",
+      "200,32,492,0.0091,7374000,36870,36870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,496,0.0091,7434000,37170,37170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,500,0.0092,7494000,37470,37470\n",
+      "200,32,500,0.0094,7494000,37470,37470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,504,0.0091,7554000,37770,37770\n",
+      "200,32,504,0.0093,7554000,37770,37770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,508,0.0092,7614000,38070,38070\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,508,0.0095,7614000,38070,38070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,512,0.0092,7674000,38370,38370\n",
+      "200,32,512,0.0096,7674000,38370,38370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,516,0.0093,7734000,38670,38670\n",
+      "200,32,516,0.0095,7734000,38670,38670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,520,0.0093,7794000,38970,38970\n",
+      "200,32,520,0.0095,7794000,38970,38970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,524,0.0094,7854000,39270,39270\n",
+      "200,32,524,0.0097,7854000,39270,39270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
       "200,32,528,0.0097,7914000,39570,39570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,532,0.0095,7974000,39870,39870\n",
+      "200,32,532,0.0098,7974000,39870,39870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,536,0.0096,8034000,40170,40170\n",
+      "200,32,536,0.0098,8034000,40170,40170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,540,0.0097,8094000,40470,40470\n",
+      "200,32,540,0.0099,8094000,40470,40470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,544,0.0097,8154000,40770,40770\n",
+      "200,32,544,0.0100,8154000,40770,40770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,548,0.0099,8214000,41070,41070\n",
+      "200,32,548,0.0101,8214000,41070,41070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,552,0.0099,8274000,41370,41370\n",
+      "200,32,552,0.0101,8274000,41370,41370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,556,0.0100,8334000,41670,41670\n",
+      "200,32,556,0.0104,8334000,41670,41670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,560,0.0100,8394000,41970,41970\n",
+      "200,32,560,0.0103,8394000,41970,41970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,564,0.0101,8454000,42270,42270\n",
+      "200,32,564,0.0103,8454000,42270,42270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,568,0.0102,8514000,42570,42570\n",
+      "200,32,568,0.0106,8514000,42570,42570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,572,0.0103,8574000,42870,42870\n",
+      "200,32,572,0.0105,8574000,42870,42870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,576,0.0103,8634000,43170,43170\n",
+      "200,32,576,0.0106,8634000,43170,43170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,580,0.0104,8694000,43470,43470\n",
+      "200,32,580,0.0108,8694000,43470,43470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,584,0.0104,8754000,43770,43770\n",
+      "200,32,584,0.0109,8754000,43770,43770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,588,0.0106,8814000,44070,44070\n",
+      "200,32,588,0.0108,8814000,44070,44070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,592,0.0106,8874000,44370,44370\n",
+      "200,32,592,0.0109,8874000,44370,44370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,596,0.0107,8934000,44670,44670\n",
+      "200,32,596,0.0109,8934000,44670,44670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,600,0.0107,8994000,44970,44970\n",
+      "200,32,600,0.0110,8994000,44970,44970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,604,0.0109,9054000,45270,45270\n",
+      "200,32,604,0.0111,9054000,45270,45270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,608,0.0109,9114000,45570,45570\n",
+      "200,32,608,0.0112,9114000,45570,45570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,612,0.0110,9174000,45870,45870\n",
+      "200,32,612,0.0112,9174000,45870,45870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,616,0.0110,9234000,46170,46170\n",
+      "200,32,616,0.0114,9234000,46170,46170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,620,0.0111,9294000,46470,46470\n",
+      "200,32,620,0.0113,9294000,46470,46470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,624,0.0112,9354000,46770,46770\n",
+      "200,32,624,0.0114,9354000,46770,46770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,628,0.0112,9414000,47070,47070\n",
+      "200,32,628,0.0117,9414000,47070,47070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,632,0.0113,9474000,47370,47370\n",
+      "200,32,632,0.0116,9474000,47370,47370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,636,0.0114,9534000,47670,47670\n",
+      "200,32,636,0.0116,9534000,47670,47670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,640,0.0115,9594000,47970,47970\n",
+      "200,32,640,0.0117,9594000,47970,47970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,644,0.0115,9654000,48270,48270\n",
+      "200,32,644,0.0119,9654000,48270,48270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,648,0.0115,9714000,48570,48570\n",
+      "200,32,648,0.0118,9714000,48570,48570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,652,0.0116,9774000,48870,48870\n",
+      "200,32,652,0.0119,9774000,48870,48870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,656,0.0118,9834000,49170,49170\n",
+      "200,32,656,0.0119,9834000,49170,49170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,660,0.0117,9894000,49470,49470\n",
+      "200,32,660,0.0121,9894000,49470,49470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,664,0.0118,9954000,49770,49770\n",
+      "200,32,664,0.0122,9954000,49770,49770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,668,0.0118,10014000,50070,50070\n",
+      "200,32,668,0.0123,10014000,50070,50070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,672,0.0120,10074000,50370,50370\n",
+      "200,32,672,0.0122,10074000,50370,50370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,676,0.0121,10134000,50670,50670\n",
+      "200,32,676,0.0123,10134000,50670,50670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,680,0.0120,10194000,50970,50970\n",
+      "200,32,680,0.0123,10194000,50970,50970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,684,0.0121,10254000,51270,51270\n",
+      "200,32,684,0.0125,10254000,51270,51270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,688,0.0123,10314000,51570,51570\n",
+      "200,32,688,0.0125,10314000,51570,51570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,692,0.0122,10374000,51870,51870\n",
+      "200,32,692,0.0127,10374000,51870,51870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,696,0.0123,10434000,52170,52170\n",
+      "200,32,696,0.0126,10434000,52170,52170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,700,0.0124,10494000,52470,52470\n",
+      "200,32,700,0.0127,10494000,52470,52470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,704,0.0124,10554000,52770,52770\n",
+      "200,32,704,0.0128,10554000,52770,52770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,708,0.0125,10614000,53070,53070\n",
+      "200,32,708,0.0129,10614000,53070,53070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,712,0.0126,10674000,53370,53370\n",
+      "200,32,712,0.0128,10674000,53370,53370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,716,0.0126,10734000,53670,53670\n",
+      "200,32,716,0.0131,10734000,53670,53670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,720,0.0126,10794000,53970,53970\n",
+      "200,32,720,0.0130,10794000,53970,53970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,724,0.0128,10854000,54270,54270\n",
+      "200,32,724,0.0130,10854000,54270,54270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,728,0.0128,10914000,54570,54570\n",
+      "200,32,728,0.0132,10914000,54570,54570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,732,0.0129,10974000,54870,54870\n",
+      "200,32,732,0.0133,10974000,54870,54870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,736,0.0130,11034000,55170,55170\n",
+      "200,32,736,0.0135,11034000,55170,55170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,740,0.0130,11094000,55470,55470\n",
+      "200,32,740,0.0135,11094000,55470,55470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,744,0.0130,11154000,55770,55770\n",
+      "200,32,744,0.0135,11154000,55770,55770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,748,0.0131,11214000,56070,56070\n",
+      "200,32,748,0.0134,11214000,56070,56070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,752,0.0132,11274000,56370,56370\n",
+      "200,32,752,0.0135,11274000,56370,56370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,756,0.0133,11334000,56670,56670\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,756,0.0136,11334000,56670,56670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,760,0.0134,11394000,56970,56970\n",
+      "200,32,760,0.0137,11394000,56970,56970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,764,0.0134,11454000,57270,57270\n",
+      "200,32,764,0.0137,11454000,57270,57270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,768,0.0135,11514000,57570,57570\n",
+      "200,32,768,0.0138,11514000,57570,57570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,772,0.0135,11574000,57870,57870\n",
+      "200,32,772,0.0139,11574000,57870,57870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,776,0.0136,11634000,58170,58170\n",
+      "200,32,776,0.0141,11634000,58170,58170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,780,0.0138,11694000,58470,58470\n",
+      "200,32,780,0.0140,11694000,58470,58470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,784,0.0138,11754000,58770,58770\n",
+      "200,32,784,0.0142,11754000,58770,58770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,788,0.0139,11814000,59070,59070\n",
+      "200,32,788,0.0141,11814000,59070,59070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,792,0.0139,11874000,59370,59370\n",
+      "200,32,792,0.0142,11874000,59370,59370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,796,0.0141,11934000,59670,59670\n",
+      "200,32,796,0.0143,11934000,59670,59670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,800,0.0140,11994000,59970,59970\n",
+      "200,32,800,0.0143,11994000,59970,59970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,804,0.0141,12054000,60270,60270\n",
+      "200,32,804,0.0145,12054000,60270,60270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,808,0.0142,12114000,60570,60570\n",
+      "200,32,808,0.0145,12114000,60570,60570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,812,0.0143,12174000,60870,60870\n",
+      "200,32,812,0.0145,12174000,60870,60870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,816,0.0143,12234000,61170,61170\n",
+      "200,32,816,0.0148,12234000,61170,61170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,820,0.0143,12294000,61470,61470\n",
+      "200,32,820,0.0148,12294000,61470,61470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,824,0.0144,12354000,61770,61770\n",
+      "200,32,824,0.0148,12354000,61770,61770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,828,0.0145,12414000,62070,62070\n",
+      "200,32,828,0.0148,12414000,62070,62070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,832,0.0145,12474000,62370,62370\n",
+      "200,32,832,0.0149,12474000,62370,62370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,836,0.0146,12534000,62670,62670\n",
+      "200,32,836,0.0150,12534000,62670,62670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,840,0.0146,12594000,62970,62970\n",
+      "200,32,840,0.0150,12594000,62970,62970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,844,0.0147,12654000,63270,63270\n",
+      "200,32,844,0.0151,12654000,63270,63270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,848,0.0148,12714000,63570,63570\n",
+      "200,32,848,0.0153,12714000,63570,63570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,852,0.0149,12774000,63870,63870\n",
+      "200,32,852,0.0153,12774000,63870,63870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,856,0.0150,12834000,64170,64170\n",
+      "200,32,856,0.0153,12834000,64170,64170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,860,0.0150,12894000,64470,64470\n",
+      "200,32,860,0.0154,12894000,64470,64470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,864,0.0151,12954000,64770,64770\n",
+      "200,32,864,0.0154,12954000,64770,64770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,868,0.0152,13014000,65070,65070\n",
+      "200,32,868,0.0155,13014000,65070,65070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,872,0.0151,13074000,65370,65370\n",
+      "200,32,872,0.0157,13074000,65370,65370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,876,0.0152,13134000,65670,65670\n",
+      "200,32,876,0.0156,13134000,65670,65670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,880,0.0154,13194000,65970,65970\n",
+      "200,32,880,0.0157,13194000,65970,65970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,884,0.0154,13254000,66270,66270\n",
+      "200,32,884,0.0157,13254000,66270,66270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,888,0.0154,13314000,66570,66570\n",
+      "200,32,888,0.0158,13314000,66570,66570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,892,0.0155,13374000,66870,66870\n",
+      "200,32,892,0.0159,13374000,66870,66870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,896,0.0156,13434000,67170,67170\n",
+      "200,32,896,0.0160,13434000,67170,67170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,900,0.0158,13494000,67470,67470\n",
+      "200,32,900,0.0160,13494000,67470,67470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,904,0.0158,13554000,67770,67770\n",
+      "200,32,904,0.0162,13554000,67770,67770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,908,0.0159,13614000,68070,68070\n",
+      "200,32,908,0.0162,13614000,68070,68070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,912,0.0161,13674000,68370,68370\n",
+      "200,32,912,0.0163,13674000,68370,68370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,916,0.0162,13734000,68670,68670\n",
+      "200,32,916,0.0163,13734000,68670,68670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,920,0.0162,13794000,68970,68970\n",
+      "200,32,920,0.0164,13794000,68970,68970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,924,0.0163,13854000,69270,69270\n",
+      "200,32,924,0.0165,13854000,69270,69270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,928,0.0162,13914000,69570,69570\n",
+      "200,32,928,0.0166,13914000,69570,69570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,932,0.0164,13974000,69870,69870\n",
+      "200,32,932,0.0166,13974000,69870,69870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,936,0.0163,14034000,70170,70170\n",
+      "200,32,936,0.0167,14034000,70170,70170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,940,0.0164,14094000,70470,70470\n",
+      "200,32,940,0.0167,14094000,70470,70470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,944,0.0165,14154000,70770,70770\n",
+      "200,32,944,0.0168,14154000,70770,70770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,948,0.0166,14214000,71070,71070\n",
+      "200,32,948,0.0170,14214000,71070,71070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,952,0.0166,14274000,71370,71370\n",
+      "200,32,952,0.0171,14274000,71370,71370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,956,0.0170,14334000,71670,71670\n",
+      "200,32,956,0.0171,14334000,71670,71670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,960,0.0168,14394000,71970,71970\n",
+      "200,32,960,0.0171,14394000,71970,71970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,964,0.0174,14454000,72270,72270\n",
+      "200,32,964,0.0175,14454000,72270,72270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,968,0.0172,14514000,72570,72570\n",
+      "200,32,968,0.0176,14514000,72570,72570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,972,0.0173,14574000,72870,72870\n",
+      "200,32,972,0.0176,14574000,72870,72870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,976,0.0173,14634000,73170,73170\n",
+      "200,32,976,0.0175,14634000,73170,73170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,980,0.0175,14694000,73470,73470\n",
+      "200,32,980,0.0178,14694000,73470,73470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,984,0.0175,14754000,73770,73770\n",
+      "200,32,984,0.0180,14754000,73770,73770\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,988,0.0176,14814000,74070,74070\n",
+      "200,32,988,0.0178,14814000,74070,74070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,992,0.0176,14874000,74370,74370\n",
+      "200,32,992,0.0179,14874000,74370,74370\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,996,0.0178,14934000,74670,74670\n",
+      "200,32,996,0.0181,14934000,74670,74670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,1000,0.0179,14994000,74970,74970\n",
+      "200,32,1000,0.0180,14994000,74970,74970\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,1004,0.0178,15054000,75270,75270\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,1004,0.0182,15054000,75270,75270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,1008,0.0179,15114000,75570,75570\n",
+      "200,32,1008,0.0181,15114000,75570,75570\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,1012,0.0179,15174000,75870,75870\n",
+      "200,32,1012,0.0183,15174000,75870,75870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,1016,0.0181,15234000,76170,76170\n",
+      "200,32,1016,0.0183,15234000,76170,76170\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,1020,0.0181,15294000,76470,76470\n",
+      "200,32,1020,0.0186,15294000,76470,76470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,1024,0.0179,15354000,76770,76770\n",
-      "mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vld.bin.csv .\n",
-      "bsub -W 60 -nnodes 1 -Is jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vst.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.vst.bin.csv\n",
-      "Job <4098> is submitted to default queue <batch>.\n",
+      "200,32,1024,0.0182,15354000,76770,76770\n",
+      "mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.vld.bin.csv .\n",
+      "bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vst.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.vst.bin.csv\n",
+      "Job <24642> is submitted to default queue <batch>.\n",
       "<<Waiting for dispatch ...>>\n",
       "<<Starting on login1>>\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
@@ -2276,11 +2424,11 @@
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,20,0.0013,54200,271,271\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,24,0.0014,66200,331,331\n",
+      "200,32,24,0.0013,66200,331,331\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,28,0.0014,78200,391,391\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,32,0.0016,90200,451,451\n",
+      "200,32,32,0.0015,90200,451,451\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,36,0.0015,102200,511,511\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
@@ -2296,115 +2444,109 @@
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,60,0.0020,174200,871,871\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,64,0.0022,186200,931,931\n",
+      "200,32,64,0.0020,186200,931,931\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,68,0.0022,198200,991,991\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,72,0.0021,210200,1051,1051\n",
+      "200,32,72,0.0023,210200,1051,1051\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,76,0.0023,222200,1111,1111\n",
+      "200,32,76,0.0022,222200,1111,1111\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,80,0.0023,234200,1171,1171\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,84,0.0023,246200,1231,1231\n",
+      "200,32,84,0.0024,246200,1231,1231\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,88,0.0024,258200,1291,1291\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,92,0.0025,270200,1351,1351\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,96,0.0027,282200,1411,1411\n",
+      "200,32,96,0.0025,282200,1411,1411\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,100,0.0026,294200,1471,1471\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,104,0.0027,306200,1531,1531\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,108,0.0027,318200,1591,1591\n",
+      "200,32,108,0.0028,318200,1591,1591\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,112,0.0028,330200,1651,1651\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,116,0.0028,342200,1711,1711\n",
+      "200,32,116,0.0029,342200,1711,1711\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,120,0.0030,354200,1771,1771\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,124,0.0030,366200,1831,1831\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,128,0.0030,378200,1891,1891\n",
+      "200,32,128,0.0031,378200,1891,1891\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,132,0.0032,390200,1951,1951\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,136,0.0032,402200,2011,2011\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,140,0.0032,414200,2071,2071\n",
+      "200,32,140,0.0033,414200,2071,2071\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,144,0.0033,426200,2131,2131\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,148,0.0033,438200,2191,2191\n",
+      "200,32,148,0.0035,438200,2191,2191\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,152,0.0034,450200,2251,2251\n",
+      "200,32,152,0.0035,450200,2251,2251\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,156,0.0035,462200,2311,2311\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,160,0.0036,474200,2371,2371\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,164,0.0036,486200,2431,2431\n",
+      "200,32,164,0.0038,486200,2431,2431\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,168,0.0037,498200,2491,2491\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,172,0.0037,510200,2551,2551\n",
+      "200,32,172,0.0038,510200,2551,2551\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,176,0.0039,522200,2611,2611\n",
+      "200,32,176,0.0038,522200,2611,2611\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,180,0.0039,534200,2671,2671\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,184,0.0039,546200,2731,2731\n",
+      "200,32,184,0.0040,546200,2731,2731\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,188,0.0040,558200,2791,2791\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,192,0.0040,570200,2851,2851\n",
+      "200,32,192,0.0041,570200,2851,2851\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,196,0.0041,582200,2911,2911\n",
+      "200,32,196,0.0042,582200,2911,2911\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,200,0.0042,594200,2971,2971\n",
+      "200,32,200,0.0044,594200,2971,2971\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,204,0.0042,606200,3031,3031\n",
+      "200,32,204,0.0043,606200,3031,3031\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,208,0.0043,618200,3091,3091\n",
+      "200,32,208,0.0044,618200,3091,3091\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,212,0.0044,630200,3151,3151\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,216,0.0044,642200,3211,3211\n",
+      "200,32,216,0.0045,642200,3211,3211\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,220,0.0046,654200,3271,3271\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,224,0.0046,666200,3331,3331\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,228,0.0046,678200,3391,3391\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,228,0.0047,678200,3391,3391\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,232,0.0047,690200,3451,3451\n",
+      "200,32,232,0.0048,690200,3451,3451\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,236,0.0047,702200,3511,3511\n",
+      "200,32,236,0.0048,702200,3511,3511\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,240,0.0048,714200,3571,3571\n",
+      "200,32,240,0.0049,714200,3571,3571\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,244,0.0049,726200,3631,3631\n",
+      "200,32,244,0.0050,726200,3631,3631\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,248,0.0049,738200,3691,3691\n",
+      "200,32,248,0.0050,738200,3691,3691\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,252,0.0050,750200,3751,3751\n",
+      "200,32,252,0.0051,750200,3751,3751\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,256,0.0051,762200,3811,3811\n",
+      "200,32,256,0.0052,762200,3811,3811\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,260,0.0051,774200,3871,3871\n",
+      "200,32,260,0.0052,774200,3871,3871\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,264,0.0053,786200,3931,3931\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,268,0.0053,798200,3991,3991\n",
+      "200,32,268,0.0054,798200,3991,3991\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,272,0.0054,810200,4051,4051\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
@@ -2412,396 +2554,378 @@
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,280,0.0055,834200,4171,4171\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,284,0.0055,846200,4231,4231\n",
+      "200,32,284,0.0056,846200,4231,4231\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,288,0.0056,858200,4291,4291\n",
+      "200,32,288,0.0057,858200,4291,4291\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,292,0.0057,870200,4351,4351\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,296,0.0057,882200,4411,4411\n",
+      "200,32,296,0.0058,882200,4411,4411\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,300,0.0058,894200,4471,4471\n",
+      "200,32,300,0.0059,894200,4471,4471\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,304,0.0058,906200,4531,4531\n",
+      "200,32,304,0.0059,906200,4531,4531\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,308,0.0059,918200,4591,4591\n",
+      "200,32,308,0.0060,918200,4591,4591\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,312,0.0060,930200,4651,4651\n",
+      "200,32,312,0.0061,930200,4651,4651\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,316,0.0060,942200,4711,4711\n",
+      "200,32,316,0.0061,942200,4711,4711\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,320,0.0061,954200,4771,4771\n",
+      "200,32,320,0.0062,954200,4771,4771\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,324,0.0061,966200,4831,4831\n",
+      "200,32,324,0.0063,966200,4831,4831\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,328,0.0062,978200,4891,4891\n",
+      "200,32,328,0.0063,978200,4891,4891\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,332,0.0063,990200,4951,4951\n",
+      "200,32,332,0.0064,990200,4951,4951\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,336,0.0063,1002200,5011,5011\n",
+      "200,32,336,0.0065,1002200,5011,5011\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,340,0.0064,1014200,5071,5071\n",
+      "200,32,340,0.0066,1014200,5071,5071\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,344,0.0065,1026200,5131,5131\n",
+      "200,32,344,0.0066,1026200,5131,5131\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,348,0.0066,1038200,5191,5191\n",
+      "200,32,348,0.0067,1038200,5191,5191\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,352,0.0066,1050200,5251,5251\n",
+      "200,32,352,0.0069,1050200,5251,5251\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,356,0.0067,1062200,5311,5311\n",
+      "200,32,356,0.0068,1062200,5311,5311\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,360,0.0067,1074200,5371,5371\n",
+      "200,32,360,0.0068,1074200,5371,5371\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,364,0.0068,1086200,5431,5431\n",
+      "200,32,364,0.0069,1086200,5431,5431\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,368,0.0068,1098200,5491,5491\n",
+      "200,32,368,0.0070,1098200,5491,5491\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,372,0.0069,1110200,5551,5551\n",
+      "200,32,372,0.0071,1110200,5551,5551\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,376,0.0070,1122200,5611,5611\n",
+      "200,32,376,0.0071,1122200,5611,5611\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,380,0.0071,1134200,5671,5671\n",
+      "200,32,380,0.0072,1134200,5671,5671\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,384,0.0072,1146200,5731,5731\n",
+      "200,32,384,0.0073,1146200,5731,5731\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,388,0.0072,1158200,5791,5791\n",
+      "200,32,388,0.0073,1158200,5791,5791\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,392,0.0072,1170200,5851,5851\n",
+      "200,32,392,0.0074,1170200,5851,5851\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,396,0.0073,1182200,5911,5911\n",
+      "200,32,396,0.0075,1182200,5911,5911\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,400,0.0074,1194200,5971,5971\n",
+      "200,32,400,0.0075,1194200,5971,5971\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,404,0.0074,1206200,6031,6031\n",
+      "200,32,404,0.0076,1206200,6031,6031\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,408,0.0076,1218200,6091,6091\n",
+      "200,32,408,0.0077,1218200,6091,6091\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,412,0.0076,1230200,6151,6151\n",
+      "200,32,412,0.0077,1230200,6151,6151\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,416,0.0077,1242200,6211,6211\n",
+      "200,32,416,0.0080,1242200,6211,6211\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,420,0.0077,1254200,6271,6271\n",
+      "200,32,420,0.0078,1254200,6271,6271\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,424,0.0078,1266200,6331,6331\n",
+      "200,32,424,0.0079,1266200,6331,6331\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,428,0.0078,1278200,6391,6391\n",
+      "200,32,428,0.0080,1278200,6391,6391\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,432,0.0080,1290200,6451,6451\n",
+      "200,32,432,0.0081,1290200,6451,6451\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,436,0.0079,1302200,6511,6511\n",
+      "200,32,436,0.0082,1302200,6511,6511\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,440,0.0081,1314200,6571,6571\n",
+      "200,32,440,0.0082,1314200,6571,6571\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,444,0.0081,1326200,6631,6631\n",
+      "200,32,444,0.0083,1326200,6631,6631\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,448,0.0082,1338200,6691,6691\n",
+      "200,32,448,0.0083,1338200,6691,6691\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,452,0.0082,1350200,6751,6751\n",
+      "200,32,452,0.0084,1350200,6751,6751\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,456,0.0084,1362200,6811,6811\n",
+      "200,32,456,0.0085,1362200,6811,6811\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,460,0.0084,1374200,6871,6871\n",
+      "200,32,460,0.0085,1374200,6871,6871\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,464,0.0084,1386200,6931,6931\n",
+      "200,32,464,0.0087,1386200,6931,6931\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,468,0.0085,1398200,6991,6991\n",
+      "200,32,468,0.0086,1398200,6991,6991\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,472,0.0085,1410200,7051,7051\n",
+      "200,32,472,0.0087,1410200,7051,7051\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,476,0.0086,1422200,7111,7111\n",
+      "200,32,476,0.0088,1422200,7111,7111\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,480,0.0087,1434200,7171,7171\n",
+      "200,32,480,0.0090,1434200,7171,7171\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,484,0.0088,1446200,7231,7231\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,484,0.0089,1446200,7231,7231\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,488,0.0088,1458200,7291,7291\n",
+      "200,32,488,0.0090,1458200,7291,7291\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,492,0.0089,1470200,7351,7351\n",
+      "200,32,492,0.0092,1470200,7351,7351\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,496,0.0089,1482200,7411,7411\n",
+      "200,32,496,0.0092,1482200,7411,7411\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,500,0.0090,1494200,7471,7471\n",
+      "200,32,500,0.0092,1494200,7471,7471\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,504,0.0092,1506200,7531,7531\n",
+      "200,32,504,0.0093,1506200,7531,7531\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,508,0.0093,1518200,7591,7591\n",
+      "200,32,508,0.0094,1518200,7591,7591\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,512,0.0092,1530200,7651,7651\n",
+      "200,32,512,0.0095,1530200,7651,7651\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,516,0.0093,1542200,7711,7711\n",
+      "200,32,516,0.0096,1542200,7711,7711\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,520,0.0094,1554200,7771,7771\n",
+      "200,32,520,0.0096,1554200,7771,7771\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,524,0.0094,1566200,7831,7831\n",
+      "200,32,524,0.0096,1566200,7831,7831\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,528,0.0094,1578200,7891,7891\n",
+      "200,32,528,0.0097,1578200,7891,7891\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
       "200,32,532,0.0097,1590200,7951,7951\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,536,0.0096,1602200,8011,8011\n",
+      "200,32,536,0.0098,1602200,8011,8011\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,540,0.0097,1614200,8071,8071\n",
+      "200,32,540,0.0100,1614200,8071,8071\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,544,0.0097,1626200,8131,8131\n",
+      "200,32,544,0.0099,1626200,8131,8131\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,548,0.0099,1638200,8191,8191\n",
+      "200,32,548,0.0100,1638200,8191,8191\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,552,0.0099,1650200,8251,8251\n",
+      "200,32,552,0.0101,1650200,8251,8251\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,556,0.0101,1662200,8311,8311\n",
+      "200,32,556,0.0102,1662200,8311,8311\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,560,0.0100,1674200,8371,8371\n",
+      "200,32,560,0.0102,1674200,8371,8371\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,564,0.0101,1686200,8431,8431\n",
+      "200,32,564,0.0105,1686200,8431,8431\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,568,0.0102,1698200,8491,8491\n",
+      "200,32,568,0.0104,1698200,8491,8491\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,572,0.0103,1710200,8551,8551\n",
+      "200,32,572,0.0105,1710200,8551,8551\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,576,0.0103,1722200,8611,8611\n",
+      "200,32,576,0.0105,1722200,8611,8611\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,580,0.0104,1734200,8671,8671\n",
+      "200,32,580,0.0108,1734200,8671,8671\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,584,0.0104,1746200,8731,8731\n",
+      "200,32,584,0.0108,1746200,8731,8731\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,588,0.0105,1758200,8791,8791\n",
+      "200,32,588,0.0109,1758200,8791,8791\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,592,0.0107,1770200,8851,8851\n",
+      "200,32,592,0.0109,1770200,8851,8851\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,596,0.0108,1782200,8911,8911\n",
+      "200,32,596,0.0109,1782200,8911,8911\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,600,0.0107,1794200,8971,8971\n",
+      "200,32,600,0.0111,1794200,8971,8971\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,604,0.0109,1806200,9031,9031\n",
+      "200,32,604,0.0111,1806200,9031,9031\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,608,0.0109,1818200,9091,9091\n",
+      "200,32,608,0.0112,1818200,9091,9091\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,612,0.0109,1830200,9151,9151\n",
+      "200,32,612,0.0112,1830200,9151,9151\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,616,0.0110,1842200,9211,9211\n",
+      "200,32,616,0.0114,1842200,9211,9211\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,620,0.0111,1854200,9271,9271\n",
+      "200,32,620,0.0113,1854200,9271,9271\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,624,0.0112,1866200,9331,9331\n",
+      "200,32,624,0.0114,1866200,9331,9331\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,628,0.0111,1878200,9391,9391\n",
+      "200,32,628,0.0114,1878200,9391,9391\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,632,0.0112,1890200,9451,9451\n",
+      "200,32,632,0.0116,1890200,9451,9451\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,636,0.0113,1902200,9511,9511\n",
+      "200,32,636,0.0116,1902200,9511,9511\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,640,0.0116,1914200,9571,9571\n",
+      "200,32,640,0.0117,1914200,9571,9571\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,644,0.0114,1926200,9631,9631\n",
+      "200,32,644,0.0118,1926200,9631,9631\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,648,0.0115,1938200,9691,9691\n",
+      "200,32,648,0.0118,1938200,9691,9691\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,652,0.0117,1950200,9751,9751\n",
+      "200,32,652,0.0121,1950200,9751,9751\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,656,0.0117,1962200,9811,9811\n",
+      "200,32,656,0.0121,1962200,9811,9811\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,660,0.0117,1974200,9871,9871\n",
+      "200,32,660,0.0121,1974200,9871,9871\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,664,0.0118,1986200,9931,9931\n",
+      "200,32,664,0.0121,1986200,9931,9931\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,668,0.0119,1998200,9991,9991\n",
+      "200,32,668,0.0122,1998200,9991,9991\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,672,0.0120,2010200,10051,10051\n",
+      "200,32,672,0.0122,2010200,10051,10051\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,676,0.0120,2022200,10111,10111\n",
+      "200,32,676,0.0124,2022200,10111,10111\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,680,0.0120,2034200,10171,10171\n",
+      "200,32,680,0.0123,2034200,10171,10171\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,684,0.0121,2046200,10231,10231\n",
+      "200,32,684,0.0124,2046200,10231,10231\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,688,0.0122,2058200,10291,10291\n",
+      "200,32,688,0.0126,2058200,10291,10291\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,692,0.0123,2070200,10351,10351\n",
+      "200,32,692,0.0127,2070200,10351,10351\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,696,0.0124,2082200,10411,10411\n",
+      "200,32,696,0.0126,2082200,10411,10411\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,700,0.0124,2094200,10471,10471\n",
+      "200,32,700,0.0128,2094200,10471,10471\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,704,0.0125,2106200,10531,10531\n",
+      "200,32,704,0.0127,2106200,10531,10531\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,708,0.0125,2118200,10591,10591\n",
+      "200,32,708,0.0128,2118200,10591,10591\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,712,0.0125,2130200,10651,10651\n",
+      "200,32,712,0.0129,2130200,10651,10651\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,716,0.0125,2142200,10711,10711\n",
+      "200,32,716,0.0130,2142200,10711,10711\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,720,0.0126,2154200,10771,10771\n",
+      "200,32,720,0.0130,2154200,10771,10771\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,724,0.0127,2166200,10831,10831\n",
+      "200,32,724,0.0131,2166200,10831,10831\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,728,0.0128,2178200,10891,10891\n",
+      "200,32,728,0.0131,2178200,10891,10891\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,732,0.0128,2190200,10951,10951\n",
+      "200,32,732,0.0132,2190200,10951,10951\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,736,0.0130,2202200,11011,11011\n",
+      "200,32,736,0.0134,2202200,11011,11011\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,740,0.0130,2214200,11071,11071\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,740,0.0134,2214200,11071,11071\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,744,0.0130,2226200,11131,11131\n",
+      "200,32,744,0.0134,2226200,11131,11131\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,748,0.0131,2238200,11191,11191\n",
+      "200,32,748,0.0135,2238200,11191,11191\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,752,0.0133,2250200,11251,11251\n",
+      "200,32,752,0.0136,2250200,11251,11251\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,756,0.0133,2262200,11311,11311\n",
+      "200,32,756,0.0136,2262200,11311,11311\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,760,0.0133,2274200,11371,11371\n",
+      "200,32,760,0.0137,2274200,11371,11371\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,764,0.0134,2286200,11431,11431\n",
+      "200,32,764,0.0138,2286200,11431,11431\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,768,0.0135,2298200,11491,11491\n",
+      "200,32,768,0.0138,2298200,11491,11491\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,772,0.0137,2310200,11551,11551\n",
+      "200,32,772,0.0139,2310200,11551,11551\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,776,0.0136,2322200,11611,11611\n",
+      "200,32,776,0.0139,2322200,11611,11611\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,780,0.0137,2334200,11671,11671\n",
+      "200,32,780,0.0140,2334200,11671,11671\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,784,0.0137,2346200,11731,11731\n",
+      "200,32,784,0.0141,2346200,11731,11731\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,788,0.0138,2358200,11791,11791\n",
+      "200,32,788,0.0142,2358200,11791,11791\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,792,0.0139,2370200,11851,11851\n",
+      "200,32,792,0.0142,2370200,11851,11851\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,796,0.0140,2382200,11911,11911\n",
+      "200,32,796,0.0144,2382200,11911,11911\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,800,0.0140,2394200,11971,11971\n",
+      "200,32,800,0.0144,2394200,11971,11971\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,804,0.0141,2406200,12031,12031\n",
+      "200,32,804,0.0144,2406200,12031,12031\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,808,0.0143,2418200,12091,12091\n",
+      "200,32,808,0.0146,2418200,12091,12091\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,812,0.0142,2430200,12151,12151\n",
+      "200,32,812,0.0146,2430200,12151,12151\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,816,0.0143,2442200,12211,12211\n",
+      "200,32,816,0.0146,2442200,12211,12211\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,820,0.0144,2454200,12271,12271\n",
+      "200,32,820,0.0147,2454200,12271,12271\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,824,0.0144,2466200,12331,12331\n",
+      "200,32,824,0.0148,2466200,12331,12331\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,828,0.0145,2478200,12391,12391\n",
+      "200,32,828,0.0149,2478200,12391,12391\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,832,0.0146,2490200,12451,12451\n",
+      "200,32,832,0.0149,2490200,12451,12451\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,836,0.0146,2502200,12511,12511\n",
+      "200,32,836,0.0150,2502200,12511,12511\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,840,0.0147,2514200,12571,12571\n",
+      "200,32,840,0.0151,2514200,12571,12571\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,844,0.0148,2526200,12631,12631\n",
+      "200,32,844,0.0152,2526200,12631,12631\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,848,0.0149,2538200,12691,12691\n",
+      "200,32,848,0.0151,2538200,12691,12691\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,852,0.0149,2550200,12751,12751\n",
+      "200,32,852,0.0152,2550200,12751,12751\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,856,0.0150,2562200,12811,12811\n",
+      "200,32,856,0.0153,2562200,12811,12811\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,860,0.0152,2574200,12871,12871\n",
+      "200,32,860,0.0154,2574200,12871,12871\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,864,0.0151,2586200,12931,12931\n",
+      "200,32,864,0.0155,2586200,12931,12931\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,868,0.0151,2598200,12991,12991\n",
+      "200,32,868,0.0155,2598200,12991,12991\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,872,0.0151,2610200,13051,13051\n",
+      "200,32,872,0.0156,2610200,13051,13051\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,876,0.0152,2622200,13111,13111\n",
+      "200,32,876,0.0156,2622200,13111,13111\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,880,0.0155,2634200,13171,13171\n",
+      "200,32,880,0.0157,2634200,13171,13171\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,884,0.0154,2646200,13231,13231\n",
+      "200,32,884,0.0158,2646200,13231,13231\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,888,0.0155,2658200,13291,13291\n",
+      "200,32,888,0.0159,2658200,13291,13291\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,892,0.0155,2670200,13351,13351\n",
+      "200,32,892,0.0159,2670200,13351,13351\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,896,0.0156,2682200,13411,13411\n",
+      "200,32,896,0.0160,2682200,13411,13411\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,900,0.0157,2694200,13471,13471\n",
+      "200,32,900,0.0160,2694200,13471,13471\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,904,0.0159,2706200,13531,13531\n",
+      "200,32,904,0.0162,2706200,13531,13531\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,908,0.0160,2718200,13591,13591\n",
+      "200,32,908,0.0162,2718200,13591,13591\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,912,0.0161,2730200,13651,13651\n",
+      "200,32,912,0.0163,2730200,13651,13651\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,916,0.0162,2742200,13711,13711\n",
+      "200,32,916,0.0163,2742200,13711,13711\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,920,0.0161,2754200,13771,13771\n",
+      "200,32,920,0.0164,2754200,13771,13771\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,924,0.0162,2766200,13831,13831\n",
+      "200,32,924,0.0165,2766200,13831,13831\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,928,0.0163,2778200,13891,13891\n",
+      "200,32,928,0.0166,2778200,13891,13891\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,932,0.0165,2790200,13951,13951\n",
+      "200,32,932,0.0168,2790200,13951,13951\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,936,0.0165,2802200,14011,14011\n",
+      "200,32,936,0.0167,2802200,14011,14011\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,940,0.0165,2814200,14071,14071\n",
+      "200,32,940,0.0169,2814200,14071,14071\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,944,0.0166,2826200,14131,14131\n",
+      "200,32,944,0.0169,2826200,14131,14131\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,948,0.0166,2838200,14191,14191\n",
+      "200,32,948,0.0169,2838200,14191,14191\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,952,0.0168,2850200,14251,14251\n",
+      "200,32,952,0.0170,2850200,14251,14251\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,956,0.0167,2862200,14311,14311\n",
+      "200,32,956,0.0170,2862200,14311,14311\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,960,0.0168,2874200,14371,14371\n",
+      "200,32,960,0.0171,2874200,14371,14371\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,964,0.0173,2886200,14431,14431\n",
+      "200,32,964,0.0175,2886200,14431,14431\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,968,0.0172,2898200,14491,14491\n",
+      "200,32,968,0.0175,2898200,14491,14491\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,972,0.0172,2910200,14551,14551\n",
+      "200,32,972,0.0176,2910200,14551,14551\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,976,0.0173,2922200,14611,14611\n",
+      "200,32,976,0.0176,2922200,14611,14611\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,980,0.0175,2934200,14671,14671\n",
+      "200,32,980,0.0178,2934200,14671,14671\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,984,0.0176,2946200,14731,14731\n",
+      "200,32,984,0.0178,2946200,14731,14731\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,988,0.0176,2958200,14791,14791\n",
+      "200,32,988,0.0179,2958200,14791,14791\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,992,0.0177,2970200,14851,14851\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,992,0.0178,2970200,14851,14851\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,996,0.0178,2982200,14911,14911\n",
+      "200,32,996,0.0181,2982200,14911,14911\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,1000,0.0177,2994200,14971,14971\n",
+      "200,32,1000,0.0180,2994200,14971,14971\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,1004,0.0179,3006200,15031,15031\n",
+      "200,32,1004,0.0181,3006200,15031,15031\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,1008,0.0179,3018200,15091,15091\n",
+      "200,32,1008,0.0182,3018200,15091,15091\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,1012,0.0180,3030200,15151,15151\n",
+      "200,32,1012,0.0183,3030200,15151,15151\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,1016,0.0180,3042200,15211,15211\n",
+      "200,32,1016,0.0183,3042200,15211,15211\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,1020,0.0182,3054200,15271,15271\n",
+      "200,32,1020,0.0184,3054200,15271,15271\n",
       "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,1024,0.0178,3066200,15331,15331\n",
-      "mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vst.bin.csv .\n"
+      "200,32,1024,0.0182,3066200,15331,15331\n",
+      "mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.vst.bin.csv .\n"
      ]
     }
    ],
@@ -2815,12 +2939,12 @@
    "source": [
     "Let's plot it again, as soon as the run finishes! Non-interactively, call `graph_task2b`.\n",
     "\n",
-    "*We need to read in two CSV files now, which we combine to one common dataframe `df_vldvst`.*"
+    "*Because we couldn't measure the two vector counters at the same time, we have two CSV files to read in now. We combine them into one common dataframe `df_vldvst` in the following.*"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 31,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -2831,7 +2955,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 32,
    "metadata": {},
    "outputs": [
     {
@@ -2865,8 +2989,7 @@
        "      <th>PM_VECTOR_ST_CMPL (total)</th>\n",
        "      <th>PM_VECTOR_ST_CMPL (min)</th>\n",
        "      <th>PM_VECTOR_ST_CMPL (max)</th>\n",
-       "      <th>Vector Loads / Loop Iteration</th>\n",
-       "      <th>Vector Stores / Loop Iteration</th>\n",
+       "      <th>Grid Points</th>\n",
        "    </tr>\n",
        "  </thead>\n",
        "  <tbody>\n",
@@ -2882,8 +3005,7 @@
        "      <td>200</td>\n",
        "      <td>1</td>\n",
        "      <td>1</td>\n",
-       "      <td>0.000000</td>\n",
-       "      <td>0.007812</td>\n",
+       "      <td>128</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>1</th>\n",
@@ -2897,8 +3019,7 @@
        "      <td>18200</td>\n",
        "      <td>91</td>\n",
        "      <td>91</td>\n",
-       "      <td>2.226562</td>\n",
-       "      <td>0.355469</td>\n",
+       "      <td>256</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>2</th>\n",
@@ -2912,38 +3033,35 @@
        "      <td>30200</td>\n",
        "      <td>151</td>\n",
        "      <td>151</td>\n",
-       "      <td>2.265625</td>\n",
-       "      <td>0.393229</td>\n",
+       "      <td>384</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>3</th>\n",
        "      <td>16</td>\n",
        "      <td>200</td>\n",
        "      <td>32</td>\n",
-       "      <td>0.0013</td>\n",
+       "      <td>0.0012</td>\n",
        "      <td>234000</td>\n",
        "      <td>1170</td>\n",
        "      <td>1170</td>\n",
        "      <td>42200</td>\n",
        "      <td>211</td>\n",
        "      <td>211</td>\n",
-       "      <td>2.285156</td>\n",
-       "      <td>0.412109</td>\n",
+       "      <td>512</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>4</th>\n",
        "      <td>20</td>\n",
        "      <td>200</td>\n",
        "      <td>32</td>\n",
-       "      <td>0.0014</td>\n",
+       "      <td>0.0013</td>\n",
        "      <td>294000</td>\n",
        "      <td>1470</td>\n",
        "      <td>1470</td>\n",
        "      <td>54200</td>\n",
        "      <td>271</td>\n",
        "      <td>271</td>\n",
-       "      <td>2.296875</td>\n",
-       "      <td>0.423438</td>\n",
+       "      <td>640</td>\n",
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
@@ -2954,8 +3072,8 @@
        "0   4   200  32   0.0010                          0                        0   \n",
        "1   8   200  32   0.0011                     114000                      570   \n",
        "2  12   200  32   0.0012                     174000                      870   \n",
-       "3  16   200  32   0.0013                     234000                     1170   \n",
-       "4  20   200  32   0.0014                     294000                     1470   \n",
+       "3  16   200  32   0.0012                     234000                     1170   \n",
+       "4  20   200  32   0.0013                     294000                     1470   \n",
        "\n",
        "    PM_VECTOR_LD_CMPL (max)  PM_VECTOR_ST_CMPL (total)  \\\n",
        "0                         0                        200   \n",
@@ -2964,52 +3082,109 @@
        "3                      1170                      42200   \n",
        "4                      1470                      54200   \n",
        "\n",
-       "   PM_VECTOR_ST_CMPL (min)   PM_VECTOR_ST_CMPL (max)  \\\n",
-       "0                        1                         1   \n",
-       "1                       91                        91   \n",
-       "2                      151                       151   \n",
-       "3                      211                       211   \n",
-       "4                      271                       271   \n",
-       "\n",
-       "   Vector Loads / Loop Iteration  Vector Stores / Loop Iteration  \n",
-       "0                       0.000000                        0.007812  \n",
-       "1                       2.226562                        0.355469  \n",
-       "2                       2.265625                        0.393229  \n",
-       "3                       2.285156                        0.412109  \n",
-       "4                       2.296875                        0.423438  "
+       "   PM_VECTOR_ST_CMPL (min)   PM_VECTOR_ST_CMPL (max)  Grid Points  \n",
+       "0                        1                         1          128  \n",
+       "1                       91                        91          256  \n",
+       "2                      151                       151          384  \n",
+       "3                      211                       211          512  \n",
+       "4                      271                       271          640  "
       ]
      },
-     "execution_count": 9,
+     "execution_count": 32,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "common.normalize(df_vldvst, \"PM_VECTOR_LD_CMPL (min)\", \"Vector Loads / Loop Iteration\")\n",
-    "common.normalize(df_vldvst, \"PM_VECTOR_ST_CMPL (min)\", \"Vector Stores / Loop Iteration\")\n",
+    "df_vldvst[\"Grid Points\"] = df_vldvst[\"nx\"] * df_vldvst[\"ny\"] \n",
     "df_vldvst.head()"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 33,
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzwAAAF/CAYAAACMpcwFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xl8VNX9//H3LAkhIZiFEMIim4hRERfUUpFWBYIlEGurKAWlKOpD3KsVqgWiuOBCFZSCFEopaPnytRWJWKz+6lelbggoiuDGUiBAyCJZCMnce39/hAxZZpI7cbLc4fV81Gbm3nPv/czNBzwfz7lnXJZlWQIAAACACORu7QAAAAAAoLlQ8AAAAACIWBQ8AAAAACIWBQ8AAACAiEXBAwAAACBiUfAAAAAAiFgUPAAAAAAiFgUPAAAAgIhFwQMAAAAgYlHwAAAAAIhYFDwAAAAAIhYFDwAAAICIRcEDAAAAIGJ5WzuAmgoLS2WaVqtdPzm5g/LzS1rt+nAOcgV2kSsIBfkCu8gV2BVJueJ2u5SYGBfycW2q4DFNq1ULnuoYADvIFdhFriAU5AvsIldg14meK0xpAwAAABCxKHgAAAAARCwKHgAAAAARq009w4OGWZYlw6z6x6zx07RqvzcCbAvepuq81rHzW1ag9wG21W1fq03t9uaxjTWPq5pKWrXNtI7NKz22//hr69jnrnkPqncfb2z5/6/GMbW2HT+w+lRWjQZWnesGOr9Vp0G7dlEqL6+ssb/23Nja57TqfK7jv8+6nyuQuueuE6otgU5hBTtDwLb2TxysbUOfsX5be42DNQu4OYT7GPzzBtrUcBDeKI98lUaD5w0cWpB4Q/r9BNoUyk0Lj+acOR5KXjXh7C1+Zq/HLZ9hNs/Jw6B5f5fOfMagucMOnisu+YwfePFmDN6hfzSD/x0ZjnO3Uoq7PW6ZP+DvFbfLpetH9ld6r6QwRtWyKHiaiWlZKimrVFHJURUfqVT5UZ+OHDV05KhPRyp8Kj9q6EiFT0eO+lReYajSZ8pnmAF/VhqW/3WkcElyuVxyuSSXq3pL1WtXjUau6neumscdb1D98vi2qvOqznZXjTe1z9/IMTXiqrnf43HLNKxacdU9f92YAl032OeuyxVoY9C2QZoG3BG4daC2wc7bbPEG3Fh/a6B2tfMk+LHHdwXfZyOEBu6NS9FRHlW46/7GA7UNtMn+7yeE04b0ecOlFS4ZFs15rwKdObqdVxVHfc1z8jBp1l9lC9/vsJ27FfI7pl2Uyo9W/uDztHSOO+HkzfvrbMb7HeTUMTHH/yNtU7jdLiXEt2vy8W0BBc8PYJim9hws1Z68EuXml2l/QZkKi4+qqOSoDpdWyGhgRYxor1sx7bxqH+1Ru2iPor0eeT0uxcRGy+txKcrrVpTHrSivW94aP71et7xul9xul9yuqp8ed42fdbZVt6vVpsY2l6uqcper6i+96n6Z+1gxIperat6jq3qb69j+Y39Juo63rVXEqLqYOV7U1NzmdCkp8crLK27tMOAA5ApCQb7ALnIFdpErFDwhKzlSqfe/2K8t3+Xrmz3fq7yiaqqKx+1S58T2SuoYo67JsUqIb6eEDu2U0CFa8bHRan+suIlp51VMtEdeD49PAQAAAM2Ngsem3PxSvfb+Ln287aAqfabSkmP1ozO66NTuJ6lnl3ilJLSniAEAAADaGAoeGz7Znqc/5WyVyyUNGZCmn5zdVSenxrd2WAAAAAAaQcHTANOy9Op7O/Tq+p3qndZRt105QIkOf2gLAAAAOJFQ8DTg068P6dX1O3XRmV103cj+ivJ6WjskAAAAACHgoZMGfF9aIUm68id9KXYAAAAAB6LgaUD1l795Pc5fRhkAAAA4EVHwNKD6e3RYfQ0AAABwJnryDage4fG4GeEBAAAAnIiCpwGM8AAAAADORk++AT7DkkuSmxEeAAAAwJEoeBpgmKY8jO4AAAAAjkVvvgGGYcnDCm0AAACAY1HwNMBnmPIynQ0AAABwLG9jDQoLC/Xb3/5Wu3fvVnR0tHr27KmHHnpISUlJtdodOXJE06ZN0xdffCGPx6P7779fl1xySbMF3hIM02LBAgAAAMDBGu3Nu1wu3XjjjVq3bp3WrFmjHj166KmnnqrXbvHixYqLi9O//vUvLViwQA8++KBKS0ubJeiW4jNMprQBAAAADtZowZOQkKALL7zQ//7ss8/Wvn376rV7/fXXdc0110iSevXqpTPPPFPvvPNOGENteYZpyetmhAcAAABwqpB686Zp6qWXXtKll15ab9++ffvUrVs3//u0tDTt37//h0fYinwsWgAAAAA4WqPP8NT08MMPKzY2VuPHj2+WYJKTOzTLeUORkhLvf+31utUu2ltrG1CNvIBd5ApCQb7ALnIFdp3ouWK74Jk9e7Z27dqlBQsWyB1gmlfXrl21d+9e/2IGubm5tabC2ZGfXyLTtEI6JpxSUuKVl1fsf192pFKWZdXaBkj1cwUIhlxBKMgX2EWuwK5IyhW329WkARJbU9r+8Ic/6PPPP9fzzz+v6OjogG1GjhyplStXSpJ27typLVu26OKLLw45oLbEMEx5mdIGAAAAOFajBc/XX3+tBQsW6ODBg7rmmmuUlZWlKVOmSJKysrJ04MABSdINN9ygw4cPa/jw4br55pv10EMPqUOH1p+i9kP4DBYtAAAAAJys0Slt/fr10/bt2wPuW716tf91bGys5s6dG77I2gCfaapdlKe1wwAAAADQRAxfNMAw+OJRAAAAwMnozTfAZ1jyuHmGBwAAAHAqCp4GGKYpDyM8AAAAgGPRm2+AYVjyMsIDAAAAOBYFTwOqRngoeAAAAACnouBpgI9FCwAAAABHozffAJ9hsmgBAAAA4GAUPA0wTEZ4AAAAACejN98AlqUGAAAAnI2CpwEsSw0AAAA4G735IEzTkmVJXlZpAwAAAByLgicIwzQliSltAAAAgINR8AThMyxJYtECAAAAwMHozQfhMxjhAQAAAJyOgicIw2SEBwAAAHA6evNBMMIDAAAAOB8FTxCM8AAAAADOR28+iOpFCzwsSw0AAAA4FgVPEIZ/Shu3CAAAAHAqW7352bNn69JLL1X//v311VdfBWwzb948DR48WFlZWcrKylJ2dnZYA21px6e0McIDAAAAOJXXTqPLLrtM1113nX71q1812O6KK67Q/fffH5bAWpt/0QIKHgAAAMCxbBU8gwYNau442hyj+otHmdIGAAAAOFZYe/OvvfaaRo8erUmTJmnTpk3hPHWL85mM8AAAAABOZ2uEx45rrrlGt9xyi6KiorR+/XrdeuutWrt2rRITE22fIzm5Q7jCabKUlHhJUoe8UklSp+QO/m1ATeQF7CJXEAryBXaRK7DrRM+VsBU8KSkp/tcXXXSR0tLS9PXXX+uCCy6wfY78/BKZxxYLaA0pKfHKyyuuiqWgTJJUfPiI8vLCdpsQIWrmCtAQcgWhIF9gF7kCuyIpV9xuV5MGSMI2pe3AgQP+119++aX27t2r3r17h+v0Lc7wT2njGR4AAADAqWwNXcyaNUtvvPGGDh06pF//+tdKSEjQa6+9psmTJ+uOO+7QgAEDNGfOHH3xxRdyu92KiorSE088UWvUx2n8ixbwDA8AAADgWLYKngcffFAPPvhgve2LFi3yv549e3b4omoD/IsWuCl4AAAAAKdivlYQx0d4uEUAAACAU9GbD8L/xaOM8AAAAACORcEThGEywgMAAAA4Hb35IKpHeFi0AAAAAHAuCp4gqkd4PG5uEQAAAOBU9OaD8BmWXK6qLzgCAAAA4EwUPEEYpsnoDgAAAOBw9OiDMAyL53cAAAAAh6PgCcJnmCxJDQAAADgcBU8QhmmxJDUAAADgcPTog/AZJlPaAAAAAIej4AnCMC0WLQAAAAAcjh59ED7DkocRHgAAAMDRKHiCMAyWpQYAAACcjh59EFWLFjDCAwAAADgZBU8QPsNkShsAAADgcBQ8QRiGJS9T2gAAAABHo0cfhM9kWWoAAADA6Sh4gjAMSx6+eBQAAABwNHr0QfgMSx43IzwAAACAkzVa8MyePVuXXnqp+vfvr6+++ipgG8MwlJ2drWHDhmn48OFatWpV2ANtaYZpMsIDAAAAOFyjPfrLLrtMK1asULdu3YK2WbNmjXbv3q033nhDK1eu1Lx587Rnz56wBtrSDINlqQEAAACna7TgGTRokNLS0hpss3btWl111VVyu91KSkrSsGHD9M9//jNsQbYGn2kypQ0AAABwuLDM2crNzVXXrl3979PS0rR///5wnLrVVI3wMKUNAAAAcDJvawdQU3Jyh9YOQSkp8ZIk07IUH9fO/x6oi9yAXeQKQkG+wC5yBXad6LkSloInLS1N+/bt01lnnSWp/oiPXfn5JTJNKxwhNUlKSrzy8oolSZU+UxUVPv97oKaauQI0hFxBKMgX2EWuwK5IyhW329WkAZKwzNkaOXKkVq1aJdM0VVBQoDfffFMZGRnhOHWr8RmWPCxaAAAAADhaowXPrFmzNHToUO3fv1+//vWvNWrUKEnS5MmTtWXLFklSVlaWunfvrhEjRujqq6/WlClT1KNHj+aNvJkZpimPm2d4AAAAACdzWZbVenPI6mgrU9pM09KNT/xbV1zcW2Mu6t1q8aDtiqThYTQvcgWhIF9gF7kCuyIpV1p1SlukMUxTkliWGgAAAHA4Cp4AfEbVKBPLUgMAAADORo8+AJ9RNcJDwQMAAAA4Gz36AIxjzxExpQ0AAABwNgqeAKpHeFiWGgAAAHA2Cp4Aqkd4vCxLDQAAADgaPfoAqhctYIQHAAAAcDYKngAMFi0AAAAAIgI9+gBYtAAAAACIDBQ8AbAsNQAAABAZ6NEHYBiM8AAAAACRgIInAJ/JCA8AAAAQCejRB2CwShsAAAAQESh4AvAxpQ0AAACICBQ8ARhMaQMAAAAiAj36AJjSBgAAAEQGCp4A/MtSu7k9AAAAgJPRow/A/8WjjPAAAAAAjkbBEwBfPAoAAABEBnr0AfhHeFilDQAAAHA0r51GO3bs0NSpU1VUVKSEhATNnj1bvXr1qtVm3rx5evHFF9W5c2dJ0rnnnqsZM2aEPeCWcHyEh4IHAAAAcDJbBc+MGTM0btw4ZWVlafXq1Zo+fbqWLVtWr90VV1yh+++/P+xBtrTjIzwMgAEAAABO1miPPj8/X1u3blVmZqYkKTMzU1u3blVBQUGzB9dafIYll0tyM6UNAAAAcLRGC57c3FylpqbK4/FIkjwejzp37qzc3Nx6bV977TWNHj1akyZN0qZNm8IfbQsxDJMFCwAAAIAIYGtKmx3XXHONbrnlFkVFRWn9+vW69dZbtXbtWiUmJto+R3Jyh3CF02QpKfGKbhclr8etlJT41g4HbRj5AbvIFYSCfIFd5ArsOtFzpdGCJy0tTQcOHJBhGPJ4PDIMQwcPHlRaWlqtdikpKf7XF110kdLS0vT111/rggsusB1Mfn6JzGPPz7SGlJR45eUVq7ikXB63S3l5xa0WC9q26lwBGkOuIBTkC+wiV2BXJOWK2+1q0gBJo/O2kpOTlZ6erpycHElSTk6O0tPTlZSUVKvdgQMH/K+//PJL7d27V7179w45oLbAMC2WpAYAAAAigK0pbTNnztTUqVM1f/58dezYUbNnz5YkTZ48WXfccYcGDBigOXPm6IsvvpDb7VZUVJSeeOKJWqM+TuIzTJakBgAAACKArYKnb9++WrVqVb3tixYt8r+uLoIigWFa8rBoAQAAAOB49OoD8BlMaQMAAAAiAQVPACxLDQAAAEQGevUBsGgBAAAAEBkoeALwMcIDAAAARAR69QEYPMMDAAAARAQKngB8JstSAwAAAJHA1rLUJxrDsOSJoRYEAADNyzB8KizMk89XEdJxBw+6ZZpmM0WFSOLUXPF6o5WYmCKP54eXKxQ8AbAsNQAAaAmFhXmKiYlVXFwXuVz2+x5er1s+n/M6sWh5TswVy7JUWnpYhYV56tQp7Qefj2GMAAyTRQsAAEDz8/kqFBfXMaRiB4h0LpdLcXEdQx75DIZefQCGYcnDMzwAAKAFUOwA9YXzzwUFTwA+05TXza0BAAAAnI5efQCM8AAAgBPNPffcrldeebnWNsuydNVVY7R588YmnXPjxg366KMPwhGecnP3adSoy8JyrkAeeWSmXn55ZcjH3Xnnrfruu2/rbR8yZJDKysrCEVpIfvnL0fruu28kSWvXrtHu3bvCfo3i4mKtWPGXWtsef/xhffrpprBfKxwoeALwGYzwAACAE8uoUWO0du2aWts2bfpEHo9HZ599bpPOuWnTJ00ueAzDaNJxLam4uFiHDh1Unz59WzuUgJpa8JimKcuygu4vKSnWiy8uq7Vt6tTfa+DAc0K+VktglbYADJMRHgAAcGIZOvSnmjPnce3Y8Z169+4jSXrttVf1s5+NliRVVlbqhRfma/PmT1RZ6VPfvn31m99MU2xsrEpKSjR37tPatm2rXC63Bg48W1lZv9Dq1X+XaZrasOEjXXbZCE2YMFGvv56jl176q1wul7p27a7f/vZ3SkxM0tq1a/Tmm28oMTFBO3bs0LRpv1e/fv1txR7snN9++42efvpxlZcfUUVFhcaM+bmuvnqcJCkv76BmzZqhoqIide3atVaBtXr13/U///OioqKiZVmmHnrocfXs2avedd9//z396EcXhXSfP/jgP1q48DmZpqmEhETdd9/v1L17D0nS8uVLtW7dWklSevoZuuuu+xQbG6vFixdq584dOnKkTPv371fPnj01bdoMdejQIeh1XnvtVW3f/qXmzHlSsbHzNWXKnTr//Au1YsVf9Pbbb8kwDHXq1Fn33/+AkpM7afHihdq7d4+OHCnT3r179Nxzi7Rs2RJt3rxRlZWVSkhI0LRp09WlS5rmzJmtkpISTZw4TjExMVqwYIluu+0mXXvtBF100cUqKMjXk08+pn379siyLF177QRdfnmmpKoRqJEjR+njjz9Ufv4hXXvteP3iF2NDuoehouAJwMeUNgAA0MLWb8nVe5/l2mrrckkN/Af4eoaclaaLBjS8vG9UVJSGDx+p119fo1tvvVNlZaV6993/0y233CZJWrHiL4qLi9OiRVX/ZX/+/Ln661//rJtvnqK5c59W+/bttXTpS3K73SoqKlJCQoKysq7UkSNHdNttd0mSvvvuGy1Y8JwWL16uTp06adGiP+oPf3hSDz30mCRpy5bNWrr0JXXr1t32Z2vonGlpaXrmmfmKjo5WWVmZbrrpel1wwWD16tVbzzzzpAYOPEeTJt2kvXv3aOLEcbrwwsHHPtuzWrZspVJTu6iioiLo99i8887b+uUv7XfWCwsLNGvWdM2b94J69+6jnJxXlJ39oBYt+ovef3+91q1bqwULlig2Nk6zZs3Q0qV/0q233iFJ+uyzTfrzn19UUlKyHn00W0uX/sl/XwMZNWqMXn89R+PHX6cf/WiIJGndurXas2ePFi5cKrfbrX/843/13HPPaMaMWZKkzZs3asmSFUpISJAkjR8/0X+NNWte0R//OFfZ2Y/pnnvu1403TtDSpS8GvPYzzzylPn366rHHntKhQ4d0ww2/Uv/+p6lPn1MkSeXl5Vq48M/Kzd2n664bq8svH63Y2Fjb9zFUFDwBGCxaAAAATkCjRmXp3ntv1003TdFbb/1LZ501UCkpnSVJ69e/o9LSUr399v+TJFVWVuiUU/pJkv7zn3f1pz8tl/tY/6m6w1zXxo0bNHjwRerUqZMkKSvrSk2cOM6/f8CAs0Mqdho7Z3l5uZ577nF9881XcrncOnQoT99885V69eqtjRs/0V133SdJ6tatuwYNOt9/znPPPV+PPvqQLr54qAYPHhIwpoqKCm3f/qUGDBhoO9Yvvvhcffue6h9B+9nPxujpp2errKzUPwoWF1c1ajNmzJV69tmn/Mf++McXKykpWZKUmZmlZ555MpTbJEl67713tG3bl5o0abykqi++rTlKNHjwRbV+dx98sF5///sqHTlSFtIUww0bPvIXSp06ddLgwUO0ceMGf8EzbNgISVJaWlfFx3dUXt7BgCNo4ULBU4dpWrIsMcIDAABa1EUDGh+FqdZcXybZr9+pSk7upA8/fF9r177qn/4lVY0o/eY3U3Xeeec3cIaGWVb95YZrvo2NbR/Wcy5c+LySkpK1ZMkKeb1e3X33FFVUNP7dLo8++qS+/PILffLJBt1xxy26995pGjy49tS1Tz75SGeffa48Hk8o0Sr4astWgM8RuHHV6F7ofVXLsnT99ZOUmZkVcH/79sdHWfbvz9W8eXO0aNEyde3aTVu2fKrs7AdtX6uhzxIdHe1/7Xa7ZRg+2+dtCoYx6vAZVX958MWjAADgRDRq1BgtWfKC/vvf3Roy5Cf+7UOGDNXKlSt09Gi5JKmsrFQ7d+6QVDX68NJLy/wPuhcVFUmS4uLiVFpa4j/Heeedr/ffX6/8/EOSqqZJDRp0wQ+Kt6FzlpQUq3PnVHm9Xn333Tf69NPNNY4bpNdee1WStG/fXm3Y8LEkyefzad++vTr99DM1YcJEXXDBj/T119vrXffdd/+v1v2x44wzztI333ylXbt2Sqp69qhfv/6KjY3ToEEX6q233lBZWaksy1JOTu1785//vKfCwsJjx63RuecOavR6cXFxKik5fv+HDBmqf/zjf3X48GFJVaNUX3/9VcBjS0tL5fVGKTk5WaZp1lrBLy4uTuXl5fL5AhcqgwZdoFdf/YckKT//kN5/f73OOafxeJsLIzx1GGbVH1SPmxEeAABw4hk+/HI9//xcZWVdqaioKP/28eMnavHihbrxxuuOTV1zadKkyerVq7duv/0ezZ37tCZMGCuPx6NzzjlXd911n4YOvUQPPHCfJk4c51+04Oabp+juu6ccW2Cgm+6773e2YysuLtbPf/4z//uTT+6lZ5+dH/Sc119/gx5+eLreeON1devWTWeffXwVsTvvvFezZs3Qv//9lk4+uafOP/9CSVUrlD3yyEyVlBTL5XIrNTXV/xxTNcuy9PHHH+n22+9pMN5x437hH9mIiYnRSy/9XQ8++JCysx+QYRhKSEjU9OkPS6qaTvbtt1/r5pt/LUk67bTTdf31N/jPNWjQ+XrssYe0b99enXxyT912292N3q8xY67U/PnPasWKZbr11js1cuQoff99kW6//Sb/Z/35z69Sv36n1ju2b99TdMklwzR+/FilpqbqnHPO8y873bHjSRox4nJdf/01io/vqAULltQ69q677tWTTz6q66+/RpZl6ZZbbmvVlexcVkNrzrWw/PwSmWbrhZOSEq/vduXrzrnv6VfDT9Vl54U2hxQnjpSUeOXlFbd2GHAAcgWhIF9OPPv371KXLj1DPq65prTBns8/36Jly5boiSf+0CLXW7x4Ya3FH0Lh5Fyp++fD7XYpOTn4ynTB2Jq3tWPHDo0dO1YZGRkaO3asdu7cWa+NYRjKzs7WsGHDNHz4cK1atSrkYNoC/wgPz/AAAAAggDPPHNBixQ5+OFtT2mbMmKFx48YpKytLq1ev1vTp07VsWe0vG1qzZo12796tN954Q0VFRbriiis0ePBgde/urFGS6md4mNIGAACAtuCGG25u7RAcrdERnvz8fG3dulWZmVVfFpSZmamtW7eqoKCgVru1a9fqqquuktvtVlJSkoYNG6Z//vOfzRN1M6oe4WHRAgAAAMD5Gu3V5+bmKjU11b/knsfjUefOnZWbm1uvXdeuXf3v09LStH///jCH2/zc1Q+WRYeyxCAAAEDTtKHHqYE2I5x/LtrUKm1NeQgp3E7v11kP3TRYZ53SSR5GedCAlJT41g4BDkGuIBTky4mluDhWR44UKz7+pKDfuRKM10s/BfY4LVcsy1Jx8WHFxcWG5e/ERguetLQ0HThwQIZhyOPxyDAMHTx4UGlpafXa7du3T2eddZak+iM+drSFVdry8orVPam9CgpKWy0OtH2spAS7yBWEgnw58cTGJqqwME+HDxeGdJzb7ZZpOnPlLbQsp+aK1xutxMSUWn8nNnWVtkYLnuTkZKWnpysnJ0dZWVnKyclRenq6kpKSarUbOXKkVq1apREjRqioqEhvvvmmVqxYEXJAAAAAJwqPx6tOndIab1gHxTHsIldsLks9c+ZMLV++XBkZGVq+fLmys7MlSZMnT9aWLVskSVlZWerevbtGjBihq6++WlOmTFGPHj2aL3IAAAAAaARfPFoDFTDsIldgF7mCUJAvsItcgV2RlCvNNqWtJbnbwHfftIUY4AzkCuwiVxAK8gV2kSuwK1Jypamfo02N8AAAAABAODlrjToAAAAACAEFDwAAAICIRcEDAAAAIGJR8AAAAACIWBQ8AAAAACIWBQ8AAACAiEXBAwAAACBiUfAAAAAAiFgUPAAAAAAiFgUPAAAAgIhFwQMAAAAgYlHwAAAAAIhYFDwAAAAAIhYFDwAAAICIRcEDAAAAIGJR8AAAAACIWBQ8AAAAACIWBQ8AAACAiEXBAwAAACBiUfAAAAAAiFgUPAAAAAAiFgUPAAAAgIhFwQMAAAAgYlHwAAAAAIhYFDwAAAAAIhYFDwAAAICIRcEDAAAAIGJR8AAAAACIWBQ8AAAAACIWBQ8AAACAiOVt7QBqKiwslWlarXb95OQOys8vabXrwznIFdhFriAU5AvsIldgVyTlitvtUmJiXMjHtamCxzStVi14qmMA7CBXYBe5glCQL7CLXIFdJ3quMKUNAAAAQMSi4AEAAAAQsSh4AAAAAESsNvUMDxDpLMuSVf3TqvppWkHeS/5tx/dZtbaZVtWc3LrnqN5nWZIlS8f+d+xn1fbqeFR9nWMvLNVuW32sdWyj5X8feN+xQ+ucu6EY6uyvcZ9UIy7TCr7veAx1Yw78+eruP/77OR5/zVd1mtW+Vo0D/M1q7G/fPlplZRVNPj7w9tonsmq/rRd3sPPWPV+944Nct9H7ZjXteNXZX3fGeeP3Ldj9qK9uDMHbBdhmo2GgNoGPq/02KsqjikqfrYMDXqPexvqt7H+mQJvsHRzsd9dobLbjCLDNxu+0qb/P4O0CbbJ3z+21CR6H2+2WaZq2z1/VrvE8tXu/7d4ju7HVP66JBzaX7gI/AAAgAElEQVTh+jb/Nmi5a9k6TwgXc7mCBmcnHrfLpZuzztDZp3Sy0bptouBB2FmWJcM89o9hyWeaMgxLxrGfPtOSYZj+/YZpyhdgv3+badXab5pVHX/z2HUsU/7XpmXJMo/vM83j8ZiW5V8Yw7RU533N/arzvvq1/B11l0vyGVa9IsNS/QKmZvGBts9V54Xr2AuXq067Og1drlqH+V+4Xa6q332d/fWOr7e9+r2rzvu613HVeV/3Oo0c38jnc9U5YbDrBos7WFyN3bdg17V734PGXTPGANvqfZAA7VyBmgU6LsC2xi4ZHeWRS1aTYwu00RWglc3QAt+3Jnyu4G2a9pmCt7Px+7P72cMdW52tgeKwf36XYmKiVF5eGXIc9a9rLz/CmZNB29VrYyeJwtLE5nkab2Q3v8JxHrv3J7Z9tMqOVDTUpEFut0s9Ujo0fq02jILnBGOalsorDJVX+FReYehopaHyo1WvyyuNqm0Vhip8hip9pip9pip8pirrvT++7fj76v1Gi3Tu3S6X3O6qny63Sx6XS263S25X1R/Oqtd1f6r2+2OvPW6Xot1uuar3HdvmOnaMx+2S69h2l0uKjY3W0fJK6dh7t6p+uqrfu2q/d7mq/mIKtK/qfY1tkv+1u9Y5AhyvBq6p49dW9euql1V/SR57X7Xt+HWlGp3VOm1V57x1i4HqmI63r3/egPvrnLteDHWOqx3f8c8XKOaanz/w/jD92ymIlJR45eUVN+s1EDnIF9hFrsAucoWCx7Esy9KRoz4VlVSoqOSoDpdVqPSIT6XllTV+Vqq0/Pjr8gpDFT7T9jU8bpeivG5Fe92K8rrl9Xr8r6O9bsW1j1K016OoY9uivG5FedyKjnLL6zn2j9slj8ctj9slj8clr9stj8clz7Gfwfe75PVvd8t7bJvH7T5WfDR/R7Uh/OUBAADgDBQ8bVRFpaGDRUd0sLDqn4LichWVVOj7kqMqKjmq70sqghYvMdEexcVEKa69V3ExUeqW0kGx7bxq386jmGivYqI9ion2qF101fv2x362q94eVfWP2916BQUAAAAQDhQ8rcwwTeXml2nX/mLt3F+svXklOlB4RIXFR2u1axftUUKHdkrsEK0+XU9SQodoJXRop5M6RCuxQzt1jItWXPsoxbbzyuth8T0AAABAouBpcWXlldq2u0hf7irUztzD+u/BEv9ITXSUW91TOui0kxOVmtRenRPbKzUxVp0T2ysuJqqVIwcAAACch4KnBRQcLteGbQe1YXuevt33vSyrqrjplRqvn5zdTT27dFDPLh2VlhTLNDIAAAAgjCh4molhmtr01SH9v417tG13kSTp5M4dlDm4l07vlai+3U5i6hkAAADQzCh4wswwTb3zaa5ee3+nCg4fVaeTYnTl0D46P72zUhNjWzs8AAAA4IRCwRNGn+/I18q3vtHeQ6Xq1/0k/WrYqRp4SiemqQEAAACthIInDHyGqZVvfaO3Nu5RSkKMpvz8TJ17akqrfk8MAAAAAAqeH+z7kqP64yuf66s932vE+T30i5/0VZSXZ3MAAACAtoCC5wcoOFyuR/76iUqPVOqmMafrR6d3ae2QAAAAANRAwdNERysMzX35Mx056tO08eepZ5f41g4JAAAAQB3MvWoC07L0wpov9N+DJbol6wyKHQAAAKCNouBpgtXv7tCmrw9p7KX9dFbfTq0dDgAAAIAgbBU8O3bs0NixY5WRkaGxY8dq586dQdt+9913GjhwoGbPnh2uGNuUQ98f0doPdmnwGakaPqh7a4cDAAAAoAG2Cp4ZM2Zo3LhxWrduncaNG6fp06cHbGcYhmbMmKFhw4aFNci2JOc/u+RySb/4SV+WnQYAAADauEYLnvz8fG3dulWZmZmSpMzMTG3dulUFBQX12r7wwgv66U9/ql69eoU90LbgUNERrd+Sq6EDuyqpY0xrhwMAAACgEY0WPLm5uUpNTZXH45EkeTwede7cWbm5ubXabdu2Te+9954mTpzYLIG2BTnv75TL5dKowb1aOxQAAAAANoRlWerKykr9/ve/12OPPeYvjJoiOblDOML5QVJSAq+4tj+/VOu37NflP+6lU/uwUAGC5wpQF7mCUJAvsItcgV0neq40WvCkpaXpwIEDMgxDHo9HhmHo4MGDSktL87fJy8vT7t27ddNNN0mSDh8+LMuyVFJSoocffth2MPn5JTJNqwkfIzxSUuKVl1cccN/Kf30ll8ulSwZ2DdoGJ46GcgWoiVxBKMgX2EWuwK5IyhW329WkAZJGC57k5GSlp6crJydHWVlZysnJUXp6upKSkvxtunbtqg8//ND/ft68eSorK9P9998fckBt1Rc7C5TeM1GJ8e1aOxQAAAAANtlapW3mzJlavny5MjIytHz5cmVnZ0uSJk+erC1btjRrgG3B9yVHlZtfptNOTmjtUAAAAACEwNYzPH379tWqVavqbV+0aFHA9rfffvsPi6qN2f7fIknSaT0TWzkSAAAAAKGwNcJzotu2q1Ax0R6dnNr6iyoAAAAAsI+Cx4Ztu4t0ao8EedzcLgAAAMBJ6ME3orD4qPYXlOm0k5nOBgAAADgNBU8jtv+3UJLUnwULAAAAAMeh4GnEtl1Fat/Oo56pJ/YXNgEAAABORMHTiO27C3Vq9wS53a7WDgUAAABAiCh4GlBYfFQHCo+wHDUAAADgUBQ8Dfh6T9X375zag+d3AAAAACei4GlAablPkpQY366VIwEAAADQFBQ8DfD5TEmS18NtAgAAAJyInnwDfEZVwRNFwQMAAAA4Ej35BlQeK3i8XlZoAwAAAJyIgqcBPsOUyyV53NwmAAAAwInoyTfA57OYzgYAAAA4GL35BlQaJgsWAAAAAA5Gb74BPsOU18stAgAAAJyK3nwDfD5TUR4WLAAAAACcioKnAUxpAwAAAJyN3nwDfIbFlDYAAADAwejNN8DHCA8AAADgaF47jXbs2KGpU6eqqKhICQkJmj17tnr16lWrzcsvv6ylS5fK7XbLNE1dddVVuu6665oj5hZT6TNZlhoAAABwMFsFz4wZMzRu3DhlZWVp9erVmj59upYtW1arTUZGhq688kq5XC6VlJRo9OjRuuCCC3Taaac1S+AtoWqEh0ULAAAAAKdqdPgiPz9fW7duVWZmpiQpMzNTW7duVUFBQa12HTp0kMtVVRyUl5ersrLS/96pWJYaAAAAcLZGe/O5ublKTU2Vx+ORJHk8HnXu3Fm5ubn12r711lsaNWqULrnkEt14443q379/+CNuQZU+iyltAAAAgIPZmtJm12WXXabLLrtM+/bt05QpUzR06FD16dPH9vHJyR3CGU6TpKTE+19bkuJio2ttA6qRF7CLXEEoyBfYRa7ArhM9VxoteNLS0nTgwAEZhiGPxyPDMHTw4EGlpaUFPaZr164aMGCA3n777ZAKnvz8EpmmZbt9uKWkxCsvr9j//miFT4bPrLUNkOrnChAMuYJQkC+wi1yBXZGUK263q0kDJI3O10pOTlZ6erpycnIkSTk5OUpPT1dSUlKtdt9++63/dUFBgT788EOdeuqpIQfUllQapqK8zn4OCQAAADiR2ZrSNnPmTE2dOlXz589Xx44dNXv2bEnS5MmTdccdd2jAgAFauXKl1q9fL6/XK8uyNH78eA0ZMqRZg29uPh/fwwMAAAA4ma2Cp2/fvlq1alW97YsWLfK//t3vfhe+qNoIn2FR8AAAAAAORm++AT7DVBTLUgMAAACORW8+CNOyZJiM8AAAAABORm8+CJ/PlCR5PSxaAAAAADgVBU8QPqOq4OGLRwEAAADnojcfRKVR9X1AXp7hAQAAAByL3nwQx6e0cYsAAAAAp6I3HwRT2gAAAADnozcfROWxgocpbQAAAIBz0ZsPonqEh1XaAAAAAOei4AnC56tatIApbQAAAIBz0ZsPwj+ljYIHAAAAcCx680H4eIYHAAAAcDx680FUL0vNlDYAAADAuejNB1HJogUAAACA41HwBMGUNgAAAMD56M0H4TNYpQ0AAABwOnrzQVT6WKUNAAAAcDp680H4WJYaAAAAcDx680FUFzxRXhYtAAAAAJyKgieI6iltHkZ4AAAAAMfy2mm0Y8cOTZ06VUVFRUpISNDs2bPVq1evWm2ef/55rV27Vh6PR16vV3fffbcuvvji5oi5RfgMSx63S24XIzwAAACAU9kqeGbMmKFx48YpKytLq1ev1vTp07Vs2bJabc466yxNmjRJ7du317Zt2zR+/Hi99957iomJaZbAm5vPMFmSGgAAAHC4Rnv0+fn52rp1qzIzMyVJmZmZ2rp1qwoKCmq1u/jii9W+fXtJUv/+/WVZloqKipoh5JZRaZgsSQ0AAAA4XKM9+tzcXKWmpsrj8UiSPB6POnfurNzc3KDHvPLKKzr55JPVpUuX8EXawnw+U14P09kAAAAAJ7M1pS0UH330kZ599lktWbIk5GOTkzuEO5yQpaTES5I8UR61i/b63wN1kRuwi1xBKMgX2EWuwK4TPVcaLXjS0tJ04MABGYYhj8cjwzB08OBBpaWl1Wu7adMm3XfffZo/f7769OkTcjD5+SUyTSvk48IlJSVeeXnFkqSS0gq5XfK/B2qqmStAQ8gVhIJ8gV3kCuyKpFxxu11NGiBpdEpbcnKy0tPTlZOTI0nKyclRenq6kpKSarX77LPPdPfdd2vu3Lk644wzQg6krama0sYzPAAAAICT2erRz5w5U8uXL1dGRoaWL1+u7OxsSdLkyZO1ZcsWSVJ2drbKy8s1ffp0ZWVlKSsrS9u3b2++yJuZz6DgAQAAAJzO1jM8ffv21apVq+ptX7Rokf/1yy+/HL6o2gCfYSqKRQsAAAAAR2MII4hKvocHAAAAcDx69EH4fBZT2gAAAACHo0cfhI8vHgUAAAAcjx59EExpAwAAAJyPHn0QVau0sWgBAAAA4GQUPEH4fExpAwAAAJyOHn0QlQaLFgAAAABOR48+CB/P8AAAAACOR48+AMuy5POZjPAAAAAADkePPgDDtGRJimLRAgAAAMDRKHgC8BmmJDGlDQAAAHA4evQB+AxLkpjSBgAAADgcPfoAKn1VIzwsSw0AAAA4Gz36APxT2ih4AAAAAEejRx/A8Wd4WLQAAAAAcDIKngCY0gYAAABEBnr0AbBoAQAAABAZ6NEHwLLUAAAAQGSgRx9ApcGUNgAAACAS0KMPwOdjlTYAAAAgEtCjD+D4stSs0gYAAAA4ma2CZ8eOHRo7dqwyMjI0duxY7dy5s16b9957T1deeaXOPPNMzZ49O9xxtij/lDae4QEAAAAczVaPfsaMGRo3bpzWrVuncePGafr06fXa9OjRQ7NmzdINN9wQ9iBbms/HKm0AAABAJGi0R5+fn6+tW7cqMzNTkpSZmamtW7eqoKCgVruePXvq9NNPl9frbZ5IW9DxKW0UPAAAAICTNdqjz83NVWpqqjwejyTJ4/Goc+fOys3NbfbgWgtT2gAAAIDI0KaGY5KTO7R2CEpJiVdMTJQkqUtqR7Vv16ZuEdqQlJT41g4BDkGuIBTkC+wiV2DXiZ4rjfbm09LSdODAARmGIY/HI8MwdPDgQaWlpYU9mPz8EpmmFfbz2pWSEq+8vGIVfX9EklRUWKoSprUhgOpcARpDriAU5AvsIldgVyTlitvtatIASaO9+eTkZKWnpysnJ0eSlJOTo/T0dCUlJYUepUNUGpZckjxulqUGAAAAnMzW8MXMmTO1fPlyZWRkaPny5crOzpYkTZ48WVu2bJEkbdiwQUOHDtWf//xn/e1vf9PQoUP17rvvNl/kzchnmPJ63XK5KHgAAAAAJ7P1gErfvn21atWqetsXLVrkfz1o0CC988474YusFfl8Jiu0AQAAABGAXn0APsNUlIfRHQAAAMDpKHgCqDw2pQ0AAACAs9GrD8BnWExpAwAAACIAvfoAfD5TURQ8AAAAgOPxrZoBVBosWgAAAJqHYfhUWJgnn6+iyec4eNAt0zTDGBUilVNzxeuNVmJiijyeH16uUPAEULUsNYsWAACA8CsszFNMTKzi4ro0+SswvF63fD7ndWLR8pyYK5ZlqbT0sAoL89SpU9oPPh/DGAEwpQ0AADQXn69CcXEd+b4/IAiXy6W4uI4/aBS0Jnr1AVSyaAEAAGhGFDtAw8L5Z4RefQA+nuEBAAAngHvuuV2vvPJyrW2WZemqq8Zo8+aNTTrnxo0b9NFHH4QjPFmWpcWLF2r8+Kt1/fXXavz4q/S3vy2XJOXm7tPq1X8Py3V+iDvvvFXfffdtve1DhgxSWVlZi8fzy1+O1nfffSNJWrt2jXbv3hX2axQXF2vFir/U2vb44w/r0083hf1a4UCvPgAf38MDAABOAKNGjdHatWtqbdu06RN5PB6dffa5TTrnpk2fNLngMQyj1vt///stbdjwkRYv/qv+8peXtGTJCl144Y8lVRU8r776jyZdx+fzNem4uoqLi3Xo0EH16dM3LOcLt6YWPKZpyrKsoPtLSor14ovLam2bOvX3GjjwnJCv1RJYtCCASp+pKA9DzQAAILINHfpTzZnzuHbs+E69e/eRJL322qv62c9GS5IqKyv1wgvztXnzJ6qs9Klv3776zW+mKTY2ViUlJZo792lt27ZVLpdbAweeraysX2j16r/LNE1t2PCRLrtshCZMmKjXX8/RSy/9VS6XS127dtdvf/s7JSYmae3aNXrzzTeUmJigHTt2aNq036tfv/7++PLyDighIUHR0dGSpOjoaH+cc+Y8odzcvZo4cZy6d++uWbOe0JdffqFnnnlK5eVHFBPTXnfdda/S089Qbu4+3XjjBF155dXasOEjZWRcrlGjsoJ+ttWr/67/+Z8XFRUVLcsy9dBDj6tnz1717t/777+nH/3oopDu+Qcf/EcLFz4n0zSVkJCo++77nbp37yFJWr58qdatWytJSk8/Q3fddZ9iY2O1ePFC7dy5Q0eOlGn//v3q2bOnpk2boQ4dOgS9zmuvvart27/UnDlPKjZ2vqZMuVPnn3+hVqz4i95++y0ZhqFOnTrr/vsfUHJyJy1evFB79+7RkSNl2rt3j557bpGWLVuizZs3qrKyUgkJCZo2bbq6dEnTnDmzVVJSookTxykmJkYLFizRbbfdpGuvnaCLLrpYBQX5evLJx7Rv3x5ZlqVrr52gyy/PlFQ1AjVy5Ch9/PGHys8/pGuvHa9f/GJsSPcwVBQ8ATClDQAAnAiioqI0fPhIvf76Gt16650qKyvVu+/+n2655TZJ0ooVf1FcXJwWLar6r/nz58/VX//6Z9188xTNnfu02rdvr6VLX5Lb7VZRUZESEhKUlXWljhw5ottuu0uS9N1332jBgue0ePFyderUSYsW/VF/+MOTeuihxyRJW7Zs1tKlL6lbt+714rvssgy98srLuuaan2vgwHN03nnn67LLRsjr9eqee36r559/VosX/1VSVXH2wAO/1bRp03X++Rdqw4aP9MADv9XKla9Ikr7//nv16tVbN9xwsyRp6dI/Bf1s8+c/q2XLVio1tYsqKiqCLuv8zjtv65e/tN9ZLyws0KxZ0zVv3gvq3buPcnJeUXb2g1q06C96//31WrdurRYsWKLY2DjNmjVDS5f+Sbfeeock6bPPNunPf35RSUnJevTRbC1d+if/PQ5k1Kgxev31HI0ff51+9KMhkqR169Zqz549Wrhwqdxut/7xj//Vc889oxkzZkmSNm/eqCVLVighIUGSNH78RP811qx5RX/841xlZz+me+65XzfeOEFLl74Y8NrPPPOU+vTpq8cee0qHDh3SDTf8Sv37n6Y+fU6RJJWXl2vhwj8rN3efrrturC6/fLRiY2Nt38dQUfAE4DMsprQBAIBmt35Lrt77LDfk41wuqYEZR5KkIWel6aIBjS/pO2pUlu6993bddNMUvfXWv3TWWQOVktK5Kr7176i0tFRvv/3/JEmVlRU65ZR+kqT//Odd/elPy+V2V/WZqjvJdW3cuEGDB1+kTp06SZKysq7UxInj/PsHDDg7YLEjSZ06ddJf//o/+uKLLfrss81atmyJ1q17XXPmzKvXdvfuXYqKitL5518oSRo06AJFRUVp9+5dio2NVXR0O1166XB/+4Y+27nnnq9HH31IF188VIMHDwkYX0VFhbZv/1IDBgwMdmvr+eKLz9W376n+Uaqf/WyMnn56tsrKSv0jYnFxVaM2Y8ZcqWeffcp/7I9/fLGSkpIlSZmZWXrmmSdtX7fae++9o23bvtSkSeMlVX0nVM1RosGDL6r1e/zgg/X6+99X6ciRsnrTDRuyYcNH/kKpU6dOGjx4iDZu3OAveIYNGyFJSkvrqvj4jsrLOxhwBC1cKHgCqDRYlhoAAJwY+vU7VcnJnfThh+9r7dpXdfXVx4sRy5J+85upOu+885t8fsuqv+JWzbexse0bPN7r9WrgwHM0cOA5GjVqjMaMydDhw98HuI4VcGWv6k3t28fU2t/QZ3v00Sf15Zdf6JNPNuiOO27RvfdO0+DBtaeuffLJRzr77HPl8XgajL9OlAq++Fj9+IOtVFZV7Ib++IVlWbr++knKzMwKuL99++OjLPv352revDlatGiZunbtpi1bPlV29oO2r9XQZ6meoihJbrdbhhGeZ6qCoeAJwOdjShsAAGh+Fw2wNwpTV7i/THLUqDFasuQFHTiQqyFDfuLfPmTIUK1cuUJnnjlA7drFqKysVAcPHlSvXr314x9frJdeWqa77rpPLpfLP6UtLi5Ohw7l+c9x3nnna8WKvyg//5CSkztpzZpXNGjQBbbi2rbtS5100klKS+sqSdq+fZvi4zuqQ4d4xcV1UGlpib9tz569VFFRoY0bN+jccwdp48YN8vl86tGjZ614Gvts3bv30IED+3X66Wfq9NPP1L59e/T119vrFTzvvvt/te6VHWeccZYef/xh7dq1Uz179tLrr+eoX7/+io2N06BBF+qPf5yrq666Ru3bxyonp/Z9+s9/3lNhYaESExP1+utrdO65gxq9XlxcnEpKjt+jIUOGatWqv2no0EvUsWNHVVRUaNeunerX79R6x5aWlsrrjVJycrJM06y1ml9cXJzKy8vl8/nk9dYvJwYNukCvvvoP3XDDzcrPP6T3319fq5BuaRQ8dZiWJcO05GXRAgAAcIIYPvxyPf/8XGVlXamoqCj/9vHjJ2rx4oW68cbrjk1dc2nSpMnq1au3br/9Hs2d+7QmTBgrj8ejc845V3fddZ+GDr1EDzxwnyZOHOdftODmm6fo7runHFu0oJvuu+93tuL6/vsiPf304yorK1VUVLRiYmL02GNPye12q2/fU3TyyT01YcLV6tmzl2bNekKPPPJErUULZs2aXevz1BTss3Xt2k2PPDJTJSXFcrncSk1N9T/TVM2yLH388Ue6/fZ7Gox/3Lhf+Ec2YmJi9NJLf9eDDz6k7OwHZBiGEhISNX36w5KqppN9++3XuvnmX0uSTjvtdF1//Q3+cw0adL4ee+wh7du3Vyef3FO33XZ3o/dvzJgrNX/+s1qxYpluvfVOjRw5St9/X6Tbb79JUtVqbD//+VUBC56+fU/RJZcM0/jxY5WamqpzzjnPv+x0x44nacSIy3X99dcoPr6jFixYUuvYu+66V08++aiuv/4aWZalW265rVVXsnNZDa0518Ly80tkmq0XTkpKvPblFunmp/5Pv/hJH40a3KvVYkHblpISr7y84tYOAw5AriAU5MuJYf/+XerSpecPOke4R3gQms8/36Jly5boiSf+0CLXW7x4Ya2FIELh5Fyp+2fF7XYpOTn4ynTBMG+rjkpfVcHFlDYAAAAEcuaZA1qs2MEPx5S2OnxGVQVMwQMAAIC2oHopbTQNvfo6qgueKJalBgAAABzPVq9+x44dGjt2rDIyMjR27Fjt3LmzXhvDMJSdna1hw4Zp+PDhWrVqVbhjbRGV/hEeFi0AAAAAnM5WwTNjxgyNGzdO69at07hx4zR9+vR6bdasWaPdu3frjTfe0MqVKzVv3jzt2bMn7AE3t+rv3+nQPrqRlgAAAE3ThtaMAtqkcP4ZabTgyc/P19atW5WZmSlJyszM1NatW1VQUFCr3dq1a3XVVVfJ7XYrKSlJw4YN0z//+c+wBdpSkjrGKHvSBTqzT1JrhwIAACKQ1xut0tLDFD1AEJZlqbT0sLze8AxANLpoQW5urlJTU/3fIuvxeNS5c2fl5uYqKSmpVruuXbv636elpWn//v1hCbKl9egc+nJ3AAAAdiQmpqiwME8lJUVNPofb7ZZpOnOpYbQsp+aK1xutxMSU8JwrLGcJk6asqx1uKSnxrR0CHIJcgV3kCkJBvpwYunRJbO0QgBNGowVPWlqaDhw4IMMw5PF4ZBiGDh48qLS0tHrt9u3bp7POOktS/REfO9rCF4/yhW+wg1yBXeQKQkG+wC5yBXZFUq402xePJicnKz09XTk5OZKknJwcpaen15rOJkkjR47UqlWrZJqmCgoK9OabbyojIyPkgAAAAAAgXGxNaZs5c6amTp2q+fPnq2PHjpo9e7YkafLkybrjjjs0YMAAZWVl6dNPP9WIESMkSVOmTFGPHj1CCsbtbv2loNtCDHAGcgV2kSsIBfkCu8gV2BUpudLUz+GyWCIEAAAAQISy9T08AAAAAOBEFDwAAAAAIhYFDwAAAICIRcEDAAAAIGJR8AAAAACIWBQ8AAAAACIWBQ8AAACAiEXBAwAAACBiUfAAAAAAiFgUPJJ27NihsWPHKiMjQ2PHjtXOnTtbOyS0ksLCQk2ePFkZGRkaPXq0brvtNhUUFEiSNm/erDFjxigjI0OTJk1Sfn6+/7iG9iHyPffcc+rfv7+++uorSeQKAjt69KhmzJihESNGaPTo0fr9738vqeF/B/HvpxPTv//9b11xxRXKysrS6NGj9cYbb0giVyDNnj1bl156aa1/50hNz40TJm8sWBMmTBB/Z28AAAYESURBVLBeeeUVy7Is65VXXrEmTJjQyhGhtRQWFloffPCB//3jjz9uTZs2zTJN0xo2bJj18ccfW5ZlWc8//7w1depUy7KsBvch8n3++efWDTfcYP30pz+1tm/fTq4gqIcffth65JFHLNM0LcuyrLy8PMuyGv53EP9+OvGYpmkNGjTI2r59u2VZ/7+d+wlp+o/jOP6aWzkNYlt/dGYkHQIlSPhC0klcEYTWoYOHSjo0OgSVQYdIqEMJLQ8WZGrltTp5CPtD0EKoQylJFIwIpRo5k80kTBps+/wOP5BfZPv98Mfv93XfPR8n+X4ub/CF7++Lj5sxsVjM1NfXm2w2S1ZgRkZGzOTkpGlqalrIiDFL/ztSLLkp+sKTTCaNZVkmk8kYY4zJZDLGsiyTSqVsngzLwaNHj8zhw4fN69evTXNz88LzVCpl6uvrjTEm7xmcLZ1Om9bWVvPp06eF5UNWsJi5uTljWZaZm5v76Xm+HcR+Kk65XM5s377djI6OGmOMefnypdm9ezdZwU/+WniWmo1iyo3H7hsmuyUSCVVUVMjtdkuS3G631q9fr0QioUAgYPN0sFMul9OdO3cUCoWUSCRUVVW1cBYIBJTL5TQ7O5v3zOfz2TE6/idXr17Vvn37tHHjxoVnZAWLicfj8vl8unbtml68eKFVq1bp5MmT8nq9v91Bxhj2UxFyuVy6cuWKjh07pvLycn3//l39/f1531fISnFbajaKKTd8hgf4jQsXLqi8vFyHDh2yexQsQ2NjY3rz5o0OHDhg9ygoAJlMRvF4XHV1dRocHNTp06d1/Phxzc/P2z0alplMJqP+/n5dv35dT58+VW9vr06dOkVWgH+h6G94gsGgvnz5omw2K7fbrWw2q+npaQWDQbtHg40ikYg+fvyovr4+lZSUKBgManJycuF8ZmZGLpdLPp8v7xmca2RkRBMTE9q5c6ckaWpqSkeOHFFbWxtZwS+qqqrk8XjU0tIiSdq2bZv8fr+8Xu9vd5Axhv1UhGKxmKanp2VZliTJsiyVlZWptLSUrGBR+d5l82WjmHJT9Dc8a9asUW1trYaGhiRJQ0NDqq2tddxVHv657u5uvX37Vj09PVq5cqUkaevWrfrx44dGR0clSXfv3tWePXv+9gzOdfToUT179kzRaFTRaFSVlZUaGBhQOBwmK/hFIBBQQ0ODnj9/LunPb0ZKpVKqqan57Q5iPxWnyspKTU1NaWJiQpI0Pj6uZDKpTZs2kRUsKt/vf6lnTuMyxhi7h7Db+Pi4zpw5o2/fvmn16tWKRCLavHmz3WPBBu/fv1dLS4tqamrk9XolSdXV1erp6dGrV690/vx5pdNpbdiwQV1dXVq7dq0k5T1DcQiFQurr69OWLVvIChYVj8d19uxZzc7OyuPxqL29XY2NjXl3EPupON27d083b96Uy+WSJJ04cUK7du0iK9DFixf1+PFjJZNJ+f1++Xw+3b9/f8nZKJbcUHgAAAAAOFbR/0sbAAAAAOei8AAAAABwLAoPAAAAAMei8AAAAABwLAoPAAAAAMei8AAAAABwLAoPAAAAAMei8AAAAABwLAoPAMBWoVBIAwMD2rt3ryzLUnt7u9LptG7cuKHW1lZlMhlJ0u3bt9Xc3Kx0Om3zxACAQkLhAQDY7uHDh7p165aePHmid+/eaXBwUOFwWCtWrFBvb68+fPig7u5udXV1qbS01O5xAQAFxGP3AAAAtLW1qaKiQpLU1NSkWCymkpISRSIR7d+/Xw8ePFA4HFZdXZ3NkwIACg03PAAA261bt27h57KyMs3Pz0uSqqur1dDQoM+fP+vgwYN2jQcAKGAUHgDAsjU8PKyxsTHt2LFDly9ftnscAEABovAAAJalmZkZdXR0qLOzU5cuXVI0GtXw8LDdYwEACgyFBwCwLJ07d06hUEiNjY3y+/3q7OxUR0eHvn79avdoAIAC4jLGGLuHAAAAAID/Ajc8AAAAAByLwgMAAADAsSg8AAAAAByLwgMAAADAsSg8AAAAAByLwgMAAADAsSg8AAAAAByLwgMAAADAsSg8AAAAABzrD3+TO08HBt+KAAAAAElFTkSuQmCC\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAF/CAYAAAB+GZmgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt83FWd//FXJvfMTNIkc8ltJr1/S+mdIgUKlZsgBWGBRVBuKyqFFpF1kV1kvSxFEGERRKGLKCi6shd1dUVXl5UHsPpbRQQR8Aso7aRpOzNJ02Qm98x8f3/MzDdJkzaXJp1M8n4+Hj5i5ns7k9OU+fSc8z55lmUhIiIiIiIih+bIdgNERERERERmOhVOIiIiIiIiY1DhJCIiIiIiMgYVTiIiIiIiImNQ4SQiIiIiIjIGFU4iIiIiIiJjUOEkIiIiIiIyBhVOIiIiIiIiY1DhJCIiIiIiMoaC8ZxkGMZ5wB1AHqli67OmaX7PMIylwBNANdAKXGWa5lvpa6b8mIiIiIiISDaMOeJkGEYe8C3gStM01wBXAE8YhuEAHgG+YprmUuArwI4hl07HMRERERERkaNuXCNOQBKoSP//ecBewAOsA85Kv/7PwEOGYXhJjUxN6THTNKPjaGcxcHy6fYlxvjcREREREZk78oFa4DdA73gvGrNwMk3TMgzjUuA/DMPoBNzAZiAANJummUiflzAMY0/69bxpODaewul44PnxvnkREREREZmzTgFeGO/J45mqVwD8HXCBaZqNwPnAU4Brsi2cRnuz3QAREREREckJE6odxjNVbw1QZ5rm/wKYpvm/6ZGnHqDeMIz89MhQPlAHNJEaOZrqY+ORAGhtjZNMWuO8ZGp5vW6i0VhWni2Toz7LPeqz3KM+yz3qs9yi/so96rPscTjyqK52wQSX9ownjnw30GAYhgFgGMYxQA3wFvAycHn6vMuB35mmGTVNMzLVxybypkRERERERKbSeNY47TMM43rg3wzDSKZf/ivTNPcbhrGFVMLep4E24Kohl07HMRERERERkaMuz7KyM6VtmswH3tFUPZkI9VnuUZ/lHvVZ7lGf5Rb1V+5Rn2XPkKl6C4Cd471uvHHkOS2RGKCtLcrAQN+0PysScZBMJsc+UWaMudJnBQVFVFZ6yc+fE7/2IiIikiXJpEW4rYtQOE4oEqMpHKdvIMktl68h3zGelUIz05z4BNXWFqWkpAyns4a8vLxpfVZBgYOBgdn/IXw2mQt9ZlkWnZ0dtLVF8Xhqs90cERERmSX6+hM0t3SyK5wqkEKRGE2ROH39qc9W+Y486jxOjmmszHJLj9ycKJwGBvqOStEkMlPl5eXhdJYTjx/IdlNEREQkR8W7+wmFY8NGkva2dpFML/0pKcon6HNx6qo6An4XjX43tdVOCgtyd5RpqDlROAEqmmTO0++AiIiIjIdlWbS09xAKx2mKDBZK+zt67XMq3cUEfC7WLvUS9LkI1rjxVJTgmMWfN+ZM4SQiIiIiIsMNJJLsaemkKRJPFUjhGKFInO7eAQDy8qCmqowlDfMI+l0EfW4CfhflZUVZbvnRp8IpCy655HyKioooLCwimUxw9dXXcuaZZ/PSSy/ysY9t4fLLr2Tr1pvs87dt+ygvv/wSP/vZc5SVlY24X0tLlMsvv4jvfe9p3G63/fpLL73I3XffwVNP/YAbb7yOcDiM0+m0j3/iE7eycuVqLMviX//1u/zwh98HLJLJJKtXr+WcczZz//1fBKCjo52urk5qauoAOP/8C7n44kt55ZXf8cgjD9HW1kYikWDt2nVs23Yz5eXldtszz+3t7eHss8/lmms+fNifz513fpZly47h4ovfP+z1xx7bwfe//294vV66u3twuVycffa5XHTRX5Kfn3/Ye/7f//2Kxx9/lLa2NgoKCqirq+e667axaNFiLrxwM/39fXzve0/b9/nxj3/IXXf9AzfffAsXX/x+nn76Rzz44H3U1NQxMNBPY+N8br31dsrLK9i27aNcfvmVnHzyKYdtQ09PD1u3foSHHvonSktLD3vuUC0tUT73udv58pd3HPa8vr4+rr/+Wh544GFcLte47y8iIiJzQ3fvQLpAShVHoXCMPS2dDCRSU+2KChw0+FyccIyPoD9VIDV4XRQXHv5z1lyhwilLtm//AgsXLubNN//Ili3Xsn79CQAEg408//yzbNmyjfz8fPbsaaa3t+ew9/J4vKxevZZnnvkvLrzwEvv1p5/+Eeeee749RevjH/+bUT/cP/row7z88ks8+ODDVFVVk0wmef75Z/F4vDz++Hfse/3yl8+zffs99nW7dzfxqU/dwh13fIG1a48jmUzy0EP38/d//7c88MBX7fMyz21paeGKKy7h+OM3cOyxKyb1czvnnM1s2/ZxAJqbd3PHHZ+mubmJj3/8lkNe8+tf/z/uvvsO7rrrXpYtWw7Am2/+kdbWFhYtWgxAdbWHX//6V5x44kYAfvKT/yS11/Og9evfxfbt95BMJvn0p/+WJ554jBtv/Otxt/3f/u27vPvdp0+oaIJU/45VNAEUFRVx9tnv5amnvs211143oWeIiIjI7GFZFgfifTRFYuwKx2lKr0uKHOi2z3GVFtLod3Hm+oA9klRTVYbDMXun2h2pOVk4/e+re3nh93un5d6b1taxYXnNuM9funQZZWVl7N3bDEBpaRnz5y+wP8T/5Cf/yTnnbOaNN14/7H02b34f3/nOt+zCqaurk+eee5Zvfeupw17X1dXFd7/7bR5//NtUVVUD4HA42LTp9DHb/s1vfp3Nmy9g7drj7OtuuOEmLr30Al555XesXr122Pkej4dAoJFweN+kC6eh6usb+Lu/+zRXXfV+Pvzh6w85yvKNbzzK1VdfaxdNkPq5D/Xe957P00//JyeeuNEuVhcuXDTq/RwOB+vWHc+vfvXChNr7wx9+nwcffMT+/pJLzuc973kvv/3tb4hGI2zZciMHDuzn5z//KR0dHdx222dYvXote/fu4cMfvpIf//gZADZuXM9HP3oDzz33LO3t7Wzd+jHe/e4zADjzzLO59torVTiJiIjMEcOiv4eMJMW6+u1zvPNKCPrdnLyyhoDfTaPfzTxXkdY/T9CcLJxmkpdeepG+vj4aGoK89ZYJwLnnns9//Mf32LDhZJ555mc8/PBj9pS5Q9m4cRP33Xc377zzZxYsWMj//M/PWbFiFX7/YBH3pS/dy6OPPmx/f//9D7F37x6KigoJBudPuO1/+tPbXH31tcNeKygoYOlSg7fffnNE4RQK7aKjo90utKZCY+N8SkpKCIV2snz56MXYm2/+kb/+608e9j7r1q3n+9//Vzo6Ouxi9Y9/fGPUc/v6+njhhedYtuyYUY+PJhzeR09PDzU1w6PA+/v72bHjG7zxxmvceON1XH/9x3j00W/yzDM/55FHHuLhhx8b9X5Op5Ovfe2b/P73L/PpT/+dXThVVVVTUFDIrl07aWycP+72iYiIyMzX159gd7STUDqwoSkcoyk6PPq73uNk9SIPAb+LoM9FwOemrEQf+afCnPwpnryylpNXTs9eNuPdE+j222+lqKgYp9PJnXd+YdjapHXr1nPffXfz3HPPsnDhIioq5o15v8LCQs466708/fSP2Lr1Jn784x9xySWXDTtntKl6e/bsGec7G8lKR0+O5UtfupeHH/4yodBObrrpb6isnHk5/nl5cPrpZ/HMMz+zi9WDC6cXX/w111zzAQBWrlzNlVf+1bjvH41GqKysGvH6GWecBaRGwHp6ejjjjPcAsGzZMTQ37z7k/c4442wAjj12JS0tUXp7eykuLgagurqaSCSswklERCSHxbr6CEXiqb2R0iNJe1s7yXz8Ki3OJ+Bzc+rqOoI+N0G/izqPk4L82RH9PRPNycJpJsiscRpNXl4ep59+Fvfcs53bbvvsuO953nkXcPPNW9m8+X2EQjs55ZRNY16zYMFC+vr6CIV2EQw2jvtZAIsXL+G1117l1FPfbb82MDDAm2+aXHbZFfZrmYLt979/mZtv3sqaNevstUVHKhTaSU9Pz2GLhKVLl/H666+xZIlx2Hu9973ncd1117BmzbpRi9XMGqfJKC4upq+vd8TrRUWpRJpMKEXme4fDQSIxcMj7HXxdIpGwj/X1DRZRIiIiMrMNRn/Hhk23a4sNj/4O+lysW+ql0e8i4HfjrSjRVLujTIXTDHXBBRdRWlrKCSecOO5rFi1ajNfrY/v2z3DWWefYH64Pp6ysjEsv/QD33HMnd9xxN5WVVViWxc9//lOOPXYl9fUNh7z2iiuu4frrP8SGDSfZ4RBf/eoDNDQEWLNm3YjzV61aw0UXXcrXvvYId91177jf16Hs3buHu+66g7/4i0twOg+dInf11ddyzz13smzZcgwjtbbp9df/QHt7OyeeeLJ9Xn19Ax/5yA2HnPJ3JILBRlpbW+nr6xtXv0xWIpFgz57mQxblIiIikj2Z6O9QOE5LbCd/3LmfpoOiv2urnRiBeampdn43Ad/cjP6eiVQ4zVBer48PfvDqCV933nkXcN99d3PrrZ8acezgNU4f/vB1bNy4ieuu28pTT32bG29MBQpYlsWqVWvthLlDCQYb2b79Hnbs+AoHDhwgkRhgzZp1bN/+hUNec9VVH+Kyyy7krbfMw44APfroIzz55BP295/85G0A/PSnP+a3v/01PT09OJ0u3vOec0bElh9sw4aTuOWWv+Mf//ELtLe3p+PI69iyZduIcy+44KLD3utQPv/5z1JUNDjK88UvPsDixUvs74uLS1i37jh+97vfTqgYnqhXX32F5ctXKI5cREQkyzLR37vCsdR0u8hB0d+F+TR4nZyw3J/aQNbvpt7rVPT3DJY33nUqOWI+8E5ra5xkcvB97du3i5qaiU1Dm6zxrnGSmeNo9dmrr77Cd77zTe66675pe8ZnP/spNm9+H8cff8Kox4/m78J08nrdRKOxbDdDJkB9lnvUZ7lF/ZU9mejv1FS7mL0uabTo78zeSI1+N8cu9bO/NZ7Fls9dDkce1dUugAXAzvFepxEnkaNk5crVnHTSKXR3d094L6fx6OvrY82atYcsmkREROTIJJMW+/Z3DUu1C0Xiw6K/ffNKCfhdnLyq1h5JGi36O1/7JeUcFU455tprrxwWBABw7LEruOWW27LUosn51a9eYMeOr454/brrbhhziuBo3nrL5M47Pzfi9YsvvpTzz79wUm2cDtPZlqKiomEbIIuIiMjk9fYn2B1Np9ql90baHYnTNzAk+tubiv4ODlmPVFqsj9ezlXo2xzz22Ley3YQpceKJGydVIB3KkiUGjz/+nSm7n4iIiMwdsa6+VKJdJLUeaVc4xr79XUOivwsI+lycuqaOxnSBpOjvuWfOFE6WZSmyUea0WbaeUUREZMIsyyLa3kNoX2Yt0ujR341+N+sNH0F/an8kj6K/hTlSOBUUFNHZ2YHTWa4/9DInWZZFZ2cHBQWKMxURkblhaPS3HdoQidHdm1ryYEd/B+fZG8gGfC7civ6WQ5gThVNlpZe2tijx+IFpf5bD4SCZVKpeLpkrfVZQUERlpTfbzRAREZlyXT0DNEVi9lqkpnCc5pZOEslM9LeDgNfFhuU1dqpdvcdJkaK/ZQLmROGUn1+Ax1N7VJ6lONDcoz4TERHJDZZl0RbrHZxml16XFD3QY5/jLisk6HfznoVV9kiSv7IMh1Ls5AjNicJJRERERHKLHf0dHhxJCoXjxLuHRH9XltLod3PKqrr0VLvRo79FpoIKJxERERHJqkz0d2ZvpF3hOM3Rwejvgvw86j0u1izx2HsjKfpbjjb9aRMRERGRo6ajqy+1N9KQkaSDo78b/S42ram390eqrS5T9LdknQonEREREZlyScui5UC3vQ4pk253IN5nn1NVXkzQ5+b4ZT4CPjeNfhfViv6WGUqFk4iIiIgckYFEkuZop10gNYVjNEXjdvS3Iy+P2uoyjmmsJJAObAj63bhKC7PccpHxG1fhZBhGCXA/cCbQA/zKNM2PGoaxFHgCqAZagatM03wrfc2UHxMRERGR7LKjv4dMt9tzcPS3LxX9nSmQFP0ts8F4R5zuIVUwLTVN0zIMw59+/RHgK6ZpPmkYxhXADuD0aTwmIiIiIkeBHf2dnmrXFI6zKxyjpX0w+rs8Hf29YmEVjenABkV/y2w1ZuFkGIYLuApoME3TAjBNM2wYhg9YB5yVPvWfgYcMw/ACeVN9zDTN6BG9UxEREREZVSKZZN/+bnvz2MyUu6HR3/7KUubXlnPq6jqC/tR0u3mu4iy2WuToGs+I0yJSU+Y+YxjGaUAcuB3oBppN00wAmKaZMAxjDxAgVQBN9TEVTiIiIiJHqLcvHf09ZG+k3dE4/QdFf69d4rELpAavor9FxvMbUAAsBH5nmuYthmGcAPwI+MtpbdkRqK52ZfX5Xq87q8+XiVOf5R71We5Rn+Ue9VluGa2/DsR6+fOedt5pbufPze38eU87e6Jx0suRcJYWsrCugnNPWsDC+nIW1s+jwedS9PdRot+x3JJnZULzD8EwDA+wFyjKTNUzDON14BrgZ0B1emQon9TI1BJSI0dvTuWxcU7Vmw+809oaJ5k8/PuaLl6vm2g0lpVny+Soz3KP+iz3qM9yj/ost1RXu3j97ciwaXYHR39XlxcPS7QL+l1Ulyv6O1v0O5Y9DkdeZqBlAbBzvNeNOeJkmmaLYRi/ILXu6Gfp1DsfqQLnZeBy4Mn0199lChzDMKb8mIiIiMhc1z+QZE9L57ANZHdHO+nuHQDS0d+eVPR30O8m6HMRUPS3yBEb72TVLcDXDcO4D+gHrjRN84BhGFuAJwzD+DTQRipEYug1U31MREREZM7o6umnKRJnV3pvpF3hOHtbB6O/iwvzCfhcnHZcA76KEgI+l6K/RabJmFP1csx8NFVPJkh9lnvUZ7lHfZZ71GdH17Do7yEjScOiv51FqWl2Q6bb+eaV4nDkqb9ykPose6Ztqp6IiIiITJ1EMsm+1q5hqXZNkZHR3wtqy9m0ps6ebleh6G+RrFLhJCIiIjJNevsSNEUHp9k1RVLrkYZFf3tdrFvqsYMbFP0tMjPpt1JERERkCnR09g2bZhcKxwnv7yKzeMBZUpBaj7S23p5yV1NdpuhvkRyhwklERERkApKWRfRAt70eKRXeEKN9WPR3CUG/i3cd46PR7yag6G+RnKfCSUREROQQMtHfu8Ixe4+kpkicnr4EkIr+rvOUsbyxyg5sCPhciv4WmYVUOImIiIgAnT39qeLInm43evT3SStq7A1k6z1OCgsU/S0yF6hwEhERkTnFsiz2d/SmRo/CqWl2TZH4sOjvCmcRAb+L1YurCfhcNPrdeCtLcWiqncicpcJJREREZq1EMsne1i57ml1mXVJnzwAAeYCvqkzR3yIyJhVOIiIiMiv09A2wO9ppJ9qFwqno74FEJvrbQYPXyXGGN10guWnwOSkp0schERmb/qYQERGRnNPe2ZfeGymTahcnclD0d9Dv5vR19XaqXU2Vor9FZPJUOImIiMiMlbQsom3dw/ZGCoVjtHeOjP7esNxv749UVV6s6G8RmVIqnERERGRG6B9I0NzSaRdHoUicpkic3oOiv49dUEXQl47+9rtwlij6W0SmnwonEREROeo6e/oJhePp6XZxmiIx9rZ2DUZ/F6WivzeuqCXgdyn6W0SyToWTiIiITBs7+tveGyk13a61Y0j0t6uIoM/N6sUeO9VO0d8iMtOocBIREZEpMZBIsm9/17C1SE2R+LDob39VGYvqyzltXT1Bn4uA302Fsyi7DRcRGQcVTiIiIjJhPX0D7I50plPtUtPtmodEfxcWZKK/fanABr+bBq+iv0Ukd+lvLxERETms9njv8FS7yOjR32ccV0/Q5ybod1FTXUa+Q9HfIjJ7qHASERERIBX9HWnrJhSO0fLrJv64s5WmcHxY9LenooSg382Jy/0E/C4a/W4q3Yr+FpHZT4WTiIjIHNQ/kGB3tJOmISNJTZE4vf2p6O98Rx611c5U9Hc6sCHod1Gm6G8RmaNUOImIiMxy8e5+muxUuzihSIy9LV0krcHo76DPxcaVtfZ6pNXH+DnQ1pXllouIzBwqnERERGYJy7Jo7egZlmgXCsdo7ei1z5nnKiLod7NmsYfG9Aay3nkjo7+1X5KIyHAqnERERHLQQCLJvtYuQpGxor8rOG1dKrAh4FP0t4jIZKlwEhERmeG6ewfYHY3bBVIoMnr09/plvvRaJDcNXhfFRRo1EhGZKiqcREREZpAD8d50UENqb6SmcIxIW/eI6O8zj2sgkF6PVFNVquhvEZFppsJJREQkC5KWRXh/V3od0uBIUsdo0d8rauz9kRT9LSKSHSqcREREplkm+jtkJ9vF2B3pHBb9XedxsjIT/e13EfAp+ltEZCaZUOFkGMZngM8CK03T/INhGBuAHUApsBO4wjTNSPrcKT8mIiIy02Wiv3elp9uFwnH2tg5Gf5dkor9XpaO/fW7qPE4KCzTVTkRkJht34WQYxjpgAxBKf58HPAlcY5rmC4Zh3A7cDXxoOo5N1RsWERGZCpZl0dreY48gZfZH2j9K9PfapR57qp1nlOhvERGZ+cZVOBmGUQx8BfgA8Iv0y+uBHtM0X0h//wipEaIPTdMxERGRrBhIJNnb2mUXSJmRpK7ewejvmuoyljTMI+hzpUIbfG7KFf0tIjJrjHfE6R+AJ03TfMcwjMxrQWBX5hvTNFsMw3AYhlE1HcdM09w/yfcoIiIybt29AzRF4vbmsaFwnOaWOAOJ1FS7VPS3i3cd4yPgdxP0uRT9LSIyB4xZOBmGcSJwPPC309+cqVFd7crq871ed1afLxOnPss96rPcM9P6zLIs2mK9/Lm5PfW/Pamve1s67XPcZUUsqq/guGP8LKivYGFdOfVeF/n5c2M90kzrMzk89VfuUZ/llvGMOG0ClgGZ0aYG4L+AB4HGzEmGYXgAyzTN/YZhhKb62ETeVGtrnGTSGvvEaeD1uolGY1l5tkyO+iz3qM9yT7b7LJm0CLd12euQmtLx3x1d/YNtnFdC0OfmhGN8qWQ73+jR3/v3dx58+1kp230mE6P+yj3qs+xxOPImNdAyZuFkmubdpAIaADAMYydwHvA68FHDMDam1yRtAf4lfdpvgdIpPiYiIjKmvv4EzS2dwwIbDo7+rvc4Wbmo2g5sUPS3iIiMZdL7OJmmmTQM40pgh2EYJaSjw6frmIiIyMHi3f3DCqSmg6K/S4vzCfjcnLKqloDfRaPfTW21or9FRGTi8iwrO1Papsl84B1N1ZOJUJ/lHvVZ7jnSPrMsi5b2nmGJdgdHf1e6iwn4XPY0u2CNG09FiaK/J0m/Z7lF/ZV71GfZM2Sq3gJSAzXjMukRJxERkelwcPR3KBwjFInTnYn+zoOaqnT0dzr2O+B3UV6m6G8REZk+KpxERCRrMtHfmeIoFI6xp6XTjv4uKnDQ4HPZgQ0Bfzr6u1DR3yIicnSpcBIRkWmXif5uisTYFY7TlB5Nihzots9xlRbS6Hdx5vqAPZJUU1WGw6GpdiIikn0qnEREZEoNi/5OjyQ1Rzs5EB9cj+SdV0LQ7+bklTWpNUl+N/NcRSOiv0VERGYKFU4iIjJpff0Jdkc7CaUDG5rCMZqicfr6k8Bg9Pf6Y/x4K4oJ+lwEfG7KSvSfHxERyS36L5eIiIxLrKuPUCRubx4bisTZ29pJJpw1E/196uo6e3+kOo+TgnyH0qNERCTnqXASEZFhBqO/h6fatcWGR38HfS6OW+pNbSDrd+OtKNFUOxERmbVUOImIzGEDiSR7WjqHbSB7cPR3bbUTIzCPgD+1R1LAp+hvERGZe1Q4iYjMEZno713hTIE0Mvo74HNxwnJ/agNZv5t6r1PR3yIiIqhwEhGZdSzL4kC8Lz3VLmavSxoa/e0uKyTod3PW+ioCfheNfjf+SkV/i4iIHIoKJxGRHJZMWuzb3zU4zS5dKMW6+u1zfPNKCfhdnLyq1h5JUvS3iIjIxKhwEhHJEb39CXZH4/Y6pFA4xu5InL6BIdHfXierF3lSG8im1yOVFuuvehERkSOl/5qKiMxAmejvUHo90q5wjH37u4ZEfxcQ9Lk4dU0djekCKRP9LSIiIlNPhZOISBZZlkW0vYemcIxd6Q1kR4v+bvS7WW/4CPpT+yN5FP0tIiJyVKlwEhE5SoZFf2dCGyIxunsTwJDo7+A8ewPZgM+FW9HfIiIiWafCSURkGnT1DNAUiQ2bbtfc0kkimY7+LnQQ8LrYsLzGTrWr9zgpUvS3iIjIjKTCSUTkCGSiv1N7I8XsjWSjB3rsczLR3+9ZWGWPJCn6W0REJLeocBIRGSc7+js8OJIUCseJdw+J/q4spdHv5pRVdXayXYVT0d8iIiK5ToWTiMgoMtHfoXRgw65wnOboYPR3QX4e9R4Xa5Z47FQ7RX+LiIjMXvovvIjMeR1dfcM2jw0dFP1dVlxA0O9i05p6exSptrpM0d8iIiJziAonEZkzkpZFy4Fuex1SKByn6aDo76ryYoI+N8cv8xHwuWn0u6hW9LeIiMicp8JJRGalgUSS5mjnYIEUjtEUjdvR3468PGqry1gWnEcgHdgQ9LtxlRZmueUiIiIyE6lwEpGcZ0d/DxlJ2nNw9LfPxYZjawj6UgWSor9FRERkIlQ4iUjOsCyLtlgv70Q6efWtCE3hOLvCMVraB6O/y9PR3ysWVtmhDYr+FhERkSOlwklEZqREMsm+/d325rGZkaSh0d/+ylLm15Zz6uo6gv7UdLt5ruIstlpERERmKxVOIpJ1vX3p6O8heyPtjsbpHxr97XWxdomHoN/NKsOHq9Ch6G8RERE5avSpQ0SOqo6uPnsUaVc4RlMkPmr092lr6wn4XDT63dQcFP3t9bqJRmNZegciIiIyF41ZOBmGUQ18C1gE9AJvA9eZphk1DGMDsAMoBXYCV5imGUlfN+XHRCR3jBb9HQrHOBDvs8+pLi8mkI7+zky1qy5X9LeIiIjMPOMZcbKAe0zTfBbAMIwvAncbhvFh4EngGtM0XzAM43bgbuBDhmHkTfWxqXzTIjK1+geS7GnpHLaBbFMkTk/fkOhvTxnHNFamCiSfi4CqGVAKAAAgAElEQVSiv0VERCSHjFk4maa5H3h2yEv/D7geWA/0mKb5Qvr1R0iNEH1omo6JyAzQ1dNPUyTOrvTeSKHI8Ojv4sJ8Aj4XJ66osVPtGrxOCgsU/S0iIiK5a0JrnAzDcJAqmn4IBIFdmWOmabYYhuEwDKNqOo6lCzgROUoy0d+ZKXaZkaRh0d/OIoJ+FysXVtsbyPrmlSr6W0RERGadiYZDfBmIAw8BfzH1zZka1dWurD7f63Vn9fkycXO9zxKJJLujcd5pbudPze28s6edPzd3EOsaXI9U53GybH4VC+srUv+rq6CyvCRrbZ7rfZaL1Ge5R32WW9RfuUd9llvGXTgZhnEvsAQ43zTNpGEYIaBxyHEPYJmmuX86jk3kTbW2xkmmpw0dbUr7yj1zrc96+xI0RQen2YXCMXZHO4dEfzuo9zpZu6SagC8V2NDgdY2I/h7o7Sca7R/tEdNurvXZbKA+yz3qs9yi/so96rPscTjyJjXQMq7CyTCMO4HjgM2mafamX/4tUGoYxsb0mqQtwL9M4zERmaCOzr5h0+xC4Tjh/V1k/lnBWVJAwJeK/g76XQR9I6O/RURERGR8ceTHArcBbwK/NAwD4B3TNP/CMIwrgR2GYZSQjg4HSI9ITekxETm0pGURzUR/pxPtdoVjtA+L/i4h6HfxrmN8qdAGRX+LiIiIjFueZWVnSts0mQ+8o6l6MhG51meZ6O9d6U1kQ5GR0d91njJ7ml0wnWw3m6K/c63PRH2Wi9RnuUX9lXvUZ9kzZKreAlIDNeMy0XAIETmKOnv608XR4FS7va1Dor+LUtHfJ62osTeQrfco+ltERERkqqlwEpkBLMtif0dvavQonJpm1xSJD4v+rnAWEfS7Wb24moDPRaPfjbeyFIem2omIiIhMOxVOIkdZIplkX2tXaj1SJGavS+rsGQAgD/BVlbGgtpxNa+pSI0k+FxWu4uw2XERERGQOU+EkMo16+gbYHe20p9llor8HEoPR3w1eJ8cZ3nSB5KbB56SkSL+aIiIiIjOJPp2JTJH2zj6awjF7mt2ucJzIQdHfQb+b09fV26l2tdVl5DsU/S0iIiIy06lwEpmgpGURbeseFtgQCsdo7xwZ/b1hud/eH6mqvFjR3yIiIiI5SoWTyGH0DyRpbonbxVEoEqcpEqf3oOjvYxdUEfSlo7/9Lpwlsyf6W0RERERUOInYOnv6CYXj6el2cZoiMfa2do2I/t64opaAP5VqV+cpU/S3iIiIyBygwknmHDv6Oz2CtK+tm7ebDtDaMST621VE0Odm9WKPvT+Sd56iv0VERETmKhVOMqslkkn2tnbZa5GaIiOjv+u8LhbVl3PaunqCPhcBv5sKZ1F2Gy4iIiIiM4oKJ5k1evoG2B3pTKfapQqlodHfhQWZ6G8fjf5UgdTgdRKoryQajWW59SIiIiIyk6lwkpzUHu8dnmoXGT36+4zj6u0NZGsU/S0iIiIik6TCSWa0pGURaesmZO+NFKMpHB8W/e2pKCHod3Picr8d2lDpVvS3iIiIiEwdFU4yY/QPJNgd7bTXIWXWJPX2p6K/8x151FY7WbGgikB6FCnod1Gm6G8RERERmWYqnCQr4t39NKVT7VJT7WLsbekiaQ1Gfwd9LjaurE1tIOt3U+dxUligqXYiIiIicvSpcJJpZVkWrR09NIXT0+zSo0mtHb32OfNcRQT9btYs9tCY3kBW0d8iIiIiMpOocJIpM5BIsq+1i1A60S6zLmlo9HdNdRmL6is4bV1qb6SAT9HfIiIiIjLzqXCSSenuHWB3NG4XSKFInOYR0d8u1i/zpdciuWnwuiguys9yy0VEREREJk6Fk4ypPd7LrnCcpkgs9TUcI9LWPSL6+8zjGgik1yPVVJUq+ltEREREZg0VTmIbGv09dCSpY7To7xU1BH2p6XaK/hYRERGR2U6F0xyVif4O2cl2MXZHOodFf9d5nKxcUJXaQNbvIuBT9LeIiIiIzE0qnOaATPR3ZrpdKBIfFv1dkon+XpWO/vYp+ltEREREZCgVTrOIZVm0tvfYI0ihdKE0WvT32iUee6qdR9HfIiIiIiKHpcIpRw0kkuxt7RpWIIXCcbp6h0d/L26Yx+npVLuAz0W5or9FRERERCZMhVMO6O4doCkStzePDYXjNLfEGUikptplor/fdYyPgN9N0OdS9LeIiIiIyBRS4TSDWJZFe2ffsES7UDr6O8NVWkjQ7+LM9QGCPhcBRX+LiIiIiEy7GVk4GYaxFHgCqAZagatM03wru62aWsmkRbiti6ZInF3hGE3pYqmjq98+xzuvhKDPzckrauyRJEV/i4iIiIgcfTOycAIeAb5imuaThmFcAewATs9ymyatfyDJ7ujgNLtQZGT0d73HycpF1anob5+LgM9NWclM7R4RERERkbllxn0yNwzDB6wDzkq/9M/AQ4ZheE3TjGavZRNjWRZvNh3gl3/Yx4tmlO50aENpcT4Bn5tTVtUS8Lto9KeivwvyNdVORERERGSmmnGFExAAmk3TTACYppkwDGNP+vWcKZx++Yd9PPbjNyguyue4pV7WLPYQrHHjqShR9LeIiIiISI6ZiYXTEauudmX1+V6vm9PeVUR9TTkrF3koKZ6VP+ZZxet1Z7sJMkHqs9yjPss96rPcov7KPeqz3DITP9E3AfWGYeSnR5vygbr06+PS2honmbSmrYGH4/W6iUZjAMz3Ool1dBPLSktkvIb2meQG9VnuUZ/lHvVZblF/5R71WfY4HHmTGmiZcQtrTNOMAC8Dl6dfuhz4XS6tbxIRERERkdllJo44AWwBnjAM49NAG3BVltsjIiIiIiJz2IwsnEzT/CNwQrbbISIiIiIiAjO0cDoC+ZCat5hN2X6+TJz6LPeoz3KP+iz3qM9yi/or96jPsmPIzz1/ItflWVZ2QhSmyUbg+Ww3QkREREREZrxTgBfGe/JsK5yKgeOBvUAiy20REREREZGZJx+oBX4D9I73otlWOImIiIiIiEy5GRdHLiIiIiIiMtOocBIRERERERmDCicREREREZExqHASEREREREZgwonERERERGRMahwEhERERERGYMKJxERERERkTGocBIRERERERmDCicREREREZExqHASEREREREZgwonERERERGRMahwEhERERERGYMKJxERERERkTGocBIRERERERmDCicREREREZExqHASEREREREZgwonERERERGRMahwEhERERERGYMKJxERERERkTGocBIRERERERmDCicREREREZExqHASEREREREZgwonERERERGRMahwEhERERERGYMKJxERERERkTGocBIRERERERlDQbYbMMWKgeOBvUAiy20REREREZGZJx+oBX4D9I73otlWOB0PPJ/tRoiIiIiIyIx3CvDCeE+ebYXTXoC2tk6SSSsrDaiudtHaGs/Ks2Vy1Ge5R32We9RnuUd9llvUX7lHfZY9DkcelZVOSNcO4zXbCqcEQDJpZa1wyjxfcov6LPeoz3KP+iz3qM9yi/or96jPsm5CS3sUDiEiIiIiIjIGFU4iIiIiIiJjUOEkIiIiIiIyhnGtcTIM417gYmA+sNI0zT+kX98J9KT/B3CraZr/lT62AdgBlAI7gStM04wcybHJSiQGaGuLMjDQdyS3GZdIxEEymZz258jUmQt9VlBQRGWll/z82basUURERGaarp5+miJxQuE4oXCMUCRO30CSO659FwX5uTtuM95PUT8AHmD0qO9LMoVUhmEYecCTwDWmab5gGMbtwN3AhyZ7bDJvLqOtLUpJSRlOZw15eXlHcqsxFRQ4GBiY3R/CZ5vZ3meWZdHZ2UFbWxSPpzbbzREREZFZwrIs2mK9qQIpErMLpZb2HvucCmcRAb+L5Y1VOBzT+zl8uo2rcDJN8wUAwzDGe9/1QE/mOuARUqNHHzqCY5M2MNB3VIomkZkoLy8Pp7OcePxAtpsiIiIiOSqZtNi7v4umcGxYoRTv7rfP8VeWsqC2nE1r6gj63QR9LipcxVls9dSaink7306PFL0A3Gaa5gEgCOzKnGCaZothGA7DMKome8w0zf1H0kgVTTKX6c+/iIiIjFdvf4Ld0dRUu6ZwjF3hOM3R1HQ7gIL8POq9LtYu8aQKJL+LBq+L0uLZvSTgSN/dKaZpNhmGUQx8CXgIuOLIm3Vkqqtdw76PRBwUFBy9+ZRH81kyNeZCnzkcDrxed7abMWVm03uZK9RnuUd9llvUX7lnJvRZe7yXPze3886edv6U/tociZPZYspZWsii+greu2QBC+srWFhfQYPPldNrlSbriAon0zSb0l97DcP4KvDD9KEQ0Jg5zzAMD2CZprnfMIxJHZtIu1pb48M2FEsmk0dtDct41stccsn5FBUVUVhYRDKZ4Oqrr+XMM8/mpZde5GMf28Lll1/J1q032edv2/ZRXn75JX72s+coKysbcb+WliiXX34R3/ve07jdg7+AL730InfffQdPPfUDbrzxOsLhME6n0z7+iU/cysqVq7Esi3/91+/ywx9+H7BIJpOsXr2Wc87ZzP33fxGAjo52uro6qampA+D88y/k4osv5ZVXfscjjzxEW1sbiUSCtWvXsW3bzZSXl9ttzzy3t7eHs88+l2uu+fBhfz5vvfUmDzxwL/F4nIGBflwuN5///Bf5xje+xquvvgLAzp1/pq6unqKi1PDvY499i/z8/FHv98Ybr7Fjx1dobm6mpKSYefMqufba61izZh3btn2U11//Az/4wU8oL6+wf24f+9gWLrvsCrZt+zgvvfQit9xyE4FAI4nEANXVHm699XZqa+u4887PsmzZMVx88fsP+56SySRbt36Ez33u8/h8/sOee7BrrvkAO3Z8neLiksOet23bR7ntts9QV1d/yDZEo7EJPXum8nrds+a9zBXqs9yjPsst6q/cc7T7zLIsou099ghSUzq0oS3Wa59TXV5MwOdm7eLBkaTq8pIRM1fa9ncetXZPB4cjb8RAy3hMunAyDMMJFJim2Z6eqncZ8HL68G+BUsMwNqbXK20B/uUIj80q27d/gYULF/Pmm39ky5ZrWb/+BACCwUaef/5ZtmzZRn5+Pnv2NNPb23PYe3k8XlavXsszz/wXF154if3600//iHPPPd/+w/7xj/8NJ598yojrH330YV5++SUefPBhqqqqSSaTPP/8s3g8Xh5//Dv2vX75y+fZvv0e+7rdu5v41Kdu4Y47vsDatceRTCZ56KH7+fu//1seeOCr9nmZ57a0tHDFFZdw/PEbOPbYFYd8P5/73O1cf/2NdlubmkKUlJTyiU/cap9zySXn2z/Dw/nTn97mlls+zt///T9wwgkn2u1+++037XPmz1/If//3z7joor+036thHDPsPvPnL+Sxx74FwJe//I98+cv38/nPf/Gwzx7qF7/4bxYsWDjhogmw+2Asl176Ab7+9X/i9ts/N+FniIiIyOwxkEiyp6Vz2FqkpkiM7t4EAI68PGqry1gWnEfA56bR7yLgd+MqLcxyy2e28caRPwhcBNQA/20YRitwPvDvhmHkA/nA68ANAKZpJg3DuBLYYRhGCelY8SM5NpX+99W9vPD7vVN9WwA2ra1jw/KacZ+/dOkyysrK2Lu3GYDS0jLmz1/Ar3/9K048cSM/+cl/cs45m3njjdcPe5/Nm9/Hd77zLbtw6urq5LnnnuVb33rqsNd1dXXx3e9+m8cf/zZVVdVAakrXpk2nj9n2b37z62zefAFr1x5nX3fDDTdx6aUX8Morv2P16rXDzvd4PAQCjYTD+w5bOEWjYbxer/19IBAcsy2H8u1vP8F5511gF00ADQ0BGhoC9vebN5/PT3/6Yy666C/p6uri1Vdf4Ywz3kNf3+jx9evXv4uvfOXBCbXjhz/8/rCRtm3bPophHMMbb7zGvn17ueSSy/B6vfz7v/8LLS1RbrjhJk4//UwANm5cb482XnLJ+ZxzzmZ+85v/o7W1hcsvv8Ie7TrppI3cc8+ddHV1UlbmHLUdIiIiMrt09w6ko78HQxv2tHQykEjNvioqdBDwudiwvIag30XQ76be46SocPSZOnJo403V+xjwsVEOrR3ltcw1vwRWTuWx2eill16kr6+PhoYgb71lAnDuuefzH//xPTZsOJlnnvkZDz/8mD1l7lA2btzEfffdzTvv/JkFCxbyP//zc1asWIXfP1jEfelL9/Loow/b399//0Ps3buHoqJCgsH5E277n/70Nldffe2w1woKCli61ODtt98cUTiFQrvo6Gi3C61DueqqD7F160dYsWIVK1as4swzz6axceLtA3jzzT/y7nefcdhz6uvrKSoqYufOd3jttVc55ZR3H3LaXzKZ5Nln/4elS8edMMnAwACvvvp7li8/dtjr0WiEhx76J/bvb+X977+QSy/9AI888nVef/0PfOpTn7QLp4P19PSwY8c32Lt3D1dd9X7e+97zKSsro6CggIULF/H737/Chg0njbt9IiIiMvNZlsWBeJ+9L1IoHKMpHCdyoNs+x11WSNDv5qzjqwj6UlPt/JVlOR8DPlPM7uiLQzh5ZS0nr5ye/WzGuyfQ7bffSlFRMU6nkzvv/MKwtUnr1q3nvvvu5rnnnmXhwkVUVMwb836FhYWcddZ7efrpH7F16038+Mc/4pJLLht2zmhT9fbs2TPOdzaSZVljn0SqYHv44S8TCu3kppv+hsrKysOe/8EPXs3ZZ5/Lb3/7G1588ddce+0V3Hvvg6xZs27a2njOOZv5yU/+k9dee5W//utP8otfPDPs+M6df+aaaz6AZVksXryYG2+8edxtOHDgAIWFBSPWKJ122hk4HA48Hi8VFfPYtOk0AAzjGKLRCL29vRQXj4zwPPPM9wBQW1uH211ONBqxC8uqqmqi0SPaL1pERESyLJm0CLd1DdtANhSOEesajP72zSsl6Hdx8qra1FQ7n5t5riIl6U6jOVk4zQSHW5+Tl5fH6aefxT33bOe22z477nued94F3HzzVjZvfh+h0E5OOWXTmNcsWLCQvr4+QqFdBIONY54/1OLFS3jttVc59dR3268NDAzw5psml102OMMyU7D9/vcvc/PNW1mzZh2LFh1+bZLH4+Xss8/l7LPPpbi4mGeffWZShVNmOtzQNo7m9NPP4oor/pLq6moWLlw8onAausZpooqLi0ed9pcJtoDUNMeioiIAe7QrkUiMer/MeZnrEokB+/u+vr5Riy0RERGZmfr6EzS3dLIrPYIUCsdoisbp60/9Q3y+I496r5PVizz2VLuAb/ZHf89E+onPUBdccBGlpaXD1uaMZdGixXi9PrZv/wxnnXXOsA/Yh1JWVsall36Ae+65kzvuuJvKyiosy+LnP/8pxx67kvr6hkNee8UV13D99R9iw4aT7HCIr371ARoaAqMWOatWreGiiy7la197hLvuuveQ933uuWc56aSNFBQU0Nvby86d74yrCBzN5Zdfyc0338C6des5/vhUAEcotJM33zQ588yzh/0ctm69iepqz6Seczhut5vKyir27t1DbW3dlN9/qF273mHx4iXT+gwRERGZnHh3v70WKdLew1uhNva2dpFMz5ApLS4g6HNx6uo6e6pdncc5J6O/ZyIVTjOU1+vjgx+8esLXnXfeBdx3393ceuunRhw7eI3Thz98HRs3buK667by1FPf5sYbrwNS09tWrVrLiSduPOyzgsFGtm+/hx07vsKBAwdIJAZYs2Yd27d/4ZDXXHXVh7jssgt56y2TJUtGXyf07LPP8PDDD1JUVEwiMcD69SeMGfd9KEuWLOXuu+/n0Ue/yhe/+HlKSkrSceRbRpx7xhnvmdQzHn30EZ588gn7+09+8rYRP7tTTz2N//u/X3HhhRdP6hnjsW9fKvBkrKRBERERmV6WZdHa3mNPscuENuzvGBL9XVFCg8fJ2qVeGtMjSZ6KkdHfMnPkjXcNSI6YD7xz8D5O+/btoqZmYtPQJmu8a5xk5jgafbZnTzOf/eyn2LHjG9P2F+IjjzxEQ0MD55134ajHj+bvwXTTfiW5R32We9RnuUX9lT0DiST7WrtSU+2GFEpdvamp9Hl5UFNVRqPfTWDIVLtFjdXqsywZso/TAlIp3uOiESeRo6Curp7LLruC1tYWPB7v2BdMgsfj4dxz3zct9xYRERHo6ctEfw+GNjRHOxlIpP4BtqjAQYPPxbuO8aUKJL+LBq+LYkV/zwoqnHLMtddeOSI04NhjV3DLLbdlqUWT86tfvcCOHV8d8fp1190w5hTBg7W17efmm7eNeH3TptP4q7/6yKTbONUOFS8+VQ5OURQREZHJa4/3Dp9qF44RaesmM6fJVVpI0O/izPUNBH2pkSR/VSn5Dq1Hmq1UOOWYySa7zTQnnrhxwgXSoVRWVvH449+ZknuJiIjI3JK0LCJt3cPWIoXCcTo6BxNxPRUlNPrdnLiihqDfTdDnotJdrPVIc8ycKZwsy9IfbpmzZtlaRhERkUnpH0hFf9tT7cJxmiJxevtTs3nyHXnUeZysXFCVKpD8LgI+F2UlhVluucwEc6JwKigoorOzA6ezXMWTzDmWZdHZ2UFBwdjx9CIiIrNFZ09/qjAKx9gVjtMUibG3tYtEOkCspCifgM/FxlW19lS7Oo+TwgJNtZPRzYnCqbLSS1tblHj8wLQ/y+FwkEwqVS+XzIU+KygoorJyekIpREREssmyLPZ39NpT7DIjSa0dPfY5Fa4iGv1uVi/22Ol23nmlOPQP6jIBc6Jwys8vwOOpPSrPUhxo7lGfiYiI5IZEMhX9PXQtUigco7MnHf0N+KvKWFRfzmnr6gn6XAT8biqcmnUhR25OFE4iIiIiklt6+xI0RYdPtdsd7aQ/vfdiQb6DBq+T4wwfjf5UgRTwuiguUvS3TA8VTiIiIiKSVR2dfSOm2oX3d9nR386SAoJ+N6evqyfoS4U21FSXKfpbjioVTiIiIiJyVCQti5YD3SOm2h2ID0Z/V5eXEPS7OGG5n6DfRdDnpqpc0d+SfSqcRERERGTK9Q8k2dPSaRdITeEYoUicnr5U9LcjL486TxnHNFbZU+2CfhdORX/LDKXCSURERESOSFfPAE1Dp9pF4uxp6bSjv4sLU9HfJ2U2kPW7qPc4KSzQeiTJHSqcRERERGRcLMuiLdZLKJIqkJrCcXaFY7S0D0Z/lzuLCPpdrFxYnZpq53fjq1T0t+Q+FU4iIiIiMkIyabFvf5c9gpQJbYh399vn+CtLmV9bzqY1dQR8bhr9LipcxVlstcj0UeEkIiIiMsf19ifYHY3TNGSq3e5InD47+juPeo+LtUs89lS7Bq+L0mJ9lJS5Q3/aRUREROaQWFffiKl2+/Z3YaWzv8uKCwj6XWxaU29PtautLqMgX9HfMrepcBIRERGZhSzLoqW9x55ilxlJaov12udUlRcT9Lk5fpkvNZLkc1FdUaLob5FRqHASERERyXEDiWRqBCmSGkEKheM0ReJ09w4AkJcHddVOjOA8ewPZoN+Nq1TR3yLjpcJJREREJId09w7QNCSsIRSJsaeli4FEaj1SUaGDgNfFhuV+An4XjX439R4nRYWK/hY5EiqcRERERGYgy7I4EO+jKRJjV2YD2XCcyIFu+xx3WSFBv5sLTq3B4y4m6HfhryzD4dBUO5GppsJJREREJMuSSYtwW5c9ghRKF0odXYPR3755pQT8Lk5eVUvQl5pqN89VRF5eHl6vm2g0lsV3IDL7qXASEREROYr6+hM0t3QOm2q3O9JJb38CgHxHHvUeJ6sWeeypdg1eF2Ul+tgmkk36DRQRERGZJvHufprC6al26ZGkva1dJNPZ36XF+QR8bk5ZVWvvj1TncSr6W2QGUuEkIiIicoQsy6K1o2cw9jtdKLV2DEZ/V7qLCfpcrF3qpdHvIuB346kowaHob5GcoMJJREREZAIGEkn2tXbZa5EyMeCdPYPR3zVVZSxumMfpfhdBn5uA30V5WVGWWy4iR0KFk4iIiMgh9PQNsDvSya5wzE63a4522tHfhQUOGrwujl/mI5CeatfgcVFcpOhvkdlGhZOIiIgI0B7vJTR0f6RwjEhbN1b6uKu0kKDfxZnHNRBMT7WrqSol36H1SCJzgQonERERmVOSlkW0rTs9ihRPfQ3Hae/ss8/xVJQQ9Ls5cUUNQV9qJKnSXUye1iOJzFkqnERERGTW6h9I0twSHwxtiMRpisTp7RuM/q6tdrJiQRUBvzsV2uBzUVZSmOWWi8hMo8JJREREZoXOnn6ahhRIoXCMva1dJJKpyXbFRfkEfS42rqgl6E9tIFvncVJYoKl2IjK2MQsnwzDuBS4G5gMrTdP8Q/r1pcATQDXQClxlmuZb03VMREREBFLR322xXnuKXWbKXUt7j31OhauIoM/N6sUee38k77xSRX+LyKSNZ8TpB8ADwPMHvf4I8BXTNJ80DOMKYAdw+jQeExERkTkmkcxEfw/dHylOvLsfgDzAV1XGwrpyNq2po9HvJuB3U+FU9LeITK0xCyfTNF8AMAzDfs0wDB+wDjgr/dI/Aw8ZhuEl9XfYlB4zTTM62TcoIiIiuaG3L8Hu6PCpdrujnfQPpKK/C/IdNHidrFvqtafaNXidlBRp5YGITL/J/k0TAJpN00wAmKaZMAxjT/r1vGk4psJJRERkFuno7Buxgey+1i47+ttZUkDQ7+a0tfXpUSQXtdVliv4WkayZlf9EU13tyurzvV53Vp8vE6c+yz3qs9yjPss9U9FnyaRFeH8Xf25u58972lNfm9vZ3zG4HslXWcqCugpOOy7AgvoKFtZX4J1XqujvCdLvWO5Rn+WWyRZOTUC9YRj56ZGhfKAu/XreNBybkNbWOMmkNfaJ08DrdRONxrLybJkc9VnuUZ/lHvVZ7plMnw0kkjRHO+2RpKZwjKZonO7eVPS3Iy+PWk8ZRmCePdUu4HPhKi08+Ea0tMSn6q3MCfody7Y5HY4AABtUSURBVD3qs+xxOPImNdAyqcLJNM2IYRgvA5cDT6a//i6zFmk6jomIiMjM0dUzQFNmql36656WzsHo78J8Aj4XG46tSU2187lo8DopLMjPcstFRCZnPHHkDwIXATXAfxuG0Wqa5rHAFuAJwzA+DbQBVw25bDqOiYiIyFFmWRYH4n3p6O/BQil6YHCqXXlZIUG/m5ULq+2RJN+8UhwOTbUTkdkjz7KyM6VtmswH3tFUPZkI9VnuUZ/lHvVZbkgmLfbt7yIUidHS0Ye5s5Vd4cHob0itRwr63QR9Lnt/pHmu4iy2WkC/Y7lIfZY9Q6bqLQB2jve6WRkOISIiIofX259IrUcaGv0didM3JPq73uNkzRKPPdUu4HNRWqyPDiIyN+lvPxERkVku1tVHKBKnKTy4R9Le1k4yk05Kiwto9LvYtKbenmq3apmftv2d2W24iMgMosJJRERklrAsi5b2nlRxNKRIaov12udUlRcT9LlZb3gJ+Nw0+l1UV5SMiP4uyNd+SSIiQ6lwEhERyUEDiSR7WjppisTTwQ1xQpE43b0DAOTlQW21EyM4j6AvtRYp4HPhLivKcstFRHKTCicREZEZrrt3gKZIfNh6pD0tnQwkUnPtigocBHwuTljuT02187lp8DopKlT0t4jIVFHhJCIiMkNYlkV7Z9+IqXaRtm77HFdpIY1+F2etDxDwu2j0u/FXlin6W0RkmqlwEhERyYL/3969xsaV3vcd//J+OyNSImdGIjWj7k3PRnvRXuNde23XziZpghhua9eX+hInCBC7uaBN3BoInN4At4bjIjfbXSNpUidODBgwagcFavdF6jpbp0Dq2rXdtE/jrFeitFreJFEc3smZvjiHQ2q1Eiledjjk9wMIIuc5M/NIj45Gfz3/8zvVWo2xy3PXt9qNzXBtbj36Oz/QTbmY4zX3H8+iv3MMJJ03XI8kSdp7Fk6SJO2x5ZVVLtwQ/T3L4vIqAG2tLYwM9fHAXYP1eySVCjl6u/2YlqT9wr+RJUnaRZX5ZUY3FEjnxytcmpyjmmV/93S1USrkeO2DJ+o3kB0e6jPFTpL2OQsnSZK2oVarMXVtoX4t0lp4w9S19ejvo7kuSoWEh+/JUy4klI/nGOrvptVWO0lqOhZOkiRtYmW1yotTc5wfn7muUJpdyKK/geODvdx9coA3FtIbyJYKCUf6jP6WpIPCwkmSpA0Wlla4MD6bBjaMz3BurMLFiVlWVqsAdLS3cjKf8Ni9hfr1SCfzCV2dRn9L0kFm4SRJOrTWo7+znaTxCuOX56hl433d7ZSLOZ5+9CSlYrqTdPxYD22tXo8kSYeNhZMk6cCr1mpMXJlfD2zI2u2mZ5fqxwz1p9HfT54p1kMbjua6jP6WJAEWTpKkA2Z5pcoLk7P1eyOdG0+vR1pcWo/+PjHYx313HKu32pWLCb3dHQ2euSRpP7NwkiQ1rbmF5XqL3dpO0qWpWVarabNdV2cbpULCU/efoFRMOFXMMTzUS0e71yNJkm6PhZMkad+r1WpcmVmst9itFUqT0wv1Y/r7OikXc5y9e/0msvmjPUZ/S5J2hYWTJGlfWa2uRX+v7yKNjleozC8DafR34Vgvdw4f4fUPDdeLpP6kq7ETlyQdaBZOkqSGWVxa5cLE9btIFyZmWV5Jo7/b21o5me/jkdNDWYGU42Shj+5OP74kSa8sP3kkSa+Ia3Np9PfoWCW7R1KFFy/PUcuyv/u62ykVEt7w8AjlevR3L+1tRn9LkhrPwkmStKtqtRoTV+ez0Ia01e7CxCyXr61fjzR4pItyMcfj9xY4VcxRKiYMHuk2+luStG9ZOEmStm1l9fro7/NjM4xOVJhfTKO/W1taODHUy4P3DFHs76ZcSCgVcyQ9Rn9LkpqLhZMkaUvmFlYYHV+/Fml0rMLFyfXo786OVkqFhCfuO57dGynHyFAfnR1t5PM5JiZmGvwrkCRp+yycJEnXqdVqXK0sZYl264XSxNX1VrsjvR2Uiznuu/NY2mpXSCge7aW11VY7SdLBZOEkSYdYtVpj7Mrcda1258crzMwt148pHO3hVDHHax8croc29Pd1ej2SJOlQsXCSpENiaXmVCxOz10d/j1dYyqK/21pbGMn3cfbuoXqrXamQ0NPlR4UkSX4aStIBVJlfvmEX6dLUbD36u6ernXIh4fUPpdHfpULC8FCf0d+SJN2EhZMkNbFarcbk9EIa/Z3dG+nc2AxXZhbrxxzNdXGqmOPR0/n0JrLFhKF+o78lSbodFk6S1CRWVqtcmprLQhvWd5LmF1cAaGmBE4N9hNJA2mZXTCgXEnK9nQ2euSRJzc/CSZL2ofnFFUbHK/UdpDT6u8LKahb93d7KyULCq84U16O/8310dbQ1eOaSJB1MFk6S1GBXK4vX7SCdH5th/Mp8fTzp6eBUMeHpx0ppql0hx/FjRn9LkvRKsnCSpFdItVZj/Mr8Da1212aX6sfkB7opF3K85v7jlIo5ThVzDCRGf0uS1GgWTpK0B5ZXro/+Hh1L2+4Wl1eBNPp7eKiPB+48RrmQy5LtcvR2+9eyJEn7kZ/QkrRDlfllRje02Z0fr3Bpco5qlv3d3dlGuZDw1IMn6q12w0N9dLQb/S1JUrOwcJKkLarVakxdW2B0LAtsyAqlqWvr0d8DSSflYo6H7xmq7yQNDfTQaqudJElNbceFUwjheWAh+wHwoRjjV0IITwCfBnqA54F3xxjHs+dsa0ySXimr1Rujv0fHK8wuZNHfwPHBXu4a6eeNj6xFf+c40mf0tyRJB9Fu7Ti9Ncb43bVvQggtwGeB98UYnw0hfBj4KPDT2x3bpXlK0g0Wlla4MD7L+fGZeqF0YWKWldUqAB3trZzM9/HYvYV69PfJfEJXp9HfkiQdFnvVqvcYsBBjfDb7/hnS3aOf3sGYJO3Y9OwSo2Mz9Va7c2MVxi/PUcvG+7rbKRdz/NCjI5SLOcqFhOODvbS1ej2SJEmH2W4VTn+U7RY9C/wKUAbOrQ3GGCdDCK0hhGPbHYsxXt6luUo6BKq1GhNX59djv8cqnB+fYbqyHv091N9NqZDw5JkipWLCqWKOo7kuo78lSdINdqNwem2McTSE0AX8BvAJ4D/swutu2+Bg0si3J5/PNfT9dftcs+azcc2WV1Y59+IM3784zXMXp3nuhWm+/8I15hfT65FaW1soF3M8em+RO4b7uWuknzuGj5D0ej3SK8nzrPm4Zs3F9Wo+rllz2XHhFGMczX5eDCF8CvgT4DeBU2vHhBCGgFqM8XII4fx2xm5nTlNTFarV2uYH7oF8PsfExExD3lvb45o1l7mFZa4tVfl2HM9a7ipcmpplNTvnuzrb0l2k+4ppq10xYWSoj472669Hmp9dZH528eXeQnvA86z5uGbNxfVqPq5Z47S2tmxro2VHhVMIoQ9ojzFOZ6167wC+BXwD6AkhPJVdr/R+4PPZ07Y7JukQqdVqXJlZXG+1y6K/J6cX6sf096XR32fvHqRUSFvt8keN/pYkSbtvpztOReALIYQ2oA34S+AfxBirIYT3AJ8OIXSTxYoDbHdM0sG1Wq3y4uX5NPJ7wz2SKvPLQBr9XTjWyx0njvD6h4Z54HSB/q42+pOuxk5ckiQdGjsqnGKMzwEP32Ts68ADuzkmqfktLq9yYbxS30FKo78rLK+k0d/tbS2M5BMeOT1EqZDjVDHHSL6Pnq71v65sb5AkSa+0vYojlySuzS0x+pJWuxcvz1HLLkHs7WqnXEx4w8MjlLMbyB4f7KW9zehvSZK0v1g4SdqxWq3GxPQC519cL5BGxytcmVkPXxg80kWpkOPxewv10IbBI91Gf0uSpKZg4STptqysVnlhcva60IbR8RnmF1cBaG1p4cRgL/eWB7JWu4RSMUfS09HgmUuSJG2fhZOkm5pfXFkvjrJC6eLkevR3Z0crpULCE2eOp612xRwjQ310drRt8sqSJEnNxcJJErVajauVpSysYb3dbuLqevR3rreDcjHHj9x5jHIhbbUrHu2ltdVWO0mSdPBZOEmHTLVaY+zKXBr5vaHdbmZuuX5MYaCHU8UcTz04nLbaFXIMJJ1ejyRJkg4tCyfpAFtaXuXCxCznx9PY79GxGUYnKiwtp9Hfba0tjOT7OHv3EOVC2mpXKiTXRX9LkiTJwkk6MCrzy/X7Iq0VSpemZuvR3z1d7ZQLCa87O8yprEAaHuoz+luSJGkLLJykJlOr1ZiaXuDcWJpmt1YoXb62Hv19NNdFuZDw6Ol8PbRhqN/ob0mSpO2ycJL2sZXVKpem5uo7SWuF0tziCgAtLXD8WC+nTw5QKq632h3p7WzwzCVJkg4WCydpn5hfXOHCRGX9/khjFS5OVlhZzaK/21s5WUj4wR9IbyBbKiaczCd0Gf0tSZK05yycpAaYrizWW+3OZaEN41fmyS5HIunpoFxMePqxUj20oXish7ZWr0eSJElqBAsnaQ9VazXGr8zfENpwbXapfsxQfzenijmevP845WKOciHhaK7L65EkSZL2EQsnaZcsr6TR36Pjlfo9kkbHKywurwJp9PfwUB8P3HEsLZCKCaVCQm93R4NnLkmSpM1YOEnbMLuwfN21SOfHZ7g0OUc1y/7u7myjVEh46sET9Va74aE+OtpttZMkSWpGFk7SLdRqNS5fW0wLpPH1Qmnq2kL9mIGkk3Ixx8P3DFEupKEN+YEeWm21kyRJOjAsnKTMajWN/h4dy1rtskJpdiGL/gaKx3q5a+QIb3hkJGu1y9HfZ/S3JEnSQWfhpENpYWmFCxOznB+bYeLaIvH5y1yYmGVltQpAR3srJ/N9PBoKnComlIo5SvmErk6jvyVJkg4jCycdeNOzS4y+pNVu7PLcddHfpULCDz06QrmQhjYcH+w1+luSJEl1Fk46MKq1GhNX528IbZiurEd/Dx7pplxMeNWZIuViQrmQI9w1xORkpYEzlyRJ0n5n4aSmtLxS5YXJ2esKpNHxCgtLafR3a0sLw0O9nDl1rN5qVy4m9L1M9Lf3S5IkSdJmLJy0780tLGf3RqowOjbDubEKl6ZmWa2mzXZdHWn096vXbiBbTBgZ6qOj3euRJEmStDssnLRv1Go1rsws1neQ1lruJqfXo7+P9HVSLiY8eNdg2mpXzFE4avS3JEmS9paFkxqiWq1x6fJcGtqwoVCqzC/Xjyke7eGOE0d4/UPD6U5SIaE/6WrgrCVJknRYWThpzy0ur3JhosL5Da12FycqLK2k0d/tbS2M5JP0BrJZq93JfEJPl388JUmStD/4L1Ptqpm5pRta7V68PEcty/7u7WqnXEz4mw+PUCoknCrmOD7YS3ub0d+SJEnavyyctC21Wo2J6YX6DtLafZKuzCzWjzl2pItyIcfj9xbqrXaD/d2m2EmSJKnpWDhpUyura9Hf6ztJo+MzzC+m0d8tLTA82EcoD9RvIFsu5kh6boz+liRJkpqRhZOuM7+4kkV/zzCatdpdnFyP/u7saKWUT3jizHFKxbTVbmSoj84Oo78lSZJ0cFk4HVK1Wo2rlaX0BrLjaYE0OlZh/Op8/ZhcbwflYo4fueNYPbSheLSX1lZb7SRJknS4WDgdAtVqjbErc/WwhrVCaWZuPfq7MNBDuZjwmgdPUC6krXYDSafXI0mSJElYOB04S8urXJycva7VbnSiwtJyGv3d1trCSL6Ps3cN1a9FKhWM/pYkSZJuxX8tN7HK/HK6g5SFNoyOVbg0NUc1y/7u6WqjVMjxurPD9dCG4aE+o78lSZKk22Th1ARqtRpT0wv1Fru1QunytfXo76O5LsqFhIdP5zlVTCgVc+SN/pYkSZJ2hYXTPrOyWuXFqbm01W5DoTS3uAKk0d/Hj/Vyz8mBtNWukKNUTDjS29ngmUuSJEkH174snEIIp4HPAIPAFPDeGONfNXZWu29+cYULE5XrQhsuTsyysppej9TR3srJfMIP/kCBUpZqdzKf0GX0tyRJkvSK2peFE/AM8MkY42dDCO8GPg28scFz2pHpyiLnshvHnhurMDo2w/iVeWrZeNLTQbmY8PSjJylnrXbHj/XQ1ur1SJIkSVKj7bvCKYRQAB4Bfjh76HPAJ0II+RjjRONmdntWq1W+/ddTfOe5y3z3uSkmpxfqY0P93ZSLOZ68/3g9tOForsvrkSRJkqR9at8VTkAJuBhjXAWIMa6GEF7IHm+awunPvn2JP/hypKuzjTOnjvL0Y6U0tKGQ0Nvd0ejpSZIkSboN+7Fw2rHBwaSh75/P5/iJ193N2VDkjuF+Otptt9vv8vlco6eg2+SaNR/XrPm4Zs3F9Wo+rllz2Y+F0ygwEkJoy3ab2oDh7PEtmZqqUK3WNj9wD+TzOSYmZgA42tPO1SuzDZmHtm7jmqk5uGbNxzVrPq5Zc3G9mo9r1jitrS3b2mjZd1shMcZx4FvAO7OH3gl8s5mub5IkSZJ0sOzHHSeA9wOfCSH8U+AK8N4Gz0eSJEnSIbYvC6cY4/8FXtXoeUiSJEkS7NPCaQfaIO1bbKRGv79un2vWfFyz5uOaNR/XrLm4Xs3HNWuMDb/vbbfzvJZarTEhCnvkKeDPGj0JSZIkSfvea4Fnt3rwQSucuoDHgUvAaoPnIkmSJGn/aQNOAH8BLG71SQetcJIkSZKkXbfv4sglSZIkab+xcJIkSZKkTVg4SZIkSdImLJwkSZIkaRMWTpIkSZK0CQsnSZIkSdqEhZMkSZIkbaK90RM4SEIIp4HPAIPAFPDeGONfNXZWh08I4XlgIfsB8KEY41dCCE8AnwZ6gOeBd8cYx7PnbGtM2xNC+DjwFuBvAA/EGL+bPX7Tc2gvxrR1t1iz53mZ8y0b85xrkBDCIPCHwF2kN3f8HvCzMcaJvVgX12znNlmzGvAdoJod/p4Y43ey570J+DXSf9N9A/ipGOPcTsa0dSGELwJ3kK5NBfiFGOO3/Dw7mNxx2l3PAJ+MMZ4GPkn6IaLGeGuM8aHsx1dCCC3AZ4Gfy9bna8BHAbY7ph35IvA64NxLHr/VObQXY9q6m60ZvOR8g+2fV55zu6YGfCzGGGKMDwJ/DXx0L9bFNds1L7tmG8ZfveE8WyuaEuB3gDfFGO8GZoAP7mRMt+0nY4xnY4wPAx8Hfi973M+zA8jCaZeEEArAI8Dnsoc+BzwSQsg3blba4DFgIcb4bPb9M8DbdjimbYoxPhtjHN342K3Oob0Y26tf20H1cmu2Cc+5BooxXo4xfnXDQ/8dOMXerItrtgtusWa38mPA/9iw6/AM8PYdjuk2xBinN3zbD1T9PDu4LJx2Twm4GGNcBch+fiF7XK+8PwohfDuE8KkQwgBQZsP/lMcYJ4HWEMKxHYxpd93qHNqLMe2el55v4Dm3b4QQWoEPAH/C3qyLa7bLXrJma74aQvhWCOFfhxC6sseu+70HzrP+99t2x3SbQgi/G0I4D3wE+En8PDuwLJx0EL02xngWeBxoAT7R4PlIB5nn2/7326TXXrg2zeOla1aOMT5G2i57BvjVRk1MN4ox/kyMsQz8Cul1YzqgLJx2zygwEkJoA8h+Hs4e1ytorZ0oxrgIfAp4Den/ptVbHkIIQ0Atxnh5B2PaXbc6h/ZiTLvgJucbeM7tC1moxz3A22OMVfZmXVyzXfQya7bxPLsG/C43Oc9Id5JGdzimbYox/iHwBuACfp4dSBZOuyRLD/oW8M7soXcC34wxTjRuVodPCKEvhNCffd0CvIN0Xb4B9IQQnsoOfT/w+ezr7Y5pF93qHNqLsb3/FR18tzjfwHOu4UIIHwEeBf52VtjC3qyLa7ZLXm7NQghHQwg92dftwFtZP8++DDweQrgn+37j7/12x7RFIYQkhFDa8P2bgMuAn2cHVEutVmv0HA6MEMK9pDGRR4ErpDGRsbGzOlxCCHcCXwDash9/CfxijPFSCOHVpAk03azH5Y5lz9vWmLYnhPBbwN8FjgOTwFSM8b5bnUN7Maate7k1A97ETc637Dmecw0SQrgP+C7w/4D57OHvxxj/zl6si2u2czdbM+BjpL+3NaAD+DrwD2OMlex5b86OaQO+Cbwvxji7kzFtTQihCHwJ6ANWSYumD8YY/6efZweThZMkSZIkbcJWPUmSJEnahIWTJEmSJG3CwkmSJEmSNmHhJEmSJEmbsHCSJEmSpE1YOEmS9qUQwjMhhF+9xXgthHD3Lr/nu0II/3k3X1OSdDAYRy5J2nMhhHcA/wi4H5glvT/NZ4B/G2Pc1gdRCKEG3BNj/N7LjH0VeAJYARaArwE/t3aPqd0QQngf8DMxxqc2O1aS1PzccZIk7akQwi8Dvwn8GukNdIvA+4HXAJ03eU7bLrz1z8cYE+A0MAD8+i68piTpkGpv9AQkSQdXCKEf+Jekd7j/woahbwLv2nDcvwfmgVPA64E3hxDeDVyIMX44O+YfA78E1IAPb3UOMcbLIYQvAB/YMKffBn4MmAN+B/hXMcbqS3eRsl2tDwC/DAwBfwz8PHAv8AzQEUKoACsxxoEQwo8DHwdKwDXg12OMH9/qXCVJ+5c7TpKkvfQk0AV8aQvH/n3gI0AOeHbjQAjhbwEfBH4YuAd4eqsTCCEMAW8hLdYgLZr6gTtJi7T3Aj91i5f4CeBx4CzwNuBHY4z/h3TX7M9jjEmMcSA79t8BPxtjzJG2Jf7pVucpSdrf3HGSJO2lIWAyxriy9kAI4evAGdKC6kdjjF/Lhr4UY/xv2dcLIYSNr/M24PdjjN/NXuOfA+/c5L1/K4TwcdJrqr4K/FLWAvh24OEY4wwwE0L4N8B7SIuel/PRGONV4GoI4b8ADwFfvsmxy8CZEML/ijFeAa5sMkdJUpNwx0mStJemgKEQQv0/6mKMr852aKa4/nNo9BavM/yS8XNbeO9fjDEOxBhHYozvijFOkBZynS95/jlg5Bav8+KGr+eA5BbHvgX4ceBcCOG/hhCe3MI8JUlNwMJJkrSX/hxYBN68hWNvla53ifS6oTXlbc5nknRX6NRLXuviNl7rhvnGGP8ixvhmoAB8Efj8diYpSdp/bNWTJO2ZGOPVEMK/AD4VQmghbXGbAx4E+m7jpT4P/H4I4Q+A54F/ts35rIYQPg98JITwXuAYaeDEdgIcxoCTIYTOGONSCKET+HvAf4wxTocQrgGr25mnJGn/ccdJkrSnYowfIy1O/gkwTlpwfBr4EPD1Lb7GfwJ+gzRs4XvsLHThF0ive3qONITij4Hf28br/Cnwv4EXQwiT2WPvAZ7Piqb3A+/ewTwlSfuIN8CVJEmSpE244yRJkiRJm7BwkiRJkqRNWDhJkiRJ0iYsnCRJkiRpExZOkiRJkrQJCydJkiRJ2oSFkyRJkiRtwsJJkiRJkjZh4SRJkiRJm/j/+ZOl1FsRhfUAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 1008x432 with 2 Axes>"
       ]
      },
-     "metadata": {},
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
+    "df_vldvst.set_index(\"Grid Points\")[\"PM_VECTOR_LD_CMPL (min)\"].plot(ax=ax1, legend=True);\n",
+    "df_vldvst.set_index(\"Grid Points\")[\"PM_VECTOR_ST_CMPL (min)\"].plot(ax=ax2, legend=True);"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Also here seems to be a linear correlation. Let's do our fitting and plot directly."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 34,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Counter PM_VECTOR_LD_CMPL (min) is proportional to the grid points (nx*ny) by a factor of 2.3439 (± 0.000111)\n",
+      "Counter PM_VECTOR_ST_CMPL (min) is proportional to the grid points (nx*ny) by a factor of 0.4688 (± 0.000012)\n"
+     ]
+    }
+   ],
+   "source": [
+    "_fit, _cov = common.print_and_return_fit(\n",
+    "    [\"PM_VECTOR_LD_CMPL (min)\", \"PM_VECTOR_ST_CMPL (min)\"], \n",
+    "    df_vldvst.set_index(\"Grid Points\"), \n",
+    "    linear_function,\n",
+    "    format_value=\".4f\",\n",
+    ")\n",
+    "fit_parameters = {**fit_parameters, **_fit}\n",
+    "fit_covariance = {**fit_covariance, **_cov}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 35,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAF/CAYAAAB+GZmgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8XHW9//HXTCaTfZ2Z7HuanNDSvYVWylqQpVRWuYBsCl52AbWi4BWuwgVxQVmEXuAKilzxCogKePGi/AREWQq4UKZps0z2mUwmmeyTmTm/P5pGapekJelkmvfz8eBBc873nPM5+ZAy75xzvsdimiYiIiIiIiKyZ9ZYFyAiIiIiIjLbKTiJiIiIiIhMQsFJRERERERkEgpOIiIiIiIik1BwEhERERERmYSCk4iIiIiIyCQUnERERERERCah4CQiIiIiIjIJBScREREREZFJ2KYyyDCMU4FvABa2h61b3W7304Zh1AKPAQ7AD1zkdrvrx7eZ9nUiIiIiIiKxMOkVJ8MwLMCPgQvdbvcS4ALgMcMwrMCDwP1ut7sWuB/Y+KFNZ2KdiIiIiIjIATelK05AFMga/3M20AE4gWXACePL/xu4zzAMF9uvTE3rOrfb7ZtCnUnAyvH6IlM8NxERERERmTsSgELgTWB0qhtNGpzcbrdpGMY5wLOGYQwCGcA6oBRoc7vdkfFxEcMw2seXW2Zg3VSC00rglamevIiIiIiIzFlHAq9OdfBUbtWzAV8BTnO73eXAeuBJIH1/K5xBHbEuQERERERE4sI+ZYep3Kq3BChyu92vAbjd7tfGrzyNAMWGYSSMXxlKAIqAFrZfOZrudVMRAfD7B4hGzSluMr1crgx8vv6YHFv2j3oWf9Sz+KOexR/1LL6oX/FHPYsdq9WCw5EO+/hoz1SmI28FSgzDMAAMwzgEKADqgXeB88bHnQe843a7fW632zvd6/blpERERERERKbTVJ5x6jQM40rg54ZhRMcXf9rtdvcYhnEF22fY+xoQAC760KYzsU5EREREROSAs5hmbG5pmyEVQKNu1ZN9oZ7FH/Us/qhn8Uc9iy/qV/xRz2LnQ7fqVQJNU91uqtORx7VIJEwg4CMcDs34sbxeK9FodPKBMmvMlZ7ZbHZyclwkJMyJH3sRERGJkUgkQnerh57merzBCG8PFTI2FuWL5y0hwTqVJ4VmpznxCSoQ8JGcnEpaWgEWi2VGj2WzWQmHD/4P4QeTudAz0zQZHAwSCPhwOgtjXY6IiIgcJEKhMdr8w3i6+kl1P09W/zZyI92kWsKkAiNjBfQmn8n8ipxYl/qRzYngFA6HDkhoEpmtLBYLaWmZDAz0xroUERERiVP9vb34tn3AQHsjloCHtJFOopEo/9F3GgCXZHSQkWSlLWsJNmc5WaXzWFBRzdIke4wrnx5zIjgBCk0y5+lnQERERKYiGo3S09GOv6meka4m/l9kGS2+AY4P/56PJW/FBfSZqfTZ8wk7SrjqmAWUFWTgzD4W60H8eWPOBCcREREREdnZ2FiITv8wHt8QI03vUex9hdywjxRLiCIgalr4jaWE6uJCUjKPpyvjOPIqDUocDkpiXfwBpuAUA2efvR673U5iop1oNMLFF1/K8cefyKZNb/G5z13BeeddyNVXXzcx/ppr/pV3393Eiy/+gdTU1F32193t47zzzuTpp58nIyNjYvmmTW9x553f4Mknf8G1115OV1cXaWlpE+u/8IUbWbhwMaZp8j//81N++ctnAJNoNMrixUs56aR13H33twAIBvsYGhqkoKAIgPXrT+ess87hvffe4cEH7yMQCBCJRFi6dBnXXHMDmZmZE7XvOO7o6AgnnngKl1xy2V6/P7fffit1dYdw1ln/stPyRx7ZyDPP/ByXy8Xw8Ajp6emceOIpnHnmJ0lISNjrPv/859d59NGHCAQC2Gw2ioqKufzya6iunsfpp69jbCzE008/P7Gf5577JXfc8XVuuGEDZ531Lzz//K+4557vUFBQRDg8Rnl5BTfe+FUyM7O45pp/5bzzLuSII47caw0jIyNcffVnue++/yQlJWWvYz+su9vHv//7V7n33o17HRcKhbjyykv5/vcfID09fcr7FxERkblhaHCIrq0fMNDegOlvJnWoE4fp50f9J7AtnM+iZB+laWE6MuZjdZSTWVxFflUNN+7m8+dcpOAUI7fd9k2qquaxZcsHXHHFpaxYcTgAZWXlvPLKy1xxxTUkJCTQ3t7G6OjIXvfldLpYvHgpL730v5x++tkTy59//leccsr6iVu0rr/+i7v9cP/QQw/w7rubuOeeB8jNdRCNRnnllZdxOl08+ugTE/v64x9f4bbb7prYrrW1hZtv3sA3vvFNli5dTjQa5b777ubf/u3LfP/7P5gYt+O43d3dXHDB2axcuYoFCw7dr+/bSSet45prrgegra2Vb3zja7S1tXD99Rv2uM0bb/yJO+/8Bnfc8W3q6uYDsGXLB/j93VRXzwPA4XDyxhuvs3r1GgBeeOHXbH/X8z+sWHEYt912F9FolK997cs89tgjXHvt56dc+89//lOOOea4fQpNsL2/k4UmALvdzoknnsyTT/6ESy+9fJ+OISIiIgePaDRK0N+Nr2ELwx0NuEP5vB3IJLXfww2ZL+AEBs1kemx5eDIO5+Rlh5JfWUVBbkpcz3o30+ZkcHrtrx28+peOGdn30UuLWDW/YMrja2vrSE1NpaOjDYCUlFQqKionPsS/8MKvOemkdWze/P5e97Nu3Sd44okfTwSnoaFB/vCHl/nxj5/c63ZDQ0P89Kc/4dFHf0JurgMAq9XK0UcfN2ntP/rRf7Fu3WksXbp8YrurrrqOc845jffee4fFi5fuNN7pdFJaWk5XV+d+B6cPKy4u4Stf+RoXXfQvXHbZlXu8yvLDHz7ExRdfOhGaYPv3/cNOPnk9zz//a1avXjMRVquqqne7P6vVyrJlK3n99Vf3qd5f/vIZ7rnnwYmvzz57PR//+Mm8/fab+HxerrjiWnp7e/jtb39DMBjkpptuYfHipXR0tHPZZRfy3HMvAbBmzQr+9V+v4g9/eJm+vj6uvvpzHHPMWgCOP/5ELr30QgUnERGROSISjuDtDtASiNDa3s0hzU+SPeYl3TLCjk+kDdHDKM07kvL5S+lILMRZUUNeXj4FCkn7ZE4Gp9lk06a3CIVClJSUUV/vBuCUU9bz7LNPs2rVEbz00os88MAjE7fM7cmaNUfzne/cSWNjA5WVVfzud7/l0EMXkZ//jxD3ve99m4ceemDi67vvvo+Ojnbs9kTKyir2ufZt27Zy8cWX7rTMZrNRW2uwdeuWXYKTx9NMMNg3EbSmQ3l5BcnJyXg8Tcyfv/swtmXLB3z+81/a636WLVvBM8/8D8FgcCKsfvDB5t2ODYVCvPrqH6irO2S363enq6uTkZERCgp2ngp8bGyMjRt/yObNf+faay/nyis/x0MP/YiXXvotDz54Hw888Mhu95eWlsbDD/+Iv/zlXb72ta9MBKfcXAc2WyLNzU2Ul1dMuT4RERGZ/UJjETq3bibYUk+k20PKYDuOqJ+/h8p5YvAIEqxQlx3Gl1aDL7eMjKJK8qpqOD0z60N7qY1Z/fFuTganIxYWcsTCmXmXzVTfCfTVr96I3Z5EWloat9/+zZ2eTVq2bAXf+c6d/OEPL1NVVU1WVvak+0tMTOSEE07m+ed/xdVXX8dzz/2Ks88+d6cxu7tVr729fYpntivTNKc07nvf+zYPPHAvHk8T1133RXJyZt88/hYLHHfcCbz00osTYfWfg9Nbb73BJZecD8DChYu58MJPT3n/Pp+XnJzcXZavXXsCsP0K2MjICGvXfhyAurpDaGtr3eP+1q49EYAFCxbS3e1jdHSUpKQkABwOB15vl4KTiIhIHOvvDeDd5mawvYG+gRFeHFxAh3+IGzN/QXlCH8OmnZ4EF61ZS3EVHsItxkqKnGkk2ia/a0j2z5wMTrPBjmecdsdisXDccSdw1123cdNNt055n6eeeho33HA169Z9Ao+niSOPPHrSbSorqwiFQng8zZSVlU/5WADz5tXw97//laOOOmZiWTgcZssWN+eee8HEsh2B7S9/eZcbbriaJUuWTTxb9FF5PE2MjIzsNSTU1tbx/vt/p6bG2Ou+Tj75VC6//BKWLFm227C64xmn/ZGUlEQoNLrLcrt9+3sNdkxKseNrq9VKJBLe4/7+ebtIJDKxLhT6R4gSERGR2S0ajdLT2UVzv40Wbz+Oxv+lcvhvZFkGyRsf02E6cOQuZ2mti9GUixgpdOEoKiFPt9odUApOs9Rpp51JSkoKhx++esrbVFfPw+XK47bbbuGEE06a+HC9N6mpqZxzzvncddftfOMbd5KTk4tpmvz2t79hwYKFFBfveaLJCy64hCuv/AyrVn1sYnKIH/zg+5SUlLJkybJdxi9atIQzzzyHhx9+kDvu+PaUz2tPOjraueOOb3DGGWeTlrbnWeQuvvhS7rrrdurq5mMY259tev/9v9HX18fq1UdMjCsuLuGzn71qj7f8fRRlZeX4/X5CodCU+rK/IpEI7e1tewzlIiIiEjvhSJQuTwt9DX/F7G0lIdBCbsSHnTE2Bs4nYkngEzlWslPK6MkpIbWwmrzKGmodDt1gNwsoOM1SLlcen/rUxfu83amnnsZ3vnMnN9548y7r/vkZp8suu5w1a47m8suv5sknf8K1126fUMA0TRYtWjoxw9yelJWVc9ttd7Fx4/309vYSiYRZsmQZt932zT1uc9FFn+Hcc0+nvt691ytADz30II8//tjE11/60k0A/OY3z/H2228wMjJCWlo6H//4SbtMW/7PVq36GBs2fIXvfveb9PX1jU9HXsQVV1yzy9jTTjtzr/vak//4j1ux2/9xledb3/o+8+bVTHydlJTMsmXLeeedt/cpDO+rv/71PebPP1TTkYuIiMTYUH8/XQ31DLRtw+zx8L+hZdT74cjEv3F66tuEzAT8VicdGQuwOsq48ZQllBTkkpSoW+1mK8tUn1OJExVAo98/QDT6j/Pq7GymoGDfbkPbX1N9xklmjwPVs7/+9T2eeOJH3HHHd2bsGLfeejPr1n2ClSsP3+36A/mzMJNcrgx8vv5YlyH7QD2LP+pZfFG/YicajdLn89EWCNHYE2GkdTOHBV4g1xKcGDNgJvN/aZ8gqbiWqmyTkmwrhyxdQKB376+ckZlhtVpwONIBKoGmqW6nK04iB8jChYv52MeOZHh4eJ/f5TQVoVCIJUuW7jE0iYiIyEcTjZp0+QL0fvAmIW8Tif1t5IxP/f364CpeH62lNhvqkgvozV5OSkEVrspa8l0uLvyn55FsiYmAglM8UXCKM5deeuFOEwEALFhwKBs23BSjivbP66+/ysaNP9hl+eWXXzXpLYK7U1/v5vbb/32X5WeddQ7r15++XzXOhJmsxW637/QCZBEREdl/o8NDdDVsI9i2lUi3h20jObwYKCMhPMydOU8SNq34Lbl4x6f+PrZyMZ+qrCI12QacHOvyZQYoOMWZRx75caxLmBarV6/Zr4C0JzU1Bo8++sS07U9ERETmjv5AD+3tXTQOpOHpDHJ0148oMH3kWExygGHTjt++mKMWFVGWn0FfSjX55RXkzOCETzL7KDiJiIiIyJxgmibdfSN0b36bULsbW7CN7FAXmZZBQmEnPwueQk5GEoemlzKcXkdKQQW5FbU4C4s4bqdb7WbmfaAyuyk4iYiIiMhBZywUwtu0jd6WbYR9zUQHAzwcPIrh0TCfSX+ZhYkt+C3Z9KSU4c8pJbV4Ht+rW0Jmqh04YtL9y9yj4CQiIiIicW371N9b2Bpy0OIdpqDjZVZH3iTTEiUTCJk2/FYHqw9xUJKfTUlWDUmFTqpmYLImOXgpOImIiIhIXDBNk96BEO2NDYQb3iSht4WM0S5yLUGcwEN9n2DA7uIIRwGepFUk5pWTWzYPV2kFDluCXiIrH4mCUwycffZ67Hb7xAtTly1bzuc+9wUefvhBKiurWLv242za9BbhcJjDDls16f76+nr5xje+RltbK3a7neLiUjZsuImcnJxdxj722CP87ne/xWq1Yppw4YWXsHbtx3cas2nTW1x//VVcd90XdvtyWdM0sVgs3H77rdx8860TX8fKc8/9kp/97AksFivRaIT168/gk588d6cxHk8Tn/70pzjjjE9yzTXX77KPV155mR/+8GHGxkKYJqxb9wnOO+8CAH75y2d46qknJ87z/PMv4sQTTzkg5yYiIjJXRcIRfJ4melrqGfM2Yw+28cLQQv426GB+YiuXZ/yOHjOTYFIBvdkrSCmoZEPtIrJzMmP6uUQOXgpOMXLbbd+kqmreTssuu+yKiT+/887bDA8PTyk47fgwv2zZCgDuv//7PPjgvXzlK1/bZexZZ/0LF198KQDd3T7OP/9sVq5cRWZmJgBDQ4M88MC9rFr1sT0e7957v0td3XwikQhPPfUkg4ODXHTRZyY/6Ul0dLRz++23ct99/7lP2x1zzHGccsp6LBYLQ0ODXHjhv7B06XLmzasBIBKJcNdd/8GRRx6zx33k5jq56667cTpdDAwMcOmlFzB//gIWL15KSUkp9977n2RmZuL1dvHpT5/PokVLKCws+iinKyIiIuNGhofoaqinPQj1wWT6OzycO/pT0iwR0mB86m8HRlEqi8prKHMuxJp7BuWZGbEuXeYQBadZ5Pbbb6Wu7hCWLFnOs88+TTQa5a233mDt2o9z4YWX7HG7zMysidAE29/r9MwzT+12bHp6+sSfh4aGsFjANKMTy+69927OP/9C/vjHV/d4vM997gts3Hg/L774AosXL91taPrNb57jqad+xgMPPILVauWGG67m2GPXzsh7htLS/nFOIyMjhMPhnX7T9Pjjj46/eHaI4eHh3e5jwYJDJ/6cnp5OeXklnZ0dLF68dKfvbV5ePg6HE6/Xq+AkIiKyH/qHQng6+4j8/UUsgVbSRzrJNXvJtZi8N3IIf46spsKVRWvyMmx5FWSXVJNXWUVOop15k+9eZMbM2eA09Ks7dllmqzoM+4K1mOFRhl/47i7rE2vXkGgcSXSkn5Hf3rfr+vnHYTNWT+n4X/3qjRO36l155bUcfvg/tquunsdpp53J8PDwTreVffGLn+Oyy66grm7+HvcbjUZ55pmnWLPmqD2O+cUvfs7PfvbfeL1dfOUrXyMrKxuA119/jf7+fo499vi9Bqf77vseNTW1fPzjJzM2FuLxxx/lggsu2WnMSSet45133uaBB+4lPT2dzMysGX0566uv/j8efPB+2ttbufzyq6mu3v5X69at9bzxxp+4554HefTRh6e0r+bmJt5//6986Uu7vlR406a3GBgYoK6ublrrFxEROdhEo1H87a30NNUz0tWELdhKx0gqT/QtB0xuy36FiMVG0J5PMHMhSQWVrK6sY31hwfgvQA+L9SmI7GTOBqdY292tepP59rfvmXTM3Xd/i9TUFM4665w9jjn99LM5/fSz2bZtK1//+ldZseIwrNYEHnzwPr73vfsnPcbVV1+HxWLhrbfe4Oyzz8U0zd2O+/znv8Sll15IOBze44t7A4EebrjhGgDC4TG6ujq55JLzge1XgTZs2DW87M6aNUezZs3RdHZ2ctNNX2D16iMoKirhm9+8jZtuuoWEhIQp7ae7u5svf/nz3HDDjTidrp3WNTY2cNttt3DLLbeTlJQ8pf2JiIjMBTum/u7u6OTvoWI83gHWBX9KRYKXIiBqWvBbssnIdHHOsnmU5aeTkXsYGbrVTuLIlIKTYRjJwN3A8cAI8Lrb7f5XwzBqgccAB+AHLnK73fXj20z7uumUuv4re1xnsSXtdb01OWOv62Plvvu+R2urh29+826sO72kbfeqq+fhcLh45523yclx4Pd389nPXgxsn3DitddeIRgM8ulPf3an7XbcBnfzzbfu9PU/8/v947cDWhgcHNzplrodcnJyefTRJ4CpPePU19fLddddBUBZWTlf//rOVw4LCgo45JAFvPbaqxx77PG0t7eyYcN1AAwM9GOaJoODg9x448277DsQ6OH666/i/PMvYu3aE3Za19LiYcOG69iw4SYWL16yx/pEREQOdkMjYVq8/QS3vEVS53ukDXWSa/aQaYliiybywOD5lLoy8OcdhiUjgcySeeRXzqMqJYWqWBcv8hFM9YrTXWwPTLVut9s0DCN/fPmDwP1ut/txwzAuADYCx83gujkjLS2N7m7flMdv3Hg/bvdmvvWt72O32/c4rqmpkYqKSgDa29uor3dTUVFFRUUlv/71byfG7Xjeanez6k3F2NgYt9zyFa666nOMjo5yyy03ce+9G7HZPtpFzqys7ImgtUNzcxPl5RUA9Pb2smnTWxx99HEUFBTw3HMvTYx75JGNu9z+uENfXy/XX381Z511DuvXn77Tura2Vj7/+Wu5/vovsnq1XognIiJzQzQapc/nxde4hZHORqy9rWSMdnFHYB0hEjk15T1WJ28lkJiPJ6MWe14FOeXzuL+0goQEK7Bi0mOIxJNJP8UahpEOXASUuN1uE8DtdncZhpEHLAN2/Gr+v4H7DMNwAZbpXud2u6eeIg4CRx11LDffvIFLLjl/YnKIPT3j1NCwjR//+IeUlpZxxRXbJ2ooLCzijju+DcAll5zPt7/9fZxOF488spHGxgZsNhtWq5Xrr//iRJCaTj/4wT3Mm2dw/PEnArBp05s89NADXHnltdN+rGeffYo33vgzNpsN0zQ566xzpjQb4cMPP4jT6eTss8/h8ccfo6XFw7PPPs2zzz4NwCc/eS7r1n2CBx64l2Cwl4cf3sjDD28Edn0uTUREJJ7tmPo74KnHPVbIVn+U/O63ON3+GoXjY/xmFsHkAs5cXUhBSRGlzlVkZSRTOIW7XEQOBpY9PZ+yg2EYi4Gnx/85FhgAvgoMAz9yu90LPjT2feACtgegaV3ndrs3TeF8KoBGv3+AaPQf59XZ2UxBQfkUNv/obDYr4XB08oEya8ylnh3In4WZ5HJl4PP1x7oM2QfqWfxRz+LLvvRrdCxCq2+ATo+HjIaXSBnsIDfajd0SAeDRwWPoyV7AIbmjHJLYQXpJNflVtaSm73rLvew//YzFjtVqweFIB6gEmqa63VTum7IBVcA7brd7g2EYhwO/Aj65H3UeEOPfiAlerxWb7cD9NuRAHkumx1zpmdVqxeU6OB7EPVjOYy5Rz+KPehZfdtevgNdH6wfv09tcT6S7mdShDn4/WMurowYOaz8bst4nkJhPZ+5KUgqrcFXX8dWaGuxJe77tX6aPfsbiy1SCUzMQZvttc7jd7j8bhtHN9itOxYZhJLjd7ohhGAlAEdDC9itH071uyv75ilM0Gj1gVxTm0tWLg8Vc6lk0Gj0ofrul39LFH/Us/qhn8SU3NxX3e5vxN22lcyDKuwN5dHkDfNn2KGkWSAN6zXT67PnUGhUsrl5IeV4auVnryfunW+36gqPAaEzOYy7Rz1jsfOiK0z6ZNDi53e5uwzB+z/bnjl4cn/UuD9gCvAucBzw+/u93djyLZBjGtK8TERERmevGwmHau4fxePtJ3fxr0vubyI34SLaMUQz0jRXjT/oElWUuGhJOIzO/iLxqg9LsbEpjXbxIHJvqFGdXAP9lGMZ3gDHgQrfb3WsYxhXAY4ZhfA0IsH0SiQ9vM93r9ptpmnucNltkLpjseUYREZl9BoNBvA1uBtoaMXs8pA13MBy28N3gKQBcnunBYo/SlbMYskvIKp3HkopqDk9JGd/Dgj3vXET2yaSTQ8SZCnYzOUR3dwfJyamkpWXOeHiaS7d9HSzmQs+2v78qyMjIEE5n4eQbzHK6vSH+qGfxRz07sKLRKL3eLrob6xn0evhjZDHNXf2cEn6R5UlNAAyYyQQS8xnNLGNswamU5qWTn5OK1WpRv+KQehY7Mzk5RNzLyXERCPgYGOid8WNZrVai0YP7Q/jBZq70zGazk5PjinUZIiJzXjgcpiswjMc7yGjDJvK9r5MT9pFmGZmY+vvXZhEVhXlY09fSmWHBVVVLoSuP+P/Vl0j8mhPBKSHBdsB+y67fHsQf9UxERGbKyNAwXQ1b6G/bRtTvmZj6e2PwJFojDlYkd1KcNoI3rRaLo4yM4iryqmr5N039LTLrzIngJCIiIjLTgn4/3kY3Q+2NbA4V8JdAGpnBrVyV8X/kAkOmnYAtj9bMFaxfWkdhRSUFjmOwJcyNV2KIxDsFJxEREZF9EIlG6PYHafGP0dHeRXXT02SNdZFpGSJ/fMyWyCryXR+jsmY57fZiHBU1uAqKyLcqJInEKwUnERERkT0YC0fp2vYBfZ6thP0ekgfayI1089ZoFU8NHY7NYrIhZwB/agX+nDLSiypxVRmcnZ39ob0cErP6RWT6KDiJiIiIAIPBPrzbttDf3kCgP8RLgwYd/kH+LeN/KEsYYtS04U9w0Z65kOLCQ/k3YwXFzjTsiWtjXbqIHAAKTiIiIjKnRKNRerv9ePoseLr6cTa+QMnQZnIs/TgBJ2CLusjOXciiagd9yReRVJiPs6QMZ0JCrMsXkRhRcBIREZGDViQapcvTQm/j+4z5mrH3t5ET9mIjwr2BczGxclZOlIzkInqzS0gtrMJVWcN8Vx7zJ/ZSHcMzEJHZQsFJREREDgojg0N0NdbT37qViL+F/x1bzrbuCGsTN3Fyyl8YM634rU686QaW3DK+fNJiSgpySEk6Ltali0gcUHASERGRuBP0d9PiH6W5J8yo528s7f0tOWYvuRYmpv52pB5C2dIqKrPz6c86FVd5BbmJ9liXLiJxSsFJREREZq2oaeLzBQi4NzHa1Ygt2E72+NTfvx84kk2hSg7JjFKT4qAvazHJBZXjU38Xcqmm/haRaaTgJCIiIrNCaHQUb+M2elu2EuluZsuoi9/3FJI0FuTrOU8RMS30WHLwp1bizynlxKplXFJZSXpKIrA+1uWLyEFOwUlEREQOuIG+XjrafTT2J+Hp6ufojkdxmd1kWUyygFHThs++jI8dupSyvHn0JleRX1FNdnJyrEsXkTlKwUlERERmjGma9ARH8X3wNqPtW0jobSUz5CXH0k/fWAE/7f84WWl2FmUtXub5AAAgAElEQVQUMpReiz2vHEd5LY7SUo63fnjq7+KYnYOICCg4iYiIyDQJh8fwNjfR69nKmLeJ0GA/PwquYnAkzJUZv6XW1kHAkkXf+NTfWcW13F23hKz0JGBNrMsXEdkrBScRERHZZ8ODg3gb6tkWcuDxDlLU9hIrIpvIsETIAMZMKz6ri+W1DsoKsnBkVGIvclGRlh7r0kVE9ouCk4iIiOxV32CI9oZthBrfxhpoIWO0a2Lq73t6zyRkzyY9N4+WpBUk5lWQXTaPvPIKcm2JGLEuXkRkmig4iYiICACRaAR/Sws9nq283+MBv4dfDy3hg4FMltobuST9FQJmBkF7Hn3ZS0guqOCmmiXkOrKwWCyxLl9EZEYpOImIiMxBodERuhq30ha0sLXXxlBnI2cO/5wUS5hiIGJa8FtyqStMYknpPMod87E4z6IsKzvWpYuIxISCk4iIyEFucGQMT0cv4b+/hBloIX24g1wzQLbF5E/Di3gtspwqVxZtmYtJcJaTXTqP+SsWkz0wRnWsixcRmSUUnERERA4S0WiUns4Oepq2MNzVhK23lebRDH7euwgLJnfm/B8h7PQl5tGceQhJ+ZUcXVXHWUXFWC0WYPXEvpJSkmFgLHYnIyIyyyg4iYiIxKGxsTF8nkZ8nV42j+Tj6epnfd8TlCR0UwhETQhYssnJcHH2kmrK8tKxZy/DlZujNyKJiOwHBScREZFZbiQUptU7SJ/7DRI7/0bKUAeOaDcZliiRaCq/HziHElcaXudyIhl2MkqqyaucR0VaOhWxLl5E5CCh4CQiIjKL9Pl8+Bq3MNTRgKW3ldQRH3cGTiGClTNT32ZlUiM9tjxaslaS6Kogp2weP6isJsFqBVbGunwRkYOWgpOIiEgMRKIRulta6GnegnusmAb/GMXdf+IU25/IHx8TMDMIJuVz5qoCCosLKHOuJDsrjXyrNaa1i4jMRQpOIiIiM2wsHKHVN4jX00Ryw8skD3bgiPhItYRJBZ4bOJ5gVi1lhXU02nPIKK4ir6qWsswsAA6NbfkiIsI+BifDMG4BbgUWut3uvxmGsQrYCKQATcAFbrfbOz522teJiIjMdv29vfga3Ay0N0CghfThTl4cnM8bo1UUJfRwXeZf8Se4aMtags1RRlbZPD5XUY09KSnWpYuIyF5MOTgZhrEMWAV4xr+2AI8Dl7jd7lcNw/gqcCfwmZlYN10nLCIiMh22T/3djr+pno5++Eu/g26vjw22H+MCXEDQTKUvMZ/5Rgkrqg6lNC+V3OwzcFkTYl2+iIjsoykFJ8MwkoD7gfOB348vXgGMuN3uV8e/fpDtV4g+M0PrREREYmIsHKGrZ5jmrn5SN/+KlH4POWEvqZYQRUDXaDldySdTWpzPtoSTSS8oJa+ylmKHU1N/i4gcJKZ6xenrwONut7vRMIwdy8qA5h1fuN3ubsMwrIZh5M7EOrfb3bOf5ygiIjJlQwMDeBvr6W/dRrTHQ+pQJ30hGz/oPx6A6zK3kpAIXRnzseaWklEyj8MqazgqLXV8D3oiSUTkYDRpcDIMYzXb5zf98syXMz0cjvSYHt/lyojp8WXfqWfxRz2LP7OxZ90dnbR98D49bS38OTqfxrY+1o38ikPtrTiAITOJXns+Sa4qvrBsGVXFWRQ5T8Vmmxu32s3GnsmeqV/xRz2LL1O54nQ0UAfsuNpUAvwvcA9QvmOQYRhOwHS73T2GYXime92+nJTfP0A0au7LJtPG5crA5+uPybFl/6hn8Uc9iz+x7lkkGsHbM0yLb5DhrW/i8r1J9piXDMswGUCaCT+N5lKY72AsfS0dGVaclbW48vJ3mfo7EBiKzUkcYLHumewb9Sv+qGexY7Va9utCy6TBye1238n2CRoAMAyjCTgVeB/4V8Mw1ow/k3QF8LPxYW8DKdO8TkREZFKh0RG6GrbS17KViN9D8mA7jkg33+s7FV80kyOS2yhJHaA7tRp/bhnpxZXkVdVy2/jU3yIiIruz3+9xcrvdUcMwLgQ2GoaRzPjU4TO1TkRE5J/19/bi2+ZmoKOBzaEi/taTjCP4AZem/55sYMRMpGd86u8zl86joKycIucxJNr0AlkREdk3FtOMzS1tM6QCaNSterIv1LP4o57Fn4/as2g0Sk9gAI9/lM7Wdsqbf0lmqItsy8DEmF9F1uB1rqTaYaUm0YujYh65xSUkaOrv/aKfs/iifsUf9Sx2PnSrXiXbL9RMyX5fcRIREZkJY+EI3sat9LZsJexrJmmgjdywj9dGavjV8HLsljBfyumhN6WUQHYJaUVVuCprOd/hiHXpIiJyEFNwEhGRmBkaGKCrYQsDbQ34BiK8MlBFW3c/X8/4KWXWEGNmAn6rk86M+ZTXLuRmYzklznSS7B+PdekiIjLHKDiJiMiMM02T3p4AnkAET9cAzm2/pmConhz6cFrACZiRfNJyajl+RRk++4VQWIizrJxcW2KsyxcREVFwEhGR6RWNmnjbWgk0bCbkbSKxv43sMS8WM8r3es8BLJybEyI9KY9g1lKSC7ffaneoK49FE1N/z4vlKYiIiOxCwUlERPbb6PAI3qbxqb+7PbwwdhhN3SOcZHuDtSnvEzat9FhyCWTWEM0q4caTFlNakE1q8nGxLl1ERGSfKDiJiMiU9PcGaPWP0twdYszzHgsCvyPX7CXbYk5M/Z2dOp+jFpVRlHUKwez15FVUk2O3a/YoERGJewpOIiKyE9M06e4O0LPlXUY6m7AF28gKdZJlGeSF/mP521gpCzPHqErJpjnzUJLyK3BU1JBbVMwVmvpbREQOUgpOIiJz2NhYCG9jA30tWxnzNbN5tIBXelxkjPm5OftZoqaFHks2gZQyenJKWHfESi6rrCAz1Q6cGevyRUREDhgFJxGROWJoYID29m6aggm0dvaypv1HOEw/mZYomcCYmUBH4koOn38oZa5KepKqyK+qoTIlNdali4iIxJyCk4jIQcY0TXoHQng3b2KkvR5rXysZI13k0EfXWClPDBxLekoiizJzGUyfh91VTk5ZDa6yck6yffh/C6UxOwcREZHZRsFJRCSORcIRfK3N9DTXM+ZtZnBwiCeDy+kfGuP6jBeoSvQRMDMJJuUTzF6Gs9jgO3VLyU63Y7EcGevyRURE4oaCk4hInBgZHsbb1EDDSDYe7wAlrS+yKPweaZYwaUDYtNJlzWNxlYPSggzS0suwFuVRlpkZ69JFRETinoKTiMgs1D8Uor1xG6MN72AJtJA20kmu2UuOxeTngXMw7elk5DpoS1uKzVlOdln1xNTfdbEuXkRE5CCk4CQiEkPRaBR/exs9zfWMdDZiC7bx7NBytvansMpez3npr9NnptFnz6M581CS8yu4pW45TkcWFosl1uWLiIjMGQpOIiIHyPapv7fRErTQ0GtltL2edcPPkmIJUQQTU3/X5dtYtmIeZY46yD2bklwHJbEuXkREZI5TcBIRmQFDI2FaO/yMbP4D9HhIHerAYfaQaYmydWgZr0YWUevMoCNjAQnOMjKL55FfNY/KlBQqY128iIiI7ELBSUTkI4hGo/T5fPgatzDc2UBCbyvbRnJ4treOBCLclfMCo9gJJObhyajBnlfB8VXzOb+4BKvVAhwV61MQERGRKVBwEhGZokg4gq+lia6ubtzDDlq6+lnf+2MKrT0Ujo/pMTNxpDs5Y1EV5fnpkLmEPIeDAqs1prWLiIjIR6PgJCKyG6NjEVp9A/R/8GcsnZtJGWzHEfVvn/o7kslv+8+g2JVGV84SRjNSSC+uIr+qhvKMTMpjXbyIiIhMOwUnEZnz+nv8dDXUM9TRgCXQgn3Ez12BEzFNC+el/ZnF9hZ6Ely0Zi0l0VVOVlkND1TVYEuwAofFunwRERE5ABScRGTO2DH1t79pCx+Ei2nyjVLe/SrHJ7xJ/viY7VN/53P64YUUFboodywjNzeTPN1qJyIiMqcpOInIQSkcidLePUhn0zaSGl8jaaCN3Eg3KZYQxcDPgycxml1JaV4tjfYc0oqqyKuqpSQnlxJgQaxPQERERGYVBScRiXuDwX68DW4G2howAy2kDnXw3OBC3hstpdLm5aqMd/AnOCem/s4qnceGyhqSkpNjXbqIiIjECQUnEYkb0WiUXm8XrX/5E/XeMO8Hswh0dXBdwhM4AScwYCbTm5jHotoCVlctoNS1kuzsT+KwJcS6fBEREYljCk4iMitFoyYdPUO0dAZJfv9X2PtbyQ17SbOMkAWER6tpsR9PWUEhDda1pBZU4qqsId/potBq5ZBYn4CIiIgcVBScRCTmRoaH6GrYSrB1G1G/h5TBdnyhZB7pPxqAG7M2k5CQgDetBqujjAJjPke4yjghI2N8DwtjV7yIiIjMCQpOInJABXv8eBu20Oft4s2xebR4Bzgz9AtqEzvJBYZNOz0JLpLyyrn0qEMoy8+gIPcoEm3/+OvK5crA5+uP3UmIiIjInDNpcDIMwwH8GKgGRoGtwOVut9tnGMYqYCOQAjQBF7jdbu/4dtO+TkTiRyQaxd87jMc7yMjWP5Pj20RWyEuWZZB8wGFa+VnkEorzshlMO472TBuOilqchUWa+ltERERmnalccTKBu9xu98sAhmF8C7jTMIzLgMeBS9xu96uGYXwVuBP4jGEYluleN50nLSLTKzQawtu0jb6WrYS7m0kaaMcR8fEfvacRNFM5NrmZotReAqnlBHJKSSusxFVt8M3snPE9LIpp/SIiIiKTmTQ4ud3uHuDlDy36E3AlsAIYcbvdr44vf5DtV4g+M0PrRGQWGAz24W2oZ6Ctgb+PlbC5x0Zh31/4VNqrZAEh04Y/wUl75kLOWVJJYVkpxc6jsSdqVjsRERGJX/v0jJNhGFa2h6ZfAmVA8451bre72zAMq2EYuTOxbjzAicgBEo1G6Q0O4/EN09XaQnHz82SMdpJr6Z+Y+vvtsaPIci2juGwFrfYycstrcBaXaepvEREROejs6+QQ9wIDwH3AGdNfzvRwONJjenyXK2PyQTKrzPWehcNh2urr6drqZqi9gYS+FrJDXl4eruPFkUWkWUbYkNPFQGoRw85yMkvnUVI3ny8WFGCxWGJS81zvWTxSz+KPehZf1K/4o57FlykHJ8Mwvg3UAOvdbnfUMAwPUP6h9U7AdLvdPTOxbl9Oyu8fIBo192WTaaPZvuLPXOvZyNAQXQ31BNu24R2APw6U0u7r57aMn+C0RAibVvxWB960GubVLGJ57TJKXOmkJJ2y036iQHf3QEzOYa717GCgnsUf9Sy+qF/xRz2LHavVsl8XWqYUnAzDuB1YDqxzu92j44vfBlIMw1gz/kzSFcDPZnCdiOyjYF8/np4Qnq4BnFt/iWuogVyzl1yLSS4wFikiKauCo5eW0p74KRyFxbgqKslJtMe6dBEREZFZZSrTkS8AbgK2AH80DAOg0e12n2EYxoXARsMwkhmfOhxg/IrUtK4TkT2Lmibd7W30NLgZ8TaSGGwjK9RFOGrlu31nAnBh9iBpSbkEsxaSkl9JbmUNSwqKWDYx9XdN7E5AREREZJazmGZsbmmbIRVAo27Vk30Rbz3bPvX3VvpatjHW7eE3Y4fh8Q2x3vYaa5K3EDEt9FhyGEwpwMwpJfHQEynNzyA9JTHWpU+beOuZqGfxSD2LL+pX/FHPYudDt+pVsv1CzZTs6+QQInIADQb7aPGH8HSPEG7ahBH4A7lmgCxLlCxg1LSRljyfjx1aRG7mKfRmf4L8imqyk1NiXbqIiIjIQUXBSWQWME2TQE8vvi1/YaSzEWtfK1mjXeRY+nkmeAL14UKWpo9QkZqOJ9PAnlexferv0jKutWrqbxEREZGZpuAkcoCFw2P4mpsIeLYy5mvm76OFvO7PwTHWyReyngfATxbB5EJ6s1dy+sdWUlRRTlZ6UowrFxEREZm7FJxEZtDw0CAdnT009Vpo7/BzePtPcET9pFsipANh00qLbTXLjVrKXWX02GvIq66hIi227yITERERkZ0pOIlMk77BEL7Nmxhs34q1t5X0kU5yzT6aQxU8PngkackJLMpMpyWzArurnKyyebjKKzl1p6m/K2JVvoiIiIjshYKTyD6KRCP4W1vpad7KaFcjwcFRnu5fTN9AiBszf0mVrZdeM52gPZ/+rMUUFtfxrbql5GYmYbEcHevyRURERGQ/KDiJ7EVodJSu5iYahzPwdPVT2vob5o/9jRTLGMVAxLTQbilgQcWxlOWlY027AktJAaVZ2bEuXURERESmkYKTyLjBkTHat21juPFdCLSSNtyBw+whE/hJ4Dys9iROysmmI3MRCc4yMkurya+Yx/zkZObHungRERERmVEKTjLnRKNRAl2ddDfWM9LVSGJ/G08NrKQxaOPopM2cmfYm/WYKvYn5NGfWkZRfwdfrVuJyZmHVrXYiIiIic5KCkxzUwuExvM1NtPZZaAiYRNo/YO3Qr0mzjFI0PqaHLOryLCxbWkVlbg1RxzkUOV0T60VEREREFJzkoDESCtPW7mfog1cx/R5ShjpwRP1kWCL8dfBw3ogcwnxnKt50A6ujjIziavKqalhRUUi5rz/W5YuIiIjILKbgJHGpr9uHt7GeoY4GrIFW3KNOXuipwk6Iu3J/xZBpJ2DLoyVrBXZnOSdXH8olpSUkWK3A2liXLyIiIiJxRsFJZrVINEJ3awtdnX7qh7Np7gxyeuBRXNY+CsbH9JrpuFIdnLamktL8dMYyFuPKyyffao1p7SIiIiJy8FBwklljLByhrXuQvs1/hs4PSB5sJzfSTaplDFs4l98MrKfQkUZn1kIGMzNIK6wkr7qW0qxsSmNdvIiIiIgc1BScJCb6+/rwNWxhoG0bBFqxDAf4fuB4oqbJJWmvMt/ehj/BNT71dzlZZfP4QXUdiTYrcFisyxcRERGROUbBSWZUNBqlp6sDf2M9H4SL8fiGqfS9zNHWTbgAFxA0U+lLzGPdYUWUFuZQmruYHGc2TmtCrMsXEREREQEUnGQahSNROv1DdDVtxdb4OvaBNnLDPlLHp/5+vO9UIlklFDtqaEzKJbWwElelQbHTSTHoJbIiIiIiMmspOMl+GR4coKuhnv7WBqI9HlKHOvhF/xI2hwqoS2zjsvS38FsddKXXbZ/6u6Sam6vqSE5NjnXpIiIiIiL7TMFJJtXX7cPbsIW2gQTeD6Yz1OXhs/wMhwUcwJBpp8eWx7JaF2sq51PmWkFm7rnk2hJjXbqIiIiIyLRQcJIJUdPEGxjG09mH/f1fkxhsI3vMS6ZliALAPVJHU+JRlOcV0Ww9muSCKpwVNbjyC8i3Wjkk1icgIiIiIjJDFJzmqNDoCJ0N2wi2biXS7SF5sJ220XQe718NwC3Z7xKxJtGTWklPbhnpRVUcW1XDqVnZ43tYErviRUREREQOMAWnOaC/txdfwxZ6vD7eGavA4x3gnNH/ocLWTQ4watrwJ7hIzyvi00fWUZaXQWHuUdjt+s9DRERERAQUnA4q0WiUnuAoHu8AI/V/ItP7LpmhLnIsA7iADNPGf49dTGl+Jr2px9KWmYSjYh65xaWa+ltEREREZC8UnOLU2NgY3uZGej1bGfM1kzTQRk7Yx9d7z2DEtHNS8lYOS/XTl1JCb3YJaUXVuCpq+I7TOb6HxTGtX0REREQknig4xYGhge1Tfw+0beNv4TK2dFsoC77N2Sl/IhMYMxPwWx14Mw7h/CXlFJYUUew8iuQktVdEREREZDrok/UsYpomff0jeHxD+DxN5HleJGOkkxz6cFrACbweOpY05yKcxctpTSwnu7wGV1m5pv4WEREREZlBszI4GYZRCzzG9tcE+YGL3G53fWyrml6RSARfi4eAZyuj3kYSg+1kj3n5v6H5/L/R+eRYB7g+q51gUj7BrKUkF1TirKjhsvwCrFZrrMsXEREREZlTZmVwAh4E7ne73Y8bhnEBsBE4LsY17bfQ6CidDfUEW7fRMWDljYFCOr193Jb+OGkWk4hpwW/JpSe1kkNq5rNq3lJK8zJITf5ErEsXERERERFmYXAyDCMPWAacML7ov4H7DMNwud1uX+wq2zemadL54n8Rbv+AjFA3ORaTHGAwXEpC1hmsXlRKs+1cHEWl5FVWk21PinXJIiIiIiKyB7MuOAGlQJvb7Y4AuN3uiGEY7ePL4yY4/fFvnYS2tJKWkERb9iqyS6txVNSworiEwyem/q6NaY0iIiIiIjI1szE4fWQOR3pMj+9yZXDsYXa2FHyRhdVOzW4XB1yujFiXIPtIPYs/6ln8Uc/ii/oVf9Sz+DIbP9G3AMWGYSSMX21KAIrGl0+J3z9ANGrOWIF743Jl4PP1A1DhSqM/OEx/TCqRqfpwzyQ+qGfxRz2LP+pZfFG/4o96FjtWq2W/LrTMuunZ3G63F3gXOG980XnAO/H0fJOIiIiIiBxcZuMVJ4ArgMcMw/gaEAAuinE9IiIiIiIyh83K4OR2uz8ADo91HSIiIiIiIjBLg9NHkADb71uMpVgfX/adehZ/1LP4o57FH/Usvqhf8Uc9i40Pfd8T9jbun1lMMzaTKMyQNcArsS5CRERERERmvSOBV6c6+GALTknASqADiMS4FhERERERmX0SgELgTWB0qhsdbMFJRERERERk2s266chFRERERERmGwUnERERERGRSSg4iYiIiIiITELBSUREREREZBIKTiIiIiIiIpNQcBIREREREZmEgpOIiIiIiMgkFJxEREREREQmoeAkIiIiIiIyCQUnERERERGRSSg4iYiIiIiITELBSUREREREZBIKTiIiIiIiIpNQcBIREREREZmEgpOIiIiIiMgkFJxEREREREQmoeAkIiIiIiIyCQUnERERERGRSSg4iYiIiIiITELBSUREREREZBIKTiIiIiIiIpNQcBIREREREZmEgpOIiIiIiMgkFJxEREREREQmoeAkIiIiIiIyCQUnERERERGRSdhiXcA0SwJWAh1AJMa1iIiIiIjI7JMAFAJvAqNT3ehgC04rgVdiXYSIiIiIiMx6RwKvTnXwwRacOgACgUGiUTMmBTgc6fj9AzE5tuwf9Sz+qGfxRz2LP+pZfFG/4o96FjtWq4WcnDQYzw5TdbAFpwhANGrGLDjtOL7EF/Us/qhn8Uc9iz/qWXxRv+KPehZz+/RojyaHEBERERERmYSCk4iIiPx/9u47PI7y3P//e1errpW0Tb1b0rjigjE2NVTTHAgYAoQAARIINSThkB+QE5IAAUIOocMXkkAghTQIhBpIOECSE3qHcVGvu9pV77s7vz8sFBs3WZa8Kp/XdemyZp6ZZ+7Zm0G6Nc88IyIiO6HCSUREREREZCfG9IyTYRi3ACcBJcAi0zQ/GFlfAwyMfAFcaZrmcyNtK4H7gGSgBjjDNE3/7rSNVyQSpr09QDg8tDvdjInfbycajU76cWTizIacORwJuFw+4uJm2mONIiIiMtX0dnXhrzLpaaqmuTeOf3YXMhSO8oNzV+CIm773bcb6W9TjwG1se6rvtZ8WUp8yDMMGPAKcbZrmq4ZhXAPcCJwz3rbxnNyn2tsDJCWlkJqag81m252udsrhsBMOz+xfwmeamZ4zy7Lo7e2ivT2A15sb63BERERkhohGo3S2d1HbHqa+tZv8jX/C21+Dy9aNF/ACvZES0t1zmFfiwm6f3N/DJ9uYCifTNF8FMAxjrP0uBwY+3Q+4l013j87ZjbZxC4eH9kjRJDIV2Ww2UlPT6enpiHUoIiIiMk1FoxatdbV01HzCUKCWhK4GXOEAXZFEbu86HoCvuIaJT8qlPXMFKTml+MoqWenLYmWMY58oEzFu51cjd4peBa4yTbMDKAJqP93ANM02wzDshmG4x9tmmmZod4JU0SSzmf77FxERkbEa6O/DX7WBroYNhEON/GVoJQ2BXk5OfJkViVWELTttdg+tqZXYvcV8Z8EyCrPSSE48NNahT6rdLZwONE2z3jCMROCnwJ3AGbsf1u7xeNK2WPb77Tgce2485Z48lkyM2ZAzu92Oz+eMdRgTZiady2yhnE0/ytn0onxNP1MhZx1tbdS0DVPV3MvQun8yp+1lXFYHLpuFC+i3EvBk7s3C/UrIz8gBbwqllRVUJiTEOvQ9brcKJ9M060f+HTQM427giZGmOqD40+0Mw/AClmmaIcMwxtW2K3EFgz1bvFAsGo3usWdYxvK8zNq1a0hISCA+PoFoNMJZZ53L4Yev5q233uDSSy/gtNO+zEUXXTa6/cUXf4133nmL559/mZSUlK36a2sLcNppJ/KnPz2N0/mfC/Ctt97gxht/yKOPPs4ll5xPa2srqampo+3f+taVLFq0GMuy+P3vf8sTTzwGWESjURYvXspRRx3Lrbf+GICurk76+nrJyckDYM2aEzjppFN49923uffeO2lvbycSibB06TIuvvhy0tPTR2P/9LiDgwOsXn0MZ5993g4/n/Xr13HbbbfQ09NDODxMWpqTG274Mb/4xQO8//67ANTUVJGXl09CQiIAP/vZw8TFxW2zv48//pD77ruLxsZGkpISycx0ce6557NkyTIuvvhrfPTRBzz++DOkp2eMfm6XXnoBp556Bhdf/A3eeusNrrjiMgoLi4lEwng8Xq688hpyc/O4/vprmTt3Hied9MUdnlM0GuWii77K979/A1lZ2Tvc9rPOPvt07rvv5yQmJu1wu4sv/hpXXfU98vLytxtDINC9S8eeqnw+54w5l9lCOZt+lLPpRfmafvZ0zizLoi0QJLTuPQZaq3F0NZI51Eq6rZcHOo+mNuJj34wBcpLcdGYsIjG7FG9JBd7cPL5u3/IPzB2dg8DgHot9otnttq1utIzFuAsnwzBSAYdpmp0jQ/VOBd4ZaX4TSDYM44CR55UuAH63m20zynXX3URZWTnr1n3CBRecy/Ll+wJQVFTMK6+8xAUXXExcXBxNTY0MDg7ssC+v18fixUt58cXnOOGEtaPrn376SY45ZlY/KA4AACAASURBVM3oMK1vfOPb7L//gVvtf//99/DOO29x++334HZ7iEajvPLKS3i9Ph588Nejff3zn69w3XU3j+7X0FDP1VdfwQ9/eBNLl+5NNBrlzjtv5bvf/Q633Xb36HafHretrY0zzljLPvusZMGChds9n+9//xq+/vVLRmOtr68jKSmZb33rytFt1q5dM/oZ7sjGjRu44opv8N3v/oB99101GveGDetGtykpKeOFF57nxBNPHj1Xw5i3RT8lJWX87GcPA3DHHf/DHXfcyg03/HiHx97c3//+AqWlZbtcNAGjOdiZU045nZ///P9xzTXf3+VjiIiIyMwxPDSEv7aKzroNDAdqeXeoiH8HM8iLNHJp+nNELRtBWyah5CKCrkJOPWg5eUWFOFNm312kXTHW6chvB04EcoAXDMMIAmuAPxqGEQfEAR8BFwKYphk1DOPLwH2GYSQxMq347rRNpH+838yr7zVPdLcAHLw0j5Xzc8a8fWXlXFJSUmhubgQgOTmFkpJSXnvtX6xadQDPPPMXjjrqWD7++KMd9nPssZ/n179+eLRw6uvr5eWXX+Lhhx/d4X59fX389re/4sEHf4Xb7QE2Dek6+OCdj1H95S9/zrHHHs/SpXuP7nfhhZdxyinH8+67b7N48dIttvd6vRQWFtPa2rLDwikQaMXn840uFxYW7TSW7fnVrx7iuOOOHy2aAAoKCikoKBxdPvbYNTz77FOceOLJ9PX18f7773LYYUcyNLTt6euXL1/BXXfdvktxPPHEY1vcabv44q9hGPP4+OMPaWlpZu3aU/H5fPzxj7+jrS3AhRdexqGHHg7AAQcsH73buHbtGo466lhef/3fBINtnHbaGaN3u/bb7wBuvvl6+vp6SUlJ3WYcIiIiMrP0dXfT1NpObaed5qZWVjX/BrcVIt0WJR0YshzUxKey7/xKir2FtCcvJLu0nLLk5FiHPu2MdVa9S4FLt9G0dBvrPt3nn8CiiWybid566w2GhoYoKChi/XoTgGOOWcOf//wnVq7cnxdffJ577vnZ6JC57TnggIP5yU9upLq6itLSMv72t7+ycOFeZGf/p4j76U9v4f777xldvvXWO2lubiIhIZ6iopJdjn3jxg2cdda5W6xzOBxUVhps2LBuq8Kprq6Wrq7O0UJre8488xwuuuirLFy4FwsX7sXhh6+muHjX4wNYt+4TPve5w3a4TX5+PgkJCdTUVPPhh+9z4IGf2+6wv2g0yksv/Y3KyjHPMEk4HOb9999j/vwFW6wPBPzceef/IxQK8sUvnsApp5zOvff+nI8++oCrr/6v0cLpswYGBrjvvl/Q3NzEmWd+kaOPXkNKSgoOh4Oysjm89967rFy535jjExERkanPsiw6e4cIfPQ6/U1V2DsacA624LZ1sXGgnEf79sOZ7GCJ00mds4L4rBLcReX4Cks43rHt32tk18zKt2HuvyiX/RdNzvtsxvpOoGuuuZKEhERSU1O5/vqbtng2admy5fzkJzfy8ssvUVY2h4yMzJ32Fx8fzxFHHM3TTz/JRRddxlNPPcnatadusc22huo1NTWN8cy2ZlnWzjdiU8F2zz13UFdXw2WXfRuXy7XD7b/0pbNYvfoY3nzzdd544zXOPfcMbrnldpYsWTZpMR511LE888xf+PDD9/nmN/+Lv//9xS3aa2qqOPvs07Esi/Lyci655PIxx9DR0UF8vGOrZ5QOOeQw7HY7Xq+PjIxMDj74EAAMYx6BgJ/BwUESExO36u/ww48EIDc3D6cznUDAP1pYut0eAoHdel+0iIiIxFgkEiFQX0tH7XoG/TV09EV5rHMhXX3DXJPxGKVx3YSsdLoSc+jI3Jvigvn8xNiLzLQEbLaDYh3+jDUrC6epYEfP59hsNg499Ahuvvk6rrrq2jH3edxxx3P55Rdx7LGfp66uhgMPPHin+5SWljE0NERdXS1FRcU73X5z5eUVfPjh+xx00OdG14XDYdatMzn11P+MsPy0YHvvvXe4/PKLWLJkGXPm7PjZJK/Xx+rVx7B69TEkJiby0ksvjqtw+nQ43OYxbsuhhx7BGWecjMfjoaysfKvCafNnnHZVYmLiNof9fTqxBWwa5pgwMjvNp3e7IpHINvtL2GwWG7vdTiQSHl0eGhraZrElIiIiU9PQQD8ttbVU9zup8/dQVv8kc8OfkGoLkwqELTvYC1g052CKsp1YKRdhL8inOD32M/LNNiqcpqjjjz+R5OTkLZ7N2Zk5c8rx+bK47rrvccQRR23xC/b2pKSkcMopp3Pzzdfzwx/eiMvlxrIs/vrXZ1mwYBH5+QXb3feMM87m618/h5Ur9xudHOLuu2+joKBwm0XOXnst4cQTT+GBB+7lRz+6Zbv9vvzyS+y33wE4HA4GBwepqakeUxG4Laed9mUuv/xCli1bzj77bJqAo66uhnXrTA4/fPUWn8NFF12Gx+Md13F2xOl04nK5aW5uIjc3b8L731xtbTXl5RWTegwREREZn57+YZo3mAzUvo+9s5Hk3kbcVgdObDzcfjqJifG4XR4aUpfi8BaTWTSHrJI5LE5IYHGsgxcVTlOVz5fFl7501i7vd9xxx/OTn9zIlVdevVXbZ59xOu+88znggIM5//yLePTRX3HJJecDm4a37bXXUlatOmCHxyoqKua6627mvvvuoqOjg0gkzJIly7juupu2u8+ZZ57DqaeewPr1JhUV235O6KWXXuSee24nISGRSCTM8uX77nS67+2pqKjkxhtv5f777+bHP76BpKSkkenIL9hq28MOO3Jcx7j//nt55JGHRpf/67+u2uqzO+igQ/j3v//FCSecNK5jjEVLy6YJT3Y206CIiIhMrmg0SqiliVD1evpbq3F0NvL7/pXUdcVxeNL7rEl5my4rlY6ELGrTF5KYVcIN81fgdadht43vj8Uy+WxjfQZkmigBqj/7HqeWllpycnZtGNp4jfUZJ5k69kTOmpoaufbaq7nvvl+MTg8/0e69904KCgo47rgTttm+J6+Dyab3lUw/ytn0o5xNL8pX7AwPDxGoraa+O47qkIXV+D6H9T9Lsm3TMP2oZSNky+Q1z+dJzy+jxGUn35vCnLklylmMbPYep1I2zeI9JrrjJLIH5OXlc+qpZxAMtuH1+na+wzh4vV6OOebzk9K3iIiIwMBQmMbGAP3mP4gG60jua8YTDeK0RXm7Zz/ejlay0OOkxTkfu6cIZ/4csssqKE1JoTTWwctuU+E0zZx77pe3mjRgwYKFXHHFVTGKaHz+9a9Xue++u7daf/75F+50iOBntbeHuPzyi7daf/DBh/CVr3x13DFOtO1NLz5RPjuLooiIiIxfZ1uAQNU6+po3Tf39wWAOfw0Vk2rr53rXX+i1Eml3ZFGfsYL4rBI+P2cRX83PJc5uB46IdfgyCVQ4TTPjndltqlm16oBdLpC2x+Vy8+CDv56QvkRERGR2iUQjBOvraQm0s743nbqWbk7qeACXrYfskW3aLSfZqdkcP7+Uomwnw85lZGVlk2O3xzR22bNUOImIiIjIrDAcjtLU1kvnR/+E1nUk9jbhiQRItoWJDGfxbO/R5HpSaXIuoiMjk7S8MrLnVFKUnkFRrIOXmFPhJCIiIiIzTm9nB60b19HbXI0VqiPa38NdHZ8jErX4atorVMS3EIzz0Zi+GIe3GF9RBXfPMYh32IEVsQ5fpiAVTiIiIiIybUWjUTpaW2irWc8n4ULqAr1U+F9gP/u7+AAf0GWl0BGfzdErCijMyaDItRcunwuvPS7W4cs0osIpBtauXUNCQgIJCYkALFu2N5de+i0eeOBeSkvLOOywI3nrrTcIh8OsWLFyTH3W1dVy/fXX0tnZSUZGBtdc830KC7d/U7muroavfOVLfOELJ3Pxxd8A4LLLLqSzswOASCRMdXUVDz74m61eqGpZFjabjeuvv5arr752dDlWnnjiMf74x0dH4zj99DNZvfoYAILBNn784xtobm4iHA5z5pnnjLZti2VZfOMbF7JhwzqeeupFAH7/+9/y1FNPjG7T1NTImjXHc8kl35zcExMREZEtRKJRWkL9+KtM7DWvkdDdiCvsJ9U2SC7ws44TsGfmUOCuoDrRS0peGb5Sg3yvl3xgQaxPQKY1FU4xct11N231otLzzvvPS1nffvtN+vv7x1w43XLLjzjxxJNZvfoYnnvuaX784xu4/fZ7t7ltJBLh5ptv4MADP7fF+ttu+88sdy+//BL333/3VkUTwMMP/4KUlBQikQjPP/8Mn3zyEZde+q0xxbkza9eu4Q9/eHKX9ikoKOSOO/4f6enp+P2tfOUrp7PXXkvIzc3jjjtuZe7c+dx44//Q3t7OueeewZIly8jOztlmX3/846Pk5OSyYcO60XUnn3wqJ5+8aca6cDjMCScczRFHHDX+kxQREZGdGujto7V6Pd2NGzdN/d3bzB96lrF+0Mde8XWcmfYaQbsXf5qBzVNMev4cri03SE5OjnXoMkOpcJpCrr/+WubOnceSJXvz5z//iWg0yhtvvMZhhx3Jl7989nb3a28PsW7dJ9x6610AHH74am699Wba29txuVxbbf/IIw+y334H0t/fR39//zb7fOqpP3Pssdt+J9CZZ57D44//keeff4bs7JxtFk1vvfUGN998PQ888DBpaWlcf/21uN0evv71S8bwSeyaZcuWj36flZWNx+PF7/eTm5vHhg3r+eIXTwfA5XJRUVHJ3/72AqeddsZW/dTX1/Hii89z1VXX8uqr/7vNY/3jHy/j8XiYO3f+hJ+HiIjIbNUVasNftY6GngQ+6UxisLWGs60/4LaBG+izEgg5slhW4eXgknkU+ZbhdJ+OOz4h1qHLLKLCKUauuebK0aF6X//6Jey776rRtjlzyjn++BPp7+8fHUYH8O1vX8p5512w1S/tra2teL1ZxMVtGqcbFxeH1+vD72/dqnDasGE9r732f9x++708+OAD24wtFAryxhuv8Z3v/Pc22x9++EGSkpI48sijKS0t4847f7pFnLCpmDnqqGO58cYfsP/+B1FfX8eVV14zxk9n/N566w16enqYO3cuAIYxlxdeeJ65c+fT3NzEBx+8R25u3lb7RaNRbrrpOr75zStxOLZ/WTz11BPbLShFRERkxyzLItDRT31zB46Pn8bR1UjmUCvptj6ygff7F7Axfj9Ks3KpsR9Mck4J7pJKfDm5ZNvtzIv1CcisNmsLp74nf7TVOkfZChIWHIYVHqT/mf/Zqj2+8gDijQOJDnQz8Nc7t26ffygOY9VW67dlW0P1duaWW27fpe0/KxwOc9NN13HVVd8bLbK25Zln/sK+++63zbtVAGeccdboM05HHrn9YWtnnnkO3/jGhdx110954IFHtluQbP5S37a2AGefvekOUXZ2NjfddOuYz6+6uorrrvse3/ve9SQmJgFw8cWXc8cd/8PZZ59OdnYOy5btQ1zc1nH85jcPs2TJMioqDJqbm7bZf1tbG2+++TpXXXXtmGMSERGZrYaHBvFXb6SjfiPhtlqSepqoGUzn0e4VgMV1mW8wYE8hmFJC0FVIWm4Zh88x+EJm5kgPe8cyfJGtzNrCaSbJzs6mrc1PJBIhLi6OSCRCW1uArKzsLbZra2ujqamBK664DICenm4sy6K3t5crr7x6dLunn36SCy+8bLvH+3QiiKuvvnaL5c/q6emhtbWF+PgEuro6yMnZ9nNFm7/Ud+3aNTt9me1Xv3oWw8PDpKSkcPfdm+6a1dfXccUVl3HFFVexePGS0W1dLhf//d8/HF3+9rcvpaSkdKs+3333bTZsWM+zzz5FJBKhu7ubtWvX8NBDvyE1NQ3YVFCuWrU/maP/QxcRERGA3q4u/FXrCAbaeHeoiPrWHk4d/A35ce2kA4OWg2CclwxfDmftb1CU7cTjPpDERA21k+lj1hZOKWv+v+222RyJO2y3Jzl32D4RUlNTaWsLjGlbl8tNeXklL7zwHKtXH8MLLzxHRYWx1R2jnJyc0ZniAH72s/u2Gg74/vvv0tPTw8qV++32OfzoR9/nuONOYN68+Vx77dU88MAvSUlJ3e1+77//oS2WGxsb+OY3L+Eb3/g2q1btv0VbZ2cHqalpOBwO3nzzdaqqNnLddTdv1efNN/909Pvm5ibOO+/LW01S8cwzT3LJJZfvdvwiIiLTlWVZdPQMUdfazYD5T1ID75M+2ILL1o0XSIom8sjQlyjKTifg/RxWZjKuonJ8BcV4HZr6W6a3WVs4TXUHHXQIV199BWefffro5BDbe8YJ4IorruK6677HL37xAE6nk+9+9/ujbTva77OefvpJjjrq2B0O5RuL3/3u1wwODo4O6zvkkMO56abr+f73b9itfrflnnvuoKurgwceuI8HHrgP+M9zYx999CG33XYLdrudjIxMbrrpf0hK2jSM7/HH/0BbWxsXXHDhTo/x3nvv0NfXx4oVYxuKKSIiMt1FwhEC9TWE6tYz7K8loauR9HAbP2g/gWEcfD7ZZGlSK51JuXRk7ENybhm+skp+6ssa6WHJDvsXmW5slmXFOoaJVAJUB4M9RKP/Oa+Wllpycor3SAAOh51wOLpHjiUTY7bkbE9eB5PN53MSCHTHOgzZBcrZ9KOcTS+7m6/B/j5aqzbS1bCBDyIlbGiLUNrxbz6f9DoAYctO0OahLyWH9vLjyM3PpsCXSkpS/ESdwqyjayx27HYbHk8aQClQM9b9dMdJREREZBbp7huizt9DW2017toXSBtowW114LJZuICXBg4n3jMfZ/ne1CWVkFlYTlZJKS5N/S2znAonERERkRkoGo0SamokWLuegZZqHF2NZAy18kzfIv41WEmWvZOLM+roTMimK30hSTmleIoruDAvH7vdHuvwRaYcFU4iIiIi09zw0BCN600669bT1Ovgze4s/P4g16b+ijwgatkI2TJpTy5i4ZxK9itfQlFWGs6UL1AQ6+BFpgkVTiIiIiLTSF//IA1t/dT7e3CZj5HeU4vHCpFui5IOtA8XM+xcw+L5RVTb15KZV0xWWTmlycmxDl1kWps1hZNlWdt935DITDfDJoEREZk1OgJ+AlXr6G+uwtbZQPpAC12RBG7tOgaACzICDCek0Ow2wF2Iu6iClYUl7D869bcRu+BFZphZUTg5HAn09naRmpqu4klmnU0vOe7C4dBDvSIiU1UkGqGtvo5Q7Xr6A028FF5Cnb+Hk2zPsyShDoB2y0lXYg4RVwmXHbkXRdlOMtMOwWazaYY2kT1gVhROLpeP9vYAPT0dk34su91ONDrzp7aeSWZDzhyOBFwuX6zDEBERYGhggMbQAHX+XsLVr1MY/D/ckTZSbGFS2DT197OOOSwq8xCXdjRtGfFklVVSlJ4e69BFZrVZUTjFxTnwenP3yLH0F5/pRzkTEZHJ0t3VTWD9R/Q0V2Frrye1vwW31c4DXcfRHHGxMiVEQYqdxowlOLzFZBaVk1VSxlUJibEOXUQ+Y1YUTiIiIiKTKRqNEmppIlSznv6Waj4YLuKdYDLZ/Rs53/k3fECnlUJnQja16fM5ed+F5BUX4s08BLseIxCZFlQ4iYiIiOyCcHiYFn8HdaEwrY3NzGv4E66wnxTbELlA1ALTdhBz8ldQ5l1Ba2I5WaWVFHi8mvpbZBpT4SQiIiKyHf2Dw/jXfUhX40asYC3JfS14om28PWjwWN8+JDksFmQM0+qcj91diLOgnOzSCk5JTYl16CIywVQ4iYiIiACdbW0Eqkz6mqsI9lk8312JP9TH9zN/T4m9nz4rkZAji/qMFRTnL+CHlUvJ8aQQZz8s1qGLyB6gwklERERmlUg0QrC5ldpuB3Wt3eRVP0nxoInT1k/2yDaWlU++bymr5mfTnXQeKfm5+LJzyLbbYxq7iMSOCicRERGZsYbDUVpqqums/pBIWy1JvU24I21gwT0dpxJnt3OSK562lDLa3EWk5ZWRVVbB4oxMFo/2UhrDMxCRqUKFk4iIiMwIvV2dtG5cR09TFYTq+fPgSupCwxyV+BZHJr/PoOUgGOejKX0v4rzFfG/B3uRlOYl3HBLr0EVkGthp4WQYxi3ASUAJsMg0zQ9G1lcCDwEeIAicaZrm+slqExEREYFNU393+Fupb49SGxwi0vAee3e+gMvWjQ/wAd1WMgXpS5lfUUJZZj79mSfhKSzEa4+LdfgiMk2N5Y7T48BtwCufWX8vcJdpmo8YhnEGcB9w6CS2iYiIyCwTiUZpaQ3R+cnrDAdqSehuxBX2k2ob5KXug3lvuJhFbjvlSXl0ZBaQkluGr7SCPF8WX4l18CIyo+y0cDJN81UAwzBG1xmGkQUsA44YWfUb4E7DMHyAbaLbTNMMjPcERUREZHoY6O+jdeN6uhs3Eg3W8dFADn8P5ZAe7eS/Mx9j2LITtHvxpxnY3EWsmbOM80uKSEpwAGtiHb6IzHDjfcapEGg0TTMCYJpmxDCMppH1tkloU+EkIiIyg3SFgjQ3B6nqTqS+tYvDW3+Ox+rAbbNwA/1WAi2JqRyydG+KsirpTpqLr6QUd3xCrEMXkVlqRk4O4fGkxfT4Pp8zpseXXaecTT/K2fSjnE0/E5Ezy7JoDfXR8NY/6a37BFuojvTBFtJtfXQM5fH7nsPxuZJZnlrMYMZS0grLyaucR0lhAQs09fcu0TU2/Shn08t4C6d6IN8wjLiRO0NxQN7IetsktO2SYLCHaNQa56ntHp/PSSDQHZNjy/goZ9OPcjb9KGfTz3hyNjw0hL9mIx11Gwi31TLQ18cvO/elfzDCxc7nKHP4CdlchFJKCLoK8RZUcruxF2nJ8cCqLfoKBnsn8GxmPl1j049yFjt2u21cN1rGVTiZpuk3DOMd4DTgkZF/3/70WaTJaBMREZGpo6+7m9aqdWwY8lHn76G46a/sHX2XdFuUdGDIcuCPy2Ll/GyKsp140ueQnJtFWXJyrEMXERmXsUxHfjtwIpADvGAYRtA0zQXABcBDhmH8N9AOnLnZbpPRJiIiInuYZVl09AzRvHE94Zo3sXc04BxsxW3rwgvc1r4WkjNwu/OoS0wmMauYzOIKfAXFeBxxzIv1CYiITBCbZcVmSNskKQGqNVRPdoVyNv0oZ9OPcjY9RMIRAvU1hOrWQ6gBW6iOx/r2ZkOvk+UJG/ly2j8IWel0JeVgZRSQnFuKz1hCRkYaNpst1uHParrGph/lLHY2G6pXCtSMdb8ZOTmEiIiI7Nhgfz+tVRto6LGxoSOeoeYNfGHwMVJtYVKBsGUnaHOzsCCZFYUVFHsWEOc7jeK02E7AJCISKyqcREREZrie/mHqm4IMf/R3bO11pA204LY6cNks/tm3hH9by6jwuWhIWkq8r5iMwjnMX74YV9cQ5bEOXkRkilDhJCIiMkNEo1FCTY0Ea9cz0FqDo7OB6sFM/tSxEDtRbnK9QD9JdCZk05W+kKTsEg6bM58v5uSMDLXbb7SvhMREYChm5yIiMtWocBIREZmGhoeH8NdUE2gN8PFANnWt3Xyh+2Fy7e3kAVHLRsiWiSs9l1OWllOYnUZC5nI8mZkUxDp4EZFpSIWTiIjIFNc/GKbe30OP+W/iWj4kta8ZjxUk3RZlOJLG//aupSArjVbvCoacSaQXzCGrrJzS5BRKYx28iMgMocJJRERkCukI+AlUraO/uQpbZwPJA238qP0YLOycnPImSxPraHdkUZe+L/FZxbgLK7i7pAy73QYsj3X4IiIzlgonERGRGIhEI7TV1xGqXc8nwwVUtw1RFPwHqx2vkzOyTbvlpCsxh7X75ZGbl0WxdwUZ6Snk2O0xjV1EZDZS4SQiIjLJhsMRGgK9+GurSar+X5J6m/FEAqTYwqQAT/QcSV9mObbc+dQk+EjLLyOrrJKi9HQAFsY2fBERQYWTiIjIhOru6CBQtY6epo3Q3kBafzNP9yzkraESCuPauDj9fUJxPhozluDwFpFRWM7lJeUkJCbEOnQREdkBFU4iIiLjEI1GaW9poa1mHU09dj7oziTU6uebjkfwAT6gy0qhMz6bRXPzWVm2kKKsFNyZJ+Gzx8U6fBER2UUqnERERHYiHInQEuqnrrWb5I+eIKm7Hnc4QIptkDygabCUlqTVFOZlUxW3mtTcYrJKK8n3eMmPdfAiIjIhVDiJiIhspr+3F3/VeroaN2IF60juayY0lMB93YcC8K2M9Tgcdlqd87C7C3EWlLOqtIJDUlNGelgUu+BFRGTSqHASEZFZq7OtjUC1SVdrM69F5lLb2sMXhp5gXkITbqDPSiTk8OHILuWrn5tPUVYa2e6DccRpqJ2IyGyjwklERGa8SDRCW8cAdf5eBja8htv/JpnDraTb+sgGfJaNP0SzyMvKZDD1MJoy4vCVVOLLziFbU3+LiAgqnEREZIYZGhzEX72RzvoNhNtqSeptwh1p48edawhF0zgwqZ6DUzoJpZQSchWSmldG1pxKbsjIjHXoIiIyhalwEhGRaau3qxN/1Tq6G6v5eDiPD4MJZHV9yFmp/0sGMGg5CMb5aEpfxElL55BbVEi+92DiHRpqJyIiu0aFk4iITHnRaJSOzj7q2gZobWwkv+ZJ0gdbcdm68QJe4N3hA3D59qG4ZBkN8fl4iivxFBbi1dTfIiIyAVQ4iYjIlBKORAjU1tBRt54hfy0J3Q24wgFeHajg6f6lJDHEf7kDdCbl0ZFZQEpuGb7SCr7sy4p16CIiMoOpcBIRkZgZ6O+jdeN6uhs34u+J8o+eEpoC3fzA+WsKbMOELTttdg/+tEpKKhZzVeXe5PtSSU48Ktahi4jILKPCSURE9oiuzi7qQ2HqWrtxb/wLWb0bcFsduG0WbiASySExo4yDlxbQnPAlvDm5+EpKccUnxDp0ERERFU4iIjKxLMsi0NxMaOPHDPprcHQ1kDnkx7Ki/KTjZAC+lNlLWqKbroxFJGWX4imtYFFOHotHp/6uiN0JiIiIbIMKJxERGbfhs9LNdAAAGgdJREFUoSH8NRvpqNtIuK2W58IrqA30cXTcvzg46RMilo2QLZOOtFIi6flcsXovCnMySEs+NNahi4iI7BIVTiIiMiZ93d00BAepbetnuPZdKoMv4bFCpNuipANDloOUJIOV8wvxph9NR+axZJWUU5acjM/nJBDojvUpiIiIjJsKJxER2YJlWXS0dxFY9x79LdXYOxpIH2zBbevi8e7D+GQ4n0WpfZSkplDnrCAhqwRXUTm+whIu1vuRRERkhlLhJCIyi0XCEQL1NYTqNjDsr+HjwWz+FfLgHPRzZcaTAISsdLoTc+jMXM5xq/bha6WlZKQmYLOdEuPoRURE9hwVTiIis8Rgfz9NzUFqu2w0NLezouERPNE2Um1hUoGwZacxbgWLyw2KfYW0JZSQXVZJsdMZ69BFRERiToWTiMgM1NM/TOvH79DbuAE66knrb8ZtdVA/XMQvew4mOdHBwvRU+p2FxPuKySicQ1bJHI5J2Hzq75JYhS8iIjLlqHASEZnGotEooeYm2mrWM9haTU9PP4/1LCHUNci30p+i1BGky0qlIyGL2vSF+PIMbpq3N96MJGy2g2IdvoiIyLShwklEZJoYHh7CX1dHTV8qda095NY/x/yh90i2DZEPRC0bLTYflQWfozA7DUfqeVh5WeS7PeTHOngREZFpToWTiMgU1D8Yprmmmt6qd7GCdST3N+OJBkm3RflV+6lE45JY7XbS4pyP3VOEs2AO2WUVGMkpGLEOXkREZAZS4SQiEmOdAT/+6vX0N1dh66jn6YFlrGtPYL9Ek1NS/02vlUi7I4v6jBUkZJVwzdwV5GS5sNttsQ5dRERk1lDhJCKyh0SiEdrq62noiFDdDgNNJod2P4nT1k/OyDbtlpOyTIt5C0spcZcz7DqBrKxscuz2mMYuIiIy26lwEhGZBMPhCA3N7fR+8k8ibTUk9TbjiQRIsYX5sHc5rwwvoNKTRFvqHIKuItLyS8kqq6QoPYOiWAcvIiIiW1HhJCKym3o6O/BvXEdPUxW017NxIJOnQuXEWcPc7HqMYeIIxvlozFiCw1vEIaWLOK24mHiHHTg01uGLiIjIGKhwEhEZo2g0SntrCy1Nfjb0Z1DX2s2Rbb8kz9aGD/ABXVYKHcmLOGZVEUVZTobS5uHOy8Nrj4t1+CIiIrIbdrtwMgyjBhgY+QK40jTN5wzDWAncByQDNcAZpmn6R/YZV5uIyJ4SiUZpDvbR/skbRJs+JqGnCVfYT6ptEEc4kye6Pk+2O4VAmsGgcwkpuaVklRrke72a+ltERGQGmqg7TmtN0/zg0wXDMGzAI8DZpmm+ahjGNcCNwDnjbZugOEVEttLf24u/ej1dDRuxgnXE9QW5reMwwhGLM1JfZUlCLUG7B3/aXOyeItIKyrm7ciGJCXHAyliHLyIiInvAZA3VWw4MmKb56sjyvWy6e3TObrSJiOy2zmAbgap1rB/OojYwQF7rKxxs/Ru3DdxAn5VAuyOLI5f6yM/xUuRaSHq2C7cjPtahi4iISAxNVOH0q5G7Ra8CVwFFQO2njaZpthmGYTcMwz3eNtM0QxMUq4jMAlHLItDRT3NNNbaN/8LR1UjmcCvptj6ygUc6j6E3tQCXu5iaxCSSs0vwlBj4cnLIttuZG+sTEBERkSllIgqnA03TrDcMIxH4KXAn8NgE9DtuHk9aLA+Pz+eM6fFl1yln08/mORsaGKDONGmrWsdAcxXxXY0807uAd/tyKHe0cKHzH7TbXXQ659DjK8ZVXMmNCxfhzEiP4RnMPrrOph/lbHpRvqYf5Wx62e3CyTTN+pF/Bw3DuBt4ArgNKP50G8MwvIBlmmbIMIy68bTtSkzBYA/RqLU7pzVuPp+TQKA7JseW8VHOppferk56/XWsaxrA7EqlvaWJcyO/xmGLkgUMWg6CcT7mFWWwtHQuRb6lpLhPJDMpaYt+BoZgQHnfY3SdTT/K2fSifE0/ylns2O22cd1o2a3CyTCMVMBhmmbnyFC9U4F3gDeBZMMwDhh5XukC4Hcju423TURmEcuyaO8epK6lG9tHTxPX0YBzsAW3rZtkoGeggg9sB1OU5aYubhUJWcV4iivwFBThjYvDiPUJiIiIyIyyu3ecsoE/GoYRB8QBHwEXmqYZNQzjy8B9hmEkMTKtOMB420Rk5oqEI/jrauioW8+Qv5aE7gb8g0k81LUKgGsy3sBut9OdlEtn5gq85XNZlVXCUT7fSA/LYhe8iIiIzAo2y4rNkLZJUgJUa6ie7ArlbM8a6O+jtWo97S0tvDdcTG1rD8f1/oFyRwsAYctO0O6hPa2Mrso1FGWnke9OIiXlP0PtlLPpRzmbfpSz6UX5mn6Us9jZbKheKZtu1IzJZE1HLiJCd98Qda099Kx/g5SWt0kbaMFtdeC2WTgtOz/vO5OC7HQ68/enzmnHVViOr6QUV3xCrEMXERER2YIKJxHZbdFolGBTI8GadQy21uDoaiBjyM9NHcfSayVxRNJHHJhcR2dCNl0Zi0jKLsVTUsFPc/Ow2+1oqJ2IiIhMdSqcRGSXDA8P4a+uoqN+A+ZQDutCdrJCb3Fy4qvkA1HLRsiWSXtyEV+YX0BOYQGFWfvjTEmkINbBi4iIiIyTCicR2a6+gWEaAr0019fjqnqelL5mPFaIdFuUdOCf/QcQcS8ho2wRdfEe0gvKySotpzQ5Odahi4iIiEwoFU4iQjQapbOtjUCVSX9LNfaOBtIHW3ilv5y/DSzEaevnO5nraY/Pos5ZQUJWCa6ics4pLCHOERfr8EVEREQmnQonkVkmEokQqK+lvXY9rV0R3uzLo7G1g+8m/pJcWxSAkJVOd2I2c4or2KtiLwqznGSkHk2u3R7j6EVERERiQ4WTyAw2ODhMU6if2tZuUs2nyejaiDvaRqotTCrQP5xDd8qJLJyTTU38iWRm55JdVkGxMz3WoYuIiIhMKSqcRGaI7o4O/BtNepuqoKOetP4WIpEIP+o8HoBz0puwEuw0ZizB4S0ms6icRSVlLEtIHOlhXuyCFxEREZniVDiJTDPRaJRQcxNtNesZaK3l5chS6gI9HBn+O6uSNgDQZaXSkZDFsKeQiw5ZQGFOOr6MQ7DZbDGOXkRERGR6UuEkMoUNDw/REuynLtBHf/U7FAT+gSvsJ8U2NDL1Nzxny6eiII8k52H4nYfhK6sg3+0lP9bBi4iIiMwgKpxEpoi+3j78VSbdDRuJhuo2Tf0dDfJQ9xFUhbNZnNRGceowrc752D1FOAvmkF1awZUpKbEOXURERGTGU+EkEgOdgQD+6nX0N1fxyVA2b4ecpHTX8o30Z/EAfVYiIUcW9RkrOGbZQnJKy8h2JxOnWe1EREREYkKFk8gkikQjBAKd1IWGaWwKUln7O1zDrTht/eSMbFMVXUFB1oEUz19Gc3wu3uIKfNk5ZKtIEhEREZkyVDiJTJDhcISWjZ/QWbeRSFsNSb3NeCIBPhgq5te9+xNnh3mZAwRTygi6i0jLKyOrrIITMjI366UyZvGLiIiIyPapcBIZh56uTvwb19HTuJGO7gH+2jeP5rY+rkx/nOK4TgYtB8E4H40Zi/Flz+N78/Yhz5tKvOPQWIcuIiIiIuOgwklkB6LRKO2BNuo6bdT5e3BXP0dx34e4bN34AB/QHHXj8SxlSbmXweQz6M/x4SkoxGuPi3X4IiIiIjJBVDiJjIhEo7TUN9BZ9SFD/loSexpxhf0kMcTd7acTJY7PuyEzKY8OVyEpuaX4Sg0qvd7NBtjNieEZiIiIiMhkUeEks9JAbx+t1evpatiAvbORZ/r2Yl0bHBj/PiekvMmwZSdo9+JPm4vdU8SVRy2mMNdDYoKG2omIiIjMRiqcZMbrCgapD/ZTG4rQX/8xy9qfxW114rZZuIF+K4Gs1HIK966gLDOPnozV+IpLcDsSYh26iIiIiEwRKpxkxohaFoG2Tto/eZPB1moc3Y1kDrWSbuvjH72r+L/BCirSo8xN9tCdsZiknBI8JZXMW1RJVrA31uGLiIiIyBSmwkmmpaHBIfw1G+ms30C4rZaNAy5eCBVgH+7jR65HiVg2QjYXoZQSQq5CDildypfmzCE1KR44Zou+7HpfkoiIiIjshAonmfJ6u7pobmqlqjuJ+pYu9m9+mGzLT4YtSgYwaDkIxS9mv4XLKcp20pFURHZxGZlJybEOXURERERmCBVOMmVYlkV79yD+T95hsMnE3tFA+mALbls3fWEvv+06hvTUBOY5cxhMLSMhuwR3cQXegiIOidt86u+8mJ2DiIiIiMxMKpwkJiLhCP76Gtpr1zPsryXSG+LBrgPo6R/m3LS/s1dCPSErna6kXDoz9yEpt5xb5+9NRloicECswxcRERGRWUaFk0y6gf4+Wqs2UDWYSb2/D2/jy+wbfo00W5g0IGzZCdo97F2eSUGOi5z0MuJyvRSnpcU6dBERERERQIWTTLDuviEaq2sZqnodW3s9qQMteKwO3DaLezs+T3e8lwM8HhrSlhHvLSKzqBxfcRmuhATKYx28iIiIiMh2qHCScYlGowSbGgnVrqe/pYb4rgb+2r+Q97oyWRDfwNecf6PTSqUzIZvajIUkZpfyrcoleLwubDZbrMMXEREREdklKpxkp4aHh/BXV9HYEWFDVzxdzfWc2PcoybYh8oCoZSNky6Tc52Du3uUUe+eD+zgKXG4KYh28iIiIiMgEUOEkW+gfDFPf2sXABy9ihepJ7WvGYwVJt0V5o38+L4dXUOJNpcW5ALu3iIyCOWSVllOanEJprIMXEREREZkkKpxmKcuy6AgECFSb9DdXY+9soHkgid+2LwEsrst8EbsN2uOzqHPuS0JWCfuWzmVNQRF2uw1YGetTEBERERHZY1Q4zQKRSIRAfS2BpmY+Gcymzt/DYaFHmRPXTO7INu1WOn0pFXxhURlFWWkkZy4lw51Jjt0e09hFRERERKYCFU4zzNBwhMa2XtrNt4hreo+k3iY80TZSbWFs0QRu7zqVfG8a7Z7F1KQtxZk/B19pBUXp6RTFOngRERERkSlKhdM01t3Rgb/KpLepCtrrSe1v5SftqxmwHByX/BYHJpmE4nw0ZizB4S0ms6icu8sqiXfEAStiHb6IiIiIyLShwmkaiEajhJqbCdauY8Ogj43BKJ7A63w+7hWyRrbpslLoSMjm2OVZ5BTkUejZG487DZ89Lqaxi4iIiIjMBCqcpphwJEpLsI+munoSN75EQk8j7nCAFNsgecCzPQfjd87Dl11OdXwiqblz8JVVkO/2kg8siPUJiIiIiIjMQFOycDIMoxJ4CPAAQeBM0zTXxzaqidfX04O/ej3dDVVEQ7Wk9LXwcm85/xgox2vv4jsZbxC0e2h1zsPuKcJZMIfzyypISk6JdegiIiIiIrPKlCycgHuBu0zTfMQwjDOA+4BDYxzTbukMBPBXr6O1a5j3ery0tIb4Jr/AY7PwAH1WIu0OHxVlOSyYM5/CrDTSXcfidsTHOnQRERERkVlvyhVOhmFkAcuAI0ZW/Qa40zAMn2magdhFtmsi0Sj1f/s9w83rSO1rxmnrIwcIDuVTE3csRdkuqhxHkubLw1tSgS87h2y7nbmxDlxERERERLYy5QonoBBoNE0zAmCaZsQwjKaR9dOmcHrlvWac5ts47YO0ppQQ9BaTllfGorIKVmZkjmy1KKYxioiIiIjI2EzFwmm3eTxpMT2+z+fkuIPKqa/8AaX5LuIdeonsVOfzOWMdguwi5Wz6Uc6mH+VselG+ph/lbHqZioVTPZBvGEbcyN2mOCBvZP2YBIM9RKPWpAW4Iz6fk0CgGwBXSgId7b0xiUPGbvOcyfSgnE0/ytn0o5xNL8rX9KOcxY7dbhvXjZYpdyvENE0/8A5w2siq04C3p9PzTSIiIiIiMrNMxTtOABcADxmG8d9AO3BmjOMREREREZFZbEoWTqZpfgLsG+s4REREREREYIoWTrshDjaNW4ylWB9fdp1yNv0oZ9OPcjb9KGfTi/I1/ShnsbHZ5x63K/vZLCs2kyhMkgOAV2IdhIiIiIiITHkHAq+OdeOZVjglAvsAzUAkxrGIiIiIiMjUEwfkAq8Dg2PdaaYVTiIiIiIiIhNuyk1HLiIiIiIiMtWocBIREREREdkJFU4iIiIiIiI7ocJJRERERERkJ1Q4iYiIiIiI7IQKJxERERERkZ1Q4SQiIiIiIrITjlgHMJMYhlEJPAR4gCBwpmma62Mb1exjGEYNMDDyBXClaZrPGYaxErgPSAZqgDNM0/SP7DOuNhkfwzBuAU4CSoBFpml+MLJ+u9fQZLTJ2O0gZzVs43obadM1FyOGYXiAh4E5bHq54wbgfNM0A5ORF+Vs9+0kZxbwPhAd2fzLpmm+P7LfGuDHbPqd7k3gK6Zp9u1Om4ydYRiPA6Vsyk0PcIlpmu/o59nMpDtOE+te4C7TNCuBu9j0Q0RiY61pmktGvp4zDMMGPAJcNJKfl4EbAcbbJrvlceAgoPYz63d0DU1Gm4zd9nIGn7neYPzXla65CWMBN5umaZimuRewEbhxMvKinE2YbeZss/b9NrvOPi2a0oD7gTWmaZYD3cC3d6dNdtlZpmkuNk1zKXAL8POR9fp5NgOpcJoghmFkAcuA34ys+g2wzDAMX+yiks0sBwZM03x1ZPle4JTdbJNxMk3zVdM06zdft6NraDLaJuvcZqpt5WwndM3FkGmaIdM0X9ps1f8BxUxOXpSzCbCDnO3I0cAbm911uBf44m62yS4wTbNzs8UMIKqfZzOXCqeJUwg0mqYZARj5t2lkvex5vzIM4z3DMO42DCMTKGKzv5SbptkG2A3DcO9Gm0ysHV1Dk9EmE+ez1xvompsyDMOwA18HnmBy8qKcTbDP5OxTLxmG8Y5hGD8yDCNxZN0Wnz1Qx3/+/zbeNtlFhmE8YBhGHXA9cBb6eTZjqXCSmehA0zQXA/sANuDOGMcjMpPpepv67mDTsxfKzfTx2ZwVmaa5nE3DZecD341VYLI10zTPM02zCLiKTc+NyQylwmni1AP5hmHEAYz8mzeyXvagT4cTmaY5CNwN7M+mv6aNDnkwDMMLWKZphnajTSbWjq6hyWiTCbCd6w10zU0JI5N6VABfNE0zyuTkRTmbQNvI2ebXWRfwANu5zth0J6l+N9tknEzTfBg4BGhAP89mJBVOE2Rk9qB3gNNGVp0GvG2aZiB2Uc0+hmGkGoaRMfK9DTiVTXl5E0g2DOOAkU0vAH438v1422QC7egamoy2yT+jmW8H1xvomos5wzCuB/YGThgpbGFy8qKcTZBt5cwwDJdhGMkj3zuAtfznOnsW2McwjIqR5c0/+/G2yRgZhpFmGEbhZstrgBCgn2czlM2yrFjHMGMYhjGXTdNEuoB2Nk0TacY2qtnFMIwy4I9A3MjXR8Clpmk2G4axH5tmoEniP9Plto7sN642GR/DMG4HTgRygDYgaJrmgh1dQ5PRJmO3rZwBa9jO9fb/t3c3IVbVYRzHv2FOC0ccYkjISojsCYteFkFW0KawJBhCspdRMQhSsii12hi9gBE2YS9QRpTVwsWAkBAULcykxoWQBEY8IeVQkdWY5ns107Q4Z2KanDm3O3NxZvp+Vpf7/5/nPNzLcPnN/5z/KY/xb+40iYhLgT3AV8CJ8u1vMvO2RnwvfmejN9x3Bqyn+Gz7galAF/BQZh4tj2sr50wBdgPLMvPYaMZUm4iYCWwFpgF9FKFpTWZ+5u/Z5GRwkiRJkqQKXqonSZIkSRUMTpIkSZJUweAkSZIkSRUMTpIkSZJUweAkSZIkSRUMTpKkcSkiNkbE4yOM90fERWN8zvaI+HAsa0qSJge3I5ckNVxE3Ak8DFwGHKN4Ps3bwKuZWdcPUUT0A3Myc+8pxrYD1wC9wElgB3D/wDOmxkJELAPuzczrq+ZKkiY+V5wkSQ0VEauBF4HnKB6gOxNYDlwHNA1zzJQxOPXKzGwGLgZagA1jUFOS9D915uluQJI0eUXEDOBpiifcbxk0tBtoHzTvLeAEMBu4AWiLiMXAd5m5tpzzCLAK6AfW1tpDZv4SEVuAFYN6ehm4BTgOvA48k5l/Dl1FKle1VgCrgVZgM7ASuATYCEyNiKNAb2a2RMQCoAM4HzgMbMjMjlp7lSSNX644SZIaaR5wFrC1hrl3A+uA6cAngwci4mZgDXATMAe4sdYGIqIVWEgR1qAITTOACylC2lLgnhFK3ApcDVwBLALmZ+aXFKtmOzOzOTNbyrlvAPdl5nSKyxK31dqnJGl8c8VJktRIrUBPZvYOvBERXcBcikA1PzN3lENbM/PT8vXJiBhcZxGwKTP3lDWeBO6qOPdLEdFBcU/VdmBVeQngHcBVmXkEOBIRzwNLKELPqTybmYeAQxHxEXAl8MEwc/8A5kbE55l5EDhY0aMkaYJwxUmS1EgHgNaI+PsfdZl5bblCc4B//g59O0Kdc4eMd9dw7gczsyUzZ2Vme2b+TBHkmoYc3w3MGqHO/kGvjwPNI8xdCCwAuiPi44iYV0OfkqQJwOAkSWqkncBvQFsNc0faXe8HivuGBlxQZz89FKtCs4fU+r6OWv/qNzN3ZWYbcA7wLtBZT5OSpPHHS/UkSQ2TmYci4inglYg4g+ISt+PA5cC0/1CqE9gUEe8A+4An6uynLyI6gXURsRQ4m2LDiXo2cPgROC8imjLz94hoAm4H3svMXyPiMNBXT5+SpPHHFSdJUkNl5nqKcPIo8BNF4HgNeAzoqrHG+8ALFJst7GV0my48QHHf09cUm1BsBt6so8424Atgf0T0lO8tAfaVoWk5sHgUfUqSxhEfgCtJkiRJFVxxkiRJkqQKBidJkiRJqmBwkiRJkqQKBidJkiRJqmBwkiRJkqQKBidJkiRJqmBwkiRJkqQKBidJkiRJqmBwkiRJkqQKfwEuKolBEyPWdwAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 1008x432 with 2 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
      "output_type": "display_data"
     }
    ],
    "source": [
     "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
-    "df_vldvst.set_index(\"nx\")[\"Vector Loads / Loop Iteration\"].plot(ax=ax1, legend=True);\n",
-    "df_vldvst.set_index(\"nx\")[\"Vector Stores / Loop Iteration\"].plot(ax=ax2, legend=True);"
+    "for ax, pmu_counter in zip([ax1, ax2], [\"PM_VECTOR_LD_CMPL (min)\", \"PM_VECTOR_ST_CMPL (min)\"]):\n",
+    "    df_vldvst.set_index(\"Grid Points\")[pmu_counter].plot(ax=ax, legend=True);\n",
+    "    ax.plot(\n",
+    "        df_vldvst[\"Grid Points\"], \n",
+    "        linear_function(df[\"Grid Points\"], *fit_parameters[pmu_counter]), \n",
+    "        linestyle=\"--\", \n",
+    "        label=\"Fit: {:.2f} * x + {:.2f}\".format(*fit_parameters[pmu_counter])\n",
+    "    )\n",
+    "    ax.legend();"
    ]
   },
   {
@@ -3038,46 +3213,66 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 83,
+   "execution_count": 37,
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAF/CAYAAAB38jnaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xl8FdX9//H3zF2yk0AIEBCVXVwQZHFFrUtdQEGlSmldQMqvKBa0gBsG1KBfQKvUDXdsbbWoBQ0uuFAVKaIUVFpoEVDWQCCEJSHJXWZ+f9zkhgQIc+EuJL6ejwfl3lnO+czkYOedM3euYdu2LQAAAABAmJnoAgAAAADgaENQAgAAAIA6CEoAAAAAUAdBCQAAAADqICgBAAAAQB0EJQAAAACog6AEAAAAAHUQlAAAAACgDoISAAAAANRBUAIAAACAOghKAAAAAFAHQQkAAAAA6iAoAQAAAEAd7kQXEA0lJWWyLDshfWdnp6u4uDQhfaPhYbzAKcYKnGKswCnGCiLRmMaLaRpq2jQt4v0aRVCyLDthQam6f8ApxgucYqzAKcYKnGKsIBI/9fHCrXcAAAAAUEfcg9KTTz6pLl26aNWqVZKkb775RldeeaUuueQSDRs2TMXFxfEuCQAAAABqiWtQ+s9//qNvvvlGrVu3liTZtq1x48YpLy9P8+bNU69evfTII4/EsyQAAAAA2E/cgpLP59MDDzygiRMnyjAMSdLy5cuVlJSkXr16SZIGDx6sDz74IF4lAQAAAMABxS0oTZ8+XVdeeaXatm0bXlZYWBieXZKkZs2aybIs7dy5M15lAQAAAMB+4vLUu2XLlmn58uUaO3ZsTNrPzk6PSbtO5eRkJLR/NCyMFzjFWIFTjBU4xVhBJH7q4yUuQenrr7/W2rVrdeGFF0qStmzZoptvvlnXX3+9Nm/eHN5ux44dMgxDWVlZEbVfXFyasMcX5uRkaNu2PQnpGw0P4wVOMVbgFGMFTjFWEInGNF5M0zisiZW43Ho3YsQIffHFF5o/f77mz5+vVq1a6cUXX9Tw4cNVUVGhJUuWSJJef/11XXbZZfEoCQAAAAAOKqFfOGuapqZOnaqJEyeqsrJSbdq00bRp0xJZEgAAAAAkJijNnz8//Pq0005TQUFBIsoAAAAAgAOK+xfOAgAAAMDRjqAUA5/8a6PmfbU+0WUAAAAAOEwJ/YxSY/Xlii36YfMedeuQrdzstESXAwAAACBCzCjFgD9gybJtvfXZ2kSXAgAAAOAwEJRiwB+wZBqGlq7aptUbdyW6HAAAAAARIijFgD9gqUen5spM82rWp6tl24n5MlwAAAAAh4egFAP+gKX0VI8GnNNOqzfu0uKVWxNdEgAAAIAIEJRiwB+w5HGZ6ntqrtrlZujFuSv15YotiS4LAAAAgEMEpRjwBy153KZcpqnfX9dDHdpk6vl3VuiTf21MdGkAAAAAHCAoRZlt26EZJXfo1KYmu3XHtafq1I7N9ZePVunJvy/Xlh17E1wlAAAAgPoQlKIsELQkKRyUJMnrcenWq0/WVX3b6T8/7tB9LyzWnz/8nzZuK01UmQAAAADqwRfORpk/UB2UXLWWu0xTV5zdTud2b6O3v/hBn3+zWf9YuknHtkzX6V1b6sTjm6lty3SZhpGIsgEAAADsg6AUZTVB6cCTdZlpXt1wSRcN7NtOX63YqoX/3qI3Pl0jaY3SUzzq2CZTx7fK0HGtMpSbnapmTZLldjHxBwAAAMQTQSnKwkHpEOGmSapXF/Vqq4t6tVXJnkqtXLdDK34s0drNu/Xt6u2q/uYl0zCUnZmkFk1T1SIrRc2zkpWZ5lVmWpIy07xqkuZVeqqHmSgAAAAgighKUeY/wGeUDqVpRpLOOjlXZ52cK0kqrwxoQ1GptpbsVVFJubbtLFdRSbkWb96tvZWB/fY3DUOpyW6lJrmVUvV3arJbKUn7vPa65fWY8npc8rpdSqp+7THldbvC65LcLnk8JsELAAAAP2kEpSg71K13TqQkudW5bZY6t83ab93eioB27/Vpd5lPu8qq/65UWXlAeysDKq8MaG9FQIXFe7W3wq/yyqAq/cGIazANQ26XIZfLlNtlyO0y5TJDf++73GUeZL1pyjRD7ZimUfN3+HXNOlfVMsOoem0aMg0dZL/a+xuGIcNQ1R9DhkJ/m1Xvq4/FMCQZNa8NGTX7GArvV2tZuL2avkLtVbVdq70D7VdTmxTq07Js2XZovrC6PQAAABx9CEpR5otCUKpPanJohqhVs1TH+wSClip8Qfn8QfkCVu2//ZZ8gVCYqn7t91sKWJYCQVuBoKVg9d9W7fcBy1YwaMnnt7S3IqBA0FbQskLrgrYs25Zt2bJsKWjVvA+/tg9d+0+Bsc+L6gAXXmTUbFEdyKq3q9lH++xj1HlfO5DVtGHU9G3U1FC9rbHPMh2gJmOfnarbM/ZZX6utOn1Ut7fPodUcT60TUutlrbbrrq2bOQ+yWe1+6umr9v619zEOvqr2dgdZWX+tNe+SvG75fIEDbFT7OOqtwUE99bVRd5+Dn9eDN3Y45+tg/ez/1vkvGyL5vUREv8KIqN3YFJGS7FFFhd9ZszE6uNid3whqiKjdmGxatX1sGo/G8aWmeLW33Fdn09j8nCMR2fg5es/vgTdtWOd3X6mpSdq7t1KR/ysIaZaRpHO7t27QdykRlKKsekbJG6OgdDjcLlPpKaaU4kl0KbXYdigwWZZkVYUnyw4FqZqAZcmyVStghbe1JFtVgctWVfgKvber2g+9rvq7+r1d3bekqnVWVWoLBzi75rVt23Xa27etutvUHJcUOq5QL6H/SU31qmyvLzyrVB0Wq7faNzxW1169gR3+u86+4U3smu322bb2+5od7PDLmvbq9lG9j71PI/vsEj4XtWuu3ce+NdU9btXdXwdXax/VelN7u4PsVLftgwV1+2Ar9qthn/d19rH3+9+D1Xrg47AlBYK2/IHgAeqsfb4P0nSd9pydL7ueYg+2qvb+zs/dwVY6PV+x+kVLZO063ziSZiM9NtM0wv+tqb/d2NQbycaRtXt0nN9IRHKOI2s3gm3rWWcaklXfP7I41HAkG9sxGmyxGz+xOb8RVXAk7RpHNqaz0pN09im5Mt0EJVSpDkruoygoHa0Mw5DLMPRTeqhfTk6Gtm3bk+gy0AAwVuAUYwVOMVYQCcYLXzgbdU6fegcAAADg6MXVfJT5g6EHJ8TqM0oAAAAAYo+r+SiLxlPvAAAAACQWV/NRVvMwB1eCKwEAAABwuAhKUcaMEgAAANDwcTUfZQQlAAAAoOHjaj7K/AFLhiSX2XCfGQ8AAAD81BGUoswftORxm/t9oz0AAACAhoOgFGX+gMVtdwAAAEADxxV9lPkDQYISAAAA0MBxRR9lzCgBAAAADR9X9FEWCkp8hxIAAADQkBGUoswfsORxcVoBAACAhowr+iirfuodAAAAgIaLK/oo8/EZJQAAAKDB44o+yniYAwAAANDwcUUfZQGCEgAAANDguePV0S233KKNGzfKNE2lpqbqvvvuU9euXXXBBRfI6/UqKSlJkjR27Fj17ds3XmVFHTNKAAAAQMMXt6A0ZcoUZWRkSJI+/vhj3XPPPZo9e7Yk6Y9//KM6d+4cr1Jiyh/kqXcAAABAQxe3K/rqkCRJpaWlMgwjXl3HFTNKAAAAQMMXtxklSbr33nu1cOFC2batF154Ibx87Nixsm1bPXv21B133KEmTZrEs6yo8gWC8vKFswAAAECDZti2bce70zlz5ujdd9/V888/r8LCQuXm5srn82ny5MkqKyvTI488Eu+SosK2bQ0c945+cWFn/fqyrokuBwAAAMBhiuuMUrWBAwcqLy9PJSUlys3NlSR5vV4NGTJEI0eOjLi94uJSWVbc854kKScnQ9u27ZEkBYKWLFvy+QLhZcC+9h0vQH0YK3CKsQKnGCuIRGMaL6ZpKDs7PfL9YlDLfsrKylRYWBh+P3/+fGVmZiopKUl79oR+ALZt67333lPXrg13JsYfsCSJhzkAAAAADVxcZpTKy8s1evRolZeXyzRNZWZmasaMGSouLtZtt92mYDAoy7LUoUMHTZw4MR4lxYQ/WBWUeJgDAAAA0KDFJSg1b95cs2bNOuC6OXPmxKOEuAhUzSh5CUoAAABAg8YVfRT5AswoAQAAAI0BV/RR5CcoAQAAAI0CV/RRRFACAAAAGgeu6KPIHwhK4ql3AAAAQEPHFX0U1Tz1zpXgSgAAAAAcCYJSFHHrHQAAANA4cEUfRQQlAAAAoHHgij6KCEoAAABA48AVfRQRlAAAAIDGgSv6KCIoAQAAAI0DV/RRFH7qHY8HBwAAABo0ruijiBklAAAAoHHgij6KfIGg3C5ThmEkuhQAAAAAR4CgFEX+gMVsEgAAANAIcFUfRQGCEgAAANAocFUfRf6AxYMcAAAAgEaAq/oo8gcteT2cUgAAAKCh46o+inx+ZpQAAACAxoCr+ijyB/mMEgAAANAYcFUfRTz1DgAAAGgcuKqPIn/AkpugBAAAADR4XNVHEU+9AwAAABoHruqjKPTUO1eiywAAAABwhAhKUeQPBJlRAgAAABoBruqjiIc5AAAAAI0DV/VRRFACAAAAGgeu6qOIoAQAAAA0DlzVR4ll2QpaNkEJAAAAaAS4qo8Sf9CSJIISAAAA0AhwVR8l/kBVUOKpdwAAAECDx1V9lISDEjNKAAAAQIPHVX2U+ANBSQQlAAAAoDHgqj5KamaUXAmuBAAAAMCRIihFCQ9zAAAAABoPruqjhM8oAQAAAI0HV/VR4uOpdwAAAECjwVV9lDCjBAAAADQe7nh1dMstt2jjxo0yTVOpqam677771LVrV/3www+66667tHPnTmVlZWnKlCk6/vjj41VW1AQISgAAAECjEbegNGXKFGVkZEiSPv74Y91zzz2aPXu2Jk6cqCFDhmjAgAF6++23lZeXpz/96U/xKitqqmeUvAQlAAAAoMGL21V9dUiSpNLSUhmGoeLiYq1YsUL9+/eXJPXv318rVqzQjh074lVW1NQ89Y7HgwMAAAANXdxmlCTp3nvv1cKFC2Xbtl544QUVFhaqZcuWcrlC4cLlcqlFixYqLCxUs2bN4lnaEeMzSgAAAEDjEdegNHnyZEnSnDlzNHXqVI0ePToq7WZnp0elncOVk5Mhb1LoVOa2bKLkpLieVjQwOTkZh94IEGMFzjFW4BRjBZH4qY8Xx1f0a9eu1X//+1/t3bu31vJBgwZF3OnAgQOVl5enVq1aaevWrQoGg3K5XAoGgyoqKlJubm5E7RUXl8qy7IjriIacnAxt27ZHJbvKJUk7d5bJZTKrhAOrHi/AoTBW4BRjBU4xVhCJxjReTNM4rIkVR0FpxowZeuqpp3TCCScoOTk5vNwwDEdBqaysTLt37w4HoPnz5yszM1PZ2dnq2rWr5s6dqwEDBmju3Lnq2rVrg7vtTgrdeucyDUISAAAA0Ag4CkqvvPKK3njjDZ1wwgmH1Ul5eblGjx6t8vJymaapzMxMzZgxQ4ZhaNKkSbrrrrv09NNPq0mTJpoyZcph9ZFobVuk66R2DS/gAQAAANifo6CUnJys9u3bH3YnzZs316xZsw64rkOHDnrjjTcOu+2jRZ+uLdWna8tElwEAAAAgChzdJzZ69Gjl5+erqKhIlmXV+gMAAAAAjY2jGaW77rpLkmrN/Ni2LcMwtHLlythUBgAAAAAJ4igoffLJJ7GuAwAAAACOGo6CUps2bSRJlmVp+/btat68uUye7gYAAACgkXKUdkpLSzV+/Hh169ZN5557rrp166Y777xTe/Y0jmerAwAAAMC+HAWl/Px8lZeXq6CgQN99950KCgpUXl6u/Pz8WNcHAAAAAHHn6Na7BQsW6OOPP1ZKSookqV27dnr44Yd18cUXx7Q4AAAAAEgERzNKSUlJ2rFjR61lJSUl8nq9MSkKAAAAABLJ0YzSoEGDNGzYMN10001q3bq1Nm/erJkzZ+raa6+NdX0AAAAAEHeOgtLIkSPVokULzZ07V0VFRWrRooWGDx+uQYMGxbo+AAAAAIg7R0HJMAwNGjSIYAQAAADgJ+GgQWnOnDkaOHCgJOnNN988aAOEJwAAAACNzUGD0rvvvhsOSm+//fYBt6meaQIAAACAxuSgQen5558Pv/7zn/8cl2IAAAAA4Gjg6PHg1TNLdV199dVRLQYAAAAAjgaOgtK6dev2W2bbtjZu3Bj1ggAAAAAg0ep96t348eMlSX6/P/y62qZNm9SxY8fYVQYAAAAACVJvUDr22GMP+FqSTjvtNF166aWxqQoAAAAAEqjeoDRq1ChJ0qmnnqq+ffvGpSAAAAAASDRHXzjbt29f+Xw+/fDDDyopKZFt2+F1Z555ZsyKAwAAAIBEcBSUlixZojFjxsjn86m0tFTp6ekqKytTq1at9Mknn8S6RgAAAACIK0dPvXv44Yc1fPhwffXVV0pLS9NXX32lkSNHasiQIbGuDwAAAADizlFQ+vHHH3XDDTfUWjZixAjNnDkzFjUBAAAAQEI5CkoZGRkqLS2VJOXk5Gj16tXavXu39u7dG9PiAAAAACARHH1G6eKLL9Znn32mK664QoMGDdINN9wgt9vN48EBAAAANEqOgtK9994bfj1s2DB169ZNZWVlPDIcAAAAQKN0yFvvgsGgLrroIvl8vvCyXr166bzzzpNpOrpzDwAAAAAalEMmHZfLJZfLpcrKynjUAwAAAAAJ5+jWuxtuuEFjxozR//t//0+tWrWSYRjhdW3bto1ZcQAAAACQCI6C0oMPPihJWrhwYa3lhmFo5cqV0a8KAAAAABLIUVD673//G+s6AAAAAOCoEdHTGAoLC/XNN9/EqhYAAAAAOCo4CkqbN2/W4MGDddlll2no0KGSpA8++KDWY8MBAAAAoLFwFJTy8vJ0/vnna+nSpXK7Q3frnX322frnP/8Z0+IAAAAAIBEcBaXly5drxIgRMk0z/MS7jIwM7dmzJ6bFAQAAAEAiOApK2dnZWrduXa1lq1evVm5ubkyKAgAAAIBEcvTUu2HDhum3v/2tRowYoUAgoLlz5+rZZ5/Vb37zG0edlJSUaPz48Vq/fr28Xq+OO+44PfDAA2rWrJm6dOmizp07yzRDmW3q1Knq0qXL4R8RAAAAABwhR0Fp0KBBysrK0t/+9jfl5uZqzpw5Gj16tC666CJHnRiGoeHDh+v000+XJE2ZMkWPPPKIHnroIUnS66+/rrS0tMM8BAAAAACILkdB6dtvv9VFF120XzD67rvv1K1bt0Pun5WVFQ5JktS9e3e99tprEZYKAAAAAPHh6DNK1Y8Er2v48OERd2hZll577TVdcMEF4WXXX3+9BgwYoEcffVQ+ny/iNgEAAAAgmuqdUbIsS7Zt1/pTbf369XK5XBF3+OCDDyo1NVW//vWvJUmffvqpcnNzVVpaqnHjxumpp57S7bffHlGb2dnpEdcRTTk5GQntHw0L4wVOMVbgFGMFTjFWEImf+nipNyideOKJ4ceBn3jiibXWmaap3/72txF1NmXKFK1bt04zZswIP7yh+sl56enp+sUvfqGXX345ojYlqbi4VJZlH3rDGMjJydC2bTwmHc4wXuAUYwVOMVbgFGMFkWhM48U0jcOaWKk3KH3yySeybVvXX3+9Xn311fBywzDUrFkzJScnO+7oscce07///W8999xz8nq9kqRdu3YpKSlJycnJCgQCmjdvnrp27RrxQQAAACBxbNtWaekulZeXyrKCiS4HUVBUZMqyrESXERG326umTXPkcjl6DMOh26tvZZs2bSRJ//jHP46ok++//14zZszQ8ccfr8GDB0uSjjnmGA0fPlx5eXkyDEOBQEA9evTQ6NGjj6gvAAAAxFdJybaqX6S3lMvlDt+RhIbL7TYVCDScoGTbtsrKdqukZJuaN4/Od73WG5SmT59+yAacBJtOnTrpf//73wHXFRQUHHJ/AAAAHL18vgq1bHmMDMPRc8KAqDMMQ2lpTVRaujNqbdYblLZs2RK1jgAAANBY2YQkJFy0ZzLrDUoPP/xwVDsDAAAAgIaA6A8AAIBGZ9CgK7R27eqYtP3eewWaMGF8xPvNnPmC3npr1n7LR40aoYULF0SjtIhMnjxJb731N0nS0qVL9NVXX8akn1mz/qqSkh3h93PmvKm//e0vMekrmghKAAAAQBx88cXnOueccxNdxgEtW/avww5KwWD9TzqcNeu1WkFp4MBBuu66Xx1WX/EUnWfnAQAAAA3AypX/0eOPP6KKinIlJ6dozJix6tr1JAUCAY0fP0a7du1SZWWlTjzxJI0bd488Ho/8fr8ee2yqli37l3JyWujYY48Pt7d8+bd67LGpsixbgUBAN944TBdffOl+/RYVbZVt22rZspXjWjdu3KBp0x7Szp0lcrlcGjHiVp1xxlmSpC+//KeeffZJWZalrKymGjfuHh1zTFstXbpE06c/qi5dTtDq1avkcrl0zz2T1K5d+4P2s2bNar399t9lWZaWLPlKF174cw0dOkyLFn2hP/3pJVVW+uTxeHTbbXfo5JNP0dKlS/THP/5Bp57aXStXrtCNN96ssrIyvfHGawoE/JKkW28do169+uiVV17U9u3bNGHCnfJ6kzRxYr7mz/9I5eXlGjVqjILBoJ555gktXvxPSdLpp5+lkSNvk8vl0uTJk+T1erVhw3oVFW3VSSedogkT7o/bUxUJSgAAAIiqhcsL9cV3hTFp+5xuuTr7lMN7/LPf79e9947X3XfnqXfv07VkyVe6997x+tvf5sjtdmvixHxlZmbJtm3l50/Uu+++rYEDB+ntt99SYeFm/fnPsxQIBHTrrb9Rbm6ohr/85RVde+0QXXppv6rvkyo9YN8LFnwW8WzS/fdP0IABV6l//4H64Ye1GjXqN3r11Tcl2crPz9MTTzyndu3aa+7cObr//gl6/vlXJElr1nyvMWPGqkePnnr//bnKz5+oF1/880H76dChowYMuDocXqRQSJs580X94Q9PKC0tXWvXrtHYsb/T3//+riRp7drVGjv2Lt1+e+gWxF27duriiy+RYRhav/5HjR59i2bPfk833nizCgrmKD9/itq377hf3++8M1vff79KL70UuhVv7Njf6Z13ZuuqqwZV9bNGjz/+tEzT1NChv9KSJYvVu/cZEZ3Hw+U4KC1atEjvvvuuioqK1KJFC/Xr109nnnlmLGsDAAAAomb9+nXyeDzq3ft0SVKvXn3k8Xi0fv06HX98O7322qv68st/yrKC2rNnj5KTkyVJS5f+S5dd1l9ut1tut1uXXHKZvvvuG0nSaaf10quvztSWLYXq3fsMnXTSyQfs+4svPtMttzj/vtC9e8u0evUqXX75lZKkdu3aq2PHLvrPf5ZLkjp06ByeJbr88iv16KNTtHdvmSTpmGPaqkePnpKkSy65XFOnTlZZWanS0tId9//ll4u0adNG3XrriPCyYDCoHTuKw32cfHK38LpNmzZq0qR7tW3bNrndbu3YUazi4u3Kzm5ebz9LlizW5Zf3l8fjqTqWK/T55/8IB6W+fc9XUlKSJKlLly7atGmjevd2fBhHxFFQevnll/Xcc8/p6quvVteuXVVYWKjf//73Gj58uIYNGxbrGgEAANCAnH3K4c/6xJJt2we8bcswpI8++kDfffeNnn76eaWmpulPf3pJGzasD+93MNdeO0Rnn32uvv56sR5/fKp69z5DI0bcUmub0tJSFRYWqlOnzhHVeiCGYci2LcX+7jNbp59+pu6774H91vz44w9KSUmttWzSpHs1atTtOvfc82VZli666Bz5fL5D92Lv/1jvfd8nJXnDr03TdcjPQ0WTo4c5vPTSS3rllVc0btw4/epXv9LYsWP1yiuv6KWXXop1fQAAAEBUHHfc8fL5fFq6dImk0JPeAoGA2rY9TqWle5SZmaXU1DSVlpbqo48+CO/Xq1dvffDBewoEAqqsrKi1bv36dWrT5hgNHHiNfvGLX2rlyv/s1++iRV+EP1vkVFpaujp27Kz3358rSVq37ketWbNKJ554sk46qZtWr16ldet+lCS9//5cderURampaZJCt819++0ySaEA2L59x0POJqWlpamsrOa2wT59ztTixYu0du2a8LIDHVu10tJS5ea2liTNnft2rZCUlpZ20FsSe/c+Xe+9V6BAIKBAIKD335+rXr361FtrvDi+9e64446r9b5t27Zx+yAVAAAAEKkxY26Vy+UKv3/lldc1efLUWg9zyM+fIo/Ho0sv7a8FCz7Xr399rXJycnTqqT1UWVkpSbryyqu1evVqXX/9tWrRoqW6d++pwsJNkqQ333xdS5f+Sx6PWx6PV7ffPm6/OhYs+EwDBlxdb60PPTRJXm9S+P20adM1cWK+pk17SLNm/VUul0sTJjygpk2bSpImTHhA999/r4LBoLKymiov78Hwvp06ddZHH83T9OmPyuUyNWHC/Yc8V+ee+zPde+843XTTkPDDHPLyHtT//d+DqqysVCDg1ymnnKquXU864P6/+90duueesWrePEfdu5+mzMzM8LpBgwbroYceUHJysiZOzK+135VXXqWNGzdo6NAhkkIB7YorrjpkvfFg2PXNJVaZNWuWFi9erNtuu02tWrVSYWGhnn76afXp00fXXHNNeDvTTMzTxouLS2VZhzyMmMjJydC2bXsS0jcaHsYLnGKswCnGCpyK5VjZsmWdWrU67tAb/gT5/X798pdX6/XXZ8vtjv1z1JYuXaKnnppe78MbnHC7TQUCVpSqip8DjUXTNJSd7fzzWdUc/bTy8vIkSe+++27VfZGhUFJQUKC8vLzw/Z4rV66MuAAAAACgsfJ4PHrzzYJEl4HD4CgoffLJJ7GuAwAAAMAROu20Xkc8m4QQR0GpTZs2kiTLsrR9+3Y1b948YbfZAQAAAECsOUo7paWlGj9+vLp166Zzzz1X3bp105133qk9e7gnGgAAAEDj4ygo5efnq7y8XAUFBfruu+9UUFCg8vJy5efnH3pnAAAAAGhgHN16t2DBAn388cdKSUmRJLVr104PP/ywLr744pgWBwAAAACJ4GhGKSkpSTt27Ki1rKSkRF6v9yB7AAAAAIkzf/7HGjp0iG66aYhZO0TlAAAgAElEQVSGDLlGkybdG1734ovPyu/3J7A6aebMF/TWW7P2Wz5q1AgtXLgg7vVMnjxJb731N0mhR4wvXrwoJv3MmvVXlZTU5Io5c97U3/72l5j0daQczSgNGjRIw4YN00033aTWrVtr8+bNmjlzpq699tpY1wcAAABEZPv27frDH/5PL774qlq2bCXbtrV69arw+pdffl6//OX18ng8EbUbCASi9l1IX3zxuSZPnhqVtqJt2bJ/qbKyQj17nh7xvsFgsNaX/NY1a9Zr6tWrj5o2bSZJGjhw0GHXGWuOftIjR45UixYtNHfuXBUVFalFixYaPny4Bg06eg8MAAAAP007dmyXy+VWZmaWJMkwDHXq1EWS9OijUyRJI0cOk2GYeuKJZ+X3+zRt2sPavHmjbNvWL395vS67rL8kadCgK9S//wD9619fq3XrNrr77jy9//5c/f3vbygYDCo9PV1jx96lY489XsuXf6vHHpsqy7IVCAR0443DdPHFl+5XX1HRVtm2rZYtWzk+po0bN2jatIe0c2eJXC6XRoy4VWeccZYk6csv/6lnn31SlmUpK6upxo27R8cc01ZLly7R9OmPqkuXE7R69Sq5XC7dc88ktWvX/qD9rFmzWm+//XfZtqWvvlqsCy/8ua6//iYtWvSF/vSnl1RZ6ZPH49Ftt92hk08+RUuXLtEf//gHnXpqd61cuUI33nizysrK9MYbrykQCM3a3XrrGPXq1UevvPKitm/fpgkT7pTXm6SJE/M1f/5HKi8v16hRYxQMBvXMM09o8eJ/SpJOP/0sjRx5m1wulyZPniSv16sNG9arqGirTjrpFE2YcL8Mw3B8DiPlKCgZhqFBgwYRjAAAAHBI/lUL5f/f5zFp29PlXHk6n13vNh07dtaJJ56ka67ppx49eqpbt+665JLLlZmZpd///k7Nnv2GnnnmJaWmpkqS8vLuVvv2HfTww49o+/btuvnmX6lLlxPUvn1HSaEZqieeeFaS9O23yzR//kd66qnn5fV6tWjRQj388AN65pmX9Je/vKJrrx2iSy/tJ9u2VVpaesD6Fiz4TOecc25Ex33//RM0YMBV6t9/oH74Ya1GjfqNXn31TUm28vPz9MQTz6ldu/aaO3eO7r9/gp5//hVJ0po132vMmLHq0aOn3n9/rvLzJ9b7PUsdOnTUgAFXq7KyQrfcMlqStGnTRs2c+aL+8IcnlJaWrrVr12js2N/p739/V5K0du1qjR17l26/fbwkadeunbr44ktkGIbWr/9Ro0ffotmz39ONN96sgoI5ys+fEj63+3rnndn6/vtVeuml0K14Y8f+Tu+8M1tXXTWoqp81evzxp2WapoYO/ZWWLFms3r3PiOg8RsLx3OFbb72lt99+W1u3blXLli01YMAAXXPNNTErDAAAADgcpmnq4Ycf1dq1q7Vs2VItWPCp/vrXP+tPf3pdTZpk7rf9kiVfadSoMZKk5s2b68wzz9HSpUvCF/OXXtovvO3ChZ9r9ervNWLETZIk27a1Z89uSaEve3311ZnasqVQvXufoZNOOvmA9X3xxWfhEOLE3r1lWr16lS6//EpJUrt27dWxYxf95z/LJUkdOnQOzxJdfvmVevTRKdq7t0ySdMwxbdWjR09J0iWXXK6pUyerrKxUaWnpjvtfvHiRNm3aqFtvHRFeFgwGtWNHcbiPk0/uFl63adNGTZp0r7Zt2ya3260dO4pVXLxd2dnN6+1nyZLFuvzy/uFbIi+//Ap9/vk/wkGpb9/zlZSUJEnq0qWLNm3aqN69HR9GxBwFpWeeeUZz5szRsGHDwp9ReuGFF1RUVKSRI0fGrjoAAAA0OJ7OZx9y1ice2rfvqPbtO+qaa67Vr3/9Cy1b9i+dd94FB9y27i1c+75PTU0Jv7ZtqV+/KzV8+G/3a+Paa4fo7LPP1ddfL9bjj09V795naMSIW2ptU1paqsLCQnXq1Nnxcdi2fdCabdtSDO8+C/d/+uln6r77Hthv3Y8//qCUlNRayyZNulejRt2uc889X5Zl6aKLzpHP53PQT/0/h6SkmgfJmaZLwWAw0kOJiKOn3r3xxht66aWXdN1116lv37667rrr9MILL2jWrP2f1AEAAAAk0rZtRfr3v78Lvy8q2qqdO0uUm9takpSamqaysprb4nr16qN33pktSSou3q5FixaqR49eB2z77LP76oMP3lVR0VZJoZmV//53pSRp/fp1atPmGA0ceI1+8YtfauXK/+y3/6JFX4Q/W+RUWlq6OnbsrPffnytJWrfuR61Zs0onnniyTjqpm1avXqV1636UJL3//lx16tRFqalpkkKfbfr222WSpI8++kDt23c85GxSWlpardsG+/Q5Q4sXL9LatWvCyw50bNVKS0vD53ru3LdrhaS6be+rd+/T9d57BQoEAgoEAnr//bnq1atPvbXGkqMZpfLycjVr1qzWsqysLFVUVMSkKAAAAOBwBYNBvfjis9qypVBJScmybUvDh49U584nSJIGD/6Vfve73yopKVlPPPGsxowZq2nTHtKNNw6Wbdv67W9HqX37Dgdsu3v30zRixC266647FAxaCgT8+tnPLtIJJ3TVm2++rqVL/yWPxy2Px6vbbx+33/4LFnymAQOurrf+hx6aJK83Kfx+2rTpmjgxX9OmPaRZs/4ql8ulCRMeUNOmTSVJEyY8oPvvv1fBYFBZWU2Vl/dgeN9OnTrro4/mafr0R+VymZow4f5Dnr9zz/2ZJkwYr5tuGhJ+mENe3oP6v/97UJWVlQoE/DrllFPVtetJB9z/d7+7Q/fcM1bNm+eoe/fTlJlZc7vjoEGD9dBDDyg5OVkTJ+bX2u/KK6/Sxo0bNHToEElSnz5n6oorrjpkvbFi2Aeby9vH+PHjVVZWpt///vdq3bq1Nm3apMcff1zJycmaNm1aPOqsV3FxqSzrkIcREzk5Gdq2bU9C+kbDw3iBU4wVOMVYgVOxHCtbtqxTq1bHxaTtxsTv9+uXv7xar78+O2qPGa/P0qVL9NRT0+t9eMPBuN2mAgErBlXF1oHGomkays52/pms8H5ONsrLy1NaWpoGDBigHj16aODAgUpJSdF9990XcYcAAADAT5HH49GbbxbEJSThyDmaUapmWZZKSkrUtGlTmaapDRs2qG3btrGszxFmlNBQMF7gFGMFTjFW4BQzSogEM0oOZ5RqOjGVnZ0t0zTl8/n085//POIOAQAAAOBoF1FQqiuCySgAAAA0WqHHVAOJFO1sckRBqe5zzgEAAPDT4/Uma+fO7QoE/PwiHQlh27bKynbL7fYeemOH+CQZAAAAjkjTpjkqLd2lHTu2yrJi+yWgiA/TNGVZDWuW0O32qmnTnOi1V9/K884776CzRvy2AAAAAFLoLqOMjCxlZGQluhRECQ+KOURQOhq+IwkAAAAA4q3eoNSnT5941QEAAAAAR40jepgDAAAAADRGBCUAAAAAqCMuT70rKSnR+PHjtX79enm9Xh133HF64IEH1KxZM33zzTfKy8tTZWWl2rRpo2nTpik7OzseZQEAAADAAdU7ozR27FgVFBRo586dR9SJYRgaPny45s2bp4KCArVt21aPPPKIbNvWuHHjlJeXp3nz5qlXr1565JFHjqgvAAAAADhS9Qal888/X59//rn69eunwYMH65lnntGKFSsi7iQrK0unn356+H337t21efNmLV++XElJSerVq5ckafDgwfrggw8ibh8AAAAAoqneW+/69++v/v37y7Ztfffdd/r00081YcIEbd++XX379tV5552ns846S+np6Y47tCxLr732mi644AIVFhaqdevW4XXNmjWTZVnauXOnsrJ4Dj8AAACAxDDsw/jm2O3bt+uzzz7TZ599pq+//lqjR4/W4MGDHe17//33a+vWrXryySf10Ucf6a233tJzzz0XXn/qqafqs88+IygBAAAASJjDephD8+bNdc011+iaa65RMBjUrl27HO03ZcoUrVu3TjNmzJBpmsrNzdXmzZvD63fs2CHDMCIOScXFpbKsiPNeVPCtxYgE4wVOMVbgFGMFTjFWEInGNF5M01B2tvM74ML7HWnHLpdLzZo1O+R2jz32mP7973/rqaeektfrlSSdfPLJqqio0JIlSyRJr7/+ui677LIjLQkAAAAAjkhcHg/+/fffa8aMGTr++OPDt+gdc8wxeuqppzR16lRNnDix1uPBAQAAACCR4hKUOnXqpP/9738HXHfaaaepoKAgHmUAAAAAgCOHdevdhg0btGnTpmjXAgAAAABHBUdB6Y477tDSpUslSW+99Zb69eunfv366Y033ohpcQAAAACQCI6C0qJFi3TyySdLkmbOnKmXX35Zb7zxhp5//vmYFgcAAAAAieDoM0p+v19er1dbt27Vzp071bNnT0mh71MCAAAAgMbGUVDq2rWrnn32WW3atEnnn3++JGnr1q1KT4/8eeQAAAAAcLRzdOvd5MmTtWrVKlVWVmrMmDGSpGXLlumKK66IaXEAAAAAkAiGbdt2oos4UsXFpbKsxBxGY/rWYsQe4wVOMVbgFGMFTjFWEInGNF5M01B2duR3wjmaUbJtW7NmzdKNN94YnkX6+uuv9d5770XcIQAAAAAc7RwFpenTp+vNN9/Utddeq8LCQklSq1at9MILL8S0OAAAAABIBEdBafbs2ZoxY4b69esnwzAkScccc4w2bNgQ0+IAAAAAIBEcBaVgMKi0tDRJCgelsrIypaamxq4yAAAAAEgQR0HpvPPO08MPPyyfzycp9Jml6dOn62c/+1lMiwMAAACARHAUlO6++24VFRWpZ8+e2rNnj3r06KHNmzdr7Nixsa4PAAAAAOLO0RfOpqen6+mnn1ZxcbE2bdqk3Nxc5eTkxLo2AAAAAEgIRzNKAwcOlCRlZ2erW7du4ZB09dVXx64yAAAAAEgQR0Fp3bp1+y2zbVsbN26MekEAAAAAkGj13no3fvx4SZLf7w+/rrZp0yZ17NgxdpUBAAAAQILUG5SOPfbYA76WpNNOO02XXnppbKoCAAAAgASqNyiNGjVKknTqqaeqb9++cSkIAAAAABLN0WeUHn30Uc2cOVPFxcWxrgcAAAAAEs5RULrlllu0ZMkSXXjhhRo+fLgKCgpUUVER69oAAAAAICEcBaWf//znevLJJ/Xpp5/qwgsv1F//+ledc845uvvuu7Vo0aJY1wgAAAAAceXoC2erZWVlaeDAgUpNTdULL7ygDz/8UEuWLJFpmpo4caLOOuusWNUJAAAAAHHjKChZlqWFCxfq7bff1qeffqru3btrxIgRuvjii5WcnKx58+Zp3LhxWrhwYazrBQAAAICYcxSU+vbtq6ZNm2rAgAEaN26cWrZsWWv9JZdcoldffTUmBQIAAABAvDkKSjNmzNApp5xS7zZ//vOfo1IQAAAAACSao4c57BuSiouL9eGHH2rNmjUxKwoAAAAAEqneGaWtW7fqwQcf1OrVq9WjRw8NGzZMv/71r2Wapvbs2aMpU6aoX79+8aoVAAAAAOKi3hmliRMnqkmTJrr77rtl27Zuvvlm5efna9GiRXr88cc1Y8aMeNUJAAAAAHFT74zSsmXLtGDBAnm9XvXp00e9evXSRRddJEm66KKLdOedd8alSAAAAACIp3pnlPx+v7xeryQpJSVFaWlpMgwjvN627dhWBwAAAAAJUO+MUjAY1JdffhkORIFAoNZ7y7JiXyEAAAAAxFm9QSk7O1v33HNP+H1WVlat982aNYtdZQAAAACQIPUGpfnz58erDgAAAAA4ajj6HiUAAAAA+CkhKAEAAABAHQQlAAAAAKij3s8oRdOUKVM0b948bdq0SQUFBercubMk6YILLpDX61VSUpIkaezYserbt2+8ygIAAACA/cQtKF144YW64YYb9Ktf/Wq/dX/84x/DwQkAAAAAEi1uQalXr17x6goAAAAAjkjcglJ9xo4dK9u21bNnT91xxx1q0qRJoksCAAAA8BNm2LZtx7PDCy64QDNmzAjfaldYWKjc3Fz5fD5NnjxZZWVleuSRR+JZEgAAAADUkvAZpdzcXEmS1+vVkCFDNHLkyIjbKC4ulWXFNe+F5eRkaNu2PQnpGw0P4wVOMVbgFGMFTjFWEInGNF5M01B2dnrk+8WgFsf27t2rPXtCPwDbtvXee++pa9euiSwJAAAAAOI3o5Sfn68PP/xQ27dv19ChQ5WVlaUZM2botttuUzAYlGVZ6tChgyZOnBivkgAAAADggOL+GaVY4NY7NBSMFzjFWIFTjBU4xVhBJBrTeGmQt94BAAAAwNGIoAQAAAAAdRCUAAAAAKAOghIAAAAA1EFQAgAAAIA6CEoAAAAAUAdBCQAAAADqICgBAAAAQB0EJQAAAACog6AEAAAAAHUQlAAAAACgDoISAAAAANRBUAIAAACAOghKAAAAAFAHQQkAAAAA6iAoAQAAAEAdBCUAAAAAqIOgBAAAAAB1EJQAAAAAoA6CEgAAAADUQVACAAAAgDoISgAAAABQB0EJAAAAAOogKAEAAABAHQQlAAAAAKiDoAQAAAAAdRCUAAAAAKAOghIAAAAA1EFQAgAAAIA6CEoAAAAAUAdBCQAAAADqICgBAAAAQB0EJQAAAACog6AEAAAAAHUQlAAAAACgDoISAAAAANQRl6A0ZcoUXXDBBerSpYtWrVoVXv7DDz/ouuuu0yWXXKLrrrtOP/74YzzKAQAAAIB6xSUoXXjhhfrLX/6iNm3a1Fo+ceJEDRkyRPPmzdOQIUOUl5cXj3IAAAAAoF5xCUq9evVSbm5urWXFxcVasWKF+vfvL0nq37+/VqxYoR07dsSjJAAAAAA4qIR9RqmwsFAtW7aUy+WSJLlcLrVo0UKFhYWJKgkAAAAAJEnuRBcQDdnZ6QntPycnI6H9o2FhvMApxgqcYqzAKcYKIvFTHy8JC0q5ubnaunWrgsGgXC6XgsGgioqK9rtFz4ni4lJZlh2DKg8tJydD27btSUjfaHgYL3CKsQKnGCtwirGCSDSm8WKaxmFNrCTs1rvs7Gx17dpVc+fOlSTNnTtXXbt2VbNmzRJVEgAAAABIitOMUn5+vj788ENt375dQ4cOVVZWlt59911NmjRJd911l55++mk1adJEU6ZMiUc5AAAAAFAvw7btxNyzFkXceoeGgvECpxgrcIqxAqcYK4hEYxovDe7WOwAAAAA4WhGUAAAAAKAOghIAAAAA1EFQAgAAAIA6CEoAAAAAUAdBCQAAAADqICgBAAAAQB0EJQAAAACow53oAoBDsW1bhmHst0yyZRi1s75tBSXDrLW9bVuSFZTh8tTeNuCTTJcM07XP/pYUqJQ8SeG2bduWAr7QBm5vuG3bCkr+CsmdJMPlrtnWXyHZluRJkWFWtREMyPaXy/K5w8dj25bkr5AdDMjwJMtwe8N12f6KUP/eZBmmO1SXv1x2wCfDkyx5kiQZUtAv27dXkiHDmyy5vKG+/RWy/ZWhNj3JkumSApWy/RWSbcvwJEnu5JptA5WS6Q617fKEtg1Uhs6bO0lyeyXDkPxVbZiuUNturxQMhJYFA6Hz40mSDDO0v78iVKcnKbS9FZTtr5SCfsnlCS0z3aFtA5WSXXWO3aHjsAO+0Ll3uUPLTbfsoD+0zArWbFv98wz4JMOU3B4ZLk/oZ1R1HHJ5Qn0aZlUblaHa3N6abYM+KRiUXK7QtqY71G7QV1VbqA3ZthT0yQ76ZZju0DLTFToHQZ9s2wqNt+oxF/SHtjXMqm3doZqCPtnVY9PlCZ3jqm19ZrqsPVXHblmh5Vagqj93VX+hbWUrNAZdntDPNBgIjSvTrNrWHVpm+UM//+qaZYe3lWGE2qiqzbb8kmXV9GcY+2yrUM2mq6Y/Kxj6t2S6JdOs2Vb2/rVZAclwVfXnqllm79OfrVANwap/0y7XPrUFQufE5Qptbxihn4llhf5dhf80+O9Td6QymKpgyd5El+FAI/p5NNBDqQzUHSsN9EAO5Cfy7z2eKnypCu48/P+2GClNZGY0j2JF8UdQOgrZti2raI2MtGYy05uFllmWgptXyirZKFfLjjKbHy/JVrBwlQIblstwe+Vq2UFm9rGySjYrWPhfWSWbZWa2ktn8OBneFAW3/SCraK1s25KraRuZTVvLLt+tYPF6WTu3yEjNkpnVSmZKE1k7tyhYsknyV8pskiOjSQsp6Je1a4us3UUyvCkyM3JkpGTKKtshe/c22ZVlMtKbyUxrJhmGrD3bZZcWSy63jLSmMlMyZVeWySotll2xR0ZKExmpWTLcXtllJbLKSkIXcalZMlOayA5Uyt67U3bFHsmbKjOlieRJll2+W3b5rtBFfHKGjOQM2VZQdvluybc3dMGfnC7Dmyq7siy0v22FLoiTM0Lns2JPTfjxpMhISg1d7FfuVeiq05DhTZNcbtmVpaELYCnUdlKq7IBf8pfX/NDc3tCFoK9CsoM1yz1VYaSqrzKp6kLeK/krVev/pMyqf45WoPaAcLlr+t+XYYbarrXM4P8sGomGcNmLowNjBU4xVhCJIx4vhkvpQ58J/0KzITJsu+FfVRUXl8qyEnMYOTkZ2rZtzyG3s21LwfXfytWyk4zkdEmSVVaiis9flrVjo9wd+sjT6WxZuwrlW1Ygq3iDJMnMPk6unHYKbPhOdtmOmgY9yaGLYl956DeylqVaF92GISMjR/ae4loX7mZmK8nllrWzMPQbbUlGerbMzFay9+6StXuLFAzISM6Q2ewYGZ5kWbuLZO0uklxumZm5MjNbyPaVy96zTdbeXTLTmsls0kJGUlooNJUWy7ZtmRnNZaY3l20FZJeVyN67S0Zymoz07FC4Kd8dCkIBn8y0pjLSmkoyZJfvkr13l+RJkpnaVEZyeqi/8l2hmZaUJjJSMmW43LLL98iu2B2a4UhpEgpCAZ/sij2yfeUyklJlJDeR3N6q0FQqya4KWOmh30BXlsqu3CvDkxRa7kkK9VdZVnUu0qWktNAJrCyTXbk3NGORlC7DkxwKdL69UsAnw5sqIyktNKPi2xtabrpCy70pSks2VVqyMzTb402W4U0Nzaj4K0IhT5K8KTI8KaEZFX95KFC5vaFl7qrZHl9F6OfnTQnNAkmhNvwVoWDqSZbcSVUzTuWh8OVODs06yaiZXTLMmhmqYKBqtscXmkXyJFXNRIVmuCRVzXwlVc2GhWadDLenalbNUzWrUxmaUXEnhdqRQuco4AvNOLiTZLg9odmGQKXsYFBG9UyUVDPbY5g17VqBUNgMBkLn3l01a1W9ra3QrFXVLMm+M1GGO3QcoW39NaHZ7ZVsu2aGqnqWrCqY2kF/eCYqPGtV3YZp1swCWcHQ8mAg1J/Ls8+Mij903qq3ta39tzVMyaqafdlnJqpJk2TtLtkT2t501czgVPe370yUVNOGYVRt6w792993tic8a1VVm2HsM4NjV81a7bNt1XEoGJCtA8xEWYGqWTJ3zX+Hgv7Qz796W0Ph/mq2ddeaXaq1rRWs+cVAeFs7NIaDgVA/1cdhBUN/bCt0Hg0j9Ldp1rxvNA5+LJlNUrRrd/lB1x9NjHqOo8FpgIfSpEmKdu83VhrggRxMozmUo+NAMjNTtGvX4f+3xUjNkqv5cVGs6PCZpqHs7PSI92NGKU58S2bLt6xAcifJc+LP5Gp2jCoWvSYF/HK17iL/8o/k/+4DSaEwk3TuUNkVZQquWyb/qi/kanOiPGcMlqtlBwW3rlFw80rJtuQ6tpvcbU6SbFvB7T/K2r5eZlYruVp1luFNkR3wySrZLNu3V67mx4Uu4qVQeNm9rSYwVKm+xat6u/Dyqjxd9xY4RCYrJ0N+B8EaSM/JUDljBQ6k5WRoL2MFDjBWEInUnAyV/cTHC0EpBgKF/5Ndvlvudj1lGKb8PyyRb1mB3O37SKYp//J58tu2zJx2SvnZCJlZubLKdyvwwxIZyRlyH98z/NkWdb98v/bN9Gx5OvTZb7m7dVepdddaywy3V66c4/fb1jDdMrJyD7DcrJk92Xc5AQkAAAA/IQSlGKj8/GVZu7bIbNFB3pMvVsXnL8ts0V7J5w+X4fbK6nmVgsXr5T6+R+iWE0lmShN5T7wgwZUDAAAAkAhKUWdV7JG1a4tcbU+RtX2dKubPkJGSqZSLbwt/zsHMbCkzs2WCKwUAAABwMASlKLO2rpEkebv3lyv7WPlW/EPuY06SmdY0wZUBAAAAcIqgFGXBraslwyVXzvEy3ElKOsBnjAAAAAAc3cxDb4JIBLd+L7P5seHHIgMAAABoeAhKUWRbAQWLfpCrZcdElwIAAADgCBCUosjavl4K+uT6/+3cS0jU/R7H8c+MVlbPE2oXs4wieAojKJhIOptyiiTKihYJlQRpLaKLQYsuVIsSmlpUoKVdttUqIroRZAQFlZJFgVhplpSXHPWESQMz8z2LA3L6PzWnY3L+zcz7tdL5IX7VD37nw2806y+3RwEAAADwCyhKQyjS8UaSuFECAAAA4hxFaQhFOt7I88dYef/IdHsUAAAAAL+AojSEIh1vuE0CAAAAEgBFaYhE+4KyL90UJQAAACABUJSGSKT9tSTxjxwAAACABEBRGiLW/0950v6Ud2yO26MAAAAA+EWpbg+QKIbNXqzUGf+Qx8u3FAAAAIh3PKsfIh5vqjxpf7o9BgAAAIAhwEvvAAAAAMCBogQAAAAADhQlAAAAAHCgKAEAAACAA0UJAAAAABwoSgAAAADgQFECAAAAAAeKEgAAAAA4UJQAAAAAwIGiBAAAAAAOFCUAAAAAcEh1e4Ch4PV6kvrzI76QF/wssoKfRVbws8gK/heJkpfBfh0eM7MhngUAAAAA4hovvQMAAAAAB4oSAAAAADhQlAAAAADAgaIEAAAAAA4UJQAAAABwoCgBAAAAgANFCQAAAAAcKEoAAAAA4EBRAgAAAAAHitIvePv2rYqKilRQUKCioiK1tLS4PRJc0tPTo5SkYNkAAAYdSURBVM2bN6ugoECFhYXatm2buru7JUnPnj3TypUrVVBQoE2bNikYDA58XKwzJL6KigrNnDlTr169kkRW8HehUEiHDh3S0qVLVVhYqAMHDkiKvX/YTcnr3r17Wr16tVatWqXCwkLduXNHEnmBFAgE5Pf7v9k50uCzkTS5MQxacXGxXb161czMrl69asXFxS5PBLf09PTYo0ePBt4/evSo7d2716LRqC1ZssRqa2vNzKyystL27NljZhbzDInv5cuXVlJSYosWLbLGxkaygu86fPiwlZeXWzQaNTOzT58+mVns/cNuSk7RaNTmzZtnjY2NZmbW0NBgc+fOtUgkQl5gtbW19vHjR8vPzx/IiNngf5ckS24oSoPU1dVlPp/PwuGwmZmFw2Hz+XwWDAZdngy/g9u3b9vGjRvt+fPntnz58oHHg8GgzZ0718ws5hkSWygUsrVr19r79+8HlhZZgVNfX5/5fD7r6+v75vFY+4fdlLyi0ajNnz/f6urqzMzsyZMntnTpUvKCb/xnURpsNpIpN6lu32jFq7a2NmVlZSklJUWSlJKSogkTJqitrU2ZmZkuTwc3RaNRXbp0SX6/X21tbZo0adLAWWZmpqLRqHp7e2OepaenuzE6/k9OnTqllStXasqUKQOPkRU4tba2Kj09XRUVFXr8+LFGjx6tnTt3Ki0t7Yf7x8zYTUnK4/Ho5MmT2rp1q0aNGqUvX76ouro65vMV8pLcBpuNZMoNf6MEDLHDhw9r1KhR2rBhg9uj4DdUX1+vFy9eaN26dW6Pgt9cOBxWa2urZs2apStXrmj37t3avn27+vv73R4Nv6FwOKzq6mqdPn1a9+7d05kzZ7Rr1y7yAvwCbpQGKTs7Wx0dHYpEIkpJSVEkElFnZ6eys7PdHg0uCgQCevfunaqqquT1epWdna2PHz8OnHd3d8vj8Sg9PT3mGRJXbW2tmpubtXjxYklSe3u7SkpKVFxcTFbwjUmTJik1NVUrVqyQJM2ZM0cZGRlKS0v74f4xM3ZTkmpoaFBnZ6d8Pp8kyefzaeTIkRoxYgR5wXfFei4bKxvJlBtulAZp7Nixys3N1fXr1yVJ169fV25ubsJdOeLnnThxQi9fvlRlZaWGDx8uSZo9e7a+fv2quro6SdLly5e1bNmy/3qGxLVlyxY9ePBANTU1qqmp0cSJE3XhwgWVlpaSFXwjMzNTeXl5evjwoaR//5epYDCoadOm/XD/sJuS18SJE9Xe3q7m5mZJUlNTk7q6ujR16lTygu+K9fMf7Fmi8ZiZuT1EvGpqatKePXv0+fNnjRkzRoFAQNOnT3d7LLjg9evXWrFihaZNm6a0tDRJUk5OjiorK/X06VMdOnRIoVBIkydP1vHjxzVu3DhJinmG5OD3+1VVVaUZM2aQFfxNa2ur9u3bp97eXqWmpqqsrEwLFy6MuX/YTcnr2rVrOnfunDwejyRpx44dWrJkCXmBjhw5ojt37qirq0sZGRlKT0/XjRs3Bp2NZMkNRQkAAAAAHHjpHQAAAAA4UJQAAAAAwIGiBAAAAAAOFCUAAAAAcKAoAQAAAIADRQkAAAAAHChKAAAAAOBAUQIAAAAAB4oSACAu+f1+XbhwQYWFhfL5fCorK1MoFNLZs2e1du1ahcNhSdLFixe1fPlyhUIhlycGAMQTihIAIG7dunVL58+f1927d9XY2KgrV66otLRUw4YN05kzZ9TS0qITJ07o+PHjGjFihNvjAgDiSKrbAwAAMFjFxcXKysqSJOXn56uhoUFer1eBQEBr1qzRzZs3VVpaqlmzZrk8KQAg3nCjBACIW+PHjx94e+TIkerv75ck5eTkKC8vTx8+fND69evdGg8AEMcoSgCAhHP//n3V19drwYIFOnbsmNvjAADiEEUJAJBQuru7tX//fpWXl+vo0aOqqanR/fv33R4LABBnKEoAgIRy8OBB+f1+LVy4UBkZGSovL9f+/fvV09Pj9mgAgDjiMTNzewgAAAAA+J1wowQAAAAADhQlAAAAAHCgKAEAAACAA0UJAAAAABwoSgAAAADgQFECAAAAAAeKEgAAAAA4UJQAAAAAwIGiBAAAAAAO/wJINFT8ouENxQAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAF/CAYAAADacyFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Wl0XOdh3//vYAdIggsWEgvFHZebSAISJVrUQkK2JVuy4y3yEll2ZNdx4pwcJ038T5o0SRundp249qnj2D49TuslcZq4cZI2cdKkALWvHJAUKepSlChSGADEQhAgdszM/b8ARFESJZEUgMEA388bAPdiZp7BwwHnh/vc341FUYQkSZIkaXbKyfQAJEmSJEmvz9AmSZIkSbOYoU2SJEmSZjFDmyRJkiTNYoY2SZIkSZrFDG2SJEmSNIsZ2iRJkiRpFjO0SZIkSdIsZmiTJEmSpFnM0CZJkiRJs5ihTZIkSZJmsbxMD2AOKQR2Au1AKsNjkSRJkjT75AJVwBPA6KXeyNA2dXYCD2R6EJIkSZJmvZuABy/1mw1tU6cdoLd3kHQ6ysgAysoW0tMzkJHH1pVxzrKPc5Z9nLPs45xlF+cr+zhnmZOTE2Pp0gUwmR0ulaFt6qQA0ukoY6HtpcdXdnHOso9zln2cs+zjnGUX5yv7OGcZd1mnU1lEIkmSJEmzmKFNkiRJkmYxQ5skSZIkzWKe0zbNUqkkvb1dJJNj0/5YnZ05pNPpaX+c6ZCXV8DSpRXk5vpPUpIkSbqQ75CnWW9vF0VFJSxYsIJYLDatj5WXl0MymX2hLYoiBgf76e3tory8KtPDkSRJkmYVl0dOs2RyjAULSqc9sGWzWCzGggWlM3I0UpIkSco2hrYZYGB7c/6MJEmSpIsztM1DH/rQe3j++eNTfr//+I//m9/5nS9M+f1KkiRJ85mhTZIkSZJmMYtIBMDRo0f4+tf/mJGRYYqKivn853+dTZu2kEwm+cIXPk9fXx+jo6Ns3ryF3/iNf0d+fj7j4+N87WtfoaVlPxUVlVx11erz9/fUUwf52te+QjodkUwm+cQn7uUd77g9c09QkiRJylKGthn20FPtPHiofVru+5b6anZtXnHZtxsfH+e3f/sL/NZv/S47d17Pk08+zm//9hf4n//zb8nLy+P3fu+LLF68hCiK+OIXf49/+Ie/433v+xB/93f/i/b2Nn7wg78imUzyuc/9G6qqJtof//zPv8ddd32M22+/gyiKGBgYmOqnK0mSJM0LhjZx6tRJ8vPz2bnzegCuvfY68vPzOXXqJKtXr+FHP/ohjz76MOl0inPnzlFUVARAPL6fd73rTvLy8sjLy+O2297FoUMHAGhouJYf/vB/0NHRzs6du9iyZWvGnp8kSZLmn77BMe4/2EZb9yCfvnMTuTnZe2aYoW2G7b66it1XT8+1yK70Om1RFF20vTEWg3/5l3/i0KED/Omf/jdKShbw/e//GS++eOr87V7PXXd9jN27b+aJJx7j61//Cjt37uIzn/mlyx6bJEmSdKmiKOJ4oo+meIInn+kklY6o31DOG7xtzQqGNrFq1WrGxsaIx5+koeFa4vEnSSaTrFy5inj8SRYvXkJJyQIGBgb4l3/5JzZu3AzAtdfu5J/+6R9pbHwHqVSSf/mXf2L58onlmadOneSqq1ZRU1NLSUkJP/3p/8nkU5QkSdIcNjKW5NEjp2mKJ2jtGqC4MI/Ghlr21FdTVbYg08N7ywxt89TnP/85cnNzz3/9n/7TH72iiOSLX/zP5Ofnc/vtd/LAA/dz9913UVFRwfbt9YyOjgLw3vd+gOPHj/Pxj99FZeVyduy4hvb2BAA//vFfEo/vJz8/j/z8An71V38jI89TkiRJc1d7zyBN8QQPH25neDTFysqFfOL2gF2bV1BYkPvmd5AlYm+0xG0qBUHwx8AHgdXA1WEYHg6CoAz4AbAOGAWOA78QhmHX5G12Ad8BioEXgLvDMOzMxL5LsBo40dMzQDr98s+0o+MkK1asutQf01typcsjZ4uZ/FnNFhUVi+jqOpfpYegyOGfZxznLPs5ZdnG+sk+2z1kqnebAs900xRMcPdlLXm6MazdW0thQy7rq0oue9jNb5OTEKCtbCLCGibxxabebrgFdxN8CNwMnL9gWAV8JwzAIw3Ab8BzwZYAgCGLAD4HPhWFYB9yfqX2SJEmSMuvswCh//9AJvvCtR/jmTw7T2TvEB29Zyx//0m4+854trK9ZPKsD21sxY8sjwzB8ECAIggu3nQH2XfBtjwK/OPn5tcDIS7cDvs1EGr03A/skSZIkzbAoijj24lma4gnix7pIpSO2rlnG3e+sY/u6cnJy5mZIe7VZc05bEAQ5TAS2v5/cdBUXHJULw7A7CIKcIAiWzfS+yXApSZIkaQYMjyZ59EgHTS0JEl2DlBTmces1teytr2H5spJMD2/GzZrQBnwDGAD+JNMDeSsm16ie19mZQ17ezK1CncnHmmo5OTlUVCzK9DBm3Hx8ztnOOcs+zln2cc6yi/OVfWbrnJ3s6OenD79A05MvMjyaZF3tYn7lrh3cVF9DUcFsii4za1Y888mSkg3Ae8IwfKlJ4xSw6oLvKQeiMAzPBEEwo/su57m8uogknU7PWDlItheRpNPprD4p9kpk+4nA85Fzln2cs+zjnGUX5yv7zLY5S6bStDzbTXO8lWdOnSUvN4frNlWyt6GGtVUTxSLn+oaZPSO+chcUkVze7aZhLJclCII/BK4B3heG4egFu/YDxUEQ3Dj59WeBv8rQPkmSJElTqPfcKH/7wPP8xrce5lt/e5juvhF+ds86vvq5G/j0nZtZVz13i0Uu14wdaQuC4L8CHwBWAP8aBEEPcBfw74BjwMOTJSUnwjB8fxiG6SAIPg58JwiCIiYr+AFmep8kSZKkty6KIsJTZ2mKtxI/1k0URWxdW0bj7TVcvbZs3hSLXK4Zu07bPLCaLLlOW1PTv/KDH/wZUQRjY6PU1W3k93//D/nud7/DPffcS35+/gyM9rW8TpuygXOWfZyz7OOcZRfnK/tkYs6GR5M8fLiD5pYEbd2DLCjK46Zt1eypr6Zy6fwpFrnS67TNinPaNHO6u7v5L//ly3z3uz9k+fIVRFHE8ePHAPjv//2/8dGPfvyyQ1symSQvz39KkiRJeqXWzgGaWhI8criD0fEUa6oWce+7N3HdpkoK8nMzPbys4TvteebMmW5yc/NYvHgJALFYjA0bAr761f8MwC/+4r3EYjl84xvfYXx8jD/6oy/R1tZKFEV89KMf513vuhOAD33oPdx558+wf/8TVFfX8Fu/9bv89Kf/h7/5m78mlUqxcOFCfv3Xf5OrrlrNU08d5Gtf+wrpdEQymeQTn7iXd7zj9oz9DCRJkjR9kqk08WNdNO1v5VhrH/l5E8UijQ21rKkqzfTwspKhbYaNH3uI8fD+abnvwk23kLv+hjf8nvXr69i8eQsf/OAd1Ndfw7ZtO7jttnfzb//t/8dPfvLXfOtbf0ZJycQh6t/93d9i7dp1fOlLf0x3dzef+tTPEQQbWbt2PTBx1O4b3/gOAAcPttDU9C9885v/jYKCAh555CG+9KX/yLe+9Wf8+Z9/j7vu+hi3334HURQxMDAwLc9fkiRJmXOmf4T7DrRx/8E2+gbHqFhSxF1713PjtioWFmfm9Ju5wtA2z+Tk5PClL32V558/TktLnAce2Mdf/MUP+P73//I13/vkk4/zy7/8eQDKy8t529tuJB5/8nxou/32O85/70MP3c/x48/ymc98Epg4yfTcuX4AGhqu5Yc//B90dLSzc+cutmzZOs3PUpIkSTMhiiKOnuylKZ7gwLMTxSLb1pWxt6GWrWuXkWP745QwtM2w/Lrd5Nftnpb7vpzrtK1du561a9fzwQ/exd13/ywtLfsv+n2vrlm98OuSkuLzn0cR3HHHe/n0pz/7mvu4666PsXv3zTzxxGN8/etfYefOXXzmM790SeOUJEnS7DM0Ms5DhztojifoODPEwuJ8brt+JXt21FCxpPjN70CXxdA2z3R1dXL6dAdbt24DoLPzNGfP9lJVVU1JyQIGBwfOL4+89trr+Pu//wmf+tQv0NPTzSOPPMRdd33sove7e/dNfPGLv8d73/t+KiuXk0qlePbZY2zcuIlTp05y1VWrqKmppaSkhJ/+9P/M2POVJEnS1Dl1+hzNLQkeOdLB2HiatdWlfPrOTezcWEl+nsUi08XQNs+kUim++93v0NHRTmFhEVGU5tOf/kXq6jbykY/8HL/yK5+lsLCIb3zjO3z+87/OH/3Rf+ITn/gIURTx2c/+MmvXrrvo/e7Y0cBnPvNL/OZv/hqpVJpkcpy9e9/Oxo2b+PGP/5J4fD/5+Xnk5xfwq7/6GzP8rCVJknSlxpNp9oedNLUkON7aR0FeDtdvXs7ehhpWr7BYZCZ4nbaps5osuU7bbOV12pQNnLPs45xlH+csuzhf2edS56ynb4R9BxI8cLCN/qFxKpcW01hfw+5tVSwosljkSnidNkmSJElvSTqKePqFMzTHExw43g3A9nXlNF5Tw+bVFotkiqFNkiRJmucGR8Z56FA7zS0JTvcOs6gkn3fvWsUtO6opX2yxSKYZ2iRJkqR56mTHOZrirTz29GnGkmnW1yzmvTeu4dqgkvy8nEwPT5MMbTMgiqLXVOfrlTy3UpIkaWaMjad45HAHTfFWnmvrpyA/h11bVtDYUMNVyxdleni6CEPbNMvLK2BwsJ8FC0oNbq8jiiIGB/vJyyvI9FAkSZLmrO6zw+w70MaDT7XTPzjG8mUlfPTWDey+egUlFovMaoa2abZ0aQW9vV0MDJyd9sfKyckhnc7O9si8vAKWLq3I9DAkSZLmlHQUceTEGZr2t3LouR6Iwa6tVdywZTmbVy31oEKWMLRNs9zcPMrLq2bksazclSRJEsDA8DgPHmpnX0uCzrPDlC4o4I4bVrNnRzXBugrfM2YZQ5skSZI0R5xo76c5nuCxo6cZT6apq13M+29eyzVBBXm5FotkK0ObJEmSlMXGkykeP9pJUzzBifZ+CvNz2X11FXvra1hZuTDTw9MUMLRJkiRJWajz7DD7WhI8eKidgeFxqspK+Ll31PG2LSsoKfJt/lzibEqSJElZIp2OeOr5HppbEjz1XA+xWIz6unIaG2rZeNUSi0XmKEObJEmSNMudGxrjwUPtNLck6O4bYfGCAt6zezW37Khh6aLCTA9P08zQJkmSJM1CURRxov0cTfFWHj/aSTKVJli5hJ/du576DeUWi8wjhjZJkiRpFhkdT/H406dpaklwsuMchQW53LS9isb6GmoqLBaZjwxtkiRJ0ixwuneI5niCh55qZ3AkSU35Au5+50SxSHGhb9vnM2dfkiRJypB0OuLQcz00xVs5fOIMuTkxGuoqaGyooW6lxSKaYGiTJEmSZlj/0BgPHGxjX0sbPf0jLFlYwPtuXMNN26stFtFrGNokSZKkGRBFEc+19dMcb+WJZzpJpiI2rVrKhxvXs8NiEb0BQ5skSZI0jUbHUjx29DRN8VZOnR6guDCXW3bUsLe+huryBZkenrKAoU2SJEmaBh1nJopFHnyqneHRJLUVC7jntoBdW5ZTVODbcF06/7VIkiRJUySVTnPweA/N8VaOvNBLbk6Ma4IKGhtq2VC72GIRXRFDmyRJkvQW9Q2Ocf/BNu47kOBM/yhLFxXy/pvWcPP2ahYvtFhEb42hTZIkSboCURRxPNFHUzzBk890kkpHbF69lI+9vY7t68vIzbFYRFPD0CZJkiRdhpGxJI8eOU1TPEFr1wDFhXnsbZgoFqkqs1hEU8/QJkmSJF2C9p5BmuIJHj7czvBoipWVC/nE7QG7Nq+gsCA308PTHGZokyRJkl5HKp3mwLPdNMUTHD3ZS15ujGs3VtJYX8u6mlKLRTQjDG2SJEnSq5wdGJ0sFmmj99woZaWFfPCWtdy0rZrSBQWZHp7mGUObJEmSxESxyLEXz9LckmB/2EUqHbF1zTLufmcd29eVk5PjUTVlhqFNkiRJ89rwaJJHj3TQ1JIg0TVISWEet15Ty976GpYvK8n08CRDmyRJkuanRPcgzfFWHj7cwchYilXLF/Hz79rIdZuXU5hvsYhmD0ObJEmS5o1kKk3Ls900x1t55tRZ8nJzuG5TJXsbalhbZbGIZidDmyRJkua83nOj3HcgwX0H2+gbGKN8cRE/u2cdN26rYlGJxSKa3WYktAVB8MfAB4HVwNVhGB6e3F4HfA8oA3qAe8IwfHa27ZMkSVL2iaKI8NRZmuKtxI91E0URW9eW0Xh7DVevLbNYRFkjZ4Ye52+Bm4GTr9r+beCbYRjWAd8EvjNL90mSJClLDI8m+X/7W/n3332cr/yohaMne3nnzpV86Rd28at3bWf7epsglV1m5EhbGIYPAgRBcH5bEASVQAPwjslNPwL+JAiCCiA2W/aFYdg1FT8DSZIkTa/WrgGa4gkeOdzB6HiKNVWLuPfdm7huUyUFFosoi2XynLaVQCIMwxRAGIapIAjaJrfHZtE+Q5skSdIslUyliR/roml/K8da+8jPmygWaWyoZU1VaaaHJ00Ji0imWFnZwow+fkXFoow+vi6fc5Z9nLPs45xlH+csu2RivrrPDvNPj77A/330JL3nRllRVsLP37mFt193FaULLBZ5M77GsksmQ9uLQE0QBLmTR7ZygerJ7bFZtO+y9PQMkE5Hb+kHc6UqKhbR1XUuI4+tK+OcZR/nLPs4Z9nHOcsuMzlfURRx9GQvTfEEB56dKBbZtq6MT9y+ka1rl5ETizE6NErX0OiMjCdb+RrLnJyc2BUd5MlYaAvDsDMIggPAR4EfTn5seekcstm0T5IkSZkzNDLOQ4c7aI4n6DgzxMLifG67fiV7dtRQsaQ408OTpt1MVf7/V+ADwArgX4Mg6AnDcAvwWeB7QRD8LtAL3HPBzWbTPkmSJM2wU6fP0dyS4JEjHYyNp1lbXcqn79zEzo2V5OdZLKL5IxZFmVnKNwetBk64PFKXwznLPs5Z9nHOso9zll2mer7Gk2n2h500tSQ43tpHQV4O129ezt6GGlavsFhkKvgay5wLlkeuAV641NtZRCJJkqSM6+kbYd+BBA8cbKN/aJzKpcV8pHE9u7dVsaAoP9PDkzLK0CZJkqSMSEcRR1/opSneyoHj3QBsX1dO4zU1bF49USwiydAmSZKkGTY4Ms5DT3XQHG/ldO8wi0ryefeuVdyyo5ryxRaLSK9maJMkSdKMONlxjqZ4K489fZqxZJr1NYt5741ruDaoJD8vJ9PDk2YtQ5skSZKmzXgyxZPPdNEUb+W5tn4K8nPYtWUFjQ01XLXcCzxLl8LQJkmSpCnXfXaYfQfauP9gGwPD4yxfVsJHb93A7qtXUGKxiHRZDG2SJEmaEuko4siJMzTtb+XQcz0Qg/oNFextqGHzqqXELBaRroihTZIkSW/JwPA4Dx5qZ19Lgs6zw5QuKOCOG1azZ0c1y0qLMj08KesZ2iRJknRFTrT38xf/7zj3tbQynkyzoXYx7795LdcEFeTlWiwiTRVDmyRJki7ZeDLF40c7aYonONHeT1FBLruvrmJvfQ0rKxdmenjSnGRokyRJ0pvqPDvMvpYEDx5qZ2B4nKqyEn7uHXW855b1DA2MZHp40pxmaJMkSdJFpdMRh0/00BRP8NRzPcRiMerrymlsqGXjVUuIxWIsKM43tEnTzNAmSZKkVzg3NMaDT7XTHE/Q3TfC4gUFvGf3am7ZUcPSRYWZHp407xjaJEmSRBRFnGg/R1O8lcePdpJMpQlWLuFDe9bRUGexiJRJhjZJkqR5bGw8xWNHT9MUT3Cy4xyFBbnctH2iWKS2wmIRaTYwtEmSJM1Dp3uHzheLDI4kqS5fwN3vrONtW1ZQXOhbRGk28RUpSZI0T6TTEYee66Ep3srhE2fIzYnRUFdBY0MNdSsnikUkzT6GNkmSpDmuf2iMBw62sa+ljZ7+EZYsLOB9N67hpu3VFotIWcDQJkmSNAdFUcRzbf00x1t54plOkqmIjVct4cON69mxodxiESmLGNokSZLmkNHxFI89fZqmeCunTg9QXJjLLTtq2FtfQ3X5gkwPT9IVMLRJkiTNAR1nhmiOJ3joqXaGRpPUVizgntsCdm1ZTlGBb/mkbOYrWJIkKUul0mkOHZ8oFjnyQi+5OTGuCSpobKhlQ+1ii0WkOcLQJkmSlGX6BieLRQ4kONM/ytJFhbz/pjXcvL2axQstFpHmGkObJElSFoiiiOOJPpriCZ58ppNUOmLz6qV89NY6dmwoIzfHYhFprjK0SZIkzWIjY0keffo0TfsTtHYNUFyYx96GiWKRqjKLRaT5wNAmSZI0C7X3DE4UixxuZ3g0xcrKhXzi9oBdm1dQWJCb6eFJmkGGNkmSpFkilU5z4NlumuIJjp7sJS83xrUbK2msr2VdTanFItI8ZWiTJEnKsLMDo9x/sI37DrTRe26UstJCPnjLWm7aVk3pgoJMD09ShhnaJEmSMiCKIo69eJbmlgT7wy5S6Ygta5Zx9zvr2L6unJwcj6pJmmBokyRJmkHDo0kePdJBU0uCRNcgJYV53HpNLXvra1i+rCTTw5M0CxnaJEmSZkCie5DmeCsPH+5gZCzFquWL+Pl3beS6zcspzLdYRNLrM7RJkiRNk2QqTcuz3TTHW3nm1FnycmPs3LicxmtqWFtlsYikS2NokyRJmmK950a570CC+w620TcwRvniIj60Zx03bquitMRiEUmXx9AmSZI0BaIoIjx1lqZ4K/Fj3URRxNa1Zey9vYZta8ssFpF0xQxtkiRJb8HwaJKHD3fQ3JKgrXuQBUV5vHPnSvbUV1O51GIRSW+doU2SJOkKtHYN0BxP8PCRDkbHUqypWsS9797EdZsqKbBYRNIUMrRJkiRdomQqTfxYF037WznW2kdebg7Xb66ksaGWNVWlmR6epDnK0CZJkvQmzvSPcN+BNu4/2Ebf4BgVS4q4a+96btxWxcLi/EwPT9IcZ2iTJEm6iCiKOHqyl+Z4gpZnJ4pFrl5XRmNDLVvXLiPHun5JM2RWhLYgCO4E/gCIATnA74dh+DdBENQB3wPKgB7gnjAMn528zYzukyRJ88PQSJKHDrfTHE/QcWaIhcX53Hb9SvbsqKFiSXGmhydpHsrJ9ACCIIgBPwA+HobhDuBu4HtBEOQA3wa+GYZhHfBN4DsX3HSm90mSpDns1OlzfO+fnuHXvvkgP/rXZykpyuPTd27iq5+7gZ/ds97AJiljZsWRNiANLJ78fAnQDpQDDcA7Jrf/CPiTIAgqmDgiN2P7wjDsmtqnK0mSZoPxZJr9YSdNLQmOt/aRn5fD9ZuX09hQw+oVFotImh0yHtrCMIyCILgL+LsgCAaBRcAdwEogEYZhavL7UkEQtE1uj83wPkObJElzSE/fCPsOJHjgYBv9Q+NULi3mw43r2X21xSKSZp+Mh7YgCPKA3wJ+JgzDh4Ig2A38T+DjmR3ZlSkrW5jRx6+oWJTRx9flc86yj3OWfZyz7DMdc5ZORxx8tot/eOgETzzdAcDOzSt49w1r2FFXQU6OxSJXytdY9nHOskssiqKMDiAIgmuB74dhuPmCbUeBTwL/DJRNHvXKZaIcZAMTR8WOzdS+S1weuRo40dMzQDqdmZ9pRcUiurrOZeSxdWWcs+zjnGUf5yz7TPWcDY6M89BTHTTHWzndO8yiknxu3l7NLTuqKV/seWpvla+x7OOcZU5OTuylgzxrgBcu9XYZP9IGtAK1QRAEYRiGQRBsAlYAzwIHgI8CP5z82PJSgAqCYEb3SZKk7HKy4xxN8VYee/o0Y8k062sW894b13BtUEl+Xsa72CTpkmU8tIVh2BEEwS8CPw6CID25+efDMDwTBMFnmWiS/F2gF7jngpvO9D5JkjTLjSdTPPlMF03xVp5r66cgP4ddW1bQ2FDDVctdDiYpO2V8eeQcshqXR+oyOWfZxznLPs5Z9rmSOes+O8y+A23cf7CNgeFxli8robG+ht1Xr6CkyGKR6eRrLPs4Z5mTzcsjJUmSLls6ijhy4gzN8QQHj3dDDHasL6fxmlo2r1pKLGaxiKS5wdAmSZKyysDwOA8eamdfS4LOs8OULijgjhtWs2dHNctKizI9PEmacoY2SZKUFU6099McT/DY0dOMJ9NsqF3M+29eyzVBBXm5FotImrsMbZIkadYaT6Z4/GgnTfEEJ9r7KczPZffWFextqGVlZWavjSpJM8XQJkmSZp2us8M0tyR48FA7A8PjVJWV8LG3b+CGrVWUFPn2RdL84m89SZI0K6TTEYdP9PDg3x1h/9HTxGIx6uvKaayvYaPFIpLmMUObJEnKqHNDYzz4VDvN8QTdfSMsXVTIe3av5ubtFotIEhjaJElShjzf1k9TvJXHj3aSTKUJVi7hQ3vWcdvutfSeGcz08CRp1jC0SZKkGTM2nuKxo6dpjid4oeMchQW53LS9ir31NdRWTBSL2AQpSa9kaJMkSdPudO8Q+yaLRQZHklSXL+Dud9bxti0rKC707YgkvRF/S0qSpGmRTkcceq6HppZWDj9/htycGPV1FdzaUEPdyiUWi0jSJTK0SZKkKdU/NMYDB9vY19JGT/8ISxYW8L4b13DT9mqWLirM9PAkKesY2iRJ0lsWRRHPtfXTHG/liWc6SaYiNl61hA83rmfHhnLPU5Okt8DQJkmSrtjoeIrHnj5NU7yVU6cHKCrI5ZbtNextqKG6fEGmhydJc4KhTZIkXbaOM0M0xxM89FQ7Q6NJaisW8PHbAt62ZTlFBb69kKSp5G9VSZJ0SVLpNIeO99AUb+XIC73k5sS4JqigsaGWDbWLLRaRpGliaJMkSW+ob3CyWORAgjP9oyxdVMj7b1rDzdurWbzQYhFJmm6GNkmS9BpRFHE80UdTPMGTz3SSSkdsXr2Uj95ax44NZeTmWCwiSTPF0CZJks4bGUvy6NOnaY4neLFzgOLCPPY21LC3voaqMotFJCkTDG2SJIn2nsGJYpHD7QyPplhZuZBP3B6wa/MKCgtyMz08SZrXDG2SJM1TqXSaA8920xRPcPRkL3m5Ma7dWEljfS3rakotFpGkWcLQJklzmXqYAAAgAElEQVTSPHN2YJT7D7Zx34E2es+NUlZayAdvWctN26opXVCQ6eFJkl7F0CZJ0jwQRRHHXjxLc0uC/WEXqXTEljXLuPuddWxfV05OjkfVJGm2MrRJkjSHDY8mefRIB00tCRJdg5QU5nHrNbXsra9h+bKSTA9PknQJDG2SJM1Bie5BmuOtPHy4g5GxFFctX8gn37WR6zcvpzDfYhFJyiZXHNqCIFgLpMIwPDmF45EkSVcomXqpWKSVZ06dJS83xs6Ny2m8poa1VRaLSFK2uuTQFgTBj4BvhGH4cBAEPw/8KZAOguBXwjD87rSNUJIkvaHecy8ViyQ4OzBGWWkRH9qzjhu3VVFaYrGIJGW7yznSdivwicnPfw14O3AW+FvA0CZJ0gyKoojw1Fma4q3Ej3UTRRFb15Zxz+01bFtbZrGIJM0hlxPaCsIwHAuCoAZYFobhQwBBECyfnqFJkqRXGx5N8vDhDppbErR1D7KgKI937lzJnvpqKpdaLCJJc9HlhLYDQRD8FrAK+AeAyQDXPx0DkyRJL2vtGqA5nuDhIx2MjqVYvWIR9757E9dtqqTAYhFJmtMuJ7R9CvgDYBz4jcltbwP+fKoHJUmSJopF4se6aNrfyrHWPvJyc7h+cyWNDbWsqSrN9PAkSTPkkkNbGIbPAR971bYfAz+e6kFJkjSfnekf4b4Dbdx/sI2+wTEqlhRx19713LitioXF+ZkeniRphl1Oe2QM+DTwEaAiDMNtQRDcDKwIw/CvpmuAkiTNB1EUcfRkL83xBC3PThSLXL2ujMaGWrauXUaOdf2SNG9dzvLI/wi8A/g68O3Jba3A1wBDmyRJV2BoJMlDh9tpjifoODPEwuJ8brtuJXvqa6hYUpzp4UmSZoHLCW2fBOrDMOwOguBbk9tOAGunfFSSJM1xp06fo7klwSNHOhgbT7O2upRP3TFRLJKfZ7GIJOlllxPacoGByc+jyY8LL9gmSZLeQDKV5smwk6Z4guOtfeTn5XD95uU0NtSweoXFIpKki7uc0PaPwH8JguBX4fw5bn8A/O/pGJgkSXNFT98I9x1McP+BNvqHxqlcWsyHG9ez+2qLRSRJb+5yQtuvAd8H+oB8Jo6w/V/gE9MwLkmSslo6ijj6Qi9N8VYOHO8GYPu6chobati8xmIRSdKlu5zK/37gfUEQVDJxge0XwzDsmLaRSZKUhQZHxnnoqQ6a462c7h1mUUk+7961ilt2VFO+2GIRSdLlu5zK/5YwDOvDMOwEOi/Y/mQYhte+lUEEQVDERAvl24ER4JEwDD8TBEEd8D2gDOgB7gnD8NnJ28zoPkmS3sjJjnM0t7Ty6JHTjCXTrKsp5b03ruHaoJL8vJxMD0+SlMUu53+R9a/eMHle21S0R36FibBWF4bh1cC/n9z+beCbYRjWAd8EvnPBbWZ6nyRJrzCeTPPI4Q7+8PtP8h/+xxM8+vRpdm1Zwe99cie//fFreduWFQY2SdJb9qZH2oIg+P7kpwUXfP6S1cCRtzKAIAgWAvcAtWEYRgBhGJ6eXIbZwMS14QB+BPxJEAQVQGwm94Vh2PVWnqMkaW7pPjvMvgNt3H+wjYHhcZYvK+Gjt25g99UrKCmyWESSNLUuZXnkc6/zeQQ8BPz1WxzDOiaWIv5eEAR7mSg4+R1gGEiEYZgCCMMwFQRBG7CSiYA1k/sMbZI0z6WjiCMnztAcT3DweDfEYMf6chqvqWXTqqUWi0iSps2bhrYwDP8DQBAEj4Zh+M/TNIa1QEsYhr8RBMH1TFxG4Gen4bGmXVnZwow+fkXFoow+vi6fc5Z9nLPs81bm7NzQGP/6+Cl++vALtPcMsmRRIXe9vY7bdq2mYqnFItPF11l2cb6yj3OWXWJRFL35dzFRRMJEScdfTJaRTIkgCMqBdqDgpeWRQRA8DXySiUsKlE0e9cpl4ojcBiaOih2bqX2XuDxyNXCip2eAdPrSfqZTraJiEV1d5zLy2Loyzln2cc6yz5XO2Qsd/TTtT/DY0dOMJ9NsqF1MY0Mt1wQV5OV6ntp08nWWXZyv7OOcZU5OTuylgzxrgBcu9XaXc522PwDuBv4wCIL7gR8APwnDcPgy7uM1wjDsDoKgmYlzyf7vZINjJRMB6gDwUeCHkx9bXgpQQRDM6D5J0tw3nkzx+NFOmuIJTrT3U5ify+6tK9jbUMvKysyupJAkzV+Xc522vwH+JgiCZcBdwC8BfxoEwd8APwzDsOktjOOzwJ8FQfBVYBz4eBiGZ4Mg+CzwvSAIfhfoZaKw5MLbzOQ+SdIc1XV2mH0tCR441M7A8DhVZSV87O0buGFrFSVFl/P3TUmSpt4lL4+8UBAEJcAHgC8wcaHtLiAN/FIYhv86pSPMHqtxeaQuk3OWfZyz7PN6c5ZORxw+0UNTPMFTz/UQi8Woryunsb6GjauWErNYJGN8nWUX5yv7OGeZM+3LI4MgyGFiCePHgTuBR4AvM7lEMgiCDzKxrHDFpQ9bkqSZNTA8zgOH2miOJ+juG2HxggLes3s1N2+vZllpUaaHJ0nSa1zOmo82oBv4PvCFMAzbLtwZhuH/CoLgl6dycJIkTZXn2/ppjrfy2NFOkqk0dSuX8KE962ios1hEkjS7XU5ouzMMwycBgiCoDILgA8DRMAyPvvQNYRjuneoBSpJ0pcbGU/zr4yf5u/ue44WOcxQW5HLT9ir21tdQW2GxiCQpO7xpaAuCoAb4BrA5CIJHgD8G7gdSwJIgCO4Jw/Avp3eYkiRdutO9Q+xrSfDgoXYGR5JUly/g7nfW8bYtKygutFhEkpRdLuV/rm8DncCvAh8B/hn4dBiGPwmC4GeYuBSAoU2SlFHpdMSh53poamnl8PNnyM2JUV9XwQcaN7B8UYHFIpKkrHUpoe0GoCoMw7EgCO4D+oC/BQjD8O+CIPj+dA5QkqQ30j80xgMH29jX0kZP/whLFhbwvhvXcNP2apYuKrQlTZKU9S4ltOWHYTgGEIbhUBAE58IwvLDT3j9dSpJmVBRFPN/WT1O8lSee6SSZith41RI+3LieHRvKLRaRJM0plxLa8oIg2MvL4ezVX+dOy8gkSXqV0fEUjz19mqZ4K6dOD1BUkMst22vY01BDTfmCTA9PkqRpcSmhrRP4swu+7nnV151TOiJJkl6l48wQzfEEDz3VztBokpqKBXz8toC3bVlOUYHFIpKkue1N/6cLw3D1DIxDkqRXSKXTHDreQ1O8lSMv9JKbE+OaoILGhlo21C62WESSNG/450lJ0qzSNzhZLHIgwZn+UZYuKuT9N63h5u3VLF5YmOnhSZI04wxtkqSMi6KI44k+muMJnnimk1Q6YtOqpXz01jp2bCgjN8diEUnS/GVokyRlzMhYkkefPk1zPMGLnQMUF+axt6GGvfU1VJVZLCJJEhjaJEkZ0N4zOFEscrid4dEUKysX8onbA3ZtXkFhgaXEkiRdyNAmSZoRqXSaA8920xRPcPTkRLHIzo2VNDbUsq6m1GIRSZJeh6FNkjSt+gZGue9gG/cdaKP33ChlpYV88Ja13LStmtIFBZkeniRJs56hTZI05aIo4tnWPprirewPu0ilI7asWcbd76xj+7pycnI8qiZJ0qUytEmSpszwaJJHj3TQ1JIg0TVISWEet15Ty976GpYvK8n08CRJykqGNknSW5boHqQ53srDhzsYGUtx1fKFfPJdG7l+83IK8y0WkSTprTC0SZKuSDL1UrFIK8+cOkteboydG5fT2FDD2mqLRSRJmiqGNknSZek9N8r9B9u470CCswNjlJUW8aE967hxWxWlJRaLSJI01QxtkqQ3FUUR4amzNMVbiR/rJh1FbF27jHtur2Xb2jKLRSRJmkaGNknS6xoeTfLw4Q6aWxK0dQ+yoCiPd+5cyZ76aiqXWiwiSdJMMLRJkl6jtWuA5niCh490MDqWYvWKRdz77k1ct6mSAotFJEmaUYY2SRIwUSwSP9ZFUzzBsRfPkpebw/WbKmm8ppY1VaWZHp4kSfOWoU2S5rkz/SPcd6CN+w+20Tc4RsWSIu7au54bt1WxsDg/08OTJGneM7RJ0jwURRFHT/bSHE/Q8mw3URRx9boyGhtq2bp2GTnW9UuSNGsY2iRpHhkaSfLQ4Xb2tSRo7xliYXE+t123kj31NVQsKc708CRJ0kUY2iRpHnixc4CmeCuPHOlgbDzN2upSPnXHRLFIfp7FIpIkzWaGNkmao5KpNE+GnTTFExxv7SM/L4frNy+nsaGG1SssFpEkKVsY2iRpjunpG+G+gwnuP9BG/9A4lUuL+XDjenZfbbGIJEnZyNAmSXNAOoo4+kIvTfFWDhzvhgi2ry+nsaGGzWssFpEkKZsZ2iQpiw2OjPPQUx00tyQ4fWaIRSX5vHvXKm7ZXk25xSKSJM0JhjZJykInO87R3NLKo0dOM5ZMs66mlPe+ZzPXBpXk5+VkeniSJGkKGdokKUuMJ9M8+UwnTS2tPJfopyAvh11blrO3vpZVKxZleniSJGmaGNokaZbrPjvMvgNt3H+wjYHhcZYvK+Gjt25g99UrKCmyWESSpLnO0CZJs1A6ijhy4gzN8QQHj3dDDHasL6fxmlo2rVpqsYgkSfOIoU2SZpGB4XEePNTOvpYEnWeHKS3J544bVrFnRw3LSosyPTxJkpQBhjZJmgVe6OinaX+Cx46eZjyZZkPtYt538xquDSrJy7VYRJKk+WxWhbYgCH4P+H3g6jAMDwdBsAv4DlAMvADcHYZh5+T3zug+SZpq48kUjx/tpCme4ER7P4X5uezeuoI99TVctdxiEUmSNGHW/Pk2CIIGYBdwavLrGPBD4HNhGNYB9wNfzsQ+SZpKXWeH+evm4/zbbz7Md//hKCNjST729g189XO7uef2jQY2SZL0CrPiSFsQBIXAN4GPAc2Tm68FRsIwfHDy628zcfTr3gzsk6S3JB1FHH6+h6Z4gqee6yEWi1FfV05jfQ0bVy0lZrGIJEl6HbPlSNt/BH4YhuGJC7ZdBZx86YswDLuBnCAIlmVgnyRdkYHhcX762El+89uP8PW/PsTJjnO8Z/dqvvKLb+Nz77+aTauXGdgkSdIbyviRtiAI3gbsBH4z02OZCmVlCzP6+BUVLqvKNs5Z9rmUOTt2qpd/eOgEDxxIMJ5Ms2VtGfe+dyu7tlaRnzdb/l42f/g6yz7OWXZxvrKPc5ZdMh7agFuAjcCJIAgAaoF/Bv4rsOqlbwqCoByIwjA8EwTBqZncdzlPpqdngHQ6upybTJmKikV0dZ3LyGPryjhn2eeN5mxsPMVjR0/THE/wQsc5CgtyufHqKvY21FBbMfEHnbO9gzM5XOHrLBs5Z9nF+co+zlnm5OTEruggT8ZDWxiGX+aCwo8gCF4A7gSeBj4TBMGNk+eZfRb4q8lv2w8Uz+A+SXpdp3uH2NeS4MFD7QyOJKkuX8DPvaOOG7auoLgw479mJUlSlpu17ybCMEwHQfBx4DtBEBQxWcGfiX2S9GrpdMSh53poamnl8PNnyM2JUV9Xwa0NNdStXOJ5apIkacrEoigzS/nmoNXACZdH6nI4Z9mnoLiAnzQdY19LGz39IyxZWMAtO2q4eXs1SxcVZnp4ughfZ9nHOcsuzlf2cc4y54LlkWuYOEh0SWbtkTZJmi2iKOL5tn6a4q088UwXyVSajVct4cON69mxoZy8XItFJEnS9DG0SdLrGB1P8djTp2mKt3Lq9ABFBbncvmsV12+qpKZ8QaaHJ0mS5glDmyS9SseZl4tFhkaT1FQs4OO3BezavJyrape6pESSJM0oQ5skMVEscvB4N03xVo680EtuToxrggoaG2rZULvYYhFJkpQxhjZJ81rf4BgPHGzjvgMJevpHWbqokPfftIabt1ezeKHFIpIkKfMMbZLmnSiKOJ7oozme4IlnOkmlIzatWspHbq1jx4YycnMsFpEkSbOHoU3SvDE6luKRpztojid4sXOA4sJc9tbXsLehhqoyi0UkSdLsZGiTNOe19wzSHE/w0OF2hkdT1FYs5J7bA962eQWFBbmZHp4kSdIbMrRJmpNS6TQHnu2mKZ7g6MmJYpGdGytpbKhlXU2pxSKSJClrGNokzSl9A6Pcd7CN+w600XtulGWlhXzg5rXcvL2a0gUFmR6eJEnSZTO0Scp6URTxbGsfTfFW9oddpNIRW9Ys4+531LFtvcUikiQpuxnaJGWt4dEkjz59muZ4K61dg5QU5nHrNbXsqa9hxbKSTA9PkiRpShjaJGWdRPcg+yaLRUbGUly1fCGffNdGrt+8nMJ8i0UkSdLcYmiTlBWSqZeKRVp55tRZ8nJj7Ny4nMaGGtZWWywiSZLmLkObpFmt99wo9x9s474DCc4OjFFWWsSH9qzjxm1VlJZYLCJJkuY+Q5ukWSeKIsJTZ2lqSdBybKJYZOvaZdxzey3b1paRk+NRNUmSNH8Y2iTNGsOjSR4+3EFzS4K27kEWFOXxjmtXsqe+msqlFotIkqT5ydAmKeNauwZojid4+EgHo2MpVq9YxL3v3sR1myopsFhEkiTNc4Y2SRmRTKWJH+uiKZ7g2ItnycvN4fpNlTReU8uaqtJMD0+SJGnWMLRJmlFn+ke470Ab9x9so29wjPLFRfzs3nXctK2ahcX5mR6eJEnSrGNokzTtoijimZO9NMUTtDzbTRRFXL2ujMaGGrauLSPHun5JkqTXZWiTNG2GRpI8fLid5pYE7T1DLCzO57brVrKnvoaKJcWZHp4kSVJWMLRJmnIvdg7QHG/lkSOnGR1Psba6lE/dMVEskp9nsYgkSdLlMLRJmhLJVJonw06a4gmOt/aRn5fD9ZuX09hQw+oVFotIkiRdKUObpLekp2+E+w4muP9AG/1D41QuKebDjevZfXWVxSKSJGlaReOjRMN9pIf6iIbOEg33EQ31vbxtuJ9Ybj7Fd36BWE72Rp/sHbmkjElHEUdf6KUp3sqB490Qwfb15TQ21LB5zTKLRSRJ0hWLUkmi4f7zASz9UhCbDGPRcP9kIOuD8ZHX3kEsRqyolFjJYmLFpeQsWwlk93sTQ5ukSzY4Ms5DT3XQ3JLg9JkhFpXk8+5dq7hlezXlFotIkqTXEUVpotHBV4avCwPZhcFsdODid1JQQk7JYmLFi8mtWE2seDGxksXnt8Ve+li0iFhOzsw+wWlmaJP0pk52nKO5pZVHj5xmLJlmXU0p733PZq4NKsnPm1u/FCVJ0qWJogjGRy5YinjhEbH+VwWyfohSr72T3HxiJUsmwtfiFcRW1L0cvi4MZMWlxPIKZv5JzhKGNkkXNZ5M8+QznTS1tPJcop+CvBx2bVnO3vpaVq1YlOnhSZKkaTKxPPHV54a9HMguDGMkx157B7HYZNCaDF7LVk6ErwvD2ORH8ouIeVrFmzK0SXqF7r5h9rW0cf/BNgaGx1m+tJiP3LqBG69eQUmRxSKSJGWjKEoTjQwQDfUxdG6M8faOl8PYqwIao4MXv5PCBeePfOUsX3c+mL06kMUKF8655YmZZmiTRDqKePrEGZriCQ4+1w3AjvXlNDbUsmn1UotFJEmahc4vT7zIuWGvODo2Wd5BlAZg6MI7yS2YCFoli8lZXEVu1cbzAeyV54qVEsv1j7eZYmiT5rGB4XEePNTOvpYEnWeHKS3J5463rWLPjhqWlRZleniSJM1LUXLsfHti+lXFHa84V2yoD1IXW56YS6ykdCJwLVhCbvmql4NXyWKWVlXRP5ZPrNjlidnC0CbNQy909NO0P8FjR08znkyzoXYx77t5DdcGleTlupxBkqSpFqXTRCPnXnuu2NBFlieODV30PmKFC18+KrZ8/SvODTt/RKxkMbHCBcRir///eXHFIga6zk3XU9U0MLRJ88R4MsXjRztpiic40d5PYX4uu7euYE99DVctt1hEkqTLFUURjA299jpiQ32kL7jOWDTURzTSD1H02jvJLzq/FDFnaQ25NZtfU9Zxvj0x17fu85UzL81xXWeH2deS4IFD7QwMj1NVVsLH3r6BG7ZWUVLkrwBJkl5tYnni61zY+dXtianka+8glvvyUa8FS19xTbGJj0smzxcrJZbv6Qh6c75jk+agdBRx+PkemuIJnnquh1gsRv2Gchobati4aqlr1yVJ806UTk0sTxzqu3iV/QWBjLHhi95HrGjRyyUdVSsmj5CVng9iLx0xo7DkDZcnSpfL0CbNIQPD4zxwqI3meILuvhEWLyjgPbtXc/P2aotFJElzzvnlia+5sPPF2hPPAa+zPHFyKWJO2Upyi7e+cmni+eWJi4jl+NZZmeG/PGkOeL6tn+Z4K48d7SSZSlO3cgkf2rOOhroKi0UkSVknSo5e9ELO59sTL/ia9EWWJ+bkvXxEbFE5scp1rwhgOZMtirHixcTyC2f+CUqXydAmZamx8RSPHT1NczzBCx3nKCzI5aZtVextqKG2YmGmhydJ0itE6STR8LlXHBF7zbXFXgpi4yMXuYfYxNGul0o6llS98jpiF1xbjIISTwXQnGJok7JMZ+8QzS0JHjzUzuBIkuryBfzcO+q4YesKigt9SUuSZk4URaSGzpE6k5gMXmcvWJrY/8ojZCMDXHR5YkHx+aWIuWWriK28oDnxwkBWtIhYTu6MP0dpNsj4O7wgCMqAHwDrgFHgOPALYRh2BUGwC/gOUAy8ANwdhmHn5O1mdJ+USel0xKHne2iKt3L4+TPk5sSor6vg1oYa6lYu8a+JkqQpFY2PXnAdsbOvvbbYBYFsIJ167R3k5r18RGxRBbHl618RwF5RZZ9XMPNPUMoyGQ9tTPzJ5SthGO4DCILgj4AvB0HwaeCHwCfDMHwwCILfAb4M3BsEQWwm983YT0J6lf6hMR442Ma+ljZ6+kdYsrCAn7lxDTdvr2bpItfgS5IuXZRKToSt16uyv+BcsYsuT4zFiBWVvhy8ltaQU7KYRRWVDKaLJurrJwOZyxOlqZXx0BaG4Rlg3wWbHgV+EbgWGAnD8MHJ7d9m4ujXvRnYJ82YKIp4vq2fpngrTzzTSTIVsfGqJXy4cT07NpRbLCJJOi+K0kSjg294HbHz+0YHLn4nBSXnzw278HpirzhfrPil5Ymv/T9occUixrrOTfMzlea3jIe2CwVBkMNEYPt74Crg5Ev7wjDsDoIgJwiCZTO9bzJYStNqdDzFY0+fpineyqnTAxQV5HLL9hr2NNRQU74g08OTJM2QKIpgfOS1tfUvNSe+IpD1Q3Sx5Yn5E9cNK1lMzuIVxKqCl8PYq88Tc3miNOvNqtAGfAMYAP4EeH+Gx/L/t3fvwXFe533Hv+8u7tcFARAEARLi9ZAUJV5kRdbNsihrfFVlx44txZJiTzMTublMm7jNTCbpbUatx1EnbRK78iRN6iaNZzTjGbvTaZNODVISTduVBZAUdTmSLFEiwRsIEndggd09/eNdLPbyAgSBBfaC32cGg9337B6cxeHLxbPneZ+zLK2tha3a197eWNCfLzdvFo//deIs//flD5iYmqVnUyP/5PO388DhbupqKgs9PAmg86z0aM5KTznOmYvPEp8YITY+THz8OvGJYeLjw8Qnholl3Xez0dwOvBDh+mbC9RHCzS2EN2+noiFCuCHiH2uIEK5voaIhgldVu6bpieU4X+VOc1ZaiiZoM8Y8C+wCHrHWJowxHwA9ae1tgLPWXlvrtpt5HUND4yQSAZWR1kB7eyODSk8oCYmE49Q7Vzl+5hL9bw0SDnncYdo5cribXd3NeJ7HxNg0E2NBJY+lkHSelR7NWekppTlzLoGbHs9MTUxdI5ZZvIPoRHAn1fXzqYht26jY0hxYyt6rbshJT4wnv1ISwGgc/zPwtVFK8yU+zVnhhELeshZ5iiJoM8Y8A9wBfNpaO/fR0itArTHmvuR1Zk8DzxeoTSQvRib8wiIvnBxgaDRKW3MNn7vfLyzS3KDCIiIixSCVnhi0j9hkZjDmpkbBJXI7qaiaT0ds7iTcuSdjH7H5a8Wa8MLKqhCRxRU8aDPG3Ar8AfAWcMIYA/CetfZzxpgnge8YY2pIluAHSK7ErVmbyEo453hnYISjfQO8/OYV4gnH3p4WHntoNw/ffQvXri3wyauIiOSVi82kqicmsgp3ZFwrNjkC8ZncDrwwXl2TH3DVRwi39cyvgqWXsq9tgsoaVU8UkbzxnCtMKl8ZugV4T+mRMic6E+cnr1/iaN8A566MU1sd5t79nTx4uIvOVr+wiOas9GjOSo/mrPTczJy5RAI3PZa7j9hkQHrizGRgH151Q2YaYvY+YnNt1fV4nir4ZtM5Vno0Z4WTlh65DX+RaEkKvtImUm4uDk1wtG+AH5+5yFQ0Tnd7A099wnD3vk1UV4ULPTwRkaLnnMNFJ7L2ERsNrqY4PQpBH0BX1qRSEUMtXYS79mWVso8kg7JGvJD+HBKR4qb/pUTyIJ5IcPLtq/T2DfDG+9cJhzzu3LORI4e72dHVpBQZERHm0hMX2Ng57dj41CguPpvbQSg8v/JV35Kxp5j/PZIMyJrwKmvW/gWKiKwSBW0iKzAyHuWFUxd44eQFro9F2dBUzS9/ZDv3H9hMc732vRGR8ucScT89MS0AWyggY2YqsA+vpnG+SEfnJupb25mmNiddkep6fQgmIuuSgjaRm+Sc4+3zI/T2necVO0g84bh12waeeHg3t+9sJRzS9Q4iUtqcczAzGbCxc1D1xDEgKD2xFq+uiVBtM6HWLYRr9+du7FwbnJ7YquttREQyKGgTWaKpaIyfvn6Zo33nOT84QV11BQ/d0c1HD3WxaUNdoYcnInJDLhZNBWCJtKqJQQEZiVhuB6GK+RWxxja8jTsyArD5UvZNeBXaxkREJF8UtIncwMDVCY4lC4tMz8TZ2tHAVz65h7v2dVBdqcIiIlJYLhFPFenIDcgy7zM7HdCD5692zQVekc7AjZ1Ddc1QVaf0RBGRAlDQJhIgFp8rLHKeNz8YpiI8X1hk+2YVFviAyngAABTuSURBVBGR1eWcg+hE2srXsL+PWHZq4uQIbnqcwPTEqtpUKmK4tQdvywKl7Gsa8UL6AEpEpJgpaBNJc30syounLvDCyQGGx2dobarhCx/dwX23d9JUp8IiIrIybjaato/YcO7eYmmpiiTiuR2EK/DqIsn0xHa8jp25GzvPBWQV+j9LRKRcKGiTdc85h/1gmN7+Afrf8guL7N++gac+0c3t21sJhbSqJiILc/FYRnpidmpi+gpZYHqi5+HVNM0HXi1dmemJc9eK1TX7xT200i8isu4oaJN1ayoa48SZSxztH+DC1Qnqayr42If8wiIdLSosIrKeOZfARScW3Ecso6JidDy4k+r6+fTEtP3EsgMyPz1RVWdFRGRhCtpk3Tk/OM7RvgFOvHaJ6Eycnk2NfPVTe7hrbwdVKiwiUracczA7nVUlcaEVslFwQemJlX56Yl0zoeZNeJ0mYx+xVOGOmkalJ4qISN4oaJN1IRZP0PfWIL19A7x1bpiKcIi79m7kyB3dbOtsKvTwRGQF/PTEBfYRmxxhIDbOzMg1Pz0xNpPbgRfCq22aT0XcsCWVjpgdkFFZo/REERFZcwrapKxdG53mhZMXePHUBUYmZmhrruFXHtzBfbd10qjCIiJFy7kEbno869qw3I2dE5MjEJ0I7qS6nlBdMxXNrYQ7dmTtI5aentiA5yk9UUREipeCNik7zjnefP86vX0D9L99Fecct+1o5cjhLvZvbyWkT8lFCiKVnhi0j1h2KfupUXCJ3E4qqvDqIoRqmwlFNhPu3Otv5JwdkNU24YUrAWhvb2RwcGyNX62IiEj+KGiTsjE5HePEmYsc7R/g4tAkDbWVfPyXtvDAoS42RmoLPTyRsuViM6nqiYlU4Y6Aa8UmRyAelJ4YTgVeXn2EcFtP5j5i6deLVdas/QsUEREpMAVtUvLOXRnnaN95fvLaZaKzcbZvbuIff3ovv7R3I5UVKiwishwukcBNj+WmJgalJ85MBvbh1TTOXxPWsTN4Y+e6ZrzqeqUnioiILEJBm5SkWDzBz+0VevsGeOf8CJUVIe7a28GRO7q4ZZMKi4gEcc7BzGTGylfGCln68elRcC63k8qaVCpiqKWLcNe+rFL2kWRQ1ogX0luMiIhIPugdVUrK0Mg0L5wa4MWTFxidnGVjpJYvHdnJvbd10lBbWejhiRSEn56Ym4oYVMqeeCy3g1B4fuWrfgPh9m0Z1RS9ukgyIGtSeqKIiEgBKGiTopdwjjfOXqe37zwn37kKDg7sbOPI4S72bdugwiJSllwi7qcnpgVgCwVkzEwF9OD5VRHnyth3bpov1pFVyp7qepWxFxERKWIK2qRoTU7PcvzVSxztH+DyNb+wyCfv6uGjBzfTpsIiUoJS6YnZqYgBpezd1BgQlJ5Ym0pFDLVuJTwXlM2thM0FZEpPFBERKRt6R5ei88HlMXr7zvPT1y4zE0uwo6uJf/SZfXxoz0YqK1SsQIqPi0VTAdh8KuJoYEBGIig9sWJ+RayxDW/jjox9xOZL2TfhVVSv/QsUERGRglLQJkVhNpbg529eobf/PL8YGKWqIsSHb+3gwUPd9GxqLPTwZB1yiXhG2fq5gOyqm2Lq2mBGgMbsdEAPnr/aNRd4tXTmVk5MBmRU1Sk9UURERBakoE0K6urIFMf6L/DS6QuMTc7S0VLLYw/t4t7bNlFfo8Iikl/OOYhOpK18DeOmRnNTEydHcNPjBKUnxqrroMZPQwy39uBtaQ4uZV/TiBfSlhMiIiKycgraZM0lnOP1967R2zfAqV9cBeDgzjaOHO5m7y0tKiwiN83NRtP2ERvO3VssLVWRRDy3g3AFXl3EX/lq2ojXsSstAGvKCMg2drYyODi29i9SRERE1i0FbbJmxqdm+fGrFznaP8CV61M01VXy6bt7eOBAF63NKiMumVw8lpGemMheCUtbIQtMT/Q8vOSKmJfcUywUkJro1TX7xT30YYGIiIgUKQVtsurOXhqlt2+An71+mdlYgl3dzXz2/m3csVuFRdYb5xK46MSi+4il2qLjwZ1U16dWvsLt23ICML9yYlMyPVH/vkRERKT0KWiTVTEbi/P/3rhCb98A710cpaoyxD37N/HgoS62dqiwSDlxzsHsdFaVxIVWyEbBBaUnVs2viDVvwus0GfuIzVdSbMIL61pHERERWV8UtEleDQ5Pcax/gJdOX2R8apbO1jp+9WO7uGd/J3U1+udWSvz0xAX2EcsKxojN5HbghTL2DQu3bplPTZxbHaudS0+sUXqiiIiIyAL0V7SsWMI5zrw7RG/fAK/+YgjP8zi0q40jh7vY09OiP8aLiHMJ3PR41rVhuRs7JyZHIDoR3El1ferasFDHjqx9xNJSFGsa8DylJ4qIiIislII2WbbxqVleOn2Bo30DXB2Zpqm+is/ccwsPHNzMhiYVFlkrqfTEgGvDckrZT42CS+R2UlGFVxchVNtMKLKZcOfe+XTF2rTURKUnioiIiKw5BW1y0967OErvK+f52RtXiMUT7N4S4Qsf3cHh3e1UhLWyki8uNpOqnphIFe4IuFZscgTiQemJYby6Jn/Vqz5CuK0ncx+x9ICsUkG2iIiISLFS0CZLMjMb52dvXOZo3wBnL41RXRXm/ts7efBwF93tDYUeXslwiQRueiwVeI1djBK9fDkwXZGZycA+vJrG+SIdHTv976lgLJJKV6S6TumJIiIiImVAQZss6sr1SY71X+Cl0xeYmI6xua2eLz+8m3v2b6K2Wv98IJmeODOZsfKVsUKWfnx6FJxLPXdq7kZlTSrYCrV0Ee7aNx+Y1TXj1UaSq2SNeCH93kVERETWE/31JzkSCcfpd4fo7TvPmXevEQ55HNrdzpFDXZitkXVTWMRPT8xNRQwqZU88lttBKDyfili/IWNPsbnUxNbuzVyfqsCrrF77FygiIiIiJUFBm6SMTs5w/PRFjvX7hUWaG6p49L5tfOTAZloayyOocIm4n56YFoAtFJAxMxXQg+dXRZyrnti5KXdj52RARnX9DQPcypZGvNjY6rxYERERESkLCtrWOecc714YpbdvgJffvEws7tizNcIXH9zJwV1tJVFYJJWemJ2KGFDK3k2NAS63k8raVCpiqHUr4bmgLLuUfU0jXii85q9RRERERNYvBW3rVHQ2zs9ev0xv33k+uDxOTVWYjxzYzIOHu+lqqy/08ABwsWjARs6jgQEZiaD0xIr5FbHGNryNOzI3dk4FZE14FeWxkigiIiIi5UdB2zpz+dokR/sHOH76IpPRGF3t9Tz5ccOH93WsSWERl4hnlK0P3FtsLhCbnQ7owfOLccwFXi2dafuIZZayp6pu3Vx/JyIiIiLlS0HbOpBIOE69c5Xe/gFee88vLHKHaefI4W52dTevOLBxzkF0Yn7la6GNnSdHcNPjBKYnVtUlV76aCLf24G3J3thZ6YkiIiIisj4paMtijNkNfBdoBYaAp6y1bxd2VMszG4vzo1cG+NEr5xgajdLSWM1n79/GAwc209xw43RANxtN29h5OGcfsfRURRLx3A7ClfMrYk0b8Tp2ZRbrmLtd24RXUbUKvwERERERkdKnoC3Xc8C3rLV/a4x5AvgOcKTAY7opiYTjxJlL/OD4u1wbjbJna4THHtrFwV1thFwCNzVKfPBCWkCWviI2mlohC0xP9LxkoOVfCxZq6cos1pFWSZHKWqUnioiIiIiskIK2NMaYjcBh4OHkoe8Bf26MabfWDhZuZDfnx6fO0df7Iz4WmebgfkeTN447PcLUT0dw0fHgJ1XXp1IR0/cTyy5l71U34IWKv6KkiIiIiEi5UNCWaQswYK2NA1hr48aYC8njJRO0HfTe5GDjCxAHbziCa2gl1LwJr9Nk7CM2X0mxCS9cWehhi4iIiIhIAAVtedba2lDQn9/e3kjbQ59l9tBdVDS1EqqqLeh45Mba2xsLPQS5SZqz0qM5Kz2as9Ki+So9mrPSoqAt0zmgyxgTTq6yhYHNyeNLMjQ0TiIRUB1xDbS3NzI4OJa81wwjMWBssadIgWXOmZQCzVnp0ZyVHs1ZadF8lR7NWeGEQt6yFnl0cVIaa+0V4CTwePLQ40B/KV3PJiIiIiIi5UUrbbmeBr5rjPmXwHXgqQKPR0RERERE1jEFbVmstW8CdxV6HCIiIiIiIqD0SBERERERkaKmoE1ERERERKSIKWgTEREREREpYgraREREREREipiCNhERERERkSKmoE1ERERERKSIKWgTEREREREpYgraREREREREipg2186fMEAo5BV0EIX++XLzNGelR3NWejRnpUdzVlo0X6VHc1YYab/38M08z3PO5X8069N9wEuFHoSIiIiIiBS9+4HjS32wgrb8qQbuBC4C8QKPRUREREREik8Y6AReBqJLfZKCNhERERERkSKmQiQiIiIiIiJFTEGbiIiIiIhIEVPQJiIiIiIiUsQUtImIiIiIiBQxBW0iIiIiIiJFTEGbiIiIiIhIEVPQJiIiIiIiUsQqCj0AyQ9jzG7gu0ArMAQ8Za19u7CjWn+MMWeB6eQXwO9ba//BGPNh4DtALXAWeMJaeyX5nGW1yfIYY54FPg/cAtxmrT2TPL7gObQabbJ0i8zZWQLOt2SbzrkCMca0An8D7MDfOPYd4DestYOrMS+as5W7wZw54FUgkXz4k9baV5PPewT4Y/y/J18BvmqtnVxJmyydMeYHwDb8uRkHfttae1LvZ+VJK23l4zngW9ba3cC38N/ApDC+YK09mPz6B2OMB/wt8JvJ+XkR+AbActtkRX4AfAR4P+v4YufQarTJ0i00Z5B1vsHyzyudc3njgG9aa4219nbgF8A3VmNeNGd5Ezhnae33pJ1ncwFbA/AXwCPW2p3AGPD1lbTJTfs1a+0Ba+0h4Fngr5LH9X5WhhS0lQFjzEbgMPC95KHvAYeNMe2FG5Wk+RAwba09nrz/HPDFFbbJMllrj1trz6UfW+wcWo221Xpt5Spozm5A51wBWWuvWWuPpR36KdDD6syL5iwPFpmzxXwS+HnaastzwJdW2CY3wVo7kna3GUjo/ax8KWgrD1uAAWttHCD5/ULyuKy9/26MOW2M+bYxJgJsJW2FwFp7FQgZYzasoE3ya7FzaDXaJH+yzzfQOVc0jDEh4GvA/2B15kVzlmdZczbnmDHmpDHm3xtjqpPHMn73wAfM//+23Da5ScaYvzTGfAA8A/waej8rWwraRPLrfmvtAeBOwAP+vMDjESlnOt+K35/hX2ujuSkd2XO21Vr7IfwU5X3AHxVqYJLLWvvr1tqtwB/gXycoZUpBW3k4B3QZY8IAye+bk8dlDc2lcFlro8C3gXvxP0VMpZkYY9oAZ629toI2ya/FzqHVaJM8WOB8A51zRSFZQGYX8CVrbYLVmRfNWR4FzFn6eTYK/CULnGf4K2jnVtgmy2St/RvgQeA8ej8rSwraykCyStZJ4PHkoceBfmvtYOFGtf4YY+qNMc3J2x7wGP68vALUGmPuSz70aeD55O3ltkkeLXYOrUbb6r+i8rfI+QY65wrOGPMMcAfw2WRQDaszL5qzPAmaM2NMizGmNnm7AvgC8+fZ3wN3GmN2Je+n/+6X2yZLZIxpMMZsSbv/CHAN0PtZmfKcc4Ueg+SBMWYPfinWFuA6filWW9hRrS/GmO3A94Fw8ut14HestReNMffgV1qqYb4k9eXk85bVJstjjPlT4JeBTcBVYMhae+ti59BqtMnSBc0Z8AgLnG/J5+icKxBjzK3AGeAtYCp5+D1r7edWY140Zyu30JwB38T/3TqgEjgB/FNr7XjyeY8mHxMG+oGvWGsnVtImS2OM6QB+CNQDcfyA7evW2j69n5UnBW0iIiIiIiJFTOmRIiIiIiIiRUxBm4iIiIiISBFT0CYiIiIiIlLEFLSJiIiIiIgUMQVtIiIiIiIiRUxBm4iISBZjzHPGmD9apN0ZY3bm+Wd+2Rjzf/LZp4iIlAeV/BcRkbJmjHkM+GfAfmACf/+p7wL/2Vq7rDdBY4wDdllr3wloOwZ8GIgB08CLwG/O7SGXD8aYrwC/bq2970aPFRGR0qeVNhERKVvGmN8D/hPwx/ibc3cATwP3AlULPCechx/9W9baBmA3EAH+JA99iojIOlVR6AGIiIisBmNMM/Bvgaestd9Pa+oHvpz2uP8KTAE9wAPAo8aYJ4Dz1to/TD7mnwO/CzjgD5c6BmvtNWPM94GvpY3pz4BPApPAXwD/zlqbyF49S67mfQ34PaAN+Dvgt4A9wHNApTFmHIhZayPGmE8BzwJbgFHgT6y1zy51rCIiUry00iYiIuXqbqAa+OESHvurwDNAI3A8vcEY8wng68DDwC7gY0sdgDGmDfg8fqAIfsDWDGzHDxCfAr66SBefAe4EDgBfBD5urX0Df7XwJ9baBmttJPnY/wL8hrW2ET8VtHep4xQRkeKmlTYRESlXbcBVa21s7oAx5gSwDz+Y+7i19sVk0w+ttT9O3p42xqT380Xgr621Z5J9/Gvg8Rv87D81xjyLfw3dMeB3k2mXXwIOWWvHgDFjzH8AnsQPuIJ8w1o7DAwbY44CB4G/X+Cxs8A+Y8wpa+114PoNxigiIiVCK20iIlKuhoA2Y0zqA0pr7T3JlakhMt8Dzy3Sz+as9veX8LN/x1obsdZ2WWu/bK0dxA8iq7Ke/z7QtUg/l9JuTwINizz288CngPeNMS8YY+5ewjhFRKQEKGgTEZFy9RMgCjy6hMcuVkXyIv51YnO2LnM8V/FXw3qy+hpYRl8547XWvmytfRTYCPwAeH45gxQRkeKj9EgRESlL1tphY8y/Ab5tjPHw0wongduB+pvo6nngr40x/w04C/yrZY4nbox5HnjGGPMUsAG/uMlyioVcBrqNMVXW2hljTBXwK8D/tNaOGGNGgfhyxikiIsVHK20iIlK2rLXfxA+M/gVwBT/Y+Q7w+8CJJfbxv4H/iF/Y4x1WVuDjt/Gvc3sXv+DJ3wF/tYx+eoHXgEvGmKvJY08CZ5MB29PAEysYp4iIFBFtri0iIiIiIlLEtNImIiIiIiJSxBS0iYiIiIiIFDEFbSIiIiIiIkVMQZuIiIiIiEgRU9AmIiIiIiJSxBS0iYiIiIiIFDEFbSIiIiIiIkVMQZuIiIiIiEgRU9AmIiIiIiJSxP4/X3vG55jXAd0AAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 1008x432 with 1 Axes>"
       ]
      },
-     "metadata": {},
+     "metadata": {
+      "needs_background": "light"
+     },
      "output_type": "display_data"
     }
    ],
    "source": [
     "df_byte = pd.DataFrame()\n",
-    "df_byte[\"Loads / Loop Iteration\"] = (df_vldvst.set_index(\"nx\")[\"Vector Loads / Loop Iteration\"] + df_ldst.set_index(\"nx\")[\"Loads / Loop Iteration\"])*8\n",
-    "df_byte[\"Stores / Loop Iteration\"] = (df_vldvst.set_index(\"nx\")[\"Vector Stores / Loop Iteration\"] + df_ldst.set_index(\"nx\")[\"Stores / Loop Iteration\"])*8\n",
+    "df_byte[\"Loads\"]  = (df_vldvst.set_index(\"Grid Points\")[\"PM_VECTOR_LD_CMPL (min)\"] + df_ldst.set_index(\"Grid Points\")[\"PM_LD_CMPL (min)\"])*8\n",
+    "df_byte[\"Stores\"] = (df_vldvst.set_index(\"Grid Points\")[\"PM_VECTOR_ST_CMPL (min)\"] + df_ldst.set_index(\"Grid Points\")[\"PM_ST_CMPL (min)\"])*8\n",
     "ax = df_byte.plot()\n",
-    "ax.set_ylabel(\"Bytes / Loop Iteration\");"
+    "ax.set_ylabel(\"Bytes\");"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Let's quantify the difference by, again, fitting a linear function to the data."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 38,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Mean byte loaded: 37.52662546714877\tMean byte stored: 8.428951320998907\n"
+      "Counter  Loads is proportional to the grid points (nx*ny) by a factor of 37.5010 (± 0.000592)\n",
+      "Counter Stores is proportional to the grid points (nx*ny) by a factor of  8.4379 (± 0.000247)\n"
      ]
     }
    ],
    "source": [
-    "import numpy as np\n",
-    "mean_byte_ld = np.polyfit(df_byte[df_byte.index > 200].index, df_byte[df_byte.index > 200][\"Loads / Loop Iteration\"], 0)[0]\n",
-    "mean_byte_st = np.polyfit(df_byte[df_byte.index > 200].index, df_byte[df_byte.index > 200][\"Stores / Loop Iteration\"], 0)[0]\n",
-    "print(\"Mean byte loaded: {}\\tMean byte stored: {}\".format(mean_byte_ld, mean_byte_st))"
+    "_fit, _cov = common.print_and_return_fit(\n",
+    "    [\"Loads\", \"Stores\"], \n",
+    "    df_byte, \n",
+    "    linear_function\n",
+    ")\n",
+    "fit_parameters = {**fit_parameters, **_fit}\n",
+    "fit_covariance = {**fit_covariance, **_cov}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Analagously to the proportionality factors, this mich is loaded/stored per grid point."
    ]
   },
   {
@@ -3089,34 +3284,36 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 50,
    "metadata": {},
    "outputs": [],
    "source": [
     "df_bandwidth = pd.DataFrame()\n",
-    "df_bandwidth[\"Bandwidth / Byte/Cycle\"] = (df_byte[\"Loads / Loop Iteration\"] + df_byte[\"Stores / Loop Iteration\"]) / df.set_index(\"nx\")[\"Cycles / Loop Iteration\"]"
+    "df_bandwidth[\"Bandwidth / Byte/Cycle\"] = (df_byte[\"Loads\"] + df_byte[\"Stores\"]) / df.set_index(\"Grid Points\")[\"PM_RUN_CYC (min)\"]"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Let's display it as a function of `nx`. And also compare it to the available L1 cache bandwidth in a second (sub-)plot. Non-interactive users, call `make graph_task2c`."
+    "Let's display it as a function of grid points. And also compare it to the available L1 cache bandwidth in a second (sub-)plot. Non-interactive users, call `make graph_task2c`."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 51,
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAF/CAYAAACVLiKjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xl8nHW99//XrMlklux7s7TpvtGNlgKlUFnKWtyOWlDRKt6o/NyqbEeq3HAQDnrYFH4cQEVREYSWrdBCUaAUukJXuibN0uzrTGaS2a77j7SB2DadtFma5P18yMMkc801n0m+Sa/39d1MhmEYiIiIiIiIyDGZB7oAERERERGR05lCk4iIiIiISDcUmkRERERERLqh0CQiIiIiItINhSYREREREZFuKDSJiIiIiIh0Q6FJRERERESkGwpNIiIiIiIi3VBoEhERERER6YZCk4iIiIiISDcUmkRERERERLqh0CQiIiIiItINhSYREREREZFuWAe6gN7W2NhKNGoM2Ounprqor/cN2OvL4KG2IrFSW5FYqa1IT6i9SKyGUlsxm00kJzt7/LwhF5qiUWNAQ9ORGkRiobYisVJbkViprUhPqL1IrIZ7W9HwPBERERERkW4oNImIiIiIiHRDoUlERERERKQbQ25Ok4iIiAycUDiKyQRWi/nw5xEOHGqhoaWd6WPTiLef3KVHcWULFbWtzJmYic36yT3ftmCY1kCYtlAEDIOcNCcmk+mk6w9Hohw41MLusiaCoQgZSQ4ykh3kZbhJiO++dsMwKKnyEm+3kJ36yURzf1uIbQcaOFjl5WC1lyZfOymeeNIT40lNjCc9yUFaooO8DCc2q6XzeaFwlEZvGxnJCSf9fkSkdyg0iYjIsFHXHMAZb8MRd/Q/f4Zh0B6KYLWYOy/4Y9UWDGMYHPO8R84dNQws5tjPGwxFKKv10eILkpfhIjUxHoCapgD7K5oxmUxkJDvITE7A5bDFdL7y2lYOVrVQUuWlssFPeqKDwmw3o3MTGZnt6XL8nrImGlraSHTFkeyOIyPZgfnfwkh7KEJlfSsVta2UVHnZX9FMWY2PaNTA47TjctiobvQTjnRMIE902lk0byTzpmb36Hvx/s4qnnxlF+GIwfNv7+fSOQXE2S1s+LiGXSWNRI1PJqjnZ7q4Ym4hM8ald9YbNQx2lzbx3vZKGr3tRCIGkahBJBrt/DgcNYhEorS0BgmGowCYTabOc5tMkJ/hZlx+EuPykhiTl4TLYSPQHqairpXtB+pZt6OK2qY2AEaku5gxNo2yGh/bDtQTjhhYLWbyMpxkpzpp9LaxscqLLxDqrN0RZ2HG2HSmjU7j49Im3t9RRWtbmNkTMrjmorG4E+zH/R5VN/p5Zd1BLj4zjxHprpi/twDtwQjFlS3sP9RMkzdIRoqDnFQnZhNUNvipqvcD4HTYcMZbcTlsOB02Ujzx5KZ1vwpZKBzhtfVlvP1hBddcPI5po9OOe2wwFKHB206zr538TPdxf5+OCLSH+dXTm0lLjGfxhWM7f0c+7cjiBWbzyQdpEQCTYRhDaimM+nrfgK7ukZ7uprbWO2CvL4OH2orEqj/aSjjS0TtgMpkwwSndqT+iPRihpKoFf1tHL4DdamZqUWqXO+nHUt/cxsFqL+2hCOFwlIhhYDGbsFrMhMJRvP4gXn+IcKTjwtZiNjNzXDpjRiR2qTsaNWjytVPTGGDnwUY27a6hst6PCchOczIi3UlrW5j65jaafO20ByMYgN1mZkJ+MlOLUpk5PgPPpy5Uo1GD4soWAu1h2kNRapsCbDtQz56yJiJRg8yUBAqz3JhNps46Ww7/v2EYTB6ZwuwJmUwbk3bMC8LqBj8f7Kxm855aymtbu4QBl8OG2QQt/tBRz0t02snLcDFhVCpjcz2MyvZgMpmoqPXxztZKdpY0cqjuk/O5HDayUxOoaQzQ3BoEYFJhMl84fzQuh42/vbmXTXtqu7xGfoaLq+eN4ozRqewtb+a1D0r5aH8dR0q028yMyvYwKicRq8VEo7edltYg2alOxuQlEm+z8MI7xeyraCbZHUdRjoeCLDeeBDvBcJRIJMqMcemkJTo6X9MwDF5ed5AX3j7A2LwkLpmdx6r1ZewuawIgI8nBzPHpZCUnEGe34AuEWL2hjOrGAEkuO6meeNwJdsprfdQ1t+GIs5KTloDFbMZiNmGxmLAe/th8+HOXw8a4vGTG5ScRb7fQ0NJGdWNHUN1d2sT+Qy0dvy+Ax2nv/P6ZgAmFyZw1MYu2YJgPdlWzv6KFRJedORMyOXN8BgVZ7qMCeaA9TH1LG9UNAT7cV8um3bW0BSNYLSZmjE0nNTGeVevLcDpsXHxmXufx6YkOFswcQaLTzs6SBh5Zvp3WtjCOOCv/3+enMC4/mZpGP395Yy8Vta2MHpHI2LwkwuEo+w81c7DKi789QlswTOhwSASIs1toD0a61Bhns2A2Q6C969cBzpqUyZc/MwZPgp39Fc28uLYEXyBIYZaHzGQHazZXUNMUwOWwEQxFWPqV6YzOTTzqe/DAsx+xp7y582t2m5kzx2cwZ0ImBuD1B3En2JkyKrXzmCdf3cXabZXYrGZMmLjqnELsNgvltT4O1bXS0NJGky+IO8HGt6+cxISCZKAjYK54txir2czIbDf5mW5sVjOG0fEzTXbHHfU+h7uhdM1iNptITe3ZjQVQaOp1Q6lRSd9SW5HjMQwDf3sYrz+E1x/EZLVSUdWM1x8iEjWwW83YbRYmFCSTc4y7vIZhsL24gY8PNtLoa6fJ294xZMpswmIy4Yiz4nRYsVktVDf4qaj1dbkQz05N4IqzC5kzIbPL3dmoYVBW7WNPeRNl1T5Ka7w0edsxmTouOJ3xVtKTHKR64imv9bGvormzh+EId4KN+dNymT0+A4/LjiveRm1zgN2lTewpa2J3aRP1LW0n/B7F2SydQ7SCoQjBcJSR2W7mTMyiusHP/kPNHKpr7Xx9kwnG5SUxbUw6be1hDlS2cKiuFXeCjVRPPEnuOBLirMTZLdQ3t7F1f33nRfbV547kghm57K9o5q9v7KW0puteJbnpTqaOSiU+zkpJZQul1V7AhMdpw51gx51gw5NgJxSOsmlPLY3eduJsFuZNzeaiM/OwWsxs2FXN+zurKanyYgLGjEhkTF4ShVkeEl12ymp8FFe2EI0ajM5NZPSIRMwmEzWNAaob/ZTX+iir9lFR10okapDqicPjtFNc6cViNjG+IJnCLDeFWW4KstykeuI7A2ajt531u6p5+b0SWtvCWC1mzCa44uxCpo9Np8XXTlWDn9fXl1HTFCDRZafZF8TlsDFvajYjsz3kpjvJSHacsPfIMAy27K3j/R1VHKz2dvbKHJHqieOWa2eS4oknahg8vXoPb22uYO6kTK67dELnz7ykqgUTJvIzXUcF/GjUYMPHNXy0r44Wf5CW1hAep41zpmQzc2w6dlv3of1EQuEoxZUt7C5tpKYxQGZKAiPSXRRmu0lydb3Y9gVCJMRZe9TLEQxF2H+ohbwMV2cPYlmNjyde3klpjQ+L2USSy05DSzsWS8eNiA/31pGdmsC1F4/lqdd3U9sU4Jwp2by3vQqL2cTEwhT2VzR3Brxkdxyjsj1kpbuIhCM47BYKstyMyknEGW+lpTXIoXo/UcMgJ9VJksuOyWQiHInibw/TGgjRGgiz7UA9r75/EEeclcIsN9uLG/Ak2MhJc3Kw2kugPUJ2agKLLxxLXoaL//rzJloDIW65dmbn365wJMr9z37E7tImLj2rgOyUBBLirWzZW8cHu6qPCnAXn5nHfywYzUd763jo+W1cPreA+Wfk8OfVe9i6vx4AZ7yV3DQnqYkOUjxxbN5TS1WDn6vPHYnNamH5OwcwH74R8+mePgCL2cQPvjiVySNTkU8MpWsWhabDFJpksFBbGRjhSJQGbzt1TQHqm9tobQvT2hbC7bAxf3oucd1cUDV62zlwqIXK+lbCkSjhiEE4Eu0Y2hOJ4guEaPJ13F3PSE5g7OE7uyOzPce8UAu0h9lZ0kBptY/KBj81DX6aW4P4Ah3hKBaTR6WwYPoIEl0dvSGH6lp5fX0p5bWtWMwmkt1xJLnjiLOaiRoQiUQJBCO0toVoD0bITEkgJ81JWmI8JiASNTp7ObJSEijK8RCJGrQFI+yraO68wPAk2MjLdJN2eDhMNGrg9YeobvRT39wxB2PyyBTGFyST6LQTb7dQ19zGm5vK+WhfHcd6dx13+JMYm59EUU4iCfFWbBYzZrOJyOHvs9Vixp1g6/L9bA9FeG97FavWl1LdGMARZ2Fktof8TDcZSQ7SkxzkZbq69BidiGEYlNe28ve39rGjuKEzKCS747h63kiyU5zYbWY8TvtRF8rdiRoGBypaeGtLBet3VXf0/HT8j4IsN3MmZDJ7QgYpnqOHGcXC4YrnjXXFbPy4hubWIGdNzOSsyVkxvXd/W4jX1pfi9Ye4fG5Blx4f6PjdeW97FRs/ruGM0WmcOzW729+XWPjbQvjbw9htFmobA/z6mQ9J9cTzs8XTee6f+3lnayULZ+fzxQuKeqX3czCLRg28gY6/VWazieoGP6+tL2Xttiomj0zh21dOxBFnxRcI8eA/trKvvJmZ49JZfOFYkt1xGIZBbVMAm9XS2ZPSG/8OVdT6+ONru6msb+WS2flcOGsE8XYrUcOgobmNJHdcZ+9aTVOA/3pqIyaTiQUzRzB3UibPv32A93dUs+TyCZwzJbvLuduCYfaVNxNvt+JOsPHmpnLe2FTOzHHp7C1rIskVx39+fRZWixnDMCir8eFy2Eh2x3VpL23BME+9tpv3d1YDMG10Gl+9ZBxJLjv1zW2dvbom4IV3iqlrDnDzNTPIz3Sf0vdmKBlK1ywKTYcpNMlgobbSoa4pgL89jNlswny4x8JsgmAoStnhu+dVDX4ave00+trJTXNy+dwCJhQkd/lHsT0YYfPeWvaUNdHsC9LiD+Jv6xh2EopECYUjhMLRo3o+4JN5CymeOP7jgtFMH5NOo6+d+qYAB6t9HDjUzIHKjonsn3ZkyJjVYsJiNuF02EhyxeFOsFFR1zHPA8BqMVGY7SE/w3X4Lr6J8jofHx9sJBwxMJkgPdFBZkoCSS477gQ7noRPeinycpOItIdwJ9iwmM2EIlFaAyHWbq9izeZymn3BLnXlpjtZODufORMzezw3Bzou7DfvrmXlB6W0tLZjMZuxWc0UZrmZWNgRhE5l+EpNU4ADhwOYLxAi0RXHuLwkslMTTunCOBo1aPC2keKJP2ruzckyDIMP99axemMZ4/KTWTgn/5SDwhGN3nb+9WEFZpOJ2RMzyUo59cn+g/3vyq6SBv7n2Y+Is1lobQtz5dmFXD1v5LAPTN1pPzz09dPfo1A4SnWDnxEZ3V8YDkR7Kavx8ZfVezqHWAJ87rxRXHF24QmfaxgGr68v4+9v7cNqMXH7dWfGPH/LMAw+2FmNzWphxti047aphpY27vrTJgBu++rMo25ghMId8x5Ptk0ahkGLP0SczUyczTJo2vaptBVfIMTdf97ENy+bQNG/Dc0cCApNhyk0yWAx2NpKc2sQf1uI9lCE1kDHmPq65gCB9ggWswmTCZp9QSoPB5yZ49JZdM5IPM6ud7jDkY6hLVv317N5Ty2VhycYH4/VYiYrxUGyOx6P08b24gaafUFG5XjIy+gYmtMaCLF1fz3toQjOeCvJ7ngSnTYc8Tbs1o4L/iP/2a0WUtxxHcPIEuNxOWzE2y3sLW/mL6v3HDX0CiAtMZ5ROR1zNYpyPIzIcB11kXIsvkCIfeXN7CnvGHpWeXi4i2EYJLnimDY6jelj0hiVk9hlNbB/111bCUeifFza2DH8DhNOh5XRuYmD5h9i6V2D7e/KsWz8uIbHXtrJlecUcmUMF9Jy8gayvdQ2BVi3vQqb1czCOfk9+pu17UA9hgFTi/pmCF1ZjY+7/7yJcCRKkiuOJFccwVCE+paO0Qkuh428DBdZKQmEIlHaDt/4y8twUZDlJhqFveVNFFe2kJvm4sJZI0hPcnCwysvf3tzbGRitFjNJLju5aU5GHL6p1uxrp8UfIsUdx8hsD4XZbjJTEjpvBDX52nlvexWJTvtRPXN96VTaytptlTzxyi5uv24WhVmeEz+hjyk0HabQJINFX7aVI6uAtQY6hp61toVp8rV3TIr1BsHU0fvhTrBz7pTso4LNEdGowUf76li1oazLXcEjzCYT8XYLUcMgGjVwJ9jJSk3AYbeweU8dNpuZC6bnYrWYaQ2EqGrws7+imWA4itlkYlx+EtNGp5HiiSNqdLzekXNZLWZGpDvJSk3oMk8iFI7w7rYq1mwqxxfomFx/ZFz/WRMzGZOXdNK9DNGowbodVdQ1t5HiiSPVE8+IdNdxvz/9RX9XJFZDpa2EI9GT6iWVnhkq7aUvlFS18MHOapp9QZp87dhtlo75jy479S1tlNX4qGkMYLdZcMRZCYYi1DV/MkfPbDKRk+aksr5j6N+obA8HDrXgdNg65jKaTfgCIepb2qioa6Wq3k8kauA+PMqgrjlAMNSxQMeROWM2q5ntBxqIGgZxdgsP/WBev/2enEpb+d0L29hb0cyvv3dOr40COBUnG5q05LjIIBeNdozj3lnSwI6SBsprfLS2hY87JyYhzorJBKFIlGAoyotri1kwfQQzx6XT4G2ntinQ+d+hulaafEFSPXF87rxRpCXFE2ezkBBnJTUxnmR33HEnflfWt/KPfx3gtQ9KMZnAGW8jxRPHeWfkMC6/Y2WqWJZJ/nc2q4ULpudywfTcHj/3RMxmU7/euRORY1NgkoFWmOXpca9Ia1uIg1VeTCYTo7I9xNktNHrbeXNTOZv21LJwTj6Xzy085n5fR1YDPdL2I9EolXV+iitbKK7yUlzZQmtTiEvm5JGYYOdva/axv6KZcfnJp/5m+1A4EmV7cQOzJ2SeFoHpVCg0iQyAFn8Q36FmKiqb8beHO3tH20MRSiq97KtoxqBjPPWnLx4aWto4WOXtmG/T3EZJlZcDlS2dqwvlpjmZNiYNl8OO02HFGW8jIc6KM95KkjuOFHc8cfZP5mNU1rfy8nslvL6hlNfWl3Z+3eWwkZ7kYGxeEjPGpjNzXHqP9lQByE518v3PTaE9GMFmMw/6P5YiIiLdccbbmFiY0uVrye44vnB+EV84v6jb5/77jQKL2cyIDBcjMlzMO6PrsYH2MM/+cz/bixtO+9C0p6yJtmCEM0YP/tUIFZpETkGgPdy5SEGTr51ROce+M9Xka2fd9qqOnqDaVlpag8c4Wwe7zUyqJ57K+o4NBY9M5DUMg7v+tIlGb8diBBaziRHpLs6enMXonMSTmpyfnerk21dO4qpzR1JR20ra4Z3pT7ShYE98OqSJiIjIqXHEWSnK8bD9QAOfn999GBtoH+2rx2oxM7Eg5cQHn+YUmkRi0B6KUN/cRnNrkJbWIJX1rewsaeTAoZYum08CjM1L4jMzR2AYRueGiEfGIOdnuJg6KpUR6U4K85KJtIdwxFs7e3EsZhOZKQ6qGwL85+MfcLDa2xmaGr3tNHrbufLsQi6YkYsnwd5rO5xnJieQmXzqK3eJiIhI35s0KpUX3j5AS2twwOfdHo9hdMyLnlCQPCRuoCo0ybASjXbsU5GR7Oh2udEDh1rYf6iZ4kov1Y3+o5Z0Npk6xjtfelY+I7M9pHjicDvsbNpdw+qNZTyyfHvnsWmJ8Vx6Vj7nTMnusqRwd5Mqs1ISsNvMHKz2ds6xKa7sOHbq6NQe7QsjIiIiQ8uUUSm88PYBdhQ3MHdy1nGP87eF8LWFyUhyHPeYvlLV4KemKcAls/P6/bX7gkKTDHmGYXCo3s/7O6pYu62SJl+QcXlJfPWSceSkOfG3hdnwcTU7ihvYf6ilc/ib1WKmIMvFlFGppCc5SEuMJ8lpx+O0k+KJP+YQtotn57Ng5gj2VzSTEG8jI8lxUndXjixdWlr9yfLXJVUtWMwm8mLck0JERESGpvxMN+4EG9uL648ZmgLtYVZvLOP19WVEIlHu+T9zSeylG64Hq7y8taWC7cX1jM1LYu6kLCYWJh819/mjffUATC1K65XXHWgKTTIk1TUH2LS7lt2lTew7vImmyQRTRqVy/nQPqzeUsezJ9UwoSGZ3WROhcJRUTzxj85IoyvFQlJtI3uE9E3rKajH3ysTM/Ew37++oImoYmE0mDlZ5yU1zYu+ljTVFRERkcDKbTEwqTGFHcUPndcIRu0oaeGTFDnyBEFNGpbK9uJ5VG8r44gWjgY4pB/f+ZQuhcJTCbDcjsz1MGZVCWmL3vVHBUIQHntvKroON2K1mJhQks21/Pe/vqMZmNR/evL1jLnOi005DSzsj0l2kJsZ3e97BQqFJBrVINMq7WytZv6sGm9VMvN1CXXPH8DroGOY2bXQao3I9nFGU1rlQwvnTcnn2rX3sKm1k3tRszpmSTWGW+7TaELQg081bmys6hhMmOSip8jJj7NC4WyMiIiKnZtLIFN7fWU1ZtY+CLDfQsVrdA//YSnqigx/9xxmMzPbw6IrtvLWlgsvnFpAQb+OVdSUUV7YwPj+JD/fW8e7WSgDyM12cOT6DC6aPOOay6CvWFrPrYCNfOL+I86flkBBvIxSOsnV/PXvLm4hGDQwDAsEwza1BwhGDC2eN6M9vSZ/qt9C0YMEC7HY7cXEdF61Lly5l3rx5XY65+eabee+990hO7rhLv3DhQm644Yb+KlEGkahhsG1/Pc/9cz8Vda3kpDmxWc1UN0ZIiLPw+fmjOHN8BhnHWdzA47Sz5IqJ/Vx1z+RndgzDK632YTF1bIJXcBrspC0iIiIDb/LIjhXpXl5XwvnTcjGZ4KHnt5HqiWfpV6aTeHiBiMvOKmD9rhre3FzBrHHprHy/lLmTsvj2lRMxDIOaxgBb9taxeU8t//jXAV5fX8aV5xR2bk4PsL+8idc/KGPe1GwuO6ugswab1czMcR1bkwx1/drT9OCDDzJ27Nhuj7n++uu59tpr+6kiOR21toX4+GATjd42CrLcFGR27ILtDYSoaQiwZW8tH+yqpqGlnYxkB9/77GRmjE0/rXqJekNumguL2URptZcj76zw8J0kERERGd4SXXGcOzWbtVsr2bS7FoCMZAdLv/xJYIKO4f5Ti1JZvaGMHcUNxNks/MeCjqF6JpOJzJQEFs7JZ+GcfA5Wefn7W/v46xt7eWNjGZ+fX8SMsek8/OyHuBJsnc8bjjQ8T04L1Q1+Nu6uYfOeOkqqWvj0Kt4WswmrxUx7KNL5+aSRKXxhfhGzxmcM2Z3jbVYz2alODlZ7MYxP9mUSERERAfjmZRP4ymfGcOBQC4fqW5k1LuOYezZedlYBv3p6M3vKmvjqxWO7hKpPK8hys/TL09he3MCzb+3j0RU7SPHE0dDSzg1XT8YZb+vrt3Ta6tfQtHTpUgzDYObMmfz4xz/G4zl6qNHvf/97nnnmGfLy8vjJT35CUdHpvWmXnLxgKML7O6tZs6mc0pqOVeJG5Xi48uxCJhamkJYYz8EqL/sPtRAKR0lLiictMZ7RuYm4E07PPQl6W0GWi23764lEDEZkuLBZh2ZAFBERkZPjiLMyaWQKk0YefwPZsXlJTC1KpT0YYf603G7PZzKZmDIqlUmFKby3vYrl7x7gnDNymDUMhuB1x2QY/7YzZx+prKwkOzubYDDIXXfdRWtrK/fdd1+XY6qrq0lPT8dsNrN8+XIeeOAB3njjDSwWrRY2FITCUcprvByoaGZfeRP/2lyB1x9kZI6Hz5yZz9lTckhP7v99BE5nL76zn/9dvh2b1cyCWXl8/4vTBrokERERGYQikSgmkwmzuWfTGY5EhaE2DaKn+q2nKTu7Y4NOu93O4sWLj7nAQ2ZmZufHV199NXfffTdVVVXk5nafiD+tvt5HNNovOfCYutuwdDg6WOXlzU3llFZ7qahrJXL4Z2O3mpk0MoWLz8xjbF5Sxy9iODysvnextJXUw93noXCUrKT4YfX9kU/o74rESm1FekLtRWI1lNqK2WwiNbXn0x36JTT5/X4ikQhutxvDMHj11VeZMGHCUcdVV1d3Bqd33nkHs9ncJUjJ4BE1DF7/oJTn3z5AnM3CqBwPk0alkJ/hJj/TRWZyQo/vdAxHeRmf/FIXauU8ERERkQHRL6Gpvr6eG2+8kUgkQjQapaioiGXLlgGwaNEiHnvsMTIzM7npppuor6/HZDLhcrl45JFHsFq1VsVgEgpH2FHcyKoNpXxc2sTMcel8feF4XI7hO3HwVDjirGQkO2hoaSc33TnQ5YiIiIgMS/2SSPLy8li+fPkxH1uxYkXnx3/4wx/6o5xhqabRj9cfwmQy4YizkJ3aOxfgFXWt7C1voqYxQFW9n10HG2kPRUiIs/KNS8dz7tTsYT8G9lRNLUqlvrltyK4SKCIiInK6UzfOMPDOR4f4w8qP+fRMr2XXndm5e/TJqGkKsPztA7y/sxoAq8VEWqKDuZMymTE2nfEFybrI7yWLL+x+bzMRERER6VsKTUPc24cD06SRKVw0K49gKMLvlm9n64H6HoemqGGwp7SJd7dV8sHOaixmE5edVcD503JI8cRrjpKIiIiIDEkKTUPYPz+s4KnXdjN5VAo3fm4KNmvH0u35GS52Fjdw5dmFMZ9r48c1/P2tfdQ1txFvt3DetByumFt4zA3URERERESGEoWmIeqfWyp46vXdTC1K5XufndwZmAAmjkxh9YYy2oJh4u3dNwF/W5inV+9h3Y4q8jNdfPu8icwYm06cTXtniYiIiMjwoNA0BL21uZw/rdpzODBNwWbtOrdoUmEKr31Qyp6yZqYWpR73PL5AiDv+sIGGlnauOqeQK84u1DwlERERERl2dAU8xLy5qSMwnXGcwAQwZkQiVouZnSUN3Z7rrc3l1DW38dOvTOPqeaMUmERERERkWFJP0xCyan0pf1uzj2mj07jh6snHDEwAdpuFMSMSuw1N4UiUNZsrmDwqhXH5yX1VsoiIiIjIaU9dB0PEK+tK+Nuafcwcl853P3v8wHTEpJEplNe20uxrP+bjG3bV0Nwa5OJZeX1QrYiIiIjI4KHQNMgZhsGKd4v5x78OcNbETP7PokkxDaObVJgCwM6SxmOec9Wq7xB4AAAgAElEQVSGMrJTE5g0MqXXaxYRERERGUwUmgYxwzB4/u0DrHi3mHOmZPGtKyZiMcf2I83LdOFy2I45RG9veTMHq71cNCsPk0l7L4mIiIjI8KY5TYOUYRj8/a19vL6+jPnTcvjqJeMw9yDgmE0mJhQks72kgVA42mU43+oNZTjjrcydnNUXpYuIiIiIDCrqaRqk3t1Wyevry/jMjBF8rYeB6Yh5U7Np9gV56b2Szq9t3V/Ppj21XDAjV3sxiYiIiIig0DQotfiD/H3NPkaPSOQrF4056SF0k0elcs7kLF5dd5CDVV6afO088cpORqQ7ufLswt4tWkRERERkkNLwvEHo72v20RaM8PWT7GH6tC9fOIYdJQ088cpOPE477cEI31k8GZtVvUwiIiIiItDDnqb9+/fz29/+ll/+8pedn3/88cd9Upgc266SBt7bXsXCOfnkprtO+XzOeBtfXzie8tpWdpY08pULx5Cb5uyFSkVEREREhoaYQ9PKlSu59tprqa6uZsWKFQD4/X5+9atf9Vlx0lUoHOGp13eTnhTfq8PnzhidxuVzC7hw1gjOOyOn184rIiIiIjIUxDw878EHH+TJJ59kwoQJrFy5EoDx48erp6kfvbLuINWNAX7ypWnYe3mRhs/PL+rV84mIiIiIDBUx9zQ1NDQwfvx4gM6FB0wmk/bx6SeV9a28su4gZ03K1IazIiIiIiL9KObQNGnSpM5heUe88sorTJ06tdeLkq4Mw+CPr+0m3m7hywvGDHQ5IiIiIiLDSszD82677TaWLFnCc889h9/vZ8mSJRQXF/Pkk0/2ZX1Cx55Me8qauO7S8Xic9oEuR0RERERkWIk5NBUVFbFy5Ureeustzj//fLKzszn//PNxOrXSWl+KRg1WvFtMUa6Hc6dmD3Q5IiIiIiLDTo/2aXI4HFx22WV9VYscw86DDTS0tPOlBWNOeU8mERERERHpuW5D0+LFi2Na6OHpp5/utYKkq3e3VuKMtzJtdNpAlyIiIiIiMix1G5q++MUv9lcdcgytbSE276lj/hk52Kw92odYRERERER6Sbeh6bOf/WyvvdCCBQuw2+3ExcUBsHTpUubNm9flmEAgwC233MKOHTuwWCzcdNNNXHDBBb1Ww2Dzwc5qwpGo5jKJiIiIiAygmOc03XnnnVx22WXMmDGj82ubN29m5cqV3HbbbTGd48EHH2Ts2LHHffyJJ57A6XSyevVqSkpKuOaaa1i1atWwXWzi3a2V5GW4KMhyD3QpIiIiIiLDVsxjvl5++WUmT57c5WuTJ0/m5Zdf7rViVq5cyZe//GUACgsLmTx5Mm+//XavnX8wKa/xUVLl5dwp6mUSERERERlIMfc0mUwmDMPo8rVIJEI0Go35xZYuXYphGMycOZMf//jHeDyeLo8fOnSI3Nzczs+zs7OpqqqK+fxDyT8/rMBiNnHWpMyBLkVEREREZFiLOTTNmjWL+++/n5/+9KeYzWai0SgPPfQQs2bNiun5Tz/9NNnZ2QSDQe666y7uuOMO7rvvvpMu/HhSU129fs6eSk8/teF0tY0B3v6okgWz8hhVkNpLVcnp6FTbigwfaisSK7UV6Qm1F4nVcG8rMYem2267je985zuce+655OTkUFlZSXp6Oo8++mhMz8/O7hhmZrfbWbx4MTfccMNRx+Tk5FBRUUFKSgoAlZWVzJkzJ9YSAaiv9xGNGic+sI+kp7uprfWe0jmeeu1jDMPgopm5p3wuOX31RluR4UFtRWKltiI9ofYisRpKbcVsNp1UJ0vMoSkrK4sXXniBjz76iKqqKrKzs5k6dSpm84mnRfn9fiKRCG63G8MwePXVV5kwYcJRxy1cuJBnnnmGKVOmUFJSwrZt2/j1r3/ds3c0yNU2BXhnayXnTcshLdEx0OWIiIiIiAx7MYemp556iiuuuILp06f3+EXq6+u58cYbO+dAFRUVsWzZMgAWLVrEY489RmZmJkuWLOHmm2/moosuwmw2c8cdd+ByDfxwu/700toSzGYTV8wtHOhSRERERESEHoSm9957j//5n/9h9uzZLFq0iAsvvBC73R7Tc/Py8li+fPkxH1uxYkXnxwkJCTz44IOxljTkVDf4Wbu9kotm5ZHsjhvockREREREhB4sOf7oo4+yZs0azjvvPP74xz9yzjnncNttt7Fhw4a+rG9Y+WBXNRhw6Zz8gS5FREREREQOizk0ASQnJ3PNNdfwzDPP8Kc//Ylt27bxta99jQULFvDII4/Q2traV3UOCztLGsnPcpPoUi+TiIiIiMjpokehCWDdunXccsstfO1rXyMtLY177rmHe++9l127dvHtb3+7L2ocFtqCYfZXNDOxMHmgSxERERERkU+JeU7TPffcwyuvvILb7WbRokW89NJLZGZ+svHqGWecwezZs/ukyOFgT1kTkajBxMKUgS5FREREREQ+JebQ1N7ezsMPP8zUqVOP+bjNZuO5557rtcKGm50ljVgtZsbkJg50KSIiIiIi8iknDE1tbW2UlpZy++23H/XYnj17KCgoIC6uYw5OUVFR71c4TOwsaWDMiETsNstAlyIiIiIiIp9ywjlNjz/++HF7kJ5//nkef/zxXi9quGn2tVNe28qkkRqaJyIiIiJyujlhaHr11VdZsmTJMR/7xje+wSuvvNLrRQ03uw42AmgRCBERERGR09AJQ1N1dXWXBR8+LTMzk+rq6l4varjZWdKIM95KfoZ7oEsREREREZF/c8LQ5HA4qKysPOZjhw4dwuFw9HpRw4lhGOw82MCEgmTMZtNAlyMiIiIiIv/mhKFp/vz5/OY3vznmYw888ADz58/v9aKGk9qmAA0t7UzQUuMiIiIiIqelE66e98Mf/pAvfelLXHXVVVx88cWkp6dTW1vL6tWr8fl8/O1vf+uPOoesg9U+AEZma2ieiIiIiMjp6IShKT09nRdeeIEnn3ySd955h6amJpKSkrjgggv4xje+QWKi9hU6FWU1PswmE7lpzoEuRUREREREjuGEoenZZ59l/vz5/OhHP+qPeoad8hofWakJ2Kzan0lERERE5HR0wtC0bds2fve73+HxeDj//POZP38+06dPx2TSogW9oazGy+gRSQNdhoiIiIiIHMcJQ9Mdd9wBwO7du/nXv/7Fr3/9a4qLi5k7dy7nnXce8+bNIyVFixicjNa2EPUt7VyQ4RroUkRERERE5DhOGJqOGDduHOPGjeP666+npaWFd999l3/961/893//Nzk5Odx4443MmzevL2sdcsprOhaBGJGu0CQiIiIicrqKOTR9msfj4bLLLuOyyy4DYOvWrb1a1HBRejg05amnSURERETktBVzaDIMg2effZaXX36ZxsZGXnrpJTZs2EBtbW1neJKeKa/x4XLYSHLZB7oUERERERE5jhNubnvEAw88wHPPPceXvvQlKisrAcjKyuLxxx/vs+KGurIaH3kZLi2qISIiIiJyGos5NL3wwgs8+uijXH755Z0X+SNGjKCsrKzPihvKItEoFXWtGponIiIiInKaizk0RSIRnM6ODViPhKbW1lYSEhL6prIhrrohQCgcVWgSERERETnNxRya5s+fz913300wGAQ65jg98MADXHDBBX1W3FBWpkUgREREREQGhZhD0y233EJNTQ0zZ87E6/Uyffp0Dh06xNKlS/uyviGrrMaHxWwiO9U50KWIiIiIiEg3Yl49z+Vy8bvf/Y76+noqKirIzs4mPT29xy/48MMP89BDD/HSSy8xduzYLo/dfPPNvPfeeyQnJwOwcOFCbrjhhh6/xmBQVuMjOzUBmzXm3CoiIiIiIgMg5tB09dVXs3z5clJTU0lNTe38+uc+9zmef/75mM6xY8cOPvzwQ3Jyco57zPXXX8+1114ba1mDVnmtj/H5SQNdhoiIiIiInEDM3RwHDx486muGYVBeXh7T84PBIHfccQfLli0b9ktsB9rDNHrbyUnT0DwRERERkdPdCXuafvaznwEQCoU6Pz6ioqKC0aNHx/RCDzzwAFdddRV5eXndHvf73/+eZ555hry8PH7yk59QVFQU0/kHk6oGPwBZKVp5UERERETkdHfC0JSfn3/MjwFmzJjBwoULT/giW7ZsYdu2bSdcNOJHP/oR6enpmM1mli9fzre+9S3eeOMNLBbLCV/jiNTUgV+NLj3d3e3jO0qbAJgwOv2Ex8rQpp+/xEptRWKltiI9ofYisRrubcVkGIYRy4HvvPMO8+bNO6kXeeyxx3jqqaew2+0AVFVVkZqayt13382555573OfNmTOH559/ntzc3Jhfq77eRzQa01vqE+npbmprvd0e88LbB3h5XQmP/uR8LQQxjMXSVkRAbUVip7YiPaH2IrEaSm3FbDadVCdLzAtB/PrXv2b//v1ceeWVXRaCiMX111/P9ddf3/n5ggULePTRR49aPa+6uprMzEygI6SZzebOz4eS6kY/aYnxCkwiIiIiIoNAzKHpu9/9Li+++CL3338/s2bNYtGiRVx00UXEx8efUgGLFi3iscceIzMzk5tuuon6+npMJhMul4tHHnkEqzXmEgeNqno/WSlaBEJEREREZDCIeXjeEU1NTaxcuZIXX3yRvXv3ctFFF3HVVVcxd+7cvqqxR0734XlRw+C7v/kX88/I5SsXjunHyuR0M5S6uqVvqa1IrNRWpCfUXiRWQ6mt9PnwvCOSkpK4+uqrSUhI4PHHH2fVqlVs3LgRs9nMsmXLOPvss3tcxHDS5G0nGIqSlaqV80REREREBoOYQ1M0GmXt2rWsWLGCf/7zn0ybNo3rr7++c4je66+/zk9/+lPWrl3bl/UOepVablxEREREZFCJOTTNmzeP5ORkFi1axE9/+tOjFmi45JJL+POf/9zrBQ41VfUKTSIiIiIig0nMoenRRx9lypQpANTX17Nq1SqKioq6bD77pz/9qfcrHGKqGvzE2S0kuewDXYqIiIiIiMTghKGpurqa//t//y/79u1j+vTpfPOb3+Taa6/FbDbj9Xq55557uPzyy/uj1iGhqsFPVkoCJpNpoEsREREREZEYnHCjoGXLluHxeLjllluIRqMsWbKEO++8k3Xr1nH//ffz6KOP9kedQ0ZVvZ9sDc0TERERERk0TtjTtGXLFt555x3sdjuzZ89m1qxZXHjhhQBceOGF3HTTTX1e5FARDEVoaGkjKyV7oEsREREREZEYnbCnKRQKYbd3zL9xOBw4nc4uQ8t6uM3TsFbTGMAALTcuIiIiIjKInLCnKRKJ8P7773eGo3A43OXzaDTatxUOIVWHlxvPTFZoEhEREREZLE4YmlJTU7n11ls7P09KSuryeUpKSt9UNgRpjyYRERERkcHnhKFpzZo1/VHHsFBV7yfZHUec3TLQpYiIiIiISIxOOKdJek99SxvpSY6BLkNERERERHpAoakfef1BPAm2gS5DRERERER6QKGpH3n9IdxO+0CXISIiIiIiPaDQ1E8i0SitgRBuh3qaREREREQGE4WmfuILhDEAd4J6mkREREREBhOFpn7i9QcB8Gh4noiIiIjIoKLQ1E+8rR2hScPzREREREQGF4WmfuINhAC0EISIiIiIyCCj0NRPWo70NGnJcRERERGRQUWhqZ94/SFMJnDFKzSJiIiIiAwmCk39xBsI4XLYMJtNA12KiIiIiIj0gEJTP/G2BrXcuIiIiIjIIKTQ1E+8/iAezWcSERERERl0FJr6SYs/hEs9TSIiIiIig06/h6aHH36YcePGsWfPnqMeCwQC/PCHP+Siiy5i4cKFvPXWW/1dXp9RT5OIiIiIyOBk7c8X27FjBx9++CE5OTnHfPyJJ57A6XSyevVqSkpKuOaaa1i1ahVOp7M/y+x14UiU1raw5jSJiIiIiAxC/RaagsEgd9xxB/fddx9f//rXj3nMypUr+dWvfgVAYWEhkydP5u233+bSSy/trzL7ROvhjW3V0yQiIiLS+yKRMI2NtYTDwYEuZUiqqTETjUYHuoweMZstOBwuXK5ETKZTX72630LTAw88wFVXXUVeXt5xjzl06BC5ubmdn2dnZ1NVVdUf5fUpr78jNKmnSURERKT3NTbWEh+fgNOZ1SsXyNKV1WomHB48ockwDCKRMF5vE42NtaSkZJzyOfslNG3ZsoVt27axdOnSPn+t1FRXn7/GiaSnu7t8fqixDYAROYlHPSbDm9qDxEptRWKltiI9MVTaS01NGYmJSQpMfchqHVzrx9lsFuLi0qmqKuuVdt4voWnDhg0cOHCAz3zmMwBUVVWxZMkS7r77bs4999zO43JycqioqCAlJQWAyspK5syZ06PXqq/3EY0avVd8D6Wnu6mt9Xb5WlllMwDRYPiox2T4OlZbETkWtRWJldqK9MRQai/RaJRIxAAG7hpwKBtsPU2fFolEu7Rzs9l0Up0s/RIZr7/+et59913WrFnDmjVryMrK4oknnugSmAAWLlzIM888A0BJSQnbtm1j3rx5/VFin2rxd4yvdWtOk4iIiIjIoDPg/WyLFi2iuroagCVLltDS0sJFF13Ed77zHe644w5croEfbneqvP4QJhM4HQpNIiIiIkPdF75wJQcO7OvVc1ZWHuLyyz9zzMfq6mq58cbvHPOxV199iYULz+e66xZz3XWL+eY3r2HTpg29WtvmzRtZsuSrMR//8cc7+eUv//OYj336fXq9Xp5++o9dHv/+969n7dp3Tr7Yk9SvS44fsWbNms6PV6xY0flxQkICDz744ECU1Ke8/iBuhw2zxtmKiIiISC9LS0vnoYf+/+M+PmvWbO68814A1q17l9/85h6efvq5/irvKOPHT2TZsjtPeJzP5+Uvf3mKa6459srb/WlAQtNw4/WHtHKeiIiIyDDz17/+mTffXEUkEsZuj2Pp0psZM2YcANu3b+W3v30Av98PwPe+9wNmzz6LXbt2cP/999HWFiA+3sEPf7iUCRMmdZ7z4Yfv56OPNtPe3s5PfnIzZ5wxncrKQ3zrW1/llVfePGFNPp8Pt9vT+fkvf/mflJYeJBQKkpubxy233I7H42Hz5o08+OBvmDhxEjt2bANM/PKX/0Vh4UgAHnvsd7z55irS0zO61Lds2a3Mn7+ABQsu5Omn/8hTTz3Jq6+uwWKxcO21X+S//us+6upq+e1vH+CJJ/4EwD/+8Xf+/ve/kJqaxvTpMzvP9Zvf3IPP5+O66xYTHx/Po48+CcCHH27mz3/+A3V1dSxYcCE33HDjSf6EYqfQ1A+8/qDmM4mIiIj0g7XbKnl3a2WfnPvcqdmcMyU75uMXLrycr3zlWgA2bPiA//7vu3nssT/Q0tLMrbf+lLvuupcpU84gEonQ2tpKKBTittt+xi233M6ZZ85h48b13Hbbz3jmmeUANDc3U1Q0mu9//4ds2bKJX/zits7HurNx43quu24xgYCfpqZG7r33gc7HfvCDpSQlJQEdQejpp//YGUKKi/dz6623c+utP+eJJ/6XP/7xCZYtu5N3332btWvf5ve//wtxcXHccssnK2TPmjWbTZvWs2DBhWzatIGRI4vYtWsnWVnZ+P1+8vMLqKur7Tx+3769PPXUk/z+90+TkpLKfff9qvOxH//4Jr71ra/yhz/8pcv7qa6u4re//V/8fj9f+tIirrhiEXl5+TH/XE6GQlM/aPGHyM8Y/HOzRERERCR2u3fv4k9/+j0tLc2YzWbKykoB2L59G4WFI5ky5QwALBYLHo+H/fv3YbPZOPPMjtWjZ82ajc1mo7T0IAkJCdhsNi655DIApk+fSVxcHKWlB3E6nd3W8enheZs3b+QXv7iVv/71eeLj43nttZdZteo1wuEQgUBbl/CRn1/A2LHjAZg0aUrnXKItWzayYMFFJCQkAHDFFYv44x+fAGDmzDP585//QCgUoqamhsWLv8rGjR+QlZXNzJlnHlXbli2bOPvsc0lJSQVg0aLP8tZbq7t9Pxdc8BnMZjMul4uCgpFUVJQrNA0FPn8Qj4bniYiIiPS5c6b0rDeor0SjBj//+U08/PD/Mm7ceOrqarn66kuBjs1Xj8UwjGPuNXW8afHHO747M2bMIhwOU1y8n2AwyPLl/+CRR54kOTmZVate48UXn+881m6P6/zYbDYTiUS6rR8gJyeXaNRg9erXmDx5CjNnnsmddy4jKyubGTNmHfM99NTx6upLA7563lAXjkRpbQtreJ6IiIjIMBOJRMjIyATg+eef7fz6lClTKSkpZvv2rZ3HtbS0UFBQSDAYZPPmjUBHr1A4HCYvrwCAUCjE6tWvAfDRR1sIBoPk5xf0qKb9+/fh97eSlZWD1+vF6XSRmJhIMBjklVdejOkcM2fOZs2aNwgEAkQiEV599cV/e3wWTz75GLNmzSYzM4uWlmbWr3//mD1NM2bMYt26tTQ2NgDw8sufLBLndDppa2sjHA736D32BfU09TFfIASA26meJhEREZHhIBKJEB8fz5Il3+Hb3/4amZlZnHXW2Z2PezyJ3HXXvTz00P/Q1hbAZDLzve/9gDPPnMNdd93bZSGIO++8B5ut4+Z7YmIi5eVlfPvbX6e9vY1f/OKuzse6c2ROU0evjsGtt/6C5ORkzjrrbFatWsnixV8gIyOD8eMnsHPnjhOe75xz5rF9+1a+8Y3FpKWlM336TGprP5mnNHPmmbzyyoudIWnKlGls2rS+M0B+2ujRY/jqV7/BDTcsISUllblzP9nH1eNJ5OKLL+XrX/8ybrencyGIgWAyTqZP7DRWX+8jGh24t/Tvu2uXVnv5xe838N2rJzNrfMaA1SWnn6G0E7v0LbUViZXaivTEUGovVVUHycrqWY9LX6mrq+Oaaz7Piy++Tlxc/ECX0yusVjPhcHSgyzgp/942zGYTqak9X2tAPU19zHukp0nD80RERESGtGef/RsvvPAs3/veD4dMYJIOCk19zOsPAuDR8DwRERGRIe2LX/wyX/zilwe6DOkDCk19xOsP0uht50BFC4A2txURERERGaQUmvpAdYOf/3z8AyKH51YlxFlJiNe3WkRERKSvnMzy2zK0GUYU6J02oSv5PpCaGM93rpqEydTRw5SVkoBZv8QiIiIifcJqtdPa2oLT6VFwEgzDIBIJ4/U2Yrf3ztwyhaY+YLWYtVKeiIiISD9JTk6nsbEWn69poEsZksxmM9Ho4Fo9z2y24HC4cLkSe+V8Ck0iIiIiMqhZLFbS0rIHuowhaygtT3+yzANdgIiIiIiIyOlMoUlERERERKQbQ254ntk88JP/TocaZHBQW5FYqa1IrNRWpCfUXiRWQ6WtnOz7MBmGYfRyLSIiIiIiIkOGhueJiIiIiIh0Q6FJRERERESkGwpNIiIiIiIi3VBoEhERERER6YZCk4iIiIiISDcUmkRERERERLqh0CQiIiIiItINhSYREREREZFuKDSJiIiIiIh0Q6FJRERERESkGwpNIiIiIiIi3VBoEhERERER6YZCk4iIiIiISDcUmkRERERERLqh0CQiIiIiItINhSYREREREZFuKDSJiIiIiIh0Q6FJRERERESkGwpNIiIiIiIi3VBoEhERERER6YZCk4iIiIiISDcUmkRERERERLqh0CQiIiIiItINhSYREREREZFuKDSJiIiIiIh0Q6FJRERERESkGwpNIiIiIiIi3VBoEhERERER6YZCk4iIiIiISDcUmkRERERERLphHegCeltjYyvRqDFgr5+a6qK+3jdgry+Dh9qKxEptRWKltiI9ofYisRpKbcVsNpGc7Ozx84ZcaIpGjQENTUdqEImF2orESm1FYqW2Ij2h9iKxGu5tRcPzREREREREuqHQJCIiIiIi0g2FJhERERERkW6YDMMYUgMUy/9+LxFf04C9vs1mJRQKD9jry+ChtiKxUluRWKmtSE+ovUishlJbsbiSGPEfP+vx89TTJCIiIiIi0o0h19NUX+8b0NU90tPd1NZ6B+z1ZfBQW5FYqa1IrNRWpCfUXiRWQ6mtmM0mUlNdPX9eH9QiIiIiIiIyZCg0iYiIiIiIdEOhSUREREREpBvWgXjR7373u5SXl2M2m0lISODnP/85EyZMoLi4mJtvvpmmpiaSkpK45557KCwsHIgSRUREREREgAEKTffccw9utxuAN954g1tvvZUXXniBZcuWsXjxYhYtWsSKFSu4/fbbeeqppwaiRBEREREREWCAhucdCUwAPp8Pk8lEfX09O3fu5IorrgDgiiuuYOfOnTQ0NAxEiSIiIiIiIsAA9TQB3HbbbaxduxbDMHj88ceprKwkMzMTi8UCgMViISMjg8rKSlJSUgaqTBERERERGeYGLDTdddddACxfvpx7772XH/zgB71y3pNZd723pae7T3yQCGorEju1FYmV2or0hNqLxGq4t5UBC01HXH311dx+++1kZWVRXV1NJBLBYrEQ+X/t3Xl8U3X2//H3vUm6QulCoWUfURFEthbUEYZ1YBQRx+8oDoIjgjqOG/MbFxAFVJixrjgCVgdQUdFxwYVN8AvKOHxdQBTBBRVQUAq0pRXa0jTJvb8/0qYrsQ2FtOX1fChN7ufezz1JTnLv+dybG59PBw4cUGpqap3648dt0ViQK6gtcgW1Ra6gLsgX1FZTypVG8+O2hYWFysrKCtxft26dWrRooaSkJHXt2lXLly+XJC1fvlxdu3bl1DwAAAAAYXXCjzQdOXJEt9xyi44cOSLTNNWiRQtlZmbKMAzNnDlTU6ZM0fz58xUXF6eMjIwTHR4AAAAAVHLCi6aWLVvq5ZdfrrGtc+fOeuWVV05wRAAAAABwdGG55DgAAAAANBYUTQAAAAAQBEUTAAAAAARB0QQAAAAAQVA0AQAAAEAQFE0AAAAAEARFEwAAAAAEQdEEAAAAAEFQNAEAAABAEBRNAAAAABAERRMAAAAABEHRBAAAAABBUDQBAAAAQBAUTQAAAAAQBEUTAAAAAARB0QQAAAAAQVA0AQAAAEAQFEaOU3YAACAASURBVE0AAAAAEARFEwAAAAAEQdEEAAAAAEFQNAEAAABAEBRNAAAAABAERRMAAAAABEHRBAAAAABBOI9l4R07dujtt99WTk6OZsyYoR07dsjj8eiMM86or/gAAAAAIKxCPtK0atUqjRs3Tvv379ebb74pSSoqKtL9999fb8EBAAAAQLiFfKTpn//8pxYtWqSuXbtq1apVkqQzzjhDX3/9db0FBwAAAADhFvKRpoMHDwZOwzMMI/C37DYAAAAANAUhF01nnnlm4LS8MitWrFCPHj2OOSgAAAAAaChCPj1v2rRpmjhxol599VUVFRVp4sSJ2rVrlxYtWlSf8QEAAABAWIVcNHXu3FmrVq3Su+++q0GDBik1NVWDBg1SbGxsfcYHAAAAAGF1TJccj46O1gUXXFBfsQAAAABAg1Onomns2LG1utDDCy+8EHJAAAAAANCQ1KlouvTSS49XHAAAAADQINWpaPr9739/vOIAAAAAgAYp5EuOz5o1S5s3b640bfPmzZo9e/YxBwUAAAAADYVh27YdyoLnnHOO/vOf/ygiIiIwraSkRAMHDtQHH3xQbwHWVW5ugSwrpIdUL5KTmys7+3DY1o/Gg1xBbZErqC1yBXXRlPLF5/MqLy9bXm9JuENpkkzTlGVZ4Q6jTkzToejoZmrWrEWlazKYpqGkpGZ17i/kq+cZhqGq9ZbP52t0TygAAAAat7y8bEVFxSg2NqVWFy1D3TidprzexrOPb9u2fD6vDh/OV15ethITWx1znyGfnpeenq45c+YEiiTLsvT4448rPT39mIMCAAAAasvrLVFsbBwFEyT5D+44nS7FxyeppKS4XvoM+UjTtGnTdN1116l///5q06aNsrKylJycrMzMzKDL5eXl6fbbb9fu3bsVERGhjh076t5771ViYqI+++wzTZ8+XW63W23bttWDDz6opKSkUEMEAADASYKCCVUZhimpfr62E/KRppSUFL3++uuaN2+eJk6cqHnz5mnp0qVKSUkJupxhGJo0aZJWr16tZcuWqX379nrooYdk27Zuu+02TZ8+XatXr1Z6eroeeuihUMMDAAAAwuIPfxilnTu/q9c+s7L2auTIoTW25eRk66abrquxbeXKZfrd7wbpqqvG6qqrxurqq6/QJ59srNfYNm/epIkTx9d6/q+//lL33HNXjW0VH+fhw4f1wgvPVmq/8cZrtWHD+6EHG6KQi6bFixcrPz9fvXv31vnnn69evXrJNH+5u/j4eJ199tmB+7169dLevXu1detWRUZGBk7vu/zyy/X222+HGh4AAABwUmjZMlmPP/7kUdvT0/vpmWeW6Jlnluiaa67XI49knMDoqjvjjG6aMWPWL85XUHBYS5YsPgER/bKQT8/7v//7Pz366KPq16+fRo8erWHDhlW6kl5tWJalF198UUOGDFFWVpbatGkTaEtMTJRlWcrPz1d8fHyoYQIAAABh8eKLz2vt2jXy+byKiIjUrbdO0WmndZEkbdv2uebNe0xFRUWSpBtuuEX9+p2jr776QnPmPKTi4iOKiorW5Mm3qmvXMwN9zp07R1u2bJbb7dbf/jZFPXv2VlbWXk2aNF4rVqz9xZgKCgrUvHlc4P4999yl3bt/kMdTorZt22vq1OmKi4vT5s2b9M9/PqJu3c7UF19slWTonnv+rk6dfiVJeuqp+Vq7do2Sk1tVim/GjDs1cOAQDRkyTC+88KwWL16klSvXyeFwaNy4S/X3vz+knJxszZv3mBYufE6S9NprL+vll5coKamlevdOC/T1yCMZKigo0FVXjVVUVJQyMxdJkj77bLOef/4Z5eTkaMiQYbr++ptCfIVqL+SiKTMzU3l5eVq5cqWeffZZzZgxQ8OHD9fFF1+svn371qqP++67TzExMRo3bpzeeeedUEOpJJRLCNa35OTm4Q4BjQS5gtoiV1Bb5Arqoqnky4EDppzOkE+gOi4cDlMXXjhK48dfKUn6+OOP9NBD/9DChYv1888/6847b9P99z+kHj16yufzqbCwULbt01133aFp02aoX7+ztXHjR7rrrjv06qtvyuEw9fPPP+v000/X5Mn/T5s3f6IZM6bptdfeksNhSjJqfA5M09CmTR9rwoSxOnKkSHl5+Xr44ccC8/7tb7cpPj5BkpSZOU8vvrhYN9xwsxwOU7t27dTdd8/UnXferaefXqDFixfp3ntn6/3312vDhv/ouedeUmRkpG6//f/JMPxX2evX72x9+ulGDR8+XJs3b9Qpp3TWt99+pZSUVBUVFemUU36lvLzcwPzffvuNnntukZ599kUlJSXpgQf+EXgst902VRMmjNPzz78UeDyGYejAgX168smFKioq1P/8z2iNHv17dejQocbXwTTNesnzkIsmSUpISNAVV1yhK664Ql9//bVuv/12LV26VKmpqbr00kt15ZVXKjY2tsZlMzIy9MMPPygzM1OmaSo1NVV79+4NtB88eFCGYdT5KBO/04TGglxBbZErqC1yBXXRlPLFsqzAJbE3bM3Sfz/POi7r6d8jVeedlVqreX0+S1988YWee+5pHTr0s0zT1J49u+X1WtqyZYs6dfqVunU7qzRuQzExzbRjx3dyOp3q06evvF5LvXv3ldPp1M6duxQTEyOXy6Vhw34nr9dSjx69FRkZqZ07d5Xub9s1Xhbcsmylp/fTrFkPSPJ//+juu6fqxReXKioqSsuXL9OaNW/L6/XoyJFitW/fQV6vJZ/PUocOHdS58+mSpK5du+v99/8jr9fSpk0bNWTIbxURESXblkaOHK1nn11YGnO6Fi9+WkeOuLV//wGNHTteH374oVJSUpWW1jfQt22rtK9NOvfc/mrRIkFer6VRoy7W2rVrAvNVfVy2bWvQoKGyLCkqKlYdO3bS7t271aZNuxpfB8uyKuX5Cf+dpjIffPCB3nrrLa1du1bdu3fXpEmT1KZNGy1evFjXXHONlixZUm2ZRx99VNu2bdNTTz0VOKWve/fuKi4u1qZNm5Senq6XXnpJ559//rGGBwAAAJxwlmXr7rvv0Ny5/1KXLmcoJydbF1/s37et+lunZWzbrvEqgEe7MODR5g+mT590eb1e7dq1QyUlJXrjjdf0xBOLlJCQoDVr3tZbby0NzBsRERm4bZqmfD5f0PglqU2btrIsW++887a6dz9LaWl9NWvWDKWkpKpPn+o/TRSsr6M5WlzHU8hFU0ZGhlasWKHmzZtr9OjRWrZsmVq3bh1o79mzp/r161dtuW+//VaZmZnq1KmTLr/8cklSu3btNG/ePD3wwAOaMWNGpUuOAwAAALV13lm1Pxp0vPl8PrVq5d8/Xrr0lcD0s87qoYyMWdq27XN1794jcHpex46dVFJSos2bN6lPn3Rt3rxJXq9X7dt3VE5Otjwej955522NGHGBtmz5VCUlJerQwd9WWzt2fKeiokKlpLTRF19sVWxsM7Vo0UIlJSVaseKtWvWRltZPTz01X5ddNlYRERFaufKtKu3pWrToKf35zzeqdesUHTr0s3bv/kHXXHN9tb769EnXkiWLlZd3UAkJiVq+/M1AW2xsrIqLi+X1euV0HvOxnmMS8trdbrfmzp2rHj161Njucrn06quvVpt+2mmnafv27TUu06dPHy1btizUkAAAAICw8/l8ioqK0sSJ1+maa65U69YpOuecXwfa4+JaaPbsB/T444+quPiIDMPUDTfcor59z9bs2Q9UuhDErFkZcrlckqQWLVroxx/36Jpr/iS3u1gzZ84OtAWzadPHuuqqsaVHdWzdeedMJSQk6Jxzfq01a1Zp7Ng/qFWrVjrjjK768ssvfrG/884boG3bPteECWPVsmWyevdOU3Z2eeGWltZXK1a8pbQ0/3UOzjqrlz755ONAAVnRqaeepvHjJ+j66ycqMTFJ557bv9LzNHz4+frTny5X8+ZxgQtBhINh1/GYWHFxsXbv3q3TTz+9Wts333yjjh07KjIysoYlTwy+04TGglxBbZErqC1yBXXRlPJl374flJLSMdxhSJJycnJ0xRX/o7feWq3IyKhwh1MvnE6zxu9LNQZVcyPU7zTV+TIjCxYsqPEIkiQtXbpUCxYsqHMQAAAAQGP3yisv6eabr9MNN0xuMgUT/OpcNK1cuVITJ06ssW3ChAlasWLFMQcFAAAANDaXXnq5lix5TRdd9Ptwh4J6Vueiaf/+/ZUu+FBR69attX///mMOCgAAAAAaijoXTdHR0crKqvna93v37lV0dPQxBwUAAAAADUWdi6aBAwfqkUceqbHtscce08CBA485KAAAAABoKOp8yfHJkydrzJgxuuiiizR8+HAlJycrOztb77zzjgoKCvTSSy8djzgBAAAAICzqXDQlJyfr9ddf16JFi/T+++8rPz9f8fHxGjx4sCZMmKAWLVocjzgBAAAAICzqfHreK6+8Irfbrb/+9a/697//rdWrV+vf//63Jk+eTMEEAACAk94f/jBKO3d+V236kiXP6Y9/vEQDBvTVhg3vH3X5zZs3aejQ83TVVWN11VVjdeWVY7R27Zp6jTEra69Gjhxa6/lzcrJ1003XHbW9f/90FRUVSZIWLnxSHo8n0DZ79ky99tq/Qw+2AajzkaatW7dq/vz5iouL06BBgzRw4ED17t1bhmEcj/gAAACAJqF37z76zW8G6f777/vFeTt1OkULFz4nSdq1a6euvfZPGjx4mEyzzsc86kXLlsl6/PEnazXv00//S3/843i5XK7jHNWJU+ei6d5775Ukbd++XevXr9fDDz+sXbt26dxzz9VvfvMbDRgwQImJifUeKAAAANCYde16ZkjLFRYWKDa2WaBgmjt3jj77bLM8Ho/i4+M1dep0paSkKitrryZNGq+LLrpEH364QcXFxZoyZbp69uwlSXrttZf18stLlJTUUr17pwX6z8ycq7i4OI0de6XWrn1HM2feqbfeWq2EhETdeuvN+uMfr1CbNu01adJ4rVixVpK0fv06PfnkPMXFtdA55/w60NfDD2dIkq6//moZhhkotHbu3KGbb/6zDhzYrzPPPEt33XVPozroUueiqUyXLl3UpUsXXXvttTp06JD++9//av369XrwwQfVpk0b3XTTTRowYEB9xgoAAAAE5flmgzzb/3Nc+nZ1+Y1cp593XPqu6vvvd+qqq8aqpMStffv26e677wm0jRt3lW68cbIkadmyN/TEE//UPff8Q5L0888/q3v3Hrruuhu0Zs0qZWb+U088sUjfffetFi9epKeffkGJiUl66KH7A/2lpfXViy8+r7Fjr9Qnn3ysM888S598slGDBg3Vl19+oZ49eyk7Ozcwf17eQWVkzFZm5kJ16NBJL7zwbKDtb3+7Q6+//oqeeGKRYmJiAtN37tyhOXPmyzRNTZhwhTZt+kh9+55z3J6/+hZy0VRRXFycLrjgAl1wwQWSpM8//7w+ugUAAABOShVPz/v++1266abr1L17DyUnt9KHH27Q0qWv6MiRIvl8vkrLRUfH6Lzz/AcuzjzzLM2dO0eS9Omnn+jXv+6vxMQkSdLo0b/Xu+++I0nq0aOnpk+fKo/Ho61bt+iGGybrvffWKjm5lU45pbOioir/DusXX2zV6ad3UYcOnSRJF110iZ544vGgj2fAgEGKjIyU5D/48tNPP6pv32N4gk6wkIsm27b1yiuvaPny5crLy9OyZcu0ceNGZWdnB4onAAAA4ERynX7eCTsadKJ06vQrpaSkauvWz9Wt25l6/PFH9K9/LVabNm21desW3XPPXYF5IyLKv0dkmqZ8Pq8k/7770URGRunUU0/T//7vaiUltVSfPumaO3eOkpNbKS2temUTrK+jryOiQlyOasVeQxfyN8kee+wxvfrqqxozZoyysrIkSSkpKVqwYEG9BQcAAACc7HJysrVnz261b99ehYWFcjpdSkpKkmVZeuON12rVR58+6frggw3KyzsoSVq+/M1K7WlpfbVw4ZNKS+uniIgItWrVSqtWLa+xaOrevYe+/Xa79uzZLcl/imBFMTGxKiwsCOWhNlghH2l6/fXX9frrrysxMVEzZ86UJLVr10579uypr9gAAACARmny5BvkcDgC95999iUtX/6GXnnlJeXn5+nvf5+piIhIPf/8y4qNbVZt+bLvNEmS1+vRNdf8Waed1kWSNHjwMI0bN0atW7dW795p2rLl01+M59RTT9P48RN0/fUTlZiYpHPP7V+pPT29nxYsyFR6ur9ISkvrq61bt6hbt+7V+kpISNTtt0/THXf8VXFxLTRkyLBK7ZdffoVuvvnPioyMqvUV9xo6ww7l+Jqk/v37a+3atYqMjFS/fv308ccfq6CgQCNHjtT69evrO85ay80tkGWF9JDqRXJyc2VnHw7b+tF4kCuoLXIFtUWuoC6aUr7s2/eDUlI6hjuMJsvpNOX1WuEOIyRVc8M0DSUlVS9Sf0nIp+cNHDhQ//jHP1RSUiLJf27jY489psGDB4faJQAAAAA0OCEXTVOnTtWBAweUlpamw4cPq3fv3tq7d69uvfXW+owPAAAAAMIq5O80NWvWTPPnz1dubq5++uknpaamKjk5uT5jAwAAAICwC/lI08UXXyxJSkpKUo8ePQIF0yWXXFI/kQEAAAC1FOLX9NGE2bYlyaiXvkIumn744Ydq02zb1o8//nhMAQEAAAB14XRGqLDwEIUTJPlrEq/Xo/z8HEVERNVLn3U+Pe/222+XJHk8nsDtMj/99JNOPfXUegkMAAAAqI2EhGTl5WWroCA/3KE0SaZpyrIa19XzTNOh6OhmatasRb30V+eiqUOHDjXelqQ+ffrod7/73bFHBQAAANSSw+FUy5ap4Q6jyWpKl6cPVZ2LphtvvFGS1LNnTw0YMKDeAwIAAACAhiTk7zQ9/PDDeuaZZ5Sbm1uf8QAAAABAgxJy0fSXv/xFmzZt0tChQzVp0iQtW7ZMxcXF9RkbAAAAAIRdyEXT8OHDNXfuXL333nsaOnSolixZov79+2vq1Kn64IMP6jNGAAAAAAibkH/ctkx8fLwuvvhixcTEaMGCBVqzZo02bdok0zQ1Y8YM/frXv66POAEAAAAgLEIumizL0oYNG/Tmm2/qvffeU69evXTttdfqt7/9raKiorR69Wrddttt2rBhQ33GCwAAAAAnVMhF04ABA5SQkKDRo0frtttuU+vWrSu1jxgxQs8///wxBwgAAAAA4RRy0ZSZmamzzjpLkpSbm6s1a9aoc+fO6ty5c2Ce55577tgjBAAAAIAwqnPRtH//ft1333367rvv1Lt3b1199dUaN26cTNPU4cOHlZGRoZEjRx6PWAEAAADghKvz1fNmzJihuLg4TZ06VZZlaeLEiZo1a5Y++OADzZkzR5mZmccjTgAAAAAIizofafr000/1/vvvKyIiQv369VN6erqGDRsmSRo2bJjuuOOOeg8SAAAAAMKlzkeaPB6PIiIiJEnR0dGKjY2VYRiBdtu26y86AAAAAAizOh9p8vl8+vDDDwPFkdfrrXTfsqz6jRAAAAAAwqjORVNSUpLuvPPOwP34+PhK9xMTE+snMgAAAABoAOpcNK1bt+54xAEAAAAADVKdv9NUHzIyMjRkyBB16dJF33zzTWD6rl27NGbMGI0YMUJjxozR999/H47wAAAAACAgLEXT0KFD9cILL6ht27aVps+YMUNjx47V6tWrNXbsWE2fPj0c4QEAAABAQFiKpvT0dKWmplaalpubqy+//FIXXnihJOnCCy/Ul19+qYMHD4YjRAAAAACQFKaiqSZZWVlq3bq1HA6HJMnhcKhVq1bKysoKc2QAAAAATmZ1vhBEQ5eU1CzcISg5uXm4Q0AjQa6gtsgV1Ba5grogX1BbJ3uuNJiiKTU1Vfv375fP55PD4ZDP59OBAweqncb3S3JzC2RZ4fuB3eTk5srOPhy29aPxIFdQW+QKaotcQV2QL6itppQrpmmEdJClwZyel5SUpK5du2r58uWSpOXLl6tr16787hMAAACAsArLkaZZs2ZpzZo1ysnJ0YQJExQfH68VK1Zo5syZmjJliubPn6+4uDhlZGSEIzwAAAAACDBs2w7fuWzHAafnobEgV1Bb5Apqi1xBXZAvqK2mlCuN/vQ8AAAAAGiIKJoAAAAAIAiKJgAAAAAIgqIJAAAAAIKgaAIAAACAICiaAAAAACAIiiYAAAAACIKiCQAAAACCoGgCAAAAgCAomgAAAAAgCIomAAAAAAiCogkAAAAAgqBoAgAAAIAgKJoAAAAAIAhnuAMAGjLbtmXbks+y5LP8t21bsuW/bdll06r/tVTlvi3JLl/ukNung3mFlfpR4LatmCiX2iXHyjCMQDx5h93KL3BLqnkZ/3T/esrW728vjaWGaRX7KntcsqtPK1++tP8q0+wK88uWnE5TkS6HXA4zsA5VnFflf1VTX1XW5Z+tPJaKj7X0IVWIoXyeausr7csqnbFsumkYinA5FOkyZZpG+bKqvo7AulVzf6r4XEoyDMkwDBmGZBpG4DW1LFuWbfv/lt22JcuyZFnlz2VklEvFxZ7S/kqfM/n7Mk1DDrP0b2nfZfnq89nyWpZ8vvL8KA1PNd+pfLfiMjUJ1nzU9f1CH3bFuYPEVhOjFhONKhOMGhcq53KYgbywbMnns+S1bHl9/ufVZ9nlMduVYzRK/zFkBNZjyJ8LpmnI5TTlcvrfH/6+/H16ff7Xr+yvZdlV8qe8j7JpZdOjolwqKfHKLF2hPw9K86HCbW9pv1XjLP2vNN5feHKqqPp5V/H9aln+Z8npMOV0GHI5TP9tpynTMALPYXSEU81iXIqJdMrt8amo2Fv6v0eFbq+8Xksup0MRLlOGIVmW/33k/3z2v4dM05DTNOVw+N8bDtP/vrAsW76K7zerhowyKt6sljyVbpbnjv+5t21bHq//dZT8ueNwGKV5Y1d6X1qlnzkO05BhGjINlb+HTSPQVjbdMMrf52Xv+7I20zDk9vh0xO1VcYlPUREOxUS5FOEyVeKx5C7xyuur+d3jinDIU+Kr8plQ/b17tM8Mw5AiXA5FuRxyOAyVeCyVeH2y7fLYvD5Lbo9PHq+lmEinmse4FBPlksvpzwWfZaugyKPDRzzyeq3y90pZrpeuyCjNn+hIp2KinPJZtvIPu5VXuk2MdDkU6XJIUuBztSwXTUOKjnQqKsK/2+v2+OQu8couW0+F9TkdpppFu9Q8xqXoSGe193HZvKpw+6jTS5ctez96vJZKPD55fFa11yIwf4VcO9rnlSEpLjZCXTokKKF5ZE0vbYNRVOzVdz/9rL05herfI1XNol3hDilkFE0ngRKPT4XF3sBOjNNhKi42IuT+bNuW12erxOtTiceSx2cFNlplGyKvZcnrtVTitfwfEl7/B2bZTkZg/gobsLL7NbVX7Ltiu8frk7v0Q7psJ9OyyguTsvm8Pkve0o2WZdlyOf07QS6nWa3PqrfDKTUpRuedlaroSKc+/GKfvv3x57DG01gYFTdwpVst01DlDV/F6fIXQSUeX61f82ob0tIJVTeekgJFYVkhWlZgmWU7QWU7QoYq7ESV92U6TFk+u9oOftU8Lyu8HKYhR+nOqX+nsbwQrBR/jXdq2lUun1I1huD9GEHaKtyutsJarq+Cml616kWdHbS9ptnLdvhKPD4ZpTvjTkfp82uWFy5lkZW9ZoGiX3aF4ru8EPbZtjyln4+Sqr1mTocZ+Gs6/csHPtssOzBQYlUYNLFtyVFQohKPr/x+hRxwOPw75ZERpmJMf//+58Gu9PgrDn7UpW4ySt9PNRV4Za+jz7Ll9Vry+ix5fLaOuL2VCuyc/GIVHPGosNijSJdDsVFOxUS5FBvlVKv4aLmcZuk2xfIPdpQWGmbgtSgtjkqL27Ii0S59X7gcpkxXWUFy9AdXdcCgam6UNQeeJ/8TUFoomVLpdtJrWYECqOw1Llu3ZVcdNKkykFJlQMVdun20KwywlN2PcPmLiWYxLrlLfNqfV6QSj69CQWNWeymrFviBp6PK82LU8DyVTbIs/2uYf9gtr2UrwmkqwmnKMA3ZHn+8Tqc/trgYU0XFHv2UU6iiYq88pXlgmoaax7jULDpCLqcpu7TALntuKw6i+XyWitxeFRZ75TANJTSPVItmEf7CscSnw0Ul5YMKRnk+ei1b2fnFOuL2+gcXIvwFlmEY5YOa8v/1ei19d8SjgiJPYLCvIUtNilFyfHTg/VbitVTs9upIib+QLnvMrRJilJoYI4fD0MFDbuUeKpZl2XI4TLkcRmAQw2kacjpNuRz+faQIp0MulykZhrKyC3TwsFvuEl/pe9gKDNqUb8tKC/3SjDt4uFi27d/37NoxoVEXTYb9S0OJjUxubkHNo0cnSHJyc2VnHz5u/Vu2rZ8LSnTwULHyDrtVUOxR4RGPCo94y28Xe1VY4XbZRrmiVvHR6tYpQae1j1dSXJQSm0fKMAzlF7qVf7hE+/OK9FN2ofbnFemI2xsYPSrx+EdJjtczHBgVrLAhDIyiVxhhK5sW4fK/oSOcZmDH06gwMmcahpyOyjsghil5PP4dobIPbH9/phyGIYejfB2V1l36IVBxp8Awqt+vOPJUdaehYnt8fLQOHyqu1I/KbkvK/rlYG7ZmBQqlNi1jdU631mqX3Cywk14+wlW1/6PHVG3+qqNl1ZYrHyWrNo8qxK7K/Xt8pSNqXivoyFvQUboKsUqly1SLV1VGyOuwl1cDb+kggFHDY6qvddTV8f5cQdPRVHLFtu0T/j47GTWVfDkerNKBjYpnDlQ82l/TWREVp5f1ETijQSotKh1yOUs3+KpwRkTZiisW5FL1wZ3SGLLzi/XVD3n6eneeDheV+AelbVuRLoeiIxz+I2uRTkVHOGVZtvblFWlfbpEs2/bv98VFymGapYPK/oHl8tuWPF5bHp8lT+m+X3SUUy1iI5TQLFLRkU65nOUDL2WD3HaFAe+yM1qS46PUpX28y4yYnwAACWRJREFUTmnbInAkMNxM01BSUrM6L0fRVM/q4wPItm0VFnu1N6dQu/cf1u4DBTqQdyRQKNU0Eu4/nOxUbLRLsVEuNYv2j8zFlv6NiXIFkvuI26vtu/P11e48uUt8R40joXmkUhJjFBvtUqTTlMvlL07KTlUpG31wlY2cVSkyXA7/Mv7TW8zACFzZyGfVAijYqF9TVNtcOZBXpBKvpbYtY9mJOEmxY4PaIldQF+QLaqsp5UqoRROn5zUA7hKftu/J0xe78vTtj/k6kHdERW5voL1ZtEupSTE6tV0LJTaPUlJcpBJKjw41j4lQbJRTEXWs3kf06yCvz9L+g0XKK3Dr4CG3bNtWfLNIxTeLVHJ8tGKiSI+GoFVCTLhDAAAAOKmxVxwmtm3rmz35Wr9lrz7Zni2P15LLaapzmzidfWZrtY6PVuvEGHVo3VzxzSKOyxEGp8NU2+Rmaptc92obAAAAOFlQNJ1gXp+lD77Yp7c/2q2s3CJFRzrV/6xU9Tk9Wae1a1HnI0YAAAAAji+KphPog2379Or6Hco77FaHVs00cWRXpZ/RqsF8MQ4AAABAdRRNJ4Bl21q6fqdWfviDTmkTp6vOP0Pdf5XIl/oBAACARoCi6Tg5kFekI26fLNvW2x/t1savD2hQrzYa+9vT5Sz9sU8AAAAADR9F03HwU06h7l7wUeC+IemywadqRL/2HF0CAAAAGhmKpuOgTVKMbv9jbx0p8cowDCXFRal9K65QBwAAADRGFE3HgWEYOqNjQrjDAAAAAFAP+HINAAAAAARB0QQAAAAAQVA0AQAAAEAQTe47TaYZ/qvTNYQY0DiQK6gtcgW1Ra6gLsgX1FZTyZVQH4dh27Zdz7EAAAAAQJPB6XkAAAAAEARFEwAAAAAEQdEEAAAAAEFQNAEAAABAEBRNAAAAABAERRMAAAAABEHRBAAAAABBUDQBAAAAQBAUTQAAAAAQBEVTPdm1a5fGjBmjESNGaMyYMfr+++/DHRLCJC8vT9dcc41GjBihUaNG6cYbb9TBgwclSZ999pkuuugijRgxQldffbVyc3MDywVrQ9M3d+5cdenSRd98840kcgU1c7vdmjFjhoYPH65Ro0bp7rvvlhR8G8T26eT07rvv6uKLL9bo0aM1atQorVmzRhK5AikjI0NDhgyptM2RQs+NkyZvbNSL8ePH22+88YZt27b9xhtv2OPHjw9zRAiXvLw8+8MPPwzcv//+++2pU6falmXZw4YNszdu3Gjbtm3PmzfPnjJlim3bdtA2NH3btm2zJ06caA8aNMjevn07uYKjuu++++zZs2fblmXZtm3b2dnZtm0H3waxfTr5WJZlp6en29u3b7dt27a/+uoru1evXrbP5yNXYG/cuNHeu3evPXjw4ECO2HbonyMnS95QNNWDnJwcOy0tzfZ6vbZt27bX67XT0tLs3NzcMEeGhuDtt9+2//SnP9lbtmyxR44cGZiem5tr9+rVy7ZtO2gbmja3221fdtll9u7duwMbMHIFNSkoKLDT0tLsgoKCStODbYPYPp2cLMuy+/XrZ2/atMm2bdv++OOP7eHDh5MrqKRi0RRqbpxMeeMM95GupiArK0utW7eWw+GQJDkcDrVq1UpZWVlKTEwMc3QIJ8uy9OKLL2rIkCHKyspSmzZtAm2JiYmyLEv5+flB2+Lj48MROk6Qxx57TBdddJHat28fmEauoCZ79uxRfHy85s6dq48++kixsbG65ZZbFBUVddRtkG3bbJ9OQoZhaM6cOfrLX/6imJgYFRYW6sknnwy6v0KunNxCzY2TKW/4ThNwHN13332KiYnRuHHjwh0KGqBPP/1UW7du1dixY8MdChoBr9erPXv2qFu3blq6dKluvfVW3XTTTSoqKgp3aGhgvF6vnnzySc2fP1/vvvuunnjiCf31r38lV4BjwJGmepCamqr9+/fL5/PJ4XDI5/PpwIEDSk1NDXdoCKOMjAz98MMPyszMlGmaSk1N1d69ewPtBw8elGEYio+PD9qGpmvjxo3auXOnhg4dKknat2+fJk6cqPHjx5MrqKZNmzZyOp268MILJUk9e/ZUQkKCoqKijroNsm2b7dNJ6KuvvtKBAweUlpYmSUpLS1N0dLQiIyPJFdQo2L5ssNw4mfKGI031ICkpSV27dtXy5cslScuXL1fXrl2b3GFJ1N6jjz6qbdu2ad68eYqIiJAkde/eXcXFxdq0aZMk6aWXXtL555//i21ouq699lr997//1bp167Ru3TqlpKRo4cKFmjRpErmCahITE3X22Wdrw4YNkvxXrMrNzVWnTp2Oug1i+3RySklJ0b59+7Rz505J0o4dO5STk6OOHTuSK6hRsNc/1LamxrBt2w53EE3Bjh07NGXKFB06dEhxcXHKyMjQKaecEu6wEAbffvutLrzwQnXq1ElRUVGSpHbt2mnevHnavHmzZsyYIbfbrbZt2+rBBx9Uy5YtJSloG04OQ4YMUWZmpk4//XRyBTXas2eP7rzzTuXn58vpdGry5MkaOHBg0G0Q26eT01tvvaV//etfMgxDknTzzTdr2LBh5Ao0a9YsrVmzRjk5OUpISFB8fLxWrFgRcm6cLHlD0QQAAAAAQXB6HgAAAAAEQdEEAAAAAEFQNAEAAABAEBRNAAAAABAERRMAAAAABEHRBAAAAABBUDQBAAAAQBAUTQAAAAAQBEUTAKDRGzJkiBYuXKhRo0YpLS1NkydPltvt1lNPPaXLLrtMXq9XkrRkyRKNHDlSbrc7zBEDABoTiiYAQJOwatUqLViwQGvXrtX27du1dOlSTZo0SS6XS0888YS+//57Pfroo3rwwQcVGRkZ7nABAI2IM9wBAABQH8aPH6/WrVtLkgYPHqyvvvpKpmkqIyNDl1xyiVauXKlJkyapW7duYY4UANDYcKQJANAkJCcnB25HR0erqKhIktSuXTudffbZ+umnn3TFFVeEKzwAQCNG0QQAaNLWr1+vTz/9VOeee64eeOCBcIcDAGiEKJoAAE3WwYMHNW3aNM2ePVv333+/1q1bp/Xr14c7LABAI0PRBABosqZPn64hQ4Zo4MCBSkhI0OzZszVt2jTl5eWFOzQAQCNi2LZthzsIAAAAAGioONIEAAAAAEFQNAEAAABAEBRNAAAAABAERRMAAAAABEHRBAAAAABBUDQBAAAAQBAUTQAAAAAQBEUTAAAAAARB0QQAAAAAQfx/kJaDcnTKpg4AAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAF/CAYAAACVLiKjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4ZGd59/Hv9NFIozaqq7bylrPVu+tt7sYN12BCbLANDg7lDTWQhJAXSAIkQAjwOoQeQrGNTTEY497i7nXdZm89W7UradXLSCNNn/P+MdqxtktrtZF+n+vaa6U5Z87c0iPtnnvu57kfm2VZiIiIiIiIyPHZJzsAERERERGRqUxJk4iIiIiIyEkoaRIRERERETkJJU0iIiIiIiInoaRJRERERETkJJQ0iYiIiIiInISSJhERERERkZNQ0iQiIiIiInISSppEREREREROQkmTiIiIiIjISShpEhEREREROQnnZAcwhjzAaqAFSE5yLCIiIiIiMvU4gErgdSA60idNp6RpNfDCZAchIiIiIiJT3gXAiyM9eTolTS0APT0DpFLWpAURCOTR1RWatNeX0dF4ZR+NWfbRmGUfjVn20ZhlF43X5LHbbRQV5cJQ7jBS0ylpSgKkUtakJk2HY5DsofHKPhqz7KMxyz4as+yjMcsuGq9JN6rlPGoEISIiIiIichJKmkRERERERE5CSZOIiIiIiMhJTKc1TSIiIiIzXjKVIjQYpyDPk3ksZVls3deN3+eivjL/pM9v7w3zx+f2MhCOc+7SSlbOLyUcS7J+Zzs7DvSwbG6A85ZUYrfbAOgNRRmIJKgqyT3pdWPxJE9tbGL/oT4uXVmNUVuUfr2eQR555SC5XidXrKklP9c9qq+3fzDGerODrfu68LodFOd7yctx0TcQoycUxet28s7VNVQU+wCwLIuuvgiFeR6cDtUPZGRsljVtFqHNBvZ3dYUmdWFdaamfjo7+SXt9GR2NV/bRmGWfbBuzlGVht9kmO4xJk0pZ9IQTvLCxkeJ8L+cuqZjSN5aJZGpc4osnUkTjSTwuB06HDdtp/EzEE0l6QjH6QjG6+yM0dwzQ1BGiNxTF53Xhz3FRnO+luiyXmtI8KgO5mURkJMyDPdz7/D7yvC7esaqG8gIP63e288ymZrr7osyvKeSSs6pw2O3c/+I+mjoGAFhplHL9RXMIheOsN9vZ0xykrNDH7Ao/vaEoT65vxGG34/e56AxG8LodRONJLAv8Phf9g3GqSnK5YNkstu7rYltDN5YFRk0hV51dS3VpHgfbQzR3hLDbbeTluIjFUzzyygF6+qPkeByEo0lWzCuh2O/l2c3NOOw24skULqeddyyvIpWy2NMcpKM3zNpF5VyxppaSAi8Nrf28vLWVlq4BEkmLWCLFwbZ+kimL0kIvlgU9/VGSKQunw0Zhnoe+gRjxZIq1i8opyHWzaVcn7b1hqkpy+dA1C0+ZRI6HbPt3cTqx220EAnkA9UDDSJ+npGmM6Zcgu2i8so/GbOxYlkVwIEZ7T5h4IkVdhZ+8HNeYXDsaT9LWPUjfQIzzV9bS2zPwtq43GImzuylIQ2s/B9v6ae4YoKTQy0qjjGVzAsQSKdp7wliWxZlzAqd1g9vTH+Un92+lsT3EotnFnDknQEWxD5sNHHY7NWV5uJynvjm3LIuBSILOYJjO3gidwQidwTADkQSlhV7Ki3zMKsmluvT41wuGomzc3UmOx0Eg30sg30tBnhuHPX1uMpWipz9KMBSjbzDGQDjBrJJc6iryMueMRjSWZNPuDpo6BjjUOcCe5iChcDxzvDjfwzVn1zGvuhCv24HP68LnHd1ElcFInK37uzlrfmkmwbEsixe3tOBxOVizsPyU19jV2Et7T5jzz6zMPNbSNcA3frWBlUYZf3mFkUk43tjTyY4DPVz/jjnHTaii8SS7G3tp6wnTFYzQPxjDn+umMM9DPJFkx4EedjcFiSdSADjsNtwuB163gxyPk/pKP4vqiplXXUBBnhuX00EimaK1a5DG9hD7DvWxpzlIY3uI1LD7LJsNKop9FOd7GYwkCIVjdPelb/AB8n0uls8r5az5pcyrLiDHc+T32bIsIrEk/eE4D73UwItvthDI92AB3X1v7dG5sK6IedUFvLS1lc5gBIDyYh/vOm82HT1hHn31INF4MvO11Vfm0xEMEwzFADhvSQXvuWgOBXluzIO9vLKtlfxcN2sXlVNVkssGs4N7n9tLW0+YQL6Hc5ZU4PO4eHJ9Iz39J94rtL4ynxveMYf6Wfk8+XojD79ygHg8xYXLKnnX+fWEowkefKmBV7e14XLZOaMyH7/PzcZdHVhW+mexMxjB6bBTW56H02HHYbcxu9LP2oXl1JTlYbPZSKUswrEEPo8Tm81G30CMx147yNMbm0gmLRbOLsKoKeSpDU30DcS56uxa3nVe/Yh+v8eK/i+bPEqalDTJadB4ZZ+ZOGbxRIpt+7vZYLaT53Nx5do6CkY5fWW4YCjKI68c5Pk3DxGNHdlxtbzYR2WxjxyPE5/XyYp5JSyaXTyi67Z0DfDKtjZe39lOa/dg5vHaCj8fuHw+c6sKGIwk2LS7g8FIgjPnBigv8mXOi8QSuF2OTJWnozfMui0tbNzVSXNHCAuwARWBdNLR1B6irSd8TByXnFXF+y+fn0mcwtEEA+E4HrcDr9t53BujvYeC/OCPW4hEk6w0StlxoOeYm79cr5PVC8s5a34JsXg6cUmlLOZUFVBbnkffQIzn3zjE828confo5vMw39D3s7svmrmJdthtVJflUV+ZT32Fn8pALq9ub+P5Nw9lbtYPs9tsFPrd2G22I64xnMftoL7CT67Xhctlx2m3Y2GRSkFujpNZJblUDSVrh2/G39jTyV1PmHT1RXHYbZQX+6gr93P+iipqAj4aWvu4/4X97D3Ud8RrzSrJZVFdESvml7KwrijzeMqyeGhdAz6vk4uWz8LldNDUHuIH922hvSfMGbPy+dh1iynI9XDn4ztZt6UVG/DX1y3OJE7NnQM8uG4/l62sYW51AQC7m3r5zm83E0+k+OCVBhctryKeSPJvd2ygrWeQeCLFqgVlfPTahTz88gEeWNcAwBVranjfJfMy8b22o42Xtray40BP5nvsdNgz1ZNEMv1YdWkuC+uKKSnwEo0n039iSSLxJKHBOLubehmIJDLXdbvspFIWiWR6XDwuB2fMymdOVT5lhT4K8twU5LqpKPbhdjmO+F4eTrYOtPWzZV8Xb+ztIhpLYrNBVUkulYFcggMxOoeSmsMJlt1m44q1NbzrvHrcTju9kSSvb21hcX1xZppcKmWxdX83sXiSFfNLMkl1byjK85sPUVqYw7K5AXxeV+bxeCJFaWHOMT9fR0skU7T1hKkM+DK/s4lkig1mBwORODVleVSX5gEQCseJJVLMCviOeEMjFI4TT6Qo8nuOuHYoHMfrdmQS3p7+KE++3khz5wArjVJWGaWZmEcjHE2P2eGf/8FInN88tZt1W1onvOo0E/8vmyqUNClpktOg8co+b3fMWroGGIwkSFkWLqed6tK8057aEwxFOdgeylQSuoIROnoj9IailBZ4mVtdyPyaQpacUTyq6V6hcJyG1j72t/TT0NLHzoO9hKPpd00jsSQup53LVlVTkOumqWOArmCY+lkFLJsboK7cT2t3+t3uxrYQje39NHYM4LDbqAz4yM91s9HsIJG0WLuojDlVBZQW5uCw29jf0sfe5j46gxHC0QShcJxoPMmqBWXceMlccjxOmjpCNHUM0NQeoqkjlJkGk0xZ9A3EsNlgQW0RRm0hlYFcLMviD8/to6s3zLyaQvYd6svcmEL65jvH7aCtJ0woHMfttFNW5MPjsrP3UB82wKgtZEFdEfOrC6mvzMfjTt90WpZFc+cA2xt6yPU6KSvKYeOuDh5/rZGLV1Tx3ovn8r8bGnnklQOEo+nk0AZ85NpFnLOkIhPDrsZevvPbTRTmefibvziT6rK8zLX7BmJYVvpma+OuDjbu6iB2VEID6ZvkeCKFZVksnRNgUV0RgYIcSgu9lBR4Mzd4iWSKjt4wTR0DNLT0sb+lj4bWfiKxt971P3dJBZevrsFms9HdF6GrL0J3X5SuYATLsigp9FJSkENhnof8XBc5bicH2voxG3s52NpPJJ4kFk+SSFqkCy82+sMxYvF03Omb8Tz8Phc7DvQwqySX9182j3k1hZnfheG/Z5Zlse9QH939USLRBMGBGGZjL7sae4knUvzFRWdw9dl1APzqiV08u6kZgCK/h7ULy3l6YxM5nvSakodebsCGjdLCHA609XPtubMxD/awv6WPv71hGYPRBD97eAfRWBKH3cb7L5/PvOoC/v2ujfh9LgIFXsyDvfzde5exYVcHT29s5jPXn0lL1yD3PLOH/Fw3fQMxzltSgctp59nNh/j0e5aybF4Jv39mD4+/1khpoZdlc0s4c06AmtI8/LnpZPRwhRA4ZcU1ZVk0toXY39pHaDBOKBzH4bBRU5pHTVkeFQHfaVX9IP0midnYw56mIPta+mjvDlOY56akMIciv4fcoUrf3KoCZg1bQ6T/z07fm3s7uf3RnfQNxLn6nHTVabynpJaW+mlv78OyGNWUTHn7lDQpaZLToPHKPqczZinL4o09nTz6ykH2NAePOJbjcbBodjHzawop9nsp8nuoDPiOmRaTsiw6esMcbAuxtznI9obuzPoAAKfDRiA/fYNcmOehpXuQA63pefaLZhfxoasXUpzvBdLv5vb0R/G4HHhcDjqDYfa39A/dQPfR0RvJXLe82MfcqnxWLyhn0ewiOoMR/vTCPl7b0Q6kqx9Ffi/NnSEsK50UWJmY7OnKQlkuqZRFa/cgHb0Rlp5RzLvOq6e8+K0qz/HEE0keffUgD798gNRQYvTW981JTWkugYIcHA4bdpuNWQEfqxeWH/Ouca7fy//88U227O9maX0xaxeXk+9zs3l3J2/s7SSVsigv9lFS4KV/MJ6e1jcYZ/ncAOctrcx830YinaTt5dFXDuJxO4jGkiyfW8KKeSXEEinue34fqxaUcutVCzPP+e1Tu3l2UzPf+eR5p7xZDkcT7D0UxJ/jpsjvIWVZ7G4KsutgL16PgwuXzRrRu/TDpSyLtu5BmjoGOKMyn0DByL/e0bxGdzBCc+cA+1v62Heoj9buQS5YNour1tYec4M4kt+zWDzJ7Y/u5JXtbVyxpgaAx19r5Oqz61hcX8x9L+xjT1OQ+dUFfOzdSyjM89DeM8iP/7SNlu4BPnLNIlYtKGMgEuebd22kvTc9TfSMWfn81VULuOeZvWzZ14XbZSfH4+RLH1iJz+vi3+/aQGcwQjSe5J2ra7jx0nQl6fk3DnHP03t49wX1XLqymkTS4ht3baCjJ4xRW8im3Z1celY1N102b1repOr/s7dneNVp+M/sgdZ+Hn7lAJZlsaA2Pe1xMJKguXOA/sEYqxaUZSpqlmVxsC2E02GjaugxSE+B3bKvi4piH1Wl6UR3X/sAtz+0jY7eMGfNL+XcxRUU+T20dA3S1jOI1+0kUODF73PR0pmuREaiCd6xooo5VQWT8j2aLpQ0KWmS06Dxenssy6I3FKOte5COYJh51YWZ7kRv55p7m/vYur+L1u5B2rrDROJJ/Dku/D4X/lwPkWgcu83GmXMCrF5YdsQ7uuFogn0tfextDnKoc4Du/igdPWGCAzEC+V4uH+qgZLfBYDTB9oZutuzrPmIqlt1mo36WnwW1RURiSQ629dPYHspUA5wOG/OqC1lcX8zcoUpNQZ77mGpSLJ5k3ZYWfvfMHpx2Oxcun8Wuxl72HTXV6bBAvpf6Sj+zh6Zr1VX4TzgFpTMYxuWwk5/rxmazEQrH2bKvi0OdA8wqyU2/213sG5N3Szt6wzy9sYm8HBfVQ++kF/k9I143NNG/Z5Zl8eBLDZgHe7nu/Hrm1xRmjn3zrg1YwBc+sDLz2H/e8wbBUJSvfGjNhMU41Y10zFKWxW+e3M1TG5sAuHRlNTdfNg/bUOWmuXPgmJ/DZCpFJJYkd9jPdndfhO/+/g3mVhVw02XzcTnT093ue2Efr25v49N/cSY1Zemb0I7eMF+7cz2BfC9fvGXlEde2LOuIn8uO3jBf+eXrhKMJ3nvxXK5YU3Na692ygf4/GxuvbGvl9sd24nU7mTMrn027O/F5nHg9jiPWjQ23eHYRc6oKeG3HW1OTz5wT4Kq1tRxo7eeRVw7QN5heJ3i4WtjUEaK8KId51YVs3NXBYDRx3Gsf5nE5sNtthKMJFtYVccPFc5hdMfENLKYDJU1KmuQ0aLxO367GXu5+cheN7aHMY26nnfdfPp/zz6zM3JhEY0mCA1H6BuLkeBxHvPt2+Hhrd/qdtQNt/by+o53OYASbLZ1ElBf78HmchMJx+gdjWEAiaRGJJQiGYpQUeLngzEq6+6PsbQ7S3DGQWfsSKEhXfor8XpaeUXxMgnWYZVn0Dcbp7Y/S3R9hf0s/Oxq62dfSh9vpoKYsj5ryPOrK/dSW51FVMrKGAIe1dQ/ys4e2s/dQH7Mr/Jw1v5Tq0jyi8SSRWIIiv5fZFf5Rt9nNFlPp9+yOx3aywezge5+5IPPY53/80tBamyWTGNnUMpoxsyyLJ15vZCCS4N0X1E9I58GBSByXw37M+qDjaWjtYzCSGPHavGw1lX7Psl1zR4gf3reVnlCUd66q4Yo1NeR4nHQEI+xrDuL3uZlVkpueArqpmac2NhEMxZhfXcA5SyroH4zzxOuNmYYqC+uKuGptLd39Ubbs66KjN8y7LpzLsvpCHHY78USKrfu6iMSTzArkUl6cQzSWpDMYoW8gRkXAR3mRj1giybObDvHYqwdwOOx8+xPnzuhOn6dLSZOSJjkNM2G8mjpCPLCugd5Q+h0yh81Gbbkfo7aQudUF+HNcp3zntac/ylMbmtKtY71O9rf28+r2NgL5Ht65upZZpbn4c1z87uk97DjQw+oFZfi8TnY19tLSNXjEtVYvKOOGd8zB5bTz+GuNPL2p6Yi1FotmF3P2onLOml96zBQ5eGvMjp5yl+NJvys4p6qAOVX5nFFZMOoOX0eLxpO4HPYxmcqTsiwi0cRpLV7OdlPp9+yJ1w7y26f38F9/cz5+n5tYPMnH/99zXHd+Pe86v36yw5syptKYychozMZWIpkinkgd9/+h4507GE2Q73vrja9ILMHrO9opK8rJ7Ec13NsZr3VbWvj5wzv45w+umpR26dnudJMmbW4rMoWkLIv+oYoHQG153mlPJekbjHH/i/t5dlMzOW4ndRV+IL3I+NnNzTy5vhFIV4cK8zwECrxUBnxUBnJZUFeU6b50oLWf7937JsFQDAsLy0qvlfmzc2dz9Tl1eIa90/v371vOwy838KcX9+N1O5lXXcDZiyso9nvIz3WztznIY68eZNPuTmy29H80axeVc9a8UiqKfZQW5RxxvZOx22ysmFfKinmlBEPRzGLusTTSWEbCbrPNyIRpqqkIpH+uW7sH8fvctHYPYgGVp9iUU0RmFqfDPuLpzU6H/YiECcDrdnLBslnjEdrQtgqweXenkqYJpKRJZIpYt6WFu57cdUQL6LoKP1esrmHVgrJT/uMdT6QIhqLsa+njlW1tbNnXhWXBxSuquO78evzD/kGPJ1LppgMt6Y5YvaEoHb0RXtramlm3M6cqn8Wzi3ns1YPk+Vz8y62rqC7LIxJNYLPZjvvum91u48/Oq+eyVTWZ+dfDLT0jwEXLq3jwpQYsy+LKNbWnbEYwEsN3vRc5mcpA+uetpWuQedWFHOpKN/OoHIOfQxGRieD3uZlXVcDmPZ38+YVnTHY4M4aSJpFJZlkW972wn4deamB+TSGrF5SldzAfjPHk64389MHt/Pap3axeUM7qhWWUF/tIJFKEYwl2N/aydX83e5qD9A++tRllkd/D5atqOP/MyiNa0h7mctqZX1N4xAL5w7F090VZb7bz/BuHeGBdA3Nm5fOp9yzNJCYjqZacbDpDkd/DX15hjPTbIzKmAvleXE47LUPJUmvXIDYbY5K8i4hMlOXzSrnnmT10BsOUFIyuY+dEC0cTPLiugctWVY+qG+pUM2FJk2EYDUBk6A/AP5qm+fhxzvs08EkgDiRM01wxUTGKvF3xRIo9Tb00tPWzpD6Q6fY03MG2ftZtaaWnP4LLaac3FGPHgR4uOLOSW64wjqgoXbR8Flv3dfHillaef/NQpkPVcIF8L8vmlFBS6KUoz0NFwMecqoLTmqpms9kIFHi5Yk0t71xdQ0dvmOJ877jvVyEyUex2G+VFvsxau0Ndg5QW5oyqsYeIyGRbPq+Ee57Zwxt7urh0ZTUAhzoHKC304nKefGp5yrJ4an0TdRX+Y948PZ54IoXDbjtm9kgimTrm/uDwxtuH70GSqRQ/vn8r2/f3cO7SCrK5HctEV5quN01z64kOGobxHuAGYLVpmv2GYVSc6FyRyWRZFrsae3l28yHaugcz/5A0dYQyTQ1+/8xeFs8u4twllURiCbr6omxv6KahtR+nI7254+HNMG+4eA5Xrqk9Zv1Suq12CWfOKSEcTbBlXxehcBynw47baae+Mp+yopxxaaFrs9koK9K77zL9zCrx0dCSXoDd0jWgqXkiknUqin1UFPvYvKeTS1dW88Ibh/jlozsp8nv4s3Nnc/6ZlURiyaEtLiyWnhHIbAVweKNnu83G+y6dy2Urq094H9HaPchtv9uMzQY3XTqfZXMD9A3E+MOze3llexsfunphZrPweCLFf/3hDQ51DnD9O+Zw9uIK7n5yN1v3dfPBK43MflbZaqpNz/t74J9N0+wHME2zdZLjETmGebCHOx83aekaxOdxMqeqAMtKb/x5wdJZLK4vpqYsj1e2t/K/G5r4n4e2A+Cw26gqyeWmy+ZxzuKKU26iebQcj5M1C8vH40sSmVEqin28vrOdaCxJW/cgS88ITHZIIiKjtnxeCU++3si6LS3c/thOFtQWEk+muPNxk3ue2ZNZowyw5Ixibr1yAa9sb+Px1xp5x/JZ9IZi/OZ/d7PvUB95Xhd7moP0Dca4eEUVl62qpq07zG33bAYgL8fF9+59k/nVBRxsDxFPpCgpzOEXj+ygMM+NUVfEzx/ezvaGHioDPn720A7uf3E/Hb0Rrj67jouWV03Wt2nMTHTSdLdhGDbgReCLpmn2HnV8EXC2YRhfA9zAf5um+T8THKPICQUHYvzoT1vxuh18+JqFrF5QdsJ9Qq45ZzZXrKmluWOA/Fw3BbnuabkLvUi2qQzkYlmwraGbRNJSpUlEstLyuSU89upBfv7wDs6Ylc9nrl+G22Vny74u1u/soCLgo74yn+aOEH94bi9f+p9XicaTrFlYxgeG1hY/8OJ+HljXgMfl4IxZ+eT5XPzx+X088XojiWSKXK+Tv79xBSUFXp7a0MSjrx7EqCnkxkvn4fe5+MZdG/nBfVtYMa+U13a0c/075nDl2lpe3trKvc/t5ZzFFbznounRrGLC9mkyDKPGNM1GwzA8wHcBv2maHzjqnD7gbtJrmkqAdcCHTdN8fgQvMRvYP7ZRSzbb2dBNbo6LmnL/Sc+zLIuDbf0c6giRSFjEEkkOtPazY38XB1r7ufrc2dxy9SLsNvjXn7/KG7s7+M/PXkSd2nyKZKV9zUE+c9uzXLKqhqfXN/LtT1/Agmm+8amITD/JlMWH/u0JcnOcfPOTF5x0g/SWzgF+fO8b5HidfO79q45Yx9k/GMPnceIYWp9kHujm7sd20h+O86Vb11BSeOJGE+09g/zD956nuy/K1efO5mPvOTMz1e9wjjEeSwjGyNTf3NYwjKXAA6Zp1h/1+FbgE4eTJMMwfgTsM03zOyO47Gy0ua0M2dXYy7d/s4mKYh//+uE1x/zCxhMpdjX2YjYHeWVLC53ByBHHnQ4bsyvzyfO62LynkzPnBDBqC/n9M3u56dJ5XL66ZiK/HBlGv2PZZ6qNWTSe5BP/7zl8XicDkQTf/+wF5GoPrSNMtTGTU9OYZZexGq+e/ig5Hgde9+StuGnuHGDL3i7eubomK2bUTOnNbQ3DyAWcpmkGh6bn3QhsPs6pvwauBJ4fes4FwH0TEaNMH13BCD+8bwt2u43mzgH2HupjblUBAAOROHc9sYvNezqJxpK4nXYW1hVx9Tl11Ffk43LacThsFPs9me4zT29s4tdP7ubNvV0sri/m0lXVk/nlicjb5HE5CBR46QxGyM91K2ESkaxV5J/8fQqrSnKpmgEbhE9UWloO3GsYhgNwANuBTwAYhrEZuNo0zUPAfwI/NQxj29Dz7jRN88kJilGmgWg8yff/+CaJZIr/+/6z+NZvNvH85kOZpOnBdQ28tqONC5fNYtncEi5YWUN/MHzSa15yVjWVxT6e3tTM+y+ff1qtvEVkaqkI+OgMRpgV0HomERE5tQlJmkzT3Accd78l0zSXD/s4DNwyETFJ9usMhukfjJNIpgiGYmzd38Wbe7sIhmJ85oYzqa/M5+xF5by8tZUbL53HYDTO0xubOG9pJR+8cgEAXreTkRTHF84uZqHWPIhMG5XFuWzd101lYPq/OyoiIm/fVGs5LuMoFk/y5t4umjpCXHvu7Cm9Yene5iDrtrQwr7qQhbOLKMx7q/xsWRYPvtTAn144su9HjsfJ4tlFnLe0kjPnlABw4bJZPLf5EK9ub2XvoT7AxrvPP2IpnYjMQJVDFaYKVZpERGQElDRNc13BCNsPdLNtfzdv7O0iOtSzf0FtEQvqiiY5uhO755k97G4K8uzmQwDUV/q5aHkVK41Sfv3kbl7e1srZi8tZs6Acp9OGz+OitjzvmERwdoWf2vI8HnnlAN19Ua5YW0txvncyviQRmULqKtJdNesr1AVTREROTUnTNNXZG+a/H9zG3uY+APJ9LtYuLGfOrHx++ehOuvoip7jCxElZ1hHrhJraQ+xuCnLDxXNYVFfMtoZuXtrayu2P7uSOx3ZiWfDnF9Rz7bmzT9nG0mazcdGyWfzqiV34PE6uPrtuvL8cEckC9ZX5/MfHzqH0JK10RUREDlPSNA1t3d/Ff9+/jZQF7714Lkvqi6kqzcVmsxFPJNNJU3Dyk6aWrgEef+0gL21t46ZL53LxWemudM9sasbpsHPBmbPGglK7AAAgAElEQVTIy3FRV+HnqrW17G5KT9lbckaA1QvKRvw6axdVcP+L+7nm3Nnk5ahLloikKWESEZGRUtI0TYTCcXYc6GHL3i7WbWlhVmkun3rPUsqLjpyv73I6KMh10zmJlaZ4IsUdj+3k5a2tOJ12ivM9/O7pPSyaXUx+rpuXtrWydmHZEQmOzWZjfk0h82sKR/16Pq+T//z0+VN5czURERERmcKUNE0Db+7t4nt/eJOUZZHjcXDh8lnceMk8PG7Hcc8PFHgnrdIUT6T48Z+2snlPJ1etreWKNbUkUxb//LNX+fkjO1i7sJxoLJmpOo0VJUwiIiIicrqUNE0DL21tIc/n4lPvWUp9pR+H/eRd8QL5Xg60Tcyu4ftb+nh1extVpbmcMauAe5/dy+Y9ndzyzvlHJEY3Xz6Pnz20g4aWfurK/dRX+ickPhERERGRU1HSlOVSlsWOAz0sqS/ObOB6KoECL5t2dxzTgGGsbdrVwU8e2EYimcKy3nr86IQJ4JzFFazf2cHmPZ1cfFaVKkMiIiIiMmUoacpyhzoG6B+Ms7Bu5BuvBvK9JJIWfQOxI/Y/GkvPbGrmridMZlfk8zfXn0koHGdvc5DifA9L6gPHnG+z2firqxfwyrY2zllcMS4xiYiIiIicDiVNWW7HgR4AFtSNvEFCoCC9T1FXMDLmSdOB1n7+8Nxetu3vZtmcAB+7bgked7r5RFVJ7kmf6/e5uXx1zZjGIyIiIiLydilpynI7DvRQVphDScHIW+eWDG3u2tUXYc4Ip/Qdz2Akzp7mPtq6B+npj3Koa4A393aR63Xyvkvmctmq6lOurxIRERERmeqUNGWxZCqF2djDmoXlo3peptJ0Gm3HU5bFMxubeW7zIZo7QhxequR02Cn2e7jmnDquWluHz6sfLRERERGZHnRnm8UOtIYIR5MsrCsa1fNyPE58Hueo2463dg/yi0d2sKcpyJyqfK47v5551QVUleXhz3GpeYOIiIiITEtKmrLYjgPdACyoHV3SBKPfq2l7Qzf/9Yc3cTvtfOTahZyzuEJJkoiIiIjMCEqastjOAz1Ul+aSn+se9XMD+V46g+ERnRuLJ7n90Z0E8r18/uYV49ZxT0RERERkKlLSlEUsy+IPz+0lkbCoLPGxuynIhctnnda1AgVezMaeEZ370MsNdAYjfP4mJUwiIiIiMvMoacoim3d38ugrB3HYbSRT6RYMS+pHvj/TcIF8L+FoksFIHJ/XdcLzDnUO8OgrBzl3SQULRrl2SkRERERkOlDSlCUsy+L+F/dTVpTD1z6ylt7+KMGBGGfMyj+t65UMddDrDEaoPUHSZFkWv3rcxOt28N6L55527CIiIiIi2WxUSZNhGAuB64EK0zQ/aRjGAsBtmuab4xKdZGze3cnB9hAfvmYhToedksIcSgpHvjfT0Ya3Ha8t9x/3nNbuQczGXm68dN5prZsSEREREZkORrzzqGEYNwDPAVXALUMP5wG3jUNcMoxlWdy/bj9lhTmcvXh0ezKdSODwBrcn6aA3EEkAUBnwjclrioiIiIhkoxEnTcC/Au80TfNjQHLosTeAZWMelRxh855ODraFuPbc2TjsoxmyE/P7XLid9pNucBuJpZMmj8sxJq8pIiIiIpKNRjM9r4x0kgRgDfvbOv7pRzIMowGIDP0B+EfTNB8/wbnvAJ4CPmOa5g9GEeO0k0pZ3Pd8usp0zpKxqTIB2Gw2ivNPvldTJJrOjb1uJU0iIiIiMnONJmnaQHpa3p3DHrsReG0U17jeNM2tJzvBMAw/8B/Ao6O47rT13BuHaOoI8bHrFo9ZlemwQIH3pJWmaHwoafKoX4iIiIiIzFyjuRv+G+AJwzA+DOQahvE4MB945xjHdBvwbeDaMb5u1gmF49z3/D6MmkJWLygb8+sH8r00tvWf8HgkpkqTiIiIiMiISxemae4EFgA/BP4J+CWw1DTN3aN4vbsNw3jTMIwfGYZRePRBwzCuAgpN0/zDKK45bd3/wn4GInFuvnw+NpttzK9fWuilbzDO4FDDh6MdXtOUo6RJRERERGawUc27Mk1zELjnNF/rAtM0Gw3D8ADfBX4AfODwwaEk6pvA5ad5fQACgby38/QxUVp6/Bbeo9HQ0sczm5q4+tx6zlpcOQZRHWvR3FLufW4fgwmLuuPEbHc6cNhtVFYUjEvSNlWMxXjJxNKYZR+NWfbRmGUfjVl20Xhll5MmTYZhvMAIGj2YpnnhCM5pHPo7ahjGj4AHjjplCVAJvGYYBkAJ8GeGYRSbpvmvp7r+YV1dIVKpEfWmGBelpX46Ok485W2k7n5kO163kytWVY/J9Y7H704XGrfubqck79gNbrt7wnjdDjo7Q+Py+lPBWI2XTByNWfbRmGUfjVn20ZhlF43X5LHbbadVZDlVpelnpxfOkQzDyAWcpmkGDcOwkW4gsXn4OaZpvki6Q9/h59wOrJ+J3fPiiRSb93SyekEZeTnHJjNjJZDvxeN20NwxcNzjkVgCj6bmiYiIiMgMd9KkyTTNO8bodcqBew3DcAAOYDvwCQDDMDYDV5umeWiMXivrbWvoJhJLstIY++YPw9lsNqpLcmk+QSUpEkvidatznoiIiIjMbCO+IzYM43vAb03TfGnYY+cC7zVN87Mne65pmvuAFSc4tvwEj9860timmw1mOzkeJ4tmF437a1WV5rFxVweWZR2zbikST6pznoiIiIjMeKPZ+OcmYP1Rj20Abh67cCSRTLF5dyfL5wZwOsZ2X6bjqSrNJRSO0zcQO+ZYJJZQ0iQiIiIiM95o7sqt45zvGOU15BTMg70MRBLjPjXvsOqSXACaOo9d16TpeSIiIiIio0t4XgC+ZhiGHWDo768MPS5jZIPZjsflYEl98YS8XlVZuntIc/ux65oiUU3PExEREREZTRnhM8BDQIthGAeAWqAF+LPxCGwmSqUsNu7q4Mw5AdyuiUlW8n1u8n2uE1Sa1D1PRERERGTESZNpmk2GYZwFrAWqgUbgNdM0U+MV3Eyzu6mXvsE4K43SCX3dqtK847YdT0/PU9IkIiIiIjPbaLrn/Q3wa9M0Xx7HeGa0Tbs7cTpsLD0jMKGvW1WSywtvtpCyLOxDHfTiiRTJlKU1TSIiIiIy441mTdNlQINhGA8ZhvFewzA84xXUTGRZFpt3d7Kwrpgcz8QmKtVleUTjSTqDkcxj0XgSQJUmEREREZnxRpw0mab5LqAOeBT4W6DVMIyfGYZx4XgFN5Mc6hqkvTfM8nklE/7aVUMd9Jo73moGEYkmACVNIiIiIiKjahdummaXaZo/NE3zHOAiYDXwjGEYDYZhfMkwjLxxiXIG2Ly7A4Dlcyc+aZp1uO34sHVNkVi60pSj6XkiIiIiMsONeo8lwzAuNQzjl8CzQBvwl8AtwArSVSg5DZt3dzK7wk+Rf+JnPeZ4nJQUeI+sNMU0PU9EREREBEbXCOI7wI1AELgT+CfTNJuHHX8F6BnzCGeAYCjKvkN9XHdB/aTFUFHso70nnPk8EktPz1PLcRERERGZ6UYz98oL/Llpmq8f76BpmnHDMFaNTVgzyxt7u7CAFfMmttX4cH6fm5auwcznb1WaND1PRERERGa2U94RG4aRA8wxTfNTxzm2BNhjmmYEwDTNnWMf4vS3eXcngXwv1aW5kxaD3+eiPxzLfK7peSIiIiIiaSNZ0/R54MMnOPZXwD+MXTgzTzSeZFtDN8vnlWAb2iNpMuTnuonFU0SHkqXD0/OUNImIiIjITDeSpOl9wHdOcOw24KaxC2fmOdDaTzyRYvHs4kmNw5/jAqB/MF1t0vQ8EREREZG0kSRNVcMbPgw39HjV2IY0szR3ptt8V5dN3tQ8SK9pAugPx4F00uSw23A5R91gUURERERkWhnJHfGAYRg1xztgGEYtMHi8YzIyhzoG8LgdBPK9kxqH33d0pSmhqXkiIiIiIowsaXoE+MYJjv0b8PDYhTPzNHeGqC7JndT1TPBW0tQ38FalSUmTiIiIiMjIWo7/E/CyYRhvAH8EWoBK4M+BfODc8QtverMsi6aOAc6aXzLZoQybnvfWmiatZxIRERERGUGlyTTNVuAs4EHgSuBzQ38/CKwcOi6noW8wTigcp6okb7JDwet24HTY6R9MV5qimp4nIiIiIgKMbJ+mjwAPm6b5T6SrTjJGmjtCAFRN4v5Mh9lstvReTYPDK01KmkRERERERjL/ajXwz4Zh9JBev/Qw8LJpmta4RjYDNHekO+dVlU5+pQmGNrgdfGtNU2GeZ5IjEhERERGZfKdMmkzT/GsAwzCWAlcD30x/ajxFuknEY6Zpdp7qOoZhNACRoT8A/2ia5uNHnfND4FIgCoSAz5imuX6kX0y2ae4MkZfjIn+oCcNky/e51T1PREREROQoI17pb5rmFmAL8B+GYRQC7wSuAb5lGMZB4MtHJ0HHcb1pmltPcvxR4LOmacYNw7gW+B0wZ6QxZpvmjgGqSye/c95hfp+L1u50B/lILIlHSZOIiIiIyMiTpuFM0+wF7hn6g2EYq8ciGNM0Hxr26ctAtWEYdtM0U2Nx/anEsiyaOgc4f0nlZIeS4fe56R+MY1mWuueJiIiIiAwZ8V2xYRg24CPATUCJaZpnGoZxIVBhmuY9I7zM3UPXeRH44lDydSKfIt2AYtolTABdfRGiseSUaAJxmN/nIhpPMhBJkExZmp4nIiIiIsLoKk3/ClwOfBf4ydBjTcB/MlRxOoULTNNsNAzDM3SNHwAfON6JhmHcCNwMXDiK+AAIBCa/qUJpqf+U5zQMNYFYPK90ROdPhFnl+QAkbelO9CXFuVMmtvE0E77G6UZjln00ZtlHY5Z9NGbZReOVXUaTNN0KrDBNs9MwjB8PPbYfOGMkTzZNs3Ho76hhGD8CHjjeeYZh/DnwdeBS0zTbRhEfAF1dIVKpyWvsV1rqp6Oj/5Tnbd+b7p2R67SN6PwJkUwCsLuhC4BELDF1YhsnIx0vmTo0ZtlHY5Z9NGbZR2OWXTRek8dut51WkeWUm9sO4yDd0Q7gcFaSN+yxEzIMI9cwjIKhj23AjcDm45x3LXAbcIVpmg2jiC3rNHeEKPJ78HmnRuc8SK9pAujoDQNoep6IiIiICKOrND0C3GYYxt9CJvn5N+DBETy3HLjXMAwH6eRrO/CJoetsBq42TfMQ8EsgBvzBMIzDz73UNM2uUcSZFZo7BqbUeiZIr2kCaD+cNHmUNImIiIiIjCZp+jvgTiAIuEhXmJ4APniqJ5qmuQ9YcYJjy4d9XDqKeLKWZVm0dg9i1BZNdihHyD+60uRS9zwRERERkdHs09QHvNswjDKgDmg0TbN13CKbxsLRBLFEiiK/Z7JDOYLX7cDpsGl6noiIiIjIMCNe02QYxiYA0zTbTdN8/XDCZBjG+vEKbrrqDcUAKPS7JzmSI9lsNvw+N13BKKCkSUREREQERtcIYu7RDwytaxpR9zx5S28onZQU5k6tShOAP8dFykr3+fB6ND1PREREROSUd8WGYdw59KF72MeHzQa2jXVQ010wU2magklT7lvVL1WaRERERERGtqZp7wk+toB1wO/HNKIZ4HClqSB3ak3Pg7c66DkdNpyO0RQiRURERESmp1MmTaZpfhXAMIxXTNN8fPxDmv56QzE8bgc5U3D6mz8nnch5XKoyiYiIiIjA6NY0fdMwjM8Odc+Tt6E3FKVwClaZ4K1Kk9c99RI6EREREZHJMJqk6d+AC4H9hmE8ahjGzYZh5IxTXNNaMBSlMG/qrWcCyB9K5rSxrYiIiIhI2oiTJtM0/2ia5nuAGuB+4BNAi2EYvzAM45LxCnA66g3FKMibopWmnMOVJiVNIiIiIiIwukoTAKZpdgN3Aj8BDgJ/AfzUMIxdhmFcNsbxTTuWZaWn503RSpPfN1Rp0vQ8ERERERFgZN3zADAMww5cDtwCXAu8DHwTuM80zbBhGH8B3AVUjEeg00U4miSWSE3hpEmVJhERERGR4UZTTjgEdJKuMn3eNM1Dww+apnmvYRifGsvgpqPMxrZTdXpeptKkpElEREREBEaXNF1rmuZ6AMMwygzDeA+wwzTNHYdPME3z4rEOcLoJZpKmqVlpyvE4cDrsmp4nIiIiIjLklHfGhmFUAd8HFhmG8TLwHeB5IAkUGobxl6Zp/nZ8w5w+ekMxgCnbCMJms/HhaxZSW5432aGIiIiIiEwJI2kE8ROgB/jbofMfBz5immYZcAPwxfELb/rpHZjalSaAtYvKqQzkTnYYIiIiIiJTwkiSpnOBj5um+SjwcaAc+BOAaZr3A3XjF97009sfw+NykOPR9DcRERERkWwwkqTJZZpmDMA0zUGg3zRNa9hx27hENk0FB6JTtgmEiIiIiIgcayTlDqdhGBfzVnJ09OdqszYKvf1RCqbw1DwRERERETnSSJKmduAXwz7vOurz9jGNaJrrHYgxu8I/2WGIiIiIiMgInTJpMk1z9gTEMSNYlkVvKEphXslkhyIiIiIiIiM0kjVNMkbC0SSxeGpKd84TEREREZEjTVgLN8MwGoDI0B+AfzRN8/GjzvEBvwRWAgngc6ZpPjRRMY63YKbduBpBiIiIiIhki4nue329aZpbT3L8c6S78801DGMe8IJhGHNN0wxNUHzjqrc/nTSpEYSIiIiISPaYatPz3kd6M11M09wNrAeumtSIxlDvQAxQpUlEREREJJtMdKXpbsMwbMCLwBdN0+w96ngtcGDY5weBmokKbrz1hg5Pz1OlSUREREQkW0xk0nSBaZqNhmF4gO8CPwA+MNYvEgjkjfUlR6209PgtxWNJ8Lod1FQVYrNpT+Cp4kTjJVOXxiz7aMyyj8Ys+2jMsovGK7tMWNJkmmbj0N9RwzB+BDxwnNMOAnVAx9DntcAzo3mdrq4QqZT1dkJ9W0pL/XR09B/3WEtHP/m5bjo7p8USrWnhZOMlU5PGLPtozLKPxiz7aMyyi8Zr8tjtttMqskzImibDMHINwygY+tgG3AhsPs6pvwf+eui8ecBq4LGJiHEi9PZHNTVPRERERCTLTFQjiHLgWcMw3gS2AvOBTwAYhrHZMIxZQ+d9Gyg0DGMP8BDwf0zTnDZpeE8oSpFfSZOIiIiISDaZkOl5pmnuA1ac4NjyYR8PADdMREwTzbIsevpjFKnSJCIiIiKSVaZay/FpayCSIJFMUahKk4iIiIhIVlHSNEF6hja21fQ8EREREZHsoqRpgmSSJk3PExERERHJKkqaxkF3X4Rv3r2RvsFY5rHMxrZ+92SFJSIiIiIip0FJ0zjoDcXY1djL3uZg5rHDlSa1HBcRERERyS5KmsZBWVEOAO094cxjPf1R8n0unA59y0VEREREssmEtByfafJyXOR6nUckTb2hqDrniYiIiIyDZDJBT08HiUTs1CdPAe3tdlKp1GSHMa3Z7Q5ycvLIyyvAZrO97espaRonZUU5tPcMZj7v6Y9SrKRJREREZMz19HTg9frIza0Ykxvk8eZ02kkklDSNF8uySCYT9Pf30tPTQXFx2du+puaKjZOyIh9tR03PU7txERERkbGXSMTIzc3PioRJxp/NZsPpdFFYGCAWi4zJNZU0jZOywhy6+iIkkiniiRShcFzT80RERETGiRImOZrNZgesMbmWpueNk7KiHCwLOoMRHPb0L7H2aBIRERERyT6qNI2T8iIfAO09g29tbKtKk4iIiMi0d/31f8a+fXvG9JotLYe45ppLj3uss7ODT3/6r4977JFHHuTKK9/BrbfezK233syHPvR+Nmx4fUxj27hxPR/+8C0jPn/nzu189av/dNxjw7/O/v5+7r77jiOOf+pT/4d16144/WBPk5KmcXK47XhbT3jYxrZKmkRERERkbJWUlPL97//3CY+vWrWG22//Nbff/ms++tGPc9tt/zGB0R1rwYJFfPnLXzvleaFQP7/+9Z0TENGpaXreOPH7XHjdDtp7wqRS6bmUqjSJiIiIzBy/+c1dPPXUEySTCdxuD5/73P9l3jwDgK1b3+SHP/wvBgfT3ZY/+cnPsGbN2ezYsY3vfvc7RCJhvN4cPvvZz7Fw4eLMNX/wg+/yxhsbiUaj/P3f/1+WLVtBS8shPvKRW3j44adOGVMoFMLvz898/tWv/hMHDx4gHo9RVVXDF77wL+Tn57Nx43q+973bWLRoMdu2bQFsfPWr32D27HoAfvrTH/HUU09QWlp2RHxf/vIXueiiS7jkksu4++47uPPOX/DII0/jcDj4wAdu4Bvf+A6dnR388If/xc9//isA7r33Hu6559cEAiWsWLEyc63bbvsPQqEQt956M16vl5/85BcAbN68kbvuup3Ozk4uueQyPv7xT5/mCI2ckqZxYrPZhtqOh3HYbbiddnwefbtFRERExtO6LS28+GbLuFz7/DMrOW9p5YjPv/LKa7jppg8A8Prrr/Ltb/87P/3p7QSDQb74xX/g61//FkuXLiOZTDIwMEA8HudLX/o8X/jCv7B69VrWr3+NL33p8/zud38CIBgMMmfOXD71qc+yadMGvvKVL2WOncz69a9x6603Ew4P0tvbw7e+9V+ZY5/5zOcoLCwE0onQ3XffkUlC9u/fyxe/+C98/vNf4o47fs4dd/ycL3/5a7z44vOsW/c8v/zlr/F4PHzhC5/LXG/VqjVs2PAal1xyGRs2vE59/Rx27NhORUUlg4OD1NbW0dnZkTl/z57d3HnnL/jlL++muDjAd77zzcyxv/u7f+QjH7mF22//9RFfT1tbKz/84f8wODjI+953Hddeex01NbUjHpfTobv4cVRW5KOxrZ8cj4NCv0ddXURERERmENPcwa9+9Uv6+oLY7XYaGw8C6SrT7Nn1LF26DACHw0F+fj579+7B5XKxevVaIJ2AuFwuDh48gM/nw+VyccUVVwOwYsVKPB4PBw8eIDc396RxrFq1hq997VtAev3RV77yRX7zmz/i9Xp57LGHeOKJx0gk4oTDkSOSj9raOubPXwDA4sVLM2uJNm1azyWXXI7Pl17Df+2113HHHT8HYOXK1dx11+3E43Ha29u5+eZbWL/+VSoqKlm5cvUxsW3atIFzzz2f4uIAANdd9+c888yTJ/16Lr74Uux2O3l5edTV1dPc3KSkKZuVF+WwaVcHeTkudc4TERERmQDnLR1dNWi8pFIW//zP/8gPfvA/GMYCOjs7ePe7rwLSm68ej2VZx32T/UTvu5/o/JM566xVJBIJ9u/fSywW409/upcf//gXFBUV8cQTj/HAA3/MnOt2v3X/arfbSSaTJ40fYNasKlIpiyeffIwlS5aycuVqvva1L1NRUclZZ6067tcwWieKazypEcQ4KivMIZmyONAW0nomERERkRkmmUxSVlYOwB//+PvM40uXLqOhYT9bt76ZOa+vr4+6utnEYjE2blwPpKtCiUSCmpo6AOLxOE8++RgAb7yxiVgsRm1t3ahi2rt3D4ODA1RUzKK/v5/c3DwKCgqIxWI8/PADI7rGypVrePrp/yUcDpNMJnnkkQeOOr6KX/zip6xatYby8gr6+oK89torx600nXXWKl5+eR09Pd0APPTQ/Zljubm5RCIREonEqL7G8aBK0zg63EEvkUypc56IiIjIDJFMJvF6vXz4w3/NRz/6l5SXV3D22edmjhcUFPD1r3+L73//P4lEwthsdj75yc+wevVavv71bx3RCOJrX/sPXC5X5nlNTY189KMfJBqN8JWvfD1z7GQOr2lKV3UsvvjFr1BUVMTZZ5/LE088ys03X09ZWRkLFixk+/Ztp7zeeeddwNatb/JXf3UzJSWlrFixko6Ot9YprVy5mocffiCTJC1dupwNG17LJJDDzZ07j1tu+Ss+/vEPU1wc4Jxzzs8cy88v4J3vvIoPfvBG/P78TCOIyWA7nZLYFDUb2N/VFcp0q5sMpaV+Ojr6Aejpj/L3P1wHwE2XzuPy1TWTFpcc3/DxkuygMcs+GrPsozHLPjN9zFpbD1BRMbqKy3jp7Ozk/e//Cx544HE8Hu9xz3E67SQSqQmObGY6+mfDbrcRCOQB1AMNI72OKk3jqDDPjdtpJ5ZIaXqeiIiIyDT3+9//lvvu+z2f/ORnT5gwSXZS0jSODrcdb+oY0PQ8ERERkWnuhhtu5IYbbpzsMGQcTHjSZBjGl4GvAEtN09x61LH5wE+BQsAD/M40za9MdIxjqazIR1PHgLrniYiIiIj8//buPD7uuk78+GtmcrVJSts0pYAtBSkfBAqWUuR0FVlvxAMVymFZ6wIiiMqKi6CwCovIushZ5LKcLvxQLkXYRVkFcZVCuf1wtbRIoelBaXommfn9MZN0kqbTZJJ0Munr+WgfM/P9fL+f73vmne/MvL/HZ8rUFh09L4SwD7A/sGATs1wE/L8Y43uBacAJIYT9tlR8A2G7huFUpBJsU1dV6lAkSZKGrCF0nb76SSaTBvrnd1K32JGmEEI1cAUwHfj9JmbLANvk7g/PPV488NENnI/sN4G93z2GipSju0uSJA2EiooqVq16h9raEb3+3SINPZlMhra2VlauXE5VVf9cW7YlT8/7N+DmGOO8EMKm5jkduDeE8FVgFPAvMcb5Wyi+AVE3rJJd3rXN5meUJElSUUaNamT58iaam98udSg9kkwmSacdPW8gJZMphg2ro66uf76Hb5GiKYRwANnT7b6zmVlPBG6KMf44hLAd8HAI4fEY4//1dF25IQRLqrGxvtQhqBfMV/kxZ+XHnJUfc1Z+tvacjRs3qtQhaAjbUkea/gHYDWg/yvQu4IEQwgkxxgfz5jsN2BkgxrgohPA74P1Aj4umwfQ7TRr8zFf5MWflx5yVH3NWfsxZeTFfpZP3O029skWKphjjhcCF7Y9DCPOBT3YdPQ+YB3wUuDGEUA8cAtyzJWKUJEmSpO6U/HeaQghzgY/HGN8AZgCXhRC+BVQCv4gx3t/DrlKQrR5LbTDEoJ4zX+XHnJUfc5Tk5LoAACAASURBVFZ+zFn5MWflxXyVRt7rnurNcokhNDzjwcAfSx2EJEmSpEHvEOCRns48lIqmarKDTSwC2kociyRJkqTBJwVsB/wVWNfThYZS0SRJkiRJ/c5fXJUkSZKkAiyaJEmSJKkAiyZJkiRJKsCiSZIkSZIKsGiSJEmSpAIsmiRJkiSpAIsmSZIkSSrAokmSJEmSCrBokiRJkqQCLJokSZIkqQCLJkmSJEkqwKJJkiRJkgqwaJIkSZKkAiyaJEmSJKkAiyZJkiRJKsCiSZIkSZIKsGiSJEmSpAIsmiRJkiSpAIsmSZIkSSrAokmSJEmSCrBokiRJkqQCLJokSZIkqQCLJkmSJEkqwKJJkiRJkgqwaJIkSZKkAiyaJEmSJKmAilIH0I+qgWnAIqCtxLFIkiRJGnxSwHbAX4F1PV1oKBVN04A/ljoISZIkSYPeIcAjPZ15KBVNiwCWL19FOp0pWRANDXUsXdpcsvWrd8xX+TFn5ceclR9zVn7MWXkxX6WTTCYYNaoWcrVDTw2loqkNIJ3OlLRoao9B5cN8lR9zVn7MWfkxZ+XHnJUX81Vyvbqcx4EgJEmSJKkAiyZJkiRJKsCiSZIkSZIKGErXNAGw5qEraWt+u2Trf6OygpaW1pKtX71jvsqPOSs/5qz8mLPyY87Ki/kqnVTdSPjCt3u9nEeaJEmSJKmAIXekadiHvlrS0UgaG+tpalpZsvWrd8xX+TFn5ceclR9zVn7MWXkxX6WTTCaKW66f45AkSZKkIcWiSZIkSZIKsGiSJEmSpAIsmiRJkiSpgJIMBBFCuAvYCUgDzcCpMca5IYRdgdlAA7AUOD7G+FIpYpQkSZIkKN2Rpi/FGPeOMU4BLgauz02fBVwRY9wVuAK4ukTxSZIkSRJQoqIpxrgi7+E2QDqEMBbYB7gtN/02YJ8QQuOWjk+SJEmS2pXsd5pCCNcCHwYSwEeB8cDfY4xtADHGthDCG7npTaWKU5IkSdLWrWRFU4xxJkAI4Tjgx8A5/dFvQ0Ndf3TTJ42N9aUOQb1gvsqPOSs/5qz8mLPyY87Ki/kqL4lMJlPqGAghrAEmAhFoyB1lSpEdDGJSjLEnR5omAvOWLm0mnS7dc/IXnsuL+So/5qz8mLPyY87KjzkrL+ardJLJRPtBlp2A+T1ebqAC2pQQQl0IYXze48OBZcBiYC5wdK7paODJHhZMkiRJkjQgSnF6Xi1wRwihFmgjWzAdHmPMhBBOAmaHEL4HLAeOL0F8kiRJktRhixdNMca3gP030fY34H1bNiJJkiRJ2rRS/U6TJEmSJJUFiyZJkiRJKsCiSZIkSZIKsGiSJEmSpAIsmiRJkiSpAIsmSZIkSSrAokmSJEmSCrBokiRJkqQCLJokSZIkqQCLJkmSJEkqwKJJkiRJkgqwaJIkSZKkAiyaJEmSJKkAiyZJkiRJKsCiSZIkSZIKsGiSJEmSpAIqSrHSEEIDcBPwbmAd8DJwYoyxKYSQAZ4B0rnZj4sxPlOKOCVJkiSpJEUTkAEuijE+DBBC+DFwIfDlXPuBMcbmEsUmSZIkSR1KUjTFGJcBD+dN+jNwcilikSRJkqRCEplMpqQBhBCSwIPAPTHGS3On580hW9DdD5wbY1zXg64mAvMGLFBJkiRJQ8VOwPyezlyq0/PyXQY0A5fnHk+IMS4MIYwge93TOcDZPe1s6dJm0unSFYKNjfU0Na0s2frVO+ar/Jiz8mPOyo85Kz/mrLyYr9JJJhM0NNT1frkBiKXHQggXA5OAL8YY0wAxxoW523eAa4GDShehJEmSpK1dyYqmEML5wFTg0+2n34UQRoUQhuXuVwBHAnNLFaMkSZIk9en0vBDCe8gWNuNijKeEEHYDqmKMT29muT2As4AXgT+FECB7PdJFwNW565oqgT+RPT1PkiRJkkqi6KIphPB54Argl8B04BSgjuzQ4YcVWjbG+ByQ2ETzXsXGJEmSJEn9rS+n5/0b8OEY40lAW27aU8DefY5KkiRJkgaJvhRNY8kWSZD9sdr229KOYS5JkiRJ/agvRdMc4Lgu044C/tKHPiVJkiRpUOnLQBCnAQ+GEL4M1IYQHgB2BT7cL5FJkiRJ0iBQdNEUY/xbbrS8TwL3AQuB+2KMzf0VnCRJkiSVWp+GHI8xrgZu76dYJEmSJGnQ6VXRFEL4Iz0Y6CHG+P6iI5IkSZKkQaS3R5quHZAoJEmSJGmQ6lXRFGOcPVCBSJIkSdJgVPSQ4yGES0MIB3aZdmAI4ZK+hyVJkiRJg0NfBoI4Gjijy7Q5wF3A6X3oV5IkSeqxtrZWli9vorV1falD6ZHFi5Ok0+lShzGkJZMphg2ro65uGxKJRJ/760vRlGHjI1WpbqZJkiRJA2b58iZqaoZTWzuuX74gD7SKiiStrRZNAyWTydDW1srKlW+zfHkTo0eP7XOffSlw/gj8MISQBMjdnpubLkmSJG0Rra3rqa0dURYFkwZeIpGgoqKSkSMbWL9+bb/02ZcjTV8n+6O2i0IIrwETgEXA4f0RmCRJktRTFkzqKpFI0oNfS+qRoo80xRhfB/YBPg38OHc7NTddkiRJ2iodeeThvPrqy/3a56JFb/CJT3yo27YlS5o49dQTu237zW/u5aMf/QAzZkxnxozp/NM/HcOcOX/t19ieeOJxvvzl43o8/9/+9jznnXd2t235z3PlypXcckvnwbu/9rV/5tFHt/yJbUUfaQohnAbcGmN8rJfLNQA3Ae8G1gEvAyfGGJtCCPsDVwPDgPnAsTHGxcXGKEmSJA11Y8Y0ctllV2+yfd999+OHP7wIgMcee4Sf/ORH3HLL/9tS4W1kt9125/vf/+Fm52tuXsmtt97IMcd8aQtEVVhfTs87DLgghPAwcCNwd4xxXQ+WywAXxRgfBggh/Bi4MIQwE7gZmBFjfCSEcDZwIfBPfYhRkiRJKonbbruZhx56kLa2VqqqqjnjjO8waVIA4Nlnn+aKK37K6tWrATjllK+z337788ILz3HJJRezdu0aamqGcfrpZ/Ce9+zR0efll1/CU089wbp16/jWt77D3ntPYdGiN5g58zh+/euHNhtTc3Mz9fUjOh6fd97ZLFjwGi0t69lhh/H8679+jxEjRvDEE49z6aU/Yffd9+C5554BEpx33gVMnLgTAD/72ZU89NCDNDaO7RTf979/Fv/wD4dy6KGHccsts7nxxuv5zW9+RyqV4thjP88FF1zMkiVNXHHFT7nuupsAuPPO27n99ltpaBjDlClTO/r6yU9+RHNzMzNmTKempoZZs64HYO7cJ7j55p+zZMkSDj30ME4++dQiM9RzfTk971PAjsD9wDeAN0MI14YQ3r+Z5Za1F0w5f871sy+wNsb4SG76LOALxcYnSZIkldJHP/oJrr32Rm644VZmzjyJH//43wFYsWIFZ531L3z1q6cxe/ZtXH/9zey22+60tLTw3e9+m5kzT2L27F/wla+czHe/+21aWlo6lnv3u3fhmmtu5Bvf+Dbnnvtd1q/f/DDrjz/+F2bMmM4Xv/hpLr743zn55NM62r7+9TO47rqbuPHG/2KnnXbudDrcvHmv8OlPf47Zs3/BoYcexuzZ1wHwyCN/4NFH/8ANN9zKT396Fa+9Nr9jmX333Y85c/4CwJw5f2Wnnd7NCy88z5IlS1i9ejUTJuzYKbaXX36JG2+8nquuuo4rr7yWFStWdLR985tnUldXx89/fmtHwQTw1ltvcsUV13DDDbdw3313sXDhgp6mpGh9OdJEjHEpcAVwRQhhL7Kn3Z0QQlgIXAP8NMbYvKnlcyPunQzcQ3Ygidfy+l4SQkiGEEbHGJf1JU5JkiRtHR59ZhGPPL1oQPo+eK/tOGjydj2eP8YXuOmmG3jnnRUkk8mOL/fPPvs0EyfuxOTJewOQSqUYMWIEr7zyMpWVlUyb9j4gW4BUVlayYMFrDB8+nMrKSj7ykY8DMGXKVKqrq1mw4DVqa2sLxpF/et4TTzzOueeexW23/ZKamhp++9v7ePDB39La2sKaNWsZP35Cx3ITJuzIrrvuBsAee0zuuJboyScf59BD/5Hhw4cD8MlPHtFRUE2dOo2bb/45LS0tLF68mOnTj+Pxx/+PceO2Y+rUaRvF9uSTczjwwIMZPboBgCOO+Ay///1/F3w+H/zgh0gmk9TV1bHjjjvx97+/3inugdCnogkghPAh4FjgCOBx4CJgAdnR9e4HDimw+GVAM3A58Jm+xgLQ0FDXH930SWNjfalDUC+Yr/JjzsqPOSs/5qz8bM05W7w4SUVF9gSqVCrBQA2kl0olOtazOYkEnHPOmVx11bXsttt7aGpq4vDDP0JFRZJMJkMiwUZ9JZPtw2UnO/VTUZEklcpOq6hIkky2t2fy2rqPLZlMdOpzv/32o7W1lQUL5rF+/TruuutOrrnm54waNYoHHrifu+76ZUef1dXVHctVVlaQTrdRUZEkkcj22/U1r6hIMmHCeDKZDA899ACTJ+/F+973Ps4773uMG7cd06bt19F3+/xdn3P+c+nueSUSCYYNq8mbPwWkN5mXZDLZL9tGXwaCuBg4ClhB9pqms2OMf89r/zOwfDPLTwIOjzGmQwgLyJ6m194+Bsj09ijT0qXNpNP9M7RgMRob62lqWlmy9at3zFf5MWflx5yVH3NWfrb2nKXT6Y4fi91/93Hsv/u4AVtXT3+Utq0tQ1tbGw0NY2ltTXPHHf/VsfzkyXtzwQU/YO7cuey55160tbWxatUq3vWuHVm/fj1/+ctf2GeffXniicdpaWll++3Hs2RJEy0tLdx//2/4yEc+zlNPPcm6devZYYcJLFnSBGS6jS2dzpDJbGh75ZWXWb16FY2N43juuWeora2jtrae1avXcs89d3fM29aWJpPZ8HzzH0+ZMo2f/exKjjzyaKqqqrj33rs7zbvPPvty7bVXc9JJX6OhYSwrVrzNa6/NZ+bMkzbqe++9p3LTTbNpalrCqFGjufvuX3U8l5qaYaxdu4a1a9dTUZEtW7I/XLvh+XR9vPHzT3faNpLJRFEHWfpypKkG+EyMsdsxC2OMLSGEfbtrCyGcD0wFPpE3eMQcYFgI4eDcdU0nAbf3IT5JkiRpi2tra6OmpoYvf/lEvvKV49l223Hsv/+BHe3bbLMN559/EZdd9p+sXbuGRCLJKad8nWnT3sf551/UaSCIH/7wR1RWVnYs9/rrC/nKV77EunVrOffc8zvaCmm/pimTyQAZzjrrXEaNGsX++x/Igw/ez/TpRzJ27Fh22+09PP/8c5vt76CDDuHZZ5/mhBOmM2ZMI1OmTKWpqamjferUafz61/d0nI43efJ7mTPnL4wdu+1Gfe2yyySOO+4ETj75y4we3cABBxzc0TZixDZ8+MMf40tfOor6+hGdrmva0hLZF6/nQgjDgHfHGJ/tpm1P4OUY4yZ/ejeEsAfwLPAisCY3eV6M8TMhhAPJDjlew4Yhx9/qYWgTgXkeaVJvmK/yY87KjzkrP+as/GztOXvzzdcYN27Hzc+4BSxZsoRjjvkc99zzANXVNd3OU1GR7PERK/VN17+NvCNNO5GtN3qkmCNN3wZGkh0xr6sTgLeBH2xq4Rjjc0C3Z5rGGP8ETC4iJkmSJKmk7rjjF/zqV3dwyimnb7JgUnkqpmj6IvCPm2j7CfDfFCiaJEmSpKHo858/is9//qhSh6EBUMzvNO2QP+BDvtz0HfoWkiRJkiQNHsUUTatCCOO7awghTABW9y0kSZIkSRo8iimafgNcsIm2HwC/Lj4cSZIkSRpcirmm6WzgsRDCU8AvgUXAdmR/nHYEcGCBZSVJkiSprPT6SFOM8U1gH+Be4KPAGbnbe4GpuXZJkiRJGhJ6XTSFEGYCNTHGs2OMB8QYd83dnhNjXD4AMUqSJEll48gjD+fVV1/eaPqtt97E0Ud/lgMOmMqjj/5xk8s/8cTjfOhDBzFjxnRmzJjO8cd/kYceerBfY1y06A0+8YkP9Xj+JUuaOPXUEzfZfvDB+7J6dXZog+uuu5qWlpaOtvPPP5c77/yv4oMdBIo5PW8acE4IYTnZ65d+DTwWYyzdL8pKkiRJg9yUKfvw/vd/gB/96IebnXfixJ257rqbAJg371X++Z+/xAc/eBjJZDFDEvTdmDGNXHbZ1T2a94YbruHoo4+jsrJygKPacnpdNMUYTwQIIUwGPg5cmH0YHiI7SMRvY4xL+jVKSZIkqcy95z17FLXcqlXN1NbWdRRMl19+CXPnPkFLSwsjR47kX//1e4wbtx2LFr3BzJnH8alPfZY///lR1q5dy3e+8z323vu9ANx55+3cfvutNDSMYcqUqR39z5p1OSNGjGD69ON56KH/5txzz+Keex5g1KjRnHHGaXzhC9MZP34CM2cex69//RAA//u/v+Pqq69gxIht2H//DUMa/Md//AiAk0/+JxKJZEeh9eqrr3DaaSexePFb7LHHZM4++zwSiURRr0cpFHOkCYAY4zPAM8CPQggjgQ8DnwAuCiEsAL4fY3ygf8KUJEmSNq/lxUdpiX8YkL4rw/up3PWgAem7q/nzX2XGjOmsX7+ON998k3POOa+j7dhjZ/C1r50OwL333sVVV13Keef9OwArVqxgzz334sQTT+HBB+9n1qxLueqq63n55Ze48cbrueGGWxg9uoGLL76wo7+pU6dx2203M3368cyZ8xf22GMyc+b8lQ984EM8//xz7LXXe1m+fFnH/MuXL+NHPzqfWbOuY8KEidxyy+yOtm9960x+9as7uOqq6xk+fHjH9FdffYVLLrmSZDLJCSccw+OP/x/Tpu0/YK9ffyu6aMoXY3wbuD33nxDCtP7oV5IkSdoa5Z+eN3/+PE499UT23HMvGhvH8uc/P8ovf3kHa9aspq2trdNyw4YN56CDDgFgjz0mc/nllwDw5JNzOPDAgxk9ugGAI474DL///X8DsNdee/O97/0rLS0tPPPMU5xyyuk8/PBDNDaOZeed301NTU2ndTz33DPsumtgwoSJAHzqU5/lqqsuK/h8DjnkA1RXVwMQQuDvf3+daWVUMRRdNIUQEsBM4GhgTIxxrxDC+4FxMcbb+ytASZIkqacqdz1oix0N2lImTtyJceO245lnnmb33ffgsst+wjXX3Mj22+/AM888xXnnnd0xb1XVhuuIkskkbW2tAGQymx5+oLq6hl12mcT//M8DNDSMYZ999uXyyy+hsXEsU6duXNkU6mvT66jKiyu1UbE32PXlSrJ/A74M/AyYkJv2OnBmX4OSJEmSlLVkSRMLFy5g/PjxrFq1ioqKShoaGkin09x115096mOfffblscce7TjN7r777u7UPnXqNK677mqmTt2Pqqoqxo4dy/3339dt0bTnnnvx0kuRhQsXANlTBPMNH17LqlXNxTzVQasvp+fNAKbEGJeEEK7KTZsH7NznqCRJkqQydvrpp5BKpToez579C+677y7uuOMXvP32ci644Fyqqqq5+ebbqa2t22j59muaAFpbW/jKV05i0qQAwAc/eBjHHvtFtt12W6ZMmcpTTz252Xh22WUSxx13Aief/GVGj27ggAMO7tS+7777ce21s9h332yRNHXqNJ555il2333PjfoaNWo03/72dznzzG8wYsQ2HHroYZ3ajzrqGE477SSqq2t6POLeYJco5vAaQAjhDWDnGOPaEMKyGOPoEEI98HyMcXy/RtkzE4F5S5c2k06XbvTzxsZ6mppWlmz96h3zVX7MWfkxZ+XHnJWfrT1nb775GuPG7VjqMHqsoiJJa2u61GFsFbr+bSSTCRoa6gB2Aub3tJ++nJ73G+AnIYRq6LjG6QfAvX3oU5IkSZIGlb6cnvdN4EZgBVAJNAMPAl/a3IIhhIuBz5E9OjQ5xvhsbvp8YG3uP8CZDlsuSZIkqZT68jtN7wCfDiGMBXYEFsYY3+zh4ncBPwX+2E3bke1FlCRJkiSVWtGn54UQngSIMS6OMf61vWAKITy+uWVjjI/EGBcWu25JkiQpX7HX6WvoymTSQKJf+urL6Xm7dJ2Qu66pr6Pn3ZLr5xHgrNwP50qSJEndqqioYtWqd6itHUEi0T9fklW+MpkMbW2trFy5nKqqms0v0AO9LppCCDfm7lbl3W83EXiuD/EcEmNcmBtc4hLgcuDY3nSQGw2jpBob60sdgnrBfJUfc1Z+zFn5MWflZ2vO2ciRNSxcuJCmptdLHYoGiYqKFKNGjWLMmDEkk30Z+y7XXxHLvLKJ+xngUeCOYoNpP2UvxrguhHAlcE9v+3DIcfWG+So/5qz8mLPyY87KjzmD+vpG6sukbjRfW87Spas6Pc4bcrxXel00xRjPAwgh/Lk/R7YLIdQCFTHGFbnT844C5vZX/5IkSZJUjL5c03RhCOE9wK0xxsW9WTCEcCnwWWAc8D8hhKXA4cCdIYQUkAKeB77ah/gkSZIkqc/6UjT9gOz1RueHEP4A3AT8Ksa4ZnMLxhhPA07rpmlKH+KRJEmSpH5X9FVRMcZfxhg/C4wH7iZ7VGhRCOH6EMKh/RWgJEmSJJVSn4eSiDEuA24EZgELgM8BPwshvBhCOKyv/UuSJElSKRV9el4IIQn8I3Ac8EngMeBCcqfohRA+B9xM9rolSZIkSSpLfbmm6Q1gCdmjTN+OMb6R3xhjvDOE8LW+BCdJkiRJpdaXoumTMcbHAUIIY0MInwVeiDG+0D5DjPGDfQ1QkiRJkkqp10VTCGEH4DJg9xDCY8DFwB+ANmBkCOH4GOMv+jdMSZIkSSqNYgaCmAUsB76RW/4BYGaMcSzweeCs/gtPkiRJkkqrmKLpQODkGOP9wMnAtsBdADHGu4Ed+y88SZIkSSqtYoqmyhjjeoAY42pgZYwxk9ee6JfIJEmSJGkQKGYgiIoQwgfZUBx1fZzql8gkSZIkaRAopmhaDFyf93hpl8eL+xSRJEmSJA0ivS6aYowTByAOSZIkSRqUirmmSZIkSZK2GhZNkiRJklSARZMkSZIkFWDRJEmSJEkFFDN6Xp+FEC4GPgdMBCbHGJ/NTd8VmA00kB2V7/gY40uliFGSJEmSoHRHmu4C3g+81mX6LOCKGOOuwBXA1Vs6MEmSJEnKV5KiKcb4SIxxYf60EMJYYB/gttyk24B9QgiNWzo+SZIkSWo3mK5pGg/8PcbYBpC7fSM3XZIkSZJKoiTXNA2khoa6UodAY2N9qUNQL5iv8mPOyo85Kz/mrPyYs/JivsrLYCqaFgI7hBBSMca2EEIK2D43vceWLm0mnc4MSIA90dhYT1PTypKtX71jvsqPOSs/5qz8mLPyY87Ki/kqnWQyUdRBlkFzel6McTEwFzg6N+lo4MkYY1PpopIkSZK0tStJ0RRCuDSE8DrwLuB/QgjP5ZpOAk4NIbwInJp7LEmSJEklU5LT82KMpwGndTP9b8D7tnxEkiRJktS9QXN6niRJkiQNRhZNkiRJklSARZMkSZIkFWDRJEmSJEkFWDRJkiRJUgEWTZIkSZJUgEWTJEmSJBVg0SRJkiRJBVg0SZIkSVIBFk2SJEmSVIBFkyRJkiQVYNEkSZIkSQVYNEmSJElSARZNkiRJklSARZMkSZIkFVBR6gCkgZDJZGhLZ0gmEyQTiYLzpdMZ0pnMhseZ7G0mA5kMpFIJKlNJEgloS2dobUvT0pqmtS1DS2sbbelMN/3m3e+mofM0SOfiTac33KYzGRKJBMkEudsEidz9RAKSiQQZMh3rymTY8Dj/fu55dcyTyZBpjyE3X+5fl9gzXR7nz5MhnW5/vfLiZeMY21/+zMYvU6f+NvUaZsh0mrl+xAreeWdNp2mZbmLdZD+dlus6b6brLN3P2yWP3a93w8T21yORu0/u/sb9dnu327+b7ta5uefQcbf9byD/tcn9DXSXi82tc6N4uyxUW1vNqlXrerHMptezWQmorEhSmUqSSiU7tvH8v/2xI4cxcbsRjKqvZsWq9cxb9A6Ll63u2PbTee8DfYqlSCVYZXa9eQneVM6GikJ/ywO63gHsu3Z4FatWr+/lUj39DNmw/cCG97Ls+3337/nty220xp6+J2/qxUp0uZtov5+9k7/+DfcTnRbtPE/2QcdnbXLD520y97jjOeY6SeQtt2HahueezHufb39fzWTIvheR/cyvq63mnZVrO16P9s8Ierie6soUo+qrGVVfTSqVZH1LGy2t6ez6k9nvDhviz32XSCZIpzO0tKZZ35qG9u8Zec8xmYBUMkkqmSADtLamaWlLk8ls+E6V7HidcutKZmNc35JmfWsb6XSGVCpJRTJBazpDS0sbJBJs3zC84/mUo0FXNIUQ5gNrc/8BzowxPlCygEoknc7QvKaFNetaWZ37v2ZtK2vWtXZ8mU6nMyxbuY4lK9awonl9xxfX9tvsl282TMtNTyYT7LLDNuwxcTS77TiKkXVV3f4RpzMZXpi/nHdWrWd9a1vHxrC+JU1rWzrbf8f6IJ1Ok05nC4v2oiV/3W2ZDJn2oiD35tE+b1VFkuqqCipSCVavbWVl7rnn6/ji3zGh85tR+zxt6QzrW9K51wlqayqpH15Ja1uaNevaOl7D3n5otr/5SRoahlWnWLOurdRhqERK9tVtgFbc68+oDBt92c/fwdPeRiJbULSXJYnEhgIrf+dC/k6HRN6T7O47ctdiJn9ap9m7Ltulziq4k28TO978HC+dbx31XvaYOLrUYRRt0BVNOUfGGJ8tdRADKZPJ8Hbzeha8tZLXm5pZ9s463m5ex/KV2dsVq9b36Et9IgGj62sYWVeVrepTSZIVkEwmO+0BSCYSpHJ7G9a1tPH0K0v507NvAjBieCXjt61ntwkjOXDP7RhVX82by1bz8/v/xosL3+52vRWp7F6IZJINfSeztxv2QGxYZ8e8eXspqiqTub05CVpa21i5ej0tbWlqayrZbvRwaqpTnfewsPEbbTL3Dt7+Rp4gu+7qqiSVFSlaW9OsXNNC8+r1VFQkGVZdb1EGngAADAlJREFUwbCqio49JHW11axes77TXrP2mNrX15bO0NqapjWdoTKVoCK3F7uyItnxOnTd09U51q456/ycYEOeUu23eXvr0rkjURuOfuU+qNKZTh9qnfb85VbQqS2vvVMcXebLD667PXftj9vzmMjb2wRsFGN7kd/pOXfdU5i3kvxVbbzeBKNH17J82aqNOujaT/607te7qee2ceK6/zDv/jl1jr/9Nel8pKP9fqF1bXZ9Gz2fnj2HDfPm/y10/TvaaE3d9tNTYxvraVqysvv+NvUNssgvlplMhtbWDC1tadra0nl7w7N/p+kMLFq6inmLVvLmstWMG5U96rT9mFoqUnl7ZPOWK4VSfaFvf76NjfU0NXWfMw1O5qz38nfGtp9B0f552+l+ho120GZvuxypz03Mf5/v7iyRRCJB45g6li1b1VHtdnsWQIH1rF3XyvKV2e+N6UyGyookVRUpYMPO8kzu+0M6t9M6ncl+b6qsSFFVmezYAd9xJCyzYSd3OncWTUUq2XG2TTrvdcnvs/0IWlVFsuO7XVtux3gqmaCqMsXwmgres+OoAc7owBqsRdOQ1NqW5sWFbzPnxSbmvrSE5Ss3nPpQW1PBqPpqRtZV866xdYysq2bE8EpqayqzX/SrUwyvqWRYVarjy2kikaB+eCUVqd5fmpbOZFj4VjMvvv42Cxc3s+DNldz5v6/yqz/MI0wYyUuvr6CqIsmMj+1GGD8yuzFWpqiqyBYL5Xx4NZ8fMuWnsbGOKvcVlpVUKkkquYUuoU0kSFVBNalNzjLpXSOZ9K6RWyYeSYNW51PfEhTxdapoo0bU0LqupU99TNi2vp+iUU8M1qLplhBCAngEOCvG2P3hjkHq7eZ1XHPv8zRsU8OkHbZheE0Fc19awtyXl7BqbStVFUn23LmBj71vJBO2rWf82DqGVW/ZVCQTCXYcV8+O4zZscG8tX80jTy/iLy+8xXsnjWH6YZMYWVe9ReOSJEmSBptEoYt+SyGEMD7GuDCEUA1cAtTHGI/twaITgXkDGlwPNa9ez+V3PMXTLzexcnV2L0LtsEr2231bDpi8HVPCWGqqBmu9KkmSJA15OwHzezrzoCua8oUQJgP3xBh36sHsE4F5S5c2d5yHWQr5p3ulMxneXLqa5jUt7Lz9iKJOo9PA8vS88mPOyo85Kz/mrPyYs/JivkonmUzQ0FAHvSyaBtXhjhBCLVARY1yROz3vKGBuicMqWjKRYPsxtaUOQ5IkSVIfDKqiCdgWuDOEkAJSwPPAV0sbkiRJkqSt2aAqmmKMrwJTSh2HJEmSJLXzIhtJkiRJKmBQHWnqoxRs+IHNUhoMMajnzFf5MWflx5yVH3NWfsxZeTFfpZH3um/6B/26MahHz+ulg4E/ljoISZIkSYPeIWR/E7ZHhlLRVA1MAxYBbSWORZIkSdLgkwK2A/4KrOvpQkOpaJIkSZKkfudAEJIkSZJUgEWTJEmSJBVg0SRJkiRJBVg0SZIkSVIBFk2SJEmSVIBFkyRJkiQVYNEkSZIkSQVUlDqAoSKEsCswG2gAlgLHxxhfKm1UW58Qwnxgbe4/wJkxxgdCCPsDVwPDgPnAsTHGxbllimpTcUIIFwOfAyYCk2OMz+amb3IbGog29VyBnM2nm+0t1+Y2VyIhhAbgJuDdZH+48WXgxBhj00DkxZz13WZylgGeAdK52Y+LMT6TW+5w4Mdkv8/NAU6IMa7uS5t6LoRwF7AT2dw0A6fGGOf6eTY0eaSp/8wCrogx7gpcQfYDRKVxZIzxvbn/D4QQEsDNwCm5/PwBuBCg2Db1yV3A+4HXukwvtA0NRJt6blM5gy7bGxS/XbnN9ZsMcFGMMcQY9wJeAS4ciLyYs37Tbc7y2g/M287aC6Y64Brg8BjjLsBK4Iy+tKnXvhRj3DvGOAW4GLg+N93PsyHIoqkfhBDGAvsAt+Um3QbsE0JoLF1UyrMvsDbG+Eju8SzgC31sU5FijI/EGBfmTyu0DQ1E20A9t6Gqu5xthttcCcUYl8UYH86b9GdgRwYmL+asHxTIWSEfAx7PO9owC/hiH9vUCzHGFXkPtwHSfp4NXRZN/WM88PcYYxtA7vaN3HRtebeEEJ4OIVwZQhgJTCBvD3mMcQmQDCGM7kOb+lehbWgg2tR/um5v4DY3aIQQksDJwD0MTF7MWT/rkrN2D4cQ5oYQ/j2EUJ2b1um1Bxaw4f2t2Db1Ugjh2hDCAuB84Ev4eTZkWTRpqDkkxrg3MA1IAJeXOB5pKHN7G/wuI3uthbkpH11zNiHGuC/ZU2R3B84pVWDaWIxxZoxxAnAW2evENERZNPWPhcAOIYQUQO52+9x0bUHtpxDFGNcBVwIHkd2L1nGaQwhhDJCJMS7rQ5v6V6FtaCDa1A82sb2B29ygkBvAYxLwxRhjmoHJiznrR93kLH87ewe4lk1sZ2SPIC3sY5uKFGO8Cfgg8Dp+ng1JFk39IDdK0Fzg6Nyko4EnY4xNpYtq6xNCqA0hbJO7nwCOIpuXOcCwEMLBuVlPAm7P3S+2Tf2o0DY0EG0D/4yGvgLbG7jNlVwI4XxgKvDpXFELA5MXc9ZPustZCGFUCGFY7n4FcCQbtrPfAtNCCJNyj/Nf+2Lb1EMhhLoQwvi8x4cDywA/z4aoRCaTKXUMQ0IIYTeyQ0GOApaTHQoyljaqrUsIYWfgTiCV+/88cFqMcVEI4UCyI83UsGFI3LdyyxXVpuKEEC4FPguMA5YAS2OMexTahgaiTT3XXc6Aw9nE9pZbxm2uREIIewDPAi8Ca3KT58UYPzMQeTFnfbepnAEXkX1tM0Al8Cfg9Bhjc265I3LzpIAngRkxxlV9aVPPhBC2Be4GaoE2sgXTGTHGJ/w8G5osmiRJkiSpAE/PkyRJkqQCLJokSZIkqQCLJkmSJEkqwKJJkiRJkgqwaJIkSZKkAiyaJEmDUghhVgjhnALtmRDCLv28zmNCCA/2Z5+SpPLnkOOSpAEXQjgK+AawJ7CK7G/QzAauijEW9UEUQsgAk2KML3fT9jCwP9AKrAX+AJzS/jtS/SGEMAOYGWM8eHPzSpLKm0eaJEkDKoTwLeCnwI/J/kDutsBJwEFA1SaWSfXDqr8WY6wDdgVGAv/ZD31KkrZCFaUOQJI0dIUQtgH+jeyv19+Z1/QkcEzefD8H1gA7Av8AHBFCOBZ4PcZ4dm6efwG+CWSAs3saQ4xxWQjhTuDkvJguAz4GrAauAS6IMaa7Hj3KHc06GfgWMAa4FfgasBswC6gMITQDrTHGkSGEjwMXA+OBd4D/jDFe3NNYJUmDk0eaJEkD6QCgGri7B/NOB84H6oFH8htCCB8FzgD+EZgEHNbTAEIIY4DPkS3UIFswbQPsTLZAOx44oUAXnwSmAXsDXwA+EmN8gezRssdijHUxxpG5ea8DTowx1pM9FfF3PY1TkjR4eaRJkjSQxgBLYoyt7RNCCH8CdidbTH0kxviHXNPdMcZHc/fXhhDy+/kCcEOM8dlcH+cCR29m3ZeGEC4mew3Vw8A3c6f9fRGYEmNcCawMIfwHcBzZgqc7F8YY3wbeDiH8Hngv8NtNzNsC7B5CeCrGuBxYvpkYJUllwCNNkqSBtBQYE0Lo2EkXYzwwd2RmKZ0/hxYW6Gf7Lu2v9WDdp8UYR8YYd4gxHhNjbCJbxFV1Wf41YIcC/byZd381UFdg3s8BHwdeCyH8bwjhgB7EKUka5CyaJEkD6TFgHXBED+YtNIreIrLXCbWbUGQ8S8geDdqxS19/L6KvjeKNMf41xngEMBa4C7i9mCAlSYOLp+dJkgZMjPHtEMJ5wJUhhATZ09pWA3sBtb3o6nbghhDCjcB84PtFxtMWQrgdOD+EcDwwmuzgEsUM1vAW8K4QQlWMcX0IoQr4PHBfjHFFCOEdoK2YOCVJg4tHmiRJAyrGeBHZwuTbwGKyxcbVwJnAn3rYx/3AJWQHVniZvg2wcCrZ65xeJTvgxK3A9UX08zvgOeDNEMKS3LTjgPm5gukk4Ng+xClJGiT8cVtJkiRJKsAjTZIkSZJUgEWTJEmSJBVg0SRJkiRJBVg0SZIkSVIBFk2SJEmSVIBFkyRJkiQVYNEkSZIkSQVYNEmSJElSARZNkiRJklTA/wezeyIXY4PyrgAAAABJRU5ErkJggg==\n",
       "text/plain": [
        "<Figure size 1008x432 with 2 Axes>"
       ]
      },
-     "metadata": {},
+     "metadata": {
+      "needs_background": "light"
+     },
      "output_type": "display_data"
     }
    ],
@@ -3146,7 +3343,7 @@
     "If you still have time, feel free to work on the following extended task.\n",
     "\n",
     "\n",
-    "**TASK**: Please measure counters for _vectorized_ floating point operations and _scalar_ floating point operations. The two counters can also not be measured during the same run. So please see the TODOs in [`poisson2d.sflops.c`](/edit/Tasks/poisson2d.sflops.c) and [`poisson2d.vflops.c`](/edit/Tasks/poisson2d.vflops.c). By now you should be able to find out the names of the counters by yourself (*Hint: they include the words scalar and vector…*).\n",
+    "**TASK**: Please measure counters for _vectorized_ floating point operations and _scalar_ floating point operations. The two counters can also not be measured during the same run. So please see the TODOs in [`poisson2d.sflops.c`](/edit/Tasks/poisson2d.sflops.c) and [`poisson2d.vflops.c`](/edit/Tasks/poisson2d.vflops.c). By now you should be able to find out the names of the counters by yourself (*Hint: they include the words »scalar« and »vector«…*).\n",
     "\n",
     "As usual, compile, test, and bench-run your program.\n",
     "\n",
@@ -3155,15 +3352,15 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 42,
+   "execution_count": 4,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "bsub -W 60 -nnodes 1 -Is -P GEN110 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.sflop.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.sflop.bin.csv\n",
-      "Job <4299> is submitted to default queue <batch>.\n",
+      "bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.sflop.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.sflop.bin.csv\n",
+      "Job <24645> is submitted to default queue <batch>.\n",
       "<<Waiting for dispatch ...>>\n",
       "<<Starting on login1>>\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
@@ -3177,7 +3374,7 @@
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,20,0.0013,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,24,0.0014,0,0,0\n",
+      "200,32,24,0.0013,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,28,0.0014,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
@@ -3193,21 +3390,21 @@
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,52,0.0018,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,56,0.0019,0,0,0\n",
+      "200,32,56,0.0022,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,60,0.0020,0,0,0\n",
+      "200,32,60,0.0019,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,64,0.0021,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,68,0.0022,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,72,0.0022,0,0,0\n",
+      "200,32,72,0.0021,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,76,0.0022,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,80,0.0023,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,84,0.0024,0,0,0\n",
+      "200,32,84,0.0025,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,88,0.0024,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
@@ -3215,39 +3412,39 @@
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,96,0.0025,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,100,0.0028,0,0,0\n",
+      "200,32,100,0.0026,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,104,0.0027,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,108,0.0027,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,112,0.0029,0,0,0\n",
+      "200,32,112,0.0028,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,116,0.0028,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,120,0.0029,0,0,0\n",
+      "200,32,120,0.0031,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,124,0.0030,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,128,0.0031,0,0,0\n",
+      "200,32,128,0.0030,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,132,0.0031,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,136,0.0032,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,140,0.0033,0,0,0\n",
+      "200,32,140,0.0032,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,144,0.0034,0,0,0\n",
+      "200,32,144,0.0033,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,148,0.0034,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,152,0.0034,0,0,0\n",
+      "200,32,152,0.0035,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,156,0.0035,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,160,0.0036,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,164,0.0037,0,0,0\n",
+      "200,32,164,0.0036,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,168,0.0037,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
@@ -3257,13 +3454,13 @@
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,180,0.0039,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,184,0.0039,0,0,0\n",
+      "200,32,184,0.0040,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,188,0.0040,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,192,0.0041,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,196,0.0041,0,0,0\n",
+      "200,32,196,0.0042,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,200,0.0042,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
@@ -3275,9 +3472,9 @@
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,216,0.0045,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,220,0.0046,0,0,0\n",
+      "200,32,220,0.0045,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,224,0.0047,0,0,0\n",
+      "200,32,224,0.0046,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,228,0.0047,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
@@ -3289,97 +3486,91 @@
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,244,0.0049,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,248,0.0050,0,0,0\n",
+      "200,32,248,0.0051,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,252,0.0050,0,0,0\n",
+      "200,32,252,0.0051,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,256,0.0051,0,0,0\n",
+      "200,32,256,0.0053,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,260,0.0052,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,264,0.0053,0,0,0\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,264,0.0053,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,268,0.0054,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,272,0.0055,0,0,0\n",
+      "200,32,272,0.0054,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,276,0.0055,0,0,0\n",
+      "200,32,276,0.0054,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,280,0.0055,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,284,0.0056,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,288,0.0057,0,0,0\n",
+      "200,32,288,0.0056,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,292,0.0057,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,296,0.0058,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,300,0.0059,0,0,0\n",
+      "200,32,300,0.0058,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,304,0.0059,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,308,0.0059,0,0,0\n",
+      "200,32,308,0.0060,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,312,0.0060,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,316,0.0061,0,0,0\n",
+      "200,32,316,0.0062,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,320,0.0061,0,0,0\n",
+      "200,32,320,0.0062,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,324,0.0062,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,328,0.0063,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,332,0.0065,0,0,0\n",
+      "200,32,332,0.0064,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,336,0.0064,0,0,0\n",
+      "200,32,336,0.0065,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,340,0.0065,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,344,0.0065,0,0,0\n",
+      "200,32,344,0.0066,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,348,0.0066,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,352,0.0067,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,356,0.0067,0,0,0\n",
+      "200,32,356,0.0068,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,360,0.0068,0,0,0\n",
+      "200,32,360,0.0069,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,364,0.0069,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,368,0.0070,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,372,0.0070,0,0,0\n",
+      "200,32,372,0.0072,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,376,0.0071,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,380,0.0072,0,0,0\n",
+      "200,32,380,0.0071,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,384,0.0072,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,388,0.0072,0,0,0\n",
+      "200,32,388,0.0073,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,392,0.0075,0,0,0\n",
+      "200,32,392,0.0074,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,396,0.0074,0,0,0\n",
+      "200,32,396,0.0076,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,400,0.0075,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,404,0.0075,0,0,0\n",
+      "200,32,404,0.0076,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,408,0.0076,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,412,0.0077,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,416,0.0077,0,0,0\n",
+      "200,32,416,0.0078,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,420,0.0078,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
@@ -3389,27 +3580,27 @@
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,432,0.0080,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,436,0.0080,0,0,0\n",
+      "200,32,436,0.0081,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,440,0.0081,0,0,0\n",
+      "200,32,440,0.0082,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,444,0.0083,0,0,0\n",
+      "200,32,444,0.0082,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,448,0.0084,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,452,0.0084,0,0,0\n",
+      "200,32,452,0.0083,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,456,0.0084,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,460,0.0085,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,464,0.0086,0,0,0\n",
+      "200,32,464,0.0085,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,468,0.0086,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,472,0.0088,0,0,0\n",
+      "200,32,472,0.0087,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,476,0.0087,0,0,0\n",
+      "200,32,476,0.0089,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,480,0.0088,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
@@ -3419,7 +3610,7 @@
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,492,0.0090,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,496,0.0090,0,0,0\n",
+      "200,32,496,0.0091,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,500,0.0092,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
@@ -3427,278 +3618,266 @@
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,508,0.0093,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,512,0.0092,0,0,0\n",
+      "200,32,512,0.0094,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,516,0.0093,0,0,0\n",
+      "200,32,516,0.0094,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,520,0.0094,0,0,0\n",
+      "200,32,520,0.0095,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,524,0.0094,0,0,0\n",
+      "200,32,524,0.0096,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,528,0.0094,0,0,0\n",
+      "200,32,528,0.0096,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,532,0.0095,0,0,0\n",
+      "200,32,532,0.0098,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,536,0.0096,0,0,0\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,536,0.0097,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
       "200,32,540,0.0098,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,544,0.0097,0,0,0\n",
+      "200,32,544,0.0099,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,548,0.0098,0,0,0\n",
+      "200,32,548,0.0100,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,552,0.0099,0,0,0\n",
+      "200,32,552,0.0101,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,556,0.0099,0,0,0\n",
+      "200,32,556,0.0101,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,560,0.0100,0,0,0\n",
+      "200,32,560,0.0102,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,564,0.0102,0,0,0\n",
+      "200,32,564,0.0103,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,568,0.0102,0,0,0\n",
+      "200,32,568,0.0104,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,572,0.0103,0,0,0\n",
+      "200,32,572,0.0105,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,576,0.0103,0,0,0\n",
+      "200,32,576,0.0105,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,580,0.0105,0,0,0\n",
+      "200,32,580,0.0106,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,584,0.0104,0,0,0\n",
+      "200,32,584,0.0107,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,588,0.0106,0,0,0\n",
+      "200,32,588,0.0107,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,592,0.0107,0,0,0\n",
+      "200,32,592,0.0108,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,596,0.0106,0,0,0\n",
+      "200,32,596,0.0109,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,600,0.0107,0,0,0\n",
+      "200,32,600,0.0110,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,604,0.0109,0,0,0\n",
+      "200,32,604,0.0111,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,608,0.0109,0,0,0\n",
+      "200,32,608,0.0111,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,612,0.0109,0,0,0\n",
+      "200,32,612,0.0112,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,616,0.0110,0,0,0\n",
+      "200,32,616,0.0112,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,620,0.0117,0,0,0\n",
+      "200,32,620,0.0113,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,624,0.0112,0,0,0\n",
+      "200,32,624,0.0114,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,628,0.0111,0,0,0\n",
+      "200,32,628,0.0115,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,632,0.0112,0,0,0\n",
+      "200,32,632,0.0115,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,636,0.0113,0,0,0\n",
+      "200,32,636,0.0115,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,640,0.0115,0,0,0\n",
+      "200,32,640,0.0116,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,644,0.0114,0,0,0\n",
+      "200,32,644,0.0118,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,648,0.0115,0,0,0\n",
+      "200,32,648,0.0117,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,652,0.0116,0,0,0\n",
+      "200,32,652,0.0119,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,656,0.0117,0,0,0\n",
+      "200,32,656,0.0119,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,660,0.0117,0,0,0\n",
+      "200,32,660,0.0121,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,664,0.0118,0,0,0\n",
+      "200,32,664,0.0120,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,668,0.0119,0,0,0\n",
+      "200,32,668,0.0122,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,672,0.0119,0,0,0\n",
+      "200,32,672,0.0121,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,676,0.0119,0,0,0\n",
+      "200,32,676,0.0124,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,680,0.0120,0,0,0\n",
+      "200,32,680,0.0123,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,684,0.0121,0,0,0\n",
+      "200,32,684,0.0125,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,688,0.0122,0,0,0\n",
+      "200,32,688,0.0124,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,692,0.0122,0,0,0\n",
+      "200,32,692,0.0125,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,696,0.0123,0,0,0\n",
+      "200,32,696,0.0126,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,700,0.0124,0,0,0\n",
+      "200,32,700,0.0127,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,704,0.0124,0,0,0\n",
+      "200,32,704,0.0126,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,708,0.0125,0,0,0\n",
+      "200,32,708,0.0127,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,712,0.0125,0,0,0\n",
+      "200,32,712,0.0129,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,716,0.0126,0,0,0\n",
+      "200,32,716,0.0128,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,720,0.0126,0,0,0\n",
+      "200,32,720,0.0129,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,724,0.0127,0,0,0\n",
+      "200,32,724,0.0132,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,728,0.0128,0,0,0\n",
+      "200,32,728,0.0131,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,732,0.0128,0,0,0\n",
+      "200,32,732,0.0131,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,736,0.0129,0,0,0\n",
+      "200,32,736,0.0133,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,740,0.0130,0,0,0\n",
+      "200,32,740,0.0133,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,744,0.0130,0,0,0\n",
+      "200,32,744,0.0133,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,748,0.0131,0,0,0\n",
+      "200,32,748,0.0134,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,752,0.0131,0,0,0\n",
+      "200,32,752,0.0136,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,756,0.0132,0,0,0\n",
+      "200,32,756,0.0136,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,760,0.0133,0,0,0\n",
+      "200,32,760,0.0136,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,764,0.0134,0,0,0\n",
+      "200,32,764,0.0136,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,768,0.0134,0,0,0\n",
+      "200,32,768,0.0138,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,772,0.0136,0,0,0\n",
+      "200,32,772,0.0138,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,776,0.0136,0,0,0\n",
+      "200,32,776,0.0139,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,780,0.0136,0,0,0\n",
+      "200,32,780,0.0139,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,784,0.0137,0,0,0\n",
+      "200,32,784,0.0140,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,788,0.0138,0,0,0\n",
+      "200,32,788,0.0140,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,792,0.0139,0,0,0\n",
+      "200,32,792,0.0141,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,796,0.0139,0,0,0\n",
+      "200,32,796,0.0142,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,800,0.0140,0,0,0\n",
+      "200,32,800,0.0143,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,804,0.0141,0,0,0\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,804,0.0143,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,808,0.0142,0,0,0\n",
+      "200,32,808,0.0144,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,812,0.0142,0,0,0\n",
+      "200,32,812,0.0144,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,816,0.0143,0,0,0\n",
+      "200,32,816,0.0145,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,820,0.0143,0,0,0\n",
+      "200,32,820,0.0146,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,824,0.0144,0,0,0\n",
+      "200,32,824,0.0148,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,828,0.0145,0,0,0\n",
+      "200,32,828,0.0147,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,832,0.0145,0,0,0\n",
+      "200,32,832,0.0148,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,836,0.0146,0,0,0\n",
+      "200,32,836,0.0149,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,840,0.0147,0,0,0\n",
+      "200,32,840,0.0150,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,844,0.0147,0,0,0\n",
+      "200,32,844,0.0150,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,848,0.0148,0,0,0\n",
+      "200,32,848,0.0150,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,852,0.0149,0,0,0\n",
+      "200,32,852,0.0151,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,856,0.0149,0,0,0\n",
+      "200,32,856,0.0152,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,860,0.0150,0,0,0\n",
+      "200,32,860,0.0152,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,864,0.0150,0,0,0\n",
+      "200,32,864,0.0153,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,868,0.0152,0,0,0\n",
+      "200,32,868,0.0154,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,872,0.0151,0,0,0\n",
+      "200,32,872,0.0156,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,876,0.0153,0,0,0\n",
+      "200,32,876,0.0156,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,880,0.0153,0,0,0\n",
+      "200,32,880,0.0156,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,884,0.0153,0,0,0\n",
+      "200,32,884,0.0157,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,888,0.0155,0,0,0\n",
+      "200,32,888,0.0157,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,892,0.0156,0,0,0\n",
+      "200,32,892,0.0158,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,896,0.0156,0,0,0\n",
+      "200,32,896,0.0159,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,900,0.0158,0,0,0\n",
+      "200,32,900,0.0159,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,904,0.0158,0,0,0\n",
+      "200,32,904,0.0161,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,908,0.0159,0,0,0\n",
+      "200,32,908,0.0162,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,912,0.0159,0,0,0\n",
+      "200,32,912,0.0164,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,916,0.0162,0,0,0\n",
+      "200,32,916,0.0163,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,920,0.0162,0,0,0\n",
+      "200,32,920,0.0164,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,924,0.0162,0,0,0\n",
+      "200,32,924,0.0165,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,928,0.0162,0,0,0\n",
+      "200,32,928,0.0166,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,932,0.0163,0,0,0\n",
+      "200,32,932,0.0166,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,936,0.0164,0,0,0\n",
+      "200,32,936,0.0167,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,940,0.0165,0,0,0\n",
+      "200,32,940,0.0167,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,944,0.0165,0,0,0\n",
+      "200,32,944,0.0168,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,948,0.0166,0,0,0\n",
+      "200,32,948,0.0169,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,952,0.0167,0,0,0\n",
+      "200,32,952,0.0172,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,956,0.0168,0,0,0\n",
+      "200,32,956,0.0171,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,960,0.0168,0,0,0\n",
+      "200,32,960,0.0172,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,964,0.0172,0,0,0\n",
+      "200,32,964,0.0175,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,968,0.0173,0,0,0\n",
+      "200,32,968,0.0175,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,972,0.0173,0,0,0\n",
+      "200,32,972,0.0176,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,976,0.0173,0,0,0\n",
+      "200,32,976,0.0177,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,980,0.0175,0,0,0\n",
+      "200,32,980,0.0178,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,984,0.0176,0,0,0\n",
+      "200,32,984,0.0178,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,988,0.0175,0,0,0\n",
+      "200,32,988,0.0179,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,992,0.0176,0,0,0\n",
+      "200,32,992,0.0179,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,996,0.0178,0,0,0\n",
+      "200,32,996,0.0182,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,1000,0.0177,0,0,0\n",
+      "200,32,1000,0.0181,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,1004,0.0178,0,0,0\n",
+      "200,32,1004,0.0182,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,1008,0.0178,0,0,0\n",
+      "200,32,1008,0.0182,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,1012,0.0181,0,0,0\n",
+      "200,32,1012,0.0184,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,1016,0.0180,0,0,0\n",
+      "200,32,1016,0.0184,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,1020,0.0182,0,0,0\n",
+      "200,32,1020,0.0186,0,0,0\n",
       "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,1024,0.0179,0,0,0\n",
-      "mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.sflop.bin.csv .\n",
-      "bsub -W 60 -nnodes 1 -Is -P GEN110 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vflop.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.vflop.bin.csv\n",
-      "Job <4300> is submitted to default queue <batch>.\n",
+      "200,32,1024,0.0182,0,0,0\n",
+      "mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.sflop.bin.csv .\n",
+      "bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vflop.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.vflop.bin.csv\n",
+      "Job <24646> is submitted to default queue <batch>.\n",
       "<<Waiting for dispatch ...>>\n",
       "<<Starting on login1>>\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
@@ -3712,17 +3891,11 @@
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,20,0.0013,438000,2190,2190\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,24,0.0014,534000,2670,2670\n",
+      "200,32,24,0.0013,534000,2670,2670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,28,0.0014,630000,3150,3150\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,32,0.0015,726000,3630,3630\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,32,0.0015,726000,3630,3630\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,36,0.0016,822000,4110,4110\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
@@ -3730,29 +3903,29 @@
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,44,0.0017,1014000,5070,5070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,48,0.0018,1110000,5550,5550\n",
+      "200,32,48,0.0017,1110000,5550,5550\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,52,0.0018,1206000,6030,6030\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,56,0.0020,1302000,6510,6510\n",
+      "200,32,56,0.0019,1302000,6510,6510\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,60,0.0020,1398000,6990,6990\n",
+      "200,32,60,0.0019,1398000,6990,6990\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,64,0.0021,1494000,7470,7470\n",
+      "200,32,64,0.0020,1494000,7470,7470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,68,0.0022,1590000,7950,7950\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,72,0.0022,1686000,8430,8430\n",
+      "200,32,72,0.0021,1686000,8430,8430\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,76,0.0022,1782000,8910,8910\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,80,0.0023,1878000,9390,9390\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,84,0.0024,1974000,9870,9870\n",
+      "200,32,84,0.0025,1974000,9870,9870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,88,0.0024,2070000,10350,10350\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,92,0.0025,2166000,10830,10830\n",
+      "200,32,92,0.0026,2166000,10830,10830\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,96,0.0025,2262000,11310,11310\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
@@ -3760,13 +3933,13 @@
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,104,0.0027,2454000,12270,12270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,108,0.0028,2550000,12750,12750\n",
+      "200,32,108,0.0027,2550000,12750,12750\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,112,0.0028,2646000,13230,13230\n",
+      "200,32,112,0.0029,2646000,13230,13230\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,116,0.0029,2742000,13710,13710\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,120,0.0032,2838000,14190,14190\n",
+      "200,32,120,0.0029,2838000,14190,14190\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,124,0.0030,2934000,14670,14670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
@@ -3776,15 +3949,15 @@
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,136,0.0032,3222000,16110,16110\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,140,0.0033,3318000,16590,16590\n",
+      "200,32,140,0.0032,3318000,16590,16590\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,144,0.0033,3414000,17070,17070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,148,0.0034,3510000,17550,17550\n",
+      "200,32,148,0.0036,3510000,17550,17550\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,152,0.0034,3606000,18030,18030\n",
+      "200,32,152,0.0035,3606000,18030,18030\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,156,0.0036,3702000,18510,18510\n",
+      "200,32,156,0.0035,3702000,18510,18510\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,160,0.0036,3798000,18990,18990\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
@@ -3794,13 +3967,13 @@
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,172,0.0038,4086000,20430,20430\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,176,0.0039,4182000,20910,20910\n",
+      "200,32,176,0.0038,4182000,20910,20910\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,180,0.0039,4278000,21390,21390\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,184,0.0040,4374000,21870,21870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,188,0.0040,4470000,22350,22350\n",
+      "200,32,188,0.0041,4470000,22350,22350\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,192,0.0041,4566000,22830,22830\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
@@ -3810,25 +3983,25 @@
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,204,0.0043,4854000,24270,24270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,208,0.0043,4950000,24750,24750\n",
+      "200,32,208,0.0044,4950000,24750,24750\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,212,0.0044,5046000,25230,25230\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,216,0.0045,5142000,25710,25710\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,220,0.0047,5238000,26190,26190\n",
+      "200,32,220,0.0046,5238000,26190,26190\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,224,0.0046,5334000,26670,26670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,228,0.0047,5430000,27150,27150\n",
+      "200,32,228,0.0048,5430000,27150,27150\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,232,0.0047,5526000,27630,27630\n",
+      "200,32,232,0.0049,5526000,27630,27630\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,236,0.0048,5622000,28110,28110\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,240,0.0049,5718000,28590,28590\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,244,0.0050,5814000,29070,29070\n",
+      "200,32,244,0.0049,5814000,29070,29070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,248,0.0050,5910000,29550,29550\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
@@ -3838,25 +4011,19 @@
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,260,0.0052,6198000,30990,30990\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,264,0.0052,6294000,31470,31470\n",
+      "200,32,264,0.0053,6294000,31470,31470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,268,0.0053,6390000,31950,31950\n",
+      "200,32,268,0.0054,6390000,31950,31950\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,272,0.0054,6486000,32430,32430\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,276,0.0058,6582000,32910,32910\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,276,0.0054,6582000,32910,32910\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,280,0.0055,6678000,33390,33390\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,284,0.0056,6774000,33870,33870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,288,0.0056,6870000,34350,34350\n",
+      "200,32,288,0.0057,6870000,34350,34350\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,292,0.0057,6966000,34830,34830\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
@@ -3864,23 +4031,23 @@
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,300,0.0059,7158000,35790,35790\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,304,0.0060,7254000,36270,36270\n",
+      "200,32,304,0.0059,7254000,36270,36270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,308,0.0060,7350000,36750,36750\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,312,0.0061,7446000,37230,37230\n",
+      "200,32,312,0.0062,7446000,37230,37230\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,316,0.0061,7542000,37710,37710\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,320,0.0062,7638000,38190,38190\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,324,0.0063,7734000,38670,38670\n",
+      "200,32,324,0.0062,7734000,38670,38670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,328,0.0064,7830000,39150,39150\n",
+      "200,32,328,0.0063,7830000,39150,39150\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,332,0.0064,7926000,39630,39630\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,336,0.0064,8022000,40110,40110\n",
+      "200,32,336,0.0065,8022000,40110,40110\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,340,0.0065,8118000,40590,40590\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
@@ -3888,21 +4055,21 @@
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,348,0.0066,8310000,41550,41550\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,352,0.0068,8406000,42030,42030\n",
+      "200,32,352,0.0067,8406000,42030,42030\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,356,0.0069,8502000,42510,42510\n",
+      "200,32,356,0.0068,8502000,42510,42510\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,360,0.0068,8598000,42990,42990\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,364,0.0069,8694000,43470,43470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,368,0.0069,8790000,43950,43950\n",
+      "200,32,368,0.0070,8790000,43950,43950\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,372,0.0070,8886000,44430,44430\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,376,0.0071,8982000,44910,44910\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,380,0.0071,9078000,45390,45390\n",
+      "200,32,380,0.0072,9078000,45390,45390\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,384,0.0072,9174000,45870,45870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
@@ -3920,23 +4087,23 @@
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,412,0.0077,9846000,49230,49230\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,416,0.0077,9942000,49710,49710\n",
+      "200,32,416,0.0079,9942000,49710,49710\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,420,0.0078,10038000,50190,50190\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,424,0.0079,10134000,50670,50670\n",
+      "200,32,424,0.0080,10134000,50670,50670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,428,0.0079,10230000,51150,51150\n",
+      "200,32,428,0.0080,10230000,51150,51150\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,432,0.0080,10326000,51630,51630\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,436,0.0080,10422000,52110,52110\n",
+      "200,32,436,0.0083,10422000,52110,52110\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,440,0.0081,10518000,52590,52590\n",
+      "200,32,440,0.0082,10518000,52590,52590\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,444,0.0082,10614000,53070,53070\n",
+      "200,32,444,0.0083,10614000,53070,53070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,448,0.0082,10710000,53550,53550\n",
+      "200,32,448,0.0083,10710000,53550,53550\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,452,0.0083,10806000,54030,54030\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
@@ -3948,302 +4115,284 @@
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,468,0.0086,11190000,55950,55950\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,472,0.0088,11286000,56430,56430\n",
+      "200,32,472,0.0087,11286000,56430,56430\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,476,0.0089,11382000,56910,56910\n",
+      "200,32,476,0.0087,11382000,56910,56910\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,480,0.0088,11478000,57390,57390\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,484,0.0088,11574000,57870,57870\n",
+      "200,32,484,0.0089,11574000,57870,57870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,488,0.0089,11670000,58350,58350\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,492,0.0090,11766000,58830,58830\n",
+      "200,32,492,0.0091,11766000,58830,58830\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,496,0.0090,11862000,59310,59310\n",
+      "200,32,496,0.0091,11862000,59310,59310\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,500,0.0091,11958000,59790,59790\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
       "200,32,504,0.0092,12054000,60270,60270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,508,0.0094,12150000,60750,60750\n",
+      "200,32,508,0.0093,12150000,60750,60750\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,512,0.0092,12246000,61230,61230\n",
+      "200,32,512,0.0094,12246000,61230,61230\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,516,0.0093,12342000,61710,61710\n",
+      "200,32,516,0.0096,12342000,61710,61710\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,520,0.0093,12438000,62190,62190\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,520,0.0096,12438000,62190,62190\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,524,0.0094,12534000,62670,62670\n",
+      "200,32,524,0.0095,12534000,62670,62670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,528,0.0094,12630000,63150,63150\n",
+      "200,32,528,0.0098,12630000,63150,63150\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,532,0.0095,12726000,63630,63630\n",
+      "200,32,532,0.0097,12726000,63630,63630\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,536,0.0096,12822000,64110,64110\n",
+      "200,32,536,0.0097,12822000,64110,64110\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,540,0.0100,12918000,64590,64590\n",
+      "200,32,540,0.0098,12918000,64590,64590\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,544,0.0097,13014000,65070,65070\n",
+      "200,32,544,0.0100,13014000,65070,65070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,548,0.0098,13110000,65550,65550\n",
+      "200,32,548,0.0102,13110000,65550,65550\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,552,0.0099,13206000,66030,66030\n",
+      "200,32,552,0.0102,13206000,66030,66030\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,556,0.0100,13302000,66510,66510\n",
+      "200,32,556,0.0101,13302000,66510,66510\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,560,0.0101,13398000,66990,66990\n",
+      "200,32,560,0.0103,13398000,66990,66990\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,564,0.0102,13494000,67470,67470\n",
+      "200,32,564,0.0103,13494000,67470,67470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,568,0.0103,13590000,67950,67950\n",
+      "200,32,568,0.0104,13590000,67950,67950\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,572,0.0103,13686000,68430,68430\n",
+      "200,32,572,0.0105,13686000,68430,68430\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,576,0.0103,13782000,68910,68910\n",
+      "200,32,576,0.0105,13782000,68910,68910\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,580,0.0105,13878000,69390,69390\n",
+      "200,32,580,0.0107,13878000,69390,69390\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,584,0.0105,13974000,69870,69870\n",
+      "200,32,584,0.0108,13974000,69870,69870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,588,0.0106,14070000,70350,70350\n",
+      "200,32,588,0.0107,14070000,70350,70350\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,592,0.0106,14166000,70830,70830\n",
+      "200,32,592,0.0108,14166000,70830,70830\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,596,0.0106,14262000,71310,71310\n",
+      "200,32,596,0.0109,14262000,71310,71310\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,600,0.0108,14358000,71790,71790\n",
+      "200,32,600,0.0110,14358000,71790,71790\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,604,0.0109,14454000,72270,72270\n",
+      "200,32,604,0.0110,14454000,72270,72270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,608,0.0109,14550000,72750,72750\n",
+      "200,32,608,0.0111,14550000,72750,72750\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,612,0.0109,14646000,73230,73230\n",
+      "200,32,612,0.0114,14646000,73230,73230\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,616,0.0111,14742000,73710,73710\n",
+      "200,32,616,0.0112,14742000,73710,73710\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,620,0.0111,14838000,74190,74190\n",
+      "200,32,620,0.0113,14838000,74190,74190\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,624,0.0112,14934000,74670,74670\n",
+      "200,32,624,0.0114,14934000,74670,74670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,628,0.0112,15030000,75150,75150\n",
+      "200,32,628,0.0116,15030000,75150,75150\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,632,0.0112,15126000,75630,75630\n",
+      "200,32,632,0.0115,15126000,75630,75630\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,636,0.0114,15222000,76110,76110\n",
+      "200,32,636,0.0117,15222000,76110,76110\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,640,0.0114,15318000,76590,76590\n",
+      "200,32,640,0.0116,15318000,76590,76590\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,644,0.0114,15414000,77070,77070\n",
+      "200,32,644,0.0118,15414000,77070,77070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,648,0.0115,15510000,77550,77550\n",
+      "200,32,648,0.0117,15510000,77550,77550\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,652,0.0117,15606000,78030,78030\n",
+      "200,32,652,0.0119,15606000,78030,78030\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,656,0.0117,15702000,78510,78510\n",
+      "200,32,656,0.0119,15702000,78510,78510\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,660,0.0117,15798000,78990,78990\n",
+      "200,32,660,0.0120,15798000,78990,78990\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,664,0.0118,15894000,79470,79470\n",
+      "200,32,664,0.0120,15894000,79470,79470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,668,0.0120,15990000,79950,79950\n",
+      "200,32,668,0.0121,15990000,79950,79950\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,672,0.0120,16086000,80430,80430\n",
+      "200,32,672,0.0121,16086000,80430,80430\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,676,0.0121,16182000,80910,80910\n",
+      "200,32,676,0.0123,16182000,80910,80910\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,680,0.0120,16278000,81390,81390\n",
+      "200,32,680,0.0122,16278000,81390,81390\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,684,0.0121,16374000,81870,81870\n",
+      "200,32,684,0.0125,16374000,81870,81870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,688,0.0122,16470000,82350,82350\n",
+      "200,32,688,0.0124,16470000,82350,82350\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,692,0.0122,16566000,82830,82830\n",
+      "200,32,692,0.0126,16566000,82830,82830\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,696,0.0124,16662000,83310,83310\n",
+      "200,32,696,0.0125,16662000,83310,83310\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,700,0.0124,16758000,83790,83790\n",
+      "200,32,700,0.0127,16758000,83790,83790\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,704,0.0124,16854000,84270,84270\n",
+      "200,32,704,0.0128,16854000,84270,84270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,708,0.0125,16950000,84750,84750\n",
+      "200,32,708,0.0128,16950000,84750,84750\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,712,0.0125,17046000,85230,85230\n",
+      "200,32,712,0.0128,17046000,85230,85230\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,716,0.0126,17142000,85710,85710\n",
+      "200,32,716,0.0128,17142000,85710,85710\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,720,0.0126,17238000,86190,86190\n",
+      "200,32,720,0.0129,17238000,86190,86190\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,724,0.0127,17334000,86670,86670\n",
+      "200,32,724,0.0130,17334000,86670,86670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,728,0.0128,17430000,87150,87150\n",
+      "200,32,728,0.0130,17430000,87150,87150\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,732,0.0130,17526000,87630,87630\n",
+      "200,32,732,0.0132,17526000,87630,87630\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,736,0.0129,17622000,88110,88110\n",
+      "200,32,736,0.0132,17622000,88110,88110\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,740,0.0129,17718000,88590,88590\n",
+      "200,32,740,0.0133,17718000,88590,88590\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,744,0.0130,17814000,89070,89070\n",
+      "200,32,744,0.0133,17814000,89070,89070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,748,0.0131,17910000,89550,89550\n",
+      "200,32,748,0.0134,17910000,89550,89550\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,752,0.0132,18006000,90030,90030\n",
+      "200,32,752,0.0134,18006000,90030,90030\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,756,0.0132,18102000,90510,90510\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,756,0.0136,18102000,90510,90510\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,760,0.0133,18198000,90990,90990\n",
+      "200,32,760,0.0136,18198000,90990,90990\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,764,0.0134,18294000,91470,91470\n",
+      "200,32,764,0.0136,18294000,91470,91470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,768,0.0135,18390000,91950,91950\n",
+      "200,32,768,0.0137,18390000,91950,91950\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,772,0.0136,18486000,92430,92430\n",
+      "200,32,772,0.0139,18486000,92430,92430\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,776,0.0136,18582000,92910,92910\n",
+      "200,32,776,0.0139,18582000,92910,92910\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,780,0.0137,18678000,93390,93390\n",
+      "200,32,780,0.0139,18678000,93390,93390\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,784,0.0137,18774000,93870,93870\n",
+      "200,32,784,0.0140,18774000,93870,93870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,788,0.0138,18870000,94350,94350\n",
+      "200,32,788,0.0140,18870000,94350,94350\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,792,0.0138,18966000,94830,94830\n",
+      "200,32,792,0.0142,18966000,94830,94830\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,796,0.0140,19062000,95310,95310\n",
+      "200,32,796,0.0142,19062000,95310,95310\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,800,0.0140,19158000,95790,95790\n",
+      "200,32,800,0.0144,19158000,95790,95790\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,804,0.0140,19254000,96270,96270\n",
+      "200,32,804,0.0143,19254000,96270,96270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,808,0.0141,19350000,96750,96750\n",
+      "200,32,808,0.0144,19350000,96750,96750\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,812,0.0142,19446000,97230,97230\n",
+      "200,32,812,0.0145,19446000,97230,97230\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,816,0.0143,19542000,97710,97710\n",
+      "200,32,816,0.0145,19542000,97710,97710\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,820,0.0143,19638000,98190,98190\n",
+      "200,32,820,0.0146,19638000,98190,98190\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,824,0.0144,19734000,98670,98670\n",
+      "200,32,824,0.0147,19734000,98670,98670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,828,0.0146,19830000,99150,99150\n",
+      "200,32,828,0.0147,19830000,99150,99150\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,832,0.0146,19926000,99630,99630\n",
+      "200,32,832,0.0148,19926000,99630,99630\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,836,0.0146,20022000,100110,100110\n",
+      "200,32,836,0.0151,20022000,100110,100110\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,840,0.0147,20118000,100590,100590\n",
+      "200,32,840,0.0150,20118000,100590,100590\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,844,0.0147,20214000,101070,101070\n",
+      "200,32,844,0.0150,20214000,101070,101070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,848,0.0148,20310000,101550,101550\n",
+      "200,32,848,0.0151,20310000,101550,101550\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,852,0.0148,20406000,102030,102030\n",
+      "200,32,852,0.0152,20406000,102030,102030\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,856,0.0150,20502000,102510,102510\n",
+      "200,32,856,0.0152,20502000,102510,102510\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,860,0.0150,20598000,102990,102990\n",
+      "200,32,860,0.0152,20598000,102990,102990\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,864,0.0151,20694000,103470,103470\n",
+      "200,32,864,0.0153,20694000,103470,103470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,868,0.0151,20790000,103950,103950\n",
+      "200,32,868,0.0154,20790000,103950,103950\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,872,0.0152,20886000,104430,104430\n",
+      "200,32,872,0.0155,20886000,104430,104430\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,876,0.0153,20982000,104910,104910\n",
+      "200,32,876,0.0155,20982000,104910,104910\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,880,0.0154,21078000,105390,105390\n",
+      "200,32,880,0.0157,21078000,105390,105390\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,884,0.0154,21174000,105870,105870\n",
+      "200,32,884,0.0157,21174000,105870,105870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,888,0.0154,21270000,106350,106350\n",
+      "200,32,888,0.0158,21270000,106350,106350\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,892,0.0155,21366000,106830,106830\n",
+      "200,32,892,0.0158,21366000,106830,106830\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,896,0.0157,21462000,107310,107310\n",
+      "200,32,896,0.0159,21462000,107310,107310\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,900,0.0156,21558000,107790,107790\n",
+      "200,32,900,0.0161,21558000,107790,107790\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,904,0.0158,21654000,108270,108270\n",
+      "200,32,904,0.0162,21654000,108270,108270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,908,0.0159,21750000,108750,108750\n",
+      "200,32,908,0.0161,21750000,108750,108750\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,912,0.0159,21846000,109230,109230\n",
+      "200,32,912,0.0163,21846000,109230,109230\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,916,0.0161,21942000,109710,109710\n",
+      "200,32,916,0.0164,21942000,109710,109710\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,920,0.0161,22038000,110190,110190\n",
+      "200,32,920,0.0165,22038000,110190,110190\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,924,0.0162,22134000,110670,110670\n",
+      "200,32,924,0.0164,22134000,110670,110670\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,928,0.0164,22230000,111150,111150\n",
+      "200,32,928,0.0166,22230000,111150,111150\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,932,0.0164,22326000,111630,111630\n",
+      "200,32,932,0.0166,22326000,111630,111630\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,936,0.0164,22422000,112110,112110\n",
+      "200,32,936,0.0167,22422000,112110,112110\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,940,0.0164,22518000,112590,112590\n",
+      "200,32,940,0.0168,22518000,112590,112590\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,944,0.0165,22614000,113070,113070\n",
+      "200,32,944,0.0168,22614000,113070,113070\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,948,0.0167,22710000,113550,113550\n",
+      "200,32,948,0.0169,22710000,113550,113550\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,952,0.0168,22806000,114030,114030\n",
+      "200,32,952,0.0170,22806000,114030,114030\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,956,0.0168,22902000,114510,114510\n",
+      "200,32,956,0.0170,22902000,114510,114510\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,960,0.0168,22998000,114990,114990\n",
+      "200,32,960,0.0171,22998000,114990,114990\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,964,0.0174,23094000,115470,115470\n",
+      "200,32,964,0.0176,23094000,115470,115470\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,968,0.0172,23190000,115950,115950\n",
+      "200,32,968,0.0176,23190000,115950,115950\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,972,0.0173,23286000,116430,116430\n",
+      "200,32,972,0.0177,23286000,116430,116430\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,976,0.0172,23382000,116910,116910\n",
+      "200,32,976,0.0177,23382000,116910,116910\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,980,0.0174,23478000,117390,117390\n",
+      "200,32,980,0.0178,23478000,117390,117390\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,984,0.0174,23574000,117870,117870\n",
+      "200,32,984,0.0178,23574000,117870,117870\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,988,0.0176,23670000,118350,118350\n",
+      "200,32,988,0.0179,23670000,118350,118350\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,992,0.0176,23766000,118830,118830\n",
+      "200,32,992,0.0180,23766000,118830,118830\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,996,0.0179,23862000,119310,119310\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "200,32,996,0.0181,23862000,119310,119310\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,1000,0.0177,23958000,119790,119790\n",
+      "200,32,1000,0.0182,23958000,119790,119790\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,1004,0.0178,24054000,120270,120270\n",
+      "200,32,1004,0.0182,24054000,120270,120270\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,1008,0.0178,24150000,120750,120750\n",
+      "200,32,1008,0.0182,24150000,120750,120750\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,1012,0.0180,24246000,121230,121230\n",
+      "200,32,1012,0.0184,24246000,121230,121230\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,1016,0.0180,24342000,121710,121710\n",
+      "200,32,1016,0.0185,24342000,121710,121710\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,1020,0.0181,24438000,122190,122190\n",
+      "200,32,1020,0.0184,24438000,122190,122190\n",
       "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,1024,0.0178,24534000,122670,122670\n",
-      "mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vflop.bin.csv .\n"
+      "200,32,1024,0.0182,24534000,122670,122670\n",
+      "mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.vflop.bin.csv .\n"
      ]
     }
    ],
@@ -4253,51 +4402,225 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 47,
+   "execution_count": 39,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>nx</th>\n",
+       "      <th>iter</th>\n",
+       "      <th>ny</th>\n",
+       "      <th>Runtime</th>\n",
+       "      <th>PM_SCALAR_FLOP_CMPL (total)</th>\n",
+       "      <th>PM_SCALAR_FLOP_CMPL (min)</th>\n",
+       "      <th>PM_SCALAR_FLOP_CMPL (max)</th>\n",
+       "      <th>PM_VECTOR_FLOP_CMPL (total)</th>\n",
+       "      <th>PM_VECTOR_FLOP_CMPL (min)</th>\n",
+       "      <th>PM_VECTOR_FLOP_CMPL (max)</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>4</td>\n",
+       "      <td>200</td>\n",
+       "      <td>32</td>\n",
+       "      <td>0.0010</td>\n",
+       "      <td>96000</td>\n",
+       "      <td>480</td>\n",
+       "      <td>480</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>8</td>\n",
+       "      <td>200</td>\n",
+       "      <td>32</td>\n",
+       "      <td>0.0011</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>150000</td>\n",
+       "      <td>750</td>\n",
+       "      <td>750</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>12</td>\n",
+       "      <td>200</td>\n",
+       "      <td>32</td>\n",
+       "      <td>0.0012</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>246000</td>\n",
+       "      <td>1230</td>\n",
+       "      <td>1230</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>16</td>\n",
+       "      <td>200</td>\n",
+       "      <td>32</td>\n",
+       "      <td>0.0012</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>342000</td>\n",
+       "      <td>1710</td>\n",
+       "      <td>1710</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>20</td>\n",
+       "      <td>200</td>\n",
+       "      <td>32</td>\n",
+       "      <td>0.0013</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>438000</td>\n",
+       "      <td>2190</td>\n",
+       "      <td>2190</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   nx  iter  ny  Runtime  PM_SCALAR_FLOP_CMPL (total)  \\\n",
+       "0   4   200  32   0.0010                        96000   \n",
+       "1   8   200  32   0.0011                            0   \n",
+       "2  12   200  32   0.0012                            0   \n",
+       "3  16   200  32   0.0012                            0   \n",
+       "4  20   200  32   0.0013                            0   \n",
+       "\n",
+       "   PM_SCALAR_FLOP_CMPL (min)   PM_SCALAR_FLOP_CMPL (max)  \\\n",
+       "0                        480                         480   \n",
+       "1                          0                           0   \n",
+       "2                          0                           0   \n",
+       "3                          0                           0   \n",
+       "4                          0                           0   \n",
+       "\n",
+       "   PM_VECTOR_FLOP_CMPL (total)  PM_VECTOR_FLOP_CMPL (min)  \\\n",
+       "0                            0                          0   \n",
+       "1                       150000                        750   \n",
+       "2                       246000                       1230   \n",
+       "3                       342000                       1710   \n",
+       "4                       438000                       2190   \n",
+       "\n",
+       "    PM_VECTOR_FLOP_CMPL (max)  \n",
+       "0                           0  \n",
+       "1                         750  \n",
+       "2                        1230  \n",
+       "3                        1710  \n",
+       "4                        2190  "
+      ]
+     },
+     "execution_count": 39,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "df_sflop = pd.read_csv(\"poisson2d.sflop.bin.csv\", skiprows=range(2, 50000, 2))\n",
     "df_vflop = pd.read_csv(\"poisson2d.vflop.bin.csv\", skiprows=range(2, 50000, 2))\n",
-    "df_flop = pd.concat([df_sflop.set_index(\"nx\"), df_vflop.set_index(\"nx\")[['PM_VECTOR_FLOP_CMPL (total)', 'PM_VECTOR_FLOP_CMPL (min)', ' PM_VECTOR_FLOP_CMPL (max)']]], axis=1).reset_index()"
+    "df_flop = pd.concat([df_sflop.set_index(\"nx\"), df_vflop.set_index(\"nx\")[['PM_VECTOR_FLOP_CMPL (total)', 'PM_VECTOR_FLOP_CMPL (min)', ' PM_VECTOR_FLOP_CMPL (max)']]], axis=1).reset_index()\n",
+    "df_flop.head()"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "The name of the vector counter is a bit misleading; not floating point operations are measured but floating point instructions. To get *real* floating point operations, each value needs to be multiplied by the vector width (2). We can plot the values afterwards (non-interactive: `make graph_task4`)."
+    "Again, the name of the vector counter is a bit misleading; not floating point operations are measured but floating point instructions. To get *real* floating point operations, each value needs to be multiplied by the vector width (2). We can plot the values afterwards (non-interactive: `make graph_task4`)."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 49,
+   "execution_count": 40,
    "metadata": {},
    "outputs": [],
    "source": [
-    "common.normalize(df_flop, \"PM_SCALAR_FLOP_CMPL (min)\", \"Scalar FlOps / Loop Iteration\")\n",
-    "common.normalize(df_flop, \"PM_VECTOR_FLOP_CMPL (min)\", \"Vector Instructions / Loop Iteration\")\n",
-    "df_flop[\"Vector FlOps / Loop Iteration\"] = df_flop[\"Vector Instructions / Loop Iteration\"] * 2"
+    "df_flop[\"Grid Points\"] = df_flop[\"nx\"] * df_flop[\"ny\"]\n",
+    "df_flop[\"Vector FlOps (min)\"] = df_flop[\"PM_VECTOR_FLOP_CMPL (min)\"] * 2\n",
+    "df_flop[\"Scalar FlOps (min)\"] = df_flop[\"PM_SCALAR_FLOP_CMPL (min)\"]"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 50,
+   "execution_count": 41,
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzIAAAF/CAYAAACSbPy2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzt3Xt8FNX9//H3zG4SSCAkhAjhriCKiEBBUYta8UIFFC+t+kNQELxUwSvWCwgqYgVUFEHxgvdLbb9VVLxhxSpQFVCkoBRFQLAECCFAbiTZnfP7Y5MlIbdNTLJM5vV8PHB3Z2ZnPtkc3PPmzJmxjDFGAAAAAOAidrQLAAAAAICaIsgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADX8TfEQbKycuU4piEOVU5KSjNlZuZE5dhwH9oLIkVbQaRoK4gUbQU10Zjai21bSk5OqPH7GiTIOI6JWpApOT4QKdoLIkVbQaRoK4gUbQU14fX2wqllAAAAAFyHIAMAAADAdQgyAAAAAFyHIAMAAADAdQgyAAAAAFyHIAMAAADAdQgyAAAAAFyHIAMAAADAdQgyAAAAAFyHIAMAAADAdQgyAAAAAFzHH+0CAKCxMMZIMpJR6LH0c2NKtqpkmSnZSfGSg5eVXV9+Wenjll9myhz319VnKlhWcX2l6qloWXhVRcvNQYuqeK8pdYyq9l9mu4qWVfC6ov2X/h1V9t5SP+u+Zk1UmLO/3PIDD5Xtp4rP6aBlpqJtDt5/JJ9TpdtU9TlVvI2psg0cfJhKjlubbcu9ta72Vfvjlv+xK97XziYx2r+/qOrjVvYZRlTXr9hXddtWub5mxzUVta8GOG797etXHPfgv1el9lUY41NRUTDy4x700k5IVpMz/yTLdm8ccG/lwCHOGEdyHMkEQ49OUMYJSsYp/mPCz03p187B60yF7wlta4rfe/A6U8l+K1lXbh+m1PriTmqFz53ilyXPq9veHNh36EM6cFyp1PMD7zHVHFsHHbvy7c2B4xUfu0wd1QSBMs+NlH3wMqASBdEu4FezyjwceFJ6eSTbFD+xwi8qPk4lL8ssqHQfJVsevK8qtq9mXzU5bvn1NTvufp+tYNCpg31V9Vlala+qbl9V/U5qeNwa7au6bav8vdTwuFXsq0btqiZ1WVX9vSi7H6vUf+0YnywTrHL7KvcVl6AKPhBXIcjgkGSMkYJFUrAo1PkPBiQnIFP8qGBApvgx9Doo4xQVvw5Wsl1QJlgUWu4Ei4NF2aCxPcZSwf7C0HpzUPhwguFgYorfX2ab0vsywQj+pesQZNkH/odq2aE/Uvi1VdIJsSypyud26CH8vLrtQ3+s0sezfcVP7fLbypJVzbF10LEr316l9nvQ81LLrDLLLMXHxyovv6jMsjLPy3TuDl5mFe+67LKKa6m+PqvcsoPqr2F9VpnjVldf+c+qwmUl/z34C/agbcoutw5aVc17S/9Mlb03/FDF/ivqyEWyzcHLi5+npDRTZmZO5e+1rOo7SBV9ThX+/AdtE96usm3KL7fK/WxoKKmpzZWRkR3tMuAStBeCDGrBOAGpqECmaL9MUYFUtF8mUPxYvFxFBTKB/VKgKBQeAoUywUIpUBxOAoVVPBaGgkdds32S7Zd8flm2L/TasiXbL8u2JcunQGxM6B/sbV+oA237ZPliQo/h7X2SXbzOKn5ulVpWervS+y95bdmSbZfqoNul/oRel1lnl10XWm+Ve09o2+IwUG7fpfZr25KscvsNhwhEpGVqcwU9/gWCyPibNZedz9ctANQ1/s/qMcaYUODYnyNTmCdTkBt+VGGeTEHxn1LrVJhfNpzUJGRYPskfEwoD/tjwo3wxsvyxspomygq/jpF8seHX8sfIsmMkX0n48IfCgC9Glq84lNh+WcXrQ4HBX+H2odBR/b8y8q8bAAAA7kCQaSRMoEAmJ0tO7m6Z3N1y8vbJ7N8nk59d/HjgeZVBxLKk2HhZsfGy4hJkxcXLatpCim0iy99EVkycFFP6sfi5v9Tz4uXyx4ZGJwAAAIA6RpBxCVOYL2ffDjl7d8jZt1MmZ/eB0JKzWyrILf8mX0xoxKNpoqymLWS37CCrSXPZTRNlNWkmxcXLii0OK3EJsmLjQyGE86MBAABwiCPIHGJMQa6CmVvl7N4qJ3OrnD3pcvbtkMnfV2Y7K66ZrGbJshJaKqb1kbISkmUntJTVrGXoMb6F5I8jlAAAAKBRIshEkQkUKrhzo4Lb1yu4c6OczK0yubvD660mzWUnt5W/Y29ZLVrLTjxMdos2shMPC53CBQAAAHgUQaYBmUChgun/VTB9vQLp6+VkbApdwleW7OQ0+dK6yW7ZQb6UDrJTOspq2oIRFQAAAKACBJl6ZgpyFdj0tYo2f6Pg/74PXVrY8slO7ayYY8+WP+0o+docWXxTIgAAAACRIMjUA+M4Cmz5VoEfliqw5T+SE5DVLEUxR58if8fe8rXpxqlhAAAAwK9AkKlDpiBXhes+U9H3n8jkZMqKT1JMjzMU0/VE2a06c5oYAAAAUEcIMnXAFO1X4dqPVbj6A6kwT760oxVz0v+Tv1Mf7qMCAAAA1AOCzK9gjFHgx3+r4Ks3ZPL3ydexl+L6XShfq07RLg0AAABo1AgyteTkZGr/khcU3LpG9mFd1PTsG+Rr3TXaZQEAAACeUG2Q+eWXX3T99deHX2dnZysnJ0fLly+v18IOZYEtq5X/yTzJOIo7+TLFHHOGLNuOdlkAAACAZ1QbZNq3b6+33347/HratGkKBoP1WtShyhijojUfqeCrN2S37KimZ42TnZga7bIAAAAAz6nRqWWFhYV69913NX/+/Pqq55BljFHBspdV9P1i+Q/vpya/u4pLKAMAAABRUqMgs3jxYrVu3Vo9evSor3oOWYUr/qGi7xcr5rhzFNf/j7IsTiUDAAAAosUyxphIN77qqqt0yimn6PLLL6/Pmg45e1e8r8xF89W8z1lqdc413A8GAAAAiLKIg8yOHTs0aNAgffrpp0pOTq7RQTIzc+Q4EeelOpWa2lwZGdm1fn/Rpq+1/+M58nfuoyZnjmNSfyP3a9sLvIO2gkjRVhAp2gpqojG1F9u2lJLSrObvi3TDt956S6eddlqNQ4ybOfn7tP/z52SnHq4mA68lxAAAAACHiBoFmYsuuqg+aznkFPz7NamoQE1+N0aWPzba5QAAAAAoFvFk/48++qg+6zjkBLZ8q8BPXyq27wXyJbeLdjkAAAAASuFcqQqYwnztX/KS7OR2iu09JNrlAAAAADgIQaYChWsWyeTuVpNTR8vy1egK1QAAAAAaAEHmICYYUNH3i+Xr0FO+1l2jXQ4AAACAChBkDhLYtFImf69ie5wV7VIAAAAAVIIgc5DCtR/LatFavg7HRrsUAAAAAJUgyJQS3LlRzs6fFNvjTFkWHw0AAABwqKK3Xkrh2o+lmCaK6TYg2qUAAAAAqAJBppiTv0+BjcsV022ArNim0S4HAAAAQBUIMsWCv6yVnCCjMQAAAIALEGSKBbetk+ISZKd0jHYpAAAAAKpBkCkW2LZO/rSjZdl8JAAAAMChjl67JGdfhkz2Lvnado92KQAAAAAiQJBR8WllknztCDIAAACAGxBkFDqtzGqaKDupbbRLAQAAABABzwcZY4yC29bJ1/YYWZYV7XIAAAAARMDzQcbZmy6Tt0e+tkdHuxQAAAAAEfJ8kAlu+68kyd/umChXAgAAACBSBJn/fS+rWYqs5qnRLgUAAABAhDwdZIwxCqavl6/t0cyPAQAAAFzE00FGBbky+7Pla9kx2pUAAAAAqAFPBxknO0OSZCW2inIlAAAAAGqCICPJZn4MAAAA4CreDjL7dkkiyAAAAABu4+kgY7IzpLgEWbFNo10KAAAAgBrwdJBxsjMYjQEAAABcyONBZpfs5kz0BwAAANzGs0HGGEcmexc3wgQAAABcyLtBJm+v5ARkJxJkAAAAALfxbJBxskuuWMapZQAAAIDbeDbImJKbYRJkAAAAANfxbJAJ3wyzGUEGAAAAcBt/JBsVFBTogQce0BdffKG4uDj17t1bU6dOre/a6pWzb5es+CRZ/tholwIAAACghiIKMjNnzlRcXJw++ugjWZalXbt21Xdd9c5kZ3BaGQAAAOBS1QaZ3NxcLViwQJ999pksy5IktWrl/gDgZGfI16ZbtMsAAAAAUAvVzpHZunWrkpKSNGfOHF144YUaOXKkVq5c2RC11RvjBGRyd3PFMgAAAMClqh2RCQQC2rp1q4455hjdfvvtWr16ta699lp9/PHHatasWUQHSUmJbLv6kpravMzroqztyjFGiW07KPGgdcDB7QWoDG0FkaKtIFK0FdSE19tLtUGmbdu28vv9Gjp0qCSpV69eSk5O1qZNm9SzZ8+IDpKZmSPHMb+u0lpKTW2ujIzsMssC//tZkpRrNVfBQevgbRW1F6AitBVEiraCSNFWUBONqb3YtlWrgY9qTy1r2bKl+vfvr2XLlkmSNm3apMzMTHXq1KnmVR4iwpde5tQyAAAAwJUiumrZvffeq7vuukvTp0+X3+/XjBkzlJiYWN+11RuzL0OybFkJLaNdCgAAAIBaiCjIdOjQQS+//HJ919JgnJxdspqlyLJ90S4FAAAAQC1Ue2pZY2Rys2QnJEe7DAAAAAC15M0g4wQlX0y0ywAAAABQS54MMjKOVHxzTwAAAADu49EgYyTLmz86AAAA0Bh4szfvOAQZAAAAwMW82Zs3QVm2N390AAAAoDHwZm/eMCIDAAAAuJk3e/OcWgYAAAC4mid788YYiVPLAAAAANfyZm+eU8sAAAAAV/Nmb54gAwAAALiaN3vzxpFFkAEAAABcy5u9eSb7AwAAAK7mzd68cZjsDwAAALiYJ3vzxjiSZUW7DAAAAAC15Mkgw2R/AAAAwN282Zs3hiADAAAAuJg3e/NM9gcAAABczZu9eROUxWR/AAAAwLW82ZtnjgwAAADgap7rzRtjmCMDAAAAuJz3evPGhB45tQwAAABwLe/15o0TemREBgAAAHAt7/XmCTIAAACA63mvN18cZCyCDAAAAOBa3uvNMyIDAAAAuJ73evNOcZBhsj8AAADgWp7rzZvwiIwV3UIAAAAA1JrnggynlgEAAADu573efMl9ZAgyAAAAgGt5rzfPVcsAAAAA1/NHstHAgQMVGxuruLg4SdKECRN0yimn1Gth9YbJ/gAAAIDrRRRkJGn27Nnq1q1bfdbSMEww9MiIDAAAAOBanuvNGyb7AwAAAK4X8YjMhAkTZIxR3759dcsttygxMTHig6SkNKtVcXUlNbV5+HmhmipPUmKLeDUrtRwokUq7QIRoK4gUbQWRoq2gJrzeXixjSi7jVbn09HSlpaWpsLBQ06ZNU25urh566KGID5KZmSPHqfYw9SI1tbkyMrLDr4OZW5X3j7vV5MzrFXPE8VGpCYeug9sLUBnaCiJFW0GkaCuoicbUXmzbqtXAR0TnV6WlpUmSYmNjNXz4cH3zzTc1PtAho+TUMtsX3ToAAAAA1Fq1QSYvL0/Z2aG0Z4zR+++/r+7du9d7YfWGyy8DAAAArlftHJnMzEyNHz9ewWBQjuOoS5cumjJlSkPUVj+Y7A8AAAC4XrVBpkOHDlqwYEFD1NIwuI8MAAAA4Hqe681z+WUAAADA/bzXmw8HGSu6dQAAAACoNQ8GmeLLQDMiAwAAALiW93rzXLUMAAAAcD3v9eaZ7A8AAAC4nvd680z2BwAAAFzPc715Y4KhJwQZAAAAwLW815t3GJEBAAAA3M57vXmuWgYAAAC4nvd68yVzZGzuIwMAAAC4lWeDjGX5olwIAAAAgNrybJDh1DIAAADAvbzXm+c+MgAAAIDrea43bxiRAQAAAFzPe735cJBhsj8AAADgVh4OMt770QEAAIDGwnu9+eL7yFgEGQAAAMC1vNebZ7I/AAAA4Hre681zahkAAADgep7rzXPVMgAAAMD9vNebd4KhR4IMAAAA4Fre680XT/YnyAAAAADu5b3ePPeRAQAAAFzPm0HGsmQRZAAAAADX8miQ8d6PDQAAADQmnuvRG8eRLF+0ywAAAADwK3guyMg43AwTAAAAcDl/tAtocMVzZAAAAOpTMBhQVlaGAoHCiLbfudOW4zj1XBUaCze2F78/VsnJqfL56iaCeDTIMCIDAADqV1ZWhpo0iVdCQpuILjLk99sKBNzVMUX0uK29GGOUm7tPWVkZatUqrU726b0evTGyCDIAAKCeBQKFSkhI5EqpgCTLspSQkBjxCGUkatSjnzNnjo466ij98MMPdVZAg3MYkQEAAA2DEAMcUNd/HyLu0X/33Xf69ttv1bZt2zotoMEx2R8AAABwvYh69IWFhbrvvvs0ZcoU1//LgmGODAAA8KDFi/+p0aOHa9So4Ro+/CLdc8/EWu8rPX2bhgw5o07qGjCgn6644lKNGhWq7bXXXpIkjRt3tZYtWxLe7vPP/6Urr7xMw4dfpIsvHqbHH5+lwsK6O01Jknbu3KGrrrq83PL3339Xkyb9uU6PFYlvvlmpMWNGSpKys7P16qsv1ttxli//Mvx6164MjR9/Tb0cqy5FNNn/scce03nnnacOHTrUdz31zwkSZAAAgKfs2rVLjzzyoObPf0WtW7eRMUYbNjT8VIFgMCifr/z9/J588jnFx8dX+r5vv/1Gs2bN0EMPzVaXLl1VUFCgadPu0SOPTNcdd9xdZ/UtWfIv/fa3p9bZ/upSTk62XnvtJV122RU1fm8gEJDfX3m3f9Wqr5Wfn68TTjhRktSqVaoef/ypWtfaUKoNMqtWrdKaNWs0YcKEWh8kJaVZrd9bF1JTm4ef74jzqcDvK7MMKI22gUjRVhAp2oo37dxpy++v2T+e1nT7SO3du1t+v18pKcnhY3Tv3j28fs2a1Xr88ceUl5crSRo//ib173+SZs+epVWrvlZRUZGSkpI0ceIUpaW1lc9nS7LC+5o8eaK2bNmsoqIitW/fQRMnTlFiYqK+/nqlHn30IfXq1Ufr1n2n0aPHasCA8kHB7y//WVmWJZ8vdIznn39ao0eP1VFHdSvevqluv/0unX/+YI0Zc5XS0trqxBN/ozFjrtby5V9q7969uvbacRo48Azt35+v++6boo0bf5Lf71enTp01bdr0Cj+npUs/14033lKuFtu2ZFlWueXBYFBz587Wl1/+W5J04okn6/rrb5DP51NmZqZmzHhAv/yyVZJ02WWXa/DgoZKk888forPP/r3+859vtWtXhi65ZLj++MdLy9Xj89myrNDnM2vWDOXk5Gj06OFq0qSJnnnmBe3Zk6mHH56hHTu2q6CgQGedNUijRo0JH+O8887XypUr1K5dO1177fW6++67lJubo8LCQp188gCNH3+TNmz4UW+//aaMcfT118t11lmDdOaZgzR69Ah99NFiSdIXXyzTk0/OUTAYVHJysm6/faI6dOgY/v326HGs1qz5jyzL0tSpf9Hhhx9R4ecb+iztOvt/YrVBZsWKFdq4caPOOCM0fLh9+3aNGTNGf/nLXzRgwICIDpKZmSPHMb+u0lpKTW2ujIzs8OuC/EI5jsosA0oc3F6AytBWECnainc5jlPm8rjL1qRr6X/SK93esiRTy+7SgOPS9NuelV/S9vDDu6p79x4aNmyw+vTpq+OO661BgwarRYsk7du3V7ffPkHTps1Qz569FAwGlZubq0DA0fDhV+i6626UJL377gLNmfOY7r33LwoGHUkm/PPdcMOtSkpKkiQ9/fQTevHF5/WnP41XMOjop5826NZb79BNN90mSRVeMviqq0aFryp79933qUuXrjLGKBgMHWPDhh81btzNZd6bkNBcbdu21w8//KjU1DYln6KefPI5bdmyWddeO0Y9e/bSf/6zWnv37tMrr/xdkrRv374Ka8jOztb27enq3LlLufWOY2SMKbf8rbf+ofXr12v+/FckSRMm3KA33/yHLrjgD3r44Rnq3PkITZs2U7t27dKYMZepa9duOuKIrpJCo2Rz5jyj3bszNXr0ZerZs4+6dj2yzP6DQUfGhD6zm2/+s8aOHannn38tvP6ee+7WqFFj1bv3b1RUVKQbb/yTjjqqu44/PjSysnNnhmbPnidJKigo0IMPPqL4+HgFAgHdcss4LV26VCeeeLKGDbtQ+fn5GjfuJkmhUwdLfr9ZWbt177136/HHn9bhhx+hhQsXaPLkiXrmmRcVDDrauPEn3XnnZE2YcJdefHG+nnvuWU2Zcn+5z/fAZ+mU+3+ibVu1GvioNshcffXVuvrqq8OvBw4cqHnz5qlbt241Ptghgcn+AADAY2zb1l/+8rA2btygVau+0ZIl/9Jrr72sl176q9auXaPOnQ9Xz569JEk+n0+JiYmSpC+/XKY33/y78vPzFAwGK93/hx8u1KJFHyoQKFJ+/n516NAxvK59+w469tjjqqyvulPLIg14Q4cOkyR17NhZ3bodpe++W6OuXY/Uli2b9fDD09WnT1+dfHLF/xD/xRfLdNJJv43sQMVWrvxKgwcPVUxMjCRp8OBz9fnnn+qCC/6glSuXh4NBq1atdNJJA/TNNyvDQaak1pYtU3TyyQO0atXX5YJMVfLz87Vq1dfas2dPeFleXq42b94cDjK///2Q8DrHcfTEE49pzZr/SDLKzMzUjz/+oBNPPLnK43z33Vp16dItPMoyePB5evjh6eHRu44dO6lbt6MlST169Cwzr6m+cUNMAACABvDbnlWPmjTEDQ6POKKrjjiiqy666GKNGPFHrVr1tfz+mAq33b49XY8//oieeeYltW3bTmvWrNa9904qt93q1au0YME/9OSTzyk5OVmLFn2od955M7y+adPKA0qkunY9Ut99t0ZHHnlUeNm+fXu1bdsvOuKILhW+JxR+LLVr116vvvp3rVy5Ql9+uUxPPz1XL774V8XFxZXZfsmSf+mCC/5Qo7qMKX9J4dKvq1pXdj9GNb2eluM4sixLzz77UqXzX+Ljm4afv/HGq8rO3qenn35BcXFxmj59mgoLCyI4UtW1xcYe+Bxt264y8Na1GvfoFy9e7N7RGEmG+8gAAACPycjYqbVr/xN+vXPnDu3Zk6W0tLbq2fM4bd68Kbw+GAxq3759ys3Nld8fo5SUFDmOowUL/lHhvrOzs5WQ0EwtWrRQYWGh3nvvnTqvf9SosXrxxef0008bJIVOk3rooQd1+ulnKi3twK1BSo69desWbdiwXj16HKudO3fItn069dTf6YYbbtWePVnKzt5XZv9FRUVat+47HXdc7xrVdfzx/fX+++8qEAgoEAjogw8Wql+/EyRJ/fqdoHfeeUuSlJm5S198sUx9+vQLv/eDDxZKkrKysvTll/8us64iCQkJ2r9/vwKBQPh1r1599MorL4S32bFjuzIzd1X4/uzsbKWktFJcXJwyMnZq6dLPyuw7Nzenwvf16HGcNmz4QT//vDlc95FHHqX4+IQq620I3hyRsctfLQMAAKCxCgaDmj//KW3fnq64uCYyxtHYsX8KnxI0bdoMPf74LO3fny/LsnX99Tfq+OP76/TTz9SIEZeodevW6tOnr1avXlVu3yeeeLIWLfpAw4f/QYcddpiOPrq7vv/+uzqt/ze/6aebbpqg+++frIKCAhUVBXTKKafqmmuuL7NdbGys/vSnK7Vnzx7ddttdSk5uqS++WKZ58+ZIkhwnqBEjRqlVq9Qy71u5crl69epT5ZW9vvhimS64YHD49eDB5+rKK6/WL79s1ejRwyVJJ5xwks499wJJ0k03TdDMmQ/oiisulTFG1147rszoUevWbXTddWOVmblLI0eOUpcuXav8DBITW+jss8/RFVdcqubNE/Xssy9o8uSpmj37EV1++SWSpPj4BN1552SlpLQq9/4//vFS3X337Ro9ergOO6y1+vY9Przu1FNP18SJt2nUqOE644yzdeaZZ4fXJScna9Kk+3TvvRMVDAaVlJSsyZOnVllrQ7GMqe20ssgdSpP9895/SKYwTwnnT45KPTi0MSkXkaKtIFK0Fe/avv1ntWnTKeLtG+LUssZswIB+WrTo8yrn2lRm5swHdPzx/fW739XNvXGq84c/nKsZM2aF58vUhlvbS0V/L+ptsn+jYwynlgEAACDsttvuinYJqAUPBhknfHk/AAAANA5Ll66MdgkR+7//ezfaJTQKngky//05S2s2ZmoIVy0DAAAAXM8zPfo1mzL18cpfJIf7yAAAAABu55kevc+2iu/KyogMAAAA4Hae6dH7bFuOMdwQEwAAAGgEPNOj99mhW5IaJ6ga3zoVAADAxW65ZXy5G1oaY/THP56nb7/9plb7/OablVq+/Mu6KE/p6dt02mn9NWrU8PCfRYs+kBS6VPHGjRvC277zzlsaMeJiXXbZH3TppRfqxRfny3Hq9jLEq1d/q0mTbi+3fP78pzRnzqN1eqxIvP/+u5o06c+SQp/V22+/WS/H+fzzf+n779eGX//3v9/r3nsn1cux6oJnJvv7fMXhxeGqZQAAwFuGDDlPb7zxqs4//6LwslWrvpbP51Pv3r+p1T5Xrfpa+fn5OuGEE2v83mAwKJ+v7A3KmzVrphdeeK3K93344Xv6299e10MPzVabNm20b98+3XXXBBljNGrU2BrXUZklS/6lU045rc72V5fS07fpnXfe0kUX/aHG7w0EAlXe9HPJkn/p6KO765hjjpUkHX30MZoy5f5a11rfvBNkiif4M0cGAAB4zamn/k6PPPKgNm3aqMMPP0KS9N5772jw4HMlSUVFRXr66Sf07bdfq6gooC5duujWW+9UfHy8cnJyNHv2w/rvf7+XZdnq1au3hg27SG+//aYcx9HKlct1xhlna+TIUfrgg4V6/fWXZVmW2rZtrz//+S4lJ7fU+++/q3/+c5GSk5O0adMm3Xnn3TryyKNq/HPMn/+0br31drVp00aSlJiYqAkT7tSYMSM0fPjlyszcpbFjR+qcc87V6tXfqKCgQLfeeod69eqjrKzduueeScrKypQk9et3gm644dYKj/PFF0t1+eVmlDVBAAAbdUlEQVSjI64rLy9Pjz46U+vWfSdJGjRosEaMGCVJ+uWXrZo58wHt2ZMln8+nq6++XieeeLKk0E08R4++SitWfKW9e/fommuur/amnI88MkPp6f/TyJGXql279rr//hnasmWzHnvsEe3du0dFRUW6+OL/pyFDzgsf47rrbtC//71UvXr10cCBZ+nhhx/U/v35Kiws1HnnXaCLLx6ur776QkuXfq6VK5fr3Xff1iWXDFfr1m00d+5jmj//ZUmq8vf78ccfqnnzRG3c+JOaN2+m+++foZSUVhF/hrXhoSBzYESGq5YBAICGVvTDMhWt/7zS9ZZlyRhTq33HHHWqYrr9tvL1MTE666zf64MP3tV1192ovLxcLVnyma69dpwk6dVXX1RCQoKeeeYlSdITT8zWyy8/r2uuuV6zZz+spk2b6oUXXpdt29qzZ4+SkpI0bNiFys/P17hxN0mSNm7coHnz5mj+/FfUqlUrPfPMk5o1a6buu+8vkqQ1a77VCy+8rnbt2ldYY05OjkaNGh5+/dhjT6hFi6Tw67y8XKWn/089evQs877OnQ9XTEyMfvlli5o2jdfevXvVpUtXjRt3k1at+lr33DNRb7yxQIsWfaA2bdrosceekCTt27evwjo2bvxJKSmtlJjYosrPvLQXXnhWjuPopZfeUF5erq655kp16XKkTjrpt7r33kkaNuwCDR16vjZt2qhx467SK6/8n5KTkyVJtm1r3rzntGXLZl177Rj16tVHycktKz3WLbf8WXPnPqYXX3xVgYCjQCCge+6ZpClT7lenTp2Vl5erMWNG6thjj1OnTp0lSY7jaM6cp8Of46OPPqHY2Fjl5eXp6quv0AknnKT+/U/SgAGn6uiju+uiiy6RFDp98MDnUvXvd9267/Xii6+rdes2mj79fv3f/72ha665PuLPsDY8F2QYkQEAAF40ZMgwTZgwXldffb0++eRjHXdcL6WmHiZJWrbsc+Xm5upf/1osSSoqKlTXrkdKkv797yV69tlXZBf/Q3BSUlKF+//mm5U66aTfqlWr0L/CDxt2YZlg0rNn70pDjBTZqWWVKR0AY2JiNGjQYElSnz59FRcXpy1bflaPHj31xhuvae7cx9S792/Uv/9JFe5r6dLPNGBAzU4rW7lyuW68cYIsy1JCQjOdeebZWrlyuXr16q0NG37Q4MGh0ZHDDz9CXbsepe++W6MBA06VJA0dOkyS1LFjZ3XrVrIu8uNv3bpFP/+8SVOm3BVeVlRUpM2bN4WDzDnnDA2v279/v+bMeVAbNvwgy7K1a1eGNmz4QZ07H17lcar7/R53XC+1bh0aKevR41itWPFVxD9DbXkuyMghyAAAgIYX0+23VY6a+P22AoG6nbRe2pFHdlNKSit99dUXev/9d3TxxQc6ocZIt956h/r2Pb7W+zcmNKpUWumX8fFNa73v0PsTlJbWTt99tyZ8apYkbd68SYFAQO3addDu3ZkV1GVkWZaOPfY4Pf/8q1qx4it99NH7euWVF/Tkk/PLbb9kyWe6994HalidKXctqapG2A7+nA7UKkk1uyiVMUYtWiRVGQKbNo0PP3/qqblq2TJFzz33qvx+v26++XoVFhZGcJyqf7+xsbHh57btUzAYrMFPUTue6dGXTPZnRAYAAHjVkCHn6bnnntbWrVvK/Kv/gAGn6o03XlVBwX5JodOPNm/eJEk6+eRT9PrrL4U75Xv27JEkJSQkKDc3J7yPvn2P1xdfLFNm5i5J0rvvLlC/fifUaf1XXnmV5s59VDt2bJcUOj3soYf+ohEjRikuLk5SaDTi448/lCStXr1KhYWF6tixk7Zt+1/xaMkgjR9/s9av/2+5q53t2pWhoqIitW3brkZ19evXXwsXvi1jjPLycvXJJ4vUr98JSkhopq5du+mDDxZKkn7+ebN++umH8GR6KTRXSQqNrGzYsF49ehxb4TFKJCQ0K/O5d+zYSU2aNNGHH74XXvbzz5vLbFNaTk62Djustfx+vzZu3KDVq78tte8E5eRU/L6G+P3WlIdGZIrDi3FkMUcGAAB40FlnnaO5c2dr2LALFRMTE14+YsQozZ//lMaOvbz4FDJLV155lTp3Plzjx9+i2bMf1siRl8jn86lPn9/opptu06mnnq6JE2/TqFHDw5P9r7nmet188/XFk8Hb6bbb7qq8mFo455yhKijYr1tvHS9jjILBoH7/+yG6/PIrw9u0aNFCv/yyVVdddYUKCvbrnnumKSYmRqtWfa2//vUV+Xx+GePottvuDJ8uV2LJks/Cp3xV5u2339QnnywKv77iijEaNWqsZs2aocsvD80tGTRocHjUaMqU+zVz5gP6299ek8/n06RJ94Xnx0ihkYw//elK7dmzR7fddleV82MkqUuXrurYsZOGD/+jOnbspPvvn6Hp02dp9uyH9frrLysYdNSyZUvdd9+DFb7/iivGaOrUyVq06AO1a9dOvXv3Ca8bNGiwpk27V59++kl4sn+JI47oUu+/35qyTG1nldVAZmaOHKfeD1Oh1NTmysjI1sr/7tQTC9ZqVtsFiuvcR01OjfxKFPCOkvYCVIe2gkjRVrxr+/af1aZNp4i3r+9Ty7wgPX2bxo4dqffe+6RW77/llvG6+urrdPTR3eu4sooNGNBPixZ9rvj4+Oo3Pohb20tFfy9s21JKSrMa78tDIzIlc2QMp5YBAACgnEceeTzaJaAGvBNkSm6IyRwZAACARiktrW2tR2OiYenSldVvhEp5pkdfeo4M95EBAAAA3M0zPfrwqWWMyAAAgAbSAFORAdeo678PnunR2+EgY1TuQt8AAAB1zO+PVW7uPsIMoFCIyc3dJ78/tvqNI+S5OTKWCcpiRAYAANSz5ORUZWVlKCdnT0Tb27Zd7r4mQGXc2F78/lglJ6fW3f7qbE+HOH94XgxXLQMAAPXP5/OrVau0iLfnUt2oCdqLh04tK5kjYzHZHwAAAHA9z/TofT5LlorPUWVEBgAAAHA1z/TobZsgAwAAADQWnunR+2xLNkEGAAAAaBQ806P32bZsFV/ZgSADAAAAuJpnevSl58hYTPYHAAAAXM0zPXq/bcm2OLUMAAAAaAwiuo/Mddddp19++UW2bSs+Pl533323unfvXt+11SmbOTIAAABAoxFRkJk+fbqaN28uSfrnP/+pu+66S2+99Va9FlbXQnNkioMMp5YBAAAArhZRj74kxEhSTk6OLMuqt4LqC/eRAQAAABqPiEZkJGnixIlatmyZjDF69tln67OmemFblnzhOTLuC2IAAAAADrCMMaYmb1iwYIHee+89PfPMM/VVU70Zc8drmtj8H0oder2a9xoY7XIAAAAA1FLEIzIlzj//fE2ePFlZWVlKTk6O6D2ZmTlynBrlpTqTmtpcGRnZkiR/8UBMdk6h9hcvA0or3V6AqtBWECnaCiJFW0FNNKb2YtuWUlKa1fx91W2Qm5ur9PT08OvFixerRYsWSkpKqvHBos1f8tMy2R8AAABwtWpHZPLz83XjjTcqPz9ftm2rRYsWmjdvnisn/Pt9TPYHAAAAGoNqg0yrVq30t7/9rSFqqXfhERmCDAAAAOBqnurRl8yRIcgAAAAA7uapHn3JiIxFkAEAAABczVM9er9dPEfGdt/8HgAAAAAHeCzIFD9hRAYAAABwNU/16H3hOTK+qNYBAAAA4NfxVJDxl+QX7iMDAAAAuJqnevQ+i/vIAAAAAI2Bp3r0XH4ZAAAAaBw81aP3FV+1zLK4ahkAAADgZp4KMozIAAAAAI2Dp3r0vvB9ZDz1YwMAAACNjqd69D5GZAAAAIBGwVM9eq5aBgAAADQOnurRMyIDAAAANA6e6tEfuGqZp35sAAAAoNHxVI/eJyb7AwAAAI2Bp3r0B04t4z4yAAAAgJt5KsjYTPYHAAAAGgVP9egP3EfGF91CAAAAAPwq3goyJU8YkQEAAABczVM9+vCpZWKODAAAAOBmngoyJTfEDBqCDAAAAOBmngoyJSMyTpTrAAAAAPDreCrIlNxHhhEZAAAAwN08FWRsTi0DAAAAGgVPBhmHc8sAAAAAV/NWkOHUMgAAAKBR8FyQcYwUNNVvCwAAAODQ5a0gYxkZWQo6JBkAAADAzbwVZCQ5shQMMkkGAAAAcDN/dRtkZWXpz3/+s7Zs2aLY2Fh16tRJ9913n1q2bNkQ9dUpW44c2YzIAAAAAC5X7YiMZVkaO3asPvroI7377rvq0KGDHnrooYaorc5ZnFoGAAAANArVBpmkpCT1798//Lp3797atm1bvRZVX0KT/QkyAAAAgNvVaI6M4zh6/fXXNXDgwPqqp17ZMsyRAQAAABqBaufIlDZ16lTFx8drxIgRNTpISkqzGm1f11JTm0uSsuJ8ypOl5s2bhpcBB6NtIFK0FUSKtoJI0VZQE15vLxEHmenTp+vnn3/WvHnzZNs1u9hZZmaOnCidzpWa2lwZGdmSpKKCIjmytCcrVxkZTaJSDw5tpdsLUBXaCiJFW0GkaCuoicbUXmzbqtXAR0RBZtasWVq7dq2efvppxcbG1vgghwpLjoyxFOSOmAAAAICrVRtkfvzxR82bN0+dO3fWpZdeKklq37695s6dW+/F1TXLcPllAAAAoDGoNsgceeSRWr9+fUPUUu9sq3iyv8NkfwAAAMDNajbZxeUsUxJkGJEBAAAA3MxbQUbFN8RkjgwAAADgah4LMk7xDTE5tQwAAABwM48FmdCpZdG6FDQAAACAuuGtIGMcGVkKEGQAAAAAV/NWkCkekWGODAAAAOBu3goyxuHyywAAAEAj4KkgIxkZw+WXAQAAALfzVpAxjoKyObUMAAAAcDlPBRnLhO4j4xiCDAAAAOBmngoyxjiSxYgMAAAA4HaeCjJySi6/zGR/AAAAwM28FWRMUMaymewPAAAAuJzHgkxoRIZTywAAAAB381aQcYxk2XIYkQEAAABczVtBxjgyFjfEBAAAANzOU0EmfNUyRmQAAAAAV/NUkJFxJG6ICQAAALie54JM6NQyggwAAADgZt4KMg6nlgEAAACNgbeCTHiODJP9AQAAADfzZpBhjgwAAADgah4LMkZijgwAAADgep4KMsY4MpaPU8sAAAAAl/NUkJHjyGKyPwAAAOB63goyJijZnFoGAAAAuJ3HggyT/QEAAIDGwFtBxjHFp5YxRwYAAABwM28FGeNINnNkAAAAALfzTJAxxkgyxTfEJMgAAAAAbuaZICMTOp3MspkjAwAAALhdtUFm+vTpGjhwoI466ij98MMPDVFT/SgOMozIAAAAAO5XbZA544wz9Oqrr6pdu3YNUU/9KQ4yts0NMQEAAAC381e3Qb9+/RqijvrnlBqR4dQyAAAAwNU8OUfG4dQyAAAAwNWqHZGpCykpzRriMJVKTW2uYJ6UIymuSayMpJYpzeSzrajWhUNTamrzaJcAl6CtIFK0FUSKtoKa8Hp7aZAgk5mZE7VRkNTU5srIyJaTv0+SVBgIjczs2LFXMX5fVGrCoaukvQDVoa0gUrQVRIq2gppoTO3Ftq1aDXx48NSyUHgJME8GAAAAcK1qg8z999+vU089Vdu3b9fo0aM1ZMiQhqir7hVP9res0I/MJZgBAAAA96r21LJJkyZp0qRJDVFL/TJBSZLtCwUZJvwDAAAA7uWhU8tCwaXk1DJGZAAAAAD38k6QcQ5cflmSgkFuigkAAAC4lWeCjCme7G8zIgMAAAC4nmeCTOkbYkpSgCADAAAAuJbngoxtM9kfAAAAcDvPBZkDk/2ZIwMAAAC4lXeCTHFwsX3FQYYbYgIAAACu5Z0gc9CpZUz2BwAAANzLM0HGFN9HpuSGmFx+GQAAAHAvzwQZcfllAAAAoNHwXpDxEWQAAAAAt/NOkAlP9meODAAAAOB23gkynFoGAAAANBoeCjJBSZIVvvwyk/0BAAAAt/JOkHFKrlrGiAwAAADgdp4JMqb41DIfQQYAAABwPc8EGRFkAAAAgEbDc0HGZo4MAAAA4HreCzJctQwAAABwPe8EmeL7yPj83EcGAAAAcDvvBJmDTy0jyAAAAACu5ZkgU+6qZcyRAQAAAFzLM0FGJjQCY9k++WyLERkAAADAxTwUZIpHYCxLNkEGAAAAcDXvBBmnJMjYoRGZIEEGAAAAcCvvBJniERmrOMg4jMgAAAAAruW5ICPbJ5/PVtBhsj8AAADgVp4JMuagU8sCjMgAAAAAruWZIFN6sj9zZAAAAAB3816QsYsn+3NqGQAAAOBa3gsyli2fz2ayPwAAAOBiEQWZTZs26ZJLLtGgQYN0ySWXaPPmzfVcVj046Kpl3EcGAAAAcK+IgsyUKVM0fPhwffTRRxo+fLgmT55c33XVPceRrNCPS5ABAAAA3M1f3QaZmZn6/vvv9fzzz0uShg4dqqlTp2r37t1q2bJlvRdYZ0zZILM3p1BrN2ZGuSgcalpk5mvv3rxolwEXoK0gUrQVRIq2gpr4te0lqVmc2h/WrA4ranjVBpn09HS1bt1aPp9PkuTz+XTYYYcpPT094iCTkhLdDyk1tbn2pKRob7MkpaY2V3KLplq5boce+dvqqNYFAAAARIPPtvS3B4YoNsYX7VJqrdogUxcyM3OiNrk+NbW5MjKyZQ4/VU3an6CMjGxdMaibzu7XPir14NCWnBSvrD38axiqR1tBpGgriBRtBTXxa9tLYkKs9h4i7c22rVoNfFQbZNLS0rRjxw4Fg0H5fD4Fg0Ht3LlTaWlptSo0WixfjCxfjCQpoUmMurZrEeWKcCgKBd+YaJcBF6CtIFK0FUSKtoKaoL1EMNk/JSVF3bt318KFCyVJCxcuVPfu3d01PwYAAABAoxLRqWX33HOP7rjjDj3xxBNKTEzU9OnT67suAAAAAKhUREGmS5cu+vvf/17ftQAAAABARCK6jwwAAAAAHEoIMgAAAABchyADAAAAwHUIMgAAAABchyADAAAAwHUIMgAAAABchyADAAAAwHUIMgAAAABcJ6IbYv5atm01xGEO2ePDXWgviBRtBZGirSBStBXURGNpL7X9OSxjjKnjWgAAAACgXnFqGQAAAADXIcgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADXadRBZtOmTbrkkks0aNAgXXLJJdq8eXO0S0KUZGVl6aqrrtKgQYN07rnnaty4cdq9e7ck6dtvv9V5552nQYMG6corr1RmZmb4fVWtQ+M3Z84cHXXUUfrhhx8k0VZQXkFBgaZMmaKzzz5b5557ru6++25JVX//8N3kXZ9++qnOP/98DRs2TOeee64WLVokifYCafr06Ro4cGCZ7xyp9m3DM+3GNGIjR440CxYsMMYYs2DBAjNy5MgoV4RoycrKMl9++WX49YMPPmjuvPNO4ziOOfPMM82KFSuMMcbMnTvX3HHHHcYYU+U6NH5r1641Y8aMMb/73e/M+vXraSuo0NSpU820adOM4zjGGGMyMjKMMVV///Dd5E2O45h+/fqZ9evXG2OMWbdunendu7cJBoO0F5gVK1aYbdu2mdNPPz3cRoyp/f9LvNJuGm2Q2bVrl+nbt68JBALGGGMCgYDp27evyczMjHJlOBR8+OGH5oorrjCrV682Q4YMCS/PzMw0vXv3NsaYKtehcSsoKDAXX3yx2bJlS/hLhbaCg+Xk5Ji+ffuanJycMsur+v7hu8m7HMcxJ5xwglm5cqUxxpjly5ebs88+m/aCMkoHmdq2DS+1G3+0R4TqS3p6ulq3bi2fzydJ8vl8Ouyww5Senq6WLVtGuTpEk+M4ev311zVw4EClp6erbdu24XUtW7aU4zjas2dPleuSkpKiUToayGOPPabzzjtPHTp0CC+jreBgW7duVVJSkubMmaOvvvpKCQkJuvHGG9WkSZNKv3+MMXw3eZRlWXr00Ud13XXXKT4+Xrm5uXrqqaeq7K/QXryttm3DS+2mUc+RASoydepUxcfHa8SIEdEuBYegVatWac2aNRo+fHi0S8EhLhAIaOvWrTrmmGP05ptvasKECRo/frzy8vKiXRoOQYFAQE899ZSeeOIJffrpp3ryySd18803016AX6HRjsikpaVpx44dCgaD8vl8CgaD2rlzp9LS0qJdGqJo+vTp+vnnnzVv3jzZtq20tDRt27YtvH737t2yLEtJSUlVrkPjtWLFCm3cuFFnnHGGJGn79u0aM2aMRo4cSVtBGW3btpXf79fQoUMlSb169VJycrKaNGlS6fePMYbvJo9at26ddu7cqb59+0qS+vbtq6ZNmyouLo72ggpV1Zetqm14qd002hGZlJQUde/eXQsXLpQkLVy4UN27d290Q2qI3KxZs7R27VrNnTtXsbGxkqRjjz1W+/fv18qVKyVJf/3rX3XOOedUuw6N19VXX62lS5dq8eLFWrx4sdq0aaP58+dr7NixtBWU0bJlS/Xv31/Lli2TFLpKUGZmpjp37lzp9w/fTd7Vpk0bbd++XRs3bpQk/fTTT9q1a5c6depEe0GFqvr913ZdY2MZY0y0i6gvP/30k+644w7t27dPiYmJmj59uo444ohol4Uo+PHHHzV06FB17txZTZo0kSS1b99ec+fO1TfffKMpU6aooKBA7dq108yZM9WqVStJqnIdvGHgwIGaN2+eunXrRltBOVu3btVdd92lPXv2yO/366abbtJpp51W5fcP303e9c477+iZZ56RZVmSpBtuuEFnnnkm7QW6//77tWjRIu3atUvJyclKSkrSe++9V+u24ZV206iDDAAAAIDGqdGeWgYAAACg8SLIAAAAAHAdggwAAAAA1yHIAAAAAHAdggwAAAAA1yHIAAAAAHAdggwAAAAA1yHIAAAAAHAdggwAoF4MHDhQ8+fP17nnnqu+ffvqpptuUkFBgZ5++mldfPHFCgQCkqTXXntNQ4YMUUFBQZQrBgC4CUEGAFBvPvjgAz377LP65JNPtH79er355psaO3asYmJi9OSTT2rz5s2aNWuWZs6cqbi4uGiXCwBwEX+0CwAANF4jR45U69atJUmnn3661q1bJ9u2NX36dF144YV6//33NXbsWB1zzDFRrhQA4DaMyAAA6k1qamr4edOmTZWXlydJat++vfr376///e9/uuyyy6JVHgDAxQgyAIAG99lnn2nVqlU66aSTNGPGjGiXAwBwIYIMAKBB7d69WxMnTtS0adP04IMPavHixfrss8+iXRYAwGUIMgCABjV58mQNHDhQp512mpKTkzVt2jRNnDhRWVlZ0S4NAOAiljHGRLsIAAAAAKgJRmQAAAAAuA5BBgAAAIDrEGQAAAAAuA5BBgAAAIDrEGQAAAAAuA5BBgAAAIDrEGQAAAAAuA5BBgAAAIDrEGQAAAAAuM7/B/NO+cVN6Hs4AAAAAElFTkSuQmCC\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAF/CAYAAAChV+O/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xm81GXd//HXzNlAdgHFDZXtUhBxFzcUbDMz77RNQzO11FstS+0u7+q2ur3zNttMTSu7MzXL+65f2WYWhLsliqYcvBRlE1GQReCwzZmZ3x9nOBzgHDj7zPfM6/l48IDzvWa5Dp+m45vvd96TyufzSJIkSZLaJ13sDUiSJElSkhmqJEmSJKkDDFWSJEmS1AGGKkmSJEnqAEOVJEmSJHWAoUqSJEmSOsBQJUmSJEkdYKiSJEmSpA4wVEmSJElSBxiqJEmSJKkDDFWSJEmS1AGVxd5AN6oBjgSWANki70WSJElS6akA9gCeAja29k7lFKqOBB4p9iYkSZIklbwTgEdbe+NyClVLAFaurCOXyxdlA4MH92X58rVFeW61jzNLHmeWPM4seZxZsjiv5HFmxZNOpxg0qA8UskNrlVOoygLkcvmiharNz69kcWbJ48ySx5kljzNLFueVPM6s6Nr0diGLKiRJkiSpAwxVkiRJktQBO738L4QwGLgLGElDA8Zc4KIY47IQQh54HsgVbn5OjPH5wv1OA75ZeI6ngU/EGNd11ZokSZIkFUNr3lOVB26IMc4ACCF8E7geuKCwfmyMcat30oUQ+gI/Ak6IMb4cQvgxcBXwta5Y68hfQDZbz8qVy6iv39SRh2mVpUvT5HK5nd9QJaOlmVVWVjNo0FAqKsrpbYmSJElqzk7/izDGuAKY0eTQk8AlO7nbKcDMGOPLha9vA+6kIQB1xVq7rVy5jF69dqFPn2GkUqmOPNROVVamqa83VCVJczPL5/PU1a1m5cplDBmyR5F2JkmSpFLRpn9mDyGkaQhU9zc5PCOEUAn8Cbg2xrgRGA4saHKbhcA+hT93xVq71ddv6pZApZ4jlUrRp09/1q5dVeytSJIkqQS09dql7wNrgZsLXw+PMS4KIfSn4X1XXwa+1In763SDB/fd6uulS9NUVVV02/NXVtoNkjQtzSydTjN0aL9u3o1aw7kkjzNLHmeWLM4reZxZsrQ6VIUQbgRGA6fFGHMAMcZFhd9XF97j9LnCzRcCk5vcfTiwqAvXWm358rVb9f7ncrluuySvNZf/TZ/+V+666yfk87Bp00bGjDmAa6+9rl3Pt2TJ61x44Tn84Q/T2nX/po4//ghGjhxFKtUQMN71rvdw9tnnctlln+Kss87huONOAODhh2fw05/+iA0bNlBfX88JJ5zERRddSnV1dYf3sNl9991LfX09Z599Tpvu9+Mf38b++4/g5JPftcPb/frX/0td3VrOOecTO5xZLpdj2bI1bdqDut7Qof2cS8I4s+RxZsnivJLHmRVPOp3a7iRMa7QqVIUQrgMOB04tXN5HCGEQsCHGuL5w+d8HgWcLd3kAuDmEMLrwHqiLgfu6cK1HeOutt/j2t6/njjvuZvfdh5HP55k796Vu30c2m6WiYvuzdz/4wU/YZZddWrzfs88+w3e+cwM33ngTI0eOYuPGjVx33bV8+9v/zRe+8OVO2duGDRv4v//7BXfd9cs23/fCCy9u1e3e//4PcPbZZ3LGGR9iwID+bX4eSZIklZfWVKqPA64BXgIeDyEAzANuAG4v1KpXAY/TcPkfMcY1IYRPAb8PIVQAs4DPdNVaT7FixVtUVFQyYMBAoOG9O6NHh8b1F174J7fc8j3WrWtokb/00s9w1FETufnm7/Lss8+QyWQYOHAgX/ziVxg2bPsCha9+9UssXLiATGYTe+21D1/84lfo378/zzwzk5tu+jYTJhzCnDm1fPzjFzSeeWqLn/zkh3z84+czcuQoAGpqarjqqi9w5pnv47zzLmTYsD04/vgj+MQnPslTT/2dt99exUUXXcpJJ53Mhg0b+M///A/mz3+ViopKhg/fl69//frtnmPGjGkccshh1NT0AuCPf/wdf/nLA/Tt249XXnmZoUN344orrubWW7/HokWLOPDAsXzlK18nlUpx3XXXcsABB3LmmR/hjjtuZ+HCBdTVreX11xez11578/Wv/ze9evWisrKSo46ayLRpf+GMM85s89+DJEmSyktr2v9mAy21OBy8g/v9Fvhtd611lseeX8Kj/1zSJY994qF7MnHssBbXR40aw9ix4zjzzFM59NDDOfjgQ3j3u9/LgAEDWb36ba655mquu+4Gxo+fQDabpa6uDoCpU8/jssuuAOB3v/sNP/jBTXz1q9/Y7vE/85mrGDiwIbD98Ie3cs89d3LJJZcD8Oqrc7nqqi/w2c9+vsX9XXLJ+Y2X/335y19rDE+bvfLKy1x++We3Ota//wD23HNvXnllbmPQS6fT3HbbT1i4cD4XX3wBEyYcyj//+Rxr1qzh7rv/F4DVq1c3u4dZs55m7NhxWx2bM6eWn/3sF+y22+58/vNX8NWvfombb/4hvXr14oILpjJz5j848sijt3usGOfwox/9jL59+/K5z13Ggw/+ife//wMAjBs3nieffMxQJUmSpJ3yQ3ZKSDqd5hvf+BavvjqXWbOe4ZFHZvDzn9/Fz372C1544Xn2229/xo+fAEBFRQX9+zdcmvbkk4/x61//L+vXryObzbb4+A888HsefPAB6uszrF+/gX32Gd64tvfe+3DQQS1mZGDnl//l8y0ubeV97zsdgOHD92PMmMDs2c8zatRoFi6cz7e+9d8ceujhHHvs8c3ed9mypRx77NZn0Q4+eAK77bY7AKNHB4YN24O+fRuuhR01ajSLFy9qNlQdddRE+vVreBPo2LEHsXjxa41rgwcPYenSpa37hiRJktRmuXVvk3nxIXIrX6fX5E+SSndfeVxnM1Rt47jxe3Dc+K757KHWfk7ViBGjGDFiFGee+WGmTv0Qs2Y9TWVlVbO3feONJXz/+9/mRz/6GXvuuRfPP/8cX/3q9gWMzz03i9/85lf84Ac/YdCgQTz44APcf/+vG9d79245LLXWqFGjmT37+a0uWVy9+m1ef/01RowY2ex9GoJYir322pt77vlfZs58iieffIwf/vAW7rzzF9TU1Gx1+5qaGjZt2rjVsaYlGOl0murqmiZfV7QYNLe+XXqr223atHG755YkSVLH5PN5sm/OJTN7GvXznoJclsp9DwVa+a/zJcp+7xKybNlSXnjhn41fL136JqtWrWSPPfZk/PiDmT9/XuN6Nptl9erV1NXVUVlZxeDBg8nlcvzmN79q9rHXrFlDnz59GTBgAJs2beIPf7i/2dt1xHnnXcidd/6EV16ZC8DGjRu58cbrmTz5Heyxx56Nt9v83IsWLWTu3Mi4cQexdOmbpNMVTJp0Ep/+9JWsWrWSNWu2vwRwxIhRLFy4YLvjnW3+/HmMGjWmy59HkiSpHOQzG9k0Zwbrfv0V1t9/HfWLnqNq7BT6fPgb9H73Z0ilk32uJ9m772Gy2Sx33HE7b7yxhJqaXuTzOS688BLGjDkAgOuuu4Hvf/87bNiwnlQqzaWXfoYjjzyayZPfwdSpH2H33Xfn0EMP57nnZm332BMnHsuDD/6Js8/+ILvtthsHHHAgtbWzO3X/hx12BFdccRX/+Z9fYePGjWQy9ZxwwiQuuujSrW5XXV3NJZecz6pVq7j66msYNGhXnnjiMW67reHjz3K5LFOnnseQIUO3e44TT5zMt77131xwwUWduvdt/eMfT/KpT/1rlz6HJElST5dbtYRNtdPJvPQobFpPevA+1JxwHlWjjiFV1XOuCkrlW/tGmOTbD5i37edUvfHGAoYN27dbNtDay/96suOPP4IHH3x4h+/N2pnPfe4yLr74ssaw2dkWLJjPN7/5X9x88w93OLPu/N+OWs/P9kgeZ5Y8zixZnFfyJH1m+VyW+gXPkqmdTnbxbEhXUDniSKrGnkzF7qNIpVrqwCu+Jp9TtT8wv7X380yVEuezn/08r722sMsef+nSN7jyyi902eNLkiT1RJuLJzJzZpCvW0Gqz65UH3EGVQecSHqXAcXeXpcyVKlbPfrozA4/xj77DN+qubCzHXnkxC57bEmSpJ6kueKJir3GUXXcx6gcfkiiG/3awlAlSZIkqU3ymY1k5j5BpnYaueWLoLo3VWOnUD12CumBXdOkXcoMVZIkSZJapbF4Ij4KmZ5bPNFWhipJkiRJLWqpeKJ67MmkS7x4orsYqiRJkiRtp9niiSPPpCpM6vHFE21lqJIkSZIEWDzRXoaqEvK5z13OpEkn8S//cmbjsXw+z4c/fDr//u/Xcsghh7X5MZ95Zib19fUcdVTHG+2WLHmdj370A+y//8jGY2effQ7vetcpfPCDp3HDDd9hxIhRANx////jvvvuJZ/Pkc3mOOWUUznnnE+QTqc7vI/NbrrpW4wfP4HJk9/Rpvtdf/3XOeWU9zFhwqE7vN2tt36PAw44kClT3tWRbUqSJJW8xuKJ2dPIrbB4oq0MVSXk1FPfzy9/ec9WoWrWrKepqKhoV6DafP/169e3K1Rls1kqKrb+14i+ffvy05/+fIf3e+CBP3Dfffdy4403MWzYMFavXs0111xFPp/nvPMubPM+mrN06ZvMnPkPLr/8c22+7xe+8OVW3e6ss87l0ksv5KST3tGpYVCSJKlUWDzROQxVJWTSpJP49revZ968V9l//xEA/OEP9/Pe954GQCaT4Yc/vJVnn32aTKaekSNHcuWVX2SXXXZh7dq13HTTt3jxxVpSqTQTJhzC6aefyW9/+2tyuRwzZ/6Dk09+F+eccx5/+tPvuffeu0ilUuy55958/vPXMGjQrvzxj7/jr399kEGDBjJv3jy++MUvM3p0aPP3cccdP+TKK/+NYcOGAdC/f3+uuuqLXHDBVM4++1yWL3+LCy88h1NOOY3nnnuGjRs3cuWVX2DChENZuXIF1177JVauXA7AEUccxac/feV2z/HHP/6Ok046ufGNkXfccTsLF86nrq6ORYsWEsKBTJ36cW6++bu88cYSTjxxCpde+hkALrvsU5x11jkcd9wJXHfdtVRXV7No0UKWLn2TcePG86UvfZVUKsWgQYPYc8+9ePrpf/jZVZIkqcfYUjwxjeziWosnOoGhahuZlx4jEx/ukseuOfBEKkYd2+J6VVUV73zne/jTn37Hv/7rZ1i3ro5HHnmIiy++DIB77rmTPn368KMf/QyAW2+9ibvu+h8uuuhSbrrpW/Tu3Zuf/vRe0uk0q1atYuDAgZx++hmsX7+eyy67AoBXX53LbbfdzB133M2QIUP40Y9+wHe+802+9rVvAPD888/y05/ey1577d3sHteuXct5553d+PX3vncrAwYMbPx63bo6lixZzLhx47e633777U9VVRWvvbaQ3r134e2332bkyFFcdtkVzJr1NNde++/88pe/4cEH/8SwYcP43vduBWD16tXN7mPWrKc566xztjoW44v8+Md30bt3b84/fyq33XYzN954E9lslg996P28//0faPZDg1999RW++91bSafTfOITH2PmzL83hqjx4w9m5synDFWSJCnxLJ7oOoaqEnPqqadz1VWX86lPXcq0aX/h4IMnMHTobgA89tjD1NXVMWPGdAAymU2MGjUagMcff4Qf//juxsvUBg4c2OzjP/PMTI455jiGDBkCwOmnn7FVSBo//pAWAxW07vK/luTz+cY/V1VV8e53vxeAQw89nJqaGhYuXMC4ceP55S9/zi23fI9DDjmMo48+ptnHWrr0TXbdddetjh111ET69u0LwKhRoxg5cgzV1dUADB++L4sXv9ZsqDrhhJOoqWk4vR1CYPHi1zjyyIa1wYMHs2DBM+36fiVJkoqtoXjiZTKzp1s80YUMVduoGnMcVWOO65LHrqxMU1+f2+FtRo8ew+DBQ/j735/gj3+8nw9/eEvgyefhyiu/wOGHH9nuPeTzbHdKt+mXu+zSu92P3XD/Puyxx17Mnv08EyduOSs3f/486uvr2WuvfVixYnkz+8qTSqU46KCD+Z//uYennvo7f/7zH7n77p/ygx/csd3ta2p6sWnTpq2OVVdvue43na6gpqa6yddpstlss3ve+nYVW91u48ZNjYFLkiQpKfKZDWTmPrlN8cTJVI+dbPFEF/Dd9yXo1FPfz09+8kMWLVrI8cef2Hj8+OMn8ctf3sPGjRuAhkvt5s+fB8Cxx57Avff+rPFs0KpVqwDo06cPdXVrGx/j8MOP5IknHmP58rcA+N3vfsMRRxzVqfs///xPcsst3+XNN98AGi7hu/HGbzB16nmNASWTyfCXvzwAwHPPzWLTpk0MH74vr7++mD59+vKOd7ybyy//LDG+SC63fRAdOXIkCxcu6NR9N2f+/HmNZwMlSZJKXW7VEjY8fg9r7/4sGx/5KaSg5oTz6Pux79Lr2LMNVF3EM1Ul6J3vPIVbbrmJ008/g6qqqsbjU6eexx133M6FF55buMwvxfnnf5L99tufyy//HDfd9C3OOecjVFRUcOihh3HFFVczadJk/v3fr+a8885uLKq46KJL+exnLy0UVezF1Vdf06n7P+WU97Fx4wauvPLyhlPO2Szvec+pnHvu+Y23GTBgAK+9tohPfvLjbNy4gWuvvY6qqipmzXqaX/zibioqKsnnc1x99Rebbd6bNGkK06f/pbHEoyvk83lmzvwHU6ee12XPIUmS1FEWTxRfqun7XHq4/YB5y5evJZfb8j2/8cYChg3bt1s20JrL/8rBkiWvc+GF5/CHP0xr92Nks1k++clzueGG7zW+P6yz/f3vT/CXv/yJL33pa82ud+f/dtR6Q4f2Y9myNcXehtrAmSWPM0sW55U8rZ1Zc8UTVWMnU3XAiaR79++GnfY86XSKwYP7AuwPzG/t/TxTpUSqqKjg6quvYcmSxV0Wqurq6hpr2CVJkkpBy8UTU6kcPsHiiSIxVKnb7bHHnh06S7XZgQeO64TdtGzKlHd4dlGSJJWEfGYDmZefIFM7fZviiSmkBw4r9vbKnqFKkiRJKlHZVa+Tqf0bmfgoZNaTHrwPNSecR9WoY0hV2VBcKgxVbKnzllqrjN6LKEmSulk+lyUz72mLJxKk7ENVZWU1dXWr6dOnv/8DVavk83nq6lZTWVm98xtLkiS10ubiiYXxIbJrlpPqsyvVR55p8UQClH2oGjRoKCtXLmPt2lVd/lzpdLrZz1xS6WppZpWV1QwaNLQIO5IkST3JluKJadTPmwm5LL33n0D+mI9ZPJEgZR+qKioqGTKkez4EzUrT5HFmkiSpK+yoeGL30aP974+EKftQJUmSJHWX7KrXycyeTualxwrFE8OpmfQJqkZOtHgiwQxVkiRJUhfK57LUL5hFpnZ6oXiislA8McXiiR7CUCVJkiR1gdy6VWRefJjMnBnk61ZYPNGDGaokSZKkTtJc8UTF3gdRddxUiyd6MEOVJEmS1EE7Kp5IDxxW7O2pixmqJEmSpHayeEJgqJIkSZLapMXiiXEnk95tpMUTZchQJUmSJLXCdsUTfQdTfeQHqTpgksUTZc5QJUmSJLVgx8UTh5BKp4u9RZUAQ5UkSZK0DYsn1BaGKkmSJKnA4gm1h6FKkiRJZa2xeGL2NLKvz7F4Qm1mqJIkSVJZaiieeKhQPLHS4gm1m6FKkiRJZSOfz5N94yUytdO3Kp6oPu5cKoZPsHhC7WKokiRJUo+3pXhiGrkVr0H1LlSNewfVB062eEIdZqiSJElSj2XxhLqDoUqSJEk9isUT6m6GKkmSJPUIFk+oWAxVkiRJSqzG4onZ06if9zTkLZ5Q9zNUSZIkKXEaiiceJ1M7fUvxxEEWT6g4DFWSJElKjOzK18nUNlM8MWoiqUqLJ1QchipJkiSVNIsnVOoMVZIkSSpJFk8oKQxVkiRJKhkWTyiJdhqqQgiDgbuAkcBGYC5wUYxxWQhhInA70BuYD0yNMS4t3K9b1yRJkpRcLRZPjJ1MeoDFEyptrYn6eeCGGGOIMR4MvAJcH0JIAXcDl8YYxwAPA9cDdPeaJEmSkim78nU2PHY3a+/+LBsf/RmkKqiZ9An6Tv0OvY45y0ClRNjpmaoY4wpgRpNDTwKXAEcAG2KMjxaO30bD2aPzi7AmSZKkhMjnstTPf4ZM7XSLJ9QjtOmi1BBCmoZAdT8wHFiweS3G+BaQDiHsWoQ1SZIklbjculVsfOa31N17FRv+egu51UupPuqD9PnYt+k95SIqdh9loFIitbWo4vvAWuBm4AOdv52uN3hw36I+/9Ch/Yr6/Go7Z5Y8zix5nFnyOLNkKea88vk8GxbNYfXTD1D34pOQy9J7xAT6H34Ru4w6jFS6omh7K2W+xpKl1aEqhHAjMBo4LcaYCyEsBPZtsj4EyMcYV3T3Wlu+4eXL15LL5dtyl04zdGg/li1bU5TnVvs4s+RxZsnjzJLHmSVLsebVbPHEuC3FE+uAdcvXdfu+ksDXWPGk06l2nYRp1eV/IYTrgMOBf4kxbiwcfhroHUI4vvD1xcB9RVqTJElSCWgonriLtXdfYfGEykZrKtXHAdcALwGPhxAA5sUYPxBCOAe4PYTQi0LFOUDhTFa3rUmSJKl4LJ5QuUvl88W5FK4I9gPmefmf2sKZJY8zSx5nljzOLFm6cl65davIzHmIzIszyNetJNV3MFVjJ1MVJpHu3b9LnrMc+BorniaX/+1Pw0mcVmlrUYUkSZLKWD6fJ/vGS2RmT6N+3tOQz1Kx90FUH3cuFcMnkEq3qVxa6hEMVZIkSdqp/Kb1ZOY+sXXxxEFbiiekcmaokiRJUouyK18nUzuNzEuPQWYD6cH7UjPpE1SNmkiqsqbY25NKgqFKkiRJW8nn6qmfP8viCamVDFWSJEkCmhRPzPkb+XWrSPUdTPVRH7R4QtoJQ5UkSVIZa7F44oSPU7GPxRNSaxiqJEmSylBj8cTs6eRWWjwhdYShSpIkqYxkVy4mUzvd4gmpExmqJEmSejiLJ6SuZaiSJEnqoXLrVrHykT9RN/PPFk9IXchQJUmS1INsWzxRZ/GE1OUMVZIkST1AS8UTw44/jVXZvsXentSjGaokSZISLLtyMZnZ08m8XCieGLIvvSadT+Woo0lV1lC1az9YtqbY25R6NEOVJElSwjRbPDHyKKrHTrF4QioCQ5UkSVJC5NatIjPnITJz/mbxhFRCDFWSJEklbNviCfJZKvYZb/GEVEIMVZIkSSWopeKJ6rFTSA/Yvdjbk9SEoUqSJKmE7Kx4QlLpMVRJkiQVWWPxxOxpZJe8uKV4YtzJpIeOsHhCKnGGKkmSpCJpvnjiQ1SFEyyekBLEUCVJktSN8vk82SWRTO10iyekHsJQJUmS1A22K56o6UPV+HdSfeBkiyekhDNUSZIkdSGLJ6Sez1AlSZLUySyekMqLoUqSJKmTNBRPzCAzZ4bFE1IZMVRJkiR1QMvFE+dRsc/BFk9IZcBQJUmS1A75TevJvPw4mdrp5FYutnhCKmOGKkmSpDaweELStgxVkiRJO2HxhKQdMVRJkiS1wOIJSa1hqJIkSWpiS/HENOrnPWPxhKSdMlRJkiRh8YSk9jNUSZKksrZ98cR+9DrxAipHHmXxhKRWMVRJkqSys13xREUllSOOpnrcFIsnJLWZoUqSJJWNFosnDphEule/Ym9PUkIZqiRJUo9m8YSkrmaokiRJPVKLxRNjp5Duv1uxtyepBzFUSZKkHiW7YjGZ2mlkXn7c4glJ3cJQJUmSEq+heOIZMrOnb1M8cTLpoftbPCGpSxmqJElSYuXqVpJ58aEtxRP9hlB91IepOuAEiyckdRtDlSRJSpTmiycOtnhCUtEYqiRJUiJYPCGpVBmqJElSSWu5eOJoUpXVxd6eJBmqJElS6bF4QlKSGKokSVLJyNWtJDNnBpkXH7J4QlJiGKokSVJRNRRPvEimdnqheCJHxT7jLZ6QlBiGKkmSVBQWT0jqKQxVkiSpW1k8IamnMVRJkqQut6V4YhrZJXGr4omK3UYUe3uS1CGGKkmS1GUsnpBUDgxVkiSpUzUWT8yeRv38ZyCfbyiemHQeFXtbPCGp52lVqAoh3AicCewHjI8xvlA4Ph/YUPgF8G8xxj8X1iYCtwO9gfnA1Bjj0q5akyRJxdVQPPFYoXji9ULxxLssnpDU47X2n4p+A0wCFjSz9sEY4yGFX5sDVQq4G7g0xjgGeBi4vqvWJElS8WRXLGbDoz9j7T2fZeNjd0NFNb1OvIC+H/sOvSZ+1EAlqcdr1ZmqGOOjACGE1j7uEcCGzfcDbqPhzNL5XbQmSZK6UT5XT/28Z8jUNimeGHk01WMtnpBUfjrjPVX3FM4iPQpcE2NcBQynyVmtGONbIYR0CGHXrliLMa7ohO9DkiTtRK5uJSvm/JG6px+0eEKSCjoaqk6IMS4KIdQA3wVuBqZ2fFtdZ/DgvkV9/qFD/YGTNM4seZxZ8jiz0pbP59mwcDarZz5AXfw75PP0HnkIAw4/hd4jDyGVrij2FrUTvsaSx5klS4dCVYxxUeH3jSGEW4H7C0sLgX033y6EMATIxxhXhBA6fa0te16+fC25XL6t32qnGDq0H8uWrSnKc6t9nFnyOLPkcWalq6XiiWHHn8aq+j7UAXXL1xV7m9oJX2PJ48yKJ51OteskTLs7TUMIfUIIAwp/TgEfBZ4tLD8N9A4hHF/4+mLgvi5ckyRJnWS74onKmq2KJ6oGDSv2FiWppLS2Uv0m4AxgGPDXEMJy4DTgVyGECqACqAX+FSDGmAshnAPcHkLoRaH+vKvWJElSx1g8IUntl8rni3MpXBHsB8zz8j+1hTNLHmeWPM6suHJ1K8nMmUHmxYcaiyeqDpyyw+IJZ5Yszit5nFnxNLn8b38aTuK0Sme0/0mSpATJ5/Nkl7xIZvY06uc/A/k8FfuMp3rSeVTsfTCpdLvfHSBJZclQJUlSmWipeKJ67BQ/oFeSOsBQJUlSD5dd8RqZ2ulkXn4cMhtID92fXideQOXIo0lVVhd7e5KUeIYqSZJ6IIsnJKn7GKokSepBti+eGErN0R+mMrRcPCFJ6hhDlSRJCWfp8iawAAAZqklEQVTxhCQVl6FKkqSEsnhCkkqDoUqSpISxeEKSSouhSpKkBLB4QpJKl6FKkqQS1lg8MWcG+fVvWzwhSSXIUCVJUolpsXhi3BSLJySpBBmqJEkqEflN68m8VCieWLW5eOLdVI+dbPGEJJUwQ5UkSUVm8YQkJZuhSpKkIrB4QpJ6DkOVJEndqKXiiaowiVSvvsXeniSpHQxVkiR1sZaLJ06mYu/xFk9IUsIZqiRJ6iIWT0hSeTBUSZLUybIrXiMze1pD8UT9RosnJKmHM1RJktQJ8tl66uc/TaZ2usUTklRmDFWSJHWAxROSJEOVJElttMPiiX3Gk0pZPCFJ5cRQJUlSK1k8IUlqjqFKkqSdaLZ44qQLqRxxlMUTkiRDlSRJzWm+eGIi1WOnWDwhSdqKoUqSpCYsnpAktZWhSpJU9potnhh+cMNZKYsnJEk7YaiSJJUtiyckSZ3BUCVJKjsWT0iSOpOhSpJUFhqLJ2ZPI/vGSxZPSJI6jaFKktSjNRRP/I3MnIeaFE98hKpwgsUTkqROYaiSJPU4+Xye7OtzyNROt3hCktTlDFWSpB7D4glJUjEYqiRJiZddsYjM7OkWT0iSisJQJUlKpO2LJ6qoHHm0xROSpG5nqJIkJUpu7QoyL86weEKSVDIMVZKkktdYPDF7GvULZjUpnjiZin0OsnhCklRUhipJUsnKb1rXpHhiCamavlQf/B6qDjzJ4glJUskwVEmSSs72xRMjLJ6QJJUsQ5UkqSS0WDwx7mQqhu5f7O1JktQiQ5UkqajqVy9n48zfWzwhSUosQ5Ukqds1LZ5YY/GEJCnhDFWSpG7TXPHEgInvp37fYy2ekCQllqFKktTldlQ8MXiPwSxbtqbYW5Qkqd0MVZKkLpHP1lM/byaZ2ulNiicmUj1uisUTkqQexVAlSepUubUryLw4w+IJSVLZMFRJkjqsafFEvcUTkqQyY6iSJLVbc8UT1Qe/h6oDJ5PuP7TY25MkqVsYqiRJbdZQPDGNzMtPNCme+CSVI44kVVld7O1JktStDFWSpFaxeEKSpOYZqiRJO5Rbu4LMnL+RefEh8utXWzwhSdI2DFWSpO1YPCFJUusZqiRJjSyekCSp7XYaqkIINwJnAvsB42OMLxSOjwHuBAYDy4FzY4wvF2NNktQxFk9IktR+rbl+4zfAJGDBNsdvA26JMY4BbgFuL+KaJKmN8tl6MnOfZN39/8W6//symZceo3LEUezygf+gzwe+QtWY4wxUkiS1wk7PVMUYHwUIITQeCyHsBhwGvLNw6F7g5hDCUCDVnWsxxmVt/J4lqaw1Wzwx8SNUjbF4QpKk9mjve6r2ARbHGLMAMcZsCOH1wvFUN68ZqiRpJyyekCSp65RdUcXgwcX9V9ihQ/sV9fnVds4seZzZFrkNdax5fgarn36AzPLXSffux4CJ76f/Ye+iauDuxd5eI2eWPM4sWZxX8jizZGlvqFoE7BVCqCicNaoA9iwcT3XzWpssX76WXC7fzm+7Y4YO7ceyZWuK8txqH2eWPM6sQXb5IjK1TYondttSPJGrrGZVBiiRvydnljzOLFmcV/I4s+JJp1PtOgnTrlAVY1waQngWOAu4u/D7rM3vb+ruNUlSQ/FE/byZZGqnk33jJaioonLkRKrHnUzF0P2KvT1Jknqs1lSq3wScAQwD/hpCWB5jHAdcDNwZQvgKsBI4t8nduntNkspWbu1yMnNmbCme6L+bxROSJHWjVD5fnEvhimA/YJ6X/6ktnFnylMvMWiyeGHcyFXsnq3iiXGbWkzizZHFeyePMiqfJ5X/7A/Nbe7+yK6qQpCTLb1pH5qXHyMyeRu7tN0jV9KX64PdQdeBk0v2HFnt7kiSVJUOVJCVAdvkiMrOnkZn7ONRv2qp4wg/olSSpuAxVklSiLJ6QJCkZDFWSVGIsnpAkKVkMVZJUAnpS8YQkSeXGUCVJRdRi8cTYyaT7WTwhSVISGKokqQgsnpAkqecwVElSN2ksnpg9jeybL0NFFVWjJlI11uIJSZKSzFAlSV3M4glJkno2Q5UkdYF8Pk92cS2Z2unUL3gG8lg8IUlSD2WokqROlN9YR+blx7cpnjjF4glJknowQ5UkdQKLJyRJKl+GKklqJ4snJEkSGKokqc0snpAkSU0ZqiSpFZovnphA9bgpFk9IklTmDFWStAP5jXVkXnqMTO10iyckSVKzDFWS1Izs8oVkZk+3eEKSJO2UoUqSCiyekCRJ7WGoklT2mi+e+ChVY463eEKSJO2UoUpSWdpSPDGN+gWzmhRPnEzF3uMsnpAkSa1mqJJUVrYrnujVj+oJ76XqwJMsnpAkSe1iqJJUFrYvnhhp8YQkSeoUhipJPVaLxRPjTqZiyH7F3p4kSeohDFWSepztiyd2t3hCkiR1GUOVpB5hc/HEGzMeYt3LT1k8IUmSuo2hSlKibS6e2FQ7nfzbb5Depb/FE5IkqVsZqiQlUkPxxDQyc59oLJ6omfwphh01meUrNxZ7e5IkqYwYqiQlRkPxxFNkZk8vFE9UF4onpjQWT6QrqwFDlSRJ6j6GKkklr8XiiXACqZo+xd6eJEkqc4YqSSVpc/FEpnYa9QtmWTwhSZJKlqFKUknZtngi1aufxROSJKmkGaoklYSWiicq9z+CVGV1sbcnSZLUIkOVpKLJZzPUz5u5w+IJSZKkUmeoktTtcmuXk6n9G5n4cJPiibOoCsdbPCFJkhLHUCWpW+TzuULxxPSG4gmgcvghVI2dYvGEJElKNEOVpC5l8YQkSerpDFWSukSLxRMjjiRVUVXs7UmSJHUaQ5WkTrO5eGLT7Gnk3pxr8YQkSSoLhipJHWbxhCRJKmeGKknt0lg8MXsa9QufBSyekCRJ5clQJalNGoonHmVT7d+2KZ6YTLrfkGJvT5IkqdsZqiS1SvatBWRqp28pnth9FDWHWTwhSZJkqJLUonw2Q/2rT7GpdrrFE5IkSS0wVEnajsUTkiRJrWeokgTsoHhi3MlU7DXW4glJkqQWGKqkMtd88cSpVB14ksUTkiRJrWCokspUQ/HENDIvPwlZiyckSZLay1AllZFmiydGT2z4bCmLJyRJktrFUCWVgcbiiRcfIr9hjcUTkiRJnchQJfVQFk9IkiR1D0OV1MNsKZ6YTv7tNy2ekCRJ6mIdDlUhhPnAhsIvgH+LMf45hDARuB3oDcwHpsYYlxbu0+lrUrlrvnjidIsnJEmSulhnXf/zwRjjIYVffw4hpIC7gUtjjGOAh4HrAbpiTSpX+WyGzMuPU/fb/2Tdr/+DzMtPUjV6Iruc8VX6nP4lqkYfa6CSJEnqYl11+d8RwIYY46OFr2+j4czS+V20JpUViyckSZJKR2eFqnsKZ5IeBa4BhgMLNi/GGN8KIaRDCLt2xVqMcUUnfR9SybJ4QpIkqTR1Rqg6Ica4KIRQA3wXuBn4f53wuF1i8OC+RX3+oUP7FfX51XbFnll2/VrWPj+D1U8/QGbFEtK79GfgMR+g32HvpGrAbkXdW6kq9szUds4seZxZsjiv5HFmydLhUBVjXFT4fWMI4VbgfuB7wL6bbxNCGALkY4wrQggLO3utLftdvnwtuVy+Pd9qhw0d2o9ly9YU5bnVPsWcWXPFE70mf4rKEUeSrahi1SbA/z1tx9dZ8jiz5HFmyeK8kseZFU86nWrXSZgOhaoQQh+gMsb4duHyv48CzwJPA71DCMcX3gN1MXBf4W5dsSb1CPlshvpXn2JT7XRyb86FimqqRk+kauzJVAzZd+cPIEmSpG7X0TNVuwO/CiFUABVALfCvMcZcCOEc4PYQQi8K9ecAXbEmJd12xRMDdqfmmLOoGmPxhCRJUqlL5fPFuRSuCPYD5nn5n9qiK2dm8UTX8HWWPM4seZxZsjiv5HFmxdPk8r/9aTiJ0ypdVakuqQX5jXVk4qNsmjOd/NtvkurVj+oJp1J14Emk+w0p9vYkSZLURoYqqZs0VzxRc9jpVI440g/olSRJSjBDldSFLJ6QJEnq+QxVUheweEKSJKl8GKqkTmLxhCRJUnkyVEkdZPGEJElSeTNUSe2UfWsBmdnTyMy1eEKSJKmcGaqkNrB4QpIkSdsyVEmtkFvzFpk5MyyekCRJ0nYMVVIL8vkc6159lvWP/97iCUmSJLXIUCVto2nxxNqmxRNjJ5PuO7jY25MkSVKJMVRJBc0VTww56aOsH3KQxROSJElqkaFKZW1nxRP9hvZjw7I1xd6mJEmSSpihSmXJ4glJkiR1FkOVykY+nyO7uJbM7GkWT0iSJKnTGKrU4zUtnshbPCFJkqROZqhSj9Vc8UTN4f9C5f5HWDwhSZKkTmOoUo/SWDwxexq5pa9AZTVVo4+hauwUKobsW+ztSZIkqQcyVKlHaCie+BuZFx+2eEKSJEndylClxMrnc2Rfm02mdvqW4ol9D204K2XxhCRJkrqJoUqJ01g8UTud/GqLJyRJklRchiolRrPFE0dYPCFJkqTiMlSppFk8IUmSpFJnqFJJ2r54Yhg1x5xN1ZjjLJ6QJElSSTFUqWRsLp7YNHsa2UXPARZPSJIkqfQZqlR0DcUTj7Cp9m8WT0iSJClxDFUqmuxb88nMnm7xhCRJkhLNUKVula/fRP28mRZPSJIkqccwVKlbWDwhSZKknspQpS7TcvHEyVTsdaDFE5IkSeoRDFXqdNsVT/TuT/Uh76PqwJMsnpAkSVKPY6hSp9m2eKJi99FUWTwhSZKkHs5QpQ7J12+i/tWn2FQ73eIJSZIklSVDldolt2YZmdq/kYmPWDwhSZKksmaoUqs1FE+8wKbZ08kufA5SFk9IkiRJhirtVH7DWjIvPbp18cShFk9IkiRJYKjSDjQUT0wjM/fvFk9IkiRJLTBUaStbiiemkVv6aqF44liqxk62eEKSJElqhqFKgMUTkiRJUnsZqsrYjosnxpJKpYq9RUmSJKnkGarKkMUTkiRJUucxVJWRLcUTT0I2Uyie+ACV+x9u8YQkSZLUToaqHq754onjqBo3hYrBw4u9PUmSJCnxDFU9lMUTkiRJUvcwVPUgW4onppFd+E+LJyRJkqRuYKjqARqKJx4pFE8stXhCkiRJ6kaGqgTLLptPpnbb4okzqNz/CFIVjlaSJEnqDv6Xd8JYPCFJkiSVFkNVQmxbPJEeMIyaYz9G1ehjLZ6QJEmSishQVcKaL544jKqxUyyekCRJkkqEoaoEWTwhSZIkJYehqoRkl81n0+xp1L9SKJ4YNsbiCUmSJKnEJe6/1EMIY4A7gcHAcuDcGOPLxd1V+1k8IUmSJCVb4kIVcBtwS4zx7hDCVOB2YEqR99Qu9a+9wIZHfkp+zVsWT0iSJEkJlahQFULYDTgMeGfh0L3AzSGEoTHGZcXbWdvMfnkxax6+m3HZOWzoNYS3D/kkGwYHSKVg8QZgQ7G3qIIBy9fz9tvrir0NtYEzSx5nljzOLFmcV/KU28wG9q1h7936FnsbHZKoUAXsAyyOMWYBYozZEMLrheOtClWDBxd3YEOH9mP4C5Fc9kUeyhzM/SvGU//6RuCfRd2XJEmSVAwV6RT3/depVFdVFHsr7Za0UNVhy5evJZfLF+W5hw7tx7Jla+h74AnkRx7Bqb36cdSq9axelynKfrRzgwbuwspV5fMvRT2BM0seZ5Y8zixZnFfylNvM+vep5u0S+X7T6VS7TsIkLVQtAvYKIVQUzlJVAHsWjidGqqKKVO8qAHYbtAu7DSryhtSihiBcVextqA2cWfI4s+RxZsnivJLHmSVPutgbaIsY41LgWeCswqGzgFlJej+VJEmSpJ4laWeqAC4G7gwhfAVYCZxb5P1IkiRJKmOJC1UxxheBo4u9D0mSJEmChF3+J0mSJEmlxlAlSZIkSR1gqJIkSZKkDjBUSZIkSVIHGKokSZIkqQMMVZIkSZLUAYYqSZIkSeoAQ5UkSZIkdUDiPvy3AyoA0ulUUTdR7OdX2zmz5HFmyePMkseZJYvzSh5nVhxN/t4r2nK/VD6f7/zdlKbjgUeKvQlJkiRJJe8E4NHW3ricQlUNcCSwBMgWeS+SJEmSSk8FsAfwFLCxtXcqp1AlSZIkSZ3OogpJkiRJ6gBDlSRJkiR1gKFKkiRJkjrAUCVJkiRJHWCokiRJkqQOMFRJkiRJUgcYqiRJkiSpAyqLvYFyEUIYA9wJDAaWA+fGGF8u7q7KTwhhPrCh8Avg32KMfw4hTARuB3oD84GpMcalhfu0a03tE0K4ETgT2A8YH2N8oXC8xddQV6yp9XYws/k083orrPmaK5IQwmDgLmAkDR9sORe4KMa4rCvm4sw6biczywPPA7nCzc+JMT5fuN9pwDdp+O+9p4FPxBjXdWRNrRdC+A2wPw2zWQtcHmN81p9nPZNnqrrPbcAtMcYxwC00/IBRcXwwxnhI4defQwgp4G7g0sJ8HgauB2jvmjrkN8AkYME2x3f0GuqKNbVeSzODbV5v0P7Xla+5TpMHbogxhhjjwcArwPVdMRdn1mmanVmT9WObvM42B6q+wI+A02KMo4A1wFUdWVObfTzGOCHGeChwI/CTwnF/nvVAhqpuEELYDTgMuLdw6F7gsBDC0OLtSk0cAWyIMT5a+Po24MMdXFM7xRgfjTEuanpsR6+hrljrqu+tp2puZjvha66IYowrYowzmhx6EtiXrpmLM+sEO5jZjpwCzGxytuI24CMdXFMbxBjfbvLlACDnz7Oey1DVPfYBFscYswCF318vHFf3uyeE8M8Qwq0hhIHAcJr8C3uM8S0gHULYtQNr6lw7eg11xZo6z7avN/A1VzJCCGngEuB+umYuzqyTbTOzzWaEEJ4NIXwjhFBTOLbV3z2wkC3//9beNbVRCOHHIYSFwHXAx/HnWY9lqFK5OSHGOAE4EkgBNxd5P1JP5uut9H2fhvd6OJvk2HZmw2OMR9BwCe5Y4MvF2pi2F2O8MMY4HLiGhvepqYcyVHWPRcBeIYQKgMLvexaOqxttvkQpxrgRuBU4joZ/hWu8jCKEMATIxxhXdGBNnWtHr6GuWFMnaOH1Br7mSkKhYGQ08JEYY46umYsz60TNzKzp62w18GNaeJ3RcAZqUQfX1E4xxruAycBr+POsRzJUdYNCy9GzwFmFQ2cBs2KMy4q3q/ITQugTQhhQ+HMK+CgNc3ka6B1COL5w04uB+wp/bu+aOtGOXkNdsdb131HPt4PXG/iaK7oQwnXA4cC/FEIvdM1cnFknaW5mIYRBIYTehT9XAh9ky+vsAeDIEMLowtdN/+7bu6ZWCiH0DSHs0+Tr04AVgD/PeqhUPp8v9h7KQgjhABqqLgcBK2mouozF3VV5CSGMAH4FVBR+1QKfjjEuCSEcS0NTTi+2VP6+Wbhfu9bUPiGEm4AzgGHAW8DyGOO4Hb2GumJNrdfczIDTaOH1VriPr7kiCSGMA14AXgLWFw7PizF+oCvm4sw6rqWZATfQ8HebB6qAx4ErYoxrC/c7vXCbCmAWcF6Msa4ja2qdEMLuwG+BPkCWhkB1VYzxGX+e9UyGKkmSJEnqAC//kyRJkqQOMFRJkiRJUgcYqiRJkiSpAwxVkiRJktQBhipJkiRJ6gBDlSQpcUIIt4UQvryD9XwIYVQnP+fHQggPduZjSpJ6BivVJUlFFUL4KPBZ4CCgjobP37kT+EGMsV0/pEIIeWB0jHFuM2szgIlAPbABeBi4dPNnaHWGEMJ5wIUxxuN3dltJUvJ5pkqSVDQhhCuB7wHfpOHDg3cHLgaOA6pbuE9FJzz1ZTHGvsAYYCDwnU54TElSmaos9gYkSeUphDAA+BpwbozxV02WZgEfa3K7nwLrgX2BE4HTQwhTgddijF8q3OZq4HNAHvhSa/cQY1wRQvgVcEmTPX0fOAVYB/wI+K8YY27bs0+Fs2GXAFcCQ4CfA5cBBwC3AVUhhLVAfYxxYAjhvcCNwD7AauA7McYbW7tXSVLp8kyVJKlYjgFqgN+24rZnA9cB/YBHmy6EEN4DXAW8ExgNvKO1GwghDAHOpCHIQUOgGgCMoCHAnQt8YgcP8T7gSGAC8GHg3THGOTScbXsixtg3xjiwcNs7gItijP1ouNRxemv3KUkqbZ6pkiQVyxDgrRhj/eYDIYTHgbE0hK13xxgfLiz9Nsb4WOHPG0IITR/nw8D/xBhfKDzGtcBZO3num0IIN9LwHq4ZwOcKlxV+BDg0xrgGWBNC+BZwDg2BqDnXxxhXAatCCH8DDgEeaOG2GWBsCOG5GONKYOVO9ihJSgjPVEmSimU5MCSE0PgPfDHGYwtndpaz9c+oRTt4nD23WV/Qiuf+dIxxYIxxrxjjx2KMy2gIedXb3H8BsNcOHueNJn9eB/TdwW3PBN4LLAghPBRCOKYV+5QkJYChSpJULE8AG4HTW3HbHbUALqHhfUqbDW/nft6i4WzSvts81uJ2PNZ2+40xPhVjPB3YDfgNcF97NilJKj1e/idJKooY46oQwleBW0MIKRoum1sHHAz0acND3Qf8TwjhZ8B84D/auZ9sCOE+4LoQwrnArjSUX7SnTOJNYO8QQnWMcVMIoRr4EPD7GOPbIYTVQLY9+5QklR7PVEmSiibGeAMNweXzwFIawsjtwL8Bj7fyMf4EfJeG4oe5dKwA4nIa3mf1Kg2FGD8HftKOx5kOzAbeCCG8VTh2DjC/EKguBqZ2YJ+SpBLih/9KkiRJUgd4pkqSJEmSOsBQJUmSJEkdYKiSJEmSpA4wVEmSJElSBxiqJEmSJKkDDFWSJEmS1AGGKkmSJEnqAEOVJEmSJHWAoUqSJEmSOuD/A3IUTI6mIjfsAAAAAElFTkSuQmCC\n",
       "text/plain": [
        "<Figure size 1008x432 with 1 Axes>"
       ]
      },
-     "metadata": {},
+     "metadata": {
+      "needs_background": "light"
+     },
      "output_type": "display_data"
     }
    ],
    "source": [
-    "df_flop.set_index(\"nx\")[[\"Scalar FlOps / Loop Iteration\", \"Vector FlOps / Loop Iteration\"]].plot();"
+    "df_flop.set_index(\"Grid Points\")[[\"Scalar FlOps (min)\", \"Vector FlOps (min)\"]].plot();"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 43,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Counter Scalar FlOps (min) is proportional to the grid points (nx*ny) by a factor of -0.0003 (± 0.0002)\n",
+      "Counter Vector FlOps (min) is proportional to the grid points (nx*ny) by a factor of  7.5004 (± 0.0002)\n"
+     ]
+    }
+   ],
+   "source": [
+    "_fit, _cov = common.print_and_return_fit(\n",
+    "    [\"Scalar FlOps (min)\", \"Vector FlOps (min)\"], \n",
+    "    df_flop.set_index(\"Grid Points\"), \n",
+    "    linear_function\n",
+    ")\n",
+    "fit_parameters = {**fit_parameters, **_fit}\n",
+    "fit_covariance = {**fit_covariance, **_cov}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "exercise": "solution"
+   },
+   "source": [
+    "Interesting! We seem to be using the vector registers of our system very well. Basically all operations are vector operations!"
    ]
   },
   {
@@ -4317,29 +4640,31 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 66,
+   "execution_count": 56,
    "metadata": {},
    "outputs": [],
    "source": [
-    "I_flop_scalar = df_flop.set_index(\"nx\")[\"Scalar FlOps / Loop Iteration\"]\n",
-    "I_flop_vector = df_flop.set_index(\"nx\")[\"Vector FlOps / Loop Iteration\"]\n",
-    "I_mem_load    = df_byte[\"Loads / Loop Iteration\"]\n",
-    "I_mem_store   = df_byte[\"Stores / Loop Iteration\"]"
+    "I_flop_scalar = df_flop.set_index(\"Grid Points\")[\"Scalar FlOps (min)\"]\n",
+    "I_flop_vector = df_flop.set_index(\"Grid Points\")[\"Vector FlOps (min)\"]\n",
+    "I_mem_load    = df_byte[\"Loads\"]\n",
+    "I_mem_store   = df_byte[\"Stores\"]"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 75,
+   "execution_count": 57,
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAF/CAYAAABOlYiBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3XtgVPWd///XzJmZ3ENICCEoQsXLBgEvUPvzQuoFTStIXL61bFGqVbCtbdW2WrG75VJxLdpVqYrUS7EWt7i2rpegRVetilutrFpREBFBEQIJuZDrXM7l90eSIeGWSSRz5iTPxx81mXPmnPckn5rPy8/nfD4+x3EcAQAAAAB6zO92AQAAAADgVQQqAAAAAOglAhUAAAAA9BKBCgAAAAB6iUAFAAAAAL1EoAIAAACAXiJQAQAAAEAvEagAAAAAoJcIVAAAAADQSwQqAAAAAOglAhUAAAAA9BKBCgAAAAB6iUAFAAAAAL0UcLuAZKqra5ZtO67dv6AgWzU1Ta7dH95BW0GiaCvoCdoLEkVbQaL6U1vx+30aPDirx+8bUIHKth1XA1VHDUAiaCtIFG0FPUF7QaJoK0jUQG8rTPkDAAAAgF4iUAEAAABALxGoAAAAAKCXCFQAAAAA0EsEKgAAAADoJQIVAAAAAPQSgQoAAAAAeolABQAAAAC9RKACAAAAgF4iUAEAAABALxGoAAAAAKCXAm4XAAAA0Fccx5EjSY7kyJHjSE77Cx1fd7ze+fyO7+22E9qv4cjudN6+x52O1529Xzud3ttx3Y737n/vg9Xr7H9c6nKe4l/v/Xx775HYeR3fOY6j3O0NamhojdfY6a1datv7cz7Aeepab+efo9PpfT06b597dP7Z7K1v/2s5nYqN/0wS+QyJftaO87r9DJ3aRKf3dbrc3vM6/SC7/ayHOG9v3Y46nbrPtfb/3R3o59/5Oh0CQUPRqNXlxI7/P3S+4IHbh+T3SzPOOVbHHDFIXkWgAgD0qY4/vj6fL/6abTsKRy0Zhk+hgF8+n08x01ZrxFTMtBUK+hUKGnIcR60RS60RUz6flBY0FDD8isYstURMRU1boUDbuT5JLRFT4YgpSQoFDQUD/vh1IzFLAaPt3IDh29s53bfz295p3tuxdrqca8ffc+DXpU7n7Hus49ra/146wLXjnXXnANfs6IR1rvcAdXd+XzAUUCRiHvBY5yCx3zXVUZ/UuUPYNTx07RgeOEzsEx66hInEw0e8A9vpvHhdB+igAvvytf+PTz51+ldT+9d7X+t8njq9Fj+vy/u6/nvO1/EW397zOi5zwPMOUMu+9+24VtfzfPE69/7D1+m6nY/tPWnf2vf73J0/+z7X33u87d+l8Zq6fK6un7HzZ+h8D8PvU9Dw9qQ5AhUAfEGmZcvv98nf/kfCth01hWOKxiylBQ2lhwxZtqOmlpgaW2Py+3xKCxkKBfxqjZhqao2pNWIpFPQrLWRIkppbY2pqjcm2pfSQoVDQr0jMbj/XVNBoOzdvUIZ2VjepqTUmy7KVFjQUChoyLVvN4ZhawqYMf9v9AoZfLRFTLWEzXltHaGkOm2oJx+Tz+ZTWHkTCUUst4ZgiMUvBgKG0YFvw6biu1BZaQgG/oqatlnBM4WhbaEkLGjL8PrVETLVGTFm20xaSAm21hTv+a2a7gOGTadH9lfZ2tny+9g5V/Guf/J06gJ1f9/kkv29vB6rrsfb3+XwKBPyyLXv/a8Y7afu87m/r5Pg6ndO5E9q5Y7jfOft0/Pztb+joSvl9e68ln9q+3/e6HV93dPS6fP697+1cu+L3bL+H9qml09cH+0z7nnPgn8FB3t+5rn067P5O1+r5z2Dfz7hvh3yfjnKn1zr/XDp17fe7VufPlp+fpdq6li6/wwOd17lzfPD77lvr3p9x55p7GzL2DUEH+5l0vj4On8LCHFVXN7pdhqsIVABSSiRmKRqzlJEWUMDwy7Rs1TdFtKc5qoDfr/Q0Q0HDr4aWqOqbomqNmEoPGUoPBWTZtvY0RVXfFJHf52sPIoaaW2Pa0xxVc9hUKOhXeqjtX30NzVE1NEdlO47SQ4bSgobCUUsNzVE1hWMKGn6lh9qCQWNrTA3NUZmW0xaS0gzFYrYaWqLxcJDWPvLREjH3m2rR13w+yfC3/bw6hIJ+ZaYF2kaDYpZM01FGmqGsjGBbCIrZCscs+XxSdnpQmemBtnDVGlPUtJUWMpSVHlBuVkgx01YkZsmRo8HZaRo+JEs++RQ1LUVjbaNEmekBpYUMWZajSMySbTvKSAsoMz0gv6/t3EjMVtDwKyPNUEZaQJbtKBqzFLNsZYQCykgLKBhoG4GKxCz5/T5lpAWUEWqrLWra8RGszLSAQkFDMdNWNGbJcaT0NEMZoYB8Pilq2m21Bf3KCAUUCvq73M/n87U9SNw5VHT+p/YJKp3/2f4z3/fY3g5zT6/Z+bp91+mj44NEFRbmKMMggACJIFABiIu2d2AD7UPv4aip3fVhNYdjSg8FlJFmKGY52l3fqpqGsBxH8U5tQ0tUNXvCamiJKj1oKD0tIMlRbUNEtQ1hmbajzLSA0oKGWsIx1TZG1NAcVSDQ1tk1/D7VN0XU3D7yISkeqA6HgOFTVnpQUdNSONIWgHIyg8rNCsnw+7UrZikcNZUeCmhQZlBD8zJkWo7CUVORmK287DQdVZSjoOFXJGYpHLUUCviVkxlSdkZbMIjELEVNW1npQeVkBpUeNOLn+v0+5WQElZ0ZlBwp3Ck45mQElZ4WaA8RthzHUXZmUNkZQfl9PkWilsIxS+nBtjCUmRZQzLIViVrKG5ypcEtEGWltocWybUWitoIBn4IB47D87AAAwMERqACPsW1HDS3RLlPJqupatbO2RVHTUmZaQOmhgBqao9pZ26Lde8IKBtr+a77f71NVXauq6lsUjlht/zU/LaDWsKnq+lY1tMQkSaGAX8GAv0u4SYTh9yk7M9g28hExJZ80OCdN+TnpCgb8amiOqjXaVuPwIVkqGTlYpmWrNWLJtGwdd1Se8nPSFGofKQpHTIWChgbnpGlQVki27ag12vbczKDMkPJy0pQeMhSN2WqJtE1ty8sOaVBWmiS1hyErHkI6/st/x7Mafr93/+trmgxlZwRVWJClantv6DT8fmWme3suOgAAXkKgApLIsm1V1bXK7/MpIz2ggN+nypoWbatuUl1D2yhDRpqhQCigjVtqtaOmOT5tKi1oaPeesHbWtsRHbTpmBh1qellOZrBtpCViylFbwCkanKG8/DS1Rk01tcSUHjJ00rFDVDAoQ2pfBCBqWhqck6YhgzKUkxlUONq2MIBh+DRkUIYKctPl9/sUjpgKRy3lZoU0KCsUDykdD9O7GVo6nkfaV+fnEAAAAL4IAhXwBURjlj7b1aRt1U0K+H3tz6BIn+5q1NadjWpsjraHpID2NEf0eXWzYmZiU9hys0I6YkiWggG/WsKmGluiys9N19gv5atgULpipq2WSEyST8X5mRpWkKn0kNG+ypmlnMyghg7OiD8vZDuObNuJT+c7XAZlhQ74escD6AAAAP0ZgQrYR0NLVB99Vq/Pq5uUFmybEheOWvp4+x59vH2PWsIxZaQFlB4yVNsQkWXvPzzk9/l0RGGW8nPS1Bq1tHtPWNkZAZ198hEaMTRbfp+vfclnS8MGZ2rE0GzlD0pXpH0UaFhRrqKt0cP6ufw+n/w8YAwAAHBYEagwINiOo62Vjdpe3aS0UFtIqm0Ia/3WOn34WZ0iMUsZobZV5Woawge8xtC8DI39Ur4GZYfUGml7vufUknQdXZyro4py5DhOfHW34oJMhYI9XxCgYzRrUHaaqg9zoAIAAMDhR6BCv7KnKaJ3Pt6t9z+plWXZSm9fMvrDz+rU2L7gQmd52SGNO7pAOZnBtueGYpbOKhyu40cM1qjiHFlWW0gyDJ9yMw88tQ0AAAADF4EKnlHfFJHjqH31uZjWflilN9dXaWdts0KBto1P9zRF5UgaMihdmekBhWtbZNuOTvhSvsYfXaCjh+cq1r5AQ2Z6QMPyMw+550vAOPjCBgAAAEDSAtWWLVs0d+5c1dfXKy8vT4sXL9aoUaO6nLNmzRrdcccd+uijjzRr1izdeOONXY4/++yzuu++++Q4jnw+n5YvX64hQ4Yk6yMgSVojpuqbIgoafsknvbe5Rq+vq9SWyv03ozzmiEGaPHFEfNPRIYPSdcqxhTqiMIsd0QEAANDnkhao5s+fr5kzZ6q8vFxPPfWU5s2bp0ceeaTLOSNGjNCiRYu0evVqRaNdnx9Zt26d7rnnHv3+979XYWGhGhsbFQoxBcvrTMuWz9e2YMK2qia99PZ2vbF+p6KxrivhHVmYrYvPHq3MtICiMVuG4dP40QUaMijDpcoBAACAJAWqmpoarV+/XsuXL5ckTZ06VTfffLNqa2uVn58fP2/kyJGSpBdffHG/QPXwww/riiuuUGFhoSQpJycnGaWjj2ypbNCzb3yqtz+q7rKHUijg11fGFOmfjhos07ZlWY6+VJyro4qyGXECAABAyklKoKqsrFRRUZEMo+1ZFMMwNHToUFVWVnYJVIeyefNmHXnkkbrkkkvU0tKi8847T9///vfpZHtAbUNYz735marrW+U4UlNrTFsqG5SRFtDkCSOUldG2cEROZkhfGVOk7Iyg2yUDAAAACfHMohSWZWnjxo1avny5otGoZs+ereHDh+uiiy5K+BoFBdl9WGFiCgv798ia4ziqrm9VJGopErP02jvbVbHmE9mOdNSwHPn9PqWFDF0+ZYy+fvooZaYTng6mv7cVHD60FfQE7QWJoq0gUQO9rSQlUBUXF2vXrl2yLEuGYciyLFVVVam4uDjhawwfPlxf+9rXFAqFFAqFdO655+q9997rUaCqqWmSfYBNWJOlsDBH1dX7L6zQX3xe3aQ/rN6oTZ/vib/mk3Ta2GG66MwvaUhe1+edmhvDam488J5PA11/bys4fGgr6AnaCxJFW0Gi+lNb8ft9vRqASUqgKigoUElJiSoqKlReXq6KigqVlJQkPN1Panvu6pVXXlF5eblM09Qbb7yhsrKyPqwa3dm9p1XVda1qCpvavH2PXvy/z5UeMnTx2aOVn5OuYMCv4oJMFRdkuV0qAAAA0CeSNuVvwYIFmjt3rpYuXarc3FwtXrxYkjRnzhxdc801GjdunNauXauf/OQnampqkuM4WrVqlW655RZNmjRJU6ZM0fvvv68LLrhAfr9fZ555pr7xjW8kq3x0Ytm2nnl9q575361dFpQ4c1yxLj57tHLYABcAAAADhM9xHPfmwCUZU/6+GNOytbOmRY88v1Eff75Hp50wTKUnFisrPajcrJByswhSh4vX2wqSh7aCnqC9IFG0FSSqP7WVlJ7yB++yHUcVr2/VK//YofrGiBxJ6SFDV104Rv/fCcPcLg8AAABwFYEKBxUzLT20aoP+vqFK40cXaNL4Yg0ZlKExowYrPzfd7fIAAAAA1xGosJ+WsKktOxv09Jot2vT5Hn3jrNH6+leOYs8vAAAAYB8EKsRV1jTrt099oM+qmiRJwYBf3ys/QaeWFLlcGQAAAJCaCFSQJO2ub9WvV74ry7L1z6VH6+jiXH2pOIeNdwEAAIBDIFBB9U0R/Xrlu4pELd14ySkaMbTnq5sAAAAAAxGBagDbVdeiv6/fpVf/Uamm1piu/5eTCFMAAABADxCoBiDHcfRgxQb97YOdkqRjjxykOReO0egjBrlcGQAAAOAtBKoB6H/+73P97YOdOm/iCJWdOoIl0AEAAIBeIlANMFt3Nujxlz/WiaML9C/nHsNS6AAAAMAX4He7ACRPa8TUsic/UE5mSFdOHUOYAgAAAL4gRqgGAMdx9O7Hu/VfL29W9Z5W3TjzFGVnsBw6AAAA8EURqPq5hpaofvvUB9rwaZ2KCzL144tP1HEj8twuCwAAAOgXCFT93J/+ulkfbavXJecdp6+eNFwBg1meAAAAwOFCoOrHtlU16fX3KnXel0fo3AlHul0OAAAA0O8wXNGP/dfLHyszPaCpp49yuxQAAACgXyJQ9VPvf1KjD7bU6sLTR7EABQAAANBHCFT9UMy09V8vf6zCvHSdfQpT/QAAAIC+QqDqZyIxS7/50z/0eXWzZpxzrIIBfsUAAABAX2FRin6kNWJqyeP/0Kbte/SdC/5JpxxX6HZJAAAAQL9GoOpH7nlinTbvaNB3p52gU0uK3C4HAAAA6PeYD9ZPfLqzURs+rdM3zhpNmAIAAACShEDVT7z23g4FDL/OHF/sdikAAADAgEGg6geiMUtvfLBLE44vVFY6S6QDAAAAyUKg6gfe/qhaLRFTkxidAgAAAJKKQNUPvPZepYYMStc/jRzsdikAAADAgEKg8rjq+lZt+LROZ44vlt/nc7scAAAAYEAhUHnca+9VyifpzHFM9wMAAACSjUDlYXuao/qftdt00rFDlJ+b7nY5AAAAwIBDoPKwJ17ZrJhp6+Kzj3G7FAAAAGBAIlB51Kc7G7XmvUqdO+FIDcvPdLscAAAAYEAiUHmQ4zj64/98pKyMoKadMcrtcgAAAIABi0DlQe9u2q2PPt+j6aVHK5ONfAEAAADXEKg86J1Nu5WVHlDpicPdLgUAAAAY0AhUHvTRtnodNyJPfj/7TgEAAABuIlB5TF1jRFX1rTpuRJ7bpQAAAAADHoHKYzZ9Xi9JBCoAAAAgBRCoPGbjtnqlhQwdVZTtdikAAADAgEeg8piPttXr2CMGyfDzqwMAAADcRq/cQ5paY9pe3axjme4HAAAApISkBaotW7ZoxowZKisr04wZM7R169b9zlmzZo2mT5+usWPHavHixV2O3X333TrttNNUXl6u8vJyLVy4MEmVp45N29qenzqeQAUAAACkhECybjR//nzNnDlT5eXleuqppzRv3jw98sgjXc4ZMWKEFi1apNWrVysaje53jYsuukg33nhjskpOOR99Xq+A4deXinPcLgUAAACAkjRCVVNTo/Xr12vq1KmSpKlTp2r9+vWqra3tct7IkSM1ZswYBQJJy3me8tG2eh09PFfBgOF2KQAAAACUpEBVWVmpoqIiGUZbEDAMQ0OHDlVlZWWPrrNq1SpdeOGFuuKKK/TOO+/0RakpqzVi6tOdTTpuxCC3SwEAAADQzjNDQf/yL/+i733vewoGg3r99dd19dVX69lnn9XgwYMTvkZBgftLjRcW9m663v99uEu24+jLY4f3+hrwFn7PSBRtBT1Be0GiaCtI1EBvK0kJVMXFxdq1a5csy5JhGLIsS1VVVSouLk74GoWFhfGvzzjjDBUXF2vTpk069dRTE75GTU2TbNvpUe2HU2FhjqqrG3v13v99d7sChl9Dc0K9vga844u0FQwstBX0BO0FiaKtIFH9qa34/b5eDcAkZcpfQUGBSkpKVFFRIUmqqKhQSUmJ8vPzE77Grl274l9v2LBB27dv15e+9KXDXmuqen9LrY4fMUhpQZ6fAgAAAFJF0qb8LViwQHPnztXSpUuVm5sbXxZ9zpw5uuaaazRu3DitXbtWP/nJT9TU1CTHcbRq1SrdcsstmjRpku644w598MEH8vv9CgaDuu2227qMWvVntQ1h7djdrDPHJT6iBwAAAKDv+RzHcW8OXJJ5dcrfa//YoeXPfahfXnGqjhzq/nNg6Hv9afgcfYu2gp6gvSBRtBUkqj+1lZSe8ocv5oOttRqUHdIRhVlulwIAAACgEwJVirNtRx9sqdXYUfny+XxulwMAAACgEwJVitu6s1HNYVMnHJ34Ah4AAAAAkoNAleI+2FIjn6QxowhUAAAAQKohUKW497fU6qhhOcrNDLldCgAAAIB9EKhSWMy0tHl7g8aMGux2KQAAAAAOgECVwmoaIrIdR0cMYXU/AAAAIBURqFLY7j2tkqQhgzJcrgQAAADAgRCoUljNnrAkqSA33eVKAAAAABwIgSqF7d4TluH3KS+HBSkAAACAVESgSmE1e8IanJMmw8+vCQAAAEhF9NRT2O6GsIYMYrofAAAAkKoIVCmsZk9YBQQqAAAAIGURqFKUadmqb4ywwh8AAACQwghUKaq2ISxHYsofAAAAkMIIVClqN0umAwAAACmPQJWiOgIVI1QAAABA6iJQpajde8Ly+3wanJvmdikAAAAADoJAlaLYgwoAAABIffTWU1TNnlaWTAcAAABSHIEqRbGpLwAAAJD6CFQpyLRs1TVGCFQAAABAiiNQpaC6xogchyXTAQAAgFRHoEpBLJkOAAAAeAOBKgXt3tMqSSrIy3C5EgAAAACHQqBKQTV7wvL5pPwc9qACAAAAUhmBKgXV7AkrLztNAYNfDwAAAJDK6LGnoN17WDIdAAAA8AICVQqqa4wonxX+AAAAgJRHoEoxjuOovimivOyQ26UAAAAA6AaBKsW0RkxFTVt52SxIAQAAAKQ6AlWKqW+KShKBCgAAAPAAAlWKqW+KSBJT/gAAAAAPIFClmL2BihEqAAAAINURqFJMx5S/QYxQAQAAACmPQJVi6psiykgzlB4KuF0KAAAAgG4QqFJMfVNUg7KY7gcAAAB4AYEqxbAHFQAAAOAdBKoUU98YUV4OI1QAAACAFxCoUojjONrTHGWFPwAAAMAjCFQppCViKmbaystiyh8AAADgBUkLVFu2bNGMGTNUVlamGTNmaOvWrfuds2bNGk2fPl1jx47V4sWLD3idTz75RCeeeOJBj3tZfWP7HlRM+QMAAAA8IWmBav78+Zo5c6ZWr16tmTNnat68efudM2LECC1atEhXXnnlAa9hWZbmz5+vyZMn93W5rujYg4opfwAAAIA3JCVQ1dTUaP369Zo6daokaerUqVq/fr1qa2u7nDdy5EiNGTNGgcCB92C6//77ddZZZ2nUqFF9XbIr6pvaRqjY1BcAAADwhqQEqsrKShUVFckwDEmSYRgaOnSoKisrE77Ghx9+qDVr1ujyyy/voyrd1xGo8tiHCgAAAPCEAw8FpZhYLKZf/OIXuvXWW+OhrDcKCrIPY1W9U1iYc9BjEctRVnpARx6Rl8SKkKoO1VaAzmgr6AnaCxJFW0GiBnpbSUqgKi4u1q5du2RZlgzDkGVZqqqqUnFxcULvr66u1meffaarrrpKktTQ0CDHcdTU1KSbb7454Tpqappk206vPsPhUFiYo+rqxoMe31ndpNys0CHPwcDQXVsBOtBW0BO0FySKtoJE9ae24vf7ejUAk5RAVVBQoJKSElVUVKi8vFwVFRUqKSlRfn5+Qu8fPny43nzzzfj3d999t1paWnTjjTf2VcmuqG9iDyoAAADAS5K2yt+CBQu0YsUKlZWVacWKFVq4cKEkac6cOVq3bp0kae3atSotLdXy5cu1cuVKlZaW6rXXXktWia6rb4oojwUpAAAAAM/wOY7j3hy4JEvlKX+O4+i7v/6rzps4QheffUySK0Oq6U/D5+hbtBX0BO0FiaKtIFH9qa30dspf0kaocGjNYVOm5WgQU/4AAAAAzyBQpYj4kulM+QMAAAA8g0CVIvYGKkaoAAAAAK8gUKWI+saoJCkvh0AFAAAAeEXCy6ZHo1Hdd999WrVqlaqqqjR06FBdcMEF+v73v6+0NELAF7WnuX2EKospfwAAAIBXJByoFixYoC1btuhf//VfdcQRR2j79u26//77tWvXLt166619WeOAUN8UVUZaQKGg4XYpAAAAABKUcKB68cUX9cILLyg3N1eSdMwxx+jEE0/U+eef32fFDSStEVOZaUnZZxkAAADAYZLwM1RDhgxRa2trl9cikYgKCwsPe1EDUTRmKS3E6BQAAADgJQkPiZSXl2v27NmaNWuWioqKtHPnTj366KMqLy/X3/72t/h5p512Wp8U2t9FYrZCAdYIAQAAALwk4UC1cuVKSdKyZcv2e73jmM/n04svvngYyxs4ojFLaTw/BQAAAHhKwoHqpZde6ss6BrxIzFJOJiv8AQAAAF6ScKBqbm7Wu+++q7q6OuXn52v8+PHKzs7uy9oGlKhpKy3IlD8AAADASxIKVA8//LCWLFmiaDSqwYMHq66uTqFQSNdcc42+853v9HWNA0IkarFkOgAAAOAx3QaqJ554Qg888IBuueUWlZWVyTAMWZal1atX65ZbblFubq7+3//7f8motV+LmgQqAAAAwGu6DVQPP/ywfvWrX2nSpEnx1wzD0AUXXKCcnBzddtttBKrDIBpjyh8AAADgNd324Ldt26bTTz/9gMdOO+00bdu27bAXNdA4jqNozFIowAgVAAAA4CXdBqqsrCzt2rXrgMd27dqlrKysw17UQBMzbTkSG/sCAAAAHtNtoDr33HO1cOFCRSKRLq+Hw2H98pe/1OTJk/usuIEiErMkiY19AQAAAI/p9hmq66+/XpdddpnOOecclZaWqrCwUNXV1Xr11VdVVFSk22+/PRl19mvRmC1JbOwLAAAAeEy3QyI5OTl67LHHdN111ykSiWjdunWKRCK67rrrtHLlSuXm5iajzn4tPkJFoAIAAAA8JaF9qILBoC6++GJdfPHFfV3PgBQ12wIVI1QAAACAtxwyUC1ZsiShi1x77bWHpZiBKhLtGKHiGSoAAADASw4ZqHbu3JmsOga0qMkzVAAAAIAXHTJQ3XrrrcmqY0CL8gwVAAAA4EndzjFbtGhRl+/fe++9PitmoNq7KAVT/gAAAAAv6bYH/8QTT3T5fvbs2X1WzEDFsukAAACAN3UbqBzHOeT3+OL2buxLoAIAAAC8pNtA5fP5Dvk9vrgoU/4AAAAAT+p2H6pwOKxLLrkk/n1zc3OX7yXp0UcfPfyVDSCRmC3D71PAIFABAAAAXtJtoLrlllu6fP+Nb3yjz4oZqKIxi+enAAAAAA/qNlCZpqnS0lIVFRUlo54BKWpaTPcDAAAAPKjbQLVu3TotXbpUubm5Ouuss1RaWqpTTjmFZ6kOo0jMZoQKAAAA8KBuA9Uvf/lLSdLGjRv1yiuv6I477tCWLVt02mmnqbS0VJMmTVJ+fn6fF9qfRWMWm/oCAAAAHtRtoOpw/PHH6/jjj9dVV12lhoYGrVmzRq+88opuv/12DR8+XD/60Y80adKkvqy134rEmPIHAAAAeFHCgaqz3NxcXXDBBbrgggskSe+9995hLWqgiTKKbrJ6AAAe4ElEQVTlDwAAAPCkhAOV4zh6/PHHVVFRobq6Oj3zzDN66623VF1dHQ9W6J1IzFJ2RtDtMgAAAAD0UMLzzJYsWaI//elPmjFjhiorKyVJw4YN04MPPthnxQ0U0ZiltBAjVAAAAIDXJByo/vu//1vLli3TlClT4iv8HXnkkdq2bVufFTdQRGKWQgGeoQIAAAC8JuFevGVZysrKkqR4oGpublZmZmbfVDaA8AwVAAAA4E0JB6qvfvWruvXWWxWNRiW1PVO1ZMkSnX322X1W3EDRtrEvgQoAAADwmoQD1U033aSqqipNmDBBjY2NOvnkk7Vjxw5df/31fVlfv2fZtkzLURrLpgMAAACek/Aqf9nZ2Vq6dKlqamq0fft2FRcXq7CwMOEbbdmyRXPnzlV9fb3y8vK0ePFijRo1qss5a9as0R133KGPPvpIs2bN0o033hg/9uc//1kPP/yw/H6/bNvWxRdfrG9/+9sJ3z9VRWO2JDFCBQAAAHhQwsMiF110kSSpoKBA48ePj4ep6dOnJ/T++fPna+bMmVq9erVmzpypefPm7XfOiBEjtGjRIl155ZX7HSsrK9PTTz+tp556Sn/84x+1fPlyffjhh4mWn7IiMUsSgQoAAADwooQD1aeffrrfa47j6PPPP+/2vTU1NVq/fr2mTp0qSZo6darWr1+v2traLueNHDlSY8aMUSCw/8BZdnZ2fDGMcDisWCwW/97Lou2Biil/AAAAgPd0O+XvZz/7mSQpFovFv+6wfft2HXPMMd3epLKyUkVFRTKMtlEYwzA0dOhQVVZWKj8/P+FiX3zxRd1xxx367LPP9NOf/lTHH398wu9NVZGOKX8BRqgAAAAAr+k2UB111FEH/FqSTjnlFH3ta187/FUdxLnnnqtzzz1XO3bs0A9+8AOVlpbq6KOPTvj9BQXZfVhdYgoLc7p8X9MSkyQNLcze7xgGNtoDEkVbQU/QXpAo2goSNdDbSreB6oc//KEk6cQTT9SkSZN6dZPi4mLt2rVLlmXJMAxZlqWqqioVFxf36nrDhw/XuHHj9Ne//rVHgaqmpkm27fTqnodDYWGOqqsbu7y2q6rt+9bmyH7HMHAdqK0AB0JbQU/QXpAo2goS1Z/ait/v69UATMIP7vzHf/yHHn74YdXU1PT4JgUFBSopKVFFRYUkqaKiQiUlJT2a7rd58+b417W1tXrzzTd13HHH9biWVNOxyl9aiCl/AAAAgNckHKiuvvpqrV27Vueee65mz56tZ555RuFwOOEbLViwQCtWrFBZWZlWrFihhQsXSpLmzJmjdevWSZLWrl2r0tJSLV++XCtXrlRpaalee+01SdJjjz2mKVOmqLy8XJdffrkuvfRSnXnmmT35rCkparav8sczVAAAAIDn+BzH6dEcuPr6ej333HN6+umntWnTJp133nmaNm2aTjvttL6q8bBJxSl/r/1jh5Y/96Fu//7pKhiU7lJlSDX9afgcfYu2gp6gvSBRtBUkqj+1ld5O+Ut4Y98OeXl5uuiii5SZmakHH3xQzz//vNauXSu/36/58+fr9NNP73ERA1nU7NjYl2XTAQAAAK9JOFDZtq3XX39dTz31lP7617/qpJNO0lVXXaXzzjtP6enpWr16tW644Qa9/vrrfVlvvxOJ70PFlD8AAADAaxIOVJMmTdLgwYNVXl6uG264QUVFRV2OdzwbhZ7p2Ng3GGCECgAAAPCahAPVsmXLNG7cOElSTU2Nnn/+eY0ePVqjR4+On/OHP/zh8FfYz0VilkJBv3w+n9ulAAAAAOihbgPVrl27dPPNN+vjjz/WySefrCuuuEKXXnqp/H6/GhsbtXjxYk2ZMiUZtfZL0ZjNdD8AAADAo7qdZzZ//nzl5ubqpptukm3buvLKK7Vo0SL97W9/01133aVly5Ylo85+KxqzWDIdAAAA8KhuR6jeeecdvfbaawqFQjr11FM1ceJETZ48WZI0efJk3XjjjX1eZH8WiVls6gsAAAB4VLcjVLFYTKFQSJKUkZGhrKysLs/79HAbK+wjatoKsSAFAAAA4EndjlBZlqU33ngjHpxM0+zyvW3bfVthPxeJWjxDBQAAAHhUt4GqoKBAP//5z+Pf5+Xldfk+Pz+/byobIKKmpeyMkNtlAAAAAOiFbgPVSy+9lIw6BqxIzFZBLlP+AAAAAC+iJ++yaMxSiCl/AAAAgCcRqFwWIVABAAAAnkWgclnbxr78GgAAAAAvoifvIsdx2NgXAAAA8DAClYtipi1HYmNfAAAAwKMIVC6Kmm17eLGxLwAAAOBN9ORdFIlaksTGvgAAAIBHEahcFDXbAhWr/AEAAADeRKByUSTGCBUAAADgZQQqF0Vj7c9QsWw6AAAA4En05F0UZYQKAAAA8DQClYs6pvzxDBUAAADgTQQqFzHlDwAAAPA2evIuiq/yF2CECgAAAPAiApWLTMuRJAUMn8uVAAAAAOgNApWLYmbblL+Awa8BAAAA8CJ68i4yrbZAFQzwawAAAAC8iJ68izoCleFnyh8AAADgRQQqF8UsWwHDL5+PQAUAAAB4EYHKRabpsCAFAAAA4GEEKheZ7SNUAAAAALyJ3ryLTMtmQQoAAADAw+jNu6hthIopfwAAAIBXEahcFLMcpvwBAAAAHkZv3kWmaStIoAIAAAA8i968i0zLVoBnqAAAAADPojfvIlb5AwAAALyN3ryLYpatIItSAAAAAJ5FoHKRaToyGKECAAAAPCtpvfktW7ZoxowZKisr04wZM7R169b9zlmzZo2mT5+usWPHavHixV2O3XvvvZoyZYqmTZum6dOn67XXXktS5X3HtFiUAgAAAPCyQLJuNH/+fM2cOVPl5eV66qmnNG/ePD3yyCNdzhkxYoQWLVqk1atXKxqNdjk2fvx4XXHFFcrIyNCHH36oSy+9VGvWrFF6enqyPsJhx6IUAAAAgLclpTdfU1Oj9evXa+rUqZKkqVOnav369aqtre1y3siRIzVmzBgFAvvnvEmTJikjI0OSdPzxx8txHNXX1/d98X2IjX0BAAAAb0tKoKqsrFRRUZEMw5AkGYahoUOHqrKyslfXe/LJJ3XUUUdp2LBhh7PMpItZDlP+AAAAAA9L2pS/w+Xvf/+7lixZot/97nc9fm9BQXYfVNQzhYU58a8t21FOTnqX14AOtAskiraCnqC9IFG0FSRqoLeVpASq4uJi7dq1S5ZlyTAMWZalqqoqFRcX9+g677zzjm644QYtXbpURx99dI/rqKlpkm07PX7f4VJYmKPq6sb497GYpVjU7PIaIO3fVoCDoa2gJ2gvSBRtBYnqT23F7/f1agAmKfPNCgoKVFJSooqKCklSRUWFSkpKlJ+fn/A13nvvPf34xz/Wb37zG51wwgl9VWpSxdjYFwAAAPC0pPXmFyxYoBUrVqisrEwrVqzQwoULJUlz5szRunXrJElr165VaWmpli9frpUrV6q0tDS+PPrChQsVDoc1b948lZeXq7y8XBs3bkxW+YedZdtyHLGxLwAAAOBhSXuGavTo0Xr88cf3e/2BBx6Ifz1x4kS9+uqrB3z/n//85z6rzQ2m2Tb1kGXTAQAAAO+iN++SmGVLkgJ+fgUAAACAV9Gbd4nZEagYoQIAAAA8i968S+KBimeoAAAAAM8iULnEtNqeoWJjXwAAAMC76M27xDQ7Rqj4FQAAAABeRW/eJTGeoQIAAAA8j968SzqeoWLKHwAAAOBd9OZdsnfKH4tSAAAAAF5FoHJJzGJjXwAAAMDr6M27xGRjXwAAAMDz6M27hI19AQAAAO+jN++SvYtS8AwVAAAA4FUEKpd0bOzLPlQAAACAd9Gbd0nMZMofAAAA4HX05l3CPlQAAACA99Gbd0l8UQoCFQAAAOBZ9OZdEmNjXwAAAMDzCFQuMS1HAcMnn49ABQAAAHgVgcolpmXLYLofAAAA4Gn06F0Ss2wWpAAAAAA8jh69SyzL5vkpAAAAwOMIVC6JmQ4r/AEAAAAeR4/eJaZlK8imvgAAAICn0aN3iWnZjFABAAAAHkeP3iUxAhUAAADgefToXWKatoIsSgEAAAB4GoHKJablKMAzVAAAAICn0aN3CVP+AAAAAO+jR+8SFqUAAAAAvI8evUtMk419AQAAAK8jULnEtBwFGaECAAAAPI0evUtMy2ZRCgAAAMDj6NG7hGeoAAAAAO+jR++SmGUz5Q8AAADwOHr0LjFNR4EAi1IAAAAAXkagcoFtO7Idhyl/AAAAgMfRo3dBzLIliSl/AAAAgMfRo3eB2R6oDAIVAAAA4Gn06F1gmh0jVDxDBQAAAHgZgcoFpuVIEs9QAQAAAB5Hj94FHVP+2NgXAAAA8Lak9ei3bNmiGTNmqKysTDNmzNDWrVv3O2fNmjWaPn26xo4dq8WLFyd8zGtYlAIAAADoH5LWo58/f75mzpyp1atXa+bMmZo3b95+54wYMUKLFi3SlVde2aNjXhMfoSJQAQAAAJ6WlB59TU2N1q9fr6lTp0qSpk6dqvXr16u2trbLeSNHjtSYMWMUCAT2u8ahjnmNabY/Q8XGvgAAAICnJSVQVVZWqqioSIZhSJIMw9DQoUNVWVmZjNunHKb8AQAAAP2D94d7eqCgINvtElRYmKPPalokSUOGZKuwMMflipCqaBtIFG0FPUF7QaJoK0jUQG8rSQlUxcXF2rVrlyzLkmEYsixLVVVVKi4uTsbt42pqmmTbTlLv2VlhYY6qqxtVU9MsSWpqCKu6utG1epC6OtoK0B3aCnqC9oJE0VaQqP7UVvx+X68GYJIy56ygoEAlJSWqqKiQJFVUVKikpET5+fnJuH3KicUXpeAZKgAAAMDLkvYQz4IFC7RixQqVlZVpxYoVWrhwoSRpzpw5WrdunSRp7dq1Ki0t1fLly7Vy5UqVlpbqtdde6/aY11gdG/uyDxUAAADgaUl7hmr06NF6/PHH93v9gQceiH89ceJEvfrqqwd8/6GOeQ2LUgAAAAD9Az16F7APFQAAANA/0KN3gWkSqAAAAID+gB69C+JT/tjYFwAAAPA0ApULzPZFKQxGqAAAAABPo0fvAtOyZfh98vsYoQIAAAC8jEDlgphps2Q6AAAA0A/Qq3eBadkK+BmdAgAAALyOQOUC02KECgAAAOgP6NW7wLQcNvUFAAAA+gF69S4wLZs9qAAAAIB+gF69C2ImgQoAAADoD+jVu8C0HDb1BQAAAPoBApULmPIHAAAA9A/06l0QI1ABAAAA/QK9eheYpq0gy6YDAAAAnkev3gWmZctgY18AAADA8whULohZDiNUAAAAQD9Ar94FFs9QAQAAAP0CvXoXsCgFAAAA0D8E3C5gIDJNW0ECFQAAQMIsy1RdXbVMM+p2Keikqsov27bdLqPHAoGQBg8ulGF88ThEoHKBaTkKsLEvAABAwurqqpWenqmsrGHy+ehHpYpAwC/T9FagchxHzc0Nqqur1pAhxV/4egyTuICNfQEAAHrGNKPKysolTOEL8/l8ysrKPWyjnfTqk8x2HFm2w5Q/AACAHiJM4XA5nG2JXn2SdQyJBlg2HQAAwNMaGhp0zjmna8mS/+j23Ouvv0bbt38uSXr22Wf02Wefxo89++wz+rd/+1mf1Xmge65Z84ruvXdJj67x0EO/1T333NXteZs2bdSLL77Q4xoT1bn2ysodeuqpJ/rsXomgV59kptUeqBihAgAA8LQXXnhOJ5wwTv/zP6sVi8UOeI5t23IcR7/+9W90xBFHSmoLN9u2fZbMUve755lnflU/+MG1fXKvTZs+0ssv912g6lx7ZeUOPf30f/fZvRLBohRJFrMcSVLAYMgaAADAy1atelpXX32t/vCHh7VmzSs6++zJktpGcrZv/1ytrS3avv1z3XPPA7riikt02213asOG9dq4cYPuuuvXeuCB++LBoLm5WfPm3aRPPtmsnJxsLVp0mwoKhujZZ5/RCy/8RdnZOdq8eZMKC4fquutu0NKlS7Rt2zaVlIzRvHk3y+fzqbm5SXfffac2b96kaDSqk0+eqB/96Mf6y19W7XfP6uoq/e//vqZFi26TJFVUPKXHH18pSQoGg7rttjuVn19w0M/eUVdubq42b95bcyAQ0IMPLlNLS7Muv3ymTjrpZF133Q364IP3tWzZ3WpubpYkzZ79PZ1++pmqrNyh2bNnadq06XrjjdcVDoc1d+48nXjiSaqrq9WCBf+muroaSdLEiafqmmt+qmeffSZe+x133KbKyu26/PKZOvLII3X22edp9epVuu22tpG0aDSqiy++UPff/3sVFQ3rk3ZAoEoyixEqAAAAz9u06SM1NDRowoQvq7a2RqtWPR0PVJL07rtv63e/e1R5eXld3jdlyjQ991yFvvWtWTrjjEmS2sLJhg3r9fvf/1FFRcO0ePEi/elPj+m73/2BJGnDhvV65JGVGjq0SD/72XVauPDfdM899ys9PV1XXnmp1q79u7785a/o7rvv1EknnaK5c38h27a1cOG/adWqpzVt2j8f8J4d3n57rf7wh+VauvRBFRQMUUtLiwzD6PZnsGHDej366GMqKBjapebZs7/XJaw1Njbq17/+d91++280ZMgQ7d69W3PmfFuPPPKYJGnPnj0aO3a8vvvdH+j555/TsmW/0X33/U7PP/+chg0bpiVLlkpqm2K5r5/85Ge6994leuihP0iSTNPU0qVLtGPHdg0ffoReeukFjRkzrs/ClESgSrpYe6BiUQoAAIDeeX1dpda8V9kn1z5zfLHOGNf9UtqrVj2lr31tinw+n7761bN15523q7q6SoWFQyVJp512xn5h6lDGjz8x3uk/4YSxeuutN7scGzq0SJJ07LHHa9iwYmVnZ0uSjjnmWG3fvk1f/vJXtGbNq9qw4QOtXPmoJCkcDsffdyh/+9vr+trXpqigYIgkKTMzs0c1m6a9X82dvf/+P1RZuUPXX39N/DWfz6ft27dp0KA8ZWRkxoPeCSeMiz+ndcIJ4/TYY/+pe+9dopNOOkVf+cpp3dYUCARUXj5dTz75Z1199TV64onHNWfO9xP6PL1FoEqytKAhn0/Kyw65XQoAAAB6IRaL6YUX/qJQKE1/+csqSW0jI889V6Fvf/sKSVJGRmKhpEMotLdv6PcbsizrIMf8CoXSDnKuo3//91/Hn9VKlOM4PTo/kZq7Xl8aPfpY3XvvA/sdq6zcoVAo2Ok6flmWKUkaO3a8li9/VG+99aZWr35WK1Y8rPvue6jbuqZNm64rrrhEZ55ZqqamRk2ceGpPP1qPEKiSLC87Tb+++gwCFQAAQC+dMS6xUaS+8uqrf9VRR43q0rl///33tGjR/HigOpSsrCw1Nzcd9rrOOKNUK1b8XtdfP1eGYai+vl4tLc0aPvyIQ97zjDMm6Ve/ulnl5dOVn1+glpYWBQKBLoGpJ7KystTUtPdeY8eO1+eff6a3316rU06ZKEnasOED/dM/jTnkdXbs2K6hQ4s0eXKZTjzxZM2Y8c+y7a6bCGdlZe/3ufLy8jRx4qlasOBf9a1vzerz5faZd+aCwTlp7KMAAADgUc8++4zOP//rXV4bO3a8bNvWu+++3e37p02brocfflDf+c7Mg06T641rr/2pDMOvyy//lr797Rn66U9/pOrq6m7vefLJEzRr1uW67rqrddll39K1135PTU2Nva5jwoRTFQ6Hddll39Jdd92u3Nxc/epXd+h3v7tfl132LV1yyTf0u9/d3+3I2Dvv/J++852Zuvzymbr++mt0ww03ye/vGl9Gjz5GRx01UrNmfbPL0vNTp5arsbFBX//61F5/jkT5nN6O8XlQTU2TbNu9j1tYmKPq6t43TgwctBUkiraCnqC9IFGp2FZ27vxUw4aNdLsM7CMQ8Mf3WU0lDz/8oGpqavTTn9540HP2bVN+v08FBdk9vhdT/gAAAAD0G5de+k0ZhqE77rg7KfcjUAEAAADoN1as+K+k3o9nqAAAAACglwhUAAAAANBLBCoAAAB4wgBaSw197HC2JQIVAAAAUl4gEFJzcwOhCl+Y4zhqbm5QIHB49oVlUQoAAACkvMGDC1VXV62mpnq3S0Enfr9/v812vSAQCGnw4MLDc63DchUAAACgDxlGQEOGFLtdBvaRinuWJRtT/gAAAACglwhUAAAAANBLA2rKn9/vc7uElKgB3kBbQaJoK+gJ2gsSRVtBovpLW+nt5/A5LJUCAAAAAL3ClD8AAAAA6CUCFQAAAAD0EoEKAAAAAHqJQAUAAAAAvUSgAgAAAIBeIlABAAAAQC8RqAAAAACglwhUAAAAANBLBCoAAAAA6CUCVRJs2bJFM2bMUFlZmWbMmKGtW7e6XRJcUldXpzlz5qisrEwXXnihfvjDH6q2tlaS9O6772ratGkqKyvTFVdcoZqamvj7DnUM/d8999yj448/Xh999JEk2goOLBKJaP78+Tr//PN14YUX6he/+IWkQ/8N4u/TwPTyyy/roosuUnl5uS688EI9//zzkmgrkBYvXqxzzjmny98cqfdtY8C0Gwd9btasWc6TTz7pOI7jPPnkk86sWbNcrghuqaurc954443497/61a+cm266ybFt25k8ebLz1ltvOY7jOPfee68zd+5cx3GcQx5D//f+++87V155pXPWWWc5GzdupK3goG6++WbnlltucWzbdhzHcaqrqx3HOfTfIP4+DTy2bTsTJ050Nm7c6DiO42zYsME56aSTHMuyaCtw3nrrLWfHjh3O2WefHW8jjtP7f48MlHZDoOpju3fvdiZMmOCYpuk4juOYpulMmDDBqampcbkypIK//OUvzmWXXeb84x//cKZMmRJ/vaamxjnppJMcx3EOeQz9WyQScb75zW86n332WfyPG20FB9LU1ORMmDDBaWpq6vL6of4G8fdpYLJt2zn11FOdtWvXOo7jOH//+9+d888/n7aCLjoHqt62jYHUbgJuj5D1d5WVlSoqKpJhGJIkwzA0dOhQVVZWKj8/3+Xq4CbbtvXHP/5R55xzjiorKzV8+PD4sfz8fNm2rfr6+kMey8vLc6N0JMmSJUs0bdo0jRgxIv4abQUHsm3bNuXl5emee+7Rm2++qaysLF177bVKT08/6N8gx3H4+zQA+Xw+3XXXXbr66quVmZmp5uZm/fa3vz1kf4W2MrD1tm0MpHbDM1SAS26++WZlZmbq0ksvdbsUpKB33nlH69at08yZM90uBR5gmqa2bdumMWPG6IknntD111+vH/3oR2ppaXG7NKQY0zT129/+VkuXLtXLL7+s++67Tz/+8Y9pK8AXwAhVHysuLtauXbtkWZYMw5BlWaqqqlJxcbHbpcFFixcv1qeffqply5bJ7/eruLhYO3bsiB+vra2Vz+dTXl7eIY+h/3rrrbf0ySef6Nxzz5Uk7dy5U1deeaVmzZpFW8F+hg8frkAgoKlTp0qSTjzxRA0ePFjp6ekH/RvkOA5/nwagDRs2qKqqShMmTJAkTZgwQRkZGUpLS6Ot4IAO1Zc9VNsYSO2GEao+VlBQoJKSElVUVEiSKioqVFJS0u+GOpG4O++8U++//77uvfdehUIhSdLYsWMVDoe1du1aSdLKlSv19a9/vdtj6L+uuuoqrVmzRi+99JJeeuklDRs2TA899JBmz55NW8F+8vPz9ZWvfEWvv/66pLaVtWpqajRq1KiD/g3i79PANGzYMO3cuVOffPKJJGnz5s3avXu3Ro4cSVvBAR3q99/bY/2Nz3Ecx+0i+rvNmzdr7ty5amhoUG5urhYvXqyjjz7a7bLggk2bNmnq1KkaNWqU0tPTJUlHHnmk7r33Xr399tuaP3++IpGIjjjiCN1+++0aMmSIJB3yGAaGc845R8uWLdNxxx1HW8EBbdu2TT//+c9VX1+vQCCg6667Tl/96lcP+TeIv08D09NPP60HHnhAPp9PknTNNddo8uTJtBVo0aJFev7557V7924NHjxYeXl5WrVqVa/bxkBpNwQqAAAAAOglpvwBAAAAQC8RqAAAAACglwhUAAAAANBLBCoAAAAA6CUCFQAAAAD0EoEKAAAAAHqJQAUAAAAAvUSgAgAAAIBeIlABAPq1c845Rw899JAuvPBCTZgwQdddd50ikYjuv/9+ffOb35RpmpKk//zP/9SUKVMUiURcrhgA4CUEKgBAv/fcc8/pwQcf1IsvvqiNGzfqiSee0OzZsxUMBnXfffdp69atuvPOO3X77bcrLS3N7XIBAB4ScLsAAAD62qxZs1RUVCRJOvvss7Vhwwb5/X4tXrxY06dP17PPPqvZs2drzJgxLlcKAPAaRqgAAP1eYWFh/OuMjAy1tLRI0v/fnh2bQAhEURT9W4K5fYiRYBuWMmA2IBYlTAVWYaoluD1MIuI5Fbz08qJt2+i6Lo7jiGmanpoHwIsJKgA+q5QS+75H3/exruvTcwB4IUEFwCed5xkppcg5x7IssW1blFKengXAywgqAD5pnucYxzGGYYimaSLnHCmluK7r6WkAvMjvvu/76REAAABv5KECAACoJKgAAAAqCSoAAIBKggoAAKCSoAIAAKgkqAAAACoJKgAAgEqCCgAAoJKgAgAAqPQHFy+HJCC8LV8AAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAF/CAYAAABOlYiBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmcXFWd//9XVfWSrbOQdBIIEPajbAKCiOCC474xgxsoICr+RB2RUcbx61cZHZcvA8ygIgguKMKI+8igLDo6joM7CqMgHtkJISFN0klv6aWW3x9V3anudJLqSnffut2v5+PRj6q6W32qDmXO23PvuZlSqYQkSZIkaeKySRcgSZIkSWlloJIkSZKkOhmoJEmSJKlOBipJkiRJqpOBSpIkSZLqZKCSJEmSpDoZqCRJkiSpTgYqSZIkSaqTgUqSJEmS6mSgkiRJkqQ6GagkSZIkqU5NSRcwTVqB44B1QCHhWiRJkiQ1nhywJ/BbYKDWnWZLoDoO+J+ki5AkSZLU8J4N3F7rxrMlUK0D6OzspVgsJVbE0qUL2LixJ7H318TZZulie6WPbZY+tln62GbpY5slI5vNsGTJfKhkh1rNlkBVACgWS4kGquEalC62WbrYXuljm6WPbZY+tln62GaJmtAlQk5KIUmSJEl1MlBJkiRJUp0MVJIkSZJUJwOVJEmSJNXJQCVJkiRJdTJQSZIkSVKdDFSSJEmSVCcDlSRJkiTVyUAlSZIkSXUyUEmSJElSnQxUkiRJklSnpqQLkCRJSptSqUQJoAQlSpRKVctL7HgdbPeayvbD+w6vo7Lt8DFKlQVj9wEolna8rmugwKbO3qpjl4+56/ctPylWfZZt+5QXlkrjHa9q3TifhZFjQ3FH67b7Lsf57na0bsxn29Zm24499rsa+9krq0Y+x+hjjK5zbDuP3W7kWMPLRr3e9obV311razP9/UPb7Tf2O97uWNt937V/3pHvlerX432O0d/3Dr+7qmON+hxV25RKkMtmeN3zD+KgVYtIKwOVJEljFEulkQ5bsVh5rCwrjjwvdyKG15fXbdu2OHY9JYrF0dsNry8y/Hyc9dXHLg4fe/v1paq6qCyHbfuWP1el41P9GajunG477khHeaTzVF42Z04zfVsHd7pNiW21UVVbuR6q6hldb2lMnaOOWdpBnYxZt5NtipXiRmqrrpPSmO+nvGxbB377TrNmrkzVkwwZMpmqdZnyikxm++2GF2Sqtxu1H2SqDjZyjMqyyi7kstlRYXDUe1XVM/JYee9M1Q6ZqvXD7zt8/LHHGu9zjK676j139Hmr3xfIZDM1fd5cNkNzLt0nzRmoJGkGGu5EFwolCsXyX7E4/Lw46vXIY6XDXigWR0JDsbK+WOnsjywbu64SPEatG3mEQrE0Eh6q36ultYnevsHK6xKFqn1GH7/6/djh+4wEjOH3GBOERoUkqrcdHWRmk0wGspltHZ9spTc08pzy43CnqClX6ehV9hvuIGVGnlceM2Med7rNts7ethoyY55vq3P4fUc9z2yrc7gjWX3MUe+zq22GO49jOtPV+1W/Zszn235dVad1nH3Kn2PH67Y/9uhO77jvO1JnhsWL59LVtXXMPtvadmwnelTHuKrtx77v8H8Do9ZVfT/ZTPW243x3Y9eN/b5GHXv095Mdu46dfT8MfyPbBaPtw0PVBglqb2+jo6M76TJUIwOVJFUpFkvkC0XyhRL5YpFCYfh15XmxvK4wvE3lsVAsbntetX+xuH2oGVk+/FcYDj/FccJP+dgjxxkOJYUx64rbB6dGkgGy2Uz5L5Mhmy13iJqaslBiu+Wjth15XV6Xy2bINWVH1ueylc525fVwx3u4M56pHDczdln1tll2uO/wsTPDwWKkrqr1w5304W0ry8Yec+z6cevJjrPPqFozZBneripoZKoDzvhBZbxlE2VHL31sM2lqGagkJapQLJLPlxgqFBnKFxnKF8qPI6/LQWX4+dh11a+bmnN09wyM7DMceAqFIvliaVsoGjcwlQPNVMaQXDZDLlcJBNlyIMhV/WUry4e3y2Yz5DIZWptzZLMZmna0Ty5LLlO1Tw3HHH7elM2SyQxvyzghZpygMxxisuUwMPp15VhVIWZ4n/HY0ZMkpZ2BStJ2SqUSQ/kig/kig0MFBoYKDA4Vy4/5queV5YP5bduUt99+2XhhKF8ZkdldzU1ZmnNZWlty5LIZmnLZyl9m5HFuc46myrpc1fJcLktTtur58Lrs6Ne5XKay3fbbbnvP4W0r21SFmWy2MU4jkSRJk8tAJc0AxVKJgcEC/YMF+gfzlcdxng/sbJvy43AAmmjMyQAtLTlam7K0NOdobc7R0pylpSlH27wWWpqyNDdlaao8Nucqj2NeN427PLfddsPbNuUyI6ctOdohSZKm27QFqhDCIcC1wFJgI3BWjPG+Mdu8CPgkcARweYzxgjHrXwd8mHLfrQS8IMb4xDSUL02pUqnEwFCBvv58+W8gT2//0Mjr3v4h+gby29ZXXvf259k6kGdgsPYA1NqSY05LjjktTcxpyTG3JcfShXMqy3Kjw1DV89am8rqW5mxlWY6WkfBUDjeNcjGvJEnSdJnOEaqrgCtijNeHEM4ArgaeP2abB4G3Aa8G5lSvCCEcC3wEeH6McX0IYREwMOVVS3UYGCzQ3TdI99YhuvuGys/7hujZuu1599ZBevqGRkLRrk59m9uaY15rE/PmNDOvtYn2xXNZPaeJua1NzG1pYk7rtpBUHZiqn7e25HZ4LYskSZImbloCVQhhOXAM8MLKohuAz4YQ2mOMHcPbxRjvr2x/yjiH+Tvg0hjj+sq2W6a2amm0oXyRLb0DbO4ZZEtP+XFzzwCbewbY0jtId++2kDSYL457jFw2w4J5zbTNbaFtXjP7rpjD/LnNzJ/TVAlLlcBUeT2/8npua45cNt33aJAkSZqJpmuEah9gbYyxABBjLIQQHq8s79jpntscCjwUQvgZsAD4LvCJGGNjzQ2sVBrKF9nU3c+TW/rZWPnb1NVP72CBjs4+tvQM0rN1aLv9spkMixa0sGh+C4sWtLB3+3za5rVUQlMzbfPKwWk4RM1tzXlanCRJ0gySpkkpmoAjKY9ytQC3Ao8CX631AEuXLpiayiagvb0t6RJmpXyhyBOb+lj3ZC8bOvvYsKmPDZ1b2dDZR0dnH5u6Rp89ms3AkoVzWLpoDnsvb+PIg+ewx8Lt/xbOb3H2tgbjbyx9bLP0sc3SxzZLH9ssPaYrUK0BVoUQcpXRqRywV2V5rR4Bvh1jHAAGQgg3As9gAoFq48Yeigne7NIZyKZWsVRic/cAT2zqY33n1vLjpj6e2NRHx+Z+iqVtbZ/LZlhaCUyHrt6DpYvmsHThHJYtKi9b0tZKUy670zYb6h9kY//gdH081cDfWPrYZuljm6WPbZY+tlkystlMXQMw0xKoYowbQgh3AacD11ce76y+fqoGXwNeFkK4jnLdfwV8e9KLVSr09Q/xWEcvj3X08NiGHtZ09PBYRy8Dg4WRbVqasqzYYx77rGjj2KcsZ+Ue81i+ZC7LFs1l0YIWJ2eQJEnSbpvOU/7OBa4NIVwIdAJnAYQQbgYujDHeEUI4Cfg6sBDIhBBOA94aY7ytsvxY4E9AEbgN+NI01q+EdHYP8NC6Lh5a18VjG3p4rKOHjVWn6M2f08Te7Qs46Yg92WvpPFbuMY8Ve8xjcVuroUmSJElTatoCVYzxz8Dx4yx/WdXz24G9d7B/EXhv5U8z1FC+wIOPd3H/2i08tK6bh9Z10dldDk+5bIY9l87j4L0Xc/LyBezdvoB9li9g8YIWJ3qQJElSItI0KYVmoP7BPA+s7SKu6eQvj27mwXVd5Avla51WLJlL2Hcx+++5kAP2XMi+KxbQ3JRLuGJJkiRpGwOVplWpVOKxjl7++OBG/vjARu5fu4VCsUQ2k2H1ygW84On7cMi+izlo1SIWzG1OulxJkiRppwxUmnJD+QJ3P7iJ/33gSf744KaRU/j2bl/Ai47bh6euXsKBqxYxt9X/HCVJkpQu9mA1JfKFIvc8tInf3LuBu+7vYOtAgTktOQ7bbw+OOGkpRxywlCVtrUmXKUmSJO0WA5UmTalU4r7HtnD7H9dx51866O3PM6+1iacfspxnPHU5T1m9hKZcNukyJUmSpEljoNJu2zqQ5xd3r+end61lbUcvc1pyHH3wMo576goO338PQ5QkSZJmLAOV6vboE938151r+dU9TzAwVGD1ijbOfulTOP6pK2htcTY+SZIkzXwGKk3YX9Zs5vu/fJi7H9xEc1OW45+6gucdvYr992zzflCSJEmaVQxUqtn9a7fwnZ8+QFyzmbZ5zbz6uQfw3KNWOb25JEmSZi0DlXbp8Sd7+c5/P8Cd9z3JwvktnP6Cg3nO0/aitdnT+iRJkjS7Gai0Q1sH8tz084f50R1raGnOcupzDuCFx+7j9VGSJElShYFK4/pd7OD6H0W29Azy7CP35NXPO5CF81qSLkuSJElqKAYqjdKzdYiv/edf+NU9T7Dv8gX87alHcOBei5IuS5IkSWpIBiqN+PMjnVx90z309A1xykn78/ITVnsPKUmSJGknDFSiWCpx668f5Tv//QArlszj/Nc8jdUr25IuS5IkSWp4BqpZbmCwwOdvuoc773uS456ynLNf+hTmtvqfhSRJklQLe86z2JbeQT79rf/lkSe6Of2vDuYFx+7tjXklSZKkCTBQzVLrN/Vx2TfvYkvPIO8+9UiOOnhZ0iVJkiRJqWOgmoXWbezln792J8Viife/4RgO2Gth0iVJkiRJqWSgmmWe6OzjkhvuhFKJD7zxGPZaNj/pkiRJkqTUck7sWeTJzVu55IY7yRdKXHD60YYpSZIkaTcZqGaJrQN5LvvW/9I/UOCC045i7/YFSZckSZIkpZ6BahYoFktc/R/3sKFzK+869Qj2XeE9piRJkqTJYKCaBb790wf4wwMbecMLD+Gpq5ckXY4kSZI0YxioZrjf3PsEt/7mUf7qmL05+ehVSZcjSZIkzSgGqhmss3uAr94aOXCvhZz2goOSLkeSJEmacQxUM1SxVOKaH/yJfLHIOa88lFzWppYkSZImm73sGeonv3uMex7u5LTnH8yKJfOSLkeSJEmakQxUM9CGzVv51k8f4MgDl/Lco/ZKuhxJkiRpxjJQzUDf+q/7yWTgrBcHMplM0uVIkiRJM5aBaoaJj3byu9jBy565mj0Wzkm6HEmSJGlGM1DNIMViia/9530sXdjKS56xb9LlSJIkSTOegWoGuf2P61izoYfXnnwQLc25pMuRJEmSZjwD1QwxlC/w7z97kIP2XsRxT1medDmSJEnSrGCgmiF+fvd6tvQO8jcn7e9EFJIkSdI0MVDNAMViidt+/Sj7rWzjKauXJF2OJEmSNGsYqGaAO+/r4InOrbz0masdnZIkSZKmkYEq5UqlEjf/6lGWL57L0w9pT7ocSZIkaVYxUKXcX9Zs5qF1Xbz4+H3JZh2dkiRJkqaTgSrlfvjbNbTNa+bEw1cmXYokSZI06xioUqy7b5A/PLCREw/f0/tOSZIkSQkwUKXYb+7dQKFY4gRHpyRJkqREGKhS7Bd3r2ef5QvYZ/mCpEuRJEmSZiUDVUqt29jLQ+u6OOEwR6ckSZKkpBioUuqX9zxBJgPPPGxF0qVIkiRJs5aBKoWKpRK/vHs9h+23B4sXtCZdjiRJkjRrGahS6L41m9nY1e9kFJIkSVLCDFQp9Lu/dNDclOWYg9uTLkWSJEma1QxUKXTPQ5sI+yymtcV7T0mSJElJMlClzMYt/azb2Mfh+++RdCmSJEnSrGegSpm7H9oIwGEHLE24EkmSJEkGqpS5+6FNLGlrZa+l85IuRZIkSZr1DFQpUigW+dPDnRy+/x5kMpmky5EkSZJmPQNVijz0eDdbB/Ic7ul+kiRJUkMwUKXI3Q9tJJOBQ/dbknQpkiRJkjBQpcrdD23igD0XMn9Oc9KlSJIkScJAlRo9W4d4aF0XhzlduiRJktQwDFQpcd9jmymV4ND9DFSSJElSozBQpcQj67vJZGD1yrakS5EkSZJUYaBKiYfXd7Nq2Xxam3NJlyJJkiSpwkCVAqVSiYfXdbHfyoVJlyJJkiSpStN0vVEI4RDgWmApsBE4K8Z435htXgR8EjgCuDzGeME4xwnAncCV462fiTq7B+jqG/J0P0mSJKnBTOcI1VXAFTHGQ4ArgKvH2eZB4G3AJeMdIISQq+z3vakqshE9tK4bgP32NFBJkiRJjWRaAlUIYTlwDHBDZdENwDEhhPbq7WKM98cY7wTyOzjUB4DvA3+Zqlob0cPru8hlM+zTviDpUiRJkiRVma4Rqn2AtTHGAkDl8fHK8pqEEI4EXgxcNiUVNrBHKhNStDghhSRJktRQpu0aqt0RQmgGvgC8OcZYKF9GNXFLlyY/wtPePrHT9kqlEo880cMzD1854X01Ofze08X2Sh/bLH1ss/SxzdLHNkuP6QpUa4BVIYRcJRDlgL0qy2uxJ3AgcHMlTC0GMiGEhTHG/6/WIjZu7KFYLE2w9MnT3t5GR0f3hPZ5cvNWuvsGWblk7oT31e6rp82UHNsrfWyz9LHN0sc2Sx/bLBnZbKauAZhpCVQxxg0hhLuA04HrK493xhg7atz/UWDZ8OsQwkeABbNhlr+H11cmpHCGP0mSJKnhTOcpf+cC14YQLgQ6gbMAQgg3AxfGGO8IIZwEfB1YSHkE6jTgrTHG26axzobyUGVCir2dkEKSJElqONMWqGKMfwaOH2f5y6qe3w7sXcOxPjKpxTWwh9d1s3f7ApqbvAezJEmS1GjspTewUqnEI+u7vf+UJEmS1KAMVA1sc88gfQN5T/eTJEmSGpSBqoF1bN4KwIolcxOuRJIkSdJ4DFQN7InOPgDaDVSSJElSQzJQNbCOzVvJZjIsXTgn6VIkSZIkjcNA1cA2dG5l2aI5NOVsJkmSJKkR2VNvYBs6t3q6nyRJktTADFQNbEPnVpYbqCRJkqSGZaBqUD1bh+gbyLN8sYFKkiRJalQGqga1obM8ZbojVJIkSVLjMlA1qA2by1OmL18yL+FKJEmSJO2IgapBDY9QtS9yynRJkiSpURmoGtSGzq0saWulpTmXdCmSJEmSdsBA1aA2bN7qhBSSJElSgzNQNSinTJckSZIan4GqAfUP5unqHTRQSZIkSQ3OQNWAtk2Z7gx/kiRJUiMzUDWgjs2VQOU1VJIkSVJDM1A1IG/qK0mSJKWDgaoBbdi8lbZ5zcxtbUq6FEmSJEk7YaBqQBs6nTJdkiRJSgMDVQPa1NXP0kVzki5DkiRJ0i4YqBpQV98QC+e1JF2GJEmSpF0wUDWYoXyBrQN52uYbqCRJkqRGZ6BqMN19QwAsMlBJkiRJDc9A1WC6+gYBaJvXnHAlkiRJknbFQNVgunrLgcprqCRJkqTGZ6BqMF295VP+FnrKnyRJktTwDFQNprvPESpJkiQpLQxUDWZL7yAtzVlaW3JJlyJJkiRpFwxUDaa7b9DRKUmSJCklDFQNpqtvyOunJEmSpJQwUDWYrl5HqCRJkqS0MFA1mK6+QRbO9x5UkiRJUhoYqBpIsVSiu3eINkeoJEmSpFQwUDWQvv48xVLJa6gkSZKklDBQNZCuXu9BJUmSJKWJgaqBbAtUXkMlSZIkpUFTrRuGEFqADwGnA3sBjwNfBz4RY+yfmvJml66+SqDylD9JkiQpFWoOVMDngACcBzwCrAb+D7AKeMvklzb7dPcNAdBmoJIkSZJSYSKB6q+BA2OMmyuv/xRC+DVwPwaqSbGld5BMBhbM8ZQ/SZIkKQ0mcg3VemDemGVzgXWTV87s1t03SNu8FrLZTNKlSJIkSarBREaorgNuDSFcDjwG7AO8C/hqCOH5wxvFGH8yuSXOHl29g05IIUmSJKXIRALV2yuPHxyz/NzKH0AJOGB3i5qtuiojVJIkSZLSoeZAFWPcfyoLEXT3DnHAXnOTLkOSJElSjSYybfoC4ARgGdAB/DrG2D1Vhc1GWxyhkiRJklKlpkkpQgjnU5584mbgX4FbgMdDCO+dwtpmlYGhAgODBRbO9xoqSZIkKS12GahCCGcDHwDeCsyJMe4JzAHOAd4fQnjzlFY4S3QP39TXESpJkiQpNWo55e/vgDfFGG8bXhBjLADfCCFsBi4FvjxF9c0aXb3e1FeSJElKm1pO+TsQ+M8drPsxzuo3KbocoZIkSZJSp5ZA1Q2s2sG6VZX12k3dvZVA5TVUkiRJUmrUEqi+B1wZQphTvTCEMBe4Avj3qShsthkeoXKWP0mSJCk9armG6gOUT+17OIRwC+XZ/vYEXgo8BpwxdeXNHl29Q7S25GhtziVdiiRJkqQa7XKEKsa4hfL9p/4v5dn9jqs8/l/gWTHGzVNa4SzR1z/E/Dk13xZMkiRJUgOoqQcfYxwCvlT50xToHyowp8VAJUmSJKXJTnvwIYR/quUgMcYLJ6ec2WtgsODpfpIkSVLK7GpIZJ8ajlGajEJmu/IIlYFKkiRJSpOdBqoY45unq5DZbmCwQNsip0yXJEmS0mSXk1KEED4z5vUzpq6c2WtgsECrI1SSJElSqtRyH6qzx7y+dQrqmPX6hwrM8RoqSZIkKVVqCVSZXbzWJOgfzDtCJUmSJKVMLYFq7KQTTkIxyYrFEoNDRWf5kyRJklKmlhsfzQsh/KzqdduY18QYn7Org4QQDgGuBZYCG4GzYoz3jdnmRcAngSOAy2OMF1St+zBwGpCv/H0wxnhbDfU3vIGhAoD3oZIkSZJSppYe/FvHvK735r5XAVfEGK8PIZwBXA08f8w2DwJvA14NzBmz7jfAv8QY+0IITwP+O4SwZ4xxa531NIxtgcoRKkmSJClNaglUzcDNMcbH632TEMJy4BjghZVFNwCfDSG0xxg7hreLMd5f2f6UsccYMxr1B8rXci0FHqu3rkYxMFgOVF5DJUmSJKVLLYHqOODDIYRO4AfAzcAvYowTuZZqH2BtjLEAEGMshBAeryzv2Ome4zsLeCDGmPowBdBfCVTO8idJkiSlyy4DVYzx7QAhhCOAlwH/r/wy/JhyuLo1xvjklFZZJYTwXOBjbBvtqtnSpQsmv6AJam9v227Zhu5BAFa0t427XsmyTdLF9kof2yx9bLP0sc3SxzZLj5pnQYgx/hH4I/DPIYTFwIuAlwMXhxAeBf5xJ5NErAFWhRByldGpHLBXZXnNQggnANcDp8QY40T2Bdi4sYdiMblJCtvb2+jo6N5u+foNXQBs3Tow7nolZ0dtpsZke6WPbZY+tln62GbpY5slI5vN1DUAU9e0cjHGzcA3K3+EEI7bxfYbQgh3AadTDkSnA3dWXz+1K5X3+Abwmhjj7+upu1GNnPLnLH+SJElSqtTcgw8hZIBzKIehZTHGI0MIzwFWxhi/WcMhzgWuDSFcCHRSvg6KEMLNwIUxxjtCCCcBXwcWApkQwmnAWysjX1cCc4GrQwjDxzyzMnKWagNeQyVJkiSl0kSGRP6J8nVLn6I8BTqUZ9i7jMpI1c7EGP8MHD/O8pdVPb8d2HsH++90FCzN+oec5U+SJElKo+wEtj0beEWM8evA8IVIDwEHTHZRs83ICJWBSpIkSUqViQSqHNBTeT4cqBZULVOdBoYK5LIZmnITaQ5JkiRJSZtID/5m4F9DCK0wck3Vx4CbpqKw2aR/oODolCRJkpRCEwlU76U81fkWYBHlkanVwAemoK5ZpX8ob6CSJEmSUmgi96HqAv46hLCccpBaE2NcP2WVzSIDgwVanTJdkiRJSp2aR6hCCHdC+Z5SMcbfDoepEMIdU1XcbNE/VKDVKdMlSZKk1JnIKX8HjV1QuY7KWf5208Cg11BJkiRJabTL88xCCF+tPG2pej5sP+CeyS5qthkYLDB/YXPSZUiSJEmaoFou3HlgB89LwM+Bb01qRbNQ/5AjVJIkSVIa7TJQxRg/ChBC+FWM8bapL2n26feUP0mSJCmVJnIN1UUhhPMrs/xpEpVn+TNQSZIkSWkzkUD1MeA5wEMhhFtCCG8IIcydorpmjWKpxICz/EmSJEmpVHOgijF+N8Z4KrAPcCPwTmBdCOGaEMLzp6rAmW5wqADAHO9DJUmSJKXOREaoAIgxbgK+ClwFPAq8Gvh8COEvIYQXTHJ9M97AYDlQecqfJEmSlD41D4uEELLAC4EzgVcAvwQuAv49xrg1hPBq4Hpg5VQUOlP1D49QecqfJEmSlDoTOc/sceBJyqNT748xPl69Msb4nRDC305mcbNB/4AjVJIkSVJaTSRQvSLGeAdACGF5COFU4N4Y473DG8QYT57sAme6gZFrqAxUkiRJUtrsMlCFEFYBlwOHhhB+CVwK/AwoAItDCGfFGL8+tWXOXP1eQyVJkiSlVi2TUlwFdAJ/V9n+NuCcGONy4LXAB6euvJlvwGuoJEmSpNSqJVA9C3hHjPEW4B3ACuB7ADHGG4HVU1fezNc/mAccoZIkSZLSqJZA1RxjHASIMfYB3THGUtX6zJRUNksMT5vufagkSZKk9KmlF98UQjiZbcFp7GuHVnbD8Cl/rZ7yJ0mSJKVOLYFqA3BN1euNY15vmNSKZpn+wQK5bIbmpgnfY1mSJElSwnYZqGKM+01DHbNW/2DBKdMlSZKklHJYJGEDgwUnpJAkSZJSykCVsP6hgtdPSZIkSSlloErYgKf8SZIkSalloErYwGDeESpJkiQppQxUCStPSuE9qCRJkqQ0MlAlrH/IU/4kSZKktDJQJcxZ/iRJkqT0MlAlzFn+JEmSpPQyUCWoWCox6Cx/kiRJUmoZqBI0NFSkBJ7yJ0mSJKWUgSpB/UMFAGf5kyRJklLKQJWg/sE8AHO8hkqSJElKJQNVggYGyyNUnvInSZIkpZOBKkH9BipJkiQp1QxUCRoYvobKU/4kSZKkVDJQJchT/iRJkqR0M1AlaPiUP0eoJEmSpHQyUCVoqFAEoLnJZpAkSZLSyJ58goby5UDVZKCSJEmSUsmefILylRGqppzNIEmSJKWRPfkE5SsjVM0GKkmSJCmV7MknaKhQJJfNkM1mki5FkiRJUh0MVAnKF4qe7idJkiSlmL35BOXzJZpyjk5JkiRJaWWgStBQoegz+Qj2AAAYkklEQVQMf5IkSVKK2ZtPUL5QdEIKSZIkKcXszSdoKO81VJIkSVKa2ZtPUL5QpNlT/iRJkqTUsjefoCFn+ZMkSZJSzd58gvL5Is3O8idJkiSlloEqQflCyVn+JEmSpBSzN58gT/mTJEmS0s3efIKcNl2SJElKN3vzCRrKe2NfSZIkKc3szSfIESpJkiQp3ezNJyjvCJUkSZKUavbmEzRUKNHktOmSJElSajVN1xuFEA4BrgWWAhuBs2KM943Z5kXAJ4EjgMtjjBdUrcsBnwFeApSAi2KMX5ym8qeEp/xJkiRJ6TadvfmrgCtijIcAVwBXj7PNg8DbgEvGWfdG4CDgYOAE4CMhhP2mptSpVyqVyqf8GagkSZKk1JqW3nwIYTlwDHBDZdENwDEhhPbq7WKM98cY7wTy4xzm9cAXYozFGGMH8D3gtVNY9pQqFEuUwGuoJEmSpBSbrt78PsDaGGMBoPL4eGV5rfYFHql6/egE928oQ/kigKf8SZIkSSk2bddQNYKlSxckXQLt7W0AbOkZAGDJ4rkjy9SYbJ90sb3SxzZLH9ssfWyz9LHN0mO6AtUaYFUIIRdjLFQmmNirsrxWjwKrgd9WXo8dsdqljRt7KBZLE9llUrW3t9HR0Q1AZ3c5UPVvHRxZpsZT3WZqfLZX+thm6WObpY9tlj62WTKy2UxdAzDTcr5ZjHEDcBdwemXR6cCdlWuhavUt4G0hhGzl2qu/Br4zuZVOn6FC+ZQ/J6WQJEmS0ms6T/k7F7g2hHAh0AmcBRBCuBm4MMZ4RwjhJODrwEIgE0I4DXhrjPE24DrgeGB4qvV/ijE+OI31T6r88DVUTkohSZIkpda0BaoY458pB6Kxy19W9fx2YO8d7F8A3jFlBU6zvCNUkiRJUurZm0+Ip/xJkiRJ6WdvPiEjp/zlMglXIkmSJKleBqqEjIxQeQ2VJEmSlFr25hOSz5enb3dSCkmSJCm97M0nxEkpJEmSpPSzN5+Q4VP+mg1UkiRJUmrZm0/I8KQUjlBJkiRJ6WVvPiF5J6WQJEmSUs/efEKGnDZdkiRJSj0DVUK8sa8kSZKUfvbmE5IvlKdN95Q/SZIkKb3szSckXyiSy2bIZjzlT5IkSUorA1VChvJFR6ckSZKklLNHn5B8oeg9qCRJkqSUs0efkHyhSJMz/EmSJEmpZqBKyFC+6Ax/kiRJUsrZo0/IUKFEs9dQSZIkSalmjz4h+bzXUEmSJElpZ48+IfmCs/xJkiRJaWePPiHlSSn8+iVJkqQ0s0efkKFCkWZn+ZMkSZJSzUCVkHy+5AiVJEmSlHL26BMy5DVUkiRJUurZo0+Is/xJkiRJ6WePPiGOUEmSJEnpZ48+IfmCI1SSJElS2tmjT4jTpkuSJEnpZ48+IUP5Ek1NTpsuSZIkpZmBKgGlUslT/iRJkqQZwB59AvKFEoCn/EmSJEkpZ48+AflCETBQSZIkSWlnjz4BQ5VA1ey06ZIkSVKq2aNPQD5voJIkSZJmAnv0Cdh2yp+z/EmSJElpZqBKwJCTUkiSJEkzgj36BIyc8megkiRJklLNHn0CRk758xoqSZIkKdXs0SdgKO+06ZIkSdJMYI8+AXmnTZckSZJmBHv0CRi5D5UjVJIkSVKq2aNPQH5klj+nTZckSZLSzECVgOFZ/pyUQpIkSUo3e/QJ8JQ/SZIkaWawR5+AkWnTDVSSJElSqtmjT4DTpkuSJEkzgz36BDhtuiRJkjQz2KNPwLYRKmf5kyRJktLMQJWAfKFEUy5DJmOgkiRJktLMQJWAfKHo9VOSJEnSDGCvPgFDBipJkiRpRrBXn4B8vuiEFJIkSdIMYK8+AeURKq+fkiRJktLOQJWA8ghVLukyJEmSJO0mA1UChmf5kyRJkpRuBqoEDBWKNDsphSRJkpR69uoTkM87y58kSZI0E9irT0C+UKTJWf4kSZKk1LNXnwBP+ZMkSZJmBnv1CRjKO226JEmSNBMYqBKQL3hjX0mSJGkmsFefgPK06X71kiRJUto1JV3AbDSUd1IKSZKkiSgU8nR2dpDPDyZdypTbsCFLsVhMuowZramphSVL2snldj8OTVugCiEcAlwLLAU2AmfFGO8bs00O+AzwEqAEXBRj/GJl3XLgy8A+QAvwE+C8GGN+uj7DZMk7KYUkSdKEdHZ2MGfOPObPX0kmM7OvRW9qypLPG6imSqlUore3i87ODpYt23O3jzedvfqrgCtijIcAVwBXj7PNG4GDgIOBE4CPhBD2q6z7IHBvjPFI4Ajg6cCpU130VMgXvA+VJEnSROTzg8yfv3DGhylNvUwmw/z5CydttHNaevWV0aVjgBsqi24AjgkhtI/Z9PXAF2KMxRhjB/A94LWVdSWgLYSQBVopj1KtnfLiJ1mpVKpcQ+X/GEiSJE2EYUqTZTL/W5quYZJ9gLUxxgJA5fHxyvJq+wKPVL1+tGqbjwGHAOuA9cBtMcafT2XRUyFfKA/fOsufJElSunV1dfH85z+LT3/6X3a57QUXnMfatY8BcPPNN/Hoo9u6vDfffBMf+tD7p6zO8d7z9tv/myuu+PSEjvGlL13NZz/7qV1ud999kR//+EcTrrFW1bWvW/c4N9743Sl7r1qkaVKK1wJ/AP4KaANuCSG8Jsb47VoPsHTpgqmqrWaLFs8HYPGiebS3tyVcjWphO6WL7ZU+tln62GbpMxPabMOGbMNN6vXjH9/K4YcfyX/+522cd975NDc3b7dNsVgkk8nwqU99dmTZLbd8nz32WMIBB+wPQDabIZPJjPp8k/1Zx77n8553Ms973skTOkY2myGbzeyytgceuI+f//x/ePGLX1x3vTtTXfuGDeu56aZ/59Wvfs2Ej5PNZifltzFdgWoNsCqEkIsxFiqTT+xVWV7tUWA18NvK6+oRq3cDb4kxFoEtIYQbgZOBmgPVxo09FIul3fgYu6e9vY31T3QBMNA/SEdHd2K1qDbt7W22U4rYXuljm6WPbZY+M6XNisViw03UcNNNN/LOd76H6677Cj/96X9x8skvAMojOWvXPsbWrX2sXfsYn/3sF3jLW97IxRdfxr33/ok///lP/Mu/XMJVV13Ju971HorFEj09PXzwg//Agw8+QFtbGx//+D+zdOkybr75Jn70o1tZsKCNBx64j/b25Zx//t9z5ZWfZs2aNTz1qYdy4YUfI5PJ0Nvbw+WXX8YDD9zH4OAgRx99LO9+999x660/2O49Ozo28Itf/A8f//jFAHz/+zfyrW99HYDm5mYuvvgy9thj6ajPWyyWKBZL5PPFkbra2hZWal7Axz9+MU1NTXz+85+jr6+XM844jaOOOprzz/977rnnbq666nJ6e3sBOOecc3nWs05i3brHOeecM3nVq07lV7/6Of39/XzgAxfytKcdRWfnJj7ykQ/R2bkRgGOPfQbnnfc+br75ppHaL7nkItatW8sZZ5zG3nvvzcknv5DbbvsBF19cHkkbHBzkta99JZ///LWsWLFyzOcpjvptZLOZugZgpiVQxRg3hBDuAk4Hrq883lm5Tqrat4C3hRC+S3k2wL8GnlNZ9xDl2f9+E0JoAV4AJDu+V4fhU/6clEKSJCm97rvvL3R1dfH0px/Hpk0b+cEP/mMkUAHcddfvueaaf2Px4sWj9nv5y1/FLbd8n9NPP5MTT3w2UD4d7957/8S1197AihUrufjiT/Dtb3+Dt7/9XQDce++f+OpXv87y5St4//vP56Mf/RCf/eznmTNnDm996xncccdvOO6447n88ss46qhj+MAHPkyxWOSjH/0QP/jBf/CqV/3NuO857Pe/v4PrrvsyV175RZYuXUZfXx+5XG6X30F1zf/8zx8fqfmcc84dFda6u7u59NJPcskln2HZsmU8+eSTvO1tZ/HVr34DgC1btnD44Ufy9re/ix/+8BauuuozfO5z1/DDH97CypUr+fSnrwTKp1iO9d73vp8rrvg0X/rSdQDk83muvPLTPP74WvbaaxU/+cmPOPTQI7YLU5NpOk/5Oxe4NoRwIdAJnAUQQrgZuDDGeAdwHXA8MDyd+j/FGB+sPD8fuCqE8EcgB/wX8IVprH9SDA1fQ2WgkiRJqsvP/7iO2/+wbkqOfdKRe3LiEbueSvsHP7iRl7zk5WQyGZ773JO57LJL6OjYQHv7cgBOOOHE7cLUzhx55NNGOv2HH34Ev/71L0etW758BQAHHxxYuXJPFiwoj6QcdNDBrF27huOOO57bb/8Z9957D1//+r8B0N/fP7Lfzvzylz/nJS95OUuXLgNg3rx5E675sMMO57e//fW429199/+ybt3jXHDBeSPLMpkMa9euYdGixcydO28k6B122BEj12kddtgRfOMbX+OKKz7NUUcdw/HHn7DLmpqamjjllFP53ve+wzvfeR7f/e63eNvb3lHT56nXtAWqGOOfKYelsctfVvW8AIz7iWOMDwAvnLICp0lrc45MBhYvaEm6FEmSJNVhaGiIH/3oVlpaWrn11h8A5ZGRW275Pmed9RYA5s6tLZQMa2nZ1jfMZrMUCoUdrmtpaa16navatsQnP3kpq1btPaH3LpXquyRmdF25UTWPPj4ceODBXHHF9mMh69Y9TkvLtmvPyp+9fJvZww8/ki9/+d/47W9/zW233cz113+Fz33uS7us61WvOpW3vOWNnHTSc+jp6ebYY58x0Y82IWmalGJGWLyglUvfeaKBSpIkqU4nHlHbKNJU+dnPfsq+++43qnN/991/4OMf/8eRQLUz8+fPp7e3Z9LrOvHE53D99ddywQUfIJfLsXnzZvr6etlrr1U7fc8TT3w2F130MU455VT22GMpfX19NDU1jQpMEzF//nx6era91+GHH8ljjz3K739/B8cccywA9957D095yqE7Pc7jj69l+fIVvOAFL+ZpTzua17/+bygWR19HN3/+gu0+1+LFizn22GfwkY/8X04//cwpn27f884SsKSt1fsoSJIkpdTNN9/Ei1700lHLDj/8SIrFInfd9ftd7v+qV53KV77yRd785jfs8DS5erznPe8jl8ty9tmnc9ZZr+d973s3HR0du3zPo49+OmeeeTbnn/9O3vSm03nPe86lp6f+iUye/vRn0N/fz5vedDqf+tQlLFy4kIsu+leuuebzvOlNp/PGN76Ga675/C5Hxu6883e8+c1v4Oyz38AFF5zH3//9/yGbHR1fDjzwIPbddzVnnvm6UVPPv+IVp9Dd3cVLX/qKuj9HrTL1DvGlzH7AQ40wy99MmGVnNrHN0sX2Sh/bLH1ss/SZKW22fv0jrFy5OukypkVTU7bhZjRMm6985Yts3LiR973vH3a4zdj/pqpm+dsfeLjW9/KUP0mSJEkzxhlnvI5cLse//uvl0/J+BipJkiRJM8b1139zWt/Pa6gkSZIkqU4GKkmSJEmqk4FKkiRJqTBLJlPTNJjM/5YMVJIkSWp4TU0t9PZ2Gaq020qlEr29XTQ1Tc59YZ2UQpIkSQ1vyZJ2Ojs76OnZnHQpUy6bzW53A1tNrqamFpYsaZ+cY03KUSRJkqQplMs1sWzZnkmXMS1myr3DZgtP+ZMkSZKkOhmoJEmSJKlOs+WUvxxANptJuo6GqEETY5uli+2VPrZZ+thm6WObpY9tNv2qvvPcRPbLzJKZUk4C/ifpIiRJkiQ1vGcDt9e68WwJVK3AccA6oJBwLZIkSZIaTw7YE/gtMFDrTrMlUEmSJEnSpHNSCkmSJEmqk4FKkiRJkupkoJIkSZKkOhmoJEmSJKlOBipJkiRJqpOBSpIkSZLqZKCSJEmSpDo1JV3AbBBCOAS4FlgKbATOijHel2xVs08I4WGgv/IH8A8xxttCCM8ErgbmAg8DZ8QYN1T2qWud6hNCuBR4NbAfcESM8e7K8h3+hqZinWq3kzZ7mHF+b5V1/uYSEkJYClwHHEj5ppX3A2+PMXZMRbvYZrtvF21WAv4IFCubnxlj/GNlv1cCl1Du6/0OeHOMsW931ql2IYTvAftTbpse4N0xxrv892xmcoRqelwFXBFjPAS4gvI/LkrGa2KMR1X+bgshZIDrgXdV2udnwEUA9a7Tbvke8BzgkTHLd/Ybmop1qt2O2gzG/N6g/t+Vv7lJUwIujjGGGOORwAPARVPRLrbZpBm3zarWP6vqdzYcphYAXwBeGWM8COgGLtiddZqwN8UYnxZjPBq4FLimstx/z2YgA9UUCyEsB44BbqgsugE4JoTQnlxVqnIs0B9jvL3y+irgdbu5TnWKMd4eY1xTvWxnv6GpWDdVn22mGq/NdsHfXIJijJtijD+tWvQrYDVT0y622STYSZvtzEuBO6pGKa4CXr+b6zQBMcYtVS8XAUX/PZu5DFRTbx9gbYyxAFB5fLyyXNPv30IIfwghXBlCWAzsS9X/sx5jfBLIhhD22I11mlw7+w1NxTpNnrG/N/A31zBCCFngHcB/MDXtYptNsjFtNuynIYS7Qgj/L4TQWlk26rsHHmXb/77Vu04TFEL4YgjhUeATwJvw37MZy0Cl2eTZMcanAccBGeCzCdcjzWT+3hrf5ZSv7bBt0mNsm+0bYzyW8mm3hwIfTqowbS/GeE6McV/gg5SvS9MMZaCaemuAVSGEHEDlca/Kck2j4dOSYowDwJXAiZT/37eRUydCCMuAUoxx026s0+Ta2W9oKtZpEuzg9wb+5hpCZTKRg4HXxxiLTE272GaTaJw2q/6ddQFfZAe/M8ojT2t2c53qFGO8DjgZeAz/PZuRDFRTrDKb0V3A6ZVFpwN3xhg7kqtq9gkhzA8hLKo8zwCnUW6X3wFzQwgnVTY9F/hm5Xm96zSJdvYbmop1U/+JZr6d/N7A31ziQgifAJ4O/HUl8MLUtIttNknGa7MQwpIQwtzK8ybgNWz7nd0KHBdCOLjyuvq7r3edahRCWBBC2Kfq9SuBTYD/ns1QmVKplHQNM14I4SmUp7NcAnRSns4yJlvV7BJCOAD4DpCr/P0JOC/GuC6E8CzKM+LMYdu0vk9U9qtrneoTQvgMcCqwEngS2BhjPGxnv6GpWKfajddmwCvZwe+tso+/uYSEEA4D7gb+AmytLH4oxvg3U9Euttnu21GbARdT/m5LQDPwC+D8GGNPZb9TKtvkgDuBs2OMvbuzTrUJIawAbgTmAwXKYeqCGOPv/fdsZjJQSZIkSVKdPOVPkiRJkupkoJIkSZKkOhmoJEmSJKlOBipJkiRJqpOBSpIkSZLqZKCSJKVOCOGqEMKHd7K+FEI4aJLf840hhB9O5jElSenntOmSpESFEE4D/g44HOilfI+da4HPxRjr+kcqhFACDo4x3j/Oup8CzwTyQD/wM+Bdw/fJmgwhhLOBc2KMJ+1qW0lSujlCJUlKTAjhfcCngUso3xx4BXAucCLQsoN9cpPw1n8bY1wAHAIsBi6bhGNKkmahpqQLkCTNTiGERcA/AWfFGL9TtepO4I1V230F2AqsBp4LnBJCOAN4LMb4oco2fw+8FygBH6q1hhjjphDCd4B3VNV0OfBSoA/4AvDJGGNx7KhTZRTsHcD7gGXA14C/BZ4CXAU0hxB6gHyMcXEI4WXApcA+QBdwWYzx0lprlSQ1JkeoJElJOQFoBW6sYds3AJ8A2oDbq1eEEF4CXAC8EDgYeEGtBYQQlgGvphzioBymFgEHUA5vZwFv3skhXgEcBzwNeB3w4hjjvZRH2X4ZY1wQY1xc2fZLwNtjjG2UT2/8Sa11SpIalyNUkqSkLAOejDHmhxeEEH4BHEo5aL04xvizyqobY4w/rzzvDyFUH+d1wJdjjHdXjvER4PRdvPdnQgiXUr5m66fAeyunEr4eODrG2A10hxD+BTiTchgaz0Uxxs3A5hDCfwFHAbfuYNsh4NAQwv/GGDuBzl3UKElKAUeoJElJ2QgsCyGM/J97McZnVUZ0NjL636g1OznOXmPWP1LDe58XY1wcY1wVY3xjjLGDcsBrGbP/I8CqnRxnfdXzPmDBTrZ9NfAy4JEQwn+HEE6ooU5JUoMzUEmSkvJLYAA4pYZtdzbb3zrK1yUN27fOep6kPIq0esyx1tZxrO3qjTH+NsZ4CrAc+B7wzXqKlCQ1Fk/5kyQlIsa4OYTwUeDKEEKG8qlyfcCRwPwJHOqbwJdDCF8FHgb+sc56CiGEbwKfCCGcBexBeaKLeiaOeALYO4TQEmMcDCG0AK8Fvh9j3BJC6AIK9dQpSWosjlBJkhITY7yYcmh5P7CBchC5GvgH4Bc1HuMW4FOUJ3m4n92b7OHdlK+repDy5BdfA66p4zg/Ae4B1ocQnqwsOxN4uBKmzgXO2I06JUkNwhv7SpIkSVKdHKGSJEmSpDoZqCRJkiSpTgYqSZIkSaqTgUqSJEmS6mSgkiRJkqQ6GagkSZIkqU4GKkmSJEmqk4FKkiRJkupkoJIkSZKkOv3/AmM+Xlek6ZUAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 1008x432 with 1 Axes>"
       ]
      },
-     "metadata": {},
+     "metadata": {
+      "needs_background": "light"
+     },
      "output_type": "display_data"
     }
    ],
@@ -4366,6 +4691,8 @@
     "\n",
     "If you still still have time, you might venture into your own benchmarking adventure.\n",
     "\n",
+    "Maybe you noticed already, for instance in Task 2 C: At the very right to very large numbers of grid points, the behaviour of the graph changed. Something is happening there!\n",
+    "\n",
     "\n",
     "**TASK**: Revisit the counters measured above for a larger range of `nx`. Right now, we only studied `nx` until 1000. New effects appear above that value – partly only well above, though ($nx > 15000$).\n",
     "\n",
@@ -4393,9 +4720,9 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.7.1"
+   "version": "3.7.0"
   }
  },
  "nbformat": 4,
- "nbformat_minor": 2
-}
\ No newline at end of file
+ "nbformat_minor": 4
+}
diff --git a/2-Performance_Counters/Handson/.master/Makefile b/2-Performance_Counters/Handson/.master/Makefile
index 6f3849f..1db4b2f 100644
--- a/2-Performance_Counters/Handson/.master/Makefile
+++ b/2-Performance_Counters/Handson/.master/Makefile
@@ -82,32 +82,25 @@ graph_task2c: plot-task2c.pdf
 graph_task4: plot-task4.pdf
 graph_task4-2: plot-task4-2.pdf
 plot-task1.pdf: poisson2d.ins_cyc.bin.csv
-	@test "$$SC19_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task1()"
 	@test -n "$$DISPLAY" || "No X forwarding found. Either reconnect with X forwarding (-X / -Y) or download $@ with scp."
 	display $@
 plot-task2a.pdf: poisson2d.ld_st.bin.csv
-	@test "$$SC19_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task2a()"
 	display $@
 plot-task2b.pdf: poisson2d.vld.bin.csv poisson2d.vst.bin.csv
-	@test "$$SC19_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task2b()"
 	display $@
 plot-task2b-2.pdf: poisson2d.vld.bin.csv poisson2d.vst.bin.csv poisson2d.ld_st.bin.csv
-	@test "$$SC19_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task2b(bytes=True)"
 	display $@
 plot-task2c.pdf: poisson2d.vld.bin.csv poisson2d.vst.bin.csv poisson2d.ld_st.bin.csv poisson2d.ins_cyc.bin.csv
-	@test "$$SC19_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task2c()"
 	display $@
 plot-task4.pdf: poisson2d.sflop.bin.csv poisson2d.vflop.bin.csv
-	@test "$$SC19_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task4()"
 	display $@
 plot-task4-2.pdf: poisson2d.sflop.bin.csv poisson2d.vflop.bin.csv
-	@test "$$SC19_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task4(ai=True)"
 	display $@
 
diff --git a/2-Performance_Counters/Handson/.master/README.md b/2-Performance_Counters/Handson/.master/README.md
index 3ee0057..8887dd7 100644
--- a/2-Performance_Counters/Handson/.master/README.md
+++ b/2-Performance_Counters/Handson/.master/README.md
@@ -2,7 +2,5 @@
 
 This folder holds the files for the first hands-on exercise about Performance Counters on POWER9.
 
-Make sure to load all modules of this session by typing `module load sc18/handson1` into the shell.
-
 All task description is in an accompanying Jupyter Notebook. Open it interactively on Ascent with port forwarding. If that is impossible to do, use the static convert to HTML or PDF of the Notebook and follow along accordingly.
 
diff --git a/2-Performance_Counters/Handson/.master/common.py b/2-Performance_Counters/Handson/.master/common.py
index 1891a03..9033865 100644
--- a/2-Performance_Counters/Handson/.master/common.py
+++ b/2-Performance_Counters/Handson/.master/common.py
@@ -1,2 +1,22 @@
 def normalize(df, old_column, new_column):
 	df[new_column] = df[old_column] / (df["ny"] * df["nx"])
+    
+def print_and_return_fit(list_of_quantities, dataframe, function, format_value=">7.4f", format_uncertainty="f", _print=True):
+    """Use `curve_fit` to fit each quantity in `list_of_quantity` wrt to `dataframe.index`. Print (selectable) and return the result."""
+    import numpy as np
+    from scipy.optimize import curve_fit 
+    _fit_parameters = {}
+    _fit_covariance = {}
+    _quantity_padding = np.max([len(_str) for _str in list_of_quantities])
+    for quantity in list_of_quantities:
+        _fit_parameters[quantity], _fit_covariance[quantity] = curve_fit(function, dataframe.index, dataframe[quantity])
+        if (_print):
+            print("Counter {:>{_quantity_padding}} is proportional to the grid points (nx*ny) by a factor of {:{format_value}} (± {:{format_uncertainty}})".format(
+                quantity, 
+                _fit_parameters[quantity][0], 
+                np.sqrt(np.diag(_fit_covariance[quantity]))[0],
+                _quantity_padding=_quantity_padding,
+                format_value=format_value,
+                format_uncertainty=format_uncertainty
+        ))
+    return (_fit_parameters, _fit_covariance)
\ No newline at end of file
diff --git a/2-Performance_Counters/Handson/.master/copyNotebook.mk b/2-Performance_Counters/Handson/.master/copyNotebook.mk
index a90882b..8432d91 100755
--- a/2-Performance_Counters/Handson/.master/copyNotebook.mk
+++ b/2-Performance_Counters/Handson/.master/copyNotebook.mk
@@ -21,17 +21,17 @@ solutions: $(TGT_SOLUTIONS)
 tasks: $(TGT_BLANK)
 
 $(addprefix ../,$(addsuffix .html,$(basename $(SRC)))): $(SRC)
-	jupyter nbconvert --to html --output $@ --ClearOutputPreprocessor.enabled=True $< 
+	notebook-splitter --remove solution --keep task $< | jupyter nbconvert --to html --output $@ --ClearOutputPreprocessor.enabled=True --stdin 
 $(addprefix ../,$(addsuffix .pdf,$(basename $(SRC)))): $(SRC)
-	jupyter nbconvert --to pdf --output $@ --template better-article.tplx --ClearOutputPreprocessor.enabled=True $< 
+	notebook-splitter --remove solution --keep task $< | jupyter nbconvert --to pdf --output $@ --template better-article.tplx --ClearOutputPreprocessor.enabled=True --stdin 
 	mv $@.pdf $@
 $(addprefix ../,$(SRC)): $(SRC)
-	jupyter nbconvert --to ipynb --output $@ --ClearOutputPreprocessor.enabled=True $< 
+	notebook-splitter --remove solution --keep task $< | jupyter nbconvert --to ipynb --output $@ --ClearOutputPreprocessor.enabled=True --stdin 
 
 $(addprefix ../Solutions/,$(addsuffix .html,$(basename $(SRC)))): $(SRC)
-	jupyter nbconvert --to html --output $@ $< 
+	notebook-splitter --remove task --keep solution $< | jupyter nbconvert --to html --output $@ --stdin
 $(addprefix ../Solutions/,$(addsuffix .pdf,$(basename $(SRC)))): $(SRC)
-	jupyter nbconvert --to pdf --output $@ --template better-article.tplx $<
+	notebook-splitter --remove task --keep solution $< | jupyter nbconvert --to pdf --output $@ --template better-article.tplx --stdin
 	mv $@.pdf $@
 $(addprefix ../Solutions/,$(SRC)): $(SRC)
-	cp $< $@ 
+	notebook-splitter --remove task --keep solution $< -o $@ 
diff --git a/2-Performance_Counters/Handson/Hands-On-Performance-Counters.html b/2-Performance_Counters/Handson/Hands-On-Performance-Counters.html
index 9be777b..8db553e 100644
--- a/2-Performance_Counters/Handson/Hands-On-Performance-Counters.html
+++ b/2-Performance_Counters/Handson/Hands-On-Performance-Counters.html
@@ -2,7 +2,7 @@
 <html>
 <head><meta charset="utf-8" />
 
-<title>Hands-On-Performance-Counters</title>
+<title>Notebook</title>
 
 <script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>
@@ -13116,7 +13116,7 @@ div#notebook {
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<h1 id="Hands-On:-Performance-Counters">Hands-On: Performance Counters<a class="anchor-link" href="#Hands-On:-Performance-Counters">&#182;</a></h1><p>This Notebook is part of the exercises for the SC18 Tutorial »Application Porting and Optimization on GPU-accelerated POWER Architectures«. It is to be run on a POWER9 machine; in the tutorial: on Ascent, the POWER9 training cluster of Oak Ridge National Lab.</p>
+<h1 id="Hands-On:-Performance-Counters">Hands-On: Performance Counters<a class="anchor-link" href="#Hands-On:-Performance-Counters">&#182;</a></h1><p>This Notebook is part of the exercises for the SC19 Tutorial »Application Porting and Optimization on GPU-accelerated POWER Architectures«. It is to be run on a POWER9 machine; in the tutorial: on Ascent, the POWER9 training cluster of Oak Ridge National Lab.</p>
 <p>This Notebook can be run interactively on Ascent. If this capability is unavailable to you, use it as a description for executing the tasks on Ascent via a shell access. During data evaluation, the Notebook mentions the corresponding commands to execute in case you are not able to run the Notebook interactively directly on Ascent.</p>
 <h2 id="Table-of-Contents">Table of Contents<a class="anchor-link" href="#Table-of-Contents">&#182;</a></h2><p><a name="toc"></a></p>
 <ul>
@@ -13149,15 +13149,29 @@ div#notebook {
     <span class="p">}</span>
 <span class="p">}</span>
 </pre></div>
-<p>After <code>PAPI_add_named_event()</code> is used to add named PMU events outside of the relaxation iteration, <code>PAPI_start()</code>
+<p>The code is instrumented using PAPI. The API routine <code>PAPI_add_named_event()</code> is used to add <em>named</em> PMU events outside of the relaxation iteration. After that, calls to <code>PAPI_start()</code>
 and <code>PAPI_stop()</code> can be used to count how often a PMU event is incremented.</p>
-<p>For the first task, we will measure quantities often used to characterize an application, cycles and instructions.</p>
-<p><strong>TASK</strong>: Please measure counters for completed instructions and run cycles. See the TODOs in <a href="/edit/Tasks/poisson2d.ins_cyc.c"><code>poisson2d.ins_cyc.c</code></a>. Either edit with Jupyter capabilities by clicking on the link of the file or use a dedicated editor (<code>vim</code> is available). The names of the counters to be implemented are <code>PM_INST_CMPL</code> and <code>PM_RUN_CYC</code>.</p>
-<p>After changing the source code, compile it with <code>make task1</code> or by executing the following cell (we need to change directories first, though).</p>
+<p>For the first task, we will measure quantities often used to characterize an application: cycles and instructions.</p>
+<p><strong>TASK</strong>: Please measure counters for completed instructions and run cycles. See the TODOs in file <a href="poisson2d.ins_cyc.c"><code>poisson2d.ins_cyc.c</code></a>. You can either edit the files with Jupyter capabilities by clicking on the link of the file or selecting it in the file drawer on the left; or use a dedicated editor on the system(<code>vim</code> is available). The names of the counters to be implemented are <code>PM_INST_CMPL</code> and <code>PM_RUN_CYC</code>.</p>
+<p>After changing the source code, compile it with <code>make task1</code> or by executing the following cell (we need to change directories first, though).<br>
+<em>(Using the <code>Makefile</code> we have hidden quite a few intricacies from you in order to focus on the relevant content at hand. Don't worry too much about it right now – we'll un-hide it gradually during the course of the tutorial.)</em></p>
 <p><a href="#toc">Back to top</a></p>
 
 </div>
 </div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="o">!</span>pwd
+</pre></div>
+
+    </div>
+</div>
+</div>
+
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
@@ -13189,7 +13203,7 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<p>Make sure your program is measuring correctly, by invoking it, for instance with these arguments: <code>./poisson2d.ins_cyc.bin 100 64 32</code> – see the next cell. The <code>100</code> specifies the number of iterations to perform, <code>64</code> and <code>32</code> are the size of the grid in y and x direction, respectively.</p>
+<p>Before we launch our measurement campaign we should make sure that the program is measuring correctly. Let's invoking it, for instance, with these arguments: <code>./poisson2d.ins_cyc.bin 100 64 32</code> – see the next cell. The <code>100</code> specifies the number of iterations to perform, <code>64</code> and <code>32</code> are the size of the grid in y and x direction, respectively.</p>
 
 </div>
 </div>
@@ -13211,7 +13225,8 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<p>For the following runs, we are going to use Ascent's compute backend nodes which are not shared amongst users and also have six GPUs available. We use the available batch scheduler <em>IBM Spectrum LSF</em> for this. For convenience, a call to the batch submission system is stored in the environment variable <code>$SC18_SUBMIT_CMD</code>. You are welcome to adapt it once you get more familiar with the system.</p>
+<p>Alright! That should return a comma-seperated list of measurements.</p>
+<p>For the following runs, we are going to use Ascent's compute backend nodes which are not shared amongst users and also have six GPUs available (each!). We use the available batch scheduler <em>IBM Spectrum LSF</em> for this. For convenience, a call to the batch submission system is stored in the environment variable <code>$SC19_SUBMIT_CMD</code>. You are welcome to adapt it once you get more familiar with the system.</p>
 <p>For now, we want to run our first benchmarking run and measure cycles and instructions for different data sizes, as a function of <code>nx</code>. The Makefile holds a target for this, call it with <code>make bench_task1</code>:</p>
 
 </div>
@@ -13233,7 +13248,7 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<p>Once the run is completed, let's have a look at the data!</p>
+<p>Once the run is completed, let's study the data!</p>
 <p>This can be done best in the interactive version of the Jupyter Notebook. In case this version of the description is unavailable to you, call the Makefile target <code>make graph_task1</code> (either with X forwarding, or download the resulting PDF).</p>
 
 </div>
@@ -13244,7 +13259,8 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
 <div class="inner_cell">
     <div class="input_area">
-<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">seaborn</span> <span class="k">as</span> <span class="nn">sns</span>
+<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
+<span class="kn">import</span> <span class="nn">seaborn</span> <span class="k">as</span> <span class="nn">sns</span>
 <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
 <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
 <span class="kn">import</span> <span class="nn">common</span>
@@ -13257,6 +13273,27 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 </div>
 </div>
 
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Execute the following cell if you want to switch to color-blind-safer colors</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">sns</span><span class="o">.</span><span class="n">set_palette</span><span class="p">(</span><span class="s2">&quot;colorblind&quot;</span><span class="p">)</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
@@ -13265,8 +13302,7 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">rcParams</span><span class="p">[</span><span class="s1">&#39;figure.figsize&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span><span class="mi">14</span><span class="p">,</span> <span class="mi">6</span><span class="p">]</span>
 <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">&quot;poisson2d.ins_cyc.bin.csv&quot;</span><span class="p">,</span> <span class="n">skiprows</span><span class="o">=</span><span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>  <span class="c1"># Read in the CSV file from the bench run; parse with Pandas</span>
-<span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="s2">&quot;PM_INST_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Instructions / Loop Iteration&quot;</span><span class="p">)</span>  <span class="c1"># Normalize to each grid cell</span>
-<span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="s2">&quot;PM_RUN_CYC (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Cycles / Loop Iteration&quot;</span><span class="p">)</span>
+<span class="n">df</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s2">&quot;nx&quot;</span><span class="p">]</span> <span class="o">*</span> <span class="n">df</span><span class="p">[</span><span class="s2">&quot;ny&quot;</span><span class="p">]</span>  <span class="c1"># Add a new column of the number of grid points (the product of nx and ny)</span>
 <span class="n">df</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>  <span class="c1"># Display the head of the Pandas dataframe</span>
 </pre></div>
 
@@ -13274,16 +13310,95 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 </div>
 </div>
 
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Let's have a look at the counters we've just measured and see how they scaling with increasing number of grid points.</p>
+<p><em>In the following, we are always using the minimal value of the counter (indicated by »(min)«) as this should give us an estimate of the best achievable result of the architecture.</em></p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
+<span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_RUN_CYC (min)&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax1</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+<span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_INST_CMPL (min)&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax2</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Although some slight variations can be seen for run cycles for many grid points, the correlation looks quite linear (as one would naively expect). Let's test that by fitting a linear function!</p>
+<p><em>The details of the fitting have been extracted into dedicated function, <code>print_and_return_fit()</code>, of the <code>common.py</code> helper file. If you're interested, <a href="common.py">go have a look at it</a>.</em></p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">linear_function</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">):</span>
+    <span class="k">return</span> <span class="n">a</span><span class="o">*</span><span class="n">x</span><span class="o">+</span><span class="n">b</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fit_parameters</span><span class="p">,</span> <span class="n">fit_covariance</span> <span class="o">=</span> <span class="n">common</span><span class="o">.</span><span class="n">print_and_return_fit</span><span class="p">(</span>
+    <span class="p">[</span><span class="s2">&quot;PM_RUN_CYC (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;PM_INST_CMPL (min)&quot;</span><span class="p">],</span> 
+    <span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">),</span> 
+    <span class="n">linear_function</span><span class="p">,</span>
+    <span class="n">format_uncertainty</span><span class="o">=</span><span class="s2">&quot;.4f&quot;</span>
+<span class="p">)</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Let's overlay our fits to the graphs from before.</p>
+
+</div>
+</div>
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
 <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
 <div class="inner_cell">
     <div class="input_area">
-<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Plot Cycles and Instructions - both per grid cell</span>
-<span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
-<span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Cycles / Loop Iteration&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax1</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
-<span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Instructions / Loop Iteration&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax2</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
+<span class="k">for</span> <span class="n">ax</span><span class="p">,</span> <span class="n">pmu_counter</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">([</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">],</span> <span class="p">[</span><span class="s2">&quot;PM_RUN_CYC (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;PM_INST_CMPL (min)&quot;</span><span class="p">]):</span>
+    <span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="n">pmu_counter</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span>
+        <span class="n">df</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">],</span> 
+        <span class="n">linear_function</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">],</span> <span class="o">*</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">pmu_counter</span><span class="p">]),</span> 
+        <span class="n">linestyle</span><span class="o">=</span><span class="s2">&quot;--&quot;</span><span class="p">,</span> 
+        <span class="n">label</span><span class="o">=</span><span class="s2">&quot;Fit: </span><span class="si">{:.2f}</span><span class="s2"> * x + </span><span class="si">{:.2f}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="o">*</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">pmu_counter</span><span class="p">])</span>
+    <span class="p">)</span>
+    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">();</span>
 </pre></div>
 
     </div>
@@ -13294,7 +13409,38 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<p>What is your result? What value do the graphs come asymptotically close too?</p>
+<p>Please execute the next cell to summarize the first task.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s2">&quot;The algorithm under investigation runs about </span><span class="si">{:.0f}</span><span class="s2"> cycles and executes about </span><span class="si">{:.0f}</span><span class="s2"> instructions per grid point&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
+    <span class="o">*</span><span class="p">[</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">pmu_counter</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">pmu_counter</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;PM_RUN_CYC (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;PM_INST_CMPL (min)&quot;</span><span class="p">]]</span>
+<span class="p">))</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p><strong>Bonus:</strong></p>
+<p>The linear fits also calculate a y intersection (»<code>b</code>«). How do you interpret this value?</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
 <p>We are revisiting the graph in a little while.</p>
 <p><a href="#toc">Back to top</a></p>
 
@@ -13307,7 +13453,8 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 <h2 id="Task-2:-Measuring-Loads-and-Stores">Task 2: Measuring Loads and Stores<a class="anchor-link" href="#Task-2:-Measuring-Loads-and-Stores">&#182;</a></h2><p><a name="task2"></a></p>
 <p>Looking at the source code, how many loads and stores from / to memory do you expect? Have a look at the loop which we instrumented.</p>
 <p>Let's compare your estimate to what the system actually does!</p>
-<p><a name="task2-a"></a><strong>TASK A</strong>: Please measure counters for loads and stores. See the TODOs in <a href="/edit/Tasks/poisson2d.ld_st.c"><code>poisson2d.ld_st.c</code></a>. This time, implement <code>PM_LD_CMPL</code> and <code>PM_ST_CMPL</code>.</p>
+<h3 id="Task-A">Task A<a class="anchor-link" href="#Task-A">&#182;</a></h3><p><a name="task2-a"></a></p>
+<p>Please measure counters for loads and stores. See the TODOs in <a href="/edit/Tasks/poisson2d.ld_st.c"><code>poisson2d.ld_st.c</code></a>. This time, implement <code>PM_LD_CMPL</code> and <code>PM_ST_CMPL</code>.</p>
 <p>Compile with <code>make task2</code>, test your program with a single run with <code>make run_task2</code>, and then finally submit a benchmarking run to the batch system with <code>make bench_task2</code>. The following cell will take care of all this.</p>
 <p><a href="#toc">Back to top</a></p>
 
@@ -13330,7 +13477,7 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<p>Once the run finished, let's plot it again with the following cell (non-interactive: <code>make graph_task2a</code>).</p>
+<p>Once the run finished, let's plot it again in the course of the following cells (non-interactive: <code>make graph_task2a</code>).</p>
 
 </div>
 </div>
@@ -13341,8 +13488,7 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_ldst</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">&quot;poisson2d.ld_st.bin.csv&quot;</span><span class="p">,</span> <span class="n">skiprows</span><span class="o">=</span><span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
-<span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df_ldst</span><span class="p">,</span> <span class="s2">&quot;PM_LD_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Loads / Loop Iteration&quot;</span><span class="p">)</span>
-<span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df_ldst</span><span class="p">,</span> <span class="s2">&quot;PM_ST_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Stores / Loop Iteration&quot;</span><span class="p">)</span>
+<span class="n">df_ldst</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df_ldst</span><span class="p">[</span><span class="s2">&quot;nx&quot;</span><span class="p">]</span> <span class="o">*</span> <span class="n">df_ldst</span><span class="p">[</span><span class="s2">&quot;ny&quot;</span><span class="p">]</span> 
 <span class="n">df_ldst</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
 </pre></div>
 
@@ -13357,8 +13503,66 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
-<span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Loads / Loop Iteration&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax1</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
-<span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Stores / Loop Iteration&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax2</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+<span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_LD_CMPL (min)&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax1</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+<span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_ST_CMPL (min)&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax2</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Also this behaviour looks – at a first glance – linear. We can again fit a first-order polynom (and re-use our previously defined function <code>curve_fit</code>)!</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">_fit</span><span class="p">,</span> <span class="n">_cov</span> <span class="o">=</span> <span class="n">common</span><span class="o">.</span><span class="n">print_and_return_fit</span><span class="p">(</span>
+    <span class="p">[</span><span class="s2">&quot;PM_LD_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;PM_ST_CMPL (min)&quot;</span><span class="p">],</span> 
+    <span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">),</span> 
+    <span class="n">linear_function</span><span class="p">,</span>
+    <span class="n">format_value</span><span class="o">=</span><span class="s2">&quot;.4f&quot;</span>
+<span class="p">)</span>
+<span class="n">fit_parameters</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_parameters</span><span class="p">,</span> <span class="o">**</span><span class="n">_fit</span><span class="p">}</span>
+<span class="n">fit_covariance</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_covariance</span><span class="p">,</span> <span class="o">**</span><span class="n">_cov</span><span class="p">}</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Let's overlay this in one common plot:</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
+<span class="k">for</span> <span class="n">ax</span><span class="p">,</span> <span class="n">pmu_counter</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">([</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">],</span> <span class="p">[</span><span class="s2">&quot;PM_LD_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;PM_ST_CMPL (min)&quot;</span><span class="p">]):</span>
+    <span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="n">pmu_counter</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span>
+        <span class="n">df_ldst</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">],</span> 
+        <span class="n">linear_function</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">],</span> <span class="o">*</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">pmu_counter</span><span class="p">]),</span> 
+        <span class="n">linestyle</span><span class="o">=</span><span class="s2">&quot;--&quot;</span><span class="p">,</span> 
+        <span class="n">label</span><span class="o">=</span><span class="s2">&quot;Fit: </span><span class="si">{:.2f}</span><span class="s2"> * x + </span><span class="si">{:.2f}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="o">*</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">pmu_counter</span><span class="p">])</span>
+    <span class="p">)</span>
+    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">();</span>
 </pre></div>
 
     </div>
@@ -13370,8 +13574,9 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
 <p>Did you expect more?</p>
-<p>The reason is simple: Among the load and store instructions counted by <code>PM_LD_CMPL</code> and <code>PM_ST_CMPL</code> are vector instructions which can load and store multiple (two) values at a time. To see how many <em>bytes</em> are loaded and stored, we need to measure counters for vectorized loads and stores as well.</p>
-<p><a name="task2-b"></a><strong>TASK B</strong>: Please measure counters for <em>vectorized</em> loads and <em>vectorized</em> stores. See the TODOs in <a href="/edit/Tasks/poisson2d.vld.c"><code>poisson2d.vld.c</code></a> and <a href="/edit/Tasks/poisson2d.vst.c"><code>poisson2d.vst.c</code></a> (<em>Note: These vector counters can not be measured together and need separate files and runs</em>). Can you find out the name of the counters yourself, using <code>papi_native_avail | grep VECTOR_</code>?</p>
+<p>The reason is simple: Among the load and store instructions counted by <code>PM_LD_CMPL</code> and <code>PM_ST_CMPL</code> are vector instructions which can load and store multiple (in this case: two) values at a time. To see how many <em>bytes</em> are loaded and stored, we need to measure counters for vectorized loads and stores as well.</p>
+<h3 id="TASK-B">TASK B<a class="anchor-link" href="#TASK-B">&#182;</a></h3><p><a name="task2-b"></a></p>
+<p>Please measure counters for <em>vectorized</em> loads and <em>vectorized</em> stores. See the TODOs in <a href="poisson2d.vld.c"><code>poisson2d.vld.c</code></a> and <a href="poisson2d.vst.c"><code>poisson2d.vst.c</code></a> (<em>Note: These vector counters can not be measured together and need separate files and runs</em>). Can you find out the name of the counters yourself, using <code>papi_native_avail | grep VECTOR_</code>?</p>
 <p>Compile, test, and bench-run your program again.</p>
 <p><a href="#toc">Back to top</a></p>
 
@@ -13416,7 +13621,7 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
 <p>Let's plot it again, as soon as the run finishes! Non-interactively, call <code>graph_task2b</code>.</p>
-<p><em>We need to read in two CSV files now, which we combine to one common dataframe <code>df_vldvst</code>.</em></p>
+<p><em>Because we couldn't measure the two vector counters at the same time, we have two CSV files to read in now. We combine them into one common dataframe <code>df_vldvst</code> in the following.</em></p>
 
 </div>
 </div>
@@ -13441,8 +13646,7 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
 <div class="inner_cell">
     <div class="input_area">
-<div class=" highlight hl-ipython3"><pre><span></span><span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df_vldvst</span><span class="p">,</span> <span class="s2">&quot;PM_VECTOR_LD_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Vector Loads / Loop Iteration&quot;</span><span class="p">)</span>
-<span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df_vldvst</span><span class="p">,</span> <span class="s2">&quot;PM_VECTOR_ST_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Vector Stores / Loop Iteration&quot;</span><span class="p">)</span>
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_vldvst</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df_vldvst</span><span class="p">[</span><span class="s2">&quot;nx&quot;</span><span class="p">]</span> <span class="o">*</span> <span class="n">df_vldvst</span><span class="p">[</span><span class="s2">&quot;ny&quot;</span><span class="p">]</span> 
 <span class="n">df_vldvst</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
 </pre></div>
 
@@ -13457,8 +13661,58 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
-<span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Vector Loads / Loop Iteration&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax1</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
-<span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Vector Stores / Loop Iteration&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax2</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+<span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_VECTOR_LD_CMPL (min)&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax1</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+<span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_VECTOR_ST_CMPL (min)&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax2</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Also here seems to be a linear correlation. Let's do our fitting and plot directly.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">_fit</span><span class="p">,</span> <span class="n">_cov</span> <span class="o">=</span> <span class="n">common</span><span class="o">.</span><span class="n">print_and_return_fit</span><span class="p">(</span>
+    <span class="p">[</span><span class="s2">&quot;PM_VECTOR_LD_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;PM_VECTOR_ST_CMPL (min)&quot;</span><span class="p">],</span> 
+    <span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">),</span> 
+    <span class="n">linear_function</span><span class="p">,</span>
+    <span class="n">format_value</span><span class="o">=</span><span class="s2">&quot;.4f&quot;</span><span class="p">,</span>
+<span class="p">)</span>
+<span class="n">fit_parameters</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_parameters</span><span class="p">,</span> <span class="o">**</span><span class="n">_fit</span><span class="p">}</span>
+<span class="n">fit_covariance</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_covariance</span><span class="p">,</span> <span class="o">**</span><span class="n">_cov</span><span class="p">}</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
+<span class="k">for</span> <span class="n">ax</span><span class="p">,</span> <span class="n">pmu_counter</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">([</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">],</span> <span class="p">[</span><span class="s2">&quot;PM_VECTOR_LD_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;PM_VECTOR_ST_CMPL (min)&quot;</span><span class="p">]):</span>
+    <span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="n">pmu_counter</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span>
+        <span class="n">df_vldvst</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">],</span> 
+        <span class="n">linear_function</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">],</span> <span class="o">*</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">pmu_counter</span><span class="p">]),</span> 
+        <span class="n">linestyle</span><span class="o">=</span><span class="s2">&quot;--&quot;</span><span class="p">,</span> 
+        <span class="n">label</span><span class="o">=</span><span class="s2">&quot;Fit: </span><span class="si">{:.2f}</span><span class="s2"> * x + </span><span class="si">{:.2f}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="o">*</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">pmu_counter</span><span class="p">])</span>
+    <span class="p">)</span>
+    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">();</span>
 </pre></div>
 
     </div>
@@ -13492,32 +13746,51 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_byte</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">()</span>
-<span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Loads / Loop Iteration&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Vector Loads / Loop Iteration&quot;</span><span class="p">]</span> <span class="o">+</span> <span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Loads / Loop Iteration&quot;</span><span class="p">])</span><span class="o">*</span><span class="mi">8</span>
-<span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Stores / Loop Iteration&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Vector Stores / Loop Iteration&quot;</span><span class="p">]</span> <span class="o">+</span> <span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Stores / Loop Iteration&quot;</span><span class="p">])</span><span class="o">*</span><span class="mi">8</span>
+<span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Loads&quot;</span><span class="p">]</span>  <span class="o">=</span> <span class="p">(</span><span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_VECTOR_LD_CMPL (min)&quot;</span><span class="p">]</span> <span class="o">+</span> <span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_LD_CMPL (min)&quot;</span><span class="p">])</span><span class="o">*</span><span class="mi">8</span>
+<span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Stores&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_VECTOR_ST_CMPL (min)&quot;</span><span class="p">]</span> <span class="o">+</span> <span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_ST_CMPL (min)&quot;</span><span class="p">])</span><span class="o">*</span><span class="mi">8</span>
 <span class="n">ax</span> <span class="o">=</span> <span class="n">df_byte</span><span class="o">.</span><span class="n">plot</span><span class="p">()</span>
-<span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s2">&quot;Bytes / Loop Iteration&quot;</span><span class="p">);</span>
+<span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s2">&quot;Bytes&quot;</span><span class="p">);</span>
 </pre></div>
 
     </div>
 </div>
 </div>
 
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Let's quantify the difference by, again, fitting a linear function to the data.</p>
+
+</div>
+</div>
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
 <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
 <div class="inner_cell">
     <div class="input_area">
-<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
-<span class="n">mean_byte_ld</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">polyfit</span><span class="p">(</span><span class="n">df_byte</span><span class="p">[</span><span class="n">df_byte</span><span class="o">.</span><span class="n">index</span> <span class="o">&gt;</span> <span class="mi">200</span><span class="p">]</span><span class="o">.</span><span class="n">index</span><span class="p">,</span> <span class="n">df_byte</span><span class="p">[</span><span class="n">df_byte</span><span class="o">.</span><span class="n">index</span> <span class="o">&gt;</span> <span class="mi">200</span><span class="p">][</span><span class="s2">&quot;Loads / Loop Iteration&quot;</span><span class="p">],</span> <span class="mi">0</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
-<span class="n">mean_byte_st</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">polyfit</span><span class="p">(</span><span class="n">df_byte</span><span class="p">[</span><span class="n">df_byte</span><span class="o">.</span><span class="n">index</span> <span class="o">&gt;</span> <span class="mi">200</span><span class="p">]</span><span class="o">.</span><span class="n">index</span><span class="p">,</span> <span class="n">df_byte</span><span class="p">[</span><span class="n">df_byte</span><span class="o">.</span><span class="n">index</span> <span class="o">&gt;</span> <span class="mi">200</span><span class="p">][</span><span class="s2">&quot;Stores / Loop Iteration&quot;</span><span class="p">],</span> <span class="mi">0</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
-<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Mean byte loaded: </span><span class="si">{}</span><span class="se">\t</span><span class="s2">Mean byte stored: </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">mean_byte_ld</span><span class="p">,</span> <span class="n">mean_byte_st</span><span class="p">))</span>
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">_fit</span><span class="p">,</span> <span class="n">_cov</span> <span class="o">=</span> <span class="n">common</span><span class="o">.</span><span class="n">print_and_return_fit</span><span class="p">(</span>
+    <span class="p">[</span><span class="s2">&quot;Loads&quot;</span><span class="p">,</span> <span class="s2">&quot;Stores&quot;</span><span class="p">],</span> 
+    <span class="n">df_byte</span><span class="p">,</span> 
+    <span class="n">linear_function</span>
+<span class="p">)</span>
+<span class="n">fit_parameters</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_parameters</span><span class="p">,</span> <span class="o">**</span><span class="n">_fit</span><span class="p">}</span>
+<span class="n">fit_covariance</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_covariance</span><span class="p">,</span> <span class="o">**</span><span class="n">_cov</span><span class="p">}</span>
 </pre></div>
 
     </div>
 </div>
 </div>
 
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Analagously to the proportionality factors, this mich is loaded/stored per grid point.</p>
+
+</div>
+</div>
 </div>
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
@@ -13533,7 +13806,7 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_bandwidth</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">()</span>
-<span class="n">df_bandwidth</span><span class="p">[</span><span class="s2">&quot;Bandwidth / Byte/Cycle&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Loads / Loop Iteration&quot;</span><span class="p">]</span> <span class="o">+</span> <span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Stores / Loop Iteration&quot;</span><span class="p">])</span> <span class="o">/</span> <span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Cycles / Loop Iteration&quot;</span><span class="p">]</span>
+<span class="n">df_bandwidth</span><span class="p">[</span><span class="s2">&quot;Bandwidth / Byte/Cycle&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Loads&quot;</span><span class="p">]</span> <span class="o">+</span> <span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Stores&quot;</span><span class="p">])</span> <span class="o">/</span> <span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_RUN_CYC (min)&quot;</span><span class="p">]</span>
 </pre></div>
 
     </div>
@@ -13544,7 +13817,7 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<p>Let's display it as a function of <code>nx</code>. And also compare it to the available L1 cache bandwidth in a second (sub-)plot. Non-interactive users, call <code>make graph_task2c</code>.</p>
+<p>Let's display it as a function of grid points. And also compare it to the available L1 cache bandwidth in a second (sub-)plot. Non-interactive users, call <code>make graph_task2c</code>.</p>
 
 </div>
 </div>
@@ -13580,7 +13853,7 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 <div class="text_cell_render border-box-sizing rendered_html">
 <h2 id="Task-E1:-Measuring-FlOps">Task E1: Measuring FlOps<a class="anchor-link" href="#Task-E1:-Measuring-FlOps">&#182;</a></h2><p><a name="taske1"></a></p>
 <p>If you still have time, feel free to work on the following extended task.</p>
-<p><strong>TASK</strong>: Please measure counters for <em>vectorized</em> floating point operations and <em>scalar</em> floating point operations. The two counters can also not be measured during the same run. So please see the TODOs in <a href="/edit/Tasks/poisson2d.sflops.c"><code>poisson2d.sflops.c</code></a> and <a href="/edit/Tasks/poisson2d.vflops.c"><code>poisson2d.vflops.c</code></a>. By now you should be able to find out the names of the counters by yourself (<em>Hint: they include the words scalar and vector…</em>).</p>
+<p><strong>TASK</strong>: Please measure counters for <em>vectorized</em> floating point operations and <em>scalar</em> floating point operations. The two counters can also not be measured during the same run. So please see the TODOs in <a href="/edit/Tasks/poisson2d.sflops.c"><code>poisson2d.sflops.c</code></a> and <a href="/edit/Tasks/poisson2d.vflops.c"><code>poisson2d.vflops.c</code></a>. By now you should be able to find out the names of the counters by yourself (<em>Hint: they include the words »scalar« and »vector«…</em>).</p>
 <p>As usual, compile, test, and bench-run your program.</p>
 <p><a href="#toc">Back to top</a></p>
 
@@ -13608,6 +13881,7 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_sflop</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">&quot;poisson2d.sflop.bin.csv&quot;</span><span class="p">,</span> <span class="n">skiprows</span><span class="o">=</span><span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
 <span class="n">df_vflop</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">&quot;poisson2d.vflop.bin.csv&quot;</span><span class="p">,</span> <span class="n">skiprows</span><span class="o">=</span><span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
 <span class="n">df_flop</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">df_sflop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">),</span> <span class="n">df_vflop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[[</span><span class="s1">&#39;PM_VECTOR_FLOP_CMPL (total)&#39;</span><span class="p">,</span> <span class="s1">&#39;PM_VECTOR_FLOP_CMPL (min)&#39;</span><span class="p">,</span> <span class="s1">&#39; PM_VECTOR_FLOP_CMPL (max)&#39;</span><span class="p">]]],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span>
+<span class="n">df_flop</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
 </pre></div>
 
     </div>
@@ -13618,7 +13892,7 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<p>The name of the vector counter is a bit misleading; not floating point operations are measured but floating point instructions. To get <em>real</em> floating point operations, each value needs to be multiplied by the vector width (2). We can plot the values afterwards (non-interactive: <code>make graph_task4</code>).</p>
+<p>Again, the name of the vector counter is a bit misleading; not floating point operations are measured but floating point instructions. To get <em>real</em> floating point operations, each value needs to be multiplied by the vector width (2). We can plot the values afterwards (non-interactive: <code>make graph_task4</code>).</p>
 
 </div>
 </div>
@@ -13628,9 +13902,22 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
 <div class="inner_cell">
     <div class="input_area">
-<div class=" highlight hl-ipython3"><pre><span></span><span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df_flop</span><span class="p">,</span> <span class="s2">&quot;PM_SCALAR_FLOP_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Scalar FlOps / Loop Iteration&quot;</span><span class="p">)</span>
-<span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df_flop</span><span class="p">,</span> <span class="s2">&quot;PM_VECTOR_FLOP_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Vector Instructions / Loop Iteration&quot;</span><span class="p">)</span>
-<span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;Vector FlOps / Loop Iteration&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;Vector Instructions / Loop Iteration&quot;</span><span class="p">]</span> <span class="o">*</span> <span class="mi">2</span>
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;nx&quot;</span><span class="p">]</span> <span class="o">*</span> <span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;ny&quot;</span><span class="p">]</span>
+<span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;Vector FlOps (min)&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;PM_VECTOR_FLOP_CMPL (min)&quot;</span><span class="p">]</span> <span class="o">*</span> <span class="mi">2</span>
+<span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;Scalar FlOps (min)&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;PM_SCALAR_FLOP_CMPL (min)&quot;</span><span class="p">]</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_flop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[[</span><span class="s2">&quot;Scalar FlOps (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Vector FlOps (min)&quot;</span><span class="p">]]</span><span class="o">.</span><span class="n">plot</span><span class="p">();</span>
 </pre></div>
 
     </div>
@@ -13643,7 +13930,13 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
 <div class="inner_cell">
     <div class="input_area">
-<div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_flop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[[</span><span class="s2">&quot;Scalar FlOps / Loop Iteration&quot;</span><span class="p">,</span> <span class="s2">&quot;Vector FlOps / Loop Iteration&quot;</span><span class="p">]]</span><span class="o">.</span><span class="n">plot</span><span class="p">();</span>
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">_fit</span><span class="p">,</span> <span class="n">_cov</span> <span class="o">=</span> <span class="n">common</span><span class="o">.</span><span class="n">print_and_return_fit</span><span class="p">(</span>
+    <span class="p">[</span><span class="s2">&quot;Scalar FlOps (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Vector FlOps (min)&quot;</span><span class="p">],</span> 
+    <span class="n">df_flop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">),</span> 
+    <span class="n">linear_function</span>
+<span class="p">)</span>
+<span class="n">fit_parameters</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_parameters</span><span class="p">,</span> <span class="o">**</span><span class="n">_fit</span><span class="p">}</span>
+<span class="n">fit_covariance</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_covariance</span><span class="p">,</span> <span class="o">**</span><span class="n">_cov</span><span class="p">}</span>
 </pre></div>
 
     </div>
@@ -13668,10 +13961,10 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
 <div class="inner_cell">
     <div class="input_area">
-<div class=" highlight hl-ipython3"><pre><span></span><span class="n">I_flop_scalar</span> <span class="o">=</span> <span class="n">df_flop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Scalar FlOps / Loop Iteration&quot;</span><span class="p">]</span>
-<span class="n">I_flop_vector</span> <span class="o">=</span> <span class="n">df_flop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Vector FlOps / Loop Iteration&quot;</span><span class="p">]</span>
-<span class="n">I_mem_load</span>    <span class="o">=</span> <span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Loads / Loop Iteration&quot;</span><span class="p">]</span>
-<span class="n">I_mem_store</span>   <span class="o">=</span> <span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Stores / Loop Iteration&quot;</span><span class="p">]</span>
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">I_flop_scalar</span> <span class="o">=</span> <span class="n">df_flop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;Scalar FlOps (min)&quot;</span><span class="p">]</span>
+<span class="n">I_flop_vector</span> <span class="o">=</span> <span class="n">df_flop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;Vector FlOps (min)&quot;</span><span class="p">]</span>
+<span class="n">I_mem_load</span>    <span class="o">=</span> <span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Loads&quot;</span><span class="p">]</span>
+<span class="n">I_mem_store</span>   <span class="o">=</span> <span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Stores&quot;</span><span class="p">]</span>
 </pre></div>
 
     </div>
@@ -13708,6 +14001,7 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 <div class="text_cell_render border-box-sizing rendered_html">
 <h2 id="Task-E2:-Measuring-a-Larger-Range">Task E2: Measuring a Larger Range<a class="anchor-link" href="#Task-E2:-Measuring-a-Larger-Range">&#182;</a></h2><p><a name="taske2"></a></p>
 <p>If you still still have time, you might venture into your own benchmarking adventure.</p>
+<p>Maybe you noticed already, for instance in Task 2 C: At the very right to very large numbers of grid points, the behaviour of the graph changed. Something is happening there!</p>
 <p><strong>TASK</strong>: Revisit the counters measured above for a larger range of <code>nx</code>. Right now, we only studied <code>nx</code> until 1000. New effects appear above that value – partly only well above, though ($nx &gt; 15000$).</p>
 <p>You're on your own here. Edit the <code>bench.sh</code> script to change the range and the stepping increments.</p>
 <p><strong>Good luck!</strong></p>
diff --git a/2-Performance_Counters/Handson/Hands-On-Performance-Counters.ipynb b/2-Performance_Counters/Handson/Hands-On-Performance-Counters.ipynb
index 7942959..c704269 100644
--- a/2-Performance_Counters/Handson/Hands-On-Performance-Counters.ipynb
+++ b/2-Performance_Counters/Handson/Hands-On-Performance-Counters.ipynb
@@ -6,7 +6,7 @@
    "source": [
     "# Hands-On: Performance Counters\n",
     "\n",
-    "This Notebook is part of the exercises for the SC18 Tutorial »Application Porting and Optimization on GPU-accelerated POWER Architectures«. It is to be run on a POWER9 machine; in the tutorial: on Ascent, the POWER9 training cluster of Oak Ridge National Lab.\n",
+    "This Notebook is part of the exercises for the SC19 Tutorial »Application Porting and Optimization on GPU-accelerated POWER Architectures«. It is to be run on a POWER9 machine; in the tutorial: on Ascent, the POWER9 training cluster of Oak Ridge National Lab.\n",
     "\n",
     "This Notebook can be run interactively on Ascent. If this capability is unavailable to you, use it as a description for executing the tasks on Ascent via a shell access. During data evaluation, the Notebook mentions the corresponding commands to execute in case you are not able to run the Notebook interactively directly on Ascent.\n",
     "\n",
@@ -43,18 +43,28 @@
     "}\n",
     "```\n",
     "\n",
-    "After `PAPI_add_named_event()` is used to add named PMU events outside of the relaxation iteration, `PAPI_start()`\n",
+    "The code is instrumented using PAPI. The API routine `PAPI_add_named_event()` is used to add *named* PMU events outside of the relaxation iteration. After that, calls to `PAPI_start()`\n",
     "and `PAPI_stop()` can be used to count how often a PMU event is incremented.\n",
     "\n",
-    "For the first task, we will measure quantities often used to characterize an application, cycles and instructions.\n",
+    "For the first task, we will measure quantities often used to characterize an application: cycles and instructions.\n",
     "\n",
-    "**TASK**: Please measure counters for completed instructions and run cycles. See the TODOs in [`poisson2d.ins_cyc.c`](/edit/Tasks/poisson2d.ins_cyc.c). Either edit with Jupyter capabilities by clicking on the link of the file or use a dedicated editor (`vim` is available). The names of the counters to be implemented are `PM_INST_CMPL` and `PM_RUN_CYC`.\n",
+    "**TASK**: Please measure counters for completed instructions and run cycles. See the TODOs in file [`poisson2d.ins_cyc.c`](poisson2d.ins_cyc.c). You can either edit the files with Jupyter capabilities by clicking on the link of the file or selecting it in the file drawer on the left; or use a dedicated editor on the system(`vim` is available). The names of the counters to be implemented are `PM_INST_CMPL` and `PM_RUN_CYC`.\n",
     "\n",
-    "After changing the source code, compile it with `make task1` or by executing the following cell (we need to change directories first, though).\n",
+    "After changing the source code, compile it with `make task1` or by executing the following cell (we need to change directories first, though).  \n",
+    "*(Using the `Makefile` we have hidden quite a few intricacies from you in order to focus on the relevant content at hand. Don't worry too much about it right now – we'll un-hide it gradually during the course of the tutorial.)*\n",
     "\n",
     "[Back to top](#toc)"
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "!pwd"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
@@ -78,7 +88,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Make sure your program is measuring correctly, by invoking it, for instance with these arguments: `./poisson2d.ins_cyc.bin 100 64 32` – see the next cell. The `100` specifies the number of iterations to perform, `64` and `32` are the size of the grid in y and x direction, respectively."
+    "Before we launch our measurement campaign we should make sure that the program is measuring correctly. Let's invoking it, for instance, with these arguments: `./poisson2d.ins_cyc.bin 100 64 32` – see the next cell. The `100` specifies the number of iterations to perform, `64` and `32` are the size of the grid in y and x direction, respectively."
    ]
   },
   {
@@ -95,7 +105,9 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "For the following runs, we are going to use Ascent's compute backend nodes which are not shared amongst users and also have six GPUs available. We use the available batch scheduler *IBM Spectrum LSF* for this. For convenience, a call to the batch submission system is stored in the environment variable `$SC18_SUBMIT_CMD`. You are welcome to adapt it once you get more familiar with the system.\n",
+    "Alright! That should return a comma-seperated list of measurements.\n",
+    "\n",
+    "For the following runs, we are going to use Ascent's compute backend nodes which are not shared amongst users and also have six GPUs available (each!). We use the available batch scheduler *IBM Spectrum LSF* for this. For convenience, a call to the batch submission system is stored in the environment variable `$SC19_SUBMIT_CMD`. You are welcome to adapt it once you get more familiar with the system.\n",
     "\n",
     "For now, we want to run our first benchmarking run and measure cycles and instructions for different data sizes, as a function of `nx`. The Makefile holds a target for this, call it with `make bench_task1`:"
    ]
@@ -113,7 +125,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Once the run is completed, let's have a look at the data!\n",
+    "Once the run is completed, let's study the data!\n",
     "\n",
     "This can be done best in the interactive version of the Jupyter Notebook. In case this version of the description is unavailable to you, call the Makefile target `make graph_task1` (either with X forwarding, or download the resulting PDF)."
    ]
@@ -124,6 +136,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
+    "import numpy as np\n",
     "import seaborn as sns\n",
     "import pandas as pd\n",
     "import matplotlib.pyplot as plt\n",
@@ -133,6 +146,22 @@
     "plt.rcParams['figure.figsize'] = [14, 6]"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Execute the following cell if you want to switch to color-blind-safer colors"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "sns.set_palette(\"colorblind\")"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
@@ -141,29 +170,119 @@
    "source": [
     "plt.rcParams['figure.figsize'] = [14, 6]\n",
     "df = pd.read_csv(\"poisson2d.ins_cyc.bin.csv\", skiprows=range(2, 50000, 2))  # Read in the CSV file from the bench run; parse with Pandas\n",
-    "common.normalize(df, \"PM_INST_CMPL (min)\", \"Instructions / Loop Iteration\")  # Normalize to each grid cell\n",
-    "common.normalize(df, \"PM_RUN_CYC (min)\", \"Cycles / Loop Iteration\")\n",
+    "df[\"Grid Points\"] = df[\"nx\"] * df[\"ny\"]  # Add a new column of the number of grid points (the product of nx and ny)\n",
     "df.head()  # Display the head of the Pandas dataframe"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Let's have a look at the counters we've just measured and see how they scaling with increasing number of grid points.\n",
+    "\n",
+    "*In the following, we are always using the minimal value of the counter (indicated by »(min)«) as this should give us an estimate of the best achievable result of the architecture.*"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
-    "# Plot Cycles and Instructions - both per grid cell\n",
     "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
-    "df.set_index(\"nx\")[\"Cycles / Loop Iteration\"].plot(ax=ax1, legend=True);\n",
-    "df.set_index(\"nx\")[\"Instructions / Loop Iteration\"].plot(ax=ax2, legend=True);"
+    "df.set_index(\"Grid Points\")[\"PM_RUN_CYC (min)\"].plot(ax=ax1, legend=True);\n",
+    "df.set_index(\"Grid Points\")[\"PM_INST_CMPL (min)\"].plot(ax=ax2, legend=True);"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Although some slight variations can be seen for run cycles for many grid points, the correlation looks quite linear (as one would naively expect). Let's test that by fitting a linear function!\n",
+    "\n",
+    "*The details of the fitting have been extracted into dedicated function, `print_and_return_fit()`, of the `common.py` helper file. If you're interested, [go have a look at it](common.py).* "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def linear_function(x, a, b):\n",
+    "    return a*x+b"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "fit_parameters, fit_covariance = common.print_and_return_fit(\n",
+    "    [\"PM_RUN_CYC (min)\", \"PM_INST_CMPL (min)\"], \n",
+    "    df.set_index(\"Grid Points\"), \n",
+    "    linear_function,\n",
+    "    format_uncertainty=\".4f\"\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Let's overlay our fits to the graphs from before."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
+    "for ax, pmu_counter in zip([ax1, ax2], [\"PM_RUN_CYC (min)\", \"PM_INST_CMPL (min)\"]):\n",
+    "    df.set_index(\"Grid Points\")[pmu_counter].plot(ax=ax, legend=True);\n",
+    "    ax.plot(\n",
+    "        df[\"Grid Points\"], \n",
+    "        linear_function(df[\"Grid Points\"], *fit_parameters[pmu_counter]), \n",
+    "        linestyle=\"--\", \n",
+    "        label=\"Fit: {:.2f} * x + {:.2f}\".format(*fit_parameters[pmu_counter])\n",
+    "    )\n",
+    "    ax.legend();"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Please execute the next cell to summarize the first task."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "print(\"The algorithm under investigation runs about {:.0f} cycles and executes about {:.0f} instructions per grid point\".format(\n",
+    "    *[fit_parameters[pmu_counter][0] for pmu_counter in [\"PM_RUN_CYC (min)\", \"PM_INST_CMPL (min)\"]]\n",
+    "))"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "What is your result? What value do the graphs come asymptotically close too?\n",
+    "**Bonus:**\n",
     "\n",
+    "The linear fits also calculate a y intersection (»`b`«). How do you interpret this value?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
     "We are revisiting the graph in a little while.\n",
     "\n",
     "[Back to top](#toc)"
@@ -180,7 +299,10 @@
     "\n",
     "Let's compare your estimate to what the system actually does!\n",
     "\n",
-    "<a name=\"task2-a\"></a>**TASK A**: Please measure counters for loads and stores. See the TODOs in [`poisson2d.ld_st.c`](/edit/Tasks/poisson2d.ld_st.c). This time, implement `PM_LD_CMPL` and `PM_ST_CMPL`.\n",
+    "### Task A\n",
+    "<a name=\"task2-a\"></a>\n",
+    "\n",
+    "Please measure counters for loads and stores. See the TODOs in [`poisson2d.ld_st.c`](/edit/Tasks/poisson2d.ld_st.c). This time, implement `PM_LD_CMPL` and `PM_ST_CMPL`.\n",
     "\n",
     "Compile with `make task2`, test your program with a single run with `make run_task2`, and then finally submit a benchmarking run to the batch system with `make bench_task2`. The following cell will take care of all this.\n",
     "\n",
@@ -200,7 +322,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Once the run finished, let's plot it again with the following cell (non-interactive: `make graph_task2a`)."
+    "Once the run finished, let's plot it again in the course of the following cells (non-interactive: `make graph_task2a`)."
    ]
   },
   {
@@ -210,8 +332,7 @@
    "outputs": [],
    "source": [
     "df_ldst = pd.read_csv(\"poisson2d.ld_st.bin.csv\", skiprows=range(2, 50000, 2))\n",
-    "common.normalize(df_ldst, \"PM_LD_CMPL (min)\", \"Loads / Loop Iteration\")\n",
-    "common.normalize(df_ldst, \"PM_ST_CMPL (min)\", \"Stores / Loop Iteration\")\n",
+    "df_ldst[\"Grid Points\"] = df_ldst[\"nx\"] * df_ldst[\"ny\"] \n",
     "df_ldst.head()"
    ]
   },
@@ -222,8 +343,56 @@
    "outputs": [],
    "source": [
     "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
-    "df_ldst.set_index(\"nx\")[\"Loads / Loop Iteration\"].plot(ax=ax1, legend=True);\n",
-    "df_ldst.set_index(\"nx\")[\"Stores / Loop Iteration\"].plot(ax=ax2, legend=True);"
+    "df_ldst.set_index(\"Grid Points\")[\"PM_LD_CMPL (min)\"].plot(ax=ax1, legend=True);\n",
+    "df_ldst.set_index(\"Grid Points\")[\"PM_ST_CMPL (min)\"].plot(ax=ax2, legend=True);"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Also this behaviour looks – at a first glance – linear. We can again fit a first-order polynom (and re-use our previously defined function `curve_fit`)!"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "_fit, _cov = common.print_and_return_fit(\n",
+    "    [\"PM_LD_CMPL (min)\", \"PM_ST_CMPL (min)\"], \n",
+    "    df_ldst.set_index(\"Grid Points\"), \n",
+    "    linear_function,\n",
+    "    format_value=\".4f\"\n",
+    ")\n",
+    "fit_parameters = {**fit_parameters, **_fit}\n",
+    "fit_covariance = {**fit_covariance, **_cov}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Let's overlay this in one common plot:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
+    "for ax, pmu_counter in zip([ax1, ax2], [\"PM_LD_CMPL (min)\", \"PM_ST_CMPL (min)\"]):\n",
+    "    df_ldst.set_index(\"Grid Points\")[pmu_counter].plot(ax=ax, legend=True);\n",
+    "    ax.plot(\n",
+    "        df_ldst[\"Grid Points\"], \n",
+    "        linear_function(df[\"Grid Points\"], *fit_parameters[pmu_counter]), \n",
+    "        linestyle=\"--\", \n",
+    "        label=\"Fit: {:.2f} * x + {:.2f}\".format(*fit_parameters[pmu_counter])\n",
+    "    )\n",
+    "    ax.legend();"
    ]
   },
   {
@@ -232,9 +401,12 @@
    "source": [
     "Did you expect more?\n",
     "\n",
-    "The reason is simple: Among the load and store instructions counted by `PM_LD_CMPL` and `PM_ST_CMPL` are vector instructions which can load and store multiple (two) values at a time. To see how many *bytes* are loaded and stored, we need to measure counters for vectorized loads and stores as well.\n",
+    "The reason is simple: Among the load and store instructions counted by `PM_LD_CMPL` and `PM_ST_CMPL` are vector instructions which can load and store multiple (in this case: two) values at a time. To see how many *bytes* are loaded and stored, we need to measure counters for vectorized loads and stores as well.\n",
     "\n",
-    "<a name=\"task2-b\"></a>**TASK B**: Please measure counters for _vectorized_ loads and _vectorized_ stores. See the TODOs in [`poisson2d.vld.c`](/edit/Tasks/poisson2d.vld.c) and [`poisson2d.vst.c`](/edit/Tasks/poisson2d.vst.c) (*Note: These vector counters can not be measured together and need separate files and runs*). Can you find out the name of the counters yourself, using `papi_native_avail | grep VECTOR_`?\n",
+    "### TASK B\n",
+    "<a name=\"task2-b\"></a>\n",
+    "\n",
+    "Please measure counters for _vectorized_ loads and _vectorized_ stores. See the TODOs in [`poisson2d.vld.c`](poisson2d.vld.c) and [`poisson2d.vst.c`](poisson2d.vst.c) (*Note: These vector counters can not be measured together and need separate files and runs*). Can you find out the name of the counters yourself, using `papi_native_avail | grep VECTOR_`?\n",
     "\n",
     "Compile, test, and bench-run your program again.\n",
     "\n",
@@ -272,7 +444,7 @@
    "source": [
     "Let's plot it again, as soon as the run finishes! Non-interactively, call `graph_task2b`.\n",
     "\n",
-    "*We need to read in two CSV files now, which we combine to one common dataframe `df_vldvst`.*"
+    "*Because we couldn't measure the two vector counters at the same time, we have two CSV files to read in now. We combine them into one common dataframe `df_vldvst` in the following.*"
    ]
   },
   {
@@ -292,8 +464,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "common.normalize(df_vldvst, \"PM_VECTOR_LD_CMPL (min)\", \"Vector Loads / Loop Iteration\")\n",
-    "common.normalize(df_vldvst, \"PM_VECTOR_ST_CMPL (min)\", \"Vector Stores / Loop Iteration\")\n",
+    "df_vldvst[\"Grid Points\"] = df_vldvst[\"nx\"] * df_vldvst[\"ny\"] \n",
     "df_vldvst.head()"
    ]
   },
@@ -304,8 +475,49 @@
    "outputs": [],
    "source": [
     "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
-    "df_vldvst.set_index(\"nx\")[\"Vector Loads / Loop Iteration\"].plot(ax=ax1, legend=True);\n",
-    "df_vldvst.set_index(\"nx\")[\"Vector Stores / Loop Iteration\"].plot(ax=ax2, legend=True);"
+    "df_vldvst.set_index(\"Grid Points\")[\"PM_VECTOR_LD_CMPL (min)\"].plot(ax=ax1, legend=True);\n",
+    "df_vldvst.set_index(\"Grid Points\")[\"PM_VECTOR_ST_CMPL (min)\"].plot(ax=ax2, legend=True);"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Also here seems to be a linear correlation. Let's do our fitting and plot directly."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "_fit, _cov = common.print_and_return_fit(\n",
+    "    [\"PM_VECTOR_LD_CMPL (min)\", \"PM_VECTOR_ST_CMPL (min)\"], \n",
+    "    df_vldvst.set_index(\"Grid Points\"), \n",
+    "    linear_function,\n",
+    "    format_value=\".4f\",\n",
+    ")\n",
+    "fit_parameters = {**fit_parameters, **_fit}\n",
+    "fit_covariance = {**fit_covariance, **_cov}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
+    "for ax, pmu_counter in zip([ax1, ax2], [\"PM_VECTOR_LD_CMPL (min)\", \"PM_VECTOR_ST_CMPL (min)\"]):\n",
+    "    df_vldvst.set_index(\"Grid Points\")[pmu_counter].plot(ax=ax, legend=True);\n",
+    "    ax.plot(\n",
+    "        df_vldvst[\"Grid Points\"], \n",
+    "        linear_function(df[\"Grid Points\"], *fit_parameters[pmu_counter]), \n",
+    "        linestyle=\"--\", \n",
+    "        label=\"Fit: {:.2f} * x + {:.2f}\".format(*fit_parameters[pmu_counter])\n",
+    "    )\n",
+    "    ax.legend();"
    ]
   },
   {
@@ -339,10 +551,17 @@
    "outputs": [],
    "source": [
     "df_byte = pd.DataFrame()\n",
-    "df_byte[\"Loads / Loop Iteration\"] = (df_vldvst.set_index(\"nx\")[\"Vector Loads / Loop Iteration\"] + df_ldst.set_index(\"nx\")[\"Loads / Loop Iteration\"])*8\n",
-    "df_byte[\"Stores / Loop Iteration\"] = (df_vldvst.set_index(\"nx\")[\"Vector Stores / Loop Iteration\"] + df_ldst.set_index(\"nx\")[\"Stores / Loop Iteration\"])*8\n",
+    "df_byte[\"Loads\"]  = (df_vldvst.set_index(\"Grid Points\")[\"PM_VECTOR_LD_CMPL (min)\"] + df_ldst.set_index(\"Grid Points\")[\"PM_LD_CMPL (min)\"])*8\n",
+    "df_byte[\"Stores\"] = (df_vldvst.set_index(\"Grid Points\")[\"PM_VECTOR_ST_CMPL (min)\"] + df_ldst.set_index(\"Grid Points\")[\"PM_ST_CMPL (min)\"])*8\n",
     "ax = df_byte.plot()\n",
-    "ax.set_ylabel(\"Bytes / Loop Iteration\");"
+    "ax.set_ylabel(\"Bytes\");"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Let's quantify the difference by, again, fitting a linear function to the data."
    ]
   },
   {
@@ -351,10 +570,20 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "import numpy as np\n",
-    "mean_byte_ld = np.polyfit(df_byte[df_byte.index > 200].index, df_byte[df_byte.index > 200][\"Loads / Loop Iteration\"], 0)[0]\n",
-    "mean_byte_st = np.polyfit(df_byte[df_byte.index > 200].index, df_byte[df_byte.index > 200][\"Stores / Loop Iteration\"], 0)[0]\n",
-    "print(\"Mean byte loaded: {}\\tMean byte stored: {}\".format(mean_byte_ld, mean_byte_st))"
+    "_fit, _cov = common.print_and_return_fit(\n",
+    "    [\"Loads\", \"Stores\"], \n",
+    "    df_byte, \n",
+    "    linear_function\n",
+    ")\n",
+    "fit_parameters = {**fit_parameters, **_fit}\n",
+    "fit_covariance = {**fit_covariance, **_cov}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Analagously to the proportionality factors, this mich is loaded/stored per grid point."
    ]
   },
   {
@@ -371,14 +600,14 @@
    "outputs": [],
    "source": [
     "df_bandwidth = pd.DataFrame()\n",
-    "df_bandwidth[\"Bandwidth / Byte/Cycle\"] = (df_byte[\"Loads / Loop Iteration\"] + df_byte[\"Stores / Loop Iteration\"]) / df.set_index(\"nx\")[\"Cycles / Loop Iteration\"]"
+    "df_bandwidth[\"Bandwidth / Byte/Cycle\"] = (df_byte[\"Loads\"] + df_byte[\"Stores\"]) / df.set_index(\"Grid Points\")[\"PM_RUN_CYC (min)\"]"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Let's display it as a function of `nx`. And also compare it to the available L1 cache bandwidth in a second (sub-)plot. Non-interactive users, call `make graph_task2c`."
+    "Let's display it as a function of grid points. And also compare it to the available L1 cache bandwidth in a second (sub-)plot. Non-interactive users, call `make graph_task2c`."
    ]
   },
   {
@@ -412,7 +641,7 @@
     "If you still have time, feel free to work on the following extended task.\n",
     "\n",
     "\n",
-    "**TASK**: Please measure counters for _vectorized_ floating point operations and _scalar_ floating point operations. The two counters can also not be measured during the same run. So please see the TODOs in [`poisson2d.sflops.c`](/edit/Tasks/poisson2d.sflops.c) and [`poisson2d.vflops.c`](/edit/Tasks/poisson2d.vflops.c). By now you should be able to find out the names of the counters by yourself (*Hint: they include the words scalar and vector…*).\n",
+    "**TASK**: Please measure counters for _vectorized_ floating point operations and _scalar_ floating point operations. The two counters can also not be measured during the same run. So please see the TODOs in [`poisson2d.sflops.c`](/edit/Tasks/poisson2d.sflops.c) and [`poisson2d.vflops.c`](/edit/Tasks/poisson2d.vflops.c). By now you should be able to find out the names of the counters by yourself (*Hint: they include the words »scalar« and »vector«…*).\n",
     "\n",
     "As usual, compile, test, and bench-run your program.\n",
     "\n",
@@ -436,14 +665,26 @@
    "source": [
     "df_sflop = pd.read_csv(\"poisson2d.sflop.bin.csv\", skiprows=range(2, 50000, 2))\n",
     "df_vflop = pd.read_csv(\"poisson2d.vflop.bin.csv\", skiprows=range(2, 50000, 2))\n",
-    "df_flop = pd.concat([df_sflop.set_index(\"nx\"), df_vflop.set_index(\"nx\")[['PM_VECTOR_FLOP_CMPL (total)', 'PM_VECTOR_FLOP_CMPL (min)', ' PM_VECTOR_FLOP_CMPL (max)']]], axis=1).reset_index()"
+    "df_flop = pd.concat([df_sflop.set_index(\"nx\"), df_vflop.set_index(\"nx\")[['PM_VECTOR_FLOP_CMPL (total)', 'PM_VECTOR_FLOP_CMPL (min)', ' PM_VECTOR_FLOP_CMPL (max)']]], axis=1).reset_index()\n",
+    "df_flop.head()"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "The name of the vector counter is a bit misleading; not floating point operations are measured but floating point instructions. To get *real* floating point operations, each value needs to be multiplied by the vector width (2). We can plot the values afterwards (non-interactive: `make graph_task4`)."
+    "Again, the name of the vector counter is a bit misleading; not floating point operations are measured but floating point instructions. To get *real* floating point operations, each value needs to be multiplied by the vector width (2). We can plot the values afterwards (non-interactive: `make graph_task4`)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df_flop[\"Grid Points\"] = df_flop[\"nx\"] * df_flop[\"ny\"]\n",
+    "df_flop[\"Vector FlOps (min)\"] = df_flop[\"PM_VECTOR_FLOP_CMPL (min)\"] * 2\n",
+    "df_flop[\"Scalar FlOps (min)\"] = df_flop[\"PM_SCALAR_FLOP_CMPL (min)\"]"
    ]
   },
   {
@@ -452,9 +693,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "common.normalize(df_flop, \"PM_SCALAR_FLOP_CMPL (min)\", \"Scalar FlOps / Loop Iteration\")\n",
-    "common.normalize(df_flop, \"PM_VECTOR_FLOP_CMPL (min)\", \"Vector Instructions / Loop Iteration\")\n",
-    "df_flop[\"Vector FlOps / Loop Iteration\"] = df_flop[\"Vector Instructions / Loop Iteration\"] * 2"
+    "df_flop.set_index(\"Grid Points\")[[\"Scalar FlOps (min)\", \"Vector FlOps (min)\"]].plot();"
    ]
   },
   {
@@ -463,7 +702,13 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "df_flop.set_index(\"nx\")[[\"Scalar FlOps / Loop Iteration\", \"Vector FlOps / Loop Iteration\"]].plot();"
+    "_fit, _cov = common.print_and_return_fit(\n",
+    "    [\"Scalar FlOps (min)\", \"Vector FlOps (min)\"], \n",
+    "    df_flop.set_index(\"Grid Points\"), \n",
+    "    linear_function\n",
+    ")\n",
+    "fit_parameters = {**fit_parameters, **_fit}\n",
+    "fit_covariance = {**fit_covariance, **_cov}"
    ]
   },
   {
@@ -487,10 +732,10 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "I_flop_scalar = df_flop.set_index(\"nx\")[\"Scalar FlOps / Loop Iteration\"]\n",
-    "I_flop_vector = df_flop.set_index(\"nx\")[\"Vector FlOps / Loop Iteration\"]\n",
-    "I_mem_load    = df_byte[\"Loads / Loop Iteration\"]\n",
-    "I_mem_store   = df_byte[\"Stores / Loop Iteration\"]"
+    "I_flop_scalar = df_flop.set_index(\"Grid Points\")[\"Scalar FlOps (min)\"]\n",
+    "I_flop_vector = df_flop.set_index(\"Grid Points\")[\"Vector FlOps (min)\"]\n",
+    "I_mem_load    = df_byte[\"Loads\"]\n",
+    "I_mem_store   = df_byte[\"Stores\"]"
    ]
   },
   {
@@ -521,6 +766,8 @@
     "\n",
     "If you still still have time, you might venture into your own benchmarking adventure.\n",
     "\n",
+    "Maybe you noticed already, for instance in Task 2 C: At the very right to very large numbers of grid points, the behaviour of the graph changed. Something is happening there!\n",
+    "\n",
     "\n",
     "**TASK**: Revisit the counters measured above for a larger range of `nx`. Right now, we only studied `nx` until 1000. New effects appear above that value – partly only well above, though ($nx > 15000$).\n",
     "\n",
@@ -548,9 +795,9 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.7.1"
+   "version": "3.7.0"
   }
  },
  "nbformat": 4,
- "nbformat_minor": 2
+ "nbformat_minor": 4
 }
diff --git a/2-Performance_Counters/Handson/Hands-On-Performance-Counters.pdf b/2-Performance_Counters/Handson/Hands-On-Performance-Counters.pdf
index 73a4faac63aa8e05cd229237c0810f168ad6fcd9..570da387d6836ef559a0c47b1a0a53bc19b847b6 100644
GIT binary patch
delta 71334
zcmccpiFwjKmI<cyCKl#)c3j0JMX8CoTot$0M%>Q3V<u4hKK#YR*}Wn6O1z_3@@6gL
zyLH2N+lyv%jU7?9#1>68+qL7h$lvdLmQ%uta(-}0UkiA0W{#x{pZm9c6=xQIIJ{@Z
zVg0Y0dcR*j^!uOqvyB!Hbf(;UbR{`c<U>S7okp_;@7|-oTK24u+PkWL)%nf--Q_#x
zv1UpXZNBH<Y_f6nV~x_)`d`wPzMgsB+3V5sA5W$%4f}tVX>U>gNrw|Bq883O@5CUu
zh|}z|<kBgBR-Gz+EI(C0ZQlY-%WGdVL-RvsW}5uk_3BjE^|Nvkyg{>!(kHbyCT!fg
z!{WU3g@sA-JUuE0w@=Cmy}Kx6?xW51w%0XY$R0VAH0fz?nHj^;sjl+z&J|^OhTcM#
zwua7Kedy66PF|q}HXN##b}pH6Q*u75(xiFzXKHM3<aOHw=f+LVc)MfO?L9Wm>Ic}k
z+;5xRe-d9fck7YICLEeMEW!!Akz33vJnqT;f4N%ca_hR#)z^P~`tf4DxqOerL}s4%
zHu?3X*UAh$Iyk2kdQP*MWGs1X3C|g^fTA0V`kwNh*&^B(E_M8?j@sO>+H?PRteALQ
zBtBPUhxS)*2~NkN?E*JV!es09a|%QjbA5L_IYq`~re5^)m=zp{9vt4YCNxf|+~8E#
zy3F58wp8<+SN<y5%K!7%nVA*&k*#|-FTQ_8YlA|BNc|F}Ssz{(X?Y#DWL@ktRU;zk
zf#n1tRRQe<0g<!gUpx|8uDxBx*~sPauEW7KH~IXGwuY|Wb0T{Awf*nCN*8`|TFdoV
zZ`lrYgTlztw)qj0)?L(lxUW~q+*->r@Yo!Yvh5ExUh@rm9zDHt)A>q)2R12ly}cxq
zzPkmSO;2BZ{a{Bx{k{`Zi(4K)ixF=v<~(`R#O$!pr{Zw_ZP!<ouKwDpWwqN_O{G&k
ze~OIJ+%T=|Ear2Liw{m@&1zY*D)-pywCJhXuYCe67_O!zzv8_n<-91e=c1MG<Q3PN
zvP|@t`#w%}nw+s}P1N^md8cl~&F4<LnQJ)1X8$bx36o#T)VQ+nt*)(Cj%7ROGv6`%
z)th}$vlq=c<>0lZOXr35+oWR>#RY4RUfy@8>Hnr&H8u6pX|0UQH$LYUSTrNCwb{95
zGh6@1Hp%RomW*FXX@>8ocT1eB<GOHmSNQsO4K2$VpMPiE6kegwchbpo<C^XXY%zR2
zF6PXfGntJpRRpO_<aqSO&fy!Ee|?v7AG6{+)|4e5msn0xV|W>N)9O-%m&zrX^S>D+
zHEnA0)l?n5<W8uRs5bh0J3ZzSH1?HP{G@#CtbH!CnF?o$ZqsFw{4FfNcY4{{-8|jz
zdG|_MJi2su@wT$CyEiMZZoMJ2Bip}a^0(7h>I8Rdvp-ufY4@trttzgexq+LmazAUY
zZ+#yUwzg<WXd&BK*Xn%-6W^<w&+siY+urte5(ArC%9I7lJN~S?{%sN$<EPT8w@oK*
z%TgAMx4OGSTg2^WfZIa;b|s$r86WKS%;kA)d`G3Sb;E?BjE$|ODeoQ~oD^7Y^-v{#
zhv4!qZ=)Bii7k99T@9qJU61l^I#I%xoLyjkm#?1LZ&POe@~(pX)(g-7cJ%-G^nMxZ
zySQ)8HUA9GyehIibN2aZNi*ZUPcQQQ`5n;2zUhIM#~sc6!lwgn^_T?KSe#~#RL(9>
zvTXB~wR^CvYq#cUC^9^~`=`v(=$-F6rF~_l{F*=c&!@<pv!Czw7v}jlPeSgH{0a8m
zhSO%(pPZfjGSR5;wuqDRYdf*tM{ijScX&*=HSv|PxXQ}&vsZWgt$X(%W&X4e6QzV=
z%<5w_l>C-O+<0r)!IGCM=l@kF#`8|yU50NH_ne+m?|n~}!Fz|XWzDZR#-8{!F$uvN
z{%@N-d-m}y8`Zrz9!#9U+J9$a$HN;JcTd)-I3Q$pHTqoo1b1eEQ@gz<HWo8~pZHT@
z;e;ibRrx!D+$IQLJX_Fs-v9K?qHjW()33bn`yaUA^{tvaz2{!ObbFhnkzAIreEx3E
ztyu|4RY(3d@3ko^_09b8e%j2}(((^y9ppGyFi9mi>)(%e^^p<tZ6_<T2{W2c6i}%*
zHZ(OvDe<MUi|=gvSY3a#@|MpENp7_t%YG{g-!46tIcLR0n_RV1D=dVTKkjg!_wz#J
z->-L%>Qy}HELyYq*f$xD1o7S7wTHX=xpx*k?2kDj_or0+X4=PBNgp4rjqwOylBXpu
zzPh!?<&}GP@EoqoM_vEzF5XywO?`RY1MA4SpI2o3+@7`jnM&EO-gQ=UA1`_SB{wkk
z@~@koT65o@zsLDY#^9g`?<`?S>(cw8Q|*2}e&oJDO(yv9(S00yBv!aNonv_8_4H@x
zQZuXlm$nzYSXx|pXhN{vo{%Gs2PRCrw@+26cKK@FE13^=I_)wvc++j5(DsnSP13i%
zW1^C;^RWz%8P+$xx4geqeEwd&h2_^v2Mo7tGhr*c&7_)X7xv}$+OsYmLKm0*TC!`=
zx&po<cU~T=X_8@{@Zr1mj0JD+MwOm#R5dR#3Y}KNQe3X!d;fFmbhqTpZF95arX=$4
z{0{rE>eTZBCfk)9wfRa8Zn63Dhh$on<kp!6pQulJVdd?+zr@>u$?i;k*!NKP!=-x{
zJMuauIJnxY<Vr|nUKYr|_a{u!bDBx$hqvlVY+XEW7b-r>?QQB!-X|atvuoY;EggD(
zbNsfNE9B{O&XHaJzH8HxqrG9d{>vY@JgIpTdQ~)bVf3v8Pd1Hbf`QjeCa(=$Y_#LX
zqxznkCs@nsSG?V(W3-q-|KTd-9j|t;VOi4FelW?MD@O61LhA3HId;wu!al@SY!=(!
zzTY6N`rrATtC@FuEj=IpU5JzA;PeAKmwgQ32=ppnF0IV;a*fBnilwu2S6WYM+WlR{
zMYB;zo*^|%>sWe)dp{HR^I82*Ul%o&S^S!AzTcp0(WBXYE==`zdUqb_);;<5&ts<8
z#S<83Z11>~^6@o4yYN|4%hR2oPP@2F+;8D)`>?gqao5`JZELml#SdH*y`Z(}FK5S>
zs&g-^HgX7AI<oMz1-|*y79RNhz*_l9OCLChAINWheBxr|#fv9SFt8tq^sX-7FnwA5
zo9*RuSx;XH)9s$LRXBZGc}+c+#%<o61vA!0HZb=pb6#p}EIGAkm*VsOe>~|GCpQO~
zO|JNEas5@$VcXy-6Z#g)FYA6~yrFV&*{p}J5BDyOE3I!&6yi_+qRXuH>zt!sg7cIA
zOD9IzHuF`Ms{3p!&s}al{oES&-d6d@<Q=+Zo7t3Gr7Ipgi2Ul?73#Wj+R}YC^^M(q
zHvP%T5;IO*x^#g<xU9S^H{bh5>pbTA>3gCUxbjYvP!qZRQ0D1^-H8hA7NuX`J^$Rj
z`uh9xb+dX|=5b7ZVK`A?OGW+P51+5Tz8`l!kvEx<ao)zL{x@9r=eH$GzikqzO)1U&
z!nXg!v&0M6o)j8=mYw0ky0=6?(mZ&|9)8h!-uhn8GfSoIBzAA9$-BaPpfxUI&%QZN
z8RjG=e3w4YwtTVdL(N~4&;5F5w{`U{o!55_=4W=ux0T;#6=se%E({V$KQKM~S6qlo
zX2F>=+!Giqnt8U&dc@mM@S^Hm!s}i8;}#z}t787{;7WOmPVVn%A0Oq~Je1wUJk#L)
zd&jWVi>}lcuW-~|bRq7upYWxvyG)hOM~YYW1q!Cyf1B{?!j?rdr{23*9$3mNQQ-ED
zOD$}Qb>4^5rSE$Bd2V*LyvQzkte4RBhDG7kn*7SGkCvKVKAbsyUu(x%zVlO+dY1F)
zuRgfLCyO!9`J?_Fr@n_LeCL>#etpYXl@v4a+`2re#XK|euhnm<zMP)j7Vo6yv6^*p
zR@ZA&|4_B_j_NNe1$)bWMNiI3P>P<rPP5%*|4D`Gy{D=@nBHety_XI%I<F=F>_hEk
zBbgo3C+_C{t|wc%{B_{u5KXxg>))sIKEHM3-A)<iKPee!pX`3`rYOEB`^3R(Jh?M`
z#Ws2*UthKCIs2g+#y{3O>UUk3e(t^4SzCq=JB0M}c)lJ#ec0elSHh2WksiC}D?Zdt
zY}h<Yq1H_LmU;kZsCe><w|e$YOo<vc<~3_r+yea78wD@rzk6unv%{?M(88mlXHKTJ
zXrKNcGH0PS-_2bN_wVeJP*AL2lpMM0alW^Q&G8VC4h=Jj|6P9e4Ez~;BdzME<#4n_
zhyHv2K>WKjlcI3+zglLUnG8j7(`}z_{chOS_~G*TL?4CY9+k4Ol0xCvzVa?~(@#md
zGOIb%dQPgH@1b7iwHH3#C@?F|k6+cv*`dHEx4Kh##q!HX1TVSYc*N0_Y_s7*LXW*{
z1cw5rQuueT#Syu^!a+T4IeSBDQ}0yQvvd~Uzwl&*(yf3G2e|xlx2@W-E~C3OU(sc{
z<w4=hv~BY9TSe{9PF~-(HkzyT!GCj;#8q)e7G8bX9GYZ(gq??*ckaYe0lOtr`Z_Z<
zexCepU#{kQ%~iL5wJAP0y+o8zTVn0@xvPx+)=Wv6$+}?k(=$Crm$EPGXT_gWTUN&s
zxo~T}!pBE-j$5~w&b@1u=Cw;N(nDmzrr-B+9<`-q^=8Q@Mz2->c&T~KYhm~BGnXSY
z#9!Z>6Lsi@zi!x)6up9FN*{B?SKfWK=73JG(YB8}|E76HuJ^Z95`MmuH^sczYvWbk
zm_yHg=6G>GXYI`0+7R%}gR5n>+WhnHE^;hcoAfNz%C+8D%hs>?0(<@3JL_c)FJ`Q~
zpJ-)e7WlOD^|BMWzuW5G?|2ye@z3(ZZ^V~;p7TM7QRCsd9ao#f?5#fiGTfjcFI{;&
z!2j9%V;=kO-0xjzm+r4tW7nnka=FsCMK1-z-uI`6w+Vg?J(dw!x}Pa~%B-Z?rm3ct
zO<zy&9P&T#>v72(r}`B_I@^NQ)E|>goIK6#{I{>Em&3z<|M>hfOz`)|1H3L$sv!!~
zm*rKko%7uFV2;RlyY>vG<V|hs^0hYcrAn`!-D{QmRm`?~t^VmnZ<mQx3LM%o(PFKn
z@AE6)bHa~(KGv#N7bLv?Xx`TO0g4=(uLT}pm#DFQW9B+L{kMg|k9}t!)MxOxRd8JU
zT6^5vd+Obc63!oijvvp@E_=<i_~SuCp=~An?nh1Y&#r6>p1o^Vo+TTD;j)RG&hIuJ
zT9A`173kZ&c-s$`X8Ch=H~wyW>^y(EntXNIEqjTef4#MK-~QH~p53<UEknghD=npm
zOLEqJzWlp1Cf@1GjOrr?{Q62Sy^q^lfBdrTbD6y<my>nh{yOLXJpcKhYOU7ykpaSA
z1-C?t-{|38)M9$zXwITtS3?(SN`5$KtbNPpR)6%Fue-J}l(Ww(xbf{YuZ8C4KaJHZ
znBB9NHMUjnx)mpUS7pPzQ!hhjg*8auFlKTO-_E+!OEfj9<7JrR%-uTAm8~o+%3qZI
zfBUC?tIzs#_Is-S^F^oT%LxQMad-AVEwlUm!$XDDt}Xp@^&BUf?!7<3<3RS4tlJki
zJh;E>)C|^F#RuMHpUs|KC6ndL{d&R0y+N}V>4Z2>J70Oz;@qT$lPl7Fn(n&<U7pMk
zc7~ZleXqgpV6~O4g0`tkewW$yX!7=5{%Gy>O2^Usnsoiu0z1n_&z$@Awl#sCZw|Ld
z%9P!$w{GwZxzL_tqaW5$%&Mj&+-{=iH8-Yo#qy2WMM5PZjodrkyo>j2Y2uk5_v}M=
zw8r;)tTuv6w(X3noppBF5{^R!>oo-T#Y(ugGH$!v_N=_8KQ7fyb@5}LDC4&&{m&Ga
zY?!in>%-Sx?)&-c&Fq{#qMJM)PZrv)&@w0Q(j`;#@~;V7Mc&SDlbf5_D&e*G#l)G{
zBwn2~T5EVo|NNF?0l!au@>eknkN=nSrZ#DDbM1r8an>&RRnCw3@=qR>npJZBc{#gA
z!2bDXUEXzXb)2#5kH~DVs;<`id)954Yq*Vjantt?lTG~+5|b|F%-T`ks&TUa`lR?B
z?zh|1HU9kA`R>c6b@>J@Klbe`n{)1k?ZpPc!s<2rk*2EJE1!zLiQFC;obyxGc1w}B
zW8dQjsZEcY;y<j@IOVbF?VF3P!HZ3}tA*#RPQH8M4}aI;?JOFXw$H!VW+HGf!Fl>&
zXZd;QvgNP-9N#y!f&b$&|Mw5r%UtTi`PNPKR(!laknvS)=ryhV%cGVBz4HDYG0`eL
z|K6?kCij^IEKk#(*j;Nm9$>8Yr&ZV0?5^Raq|Iw*=dHW0s%u;%7Rkc8+QxxR_2;*D
z9*=~w9{GM)`Hkbyf?Z7?8_%qId;QdzW*hZs{wkXVH-)WEy&K{_X}X)zvEv5}k0~!@
z+gcxA;1G4SZtax=@7wEsxCBWn-ge4b+_zM(mB-%3p<>AeC&r~e7&Cuf=hF3<=aJBp
zv3OT*WO?dFn@R51Kb*L6Wa6!-tkp8NtyNxlSbB<-ZE`QWb2ZU!dQZz1-QD)@bu0Fn
z@PC@neN4%dqbOs-pV#{T+1*lD%(znXQlMi@AZC727MGFH<O7PT^@hfl$i0!RG1dK#
zw+a5=KmU+#;E~zyHYvI8)zfHF@x3IHTj;w^x9f9~;_XlCq#}z{D&;kQ-L<Yc>HJeQ
z^3&6zWpc(+`_e4-OBQ|l+~Ozmqu-B-t$yywB;9qL?En9Lhz-_}SC6lq@#kN(9jAwg
zMaic`)52JxdbW2@`m9twEjro$^myj3dm^c|#s43kpPX;UFf-x9il5qf0TxG2mvb&Q
zTkpCtPW-2w{-N3bS=~!Af3&fuq<mm1R=s~;PGEg-sk77E14&!^Ui*e!iL}c9d`DR2
zNlV+EMSh=k&I)^0KDRuww4_K}@Llz%%&FnLm+MNO*?nZ<w-c?OXuzXtToh&}pirXJ
zy~69&&62XkEKBS<W8yhaJbmmN#xHWAx8wE3c}z-+iay%uJudxPsLuXntMiI~?p;ZD
z4KD?-m-~7sNkz=DzbjuRYnePzd3r#9R8RQJ$J=~3{)D{LKY28M<CEob&4!}$)*YBv
zaOHF7``uz!|F+6{)$%XdT%Y}`{j(5@-bba~-u7`?jsg=dY|VE5St;l=e@CD0kGD&e
zT;{NRGx&6#Tfp^5;f=<)2ETb6xi4Hk9krG+dh}!86$Qqr`gNaY>1-=4Dn4$L9%cXX
z(5e%g9;u#{zxq_^q*16>_^a=0Z>&1xJ?HwY9Rd5VdPnKcdsE%5q<u<S%IE#F`UUH!
zm51)}@~SwZ{550wvMs-^bj6AAZ=GzslRM!>>%KLIzyCZt_xYvR<L~#L*H{>k=u`6l
zUCv>tqx~z|vO|un*?s7ckjmG?YUd{H@=LpX&+D|5IiITC)}8f6U6&U1xjUWDv%GnJ
z)A!>)S=fW6K3+Z~9}p3BR#7W=ZWXWHg;R&F)PIw%=~!|6fpf^=wW>+iYCkA0nz&Z=
zk<GfTE<NkBbp1mg?AUsQIdR2SmpxSx-Y%v$qLkul*QhE<XXy&Amb+H8Ui@9k;!Pa-
z0n=AE8uwZ8q<pa|oA6w)y?A!k<~;!{AKGnB<)l4N-zz_%;kQ}n%p<4UUBBAgc#yHV
zp|U@vFkxo>;}*x&PrJ6P>YAhLIV+sMdpqmQ<(7?AJ)b<?Y=u4=PrbRkX{k7GRLb^K
zEg|+xXK$+5S<-s2hE4X}e92;Uo6y-a{ck<q-t+nRlNw%UjqPo+au$DIi5OmZvG!Tg
z^VAN9(=CC!r|M5WSZcv@``V39GCzv%br{dL(2?-un=UN(v$p>Bp;Bj|Eoyh)u&u4)
z_<Y6Tg13B4?h_6J=L<pm?oWDbZqPE*{4b+PtJc!W=c;^5dkmK5FJ)JHcIdkOzhKd@
z%(i1O>Qj#D=nLErja;MOFlEK!1wGq3(tCNn?ABj?zAtaylS8^frCQs6K3}z^^Yp6x
zuNfjj_czaMKL53(F6=_bkNPv)Iqo0-X|!(3UvAqOpV#I7x8n=?*(=%NTJYe5py|HI
zxk=~lPkkA*_4RM1v#+z}n5HtUdJ-erXB|G{&7-Sv$#(@d^PRSp5;~vVX}85a@hT^m
z(jK?zLD!jCkLO(b`P$>(BJU;d-dyiKc3Nhs_}O3b#=qa};YnL*pQS(R>Tl7i!1^Yi
zwFhVI?>%hIwDrZe`8~G+EiQH2zLhU#I@Em4VCuJi|NSvppT$?tx2X(lb)A@deW#YV
z_Se-tb1SlU&*Qe?v9Af)#p5-*dDojArmdV_e?8XkmTKnGKK-;Ta5eW&!5^-Zx!+99
zDo+)<_|#F_#j;Rx>wdBK$=2*w*-M>f8`K-uD>4Oa^ZD{#LQX<iPh6;IMbGQ9l6tA;
z))n&-0*z<$MHsd!DD&qot2+4Q_?BBKAEUD!Y)ntD*t>BN?=~I%$5wGuKmPjAbmUN-
z@0-?NBC}jOKTKcpPsE~8*|@fAKI<3nTEl{)y=ye;E}3VQx;Gv!NDj>TY^7=X)cey)
z#lPpbU8;Y-Zt{*>UI)x0S6L_JoN$`@V*C8A>1`ip?+Vp@<kNVrX=B8t6Sp(>1?+j`
zWwSNOQ)EueI`@h5T$w`kO#IfSP1IN!>0+YyPCjS0tbXIGoqcXcTo*bXIT&8NlKX1d
z_hePc8s)BKh2MnshrT)(c8be&SMnym&n2?yuO3;R+xBbUgnF^s-dSp4<>?m~PL~K?
zU!;4qcW2PDbrNBH){I+MCiKjF9B|d@)3w;o52nxjVZxKJ@zd;cGtTE*JP)pPKNUOk
z{qic!7fsAhS7+YZ;`ucsXY<mm`^UdTwsUQp`m4A2>+BHID;HfveC$mowpIqctZ>{@
z;Whbr#k`m57be&R<Zr(9uKrM4h^cA7)su_F7HiK@TVh{!IwAB)@Ot%%?v+&ww$I3!
zYM13+Z`K>XQt$YBp6qFL+FYAY9GU-elirono<3!kJA5Q}H0mmPu#0OlT%U0}<!YH;
z)5EJdv-laDq<TK4Z2rO~{q+*Faq8UZax+dHu=OvTxhIaR$Kb*7yTzq%o&_4!Pd`|Y
z>-lrxoic`Miyc$8T<tzKgS$oNK}krq-mAAPf&STjD_t0PMY29w37j?2V1D-Z<cdI^
zGe5P~>6R)BaX36kk?s2xG$X6b_=2LL;?$3`H-Fr1@cMgw?T?4@_0>Oq-H(@^x<==T
z#tDPR2{R7wJG*Q4rH(g2>BZ(tt9>P&v9;7+x^_cYD{{t~?!rt~)#Pc<dqubt8r3$>
z6}WjWC+%eNq<AUG!b}GneJkal>vQxTvbwF!d%eVl)#&xkx0PRZ#x+{b`N33rZ)q`a
z_`D0d<(}70RbM0(Td8zUS=;}}&r_#9hsgG6`@5LV`y{j1viy|rMz*Iv|K6|r^WnqS
z`1}8#a@D`u92mP-s%-f#ftyEPP3AVg`Pw>F;(Nk57qgoIUnMJ8!otnY>-`cIX+NH0
zRAA<IalYD`(x4^hG!O74)_GsZ`z34=BI5dX=a-)c@0fp-JRY98r*ZL=x6>ne?cOeK
zkUa2vZP(ThCI|nn+w|q*%CM);clbQE(*5KWtG{G1ck9kd%X-f*b3+4HIaLb#Y~T54
zS4DJ+=hdo2+2{GImN0T@Xf`|wbC8oVnlNA6tJNSSsAKVi_5;~kPc8oM@$LPsJE{3`
z(A4xxXQ%sBu9M%N(Jt3j$s<?$ZCUM)>%2Q|Y?fBqz_<KhXN&Q@9q+#eukkMSH7%A2
zyY71_VUPZytl9c5x^=bne61JdI$E4(SjVcB&Piihk`U9VS`gf*TEJWz9;2n<y~l96
zt@1n7^`(;fA`MLZ3l?&JO_=#+g6Iwtrh8e8%sL7ttu7%Qk6+ZR5t6Vy^7GR|pI5mv
z?blq2-B!H2>`;)&6egEPLTyw3p0pL8l9N!ng41|gOG8-E9)V|v_4dxqslUfpd+~7#
zXY6XlGdal{3@^q-F8clLcdXO%<-Ai^^_L3O3tbo8a!!{oFi3BLpFP*vGxzQqe7-Hz
zVtHY6qd}!$MD1Os{?=c8Y;qSX0uL<SvG90!l>8NzZ{`V(2W`*)JI4B80=M4k<G-4m
zXJpCCyxJ+sWE`!wx-al`SVl<8b3^5NQ*QY)Ki)A27Os%mJoC)5^=w-%?f-o9?CyCN
zU#qdp&sm~z>7{GZw>kI!DY(t@m5k3g;N%zcFj^t(IdkDc2Med}7eTY-4syBQNIUYX
zJbk}B>k-b{?u@#F9M40P%xv8)7QJGuPcjPV<CmUjJFDZt!L=vft&kUM-LmnglH{IJ
zhT8gd=kGDPT)Sm>MO;~AXX~A3HxjSD*wM0cp>NrZ9T~s%um2YO#@lWwp!WX4*B2)q
zbc;8Na^;@8ek4vR;%7=|U%F|+rrV93LbvQ?_6PRz-^{v_{VPQ+cVql!GY<*1-TSXD
z-f_}Rj*s8`@EP{2$9J<;`?l#Ulj44uF)7yY^Tf%qhV`#sC&-*-TOT~tV!?!iC){-z
z)6JLNU;0DwTHM;FomCePDl^9{FO9K3!0pL-&LM7ptjt;?E+>l<jMic@Qj?@wBm3t_
zwMGi>lPcFg>$$UEx{~qPPDZ}JZ*pxuKb5}m-OVrc<D4l*>`rkx-cS6(zS(V36Z;c!
zY_|H}0@c4$lGe)9cU5i*iax8?$y@xaS?=ZTjqJf+BV-acX&-C*m|k_H&G6=j8wSs=
zDVz12bnD}tpEJ!n`S6U)?>7vVNtv3}?CP^kK0G6G{|$p>Tgq;KE$p_;IB?)=kKv0=
z)xH)7XXu!{d!4qo)<Dy2`m_D58#ZKqyzgK6e#cEG2|jm=qcd*nzg$)yY@jGG!(45S
zuYHu(lYiTmp3sYCwCZt5^gdSDGuvZD%9^Xk!+9^TJ#hT}{8f=a5PSStHR)$69cPW|
z9M)f2CCJMB=Iz#3qI+4cx3{vqzP%>zK!^6X9|@bPn|1DX{#bQ<Zy?jcW4;gWD6d&Q
zdBbAKyRJ7j%H4FlVYqKyb-^O0<8$kqWiP&YrW|xq{P>%m{#(n-rTI(UO-$mR7d|Rj
zT_?M!G|nT!!!R&;ZCmRr8H3a_wwk`--Z|e6zKtm5zTC+vQ@HzZ>9pn(pE#VfAO3#S
zmak@B((wNCzRS{qD+LuiEfe*&m!3DU&MG>%a97dhj}@EkTDV%yJgZrHhW+jHd20?A
z*2{}cmNYn#V|}l;Sxn79df)S-J9fq}`7c&7Qe$M^ywC5pbjQyW)jsDlGv55WG<QYX
zYvZ(Uk>A&zpK+#-D<Um{UBdLZZbU<1=>Amkb{?tA(z}cnSSfK`k%&K1rL%io`Q3zT
z<>ktZ&u<0WtA6G5m!0@B&-j;w@5_pLDbw5DlpL#<$Pjq6(J;|^vSFKLz0s>{foFc+
z-cncIvUA0r_R81N$7KR`ZWsRi@4fY*u>aDW!aNC6uRZ!dGbnxitLNp(A<Q9-)qA~M
zj(OYP-THTmyu~5A?UiMnAAhRwM5S<D+4rY_<$C+p?%VGcf8N1kBAf5KbaK^=9R7Zf
zCsA1u_C;>7`|B&G2)(;F@3pzl(y%j|7w=3k+I-cD?QQL}BcVx~=JUyRPE%iB`rBm7
zvlE-&R>@9(RG~QA&EZDsWCPJ~`&b6g>J3?f+E3~xm@IoWbz%|6ieqO|B6fYYG@DVh
zVDp_Gz9U64x_5gNj{I!CX(pZC?>h6Ee|G6k*6sU4j+)eqRo|5ht&f{$dEN2NnUb3(
z^TcmgvHZPZF*(BG!h~}kQj;2QmK_$WpS(%q_59bSYvzeQ`?m0xth~da-KLxP&m_9<
zIpN@&Cv->9d->;;866zIoccRf>22qptE1JJW*qS)FHb_!=xp(vy}vzLCT@TC*zKNi
z&~($X%Xx<`FOKE6&k*5U^sC}feHgFZS)Te6FAHYP%rtN*yZ_rpT-NrG&#o2=mb`bH
zrd>FkEX~xtNN@AaGK+KWNtSP`czCQN7RYUu;gmB^uuH2wyP)|@*z@PFHu*nm^yH5&
z;^Ve5$&zHVl{GayIVZo@GT!{jg&jxKwTu5`$oQ14KhJ35a4XOE_MGWof9K!ad8EE=
zeOFENUh6IIO1@3H{k`Z*;5p|xq0heDv53yuoaVpRZ_2fwLPmkRy+Wea`+b=%pYCK9
z@aV|ny4Mv9UNH|3n)ugUyi^tTZ->u{vVeJ+tF0dVbPw6T;GD<@r^00oCv?gey`2B#
zC!fOkO&N0~bzJYQP~qKsGk%_pg8Zpu!F?BA801`j%=z@_|JQ1Z)I4pENxok7XHMA4
zd(8?rAJqtc{(9|S%Puo_fju@$XZlGOuIc|b<ISaI(asJzwjWEiYd*GaHP{~2&3Pf@
zj8*&$sal&|+4uhcUjL7O{rA4vpkW5+h(l^#3V6W53_Sg5YHW%+;PAQ_G~jS=|Dl)D
zgTlEFPUcTHGS9rU<ZX;v=6U141)nl9I=5N6Pt@}K`6lJl{&GhK6^GZZowICsI`15P
zm-O*)lK7#k|JR)mZL2>K>hLhWW@|+3-?!ghy_SC|s;D8<6nEF|z-P^aA2fIEimm%p
z&yghjqi18ewPH&};nzx|r8b{loJ~2!@vYA9QC9G>pUO458@?~>m_9Y@*v}wSyKAm9
zLniOOUGEtG#H;AI;Kka&CXJ`Q@$y}dHYbS`=&ySk|M04RXI9A3WpgGRh*o*k>blWq
z-9pKv_bY!ax)*u$=jyD~D839W%Z5cvmMZN_g67xD&+<R&Rr@RId-#g})hVG<X5HKr
zP#@pjo28=vIwf#FJ9o>S-|m0rn4I!FZK$$iQ_Pw-QyPPA$!-0$+N6oiCTjJy>B~z#
zE}8u+aaMS#<;T5ewNAcH>6|6k(XaH(`fiQKtNj_x`dwG8!lYL1i(h(jmb+)@^3^-8
z?U9z9op=94$lm&}(oL6`^k4bTNnQWy@+OZ}>!mdR)!p9JYdj^fWySqnyh@WZMO=ID
zKRB1a&-xAf{<H_dLGv!OCr)^mTGFI1c9iW+VA!k6&WfTu&1HKQt~@3!SN6D9E!a=#
zee$Fg;Zt^fIJLIs-)a8+8D*JyA}y6o9O579?YY+f`yBkf`%~adhx!{)21){AEN$%j
zo(N`7i4@Na6}60Alw-L*Ys-tO2|lLs$ED^39O*3hnIW1tKWMEQkH(MvDQ0gutoD0^
zzt)+!Z}Ho=9$GAmnw-D)?yR3z|0D6=-}C$HZkU<aU0d(DIWLj*v76HV<gXvg)U^c_
zqzwM9Dte*GStHWYsQl~ugX5X?Y|2M!9@cukUY`4xjpgT&6&t$j55I0Y^o7-ZF}pSU
zodm(}Su?~oiN~K8xf!J$P@(g9s;a|hjj;HThCnZ?``YS_+fRP?_DZ~VD)3ErRNkkb
zeud5-woTaeXqMoNBEHAGaT(IQF;>%!&wNjlxEymn`bR|WyYS4lw|Lc9@6}GypI0AN
zxbot(@~VJ!f)i$YGV#BEyvtGj<e3A^Husn6E6Y6Vs92nT`E_2evP6K`mV1V&7A*Px
zA@TgK(?sK!Mb*AhKDOfZJFm$c)7o_|znC^F?CyyR4oi->-+z$&aY5s{TEVpI(Mv>q
z`Q;fuURJuk$oj@{CY3WH760!w2{>>sJh(Vhs{RJYdL|Lp8wv8APA^;=@7pJeuqfYC
zXV1!IvV6?+DCq9pFNv%Z7XS74N~pb~#+t0r^75g<-z@DA%Me8+i-MJ38k)J-*=n*x
z7RqQ|iZ9x^gSkiR{^Z`WCc$+w)@$cYS~^Fdr)p-@?<du-*GveOJZ84`s`<y{InP$D
z{P#;XJi?{^l-Ks9!WR5f*PHTP-NVfnx-vX1F7C<YkahMO%$A)$dDiUz{JhAeXLTOP
zF`SN)R=sD%%XFlsIeRmw)H~mh9~vqT9r8D=yjOMEuYTjnY5bpaBCqPcHQ@ikEK+d)
z>5sRLmI*%>Y~Zm7dHu9gsf8hiVHclqNkEH%iy&vrDx=QnpX*(}+I+SOeDbQf<6pdT
z@8`2-jU2oJ%WS{?`%|`R{-Ifp2UHKuds=nyRP8L~3rSP>G<heUzsVSTZ;~O`ylckq
zw|;u{s(6=PxBk`6!@Lu1Ec`1DJiQWgSdDGU*|%quj<}w$JY`Yu!*^bl$5Hid<gssa
z5<U7Xxm?dDeBn@3Qc+xyUjJM;RbhkDA-+qAY6;?<{S4CtzBWEhF|1%Xm}zlCq)Fji
zm9ypSGiq9YGNv{&esArqnSXB98(oH94VjA4h3lNx+=)1t^e1?x-c^-fTN_x{O0frb
z@Gu`?6y3H!#?|pj(A~KfPh{6bp5fD1ZgJIEVEee=Xq8HXhC-K~;Tjc=fD`pIPFvMW
zwwH4lnyEFn8!@${BrVz4!!XI9eCA&3JxLE3J~qT9=xC~U6c%=FZ0Qvj`s+Dif8XKg
zf|g2y5}ib;gSS&|NBFJmxmmcvU_!s(--9}eMQ0Lx`5dl2c3LlHq`OL;V{h6#w%3V`
z#ZQ#qY+l&7+0|5~VA~0~OYX84&+Pe8-}<8LkCU!0o1d)CW#x&t&k7oFNDJz0HZ;3w
zWnCH&ov?k!Lgi`9!e63Nu0D&)`>1uJX|CYM(iPjz>og~xN|<+aiX7uq8CKii**m^z
z>P?;=y!e*cxqGW0zgsaazjvQ*+V-c<3Ie<<uc*9`@e+0lRC=y0DQ_piCb87{;o)Vg
zCRNqXdv^NC(>rTt&-60;Jn>rXA;HB*Qfp^6oI9@3!>75i)raBuyoSvuJsPjD@?<e-
z&fYpz?D~a0Ud7dslF3`;)50y6J6)Rm`O1q`y<BZ)XPRkkIH_WCdg<$sK&OoFY40B%
z?Q#<lJQ%wv@8_9G$5rf2g;UBFR;yYGIZH0r_*7ja*IK{O=fFCa{WIO~zo^v^)mZXy
zTJ4LS3S2*g4p#861a@cD2yC6v&$~$MHFxt1JJoLuD_qUwI{NZ2h`H!q3v>L?q+oSo
zooq)`%Jb$I3oI`;u5dLI>xj~6Z&=~VX5Am?STf(G+3`w}nSjgO$}eZHO`7sX?L%wm
z<X?KLxgv9ud<z5Wx9upOZ*%ngN-fF5%#}x+?PmtQTCM-|B-c;hHS!5Qr<dL0IWM<4
zB6OEbm(JPAJLa(XgxR<D@BQzm^hov9L#1=3@v+w~*_gU-pT5%S`v#va4X>4|&vs8;
zw`2cWzq4Ova>`Y%vaz}wvdksRZ^DXQ6-rmvg=AVb@y(hPv*`R!o1CKh-7dGZn@%5f
zoxW9U_9x4k_DjBAbFyXJ`DYu$x2qp&ZI~x4J|w@RfBQ<dH;;3TR!*8{@!9obO_nH^
z+=mNK|Gd2zsxdn&a7~zN-K)5ru?o6<?r-k-^4(C2p1xt$xq~O4r3U4nijneaXA2g#
zFNr?*d76bH!$j497K5qBV;(TLX9(0=_2}<(&$z7cTjb{4|JzoqJI^iYlT}mFEOd_H
z@^7}iF?$?1bXfj5G@lA_ebRU6?pDVj*@eBL4cm?5^-e9c*!FMD>T70KGZ-sgw}^e7
z$bG@=^=Xy|xhcE+J9SSwb#0K}k+Qi{vPQYCJvxhV{_NBbw`929-g&%GBfQYIzRy^@
zpx)AO^XY?g85fr?HSpgk{Km-nV9d4Tx7)tBolEQeaoEFS<)t&#NAK-yDDIk_+cI_j
zk#8#w1)0VlPu=4+D|z|y-dQ$RndMBL^1M0F?{|DVbJE1Wb)Ty8+72Xrdw1u~c21#h
zMt5aZZltVRxc<EF$Np8zJU{Y>1TX)Qt0npCPvSNHx%Cno7?^SxCML%$JInVlCcS&Y
zfrka@uTQuYZ0oz(ac*1tOS|;fCt{rYALJ;nx@mb^!8AJk^@=53^*MK6tTLTwE*&ej
z_ot@g$2n6X|J<6}Woqwrq5t!ezb6~-B(9K63cF%{xIA0tk+@fTSZwYp#@(i~-!z4W
z@1D&V8b15YpH-{R*5^80y{aa?^VP2FI_l?zx?g?_4WFHLW!39CS@y8l+_b~1)|o9W
z7JIZJW%f*6!REED2~O9W_j32t+*j?6-%@&g_1T#JWy_5XU9S6vxKHWa-G6(@B#U!}
z{rmrR&vkrmn);`&@JZ2c-B|f=3OBa0wd`myem|L6vHZHNf_3ikF3qm`L-Tr+=b9gK
zd@RrRx_g=pGvDmL&bxAK!@LXq&wUn>G75ah{zNIPmqTacqux;cX_qIQ%#EM0Ff7&X
z%!du?&+q0GCHw6#YGJPbbENG6kDw#Fnpw`Oi^9@opC<}So4r1*X7){MqxHtb$!FE(
z>vY)dluPsT;FEs2ZA$v&xzYT_%j<vV&bu$iYH`-GZuXkkqvuw)JAROIdDGx>eBH$>
z?CkG&9~H7120t!pkDsrVq2Ocj^T*`&11V=%7Ya<3iFPzNE|8=3l$%%ch-uM%qfZZi
zo0W(Q*gl@n)5)HeoV$4+j~qwW4jaKu;hnlEc1Ln;8GR?+zB09JnPs{GL;9_G?HwoT
zWvpi~bJ}H1+PSsk=r5yf=IvL%Yi(5JOMY<PmhrvcS@#)9t!LkKFn<==!c~=$XLc@9
zdY8<Ojd|vhON&FkW|vh}-S!cS@HCJ#-kn=^Q|$S~exb-Y%P$88-~OF)Pxy98NYxP@
zrRdF;`}{WrAGYe{WiqR?k=QIEcyemzjycCAb?PU}Y_<G9<C?kk4DY9{XQS&kW;fqb
zk;=Wd|GvVn563;e2622}B=^6Z>tx)O`TP48x*ZVMJx6Hby`%CHw-R@-OQ%*^oOo90
za;39Ygw56{bdmMX>(i(F6xh4rpM)%5L*Zv;vG6Ii0&4^<dIFBfu-pqfY-Qi{xluCB
zS=pl7%k|vm`nl@sEpGVcS>A3Aw_oxrV&bk+_qe3XcXlnlrCq!A^lx4B_a@uj3Vdw8
zdc~aNF+F}{a%RrY+N&{rMaDCKwN&3<%k?w3{%372$J1P+Raa$tvNF!38qEqVw)KCI
zJ4<3kQ2eTk7g@fqkJdlVvEb~Y$Lr!6Cxo#4ULQZRNbaD^vTwfiqQCPKKPE~pd1fY5
zDeHD4rd@Hxcb;px?=Clflm5Fx;jXD`$Xxfyys26@FMYSQTsA3WwQtz+*FNP&mt9$I
zO%r|caGTc7z;c@_@mvK7s(ouFh0iKq%g?R(@cy06OV%BBeC4$&x-!o%J}F4`7n@+I
zy9obP*}zkJ`*Ov1Ub%E3Cc3`pe^mbdO<i0Oua!^N{Mx3vf1^vW2%pu(=PwVP6Z>?o
z>)Ev_F19CxKd;-Bulgpolx2NXxa`5?(yM|dR}7Z!SN&xsu~WyyGXAv2Gb<Ij((479
zfi<Onr`80_lwQ7x$C6b%JaOi^2{#ks)1;k3BOX2bTmS#%f0@~-8=(C`UeGoNXot|)
z5Zoa&H@86U5bll1Exv6g^sjFJp|{fmEV<noSmH08EV&hPd*|+Nv$Ad8vY%d@sB-I>
zi&E^wO>_7C`5rC6urooUbIOWknMbzQa=g)#(-Bk9tJ}LkT<?#&J`-F0-R`5m9=%@O
zU0-urZ-uv#`6BV~?FIE(=Uqw)x9+Jg(|Fk8yDU(|GJNuh(tWc6p5Luk3x4K$?)v1}
ztLvLBayyN^BtC0>+`d{xZ_>#t{H>eY4!=!vVs?*@cyfD<k6EkD=ef6Q7Jsbiac}jv
zImH<M$X2b}=>C%Zs;AeLb9*iNbum;<pZn_~i|8`P?v4U;iN2Tv&B9Vvo{nn4ubf-&
z)vNCEdRn_Et625*&&T%lS5!SVbA6qyoyp*2%lQ9SV8zGF<!iZTTc-+LytGo?<3Qxs
zU+p%!T{g+ypLRq|a%I-pxMfG^4+Et}4jrDw6P3ALG?nuXl#8y`_$|`Cb4rWZu`@3>
z39H+g@A{t~r?y@#*s-;^biT*+M@`v}PbRnR@w!(Zd1R*5iBCay>({4Fu-3ae*J!`@
zfreAO%g=}&`Mj`Zitt0%t+y8JxpH!ni@fMb=RKXLUFI34KiicvRpeFJ-!EyiMPuV!
zS!LWOuDg}P^iCx3e5LYfou_usqDvJLMJ0+q<*w8V+ZQIP7Wex4^X+S+dySst9=I)X
z^3^vXkrzSf(M#%Y&efZqdT*ts#Jb<ke<qyUyu(L+a^)Y1<=PC1^FFu#5j=NStunyf
zzW(#GSI6f+oBNfw(T6Gdl>XFtE8h#BV}2c*|LLpqF0Tc1e0KQF6j^GwCPa(>p8Cy4
zb-QM=oHGl~QPE!h&Nd|M?0d71QFpuEKQd9i`a0&TT;SekvO9cdrSGa=A;$fwf#bf&
z7w;=!3nDr0daZK4Y<H-;!KE=eSYv|1_d{O);scxxt}M<?uoG-(&veLLIXnEV+7qGm
z|Kg`H%q^SRR4jDLtjp2<b<VVDAs#EFZv@3IYyb6UVcnLO4^NoweH*l_%SYg$*4Ooq
z`8z+&JT>dHk)GWLz5SgwLNmfXO{rh^;Hys0oTT4%bEm!9!4z?PHvg-TpRS7jhgJoK
zoPY9kua#3w{9N<3F7u}D{5Q3Cg;3Aw)@eF+V!>~>O_|j2bK31`on<>_3X9(=pI=nU
zuvB+a{C3Z<RiDoux$fHXe6`Z4<*UOFInL6(e7t05Z}_X2&s|G89<GyMI&WlkMReko
zigooJ4(vOWCS9^)4z+k-9Lx8;HfZ04vdW03w**%HTkCP?LQmbQ6Q9rQ3yS6l_IEv>
z$@uqT`i02>;#DhiW_eBT65n)jjh&xH%-#@x{iF{M`qU0tu2}!>MZ;dXkgqp>ulw~=
zamRelIFIn{mQMp+R=iypuijmuUG00!_W8<RYaea6YE)ls_;8<c>A{_{t4_LyZhaW}
z^nAh5lATfqw#Zv_pPuFu_|<=E$*y%CbJ@S1e*f70Gasw&9P{^eVeF;(QFpJEhi-hd
zbk{0o?H8^dN8avA`+3==V!>?9a^>gKIeS;#^5A~*`g`WID`K&;-NIiTn>Bm(hbOmo
z95B**e7ko|cTiaZt8u-K(iz^Zw$rv3cbrw=d&OgIdxdk^t=6plyUvEM{=;eYOgYL*
zxT$5H`G%#*EB&K?o!i!PG^95BV&anr%_lWBGses7xG@M;W^mieL^lcKRp=TNZD3jG
z{%1qzJ6?-tHGwv-9JXn7Z82T=YyK*eYg5-T1s+T3Pj{^Ur^zngDkC6X&z8RJ(HcQk
z6JDlJiKnGKTtb!XTAx;mFdtZ;TDJ1f&L0!(ay~78<PmH<zj6Cd_C3B^jjs2!JxMg5
z!LPh}8vBu(u|+%D6lJ#8u>U@@!OFEK;9`)tbxa!v(|d!g?4LV~3a%?Jlu1c4cz9_3
z;g&-+1t$}h6czMWOtcRXmr3e1TUmcrZFA?Vm{+G<4U}>u{4f9J?0L?8=x%|+W5tD+
zCHWh96KqsW%^oYh*eJ=bea<UvPV2{Sp(*^26*q2_%%8uVH`V41<6#MY&%Of{9Jw5i
zBctr5eiXP7a7=o!jOk<EORi@tZphv3QMXFE_3$ZA&7l=0kqnC~D~jzet=44sls#Kj
zFUY=rq1lbZYu!u*Qi<NWpK=7J8$bWG<V5(hZM8F#WWp3)?N;ewieBS!s&ba@<mbYj
zGj`4~kh}HZv4LSR^CMQ><h1jTFTL9r^nPKiirMU#SB9w^C5-%iSKo3=D6s`?esINr
z<z41ms|bgnWXajP1m1DvHTPe6d#K|&FSB%&N^*U$l#t?)#-#Ush7+#j6xG^Bv|c&7
zB8K7rHl8m@bE-ahJe4r~a$EkH)%joVvi?15-+q6!M&h$6m6GdC8s$HytqwaQ?6PI*
z*GC1-pOl0yO>>T&w=6-;>5x+uAFKJsKzY{nmveN!7CmS>c<Sjs_J(^aPCaE*-glZ^
z{HRLf0&m`!ZT0c_70Wid_js;!w^(fU!>aDx#eKd@`dKC(?aR40rGfp{f@IVD!!jJd
zo;`Cr{`X^X)ShLVId7_TytlU5P+m8|S)EhG!oa>`DcckFjS;fear3Xl&J+-G?!O#8
z^P_>=zr4wMQ~T~c%M25H+~@ZF+QP%3Tg0P|S(v>sxy!|7Ez=cTudibA>0DBzRO9WU
zLcYsEmemqBP9(F=RST0#J7dKscX)={hocet)hzoAGD;3_zH#XZ$1!tN?iiugwWreL
z-4C^C#BVsbjmMHF;ICe^-|K`Ea`tmfI>Ia+_?`)WxK^j!G0SY?m0BVFx966Wt3UdA
zr1bB?xg3+EE_Etwy#3|frIvb;kH%}OJ==EwNOXA-^yu=5I$wSz6K83iZyT(xElZ1N
zy6EvgfxTPw_V=Qs-7_q2a!MYqy0bf6*V!?<&3!@p<q*?qWzEUrd;85#e%`p{q|>A7
zKLN7k?rY@O9`oGU8hUE=S+kd>ai20zcd2ozueAN}!t#f+!xKrKrTuOhTmCdl)}K&*
zvvJeEU4f<to_9X~(^2r>f!A&-mxbWO*gZF&91+k;Ir6o+_{FAY&1^d*-_-s;FUWrK
zZtQD;tFtQER7#3p=^S40EXdzTLDTcprps1lNAsU?3p{x(SG&S{M*iwWFU`YG#!ix*
zz2n&dPDT5G1@oSqboRP);M=;mJ0}-6wB+5$s&|Qh!O1g!vPYS@vR^{RyDxjWDitb~
zR(`xG+}Q6kpX2A5KReg+Rda}R_8wpG`1R&x0W7u4T$0V(`GWF&7kRuY5tF@AASLCR
zwD_aOAsMG79z4fn9~-^gr^LG~h{bGz_u6k?T%VtclG`Ql&S>wJFxF-9Yq|E81=Tq$
z6z{7NEQqb&Wagb-ytyP^e`TosY7_5Ay^(o40}ri^&^vS8+x+6DyGtV%WM2DqT6IyX
z=Kkaj`}s4jeb)<S-KnuUb;lLUq{OA}nw($71OFc16OnabhIsec{L4YRZ`Mq-pSR-{
zyYlxLRs5bV%+X%!+ii<tGKGFiY&`C9y`(teO(Jvb1(`Fp_v=-jmQD6_efh5B6}v&s
zr;i(6ZmDBD#C@Ha>GKnH!JIRag~rM~6aP1z*cDg4VY}Pz>#_+OPhZ{@bNO%o`rB46
zFT&pa+!Zr<iOjMXF^&$A=zRr?!<AN)<eH?JL~qY~ai?j+doG8~O>Ex1V&`VPG~oI7
zbBFLtiC;D!*KmIM7M4_AR?pLI${pzQQQ9qd@3TK;vqR@^h@I7cTZ(<>S@YLB=GY(8
zzVcswru<hM4Tig>=d3fIa<<7;KILpvyZ3el^Wwcn@6BCvH0jokWuB(nuDYZ|8|yy*
z<b1g_s5Ybc$uIN0lg@rl{j|A!*KRXWq2GUBNF0!0Z`^BRx;=(n?6<>r7BP=A^<iJ0
zuGIVzxH@w3kqud|M69MwdU$F6v(uV)SDW)`lrmgQ+vE8-XX2b!IgTD0vTw3`ue@A$
zEur^$X0^e0izwyP*FQ?^r8o9%oz1&y@yAVW9@pNVS7wV2WO*-dbuFu<jc2RWO5<~S
zi?;L3h;a#8eqL8;17mQvN7j>>M{Bh#Z^cU2pZWK>%Om4T=Fz>PG8U^lHnjO_DLG~@
z+aIpyX)gHikb~kX=Tpu4;(9!~xf_2(uKt#|ckb)_R_VXL8oRcwxRhUfD^%;`l6kie
z9iP3L=hrOPb*qY=Zs1z{cbeUo2(F`wJ&U(JIJ0wG$Kf@PtqV<iPbXO1)OuX;`lDp_
z%^&(6_9y!5y=!LX+=*Vww{b#?+~%Wx-u4Atj$F3wd5RtiPHMfoO0zfd*IH{S{*7C{
zk4=At>2HmM3164@E?ceH9{T!#{`{UvUWX?<UUtdg)7hL)tLk-U&iVYo&39eGnSUom
zbxf;@SeyIj#2mcv+;`oZwMX7@Fm|6+yS~EOs;cO;&PVCAOtpHO40c_1%fh17^IjdE
zvA){>YvRgXhwXB+PW#M$s~hmXz@`3a$H8B|xtv}S&vReTE@jdai9fdM?2GRi+*d@7
zJiTBp^P^ULTF|<H&Qt4+_MAKNzH{>3v^k14`=yHdXEt1JPT{Ftc9q$xeB*W@*(4@`
zXjYS*Ws|qxn3+Adk<;(W-ug&SeHMXRJ5Kr^JTTu``j^eF_Jggj<yIYeXZktf&9hHO
zuD+LelluR>-NqSne{8mDR};+Na@)lHrHt#(!qS?)*z`Rt7O4W842$2C3cFuOHZNqc
zo!d7n>3;O9yPn)S%g&~CNSeO<QM<{?bjM`lvU&E44!&X#Q0!0Ecg~Xdd3#Gu{Z{6f
zu(*Vr+QjP<_ITwby}2JRSoZt5#k&Wr2R`clncj77-qrK>kFRh$z-b?^sx*1~jr?1Q
zPo5h+sy0jOzj3+MPCuh_<;g>jzdwFp$6~lAck$s)t$?}Lv%IP+Z`90?pV$#?l5>7$
zujmO^xi7*=84B%7LKtjs@0`N*h+pu>ZZpk#9dr4&OM|n%AI?fYq@w*LadTx#o?hzh
zuhjwbwmw~XPxSrsEN!RFmGk9i)lQlz|MF^Z-Ibho?8mdVKR&SX+r#GPSHCqDIKREl
z&c5*1&tJ(a--i^R`}FZZ=x#=@9Nj7Fgm<nv%|9pp-DIEGnoC9BrtOh!y}kA7{Lo_t
z1@kU_+Lzs3@2Yq;*UZ=C=UTqq6-I7`)_rEX-J>IX(!QT<tGAfHnSb@IcltcC1qFMH
zUxt5ETl%y%Ynx(kH-FLkBN`#UIPEX;hiv)vEdFkYS@>}--JF-IM{e7dzd5e6-*D<l
zHG76*SCs`5=l#Eb{~v$P{U<8WUNBN8n8_G2Eox+9W`}eRz}=Y0$+wRQ)}3FU@KZHm
zi%eqP0X^G@Pl28(?i<ZLm->iiPdoB%5et*HP)z3JPxb!i8510mJeyeNdU>%oJ}mL~
zkN<r3=*8oLa;+cO`&AnEKg`%Cvv;4|-amZ(1s#tJjxBy2{iANt{R*31aestTTI-|M
z?3ePF=xzEGH}x^+R2z@$@qOws4;~oKoPP9_*s7X^@-7?Zt@hb@=y=LjzwVmc`(4q|
zi}(1;EUt-Ncg*O<8Shx`UUem*gYw1UwWi06B2?PMxlbJmI^QjG!zxflJ5eQ<rLz97
z`eorRi_Nx?)2GRXs3$E?jn!BnaO=Vn{r$@I`}_(d6c05nOe^^uqLv-Lda0$5vR<sJ
zuJ5J|F}+D06M8wiwKXOre$d=#`bniQv_#(b>J!JcAuso}`{_BFhqN60TAP%ub1C}l
zYq2fOixo~jU$^es#)X<*QzZ=@xrJPpEbYDf?)XAsle{yl=38eydZ6iR6ux~^nS1P#
zzin*)CF&1{cjhMTJbCJiV)do`BU0}fgzrzeBkAyc0_()BPhKy-bhAWCr|YcmvwL!D
z);(WYcHrfWOBT@<`!DjB#_yinwDVa-gX?ZvwzpH~b46!7I${@gCM(<8?wY}#Nrl&)
zx3gS3*q|wK$3?c>EB<!+>u+<e^eyA|RXLRYIQ?7gLa)^M%j$RaEjc)~cV?=r(3JML
z-<%R0$uXhDy}7f~Ce_?o(y!(HY13l!U4eHw|MH4yEL-&T>((-^wKiH!x0ANsS)ucH
z`ZaBpSzE4rJm}QH6rQw}m4CbIG|~B&{`l>0+8}R!YQ`yn2M%j<cb>}q`ebvIU5e@3
zQ+3(Ft$MTA^d_{*pO_NFQm+`_YP7^kOlOypom)#lc&=5MQ@z*e-+Ajay0n&=$G%aS
zBv>XY<{3Ao)V`P1S7)=qor|e+b0T=un*0rxoeg@n@l<>Crz1k0E4;EQr`rg2dG68X
z-;(r}anI+opWL3O|ILw+u`A!?;Qm<0Md{gM&fb6%i*=`Zh@8F<@>oM9$E03S<H(h=
zt=pJo6MI%nxT2OJQfQX-YVWHo5#g51J;{vwEoDv$I@^epo!O9iQbR70aZ<+Iw^LgJ
zTvX&6nLRUK?R_zYW$~@TKEWfZE4>76DW2GVUAEcsvCKq{IjxPKIdf!94@}^-ZkZLp
z^p}BA&BEzJO-sohZ{IHxriKp=_RLyTugp8G+(Su#({sB@;&zdo(-9M%*=R0H^w_Oz
zoEDnmc2~4x4Nn$Z$6+<W3zia7*Lt4Vtfu(EskHP+=9cR!6PI`Bwp*Smwp=1_xWm)N
zv(JdrS?I~DbRmgZ)>#cJCY`8rn<#j}V)g}FvxPHu8z@$rHtyc+SrOCG!csl+NlbNw
zX1!EQMUUlzZYH-wZX5>g6&j0Wm5(uQzmcyhvCAoJX6MzktnR!wDiPLmOJ|E1t30_^
z62tHO=0sx0-}`A>`vm>NPE{AK%6@QPBYDC?W441bDhtnvS3d66m3?`Wk1P4sDarM3
zrmT=|cG}nfVS}I3cdL`#eys@;W?5=_OrIn3QG&ld>&~_rEI)+r@3?!A?-rM~;jbOL
zGr|RyFuhoBdV%-L75-;k&;BRRVKmrx?8-ICBlU+R|4pA%bG#$mb(775$zNjT+qj=O
zrv5bl(d0{?J@4ICx3q|U!NU8b(5_Q|!UDcuDz(Sd7k_ROD@yxz@OY}c(UzsZ)8!?b
zUd~zI_$1}3_x6r@Bi{Hea&NAGog~xGd{w8r?O<%;^B+vRmwL$9thuzO#P$2jTXr*3
z*&0`;n#epknI4`wFJ)%jnv^3tPi84?ExS6etGD(<*Q4gzAnP;rI;Wm2`)8;BiPK}k
znk##J<lkNjk%-y3^z7ZKsuJwR%j55Tnko?(*_&Ff{k6be`|2;|oipnvoIBco!RLHV
zX-H=L`uXi0{dK?g)y3S6ob592eyddNu?M2p-foezIC@ZDSNRu<!RKQ_+gIMJzqw`A
z?AICY>ops>x1A8%zFC@oS4+p$|68uy%bxzkN$I4^?8mE{i##|?I6B3y9)9E^sO0dt
zYUi!=Hoh(aSB+zve82W;T`kw%>Qlcg^ogHBn3F7zVbY?d>*J*|O`oxL<o!2h+V1sj
zRqwHenY{P)x4GJNZakvV7gckA*3xH+6~`ysu(+rHMQ@^u$s^rG-_@n09!a!L%=u{b
zCR?J7?c8l4pRJ<un~y%;WfLmKSiF6Q?&-wkhnt#<ZfnJ;Kh-%aelp!WZ{DjQl_?#b
z^+k;Hl?+NwZg{)){`yO;zCrI3I5gS|4Gt+w%=}d)A!zXC(YA`qA1gnuJbug~X?no2
zmW$%soxj}W-@L#6_p@L6_Gj<a8CQQkynB1t=F15)pXmwCy{$8qg+b`;$|$Z*t3^c<
zUbN~oWZdXGEPlK{LZ``ZlNNJ&_hjYp0~h)|XFq;ee`2lhHh0sICuWsrlkIx8C!XQ4
z$=|ro<Bb_-VZ8dc6qo)tcU~M7%8@xP9=KwPfM7Hq=f~=e2UK~MEjN0%I{XmBwFkPE
z_p6P*a?esTu72}x!|j80KCh3wHSF#4=Ts2xd(7Qn)c<kAiZjW7jD2(_Hx@*)Zv1v~
z@9UF_ZcN8>H+`;OIP>@#ezVUf+E~)%Zri;$qbw~qkM~_HuifW}c!>pHi?*s=s5Rzi
zyVw?<(R<P68n4IipT8a{tesvZJ;lsH#oXX*@-^n=jzXe&^~nlzo)x}nylk`TVd1Rf
zH5qfBZQN(zcl&y$?aqtJ(tOK#*I$rYUb#lGMPF<;uixvX*V&d=rqnw>FzLTrU~xA2
z7W48(%?;7%Ve|dpNC+>8y_Z%d5g)R;-0o`S>$zW(79ZbuJZZ7}*9oGj->sCbgF{&Y
zYkL~q4&~U$swb^Y==V}Tx7_Eh%FUTGH^*6inNe@3^X;p}{&oH_^XE^~uG!`PA=b!g
zf+wro)sjD<*S8&HX}=@GG*ck1KHqw;@2UH{56_S{*V4ayTm5&~{Kao<&Yn%G{c+=6
z*$ng2<(K}P3i3HTVahv~Wp+<8?KheDPqFT=+<o#ar_c3}jdz!5UFG~O)e|(?=GWWo
zA0f8iOlvmXTx%)5=JxEf-N%C;%kE1Eoc($A;>UNF&k{eKI&r?u{-PfTo_F-kkN=sH
zR^Obr?9<VlsZ(Z$t`mLws5<E2^0eKL_XzIu%I29AB=eAwdH!qHBP-5U?pWJ*>&@>c
zb!7z~R<2|7oOAf~dapTl&l#_)tP;85-#Ejgy5yXC_4{vmXO}5{Z}%{t5+5r4rT6-+
zJ!Y$eqq0A5Pki8ZUrf{GuuuH5NVU{WQS&9%Z!J4Gv0ka_OHqd;cgE~D_n+&X{Bh=7
zYm=|st>Y#Ba-UAz>e^?ub+*B=S<Ww-%Z%Fudq3T~+cVSd_KiiCZhpOf>i?Z9s|y|0
zGE2<4q7_=jV}JRkLzdK~d*_}_oclgUZu7%Ax$>87&pn&CRkU{BX5O1;Z{7S=y1B@#
z->dxN^}HFG&kpC#_*q}N&Zsmz=i1H7#xu^xebkccntE=LmiKA(Zk_z8b`o3nt$MYb
zZ=K%dpL=&-eeCrnb@B9nvc_j0EZoIfk}hWHlUy}%@#k;+TxWGBKRa`-zjfbZu}23!
zh0J`{SQj39-Oy5E?Y<c$wtb!-zMik&_Vs>=W_O~<saFZlr*BItW%9B=|Fyo<@N<Ap
ze!_x_`bRV!#h35gw{V%xv}^G*wd0;?SDW&6J@fypQ}}gyXH@<y>57H6dQ0ukt~KBK
zFX8@%$ALRa79DnO*8XoWIoRXnGiJVL_Ze>eo}zc^_qVgFpM3rk_q6<E(sRCuTsh_E
zoEzqI%kHjC-0y#t`P=UlDd8)7Z3RDDf2n`BxwiC+qxk$+PmFy_i@xoYZT=oB_3fmU
zpK0jx^|u061>LTku>ab;B~pxh9TBo(-z4_u{fV-^;r)Bz^Z)wyGmgu$oeJ};kMEy%
z{*~O-le@DEc{C?%t&lA{QFZ*};#qu~gQN7z`0}1q*<N{Ub7#xCd&aL)PgPlGFa%HX
zkpC&JTOZe69{wdW`^@bk{v?kRf(8$FxoioNQc}8g&-}rkNkx4v0=BxIl|8rOs(%Gl
z?~Qz3SY7#N0&AT^Md_k1XQsx@zxh#nuie#v=#<h=-z)g%{Ixwd{iecV!$~eOFAnQT
zF4nlW$f~-&NBGE>z`qZ#b~1{*UOPwZb-DeSx?i{ZH=F;juPJW)Yj{Y2d-1+3RTZbE
z+><}|6?Y}~J9?NOP5kF&C8`s#<aN8x%gUyIPx~&3t=d`}{%vt2)AD!X79}g^E_$JE
z>}qIleOS|He$2{K*IH|vI1f74+Bb2%y7lne_Ka2Y1r2%aSD6GqJMLccGy09hil4Qg
z-h{HsAFJMf_kqJdtC^YNJDWdUPT0G1rqA)J$)54+4k(_P8TDN$XYX07mFb1&V_Osq
z-M8#(*cBq*FirT`{mvQX|8BLKn9FX@b9r;mT~TCq^<v?L&sR*mD=QrOcmKb4_U`XD
zpTz9#m_VldEKP7s`8i$JcQ4gxsd(&dJ=1SicGcUZ(_<cI+DFLo>RvQc7g;%JN_^Gj
z|8?9<3m9fD^XNPmqrXh!UD3wf6&t!^Gd>+>@sIf-Kko<2zhd>%rGIa_)_i*1e>Szy
z_~*ZxPp@JPJ_f$nT~Sn5&wKyOhHfW0zjNW@=lpM$9Mde*TQ>c<y?>oW{V$t?9KUZU
z?fT<p|JLuw>8N{7np`zmfwAi5>7P=I)vFG?vZ_+}oOzgU<Fo%s6332jTbLlO%-?=3
zI!<1M_wePs2hkz3w^)U-IZep#Zs6;7sCgok7C80xYTsGmPw$-U`m@g_Y)<_F=PO6=
zYDu0lW{F>P=aDC0zhTOW?OWIQ#NBgq{ZsISfs=E>@fVGZ*Y3SvwK5<+EAGq_SI&x+
zx{oV2_VV}jZV-?;zis}*qkr$MTh7tAP)KXJN1RNJdHKZWks%WodY^BvH(*UzQM&W@
z4Yfvh!LJ=hwNLVKJt!8by0d84hG(0b+Uq4Bauf@gy70^sKfiXJczEEpUH)NL-yZeL
zxZtFl`qy7~d+GApSH&U)3-=1JItCQ~f3<SH{Nc#M%?E#0>u!;Gto`%(@8eo^U%wU3
zJhphxj2$9^QYHK=TTi*4Q5U=VbYn4h@{`^3j=naSA;`mbP)CU|rTDad`^keAkC;Mu
zr>(E{tv|(ZTTjqdW4q7e*%r~V+WsB~CP!|!sWnt*Y2bUa@#`U(F3m$n%=+YFN<^2t
z_w^b@?0@z0j_J1KKQoQ^TN8gU1y3pBF+RHO%lV5&`@O1;tD3k>nY{O8EtkSiiPpxW
z<#RUvl2b}rYA7*V`|Rg#mj_L+A{l}Y)o=3R`6M8x^oYG)Z2jQ{4Bp(wk0@z9&iWX!
z`_&yw-ruH9(r1nzs%z6YDE53}pj?<s#Qx0fAN*I^7-VGdNA5hhhEwgR)#)i~Pfk46
zW_h~Sfmu#L=)t^W*Y2eWxbkn$oOE>AQudRA22WUzBzgMrBsVj(F0h*X^t$>c9>z(Q
z+ai+QZ!mnl<>)jQ#h>*?{=EVP2{Zf{MP2u#Zg@M9H?VI;?rtM%tKSUYk0?sMu$v*=
zp^|$r+f~ObP%2!s;$lrzVaYy*;EUT`549(A9ug?dov7y?k=yy;dHY>6E4`{O9141y
zE$U5$()oYtY_QmWT#Kb{Q`x*N>yqUQ-<9`2)D&%8VY(&#Va>0#ryQB;D+Jingo>;z
zs_Zn5NOSbDP2_QV-aBRey@#DARPJtAHp6u0LW7ku7iJe(HJ4niJhS~#lhtXB$>OOp
z^E<WA@9cj%cg2jP`<<!><!>*!^!@4l)k}irzhCVB^Fpcb#Pv^?zX}t+<H}i4y~>Vj
z@#%2=ufo1&?aPc`89iS+ZPmohyL>m*pU+y@R59VuoF<29#xqTxU;iLdE~{A>@@%Gr
zI``b)w~xPHqpQi(ZT#ex63e9O2q({ZPnra0J88Y!b?&D~@(IV&=O>-!{~<krd-pm0
z1J%(gH+yUD?*4LkSx&I60b734O?~s@>r|yJB^GF}R`GrMG`B?j^lGih>tYS3Ut5I5
zbNAL)`N?>*h3dV(_xxyj<<#`9A7O<%&s{dzpRdv*uT?OyV(GjlK}A)4!>74{FMpaG
zIXBz?f1b45k<$xjG<<DdAmw2>w_o#x8wcaF=<8XR?lH&fea;O#>Z)n~@@;4MdmC?#
zXHHk1Xl^V2xam~)lk*i<)fjyg`HeJxzPMAGDHmFFq5eSqWc5f@)syChjQ2h28_oxA
z%c?hBw|%$D{vyexffua`<mafqsL6f1=#1)w%`Dsc%@#FGF1~Pf=LSjDglWHHc7$iF
zSou#yt#L=kC8O#7X_cz^u}43xU-)wBp3Oo3G}mRX7Z6X~5*B{+O8K^#lO9a2dhd4A
zZ_lEh$FdtGdUih-t9SVRaK3ztU17r8&kS<LdS=}T545W9-o0RP!nf4v-_x!aa_uq>
zzRUhp1|9mMsvQ!y{O2;4(_txF)+i+<iruPFQuelYGJ5lSg8IXBm));*r8pA=6Sie6
zs1a(LAiyEomT<YcQt_c<#A~zr%d{(Xd3672{W!wKav<PAol3C()7$l4>w|yQT2J=O
zVfb<40Jm4G^!4f;iDv?Slzi3r-{j#cx%^e4XzTm)a~TdW3xxP})gP1*NO*aTZ^;dn
zn?`rnJ=z=2)U{TnDv4{R#FMt9%y47xV`0WSnqSwy{$0Onrsd%o7R8S?Y9^mK`Q*ix
zql)K`=-Hp~W;$c1Z@|Zv_K3fuqyCnI!<r*|7#lS&1=}@b#AMEUFBbh^lkWDws%2mI
z+*4V}_Df4oyHqljYsvaYIhEFvKW~XN=lXfqO>cv_>lQcN$)AOJI2o4lKGbY+k&4>?
z``ipE+icqw;}a4$4<z+_e%*4*xTM>&-I(q2etEvv3R4SeXJ^UQ_B|EIO4UEI>qKAu
zg-(A#$u*N?FE;#|?znYV+?5LzDIZpv&ERQkpS)WtBxljtjk6b6)tXhv^3|0#<p_ut
zZi&)4y*t>v@m0=sx!WGI9ZKDNa@O8lExpUjh$UG<egCD<73(H$3HZs86x;1}{kom{
zY+<jC3G<bXd2U}_`lc*;4^!8k1Dj<PPUThQl-KVzc)N4$)WzkK6GEMt{C(4wT<^11
zt?@tV?iHZE(oCV?M8uuLK?WS2wq|`I0y_-7+FmslKdIa%_&j*;-y1zS+y8QSl$$eM
zVrBXHE@6f73cur4%{Lh~7_V@1w{HG^qaZ!&9N)}%j`zEcU1F?YyLqGI`qQFj#q%Z2
zjWg0G^f6S`vu#&gk^b^$$PMEeyhryMKFMgvpP?u9#F+OIU#)NZVa^lFzj36O9=!Sb
z_Jt+hEoxUkURchhueSN{h3gE<9Jij?oEma=ZnrS={bfmJK1-IRq)qCSN}06wQM>TR
z8!xWjFqF^SU3>k)#^kxSJ%@K^UVSm)*G!>PayM(LmX(#39>1AU|9byC){rYFHQr|C
z$2ORE9NSbDEM_*dKeUif;Q5_2+euqzA1YXW<NR?cwVO3nhI<mZcZcOpV48P3=D*=N
zi`T0j-?Om)x9P{*_U+H*>tgp*|9|-S(OZ4_`>&r})>^;lOQ!JA!o!nFw>v-1(qHv<
z=HE9atitmTTM6uGX`9Wka(UbJdQY=yb(sek<9-DEy`<nWr){y;j5fxiqtmW91eTl@
zJSNc3+Fo*farc(B|8G3m*C$tX?Qf@VMp=@)>G8~tn!uChGy6<Wiq=TX(bw0Xz3%do
zn%?KZAxGF=e9xGY)x(@E^ZkT`;ha}BMwZ`ROuv*p&#{zyXR>j}U#X2Z&KxW2{GnFw
zWpsi4D|4vBqa}K>9okXhd`Ip-)85;!m$yo*>5r1;)3YA`R=z&^=%1Bluz=>tynS=e
z%{Uzr$}MN8o%P5w^u+4;Y>`h{%U13A5#w61-r(7<b62-bD&>5w`yp~atKQ@_YhKO$
zzEtnZ#sia=1_WvqGe1{bcdJW5;E1AA$E}3$)ED(zd>=<Jblnef61l@0SjH^2O@Zf!
zZvNBo^1xlaPgBK?uWB<=mdQEqy!%VAcu(gVCC;n)m$hy#>D1v64t;)cY1QEwEFo*G
zrXGE})7fPqb6W57KYCjh%1yt^d?;w;hJ|OnJR(oMej&BzQQWPZ(5!ip^UexA)E8Xw
zTkoIS%F|j$4C{|2&dWM_P5S$$JB!{)Kb<yP>DG+upVeL8U&NhEyAZd3#fzk8{CD1%
zuVj1kZFUNmt6z5U^$iI|ax2$|w4GLaEZ?1?D*7dGN3msI!)?o!^y#Lj1=LNCz2)8J
zpFSt*jN5jtZwJ30{-AnB>(zb6yTwO0e&U?_lGkLZot;US?qPu>gZeb%-@E>6c3#Z&
zbYbUute<%LnM6zK>EneJ#ceUq__wMC+Lq~Vn{#sB$%K661Q(toi*m*GGq6eZ)Ca#_
z;ox{v)y&K5@~m}bd@p9|-Lx(2pXcUlzw_W4c9kl{MUOUgc$%Fvxg?$SIJ(mOJMT69
zX?wQiE#=?5C8wG9_(l^|xuTQx^Oo+n+qsx|S=A16b<h6>oQHI-e~)8O;yL!%spa60
z$*)p>DG6LOUBK62aKf*hqxq&lhs5m@)*TXePg!>uL@>M5RQ-PTceXx@V6)EN=8iD$
z@8|mzjy=_roFyw6;=D<@IcJWo*yQB@wqldB_6RlFO-?hA{~a*v;IGu8t!byqdFvOo
z_Ano}W$f3I*phDaINL<w#Mf`fezGRiireyE$`4L5IC;+RaM1nM(%!u-MYD}sPX6L<
zx$4_lKci^2(0<k|clT&H=ASnLQWnKAbf;xZKI#1BSI-55i02<BvN$K+T_DBun(gKz
ztCd%#{Yjd6U-owMf~uW9=hjz$SC|oUx@PaW`pwD83)m`n`)sB7XUXa}=L9o&=`YIJ
zs_`f*I>jk4>*PiC!##U`nml3YFPr(nF~R4s;q$U$kvk9ms2)m;UHwWX@HpE%$1<tB
zcTArzmhR@h$9pZF!F;y-70G3HmUW+3*_~76bc9K|=eopIg{JpcWs7WgPYThW>}eWx
zVEJrqpJ(;Sr75reW;K63%~IprbJet?@5f1n+omj;AImG$>bMlN#IE1YDL=PV^WWPV
zm&z^KlbHPU%mM}1KK?c3a^XASrf#-J;k+>&z7_X<!u}tb;P`d_;^{(D<s|m_-EGO7
zwp?%C`SpHmQ`bJ;99&<ObH?!1t%Dm3SIw6*?l@BQd-^x)sr66a$oOk89GbeqV^NOe
z{8uRn;`038jhf$-m>bXNeV!icV=Z%5VY6uMuI0U!XO3NM;|=~j%TcxMM|k%2HkO!W
zzsz2>*Uv9{rc!#)PM}wM;)>(#>#lMr_DQuh+C1QoKl#cwX3de7)&Pe){8u(67XJ5T
z<ViGB_x|~F`I@fHMl0p&_viXmoYG&XP$n!FKlysPxAS#7dEWWGpD*UR|2RAO)}xG+
zb^VLNeqG24b&1^Rw@NGS<Q6B1fRy<H*LQL~zyIfo#+jHD!M693Ph5gFf2>+8zxWY5
z;|g`Z)@x@axBT0?_}R(pYu)2GSy*DW3UApv;Z$yJ#Jww>hoi)2U#k<~(Br6|`9`kx
z>Nhv}q+K5la3AFtQ0lK*^*{CQFEbB;hgsk6%$$1eX8IdNMuo5MOBuEVT)p|UWmopx
zzz3?Im{0uPG3l>ep#8&*_vH>d2EFh6bB#gsDzDUPi_=qYv&2|NK3KVKR*~@ayGoDb
ziWhBtVIfp&^|i6;Vv&m6)p}7~akl<$mZ18cFM)NJcl`0H+ZH3skrh7w<isLz!N6H}
zx6bOY4EXQT!Xp=bCvwT@1ZmC29XGPeCYrxbm@Crg^Vji=boUecO40bIKhtMyV@x}%
zS^IJ7o9!Ftt-BrnWU0jR3-QtRye%(xSaSaHvG0{?z8GMvyw>fr;E{r^@I`*w=FfL8
zZCWg1tNT95<w%9n&+jY?R?biO{PpwyzqkK0YChW{&Xt;%g1Twb#B`#7YQ32SYJWW<
zH~+Soz`uR*3*VhiS(D}xByyB5_F|sz#kF_6lX)awDFo!)5>xVCr}F&i{r4VTMl)A<
z%B*&d_nB95{BiMjnfN{Wa^IMKG~4<;$bWG5+Aev8XSG$=O;0cVp7uyq_PCsT6Z?(X
zIuA}uuzMIh^nEtJ{_ppn8D})U+4uXY@2|{PFF!8aV{p9h(#!6$k_RhKR;4WzIXY)o
z@Lb(ZNyTAjC+TQfGi$v0r+IvB-u%x^N@rry<Lq8=^BHt)DA@9h`|Vlby9Y#+4<#K}
zs=C2{DnO%Sap=ikI%l7Ms(SUlhVcPY%k2MKtoxQ+S3Vc$6MJC){<jzFFY6p<VHGUb
z*{^+h=gHaoyG+)vc2rYRaSQx$K<HgoAk)leyUb;4?Kpgdl3bj>@g7i7bne-`vLcCN
z;X|8q|L%k=v;2BJ(@vJxNS9Tpc%%N7DJ~icdRvx9W&5x&Dz)8<SYW`FTNQsQGFHYb
zpNW~{?(}=pt~q?!rt{7*-#fdYsy=!f`?Bq+KW|_9y-&4f?!9T(628dEoawta?P)!a
z;y>}K_pG_@`QEGh@2y$*J!;+gO-eK6Pvtf~vbZ<<wzckqZ$Eu?`A;{>MwYj+D~X79
zOg^#k4`YIKo2vy^fX<J<b>A}#4PG?eZ`rlFv`jU8;W~xvr;QugG&GcdAG>u)%Iw;-
z`iG6lxsi5(J9tIksO5aOytkNjapTr)*IxR)-Z-7b!{pq_dDB_EGyA=pma;PXUs6w#
z74G<O!|;2-HCLIB21QfM{B;X$oLJiX*0%Ta8b)x(uCMof^<;<7wW3$%)<-OQ5|R_k
z9ItuEy7h<|$SFAeY}nJGku<}iEq;3D-l)@7bL(fuRL#F`wEohsG>K&`hKH2))N7V+
zm1vxMp7p_(mFdT}8ANZ3vzxbi+O?7ivx~|LHtGET@u6_FtyE;xxr6ttHokez&+8;&
ze0~1nc5Rkr9g}wdkf{(`7|1bG<Q=D9^g0WXTGhhsr`Tp5c$QK0*M&WL*KwwY8dWJq
zhHXs-B~$n`>zC)6Za!nXZ&sw&>@_Pw6@S0XQ|0D&>2%n1Xr1zdw2wEUqs(iUFMgL{
z9$BQfnOQ&c?aK7@su@{Y7K=7M{v>T7EW7gb5r^e7p4F7}KaRKm^=8T~0eRVEe_Kfw
zr+%4arwRK+4nEZ|I5K0+r9Vn%rz;Dv{i`(EZLoG%MqT(NlVy(e4yRU`&E@gBuuUfM
z-RkuVKXe~m`|zvSiWzD*i!bkuQte%JukJ}yzWu8Gx9dvE*Xiw9RT!M(>l~M#ur2&t
zXM2T&^1&-JPwiQ}NuV&8!ysv~Az#yh`8@{5>Vje=#P3fMUu<}^@qeJ&)opLC&6zQu
z-*e}brJ40!pO(IH7FgEAET&k0_G3+=PWig9(pjnHvsORZ#Ht#5`uX;0+x@1mW}D?b
zGdpClSm=&V;&(qB+x|!^KS}lT&8)docE3>le2wYIQ2_yWj|(2LdIH>M4_`d~<XOy3
z@x;e0CZCudDT;n-`stabqw-n0SE0g(`I-KeyOF$ppI7;PnweAWmTe@Yd!y;s5sv!$
z%0#xk>wNDoVdv0GtxR@F-CQT|>S)u7zY@Q)uCs<u>kZo%JOA{itask!)5A;{Bd6tx
z<$l?G@^kdbN<BrjmwcCQpWLl8`Rpl^bnU6!#VJA0mozkAUd3#)_7+FJnbG?r3CCSN
zMoxA<a&DpAe$%q`{&nxYEq7>eg&Kcxn0k=uQ+;sUG6%`a7vq8r479f$P;GGUzHW88
zRN=YXq&ec#FPW6;O!Z6pC3|k^%jvTic5yzCSU=;fC~tx`N5SK;y1UOU158rZNHQ@L
zS>)6iT?}jc{K!jJI!RdQS^U<^PiI<o^l5e{mZ!661g}|DW$piT&-sNHrd<DhCs9M_
zt$>3TYt^NCi*KQ81MW>c@!vU4a%PN%g;+qjmT~}NnEzoDG1)$ab)}KPhfb^9Han!L
zI8iWf(x$ej87t#vOp80IvsovTL1Tv2w$oE1t-8NhPnfH8wy&Z@#xl{tM(FLTsj~Z{
zcj-+uVG1~NE7SVj^SA;It|l>=GYpgN#XKqS&2;y5Ut#I)P(R1@O~vo`9s>Js{9}j|
zeVycH$&gStJIL+vvMG%opIxu(#Ae<*7n--4Uu%1H)7o{9v%DU6=(Vhf`dZ1eeWF1I
zd)Q{9yIZDlf6o4q`^WGPd*aPgJLW(694)^(D$lI#^#$+GGe6eevAGerqqZgQ&9#83
z+F!0l9hiIYeOFT6s)%iK-C}KC-#xAvcH`MmPL(XKAK%V6SSAH-{ulmE?NwXYUb~m-
z3||l2-Q#og?T`KYfAep)*lveelbM@O7MO2bZ*GCQ-DGJMXN++8?(auD($;wC7QXVy
zp1k8q)>gf>SEDw*<LK((R_fsPj$k=7X@m0(#gm>+3N5ls94)niA!e?tudNbYyY*U@
z_SV%~zvbS)b=$bI{rB$sk^<T5_kDj|zF&TpeA+q7^Pm6B|G)X{#P(kK{*M*)Hn(bT
zi!J~9?(^NU9lNXATPl9Dwp#ArsH}5kcJ&Xv&ql|5o*S<BIV5q>!tG4@i;r)1=iJ_3
z^ndHUXQDihx#Jz?KYld-xn1qD1^zi^zh=BnZok=cxMBvc{`BvL@2&40R^=AoZ!6w8
z!@T}q)7Qj@g%cea8@WzS64eg#sClH)KhLAy%;TveqtQv3FWy^BRCH`Yw1Rb}yqV&q
z+U2nFh`ol3R^<M(R}Y^|ot*McP2BvX+Dad(m$FKQy`MNaKTWk@|LK)l^wOrYK4OVV
z$`^T|`vx=PCn#z7sKskUYEQ55e)2HrzQPtysn^=P&*gL`w0J8!H$N%*vRlPNkF(>;
zG|eS-^+K*QR6L$Z3q3vF>3;ur`$>^WA5Iv2u@SL#bl=%_Qncv)i3J6%ES@EI9~i7!
ztaKsz;K`}%3y)7SsNZr)|BQLp=4T&`TgxZ-=mmNti_VdeUwK5|Lr(6IZ2OZ%iw`L`
zyM=U2Vn50BZ^}LgAx+*7eP6gIo^n6;G~nlDyOY9U)$Q%|?MHgw@JdI1ji{U8q{sU)
z{>O6uf8}wG{VK^N6D_<g_MQ0mOSbK!+NWb@55!4tfAI6_ja!`O9+yA3x25xXtHq?Y
z)+D1G8Mg%C4bL~6oT2;8#*DR^ar5Dp8zDVM;*Km!6md(|Pt;GoY{+RQJiGPmvACnp
z64oacZ>+rW`bNzg-kf^HZ5+`(x(DwanwFHGe0syv8`d|t-o)m}Zj-y+kb6XCgYOLG
zXDzwMwk4dq5q5_4cH7RR+Z$zX_~nQ{YkPa_&PLlA?9V#i9u<j@nAVc})WVvNvu)45
z!r)_jP4$Xmp6}>Ce)oC*^T{=u{||qB-zUGNaMRD22Pzpy-+rw6V`kWU!MDDmmg)DL
z-$x3C>t|mvt?Yg)y^ZZQ`+0Sr!a1M5a-WWu*rF|}Cm1(xSNbd2pzn|7h|gZOc4k@6
zEFanB*DtEaovN&ScG^<^zoBj6ucP5Qi>59L`Iu9<J*D%>37#akt7m2!>z}tW=$<KS
zVO?5w?+sscMtW@{PiH45ujz3UlNo1u>%SUKHQK2A*+0~I$IQs=f6Skh^>6<@F3{8P
zC%nDI>c`@%vwO_cUQbn!U^(XQnpeIkrG3ipM&XCO)-5+&9)=g^+%S`|SZ&mF<#$Mk
zhTfeY-Es|44jj>Z%-zq5O)oa=e%)NM%BEmqTW&zZ^SMdt>9=cIo%ft53JYOBWz6R;
z{;WQz!1A@jvZt~gx8^>X<=DRU@mxzuzof8#UmlviC<x|dcpxrnRdfHw!+&R{FEP+J
zQBn#ClMalJ50B30+}@)2y6*X!&HF5pA}&qXz+rT)@=2g$W?fE0Ma1vvpTGCaz5n;i
z&olc!m`pBzw6Ns3%B`m5FHCNQ#FqHY(i3g@6Pxp`r#|uWU!R<11vh-84?pW!Ar_Ki
z;u8KeXxj!uZlN=k#{Bzk9&1-Rq3(S6u#@xaL$7A*l=ku_P7^2;EuI~teD(dclch$x
zrr9nJzLD}^<qpl$LAk-r@@>7hg4R05yG!pX@m<ih;^4)F*Lu_LIX@Gq{8n{5;dE@O
zpy-4-t8Pu6u`}ph{g&^0CxxhdfA@2DO~tIczU%&*Ez*Cq`-OjyJ#&1c^|EYH`K$L<
zzTW#UG)LDod*OM#mwPzepR#R`^2mDjMK`lF=hN>`woJM0x8Hs8-*oWF)&5trrGMMk
zTwvj3P;Z=lDqFDm61&~|^S=zuns)swn;U+X>vP&=whw#}({@=^)gGBt-?8`geHV6_
zmh+PzW){xeEo>a-o_Eh~zeVe-RX-km@9Um6+oZhagSyQPuI7_%2X&fxqqR87O;T>&
zNK;&}%!XSf`kDE%D^(qL)FjmYeO`CAvQc+&SLRl(=*q9o8;Uykz1K>6mQA$%Z8KYy
z?M=%m%eC{?&PzX}$G~*%KhHjn&x!Rnp0&Txeze2k)4_?AIc(A@wb>V6+wFG}<;mDz
zEYBIxyCHYkO};ihPTuA-44Fa>pXP+EW{q-q{_4_`M-MGzb}V1AV`W+2hC`xyE?YDh
zTo-U{$>2z=UbsxOB-8E0M(_Di3~U+CtZhziu*`6N@hD-IaAKdi@%?*Sn(gb<O{RoR
zt{1$cc>984Zb$Un+>Ture3!0cQ48qtGkv)#!X|ru+ud2b=FaA?4(9W|Z<b~`5+0k}
zy6Ecx<71bV=gsxI%H37vb$;tr9;RRKe&?M&lF<7->RQ`emjZ>-gQs;3@-Oh!{a*Uq
z_Tl>DGjuiu2GlKE@HFW(!vcG&t+y+CSAS+JwDP!EueG%^N~^LwF3ml%bs^t{L)GQK
z%Jl259xYs0A^$;>bL)xKQ?71YemHogmw2+ny5lQ%JbwB1f!U9RzyBVbwr<no1>#?h
z%J8n})Crfc{lxij{dRqmFAe-1`Pb_Xd~%(A;NOkC)t&ARhqvo5+>^>ayS?S>21%=l
z*##SPRZj-*EoF(SclS^Z;p=ykacX_0RJHzI@cbZ_bC=CO@H;F$wn%B+!?>Fp6#~6i
zuoP*CF}zr?JNt!~SwQyTo7)oaGqv)X#4FuQVB~4rf4iWd<naCVpJqJY_sCiCv%k=!
zo9QMU*Vves>an}ER2mw*I<=YS%B(kkrOY>Q%UoD@^5m&STl8)*YfP=z3qBhzYmgqa
zcW>#@zYRZL{!tT4{uyny*=D2k2MzyKcfYHu`meedC=pZBuuY|GnJjbjgQ&m1Yvt$V
z?P9W1U2t~y_Q=KzeU5;<ukwZd#(%!q=$L+<wXeOk{O6gV*Fl%|=hSWRKQoW{%bTUv
zk<kbCIc?C++t20s<5Bbd2PGZWcj{*-eqvbY6~2CoNw1pfULh;qzdW-3!f$TB5&g7z
zvR`rf+rpasoBLjWP&LdryHZ1Ab=FJUJM0~XO!xjB@|#g~%;lMOZcBEb!ko_n=cZP2
zJXc<|c*6DnAB^U(Y(JpCl5Nh>P0Xh6n@SG^|E}`O5?dPI5Vo{QgdwE6lg;s-<l|PG
z`egnE3nL%wR!Z4@CH2S(G3}d4*9&sr^Uf$tJ+J$4`vtjwKEI9}TkhiOz0~k`qqX7h
zb6FY9hlGBs&rxF9{<nW)6Qfhb=il7E?guL$y=yBrzR~F&eqN-}xAanenZOH<L(O|6
zu07<u)A972-+R5=rT^w}#H@e+bBlED>K~0Ic|7mxS=2jD*WSIp?)%$VbtY@2zh>3_
z8Od!w<qyfvs(iM4!<+1X{)Q?~wto$s|E{v&xylj7n$CvR_x|=Sy|MChd~$r!N9oh@
zT~P-nHhr4Ze?IW#8r##(o=0CYOzd-Jf1RCTp3%4VlP<sB7na|huDiGI+kWZot;6x`
zdUcwcTvy5+b8M<-pI;xw)okBi|7dsHv58yQ-Y@+6LSJ6>jQGFYLw8ypR9ERgK6Q24
zqtj&tY$_4=3{UJ=-&5IR>2_`T?B86kq`Y@A{yll}Z}gD^=6W|uH+LsHS#U5dJo>5a
z#;GK&g-V+_rZhcUv`K$m{nyH~f(6rl+^Q?s_JV=K=eDdP$Nnbaw%zsfCw8nAm1$qF
zWpZT7Hesn5tYP6s5d!4~7wwG;&8=r9$+kULJ)QJu(UmRxPqDRrnpNGAxK!qF*A9<k
zJ3PK!XMZ)da={cf*Q3X^{3F;jZ>YXV{Al!EM%81nqnDH0l3Up-!fP7O+uyn$_pzdW
zf}N83Qk@UnRTYXgtu0O!Lbo=m*9SH@hi-keV!otZM(fVG3wg^fJhSup*M2zv&>E2+
zd#_GRIjY4V<fvoSDf+rIV2|(B*>fi|zImA_$@k~-;z>rzL7J?3b7mHWhOb=faC0w%
z$f7&@ET3+ZTCk@^Hb(D#-oFPKuSGu?T1Z}2T{}6d>C^qwZ_PuWM{99B6kD@?=Q9b3
zdWC(3?~*wMcX#Y{<|<z<bMa|2S4el<z89J^A3iwaCvv*MNqnZafqkF&zMiYk!WKXB
z`*TtH!?{bjacdl8_@^kixZjAfP4bIYmwy`i_u%$@mM+U?Zu@0*WDT3i>vQ`$4jpH<
za%SApnqBwr>UIA;`vkAgJCUiqZ_k-c>oQ~`xbAh<mwicQ?Yo`E^ewfCw=sWHal)n-
zd^-Z`w(`!6U1aqxd7EDrzx=_@!avS0YOeWc6?iBdS?y@)v{z<kTp4#{9M6N055b?0
zhuiNglSz8O&$MfUlEqA3fmDUi#}_uS%FSw?)qKJ~?q9<6X`(L#cFkQSH&u~$jg({f
zG_k1@{5WPmRH=VfzUkV9RrZY+_N=v$ik=!aF+}eA_U%=+6}%fBH{UBOy8UdY?!2vx
zzXdo1cd|Uc-WG6fy?FnjV~gj+tKSz-3yq9d|82qfa?bxd1qt)#KAb9R;52*Y^wO_U
z+y)HXFC0#-ZB9yY5xta`rhI(S%c=ss?^`k(I7C(mU-6vv=1lXc3H3{KoL)%I-Kdw%
zS-@Us6{*KKyRdtm<859$*3wm<Op;Yn3$|tota!K3*rKB0pSV)Ugs1B~gO{c*zg+k-
zQA_;+Z_^e>E2dc=kL@vf8(JVX=VX?b^_-RGnYfaQwfW9T|KjSae&rP4*~!x0(0@!)
zQM|82n5FUWt(_;{o>@6j>gSUBt=@?odwl=>&$v7xeBED$FO9}Cdtdrz3$L=}P?0(n
zEZZ?fsU=EMTxorw;-~PA&6mEf{MP5N=OJ_K>N1A4XC)YNXYpTA7Ok3ZcbX&b;<jsZ
zW-JbyrK~6Xf%(3dk?V@L4C=+z-Ts^ZEVKQo&3I63!~2cJH#`hyT;B9#(dkh3j-U05
z^gc`Nh+<h@E^tAPy*FyE=JI<ksn_?c3|m+>cUq&*hAGL{=JrUH)=5pcTwI_KuAZL0
z<Vc=(kyCrsrm_i5br*P(3T*DE$uS%^ww`qU=rxT7k-~q!I5y0eZ{MoC!D#b)?yYAG
z=D65p&ip(h^{;>QF$IA<$sXHZcDAefUxx&C)N9K*tczV=Eu?jgvHzM&cFhDQuSWik
zOUE)eUwkMp`)58ue)Xk4TeJfDuD|qhR6nKd<*2UYFjuPd-u+%b-^FV(+ZE5Ge)=D~
z=Jkw-!^Sn-?>D`ZkDM)CQE;fXPHT6!PVn>0s7-p?<X<lTeO`PnLxIu3H$S6~-8(p4
z{bY@6k-+5o)f#>$m+bIxFSJ`$_v3z8z0Up?l?88VBj>j-+gj7&A=*{zyr1opiC9Wc
z_T`K>&t*?%8rdo|v7VHZnyTi!c%gBsq~T1BKfI@=ER}rYBG9nOczVUZrwdG$_dPuM
zKGANce#y4B{tK<AO&ygJbYD0Io@{(t`fO&&&pQ+DFSb9ma(}&4==_S1dWMLV>E3Pr
zfjN@JSx-GY7rF0ub(5{1V{-9cXk_N^5O%ktf0&m(HBvdYlSTLM+||wO7KT3`6wkWZ
z&%Jd+<_~G<%?j&Pwwr8U^2KAJ>Us$)gKZ&&wTY#b+)Dq|`&Sz7Yu9`sSavx4!i_D#
zv)RgC{$oE_eT=2t-g$$5{kaxC{@UpbMGaw--Ltt&+!{_r{a4=HUz~PcW}|^z?!4dO
z%*`JkYCNl!j?TXOI4AHk`}~>7UlndflrdUQ=S~0nP^Qf84!`IJ+Z{q}&h=qTno~?4
z?e*O8EBxBDugSLJ8-)XwZcWd9;8Veo_xGV<4f|L3{e4G%-BhdClx)&@Xj6TB%jtxU
zudbV}M$Et5^oY&+`No9K?$1GmCLUK@C43pLJY191D`{K#^m}!|CI8iS39XNGu6)!o
z{Wt5Xlq8d*{L$27OXn!wU6nUAkn`HV?=K1^y63G)Pd#>2Ic|gO<&`hQLxe2nM)mN{
z@#8=LHg;Ra-Lh!{=?x|euB532vwGE*)i2y+;W&Tpe4e?H4o{aYp5L=)%N>)+LLV1~
z=R4(cof7=%v9)_nebZOYou`b<*uDj)cV%<WTFrh-SN(wHqvgHJZ)z$fMm9Cn3R<di
zOqEaRX)#{*+Vj1=Hgo3uM4n*L;yYGvHQs*^*kf`ez0ByUipA8+NmhF|W$w=uKUMcR
z;tg+o*(`|)G1e>X+grY<*aY13$@E<rdc{rrRDfIDrnJvG7ri#T@(2t6r68(v;aDTf
zl*iv!E;jl;zt?8DO?%8nzFU9!;zgU|Qi~&U6E>F%TJLMws%v|LCr`*({CvH#71OQD
zuZ3nm<`(+8>5i;MXN0@Lv+qY1b8h}%H_M>+TILcvkNVXN?41v%)*GHLJhSIl`je_H
zTcV?v=BqtWYGf5zlKIr~TgYMukH-EIcb@d?*?f%#Qxc#3QcP1(%DykMgvtCZo37##
zvrJy=lDY)ryBa5UrYg@_Z5uP8zewQK{A9fd!ztE3zt22sTl1Pp@8IA2&aHd<HXEB+
zZd||VQSST0E0uoKKgge|X!2l<*8QswufHtT{U!cEdPmgFyO(cAmohup1s%0Nn=?24
z*+Hu-9t$J$WhSk4u<sCj>{k8QYpdp3jVW#G4%_vv=4ST3^Fp|(i@Wvg+3gRl(pW=l
zcP%)wCjUY|PuD7o1s6_jDG|G5=h(fCf5j>j*Odwr*;cMva>k|Xbb&_w(JBMWSu(wH
zPcAIjU~qnotEQP?=EfsuHoGmGXsP-uX{}?vk(tEn2hu*;Q={`vt-oa2t2DXGBznQ}
zo!d5rhE7=OyP%P4g^AWQDZfQG$|c^f_^g#&#VxDTaZhUheOcb(;2YXkvU_H)3J7NK
zF<D{s^!iITA;awDrx@<t`d;$Fq`Q7qT<DBR@(zbP54XBnHyqm{KXc~&6q}ff-DgS`
zKHz@Ce>VTs<>*K`uKTWc{v^-sZkzA*`iqrOi2Q1QJuVyH&C&_RF&uw)`H727d+|bV
zukT@*Id@NmZ4OTCSfspB=bFoA<3pu_cUK*Lb<O$g?hK2myh+<PyM<0;TM=545>Vtd
zrCuwk<dtP#&^p15Mn^k(?3OioCy1qL8H!%tvWVpaqiResqprpiF$ssQ&m^?|co_D5
z$yYeVe@9&E)7o!Kc-Dt+P2t@kAM1WtGsh!ul^v(bg*Ru?r~mqvULv8wcTYdh^84B4
z6Yk&ndz5)mimG0$^rL6nOU-uANlHKX=s~faZJ|`X6ocs}7V|vy`FBt6ojh&MrtDqZ
zwRzlgAD-1exhB=@5UadmZ}$$ZOa{|gkLSqP&yAU#%ktOcPSat_d&@5zC=vLv%tLf{
z^UAXoxo&~Usp~b@vtO`pQvUbrXz^o>vZ^P1`Wr-47l-cso!@!Nai-mQhXa}gTAH5=
zr~P6)WWM3=42k+Jv!kW8vb^r;|69YLS*r9?<?!#0@=6Z5f3x`GxBr@ud5rmE`=z&&
zUv4n2sEqSkQDMQr9&P$iQrg>i<+*L=I<{R2Zm?s@`mE($_p`<7-jyo$7<Gk>&(85o
z6#vlE-Em{<<RVG_F5jn1pHBOwoEqC8VYSusP~ZJ+Su=m%TBem}Q{OL{aDp-Jt$9tF
z*dCWAIp^@Y+3z17V3OY;{-)=y+TDr+^~x393Gw^(Gwf55Vldb8QJv}=lGR!7QxL@<
z_36j!cTTVRg`e*imS?Xud^)jGFQ)km$3x4#WozRPCp#Z9N;7=y^3Fykjfdr-!#v5A
zHQDl8m9NyxMzDolv;6vd+ll(Bsq&1*E6y1{arkHJ^<vIej-QL;!&m9LsA#iI)o8bT
zzHn3c%AcpZKPUdtoYRtec=NI5v#&yyDxEoPe1uyd-?E-n-Ra&-@B5wB4$C)%#?1^_
z!Sa%$tn!TJi;GOxO+HI3@Aq7q*&Q;mOyI)o#^~CJ`kdl6*V?{@VwUiOhJUXz)#q+B
zlNS*Zh_7yz)&IoKKGp7%Xk7cYrpN<3kF52(wX@pb30nsH+hglK?P@x;XiiL$wU5Hx
zt3|#HvxJqm<gs0t9UK}GUHK;>Rz8Dm>#0v4RykK1?N$D6_xt>6mMg;l_4C|gj_XO>
zn!hih;uYJ2&f9_}r#9yH8oYfhAD!UW9ecSxeRq4phY8=NeJEcxWut2Lu1(xGXWsnB
z%h)=v!H(gZ%Fh$!Y^QA+xg&0Getx;6T3pN2(7V&iDWcLT{!);>*9o<y>OY$Wl0I%f
z7r^oSaOd}hZ`G^)b3`_Jv%dRu$jVT|NbE}3Q>l_&b7Ur~iGNK#eqd$Sx?k^}t@112
zni1;ya%w%x?zcLXOVgikI(zST?2$wN3+~t#d`_$Wu3GqhgEVJupN84~-2JJ`B2MVs
zE&CK~_+s7LS326JQ6=F!w|8uJ%bUA`|Ls1>rcCEUi)>!oeCkOs>G6_VxUGIm@t#Gi
zFJCL3n{2z{a?Hb|y8p>nm_EKc{a2n(?t6v*k!_2&%D>vWIJQ2`(CLR(`v(5)X5ul6
z7E1G}zp=7*>Uq)gV#ifKkv-qlEps1!wAVlM=AF~OLyC#KC8<kNqR!3B_`c-s%=&xY
zu78iNl|FW7*8eTh-wVG7x%%Jtc2vEcwykRB#fFpHt(kvzx3zqK5Pe?cn<?M3WqBR8
zQ`Q8ixGmnM<~V(w?v$YCMfFx%)_z;QO^IjP&hc=4Tv&OKn4Fy2YVPeOSFV{|alcYD
zy?XhivzjNgcDFk_U4NDCV3T$5(Z<!9;qP*fZ(n@&r^FGZn2d&}YaTAInw=HHmy&w0
zH^Zi`kt@Sjv&-E1Q~0XwYu9aHb^V+DW14Op`yZ!kJA=;bTR!1w$%;SUtz=}J>o<Oq
z+@9~RB6z$0VgCx@<ZZu?3-CPs$MN;)nVe0rA9TL&__O3Xb6!#Q)`qCF?lSdz{-2uv
zdHL<{Ys5Cr{<kaFXa2Qxme-SS3%rdvmT~>m-g$p|qF;ZlSj+#f|E;)KC)33o$>|%a
zghgv^E<eZkquJn#f4lCL@ErkPZoI5N#%h#jQg5{7jFYHliQME1f3|o0HPzGk{e6pU
zulDneJF@=Ge|&11rP$>&YjU2M-fjN-{l|t*PNkcc#c7MT)g0UYS+Voi)WZ4$*B_q#
zELTvT+<roS-JWB9=^t%h-=F*Zi?Gx(wXd~bco#i7pX1H!^Sn!A)7#&QH~wz@(D>4S
zJ#Vx6LwVN!lJzI@k4rzAWwguDcEwp;Q^$kLL(+5K=RXi?OnQ+W^82r&LzdH{F4HUi
zI|_a!bF?THux5KVB{@3=M%Gq`ALVrTQ*kd-%=+HPxvGz14=lg4o?CV4W@W8;scPRp
z1w`8Pv`q}xo17ySq+|VfLY4LM8;ifsx+D6|^lQAuthQ$EowBL*vKv{aq@S4gs(D%S
zoz=?@d^xh^Y2FpF`ObbTo+d268^yM~L(4JJZ{oy?6MLCGCb_q$pPJgmW2x1w7k}tv
z!JV1j_MN{Svx`>qyi}1>Wce0)#)Dzys{gv@W$iCs&9XdnZT3!ck@KtF-U)nveYL7!
zW?S}$&vVs(x$-VBT4^$4g~*fo!=9Rzg_ea4e5?mKFHW?cyW)O<;#U^ox5>9=K0RCZ
zR-WCV_S^D9)v*O)oH8K`U+!c6=x$VX!N>INz2o-Xj>%D_Yb+N%3wRivs_k|7?1FZS
zi&;MdRQ6a^7+vsQv*E$5;#-G*9lQIKvC__CceT#O#Op$aH=;$a2**yZ(R%2WR9>Iu
zY9jUcj?EJ33)@QHtyMn~yF+)+)S8LkKMVX%Kh~GB`@`0=2hCkMDxCA;?rVBQip`ud
zLzFvXKTGj`iD?H`R{YESHq~b~pN!1a?UMSc;sKwI1f+VbvI~*scIxc?vC3g~#+_+D
zRew5vzi4wlwO?f2SH|;acAqX3m@2X?prw^nz5ZvTgFx7XfQccqE^_n<Z{V-5+H1>a
z_N;A+dsu6k%DkudHk34<d$eoTL2i)=nL;6PEd>V^xE=|;yLj0#=XA^ogU>U}(rhyi
zZeRJ>gfpY9_j2B4!NiK`yF!wEoMX*BPH_11eVym1dV12~CGR%~CyGyvT%+|UPvX;O
zudRQrPBopccNUJ&`E_&k*C%G%S9o7(JJaOh()jRtjvq(SX`ihQ;THm~EMom&8Q~K8
zRc!j~o!L#&l4-{TUv6Mw{lQh1o^&BBY?I8j;8ist|9TfJIT5k=?Gu$Vu0lx{&Y!4}
zY>U1kRvPGYR_oXNH`~qjHqB4mvv9+Mf=upQJFexMzvou5R8FlwmX$p9XY(p<%bnp5
zl2#>d*s#Vc{`B0fOmmOU<T}9hw_}^>tVbyV?#&{lMbj=dPYrk(_|ov8c7%-F;z?0P
zXI_?SXmnlp6LS2_)+LKLy_j|<$aQ`?vwLSHt7U3~-nKOY3s&a-&GNXx5i7hpsH-U|
zLaEKjC1llU(@@W4DpGz)*XtMl*{Z1QJ98%2iyt3$H|=4H^-HW=xpa%#`5!OOUy*-f
zwDy+Uj7jrTd`!~>4w*7*y!*T}@?=YiY{0^NsSh5to6K&`2y*H#$!NBzc%&zJbz+e0
z_5G~3f@h}QRK25H)3`C}_Q9LKekq@4_+XWuy>l1a*&fwKlP4Qhr}?T??qpwEP|q3n
z?zt+fNzp#TeJuf8PqMXwyf<qx*mCr3Ev@0@H)srb{#~@xw2HfY+27<pZ+04IPt@<a
z>>$KzbS3lV%KmlP(UQAFduN@AOJkmO(R`J&Y0!bJuT!e})hsVJW(bJHom{D7Uc;4P
z;Vn?B5ho~jWZ!YNprXj2J-f5>c%($-U)2`}a(A3*|Ed+R)_Tr$_vhbkwQxOpliQNL
z>G2-pXUrxo962-ZKagD35tFe$>*Jr<-|X-G|MTpxe0c3Yw(s@I2{$a|zI)D-4$F1_
zSo^)$&A*K6!JGH9v_JPOn6u79t5aOHX~&cm8i&k|<&>ImyPW^X9rt&=r*PDK=~*|j
zOeA=Ism<}6+*VZ7t?t|QYvq6TN6H3iSf<J?K~v?Ec`{Y&L)Mn+yxNi#ef`n89ZA|s
z(M*jF4K2D0-YA~jxs!z{QGJcl2_Y5{QIXYQ(YtSyE!*n%x@6<u+qY)E`|Gs+|C#@>
zTW;NY`agZ%|DF8bJwNF_w|#H<-1dHZi-h&G2_7nMKAEmIU&~Wfar@bV0|sl&bb=N~
ze?MU~*DOdT=EctT4|lZdKi)B)_u)t1M~yu;laF(4ZkcSK@^6DjmAqq5<$L}|*7=Km
z@Xc<yf5hj{F7<2e6Z#ZYT0(+!Dt(JwKYd-i`T3doeZFTZemsmkUCQ~=bJmKC=1&({
zxy3XNU!H32Hbpz6$~R=sCH{Jkz|2z4!c`TAbDoM#^~&rB)4VFR)@x@?@`HNg)#htL
z{Ni^e&MsQ26*pC6Sty%Yd$y_IsnS^-p?l&?omXB{)!cf0zlL(j$B9zSZsP0buZ>w1
z-lqALa}@_~+!C+u0M!oW%~Lp6EwSj0>$lf7tx63EirC{Qy3*vulvzJGa*LK^$o*e;
z?Wpt=PERWvxpwytVU1RM9pxu3@ifq=-+1(ZDC2cQsYQo*7RBym<JT_DvM~-4pQuw+
zTzp1gS?6_a-c=^e8R{`hd#=0?-jew8hTc6bMNeZc#mM!Y{ku|Yrx|&QicS+*8T!)w
zyJ+Ojr}ICl$F-}fWL$Q?{>m-=?w0k2FG8cfzKJ&caeh%#`xN_S-9>YQ&P<>G-$h`O
z=l6Qyeh)d>-4h~wbYwq&xv@3b%*(8wb8==!MCPP$tA|HU8nt~;Qxmdd@%2%Aazx~j
zoRg=I>M}uofx08kM@o{|3@6WUwQ)M5_DrB(sJOH8NKKOD#yJs=HohzZ+MS_Cq>^Me
z&b#4|qr%kbdqgZrdt>hnKO65C9rj(E7HttuE`s%zN6IG|oLruKX^%?W=RLoUw|Tyw
zyzI2uMBx)&s~Ud&-r-z+X7}Ws#_4<R|2QpN=Ktf!?AaCHkDT!gR-gJeaasSF;~ta0
zOgqW%Z>Rlzn*1E2Vz0MT^51JENTjuyXPtK{w)v{ZIjc)<Li@_AiHUbF*8Y9>Zl7JL
zf6Jnym(}Yt%*E@EJiXELCh#G9b)5g-3GJKYx0pJqzwW)~?wHY&!ZCN^>`S_=kr#hv
zK8p!nrrhs1)u?*)=H0ujxA%NJcj)%-KexW!liPfAZQ;)a0Y@%;&6xar&Yfd78<^X#
zPUA1Uvb9&`$nw+`I;YR}%(6K?_i<L^BInyXsx*%K3ztM_?%K!H7r|b?cFOFS^Q&_*
zLoXa#WbU~mrTSvyv9zg%P2c?*dt&ypPwKjKN=WnKvePd<$^5v+zPI7*t=VUbtORr)
zE^SZUA}x7#n%atnEHSAaT(|c*Su5L2&n;Y#n(^_p{?7kA&u{Agy)U5llg+84usCDa
zhK9n~+3}@YcunNlzCHbSS6g(0N>TmC$^Km3Ev-D;Qf;0V{=LgS*EOzxq34%YHWT+a
zsY9=|#l9{t7vW)QeYWUiheNq`g2ht(r1+pxufmSGi|+5faod#P`HFIJd;6>9+Ab-%
zT^G4F&(w>&%lf^s*kNylLDlP96FyAs%80ymNoexw9p|nw=+r)3yD)va&CcZ4My@6q
z^;$yGJYTC{O=e#yZL^sD{#VDV88UCzIdeZbvB#HfcaZSaX<L<cJKqspC$(9+B4J8w
zS6MhCL(mMvje&c*{IlDX-<;H*?xC$exBH($^Y$In-@I7(r^u(E$-pmSkJF4jkuy&1
zEAxnp$<x*<wTzy_`|Xmrz|n@a3r}ASd{=aBT4-SXq3R_brzN+%&*uCkclTjyTE(uX
zFBtdn^hMs^yy2){wrPlyCAVJm(!C2W9OUp9KeKUZ!R!h%`}6zebTjk*R^ZeO+xxO}
zSI)A<TUY-v2zWo|#<v@f&*#*82{KsoxyAQ*r@xw~<)_tGn!ZJxr{|K7vgR)NO5Hl&
z84EaCckDT9AzokbY4OdBbNNfus|w$&Uy`#R!Z3Q>F9oi%f@(Z_Ti-3y-}hE?!uI`f
zF&E>mvA!v;4Lr!zaqa?J{>`mNC73TRD3-|LojbMXYFI#GnG-9w?$@`qbH&daA8yaK
zekf8}dehSJ)oxCu&D-2(F8;jr<mv*h1(ApB4K+d|D#}ah@B1<+*Ow;!Tg1EE=5nlE
z$zJ#7Lr<BT)@U4`#$2hB@+>VqdV9Cv(&-AS{EIhku|67Mr*bUl{Ohi77T@2cw-%ib
zza+ZJ_SKx0LvL&+T6QkWN&LFiw8!w$jA=QY!sQtcr4Akp{4yzQ9iP|7VD`01N2f-;
zPMjZ6c>aT%-fE$&2#t+XKlattn@n?@e4+bOev8mb0j<w+KNtVpsUTkUoaK~6(C*p~
zH~wZ=&eFS(p|)2pR-)2r-FCJJ;{^UAhxOiZN^g5<#xL@T)nNMGZBto#HI0q+&E^_T
z$iES_BWy)eRmLHXU;Yu_BP(UDRi1dQtaAM5<SL6@ma8Izcb)jRecRuuZ+~n43J9)u
zPBs4$Aiv&T=fb{2cMtvkWF~pHf5pPP{C?c`O7|-XZ?aVOuZ)wueIz`Q{o|zaUCGnV
z-Cp}G_(<ZLtjFH-`29Wk7SD`RUTrraed_v)YYf*hhDGQF+?ec}aq|9t=YL)1i3V?<
z7=QbD#&PCnt@!X;!4FcNmE;$mWA@Sz`?K+(#KHQ8G;S}JuK!KXwf|pge=R6#xBqJE
zIbOxrl2=RPUYuM})-qxKBkP^dAE?Njdb&y0dq!TQ>a3`MMb9qp@JQelNWYsEn|3jA
zmqt~rNlVco3F)u1m;7aJ-!HhrPjc@6r8}=z$>>KFGTqu~yyxygi;4S9g3>Bj)`YD-
zdg{{ITXTLK(ybTZn|Oy$x-}+c_1d;<hF7VP{2}R|JCB|>*lT30bbwRlzofLH_KlpA
zH?p~y%eLyUxf@(<`zvMkeO2s>GXhx!%M)Xdi@Nu_tKL}e7|nj2bNzvZHF~e7#cSF9
z-4(C(TIsZ2w$PHKj-?+hB3mW@oc}Y+wQ2uVp_mnB#)2w)nS2k_uPc3Y@+|w2Gy87)
ze4TXgkKVl?7WqvXkNa=*{}-xO{lBfF_BZbv>%1iSpWN48o%i?bTQpNnb=E7>pyqF<
zTRqbnTnrL|#BQx9D7tYef90uGm#~BrvYCdg3oTB3W@S2gF>TAESKD709xaqOXF28C
zoZwmaQ+DWTT1^i>bKtXgVbF&9rZA5Ko`$?nHTJb^Uv=RJBbTk4Q*hwK+lon&Pd~oV
zeDdb2qj161Ifs3&Ezt5`FSD*-+hW(ec`sF2^LzZ7<+V8;S86eRF5NO=bHo3)HEVaD
z40l)0Tc6Q%V)`t8y-l|saCMtK_F8}Z;lc^?*9gB_s~hHZ<Bzm7&%aY_ayf7RH+j{6
zQ2#p3Bp^}fPl}dIPV)@oH7{OwEcsp~xg+px{fm?bzCGXK4{E%6mRoiq)RIf>|9{_w
z=_jV0S#;>~>VPE)$uAD9{~@$y?r~k6x7(5}*KG`{T{6o!Bx850)fc1YNdYdw&dDdc
z%f2b>JUJ=vY>SV_bF-T(RD_ItcWRyt^Imu|#jF0(%gIH>^&<VV`&9l&xBP9hx=|m}
zeqjEJ!%l&+a#JpqdB3~1=c@o)mL5m@>-IA;*W<QFEh*9oTUU6#I_`+VAGe-)$)B=6
z=WTRhPnfst&J)cC?(<&U+^%}Az2;*B#~ok4qdPW#WH#vS=Re_l(u^Z}eWh`e{jNDz
z=iHM2rK#OxUZ393*!}p1&zo42^4%_HOvPJ7l9IDFi+ta&8NRVF@H%tMkB*8nP10g-
zmp^mvI#YJ>TaA$9`j<<$tW>$Ya{b-j&K1@{A<ybwKM&f#cY1&N%@a{O6NKI!PnxHv
zvT%0+v$uQY4xRUonHr8exKFl<xV{tnY4AmQx5@e3?0N|nO;wh9J5%QmhmUXn@M^`o
z+{3q4H+cM5^>aNlGkdk)mAxEE8t$+E91#pD-)z6mo&Q3;)ANg}J1-w%%+EEty>{vj
zlc(YKZo>N_%vFA9WY~GDdFV*5xj8{8>*<>NmrpfZlql(ZyY}z&sFx=dR(ECptaXTe
z$Nw>2L~x7W#P*fGTcQv0w8qr?@ij{?<hazFr*x-t*`>`kyC=BUt=hP9)zaMh>ZQ`Z
zR-V6}l(X;V0`^|hi@OfY>hZny!llNzp8x*)Y~f?!kuk@&Gn789_~68v<Ilx;T|HH8
zW?Avimpn!s@g6Tr<v#|^vd+_G-OjqcSL>waHF<%Prt`kk6vq_FHE&apUvD1JQ7<!1
zq%A%FU-6lnd-IdL!j(P=e`#P^$1->JJ*5-3W-Kk;__koqt`B!Mdha`IFyY=}y|@Ek
zPCiimz46lDWkqSB!2vh3*2Hly*BAOQvG!kQ>HJp{jCw3n?<{Yfd*#yB=;y!JwV3AK
zTKrSq=+R4e9pRncHl@i&Kl*(C<K1`c<gbI7n)PS(uNr@2$XtKso7nxQ7GVwgQor3_
zn?<GM*vBU%$yn!J{FAgQJZ(S2(Qiff&fW4}^|Owr=FV1=oBI`Of9&~t(CFhO<9E69
z<DT@sb1qN1<-bSCeC_t<o-ZTyALMDu2{)f!c&jRG&14I^ohL%lY)@UAe2w{9Sk2X2
z$7LT>?cmZ$saL%+wfAt{zC?j}Yt3@{Q<+X|`_rblZ^_ma`3>t2G-}ixyi?-#!IP)6
z#Xitv`v(0ly7$>uXlfM)%wO>F(-xP~D4BqbnZE3z1`+S8_U0{^Be?kME35E%+<(8j
zzgU?!Ut3}s-_Hxu0arXaY}Qv)7S*g<mJrM+?aDV>dX1~4z=^o}*`9~WJ|Am(%Uj9w
zw)_Kw-cx1Izme@5)NkKToS$6pn}2!Yw`<21?(6F=nCKMet#|jmH0Q^g7kBZVH*!pt
zwzA6l)v&7~<*_r@Efd|8uSRb|a(tcm&&_ps{Q8Cb`sKT7?)<oAcD&eJYLfW;?d4PC
z&aF>)!M%G`aMz*&`O8mVe`l%Bl>Gm8<M{(NUNfpQ<z_vzW_fpM@!7BLGwv9jotF}9
zv%%Ob#_7xPxy{c-nJ>&fCGBO__v`mfry9-AcS_^FY?qIBd^FKK_W8#D%l0>!&wO>k
zQn+h!LvQPkJ1mbsC8TZEN;E#Ryd|@KX7jP1W=^Kde$M_baal-HR)OvM`!#F(iks@0
zv(`SkX}f?$J85r4S^vh&Ts8JNDVfV3)P~6kt+}^L=?Rn4zBg9?cD+}8;rEt9RKIUV
zyL$VDE5Snk5>{&e>rS#dK9lC{{K+YK&?>Do<&WEpR@wirlQY`hXBJGK`#!_sSV}0X
z`mv{O4ALy;x2egV%FxZ&BD3^D?54{G0X3^8)e9}U^`vzZlg9(2oe_Nx|6jaP&F1GE
z+>-n2MWw@%r<czc79VWc5jgMp0-35Gw<dA9hpt^L7|*zh`_`q^-ZRd7D)0N6;-n){
z6tdC#y0NwLr^^pHwWj#^_@C`Nx!}ta)!iW(YKf~g<8wK;cT8X8@T7LJ_6==U%bI{a
zBCR)sERs9xZ=Q_uTKn{Z%fd91&XReWC2I`TBM&o%U)T^}-cnZk>6BoK%%{wsC6co`
z<lKdmCy4)DyZoqeSf0In+>AEW{<F<GCmtNS-K2djY2l1F`%6|aT@f|(?JQjxx-&LX
zdz+!<&!3t<-Ux@zw%bzv(63GIVE8r{j|I>E=4vN>`1+!+U$Fl7_6KqH@q2T2S#o9D
zEIq4Hthr#-mOG(w*}8{0^bh<zw$HBX-@d(j7jd^0T%9I<Ezs%1f|`o@7sA>?S8g{a
zvEQp%y!H8#Cb`1cXjS)nxsut;VXQxYvwz#afT6rLJvy}1v;3k$p3{rk&C-7_+<j5S
zfA-5yhO;6PKEJnXoD<frueY)^bB~uuOFEmd=~?tjjiLj0G9DHmO}R30!`Ugzx4Lw1
zQL=o0===9@oi($2{uyqx5t{UEjVtS?3o~wP*udvoAD^BcAMcaC!zrgG?|iInhVS+#
z+)v)NCb=m+-5>Sn;{Vm6PlDa*)O*$&&8yp`)$8hQm8!X|XH&`a4a}+reD2ZpxBu0i
z6Z+QL`0CTFM_LKDt6MaUmMWOO5T3N{O^U5n(G-UB=65HpcU39;Zz*)1f5~@#VYkiY
zJ5N71UX#$h?*Bzo-+9$f_dCkU_Lxt;WZGMBqRQ{eJ(lP-YYVPyw%D|I{p#;Nt6zD>
zKlI$Q%s~IzqP_c`NzXZQHmN!HkmsMhGY)UB=lJ<@Q<}|p;XQvJOxViuOUHg~^_E7L
zeSz*%_Zd!zNw~8+!#3GM_M%9`>6gc@o1biYlqnT^FwEFm%HYlPCx5TJp11Z$T;cxb
zS9b-jw_3NkM0(G<eSL@Zx4Y?o5{>$B<noT+9ses|3B3Nu{5e<PVN#xdQud>LA6BI+
z@_k{Iygu<_{r7(?w>Ny8@%&!$q_`4&F6Zx63*+YOI&^1eaqG@QZ_1x9WWTtl-_EVx
zX|q_2*fQ-+WvA}Hh*7jrsd(KKrWgKS(zZcu%iKK*&z3wWS$rY<;?w?l2d+N&e6&}r
zMAEf?T9exGjC&K$r$sNd*KE%IxP7TB>kS59!_A9UWLO5Td~sC1{^UX1tIyQ#EZChD
zZyOmClCxcWug#UeW;HGs>+ai@X5L!6?u(x1>ek)$w`LvLw`9l7=^HE-l}|_!c`)6A
zjoG7kvESvhuRq<muYG~*0pnd|rS2`Qw|tHkbh)0N^kvnzeSOXQ&IZg5U74?y{KjKm
z@RsY_*dt_@q^>+v{yxP{`DmR*z1PQs>n|vuIL-Z6Sl(aug!Lx3=smI#59g)cmJ2%Y
z>fMIxJ@1zrxNpkt5%6VoKbrfIw{6C%i0v<#gf&l#zq6lfHNl)`N6P)(AGR{x3)n4R
zs=Fdp$=i6<!nv>B=GeWw&E0<a$CXXKJnOt3r=I+s<QZq9eSWp~*^>v;>&+}SR|PcI
z7wuP;)#u#A^ioo&?PuSmg|?|aF0;(C-KFG@EOq4CIx$98%UA8ZxMyq8rTc4t9oQ~A
z%iC-2;^l|>#kyDebc)0sHH>S^<oR&tclgeig?IGyA0H}mlDy)ux^<Cr-A%oXtDcJ3
z&y{KBjQ?MJ==p?_yPFq2yluX`B=)Q8RP$w$`Tg~$y)M0fGHvy~-wTfhhPw7{o8~Q4
z!khcSY3)4LPjW#CXQ~yM<C`KxZ>Fx?G%Y=3WyF*E++B&?iN#yom~)htSn%rJZ1wrI
zrZ%#7nOj19^K(Br_wogE=W#5ni4XNvy`Pj`b>e24amG#u>3b^=2j!MNb2Q^-otD#m
z(tm?-|H6s~NoQ1_37M@w7t=L&UBR@l!ldi&6Q`>_imv-P>u2F5>#L@pmSj)%epcN+
z{qw>4UU~Bh_E{Cr7c4#!_e7_tN4{U}*6BBWAB6?%f7Ua|oIMzeIn-%k2pZ~SF)}kS
zn5<YQQtvRMrz=FVxj@JG=GLtRT2oeSS#&!}^yqi#)l;<|PGwN!Jg>sx#OU~pk3Z1i
zl($pE2c9L{Y?f>-%YM5`Mtg1YcHND4-)3&V8}@43w{!2F_V4Y~$oqX=&GP%4**lHD
z|E|0L{r5W$j+Ij;c&Kpmzq_%c?C!he+jH-)yZmZfs*SYJmU_SCoyBogelac`{oXG1
z<`WCW#XXkCIm-XDervy0?jMUH=Zt>$N6(MXdAzprT%oC)O?j1YP-jbz*SQ!m8KF%{
zd;RjgyhBzRi=1|Hn#Ruh(9lOPIcN=cSWe(Ewbwi^Pj+%GHS^o3T2Z|rsr_8Tf1ePR
z7hAe!RBR2Jyx@YW#<%*T@&PXI?run5uatED+=<v~=H~k5(zLF^v%G3f9jQmOlH?bD
z3Gg<#WKzzYsMII4Q{qwbk(wqoF~NmLtdeX6{c;q{ganVIC2?<@d&BXKN}1s9&b>d*
zc_i5vHdM5BDDeq*-{Ig?R237JN^(+~{z7&CF4Y~e1^mVKPxZX|z3l5hSKN7Qv~#A7
z;%xQP%l~K!fBmcTcFoC~w{F@WlGA7St6E_HrM!Ln`qSrCOIJ+&b>zqmx!n7+-|pSp
z6TVMDisj@_&Km{~^<F(xwY;-a;+KNCO0Ce(g=;gOpFhFA%kgFG3-;|siKazI-Z{y=
zzV^0BZbIw7@O{5u{JN^}<a`CA;}wqjN!#BaQu?FtwsNOy8r!rRKZGXtIl7<t?!JFV
z*8AO`o-fRPP|S5M_LJtUcANiS{&1z1#|39s2b(izb)OfRTX(l^-CLUld9`a|jy9bQ
z{Jl-q;bca4e%-;3j}>Nny?8K7qGGm;MX2ootImS~Cu|hdcO{mEo$<3h%(qwhuWd3<
zh-SS<l<b5O2mbcm6;5ZS_n*#j-MaD2l^UaeTbnG*Vy2y3zOS%v`;3{69)6mOQ`K~r
z7v-HlB!0q8JOB0dk8WmBAx{0uPY!R5JKoyMBqO-zy#Ix&jfD<*mp`ewaTlHDKCQW8
zO0CRK(Ws(|kDaESYnPQRWBd~GIX`g0?mhD)nUyo2*6+S>OUNYMKEmtb&xhg4b&0<Y
zu!kO&75O{K)js4F|B89njHJ7_`J8GLl$czkvCHV=3Lz1utoWv_{jAONOP%I>aV>7h
z=f2N<?<${x;Ijrx;gUHOJXuc*>Q3}?sYxAqrnWS=;Arishbpp3SBf}S`K@c*>icxU
z%bH)7ZTl{<`dzL6c$WF(Hz(}{3vSP?Kg60d<NT+!*4tXL_erE2OBKH_TlxRjZo$=a
z*F4<a^qrTz=GMfT>Hj=^T9)hyKPztNHX%G}LfoA6fIQYK+_Tr+mCM@A{(Q5^SH9!N
zw>{ayyua_-GP!C0US5+wwfMp<*%S4Wvwr^-p3v4^{r{>#>^Vnu(Hk%78Gd-n3uhOE
z2LH%$Q++n!GE3S6W%;0FzZJdgB1POWT~Bmk`<~TH|Ijw(Vw+{HBeHj~Pr1>3z7>U=
zPM-R{Im0wYZ~1S&BYSov7C*Uh<a)S%{BDzq4-2|4t(hI5<l%Ca*=Xj11xpkze|V+c
znwcPc<IA*{YOK|s-rN!`o6eSBaH@YIxr1f)uZ_F?o#cP~I8mOPqY<Oze*EMwZSl7M
zOl=2`o|z>oQYOEJ`#THgosQcnvn%52zWy`{zQNr-FLlxUsghflYE7M*owDEYo4}<h
zO}5uN(>FBcyg4$@`=M_R#};SJn-8`ukc$@ZWIv%TuC><3^_^s_`GPZVdu`Vg3y0tQ
zSO2i1XoXC?^^3xdyW-z{(OKLU_38QF=EO600+T1^EqUN2Df?l;1gmhx*O9yKn=K8o
zH?n7(ulSN*YL3E|if~gN<^4PFncD<S-ZtN{Q`2ZVOKb#_gvYhVp>JyEy?5r%mta0A
z%J<9pqk&t4q=93>n|(zc2SvQE>UEV*l-+3?AY@!$clhXxrOpD%VW)Rr(m8oDGjmpo
zcU1ZIqnG|J=uFglcYjG{TE;nM?*$Je{SR0Mdzt*6_|rH1zaR4*g^K;=c9qFRbL2#4
z|9WbB%uAHHchlyj1z`q@nLqx#wIpZtzf#@{On<W_)w=#IT5<HmY=)(Uj{aF%$9OZR
zuk1PMsrM^>Qg8j+J!_w5EbVGto%-d)^S#Z?zRUaHrB3jhc2u(4(P-(b2U0Wq->pBr
zZ~wc``wsql7W_S2Qf}R<@^!CjL|!>tzTH2)Siht6lxO}U9oMae4MnRu&pruyuPnXk
zzu(z!|J{AVyS??S5_WEWa8768^m~qSCz3N67F}$TpV#*8!ryjzg|qc*)=X-DcT+%c
z<MU(T+x6r3nSDEW?zyD?62S*bjC?yieD+vPv|wab&$$2JbLosbOH8`znvBJ-tcdxr
zRqqF{&fV16kFNA<{NTCy;L|Zx^{SZ0uTLB<Ib6(7?pm0c9<;GvO;j&sroej_MrN6U
zqx}+2>nyzQO)}pz$C9P&`JO*Uq4nyEMfHR=J$|W9-WGE9QrPvK#(i%dJ~?9;V0w9y
zzvHAO;tlKd{>TbF6_K5nXSQ|gOzGV*hDAXaIPb}GZg5#p-f4Kjo$uYk)@MsjsrK$$
zss7dUfX_v);_%ngdH!BfU!b?wrrCUobiuXxkE74NDdkzVa*K2C;pH0^ED5+Nz`f!7
zi+cZyv(5yFayQi()=amKP<hgLIAl?jeB0`Z1y;#_D!dEVvIQ8%R9Q)@7=MbA4(63Q
zFms;Z*^EqUz2J=R_uXP=@jVo)I>i_%<EnqS_0#4Bp_0d!N=xW{N^lfgVAl9>v(A|o
z?^OPNn=N0GH??j)@~A!C;C1|zoj%tZt-r0;n9WnaL$Ln!wIdg{Up|?8Jau22uJqFd
z#YeKj^W;-Q&b`xL)0-?8c%yBRM^(wyTQ#{X*DoGCP<8XL!>nx^cts~OK3=(fMx8;y
zuI;Uh7O%QAd#76Xgz^Up-?L6giEP-F&602BvPMY!^zV|?NS;ZPW>(EH$elA&R$*#~
zG1sxz$5#tC#LLy6U^*W3c;X#%sZVmuDcpJP(OHpfd?7~O;j8>|^j;q7E#|zt=0bQ1
zKjZ%G4o_G9GCaL~AM=ZoR?f!Z?0@dDi1v!+PJiHgf8DdLxNF=?dvn`*c0_-$Gxz-7
zJ?F>qmkCOq%O}R{TdD3G7|XEcvxV_zsmArYt1e6a5fjq7uy@j*HTAqdXV$e<__hgt
z5WV{JL21{u=*{P{OpocjO^p7+nkLlaw7*MALL={M?%cjDp-egD|CSXSM%|kpH0}I?
z%BOQgBQzzHn5PMUTj4i*={o5xK?VIi`wP_N<)xP2T4iN8Nykh^!D@E&xrL_t9GLr-
zK2dun_h^G4S8#Vw$hAvR+osO0*U_|gTKGK0;qd;dz|U#Ns$GB7zFp(pd_SlEzH08R
zO*U$i<AVaNTpVls)y-vYmafQ+Zj}mPyL0~Jv!pxc?=7w2@>nQvOuXDJ`LxB9BeIOD
zB2n7RRes$y-m$;cBX&Mpzi@YL&(nue7g*1gT>JU;8t-S_?;khE{WN`aN@~ZZWsBU}
zQqsJ?zqCmYtvtszuejxApQZ9Mu6sXM=B%=K`Lc3x&-2wE*8DW7zg4{M#-<1RJ-M#e
zU};ktgW8n!rWU3sr>3+<vd4&oZ=b*POds#m!V<%iIu|37x;GxZq0Pl4CAx7@0%NAO
zx4!rL_IuS6<6L@lwZazZ1y0`Tw%=v4hMLs=j8Ar-&#6q`^Zi{A%l?{^&414p-L(F`
z<^Rw5#c8QM69ttgpA>ohCMP^+!<>xV<i(%rL-yL2e!6w{+`e~xS%1?vFEN*R={xhw
zv_=&vFR#UX)r)@neyyJLF`7rYTXNNYqvn@WD-B%g=X&esZ=Gp$%t&(g)w}8$x2CKN
zPS**2%N_E*wCtnde6!M5UrtVb`PI32xx;7G;4^Dw%6F~&v-j?|S=LqWjJD58GCq1I
z?5Y3%o!4vX_nf+XCv$uE;@@(`SLHr`-EBVW_S)!uWpjUaZC(BL+M4R}Q~R@TZ{8NV
z(pKi~$~fnHiN|KwoH%0|k&|*VLVB&~ts^;!+YE0@x}Q56q04WUAd$RG{_=du13W2g
zhH7UL(m0H#7^YUFNhli}o+)_7<C*U>UAGiB!^JbpXBeJ|NMouuo;mZ-p5s2L_tKXc
z8_$?|M&}uG8lQ20<N=+eX$IaiQ_mC~Yl=L$CPhb5``E0Fi8(W`o{@T{oF=<@-o|7z
zgKuZt(u6n9yy>;IFkzZhfVh<5@tO81r&HpkI@qLnn0P<&tdrtutLEKr&SmoJUd8N>
z*VouaAGDk7KPkK@zj)@I%k_17e`o#voB#hYvl?Fmqd$8Zf0WURf`InUQ%?>)nArT5
zjh$yA|3`_Ux)*yEx-K)i{Qu$KAJK>Bw1sl5Zt-uI=IfXEce!JOV7z9IX#3f)nYL1r
z|JnW@>oNCBT72@TcE$qNo1)H{{CXk_T))ogS^2DB`X0k~Tb30hyM*LOv=rIZyVhMz
z72SDO=}v6@<S*x+&3f7z@bV$wtAxVsb0k{UMR9Z=w4Q5Vael6{Vo`g^@=p_tU#`44
zbHn`AAN4-<m-O9MJM^ZTdjj|KZzq}^W8>MUwmwp{oHb?6Prh}<Dk9f8vNxN{v=|q>
zy7F*a4xe~Qk3hoW!`DI|%2b_N-zrz!&^xD|Q}3Fj*R(Pw5trp`&n79}&v7<(P_8KC
zm}>Fq_n|pGAsP>ilD+rZoa9@i5UDhQQT<;2t&+Txb4x`Jgf5+$rsex#!8w8WN2-hk
z2euv8TW)?Q>dGtLIabH)y*L#uFJ^wUn0<olgwKYi!s?Dmdkjrms+gU2tSI?^D(X%n
z*BK#SgZdA%7H$!ZW!2z1?d1_9zBc2_DfefSl+2a&nZ0&|thlQ=Nzr@q>PhPy*G7t&
z?Aq0oy@X?)=d_b?EkAu0p7d(Sc<{%W*?Ee<1mVfzy_-zA4z1zr=Idpw-)!;0M(5Fl
z*_?5m(;j4sajxs_z2MQi%6HGSfTeeLFaNSDxwOD2g(-YieRzz6?&=+S&i`Mx1qp0j
zcarsxixHRm=A9RwJYv!-F`d;jsr{mT>@0=w&c!D(%y?pE&03%te&nKs*F5k4A+s3x
zralal$?iC>&H8p-|MvG^J{H`LU7aU#Sy5S2+44wQc0ojpOHG2#k77kuM_1ncbKIFX
z2Jd<D$?FU6w(u*w-?r8-ZkKwr*KFa<#iw$&-@04tKR5jF!c)JhF1p<MeA{B7#gY^8
zUs_*Gm=W;l0YA5ENr94sh<JoRh}JY`H^(YDyB}wrCI-%6nQ(GuOZHNqwQsiY*)MzW
z;Yc^rt-gbTM;au0m6bb1H~wwyabPy7YE-`HwdI81i3;sY_5W(L-}FB&TvPw<=iBJ(
z_f;Re2w(70i!%8*JyFN@<Tk$*-`f%jSA`sTC8*El;1iK^<6Y#phm4#DJL@<XJi2mp
zBWn_;jHi8F$Lkr!p>l6{-^oo4Sa2j{+XA6iQ+^pg-nuOPcHr92S3Z86^jmPDR~*yR
z>R1H_)kz-H<cnUO*=&8BulUd8^HKgWjrHp-WGue%87lsLUTcx<?^_Xg^WP#V!J_2P
zO2%A%bJpx<xbt`S?Pc1DKcDsMTo=|)THVpp)yc~HJdU$fX?~mi2Ak_MCSF~zWZuCi
z+B+h%tM=5ER>xU?yZ-jd$9a?Z^#mUryXHNubS-<fUF+vNZ&l|DTT1Sz>2A$lx@?Pg
zLY+@peT`S`U)~c;@47Fa<MaB!QF!zD>t{>-3j89Z#hD(Q+!-FwsUBhX`{&H5@;BFQ
zp10}_CwI{vzhz5PmpE&N3kIzE_K~-6_P6u>1qOXTzO}1Y$ty3OdT){4zPq=sWofuR
zoTg`f{`mBq<dSD`fk&&HbCOorb1LlDR&rKsOgdw#y(_N%h{>TF8}{nO-F%t!_pFz6
z%DYm_IXWxFJ7&3>{!3c3eSciH@zzc5Rz6D<OOJ0obe_9T>94E!4Y{{ZPCtz5nYQ1m
zb;{;-7boU<1u5~f%xBvu5p>yT^J?ink@zKk|5G}z-br0;AFwJRblEGXsHikH(~Z}b
zU(i3ITy*_S{<Ot{e6{ueBzRr-Ml_q5WF6+;y6kzL&TsZ(e-FnUpFic!1wV(fDr-Z5
zw+HP`9MqJ*Usv^CP^RI~hb<Amgqa)Xly9sLP0b99?f(3eQ)Hj=NrguaN*6Lt7Ei42
z*))IO!A7s{hsL_s^+eYugm>>ZTcos;>C?__r<d>l^Xty3qjMkG=NwMcimq=L{XXsP
zgZQA6;jBH1ZM!^=6uil)Qu&=B<$Ggu!L}EZl?78y{P`%XC^TpCAFklbmo6>rSk0mH
zHRv~c<qlE(!--Sgu{{pBqjPS*_L}X{*45|Q&ga|jxmXo!!)9vN`cLM(>6=qr4XJbN
zc3<3Nepq#}{qhQ_O0AgB88_a(S$b==R((;Xp!3@@_7<0;N3s_w?wIUzYW`ezWiM8}
z``iISvn1y^@-1G<^iow_Szp-e%s2KYY~2$D=C9~f`F_&RHN_`GgoWYmEZN@s6YqBY
zIWfhB>-M2Zcm7The!Kqu@+~4NGr4@L9h4_MUz5habg7%I?%#9I%z~nnCil#W`8wsR
zwe&Nudi(6Q8dbaW&$F#Hy?^Vk{jzQU8mVym!&lpaeC9G#ZoHY8X{fnRfGK4{$f^#T
zC7wm>{v2&5?xqB|&vat86PPR@CoJrky~15oq;vm<qoN`i{~oNl^It!C&e3=Bxo_V1
zAB<r<dMf_LA}!mh=a1bQHEv}8*tyXz^v{+T3rzpUwJX-|(zW_0e3Jh;*Mi$crG6);
zetMj~uy=QA^?Zr0BmGw^8r$bFOt~sMt2SrDta;H(&6OrTt-bK0=(p|D-xV$eMVsd+
z>}%$;nDX>}U3A{#RXWP@+_THq&QuhV`x}r_xj6szGz*R0o?kcc>0jK#d7#p1v3X1I
z^4|_k>0fpi@0r^$+p7L^_?(9Kc7L|UR!ZvSoSr{fXo^e>dyMdusak<IZ>n`P3P=k|
z&lO<jT$puzR_;>iMr9_$S1Qj!J?<A;6y4uy|1QO=H>@na{b)#%!aVVUV?J{n&bU0f
zlI-8OX^->c+q<3A#oTS2isyI+H+}it!L#h#42{fr8#C^Bo#9w+FIu~`en)KfFMrv-
z3$=@GuX<cRU8tYq?Ol~O&-J4w1bsOwSftL8XT|VT_0i;a=bPrbL|Jaz{72B|#sRj5
z_l$cpAL&-s`h1JqxL96#QTeX8iM#lE-PcD=n)H-+m&A_K8axZs)-L^egxksGkcU*t
z4JN7lzfqoiU*|RZw6_`5UTe4dzSpYWec54&s*sMj|3Mmyt$zIu{F|)eyV_>|uIC3L
z_p02yv+(BS-ILfh*=7ai9dcUxa`{^8sQp<-&0k9IkM~-t^{a8VM&=XV)PVI*(yy&t
zdF*wBddFp#s<kS7T?WrR&P({~P3*O>lr0v%q^xyi0b`!5^ddHX)%e$OY`jVBZttG4
zzpMAM^VJXAbKmvspXagd)v70px5X;H4t6%K{ZzKxb-DXfx93iBPtwz#EniaK{c`8?
z9ZUH1!|Gj@->NzC_g<FQ-49Dd|7N`GnD(x0YTx#1-8F9lR5u-o>f+Dl@w~~Nrfv20
z(sj*W6W#9a{<U>`#R}C>q3&z4A1n1*J3|w~rq3?&sMlN?erk70S*p`&zSS$A$9{Qx
zG;qIEl5@_VZxfTBWZbmd;`sVgmW@_a3TFcI=|gW1U9bG<+x&8Y9=Ek@8JpZ8){JKT
zBEKiGtIqG`FJGX!DZzI7Zc(vD-R1qQTg4u4HR`&+qIJkUO2sDf&x{kUk3NTUI4=~p
zm&@?IEV(nffBuDfof{htCoTG6cI^KtJL|NK3ym+W`!)TgvuxBWnbM_J|J+wT>AbMO
z|2fC3bDeTAA&2HEh|aN4Ka@T}a;N>8Ys-BmAO5Jn-gJ7#Lyqrv5B=VfH0f#WUZ2>T
z(H-nxKC14zm+ZZOPbx&_fAvoJA5F?{7ukB<>9Wac;%E3Cd339@ml1FMfA1S_K3ohb
z)ZBG1<>xo~zV$aRz0JJ5Iecx2dg+QQZ}*+reR-0tdxQ2l_rss&@V!4hBi?3t#KRf8
zcXRp`rAPVQ71(Gm;^SBD|M6_6=G#O$SMkpm^prGC9bS1-?|NfV-@`?fo2P8})bf-$
zf6Dvd53Ht!{C^VJ()TBywFzXM9b8@?W*v51)>p?*$4jS-+3!4$*P;vl+NE1w`kX(X
zW$|Vq?>;7(B6Inz-yJ>{-{t>uJ)mo9Qj1(%MRRFyS5c_m#QjM<#TnNYZk)cKNnY>W
z*BQ2{%&zif7poha9`^Aae!0{2lI_BElTBOfA{6{1i@mFV^M<AWk3O=zw5Y4~*RFF{
z>g#i_7f<7<`*E*ZoWK6SK_$EOlf}a>Eivo-<rS3e+kJ6XkK60|1*Y}kUM~fWm%aXH
z6!l$fg7-pcCNa172Hq*jvmbRS%~tnF<EnEHj@)igcUEFr{iVJC6~0!x2Y!3!w1RbW
zmPX^6v=EP@UCmW;FTI;j+D2OM(w02E(8;o^CA<FInS(b4Q`1DBekt*?I(2dH&ZuLL
zDvD0dSQGTU@L~3X=%bG;_N2sI^A+B_b${=&M^{4T{BP6COu3Z5xG?Cw?U7BZum4V-
zddJrGQA5YH_4ijVRDQ(j{&0I}tmD$#)vo@(l1*k_Nzc7`c2&x{x<86t`z7m>w!Ge2
z;hgQYd}@NMyh6R`HSW10uQ>!W12tuKozA~e>wNE~A=|WyDXifgtO1j!Ug4SP>ACde
zPtVF<X@5>{es_9GN~MkD9!|BQnjJ^e!}fQay)dnC)4a#xQ+LnzvSEqgEmeN2_Ro8P
z<h$+K6CQt_(=4OFWg)$sSzdeL)7@z@lTQVfe%L0~YrRuFHa_A)Z2f_Qm+Pvc?=bN-
zR^PSU@@iAPXTJAGPj{=={B>JGriFF6%k;aNU6?cB?`QWXnty#_^0wCOJH0q~i$~n9
zig%lDi%&lz@HOaNR_gYW7kAgyUsDjyvQc#7Y3pdo_&?)9!`kk~*;~K-`o26Xpf7()
zEziVLD$|8{Wv^?W>dMORWn<q|pJ7^AY$f@lglE>GPY3*6@Amz1TEAN}?4bzvTvoq_
z&P&%++4h+(YMyfLpJ$;_Z|T}ntvik{9n1=a9!{;{lKfP0Xnm5l%-VG;pH@VtUyu>Y
z-#E9@Y1spIru$pYC4Os4U7f$hes|s1UsI=*zW(~`z*Bww#|CRP_xs<vn(U|Ga@4(^
z{YT!G?vTK^_!6rh)_mtTq^e%%d9!N%i2|d9M;1mAC(VT?&p*DXp=)x#_R&-eF9p?{
ze`~$P*D=3+ekJmKiCBx7F5gmxE!X~jUbrwtbFR4F`PK(JxwoAaFz=aMF11Ac-h9v7
zH|+L0x#s&ybmwMVVt=EiezSVM^IVDPTUW0vsjpA$&2VDUfBeW_Kjv8LbX&dI*W!3C
ztiAfsYwq=<7I)pne=7D&(bH`C%lNe{$s)(^&bH}~e;XgP)Kk6PFndpq;L=O7uIpGC
zW%QE|H7nO1WRCfCH8N2~-Zo_;^O}Z&yl39gR+c=~H@~etp>Njy?7(H|)y~E;r|+}p
zSxU1m6qqVg&txbt?fl2ZhYo)hKFz3LYH4q3t@?0+KX-xson1HAJz1{XwClvJ1+zBY
z>AJFK$(P#Si#IoF-<lu2T1C5a;fAu`W!2WlCqH-jmvw9T@&5U?^(C*_1SOqX-gcMu
zNN;~}qfoGGvy_yVHuvTSVg+wAc#N&PABo#;i1$yN@A_NLRJF7It;C^!dp_Q<DO9z1
z!^`pD!Z-T`@tgPhSKH1#d;RyEdu#6WoxUl)oqw+7^z~7?LjPl93s+rxKkLp;@0+4G
zZ|nOMzVBAGiqp=0naAn=@UPyMNrAPGGJS5HSYT)RKO|iLgum+IB}EI5ZI4;{>1*i9
zQ?=Pyr%q=d$-Bd|V8_hn=xbZ+*B#bv3yRv#Qa)`@xAY4Mb@RMem#h3<Ue?@{A~rLn
zM}N1^wpUNLPvblL%r3`#sd)J8{b~Dm^)jERj&1fyH@@)yYhS4U&vSSEgHC*yw`R%A
z8?O&P-11!X*P80twpr(^td4Da#PGK}f8r-A>5z26<jmjQZ%i&S&v6Rf?ZmgDEB0VL
zuZ_vQeKP+`o#xuJFg-uEZ<X&7-*<1W%l5j*e!HAJWrx$b?OWt6D^u$0CQS7(`P49P
z!rjW;%lC6$hHe)2E^+&<ZSZjyo5qcwR*GBy@=p74>p#11?3Q0E`Lw^<T{HfELG%2}
zj8v0U8%eJp^6Cp2rT+Zj@pbLyN$fhi=xBHDJDd8S|6W~{HeVm%yOd|awMW&zTwYxH
zyMym+>7GaDMH}klW>47v`>V)`pWa*N-q^pAV^3zj?~9L8e%BT*<lFajx!1u<3=2)(
zyvQk3Uc(iWe^z$F=knbbk}h!XU+;N)j$Oi;_snU|e?xwsyX<|wV8V<iu}|VTV=6Nf
zOZyk+Wo?Ye*2t|tzL4opH%Dq-rgo9&yp`HT50lreTKLcXBjc0mB^9cys_a+Gw@=zN
z&(FwjvcTTGIo2!}E*V~b?wqc==eyAhc3<x+;R`o3-rjt?bkz>gYfo3aKPq<oX+>#y
zzwoYE$8|J(PUYqm+D#8|zH7Ah;lY)Dz55oNbj+RamYm+c%*k-d&K>n?zgRmv&9aqi
z8loA}wWmsSZvJgEZ&vO6TGK6c7K^v@*(iN{b3}hm{@s7SB6i;hmAw6H+R+L3Hr;SG
zS--GA|Md1f_UdPH<xI>vcKkm-$9>a{POJCPj|43y-Hkc?F?#ZyQwt<^yz|NodZPaI
z`YEk~%e8k>G>&?|FL_?Q|DMOy4KDR=?*t_88LoR7Jmc3_p#a(LqE9O2`g5}nu3`D+
z?5F&eeV*2<T`v{hdD|?WD*9;J^0`OUdIewYQ4CNiGP^LF>n6YIDX}tP%j7vHj)k_)
z<FFR`5n0p6?Q&s3>+fUk?^TlK*w2lA`?06c`}$%Dd5(Z@cjDY!W7OWRw9`~<KlsLA
zNqvfFwzj<L)8$i&J#%K&8o!(_HB~x<XXgbT&DNDqr*Di6yngrgtG%(kvrkstsp;Dn
z`8e%XkbAlDd%tNshi7_3M?5~9^S<Za`sKgZhUv-e{*eB7)x3SvOYFj4czr#r^G*Hn
zNdcqF73!zM_x-Z}_PS_c-LZds?As?FJf?MDj_KWX&HC1|#f(wWCU^Z-_gve;Wj=B0
z_lr#CAC>=W*?FJ5cfr=M@#4E*b^BE|>Fi43a?{rOU%cT}q>O8wcW*-lgE7Nb_Jvtd
zziqEutGB2WO_(-y`4jO_HnG*N|8DGC;Gln;**bcP{sZBVCC?sIUz!%~ICt&Q%fG_Q
z7j6*Gy6QPmsnVFWp3lj)-S}yMWPM8Q-HWH1jxF)(>njW3Y!5c-=C}3AW76AevbSlK
z*oqiF7cnUlTSGRp#;)pkzH<VPWZuYZ(ww*~sHeVXySr=BwoO`ssUJ_4$;?z<&f9%B
z^88{u@kRcO?gt$nulRqD#owBHzwVU%zxF-pZ~YX0zyHtfbrlnt4C*zVzW6Dzo#b3A
zb8f0LZ%tDC?xm-!uCne>m}M8IT4)lL#B}xeROKtP=CbA;uer8UHK*00FXF^O;W;N~
zwD^hM)n4fFQ=m>q_lK3Hte-RQ_Xxke0R<aABph71q)RXR<%BuPx@Qmmv|MSq=EnVu
zy;%wSdm8^HK48eLzuVy4`qJ~4(flo!u6$`^o_%Uku<<0XNt@1_r}4|EOy&P=U#yWI
zie=c`bh5yFlX_zdW8{mFmsWB{M3?R=51RGm%C%L!JB#~@c?;KX%ZiP<9k+FLY^Ha(
z#?qxaj7*B0ksOJq_s#vD!q4cW@McL4D;FzQ$>ytiQL9U@7w+wQZE@~J#UYtzvw!=q
z?mPGO+~0Zco1a_ypQx|A|NVRQb>`Wo#cJJW(}e41Z_m9oYs$8Q^XH~K@#$1CcGvN)
zDwwPlEEFFj`de4~+xs^+-WEq19_)!oa^jh<`D4%D_r>W3{>IP$W&M4fb?&XswI2Pv
zPJ3PRqw^olzBsv*y^3SQPn~l-VzZAXR^Qa$Tz~%GyNT^$`jHJRclQ@OT(s3_XPDx-
z)8U-*k^5?P8q|Ah|4DS+;kQKOxo7M5Mf|Etoj!3YlUB(Iy%XweSyeO9AY4a~^Ln2D
zz3rK|*&a6W-u}j6-myf<b(zbIHRmREY;N^@lru3zb65Nf?O+bo>;DDPPA{=cni`=N
zYNryjRwRvUYEj@e30a}3Y28mgwz@j)^axZ5)4G_xFhcW8aEe!b=pvbgUTPxVn^j-U
z*-`POcAd{Ep;MwpTjE;6E`**mTIw}(t-$F}Cl$lWyT4vrt@>mfTDa58FiPxH(ZzEz
zk=v~D&iZGs^4S=o8Pe$$T4))ml-L)cIXxw7Vob@@7{z_dnxZtPJ^SnYOKG9gl<6x^
zOzfC){ax?kPyD}I>^EBl>(x)sSU-1a?Cr0UYc_gmPI_YZg`e-={Rl_zL-KRoW~lU3
z_geg(9=|E#jr7eoztePPZEV__cC6}}TiK<aSYzXjhh{geQGBA|7ADA@d^YXwfn5_#
z`%8siZ(p-JqI~na#Jk6L&Hu{q+VPt6n)b;4&C@na+cYmhH+gO1+SIklwuht6->N@w
z>%^@ix6XJa<)-E)=ccP}F56JHscd7}=5HImZ3>E5xu$lF$+fy^J)tM7bl$ZXN9<3%
zfB4>!Z5#YI-cS5rc<ha&zsj8{3+7Z_K4Uzm@Eud$eI4^{GSaj6K5P4Fe&d;q<@3io
zPwfoPGr99)d*#E~KIZoei$Cjf=Wjee{d3)6?cMdI2iKneWd3pezuT+oe_zgb+A*(U
z%8w6bcXJzWw>`Tke<?MXWxvP537)sR7GK=<Eo1p2-)R>5*N(a9Uusv{IE7=bbmDQB
z;FmQsLt++iOx<3#)s21D*50L^KGv5{<}XTbyVuqCmGL4EujtjIrg}C8&-#8ud(~7e
zmn#WKG{1Gq=XHI#C)d@i*ok%NM<-WIb4w1ASex}Hc3ok(;N(fCbAs2aZ#n5Y$tIxj
z-tydaTOOK)KCN4An816p*??vFZnpmU`)_?Z75eM^I;r^h1diV=)tgk`ln2KtG}Sfh
z37+AbyLHkQ<_6`NFAwCV^67>oewx*l=4kCBSNFFvnMGWDdT6F^y_JGbSiP^(kCj>F
ze=C2nyvtkA6wqxNnbpfA{32JYc2i7RNWcx7UE0&+6EB}znN-)f?nFe6@tTkv-}uMI
zkM3?&KgSz8<HsBagL(UAIm~yDmWxz6b>h~h&w@9Tc8Fj4W1W3jdQ#LS{X5rVy2a;f
z?uq%wSmSv>d|^M|{+plc?!T<}-+%a#NJ_kK#_s0-C*7Hq-Sy}FUh?_-2VS2U=fY&K
z$A!q=|K(mPdT-zE?Bohg9i;~cyN-9w)2mRbKYzG9>9f<B*gyMjh1*M3Fa4f-C}MX+
zmR5-UsvC3XN?q>=o0n{U$;(dmq1l|r2EBJG!&2DV=bhA_Al|hkG1uKcy}Z7CS-s~(
ziTI!2u8W<!82|rEYQFpR17GhN-YN=_Sr~8YRQ^3%>2vaL`?_b&_javcCic<aGV0_4
z&Mhn<x4722_WK9#@Lg@3K5OmK3j3=Mc^r9_xNn^-+cf`(vP!#nhDx@leb3>FyC2VO
z@9*Ekl7C?1DY?qx!r;J!+OIb~qJ6{FkA3c~=iMgLE_~yCS<ij-f(Ayd6DmU2Csv-=
z@8#&UG*Du_dh4SLn`gfNAz$#{X6DZyceBIpPhY{P8Tw#TfYmCQw-sOXH}3z?{9wtf
z6>90aq0BdSyMGS5yVI(3r=?-5b^fcww<~Y_w>&EM*Fy1I<(hf-4}P8VRerT}wB+5$
z&7#u|7acXOe|hGO`gUV;hR+Je-u#`HcyTvN{2^`K`7tZ(nxt#^-}zj$V`ce#Vv_#L
zubmF+U+QZA9s2mudu{$<?Sf68ZrbGB3t3#7lI7Q8Tl#xBr>$;H_Q!NRKkn_bZ*$yz
zVrb;lroa)Ns8q3OZrq=9)4w<^2tOd-6?d=fjl=m%ZLTWCC;IB8cerghyjO2G&wtT9
zZ=Y68KGJk?mL{J)i`=T_S4D0s*bcln`+jZ8G*u?!=#uAcU#rX3PqgKeobc>s0I%tk
z^H&?rcF*19eoCq2y}{o<29Kte8{1lxO8?h?$6av6BUIp@yXD%L>#p}ZA2i(3TzpEQ
z`^e0ve0@_^H{^J=eAv1?u&n;(=EAu>0pFVaRxi8$IF+AyX6ot9kIf?Wk3L*$<y9K&
zdx0UaXu^>SUv<y$=VH_682wUoYM9Oy^iFw;(DL+R>jm91<y$6KJYI2j`=M=j8!w!F
z+IMm7x~fx;IfV)>9&7D4^pSVv`hNMSp<Vq9y|28#_WadLy7BbY6OEnyH%>cpx7TYV
zbzj!A{%3qbCG6y@>{k<0w&`lGyH^miw{TT!7R!<w;bnf-*RRfeHp#lzE<;J7p&?6V
z8Kb>_?1Hw7YKsKhPIN!16gr>A)ti|%^QzMgpQ_onHtN^i-Td*j+ls>)+pj1G_bF!o
zZlAc-I_Bt<gY|!pHE93I)am)nws#)mcR}&K`VhV6dfUPsI8y>#gn}ynOxF=N%q|eQ
zUwC+V%ZaSN^8=s!O%QXsn{zW;Kf3$Os){RlXSXR|d28fnK7ISEV)6FtUv|pYmX$8s
z(KVOtzJJ00^fl6&4?gnj`n^sw;fY;>{%=8JzdMF)%kx}rKKA#x^q=eHB>6>l%5q<w
zL&Tf3m{{s#GoFVOzh2P$%5lHNO|hEQ-<Z@MPRlhFlRDiKw&>KZqq_tzIr!y%N_rO=
z;Qn*vf#n-D-bsJ>`78Fup8e}CyREU8n)~Pa@^vqjlvDe-Rxml8^evm}{bc3Rq)@Yi
z6E17dU{6~AKk2GocKMtwrV<NgFmPv<&6rueY;Q%Sm+RHM)qCqD<XvJot5=$>;(Ha)
z_R2YC?JMV)&Y0G7o3c0r1KzIrYI4E+cu~Q;dHd>rm5S_0-(TCk?{RU}%T%jIi=Tn-
zN^YoKo*A6ma-^@r{lt;?GH!p`1^&06T=-*d@{4mZ;q$zuUH%0Bb>8Tgp1i{9Rgd*%
zyG7kTcU#X`yGSoH`xJh|vYstZ^*W#E6fRYRJ6f-cTTZ4GU+`!tSr}x%$XOQh!J}XT
z-zAq>p1+eX2gPi^nsjQj=bH@sxerz`a_!qBJnx)O_%`m=2>!-ZaTg?O)breh|Nee?
z-D2{c^U0HaO^&~GbG-ciOG%N}j{aNIcUUZq(N5Yvca52|<tLr$jf-E|FVilpe<E<}
zqh`(=-_7eTsphL62};`g=WxvT%=->^H#V=mdG+N6wlJ@6?<}W;PU5moc<J!#_bmO8
zA1_z+)!gXRjoSV)@1UH()s&LNc=5BF-k8Z>S?;6Z7dqD|@>Sxj1?iXf`?hT7=e>V>
z&rZJkA>mi}^^@dd_x)Izz*M!0PkfP&>;EV9e|<OJ4wzIm^|zSJ#$6?PlQ&N>xv}lR
z+&g?#H<LaY7BSE4FJjACI4z)CBj&WuW0#!^pWB|@SGB(X!!Ncye?4CKyqom0?bA`d
z>TPp9w%$%jU!T5GBb2{aBkysfmwi)(_rJ(Hi+lw9pD%rGR3Gqk_4bOb!S3taPpo$@
z&}0mAnUPz6_X}Um|Gq_!LRvj0XNxdyD>?t-bf-YswQ4K-KGDZQL4H{twgPMy0*qD(
zq?X?FbZNdX#b2;EHck7ckuCf7sTLvueRr!XwQYk9n4GUZUVGkk_iaDBe5(Y_b+>vy
znpLftlctw{kafEBtdn_@9^}4Jvz>eUuGaF4+*?^%0>o@T)jOW)t!A&e$7sGu{kq7^
zs0O9KkEZ`A-Dq~{c?J(FfAEnFlP_Cpcb`#BT_VPzdtyb5R`;RQ&9`Kf%l4m~?p^a|
zyW||syqvf<?{nS%?prZCqeEWPY1)btpLVDgl{|3x<FPyWz`cx)=7rl|md>h3h!<Yv
zoHK9HeAl}9&RsHI7Z?`SGn;DZSbhxV?NjWIe}B)j#DD$AoT7KjgE~C(V&e}d92Sfc
z^*;7;=H>r#UYyIW<|+FX)V{sy{#SNuGs|A1XW!bKP0#u%30+@4ValYeO+p=7CB=fF
z0{tr;-KVTEbW~*wEnDk)`i}YB*3T_x7H`y+(G6D*U!M6{;%bSNUgy+959@F3%2VeO
zoFY8=t6;9mwxmTWM)zx{wjY1j>-nS2p>f*b?zGlZcZw!79@AQXOG{HDXi2J#R^qcm
z!4YmAcQi8E8lN@Zd)RpJ;^lk~$$MYjw#qzyx|%su(UF^H>;HGE#lm?TZ^@cPFWhq|
zf^o)0p%vaN{5v$n#TLXrUM*Rc*=3Ph|6KTXnF!Oe%~#4)4lVVoD!XsJHa$w}*g{sR
z9A#0BpiN(oC;KZq{cn>Bxf`MvFYcpx&Ul@v@HQb6_bp+wPX|2qdF6R}@8!o9r&P^0
zBwIdaO=tOAu;^pN_38S1J?`_F@G&2Aj6ET<;!{Y2P?yi9Qz4a(7q6)sR(+NK`F887
zEiUypf;KJ5C_eb>%^}+c*?=uP>Q1wF8(+Bp!|(Nvix21Bn|x72p;qjb|B<};3ETHh
zbf|aSe?0%;ulNsN*>6o<_{Tv{rsZno?x6DJo$p$#H?|&L`JTh?aK)1|FP;eGb%jV=
zdnZ11Va7dG+h1m{)<x9b_v10Sy8YK~25H-%RW7|N|FYNnJ!@b8=~wcs{|94)GgZzS
zJyYDHq3~TJ!PaKSw*!wS$<A{9z_QIUL_)O0p?=5q$6q|oKX{rS(p^~FwpF0ZaNZu3
z1>D?+E<|0v{q5c79SaSegEBSDr7s#3_R5B=uL<;NuF89xoY|l2drtpE*fgfFyfxX*
zug=LY7We155@udyRiD7JXxcoZ7PiJ4kp^e@_BwXQc`vxXRQSiKO?wypon@nNY3bkd
z${ew>^Ip7Hs<?4C@UGaO1@#3ydI`sm#{OoR-RK!HfAi9ectK-!vn2msnH^dd+~>>c
zepwyUczO2Ehp8tvW>h=ZhWlzKTy*nIR7!cWe7Q!-)XHDYZ9ig~)%M(|PhWoXOG3}_
za`RtNdrHmZ^U5@ItBiO%iu7i^d1e1bMuPc~K}kr<l&g7ng5&Q#?XPgE*y;bsb+Xiy
z+rDN?>wcO|{q(<nM|R!M&|lHvz4Zs|8y0LdzIg7&+PfwG@BiHKp1c0S?s%X5r)Kxv
zmES#6zU+r0L*j~MQ8A5yciv5%Y1&tB>+!VA*&#6YQFw)y0{6G6X(De<O?lT)dgJn9
z_In~f0<&e8Y;vinY>nfdn(*P}>k@6zNnJ6W5n;2KZ{FB7o&Q44EdSzl`_vnhRo(f%
z=FUHGR5rAC1sBVns|($x&t5b~ujl(k`Kb6x{(r(uDF*}(Ropk^_p?7Ne>!`LGvl;P
zcJ;+KKg~V-oYmmMh3j`O-n$Z0%k=i=qpdge{_V`Tw`=!z`_E^#9a^}3zs1Kxs|%-_
z9!t+LTl+u!+^mx!4~^0i`8KaoIl27!`YYEjZ$9*V@$!y|<@^6;No=^)uu)5JOWMSh
z3R69g_EwsiPDwhI;Ho^Urr+f6!%%1DxEM9v(AT^UGj!`46O;~}d!M_{g}oqu_j2w-
z5u5k<X$u_Q*0f~r&r3#c8&i6jN@vC%lfTdK<ygT!|I2r;+<#Q`t6{}A=?N~IeN$K8
zIWnVg@)527p`BWL4fQtelJYEJv+>QplwMeVLz2Z_%#7_6Yt{+f$gSdw!!M-&49aZ$
zar`^?TG59>Eq+Fm>g)e^=j?hFzi{*X%tPAYQ`h?^x-c@=S>AEFFC&pJ`}VEsI)j&Y
zrEe_|i^_K2b!=B*@MFc)r6=DQ9Oa&LGn?mme9-)J3-ed4K74+@eD-XXC(3;rbZZ2!
zS8dgk&1p*YH{NcLy)oNkL+1DOD+4EX95Y-Un;rgm+TGhTyhVR&1%FsoTR%-n<DkfY
zVb(&2JuBKdESW7{DXp_UIOWUvKlRHr`EI@bqQZ1GRG$5;fR4C_<C42&8ZQ&->Tdly
z{N?Qq>qlIT{MjZ~rf_#XXs9YrYl{fp^mC)!tOIwyeq1S?ZE`Jy%gZ5TQ`LH(=Knn>
z7MyS3@i?3GEyb{W=a(Pe3!m9<y~HV7e|~P|JPA2z+dG^y&gVMCJYOxDC$@Q8jq<yT
z@tmf$@&EJQzg8ALGV}A~+Pe)uZI69&3Am+wwST($)Liq9UZZHk74>`$H3#<OrN7p%
zeJQS`@IB9Y<%*kkJ<jJ>CB8ZJ@_YP#1Fnb**)G*vz6k{<a!u}+F3!~oF%tcM>agv{
zlh5j1rFaDb%hf-95UXA5Hi7fC>&e}&KaC1c&0?(Le3w^n%|RgB=xT^UMbVY)pbZt7
z@*TR83GMe6tX<(#derMjyTaZ#2@ktu+26CK$(0>{aqc@y`h%a}E<WTw-+LkE2ixzO
z`!`dYVg&!!oIj{8l(_IoU(eoKlal7LY><6)v102Zp88AXzA|fhw^c+xtSali(D%4<
z;*F-_&&k{4pXx41-}!^l#B9&aye{>l>5cQgzS`LB{Ji?5<Oi#=NYhE}Q|?F4nKW<e
zdd+j*c}t%^Sofhc&-Y;cqivfNUvMr^_$sL#*kfVBcbM;)_ni%UOEx|e4Ay(M+2p6v
zygdGoMQ=RojB8(ium6&Nk9o~rw^{|kuoUCsZ|kmjaBFXJVB(4|tliVOV_B}sw<j%D
zM*F{Nz27WhUpAp$L+7ifBcIpgH9G!tCoT_5S^nJM`=PrLMZSUBS;bO+@1CvG|99vH
zclhu47|XvJd7)A!yH+`<-h2A~)3#lAmhVkxnk;|p(#Hpt`PHT3#|~@P@0GdNbbQA0
zAHPCM-QG1$(Y<|XX+!9&Sye(0PbYt2K0MiUVa5V!tA!_x;)K>OIL7hU)^@h+Y{}%$
zvCQ-G{!h4<ym*aAWv7vT=)C6VZ!S%p^89yuL3#K8729v#mh*Sm%CY@K>7{y6^Cusy
z`3xg(o>_Y}&F0C<@~stFb1STEw?EulKP^}}z4PA0zGZ0~j$2J5D%bYO_u3Yf{QLO)
z+r<gxGrvcQ?`_EU-TLG;KTk$=Z><4iGOv2yJd0ab_$L?aGT622-30mjayq<+1<JBY
zUaV;-Pvv0S^0g?Z{IpK_{N2hGO3MSE={Jbn2-{L`f9&^~h;`u(a&KN~)ogsVh)>?|
zYIeOM`|TQqWLc}({F4@}5v{JjX7lTC#k^grWzzNH#Voune7pNL9BEIu`!(TZ^S%?&
z;?AZOwQCnXT;Q_mqQr$ciF>{oZQ1+ou12l@Th>3-c?Cf!!qzShSL)^FWLT`_e<(FK
zM*X7ZjO8DDCME5?_G(2}f8+IEYo}y0ziyBJc-CvSOug2>=n$>b-CuwGkPesks;W!B
zAi8Kz1^3x^i#iW~(J5xQACTs;w!&+p<0L;7{kp7Jvjnwlg*hCh84vQTy|+JFSCuY%
zCC)!-R=lFl1M^qH2i>GRqJ@k*t$Q+RR=60?)>_ibp~qCKZ2P%3N`T+`Z%R()5+$Sm
zy{k(OtKQT2>sbHB{>Q;f4dxG=u9sX{y=f*Zzk$EaG&RXOMZta2fBwq9s64^eyYZBs
zGjHv(;8&LdE#CWb7a0hZB$T{ZJGH1*Zq~M0J0B*-TL|T_9%|k-IqH)CuYjkSO;xMz
z9#t_YHlBX4_QvJp-TItuf!PLTC4X-Gc)Cve?Bs{13q&64T1VSVsaIdYH1}*u*ZD+y
zt*Wn~Rp+@&j;h{sd2^)x^4EFnGeo_Ys=A+7IrQ;Bx9M@eOP)J!?vK(<eRn-~?U`xs
z6gP!;Zt7w<9nL$?*)!wZh4A>x#`Q-Rl>dLv^C{kV#k8#Ao4GrVrfi-z)vjoHg|5!g
zY2V-4sqSD=KflNAe(ISG+77L%^{)KAT=!bv@7w8c|KH-N{{Ienxg6*IQl6hvCCFRn
zEC1Q?@rq3%RwYa3nzZ|T-6r*-@nFXFkLE9KRut5}y)<o(^2d6klJ?z;g_U<~G+gfy
z*ywheYsD%vm!95Vb=e`mdGDDQ{%P%-ruSr5K=P-MD?2}4V7HoovGv!4oD=76|0;M_
zpLfUT+(Xls`=-fzvV|=1Ikrmn^oI=(3-Xt&6YP-7ILCEg{!UkVzU`L47>#c43%h0I
zYSrs>^Z75I^2mvA$+fC}c$LL?^F;qy2bsd&1l0dq@j&0<{DS<tzI$Hx1-%b_Wn3AT
z8fe{7!*+e?^Yxk@%AbNS8(k?}5WT`|l^FlU>bdo?=NMn8xSi!q<(TR9`Crr1-5(Z|
zecEt4^zGM$7w4|{JY7shsY++b%ASo6Q_R#iJKkzj+w$GMV(zmghT0!Pp3SVyp66(D
z+WOa{sr<c4Z02(7Q}k6`lgeXfo{x4l`^fw$!`poUe}~zNE%UA<?pgL+d)FG-0A|MY
zEAo3DyyulWex*L<Ygu<#x?X4h{io-I`mgnh|2Q%)NP}gk>iVXCCT8;A%cPmLrXEb#
zurM-;NAus`tx^1XpEK`F4PcYneJSR|nZvVpw4ZOi%eYExCWE6<(reT0w`V`#*iuz}
zsPNazOP*zaPOhK##OL>pw%R#A?Dd`<b@~&hxA)8JWl`}APA+@RmN*GYIOJb^xuJ5F
z#~K4C`Hlisa}}2NKY!o3$!xyIboue-x;^i97H3{x`=9kbPf!<@X%utt?gJAeOLOFT
zl(pfN5y9!x_cIpn)w<+0tM1^o?~mSH@yg9!y|y&!`!0P4S66|6l*t>~C-9!&Qdg8#
zbYN=HZO~b?;)2#9C(*4}cU=AU+WhjWx$kOomY=S^{o2M@f5FnXpG%+3SG4(FS@e0|
z^MB{w|DF5Udb)d$wEKtpiaq;vqqim>-gTl<+AL3GdFT9SgZkXEoUEWfAN>EHvUA+v
z|LMl^KM}X)ryjew{rb=2f6E*0*NQ&>{q%2q@1NxyP2y&$KfG+4)*o5k&lf-a!Rh4o
zCJwuPcekY}p7Z%*HzYjdD%@paoLQe#cH%R)*dBv=yM6m)gw%N><)k+0nbq65>YViQ
z<m&XjExk#vBst@R+D4Z9K3p@k{kS`CPnVcIOF+qwgY&+)q>$jYtmudnvvOxEZ)^GM
z{bIg@{hwW)b1D_gL=Vq0>Yd?uM(Nonr_SdcsYkq$lsC5CIM%I@)DfZ8I{)PKq&;;<
zESgl*1cW=?I~0<v;_UbQVog%~DD<)3YU7-U#_wyD!i2Ls%saLou}Wg@+thiZM>$vZ
zP)C7MQ^n*Pel9}Roj2=P_}RIi+n%$2Yku;*?|zy6r~jS)yZZQA>GGES(^F0uZA$<1
z`myzj{eg3Z=gs_Z?ntiiP0zN5P)6U$%FHVd@HYPc=y6B+|Ids^A`hp0S|H)bkj39p
zZD0Rv(`yx*DWB)s?{2nL)+v?JO<0zd%FCW%dt|D}o0_@5gF=!FPB3T`3Wr=O4dDBh
zrZu(NufkxpQMk@IFWUh9^`Ezy$Sh&D-I;MQ)a18TmFJ<~En9zVZolA{n69+qMZqVX
zS!eB?t*jRc-`7Yu@?@g?+Ry}+?1HU#bQf-RP`)T$|Mo$XYw^EN(_NQnaS91rA3Vu3
z;o+T}I*XNFGCKp$ZJFSDlXKyMMMZZ`W$j|jxtjJ|Q$%Oick%E4=a!T?s2^rswDr)#
zfMPcWHobif%i<l{xHFEmDr_nFa4g}{fwPPUYmaRD-m=_ick=a|`8#daRk`0k+PL0+
zQQ*mj3u{-LTl(3dK6ruV4*7rauU(|3I&x=eomXAGF#Eu>EtWSv#9!-PlbWV&vEt`<
zeNKIq?J5_WgryHX+rMd}?b^qW4ov@_u%mWO<PKG{pjBEQqt2Jj|9XL`_w1rmsTcnI
zHcND=iO|!H2+UYfJm;m{2Me!au9*jXckbWu@ucXlKR1^OI<3&zBIzSpKTlPh;Vh%c
zW8p1=xvqOw8MU*<O!0kwvg6^sM~8OSNo@;R_x8>uiSo2!?f_r0{<n!5WlVfqJLl@R
z6nA|WI-e@nYcZc~%94PE2@aVT!!_6Ee%;5^-7tIGjN3<A3+p~DQj$HP(dry{yZN5e
z!xi)SSWH^mgC-o1uPybxp^$rb`lkBuJ?ZtEuT(Gj8=(HLvSV(^zji6P-Fsti%;EE@
zGVE+wb2!5=@?+s_Uf!fAzNoEHThrop#Kp`BUo)*~Qcz@S+%BQMY2QlE?fE|^Lr&Ab
zJ!PY~mPCr$>RAis9&D_aNLv0-#jEfE&xr-6Z?M%Z7rC^trpR&HnVav;J3lGPmawf{
zR<BYWarSJ0YrX%jSqo+JPbB@Sd$4%=iARz}Cm3Q2Hv}yYZA^;ztheXX+oSvs)fRIo
zsw-XeDY+SONZ!xQ@JMp+^*=XXzp;5Z*Ttl9womcNB{s~5SGSw3S@)Z(?v}=#XNfxk
zRiZkcEn?Zy963|}$-HMAdA#C2=amB$RzIlsRjRkH|Nf%xnd6K2Wt-(WXCIxhEH=e1
zrSZ!Fp1iFZnX64gclB#2KJ?<dG-bw@UalKWpB1NODzCZHV`rA%v$S4Xku!bf@dci1
zX5>$qxPYy*nR}bPx{<r&QeB1%NhRACF^H&V*>Ej8HhId#Cu;ZnpL+kVoRPT0G-Yb}
zl<F;s9Fhj2rq}EL-aLOJ<l)g9(K3$3p90m|zF(WHyg;b#cxyq*?+sitaz5#9Y3!F%
zy(nzIxMBWG(V&O3rh2DcynOQWi39&T|5R6BIXCgS3jcrhjls31`>tMRvEO8SpJ)EI
zSz!%AS0Z1Tr1tTwSd`?g%6xU%r&D#uH(n}Q(e&@{+M~<(clpJ(pT1JR_H48N<vVSL
z3hx3lG?No9s%%=s>U{W&@y{ocQ_lRKQL|mkw3*TMVBB6GNnS3U-s^tiCYPG@^Gfb~
zG*}&3|L|C7_WXt66PADc^!kZC-?1Y`jjYaVYCGD+_O@@*`@LCji#NyhviUdO&AP17
zRrsdpkmRdBU%%VEt99QxgDrBSm`Qy|l<|!hSsLci(tHbNDkZNx$+t9Q=dHQU&mSMU
zAePa+rFGY#8S~Dj83x>WGV}9uBZJ4Q-zd9I|LkhZYRkHzGiq<n%|l<av+gZEn6%1h
zYH-4)X;xpZuI!OovS4D6z;WFW@motvd$`w>WzW1A5*VH(+p&vRZ$ZEZ^N#;#IZA34
zWz<hP|9^VA{Hh7nH9d>1iUhw`mc6)S`dYCf{M1B6wo|@&#b0B;Y+jMwv)BIp51+YA
zmJ2xfWTR@^|4F{9z5eBKY>V8R1g4#;;gxTs=VV+l-tn6M_U_4!*WK4Nb6(+FI9o!z
z^yvJzZpN+8Cbg+V@vu$()nMl@r*@Ec^^$w18t%5(*S}xnHE}1G&y0gnk*;>Sj8o49
zOexa1Ij4Q6^0J4&lAq1JRW(zxWqY5sj96&x9myBXzZQS%n)U6}=7i-tj%MtdAick1
zvDxvAbrk~tlTBXMgr}C6*mALaG@PcsenHM1tF0?Sf297X_I|125ulPT>+J2axVBeH
zQNLu1UAw5chu*V#yJJ2c4w5$68Lv%U6z%e~c=p~>d2-^p<^HP^Kb7+-|687M=c=;r
z?`;?OH`kqNpJe|%eRdw#-AYrVT?{5sdmWX0#fs}JJ|6vG{HXT#<J@IZcdC{<E!GZk
z7MmKk`pcFoDgL?lN^@A%pET`Iw`glyJMYJ~D~mt=y}&iM;M9%amz(Nij$ZZntG8Cc
zr||xNS3{}uZvPd}h9Bcv-G1lzS@~4!AO9QQu5{MmIJ~IV<MD5AzBo1)6RBQPAL~j{
zy(zL~|Mwm)6STRq^TfTUcSPpwZ<yV>d42Eav@h@8wH~fN^Dp&@$htY}swUbwl+{)I
zJ)#gG`}L<}#Pmw%oZ|wsjE=ni%Tr(bd8U1JtF6`>zpVP1^EgkLy6!ePDdvAL>{YMf
z#{JHDkL{)uJia{t9_vA^3zApWHeU_l3JuAgrfjckuB^Mu{f}O)a9{0<j6&J+FSn}o
z7sb1lAM;Ar%*@;-YZ@LgTj!m!!_2*^Rcv3XWWODL^Xkv9Wo-WJwmdw#l1|}mP3wNt
zA5j0%S6jGJ;OFMV#jE(`0{4nM;o57m)cV}C)=>L-kBb#$Y@h#`ChcQg5?W%?VY$y^
zy;tSb$BjH(3infVOs74%ykhFrv}Nhfm#o{*Y-=)$_xZlHFP6`F5&m$CxaB{tC<Ak~
z?cYTn-F2(G{wpT&<C*+RoKEGns&<X3KDI9xgukl)^dx`T@+S;SwYG&n$YWGX*H-<p
zXwAo5l@`WVZXwUzte74deHJ}_VRgOg%D73~yZEbEMVjp*9tG`snYQ6tv^4+Xo$43W
zT$rwAo;{hQpf#)7WvUOSPSi|4#>y+_z8%@V->yw=eQki3xjnCw*Zk}1KN>>+@hx#$
zf9k%_{2~U8o%MIZPB*OmG~w>$ZxdHM+_PHxaUuKn_m(1t+0y2Uk-5{hT<T3Ij94Xg
z?|tEQrqH)KXVMpV#D^qBoH^QA;?>Nia%Hw{=kopXF2c7n96fk`H*L^ducdCQZfw2Y
zX!*^@Yx87}9bRRa`u_K|-+pzfAO19&wEC@@{(P<1fqB!C^HN#l>l<zdF~#i=xw&WW
zrI$NOZsyn(FT44~%&Cr3?$T7(R;~#_k*1q=*?r!5?B1QeyCo)X&fM8iR-RH8*Y`@y
z>i2csm*<a!Ik#Spy51|+b*uaR3dJs=3WsId2W3-}<1d}ew-$I?!!WO%??Ka<st#-6
z60N;Xv$Z3)vTM9OcZrWpC&8pXTxrtXpY6ws`+IHw8yh|OXSA26U-j05(Ce3e?|<(U
z9BWZ$>iuA+Qql#xj^DM`a>d<qeyYt4<PKow{bm)OfA;3C?hEceAI(aBso`<L!~4?C
z&wcIAHZl{QX!G<|E{%F)Vb!@%VP3Uo%kw#p7JZqsHB+YZY}g&9Fdc=(TR-I-zFyC)
z@!TxnYg#5B^U0g*Uy9yb-5$R3|MbvPFP{AT8F=*OjL+B4HSRna^uFT8s++BL|Lx_M
zCZ)ftTT{RG;H!iMhaPUddh2y{fWVw(dT(Ffb2;v?$3)Tb-sFIJteq1kYWq%Gs&!~V
zht$O=?kQHeXP1VqQ#23oOWrq&F|>1E#NMuK;of>V>8}gqbgrJ8Y`R@4Z+q+)nU^+K
z*+bTD)|lD&A|h{*O_=u8lZw;3vV33teZ+Wl@inCnin@6})Sig`+fw$SG*8HU;_PFF
z3!7Kl9s6b?>Fc`rrRj}%72G=t*Sn_8f8qYv&VA4K^Vf22H{T9;CQwzT;<uCkZ<n$8
zV!elVSCof8Qm((LEtZ}(zspQhQOxLQSI-`iqq74(7-&wud@pD1dW**g4SHu<vGE+W
z(6yOx()IW8D~->3&vspW!nx&c#GP&H<(mXQ3Rg+B8XVsD(?55y*7T$E4xZYOdCzG+
z*ZMU%@qND^nswY*Wi#VVFI!fent8N+PwPRJ@QBx^cAcu8-Ke$tYJIol1*eU1``SKt
zeJS$U@bEiJ^~SSzGVHEixm~t{U+aNKVQyd8@*wAD9$!PZTmP<0F8eD`m3(6U)J2g_
zJFItGosxUzvB8mh%FU=-ch{~v{Gh=rquFYwTe3!jlh#Vt=PSO3$-eD>Rns<mYrUfm
z@6A-ndok;e<nCBzv%)r<<F`V5{lrNscjt?zdmNseZ?UA>%Ue6<!LpcDZOosJEPDI-
z!erIA60cbw-~9IY-n8uxe{^h(mvox_!Ta&O)&FuXIv1uj?hDX8+uPOId$3mj`mHk!
zqCU@7d9R51a#Z8};<_t+%Vuf2*DQ65(_DJlVRBr|lmoW9zhdQoPN->q{lHzWcV|m(
zJtM2x|6_-^_u2aibLDRHQ@Y>7ZrFP8Y0ZZdr&lDFBp3(x3hfqJf4QUEw0cLXQtr39
zylbx=R9Eg@%d_Ry?*7G`KUnYaiC($c^6bY23%?oGN-NV0!e_+3`^<YbBFJoWSnF$-
z_!VdGoBN6}?p}HH?{D^(d@oj5+=$Z4JY&am_ri<%wK-o(EYCmMX2NC0vG#jr?F-5I
z54g9<-W4y)+%<Vg(9D)&cb&8KbV8*?7c5=!G3NT0g38~DQdU~k{P!2LM6c2FX1x-i
zF1$-={>^i&G7^j->}9i;?)ulfPRk}X{FcdKwZNb?Cl|BmauzSWU6>qOk$7JB%d6Wj
z(%ySG^G;%^wXNr9e({R+jbE=lx3-nv0`UXxI~UZy*Wl^(%)T_;^JDi~zC}WoUh1b~
zr^~j-Cbd5+5N0mjCboL{A6<i~^2PCDGgqIs`oIvga@CZJHy51N)w^}jwYy|e$h(UL
z3(TD6&u(ls>tDO;W!s89S6{W6y_(FcR+{B$bRoguSq1MmA$QIt^^Gp^0W-p;EIoHI
z>5W|JJT1;|0h{xl$}Hx0T)leb?cJZ3ER(y}dam)8V^)RHPIH#UCBJI#Rk{{Tid`;J
zci2zX_WlF*=c~^iVcQ-v<rwRm=V><lAt@g}O0nHKwd>Y9i&=Bt26*!x*?Q#M?X$io
zYYO%(6%`A=s+ljo?h;qABO`NbJzHsF+98>vdL7H=?VVxd@!g?%?#(II>0iB9e{@;A
zDQmS&=!J&(pRCTkH|n~RcxP|>_QuwKG3N(Pp(}TnGI5`}xm9e-mB=iWmz|Ff9c2{G
zVH8$OxOBng{*rrIk3Y=68IiZ0g@s4rteEh>sH~FPOlq4;`~UKrvIty+4v0)ndLcep
zYQ9#zk+~W2Fi2}8XN>UmZ}TK(_=pD1;N#7myD)Tj#?~vhvcyG?#ugroeSJviCZ_<0
zz_-u`Dku0hISa4^G9F#3w<1*AE_rQe^VYAW!M|6nzjgiF-Aw(zd;gzhT6ns;ep;jT
z&f@ox`##TouO@WrT;C)Q7605B`wNc>)xYob-n(bY!&5IO?-6A*Txb`#Z2CQs`3sMv
zt3H~MsH88-y8GYv4`1Vj>dtPKcMhDyq+Yc2pYf@Zy|%YX=DO<T?K?MRuZz=uaUoIj
z)J?m8hxn(u)Pw{$By71YQvUtAy06mp?RRP(-+ks&7X9Y2_@bWBR+gPVTYm4>o%hD{
zX6{U*`e}D~imE*&-#uH+@rCp5yJdIYZHwA?FZb-K%6qHth*jvvZ%(>;dh-8-HKjXz
zBt@SId*u{Y`5DctI$3D-bz2IX>FhX_$gJnN+Z%7W<SyG5WaraSdxfJ*%FR=AR#lUf
zU+)5$6%(f@n|4Y0S_YmI@wW9WoWlK8<f)gfv#s~XE1&DHL}baB&Z}yynpo92%fWYv
zTHxfB;hN>IOkb5|X?<n;s%F|-HM?s1EYHe-Vh#T+J=6YK{<;gqg1T26y%Kb)JIYOW
zd02q<%FruWS-e}PMY*qCZWbWj8Twvu_qKrUwm_j%eLi}V&rEybVJEk(^v1o!?@RkG
zd0t}3Y@a(fcGln1_1{{z7|+$7d@}7MSE~8U)-ylVm)TFWule%fkKkiBmOhKu4;~fd
zJef1Gw@>Ie_u`Pndj0cEcAd!Fak*x>iTd8pBF|&b*>7C<=BfJf0>2o$?|Z$QPM=)<
zXa29CcWUbkr|vYfd;6i}(dGHJi))@ePoI6v<M@-lmk;i{zU^yRQNPmle0>Bbm%|j1
zTBUgpOT^8@mpHQJ+*%kN*JeLCThz3&Dx)RpLYZOejmg=eFApCIS+&7n@2ah#>+_$=
zUQ9N%a=a$-^~dMqK_a?!XWn+N>FNtrWBoL>VzybB_+74bxeG35YfEks`&s;Z>h7e)
z%EC=2PDht!<@!kP*w(ZzF#5EG-~OihC*c9-M0ZSbubcb*`@DC5Xa3owC&DFizHs{=
z`x`sdE@bPS-{*7oMO5jdGym>o+j#xzOYU9%b>q~JH7Y4bQdJ+>?ms)_y~o+JZ8~bp
zqAnjWcMQyRl+5~_+E<f4a~%WM%*lW43*3(G<jrQDR#_z%QT8k4xutUde@(IC=toIL
zmmk-EZQq^!)phCBiFGzs7vj(4ZoTu?F6eeZNYLU>4`ugW*?&b~y=_m>#cWyjt1De2
ztv_n_hrCGL!OPB_FJn{|V|%GIE535$x;Z%!6XO<h9gF^Wc?XBM@~7>w@j=0cJI>TC
z7WvzCu6Tt+zN<gG`|`|56&|`i+9zN2yb3HipAj9nvtD4@p(749Y^U!&o@~5HvC&iO
zs>wEGBYDw@CLX#gd;Ys<{aO&fr)BIN)b(*g@u&K^y83rQdA_dOeKobS#_Gw_qbmD1
zdClvW_<dLNs#a-Ik;MG|nIGlVM4!JfI$#<&S4y*Cm(6OW&&RKRDqJ1BX_Aq{TdBzT
zQ75N2gxwDKc$fWCz08>#?$ffre4Q$~wuUe1-THfTS2QaXtX-pjTi2p)y_@#$3tmb7
zIrBq&ROgjyDzqNA5qe?tBIrkRQxA*IiJ+7F|IH21Q!rW-d~p9}ZmZKLZH}Bibz*;$
zvfMhg#px;;%0<%`)o(8p|I3$uOH5Qq;F3he6#dqk+(xs=g<YTg{m$2So^FzG3tqbN
z=J(H$D$0Q?Ur(MRyxi;P21ns_m$vDyzcfwvz@|UOL0_JVzDw}%UNGNC<wE}YqW=e{
z?fuO@Nu}+N(KO@3I$TC3H&_1HeE-=AW8qH>MiQa1NxY4bg{F-+(^=A7L!%m!jv1a+
zcxT|zC+*8Ac6Av`b+4;`Vzp2I;rewIhTnb(+PA(D{Hy<@OYHOJQx-OPoM~z2BDy3@
z_-y}QJpB5){j84TpZXF6ma;wZV4CF{7IppH)^<lBdsm%>+6z@@ggb{7mEF2_a&~#k
zGqtCx%N%qj2d&6^+VA{*UYF6b`bQ#>Nfs>Z+Yjk6ie8*ry&%?L?aY({yT1jK1y}ae
z=ggO=oRK~4YE#_8h78gE&@W%_-QN4Q`rOx=0?B=e7e0vRC#ugYJ$(57yr0Vs^xfO0
zzjspl{<Zn*vcwnIREJj;mL6X?&G^8befuhBF>Kx&t`ptQ{2`{YC~F$$x`WjVCb^ft
z{C4TlU#3o;Q@=PWrRVh9#QZ3@e0cFOy~k<F))R&5O*8b^(+}(Izg@bd^nd1$2|G<c
z8!h|DabCB$;#wb9X3zbzlPk}D{d$%u<h{m?z#Zk^RW;b2y$WpI&(LYTjlHeSU9;G^
zDE!@pCypA2<2-ot6r;;8+sn<|U3gSVzg$srS>vPH*nN98h?MLKYSZ;%&HZ<7*^Xl$
zPGtCAn8KbtQMkV9TX+6`Q`VR4%|CQHf1iz8IiuOE_^p@6ljjTMU(~)-b*#~lWsR&n
znI+ThT3KcEq-hqXuE)D46Z8HQSt&Lh*(14%Wy_3pS#96Gad-$!`(H43U5+B>fzP)s
zWxN&#l$^gO(jUcK)%)b|j<X#`Jvj>`I`{09zgOAN{(0ep&B@t3_07{3gv@*yIGLB}
zb)R&`x1xe5w*?KaQ=~fXoDX+=cy7|9*wEbH_RP<&UHs{tem>qV_CxE}tA(-F<znFu
zs+X6o3jCPkS(1`;KssK}>9D}>AJQtKGDpRdoF+5wO)Rkcsw%WEq-JKOkyGon0uQUF
zddq&U-0*GhnKe;g9@($|;wW2xC1v{3^z_u_4qS)jx>j}O<*r?OzxdYwH!gp45;fiT
zaHcO7<d*yN#x&*o3%(+Ow5Nsd^*(<467%z-{rOm%!oR;-ry5rn^YLVu9&9X}DHu9|
z`#0CY26gsY?(>z`zFzw($IATq=9b$jM<?d*`z^-5Uh(C(E?J)HT)#JqrW$n5EU7;)
zyHjC$_4j`VcQ5A4`};~)&gS;JjlW*3oSfc&cTZ*6XSRhx@(-p}Rr)`Ve4lyx+;=Ix
z`Fm@Bf11_$?2vo@jV}4W&(B}&_rLLXrr?@6CLh+^uCLt2aR1>sSJ}Hy*7JOSuDG${
z@X<RW|5s$B7KQmasjUq3UAipn{|n|L0?VSVmT#{2zoeO`Qle>97+bew&&Tg2ljMJB
zTP+N6*nes1+?LfJTz31hF8TN)+{)Ln;?07Ui}o)smu=A#j(9J5L_AqlH)%)68D$kg
zPDdL##cNB-k2<jIXlr7-^mn6keXotiB`<dS%e$k_p5PIG_3q|k&62shYb%btj}!SI
z!{mDAlIq;$6Y918b1Yt3`s&aLCspS%7cb_h?1FvSE*Fnob^EqrM#H_Q51y^+o);?q
zx_@qy_nEUx=RZue>03Ja(3;b)eurw^=3qSQru^&h?(Hp{E4pt>ZFr>n&r(U$?PAXT
z=Ud|*I@!K^u#IKyj8l&<dUVEQTzmI%o#w=**4VlHk{3Vji*)-IZCKBFR^e3>i#lgg
z*%P<)q+hLPSQ6rD*#lo#emOK(e!tj_<If*{dB)ZM=f<CwvIHx~c<lv-M%tb4PIU0z
z*j66BQ{Nz>Zz;>M&mWmgc={D>r|tWF)c(wzl|~+U(t(x>ABvQ;Ij`T}$nmK1jeoY%
z+N*K5*LQ8c@-J_N*aZ9DnEi@u^**9$I}>J_mnmGV2o1TreB#~6H%*zBSE=*~^JeTl
z_|sas$gE7_y2MSDjSmdI_fDM<TKGq44|l6#dL+Y<vRQAQy^oIX=6$fyILd#sbl|Zn
zE549v)ALV!TRN5H^Izp0lPh=DcNz4vn4K+Y7N5WQlHtw!=NoEx&-M3y@8x>TsQkNr
z^$f*j#mwCnH^nmFhPU!2ZaeubFDc9YklGXX&BeZ)Nj`2uyUdP%-`A7sGwsuwTPbTA
zVkhXIl1p0I$)YCF#H(@t!JSN(t8Ukv&$vp?>C~%y<FPqUY_|XGTsx2Dd*40ZDkJgj
zh)=)##fmRM_xarx%2p+>ns;0B9!F}uN488#T76d2pId*tnLVQ1`;MM}&|2}*Kf+Jr
zrH)L_%GHTXWzIWq3MKtDk$ipaLdx5ImFpU19*1SMSJiF#*=_ye;JRPQ`?J>MwpgvP
zH9LDHS#`SnB1<(!g?n3mZ8>2ywZ!FN*#FZeN1WCKt@Z5k<Zl!CaMAV38=W)vIYWC^
zDz_d#)~36se$(6I`tSDsx7GK{nl{s_lhs)1rTBldMIy@5>dR&y2;%2u5irbRnkEu>
zRoQs9l;14Yy2EKP)%&$>*a+Q_xy&0UW7)y<vC?^|W6@S|-q*DbQgM;HPd@O73prV4
z9=$it^SG195{*3{Z7dy*L`N?4k(;~Ke7DxpWWifX{`n_Ye5hwmTbjB*?S}4`)hQF1
zTZ(QA*=|~<@GCo&HSp)krHR)Ime|-YRw>b+;*jf@nVWdjd_`#VsV~3(eRRwYn)Ckq
zqMds=_bz#MP$c+~qWv|oOTYfTt=#fU=tYwK0sn5J%1Z|`IvCULU69n;nw#RgQqwQ1
zaQC!z@mxDgS4(VTu)V8)yZ-5QhTR9J#@+~8{8sG9o~oM(X`NfF)0<Yi#x2S#HID0>
ze$?fG^N!tiOuFu;rDk1JtPA60*FLD6>-?&1$BOWWz5!R4%XwR}&OcnagGu~UU-+Ec
z;Z@A<9EyXEdM!)gKGSTPmNqxpL6YrcxtgVdsOck~ch>#YKRD%9|6jC7_vnlIq{)(k
z8GMNWCXaq?|K1uImACf%q3|CcH6FA7dU&u>+V|OdB~f>?g=bR#w|-o<@#2n)J5Hb2
zwX@Tge`jstgoEi07Ef9Ya<a10@*ILhWUS8}R@FF_;c;2rWW{QUvVF%dKI;p1SyF5H
znD3%y#XotcGrI!C7E}g^{WQN*a$3frEVzD^Wq#I^^2zJk)iQc>dYUsnB;WXxyMcje
zHnX(z?af(@KckD^2Qu#O{dY3=+sC@z`TaHPFO~1!Yd+gGWfJ4w^a*qJwS9}9EOgW*
z%D?>3#0P)7)?HX+{@P~slP;tEdq3C}|M{C7Ua8U?8_eaztt7Ruq(LQu+cQJK(%9Bu
zU()S)^)p*kRE*R71P|=KyI<w+g!A*(NY84{{KS3ospYR3uUbxVEYiH57ybC)Z-!~p
zQflXi&klE=;mR2Jktr>;b3xAY(+jQkZ~6Q;!1)%Z!l|E=^Y=+Em|QQ}KRI9X;M(4p
z*q0Zcta*DV=ca=4Jg3FKLua>Tl=Um>c$?gOaewpj&g6B{^?^!};r1sC^_&Bm-e1z!
zi``!K_R>6em!@cqBR!MupWo&GSpEI}e=jcnT`zEa@o(mk;ALXfJd>gfL$$>Cr`)!%
z3iO<(oGJY5QQs5OSD80&$9#VAChzOqCvyHJ9`|mgTwVECXT}ZQT$cHNMVJ2Ly}+~X
z>;;CUu_s*DOxXVRAM<Uo`k7{im)|;wuN7Q$txb<>)@(tiZzpnkE#wQdA2C;+&08(*
zJY##C+vAUt)i&|E(k)7kbJrfYSYyOIcjNkvLZ?a&>#s|RSG{ST+3b4vap(RWi#oq7
zxOB`rbMvWxxs5t2O!m%o_ts^qdvH^vsOtZ0`R}KhyzNew6z4?wMEn0aE9ze_V-%OQ
zH0sSQb-}}NKjqsm<s3F*{&nGjk6(Y5@Imt}v)6b(5}hz_{<g`ETsP+)HUBW<`>}&(
zI&RGf+b1^bbSe9Sh}CN^OwC-qP-ez?{``2|9S=(bE2bP+c5dIUCx-RXe%r#P7_4!x
z%_u)tm@v!t;PH7G66{$W-};kpbRDSpzbB<WA?(My_W}=0q^@;I=sKTq+{>n7_<3R<
zi?(oUQO1)g?>EZ+m-~^$G=*nY`p5chyg}{1KEJ5wFk;-=me2kAl8oY0h1xItM}%~r
z>`OSg=jQGAbDpd}buQkb@Z)1{?t2e>Z^xK<*cmQ*&>mzc5g60F%*B@_R%nU)@%*pe
zs#DEs@724<&%O2AI5L?(<hj_Br_VD#E5wS&t<PjywsqUWo%uRB$3BNA{PTVD;Q{Lx
zm8!b;%~{zF=V#Uw+)Mw|=qs}NmhRC<+RrZ5Z<6(2U@rebvqPapp*B+}jnz!p`d+mp
z?_+=G?REa#oQs4W@qIQwvqbyB$_%UH+p6>Ht|vb<I(+?py#&v7{W($lZ@m$!mb4U@
z_Ddx6j?|;6Y?nS=N=n+E<HOx(Y4E(_&~hFtzw56S3R~*@5G$^@(jtCxWBQTBg)bsa
zo}IYvdx*zm-r=VuPmhcHNj=arIj4Om;hl&rn@JNxA?L}{MITwdZ_k`yP`vBBO5I}@
zZ_ybGz6*T!kx<$tt-GuK{t*q~0DdV$mUqg17pM14FZ=vcarfk`hL!hYw@zm;duKGO
z?&puxEx$GuzgAsZcvAIAZq9C(bJ_k?9Zwe-Ul+T&X<mOru4LoHm#tmLz8>(IVOzb5
zK{2)Q>qMU4Hd80g5n}Y>&<~%cZuI78h<xY|w;Lz+^sRW>p?d#Hd;I4QSJ%|bZJ(QX
z>*mgf){<pwj)z(BF->_c{*r6e<y({am_C0v*1MkN#{4_ef}+FS3f5_dTwO9rZ{hm2
zSGjMT?u~xFxm5T3v>@qiW%DhIm;6pS|1dYZwLbaC&#GU0PHg55j-OHeV*x`fJKx-E
zM(HotPn6x0D|SFEL!jce<iQjFQkdDh7RuM>TKp2Tmp1#kbg5y+$M^>^Ppy~m`fuEt
z81HnK{}<mJn=r}EO~+RyNX|}HZsz>bFilx<Pn$-%NXLruo;R)+k84@PJDBSpIC7pp
zaJtZ)=J^svb@z*WlJ9;jPP!Yv$35GT!&gA*rE7QRI_<5y#QYwAJfZF1E;C_n?e4Q#
zHYcC?)^qp9A3T3^al6?1={LUF-dcal=tx(1j&0WI(qGrqPssIemlr8`(dn4Z-f4H`
zm1>#P3VWN>6HR`9wcePd{CT;6P34`AvBmsXu3KKV+bUk0Ff~Nr&|;BDWrf|>e<XbH
z?cwRNUa*Ek{fO8cQK^F)=BI9TaaJ-=6tlZ_IF9lA38#?yYb7<gnv9!z8f;SEbXvFf
z%dXMyjXR&*tCPE+Yu(?xOaEsi85c7Iw*S*!bYt~e%c*ty)#uOq&#1BO<^R?xt?uWg
z0&P1tUpjKNZ?ar6oAKm0g(;7|Bq%Ks{QH2h=ux_8;k&qETid<s?*4vtX=(O#J>9vd
ztRHE7Zu~OmYMs-xPy6c=YQ8-@C=u{~pFq~X)pw;|{=dk0Lp|3vL7~9h<I05Rwck_?
zeV6Q9_QTouM|k4dTPrk{g&vFB`oJ}5v5E4#nWildPUTc@etTZ<hvLb#(fpNj>%HAX
z4Sc_vR{I1p9X`%xa^^wJ-G);<OO$^ort^J~WEZLa6ZMz-`BZ(4=rAt!8TD4Rzm@;#
zJ!#K)T&n2XoPH**yQ-({&6GJh_oeI?#Y@^4r$sGbm|XAm!|J6^RXo?i9Sp8FLhf<@
zd39AjE&Qzp|Mpc!HI2+J>xg?VRNKGhYsd%o0QW`4n;*){K4TGbk`jI06K6P!>ENwS
z>51Ii^<^&o^ziUK-JKL+c->sViSbN*j>T;a1=Cqs)#U>Idwrwt$#rx+zdtiCo4NjY
zp~<oyNBPN*f5skO>c6IT<MAoavyVBunU!$(<o|OGzvH*r{r=p^D`s$3fBUfF;rW=3
z(l4v0ANudND<wTOSoh^5)`wLqSdQINmtB2DY2hL@!zis+N1m^p)V)#nf=B;R@#BlS
zzxCETb98RZT#+Vq^P#?$NYx7V>s1$=UDY=^$Df$JwlqC*zt<VH=i!%srL{@sRsXB4
zGJdz^{NmzSLe-bPsm(jN?iL@{jfI{u@?YKZqWqXF&*eGAetXaVvg2@O_8+NM?jL>=
z7nz0guWL_CuYCG)+4?O{cSX5*X9ssRy?*}Y)&}E^()C#j1iN<WE!clrIyXc?usq_Y
zpX1|;CuBV@M*QZBmX`alQSwzw>w4WC+3~hJ?2`|ds;`W;5$iwl?%VD5g2iW?_IY&(
z+PQvtK4V+BJ5K>qawdPD#kDW<4w^N8PE?jo?5wrOsL)wzy3ASXNyg(<#$83T7D!!t
z%=ziaS;Ov4i#$x~i^@{3{!q$NtqP3GEYjJpvVV)ns+srg=dSHudsgdAuA;xP`5$4+
zi`knQ71Te?{Zio@kn-i*oJmoY_wLQ`5;YLq_%V?w`u+CuZ2te6U%r^eIZi%u^;1@n
zk;av&Z*_DVrB<(-ILBm>nN#A$_MM-%eLuuh*vS*?cwDR8(J*93nM=K+P5=I_GK=qR
zmR<ZsBeZS(gXB)n35+M#-JZRm&3%8Q=#LWSSNocFtzD~8!@S+x$-CjvqGr7d#xF`G
z3!i+MHO+YK1?L*m-me#0=Up;<I&F&zhvx&%*CE}96LgOl&G6}9^i5c#m0MjVVZixN
zz$M6;#dbP-w8AYLMX_stb=RoBs%Hyf2u^it`^tRahMlIB_?f?-rsaHiyz&0MNxXG3
z-`tZgRtgKM2*&R5l@8gscM`+8gE>jEUvx5KuRmd2na17ZJnJ)uMNH8_`H(bjlMUZ`
zihL#3F!xrjVXFTVqBnVw$^5CSTEc!<{ExWIp6gP6b!K=@!>ih<y{fXUxkplrdoDS7
zxt<R)*=!W={rT|QFm2g+8buO(e9AnBdzGzbZ++q&zF_TX{j!1=I{Me2P0!l8^;S^f
zjKdyvS1&*Q|M|&(#u|&&l9L->3NwPQDVhBAxCDDS4>$M6vdf!UPB<{KytJ=s0m~bM
z7JW|MdS8P5dkKH}*P?5iuiOt}WT}d8jRwn`OcYS5H!?;!S|c{#VBTQ`p1q$%?aF2?
zo8Whg)AiIP*GCibq}G<HJxKB3RdC|_`I}Yh>jq}Gy1Mh<iZ6Z;-md2KQFM-wM4~|$
z`<%N%B2N8_H!iVhGShk&*_SnGo`|pd-$*|W*YCmmyMOI`X%%;A`s<~-_Z=P=ERPAR
z?=QGhTqpEertnc&!2t<IjeXnuig~nUvfftJc-=_9AkicHuprmP?Z~6Qyy{y7HCC>=
zvu@A(C3BA5^lo*$CCIsW3)8i2qK>QoUoCUBUlA|KQT_MEj465XkKSbjsn+vXXK^OZ
zp4~q|cIm@oj~@Ho`?=)Qd;U3QxgO9dq14HpFS!}bzyVeGP=ft4Z+Qt<*_F)`9)>cq
z9Ng7#92`*Q6F~uGYKS~(6dT~1-=ZL}_p|o19ln=4wq@?>G<=!mW1C|iR$lEUq3g-o
z^yXlFyu;>pxrBQ>pX228HD|91yyW;P(=`9$L4~OsEMBjE%3<3VG|_}vap&z_6`wmL
zCrxoryLYo?Le2KOPhY>?XEQJ8SHZhiUnE)hUc1$AmuSg(J$qGbT6^$fHr`4<hDnpf
z=gf^w_^wsbU!M3aku_?i+l{%W&HQeyHr#Kqu*ktP&}C=I)+1XF+%)K$wo=g3FO#t{
zR-9$(kMG~M82xJeZ{Ypu&C&dzSKY^di@s;JTl3?=$7Ios`i}X@Y)=Ia>N3`Cy;j|A
zc{HBAIq0FT7uRCngrlF?S8|p(gTn-T9eBMd>cK3oeX$<Fi89CTm#5FZZ1y~D@gf^*
z^MfvP-CfU|P!dmVoGKqNeQjmY;%z5w%9iasli~C8v7qYK&bK>me^GM_5QzO!Df}e2
zBr%SqHsHe5|7Wgun+5LrdGPar&yN=#$xxXRbbIQ&d;8Y)NyVp^H%I8qVy^eO>-FsY
z>@SC1?47=9HJ>Z~#h5Ir_+<U!6Ysw%?GF>F+`{18K3PI@D^I^)XVT<w5$W2C2PZ~k
zC}?ocbJ%*}!mV3D+9q8|s|&1jjyf^cyS(^v+EMe(bnb`KE(r6ss8qUqn8R`E(}Rz{
zs$2v2{QEG$TuRy^GFDqd(Nd$t+d1e>{kALmb9&uU9xk%i;k2H=*ZPa=;pW4eM1-vt
z{|(Y{;&^JarEQC--n2<ZNvbx6k{qgTMZJ5LsD9aF7r9P8<<+UMez*U79v3v*7Bq5Q
zUVQpY<GI;4SR>eP{1dr-v9Hg)+kkgfs@_typPU&M<ugO$QrilTIdX5&HMpIf_Upi#
z+2Zxj4jNf6KDYD#?vH+s|9C>hYxcEoi!+IJs{VYObAw9o$|cfjiCV^=ZhxL;$~d`U
z?yiI9HgG-LW6c+Akm-4DN!riKAKzZuhV64YtW>liQS-dL-L|Il#Xp=D@6tT}vee?$
zq0nM0=2>FxEwk4?nq|o=>DpM)l%AclRz;BA^`yhC-iX!|KZlsh3X`94YuQY3&hOiI
z@_J#Vd|jdL+sJM8Gt0xh^Zu&8E`Iy#_?_GKXOgS;eR{a&UG%XNhjOl+S*JhEMl<^U
z^xBNA>$1b7<I{33u35Tc=YRRt4;dIHE3yeQ85n@`orwu*zB`!JVj!^hx%RUiOGSLe
zqPUbqjvhU{ZRx9pdyl4UX*A_Dl>760mPYjp#ly2t&OTl}S)?>F`>Ep35;v0<i2+eo
zbIv|uaq3@usl{l5*N?^Bp+0veE!k1@`<!~qlC0g{e?LdW%+8->SDNcO-|^9g;9K=q
zl{PG1e>!cht>0ETo)k$&k9}rGZ|)ZL%fIyHhd`RV-=g5Emf&!c!b>{W?iDz_RaC8%
zd-~#?r$p!Gr%bZfl_%-=7N1z9rM}|n{{5f#UF3f>eRuOoiPWEM=dJ5*8dUSnn5L5@
z^Jalq(f#D^qdU*~+xYoN`Dpfj{~eipIIN~#omstz1r!>L29pK7OeUXss#VYFsC_|U
z>WNo}uOvtBoVz=A-tY3xS$Y57UCE8SU2-m9$^r$;Ut!nUo9tS??B#Iju=}=hcjdR|
z(>{K((?8G5Z}Xm6K*W`S;n=x-|JI#mer~m^I^RTy_2|35cgsI0?~hRlS2kixS?zXg
z>nBZ-+q;|o8D^{!WSQY7vSH1h2G`@EF7@YDE%-RkrG#Nh=)AayTLnKPCzbtvUnSFX
z+VQf8wT*?-?zwtx3bS%qE?#l$W&2mSr)&jZeok)g%Hy*+7K!eE5m@WYr+;s)mFLxU
zlLYrnmnxd<!?1qqZi%!lYZo@AM$SI`czfWM&rY$n=XObo*Y$px{6)gDr#vW*?R{Z|
z$DbFv^|vp+Twt^K`;~|ab5oy7ai)939JhGPomDS<rb(kIOQ2!Fst<f$P6Q^~X|uY1
z2%Wa&r<7*I#!0O^V;I=hw%^{Bz_2MtY+Xce(U+gIVrDW=dcQU7)}-6oKTKl29~5}9
zqtfrZ=<=y-N59k-8LIg>d$)AEtTEVPvfD&??n@)>8%r<LU%8^g6MaZiuUB;egL#<h
zmu|~7H@c5)GCp~H<`FHiX>TT-{8r%Bp}IhIuGjLl2F5!p?CZW}^4yB|xUsI%a%N0}
zWNn+b>xN8;<}W*%w$1EiPdusQWhVIKy~lj*IIHrS^M}q|Xvn{?^nd6&?!N!^j`yzL
z-BY_)vglW*NKdlojD}3^lUv`e-7bH>{?~@xKh-u1J+E{WsIXYi7LxAQ!SzhS{&@fK
zsahMKMZZ7ac}GUR@fW+yoDEKS&;P8B{&o28;z?oLsz0xPe(PW2b#-yl8kXFXl6|T?
zs(TiO=m>frO>K6(Ym|BZi+Jf$*2$oB$7BF*CKwwVq2$7#(|OGX0((A-+AVA6y6qsO
z(jww9(c;U(NgjKJHZSow8qp^6>HFQSnS8bl#}B`G^Pn{1+VLoUZf^TGOQa$q>|dNa
zWOH{7Q(5Ed1<Z<(<||U~?%XaFE!^@nJNw=(!H9~c^^4{@?#VDMZQf@$-+$_j`b~UQ
z>#gqc8ti=cI=OhhxJ33{f1T4z#}4_M%oVRrpY3cO`=E12`Rztm{cV=hdy{9)HncZr
zij&~~bmu0gJooKGIZ>?Ju7-0MohzOe8Y<WD?q98N_Q|E;_t(0vbkLlB+{9gH<r)XB
z!Y3PDbmq2sKYGfy@k!H{qW3>-A6`j*wD?qXVoZ~c@0_?v{=2?z6?~*rCKaRcWR}{$
z)7$>F>ja93-rIR()r?6hcLWWOdTJCss#d>}?A>+upkT+|o!b{5UU1TuZF%0cM}@mS
z?sB|1lTS*{{D4o}sym;#Pu!TN2MJ|x8^hSh93_+|fkWB#`#&!I$*xD06NESwRTWgk
zYFDVpJG@bJ<vM1RGI9U<<IbC3Fj?%IXT9%}z!cxBFA^UfoIW>&oBKWcTAeeO4|_cb
z-@!Y})iAs{=GxTy(;JO-H11n}zSw(!`NAi=rkdSzUV9X<+UCxi&sJZtXWi^owdc5d
zdf%zfd*1W;!R@cJ#D71Ty?EBT4X$r5Yi(%W_wnq~oV}OqdUhV>sCuZV&2?XIkx5aI
z!EC>#w_kW8<l0!zzuuLw;Oc%`$G&X+daKi)o;=Vxe4$oGzO%nC_)_qd%fcTycPg!$
zkey_e{<h-B>-}z>%Hbl*_g&g3{4K1nys2fca9P}febypETT~=l9le9B{G5fnY%JXx
zt1QxXI&?2M!=%e(oSq^mVdL!Ww%lUbktu@uoa{emEv|`pz3!&}ZGM6GRTn<|QaqD#
z;pzN%rN0Zz!2xUtO2(UazEou7u{6?m%PcA`Q7|_#oh)c9gMPf++33vR+b6{S{;O-<
z#~Z@+byaSbRw$d36BFm*Nxh4fiR@<F&(Y~oH0|ft;ymw7s*!4KDyG7x!o1h+J8ii=
z|9+mwlLB`Q^+V+^JWk4L$~=9zNJf^!y{hm0Qe|fK3#TSd6s|fIc&C%;eBdQPrny=L
zE%hN4GLDm;TT5*!5wVi`YnQj>eTTw?zUPkaD`aJ@ls+lDKmM!nN%qpQh5VCL-Ip&f
z<n^%cd3fk!LfeE2K5Ld1hgK2A@;w~kFFqQ^IqmDO6Me*G8Fje8X#QgPPc^%~KWJ}~
zv5=Z%bD}@N<|k|UAAvs28(a()d;8=RmkJleFmI|Cy>3v_&^1ZL`>|98`#cR+>BNnf
zWXv4<*z#IB*eenw13t<)ooS!F!Qtltu8LI-KN!TqPkgT}IViJ7j?;llrnQXefo6d;
zgTH*o;e6SH&Ocr<hO$>wSqb@Z$S5mtFxM_{Z~0ZHF~{SQ==XvX$HgCt7CaT$P{*+O
zfddB%YkO<G%%8`L7Wx!KxTQT3V)SHGa86>>3Uzs`DYnAdY5InR4-Vv+m`w4kVt8A}
z@!){<^EnfyE)jP)n5)6?@laWtfZoft#fmG0;|pRIFRb~+CfA{<;9>q`y1<t-j}*ry
zl@%-!LO}sLCN>8#^7XiTGw-nfmrxxUb&2(Y(yRWPat3Rp>KPVh9jMN-sXNp6DW@js
zRB_ps-N*gTUZ3>#{*mys<-2mir~mCf-v6I{;_~}>ywXcE!!}L6**@tV-?EqP+vYwM
zo;<(!#1rv1lDE^XcQk$#&uK|ifAgkdzMb^;n_DzCh4|gcjQV5x&#dhDY=cKPdQN}t
z*lj2Aed%+pL#ACZyeu_K>tiLmZZ)ai&+@-9&tIhUE^mj*ZLZF_dMtt)Kj$YHoXgAG
zbY<^fv+pr%3#D&L3hWZP9RKsq)e{U+kA6;iUCb}$$LXb8x|uQU;U5O0|6>2o_$*Vk
z?(ObpjXvUJ^mDaF^uz^+4m|ZRwL5O=(#ErOHEXKX{ijjiKFqM*DkIFi#XO<@Pxr$A
zmNU1^S=uAVVZKD?0c&1M%j5PtygPrf&ayV(KH$Y2usH6Q;33~{SJt;x3WhT`=pR}y
zI>(gz`_Z~mr|2098Ih}I&zkgfL*oC59r}8c-)ze$R-Ed6x?BAq>ze78$~E^^ckOn3
z@;55m?)%z_Rz;a>^VbB<D=~dFXPqgpE_40nH+svS&DpX!?C?Ej=fzXGr-$(C2<~{r
z{<2!~{)|U8&G}i{#m+g4CM|Be<1*Ksck9c@<z`>h1eUaIe;K(|`k&ggtSpw<^RD_i
zoqwzR?c3dIt%X}Y#WKu2H|fcu>#E8R7p+^hdr97RR)$TI!rQF(Xk=KGxX%(-IPk~O
zRc@McNPT^CR}HW7v)G3lcn@S=7fE$oy5Z=JWAC>3oH>^HN72x)?B$yVi^<cDrpYe!
z-+Z~}Et7we%DIcKtU8_boL(z_#7+vSDLL}~+``W8NIT#4bLQqhJ|f~b$8XNxEgGM1
z?wFI78Q&aptzgRR^C4;aTRI(c7thnUD-_DRvVHZ^hl?kRpQ|s+-?821PSm5*j&C=;
zeeEdbuNCfpO2@obU9|Jw>}Rf#-pTBR7bT9BZITShJE<t4wIJL6%K}Azs}=86*XR9y
z^;cA)+~HGOYx$j?xy=^)jdm8xEDv9{Ts2~8>d80h46ANbP5t*yX67HG)A^4|a%8xh
zPyRmknYFCcC*($D?wdV3>mMa7Tq7r<$9DB?)`S)Jtjt`^P9N{M;<d~7mHP?9&k-E2
z9Ix_N@;_hc6!A}QSCGq&c@l~5^;dmeyrA|0)6%q@z}Z&(y!*Xg=r5bR$V+HTe$JVR
zNe5(BhRqNzJv(tzvfl-t55+HeJ$bK9c~!o&>$jEW8V7g1Pn*}w)38gJHtBF$J?p0I
zX+p7^qc|6->O=(3xPN2Yw(!tp%l7`Nxw>-CCFi)8p>Z$QDeihc)%?lSZ`Vbh-Mzg!
zYi044UD+uSd!x^`S;b{}WJ~MaP&~D$!uofXwubysM*-8_J#+6IIk7>S{o~5Y*EKVz
zT|Z|U@?_`EJ4-Gl8cENtdAxRE+&i}~{yAZb>o@#(b8P9&8-Hbgf8*F)w`PLPqle0R
zb&vmSKkIdHb@b%EH(sIZ4^?0Obf~IehA)q`_L<d@Gkt<BQo8xA#1~zkwY-#VRZZT5
zjT&!`q|QkRzdENWeh%MGj!o_V66W999bED&d2!ce#VNVryI$<+UjKFB_odf8u5Q!g
zR=DlHjB|rDSN)3*oVn*WyPNuTcrJfobNbcNc^rmfNnNZ9`Oli%`~Fg<x2)&XDXtd|
zjm57x-YkDT!<2Qaq^5eKRmYl&pqH)NzBt8Q{x<KHqS?|fcP=jxSeAG-L@@Wp%MCsA
z7RqzGc_as<Mq2(!Twoqx_lJF6z(%o_)xV#!@Ccfy--+H5ZNhlA{(#!&wj}|YzXKDm
zEV^{)d~SRGbpa`twW(ISjzl<RCB2w;q^e9vN2wu7ah|zah|~*Tsg=*H*7{g~OSHeh
zuVK5}W$S+H_d2$b-k)R_ugHIKI9m7LT=QN2)Al`&ySp@hF8})zdG=4W??3<kB{A~+
zr|;k2?x{cjKzd8{q7cP;mCbtf&u@m#EIrz>bY5B-YuT-EL-{L3vm*r(^H|nyxo~EV
zTC!W&r0?|^ZkbOK&o=+8QR#mE^N!b&?JHb2dFb5@*6&>+`0etNh`7{dw<ftOyPy5}
z^U%f8WcTiir>X^aoZBN;Ra~)e&7@!1$<^~%rxd)r(YbH!wYb;I>$jJbl<J$@cQ>!!
z|M*>XKL6Lxs?}}lzyEz^|8cG9zSTSOejGLBU^3rw+;yS%=85|>ogciEGF~dVx8nct
zw7CE6U9H`fmj3NEpPBuuly1y^xnz&ti|cKnCwqFopDUeXedyip)oCYgPA-|_`$D1d
zTu^S}oViPbZHy~|aviokJ`};4AGi0${mRcT-u$RP8#qVhW6CVq9NBd9jiLLqy9(|0
z9`!r$k89)Zm2dVn?E3v}=FGU*%kM%q1sbk1E3}jCy7_Gy59@9BLOa?1ORJAq%$Ymo
z*|V*}S=*)`3D<bM_Dt@rNjVqSa~L+&iEFOB7An52IDeLeR^IAZ5g9wfr);xRQf<^!
z-xQtF6HeRLH@W^tTkWjWr6*6Sm3jYOaU|y2+E<Ey{j}0<+=!VyC9&N2tlAonM~`Ox
z&HdDqx-#+U^q#5LcN)GCvbOH{pA%vD_Y~J>$>cTrb&j^NY?`EV^zrP>tG`T)S#$Gm
zbmVT9-FAB32HS5}<^|cOv%i_JH)Z_|LF+X2H&f<ry#9u_`t-exGivJ-lFbq?9A9_C
zboQqIoBMSV&2>^Gcc;#eIL8&XN%HrZeH+%lk^Viqc7|%F=1foZlq#EfQ`0Utxmquu
z%JO|ij9_M>{-r5dt+UGa2i&gQ_y76jd8)S~jUxF>>)!@Adz^Ld-R^Xjo88&h!&D@D
zUdc9*^{c;nRL+g)-nB98c$j%sSbgiM1RWivhpoLWt}-Pz=a<dMulOG(e0NcW=!Wb-
znNM;@Z{-K-?6o{9F`@5LlGXnFVA+zDb>EBfxBPv+xcTs5owIyi2g3zq*ZFRlA?$mW
z_2MD<bDGXJ+5W=kHO{}#=iSkD%cgzN>Eg3%&a$}Vx~5K7o;Ck8Pc5Un{HKbXoP8VX
zb!X>C_3%F4EEm7YUbUVnUOioZ{=R$b-!_^af0i}v$WNohi~PcBPZbjDOgv^VBz{RZ
z=~7$%!MbJTKcxv1PBzb!`_a(+NO`w!+R^?ewX<J~N7@;>9z3%=a?X}dfBq%Z)u$^z
zT&(##u(2%luFl*UdnD3#N}l-dY`Ng%-?bXe&ztKfZfm;v)yen&9;?ScPyapK{Qa(s
zYvBfwq$c|%=ML=J!m)9|Y~gK6*H<sr;drgVU19y7ea<JQzZ-@A&Ydha*WmNJ6{d1Q
zi6Ik%Sx?W4Wm{DcDZ*6FelUP@L(<!L)?Za`ewVNP8)Tz#v1i^M>xzG6f_<X?ryUjQ
z%I4h^y7lzb^uP5bmpNH}MO)9#ciQdn<&&>L1jmxiv-xN2y{zrMfw$*iKt?E+vO#@>
zdi&<~v;XpSr?nf#_CL0My}MoSU-kR`IGO9;TC}eVDb`<&YWiuvWm<ysLY3|HuetI{
z+iyQqI`8-XWc!o6wEA0*l3vZZc-QmGba5@Y@LZ+3qe`E@Tb({*Q2#vpXu=hJhs9xz
z&EJxy3VN^Zd9l`L@%8oo@o#GF_g4Jh`$g#MtMjXE{^i`+B=B~o-HUrw8v0XvFEXWW
zdEfl$-(_?EdGBlLn|}YF%PIG@%hh^wx2EUYM4LBv?n>xy=+astbz!gE3yukvFEY*x
z+SVA~vXivEWodIqyhidw!r#9e>Sr-azGR)iWbXZNm9)vzfDKxnw==A!T)JUUxu<#A
z{r*s4W%g|WZ!ET$RXDQm`FCqcCAZB*t3y_nwSS)*zp#=!r1$6Mjk|l3AM$2>vA!dh
zwbwOmhtC4jBg_7Llk_`%xb&dNob4Bv{1>{=y18{(-ol;bRo_bf+m_7TBi&?N#W1Hk
zu32)Q71zOc4kD*Go?8FqXFH|lc)@b!!vFIwF@8y##k42Qa$l!+$dSr<wFkNG#jm%D
z3wtNPq<wns-Iq_7GI}Nl&*}bGsr>Z(QNIU|<~^Equsg?P^*x)vlXuiJyhwW+2=0Cv
z8BA{ft{0YKVw!AWkZfv_Y;2TjX^@zflxSw0WMO8MWSWwkY++<)Lr_JmesE@0Dwm;=
zp?-L@p@Ol3Q7pI<XMnP&!}OxLA2Xwf>&5>DH`$s`THbh)QFQL+j5!OFSv%OG%p5%Z
zPcjMQG)^*gXxCUNpb%d>Yw_yu?u#cLJM-qd`B|OoY=sQcg?!=#oZ%^AW{Z8f;wz39
z@V36*(HOny%nJLNZMr*}86%&ZT>tV$o8+d9+3#o8-{_2-q1)~M)0BPp2ZsI>WAD1N
zN8@;sJf_Kf&Xzk?=wJ5jVYS_~1V*tW7VnKb-5VqhNA&SV^ovGxnntu<jp#1D(eEp9
zv@GXX*qdW~Zw|}JOq#p@$9MkIdH43Zr<BLvTfFJF_j|*epPRq$c=PpgwbM7TPxGeK
z{@<VO^{sgJulE_#KBPunD$U~T`C+8IG=Ax{HA?YmOW!Q{-YL>kdH(Stk*Y7LlHrDp
zo_CG}Yu4YJf9F{2o#W0n)3S=r{9~9Yp`8Pp5lPGivGS9$xQa^>i%KerQq#E1jV#S9
Lxl~nM{oS|#g;7zQ

delta 61894
zcmbQVkLC6!<_V_trUu4#c3j0JMX8CoTot$0M%*sCZ6;9rKK#SPE+?_@xJhM3d9#+C
z+p=-?ip%WUmm4*1JaSPIjf=6I`>$F&VuF%rb&YKG8P>+Tw$&RVbl%o}T;cwpy~?mT
z{!yy*`{gsg|JA>;xbVaZk$Z3MEOu!zd>W_VDzWs^Y~AyJ;zKvCX|A8FWO4OsWn^y1
z#Fr0BZ;JJ<dv$X8O=}aU!y#U2Jx4q>g0pgu1ZL&#(bxZ)ws5uQ0hN!MwS7#=CL6`>
zoe|*qyn<tA#~Rs3tRYNhon|jo7PL%|JKybj!1EP<z`~393nv<=GI01BNft>(cW(}j
zYvy~{u>NBAraw7uhmLPQbbr;VddHPE$I~}o(s&`u;+$-MI{R%7Lszq_e7ti-S)Q4v
z(Ei+0TH)E<-Kr`+3F=Oo6P{WsUOC5N@?_$Nrn+aZFP7~-XMFWZYU4G()2mK)bC)pX
zEGXEN`^op8==Df%9Y1GJA%l|#r8Z^c8ob<Z``0)ia@qA=LA`O0PG6q9|6Ywj(vy1m
z#ER8>E=FEHr0~&q!4%H=b4rGSM&G(G<S>5hm%g%bPvgvGM?N||-ZAS)UG`tD=k}kj
z9!Tz5Z^m^;^p|Rn#rNXv0yj;<Wb5^F3Ro6T`n|yAmHgG2dQ#J4R&Y4IKfGs6NSs2s
z!KrJxcS|BOze~(he`U-i|LJL~@yC0cxT@3L_t&p<&2YS+;Ztey==#%;DSX9TZZow4
zHY_=?SzXmjA<SXnCbj)nUTe?MyIaI_Qh@h$-}#TJm#t4;3Df;lde36(yV~d#-c#3K
zP0GD<l;t~%+PYKMJ_vK~U%S<NNB-gyXZyIGX(#&??2i5r@ycrTr?sbDE<Uy4D3IH9
zO;wd=Vzu&$U-g?eUwoP1q7nb>l;xqqy_a5ZE#^EKdEM-=(EsP#UgheCJ`Q{By*2Oc
zxfv5!=IwDT>R9)qL^{zY_kd-_6^l&{y%VNRJzEi*e>y31ZXpx<f;%}rdk;n>dzf?^
zMlH`2x*8R*^;qfw!+k*+LcXG@kMG^`mAv)3=%CJSUAD>3+kY}y*6%!XF#O5k#I5-)
zrxj+rG<vb%+`HFXHM>@Fv>sUHad_ROb81t9*sn*~yw}qCp+BoCr6?qQC68q1-iBs@
zqaxZeGLL4PN{IZL(Qj(!WD;w*dB*qCl|1S8tS{2;t`0AEICN>k#@`G#wQU5BXDn2R
zxVBS8QP@`b;#mikQU^9E|1OpKM~QRpv7d;0=vjEA@Wju(4Lm0EOx!QADBRVKW|#8s
zbeZwEQeJ_%wf+6s6)GGDohEvO3*FeEa%G)B;N_OUNB`G_-kq8etgvp=*4%D~WB*uM
z9xuvUWp?;cwR1jO-;9FqE7s0Ut=_10n=P8D{B5CS)_$M2&o}NaO5oGlxq4R*cYS^A
zwCE{0Uz>i`J+z)WwOb~2>%N9(iz0IiZu~sSn-)Ch?ApZLDh-W-lBzE_*6n+>bng-s
zhkfgccB@?q%T;;gy*j(R^^nH<(;8cz2edroH+dj`udnSYYu+Ra1s@?cTeIzbXJYR}
z8@=*#@B7p$S-8gHd-dJ`w-*y4Seg?{*KSqmsrPwqu!XJs@>_!kDzm?pt>O4St;O!W
zd(D&Z`s=&}-#1A=`rKX@CVsju&uXs!hM6yQ_{$#LZx^~VnKj(;k>Ag`5p9>;-iTjt
z`1nxgdkXKGyPZ!Z^h$rMlh%HBOy@lWwduTH7Ca^I=`Q6wgTjy(_2)jVPCuGA>%Cp6
zM3r0pj28O|9A)l0nv2b^e{y2w&pgD?-okgSR+Y`|b6J)~jH1UYhwn4F&#w>rs(5X|
zY-_9A>MAw!yyU0*%8PUNPc{^*s^+n2{5|7nvMqP`kG$o148JYbD0Lock$b@Vjv?Ye
z?#ZMw4vGDtlE=#u{)d{ImiJ{QoPVa)aQx$Gj)GLL`cR(dy?11dpYu%W=@We}d|a8K
z<<PsJCC~31s7<ls&``{r)pz$^Ym#8C^m75d4?i>QX8Ok|y={`X`*A-<N$AY;yBw!l
z++PvP%6f+H&6i^Hg<_^YJ^bYbTc)$GTc^qO|E^JS?dij@(h>(H{U)XOoRz=-mw&^D
zWy)Nsc`2Ymf3hSSH>1U52Se3*Q!`8CnqY5qZt?A7g8%NtFElyJGE4CM4(5UbOD~_a
zD4P=~Wu2w6{cMD!D3hb0vOoeuz@}fXcUM<4@GEF^id-&~k$In*pP&EzruYH({qi4`
z#s7U+9B`oiUEn5*U+*5hxN2Q@Bz9TM(SE%&_ZXw6Cl_;;vA%jypY-cwrET`5S3kCQ
z%O~a~oEH`3c4bj1yms^T=F6)qtoCX>a<$s)_5RYLoh5qxXAk{TbK2O@o|YOW?{A|x
zCv>jg%Bxd;e34Obmz|~db?)B(9<^2Mo43T6mYVryx>*{BJX^Nd>e<4{&ptliaq^Ut
zvB|^40~JRWKHPX<d2?EUpY7B7ls8-Ur6fMNxqR*H9k;5EO)x%s`(>e_tf)e|(TCqE
zr=Oa21u-3OoH_T%(T^?~4`Y^pQF)ojy|n%Ok{D55)8|iZO}%z_Z#G!gK5coxoF|^O
z70SONRaAC!a{BI=#2R-&_!d*x(%@z4C8wAVH_Fw9hdF3{dST?EGROP6Xz1M;_jc6p
zvt79NUGS@2=ReJf>NZ&yzQtbmZ>^}f@3oXnU*TJa9WKwYGg{t0FGViAkjZ@3-|GQ=
zXYW+(JhS;ojEUzf#gmO1nr)?Q#V&jHc76~&u{dv4^2;?sF)_x)-bq&)uD#apbKJB3
z{C~T$l?j~Lra#%fm_9fc$*1mqm)9kp!(v6gY5m$Psd)=)Hcp(<ojT9#mKRf^1#h%p
z=1M#EzE=|uUAUZ{eq8wE(&Blua!-~e{9xMt@8{d|ZdM5_f^$}-o2CTbk5|}b@UFSd
zXyu~C@pTd<A?7XSj`CbHf*xLU;Z!>yGU36dGp}~(9GP-Zb6tb|v^C`pi_DXEux=Ci
zxWJu*PxQlq`k!{qmlw>ac(Ua3nuF7rY_p$T`TjWT=Y=i8lPV<R(|2Apnp5#N!ObBv
zZ}X$Js?$wXo&gt5Y<_f&=WLa;*Xo*iQeU%vZc*_lmsltiti0^F$PQN9rPiwVZm*nv
zPGVjGKZEKNx7qJD9bIv(@R{4h-n}~>$If~Bv2<RX++wYYeZ_|6^=A~m&5Hb$;#h5z
zapRPPV9w#sw|df6Olsl3v2e}}jZYk}h2=QJy!NZl*!(?wx%@f(b@%qz|IXw-_RH~u
z%CVxWT`U~`K7BlVb$0yyo{8K}YKN|g&D^QaFCuazHBsuPGeZl5<FXwWts3`pJYEnu
zJ!MnpzqidZmT5Zm>TjK!wsU5C{jLuGwcW{ksuL{tq}B=EKeWq%Mat~w3r+^#KV|#c
z;%>-_N|bxrFF(2J=999pXO)%rzp868Y_Qw?yzNYQ;CnAU&K1npHG_C}Ubr-Y+h3R0
z*y`+yb;1FWOgZseZ`3DEJA3--SsBrFpJfyC*MBy7Df5jXb+164^UUVD-)mbP7|iM$
z56a!m33Qih^=Vxf_x6z4#M3c5a$@Saw#ii7`FUm1&4>mskx&0t-QOp<XwvCF@AQij
z{>nT)^f`iMOO?z1TMJh5Kirnlb#~gc{L5Vu<%jLordV;!HsfwQ-FAEz!`)T!rP_=>
znbFFjzspa1SX60ne0*Rx@yYZRTlan5n5S#M$+e!laK`ObZ|cvm%wEJF=r65Y%bI>k
ztRU{0_NScLBFytEUm11@eok3!y<+!?n7C=%U99qYCZ6rxdi8GHujOSsZ+JXT*|+WZ
z#O~^4T3q3cQ{S)Xytb%WbCK)kZuQXRS1qz9GHN`i*LLu=`u8x3IjH}8)yxj1<9y$h
zo-+oDM4gI!RsZhOvMzCxCCnieK_xC1SU*qNlohC6Z}Du7wbg-c4yMA`!ti@#myLT}
zye>|?WO3w6Yunouyn-88cLmJ$`;=(D`sB3&LEE^$XC>xUGk&(rmp!xktiy9FZ4cR<
zuP0@B&Yw3=!gq-XyG%~(wWR_=GgzL-Cd;(*GF4`XynNmk)$zXm!DHL$HGd)`9wr6c
zisIO0w9Axx@3rsOPMe$*xNCap`?px#bz8T$n6>af31{Ne67GE-S9*WB&SkE=^g^R^
z>L-G?++dg_l`Q<w`Hg^5j$lc@&+?`FjMQ2Evb{_ev?dB!T3jv+PCXX-=<lP?jdD{W
z9UgzakUi@Oi`fFXDFu`7F0FT4fAgK3Kf?)a{ad2xYeL(ZrMh46c_gpBm1Z;d_N`9+
zca28eH}5aH`ulJH>A>?(AMA1Sjduvu`Vh~&$}PJ(<olO9P6yAe+hAKhr@2&Y<3;;k
zch8<ot8M!tjxW8sYDbjw|HnUP9rWeb(KcvRi`DtSlCN!kh|l+<`qQ<h5^c|2>#YQi
z-a98_%eXA8Z1c)46`v^9-s`1I7ygv`&Q4I-mv!bs>6|;uT%&WF3hw&snxFpS3H$AW
z8JBX7{;$egHY>+EZpu;KFq=IG+|x8-Kiw{oIT}6v%B<t%np<DJF*dEU_<iGCezD1!
z3k~h{iII-}-)~*Hm>+DMZT5FhpLDH&%G@*cmtShV&#F4LPyG7162JY`{1PfVi~C*#
zuNC|9dim$_WC>2e`CPY;Oo~}`WcQg3yB;_yeOmX{`_v;n-Ay7kx=nMwlp1<*Ee@@U
z^t5eRcp;Im;cQjuUWUiVuQ;4vDgR2%bkEBZ49^o*<>)zn7uU5`6EwebOMJRmdCUIP
zjSHe?sL!e2z2npt33u5EEK_n`&#1SoKfHML=l=V9?T=3R`gTUofp~BKGEKEN4=ndT
zvYn>=YvVUvxoby?E?l}cb$Z${lQ^mHb)Vf|XlbT2&TF4`&Nu6rm<IdJpgBjob<RIJ
zrLmqX^2pwK0zMZmf6j^8H(S;2zEQNGmO)pw4Od*INWeUfz2ECMim7h-!s&E%>iiA9
zhH)#_>{9r%gYD`J{YR&cWbHMb_;J>So9hJ*b!a|$c`)yqn=X%ap#65q4<@q}&q_vc
zOzW9Y>me~G^G-sdno4-T#*^I-4rRYGcHSK7=(+k|s?xlLw_KP$y)xs|vFm4(Da&N$
zm0J<$$tERXID65gf42IcGwbK~9&1^-^5NW9Efx&VGAz`S5BtRmH$T5-<-%~W;r?pp
z0MiTnGgi0oO8$DbZric{MX|5$ST=lYO{&u<=Sg@I%FdmTv*<j3!kf_7F)ukgdsBVv
zC-1$jn3gUdvCPb{BwW~xRXn3Ux9!Bm7Xnv$Uj7L$H(|cC;(N)7dBr<sT+U{y-(D+z
z@a%4mcRr_;a;vv^YBL`=^`q?7feG>KTdx$d&zoo<`?0`m#=X$YkH_0Ld9H6vHsFyr
zcy~p|tK{aKX@bSst8VwqZTiah_Q09TRx3BDN*b0;un_II{%K{Er>8%|UE#+!PSlq^
zNx2{P^}sEo<3=tYG*)TntX0<bsGZ)g(fO%<=KY!1mQJ44W&SSxgG|(aGq=}FTR1KX
zGaWc=`_Yv3h-qhgTj`$vpZ1+NU9oFnp_P8*(_GI$%k=#FTc7Tkt7F}uAh2kLtnTeN
z)1;f{b>>KRZ|h9$PK`88W|h4s*VZpISx&gdVU6G8*PFDyrTBZE*mT(L=#G2Mre|K-
z)*pxp++QD(#Uy28HQ|a*lJ|#uANSqST-dE-+f>b^%W!5Y^R;FAqEaR<Dtsy?-8Yo-
zrd8g2a`WrF^wO`9x?MT`zQT3$&wXN)yd9h;^Cw;4E9blNxe~`*m>24Pezx@cOK!1W
z4;$ZIR$}{C9Vo`m71`u)fbWk&zGP0+?WuXqQ#-tV?tL0rKQX<PQ=NHw<ptYD4No>{
zj;*&h)}CxKV3;*2uCp)e^NrsVPK5pqE#39+*kW#l39j|d_1{tqkG!Y~=eyp$>WR*}
zN3MS}&$913nsVol|K>}tGj~2*S8FX8Z1X1YUsdq;d7d}ZA}bjd?QyS|c6ZIHDF>ay
zeZSvbdfa}W!#CG2KNz>wUw^SCbpP9Ew<!<w_Wbkw|ILJ5@krvT`la)~JymFFx%Ya0
z+i(BP0-n!y)*kc!mdcoPal?AIPnm2}k_43VceXx1KCvrX<gQ`gmayDo6K^wKjVfah
z*s$Vl1Jkut&W9UZe;u$$2>h4a_+X>5O%uyDyFC(II!U_|8n?cAnvfuPo0GSGO{snx
zbN4m9iVcP0!n#olbL4I2?!EA9$?K;5{PQcl8C_28yC0vL%DQ_aLu32_*ZDUtGblKB
z2&LACPCa&c^^$$Y_uJk!F%(VUaG7CubIbo40hR}MQu9RkRLs9A^&hn4+qConWAH!W
z_M0)P4G9(zWlnrc_nn;<TDd<zK}#iNd3}uC!s33GC$&kFc)xDHB%f$od5Gf{^VZFx
z>D!GRkDYC9+;QZxjRwOk58kDF<oV~lZob7=qFr$J?DieAy<1b(aqu5$e{LLqGB)+0
zW1c8q&$~}ImdIAucCc!wK5gjNUpecCx76(SD>gm4`LXZG4?}&`vtM#WBo5F1TpyG?
z?di(D^|Bv~H=Q)Qw1M;ds-lhQXB7{vH);2=dztaz)zWPW*$da5xV&*y=*RFZ-N&o$
zeQk+x^<iUvb=P~EyKl3$+Q)8|>Zdn%X_!3>WSI8;W?Vsl-VNVe=A$kvSUIG3pFca@
z`g!VFty5Wo&jrrLHpSaj&eRraYF*|3&taZNOTwqR`6ch`i<4_#PCuult)pBsQN74k
zZO@C&%RM^WGv)bG{upg6v-|iUDfYK-_ZQ85^>5?$EsBW0_;~rIn4s5N{{DKc5L2-)
z!Ryy<uUns;k6nGx6xVW~i+9TP2k+ajxy<9=$Heq#!g~8i)`c_Q`!968KRt2v?~2>D
zHbx1O*SO1E*|M+7H}cer{d87tcD?nhoSFT2tC@4v7maA6C5*H6TUz-t`Sd~#T5`wU
zRR4RdX3fX{4lEt~A3|UDIepu4+(z)r^sP%11e+RJ59x)!pWn{)?B|Jj^0t@v?K*RH
z%?xLc@}ELmx*E*wql8TYzM8F`Uiru1hf3W&)(Jm;?J-Yj61jU!pFJ&fkDkZ;e{um8
zG5;UW?mV)}Rpjg8XZ3$x))y*0kA-y>6LUeV{G=={BNK3!(b&WYwaXY?d}o_z-TU=7
zw(vhaSCRP0jp<y8P3Pq;nR9RTnx1u@axq}{lp}`I?@Wj}dFsjW?+=`WA`10mF3yV)
zQz_)*<2(1W;J3-|+_rSZKh5cejrE6b7OkD{d?ele?_%w+?VI!U)AaZErx{Kv>_`_k
z|BzbW=&Z7HPVAaG&N_`}+<t{0PXD>yU4Qmp-N!9<2RV-45dQTwG}?O3%42y84G)!e
zuVs8!obCE1W2s2zjH;;rOw$C!_MAWMHnrlzv%;Cnw`!^%Jtb17@oL#Ez1eGYUU?rn
z)LK~^YgWE&i>G$*j<rVGn|(glTz{ngH%C`VF{vf1JFkAzZSiBa(;Yu?-Y)vo8FS9M
zw4?O@%ewFV&gYIRx(QB;)2_G9l48?uRr<EXtg?6=Z_9!k=8UrDjYl+8&P-ml{kpWo
znqNj5t3EBXyDlTB$aS<?PjYpz)1AO~FIA5J){yL~)xWK{{{1Aaza?qxoPrujUp&}-
zx7~Ph^=O!QacLk^ec-Fx6@j^z7uPELI6e6JIDK)2qk+3&v*3gd*O>aKyK`<vx(S4?
z>Tq%D5N_^v?Kpl%c-7@+TH0YRm!Dp+o#m3T%Z-2j(vSB_ZgS^PDSWf?-{;E@teiJ4
z;V9m}_~>#^lkXCR2c9u%_OUFVcjf7y>FJjI$!!`3=O3(=;6Ad`{)ue;9p^)PP3-ee
z7bSbyn`BPaxG;Z7rRc{=y<ZF(uN>T{|Mm6F83zQokDjo3IdRGKAdWR@%Zqs*G6_E9
z|M-!!(}kr_rZVU+%gp85HGQr>mvnLNbgDeEK=|UMB(9II-EVqkcxw9W5WMNRY`t#G
zDUL)%-k4394<>oJSW0qE@4IlN;AQ=ad1899M}rSPRh<3(@KR+{$r!(Pd-?Qa&%Sf|
zak@e6u)vy{C5t&93#|S3VNUO?4IP3r`h3I>Npj7UzjEHy*D+8<$^R+m3e5#RHi|dA
zeVAs6EEBFgGB4P1GM6a#x>c7ACKn$#T%o?0CvD#!x${^2{28r7Vpo_gxZJQ*KxScN
zQT@M~=?C`pe=s<a_4#*1o_6r6XBK>ys%D$7f6hHaan7mlo_xn%K3Zk6|Lok_!f4gm
z)~j<O*S)>Hq%J0Z)~1uwJm=ZpT3;D?`@C=DzH4r)dyQP@%)I;Zd~qjpXzNJ@!*4U#
zgZG_(wdQ13^yhQi4}4p-;q2`BHrcc8T&vn~`jZH+$*+3F*s_<uKUF{aHQ`u?dq8Yx
z_1{~!_d471?9MV}OWVyaZTB=cR5Yl9Z}vL_9=&H0htszG%kWWKe_*o(Po2-?s_2>X
z8Zz@wr=;4h*#2PEhlQG}x5!D|2*_0v*!Y{9VNt(Z;29>{IK%Dh8lBd<iN|dB@oi1r
z>7^*%!O^_?)4?l|_3B3#Yd*c!cSDX<qf_dQL1W^){4c>f&HVLqtCv>BEPuUe)2WgL
z2lQEHXfBy=_8?O<x{39_&%5Aq9iIxdW4@MOPVQQKvvXU_<8`v<m&$%^-y&P<@VZhY
z=X&PFCECU}ESx5}-Rs!zJA3~(!QCH~)}C+QlDDb!Qi<Sgv)@OS{o0sUe`%{}#m$`G
z9r05$|6UD9_$gSi@X){6{Qub&2C&@c;kDvs<etfUG<?+}o_o&)+*WF?FLl}aw?X`L
z5x3ontj{IEVaqP?8Rj|j-uvp@^DOHjt7PKT8G23+ooeg9-?d(?SFC0|<J1hRrmiI!
zf$QrpCdq%_q{ZYA+#c(+_WawJz_j|(Sh1AWPgg_lE_kXS@=LGNLMdzYgI9*h`(Es~
zjN5m4#_|cu(XVv^6gS^{vXV>ub;<dFy>*$N|Nrd|&)>hh>ht5@+npZ^w{D9{dOlq?
z^i_lZvAwJK#j8U<O8BU6TlJP-(QwhEs=t-Y3ukMVEEeRK+w?4N#a)Tl!kmk9=GOR}
zO{|Y)p5XG$%rCe0gWy!13<cp3?TNm8p|>O?7+%C$v%T=|tPEt<l6<Yy@ZREvSi7$3
zgcUxQ)R%?bew4L-CsUKJ!2LUAEMh!j|9F}%FiLP_m^yFJ*umo*bi=3hcvbb@b5g<A
zG(_01XKvgRtv<Ci{8~Blv}iW|1=BnQe^kshk?OCXvPn$f!S8+Vf+CK)O|pNvF0Zt{
zUA0HOclU#a$|#3~<;&L2HadU0z4dLagrZlcxY6A^EBUi|=cVSZyl9pY5Yi#BwIkwQ
zM8<0^C#APXuU*{y@}>GKff)-NdTfHqm$sd|;=YdY?a!@?zpQ?|+N`la;&)Klk%ipu
zZZ#K6U34Fx39J7RyHKs9ZzZRFU!?f#S4;ceuG!}uo^@B6`PFPr|EsrWOs-!s)%2Nf
z(d?8~%~>knzRa3&sd2HK?}Ha^O^bBIX3k1UxODp6<#6Z3a~xmxN|)ZvoIP8n^-{mz
z-ag|#4>m)wYiE}9{yl9eCGVKUDQ{$B)D*LFx!@Lax0sDr&xY<>Reyf3Ps2~6w2A9K
z{_xZ269{a-xbDicJ7@WQHcnL7x9RcjL+_Rxp1A5#O6k@$@8?%`T)I1T$1Zg%js+X`
zJWD!WY|TC8^%{o@-I->8-%fmdaG#B6_Iu5kjo*x(CU2`eRx7yXx?;tVi4&|h-26J#
z^T-ds4<Vj~)racLTS`@Ke(aI9RIcy0l@zKup7?}C`Az1^_s@-U4;XM4z0`iZA)Lpb
zL99B%pjA?*jdi8OTdqFA#n#T1mihWScb)sXeA|YDQP%0nkJmgA3R`^2!)>>6&*K%s
zj;TI1D;KS~<~i^0ytr)<e;!qSVBYmLa>C_fE-wxz91Hobwk|9EbK?3_*CQXsOz<!C
zuP@%9{aZgPX5;gpTiOqvoO{c8>Ec^*yK5SQW4)ASta-H2F3em-<yPmDcTSOqe(l?<
z_)z$nl=_FfoK;_)=IdVmrMAp(OWfwo#{X+7%N8iJUs^MLme%QIWf}8R_NG<${B)hP
z=JYf}zIXm#t5@b(WrxeZQ+={o>{IS87nWs#Wm%K9)}O9-f5jJeaeAZlO!fDTEN}cR
zq<6CyEjjk4QD)<Lk1s{DB@ccnIy%q)Yth!;2UR<hgeULi+x0YN+w|36N_I`xHr2fU
zx<KAtXkSd~V~O~6PaIEOSNWi*xhSHqmES!}OUrq_SKp_V>mKj!{ulQ(q@>L(l|Qmp
zAysx``e#Xv_Mh$bHDdfhok^RFKgH)=yq$hkLtmK7I(U!qyXTW7t*nmDm{RydWbcjQ
zmppeTb}jzQV&`05@u<VsmHG8H)pj4NnU^l;?UzYiK2a*7WyzG?m0wG%mpKTA1=@U7
z>S<+QYU*<d49_YODV^%yvuNF`&cH7VuKo_ZB08JL)xMcMTBJ0zzW!jYZ+rXWJ9iZ4
zYnR#eMA^tpH<q1xMzq?jC(5Rzbe<FU<`kpw9HXQeuKSwR=JG5qvwx*!JyE(%aAAr0
z#%~i3ODGwAJCS%lb#<R`nx?_5P06RSy@ezn<-U~8$hh`t%Ot5J`FR`DX0H6c^;zVe
zS^5bZWokC-T`gTyb$?4!*Yu=%uUXR;rA9?{g)Tj5TX<ok;Z^U$MH`u}_cx2bHJq~2
zruQi0Z%;Y-v?3h|7t{MYBka$-=y1|axLT$oE6M)-L7eZ|iJvmrJ4IwqbMDihd`P5c
zeaOjxiX|nrORuckUO73}<TI~b9NSrE&e=kL7p$z=Dw_Xh{m;NH5-jVUOiWannpV%W
z?b`0UYlBaV7^oPD%67S=?b5UT$LVO1x4wS8{Om+8X%@w|fB9?$9glza3VV6#@v(>d
zw!f;24iw>G<Y9NcbuIU0l%2kp@II?J5gW-k5sz7oC+hN_7SErwTvjo;pym9*k2eat
zwnS|2*<$1FEW<I~@L>6gcoC5rYma}2G>+`4SFaDuSg2a>c<uMxC2{Ik)32UvTp0L#
zewTCB6)Qf8O%4i&Zp&=ix3Dk2EQDETCF|Xcv&ZHhGPtPZ!z1kb)seY1Yh(JNnO7Cl
zJ>E=;ndj`+{8gwgVcS#1luGN=((?V^f4&mQlH!x>x*9)kN0d-{ljU)P2y@QTD;th)
zy6jQBfw|tXWP5$t&t1kH28m@0zRurt@r7(F*Xz(bhKH=b1U<ET@@4WNtxye-+bx-K
zlYf>bm8RY^dAdk-=gJKqh2NO9PF&9;7PUn<cb4-?KXcDii&-C*ROnYmy}z<<+fjuV
z4<yXQCOWG#K1n_(-Ms0LUsG82>eYA5mL+7wpPH7E>pe^TX?<PMf@3dMzcSfhnW%9f
z`e?uOocJ}d>%`4Ys_oViI=X46*SpC&=JiK^yZ<)d@$%S|f8W2Gi@&eiCG|#Er=cos
z{>&rd7C|x_D>}k5eopNA{XMCD)*4Rl?s+`VC#BiOEpT%=s^{dta-Vx;k_OMmn<0jJ
z7Ke)7#K-RrnjCmEX6f?a`lB%`7hY`t_b0LL%?sy~^0oWsyBzyo#P?F+`Gl3Z^EhR^
z#YHxy`#9}f>@~|>SW4?%t1ow``~QzSv?`0&epqqp!;<v8i$(oY7pR7<GLz5l7Tut1
zwA)C%NcVY=ZpE!i2{F5Ai}&tbclrLdt{2(=Zzyh3v*J14caeAYuQztlxx%MCE4Cac
z5__)Gv^Q8}^2CKNynMyF)?K>nd~vE&l5Ws?<9|7eXN2r}YVq#hvGuF}-?#rOU-Zgo
zH>eK<ntDU(O<7J9P^mXDHZ?)+O<j$BJ^AsriT~^BTi@-Q(N&)C$oJOP@X|V!sZ-{j
zz8U<j{puBw^dmO|*Shqop0%5F>VF+ClY+DqpKI3)U)4@yk<L7`UmstyaU9ruKfPqy
zq579T#y{e%cHcd-Z||JiukKchHBVlib58GlTFAsXt8cc}?^OMK^XVtwPsx=(lI-^<
z82QRwyWPAuYUlo=x06Em7F}O=wQl#?L)PuTFU7riW>smz?>bNC(v;BEe`|OCKmU_;
zdFH3<xuqLd@jYF)!*<QR>975Zxys{jUfX`O%69**KinKT8xPD`?oz-fYrJXST~Yq;
z*V~i+_ubub&GCDPo5|&M^@fGIMRy)GJ-1xw#yrO((e%UZInO*ZpRPDn^wMhU*V;u^
zn%zrl_Z7w3*A(>c|NS()I`P+Ty}53y-nQ=)*;g$8E`0m<ZwJ|zue|;CSz74ShpV@R
z{w{eub&n3;(YxzzOj&1b6~O<+V)CJ{6_w?G>-N^{w=ek`6ZB#OSIOtYsc(%m>nCoW
z|NlzNyL(Z`1C4!)=3YDU@{N;$lIq%(|9KX9`b{>UcY5--9-&p44kcepfBSvj)VICB
z&*&_(*6pQjlRBQsD;xg0sk)U(I#}#Ob!`xbujf2g6aMG>?3>w@p1At$vln(rU3kH|
zVE^mee}B7P;$o`u;w=3iep=|xOQCinw-UMff`99i3(uvj@jT_SV$0jC{rAIiJP*{d
z)Xa5YU$mz;(6i{`{ods+JU?Decs2Fwqrbba9?tunSifxIOr}1zz+ZdLxP`qsv}WI%
zXG=S#EqvSkDz|c1wPZ}YU-R75nD!#K6+EFw{k$h=AKLuK<KT181Hp_dmNCZ}wf>*u
zCa~;)aH&ka<_-m=aOJNDD&6`Fat!0oWbf);mTW2LWybKF;df2L<enuDniezgUG!nI
zIFfB~KylFthIR{gHj6b|#2$QW7iZkDFVBX*phL^(z}L!~9u0@L$+H%86j&WlOjBmi
z3;5vD;Jn9;DTYVW=0NYIW_F95&b$U;S=W~pnp>56nl_5mt1_4#RygPE<6Ufa<f%+e
zYf{*9LA~n_G=(nT$y<H<(FTuuKC9AKhPY_j`AMt_n)Fmk`0eS#Uspv<lUIMF>us56
zb9l|;2fE&-f>s6zUk$akee?KZvt^r0_fFnj+_M<995zQt#y)Gwys)CJarOje-#4cj
zTtrSEF_|iG!RCRi=JNVOH%!i!9I%`;QS<DAACvw%*+<(dEIRt<?CguL7Hg)RQccLo
zn63Y)WYTjNW6^?txBaj0|M%hU)Bpc!{+@pNwcP&iTlZ)Nok@qk1+0<vnE(0F0)HP5
zrGAsIM_+0PS)R;z;kka9=Jb<28+!IN6wRKM-ce+}T5DRC<&pmpM~hS&=6BSuj94cb
zs41`AF?*lk;wF>#*Cl7wO9hz+X>p{RJlLyg$Jdb=zC+n6Wwo*METIp38q(KHC`)Lx
zh>wlkX|(Uhj$8Yebz9z?%5m4)CjY~fxOsw%H|+Af_yv1sTyhS{D=LnvbNSQu+}$N4
zw|sWe-e1)_Gq|sWUp7(|Inva+$o15e`h9Pl=iEN<>*Mc^1QCfCu1Q>X?=R%jYCqYL
zH7n`w48vV<Gaa}4u*|8~&F8;8H}qNm?WCRCr^o-azRh0!HT|>f;|)%AHm*W^i+O5A
z)Ru>yU06D+jV+5U$xd?%^G1zA_k~91SIS9N%y`AB%)ei)=tbf+{Sc0lV{!S@=keS5
zh^g2Adh~i5r~MhJ<M;IoLhIHslq@vyyRVem(y7dz?`)tP^Ypm$Vb5a4vRBiBj1L}Q
zV_P`i;b6%3)QvpZ?F&tvV;37(Zpt_iqP&XDr)+!G?^EniA19i*3LgG?XUEGaQ-oYU
ze=uFHK7CfBwpw+>{On-+H%IQA_;5&U@>}`*GwOf-D%G!4JM-NvSZZ&U<Y^Q3`HzfJ
zs;V|ke8wb{?C~^x>-+B5pC9jNCQK7l{jt){&fY?BhGhDKb?!lN@8nK9CMUV}uX*wD
zuuo{FV?2|6i$bKGm|fJOjLF`0^VmN2eLZ-LHT1N_wL6pK|9(CB=g$egK;38g%QF27
zlG5Hk*7i?ndA9Imef!m;Iz>@=-Ytfw(xRG9x2f&264x+snV+JZ+?G0Lh0c~<$F#{i
z&;5;XwtT45GxhS$F6VR8jd)tjD%YLfo?80uct={xMfD2~EV*8)N3sPPKKTgETD5q`
zuVbPKLQYdZuaI9X)8JHjZmC4~f(|Xa7Nuts4Mht3_!iX$eP5uV)LqZE_@n5J2O3GX
z1r5UTp0;XzmnyjHJKp5z<OURm{P^Mje@2$kjH(D18}<d7Jn1FpoQ)(Jk2D7JH`Xfg
z9u2my@1M!ba%E0Ip-kfa65VZk4e|vwP1qJJ(6Ns5t+`RlHGO+tS9xCT>wRm!y(_AI
zeqA8{@7h;|#li2sT{BLI@N2HWx@-SA&83~)O3OZ_<enBRjtudx{wQaAf427Kw(WUS
zRQtbHKWL0S%q>3i@8`G6o2x(Vi?E+IZ+Rrw+RIA{Tvq#fJ~P;H{bc_4)YSaCf|A*r
zZrI<NuKV_MU(4qEJ!h42a;=}T<wYFvQI`*E|Gn<&g&@I|e}ARff4rS2mALQp^L6!e
z>)#9Nr?Ksynf+LOli$Zx)9uqEKLxz$iP~iIQ@(n!nerc-JL|u_TXkc<@$31Y&#Y3f
zUL^M-<8SOGyDeecuTP6ETQZ$zb$~!>I)~Kp6`_C6{&D)ibHpI+ag^HXzt;ukcA4oV
z=3T2hwAJg|_M^KB%<ng!XT0<7t-f+oX5jkV^^*0Wzn%B)`+KdysNy+mLZmHgkoo$j
zG1E--19$IPxbJS*foq+QB34FS3KO`z(By^Z<=n>>{`Ye7w03a5-|#HyAlHAB<}0tx
zlrqcheQ%_7`ryPEW#!(|@Tbfk+m&?UBfoFgTla^la%pbF>}9GI&V>c%7fzmSWq0Yx
zrh8%xy3<x$AFhARx5at$k~Mj;w{M+kTlS49J7QgD<j&?TAGiFje8qA$dh@K;ebY>S
zZqd5FZteCm_voZQZR-2aJ`Bu^-&h$VAI6`}oMc&CE%R$;$&63OCTJ%rx|s<mPj=mO
z$L`*myX)Ckzqvj2<AI}hE?Fd795)o#T~k`sTCjdHXXwM<Es@L#59|H5%?R0@``7%4
z$3q?Ey*(@9^LA-Zxz57;G~t8Qt0lp|?!`rKpT4Hhq<C|m%a7Z?X8z4Bv%ayqHFNRK
znePk@H)lFE&7P}u_V-&mp;xnaPM4kiY|)>;g{&*$!rJ+iXHK8xH$(j_-^_0xmlkp@
zwq7@B_uIVB5%v2F_HRxpUGcqQ#+3SJ?;?^99=%((_g-B@X#QD$fp6cB@0xS_I?I*3
zd5ynaQ)f???>>8Y*TTCumy2ng(KQdSxOMfQWjo`9_QHlB%}J@@N1nGB?(aReCT>-$
zTjjG3?UP35w-hh$RkK=LciS^Em*3YuoBP^Eol9Rj^`tjAR%hyX-IR6pUB~t0q^U@s
zT>X_*dX+{Rf}fXv>ezF4&J`7jkWw4R#=hy@Q&z~hMcmQRTH>zd7=PkT&6-Hj%+t$C
zliB$Wn`pdKh`-7Z`~F7e?Y-}+G+QUFI=Soa`o%NnaViCeJ4HmS67^TGJ*U@mu429l
zkJ0XF#svzw-P`r8RSlb82sT;td}{i@=lExO(}r{P6AYYA_RJCu<VzFdEZw}&e_NsB
z&m{Gg3v<$P8cJ4q`_^>KV)-Djb=DV$=1|#58i#_e>3ZJMZM85GJ0LSDY2vay)<(q-
zm5pEL9oS-?F<0JiHp{BDclMhlo}blnkU#GF_DSh`)lN=O>XS*E@Z76GUi7Yt$0SEJ
zL6_#3$39Fmch)av?YNZ}Ba<<uN652w&Ih^01zNFlF2sdi$g}WlKk9KxqiNDgwv9ns
zS|18jJBW)eITY5>8XtI{In()w#Y6GGX{U-O74A=VG)d!fUH^88OGo-$wWVoKE_WZ-
zpVr>?;#Ez=={SaKRzY#bb^kuaTwicFb}_q=U-|T-Z9I(UT$fhY7b-=^^OU5tS*xsF
zzB4MmCil3@T~`f;I=9Eq?C#C}z3)v32kXkeVHwwUvd%g&htKHUg&KjblMVKVe=e}T
z;TXMAJh^B0^F-#OHLd^Ft}K~cwM}=W`8##zIgP8+%$*mt{bcHW#r@w;;{L=BhaBqe
zss0R^K1V6-^`x8Wg`T}JL4EaQo|;*fYy4l;%i7KT;`y(~|5fJ9R$mr*E1sH&9PfU1
zdEO?Y?J1@w|4b4;cyQ675PgwTe9!!z7X%j>`FE8?nfTtzdn*wiXfEnGx&7`cs~yp0
zN>PE<XBVuP@4DDCw63H#@ATJOK4Dy8{!gxL@7kOFE%SGV{<Yh0t*b+A68~MVf4gu`
z=DhIpGKH7?ez$K{JU_R}srb;=7ZzWhG?n_*EiqV<^j!X}VxrAdPTL}1`DIcYm+?>5
zeZMY0;HgpB_uXnyD<(XCeK7v9;nkng4`%Ouqq~{W`oZR^jTsJKYYR30W%N~MPD_n*
zShK`QX6=8YU$ed)+#M)A-M}P8(7xjLWLAOt$LF`V&C}xSf6-Z2I>B*`rsSl#zgwj@
zh_hAOq?jeRu8c42JSjF=e6>lpjNxs@`?voVx%r6Yp574OE^z<%tgT!#O4sBb{`aFX
zaNkuqlZLleg?qXDgHP=HqiS+P&buLkKjNpk#IM%Kv)QL-FF$C{S}5??BjDL)mPa+I
zyZ<cx%UpkPXWTpfCE7;I9?oE2vd^#7fq#l<rQ9UN_x9dXc(`(x#yjoTeWG~H!bHum
zeDyK+EQ9l&v*d2xsrs|?hjxcY|DDgP1%F7N_*iqzhWmn4MpxdgZwo|Zth;~8Z+hs!
z$n2>0g8Pb1N8z1W?1uk(eou?q@Zxm@e}uxO&E50ZR0TFO*1PuK7i>DIBx39PMPZwB
zmt5?5L$;KUU2^d=UCQ^T`KqSLu6~hekTj)u>&Jdx>z%JYF7+%C{UlOgZ*TN>Lh7#O
zi#~;m?*56rvx(iXFXo%Vx%s=_ynG$PKS^;@Myh|w-)*V<NwRz2NG?CP?2Ti}xu?tf
ztObv+cXKdM>W=?jQP5SNce^a1tvNmBZt^nMt<hn1%f7WnD(f)EEuXw`ewLHV<!8@k
zb#9#Yu%mM0v=e$?-p>*g7QT9f!~FhjRhHe4oWCoXoN^6e<FsGfJ-f(uqt6HTvx(0N
zV=l{kv|H9^hu^L3Q`)-n%P*^MHggoU_KPN7`LfNZapiHp{Nz>3FW+`HPpaQ>;Mke4
z+3j!NT`0}s|2lW!+%pVe61GWUws~@Pb2Ve0mCZ@0JNl33;EKo>m1{O<RWvTq_|doF
zvhVCoE3zK!wEI27g<pBb+t-5aX4^tm@F(|+6&!z-n3wY7BGZgFiM#)mY`4;xHSvQ<
zid(vNpI~nwm#1%QN-1N-H;1!JtIvGcU#~7_d_l&yedZ>{=c~-rmnR%ry;A*IU&u!5
ztf!rA@uo}5S$^+Ues-+$TF$rL)Y{GGeLmT&`x<R?va@LZ#deAN>7_p9rn!4wX^WmQ
z^3(gSZkTv({zvWE_Sq}9C)cW9R}!6HT~KHocI3{bhsmx!Vm>}|%-@>^aoMx*ggl(a
zVUk{d!gPMk?V5^jQz9nwOZI#*k)6#i7}`?Pv7`57d&irjpB`#lyj9b2;?Wc5BL;DH
zE<VSfI=fid%J&6tJl}p?s%~P9h1V7{dACh<v-y>y_MdFGS<RlX__N}o?y3BOr%(J8
zDEv1kK4I3GYu7i=3%<Fr@4R1!Z<_O+HWiocF|3n)J?lH{Hup|G<j>EtN}|%C;PI<}
zd;V9cKDdyne^sYt-m@q7L>J4oz30F9C8l1B+q^Sy@jTnAMfbvfel>n?tTy>a={vXQ
z5%=V^-^G9Lum4uC^mxom;}}=Bpv|3|E`E6=p!=ug(cfE!vwI$A9IuHr5tdoL)wn1s
zD&T|5)z?;wh3%c!xp}b7bye5oV%vQ6<{xYA4?R7n_w3Nf{r6OUE_dBb%a_afe40&X
zKGmuD{r`9WfA+eL=^2<KDaMd_X$unr<dKxUGTFtq%|8A9%N4tS%B!Osj7%yM{gzE$
z=BvN=%cN|Zx9uk$FH}ACtVJnwV%OV$zoPeOG%QmMT4Y=)uw+N~QKsED#4UbiH>unG
zIXJoFKzzMXyl<V&e4F~i>Nni)Jg+F)H|K%CM};|aI^BEx&xz09^S^%D*DpFBHg2E!
z=!ExVoBiS6PkwpyC)~jyhegN5k>M`KiO-tq_g44+4_v?h+WO?*rCk%{kN)~A{_3dx
za+&ItS?4D^nV-5E8g^p&k=6N|yll^PrS6PWEe#WUwfy#)eS!8@&40c9`Pat(>+jVj
zE4O7Sa5p=~o_AgE`8D!xV(;Q9F7xXXeF7acO_+|Xcyv1E^WwHVj;9Cuj1Sek*U}W*
ze$y#HG4J%!UCYWp&t9@aZ11V<@3I{yWvsj0o8@6O@y&<l#g^fANt5r_XU>|PZJPX0
z#mVNAD)ZlylBpe&BQAXrV>`_Brq(DzZjZmgA;Gc+y|_2OMCO)$5n|EkV`9(RxaSV<
z)%pX<xBdv1L~oDXa@_EdMbU<RHXdC40RqPC8G9`zF}yJrF)ojJp};C}ZN2>NlK)e#
zoSf~u$t(R{&Z=uZB1%n(CktGhe>J4eFH>Pou5I~RKPl_^NxO4~ZA^YDpYm^&$hXd5
z=P-Vw@UL+Df}@wJ*6G<FVygQWwdO|PucL-9c;(;M%U^WX;7bxTV1M=K#?}LtpK4z{
zu-YTlDX+-Ib+v8Q$xgO^bIgvjOcU?^A?#z6p)GPa-|Sg=>ZTQQB<sSbWnZm|UM{^f
z>G%uV1uP#Y@XdME;KuQ}V#-QB26u@zzIF9quQe*N&J{Fes{LfsF4&dv;(=`XEae`S
z!#aE9Ul&cTn_C}wOwrx(#5exeiXkk&wV(4{X$@Q9-mxW6OKjV7+bLYGfmdcdSJqUh
zYw&pB$MkA_h|UVFwfdWrCf+-{M|f-3w7(apODBr_ypkGIXwLU)f<oKj#_rA*#jZP|
z7PIHAn5@h;yXud~o$dpE3Ge3Yzt;BpdcdiKwMQIHCLDIuIa3~fpk8m+nLnEu?j1;4
zuC`(2&r>p0)34p<lD1fIPighF$|C)|8Pl)6nicYEmEP%G!|<|wJG7_ol7F^Cf5WcY
z2aEF8?-SFNU|zhkj+N7Te%1P})_2<Ly{<B~C(qRoj=z|3V%1mfOZz7n#81-kUsqK7
zn=hN?<R7=@TXu~S2@CgjaXgtLRDXQ6#}wnhrJpxl*mvm6>TTian_pV#XFKYDJE*RG
zZj;j*hJ=&TL-uZ8d&&2!&u^gz%SsJ9CUE>z@XY$M`ib!YBd5KueK+mfx#r-1#m{=n
zI9FTqNG;?27HDwB`bX>G8WHY{hW;c+-OaDlS8bj-{Z8Utzjr4-MtAiGcI>=-`t(1!
z=6cqx=UyjgDzLcfaoWxiGyK?M6|iB=ky)$K;x=mLuMRH1S*s(N)02Jp-XYJb_jkl5
z%=`38?dFp5<9Ux%+!T5Fcmmed#dkO5NX1+^CMpoIRIm5>?A)pfW9GABN#+06gx*>I
z-OYt5K_uPF?bO+W=Vtb|?96Fa6*E8Vk*gC?SX^Fz+tpd3K}}I_(;5p8rkp)7GbWqe
zP<LOpwM)R7C+*?oA9sBZFa&pX@J;AVW_VN5()w%lk9)lnca;b9N3S%yu~AR5G1l^v
zvv?%Gx8&hX3-qQ0WE!W}@-05H<F47c>3g39-@0lRQM7z|`n<U1M>hs)9pYS*QPr?$
zA6G~7w!Y}Yuj`jKGHnPl$n>2k8DBK@+3~8!BHN5LZ&kOK$E;9vne%zM!1abifmzpT
z{?9sddi9$9OAj%L2;Q3XCHTwavY)v}l#dFP7+gM<lW*UjFSAkq2Y;0O@sG`OlP@?W
z%1qQKn<yJ5_`&G#kyfE|U-rgqR<F8jy)-vbKHGkQhQbY3+p;TD>svQ$WM@C|zT@qI
zEuXHf@V&9y(B$a9>>SpjCsUgL7(G1nxMRVDuUkuJho(EKmYY|GE%{c%e>yZk<k*p;
zo_<@3d`0db`+2w1!k6LxvChMXgSGz764Q;^dH(dBO@i!FpBPtoCidQ}sJ8H7blzgx
z99p=g-6^@nQgT<1fpW(rvA2`zC8xhu@qZnqR&6KyHnbtaO?T0UMC;}Nm%n0x;>tOP
zTaGS>``I|tO0mX0_KI@rS(l#vV|rPFjT6g0HQRn&A}jCSvGK(L4Y?-44LOzGO6iy1
zZ`~|(c(&4l9iPM8E=)6&=&_JmrK_uvy8fJ$m3+(REv(6|pW{wu$bNixdTj=aR(+|y
zROqa(6(Isu+gDa49lhG|{kqxev&E%5gBF_Y*dJ=>_()gPWoJ;i)fcfH3%5J8-)o9}
zp?jnCUdfX8TNkccxOv~nuJcvzjjr-17_V4+ddd6Jb^Eoty;xu5<-e;hV2W^I5wlEo
zao@us(V?_n`KZ*zmy+LV?_1ALT63C*W!n6Y_1vNte*0ciO*y*t)jQvRb+M&|aSCj`
zt8_PP_ilCTWqq*9>U8ndJ)S->8_tET<m1-69P(dBLaJ)zy4VSZz7<u`d3LXNwK_51
z&(Jw-bpG`1wnJamwTUL3l5}|>P&&2whRjt#zsL;5RZdoI?iL=-8?@OOuV48+fjOT=
z(4ac(XIuTR!nizFi7i3pYSS+2Wi7Ou5v2Cwr|R76Pt|@~$CijKX>h&b(w@Fgev0Q>
zHr^lCQ^T%wO)6S@`2Eyf{#~x+*CW`Di|osq_vGZV;s=6Vhb!{87qte>Z*Uj3=D9nO
zDSHlM{<+kr+>Mz#b&q~}BsTlWT%A>oZCz#E=G>7_nETfS)tBaqo;onOHE#Z*wOQE<
z0#&u|-ttk-kIvw-dsTP6>Ya;t=&W}QM-ytIFPw7?e_vmvf1@*5U5Q0%rjcNHQ(^Y|
zvhN38II5rGUG$uLcKnVtiq~9~Qo|a5Ok!O%t#aqO3wwf%cdcaF(65=V=%wTSkK>lh
z1$zOpDD%SjDq;7e_|$s-9G3(2hb(_^HucIZ`x<6CrA<J%EI99TYgYG8vGBDH8?P}N
zgl}N-TzFq=`_`MQ|FFO0S}NzzEV4mBYx|RxfwI#koVui5$~ws`be6vFq{YECNf+c5
zuNQsH7hsN5R=YmIZL;X+n%y4Ju}w<RFaB-0aI!3^NXv_pVY|T{lj(W~>sffkTHPAb
zgTG#iWN2}{qsvhpI@9Ki*-2lyWie|v-&t|rYVE6ZU9WYQlIn_=Em?l?*{nNTZ+%^7
zev<2^(qijBGtSLsN$`Hpmatl)_4{G|!=FtZj~uw4$SiDTcI9x-*$X=+Y%|PR^8d}m
zNiH|~V>ISIYf|(`J8dFv+oW#8bf-k4-d|@0W2BCB&c;1ctX_L;4q$K1>1nq$(0r}C
zV)5%YJ&UuIt#f8bg<osCwdCZZqPSX1(>&$7m#%$q>$>f6ed-pA=XrK7w6q0!l4QhB
zESd7HZz(g+y<@uHW|iE0o>S}Owqa%JjonYav8<6zF?^F(cq58!(Ufl+bbhYVIml>h
z#l%v7n@{N0)q`$Tt!J4J-Kw#h#P-r>+ZAT!<A>e{IxIi^&TS#Hj*irXgL@2G%g?p=
z_`cX6c~`H5W7Yf9FIV;ddLY?ev*6X{g??eRW}E)4I^QN0{q^P!_pn;N=P{SRWrp0p
zx6x+Zubd4NL+{^HH4ph}c{*XntIdx7;k9Pl7+0Nt`nj`y)p<9wfUmty?SZw-m5Cwq
zjTP^%TEFp^--ViGt7bI)fAn21#3<8F`c=i%<-uxZn+~s9A2>to${w9(p0=Ou=4No3
z|6G@-V)|20I%i8$OmJ<Yvb?56o|Z|@mE@^UUY+XR8)84{OGe|_W#>zNTn(AjyY0Vu
zki(I4SIkp$*06DBtf{}5w`rHzr;S3#43m0xu5h3AR&C|(>2GYewXvGbu9J#uX{}YC
zFWz8RzOl~woJH!g4W{S#_s9PG`1$qc@B8ETRet|>`04BWc6*FnmzGAV|2%Bf@wn}3
z$j<k&*B7V0GrO|+vc#P!JNwT+oZEP%|M2QH65ab9&p7Peu<#FWQeVUY_tg4=1IbUi
z4X!!_oiRMq(8MsodC%)W*;}FEImz*=<+hW*9%0?0y{3QC$A-loD))1jBy;WzlNWo|
z-QB%xlF910M>j=sgS=nb2fc3DT@)*FhE-~n%POy<M?#JrclDkZGa-Dcb7NbV>*{TM
zQ&&q@p0J$8u5iS4nX7B^)KE){=E%ao^?$$cw0NfHKM=PrR(V%?$g3<{b&X2UWH;d}
zYcD-{lgJg)KJ%@Oz|(tI!xB<%yybc4o9-jCYF(D(rFpaWgmior%$_Kjw6A>bwOGb_
zrtAyqKJM#GI}J1|pL_E4S-d}WwUbXLtIWCGl5f!k@5w)Vf4%gclplOm=TgWL9+%59
zzt!p=Sp3*@tNu9eRE6%nSIyRME}ggXON7p4sYkb#9GjKd+P<qT+$3F2FtWwC?dH2B
z);8BYcSc-Wzb%kcOZ%%q<e^_XLN}|wY<<lW)=;eQ#P#}3elN+2!XtLS7Z!E>+G%_0
zZl%Djqd%W%ba-~~a4j*Oks`*!yX1BNGt*168+&5buBm4ZK0a0c7RT@D^0xw7f226h
z`#bks&*blKOcn=eo9yn-Ken|!=gNl1H8p=<-CcdL{PnrZE!FH-V~>h#4?CTC$MoCP
zA9qv*Jwon0dgnfOod{28szUtJKl1zmSHz~v9rZodxAEYt8ErP7pNBN{DK|U_?O64$
zktxH`b|ynqZI5n)Sp6$?<LSFu3+^xY#<76aY!XA?xw~^2qE`IB@OztxQR49o<!1|J
zzTIomVB@^7TwcE8EobRJvqy!m|Ky&ref4MdM5Fuv9C{|KDYWZLP?r1pn!_xq`k8$A
z-jp}`sxN}OtJ`<HFIKhQu-HHT?Y^W({69qcI~n`zUSDJPIyUdy+^Fi5`bX|Ul^+<-
zE_Xd9TFL$Kgi?Ouz5wTcez6|z|5mMEDW5#U)9A{T?F-sw{1Us-c~dyqBtoKkhLl@m
zWWZzAzOSCj(mzkA_vTz#%-R>~lc|5TzkPP@hQ*JLC5C&v<c!GRao{etcdmPLcZuON
zHp7~9j>rV{s9d!R)^^)x@7dA2>v;XMyV3mxJoDUsu$;Q>WV7khHiP&Wg;KU#bMCzm
z-OA&-P+Q_1)8YBSYWvES?81e*4MLQ<?(KXp(%NkmCbwEy_RjU?whK0TG$w2RT<IqC
z+N<#6pQ~&F>n>T%Uj2K!>s+zWu>1A*L%yt%U+0k1wUcf7)+2Yyy&vt&pMIp=MQ84#
z8oSpO&0nt`t(q)yRcrO@l8=XO_TPCGKk>jM`M+ICBCjX+o!Rq$fBhf%+ES+ZSo+Wt
z`PJ$z4K0v+&_^S4^KV-S{j1yWv_0PM*j1kUnr{==zj$<OQT5%}oNS$f72OUSXGV1B
zRH|BL{`<=ppAy_Bb$#PIzDhyYvpntm>1}fozqq?7@z|>biPRNtiEy_+x2W4(MM+|*
zh3dsOR!W^Noc+su6!bz(qU*Zi_twv@nfEt^Q`AeetVBfcq;emN*fg*8=CYFA9F9I(
zX`I1F3Z#6$PqDAqwZ&Y|)ktu`yoC}{6BOs2%J33YyCZbgFzssInRz;WDoZcU`;wI5
z(rV$`&$D8YrsE_}?=9C}AG|1ZWWm<u)rl+P&a+*3>ZCC1%Z0heU)Cg9E}PS+!S^7z
zo;fVZ{{Hi~Ssv9|4uL;C{@(i|kvuP9<>^&tPtQI%MNKI${FX^djDJU0>E?^wX8SkS
z+MK&~bz9EGlv59H=S(&4+frQ>mv}Au`cEb8F81%KE2CrAe-6^W`+K!iNc?NFc#F33
z)YYd~&R%(-qloc=kxE5YXwIi^iB24y6IB(3mNwKcUs{m%dEFeJ#LPKt%L2omny@b{
zeRkD+ZuzdfPp2k_U1!(XAF_7es#UkeCucfU?9nW__QQYnqAdOu`LA*|7x^0dH_tyD
z`Q_RawGIwR#hf?CZg`fh{@Ya4Sm1RyGGgZR+-r9}Y0Ac!wR$-H-SyN!@KkXBt^*sJ
zEwlsDlaDPn6so`2zI}IE?PDE(wqrex>|A^YU-Ee$^!T$feU&1!YKO+9=fD2^tqU=}
zbHJi!A<LhA_BWoE2IlHXA23*5E+laOujJk4>xzGa*(Bswd_EkQ%fYr@C3AjmW$xF?
zWlAlAF0PlvJNvSeZ0<!l9k}-5o00zXU#D&EWi!7>bopbyI$(WzeSrFgnJuyl{@q>Z
zcV2jIgUiZai%#o5KH+yTYNo}aZw%7zuN)Ttd~!LGBj}7k>dAU$$F9W1f$ZA<FaB)$
zdeHpn`q{@!_3u2cWqrn}E4APF;#$*>IXs~f%^S2|u52(qcK6=xZdScRhCPYvSucAh
zItwq{egELHpt*0~J;-HRJ^8L}eS-AqyUY`p@2Eatwr@B4q2p!W9lpGH_ixIr`10=!
z**4|!vIqC>W?xiazVAbQ@%PCL_jgwxFnjXu&Ti{D-TK{H(eqxvmf>^kn)Bv0qx6qo
zSDja%H}2c}o^6tQk^VF#*VOng)eU(!6i%FAbChhoJk!c(GozWsq)E-9pV&5jUSjaC
zUb;Esz=N+l#TYZ0zI$HP6cgOgn<LoxWTUQ<z~74r-}f7J=H<?xbt~D7k8_{z1Ey`~
z&!6xVaqOJ1{Fw^lbxljp18ijzpPo1IpQyBI(!M>9pJ|E)#eCaocD{F}my%aS{Ed&n
zo=lH^G(P%&>ed_Ixof}L+?%SXBIMO#cyCeZJpQ-!4&Dcfj@iU}d#vSr%gLwBe=XJL
z>A`E_ZiSJ2KkH7-pLZ%*&rxuBErXr?_W&(JubkX0{nyfu7W)WJUUb}4Ue)scd+q9z
z_4bNwZ+2GgY~FtS^4G)}&9&dZ?zE6o<6wSt{KuTiJ&BW=RX++Jym?f|!esT6i^pCq
zJh*UjTKv3~iO=ibi_BgX^Q-rn3d@tGJ?BgPLf$$>X}rJf9Cad9t5R*&-^Ya(!s$w`
z2a`G_dCPL+qwUr`mb-5|{Uob=*BdYKbhYNYk(wfQehI#!Nhcd`*&m90btuI^S+?%a
z&R3pK_t&Ly-Q4xmZpE@&vs#;+6-6hUwzzatOFuu>Fy_Gzt>`<y>ThK|ogcfgw9jzu
z>}z{P1SW4=m+&rY)3P0Rl=HVgm{l3Jr(pf})n_)}`s=YiR#oQS_umt1W1o3nuUN5d
z-NOAdCjB{m&#_~c_tX%MSN(n=Tr+0O7JQO9S@WR8apP#G^RuFtKhFO3H{}#ZU;VYn
z&1=gipS$z8Hthb3TU+f@p7zQ$U8wJI6=+>^o^4^adgb!$%g<atuGo3%omI%Et#yS4
z`%CLKf4Xt!<)uSf))AjKMYAh>-xd0OX}nIXUfAn3_w?hpy-_)ENMXJG+q>sk%sK6x
z&Zud2#@GJ&exW3@E9lbQ*%DuZ4!GTax*_h}(RJp`jNHY6i(VfqU9Wp6tas__lj~Ml
zzpbBjUG2BI&CF`^YTbaS4`-`$4{rB0Sl#H&Ho2nMXHV2VrQ!-fR{`<6qEfSbL}hC2
zESB^>*tE<1a@*DiAxFO7ElB<NptyRXLaS><<i#zwQ`b#z-Y$1;|NJ0#g_&h44IzBX
z4o*@rE6dul*yx|@{oQu8xes=*EzXZ|-*z)2SRvK3e%E2aUD2<DmwndL-nOsUZ)M5c
z*=zF7mQH!ORe1B>@4GaZJjEE;7Oi@F_EfyPr^W1z^E!WQs3~}TY{I0wa}zV49NE3{
z^1Y?Y9o8)V{anF9B=Jrov!}?h=4~q;T(}c>R{cbN#)fm5mo9&^pFHK*)o=L;p`E2F
z%aV#Y)8^gljd*mIqkdP|uFumo4=dH}HQAPHCvjUYB1frJ_L64OTmjS7ioFkW&J?=e
z(0NsJ*>l~U;*CYi^1c*K6t;T3&i`oSPMaS$wp48{{KuDHxwBx`@7XS=9_XC;oxQ!S
z<3f$C*b2Fiw^v2&IuV>BzP(=dj?0^?aSz1h&$g~Se}Lbup(d*2`X>E&y}G|@GiDvy
zWckoD_^j`p)b(#()c-y`-_9;p9<#zWGnzc{pK-mpxh2Z_!KGE45y9cxzjb<?%Upd$
z$iLcewWrLhfVIxqTeZUG2#5%>hZLl6G@oe+R5&BBX_5d(VjF|ec`mKVi$b%vimu&y
z?OIrtd-mJwbz8Up{vi9V_<ya#n!Ug7?*IQ+-h}_zo4sx2d$ZT>Js0NEBkSGaqEuh@
z`qfvxJig+XZSP9T_&Ex`f8s8ysm(4}u=_)S<ae%vzCwkQj|<Kz;ZfiG;Ks&3M*F_T
z-~1nyY&lawM@9d^dBei<-1FsxKd2kZ)}N8tqNa0PK<QA>6y0AQU*^6zc&L*5-mKQp
zGxLno-_3e3VTOUd{QZKThn9LzKV_Trgn#~t>-Abw>g*gpN&cAb;p$M}u|P?qW?s!~
zCq@46p(pnKWfJ*hI(u%c?3`<-)7O?4O<W(&qIu{J^OJLea*TEJirnq}T_*$?M!%Dl
zQRA2R*?z~^;>2nFJNgzLmj3&^G|Q)JJB!S#tC*~GD_Bs;W`;I@U<>On&8a`icg_!b
zC;UuKWZj4QN$u>X|2Ek$EA3(V`lI^&g9QbZ9uWq0avk#%0?!>hRj@RDM!d%kne39d
zZ1be#9qX%iEC_$uE`Pdt??<oo3FkQu&UQb4=<eU9DW3{lOLi<c?yUIzQ*ay0j^hb?
zBSJi8+~2?{=(S&AzWvtoQ`<Fb?i}93ByuWoCzDqFFZKE}+289YOlX+#aPPsxtL0vP
z=ML9m+VlLcWb^;nkPpf~HDaIi6*cNR*8lBOaCz*KyiCCO_?g-|)s3$tk8h0jEI;+X
za`Fo1%_=iFRGK;rSzK+LZM=Kb*K|DZ<UGRNVydX9CS>wa>7&p=0iBOVAGr)WCkO|3
zW*#Yd6q>|lIC+Na8MQd&`ey>`g+F)vJi?Tu_)%?RM@4spkB;I!wP`}9JFXs)O48lf
zw?X-u@V6G`jg18=W`cf4(hkkM;gqAgP4G6ScoO@@$v0eg2<08gQ<}q}_K4HHadYy9
zD3w=|#))TUCm%YtrT=Hf8QboSVq01dJ^H)x^s#TzRuOe-WdhqLn5D>8c30JRUb6js
z%lOY`>-o~3@8mzWI+nks>h7t8(*HkiaDEfsSC@E_`|q`*lUgU87B2VQ<NG>p&c~$3
z-rMwL(~lXe-?;kb<n+yPGk<wqQ>mKtJmvPu>r3^${ZDN>p?A{!l=d>6*_Vv3R%@B-
zR`1IAb^7vipZf`|YuMu#FfUrf#C$gJ>({jU;@a4d$_Zz>elOo;cjU}kqyLRMhxDTV
zA7|il6<g2eQS#!rW4YC(84JQ2?SII1aom1%fJHXsEi?P6xm&n5^eC)Pi~O`!#bQ<P
zU!(7<W;z6IdM9q{U>Y##+2MfIKXoRrQZIk?x8#+~jw6f0RMd+7K0h|r*{>uR8BpyP
z#k_Q7yK?>K&5~PMwlAJs{LTGMN4Z~W^X(Jg)`YN2uCEEI5EaW?#ncdgCE~}uz=!wl
zOy8oSZeU_!u)=D~x^>HTtutF<CQ<!;_k+6+x)1jq<@ewcFt?a(r>1wV_uE9?%>PRD
z*H`>Gr~b6~ztUvicZKZ1Zyw)_G74ONQSGJD=1HZV0w2mZ-mEw6@_in>ai&7T=Sv!9
z=}WH$OpB6_oOm{3VOxnyq4*i4FK(+@Cn<4T8K_toY*5>=ZsWFP3+;B8IfNa&yC_%m
zm#o!Ny^gid&c8mS8+=mb(v-O9%t%)`H{M%GYaQbcOIell1~`UJjCk?DYV!-m@(Fh3
ze?96y%Z4&Oo;+d6J<;jg>SJDR_&s-#%9`)zTCK%i@a%7n`<$EM|Dt@Nym~EH{K4GI
zTQ~8q&c9v~|6gm@teIx#lXoYTt=OBTyN0FmYR|k@-EX~d@%x+~zRmb7+a0{ezV_?k
zUCY|;eSdGR#C5@9$I4w|x7P1?|MA@x`NhsNU*}(avob2{UP2Ui{^3VUrcTUusuyp2
z7x$S>tboDRzg^|{lD8e+v69;oPtQ5zvTX62?)&{QtM;Dcdi2*`Y@yf_|LfnEOY8hh
zD(u*+c=wW)EVJpuOohn8{e?%H*<YT0r1;AIeMFo<bm6NN(;Pj!SL88F<&RkK=wPXd
z{r$H3dH&NG|NH#x5!)`dee*%_MyFysSN%oxF(P{&GTKLqJ@&qDZ#CQh>0gojbM<E*
zhc9un%iaDyk@Z#LHeb`|#RnKW7tVjZ*f+^#{`IV_3s}vfr>~j9dvwAEW5bKCdvj-q
zp39J1<|-%Rz-p4M;TgSe8LO4a;U_oN`JZaGoA$e}$2{jlwDgVx^F>2u@Xy?tpC7eY
ze*a{NF75i40gflqbe4z~uU;z}EWUGv@#%vstr4p{!w*h=S#A1f8P68Rod)0QSJ#W@
z1$4v|_D=V>-Vi-y_G`sDp<s2r7g~1rqptG5nOhz!cKX1zTG9NI{fk*9SY3FUHsx}D
z@4mm6-mZIc{c()dT?IYc+1G1U?&QD0@BhAFOKDk*ws)h;+IlbP<*7ntPnO7PY8qc*
z(B4_SJN<Z5_}n+oPkw814@_9Q$thH_R!yZ-v)t%c%I<l6mJ=_rZGX^yuKf3GYcD?s
z^Di#4pI35e^P2B^7Bne7KX%Rgrtd5A!}lJK_PBm{-;2AuSGGGW-fnlG^t6;Iug9wZ
z;i3h(o;T)5yq~r+QzELm{zy^?Uw?{>TdSy1)%JV7^CK9<Z%99>4p_G`H2C@nTgi(8
z%a>kBQk~Svc=P2u2`eF<Gphvlm7Xxxzauo$enDlu;V1X~(Od;3i|()Q+L6A0lY`K^
z`6i2u&t(~`<z-XbEYc(K*~#FQ*Ja+G++%jV+&S%kqi(PHQsVY{$=!bMmr3<sWxm!G
zOI^Mj8+?QNiof`^&n)>H3z_vN?QF=-toeFRUoy4k>9v~whyLc|##DbQe9@j=`u^LV
z`eh%vYMc~Lr*5y<SYrNTg;^zk`*P0OYDUr7uD$mc|FIUkv*@7fmhzJ__5CYif8TuB
zz3pSz0smz`mTr%8HL3deFF!*_>203R#QI%M3r<z~Cv9?@JR_)2hON%+Te`+S-G5wv
zUuw2TUM{=2e{;qA(l48MqBfoS<fS!hH~)7AQ?CQj@e$ra=V!f$nY#4IH;rSK?2lvS
zH5b~gvTJkM%dfY%Fhlv*q?PKGN{7QY^Mp0e{<d|^k`gz2@%3I!E(~9pR>jRJzE)v)
z{06H|y-~OAbhey83tsE1HXi2D*W+*3GB1t0`E}=$=#=KVWwwj>Roz^)L;`;&sGI)%
z=9SWUdD0K{SqiPu_l{Q<%B$}D`S<9t<buXso4@@L`M1+md%0I)ZSSMmYemEycV3#_
z)W4&Vd+U*li8mj;6@TaTuqyVt`rL}>oBUgno9nITEYYj~UJ|$a-sbA9BHP+3a|`6R
z9qTE&?{06>d8Rzz<aIH7*NZ0>ZC(D!=lb8<%LO=Jq;jo|_$Gb+gYfe+PvW1Ql=hbM
znEfy#F7u-M^O+*|+Qc6&dbDA_m*T{`4}5kB&swBy<Nf#Z-2{2l`s2&Wr|piZ{*Zlt
zss7Ti9ak1hxO86l?5|y)_~QA-{@U>S1~Jzz#O{&%zx4p?=hpgYgX_sZ=G{4M$-Q^!
zhfSulnl$1{WFqfOy<>AucKPd|Gq#ncysmQ()YW9&cay9*_QN{AU{gOYqdkXC$Tj!r
z;zk=&Gg$+8d|6fFWB$L|ylQbl->+NC>UWjc|4@6+u~a2~VS1a@{Gbl@)AcNTimuk?
z_j7a&3yRt2X4V&;X|#C1Wrysaini_2v*rqjhzd_US+!cXQ0w-+qdeMT5@8A{Mv5t$
zw%-e1f2uJ_jEk#(`usI-(*xRfbgO&c*&H(Aj8jrhR>ZS;54{q)=hg4nzxK_=I{Vs;
zu%yoS;%_e4n9Ot&D&dO!yu6@Exiq!@hoQdluKP`!ZZp4LJMpRQln?y7@2kA*eDT|{
zde-!njE@wgydR}jX-&upEl*Eb+Qe%u;?h*^<x&%sAtdbQwM;GU>eTGh1*PYkYhrGj
ztK2)q5;J}M;is3*E&JZLHKwuuK}bmZBDcWT(|`MwtzT)heOu3@9F?kBtNNVfzxF2c
z``3H^{P`z0YLoKE6?)>Q3iPX<PMTfQHCOrn9375BrHMC1zCVsQsqIo)rkeNeiu_%>
zeEnN{+Qm=vHF7bPOu4!s`^wCNACJ3;)<^K{Gjvd&ZB}{9buG)Z`zQBzTs|&psbsjx
zX`B83S1(ngFFR!Ur)?FBi;LO4E5TH!X}j{<y%ih()<0W$V87Ex#uvPGY+e)YwMj1x
zkKXu3=_@Dy=Lb8sO-P($@!MXd@A;V$i%yN63e_n|SG+gAR-K=Go}1CPW&SL?UB5nV
z74B%T*LZTo`(njC_gP)Oy$4S}+m*$a!S}%8?Z>vaQE_Vyzu2~V_m#Gk2*aMdfFhS1
zF4at@$2;!7%yRCo|EJ>idD^Rp64#>0noOVb?@pN-2>;kvmv6Zvr|fo3$M%-J5-k^U
zygIUL7YJPUJ|1w`P;uSk_nw!u+2R*hv+!y<{fY6|aMI)M<cG#SvsX?pExi?G;GipW
z@Yq^6qc<+B+w!uS4=nPmvY20c?27x(F5_h5$EK2*>>-RFUrsrqYgAua`pfACr{S&z
zIb5a_x9+OSRj*+(eRU}%St7Y$+ZyrJ?~^2%Y!>`)<q}!`{))=#$;Lr9W=u)g%Dkg_
z{xyGhMdO<jf*0-Odj24%D*4kxlUl2mVCg829SJW^T0dOIeLz>0hp(yqn4q$FQ?Bsu
zgLZFqWXj%sDd?}cbK6ye;qIdU_4R93p4Ys(kKMMwY^~x`&upfx><;S^?-<o?44mR3
zt+M2VkD}{8uEMHQabMphc3j`LJp1Cehg(<HURYJBU%bQl{nh2t4~ws58EC({p`a}=
z{qxU*NfVxNeb~tCms&19@1d?#`BOdiuJe!YKTQ9SXf)&Eo)42Qhg!Q-JPLkhx+AKg
zUQKr41YS<wsJWV}&mBn#**kINvE!v?9G4O%9$0gGW$4VECl{ooPgroq=Y)rE&pny<
z4XwLAUh8m-JHaZLp>s>;b+d4$yU;oJ@YZIg;(xykHq4*vaP{zpqRa0+x7-nsa<_js
z^YM!Gz5Z3l5(VtcC3b(Yt-2#0zFOHJJjQWl?BeQr8LfMLJy%?^Y&JM*ZDe=JSiD7K
z({F3*|I#P=eKM;qi7ZjcE;)Lk?{$~goj%Th$({c9?)UomDzC|OX1tU7>woOp&nu!1
z2PbvE`(SM^le0>EVfwpBm5;YyPC6swTl{P3w#9pM-nTYQZa5ZvXWjm%Z*q$~YbGoY
z;S9X_u(dO@XF~l;i}UVh`G4Mi)_-k!LqyD8{ny1GwoL05TzOz;{)?*$6PJluKfYrz
z>9^(a%~HPKHR}tTR=chByqa-i%YrK_Oy>M!3w^XG<e%k-gI6OpZ2oTwo;lg=<CYhX
z?DnY_%J4`o>ki2N({^yy?bgjf4B6*zF2D5D*g0?dzZnVtyzbQUJ^WYCydmbiIPcuF
zA42cGe0n(TNMB9&T&s^OG9K;KzBKv!s_*?PezNPGR*mRQ7L5C~`vUuS?yRDR#?x-Q
zdu>@!_(Ixyv&C|a-4?r7{K%-w^;6vRc+HGMyZ)TIl;-oVUp_E7M|}Eq)t4@lKi=5l
zJDcZr>Hp?Ov5UK`=P$Z3`3X}y+rIAlR-Fr3MG?O9j&bZ*`_-=GcgursR}%U8AD-R(
z@6`f(OOb=M`I)8>pI1bM{7pP~R-$C-&x|@f`)>Y+doS|T@!e`abkRD)lFRYl9vQ<O
zSu#b-FP@68)V|kUKKs0Vv-Miu{LW>Inlmo*^Iy3Aqvp%&f_3w=U6%Lthy;dw>P|7_
zlBlnlm}ht`)%5Wm#dEvQ#lCp5!$XX-a96<MlkJvs;#L?wR-atIzx&wVEst#Dl)R6t
z$4xyJy*Ws@#qokW$JD}!4?LFd3eF8Vxa$8r+p@(sC;!`WYDa<vSJ+}R(LYVmixPr2
zZ;adU^5D<A-OtzGI~2Sr#Di_BnQr6B;FrdqLR&Zf>Z!lO^5g{b<hf1tLB*3cPxjS1
z)1J4NQ$Dz$_r%d<u|kg?ukSw_HuXc`is_co5p%DH+`JxEEp#r}ey#Ok{|R1RNk{*5
zTWHkn_?wXaq{&#e-~E54sK;-S^c`I*gq!tcg=OU&<ar_rZtw7t@=G_JeNHF;PWr9B
z)%SDeRm`pTWXof%w<}dV%NV=yd#Jf^w9x9qtCc@D7r4e{>`t6jV!6g**1d_B&j0A%
zYADd1{pa49jxDv%51m_m?s32xw`=<sho@dxo5i*6TW*p5gX3Z!!;Z4gdZ1=n@bZxP
zrNtMf1qoj-(a`skpR!j}eB!~x4&7aR4>^th%gr<BZPve7WuI#yv!Jbh+W(`rzXQL&
zniur?<0Ze`)_t8$pO0>xFnvvE+D!xABu-}eSAA0F)?SopNr*{It4vHgl9+#AK)tcM
zZ0)p32Cuiat+mp>alou&v)%S7XD-Q|JAKrYWB&ZbdVE4V%A)Q(7AuM5IVZ|>=f7>}
zkJl>pse76KYw6$qqc=;#_51%Y=|lC*=ejPvb>DN#cAe`#ru_%6emb}A-McR72AvI>
z_f9@Lcr#6K)j@Vmo7cSucOCx7pLS%%#Lb13%QSZ?OmIEtEXS+;xwbpz#^gtvx_|om
zZoiO~rx{$Sw*JJL_1F3NyIx6fTxZL?S&~z`MlAn*aCipSB!#|KmC~9hnf-+t6CTFy
z)T#HK=EfhX^W^#S8C!Q8IhLp`Hp{g+@nlKZ#C-wT7iRZ-Jtp<V>iVIS>9dNoOL~=0
zs3e|#_A2sW#LY$LyssbIw191^+gW4hk39d)p34<F=K5r&{XIHyHs9OZo$Wh0|A?lk
zJzsS0`jf`aR<7W@-n<<GpRc_NDY(9G@!?BZS4&_0IZ_`ZFJ@~#C4Pgb$+FrTXYaT@
zez+;`%`)NUxCiwaRnGG-9qKOlbx!=*{DYAdKQ!g%ggCRmTKtuhbzgc!oo<%X=LzA*
zXa4!4Bzt?|_BHbzKh6H(Rj0(oVJ{Rel$-QZQ*qY?zpoF^Ol$VN9ceQ0`{V5&+)8(`
z8C}hp5$}}LVpWpzs@}5Ed!68Bql+DL?bf+*2U;a-8Ht8%eZcfVPI=?r4)G`4+&lp*
zE&HVH&3qL8zMk=^_Pa{k9Y<-ajy1vN%fG+1**42n_(#JVm0Fu4oBmu`zWvv><#P-&
zgzo9)*!@4Neqzze&)vU6E*1rC)H-l9`*KMg=V5>6)_>1!cO{wVIH>j2w;1H9&$+F;
zXY#c9+w%4_+vIu5Ts*7)^2^a_lXl7{b#u4qWj1J?<#g<y?zi%+fs=l>*`$oN-<dWB
zvJB^4Tz~M@r!hy)jk*wUFZa|-rf=>RuhzyJXtzC7Z_T~S++AQ8b#d?e;!MpcFN%3Y
zW;Li?a+K@i(qCXxd%N%Sg0pvm;_JggzvMk!UU_51WX|Ol7uy$|W`6PEy4Z`Yj{H_P
zcl^I_P-HfX*$<t_S(7C+q(3PpPF7PXjV+YAeD9Xrtyv{fHx>uX4UYSA`uLg7W7BRI
z%ypXb_O0e6+XrI8QoCxUADf7A`7S-WbZe=*w^f6b#ooAc{de~yeLNT1D|)Cx?&|T2
zwe^c$<?HOoe8DWWi$`|n+Ij7@pKTJ%bGq-XiP(O>T6T};$Mtt+cgIcpcCgndIIvQA
za>x_er}N)5x7&1IEf@HF{3Q4NlYS2VA(;_<lM5WGIzIH|y`HxI;zveL&g~7w3%1Mh
znf-F&(71dkB>!FNHnytuZAUlkIkxcnX3G`PUlnI8tT#G6p;hOdk<jrkKP}|;?n=tF
zQ;Srb@>uHGjON>MJD=(6pKCv%UNC72kFPYhw9({{hX<?gFnweAy6kcI3riKN&j-sl
zDPLHZ6*%qq^VJHhhu8I3^~TJem^-<n_(w<BOf#)Rlld8TGse7Xs$M)hDBJjaa7Nn?
zEt%`_XD^Fo6)VoKcY3l)`cK44bD4ljjp^?!cW^FiOrGf7yQtQ^{s3=Avstoxrf*!O
zW0=`i)}xoKji*Y<+o-o?#qwO38yXl8Tlc8Km*2#3>nf8aj}rVQ+>5K2|Mz()lb!H?
z{XF+M?)nn9=Iu$Sc*OQ#<848kQy<szYW!R*KRYmNbLr#d)@&30H`ISCKKVYzFx@r0
zH08<XVB<ZnYd_s>xXZu$k?oY*f12+c;0!B$`%C5Mu};q}@9>Ay1Y)Fa3-8b1SAO_7
z_|aa)hNur~l_xE*e6h3o#H+`5)vtU0bbU1U)E_BH5sA;Mv^Viu#fDAuoZNdp`S`<<
zNcY(EU{~uoY@2r}ES>YneE#C~CH1+{dk)slpX~EV{@d?gdG~T&|8clx`@~84^x}uo
z_cq<M2vvJ1mTUL5lgDbc^)2tN-mSY<ABsM5zCC~LjPGmrOFEonp42qw;LR_QA3dZ*
zZC!HjpE&ukYn@xP`W%_p3*3rbPyDRy5BRKVt^a-B{rW>+Wi{`&UEjC<dfyx)Zo@<2
zto1FnEn9DXVC;_Z_;Ti3@!=yKKD|AWFApr(T|enE*W4eUmCpR)+cd*mVWrc#IZb}&
zZi((Ru5-UN|9g;NJ?HCN7dJe!lf1U~(B6=P!S9y(sm~DJX!V+%S?Kwx<v;9{st&%G
zJ8|;|sYkab27g}hJ}4;3Vd<WS%dJj(1#vp6{^PC4tF3SRnCYowk>d7cy-#_zZ=JE<
z@tIGK^;UnYW?fU3wqvjV4xJkT|K8_X7`%%68NBYO-08g4^%MD%rBb*3JI=r*^3UVT
z(mN%)eE*o-nNxS^wWGw!sH}xipBD;5eBaOZ?a<6^vD!=j{Mw%<y><Ch&B!l5%+9bc
z5479D@t)US^xC`1E%n!${~Vvz{dwuWiWl9Tu{-B|-2Wypnf;zX&;QKr6MuG1@sMx*
z=YJ^axtqr7r_WYqc0OLwwru~=9qT<kPwszynd70XJLml`_QLnNtmUpA(aje!z2~~O
zTsJ`Zx%+41G@s+opK9Je=V)T*(esmeZ(H2V+V~w?tUUe~q^j9>s+X^gtT(&;P~GNf
z&+DHbq<xOg|M{$Hic*RBo7>-+SA5PsS$lbYpmfvmhw_a7HBaO#zD|}3wqD4$YIC=*
z#~;qiad-bp*ElG4|BQdU><zD-=f*<s+?n$|PA+j5@L;+Sbg!$;$vMu^Gd9}&rssmX
zJr4|e<+J~PbGljfLF4PI16Lp2+0gmCe#ghVN_W=tJ=RS8lse1*cw6ccxifc^B))xU
zU0kreO82wAjIY|mq;C@^DPOGYi9WFI6!S9XL)HrSr|fv5s&~e%znSlc&Vl`3ekPeX
zM)9devbw!$G?;T-+u8ZilvN)>RNwjg#V`7papop}-K4Kh-cH^E+dR#DI3BHD@sK4b
z{9knayxa9_R$t?4S!>L_o^M__fBd_*m(yQ8H0sVd$^BNndg<2yx%fB!Q@e{V?l>}M
z#u|wP=7aWTMme*YKTB&S$|W!I4Uyiy<m9fm%JNIj|8ObV&g{GRpr7oFM>oq~WMqlU
zmBsD)eet|ehR3=dv-U9AGxeKOG7CE-cdeMLyY;=dYIyx`|DW$BwqBof>+`L{zuIJ%
z+F8oo*tOecYuRrn$v5jhyzW}#X(3y!y3Tl|j?npVy>(q%D{jA<tE-+WyF~Pt&BIAA
zo-=mOx6GdPULoA{=lv;34|s1{+Afz2^^B;AsWRCRxA9q=q?VKL$veh>o|v3gR*|{9
zUCQ3$MDmov##Id}we<_kq?lHgKH-W#?QyB=x9Y>cbCp>mR>*Z8n#nRRs&@JW0YP~g
zIXRg(^6y#q3Ct0X7K@*Ai$PuEinHC$du=VHHyM{EiZ;4GI>))*&T8S_4a-*jS7LUY
z74cQh%V@j2df~(mFHWj#d!)B)mTQdm_O^AZ=IO^Wl0FtlF21{Fans4Z`ZGzrhLZB_
zie{!NiWh3RCJRgvSW_{(p0Cs(v-K6z!>jdqejB%iAHOnb^T!O4-uklayDewW&UBsG
zwq=ijPvgRw)6|dNR9%*J;ptUzlWa!YZmt<!?+yiR{_yXg+p3wHkDKWn;oLXnzS#5a
zozwLlOM9%uzo#mTh)S&9^0uihGQzoD<e#M6pQe+y&fGfFv|^R$8~dO6y1S3sFLrMG
zv*+;9vul1z%sO&^^BbY(Q>3+fMW21w(o0K?cjTV&>))SAT(w&jvNflv?%>)GVxN;c
zb(sNUQiR7DACK^zpNiB}l~hmFYx*yG>{C;`%5o{2x+|kxPS%ddt)3NICNAci;{4cZ
zvrfIWy8ddG8;5Q!O|tP@8`-Jh-B}#tn$#F??C)yWcHz^RAYa!#n)6&A|G2uNZmq9x
z*iu!-YK<p-7V7@fr^ZLcM8`}`{_`aL8GqeIv&%t~W=QAz7%dADx@|Y-`_4lG$%nRm
zTlvxaYsw5e$Jq%!I!W#Qet(rpKJm#Gs%$h`R<69MKJk*5QCG|Bk2c9mzjZu#oz1Vz
z{9)FE?94P#xo2H9kt&b6v#!scvUFX}j>-Rp*4uI=6n^M!@6wnWkr_QLWKJAgj=fC2
z?I+V)=YJZ#y+8eG$jfZjnP&YTHVdYNJ&q7jbGG4LIrF5XC;$7vXp3#E=Ns<i<>|`J
zyPnFHC2}D9t55wiJzu9;vZ4Ct_D>3p%lg3*Vd5)O`5~a9L;gSC`_mfDkNDq~oa;Me
ze22N#%x-q#_rSSQTBYs9RX5(`opvbf>0NrnO!=5?Dc^&a4mn5vww)_t{bDm)l>6D8
zEk8frOE-W2cgLg6*IWN@X=pm%-Qxf2&x9)ObMLL^7gp_x?O9fTJuqZma!b%QoqaDR
znD8YDDJyBL*7&?&Z=_D`HKq4g|4V)MIlY<r{8kBGwr0ERJ3AWJyg5|(cw*h7|BUTA
zKR;rb)i#+t@t^Tzsb<ys9apTxN~5-}%`OZ-!Yb~vjfJU^fiv16Qh3sw*#aCbb2oG;
zcnbuC1gwe5eVcT9<~6IemydqS&raX<oqO*;<NxIsZ(Y;-Z~ytv`Pv=+lkzR!SDv?g
z|I^Op$c>FH9x6%K-`?3+lzl<@c2g7c;j6DcXiQD}yZE%}D~-g0iO=m074NS<@%cc-
zp~u$8ls|v+kvo0<nScHKuYZ$1GP4*yyKB$!{!iy2>l&dt;msdj@3WA1vS||#ObXoi
zBJ`r^#qj>KGj}JjnHheb=$^Lzf=Zgo>P5*VpN@;^#c1@Om~dZe;`)$`(2JZ!_J0&Z
z7hY32rY%%b{3Ke0Yp0%@V)&{nTtB;f8|$sF=ftSa-<b8-?5CD%laghOF27G_z-pzZ
zuR|wxv8+v67PHcG+UoqeiSAiKi$biXsySM_@AJ{-pPnr&I#Fwn$3(f69wKaMr-emN
ze$-kkRzGd^mQOF9d|;WY<hAbdiBQgoucl}mwD}ji((}Se;mM{IHgf$B)-st!%{4QM
zoVsFieR6lBHgjImm7^`MS$0Q>%1z6jQjs=A&B*n`vu`u>Vx}&b`dZ|r)j_`&C%L7U
z)K(of-VnPdG-*?oh*MYCRDr*Xzux?m;#yKsG$m@G?A`E$r|$os*nhOLF$|n*xGT)q
z>h-qTseY>iw4eWxX#TIGRpIf^dDn^Sr(0`&{`6;2ob{z%;p2)I8#i`$s2<s5c)lmr
zJZ-W@hR+Tc*CU;i_Zo4i`%N=!F*ls}K`|rANKti}z<0r-BrU_<ijEJ;%Y=<PW**T=
zGW)1u*gnJC#_f#qGhyzIr$@MwR6p_vI;>F&6VC4ZdW0=Wd1EJsikWb9$J!%iN!A;?
zF9_6&2o>;boYJ9IU(}iJ`f!o|u_e`=d!AK)?dKJ@S2#BzM@@ag)G3X>e(z8&Kf8bS
zPV4eL_kXMw{^s}N#_ZV@?~knU3|61|H*s435qJN|U#6Yx_p#IeI!$h#QMT9HDf#aV
z4S0+%OK(kIymMaFbPiuve$T^GPks3CZpOa4^78oko797@J$gCW@BV4l`r@5ow$*d~
z-<x+o*#61FH|=YCFPyAe{5`-xN?FS3`I2Kin-#5>Dcqfsex~S&@rt0N{L-@U^5;_x
z@7=7Zo*#ev-tA<gouPX2B5e}8<Z{2oOo+17E_kpZf?HwUu8o~7Enj?ED_c7QCyDRi
zj?oP$iI5KGfBGY{iI3a$diVju(+lcbizZ9waAjACZrS*PS7=>Ce8GZ^H&c1u@13o_
z*z8U7lSN-Psd#O8d1<#z`@WBk=aV;oOPf4}&&50U(PE)ny<gOdg+m-nxp`w+zd9_O
z`*8kQL+cAgTb?Wxzgyqd{YL!X`p=VVm=#0hMW!9pPr0+~R=7+q^I7-C+LiV1wIp?V
zqv}6h3I3B*C)k|(@_a>1{ddRb6R$tc5UO3tcy{Wvwp&|7yMG&7@iaRutjsV{y0F(s
z!tZUj&4ie_Q8HP}UzF>AFXKJH`f9G~dEc*hxhCG6oqY9=%rftw@{_eMm;&@=`fl#h
zGfA4N<2GsEnj<f?)@?Rp@Q$x4&bWSQd09@ZUN>WCy=zeOy1Mw<QwpWs>0drr+pUo5
zU3|ARW1+~*ZJr7KQIjt1@k=Q0us#-=T*l1byUF|FJ1qtWBVjeOTgx^qH9u_l?aNl}
zB}difwf|FSG~X%yHlxbXQq5wb{Bixrlm2{<mTy`wH&JYQbhlURIkEKSy<aL_3=?u+
z6qQcdJ!flbs7U>PJ<SV6e6l~hTJ|}YS1z16FHf`TL>Qa8&ih$6la?=)(por&b^6vz
z_X1ud{7C01Uc2&6nsoGp{P=@Mo4aafw1jkD`;ijMclqM2&^nP7+x>H^|8&m1J%1YO
zfxg3r(;pkp*tNWSa`)pqGvBr~2F}V<apPB7ue$z|a7v=UeEF7Q#(H)8S<TP>xm7I^
zKlab-6dRZ5=BK;(7hQ;{J9J_8i@0B(qUD;m{N4Jf>)R&1g!yl~`6fF0EVD{EJx}*n
zL<eK9bNK4lYf^N=oLf(Fit22+vi*B$+`bb$@@wC=7+?ANRJ>y2`?QWz_vCWBGy|5e
zIi}f=_WA#j1tJdx?;8HC-Oku^rJnO=x7oapX9|8^_$nvbHG%KLq(w2=dQUb_m^yuO
z@=ZOLDREs-%p`i3-qk!(v`fHyt#9y_^E>}5oSt62Ph|a+H^I-;#GbwBKILol>_c|m
zn$$0WzrKhR@7dtYeVv1^Z_)H^MWq2<^Q|&Owboq;;%9H^x}ABs_~z7r!%m%B&pdnK
zUY{&!!ns%B?<{@6&xu0sC)&@N$6K~=yZ^#7ic4>^_uF=aEs(V7O}i+4Vd+HmrBU7u
zs>0tKnch5{w<T$I-ere{XBj@<kdF2YkleiK(_<qE*`K?%wr00#t!P*4S@3_#(}tsM
zhppr*Yde<gsJPU3%*5S%wU_wq|JTYkZ2GI<DxaBEzv4}s+^faB?v=Nu@1I`pe@kuQ
zZ$Z;7-ydcwR?AIEb>v&VJ#b$5F|(ViHZ)h9ynT1$>1Xdlf1P|}Shn<^>v{Hc7x#-g
z>nC1)@4fl-^;OqiU1vJI{(<J3lWAMNyuYthe^c6EMqSnNTE^mtM|<*CYri$Ln7Q+A
z^qkL)kGd=Cb1bG^uU}}nN2c-3{s%ix?f>$y%BA&uZs|g9=MzPKg_Fgrj8@4iE=kXs
zduMZjRNs?A%f6*P+m{IWnoiNkeHkON!K!0>&Q=}sY=c;ly>@JeEb4lu{_?%_ukrAG
zj*#UodOr?b$+qkiUu(nq_KxN3y9X^M?ziw-R4t+-)_wEPrL(W@v>ei{7hnv$!>8RE
zld^hiTQ<WhRZsqq=Qk#Gl^g995>`6EIp=M#Sx^#(QTjXcHs;-KLfy(U(vH^g&aRrO
zSCYqJy5sW3b&tCiA73o==K6xI&97UgKlEUn{&#UaSM)L8{UXzjKC_*c;&E8OTex7;
zC*xfE&)H_2|HO(t7G65yGU<z#31j{4Yn|%m@<K+x<Akqzx83-5<BaPE#%{B}4S%2L
zZw$Y6PiRB_{?^*#xo?!~4@UjHDS5Hb<g~JT@Lsp93yzxhCs`)2Soxe%(iU~(oBjK2
zXyt?>pLljE+g=lBYu?kKK0$<a;neH<9s5uF9V&P?@yoM2mzvb>%6eYhxhP3(UVPW&
zruwH>Yn1%DGBv`#vF?d%J;opKqEKj7SJxdr#?u=8&(ABQujilDu=*KO+9tNp%BrOW
zy_@Cqi*C<|oAmwIi;y218SL-5xhC!F6E8~puz&LUuiJmVdU52fsIS0}pj%E|I$=AG
zEmDYi`PITk<kRF5r@c#$I(>B9zwzLM^*Ij?Ui+uNqQ0U&DBF*nRqdevq5}u7aatbc
z+Sk`nl|QXf`s%-SKel_vGX9J9H09k(WRIP`NZ`}|`y#hIx21@R&Wr6`RH5z6UYDtT
z@K)ueGnewLr#+V9zUr=J8QZ#R_IhW1Lk&q+GgFgkdlJ(5C(k}BIZfw86Hngesa|S|
zr)Nx`m1HO`)qAWyrPs_-|2_N19dA7z?RUJ9zoPjsdnw1CPAeUuD-RP5bIqUUp1sfT
zaKV$N!X5k0pDKM@uFa}-Jn5;__c_m5c@E{fyth=`Yxv)N+6#s=m#5seVf}MJ*!Fqf
zk)H>`Y!n#ECkGq8lljBovssnp$<k*pew3Q;k-R4#dp6JSHUICHr^oAO8#x|7TAU;H
zO|NZtu+p=cJPTWI%($d->~H?5(wvwJUm3*hl;#;cZgc&unY++cZFfR7W9Jw1ElIZ`
zCOy4!?cGtAE3(>J#ruC2Yew`xy}!98W$qO7Py9)S=O0YIXuG2^bwN$cwC@W`rkuFn
zyrgE8PJVZZ#ILWhtJ1e`wP)Hh<54~H{COvTKYSeRQd;tTTjJMJ2bG$ef37z+9=2Wn
zDvm*M%Hq<xR}!ms-<3CC(Eh@HVfTx!E1Ay@q-7f2)SbG+Wa)K#Ct<sI`y;<kWJGUk
z5ua%uRiqGl;ndCj%cn9fHhdv;EBd$o)=QH;!$hy&;$tY?YJa7^Fy%v4q}?*JlX;B7
zBK1W(ck<-5FnRFr>Mbyz<#qns8%Md9GmkA>HEmn-+o^dkmfJ<QZ~XbJK`dmN%4sKW
zF0;tRf*;QQvaQ*_-d7?%wQ%lQ))m?6&SEDMs*5sO%q+EU?wGE9B4I+`{}`Y3|1YR5
z+c|k!P{Hhvw_Z%Tlk`@xG3IaP`RnSg;)WT<pFUQ}*0*{kW+uA$U6`MI{(U`j@Gh>2
z@{8M33Uq%Q>Jf{(bWCS;cXs>aD@)V;V?N5ZHTKA*eso&q&!m6Le~O&RG~?B?n@(R#
z_!?!BY}nubhTCuLf0yPb56?*cWi)-WY}(q}yAG6#uE`CS*Z<KV=x6UV(<AoKN@?xB
z^tR{mK_-5e`2FgOGaXk>+sNKgt$NKoH?~iht>&VIMbvgfreyY9Hs!}Ra(g%GF04}h
z<{gluzx`%pwddBg^33w(%CVpFJ>>23_wSF{@ujEw^m6ga#q1aE&iEFr@7*i?=4VpX
zx6eDGxsD&1P_$y(9Pw8w_ofA<=xmlrf9-i%(OY|8mh1z*LfaVDda+GHuWl_%w7*}_
zaU$^5w&RA3DbbFHC#+qv^$EiU{lg10ZXc?Y<as|?M2fY3QAS>1{EgZBcmsk%o-MF*
zd%X0e=cz9h3m#pX&38Is!@aLjcO5L1U0zT9x~@k2*L(hpm+#tLH}K*8w9tIfi-`f5
zbsxK?wAf5d+}zl!*6zzYZBYzIeM<frrNrHtlM}0*?VNwh+O>H9j3}!ACiv#$w=#<d
z77>?km#o>lwQ$Ay$3`*BCS1Ry&Hu~I(aEnT?XjL(MUJz(yRUq}^#0sgdW(B6J6+c~
z?sxR6%C`r1IIrw)`}Z+w*6HKD>vM~3zb{hE{ODTk{_<iISKGcV%dNI*NPRc-Z7i#g
z-!SXreYx$z&w~H#(f)kV<i29Tbh-R>_Q#$~UHNUPgmA;$ogcXt*}sz6qaodJ&t&$x
zl*=pj&(}LN-RQinIBWgykD@A!m6uE9e&_!>T|GIIuh)2^h2#wjj}zWk)^j8_iF7({
zXn3^zZ>pZu^V=L(XFOYfKefmEXi0-W%>K{Utj^VQ@~zm)k^a3wXidl0LpN=&t=c9f
zTQF<s+&$kbGc!7hUZ1+)-SK15>nGX!+!t7{Rrc9okt8=y$|?AKht0zmEnjvoonFzI
z&!Zx$lGc_n!!(d{c7j>ipY{EVXYNZs7+bb+@k5r$v7(bi=8JRY7`(~ywVQM^E5k&7
z`32ian+*bLmeo&swD|UtRv~7UqR1GT<2U|Yyi(0~&MA0F>9H4;4hx=6K3`CLuw_T!
zzULc6s&clfiuSFFa#!BR6e4}gXqESj^B%VQzNR?JyeJYaJZ)yMTbbMFfu~lF&nb`7
zooAP9c_O-dM!s6&>WvPWeFogq7dbqsU9EjXo7J)=Vuwg;l(1!Oedo!Ov%GbmUT|5M
zX3|+QPrGD|scN(mL-+-Qc=MKTHGe)CE|LF~`7_0GR>wRC;pB<pe|wi7H4e+#FA+GS
zPqqJSd(Md`O1GS}t|cy<@n(O{DxN8#8+|=XGeaw5Z)$Hh+{wzi^2ZzD*x80#>M!QC
z$sG*ersA>W+5cSaqz_+Ttn05A_`Q8XoPGS-lr~MNY@4O$bc#<dSheL&Xk51DVGjL+
zN005Z>-x8D@7_h+Z3S1SiC+t>IkBMRN5YNC+QL(BH$P^(SFv~N^DRAcg?A%#UGL@2
ze9aWb{`)ukH+y~N^4j$1&{EIxiwb#8FKj1E*WSPTqDuVir%L&=k0gD5n`_(?R<EyB
zQ`HNPmdH!-P1qt5u_B}Bz?F<`PdQJnP)wX{7@ylGnBf{UoBRI#c(cuUM$g)heCqJH
zwV6+HN#e%BhYw{}{o8l$+`fG`&T-7V@Z-+B>Z%L3@-99<ahv;SpNnVx)+5RP!nIE<
z@A)%LK7OhFZ=X=B?rCLSL2GBGO6t|Id!@+q)o<I@%sxl;&1dGTPfd@89@zH%L$FFw
z+?va3YWX+MR*5{(V4Sypw`)A7$D{wnD)ZiZzJIUYllGo#`uXJ%2gUCHS)4t~=DT-&
zvy~M~zS^>EsfQg;n-=Wtyk?R8a7FsZ6!-Y>_dCOm2Jib5T;ZEoHz%^T`0RCy&e^SO
zw_7IvuvToZuUC1p{Pe7kcltkmYj&O{^uqZ6mUkE3gnqioPyc<)smpPH{YN&pa<fgE
z4AU>KU7tUp?NO#yZ{q4sSzd{6-e2Nw`JN9;T)*S~=d8ag!ez}PcQMC>#~;5qJt|r3
z_b1(oN0E1GTmIXWa(w-<?<HSHf#rJjm8LHpT(0VMu&-78tY%dI>)-qY>1*>p+^KiE
z(*4f;;fp%`E8W4<=bPut+4s-?e6Hq;!L0ue-Cy`;d^@!I4^QN`yqB-%YX5w>XS-U(
zRj#M=FFI#9-G1rq<oC(XoU58O_U{MJ7+$;i_p=<s1J7h=t|<DtOqMmL&-Kq_qa70q
z+@nGoL@$U4Yj<?bGM>g2_osfM%$@MutV6uJR)3p%`KasBvg(W8&Uf<<wu`*|{`PYC
zvcET`-c!s}t$*(yJ^8})l<mKT#N5A_3H37lVLG0`urlvzW?N>h-S2AFC`L1f@0=$V
ztw{_^Hk^}qQEyV*-Fw#yZ)}&$+N{0RH?>FBv$*?P^moS9jbCzHkKDU^X8Do}{Ppgd
zc7If>L@Fy6)<1f@lDX3T>Wc2|%%|^fuen_!x#lHbedzx<tzw<!Zv2KJ9wmRo?hACR
z?JAbmHw>J_^zY#2Oy-}58@#{W^^QOJpmgbP!|R8l)K-~nmb$g_-nnO&_w6k(xjQXv
z+suQZEB9+v`D>g!{e0=q(#)MZf4n*0mJ-T;sy^V}_9c&9<B|mCD<|H#7HG9)eNU%P
zc=~&f?X1NwCwS#5U2o|OKGE%(v~SLra_xKHbK9Ry3VQxx<%h$nPFlfCt=9{CrYB1=
z+kF2YnpMNJ{q*V`8|DPCnO?|R_TobPHt#iAJCB}UawO@H`JXu-cB;f~*Vaj@4#>J*
z8Xr=bJ?r1O`W<VO{`%$bd{-?HB@-HYB_n&Ml9TxbH~lNGA~oJBRvz0TZ}d^MBXmOS
zGcE7Rw5d(5|IE`~Y<tm^6rz<dS>fu+?30=)MrraV@=VN_erwrO|5Dk-{q~!S(Np$S
zSz5WeWy{*<BpWr(;@<LTuGN{VV(E5IHY6B4pV3>lXKtm8DnnAbmf_S5KTDSdy(wwk
zyroNcmtEH`EunjtR-60yPq>%4ZsPKo*|9?Rckh|Q|3CZBj)S`|9NEn-tNKkTePZ&T
z3X_X*Y2`ih8*(Q9XJ7gBU>%mBPBYL@XT6b$sVVZN+o@sIA;RHu^FGYzaaw8Q_HfI&
zCE3{zLo~xOm&#?Y4XDWuy`r_XC0vMuQ$V4!DZs&?xSb`?;gq*i!v~%vQF5u_Z&z-;
zeQM(+t2f(JbIYr5<!+x^w*B4Qcd6%Z&Ti<>{eMg4`MhG|@@IAX?|<K+tXTi&4@alV
zrY8sfo!z*xecp|I$?bltZ_nGURrHkG%D3zJrOS_;TYhYCiFu`LwC|D9{+Z4%_Qn_e
zyZdba6a|$}traTE<iGSx=C*lkWy4Z%uw}lBlUm9XTTwyDooSQxPET1JwyNl<zpLB2
zxSc}%7eA>?{?p3wGt9N9?c9R%0jEW8iPZnR)*&nSX|5IXzhGVd%b8C-S8BDY`L6Sx
z{NCGEqyN72?)3FGdFR*txLbW#xvur=J(0&;9SYwBIa?0Jt6u!^^oJCOaAA+ekq>ez
zi#om@;Xb0K)YhRIr}C&n_efY0cz?+owK%13kA6Su{CmXlk-)zH9D=W$Jvi)>Bn#(A
zOsZcq{mah@c1P{z|H%7Ld;7iM{*?a;|F!<Ve!}=^m5FOrXOwH~jPGCeaDTpj;GP1*
zbgu_>JFbY=)y0<C?G0XfB53vG>aBmpt$zKQp`g&g<#_2?+Y;$tyK9e5PTH8`^h#&7
zcUqd*q?PNZF4<ss$;R$?@8>;tkMTGbxlPnC&9qF7Qm?;$=Fr!a$<5__FDjI0YiKR_
zzxv7Dt&Y1t)vq-7a4GHLnWMShHnLZ(zLQIHef3&P>42)qiv6srp+~0~S^S*8V#2CL
zQpwf}Zq15{y1793P&bo|Xw&^!i#8uw<~TF>^lS-TjV)86G*(Qg6Zx+iRhM$}B=0M;
zVD`%#RoOqxH7_J*)+Zc0n9-MNek-Dp>07g?NUY3f$2;eJ>?^icEt$M%{`Pd<+3XBg
zZ->21xp*y8(ts(siqSQEWxu9_=7MiaEq_HCeDM^IiE&L7`SATvxl=)}w2$lV#DgMp
zmE_u^Bx59gHqY^7IobNMifi4>x1l_q?owN0W^L-uPMK@Wx@6w<`RVm9zVANxvT9$d
z!Qs$X3?g54el6e8(Hpm?>h`&{hO^GM&ES0b)O+#!nEfK#`#!!Y_vG03u+4vmaowVN
zk*gD?d|mm&=om-W8P#8(l$w*I7hKEV_w8rF@7x^|maeofs42>JWaoIBll?CBrM$ZQ
zMwJD<))y}=zrcLomMe3|n)mX(XL9PT+ijK}P%}Re|7%A?_wHFI<x{65F<OQnu>Fx?
zxN_stt4o=<ezvT4Fq*b)LF@gN|J{<z&AM~Ty6#1;v<`j4bcN;Sn+NO>Tlm&ZyZD!V
z^1SZ5LiToFud;`)kCm+YnVRqUInSw6L2zn$*GXnoQPs+}aK5R}8qOwsp1o|g$Q$Li
zYwHs@ytdzQ@(xJ&QM84@_Q&Pq0>he$FSpCgxb&tk6izw(TipF0hueXtdv2MEOw%pl
z+|J5bQ+O);j@~}i-w$Sb1%LT<c=e1Up+SqUtqHN(q4q8NNtcT6%!oCy6>QQcm+9$T
z^SO7#%}M-=vb623vxjcE)-^x*ExuZ&XX}SG>(~Rf)%PunySBM=dv1NP`i`mZ*5CQk
z5@D?Hxnpjiqwdf1f1NL$v70buwRup%+9`ayFMG`0K9N_)_Q9OM74K%xZ}Fe>Wp}Tf
zK-8YqTyB%&<KN3mu04D6yh7=+E8dRg%NW`w^HzvjM?bf|U@xKOSkyba&flg<@B!D1
zsRcFDERQ@8I;)jm-)XNX{%Pl7m32RO^N;Gtc1mn?yEZrZ{D~7MFQ(imuBv+TZJzbJ
z_M10;yeyu&u)%tggWz`)M&>k;jDNMCXU9E0&)6f{bbsEAeTKG<{heo-H^n7Soz&>|
z($aX2_`w$rSsTs%u26nm%6p+{&GjN*k-w3Vt0$T>dOdEPcQ2-o_vNH|t=^|E?|s^@
zFx#pk{ryHQRqpGaFE{%CZeyE$Ugq{`g}Em4ji)v9c-=f{Y9xPtowe2OcbESyY@Bv^
z^J<>*aMOyg(!2a$_2#a-e`%+<O7)8+=EdJO?GkaQym2Jy)28nWg?H8+PCNep@UrWV
zCY{d9_-Jxxvg((v=o9ik*K;_VM1A>NFML7#SKWWxB{R2P-L%4XV_{)+Ud_*+S65#@
zcK_~I9^n=frW%ii!}pYy#mx-zKlnk@>PdZ&=1K$G_C@kfb5yr_>DR0kuT%Cew@$aX
zTFYbSX;!th@MyDKd4jOz47-SLuV*A>+?pKn=C5a~bfo5zs(=Fq<}sg{+X6JsP2MWj
zyQV&kuX#EbpUi?+OSjz7R<iW8&%ZP)ROju7ITB}BijGeBey;yj^|Tt9Nh*6eYAQdj
zpRggIq~~5*R{nO=((2?VQx*s}*^4B!I=mN~{2)nkNAI*7msU?RZ%vthY89(l*R<Qa
zZtqKY@!X#6Yn8WN{sxJHYxAGq&UsVHv+U-bm4_Y%N7V-fuFCLXi>UrG|3cdy4OQ;2
ze>p$46|C^lU~<>ks--Pe{xQM#-I2~~pR9NnOtRQJFILm^Q<Qozv(&+x_X5w(*vY(I
zbJcVG<T$_fjjeL!&SLHt8F#pp@omuzve?`B@KL<pN%kvg21R|Xl?AO|-bHqX)wpac
z`j+zNLrmJ`;-K~QC#*Im|L^IWlxQBLuD-l&|4i>Z@x0HbIyYI&V->Dd6#tf3{AI`f
zEqbjx`xDi@6kcvjHy6u(yyKi7o0-RZwo7wb=B}8-GyBB66t)8oX6_5?@>_9jd%@Xz
z3h$3N%3YaZuaZz^&T+70NrbN6<gc%_K1)7vf0p{NCG&aC8-<k)a{}uP;_L$_vpID;
z*jdb*+m)i&IpMp!O7uqAxi_cov<Ns^GdFT+-pUupj_qv9i`u-#z1{J}>;<n%4)6Fo
zdxGPah`kG2SF<k^Z`gYBRvqg-o|kzWzio8XNUz~eIWoQF!RO0g8cuZXpUtf{=?lln
z)w9`*xURMztopzC`#t*)rR&XY59ZgaFO<2vPUBp^?m2GLC0Rwi4co6p9C$4<_vs1y
z<yR#>Z*`y3DLymPfX#XBR)d&3VwcRsGtYBvIQ)6`>7y=@^=YYw&0-N2>;(Y^L0oUt
zV>x5}s%!Z(7C(^Ftp6BhXlLTLJ-j?o<!26$!<WE3({{5K240JKkt_6U&Lk>MNt>Qp
zuO<7;YFqE@bt`J7I{AAyw$(q~^vvnq?bLk6S97K}$LI2|fAD?&DJ8Z3_&ihoV1fIW
zkM<rZm(RPO7s`05;qRP8?c;TPW}jy&Om>opKNZ<){Jp^HyVi;Y7u+;YJldjh<jr0C
zvj?}<u-3*t*5NmA$Sc^k+HTAGx|aO8N6)i~UhneB&VG0+DqHvDneVrkbI%EvwUB3F
z<M@1+aj}{9`=24E(f+J#_f|alnPro0d3Zi&jYCfCm-rukMM_v2bQa(SovDSHA##JR
zHIh9-B>eikrDyt9tms+neM;xzicZ~QVvCP8bu}$;3t6KP;c)BJrPG&wFZ_Pbx<g`j
z5_jNqiOE-2bb9&-FYfGAyFdL;`Xujv&-b5hdN5u8XX5-wz3S)lzRmkS$5=br$46qO
z&$5Co+wLc2TOYl5(6RpM;;PzXTfSD`W!e*S<=6RVUgwQ3aT~pKRrWNQHbu?W&*l5>
zSN$QE#U<Uu?7iw!-7aW<e(LeJlyUE#imOeAQ%~M_8~1Oa@$&OC46A3pa_FeqKYRE7
zt7jyQ(|l*Ut<R6z*%lG$zkO5j&9^JLK7GEE|Mb!3<EQd=9WGgIx=P{K`M>pH>sQpQ
ziTS>3cg5SyL2ozT+EBjvs@rkV*RpHF*2V8Gocnn7<^RFA|9zF3dh7Pl?pLOtQlE)_
zt~|rEc&Xa9p1milChMLtOJm<Wx$vQl@6}HR%58?JZ3by)0@5Um=NP8D87R*T>|s4@
zyjZeP@^DY8&P?$c;*t|3kN2d<rKuSR&#XUr#w5+^vy^dj<=mM^&!jywD4uCP<L4Qt
zG{Ma+8`Gv4o}MY%!@GG><k1^OWj(f!53EVNX7qZ-c1ia%=FJmt9<eZ-JyZ8gSeo_K
zV>2VuTw*g0%}Mw-MR$5_l8RKW5tpHs$*%(u2KVy+%=PRzS-#BLXMe)>4W)1VKfU}^
zm1i^kc)hLEBf}@M#xrlOTzI){8E>u0nuH&p9;P1tfBnw&Kd%M#dkUlkt%^=~Ts?6v
zu-k2Fw8Uo~`7`(B_NJHYeV`B{mu#h0c4qR%i^=b`u4(o~T1DKe*Lzy|@aN9+<q4~Q
zE?u3m#Pw!qa;ChV*aGLTGkjJ&FX-Q6`f<&&l;V;cCl!~1`hQCszfLt}eXCTn>tS-z
zwBuV(doQ?loBK-Qqc}^$u86%7)0*PN5(^fJyB~UbE^=My!{?ifJ{2vPmHk1Rx2w?m
zj^d#`-rW<rAALJ{*x~LSmaVFf5-n#<pZ}X}U9k$&b<WqH&19R33!a^sxXy-8{A-VB
z!sgH4t_I5dI<ekWro8QJ{TxfZtCHT^q**okPIG7~DDS`3IIThL!xICok2~LcecEii
zV8&_B6(7DT?(S%M(&f-LuWE1ZY1Y@b`%Dj9O$~dZarWbca}xDOPcuEZAp8C9`Mg~_
zmt5wzD6I)tBXsEVW24ChauY=-TPCni{wAneS?6Z)m93?CW2EEO-W}YcGqh*bC!a7)
z&a|%L2#}gNd(JAo*qg7STh64qI+i7xO(~YVup?SUdHT|;OXHf|PRC??{lL&KAy^ZX
zd%1@5^FF7^vv~>+u)4OiXe(OS?=#>_eJ#=wDK054$nQ9<^Fgu8k%{u^zn9%;>QCjV
z*s{$@+jN!T)2O1kW&ihez1I7hm^pztrrtF%(s1jVXS;Zs*GYRXyt2!zyhG%qh0J*|
zhuOQWcU-<&VdN+0`M)H;nMt)z`SDGUg8b~}ZA^m4A6ry1{teFLv+!!WUAV~5Zk_0s
z>U%eL-oAgkIDhf3&@)YMuDsb&(Ec`YV&_FqMNWYut>W#|w*4s*>^&0qankSLi{>{N
z1I=&Lr}xRF_LT2xDSK~qes7lk`dZ(8y6xGsXS)_>-hV&2Wz&aC3Wf}i4n0;rF}?nl
z#-l?)3`sjDJi5TOk!w@;X0DH?@8^o#R9(qnIj3?;*r|)B&b|5|%f%<ZN9DmRPK#+0
zf|EU;SSGn&`{Q(Mk>D(wgU>JcZ8<4^Lc8q9o3-2DT;PeXKiIkJ`1ZWG`l&ubXC1X?
zW?!`NXyg2{#MIYmvwTaZ@sgmh{t82hN6NxV-_MnHaryCibNaA}F4yzc5Ig-a<67t8
znDc)mKN;A6__VGyNi}W5(XAJjT$w*}$yST|y;*bn`}`;E>EkN>RJ7vOd%lBO6OU~8
zbK>-Kxx03CEsy2*-LI^FrB!q8;fBubotB2tKc3yG<qcdq_3BbyB@q>oV=3bEt?vHO
zD=4?WYv|3Xy=`Ca?#3UJOuJ^>_`!0aAZ}}b(x;g}8lLXF_U4Y5>Q|m+u}9ZNbqn9k
z-p#%HqR;l|<G(%rW#}I0eLFpOwiUnW9(M7a(bwdKEG4%k&F*zyyX=s{290_<ea*c)
zf3iJc`hGFeJYBV-eYZTvhcBV(yH(fw^RRz-xF>7Hkzk$q-+$a$wf(xqt@8oz+FXC`
zTW)N;dGms%)tu`BezUh!pZoJMSEey}f8B?G_sJ<+E_GiyzTIlKRqxV>J81=<qkm}M
zmYTjfK4fFvgb6}|E=?!pyJm2BER*<rqPIR<%y6;+-<yW+@UOcf>Nj6voN3M0F8n&J
zaYbavWBp}Szh`f?aM#|w{IG~rkbaE*pFJ<slhk${K4)>Af$w_qoIfu$mvnvY=>8Zo
zsi>0U$M%lY2@_{d4!>Wt<&9A3FVF1Vtf#N<TNrZimCV)MGiO@fymG|t|D*#2?`PP4
z-WS!VW>Np@W37qU*QDNE7nX3}zY-O*W8)uVpFd|jkI$cGQ@FU{&6>O<6|2VJ6`QjK
z_kH<$x4J;UYmt%g3xAuIg1S`4(ygLPeP#2+)q{W7xwi?Y3-zj9>v#QUcdG6eSG#8J
zu`?TE_xo&Vwv~0f^<vf*DUC<F*3J3*q?>#7v~OMhmml#-)tBC7lMTDfZGTnZ^X;<f
z)5GfG>Nhdpd;IR)Ugx$+iTOHn^bh?Cj<);!^oO)JQ~3I3)jLnxHy4OR+3fhf*n+>G
z<F#yARCmqlt%pyZ`#d+@ZujSVX6mVemF^ohmd;WC^!oYDvR7NC-~0dWVD-1`s?XB7
z>_ss~KeH#LPkP^)eNVT#{%%d^@6e_1WRs2@+k5cg#*dz}EI3{-oxI9j{9?<b#^2>k
zQ{11pq)t}OSnW`C^1R-e#-h`&9yA#kvP}vyF?^zTb8Sawe@AP=g6PkWK1gp04-}a^
z&#5swC@#P^^5V;1v0gq4C$(PK#&4ojc_!;yU{cmq;mh(lj@qhfMpu`db@s21s^2hC
z?#t#fji5)#+g9wIzGch*YhL=SCtnr5RgTHlIcm-sFk^!FOv(9j3=bXJyhXca9G(@T
z|Dn;K<ED4p_Yf_U2mBvT27df_aZ6X#b;p%IxTC|I7mBguoqAP2`%%ocsy!>C1zL-F
zr)btEdcXeiqn6v8+vQ-~VSeAQCxuqHrq{1MT5iR2J@@iQ^`#Cm3JrO;**~9NA2!#5
zKlaX9)AG)Z9!!zF`W3G=9U|{9wmi_b^5xFbD&?Svd-A^POYR5m>vLxf_rHDe(didG
zizEJBUcXw#X3A8PDbe58%+?i>V-8HIoV<Sanz>VJw^X^bPtSbD^4MwNRsKaQF8@`$
zss8Tj&-%J`2hPs;EbVtJeE;9I(Uq+C?gpCJ+nVUE;oM=iVokuJP1^$noD~$U6!k0x
zCn;Z%<F(c@V|Hgry5xO!^~8OTC7$eix$pkzsZwj-tm8Yq;)uW=jR$WmEoMe^9oc$+
zUQ%jkzgj{<>pGpjz3pKZ?P{!&pUfm3=Nh_RvPrtQWpad2y<fc+TSnpXYmeMz`>xKt
zl6(DQy@#fI>pMFsJ|3Z54_3AZ5j(Y8w#v4wD*BjsKRt1s(pp*T$bTAY`AN-+4;I`r
z`M7M4rCt918^$fX*R5mMdj$6%t9H=!Jo(9ujn7P?_288yU$-p!;k3g;!n2tt+UN1w
zc<qx98;d8ryeN=%;a7dZ`+duwpD2;=@8`PyI-YTA$ngaZtLpbGc{xS=>UVjI@&>ir
z)h55$!Y&zXi`PBn7qMt-#rop#=g;T<V5)t*dMVGUB!!BuNpAOoIL~_3`Awdc_2$Gb
zr$uVV%0&yqTy`D(apZS_X3m$Fkr5N-h{i5v<1OgR*&(%OYR%$s)h!*iQuRC26)H4;
z`s|JPxUO-|Pk!F^-^)&YE{{=_Hc~43!~H$&Sn5%+Bccw9B2S-)EKRTNjbs(yaYZgZ
ztlnk)t(q@)8>_tTe%K()ocXb1vYn|&|8zE;HE#o#Za5O>)s@5RZ_hAIyZY;;aIIex
z-E24f%3V;iLN!#Y`<tz2>pNA=(uAA!ArtB%G*hph;x*!(d12+@s#lfewatY(8yYPH
z+7B>4v9JuQWRShEZ<Snsr`b*>ivyol^al3rYcx(2TcNFd-fdoU{=?W8P5qzzMdR}H
zc5rWBsJpC!Iedfcv;$Ip^4!(BYMH4b3r~i$?BC*2vEz%~#O@>i-wU)IVyN45ao#fH
zqI&c9_Ddo+WKKUT@=?|2S8r{}owVTmCAMGmyYovkRu^9keepwn$)|RwZo9dQGp&|a
z6mLBF+bOi*RTIa1XFs3Pl*RQ+)#g90-+L`?UF+gI=H2fv&GHQ6`DRr5)In3u>csRH
zh3&fSY8iorf8;|O1sL?U^ncU)uJbjI!<ysHZ`14beA*{{{!HI+_2*m3M@C<M%y_z6
zeon;pwdXI3J-6R*dG57^LEFDG-|H58`;#fA)LJa^Mb#6BZ_%lrPmAcWR^NVLQoio-
z8D7D&3o4?fg;zP$)wtS!*5Eng{JY~qME><{y{zY^6!%QmnX|ejba~GHFU~(1S>x{r
z{7)4)^K4Gp+GvgXRSDV0-c?QibtG9cRdcCk>bwIlXF7U{{Hk2qxovKw>rP$wJzEpQ
z8=c=huD<&>;7`E!hJRAtoI!gooaa8jS#IM-Ij`)W!N+zqOtY0z{~7$@;U&g?%RsXL
zo+R<T;u;cpuMN89MQhy^oK+R+EYZUH$u>Ln^^+|p-~IXD@uPO~oTU1NJ6D>2oqzM|
z3{~ZQwQo;O&X<3{At-Nt(mN|NX!h|sy_H+VQZxLIE&iLHalT$_>G$rL2|M;ry0+K#
zNzsvI4~`b@)(O7RvhB#F8Q)G$TH18~YS>Nno_O=dr}E$4+PnO{7d&hGb{46Fo8(R@
zZkH7en)ztLJa@Ls2~qXe`pi|5MX%Ir9G|FhcIQtE{au$fE$f=+=jm=)rx30kS<@P0
zrn>rSbIcE(7h#(%IQ3_TeY<$X=I#5(D=kb##kZVP==J$qYvU)oqy2`|uD$l*r}u7J
z#NU<i`^{b{E0uk(mHzCzB@nW!*5S()`{R>WHecITyT(iG1-rtcAMK19al0M6&9{h^
z#MN_N{&+CRbMpo7jd}ueC1;;oIQ`GDW9v_x-mTWKwLCSVH-d+E=gPMeCeMnR7&awp
zMgDPn%lBJjJi}Bb3PvYz9e2OEC;xl*4Zhf$%V%5Gc}~4PbIRcZrUB-c@*c%Ao&9jY
zR#7JYh1e^ejR!1u$kn)W%HH4dxP_;0RrB^O8MjW`M%Mp2)D*|mH{<7J??+|@d^g`8
zT{!n(-Rs6_k5c@_q*)rbgoIt`a*yphzU9K434ebuf0|OaY|Vz~kJEndHQwS8x3A>k
z-{|RU(z~lP=Vzswm%g~Zw*HoauvCpg98dF$Cp#AW=y>qfyK(mJH^0i$r2_iShwo!H
zJQec2h*$PTwwAYaetjQ%`lb}!%0w~AZ+}^~I6OT#-|M%`&xvv6+-nZMG_#VPbI#pk
z=h-TmY?pM+?!VoSQq*2wd=a&&`%+`hsgOh3KTC{0{d;o%h@VB+{R<~PX5VorcG+|C
z+cVCYefb<UvloBf<9hn~y%%*Qf16*2Tg#ZgINPW_Kjz@YDDHm^TbAFSQ!mir+r`ay
zV~?SmYh~@pn;Y^iY>tObbGF{Jx?U;y#0AaCCpc8^`<<zu*TJOacYnR;^v4#BQ#QMr
z>+i3Y&9Gm7u6E~kg_6ud5!Qu!-yP5IRgHeRs34WGMK@wg^0pnBllEL!u>JVYXO|k^
zE72^rtV1quoIX1ynA@Md_fufjkt28NZF5Dhs`4(f<lNcheZTrUm)^cdwMQ3y4BC*l
zmoNNfjlSxud;5;`r!3L&R19G^&lg#okbSD}uT1{2mZ!U?zh}t1^+|P#SNYT`5%%Ie
zJ)K<LoDBH|`a#d#ifZnhSbA=Q(4rld`_~=3Xz}a%y7jJgD@C`o&$$~TKk;qQSE~Z;
z8xi##4L7zFbhMvP>XR224V@Ci${?BPDp~pRWcy$1hU$XPkMmURi#bh>nzWgPh+Rn$
zS(YZdqVF{Gx-GjF1bT)ECMW(qH`h-()-PV*C%@5s>%vEWjwatW?>r%(^d@Fg_N67N
z$Nf73rro|26c{~;+r06$Tkwp_(IWP*+W)d~{f@a+|9yp~=bIx1-=3d6F5b2JKxKV_
zL3{Q;?q8<X>|3vIzM-`D{L8ba=I&^!EqeW7C%5aWtxBA?k~@O;)?MFnFV@RBCEs@A
zfxrH1O811_x^`Wt@9=K6Et3kHA7y&&I`P5L^ncGn@h9mM3WKIz5C~Wr#LBWFB$Sbt
zH#C$tNj|SF=+2q?<GFov`*xg-IQ3@ogQJte3x($%e!48TIqLk&W-HfeXH<iIKZZA-
zEMxw2?c(B_RvmAb@ju9VE&k^D_5zK{vj!)=m@%iFFI!V}s{D2JG^b-<(pAqMVU+J%
zXuIAZ!}h|Pz-qG#io1l{U&Yt7hupZmU{~i1huiTf>0S38NG-f2To+Iu`iybjgS8*I
zAN<gtG`mTG#lrtvX0B3f(e?xTGVU1P@b3?N<YjsPV(phN7hf$3u%4Ll<ltY$-G9$4
ztG{8iAWeVTi=J=g36Dy31NQumbb9rRUFT!(fBsoKTYk;s%l>M2&G`F@m;Em@QjPwK
z8g+fJ_i<G=`SnmRs>AH&p^|o0@9Fhccj|uJWtYG6<HxGIJf|44boVXuZ;89>|Kftz
zaqWLmj6aU|o^-9A@7vh6KlJw0zwKQIqIs^g)UAJLA}jU!L3Ul6h#Ie`mQw#&Ve`YU
zCh&f{<7oMRC8Mqz^M~I}C1>SXjxBObFuUfzRlmOery!qr@L#Xytj5)=G*-SZzj8cE
zr~a~(w{_tZhW~0#OVgj7Vrun2c8aN@eRX!`KgT~pU3)Iq20LGNn*BS<GqzrR<_gcg
z+mSnkn=)TUJovwCwou$}(=Uz7l)ruExN+p|?dOKhcli2#zOv>_?fki~_U_{p=g%{^
zRadgUmCX~MB)uX!ZCg#{vhc<I8ASoN(=Xk~b>UuE&!ctMHi*gjs7U+Qi~kPjHhtde
z)pM}2SuWu0?$dU%QTONA2C%=Is8V*yJ<mM9ws23hNyxEv2U87e7U+BvK5MLT=lmzx
z_2>J)#Bi+DRSNq*^|Obbwd?cpU>h#?&$py4>Z(_zt4?9O9<F)Tn_1O(?Hac2caG{F
z3!3z$D1INmWJi4nvv<l9vxyILFSj|iW}aYRG~KA7&d>er@=h_G(+j0OMQ7T7*t=+D
zKcA5O!Q!Y$&b;6Irr%h?=`>lsrNiZ1+mArSs{!lYBy68hyi7AEDfY<96N?q!t3TcC
zY{DBA;t+HvPf3mK;?Ap_=Vz8l$Q}LRykXP-Z(drDxL%(7;LmT*R6osK!FIb(bhZ9g
zjlEsosm60}ot)5fqv?W?Mnjp0{>c@)n(lTj+jlSQ{oATLUS<!jaep~0xBb#It9AXA
z<(pGX&N<#XG)pd#J?)F)-@EyHi(Vc%YCrqh*YA6meBaolc(s2+hFhGX@=2M?cXi@_
zfBA25<bl)Qp1-_(FVvKMLK*+E)Y~ix=X&ebyfynmlKNVssBWt}PGNUlrSBZF|6cwv
z((Rl3n{NKj&zHXcerh<i@abhkzrf%3o3EaEWbvum%|wMUf@#J5j)2Rz-fuprYiZNk
zeCCdm>i#8WOMG-c9p`Up`>{*r&fSGIOzMFXC-$%RygiStbe`DxSMjy2hdeVvmLKb=
zf6`iF!E#pS+(hTxOBZ>4k7sp92WMMa-E!2G@jS0-U8BF2cgLEpHBzghI*M2YB3)jr
znNo3sN$Xvy<qpRk(KDidOcR;q_0jQT-91yy%2T^Url>B>eR874GB;w*`QI|1>&@Ts
z6o~Mc^!>{B`><yAhu=v*FX#LGi_xk7#e1^;RagCV4Tj*wuKPohrcAqY@*$I@$pO#h
z$8t-*NxnPKdg;qYUH>H)g(k1GlapC^?Ty|yn|JSD%-ka@WSOMQE?=N5JgGYL%c|C(
zr`ta`yM7d38Cf7Ewc~futJX)(s_k9pmt2!rv(&k0-xeMD`=`#INOv`!%)2Vlc~kq$
zgBun`8Q;BdSk*Lg<*)f?x_Z_m9=@e@*=SSn>EO?L+n(`C>xK6IvtOu_$B#L3Zf*b`
zIX5#fLb<`KHIg$%`1-eb0yBI>17{v<yLRrvs;#BkTcftF?RvCs$Ah5hi#EAT(4F9L
zXkYUI&k4E>I*FW38jBX}(9T*bI)CG}RTrb)KD!hao%{ROyDiiI-TU9h;uQb;UVO>}
zwQ|evbKciHw{~=~v<gz1_+n>d@%8$1QSVI4I=63EaxyI4({H1pcE&%m^0n?mRxb%X
zp|}zOi;V}Y%l7xL|2yqN^}Ng7BC4n4vnspTC##oMcRaP6Y_mf@MpJ!aN1c6$q;+9a
z`*9V0*OWO$*#QMxe!KAZn;-92KcD&TU*WsW>O1s5adU)bge;7{`&WtSuDI`qc@Os0
zhb&ao&nvAD6@2(kpZ^>8?MLfwJlf~A?^^BGQ#<Xn?>_&n6TP?QX}0jc!x6U&Rys+(
z6L(va6fe}fD6VwQ0iUJ!#C*li7DZ`9J$mtYN8c@npFy)V?A5M#o>UQ<EURJY8hk#0
zc}3$CW77^PAKry+LF+`kZM{8LCSEC?BK?)gbWZ&vjd@iwr5t;gxCO2cSiI8kN<@~8
zX=BygPYdoXxVJ<taPrFSD>Sd%zOwrY&#B3?d@BQsSM0oElV!KHA<9E{(X@bjSAw!6
zx6X-jT)QMJaP>;lE7ez`vShdJJHD!tZ%Rjzim<oqW*5sv{xW8kZwf0kmK~k<DCVQ=
z@vnY-eu{qm8TIwQygPk_lx`mHm?`n>dHR#{GV%ts2R<_Xm)nu|Any6obKBW`r9<95
zvaUGrpyA;2wmoJ`@=nZMxM^WN|J$Ok1*~Cb*fzwTe>bUbQW|fu?6xe4I=yc@4{!1`
zYQAk^{`m8o&#S~=h;KQ3Uoy_{4^LJhqs!klVtY)KL|QZqe}z~m*I%9cUDu<T=f(!#
z?Q2Bp^)8=U{kbQApY6gn<E1yeZ>=$EYhNAm@S$61@#c#+&g@*UJgcPXjp2`%bC)NH
z=+-FRl@66$8>qrsELyQSY;kuU+xEK)jI*>Qwy?2!MT=USTnyxlK6!g~NmlNeyn<}D
z*uB>d?C{y!lQKQ<T<VTF?)zfvqj&q2|Ml8;Gf{*~?3`ylYu$#r(hc8b`f7V;-P`x+
z$joc&R?B$(iaRySU)of(Fh(ThNSf-S*!nXQa=p)<ZPQU(rnRpxyFtm>QS;W{+c`JC
z1;sLo7^&~BpET>~^J{B4qh3ATn*Z|U<lN_HWd1p7Ov~%(J?YbLEcePlqWeo|AY;AE
zt?RKmcT;M&KHji!-HIhqPmk}cSY5wbZTmNqZr1nTmjq0WnzB{4zj~3=`h&R^0Tq82
zRQ{iO`0es<(?nmNI??#_<<(UJdpPa;y9*4J?4x^BuRg84y=B(X7v*0Tiike;eerX`
zi!DD?_=31Edu_TkW$vfGm%FEj>olkum`UvKNR_KEJSll|!U2_+k6%X%%<S*-kT`NJ
z;8?Ae*q?wIB3ee?L0uaUTi!gMewwRX#Ch#)ztT*l>3o%yh9@6~o%$sBc#H8;ucdxI
ze9u1_8oye+<dIA)+YZ%L!HX*brl(F#|F_A@tSHngEQoEz-9=f!+B<|UWW7GM|G&eu
zX36C%HdQ3&y4F`3Pj8;lzPe29)dG$?T3O!ZpY-fkUF@2j!Mf4CI9O-Nq}f|fE4Ch%
zdGs<UV>)}&oSup^-a#kVH|7Q$Q#M)@thiyV?5$HLY>s$(om{_%TW*2cVsV!Y+fM?E
z>)%d`<FMG0xY@`=V~gDnj^*t&xs7I#>w?(SmOnp|=Ex%)FB!kL{`>XK9)|=wzOSiv
z?Af<V$5!B$h|B^GUcMWPGi)zxS-$o9Z>Jae%1dm21Uk9Zlxh9@(|>c*nHHM{9=FiR
z5xyUSV_ZLcwmj$`xKwPxj6zRi&f7kV9;bOfVcDu$bWiz0@eR()${VHQTK3i-Jg=zk
z^1tWK1*N>Sl_LEyJu@XQPgkgC>vhqu|MTP4*8by<1dljPRxnc(f3z}Z)8%U2OVbKG
z9;tDumav+%7G$09I_G!W<Y0MpL|#x_5?98IDNd!v<uX=fQ>Po<O;-03QdUq|B3brf
zMaQ}uth#$r&#O#+{qnf<8IRPoe6GOuCA~t-5>Jad!U`i?<6rN(dv(+6nCI-%>mSH9
zv-Rw2Z7*75E%)JD&-RM46VLX(6qWg%o12`<&7XSH`cn7mZ}K@-%xB(a?+dP&@pN;|
z%P5(a=O-owZ`QHkxydRjv&(<`i|**kN0L*%8h$d|DOb1W!N<1a?q}Yn#T#2s6MA$}
zMsp7D{x5mIA3nQw`Ga6__AynT$Bl8)>BVd6l|`fEw@+67ER~%tUAf{`*oL(Q=g)Nq
z@SK^d{K-L1XnQUvUw433k#li)PWSm{gErgwQkPu%-YuxNv`PQ_>FPbX8Y3UZpN6sf
z)&%fd&7GIn9ppHB|6avyc1l`Sb+3=OXI}^~`Expd|5l5a>XQxT{P^oOJ>rDpzDr`P
zDn*+w`qzKC_hr)B7>TtlYxbm=UQ2MCHjiiLg0w?ilWtoqk>1+l*P&vU-{K{wyGUDl
z;Zjv0p&zOCv5U25c`$s~Bc{o>I8dVMLCVMWgDv+IJ{shkE#@(n)^Smkf9e0;<`DA^
zgAcd2X|_3b2d+A@=}Hpw`Kkw2v-XNinkIPWv6QEc%hsZ)^#MEfE=h5J`tI8K#+{`p
z_a;Stp62`XZ(?p}&hKw;k3J1J_$DlLwZ%3SD=ou}PvP7XnUm(<b56SFnxUj-GUGzZ
z<ku_L3;dt@XSGkapw^bCt|P+llV{Cl$-Z~~jM0LN_A&c7O#|k}&YCxO>RcvGp6Y-|
z*}HdgR@^PM`tT;gX3mBFdhUA-n=c;t*>CwxtEi?(-14*W=Oyp;zJ2@@_3<PBbG<n`
z%HICzdKtsd=aV6Nu(5Kb<kZRR)_n;Fyt&N9=X_rEa@9*KCbeguHMgJaYra=iF2$a&
z@NwFwT%PLEZD|j=W}NJ)f6&;rFp*!b=6L0Tzn8YIHmfSi>3+USdAZ*_+p5R)$0F~S
z*0A1FkA3vkcxrO(GM&F0PM5rV^Y-@iF#QL*o&9RJC(Hl+z5Zsuzs0|)f;lOdcVGLv
ze~s>e@}<wGxSO$PDKS}k=){#PnyUs#uJt%~%JYPZrBu9NzJc9O2E&#a;rI3w247KI
zqi&<YGj$vLgfGYJFL^QwXyh~7_SY@{np@xU{6oZXGs`7~Kgz9q{VYB<s4lKwQZCa_
zcJFEM)_@g)bA{D9TML}b0%pg|32S-3KzGxVNhu5oNy);CI5VfGPf1%8W)t5Q{jurF
znH26qcWEIW83)TL(-ls0)h1SQUNKN%l$+6VQ7Uk<fTGwZj*l(}!}$0`R$acGtRQsf
zkb+$OCFYIA<y&*Ir}QS(EiE_szQDF=edU7|wM(XQeu5M0t0o`c%(=(Vd-|5SPOJVL
z?wNLNCHG=3(P_dH54BvI5%Yd_;Fij%Gi{Yr7L+e7NPfz?{uK9CcmIQ~&yGzxzmd7!
zv?ORpZglc?uT*)(1vfKX>P!BM*|Tl+HfPnHe{8Qy$<g|RS$ivwKaf3m{n6h`z0uSC
zAAJy5;&3?Q+Q*lDoq>C%Zj9xhb@AhD<FjwJI|<G5Tf$LTA#^0?bnm$%U$kd(9@z5_
zbTiY7sk`^r9Nz42-*S21(|JE<{b><PxOE`o!NqPNX~X=}7g%!dZQglCUP9+^(j=+R
zA8MX7#H+B*-1q-!xoy488l%p<*@2P^zloH%b={lO;~`dPF`=)2lVQigXwmGaljjB;
zUF;yW^R6<R&!cp{!$R_JeD-|YwV=vF`S|7viDkOGh3xxG7j9L%{{HNVt9$P6xphX3
zleK-x_Z*e=T~Eax$!f^#^lEaroVIaxbw;(n@R7vuEz{DjFYeh|qO)R6etrD(H@@1O
z4|lQOTDf*(wCGLaM>kDQbI<uOsrS*zpNwix@{4M->N2Ly{yy{O{Z<~u*ju|#2K-h#
zdw11`x*W@e%bg;<WcD+%UU(zp-5}9DaS6+pAKw?Yr0Ps7T5~H&r@vjXe#+hRL9@dr
zE{oqOqqw4O<NKcPmupQwPS3l_@tfoA_WIBhCf=<gu~j{3(WkZ-IA<vq@ab>yQ~lbr
z|LR{UUa1QjS3Y_gzEqsRRJZHItGBH`Z!es*@ycY5UbUKoPtWeJ`T5{R{~UvTfk`Ww
zuf5=CdHX-rO*73b%wv1YQn6PZuamE+=x8>r3ci$_#j>!<=4M`u_jau%=|?tOP7}9C
z44A*azID2<sM^J;dQUEV?U=Iql34e_z&Q&hy~){fw~BQwqw10qwI5<69iD7iW1!Z5
z?$+eknVaerZ)tevpVHuGNNfGN$L+?+^3^JVdskN9er3B!U7saOmG#u0klG)iGODM~
zYjECXR!z{jAkB69{lc`h^Im@Yf4<dh#csPdPQ|-~c6pT5Hy&O7r0ovJZtv{f+n-!~
z)xF?yO~ZU~l}$^SFA6Z9x%1CBB<uGHv7qkxR}P8k#_nb*$__KiVXWF0y-9fiUs;p%
z?gcBOZXe{X+&XFB38BQYb3LohgspRtedV@?N58l82z#M>u1Zwfv}>k|n(v$u(p<xE
zeoN`f*GW^?AC6wI%Gb7jRuR{`1MLNp=cdc)+iwrAmwo4y9Q2cGS&H(R)~mKMX1806
zd=|aeJsP8Pg!}T+`_*;_&KE@dHQ$-s`qyB$M~BO1&hUke*Z0+)IDf_K`VU=+<GoIj
z_80s4&&1{%)-TmOGU-8xe^YJdzQlFr>&@RAY<~C7>2UJPdj%&R7%4D)a;ld!Gc`3f
z*YM<Y?=LP8>@s?FsfV-ll~>!`=aowe|7$93+&8Ok`U)PK_x3Sob_Itms0<4GXm;RJ
zP(Slc-j%k6!HXNDOLR>fibHC3T$~vWKg)0XDR4(3M*iBQREB5ry|L~Uf6RV4zIy%q
zGn+a8&-jJ!%YXd%=5atpxaz)&Rjp|K);Lk&z0Mx{lphv&tlne0=EYj6^<Fdgm?ZGa
zB=^Z%SG76|-7ws!uts5%+?TyNr=udx<R%$kZhm~q{QWG)h%l4dV=i(vQB2;K_<y}U
zwM(vE!MDtAr_OPS;Hd$Eo+1xton38fX@B6+q&4!Nc`8jE51eq6Jf0jjiK9zw9nY#y
zU+Z&^AM(jmZ+LOf|NY(9sxRlCJ$`cfj0e~JlJiO;imr*(O<U4m?YB_z?ke8DBHPpL
z?UcK+JnH9dDmr6o?4|Ns>bFH&g#DBUzrVateZMwx^ODb;f)~QLUOJwfpKiP4<7WQ*
zHJ_e5yzX&oVf)^Y;8kK)zDms#w8XlqFXyVvU7_&WqyEMZ%ZmC>Szo8TIh$8mQr7+}
zuV}frl}2{nhLvX~hWWf{xyv&D?$ciftTI@(yRBfZwU$zwa=PsO8}A(L+hUP?FBjgv
zR~33z`+AG+9V>O^DRU;?l=+!>VeJY2l&jXc+g}{tbJawu^}NNy$}CTL5zbd{IQyPW
zlzh<>ytOxA*{r(adgbR@Cw6+iUUN&P|L<Ae-le}wjN+WWXFRcg=DqFJ<!Fm7N3`}=
zUtcz1*)Ms<OZT5eKlWVq{l~JCMPF{%-}!K(?y;)bs-t=4u1-HJqIXxdZri>*JR{qB
zR&G?5ll;sW&-cr>3Dm@PAKj(m$M^DQ=50xp>33pFWcUC0=P^Stvm^6aJ<o-RWw+Un
zM&<5Y7ZS~ydf<-bmQ>OAefNVO9kiKk_4?GK<#%!|ZpOqN+AwcxqO9fd#>_1i^3{s$
znky8o45lTXZhp-4c~WEKyZgK5w_iT7P|`4}ZASAhACD`C-K`$2@wxPSv7>PPk-j^>
zAIQruNw^U6`fvJ8#nKJd{e8?!Syx=Gzw_?Hw;zX9WRLjobJhuzmHRAye(u(%?>ygi
zJvsbYU9YC7?qABeqBE+KUj!R-RqBX238=2^)(;eZIfdor#lqQ4L7vNe=l=e9efhUP
zUf*u8hVEpo{8@R+#^bu{m1E`%mvdHR@3Ca6`MBrljB0Lc`zlu3?znrOSDbowp?I40
zj(1z@?=<>~Xhp9%`AGlC#rlo1{R?Zq{}go*auV2YCAZmTc4w^Io;H~smoFsVx#}`!
zMZ*o}J7484J^iR+5_)Rek01M9?@U<va(1=a<*lEWUt9NTr%*MgrSP<0JX7z#DqmgU
zaoW54VouC_F|N&t-#)gSmnfNICb5v$^89}>?~e}*7kgf=H~MhW!$f9p#gEx+byiZU
zM^j6Vsz3Li^}z1RdEJ=n!J1aS848S#l7yzG9^!myzs%uK&&s;TJHIBcjZA2~mwd-^
z+5A0gw`=8aFYa-in~`9@gWtw0-e%qV2cMkF)k2wrcW*A@XUut{YV!5cNAHZQs@I=&
zbA5i)ed73@-%2mH&HGv}a*8GVWnSv#C_N#wbQbre;-_9;XEIK^w#L(@Wg6RcH^Vol
zL)?nIR5TP8`2<cou|YiOZ;0UQMBC45i>4_~s|l2^J$&%GvGv{U?b+#1-Ez`z2+o`R
zz~V!|wD=|3E4;Ejtr*TcetmuavxTOW<y{MxO?eO#zG9W1YUrU11BuEvZ|n7H&*xv3
z>bn~J+N^YrW$}*3DbE+4&HhoJsPgsuC+V{rxr5?o7QbNNfBTzn-Zi82m-!Qv_uN%B
zU3)>{LzzkQ%)iTJWi;CAHoZGxk|&nK;o+TpVbT7BJ5TM8mz<ZOfB0X^F8RB6%0Fee
zo+;v6?WB^^H<#zwg}qUIE+4cO#RM8Gs=sHrS)9dw_JbPMyBnB<_uui4?J7{OTXz4)
zjID}FfB$$poxNXElI6<bE1>kssk>v{<=gAT93Kasu=a1CGjVZn_uVX;dv&wbr1}r*
zTP{3)En0uu{OTpqTQ|-Zef-8W>#^ytYs*h?_7}YpE_g9>-|26HwKLvMtH{Xz_ptM?
znar)V^@p5)_u9X{-0;N8+jrgaT>`m3&(9NBb<$6Z<7q(G61fSFrDHgLsJrF%-d(QI
zuW&?clBn3p4fE4YU7eK-7KYiG9g>qP_i_r|R#21d%eaZRe~-$W&fV>Oax1R7uYX#w
zM`f*f_qu<Xm;TR4GT$s7$o^k@(GBghmZFUHYV*(iXVj?Q_V9n}l&S9LX9enh+<fTJ
zRlUdalh}+O$16@T`f@SCMful7Ws@nhBUQeBnD_YU)7q~GuZ!!)?X4<2sdA20yE<xr
zvDt6V$W#B?KHfaep5*ZNxyy=w>&w<J|L@M4Fn{ayhPdOg>T%9-{5Qi}O&X_}9g&@L
zZZF^J>l#yiHn;3eI@(=-!Y?!Jj^$?ggHvyvPm7LI`ry1Mdb?clt^><@yb`3cR+mTa
zVOi$ybK>BWs<SO#zDtx?6v8znjK7^MXEk9LJEuE4epd+p?-^3br-k3yJ!#K+T(Xci
zAZv1eY}i)`-kX}1k^inTy6iWqa62<4K~C+D@x$3mj9;1ua~x$od04&hUcErT>VF!$
zi=rc2e0BY%Y?x_V6v%(|=dWkMit-M;AJ6sddjIV^%LIW-3BB4<>Dw%tN=2?MPQ0{N
zaKbrP$E>J%lM-8F{x9&bG}!zg$F~1U#-zWSZEaqf<>nrlT6o7g_-*O~ZW-_7Q+vJ&
zU*foL9{cA?n7FlW;l3=pjI_hQ4t_aSe?R1?u1WQiyEi*ONp8p%Z-4dgRBMF${yM`)
z+(D|hwWN5Kc!{}4EM$_1o?EgqguA6nswHFN0^zuAo_fdjIojGX#Y;5mSzP_Dta5DK
zLaEFr9s6~rOD`0=lXZ~eY3>QZTFvY&Pv@5Y_fnkwW&O0j)e>n9wSNt7iEp=jdeM@%
zb8dZRwb1#L@H|G#oNoV^)pO>|o;KOx)=l0OcV9;A@3Lsv_H+F_`~LT0CwX_e6<D*}
zKCR_vUb9yBvZRFWT3=1Bm2>wd-~D!kZ$(>`MwWg5z6n=vuXIq!+5B<toMX-t*o77g
z`u%>Jy5oCaZ@^*wisXN_%UA9DENQ*&w#U6kf)xVa3hHlN>X%jx`xNTH^Ivk&`-EGb
zvNun2_H4D;k<k0pxcRKwb>}p*ORs)&bUfcMqi?%O=7hz)YfovM%52bz=stczs5V(F
zO|#Rys4OM)w{jM%l<w*cF*^HI;@7upJv+a8bE%YbSYn=VWbd7i_MYzR&$2blSy6uJ
z@uTf-uK6c54NrWk|8^u~MMLM6Bdwovau3Y&oqH$!LgnUvMpF7~CWTHsw;&*VS8P1f
zRkK)St4z1uoUN|%lj<`5U(uA9?r|ZtWJ?mei1W_db*e`Se?(_Xf8DpY*Jx1)=f0kP
zH8n>zmEF0S4Ox7D6N4XY+uxCy*L88Hz{~v0Dz)|czmjJydH>#7FEh02pm%>-$dl~M
zyoSeGt)Gou&oLjUT#(sNnGn5r+Mmm!8QGt@=gz%->eQB>Rco&;xXR6Uu6f7Q^ZmcR
zZ~o72VEc&^%g8?DmNF9~LnGuh@khfeLxQjGvKO?F6U|ihmEQB#@`hFD>aA<HmR04>
zEtq$JQ;;=9uE|F+rA0;MgQ|*Rn~KVr&1^1#3)fmWnr5voTqXN%cih(1TQ6@azq{@C
zmiFEEZZqm`d;N7^{k<stlUCVJ=hW`|`@8P<_Wk#_SGv?EC>(tJao&w>iHF<HzD{2s
zx7lrqYE|OBIii(?k}Em?x&J?C=efcEV?-6tX_gHS8^5fb%J}iWs7;#3$)9yUe}p?<
z2xd9hJ@3hWyH6bZgznqD+P|+)zklOGmXnWrdHe1w2Oc~6Tt!S}pGEn-JwLl$Z%&$X
z<;j#iAH<)Zt<F3rQ&U@SY7-~4FC*{AsU0mP6D`bbO>OkD%YU5Onf<J7y=dphvsXUM
zT(suHk0Vod^eia|45|oubnS!hL~nDqHus#E?U}VtHW&YI_<QjF)<tv9?BMCiyCm{R
zGD*s?y`nMVOtj+~)oa4im9snMy2wnGn<A|7@M`jn<PL`>6{n7XBrQ4X?)nP3{<_W?
z{yGZx)Wih4J5`SaB}oc8>ZpeaXm?&cA|;b9+qb2$LuFBi?~$}5Zb9Fi=Px^6CUeN~
zi5;z;Q$DG@{ET(-FXk3TPDXQPWu|&gD<3=Wb!zMTV@<9(>n`)_?Uws~wc>Hha<v+<
zKT#jP3umj{<I?1E?0+Hm^ZMf7YV~L5eeqn;w_mK%>A}5z);C^;{7?T29LP)d=hS+`
zW;|nsRc5f-+U6fcp<iy_xqhf<Zyc9HXVd{ta|h9g+bek9u^!wPliuhtW%k6I8rd1S
z`M2ELuZS-Q*IWE@`b8$g_wUzOHrO^SVvW^Yuw?Ox%NbP{G%wv_js4NqB{;FYZc9jW
zJ)=&dsnPZs=U96q!Z-DD3!nROS$+M4Qz0InFPW^39oz~pH!t!?J@uhiYuQ|#listq
zy|nJHU9oWXf=$O#?E4P2eE;|4-+hm2^%BDvjwr<s?XwJd3{oCie)(d##J+u=rFhpp
znLTDRtO{xy>{}wf&3jPc=O1%q+RE-n+1tL(m;X`!typR*KgXR<vzT@Xm}vE8X}pTp
zZk1XZ$DOt6g6i6(*$XelWhO7Ki&Wk6#x(MP+gZt73Kr9^&GY(vKVH`I`Bu|;YtDUU
zj{iUPp-|-HgxWh{otyStE!y?G#P;m<kXch%d1e`hXx^A25b5w)T>Q0k&hjd@SGl4;
zkNR+A?K<O}_@;gj!#57A$Lf);#n<HoLXIxTR_1JLm_E1Q+x)FIW!>%<rtxxBDR#1~
zIh$Y>WpG%nc5=tG#;~<vZfE)~b)MoneMKlBz^i-9)UrblyZ)_P>8#I@K6z7)hw#>>
zW=FM6yI5^}I!>LA+PkOz7t;;>n@5}SzN}ezD5JG&gVt8-`O}<M)`zL;2Rh9Rn)d4E
z+gp4h+b2XHc>64A=Y;Odf~{%yT>a;)3B2`5Qq;pSc)}Uhb5oWuf6aRIyxuuqQA*cU
zu{rkRYDt0VQ=6xq%3|k!%hbMcQ|~8r)$gAo4o_wHrez&nV9nb5SnX1bl;-W`M6*M6
zdp0<KTChg&MsD2=LzP+mX^T|qxAaB^sXRz4WD!5udU3O-$e~ls`&0uPrdFHGtQ7dg
z{jJz>Hpk_ovQnI{&i`dEvd}UAwr~gg$yZ??e#}f=)_=q)+0%XZ{Dl((_S-z<f0|x*
z>O{8h4@vVp4dWGaVvc8(-p%T0*wAuu!n=u)m)xKK&9qn`&ll{n=wnXWghm_dC2Q+X
zn4jQtp3$4bU>))OVQMMocizJv&-aE^Pn1g!s=m74NwVp4p}9rVvy{b&((Y<rRT|O<
zGt4TV?9M0^sG8zZ|5K9n{~4WW97@yn*!9-Uvg!WfXg_g&WzwSd=boScJKa3FFY5j#
z?LYE2@4aWqt#<G|?a25lrgWN8JXeV4%$p}2>U%eysytM-WD(b@hb~3#Ge1s#_c;8a
zQfczt2RgH&|Gu|y5SCMWDB{Jv%d;+G?#6b;omt!cR&}sio>;lvZ`G{Ke|NLzZht*9
zHK!rr>?P6j7rReRuJ{r9Y5niAW40G`tDY)PsWxmVUHF!1$EL@Bb=OIrJv4XQ+cFE+
zxqE+IJiCv7N<DYxglU<M&Z%1+Rb!b$)x0k=nuJ;`D$a^{?ppCWBlMO~ZeixfbN5Qs
z1h4%(va&eM=))QF%62b3G0y7Hy;>38y4BC;{#>n;WxwcP&Kk3@z=SO!H%d$;d!$qr
zObie>e>Pk^T9vnlTPN&vT=T_?0f~|wJ6ZJ>1l%asc(FV2MMb^qMV9yj`se>IJAd5W
zGD{);;l5L|f2SSM;<!Dp?!;+_sTXrs?QE_SE9>9%{kZwQkmb&H8Hb)#O~1RWzOCAR
z%byDNg}?I+6z{yAUiqfT&m!o=&ei-`>*hL!x4*U&Ui5X*YYFjE&4#y*!K}+ZEenZa
zsak3k9InwV!mO&7zr`TIwEofi_7j>Wq0NHE5$dHP7n1_KzN)@tzvR<8!#auU-pn&^
z9!u*PHGg;)IQ#6HoF04DzZWWQyjt<q!oOKmT<FV|2I=2i?rU$a+!@l}l(&d8efQjr
z8^3S}h_r09spNe6@X``j*{1c2?W!jGwW?G`y%YSht6<5ez{5|@s)|N_7d7{&*L#we
zq;_Nh$Lwc!3s|SGP%sfS{9?4YK{@`(F`e65zaJ=Y{bFK`v%4~B$Go};UxV$Yd<$i`
zT@?F3Z_U(8S{E`(t2V0m9_c;UsoyeR@cnQ3d_&U**KR(Ybt%d8Nzl#Gu3vq>o-wO$
zmybNdxg+46zKrwXwqGrOCEJDl9N0?^7CP6jznr?Sr(F4KK-9t+kN*AdO){C*`!{yh
z`rf=XaYhqo8y_mW@t^Vb<h>dqhZog)JpLWb7su*iBF(e4r+p94^KWt`_17XR<zB5c
zj{YrHIJw|oO`g=beR}&!{qOhLS^W6@Cf>E|;H2eK^)Js%xxPI7zC6pS%^NfLuca=W
z{`Siv&$#-y`_o_S)@Q!q{U*`Tf7SEQDlH8quWi|v&U{_Pd*xH$#(IamCw8L6$(z%2
z+YMBwNL_K8d^CdbYKZ%~wHm7v{KInAzi|F#CG+#jwRcuouQz|2>%N~WzdvuTxo2_o
z)5OV#FC~@9Go88;wJzCVx%Sb%nc=}#Zd?kv@A<oN;q|>QCe@pNnZ#f7NB+k2`yvY%
z%!*vTCLUfjy}@VQ<R#yagg;BV+W)j^M?v4b!m_`n$C&T-ol_GOSGl5j`Tm278#18*
zDJCHjS|75mc)l*$^!bx<*xj}`Dc^SE`__H|WnWe&oH`wIA!(L<ak}IE!Xvv|kHx$!
zcU3dk@2M_w_v6&xKb{4Ctxsw83yjjZJ!kGb{wbTzygG1|splJCSABW@=V}iI<||ug
ztTX+h)^T2QlDuR7pP5U3dFYjJloV+&$IiI1wBT}XLgp3|c^BjUg<CsVR-K+S|FnaT
z&i4+Z-bb^yUJ9}l3A#9M%J+S?O>*mZ@1MG^Ua(7KUzq%V;joVa9y|Rax7aDx+X`#U
zT(haK(d#*5_TPW!TYb}GZ6*4x-yB)TJbPL0lVeL)`aa^@C3(iIxb*Vzz3;3RWW71+
z$}{DK*Qu}EJ1Y`bI<03k+`7~J=@Wali$DIF*w?84p0r@;1}l4Od-e4fX5J6GA9eZR
z@x!YOQ{{h${p_nfy#Bvz=BJ=ezpx!9oYhhF`&KqTtY^wAw%l^4b!~3+oU+@k-D;Ot
z2IsnMXY4vv_<W6q=CtOPQ){Q1eVKjE<hy9ey9LRLR_SNEWTQWGeV%H5;ibL4XT8cc
zHkmSSXZ~6GU#8p*bLKg^o;@?ua-Bx@ui*aL`<)rTYd_db=`>Gy$9%^!VAYkATUj41
z-Q94>Exf+OD1oi{WT%JOuky>q{k`Y@t4i8^>GR{ty3nS(cT(*m`MVjLxR0+-<h&D}
zBejL^QPq3FhRsLfQglo+7_%0hy!GJKYTLU7a=$d=YocXjnLVpF1$p0XbziK&Xmr%I
zsJ1w<Rm|FNWyE@~2VxwI3)ZMu*Sm_jCv6t}`FoF<LByQ;<+Jz6I{e(;kY(ceNz&tV
zwYU2D=x6dv|Cuiq*_c_}m2~Qp!SnpNjKSSIFMeAPviWl@V||QQWr?HFwf$lF8x0?9
z*cx^%Qo1@&W6lyim2Yd7mOC}6XnJ0o9Ws?$bHj3nNor>&xI1y0uGw0)Vng`0(2(7G
z@)o>lQ!-^fRTMk3O0#}@yv3%RD}VnctlKERdhf-O?EgQ1ImaIV-MDJ=^d*J@(#LzJ
zAI(%<YNW9s$tvjgyL-zkjzs;iTXK~3en%9m{aT5d*|QJyK3`UF=FY*T<{NE&T_#^F
zv0}O{oG&N-<Jz@7-~AUHSTFGY@#U@3<qwUfJa#?Le|+Vqh4F>Y)UN365dK{MP-u_J
zZr4R~_B`I`#(KoD&tu<mgV=qNA^ek!ZmrFo=5~B#70=}f!KWJb@hoqZHkxTr86unU
zEn~fe_rCsZ5~seY&ucJn`O}iNu;AGH+5Z>khKO&tVH}}pc2@cY_rayA^IUhx<+b=q
zi~PP6mE1UM?qT2SKQ|i8NN8W0m|q?mFI^u{{klYnZA-wi$*u)!o#yfguc@E$AS}oD
z`mMh0U*6i^;ODal37fuNH*}R^dd2sv6>t9TH{5-yds;Pf1m`TZ2J6e&Noyu<TjG_`
zzIW<dx$^ec3O5dL{$A*~?Ba{i0H3AXrr&xMwVHo^$IGg|+0$(F``Y&Gt&ZZ3I-2)a
z^r+q2ne|B?ElQPDt5kLx#LaKDzOQj&-TD;;I}Z5noZ>rk)09cNn=ej&D%bOM&ciLw
zGqQhI7nIz%rC)h5s)p@;t!0C5rNX(G3!<x4Sq-fpmp$4Qo{*V*fXOZRD{F}A9_vHD
zJLD@bq)aZp5uTOm$2pgE)|*X}RPv^MSZMW0bLX7bJh!SU>YuabaBD1iYc3Y|>F>VT
z6S6;h9o<yALvZrz*l)js<6L}|d1rTKiA9T6%yA1@cJt_7<txuri!a|}(+a(N>!3sX
z*5?{h?fi4Y3Idi-z9sbRSaDNRqUYAelZiz;&zo&c^bDP~#cPj$$<bSjj%Z%;-OwCW
zp;S5HU5nrGeSKPm#rGWRUo<`oOE0e7{?|m$TRFk`qSpLt?eji=e7{M~MCHY`FH5{s
zf((0Cw_gj1S!j0RqhjEs1Euz|s-I;REWCWP{Da)l`250|vH{+*-mmWcx+A7%Q7jR_
z9HD*Iw0C|<_~UoCB3FK#?NT{&*@Q>i)z41JIoMkIZ)dFe1?l$-U)LUPt2<xMt*mjZ
z=4xqYeNXI4fturfatl@8*y-MqdBfe^5*brq^!-e?L$0oM)ae8N_TK%Se>>`p+=|6)
zk8VFsd;dV~>7DeYhZ4&|<@4VjdsH?fM2oHK>#Ij|mPmejE8uNgZ&y3v9jkxy$q0kw
zn@y=Z1OuYBT>X0W0*k}Py=QN1^?LLr+r0kEJ3H^ig&)d~<nL&{`Dr14jm<VzU4a{>
z>)!n4o3%Y-wTA3`lPA|=(wBK>g-B(;mg)Pyr>7wO)4Nojv-LvDKRd*)(wXoq!?9g-
z%?8g^pH^|Ny4+Az_<2pq#^~6?TYiLJN_>Cs`kk)+0>9k7o8l5#sx!A`ga;K>WrcaU
zr9Io0TmNxlfXhl9*S96IGtP$X-o3Ln-&8JsY3>A5FX<<8HA^ImIc={M@3*%se>lTJ
zL|*>Kz5n+=GuO*?xgTd0i*+{Zi(aJ_s!=@6+2n|m){~IHs~2X>TrAivUdufF<>mre
zKAA!b?biwVqKj4~h0nM+`x_UtXFq?B5NrQx9y$Jl!h6gg*9!ky#rv=SWI(DZJ3GIG
zPnz<-=){6>Hvbf9x!?J7m)PoK8M^?TMQ<`$`mZ?qcYdDoUXCl9E&n<&N-)<~O~<0z
z47`TX)YJmyIH#o%oDsq4yZo*kNzPuGJj?od$uh;eTeq%_&AFQQF0{K#yF<H$p>aZs
ziU3pNniR|XC!K_tS{!aTvZREHe9yYO>qger?z_v3FK@j4w&eF?nP=zzHs>y%`|`}*
z^LszoJh!y`U;poY?f$>kG3S<e%IHn6_g<=de@ETnQ@_pEd3*XzKYiIa_0$sfu#C%3
zKOSY>c)uWN|I=f6vrlz)svQwhKX$@%(dyj#*;b9UZMHwff5(e`%6nX(7V{_cPu5<`
zx~aa0!_U3_QI!3xgfE||{q(~^?Valj|DX8#>>+#l`I(KZXZQU77uh{kYj4!Fxr;^Z
zZSwEc+Z49N{rTHf(HWwAI;`XUL37ujok3IeLo?(>)=&33dP`=dg}2)DF7frA_x2=x
zEq)|<e(gPtI=@vDR$YGj=*c0Tojyu_lRTGj^_DEN@Lnl)di{R^?<rkAGsBjJWXOr=
zU+K7fRBCF7(qVniZq=aBn#5@ls-e$Mn@H8@Ps==V^HqIGYuGH!Yg$K*T3zC1NQ(E*
zPuCQU+UT|R$m^dKtnyRWT*)vM+Um1ZG`aJn_q5pKE6#deKlU^$r6O|8nM2mbQzsp=
zm@R*O%S)qHw>4A6vL6>2EqUZK(@oX?dh*U68dIap_!b5z2dDgx{iU-pYS!F!=cag@
zK7M{|>!<R%NAoxMh1aiq^6O*y)W^H)rs!YJTJmWP`~SS=|Fc6sO!~pTTu{C9ah&qx
zKYtY456`t~G|oO$b57}<(Yd0$OD$jT_}(dTvh(yUu=qJ=wgu;$*_Qhs-Z{CmyI4P6
z?YZ4K<~i(^{DpFl&pfm_IP-Mmk;pTVhayi!9;@uzJZE#$=1H5oHqYAJHo5*x<mt%s
zHxJxAar21h!zD###g{CiEsP((Gi$V-TCM-x^PSte(nHfY-PKm9KlQDeynXI}o&T>=
zZa!Jx@kVq1+)syiU+2HrZTR<C`EseeNh$@xXE@*A{qtzcpUmg=p?0;GO3s&rU8p_n
z_Hgo{^Z%7Uz5dC$F>Kpsom-N<OI-rPrbyRMj=QZDqLs4qRY9hAxOaN}<b4Y*Cgvtv
zxAbNN{aAbM?_LK}$Gr<zEx6^(_Pu&><1?lGCv%yUCFY2^cb49)s*FoqXn23ixep>U
z7haCMDpsvn*_t0Y|NOF)jjOq*2mX3eQ)!lQ@X2-asg@q?+j6?^3T<hht0>Ww9Lvn^
z7oSo0x1Q<Oso=NodHDqEAIN9+vF!0t4OrN4a|Vam^owzB){F<Hp4m3JPiVT_DbCQX
z3q7x}wU@<OrFKr*)HJDR?^TW|SLIgtwJ-!fU2EOTH~C(b8jGn*vTLtv3hQL&Y_Bj)
z-K;hbj?Lv<)!BOg692!p%@3Y7>n2xr+(YG8ypuw-7;Ec0Ow@PsdMLXD*8TOAyM4fa
zgZs{ob~Vo8(8?fJm;3kbZrr^-_WBCHp7k|<y}8vdird@0$$bB6|32$BEw<Fal0yDl
zcb9kj_2>S~c-h{hIzM){s?Dpch0b9Yf&-qN*!<ky?AQdpy%(qDZ5E$U>$BUM=W2xV
z1-I=NYfU7VRyHLt*T*`uCy2OZ^Ox+YO}M|hK=RwP($%xLq&_#FUghT!y?VD5M`Qhe
zhtG@_K6`eTeTkdMeI{YS<cv!m>B-7s&2v1HIULKm4m$_m$ZwJVu-|IRzZ<dLV)tgR
zU}l~CdSyb7kLJCPC$?|QZ&fTX?)6!`yKN=gqf-grnykgtHeMDA{=r#)UG9>6@89cz
z?@qW2Cx<7O9xB`S-X$Ub?Z0&E>!ItLDh>SimS|f)U1|D;_kf+lhS~d)Ei?AM2(H-s
zlRtgcw+U(gnO_He@n=42XY)LGi;m!hBlGnA=35$6t$UhVA=@`)?*w0!BYjqjRRgaW
z_xSN9-{oAkurYf(*Z!~b8XdWl7t}NLe~9`qZ}Y#y3;#K7pQPEyGb`o!&I+!5QYt+n
z#Rba@{ho3c+D0#UQf;d*5$!h3hNYxU`L?Ik6k8tu4G9x&o;7i@ExE*OqL^XhRBbiy
z`w9tfhD9PFMvBLFvuApkwBF~7{jy?pubQ-*%)g&~rg~=-y7$X(t#~CdU*APFCR?Ju
zy{1xvH|ap_3I#P0zQsxZ8}@HH@620mBWuI^KQUeNMWVX1?fWt<{y#@}pOpPPR9Io6
zTbOd>A@A{ry+&t!m=hA_TUO@Q_`A<?f4c3*!ih}^kH4GnC@c6Ir_V^-)0x$v_)DjD
zmYQnLJk_(ywuA@ptv(s};+Bm4yVf6tzh}f+)O)-#n7VgH?tO!_-PeK-%wWFm&r_u&
ze_Uxv{enx^-`{<#X!s=PU(RyIt^{^x)x;Bv?Z4ltDHH5W*6{l?OJcKGZR_6O)lm_z
zw{`iRn{;%>w1<MrV;>!fD%Yyq{j-TR+}6hNaj5#f?<GqrxbCF=?|=2LHpiUp!Drrz
z>f?+NKfYVmd)Hl%)PE;&_<G(U!C&b*FY7~I&Uvq#?QXNFZHC^ORT=>r=TEMFblpk&
za_@i7U8Y~c&PqC+(~nF&xp_*&n~<G<D}NVxFpF+pH0gt1Ta?-X7W=-^N&o8h??3OX
z@+Y;^F6)0|$*1^va>o}fnX1P;g?Z^i^=hxDtF9!?40GD}<wi~Yw|zI3&R=UaHFuqI
zUzM>)K!D@z7_)EhHhOI`IU2C<;5!`!_6=)~*!pM(b8ofa{*n}}`{L-fNmZZjsD=tG
zTW~7&@oM+WNi&xmXi4jfePsICzvi#luD@DUe?(0tT7BBRW@CqQ=9Z;a8asuh<+9c4
zo*8Vbm$+RoZYyG6Y;R|LdUE~Si|rf!&fK>!qJ6hw%+;5D)|)l6dg68qU%uUW=K3`5
z=hl^Jb&~fv+1$D(vt)*U+oe=8SvO_jp<@Mx5shr>=kA#7$Pmw6n!DxmMMKuin9#(t
zWhdrV*w1>gl8w!-IA~vAN&k^%=QXnry|jM9w^#W2#g2a#-`L&@{Lgw5p!{g(-g=9S
zUw8KL#R>iwd@jSken$TBYq^V8=LB@wo{oH=RbRBG=Lp|I`MqvEMS{<nw5qC;bX2b?
z-#PkS?(_HS@9y4HT6v4B`$6Q-WxdwMT|tSuHuv^_t-Y%r^(msVns1GAnr>v_^bBQ>
z)#W9E@lX8M-AK5d=ViIVE~-w1<BPze3nE|YXS-BXKmTCstDSvPbnDOB4@Mt%ho7s{
zvEsP<boZx%Wlr{0^~rC-<}A_sbic{Atp8$isrcoz<DXO5_sgE0>uc|2@BaM39LDp;
z#WNy#R;EAyWcBl5@IJNr*roGVefb{#Epg%GAH~OBd8hB5Bcwj{Rf&dw%=w_XKC&hc
zcJ!ueUbd^x+5Tky5#4hvE{C@2WPiEEBO{q^FRItM^-^89v&EL~g>85D^qrI}5nH?D
ztHVpjlPQLhJS*qid3EbKPsHEIEAI7k4_Ke*S3UCYnw7+d@~V};erW&P(sk|9Qiqv^
zGARbPAFbcA^VeM7G>v5iwWgA#9~~sbvyQy!UnIU^e#)hw>1_2S4w4H6)E}Ms5&d=D
z!mfssyZdh0ZacC4(B4+hg?t~gt6#If`mT_xGt*`Au{vo#&ZSq^EaUt9H#fAo@!Kp$
zE?eo(VQz=6`sQg#9iQy3{laM%&x)d&BD=}b-w!f|tH<WH8gZSP`-{uA`h5hOroiU@
zBj-MUsad?rz<2)HtmE4zeX5Tze6woh-M7c|T8lk4X|C!&_Do)<%kO)fz=Vy}Nkt1S
zXRLnCX=Qv!HBMB+F+F_h`bp29t-f4lqm;h<(B&h28`d~pVfpL(*Y@yVX6560+7So8
z@-3Yr@I-{|^x;Km5?R&XL!*@=6U%qW^w~^3n8a`>NN|lWi+qIyzo1J#2X|y%ePNeQ
z>RsX0*Pk&au33@k-%>1_;q~5H_xSAB?h7Sf$^PcKu~}sq^TzZIj{mC?m5ky}3rRU^
zvfi9_)a+E?5$UJfLvDH%9Cw-hqO1Cto2N`QUxCof#XFC?))wqY%)h>T{l1<&W*4XZ
zsRtysv7WAFyWp@dG;-RiQ)lD9iZqJ-TfU)wt=sHr9OuQ)o{XQl+h@{t!H(Ql&mOvD
zd@W=7Ep;zbQdZ{OJIhNqIVH~jU3PfmZN8#teSeqv3%<9U{d2(k-@b&|YIB6oG`-zm
zP+j|~&E%zQ0ej*9f>+jyk`1J6?TRuwwz%;=I~u)2^~Ue(+HCiaiO#?L`|H7f$97F~
z5EoFc?lP_45m{81Kl$ZE?xuY+-o;<odP(fovJ`oh&&^u%rKTNZ?%r;z7QcEntG|Hu
z;mWy-%3gGT*&=`Yy6uNk({J5elG$#{&&AQWN+YAEL+L`$-OE)^MKbelDC!$ezooOI
zTV^}ox%dD4oZ5do{9T;czs~F2$*CD#jT&38Y)jg4`TOFV?7!=?S4q{p-N0|9y~}%p
znMTfB$-{R(q^i^=EA47h<1$s9y(GHirbBM%m$`?uzHIqzb-#C#V19LI_KW6yjeiT;
zEEHbf(uv}Hb0l@<`RDoP((_xM9=ZH`Tdcs`25~F9eJ&fMwggF7%HO?xGc5jk=v^k4
z^kzMM!LlbgzJc1OH~HQ^Tkpd3>d@NSH~z<WWGJW!R7w9iJ9R6ceP(f{mQRUPz|xvK
zm#){|xVT?_MeKz<j_g%?maJd5N?YJ->&c+~dxW;X2za%{%4AvP>aDZ>*N5N#a?AD0
z*5y_g<X;?LRk&%c?8fM_#qZ|5jC^ht=Pn(0ugcLtY_{ZVwVoYJ0xcXNhG*wJsONaO
zCgfJhx?YK**_JETX>qNnb)CRCySx0!I{)xBt*S?im2ck@VO3yJRCD&4CgoG5!Myo?
zNOnz_u6fGI)KiaqCJ1=P-EQ0A(NQ6OPx#=xMYh(}*JV^v-#+EF$Y#@CeTY|1|L_jm
zmIvkYx9|BU_eZX&<btRg%l!@fJ-VXr&gaz!IO<K@q*MEDPwC<1t{39(@7}$4?Z%a_
z4DNkCDZTOQp~-V^dcV81spRFWJqx$nTmHFpbjRtaM~6klXa1YJdD-TtOD65LpBx)7
z<%#*k=dWK~cyi+9xy4uZX~)-_@woV22%5)HHT%k}*{7CGnwI0PC?Y&-!a~M=n`$Zh
z{Tb`jxxGY=*0-t|2W;y~&=7pB7jUzLkM-m!vv_fr4z=L5aVpJMcY4k)5>fq?d(z7E
z-KkwV_C0mBhCwf`zs-A-{cXozhfvlt5sS_)ES<78A$Lh=UijZdE^AK;O^*m|Ro&IR
z@0j^T&P&pT?FtSqItPOS6;niYZ@4V@`JyFY;fbk#4I;KlD7n^mKK``x#Bc9ahAK_M
zZ~XRdp0MV|hFP}hH)5taP0L?*qFu@9@A{78i6M`?#LL({@63w{|7&_Q{7`*}pUf-O
z5)S9DSB@^6<-Amh)#K~xa<$y^Cq1LLao=^TT0GC-M<-ix=}HaxZK8P|_Z2UTuC3W3
z9k^t>o?X2l@3dD&fr1|0V)c1JuTIQgq5s4@nQ5iun`1oR{Q5g<Oz(VoE@rav@6pH0
zS3LZyyxXebL-pE-!<MZ&_RX;|yXJhEd9Gc0|LWbBiZky!zWVXfdGGE<jvqQpI~NpA
z6SWJQ6|(7=&Sni+)_@<utVfP7cx@A1mv?Z!;{m^`UBV8Nw=??Y*JS?xnfyN9s@|B%
zWyPhY?=R-MUfUyL*1jdha?6f@mH+3)|9tfK`)Q8tJLlfxdlP<knbcej*=e4W%{_{z
zY?|WwH-k@Z^WCcgN>XdDvaOkS=8&tV%bo?_jz9ZStUP_9ta$snh=~R2Il4FJnb*Jl
zR^8yMkS8DceclU;Ia$(@cAp>F9ckC^Ts_<WOucBTXY2Ca+wCWEd_SFkf1_u7NWv86
zjbUa&>jn2PmV7>Va8^KZDtF9z&A=yC6J&eOT3Fha-DW+=V{%iO=h3roXU(#0ME5de
zd^)-}z1{Eo0?vZY3fJBG(#`inCTucQb`PI0_fAuuitWVL+qSm-JGf2ut75!Bd)xh>
zw#V0&7SFt1ziIxYXQoFtm-0t%_NaGVZ2#)^+r@F+wyHT!+iTkE{>lmDUTwWCl(?^D
zZ{g+5R<83DnV&59CVu5;ce85OKIh;a8$AuzUAX-IwycEFPnjOs_Y<-=1&7W|c~+Gi
znCX|$@x_dtO?$T1?ME9!n-99K&;BNUFmZj<?#X8-Y}g)h^TdYw_2(|XSzS0eHzVtB
z^;!4ta~D*7+iGs+D6#6z!c8BAOeLx-3Vt<;n=7BFbN#Sf&%`;yf9(mw+}GE?M^rsj
zc(dN#rlMlQMt;778~2=R-D=JJWL7{SOIyccWoLDlrq9k7)~^p1l%AztUA_11!oxFp
zPdVr<Iq>R_ZZyZi`CK7trYZG@f34dy{q%XMleO2ZY*U1^x4(^Ox__3j(&MJn9(&3D
zj*lrHR^M2A=<6Ff8|fW$+*T>s@k_3+PSOA3cHc^Ro!aZHGhc5%<(hjghv}5jzsBWj
zzj>+e+Wm~@r>uR6$EyiDmpELF<&|AypT;%WYVj!z^Hn#~PsqBms_nfSDmS0wSaf~o
zl#e%`9zNe<*6YmLR$o->o7s3$<bT(b<1<ws@Kql2QN7u-BevsKtJ>|RC&jAILJnVk
z_54Zn$|pDd^(QhUZe>^Q4Cqc@e@%Er>z6A#vll+AT6W=Y)4?XjZcRa%Ei=nhHnw|A
zXDvULx})}b+t<L0kq+hyJ>M$_-r4Tkp49KoTYvH8bo~Xtikk$#IKJ^rTwxI*`Q<_K
zt=C(G%8u2(5$<1hvOV6bC7<oz4@<8DG9}ZBmJ5Af^)j#Z_=yQk=Gq&YFD9^bpH9&a
zp1J9?xq$DV6C3P>c(*b<J>0szjqgI;ibl5;$+v9YxRho6irF!}BJF=$@uI|-uiyA(
zZ&?5Gy8d%nz4OHIgb4y?Yy%CZ=xVVqKAhFtFJaHHw?HtrhEwt!C*Lu?|H9XHzfXQ{
zzfMESW*!H7lYaPn+onk#(FutQo91T5gsKJREK%WJBKgzdNd~*$Bai)sFE;C6SQ4*L
z^0eMv!@zGvTjo~_*_76+iTav#KlpAYRm_=jefPr^FJxpa|JAeYy1eP|N;chzS9TV=
zl(6pm`H5%OTlQ)Ge|uETj(fkDeOf#2n6d9;cc%+GPicROal7St`_MHjchi!?4(Zn$
zPiJsRMumN@D1J8YNBiZw6YtJt|2}bA+nbuLjQ+kA*VY@k>+&wMt6u)kd(-y^jni+<
z-o4?q)7Go$E51&8$lp`f&0aq}g41JDxb2j!jcX*Ha!U2aulT0IypAQz`{%8lDM$9K
zR*$;P5MpkU>XOzLHgQs@_4L!9rWA6jtv{XqO5ynA#|D>Nl4mcDdEIF&u72yrQ>R;O
zq6z9{-=6k#>|-@y^sN?L>$Ls&B#+>L#7ki!yH?0dGs!y}Ic2un(<RH^YV>IDs-Kye
znsvh9){}Qd-<{b_lUC~=oTa%r_vGB|^LSqJzx`CTO6#wje!$koM|WIu=5gJMI%MS$
zb;x^t_?AZxAOGdoQ;d`PtuynK-rYSJn%g$7+G`#cS1>*I+oX?0AG3l?%AWsx*~D71
z*kHx0oIL(-Ojo&NzbU&pU8p#9AvM1}i({8{J@Z22#(5VQ7fp!YvCJudi|A4H(?R7E
z{okt=|22v?eA2i|>2`x%pRc-hd300M+M79L4-5m@G#hnItK?UHdA%n!fXQn4v1!NE
zCiMP^Rad^J5ZtWk(9vgAm6LnU?FO^%)VqR8j^e#fT`z9ah%Y&O<ig$h*;Y&cw{6dR
z^X=h&ulMp-R-Pz6UC%t>P}f#0W5l2nV!heRi#~O6@n78h_+Jns%lsLwrIQmE2{VHB
zz?)9rz{n`ZUd;8S_Y2>(?PnPoLm63KENyrURsmj1$82h0GJOLJqj-J%t!IBSLZ+lY
zSDUfovyY(hrW3C53D4MT?`(Z`viFwS=NmJh87($^+V4K)irTit+jq{EaC9uW_}q8G
z_KU5Rf?pgR!~Yw{>)&#D`HcNM^ZEXEp~Vveyx#5&*Z*EpcJ-IluDwYcGx!Wjjc4x9
zzr-)}SK#VuUaRvjfA?H%nXq5fwXVKg<mc8sCl0epoC_0DUV3feM9;vSPaR2%^{otK
zxWBTe9+X`nxM%HJ-BPE;8r!(k4+rUpd~k2!+b=WaP~A>}JWkt-4jz-*S-)>wpu;bd
zn-L&#^f5nw)uN669-Edn2~BEt+HRt8G|#*C(8~-LF})v$CvEt9bF*)}iH(7Zx8XwN
z`djKpm0AMM`DS}YKTP7(R5d#!Jh?F-N#*(p@2rK-zjPYa+6PZJuQvJhT(<r7n?~V~
z8B&o+q7jwCyBS_H-kzUiZMEUiMJAudthv4`J?mulr0Z>3rG3WWm_<h8w#u~nvp(`O
zk{|z(iAY~|HS&7B`8~}O^B2BqIsg5_z3ydxB_{RtGVIw#Q@wU2FsT_I-hVegQrLj=
zMyK=}5$*J;<;N3*)YhDQd4<QG{l4Aa<Ez3mA{_Xxtxf%T+<n@|O1}7v5c8)Nd*$5c
z?8x#<cewm$Lczw+GqWyF2o&j1ub7q^>8-@qHK}n6H}}ao4Lg=Os+|=NsZeO2CsR9l
z{qs+De;&o$vEQ2W*XaEkvDjb!WhZw&mM_iyYtaAh*QvI!lKVn#&(g!ry!qAi)br)7
zc~jfXZqG{F{CVjyv9n=K($)VN4=-fk0w*cZ6o>KjW)4QJ`jw8JOB&fGUTt4_d|Q!q
z`EHx<?}be7{<*vI_NHww=PcB4bS(O^b`3vkEyv4h!484iH^Jqf-<;Qd{IoW19=lw{
zJ$40+E(V4k@m=dIs(zoh*!4TlMA-G{yWh3B|J@T;x~y|e;W-i3+mroNSYunY<lp2A
zSClvmWVMrAQw6>IR&~_R33GgG-S>iF#R@yi{X5?A7^uAEyz|vca{J_Enq?UYGrsM(
z!{fN+7RREaj=e1Z3-{D*V9d|U&(A&*&9O+<{(Wd|v!DFEwN{>2*G)>?(=YX9f{(!Z
z?Ykw@mMmV`nHo9!vh;?)Ew5vomCsd4nBVhe^Qf94b4WkPj_rM6mFJ%iy7jjo76#m#
zSe>P_XSS45=6tERZiT2Nj%W8XraAC9nsPV<gjTRuJ(;m_!el3<A6nkGoaTzGiaK|&
z#*V}JTC;Af21leB`}DPLmfvbZ*PUZN`9DfK_tf0b8n$&m6D5l7$Si;EW$ZOM>6hI`
z0r6!ER8P4s4wHzR6FFy^U#yXKM0iDgQ4yP)&P0>x2PXwIyw(=_byOzsjq2i^FRwh#
zDPryRC_9-_ZJ~Q)@`XvB=|*8Q=0@z8zvGt)-&=i^oa1|@c%41G#_sge#WzHHoU42s
zt<N0$+mRxuI-7&5e98Gx{n*?8(gnkJ+_!&l?f<GPt;hcDS9t$2@7}(9T$X<;q|`Qu
z_#DdodF9o$XSe&`+t=Q>Sur`*@53Gi4x2f_%&UyGkFXTang8^-kXLWS_qFezSJX}G
zclyiB*B7n0z4qHx-M<I#C3<Qfoy3&gdQRPH>9au1u(oYadEF<q8Qlxeo7VaC(WHY5
z@>;iK|KfH!&sq;kc$0aba8Hzysy8x1nJtSA*qwLSfalIvQJKpNC(LD<%fj5q%q;iI
zVQx)>&&72OFBqfb{(SEhQFdk*dN8s4N#M4>JHMMX{(08GtU6<jxsP{*B&XY~wc=j|
zdyZ}iS6zHL@WeOg<Nj|sR4Vsa9=iT|>FWCjFMP>}+vZVl=k-6EoO*Ai>%TP{f|wls
z-Pt<rh_sBKTF;kB8}-eOTsvQ|W1F*Mo9QuW%TJtI7foE()x|U)ydY#Mlx;sbAoOa(
zt6gpr%>P$eC(rp1zBypIP2|<9(KGK}Jag*YykiBa``+t*>t4L)PE}Q%M%#=?)qf1}
zRyi2chAdfJmZlR0RJLdFF)A|hSQzNLWfm2eD3}==PY!gDsW&t?L|!(1HtJ^3Z4dE%
z|K~4y&z8mYec4h|)2Uk13=|tV6FC({OjX~o#c*_b6iuuA_1{|ec9f3rVU<wH{<YI~
z{m!}na&w1^kHN}_mirx=YiCUIX`iKew5GE=tx<o*r^pPYWvpV47R?Z8Oo~cg{b9zp
znOEWtl++(tBHqH|{IYqG`b?ghJIS>PHqR1kHB>*_#B98Ac;AF;&6N^A&v4H)IU@0$
zjlcFy|B~Z19;zbiCb+Mf@Kf$c@B)7!?-<@-xg*E7u$TRa|9Q!vAjnSlcnO2yMrYO%
zc>~c)wy_J{8lJOBWvwxv5c#;W<*(fdcQ+&XV5Ub-iJmF-3+-EY3a;J|%~;lJW+429
zSIO<y3xV(#;x4mV6%-ULb6!=mm3=AfRpItD=={wQK4YeYWJkh=a|!ZSdV3Pp7}Qx4
z4=|{iC`t%~v++7L>4q>JiG1NGpd{_!%aHEE5hB`bt7v4#rogl5n1GkvG^SRK1Cuzu
z@2J}0wm{;7%{syQGs20h1=?(wm{|ie4RaVBUUbUuVtv9ZD9O((%oxM?;Db%dg>Wy|
zM*=cjzcZq;6#hJ)Ut{j=z3YJTgI4z%@eAS1{9L;j-#9mm>;Fic$J?J<d62)n>}TiS
zs84%;|2UQxK7H-0P31oy9sTd{>B;Tpr?WF>P5o0*6ng3IKa0JOqw6E>HvMd6@GU$U
z|Iv0|ue3+?N%M_wXUvy-d$GLt_Qf4f)C&v4KeXq>h(xY(Yc7oXWBkWVhUdECg^9A$
z#E(h4Y=~O$hj9<nyH)HgSqt_y8Wm}sZJHOnR*H+gB{KT!goI*c=Z2jVn@{zs%$*s3
z!sO(O`HONSj$OXUVD~WFc7md8{oR5EFJ7%|yz=Y$sZW-Yrixr_LhYfQ0s(<6LCh7)
zCLL7xbk$#MNve>fYXM)rUZ>GNg^*p!r_MxX^{<dkd?($lp7t)tSiEvoyiWP0TQ9Rb
zvtB;yyCIOTCz?9prHW==onpK0y2)=AW*l1l#X&)|%88lp2@mUW$DFTAn$%~{e^aj+
zn>j_C*F@-nkJQ`MjqNVCrlqk(@doBrZDY79bMaRHJZV?4Jxd!)bkEF5)OFUKzi7=T
zo@@2Tzi-<SA^ciS@^^;sI_31s4r>qFnOt~1@A0;0YpebCnAYDd&gnejs(P~hbN`9C
zC$1i3xP8fUQcT&h02ZDCo8`e?CeN8P*;lZp)!$C(PLWVNcJ_JGwU`I|EiY5sQ>+{|
z2KYLjmyMpndNt^r+qv(@Qj@OxJz9Na)0<hj%*?Z=9sPCX@V`@jM*EnnC%8VA2@X*d
zY~P<4v}&1{hG@CZzk_@^F+QIPs}675&nq0g!9sT9-YpuRPi~M&&z#;I^`v0N?eihq
zuigpKH^2I%e%t(`i@R<X&V0J<w3~jivUE;~{_N?xYs)5Y=Z}4K&*;%A$2+gp?*%EP
z{VuFaE-n*UZocjC(fDJjj&H&ZoHu?n``avg>yOpx_m4|57(cQ|Jdb_II`OXTb63mF
zKkH)7Jb9WYeEY-m9^bQTZkdQ4&7IY^+ILe_X-ap_B>sn-SC??tSG8L-8&BG2e>bG^
zLF-I;y_avwZ!S}sK9TcQN{Z|9uJx><pQb(#KjrA>+qwINoZPAS-u6$oY^09Oe6PFg
zS%7Tq{T_FLBCYNjFYgFBcVE?6w#Z5@H0q_@+Al_H7nxb!y{09wHH<guV%HHL=dD+J
zf?OTKSa+vdH@}S9zU5HsEQ9*;@R`l>3f9M>Z-!6zxcFm%?JQBZ+dF#&)vkSeEd0B%
zR&x6GH)1lM?!;|wuc#2e{L)!X(znel{&zy=RELGF|F5k+%aLkbn0dYIUx1U8=1S9#
zEf=Jfe)x9Wzou=MFQ2pP<)eEhcJKR6doMrkXtwFkmJRvpsYZSar+K?x*>-8u&HBqP
zD_5J$mppkh$y)ER%I-qG-ePGE6RsvP`|pdLF7LejLFuhc=d7}a$3)jNEOc7)CA9AA
zTDy7P3l%ezpD%pfWAN?H4fYnrU4DyShB{b0^)?pVB=&WaV(I#(Z|saw5wD^rN_2*K
zoSh_KBDgC*+EAUVNySjT$zx@o%|@5)J}YO|hy7d^ynNm@+po4s><1tGn{`k9!J2H>
z^9KF@?mU?CV}-Ab=trB$=Xrkq;s3IrNXg{%^XJdrH>dM$kMEaOI5=%#_hjRao@?(`
z`(9zVBpJV>^MLD?3wtk5uua&KSXkhbxUgF3_3pzlkNuUKpBoEm@okw@_R7-VkoDuv
zWi0hGE|o8=|L<Naw$gO|g&ps;rIbI;6@9DDy<fL?+Q;ap+Eq^l`#m(Ky@_1sT>N#@
z{i{!EZuz|D+B9bxvrO6d*H2#cO#54xzwi5Y$9hZMjY_#6HKs22))8A0T~_;Q{g1}g
z)85UV-?UBr``lAk&(+^P?RtJkb>Huo|7`ZZoBXN$$mUbi-d+FWP=D&I%N3ufzuH!r
zTP9|%;t}v$J^kinj+sh1DkrV_1D18g9C}@+vHL=Gfq%>AJ1(7NaW{QlUYwdC?0YMC
zX=v2jeVd(}L-wTY-dH4-SipO@AYnzjd78uT7t^;KxGb7ub~|?c|9n^1@6Ip(7R9w(
zzCG*bYpp7!pEoN)?umT~?^$)E-Zgqht@LxBUF$YTNga$|b~wi+ciqZYH`eah(0A+N
zwfN=o-|Osct*m<{tH||k{@c6wja}KEvK+%R$N5)Wd--1c?Y~vF{j+{NoGN?&&LZm$
zk^4GrS0Y=q7F?Il+q1CeNwvnD<A=|FQQPSA;qj$=`_qp--tAe#EGu(X_mz}ciogZF
zdf)nW3#>xocb&Xjm=stNve#C#Jm<8j-KkR*9zH+5&WKmPQzxtT(e}T|$qU7kef~6B
z%{>z5?|$`gVi~{f#p*k^rYvTZOjnLmDJ(qwe{1Ej%~w8s@;-L@_MND@-h13n?4#p)
z_J2B5cT8@%zW+s?hOkLXD{Ac5xy@JGw%}TG{wLk~eP_#mc<(#?zv#Vi{O8)b1OK1p
z|5UVpbo@`t{7>Ki^wd9iZu2a>=7hV<pC7#YpC;EG7p^-WJntj>zs~1-9;nX$aQ+YX
z|5N)v*8jY!;+b<Y*GlQ&<A+OJzPl`2G%rnam#ob6A5-4_m~xGG`6v0pRp!s-%l!Io
z<!s-SvgJX@!&82&_0MNoPtCBHnqM{7OY83Q(0xhLQ9i4mdHmL0|LIno>DNWu>UD~{
z;;v+$xo>eM`^asJ?Sb<W|KxIIF`r8<i{<s(&%9jR<UvRs^SM<YZBP0I@A!PeNO<c<
z+v@+Xo}TXC|6X1uC39Q6*TwEUl`yyPa~GE;_O9dk<?JTEW8Qng9Va;IZxz?y$!V0{
za&YdU%0ufPJ&Y}VF?+^^lhH0uxD9rmdc3f7;*s7Ml}v>z`7^J6;M{%u?ad!D`ETdH
zf9t!nfyez@+N2{tnH)aZGcO6zcW}JIJ%PpH#cgL_^#C^A1|Rcf>MDi#5846~emv^4
zSDE~1f6GU$hU<aW8(j~+UG6!@<k7eKxcohK<v;G<EPBT+5&p>c(!{gfiPLVsKk_-x
zB>#t4$osGBRZpyYmT)ooV@#!g!G^Qb<<0oFFHf4W^xx9DY4xp+>+2V$UEp$+{L3t=
zxOZ87>mu`AyQLCKrcQXggDWYuy}ECC>FSnKSMy%XU3NBl>7h+V57T$t-Tx$ySN=77
zxvF?Q_tRuOu@3beH-7Fee}7N@+Pt`(2b;QI%D+vLz9h{dyCP48+x7C*MVT7Lde^r&
zN3N)f)t!4Mo^ioPU#s$MnHQ9fD?a$nP|o`8W$^_SmB*`PmS!@asWV>3mbU$0w-hJm
zW6Nn1uOBpeb)`A~{@lHPKD^r<!M0yv+T2AS)cWmjJ4V)@XzTpFHTvw4yR&>ul{ZDj
zCDzxJR@Hpk70W4fpLKTI`OMn|S=qDO-b&>tOa0iak@M?~reIcJ`_B|_k(={!Zf*{4
zUzqs%^!?C^B?UWPzk04E5+tz1FY}{=jnEw_2VLV^Spm9J(gS-%kFB2Hws!4x`SX7J
zX4{<ApJHQubmr+<N9$*-C_Cr0KX0|<j_7$Ty@wkLbN83CKhN*0zi(%8V{+2LoQtn?
zm(H85`zdR)=N%mu!TdDqtIt101*&`HXWML%-<NUgTt^;D;mv)So0r*X&pcIfd5yZ%
zvPoN4`kg!9cYh!A%f+tVo{Du_R?6xBKYGUF%l6}a6Rk8iZ|5pLI$e9FRQ<8+tR1u7
z?uuNSXth3Z*V^#kx83C(fBe{UzU-6aw$=BeJD$q1X;j<zxN_`a>``A?&lRn&=cDd^
zw?9}SD{S+<<EmA+ZO-poaOUkcVO>@2+!G9&BiLpyot<eo@BaIq_3L#RByT-(D!acs
zP-M;how0UPWmX+tRaN=woaAjQg}_oH&huAX-u*wlWBu0YjO>ge)BQOZxu=WCGOC0n
znOYbnn<rW%rWhw#n3|hg8XK6T7$%yhnOYcF7#Jtp*$`9_s~?<MmC9vkV5}b=ZKz<R
zU=%w!&_TN1$kYtE&!c+wq+WBPMBBsfnsp+%fuAEj+x$&4y&7}$o?yojMGqYnz5|CY
zX+}hL&As8R)9Nxsc*BMjcPh=p-_@L-U6U53;i8kpe1TurfVp@BgZHK#lBvHczhp5V
zG+J}WD(AqorVH<tE-<<V@Thvt`z7VT^(~=3ekHrS*Fx!23t|!<IEz#zxX+xkKh%LY
z#F6LGgodmYEm0Y5Y93CqSDcwmoa9TKw6{3xmmFNMiSvKChx+=s!&c|3dtbadnjNy;
zaJ}K(`pVwdFVAH=oj)EoxoY=^S(mDBX<s=$|N0iY{5^aLV$U81{4|yqQ{>g&z~=sI
s-#1g{+58)LcTZ@YQ>TCSA7fF3=ECW(<QQdm%#4lAOt@54UH#p-0P1(qCjbBd

diff --git a/2-Performance_Counters/Handson/README.md b/2-Performance_Counters/Handson/README.md
index 3ee0057..8887dd7 100644
--- a/2-Performance_Counters/Handson/README.md
+++ b/2-Performance_Counters/Handson/README.md
@@ -2,7 +2,5 @@
 
 This folder holds the files for the first hands-on exercise about Performance Counters on POWER9.
 
-Make sure to load all modules of this session by typing `module load sc18/handson1` into the shell.
-
 All task description is in an accompanying Jupyter Notebook. Open it interactively on Ascent with port forwarding. If that is impossible to do, use the static convert to HTML or PDF of the Notebook and follow along accordingly.
 
diff --git a/2-Performance_Counters/Handson/Solutions/Hands-On-Performance-Counters.html b/2-Performance_Counters/Handson/Solutions/Hands-On-Performance-Counters.html
index 9880bb0..70a6789 100644
--- a/2-Performance_Counters/Handson/Solutions/Hands-On-Performance-Counters.html
+++ b/2-Performance_Counters/Handson/Solutions/Hands-On-Performance-Counters.html
@@ -2,7 +2,7 @@
 <html>
 <head><meta charset="utf-8" />
 
-<title>Hands-On-Performance-Counters</title>
+<title>Notebook</title>
 
 <script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>
@@ -13116,7 +13116,7 @@ div#notebook {
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<h1 id="Hands-On:-Performance-Counters">Hands-On: Performance Counters<a class="anchor-link" href="#Hands-On:-Performance-Counters">&#182;</a></h1><p>This Notebook is part of the exercises for the SC18 Tutorial »Application Porting and Optimization on GPU-accelerated POWER Architectures«. It is to be run on a POWER9 machine; in the tutorial: on Ascent, the POWER9 training cluster of Oak Ridge National Lab.</p>
+<h1 id="Hands-On:-Performance-Counters">Hands-On: Performance Counters<a class="anchor-link" href="#Hands-On:-Performance-Counters">&#182;</a></h1><p>This Notebook is part of the exercises for the SC19 Tutorial »Application Porting and Optimization on GPU-accelerated POWER Architectures«. It is to be run on a POWER9 machine; in the tutorial: on Ascent, the POWER9 training cluster of Oak Ridge National Lab.</p>
 <p>This Notebook can be run interactively on Ascent. If this capability is unavailable to you, use it as a description for executing the tasks on Ascent via a shell access. During data evaluation, the Notebook mentions the corresponding commands to execute in case you are not able to run the Notebook interactively directly on Ascent.</p>
 <h2 id="Table-of-Contents">Table of Contents<a class="anchor-link" href="#Table-of-Contents">&#182;</a></h2><p><a name="toc"></a></p>
 <ul>
@@ -13149,15 +13149,47 @@ div#notebook {
     <span class="p">}</span>
 <span class="p">}</span>
 </pre></div>
-<p>After <code>PAPI_add_named_event()</code> is used to add named PMU events outside of the relaxation iteration, <code>PAPI_start()</code>
+<p>The code is instrumented using PAPI. The API routine <code>PAPI_add_named_event()</code> is used to add <em>named</em> PMU events outside of the relaxation iteration. After that, calls to <code>PAPI_start()</code>
 and <code>PAPI_stop()</code> can be used to count how often a PMU event is incremented.</p>
-<p>For the first task, we will measure quantities often used to characterize an application, cycles and instructions.</p>
-<p><strong>TASK</strong>: Please measure counters for completed instructions and run cycles. See the TODOs in <a href="/edit/Tasks/poisson2d.ins_cyc.c"><code>poisson2d.ins_cyc.c</code></a>. Either edit with Jupyter capabilities by clicking on the link of the file or use a dedicated editor (<code>vim</code> is available). The names of the counters to be implemented are <code>PM_INST_CMPL</code> and <code>PM_RUN_CYC</code>.</p>
-<p>After changing the source code, compile it with <code>make task1</code> or by executing the following cell (we need to change directories first, though).</p>
+<p>For the first task, we will measure quantities often used to characterize an application: cycles and instructions.</p>
+<p><strong>TASK</strong>: Please measure counters for completed instructions and run cycles. See the TODOs in file <a href="poisson2d.ins_cyc.c"><code>poisson2d.ins_cyc.c</code></a>. You can either edit the files with Jupyter capabilities by clicking on the link of the file or selecting it in the file drawer on the left; or use a dedicated editor on the system(<code>vim</code> is available). The names of the counters to be implemented are <code>PM_INST_CMPL</code> and <code>PM_RUN_CYC</code>.</p>
+<p>After changing the source code, compile it with <code>make task1</code> or by executing the following cell (we need to change directories first, though).<br>
+<em>(Using the <code>Makefile</code> we have hidden quite a few intricacies from you in order to focus on the relevant content at hand. Don't worry too much about it right now – we'll un-hide it gradually during the course of the tutorial.)</em></p>
 <p><a href="#toc">Back to top</a></p>
 
 </div>
 </div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[1]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="o">!</span>pwd
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area">
+
+    <div class="prompt"></div>
+
+
+<div class="output_subarea output_stream output_stdout output_text">
+<pre>/autofs/nccsopen-svm1_home/aherten/OpenPOWER-SC19/Prototyping/2-Performance_Counters/Handson/Solutions
+</pre>
+</div>
+</div>
+
+</div>
+</div>
+
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
@@ -13193,7 +13225,7 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[20]:</div>
+<div class="prompt input_prompt">In&nbsp;[2]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="o">!</span>make task1
@@ -13213,7 +13245,7 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 
 
 <div class="output_subarea output_stream output_stdout output_text">
-<pre>gcc -DUSE_DOUBLE -Ofast -std=c99 -lm -lpapi  poisson2d.ins_cyc.c -o poisson2d.ins_cyc.bin
+<pre>gcc -DUSE_DOUBLE -Ofast -std=c99 -lm -lpapi  poisson2d.ins_cyc.c -o poisson2d.ins_cyc.bin
 </pre>
 </div>
 </div>
@@ -13225,14 +13257,14 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<p>Make sure your program is measuring correctly, by invoking it, for instance with these arguments: <code>./poisson2d.ins_cyc.bin 100 64 32</code> – see the next cell. The <code>100</code> specifies the number of iterations to perform, <code>64</code> and <code>32</code> are the size of the grid in y and x direction, respectively.</p>
+<p>Before we launch our measurement campaign we should make sure that the program is measuring correctly. Let's invoking it, for instance, with these arguments: <code>./poisson2d.ins_cyc.bin 100 64 32</code> – see the next cell. The <code>100</code> specifies the number of iterations to perform, <code>64</code> and <code>32</code> are the size of the grid in y and x direction, respectively.</p>
 
 </div>
 </div>
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[25]:</div>
+<div class="prompt input_prompt">In&nbsp;[1]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="o">!</span>./poisson2d.ins_cyc.bin <span class="m">100</span> <span class="m">64</span> <span class="m">32</span>
@@ -13253,8 +13285,8 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 
 
 <div class="output_subarea output_stream output_stdout output_text">
-<pre>iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-100,64,32,0.0011,3324000,33229,34329,1902422,18803,27821
+<pre>iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
+100,64,32,0.0011,3324225,33235,33960,1859440,18357,25033
 </pre>
 </div>
 </div>
@@ -13266,7 +13298,8 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<p>For the following runs, we are going to use Ascent's compute backend nodes which are not shared amongst users and also have six GPUs available. We use the available batch scheduler <em>IBM Spectrum LSF</em> for this. For convenience, a call to the batch submission system is stored in the environment variable <code>$SC18_SUBMIT_CMD</code>. You are welcome to adapt it once you get more familiar with the system.</p>
+<p>Alright! That should return a comma-seperated list of measurements.</p>
+<p>For the following runs, we are going to use Ascent's compute backend nodes which are not shared amongst users and also have six GPUs available (each!). We use the available batch scheduler <em>IBM Spectrum LSF</em> for this. For convenience, a call to the batch submission system is stored in the environment variable <code>$SC19_SUBMIT_CMD</code>. You are welcome to adapt it once you get more familiar with the system.</p>
 <p>For now, we want to run our first benchmarking run and measure cycles and instructions for different data sizes, as a function of <code>nx</code>. The Makefile holds a target for this, call it with <code>make bench_task1</code>:</p>
 
 </div>
@@ -13274,7 +13307,7 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[80]:</div>
+<div class="prompt input_prompt">In&nbsp;[2]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="o">!</span>make bench_task1
@@ -13294,524 +13327,523 @@ and <code>PAPI_stop()</code> can be used to count how often a PMU event is incre
 
 
 <div class="output_subarea output_stream output_stdout output_text">
-<pre>gcc -DUSE_DOUBLE -Ofast -std=c99 -lm -lpapi  poisson2d.ins_cyc.c -o poisson2d.ins_cyc.bin
-bsub -W 60 -nnodes 1 -Is -P GEN110 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.ins_cyc.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv
-Job &lt;4318&gt; is submitted to default queue &lt;batch&gt;.
+<pre>bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.ins_cyc.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.ins_cyc.bin.csv
+Job &lt;24059&gt; is submitted to default queue &lt;batch&gt;.
 &lt;&lt;Waiting for dispatch ...&gt;&gt;
 &lt;&lt;Starting on login1&gt;&gt;
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,4,0.0012,548153,2735,3888,266504,1243,4753
+200,32,4,0.0012,572978,2861,3639,261330,1235,4684
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,8,0.0014,1082153,5405,6558,668070,3227,6573
+200,32,8,0.0014,1082978,5411,6189,601962,2914,5099
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,12,0.0014,1442153,7205,8358,872094,4181,12974
+200,32,12,0.0014,1442978,7211,7989,811603,3992,5761
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,16,0.0015,1802153,9005,10158,1074585,5230,7975
+200,32,16,0.0014,1802978,9011,9789,1017305,4988,7017
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,20,0.0015,2162153,10805,11958,1281118,6236,14107
+200,32,20,0.0015,2162978,10811,11589,1221559,6002,7999
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,24,0.0016,2522153,12605,13758,1479347,7222,10037
+200,32,24,0.0016,2522978,12611,13389,1435167,7037,9259
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,28,0.0019,2882153,14405,15558,1682827,8251,11219
+200,32,28,0.0016,2882978,14411,15189,1633061,8054,9789
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,32,0.0017,3242153,16205,17358,1871170,9210,12109
+200,32,32,0.0017,3242978,16211,16989,1842895,9092,10889
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,36,0.0018,3602153,18005,19158,2075730,10193,13063
+200,32,36,0.0018,3602978,18011,18789,2042894,10108,12457
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,40,0.0019,3962153,19805,20958,2272736,11258,14491
+200,32,40,0.0019,3962978,19811,20589,2261332,11191,14233
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,44,0.0019,4322153,21605,22758,2491982,12249,17554
+200,32,44,0.0020,4322978,21611,22389,2458267,12112,14375
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,48,0.0020,4682153,23405,24558,2692600,13292,16003
+200,32,48,0.0020,4682978,23411,24189,2658621,13164,15613
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,52,0.0020,5042153,25205,26358,2878730,14277,17055
+200,32,52,0.0020,5042978,25211,25989,2866175,14190,16864
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,56,0.0021,5402153,27005,28158,3084915,15295,18583
+200,32,56,0.0021,5402978,27011,27789,3080357,15237,21565
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,60,0.0022,5762153,28805,29958,3291836,16330,19233
+200,32,60,0.0022,5762978,28811,29589,3283103,16278,18799
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,64,0.0023,6122153,30605,31758,3622134,17946,20887
+200,32,64,0.0022,6122978,30611,31389,3587582,17820,19681
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,68,0.0024,6482153,32405,33558,3930512,19200,22297
+200,32,68,0.0025,6482978,32411,33189,3893368,19284,20847
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,72,0.0027,6842153,34205,35358,4270649,20402,22797
+200,32,72,0.0025,6842978,34211,34989,4289441,21278,22715
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,76,0.0025,7202153,36005,37158,4209408,20894,24035
+200,32,76,0.0024,7202978,36011,36789,4208700,20936,22677
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,80,0.0025,7562153,37805,38958,4410712,21911,24986
+200,32,80,0.0025,7562978,37811,38589,4409613,21897,23855
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,84,0.0026,7922153,39605,40758,4631259,23020,25649
+200,32,84,0.0026,7922978,39611,40389,4611755,22921,24910
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,88,0.0027,8282153,41405,42558,4814218,23914,26743
+200,32,88,0.0026,8282978,41411,42189,4821904,23974,26087
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,92,0.0027,8642153,43205,44358,5039020,24944,37612
+200,32,92,0.0028,8642978,43211,43989,5104722,25036,38488
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,96,0.0030,9002153,45005,46158,5247046,26072,29012
+200,32,96,0.0028,9002978,45011,45789,5238952,26060,27927
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,100,0.0029,9362153,46805,47958,5426721,26963,29831
+200,32,100,0.0028,9362978,46811,47589,5441545,27049,29275
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,104,0.0029,9722153,48605,49758,5619647,27963,31679
+200,32,104,0.0030,9722978,48611,49389,5920763,28136,72679
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,108,0.0030,10082153,50405,51558,5828776,28956,31626
+200,32,108,0.0030,10082978,50411,51189,5853554,29106,31403
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,112,0.0031,10442153,52205,53358,6033005,30029,32674
+200,32,112,0.0030,10442978,52211,52989,6053498,30123,32279
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,116,0.0031,10802153,54005,55158,6244763,30994,35257
+200,32,116,0.0031,10802978,54011,54789,6296056,31338,33377
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,120,0.0032,11162153,55805,56958,6425499,31972,34572
+200,32,120,0.0033,11162978,55811,56589,6468115,32146,33869
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,124,0.0033,11522153,57605,58758,6654149,33094,35931
+200,32,124,0.0032,11522978,57611,58389,6675248,33233,35075
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,128,0.0033,11882153,59405,60558,6851733,34090,36755
+200,32,128,0.0033,11882978,59411,60189,6894325,34338,36207
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,132,0.0034,12242153,61205,62358,7052529,35058,39834
+200,32,132,0.0034,12242978,61211,61989,7093543,35299,37463
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,136,0.0035,12602153,63005,64158,7241645,36039,38957
+200,32,136,0.0034,12602978,63011,63789,7312105,36353,48105
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,140,0.0035,12962153,64805,65958,7438548,37024,39702
+200,32,140,0.0035,12962978,64811,65589,7503757,37375,39247
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,144,0.0036,13322153,66605,67758,7649807,38039,46041
+200,32,144,0.0036,13322978,66611,67389,7692611,38277,40419
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,148,0.0037,13682153,68405,69558,7837686,39006,41671
+200,32,148,0.0037,13682978,68411,69189,7968094,39656,42113
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,152,0.0037,14042153,70205,71358,8039582,40031,42707
+200,32,152,0.0037,14042978,70211,70989,8122466,40468,42706
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,156,0.0038,14402153,72005,73158,8272212,41195,43645
+200,32,156,0.0038,14402978,72011,72789,8328043,41484,45104
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,160,0.0040,14762153,73805,74958,8471858,42200,44594
+200,32,160,0.0040,14762978,73811,74589,8547674,42493,54216
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,164,0.0039,15122153,75605,76758,8657085,43103,45699
+200,32,164,0.0039,15122978,75611,76389,8738805,43542,45427
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,168,0.0039,15482153,77405,78558,8856462,44110,46863
+200,32,168,0.0040,15482978,77411,78189,8948025,44560,46819
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,172,0.0040,15842153,79205,80358,9050337,45084,47600
+200,32,172,0.0040,15842978,79211,79989,9186567,45735,47659
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,176,0.0041,16202153,81005,82158,9267755,46142,55546
+200,32,176,0.0041,16202978,81011,81789,9391949,46573,70131
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,180,0.0042,16562153,82805,83958,9452041,47058,49763
+200,32,180,0.0042,16562978,82811,83589,9549568,47559,54271
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,184,0.0042,16922153,84605,85758,9655929,48043,50875
+200,32,184,0.0042,16922978,84611,85389,9766306,48609,58645
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,188,0.0043,17282153,86405,87558,9906002,49331,52491
+200,32,188,0.0043,17282978,86411,87189,9974165,49613,56721
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,192,0.0043,17642153,88205,89358,10089481,50268,52937
+200,32,192,0.0044,17642978,88211,88989,10187263,50734,52953
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,196,0.0044,18002153,90005,91158,10292606,51256,54507
+200,32,196,0.0044,18002978,90011,90789,10386920,51763,53773
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,200,0.0045,18362153,91805,92958,10466174,52144,54851
+200,32,200,0.0045,18362978,91811,92589,10593326,52744,54962
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,204,0.0045,18722153,93605,94758,10710242,53145,77999
+200,32,204,0.0045,18722978,93611,94389,10791966,53796,55775
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,208,0.0046,19082153,95405,96558,10872705,54177,57081
+200,32,208,0.0046,19082978,95411,96189,10993938,54691,56692
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,212,0.0047,19442153,97205,98358,11284063,56244,58937
+200,32,212,0.0047,19442978,97211,97989,11183564,55716,57663
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,216,0.0047,19802153,99005,100158,11267668,56162,58869
+200,32,216,0.0047,19802978,99011,99789,11413409,56842,65317
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,220,0.0048,20162153,100805,101958,11510801,57350,60362
+200,32,220,0.0049,20162978,100811,101589,11747337,57952,85917
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,224,0.0051,20522153,102605,103758,11730908,58406,61013
+200,32,224,0.0049,20522978,102611,103389,11967444,58993,147575
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,228,0.0050,20882153,104405,105558,11891323,59260,62051
+200,32,228,0.0050,20882978,104411,105189,12176974,59986,107137
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,232,0.0050,21242153,106205,107358,12083458,60220,63113
+200,32,232,0.0051,21242978,106211,106989,12243039,61011,62843
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,236,0.0050,21602153,108005,109158,12290078,61234,68599
+200,32,236,0.0051,21602978,108011,108789,12454738,61985,74677
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,240,0.0051,21962153,109805,110958,12547828,62267,88616
+200,32,240,0.0051,21962978,109811,110589,12632612,62912,64911
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,244,0.0052,22322153,111605,112758,12674066,63146,66333
+200,32,244,0.0052,22322978,111611,112389,12844679,63954,74316
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,248,0.0052,22682153,113405,114558,12882346,64155,67081
+200,32,248,0.0053,22682978,113411,114189,13049050,65048,67067
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,252,0.0053,23042153,115205,116358,13140221,65490,68231
+200,32,252,0.0054,23042978,115211,115989,13274577,66113,68093
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,256,0.0054,23402153,117005,118158,13331460,66431,69187
+200,32,256,0.0054,23402978,117011,117789,13479975,67191,69232
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,260,0.0054,23762153,118805,119958,13531478,67456,70141
+200,32,260,0.0055,23762978,118811,119589,13702476,68321,70257
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,264,0.0055,24122153,120605,121758,13710546,68246,81094
+200,32,264,0.0055,24122978,120611,121389,13885554,69178,71473
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,268,0.0055,24482153,122405,123558,13890638,69208,72412
+200,32,268,0.0056,24482978,122411,123189,14091173,70236,72538
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,272,0.0056,24842153,124205,125358,14130816,70366,88752
+200,32,272,0.0057,24842978,124211,124989,14277355,71142,73153
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,276,0.0057,25202153,126005,127158,14355067,71208,93990
+200,32,276,0.0057,25202978,126011,126789,14477479,72149,74585
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,280,0.0057,25562153,127805,128958,14513593,72251,85857
+200,32,280,0.0058,25562978,127811,128589,14807542,73365,106386
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,284,0.0059,25922153,129605,130758,14800806,73802,76775
+200,32,284,0.0059,25922978,129611,130389,14919273,74349,83988
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,288,0.0059,26282153,131405,132558,14959572,74579,77267
+200,32,288,0.0060,26282978,131411,132189,15262342,75369,108903
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,292,0.0059,26642153,133205,134358,15130033,75389,78361
+200,32,292,0.0061,26642978,133211,133989,15457489,76550,112579
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,296,0.0060,27002153,135005,136158,15314583,76370,79151
+200,32,296,0.0061,27002978,135011,135789,15587890,77470,113796
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,300,0.0061,27362153,136805,137958,15515700,77373,80055
+200,32,300,0.0063,27362978,136811,137589,15736737,78474,80976
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,304,0.0061,27722153,138605,139758,15739536,78395,81351
+200,32,304,0.0062,27722978,138611,139389,15931699,79424,85309
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,308,0.0062,28082153,140405,141558,15910915,79341,82085
+200,32,308,0.0064,28082978,140411,141189,16127895,80426,82181
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,312,0.0063,28442153,142205,143358,16119259,80297,83271
+200,32,312,0.0063,28442978,142211,142989,16353667,81487,91316
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,316,0.0063,28802153,144005,145158,16376727,81668,84481
+200,32,316,0.0064,28802978,144011,144789,16544730,82526,84583
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,320,0.0064,29162153,145805,146958,16575917,82685,85800
+200,32,320,0.0064,29162978,145811,146589,16778054,83692,85621
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,324,0.0065,29522153,147605,148758,16752101,83529,86861
+200,32,324,0.0065,29522978,147611,148389,16975790,84670,86933
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,328,0.0065,29882153,149405,150558,16931954,84456,87199
+200,32,328,0.0066,29882978,149411,150189,17193806,85651,95908
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,332,0.0066,30242153,151205,152358,17129562,85462,88022
+200,32,332,0.0067,30242978,151211,151989,17391042,86658,92746
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,336,0.0067,30602153,153005,154158,17522378,87337,90235
+200,32,336,0.0067,30602978,153011,153789,17579650,87566,101073
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,340,0.0067,30962153,154805,155958,17525540,87379,89947
+200,32,340,0.0068,30962978,154811,155589,17823659,88601,131503
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,344,0.0068,31322153,156605,157758,17811817,88413,169057
+200,32,344,0.0069,31322978,156611,157389,18045749,89720,131352
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,348,0.0069,31682153,158405,159558,17999372,89772,92601
+200,32,348,0.0069,31682978,158411,159189,18233228,90790,129666
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,352,0.0069,32042153,160205,161358,18204371,90776,101494
+200,32,352,0.0070,32042978,160211,160989,18429938,91908,93827
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,356,0.0070,32402153,162005,163158,18393456,91621,107055
+200,32,356,0.0071,32402978,162011,162789,18723870,92891,169000
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,360,0.0070,32762153,163805,164958,18567077,92476,114024
+200,32,360,0.0071,32762978,163811,164589,18839189,93872,104313
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,364,0.0072,33122153,165605,166758,18749614,93562,96291
+200,32,364,0.0072,33122978,165611,166389,19052230,94828,108456
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,368,0.0073,33482153,167405,168558,18957503,94465,97467
+200,32,368,0.0072,33482978,167411,168189,19224348,95828,106832
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,372,0.0072,33842153,169205,170358,19137907,95471,98421
+200,32,372,0.0073,33842978,169211,169989,19409746,96825,98825
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,376,0.0073,34202153,171005,172158,19350029,96457,99505
+200,32,376,0.0074,34202978,171011,171789,19635914,97934,100015
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,380,0.0075,34562153,172805,173958,19657158,97897,122483
+200,32,380,0.0075,34562978,172811,173589,19901265,99194,108856
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,384,0.0075,34922153,174605,175758,20019224,98872,199167
+200,32,384,0.0075,34922978,174611,175389,20087150,100132,113306
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,388,0.0075,35282153,176405,177558,19999785,99747,102911
+200,32,388,0.0076,35282978,176411,177189,20289560,101187,111225
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,392,0.0077,35642153,178205,179358,20188679,100586,121054
+200,32,392,0.0076,35642978,178211,178989,20478069,102158,104431
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,396,0.0076,36002153,180005,181158,20368637,101583,105060
+200,32,396,0.0077,36002978,180011,180789,20703541,103136,118462
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,400,0.0077,36362153,181805,182958,20628698,102607,152896
+200,32,400,0.0078,36362978,181811,182589,20889687,104097,116051
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,404,0.0078,36722153,183605,184758,20759711,103503,111551
+200,32,404,0.0078,36722978,183611,184389,21103371,105019,150497
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,408,0.0078,37082153,185405,186558,21008339,104552,136230
+200,32,408,0.0079,37082978,185411,186189,21343392,106235,146574
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,412,0.0080,37442153,187205,188358,21248565,105961,109252
+200,32,412,0.0080,37442978,187211,187989,21499750,107213,116228
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,416,0.0080,37802153,189005,190158,21446394,106998,110446
+200,32,416,0.0081,37802978,189011,189789,21769516,108354,153304
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,420,0.0081,38162153,190805,191958,21618503,107795,119989
+200,32,420,0.0082,38162978,190811,191589,22016040,109333,166344
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,424,0.0081,38522153,192605,193758,21778142,108604,112064
+200,32,424,0.0082,38522978,192611,193389,22124948,110298,112586
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,428,0.0081,38882153,194405,195558,21989784,109653,120306
+200,32,428,0.0083,38882978,194411,195189,22375892,111391,164691
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,432,0.0082,39242153,196205,197358,22191881,110730,113916
+200,32,432,0.0083,39242978,196211,196989,22605417,112244,161120
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,436,0.0083,39602153,198005,199158,22373426,111587,115657
+200,32,436,0.0084,39602978,198011,198789,22698406,113231,115888
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,440,0.0084,39962153,199805,200958,22596402,112638,130342
+200,32,440,0.0084,39962978,199811,200589,22946025,114347,124840
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,444,0.0084,40322153,201605,202758,22868323,114041,124888
+200,32,444,0.0085,40322978,201611,202389,23138571,115404,122324
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,448,0.0085,40682153,203405,204558,23084361,115132,128588
+200,32,448,0.0086,40682978,203411,204189,23382319,116666,118990
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,452,0.0086,41042153,205205,206358,23255449,115787,156348
+200,32,452,0.0086,41042978,205211,205989,23582320,117634,123005
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,456,0.0088,41402153,207005,208158,23400730,116742,119985
+200,32,456,0.0087,41402978,207011,207789,23777586,118606,121054
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,460,0.0087,41762153,208805,209958,23616057,117782,125672
+200,32,460,0.0088,41762978,208811,209589,24021078,119638,157473
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,464,0.0088,42122153,210605,211758,23845815,118769,150383
+200,32,464,0.0089,42122978,210611,211389,24177273,120536,137152
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,468,0.0089,42482153,212405,213558,23982677,119580,123029
+200,32,468,0.0089,42482978,212411,213189,24354431,121510,124378
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,472,0.0090,42842153,214205,215358,24183894,120688,124270
+200,32,472,0.0090,42842978,214211,214989,24680874,122798,163001
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,476,0.0090,43202153,216005,217158,24479273,122149,125974
+200,32,476,0.0092,43202978,216011,216789,24806941,123695,126112
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,480,0.0091,43562153,217805,218958,24768939,123125,164217
+200,32,480,0.0091,43562978,217811,218589,25036974,124855,131240
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,484,0.0092,43922153,219605,220758,24828983,123895,127390
+200,32,484,0.0092,43922978,219611,220389,25277560,125834,159926
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,488,0.0091,44282153,221405,222558,25011559,124768,128788
+200,32,488,0.0093,44282978,221411,222189,25492002,126931,169890
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,492,0.0092,44642153,223205,224358,25219550,125760,132732
+200,32,492,0.0094,44642978,223211,223989,25799993,127811,292316
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,496,0.0093,45002153,225005,226158,25447017,126853,140428
+200,32,496,0.0094,45002978,225011,225789,25879076,128748,186367
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,500,0.0093,45362153,226805,227958,25586059,127650,131094
+200,32,500,0.0094,45362978,226811,227589,26021482,129705,143377
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,504,0.0094,45722153,228605,229758,25796559,128739,131932
+200,32,504,0.0095,45722978,228611,229389,26309697,130875,185497
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,508,0.0095,46082153,230405,231558,26122261,130275,141242
+200,32,508,0.0096,46082978,230411,231189,26445482,131853,134810
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,512,0.0095,46442153,232205,233358,26303806,130890,135216
+200,32,512,0.0097,46442978,232211,232989,26722882,133313,135480
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,516,0.0096,46802153,234005,235158,26441241,131860,137807
+200,32,516,0.0097,46802978,234011,234789,26902984,134116,143429
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,520,0.0097,47162153,235805,236958,26620814,132726,144193
+200,32,520,0.0098,47162978,235811,236589,27143327,135173,182663
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,524,0.0097,47522153,237605,238758,26895547,133979,180810
+200,32,524,0.0101,47522978,237611,238389,27899728,139067,143412
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,528,0.0098,47882153,239405,240558,27103175,134594,195038
+200,32,528,0.0099,47882978,239411,240189,27539695,137281,153792
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,532,0.0099,48242153,241205,242358,27216804,135653,148537
+200,32,532,0.0100,48242978,241211,241989,27665652,137957,156345
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,536,0.0100,48602153,243005,244158,27609711,137157,225927
+200,32,536,0.0102,48602978,243011,243789,27888664,139123,142069
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,540,0.0101,48962153,244805,245958,27856165,138525,222412
+200,32,540,0.0102,48962978,244811,245589,28116288,140162,167093
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,544,0.0101,49322153,246605,247758,27949313,139206,146089
+200,32,544,0.0102,49322978,246611,247389,28395864,141365,191687
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,548,0.0102,49682153,248405,249558,28071639,140106,144061
+200,32,548,0.0105,49682978,248411,249189,28539300,142352,144923
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,552,0.0102,50042153,250205,251358,28221254,140771,147826
+200,32,552,0.0104,50042978,250211,250989,28772000,143499,153080
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,556,0.0103,50402153,252005,253158,28466442,141994,145849
+200,32,556,0.0104,50402978,252011,252789,28943938,144344,160802
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,560,0.0105,50762153,253805,254958,28785863,142904,194917
+200,32,560,0.0105,50762978,253811,254589,29192011,145318,205574
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,564,0.0105,51122153,255605,256758,28851831,143902,156411
+200,32,564,0.0106,51122978,255611,256389,29371768,146296,173660
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,568,0.0106,51482153,257405,258558,29223120,145608,162476
+200,32,568,0.0107,51482978,257411,258189,29607085,147402,185216
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,572,0.0108,51842153,259205,260358,29438332,146788,151895
+200,32,572,0.0109,51842978,259211,259989,29760468,148529,150992
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,576,0.0108,52202153,261005,262158,29557331,147210,151262
+200,32,576,0.0108,52202978,261011,261789,30001693,149671,152448
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,580,0.0108,52562153,262805,263958,29704990,148198,158557
+200,32,580,0.0109,52562978,262811,263589,30194219,150474,161954
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,584,0.0108,52922153,264605,265758,29996452,149016,250006
+200,32,584,0.0110,52922978,264611,265389,30465237,151575,196784
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,588,0.0109,53282153,266405,267558,30123135,150270,154069
+200,32,588,0.0112,53282978,266411,267189,30866027,152658,345805
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,592,0.0110,53642153,268205,269358,30283611,150978,165439
+200,32,592,0.0112,53642978,268211,268989,30806266,153631,162459
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,596,0.0110,54002153,270005,271158,30512807,152128,156216
+200,32,596,0.0112,54002978,270011,270789,31013348,154624,161083
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,600,0.0111,54362153,271805,272958,30713954,153227,157015
+200,32,600,0.0113,54362978,271811,272589,31227644,155782,158034
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,604,0.0113,54722153,273605,274758,31116246,155098,162946
+200,32,604,0.0115,54722978,273611,274389,31534633,156837,219588
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,608,0.0113,55082153,275405,276558,31292429,155792,166047
+200,32,608,0.0114,55082978,275411,276189,31675474,157869,168332
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,612,0.0113,55442153,277205,278358,31367681,156312,187819
+200,32,612,0.0115,55442978,277211,277989,31953436,158989,218652
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,616,0.0114,55802153,279005,280158,31509163,156923,173955
+200,32,616,0.0116,55802978,279011,279789,32108644,160138,180416
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,620,0.0115,56162153,280805,281958,31751550,158349,162413
+200,32,620,0.0116,56162978,280811,281589,32277424,160849,182393
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,624,0.0116,56522153,282605,283758,32010052,159426,164990
+200,32,624,0.0118,56522978,282611,283389,32423394,161797,164245
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,628,0.0116,56882153,284405,285558,32270071,160471,206182
+200,32,628,0.0117,56882978,284411,285189,32609412,162678,167394
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,632,0.0118,57242153,286205,287358,32379821,161317,166154
+200,32,632,0.0118,57242978,286211,286989,32869379,163975,168634
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,636,0.0118,57602153,288005,289158,32621237,162719,174455
+200,32,636,0.0119,57602978,288011,288789,33151217,165037,223167
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,640,0.0118,57962153,289805,290958,32760054,163283,174727
+200,32,640,0.0119,57962978,289811,290589,33341299,166215,181218
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,644,0.0119,58322153,291605,292758,32895462,163973,168568
+200,32,644,0.0121,58322978,291611,292389,33649260,167751,199967
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,648,0.0119,58682153,293405,294558,33046462,164805,176098
+200,32,648,0.0121,58682978,293411,294189,33719599,168221,178799
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,652,0.0120,59042153,295205,296358,33305627,166069,179927
+200,32,652,0.0122,59042978,295211,295989,34067206,169536,235514
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,656,0.0121,59402153,297005,298158,33611780,166989,248127
+200,32,656,0.0122,59402978,297011,297789,34164102,170144,235618
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,660,0.0121,59762153,298805,299958,33791922,168433,184984
+200,32,660,0.0123,59762978,298811,299589,34456636,171594,235316
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,664,0.0121,60122153,300605,301758,33927065,169140,182483
+200,32,664,0.0124,60122978,300611,301389,34541178,172177,211827
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,668,0.0124,60482153,302405,303558,34476798,171567,188679
+200,32,668,0.0124,60482978,302411,303189,34905159,173832,222673
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,672,0.0123,60842153,304205,305358,34350802,171240,175365
+200,32,672,0.0126,60842978,304211,304989,34988298,174422,188003
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,676,0.0123,61202153,306005,307158,34529315,172118,202239
+200,32,676,0.0126,61202978,306011,306789,35263092,175911,185984
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,680,0.0124,61562153,307805,308958,34716545,172878,244909
+200,32,680,0.0127,61562978,307811,308589,35503073,176323,305860
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,684,0.0126,61922153,309605,310758,35111667,174820,186347
+200,32,684,0.0128,61922978,309611,310389,35672483,178036,180851
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,688,0.0126,62282153,311405,312558,35200811,175517,179013
+200,32,688,0.0128,62282978,311411,312189,35790039,178289,217803
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,692,0.0126,62642153,313205,314358,35391859,176015,252609
+200,32,692,0.0128,62642978,313211,313989,36045752,179866,188983
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,696,0.0127,63002153,315005,316158,35696188,177815,200506
+200,32,696,0.0130,63002978,315011,315789,36175144,180438,195986
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,700,0.0128,63362153,316805,317958,35825556,178736,191521
+200,32,700,0.0131,63362978,316811,317589,36529049,182248,184897
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,704,0.0129,63722153,318605,319758,36008866,179237,218743
+200,32,704,0.0130,63722978,318611,319389,36611747,182765,185703
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,708,0.0129,64082153,320405,321558,36282257,180511,214158
+200,32,708,0.0130,64082978,320411,321189,36811496,183626,191140
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,712,0.0129,64442153,322205,323358,36251857,180793,191833
+200,32,712,0.0131,64442978,322211,322989,37060383,184588,255521
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,716,0.0131,64802153,324005,325158,36828270,182903,229477
+200,32,716,0.0132,64802978,324011,324789,37267356,185684,240236
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,720,0.0130,65162153,325805,326958,36775140,183107,213910
+200,32,720,0.0132,65162978,325811,326589,37393434,186562,204926
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,724,0.0131,65522153,327605,328758,36946255,184028,240244
+200,32,724,0.0133,65522978,327611,328389,37611724,187635,203956
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,728,0.0132,65882153,329405,330558,37189420,185485,206103
+200,32,728,0.0135,65882978,329411,330189,37844476,188685,217329
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,732,0.0133,66242153,331205,332358,37526856,187108,192940
+200,32,732,0.0136,66242978,331211,331989,38097715,189879,238003
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,736,0.0134,66602153,333005,334158,37747623,188004,201070
+200,32,736,0.0136,66602978,333011,333789,38249665,190960,193797
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,740,0.0134,66962153,334805,335958,37844347,188709,198675
+200,32,740,0.0137,66962978,334811,335589,38496135,191882,202980
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,744,0.0134,67322153,336605,337758,37874634,189009,203611
+200,32,744,0.0136,67322978,336611,337389,38643004,192776,211409
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,748,0.0136,67682153,338405,339558,38360815,190893,193995
+200,32,748,0.0138,67682978,338411,339189,38834497,193752,204307
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,752,0.0137,68042153,340205,341358,38702052,192377,222451
+200,32,752,0.0139,68042978,340211,340989,39026422,194674,207102
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,756,0.0136,68402153,342005,343158,38548177,192033,249435
+200,32,756,0.0139,68402978,342011,342789,39292510,195755,242534
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,760,0.0138,68762153,343805,344958,39152996,194437,272148
+200,32,760,0.0140,68762978,343811,344589,39445808,196904,199749
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,764,0.0138,69122153,345605,346758,39070056,194876,204988
+200,32,764,0.0140,69122978,345611,346389,39707448,198140,208159
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,768,0.0138,69482153,347405,348558,39192485,195337,208507
+200,32,768,0.0141,69482978,347411,348189,39961335,199314,213386
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,772,0.0139,69842153,349205,350358,39509976,197063,216644
+200,32,772,0.0142,69842978,349211,349989,40195551,200268,262442
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,776,0.0140,70202153,351005,352158,39643299,197720,238164
+200,32,776,0.0143,70202978,351011,351789,40369481,201262,243178
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,780,0.0141,70562153,352805,353958,40047395,199611,212284
+200,32,780,0.0143,70562978,352811,353589,40454251,201889,204769
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,784,0.0142,70922153,354605,355758,40474213,201350,218018
+200,32,784,0.0143,70922978,354611,355389,40804167,203132,292206
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,788,0.0143,71282153,356405,357558,40369690,200941,270257
+200,32,788,0.0144,71282978,356411,357189,40880258,203888,220805
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,792,0.0143,71642153,358205,359358,40667289,202430,244792
+200,32,792,0.0145,71642978,358211,358989,41141375,205195,222680
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,796,0.0145,72002153,360005,361158,41245212,205315,244622
+200,32,796,0.0145,72002978,360011,360789,41346667,205890,276619
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,800,0.0144,72362153,361805,362958,41042713,204407,249254
+200,32,800,0.0146,72362978,361811,362589,41586665,207290,248916
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,804,0.0145,72722153,363605,364758,41137099,205254,211445
+200,32,804,0.0147,72722978,363611,364389,41696398,208106,211465
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,808,0.0145,73082153,365405,366558,41267168,205869,210553
+200,32,808,0.0148,73082978,365411,366189,41978951,209272,255137
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,812,0.0146,73442153,367205,368358,41538016,207083,242270
+200,32,812,0.0148,73442978,367211,367989,42187366,209918,283393
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,816,0.0147,73802153,369005,370158,41856937,208198,257079
+200,32,816,0.0149,73802978,369011,369789,42482639,211214,322437
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,820,0.0149,74162153,370805,371958,42581251,211598,220361
+200,32,820,0.0149,74162978,370811,371589,42512865,212010,227823
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,824,0.0148,74522153,372605,373758,42106929,210144,214780
+200,32,824,0.0151,74522978,372611,373389,42861251,213412,278868
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,828,0.0151,74882153,374405,375558,42954101,213100,216189
+200,32,828,0.0151,74882978,374411,375189,42979335,214191,262439
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,832,0.0150,75242153,376205,377358,42591682,212393,217281
+200,32,832,0.0152,75242978,376211,376989,43402619,215543,296991
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,836,0.0150,75602153,378005,379158,42833889,213607,225147
+200,32,836,0.0152,75602978,378011,378789,43382253,216450,232179
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,840,0.0151,75962153,379805,380958,42888365,213833,258282
+200,32,840,0.0154,75962978,379811,380589,43665001,217538,261020
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,844,0.0151,76322153,381605,382758,43234463,215605,228741
+200,32,844,0.0154,76322978,381611,382389,43762162,218196,232967
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,848,0.0152,76682153,383405,384558,43340508,216058,240778
+200,32,848,0.0156,76682978,383411,384189,44077885,219619,233562
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,852,0.0154,77042153,385205,386358,43964132,218702,263707
+200,32,852,0.0155,77042978,385211,385989,44269902,220266,357562
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,856,0.0155,77402153,387005,388158,43738562,218168,230126
+200,32,856,0.0156,77402978,387011,387789,44458368,221658,275183
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,860,0.0154,77762153,388805,389958,44071523,219837,238185
+200,32,860,0.0156,77762978,388811,389589,44599845,222530,244104
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,864,0.0155,78122153,390605,391758,44411093,221177,232408
+200,32,864,0.0158,78122978,390611,391389,44856987,223898,229495
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,868,0.0157,78482153,392405,393558,44526424,222013,237960
+200,32,868,0.0157,78482978,392411,393189,45070339,224667,268426
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,872,0.0158,78842153,394205,395358,45188815,224084,346189
+200,32,872,0.0158,78842978,394211,394989,45243346,225686,238504
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,876,0.0156,79202153,396005,397158,44700630,222996,237268
+200,32,876,0.0160,79202978,396011,396789,45425044,226467,285843
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,880,0.0158,79562153,397805,398958,45208957,224813,328325
+200,32,880,0.0160,79562978,397811,398589,45637897,227585,255503
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,884,0.0159,79922153,399605,400758,45474656,226439,239215
+200,32,884,0.0163,79922978,399611,400389,45922301,228540,294854
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,888,0.0160,80282153,401405,402558,45766475,227867,240911
+200,32,888,0.0161,80282978,401411,402189,46210377,229936,317062
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,892,0.0160,80642153,403205,404358,45940503,228819,243891
+200,32,892,0.0161,80642978,403211,403989,46224897,230736,244030
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,896,0.0161,81002153,405005,406158,45973712,229111,241548
+200,32,896,0.0163,81002978,405011,405789,46706945,232252,393574
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,900,0.0162,81362153,406805,407958,46447521,230613,346027
+200,32,900,0.0163,81362978,406811,407589,46846573,233803,243774
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,904,0.0163,81722153,408605,409758,46859527,233117,305572
+200,32,904,0.0165,81722978,408611,409389,47211102,235424,247115
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,908,0.0164,82082153,410405,411558,47123610,234871,284329
+200,32,908,0.0165,82082978,410411,411189,47420647,236067,308146
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,912,0.0166,82442153,412205,413358,47816182,237201,366650
+200,32,912,0.0167,82442978,412211,412989,47664515,237299,252663
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,916,0.0166,82802153,414005,415158,47456504,236767,248921
+200,32,916,0.0166,82802978,414011,414789,47825500,238210,307878
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,920,0.0165,83162153,415805,416958,47592162,237459,265738
+200,32,920,0.0168,83162978,415811,416589,48024315,239591,249230
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,924,0.0167,83522153,417605,418758,48057683,239541,276783
+200,32,924,0.0168,83522978,417611,418389,48204506,240348,286103
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,928,0.0167,83882153,419405,420558,48171706,239841,277682
+200,32,928,0.0168,83882978,419411,420189,48474452,241766,272232
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,932,0.0170,84242153,421205,422358,48721591,242883,245719
+200,32,932,0.0169,84242978,421211,421989,48643328,242408,310910
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,936,0.0169,84602153,423005,424158,48377712,241387,254877
+200,32,936,0.0170,84602978,423011,423789,49041567,243670,350571
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,940,0.0169,84962153,424805,425958,48721762,242855,255300
+200,32,940,0.0171,84962978,424811,425589,49009612,244295,313509
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,944,0.0170,85322153,426605,427758,49035991,243372,370914
+200,32,944,0.0171,85322978,426611,427389,49257311,245620,259650
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,948,0.0171,85682153,428405,429558,49070436,244800,262067
+200,32,948,0.0172,85682978,428411,429189,49415667,246533,254714
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,952,0.0171,86042153,430205,431358,49234273,245636,258683
+200,32,952,0.0172,86042978,430211,430989,49711139,247671,319628
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,956,0.0172,86402153,432005,433158,49586922,247001,316148
+200,32,956,0.0174,86402978,432011,432789,49856592,248552,271876
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,960,0.0172,86762153,433805,434958,49640943,247637,284307
+200,32,960,0.0174,86762978,433811,434589,50136102,249978,265617
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,964,0.0177,87122153,435605,436758,51436885,256453,266477
+200,32,964,0.0176,87122978,435611,436389,50925446,253713,295499
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,968,0.0178,87482153,437405,438558,51146832,254991,267861
+200,32,968,0.0178,87482978,437411,438189,51035835,253858,318894
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,972,0.0177,87842153,439205,440358,51377929,256333,274159
+200,32,972,0.0177,87842978,439211,439989,51188317,255334,306288
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,976,0.0179,88202153,441005,442158,51360933,256336,265049
+200,32,976,0.0178,88202978,441011,441789,51436023,256205,289239
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,980,0.0179,88562153,442805,443958,51845435,258521,293602
+200,32,980,0.0179,88562978,442811,443589,51703656,257814,300077
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,984,0.0180,88922153,444605,445758,52129373,259818,262711
+200,32,984,0.0179,88922978,444611,445389,51801305,257947,349721
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,988,0.0181,89282153,446405,447558,52262963,260903,278224
+200,32,988,0.0181,89282978,446411,447189,52056854,259676,262216
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,992,0.0182,89642153,448205,449358,52407317,261432,272849
+200,32,992,0.0182,89642978,448211,448989,52237864,260535,269494
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,996,0.0184,90002153,450005,451158,53286503,265403,275404
+200,32,996,0.0183,90002978,450011,450789,52526126,262024,274178
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,1000,0.0182,90362153,451805,452958,53051777,264487,273734
+200,32,1000,0.0182,90362978,451811,452589,52578843,262284,265526
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,1004,0.0183,90722153,453605,454758,53153647,264834,340140
+200,32,1004,0.0183,90722978,453611,454389,52896370,263840,273834
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,1008,0.0183,91082153,455405,456558,53025643,264711,274578
+200,32,1008,0.0183,91082978,455411,456189,53074476,264385,308471
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,1012,0.0185,91442153,457205,458358,53709439,267192,353247
+200,32,1012,0.0184,91442978,457211,457989,53382079,266422,284446
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,1016,0.0186,91802153,459005,460158,54036527,268786,339099
+200,32,1016,0.0186,91802978,459011,459789,53434221,266486,275700
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,1020,0.0186,92162153,460805,461958,54154888,269844,327020
+200,32,1020,0.0186,92162978,460811,461589,53712164,268036,277528
 iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)
-200,32,1024,0.0183,92522153,462605,463758,52875104,262839,332332
-mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .
+200,32,1024,0.0187,92522978,462611,463389,53754294,268076,276795
+mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.ins_cyc.bin.csv .
 </pre>
 </div>
 </div>
@@ -13823,7 +13855,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<p>Once the run is completed, let's have a look at the data!</p>
+<p>Once the run is completed, let's study the data!</p>
 <p>This can be done best in the interactive version of the Jupyter Notebook. In case this version of the description is unavailable to you, call the Makefile target <code>make graph_task1</code> (either with X forwarding, or download the resulting PDF).</p>
 
 </div>
@@ -13831,10 +13863,11 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[3]:</div>
+<div class="prompt input_prompt">In&nbsp;[1]:</div>
 <div class="inner_cell">
     <div class="input_area">
-<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">seaborn</span> <span class="k">as</span> <span class="nn">sns</span>
+<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
+<span class="kn">import</span> <span class="nn">seaborn</span> <span class="k">as</span> <span class="nn">sns</span>
 <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
 <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
 <span class="kn">import</span> <span class="nn">common</span>
@@ -13847,16 +13880,36 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .
 </div>
 </div>
 
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Execute the following cell if you want to switch to color-blind-safer colors</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">sns</span><span class="o">.</span><span class="n">set_palette</span><span class="p">(</span><span class="s2">&quot;colorblind&quot;</span><span class="p">)</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[77]:</div>
+<div class="prompt input_prompt">In&nbsp;[2]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">rcParams</span><span class="p">[</span><span class="s1">&#39;figure.figsize&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span><span class="mi">14</span><span class="p">,</span> <span class="mi">6</span><span class="p">]</span>
 <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">&quot;poisson2d.ins_cyc.bin.csv&quot;</span><span class="p">,</span> <span class="n">skiprows</span><span class="o">=</span><span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>  <span class="c1"># Read in the CSV file from the bench run; parse with Pandas</span>
-<span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="s2">&quot;PM_INST_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Instructions / Loop Iteration&quot;</span><span class="p">)</span>  <span class="c1"># Normalize to each grid cell</span>
-<span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="s2">&quot;PM_RUN_CYC (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Cycles / Loop Iteration&quot;</span><span class="p">)</span>
+<span class="n">df</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s2">&quot;nx&quot;</span><span class="p">]</span> <span class="o">*</span> <span class="n">df</span><span class="p">[</span><span class="s2">&quot;ny&quot;</span><span class="p">]</span>  <span class="c1"># Add a new column of the number of grid points (the product of nx and ny)</span>
 <span class="n">df</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>  <span class="c1"># Display the head of the Pandas dataframe</span>
 </pre></div>
 
@@ -13870,7 +13923,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .
 
 <div class="output_area">
 
-    <div class="prompt output_prompt">Out[77]:</div>
+    <div class="prompt output_prompt">Out[2]:</div>
 
 
 
@@ -13903,8 +13956,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .
       <th>PM_RUN_CYC (total)</th>
       <th>PM_RUN_CYC (min)</th>
       <th>PM_RUN_CYC (max)</th>
-      <th>Instructions / Loop Iteration</th>
-      <th>Cycles / Loop Iteration</th>
+      <th>Grid Points</th>
     </tr>
   </thead>
   <tbody>
@@ -13914,14 +13966,13 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .
       <td>32</td>
       <td>4</td>
       <td>0.0012</td>
-      <td>548153</td>
-      <td>2735</td>
-      <td>3888</td>
-      <td>266883</td>
-      <td>1237</td>
-      <td>4793</td>
-      <td>21.367188</td>
-      <td>9.664062</td>
+      <td>572978</td>
+      <td>2861</td>
+      <td>3639</td>
+      <td>261330</td>
+      <td>1235</td>
+      <td>4684</td>
+      <td>128</td>
     </tr>
     <tr>
       <th>1</th>
@@ -13929,14 +13980,13 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .
       <td>32</td>
       <td>8</td>
       <td>0.0014</td>
-      <td>1082153</td>
-      <td>5405</td>
-      <td>6558</td>
-      <td>668819</td>
-      <td>3214</td>
-      <td>6623</td>
-      <td>21.113281</td>
-      <td>12.554688</td>
+      <td>1082978</td>
+      <td>5411</td>
+      <td>6189</td>
+      <td>601962</td>
+      <td>2914</td>
+      <td>5099</td>
+      <td>256</td>
     </tr>
     <tr>
       <th>2</th>
@@ -13944,44 +13994,41 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .
       <td>32</td>
       <td>12</td>
       <td>0.0014</td>
-      <td>1442153</td>
-      <td>7205</td>
-      <td>8358</td>
-      <td>872913</td>
-      <td>4187</td>
-      <td>11640</td>
-      <td>18.763021</td>
-      <td>10.903646</td>
+      <td>1442978</td>
+      <td>7211</td>
+      <td>7989</td>
+      <td>811603</td>
+      <td>3992</td>
+      <td>5761</td>
+      <td>384</td>
     </tr>
     <tr>
       <th>3</th>
       <td>200</td>
       <td>32</td>
       <td>16</td>
-      <td>0.0015</td>
-      <td>1802153</td>
-      <td>9005</td>
-      <td>10158</td>
-      <td>1077532</td>
-      <td>5254</td>
-      <td>8147</td>
-      <td>17.587891</td>
-      <td>10.261719</td>
+      <td>0.0014</td>
+      <td>1802978</td>
+      <td>9011</td>
+      <td>9789</td>
+      <td>1017305</td>
+      <td>4988</td>
+      <td>7017</td>
+      <td>512</td>
     </tr>
     <tr>
       <th>4</th>
       <td>200</td>
       <td>32</td>
       <td>20</td>
-      <td>0.0016</td>
-      <td>2162153</td>
-      <td>10805</td>
-      <td>11958</td>
-      <td>1277957</td>
-      <td>6209</td>
-      <td>9015</td>
-      <td>16.882812</td>
-      <td>9.701562</td>
+      <td>0.0015</td>
+      <td>2162978</td>
+      <td>10811</td>
+      <td>11589</td>
+      <td>1221559</td>
+      <td>6002</td>
+      <td>7999</td>
+      <td>640</td>
     </tr>
   </tbody>
 </table>
@@ -13993,16 +14040,24 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .
 </div>
 </div>
 
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Let's have a look at the counters we've just measured and see how they scaling with increasing number of grid points.</p>
+<p><em>In the following, we are always using the minimal value of the counter (indicated by »(min)«) as this should give us an estimate of the best achievable result of the architecture.</em></p>
+
+</div>
+</div>
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[78]:</div>
+<div class="prompt input_prompt">In&nbsp;[3]:</div>
 <div class="inner_cell">
     <div class="input_area">
-<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Plot Cycles and Instructions - both per grid cell</span>
-<span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
-<span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Cycles / Loop Iteration&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax1</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
-<span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Instructions / Loop Iteration&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax2</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
+<span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_RUN_CYC (min)&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax1</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+<span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_INST_CMPL (min)&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax2</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
 </pre></div>
 
     </div>
@@ -14021,7 +14076,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .
 
 
 <div class="output_png output_subarea ">
-<img src="
+<img src="
 "
 >
 </div>
@@ -14035,7 +14090,176 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<p>What is your result? What value do the graphs come asymptotically close too?</p>
+<p>Although some slight variations can be seen for run cycles for many grid points, the correlation looks quite linear (as one would naively expect). Let's test that by fitting a linear function!</p>
+<p><em>The details of the fitting have been extracted into dedicated function, <code>print_and_return_fit()</code>, of the <code>common.py</code> helper file. If you're interested, <a href="common.py">go have a look at it</a>.</em></p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[4]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">linear_function</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">):</span>
+    <span class="k">return</span> <span class="n">a</span><span class="o">*</span><span class="n">x</span><span class="o">+</span><span class="n">b</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[25]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fit_parameters</span><span class="p">,</span> <span class="n">fit_covariance</span> <span class="o">=</span> <span class="n">common</span><span class="o">.</span><span class="n">print_and_return_fit</span><span class="p">(</span>
+    <span class="p">[</span><span class="s2">&quot;PM_RUN_CYC (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;PM_INST_CMPL (min)&quot;</span><span class="p">],</span> 
+    <span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">),</span> 
+    <span class="n">linear_function</span><span class="p">,</span>
+    <span class="n">format_uncertainty</span><span class="o">=</span><span class="s2">&quot;.4f&quot;</span>
+<span class="p">)</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area">
+
+    <div class="prompt"></div>
+
+
+<div class="output_subarea output_stream output_stdout output_text">
+<pre>Counter   PM_RUN_CYC (min) is proportional to the grid points (nx*ny) by a factor of  8.1021 (± 0.0057)
+Counter PM_INST_CMPL (min) is proportional to the grid points (nx*ny) by a factor of 14.0630 (± 0.0003)
+</pre>
+</div>
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Let's overlay our fits to the graphs from before.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[6]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
+<span class="k">for</span> <span class="n">ax</span><span class="p">,</span> <span class="n">pmu_counter</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">([</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">],</span> <span class="p">[</span><span class="s2">&quot;PM_RUN_CYC (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;PM_INST_CMPL (min)&quot;</span><span class="p">]):</span>
+    <span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="n">pmu_counter</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span>
+        <span class="n">df</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">],</span> 
+        <span class="n">linear_function</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">],</span> <span class="o">*</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">pmu_counter</span><span class="p">]),</span> 
+        <span class="n">linestyle</span><span class="o">=</span><span class="s2">&quot;--&quot;</span><span class="p">,</span> 
+        <span class="n">label</span><span class="o">=</span><span class="s2">&quot;Fit: </span><span class="si">{:.2f}</span><span class="s2"> * x + </span><span class="si">{:.2f}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="o">*</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">pmu_counter</span><span class="p">])</span>
+    <span class="p">)</span>
+    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">();</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area">
+
+    <div class="prompt"></div>
+
+
+
+
+<div class="output_png output_subarea ">
+<img src="
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Please execute the next cell to summarize the first task.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[38]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s2">&quot;The algorithm under investigation runs about </span><span class="si">{:.0f}</span><span class="s2"> cycles and executes about </span><span class="si">{:.0f}</span><span class="s2"> instructions per grid point&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
+    <span class="o">*</span><span class="p">[</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">pmu_counter</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">pmu_counter</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;PM_RUN_CYC (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;PM_INST_CMPL (min)&quot;</span><span class="p">]]</span>
+<span class="p">))</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area">
+
+    <div class="prompt"></div>
+
+
+<div class="output_subarea output_stream output_stdout output_text">
+<pre>The algorithm under investigation runs about 8 cycles and executes about 14 instructions per grid point
+</pre>
+</div>
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p><strong>Bonus:</strong></p>
+<p>The linear fits also calculate a y intersection (»<code>b</code>«). How do you interpret this value?</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>The y axis intersection; that is, <code>b</code> of the linear fit, is the inherent overhead of the program execution. Even if our program would not compute any stencil operation at all for any grid point, it would still complete this many (~1800) instructions and run this many (~680) cycles. Interestingly, it is also the unparallelizable overhead of this (toy) example.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
 <p>We are revisiting the graph in a little while.</p>
 <p><a href="#toc">Back to top</a></p>
 
@@ -14048,7 +14272,8 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .
 <h2 id="Task-2:-Measuring-Loads-and-Stores">Task 2: Measuring Loads and Stores<a class="anchor-link" href="#Task-2:-Measuring-Loads-and-Stores">&#182;</a></h2><p><a name="task2"></a></p>
 <p>Looking at the source code, how many loads and stores from / to memory do you expect? Have a look at the loop which we instrumented.</p>
 <p>Let's compare your estimate to what the system actually does!</p>
-<p><a name="task2-a"></a><strong>TASK A</strong>: Please measure counters for loads and stores. See the TODOs in <a href="/edit/Tasks/poisson2d.ld_st.c"><code>poisson2d.ld_st.c</code></a>. This time, implement <code>PM_LD_CMPL</code> and <code>PM_ST_CMPL</code>.</p>
+<h3 id="Task-A">Task A<a class="anchor-link" href="#Task-A">&#182;</a></h3><p><a name="task2-a"></a></p>
+<p>Please measure counters for loads and stores. See the TODOs in <a href="/edit/Tasks/poisson2d.ld_st.c"><code>poisson2d.ld_st.c</code></a>. This time, implement <code>PM_LD_CMPL</code> and <code>PM_ST_CMPL</code>.</p>
 <p>Compile with <code>make task2</code>, test your program with a single run with <code>make run_task2</code>, and then finally submit a benchmarking run to the batch system with <code>make bench_task2</code>. The following cell will take care of all this.</p>
 <p><a href="#toc">Back to top</a></p>
 
@@ -14057,7 +14282,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[11]:</div>
+<div class="prompt input_prompt">In&nbsp;[3]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="o">!</span>make bench_task2
@@ -14077,524 +14302,523 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .
 
 
 <div class="output_subarea output_stream output_stdout output_text">
-<pre>gcc -DUSE_DOUBLE -Ofast -std=c99 -lm -lpapi  poisson2d.ld_st.c -o poisson2d.ld_st.bin
-bsub -W 60 -nnodes 1 -Is jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.ld_st.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv
-Job &lt;4032&gt; is submitted to default queue &lt;batch&gt;.
+<pre>bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.ld_st.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.ld_st.bin.csv
+Job &lt;24416&gt; is submitted to default queue &lt;batch&gt;.
 &lt;&lt;Waiting for dispatch ...&gt;&gt;
 &lt;&lt;Starting on login1&gt;&gt;
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,4,0.0012,95115,474,789,21343,106,249
+200,32,4,0.0012,119819,598,817,32902,164,266
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,8,0.0014,137115,684,999,33343,166,309
+200,32,8,0.0013,161819,808,1027,56902,284,386
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,12,0.0014,197115,984,1299,45343,226,369
+200,32,12,0.0014,221819,1108,1327,71902,359,461
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,16,0.0015,257115,1284,1599,63343,316,459
+200,32,16,0.0015,281819,1408,1627,86902,434,536
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,20,0.0016,317115,1584,1899,75343,376,519
+200,32,20,0.0015,341819,1708,1927,101902,509,611
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,24,0.0016,377115,1884,2199,93343,466,609
+200,32,24,0.0016,401819,2008,2227,116902,584,686
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,28,0.0017,437115,2184,2499,105343,526,669
+200,32,28,0.0016,461819,2308,2527,131902,659,761
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,32,0.0017,497115,2484,2799,123343,616,759
+200,32,32,0.0018,521819,2608,2827,146902,734,836
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,36,0.0018,557115,2784,3099,135343,676,819
+200,32,36,0.0018,581819,2908,3127,161902,809,911
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,40,0.0020,617115,3084,3399,153343,766,909
+200,32,40,0.0018,641819,3208,3427,176902,884,986
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,44,0.0019,677115,3384,3699,165343,826,969
+200,32,44,0.0019,701819,3508,3727,191902,959,1061
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,48,0.0020,737115,3684,3999,183343,916,1059
+200,32,48,0.0020,761819,3808,4027,206902,1034,1136
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,52,0.0021,797115,3984,4299,195343,976,1119
+200,32,52,0.0020,821819,4108,4327,221902,1109,1211
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,56,0.0021,857115,4284,4599,213343,1066,1209
+200,32,56,0.0021,881819,4408,4627,236902,1184,1286
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,60,0.0023,917115,4584,4899,225343,1126,1269
+200,32,60,0.0022,941819,4708,4927,251902,1259,1361
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,64,0.0023,977115,4884,5199,243343,1216,1359
+200,32,64,0.0023,1001819,5008,5227,266902,1334,1436
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,68,0.0024,1037115,5184,5499,255343,1276,1419
+200,32,68,0.0023,1061819,5308,5527,281902,1409,1511
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,72,0.0025,1097115,5484,5799,273343,1366,1509
+200,32,72,0.0025,1121819,5608,5827,296902,1484,1586
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,76,0.0025,1157115,5784,6099,285343,1426,1569
+200,32,76,0.0028,1181819,5908,6127,311902,1559,1661
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,80,0.0025,1217115,6084,6399,303343,1516,1659
+200,32,80,0.0025,1241819,6208,6427,326902,1634,1736
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,84,0.0026,1277115,6384,6699,315343,1576,1719
+200,32,84,0.0026,1301819,6508,6727,341902,1709,1811
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,88,0.0027,1337115,6684,6999,333343,1666,1809
+200,32,88,0.0026,1361819,6808,7027,356902,1784,1886
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,92,0.0027,1397115,6984,7299,345343,1726,1869
+200,32,92,0.0027,1421819,7108,7327,371902,1859,1961
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,96,0.0028,1457115,7284,7599,363343,1816,1959
+200,32,96,0.0028,1481819,7408,7627,386902,1934,2036
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,100,0.0029,1517115,7584,7899,375343,1876,2019
+200,32,100,0.0029,1541819,7708,7927,401902,2009,2111
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,104,0.0029,1577115,7884,8199,393343,1966,2109
+200,32,104,0.0029,1601819,8008,8227,416902,2084,2186
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,108,0.0030,1637115,8184,8499,405343,2026,2169
+200,32,108,0.0031,1661819,8308,8527,431902,2159,2261
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,112,0.0030,1697115,8484,8799,423343,2116,2259
+200,32,112,0.0030,1721819,8608,8827,446902,2234,2336
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,116,0.0031,1757115,8784,9099,435343,2176,2319
+200,32,116,0.0031,1781819,8908,9127,461902,2309,2411
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,120,0.0033,1817115,9084,9399,453343,2266,2409
+200,32,120,0.0032,1841819,9208,9427,476902,2384,2486
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,124,0.0032,1877115,9384,9699,465343,2326,2469
+200,32,124,0.0033,1901819,9508,9727,491902,2459,2561
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,128,0.0033,1937115,9684,9999,483343,2416,2559
+200,32,128,0.0033,1961819,9808,10027,506902,2534,2636
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,132,0.0034,1997115,9984,10299,495343,2476,2619
+200,32,132,0.0034,2021819,10108,10327,521902,2609,2711
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,136,0.0035,2057115,10284,10599,513343,2566,2709
+200,32,136,0.0035,2081819,10408,10627,536902,2684,2786
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,140,0.0035,2117115,10584,10899,525343,2626,2769
+200,32,140,0.0036,2141819,10708,10927,551902,2759,2861
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,144,0.0036,2177115,10884,11199,543343,2716,2859
+200,32,144,0.0036,2201819,11008,11227,566902,2834,2936
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,148,0.0036,2237115,11184,11499,555343,2776,2919
+200,32,148,0.0036,2261819,11308,11527,581902,2909,3011
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,152,0.0037,2297115,11484,11799,573343,2866,3009
+200,32,152,0.0037,2321819,11608,11827,596902,2984,3086
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,156,0.0038,2357115,11784,12099,585343,2926,3069
+200,32,156,0.0038,2381819,11908,12127,611902,3059,3161
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,160,0.0038,2417115,12084,12399,603343,3016,3159
+200,32,160,0.0040,2441819,12208,12427,626902,3134,3236
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,164,0.0039,2477115,12384,12699,615343,3076,3219
+200,32,164,0.0039,2501819,12508,12727,641902,3209,3311
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,168,0.0039,2537115,12684,12999,633343,3166,3309
+200,32,168,0.0040,2561819,12808,13027,656902,3284,3386
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,172,0.0040,2597115,12984,13299,645343,3226,3369
+200,32,172,0.0040,2621819,13108,13327,671902,3359,3461
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,176,0.0041,2657115,13284,13599,663343,3316,3459
+200,32,176,0.0041,2681819,13408,13627,686902,3434,3536
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,180,0.0041,2717115,13584,13899,675343,3376,3519
+200,32,180,0.0041,2741819,13708,13927,701902,3509,3611
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,184,0.0042,2777115,13884,14199,693343,3466,3609
+200,32,184,0.0042,2801819,14008,14227,716902,3584,3686
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,188,0.0043,2837115,14184,14499,705343,3526,3669
+200,32,188,0.0044,2861819,14308,14527,731902,3659,3761
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,192,0.0043,2897115,14484,14799,723343,3616,3759
+200,32,192,0.0044,2921819,14608,14827,746902,3734,3836
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,196,0.0044,2957115,14784,15099,735343,3676,3819
+200,32,196,0.0045,2981819,14908,15127,761902,3809,3911
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,200,0.0045,3017115,15084,15399,753343,3766,3909
+200,32,200,0.0045,3041819,15208,15427,776902,3884,3986
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,204,0.0045,3077115,15384,15699,765343,3826,3969
+200,32,204,0.0045,3101819,15508,15727,791902,3959,4061
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,208,0.0046,3137115,15684,15999,783343,3916,4059
+200,32,208,0.0046,3161819,15808,16027,806902,4034,4136
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,212,0.0047,3197115,15984,16299,795343,3976,4119
+200,32,212,0.0047,3221819,16108,16327,821902,4109,4211
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,216,0.0047,3257115,16284,16599,813343,4066,4209
+200,32,216,0.0047,3281819,16408,16627,836902,4184,4286
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,220,0.0048,3317115,16584,16899,825343,4126,4269
+200,32,220,0.0048,3341819,16708,16927,851902,4259,4361
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,224,0.0049,3377115,16884,17199,843343,4216,4359
+200,32,224,0.0049,3401819,17008,17227,866902,4334,4436
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,228,0.0049,3437115,17184,17499,855343,4276,4419
+200,32,228,0.0050,3461819,17308,17527,881902,4409,4511
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,232,0.0050,3497115,17484,17799,873343,4366,4509
+200,32,232,0.0050,3521819,17608,17827,896902,4484,4586
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,236,0.0051,3557115,17784,18099,885343,4426,4569
+200,32,236,0.0051,3581819,17908,18127,911902,4559,4661
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,240,0.0052,3617115,18084,18399,903343,4516,4659
+200,32,240,0.0051,3641819,18208,18427,926902,4634,4736
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,244,0.0052,3677115,18384,18699,915343,4576,4719
+200,32,244,0.0052,3701819,18508,18727,941902,4709,4811
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,248,0.0052,3737115,18684,18999,933343,4666,4809
+200,32,248,0.0053,3761819,18808,19027,956902,4784,4886
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,252,0.0054,3797115,18984,19299,945343,4726,4869
+200,32,252,0.0053,3821819,19108,19327,971902,4859,4961
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,256,0.0054,3857115,19284,19599,963343,4816,4959
+200,32,256,0.0054,3881819,19408,19627,986902,4934,5036
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,260,0.0054,3917115,19584,19899,975343,4876,5019
+200,32,260,0.0055,3941819,19708,19927,1001902,5009,5111
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,264,0.0055,3977115,19884,20199,993343,4966,5109
+200,32,264,0.0055,4001819,20008,20227,1016902,5084,5186
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,268,0.0056,4037115,20184,20499,1005343,5026,5169
+200,32,268,0.0056,4061819,20308,20527,1031902,5159,5261
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,272,0.0056,4097115,20484,20799,1023343,5116,5259
+200,32,272,0.0057,4121819,20608,20827,1046902,5234,5336
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,276,0.0057,4157115,20784,21099,1035343,5176,5319
+200,32,276,0.0057,4181819,20908,21127,1061902,5309,5411
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,280,0.0057,4217115,21084,21399,1053343,5266,5409
+200,32,280,0.0058,4241819,21208,21427,1076902,5384,5486
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,284,0.0058,4277115,21384,21699,1065343,5326,5469
+200,32,284,0.0059,4301819,21508,21727,1091902,5459,5561
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,288,0.0059,4337115,21684,21999,1083343,5416,5559
+200,32,288,0.0059,4361819,21808,22027,1106902,5534,5636
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,292,0.0059,4397115,21984,22299,1095343,5476,5619
+200,32,292,0.0060,4421819,22108,22327,1121902,5609,5711
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,296,0.0061,4457115,22284,22599,1113343,5566,5709
+200,32,296,0.0061,4481819,22408,22627,1136902,5684,5786
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,300,0.0061,4517115,22584,22899,1125343,5626,5769
+200,32,300,0.0061,4541819,22708,22927,1151902,5759,5861
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,304,0.0061,4577115,22884,23199,1143343,5716,5859
+200,32,304,0.0062,4601819,23008,23227,1166902,5834,5936
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,308,0.0062,4637115,23184,23499,1155343,5776,5919
+200,32,308,0.0063,4661819,23308,23527,1181902,5909,6011
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,312,0.0063,4697115,23484,23799,1173343,5866,6009
+200,32,312,0.0064,4721819,23608,23827,1196902,5984,6086
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,316,0.0064,4757115,23784,24099,1185343,5926,6069
+200,32,316,0.0066,4781819,23908,24127,1211902,6059,6161
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,320,0.0064,4817115,24084,24399,1203343,6016,6159
+200,32,320,0.0065,4841819,24208,24427,1226902,6134,6236
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,324,0.0065,4877115,24384,24699,1215343,6076,6219
+200,32,324,0.0065,4901819,24508,24727,1241902,6209,6311
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,328,0.0065,4937115,24684,24999,1233343,6166,6309
+200,32,328,0.0069,4961819,24808,25027,1256902,6284,6386
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,332,0.0066,4997115,24984,25299,1245343,6226,6369
+200,32,332,0.0066,5021819,25108,25327,1271902,6359,6461
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,336,0.0066,5057115,25284,25599,1263343,6316,6459
+200,32,336,0.0067,5081819,25408,25627,1286902,6434,6536
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,340,0.0068,5117115,25584,25899,1275343,6376,6519
+200,32,340,0.0068,5141819,25708,25927,1301902,6509,6611
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,344,0.0068,5177115,25884,26199,1293343,6466,6609
+200,32,344,0.0069,5201819,26008,26227,1316902,6584,6686
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,348,0.0069,5237115,26184,26499,1305343,6526,6669
+200,32,348,0.0069,5261819,26308,26527,1331902,6659,6761
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,352,0.0071,5297115,26484,26799,1323343,6616,6759
+200,32,352,0.0070,5321819,26608,26827,1346902,6734,6836
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,356,0.0070,5357115,26784,27099,1335343,6676,6819
+200,32,356,0.0070,5381819,26908,27127,1361902,6809,6911
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,360,0.0070,5417115,27084,27399,1353343,6766,6909
+200,32,360,0.0071,5441819,27208,27427,1376902,6884,6986
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,364,0.0071,5477115,27384,27699,1365343,6826,6969
+200,32,364,0.0072,5501819,27508,27727,1391902,6959,7061
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,368,0.0072,5537115,27684,27999,1383343,6916,7059
+200,32,368,0.0072,5561819,27808,28027,1406902,7034,7136
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,372,0.0073,5597115,27984,28299,1395343,6976,7119
+200,32,372,0.0073,5621819,28108,28327,1421902,7109,7211
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,376,0.0073,5657115,28284,28599,1413343,7066,7209
+200,32,376,0.0074,5681819,28408,28627,1436902,7184,7286
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,380,0.0074,5717115,28584,28899,1425343,7126,7269
+200,32,380,0.0074,5741819,28708,28927,1451902,7259,7361
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,384,0.0074,5777115,28884,29199,1443343,7216,7359
+200,32,384,0.0075,5801819,29008,29227,1466902,7334,7436
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,388,0.0075,5837115,29184,29499,1455343,7276,7419
+200,32,388,0.0076,5861819,29308,29527,1481902,7409,7511
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,392,0.0076,5897115,29484,29799,1473343,7366,7509
+200,32,392,0.0076,5921819,29608,29827,1496902,7484,7586
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,396,0.0076,5957115,29784,30099,1485343,7426,7569
+200,32,396,0.0077,5981819,29908,30127,1511902,7559,7661
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,400,0.0078,6017115,30084,30399,1503343,7516,7659
+200,32,400,0.0078,6041819,30208,30427,1526902,7634,7736
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,404,0.0078,6077115,30384,30699,1515343,7576,7719
+200,32,404,0.0079,6101819,30508,30727,1541902,7709,7811
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,408,0.0078,6137115,30684,30999,1533343,7666,7809
+200,32,408,0.0079,6161819,30808,31027,1556902,7784,7886
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,412,0.0079,6197115,30984,31299,1545343,7726,7869
+200,32,412,0.0080,6221819,31108,31327,1571902,7859,7961
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,416,0.0080,6257115,31284,31599,1563343,7816,7959
+200,32,416,0.0081,6281819,31408,31627,1586902,7934,8036
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,420,0.0080,6317115,31584,31899,1575343,7876,8019
+200,32,420,0.0081,6341819,31708,31927,1601902,8009,8111
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,424,0.0081,6377115,31884,32199,1593343,7966,8109
+200,32,424,0.0082,6401819,32008,32227,1616902,8084,8186
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,428,0.0081,6437115,32184,32499,1605343,8026,8169
+200,32,428,0.0082,6461819,32308,32527,1631902,8159,8261
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,432,0.0082,6497115,32484,32799,1623343,8116,8259
+200,32,432,0.0085,6521819,32608,32827,1646902,8234,8336
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,436,0.0083,6557115,32784,33099,1635343,8176,8319
+200,32,436,0.0084,6581819,32908,33127,1661902,8309,8411
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,440,0.0083,6617115,33084,33399,1653343,8266,8409
+200,32,440,0.0084,6641819,33208,33427,1676902,8384,8486
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,444,0.0084,6677115,33384,33699,1665343,8326,8469
+200,32,444,0.0085,6701819,33508,33727,1691902,8459,8561
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,448,0.0085,6737115,33684,33999,1683343,8416,8559
+200,32,448,0.0087,6761819,33808,34027,1706902,8534,8636
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,452,0.0085,6797115,33984,34299,1695343,8476,8619
+200,32,452,0.0087,6821819,34108,34327,1721902,8609,8711
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,456,0.0086,6857115,34284,34599,1713343,8566,8709
+200,32,456,0.0087,6881819,34408,34627,1736902,8684,8786
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,460,0.0087,6917115,34584,34899,1725343,8626,8769
+200,32,460,0.0088,6941819,34708,34927,1751902,8759,8861
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,464,0.0088,6977115,34884,35199,1743343,8716,8859
+200,32,464,0.0088,7001819,35008,35227,1766902,8834,8936
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,468,0.0088,7037115,35184,35499,1755343,8776,8919
+200,32,468,0.0089,7061819,35308,35527,1781902,8909,9011
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,472,0.0089,7097115,35484,35799,1773343,8866,9009
+200,32,472,0.0090,7121819,35608,35827,1796902,8984,9086
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,476,0.0090,7157115,35784,36099,1785343,8926,9069
+200,32,476,0.0091,7181819,35908,36127,1811902,9059,9161
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,480,0.0090,7217115,36084,36399,1803343,9016,9159
+200,32,480,0.0091,7241819,36208,36427,1826902,9134,9236
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,484,0.0091,7277115,36384,36699,1815343,9076,9219
+200,32,484,0.0092,7301819,36508,36727,1841902,9209,9311
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,488,0.0091,7337115,36684,36999,1833343,9166,9309
+200,32,488,0.0093,7361819,36808,37027,1856902,9284,9386
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,492,0.0092,7397115,36984,37299,1845343,9226,9369
+200,32,492,0.0094,7421819,37108,37327,1871902,9359,9461
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,496,0.0093,7457115,37284,37599,1863343,9316,9459
+200,32,496,0.0095,7481819,37408,37627,1886902,9434,9536
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,500,0.0093,7517115,37584,37899,1875343,9376,9519
+200,32,500,0.0094,7541819,37708,37927,1901902,9509,9611
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,504,0.0094,7577115,37884,38199,1893343,9466,9609
+200,32,504,0.0095,7601819,38008,38227,1916902,9584,9686
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,508,0.0095,7637115,38184,38499,1905343,9526,9669
+200,32,508,0.0096,7661819,38308,38527,1931902,9659,9761
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,512,0.0095,7697115,38484,38799,1923343,9616,9759
+200,32,512,0.0097,7721819,38608,38827,1946902,9734,9836
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,516,0.0096,7757115,38784,39099,1938343,9691,9834
+200,32,516,0.0098,7781819,38908,39127,1961902,9809,9911
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,520,0.0097,7817115,39084,39399,1953343,9766,9909
+200,32,520,0.0098,7841819,39208,39427,1976902,9884,9986
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,524,0.0097,7877115,39384,39699,1968343,9841,9984
+200,32,524,0.0099,7901819,39508,39727,1991902,9959,10061
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,528,0.0098,7937115,39684,39999,1983343,9916,10059
+200,32,528,0.0099,7961819,39808,40027,2006902,10034,10136
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,532,0.0099,7997115,39984,40299,1998343,9991,10134
+200,32,532,0.0100,8021819,40108,40327,2021902,10109,10211
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,536,0.0100,8057115,40284,40599,2013343,10066,10209
+200,32,536,0.0101,8081819,40408,40627,2036902,10184,10286
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,540,0.0101,8117115,40584,40899,2028343,10141,10284
+200,32,540,0.0101,8141819,40708,40927,2051902,10259,10361
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,544,0.0101,8177115,40884,41199,2043343,10216,10359
+200,32,544,0.0103,8201819,41008,41227,2066902,10334,10436
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,548,0.0102,8237115,41184,41499,2058343,10291,10434
+200,32,548,0.0103,8261819,41308,41527,2081902,10409,10511
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,552,0.0103,8297115,41484,41799,2073343,10366,10509
+200,32,552,0.0104,8321819,41608,41827,2096902,10484,10586
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,556,0.0104,8357115,41784,42099,2088343,10441,10584
+200,32,556,0.0106,8381819,41908,42127,2111902,10559,10661
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,560,0.0104,8417115,42084,42399,2103343,10516,10659
+200,32,560,0.0106,8441819,42208,42427,2126902,10634,10736
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,564,0.0105,8477115,42384,42699,2118343,10591,10734
+200,32,564,0.0106,8501819,42508,42727,2141902,10709,10811
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,568,0.0106,8537115,42684,42999,2133343,10666,10809
+200,32,568,0.0107,8561819,42808,43027,2156902,10784,10886
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,572,0.0106,8597115,42984,43299,2148343,10741,10884
+200,32,572,0.0108,8621819,43108,43327,2171902,10859,10961
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,576,0.0107,8657115,43284,43599,2163343,10816,10959
+200,32,576,0.0109,8681819,43408,43627,2186902,10934,11036
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,580,0.0109,8717115,43584,43899,2178343,10891,11034
+200,32,580,0.0110,8741819,43708,43927,2201902,11009,11111
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,584,0.0108,8777115,43884,44199,2193343,10966,11109
+200,32,584,0.0110,8801819,44008,44227,2216902,11084,11186
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,588,0.0110,8837115,44184,44499,2208343,11041,11184
+200,32,588,0.0110,8861819,44308,44527,2231902,11159,11261
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,592,0.0110,8897115,44484,44799,2223343,11116,11259
+200,32,592,0.0111,8921819,44608,44827,2246902,11234,11336
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,596,0.0111,8957115,44784,45099,2238343,11191,11334
+200,32,596,0.0113,8981819,44908,45127,2261902,11309,11411
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,600,0.0111,9017115,45084,45399,2253343,11266,11409
+200,32,600,0.0113,9041819,45208,45427,2276902,11384,11486
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,604,0.0112,9077115,45384,45699,2268343,11341,11484
+200,32,604,0.0114,9101819,45508,45727,2291902,11459,11561
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,608,0.0113,9137115,45684,45999,2283343,11416,11559
+200,32,608,0.0115,9161819,45808,46027,2306902,11534,11636
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,612,0.0113,9197115,45984,46299,2298343,11491,11634
+200,32,612,0.0115,9221819,46108,46327,2321902,11609,11711
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,616,0.0114,9257115,46284,46599,2313343,11566,11709
+200,32,616,0.0115,9281819,46408,46627,2336902,11684,11786
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,620,0.0115,9317115,46584,46899,2328343,11641,11784
+200,32,620,0.0116,9341819,46708,46927,2351902,11759,11861
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,624,0.0115,9377115,46884,47199,2343343,11716,11859
+200,32,624,0.0117,9401819,47008,47227,2366902,11834,11936
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,628,0.0115,9437115,47184,47499,2358343,11791,11934
+200,32,628,0.0117,9461819,47308,47527,2381902,11909,12011
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,632,0.0117,9497115,47484,47799,2373343,11866,12009
+200,32,632,0.0118,9521819,47608,47827,2396902,11984,12086
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,636,0.0118,9557115,47784,48099,2388343,11941,12084
+200,32,636,0.0119,9581819,47908,48127,2411902,12059,12161
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,640,0.0119,9617115,48084,48399,2403343,12016,12159
+200,32,640,0.0119,9641819,48208,48427,2426902,12134,12236
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,644,0.0118,9677115,48384,48699,2418343,12091,12234
+200,32,644,0.0121,9701819,48508,48727,2441902,12209,12311
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,648,0.0119,9737115,48684,48999,2433343,12166,12309
+200,32,648,0.0121,9761819,48808,49027,2456902,12284,12386
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,652,0.0121,9797115,48984,49299,2448343,12241,12384
+200,32,652,0.0121,9821819,49108,49327,2471902,12359,12461
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,656,0.0121,9857115,49284,49599,2463343,12316,12459
+200,32,656,0.0122,9881819,49408,49627,2486902,12434,12536
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,660,0.0122,9917115,49584,49899,2478343,12391,12534
+200,32,660,0.0123,9941819,49708,49927,2501902,12509,12611
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,664,0.0122,9977115,49884,50199,2493343,12466,12609
+200,32,664,0.0123,10001819,50008,50227,2516902,12584,12686
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,668,0.0123,10037115,50184,50499,2508343,12541,12684
+200,32,668,0.0124,10061819,50308,50527,2531902,12659,12761
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,672,0.0123,10097115,50484,50799,2523343,12616,12759
+200,32,672,0.0124,10121819,50608,50827,2546902,12734,12836
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,676,0.0125,10157115,50784,51099,2538343,12691,12834
+200,32,676,0.0126,10181819,50908,51127,2561902,12809,12911
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,680,0.0124,10217115,51084,51399,2553343,12766,12909
+200,32,680,0.0126,10241819,51208,51427,2576902,12884,12986
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,684,0.0125,10277115,51384,51699,2568343,12841,12984
+200,32,684,0.0127,10301819,51508,51727,2591902,12959,13061
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,688,0.0126,10337115,51684,51999,2583343,12916,13059
+200,32,688,0.0128,10361819,51808,52027,2606902,13034,13136
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,692,0.0126,10397115,51984,52299,2598343,12991,13134
+200,32,692,0.0128,10421819,52108,52327,2621902,13109,13211
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,696,0.0127,10457115,52284,52599,2613343,13066,13209
+200,32,696,0.0129,10481819,52408,52627,2636902,13184,13286
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,700,0.0128,10517115,52584,52899,2628343,13141,13284
+200,32,700,0.0131,10541819,52708,52927,2651902,13259,13361
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,704,0.0129,10577115,52884,53199,2643343,13216,13359
+200,32,704,0.0131,10601819,53008,53227,2666902,13334,13436
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,708,0.0129,10637115,53184,53499,2658343,13291,13434
+200,32,708,0.0130,10661819,53308,53527,2681902,13409,13511
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,712,0.0129,10697115,53484,53799,2673343,13366,13509
+200,32,712,0.0131,10721819,53608,53827,2696902,13484,13586
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,716,0.0130,10757115,53784,54099,2688343,13441,13584
+200,32,716,0.0132,10781819,53908,54127,2711902,13559,13661
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,720,0.0130,10817115,54084,54399,2703343,13516,13659
+200,32,720,0.0132,10841819,54208,54427,2726902,13634,13736
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,724,0.0132,10877115,54384,54699,2718343,13591,13734
+200,32,724,0.0134,10901819,54508,54727,2741902,13709,13811
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,728,0.0131,10937115,54684,54999,2733343,13666,13809
+200,32,728,0.0134,10961819,54808,55027,2756902,13784,13886
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,732,0.0133,10997115,54984,55299,2748343,13741,13884
+200,32,732,0.0134,11021819,55108,55327,2771902,13859,13961
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,736,0.0135,11057115,55284,55599,2763343,13816,13959
+200,32,736,0.0135,11081819,55408,55627,2786902,13934,14036
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,740,0.0134,11117115,55584,55899,2778343,13891,14034
+200,32,740,0.0137,11141819,55708,55927,2801902,14009,14111
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,744,0.0134,11177115,55884,56199,2793343,13966,14109
+200,32,744,0.0138,11201819,56008,56227,2816902,14084,14186
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,748,0.0135,11237115,56184,56499,2808343,14041,14184
+200,32,748,0.0137,11261819,56308,56527,2831902,14159,14261
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,752,0.0136,11297115,56484,56799,2823343,14116,14259
+200,32,752,0.0138,11321819,56608,56827,2846902,14234,14336
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,756,0.0136,11357115,56784,57099,2838343,14191,14334
+200,32,756,0.0139,11381819,56908,57127,2861902,14309,14411
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,760,0.0138,11417115,57084,57399,2853343,14266,14409
+200,32,760,0.0140,11441819,57208,57427,2876902,14384,14486
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,764,0.0139,11477115,57384,57699,2868343,14341,14484
+200,32,764,0.0140,11501819,57508,57727,2891902,14459,14561
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,768,0.0138,11537115,57684,57999,2883343,14416,14559
+200,32,768,0.0141,11561819,57808,58027,2906902,14534,14636
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,772,0.0140,11597115,57984,58299,2898343,14491,14634
+200,32,772,0.0141,11621819,58108,58327,2921902,14609,14711
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,776,0.0140,11657115,58284,58599,2913343,14566,14709
+200,32,776,0.0142,11681819,58408,58627,2936902,14684,14786
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,780,0.0142,11717115,58584,58899,2928343,14641,14784
+200,32,780,0.0143,11741819,58708,58927,2951902,14759,14861
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,784,0.0141,11777115,58884,59199,2943343,14716,14859
+200,32,784,0.0144,11801819,59008,59227,2966902,14834,14936
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,788,0.0143,11837115,59184,59499,2958343,14791,14934
+200,32,788,0.0144,11861819,59308,59527,2981902,14909,15011
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,792,0.0143,11897115,59484,59799,2973343,14866,15009
+200,32,792,0.0145,11921819,59608,59827,2996902,14984,15086
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,796,0.0146,11957115,59784,60099,2988343,14941,15084
+200,32,796,0.0145,11981819,59908,60127,3011902,15059,15161
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,800,0.0144,12017115,60084,60399,3003343,15016,15159
+200,32,800,0.0147,12041819,60208,60427,3026902,15134,15236
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,804,0.0145,12077115,60384,60699,3018343,15091,15234
+200,32,804,0.0147,12101819,60508,60727,3041902,15209,15311
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,808,0.0146,12137115,60684,60999,3033343,15166,15309
+200,32,808,0.0148,12161819,60808,61027,3056902,15284,15386
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,812,0.0146,12197115,60984,61299,3048343,15241,15384
+200,32,812,0.0148,12221819,61108,61327,3071902,15359,15461
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,816,0.0146,12257115,61284,61599,3063343,15316,15459
+200,32,816,0.0150,12281819,61408,61627,3086902,15434,15536
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,820,0.0148,12317115,61584,61899,3078343,15391,15534
+200,32,820,0.0149,12341819,61708,61927,3101902,15509,15611
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,824,0.0149,12377115,61884,62199,3093343,15466,15609
+200,32,824,0.0150,12401819,62008,62227,3116902,15584,15686
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,828,0.0149,12437115,62184,62499,3108343,15541,15684
+200,32,828,0.0151,12461819,62308,62527,3131902,15659,15761
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,832,0.0149,12497115,62484,62799,3123343,15616,15759
+200,32,832,0.0152,12521819,62608,62827,3146902,15734,15836
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,836,0.0151,12557115,62784,63099,3138343,15691,15834
+200,32,836,0.0152,12581819,62908,63127,3161902,15809,15911
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,840,0.0150,12617115,63084,63399,3153343,15766,15909
+200,32,840,0.0153,12641819,63208,63427,3176902,15884,15986
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,844,0.0152,12677115,63384,63699,3168343,15841,15984
+200,32,844,0.0153,12701819,63508,63727,3191902,15959,16061
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,848,0.0152,12737115,63684,63999,3183343,15916,16059
+200,32,848,0.0154,12761819,63808,64027,3206902,16034,16136
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,852,0.0153,12797115,63984,64299,3198343,15991,16134
+200,32,852,0.0155,12821819,64108,64327,3221902,16109,16211
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,856,0.0153,12857115,64284,64599,3213343,16066,16209
+200,32,856,0.0156,12881819,64408,64627,3236902,16184,16286
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,860,0.0155,12917115,64584,64899,3228343,16141,16284
+200,32,860,0.0156,12941819,64708,64927,3251902,16259,16361
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,864,0.0156,12977115,64884,65199,3243343,16216,16359
+200,32,864,0.0157,13001819,65008,65227,3266902,16334,16436
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,868,0.0157,13037115,65184,65499,3258343,16291,16434
+200,32,868,0.0158,13061819,65308,65527,3281902,16409,16511
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,872,0.0156,13097115,65484,65799,3273343,16366,16509
+200,32,872,0.0159,13121819,65608,65827,3296902,16484,16586
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,876,0.0157,13157115,65784,66099,3288343,16441,16584
+200,32,876,0.0159,13181819,65908,66127,3311902,16559,16661
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,880,0.0158,13217115,66084,66399,3303343,16516,16659
+200,32,880,0.0160,13241819,66208,66427,3326902,16634,16736
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,884,0.0158,13277115,66384,66699,3318343,16591,16734
+200,32,884,0.0160,13301819,66508,66727,3341902,16709,16811
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,888,0.0159,13337115,66684,66999,3333343,16666,16809
+200,32,888,0.0161,13361819,66808,67027,3356902,16784,16886
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,892,0.0160,13397115,66984,67299,3348343,16741,16884
+200,32,892,0.0162,13421819,67108,67327,3371902,16859,16961
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,896,0.0161,13457115,67284,67599,3363343,16816,16959
+200,32,896,0.0163,13481819,67408,67627,3386902,16934,17036
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,900,0.0162,13517115,67584,67899,3378343,16891,17034
+200,32,900,0.0164,13541819,67708,67927,3401902,17009,17111
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,904,0.0163,13577115,67884,68199,3393343,16966,17109
+200,32,904,0.0165,13601819,68008,68227,3416902,17084,17186
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,908,0.0164,13637115,68184,68499,3408343,17041,17184
+200,32,908,0.0165,13661819,68308,68527,3431902,17159,17261
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,912,0.0165,13697115,68484,68799,3423343,17116,17259
+200,32,912,0.0166,13721819,68608,68827,3446902,17234,17336
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,916,0.0165,13757115,68784,69099,3438343,17191,17334
+200,32,916,0.0166,13781819,68908,69127,3461902,17309,17411
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,920,0.0165,13817115,69084,69399,3453343,17266,17409
+200,32,920,0.0167,13841819,69208,69427,3476902,17384,17486
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,924,0.0168,13877115,69384,69699,3468343,17341,17484
+200,32,924,0.0168,13901819,69508,69727,3491902,17459,17561
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,928,0.0167,13937115,69684,69999,3483343,17416,17559
+200,32,928,0.0169,13961819,69808,70027,3506902,17534,17636
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,932,0.0169,13997115,69984,70299,3498343,17491,17634
+200,32,932,0.0175,14021819,70108,70327,3521902,17609,17711
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,936,0.0168,14057115,70284,70599,3513343,17566,17709
+200,32,936,0.0170,14081819,70408,70627,3536902,17684,17786
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,940,0.0169,14117115,70584,70899,3528343,17641,17784
+200,32,940,0.0171,14141819,70708,70927,3551902,17759,17861
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,944,0.0169,14177115,70884,71199,3543343,17716,17859
+200,32,944,0.0171,14201819,71008,71227,3566902,17834,17936
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,948,0.0170,14237115,71184,71499,3558343,17791,17934
+200,32,948,0.0172,14261819,71308,71527,3581902,17909,18011
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,952,0.0171,14297115,71484,71799,3573343,17866,18009
+200,32,952,0.0172,14321819,71608,71827,3596902,17984,18086
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,956,0.0173,14357115,71784,72099,3588343,17941,18084
+200,32,956,0.0173,14381819,71908,72127,3611902,18059,18161
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,960,0.0172,14417115,72084,72399,3603343,18016,18159
+200,32,960,0.0174,14441819,72208,72427,3626902,18134,18236
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,964,0.0177,14477115,72384,72699,3618343,18091,18234
+200,32,964,0.0176,14501819,72508,72727,3641902,18209,18311
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,968,0.0177,14537115,72684,72999,3633343,18166,18309
+200,32,968,0.0178,14561819,72808,73027,3656902,18284,18386
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,972,0.0177,14597115,72984,73299,3648343,18241,18384
+200,32,972,0.0177,14621819,73108,73327,3671902,18359,18461
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,976,0.0179,14657115,73284,73599,3663343,18316,18459
+200,32,976,0.0178,14681819,73408,73627,3686902,18434,18536
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,980,0.0180,14717115,73584,73899,3678343,18391,18534
+200,32,980,0.0179,14741819,73708,73927,3701902,18509,18611
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,984,0.0180,14777115,73884,74199,3693343,18466,18609
+200,32,984,0.0179,14801819,74008,74227,3716902,18584,18686
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,988,0.0180,14837115,74184,74499,3708343,18541,18684
+200,32,988,0.0180,14861819,74308,74527,3731902,18659,18761
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,992,0.0181,14897115,74484,74799,3723343,18616,18759
+200,32,992,0.0181,14921819,74608,74827,3746902,18734,18836
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,996,0.0184,14957115,74784,75099,3738343,18691,18834
+200,32,996,0.0182,14981819,74908,75127,3761902,18809,18911
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,1000,0.0182,15017115,75084,75399,3753343,18766,18909
+200,32,1000,0.0182,15041819,75208,75427,3776902,18884,18986
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,1004,0.0183,15077115,75384,75699,3768343,18841,18984
+200,32,1004,0.0183,15101819,75508,75727,3791902,18959,19061
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,1008,0.0184,15137115,75684,75999,3783343,18916,19059
+200,32,1008,0.0183,15161819,75808,76027,3806902,19034,19136
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,1012,0.0185,15197115,75984,76299,3798343,18991,19134
+200,32,1012,0.0184,15221819,76108,76327,3821902,19109,19211
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,1016,0.0185,15257115,76284,76599,3813343,19066,19209
+200,32,1016,0.0185,15281819,76408,76627,3836902,19184,19286
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,1020,0.0186,15317115,76584,76899,3828343,19141,19284
+200,32,1020,0.0185,15341819,76708,76927,3851902,19259,19361
 iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)
-200,32,1024,0.0183,15377115,76884,77199,3843343,19216,19359
-mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .
+200,32,1024,0.0186,15401819,77008,77227,3866902,19334,19436
+mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.ld_st.bin.csv .
 </pre>
 </div>
 </div>
@@ -14606,19 +14830,18 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<p>Once the run finished, let's plot it again with the following cell (non-interactive: <code>make graph_task2a</code>).</p>
+<p>Once the run finished, let's plot it again in the course of the following cells (non-interactive: <code>make graph_task2a</code>).</p>
 
 </div>
 </div>
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[6]:</div>
+<div class="prompt input_prompt">In&nbsp;[8]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_ldst</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">&quot;poisson2d.ld_st.bin.csv&quot;</span><span class="p">,</span> <span class="n">skiprows</span><span class="o">=</span><span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
-<span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df_ldst</span><span class="p">,</span> <span class="s2">&quot;PM_LD_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Loads / Loop Iteration&quot;</span><span class="p">)</span>
-<span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df_ldst</span><span class="p">,</span> <span class="s2">&quot;PM_ST_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Stores / Loop Iteration&quot;</span><span class="p">)</span>
+<span class="n">df_ldst</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df_ldst</span><span class="p">[</span><span class="s2">&quot;nx&quot;</span><span class="p">]</span> <span class="o">*</span> <span class="n">df_ldst</span><span class="p">[</span><span class="s2">&quot;ny&quot;</span><span class="p">]</span> 
 <span class="n">df_ldst</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
 </pre></div>
 
@@ -14632,7 +14855,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .
 
 <div class="output_area">
 
-    <div class="prompt output_prompt">Out[6]:</div>
+    <div class="prompt output_prompt">Out[8]:</div>
 
 
 
@@ -14665,8 +14888,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .
       <th>PM_ST_CMPL (total)</th>
       <th>PM_ST_CMPL (min)</th>
       <th>PM_ST_CMPL (max)</th>
-      <th>Loads / Loop Iteration</th>
-      <th>Stores / Loop Iteration</th>
+      <th>Grid Points</th>
     </tr>
   </thead>
   <tbody>
@@ -14676,29 +14898,27 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .
       <td>32</td>
       <td>4</td>
       <td>0.0012</td>
-      <td>95115</td>
-      <td>474</td>
-      <td>789</td>
-      <td>21343</td>
-      <td>106</td>
-      <td>249</td>
-      <td>3.703125</td>
-      <td>0.828125</td>
+      <td>119819</td>
+      <td>598</td>
+      <td>817</td>
+      <td>32902</td>
+      <td>164</td>
+      <td>266</td>
+      <td>128</td>
     </tr>
     <tr>
       <th>1</th>
       <td>200</td>
       <td>32</td>
       <td>8</td>
-      <td>0.0014</td>
-      <td>137115</td>
-      <td>684</td>
-      <td>999</td>
-      <td>33343</td>
-      <td>166</td>
-      <td>309</td>
-      <td>2.671875</td>
-      <td>0.648438</td>
+      <td>0.0013</td>
+      <td>161819</td>
+      <td>808</td>
+      <td>1027</td>
+      <td>56902</td>
+      <td>284</td>
+      <td>386</td>
+      <td>256</td>
     </tr>
     <tr>
       <th>2</th>
@@ -14706,14 +14926,13 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .
       <td>32</td>
       <td>12</td>
       <td>0.0014</td>
-      <td>197115</td>
-      <td>984</td>
-      <td>1299</td>
-      <td>45343</td>
-      <td>226</td>
-      <td>369</td>
-      <td>2.562500</td>
-      <td>0.588542</td>
+      <td>221819</td>
+      <td>1108</td>
+      <td>1327</td>
+      <td>71902</td>
+      <td>359</td>
+      <td>461</td>
+      <td>384</td>
     </tr>
     <tr>
       <th>3</th>
@@ -14721,29 +14940,27 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .
       <td>32</td>
       <td>16</td>
       <td>0.0015</td>
-      <td>257115</td>
-      <td>1284</td>
-      <td>1599</td>
-      <td>63343</td>
-      <td>316</td>
-      <td>459</td>
-      <td>2.507812</td>
-      <td>0.617188</td>
+      <td>281819</td>
+      <td>1408</td>
+      <td>1627</td>
+      <td>86902</td>
+      <td>434</td>
+      <td>536</td>
+      <td>512</td>
     </tr>
     <tr>
       <th>4</th>
       <td>200</td>
       <td>32</td>
       <td>20</td>
-      <td>0.0016</td>
-      <td>317115</td>
-      <td>1584</td>
-      <td>1899</td>
-      <td>75343</td>
-      <td>376</td>
-      <td>519</td>
-      <td>2.475000</td>
-      <td>0.587500</td>
+      <td>0.0015</td>
+      <td>341819</td>
+      <td>1708</td>
+      <td>1927</td>
+      <td>101902</td>
+      <td>509</td>
+      <td>611</td>
+      <td>640</td>
     </tr>
   </tbody>
 </table>
@@ -14758,12 +14975,111 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[79]:</div>
+<div class="prompt input_prompt">In&nbsp;[9]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
+<span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_LD_CMPL (min)&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax1</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+<span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_ST_CMPL (min)&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax2</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area">
+
+    <div class="prompt"></div>
+
+
+
+
+<div class="output_png output_subarea ">
+<img src="
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Also this behaviour looks – at a first glance – linear. We can again fit a first-order polynom (and re-use our previously defined function <code>curve_fit</code>)!</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[29]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">_fit</span><span class="p">,</span> <span class="n">_cov</span> <span class="o">=</span> <span class="n">common</span><span class="o">.</span><span class="n">print_and_return_fit</span><span class="p">(</span>
+    <span class="p">[</span><span class="s2">&quot;PM_LD_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;PM_ST_CMPL (min)&quot;</span><span class="p">],</span> 
+    <span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">),</span> 
+    <span class="n">linear_function</span><span class="p">,</span>
+    <span class="n">format_value</span><span class="o">=</span><span class="s2">&quot;.4f&quot;</span>
+<span class="p">)</span>
+<span class="n">fit_parameters</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_parameters</span><span class="p">,</span> <span class="o">**</span><span class="n">_fit</span><span class="p">}</span>
+<span class="n">fit_covariance</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_covariance</span><span class="p">,</span> <span class="o">**</span><span class="n">_cov</span><span class="p">}</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area">
+
+    <div class="prompt"></div>
+
+
+<div class="output_subarea output_stream output_stdout output_text">
+<pre>Counter PM_LD_CMPL (min) is proportional to the grid points (nx*ny) by a factor of 2.3437 (± 0.000037)
+Counter PM_ST_CMPL (min) is proportional to the grid points (nx*ny) by a factor of 0.5860 (± 0.000019)
+</pre>
+</div>
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Let's overlay this in one common plot:</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[28]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
-<span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Loads / Loop Iteration&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax1</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
-<span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Stores / Loop Iteration&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax2</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+<span class="k">for</span> <span class="n">ax</span><span class="p">,</span> <span class="n">pmu_counter</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">([</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">],</span> <span class="p">[</span><span class="s2">&quot;PM_LD_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;PM_ST_CMPL (min)&quot;</span><span class="p">]):</span>
+    <span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="n">pmu_counter</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span>
+        <span class="n">df_ldst</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">],</span> 
+        <span class="n">linear_function</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">],</span> <span class="o">*</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">pmu_counter</span><span class="p">]),</span> 
+        <span class="n">linestyle</span><span class="o">=</span><span class="s2">&quot;--&quot;</span><span class="p">,</span> 
+        <span class="n">label</span><span class="o">=</span><span class="s2">&quot;Fit: </span><span class="si">{:.2f}</span><span class="s2"> * x + </span><span class="si">{:.2f}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="o">*</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">pmu_counter</span><span class="p">])</span>
+    <span class="p">)</span>
+    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">();</span>
 </pre></div>
 
     </div>
@@ -14782,7 +15098,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .
 
 
 <div class="output_png output_subarea ">
-<img src="
+<img src="
 "
 >
 </div>
@@ -14797,8 +15113,9 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
 <p>Did you expect more?</p>
-<p>The reason is simple: Among the load and store instructions counted by <code>PM_LD_CMPL</code> and <code>PM_ST_CMPL</code> are vector instructions which can load and store multiple (two) values at a time. To see how many <em>bytes</em> are loaded and stored, we need to measure counters for vectorized loads and stores as well.</p>
-<p><a name="task2-b"></a><strong>TASK B</strong>: Please measure counters for <em>vectorized</em> loads and <em>vectorized</em> stores. See the TODOs in <a href="/edit/Tasks/poisson2d.vld.c"><code>poisson2d.vld.c</code></a> and <a href="/edit/Tasks/poisson2d.vst.c"><code>poisson2d.vst.c</code></a> (<em>Note: These vector counters can not be measured together and need separate files and runs</em>). Can you find out the name of the counters yourself, using <code>papi_native_avail | grep VECTOR_</code>?</p>
+<p>The reason is simple: Among the load and store instructions counted by <code>PM_LD_CMPL</code> and <code>PM_ST_CMPL</code> are vector instructions which can load and store multiple (in this case: two) values at a time. To see how many <em>bytes</em> are loaded and stored, we need to measure counters for vectorized loads and stores as well.</p>
+<h3 id="TASK-B">TASK B<a class="anchor-link" href="#TASK-B">&#182;</a></h3><p><a name="task2-b"></a></p>
+<p>Please measure counters for <em>vectorized</em> loads and <em>vectorized</em> stores. See the TODOs in <a href="poisson2d.vld.c"><code>poisson2d.vld.c</code></a> and <a href="poisson2d.vst.c"><code>poisson2d.vst.c</code></a> (<em>Note: These vector counters can not be measured together and need separate files and runs</em>). Can you find out the name of the counters yourself, using <code>papi_native_avail | grep VECTOR_</code>?</p>
 <p>Compile, test, and bench-run your program again.</p>
 <p><a href="#toc">Back to top</a></p>
 
@@ -14807,7 +15124,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[2]:</div>
+<div class="prompt input_prompt">In&nbsp;[9]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="o">!</span>papi_native_avail <span class="p">|</span> grep VECTOR_
@@ -14827,9 +15144,9 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .
 
 
 <div class="output_subarea output_stream output_stdout output_text">
-<pre>| PM_VECTOR_FLOP_CMPL                                                          |
-| PM_VECTOR_LD_CMPL                                                            |
-| PM_VECTOR_ST_CMPL                                                            |
+<pre>| PM_VECTOR_FLOP_CMPL                                                          |
+| PM_VECTOR_LD_CMPL                                                            |
+| PM_VECTOR_ST_CMPL                                                            |
 </pre>
 </div>
 </div>
@@ -14848,7 +15165,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[3]:</div>
+<div class="prompt input_prompt">In&nbsp;[1]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="o">!</span>make bench_task3
@@ -14868,8 +15185,8 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .
 
 
 <div class="output_subarea output_stream output_stdout output_text">
-<pre>bsub -W 60 -nnodes 1 -Is jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vld.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.vld.bin.csv
-Job &lt;4097&gt; is submitted to default queue &lt;batch&gt;.
+<pre>bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vld.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.vld.bin.csv
+Job &lt;24641&gt; is submitted to default queue &lt;batch&gt;.
 &lt;&lt;Waiting for dispatch ...&gt;&gt;
 &lt;&lt;Starting on login1&gt;&gt;
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
@@ -14879,9 +15196,9 @@ iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,12,0.0012,174000,870,870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,16,0.0013,234000,1170,1170
+200,32,16,0.0012,234000,1170,1170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,20,0.0014,294000,1470,1470
+200,32,20,0.0013,294000,1470,1470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,24,0.0014,354000,1770,1770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
@@ -14895,11 +15212,11 @@ iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,44,0.0017,654000,3270,3270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,48,0.0017,714000,3570,3570
+200,32,48,0.0018,714000,3570,3570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,52,0.0018,774000,3870,3870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,56,0.0020,834000,4170,4170
+200,32,56,0.0019,834000,4170,4170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,60,0.0020,894000,4470,4470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
@@ -14909,117 +15226,117 @@ iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,72,0.0022,1074000,5370,5370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,76,0.0023,1134000,5670,5670
+200,32,76,0.0022,1134000,5670,5670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,80,0.0023,1194000,5970,5970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,84,0.0023,1254000,6270,6270
+200,32,84,0.0024,1254000,6270,6270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,88,0.0024,1314000,6570,6570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,92,0.0025,1374000,6870,6870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,96,0.0025,1434000,7170,7170
+200,32,96,0.0027,1434000,7170,7170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,100,0.0026,1494000,7470,7470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,104,0.0027,1554000,7770,7770
+200,32,104,0.0029,1554000,7770,7770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,108,0.0027,1614000,8070,8070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,112,0.0028,1674000,8370,8370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,116,0.0028,1734000,8670,8670
+200,32,116,0.0029,1734000,8670,8670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,120,0.0029,1794000,8970,8970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,124,0.0030,1854000,9270,9270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,128,0.0030,1914000,9570,9570
+200,32,128,0.0032,1914000,9570,9570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,132,0.0031,1974000,9870,9870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,136,0.0032,2034000,10170,10170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,140,0.0032,2094000,10470,10470
+200,32,140,0.0033,2094000,10470,10470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,144,0.0033,2154000,10770,10770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,148,0.0034,2214000,11070,11070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,152,0.0035,2274000,11370,11370
+200,32,152,0.0036,2274000,11370,11370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,156,0.0035,2334000,11670,11670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,160,0.0036,2394000,11970,11970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,164,0.0036,2454000,12270,12270
+200,32,164,0.0037,2454000,12270,12270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,168,0.0037,2514000,12570,12570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,172,0.0037,2574000,12870,12870
+200,32,172,0.0038,2574000,12870,12870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,176,0.0038,2634000,13170,13170
+200,32,176,0.0039,2634000,13170,13170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,180,0.0039,2694000,13470,13470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,184,0.0041,2754000,13770,13770
+200,32,184,0.0040,2754000,13770,13770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,188,0.0040,2814000,14070,14070
+200,32,188,0.0041,2814000,14070,14070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,192,0.0041,2874000,14370,14370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,196,0.0041,2934000,14670,14670
+200,32,196,0.0042,2934000,14670,14670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,200,0.0042,2994000,14970,14970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,204,0.0043,3054000,15270,15270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,208,0.0044,3114000,15570,15570
+200,32,208,0.0045,3114000,15570,15570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,212,0.0044,3174000,15870,15870
+200,32,212,0.0045,3174000,15870,15870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,216,0.0044,3234000,16170,16170
+200,32,216,0.0045,3234000,16170,16170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,220,0.0045,3294000,16470,16470
+200,32,220,0.0046,3294000,16470,16470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,224,0.0046,3354000,16770,16770
+200,32,224,0.0048,3354000,16770,16770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,228,0.0047,3414000,17070,17070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,232,0.0047,3474000,17370,17370
+200,32,232,0.0048,3474000,17370,17370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,236,0.0048,3534000,17670,17670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,240,0.0048,3594000,17970,17970
+200,32,240,0.0049,3594000,17970,17970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,244,0.0049,3654000,18270,18270
+200,32,244,0.0050,3654000,18270,18270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,248,0.0049,3714000,18570,18570
+200,32,248,0.0052,3714000,18570,18570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,252,0.0050,3774000,18870,18870
+200,32,252,0.0051,3774000,18870,18870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,256,0.0051,3834000,19170,19170
+200,32,256,0.0052,3834000,19170,19170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,260,0.0052,3894000,19470,19470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,264,0.0052,3954000,19770,19770
+200,32,264,0.0053,3954000,19770,19770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,268,0.0053,4014000,20070,20070
+200,32,268,0.0054,4014000,20070,20070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,272,0.0053,4074000,20370,20370
+200,32,272,0.0054,4074000,20370,20370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,276,0.0055,4134000,20670,20670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,280,0.0055,4194000,20970,20970
+200,32,280,0.0056,4194000,20970,20970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,284,0.0055,4254000,21270,21270
+200,32,284,0.0056,4254000,21270,21270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,288,0.0057,4314000,21570,21570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,292,0.0056,4374000,21870,21870
+200,32,292,0.0058,4374000,21870,21870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,296,0.0057,4434000,22170,22170
+200,32,296,0.0058,4434000,22170,22170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,300,0.0059,4494000,22470,22470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
@@ -15027,366 +15344,366 @@ iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,308,0.0060,4614000,23070,23070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,312,0.0060,4674000,23370,23370
+200,32,312,0.0061,4674000,23370,23370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,316,0.0061,4734000,23670,23670
+200,32,316,0.0062,4734000,23670,23670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,320,0.0061,4794000,23970,23970
+200,32,320,0.0062,4794000,23970,23970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,324,0.0062,4854000,24270,24270
+200,32,324,0.0063,4854000,24270,24270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,328,0.0062,4914000,24570,24570
+200,32,328,0.0063,4914000,24570,24570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,332,0.0063,4974000,24870,24870
+200,32,332,0.0064,4974000,24870,24870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,336,0.0063,5034000,25170,25170
+200,32,336,0.0065,5034000,25170,25170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,340,0.0066,5094000,25470,25470
+200,32,340,0.0065,5094000,25470,25470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,344,0.0065,5154000,25770,25770
+200,32,344,0.0066,5154000,25770,25770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,348,0.0067,5214000,26070,26070
+200,32,348,0.0069,5214000,26070,26070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,352,0.0068,5274000,26370,26370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,356,0.0067,5334000,26670,26670
+200,32,356,0.0070,5334000,26670,26670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,360,0.0067,5394000,26970,26970
+200,32,360,0.0069,5394000,26970,26970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,364,0.0068,5454000,27270,27270
+200,32,364,0.0070,5454000,27270,27270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,368,0.0069,5514000,27570,27570
+200,32,368,0.0070,5514000,27570,27570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,372,0.0069,5574000,27870,27870
+200,32,372,0.0071,5574000,27870,27870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,376,0.0070,5634000,28170,28170
+200,32,376,0.0073,5634000,28170,28170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,380,0.0071,5694000,28470,28470
+200,32,380,0.0073,5694000,28470,28470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,384,0.0071,5754000,28770,28770
+200,32,384,0.0073,5754000,28770,28770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,388,0.0073,5814000,29070,29070
+200,32,388,0.0074,5814000,29070,29070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,392,0.0074,5874000,29370,29370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,396,0.0073,5934000,29670,29670
+200,32,396,0.0076,5934000,29670,29670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,400,0.0074,5994000,29970,29970
+200,32,400,0.0075,5994000,29970,29970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,404,0.0074,6054000,30270,30270
+200,32,404,0.0076,6054000,30270,30270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,408,0.0075,6114000,30570,30570
+200,32,408,0.0077,6114000,30570,30570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,412,0.0076,6174000,30870,30870
+200,32,412,0.0078,6174000,30870,30870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,416,0.0076,6234000,31170,31170
+200,32,416,0.0079,6234000,31170,31170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,420,0.0080,6294000,31470,31470
+200,32,420,0.0079,6294000,31470,31470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,424,0.0079,6354000,31770,31770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,428,0.0078,6414000,32070,32070
+200,32,428,0.0080,6414000,32070,32070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,432,0.0079,6474000,32370,32370
+200,32,432,0.0080,6474000,32370,32370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,436,0.0080,6534000,32670,32670
+200,32,436,0.0081,6534000,32670,32670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,440,0.0080,6594000,32970,32970
+200,32,440,0.0082,6594000,32970,32970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,444,0.0083,6654000,33270,33270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,448,0.0082,6714000,33570,33570
+200,32,448,0.0084,6714000,33570,33570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,452,0.0082,6774000,33870,33870
+200,32,452,0.0084,6774000,33870,33870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,456,0.0083,6834000,34170,34170
+200,32,456,0.0084,6834000,34170,34170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,460,0.0086,6894000,34470,34470
+200,32,460,0.0085,6894000,34470,34470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,464,0.0084,6954000,34770,34770
+200,32,464,0.0086,6954000,34770,34770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,468,0.0085,7014000,35070,35070
+200,32,468,0.0087,7014000,35070,35070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,472,0.0086,7074000,35370,35370
+200,32,472,0.0088,7074000,35370,35370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,476,0.0086,7134000,35670,35670
+200,32,476,0.0088,7134000,35670,35670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,480,0.0087,7194000,35970,35970
+200,32,480,0.0089,7194000,35970,35970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,484,0.0088,7254000,36270,36270
+200,32,484,0.0090,7254000,36270,36270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,488,0.0088,7314000,36570,36570
+200,32,488,0.0091,7314000,36570,36570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,492,0.0089,7374000,36870,36870
+200,32,492,0.0091,7374000,36870,36870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,496,0.0091,7434000,37170,37170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,500,0.0092,7494000,37470,37470
+200,32,500,0.0094,7494000,37470,37470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,504,0.0091,7554000,37770,37770
+200,32,504,0.0093,7554000,37770,37770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,508,0.0092,7614000,38070,38070
+200,32,508,0.0095,7614000,38070,38070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,512,0.0092,7674000,38370,38370
+200,32,512,0.0096,7674000,38370,38370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,516,0.0093,7734000,38670,38670
+200,32,516,0.0095,7734000,38670,38670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,520,0.0093,7794000,38970,38970
+200,32,520,0.0095,7794000,38970,38970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,524,0.0094,7854000,39270,39270
+200,32,524,0.0097,7854000,39270,39270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
 200,32,528,0.0097,7914000,39570,39570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,532,0.0095,7974000,39870,39870
+200,32,532,0.0098,7974000,39870,39870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,536,0.0096,8034000,40170,40170
+200,32,536,0.0098,8034000,40170,40170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,540,0.0097,8094000,40470,40470
+200,32,540,0.0099,8094000,40470,40470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,544,0.0097,8154000,40770,40770
+200,32,544,0.0100,8154000,40770,40770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,548,0.0099,8214000,41070,41070
+200,32,548,0.0101,8214000,41070,41070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,552,0.0099,8274000,41370,41370
+200,32,552,0.0101,8274000,41370,41370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,556,0.0100,8334000,41670,41670
+200,32,556,0.0104,8334000,41670,41670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,560,0.0100,8394000,41970,41970
+200,32,560,0.0103,8394000,41970,41970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,564,0.0101,8454000,42270,42270
+200,32,564,0.0103,8454000,42270,42270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,568,0.0102,8514000,42570,42570
+200,32,568,0.0106,8514000,42570,42570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,572,0.0103,8574000,42870,42870
+200,32,572,0.0105,8574000,42870,42870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,576,0.0103,8634000,43170,43170
+200,32,576,0.0106,8634000,43170,43170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,580,0.0104,8694000,43470,43470
+200,32,580,0.0108,8694000,43470,43470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,584,0.0104,8754000,43770,43770
+200,32,584,0.0109,8754000,43770,43770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,588,0.0106,8814000,44070,44070
+200,32,588,0.0108,8814000,44070,44070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,592,0.0106,8874000,44370,44370
+200,32,592,0.0109,8874000,44370,44370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,596,0.0107,8934000,44670,44670
+200,32,596,0.0109,8934000,44670,44670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,600,0.0107,8994000,44970,44970
+200,32,600,0.0110,8994000,44970,44970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,604,0.0109,9054000,45270,45270
+200,32,604,0.0111,9054000,45270,45270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,608,0.0109,9114000,45570,45570
+200,32,608,0.0112,9114000,45570,45570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,612,0.0110,9174000,45870,45870
+200,32,612,0.0112,9174000,45870,45870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,616,0.0110,9234000,46170,46170
+200,32,616,0.0114,9234000,46170,46170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,620,0.0111,9294000,46470,46470
+200,32,620,0.0113,9294000,46470,46470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,624,0.0112,9354000,46770,46770
+200,32,624,0.0114,9354000,46770,46770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,628,0.0112,9414000,47070,47070
+200,32,628,0.0117,9414000,47070,47070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,632,0.0113,9474000,47370,47370
+200,32,632,0.0116,9474000,47370,47370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,636,0.0114,9534000,47670,47670
+200,32,636,0.0116,9534000,47670,47670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,640,0.0115,9594000,47970,47970
+200,32,640,0.0117,9594000,47970,47970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,644,0.0115,9654000,48270,48270
+200,32,644,0.0119,9654000,48270,48270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,648,0.0115,9714000,48570,48570
+200,32,648,0.0118,9714000,48570,48570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,652,0.0116,9774000,48870,48870
+200,32,652,0.0119,9774000,48870,48870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,656,0.0118,9834000,49170,49170
+200,32,656,0.0119,9834000,49170,49170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,660,0.0117,9894000,49470,49470
+200,32,660,0.0121,9894000,49470,49470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,664,0.0118,9954000,49770,49770
+200,32,664,0.0122,9954000,49770,49770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,668,0.0118,10014000,50070,50070
+200,32,668,0.0123,10014000,50070,50070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,672,0.0120,10074000,50370,50370
+200,32,672,0.0122,10074000,50370,50370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,676,0.0121,10134000,50670,50670
+200,32,676,0.0123,10134000,50670,50670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,680,0.0120,10194000,50970,50970
+200,32,680,0.0123,10194000,50970,50970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,684,0.0121,10254000,51270,51270
+200,32,684,0.0125,10254000,51270,51270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,688,0.0123,10314000,51570,51570
+200,32,688,0.0125,10314000,51570,51570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,692,0.0122,10374000,51870,51870
+200,32,692,0.0127,10374000,51870,51870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,696,0.0123,10434000,52170,52170
+200,32,696,0.0126,10434000,52170,52170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,700,0.0124,10494000,52470,52470
+200,32,700,0.0127,10494000,52470,52470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,704,0.0124,10554000,52770,52770
+200,32,704,0.0128,10554000,52770,52770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,708,0.0125,10614000,53070,53070
+200,32,708,0.0129,10614000,53070,53070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,712,0.0126,10674000,53370,53370
+200,32,712,0.0128,10674000,53370,53370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,716,0.0126,10734000,53670,53670
+200,32,716,0.0131,10734000,53670,53670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,720,0.0126,10794000,53970,53970
+200,32,720,0.0130,10794000,53970,53970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,724,0.0128,10854000,54270,54270
+200,32,724,0.0130,10854000,54270,54270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,728,0.0128,10914000,54570,54570
+200,32,728,0.0132,10914000,54570,54570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,732,0.0129,10974000,54870,54870
+200,32,732,0.0133,10974000,54870,54870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,736,0.0130,11034000,55170,55170
+200,32,736,0.0135,11034000,55170,55170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,740,0.0130,11094000,55470,55470
+200,32,740,0.0135,11094000,55470,55470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,744,0.0130,11154000,55770,55770
+200,32,744,0.0135,11154000,55770,55770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,748,0.0131,11214000,56070,56070
+200,32,748,0.0134,11214000,56070,56070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,752,0.0132,11274000,56370,56370
+200,32,752,0.0135,11274000,56370,56370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,756,0.0133,11334000,56670,56670
+200,32,756,0.0136,11334000,56670,56670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,760,0.0134,11394000,56970,56970
+200,32,760,0.0137,11394000,56970,56970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,764,0.0134,11454000,57270,57270
+200,32,764,0.0137,11454000,57270,57270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,768,0.0135,11514000,57570,57570
+200,32,768,0.0138,11514000,57570,57570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,772,0.0135,11574000,57870,57870
+200,32,772,0.0139,11574000,57870,57870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,776,0.0136,11634000,58170,58170
+200,32,776,0.0141,11634000,58170,58170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,780,0.0138,11694000,58470,58470
+200,32,780,0.0140,11694000,58470,58470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,784,0.0138,11754000,58770,58770
+200,32,784,0.0142,11754000,58770,58770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,788,0.0139,11814000,59070,59070
+200,32,788,0.0141,11814000,59070,59070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,792,0.0139,11874000,59370,59370
+200,32,792,0.0142,11874000,59370,59370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,796,0.0141,11934000,59670,59670
+200,32,796,0.0143,11934000,59670,59670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,800,0.0140,11994000,59970,59970
+200,32,800,0.0143,11994000,59970,59970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,804,0.0141,12054000,60270,60270
+200,32,804,0.0145,12054000,60270,60270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,808,0.0142,12114000,60570,60570
+200,32,808,0.0145,12114000,60570,60570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,812,0.0143,12174000,60870,60870
+200,32,812,0.0145,12174000,60870,60870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,816,0.0143,12234000,61170,61170
+200,32,816,0.0148,12234000,61170,61170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,820,0.0143,12294000,61470,61470
+200,32,820,0.0148,12294000,61470,61470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,824,0.0144,12354000,61770,61770
+200,32,824,0.0148,12354000,61770,61770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,828,0.0145,12414000,62070,62070
+200,32,828,0.0148,12414000,62070,62070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,832,0.0145,12474000,62370,62370
+200,32,832,0.0149,12474000,62370,62370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,836,0.0146,12534000,62670,62670
+200,32,836,0.0150,12534000,62670,62670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,840,0.0146,12594000,62970,62970
+200,32,840,0.0150,12594000,62970,62970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,844,0.0147,12654000,63270,63270
+200,32,844,0.0151,12654000,63270,63270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,848,0.0148,12714000,63570,63570
+200,32,848,0.0153,12714000,63570,63570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,852,0.0149,12774000,63870,63870
+200,32,852,0.0153,12774000,63870,63870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,856,0.0150,12834000,64170,64170
+200,32,856,0.0153,12834000,64170,64170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,860,0.0150,12894000,64470,64470
+200,32,860,0.0154,12894000,64470,64470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,864,0.0151,12954000,64770,64770
+200,32,864,0.0154,12954000,64770,64770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,868,0.0152,13014000,65070,65070
+200,32,868,0.0155,13014000,65070,65070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,872,0.0151,13074000,65370,65370
+200,32,872,0.0157,13074000,65370,65370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,876,0.0152,13134000,65670,65670
+200,32,876,0.0156,13134000,65670,65670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,880,0.0154,13194000,65970,65970
+200,32,880,0.0157,13194000,65970,65970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,884,0.0154,13254000,66270,66270
+200,32,884,0.0157,13254000,66270,66270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,888,0.0154,13314000,66570,66570
+200,32,888,0.0158,13314000,66570,66570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,892,0.0155,13374000,66870,66870
+200,32,892,0.0159,13374000,66870,66870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,896,0.0156,13434000,67170,67170
+200,32,896,0.0160,13434000,67170,67170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,900,0.0158,13494000,67470,67470
+200,32,900,0.0160,13494000,67470,67470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,904,0.0158,13554000,67770,67770
+200,32,904,0.0162,13554000,67770,67770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,908,0.0159,13614000,68070,68070
+200,32,908,0.0162,13614000,68070,68070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,912,0.0161,13674000,68370,68370
+200,32,912,0.0163,13674000,68370,68370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,916,0.0162,13734000,68670,68670
+200,32,916,0.0163,13734000,68670,68670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,920,0.0162,13794000,68970,68970
+200,32,920,0.0164,13794000,68970,68970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,924,0.0163,13854000,69270,69270
+200,32,924,0.0165,13854000,69270,69270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,928,0.0162,13914000,69570,69570
+200,32,928,0.0166,13914000,69570,69570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,932,0.0164,13974000,69870,69870
+200,32,932,0.0166,13974000,69870,69870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,936,0.0163,14034000,70170,70170
+200,32,936,0.0167,14034000,70170,70170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,940,0.0164,14094000,70470,70470
+200,32,940,0.0167,14094000,70470,70470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,944,0.0165,14154000,70770,70770
+200,32,944,0.0168,14154000,70770,70770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,948,0.0166,14214000,71070,71070
+200,32,948,0.0170,14214000,71070,71070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,952,0.0166,14274000,71370,71370
+200,32,952,0.0171,14274000,71370,71370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,956,0.0170,14334000,71670,71670
+200,32,956,0.0171,14334000,71670,71670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,960,0.0168,14394000,71970,71970
+200,32,960,0.0171,14394000,71970,71970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,964,0.0174,14454000,72270,72270
+200,32,964,0.0175,14454000,72270,72270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,968,0.0172,14514000,72570,72570
+200,32,968,0.0176,14514000,72570,72570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,972,0.0173,14574000,72870,72870
+200,32,972,0.0176,14574000,72870,72870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,976,0.0173,14634000,73170,73170
+200,32,976,0.0175,14634000,73170,73170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,980,0.0175,14694000,73470,73470
+200,32,980,0.0178,14694000,73470,73470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,984,0.0175,14754000,73770,73770
+200,32,984,0.0180,14754000,73770,73770
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,988,0.0176,14814000,74070,74070
+200,32,988,0.0178,14814000,74070,74070
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,992,0.0176,14874000,74370,74370
+200,32,992,0.0179,14874000,74370,74370
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,996,0.0178,14934000,74670,74670
+200,32,996,0.0181,14934000,74670,74670
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,1000,0.0179,14994000,74970,74970
+200,32,1000,0.0180,14994000,74970,74970
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,1004,0.0178,15054000,75270,75270
+200,32,1004,0.0182,15054000,75270,75270
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,1008,0.0179,15114000,75570,75570
+200,32,1008,0.0181,15114000,75570,75570
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,1012,0.0179,15174000,75870,75870
+200,32,1012,0.0183,15174000,75870,75870
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,1016,0.0181,15234000,76170,76170
+200,32,1016,0.0183,15234000,76170,76170
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,1020,0.0181,15294000,76470,76470
+200,32,1020,0.0186,15294000,76470,76470
 iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)
-200,32,1024,0.0179,15354000,76770,76770
-mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vld.bin.csv .
-bsub -W 60 -nnodes 1 -Is jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vst.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.vst.bin.csv
-Job &lt;4098&gt; is submitted to default queue &lt;batch&gt;.
+200,32,1024,0.0182,15354000,76770,76770
+mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.vld.bin.csv .
+bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vst.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.vst.bin.csv
+Job &lt;24642&gt; is submitted to default queue &lt;batch&gt;.
 &lt;&lt;Waiting for dispatch ...&gt;&gt;
 &lt;&lt;Starting on login1&gt;&gt;
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
@@ -15400,11 +15717,11 @@ iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,20,0.0013,54200,271,271
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,24,0.0014,66200,331,331
+200,32,24,0.0013,66200,331,331
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,28,0.0014,78200,391,391
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,32,0.0016,90200,451,451
+200,32,32,0.0015,90200,451,451
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,36,0.0015,102200,511,511
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
@@ -15420,109 +15737,109 @@ iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,60,0.0020,174200,871,871
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,64,0.0022,186200,931,931
+200,32,64,0.0020,186200,931,931
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,68,0.0022,198200,991,991
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,72,0.0021,210200,1051,1051
+200,32,72,0.0023,210200,1051,1051
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,76,0.0023,222200,1111,1111
+200,32,76,0.0022,222200,1111,1111
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,80,0.0023,234200,1171,1171
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,84,0.0023,246200,1231,1231
+200,32,84,0.0024,246200,1231,1231
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,88,0.0024,258200,1291,1291
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,92,0.0025,270200,1351,1351
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,96,0.0027,282200,1411,1411
+200,32,96,0.0025,282200,1411,1411
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,100,0.0026,294200,1471,1471
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,104,0.0027,306200,1531,1531
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,108,0.0027,318200,1591,1591
+200,32,108,0.0028,318200,1591,1591
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,112,0.0028,330200,1651,1651
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,116,0.0028,342200,1711,1711
+200,32,116,0.0029,342200,1711,1711
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,120,0.0030,354200,1771,1771
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,124,0.0030,366200,1831,1831
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,128,0.0030,378200,1891,1891
+200,32,128,0.0031,378200,1891,1891
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,132,0.0032,390200,1951,1951
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,136,0.0032,402200,2011,2011
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,140,0.0032,414200,2071,2071
+200,32,140,0.0033,414200,2071,2071
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,144,0.0033,426200,2131,2131
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,148,0.0033,438200,2191,2191
+200,32,148,0.0035,438200,2191,2191
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,152,0.0034,450200,2251,2251
+200,32,152,0.0035,450200,2251,2251
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,156,0.0035,462200,2311,2311
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,160,0.0036,474200,2371,2371
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,164,0.0036,486200,2431,2431
+200,32,164,0.0038,486200,2431,2431
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,168,0.0037,498200,2491,2491
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,172,0.0037,510200,2551,2551
+200,32,172,0.0038,510200,2551,2551
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,176,0.0039,522200,2611,2611
+200,32,176,0.0038,522200,2611,2611
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,180,0.0039,534200,2671,2671
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,184,0.0039,546200,2731,2731
+200,32,184,0.0040,546200,2731,2731
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,188,0.0040,558200,2791,2791
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,192,0.0040,570200,2851,2851
+200,32,192,0.0041,570200,2851,2851
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,196,0.0041,582200,2911,2911
+200,32,196,0.0042,582200,2911,2911
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,200,0.0042,594200,2971,2971
+200,32,200,0.0044,594200,2971,2971
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,204,0.0042,606200,3031,3031
+200,32,204,0.0043,606200,3031,3031
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,208,0.0043,618200,3091,3091
+200,32,208,0.0044,618200,3091,3091
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,212,0.0044,630200,3151,3151
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,216,0.0044,642200,3211,3211
+200,32,216,0.0045,642200,3211,3211
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,220,0.0046,654200,3271,3271
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,224,0.0046,666200,3331,3331
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,228,0.0046,678200,3391,3391
+200,32,228,0.0047,678200,3391,3391
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,232,0.0047,690200,3451,3451
+200,32,232,0.0048,690200,3451,3451
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,236,0.0047,702200,3511,3511
+200,32,236,0.0048,702200,3511,3511
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,240,0.0048,714200,3571,3571
+200,32,240,0.0049,714200,3571,3571
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,244,0.0049,726200,3631,3631
+200,32,244,0.0050,726200,3631,3631
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,248,0.0049,738200,3691,3691
+200,32,248,0.0050,738200,3691,3691
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,252,0.0050,750200,3751,3751
+200,32,252,0.0051,750200,3751,3751
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,256,0.0051,762200,3811,3811
+200,32,256,0.0052,762200,3811,3811
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,260,0.0051,774200,3871,3871
+200,32,260,0.0052,774200,3871,3871
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,264,0.0053,786200,3931,3931
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,268,0.0053,798200,3991,3991
+200,32,268,0.0054,798200,3991,3991
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,272,0.0054,810200,4051,4051
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
@@ -15530,378 +15847,378 @@ iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,280,0.0055,834200,4171,4171
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,284,0.0055,846200,4231,4231
+200,32,284,0.0056,846200,4231,4231
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,288,0.0056,858200,4291,4291
+200,32,288,0.0057,858200,4291,4291
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,292,0.0057,870200,4351,4351
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,296,0.0057,882200,4411,4411
+200,32,296,0.0058,882200,4411,4411
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,300,0.0058,894200,4471,4471
+200,32,300,0.0059,894200,4471,4471
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,304,0.0058,906200,4531,4531
+200,32,304,0.0059,906200,4531,4531
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,308,0.0059,918200,4591,4591
+200,32,308,0.0060,918200,4591,4591
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,312,0.0060,930200,4651,4651
+200,32,312,0.0061,930200,4651,4651
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,316,0.0060,942200,4711,4711
+200,32,316,0.0061,942200,4711,4711
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,320,0.0061,954200,4771,4771
+200,32,320,0.0062,954200,4771,4771
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,324,0.0061,966200,4831,4831
+200,32,324,0.0063,966200,4831,4831
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,328,0.0062,978200,4891,4891
+200,32,328,0.0063,978200,4891,4891
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,332,0.0063,990200,4951,4951
+200,32,332,0.0064,990200,4951,4951
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,336,0.0063,1002200,5011,5011
+200,32,336,0.0065,1002200,5011,5011
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,340,0.0064,1014200,5071,5071
+200,32,340,0.0066,1014200,5071,5071
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,344,0.0065,1026200,5131,5131
+200,32,344,0.0066,1026200,5131,5131
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,348,0.0066,1038200,5191,5191
+200,32,348,0.0067,1038200,5191,5191
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,352,0.0066,1050200,5251,5251
+200,32,352,0.0069,1050200,5251,5251
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,356,0.0067,1062200,5311,5311
+200,32,356,0.0068,1062200,5311,5311
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,360,0.0067,1074200,5371,5371
+200,32,360,0.0068,1074200,5371,5371
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,364,0.0068,1086200,5431,5431
+200,32,364,0.0069,1086200,5431,5431
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,368,0.0068,1098200,5491,5491
+200,32,368,0.0070,1098200,5491,5491
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,372,0.0069,1110200,5551,5551
+200,32,372,0.0071,1110200,5551,5551
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,376,0.0070,1122200,5611,5611
+200,32,376,0.0071,1122200,5611,5611
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,380,0.0071,1134200,5671,5671
+200,32,380,0.0072,1134200,5671,5671
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,384,0.0072,1146200,5731,5731
+200,32,384,0.0073,1146200,5731,5731
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,388,0.0072,1158200,5791,5791
+200,32,388,0.0073,1158200,5791,5791
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,392,0.0072,1170200,5851,5851
+200,32,392,0.0074,1170200,5851,5851
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,396,0.0073,1182200,5911,5911
+200,32,396,0.0075,1182200,5911,5911
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,400,0.0074,1194200,5971,5971
+200,32,400,0.0075,1194200,5971,5971
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,404,0.0074,1206200,6031,6031
+200,32,404,0.0076,1206200,6031,6031
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,408,0.0076,1218200,6091,6091
+200,32,408,0.0077,1218200,6091,6091
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,412,0.0076,1230200,6151,6151
+200,32,412,0.0077,1230200,6151,6151
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,416,0.0077,1242200,6211,6211
+200,32,416,0.0080,1242200,6211,6211
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,420,0.0077,1254200,6271,6271
+200,32,420,0.0078,1254200,6271,6271
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,424,0.0078,1266200,6331,6331
+200,32,424,0.0079,1266200,6331,6331
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,428,0.0078,1278200,6391,6391
+200,32,428,0.0080,1278200,6391,6391
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,432,0.0080,1290200,6451,6451
+200,32,432,0.0081,1290200,6451,6451
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,436,0.0079,1302200,6511,6511
+200,32,436,0.0082,1302200,6511,6511
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,440,0.0081,1314200,6571,6571
+200,32,440,0.0082,1314200,6571,6571
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,444,0.0081,1326200,6631,6631
+200,32,444,0.0083,1326200,6631,6631
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,448,0.0082,1338200,6691,6691
+200,32,448,0.0083,1338200,6691,6691
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,452,0.0082,1350200,6751,6751
+200,32,452,0.0084,1350200,6751,6751
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,456,0.0084,1362200,6811,6811
+200,32,456,0.0085,1362200,6811,6811
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,460,0.0084,1374200,6871,6871
+200,32,460,0.0085,1374200,6871,6871
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,464,0.0084,1386200,6931,6931
+200,32,464,0.0087,1386200,6931,6931
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,468,0.0085,1398200,6991,6991
+200,32,468,0.0086,1398200,6991,6991
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,472,0.0085,1410200,7051,7051
+200,32,472,0.0087,1410200,7051,7051
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,476,0.0086,1422200,7111,7111
+200,32,476,0.0088,1422200,7111,7111
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,480,0.0087,1434200,7171,7171
+200,32,480,0.0090,1434200,7171,7171
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,484,0.0088,1446200,7231,7231
+200,32,484,0.0089,1446200,7231,7231
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,488,0.0088,1458200,7291,7291
+200,32,488,0.0090,1458200,7291,7291
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,492,0.0089,1470200,7351,7351
+200,32,492,0.0092,1470200,7351,7351
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,496,0.0089,1482200,7411,7411
+200,32,496,0.0092,1482200,7411,7411
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,500,0.0090,1494200,7471,7471
+200,32,500,0.0092,1494200,7471,7471
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,504,0.0092,1506200,7531,7531
+200,32,504,0.0093,1506200,7531,7531
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,508,0.0093,1518200,7591,7591
+200,32,508,0.0094,1518200,7591,7591
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,512,0.0092,1530200,7651,7651
+200,32,512,0.0095,1530200,7651,7651
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,516,0.0093,1542200,7711,7711
+200,32,516,0.0096,1542200,7711,7711
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,520,0.0094,1554200,7771,7771
+200,32,520,0.0096,1554200,7771,7771
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,524,0.0094,1566200,7831,7831
+200,32,524,0.0096,1566200,7831,7831
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,528,0.0094,1578200,7891,7891
+200,32,528,0.0097,1578200,7891,7891
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
 200,32,532,0.0097,1590200,7951,7951
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,536,0.0096,1602200,8011,8011
+200,32,536,0.0098,1602200,8011,8011
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,540,0.0097,1614200,8071,8071
+200,32,540,0.0100,1614200,8071,8071
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,544,0.0097,1626200,8131,8131
+200,32,544,0.0099,1626200,8131,8131
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,548,0.0099,1638200,8191,8191
+200,32,548,0.0100,1638200,8191,8191
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,552,0.0099,1650200,8251,8251
+200,32,552,0.0101,1650200,8251,8251
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,556,0.0101,1662200,8311,8311
+200,32,556,0.0102,1662200,8311,8311
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,560,0.0100,1674200,8371,8371
+200,32,560,0.0102,1674200,8371,8371
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,564,0.0101,1686200,8431,8431
+200,32,564,0.0105,1686200,8431,8431
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,568,0.0102,1698200,8491,8491
+200,32,568,0.0104,1698200,8491,8491
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,572,0.0103,1710200,8551,8551
+200,32,572,0.0105,1710200,8551,8551
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,576,0.0103,1722200,8611,8611
+200,32,576,0.0105,1722200,8611,8611
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,580,0.0104,1734200,8671,8671
+200,32,580,0.0108,1734200,8671,8671
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,584,0.0104,1746200,8731,8731
+200,32,584,0.0108,1746200,8731,8731
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,588,0.0105,1758200,8791,8791
+200,32,588,0.0109,1758200,8791,8791
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,592,0.0107,1770200,8851,8851
+200,32,592,0.0109,1770200,8851,8851
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,596,0.0108,1782200,8911,8911
+200,32,596,0.0109,1782200,8911,8911
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,600,0.0107,1794200,8971,8971
+200,32,600,0.0111,1794200,8971,8971
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,604,0.0109,1806200,9031,9031
+200,32,604,0.0111,1806200,9031,9031
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,608,0.0109,1818200,9091,9091
+200,32,608,0.0112,1818200,9091,9091
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,612,0.0109,1830200,9151,9151
+200,32,612,0.0112,1830200,9151,9151
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,616,0.0110,1842200,9211,9211
+200,32,616,0.0114,1842200,9211,9211
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,620,0.0111,1854200,9271,9271
+200,32,620,0.0113,1854200,9271,9271
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,624,0.0112,1866200,9331,9331
+200,32,624,0.0114,1866200,9331,9331
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,628,0.0111,1878200,9391,9391
+200,32,628,0.0114,1878200,9391,9391
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,632,0.0112,1890200,9451,9451
+200,32,632,0.0116,1890200,9451,9451
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,636,0.0113,1902200,9511,9511
+200,32,636,0.0116,1902200,9511,9511
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,640,0.0116,1914200,9571,9571
+200,32,640,0.0117,1914200,9571,9571
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,644,0.0114,1926200,9631,9631
+200,32,644,0.0118,1926200,9631,9631
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,648,0.0115,1938200,9691,9691
+200,32,648,0.0118,1938200,9691,9691
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,652,0.0117,1950200,9751,9751
+200,32,652,0.0121,1950200,9751,9751
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,656,0.0117,1962200,9811,9811
+200,32,656,0.0121,1962200,9811,9811
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,660,0.0117,1974200,9871,9871
+200,32,660,0.0121,1974200,9871,9871
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,664,0.0118,1986200,9931,9931
+200,32,664,0.0121,1986200,9931,9931
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,668,0.0119,1998200,9991,9991
+200,32,668,0.0122,1998200,9991,9991
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,672,0.0120,2010200,10051,10051
+200,32,672,0.0122,2010200,10051,10051
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,676,0.0120,2022200,10111,10111
+200,32,676,0.0124,2022200,10111,10111
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,680,0.0120,2034200,10171,10171
+200,32,680,0.0123,2034200,10171,10171
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,684,0.0121,2046200,10231,10231
+200,32,684,0.0124,2046200,10231,10231
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,688,0.0122,2058200,10291,10291
+200,32,688,0.0126,2058200,10291,10291
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,692,0.0123,2070200,10351,10351
+200,32,692,0.0127,2070200,10351,10351
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,696,0.0124,2082200,10411,10411
+200,32,696,0.0126,2082200,10411,10411
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,700,0.0124,2094200,10471,10471
+200,32,700,0.0128,2094200,10471,10471
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,704,0.0125,2106200,10531,10531
+200,32,704,0.0127,2106200,10531,10531
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,708,0.0125,2118200,10591,10591
+200,32,708,0.0128,2118200,10591,10591
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,712,0.0125,2130200,10651,10651
+200,32,712,0.0129,2130200,10651,10651
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,716,0.0125,2142200,10711,10711
+200,32,716,0.0130,2142200,10711,10711
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,720,0.0126,2154200,10771,10771
+200,32,720,0.0130,2154200,10771,10771
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,724,0.0127,2166200,10831,10831
+200,32,724,0.0131,2166200,10831,10831
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,728,0.0128,2178200,10891,10891
+200,32,728,0.0131,2178200,10891,10891
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,732,0.0128,2190200,10951,10951
+200,32,732,0.0132,2190200,10951,10951
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,736,0.0130,2202200,11011,11011
+200,32,736,0.0134,2202200,11011,11011
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,740,0.0130,2214200,11071,11071
+200,32,740,0.0134,2214200,11071,11071
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,744,0.0130,2226200,11131,11131
+200,32,744,0.0134,2226200,11131,11131
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,748,0.0131,2238200,11191,11191
+200,32,748,0.0135,2238200,11191,11191
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,752,0.0133,2250200,11251,11251
+200,32,752,0.0136,2250200,11251,11251
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,756,0.0133,2262200,11311,11311
+200,32,756,0.0136,2262200,11311,11311
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,760,0.0133,2274200,11371,11371
+200,32,760,0.0137,2274200,11371,11371
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,764,0.0134,2286200,11431,11431
+200,32,764,0.0138,2286200,11431,11431
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,768,0.0135,2298200,11491,11491
+200,32,768,0.0138,2298200,11491,11491
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,772,0.0137,2310200,11551,11551
+200,32,772,0.0139,2310200,11551,11551
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,776,0.0136,2322200,11611,11611
+200,32,776,0.0139,2322200,11611,11611
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,780,0.0137,2334200,11671,11671
+200,32,780,0.0140,2334200,11671,11671
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,784,0.0137,2346200,11731,11731
+200,32,784,0.0141,2346200,11731,11731
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,788,0.0138,2358200,11791,11791
+200,32,788,0.0142,2358200,11791,11791
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,792,0.0139,2370200,11851,11851
+200,32,792,0.0142,2370200,11851,11851
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,796,0.0140,2382200,11911,11911
+200,32,796,0.0144,2382200,11911,11911
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,800,0.0140,2394200,11971,11971
+200,32,800,0.0144,2394200,11971,11971
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,804,0.0141,2406200,12031,12031
+200,32,804,0.0144,2406200,12031,12031
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,808,0.0143,2418200,12091,12091
+200,32,808,0.0146,2418200,12091,12091
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,812,0.0142,2430200,12151,12151
+200,32,812,0.0146,2430200,12151,12151
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,816,0.0143,2442200,12211,12211
+200,32,816,0.0146,2442200,12211,12211
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,820,0.0144,2454200,12271,12271
+200,32,820,0.0147,2454200,12271,12271
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,824,0.0144,2466200,12331,12331
+200,32,824,0.0148,2466200,12331,12331
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,828,0.0145,2478200,12391,12391
+200,32,828,0.0149,2478200,12391,12391
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,832,0.0146,2490200,12451,12451
+200,32,832,0.0149,2490200,12451,12451
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,836,0.0146,2502200,12511,12511
+200,32,836,0.0150,2502200,12511,12511
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,840,0.0147,2514200,12571,12571
+200,32,840,0.0151,2514200,12571,12571
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,844,0.0148,2526200,12631,12631
+200,32,844,0.0152,2526200,12631,12631
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,848,0.0149,2538200,12691,12691
+200,32,848,0.0151,2538200,12691,12691
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,852,0.0149,2550200,12751,12751
+200,32,852,0.0152,2550200,12751,12751
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,856,0.0150,2562200,12811,12811
+200,32,856,0.0153,2562200,12811,12811
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,860,0.0152,2574200,12871,12871
+200,32,860,0.0154,2574200,12871,12871
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,864,0.0151,2586200,12931,12931
+200,32,864,0.0155,2586200,12931,12931
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,868,0.0151,2598200,12991,12991
+200,32,868,0.0155,2598200,12991,12991
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,872,0.0151,2610200,13051,13051
+200,32,872,0.0156,2610200,13051,13051
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,876,0.0152,2622200,13111,13111
+200,32,876,0.0156,2622200,13111,13111
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,880,0.0155,2634200,13171,13171
+200,32,880,0.0157,2634200,13171,13171
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,884,0.0154,2646200,13231,13231
+200,32,884,0.0158,2646200,13231,13231
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,888,0.0155,2658200,13291,13291
+200,32,888,0.0159,2658200,13291,13291
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,892,0.0155,2670200,13351,13351
+200,32,892,0.0159,2670200,13351,13351
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,896,0.0156,2682200,13411,13411
+200,32,896,0.0160,2682200,13411,13411
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,900,0.0157,2694200,13471,13471
+200,32,900,0.0160,2694200,13471,13471
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,904,0.0159,2706200,13531,13531
+200,32,904,0.0162,2706200,13531,13531
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,908,0.0160,2718200,13591,13591
+200,32,908,0.0162,2718200,13591,13591
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,912,0.0161,2730200,13651,13651
+200,32,912,0.0163,2730200,13651,13651
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,916,0.0162,2742200,13711,13711
+200,32,916,0.0163,2742200,13711,13711
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,920,0.0161,2754200,13771,13771
+200,32,920,0.0164,2754200,13771,13771
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,924,0.0162,2766200,13831,13831
+200,32,924,0.0165,2766200,13831,13831
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,928,0.0163,2778200,13891,13891
+200,32,928,0.0166,2778200,13891,13891
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,932,0.0165,2790200,13951,13951
+200,32,932,0.0168,2790200,13951,13951
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,936,0.0165,2802200,14011,14011
+200,32,936,0.0167,2802200,14011,14011
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,940,0.0165,2814200,14071,14071
+200,32,940,0.0169,2814200,14071,14071
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,944,0.0166,2826200,14131,14131
+200,32,944,0.0169,2826200,14131,14131
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,948,0.0166,2838200,14191,14191
+200,32,948,0.0169,2838200,14191,14191
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,952,0.0168,2850200,14251,14251
+200,32,952,0.0170,2850200,14251,14251
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,956,0.0167,2862200,14311,14311
+200,32,956,0.0170,2862200,14311,14311
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,960,0.0168,2874200,14371,14371
+200,32,960,0.0171,2874200,14371,14371
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,964,0.0173,2886200,14431,14431
+200,32,964,0.0175,2886200,14431,14431
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,968,0.0172,2898200,14491,14491
+200,32,968,0.0175,2898200,14491,14491
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,972,0.0172,2910200,14551,14551
+200,32,972,0.0176,2910200,14551,14551
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,976,0.0173,2922200,14611,14611
+200,32,976,0.0176,2922200,14611,14611
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,980,0.0175,2934200,14671,14671
+200,32,980,0.0178,2934200,14671,14671
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,984,0.0176,2946200,14731,14731
+200,32,984,0.0178,2946200,14731,14731
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,988,0.0176,2958200,14791,14791
+200,32,988,0.0179,2958200,14791,14791
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,992,0.0177,2970200,14851,14851
+200,32,992,0.0178,2970200,14851,14851
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,996,0.0178,2982200,14911,14911
+200,32,996,0.0181,2982200,14911,14911
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,1000,0.0177,2994200,14971,14971
+200,32,1000,0.0180,2994200,14971,14971
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,1004,0.0179,3006200,15031,15031
+200,32,1004,0.0181,3006200,15031,15031
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,1008,0.0179,3018200,15091,15091
+200,32,1008,0.0182,3018200,15091,15091
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,1012,0.0180,3030200,15151,15151
+200,32,1012,0.0183,3030200,15151,15151
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,1016,0.0180,3042200,15211,15211
+200,32,1016,0.0183,3042200,15211,15211
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,1020,0.0182,3054200,15271,15271
+200,32,1020,0.0184,3054200,15271,15271
 iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)
-200,32,1024,0.0178,3066200,15331,15331
-mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vst.bin.csv .
+200,32,1024,0.0182,3066200,15331,15331
+mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.vst.bin.csv .
 </pre>
 </div>
 </div>
@@ -15914,14 +16231,14 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vst.bin.csv .
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
 <p>Let's plot it again, as soon as the run finishes! Non-interactively, call <code>graph_task2b</code>.</p>
-<p><em>We need to read in two CSV files now, which we combine to one common dataframe <code>df_vldvst</code>.</em></p>
+<p><em>Because we couldn't measure the two vector counters at the same time, we have two CSV files to read in now. We combine them into one common dataframe <code>df_vldvst</code> in the following.</em></p>
 
 </div>
 </div>
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[8]:</div>
+<div class="prompt input_prompt">In&nbsp;[31]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_vld</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">&quot;poisson2d.vld.bin.csv&quot;</span><span class="p">,</span> <span class="n">skiprows</span><span class="o">=</span><span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
@@ -15936,11 +16253,10 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vst.bin.csv .
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[9]:</div>
+<div class="prompt input_prompt">In&nbsp;[32]:</div>
 <div class="inner_cell">
     <div class="input_area">
-<div class=" highlight hl-ipython3"><pre><span></span><span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df_vldvst</span><span class="p">,</span> <span class="s2">&quot;PM_VECTOR_LD_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Vector Loads / Loop Iteration&quot;</span><span class="p">)</span>
-<span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df_vldvst</span><span class="p">,</span> <span class="s2">&quot;PM_VECTOR_ST_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Vector Stores / Loop Iteration&quot;</span><span class="p">)</span>
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_vldvst</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df_vldvst</span><span class="p">[</span><span class="s2">&quot;nx&quot;</span><span class="p">]</span> <span class="o">*</span> <span class="n">df_vldvst</span><span class="p">[</span><span class="s2">&quot;ny&quot;</span><span class="p">]</span> 
 <span class="n">df_vldvst</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
 </pre></div>
 
@@ -15954,7 +16270,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vst.bin.csv .
 
 <div class="output_area">
 
-    <div class="prompt output_prompt">Out[9]:</div>
+    <div class="prompt output_prompt">Out[32]:</div>
 
 
 
@@ -15987,8 +16303,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vst.bin.csv .
       <th>PM_VECTOR_ST_CMPL (total)</th>
       <th>PM_VECTOR_ST_CMPL (min)</th>
       <th>PM_VECTOR_ST_CMPL (max)</th>
-      <th>Vector Loads / Loop Iteration</th>
-      <th>Vector Stores / Loop Iteration</th>
+      <th>Grid Points</th>
     </tr>
   </thead>
   <tbody>
@@ -16004,8 +16319,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vst.bin.csv .
       <td>200</td>
       <td>1</td>
       <td>1</td>
-      <td>0.000000</td>
-      <td>0.007812</td>
+      <td>128</td>
     </tr>
     <tr>
       <th>1</th>
@@ -16019,8 +16333,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vst.bin.csv .
       <td>18200</td>
       <td>91</td>
       <td>91</td>
-      <td>2.226562</td>
-      <td>0.355469</td>
+      <td>256</td>
     </tr>
     <tr>
       <th>2</th>
@@ -16034,38 +16347,35 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vst.bin.csv .
       <td>30200</td>
       <td>151</td>
       <td>151</td>
-      <td>2.265625</td>
-      <td>0.393229</td>
+      <td>384</td>
     </tr>
     <tr>
       <th>3</th>
       <td>16</td>
       <td>200</td>
       <td>32</td>
-      <td>0.0013</td>
+      <td>0.0012</td>
       <td>234000</td>
       <td>1170</td>
       <td>1170</td>
       <td>42200</td>
       <td>211</td>
       <td>211</td>
-      <td>2.285156</td>
-      <td>0.412109</td>
+      <td>512</td>
     </tr>
     <tr>
       <th>4</th>
       <td>20</td>
       <td>200</td>
       <td>32</td>
-      <td>0.0014</td>
+      <td>0.0013</td>
       <td>294000</td>
       <td>1470</td>
       <td>1470</td>
       <td>54200</td>
       <td>271</td>
       <td>271</td>
-      <td>2.296875</td>
-      <td>0.423438</td>
+      <td>640</td>
     </tr>
   </tbody>
 </table>
@@ -16080,12 +16390,103 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vst.bin.csv .
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[10]:</div>
+<div class="prompt input_prompt">In&nbsp;[33]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
+<span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_VECTOR_LD_CMPL (min)&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax1</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+<span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_VECTOR_ST_CMPL (min)&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax2</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area">
+
+    <div class="prompt"></div>
+
+
+
+
+<div class="output_png output_subarea ">
+<img src="
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Also here seems to be a linear correlation. Let's do our fitting and plot directly.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[34]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">_fit</span><span class="p">,</span> <span class="n">_cov</span> <span class="o">=</span> <span class="n">common</span><span class="o">.</span><span class="n">print_and_return_fit</span><span class="p">(</span>
+    <span class="p">[</span><span class="s2">&quot;PM_VECTOR_LD_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;PM_VECTOR_ST_CMPL (min)&quot;</span><span class="p">],</span> 
+    <span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">),</span> 
+    <span class="n">linear_function</span><span class="p">,</span>
+    <span class="n">format_value</span><span class="o">=</span><span class="s2">&quot;.4f&quot;</span><span class="p">,</span>
+<span class="p">)</span>
+<span class="n">fit_parameters</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_parameters</span><span class="p">,</span> <span class="o">**</span><span class="n">_fit</span><span class="p">}</span>
+<span class="n">fit_covariance</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_covariance</span><span class="p">,</span> <span class="o">**</span><span class="n">_cov</span><span class="p">}</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area">
+
+    <div class="prompt"></div>
+
+
+<div class="output_subarea output_stream output_stdout output_text">
+<pre>Counter PM_VECTOR_LD_CMPL (min) is proportional to the grid points (nx*ny) by a factor of 2.3439 (± 0.000111)
+Counter PM_VECTOR_ST_CMPL (min) is proportional to the grid points (nx*ny) by a factor of 0.4688 (± 0.000012)
+</pre>
+</div>
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[35]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
-<span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Vector Loads / Loop Iteration&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax1</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
-<span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Vector Stores / Loop Iteration&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax2</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+<span class="k">for</span> <span class="n">ax</span><span class="p">,</span> <span class="n">pmu_counter</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">([</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">],</span> <span class="p">[</span><span class="s2">&quot;PM_VECTOR_LD_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;PM_VECTOR_ST_CMPL (min)&quot;</span><span class="p">]):</span>
+    <span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="n">pmu_counter</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">,</span> <span class="n">legend</span><span class="o">=</span><span class="kc">True</span><span class="p">);</span>
+    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span>
+        <span class="n">df_vldvst</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">],</span> 
+        <span class="n">linear_function</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">],</span> <span class="o">*</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">pmu_counter</span><span class="p">]),</span> 
+        <span class="n">linestyle</span><span class="o">=</span><span class="s2">&quot;--&quot;</span><span class="p">,</span> 
+        <span class="n">label</span><span class="o">=</span><span class="s2">&quot;Fit: </span><span class="si">{:.2f}</span><span class="s2"> * x + </span><span class="si">{:.2f}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="o">*</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">pmu_counter</span><span class="p">])</span>
+    <span class="p">)</span>
+    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">();</span>
 </pre></div>
 
     </div>
@@ -16104,7 +16505,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vst.bin.csv .
 
 
 <div class="output_png output_subarea ">
-<img src="
+<img src="
 "
 >
 </div>
@@ -16137,14 +16538,14 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[83]:</div>
+<div class="prompt input_prompt">In&nbsp;[37]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_byte</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">()</span>
-<span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Loads / Loop Iteration&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Vector Loads / Loop Iteration&quot;</span><span class="p">]</span> <span class="o">+</span> <span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Loads / Loop Iteration&quot;</span><span class="p">])</span><span class="o">*</span><span class="mi">8</span>
-<span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Stores / Loop Iteration&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Vector Stores / Loop Iteration&quot;</span><span class="p">]</span> <span class="o">+</span> <span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Stores / Loop Iteration&quot;</span><span class="p">])</span><span class="o">*</span><span class="mi">8</span>
+<span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Loads&quot;</span><span class="p">]</span>  <span class="o">=</span> <span class="p">(</span><span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_VECTOR_LD_CMPL (min)&quot;</span><span class="p">]</span> <span class="o">+</span> <span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_LD_CMPL (min)&quot;</span><span class="p">])</span><span class="o">*</span><span class="mi">8</span>
+<span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Stores&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">df_vldvst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_VECTOR_ST_CMPL (min)&quot;</span><span class="p">]</span> <span class="o">+</span> <span class="n">df_ldst</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_ST_CMPL (min)&quot;</span><span class="p">])</span><span class="o">*</span><span class="mi">8</span>
 <span class="n">ax</span> <span class="o">=</span> <span class="n">df_byte</span><span class="o">.</span><span class="n">plot</span><span class="p">()</span>
-<span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s2">&quot;Bytes / Loop Iteration&quot;</span><span class="p">);</span>
+<span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s2">&quot;Bytes&quot;</span><span class="p">);</span>
 </pre></div>
 
     </div>
@@ -16163,7 +16564,7 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 
 
 <div class="output_png output_subarea ">
-<img src="
+<img src="
 "
 >
 </div>
@@ -16173,16 +16574,27 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 </div>
 </div>
 
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Let's quantify the difference by, again, fitting a linear function to the data.</p>
+
+</div>
+</div>
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[12]:</div>
+<div class="prompt input_prompt">In&nbsp;[38]:</div>
 <div class="inner_cell">
     <div class="input_area">
-<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
-<span class="n">mean_byte_ld</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">polyfit</span><span class="p">(</span><span class="n">df_byte</span><span class="p">[</span><span class="n">df_byte</span><span class="o">.</span><span class="n">index</span> <span class="o">&gt;</span> <span class="mi">200</span><span class="p">]</span><span class="o">.</span><span class="n">index</span><span class="p">,</span> <span class="n">df_byte</span><span class="p">[</span><span class="n">df_byte</span><span class="o">.</span><span class="n">index</span> <span class="o">&gt;</span> <span class="mi">200</span><span class="p">][</span><span class="s2">&quot;Loads / Loop Iteration&quot;</span><span class="p">],</span> <span class="mi">0</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
-<span class="n">mean_byte_st</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">polyfit</span><span class="p">(</span><span class="n">df_byte</span><span class="p">[</span><span class="n">df_byte</span><span class="o">.</span><span class="n">index</span> <span class="o">&gt;</span> <span class="mi">200</span><span class="p">]</span><span class="o">.</span><span class="n">index</span><span class="p">,</span> <span class="n">df_byte</span><span class="p">[</span><span class="n">df_byte</span><span class="o">.</span><span class="n">index</span> <span class="o">&gt;</span> <span class="mi">200</span><span class="p">][</span><span class="s2">&quot;Stores / Loop Iteration&quot;</span><span class="p">],</span> <span class="mi">0</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
-<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Mean byte loaded: </span><span class="si">{}</span><span class="se">\t</span><span class="s2">Mean byte stored: </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">mean_byte_ld</span><span class="p">,</span> <span class="n">mean_byte_st</span><span class="p">))</span>
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">_fit</span><span class="p">,</span> <span class="n">_cov</span> <span class="o">=</span> <span class="n">common</span><span class="o">.</span><span class="n">print_and_return_fit</span><span class="p">(</span>
+    <span class="p">[</span><span class="s2">&quot;Loads&quot;</span><span class="p">,</span> <span class="s2">&quot;Stores&quot;</span><span class="p">],</span> 
+    <span class="n">df_byte</span><span class="p">,</span> 
+    <span class="n">linear_function</span>
+<span class="p">)</span>
+<span class="n">fit_parameters</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_parameters</span><span class="p">,</span> <span class="o">**</span><span class="n">_fit</span><span class="p">}</span>
+<span class="n">fit_covariance</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_covariance</span><span class="p">,</span> <span class="o">**</span><span class="n">_cov</span><span class="p">}</span>
 </pre></div>
 
     </div>
@@ -16199,7 +16611,8 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 
 
 <div class="output_subarea output_stream output_stdout output_text">
-<pre>Mean byte loaded: 37.52662546714877	Mean byte stored: 8.428951320998907
+<pre>Counter  Loads is proportional to the grid points (nx*ny) by a factor of 37.5010 (± 0.000592)
+Counter Stores is proportional to the grid points (nx*ny) by a factor of  8.4379 (± 0.000247)
 </pre>
 </div>
 </div>
@@ -16207,6 +16620,14 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 </div>
 </div>
 
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Analagously to the proportionality factors, this mich is loaded/stored per grid point.</p>
+
+</div>
+</div>
 </div>
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
@@ -16218,11 +16639,11 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[13]:</div>
+<div class="prompt input_prompt">In&nbsp;[50]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_bandwidth</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">()</span>
-<span class="n">df_bandwidth</span><span class="p">[</span><span class="s2">&quot;Bandwidth / Byte/Cycle&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Loads / Loop Iteration&quot;</span><span class="p">]</span> <span class="o">+</span> <span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Stores / Loop Iteration&quot;</span><span class="p">])</span> <span class="o">/</span> <span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Cycles / Loop Iteration&quot;</span><span class="p">]</span>
+<span class="n">df_bandwidth</span><span class="p">[</span><span class="s2">&quot;Bandwidth / Byte/Cycle&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Loads&quot;</span><span class="p">]</span> <span class="o">+</span> <span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Stores&quot;</span><span class="p">])</span> <span class="o">/</span> <span class="n">df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;PM_RUN_CYC (min)&quot;</span><span class="p">]</span>
 </pre></div>
 
     </div>
@@ -16233,14 +16654,14 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<p>Let's display it as a function of <code>nx</code>. And also compare it to the available L1 cache bandwidth in a second (sub-)plot. Non-interactive users, call <code>make graph_task2c</code>.</p>
+<p>Let's display it as a function of grid points. And also compare it to the available L1 cache bandwidth in a second (sub-)plot. Non-interactive users, call <code>make graph_task2c</code>.</p>
 
 </div>
 </div>
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[15]:</div>
+<div class="prompt input_prompt">In&nbsp;[51]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
@@ -16267,7 +16688,7 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 
 
 <div class="output_png output_subarea ">
-<img src="
+<img src="
 "
 >
 </div>
@@ -16291,7 +16712,7 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 <div class="text_cell_render border-box-sizing rendered_html">
 <h2 id="Task-E1:-Measuring-FlOps">Task E1: Measuring FlOps<a class="anchor-link" href="#Task-E1:-Measuring-FlOps">&#182;</a></h2><p><a name="taske1"></a></p>
 <p>If you still have time, feel free to work on the following extended task.</p>
-<p><strong>TASK</strong>: Please measure counters for <em>vectorized</em> floating point operations and <em>scalar</em> floating point operations. The two counters can also not be measured during the same run. So please see the TODOs in <a href="/edit/Tasks/poisson2d.sflops.c"><code>poisson2d.sflops.c</code></a> and <a href="/edit/Tasks/poisson2d.vflops.c"><code>poisson2d.vflops.c</code></a>. By now you should be able to find out the names of the counters by yourself (<em>Hint: they include the words scalar and vector…</em>).</p>
+<p><strong>TASK</strong>: Please measure counters for <em>vectorized</em> floating point operations and <em>scalar</em> floating point operations. The two counters can also not be measured during the same run. So please see the TODOs in <a href="/edit/Tasks/poisson2d.sflops.c"><code>poisson2d.sflops.c</code></a> and <a href="/edit/Tasks/poisson2d.vflops.c"><code>poisson2d.vflops.c</code></a>. By now you should be able to find out the names of the counters by yourself (<em>Hint: they include the words »scalar« and »vector«…</em>).</p>
 <p>As usual, compile, test, and bench-run your program.</p>
 <p><a href="#toc">Back to top</a></p>
 
@@ -16300,7 +16721,7 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[42]:</div>
+<div class="prompt input_prompt">In&nbsp;[4]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="o">!</span>make bench_task4
@@ -16320,8 +16741,8 @@ n_\text{ld}^\text{scalar} &amp;= n_\text{ld}^\text{total} - n_\text{ld}^\text{ve
 
 
 <div class="output_subarea output_stream output_stdout output_text">
-<pre>bsub -W 60 -nnodes 1 -Is -P GEN110 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.sflop.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.sflop.bin.csv
-Job &lt;4299&gt; is submitted to default queue &lt;batch&gt;.
+<pre>bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.sflop.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.sflop.bin.csv
+Job &lt;24645&gt; is submitted to default queue &lt;batch&gt;.
 &lt;&lt;Waiting for dispatch ...&gt;&gt;
 &lt;&lt;Starting on login1&gt;&gt;
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
@@ -16335,7 +16756,7 @@ iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCA
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,20,0.0013,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,24,0.0014,0,0,0
+200,32,24,0.0013,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,28,0.0014,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
@@ -16351,21 +16772,21 @@ iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCA
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,52,0.0018,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,56,0.0019,0,0,0
+200,32,56,0.0022,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,60,0.0020,0,0,0
+200,32,60,0.0019,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,64,0.0021,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,68,0.0022,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,72,0.0022,0,0,0
+200,32,72,0.0021,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,76,0.0022,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,80,0.0023,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,84,0.0024,0,0,0
+200,32,84,0.0025,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,88,0.0024,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
@@ -16373,39 +16794,39 @@ iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCA
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,96,0.0025,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,100,0.0028,0,0,0
+200,32,100,0.0026,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,104,0.0027,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,108,0.0027,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,112,0.0029,0,0,0
+200,32,112,0.0028,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,116,0.0028,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,120,0.0029,0,0,0
+200,32,120,0.0031,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,124,0.0030,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,128,0.0031,0,0,0
+200,32,128,0.0030,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,132,0.0031,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,136,0.0032,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,140,0.0033,0,0,0
+200,32,140,0.0032,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,144,0.0034,0,0,0
+200,32,144,0.0033,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,148,0.0034,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,152,0.0034,0,0,0
+200,32,152,0.0035,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,156,0.0035,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,160,0.0036,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,164,0.0037,0,0,0
+200,32,164,0.0036,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,168,0.0037,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
@@ -16415,13 +16836,13 @@ iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCA
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,180,0.0039,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,184,0.0039,0,0,0
+200,32,184,0.0040,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,188,0.0040,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,192,0.0041,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,196,0.0041,0,0,0
+200,32,196,0.0042,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,200,0.0042,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
@@ -16433,9 +16854,9 @@ iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCA
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,216,0.0045,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,220,0.0046,0,0,0
+200,32,220,0.0045,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,224,0.0047,0,0,0
+200,32,224,0.0046,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,228,0.0047,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
@@ -16447,11 +16868,11 @@ iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCA
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,244,0.0049,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,248,0.0050,0,0,0
+200,32,248,0.0051,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,252,0.0050,0,0,0
+200,32,252,0.0051,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,256,0.0051,0,0,0
+200,32,256,0.0053,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,260,0.0052,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
@@ -16459,79 +16880,79 @@ iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCA
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,268,0.0054,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,272,0.0055,0,0,0
+200,32,272,0.0054,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,276,0.0055,0,0,0
+200,32,276,0.0054,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,280,0.0055,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,284,0.0056,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,288,0.0057,0,0,0
+200,32,288,0.0056,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,292,0.0057,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,296,0.0058,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,300,0.0059,0,0,0
+200,32,300,0.0058,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,304,0.0059,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,308,0.0059,0,0,0
+200,32,308,0.0060,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,312,0.0060,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,316,0.0061,0,0,0
+200,32,316,0.0062,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,320,0.0061,0,0,0
+200,32,320,0.0062,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,324,0.0062,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,328,0.0063,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,332,0.0065,0,0,0
+200,32,332,0.0064,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,336,0.0064,0,0,0
+200,32,336,0.0065,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,340,0.0065,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,344,0.0065,0,0,0
+200,32,344,0.0066,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,348,0.0066,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,352,0.0067,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,356,0.0067,0,0,0
+200,32,356,0.0068,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,360,0.0068,0,0,0
+200,32,360,0.0069,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,364,0.0069,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,368,0.0070,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,372,0.0070,0,0,0
+200,32,372,0.0072,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,376,0.0071,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,380,0.0072,0,0,0
+200,32,380,0.0071,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,384,0.0072,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,388,0.0072,0,0,0
+200,32,388,0.0073,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,392,0.0075,0,0,0
+200,32,392,0.0074,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,396,0.0074,0,0,0
+200,32,396,0.0076,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,400,0.0075,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,404,0.0075,0,0,0
+200,32,404,0.0076,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,408,0.0076,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,412,0.0077,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,416,0.0077,0,0,0
+200,32,416,0.0078,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,420,0.0078,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
@@ -16541,27 +16962,27 @@ iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCA
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,432,0.0080,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,436,0.0080,0,0,0
+200,32,436,0.0081,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,440,0.0081,0,0,0
+200,32,440,0.0082,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,444,0.0083,0,0,0
+200,32,444,0.0082,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,448,0.0084,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,452,0.0084,0,0,0
+200,32,452,0.0083,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,456,0.0084,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,460,0.0085,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,464,0.0086,0,0,0
+200,32,464,0.0085,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,468,0.0086,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,472,0.0088,0,0,0
+200,32,472,0.0087,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,476,0.0087,0,0,0
+200,32,476,0.0089,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,480,0.0088,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
@@ -16571,7 +16992,7 @@ iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCA
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,492,0.0090,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,496,0.0090,0,0,0
+200,32,496,0.0091,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,500,0.0092,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
@@ -16579,266 +17000,266 @@ iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCA
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,508,0.0093,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,512,0.0092,0,0,0
+200,32,512,0.0094,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,516,0.0093,0,0,0
+200,32,516,0.0094,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,520,0.0094,0,0,0
+200,32,520,0.0095,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,524,0.0094,0,0,0
+200,32,524,0.0096,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,528,0.0094,0,0,0
+200,32,528,0.0096,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,532,0.0095,0,0,0
+200,32,532,0.0098,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,536,0.0096,0,0,0
+200,32,536,0.0097,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
 200,32,540,0.0098,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,544,0.0097,0,0,0
+200,32,544,0.0099,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,548,0.0098,0,0,0
+200,32,548,0.0100,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,552,0.0099,0,0,0
+200,32,552,0.0101,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,556,0.0099,0,0,0
+200,32,556,0.0101,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,560,0.0100,0,0,0
+200,32,560,0.0102,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,564,0.0102,0,0,0
+200,32,564,0.0103,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,568,0.0102,0,0,0
+200,32,568,0.0104,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,572,0.0103,0,0,0
+200,32,572,0.0105,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,576,0.0103,0,0,0
+200,32,576,0.0105,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,580,0.0105,0,0,0
+200,32,580,0.0106,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,584,0.0104,0,0,0
+200,32,584,0.0107,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,588,0.0106,0,0,0
+200,32,588,0.0107,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,592,0.0107,0,0,0
+200,32,592,0.0108,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,596,0.0106,0,0,0
+200,32,596,0.0109,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,600,0.0107,0,0,0
+200,32,600,0.0110,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,604,0.0109,0,0,0
+200,32,604,0.0111,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,608,0.0109,0,0,0
+200,32,608,0.0111,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,612,0.0109,0,0,0
+200,32,612,0.0112,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,616,0.0110,0,0,0
+200,32,616,0.0112,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,620,0.0117,0,0,0
+200,32,620,0.0113,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,624,0.0112,0,0,0
+200,32,624,0.0114,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,628,0.0111,0,0,0
+200,32,628,0.0115,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,632,0.0112,0,0,0
+200,32,632,0.0115,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,636,0.0113,0,0,0
+200,32,636,0.0115,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,640,0.0115,0,0,0
+200,32,640,0.0116,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,644,0.0114,0,0,0
+200,32,644,0.0118,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,648,0.0115,0,0,0
+200,32,648,0.0117,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,652,0.0116,0,0,0
+200,32,652,0.0119,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,656,0.0117,0,0,0
+200,32,656,0.0119,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,660,0.0117,0,0,0
+200,32,660,0.0121,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,664,0.0118,0,0,0
+200,32,664,0.0120,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,668,0.0119,0,0,0
+200,32,668,0.0122,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,672,0.0119,0,0,0
+200,32,672,0.0121,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,676,0.0119,0,0,0
+200,32,676,0.0124,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,680,0.0120,0,0,0
+200,32,680,0.0123,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,684,0.0121,0,0,0
+200,32,684,0.0125,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,688,0.0122,0,0,0
+200,32,688,0.0124,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,692,0.0122,0,0,0
+200,32,692,0.0125,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,696,0.0123,0,0,0
+200,32,696,0.0126,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,700,0.0124,0,0,0
+200,32,700,0.0127,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,704,0.0124,0,0,0
+200,32,704,0.0126,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,708,0.0125,0,0,0
+200,32,708,0.0127,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,712,0.0125,0,0,0
+200,32,712,0.0129,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,716,0.0126,0,0,0
+200,32,716,0.0128,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,720,0.0126,0,0,0
+200,32,720,0.0129,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,724,0.0127,0,0,0
+200,32,724,0.0132,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,728,0.0128,0,0,0
+200,32,728,0.0131,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,732,0.0128,0,0,0
+200,32,732,0.0131,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,736,0.0129,0,0,0
+200,32,736,0.0133,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,740,0.0130,0,0,0
+200,32,740,0.0133,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,744,0.0130,0,0,0
+200,32,744,0.0133,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,748,0.0131,0,0,0
+200,32,748,0.0134,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,752,0.0131,0,0,0
+200,32,752,0.0136,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,756,0.0132,0,0,0
+200,32,756,0.0136,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,760,0.0133,0,0,0
+200,32,760,0.0136,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,764,0.0134,0,0,0
+200,32,764,0.0136,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,768,0.0134,0,0,0
+200,32,768,0.0138,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,772,0.0136,0,0,0
+200,32,772,0.0138,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,776,0.0136,0,0,0
+200,32,776,0.0139,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,780,0.0136,0,0,0
+200,32,780,0.0139,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,784,0.0137,0,0,0
+200,32,784,0.0140,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,788,0.0138,0,0,0
+200,32,788,0.0140,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,792,0.0139,0,0,0
+200,32,792,0.0141,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,796,0.0139,0,0,0
+200,32,796,0.0142,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,800,0.0140,0,0,0
+200,32,800,0.0143,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,804,0.0141,0,0,0
+200,32,804,0.0143,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,808,0.0142,0,0,0
+200,32,808,0.0144,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,812,0.0142,0,0,0
+200,32,812,0.0144,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,816,0.0143,0,0,0
+200,32,816,0.0145,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,820,0.0143,0,0,0
+200,32,820,0.0146,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,824,0.0144,0,0,0
+200,32,824,0.0148,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,828,0.0145,0,0,0
+200,32,828,0.0147,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,832,0.0145,0,0,0
+200,32,832,0.0148,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,836,0.0146,0,0,0
+200,32,836,0.0149,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,840,0.0147,0,0,0
+200,32,840,0.0150,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,844,0.0147,0,0,0
+200,32,844,0.0150,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,848,0.0148,0,0,0
+200,32,848,0.0150,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,852,0.0149,0,0,0
+200,32,852,0.0151,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,856,0.0149,0,0,0
+200,32,856,0.0152,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,860,0.0150,0,0,0
+200,32,860,0.0152,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,864,0.0150,0,0,0
+200,32,864,0.0153,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,868,0.0152,0,0,0
+200,32,868,0.0154,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,872,0.0151,0,0,0
+200,32,872,0.0156,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,876,0.0153,0,0,0
+200,32,876,0.0156,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,880,0.0153,0,0,0
+200,32,880,0.0156,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,884,0.0153,0,0,0
+200,32,884,0.0157,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,888,0.0155,0,0,0
+200,32,888,0.0157,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,892,0.0156,0,0,0
+200,32,892,0.0158,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,896,0.0156,0,0,0
+200,32,896,0.0159,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,900,0.0158,0,0,0
+200,32,900,0.0159,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,904,0.0158,0,0,0
+200,32,904,0.0161,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,908,0.0159,0,0,0
+200,32,908,0.0162,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,912,0.0159,0,0,0
+200,32,912,0.0164,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,916,0.0162,0,0,0
+200,32,916,0.0163,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,920,0.0162,0,0,0
+200,32,920,0.0164,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,924,0.0162,0,0,0
+200,32,924,0.0165,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,928,0.0162,0,0,0
+200,32,928,0.0166,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,932,0.0163,0,0,0
+200,32,932,0.0166,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,936,0.0164,0,0,0
+200,32,936,0.0167,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,940,0.0165,0,0,0
+200,32,940,0.0167,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,944,0.0165,0,0,0
+200,32,944,0.0168,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,948,0.0166,0,0,0
+200,32,948,0.0169,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,952,0.0167,0,0,0
+200,32,952,0.0172,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,956,0.0168,0,0,0
+200,32,956,0.0171,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,960,0.0168,0,0,0
+200,32,960,0.0172,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,964,0.0172,0,0,0
+200,32,964,0.0175,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,968,0.0173,0,0,0
+200,32,968,0.0175,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,972,0.0173,0,0,0
+200,32,972,0.0176,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,976,0.0173,0,0,0
+200,32,976,0.0177,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,980,0.0175,0,0,0
+200,32,980,0.0178,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,984,0.0176,0,0,0
+200,32,984,0.0178,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,988,0.0175,0,0,0
+200,32,988,0.0179,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,992,0.0176,0,0,0
+200,32,992,0.0179,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,996,0.0178,0,0,0
+200,32,996,0.0182,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,1000,0.0177,0,0,0
+200,32,1000,0.0181,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,1004,0.0178,0,0,0
+200,32,1004,0.0182,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,1008,0.0178,0,0,0
+200,32,1008,0.0182,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,1012,0.0181,0,0,0
+200,32,1012,0.0184,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,1016,0.0180,0,0,0
+200,32,1016,0.0184,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,1020,0.0182,0,0,0
+200,32,1020,0.0186,0,0,0
 iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)
-200,32,1024,0.0179,0,0,0
-mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.sflop.bin.csv .
-bsub -W 60 -nnodes 1 -Is -P GEN110 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vflop.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.vflop.bin.csv
-Job &lt;4300&gt; is submitted to default queue &lt;batch&gt;.
+200,32,1024,0.0182,0,0,0
+mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.sflop.bin.csv .
+bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vflop.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.vflop.bin.csv
+Job &lt;24646&gt; is submitted to default queue &lt;batch&gt;.
 &lt;&lt;Waiting for dispatch ...&gt;&gt;
 &lt;&lt;Starting on login1&gt;&gt;
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
@@ -16852,7 +17273,7 @@ iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VEC
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,20,0.0013,438000,2190,2190
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,24,0.0014,534000,2670,2670
+200,32,24,0.0013,534000,2670,2670
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,28,0.0014,630000,3150,3150
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
@@ -16864,29 +17285,29 @@ iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VEC
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,44,0.0017,1014000,5070,5070
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,48,0.0018,1110000,5550,5550
+200,32,48,0.0017,1110000,5550,5550
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,52,0.0018,1206000,6030,6030
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,56,0.0020,1302000,6510,6510
+200,32,56,0.0019,1302000,6510,6510
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,60,0.0020,1398000,6990,6990
+200,32,60,0.0019,1398000,6990,6990
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,64,0.0021,1494000,7470,7470
+200,32,64,0.0020,1494000,7470,7470
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,68,0.0022,1590000,7950,7950
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,72,0.0022,1686000,8430,8430
+200,32,72,0.0021,1686000,8430,8430
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,76,0.0022,1782000,8910,8910
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,80,0.0023,1878000,9390,9390
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,84,0.0024,1974000,9870,9870
+200,32,84,0.0025,1974000,9870,9870
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,88,0.0024,2070000,10350,10350
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,92,0.0025,2166000,10830,10830
+200,32,92,0.0026,2166000,10830,10830
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,96,0.0025,2262000,11310,11310
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
@@ -16894,13 +17315,13 @@ iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VEC
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,104,0.0027,2454000,12270,12270
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,108,0.0028,2550000,12750,12750
+200,32,108,0.0027,2550000,12750,12750
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,112,0.0028,2646000,13230,13230
+200,32,112,0.0029,2646000,13230,13230
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,116,0.0029,2742000,13710,13710
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,120,0.0032,2838000,14190,14190
+200,32,120,0.0029,2838000,14190,14190
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,124,0.0030,2934000,14670,14670
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
@@ -16910,15 +17331,15 @@ iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VEC
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,136,0.0032,3222000,16110,16110
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,140,0.0033,3318000,16590,16590
+200,32,140,0.0032,3318000,16590,16590
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,144,0.0033,3414000,17070,17070
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,148,0.0034,3510000,17550,17550
+200,32,148,0.0036,3510000,17550,17550
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,152,0.0034,3606000,18030,18030
+200,32,152,0.0035,3606000,18030,18030
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,156,0.0036,3702000,18510,18510
+200,32,156,0.0035,3702000,18510,18510
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,160,0.0036,3798000,18990,18990
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
@@ -16928,13 +17349,13 @@ iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VEC
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,172,0.0038,4086000,20430,20430
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,176,0.0039,4182000,20910,20910
+200,32,176,0.0038,4182000,20910,20910
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,180,0.0039,4278000,21390,21390
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,184,0.0040,4374000,21870,21870
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,188,0.0040,4470000,22350,22350
+200,32,188,0.0041,4470000,22350,22350
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,192,0.0041,4566000,22830,22830
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
@@ -16944,25 +17365,25 @@ iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VEC
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,204,0.0043,4854000,24270,24270
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,208,0.0043,4950000,24750,24750
+200,32,208,0.0044,4950000,24750,24750
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,212,0.0044,5046000,25230,25230
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,216,0.0045,5142000,25710,25710
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,220,0.0047,5238000,26190,26190
+200,32,220,0.0046,5238000,26190,26190
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,224,0.0046,5334000,26670,26670
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,228,0.0047,5430000,27150,27150
+200,32,228,0.0048,5430000,27150,27150
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,232,0.0047,5526000,27630,27630
+200,32,232,0.0049,5526000,27630,27630
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,236,0.0048,5622000,28110,28110
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,240,0.0049,5718000,28590,28590
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,244,0.0050,5814000,29070,29070
+200,32,244,0.0049,5814000,29070,29070
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,248,0.0050,5910000,29550,29550
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
@@ -16972,19 +17393,19 @@ iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VEC
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,260,0.0052,6198000,30990,30990
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,264,0.0052,6294000,31470,31470
+200,32,264,0.0053,6294000,31470,31470
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,268,0.0053,6390000,31950,31950
+200,32,268,0.0054,6390000,31950,31950
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,272,0.0054,6486000,32430,32430
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,276,0.0058,6582000,32910,32910
+200,32,276,0.0054,6582000,32910,32910
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,280,0.0055,6678000,33390,33390
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,284,0.0056,6774000,33870,33870
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,288,0.0056,6870000,34350,34350
+200,32,288,0.0057,6870000,34350,34350
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,292,0.0057,6966000,34830,34830
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
@@ -16992,23 +17413,23 @@ iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VEC
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,300,0.0059,7158000,35790,35790
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,304,0.0060,7254000,36270,36270
+200,32,304,0.0059,7254000,36270,36270
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,308,0.0060,7350000,36750,36750
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,312,0.0061,7446000,37230,37230
+200,32,312,0.0062,7446000,37230,37230
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,316,0.0061,7542000,37710,37710
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,320,0.0062,7638000,38190,38190
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,324,0.0063,7734000,38670,38670
+200,32,324,0.0062,7734000,38670,38670
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,328,0.0064,7830000,39150,39150
+200,32,328,0.0063,7830000,39150,39150
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,332,0.0064,7926000,39630,39630
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,336,0.0064,8022000,40110,40110
+200,32,336,0.0065,8022000,40110,40110
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,340,0.0065,8118000,40590,40590
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
@@ -17016,21 +17437,21 @@ iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VEC
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,348,0.0066,8310000,41550,41550
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,352,0.0068,8406000,42030,42030
+200,32,352,0.0067,8406000,42030,42030
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,356,0.0069,8502000,42510,42510
+200,32,356,0.0068,8502000,42510,42510
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,360,0.0068,8598000,42990,42990
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,364,0.0069,8694000,43470,43470
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,368,0.0069,8790000,43950,43950
+200,32,368,0.0070,8790000,43950,43950
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,372,0.0070,8886000,44430,44430
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,376,0.0071,8982000,44910,44910
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,380,0.0071,9078000,45390,45390
+200,32,380,0.0072,9078000,45390,45390
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,384,0.0072,9174000,45870,45870
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
@@ -17048,23 +17469,23 @@ iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VEC
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,412,0.0077,9846000,49230,49230
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,416,0.0077,9942000,49710,49710
+200,32,416,0.0079,9942000,49710,49710
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,420,0.0078,10038000,50190,50190
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,424,0.0079,10134000,50670,50670
+200,32,424,0.0080,10134000,50670,50670
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,428,0.0079,10230000,51150,51150
+200,32,428,0.0080,10230000,51150,51150
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,432,0.0080,10326000,51630,51630
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,436,0.0080,10422000,52110,52110
+200,32,436,0.0083,10422000,52110,52110
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,440,0.0081,10518000,52590,52590
+200,32,440,0.0082,10518000,52590,52590
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,444,0.0082,10614000,53070,53070
+200,32,444,0.0083,10614000,53070,53070
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,448,0.0082,10710000,53550,53550
+200,32,448,0.0083,10710000,53550,53550
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,452,0.0083,10806000,54030,54030
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
@@ -17076,284 +17497,284 @@ iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VEC
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,468,0.0086,11190000,55950,55950
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,472,0.0088,11286000,56430,56430
+200,32,472,0.0087,11286000,56430,56430
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,476,0.0089,11382000,56910,56910
+200,32,476,0.0087,11382000,56910,56910
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,480,0.0088,11478000,57390,57390
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,484,0.0088,11574000,57870,57870
+200,32,484,0.0089,11574000,57870,57870
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,488,0.0089,11670000,58350,58350
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,492,0.0090,11766000,58830,58830
+200,32,492,0.0091,11766000,58830,58830
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,496,0.0090,11862000,59310,59310
+200,32,496,0.0091,11862000,59310,59310
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,500,0.0091,11958000,59790,59790
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
 200,32,504,0.0092,12054000,60270,60270
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,508,0.0094,12150000,60750,60750
+200,32,508,0.0093,12150000,60750,60750
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,512,0.0092,12246000,61230,61230
+200,32,512,0.0094,12246000,61230,61230
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,516,0.0093,12342000,61710,61710
+200,32,516,0.0096,12342000,61710,61710
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,520,0.0093,12438000,62190,62190
+200,32,520,0.0096,12438000,62190,62190
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,524,0.0094,12534000,62670,62670
+200,32,524,0.0095,12534000,62670,62670
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,528,0.0094,12630000,63150,63150
+200,32,528,0.0098,12630000,63150,63150
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,532,0.0095,12726000,63630,63630
+200,32,532,0.0097,12726000,63630,63630
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,536,0.0096,12822000,64110,64110
+200,32,536,0.0097,12822000,64110,64110
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,540,0.0100,12918000,64590,64590
+200,32,540,0.0098,12918000,64590,64590
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,544,0.0097,13014000,65070,65070
+200,32,544,0.0100,13014000,65070,65070
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,548,0.0098,13110000,65550,65550
+200,32,548,0.0102,13110000,65550,65550
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,552,0.0099,13206000,66030,66030
+200,32,552,0.0102,13206000,66030,66030
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,556,0.0100,13302000,66510,66510
+200,32,556,0.0101,13302000,66510,66510
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,560,0.0101,13398000,66990,66990
+200,32,560,0.0103,13398000,66990,66990
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,564,0.0102,13494000,67470,67470
+200,32,564,0.0103,13494000,67470,67470
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,568,0.0103,13590000,67950,67950
+200,32,568,0.0104,13590000,67950,67950
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,572,0.0103,13686000,68430,68430
+200,32,572,0.0105,13686000,68430,68430
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,576,0.0103,13782000,68910,68910
+200,32,576,0.0105,13782000,68910,68910
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,580,0.0105,13878000,69390,69390
+200,32,580,0.0107,13878000,69390,69390
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,584,0.0105,13974000,69870,69870
+200,32,584,0.0108,13974000,69870,69870
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,588,0.0106,14070000,70350,70350
+200,32,588,0.0107,14070000,70350,70350
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,592,0.0106,14166000,70830,70830
+200,32,592,0.0108,14166000,70830,70830
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,596,0.0106,14262000,71310,71310
+200,32,596,0.0109,14262000,71310,71310
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,600,0.0108,14358000,71790,71790
+200,32,600,0.0110,14358000,71790,71790
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,604,0.0109,14454000,72270,72270
+200,32,604,0.0110,14454000,72270,72270
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,608,0.0109,14550000,72750,72750
+200,32,608,0.0111,14550000,72750,72750
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,612,0.0109,14646000,73230,73230
+200,32,612,0.0114,14646000,73230,73230
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,616,0.0111,14742000,73710,73710
+200,32,616,0.0112,14742000,73710,73710
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,620,0.0111,14838000,74190,74190
+200,32,620,0.0113,14838000,74190,74190
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,624,0.0112,14934000,74670,74670
+200,32,624,0.0114,14934000,74670,74670
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,628,0.0112,15030000,75150,75150
+200,32,628,0.0116,15030000,75150,75150
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,632,0.0112,15126000,75630,75630
+200,32,632,0.0115,15126000,75630,75630
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,636,0.0114,15222000,76110,76110
+200,32,636,0.0117,15222000,76110,76110
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,640,0.0114,15318000,76590,76590
+200,32,640,0.0116,15318000,76590,76590
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,644,0.0114,15414000,77070,77070
+200,32,644,0.0118,15414000,77070,77070
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,648,0.0115,15510000,77550,77550
+200,32,648,0.0117,15510000,77550,77550
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,652,0.0117,15606000,78030,78030
+200,32,652,0.0119,15606000,78030,78030
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,656,0.0117,15702000,78510,78510
+200,32,656,0.0119,15702000,78510,78510
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,660,0.0117,15798000,78990,78990
+200,32,660,0.0120,15798000,78990,78990
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,664,0.0118,15894000,79470,79470
+200,32,664,0.0120,15894000,79470,79470
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,668,0.0120,15990000,79950,79950
+200,32,668,0.0121,15990000,79950,79950
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,672,0.0120,16086000,80430,80430
+200,32,672,0.0121,16086000,80430,80430
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,676,0.0121,16182000,80910,80910
+200,32,676,0.0123,16182000,80910,80910
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,680,0.0120,16278000,81390,81390
+200,32,680,0.0122,16278000,81390,81390
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,684,0.0121,16374000,81870,81870
+200,32,684,0.0125,16374000,81870,81870
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,688,0.0122,16470000,82350,82350
+200,32,688,0.0124,16470000,82350,82350
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,692,0.0122,16566000,82830,82830
+200,32,692,0.0126,16566000,82830,82830
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,696,0.0124,16662000,83310,83310
+200,32,696,0.0125,16662000,83310,83310
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,700,0.0124,16758000,83790,83790
+200,32,700,0.0127,16758000,83790,83790
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,704,0.0124,16854000,84270,84270
+200,32,704,0.0128,16854000,84270,84270
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,708,0.0125,16950000,84750,84750
+200,32,708,0.0128,16950000,84750,84750
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,712,0.0125,17046000,85230,85230
+200,32,712,0.0128,17046000,85230,85230
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,716,0.0126,17142000,85710,85710
+200,32,716,0.0128,17142000,85710,85710
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,720,0.0126,17238000,86190,86190
+200,32,720,0.0129,17238000,86190,86190
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,724,0.0127,17334000,86670,86670
+200,32,724,0.0130,17334000,86670,86670
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,728,0.0128,17430000,87150,87150
+200,32,728,0.0130,17430000,87150,87150
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,732,0.0130,17526000,87630,87630
+200,32,732,0.0132,17526000,87630,87630
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,736,0.0129,17622000,88110,88110
+200,32,736,0.0132,17622000,88110,88110
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,740,0.0129,17718000,88590,88590
+200,32,740,0.0133,17718000,88590,88590
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,744,0.0130,17814000,89070,89070
+200,32,744,0.0133,17814000,89070,89070
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,748,0.0131,17910000,89550,89550
+200,32,748,0.0134,17910000,89550,89550
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,752,0.0132,18006000,90030,90030
+200,32,752,0.0134,18006000,90030,90030
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,756,0.0132,18102000,90510,90510
+200,32,756,0.0136,18102000,90510,90510
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,760,0.0133,18198000,90990,90990
+200,32,760,0.0136,18198000,90990,90990
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,764,0.0134,18294000,91470,91470
+200,32,764,0.0136,18294000,91470,91470
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,768,0.0135,18390000,91950,91950
+200,32,768,0.0137,18390000,91950,91950
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,772,0.0136,18486000,92430,92430
+200,32,772,0.0139,18486000,92430,92430
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,776,0.0136,18582000,92910,92910
+200,32,776,0.0139,18582000,92910,92910
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,780,0.0137,18678000,93390,93390
+200,32,780,0.0139,18678000,93390,93390
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,784,0.0137,18774000,93870,93870
+200,32,784,0.0140,18774000,93870,93870
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,788,0.0138,18870000,94350,94350
+200,32,788,0.0140,18870000,94350,94350
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,792,0.0138,18966000,94830,94830
+200,32,792,0.0142,18966000,94830,94830
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,796,0.0140,19062000,95310,95310
+200,32,796,0.0142,19062000,95310,95310
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,800,0.0140,19158000,95790,95790
+200,32,800,0.0144,19158000,95790,95790
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,804,0.0140,19254000,96270,96270
+200,32,804,0.0143,19254000,96270,96270
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,808,0.0141,19350000,96750,96750
+200,32,808,0.0144,19350000,96750,96750
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,812,0.0142,19446000,97230,97230
+200,32,812,0.0145,19446000,97230,97230
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,816,0.0143,19542000,97710,97710
+200,32,816,0.0145,19542000,97710,97710
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,820,0.0143,19638000,98190,98190
+200,32,820,0.0146,19638000,98190,98190
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,824,0.0144,19734000,98670,98670
+200,32,824,0.0147,19734000,98670,98670
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,828,0.0146,19830000,99150,99150
+200,32,828,0.0147,19830000,99150,99150
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,832,0.0146,19926000,99630,99630
+200,32,832,0.0148,19926000,99630,99630
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,836,0.0146,20022000,100110,100110
+200,32,836,0.0151,20022000,100110,100110
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,840,0.0147,20118000,100590,100590
+200,32,840,0.0150,20118000,100590,100590
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,844,0.0147,20214000,101070,101070
+200,32,844,0.0150,20214000,101070,101070
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,848,0.0148,20310000,101550,101550
+200,32,848,0.0151,20310000,101550,101550
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,852,0.0148,20406000,102030,102030
+200,32,852,0.0152,20406000,102030,102030
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,856,0.0150,20502000,102510,102510
+200,32,856,0.0152,20502000,102510,102510
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,860,0.0150,20598000,102990,102990
+200,32,860,0.0152,20598000,102990,102990
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,864,0.0151,20694000,103470,103470
+200,32,864,0.0153,20694000,103470,103470
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,868,0.0151,20790000,103950,103950
+200,32,868,0.0154,20790000,103950,103950
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,872,0.0152,20886000,104430,104430
+200,32,872,0.0155,20886000,104430,104430
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,876,0.0153,20982000,104910,104910
+200,32,876,0.0155,20982000,104910,104910
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,880,0.0154,21078000,105390,105390
+200,32,880,0.0157,21078000,105390,105390
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,884,0.0154,21174000,105870,105870
+200,32,884,0.0157,21174000,105870,105870
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,888,0.0154,21270000,106350,106350
+200,32,888,0.0158,21270000,106350,106350
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,892,0.0155,21366000,106830,106830
+200,32,892,0.0158,21366000,106830,106830
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,896,0.0157,21462000,107310,107310
+200,32,896,0.0159,21462000,107310,107310
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,900,0.0156,21558000,107790,107790
+200,32,900,0.0161,21558000,107790,107790
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,904,0.0158,21654000,108270,108270
+200,32,904,0.0162,21654000,108270,108270
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,908,0.0159,21750000,108750,108750
+200,32,908,0.0161,21750000,108750,108750
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,912,0.0159,21846000,109230,109230
+200,32,912,0.0163,21846000,109230,109230
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,916,0.0161,21942000,109710,109710
+200,32,916,0.0164,21942000,109710,109710
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,920,0.0161,22038000,110190,110190
+200,32,920,0.0165,22038000,110190,110190
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,924,0.0162,22134000,110670,110670
+200,32,924,0.0164,22134000,110670,110670
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,928,0.0164,22230000,111150,111150
+200,32,928,0.0166,22230000,111150,111150
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,932,0.0164,22326000,111630,111630
+200,32,932,0.0166,22326000,111630,111630
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,936,0.0164,22422000,112110,112110
+200,32,936,0.0167,22422000,112110,112110
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,940,0.0164,22518000,112590,112590
+200,32,940,0.0168,22518000,112590,112590
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,944,0.0165,22614000,113070,113070
+200,32,944,0.0168,22614000,113070,113070
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,948,0.0167,22710000,113550,113550
+200,32,948,0.0169,22710000,113550,113550
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,952,0.0168,22806000,114030,114030
+200,32,952,0.0170,22806000,114030,114030
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,956,0.0168,22902000,114510,114510
+200,32,956,0.0170,22902000,114510,114510
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,960,0.0168,22998000,114990,114990
+200,32,960,0.0171,22998000,114990,114990
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,964,0.0174,23094000,115470,115470
+200,32,964,0.0176,23094000,115470,115470
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,968,0.0172,23190000,115950,115950
+200,32,968,0.0176,23190000,115950,115950
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,972,0.0173,23286000,116430,116430
+200,32,972,0.0177,23286000,116430,116430
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,976,0.0172,23382000,116910,116910
+200,32,976,0.0177,23382000,116910,116910
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,980,0.0174,23478000,117390,117390
+200,32,980,0.0178,23478000,117390,117390
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,984,0.0174,23574000,117870,117870
+200,32,984,0.0178,23574000,117870,117870
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,988,0.0176,23670000,118350,118350
+200,32,988,0.0179,23670000,118350,118350
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,992,0.0176,23766000,118830,118830
+200,32,992,0.0180,23766000,118830,118830
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,996,0.0179,23862000,119310,119310
+200,32,996,0.0181,23862000,119310,119310
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,1000,0.0177,23958000,119790,119790
+200,32,1000,0.0182,23958000,119790,119790
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,1004,0.0178,24054000,120270,120270
+200,32,1004,0.0182,24054000,120270,120270
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,1008,0.0178,24150000,120750,120750
+200,32,1008,0.0182,24150000,120750,120750
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,1012,0.0180,24246000,121230,121230
+200,32,1012,0.0184,24246000,121230,121230
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,1016,0.0180,24342000,121710,121710
+200,32,1016,0.0185,24342000,121710,121710
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,1020,0.0181,24438000,122190,122190
+200,32,1020,0.0184,24438000,122190,122190
 iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)
-200,32,1024,0.0178,24534000,122670,122670
-mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vflop.bin.csv .
+200,32,1024,0.0182,24534000,122670,122670
+mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.vflop.bin.csv .
 </pre>
 </div>
 </div>
@@ -17364,35 +17785,153 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vflop.bin.csv .
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[47]:</div>
+<div class="prompt input_prompt">In&nbsp;[39]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_sflop</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">&quot;poisson2d.sflop.bin.csv&quot;</span><span class="p">,</span> <span class="n">skiprows</span><span class="o">=</span><span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
 <span class="n">df_vflop</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">&quot;poisson2d.vflop.bin.csv&quot;</span><span class="p">,</span> <span class="n">skiprows</span><span class="o">=</span><span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
 <span class="n">df_flop</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">df_sflop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">),</span> <span class="n">df_vflop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[[</span><span class="s1">&#39;PM_VECTOR_FLOP_CMPL (total)&#39;</span><span class="p">,</span> <span class="s1">&#39;PM_VECTOR_FLOP_CMPL (min)&#39;</span><span class="p">,</span> <span class="s1">&#39; PM_VECTOR_FLOP_CMPL (max)&#39;</span><span class="p">]]],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span>
+<span class="n">df_flop</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
 </pre></div>
 
     </div>
 </div>
 </div>
 
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area">
+
+    <div class="prompt output_prompt">Out[39]:</div>
+
+
+
+<div class="output_html rendered_html output_subarea output_execute_result">
+<div>
+<style scoped>
+    .dataframe tbody tr th:only-of-type {
+        vertical-align: middle;
+    }
+
+    .dataframe tbody tr th {
+        vertical-align: top;
+    }
+
+    .dataframe thead th {
+        text-align: right;
+    }
+</style>
+<table border="1" class="dataframe">
+  <thead>
+    <tr style="text-align: right;">
+      <th></th>
+      <th>nx</th>
+      <th>iter</th>
+      <th>ny</th>
+      <th>Runtime</th>
+      <th>PM_SCALAR_FLOP_CMPL (total)</th>
+      <th>PM_SCALAR_FLOP_CMPL (min)</th>
+      <th>PM_SCALAR_FLOP_CMPL (max)</th>
+      <th>PM_VECTOR_FLOP_CMPL (total)</th>
+      <th>PM_VECTOR_FLOP_CMPL (min)</th>
+      <th>PM_VECTOR_FLOP_CMPL (max)</th>
+    </tr>
+  </thead>
+  <tbody>
+    <tr>
+      <th>0</th>
+      <td>4</td>
+      <td>200</td>
+      <td>32</td>
+      <td>0.0010</td>
+      <td>96000</td>
+      <td>480</td>
+      <td>480</td>
+      <td>0</td>
+      <td>0</td>
+      <td>0</td>
+    </tr>
+    <tr>
+      <th>1</th>
+      <td>8</td>
+      <td>200</td>
+      <td>32</td>
+      <td>0.0011</td>
+      <td>0</td>
+      <td>0</td>
+      <td>0</td>
+      <td>150000</td>
+      <td>750</td>
+      <td>750</td>
+    </tr>
+    <tr>
+      <th>2</th>
+      <td>12</td>
+      <td>200</td>
+      <td>32</td>
+      <td>0.0012</td>
+      <td>0</td>
+      <td>0</td>
+      <td>0</td>
+      <td>246000</td>
+      <td>1230</td>
+      <td>1230</td>
+    </tr>
+    <tr>
+      <th>3</th>
+      <td>16</td>
+      <td>200</td>
+      <td>32</td>
+      <td>0.0012</td>
+      <td>0</td>
+      <td>0</td>
+      <td>0</td>
+      <td>342000</td>
+      <td>1710</td>
+      <td>1710</td>
+    </tr>
+    <tr>
+      <th>4</th>
+      <td>20</td>
+      <td>200</td>
+      <td>32</td>
+      <td>0.0013</td>
+      <td>0</td>
+      <td>0</td>
+      <td>0</td>
+      <td>438000</td>
+      <td>2190</td>
+      <td>2190</td>
+    </tr>
+  </tbody>
+</table>
+</div>
+</div>
+
+</div>
+
+</div>
+</div>
+
 </div>
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<p>The name of the vector counter is a bit misleading; not floating point operations are measured but floating point instructions. To get <em>real</em> floating point operations, each value needs to be multiplied by the vector width (2). We can plot the values afterwards (non-interactive: <code>make graph_task4</code>).</p>
+<p>Again, the name of the vector counter is a bit misleading; not floating point operations are measured but floating point instructions. To get <em>real</em> floating point operations, each value needs to be multiplied by the vector width (2). We can plot the values afterwards (non-interactive: <code>make graph_task4</code>).</p>
 
 </div>
 </div>
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[49]:</div>
+<div class="prompt input_prompt">In&nbsp;[40]:</div>
 <div class="inner_cell">
     <div class="input_area">
-<div class=" highlight hl-ipython3"><pre><span></span><span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df_flop</span><span class="p">,</span> <span class="s2">&quot;PM_SCALAR_FLOP_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Scalar FlOps / Loop Iteration&quot;</span><span class="p">)</span>
-<span class="n">common</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">df_flop</span><span class="p">,</span> <span class="s2">&quot;PM_VECTOR_FLOP_CMPL (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Vector Instructions / Loop Iteration&quot;</span><span class="p">)</span>
-<span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;Vector FlOps / Loop Iteration&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;Vector Instructions / Loop Iteration&quot;</span><span class="p">]</span> <span class="o">*</span> <span class="mi">2</span>
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;nx&quot;</span><span class="p">]</span> <span class="o">*</span> <span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;ny&quot;</span><span class="p">]</span>
+<span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;Vector FlOps (min)&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;PM_VECTOR_FLOP_CMPL (min)&quot;</span><span class="p">]</span> <span class="o">*</span> <span class="mi">2</span>
+<span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;Scalar FlOps (min)&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df_flop</span><span class="p">[</span><span class="s2">&quot;PM_SCALAR_FLOP_CMPL (min)&quot;</span><span class="p">]</span>
 </pre></div>
 
     </div>
@@ -17402,10 +17941,10 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vflop.bin.csv .
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[50]:</div>
+<div class="prompt input_prompt">In&nbsp;[41]:</div>
 <div class="inner_cell">
     <div class="input_area">
-<div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_flop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[[</span><span class="s2">&quot;Scalar FlOps / Loop Iteration&quot;</span><span class="p">,</span> <span class="s2">&quot;Vector FlOps / Loop Iteration&quot;</span><span class="p">]]</span><span class="o">.</span><span class="n">plot</span><span class="p">();</span>
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_flop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[[</span><span class="s2">&quot;Scalar FlOps (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Vector FlOps (min)&quot;</span><span class="p">]]</span><span class="o">.</span><span class="n">plot</span><span class="p">();</span>
 </pre></div>
 
     </div>
@@ -17424,7 +17963,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vflop.bin.csv .
 
 
 <div class="output_png output_subarea ">
-<img src="
+<img src="
 "
 >
 </div>
@@ -17434,6 +17973,52 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vflop.bin.csv .
 </div>
 </div>
 
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[43]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">_fit</span><span class="p">,</span> <span class="n">_cov</span> <span class="o">=</span> <span class="n">common</span><span class="o">.</span><span class="n">print_and_return_fit</span><span class="p">(</span>
+    <span class="p">[</span><span class="s2">&quot;Scalar FlOps (min)&quot;</span><span class="p">,</span> <span class="s2">&quot;Vector FlOps (min)&quot;</span><span class="p">],</span> 
+    <span class="n">df_flop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">),</span> 
+    <span class="n">linear_function</span>
+<span class="p">)</span>
+<span class="n">fit_parameters</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_parameters</span><span class="p">,</span> <span class="o">**</span><span class="n">_fit</span><span class="p">}</span>
+<span class="n">fit_covariance</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">fit_covariance</span><span class="p">,</span> <span class="o">**</span><span class="n">_cov</span><span class="p">}</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area">
+
+    <div class="prompt"></div>
+
+
+<div class="output_subarea output_stream output_stdout output_text">
+<pre>Counter Scalar FlOps (min) is proportional to the grid points (nx*ny) by a factor of -0.0003 (± 0.0002)
+Counter Vector FlOps (min) is proportional to the grid points (nx*ny) by a factor of  7.5004 (± 0.0002)
+</pre>
+</div>
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Interesting! We seem to be using the vector registers of our system very well. Basically all operations are vector operations!</p>
+
+</div>
+</div>
 </div>
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
@@ -17449,13 +18034,13 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vflop.bin.csv .
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[66]:</div>
+<div class="prompt input_prompt">In&nbsp;[56]:</div>
 <div class="inner_cell">
     <div class="input_area">
-<div class=" highlight hl-ipython3"><pre><span></span><span class="n">I_flop_scalar</span> <span class="o">=</span> <span class="n">df_flop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Scalar FlOps / Loop Iteration&quot;</span><span class="p">]</span>
-<span class="n">I_flop_vector</span> <span class="o">=</span> <span class="n">df_flop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;nx&quot;</span><span class="p">)[</span><span class="s2">&quot;Vector FlOps / Loop Iteration&quot;</span><span class="p">]</span>
-<span class="n">I_mem_load</span>    <span class="o">=</span> <span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Loads / Loop Iteration&quot;</span><span class="p">]</span>
-<span class="n">I_mem_store</span>   <span class="o">=</span> <span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Stores / Loop Iteration&quot;</span><span class="p">]</span>
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">I_flop_scalar</span> <span class="o">=</span> <span class="n">df_flop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;Scalar FlOps (min)&quot;</span><span class="p">]</span>
+<span class="n">I_flop_vector</span> <span class="o">=</span> <span class="n">df_flop</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s2">&quot;Grid Points&quot;</span><span class="p">)[</span><span class="s2">&quot;Vector FlOps (min)&quot;</span><span class="p">]</span>
+<span class="n">I_mem_load</span>    <span class="o">=</span> <span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Loads&quot;</span><span class="p">]</span>
+<span class="n">I_mem_store</span>   <span class="o">=</span> <span class="n">df_byte</span><span class="p">[</span><span class="s2">&quot;Stores&quot;</span><span class="p">]</span>
 </pre></div>
 
     </div>
@@ -17465,7 +18050,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vflop.bin.csv .
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[75]:</div>
+<div class="prompt input_prompt">In&nbsp;[57]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_ai</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">()</span>
@@ -17490,7 +18075,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vflop.bin.csv .
 
 
 <div class="output_png output_subarea ">
-<img src="
+<img src="
 "
 >
 </div>
@@ -17514,6 +18099,7 @@ mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vflop.bin.csv .
 <div class="text_cell_render border-box-sizing rendered_html">
 <h2 id="Task-E2:-Measuring-a-Larger-Range">Task E2: Measuring a Larger Range<a class="anchor-link" href="#Task-E2:-Measuring-a-Larger-Range">&#182;</a></h2><p><a name="taske2"></a></p>
 <p>If you still still have time, you might venture into your own benchmarking adventure.</p>
+<p>Maybe you noticed already, for instance in Task 2 C: At the very right to very large numbers of grid points, the behaviour of the graph changed. Something is happening there!</p>
 <p><strong>TASK</strong>: Revisit the counters measured above for a larger range of <code>nx</code>. Right now, we only studied <code>nx</code> until 1000. New effects appear above that value – partly only well above, though ($nx &gt; 15000$).</p>
 <p>You're on your own here. Edit the <code>bench.sh</code> script to change the range and the stepping increments.</p>
 <p><strong>Good luck!</strong></p>
diff --git a/2-Performance_Counters/Handson/Solutions/Hands-On-Performance-Counters.ipynb b/2-Performance_Counters/Handson/Solutions/Hands-On-Performance-Counters.ipynb
index ae40372..91f993b 100644
--- a/2-Performance_Counters/Handson/Solutions/Hands-On-Performance-Counters.ipynb
+++ b/2-Performance_Counters/Handson/Solutions/Hands-On-Performance-Counters.ipynb
@@ -1,4402 +1 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Hands-On: Performance Counters\n",
-    "\n",
-    "This Notebook is part of the exercises for the SC18 Tutorial »Application Porting and Optimization on GPU-accelerated POWER Architectures«. It is to be run on a POWER9 machine; in the tutorial: on Ascent, the POWER9 training cluster of Oak Ridge National Lab.\n",
-    "\n",
-    "This Notebook can be run interactively on Ascent. If this capability is unavailable to you, use it as a description for executing the tasks on Ascent via a shell access. During data evaluation, the Notebook mentions the corresponding commands to execute in case you are not able to run the Notebook interactively directly on Ascent.\n",
-    "\n",
-    "## Table of Contents\n",
-    "<a name=\"toc\"></a>\n",
-    "\n",
-    "* [Task 1: Measuring Cycles and Instructions](#task1)\n",
-    "* [Task 2: Measuring Loads and Stores](#task2)\n",
-    "  - [A: Loads and Stores](#task2-a)\n",
-    "  - [B: More Loads and Stores](#task2-b)\n",
-    "  - [C: Bandwidth](#task2-c)\n",
-    "* [Task E1: Measuring FLOP](#taske1)\n",
-    "* [Task E2: Measuring a Greater Range](#taske2)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Task 1: Measuring Cycles and Instructions\n",
-    "<a name=\"task1\"></a>\n",
-    "\n",
-    "Throughout this exercise, the core loop of the Jacobi algorithm is instrumented and analyzed. The part in question is\n",
-    "\n",
-    "```c\n",
-    "for (int iy = iy_start; iy < iy_end; iy++)\n",
-    "{\n",
-    "    for( int ix = ix_start; ix < ix_end; ix++ )\n",
-    "    {\n",
-    "        Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - (A[ iy   *nx+ix+1] + A[ iy   *nx+ix-1]\n",
-    "                                                +  A[(iy-1)*nx+ix  ] + A[(iy+1)*nx+ix  ]));\n",
-    "        error = fmaxr( error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));\n",
-    "    }\n",
-    "}\n",
-    "```\n",
-    "\n",
-    "After `PAPI_add_named_event()` is used to add named PMU events outside of the relaxation iteration, `PAPI_start()`\n",
-    "and `PAPI_stop()` can be used to count how often a PMU event is incremented.\n",
-    "\n",
-    "For the first task, we will measure quantities often used to characterize an application, cycles and instructions.\n",
-    "\n",
-    "**TASK**: Please measure counters for completed instructions and run cycles. See the TODOs in [`poisson2d.ins_cyc.c`](/edit/Tasks/poisson2d.ins_cyc.c). Either edit with Jupyter capabilities by clicking on the link of the file or use a dedicated editor (`vim` is available). The names of the counters to be implemented are `PM_INST_CMPL` and `PM_RUN_CYC`.\n",
-    "\n",
-    "After changing the source code, compile it with `make task1` or by executing the following cell (we need to change directories first, though).\n",
-    "\n",
-    "[Back to top](#toc)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "/autofs/nccsopen-svm1_home/aherten/OpenPOWER-SC18/2-PAPI/Compiling/Solutions\n"
-     ]
-    }
-   ],
-   "source": [
-    "%cd Tasks/\n",
-    "# Use `%cd Solutions` to look at the solutions for each task"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 20,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "gcc -DUSE_DOUBLE -Ofast -std=c99 -lm -lpapi  poisson2d.ins_cyc.c -o poisson2d.ins_cyc.bin\r\n"
-     ]
-    }
-   ],
-   "source": [
-    "!make task1"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Make sure your program is measuring correctly, by invoking it, for instance with these arguments: `./poisson2d.ins_cyc.bin 100 64 32` – see the next cell. The `100` specifies the number of iterations to perform, `64` and `32` are the size of the grid in y and x direction, respectively."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 25,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\r\n",
-      "100,64,32,0.0011,3324000,33229,34329,1902422,18803,27821\r\n"
-     ]
-    }
-   ],
-   "source": [
-    "!./poisson2d.ins_cyc.bin 100 64 32\n",
-    "# alternatively call !make run_task1"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "For the following runs, we are going to use Ascent's compute backend nodes which are not shared amongst users and also have six GPUs available. We use the available batch scheduler *IBM Spectrum LSF* for this. For convenience, a call to the batch submission system is stored in the environment variable `$SC18_SUBMIT_CMD`. You are welcome to adapt it once you get more familiar with the system.\n",
-    "\n",
-    "For now, we want to run our first benchmarking run and measure cycles and instructions for different data sizes, as a function of `nx`. The Makefile holds a target for this, call it with `make bench_task1`:"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 80,
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "gcc -DUSE_DOUBLE -Ofast -std=c99 -lm -lpapi  poisson2d.ins_cyc.c -o poisson2d.ins_cyc.bin\n",
-      "bsub -W 60 -nnodes 1 -Is -P GEN110 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.ins_cyc.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv\n",
-      "Job <4318> is submitted to default queue <batch>.\n",
-      "<<Waiting for dispatch ...>>\n",
-      "<<Starting on login1>>\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,4,0.0012,548153,2735,3888,266504,1243,4753\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,8,0.0014,1082153,5405,6558,668070,3227,6573\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,12,0.0014,1442153,7205,8358,872094,4181,12974\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,16,0.0015,1802153,9005,10158,1074585,5230,7975\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,20,0.0015,2162153,10805,11958,1281118,6236,14107\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,24,0.0016,2522153,12605,13758,1479347,7222,10037\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,28,0.0019,2882153,14405,15558,1682827,8251,11219\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,32,0.0017,3242153,16205,17358,1871170,9210,12109\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,36,0.0018,3602153,18005,19158,2075730,10193,13063\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,40,0.0019,3962153,19805,20958,2272736,11258,14491\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,44,0.0019,4322153,21605,22758,2491982,12249,17554\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,48,0.0020,4682153,23405,24558,2692600,13292,16003\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,52,0.0020,5042153,25205,26358,2878730,14277,17055\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,56,0.0021,5402153,27005,28158,3084915,15295,18583\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,60,0.0022,5762153,28805,29958,3291836,16330,19233\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,64,0.0023,6122153,30605,31758,3622134,17946,20887\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,68,0.0024,6482153,32405,33558,3930512,19200,22297\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,72,0.0027,6842153,34205,35358,4270649,20402,22797\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,76,0.0025,7202153,36005,37158,4209408,20894,24035\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,80,0.0025,7562153,37805,38958,4410712,21911,24986\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,84,0.0026,7922153,39605,40758,4631259,23020,25649\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,88,0.0027,8282153,41405,42558,4814218,23914,26743\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,92,0.0027,8642153,43205,44358,5039020,24944,37612\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,96,0.0030,9002153,45005,46158,5247046,26072,29012\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,100,0.0029,9362153,46805,47958,5426721,26963,29831\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,104,0.0029,9722153,48605,49758,5619647,27963,31679\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,108,0.0030,10082153,50405,51558,5828776,28956,31626\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,112,0.0031,10442153,52205,53358,6033005,30029,32674\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,116,0.0031,10802153,54005,55158,6244763,30994,35257\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,120,0.0032,11162153,55805,56958,6425499,31972,34572\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,124,0.0033,11522153,57605,58758,6654149,33094,35931\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,128,0.0033,11882153,59405,60558,6851733,34090,36755\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,132,0.0034,12242153,61205,62358,7052529,35058,39834\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,136,0.0035,12602153,63005,64158,7241645,36039,38957\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,140,0.0035,12962153,64805,65958,7438548,37024,39702\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,144,0.0036,13322153,66605,67758,7649807,38039,46041\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,148,0.0037,13682153,68405,69558,7837686,39006,41671\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,152,0.0037,14042153,70205,71358,8039582,40031,42707\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,156,0.0038,14402153,72005,73158,8272212,41195,43645\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,160,0.0040,14762153,73805,74958,8471858,42200,44594\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,164,0.0039,15122153,75605,76758,8657085,43103,45699\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,168,0.0039,15482153,77405,78558,8856462,44110,46863\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,172,0.0040,15842153,79205,80358,9050337,45084,47600\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,176,0.0041,16202153,81005,82158,9267755,46142,55546\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,180,0.0042,16562153,82805,83958,9452041,47058,49763\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,184,0.0042,16922153,84605,85758,9655929,48043,50875\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,188,0.0043,17282153,86405,87558,9906002,49331,52491\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,192,0.0043,17642153,88205,89358,10089481,50268,52937\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,196,0.0044,18002153,90005,91158,10292606,51256,54507\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,200,0.0045,18362153,91805,92958,10466174,52144,54851\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,204,0.0045,18722153,93605,94758,10710242,53145,77999\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,208,0.0046,19082153,95405,96558,10872705,54177,57081\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,212,0.0047,19442153,97205,98358,11284063,56244,58937\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,216,0.0047,19802153,99005,100158,11267668,56162,58869\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,220,0.0048,20162153,100805,101958,11510801,57350,60362\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,224,0.0051,20522153,102605,103758,11730908,58406,61013\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,228,0.0050,20882153,104405,105558,11891323,59260,62051\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,232,0.0050,21242153,106205,107358,12083458,60220,63113\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,236,0.0050,21602153,108005,109158,12290078,61234,68599\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,240,0.0051,21962153,109805,110958,12547828,62267,88616\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,244,0.0052,22322153,111605,112758,12674066,63146,66333\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,248,0.0052,22682153,113405,114558,12882346,64155,67081\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,252,0.0053,23042153,115205,116358,13140221,65490,68231\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,256,0.0054,23402153,117005,118158,13331460,66431,69187\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,260,0.0054,23762153,118805,119958,13531478,67456,70141\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,264,0.0055,24122153,120605,121758,13710546,68246,81094\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,268,0.0055,24482153,122405,123558,13890638,69208,72412\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,272,0.0056,24842153,124205,125358,14130816,70366,88752\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,276,0.0057,25202153,126005,127158,14355067,71208,93990\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,280,0.0057,25562153,127805,128958,14513593,72251,85857\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,284,0.0059,25922153,129605,130758,14800806,73802,76775\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,288,0.0059,26282153,131405,132558,14959572,74579,77267\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,292,0.0059,26642153,133205,134358,15130033,75389,78361\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,296,0.0060,27002153,135005,136158,15314583,76370,79151\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,300,0.0061,27362153,136805,137958,15515700,77373,80055\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,304,0.0061,27722153,138605,139758,15739536,78395,81351\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,308,0.0062,28082153,140405,141558,15910915,79341,82085\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,312,0.0063,28442153,142205,143358,16119259,80297,83271\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,316,0.0063,28802153,144005,145158,16376727,81668,84481\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,320,0.0064,29162153,145805,146958,16575917,82685,85800\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,324,0.0065,29522153,147605,148758,16752101,83529,86861\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,328,0.0065,29882153,149405,150558,16931954,84456,87199\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,332,0.0066,30242153,151205,152358,17129562,85462,88022\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,336,0.0067,30602153,153005,154158,17522378,87337,90235\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,340,0.0067,30962153,154805,155958,17525540,87379,89947\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,344,0.0068,31322153,156605,157758,17811817,88413,169057\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,348,0.0069,31682153,158405,159558,17999372,89772,92601\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,352,0.0069,32042153,160205,161358,18204371,90776,101494\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,356,0.0070,32402153,162005,163158,18393456,91621,107055\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,360,0.0070,32762153,163805,164958,18567077,92476,114024\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,364,0.0072,33122153,165605,166758,18749614,93562,96291\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,368,0.0073,33482153,167405,168558,18957503,94465,97467\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,372,0.0072,33842153,169205,170358,19137907,95471,98421\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,376,0.0073,34202153,171005,172158,19350029,96457,99505\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,380,0.0075,34562153,172805,173958,19657158,97897,122483\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,384,0.0075,34922153,174605,175758,20019224,98872,199167\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,388,0.0075,35282153,176405,177558,19999785,99747,102911\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,392,0.0077,35642153,178205,179358,20188679,100586,121054\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,396,0.0076,36002153,180005,181158,20368637,101583,105060\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,400,0.0077,36362153,181805,182958,20628698,102607,152896\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,404,0.0078,36722153,183605,184758,20759711,103503,111551\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,408,0.0078,37082153,185405,186558,21008339,104552,136230\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,412,0.0080,37442153,187205,188358,21248565,105961,109252\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,416,0.0080,37802153,189005,190158,21446394,106998,110446\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,420,0.0081,38162153,190805,191958,21618503,107795,119989\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,424,0.0081,38522153,192605,193758,21778142,108604,112064\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,428,0.0081,38882153,194405,195558,21989784,109653,120306\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,432,0.0082,39242153,196205,197358,22191881,110730,113916\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,436,0.0083,39602153,198005,199158,22373426,111587,115657\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,440,0.0084,39962153,199805,200958,22596402,112638,130342\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,444,0.0084,40322153,201605,202758,22868323,114041,124888\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,448,0.0085,40682153,203405,204558,23084361,115132,128588\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,452,0.0086,41042153,205205,206358,23255449,115787,156348\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,456,0.0088,41402153,207005,208158,23400730,116742,119985\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,460,0.0087,41762153,208805,209958,23616057,117782,125672\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,464,0.0088,42122153,210605,211758,23845815,118769,150383\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,468,0.0089,42482153,212405,213558,23982677,119580,123029\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,472,0.0090,42842153,214205,215358,24183894,120688,124270\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,476,0.0090,43202153,216005,217158,24479273,122149,125974\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,480,0.0091,43562153,217805,218958,24768939,123125,164217\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,484,0.0092,43922153,219605,220758,24828983,123895,127390\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,488,0.0091,44282153,221405,222558,25011559,124768,128788\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,492,0.0092,44642153,223205,224358,25219550,125760,132732\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,496,0.0093,45002153,225005,226158,25447017,126853,140428\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,500,0.0093,45362153,226805,227958,25586059,127650,131094\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,504,0.0094,45722153,228605,229758,25796559,128739,131932\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,508,0.0095,46082153,230405,231558,26122261,130275,141242\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,512,0.0095,46442153,232205,233358,26303806,130890,135216\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,516,0.0096,46802153,234005,235158,26441241,131860,137807\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,520,0.0097,47162153,235805,236958,26620814,132726,144193\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,524,0.0097,47522153,237605,238758,26895547,133979,180810\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,528,0.0098,47882153,239405,240558,27103175,134594,195038\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,532,0.0099,48242153,241205,242358,27216804,135653,148537\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,536,0.0100,48602153,243005,244158,27609711,137157,225927\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,540,0.0101,48962153,244805,245958,27856165,138525,222412\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,544,0.0101,49322153,246605,247758,27949313,139206,146089\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,548,0.0102,49682153,248405,249558,28071639,140106,144061\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,552,0.0102,50042153,250205,251358,28221254,140771,147826\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,556,0.0103,50402153,252005,253158,28466442,141994,145849\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,560,0.0105,50762153,253805,254958,28785863,142904,194917\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,564,0.0105,51122153,255605,256758,28851831,143902,156411\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,568,0.0106,51482153,257405,258558,29223120,145608,162476\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,572,0.0108,51842153,259205,260358,29438332,146788,151895\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,576,0.0108,52202153,261005,262158,29557331,147210,151262\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,580,0.0108,52562153,262805,263958,29704990,148198,158557\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,584,0.0108,52922153,264605,265758,29996452,149016,250006\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,588,0.0109,53282153,266405,267558,30123135,150270,154069\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,592,0.0110,53642153,268205,269358,30283611,150978,165439\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,596,0.0110,54002153,270005,271158,30512807,152128,156216\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,600,0.0111,54362153,271805,272958,30713954,153227,157015\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,604,0.0113,54722153,273605,274758,31116246,155098,162946\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,608,0.0113,55082153,275405,276558,31292429,155792,166047\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,612,0.0113,55442153,277205,278358,31367681,156312,187819\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,616,0.0114,55802153,279005,280158,31509163,156923,173955\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,620,0.0115,56162153,280805,281958,31751550,158349,162413\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,624,0.0116,56522153,282605,283758,32010052,159426,164990\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,628,0.0116,56882153,284405,285558,32270071,160471,206182\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,632,0.0118,57242153,286205,287358,32379821,161317,166154\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,636,0.0118,57602153,288005,289158,32621237,162719,174455\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,640,0.0118,57962153,289805,290958,32760054,163283,174727\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,644,0.0119,58322153,291605,292758,32895462,163973,168568\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,648,0.0119,58682153,293405,294558,33046462,164805,176098\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,652,0.0120,59042153,295205,296358,33305627,166069,179927\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,656,0.0121,59402153,297005,298158,33611780,166989,248127\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,660,0.0121,59762153,298805,299958,33791922,168433,184984\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,664,0.0121,60122153,300605,301758,33927065,169140,182483\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,668,0.0124,60482153,302405,303558,34476798,171567,188679\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,672,0.0123,60842153,304205,305358,34350802,171240,175365\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,676,0.0123,61202153,306005,307158,34529315,172118,202239\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,680,0.0124,61562153,307805,308958,34716545,172878,244909\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,684,0.0126,61922153,309605,310758,35111667,174820,186347\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,688,0.0126,62282153,311405,312558,35200811,175517,179013\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,692,0.0126,62642153,313205,314358,35391859,176015,252609\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,696,0.0127,63002153,315005,316158,35696188,177815,200506\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,700,0.0128,63362153,316805,317958,35825556,178736,191521\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,704,0.0129,63722153,318605,319758,36008866,179237,218743\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,708,0.0129,64082153,320405,321558,36282257,180511,214158\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,712,0.0129,64442153,322205,323358,36251857,180793,191833\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,716,0.0131,64802153,324005,325158,36828270,182903,229477\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,720,0.0130,65162153,325805,326958,36775140,183107,213910\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,724,0.0131,65522153,327605,328758,36946255,184028,240244\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,728,0.0132,65882153,329405,330558,37189420,185485,206103\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,732,0.0133,66242153,331205,332358,37526856,187108,192940\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,736,0.0134,66602153,333005,334158,37747623,188004,201070\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,740,0.0134,66962153,334805,335958,37844347,188709,198675\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,744,0.0134,67322153,336605,337758,37874634,189009,203611\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,748,0.0136,67682153,338405,339558,38360815,190893,193995\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,752,0.0137,68042153,340205,341358,38702052,192377,222451\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,756,0.0136,68402153,342005,343158,38548177,192033,249435\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,760,0.0138,68762153,343805,344958,39152996,194437,272148\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,764,0.0138,69122153,345605,346758,39070056,194876,204988\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,768,0.0138,69482153,347405,348558,39192485,195337,208507\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,772,0.0139,69842153,349205,350358,39509976,197063,216644\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,776,0.0140,70202153,351005,352158,39643299,197720,238164\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,780,0.0141,70562153,352805,353958,40047395,199611,212284\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,784,0.0142,70922153,354605,355758,40474213,201350,218018\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,788,0.0143,71282153,356405,357558,40369690,200941,270257\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,792,0.0143,71642153,358205,359358,40667289,202430,244792\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,796,0.0145,72002153,360005,361158,41245212,205315,244622\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,800,0.0144,72362153,361805,362958,41042713,204407,249254\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,804,0.0145,72722153,363605,364758,41137099,205254,211445\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,808,0.0145,73082153,365405,366558,41267168,205869,210553\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,812,0.0146,73442153,367205,368358,41538016,207083,242270\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,816,0.0147,73802153,369005,370158,41856937,208198,257079\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,820,0.0149,74162153,370805,371958,42581251,211598,220361\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,824,0.0148,74522153,372605,373758,42106929,210144,214780\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,828,0.0151,74882153,374405,375558,42954101,213100,216189\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,832,0.0150,75242153,376205,377358,42591682,212393,217281\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,836,0.0150,75602153,378005,379158,42833889,213607,225147\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,840,0.0151,75962153,379805,380958,42888365,213833,258282\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,844,0.0151,76322153,381605,382758,43234463,215605,228741\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,848,0.0152,76682153,383405,384558,43340508,216058,240778\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,852,0.0154,77042153,385205,386358,43964132,218702,263707\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,856,0.0155,77402153,387005,388158,43738562,218168,230126\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,860,0.0154,77762153,388805,389958,44071523,219837,238185\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,864,0.0155,78122153,390605,391758,44411093,221177,232408\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,868,0.0157,78482153,392405,393558,44526424,222013,237960\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,872,0.0158,78842153,394205,395358,45188815,224084,346189\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,876,0.0156,79202153,396005,397158,44700630,222996,237268\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,880,0.0158,79562153,397805,398958,45208957,224813,328325\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,884,0.0159,79922153,399605,400758,45474656,226439,239215\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,888,0.0160,80282153,401405,402558,45766475,227867,240911\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,892,0.0160,80642153,403205,404358,45940503,228819,243891\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,896,0.0161,81002153,405005,406158,45973712,229111,241548\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,900,0.0162,81362153,406805,407958,46447521,230613,346027\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,904,0.0163,81722153,408605,409758,46859527,233117,305572\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,908,0.0164,82082153,410405,411558,47123610,234871,284329\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,912,0.0166,82442153,412205,413358,47816182,237201,366650\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,916,0.0166,82802153,414005,415158,47456504,236767,248921\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,920,0.0165,83162153,415805,416958,47592162,237459,265738\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,924,0.0167,83522153,417605,418758,48057683,239541,276783\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,928,0.0167,83882153,419405,420558,48171706,239841,277682\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,932,0.0170,84242153,421205,422358,48721591,242883,245719\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,936,0.0169,84602153,423005,424158,48377712,241387,254877\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,940,0.0169,84962153,424805,425958,48721762,242855,255300\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,944,0.0170,85322153,426605,427758,49035991,243372,370914\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,948,0.0171,85682153,428405,429558,49070436,244800,262067\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,952,0.0171,86042153,430205,431358,49234273,245636,258683\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,956,0.0172,86402153,432005,433158,49586922,247001,316148\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,960,0.0172,86762153,433805,434958,49640943,247637,284307\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,964,0.0177,87122153,435605,436758,51436885,256453,266477\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,968,0.0178,87482153,437405,438558,51146832,254991,267861\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,972,0.0177,87842153,439205,440358,51377929,256333,274159\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,976,0.0179,88202153,441005,442158,51360933,256336,265049\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,980,0.0179,88562153,442805,443958,51845435,258521,293602\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,984,0.0180,88922153,444605,445758,52129373,259818,262711\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,988,0.0181,89282153,446405,447558,52262963,260903,278224\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,992,0.0182,89642153,448205,449358,52407317,261432,272849\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,996,0.0184,90002153,450005,451158,53286503,265403,275404\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,1000,0.0182,90362153,451805,452958,53051777,264487,273734\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,1004,0.0183,90722153,453605,454758,53153647,264834,340140\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,1008,0.0183,91082153,455405,456558,53025643,264711,274578\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,1012,0.0185,91442153,457205,458358,53709439,267192,353247\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,1016,0.0186,91802153,459005,460158,54036527,268786,339099\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,1020,0.0186,92162153,460805,461958,54154888,269844,327020\n",
-      "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n",
-      "200,32,1024,0.0183,92522153,462605,463758,52875104,262839,332332\n",
-      "mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ins_cyc.bin.csv .\n"
-     ]
-    }
-   ],
-   "source": [
-    "!make bench_task1"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Once the run is completed, let's have a look at the data!\n",
-    "\n",
-    "This can be done best in the interactive version of the Jupyter Notebook. In case this version of the description is unavailable to you, call the Makefile target `make graph_task1` (either with X forwarding, or download the resulting PDF)."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import seaborn as sns\n",
-    "import pandas as pd\n",
-    "import matplotlib.pyplot as plt\n",
-    "import common\n",
-    "%matplotlib inline\n",
-    "sns.set()\n",
-    "plt.rcParams['figure.figsize'] = [14, 6]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 77,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>iter</th>\n",
-       "      <th>ny</th>\n",
-       "      <th>nx</th>\n",
-       "      <th>Runtime</th>\n",
-       "      <th>PM_INST_CMPL (total)</th>\n",
-       "      <th>PM_INST_CMPL (min)</th>\n",
-       "      <th>PM_INST_CMPL (max)</th>\n",
-       "      <th>PM_RUN_CYC (total)</th>\n",
-       "      <th>PM_RUN_CYC (min)</th>\n",
-       "      <th>PM_RUN_CYC (max)</th>\n",
-       "      <th>Instructions / Loop Iteration</th>\n",
-       "      <th>Cycles / Loop Iteration</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>200</td>\n",
-       "      <td>32</td>\n",
-       "      <td>4</td>\n",
-       "      <td>0.0012</td>\n",
-       "      <td>548153</td>\n",
-       "      <td>2735</td>\n",
-       "      <td>3888</td>\n",
-       "      <td>266883</td>\n",
-       "      <td>1237</td>\n",
-       "      <td>4793</td>\n",
-       "      <td>21.367188</td>\n",
-       "      <td>9.664062</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>200</td>\n",
-       "      <td>32</td>\n",
-       "      <td>8</td>\n",
-       "      <td>0.0014</td>\n",
-       "      <td>1082153</td>\n",
-       "      <td>5405</td>\n",
-       "      <td>6558</td>\n",
-       "      <td>668819</td>\n",
-       "      <td>3214</td>\n",
-       "      <td>6623</td>\n",
-       "      <td>21.113281</td>\n",
-       "      <td>12.554688</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>200</td>\n",
-       "      <td>32</td>\n",
-       "      <td>12</td>\n",
-       "      <td>0.0014</td>\n",
-       "      <td>1442153</td>\n",
-       "      <td>7205</td>\n",
-       "      <td>8358</td>\n",
-       "      <td>872913</td>\n",
-       "      <td>4187</td>\n",
-       "      <td>11640</td>\n",
-       "      <td>18.763021</td>\n",
-       "      <td>10.903646</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>200</td>\n",
-       "      <td>32</td>\n",
-       "      <td>16</td>\n",
-       "      <td>0.0015</td>\n",
-       "      <td>1802153</td>\n",
-       "      <td>9005</td>\n",
-       "      <td>10158</td>\n",
-       "      <td>1077532</td>\n",
-       "      <td>5254</td>\n",
-       "      <td>8147</td>\n",
-       "      <td>17.587891</td>\n",
-       "      <td>10.261719</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>200</td>\n",
-       "      <td>32</td>\n",
-       "      <td>20</td>\n",
-       "      <td>0.0016</td>\n",
-       "      <td>2162153</td>\n",
-       "      <td>10805</td>\n",
-       "      <td>11958</td>\n",
-       "      <td>1277957</td>\n",
-       "      <td>6209</td>\n",
-       "      <td>9015</td>\n",
-       "      <td>16.882812</td>\n",
-       "      <td>9.701562</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "   iter  ny  nx  Runtime  PM_INST_CMPL (total)  PM_INST_CMPL (min)  \\\n",
-       "0   200  32   4   0.0012                548153                2735   \n",
-       "1   200  32   8   0.0014               1082153                5405   \n",
-       "2   200  32  12   0.0014               1442153                7205   \n",
-       "3   200  32  16   0.0015               1802153                9005   \n",
-       "4   200  32  20   0.0016               2162153               10805   \n",
-       "\n",
-       "    PM_INST_CMPL (max)  PM_RUN_CYC (total)  PM_RUN_CYC (min)  \\\n",
-       "0                 3888              266883              1237   \n",
-       "1                 6558              668819              3214   \n",
-       "2                 8358              872913              4187   \n",
-       "3                10158             1077532              5254   \n",
-       "4                11958             1277957              6209   \n",
-       "\n",
-       "    PM_RUN_CYC (max)  Instructions / Loop Iteration  Cycles / Loop Iteration  \n",
-       "0               4793                      21.367188                 9.664062  \n",
-       "1               6623                      21.113281                12.554688  \n",
-       "2              11640                      18.763021                10.903646  \n",
-       "3               8147                      17.587891                10.261719  \n",
-       "4               9015                      16.882812                 9.701562  "
-      ]
-     },
-     "execution_count": 77,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "plt.rcParams['figure.figsize'] = [14, 6]\n",
-    "df = pd.read_csv(\"poisson2d.ins_cyc.bin.csv\", skiprows=range(2, 50000, 2))  # Read in the CSV file from the bench run; parse with Pandas\n",
-    "common.normalize(df, \"PM_INST_CMPL (min)\", \"Instructions / Loop Iteration\")  # Normalize to each grid cell\n",
-    "common.normalize(df, \"PM_RUN_CYC (min)\", \"Cycles / Loop Iteration\")\n",
-    "df.head()  # Display the head of the Pandas dataframe"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 78,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzkAAAF/CAYAAABqjAdBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xl8VPW9//HX7JOZ7CskIYGACOKCivsOWquiVmvr2l61Xr1ea70tVa+Vn1vRXpfWqq1WrbS2UlvbqgVRsVqt4tYisgjKvmQj+zqTWc6c8/tjwphAIAkkTBLez8fDh8mZOed8Z/IlOe/5fr+fY7Msy0JERERERGSEsCe7ASIiIiIiIgNJIUdEREREREYUhRwRERERERlRFHJERERERGREUcgREREREZERRSFHRERERERGFIUcEREREREZURRyRERERERkRFHIERERERGREUUhR0RERERERhSFHBERERERGVEUckREREREZERRyBERERERkRHFmewGNDUFME0rKefOyUmloaE9KeeW4Uf9RfpKfUX6Sn1F+kp9RfpjJPUXu91GVpa/3/slPeSYppW0kLP9/CJ9pf4ifaW+In2lviJ9pb4i/bG/9xdNVxMRERERkRFFIUdEREREREYUhRwRERERERlRkr4mZ6hZ+OFm7DYbZx1bmuymiIiIiAy6WMygqakOw4gkuykyQGpr7Zimmexm9IvT6SYrKw+HY2DiiULODpatq8cChRwRERHZLzQ11eH1+vD7R2Gz2ZLdHBkATqcdwxg+IceyLAKBVpqa6sjNHT0gx9R0tR1EDJOOsJHsZoiIiIjsE4YRwe9PV8CRpLHZbPj96QM6mqiRnB1EDZNQRCFHRERE9h8KOJJsA90HNZKzg6gRoyMcS3YzRERERPZLhmHw61//iksuuZArrvgml19+EY899jCGsWcfQn/3u9fy/vvvDWgbL7/8Itra2rptq66u4pxzZgzoefrqxBOnEQwGAXjhhT/Q2Ng44Oeorq7ib397sdu2H/7we1RWVgz4uQaCRnJ2EDVMwtEYMdPEYVcGFBEREdmX7rvvbsLhEHPn/h6fz49hGCxcOJ9IJILTmfxL140b15Obm09aWlqym9KjF154nmOOOZb09Mx+7WcYxm7f3+rqKubPf4nzz78wse2hhx7d43YOtuT3lCEmGosv0uoIx0hNUcgRERER2VfKy7fy7rtv8+KLr+Lz+QFwOp2JC+tvfeub/OhHdzJ58hQA/vjH59iyZQu33no7mzdv4pFHHqKxsQHLsrj00m9x1lkzux0/EGjnscceZsOGdUQiEQ4/fBo33vh9HA4Hc+c+xZtvLsLt9mCzwaOPPtljkHnvvX9y0kkn9+t1vfbaKzz//O+x2WwUFhZzyy0/Iisrm1gsxhNPPMbHH38AwDHHHM/119+Iw+Hg3nvvwul0UlVVRW3tNqZOPYIf/OBWXC7XLs/z7LPPUF9fx49+dAsul5s775xDcfEYnnrqcZYt+4Ro1GD8+PHMmnUbPp+Pe++9C5/PR3l5Oc3NTcyd+xx33z2brVu3EI1GKCoaw2233UF6ejo/+9kDVFdXcuWVl1FcXMycOQ9w0UXn8sADD1NWNoGKinIefPA+mpubcDgcXHvtDRx77PFAfKTp2mv/m3fffYeWlhZuuOF7nHrq4I56KeTsIBLdHnIMUlN23YlERERERpr3V1azeEX1oBz7xENHc8Ihu6+ctXbtGoqLS0hPT+/x8a9//Zu89NJfmDx5CpZl8fLLf+XHP74fwzD43/+dxbXX/jfTp58OQEtL8077P/bYw0ydegT/+7//D9M0ufvu2SxcOJ9TT53B888/xyuvvIHH4yUYDOB2e3psw+LF/+THP76/z69748b1/OpXv+CZZ54jNzeXp59+gocffpB77vkJ8+e/xLp1a5k7dx4Qn/41f/5LXHDBRQCsXv0ZTzwxF7fbzc0338T8+S/y9a9fvMtz/cd/fIcFC17mvvseoLS0DIDf/vbX+P1+nn76dwA8/vij/P73v+G6624A4LPPVvKLXzxFSkoKADfd9EMyM+OjQE899Tjz5j3L9dffyA9+cAu//OUjPPPM73s89913z+b88y9g5syvsWnTRr773f/kuef+QlZWFgB+v59f//p3rFixjDvuuE0hZ18yTYuYaQGowpqIiIjIPmft9tGvfnUmv/nNr2ltbWH16lVkZWVzwAET2bhxA7FYLBFwADIydp6utXjxu3z++Sr++Md4qAiFQuTnF+D3+ykpKeWee/4fxxxzPMcff1JiJKmrurpaYrEYo0b1vczx0qVLOO64E8jNzQXg/PMv5MorLwNgyZKPOfvsmYnRmbPPPpd33307EXKmTz8Dn88HwFlnzeSdd/6x25DTk/fff5dAIMA77/wDgGg0woQJByQeP/XUGYmAA/D666/wxhuvYxhROjpCjBlT0us5gsEA69ev5eyzzwNg3LgyJkw4kFWrVnLiifFRrxkzzgRgypRDqK+vIxwO4/H0HCQHgkJOF9Eu9cQVckRERGR/c8IhvY+2DKaJEydRUbGV1tbWHkdzvF4vZ5zxVRYuXMCnn37ChRd+o/OR3YejL1ncd99DFBUV7/TIk0/+hpUrl7N06RK+850r+OlPH+sWBiA+Ve2EE/o3Vc2ydq4ctv3bnh/rucqYZVnsSQEyy4JZs/6XI488qsfHfb4vA87y5Z/y8st/5Ykn5pKVlcUbb7zO/Pkv9rjfjm3rSdfX4na7AXA4HADEYoNb6EuLTrrYvh4HUIU1ERERkX1szJgSTjjhZB588D6CwQAQvxh+4YXnE9XDLrzwG/z5z8+zZs3niSlPJSVjcTgc/OMfbyaO1dN0tRNOOJnnnns2cYHd3NxMVVUlwWCA5uZmDj/8SL7znesoKxvPxo0bdtp/8eJ/ctJJp/TrNR155FF8+OH7NDTUA7BgwctMm3Y0AEcddQyvvroAwzAwDIPXXnsl8RjA22+/RUdHB4ZhsGjRaxxxxLRez+f3+2lvb098f+KJJ/OnP80jHA4B8VGXzZs39bhvW1sbfn8qGRkZRCIRFi6c3+W4qQQC7T3u5/enMmHCRF577RUAtmzZzIYNaznooIN7be9g0UhOF5Hol8FGIzkiIiIi+97s2Xczd+5TXH31t3C5nFiWxbHHnpAYCSgsLKKkpJSDDjo4Mc3L6XTyf//3Ux5++AF++9unsdnsXHrpFXz1q+d0O/ZNN83i8ccf5corL8Vms+Fyufne92bhdDq5/fZbiETCmKbJxImTOOWU07rtGwi0U1VVycSJk3bZ9ra2Ni644OzE9yUlY3nkkce57rob+P73b+gsPFDEzTf/CIDzzruAiopyrroqPn3t6KOP49xzL0jsP3Xq4dx22yxqauKFB84770J6c9FFlzBnzl14PF7uvHMOV1xxJc888yTXXPNt7HY7YOPqq/+TsWPH7bTvsccezxtvvMZll11Efn4+kyZNZvXqVQCMHz+BkpJSvvWtb1JaOpY5cx7otu+dd87hwQfv44UX/oDD4WD27HsS63GSwWbtanxpH2loaMc0k9OEvLw06uq+rHFe0xTktic/AuDyMyYy48idhzJl/7VjfxHZFfUV6Sv1Femrwewr27ZtYdSo0kE59mAIBNq57LKLePrpZ8nPL9hn533zzUWsXLmc73//ln1yvnvvvYtJkyb3ew0OgNNpx+iyDGO46Kkv2u02cnJS+32sPo3k3H///SxatIjKykoWLFjAxIkTaWpq4pZbbmHr1q243W5KS0u55557yM7O7ncjhopo9MvOEIpoJEdERERkKHn55b/w7LNzueSSK/ZpwAE4/fQzOf30M/fpOWXP9WlNzowZM5g3bx5FRUWJbTabjWuuuYZFixaxYMECxowZw0MPPTRoDd0Xuq7JCWq6moiIiMiQ8rWvXcRLL73KpZdekeymDLrbb79rj0ZxJK5PIWfatGmMHt290kZmZibHHHNM4vupU6dSVVU1sK3bx7qvyVHhARERERGR4WhAqquZpsnzzz/P9OnTB+JwSdO9uppGckRERGT/kOQl2iID3gcHpLraj3/8Y3w+H1dc0f+hwz1ZSDSQ8vLSEl/7auJl8ew2iFndHxMB9QnpO/UV6Sv1FemrweorbW0+OjraSEvL2OU9WmT4cTqHz51iLMuira0Vv983YP18r0PO/fffz5YtW/jVr37VWZauf4ZSdbX6xng99jSfm5a2kCreSDeqgiR9pb4ifaW+In01mH3F58uiqamO1tamQTm+7Ht2ux3THF7V1ZxON1lZeTv180GtrrYrDz/8MJ999hlPPfVUonb5cBbtLLWX7ndrupqIiIjsFxwOJ7m5o3t/ogwb+gCljyFnzpw5vPHGG9TX13PVVVeRmZnJz3/+c371q18xduxYLrnkEgCKi4v55S9/OagNHkyRzpCT4XdT3RBIcmtERERERGRP9CnkzJ49m9mzZ++0fc2aNQPeoGTqOpKzoao1ya0REREREZE9MXxWJO0DUSNeNjrd7yYUNjBVaUREREREZNhRyOli+0hOms+FBYQjuleOiIiIiMhwo5DTRcQwcTnt+DzxWXwqPiAiIiIiMvwo5HQRNUzcTjspCjkiIiIiIsOWQk4XUcPE2W0kR9PVRERERESGG4WcLqJGDLfTjrcz5AQ1kiMiIiIiMuwo5HQRNUxcToemq4mIiIiIDGMKOV3sVHggopAjIiIiIjLcKOR0Ee0MOSkeB6CRHBERERGR4Ughp4uoYeJy2PG4HNhsCjkiIiIiIsORQk4X20tI22w2UtxOOkKqriYiIiIiMtwo5HQRMWK4nPG3JMXjVHU1EREREZFhSCGni+3V1SAeckIqPCAiIiIiMuwo5HSxvfAAgM/j0JocEREREZFhSCGni+1rckDT1UREREREhiuFnC6iMbPbmhyN5IiIiIiIDD8KOZ0sy+o2XS0eclRdTURERERkuFHI6WTETICdRnIsy0pms0REREREpJ8UcjpFjHjIcSeqqzmImfHRHRERERERGT4UcjptDzNfVldzAmhdjoiIiIjIMNNryLn//vuZPn06Bx54IGvXru11+3AV2SHkeDtDjiqsiYiIiIgML72GnBkzZjBv3jyKior6tH242nEkJyUxkqPiAyIiIiIiw4mztydMmzatX9uHq6gRDzM7TVeLaCRHRERERGQ40ZqcTtGdCg90hpyQQo6IiIiIyHDS60jOYMvJSU3q+fPy0gCobOqIf5+bSl5eGpYjHnacbmfiOSLqC9JX6ivSV+or0lfqK9If+3t/SXrIaWhoxzSTcy+avLw06uraAKhrCAAQaA9RV9dGMBQFoLa+PfEc2b917S8iu6O+In2lviJ9pb4i/TGS+ovdbtujQRFNV+tk7Fh4wK3qaiIiIiIiw1GvIWfOnDmcfPLJbNu2jauuuopzzjlnt9uHq0hn4QF3Z8ix222k+Vw0t0eS2SwREREREemnXqerzZ49m9mzZ/d5+3D1ZQlpR2JbQbaPmsZgspokIiIiIiJ7QNPVOu14M1CAUVk+tjUp5IiIiIiIDCcKOZ12XJMDUJCdQkt7hA6tyxERERERGTYUcjr1OJKT7QOgtrO8tIiIiIiIDH0KOZ2ihonTYcNusyW2FXSGnG1alyMiIiIiMmwo5HSKGLFuozgA+Zkp2EDFB0REREREhhGFnE6GYXarrAbgdjnITveq+ICIiIiIyDCikNMpapi4HDu/HaOyUzSSIyIiIiIyjCjkdIoYJm7Xzm9HQbaPbY0dWJaVhFaJiIiIiEh/KeR02tVITkG2j46wQVswmoRWiYiIiIhIfynkdIoaMVw9jOSMUoU1EREREZFhRSGn0+5GckAV1kREREREhguFnE7xNTmOnbbnpntxOmwayRERERERGSYUcjpFYz2P5NjtNvKzfAo5IiIiIiLDhEJOp2jU7HFNDkBBVgo1TR37uEUiIiIiIrInFHI67WokB+LFB2qbgpimykiLiIiIiAx1CjmdItEYbufOa3IgXnzAiFk0tIb2catERERERKS/FHI6RWMmLueuR3JAZaRFRERERIYDhRzAsiyiholzVyEnJx5yqusD+7JZIiIiIiKyBxRygJhpYVng3kXISfe5Sfe5qFDIEREREREZ8hRyiN8IFNjldDWAorxUKusUckREREREhrpeQ87999/P9OnTOfDAA1m7dm1i+6ZNm7j44os588wzufjii9m8efNgtnNQRTpDzq5GcgCKcv1UNQQwLVVYExEREREZynoNOTNmzGDevHkUFRV1237nnXdy2WWXsWjRIi677DLuuOOOQWvkYIsaMYBdrskBKMzzE47EaGxRhTURERERkaGs15Azbdo0Ro8e3W1bQ0MDq1evZubMmQDMnDmT1atX09jYODitHGTRxEhOzyWkAYpzUwGo1LocEREREZEhbY/W5FRXV1NQUIDDEQ8FDoeD/Px8qqurB7Rx+0pf1uQU5sYrrCnkiIiIiIgMbc5kNyAnJzWp58/LS6MhEI1/nZNKXl7aLp+bm+Glvi282+fIyKafvfSV+or0lfqK9JX6ivTH/t5f9ijkjB49mpqaGmKxGA6Hg1gsRm1t7U7T2vqioaEd00zOYv68vDTq6tqorW8HIBgIUVfXtsvnj8rxsbGiebfPkZFre38R6Y36ivSV+or0lfqK9MdI6i92u22PBkX2aLpaTk4OkydP5pVXXgHglVdeYfLkyWRnZ+/J4ZJue+EB127W5EC8wlp1QzBpoUxERERERHrXa8iZM2cOJ598Mtu2beOqq67inHPOAeCuu+7iueee48wzz+S5557j7rvvHvTGDpa+rMkBKMpNJWqY1DV37ItmiYiIiIjIHuh1utrs2bOZPXv2TtvHjx/Pn//850Fp1L7W55CT5wegoi5AQbZv0NslIiIiIiL9t0fT1UaavtwMFKAwJx5yKjvX8IiIiIiIyNCjkMOXIzm7uxkogMftIC/TS5XKSIuIiIiIDFkKOXS9GWjvb0dRbiqVdQo5IiIiIiJDlUIOXaur9SHk5PnZ1hjEiJmD3SwREREREdkDCjnE1+Q47DYc9t7fjrGj0omZFusqWvZBy0REREREpL8UcogXFJg4JrNPzz24LBu3y86SNbWD3CoREREREdkTCjnAcQeP4uZLD+/Tcz0uB4eW5bB0TZ1uCioiIiIiMgQp5OyBaZPyaQlEWF+pKWsiIiIiIkONQs4eOHR8Di6nnSVfaMqaiIiIiMhQo5CzB7xuJ4eU5bBkTS2mpSlrIiIiIiJDiULOHpp2YB7N7RE2VrYmuykiIiIiItKFQs4eOmxCLk6HTVXWRERERESGGIWcPZTicXLwuBw+/ryGqKEbg4qIiIiIDBUKOXthxpHFtLRHWLyiKtlNERERERGRTgo5e+GgsVmML0pn4UdbMGIazRERERERGQoUcvaCzWbj/BPG0dgaZvHK6mQ3R0REREREUMjZa1PGZVNWmM7CDzSaIyIiIiIyFCjk7CWbzcZ5J4yloTXEB59tS3ZzRERERET2ewo5A+CQshzGjU5jwfubVGlNRERERCTJFHIGgM1m48KTx9PQGuadZZXJbo6IiIiIyH5NIWeAHDQ2i0klmSz8YDOhiJHs5oiIiIiI7Lf2OuS88847XHDBBZx77rlcccUVlJeXD0S7hh2bzcbXTxlPazDK35dUJLs5IiIiIiL7rb0KOS0tLdx666387Gc/Y8GCBXzjG9/grrvuGqCmDT/jizKYOiGX1z/eSntHNNnNERERERHZL+1VyNmyZQu5ubmMGzcOgFNOOYXFixfT2Ng4II0bji48uYxQ2ODl9zYmuykiIiIiIvulvQo548aNo76+nhUrVgCwYMECAKqr998bYxbnpzJjWjH/WFrJ2vLmZDdHRERERGS/Y7Msy9qbA3zwwQc89thjhMNhTj75ZObNm8dzzz3HgQceOFBtHHZCYYPvPvQ2druNR2editftTHaTRERERET2G3sdcrqqr6/ntNNO4+OPP8bn8/Vpn4aGdkxzwJrQL3l5adTVtQ3KsT/f3MiDf1zGV48u4ZvTJwzKOWTfGsz+IiOL+or0lfqK9JX6ivTHSOovdruNnJzU/u+3tyeuq6sDwDRNfvazn3HJJZf0OeCMZJPHZnPK1EIW/XsrKzbUJ7s5IiIiIiL7jb0OOT//+c8566yz+MpXvoLL5eKHP/zhQLRrRPjmaRMoyU/jFy9+xqpNA1eMobE1xL2/X8LfFm9iAAfiRERERERGhL1eLHLvvfcORDtGpBSPk1mXTOWBP3zKo39dwfe/cRiTSrP26pj1LR088IdPaWwNs6GyldZAhMvPmIjdbhugVouIiIiIDG97PZIju5ea4uKHl04lLzOFn/9lOas27/mITl1zB/fP+5RgyOBH3zqSs44t4e1PK3lqwSqMmDmArRYRERERGb4UcvaBdJ+bmy89nPxMH4/8eTlL19bt0XGeWrCKUMTgh5dOpawwnW+cOoFvnDaef31ey6J/bR3gVouIiIiIDE8KOftIht/NrZcfTmlBGo+/9BnvfFqJ2Y/1NNUNATZUtjLz+LGMHZWe2H7WMaVMnZDLwg+30NIeHoymi4iIiIgMKwo5+5Df62LWJVOZVJrJ7xatYc6zS1iztalP+364ahs2GxxzUMFOj108fQJRw+Sl9zYOdJNFRERERIYdhZx9zOt28oOLp3LNzMm0BCLc/4dP+c2rn+92TY1pWXz4WQ0Hjc0mM9Wz0+MF2T5mHFnMe8ur2VozMmqii4iIiIjsKYWcJLDbbBx/8Gh+cu2xnHNcKe+tqObhF5YTDEV7fP668mYaWkMcP2XULo957glj8ae4+MPf1xLYxXFERERERPYHCjlJ5HY5+Pop4/nOOZNZW97Mfc8tpbKufafnfbhqGx6XgyMm5u3yWH6vi4tOHc/aihZ+8Iv3eWbhatZXtug+OiIiIiKy39nr++TI3jvhkNFkp3t5/KWV3Dn338w4spjzTxyHz+skasT49xd1HDExD4/bsdvjnHxYIWNHpfHOsio+XLWN91duIz8rheOmjOKoSfmMzvFhs+l+OiIiIiIystmsJH/U39DQjmkmpwl5eWnU1Q2dNSxtwQgvvruRd5dV4fU4GZOfittl57ONjcy6eCpTxmX3+VgdYYMla2r5aFUNX2xpwgLyMr0cOj6XssJ0inL9jM7x4XLuPjjJl4Zaf5GhS31F+kp9RfpKfUX6YyT1F7vdRk5Oar/300jOEJLmc/MfX53EqVOLeGtpBTWNQcpr2ynJT2VyaVa/jpXicXLSoYWcdGghja0hlm9oYPn6et5dXsVbn1QAYLNBXmYKRbl+ygrTmX5EMSkedYm9Vd0QIMPvwefVeykiIiKSDLoKG4JKR6Vx9dmTB+x42eleTju8iNMOL8KImdQ0BqmsD1C1/b+GIJ+uq+fv/y7nayeXcfKhhdjtmta2J6JGjB8/u4SjJ+dz5VkD9zMUERERkb5TyNnPOB12ivJSKcrrPuy3qbqVP721jt+9voY/vbWe1BQnfq+L/GwfZaPTKStMp3RUGh6XprftzpqtzYQiMT5dV8+3z7QUFkVERESSQCFHABg3Op1bLz+CT9fVs2ZrM8FQlLaOKJuqWlnyRS0QL31dnOenrCiDKWOzOWhslqa37WDFhgYA2oJRNla3MqEoI8ktEhEREdn/6ApVEmw2G0dMzNupVHVLIMKmqlY2VrewqaqVj1Zt451PK3HYbYwdlUZuZgo56V4cdhttHVHaO+L36XE77XjcDg4ck8nB43L2izUqKzY2MKE4g01VrSxbV6+QIyIiIv0WNUx+9/oXHDYhl2mT8vu0T0fY4JM1dSxbX8+Fpx1AYZZ3kFs5tI38q07Zaxl+N1MPyGXqAbkAGDGTDZUtrNjQwKbqVjZWtbDki1pM08Kf4iLN5wLi/0ADoShvL40HooljMuPHmZBLXmZKMl/SoKhpDFLb1MEZ08bgcthZtr6ei04dn+xmiYiIyBCxtryZDZUtbGsMEo7GmHncWIrzd64c9ud31vP+Z9v4cFUN33XYE9dgOzJiJqs2NfLhqm18uq6eqGHidNj5bGMDN33jsH4XrhpJFHKk35wOOweWZHFgyZf/cEzLAoud1qCYpsWGqhaWra9n2bp6nn9zHc+/uY50vxuXw4bDbiczzcOY/FTG5KdSUpBKUa6/x9LWze1hgiGDUdm+IbnWZftUtUPH52CaFs+/tY6apiAFWb4kt0xERESSbV1FM/83bykA6T4XRszikzV1nH/iOM46tgSH3Q7Aig31vLmkgpMPK6S8to0n/vYZP/jmYRxYkkUgFKW6Icim6lY2V7fy2aZG2oJRUlNcnHjoaI6fMoq8rBR+9sJyHvnLcn7wzalMHJOZzJedNAo5MiDsNhv0kDvsdhsHFGdyQHEm3zh1AjVNQZavq6eqIUjMNDFiFvXNHSxeUU04Gksca1SOj9KCNMaOTsPlsPOvz2tYs7UZi/g0uOL8VEoK0igpSKW0II28zBT8XmdSb3a6YkM9o3N85GWmcNgBuTz/1jqWr6vnK0eXJK1NIiIiMjT8/d/l+L1O7v3PY0n3u2kNRpj3xlpefHcjH6+u4dgpBRxYksUzCz+nOC+Vy884gFAkxv1/+JSfvbAcl8NOMGwkjpeR6mZSSRbHTingkLIcnA574rE51x3PzY+9x8MvLOfwiblMGZtNXmYKG6paWFfeQlN7GMuysCwIR2MEQwZRw+SGCw7m4LKcZLw9A04hR/apgixfjxf9pmVR19RBeW07W2vbKa9pY/Xm+PArQEG2j/NOHEduhpetNe1srWnj49U1vPNpZeIYHpeD7HQPOelestO9pPvdOO02HA4bmakeygrTKcj2xQNZp46wwbqKZqrqg3jdDrweB7kZKYwbnZb4RKUvQhGDNeXNzDiyGID8zvsPLVuvkCMiIrK/a2gJsXRtPWcePYZ0vxuAdJ+b6792MEd9UctrH2/lr//cCMQ/zP2vy6bgcjpwOR3MungqL727EZfLTl5GCgVZKYwdnU5WmmeX58tK93LLpYfz53fWs2pTIx+tqkk8VpCVQkG2Dxvx9dgetwOfx8my9fW8vHgTU8ZlJ/VD44GikCNDgt1moyDbR0G2r9sCu6a2MMELOtRdAAAgAElEQVSwQWGOL/EP7oRD4o9ZlkVdS4jymnYaWjpoaA3T2BqioTXE1po22oJRrB3Ok+Jxku5343basSyLyvoA1o5P6nzeQWOzGJOfSlqKC3+Ki+LmELGIgc/jJGaaRA0Th8NOXqaXz7c0YcQsDu3y6cfUA3J57aOtVDcESPO58bgcuJx9D04iIiIyMvxjafxG7NOPKN7psWmT8pk2KZ/6lg6Wrq2nMMdHYa4/8XhWmoerz+n/vfey0jxce+4UTMuioradxtYw4wrTyegMWTsqzvPz+zfWsra8uduShOFKIUeGtKw0zy4/qbDZbORnppC/myIGpmlhxEzqmjvYWN3K5m1tBDqiRKImpmVx+AF5TCrJZExBGkbMpCNsUFkXYOXGBlZtbuSTNXW9ttHpsON1O/C4HRzQZd7r1ANyWfjhFm5/+uN4e4nfmHV0jo9ROT5G5/gZne0jO8NLqteJ1+PsNsrUE8uyKK9tZ9WmRsLRGOl+N2k+N+k+F6k+N5mpbvxeV69tFhERkX0jHInx7vIqjpiYS07Griue5Wak8JWjxgz4+e02W+cU/7TdPu+EQ0bzt8WbWPjhFoUcgLfffptHHnkEy7IwTZMbb7yRr3zlKwPRNpG9ZrfbcNsdiRugnnTo7p+fmephdI4/MZpkxEzaO8tiO90uKqpbCIYNHHYbLqedSNSksr6ditp2JpZkdZsPO74wg5suOpTm9jARwyQYMqhpDFLdEGRdxZdrkLaz2cDlsGO323A67KT7vwwtUcMkHI1R1RCgpT2y29cwOsfHpJIsxo5Ow+dxJQKY1+3A69r+tROnw5YYHTNNi/WVLSxdW0dVQwCn3Y7TYSPD76Eo309xXrwgxN7eF8m0LGIxE5vN1u29EhER2deCIYPG1hA+r5PMNA92m42mtjCrNjVS19zBoRNyKBud3uPULdO0sNlIPGbETBrbwtQ3d1DfEqKuuQOX087E4kzKa9sJhAxOnzbwAWYguV0OzjhqDH/950a2bGujdNTuQ9FQZ7Osnibr9I1lWRx99NHMmzePiRMn8sUXX3DppZfyySefYO/jeoaGhnZMc4+bsFfy8tKoq2tLyrll+BnI/mJZFk1tYaobgzS3hQl0RGkPRTEMi1jn6FNLIEJze/wxt8uRWHN08LgcDinLJtXnor3DoC0QoTUY/6+hJcTa8hbWVjQTjsR22waH3YbHFV+HFInGw5zTYaMoLxXLsjBiFo2tIUJdjpOT7qUw14/X7cDpsGO3x0uFR6ImToeNvKz4yFq6343X5cBut7G+soVVmxrZUNVK1DABcDpslI1OZ2JJJoU5fjwuB26XA7fL/uXXnfdZcjsd3QLZdoFQlKWd9wOIxkxS3E58XicFWT4Kc32MyvaRlebpsVLf7hgxk/qWENsag7QHoximSSxmkZPhZdzoXQ/zd6XfLdJXI6GvNLSEWFvRzFGT8vXhxSAaCn2lJRDB73X2++ccNWI4HfZBW+cRihjMf38z5bXtBEMGoYiBx+Ug1efC43TQHAjT2Bqf/u5y2HG77ITCsW6L+N3O+IeL9S2hbsfOy/QyoSiTqBEjFI3RFojS1B6mNRDBbrPh8zpxOe20tEfilWY72W22+ML+zu9LC9K448pp+2yty572l2Aoyg8f/4BDx+fwX+cfPAgt6z+73UZOzs5ltnuz1yM5drudtrb4m9jW1kZ+fn6fA47I/spms5HdWSBhb2T43TtddJ9zHMRMk4aWeEAJRWKEo7HOrw3C3b6PxcOQDQ4el80hZTndRmssy6KhJURFXYCKunYq6trZ1hikrtnEiMWn/Lmd8XASjpp8uq6eWA8fWozJT+WUwwoTfwzaO6KsLW/h1Q+3dvujsCt2mw23y94Z9uy4nA5qGoPETIucdC9pPhf1zaHEqFtXqSkuUlNc8f2dDmw24n90LPB5naT5XHhcjkSwqW8O7bZNWWkeMlPd+DxOfF4XPm88XPk8Tvyd349u6CAciuB1OzBNi4hh0h6MsraimTVbm6isCxAz44E2I9XNYeNzOGx8LkV5fjxuJ163A4fdFm+rBaFI5x9jyyIrzbvT2q7a5g5WrK9nTXlzlyBppzDXR3FeKqOyfWSmekj1ubpNiTRNi9ZghGDIIDfDi9u1cyAMRQw2VLbS2BoiGDYIRWJkproZ1bmGLsPv3uM/2g0tIVqDEXIzvKSmuAbkj39LIMK/VtewaVsrU8Zmc8TEvL0egQSIRGOsrWhmbXkzGf54IZMx+akDdlEficaw2WyDsm7PsqxBubCyLIvFK6p5/q11hCIxXvlgM5edMZEpY7MH/FwjxfbfzXmZKd1+Jo2tIYIhg6I8/z65CG7viGK3ga8P05tXbGjgg8+qWV/ZQmNrmFHZPq6ZeRBlhem97tsRNnj9460s+vdWpozN5trzpuDp4fdMT4Ihg0/W1lKY69/laArAxqpWnlqwirqmDsaOTsPvdZGT7iEUjRHoiNIQCZGZ6uGg0iz8KfGZEREjhtvlIDfDS3aal2AoSk1TB01tYU49vIiDx2WTk+Fl6do6/rW6hjXlTXg6P2xM97spHZVGZqqbmGkRDBtEojGy0jzkZqSQl+ElNzOF7HQPoUiMdRUtbKhs4fAD8obFYn6f18Vphxfx+r+2cvXZsR7/LgwXezWSA/Dhhx/yP//zP/h8PgKBAE8++SSHH354n/fXSI4MF+ovvTPN+OhPeyhKOBIjapgU56eSmdrzuqpQxKCpLUwkGp+OFzFiX34dje1yezhqkp+ZwlGT8xk7Kq3bH472jihV9QFqmuKjZE3tEQId0cSUv64XfIFQlLZgvK05GV4Ksn2Myk6hICt+AR+/n1N8CmFNY/y+BNuLWgTDBoGQQUcoSiBk9BjuduSw2xhfmM7Y0em4nHbsNhvVjUE+29jQbcSsNxmpblLcToxYvABGSyA+hTE3w4s/xYWNeEnQmsaOboFt++jd9rcrGDYShTdsNuLBJcuH02HDbrfR0BJiU3XbbkOf1+2gINtHTroXt9OeuEg3YvES8W6XHZ/HRYon/ofStKAtGOHzLU3UNnV0O05eZgp5mSnkZngTX2emumluj1Df0kGgI4rPGw+tKR4nLocNp9NOY2uYirp2Nle38vmWZkzLwu91EggZuJx2JhRl4HHFRwTT/e749NVcPxEjRkNLiKa2MC6nHW9nwPS6naR4HARDBpu2tbKpqjUxEmmDxCezLqed0oI0ygrTKS1IIzfTS066F7vdRn1LiMbWEB6Xg/ysFHIzUghFDFra4yO0ze0RWgJhWoIGX2xuoKo+iN1uo6wwnYljMijM9ZObnkJOhpeMVHe3cLo9cC35oo5l6+rwp7g4dsoojjuoAH+Ki46wQUNriGXr6/l0bT0NrSEOLMnkkHE5TCjOSHww0JcLru3rAMtr22loDdHYGsa0LJwOOzWNQT7f0sSkkkxOOrSQvy3eRG1zB0dOzOOCk8u6LZze3QiAZVlsrWmnpimY+OAlN8PLhOIM0ny9j5z25TU0tYWpaQwSMUwyU+NrPfv6HvTG7LzQTU35MjA0tYVZvKKq83XHpw1vrG5l9eYmOsIGY0el8bWTxjFudDoLPtjM20sriZkWxXl+TjxkNGl+NzWNQeqaQ6SmuMjL9DJuTBahYASnw4bX7SQv05sIKTEz/kGKy+kgxePo9rq2j8yHozE2VLbw7vIqlq9vwGaDSaVZHH5ALnZbvM+2d0Q5eFw2h03IIWpYPP/WWt5fuY10v5uJYzIpyU/lnWWVNLdFOOe4Uo6YmIc/Jb6edENVK2vLm6lv7oiPwrscLF9fT1swyuTSLL7Y0kRZYTrfu+hQ7HYbH6+uYW15M+l+N9lp8X7u98Z/VyxbV8/bn1Ymfi8W5/k55qACooZJXXOItmAEOj8E+nxzE1lpbq6ZedCIWEcyUPbmmiUSjbFqcyNTJ+QOiWC2pyM5exVyDMPgmmuu4cYbb+TII4/kk08+YdasWSxcuBC/39/7AURERgDLil9ABDpHkoIdBsFwlGDIwOmw4XY58HlcjCtKx+veeVQhaph8vrmB+uYOOkIGHZEYpmklwsX2USOIl1qvbeogFDFwOu047XbGFaYz7aACCnNTdzhujIradqrqAzS1hhLTD63OY6f53GSle/F5nVTWtbO5qrVzhMzENC3S/R4OHp/DweNzKc5LjU/96Bz1qqxrp6quncradirr2qlvCWF0BkmbLT6S5HTYO9+XCB3h+MWKzRZ/PQeV5XDYAXnkZ/mobQpS0xhkW0OAbQ1BahoCRDpHpPrKbrdRnJ/K0QeN4tQjiykpSOOLzU28s7Sc9RXNGIZFNBajvjlER5cpKr1xOmyMHZ3OQeNyOPzAfA4uy6ElEGHtlibWbG1i7dYmNlQ097u922WmehhfnMGE4kxCkRirNjWwsbKl24d/ToeN3MwU/CkuGppDNLeHAUjxOJg2eRSNrSFWbWzY6dgOu41DJuRSmOtn+bp6KuvaE4+5nXbyslLIy4wXPzEMs3PKrEleVgqFuamEIgaLl1dRXR9I7JeR6sbpsGPETBx2G1+ffgAzTyjDbrcRicZ46Z31/PXtdYQjMU6bNoZ0v4cln2+jvKYdpyPeV8cVZpDiceJ22WlqDbN0TQ2NreEe35/CXD++FBcOuw27LR6+u35tt8eDa3F+KoW5qcRMk5b2CE1tIarrA1TVBaisb+9x+m66382BpVmUFWVQ19TBuvImquuDlBSkMbE0i7LCdPKzfeRn+XA67LQGwrQFo7QG4lOVmlrDrK9oZl15Ex3hGHlZKUwem00kGuNfq2uwLAu/10UgFMWyICfDy5GTCijKS2XhB5uobQzisMenNJ1xTCnjCjP4x5KtrN3aDMT/reSke2nviO7yQ5A0nwuHw05re5jtXcbtcpCR6iYWMxMj9l37U2aqh+nTxmCzwQcrqqluCCT6i8cdD/d+rxOP20Fze4RvTD+Ai884MPEBRqAjylMvr+QfS8p3ao/H7aAw108kGqMjbFBSkM63zp7MxJIsPlxZxUPPfYI/xUV75wdPuRleAqFo4vfDdnYbHH9oIeedNJ4t21pZ9NFm1le0YLdBdkYKWWmexEh3WVEGV86c0i1kisBehpyVK1dy66238uqrrya2nXXWWdx///0cemgvK7w7aSRHhgv1F+kr9ZWdmZaVuCdDbyzLoiUQoa65g5b2CBmpbnIzUkjzuQiEDAIdUToiBoZhEo2ZZPg9jMr29Wmql2VZNLSGqKoP4nHZyc1IITPNjWladERihDqn5IUiMVxOO8V5qb0e14iZ1DR10NASL2FvWVZ8Gky6l1AkRm1TkPqWECkeJ5mp8emOGakeMv1uigozd+or4WiM+pZQ4njb/x8IRclOi98LrDg/lSljsxNTSeqaO/h0bR2mFQ8/aT43B5Zkdqu2WNfcQUVd+5fHbQ3T0BIPTS6nHb/XicNup64l/r7bbTYml2YybVI+k0qyyE7v2xq31mCE1z7awlufVGJZFgeWZDJlbDZtHVE2V7dSWR8gEo1PefW4HEwZl82h43MoHZVGijsefrY1BllX0cKm6tZENUzTtDqLHFmYFsQ6w3pL58hYV3abjdxMb2J0clR2/L4gHpeD5vYwjW1hymva2VDVQnVDkDSfi7LR6eRn+aiqb2djdVuvYdjRGazLCtPJTfeyaVsb6yqaMU2LEw8dzSlTi8jPTMG0LELhWLcRFiNm8v7KarbWtjP9iGKKuox6beucipuf6cXldGBZFm3BKKbDTl19O4ZhEggZ1LeEqG3uwDTj/wYyUt1EoiYtgTCtgfgaS09nsRm3K154JjfT2+2mkZZlUdsUXyC/fcT98y1NfLhqG01tYS46dTzjRvc8LW3LtjYaWkOJwDJudDolBbufwrmuopl5b6xlQnEGJx1amFjYHgwZtATCBEMGgVCUUTn+nSqn7ul6oP3VSPo7lJSRnLq6Os4880z+8pe/UFZWxoYNG7jkkkv4+9//TmZmZu8HQCFHhg/1F+kr9RXpq6HaV0IRA9OMr1vbU8FQFJvNNiBronrTETaoberA6bST5nOR6nVht/dtmk0kGg+0XQO4aVk0t4UTITNmWvH1fT4XaSlfTpncMbRvv6QajCk+Q7WvyNA0kvpLUgoP5OXlcdddd3HTTTcl/kH/5Cc/6XPAERERkaGnp2mV/dWXRe0DJcXj3ONytz0trLZ3KQ5zwM73btylobB+QUTi9vq32Hnnncd55503EG0RERERERHZa5rYKCIiIiIiI4pCjoiIiIiIjCiDvxqwF31dGDhSzy/Di/qL9JX6ivSV+or0lfqK9MdI6S97+jr2+magIiIiIiIiQ4mmq4mIiIiIyIiikCMiIiIiIiOKQo6IiIiIiIwoCjkiIiIiIjKiKOSIiIiIiMiIopAjIiIiIiIjikKOiIiIiIiMKAo5IiIiIiIyoijkiIiIiIjIiKKQIyIiIiIiI4pCjoiIiIiIjCgKOSIiIiIiMqIo5IiIiIiIyIiikCMiIiIiIiOKQo6IiIiIiIwoCjkiIiIiIjKiKOSIiIiIiMiIopAjIiIiIiIjikKOiIiIiIiMKAo5IiIiIiIyoijkiIiIiIjIiKKQIyIiIiIiI4pCjoiIiIiIjCgKOSIiIiIiMqIo5IiIiIiIyIiikCMiIiIiIiOKQo6IiIiIiIwoCjkiIiIiIjKiKOSIiIiIiMiIopAjIiIiIiIjijPZDWhqCmCaVlLOnZOTSkNDe1LOLcOP+ov0lfqK9JX6ivSV+or0x0jqL3a7jawsf7/3S3rIMU0raSFn+/lF+kr9RfpKfUX6Sn1F+kp9Rfpjf+8vmq4mIiIiIiIjikKOiIiIiIiMKAo5IiIiIiIyoiR9Tc5Q8MmaWhb9u5xZF0/F43IkuzkiIiKyn4rFDJqa6jCMSLfttbV2TNNMUqtkuBmO/cXpdJOVlYfDMTDxRCEHSPO5WV/RwmsfbeFrJ5UluzkiIiKyn2pqqsPr9eH3j8JmsyW2O512DGN4XbRK8gy3/mJZFoFAK01NdeTmjh6QY2q6GjBxTCZHT87n1Y+2UtfckezmiIiIyH7KMCL4/endAo7ISGez2fD703cawdwbCjmdvnnaBOx2+ONb65LdFBEREdmPKeDI/mig+71CTqfsdC/nHj+WT9fV89mmhmQ3R0RERCTpLrroXDZuXL/H+z/zzJNEo9EBbFHPx/31r3/FW2+9MeDn2ZXLL7+Itra2btuqq6s455wZ+6wNXZ144jSCwSAAL7zwBxobGwf8HNXVVfztby922/bDH36PysqKAT/XQFDI6eIrR5WQk+7ljX+VJ7spIiIiIsPeb37z9C5DjmEYA3bca675L2bM+MoeH68/Nm5cT25uPmlpafvkfP31wgvP09TU/5DT28+jurqK+fNf6rbtoYcepaiouN/n2hdUeKALl9POmPxUGltDyW6KiIiIyJDy3e9ey+TJU/jssxXU19czffrpXH/9jQDMnfsUb765CLfbg80Gjz76JE899TgA119/NTabnccee5JHH/0pPp+P8vJympubuPfeB7jmmm+xcOFbQPxCuuv377//HnPnPoVhGNjtNm6//e7EaMKOx500aTJf//rFBINBfv7zB/n881UAnHnm2VxxxZV79Bp6CjLvvfdPTjrp5H69d6+99grPP/97bDYbhYXF3HLLj8jKyiYWi/HEE4/x8ccfAHDMMcdz/fU34nA4uPfeu3A6nVRVVVFbu42pU4/gBz+4FZfLtcvzPPvsM9TX1/GjH92Cy+XmzjvnUFw8hqeeepxlyz4hGjUYP348s2bdhs/n49577+r285g79znuvns2W7duIRqNUFQ0httuu4P09HR+9rMHqK6u5MorL6O4uJg5cx7goovO5YEHHqasbAIVFeU8+OB9NDc34XA4uPbaGzj22OOB+EjTtdf+N++++w4tLS3ccMP3OPXUwR31UsjZQYrHSTC8558siIiIiAyE91dWs3hFNQA2G1jWwB37xENHc8Ih/a9iVVOzjV/+8mmCwSAXX3w+M2eeT0ZGJs8//xyvvPIGHo+XYDCA2+1h1qxbeemlP/PEE3Px+XyJY3z22Up+8YunSElJobq6apfn2rp1C/ffP4df/vJpxowpIRKJYBjRXR53u9/+9teYpsnvfvcngsEA1113NePHH8Bxx53Q79fQk8WL/8mPf3x/n9+zjRvX86tf/YJnnnmO3Nxcnn76CR5++EHuuecnzJ//EuvWrWXu3HlAfPrX/PkvccEFFwGwevVnPPHEXNxuNzfffBPz57/I179+8S7P9R//8R0WLHiZ++57gNLSssT74ff7efrp3wHw+OOP8vvf/4brrrsB6P7zALjpph+SmZkJwFNPPc68ec9y/fU38oMf3MIvf/kIzzzz+x7Pfffdszn//AuYOfNrbNq0ke9+9z957rm/kJWVBYDf7+fXv/4dK1Ys4447bhv0kKPpajvwe50EQwo5IiIiIjs67bQZ2O12UlNTKS0dR2VlBX6/n5KSUu655/8xf/5LBIMdOJ27/hz91FNnJC6od+ff//6YY489njFjSgBwu934fP5e91uy5F+ce+4FnRW7Ujn99K+wZMm/BuQ11NXVEovFGDWq7wFx6dIlHHfcCeTm5gJw/vkXJtqzZMnHnH32TFwuFy6Xi7PPPpclSz5O7Dt9+hn4fD6cTidnnTWTTz5Z0ufzbvf+++/yxhuvceWVl3HllZfx/vvvUlX15TqaHX8er7/+CldffQXf/vbF/P3vi1i3bm2v5wgGA6xfv5azzz4PgHHjypgw4UBWrVqZeM6MGWcCMGXKIdTX1xEOh/v9WvpDIzk78HmddIQNTMvCruomIiIikiQnHPLlaMtQue9J19ENu91OLBbD4XDw5JO/YeXK5SxduoTvfOcKfvrTx5gw4YAej+HzfXlB7XA4MM0vh6gika4lhPd06Mpix0u4rpW79uY1vPfePznhhP5NVbOsnSuHbf+258d6vv60rJ1fV1/PP2vW/3LkkUf1+HjXn8fy5Z/y8st/5Ykn5pKVlcUbb7zO/Pkv9rjfjm3rSff33Q3Ef+YAsVisz69hT2gkZwc+jxMLCGnKmoiIiEivgsEAzc3NHH74kXznO9dRVjaejRs3AODz+QkE2ne5b3Z2DoZhUFERL/r097+/nnjs6KOP46OPPqC8fCsQD0DBYKDX406bdgyvvPI3LMsiGAzw1ltvMG3a0Xv8GrpavPifnHTSKbs91o6OPPIoPvzwfRoa6gFYsODlRHuOOuoYXn11AYZhYBgGr732Sre2vv32W3R0dGAYBosWvcYRR0zr9Xx+v5/29i/fmxNPPJk//Wke4XAo8Vo3b97U475tbW34/alkZGQQiURYuHB+l+Om7vI99/tTmTBhIq+99goAW7ZsZsOGtRx00MG9tnewaCRnByne+FsSDBn4vLte2CUiIiIi0N7ezu2330IkEsY0TSZOnMQpp5wGwCWXXM73vvdfeDxeHnvsyZ32dTqd3HTTLL7//RsoKBjV7SJ+zJgSbrnldu688zZiMROHw87tt9/N+PETdnvcK6+8hocffoBvfzu+duXMM89OLIDfk9ewXSDQTlVVJRMnTtrlcdra2rjggrMT35eUjOWRRx7nuutu4Pvfv6Gz8EARN9/8IwDOO+8CKirKueqqy4B4sDv33AsS+0+deji33TaLmpp44YHzzrtwt68D4KKLLmHOnLvweLzceeccrrjiSp555kmuuebb2O12wMbVV/8nY8eO22nfY489njfeeI3LLruI/Px8Jk2azOrV8QIO48dPoKSklG9965uUlo5lzpwHuu17551zePDB+3jhhT/gcDiYPfuexHqcZLBZuxpf2kcaGtq7DVPuS3l5adTVda9xvnRtHb94cSV3XnkUpaOGZmlASY6e+otIT9RXpK/UV2RH27ZtYdSo0p22D5XpavuzN99cxMqVy/n+92/ZJ+e79967EhXj+mu49pee+r/dbiMnJ7Xfx9JIzg58ns6RHE1XExEREZFOp59+JqeffmaymyF9pJCzA1+X6WoiIiIiIslw++13JbsJw5oKD+zgy5DT8915RURERERkaFPI2YHPEy82oOlqIiIikgxJXi4tkhQD3e8Vcnbg9TiwoelqIiIisu85nW4CgVYFHdmvWJZFINCK0+kesGNqTc4O7DYbPq9TIUdERET2uaysPJqa6mhvb+623W63Y5rDr1qWJMdw7C9Op5usrLyBO96AHWkESfE4CYa1JkdERET2LYfDSW7u6J22q9y49If6i6ar9UgjOSIiIiIiw5dCTg/8XhcBFR4QERERERmWep2u1tTUxC233MLWrVtxu92UlpZyzz33kJ2dzbJly7jjjjsIh8MUFRXx4IMPkpOTsy/aPah8HifbGoPJboaIiIiIiOyBXkdybDYb11xzDYsWLWLBggWMGTOGhx56CMuyuPnmm7njjjtYtGgR06ZN46GHHtoXbR50KV6nSkiLiIiIiAxTvYaczMxMjjnmmMT3U6dOpaqqipUrV+LxeJg2bRoAl1xyCa+//vrgtXQf8nmcBHQzUBERERGR/9/evQdJVd99Hv+c093T3XO/AjOAXBLgQVGJwxOTMht1xsU1OGi5W2qCYHmJm7KSeCkrMVFDorg6miq1AgpJ3K2trajPpXzcKEnEBEISYyIoGskSQG6OzABzg2Hu031++0f3zHTPtWcYOH15v6om3f075/zO98x8k+aTc/p0SprQZ3Icx9HLL7+sqqoqNTQ0qKKiYmBZcXGxHMfRyZMnx5ghNeQEvOrtcxQKp9at9wAAAABM8BbSjz32mLKzs3XLLbforbfempICSkpyp2SeySoryxs2Nq00UlN2bkAFuf5zXRKS2Ej9AoyEXkGi6BUkil7BRGR6vyQccmpra3XkyBFt3LhRtm2rvLxc9fX1A8tbWlpkWZYKCwsnVEBzc7scx51v9R3tHuJOX1iS9MnRk/WDAnwAABsPSURBVJpRnH2uy0KS4p7zSBS9gkTRK0gUvYKJSKd+sW1rUidFErpc7ZlnntHu3bu1YcMGZWVlSZKWLFmi7u5u7dy5U5L0yiuv6JprrplwAckoOxDJfnxXDgAAAJB6xj2Ts3//fm3cuFFz587VzTffLEmaNWuWNmzYoKeeekpr166Nu4V0OhgIOT3cfAAAAABINeOGnAULFmjv3r0jLrvkkkv0+uuvT3lRbsv2cyYHAAAASFUTurtapsgO+CQRcgAAAIBURMgZweDlaoQcAAAAINUQckaQ5bXlsS2+EBQAAABIQYScEViWpeyAV11crgYAAACkHELOKLIDPi5XAwAAAFIQIWcU2X6vOjiTAwAAAKQcQs4osgNe7q4GAAAApCBCzihyAl4uVwMAAABSECFnFNl+rzq5uxoAAACQcgg5owhGL1czxrhdCgAAAIAJIOSMIifgU9gx6g05bpcCAAAAYAIIOaPI9nsliZsPAAAAACmGkDOK7EB/yOFzOQAAAEAqIeSMYiDkcIc1AAAAIKUQckaR7fdJ4nI1AAAAINUQckYxeLkaIQcAAABIJYScUQzceIDL1QAAAICUQsgZBTceAAAAAFITIWcUXo+toN+jUx29bpcCAAAAYAIIOWMoyQ+q6VS322UAAAAAmABCzhjKCgNqJuQAAAAAKYWQM4bSgqAaT3XJGON2KQAAAAASRMgZQ2lBQL19jk53cvMBAAAAIFUQcsZQWhiQJD6XAwAAAKQQQs4YygqCkqSmU10uVwIAAAAgUYScMZQUcCYHAAAASDWEnDEE/V7lBn1qOsmZHAAAACBVEHLGUVoQUCNncgAAAICUMW7Iqa2tVVVVlRYtWqR9+/YNjG/btk3XX3+9rrvuOtXU1GjLli1ntVC3lBYEuFwNAAAASCHe8Vaorq7WmjVrtGrVqoExY4y+853v6Be/+IUWLlyof/zjH/rqV7+qq666SradXieHSguD+uDjJjnGyLYst8sBAAAAMI5xQ86yZctGHLdtW6dPn5YknT59WtOmTUu7gCNFzuSEwkan2ntVlOd3uxwAAAAA4xg35IzEsiw9++yzuvvuu5Wdna2Ojg5t2rRpqmtLCqUxt5Em5AAAAADJb1IhJxQKadOmTXr++edVWVmp9957T/fdd582b96snJycCc1VUpI7mRKmTFlZ3pjLFzqRxx5n/HWR/ugBJIpeQaLoFSSKXsFEZHq/TCrk7NmzRydOnFBlZaUkqbKyUsFgUAcOHNBFF100obmam9vlOGYyZZyxsrI8NTaeHnMdOxyWJB2qa9WS8wrPRVlIUon0CyDRK0gcvYJE0SuYiHTqF9u2JnVSZFIfopkxY4aOHTumgwcPSpIOHDigpqYmnXfeeZOZLqll+TwqyMniNtIAAABAihj3TM66deu0ZcsWNTU16bbbblNhYaE2b96sH/7wh7rnnntkRe849sQTT6iwMD3PdJQWBvhCUAAAACBFjBtyHn74YT388MPDxleuXKmVK1eelaKSTWlBUAeOnnK7DAAAAAAJSL97Pp8FpQUBtbT1KOw4bpcCAAAAYByEnASUFQblGKPWth63SwEAAAAwDkJOAkoKApLEzQcAAACAFEDISUBFSeS7f442trtcCQAAAIDxEHISUJTnV2Fulg42tLldCgAAAIBxEHISNK88X4fqCTkAAABAsiPkJGh+Rb6Ot3apvavP7VIAAAAAjIGQk6D55fmSpMNcsgYAAAAkNUJOguaW58uS+FwOAAAAkOQIOQkK+r0qL83hczkAAABAkiPkTMC88jwdbGiTMcbtUgAAAACMgpAzAfMrCnS6s0/NfCkoAAAAkLQIORPQf/MBPpcDAAAAJC9CzgTMLMuRz2vrIJ/LAQAAAJIWIWcCvB5bc6bn6RBncgAAAICkRciZoHnl+Tpy7LRCYcftUgAAAACMgJAzQQtmFag35OjA0VNulwIAAABgBIScCVoyv1hej6339jW6XQoAAACAERByJiiQ5dWSecXata+R78sBAAAAkhAhZxIuWVim5rYeHTl+2u1SAAAAAAxByJmEpQtKZVuW3tvLJWsAAABAsiHkTEJu0KdF5xXqfT6XAwAAACQdQs4kXbKwTA3Nnapv6nC7FAAAAAAxCDmTdMnCMknibA4AAACQZAg5k1SU59f8inzt3HvC7VIAAAAAxCDknIEvXjBDnxxv18ef8sWgAAAAQLIg5JyBL11YrpyAV2/u+MTtUgAAAABEEXLOgD/Lo8uXztT7+xp14mSX2+UAAAAAECHnjFVXzpJtWfrtzjq3SwEAAACgBEJObW2tqqqqtGjRIu3bt29gvKenR2vXrtXy5ctVU1OjRx555KwWmqyK8vz6/OLp+uPfGtTZ3ed2OQAAAEDG8463QnV1tdasWaNVq1bFjT/99NPy+/168803ZVmWmpqazlqRyW75P8/WO38/pu0f1OuaL8xxuxwAAAAgo40bcpYtWzZsrKOjQ6+99pq2b98uy7IkSaWlpVNfXYqYMyNPF8wr1uZ3juiyi8qVn53ldkkAAABAxprUZ3Lq6upUWFio9evX64YbbtDq1au1c+fOqa4tpdxcvUA9fWG9uv2A26UAAAAAGW3cMzkjCYVCqqur0/nnn6/vfve7+vDDD/WNb3xDb731lnJzcyc0V0nJxNafamVleVM2T81/mq//+4cDuu6KBVp4XtGUzIvkMlX9gvRHryBR9AoSRa9gIjK9XyYVcioqKuT1enXttddKki6++GIVFRXp0KFDuvDCCyc0V3NzuxzHTKaMM1ZWlqfGxtNTNt9/vmSmtu2s0/p/3aWH1iyTHb2UD+lhqvsF6YteQaLoFSSKXsFEpFO/2LY1qZMik7pcrbi4WJdeeqnefvttSdKhQ4fU3NysOXMy+0P3Qb9XN175WR1qOK1t7x91uxwAAAAgI40bctatW6cvf/nLOnbsmG677TatWLFCkvSjH/1ImzZtUk1Nje6//3499dRTys/PP+sFJ7svXDBdF84v0b9s3a9DDW1ulwMAAABkHMsY4861YlHpdLlav/auPv3of70ry7K09rZ/Vk7AN+X7wLmXTqd+cXbRK0gUvYJE0SuYiHTql3N6uRrGlhv06RvXL1Hr6R79/PX/J8fdHAkAAABkFELOWfKZigLdXL1AHx5o1iu/3S+XT5gBAAAAGWNSd1dDYqoumanGk13asqNO/iyP/uvln3G7JAAAACDtEXLOIsuydFPVZ9XbF9bmd44oy2ur5rJ5bpcFAAAApDVCzllmWZZuuXqRevoc/ccfD6mts09frV4g2+Y7dAAAAICzgZBzDtiWpTtWLFZetk9bdtSp8WSX/vvKCxT08+sHAAAApho3HjhHbNvSzdULtHr5Qu0+2KL/8X/e06cn2t0uCwAAAEg7hJxz7MpLZum+my7W6a4+Pfq/d+qtHXXceQ0AAACYQoQcF1wwt1iP3v55XTC3SC//br+efnmXjjZ1uF0WAAAAkBYIOS7Jz8nSt//bRVrzXxap7kS7fvg/39W/bftYXT0ht0sDAAAAUhqffHeRZVm6YulMXbKwTP/++wP69V8/0R8+rNdXvjBHVZWz5Pd53C4RAAAASDmEnCSQn52l27+yWFd+bqb+448H9W+/P6A3d9TpqspZuuJzM5Ub9LldIgAAAJAyCDlJZF55vu6/can21Z3UG38+rFf/cFBvvHNYly0p1+VLK3Te9Dy3SwQAAACSHiEnCS2cXaj7b1qqTxvbteXdOv3xbw3atuuo5szI02VLZqhy0TQV5fndLhMAAABISoScJDarLFe3r1ism6o/q7/8/bj+8GG9Xvrtfr302/367MwCLVtUpspF01RSEHC7VAAAACBpEHJSQE7Ap+rKWaqunKX6pg69t/eEdu5t1CtbP9YrWz/WvPI8XTCvROfPKdJnZhbI5+WmeQAAAMhchJwUU1Gao4rSeaq5bJ6Ot3bqvb2Nen9foza/c1hv/Pmwsry2Fswq0OK5xVp0XqHOm5ZH6AEAAEBGIeSksOlF2frKF+boK1+Yo87ukPbWtWrP4VbtOdKqf//9AUmS12Np9rQ8za/Ij/yU56usKCjbslyuHgAAADg7CDlpIjvg1ecWlOlzC8okSafae7T/01M62NCmg/Vt+uPf6vW79z6VJAWyPJpZlqPZZbmaWZar2dNyNbMsRzkBblUNAACA1EfISVMFuX4t+6dpWvZP0yRJYcdRfVOnDjW0qe54u+oa27XjHyf0+w/qB7bJDfo0vTio6UXZml4U1PTibE0vyta0oqCCfloFAAAAqYF/uWYIj21r9rTIWZt+xhi1nu7Rp40dqm/q0PHWTh1v6dSeI6368+5jcdsX5GSptCCgovyASvL9Ks4PqCQ/oOLo87ygTxaXwAEAACAJEHIymGVZKs4PqDg/oIs+UxK3rKc3rBMnu3S8pTMafrrU3NatuhPt+vDjJvWFnLj1fV5bRbl+5edmqSA7K/KYk6X8nPjHgpws+byec3mYAAAAyDCEHIzIn+UZduannzFGp7v61NLWrZa2HjW3daulrVsn23vV1tGrhpZO/eOTVnV0h0acO+j3Kj/bp9ygTzlBn3IC/c+9kcfo68hzr3KCPvmzPNwsAQAAAAkh5GDCLMtSfnaW8rOzNHfG6OuFwo7aOnrV1tmrU+29OtURCUGnOnp1urNXHV19OtXRq/qmDrV39am7Nzz6PiUF/B4F/d7Bnyyvgn6PsqOvA35v9HlkvUCWV4Esj7J8HgV8HvmzPPL7PPJ6LC6tAwAASGOEHJw1Xo89cDlcIkJhRx3dIbV39akj+tPe1aeO7pC6emJ+esPq6gmprbNXx1v7x8MKhZ3xdyLJtqxo4LHljwk//Y8Bn0dZ0edZXltZPo98HlvFRdnq6e6Vz+uRz2sry2tHHz3yRl/3j/m8hCkAAAC3EHKQNLwee+BzO5PRF3JiglAk+PT0hdXTO+RxlOcdXX1qaetRT29IPX2OunsTD04jsaRo4BkMQz6fLZ8n8trr6f+xBh49nshyz8BYzHLbkje6nce25PPa8tjR5d7o8mFzDs7rsS3ZtiVP9IcABgAA0hUhB2kjEiYiNzmYKo4x6gs56gs5yi8IquF428Dr3r6w+sKO+voc9YUd9fY56guFI8uiP6GQo97oWP945Hlk266ekEJho7DjKBR2FAqb+MeQIzNlRxPPtix5PJHg4x0SgDy2HXntGWEs5ieyjp3Q9rZtRfYZDViR14q8ji6zLUu2rYF1bWtwO9uOLosdt2O2GTauEdaLjtvxc1uWCH0AAKQRQg4wBtuyIpey+TwqKQjK6R35Zgpnk+MY9YUdheNC0AiBKPo8HHai60fHnchjOGzkmMjysGMUdoyc6OPAT9gZNuY4RiEnOh6O1NLdGwlmceuOM3+yiw1Lg6ErEoisaBCyhzxGxgcDVf+Yz+dROOwMzGHFLLOHPI41d2TfkqX4eeJqUuyYhsw38v7tmP3Grh/5PUiyLEUfIsslKWad2PG4eaLLpP6xSO0Dz2Pmits+Zs7+v4VG2j76PH6d4bVa0f+wh9Xd//uM7mvocY9Rd9w+NTgGAEhOCYWc2tpavfnmmzp69Khef/11LVy4MG75+vXr9ZOf/GTEZQDOjG1b8tseyZe6t942JhKAHCcS2pyB10aOiY4NHY9dNtJ43OvI3MZEw5UZHDdGA4HLMUYmun3YceQYRV9HA5pjZBwNPo9uH6l/8Dj6x0x/HTGvjTHy+bzq7ukbtq7pr0tD5nZi9qHovDH7H5hHJjo+tCaNWSvOjtiQJw0JeNEVrP5UNLB+dJ3oc9u24v5Gg9vGBELFh6qBdRS/7/59WTErDu5zSMiMOYqR6o2tNb6uIesMHviwfQ09noHZhgRWa8j6g+UPqXfI8Yx8TDHHM8YxjV5X/19n4NDj5opuHVdDbN2JbDv8OONXsoaNR+Tm+NXR2TvCnIMbjLatZVlD1h1S77DjUPzvZoT9DQ361hj1jLvtKHWN9HuazO84dp9W3Fj8xsOPYex9Dv3vyIS2HVLE0N6OrXl4vcPnHbrvls4+tZ7sHPX3Mep8Ufk5WSrK8w/fKIUkFHKqq6u1Zs0arVq1atiyv//97/rggw9UUVEx5cUBSA+WZcljWfLYbldybpSV5amx8bTbZQyID0ujh6JIkBp8HrutMWZwmSRF55MkJ7JgxO0H14ksNDFBzgzZ3onOO7iv+P1G9hlZaei++udU3PzD6zb9tcbOP9pxj3j8Q+qO3Zeix6j4Ogb/DsPXCQR96uzqja7QPx5Ta8yx9l+7GjvHwDqx22uwRjNkztHWiT3muFpHrWtw+9j9GCe6zkCNJqbukY8p7ncyyjENq3XYMcX+7QaqGlZv3O+gf85RjmnY/vrnHDoW+3eJez28nvjXsfOPvC3gFo9t6fn7v5zS322YUMhZtmzZiOO9vb169NFH9eMf/1i33nrrlBYGAJgasZe2IbkkWyBGcjLGqKwsTyf6e2VIOBopOA0NVaOFsjG3HTY+WM/Icw5uMN62Q/c5akiMWWm0/Y0bTmO3T3DbwV0N/z31vx41nI7xOx5tnyPWOsKcsfPGj8XXX1AQ1KlTncP2n+h8hXn+lA440hl+Jue5557TypUrNXv27KmqBwAAADEGP/83yjVRwBD8HyhnEHJ27dqljz76SA888MAZFVBSkntG25+psrI8V/eP1EK/IFH0ChJFryBR9AomItP7ZdIhZ8eOHTp48KCqq6slSceOHdMdd9yhJ554Ql/60pcSnqe5uV2OS3deIuViIugXJIpeQaLoFSSKXsFEpFO/2LY1qZMikw45d911l+66666B11VVVdq4cSN3VwMAAADgqoRCzrp167RlyxY1NTXptttuU2FhoTZv3jwlBdi2u9eTur1/pBb6BYmiV5AoegWJolcwEenSL5M9DssMvcUDAAAAAKSwDPnWCgAAAACZgpADAAAAIK0QcgAAAACkFUIOAAAAgLRCyAEAAACQVgg5AAAAANIKIQcAAABAWiHkAAAAAEgrhBwAAAAAaSVjQ86hQ4d000036eqrr9ZNN92kw4cPu10SXNLa2qqvf/3ruvrqq1VTU6NvfvObamlpkSR98MEHWrlypa6++mrdfvvtam5uHthurGVIf+vXr9eiRYu0b98+SfQKhuvp6dHatWu1fPly1dTU6JFHHpE09vsP702Za9u2bbr++ut13XXXqaamRlu2bJFEv0Cqra1VVVVV3HuONPneyJi+MRlq9erV5rXXXjPGGPPaa6+Z1atXu1wR3NLa2mr+8pe/DLx+8sknzfe+9z3jOI656qqrzI4dO4wxxmzYsME8+OCDxhgz5jKkv927d5s77rjDXHHFFWbv3r30Ckb02GOPmccff9w4jmOMMaaxsdEYM/b7D+9NmclxHLNs2TKzd+9eY4wxe/bsMUuXLjXhcJh+gdmxY4epr683V1555UCPGDP5/y3JlL7JyJDT1NRkKisrTSgUMsYYEwqFTGVlpWlubna5MiSD3/zmN+bWW281H374oVmxYsXAeHNzs1m6dKkxxoy5DOmtp6fH3HjjjeaTTz4ZeMOhVzBUe3u7qaysNO3t7XHjY73/8N6UuRzHMZ///OfNzp07jTHGvPvuu2b58uX0C+LEhpzJ9kYm9Y3X7TNJbmhoaND06dPl8XgkSR6PR9OmTVNDQ4OKi4tdrg5uchxHL7/8sqqqqtTQ0KCKioqBZcXFxXIcRydPnhxzWWFhoRul4xx57rnntHLlSs2ePXtgjF7BUHV1dSosLNT69ev117/+VTk5ObrnnnsUCARGff8xxvDelKEsy9Kzzz6ru+++W9nZ2ero6NCmTZvG/PcK/ZLZJtsbmdQ3GfuZHGAkjz32mLKzs3XLLbe4XQqS0K5du/TRRx/pa1/7mtulIMmFQiHV1dXp/PPP16uvvqoHHnhA3/rWt9TZ2el2aUhCoVBImzZt0vPPP69t27bphRde0H333Ue/AGcgI8/klJeX6/jx4wqHw/J4PAqHwzpx4oTKy8vdLg0uqq2t1ZEjR7Rx40bZtq3y8nLV19cPLG9paZFlWSosLBxzGdLXjh07dPDgQVVXV0uSjh07pjvuuEOrV6+mVxCnoqJCXq9X1157rSTp4osvVlFRkQKBwKjvP8YY3psy1J49e3TixAlVVlZKkiorKxUMBuX3++kXjGisf8uO1RuZ1DcZeSanpKREixcv1htvvCFJeuONN7R48eK0O02HxD3zzDPavXu3NmzYoKysLEnSkiVL1N3drZ07d0qSXnnlFV1zzTXjLkP6uuuuu/SnP/1JW7du1datWzVjxgy9+OKLuvPOO+kVxCkuLtall16qt99+W1LkbkbNzc2aO3fuqO8/vDdlrhkzZujYsWM6ePCgJOnAgQNqamrSnDlz6BeMaKy//2SXpRvLGGPcLsINBw4c0IMPPqi2tjbl5+ertrZW8+fPd7ssuGD//v269tprNXfuXAUCAUnSrFmztGHDBr3//vtau3atenp6NHPmTD399NMqLS2VpDGXITNUVVVp48aNWrhwIb2CYerq6vT9739fJ0+elNfr1b333qvLL798zPcf3psy1y9/+Uv97Gc/k2VZkqRvf/vbuuqqq+gXaN26ddqyZYuamppUVFSkwsJCbd68edK9kSl9k7EhBwAAAEB6ysjL1QAAAACkL0IOAAAAgLRCyAEAAACQVgg5AAAAANIKIQcAAABAWiHkAAAAAEgrhBwAAAAAaYWQAwAAACCtEHIAAOdcVVWVXnzxRdXU1KiyslL33nuvenp69NOf/lQ33nijQqGQJOmll17SihUr1NPT43LFAIBUQsgBALji17/+tX7+85/rd7/7nfbu3atXX31Vd955p3w+n1544QUdPnxYzzzzjJ5++mn5/X63ywUApBCv2wUAADLT6tWrNX36dEnSlVdeqT179si2bdXW1uqGG27Qr371K9155506//zzXa4UAJBqOJMDAHBFWVnZwPNgMKjOzk5J0qxZs3TppZfq6NGjWrVqlVvlAQBSGCEHAJBUtm/frl27dumLX/yinnrqKbfLAQCkIEIOACBptLS06KGHHtLjjz+uJ598Ulu3btX27dvdLgsAkGIIOQCApPGDH/xAVVVVuvzyy1VUVKTHH39cDz30kFpbW90uDQCQQixjjHG7CAAAAACYKpzJAQAAAJBWCDkAAAAA0gohBwAAAEBaIeQAAAAASCuEHAAAAABphZADAAAAIK0QcgAAAACkFUIOAAAAgLRCyAEAAACQVv4/q6a0DgnDTo4AAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 1008x432 with 2 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "# Plot Cycles and Instructions - both per grid cell\n",
-    "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
-    "df.set_index(\"nx\")[\"Cycles / Loop Iteration\"].plot(ax=ax1, legend=True);\n",
-    "df.set_index(\"nx\")[\"Instructions / Loop Iteration\"].plot(ax=ax2, legend=True);"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "What is your result? What value do the graphs come asymptotically close too?\n",
-    "\n",
-    "We are revisiting the graph in a little while.\n",
-    "\n",
-    "[Back to top](#toc)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Task 2: Measuring Loads and Stores\n",
-    "<a name=\"task2\"></a>\n",
-    "\n",
-    "Looking at the source code, how many loads and stores from / to memory do you expect? Have a look at the loop which we instrumented.\n",
-    "\n",
-    "Let's compare your estimate to what the system actually does!\n",
-    "\n",
-    "<a name=\"task2-a\"></a>**TASK A**: Please measure counters for loads and stores. See the TODOs in [`poisson2d.ld_st.c`](/edit/Tasks/poisson2d.ld_st.c). This time, implement `PM_LD_CMPL` and `PM_ST_CMPL`.\n",
-    "\n",
-    "Compile with `make task2`, test your program with a single run with `make run_task2`, and then finally submit a benchmarking run to the batch system with `make bench_task2`. The following cell will take care of all this.\n",
-    "\n",
-    "[Back to top](#toc)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 11,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "gcc -DUSE_DOUBLE -Ofast -std=c99 -lm -lpapi  poisson2d.ld_st.c -o poisson2d.ld_st.bin\n",
-      "bsub -W 60 -nnodes 1 -Is jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.ld_st.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv\n",
-      "Job <4032> is submitted to default queue <batch>.\n",
-      "<<Waiting for dispatch ...>>\n",
-      "<<Starting on login1>>\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,4,0.0012,95115,474,789,21343,106,249\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,8,0.0014,137115,684,999,33343,166,309\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,12,0.0014,197115,984,1299,45343,226,369\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,16,0.0015,257115,1284,1599,63343,316,459\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,20,0.0016,317115,1584,1899,75343,376,519\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,24,0.0016,377115,1884,2199,93343,466,609\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,28,0.0017,437115,2184,2499,105343,526,669\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,32,0.0017,497115,2484,2799,123343,616,759\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,36,0.0018,557115,2784,3099,135343,676,819\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,40,0.0020,617115,3084,3399,153343,766,909\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,44,0.0019,677115,3384,3699,165343,826,969\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,48,0.0020,737115,3684,3999,183343,916,1059\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,52,0.0021,797115,3984,4299,195343,976,1119\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,56,0.0021,857115,4284,4599,213343,1066,1209\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,60,0.0023,917115,4584,4899,225343,1126,1269\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,64,0.0023,977115,4884,5199,243343,1216,1359\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,68,0.0024,1037115,5184,5499,255343,1276,1419\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,72,0.0025,1097115,5484,5799,273343,1366,1509\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,76,0.0025,1157115,5784,6099,285343,1426,1569\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,80,0.0025,1217115,6084,6399,303343,1516,1659\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,84,0.0026,1277115,6384,6699,315343,1576,1719\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,88,0.0027,1337115,6684,6999,333343,1666,1809\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,92,0.0027,1397115,6984,7299,345343,1726,1869\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,96,0.0028,1457115,7284,7599,363343,1816,1959\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,100,0.0029,1517115,7584,7899,375343,1876,2019\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,104,0.0029,1577115,7884,8199,393343,1966,2109\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,108,0.0030,1637115,8184,8499,405343,2026,2169\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,112,0.0030,1697115,8484,8799,423343,2116,2259\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,116,0.0031,1757115,8784,9099,435343,2176,2319\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,120,0.0033,1817115,9084,9399,453343,2266,2409\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,124,0.0032,1877115,9384,9699,465343,2326,2469\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,128,0.0033,1937115,9684,9999,483343,2416,2559\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,132,0.0034,1997115,9984,10299,495343,2476,2619\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,136,0.0035,2057115,10284,10599,513343,2566,2709\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,140,0.0035,2117115,10584,10899,525343,2626,2769\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,144,0.0036,2177115,10884,11199,543343,2716,2859\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,148,0.0036,2237115,11184,11499,555343,2776,2919\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,152,0.0037,2297115,11484,11799,573343,2866,3009\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,156,0.0038,2357115,11784,12099,585343,2926,3069\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,160,0.0038,2417115,12084,12399,603343,3016,3159\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,164,0.0039,2477115,12384,12699,615343,3076,3219\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,168,0.0039,2537115,12684,12999,633343,3166,3309\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,172,0.0040,2597115,12984,13299,645343,3226,3369\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,176,0.0041,2657115,13284,13599,663343,3316,3459\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,180,0.0041,2717115,13584,13899,675343,3376,3519\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,184,0.0042,2777115,13884,14199,693343,3466,3609\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,188,0.0043,2837115,14184,14499,705343,3526,3669\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,192,0.0043,2897115,14484,14799,723343,3616,3759\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,196,0.0044,2957115,14784,15099,735343,3676,3819\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,200,0.0045,3017115,15084,15399,753343,3766,3909\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,204,0.0045,3077115,15384,15699,765343,3826,3969\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,208,0.0046,3137115,15684,15999,783343,3916,4059\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,212,0.0047,3197115,15984,16299,795343,3976,4119\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,216,0.0047,3257115,16284,16599,813343,4066,4209\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,220,0.0048,3317115,16584,16899,825343,4126,4269\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,224,0.0049,3377115,16884,17199,843343,4216,4359\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,228,0.0049,3437115,17184,17499,855343,4276,4419\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,232,0.0050,3497115,17484,17799,873343,4366,4509\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,236,0.0051,3557115,17784,18099,885343,4426,4569\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,240,0.0052,3617115,18084,18399,903343,4516,4659\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,244,0.0052,3677115,18384,18699,915343,4576,4719\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,248,0.0052,3737115,18684,18999,933343,4666,4809\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,252,0.0054,3797115,18984,19299,945343,4726,4869\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,256,0.0054,3857115,19284,19599,963343,4816,4959\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,260,0.0054,3917115,19584,19899,975343,4876,5019\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,264,0.0055,3977115,19884,20199,993343,4966,5109\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,268,0.0056,4037115,20184,20499,1005343,5026,5169\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,272,0.0056,4097115,20484,20799,1023343,5116,5259\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,276,0.0057,4157115,20784,21099,1035343,5176,5319\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,280,0.0057,4217115,21084,21399,1053343,5266,5409\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,284,0.0058,4277115,21384,21699,1065343,5326,5469\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,288,0.0059,4337115,21684,21999,1083343,5416,5559\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,292,0.0059,4397115,21984,22299,1095343,5476,5619\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,296,0.0061,4457115,22284,22599,1113343,5566,5709\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,300,0.0061,4517115,22584,22899,1125343,5626,5769\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,304,0.0061,4577115,22884,23199,1143343,5716,5859\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,308,0.0062,4637115,23184,23499,1155343,5776,5919\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,312,0.0063,4697115,23484,23799,1173343,5866,6009\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,316,0.0064,4757115,23784,24099,1185343,5926,6069\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,320,0.0064,4817115,24084,24399,1203343,6016,6159\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,324,0.0065,4877115,24384,24699,1215343,6076,6219\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,328,0.0065,4937115,24684,24999,1233343,6166,6309\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,332,0.0066,4997115,24984,25299,1245343,6226,6369\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,336,0.0066,5057115,25284,25599,1263343,6316,6459\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,340,0.0068,5117115,25584,25899,1275343,6376,6519\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,344,0.0068,5177115,25884,26199,1293343,6466,6609\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,348,0.0069,5237115,26184,26499,1305343,6526,6669\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,352,0.0071,5297115,26484,26799,1323343,6616,6759\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,356,0.0070,5357115,26784,27099,1335343,6676,6819\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,360,0.0070,5417115,27084,27399,1353343,6766,6909\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,364,0.0071,5477115,27384,27699,1365343,6826,6969\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,368,0.0072,5537115,27684,27999,1383343,6916,7059\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,372,0.0073,5597115,27984,28299,1395343,6976,7119\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,376,0.0073,5657115,28284,28599,1413343,7066,7209\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,380,0.0074,5717115,28584,28899,1425343,7126,7269\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,384,0.0074,5777115,28884,29199,1443343,7216,7359\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,388,0.0075,5837115,29184,29499,1455343,7276,7419\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,392,0.0076,5897115,29484,29799,1473343,7366,7509\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,396,0.0076,5957115,29784,30099,1485343,7426,7569\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,400,0.0078,6017115,30084,30399,1503343,7516,7659\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,404,0.0078,6077115,30384,30699,1515343,7576,7719\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,408,0.0078,6137115,30684,30999,1533343,7666,7809\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,412,0.0079,6197115,30984,31299,1545343,7726,7869\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,416,0.0080,6257115,31284,31599,1563343,7816,7959\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,420,0.0080,6317115,31584,31899,1575343,7876,8019\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,424,0.0081,6377115,31884,32199,1593343,7966,8109\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,428,0.0081,6437115,32184,32499,1605343,8026,8169\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,432,0.0082,6497115,32484,32799,1623343,8116,8259\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,436,0.0083,6557115,32784,33099,1635343,8176,8319\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,440,0.0083,6617115,33084,33399,1653343,8266,8409\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,444,0.0084,6677115,33384,33699,1665343,8326,8469\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,448,0.0085,6737115,33684,33999,1683343,8416,8559\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,452,0.0085,6797115,33984,34299,1695343,8476,8619\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,456,0.0086,6857115,34284,34599,1713343,8566,8709\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,460,0.0087,6917115,34584,34899,1725343,8626,8769\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,464,0.0088,6977115,34884,35199,1743343,8716,8859\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,468,0.0088,7037115,35184,35499,1755343,8776,8919\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,472,0.0089,7097115,35484,35799,1773343,8866,9009\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,476,0.0090,7157115,35784,36099,1785343,8926,9069\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,480,0.0090,7217115,36084,36399,1803343,9016,9159\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,484,0.0091,7277115,36384,36699,1815343,9076,9219\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,488,0.0091,7337115,36684,36999,1833343,9166,9309\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,492,0.0092,7397115,36984,37299,1845343,9226,9369\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,496,0.0093,7457115,37284,37599,1863343,9316,9459\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,500,0.0093,7517115,37584,37899,1875343,9376,9519\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,504,0.0094,7577115,37884,38199,1893343,9466,9609\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,508,0.0095,7637115,38184,38499,1905343,9526,9669\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,512,0.0095,7697115,38484,38799,1923343,9616,9759\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,516,0.0096,7757115,38784,39099,1938343,9691,9834\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,520,0.0097,7817115,39084,39399,1953343,9766,9909\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,524,0.0097,7877115,39384,39699,1968343,9841,9984\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,528,0.0098,7937115,39684,39999,1983343,9916,10059\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,532,0.0099,7997115,39984,40299,1998343,9991,10134\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,536,0.0100,8057115,40284,40599,2013343,10066,10209\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,540,0.0101,8117115,40584,40899,2028343,10141,10284\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,544,0.0101,8177115,40884,41199,2043343,10216,10359\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,548,0.0102,8237115,41184,41499,2058343,10291,10434\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,552,0.0103,8297115,41484,41799,2073343,10366,10509\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,556,0.0104,8357115,41784,42099,2088343,10441,10584\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,560,0.0104,8417115,42084,42399,2103343,10516,10659\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,564,0.0105,8477115,42384,42699,2118343,10591,10734\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,568,0.0106,8537115,42684,42999,2133343,10666,10809\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,572,0.0106,8597115,42984,43299,2148343,10741,10884\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,576,0.0107,8657115,43284,43599,2163343,10816,10959\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,580,0.0109,8717115,43584,43899,2178343,10891,11034\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,584,0.0108,8777115,43884,44199,2193343,10966,11109\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,588,0.0110,8837115,44184,44499,2208343,11041,11184\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,592,0.0110,8897115,44484,44799,2223343,11116,11259\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,596,0.0111,8957115,44784,45099,2238343,11191,11334\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,600,0.0111,9017115,45084,45399,2253343,11266,11409\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,604,0.0112,9077115,45384,45699,2268343,11341,11484\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,608,0.0113,9137115,45684,45999,2283343,11416,11559\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,612,0.0113,9197115,45984,46299,2298343,11491,11634\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,616,0.0114,9257115,46284,46599,2313343,11566,11709\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,620,0.0115,9317115,46584,46899,2328343,11641,11784\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,624,0.0115,9377115,46884,47199,2343343,11716,11859\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,628,0.0115,9437115,47184,47499,2358343,11791,11934\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,632,0.0117,9497115,47484,47799,2373343,11866,12009\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,636,0.0118,9557115,47784,48099,2388343,11941,12084\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,640,0.0119,9617115,48084,48399,2403343,12016,12159\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,644,0.0118,9677115,48384,48699,2418343,12091,12234\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,648,0.0119,9737115,48684,48999,2433343,12166,12309\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,652,0.0121,9797115,48984,49299,2448343,12241,12384\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,656,0.0121,9857115,49284,49599,2463343,12316,12459\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,660,0.0122,9917115,49584,49899,2478343,12391,12534\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,664,0.0122,9977115,49884,50199,2493343,12466,12609\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,668,0.0123,10037115,50184,50499,2508343,12541,12684\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,672,0.0123,10097115,50484,50799,2523343,12616,12759\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,676,0.0125,10157115,50784,51099,2538343,12691,12834\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,680,0.0124,10217115,51084,51399,2553343,12766,12909\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,684,0.0125,10277115,51384,51699,2568343,12841,12984\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,688,0.0126,10337115,51684,51999,2583343,12916,13059\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,692,0.0126,10397115,51984,52299,2598343,12991,13134\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,696,0.0127,10457115,52284,52599,2613343,13066,13209\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,700,0.0128,10517115,52584,52899,2628343,13141,13284\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,704,0.0129,10577115,52884,53199,2643343,13216,13359\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,708,0.0129,10637115,53184,53499,2658343,13291,13434\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,712,0.0129,10697115,53484,53799,2673343,13366,13509\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,716,0.0130,10757115,53784,54099,2688343,13441,13584\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,720,0.0130,10817115,54084,54399,2703343,13516,13659\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,724,0.0132,10877115,54384,54699,2718343,13591,13734\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,728,0.0131,10937115,54684,54999,2733343,13666,13809\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,732,0.0133,10997115,54984,55299,2748343,13741,13884\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,736,0.0135,11057115,55284,55599,2763343,13816,13959\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,740,0.0134,11117115,55584,55899,2778343,13891,14034\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,744,0.0134,11177115,55884,56199,2793343,13966,14109\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,748,0.0135,11237115,56184,56499,2808343,14041,14184\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,752,0.0136,11297115,56484,56799,2823343,14116,14259\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,756,0.0136,11357115,56784,57099,2838343,14191,14334\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,760,0.0138,11417115,57084,57399,2853343,14266,14409\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,764,0.0139,11477115,57384,57699,2868343,14341,14484\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,768,0.0138,11537115,57684,57999,2883343,14416,14559\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,772,0.0140,11597115,57984,58299,2898343,14491,14634\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,776,0.0140,11657115,58284,58599,2913343,14566,14709\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,780,0.0142,11717115,58584,58899,2928343,14641,14784\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,784,0.0141,11777115,58884,59199,2943343,14716,14859\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,788,0.0143,11837115,59184,59499,2958343,14791,14934\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,792,0.0143,11897115,59484,59799,2973343,14866,15009\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,796,0.0146,11957115,59784,60099,2988343,14941,15084\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,800,0.0144,12017115,60084,60399,3003343,15016,15159\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,804,0.0145,12077115,60384,60699,3018343,15091,15234\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,808,0.0146,12137115,60684,60999,3033343,15166,15309\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,812,0.0146,12197115,60984,61299,3048343,15241,15384\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,816,0.0146,12257115,61284,61599,3063343,15316,15459\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,820,0.0148,12317115,61584,61899,3078343,15391,15534\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,824,0.0149,12377115,61884,62199,3093343,15466,15609\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,828,0.0149,12437115,62184,62499,3108343,15541,15684\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,832,0.0149,12497115,62484,62799,3123343,15616,15759\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,836,0.0151,12557115,62784,63099,3138343,15691,15834\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,840,0.0150,12617115,63084,63399,3153343,15766,15909\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,844,0.0152,12677115,63384,63699,3168343,15841,15984\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,848,0.0152,12737115,63684,63999,3183343,15916,16059\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,852,0.0153,12797115,63984,64299,3198343,15991,16134\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,856,0.0153,12857115,64284,64599,3213343,16066,16209\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,860,0.0155,12917115,64584,64899,3228343,16141,16284\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,864,0.0156,12977115,64884,65199,3243343,16216,16359\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,868,0.0157,13037115,65184,65499,3258343,16291,16434\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,872,0.0156,13097115,65484,65799,3273343,16366,16509\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,876,0.0157,13157115,65784,66099,3288343,16441,16584\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,880,0.0158,13217115,66084,66399,3303343,16516,16659\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,884,0.0158,13277115,66384,66699,3318343,16591,16734\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,888,0.0159,13337115,66684,66999,3333343,16666,16809\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,892,0.0160,13397115,66984,67299,3348343,16741,16884\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,896,0.0161,13457115,67284,67599,3363343,16816,16959\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,900,0.0162,13517115,67584,67899,3378343,16891,17034\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,904,0.0163,13577115,67884,68199,3393343,16966,17109\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,908,0.0164,13637115,68184,68499,3408343,17041,17184\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,912,0.0165,13697115,68484,68799,3423343,17116,17259\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,916,0.0165,13757115,68784,69099,3438343,17191,17334\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,920,0.0165,13817115,69084,69399,3453343,17266,17409\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,924,0.0168,13877115,69384,69699,3468343,17341,17484\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,928,0.0167,13937115,69684,69999,3483343,17416,17559\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,932,0.0169,13997115,69984,70299,3498343,17491,17634\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,936,0.0168,14057115,70284,70599,3513343,17566,17709\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,940,0.0169,14117115,70584,70899,3528343,17641,17784\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,944,0.0169,14177115,70884,71199,3543343,17716,17859\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,948,0.0170,14237115,71184,71499,3558343,17791,17934\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,952,0.0171,14297115,71484,71799,3573343,17866,18009\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,956,0.0173,14357115,71784,72099,3588343,17941,18084\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,960,0.0172,14417115,72084,72399,3603343,18016,18159\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,964,0.0177,14477115,72384,72699,3618343,18091,18234\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,968,0.0177,14537115,72684,72999,3633343,18166,18309\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,972,0.0177,14597115,72984,73299,3648343,18241,18384\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,976,0.0179,14657115,73284,73599,3663343,18316,18459\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,980,0.0180,14717115,73584,73899,3678343,18391,18534\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,984,0.0180,14777115,73884,74199,3693343,18466,18609\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,988,0.0180,14837115,74184,74499,3708343,18541,18684\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,992,0.0181,14897115,74484,74799,3723343,18616,18759\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,996,0.0184,14957115,74784,75099,3738343,18691,18834\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,1000,0.0182,15017115,75084,75399,3753343,18766,18909\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,1004,0.0183,15077115,75384,75699,3768343,18841,18984\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,1008,0.0184,15137115,75684,75999,3783343,18916,19059\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,1012,0.0185,15197115,75984,76299,3798343,18991,19134\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,1016,0.0185,15257115,76284,76599,3813343,19066,19209\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,1020,0.0186,15317115,76584,76899,3828343,19141,19284\n",
-      "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n",
-      "200,32,1024,0.0183,15377115,76884,77199,3843343,19216,19359\n",
-      "mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.ld_st.bin.csv .\n"
-     ]
-    }
-   ],
-   "source": [
-    "!make bench_task2"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Once the run finished, let's plot it again with the following cell (non-interactive: `make graph_task2a`)."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>iter</th>\n",
-       "      <th>ny</th>\n",
-       "      <th>nx</th>\n",
-       "      <th>Runtime</th>\n",
-       "      <th>PM_LD_CMPL (total)</th>\n",
-       "      <th>PM_LD_CMPL (min)</th>\n",
-       "      <th>PM_LD_CMPL (max)</th>\n",
-       "      <th>PM_ST_CMPL (total)</th>\n",
-       "      <th>PM_ST_CMPL (min)</th>\n",
-       "      <th>PM_ST_CMPL (max)</th>\n",
-       "      <th>Loads / Loop Iteration</th>\n",
-       "      <th>Stores / Loop Iteration</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>200</td>\n",
-       "      <td>32</td>\n",
-       "      <td>4</td>\n",
-       "      <td>0.0012</td>\n",
-       "      <td>95115</td>\n",
-       "      <td>474</td>\n",
-       "      <td>789</td>\n",
-       "      <td>21343</td>\n",
-       "      <td>106</td>\n",
-       "      <td>249</td>\n",
-       "      <td>3.703125</td>\n",
-       "      <td>0.828125</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>200</td>\n",
-       "      <td>32</td>\n",
-       "      <td>8</td>\n",
-       "      <td>0.0014</td>\n",
-       "      <td>137115</td>\n",
-       "      <td>684</td>\n",
-       "      <td>999</td>\n",
-       "      <td>33343</td>\n",
-       "      <td>166</td>\n",
-       "      <td>309</td>\n",
-       "      <td>2.671875</td>\n",
-       "      <td>0.648438</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>200</td>\n",
-       "      <td>32</td>\n",
-       "      <td>12</td>\n",
-       "      <td>0.0014</td>\n",
-       "      <td>197115</td>\n",
-       "      <td>984</td>\n",
-       "      <td>1299</td>\n",
-       "      <td>45343</td>\n",
-       "      <td>226</td>\n",
-       "      <td>369</td>\n",
-       "      <td>2.562500</td>\n",
-       "      <td>0.588542</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>200</td>\n",
-       "      <td>32</td>\n",
-       "      <td>16</td>\n",
-       "      <td>0.0015</td>\n",
-       "      <td>257115</td>\n",
-       "      <td>1284</td>\n",
-       "      <td>1599</td>\n",
-       "      <td>63343</td>\n",
-       "      <td>316</td>\n",
-       "      <td>459</td>\n",
-       "      <td>2.507812</td>\n",
-       "      <td>0.617188</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>200</td>\n",
-       "      <td>32</td>\n",
-       "      <td>20</td>\n",
-       "      <td>0.0016</td>\n",
-       "      <td>317115</td>\n",
-       "      <td>1584</td>\n",
-       "      <td>1899</td>\n",
-       "      <td>75343</td>\n",
-       "      <td>376</td>\n",
-       "      <td>519</td>\n",
-       "      <td>2.475000</td>\n",
-       "      <td>0.587500</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "   iter  ny  nx  Runtime  PM_LD_CMPL (total)  PM_LD_CMPL (min)  \\\n",
-       "0   200  32   4   0.0012               95115               474   \n",
-       "1   200  32   8   0.0014              137115               684   \n",
-       "2   200  32  12   0.0014              197115               984   \n",
-       "3   200  32  16   0.0015              257115              1284   \n",
-       "4   200  32  20   0.0016              317115              1584   \n",
-       "\n",
-       "    PM_LD_CMPL (max)  PM_ST_CMPL (total)  PM_ST_CMPL (min)   PM_ST_CMPL (max)  \\\n",
-       "0                789               21343               106                249   \n",
-       "1                999               33343               166                309   \n",
-       "2               1299               45343               226                369   \n",
-       "3               1599               63343               316                459   \n",
-       "4               1899               75343               376                519   \n",
-       "\n",
-       "   Loads / Loop Iteration  Stores / Loop Iteration  \n",
-       "0                3.703125                 0.828125  \n",
-       "1                2.671875                 0.648438  \n",
-       "2                2.562500                 0.588542  \n",
-       "3                2.507812                 0.617188  \n",
-       "4                2.475000                 0.587500  "
-      ]
-     },
-     "execution_count": 6,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "df_ldst = pd.read_csv(\"poisson2d.ld_st.bin.csv\", skiprows=range(2, 50000, 2))\n",
-    "common.normalize(df_ldst, \"PM_LD_CMPL (min)\", \"Loads / Loop Iteration\")\n",
-    "common.normalize(df_ldst, \"PM_ST_CMPL (min)\", \"Stores / Loop Iteration\")\n",
-    "df_ldst.head()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 79,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAF/CAYAAACL5xIQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xl8VPX97/H3WWYCWSABBgyLAi6YIqjIoj/E+7OiUBtMrGIV7cVa4Soqyq8ICEhAURusK0VpcUF/1gVQQBZRufxuBURahCoCIiCLQAIhJJiEJZnl/hEyEBLIzCRhcpLX8/HIIzPnfM853xk+trz5fs/3GIFAICAAAAAAaGDMaHcAAAAAAKKBMAQAAACgQSIMAQAAAGiQCEMAAAAAGiTCEAAAAIAGiTAEAAAAoEEiDAEAAABokAhDAAAAABokwhAAAACABokwBAAAAKBBskNpNGzYMO3evVumaSo2NlaPP/64UlJSyrUZNWqUNm/eHHy/efNmTZs2Tdddd52mTp2qd999Vy1btpQkdevWTRkZGTX4MQAAAAAgPEYgEAhU1aigoEAJCQmSpKVLl2ratGmaO3fuadt///33Gjx4sJYvXy63262pU6fq8OHDGj16dM31HAAAAACqIaRpcmVBSJIKCwtlGMYZ28+ZM0cDBgyQ2+2uXu8AAAAAoJaENE1OksaNG6eVK1cqEAjotddeO2274uJiLViwQDNnziy3fdGiRVqxYoU8Ho8eeughXX755WF1NC+vSH5/lYNYtaZ583jl5hZG7fpwDmoFoaJWEA7qBaGiVhCq+lQrpmkoKSku7ONCmiZ3snnz5mnRokWaMWNGpfsXL16sGTNmlJtGl5OTo8TERLlcLq1cuVIjR47U4sWLlZSUFHaHAQAAAKAmhDwyVCY9PV0TJkxQXl5epWHmww8/1C233FJum8fjCb7u3bu3kpOTtWXLFvXs2TPk6+bmFkZ1ZMjjSVBOTkHUrg/noFYQKmoF4aBeECpqBaGqT7VimoaaN48P/7iqGhQVFSkrKyv4ftmyZWratKkSExMrtM3OztbXX3+t1NTUctv37dsXfL1p0ybt2bNHHTp0CLuzAAAAAFBTqhwZOnLkiB5++GEdOXJEpmmqadOmmj59ugzD0JAhQzR8+HB16dJFkjR37lxde+21FYLS888/rw0bNsg0TblcLk2ZMqXcaBEAAAAAnG1h3zMULXVhmtzuPfl6+cNv9b/7d1KrpNio9QV1W30ackbtolYQDuoFoTpbteLzeZWXlyOvt7jWr4XaYZqm/H5/tLsRNtt2KynJI8s6Ma4T6TS5sO8ZasgOFhzVpp152p71M2EIAAA0aHl5OWrUKFZxcedU+dgV1E22bcrrdVYYCgQCKir6WXl5OWrRIrna5wvpOUMo5bJKvy6v1xGDaQAAALXG6y1WXFwTghDOKsMwFBfXpMZGJAlDYbDt42HI56wEDQAAUBsIQoiGmqw7wlAY7OMjQyWEIQAAgDrl1lsH6Mcft9bKuRcvXqDx40eFfdzMma/pww9nVdj+4INDtXLl8proWlieemqiPvzwA0nS2rVrtHr1qlq5zqxZ7yov72Dw/bx5c/TBB3+vlWtVF2EoDMFpcoQhAAAAVGHFii909dXXRLsblVq37mutXv1VRMf6fL4z7p81671yYSg9/Vb99rd3RnSt2sYCCmGw7dIhOafdaAYAANBQbdq0QS+++GcdPXpEjRo11iOPjFRKSmd5vV6NGvWIDh06pGPHjukXv+isRx8dK5fLpZKSEr3wwhStW/e1PJ6WOvfc9sHzrV//jV54YYr8/oC8Xq8GD75H11/fv8J19+/fp0AgoFatzgm5r7t3/6Rnn31a+fl5sixLQ4c+oCuv/A9J0ldffam//vUv8vv9SkxM0qOPjlXbtu20du0avfTSc+rU6WJt3fqDLMvS2LET1aFDx9NeZ9u2rZo//yMFAn7985+rdd11N+h3v7tbq1at0Ntvv6Fjx4rlcrn00EP/pUsu6aK1a9fo5Zef16WXXqZNmzZq8OA/qKioSLNnvyevt0SS9MADj6h79556663XdeBAjsaPHy23O0YZGZO1bNnnOnLkiB588BH5fD69+upUrV79pSSpV6//0P33PyTLsvTUUxPldrv100+7tH//PnXu3EXjx0+q1emYhKEwWKYpw5BKfCygAAAAUGbl+iyt+DarVs59dddk9e4S2aphJSUlGjdulB57bIJ69OilNWv+qXHjRumDD+bJtm1lZExW06aJCgQCmjw5Q4sWzVd6+q2aP/9DZWXt1X//9yx5vV498MAQJSeX9uHvf39Lt902SP37/1qBQECFhYWVXnv58n+EPSo0adJ4paXdrNTUdG3f/qMefHCI3nlnjqSAJk+eoKlT/6YOHTpq4cJ5mjRpvGbMeEuStG3bFj3yyEhdfvkV+uSThZo8OUOvv/7fp73O+edfoLS03+jYsaMaNuxhSdKePbs1c+brev75qYqLi9ePP27TyJHD9dFHiyRJP/64VSNHjtGIEaXTBQ8dytf11/eTYRjatWuHHn54mObOXazBg/+gBQvmafLkTHXseEGFa3/88Vxt2fKD3nijdNrcyJHD9fHHc3Xzzbcev842vfjiKzJNU7///Z1as2a1evS4MqzvMRyEoTC5LJNpcgAAAA6wa9dOuVwu9ejRS5LUvXtPuVwu7dq1U+3bd9B7772jr776Un6/TwUFBWrUqJEkae3ar/WrX6XKtm3Ztq1+/X6lb7/9tySpW7fueuedmcrOzlKPHleqc+dLKr32ihX/CAaNUBw+XKStW3/QjTfeJEnq0KGjLrigkzZsWC9JOv/8i4KjPTfeeJOeey5Thw8XSZLatm2nyy+/QpLUr9+NmjLlKRUVFSouLvTn7qxevUp79uzWAw8MDW7z+Xw6eDA3eI1LLuka3Ldnz25NnDhOOTk5sm1bBw/mKjf3gJo3b3HG66xZs1o33pgql8t1/LMM0Bdf/E8wDPXp85+KiYmRJHXq1El79uxWjx4hf4ywEYbCZFvOW48dAACgNvXuEvnoTW0KBAKVTrEyDOnzz5fo22//rVdemaHY2Di9/fYb+umnXcHjTue22wapd+9r9K9/rdaLL05Rjx5XaujQYeXaFBYWKisrSxdeeFFYfa2MYRgKBPyq7YX7AoGAevW6So8//kSFfTt2bFfjxuWfsTlx4jg9+OAIXXPNf8rv96tv36tVXFz1cteBQMXV4E5+HxPjDr42TavK+5OqiwUUwmTbjAwBAAA4wXnntVdxcbHWrl0jqXQFNa/Xq3btzlNhYYGaNk1UbGycCgsL9fnnS4LHde/eQ0uWLJbX69WxY0fL7du1a6fatGmr9PRbNHDgHdq0aUOF665atSJ4r0+o4uLidcEFF+mTTxZKknbu3KFt237QL35xiTp37qqtW3/Qzp07JEmffLJQF17YSbGxcZJK7zX65pt1kkpDXseOF1Q5KhQXF1duil/Pnldq9epV+vHHbcFtlX22MoWFhUpObi1JWrhwfrkgdOq5T9ajRy8tXrxAXq9XXq9Xn3yyUN279zxjX2sTI0NhclkGS2sDAADUQY888oAsywq+f+ut9/XUU1PKLaAweXKmXC6X+vdP1fLlX+iuu26Tx+PRpZdermPHjkmSbrrpN9q6dat+97vb1LJlK1122RXKytojSZoz532tXfu1XC5bLpdbI0Y8WqEfy5f/Q2lpvzljX59+eqLc7pjg+2effUkZGZP17LNPa9asd2VZlsaPf0JJSUmSpPHjn9CkSePk8/mUmJikCROeDB574YUX6fPPP9VLLz0nyzI1fvykKr+ra665VuPHj9Lddw8KLqAwYcKT+tOfntSxY8fk9ZaoS5dLlZLSudLjhw//L40dO1ItWnh02WXd1LRp0+C+W2+9XU8//YQaNWqkjIzJ5Y676aabtXv3T/r97wdJknr2vEoDBtxcZX9rixE40zhgHZKbWyi/P3pd9XgSlJNToMf+ukrtk5vo/9xUeWEAZbUCVIVaQTioF4TqbNVKdvZOnXPOebV+HacpKSnRHXf8Ru+/P1e2XfvjDmvXrtG0aS+dccGE07Ft597+cWr9maah5s1Dv0eqDCNDYXJy0QAAAKB2uVwuzZmzINrdQIi4ZyhMtmUyTQ4AAAB1Qrdu3SMaFUIpwlCYWFobAAAAqB8IQ2GyLYNpcgAAADrzEtRAbanJugvpnqFhw4Zp9+7dMk1TsbGxevzxx5WSklKuzdSpU/Xuu++qZcuWkqRu3bopIyNDknTkyBE99thj2rBhgyzL0ujRo3XttdfW2Ic4m2zbVNERb7S7AQAAEFW27VZR0c+Ki2tS6bN8gNoQCARUVPSzbNtddeMQhBSGMjMzlZCQIElaunSpxo4dq7lz51Zol56ertGjR1fY/vrrrysuLk6ff/65duzYoTvvvFOfffaZ4uLiqtn9s49pcgAAAFJSkkd5eTkqLMyPdlcQIdM05fc77++1tu1WUpKnZs4VSqOyICSVPmAp3PT/ySef6E9/+pMkqX379rrkkkv0xRdf6Fe/+lVY56kLLMIQAACALMtWixbJ0e4GqoEl+8NYWnvcuHFauXKlAoGAXnvttUrbLFq0SCtWrJDH49FDDz2kyy+/XJK0d+9etWnTJtguOTlZ2dnZ1ex6dLgsQyXcMwQAAAA4Xshh6KmnnpIkzZs3T1OmTNGMGTPK7b/99tt13333yeVyaeXKlRo2bJgWL14cfGpudUXyEKWa5vEkKD4uRv5A6WvgdKgPhIpaQTioF4SKWkGoGnqthP3Q1fT0dE2YMEF5eXnlgo7Hc2LeXu/evZWcnKwtW7aoZ8+eat26tfbs2aNmzZpJkrKystSrV6+wrpubWyi/P3orlpQNI3q9PhWX+Br8kCJOjyFnhIpaQTioF4SKWkGo6lOtmKYR0eBJlUtrFxUVKSsrK/h+2bJlatq0qRITE8u127dvX/D1pk2btGfPHnXo0EGS1L9/f33wwQeSpB07dmj9+vXq06dP2J2tC1w8dBUAAACoF6ocGTpy5IgefvhhHTlyRKZpqmnTppo+fboMw9CQIUM0fPhwdenSRc8//7w2bNgg0zTlcrk0ZcqU4GjRH/7wB40ZM0bXX3+9TNPUE088ofj46E97i4RtmTxnCAAAAKgHqgxDLVq00KxZsyrdd/J9Q5mZmac9R2xsrF5++eUIulf32JYhnz8gfyAgkzX1AQAAAMeqcpocynPZpV+Zj6lyAAAAgKMRhsJkW6VfWYk3eos5AAAAAKg+wlCYysIQD14FAAAAnI0wFKayaXKEIQAAAMDZCENhsq3SRRMIQwAAAICzEYbCFLxnyMc9QwAAAICTEYbC5Cq7Z4hnDQEAAACORhgKk809QwAAAEC9QBgKE6vJAQAAAPUDYShMruA9Q4QhAAAAwMkIQ2Gy7eOryfHQVQAAAMDRCENhYpocAAAAUD8QhsLENDkAAACgfiAMhclmaW0AAACgXiAMhYmltQEAAID6gTAUJpdVuoBCiY8FFAAAAAAns0NpNGzYMO3evVumaSo2NlaPP/64UlJSyrWZNm2aFi9eLMuyZNu2RowYoT59+kiSxowZoy+//FJJSUmSpP79++v++++v4Y9ydrCAAgAAAFA/hBSGMjMzlZCQIElaunSpxo4dq7lz55Zr07VrV91zzz1q3Lixvv/+e911111asWKFGjVqJEkaOnSo7rrrrhru/tkXnCbHPUMAAACAo4U0Ta4sCElSYWGhDMOo0KZPnz5q3LixJKlTp04KBALKz8+voW7WHaZhyDINVpMDAAAAHC6kkSFJGjdunFauXKlAIKDXXnvtjG3nzZunc889V+ecc05w25tvvqkPPvhA7dq10x//+Eedf/75kfc6yizLYJocAAAA4HBGIBAIayWAefPmadGiRZoxY0al+//5z39q1KhReuONN9SxY0dJ0r59++TxeGSapubNm6eXXnpJS5culWVZ1f8EUXDH+MX6z25t9X9+0zXaXQEAAAAQobDDkFR6f9A//vGP4IIIZdatW6dHHnlEr7zyijp37nza43v16qWPPvpIbdq0CfmaubmF8vujt4Kbx5OgnJwCSdKIqSt06QUtdPevLo5af1B3nVwrwJlQKwgH9YJQUSsIVX2qFdM01Lx5fPjHVdWgqKhIWVlZwffLli1T06ZNlZiYWK7dt99+qxEjRujll1+uEIT27dsXfL18+XKZpqlWrVqF3dm6wrZMpskBAAAADlflPUNHjhzRww8/rCNHjsg0TTVt2lTTp0+XYRgaMmSIhg8fri5dumjSpEk6evSoJkyYEDx2ypQp6tSpk0aPHq3c3FwZhqH4+Hi9+uqrsu2Qb1eqc2ybMAQAAAA4XZWJpEWLFpo1a1al+06+b+jDDz887TlmzpwZfs/qMJdlqISltQEAAABHC2lpbZRXOk0uevcvAQAAAKg+wlAEmCYHAAAAOB9hKAIuy+ShqwAAAIDDEYYiYFumvNwzBAAAADgaYSgCtmUwTQ4AAABwOMJQBFy2qRIWUAAAAAAcjTAUAabJAQAAAM5HGIpA6dLahCEAAADAyQhDEXARhgAAAADHIwxFwLYNHroKAAAAOBxhKAJMkwMAAACcjzAUAZdlyucPyB9gdAgAAABwKsJQBGy79GtjRTkAAADAuQhDEbCt42GIqXIAAACAYxGGIuCyDEniwasAAACAgxGGIhAcGWKaHAAAAOBYdiiNhg0bpt27d8s0TcXGxurxxx9XSkpKuTY+n0+TJ0/W8uXLZRiGhg4dqoEDB1a5z4mC9wwxTQ4AAABwrJDCUGZmphISEiRJS5cu1dixYzV37txybRYsWKBdu3bps88+U35+vtLT03XVVVepbdu2Z9znRK7jI0MlhCEAAADAsUKaJlcWhCSpsLBQhmFUaLN48WINHDhQpmmqWbNm6tu3r5YsWVLlPidiAQUAAADA+UIaGZKkcePGaeXKlQoEAnrttdcq7M/KylLr1q2D75OTk5WdnV3lPieyjy+g4PWygAIAAADgVCGHoaeeekqSNG/ePE2ZMkUzZsyotU5Vpnnz+LN6vcp4PKUjZC0OHZMkxSXEBLcBJ6MuECpqBeGgXhAqagWhaui1EnIYKpOenq4JEyYoLy9PSUlJwe3Jycnau3evunbtKqn8aNCZ9oUqN7dQfn/0RmI8ngTl5BRIkgoLj0qSDuQWKadpo6j1CXXTybUCnAm1gnBQLwgVtYJQ1adaMU0josGTKu8ZKioqUlZWVvD9smXL1LRpUyUmJpZr179/f82ePVt+v18HDx7U0qVL1a9fvyr3OZGLpbUBAAAAx6tyZOjIkSN6+OGHdeTIEZmmqaZNm2r69OkyDENDhgzR8OHD1aVLF6Wlpembb77RDTfcIEl64IEH1K5dO0k64z4nsoMPXSUMAQAAAE5VZRhq0aKFZs2aVem+k+8bsixLkyZNqrTdmfY5Ec8ZAgAAAJwvpKW1UV5wmpyP1eQAAAAApyIMRaDsOUMl3DMEAAAAOBZhKAI8dBUAAABwPsJQBFz28YeuEoYAAAAAxyIMRcBimhwAAADgeIShCJiGIcs0WEABAAAAcDDCUIRs22SaHAAAAOBghKEIuSyTh64CAAAADkYYipBtGfJyzxAAAADgWIShCNkW0+QAAAAAJyMMRchlmyphAQUAAADAsQhDEbItk2lyAAAAgIMRhiLENDkAAADA2QhDEXJZBmEIAAAAcDDCUIRKnzPEPUMAAACAUxGGImTznCEAAADA0eyqGuTl5WnUqFHatWuX3G63zjvvPD3xxBNq1qxZuXZ333238vLyJEk+n09btmzR/PnzdfHFF2vMmDH68ssvlZSUJEnq37+/7r///lr4OGePi3uGAAAAAEerMgwZhqF7771XvXr1kiRlZmbqz3/+s55++uly7WbOnBl8vXTpUr344ou6+OKLg9uGDh2qu+66q4a6HX22zWpyAAAAgJNVOU0uMTExGIQk6bLLLtPevXvPeMycOXN0yy23VL93dZjNAgoAAACAo4V1z5Df79d7772nX/7yl6dtc+DAAa1atUppaWnltr/55psaMGCAhg0bpm3btkXW2zqk9J4hFlAAAAAAnKrKaXIne/LJJxUbG3vG6W5z585Vnz59yt1TNGLECHk8HpmmqXnz5unee+/V0qVLZVlWyNdu3jw+nK7WCo8nIfg6IT5GPn+g3DagDHWBUFErCAf1glBRKwhVQ6+VkMNQZmamdu7cqenTp8s0Tz+g9NFHH2nUqFHltrVq1Sr4Oj09Xc8884yys7PVpk2bkDuam1sovz96IzEeT4JycgqC773FPpWU+MptA6SKtQKcDrWCcFAvCBW1glDVp1oxTSOiwZOQpsm98MIL+u677zRt2jS53e7Ttlu7dq0KCgp0zTXXlNu+b9++4Ovly5fLNM1yAcmJbNtgaW0AAADAwaocGdqyZYumT5+u9u3b6/bbb5cktW3bVtOmTVNaWpr+9re/BYPNRx99pPT09ArT30aPHq3c3FwZhqH4+Hi9+uqrsu2wZujVObZlKhCQfH6/rDOMlAEAAACom6pMJBdeeKE2b95c6b758+eXez958uRK25287HZ94bJKA5DXG5B1+sEyAAAAAHUUQxoRso+HIabKAQAAAM5EGIqQbR8fGSIMAQAAAI5EGIpQXKPSGYaHCouj3BMAAAAAkSAMRejCtomSpO935UW5JwAAAAAiQRiKUFJCjFo1i9WmnYQhAAAAwIkIQ9WQcl6SfvgpXz4/9w0BAAAATkMYqoaLz03U0WKfdmTXjyf3AgAAAA0JYagaLj43SZL0PVPlAAAAAMchDFVDkzi32njiCEMAAACAAxGGqinl3CRt2X1IJV7uGwIAAACchDBUTRefl6Rir1/bs36OdlcAAAAAhIEwVE2dzk2UIbHENgAAAOAwhKFqimvk0rmtErRpx8FodwUAAABAGAhDNeDSC5pry+5D2p1TGO2uAAAAAAgRYagG9O3eTjFuS/NXbI92VwAAAACEyK6qQV5enkaNGqVdu3bJ7XbrvPPO0xNPPKFmzZqVazdmzBh9+eWXSkoqffZO//79df/990uSDhw4oFGjRmnPnj2KiYnRk08+qUsvvbQWPk50xDd26YYe7fTxyh3amV2g885JiHaXAAAAAFShypEhwzB077336tNPP9WCBQvUrl07/fnPf6607dChQzV//nzNnz8/GIQk6bnnnlP37t316aefasKECRo5cqQCgUDNfYo64IYe7RTXyNa85T9GuysAAAAAQlBlGEpMTFSvXr2C7y+77DLt3bs3rIssWbJEt99+uySpe/fuiomJ0fr168Psat0W28ilfj3P1TfbcrVt76FodwcAAABAFcK6Z8jv9+u9997TL3/5y0r3v/nmmxowYICGDRumbdu2SSqdZhcIBMpNq0tOTlZ2dnY1ul039e3eVvGNXXrn0x90rMQX7e4AAAAAOIMq7xk62ZNPPqnY2FjdddddFfaNGDFCHo9Hpmlq3rx5uvfee7V06dIa62jz5vE1dq5IeTxV3wv0yO2X66mZ/9Tbn/2gMf+7h0zTOAs9Q10TSq0AErWC8FAvCBW1glA19FoJOQxlZmZq586dmj59ukyz4oBSq1atgq/T09P1zDPPKDs7W23atJEkHTx4MDg6lJWVpXPOOSesjubmFsrvj959Rh5PgnJyCqps17FVvH577QV6f9lWvTrn37rt2gvOQu9Ql4RaKwC1gnBQLwgVtYJQ1adaMU0josGTkKbJvfDCC/ruu+80bdo0ud3uStvs27cv+Hr58uUyTTMYkPr376/3339fkrRmzRodPXpUl1xySdiddYrre7TTtZe30ZLVu/Txyu3y17PFIgAAAID6oMqRoS1btmj69Olq3759cBGEtm3batq0aUpLS9Pf/vY3tWrVSqNHj1Zubq4Mw1B8fLxeffVV2Xbp6f/4xz/q0Ucf1bx58xQTE6MpU6ZUOrpUXxiGoUHXX6gjx7yat3y7dmQV6N7UFMU2ckW7awAAAACOMwIOWePaKdPkThYIBLT0692atWyrmjdtpN/166TO7ZtVfSAcrT4NOaN2USsIB/WCUFErCFV9qpVanSaHyBiGoeu7t9Ojd1wuvz+g597/t16c/Y32HCiKdtcAAACABo8wdBZc1C5RTw3ppYHXnq8tuw/p8ddW6/lZ/9a/tx6I6mgXAAAA0JCFtbQ2IueyLf2q13m6ukuylq3do//37z16ec63SkqIUbeLPOreyaML2yayFDcAAABwlhCGzrKEWLfSru6gX191ntZtOaCvNmTrH//eq//79W41jrF18bmJSjkvSee3aaq2nji5bCvaXQYAAADqJcJQlNiWqR4Xt1SPi1vqaLFX327L1cYdB7VxR57WbTkgSTINQ61bxOq8Vgk695wEndsyXi2TYpUY75ZhMIIEAAAAVAdhqA5o5LbVM6WVeqaUPpfpwKEj2pldoJ37CrQzu1Drf8zVyu+yg+3dtilPUmO1TGyslkmN1SyhkZrGu5UYH1P6Oy5GMW5GlAAAAIAzIQzVQS2aNlaLpo11RaeWkkqX6M4vLNaenELtzz+i/XmlP/vyjmj9jwfl9fkrnKNxjKWmcTFKjHerSZxbcY1cimtsKzam9Hd8I5diG9mKa+xSXCOXGrktxbgtmYw4AQAAoIEgDDmAYRhKSohRUkJMhX3+QEBFR0p0qLBY+UXHlF9QrENFx5RfWKxDhceUX1SsHdkFOnzUq6KjJarqqVJul6lGbluNXFYwIDVy28d/W2rksuRymXLblly2KZdlyuU6/tsu/QnuO/nHMuV2WcF2LBQBAACAaCMMOZxpGEqIdSsh1q22OvODpvyBgI4e8+nw0RIVHQ9HZb+PHvPpWIlPR4u9Olrs07Fin44Wl74vOFysA4dOvC/x+uX1VW9JcEOSZRmyLFO2acgyS1+X/S63zTJO38YyZJnm8d+lP6ZhyDQNGUbZ+9IHcZnGSduObzeOby87zjBLv9OybUbwfDqxzTCC5yvbXnY905COBaT8vMMyjNIgaxgKXrv0z+zE9rJjTuwzKjlO3CMGAABQCwhDDYhpGIptZCu2ka0W1TyXPxBQidd/0o+v9LfPr+KS0t+oSiT7AAAgAElEQVQV9p304/UH5PP75fMFSn/8x7f5/PL5y7YF5A2+P36cz1t63PE23rJzlJ3PH5DfXzq10FfPnuFk6DQhyjgesHS6fce3q2LACv4+fgHj+JWMstfHjyvbZxhV7FdpoxNtTwS5E8cY5Y4Ntjulbdmx5fpWybkj73v5Y09uq5OOP3Gtss0ndVjl25+8v7L8apzSOC7OrcNFxRXaBr+HU85dflv5NuGdwzil7ZnPfepnrSyc18g5KrSt/Lus8GdRyfmrPscp/avk/JXtrfTPtZJzVLbx1O/99O0q71PTA4d16NDhM7aMWv8qvcYZ/oyrbnqadqE1rPx7iPzzhfp9hf45QjtfqMeeqrDEr7y8wxW2h/7ZQrvwmf/7ObMz/m9ACDtC7WPI14ikXQiNavLPNVTh/AOq6baVV3DsDOeq4njTUJNYd8jXq4sIQ4iIaRiKcVmKcdXthRr8gYD8/oACgdKQ5D8ekvyBgAL+gPwBye8PyBd8X9q+bPuJ92faXnreQCCgQECKT2ikn38+EnzvP/677H1AOsO+E+/9J28/ZX+F40567dfJ+0rPo5PPWck1dFK/JAWnUwYCAZVFyrLrl7XV8X0ntz3RTgr4j+8PHnPydVS6J3iu0+wP7qt4/rLrlx17oh8njq3wOULs+/Gt5fp3Uo90yq+Tpp8GTnl/QqCycxiVtwUAwCmGDviFrux8TrS7ETHCEOo10zBkWjX4zy0h8HgSlJNTcFavCWeqrFaCwSy44aR9pwlbpwtjp54jcHLUq+ocp213clw89fzlDwrlHKde/7SB8zTnrrTtKeev+H2Ef47TCTXMBnT6zxzqNZKSYoP/2l/Z+ULcdJp21elf9b6ryvtYSX9CPrayTZF/X5X3O7TvK1r9a9Kk9B/lqmoXYveq9WdcrVo9bdvI6zUUoZyr0s9VsVFo1wutWWjnCqHzJ7dIiG+kgsKjVTc8DdM01PX85qF1ro4iDAFAHXKm6W2hT/BAfeTxJCinMf+3jarxj3IIFbUimdHuAAAAAABEA2EIAAAAQINEGAIAAADQIDlm8nFdeEhnXegDnIFaQaioFYSDekGoqBWEqr7USqSfwwiEukQIAAAAANQjTJMDAAAA0CARhgAAAAA0SIQhAAAAAA0SYQgAAABAg0QYAgAAANAgEYYAAAAANEiEIQAAAAANEmEIAAAAQINEGAIAAADQIBGGAAAAADRIhCEAAAAADRJhCAAAAECDRBgCAAAA0CARhgAAAAA0SIQhAAAAAA0SYQgAAABAg0QYAgAAANAgEYYAAAAANEiEIQAAAAANEmEIAAAAQINEGAIAAADQIBGGAAAAADRIhCEAAAAADRJhCAAAAECDRBgCAAAA0CARhgAAAAA0SIQhAAAAAA0SYQgAAABAg0QYAgAAANAgEYYAAAAANEh2tDsQqry8Ivn9gahdv3nzeOXmFkbt+nAOagWholYQDuoFoaJWEKr6VCumaSgpKS7s4xwThvz+QFTDUFkfgFBQKwgVtYJwUC8IFbWCUDX0WmGaHAAAAIAGiTAEAAAAoEEiDAEAAABokBxzz1BdcPioV8+887X+T1pntfXER7s7AAAAZ5XP51VeXo683uJodwU1YP9+U36/P9rdCJttu5WU5JFlVT/KEIbC8PPhYu05UKTd+wsJQwAAoMHJy8tRo0axios7R4ZhRLs7qCbbNuX1OisMBQIBFRX9rLy8HLVokVzt8zFNLgy2VfoffYnPWUUDAABQE7zeYsXFNSEIIWoMw1BcXJMaG50kDIXBZZV+XV5fw16CEAAANFwEIURbTdYgYSgMtl36dZU4bDgRAACgPlq2bKl+//tBuvvuQRo06BZNnDguuO/11/+qkpKSKPZOmjnzNX344awK2x98cKhWrlx+1vvz1FMT9eGHH0iS1q5do9WrV9XKdWbNeld5eQeD7+fNm6MPPvh7rVyrurhnKAwnRoYIQwAAANF04MABPf/8n/T66++oVatzFAgEtHXrD8H9b745Q3fc8Tu5XK6wzuv1emXbNfNX5BUrvtBTT02pkXPVtHXrvtaxY0d1xRW9wj7W5/PJsqzT7p816z11795TSUnNJEnp6bdG3M/aRhgKQ9nIkNNuNAMAAKhvDh48IMuy1bRpoqTSqVMXXthJkvTcc5mSpPvvv0eGYWrq1L+qpKRYzz77jPbu3a1AIKA77vidfvWrVEnSrbcOUGpqmr7++l9q3bqNHntsgj75ZKE++mi2fD6f4uPjNXLkGJ17bnutX/+NXnhhivz+gLxerwYPvkfXX9+/Qv/279+nQCCgVq3OCfkz7d79k5599mnl5+fJsiwNHfqArrzyPyRJX331pf7617/I7/crMTFJjz46Vm3bttPatWv00kvPqVOni7V16w+yLEtjx05Uhw4dT3udbdu2av78jxQI+PXPf67WddfdoN/97m6tWrVCb7/9ho4dK5bL5dJDD/2XLrmki9auXaOXX35el156mTZt2qjBg/+goqIizZ79nrze0tG3Bx54RN2799Rbb72uAwdyNH78aLndMcrImKxlyz7XkSNH9OCDj8jn8+nVV6dq9eovJUm9ev2H7r//IVmWpaeemii3262fftql/fv3qXPnLho/flKtTs0kDIXBNAxZpsECCgAAoMFbuT5LK77NqpVzX901Wb27nHmlsAsuuEi/+EVn3XLLr3X55Veoa9fL1K/fjWraNFF//ONozZ07W6+++oZiY2MlSRMmPKaOHc/XM8/8WQcOHNAf/nCnOnW6WB07XiCpdKRp6tS/SpK++Wadli37XNOmzZDb7daqVSv1zDNP6NVX39Df//6WbrttkPr3/7UCgYAKCwsr7d/y5f/Q1VdfE9bnnjRpvNLSblZqarq2b/9RDz44RO+8M0dSQJMnT9DUqX9Thw4dtXDhPE2aNF4zZrwlSdq2bYseeWSkLr/8Cn3yyUJNnpyh11//79Ne5/zzL1Ba2m907NhRDRv2sCRpz57dmjnzdT3//FTFxcXrxx+3aeTI4froo0WSpB9/3KqRI8doxIhRkqRDh/J1/fX9ZBiGdu3aoYcfHqa5cxdr8OA/aMGCeZo8OTP43Z7s44/nasuWH/TGG6XT5kaOHK6PP56rm2++9fh1tunFF1+RaZr6/e/v1Jo1q9Wjx5VhfY/hIAyFybZMpskBAABEmWmaeuaZ5/Tjj1u1bt1aLV/+//Tuu/+tt99+X02aNK3Qfs2af+rBBx+RJLVo0UJXXXW11q5dE/wLe//+vw62XbnyC23dukVDh94tqXQ554KCnyVJ3bp11zvvzFR2dpZ69LhSnTtfUmn/Vqz4RzBohOLw4SJt3fqDbrzxJklShw4ddcEFnbRhw3pJ0vnnXxQc7bnxxpv03HOZOny4SJLUtm07XX75FZKkfv1u1JQpT6moqFBxcaE/Cmb16lXas2e3HnhgaHCbz+fTwYO5wWtccknX4L49e3Zr4sRxysnJkW3bOngwV7m5B9S8eYszXmfNmtW68cbU4PTFG28coC+++J9gGOrT5z8VExMjSerUqZP27NmtHj1C/hhhIwyFybYMeb2sJgcAABq23l2qHr05Gzp2vEAdO16gW265TXfdNVDr1n2t//W/fllp21OnW538Pja2cfB1ICD9+tc36d5776twjttuG6Teva/Rv/61Wi++OEU9elypoUOHlWtTWFiorKwsXXjhRSF/jkCg8r9fGoahQMCv2l7ELxAIqFevq/T4409U2Ldjx3Y1bhxbbtvEieP04IMjdM01/ym/36++fa9WcXHVy10HAmf+c4iJcQdfm6Yln88X7kcJC6vJhcm2TabJAQAARFlOzn599923wff79+9Tfn6ekpNbS5JiY+NUVHRiClv37j318cdzJUm5uQe0atVKXX5590rP3bt3Hy1Zskj79++TVDpC8v33myRJu3btVJs2bZWefosGDrxDmzZtqHD8qlUrgvf6hCouLl4XXHCRPvlkoSRp584d2rbtB/3iF5eoc+eu2rr1B+3cuUOS9MknC3XhhZ0UGxsnqfReo2++WSdJ+vzzJerY8YIqR4Xi4uLKTfHr2fNKrV69Sj/+uC24rbLPVqawsDD4XS9cOL9cEDr13Cfr0aOXFi9eIK/XK6/Xq08+Waju3Xuesa+1iZGhMLmYJgcAABB1Pp9Pr7/+V2VnZykmppECAb/uvfd+XXTRxZKk22+/U8OH36eYmEaaOvWveuSRkXr22ac1ePDtCgQCuu++B9Wx4/mVnvuyy7pp6NBhGjPmv+Tz+eX1lujaa/vq4otTNGfO+1q79mu5XLZcLrdGjHi0wvHLl/9DaWm/OWP/n356otzumOD7Z599SRkZk/Xss09r1qx3ZVmWxo9/QklJSZKk8eOf0KRJ4+Tz+ZSYmKQJE54MHnvhhRfp888/1UsvPSfLMjV+/KQqv79rrrlW48eP0t13DwouoDBhwpP605+e1LFjx+T1lqhLl0uVktK50uOHD/8vjR07Ui1aeHTZZd3UtOmJqYm33nq7nn76CTVq1EgZGZPLHXfTTTdr9+6f9PvfD5Ik9ex5lQYMuLnK/tYWI3C6MbmTbN++XWPGjFF+fr4SExOVmZmp9u3bl2uTm5urxx57TFlZWSopKdGVV16p8ePHy7Zt+Xw+TZ48WcuXL5dhGBo6dKgGDhwYVkdzcwvl90dveprHk6CcnAKN/dtXatcyXvenVz4/FCirFaAq1ArCQb0gVLVZK9nZO3XOOefVyrnri5KSEt1xx2/0/vtza2yJ7jNZu3aNpk176YwLJpyObZuOXSX51Fo0TUPNm4d+j1TwuFAaZWRkaNCgQfr00081aNAgTZgwoUKb6dOn6/zzz9eCBQu0YMECbdiwQZ999pkkacGCBdq1a5c+++wzffDBB5o6dap2794ddmfrApfNyBAAAAAq53K5NGfOgrMShFB9VYah3Nxcbdy4Uamppeuwp6amauPGjTp48GC5doZhqKioSH6/X8XFxSopKVGrVq0kSYsXL9bAgQNlmqaaNWumvn37asmSJbXwcWqfbXHPEAAAAOqGbt26RzQqhFJVhqGsrCy1atUq+JRZy7LUsmVLZWWVX1d+2LBh2r59u66++urgzxVXXBE8R+vWrYNtk5OTlZ2dXZOf46xxWYZjhxMBAAAAnFBj43dLlixRp06d9NZbb6moqEhDhgzRkiVL1L9/xSfyRiKSOYA1zeNJUGxjt46V+OTxJES7O6jDqA+EilpBOKgXhKq2amX/flOWZVRYGhnOZdvOW1w6EAjINM0aqfMqw1BycrL27dsnn88nyypd63v//v1KTi6/rvw777yjp59+WqZpKiEhQb/85S+1evVq9e/fX8nJydq7d6+6di19UNOpI0WhqCsLKPj9fh0+WsJNrDgtbnJGqKgVhIN6Qahqs1ZM09ahQ/mKi2tCIKoHnLiAQiAQUFHRzzJNu1ydR7qAQpVhqHnz5kpJSdHChQuVlpamhQsXKiUlRc2aNSvXrm3btvriiy/UtWtXFRcXa9WqVbr++uslSf3799fs2bN1ww03KD8/X0uXLtXf//73sDtbF7C0NgAAaKiSkjzKy8tRYWF+tLuCGmCapvx+5/291rbdSkry1My5Qmk0ceJEjRkzRq+88oqaNGmizMxMSdKQIUM0fPhwdenSRWPHjlVGRoYGDBggn8+nXr166bbbbpMkpaWl6ZtvvtENN9wgSXrggQfUrl27GvkAZ5ttmypxWIIGAACoCZZlq0WL5KobwhEYcQ7xOUN1QV2ZJvf6oo3atDNPfx7WO2p9Qd3G/7AgVNQKwkG9IFTUCkJVn2qlVp8zhBNctuW4uZUAAAAAKiIMhcm2DJX4HDGYBgAAAOAMCENhYgEFAAAAoH4gDIXJtkqXIHTIrVYAAAAAToMwFCbbNhWQ5IviYg4AAAAAqo8wFCaXVfqVMVUOAAAAcDbCUJhsq/RpyzxrCAAAAHA2wlCYbLtsZIhpcgAAAICTEYbCVDZNroRpcgAAAICjEYbC5CobGWKaHAAAAOBohKEw2SygAAAAANQLhKEw2UyTAwAAAOoFwlCYXMdXk2OaHAAAAOBshKEwsZocAAAAUD8QhsIUnCbHyBAAAADgaIShMLlYQAEAAACoFwhDYSpbWpsFFAAAAABnIwyFKbi0NtPkAAAAAEcjDIXpxAIKhCEAAADAyexQGm3fvl1jxoxRfn6+EhMTlZmZqfbt25drM2rUKG3evDn4fvPmzZo2bZquu+46TZ06Ve+++65atmwpSerWrZsyMjJq7lOcRWVLa5ewmhwAAADgaCGFoYyMDA0aNEhpaWmaP3++JkyYoLfffrtcmylTpgRff//99xo8eLD69OkT3Jaenq7Ro0fXULejx2YBBQAAAKBeqHKaXG5urjZu3KjU1FRJUmpqqjZu3KiDBw+e9pg5c+ZowIABcrvdNdfTOqJsmhxLawMAAADOVmUYysrKUqtWrWRZliTJsiy1bNlSWVlZlbYvLi7WggULdMstt5TbvmjRIg0YMED33HOP1q1bVwNdjw7TMGSZBiNDAAAAgMOFNE0uHEuXLlXr1q2VkpIS3Hb77bfrvvvuk8vl0sqVKzVs2DAtXrxYSUlJIZ+3efP4mu5q2DyeBEmly2u73HbwPXAqagOholYQDuoFoaJWEKqGXitVhqHk5GTt27dPPp9PlmXJ5/Np//79Sk5OrrT9hx9+WGFUyOPxBF/37t1bycnJ2rJli3r27BlyR3NzC+X3R2/RAo8nQTk5BZJK7xv6ueBo8D1wspNrBTgTagXhoF4QKmoFoapPtWKaRkSDJ1VOk2vevLlSUlK0cOFCSdLChQuVkpKiZs2aVWibnZ2tr7/+Onh/UZl9+/YFX2/atEl79uxRhw4dwu5sXWFbTJMDAAAAnC6kaXITJ07UmDFj9Morr6hJkybKzMyUJA0ZMkTDhw9Xly5dJElz587Vtddeq8TExHLHP//889qwYYNM05TL5dKUKVPKjRY5jW2ZKvGytDYAAADgZEYgEHDE3+rr0jS5cTO+UltPvO5PvyRq/UHdVZ+GnFG7qBWEg3pBqKgVhKo+1UqtTZNDRbZlMk0OAAAAcDjCUARKp8kRhgAAAAAnIwxFwMUCCgAAAIDjEYYiYNumSghDAAAAgKMRhiLgskx5WU0OAAAAcDTCUARsmwUUAAAAAKcjDEXAZTFNDgAAAHA6wlAEWFobAAAAcD7CUARs25SXpbUBAAAARyMMRcC2DKbJAQAAAA5HGIqAyzJVwmpyAAAAgKMRhiLgOr6aXCBAIAIAAACcijAUAdsq/dp8fsIQAAAA4FSEoQiUhaESFlEAAAAAHIswFAGXXfq1sbw2AAAA4FyEoQjYliFJ8vqYJgcAAAA4FWEoAiemyfmi3BMAAAAAkSIMRaBsmlwJI0MAAACAYxGGIlA2MuRlAQUAAADAsexQGm3fvl1jxoxRfn6+EhMTlZmZqfbt25drM2rUKG3evDn4fvPmzZo2bZquu+46+Xw+TZ48WcuXL5dhGBo6dKgGDhxYox/kbGIBBQAAAMD5QgpDGRkZGjRokNLS0jR//nxNmDBBb7/9drk2U6ZMCb7+/vvvNXjwYPXp00eStGDBAu3atUufffaZ8vPzlZ6erquuukpt27atwY9y9gRHhghDAAAAgGNVOU0uNzdXGzduVGpqqiQpNTVVGzdu1MGDB097zJw5czRgwAC53W5J0uLFizVw4ECZpqlmzZqpb9++WrJkSQ19hLPPVbaAAmEIAAAAcKwqw1BWVpZatWoly7IkSZZlqWXLlsrKyqq0fXFxsRYsWKBbbrml3Dlat24dfJ+cnKzs7Ozq9j1qbPv40tpeFlAAAAAAnCqkaXLhWLp0qVq3bq2UlJQaPW/z5vE1er5IeDwJkqTDx0NQbFxMcBtwMuoCoaJWEA7qBaGiVhCqhl4rVYah5ORk7du3Tz6fT5Zlyefzaf/+/UpOTq60/YcfflhuVKjsHHv37lXXrl0lVRwpCkVubqH8/uiNxHg8CcrJKZAkFfx8pLRPB4uC24AyJ9cKcCbUCsJBvSBU1ApCVZ9qxTSNiAZPqpwm17x5c6WkpGjhwoWSpIULFyolJUXNmjWr0DY7O1tff/118P6iMv3799fs2bPl9/t18OBBLV26VP369Qu7s3WFzT1DAAAAgOOF9JyhiRMn6p133lG/fv30zjvvaNKkSZKkIUOGaP369cF2c+fO1bXXXqvExMRyx6elpalt27a64YYbdNttt+mBBx5Qu3btavBjnF02S2sDAAAAjhfSPUPnn3++Zs+eXWH7jBkzyr2///77Kz3esqxggKoPXDx0FQAAAHC8kEaGUJ7r+GpyTJMDAAAAnIswFAEr+NBVltYGAAAAnIowFAHTMGSZBvcMAQAAAA5GGIqQbZsq4Z4hAAAAwLEIQxFyWSb3DAEAAAAORhiKkG0ZrCYHAAAAOBhhKEK2ZXLPEAAAAOBghKEIuWxTJawmBwAAADgWYShCLstkmhwAAADgYIShCNk20+QAAAAAJyMMRYh7hgAAAABnIwxFyGUZLK0NAAAAOBhhKEK2xUNXAQAAACcjDEWo9J4hVpMDAAAAnIowFCFWkwMAAACcjTAUIds2uWcIAAAAcDDCUIRcrCYHAAAAOBphKEIsrQ0AAAA4G2EoQrZtqMTLAgoAAACAU9mhNNq+fbvGjBmj/Px8JSYmKjMzU+3bt6/QbvHixXr11VcVCARkGIbefPNNtWjRQlOnTtW7776rli1bSpK6deumjIyMGv0gZ1vZNLmyzwoAAADAWUIKQxkZGRo0aJDS0tI0f/58TZgwQW+//Xa5NuvXr9df/vIXvfXWW/J4PCooKJDb7Q7uT09P1+jRo2u291FkW6WDal5fQC6bMAQAAAA4TZXT5HJzc7Vx40alpqZKklJTU7Vx40YdPHiwXLuZM2fqnnvukcfjkSQlJCQoJiamFrpcN5wIQ9w3BAAAADhRlWEoKytLrVq1kmVZkiTLstSyZUtlZWWVa7dt2zb99NNPuvPOO3XzzTfrlVdeUSBw4p6aRYsWacCAAbrnnnu0bt26Gv4YZ5/LLv3qWF4bAAAAcKaQpsmFwufzafPmzXrzzTdVXFyse++9V61bt1Z6erpuv/123XfffXK5XFq5cqWGDRumxYsXKykpKeTzN28eX1NdjZjHkxB8nZQYK0lq0iRWnqTG0eoS6qiTawU4E2oF4aBeECpqBaFq6LVSZRhKTk7Wvn375PP5ZFmWfD6f9u/fr+Tk5HLtWrdurf79+8vtdsvtduu6667Tt99+q/T09ODUOUnq3bu3kpOTtWXLFvXs2TPkjubmFsrvj97qbR5PgnJyCoLv/SVeSdJPe/Mlrzda3UIddGqtAKdDrSAc1AtCRa0gVPWpVkzTiGjwpMppcs2bN1dKSooWLlwoSVq4cKFSUlLUrFmzcu1SU1O1YsUKBQIBlZSU6KuvvtLFF18sSdq3b1+w3aZNm7Rnzx516NAh7M7WJQmxLklSweHiKPcEAAAAQCRCmiY3ceJEjRkzRq+88oqaNGmizMxMSdKQIUM0fPhwdenSRb/+9a/13Xff6cYbb5Rpmrr66qt16623SpKef/55bdiwQaZpyuVyacqUKeVGi5woIbZ0pbyCwyVR7gkAAACASBiBk1c5qMPq2jS5gsPFevjlFbqj74W6vnu7qPULdU99GnJG7aJWEA7qBaGiVhCq+lQrtTZNDpWLa+ySYTAyBAAAADgVYShCpmEoobGLe4YAAAAAhyIMVUNCrJuRIQAAAMChCEPVkBDLyBAAAADgVIShakiIdetnRoYAAAAARyIMVUNCrEuFjAwBAAAAjkQYqoYmsW4VHfXK6/NHuysAAAAAwkQYqoaEWJckqfAIU+UAAAAApyEMVUNCrFsSzxoCAAAAnIgwVA1lI0M/c98QAAAA4DiEoWo4MTJEGAIAAACchjBUDU3ijoehIqbJAQAAAE5DGKqG2Ea2TMNQwZETI0Mbth/Uj3t/jmKvAAAAAISCMFQNpmEovrFdbgGFmZ9s0uz/2RrFXgEAAAAIhR3tDjhdQpxbPxeVjgwdPupV7s/HdKyE5w4BAAAAdR0jQ9WU0NilguPPGdp7oEhS6XOHygISAAAAgLqJMFRNTeLcKjgefHbnFAa37znpNQAAAIC6hzBUTQmN3cF7hnbnFMoyDUnSnuOjRAAAAADqJsJQNSXEunT4mFden197corU/pwExcbYwSlzUum0ub99vIGpcwAAAEAdElIY2r59u37729+qX79++u1vf6sdO3ZU2m7x4sUaMGCAUlNTNWDAAB04cECS5PP5NGnSJPXt21fXX3+9Zs+eXWMfINoSyp41dLhEu3MK1cYTr9aeuHIjQ2s279dXG/fp6837o9VNAAAAAKcIaTW5jIwMDRo0SGlpaZo/f74mTJigt99+u1yb9evX6y9/+YveeusteTweFRQUyO0uDQoLFizQrl279Nlnnyk/P1/p6em66qqr1LZt25r/RGdZQmOXJOmn/YUqOupVW0+cTEP61/f7FQgEZBiGvt+ZJ0natCtf13Zz/mcGAAAA6oMqR4Zyc3O1ceNGpaamSpJSU1O1ceNGHTx4sFy7mTNn6p577pHH45EkJSQkKCYmRlLpiNHAgQNlmqaaNWumvn37asmSJTX9WaIiIbY0DJUFnraeeLVuEaeio14dKiqWPxDQpuP7Nu/KUyAQCB77+Zqf9P7/3XL2Ow0AAACg6jCUlZWlVq1aybIsSZJlWWrZsqWysrLKtdu2bZt++ukn3Xnnnbr55pv1yiuvBP/in5WVpdatWwfbJicnKzs7uyY/R9Q0OT5NbtOu0sDTxhOnNi3iJJUuorA3p0gFh0t0UbtEFRwuCU6f8/n9WvTlDn3+/9u79/CoynvR49+5XzIzyUwySSYkIdwJKGKDou3uVoENtIKye9Fqy+7ZFfv09KrnafeR+rTaY30q9bDQ0OQAABo6SURBVNnbdler1vr0nL1p9dTqsRar2yoUiwJyiRBiCCEh98wkmWQmM5n7zHv+GBgMYBLwEmB+n38ga61Z77ve9Zt55zfvWu/a20XwlHuJ4sn0R3gEQgghhBBC5KcP7KGr6XSa5uZmfvOb35BIJNiwYQMVFRWsW7fuA9l/cbHtA9nP++F2209bZrJmR786fSGcdhMzpxfjdGWToZFoimA0BcA/r13Ixl++Qbc/yuULPNQ39zNyfBa65p4Rrv/EDAD6hyLc8W/b+do/LmLFldUfxWGJD8GZYkWIM5FYEWdD4kVMlsSKmKx8j5UJkyGPx4PP5yOdTqPT6Uin0/T39+PxeMZsV1FRwerVqzEajRiNRpYvX87BgwdZt24dHo+H3t5eFi1aBJw+UjQZfn+YTEZNvOGHxO22MzAQOm15Rim0Gg0ZpagotjIwEEIphc1ioLl9iGA4TqnTQpnDRLHDzL53vFw1380ru9oxG3UU2kxs3dPJlXNLAHhm21HiiTR/eO0Ii2qK0GiyU3Vv29/NG4e8/M9bP4ZBf3JAL5lKo9dpc9uJqfdesSLEqSRWxNmQeBGTJbEiJutiihWtVnNOgycTXiZXXFxMbW0tW7ZsAWDLli3U1tbicrnGbLdmzRp27NiBUopkMsmuXbuYP38+AKtXr+aZZ54hk8kwNDTEq6++yqpVq866sucjrUaD7fh9Q9Pc2ROg0WioKCmgqz9Mc1eABdOdAMyfXsThzmESyTT7mgf42Fw3Vy8oo6UrwHAoTjyR5vW3e7FbDfQMjnK4MwBAJJbk2e1ttPWO8PqB3lzZI5EE//LYTv7v1qNj6hSOJnnzUB8ZNTZ5VGrqkkkhhBBCCCHON5OaWvvee+9l8+bNrFq1is2bN/OjH/0IgNtvv52GhgYArr/+eoqLi/n0pz/NunXrmD17Np/73OcAuPHGG6msrGTlypXcdNNNfOMb36CqqupDOqSPnj2XDBXklk0rKeBY3wixRJr5J5KhaiejsRQvv9VJNJ7iytoyrqgtRQF7D/ez8x0vkXiKr65diM1i4LV93QC8sqeLSDxFmcvKlp3tJI7fU/SHv7YSDCf4y54uOrzZrF4pxeMvNPLrLU28urc7V59EMs0Dv93P4y80jkmSgqMJnt3eetozkILhOP2B6GnHemqCJYQQQgghxIVqUvcMzZo164zPBnriiSdy/9dqtWzcuJGNGzeetp1Op8slUBcjh9VID6NUuk8Ozb07MTqRDNUe//fFnR3YLAYW1DjR67RUum281eQjlkhTXWZjQY2TT17m4eXdnXR4Q7yyp4sl89ws+1glP32qnr++3cvMCgc7DvZx7eIK9h8ZYPNfmtn4pTq21/fQeGyIYoeJZ7e3culMF57iAjb/5Qgt3UEgSHWpjU9dNZ14Ms2//+Egx/pGONwxzPduuRyjQUd/IMpPNu8jlkjzvS9czswKBwCHjvl57PlGViyp5Ma/m4FGo0Epxat7uzncOcx/+9R87NbshBLJVJoXd3Ywp6qIhTUnRxGHQ3Eajw1x1cIy9LqTuXjP4CgWow6Xw5xbppTCPxKj2GEecxlgJqPIKDXm9UIIIYQQQpwt3b333nvvVFdiMqLRBFM5KFFQYCISSZxxXUObn97BUb6wYk7uC3oimeaNBi+Vbhurl2YnQrCY9Ow85CUUSfLxS8q5fG52GvLRWJI3jy//7DWzmF5up8xp4dW93ew7MkA0luK//+OlzKxwcKQrwP7mfo50BdBqNXz7c4sospnZur+HjIIX3jhG7XQn3/n8Zbz+di/NXUGUUvzpzXbWfLwGR4GRrft6mFtVxLPbW2lqH2bFkkr2Nw/QH4gys8LBT39XTyKZpsBs4G8He1k0q5i2vhEefq4BrVZL47EhkukMtdOd/H7rUf644xjeoQj1LYMsnlVMMq146JkD7Gr0savRS4FZzwyPg8OdAf716Xp2vePjcOcwl84sxqjX8eLODh57vpG/HuilxGGmstTGyGiCJ/70Dv/5X0fo9Ueone7EaNDR0h3god8f4OXdnZS5rJS7rGQyitf2dfOLZxsYCEaZM60Qg17HyGiCp7e28MpbnbjsJtxFFgBae4I89VoLPQOj1JTbMei1pDMZdhzs49W9XTgKjLmkLDia4KVdHXT6QlS5bbnz29ob5K/1PVhNBops2Uk0UukMu5t8dPrCuGxGdMe3DYbj7Gz0YdBpc7MPnthHW88I7iIzOm1222QqQ0ObH6VULrGEbBLZ2hvEaTej02YTQ6UUXf1h4qkMBWZDbttkKk2HN4zdakCrPZlEBsJxIrEUFtPJ30CUUvQHopiNujHbxpNpIrEUJqNuTKyHo0m0Ws2YbTNKEY2nx9zLduJYIHtP3bul0pkxrz9RDwV5d+/beJ8rQpxK4kVMlsSKmKyLKVY0Gg3Wd313mvTr1AVyI8n5OoECwBsNfRzuGOa2NQtyy0KRBN/59x2svKKKLyyfk1v+v19q4vUDffzLLZfnRox8wxE2Pr4Lm8XAv37j4xj02S+gv3j2IPUtg1y9sIzb1y4EoKU7wE827wfgazcu5MraMjJK8ZP/3Edr7whWk577NizFaTfxVpOPx/7YCMDCGid33rSYeDLN//o/exkMRElnFDcvm82qK6t5aXcHz2xrxWLSo5Tie7dcjs1i4Ceb95HOKCKxFFWlNv7HzYt57vU2/lrfg6fYSp8/woolldTNdfOLZxsw6LXodRpCkST/tHoe+5oHqG8ZZEGNk6aOYcpdVq65rILn/taGxain3GWluSvAkvmlBMJxjnYHqZvr5kh3gGg8xRXzy3iryYfNYuCSGS7ePOTF5TBjNuroGRzlytpSfMNROrwhqkttdA2EsVuNXL2wjNcP9JFIprFbDQTCCZbMc6PRaNhzuB+rSU8knsJRYOTaxRXsburHNxRBr9OSSme4fE4JpU4L2/b3kExlUIDDamB5XSVHugI0tg/nzumiWcXMqSxkW30PQyNxIHvp5PKPVTI4EmNXo5dUOhu7C2e4uGxWMTsbfRzrG8lte83iaSileP1AL6HjswzWTndyRW0ph9qGeLtlkMzxiTn+bpGHogIjf2voo2cgO1X7/OoirlpYToc3xO53fETiKWwWA1ctLMuNPDa1D6OAuZWFXLWwnKFQnN3veBkIxLBZDFwxv5TZ0wppaPNT3zJIPJlm9rRCli4oI51R7Dnso7VnhAKznrp5bhbUuGjpDrL/yADDoTizKhzUzSulwKynvmWQxvYhjHoti2eXcOmsYnoHR6lvGaS7P0yNx87iOW5KiywcavNzsM1PJqO4dFYxi2YWExxNcLDVT0t3kEp3AYtmFVNVaudIV4CGNj/haJIFNU4unVlMOqM41ObncGcAl8PEpTOLmVnhoMMborF9iIFAjLmVhSyc4cJs1PNO+xCHO4exGPUsqHExp7IQ33CUw53D9AyEqS6zs6DGhctuorkrQHNnAKUUc6uLmFflJBRJ0NwVoN0bwuOyMq+6CE+xlbbeEY50BYjEUsyuLGRuVRHptKKlO0Bb7whFdhNzq4qoKrXRMzBKS3eAkWiSqpIC5lQWYTToaO0J0tobxGTUMWdaITUeB4PBGEe7g/iGI1S6C5hVUUihzcixvhCtvUFQMLPCwQyPg3A0SVvvCD0DYdxOC7MqCnEXWejqD9PWGySaSFNTbmemx0EqozjWN0KnL0RhgYkZHjuekgK8/gjt3hGC4QRVpTZmeBzo9Vo6vCE6vCHMRh015XamldoYGonR4Q0xGIxR7rJSU27HZjXQ1R+m0xdGKcX0cjvVpXbC0SSdvhDeoQjFhWaml9lx2U30+iN0+kLEk2kq3Taqy2yk0tlEv2dwFIfVQHWZndIiC/2BKF2+MP6R2Gn3QE6USE+UZ5/6+tM214z752kFnLr+gyjfbDIQiyfPvP6UJaeWN97xaCY4uImP5WzLfn9tfbb1PX39+PU97eUTvP6jLv+09j7D9lariUgkPv6Oc9tP8N6ZcAfva/WEDTCZn8je7+9oH34bvL8KThgj72MHNpuJ0fAEsTJOATqthitry7BZDO+90UfkXCdQkGRoks5lto36IwPMmlY4ZjSgwxtiR0MftyyfM+bX8d/8uYkZHgfXXj4tt6y1N8ivtzRx5+cXUeq05pY/8adGUmnF125cmHsDd3hDPPT7t/niynlcMb80t+2TW96hpTvI9/+pDsfxbLm7P8xPfruPjy/0cOs/zMld7vYf/9XMzkYvd37+MuZVZxO1nsFRNv12P2UuC3d+fjFWczZZeurVFl7d183nr53F6qXVaDQaegbC/NvvDwDwrc9eSk25g4xSPLu9lZd2dbJknpt//nQtFpOe7v4wD/+/BgKhOLf+w1w+uchDRin+uKOdF99sp6rMxoY1C6h02+j0hXhiyzv0DoyyrK6Sz14zE71Oy5Y327OXHFoN3LJ8DlfML6XDF+I/Xm6m3Rvikhkublkxh2KHmZff6uTPOzsAWL20mtVLq+kdjPD01haOdgepKCngs38/k9oaJ3/Z283LuzuIxdMsXVjGDZ+YQSiS4Pm/HaOpYxiH1cCqpdVctaCcHQ19/GVPF+Fo9llSn76qmlK3nadePkxDmx+jXssnFnn45CIPjceGeHVvN8HRBGVOC8vrKikvtrJ1Xw8Hjg6CBi6bVcLfL66gZyCcS65OJECzKgrZ1eil/nhiNMPj4JOLPISjSf52sJeBQAyDXkvdPDcLa1wcaPXzdssAqbSipNDMxy8pR6fTsvOQF+9QBI0mm3BdNruE1p4gb7cMkkhlKDDrWTK/FKfdxN7D/XQfT7iqS21cPteNbzg7ChhPZEeDLpnhYprbRkOrnw5f9j1S7DCxeI6bSCzFgaODROIpNBqYPa2QWRWFNHcFcslggVnPpTOL0Wo1HGzNJjqQve9ublURXf1hWnuDKAV6nZb51UU4Cow0HhvKPaPLaTcxv9qJPxjlaM8IGaXQaGCGx0Gp00JzZ3aSEsiO0M6vLiIaT3G0J5hLVMtdVipLbbT3jTAYjAHZ8mZPc6DRaDjaEzw+2gWFNiMzyh30+kfpH87eW6cBqspsFJgNtPWO5J4XZjHpmOFxMByK0+eP5N6bpU4L5cUFtHQNE42nj5enYXq5nVg8nXsmGWSfZ1bustIzEGY0lp2uX6OBaSW24+/TcG7k3GzUMa2kAN9wNNeWACWFZiwmPT0Do7l7//S67GQvgXBizH2Ddmt2xLN3cJT08c9dDVBebCWWSOfaEsBk1OEuNOMbjuba50QMAPhHTm6r02oodVrwj8RIJE9ua7MYMBt1uXY/UZ67yMJIJEEscfLZayaDjlKnZcyIY3Zc8V3G//MMVxmocf6azP7G75tOXX36/idXvk6nJZ3OnHa8E/XiZ3u84+3v1GM927aa6FgnPpb32dYTtN3Ex/MBx9pZnruzLV+Ij8KJH+enmiRDH7LzaepBpdQZf8U4Mc33qdtmlMpdhnVCMpXOjUC9e9tEMnPapVHReAqTQXfapU2hSGLMpVwAsUT2i5rZOPZ2tOFQnCKbcUy948k08UR6TLII4A/GKLQZx9wTlEpnCITilBy/1O2EoZEYVrN+THmZjGI4FMflMI0p78QXw3f/enHiMjF3oWXM8UViSeLJDE67aUx5vuEIRTYTJsPJNoolUgTDCcpc2YT1RKz0B6JYTfox5SVTGbxDEaa5C8acK38whlarGVNeOpOhu3+UipKCMZegBcJxYok05a6TCXJGKbp8YdxFFqzmk20RjiYZGolRVWrLtYVSip6BUWzWk5f4QfY89/pHmV5mH9P2ff7R419iT5aXSKbp7A9T6S4Y0/YDgSixRJpKd0GuvFQ6Q7s3RKnTkkvIIRsTQ6EYNeX2XHxmMooOXwi7xTDmXIciCfr8EaaX23Ntn1GK7v4wOm32C/2J8qLxFJ2+ENPctlzbK6Xo80eIJ7P35Z0oL55M0+ENUVJoHnO/2kAgSiAcP34Zpe74uUvT7g1htxopc1py5Q2H4viGIlSX2XNtn0pn6OoPo9VoqCq15WJrZDRBz0CYipICCm0m3G47Pt8I3QNhEqkM08tsufJGY0k6fWFKCs2UFGbvm8sohW8owshoguoye+6SxxPHbLMY8BQXoNVmf+AYCMYYDESpdNty77N4Mk2XL4xOp6HSbcOg16JU9j3TNxSh3GnNvXeSqQzdA2GSqQzVZbbcuQ6G43QPjuKymyhzWdFqNKTSGfr8EcKRBFVl9lzbh6NJunwhCiwGKkoK0Ou0ZDIK71CE4VCcipKC3GdDJJaie+B43UpsmIw6MkoxGIhm36dFFtxFltM+5/LF+dQPifPbZGNlwuRywh1MtPrsktdzMfE+3l8dzvc2eL/HX1xsY9AfPuf9azVgNU/9qBBIMvShk05ITJbEipgsiRVxNiRexGRJrIjJuphi5UN7zpAQQgghhBBCXIwkGRJCCCGEEELkJUmGhBBCCCGEEHlpUg9dPR+cevN+vtZBXBgkVsRkSayIsyHxIiZLYkVM1sUSK+d6HBfMBApCCCGEEEII8UGSy+SEEEIIIYQQeUmSISGEEEIIIURekmRICCGEEEIIkZckGRJCCCGEEELkJUmGhBBCCCGEEHlJkiEhhBBCCCFEXpJkSAghhBBCCJGXJBkSQgghhBBC5CVJhoQQQgghhBB5SZKhCRw7doybb76ZVatWcfPNN9Pe3j7VVRJTZHh4mNtvv51Vq1axdu1avvnNbzI0NATA22+/zQ033MCqVav4yle+gt/vz71uvHXi4vfwww8zb948jhw5AkisiDOLx+Pcc889rFy5krVr1/KDH/wAGL8Pkv4pP23bto1169Zx4403snbtWl555RVAYkXApk2bWLZs2Zg+B849NvImbpQY1/r169Xzzz+vlFLq+eefV+vXr5/iGompMjw8rHbt2pX7+4EHHlAbN25UmUxGrVixQu3Zs0cppdQjjzyi7rrrLqWUGneduPgdOnRI3Xbbberaa69Vzc3NEiviPd13333q/vvvV5lMRiml1MDAgFJq/D5I+qf8k8lk1JIlS1Rzc7NSSqmmpia1ePFilU6nJVaE2rNnj+rt7VXXXXddLkaUOvfPkXyJG0mGxjE4OKjq6upUKpVSSimVSqVUXV2d8vv9U1wzcT54+eWX1Ze//GV14MABdf311+eW+/1+tXjxYqWUGneduLjF43F10003qc7OzlzHJLEiziQcDqu6ujoVDofHLB+vD5L+KT9lMhl15ZVXqr179yqllHrrrbfUypUrJVbEGO9Ohs41NvIpbvRTPTJ1Puvr66OsrAydTgeATqejtLSUvr4+XC7XFNdOTKVMJsNTTz3FsmXL6Ovro6KiIrfO5XKRyWQIBALjrisqKpqKqouPyM9//nNuuOEGqqqqcsskVsSZdHV1UVRUxMMPP8zu3bspKCjgO9/5Dmaz+T37IKWU9E95SKPR8LOf/Yyvf/3rWK1WRkdHefzxx8f9viKxkt/ONTbyKW7kniEhzsF9992H1WrlS1/60lRXRZyH6uvraWho4NZbb53qqogLQCqVoquriwULFvDcc8/x3e9+l29961tEIpGprpo4z6RSKR5//HF++ctfsm3bNh599FHuvPNOiRUh3gcZGRqHx+PB5/ORTqfR6XSk02n6+/vxeDxTXTUxhTZt2kRHRwePPfYYWq0Wj8dDb29vbv3Q0BAajYaioqJx14mL1549e2hra2P58uUAeL1ebrvtNtavXy+xIk5TUVGBXq9nzZo1AFx22WU4nU7MZvN79kFKKemf8lBTUxP9/f3U1dUBUFdXh8ViwWQySayIMxrvu+x4sZFPcSMjQ+MoLi6mtraWLVu2ALBlyxZqa2svuuFBMXkPPfQQhw4d4pFHHsFoNAJwySWXEIvF2Lt3LwBPP/00n/rUpyZcJy5eX/3qV9mxYwdbt25l69atlJeX8+STT7JhwwaJFXEal8vF0qVLeeONN4DsDE5+v5+ampr37IOkf8pP5eXleL1e2traAGhtbWVwcJDp06dLrIgzGu/8n+u6i41GKaWmuhLns9bWVu666y5GRkZwOBxs2rSJmTNnTnW1xBRoaWlhzZo11NTUYDabAaisrOSRRx5h//793HPPPcTjcaZNm8aDDz5ISUkJwLjrRH5YtmwZjz32GHPnzpVYEWfU1dXF97//fQKBAHq9njvuuINrrrlm3D5I+qf89MILL/DEE0+g0WgA+Pa3v82KFSskVgQ//vGPeeWVVxgcHMTpdFJUVMSLL754zrGRL3EjyZAQQgghhBAiL8llckIIIYQQQoi8JMmQEEIIIYQQIi9JMiSEEEIIIYTIS5IMCSGEEEIIIfKSJENCCCGEEEKIvCTJkBBCCCGEECIvSTIkhBBCCCGEyEuSDAkhhBBCCCHykiRDQgghzlvLli3jySefZO3atdTV1XHHHXcQj8f51a9+xU033UQqlQLgd7/7Hddffz3xeHyKayyEEOJCIsmQEEKI89pLL73Er3/9a1577TWam5t57rnn2LBhAwaDgUcffZT29nYeeughHnzwQUwm01RXVwghxAVEP9UVEEIIIcazfv16ysrKALjuuutoampCq9WyadMmPvOZz/DnP/+ZDRs2sGDBgimuqRBCiAuNjAwJIYQ4r7nd7tz/LRYLkUgEgMrKSpYuXUpPTw9f/OIXp6p6QgghLmCSDAkhhLggbd++nfr6eq6++mp++tOfTnV1hBBCXIAkGRJCCHHBGRoa4u677+b+++/ngQceYOvWrWzfvn2qqyWEEOICI8mQEEKIC84Pf/hDli1bxjXXXIPT6eT+++/n7rvvZnh4eKqrJoQQ4gKiUUqpqa6EEEIIIYQQQnzUZGRICCGEEEIIkZckGRJCCCGEEELkJUmGhBBCCCGEEHlJkiEhhBBCCCFEXpJkSAghhBBCCJGXJBkSQgghhBBC5CVJhoQQQgghhBB5SZIhIYQQQgghRF6SZEgIIYQQQgiRl/4/PkImeef1mHAAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 1008x432 with 2 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
-    "df_ldst.set_index(\"nx\")[\"Loads / Loop Iteration\"].plot(ax=ax1, legend=True);\n",
-    "df_ldst.set_index(\"nx\")[\"Stores / Loop Iteration\"].plot(ax=ax2, legend=True);"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Did you expect more?\n",
-    "\n",
-    "The reason is simple: Among the load and store instructions counted by `PM_LD_CMPL` and `PM_ST_CMPL` are vector instructions which can load and store multiple (two) values at a time. To see how many *bytes* are loaded and stored, we need to measure counters for vectorized loads and stores as well.\n",
-    "\n",
-    "<a name=\"task2-b\"></a>**TASK B**: Please measure counters for _vectorized_ loads and _vectorized_ stores. See the TODOs in [`poisson2d.vld.c`](/edit/Tasks/poisson2d.vld.c) and [`poisson2d.vst.c`](/edit/Tasks/poisson2d.vst.c) (*Note: These vector counters can not be measured together and need separate files and runs*). Can you find out the name of the counters yourself, using `papi_native_avail | grep VECTOR_`?\n",
-    "\n",
-    "Compile, test, and bench-run your program again.\n",
-    "\n",
-    "[Back to top](#toc)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "| PM_VECTOR_FLOP_CMPL                                                          |\r\n",
-      "| PM_VECTOR_LD_CMPL                                                            |\r\n",
-      "| PM_VECTOR_ST_CMPL                                                            |\r\n"
-     ]
-    }
-   ],
-   "source": [
-    "!papi_native_avail | grep VECTOR_"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "`make bench_task3` will submit benchmark runs of both vectorized counters to the batch system (as two subsequent runs of the individual files)."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "bsub -W 60 -nnodes 1 -Is jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vld.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.vld.bin.csv\n",
-      "Job <4097> is submitted to default queue <batch>.\n",
-      "<<Waiting for dispatch ...>>\n",
-      "<<Starting on login1>>\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,4,0.0010,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,8,0.0011,114000,570,570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,12,0.0012,174000,870,870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,16,0.0013,234000,1170,1170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,20,0.0014,294000,1470,1470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,24,0.0014,354000,1770,1770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,28,0.0014,414000,2070,2070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,32,0.0015,474000,2370,2370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,36,0.0016,534000,2670,2670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,40,0.0016,594000,2970,2970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,44,0.0017,654000,3270,3270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,48,0.0017,714000,3570,3570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,52,0.0018,774000,3870,3870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,56,0.0020,834000,4170,4170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,60,0.0020,894000,4470,4470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,64,0.0021,954000,4770,4770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,68,0.0022,1014000,5070,5070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,72,0.0022,1074000,5370,5370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,76,0.0023,1134000,5670,5670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,80,0.0023,1194000,5970,5970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,84,0.0023,1254000,6270,6270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,88,0.0024,1314000,6570,6570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,92,0.0025,1374000,6870,6870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,96,0.0025,1434000,7170,7170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,100,0.0026,1494000,7470,7470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,104,0.0027,1554000,7770,7770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,108,0.0027,1614000,8070,8070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,112,0.0028,1674000,8370,8370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,116,0.0028,1734000,8670,8670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,120,0.0029,1794000,8970,8970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,124,0.0030,1854000,9270,9270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,128,0.0030,1914000,9570,9570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,132,0.0031,1974000,9870,9870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,136,0.0032,2034000,10170,10170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,140,0.0032,2094000,10470,10470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,144,0.0033,2154000,10770,10770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,148,0.0034,2214000,11070,11070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,152,0.0035,2274000,11370,11370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,156,0.0035,2334000,11670,11670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,160,0.0036,2394000,11970,11970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,164,0.0036,2454000,12270,12270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,168,0.0037,2514000,12570,12570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,172,0.0037,2574000,12870,12870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,176,0.0038,2634000,13170,13170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,180,0.0039,2694000,13470,13470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,184,0.0041,2754000,13770,13770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,188,0.0040,2814000,14070,14070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,192,0.0041,2874000,14370,14370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,196,0.0041,2934000,14670,14670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,200,0.0042,2994000,14970,14970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,204,0.0043,3054000,15270,15270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,208,0.0044,3114000,15570,15570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,212,0.0044,3174000,15870,15870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,216,0.0044,3234000,16170,16170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,220,0.0045,3294000,16470,16470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,224,0.0046,3354000,16770,16770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,228,0.0047,3414000,17070,17070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,232,0.0047,3474000,17370,17370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,236,0.0048,3534000,17670,17670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,240,0.0048,3594000,17970,17970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,244,0.0049,3654000,18270,18270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,248,0.0049,3714000,18570,18570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,252,0.0050,3774000,18870,18870\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,256,0.0051,3834000,19170,19170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,260,0.0052,3894000,19470,19470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,264,0.0052,3954000,19770,19770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,268,0.0053,4014000,20070,20070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,272,0.0053,4074000,20370,20370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,276,0.0055,4134000,20670,20670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,280,0.0055,4194000,20970,20970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,284,0.0055,4254000,21270,21270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,288,0.0057,4314000,21570,21570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,292,0.0056,4374000,21870,21870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,296,0.0057,4434000,22170,22170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,300,0.0059,4494000,22470,22470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,304,0.0059,4554000,22770,22770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,308,0.0060,4614000,23070,23070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,312,0.0060,4674000,23370,23370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,316,0.0061,4734000,23670,23670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,320,0.0061,4794000,23970,23970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,324,0.0062,4854000,24270,24270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,328,0.0062,4914000,24570,24570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,332,0.0063,4974000,24870,24870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,336,0.0063,5034000,25170,25170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,340,0.0066,5094000,25470,25470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,344,0.0065,5154000,25770,25770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,348,0.0067,5214000,26070,26070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,352,0.0068,5274000,26370,26370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,356,0.0067,5334000,26670,26670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,360,0.0067,5394000,26970,26970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,364,0.0068,5454000,27270,27270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,368,0.0069,5514000,27570,27570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,372,0.0069,5574000,27870,27870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,376,0.0070,5634000,28170,28170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,380,0.0071,5694000,28470,28470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,384,0.0071,5754000,28770,28770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,388,0.0073,5814000,29070,29070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,392,0.0074,5874000,29370,29370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,396,0.0073,5934000,29670,29670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,400,0.0074,5994000,29970,29970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,404,0.0074,6054000,30270,30270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,408,0.0075,6114000,30570,30570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,412,0.0076,6174000,30870,30870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,416,0.0076,6234000,31170,31170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,420,0.0080,6294000,31470,31470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,424,0.0079,6354000,31770,31770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,428,0.0078,6414000,32070,32070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,432,0.0079,6474000,32370,32370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,436,0.0080,6534000,32670,32670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,440,0.0080,6594000,32970,32970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,444,0.0083,6654000,33270,33270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,448,0.0082,6714000,33570,33570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,452,0.0082,6774000,33870,33870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,456,0.0083,6834000,34170,34170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,460,0.0086,6894000,34470,34470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,464,0.0084,6954000,34770,34770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,468,0.0085,7014000,35070,35070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,472,0.0086,7074000,35370,35370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,476,0.0086,7134000,35670,35670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,480,0.0087,7194000,35970,35970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,484,0.0088,7254000,36270,36270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,488,0.0088,7314000,36570,36570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,492,0.0089,7374000,36870,36870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,496,0.0091,7434000,37170,37170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,500,0.0092,7494000,37470,37470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,504,0.0091,7554000,37770,37770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,508,0.0092,7614000,38070,38070\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,512,0.0092,7674000,38370,38370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,516,0.0093,7734000,38670,38670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,520,0.0093,7794000,38970,38970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,524,0.0094,7854000,39270,39270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,528,0.0097,7914000,39570,39570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,532,0.0095,7974000,39870,39870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,536,0.0096,8034000,40170,40170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,540,0.0097,8094000,40470,40470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,544,0.0097,8154000,40770,40770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,548,0.0099,8214000,41070,41070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,552,0.0099,8274000,41370,41370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,556,0.0100,8334000,41670,41670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,560,0.0100,8394000,41970,41970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,564,0.0101,8454000,42270,42270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,568,0.0102,8514000,42570,42570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,572,0.0103,8574000,42870,42870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,576,0.0103,8634000,43170,43170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,580,0.0104,8694000,43470,43470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,584,0.0104,8754000,43770,43770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,588,0.0106,8814000,44070,44070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,592,0.0106,8874000,44370,44370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,596,0.0107,8934000,44670,44670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,600,0.0107,8994000,44970,44970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,604,0.0109,9054000,45270,45270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,608,0.0109,9114000,45570,45570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,612,0.0110,9174000,45870,45870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,616,0.0110,9234000,46170,46170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,620,0.0111,9294000,46470,46470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,624,0.0112,9354000,46770,46770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,628,0.0112,9414000,47070,47070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,632,0.0113,9474000,47370,47370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,636,0.0114,9534000,47670,47670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,640,0.0115,9594000,47970,47970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,644,0.0115,9654000,48270,48270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,648,0.0115,9714000,48570,48570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,652,0.0116,9774000,48870,48870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,656,0.0118,9834000,49170,49170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,660,0.0117,9894000,49470,49470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,664,0.0118,9954000,49770,49770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,668,0.0118,10014000,50070,50070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,672,0.0120,10074000,50370,50370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,676,0.0121,10134000,50670,50670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,680,0.0120,10194000,50970,50970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,684,0.0121,10254000,51270,51270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,688,0.0123,10314000,51570,51570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,692,0.0122,10374000,51870,51870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,696,0.0123,10434000,52170,52170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,700,0.0124,10494000,52470,52470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,704,0.0124,10554000,52770,52770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,708,0.0125,10614000,53070,53070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,712,0.0126,10674000,53370,53370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,716,0.0126,10734000,53670,53670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,720,0.0126,10794000,53970,53970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,724,0.0128,10854000,54270,54270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,728,0.0128,10914000,54570,54570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,732,0.0129,10974000,54870,54870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,736,0.0130,11034000,55170,55170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,740,0.0130,11094000,55470,55470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,744,0.0130,11154000,55770,55770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,748,0.0131,11214000,56070,56070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,752,0.0132,11274000,56370,56370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,756,0.0133,11334000,56670,56670\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,760,0.0134,11394000,56970,56970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,764,0.0134,11454000,57270,57270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,768,0.0135,11514000,57570,57570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,772,0.0135,11574000,57870,57870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,776,0.0136,11634000,58170,58170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,780,0.0138,11694000,58470,58470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,784,0.0138,11754000,58770,58770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,788,0.0139,11814000,59070,59070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,792,0.0139,11874000,59370,59370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,796,0.0141,11934000,59670,59670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,800,0.0140,11994000,59970,59970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,804,0.0141,12054000,60270,60270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,808,0.0142,12114000,60570,60570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,812,0.0143,12174000,60870,60870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,816,0.0143,12234000,61170,61170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,820,0.0143,12294000,61470,61470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,824,0.0144,12354000,61770,61770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,828,0.0145,12414000,62070,62070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,832,0.0145,12474000,62370,62370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,836,0.0146,12534000,62670,62670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,840,0.0146,12594000,62970,62970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,844,0.0147,12654000,63270,63270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,848,0.0148,12714000,63570,63570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,852,0.0149,12774000,63870,63870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,856,0.0150,12834000,64170,64170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,860,0.0150,12894000,64470,64470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,864,0.0151,12954000,64770,64770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,868,0.0152,13014000,65070,65070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,872,0.0151,13074000,65370,65370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,876,0.0152,13134000,65670,65670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,880,0.0154,13194000,65970,65970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,884,0.0154,13254000,66270,66270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,888,0.0154,13314000,66570,66570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,892,0.0155,13374000,66870,66870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,896,0.0156,13434000,67170,67170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,900,0.0158,13494000,67470,67470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,904,0.0158,13554000,67770,67770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,908,0.0159,13614000,68070,68070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,912,0.0161,13674000,68370,68370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,916,0.0162,13734000,68670,68670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,920,0.0162,13794000,68970,68970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,924,0.0163,13854000,69270,69270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,928,0.0162,13914000,69570,69570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,932,0.0164,13974000,69870,69870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,936,0.0163,14034000,70170,70170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,940,0.0164,14094000,70470,70470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,944,0.0165,14154000,70770,70770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,948,0.0166,14214000,71070,71070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,952,0.0166,14274000,71370,71370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,956,0.0170,14334000,71670,71670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,960,0.0168,14394000,71970,71970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,964,0.0174,14454000,72270,72270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,968,0.0172,14514000,72570,72570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,972,0.0173,14574000,72870,72870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,976,0.0173,14634000,73170,73170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,980,0.0175,14694000,73470,73470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,984,0.0175,14754000,73770,73770\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,988,0.0176,14814000,74070,74070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,992,0.0176,14874000,74370,74370\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,996,0.0178,14934000,74670,74670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,1000,0.0179,14994000,74970,74970\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,1004,0.0178,15054000,75270,75270\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,1008,0.0179,15114000,75570,75570\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,1012,0.0179,15174000,75870,75870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,1016,0.0181,15234000,76170,76170\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,1020,0.0181,15294000,76470,76470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n",
-      "200,32,1024,0.0179,15354000,76770,76770\n",
-      "mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vld.bin.csv .\n",
-      "bsub -W 60 -nnodes 1 -Is jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vst.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.vst.bin.csv\n",
-      "Job <4098> is submitted to default queue <batch>.\n",
-      "<<Waiting for dispatch ...>>\n",
-      "<<Starting on login1>>\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,4,0.0010,200,1,1\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,8,0.0011,18200,91,91\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,12,0.0012,30200,151,151\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,16,0.0012,42200,211,211\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,20,0.0013,54200,271,271\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,24,0.0014,66200,331,331\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,28,0.0014,78200,391,391\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,32,0.0016,90200,451,451\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,36,0.0015,102200,511,511\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,40,0.0016,114200,571,571\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,44,0.0017,126200,631,631\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,48,0.0017,138200,691,691\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,52,0.0018,150200,751,751\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,56,0.0019,162200,811,811\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,60,0.0020,174200,871,871\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,64,0.0022,186200,931,931\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,68,0.0022,198200,991,991\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,72,0.0021,210200,1051,1051\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,76,0.0023,222200,1111,1111\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,80,0.0023,234200,1171,1171\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,84,0.0023,246200,1231,1231\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,88,0.0024,258200,1291,1291\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,92,0.0025,270200,1351,1351\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,96,0.0027,282200,1411,1411\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,100,0.0026,294200,1471,1471\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,104,0.0027,306200,1531,1531\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,108,0.0027,318200,1591,1591\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,112,0.0028,330200,1651,1651\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,116,0.0028,342200,1711,1711\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,120,0.0030,354200,1771,1771\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,124,0.0030,366200,1831,1831\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,128,0.0030,378200,1891,1891\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,132,0.0032,390200,1951,1951\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,136,0.0032,402200,2011,2011\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,140,0.0032,414200,2071,2071\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,144,0.0033,426200,2131,2131\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,148,0.0033,438200,2191,2191\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,152,0.0034,450200,2251,2251\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,156,0.0035,462200,2311,2311\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,160,0.0036,474200,2371,2371\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,164,0.0036,486200,2431,2431\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,168,0.0037,498200,2491,2491\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,172,0.0037,510200,2551,2551\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,176,0.0039,522200,2611,2611\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,180,0.0039,534200,2671,2671\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,184,0.0039,546200,2731,2731\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,188,0.0040,558200,2791,2791\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,192,0.0040,570200,2851,2851\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,196,0.0041,582200,2911,2911\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,200,0.0042,594200,2971,2971\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,204,0.0042,606200,3031,3031\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,208,0.0043,618200,3091,3091\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,212,0.0044,630200,3151,3151\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,216,0.0044,642200,3211,3211\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,220,0.0046,654200,3271,3271\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,224,0.0046,666200,3331,3331\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,228,0.0046,678200,3391,3391\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,232,0.0047,690200,3451,3451\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,236,0.0047,702200,3511,3511\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,240,0.0048,714200,3571,3571\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,244,0.0049,726200,3631,3631\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,248,0.0049,738200,3691,3691\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,252,0.0050,750200,3751,3751\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,256,0.0051,762200,3811,3811\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,260,0.0051,774200,3871,3871\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,264,0.0053,786200,3931,3931\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,268,0.0053,798200,3991,3991\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,272,0.0054,810200,4051,4051\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,276,0.0055,822200,4111,4111\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,280,0.0055,834200,4171,4171\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,284,0.0055,846200,4231,4231\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,288,0.0056,858200,4291,4291\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,292,0.0057,870200,4351,4351\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,296,0.0057,882200,4411,4411\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,300,0.0058,894200,4471,4471\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,304,0.0058,906200,4531,4531\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,308,0.0059,918200,4591,4591\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,312,0.0060,930200,4651,4651\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,316,0.0060,942200,4711,4711\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,320,0.0061,954200,4771,4771\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,324,0.0061,966200,4831,4831\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,328,0.0062,978200,4891,4891\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,332,0.0063,990200,4951,4951\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,336,0.0063,1002200,5011,5011\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,340,0.0064,1014200,5071,5071\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,344,0.0065,1026200,5131,5131\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,348,0.0066,1038200,5191,5191\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,352,0.0066,1050200,5251,5251\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,356,0.0067,1062200,5311,5311\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,360,0.0067,1074200,5371,5371\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,364,0.0068,1086200,5431,5431\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,368,0.0068,1098200,5491,5491\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,372,0.0069,1110200,5551,5551\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,376,0.0070,1122200,5611,5611\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,380,0.0071,1134200,5671,5671\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,384,0.0072,1146200,5731,5731\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,388,0.0072,1158200,5791,5791\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,392,0.0072,1170200,5851,5851\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,396,0.0073,1182200,5911,5911\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,400,0.0074,1194200,5971,5971\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,404,0.0074,1206200,6031,6031\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,408,0.0076,1218200,6091,6091\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,412,0.0076,1230200,6151,6151\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,416,0.0077,1242200,6211,6211\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,420,0.0077,1254200,6271,6271\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,424,0.0078,1266200,6331,6331\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,428,0.0078,1278200,6391,6391\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,432,0.0080,1290200,6451,6451\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,436,0.0079,1302200,6511,6511\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,440,0.0081,1314200,6571,6571\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,444,0.0081,1326200,6631,6631\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,448,0.0082,1338200,6691,6691\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,452,0.0082,1350200,6751,6751\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,456,0.0084,1362200,6811,6811\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,460,0.0084,1374200,6871,6871\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,464,0.0084,1386200,6931,6931\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,468,0.0085,1398200,6991,6991\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,472,0.0085,1410200,7051,7051\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,476,0.0086,1422200,7111,7111\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,480,0.0087,1434200,7171,7171\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,484,0.0088,1446200,7231,7231\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,488,0.0088,1458200,7291,7291\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,492,0.0089,1470200,7351,7351\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,496,0.0089,1482200,7411,7411\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,500,0.0090,1494200,7471,7471\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,504,0.0092,1506200,7531,7531\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,508,0.0093,1518200,7591,7591\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,512,0.0092,1530200,7651,7651\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,516,0.0093,1542200,7711,7711\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,520,0.0094,1554200,7771,7771\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,524,0.0094,1566200,7831,7831\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,528,0.0094,1578200,7891,7891\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,532,0.0097,1590200,7951,7951\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,536,0.0096,1602200,8011,8011\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,540,0.0097,1614200,8071,8071\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,544,0.0097,1626200,8131,8131\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,548,0.0099,1638200,8191,8191\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,552,0.0099,1650200,8251,8251\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,556,0.0101,1662200,8311,8311\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,560,0.0100,1674200,8371,8371\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,564,0.0101,1686200,8431,8431\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,568,0.0102,1698200,8491,8491\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,572,0.0103,1710200,8551,8551\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,576,0.0103,1722200,8611,8611\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,580,0.0104,1734200,8671,8671\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,584,0.0104,1746200,8731,8731\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,588,0.0105,1758200,8791,8791\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,592,0.0107,1770200,8851,8851\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,596,0.0108,1782200,8911,8911\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,600,0.0107,1794200,8971,8971\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,604,0.0109,1806200,9031,9031\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,608,0.0109,1818200,9091,9091\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,612,0.0109,1830200,9151,9151\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,616,0.0110,1842200,9211,9211\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,620,0.0111,1854200,9271,9271\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,624,0.0112,1866200,9331,9331\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,628,0.0111,1878200,9391,9391\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,632,0.0112,1890200,9451,9451\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,636,0.0113,1902200,9511,9511\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,640,0.0116,1914200,9571,9571\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,644,0.0114,1926200,9631,9631\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,648,0.0115,1938200,9691,9691\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,652,0.0117,1950200,9751,9751\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,656,0.0117,1962200,9811,9811\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,660,0.0117,1974200,9871,9871\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,664,0.0118,1986200,9931,9931\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,668,0.0119,1998200,9991,9991\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,672,0.0120,2010200,10051,10051\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,676,0.0120,2022200,10111,10111\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,680,0.0120,2034200,10171,10171\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,684,0.0121,2046200,10231,10231\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,688,0.0122,2058200,10291,10291\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,692,0.0123,2070200,10351,10351\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,696,0.0124,2082200,10411,10411\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,700,0.0124,2094200,10471,10471\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,704,0.0125,2106200,10531,10531\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,708,0.0125,2118200,10591,10591\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,712,0.0125,2130200,10651,10651\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,716,0.0125,2142200,10711,10711\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,720,0.0126,2154200,10771,10771\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,724,0.0127,2166200,10831,10831\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,728,0.0128,2178200,10891,10891\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,732,0.0128,2190200,10951,10951\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,736,0.0130,2202200,11011,11011\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,740,0.0130,2214200,11071,11071\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,744,0.0130,2226200,11131,11131\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,748,0.0131,2238200,11191,11191\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,752,0.0133,2250200,11251,11251\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,756,0.0133,2262200,11311,11311\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,760,0.0133,2274200,11371,11371\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,764,0.0134,2286200,11431,11431\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,768,0.0135,2298200,11491,11491\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,772,0.0137,2310200,11551,11551\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,776,0.0136,2322200,11611,11611\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,780,0.0137,2334200,11671,11671\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,784,0.0137,2346200,11731,11731\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,788,0.0138,2358200,11791,11791\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,792,0.0139,2370200,11851,11851\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,796,0.0140,2382200,11911,11911\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,800,0.0140,2394200,11971,11971\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,804,0.0141,2406200,12031,12031\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,808,0.0143,2418200,12091,12091\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,812,0.0142,2430200,12151,12151\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,816,0.0143,2442200,12211,12211\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,820,0.0144,2454200,12271,12271\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,824,0.0144,2466200,12331,12331\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,828,0.0145,2478200,12391,12391\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,832,0.0146,2490200,12451,12451\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,836,0.0146,2502200,12511,12511\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,840,0.0147,2514200,12571,12571\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,844,0.0148,2526200,12631,12631\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,848,0.0149,2538200,12691,12691\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,852,0.0149,2550200,12751,12751\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,856,0.0150,2562200,12811,12811\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,860,0.0152,2574200,12871,12871\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,864,0.0151,2586200,12931,12931\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,868,0.0151,2598200,12991,12991\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,872,0.0151,2610200,13051,13051\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,876,0.0152,2622200,13111,13111\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,880,0.0155,2634200,13171,13171\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,884,0.0154,2646200,13231,13231\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,888,0.0155,2658200,13291,13291\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,892,0.0155,2670200,13351,13351\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,896,0.0156,2682200,13411,13411\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,900,0.0157,2694200,13471,13471\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,904,0.0159,2706200,13531,13531\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,908,0.0160,2718200,13591,13591\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,912,0.0161,2730200,13651,13651\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,916,0.0162,2742200,13711,13711\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,920,0.0161,2754200,13771,13771\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,924,0.0162,2766200,13831,13831\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,928,0.0163,2778200,13891,13891\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,932,0.0165,2790200,13951,13951\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,936,0.0165,2802200,14011,14011\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,940,0.0165,2814200,14071,14071\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,944,0.0166,2826200,14131,14131\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,948,0.0166,2838200,14191,14191\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,952,0.0168,2850200,14251,14251\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,956,0.0167,2862200,14311,14311\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,960,0.0168,2874200,14371,14371\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,964,0.0173,2886200,14431,14431\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,968,0.0172,2898200,14491,14491\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,972,0.0172,2910200,14551,14551\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,976,0.0173,2922200,14611,14611\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,980,0.0175,2934200,14671,14671\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,984,0.0176,2946200,14731,14731\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,988,0.0176,2958200,14791,14791\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,992,0.0177,2970200,14851,14851\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,996,0.0178,2982200,14911,14911\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,1000,0.0177,2994200,14971,14971\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,1004,0.0179,3006200,15031,15031\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,1008,0.0179,3018200,15091,15091\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,1012,0.0180,3030200,15151,15151\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,1016,0.0180,3042200,15211,15211\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,1020,0.0182,3054200,15271,15271\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n",
-      "200,32,1024,0.0178,3066200,15331,15331\n",
-      "mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vst.bin.csv .\n"
-     ]
-    }
-   ],
-   "source": [
-    "!make bench_task3"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Let's plot it again, as soon as the run finishes! Non-interactively, call `graph_task2b`.\n",
-    "\n",
-    "*We need to read in two CSV files now, which we combine to one common dataframe `df_vldvst`.*"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "df_vld = pd.read_csv(\"poisson2d.vld.bin.csv\", skiprows=range(2, 50000, 2))\n",
-    "df_vst = pd.read_csv(\"poisson2d.vst.bin.csv\", skiprows=range(2, 50000, 2))\n",
-    "df_vldvst = pd.concat([df_vld.set_index(\"nx\"), df_vst.set_index(\"nx\")[['PM_VECTOR_ST_CMPL (total)', 'PM_VECTOR_ST_CMPL (min)', ' PM_VECTOR_ST_CMPL (max)']]], axis=1).reset_index()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>nx</th>\n",
-       "      <th>iter</th>\n",
-       "      <th>ny</th>\n",
-       "      <th>Runtime</th>\n",
-       "      <th>PM_VECTOR_LD_CMPL (total)</th>\n",
-       "      <th>PM_VECTOR_LD_CMPL (min)</th>\n",
-       "      <th>PM_VECTOR_LD_CMPL (max)</th>\n",
-       "      <th>PM_VECTOR_ST_CMPL (total)</th>\n",
-       "      <th>PM_VECTOR_ST_CMPL (min)</th>\n",
-       "      <th>PM_VECTOR_ST_CMPL (max)</th>\n",
-       "      <th>Vector Loads / Loop Iteration</th>\n",
-       "      <th>Vector Stores / Loop Iteration</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>4</td>\n",
-       "      <td>200</td>\n",
-       "      <td>32</td>\n",
-       "      <td>0.0010</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>200</td>\n",
-       "      <td>1</td>\n",
-       "      <td>1</td>\n",
-       "      <td>0.000000</td>\n",
-       "      <td>0.007812</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>8</td>\n",
-       "      <td>200</td>\n",
-       "      <td>32</td>\n",
-       "      <td>0.0011</td>\n",
-       "      <td>114000</td>\n",
-       "      <td>570</td>\n",
-       "      <td>570</td>\n",
-       "      <td>18200</td>\n",
-       "      <td>91</td>\n",
-       "      <td>91</td>\n",
-       "      <td>2.226562</td>\n",
-       "      <td>0.355469</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>12</td>\n",
-       "      <td>200</td>\n",
-       "      <td>32</td>\n",
-       "      <td>0.0012</td>\n",
-       "      <td>174000</td>\n",
-       "      <td>870</td>\n",
-       "      <td>870</td>\n",
-       "      <td>30200</td>\n",
-       "      <td>151</td>\n",
-       "      <td>151</td>\n",
-       "      <td>2.265625</td>\n",
-       "      <td>0.393229</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>16</td>\n",
-       "      <td>200</td>\n",
-       "      <td>32</td>\n",
-       "      <td>0.0013</td>\n",
-       "      <td>234000</td>\n",
-       "      <td>1170</td>\n",
-       "      <td>1170</td>\n",
-       "      <td>42200</td>\n",
-       "      <td>211</td>\n",
-       "      <td>211</td>\n",
-       "      <td>2.285156</td>\n",
-       "      <td>0.412109</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>20</td>\n",
-       "      <td>200</td>\n",
-       "      <td>32</td>\n",
-       "      <td>0.0014</td>\n",
-       "      <td>294000</td>\n",
-       "      <td>1470</td>\n",
-       "      <td>1470</td>\n",
-       "      <td>54200</td>\n",
-       "      <td>271</td>\n",
-       "      <td>271</td>\n",
-       "      <td>2.296875</td>\n",
-       "      <td>0.423438</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "   nx  iter  ny  Runtime  PM_VECTOR_LD_CMPL (total)  PM_VECTOR_LD_CMPL (min)  \\\n",
-       "0   4   200  32   0.0010                          0                        0   \n",
-       "1   8   200  32   0.0011                     114000                      570   \n",
-       "2  12   200  32   0.0012                     174000                      870   \n",
-       "3  16   200  32   0.0013                     234000                     1170   \n",
-       "4  20   200  32   0.0014                     294000                     1470   \n",
-       "\n",
-       "    PM_VECTOR_LD_CMPL (max)  PM_VECTOR_ST_CMPL (total)  \\\n",
-       "0                         0                        200   \n",
-       "1                       570                      18200   \n",
-       "2                       870                      30200   \n",
-       "3                      1170                      42200   \n",
-       "4                      1470                      54200   \n",
-       "\n",
-       "   PM_VECTOR_ST_CMPL (min)   PM_VECTOR_ST_CMPL (max)  \\\n",
-       "0                        1                         1   \n",
-       "1                       91                        91   \n",
-       "2                      151                       151   \n",
-       "3                      211                       211   \n",
-       "4                      271                       271   \n",
-       "\n",
-       "   Vector Loads / Loop Iteration  Vector Stores / Loop Iteration  \n",
-       "0                       0.000000                        0.007812  \n",
-       "1                       2.226562                        0.355469  \n",
-       "2                       2.265625                        0.393229  \n",
-       "3                       2.285156                        0.412109  \n",
-       "4                       2.296875                        0.423438  "
-      ]
-     },
-     "execution_count": 9,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "common.normalize(df_vldvst, \"PM_VECTOR_LD_CMPL (min)\", \"Vector Loads / Loop Iteration\")\n",
-    "common.normalize(df_vldvst, \"PM_VECTOR_ST_CMPL (min)\", \"Vector Stores / Loop Iteration\")\n",
-    "df_vldvst.head()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzwAAAF/CAYAAACMpcwFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xl8VNX9//H3LAkhIZiFEMIim4hRERfUUpFWBYIlEGurKAWlKOpD3KsVqgWiuOBCFZSCFEopaPnytRWJWKz+6lelbggoiuDGUiBAyCJZCMnce39/hAxZZpI7cbLc4fV81Gbm3nPv/czNBzwfz7lnXJZlWQIAAACACORu7QAAAAAAoLlQ8AAAAACIWBQ8AAAAACIWBQ8AAACAiEXBAwAAACBiUfAAAAAAiFgUPAAAAAAiFgUPAAAAgIhFwQMAAAAgYlHwAAAAAIhYFDwAAAAAIhYFDwAAAICIRcEDAAAAIGJ5WzuAmgoLS2WaVqtdPzm5g/LzS1rt+nAOcgV2kSsIBfkCu8gV2BVJueJ2u5SYGBfycW2q4DFNq1ULnuoYADvIFdhFriAU5AvsIldg14meK0xpAwAAABCxKHgAAAAARCwKHgAAAAARq009w4OGWZYlw6z6x6zx07RqvzcCbAvepuq81rHzW1ag9wG21W1fq03t9uaxjTWPq5pKWrXNtI7NKz22//hr69jnrnkPqncfb2z5/6/GMbW2HT+w+lRWjQZWnesGOr9Vp0G7dlEqL6+ssb/23Nja57TqfK7jv8+6nyuQuueuE6otgU5hBTtDwLb2TxysbUOfsX5be42DNQu4OYT7GPzzBtrUcBDeKI98lUaD5w0cWpB4Q/r9BNoUyk0Lj+acOR5KXjXh7C1+Zq/HLZ9hNs/Jw6B5f5fOfMagucMOnisu+YwfePFmDN6hfzSD/x0ZjnO3Uoq7PW6ZP+DvFbfLpetH9ld6r6QwRtWyKHiaiWlZKimrVFHJURUfqVT5UZ+OHDV05KhPRyp8Kj9q6EiFT0eO+lReYajSZ8pnmAF/VhqW/3WkcElyuVxyuSSXq3pL1WtXjUau6neumscdb1D98vi2qvOqznZXjTe1z9/IMTXiqrnf43HLNKxacdU9f92YAl032OeuyxVoY9C2QZoG3BG4daC2wc7bbPEG3Fh/a6B2tfMk+LHHdwXfZyOEBu6NS9FRHlW46/7GA7UNtMn+7yeE04b0ecOlFS4ZFs15rwKdObqdVxVHfc1z8jBp1l9lC9/vsJ27FfI7pl2Uyo9W/uDztHSOO+HkzfvrbMb7HeTUMTHH/yNtU7jdLiXEt2vy8W0BBc8PYJim9hws1Z68EuXml2l/QZkKi4+qqOSoDpdWyGhgRYxor1sx7bxqH+1Ru2iPor0eeT0uxcRGy+txKcrrVpTHrSivW94aP71et7xul9xul9yuqp8ed42fdbZVt6vVpsY2l6uqcper6i+96n6Z+1gxIperat6jq3qb69j+Y39Juo63rVXEqLqYOV7U1NzmdCkp8crLK27tMOAA5ApCQb7ALnIFdpErFDwhKzlSqfe/2K8t3+Xrmz3fq7yiaqqKx+1S58T2SuoYo67JsUqIb6eEDu2U0CFa8bHRan+suIlp51VMtEdeD49PAQAAAM2Ngsem3PxSvfb+Ln287aAqfabSkmP1ozO66NTuJ6lnl3ilJLSniAEAAADaGAoeGz7Znqc/5WyVyyUNGZCmn5zdVSenxrd2WAAAAAAaQcHTANOy9Op7O/Tq+p3qndZRt105QIkOf2gLAAAAOJFQ8DTg068P6dX1O3XRmV103cj+ivJ6WjskAAAAACHgoZMGfF9aIUm68id9KXYAAAAAB6LgaUD1l795Pc5fRhkAAAA4EVHwNKD6e3RYfQ0AAABwJnryDage4fG4GeEBAAAAnIiCpwGM8AAAAADORk++AT7DkkuSmxEeAAAAwJEoeBpgmKY8jO4AAAAAjkVvvgGGYcnDCm0AAACAY1HwNMBnmPIynQ0AAABwLG9jDQoLC/Xb3/5Wu3fvVnR0tHr27KmHHnpISUlJtdodOXJE06ZN0xdffCGPx6P7779fl1xySbMF3hIM02LBAgAAAMDBGu3Nu1wu3XjjjVq3bp3WrFmjHj166KmnnqrXbvHixYqLi9O//vUvLViwQA8++KBKS0ubJeiW4jNMprQBAAAADtZowZOQkKALL7zQ//7ss8/Wvn376rV7/fXXdc0110iSevXqpTPPPFPvvPNOGENteYZpyetmhAcAAABwqpB686Zp6qWXXtKll15ab9++ffvUrVs3//u0tDTt37//h0fYinwsWgAAAAA4WqPP8NT08MMPKzY2VuPHj2+WYJKTOzTLeUORkhLvf+31utUu2ltrG1CNvIBd5ApCQb7ALnIFdp3ouWK74Jk9e7Z27dqlBQsWyB1gmlfXrl21d+9e/2IGubm5tabC2ZGfXyLTtEI6JpxSUuKVl1fsf192pFKWZdXaBkj1cwUIhlxBKMgX2EWuwK5IyhW329WkARJbU9r+8Ic/6PPPP9fzzz+v6OjogG1GjhyplStXSpJ27typLVu26OKLLw45oLbEMEx5mdIGAAAAOFajBc/XX3+tBQsW6ODBg7rmmmuUlZWlKVOmSJKysrJ04MABSdINN9ygw4cPa/jw4br55pv10EMPqUOH1p+i9kP4DBYtAAAAAJys0Slt/fr10/bt2wPuW716tf91bGys5s6dG77I2gCfaapdlKe1wwAAAADQRAxfNMAw+OJRAAAAwMnozTfAZ1jyuHmGBwAAAHAqCp4GGKYpDyM8AAAAgGPRm2+AYVjyMsIDAAAAOBYFTwOqRngoeAAAAACnouBpgI9FCwAAAABHozffAJ9hsmgBAAAA4GAUPA0wTEZ4AAAAACejN98AlqUGAAAAnI2CpwEsSw0AAAA4G735IEzTkmVJXlZpAwAAAByLgicIwzQliSltAAAAgINR8AThMyxJYtECAAAAwMHozQfhMxjhAQAAAJyOgicIw2SEBwAAAHA6evNBMMIDAAAAOB8FTxCM8AAAAADOR28+iOpFCzwsSw0AAAA4FgVPEIZ/Shu3CAAAAHAqW7352bNn69JLL1X//v311VdfBWwzb948DR48WFlZWcrKylJ2dnZYA21px6e0McIDAAAAOJXXTqPLLrtM1113nX71q1812O6KK67Q/fffH5bAWpt/0QIKHgAAAMCxbBU8gwYNau442hyj+otHmdIGAAAAOFZYe/OvvfaaRo8erUmTJmnTpk3hPHWL85mM8AAAAABOZ2uEx45rrrlGt9xyi6KiorR+/XrdeuutWrt2rRITE22fIzm5Q7jCabKUlHhJUoe8UklSp+QO/m1ATeQF7CJXEAryBXaRK7DrRM+VsBU8KSkp/tcXXXSR0tLS9PXXX+uCCy6wfY78/BKZxxYLaA0pKfHKyyuuiqWgTJJUfPiI8vLCdpsQIWrmCtAQcgWhIF9gF7kCuyIpV9xuV5MGSMI2pe3AgQP+119++aX27t2r3r17h+v0Lc7wT2njGR4AAADAqWwNXcyaNUtvvPGGDh06pF//+tdKSEjQa6+9psmTJ+uOO+7QgAEDNGfOHH3xxRdyu92KiorSE088UWvUx2n8ixbwDA8AAADgWLYKngcffFAPPvhgve2LFi3yv549e3b4omoD/IsWuCl4AAAAAKdivlYQx0d4uEUAAACAU9GbD8L/xaOM8AAAAACORcEThGEywgMAAAA4Hb35IKpHeFi0AAAAAHAuCp4gqkd4PG5uEQAAAOBU9OaD8BmWXK6qLzgCAAAA4EwUPEEYpsnoDgAAAOBw9OiDMAyL53cAAAAAh6PgCcJnmCxJDQAAADgcBU8QhmmxJDUAAADgcPTog/AZJlPaAAAAAIej4AnCMC0WLQAAAAAcjh59ED7DkocRHgAAAMDRKHiCMAyWpQYAAACcjh59EFWLFjDCAwAAADgZBU8QPsNkShsAAADgcBQ8QRiGJS9T2gAAAABHo0cfhM9kWWoAAADA6Sh4gjAMSx6+eBQAAABwNHr0QfgMSx43IzwAAACAkzVa8MyePVuXXnqp+vfvr6+++ipgG8MwlJ2drWHDhmn48OFatWpV2ANtaYZpMsIDAAAAOFyjPfrLLrtMK1asULdu3YK2WbNmjXbv3q033nhDK1eu1Lx587Rnz56wBtrSDINlqQEAAACna7TgGTRokNLS0hpss3btWl111VVyu91KSkrSsGHD9M9//jNsQbYGn2kypQ0AAABwuLDM2crNzVXXrl3979PS0rR///5wnLrVVI3wMKUNAAAAcDJvawdQU3Jyh9YOQSkp8ZIk07IUH9fO/x6oi9yAXeQKQkG+wC5yBXad6LkSloInLS1N+/bt01lnnSWp/oiPXfn5JTJNKxwhNUlKSrzy8oolSZU+UxUVPv97oKaauQI0hFxBKMgX2EWuwK5IyhW329WkAZKwzNkaOXKkVq1aJdM0VVBQoDfffFMZGRnhOHWr8RmWPCxaAAAAADhaowXPrFmzNHToUO3fv1+//vWvNWrUKEnS5MmTtWXLFklSVlaWunfvrhEjRujqq6/WlClT1KNHj+aNvJkZpimPm2d4AAAAACdzWZbVenPI6mgrU9pM09KNT/xbV1zcW2Mu6t1q8aDtiqThYTQvcgWhIF9gF7kCuyIpV1p1SlukMUxTkliWGgAAAHA4Cp4AfEbVKBPLUgMAAADORo8+AJ9RNcJDwQMAAAA4Gz36AIxjzxExpQ0AAABwNgqeAKpHeFiWGgAAAHA2Cp4Aqkd4vCxLDQAAADgaPfoAqhctYIQHAAAAcDYKngAMFi0AAAAAIgI9+gBYtAAAAACIDBQ8AbAsNQAAABAZ6NEHYBiM8AAAAACRgIInAJ/JCA8AAAAQCejRB2CwShsAAAAQESh4AvAxpQ0AAACICBQ8ARhMaQMAAAAiAj36AJjSBgAAAEQGCp4A/MtSu7k9AAAAgJPRow/A/8WjjPAAAAAAjkbBEwBfPAoAAABEBnr0AfhHeFilDQAAAHA0r51GO3bs0NSpU1VUVKSEhATNnj1bvXr1qtVm3rx5evHFF9W5c2dJ0rnnnqsZM2aEPeCWcHyEh4IHAAAAcDJbBc+MGTM0btw4ZWVlafXq1Zo+fbqWLVtWr90VV1yh+++/P+xBtrTjIzwMgAEAAABO1miPPj8/X1u3blVmZqYkKTMzU1u3blVBQUGzB9dafIYll0tyM6UNAAAAcLRGC57c3FylpqbK4/FIkjwejzp37qzc3Nx6bV977TWNHj1akyZN0qZNm8IfbQsxDJMFCwAAAIAIYGtKmx3XXHONbrnlFkVFRWn9+vW69dZbtXbtWiUmJto+R3Jyh3CF02QpKfGKbhclr8etlJT41g4HbRj5AbvIFYSCfIFd5ArsOtFzpdGCJy0tTQcOHJBhGPJ4PDIMQwcPHlRaWlqtdikpKf7XF110kdLS0vT111/rggsusB1Mfn6JzGPPz7SGlJR45eUVq7ikXB63S3l5xa0WC9q26lwBGkOuIBTkC+wiV2BXJOWK2+1q0gBJo/O2kpOTlZ6erpycHElSTk6O0tPTlZSUVKvdgQMH/K+//PJL7d27V7179w45oLbAMC2WpAYAAAAigK0pbTNnztTUqVM1f/58dezYUbNnz5YkTZ48WXfccYcGDBigOXPm6IsvvpDb7VZUVJSeeOKJWqM+TuIzTJakBgAAACKArYKnb9++WrVqVb3tixYt8r+uLoIigWFa8rBoAQAAAOB49OoD8BlMaQMAAAAiAQVPACxLDQAAAEQGevUBsGgBAAAAEBkoeALwMcIDAAAARAR69QEYPMMDAAAARAQKngB8JstSAwAAAJHA1rLUJxrDsOSJoRYEAADNyzB8KizMk89XEdJxBw+6ZZpmM0WFSOLUXPF6o5WYmCKP54eXKxQ8AbAsNQAAaAmFhXmKiYlVXFwXuVz2+x5er1s+n/M6sWh5TswVy7JUWnpYhYV56tQp7Qefj2GMAAyTRQsAAEDz8/kqFBfXMaRiB4h0LpdLcXEdQx75DIZefQCGYcnDMzwAAKAFUOwA9YXzzwUFTwA+05TXza0BAAAAnI5efQCM8AAAgBPNPffcrldeebnWNsuydNVVY7R588YmnXPjxg366KMPwhGecnP3adSoy8JyrkAeeWSmXn55ZcjH3Xnnrfruu2/rbR8yZJDKysrCEVpIfvnL0fruu28kSWvXrtHu3bvCfo3i4mKtWPGXWtsef/xhffrpprBfKxwoeALwGYzwAACAE8uoUWO0du2aWts2bfpEHo9HZ599bpPOuWnTJ00ueAzDaNJxLam4uFiHDh1Unz59WzuUgJpa8JimKcuygu4vKSnWiy8uq7Vt6tTfa+DAc0K+VktglbYADJMRHgAAcGIZOvSnmjPnce3Y8Z169+4jSXrttVf1s5+NliRVVlbqhRfma/PmT1RZ6VPfvn31m99MU2xsrEpKSjR37tPatm2rXC63Bg48W1lZv9Dq1X+XaZrasOEjXXbZCE2YMFGvv56jl176q1wul7p27a7f/vZ3SkxM0tq1a/Tmm28oMTFBO3bs0LRpv1e/fv1txR7snN9++42efvpxlZcfUUVFhcaM+bmuvnqcJCkv76BmzZqhoqIide3atVaBtXr13/U///OioqKiZVmmHnrocfXs2avedd9//z396EcXhXSfP/jgP1q48DmZpqmEhETdd9/v1L17D0nS8uVLtW7dWklSevoZuuuu+xQbG6vFixdq584dOnKkTPv371fPnj01bdoMdejQIeh1XnvtVW3f/qXmzHlSsbHzNWXKnTr//Au1YsVf9Pbbb8kwDHXq1Fn33/+AkpM7afHihdq7d4+OHCnT3r179Nxzi7Rs2RJt3rxRlZWVSkhI0LRp09WlS5rmzJmtkpISTZw4TjExMVqwYIluu+0mXXvtBF100cUqKMjXk08+pn379siyLF177QRdfnmmpKoRqJEjR+njjz9Ufv4hXXvteP3iF2NDuoehouAJwMeUNgAA0MLWb8nVe5/l2mrrckkN/Af4eoaclaaLBjS8vG9UVJSGDx+p119fo1tvvVNlZaV6993/0y233CZJWrHiL4qLi9OiRVX/ZX/+/Ln661//rJtvnqK5c59W+/bttXTpS3K73SoqKlJCQoKysq7UkSNHdNttd0mSvvvuGy1Y8JwWL16uTp06adGiP+oPf3hSDz30mCRpy5bNWrr0JXXr1t32Z2vonGlpaXrmmfmKjo5WWVmZbrrpel1wwWD16tVbzzzzpAYOPEeTJt2kvXv3aOLEcbrwwsHHPtuzWrZspVJTu6iioiLo99i8887b+uUv7XfWCwsLNGvWdM2b94J69+6jnJxXlJ39oBYt+ovef3+91q1bqwULlig2Nk6zZs3Q0qV/0q233iFJ+uyzTfrzn19UUlKyHn00W0uX/sl/XwMZNWqMXn89R+PHX6cf/WiIJGndurXas2ePFi5cKrfbrX/843/13HPPaMaMWZKkzZs3asmSFUpISJAkjR8/0X+NNWte0R//OFfZ2Y/pnnvu1403TtDSpS8GvPYzzzylPn366rHHntKhQ4d0ww2/Uv/+p6lPn1MkSeXl5Vq48M/Kzd2n664bq8svH63Y2Fjb9zFUFDwBGCxaAAAATkCjRmXp3ntv1003TdFbb/1LZ501UCkpnSVJ69e/o9LSUr399v+TJFVWVuiUU/pJkv7zn3f1pz8tl/tY/6m6w1zXxo0bNHjwRerUqZMkKSvrSk2cOM6/f8CAs0Mqdho7Z3l5uZ577nF9881XcrncOnQoT99885V69eqtjRs/0V133SdJ6tatuwYNOt9/znPPPV+PPvqQLr54qAYPHhIwpoqKCm3f/qUGDBhoO9Yvvvhcffue6h9B+9nPxujpp2errKzUPwoWF1c1ajNmzJV69tmn/Mf++McXKykpWZKUmZmlZ555MpTbJEl67713tG3bl5o0abykqi++rTlKNHjwRbV+dx98sF5///sqHTlSFtIUww0bPvIXSp06ddLgwUO0ceMGf8EzbNgISVJaWlfFx3dUXt7BgCNo4ULBU4dpWrIsMcIDAABa1EUDGh+FqdZcXybZr9+pSk7upA8/fF9r177qn/4lVY0o/eY3U3Xeeec3cIaGWVb95YZrvo2NbR/Wcy5c+LySkpK1ZMkKeb1e3X33FFVUNP7dLo8++qS+/PILffLJBt1xxy26995pGjy49tS1Tz75SGeffa48Hk8o0Sr4astWgM8RuHHV6F7ofVXLsnT99ZOUmZkVcH/79sdHWfbvz9W8eXO0aNEyde3aTVu2fKrs7AdtX6uhzxIdHe1/7Xa7ZRg+2+dtCoYx6vAZVX958MWjAADgRDRq1BgtWfKC/vvf3Roy5Cf+7UOGDNXKlSt09Gi5JKmsrFQ7d+6QVDX68NJLy/wPuhcVFUmS4uLiVFpa4j/Heeedr/ffX6/8/EOSqqZJDRp0wQ+Kt6FzlpQUq3PnVHm9Xn333Tf69NPNNY4bpNdee1WStG/fXm3Y8LEkyefzad++vTr99DM1YcJEXXDBj/T119vrXffdd/+v1v2x44wzztI333ylXbt2Sqp69qhfv/6KjY3ToEEX6q233lBZWaksy1JOTu1785//vKfCwsJjx63RuecOavR6cXFxKik5fv+HDBmqf/zjf3X48GFJVaNUX3/9VcBjS0tL5fVGKTk5WaZp1lrBLy4uTuXl5fL5AhcqgwZdoFdf/YckKT//kN5/f73OOafxeJsLIzx1GGbVH1SPmxEeAABw4hk+/HI9//xcZWVdqaioKP/28eMnavHihbrxxuuOTV1zadKkyerVq7duv/0ezZ37tCZMGCuPx6NzzjlXd911n4YOvUQPPHCfJk4c51+04Oabp+juu6ccW2Cgm+6773e2YysuLtbPf/4z//uTT+6lZ5+dH/Sc119/gx5+eLreeON1devWTWeffXwVsTvvvFezZs3Qv//9lk4+uafOP/9CSVUrlD3yyEyVlBTL5XIrNTXV/xxTNcuy9PHHH+n22+9pMN5x437hH9mIiYnRSy/9XQ8++JCysx+QYRhKSEjU9OkPS6qaTvbtt1/r5pt/LUk67bTTdf31N/jPNWjQ+XrssYe0b99enXxyT912292N3q8xY67U/PnPasWKZbr11js1cuQoff99kW6//Sb/Z/35z69Sv36n1ju2b99TdMklwzR+/FilpqbqnHPO8y873bHjSRox4nJdf/01io/vqAULltQ69q677tWTTz6q66+/RpZl6ZZbbmvVlexcVkNrzrWw/PwSmWbrhZOSEq/vduXrzrnv6VfDT9Vl54U2hxQnjpSUeOXlFbd2GHAAcgWhIF9OPPv371KXLj1DPq65prTBns8/36Jly5boiSf+0CLXW7x4Ya3FH0Lh5Fyp++fD7XYpOTn4ynTB2Jq3tWPHDo0dO1YZGRkaO3asdu7cWa+NYRjKzs7WsGHDNHz4cK1atSrkYNoC/wgPz/AAAAAggDPPHNBixQ5+OFtT2mbMmKFx48YpKytLq1ev1vTp07VsWe0vG1qzZo12796tN954Q0VFRbriiis0ePBgde/urFGS6md4mNIGAACAtuCGG25u7RAcrdERnvz8fG3dulWZmVVfFpSZmamtW7eqoKCgVru1a9fqqquuktvtVlJSkoYNG6Z//vOfzRN1M6oe4WHRAgAAAMD5Gu3V5+bmKjU11b/knsfjUefOnZWbm1uvXdeuXf3v09LStH///jCH2/zc1Q+WRYeyxCAAAEDTtKHHqYE2I5x/LtrUKm1NeQgp3E7v11kP3TRYZ53SSR5GedCAlJT41g4BDkGuIBTky4mluDhWR44UKz7+pKDfuRKM10s/BfY4LVcsy1Jx8WHFxcWG5e/ERguetLQ0HThwQIZhyOPxyDAMHTx4UGlpafXa7du3T2eddZak+iM+drSFVdry8orVPam9CgpKWy0OtH2spAS7yBWEgnw58cTGJqqwME+HDxeGdJzb7ZZpOnPlLbQsp+aK1xutxMSUWn8nNnWVtkYLnuTkZKWnpysnJ0dZWVnKyclRenq6kpKSarUbOXKkVq1apREjRqioqEhvvvmmVqxYEXJAAAAAJwqPx6tOndIab1gHxTHsIldsLks9c+ZMLV++XBkZGVq+fLmys7MlSZMnT9aWLVskSVlZWerevbtGjBihq6++WlOmTFGPHj2aL3IAAAAAaARfPFoDFTDsIldgF7mCUJAvsItcgV2RlCvNNqWtJbnbwHfftIUY4AzkCuwiVxAK8gV2kSuwK1Jypamfo02N8AAAAABAODlrjToAAAAACAEFDwAAAICIRcEDAAAAIGJR8AAAAACIWBQ8AAAAACIWBQ8AAACAiEXBAwAAACBiUfAAAAAAiFgUPAAAAAAiFgUPAAAAgIhFwQMAAAAgYlHwAAAAAIhYFDwAAAAAIhYFDwAAAICIRcEDAAAAIGJR8AAAAACIWBQ8AAAAACIWBQ8AAACAiEXBAwAAACBiUfAAAAAAiFgUPAAAAAAiFgUPAAAAgIhFwQMAAAAgYlHwAAAAAIhYFDwAAAAAIhYFDwAAAICIRcEDAAAAIGJR8AAAAACIWBQ8AAAAACIWBQ8AAACAiOVt7QBqKiwslWlarXb95OQOys8vabXrwznIFdhFriAU5AvsIldgVyTlitvtUmJiXMjHtamCxzStVi14qmMA7CBXYBe5glCQL7CLXIFdJ3quMKUNAAAAQMSi4AEAAAAQsSh4AAAAAESsNvUMDxDpLMuSVf3TqvppWkHeS/5tx/dZtbaZVtWc3LrnqN5nWZIlS8f+d+xn1fbqeFR9nWMvLNVuW32sdWyj5X8feN+xQ+ucu6EY6uyvcZ9UIy7TCr7veAx1Yw78+eruP/77OR5/zVd1mtW+Vo0D/M1q7G/fPlplZRVNPj7w9tonsmq/rRd3sPPWPV+944Nct9H7ZjXteNXZX3fGeeP3Ldj9qK9uDMHbBdhmo2GgNoGPq/02KsqjikqfrYMDXqPexvqt7H+mQJvsHRzsd9dobLbjCLDNxu+0qb/P4O0CbbJ3z+21CR6H2+2WaZq2z1/VrvE8tXu/7d4ju7HVP66JBzaX7gI/AAAgAElEQVTh+jb/Nmi5a9k6TwgXc7mCBmcnHrfLpZuzztDZp3Sy0bptouBB2FmWJcM89o9hyWeaMgxLxrGfPtOSYZj+/YZpyhdgv3+badXab5pVHX/z2HUsU/7XpmXJMo/vM83j8ZiW5V8Yw7RU533N/arzvvq1/B11l0vyGVa9IsNS/QKmZvGBts9V54Xr2AuXq067Og1drlqH+V+4Xa6q332d/fWOr7e9+r2rzvu613HVeV/3Oo0c38jnc9U5YbDrBos7WFyN3bdg17V734PGXTPGANvqfZAA7VyBmgU6LsC2xi4ZHeWRS1aTYwu00RWglc3QAt+3Jnyu4G2a9pmCt7Px+7P72cMdW52tgeKwf36XYmKiVF5eGXIc9a9rLz/CmZNB29VrYyeJwtLE5nkab2Q3v8JxHrv3J7Z9tMqOVDTUpEFut0s9Ujo0fq02jILnBGOalsorDJVX+FReYehopaHyo1WvyyuNqm0Vhip8hip9pip9pip8pirrvT++7fj76v1Gi3Tu3S6X3O6qny63Sx6XS263S25X1R/Oqtd1f6r2+2OvPW6Xot1uuar3HdvmOnaMx+2S69h2l0uKjY3W0fJK6dh7t6p+uqrfu2q/d7mq/mIKtK/qfY1tkv+1u9Y5AhyvBq6p49dW9euql1V/SR57X7Xt+HWlGp3VOm1V57x1i4HqmI63r3/egPvrnLteDHWOqx3f8c8XKOaanz/w/jD92ymIlJR45eUVN+s1EDnIF9hFrsAucoWCx7Esy9KRoz4VlVSoqOSoDpdVqPSIT6XllTV+Vqq0/Pjr8gpDFT7T9jU8bpeivG5Fe92K8rrl9Xr8r6O9bsW1j1K016OoY9uivG5FedyKjnLL6zn2j9slj8ctj9slj8clr9stj8clz7Gfwfe75PVvd8t7bJvH7T5WfDR/R7Uh/OUBAADgDBQ8bVRFpaGDRUd0sLDqn4LichWVVOj7kqMqKjmq70sqghYvMdEexcVEKa69V3ExUeqW0kGx7bxq386jmGivYqI9ion2qF101fv2x362q94eVfWP2916BQUAAAAQDhQ8rcwwTeXml2nX/mLt3F+svXklOlB4RIXFR2u1axftUUKHdkrsEK0+XU9SQodoJXRop5M6RCuxQzt1jItWXPsoxbbzyuth8T0AAABAouBpcWXlldq2u0hf7irUztzD+u/BEv9ITXSUW91TOui0kxOVmtRenRPbKzUxVp0T2ysuJqqVIwcAAACch4KnBRQcLteGbQe1YXuevt33vSyrqrjplRqvn5zdTT27dFDPLh2VlhTLNDIAAAAgjCh4molhmtr01SH9v417tG13kSTp5M4dlDm4l07vlai+3U5i6hkAAADQzCh4wswwTb3zaa5ee3+nCg4fVaeTYnTl0D46P72zUhNjWzs8AAAA4IRCwRNGn+/I18q3vtHeQ6Xq1/0k/WrYqRp4SiemqQEAAACthIInDHyGqZVvfaO3Nu5RSkKMpvz8TJ17akqrfk8MAAAAAAqeH+z7kqP64yuf66s932vE+T30i5/0VZSXZ3MAAACAtoCC5wcoOFyuR/76iUqPVOqmMafrR6d3ae2QAAAAANRAwdNERysMzX35Mx056tO08eepZ5f41g4JAAAAQB3MvWoC07L0wpov9N+DJbol6wyKHQAAAKCNouBpgtXv7tCmrw9p7KX9dFbfTq0dDgAAAIAgbBU8O3bs0NixY5WRkaGxY8dq586dQdt+9913GjhwoGbPnh2uGNuUQ98f0doPdmnwGakaPqh7a4cDAAAAoAG2Cp4ZM2Zo3LhxWrduncaNG6fp06cHbGcYhmbMmKFhw4aFNci2JOc/u+RySb/4SV+WnQYAAADauEYLnvz8fG3dulWZmZmSpMzMTG3dulUFBQX12r7wwgv66U9/ql69eoU90LbgUNERrd+Sq6EDuyqpY0xrhwMAAACgEY0WPLm5uUpNTZXH45EkeTwede7cWbm5ubXabdu2Te+9954mTpzYLIG2BTnv75TL5dKowb1aOxQAAAAANoRlWerKykr9/ve/12OPPeYvjJoiOblDOML5QVJSAq+4tj+/VOu37NflP+6lU/uwUAGC5wpQF7mCUJAvsItcgV0neq40WvCkpaXpwIEDMgxDHo9HhmHo4MGDSktL87fJy8vT7t27ddNNN0mSDh8+LMuyVFJSoocffth2MPn5JTJNqwkfIzxSUuKVl1cccN/Kf30ll8ulSwZ2DdoGJ46GcgWoiVxBKMgX2EWuwK5IyhW329WkAZJGC57k5GSlp6crJydHWVlZysnJUXp6upKSkvxtunbtqg8//ND/ft68eSorK9P9998fckBt1Rc7C5TeM1GJ8e1aOxQAAAAANtlapW3mzJlavny5MjIytHz5cmVnZ0uSJk+erC1btjRrgG3B9yVHlZtfptNOTmjtUAAAAACEwNYzPH379tWqVavqbV+0aFHA9rfffvsPi6qN2f7fIknSaT0TWzkSAAAAAKGwNcJzotu2q1Ax0R6dnNr6iyoAAAAAsI+Cx4Ztu4t0ao8EedzcLgAAAMBJ6ME3orD4qPYXlOm0k5nOBgAAADgNBU8jtv+3UJLUnwULAAAAAMeh4GnEtl1Fat/Oo56pJ/YXNgEAAABORMHTiO27C3Vq9wS53a7WDgUAAABAiCh4GlBYfFQHCo+wHDUAAADgUBQ8Dfh6T9X375zag+d3AAAAACei4GlAablPkpQY366VIwEAAADQFBQ8DfD5TEmS18NtAgAAAJyInnwDfEZVwRNFwQMAAAA4Ej35BlQeK3i8XlZoAwAAAJyIgqcBPsOUyyV53NwmAAAAwInoyTfA57OYzgYAAAA4GL35BlQaJgsWAAAAAA5Gb74BPsOU18stAgAAAJyK3nwDfD5TUR4WLAAAAACcioKnAUxpAwAAAJyN3nwDfIbFlDYAAADAwejNN8DHCA8AAADgaF47jXbs2KGpU6eqqKhICQkJmj17tnr16lWrzcsvv6ylS5fK7XbLNE1dddVVuu6665oj5hZT6TNZlhoAAABwMFsFz4wZMzRu3DhlZWVp9erVmj59upYtW1arTUZGhq688kq5XC6VlJRo9OjRuuCCC3Taaac1S+AtoWqEh0ULAAAAAKdqdPgiPz9fW7duVWZmpiQpMzNTW7duVUFBQa12HTp0kMtVVRyUl5ersrLS/96pWJYaAAAAcLZGe/O5ublKTU2Vx+ORJHk8HnXu3Fm5ubn12r711lsaNWqULrnkEt14443q379/+CNuQZU+iyltAAAAgIPZmtJm12WXXabLLrtM+/bt05QpUzR06FD16dPH9vHJyR3CGU6TpKTE+19bkuJio2ttA6qRF7CLXEEoyBfYRa7ArhM9VxoteNLS0nTgwAEZhiGPxyPDMHTw4EGlpaUFPaZr164aMGCA3n777ZAKnvz8EpmmZbt9uKWkxCsvr9j//miFT4bPrLUNkOrnChAMuYJQkC+wi1yBXZGUK263q0kDJI3O10pOTlZ6erpycnIkSTk5OUpPT1dSUlKtdt9++63/dUFBgT788EOdeuqpIQfUllQapqK8zn4OCQAAADiR2ZrSNnPmTE2dOlXz589Xx44dNXv2bEnS5MmTdccdd2jAgAFauXKl1q9fL6/XK8uyNH78eA0ZMqRZg29uPh/fwwMAAAA4ma2Cp2/fvlq1alW97YsWLfK//t3vfhe+qNoIn2FR8AAAAAAORm++AT7DVBTLUgMAAACORW8+CNOyZJiM8AAAAABORm8+CJ/PlCR5PSxaAAAAADgVBU8QPqOq4OGLRwEAAADnojcfRKVR9X1AXp7hAQAAAByL3nwQx6e0cYsAAAAAp6I3HwRT2gAAAADnozcfROWxgocpbQAAAIBz0ZsPonqEh1XaAAAAAOei4AnC56tatIApbQAAAIBz0ZsPwj+ljYIHAAAAcCx680H4eIYHAAAAcDx680FUL0vNlDYAAADAuejNB1HJogUAAACA41HwBMGUNgAAAMD56M0H4TNYpQ0AAABwOnrzQVT6WKUNAAAAcDp680H4WJYaAAAAcDx680FUFzxRXhYtAAAAAJyKgieI6iltHkZ4AAAAAMfy2mm0Y8cOTZ06VUVFRUpISNDs2bPVq1evWm2ef/55rV27Vh6PR16vV3fffbcuvvji5oi5RfgMSx63S24XIzwAAACAU9kqeGbMmKFx48YpKytLq1ev1vTp07Vs2bJabc466yxNmjRJ7du317Zt2zR+/Hi99957iomJaZbAm5vPMFmSGgAAAHC4Rnv0+fn52rp1qzIzMyVJmZmZ2rp1qwoKCmq1u/jii9W+fXtJUv/+/WVZloqKipoh5JZRaZgsSQ0AAAA4XKM9+tzcXKWmpsrj8UiSPB6POnfurNzc3KDHvPLKKzr55JPVpUuX8EXawnw+U14P09kAAAAAJ7M1pS0UH330kZ599lktWbIk5GOTkzuEO5yQpaTES5I8UR61i/b63wN1kRuwi1xBKMgX2EWuwK4TPVcaLXjS0tJ04MABGYYhj8cjwzB08OBBpaWl1Wu7adMm3XfffZo/f7769OkTcjD5+SUyTSvk48IlJSVeeXnFkqSS0gq5XfK/B2qqmStAQ8gVhIJ8gV3kCuyKpFxxu11NGiBpdEpbcnKy0tPTlZOTI0nKyclRenq6kpKSarX77LPPdPfdd2vu3Lk644wzQg6krama0sYzPAAAAICT2erRz5w5U8uXL1dGRoaWL1+u7OxsSdLkyZO1ZcsWSVJ2drbKy8s1ffp0ZWVlKSsrS9u3b2++yJuZz6DgAQAAAJzO1jM8ffv21apVq+ptX7Rokf/1yy+/HL6o2gCfYSqKRQsAAAAAR2MII4hKvocHAAAAcDx69EH4fBZT2gAAAACHo0cfhI8vHgUAAAAcjx59EExpAwAAAJyPHn0QVau0sWgBAAAA4GQUPEH4fExpAwAAAJyOHn0QlQaLFgAAAABOR48+CB/P8AAAAACOR48+AMuy5POZjPAAAAAADkePPgDDtGRJimLRAgAAAMDRKHgC8BmmJDGlDQAAAHA4evQB+AxLkpjSBgAAADgcPfoAKn1VIzwsSw0AAAA4Gz36APxT2ih4AAAAAEejRx/A8Wd4WLQAAAAAcDIKngCY0gYAAABEBnr0AbBoAQAAABAZ6NEHwLLUAAAAQGSgRx9ApcGUNgAAACAS0KMPwOdjlTYAAAAgEtCjD+D4stSs0gYAAAA4ma2CZ8eOHRo7dqwyMjI0duxY7dy5s16b9957T1deeaXOPPNMzZ49O9xxtij/lDae4QEAAAAczVaPfsaMGRo3bpzWrVuncePGafr06fXa9OjRQ7NmzdINN9wQ9iBbms/HKm0AAABAJGi0R5+fn6+tW7cqMzNTkpSZmamtW7eqoKCgVruePXvq9NNPl9frbZ5IW9DxKW0UPAAAAICTNdqjz83NVWpqqjwejyTJ4/Goc+fOys3NbfbgWgtT2gAAAIDI0KaGY5KTO7R2CEpJiVdMTJQkqUtqR7Vv16ZuEdqQlJT41g4BDkGuIBTkC+wiV2DXiZ4rjfbm09LSdODAARmGIY/HI8MwdPDgQaWlpYU9mPz8EpmmFfbz2pWSEq+8vGIVfX9EklRUWKoSprUhgOpcARpDriAU5AvsIldgVyTlitvtatIASaO9+eTkZKWnpysnJ0eSlJOTo/T0dCUlJYUepUNUGpZckjxulqUGAAAAnMzW8MXMmTO1fPlyZWRkaPny5crOzpYkTZ48WVu2bJEkbdiwQUOHDtWf//xn/e1vf9PQoUP17rvvNl/kzchnmPJ63XK5KHgAAAAAJ7P1gErfvn21atWqetsXLVrkfz1o0CC988474YusFfl8Jiu0AQAAABGAXn0APsNUlIfRHQAAAMDpKHgCqDw2pQ0AAACAs9GrD8BnWExpAwAAACIAvfoAfD5TURQ8AAAAgOPxrZoBVBosWgAAAJqHYfhUWJgnn6+iyec4eNAt0zTDGBUilVNzxeuNVmJiijyeH16uUPAEULUsNYsWAACA8CsszFNMTKzi4ro0+SswvF63fD7ndWLR8pyYK5ZlqbT0sAoL89SpU9oPPh/DGAEwpQ0AADQXn69CcXEd+b4/IAiXy6W4uI4/aBS0Jnr1AVSyaAEAAGhGFDtAw8L5Z4RefQA+nuEBAAAngHvuuV2vvPJyrW2WZemqq8Zo8+aNTTrnxo0b9NFHH4QjPFmWpcWLF2r8+Kt1/fXXavz4q/S3vy2XJOXm7tPq1X8Py3V+iDvvvFXfffdtve1DhgxSWVlZi8fzy1+O1nfffSNJWrt2jXbv3hX2axQXF2vFir/U2vb44w/r0083hf1a4UCvPgAf38MDAABOAKNGjdHatWtqbdu06RN5PB6dffa5TTrnpk2fNLngMQyj1vt///stbdjwkRYv/qv+8peXtGTJCl144Y8lVRU8r776jyZdx+fzNem4uoqLi3Xo0EH16dM3LOcLt6YWPKZpyrKsoPtLSor14ovLam2bOvX3GjjwnJCv1RJYtCCASp+pKA9DzQAAILINHfpTzZnzuHbs+E69e/eRJL322qv62c9GS5IqKyv1wgvztXnzJ6qs9Klv3776zW+mKTY2ViUlJZo792lt27ZVLpdbAweeraysX2j16r/LNE1t2PCRLrtshCZMmKjXX8/RSy/9VS6XS127dtdvf/s7JSYmae3aNXrzzTeUmJigHTt2aNq036tfv/7++PLyDighIUHR0dGSpOjoaH+cc+Y8odzcvZo4cZy6d++uWbOe0JdffqFnnnlK5eVHFBPTXnfdda/S089Qbu4+3XjjBF155dXasOEjZWRcrlGjsoJ+ttWr/67/+Z8XFRUVLcsy9dBDj6tnz1717t/777+nH/3oopDu+Qcf/EcLFz4n0zSVkJCo++77nbp37yFJWr58qdatWytJSk8/Q3fddZ9iY2O1ePFC7dy5Q0eOlGn//v3q2bOnpk2boQ4dOgS9zmuvvart27/UnDlPKjZ2vqZMuVPnn3+hVqz4i95++y0ZhqFOnTrr/vsfUHJyJy1evFB79+7RkSNl2rt3j557bpGWLVuizZs3qrKyUgkJCZo2bbq6dEnTnDmzVVJSookTxykmJkYLFizRbbfdpGuvnaCLLrpYBQX5evLJx7Rv3x5ZlqVrr52gyy/PlFQ1AjVy5Ch9/PGHys8/pGuvHa9f/GJsSPcwVBQ8ATClDQAAnAiioqI0fPhIvf76Gt16650qKyvVu+/+n2655TZJ0ooVf1FcXJwWLar6r/nz58/VX//6Z9188xTNnfu02rdvr6VLX5Lb7VZRUZESEhKUlXWljhw5ottuu0uS9N1332jBgue0ePFyderUSYsW/VF/+MOTeuihxyRJW7Zs1tKlL6lbt+714rvssgy98srLuuaan2vgwHN03nnn67LLRsjr9eqee36r559/VosX/1VSVXH2wAO/1bRp03X++Rdqw4aP9MADv9XKla9Ikr7//nv16tVbN9xwsyRp6dI/Bf1s8+c/q2XLVio1tYsqKiqCLuv8zjtv65e/tN9ZLyws0KxZ0zVv3gvq3buPcnJeUXb2g1q06C96//31WrdurRYsWKLY2DjNmjVDS5f+Sbfeeock6bPPNunPf35RSUnJevTRbC1d+if/PQ5k1Kgxev31HI0ff51+9KMhkqR169Zqz549Wrhwqdxut/7xj//Vc889oxkzZkmSNm/eqCVLVighIUGSNH78RP811qx5RX/841xlZz+me+65XzfeOEFLl74Y8NrPPPOU+vTpq8cee0qHDh3SDTf8Sv37n6Y+fU6RJJWXl2vhwj8rN3efrrturC6/fLRiY2Nt38dQUfAE4DMsprQBAIBmt35Lrt77LDfk41wuqYEZR5KkIWel6aIBjS/pO2pUlu6993bddNMUvfXWv3TWWQOVktK5Kr7176i0tFRvv/3/JEmVlRU65ZR+kqT//Odd/elPy+V2V/WZqjvJdW3cuEGDB1+kTp06SZKysq7UxInj/PsHDDg7YLEjSZ06ddJf//o/+uKLLfrss81atmyJ1q17XXPmzKvXdvfuXYqKitL5518oSRo06AJFRUVp9+5dio2NVXR0O1166XB/+4Y+27nnnq9HH31IF188VIMHDwkYX0VFhbZv/1IDBgwMdmvr+eKLz9W376n+Uaqf/WyMnn56tsrKSv0jYnFxVaM2Y8ZcqWeffcp/7I9/fLGSkpIlSZmZWXrmmSdtX7fae++9o23bvtSkSeMlVX0nVM1RosGDL6r1e/zgg/X6+99X6ciRsnrTDRuyYcNH/kKpU6dOGjx4iDZu3OAveIYNGyFJSkvrqvj4jsrLOxhwBC1cKHgCqDRYlhoAAJwY+vU7VcnJnfThh+9r7dpXdfXVx4sRy5J+85upOu+885t8fsuqv+JWzbexse0bPN7r9WrgwHM0cOA5GjVqjMaMydDhw98HuI4VcGWv6k3t28fU2t/QZ3v00Sf15Zdf6JNPNuiOO27RvfdO0+DBtaeuffLJRzr77HPl8XgajL9OlAq++Fj9+IOtVFZV7Ib++IVlWbr++knKzMwKuL99++OjLPv352revDlatGiZunbtpi1bPlV29oO2r9XQZ6meoihJbrdbhhGeZ6qCoeAJwOdjShsAAGh+Fw2wNwpTV7i/THLUqDFasuQFHTiQqyFDfuLfPmTIUK1cuUJnnjlA7drFqKysVAcPHlSvXr314x9frJdeWqa77rpPLpfLP6UtLi5Ohw7l+c9x3nnna8WKvyg//5CSkztpzZpXNGjQBbbi2rbtS5100klKS+sqSdq+fZvi4zuqQ4d4xcV1UGlpib9tz569VFFRoY0bN+jccwdp48YN8vl86tGjZ614Gvts3bv30IED+3X66Wfq9NPP1L59e/T119vrFTzvvvt/te6VHWeccZYef/xh7dq1Uz179tLrr+eoX7/+io2N06BBF+qPf5yrq666Ru3bxyonp/Z9+s9/3lNhYaESExP1+utrdO65gxq9XlxcnEpKjt+jIUOGatWqv2no0EvUsWNHVVRUaNeunerX79R6x5aWlsrrjVJycrJM06y1ml9cXJzKy8vl8/nk9dYvJwYNukCvvvoP3XDDzcrPP6T3319fq5BuaRQ8dZiWJcO05GXRAgAAcIIYPvxyPf/8XGVlXamoqCj/9vHjJ2rx4oW68cbrjk1dc2nSpMnq1au3br/9Hs2d+7QmTBgrj8ejc845V3fddZ+GDr1EDzxwnyZOHOdftODmm6fo7runHFu0oJvuu+93tuL6/vsiPf304yorK1VUVLRiYmL02GNPye12q2/fU3TyyT01YcLV6tmzl2bNekKPPPJErUULZs2aXevz1BTss3Xt2k2PPDJTJSXFcrncSk1N9T/TVM2yLH388Ue6/fZ7Gox/3Lhf+Ec2YmJi9NJLf9eDDz6k7OwHZBiGEhISNX36w5KqppN9++3XuvnmX0uSTjvtdF1//Q3+cw0adL4ee+wh7du3Vyef3FO33XZ3o/dvzJgrNX/+s1qxYpluvfVOjRw5St9/X6Tbb79JUtVqbD//+VUBC56+fU/RJZcM0/jxY5WamqpzzjnPv+x0x44nacSIy3X99dcoPr6jFixYUuvYu+66V08++aiuv/4aWZalW265rVVXsnNZDa0518Ly80tkmq0XTkpKvPblFunmp/5Pv/hJH40a3KvVYkHblpISr7y84tYOAw5AriAU5MuJYf/+XerSpecPOke4R3gQms8/36Jly5boiSf+0CLXW7x4Ya2FIELh5Fyp+2fF7XYpOTn4ynTBMG+rjkpfVcHFlDYAAAAEcuaZA1qs2MEPx5S2OnxGVQVMwQMAAIC2oHopbTQNvfo6qgueKJalBgAAABzPVq9+x44dGjt2rDIyMjR27Fjt3LmzXhvDMJSdna1hw4Zp+PDhWrVqVbhjbRGV/hEeFi0AAAAAnM5WwTNjxgyNGzdO69at07hx4zR9+vR6bdasWaPdu3frjTfe0MqVKzVv3jzt2bMn7AE3t+rv3+nQPrqRlgAAAE3ThtaMAtqkcP4ZabTgyc/P19atW5WZmSlJyszM1NatW1VQUFCr3dq1a3XVVVfJ7XYrKSlJw4YN0z//+c+wBdpSkjrGKHvSBTqzT1JrhwIAACKQ1xut0tLDFD1AEJZlqbT0sLze8AxANLpoQW5urlJTU/3fIuvxeNS5c2fl5uYqKSmpVruuXbv636elpWn//v1hCbKl9egc+nJ3AAAAdiQmpqiwME8lJUVNPofb7ZZpOnOpYbQsp+aK1xutxMSU8JwrLGcJk6asqx1uKSnxrR0CHIJcgV3kCkJBvpwYunRJbO0QgBNGowVPWlqaDhw4IMMw5PF4ZBiGDh48qLS0tHrt9u3bp7POOktS/REfO9rCF4/yhW+wg1yBXeQKQkG+wC5yBXZFUq402xePJicnKz09XTk5OZKknJwcpaen15rOJkkjR47UqlWrZJqmCgoK9OabbyojIyPkgAAAAAAgXGxNaZs5c6amTp2q+fPnq2PHjpo9e7YkafLkybrjjjs0YMAAZWVl6dNPP9WIESMkSVOmTFGPHj1CCsbtbv2loNtCDHAGcgV2kSsIBfkCu8gV2BUpudLUz+GyWCIEAAAAQISy9T08AAAAAOBEFDwAAAAAIhYFDwAAAICIRcEDAAAAIGJR8AAAAACIWBQ8AAAAACIWBQ8AAACAiEXBAwAAACBiUfAAAAAAiFgUPJJ27NihsWPHKiMjQ2PHjtXOnTtbOyS0ksLCQk2ePFkZGRkaPXq0brvtNhUUFEiSNm/erDFjxigjI0OTJk1Sfn6+/7iG9iHyPffcc+rfv7+++uorSeQKAjt69KhmzJihESNGaPTo0fr9738vqeF/B/HvpxPTv//9b11xxRXKysrS6NGj9cYbb0giVyDNnj1bl156aa1/50hNz40TJm8sWBMmTBB/Z28AAAYESURBVLBeeeUVy7Is65VXXrEmTJjQyhGhtRQWFloffPCB//3jjz9uTZs2zTJN0xo2bJj18ccfW5ZlWc8//7w1depUy7KsBvch8n3++efWDTfcYP30pz+1tm/fTq4gqIcffth65JFHLNM0LcuyrLy8PMuyGv53EP9+OvGYpmkNGjTI2r59u2VZ/7+d+wlp+o/jOP6aWzkNYlt/dGYkHQIlSPhC0klcEYTWoYOHSjo0OgSVQYdIqEMJLQ8WZGrltTp5CPtD0EKoQylJFIwIpRo5k80kTBps+/wOP5BfZPv98Mfv93XfPR8n+X4ub/CF7++Lj5sxsVjM1NfXm2w2S1ZgRkZGzOTkpGlqalrIiDFL/ztSLLkp+sKTTCaNZVkmk8kYY4zJZDLGsiyTSqVsngzLwaNHj8zhw4fN69evTXNz88LzVCpl6uvrjTEm7xmcLZ1Om9bWVvPp06eF5UNWsJi5uTljWZaZm5v76Xm+HcR+Kk65XM5s377djI6OGmOMefnypdm9ezdZwU/+WniWmo1iyo3H7hsmuyUSCVVUVMjtdkuS3G631q9fr0QioUAgYPN0sFMul9OdO3cUCoWUSCRUVVW1cBYIBJTL5TQ7O5v3zOfz2TE6/idXr17Vvn37tHHjxoVnZAWLicfj8vl8unbtml68eKFVq1bp5MmT8nq9v91Bxhj2UxFyuVy6cuWKjh07pvLycn3//l39/f1531fISnFbajaKKTd8hgf4jQsXLqi8vFyHDh2yexQsQ2NjY3rz5o0OHDhg9ygoAJlMRvF4XHV1dRocHNTp06d1/Phxzc/P2z0alplMJqP+/n5dv35dT58+VW9vr06dOkVWgH+h6G94gsGgvnz5omw2K7fbrWw2q+npaQWDQbtHg40ikYg+fvyovr4+lZSUKBgManJycuF8ZmZGLpdLPp8v7xmca2RkRBMTE9q5c6ckaWpqSkeOHFFbWxtZwS+qqqrk8XjU0tIiSdq2bZv8fr+8Xu9vd5Axhv1UhGKxmKanp2VZliTJsiyVlZWptLSUrGBR+d5l82WjmHJT9Dc8a9asUW1trYaGhiRJQ0NDqq2tddxVHv657u5uvX37Vj09PVq5cqUkaevWrfrx44dGR0clSXfv3tWePXv+9gzOdfToUT179kzRaFTRaFSVlZUaGBhQOBwmK/hFIBBQQ0ODnj9/LunPb0ZKpVKqqan57Q5iPxWnyspKTU1NaWJiQpI0Pj6uZDKpTZs2kRUsKt/vf6lnTuMyxhi7h7Db+Pi4zpw5o2/fvmn16tWKRCLavHmz3WPBBu/fv1dLS4tqamrk9XolSdXV1erp6dGrV690/vx5pdNpbdiwQV1dXVq7dq0k5T1DcQiFQurr69OWLVvIChYVj8d19uxZzc7OyuPxqL29XY2NjXl3EPupON27d083b96Uy+WSJJ04cUK7du0iK9DFixf1+PFjJZNJ+f1++Xw+3b9/f8nZKJbcUHgAAAAAOFbR/0sbAAAAAOei8AAAAABwLAoPAAAAAMei8AAAAABwLAoPAAAAAMei8AAAAABwLAoPAAAAAMei8AAAAABwLAoPAMBWoVBIAwMD2rt3ryzLUnt7u9LptG7cuKHW1lZlMhlJ0u3bt9Xc3Kx0Om3zxACAQkLhAQDY7uHDh7p165aePHmid+/eaXBwUOFwWCtWrFBvb68+fPig7u5udXV1qbS01O5xAQAFxGP3AAAAtLW1qaKiQpLU1NSkWCymkpISRSIR7d+/Xw8ePFA4HFZdXZ3NkwIACg03PAAA261bt27h57KyMs3Pz0uSqqur1dDQoM+fP+vgwYN2jQcAKGAUHgDAsjU8PKyxsTHt2LFDly9ftnscAEABovAAAJalmZkZdXR0qLOzU5cuXVI0GtXw8LDdYwEACgyFBwCwLJ07d06hUEiNjY3y+/3q7OxUR0eHvn79avdoAIAC4jLGGLuHAAAAAID/Ajc8AAAAAByLwgMAAADAsSg8AAAAAByLwgMAAADAsSg8AAAAAByLwgMAAADAsSg8AAAAAByLwgMAAADAsSg8AAAAABzrD3+TO08HBt+KAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 1008x432 with 2 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
-    "df_vldvst.set_index(\"nx\")[\"Vector Loads / Loop Iteration\"].plot(ax=ax1, legend=True);\n",
-    "df_vldvst.set_index(\"nx\")[\"Vector Stores / Loop Iteration\"].plot(ax=ax2, legend=True);"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Let's try to make sense of those numbers.\n",
-    "\n",
-    "Vector loads and vector stores use two 8 Byte values at a time. When we measured loads and stores with `LD_CMPL` and `ST_CMPL` in part A of this task, we measured total number of stores and loads; that is: vector and scalar versions of the instructions. In order to convert the load and store instructions into **bytes** loaded and stored, we need to separate them. The difference of total instructions and vector instructions yield scalar instructions. We multiply the scalar instructions by 8 Byte (double precision) and the vector instructions by 16 Byte (two loads or stores of double precision). That yields the loaded or stored data (or, more precisely, the instruction-equivalent data).\n",
-    "\n",
-    "To formualize it, see the following equations, as an example for load ($ld$), with $b$ denoting data loaded in bytes and $n$ denoting the number of instructions.\n",
-    "\n",
-    "\\begin{align}\n",
-    "b_\\text{ld} &= b_\\text{ld}^\\text{scalar} + b_\\text{ld}^\\text{vector}\\\\\n",
-    "b_\\text{ld}^\\text{scalar} &= n_\\text{ld}^\\text{scalar} * 8\\,\\text{Byte} \\\\\n",
-    "b_\\text{ld}^\\text{vector} &= n_\\text{ld}^\\text{vector} * 16\\,\\text{Byte} \\\\\n",
-    "n_\\text{ld}^\\text{scalar} &= n_\\text{ld}^\\text{total} - n_\\text{ld}^\\text{vector}\\\\\n",
-    "\\Rightarrow b_\\text{ld} &= n_\\text{ld}^\\text{scalar}* 8 \\,\\text{Byte} + n_\\text{ld}^\\text{vector} * 16\\,\\text{Byte} \\\\\n",
-    "& = (n_\\text{ld}^\\text{scalar}+2 n_\\text{ld}^\\text{vector}) * 8\\,Byte \\\\\n",
-    "& = (n_\\text{ld}^\\text{total} - n_\\text{ld}^\\text{vector} + 2 n_\\text{ld}^\\text{vector}) * 8\\,Byte \\\\\n",
-    "& = (n_\\text{ld}^\\text{total} + n_\\text{ld}^\\text{vector}) *8\\,Byte \n",
-    "\\end{align}\n",
-    "\n",
-    "We are going to print this in the next cell. In case you look at this Notebook non-interactively, call `graph_task2b-2`."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 83,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAF/CAYAAAB38jnaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xl8FdX9//H3zF2yk0AIEBCVXVwQZHFFrUtdQEGlSmldQMqvKBa0gBsG1KBfQKvUDXdsbbWoBQ0uuFAVKaIUVFpoEVDWQCCEJSHJXWZ+f9zkhgQIc+EuJL6ejwfl3lnO+czkYOedM3euYdu2LQAAAABAmJnoAgAAAADgaENQAgAAAIA6CEoAAAAAUAdBCQAAAADqICgBAAAAQB0EJQAAAACog6AEAAAAAHUQlAAAAACgDoISAAAAANRBUAIAAACAOghKAAAAAFAHQQkAAAAA6iAoAQAAAEAd7kQXEA0lJWWyLDshfWdnp6u4uDQhfaPhYbzAKcYKnGKswCnGCiLRmMaLaRpq2jQt4v0aRVCyLDthQam6f8ApxgucYqzAKcYKnGKsIBI/9fHCrXcAAAAAUEfcg9KTTz6pLl26aNWqVZKkb775RldeeaUuueQSDRs2TMXFxfEuCQAAAABqiWtQ+s9//qNvvvlGrVu3liTZtq1x48YpLy9P8+bNU69evfTII4/EsyQAAAAA2E/cgpLP59MDDzygiRMnyjAMSdLy5cuVlJSkXr16SZIGDx6sDz74IF4lAQAAAMABxS0oTZ8+XVdeeaXatm0bXlZYWBieXZKkZs2aybIs7dy5M15lAQAAAMB+4vLUu2XLlmn58uUaO3ZsTNrPzk6PSbtO5eRkJLR/NCyMFzjFWIFTjBU4xVhBJH7q4yUuQenrr7/W2rVrdeGFF0qStmzZoptvvlnXX3+9Nm/eHN5ux44dMgxDWVlZEbVfXFyasMcX5uRkaNu2PQnpGw0P4wVOMVbgFGMFTjFWEInGNF5M0zisiZW43Ho3YsQIffHFF5o/f77mz5+vVq1a6cUXX9Tw4cNVUVGhJUuWSJJef/11XXbZZfEoCQAAAAAOKqFfOGuapqZOnaqJEyeqsrJSbdq00bRp0xJZEgAAAAAkJijNnz8//Pq0005TQUFBIsoAAAAAgAOK+xfOAgAAAMDRjqAUA5/8a6PmfbU+0WUAAAAAOEwJ/YxSY/Xlii36YfMedeuQrdzstESXAwAAACBCzCjFgD9gybJtvfXZ2kSXAgAAAOAwEJRiwB+wZBqGlq7aptUbdyW6HAAAAAARIijFgD9gqUen5spM82rWp6tl24n5MlwAAAAAh4egFAP+gKX0VI8GnNNOqzfu0uKVWxNdEgAAAIAIEJRiwB+w5HGZ6ntqrtrlZujFuSv15YotiS4LAAAAgEMEpRjwBy153KZcpqnfX9dDHdpk6vl3VuiTf21MdGkAAAAAHCAoRZlt26EZJXfo1KYmu3XHtafq1I7N9ZePVunJvy/Xlh17E1wlAAAAgPoQlKIsELQkKRyUJMnrcenWq0/WVX3b6T8/7tB9LyzWnz/8nzZuK01UmQAAAADqwRfORpk/UB2UXLWWu0xTV5zdTud2b6O3v/hBn3+zWf9YuknHtkzX6V1b6sTjm6lty3SZhpGIsgEAAADsg6AUZTVB6cCTdZlpXt1wSRcN7NtOX63YqoX/3qI3Pl0jaY3SUzzq2CZTx7fK0HGtMpSbnapmTZLldjHxBwAAAMQTQSnKwkHpEOGmSapXF/Vqq4t6tVXJnkqtXLdDK34s0drNu/Xt6u2q/uYl0zCUnZmkFk1T1SIrRc2zkpWZ5lVmWpIy07xqkuZVeqqHmSgAAAAgighKUeY/wGeUDqVpRpLOOjlXZ52cK0kqrwxoQ1GptpbsVVFJubbtLFdRSbkWb96tvZWB/fY3DUOpyW6lJrmVUvV3arJbKUn7vPa65fWY8npc8rpdSqp+7THldbvC65LcLnk8JsELAAAAP2kEpSg71K13TqQkudW5bZY6t83ab93eioB27/Vpd5lPu8qq/65UWXlAeysDKq8MaG9FQIXFe7W3wq/yyqAq/cGIazANQ26XIZfLlNtlyO0y5TJDf++73GUeZL1pyjRD7ZimUfN3+HXNOlfVMsOoem0aMg0dZL/a+xuGIcNQ1R9DhkJ/m1Xvq4/FMCQZNa8NGTX7GArvV2tZuL2avkLtVbVdq70D7VdTmxTq07Js2XZovrC6PQAAABx9CEpR5otCUKpPanJohqhVs1TH+wSClip8Qfn8QfkCVu2//ZZ8gVCYqn7t91sKWJYCQVuBoKVg9d9W7fcBy1YwaMnnt7S3IqBA0FbQskLrgrYs25Zt2bJsKWjVvA+/tg9d+0+Bsc+L6gAXXmTUbFEdyKq3q9lH++xj1HlfO5DVtGHU9G3U1FC9rbHPMh2gJmOfnarbM/ZZX6utOn1Ut7fPodUcT60TUutlrbbrrq2bOQ+yWe1+6umr9v619zEOvqr2dgdZWX+tNe+SvG75fIEDbFT7OOqtwUE99bVRd5+Dn9eDN3Y45+tg/ez/1vkvGyL5vUREv8KIqN3YFJGS7FFFhd9ZszE6uNid3whqiKjdmGxatX1sGo/G8aWmeLW33Fdn09j8nCMR2fg5es/vgTdtWOd3X6mpSdq7t1KR/ysIaZaRpHO7t27QdykRlKKsekbJG6OgdDjcLlPpKaaU4kl0KbXYdigwWZZkVYUnyw4FqZqAZcmyVStghbe1JFtVgctWVfgKvber2g+9rvq7+r1d3bekqnVWVWoLBzi75rVt23Xa27etutvUHJcUOq5QL6H/SU31qmyvLzyrVB0Wq7faNzxW1169gR3+u86+4U3smu322bb2+5od7PDLmvbq9lG9j71PI/vsEj4XtWuu3ce+NdU9btXdXwdXax/VelN7u4PsVLftgwV1+2Ar9qthn/d19rH3+9+D1Xrg47AlBYK2/IHgAeqsfb4P0nSd9pydL7ueYg+2qvb+zs/dwVY6PV+x+kVLZO063ziSZiM9NtM0wv+tqb/d2NQbycaRtXt0nN9IRHKOI2s3gm3rWWcaklXfP7I41HAkG9sxGmyxGz+xOb8RVXAk7RpHNqaz0pN09im5Mt0EJVSpDkruoygoHa0Mw5DLMPRTeqhfTk6Gtm3bk+gy0AAwVuAUYwVOMVYQCcYLXzgbdU6fegcAAADg6MXVfJT5g6EHJ8TqM0oAAAAAYo+r+SiLxlPvAAAAACQWV/NRVvMwB1eCKwEAAABwuAhKUcaMEgAAANDwcTUfZQQlAAAAoOHjaj7K/AFLhiSX2XCfGQ8AAAD81BGUoswftORxm/t9oz0AAACAhoOgFGX+gMVtdwAAAEADxxV9lPkDQYISAAAA0MBxRR9lzCgBAAAADR9X9FEWCkp8hxIAAADQkBGUoswfsORxcVoBAACAhowr+iirfuodAAAAgIaLK/oo8/EZJQAAAKDB44o+yniYAwAAANDwcUUfZQGCEgAAANDguePV0S233KKNGzfKNE2lpqbqvvvuU9euXXXBBRfI6/UqKSlJkjR27Fj17ds3XmVFHTNKAAAAQMMXt6A0ZcoUZWRkSJI+/vhj3XPPPZo9e7Yk6Y9//KM6d+4cr1Jiyh/kqXcAAABAQxe3K/rqkCRJpaWlMgwjXl3HFTNKAAAAQMMXtxklSbr33nu1cOFC2batF154Ibx87Nixsm1bPXv21B133KEmTZrEs6yo8gWC8vKFswAAAECDZti2bce70zlz5ujdd9/V888/r8LCQuXm5srn82ny5MkqKyvTI488Eu+SosK2bQ0c945+cWFn/fqyrokuBwAAAMBhiuuMUrWBAwcqLy9PJSUlys3NlSR5vV4NGTJEI0eOjLi94uJSWVbc854kKScnQ9u27ZEkBYKWLFvy+QLhZcC+9h0vQH0YK3CKsQKnGCuIRGMaL6ZpKDs7PfL9YlDLfsrKylRYWBh+P3/+fGVmZiopKUl79oR+ALZt67333lPXrg13JsYfsCSJhzkAAAAADVxcZpTKy8s1evRolZeXyzRNZWZmasaMGSouLtZtt92mYDAoy7LUoUMHTZw4MR4lxYQ/WBWUeJgDAAAA0KDFJSg1b95cs2bNOuC6OXPmxKOEuAhUzSh5CUoAAABAg8YVfRT5AswoAQAAAI0BV/RR5CcoAQAAAI0CV/RRRFACAAAAGgeu6KPIHwhK4ql3AAAAQEPHFX0U1Tz1zpXgSgAAAAAcCYJSFHHrHQAAANA4cEUfRQQlAAAAoHHgij6KCEoAAABA48AVfRQRlAAAAIDGgSv6KCIoAQAAAI0DV/RRFH7qHY8HBwAAABo0ruijiBklAAAAoHHgij6KfIGg3C5ThmEkuhQAAAAAR4CgFEX+gMVsEgAAANAIcFUfRQGCEgAAANAocFUfRf6AxYMcAAAAgEaAq/oo8gcteT2cUgAAAKCh46o+inx+ZpQAAACAxoCr+ijyB/mMEgAAANAYcFUfRTz1DgAAAGgcuKqPIn/AkpugBAAAADR4XNVHEU+9AwAAABoHruqjKPTUO1eiywAAAABwhAhKUeQPBJlRAgAAABoBruqjiIc5AAAAAI0DV/VRRFACAAAAGgeu6qOIoAQAAAA0DlzVR4ll2QpaNkEJAAAAaAS4qo8Sf9CSJIISAAAA0AhwVR8l/kBVUOKpdwAAAECDx1V9lISDEjNKAAAAQIPHVX2U+ANBSQQlAAAAoDHgqj5KamaUXAmuBAAAAMCRIihFCQ9zAAAAABoPruqjhM8oAQAAAI0HV/VR4uOpdwAAAECjwVV9lDCjBAAAADQe7nh1dMstt2jjxo0yTVOpqam677771LVrV/3www+66667tHPnTmVlZWnKlCk6/vjj41VW1AQISgAAAECjEbegNGXKFGVkZEiSPv74Y91zzz2aPXu2Jk6cqCFDhmjAgAF6++23lZeXpz/96U/xKitqqmeUvAQlAAAAoMGL21V9dUiSpNLSUhmGoeLiYq1YsUL9+/eXJPXv318rVqzQjh074lVW1NQ89Y7HgwMAAAANXdxmlCTp3nvv1cKFC2Xbtl544QUVFhaqZcuWcrlC4cLlcqlFixYqLCxUs2bN4lnaEeMzSgAAAEDjEdegNHnyZEnSnDlzNHXqVI0ePToq7WZnp0elncOVk5Mhb1LoVOa2bKLkpLieVjQwOTkZh94IEGMFzjFW4BRjBZH4qY8Xx1f0a9eu1X//+1/t3bu31vJBgwZF3OnAgQOVl5enVq1aaevWrQoGg3K5XAoGgyoqKlJubm5E7RUXl8qy7IjriIacnAxt27ZHJbvKJUk7d5bJZTKrhAOrHi/AoTBW4BRjBU4xVhCJxjReTNM4rIkVR0FpxowZeuqpp3TCCScoOTk5vNwwDEdBqaysTLt37w4HoPnz5yszM1PZ2dnq2rWr5s6dqwEDBmju3Lnq2rVrg7vtTgrdeucyDUISAAAA0Ag4CkqvvPKK3njjDZ1wwgmH1Ul5eblGjx6t8vJymaapzMxMzZgxQ4ZhaNKkSbrrrrv09NNPq0mTJpoyZcph9ZFobVuk66R2DS/gAQAAANifo6CUnJys9u3bH3YnzZs316xZsw64rkOHDnrjjTcOu+2jRZ+uLdWna8tElwEAAAAgChzdJzZ69Gjl5+erqKhIlmXV+gMAAAAAjY2jGaW77rpLkmrN/Ni2LcMwtHLlythUBgAAAAAJ4igoffLJJ7GuAwAAAACOGo6CUps2bSRJlmVp+/btat68uUye7gYAAACgkXKUdkpLSzV+/Hh169ZN5557rrp166Y777xTe/Y0jmerAwAAAMC+HAWl/Px8lZeXq6CgQN99950KCgpUXl6u/Pz8WNcHAAAAAHHn6Na7BQsW6OOPP1ZKSookqV27dnr44Yd18cUXx7Q4AAAAAEgERzNKSUlJ2rFjR61lJSUl8nq9MSkKAAAAABLJ0YzSoEGDNGzYMN10001q3bq1Nm/erJkzZ+raa6+NdX0AAAAAEHeOgtLIkSPVokULzZ07V0VFRWrRooWGDx+uQYMGxbo+AAAAAIg7R0HJMAwNGjSIYAQAAADgJ+GgQWnOnDkaOHCgJOnNN988aAOEJwAAAACNzUGD0rvvvhsOSm+//fYBt6meaQIAAACAxuSgQen5558Pv/7zn/8cl2IAAAAA4Gjg6PHg1TNLdV199dVRLQYAAAAAjgaOgtK6dev2W2bbtjZu3Bj1ggAAAAAg0ep96t348eMlSX6/P/y62qZNm9SxY8fYVQYAAAAACVJvUDr22GMP+FqSTjvtNF166aWxqQoAAAAAEqjeoDRq1ChJ0qmnnqq+ffvGpSAAAAAASDRHXzjbt29f+Xw+/fDDDyopKZFt2+F1Z555ZsyKAwAAAIBEcBSUlixZojFjxsjn86m0tFTp6ekqKytTq1at9Mknn8S6RgAAAACIK0dPvXv44Yc1fPhwffXVV0pLS9NXX32lkSNHasiQIbGuDwAAAADizlFQ+vHHH3XDDTfUWjZixAjNnDkzFjUBAAAAQEI5CkoZGRkqLS2VJOXk5Gj16tXavXu39u7dG9PiAAAAACARHH1G6eKLL9Znn32mK664QoMGDdINN9wgt9vN48EBAAAANEqOgtK9994bfj1s2DB169ZNZWVlPDIcAAAAQKN0yFvvgsGgLrroIvl8vvCyXr166bzzzpNpOrpzDwAAAAAalEMmHZfLJZfLpcrKynjUAwAAAAAJ5+jWuxtuuEFjxozR//t//0+tWrWSYRjhdW3bto1ZcQAAAACQCI6C0oMPPihJWrhwYa3lhmFo5cqV0a8KAAAAABLIUVD673//G+s6AAAAAOCoEdHTGAoLC/XNN9/EqhYAAAAAOCo4CkqbN2/W4MGDddlll2no0KGSpA8++KDWY8MBAAAAoLFwFJTy8vJ0/vnna+nSpXK7Q3frnX322frnP/8Z0+IAAAAAIBEcBaXly5drxIgRMk0z/MS7jIwM7dmzJ6bFAQAAAEAiOApK2dnZWrduXa1lq1evVm5ubkyKAgAAAIBEcvTUu2HDhum3v/2tRowYoUAgoLlz5+rZZ5/Vb37zG0edlJSUaPz48Vq/fr28Xq+OO+44PfDAA2rWrJm6dOmizp07yzRDmW3q1Knq0qXL4R8RAAAAABwhR0Fp0KBBysrK0t/+9jfl5uZqzpw5Gj16tC666CJHnRiGoeHDh+v000+XJE2ZMkWPPPKIHnroIUnS66+/rrS0tMM8BAAAAACILkdB6dtvv9VFF120XzD67rvv1K1bt0Pun5WVFQ5JktS9e3e99tprEZYKAAAAAPHh6DNK1Y8Er2v48OERd2hZll577TVdcMEF4WXXX3+9BgwYoEcffVQ+ny/iNgEAAAAgmuqdUbIsS7Zt1/pTbf369XK5XBF3+OCDDyo1NVW//vWvJUmffvqpcnNzVVpaqnHjxumpp57S7bffHlGb2dnpEdcRTTk5GQntHw0L4wVOMVbgFGMFTjFWEImf+nipNyideOKJ4ceBn3jiibXWmaap3/72txF1NmXKFK1bt04zZswIP7yh+sl56enp+sUvfqGXX345ojYlqbi4VJZlH3rDGMjJydC2bTwmHc4wXuAUYwVOMVbgFGMFkWhM48U0jcOaWKk3KH3yySeybVvXX3+9Xn311fBywzDUrFkzJScnO+7oscce07///W8999xz8nq9kqRdu3YpKSlJycnJCgQCmjdvnrp27RrxQQAAACBxbNtWaekulZeXyrKCiS4HUVBUZMqyrESXERG326umTXPkcjl6DMOh26tvZZs2bSRJ//jHP46ok++//14zZszQ8ccfr8GDB0uSjjnmGA0fPlx5eXkyDEOBQEA9evTQ6NGjj6gvAAAAxFdJybaqX6S3lMvlDt+RhIbL7TYVCDScoGTbtsrKdqukZJuaN4/Od73WG5SmT59+yAacBJtOnTrpf//73wHXFRQUHHJ/AAAAHL18vgq1bHmMDMPRc8KAqDMMQ2lpTVRaujNqbdYblLZs2RK1jgAAANBY2YQkJFy0ZzLrDUoPP/xwVDsDAAAAgIaA6A8AAIBGZ9CgK7R27eqYtP3eewWaMGF8xPvNnPmC3npr1n7LR40aoYULF0SjtIhMnjxJb731N0nS0qVL9NVXX8akn1mz/qqSkh3h93PmvKm//e0vMekrmghKAAAAQBx88cXnOueccxNdxgEtW/avww5KwWD9TzqcNeu1WkFp4MBBuu66Xx1WX/EUnWfnAQAAAA3AypX/0eOPP6KKinIlJ6dozJix6tr1JAUCAY0fP0a7du1SZWWlTjzxJI0bd488Ho/8fr8ee2yqli37l3JyWujYY48Pt7d8+bd67LGpsixbgUBAN944TBdffOl+/RYVbZVt22rZspXjWjdu3KBp0x7Szp0lcrlcGjHiVp1xxlmSpC+//KeeffZJWZalrKymGjfuHh1zTFstXbpE06c/qi5dTtDq1avkcrl0zz2T1K5d+4P2s2bNar399t9lWZaWLPlKF174cw0dOkyLFn2hP/3pJVVW+uTxeHTbbXfo5JNP0dKlS/THP/5Bp57aXStXrtCNN96ssrIyvfHGawoE/JKkW28do169+uiVV17U9u3bNGHCnfJ6kzRxYr7mz/9I5eXlGjVqjILBoJ555gktXvxPSdLpp5+lkSNvk8vl0uTJk+T1erVhw3oVFW3VSSedogkT7o/bUxUJSgAAAIiqhcsL9cV3hTFp+5xuuTr7lMN7/LPf79e9947X3XfnqXfv07VkyVe6997x+tvf5sjtdmvixHxlZmbJtm3l50/Uu+++rYEDB+ntt99SYeFm/fnPsxQIBHTrrb9Rbm6ohr/85RVde+0QXXppv6rvkyo9YN8LFnwW8WzS/fdP0IABV6l//4H64Ye1GjXqN3r11Tcl2crPz9MTTzyndu3aa+7cObr//gl6/vlXJElr1nyvMWPGqkePnnr//bnKz5+oF1/880H76dChowYMuDocXqRQSJs580X94Q9PKC0tXWvXrtHYsb/T3//+riRp7drVGjv2Lt1+e+gWxF27duriiy+RYRhav/5HjR59i2bPfk833nizCgrmKD9/itq377hf3++8M1vff79KL70UuhVv7Njf6Z13ZuuqqwZV9bNGjz/+tEzT1NChv9KSJYvVu/cZEZ3Hw+U4KC1atEjvvvuuioqK1KJFC/Xr109nnnlmLGsDAAAAomb9+nXyeDzq3ft0SVKvXn3k8Xi0fv06HX98O7322qv68st/yrKC2rNnj5KTkyVJS5f+S5dd1l9ut1tut1uXXHKZvvvuG0nSaaf10quvztSWLYXq3fsMnXTSyQfs+4svPtMttzj/vtC9e8u0evUqXX75lZKkdu3aq2PHLvrPf5ZLkjp06ByeJbr88iv16KNTtHdvmSTpmGPaqkePnpKkSy65XFOnTlZZWanS0tId9//ll4u0adNG3XrriPCyYDCoHTuKw32cfHK38LpNmzZq0qR7tW3bNrndbu3YUazi4u3Kzm5ebz9LlizW5Zf3l8fjqTqWK/T55/8IB6W+fc9XUlKSJKlLly7atGmjevd2fBhHxFFQevnll/Xcc8/p6quvVteuXVVYWKjf//73Gj58uIYNGxbrGgEAANCAnH3K4c/6xJJt2we8bcswpI8++kDfffeNnn76eaWmpulPf3pJGzasD+93MNdeO0Rnn32uvv56sR5/fKp69z5DI0bcUmub0tJSFRYWqlOnzhHVeiCGYci2LcX+7jNbp59+pu6774H91vz44w9KSUmttWzSpHs1atTtOvfc82VZli666Bz5fL5D92Lv/1jvfd8nJXnDr03TdcjPQ0WTo4c5vPTSS3rllVc0btw4/epXv9LYsWP1yiuv6KWXXop1fQAAAEBUHHfc8fL5fFq6dImk0JPeAoGA2rY9TqWle5SZmaXU1DSVlpbqo48+CO/Xq1dvffDBewoEAqqsrKi1bv36dWrT5hgNHHiNfvGLX2rlyv/s1++iRV+EP1vkVFpaujp27Kz3358rSVq37ketWbNKJ554sk46qZtWr16ldet+lCS9//5cderURampaZJCt819++0ySaEA2L59x0POJqWlpamsrOa2wT59ztTixYu0du2a8LIDHVu10tJS5ea2liTNnft2rZCUlpZ20FsSe/c+Xe+9V6BAIKBAIKD335+rXr361FtrvDi+9e64446r9b5t27Zx+yAVAAAAEKkxY26Vy+UKv3/lldc1efLUWg9zyM+fIo/Ho0sv7a8FCz7Xr399rXJycnTqqT1UWVkpSbryyqu1evVqXX/9tWrRoqW6d++pwsJNkqQ333xdS5f+Sx6PWx6PV7ffPm6/OhYs+EwDBlxdb60PPTRJXm9S+P20adM1cWK+pk17SLNm/VUul0sTJjygpk2bSpImTHhA999/r4LBoLKymiov78Hwvp06ddZHH83T9OmPyuUyNWHC/Yc8V+ee+zPde+843XTTkPDDHPLyHtT//d+DqqysVCDg1ymnnKquXU864P6/+90duueesWrePEfdu5+mzMzM8LpBgwbroYceUHJysiZOzK+135VXXqWNGzdo6NAhkkIB7YorrjpkvfFg2PXNJVaZNWuWFi9erNtuu02tWrVSYWGhnn76afXp00fXXHNNeDvTTMzTxouLS2VZhzyMmMjJydC2bXsS0jcaHsYLnGKswCnGCpyK5VjZsmWdWrU67tAb/gT5/X798pdX6/XXZ8vtjv1z1JYuXaKnnppe78MbnHC7TQUCVpSqip8DjUXTNJSd7fzzWdUc/bTy8vIkSe+++27VfZGhUFJQUKC8vLzw/Z4rV66MuAAAAACgsfJ4PHrzzYJEl4HD4CgoffLJJ7GuAwAAAMAROu20Xkc8m4QQR0GpTZs2kiTLsrR9+3Y1b948YbfZAQAAAECsOUo7paWlGj9+vLp166Zzzz1X3bp105133qk9e7gnGgAAAEDj4ygo5efnq7y8XAUFBfruu+9UUFCg8vJy5efnH3pnAAAAAGhgHN16t2DBAn388cdKSUmRJLVr104PP/ywLr744pgWBwAAAACJ4GhGKSkpSTt27Ki1rKSkRF6v9yB7AAAAAIkzf/7HGjp0iG66aYhZO0TlAAAgAElEQVSGDLlGkybdG1734ovPyu/3J7A6aebMF/TWW7P2Wz5q1AgtXLgg7vVMnjxJb731N0mhR4wvXrwoJv3MmvVXlZTU5Io5c97U3/72l5j0daQczSgNGjRIw4YN00033aTWrVtr8+bNmjlzpq699tpY1wcAAABEZPv27frDH/5PL774qlq2bCXbtrV69arw+pdffl6//OX18ng8EbUbCASi9l1IX3zxuSZPnhqVtqJt2bJ/qbKyQj17nh7xvsFgsNaX/NY1a9Zr6tWrj5o2bSZJGjhw0GHXGWuOftIjR45UixYtNHfuXBUVFalFixYaPny4Bg06eg8MAAAAP007dmyXy+VWZmaWJMkwDHXq1EWS9OijUyRJI0cOk2GYeuKJZ+X3+zRt2sPavHmjbNvWL395vS67rL8kadCgK9S//wD9619fq3XrNrr77jy9//5c/f3vbygYDCo9PV1jx96lY489XsuXf6vHHpsqy7IVCAR0443DdPHFl+5XX1HRVtm2rZYtWzk+po0bN2jatIe0c2eJXC6XRoy4VWeccZYk6csv/6lnn31SlmUpK6upxo27R8cc01ZLly7R9OmPqkuXE7R69Sq5XC7dc88ktWvX/qD9rFmzWm+//XfZtqWvvlqsCy/8ua6//iYtWvSF/vSnl1RZ6ZPH49Ftt92hk08+RUuXLtEf//gHnXpqd61cuUI33nizysrK9MYbrykQCM3a3XrrGPXq1UevvPKitm/fpgkT7pTXm6SJE/M1f/5HKi8v16hRYxQMBvXMM09o8eJ/SpJOP/0sjRx5m1wulyZPniSv16sNG9arqGirTjrpFE2YcL8Mw3B8DiPlKCgZhqFBgwYRjAAAAHBI/lUL5f/f5zFp29PlXHk6n13vNh07dtaJJ56ka67ppx49eqpbt+665JLLlZmZpd///k7Nnv2GnnnmJaWmpkqS8vLuVvv2HfTww49o+/btuvnmX6lLlxPUvn1HSaEZqieeeFaS9O23yzR//kd66qnn5fV6tWjRQj388AN65pmX9Je/vKJrrx2iSy/tJ9u2VVpaesD6Fiz4TOecc25Ex33//RM0YMBV6t9/oH74Ya1GjfqNXn31TUm28vPz9MQTz6ldu/aaO3eO7r9/gp5//hVJ0po132vMmLHq0aOn3n9/rvLzJ9b7PUsdOnTUgAFXq7KyQrfcMlqStGnTRs2c+aL+8IcnlJaWrrVr12js2N/p739/V5K0du1qjR17l26/fbwkadeunbr44ktkGIbWr/9Ro0ffotmz39ONN96sgoI5ys+fEj63+3rnndn6/vtVeuml0K14Y8f+Tu+8M1tXXTWoqp81evzxp2WapoYO/ZWWLFms3r3PiOg8RsLx3OFbb72lt99+W1u3blXLli01YMAAXXPNNTErDAAAADgcpmnq4Ycf1dq1q7Vs2VItWPCp/vrXP+tPf3pdTZpk7rf9kiVfadSoMZKk5s2b68wzz9HSpUvCF/OXXtovvO3ChZ9r9ervNWLETZIk27a1Z89uSaEve3311ZnasqVQvXufoZNOOvmA9X3xxWfhEOLE3r1lWr16lS6//EpJUrt27dWxYxf95z/LJUkdOnQOzxJdfvmVevTRKdq7t0ySdMwxbdWjR09J0iWXXK6pUyerrKxUaWnpjvtfvHiRNm3aqFtvHRFeFgwGtWNHcbiPk0/uFl63adNGTZp0r7Zt2ya3260dO4pVXLxd2dnN6+1nyZLFuvzy/uFbIi+//Ap9/vk/wkGpb9/zlZSUJEnq0qWLNm3aqN69HR9GxBwFpWeeeUZz5szRsGHDwp9ReuGFF1RUVKSRI0fGrjoAAAA0OJ7OZx9y1ice2rfvqPbtO+qaa67Vr3/9Cy1b9i+dd94FB9y27i1c+75PTU0Jv7ZtqV+/KzV8+G/3a+Paa4fo7LPP1ddfL9bjj09V795naMSIW2ptU1paqsLCQnXq1Nnxcdi2fdCabdtSDO8+C/d/+uln6r77Hthv3Y8//qCUlNRayyZNulejRt2uc889X5Zl6aKLzpHP53PQT/0/h6SkmgfJmaZLwWAw0kOJiKOn3r3xxht66aWXdN1116lv37667rrr9MILL2jWrP2f1AEAAAAk0rZtRfr3v78Lvy8q2qqdO0uUm9takpSamqaysprb4nr16qN33pktSSou3q5FixaqR49eB2z77LP76oMP3lVR0VZJoZmV//53pSRp/fp1atPmGA0ceI1+8YtfauXK/+y3/6JFX4Q/W+RUWlq6OnbsrPffnytJWrfuR61Zs0onnniyTjqpm1avXqV1636UJL3//lx16tRFqalpkkKfbfr222WSpI8++kDt23c85GxSWlpardsG+/Q5Q4sXL9LatWvCyw50bNVKS0vD53ru3LdrhaS6be+rd+/T9d57BQoEAgoEAnr//bnq1atPvbXGkqMZpfLycjVr1qzWsqysLFVUVMSkKAAAAOBwBYNBvfjis9qypVBJScmybUvDh49U584nSJIGD/6Vfve73yopKVlPPPGsxowZq2nTHtKNNw6Wbdv67W9HqX37Dgdsu3v30zRixC266647FAxaCgT8+tnPLtIJJ3TVm2++rqVL/yWPxy2Px6vbbx+33/4LFnymAQOurrf+hx6aJK83Kfx+2rTpmjgxX9OmPaRZs/4ql8ulCRMeUNOmTSVJEyY8oPvvv1fBYFBZWU2Vl/dgeN9OnTrro4/mafr0R+VymZow4f5Dnr9zz/2ZJkwYr5tuGhJ+mENe3oP6v/97UJWVlQoE/DrllFPVtetJB9z/d7+7Q/fcM1bNm+eoe/fTlJlZc7vjoEGD9dBDDyg5OVkTJ+bX2u/KK6/Sxo0bNHToEElSnz5n6oorrjpkvbFi2Aeby9vH+PHjVVZWpt///vdq3bq1Nm3apMcff1zJycmaNm1aPOqsV3FxqSzrkIcREzk5Gdq2bU9C+kbDw3iBU4wVOMVYgVOxHCtbtqxTq1bHxaTtxsTv9+uXv7xar78+O2qPGa/P0qVL9NRT0+t9eMPBuN2mAgErBlXF1oHGomkays52/pms8H5ONsrLy1NaWpoGDBigHj16aODAgUpJSdF9990XcYcAAADAT5HH49GbbxbEJSThyDmaUapmWZZKSkrUtGlTmaapDRs2qG3btrGszxFmlNBQMF7gFGMFTjFW4BQzSogEM0oOZ5RqOjGVnZ0t0zTl8/n085//POIOAQAAAOBoF1FQqiuCySgAAAA0WqHHVAOJFO1sckRBqe5zzgEAAPDT4/Uma+fO7QoE/PwiHQlh27bKynbL7fYeemOH+CQZAAAAjkjTpjkqLd2lHTu2yrJi+yWgiA/TNGVZDWuW0O32qmnTnOi1V9/K884776CzRvy2AAAAAFLoLqOMjCxlZGQluhRECQ+KOURQOhq+IwkAAAAA4q3eoNSnT5941QEAAAAAR40jepgDAAAAADRGBCUAAAAAqCMuT70rKSnR+PHjtX79enm9Xh133HF64IEH1KxZM33zzTfKy8tTZWWl2rRpo2nTpik7OzseZQEAAADAAdU7ozR27FgVFBRo586dR9SJYRgaPny45s2bp4KCArVt21aPPPKIbNvWuHHjlJeXp3nz5qlXr1565JFHjqgvAAAAADhS9Qal888/X59//rn69eunwYMH65lnntGKFSsi7iQrK0unn356+H337t21efNmLV++XElJSerVq5ckafDgwfrggw8ibh8AAAAAoqneW+/69++v/v37y7Ztfffdd/r00081YcIEbd++XX379tV5552ns846S+np6Y47tCxLr732mi644AIVFhaqdevW4XXNmjWTZVnauXOnsrJ4Dj8AAACAxDDsw/jm2O3bt+uzzz7TZ599pq+//lqjR4/W4MGDHe17//33a+vWrXryySf10Ucf6a233tJzzz0XXn/qqafqs88+IygBAAAASJjDephD8+bNdc011+iaa65RMBjUrl27HO03ZcoUrVu3TjNmzJBpmsrNzdXmzZvD63fs2CHDMCIOScXFpbKsiPNeVPCtxYgE4wVOMVbgFGMFTjFWEInGNF5M01B2tvM74ML7HWnHLpdLzZo1O+R2jz32mP7973/rqaeektfrlSSdfPLJqqio0JIlSyRJr7/+ui677LIjLQkAAAAAjkhcHg/+/fffa8aMGTr++OPDt+gdc8wxeuqppzR16lRNnDix1uPBAQAAACCR4hKUOnXqpP/9738HXHfaaaepoKAgHmUAAAAAgCOHdevdhg0btGnTpmjXAgAAAABHBUdB6Y477tDSpUslSW+99Zb69eunfv366Y033ohpcQAAAACQCI6C0qJFi3TyySdLkmbOnKmXX35Zb7zxhp5//vmYFgcAAAAAieDoM0p+v19er1dbt27Vzp071bNnT0mh71MCAAAAgMbGUVDq2rWrnn32WW3atEnnn3++JGnr1q1KT4/8eeQAAAAAcLRzdOvd5MmTtWrVKlVWVmrMmDGSpGXLlumKK66IaXEAAAAAkAiGbdt2oos4UsXFpbKsxBxGY/rWYsQe4wVOMVbgFGMFTjFWEInGNF5M01B2duR3wjmaUbJtW7NmzdKNN94YnkX6+uuv9d5770XcIQAAAAAc7RwFpenTp+vNN9/Utddeq8LCQklSq1at9MILL8S0OAAAAABIBEdBafbs2ZoxY4b69esnwzAkScccc4w2bNgQ0+IAAAAAIBEcBaVgMKi0tDRJCgelsrIypaamxq4yAAAAAEgQR0HpvPPO08MPPyyfzycp9Jml6dOn62c/+1lMiwMAAACARHAUlO6++24VFRWpZ8+e2rNnj3r06KHNmzdr7Nixsa4PAAAAAOLO0RfOpqen6+mnn1ZxcbE2bdqk3Nxc5eTkxLo2AAAAAEgIRzNKAwcOlCRlZ2erW7du4ZB09dVXx64yAAAAAEgQR0Fp3bp1+y2zbVsbN26MekEAAAAAkGj13no3fvx4SZLf7w+/rrZp0yZ17NgxdpUBAAAAQILUG5SOPfbYA76WpNNOO02XXnppbKoCAAAAgASqNyiNGjVKknTqqaeqb9++cSkIAAAAABLN0WeUHn30Uc2cOVPFxcWxrgcAAAAAEs5RULrlllu0ZMkSXXjhhRo+fLgKCgpUUVER69oAAAAAICEcBaWf//znevLJJ/Xpp5/qwgsv1F//+ledc845uvvuu7Vo0aJY1wgAAAAAceXoC2erZWVlaeDAgUpNTdULL7ygDz/8UEuWLJFpmpo4caLOOuusWNUJAAAAAHHjKChZlqWFCxfq7bff1qeffqru3btrxIgRuvjii5WcnKx58+Zp3LhxWrhwYazrBQAAAICYcxSU+vbtq6ZNm2rAgAEaN26cWrZsWWv9JZdcoldffTUmBQIAAABAvDkKSjNmzNApp5xS7zZ//vOfo1IQAAAAACSao4c57BuSiouL9eGHH2rNmjUxKwoAAAAAEqneGaWtW7fqwQcf1OrVq9WjRw8NGzZMv/71r2Wapvbs2aMpU6aoX79+8aoVAAAAAOKi3hmliRMnqkmTJrr77rtl27Zuvvlm5efna9GiRXr88cc1Y8aMeNUJAAAAAHFT74zSsmXLtGDBAnm9XvXp00e9evXSRRddJEm66KKLdOedd8alSAAAAACIp3pnlPx+v7xeryQpJSVFaWlpMgwjvN627dhWBwAAAAAJUO+MUjAY1JdffhkORIFAoNZ7y7JiXyEAAAAAxFm9QSk7O1v33HNP+H1WVlat982aNYtdZQAAAACQIPUGpfnz58erDgAAAAA4ajj6HiUAAAAA+CkhKAEAAABAHQQlAAAAAKij3s8oRdOUKVM0b948bdq0SQUFBercubMk6YILLpDX61VSUpIkaezYserbt2+8ygIAAACA/cQtKF144YW64YYb9Ktf/Wq/dX/84x/DwQkAAAAAEi1uQalXr17x6goAAAAAjkjcglJ9xo4dK9u21bNnT91xxx1q0qRJoksCAAAA8BNm2LZtx7PDCy64QDNmzAjfaldYWKjc3Fz5fD5NnjxZZWVleuSRR+JZEgAAAADUkvAZpdzcXEmS1+vVkCFDNHLkyIjbKC4ulWXFNe+F5eRkaNu2PQnpGw0P4wVOMVbgFGMFTjFWEInGNF5M01B2dnrk+8WgFsf27t2rPXtCPwDbtvXee++pa9euiSwJAAAAAOI3o5Sfn68PP/xQ27dv19ChQ5WVlaUZM2botttuUzAYlGVZ6tChgyZOnBivkgAAAADggOL+GaVY4NY7NBSMFzjFWIFTjBU4xVhBJBrTeGmQt94BAAAAwNGIoAQAAAAAdRCUAAAAAKAOghIAAAAA1EFQAgAAAIA6CEoAAAAAUAdBCQAAAADqICgBAAAAQB0EJQAAAACog6AEAAAAAHUQlAAAAACgDoISAAAAANRBUAIAAACAOghKAAAAAFAHQQkAAAAA6iAoAQAAAEAdBCUAAAAAqIOgBAAAAAB1EJQAAAAAoA6CEgAAAADUQVACAAAAgDoISgAAAABQB0EJAAAAAOogKAEAAABAHQQlAAAAAKiDoAQAAAAAdRCUAAAAAKAOghIAAAAA1EFQAgAAAIA6CEoAAAAAUAdBCQAAAADqICgBAAAAQB0EJQAAAACog6AEAAAAAHUQlAAAAACgDoISAAAAANQRl6A0ZcoUXXDBBerSpYtWrVoVXv7DDz/ouuuu0yWXXKLrrrtOP/74YzzKAQAAAIB6xSUoXXjhhfrLX/6iNm3a1Fo+ceJEDRkyRPPmzdOQIUOUl5cXj3IAAAAAoF5xCUq9evVSbm5urWXFxcVasWKF+vfvL0nq37+/VqxYoR07dsSjJAAAAAA4qIR9RqmwsFAtW7aUy+WSJLlcLrVo0UKFhYWJKgkAAAAAJEnuRBcQDdnZ6QntPycnI6H9o2FhvMApxgqcYqzAKcYKIvFTHy8JC0q5ubnaunWrgsGgXC6XgsGgioqK9rtFz4ni4lJZlh2DKg8tJydD27btSUjfaHgYL3CKsQKnGCtwirGCSDSm8WKaxmFNrCTs1rvs7Gx17dpVc+fOlSTNnTtXXbt2VbNmzRJVEgAAAABIitOMUn5+vj788ENt375dQ4cOVVZWlt59911NmjRJd911l55++mk1adJEU6ZMiUc5AAAAAFAvw7btxNyzFkXceoeGgvECpxgrcIqxAqcYK4hEYxovDe7WOwAAAAA4WhGUAAAAAKAOghIAAAAA1EFQAgAAAIA6CEoAAAAAUAdBCQAAAADqICgBAAAAQB0EJQAAAACow53oAoBDsW1bhmHst0yyZRi1s75tBSXDrLW9bVuSFZTh8tTeNuCTTJcM07XP/pYUqJQ8SeG2bduWAr7QBm5vuG3bCkr+CsmdJMPlrtnWXyHZluRJkWFWtREMyPaXy/K5w8dj25bkr5AdDMjwJMtwe8N12f6KUP/eZBmmO1SXv1x2wCfDkyx5kiQZUtAv27dXkiHDmyy5vKG+/RWy/ZWhNj3JkumSApWy/RWSbcvwJEnu5JptA5WS6Q617fKEtg1Uhs6bO0lyeyXDkPxVbZiuUNturxQMhJYFA6Hz40mSDDO0v78iVKcnKbS9FZTtr5SCfsnlCS0z3aFtA5WSXXWO3aHjsAO+0Ll3uUPLTbfsoD+0zArWbFv98wz4JMOU3B4ZLk/oZ1R1HHJ5Qn0aZlUblaHa3N6abYM+KRiUXK7QtqY71G7QV1VbqA3ZthT0yQ76ZZju0DLTFToHQZ9s2wqNt+oxF/SHtjXMqm3doZqCPtnVY9PlCZ3jqm19ZrqsPVXHblmh5Vagqj93VX+hbWUrNAZdntDPNBgIjSvTrNrWHVpm+UM//+qaZYe3lWGE2qiqzbb8kmXV9GcY+2yrUM2mq6Y/Kxj6t2S6JdOs2Vb2/rVZAclwVfXnqllm79OfrVANwap/0y7XPrUFQufE5Qptbxihn4llhf5dhf80+O9Td6QymKpgyd5El+FAI/p5NNBDqQzUHSsN9EAO5Cfy7z2eKnypCu48/P+2GClNZGY0j2JF8UdQOgrZti2raI2MtGYy05uFllmWgptXyirZKFfLjjKbHy/JVrBwlQIblstwe+Vq2UFm9rGySjYrWPhfWSWbZWa2ktn8OBneFAW3/SCraK1s25KraRuZTVvLLt+tYPF6WTu3yEjNkpnVSmZKE1k7tyhYsknyV8pskiOjSQsp6Je1a4us3UUyvCkyM3JkpGTKKtshe/c22ZVlMtKbyUxrJhmGrD3bZZcWSy63jLSmMlMyZVeWySotll2xR0ZKExmpWTLcXtllJbLKSkIXcalZMlOayA5Uyt67U3bFHsmbKjOlieRJll2+W3b5rtBFfHKGjOQM2VZQdvluybc3dMGfnC7Dmyq7siy0v22FLoiTM0Lns2JPTfjxpMhISg1d7FfuVeiq05DhTZNcbtmVpaELYCnUdlKq7IBf8pfX/NDc3tCFoK9CsoM1yz1VYaSqrzKp6kLeK/krVev/pMyqf45WoPaAcLlr+t+XYYbarrXM4P8sGomGcNmLowNjBU4xVhCJIx4vhkvpQ58J/0KzITJsu+FfVRUXl8qyEnMYOTkZ2rZtzyG3s21LwfXfytWyk4zkdEmSVVaiis9flrVjo9wd+sjT6WxZuwrlW1Ygq3iDJMnMPk6unHYKbPhOdtmOmgY9yaGLYl956DeylqVaF92GISMjR/ae4loX7mZmK8nllrWzMPQbbUlGerbMzFay9+6StXuLFAzISM6Q2ewYGZ5kWbuLZO0uklxumZm5MjNbyPaVy96zTdbeXTLTmsls0kJGUlooNJUWy7ZtmRnNZaY3l20FZJeVyN67S0Zymoz07FC4Kd8dCkIBn8y0pjLSmkoyZJfvkr13l+RJkpnaVEZyeqi/8l2hmZaUJjJSMmW43LLL98iu2B2a4UhpEgpCAZ/sij2yfeUyklJlJDeR3N6q0FQqya4KWOmh30BXlsqu3CvDkxRa7kkK9VdZVnUu0qWktNAJrCyTXbk3NGORlC7DkxwKdL69UsAnw5sqIyktNKPi2xtabrpCy70pSks2VVqyMzTb402W4U0Nzaj4K0IhT5K8KTI8KaEZFX95KFC5vaFl7qrZHl9F6OfnTQnNAkmhNvwVoWDqSZbcSVUzTuWh8OVODs06yaiZXTLMmhmqYKBqtscXmkXyJFXNRIVmuCRVzXwlVc2GhWadDLenalbNUzWrUxmaUXEnhdqRQuco4AvNOLiTZLg9odmGQKXsYFBG9UyUVDPbY5g17VqBUNgMBkLn3l01a1W9ra3QrFXVLMm+M1GGO3QcoW39NaHZ7ZVsu2aGqnqWrCqY2kF/eCYqPGtV3YZp1swCWcHQ8mAg1J/Ls8+Mij903qq3ta39tzVMyaqafdlnJqpJk2TtLtkT2t501czgVPe370yUVNOGYVRt6w792993tic8a1VVm2HsM4NjV81a7bNt1XEoGJCtA8xEWYGqWTJ3zX+Hgv7Qz796W0Ph/mq2ddeaXaq1rRWs+cVAeFs7NIaDgVA/1cdhBUN/bCt0Hg0j9Ldp1rxvNA5+LJlNUrRrd/lB1x9NjHqOo8FpgIfSpEmKdu83VhrggRxMozmUo+NAMjNTtGvX4f+3xUjNkqv5cVGs6PCZpqHs7PSI92NGKU58S2bLt6xAcifJc+LP5Gp2jCoWvSYF/HK17iL/8o/k/+4DSaEwk3TuUNkVZQquWyb/qi/kanOiPGcMlqtlBwW3rlFw80rJtuQ6tpvcbU6SbFvB7T/K2r5eZlYruVp1luFNkR3wySrZLNu3V67mx4Uu4qVQeNm9rSYwVKm+xat6u/Dyqjxd9xY4RCYrJ0N+B8EaSM/JUDljBQ6k5WRoL2MFDjBWEInUnAyV/cTHC0EpBgKF/5Ndvlvudj1lGKb8PyyRb1mB3O37SKYp//J58tu2zJx2SvnZCJlZubLKdyvwwxIZyRlyH98z/NkWdb98v/bN9Gx5OvTZb7m7dVepdddaywy3V66c4/fb1jDdMrJyD7DcrJk92Xc5AQkAAAA/IQSlGKj8/GVZu7bIbNFB3pMvVsXnL8ts0V7J5w+X4fbK6nmVgsXr5T6+R+iWE0lmShN5T7wgwZUDAAAAkAhKUWdV7JG1a4tcbU+RtX2dKubPkJGSqZSLbwt/zsHMbCkzs2WCKwUAAABwMASlKLO2rpEkebv3lyv7WPlW/EPuY06SmdY0wZUBAAAAcIqgFGXBraslwyVXzvEy3ElKOsBnjAAAAAAc3cxDb4JIBLd+L7P5seHHIgMAAABoeAhKUWRbAQWLfpCrZcdElwIAAADgCBCUosjavl4K+uT6/+3cS0jU/R7H8c+MVlbPE2oXs4wieAojKJhIOptyiiTKihYJlQRpLaKLQYsuVIsSmlpUoKVdttUqIroRZAQFlZJFgVhplpSXHPWESQMz8z2LA3L6PzWnY3L+zcz7tdL5IX7VD37nw2806y+3RwEAAADwCyhKQyjS8UaSuFECAAAA4hxFaQhFOt7I88dYef/IdHsUAAAAAL+AojSEIh1vuE0CAAAAEgBFaYhE+4KyL90UJQAAACABUJSGSKT9tSTxjxwAAACABEBRGiLW/0950v6Ud2yO26MAAAAA+EWpbg+QKIbNXqzUGf+Qx8u3FAAAAIh3PKsfIh5vqjxpf7o9BgAAAIAhwEvvAAAAAMCBogQAAAAADhQlAAAAAHCgKAEAAACAA0UJAAAAABwoSgAAAADgQFECAAAAAAeKEgAAAAA4UJQAAAAAwIGiBAAAAAAOFCUAAAAAcEh1e4Ch4PV6kvrzI76QF/wssoKfRVbws8gK/heJkpfBfh0eM7MhngUAAAAA4hovvQMAAAAAB4oSAAAAADhQlAAAAADAgaIEAAAAAA4UJQAAAABwoCgBAAAAgANFCQAAAAAcKEoAAAAA4EBRAgAAAAAHitIvePv2rYqKilRQUKCioiK1tLS4PRJc0tPTo5SkYNkAAAYdSURBVM2bN6ugoECFhYXatm2buru7JUnPnj3TypUrVVBQoE2bNikYDA58XKwzJL6KigrNnDlTr169kkRW8HehUEiHDh3S0qVLVVhYqAMHDkiKvX/YTcnr3r17Wr16tVatWqXCwkLduXNHEnmBFAgE5Pf7v9k50uCzkTS5MQxacXGxXb161czMrl69asXFxS5PBLf09PTYo0ePBt4/evSo7d2716LRqC1ZssRqa2vNzKyystL27NljZhbzDInv5cuXVlJSYosWLbLGxkaygu86fPiwlZeXWzQaNTOzT58+mVns/cNuSk7RaNTmzZtnjY2NZmbW0NBgc+fOtUgkQl5gtbW19vHjR8vPzx/IiNngf5ckS24oSoPU1dVlPp/PwuGwmZmFw2Hz+XwWDAZdngy/g9u3b9vGjRvt+fPntnz58oHHg8GgzZ0718ws5hkSWygUsrVr19r79+8HlhZZgVNfX5/5fD7r6+v75vFY+4fdlLyi0ajNnz/f6urqzMzsyZMntnTpUvKCb/xnURpsNpIpN6lu32jFq7a2NmVlZSklJUWSlJKSogkTJqitrU2ZmZkuTwc3RaNRXbp0SX6/X21tbZo0adLAWWZmpqLRqHp7e2OepaenuzE6/k9OnTqllStXasqUKQOPkRU4tba2Kj09XRUVFXr8+LFGjx6tnTt3Ki0t7Yf7x8zYTUnK4/Ho5MmT2rp1q0aNGqUvX76ouro65vMV8pLcBpuNZMoNf6MEDLHDhw9r1KhR2rBhg9uj4DdUX1+vFy9eaN26dW6Pgt9cOBxWa2urZs2apStXrmj37t3avn27+vv73R4Nv6FwOKzq6mqdPn1a9+7d05kzZ7Rr1y7yAvwCbpQGKTs7Wx0dHYpEIkpJSVEkElFnZ6eys7PdHg0uCgQCevfunaqqquT1epWdna2PHz8OnHd3d8vj8Sg9PT3mGRJXbW2tmpubtXjxYklSe3u7SkpKVFxcTFbwjUmTJik1NVUrVqyQJM2ZM0cZGRlKS0v74f4xM3ZTkmpoaFBnZ6d8Pp8kyefzaeTIkRoxYgR5wXfFei4bKxvJlBtulAZp7Nixys3N1fXr1yVJ169fV25ubsJdOeLnnThxQi9fvlRlZaWGDx8uSZo9e7a+fv2quro6SdLly5e1bNmy/3qGxLVlyxY9ePBANTU1qqmp0cSJE3XhwgWVlpaSFXwjMzNTeXl5evjwoaR//5epYDCoadOm/XD/sJuS18SJE9Xe3q7m5mZJUlNTk7q6ujR16lTygu+K9fMf7Fmi8ZiZuT1EvGpqatKePXv0+fNnjRkzRoFAQNOnT3d7LLjg9evXWrFihaZNm6a0tDRJUk5OjiorK/X06VMdOnRIoVBIkydP1vHjxzVu3DhJinmG5OD3+1VVVaUZM2aQFfxNa2ur9u3bp97eXqWmpqqsrEwLFy6MuX/YTcnr2rVrOnfunDwejyRpx44dWrJkCXmBjhw5ojt37qirq0sZGRlKT0/XjRs3Bp2NZMkNRQkAAAAAHHjpHQAAAAA4UJQAAAAAwIGiBAAAAAAOFCUAAAAAcKAoAQAAAIADRQkAAAAAHChKAAAAAOBAUQIAAAAAB4oSACAu+f1+XbhwQYWFhfL5fCorK1MoFNLZs2e1du1ahcNhSdLFixe1fPlyhUIhlycGAMQTihIAIG7dunVL58+f1927d9XY2KgrV66otLRUw4YN05kzZ9TS0qITJ07o+PHjGjFihNvjAgDiSKrbAwAAMFjFxcXKysqSJOXn56uhoUFer1eBQEBr1qzRzZs3VVpaqlmzZrk8KQAg3nCjBACIW+PHjx94e+TIkerv75ck5eTkKC8vTx8+fND69evdGg8AEMcoSgCAhHP//n3V19drwYIFOnbsmNvjAADiEEUJAJBQuru7tX//fpWXl+vo0aOqqanR/fv33R4LABBnKEoAgIRy8OBB+f1+LVy4UBkZGSovL9f+/fvV09Pj9mgAgDjiMTNzewgAAAAA+J1wowQAAAAADhQlAAAAAHCgKAEAAACAA0UJAAAAABwoSgAAAADgQFECAAAAAAeKEgAAAAA4UJQAAAAAwIGiBAAAAAAO/wJINFT8ouENxQAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 1008x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "df_byte = pd.DataFrame()\n",
-    "df_byte[\"Loads / Loop Iteration\"] = (df_vldvst.set_index(\"nx\")[\"Vector Loads / Loop Iteration\"] + df_ldst.set_index(\"nx\")[\"Loads / Loop Iteration\"])*8\n",
-    "df_byte[\"Stores / Loop Iteration\"] = (df_vldvst.set_index(\"nx\")[\"Vector Stores / Loop Iteration\"] + df_ldst.set_index(\"nx\")[\"Stores / Loop Iteration\"])*8\n",
-    "ax = df_byte.plot()\n",
-    "ax.set_ylabel(\"Bytes / Loop Iteration\");"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 12,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Mean byte loaded: 37.52662546714877\tMean byte stored: 8.428951320998907\n"
-     ]
-    }
-   ],
-   "source": [
-    "import numpy as np\n",
-    "mean_byte_ld = np.polyfit(df_byte[df_byte.index > 200].index, df_byte[df_byte.index > 200][\"Loads / Loop Iteration\"], 0)[0]\n",
-    "mean_byte_st = np.polyfit(df_byte[df_byte.index > 200].index, df_byte[df_byte.index > 200][\"Stores / Loop Iteration\"], 0)[0]\n",
-    "print(\"Mean byte loaded: {}\\tMean byte stored: {}\".format(mean_byte_ld, mean_byte_st))"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "*Not really a* <a name=\"task2-c\"></a>**TASK C**: We can combine this information with the cycles measured in Task 1 to create a bandwidth of exchanged bytes per cycle."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 13,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "df_bandwidth = pd.DataFrame()\n",
-    "df_bandwidth[\"Bandwidth / Byte/Cycle\"] = (df_byte[\"Loads / Loop Iteration\"] + df_byte[\"Stores / Loop Iteration\"]) / df.set_index(\"nx\")[\"Cycles / Loop Iteration\"]"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Let's display it as a function of `nx`. And also compare it to the available L1 cache bandwidth in a second (sub-)plot. Non-interactive users, call `make graph_task2c`."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 15,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAF/CAYAAACVLiKjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xl8nHW99//XrMlklux7s7TpvtGNlgKlUFnKWtyOWlDRKt6o/NyqbEeq3HAQDnrYFH4cQEVREYSWrdBCUaAUukJXuibN0uzrTGaS2a77j7SB2DadtFma5P18yMMkc801n0m+Sa/39d1MhmEYiIiIiIiIyDGZB7oAERERERGR05lCk4iIiIiISDcUmkRERERERLqh0CQiIiIiItINhSYREREREZFuKDSJiIiIiIh0Q6FJRERERESkGwpNIiIiIiIi3VBoEhERERER6YZCk4iIiIiISDcUmkRERERERLqh0CQiIiIiItINhSYREREREZFuWAe6gN7W2NhKNGoM2Ounprqor/cN2OvL4KG2IrFSW5FYqa1IT6i9SKyGUlsxm00kJzt7/LwhF5qiUWNAQ9ORGkRiobYisVJbkViprUhPqL1IrIZ7W9HwPBERERERkW4oNImIiIiIiHRDoUlERERERKQbQ25Ok4iIiAycUDiKyQRWi/nw5xEOHGqhoaWd6WPTiLef3KVHcWULFbWtzJmYic36yT3ftmCY1kCYtlAEDIOcNCcmk+mk6w9Hohw41MLusiaCoQgZSQ4ykh3kZbhJiO++dsMwKKnyEm+3kJ36yURzf1uIbQcaOFjl5WC1lyZfOymeeNIT40lNjCc9yUFaooO8DCc2q6XzeaFwlEZvGxnJCSf9fkSkdyg0iYjIsFHXHMAZb8MRd/Q/f4Zh0B6KYLWYOy/4Y9UWDGMYHPO8R84dNQws5tjPGwxFKKv10eILkpfhIjUxHoCapgD7K5oxmUxkJDvITE7A5bDFdL7y2lYOVrVQUuWlssFPeqKDwmw3o3MTGZnt6XL8nrImGlraSHTFkeyOIyPZgfnfwkh7KEJlfSsVta2UVHnZX9FMWY2PaNTA47TjctiobvQTjnRMIE902lk0byTzpmb36Hvx/s4qnnxlF+GIwfNv7+fSOQXE2S1s+LiGXSWNRI1PJqjnZ7q4Ym4hM8ald9YbNQx2lzbx3vZKGr3tRCIGkahBJBrt/DgcNYhEorS0BgmGowCYTabOc5tMkJ/hZlx+EuPykhiTl4TLYSPQHqairpXtB+pZt6OK2qY2AEaku5gxNo2yGh/bDtQTjhhYLWbyMpxkpzpp9LaxscqLLxDqrN0RZ2HG2HSmjU7j49Im3t9RRWtbmNkTMrjmorG4E+zH/R5VN/p5Zd1BLj4zjxHprpi/twDtwQjFlS3sP9RMkzdIRoqDnFQnZhNUNvipqvcD4HTYcMZbcTlsOB02Ujzx5KZ1vwpZKBzhtfVlvP1hBddcPI5po9OOe2wwFKHB206zr538TPdxf5+OCLSH+dXTm0lLjGfxhWM7f0c+7cjiBWbzyQdpEQCTYRhDaimM+nrfgK7ukZ7uprbWO2CvL4OH2orEqj/aSjjS0TtgMpkwwSndqT+iPRihpKoFf1tHL4DdamZqUWqXO+nHUt/cxsFqL+2hCOFwlIhhYDGbsFrMhMJRvP4gXn+IcKTjwtZiNjNzXDpjRiR2qTsaNWjytVPTGGDnwUY27a6hst6PCchOczIi3UlrW5j65jaafO20ByMYgN1mZkJ+MlOLUpk5PgPPpy5Uo1GD4soWAu1h2kNRapsCbDtQz56yJiJRg8yUBAqz3JhNps46Ww7/v2EYTB6ZwuwJmUwbk3bMC8LqBj8f7Kxm855aymtbu4QBl8OG2QQt/tBRz0t02snLcDFhVCpjcz2MyvZgMpmoqPXxztZKdpY0cqjuk/O5HDayUxOoaQzQ3BoEYFJhMl84fzQuh42/vbmXTXtqu7xGfoaLq+eN4ozRqewtb+a1D0r5aH8dR0q028yMyvYwKicRq8VEo7edltYg2alOxuQlEm+z8MI7xeyraCbZHUdRjoeCLDeeBDvBcJRIJMqMcemkJTo6X9MwDF5ed5AX3j7A2LwkLpmdx6r1ZewuawIgI8nBzPHpZCUnEGe34AuEWL2hjOrGAEkuO6meeNwJdsprfdQ1t+GIs5KTloDFbMZiNmGxmLAe/th8+HOXw8a4vGTG5ScRb7fQ0NJGdWNHUN1d2sT+Qy0dvy+Ax2nv/P6ZgAmFyZw1MYu2YJgPdlWzv6KFRJedORMyOXN8BgVZ7qMCeaA9TH1LG9UNAT7cV8um3bW0BSNYLSZmjE0nNTGeVevLcDpsXHxmXufx6YkOFswcQaLTzs6SBh5Zvp3WtjCOOCv/3+enMC4/mZpGP395Yy8Vta2MHpHI2LwkwuEo+w81c7DKi789QlswTOhwSASIs1toD0a61Bhns2A2Q6C969cBzpqUyZc/MwZPgp39Fc28uLYEXyBIYZaHzGQHazZXUNMUwOWwEQxFWPqV6YzOTTzqe/DAsx+xp7y582t2m5kzx2cwZ0ImBuD1B3En2JkyKrXzmCdf3cXabZXYrGZMmLjqnELsNgvltT4O1bXS0NJGky+IO8HGt6+cxISCZKAjYK54txir2czIbDf5mW5sVjOG0fEzTXbHHfU+h7uhdM1iNptITe3ZjQVQaOp1Q6lRSd9SW5HjMQwDf3sYrz+E1x/EZLVSUdWM1x8iEjWwW83YbRYmFCSTc4y7vIZhsL24gY8PNtLoa6fJ294xZMpswmIy4Yiz4nRYsVktVDf4qaj1dbkQz05N4IqzC5kzIbPL3dmoYVBW7WNPeRNl1T5Ka7w0edsxmTouOJ3xVtKTHKR64imv9bGvormzh+EId4KN+dNymT0+A4/LjiveRm1zgN2lTewpa2J3aRP1LW0n/B7F2SydQ7SCoQjBcJSR2W7mTMyiusHP/kPNHKpr7Xx9kwnG5SUxbUw6be1hDlS2cKiuFXeCjVRPPEnuOBLirMTZLdQ3t7F1f33nRfbV547kghm57K9o5q9v7KW0puteJbnpTqaOSiU+zkpJZQul1V7AhMdpw51gx51gw5NgJxSOsmlPLY3eduJsFuZNzeaiM/OwWsxs2FXN+zurKanyYgLGjEhkTF4ShVkeEl12ymp8FFe2EI0ajM5NZPSIRMwmEzWNAaob/ZTX+iir9lFR10okapDqicPjtFNc6cViNjG+IJnCLDeFWW4KstykeuI7A2ajt531u6p5+b0SWtvCWC1mzCa44uxCpo9Np8XXTlWDn9fXl1HTFCDRZafZF8TlsDFvajYjsz3kpjvJSHacsPfIMAy27K3j/R1VHKz2dvbKHJHqieOWa2eS4oknahg8vXoPb22uYO6kTK67dELnz7ykqgUTJvIzXUcF/GjUYMPHNXy0r44Wf5CW1hAep41zpmQzc2w6dlv3of1EQuEoxZUt7C5tpKYxQGZKAiPSXRRmu0lydb3Y9gVCJMRZe9TLEQxF2H+ohbwMV2cPYlmNjyde3klpjQ+L2USSy05DSzsWS8eNiA/31pGdmsC1F4/lqdd3U9sU4Jwp2by3vQqL2cTEwhT2VzR3Brxkdxyjsj1kpbuIhCM47BYKstyMyknEGW+lpTXIoXo/UcMgJ9VJksuOyWQiHInibw/TGgjRGgiz7UA9r75/EEeclcIsN9uLG/Ak2MhJc3Kw2kugPUJ2agKLLxxLXoaL//rzJloDIW65dmbn365wJMr9z37E7tImLj2rgOyUBBLirWzZW8cHu6qPCnAXn5nHfywYzUd763jo+W1cPreA+Wfk8OfVe9i6vx4AZ7yV3DQnqYkOUjxxbN5TS1WDn6vPHYnNamH5OwcwH74R8+mePgCL2cQPvjiVySNTkU8MpWsWhabDFJpksFBbGRjhSJQGbzt1TQHqm9tobQvT2hbC7bAxf3oucd1cUDV62zlwqIXK+lbCkSjhiEE4Eu0Y2hOJ4guEaPJ13F3PSE5g7OE7uyOzPce8UAu0h9lZ0kBptY/KBj81DX6aW4P4Ah3hKBaTR6WwYPoIEl0dvSGH6lp5fX0p5bWtWMwmkt1xJLnjiLOaiRoQiUQJBCO0toVoD0bITEkgJ81JWmI8JiASNTp7ObJSEijK8RCJGrQFI+yraO68wPAk2MjLdJN2eDhMNGrg9YeobvRT39wxB2PyyBTGFyST6LQTb7dQ19zGm5vK+WhfHcd6dx13+JMYm59EUU4iCfFWbBYzZrOJyOHvs9Vixp1g6/L9bA9FeG97FavWl1LdGMARZ2Fktof8TDcZSQ7SkxzkZbq69BidiGEYlNe28ve39rGjuKEzKCS747h63kiyU5zYbWY8TvtRF8rdiRoGBypaeGtLBet3VXf0/HT8j4IsN3MmZDJ7QgYpnqOHGcXC4YrnjXXFbPy4hubWIGdNzOSsyVkxvXd/W4jX1pfi9Ye4fG5Blx4f6PjdeW97FRs/ruGM0WmcOzW729+XWPjbQvjbw9htFmobA/z6mQ9J9cTzs8XTee6f+3lnayULZ+fzxQuKeqX3czCLRg28gY6/VWazieoGP6+tL2Xttiomj0zh21dOxBFnxRcI8eA/trKvvJmZ49JZfOFYkt1xGIZBbVMAm9XS2ZPSG/8OVdT6+ONru6msb+WS2flcOGsE8XYrUcOgobmNJHdcZ+9aTVOA/3pqIyaTiQUzRzB3UibPv32A93dUs+TyCZwzJbvLuduCYfaVNxNvt+JOsPHmpnLe2FTOzHHp7C1rIskVx39+fRZWixnDMCir8eFy2Eh2x3VpL23BME+9tpv3d1YDMG10Gl+9ZBxJLjv1zW2dvbom4IV3iqlrDnDzNTPIz3Sf0vdmKBlK1ywKTYcpNMlgobbSoa4pgL89jNlswny4x8JsgmAoStnhu+dVDX4ave00+trJTXNy+dwCJhQkd/lHsT0YYfPeWvaUNdHsC9LiD+Jv6xh2EopECYUjhMLRo3o+4JN5CymeOP7jgtFMH5NOo6+d+qYAB6t9HDjUzIHKjonsn3ZkyJjVYsJiNuF02EhyxeFOsFFR1zHPA8BqMVGY7SE/w3X4Lr6J8jofHx9sJBwxMJkgPdFBZkoCSS477gQ7noRPeinycpOItIdwJ9iwmM2EIlFaAyHWbq9izeZymn3BLnXlpjtZODufORMzezw3Bzou7DfvrmXlB6W0tLZjMZuxWc0UZrmZWNgRhE5l+EpNU4ADhwOYLxAi0RXHuLwkslMTTunCOBo1aPC2keKJP2ruzckyDIMP99axemMZ4/KTWTgn/5SDwhGN3nb+9WEFZpOJ2RMzyUo59cn+g/3vyq6SBv7n2Y+Is1lobQtz5dmFXD1v5LAPTN1pPzz09dPfo1A4SnWDnxEZ3V8YDkR7Kavx8ZfVezqHWAJ87rxRXHF24QmfaxgGr68v4+9v7cNqMXH7dWfGPH/LMAw+2FmNzWphxti047aphpY27vrTJgBu++rMo25ghMId8x5Ptk0ahkGLP0SczUyczTJo2vaptBVfIMTdf97ENy+bQNG/Dc0cCApNhyk0yWAx2NpKc2sQf1uI9lCE1kDHmPq65gCB9ggWswmTCZp9QSoPB5yZ49JZdM5IPM6ud7jDkY6hLVv317N5Ty2VhycYH4/VYiYrxUGyOx6P08b24gaafUFG5XjIy+gYmtMaCLF1fz3toQjOeCvJ7ngSnTYc8Tbs1o4L/iP/2a0WUtxxHcPIEuNxOWzE2y3sLW/mL6v3HDX0CiAtMZ5ROR1zNYpyPIzIcB11kXIsvkCIfeXN7CnvGHpWeXi4i2EYJLnimDY6jelj0hiVk9hlNbB/111bCUeifFza2DH8DhNOh5XRuYmD5h9i6V2D7e/KsWz8uIbHXtrJlecUcmUMF9Jy8gayvdQ2BVi3vQqb1czCOfk9+pu17UA9hgFTi/pmCF1ZjY+7/7yJcCRKkiuOJFccwVCE+paO0Qkuh428DBdZKQmEIlHaDt/4y8twUZDlJhqFveVNFFe2kJvm4sJZI0hPcnCwysvf3tzbGRitFjNJLju5aU5GHL6p1uxrp8UfIsUdx8hsD4XZbjJTEjpvBDX52nlvexWJTvtRPXN96VTaytptlTzxyi5uv24WhVmeEz+hjyk0HabQJINFX7aVI6uAtQY6hp61toVp8rV3TIr1BsHU0fvhTrBz7pTso4LNEdGowUf76li1oazLXcEjzCYT8XYLUcMgGjVwJ9jJSk3AYbeweU8dNpuZC6bnYrWYaQ2EqGrws7+imWA4itlkYlx+EtNGp5HiiSNqdLzekXNZLWZGpDvJSk3oMk8iFI7w7rYq1mwqxxfomFx/ZFz/WRMzGZOXdNK9DNGowbodVdQ1t5HiiSPVE8+IdNdxvz/9RX9XJFZDpa2EI9GT6iWVnhkq7aUvlFS18MHOapp9QZp87dhtlo75jy479S1tlNX4qGkMYLdZcMRZCYYi1DV/MkfPbDKRk+aksr5j6N+obA8HDrXgdNg65jKaTfgCIepb2qioa6Wq3k8kauA+PMqgrjlAMNSxQMeROWM2q5ntBxqIGgZxdgsP/WBev/2enEpb+d0L29hb0cyvv3dOr40COBUnG5q05LjIIBeNdozj3lnSwI6SBsprfLS2hY87JyYhzorJBKFIlGAoyotri1kwfQQzx6XT4G2ntinQ+d+hulaafEFSPXF87rxRpCXFE2ezkBBnJTUxnmR33HEnflfWt/KPfx3gtQ9KMZnAGW8jxRPHeWfkMC6/Y2WqWJZJ/nc2q4ULpudywfTcHj/3RMxmU7/euRORY1NgkoFWmOXpca9Ia1uIg1VeTCYTo7I9xNktNHrbeXNTOZv21LJwTj6Xzy085n5fR1YDPdL2I9EolXV+iitbKK7yUlzZQmtTiEvm5JGYYOdva/axv6KZcfnJp/5m+1A4EmV7cQOzJ2SeFoHpVCg0iQyAFn8Q36FmKiqb8beHO3tH20MRSiq97KtoxqBjPPWnLx4aWto4WOXtmG/T3EZJlZcDlS2dqwvlpjmZNiYNl8OO02HFGW8jIc6KM95KkjuOFHc8cfZP5mNU1rfy8nslvL6hlNfWl3Z+3eWwkZ7kYGxeEjPGpjNzXHqP9lQByE518v3PTaE9GMFmMw/6P5YiIiLdccbbmFiY0uVrye44vnB+EV84v6jb5/77jQKL2cyIDBcjMlzMO6PrsYH2MM/+cz/bixtO+9C0p6yJtmCEM0YP/tUIFZpETkGgPdy5SEGTr51ROce+M9Xka2fd9qqOnqDaVlpag8c4Wwe7zUyqJ57K+o4NBY9M5DUMg7v+tIlGb8diBBaziRHpLs6enMXonMSTmpyfnerk21dO4qpzR1JR20ra4Z3pT7ShYE98OqSJiIjIqXHEWSnK8bD9QAOfn999GBtoH+2rx2oxM7Eg5cQHn+YUmkRi0B6KUN/cRnNrkJbWIJX1rewsaeTAoZYum08CjM1L4jMzR2AYRueGiEfGIOdnuJg6KpUR6U4K85KJtIdwxFs7e3EsZhOZKQ6qGwL85+MfcLDa2xmaGr3tNHrbufLsQi6YkYsnwd5rO5xnJieQmXzqK3eJiIhI35s0KpUX3j5AS2twwOfdHo9hdMyLnlCQPCRuoCo0ybASjXbsU5GR7Oh2udEDh1rYf6iZ4kov1Y3+o5Z0Npk6xjtfelY+I7M9pHjicDvsbNpdw+qNZTyyfHvnsWmJ8Vx6Vj7nTMnusqRwd5Mqs1ISsNvMHKz2ds6xKa7sOHbq6NQe7QsjIiIiQ8uUUSm88PYBdhQ3MHdy1nGP87eF8LWFyUhyHPeYvlLV4KemKcAls/P6/bX7gkKTDHmGYXCo3s/7O6pYu62SJl+QcXlJfPWSceSkOfG3hdnwcTU7ihvYf6ilc/ib1WKmIMvFlFGppCc5SEuMJ8lpx+O0k+KJP+YQtotn57Ng5gj2VzSTEG8jI8lxUndXjixdWlr9yfLXJVUtWMwm8mLck0JERESGpvxMN+4EG9uL648ZmgLtYVZvLOP19WVEIlHu+T9zSeylG64Hq7y8taWC7cX1jM1LYu6kLCYWJh819/mjffUATC1K65XXHWgKTTIk1TUH2LS7lt2lTew7vImmyQRTRqVy/nQPqzeUsezJ9UwoSGZ3WROhcJRUTzxj85IoyvFQlJtI3uE9E3rKajH3ysTM/Ew37++oImoYmE0mDlZ5yU1zYu+ljTVFRERkcDKbTEwqTGFHcUPndcIRu0oaeGTFDnyBEFNGpbK9uJ5VG8r44gWjgY4pB/f+ZQuhcJTCbDcjsz1MGZVCWmL3vVHBUIQHntvKroON2K1mJhQks21/Pe/vqMZmNR/evL1jLnOi005DSzsj0l2kJsZ3e97BQqFJBrVINMq7WytZv6sGm9VMvN1CXXPH8DroGOY2bXQao3I9nFGU1rlQwvnTcnn2rX3sKm1k3tRszpmSTWGW+7TaELQg081bmys6hhMmOSip8jJj7NC4WyMiIiKnZtLIFN7fWU1ZtY+CLDfQsVrdA//YSnqigx/9xxmMzPbw6IrtvLWlgsvnFpAQb+OVdSUUV7YwPj+JD/fW8e7WSgDyM12cOT6DC6aPOOay6CvWFrPrYCNfOL+I86flkBBvIxSOsnV/PXvLm4hGDQwDAsEwza1BwhGDC2eN6M9vSZ/qt9C0YMEC7HY7cXEdF61Lly5l3rx5XY65+eabee+990hO7rhLv3DhQm644Yb+KlEGkahhsG1/Pc/9cz8Vda3kpDmxWc1UN0ZIiLPw+fmjOHN8BhnHWdzA47Sz5IqJ/Vx1z+RndgzDK632YTF1bIJXcBrspC0iIiIDb/LIjhXpXl5XwvnTcjGZ4KHnt5HqiWfpV6aTeHiBiMvOKmD9rhre3FzBrHHprHy/lLmTsvj2lRMxDIOaxgBb9taxeU8t//jXAV5fX8aV5xR2bk4PsL+8idc/KGPe1GwuO6ugswab1czMcR1bkwx1/drT9OCDDzJ27Nhuj7n++uu59tpr+6kiOR21toX4+GATjd42CrLcFGR27ILtDYSoaQiwZW8tH+yqpqGlnYxkB9/77GRmjE0/rXqJekNumguL2URptZcj76zw8J0kERERGd4SXXGcOzWbtVsr2bS7FoCMZAdLv/xJYIKO4f5Ti1JZvaGMHcUNxNks/MeCjqF6JpOJzJQEFs7JZ+GcfA5Wefn7W/v46xt7eWNjGZ+fX8SMsek8/OyHuBJsnc8bjjQ8T04L1Q1+Nu6uYfOeOkqqWvj0Kt4WswmrxUx7KNL5+aSRKXxhfhGzxmcM2Z3jbVYz2alODlZ7MYxP9mUSERERAfjmZRP4ymfGcOBQC4fqW5k1LuOYezZedlYBv3p6M3vKmvjqxWO7hKpPK8hys/TL09he3MCzb+3j0RU7SPHE0dDSzg1XT8YZb+vrt3Ta6tfQtHTpUgzDYObMmfz4xz/G4zl6qNHvf/97nnnmGfLy8vjJT35CUdHpvWmXnLxgKML7O6tZs6mc0pqOVeJG5Xi48uxCJhamkJYYz8EqL/sPtRAKR0lLiictMZ7RuYm4E07PPQl6W0GWi23764lEDEZkuLBZh2ZAFBERkZPjiLMyaWQKk0YefwPZsXlJTC1KpT0YYf603G7PZzKZmDIqlUmFKby3vYrl7x7gnDNymDUMhuB1x2QY/7YzZx+prKwkOzubYDDIXXfdRWtrK/fdd1+XY6qrq0lPT8dsNrN8+XIeeOAB3njjDSwWrRY2FITCUcprvByoaGZfeRP/2lyB1x9kZI6Hz5yZz9lTckhP7v99BE5nL76zn/9dvh2b1cyCWXl8/4vTBrokERERGYQikSgmkwmzuWfTGY5EhaE2DaKn+q2nKTu7Y4NOu93O4sWLj7nAQ2ZmZufHV199NXfffTdVVVXk5nafiD+tvt5HNNovOfCYutuwdDg6WOXlzU3llFZ7qahrJXL4Z2O3mpk0MoWLz8xjbF5Sxy9iODysvnextJXUw93noXCUrKT4YfX9kU/o74rESm1FekLtRWI1lNqK2WwiNbXn0x36JTT5/X4ikQhutxvDMHj11VeZMGHCUcdVV1d3Bqd33nkHs9ncJUjJ4BE1DF7/oJTn3z5AnM3CqBwPk0alkJ/hJj/TRWZyQo/vdAxHeRmf/FIXauU8ERERkQHRL6Gpvr6eG2+8kUgkQjQapaioiGXLlgGwaNEiHnvsMTIzM7npppuor6/HZDLhcrl45JFHsFq1VsVgEgpH2FHcyKoNpXxc2sTMcel8feF4XI7hO3HwVDjirGQkO2hoaSc33TnQ5YiIiIgMS/2SSPLy8li+fPkxH1uxYkXnx3/4wx/6o5xhqabRj9cfwmQy4YizkJ3aOxfgFXWt7C1voqYxQFW9n10HG2kPRUiIs/KNS8dz7tTsYT8G9lRNLUqlvrltyK4SKCIiInK6UzfOMPDOR4f4w8qP+fRMr2XXndm5e/TJqGkKsPztA7y/sxoAq8VEWqKDuZMymTE2nfEFybrI7yWLL+x+bzMRERER6VsKTUPc24cD06SRKVw0K49gKMLvlm9n64H6HoemqGGwp7SJd7dV8sHOaixmE5edVcD503JI8cRrjpKIiIiIDEkKTUPYPz+s4KnXdjN5VAo3fm4KNmvH0u35GS52Fjdw5dmFMZ9r48c1/P2tfdQ1txFvt3DetByumFt4zA3URERERESGEoWmIeqfWyp46vXdTC1K5XufndwZmAAmjkxh9YYy2oJh4u3dNwF/W5inV+9h3Y4q8jNdfPu8icwYm06cTXtniYiIiMjwoNA0BL21uZw/rdpzODBNwWbtOrdoUmEKr31Qyp6yZqYWpR73PL5AiDv+sIGGlnauOqeQK84u1DwlERERERl2dAU8xLy5qSMwnXGcwAQwZkQiVouZnSUN3Z7rrc3l1DW38dOvTOPqeaMUmERERERkWFJP0xCyan0pf1uzj2mj07jh6snHDEwAdpuFMSMSuw1N4UiUNZsrmDwqhXH5yX1VsoiIiIjIaU9dB0PEK+tK+Nuafcwcl853P3v8wHTEpJEplNe20uxrP+bjG3bV0Nwa5OJZeX1QrYiIiIjI4KHQNMgZhsGKd4v5x78OcNbETP7PokkxDaObVJgCwM6SxmOec9Wq7xB4AAAgAElEQVSGMrJTE5g0MqXXaxYRERERGUwUmgYxwzB4/u0DrHi3mHOmZPGtKyZiMcf2I83LdOFy2I45RG9veTMHq71cNCsPk0l7L4mIiIjI8KY5TYOUYRj8/a19vL6+jPnTcvjqJeMw9yDgmE0mJhQks72kgVA42mU43+oNZTjjrcydnNUXpYuIiIiIDCrqaRqk3t1Wyevry/jMjBF8rYeB6Yh5U7Np9gV56b2Szq9t3V/Ppj21XDAjV3sxiYiIiIig0DQotfiD/H3NPkaPSOQrF4056SF0k0elcs7kLF5dd5CDVV6afO088cpORqQ7ufLswt4tWkRERERkkNLwvEHo72v20RaM8PWT7GH6tC9fOIYdJQ088cpOPE477cEI31k8GZtVvUwiIiIiItDDnqb9+/fz29/+ll/+8pedn3/88cd9Upgc266SBt7bXsXCOfnkprtO+XzOeBtfXzie8tpWdpY08pULx5Cb5uyFSkVEREREhoaYQ9PKlSu59tprqa6uZsWKFQD4/X5+9atf9Vlx0lUoHOGp13eTnhTfq8PnzhidxuVzC7hw1gjOOyOn184rIiIiIjIUxDw878EHH+TJJ59kwoQJrFy5EoDx48erp6kfvbLuINWNAX7ypWnYe3mRhs/PL+rV84mIiIiIDBUx9zQ1NDQwfvx4gM6FB0wmk/bx6SeV9a28su4gZ03K1IazIiIiIiL9KObQNGnSpM5heUe88sorTJ06tdeLkq4Mw+CPr+0m3m7hywvGDHQ5IiIiIiLDSszD82677TaWLFnCc889h9/vZ8mSJRQXF/Pkk0/2ZX1Cx55Me8qauO7S8Xic9oEuR0RERERkWIk5NBUVFbFy5Ureeustzj//fLKzszn//PNxOrXSWl+KRg1WvFtMUa6Hc6dmD3Q5IiIiIiLDTo/2aXI4HFx22WV9VYscw86DDTS0tPOlBWNOeU8mERERERHpuW5D0+LFi2Na6OHpp5/utYKkq3e3VuKMtzJtdNpAlyIiIiIiMix1G5q++MUv9lcdcgytbSE276lj/hk52Kw92odYRERERER6Sbeh6bOf/WyvvdCCBQuw2+3ExcUBsHTpUubNm9flmEAgwC233MKOHTuwWCzcdNNNXHDBBb1Ww2Dzwc5qwpGo5jKJiIiIiAygmOc03XnnnVx22WXMmDGj82ubN29m5cqV3HbbbTGd48EHH2Ts2LHHffyJJ57A6XSyevVqSkpKuOaaa1i1atWwXWzi3a2V5GW4KMhyD3QpIiIiIiLDVsxjvl5++WUmT57c5WuTJ0/m5Zdf7rViVq5cyZe//GUACgsLmTx5Mm+//XavnX8wKa/xUVLl5dwp6mUSERERERlIMfc0mUwmDMPo8rVIJEI0Go35xZYuXYphGMycOZMf//jHeDyeLo8fOnSI3Nzczs+zs7OpqqqK+fxDyT8/rMBiNnHWpMyBLkVEREREZFiLOTTNmjWL+++/n5/+9KeYzWai0SgPPfQQs2bNiun5Tz/9NNnZ2QSDQe666y7uuOMO7rvvvpMu/HhSU129fs6eSk8/teF0tY0B3v6okgWz8hhVkNpLVcnp6FTbigwfaisSK7UV6Qm1F4nVcG8rMYem2267je985zuce+655OTkUFlZSXp6Oo8++mhMz8/O7hhmZrfbWbx4MTfccMNRx+Tk5FBRUUFKSgoAlZWVzJkzJ9YSAaiv9xGNGic+sI+kp7uprfWe0jmeeu1jDMPgopm5p3wuOX31RluR4UFtRWKltiI9ofYisRpKbcVsNp1UJ0vMoSkrK4sXXniBjz76iKqqKrKzs5k6dSpm84mnRfn9fiKRCG63G8MwePXVV5kwYcJRxy1cuJBnnnmGKVOmUFJSwrZt2/j1r3/ds3c0yNU2BXhnayXnTcshLdEx0OWIiIiIiAx7MYemp556iiuuuILp06f3+EXq6+u58cYbO+dAFRUVsWzZMgAWLVrEY489RmZmJkuWLOHmm2/moosuwmw2c8cdd+ByDfxwu/700toSzGYTV8wtHOhSRERERESEHoSm9957j//5n/9h9uzZLFq0iAsvvBC73R7Tc/Py8li+fPkxH1uxYkXnxwkJCTz44IOxljTkVDf4Wbu9kotm5ZHsjhvockREREREhB4sOf7oo4+yZs0azjvvPP74xz9yzjnncNttt7Fhw4a+rG9Y+WBXNRhw6Zz8gS5FREREREQOizk0ASQnJ3PNNdfwzDPP8Kc//Ylt27bxta99jQULFvDII4/Q2traV3UOCztLGsnPcpPoUi+TiIiIiMjpokehCWDdunXccsstfO1rXyMtLY177rmHe++9l127dvHtb3+7L2ocFtqCYfZXNDOxMHmgSxERERERkU+JeU7TPffcwyuvvILb7WbRokW89NJLZGZ+svHqGWecwezZs/ukyOFgT1kTkajBxMKUgS5FREREREQ+JebQ1N7ezsMPP8zUqVOP+bjNZuO5557rtcKGm50ljVgtZsbkJg50KSIiIiIi8iknDE1tbW2UlpZy++23H/XYnj17KCgoIC6uYw5OUVFR71c4TOwsaWDMiETsNstAlyIiIiIiIp9ywjlNjz/++HF7kJ5//nkef/zxXi9quGn2tVNe28qkkRqaJyIiIiJyujlhaHr11VdZsmTJMR/7xje+wSuvvNLrRQ03uw42AmgRCBERERGR09AJQ1N1dXWXBR8+LTMzk+rq6l4varjZWdKIM95KfoZ7oEsREREREZF/c8LQ5HA4qKysPOZjhw4dwuFw9HpRw4lhGOw82MCEgmTMZtNAlyMiIiIiIv/mhKFp/vz5/OY3vznmYw888ADz58/v9aKGk9qmAA0t7UzQUuMiIiIiIqelE66e98Mf/pAvfelLXHXVVVx88cWkp6dTW1vL6tWr8fl8/O1vf+uPOoesg9U+AEZma2ieiIiIiMjp6IShKT09nRdeeIEnn3ySd955h6amJpKSkrjgggv4xje+QWKi9hU6FWU1PswmE7lpzoEuRUREREREjuGEoenZZ59l/vz5/OhHP+qPeoad8hofWakJ2Kzan0lERERE5HR0wtC0bds2fve73+HxeDj//POZP38+06dPx2TSogW9oazGy+gRSQNdhoiIiIiIHMcJQ9Mdd9wBwO7du/nXv/7Fr3/9a4qLi5k7dy7nnXce8+bNIyVFixicjNa2EPUt7VyQ4RroUkRERERE5DhOGJqOGDduHOPGjeP666+npaWFd999l3/961/893//Nzk5Odx4443MmzevL2sdcsprOhaBGJGu0CQiIiIicrqKOTR9msfj4bLLLuOyyy4DYOvWrb1a1HBRejg05amnSURERETktBVzaDIMg2effZaXX36ZxsZGXnrpJTZs2EBtbW1neJKeKa/x4XLYSHLZB7oUERERERE5jhNubnvEAw88wHPPPceXvvQlKisrAcjKyuLxxx/vs+KGurIaH3kZLi2qISIiIiJyGos5NL3wwgs8+uijXH755Z0X+SNGjKCsrKzPihvKItEoFXWtGponIiIiInKaizk0RSIRnM6ODViPhKbW1lYSEhL6prIhrrohQCgcVWgSERERETnNxRya5s+fz913300wGAQ65jg98MADXHDBBX1W3FBWpkUgREREREQGhZhD0y233EJNTQ0zZ87E6/Uyffp0Dh06xNKlS/uyviGrrMaHxWwiO9U50KWIiIiIiEg3Yl49z+Vy8bvf/Y76+noqKirIzs4mPT29xy/48MMP89BDD/HSSy8xduzYLo/dfPPNvPfeeyQnJwOwcOFCbrjhhh6/xmBQVuMjOzUBmzXm3CoiIiIiIgMg5tB09dVXs3z5clJTU0lNTe38+uc+9zmef/75mM6xY8cOPvzwQ3Jyco57zPXXX8+1114ba1mDVnmtj/H5SQNdhoiIiIiInEDM3RwHDx486muGYVBeXh7T84PBIHfccQfLli0b9ktsB9rDNHrbyUnT0DwRERERkdPdCXuafvaznwEQCoU6Pz6ioqKC0aNHx/RCDzzwAFdddRV5eXndHvf73/+eZ555hry8PH7yk59QVFQU0/kHk6oGPwBZKVp5UERERETkdHfC0JSfn3/MjwFmzJjBwoULT/giW7ZsYdu2bSdcNOJHP/oR6enpmM1mli9fzre+9S3eeOMNLBbLCV/jiNTUgV+NLj3d3e3jO0qbAJgwOv2Ex8rQpp+/xEptRWKltiI9ofYisRrubcVkGIYRy4HvvPMO8+bNO6kXeeyxx3jqqaew2+0AVFVVkZqayt13382555573OfNmTOH559/ntzc3Jhfq77eRzQa01vqE+npbmprvd0e88LbB3h5XQmP/uR8LQQxjMXSVkRAbUVip7YiPaH2IrEaSm3FbDadVCdLzAtB/PrXv2b//v1ceeWVXRaCiMX111/P9ddf3/n5ggULePTRR49aPa+6uprMzEygI6SZzebOz4eS6kY/aYnxCkwiIiIiIoNAzKHpu9/9Li+++CL3338/s2bNYtGiRVx00UXEx8efUgGLFi3iscceIzMzk5tuuon6+npMJhMul4tHHnkEqzXmEgeNqno/WSlaBEJEREREZDCIeXjeEU1NTaxcuZIXX3yRvXv3ctFFF3HVVVcxd+7cvqqxR0734XlRw+C7v/kX88/I5SsXjunHyuR0M5S6uqVvqa1IrNRWpCfUXiRWQ6mt9PnwvCOSkpK4+uqrSUhI4PHHH2fVqlVs3LgRs9nMsmXLOPvss3tcxHDS5G0nGIqSlaqV80REREREBoOYQ1M0GmXt2rWsWLGCf/7zn0ybNo3rr7++c4je66+/zk9/+lPWrl3bl/UOepVablxEREREZFCJOTTNmzeP5ORkFi1axE9/+tOjFmi45JJL+POf/9zrBQ41VfUKTSIiIiIig0nMoenRRx9lypQpANTX17Nq1SqKioq6bD77pz/9qfcrHGKqGvzE2S0kuewDXYqIiIiIiMTghKGpurqa//t//y/79u1j+vTpfPOb3+Taa6/FbDbj9Xq55557uPzyy/uj1iGhqsFPVkoCJpNpoEsREREREZEYnHCjoGXLluHxeLjllluIRqMsWbKEO++8k3Xr1nH//ffz6KOP9kedQ0ZVvZ9sDc0TERERERk0TtjTtGXLFt555x3sdjuzZ89m1qxZXHjhhQBceOGF3HTTTX1e5FARDEVoaGkjKyV7oEsREREREZEYnbCnKRQKYbd3zL9xOBw4nc4uQ8t6uM3TsFbTGMAALTcuIiIiIjKInLCnKRKJ8P7773eGo3A43OXzaDTatxUOIVWHlxvPTFZoEhEREREZLE4YmlJTU7n11ls7P09KSuryeUpKSt9UNgRpjyYRERERkcHnhKFpzZo1/VHHsFBV7yfZHUec3TLQpYiIiIiISIxOOKdJek99SxvpSY6BLkNERERERHpAoakfef1BPAm2gS5DRERERER6QKGpH3n9IdxO+0CXISIiIiIiPaDQ1E8i0SitgRBuh3qaREREREQGE4WmfuILhDEAd4J6mkREREREBhOFpn7i9QcB8Gh4noiIiIjIoKLQ1E+8rR2hScPzREREREQGF4WmfuINhAC0EISIiIiIyCCj0NRPWo70NGnJcRERERGRQUWhqZ94/SFMJnDFKzSJiIiIiAwmCk39xBsI4XLYMJtNA12KiIiIiIj0gEJTP/G2BrXcuIiIiIjIIKTQ1E+8/iAezWcSERERERl0FJr6SYs/hEs9TSIiIiIig06/h6aHH36YcePGsWfPnqMeCwQC/PCHP+Siiy5i4cKFvPXWW/1dXp9RT5OIiIiIyOBk7c8X27FjBx9++CE5OTnHfPyJJ57A6XSyevVqSkpKuOaaa1i1ahVOp7M/y+x14UiU1raw5jSJiIiIiAxC/RaagsEgd9xxB/fddx9f//rXj3nMypUr+dWvfgVAYWEhkydP5u233+bSSy/trzL7ROvhjW3V0yQiIiLS+yKRMI2NtYTDwYEuZUiqqTETjUYHuoweMZstOBwuXK5ETKZTX72630LTAw88wFVXXUVeXt5xjzl06BC5ubmdn2dnZ1NVVdUf5fUpr78jNKmnSURERKT3NTbWEh+fgNOZ1SsXyNKV1WomHB48ockwDCKRMF5vE42NtaSkZJzyOfslNG3ZsoVt27axdOnSPn+t1FRXn7/GiaSnu7t8fqixDYAROYlHPSbDm9qDxEptRWKltiI9MVTaS01NGYmJSQpMfchqHVzrx9lsFuLi0qmqKuuVdt4voWnDhg0cOHCAz3zmMwBUVVWxZMkS7r77bs4999zO43JycqioqCAlJQWAyspK5syZ06PXqq/3EY0avVd8D6Wnu6mt9Xb5WlllMwDRYPiox2T4OlZbETkWtRWJldqK9MRQai/RaJRIxAAG7hpwKBtsPU2fFolEu7Rzs9l0Up0s/RIZr7/+et59913WrFnDmjVryMrK4oknnugSmAAWLlzIM888A0BJSQnbtm1j3rx5/VFin2rxd4yvdWtOk4iIiIjIoDPg/WyLFi2iuroagCVLltDS0sJFF13Ed77zHe644w5croEfbneqvP4QJhM4HQpNIiIiIkPdF75wJQcO7OvVc1ZWHuLyyz9zzMfq6mq58cbvHPOxV199iYULz+e66xZz3XWL+eY3r2HTpg29WtvmzRtZsuSrMR//8cc7+eUv//OYj336fXq9Xp5++o9dHv/+969n7dp3Tr7Yk9SvS44fsWbNms6PV6xY0flxQkICDz744ECU1Ke8/iBuhw2zxtmKiIiISC9LS0vnoYf+/+M+PmvWbO68814A1q17l9/85h6efvq5/irvKOPHT2TZsjtPeJzP5+Uvf3mKa6459srb/WlAQtNw4/WHtHKeiIiIyDDz17/+mTffXEUkEsZuj2Pp0psZM2YcANu3b+W3v30Av98PwPe+9wNmzz6LXbt2cP/999HWFiA+3sEPf7iUCRMmdZ7z4Yfv56OPNtPe3s5PfnIzZ5wxncrKQ3zrW1/llVfePGFNPp8Pt9vT+fkvf/mflJYeJBQKkpubxy233I7H42Hz5o08+OBvmDhxEjt2bANM/PKX/0Vh4UgAHnvsd7z55irS0zO61Lds2a3Mn7+ABQsu5Omn/8hTTz3Jq6+uwWKxcO21X+S//us+6upq+e1vH+CJJ/4EwD/+8Xf+/ve/kJqaxvTpMzvP9Zvf3IPP5+O66xYTHx/Po48+CcCHH27mz3/+A3V1dSxYcCE33HDjSf6EYqfQ1A+8/qDmM4mIiIj0g7XbKnl3a2WfnPvcqdmcMyU75uMXLrycr3zlWgA2bPiA//7vu3nssT/Q0tLMrbf+lLvuupcpU84gEonQ2tpKKBTittt+xi233M6ZZ85h48b13Hbbz3jmmeUANDc3U1Q0mu9//4ds2bKJX/zits7HurNx43quu24xgYCfpqZG7r33gc7HfvCDpSQlJQEdQejpp//YGUKKi/dz6623c+utP+eJJ/6XP/7xCZYtu5N3332btWvf5ve//wtxcXHccssnK2TPmjWbTZvWs2DBhWzatIGRI4vYtWsnWVnZ+P1+8vMLqKur7Tx+3769PPXUk/z+90+TkpLKfff9qvOxH//4Jr71ra/yhz/8pcv7qa6u4re//V/8fj9f+tIirrhiEXl5+TH/XE6GQlM/aPGHyM8Y/HOzRERERCR2u3fv4k9/+j0tLc2YzWbKykoB2L59G4WFI5ky5QwALBYLHo+H/fv3YbPZOPPMjtWjZ82ajc1mo7T0IAkJCdhsNi655DIApk+fSVxcHKWlB3E6nd3W8enheZs3b+QXv7iVv/71eeLj43nttZdZteo1wuEQgUBbl/CRn1/A2LHjAZg0aUrnXKItWzayYMFFJCQkAHDFFYv44x+fAGDmzDP585//QCgUoqamhsWLv8rGjR+QlZXNzJlnHlXbli2bOPvsc0lJSQVg0aLP8tZbq7t9Pxdc8BnMZjMul4uCgpFUVJQrNA0FPn8Qj4bniYiIiPS5c6b0rDeor0SjBj//+U08/PD/Mm7ceOrqarn66kuBjs1Xj8UwjGPuNXW8afHHO747M2bMIhwOU1y8n2AwyPLl/+CRR54kOTmZVate48UXn+881m6P6/zYbDYTiUS6rR8gJyeXaNRg9erXmDx5CjNnnsmddy4jKyubGTNmHfM99NTx6upLA7563lAXjkRpbQtreJ6IiIjIMBOJRMjIyATg+eef7fz6lClTKSkpZvv2rZ3HtbS0UFBQSDAYZPPmjUBHr1A4HCYvrwCAUCjE6tWvAfDRR1sIBoPk5xf0qKb9+/fh97eSlZWD1+vF6XSRmJhIMBjklVdejOkcM2fOZs2aNwgEAkQiEV599cV/e3wWTz75GLNmzSYzM4uWlmbWr3//mD1NM2bMYt26tTQ2NgDw8sufLBLndDppa2sjHA736D32BfU09TFfIASA26meJhEREZHhIBKJEB8fz5Il3+Hb3/4amZlZnHXW2Z2PezyJ3HXXvTz00P/Q1hbAZDLzve/9gDPPnMNdd93bZSGIO++8B5ut4+Z7YmIi5eVlfPvbX6e9vY1f/OKuzse6c2ROU0evjsGtt/6C5ORkzjrrbFatWsnixV8gIyOD8eMnsHPnjhOe75xz5rF9+1a+8Y3FpKWlM336TGprP5mnNHPmmbzyyoudIWnKlGls2rS+M0B+2ujRY/jqV7/BDTcsISUllblzP9nH1eNJ5OKLL+XrX/8ybrencyGIgWAyTqZP7DRWX+8jGh24t/Tvu2uXVnv5xe838N2rJzNrfMaA1SWnn6G0E7v0LbUViZXaivTEUGovVVUHycrqWY9LX6mrq+Oaaz7Piy++Tlxc/ECX0yusVjPhcHSgyzgp/942zGYTqak9X2tAPU19zHukp0nD80RERESGtGef/RsvvPAs3/veD4dMYJIOCk19zOsPAuDR8DwRERGRIe2LX/wyX/zilwe6DOkDCk19xOsP0uht50BFC4A2txURERERGaQUmvpAdYOf/3z8AyKH51YlxFlJiNe3WkRERKSvnMzy2zK0GUYU6J02oSv5PpCaGM93rpqEydTRw5SVkoBZv8QiIiIifcJqtdPa2oLT6VFwEgzDIBIJ4/U2Yrf3ztwyhaY+YLWYtVKeiIiISD9JTk6nsbEWn69poEsZksxmM9Ho4Fo9z2y24HC4cLkSe+V8Ck0iIiIiMqhZLFbS0rIHuowhaygtT3+yzANdgIiIiIiIyOlMoUlERERERKQbQ254ntk88JP/TocaZHBQW5FYqa1IrNRWpCfUXiRWQ6WtnOz7MBmGYfRyLSIiIiIiIkOGhueJiIiIiIh0Q6FJRERERESkGwpNIiIiIiIi3VBoEhERERER6YZCk4iIiIiISDcUmkRERERERLqh0CQiIiIiItINhSYREREREZFuKDSJiIiIiIh0Q6FJRERERESkGwpNIiIiIiIi3VBoEhERERER6YZCk4iIiIiISDcUmkRERERERLqh0CQiIiIiItINhSYREREREZFuKDSJiIiIiIh0Q6FJRERERESkGwpNIiIiIiIi3VBoEhERERER6YZCk4iIiIiISDcUmkRERERERLqh0CQiIiIiItINhSYREREREZFuKDSJiIiIiIh0Q6FJRERERESkGwpNIiIiIiIi3VBoEhERERER6YZCk4iIiIiISDcUmkRERERERLphHegCeltjYyvRqDFgr5+a6qK+3jdgry+Dh9qKxEptRWKltiI9ofYisRpKbcVsNpGc7Ozx84ZcaIpGjQENTUdqEImF2orESm1FYqW2Ij2h9iKxGu5tRcPzREREREREuqHQJCIiIiIi0g2FJhERERERkW6YDMMYUgMUy/9+LxFf04C9vs1mJRQKD9jry+ChtiKxUluRWKmtSE+ovUishlJbsbiSGPEfP+vx89TTJCIiIiIi0o0h19NUX+8b0NU90tPd1NZ6B+z1ZfBQW5FYqa1IrNRWpCfUXiRWQ6mtmM0mUlNdPX9eH9QiIiIiIiIyZCg0iYiIiIiIdEOhSUREREREpBvWgXjR7373u5SXl2M2m0lISODnP/85EyZMoLi4mJtvvpmmpiaSkpK45557KCwsHIgSRUREREREgAEKTffccw9utxuAN954g1tvvZUXXniBZcuWsXjxYhYtWsSKFSu4/fbbeeqppwaiRBEREREREWCAhucdCUwAPp8Pk8lEfX09O3fu5IorrgDgiiuuYOfOnTQ0NAxEiSIiIiIiIsAA9TQB3HbbbaxduxbDMHj88ceprKwkMzMTi8UCgMViISMjg8rKSlJSUgaqTBERERERGeYGLDTdddddACxfvpx7772XH/zgB71y3pNZd723pae7T3yQCGorEju1FYmV2or0hNqLxGq4t5UBC01HXH311dx+++1kZWVRXV1NJBLBYrEQ+X/t3Xl8U3X2//H3vUm6QulCoWUfURFEthbUEYZ1YBQRx+8oDoIjgjqOG/MbFxAFVJixrjgCVgdQUdFxwYVN8AvKOHxdQBTBBRVQUAq0pRXa0jTJvb8/0qYrsQ2FtOX1fChN7ufezz1JTnLv+dybG59PBw4cUGpqap3648dt0ViQK6gtcgW1Ra6gLsgX1FZTypVG8+O2hYWFysrKCtxft26dWrRooaSkJHXt2lXLly+XJC1fvlxdu3bl1DwAAAAAYXXCjzQdOXJEt9xyi44cOSLTNNWiRQtlZmbKMAzNnDlTU6ZM0fz58xUXF6eMjIwTHR4AAAAAVHLCi6aWLVvq5ZdfrrGtc+fOeuWVV05wRAAAAABwdGG55DgAAAAANBYUTQAAAAAQBEUTAAAAAARB0QQAAAAAQVA0AQAAAEAQFE0AAAAAEARFEwAAAAAEQdEEAAAAAEFQNAEAAABAEBRNAAAAABAERRMAAAAABEHRBAAAAABBUDQBAAAAQBAUTQAAAAAQBEUTAAAAAARB0QQAAAAAQVA0AQAAAEAQFEaOU3YAACAASURBVE0AAAAAEARFEwAAAAAEQdEEAAAAAEFQNAEAAABAEBRNAAAAABAERRMAAAAABEHRBAAAAABBOI9l4R07dujtt99WTk6OZsyYoR07dsjj8eiMM86or/gAAAAAIKxCPtK0atUqjRs3Tvv379ebb74pSSoqKtL9999fb8EBAAAAQLiFfKTpn//8pxYtWqSuXbtq1apVkqQzzjhDX3/9db0FBwAAAADhFvKRpoMHDwZOwzMMI/C37DYAAAAANAUhF01nnnlm4LS8MitWrFCPHj2OOSgAAAAAaChCPj1v2rRpmjhxol599VUVFRVp4sSJ2rVrlxYtWlSf8QEAAABAWIVcNHXu3FmrVq3Su+++q0GDBik1NVWDBg1SbGxsfcYHAAAAAGF1TJccj46O1gUXXFBfsQAAAABAg1Onomns2LG1utDDCy+8EHJAAAAAANCQ1KlouvTSS49XHAAAAADQINWpaPr9739/vOIAAAAAgAYp5EuOz5o1S5s3b640bfPmzZo9e/YxBwUAAAAADYVh27YdyoLnnHOO/vOf/ygiIiIwraSkRAMHDtQHH3xQbwHWVW5ugSwrpIdUL5KTmys7+3DY1o/Gg1xBbZErqC1yBXXRlPLF5/MqLy9bXm9JuENpkkzTlGVZ4Q6jTkzToejoZmrWrEWlazKYpqGkpGZ17i/kq+cZhqGq9ZbP52t0TygAAAAat7y8bEVFxSg2NqVWFy1D3TidprzexrOPb9u2fD6vDh/OV15ethITWx1znyGfnpeenq45c+YEiiTLsvT4448rPT39mIMCAAAAasvrLVFsbBwFEyT5D+44nS7FxyeppKS4XvoM+UjTtGnTdN1116l///5q06aNsrKylJycrMzMzKDL5eXl6fbbb9fu3bsVERGhjh076t5771ViYqI+++wzTZ8+XW63W23bttWDDz6opKSkUEMEAADASYKCCVUZhimpfr62E/KRppSUFL3++uuaN2+eJk6cqHnz5mnp0qVKSUkJupxhGJo0aZJWr16tZcuWqX379nrooYdk27Zuu+02TZ8+XatXr1Z6eroeeuihUMMDAAAAwuIPfxilnTu/q9c+s7L2auTIoTW25eRk66abrquxbeXKZfrd7wbpqqvG6qqrxurqq6/QJ59srNfYNm/epIkTx9d6/q+//lL33HNXjW0VH+fhw4f1wgvPVmq/8cZrtWHD+6EHG6KQi6bFixcrPz9fvXv31vnnn69evXrJNH+5u/j4eJ199tmB+7169dLevXu1detWRUZGBk7vu/zyy/X222+HGh4AAABwUmjZMlmPP/7kUdvT0/vpmWeW6Jlnluiaa67XI49knMDoqjvjjG6aMWPWL85XUHBYS5YsPgER/bKQT8/7v//7Pz366KPq16+fRo8erWHDhlW6kl5tWJalF198UUOGDFFWVpbatGkTaEtMTJRlWcrPz1d8fHyoYQIAAABh8eKLz2vt2jXy+byKiIjUrbdO0WmndZEkbdv2uebNe0xFRUWSpBtuuEX9+p2jr776QnPmPKTi4iOKiorW5Mm3qmvXMwN9zp07R1u2bJbb7dbf/jZFPXv2VlbWXk2aNF4rVqz9xZgKCgrUvHlc4P4999yl3bt/kMdTorZt22vq1OmKi4vT5s2b9M9/PqJu3c7UF19slWTonnv+rk6dfiVJeuqp+Vq7do2Sk1tVim/GjDs1cOAQDRkyTC+88KwWL16klSvXyeFwaNy4S/X3vz+knJxszZv3mBYufE6S9NprL+vll5coKamlevdOC/T1yCMZKigo0FVXjVVUVJQyMxdJkj77bLOef/4Z5eTkaMiQYbr++ptCfIVqL+SiKTMzU3l5eVq5cqWeffZZzZgxQ8OHD9fFF1+svn371qqP++67TzExMRo3bpzeeeedUEOpJJRLCNa35OTm4Q4BjQS5gtoiV1Bb5Arqoqnky4EDppzOkE+gOi4cDlMXXjhK48dfKUn6+OOP9NBD/9DChYv1888/6847b9P99z+kHj16yufzqbCwULbt01133aFp02aoX7+ztXHjR7rrrjv06qtvyuEw9fPPP+v000/X5Mn/T5s3f6IZM6bptdfeksNhSjJqfA5M09CmTR9rwoSxOnKkSHl5+Xr44ccC8/7tb7cpPj5BkpSZOU8vvrhYN9xwsxwOU7t27dTdd8/UnXferaefXqDFixfp3ntn6/3312vDhv/ouedeUmRkpG6//f/JMPxX2evX72x9+ulGDR8+XJs3b9Qpp3TWt99+pZSUVBUVFemUU36lvLzcwPzffvuNnntukZ599kUlJSXpgQf+EXgst902VRMmjNPzz78UeDyGYejAgX168smFKioq1P/8z2iNHv17dejQocbXwTTNesnzkIsmSUpISNAVV1yhK664Ql9//bVuv/12LV26VKmpqbr00kt15ZVXKjY2tsZlMzIy9MMPPygzM1OmaSo1NVV79+4NtB88eFCGYdT5KBO/04TGglxBbZErqC1yBXXRlPLFsqzAJbE3bM3Sfz/POi7r6d8jVeedlVqreX0+S1988YWee+5pHTr0s0zT1J49u+X1WtqyZYs6dfqVunU7qzRuQzExzbRjx3dyOp3q06evvF5LvXv3ldPp1M6duxQTEyOXy6Vhw34nr9dSjx69FRkZqZ07d5Xub9s1Xhbcsmylp/fTrFkPSPJ//+juu6fqxReXKioqSsuXL9OaNW/L6/XoyJFitW/fQV6vJZ/PUocOHdS58+mSpK5du+v99/8jr9fSpk0bNWTIbxURESXblkaOHK1nn11YGnO6Fi9+WkeOuLV//wGNHTteH374oVJSUpWW1jfQt22rtK9NOvfc/mrRIkFer6VRoy7W2rVrAvNVfVy2bWvQoKGyLCkqKlYdO3bS7t271aZNuxpfB8uyKuX5Cf+dpjIffPCB3nrrLa1du1bdu3fXpEmT1KZNGy1evFjXXHONlixZUm2ZRx99VNu2bdNTTz0VOKWve/fuKi4u1qZNm5Senq6XXnpJ559//rGGBwAAAJxwlmXr7rvv0Ny5/1KXLmcoJydbF1/s37et+lunZWzbrvEqgEe7MODR5g+mT590eb1e7dq1QyUlJXrjjdf0xBOLlJCQoDVr3tZbby0NzBsRERm4bZqmfD5f0PglqU2btrIsW++887a6dz9LaWl9NWvWDKWkpKpPn+o/TRSsr6M5WlzHU8hFU0ZGhlasWKHmzZtr9OjRWrZsmVq3bh1o79mzp/r161dtuW+//VaZmZnq1KmTLr/8cklSu3btNG/ePD3wwAOaMWNGpUuOAwAAALV13lm1Pxp0vPl8PrVq5d8/Xrr0lcD0s87qoYyMWdq27XN1794jcHpex46dVFJSos2bN6lPn3Rt3rxJXq9X7dt3VE5Otjwej955522NGHGBtmz5VCUlJerQwd9WWzt2fKeiokKlpLTRF19sVWxsM7Vo0UIlJSVaseKtWvWRltZPTz01X5ddNlYRERFaufKtKu3pWrToKf35zzeqdesUHTr0s3bv/kHXXHN9tb769EnXkiWLlZd3UAkJiVq+/M1AW2xsrIqLi+X1euV0HvOxnmMS8trdbrfmzp2rHj161Njucrn06quvVpt+2mmnafv27TUu06dPHy1btizUkAAAAICw8/l8ioqK0sSJ1+maa65U69YpOuecXwfa4+JaaPbsB/T444+quPiIDMPUDTfcor59z9bs2Q9UuhDErFkZcrlckqQWLVroxx/36Jpr/iS3u1gzZ84OtAWzadPHuuqqsaVHdWzdeedMJSQk6Jxzfq01a1Zp7Ng/qFWrVjrjjK768ssvfrG/884boG3bPteECWPVsmWyevdOU3Z2eeGWltZXK1a8pbQ0/3UOzjqrlz755ONAAVnRqaeepvHjJ+j66ycqMTFJ557bv9LzNHz4+frTny5X8+ZxgQtBhINh1/GYWHFxsXbv3q3TTz+9Wts333yjjh07KjIysoYlTwy+04TGglxBbZErqC1yBXXRlPJl374flJLSMdxhSJJycnJ0xRX/o7feWq3IyKhwh1MvnE6zxu9LNQZVcyPU7zTV+TIjCxYsqPEIkiQtXbpUCxYsqHMQAAAAQGP3yisv6eabr9MNN0xuMgUT/OpcNK1cuVITJ06ssW3ChAlasWLFMQcFAAAANDaXXnq5lix5TRdd9Ptwh4J6Vueiaf/+/ZUu+FBR69attX///mMOCgAAAAAaijoXTdHR0crKqvna93v37lV0dPQxBwUAAAAADUWdi6aBAwfqkUceqbHtscce08CBA485KAAAAABoKOp8yfHJkydrzJgxuuiiizR8+HAlJycrOztb77zzjgoKCvTSSy8djzgBAAAAICzqXDQlJyfr9ddf16JFi/T+++8rPz9f8fHxGjx4sCZMmKAWLVocjzgBAAAAICzqfHreK6+8Irfbrb/+9a/697//rdWrV+vf//63Jk+eTMEEAACAk94f/jBKO3d+V236kiXP6Y9/vEQDBvTVhg3vH3X5zZs3aejQ83TVVWN11VVjdeWVY7R27Zp6jTEra69Gjhxa6/lzcrJ1003XHbW9f/90FRUVSZIWLnxSHo8n0DZ79ky99tq/Qw+2AajzkaatW7dq/vz5iouL06BBgzRw4ED17t1bhmEcj/gAAACAJqF37z76zW8G6f777/vFeTt1OkULFz4nSdq1a6euvfZPGjx4mEyzzsc86kXLlsl6/PEnazXv00//S3/843i5XK7jHNWJU+ei6d5775Ukbd++XevXr9fDDz+sXbt26dxzz9VvfvMbDRgwQImJifUeKAAAANCYde16ZkjLFRYWKDa2WaBgmjt3jj77bLM8Ho/i4+M1dep0paSkKitrryZNGq+LLrpEH364QcXFxZoyZbp69uwlSXrttZf18stLlJTUUr17pwX6z8ycq7i4OI0de6XWrn1HM2feqbfeWq2EhETdeuvN+uMfr1CbNu01adJ4rVixVpK0fv06PfnkPMXFtdA55/w60NfDD2dIkq6//moZhhkotHbu3KGbb/6zDhzYrzPPPEt33XVPozroUueiqUyXLl3UpUsXXXvttTp06JD++9//av369XrwwQfVpk0b3XTTTRowYEB9xgoAAAAE5flmgzzb/3Nc+nZ1+Y1cp593XPqu6vvvd+qqq8aqpMStffv26e677wm0jRt3lW68cbIkadmyN/TEE//UPff8Q5L0888/q3v3Hrruuhu0Zs0qZWb+U088sUjfffetFi9epKeffkGJiUl66KH7A/2lpfXViy8+r7Fjr9Qnn3ysM888S598slGDBg3Vl19+oZ49eyk7Ozcwf17eQWVkzFZm5kJ16NBJL7zwbKDtb3+7Q6+//oqeeGKRYmJiAtN37tyhOXPmyzRNTZhwhTZt+kh9+55z3J6/+hZy0VRRXFycLrjgAl1wwQWSpM8//7w+ugUAAABOShVPz/v++1266abr1L17DyUnt9KHH27Q0qWv6MiRIvl8vkrLRUfH6Lzz/AcuzjzzLM2dO0eS9Omnn+jXv+6vxMQkSdLo0b/Xu+++I0nq0aOnpk+fKo/Ho61bt+iGGybrvffWKjm5lU45pbOioir/DusXX2zV6ad3UYcOnSRJF110iZ544vGgj2fAgEGKjIyU5D/48tNPP6pv32N4gk6wkIsm27b1yiuvaPny5crLy9OyZcu0ceNGZWdnB4onAAAA4ERynX7eCTsadKJ06vQrpaSkauvWz9Wt25l6/PFH9K9/LVabNm21desW3XPPXYF5IyLKv0dkmqZ8Pq8k/7770URGRunUU0/T//7vaiUltVSfPumaO3eOkpNbKS2temUTrK+jryOiQlyOasVeQxfyN8kee+wxvfrqqxozZoyysrIkSSkpKVqwYEG9BQcAAACc7HJysrVnz261b99ehYWFcjpdSkpKkmVZeuON12rVR58+6frggw3KyzsoSVq+/M1K7WlpfbVw4ZNKS+uniIgItWrVSqtWLa+xaOrevYe+/Xa79uzZLcl/imBFMTGxKiwsCOWhNlghH2l6/fXX9frrrysxMVEzZ86UJLVr10579uypr9gAAACARmny5BvkcDgC95999iUtX/6GXnnlJeXn5+nvf5+piIhIPf/8y4qNbVZt+bLvNEmS1+vRNdf8Waed1kWSNHjwMI0bN0atW7dW795p2rLl01+M59RTT9P48RN0/fUTlZiYpHPP7V+pPT29nxYsyFR6ur9ISkvrq61bt6hbt+7V+kpISNTtt0/THXf8VXFxLTRkyLBK7ZdffoVuvvnPioyMqvUV9xo6ww7l+Jqk/v37a+3atYqMjFS/fv308ccfq6CgQCNHjtT69evrO85ay80tkGWF9JDqRXJyc2VnHw7b+tF4kCuoLXIFtUWuoC6aUr7s2/eDUlI6hjuMJsvpNOX1WuEOIyRVc8M0DSUlVS9Sf0nIp+cNHDhQ//jHP1RSUiLJf27jY489psGDB4faJQAAAAA0OCEXTVOnTtWBAweUlpamw4cPq3fv3tq7d69uvfXW+owPAAAAAMIq5O80NWvWTPPnz1dubq5++uknpaamKjk5uT5jAwAAAICwC/lI08UXXyxJSkpKUo8ePQIF0yWXXFI/kQEAAAC1FOLX9NGE2bYlyaiXvkIumn744Ydq02zb1o8//nhMAQEAAAB14XRGqLDwEIUTJPlrEq/Xo/z8HEVERNVLn3U+Pe/222+XJHk8nsDtMj/99JNOPfXUegkMAAAAqI2EhGTl5WWroCA/3KE0SaZpyrIa19XzTNOh6OhmatasRb30V+eiqUOHDjXelqQ+ffrod7/73bFHBQAAANSSw+FUy5ap4Q6jyWpKl6cPVZ2LphtvvFGS1LNnTw0YMKDeAwIAAACAhiTk7zQ9/PDDeuaZZ5Sbm1uf8QAAAABAgxJy0fSXv/xFmzZt0tChQzVp0iQtW7ZMxcXF9RkbAAAAAIRdyEXT8OHDNXfuXL333nsaOnSolixZov79+2vq1Kn64IMP6jNGAAAAAAibkH/ctkx8fLwuvvhixcTEaMGCBVqzZo02bdok0zQ1Y8YM/frXv66POAEAAAAgLEIumizL0oYNG/Tmm2/qvffeU69evXTttdfqt7/9raKiorR69Wrddttt2rBhQ33GCwAAAAAnVMhF04ABA5SQkKDRo0frtttuU+vWrSu1jxgxQs8///wxBwgAAAAA4RRy0ZSZmamzzjpLkpSbm6s1a9aoc+fO6ty5c2Ce55577tgjBAAAAIAwqnPRtH//ft1333367rvv1Lt3b1199dUaN26cTNPU4cOHlZGRoZEjRx6PWAEAAADghKvz1fNmzJihuLg4TZ06VZZlaeLEiZo1a5Y++OADzZkzR5mZmccjTgAAAAAIizofafr000/1/vvvKyIiQv369VN6erqGDRsmSRo2bJjuuOOOeg8SAAAAAMKlzkeaPB6PIiIiJEnR0dGKjY2VYRiBdtu26y86AAAAAAizOh9p8vl8+vDDDwPFkdfrrXTfsqz6jRAAAAAAwqjORVNSUpLuvPPOwP34+PhK9xMTE+snMgAAAABoAOpcNK1bt+54xAEAAAAADVKdv9NUHzIyMjRkyBB16dJF33zzTWD6rl27NGbMGI0YMUJjxozR999/H47wAAAAACAgLEXT0KFD9cILL6ht27aVps+YMUNjx47V6tWrNXbsWE2fPj0c4QEAAABAQFiKpvT0dKWmplaalpubqy+//FIXXnihJOnCCy/Ul19+qYMHD4YjRAAAAACQFKaiqSZZWVlq3bq1HA6HJMnhcKhVq1bKysoKc2QAAAAATmZ1vhBEQ5eU1CzcISg5uXm4Q0AjQa6gtsgV1Ba5grogX1BbJ3uuNJiiKTU1Vfv375fP55PD4ZDP59OBAweqncb3S3JzC2RZ4fuB3eTk5srOPhy29aPxIFdQW+QKaotcQV2QL6itppQrpmmEdJClwZyel5SUpK5du2r58uWSpOXLl6tr16787hMAAACAsArLkaZZs2ZpzZo1ysnJ0YQJExQfH68VK1Zo5syZmjJliubPn6+4uDhlZGSEIzwAAAAACDBs2w7fuWzHAafnobEgV1Bb5Apqi1xBXZAvqK2mlCuN/vQ8AAAAAGiIKJoAAAAAIAiKJgAAAAAIgqIJAAAAAIKgaAIAAACAICiaAAAAACAIiiYAAAAACIKiCQAAAACCoGgCAAAAgCAomgAAAAAgCIomAAAAAAiCogkAAAAAgqBoAgAAAIAgKJoAAAAAIAhnuAMAGjLbtmXbks+y5LP8t21bsuW/bdll06r/tVTlvi3JLl/ukNung3mFlfpR4LatmCiX2iXHyjCMQDx5h93KL3BLqnkZ/3T/esrW728vjaWGaRX7KntcsqtPK1++tP8q0+wK88uWnE5TkS6HXA4zsA5VnFflf1VTX1XW5Z+tPJaKj7X0IVWIoXyeausr7csqnbFsumkYinA5FOkyZZpG+bKqvo7AulVzf6r4XEoyDMkwDBmGZBpG4DW1LFuWbfv/lt22JcuyZFnlz2VklEvFxZ7S/kqfM/n7Mk1DDrP0b2nfZfnq89nyWpZ8vvL8KA1PNd+pfLfiMjUJ1nzU9f1CH3bFuYPEVhOjFhONKhOMGhcq53KYgbywbMnns+S1bHl9/ufVZ9nlMduVYzRK/zFkBNZjyJ8LpmnI5TTlcvrfH/6+/H16ff7Xr+yvZdlV8qe8j7JpZdOjolwqKfHKLF2hPw9K86HCbW9pv1XjLP2vNN5feHKqqPp5V/H9aln+Z8npMOV0GHI5TP9tpynTMALPYXSEU81iXIqJdMrt8amo2Fv6v0eFbq+8Xksup0MRLlOGIVmW/33k/3z2v4dM05DTNOVw+N8bDtP/vrAsW76K7zerhowyKt6sljyVbpbnjv+5t21bHq//dZT8ueNwGKV5Y1d6X1qlnzkO05BhGjINlb+HTSPQVjbdMMrf52Xv+7I20zDk9vh0xO1VcYlPUREOxUS5FOEyVeKx5C7xyuur+d3jinDIU+Kr8plQ/b17tM8Mw5AiXA5FuRxyOAyVeCyVeH2y7fLYvD5Lbo9PHq+lmEinmse4FBPlksvpzwWfZaugyKPDRzzyeq3y90pZrpeuyCjNn+hIp2KinPJZtvIPu5VXuk2MdDkU6XJIUuBztSwXTUOKjnQqKsK/2+v2+OQu8couW0+F9TkdpppFu9Q8xqXoSGe193HZvKpw+6jTS5ctez96vJZKPD55fFa11yIwf4VcO9rnlSEpLjZCXTokKKF5ZE0vbYNRVOzVdz/9rL05herfI1XNol3hDilkFE0ngRKPT4XF3sBOjNNhKi42IuT+bNuW12erxOtTiceSx2cFNlplGyKvZcnrtVTitfwfEl7/B2bZTkZg/gobsLL7NbVX7Ltiu8frk7v0Q7psJ9OyyguTsvm8Pkve0o2WZdlyOf07QS6nWa3PqrfDKTUpRuedlaroSKc+/GKfvv3x57DG01gYFTdwpVst01DlDV/F6fIXQSUeX61f82ob0tIJVTeekgJFYVkhWlZgmWU7QWU7QoYq7ESV92U6TFk+u9oOftU8Lyu8HKYhR+nOqX+nsbwQrBR/jXdq2lUun1I1huD9GEHaKtyutsJarq+Cml616kWdHbS9ptnLdvhKPD4ZpTvjTkfp82uWFy5lkZW9ZoGiX3aF4ru8EPbZtjyln4+Sqr1mTocZ+Gs6/csHPtssOzBQYlUYNLFtyVFQohKPr/x+hRxwOPw75ZERpmJMf//+58Gu9PgrDn7UpW4ySt9PNRV4Za+jz7Ll9Vry+ix5fLaOuL2VCuyc/GIVHPGosNijSJdDsVFOxUS5FBvlVKv4aLmcZuk2xfIPdpQWGmbgtSgtjkqL27Ii0S59X7gcpkxXWUFy9AdXdcCgam6UNQeeJ/8TUFoomVLpdtJrWYECqOw1Llu3ZVcdNKkykFJlQMVdun20KwywlN2PcPmLiWYxLrlLfNqfV6QSj69CQWNWeymrFviBp6PK82LU8DyVTbIs/2uYf9gtr2UrwmkqwmnKMA3ZHn+8Tqc/trgYU0XFHv2UU6iiYq88pXlgmoaax7jULDpCLqcpu7TALntuKw6i+XyWitxeFRZ75TANJTSPVItmEf7CscSnw0Ul5YMKRnk+ei1b2fnFOuL2+gcXIvwFlmEY5YOa8v/1ei19d8SjgiJPYLCvIUtNilFyfHTg/VbitVTs9upIib+QLnvMrRJilJoYI4fD0MFDbuUeKpZl2XI4TLkcRmAQw2kacjpNuRz+faQIp0MulykZhrKyC3TwsFvuEl/pe9gKDNqUb8tKC/3SjDt4uFi27d/37NoxoVEXTYb9S0OJjUxubkHNo0cnSHJyc2VnHz5u/Vu2rZ8LSnTwULHyDrtVUOxR4RGPCo94y28Xe1VY4XbZRrmiVvHR6tYpQae1j1dSXJQSm0fKMAzlF7qVf7hE+/OK9FN2ofbnFemI2xsYPSrx+EdJjtczHBgVrLAhDIyiVxhhK5sW4fK/oSOcZmDH06gwMmcahpyOyjsghil5PP4dobIPbH9/phyGIYejfB2V1l36IVBxp8Awqt+vOPJUdaehYnt8fLQOHyqu1I/KbkvK/rlYG7ZmBQqlNi1jdU631mqX3Cywk14+wlW1/6PHVG3+qqNl1ZYrHyWrNo8qxK7K/Xt8pSNqXivoyFvQUboKsUqly1SLV1VGyOuwl1cDb+kggFHDY6qvddTV8f5cQdPRVHLFtu0T/j47GTWVfDkerNKBjYpnDlQ82l/TWREVp5f1ETijQSotKh1yOUs3+KpwRkTZiisW5FL1wZ3SGLLzi/XVD3n6eneeDheV+AelbVuRLoeiIxz+I2uRTkVHOGVZtvblFWlfbpEs2/bv98VFymGapYPK/oHl8tuWPF5bHp8lT+m+X3SUUy1iI5TQLFLRkU65nOUDL2WD3HaFAe+yM1qS46PUpX28y4yYnwAACWRJREFUTmnbInAkMNxM01BSUrM6L0fRVM/q4wPItm0VFnu1N6dQu/cf1u4DBTqQdyRQKNU0Eu4/nOxUbLRLsVEuNYv2j8zFlv6NiXIFkvuI26vtu/P11e48uUt8R40joXmkUhJjFBvtUqTTlMvlL07KTlUpG31wlY2cVSkyXA7/Mv7TW8zACFzZyGfVAijYqF9TVNtcOZBXpBKvpbYtY9mJOEmxY4PaIldQF+QLaqsp5UqoRROn5zUA7hKftu/J0xe78vTtj/k6kHdERW5voL1ZtEupSTE6tV0LJTaPUlJcpBJKjw41j4lQbJRTEXWs3kf06yCvz9L+g0XKK3Dr4CG3bNtWfLNIxTeLVHJ8tGKiSI+GoFVCTLhDAAAAOKmxVxwmtm3rmz35Wr9lrz7Zni2P15LLaapzmzidfWZrtY6PVuvEGHVo3VzxzSKOyxEGp8NU2+Rmaptc92obAAAAOFlQNJ1gXp+lD77Yp7c/2q2s3CJFRzrV/6xU9Tk9Wae1a1HnI0YAAAAAji+KphPog2379Or6Hco77FaHVs00cWRXpZ/RqsF8MQ4AAABAdRRNJ4Bl21q6fqdWfviDTmkTp6vOP0Pdf5XIl/oBAACARoCi6Tg5kFekI26fLNvW2x/t1savD2hQrzYa+9vT5Sz9sU8AAAAADR9F03HwU06h7l7wUeC+IemywadqRL/2HF0CAAAAGhmKpuOgTVKMbv9jbx0p8cowDCXFRal9K65QBwAAADRGFE3HgWEYOqNjQrjDAAAAAFAP+HINAAAAAARB0QQAAAAAQVA0AQAAAEAQTe47TaYZ/qvTNYQY0DiQK6gtcgW1Ra6gLsgX1FZTyZVQH4dh27Zdz7EAAAAAQJPB6XkAAAAAEARFEwAAAAAEQdEEAAAAAEFQNAEAAABAEBRNAAAAABAERRMAAAAABEHRBAAAAABBUDQBAAAAQBAUTQAAAAAQBEVTPdm1a5fGjBmjESNGaMyYMfr+++/DHRLCJC8vT9dcc41GjBihUaNG6cYbb9TBgwclSZ999pkuuugijRgxQldffbVyc3MDywVrQ9M3d+5cdenSRd98840kcgU1c7vdmjFjhoYPH65Ro0bp7rvvlhR8G8T26eT07rvv6uKLL9bo0aM1atQorVmzRhK5AikjI0NDhgyptM2RQs+NkyZvbNSL8ePH22+88YZt27b9xhtv2OPHjw9zRAiXvLw8+8MPPwzcv//+++2pU6falmXZw4YNszdu3Gjbtm3PmzfPnjJlim3bdtA2NH3btm2zJ06caA8aNMjevn07uYKjuu++++zZs2fblmXZtm3b2dnZtm0H3waxfTr5WJZlp6en29u3b7dt27a/+uoru1evXrbP5yNXYG/cuNHeu3evPXjw4ECO2HbonyMnS95QNNWDnJwcOy0tzfZ6vbZt27bX67XT0tLs3NzcMEeGhuDtt9+2//SnP9lbtmyxR44cGZiem5tr9+rVy7ZtO2gbmja3221fdtll9u7duwMbMHIFNSkoKLDT0tLsgoKCStODbYPYPp2cLMuy+/XrZ2/atMm2bdv++OOP7eHDh5MrqKRi0RRqbpxMeeMM95GupiArK0utW7eWw+GQJDkcDrVq1UpZWVlKTEwMc3QIJ8uy9OKLL2rIkCHKyspSmzZtAm2JiYmyLEv5+flB2+Lj48MROk6Qxx57TBdddJHat28fmEauoCZ79uxRfHy85s6dq48++kixsbG65ZZbFBUVddRtkG3bbJ9OQoZhaM6cOfrLX/6imJgYFRYW6sknnwy6v0KunNxCzY2TKW/4ThNwHN13332KiYnRuHHjwh0KGqBPP/1UW7du1dixY8MdChoBr9erPXv2qFu3blq6dKluvfVW3XTTTSoqKgp3aGhgvF6vnnzySc2fP1/vvvuunnjiCf31r38lV4BjwJGmepCamqr9+/fL5/PJ4XDI5/PpwIEDSk1NDXdoCKOMjAz98MMPyszMlGmaSk1N1d69ewPtBw8elGEYio+PD9qGpmvjxo3auXOnhg4dKknat2+fJk6cqPHjx5MrqKZNmzZyOp268MILJUk9e/ZUQkKCoqKijroNsm2b7dNJ6KuvvtKBAweUlpYmSUpLS1N0dLQiIyPJFdQo2L5ssNw4mfKGI031ICkpSV27dtXy5cslScuXL1fXrl2b3GFJ1N6jjz6qbdu2ad68eYqIiJAkde/eXcXFxdq0aZMk6aWXXtL555//i21ouq699lr997//1bp167Ru3TqlpKRo4cKFmjRpErmCahITE3X22Wdrw4YNkvxXrMrNzVWnTp2Oug1i+3RySklJ0b59+7Rz505J0o4dO5STk6OOHTuSK6hRsNc/1LamxrBt2w53EE3Bjh07NGXKFB06dEhxcXHKyMjQKaecEu6wEAbffvutLrzwQnXq1ElRUVGSpHbt2mnevHnavHmzZsyYIbfbrbZt2+rBBx9Uy5YtJSloG04OQ4YMUWZmpk4//XRyBTXas2eP7rzzTuXn58vpdGry5MkaOHBg0G0Q26eT01tvvaV//etfMgxDknTzzTdr2LBh5Ao0a9YsrVmzRjk5OUpISFB8fLxWrFgRcm6cLHlD0QQAAAAAQXB6HgAAAAAEQdEEAAAAAEFQNAEAAABAEBRNAAAAABAERRMAAAAABEHRBAAAAABBUDQBAAAAQBAUTQAAAAAQBEUTAKDRGzJkiBYuXKhRo0YpLS1NkydPltvt1lNPPaXLLrtMXq9XkrRkyRKNHDlSbrc7zBEDABoTiiYAQJOwatUqLViwQGvXrtX27du1dOlSTZo0SS6XS0888YS+//57Pfroo3rwwQcVGRkZ7nABAI2IM9wBAABQH8aPH6/WrVtLkgYPHqyvvvpKpmkqIyNDl1xyiVauXKlJkyapW7duYY4UANDYcKQJANAkJCcnB25HR0erqKhIktSuXTudffbZ+umnn3TFFVeEKzwAQCNG0QQAaNLWr1+vTz/9VOeee64eeOCBcIcDAGiEKJoAAE3WwYMHNW3aNM2ePVv333+/1q1bp/Xr14c7LABAI0PRBABosqZPn64hQ4Zo4MCBSkhI0OzZszVt2jTl5eWFOzQAQCNi2LZthzsIAAAAAGioONIEAAAAAEFQNAEAAABAEBRNAAAAABAERRMAAAAABEHRBAAAAABBUDQBAAAAQBAUTQAAAAAQBEUTAAAAAARB0QQAAAAAQfx/kJaDcnTKpg4AAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 1008x432 with 2 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n",
-    "for ax in [ax1, ax2]:\n",
-    "    df_bandwidth[\"Bandwidth / Byte/Cycle\"].plot(ax=ax, legend=True, label=\"Jacobi Bandwidth\")\n",
-    "    ax.set_ylabel(\"Byte/Cycle\")\n",
-    "ax2.axhline(2*16, color=sns.color_palette()[1], label=\"L1 Bandwidth\");\n",
-    "ax2.legend();"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "As you can see, we are quite a bit away from the available L1 cache bandwidth. Can you think of reasons why?"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Task E1: Measuring FlOps\n",
-    "<a name=\"taske1\"></a>\n",
-    "\n",
-    "If you still have time, feel free to work on the following extended task.\n",
-    "\n",
-    "\n",
-    "**TASK**: Please measure counters for _vectorized_ floating point operations and _scalar_ floating point operations. The two counters can also not be measured during the same run. So please see the TODOs in [`poisson2d.sflops.c`](/edit/Tasks/poisson2d.sflops.c) and [`poisson2d.vflops.c`](/edit/Tasks/poisson2d.vflops.c). By now you should be able to find out the names of the counters by yourself (*Hint: they include the words scalar and vector…*).\n",
-    "\n",
-    "As usual, compile, test, and bench-run your program.\n",
-    "\n",
-    "[Back to top](#toc)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 42,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "bsub -W 60 -nnodes 1 -Is -P GEN110 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.sflop.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.sflop.bin.csv\n",
-      "Job <4299> is submitted to default queue <batch>.\n",
-      "<<Waiting for dispatch ...>>\n",
-      "<<Starting on login1>>\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,4,0.0010,96000,480,480\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,8,0.0011,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,12,0.0012,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,16,0.0012,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,20,0.0013,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,24,0.0014,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,28,0.0014,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,32,0.0015,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,36,0.0015,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,40,0.0016,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,44,0.0017,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,48,0.0017,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,52,0.0018,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,56,0.0019,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,60,0.0020,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,64,0.0021,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,68,0.0022,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,72,0.0022,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,76,0.0022,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,80,0.0023,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,84,0.0024,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,88,0.0024,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,92,0.0025,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,96,0.0025,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,100,0.0028,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,104,0.0027,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,108,0.0027,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,112,0.0029,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,116,0.0028,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,120,0.0029,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,124,0.0030,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,128,0.0031,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,132,0.0031,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,136,0.0032,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,140,0.0033,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,144,0.0034,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,148,0.0034,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,152,0.0034,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,156,0.0035,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,160,0.0036,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,164,0.0037,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,168,0.0037,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,172,0.0038,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,176,0.0038,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,180,0.0039,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,184,0.0039,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,188,0.0040,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,192,0.0041,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,196,0.0041,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,200,0.0042,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,204,0.0043,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,208,0.0043,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,212,0.0044,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,216,0.0045,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,220,0.0046,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,224,0.0047,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,228,0.0047,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,232,0.0047,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,236,0.0048,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,240,0.0049,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,244,0.0049,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,248,0.0050,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,252,0.0050,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,256,0.0051,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,260,0.0052,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,264,0.0053,0,0,0\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,268,0.0054,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,272,0.0055,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,276,0.0055,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,280,0.0055,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,284,0.0056,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,288,0.0057,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,292,0.0057,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,296,0.0058,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,300,0.0059,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,304,0.0059,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,308,0.0059,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,312,0.0060,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,316,0.0061,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,320,0.0061,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,324,0.0062,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,328,0.0063,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,332,0.0065,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,336,0.0064,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,340,0.0065,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,344,0.0065,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,348,0.0066,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,352,0.0067,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,356,0.0067,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,360,0.0068,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,364,0.0069,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,368,0.0070,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,372,0.0070,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,376,0.0071,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,380,0.0072,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,384,0.0072,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,388,0.0072,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,392,0.0075,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,396,0.0074,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,400,0.0075,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,404,0.0075,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,408,0.0076,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,412,0.0077,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,416,0.0077,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,420,0.0078,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,424,0.0079,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,428,0.0079,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,432,0.0080,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,436,0.0080,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,440,0.0081,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,444,0.0083,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,448,0.0084,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,452,0.0084,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,456,0.0084,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,460,0.0085,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,464,0.0086,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,468,0.0086,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,472,0.0088,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,476,0.0087,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,480,0.0088,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,484,0.0089,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,488,0.0089,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,492,0.0090,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,496,0.0090,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,500,0.0092,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,504,0.0092,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,508,0.0093,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,512,0.0092,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,516,0.0093,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,520,0.0094,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,524,0.0094,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,528,0.0094,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,532,0.0095,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,536,0.0096,0,0,0\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,540,0.0098,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,544,0.0097,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,548,0.0098,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,552,0.0099,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,556,0.0099,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,560,0.0100,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,564,0.0102,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,568,0.0102,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,572,0.0103,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,576,0.0103,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,580,0.0105,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,584,0.0104,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,588,0.0106,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,592,0.0107,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,596,0.0106,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,600,0.0107,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,604,0.0109,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,608,0.0109,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,612,0.0109,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,616,0.0110,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,620,0.0117,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,624,0.0112,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,628,0.0111,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,632,0.0112,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,636,0.0113,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,640,0.0115,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,644,0.0114,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,648,0.0115,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,652,0.0116,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,656,0.0117,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,660,0.0117,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,664,0.0118,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,668,0.0119,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,672,0.0119,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,676,0.0119,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,680,0.0120,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,684,0.0121,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,688,0.0122,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,692,0.0122,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,696,0.0123,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,700,0.0124,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,704,0.0124,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,708,0.0125,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,712,0.0125,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,716,0.0126,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,720,0.0126,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,724,0.0127,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,728,0.0128,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,732,0.0128,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,736,0.0129,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,740,0.0130,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,744,0.0130,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,748,0.0131,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,752,0.0131,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,756,0.0132,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,760,0.0133,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,764,0.0134,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,768,0.0134,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,772,0.0136,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,776,0.0136,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,780,0.0136,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,784,0.0137,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,788,0.0138,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,792,0.0139,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,796,0.0139,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,800,0.0140,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,804,0.0141,0,0,0\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,808,0.0142,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,812,0.0142,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,816,0.0143,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,820,0.0143,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,824,0.0144,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,828,0.0145,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,832,0.0145,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,836,0.0146,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,840,0.0147,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,844,0.0147,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,848,0.0148,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,852,0.0149,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,856,0.0149,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,860,0.0150,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,864,0.0150,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,868,0.0152,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,872,0.0151,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,876,0.0153,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,880,0.0153,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,884,0.0153,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,888,0.0155,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,892,0.0156,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,896,0.0156,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,900,0.0158,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,904,0.0158,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,908,0.0159,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,912,0.0159,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,916,0.0162,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,920,0.0162,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,924,0.0162,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,928,0.0162,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,932,0.0163,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,936,0.0164,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,940,0.0165,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,944,0.0165,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,948,0.0166,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,952,0.0167,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,956,0.0168,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,960,0.0168,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,964,0.0172,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,968,0.0173,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,972,0.0173,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,976,0.0173,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,980,0.0175,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,984,0.0176,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,988,0.0175,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,992,0.0176,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,996,0.0178,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,1000,0.0177,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,1004,0.0178,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,1008,0.0178,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,1012,0.0181,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,1016,0.0180,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,1020,0.0182,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n",
-      "200,32,1024,0.0179,0,0,0\n",
-      "mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.sflop.bin.csv .\n",
-      "bsub -W 60 -nnodes 1 -Is -P GEN110 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vflop.bin /gpfs/wolf/gen110/scratch/aherten//poisson2d.vflop.bin.csv\n",
-      "Job <4300> is submitted to default queue <batch>.\n",
-      "<<Waiting for dispatch ...>>\n",
-      "<<Starting on login1>>\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,4,0.0010,0,0,0\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,8,0.0011,150000,750,750\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,12,0.0012,246000,1230,1230\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,16,0.0012,342000,1710,1710\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,20,0.0013,438000,2190,2190\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,24,0.0014,534000,2670,2670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,28,0.0014,630000,3150,3150\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,32,0.0015,726000,3630,3630\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,36,0.0016,822000,4110,4110\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,40,0.0016,918000,4590,4590\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,44,0.0017,1014000,5070,5070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,48,0.0018,1110000,5550,5550\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,52,0.0018,1206000,6030,6030\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,56,0.0020,1302000,6510,6510\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,60,0.0020,1398000,6990,6990\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,64,0.0021,1494000,7470,7470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,68,0.0022,1590000,7950,7950\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,72,0.0022,1686000,8430,8430\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,76,0.0022,1782000,8910,8910\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,80,0.0023,1878000,9390,9390\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,84,0.0024,1974000,9870,9870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,88,0.0024,2070000,10350,10350\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,92,0.0025,2166000,10830,10830\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,96,0.0025,2262000,11310,11310\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,100,0.0026,2358000,11790,11790\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,104,0.0027,2454000,12270,12270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,108,0.0028,2550000,12750,12750\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,112,0.0028,2646000,13230,13230\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,116,0.0029,2742000,13710,13710\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,120,0.0032,2838000,14190,14190\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,124,0.0030,2934000,14670,14670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,128,0.0031,3030000,15150,15150\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,132,0.0031,3126000,15630,15630\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,136,0.0032,3222000,16110,16110\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,140,0.0033,3318000,16590,16590\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,144,0.0033,3414000,17070,17070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,148,0.0034,3510000,17550,17550\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,152,0.0034,3606000,18030,18030\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,156,0.0036,3702000,18510,18510\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,160,0.0036,3798000,18990,18990\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,164,0.0036,3894000,19470,19470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,168,0.0037,3990000,19950,19950\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,172,0.0038,4086000,20430,20430\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,176,0.0039,4182000,20910,20910\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,180,0.0039,4278000,21390,21390\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,184,0.0040,4374000,21870,21870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,188,0.0040,4470000,22350,22350\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,192,0.0041,4566000,22830,22830\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,196,0.0042,4662000,23310,23310\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,200,0.0042,4758000,23790,23790\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,204,0.0043,4854000,24270,24270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,208,0.0043,4950000,24750,24750\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,212,0.0044,5046000,25230,25230\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,216,0.0045,5142000,25710,25710\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,220,0.0047,5238000,26190,26190\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,224,0.0046,5334000,26670,26670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,228,0.0047,5430000,27150,27150\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,232,0.0047,5526000,27630,27630\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,236,0.0048,5622000,28110,28110\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,240,0.0049,5718000,28590,28590\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,244,0.0050,5814000,29070,29070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,248,0.0050,5910000,29550,29550\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,252,0.0051,6006000,30030,30030\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,256,0.0051,6102000,30510,30510\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,260,0.0052,6198000,30990,30990\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,264,0.0052,6294000,31470,31470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,268,0.0053,6390000,31950,31950\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,272,0.0054,6486000,32430,32430\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,276,0.0058,6582000,32910,32910\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,280,0.0055,6678000,33390,33390\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,284,0.0056,6774000,33870,33870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,288,0.0056,6870000,34350,34350\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,292,0.0057,6966000,34830,34830\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,296,0.0058,7062000,35310,35310\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,300,0.0059,7158000,35790,35790\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,304,0.0060,7254000,36270,36270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,308,0.0060,7350000,36750,36750\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,312,0.0061,7446000,37230,37230\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,316,0.0061,7542000,37710,37710\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,320,0.0062,7638000,38190,38190\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,324,0.0063,7734000,38670,38670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,328,0.0064,7830000,39150,39150\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,332,0.0064,7926000,39630,39630\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,336,0.0064,8022000,40110,40110\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,340,0.0065,8118000,40590,40590\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,344,0.0066,8214000,41070,41070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,348,0.0066,8310000,41550,41550\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,352,0.0068,8406000,42030,42030\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,356,0.0069,8502000,42510,42510\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,360,0.0068,8598000,42990,42990\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,364,0.0069,8694000,43470,43470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,368,0.0069,8790000,43950,43950\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,372,0.0070,8886000,44430,44430\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,376,0.0071,8982000,44910,44910\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,380,0.0071,9078000,45390,45390\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,384,0.0072,9174000,45870,45870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,388,0.0073,9270000,46350,46350\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,392,0.0074,9366000,46830,46830\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,396,0.0074,9462000,47310,47310\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,400,0.0075,9558000,47790,47790\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,404,0.0075,9654000,48270,48270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,408,0.0076,9750000,48750,48750\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,412,0.0077,9846000,49230,49230\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,416,0.0077,9942000,49710,49710\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,420,0.0078,10038000,50190,50190\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,424,0.0079,10134000,50670,50670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,428,0.0079,10230000,51150,51150\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,432,0.0080,10326000,51630,51630\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,436,0.0080,10422000,52110,52110\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,440,0.0081,10518000,52590,52590\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,444,0.0082,10614000,53070,53070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,448,0.0082,10710000,53550,53550\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,452,0.0083,10806000,54030,54030\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,456,0.0084,10902000,54510,54510\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,460,0.0085,10998000,54990,54990\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,464,0.0085,11094000,55470,55470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,468,0.0086,11190000,55950,55950\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,472,0.0088,11286000,56430,56430\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,476,0.0089,11382000,56910,56910\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,480,0.0088,11478000,57390,57390\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,484,0.0088,11574000,57870,57870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,488,0.0089,11670000,58350,58350\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,492,0.0090,11766000,58830,58830\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,496,0.0090,11862000,59310,59310\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,500,0.0091,11958000,59790,59790\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,504,0.0092,12054000,60270,60270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,508,0.0094,12150000,60750,60750\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,512,0.0092,12246000,61230,61230\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,516,0.0093,12342000,61710,61710\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,520,0.0093,12438000,62190,62190\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,524,0.0094,12534000,62670,62670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,528,0.0094,12630000,63150,63150\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,532,0.0095,12726000,63630,63630\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,536,0.0096,12822000,64110,64110\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,540,0.0100,12918000,64590,64590\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,544,0.0097,13014000,65070,65070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,548,0.0098,13110000,65550,65550\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,552,0.0099,13206000,66030,66030\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,556,0.0100,13302000,66510,66510\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,560,0.0101,13398000,66990,66990\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,564,0.0102,13494000,67470,67470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,568,0.0103,13590000,67950,67950\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,572,0.0103,13686000,68430,68430\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,576,0.0103,13782000,68910,68910\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,580,0.0105,13878000,69390,69390\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,584,0.0105,13974000,69870,69870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,588,0.0106,14070000,70350,70350\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,592,0.0106,14166000,70830,70830\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,596,0.0106,14262000,71310,71310\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,600,0.0108,14358000,71790,71790\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,604,0.0109,14454000,72270,72270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,608,0.0109,14550000,72750,72750\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,612,0.0109,14646000,73230,73230\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,616,0.0111,14742000,73710,73710\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,620,0.0111,14838000,74190,74190\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,624,0.0112,14934000,74670,74670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,628,0.0112,15030000,75150,75150\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,632,0.0112,15126000,75630,75630\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,636,0.0114,15222000,76110,76110\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,640,0.0114,15318000,76590,76590\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,644,0.0114,15414000,77070,77070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,648,0.0115,15510000,77550,77550\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,652,0.0117,15606000,78030,78030\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,656,0.0117,15702000,78510,78510\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,660,0.0117,15798000,78990,78990\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,664,0.0118,15894000,79470,79470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,668,0.0120,15990000,79950,79950\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,672,0.0120,16086000,80430,80430\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,676,0.0121,16182000,80910,80910\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,680,0.0120,16278000,81390,81390\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,684,0.0121,16374000,81870,81870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,688,0.0122,16470000,82350,82350\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,692,0.0122,16566000,82830,82830\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,696,0.0124,16662000,83310,83310\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,700,0.0124,16758000,83790,83790\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,704,0.0124,16854000,84270,84270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,708,0.0125,16950000,84750,84750\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,712,0.0125,17046000,85230,85230\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,716,0.0126,17142000,85710,85710\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,720,0.0126,17238000,86190,86190\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,724,0.0127,17334000,86670,86670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,728,0.0128,17430000,87150,87150\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,732,0.0130,17526000,87630,87630\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,736,0.0129,17622000,88110,88110\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,740,0.0129,17718000,88590,88590\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,744,0.0130,17814000,89070,89070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,748,0.0131,17910000,89550,89550\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,752,0.0132,18006000,90030,90030\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,756,0.0132,18102000,90510,90510\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,760,0.0133,18198000,90990,90990\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,764,0.0134,18294000,91470,91470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,768,0.0135,18390000,91950,91950\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,772,0.0136,18486000,92430,92430\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,776,0.0136,18582000,92910,92910\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,780,0.0137,18678000,93390,93390\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,784,0.0137,18774000,93870,93870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,788,0.0138,18870000,94350,94350\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,792,0.0138,18966000,94830,94830\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,796,0.0140,19062000,95310,95310\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,800,0.0140,19158000,95790,95790\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,804,0.0140,19254000,96270,96270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,808,0.0141,19350000,96750,96750\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,812,0.0142,19446000,97230,97230\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,816,0.0143,19542000,97710,97710\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,820,0.0143,19638000,98190,98190\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,824,0.0144,19734000,98670,98670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,828,0.0146,19830000,99150,99150\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,832,0.0146,19926000,99630,99630\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,836,0.0146,20022000,100110,100110\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,840,0.0147,20118000,100590,100590\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,844,0.0147,20214000,101070,101070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,848,0.0148,20310000,101550,101550\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,852,0.0148,20406000,102030,102030\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,856,0.0150,20502000,102510,102510\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,860,0.0150,20598000,102990,102990\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,864,0.0151,20694000,103470,103470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,868,0.0151,20790000,103950,103950\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,872,0.0152,20886000,104430,104430\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,876,0.0153,20982000,104910,104910\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,880,0.0154,21078000,105390,105390\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,884,0.0154,21174000,105870,105870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,888,0.0154,21270000,106350,106350\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,892,0.0155,21366000,106830,106830\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,896,0.0157,21462000,107310,107310\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,900,0.0156,21558000,107790,107790\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,904,0.0158,21654000,108270,108270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,908,0.0159,21750000,108750,108750\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,912,0.0159,21846000,109230,109230\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,916,0.0161,21942000,109710,109710\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,920,0.0161,22038000,110190,110190\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,924,0.0162,22134000,110670,110670\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,928,0.0164,22230000,111150,111150\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,932,0.0164,22326000,111630,111630\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,936,0.0164,22422000,112110,112110\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,940,0.0164,22518000,112590,112590\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,944,0.0165,22614000,113070,113070\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,948,0.0167,22710000,113550,113550\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,952,0.0168,22806000,114030,114030\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,956,0.0168,22902000,114510,114510\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,960,0.0168,22998000,114990,114990\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,964,0.0174,23094000,115470,115470\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,968,0.0172,23190000,115950,115950\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,972,0.0173,23286000,116430,116430\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,976,0.0172,23382000,116910,116910\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,980,0.0174,23478000,117390,117390\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,984,0.0174,23574000,117870,117870\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,988,0.0176,23670000,118350,118350\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,992,0.0176,23766000,118830,118830\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,996,0.0179,23862000,119310,119310\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,1000,0.0177,23958000,119790,119790\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,1004,0.0178,24054000,120270,120270\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,1008,0.0178,24150000,120750,120750\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,1012,0.0180,24246000,121230,121230\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,1016,0.0180,24342000,121710,121710\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,1020,0.0181,24438000,122190,122190\n",
-      "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n",
-      "200,32,1024,0.0178,24534000,122670,122670\n",
-      "mv /gpfs/wolf/gen110/scratch/aherten//poisson2d.vflop.bin.csv .\n"
-     ]
-    }
-   ],
-   "source": [
-    "!make bench_task4"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 47,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "df_sflop = pd.read_csv(\"poisson2d.sflop.bin.csv\", skiprows=range(2, 50000, 2))\n",
-    "df_vflop = pd.read_csv(\"poisson2d.vflop.bin.csv\", skiprows=range(2, 50000, 2))\n",
-    "df_flop = pd.concat([df_sflop.set_index(\"nx\"), df_vflop.set_index(\"nx\")[['PM_VECTOR_FLOP_CMPL (total)', 'PM_VECTOR_FLOP_CMPL (min)', ' PM_VECTOR_FLOP_CMPL (max)']]], axis=1).reset_index()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "The name of the vector counter is a bit misleading; not floating point operations are measured but floating point instructions. To get *real* floating point operations, each value needs to be multiplied by the vector width (2). We can plot the values afterwards (non-interactive: `make graph_task4`)."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 49,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "common.normalize(df_flop, \"PM_SCALAR_FLOP_CMPL (min)\", \"Scalar FlOps / Loop Iteration\")\n",
-    "common.normalize(df_flop, \"PM_VECTOR_FLOP_CMPL (min)\", \"Vector Instructions / Loop Iteration\")\n",
-    "df_flop[\"Vector FlOps / Loop Iteration\"] = df_flop[\"Vector Instructions / Loop Iteration\"] * 2"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 50,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzIAAAF/CAYAAACSbPy2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzt3Xt8FNX9//H3zG4SSCAkhAjhriCKiEBBUYta8UIFFC+t+kNQELxUwSvWCwgqYgVUFEHxgvdLbb9VVLxhxSpQFVCkoBRFQLAECCFAbiTZnfP7Y5MlIbdNTLJM5vV8PHB3Z2ZnPtkc3PPmzJmxjDFGAAAAAOAidrQLAAAAAICaIsgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADX8TfEQbKycuU4piEOVU5KSjNlZuZE5dhwH9oLIkVbQaRoK4gUbQU10Zjai21bSk5OqPH7GiTIOI6JWpApOT4QKdoLIkVbQaRoK4gUbQU14fX2wqllAAAAAFyHIAMAAADAdQgyAAAAAFyHIAMAAADAdQgyAAAAAFyHIAMAAADAdQgyAAAAAFyHIAMAAADAdQgyAAAAAFyHIAMAAADAdQgyAAAAAFzHH+0CAKCxMMZIMpJR6LH0c2NKtqpkmSnZSfGSg5eVXV9+Wenjll9myhz319VnKlhWcX2l6qloWXhVRcvNQYuqeK8pdYyq9l9mu4qWVfC6ov2X/h1V9t5SP+u+Zk1UmLO/3PIDD5Xtp4rP6aBlpqJtDt5/JJ9TpdtU9TlVvI2psg0cfJhKjlubbcu9ta72Vfvjlv+xK97XziYx2r+/qOrjVvYZRlTXr9hXddtWub5mxzUVta8GOG797etXHPfgv1el9lUY41NRUTDy4x700k5IVpMz/yTLdm8ccG/lwCHOGEdyHMkEQ49OUMYJSsYp/mPCz03p187B60yF7wlta4rfe/A6U8l+K1lXbh+m1PriTmqFz53ilyXPq9veHNh36EM6cFyp1PMD7zHVHFsHHbvy7c2B4xUfu0wd1QSBMs+NlH3wMqASBdEu4FezyjwceFJ6eSTbFD+xwi8qPk4lL8ssqHQfJVsevK8qtq9mXzU5bvn1NTvufp+tYNCpg31V9Vlala+qbl9V/U5qeNwa7au6bav8vdTwuFXsq0btqiZ1WVX9vSi7H6vUf+0YnywTrHL7KvcVl6AKPhBXIcjgkGSMkYJFUrAo1PkPBiQnIFP8qGBApvgx9Doo4xQVvw5Wsl1QJlgUWu4Ei4NF2aCxPcZSwf7C0HpzUPhwguFgYorfX2ab0vsywQj+pesQZNkH/odq2aE/Uvi1VdIJsSypyud26CH8vLrtQ3+s0sezfcVP7fLbypJVzbF10LEr316l9nvQ81LLrDLLLMXHxyovv6jMsjLPy3TuDl5mFe+67LKKa6m+PqvcsoPqr2F9VpnjVldf+c+qwmUl/z34C/agbcoutw5aVc17S/9Mlb03/FDF/ivqyEWyzcHLi5+npDRTZmZO5e+1rOo7SBV9ThX+/AdtE96usm3KL7fK/WxoKKmpzZWRkR3tMuAStBeCDGrBOAGpqECmaL9MUYFUtF8mUPxYvFxFBTKB/VKgKBQeAoUywUIpUBxOAoVVPBaGgkdds32S7Zd8flm2L/TasiXbL8u2JcunQGxM6B/sbV+oA237ZPliQo/h7X2SXbzOKn5ulVpWervS+y95bdmSbZfqoNul/oRel1lnl10XWm+Ve09o2+IwUG7fpfZr25KscvsNhwhEpGVqcwU9/gWCyPibNZedz9ctANQ1/s/qMcaYUODYnyNTmCdTkBt+VGGeTEHxn1LrVJhfNpzUJGRYPskfEwoD/tjwo3wxsvyxspomygq/jpF8seHX8sfIsmMkX0n48IfCgC9Glq84lNh+WcXrQ4HBX+H2odBR/b8y8q8bAAAA7kCQaSRMoEAmJ0tO7m6Z3N1y8vbJ7N8nk59d/HjgeZVBxLKk2HhZsfGy4hJkxcXLatpCim0iy99EVkycFFP6sfi5v9Tz4uXyx4ZGJwAAAIA6RpBxCVOYL2ffDjl7d8jZt1MmZ/eB0JKzWyrILf8mX0xoxKNpoqymLWS37CCrSXPZTRNlNWkmxcXLii0OK3EJsmLjQyGE86MBAABwiCPIHGJMQa6CmVvl7N4qJ3OrnD3pcvbtkMnfV2Y7K66ZrGbJshJaKqb1kbISkmUntJTVrGXoMb6F5I8jlAAAAKBRIshEkQkUKrhzo4Lb1yu4c6OczK0yubvD660mzWUnt5W/Y29ZLVrLTjxMdos2shMPC53CBQAAAHgUQaYBmUChgun/VTB9vQLp6+VkbApdwleW7OQ0+dK6yW7ZQb6UDrJTOspq2oIRFQAAAKACBJl6ZgpyFdj0tYo2f6Pg/74PXVrY8slO7ayYY8+WP+0o+docWXxTIgAAAACRIMjUA+M4Cmz5VoEfliqw5T+SE5DVLEUxR58if8fe8rXpxqlhAAAAwK9AkKlDpiBXhes+U9H3n8jkZMqKT1JMjzMU0/VE2a06c5oYAAAAUEcIMnXAFO1X4dqPVbj6A6kwT760oxVz0v+Tv1Mf7qMCAAAA1AOCzK9gjFHgx3+r4Ks3ZPL3ydexl+L6XShfq07RLg0AAABo1AgyteTkZGr/khcU3LpG9mFd1PTsG+Rr3TXaZQEAAACeUG2Q+eWXX3T99deHX2dnZysnJ0fLly+v18IOZYEtq5X/yTzJOIo7+TLFHHOGLNuOdlkAAACAZ1QbZNq3b6+33347/HratGkKBoP1WtShyhijojUfqeCrN2S37KimZ42TnZga7bIAAAAAz6nRqWWFhYV69913NX/+/Pqq55BljFHBspdV9P1i+Q/vpya/u4pLKAMAAABRUqMgs3jxYrVu3Vo9evSor3oOWYUr/qGi7xcr5rhzFNf/j7IsTiUDAAAAosUyxphIN77qqqt0yimn6PLLL6/Pmg45e1e8r8xF89W8z1lqdc413A8GAAAAiLKIg8yOHTs0aNAgffrpp0pOTq7RQTIzc+Q4EeelOpWa2lwZGdm1fn/Rpq+1/+M58nfuoyZnjmNSfyP3a9sLvIO2gkjRVhAp2gpqojG1F9u2lJLSrObvi3TDt956S6eddlqNQ4ybOfn7tP/z52SnHq4mA68lxAAAAACHiBoFmYsuuqg+aznkFPz7NamoQE1+N0aWPzba5QAAAAAoFvFk/48++qg+6zjkBLZ8q8BPXyq27wXyJbeLdjkAAAAASuFcqQqYwnztX/KS7OR2iu09JNrlAAAAADgIQaYChWsWyeTuVpNTR8vy1egK1QAAAAAaAEHmICYYUNH3i+Xr0FO+1l2jXQ4AAACAChBkDhLYtFImf69ie5wV7VIAAAAAVIIgc5DCtR/LatFavg7HRrsUAAAAAJUgyJQS3LlRzs6fFNvjTFkWHw0AAABwqKK3Xkrh2o+lmCaK6TYg2qUAAAAAqAJBppiTv0+BjcsV022ArNim0S4HAAAAQBUIMsWCv6yVnCCjMQAAAIALEGSKBbetk+ISZKd0jHYpAAAAAKpBkCkW2LZO/rSjZdl8JAAAAMChjl67JGdfhkz2Lvnado92KQAAAAAiQJBR8WllknztCDIAAACAGxBkFDqtzGqaKDupbbRLAQAAABABzwcZY4yC29bJ1/YYWZYV7XIAAAAARMDzQcbZmy6Tt0e+tkdHuxQAAAAAEfJ8kAlu+68kyd/umChXAgAAACBSBJn/fS+rWYqs5qnRLgUAAABAhDwdZIwxCqavl6/t0cyPAQAAAFzE00FGBbky+7Pla9kx2pUAAAAAqAFPBxknO0OSZCW2inIlAAAAAGqCICPJZn4MAAAA4CreDjL7dkkiyAAAAABu4+kgY7IzpLgEWbFNo10KAAAAgBrwdJBxsjMYjQEAAABcyONBZpfs5kz0BwAAANzGs0HGGEcmexc3wgQAAABcyLtBJm+v5ARkJxJkAAAAALfxbJBxskuuWMapZQAAAIDbeDbImJKbYRJkAAAAANfxbJAJ3wyzGUEGAAAAcBt/JBsVFBTogQce0BdffKG4uDj17t1bU6dOre/a6pWzb5es+CRZ/tholwIAAACghiIKMjNnzlRcXJw++ugjWZalXbt21Xdd9c5kZ3BaGQAAAOBS1QaZ3NxcLViwQJ999pksy5IktWrl/gDgZGfI16ZbtMsAAAAAUAvVzpHZunWrkpKSNGfOHF144YUaOXKkVq5c2RC11RvjBGRyd3PFMgAAAMClqh2RCQQC2rp1q4455hjdfvvtWr16ta699lp9/PHHatasWUQHSUmJbLv6kpravMzroqztyjFGiW07KPGgdcDB7QWoDG0FkaKtIFK0FdSE19tLtUGmbdu28vv9Gjp0qCSpV69eSk5O1qZNm9SzZ8+IDpKZmSPHMb+u0lpKTW2ujIzsMssC//tZkpRrNVfBQevgbRW1F6AitBVEiraCSNFWUBONqb3YtlWrgY9qTy1r2bKl+vfvr2XLlkmSNm3apMzMTHXq1KnmVR4iwpde5tQyAAAAwJUiumrZvffeq7vuukvTp0+X3+/XjBkzlJiYWN+11RuzL0OybFkJLaNdCgAAAIBaiCjIdOjQQS+//HJ919JgnJxdspqlyLJ90S4FAAAAQC1Ue2pZY2Rys2QnJEe7DAAAAAC15M0g4wQlX0y0ywAAAABQS54MMjKOVHxzTwAAAADu49EgYyTLmz86AAAA0Bh4szfvOAQZAAAAwMW82Zs3QVm2N390AAAAoDHwZm/eMCIDAAAAuJk3e/OcWgYAAAC4mid788YYiVPLAAAAANfyZm+eU8sAAAAAV/Nmb54gAwAAALiaN3vzxpFFkAEAAABcy5u9eSb7AwAAAK7mzd68cZjsDwAAALiYJ3vzxjiSZUW7DAAAAAC15Mkgw2R/AAAAwN282Zs3hiADAAAAuJg3e/NM9gcAAABczZu9eROUxWR/AAAAwLW82ZtnjgwAAADgap7rzRtjmCMDAAAAuJz3evPGhB45tQwAAABwLe/15o0TemREBgAAAHAt7/XmCTIAAACA63mvN18cZCyCDAAAAOBa3uvNMyIDAAAAuJ73evNOcZBhsj8AAADgWp7rzZvwiIwV3UIAAAAA1JrnggynlgEAAADu573efMl9ZAgyAAAAgGt5rzfPVcsAAAAA1/NHstHAgQMVGxuruLg4SdKECRN0yimn1Gth9YbJ/gAAAIDrRRRkJGn27Nnq1q1bfdbSMEww9MiIDAAAAOBanuvNGyb7AwAAAK4X8YjMhAkTZIxR3759dcsttygxMTHig6SkNKtVcXUlNbV5+HmhmipPUmKLeDUrtRwokUq7QIRoK4gUbQWRoq2gJrzeXixjSi7jVbn09HSlpaWpsLBQ06ZNU25urh566KGID5KZmSPHqfYw9SI1tbkyMrLDr4OZW5X3j7vV5MzrFXPE8VGpCYeug9sLUBnaCiJFW0GkaCuoicbUXmzbqtXAR0TnV6WlpUmSYmNjNXz4cH3zzTc1PtAho+TUMtsX3ToAAAAA1Fq1QSYvL0/Z2aG0Z4zR+++/r+7du9d7YfWGyy8DAAAArlftHJnMzEyNHz9ewWBQjuOoS5cumjJlSkPUVj+Y7A8AAAC4XrVBpkOHDlqwYEFD1NIwuI8MAAAA4Hqe681z+WUAAADA/bzXmw8HGSu6dQAAAACoNQ8GmeLLQDMiAwAAALiW93rzXLUMAAAAcD3v9eaZ7A8AAAC4nvd680z2BwAAAFzPc715Y4KhJwQZAAAAwLW815t3GJEBAAAA3M57vXmuWgYAAAC4nvd68yVzZGzuIwMAAAC4lWeDjGX5olwIAAAAgNrybJDh1DIAAADAvbzXm+c+MgAAAIDrea43bxiRAQAAAFzPe735cJBhsj8AAADgVh4OMt770QEAAIDGwnu9+eL7yFgEGQAAAMC1vNebZ7I/AAAA4Hre681zahkAAADgep7rzXPVMgAAAMD9vNebd4KhR4IMAAAA4Fre680XT/YnyAAAAADu5b3ePPeRAQAAAFzPm0HGsmQRZAAAAADX8miQ8d6PDQAAADQmnuvRG8eRLF+0ywAAAADwK3guyMg43AwTAAAAcDl/tAtocMVzZAAAAOpTMBhQVlaGAoHCiLbfudOW4zj1XBUaCze2F78/VsnJqfL56iaCeDTIMCIDAADqV1ZWhpo0iVdCQpuILjLk99sKBNzVMUX0uK29GGOUm7tPWVkZatUqrU726b0evTGyCDIAAKCeBQKFSkhI5EqpgCTLspSQkBjxCGUkatSjnzNnjo466ij98MMPdVZAg3MYkQEAAA2DEAMcUNd/HyLu0X/33Xf69ttv1bZt2zotoMEx2R8AAABwvYh69IWFhbrvvvs0ZcoU1//LgmGODAAA8KDFi/+p0aOHa9So4Ro+/CLdc8/EWu8rPX2bhgw5o07qGjCgn6644lKNGhWq7bXXXpIkjRt3tZYtWxLe7vPP/6Urr7xMw4dfpIsvHqbHH5+lwsK6O01Jknbu3KGrrrq83PL3339Xkyb9uU6PFYlvvlmpMWNGSpKys7P16qsv1ttxli//Mvx6164MjR9/Tb0cqy5FNNn/scce03nnnacOHTrUdz31zwkSZAAAgKfs2rVLjzzyoObPf0WtW7eRMUYbNjT8VIFgMCifr/z9/J588jnFx8dX+r5vv/1Gs2bN0EMPzVaXLl1VUFCgadPu0SOPTNcdd9xdZ/UtWfIv/fa3p9bZ/upSTk62XnvtJV122RU1fm8gEJDfX3m3f9Wqr5Wfn68TTjhRktSqVaoef/ypWtfaUKoNMqtWrdKaNWs0YcKEWh8kJaVZrd9bF1JTm4ef74jzqcDvK7MMKI22gUjRVhAp2oo37dxpy++v2T+e1nT7SO3du1t+v18pKcnhY3Tv3j28fs2a1Xr88ceUl5crSRo//ib173+SZs+epVWrvlZRUZGSkpI0ceIUpaW1lc9nS7LC+5o8eaK2bNmsoqIitW/fQRMnTlFiYqK+/nqlHn30IfXq1Ufr1n2n0aPHasCA8kHB7y//WVmWJZ8vdIznn39ao0eP1VFHdSvevqluv/0unX/+YI0Zc5XS0trqxBN/ozFjrtby5V9q7969uvbacRo48Azt35+v++6boo0bf5Lf71enTp01bdr0Cj+npUs/14033lKuFtu2ZFlWueXBYFBz587Wl1/+W5J04okn6/rrb5DP51NmZqZmzHhAv/yyVZJ02WWXa/DgoZKk888forPP/r3+859vtWtXhi65ZLj++MdLy9Xj89myrNDnM2vWDOXk5Gj06OFq0qSJnnnmBe3Zk6mHH56hHTu2q6CgQGedNUijRo0JH+O8887XypUr1K5dO1177fW6++67lJubo8LCQp188gCNH3+TNmz4UW+//aaMcfT118t11lmDdOaZgzR69Ah99NFiSdIXXyzTk0/OUTAYVHJysm6/faI6dOgY/v326HGs1qz5jyzL0tSpf9Hhhx9R4ecb+iztOvt/YrVBZsWKFdq4caPOOCM0fLh9+3aNGTNGf/nLXzRgwICIDpKZmSPHMb+u0lpKTW2ujIzs8OuC/EI5jsosA0oc3F6AytBWECnainc5jlPm8rjL1qRr6X/SK93esiRTy+7SgOPS9NuelV/S9vDDu6p79x4aNmyw+vTpq+OO661BgwarRYsk7du3V7ffPkHTps1Qz569FAwGlZubq0DA0fDhV+i6626UJL377gLNmfOY7r33LwoGHUkm/PPdcMOtSkpKkiQ9/fQTevHF5/WnP41XMOjop5826NZb79BNN90mSRVeMviqq0aFryp79933qUuXrjLGKBgMHWPDhh81btzNZd6bkNBcbdu21w8//KjU1DYln6KefPI5bdmyWddeO0Y9e/bSf/6zWnv37tMrr/xdkrRv374Ka8jOztb27enq3LlLufWOY2SMKbf8rbf+ofXr12v+/FckSRMm3KA33/yHLrjgD3r44Rnq3PkITZs2U7t27dKYMZepa9duOuKIrpJCo2Rz5jyj3bszNXr0ZerZs4+6dj2yzP6DQUfGhD6zm2/+s8aOHannn38tvP6ee+7WqFFj1bv3b1RUVKQbb/yTjjqqu44/PjSysnNnhmbPnidJKigo0IMPPqL4+HgFAgHdcss4LV26VCeeeLKGDbtQ+fn5GjfuJkmhUwdLfr9ZWbt177136/HHn9bhhx+hhQsXaPLkiXrmmRcVDDrauPEn3XnnZE2YcJdefHG+nnvuWU2Zcn+5z/fAZ+mU+3+ibVu1GvioNshcffXVuvrqq8OvBw4cqHnz5qlbt241Ptghgcn+AADAY2zb1l/+8rA2btygVau+0ZIl/9Jrr72sl176q9auXaPOnQ9Xz569JEk+n0+JiYmSpC+/XKY33/y78vPzFAwGK93/hx8u1KJFHyoQKFJ+/n516NAxvK59+w469tjjqqyvulPLIg14Q4cOkyR17NhZ3bodpe++W6OuXY/Uli2b9fDD09WnT1+dfHLF/xD/xRfLdNJJv43sQMVWrvxKgwcPVUxMjCRp8OBz9fnnn+qCC/6glSuXh4NBq1atdNJJA/TNNyvDQaak1pYtU3TyyQO0atXX5YJMVfLz87Vq1dfas2dPeFleXq42b94cDjK///2Q8DrHcfTEE49pzZr/SDLKzMzUjz/+oBNPPLnK43z33Vp16dItPMoyePB5evjh6eHRu44dO6lbt6MlST169Cwzr6m+cUNMAACABvDbnlWPmjTEDQ6POKKrjjiiqy666GKNGPFHrVr1tfz+mAq33b49XY8//oieeeYltW3bTmvWrNa9904qt93q1au0YME/9OSTzyk5OVmLFn2od955M7y+adPKA0qkunY9Ut99t0ZHHnlUeNm+fXu1bdsvOuKILhW+JxR+LLVr116vvvp3rVy5Ql9+uUxPPz1XL774V8XFxZXZfsmSf+mCC/5Qo7qMKX9J4dKvq1pXdj9GNb2eluM4sixLzz77UqXzX+Ljm4afv/HGq8rO3qenn35BcXFxmj59mgoLCyI4UtW1xcYe+Bxt264y8Na1GvfoFy9e7N7RGEmG+8gAAACPycjYqbVr/xN+vXPnDu3Zk6W0tLbq2fM4bd68Kbw+GAxq3759ys3Nld8fo5SUFDmOowUL/lHhvrOzs5WQ0EwtWrRQYWGh3nvvnTqvf9SosXrxxef0008bJIVOk3rooQd1+ulnKi3twK1BSo69desWbdiwXj16HKudO3fItn069dTf6YYbbtWePVnKzt5XZv9FRUVat+47HXdc7xrVdfzx/fX+++8qEAgoEAjogw8Wql+/EyRJ/fqdoHfeeUuSlJm5S198sUx9+vQLv/eDDxZKkrKysvTll/8us64iCQkJ2r9/vwKBQPh1r1599MorL4S32bFjuzIzd1X4/uzsbKWktFJcXJwyMnZq6dLPyuw7Nzenwvf16HGcNmz4QT//vDlc95FHHqX4+IQq620I3hyRsctfLQMAAKCxCgaDmj//KW3fnq64uCYyxtHYsX8KnxI0bdoMPf74LO3fny/LsnX99Tfq+OP76/TTz9SIEZeodevW6tOnr1avXlVu3yeeeLIWLfpAw4f/QYcddpiOPrq7vv/+uzqt/ze/6aebbpqg+++frIKCAhUVBXTKKafqmmuuL7NdbGys/vSnK7Vnzx7ddttdSk5uqS++WKZ58+ZIkhwnqBEjRqlVq9Qy71u5crl69epT5ZW9vvhimS64YHD49eDB5+rKK6/WL79s1ejRwyVJJ5xwks499wJJ0k03TdDMmQ/oiisulTFG1147rszoUevWbXTddWOVmblLI0eOUpcuXav8DBITW+jss8/RFVdcqubNE/Xssy9o8uSpmj37EV1++SWSpPj4BN1552SlpLQq9/4//vFS3X337Ro9ergOO6y1+vY9Przu1FNP18SJt2nUqOE644yzdeaZZ4fXJScna9Kk+3TvvRMVDAaVlJSsyZOnVllrQ7GMqe20ssgdSpP9895/SKYwTwnnT45KPTi0MSkXkaKtIFK0Fe/avv1ntWnTKeLtG+LUssZswIB+WrTo8yrn2lRm5swHdPzx/fW739XNvXGq84c/nKsZM2aF58vUhlvbS0V/L+ptsn+jYwynlgEAACDsttvuinYJqAUPBhknfHk/AAAANA5Ll66MdgkR+7//ezfaJTQKngky//05S2s2ZmoIVy0DAAAAXM8zPfo1mzL18cpfJIf7yAAAAABu55kevc+2iu/KyogMAAAA4Hae6dH7bFuOMdwQEwAAAGgEPNOj99mhW5IaJ6ga3zoVAADAxW65ZXy5G1oaY/THP56nb7/9plb7/OablVq+/Mu6KE/p6dt02mn9NWrU8PCfRYs+kBS6VPHGjRvC277zzlsaMeJiXXbZH3TppRfqxRfny3Hq9jLEq1d/q0mTbi+3fP78pzRnzqN1eqxIvP/+u5o06c+SQp/V22+/WS/H+fzzf+n779eGX//3v9/r3nsn1cux6oJnJvv7fMXhxeGqZQAAwFuGDDlPb7zxqs4//6LwslWrvpbP51Pv3r+p1T5Xrfpa+fn5OuGEE2v83mAwKJ+v7A3KmzVrphdeeK3K93344Xv6299e10MPzVabNm20b98+3XXXBBljNGrU2BrXUZklS/6lU045rc72V5fS07fpnXfe0kUX/aHG7w0EAlXe9HPJkn/p6KO765hjjpUkHX30MZoy5f5a11rfvBNkiif4M0cGAAB4zamn/k6PPPKgNm3aqMMPP0KS9N5772jw4HMlSUVFRXr66Sf07bdfq6gooC5duujWW+9UfHy8cnJyNHv2w/rvf7+XZdnq1au3hg27SG+//aYcx9HKlct1xhlna+TIUfrgg4V6/fWXZVmW2rZtrz//+S4lJ7fU+++/q3/+c5GSk5O0adMm3Xnn3TryyKNq/HPMn/+0br31drVp00aSlJiYqAkT7tSYMSM0fPjlyszcpbFjR+qcc87V6tXfqKCgQLfeeod69eqjrKzduueeScrKypQk9et3gm644dYKj/PFF0t1+eVmlDVBAAAbdUlEQVSjI64rLy9Pjz46U+vWfSdJGjRosEaMGCVJ+uWXrZo58wHt2ZMln8+nq6++XieeeLKk0E08R4++SitWfKW9e/fommuur/amnI88MkPp6f/TyJGXql279rr//hnasmWzHnvsEe3du0dFRUW6+OL/pyFDzgsf47rrbtC//71UvXr10cCBZ+nhhx/U/v35Kiws1HnnXaCLLx6ur776QkuXfq6VK5fr3Xff1iWXDFfr1m00d+5jmj//ZUmq8vf78ccfqnnzRG3c+JOaN2+m+++foZSUVhF/hrXhoSBzYESGq5YBAICGVvTDMhWt/7zS9ZZlyRhTq33HHHWqYrr9tvL1MTE666zf64MP3tV1192ovLxcLVnyma69dpwk6dVXX1RCQoKeeeYlSdITT8zWyy8/r2uuuV6zZz+spk2b6oUXXpdt29qzZ4+SkpI0bNiFys/P17hxN0mSNm7coHnz5mj+/FfUqlUrPfPMk5o1a6buu+8vkqQ1a77VCy+8rnbt2ldYY05OjkaNGh5+/dhjT6hFi6Tw67y8XKWn/089evQs877OnQ9XTEyMfvlli5o2jdfevXvVpUtXjRt3k1at+lr33DNRb7yxQIsWfaA2bdrosceekCTt27evwjo2bvxJKSmtlJjYosrPvLQXXnhWjuPopZfeUF5erq655kp16XKkTjrpt7r33kkaNuwCDR16vjZt2qhx467SK6/8n5KTkyVJtm1r3rzntGXLZl177Rj16tVHycktKz3WLbf8WXPnPqYXX3xVgYCjQCCge+6ZpClT7lenTp2Vl5erMWNG6thjj1OnTp0lSY7jaM6cp8Of46OPPqHY2Fjl5eXp6quv0AknnKT+/U/SgAGn6uiju+uiiy6RFDp98MDnUvXvd9267/Xii6+rdes2mj79fv3f/72ha665PuLPsDY8F2QYkQEAAF40ZMgwTZgwXldffb0++eRjHXdcL6WmHiZJWrbsc+Xm5upf/1osSSoqKlTXrkdKkv797yV69tlXZBf/Q3BSUlKF+//mm5U66aTfqlWr0L/CDxt2YZlg0rNn70pDjBTZqWWVKR0AY2JiNGjQYElSnz59FRcXpy1bflaPHj31xhuvae7cx9S792/Uv/9JFe5r6dLPNGBAzU4rW7lyuW68cYIsy1JCQjOdeebZWrlyuXr16q0NG37Q4MGh0ZHDDz9CXbsepe++W6MBA06VJA0dOkyS1LFjZ3XrVrIu8uNv3bpFP/+8SVOm3BVeVlRUpM2bN4WDzDnnDA2v279/v+bMeVAbNvwgy7K1a1eGNmz4QZ07H17lcar7/R53XC+1bh0aKevR41itWPFVxD9DbXkuyMghyAAAgIYX0+23VY6a+P22AoG6nbRe2pFHdlNKSit99dUXev/9d3TxxQc6ocZIt956h/r2Pb7W+zcmNKpUWumX8fFNa73v0PsTlJbWTt99tyZ8apYkbd68SYFAQO3addDu3ZkV1GVkWZaOPfY4Pf/8q1qx4it99NH7euWVF/Tkk/PLbb9kyWe6994HalidKXctqapG2A7+nA7UKkk1uyiVMUYtWiRVGQKbNo0PP3/qqblq2TJFzz33qvx+v26++XoVFhZGcJyqf7+xsbHh57btUzAYrMFPUTue6dGXTPZnRAYAAHjVkCHn6bnnntbWrVvK/Kv/gAGn6o03XlVBwX5JodOPNm/eJEk6+eRT9PrrL4U75Xv27JEkJSQkKDc3J7yPvn2P1xdfLFNm5i5J0rvvLlC/fifUaf1XXnmV5s59VDt2bJcUOj3soYf+ohEjRikuLk5SaDTi448/lCStXr1KhYWF6tixk7Zt+1/xaMkgjR9/s9av/2+5q53t2pWhoqIitW3brkZ19evXXwsXvi1jjPLycvXJJ4vUr98JSkhopq5du+mDDxZKkn7+ebN++umH8GR6KTRXSQqNrGzYsF49ehxb4TFKJCQ0K/O5d+zYSU2aNNGHH74XXvbzz5vLbFNaTk62Djustfx+vzZu3KDVq78tte8E5eRU/L6G+P3WlIdGZIrDi3FkMUcGAAB40FlnnaO5c2dr2LALFRMTE14+YsQozZ//lMaOvbz4FDJLV155lTp3Plzjx9+i2bMf1siRl8jn86lPn9/opptu06mnnq6JE2/TqFHDw5P9r7nmet188/XFk8Hb6bbb7qq8mFo455yhKijYr1tvHS9jjILBoH7/+yG6/PIrw9u0aNFCv/yyVVdddYUKCvbrnnumKSYmRqtWfa2//vUV+Xx+GePottvuDJ8uV2LJks/Cp3xV5u2339QnnywKv77iijEaNWqsZs2aocsvD80tGTRocHjUaMqU+zVz5gP6299ek8/n06RJ94Xnx0ihkYw//elK7dmzR7fddleV82MkqUuXrurYsZOGD/+jOnbspPvvn6Hp02dp9uyH9frrLysYdNSyZUvdd9+DFb7/iivGaOrUyVq06AO1a9dOvXv3Ca8bNGiwpk27V59++kl4sn+JI47oUu+/35qyTG1nldVAZmaOHKfeD1Oh1NTmysjI1sr/7tQTC9ZqVtsFiuvcR01OjfxKFPCOkvYCVIe2gkjRVrxr+/af1aZNp4i3r+9Ty7wgPX2bxo4dqffe+6RW77/llvG6+urrdPTR3eu4sooNGNBPixZ9rvj4+Oo3Pohb20tFfy9s21JKSrMa78tDIzIlc2QMp5YBAACgnEceeTzaJaAGvBNkSm6IyRwZAACARiktrW2tR2OiYenSldVvhEp5pkdfeo4M95EBAAAA3M0zPfrwqWWMyAAAgAbSAFORAdeo678PnunR2+EgY1TuQt8AAAB1zO+PVW7uPsIMoFCIyc3dJ78/tvqNI+S5OTKWCcpiRAYAANSz5ORUZWVlKCdnT0Tb27Zd7r4mQGXc2F78/lglJ6fW3f7qbE+HOH94XgxXLQMAAPXP5/OrVau0iLfnUt2oCdqLh04tK5kjYzHZHwAAAHA9z/TofT5LlorPUWVEBgAAAHA1z/TobZsgAwAAADQWnunR+2xLNkEGAAAAaBQ806P32bZsFV/ZgSADAAAAuJpnevSl58hYTPYHAAAAXM0zPXq/bcm2OLUMAAAAaAwiuo/Mddddp19++UW2bSs+Pl533323unfvXt+11SmbOTIAAABAoxFRkJk+fbqaN28uSfrnP/+pu+66S2+99Va9FlbXQnNkioMMp5YBAAAArhZRj74kxEhSTk6OLMuqt4LqC/eRAQAAABqPiEZkJGnixIlatmyZjDF69tln67OmemFblnzhOTLuC2IAAAAADrCMMaYmb1iwYIHee+89PfPMM/VVU70Zc8drmtj8H0oder2a9xoY7XIAAAAA1FLEIzIlzj//fE2ePFlZWVlKTk6O6D2ZmTlynBrlpTqTmtpcGRnZkiR/8UBMdk6h9hcvA0or3V6AqtBWECnaCiJFW0FNNKb2YtuWUlKa1fx91W2Qm5ur9PT08OvFixerRYsWSkpKqvHBos1f8tMy2R8AAABwtWpHZPLz83XjjTcqPz9ftm2rRYsWmjdvnisn/Pt9TPYHAAAAGoNqg0yrVq30t7/9rSFqqXfhERmCDAAAAOBqnurRl8yRIcgAAAAA7uapHn3JiIxFkAEAAABczVM9er9dPEfGdt/8HgAAAAAHeCzIFD9hRAYAAABwNU/16H3hOTK+qNYBAAAA4NfxVJDxl+QX7iMDAAAAuJqnevQ+i/vIAAAAAI2Bp3r0XH4ZAAAAaBw81aP3FV+1zLK4ahkAAADgZp4KMozIAAAAAI2Dp3r0vvB9ZDz1YwMAAACNjqd69D5GZAAAAIBGwVM9eq5aBgAAADQOnurRMyIDAAAANA6e6tEfuGqZp35sAAAAoNHxVI/eJyb7AwAAAI2Bp3r0B04t4z4yAAAAgJt5KsjYTPYHAAAAGgVP9egP3EfGF91CAAAAAPwq3goyJU8YkQEAAABczVM9+vCpZWKODAAAAOBmngoyJTfEDBqCDAAAAOBmngoyJSMyTpTrAAAAAPDreCrIlNxHhhEZAAAAwN08FWRsTi0DAAAAGgVPBhmHc8sAAAAAV/NWkOHUMgAAAKBR8FyQcYwUNNVvCwAAAODQ5a0gYxkZWQo6JBkAAADAzbwVZCQ5shQMMkkGAAAAcDN/dRtkZWXpz3/+s7Zs2aLY2Fh16tRJ9913n1q2bNkQ9dUpW44c2YzIAAAAAC5X7YiMZVkaO3asPvroI7377rvq0KGDHnrooYaorc5ZnFoGAAAANArVBpmkpCT1798//Lp3797atm1bvRZVX0KT/QkyAAAAgNvVaI6M4zh6/fXXNXDgwPqqp17ZMsyRAQAAABqBaufIlDZ16lTFx8drxIgRNTpISkqzGm1f11JTm0uSsuJ8ypOl5s2bhpcBB6NtIFK0FUSKtoJI0VZQE15vLxEHmenTp+vnn3/WvHnzZNs1u9hZZmaOnCidzpWa2lwZGdmSpKKCIjmytCcrVxkZTaJSDw5tpdsLUBXaCiJFW0GkaCuoicbUXmzbqtXAR0RBZtasWVq7dq2efvppxcbG1vgghwpLjoyxFOSOmAAAAICrVRtkfvzxR82bN0+dO3fWpZdeKklq37695s6dW+/F1TXLcPllAAAAoDGoNsgceeSRWr9+fUPUUu9sq3iyv8NkfwAAAMDNajbZxeUsUxJkGJEBAAAA3MxbQUbFN8RkjgwAAADgah4LMk7xDTE5tQwAAABwM48FmdCpZdG6FDQAAACAuuGtIGMcGVkKEGQAAAAAV/NWkCkekWGODAAAAOBu3goyxuHyywAAAEAj4KkgIxkZw+WXAQAAALfzVpAxjoKyObUMAAAAcDlPBRnLhO4j4xiCDAAAAOBmngoyxjiSxYgMAAAA4HaeCjJySi6/zGR/AAAAwM28FWRMUMaymewPAAAAuJzHgkxoRIZTywAAAAB381aQcYxk2XIYkQEAAABczVtBxjgyFjfEBAAAANzOU0EmfNUyRmQAAAAAV/NUkJFxJG6ICQAAALie54JM6NQyggwAAADgZt4KMg6nlgEAAACNgbeCTHiODJP9AQAAADfzZpBhjgwAAADgah4LMkZijgwAAADgep4KMsY4MpaPU8sAAAAAl/NUkJHjyGKyPwAAAOB63goyJijZnFoGAAAAuJ3HggyT/QEAAIDGwFtBxjHFp5YxRwYAAABwM28FGeNINnNkAAAAALfzTJAxxkgyxTfEJMgAAAAAbuaZICMTOp3MspkjAwAAALhdtUFm+vTpGjhwoI466ij98MMPDVFT/SgOMozIAAAAAO5XbZA544wz9Oqrr6pdu3YNUU/9KQ4yts0NMQEAAAC381e3Qb9+/RqijvrnlBqR4dQyAAAAwNU8OUfG4dQyAAAAwNWqHZGpCykpzRriMJVKTW2uYJ6UIymuSayMpJYpzeSzrajWhUNTamrzaJcAl6CtIFK0FUSKtoKa8Hp7aZAgk5mZE7VRkNTU5srIyJaTv0+SVBgIjczs2LFXMX5fVGrCoaukvQDVoa0gUrQVRIq2gppoTO3Ftq1aDXx48NSyUHgJME8GAAAAcK1qg8z999+vU089Vdu3b9fo0aM1ZMiQhqir7hVP9res0I/MJZgBAAAA96r21LJJkyZp0qRJDVFL/TJBSZLtCwUZJvwDAAAA7uWhU8tCwaXk1DJGZAAAAAD38k6QcQ5cflmSgkFuigkAAAC4lWeCjCme7G8zIgMAAAC4nmeCTOkbYkpSgCADAAAAuJbngoxtM9kfAAAAcDvPBZkDk/2ZIwMAAAC4lXeCTHFwsX3FQYYbYgIAAACu5Z0gc9CpZUz2BwAAANzLM0HGFN9HpuSGmFx+GQAAAHAvzwQZcfllAAAAoNHwXpDxEWQAAAAAt/NOkAlP9meODAAAAOB23gkynFoGAAAANBoeCjJBSZIVvvwyk/0BAAAAt/JOkHFKrlrGiAwAAADgdp4JMqb41DIfQQYAAABwPc8EGRFkAAAAgEbDc0HGZo4MAAAA4HreCzJctQwAAABwPe8EmeL7yPj83EcGAAAAcDvvBJmDTy0jyAAAAACu5ZkgU+6qZcyRAQAAAFzLM0FGJjQCY9k++WyLERkAAADAxTwUZIpHYCxLNkEGAAAAcDXvBBmnJMjYoRGZIEEGAAAAcCvvBJniERmrOMg4jMgAAAAAruW5ICPbJ5/PVtBhsj8AAADgVp4JMuagU8sCjMgAAAAAruWZIFN6sj9zZAAAAAB3816QsYsn+3NqGQAAAOBa3gsyli2fz2ayPwAAAOBiEQWZTZs26ZJLLtGgQYN0ySWXaPPmzfVcVj046Kpl3EcGAAAAcK+IgsyUKVM0fPhwffTRRxo+fLgmT55c33XVPceRrNCPS5ABAAAA3M1f3QaZmZn6/vvv9fzzz0uShg4dqqlTp2r37t1q2bJlvRdYZ0zZILM3p1BrN2ZGuSgcalpk5mvv3rxolwEXoK0gUrQVRIq2gpr4te0lqVmc2h/WrA4ranjVBpn09HS1bt1aPp9PkuTz+XTYYYcpPT094iCTkhLdDyk1tbn2pKRob7MkpaY2V3KLplq5boce+dvqqNYFAAAARIPPtvS3B4YoNsYX7VJqrdogUxcyM3OiNrk+NbW5MjKyZQ4/VU3an6CMjGxdMaibzu7XPir14NCWnBSvrD38axiqR1tBpGgriBRtBTXxa9tLYkKs9h4i7c22rVoNfFQbZNLS0rRjxw4Fg0H5fD4Fg0Ht3LlTaWlptSo0WixfjCxfjCQpoUmMurZrEeWKcCgKBd+YaJcBF6CtIFK0FUSKtoKaoL1EMNk/JSVF3bt318KFCyVJCxcuVPfu3d01PwYAAABAoxLRqWX33HOP7rjjDj3xxBNKTEzU9OnT67suAAAAAKhUREGmS5cu+vvf/17ftQAAAABARCK6jwwAAAAAHEoIMgAAAABchyADAAAAwHUIMgAAAABchyADAAAAwHUIMgAAAABchyADAAAAwHUIMgAAAABcJ6IbYv5atm01xGEO2ePDXWgviBRtBZGirSBStBXURGNpL7X9OSxjjKnjWgAAAACgXnFqGQAAAADXIcgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADXIcgAAAAAcB2CDAAAAADXadRBZtOmTbrkkks0aNAgXXLJJdq8eXO0S0KUZGVl6aqrrtKgQYN07rnnaty4cdq9e7ck6dtvv9V5552nQYMG6corr1RmZmb4fVWtQ+M3Z84cHXXUUfrhhx8k0VZQXkFBgaZMmaKzzz5b5557ru6++25JVX//8N3kXZ9++qnOP/98DRs2TOeee64WLVokifYCafr06Ro4cGCZ7xyp9m3DM+3GNGIjR440CxYsMMYYs2DBAjNy5MgoV4RoycrKMl9++WX49YMPPmjuvPNO4ziOOfPMM82KFSuMMcbMnTvX3HHHHcYYU+U6NH5r1641Y8aMMb/73e/M+vXraSuo0NSpU820adOM4zjGGGMyMjKMMVV///Dd5E2O45h+/fqZ9evXG2OMWbdunendu7cJBoO0F5gVK1aYbdu2mdNPPz3cRoyp/f9LvNJuGm2Q2bVrl+nbt68JBALGGGMCgYDp27evyczMjHJlOBR8+OGH5oorrjCrV682Q4YMCS/PzMw0vXv3NsaYKtehcSsoKDAXX3yx2bJlS/hLhbaCg+Xk5Ji+ffuanJycMsur+v7hu8m7HMcxJ5xwglm5cqUxxpjly5ebs88+m/aCMkoHmdq2DS+1G3+0R4TqS3p6ulq3bi2fzydJ8vl8Ouyww5Senq6WLVtGuTpEk+M4ev311zVw4EClp6erbdu24XUtW7aU4zjas2dPleuSkpKiUToayGOPPabzzjtPHTp0CC+jreBgW7duVVJSkubMmaOvvvpKCQkJuvHGG9WkSZNKv3+MMXw3eZRlWXr00Ud13XXXKT4+Xrm5uXrqqaeq7K/QXryttm3DS+2mUc+RASoydepUxcfHa8SIEdEuBYegVatWac2aNRo+fHi0S8EhLhAIaOvWrTrmmGP05ptvasKECRo/frzy8vKiXRoOQYFAQE899ZSeeOIJffrpp3ryySd18803016AX6HRjsikpaVpx44dCgaD8vl8CgaD2rlzp9LS0qJdGqJo+vTp+vnnnzVv3jzZtq20tDRt27YtvH737t2yLEtJSUlVrkPjtWLFCm3cuFFnnHGGJGn79u0aM2aMRo4cSVtBGW3btpXf79fQoUMlSb169VJycrKaNGlS6fePMYbvJo9at26ddu7cqb59+0qS+vbtq6ZNmyouLo72ggpV1Zetqm14qd002hGZlJQUde/eXQsXLpQkLVy4UN27d290Q2qI3KxZs7R27VrNnTtXsbGxkqRjjz1W+/fv18qVKyVJf/3rX3XOOedUuw6N19VXX62lS5dq8eLFWrx4sdq0aaP58+dr7NixtBWU0bJlS/Xv31/Lli2TFLpKUGZmpjp37lzp9w/fTd7Vpk0bbd++XRs3bpQk/fTTT9q1a5c6depEe0GFqvr913ZdY2MZY0y0i6gvP/30k+644w7t27dPiYmJmj59uo444ohol4Uo+PHHHzV06FB17txZTZo0kSS1b99ec+fO1TfffKMpU6aooKBA7dq108yZM9WqVStJqnIdvGHgwIGaN2+eunXrRltBOVu3btVdd92lPXv2yO/366abbtJpp51W5fcP303e9c477+iZZ56RZVmSpBtuuEFnnnkm7QW6//77tWjRIu3atUvJyclKSkrSe++9V+u24ZV206iDDAAAAIDGqdGeWgYAAACg8SLIAAAAAHAdggwAAAAA1yHIAAAAAHAdggwAAAAA1yHIAAAAAHAdggwAAAAA1yHIAAAAAHAdggwAoF4MHDhQ8+fP17nnnqu+ffvqpptuUkFBgZ5++mldfPHFCgQCkqTXXntNQ4YMUUFBQZQrBgC4CUEGAFBvPvjgAz377LP65JNPtH79er355psaO3asYmJi9OSTT2rz5s2aNWuWZs6cqbi4uGiXCwBwEX+0CwAANF4jR45U69atJUmnn3661q1bJ9u2NX36dF144YV6//33NXbsWB1zzDFRrhQA4DaMyAAA6k1qamr4edOmTZWXlydJat++vfr376///e9/uuyyy6JVHgDAxQgyAIAG99lnn2nVqlU66aSTNGPGjGiXAwBwIYIMAKBB7d69WxMnTtS0adP04IMPavHixfrss8+iXRYAwGUIMgCABjV58mQNHDhQp512mpKTkzVt2jRNnDhRWVlZ0S4NAOAiljHGRLsIAAAAAKgJRmQAAAAAuA5BBgAAAIDrEGQAAAAAuA5BBgAAAIDrEGQAAAAAuA5BBgAAAIDrEGQAAAAAuA5BBgAAAIDrEGQAAAAAuM7/B/NO+cVN6Hs4AAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 1008x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "df_flop.set_index(\"nx\")[[\"Scalar FlOps / Loop Iteration\", \"Vector FlOps / Loop Iteration\"]].plot();"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "With that measured, we can determine the Arithmetic Intensity; the balance of floating point operations to bytes transmitted:\n",
-    "\n",
-    "\\begin{align}\n",
-    "\\text{AI}^\\text{emp} = I_\\text{flop} / I_\\text{mem} \\text{,}\n",
-    "\\end{align}\n",
-    "\n",
-    "with $I$ denoting the respective amount. This is the emperically determined Arithmetic Intensity.\n",
-    "\n",
-    "In the non-interactive version of the Notebook, please plot the graph calling `make graph_task4-2` in the terminal."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 66,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "I_flop_scalar = df_flop.set_index(\"nx\")[\"Scalar FlOps / Loop Iteration\"]\n",
-    "I_flop_vector = df_flop.set_index(\"nx\")[\"Vector FlOps / Loop Iteration\"]\n",
-    "I_mem_load    = df_byte[\"Loads / Loop Iteration\"]\n",
-    "I_mem_store   = df_byte[\"Stores / Loop Iteration\"]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 75,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAF/CAYAAABOlYiBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3XtgVPWd///XzJmZ3ENICCEoQsXLBgEvUPvzQuoFTStIXL61bFGqVbCtbdW2WrG75VJxLdpVqYrUS7EWt7i2rpegRVetilutrFpREBFBEQIJuZDrXM7l90eSIeGWSSRz5iTPxx81mXPmnPckn5rPy8/nfD4+x3EcAQAAAAB6zO92AQAAAADgVQQqAAAAAOglAhUAAAAA9BKBCgAAAAB6iUAFAAAAAL1EoAIAAACAXiJQAQAAAEAvEagAAAAAoJcIVAAAAADQSwQqAAAAAOglAhUAAAAA9BKBCgAAAAB6iUAFAAAAAL0UcLuAZKqra5ZtO67dv6AgWzU1Ta7dH95BW0GiaCvoCdoLEkVbQaL6U1vx+30aPDirx+8bUIHKth1XA1VHDUAiaCtIFG0FPUF7QaJoK0jUQG8rTPkDAAAAgF4iUAEAAABALxGoAAAAAKCXCFQAAAAA0EsEKgAAAADoJQIVAAAAAPQSgQoAAAAAeolABQAAAAC9RKACAAAAgF4iUAEAAABALxGoAAAAAKCXAm4XAAAA0Fccx5EjSY7kyJHjSE77Cx1fd7ze+fyO7+22E9qv4cjudN6+x52O1529Xzud3ttx3Y737n/vg9Xr7H9c6nKe4l/v/Xx775HYeR3fOY6j3O0NamhojdfY6a1datv7cz7Aeepab+efo9PpfT06b597dP7Z7K1v/2s5nYqN/0wS+QyJftaO87r9DJ3aRKf3dbrc3vM6/SC7/ayHOG9v3Y46nbrPtfb/3R3o59/5Oh0CQUPRqNXlxI7/P3S+4IHbh+T3SzPOOVbHHDFIXkWgAgD0qY4/vj6fL/6abTsKRy0Zhk+hgF8+n08x01ZrxFTMtBUK+hUKGnIcR60RS60RUz6flBY0FDD8isYstURMRU1boUDbuT5JLRFT4YgpSQoFDQUD/vh1IzFLAaPt3IDh29s53bfz295p3tuxdrqca8ffc+DXpU7n7Hus49ra/146wLXjnXXnANfs6IR1rvcAdXd+XzAUUCRiHvBY5yCx3zXVUZ/UuUPYNTx07RgeOEzsEx66hInEw0e8A9vpvHhdB+igAvvytf+PTz51+ldT+9d7X+t8njq9Fj+vy/u6/nvO1/EW397zOi5zwPMOUMu+9+24VtfzfPE69/7D1+m6nY/tPWnf2vf73J0/+z7X33u87d+l8Zq6fK6un7HzZ+h8D8PvU9Dw9qQ5AhUAfEGmZcvv98nf/kfCth01hWOKxiylBQ2lhwxZtqOmlpgaW2Py+3xKCxkKBfxqjZhqao2pNWIpFPQrLWRIkppbY2pqjcm2pfSQoVDQr0jMbj/XVNBoOzdvUIZ2VjepqTUmy7KVFjQUChoyLVvN4ZhawqYMf9v9AoZfLRFTLWEzXltHaGkOm2oJx+Tz+ZTWHkTCUUst4ZgiMUvBgKG0YFvw6biu1BZaQgG/oqatlnBM4WhbaEkLGjL8PrVETLVGTFm20xaSAm21hTv+a2a7gOGTadH9lfZ2tny+9g5V/Guf/J06gJ1f9/kkv29vB6rrsfb3+XwKBPyyLXv/a8Y7afu87m/r5Pg6ndO5E9q5Y7jfOft0/Pztb+joSvl9e68ln9q+3/e6HV93dPS6fP697+1cu+L3bL+H9qml09cH+0z7nnPgn8FB3t+5rn067P5O1+r5z2Dfz7hvh3yfjnKn1zr/XDp17fe7VufPlp+fpdq6li6/wwOd17lzfPD77lvr3p9x55p7GzL2DUEH+5l0vj4On8LCHFVXN7pdhqsIVABSSiRmKRqzlJEWUMDwy7Rs1TdFtKc5qoDfr/Q0Q0HDr4aWqOqbomqNmEoPGUoPBWTZtvY0RVXfFJHf52sPIoaaW2Pa0xxVc9hUKOhXeqjtX30NzVE1NEdlO47SQ4bSgobCUUsNzVE1hWMKGn6lh9qCQWNrTA3NUZmW0xaS0gzFYrYaWqLxcJDWPvLREjH3m2rR13w+yfC3/bw6hIJ+ZaYF2kaDYpZM01FGmqGsjGBbCIrZCscs+XxSdnpQmemBtnDVGlPUtJUWMpSVHlBuVkgx01YkZsmRo8HZaRo+JEs++RQ1LUVjbaNEmekBpYUMWZajSMySbTvKSAsoMz0gv6/t3EjMVtDwKyPNUEZaQJbtKBqzFLNsZYQCykgLKBhoG4GKxCz5/T5lpAWUEWqrLWra8RGszLSAQkFDMdNWNGbJcaT0NEMZoYB8Pilq2m21Bf3KCAUUCvq73M/n87U9SNw5VHT+p/YJKp3/2f4z3/fY3g5zT6/Z+bp91+mj44NEFRbmKMMggACJIFABiIu2d2AD7UPv4aip3fVhNYdjSg8FlJFmKGY52l3fqpqGsBxH8U5tQ0tUNXvCamiJKj1oKD0tIMlRbUNEtQ1hmbajzLSA0oKGWsIx1TZG1NAcVSDQ1tk1/D7VN0XU3D7yISkeqA6HgOFTVnpQUdNSONIWgHIyg8rNCsnw+7UrZikcNZUeCmhQZlBD8zJkWo7CUVORmK287DQdVZSjoOFXJGYpHLUUCviVkxlSdkZbMIjELEVNW1npQeVkBpUeNOLn+v0+5WQElZ0ZlBwp3Ck45mQElZ4WaA8RthzHUXZmUNkZQfl9PkWilsIxS+nBtjCUmRZQzLIViVrKG5ypcEtEGWltocWybUWitoIBn4IB47D87AAAwMERqACPsW1HDS3RLlPJqupatbO2RVHTUmZaQOmhgBqao9pZ26Lde8IKBtr+a77f71NVXauq6lsUjlht/zU/LaDWsKnq+lY1tMQkSaGAX8GAv0u4SYTh9yk7M9g28hExJZ80OCdN+TnpCgb8amiOqjXaVuPwIVkqGTlYpmWrNWLJtGwdd1Se8nPSFGofKQpHTIWChgbnpGlQVki27ag12vbczKDMkPJy0pQeMhSN2WqJtE1ty8sOaVBWmiS1hyErHkI6/st/x7Mafr93/+trmgxlZwRVWJClantv6DT8fmWme3suOgAAXkKgApLIsm1V1bXK7/MpIz2ggN+nypoWbatuUl1D2yhDRpqhQCigjVtqtaOmOT5tKi1oaPeesHbWtsRHbTpmBh1qellOZrBtpCViylFbwCkanKG8/DS1Rk01tcSUHjJ00rFDVDAoQ2pfBCBqWhqck6YhgzKUkxlUONq2MIBh+DRkUIYKctPl9/sUjpgKRy3lZoU0KCsUDykdD9O7GVo6nkfaV+fnEAAAAL4IAhXwBURjlj7b1aRt1U0K+H3tz6BIn+5q1NadjWpsjraHpID2NEf0eXWzYmZiU9hys0I6YkiWggG/WsKmGluiys9N19gv5atgULpipq2WSEyST8X5mRpWkKn0kNG+ypmlnMyghg7OiD8vZDuObNuJT+c7XAZlhQ74escD6AAAAP0ZgQrYR0NLVB99Vq/Pq5uUFmybEheOWvp4+x59vH2PWsIxZaQFlB4yVNsQkWXvPzzk9/l0RGGW8nPS1Bq1tHtPWNkZAZ198hEaMTRbfp+vfclnS8MGZ2rE0GzlD0pXpH0UaFhRrqKt0cP6ufw+n/w8YAwAAHBYEagwINiOo62Vjdpe3aS0UFtIqm0Ia/3WOn34WZ0iMUsZobZV5Woawge8xtC8DI39Ur4GZYfUGml7vufUknQdXZyro4py5DhOfHW34oJMhYI9XxCgYzRrUHaaqg9zoAIAAMDhR6BCv7KnKaJ3Pt6t9z+plWXZSm9fMvrDz+rU2L7gQmd52SGNO7pAOZnBtueGYpbOKhyu40cM1qjiHFlWW0gyDJ9yMw88tQ0AAAADF4EKnlHfFJHjqH31uZjWflilN9dXaWdts0KBto1P9zRF5UgaMihdmekBhWtbZNuOTvhSvsYfXaCjh+cq1r5AQ2Z6QMPyMw+550vAOPjCBgAAAEDSAtWWLVs0d+5c1dfXKy8vT4sXL9aoUaO6nLNmzRrdcccd+uijjzRr1izdeOONXY4/++yzuu++++Q4jnw+n5YvX64hQ4Yk6yMgSVojpuqbIgoafsknvbe5Rq+vq9SWyv03ozzmiEGaPHFEfNPRIYPSdcqxhTqiMIsd0QEAANDnkhao5s+fr5kzZ6q8vFxPPfWU5s2bp0ceeaTLOSNGjNCiRYu0evVqRaNdnx9Zt26d7rnnHv3+979XYWGhGhsbFQoxBcvrTMuWz9e2YMK2qia99PZ2vbF+p6KxrivhHVmYrYvPHq3MtICiMVuG4dP40QUaMijDpcoBAACAJAWqmpoarV+/XsuXL5ckTZ06VTfffLNqa2uVn58fP2/kyJGSpBdffHG/QPXwww/riiuuUGFhoSQpJycnGaWjj2ypbNCzb3yqtz+q7rKHUijg11fGFOmfjhos07ZlWY6+VJyro4qyGXECAABAyklKoKqsrFRRUZEMo+1ZFMMwNHToUFVWVnYJVIeyefNmHXnkkbrkkkvU0tKi8847T9///vfpZHtAbUNYz735marrW+U4UlNrTFsqG5SRFtDkCSOUldG2cEROZkhfGVOk7Iyg2yUDAAAACfHMohSWZWnjxo1avny5otGoZs+ereHDh+uiiy5K+BoFBdl9WGFiCgv798ia4ziqrm9VJGopErP02jvbVbHmE9mOdNSwHPn9PqWFDF0+ZYy+fvooZaYTng6mv7cVHD60FfQE7QWJoq0gUQO9rSQlUBUXF2vXrl2yLEuGYciyLFVVVam4uDjhawwfPlxf+9rXFAqFFAqFdO655+q9997rUaCqqWmSfYBNWJOlsDBH1dX7L6zQX3xe3aQ/rN6oTZ/vib/mk3Ta2GG66MwvaUhe1+edmhvDam488J5PA11/bys4fGgr6AnaCxJFW0Gi+lNb8ft9vRqASUqgKigoUElJiSoqKlReXq6KigqVlJQkPN1Panvu6pVXXlF5eblM09Qbb7yhsrKyPqwa3dm9p1XVda1qCpvavH2PXvy/z5UeMnTx2aOVn5OuYMCv4oJMFRdkuV0qAAAA0CeSNuVvwYIFmjt3rpYuXarc3FwtXrxYkjRnzhxdc801GjdunNauXauf/OQnampqkuM4WrVqlW655RZNmjRJU6ZM0fvvv68LLrhAfr9fZ555pr7xjW8kq3x0Ytm2nnl9q575361dFpQ4c1yxLj57tHLYABcAAAADhM9xHPfmwCUZU/6+GNOytbOmRY88v1Eff75Hp50wTKUnFisrPajcrJByswhSh4vX2wqSh7aCnqC9IFG0FSSqP7WVlJ7yB++yHUcVr2/VK//YofrGiBxJ6SFDV104Rv/fCcPcLg8AAABwFYEKBxUzLT20aoP+vqFK40cXaNL4Yg0ZlKExowYrPzfd7fIAAAAA1xGosJ+WsKktOxv09Jot2vT5Hn3jrNH6+leOYs8vAAAAYB8EKsRV1jTrt099oM+qmiRJwYBf3ys/QaeWFLlcGQAAAJCaCFSQJO2ub9WvV74ry7L1z6VH6+jiXH2pOIeNdwEAAIBDIFBB9U0R/Xrlu4pELd14ySkaMbTnq5sAAAAAAxGBagDbVdeiv6/fpVf/Uamm1piu/5eTCFMAAABADxCoBiDHcfRgxQb97YOdkqRjjxykOReO0egjBrlcGQAAAOAtBKoB6H/+73P97YOdOm/iCJWdOoIl0AEAAIBeIlANMFt3Nujxlz/WiaML9C/nHsNS6AAAAMAX4He7ACRPa8TUsic/UE5mSFdOHUOYAgAAAL4gRqgGAMdx9O7Hu/VfL29W9Z5W3TjzFGVnsBw6AAAA8EURqPq5hpaofvvUB9rwaZ2KCzL144tP1HEj8twuCwAAAOgXCFT93J/+ulkfbavXJecdp6+eNFwBg1meAAAAwOFCoOrHtlU16fX3KnXel0fo3AlHul0OAAAA0O8wXNGP/dfLHyszPaCpp49yuxQAAACgXyJQ9VPvf1KjD7bU6sLTR7EABQAAANBHCFT9UMy09V8vf6zCvHSdfQpT/QAAAIC+QqDqZyIxS7/50z/0eXWzZpxzrIIBfsUAAABAX2FRin6kNWJqyeP/0Kbte/SdC/5JpxxX6HZJAAAAQL9GoOpH7nlinTbvaNB3p52gU0uK3C4HAAAA6PeYD9ZPfLqzURs+rdM3zhpNmAIAAACShEDVT7z23g4FDL/OHF/sdikAAADAgEGg6geiMUtvfLBLE44vVFY6S6QDAAAAyUKg6gfe/qhaLRFTkxidAgAAAJKKQNUPvPZepYYMStc/jRzsdikAAADAgEKg8rjq+lZt+LROZ44vlt/nc7scAAAAYEAhUHnca+9VyifpzHFM9wMAAACSjUDlYXuao/qftdt00rFDlJ+b7nY5AAAAwIBDoPKwJ17ZrJhp6+Kzj3G7FAAAAGBAIlB51Kc7G7XmvUqdO+FIDcvPdLscAAAAYEAiUHmQ4zj64/98pKyMoKadMcrtcgAAAIABi0DlQe9u2q2PPt+j6aVHK5ONfAEAAADXEKg86J1Nu5WVHlDpicPdLgUAAAAY0AhUHvTRtnodNyJPfj/7TgEAAABuIlB5TF1jRFX1rTpuRJ7bpQAAAAADHoHKYzZ9Xi9JBCoAAAAgBRCoPGbjtnqlhQwdVZTtdikAAADAgEeg8piPttXr2CMGyfDzqwMAAADcRq/cQ5paY9pe3axjme4HAAAApISkBaotW7ZoxowZKisr04wZM7R169b9zlmzZo2mT5+usWPHavHixV2O3X333TrttNNUXl6u8vJyLVy4MEmVp45N29qenzqeQAUAAACkhECybjR//nzNnDlT5eXleuqppzRv3jw98sgjXc4ZMWKEFi1apNWrVysaje53jYsuukg33nhjskpOOR99Xq+A4deXinPcLgUAAACAkjRCVVNTo/Xr12vq1KmSpKlTp2r9+vWqra3tct7IkSM1ZswYBQJJy3me8tG2eh09PFfBgOF2KQAAAACUpEBVWVmpoqIiGUZbEDAMQ0OHDlVlZWWPrrNq1SpdeOGFuuKKK/TOO+/0RakpqzVi6tOdTTpuxCC3SwEAAADQzjNDQf/yL/+i733vewoGg3r99dd19dVX69lnn9XgwYMTvkZBgftLjRcW9m663v99uEu24+jLY4f3+hrwFn7PSBRtBT1Be0GiaCtI1EBvK0kJVMXFxdq1a5csy5JhGLIsS1VVVSouLk74GoWFhfGvzzjjDBUXF2vTpk069dRTE75GTU2TbNvpUe2HU2FhjqqrG3v13v99d7sChl9Dc0K9vga844u0FQwstBX0BO0FiaKtIFH9qa34/b5eDcAkZcpfQUGBSkpKVFFRIUmqqKhQSUmJ8vPzE77Grl274l9v2LBB27dv15e+9KXDXmuqen9LrY4fMUhpQZ6fAgAAAFJF0qb8LViwQHPnztXSpUuVm5sbXxZ9zpw5uuaaazRu3DitXbtWP/nJT9TU1CTHcbRq1SrdcsstmjRpku644w598MEH8vv9CgaDuu2227qMWvVntQ1h7djdrDPHJT6iBwAAAKDv+RzHcW8OXJJ5dcrfa//YoeXPfahfXnGqjhzq/nNg6Hv9afgcfYu2gp6gvSBRtBUkqj+1lZSe8ocv5oOttRqUHdIRhVlulwIAAACgEwJVirNtRx9sqdXYUfny+XxulwMAAACgEwJVitu6s1HNYVMnHJ34Ah4AAAAAkoNAleI+2FIjn6QxowhUAAAAQKohUKW497fU6qhhOcrNDLldCgAAAIB9EKhSWMy0tHl7g8aMGux2KQAAAAAOgECVwmoaIrIdR0cMYXU/AAAAIBURqFLY7j2tkqQhgzJcrgQAAADAgRCoUljNnrAkqSA33eVKAAAAABwIgSqF7d4TluH3KS+HBSkAAACAVESgSmE1e8IanJMmw8+vCQAAAEhF9NRT2O6GsIYMYrofAAAAkKoIVCmsZk9YBQQqAAAAIGURqFKUadmqb4ywwh8AAACQwghUKaq2ISxHYsofAAAAkMIIVClqN0umAwAAACmPQJWiOgIVI1QAAABA6iJQpajde8Ly+3wanJvmdikAAAAADoJAlaLYgwoAAABIffTWU1TNnlaWTAcAAABSHIEqRbGpLwAAAJD6CFQpyLRs1TVGCFQAAABAiiNQpaC6xogchyXTAQAAgFRHoEpBLJkOAAAAeAOBKgXt3tMqSSrIy3C5EgAAAACHQqBKQTV7wvL5pPwc9qACAAAAUhmBKgXV7AkrLztNAYNfDwAAAJDK6LGnoN17WDIdAAAA8AICVQqqa4wonxX+AAAAgJRHoEoxjuOovimivOyQ26UAAAAA6AaBKsW0RkxFTVt52SxIAQAAAKQ6AlWKqW+KShKBCgAAAPAAAlWKqW+KSBJT/gAAAAAPIFClmL2BihEqAAAAINURqFJMx5S/QYxQAQAAACmPQJVi6psiykgzlB4KuF0KAAAAgG4QqFJMfVNUg7KY7gcAAAB4AYEqxbAHFQAAAOAdBKoUU98YUV4OI1QAAACAFxCoUojjONrTHGWFPwAAAMAjCFQppCViKmbaystiyh8AAADgBUkLVFu2bNGMGTNUVlamGTNmaOvWrfuds2bNGk2fPl1jx47V4sWLD3idTz75RCeeeOJBj3tZfWP7HlRM+QMAAAA8IWmBav78+Zo5c6ZWr16tmTNnat68efudM2LECC1atEhXXnnlAa9hWZbmz5+vyZMn93W5rujYg4opfwAAAIA3JCVQ1dTUaP369Zo6daokaerUqVq/fr1qa2u7nDdy5EiNGTNGgcCB92C6//77ddZZZ2nUqFF9XbIr6pvaRqjY1BcAAADwhqQEqsrKShUVFckwDEmSYRgaOnSoKisrE77Ghx9+qDVr1ujyyy/voyrd1xGo8tiHCgAAAPCEAw8FpZhYLKZf/OIXuvXWW+OhrDcKCrIPY1W9U1iYc9BjEctRVnpARx6Rl8SKkKoO1VaAzmgr6AnaCxJFW0GiBnpbSUqgKi4u1q5du2RZlgzDkGVZqqqqUnFxcULvr66u1meffaarrrpKktTQ0CDHcdTU1KSbb7454Tpqappk206vPsPhUFiYo+rqxoMe31ndpNys0CHPwcDQXVsBOtBW0BO0FySKtoJE9ae24vf7ejUAk5RAVVBQoJKSElVUVKi8vFwVFRUqKSlRfn5+Qu8fPny43nzzzfj3d999t1paWnTjjTf2VcmuqG9iDyoAAADAS5K2yt+CBQu0YsUKlZWVacWKFVq4cKEkac6cOVq3bp0kae3atSotLdXy5cu1cuVKlZaW6rXXXktWia6rb4oojwUpAAAAAM/wOY7j3hy4JEvlKX+O4+i7v/6rzps4QheffUySK0Oq6U/D5+hbtBX0BO0FiaKtIFH9qa30dspf0kaocGjNYVOm5WgQU/4AAAAAzyBQpYj4kulM+QMAAAA8g0CVIvYGKkaoAAAAAK8gUKWI+saoJCkvh0AFAAAAeEXCy6ZHo1Hdd999WrVqlaqqqjR06FBdcMEF+v73v6+0NELAF7WnuX2EKospfwAAAIBXJByoFixYoC1btuhf//VfdcQRR2j79u26//77tWvXLt166619WeOAUN8UVUZaQKGg4XYpAAAAABKUcKB68cUX9cILLyg3N1eSdMwxx+jEE0/U+eef32fFDSStEVOZaUnZZxkAAADAYZLwM1RDhgxRa2trl9cikYgKCwsPe1EDUTRmKS3E6BQAAADgJQkPiZSXl2v27NmaNWuWioqKtHPnTj366KMqLy/X3/72t/h5p512Wp8U2t9FYrZCAdYIAQAAALwk4UC1cuVKSdKyZcv2e73jmM/n04svvngYyxs4ojFLaTw/BQAAAHhKwoHqpZde6ss6BrxIzFJOJiv8AQAAAF6ScKBqbm7Wu+++q7q6OuXn52v8+PHKzs7uy9oGlKhpKy3IlD8AAADASxIKVA8//LCWLFmiaDSqwYMHq66uTqFQSNdcc42+853v9HWNA0IkarFkOgAAAOAx3QaqJ554Qg888IBuueUWlZWVyTAMWZal1atX65ZbblFubq7+3//7f8motV+LmgQqAAAAwGu6DVQPP/ywfvWrX2nSpEnx1wzD0AUXXKCcnBzddtttBKrDIBpjyh8AAADgNd324Ldt26bTTz/9gMdOO+00bdu27bAXNdA4jqNozFIowAgVAAAA4CXdBqqsrCzt2rXrgMd27dqlrKysw17UQBMzbTkSG/sCAAAAHtNtoDr33HO1cOFCRSKRLq+Hw2H98pe/1OTJk/usuIEiErMkiY19AQAAAI/p9hmq66+/XpdddpnOOecclZaWqrCwUNXV1Xr11VdVVFSk22+/PRl19mvRmC1JbOwLAAAAeEy3QyI5OTl67LHHdN111ykSiWjdunWKRCK67rrrtHLlSuXm5iajzn4tPkJFoAIAAAA8JaF9qILBoC6++GJdfPHFfV3PgBQ12wIVI1QAAACAtxwyUC1ZsiShi1x77bWHpZiBKhLtGKHiGSoAAADASw4ZqHbu3JmsOga0qMkzVAAAAIAXHTJQ3XrrrcmqY0CL8gwVAAAA4EndzjFbtGhRl+/fe++9PitmoNq7KAVT/gAAAAAv6bYH/8QTT3T5fvbs2X1WzEDFsukAAACAN3UbqBzHOeT3+OL2buxLoAIAAAC8pNtA5fP5Dvk9vrgoU/4AAAAAT+p2H6pwOKxLLrkk/n1zc3OX7yXp0UcfPfyVDSCRmC3D71PAIFABAAAAXtJtoLrlllu6fP+Nb3yjz4oZqKIxi+enAAAAAA/qNlCZpqnS0lIVFRUlo54BKWpaTPcDAAAAPKjbQLVu3TotXbpUubm5Ouuss1RaWqpTTjmFZ6kOo0jMZoQKAAAA8KBuA9Uvf/lLSdLGjRv1yiuv6I477tCWLVt02mmnqbS0VJMmTVJ+fn6fF9qfRWMWm/oCAAAAHtRtoOpw/PHH6/jjj9dVV12lhoYGrVmzRq+88opuv/12DR8+XD/60Y80adKkvqy134rEmPIHAAAAeFHCgaqz3NxcXXDBBbrgggskSe+9995hLWqgiTKKbrJ6AAAe4ElEQVTlDwAAAPCkhAOV4zh6/PHHVVFRobq6Oj3zzDN66623VF1dHQ9W6J1IzFJ2RtDtMgAAAAD0UMLzzJYsWaI//elPmjFjhiorKyVJw4YN04MPPthnxQ0U0ZiltBAjVAAAAIDXJByo/vu//1vLli3TlClT4iv8HXnkkdq2bVufFTdQRGKWQgGeoQIAAAC8JuFevGVZysrKkqR4oGpublZmZmbfVDaA8AwVAAAA4E0JB6qvfvWruvXWWxWNRiW1PVO1ZMkSnX322X1W3EDRtrEvgQoAAADwmoQD1U033aSqqipNmDBBjY2NOvnkk7Vjxw5df/31fVlfv2fZtkzLURrLpgMAAACek/Aqf9nZ2Vq6dKlqamq0fft2FRcXq7CwMOEbbdmyRXPnzlV9fb3y8vK0ePFijRo1qss5a9as0R133KGPPvpIs2bN0o033hg/9uc//1kPP/yw/H6/bNvWxRdfrG9/+9sJ3z9VRWO2JDFCBQAAAHhQwsMiF110kSSpoKBA48ePj4ep6dOnJ/T++fPna+bMmVq9erVmzpypefPm7XfOiBEjtGjRIl155ZX7HSsrK9PTTz+tp556Sn/84x+1fPlyffjhh4mWn7IiMUsSgQoAAADwooQD1aeffrrfa47j6PPPP+/2vTU1NVq/fr2mTp0qSZo6darWr1+v2traLueNHDlSY8aMUSCw/8BZdnZ2fDGMcDisWCwW/97Lou2Biil/AAAAgPd0O+XvZz/7mSQpFovFv+6wfft2HXPMMd3epLKyUkVFRTKMtlEYwzA0dOhQVVZWKj8/P+FiX3zxRd1xxx367LPP9NOf/lTHH398wu9NVZGOKX8BRqgAAAAAr+k2UB111FEH/FqSTjnlFH3ta187/FUdxLnnnqtzzz1XO3bs0A9+8AOVlpbq6KOPTvj9BQXZfVhdYgoLc7p8X9MSkyQNLcze7xgGNtoDEkVbQU/QXpAo2goSNdDbSreB6oc//KEk6cQTT9SkSZN6dZPi4mLt2rVLlmXJMAxZlqWqqioVFxf36nrDhw/XuHHj9Ne//rVHgaqmpkm27fTqnodDYWGOqqsbu7y2q6rt+9bmyH7HMHAdqK0AB0JbQU/QXpAo2goS1Z/ait/v69UATMIP7vzHf/yHHn74YdXU1PT4JgUFBSopKVFFRYUkqaKiQiUlJT2a7rd58+b417W1tXrzzTd13HHH9biWVNOxyl9aiCl/AAAAgNckHKiuvvpqrV27Vueee65mz56tZ555RuFwOOEbLViwQCtWrFBZWZlWrFihhQsXSpLmzJmjdevWSZLWrl2r0tJSLV++XCtXrlRpaalee+01SdJjjz2mKVOmqLy8XJdffrkuvfRSnXnmmT35rCkparav8sczVAAAAIDn+BzH6dEcuPr6ej333HN6+umntWnTJp133nmaNm2aTjvttL6q8bBJxSl/r/1jh5Y/96Fu//7pKhiU7lJlSDX9afgcfYu2gp6gvSBRtBUkqj+1ld5O+Ut4Y98OeXl5uuiii5SZmakHH3xQzz//vNauXSu/36/58+fr9NNP73ERA1nU7NjYl2XTAQAAAK9JOFDZtq3XX39dTz31lP7617/qpJNO0lVXXaXzzjtP6enpWr16tW644Qa9/vrrfVlvvxOJ70PFlD8AAADAaxIOVJMmTdLgwYNVXl6uG264QUVFRV2OdzwbhZ7p2Ng3GGCECgAAAPCahAPVsmXLNG7cOElSTU2Nnn/+eY0ePVqjR4+On/OHP/zh8FfYz0VilkJBv3w+n9ulAAAAAOihbgPVrl27dPPNN+vjjz/WySefrCuuuEKXXnqp/H6/GhsbtXjxYk2ZMiUZtfZL0ZjNdD8AAADAo7qdZzZ//nzl5ubqpptukm3buvLKK7Vo0SL97W9/01133aVly5Ylo85+KxqzWDIdAAAA8KhuR6jeeecdvfbaawqFQjr11FM1ceJETZ48WZI0efJk3XjjjX1eZH8WiVls6gsAAAB4VLcjVLFYTKFQSJKUkZGhrKysLs/79HAbK+wjatoKsSAFAAAA4EndjlBZlqU33ngjHpxM0+zyvW3bfVthPxeJWjxDBQAAAHhUt4GqoKBAP//5z+Pf5+Xldfk+Pz+/byobIKKmpeyMkNtlAAAAAOiFbgPVSy+9lIw6BqxIzFZBLlP+AAAAAC+iJ++yaMxSiCl/AAAAgCcRqFwWIVABAAAAnkWgclnbxr78GgAAAAAvoifvIsdx2NgXAAAA8DAClYtipi1HYmNfAAAAwKMIVC6Kmm17eLGxLwAAAOBN9ORdFIlaksTGvgAAAIBHEahcFDXbAhWr/AEAAADeRKByUSTGCBUAAADgZQQqF0Vj7c9QsWw6AAAA4En05F0UZYQKAAAA8DQClYs6pvzxDBUAAADgTQQqFzHlDwAAAPA2evIuiq/yF2CECgAAAPAiApWLTMuRJAUMn8uVAAAAAOgNApWLYmbblL+Awa8BAAAA8CJ68i4yrbZAFQzwawAAAAC8iJ68izoCleFnyh8AAADgRQQqF8UsWwHDL5+PQAUAAAB4EYHKRabpsCAFAAAA4GEEKheZ7SNUAAAAALyJ3ryLTMtmQQoAAADAw+jNu6hthIopfwAAAIBXEahcFLMcpvwBAAAAHkZv3kWmaStIoAIAAAA8i968i0zLVoBnqAAAAADPojfvIlb5AwAAALyN3ryLYpatIItSAAAAAJ5FoHKRaToyGKECAAAAPCtpvfktW7ZoxowZKisr04wZM7R169b9zlmzZo2mT5+usWPHavHixV2O3XvvvZoyZYqmTZum6dOn67XXXktS5X3HtFiUAgAAAPCyQLJuNH/+fM2cOVPl5eV66qmnNG/ePD3yyCNdzhkxYoQWLVqk1atXKxqNdjk2fvx4XXHFFcrIyNCHH36oSy+9VGvWrFF6enqyPsJhx6IUAAAAgLclpTdfU1Oj9evXa+rUqZKkqVOnav369aqtre1y3siRIzVmzBgFAvvnvEmTJikjI0OSdPzxx8txHNXX1/d98X2IjX0BAAAAb0tKoKqsrFRRUZEMw5AkGYahoUOHqrKyslfXe/LJJ3XUUUdp2LBhh7PMpItZDlP+AAAAAA9L2pS/w+Xvf/+7lixZot/97nc9fm9BQXYfVNQzhYU58a8t21FOTnqX14AOtAskiraCnqC9IFG0FSRqoLeVpASq4uJi7dq1S5ZlyTAMWZalqqoqFRcX9+g677zzjm644QYtXbpURx99dI/rqKlpkm07PX7f4VJYmKPq6sb497GYpVjU7PIaIO3fVoCDoa2gJ2gvSBRtBYnqT23F7/f1agAmKfPNCgoKVFJSooqKCklSRUWFSkpKlJ+fn/A13nvvPf34xz/Wb37zG51wwgl9VWpSxdjYFwAAAPC0pPXmFyxYoBUrVqisrEwrVqzQwoULJUlz5szRunXrJElr165VaWmpli9frpUrV6q0tDS+PPrChQsVDoc1b948lZeXq7y8XBs3bkxW+YedZdtyHLGxLwAAAOBhSXuGavTo0Xr88cf3e/2BBx6Ifz1x4kS9+uqrB3z/n//85z6rzQ2m2Tb1kGXTAQAAAO+iN++SmGVLkgJ+fgUAAACAV9Gbd4nZEagYoQIAAAA8i968S+KBimeoAAAAAM8iULnEtNqeoWJjXwAAAMC76M27xDQ7Rqj4FQAAAABeRW/eJTGeoQIAAAA8j968SzqeoWLKHwAAAOBd9OZdsnfKH4tSAAAAAF5FoHJJzGJjXwAAAMDr6M27xGRjXwAAAMDz6M27hI19AQAAAO+jN++SvYtS8AwVAAAA4FUEKpd0bOzLPlQAAACAd9Gbd0nMZMofAAAA4HX05l3CPlQAAACA99Gbd0l8UQoCFQAAAOBZ9OZdEmNjXwAAAMDzCFQuMS1HAcMnn49ABQAAAHgVgcolpmXLYLofAAAA4Gn06F0Ss2wWpAAAAAA8jh69SyzL5vkpAAAAwOMIVC6JmQ4r/AEAAAAeR4/eJaZlK8imvgAAAICn0aN3iWnZjFABAAAAHkeP3iUxAhUAAADgefToXWKatoIsSgEAAAB4GoHKJablKMAzVAAAAICn0aN3CVP+AAAAAO+jR+8SFqUAAAAAvI8evUtMk419AQAAAK8jULnEtBwFGaECAAAAPI0evUtMy2ZRCgAAAMDj6NG7hGeoAAAAAO+jR++SmGUz5Q8AAADwOHr0LjFNR4EAi1IAAAAAXkagcoFtO7Idhyl/AAAAgMfRo3dBzLIliSl/AAAAgMfRo3eB2R6oDAIVAAAA4Gn06F1gmh0jVDxDBQAAAHgZgcoFpuVIEs9QAQAAAB5Hj94FHVP+2NgXAAAA8Lak9ei3bNmiGTNmqKysTDNmzNDWrVv3O2fNmjWaPn26xo4dq8WLFyd8zGtYlAIAAADoH5LWo58/f75mzpyp1atXa+bMmZo3b95+54wYMUKLFi3SlVde2aNjXhMfoSJQAQAAAJ6WlB59TU2N1q9fr6lTp0qSpk6dqvXr16u2trbLeSNHjtSYMWMUCAT2u8ahjnmNabY/Q8XGvgAAAICnJSVQVVZWqqioSIZhSJIMw9DQoUNVWVmZjNunHKb8AQAAAP2D94d7eqCgINvtElRYmKPPalokSUOGZKuwMMflipCqaBtIFG0FPUF7QaJoK0jUQG8rSQlUxcXF2rVrlyzLkmEYsixLVVVVKi4uTsbt42pqmmTbTlLv2VlhYY6qqxtVU9MsSWpqCKu6utG1epC6OtoK0B3aCnqC9oJE0VaQqP7UVvx+X68GYJIy56ygoEAlJSWqqKiQJFVUVKikpET5+fnJuH3KicUXpeAZKgAAAMDLkvYQz4IFC7RixQqVlZVpxYoVWrhwoSRpzpw5WrdunSRp7dq1Ki0t1fLly7Vy5UqVlpbqtdde6/aY11gdG/uyDxUAAADgaUl7hmr06NF6/PHH93v9gQceiH89ceJEvfrqqwd8/6GOeQ2LUgAAAAD9Az16F7APFQAAANA/0KN3gWkSqAAAAID+gB69C+JT/tjYFwAAAPA0ApULzPZFKQxGqAAAAABPo0fvAtOyZfh98vsYoQIAAAC8jEDlgphps2Q6AAAA0A/Qq3eBadkK+BmdAgAAALyOQOUC02KECgAAAOgP6NW7wLQcNvUFAAAA+gF69S4wLZs9qAAAAIB+gF69C2ImgQoAAADoD+jVu8C0HDb1BQAAAPoBApULmPIHAAAA9A/06l0QI1ABAAAA/QK9eheYpq0gy6YDAAAAnkev3gWmZctgY18AAADA8whULohZDiNUAAAAQD9Ar94FFs9QAQAAAP0CvXoXsCgFAAAA0D8E3C5gIDJNW0ECFQAAQMIsy1RdXbVMM+p2Keikqsov27bdLqPHAoGQBg8ulGF88ThEoHKBaTkKsLEvAABAwurqqpWenqmsrGHy+ehHpYpAwC/T9FagchxHzc0Nqqur1pAhxV/4egyTuICNfQEAAHrGNKPKysolTOEL8/l8ysrKPWyjnfTqk8x2HFm2w5Q/AACAHiJM4XA5nG2JXn2SdQyJBlg2HQAAwNMaGhp0zjmna8mS/+j23Ouvv0bbt38uSXr22Wf02Wefxo89++wz+rd/+1mf1Xmge65Z84ruvXdJj67x0EO/1T333NXteZs2bdSLL77Q4xoT1bn2ysodeuqpJ/rsXomgV59kptUeqBihAgAA8LQXXnhOJ5wwTv/zP6sVi8UOeI5t23IcR7/+9W90xBFHSmoLN9u2fZbMUve755lnflU/+MG1fXKvTZs+0ssv912g6lx7ZeUOPf30f/fZvRLBohRJFrMcSVLAYMgaAADAy1atelpXX32t/vCHh7VmzSs6++zJktpGcrZv/1ytrS3avv1z3XPPA7riikt02213asOG9dq4cYPuuuvXeuCB++LBoLm5WfPm3aRPPtmsnJxsLVp0mwoKhujZZ5/RCy/8RdnZOdq8eZMKC4fquutu0NKlS7Rt2zaVlIzRvHk3y+fzqbm5SXfffac2b96kaDSqk0+eqB/96Mf6y19W7XfP6uoq/e//vqZFi26TJFVUPKXHH18pSQoGg7rttjuVn19w0M/eUVdubq42b95bcyAQ0IMPLlNLS7Muv3ymTjrpZF133Q364IP3tWzZ3WpubpYkzZ79PZ1++pmqrNyh2bNnadq06XrjjdcVDoc1d+48nXjiSaqrq9WCBf+muroaSdLEiafqmmt+qmeffSZe+x133KbKyu26/PKZOvLII3X22edp9epVuu22tpG0aDSqiy++UPff/3sVFQ3rk3ZAoEoyixEqAAAAz9u06SM1NDRowoQvq7a2RqtWPR0PVJL07rtv63e/e1R5eXld3jdlyjQ991yFvvWtWTrjjEmS2sLJhg3r9fvf/1FFRcO0ePEi/elPj+m73/2BJGnDhvV65JGVGjq0SD/72XVauPDfdM899ys9PV1XXnmp1q79u7785a/o7rvv1EknnaK5c38h27a1cOG/adWqpzVt2j8f8J4d3n57rf7wh+VauvRBFRQMUUtLiwzD6PZnsGHDej366GMqKBjapebZs7/XJaw1Njbq17/+d91++280ZMgQ7d69W3PmfFuPPPKYJGnPnj0aO3a8vvvdH+j555/TsmW/0X33/U7PP/+chg0bpiVLlkpqm2K5r5/85Ge6994leuihP0iSTNPU0qVLtGPHdg0ffoReeukFjRkzrs/ClESgSrpYe6BiUQoAAIDeeX1dpda8V9kn1z5zfLHOGNf9UtqrVj2lr31tinw+n7761bN15523q7q6SoWFQyVJp512xn5h6lDGjz8x3uk/4YSxeuutN7scGzq0SJJ07LHHa9iwYmVnZ0uSjjnmWG3fvk1f/vJXtGbNq9qw4QOtXPmoJCkcDsffdyh/+9vr+trXpqigYIgkKTMzs0c1m6a9X82dvf/+P1RZuUPXX39N/DWfz6ft27dp0KA8ZWRkxoPeCSeMiz+ndcIJ4/TYY/+pe+9dopNOOkVf+cpp3dYUCARUXj5dTz75Z1199TV64onHNWfO9xP6PL1FoEqytKAhn0/Kyw65XQoAAAB6IRaL6YUX/qJQKE1/+csqSW0jI889V6Fvf/sKSVJGRmKhpEMotLdv6PcbsizrIMf8CoXSDnKuo3//91/Hn9VKlOM4PTo/kZq7Xl8aPfpY3XvvA/sdq6zcoVAo2Ok6flmWKUkaO3a8li9/VG+99aZWr35WK1Y8rPvue6jbuqZNm64rrrhEZ55ZqqamRk2ceGpPP1qPEKiSLC87Tb+++gwCFQAAQC+dMS6xUaS+8uqrf9VRR43q0rl///33tGjR/HigOpSsrCw1Nzcd9rrOOKNUK1b8XtdfP1eGYai+vl4tLc0aPvyIQ97zjDMm6Ve/ulnl5dOVn1+glpYWBQKBLoGpJ7KystTUtPdeY8eO1+eff6a3316rU06ZKEnasOED/dM/jTnkdXbs2K6hQ4s0eXKZTjzxZM2Y8c+y7a6bCGdlZe/3ufLy8jRx4qlasOBf9a1vzerz5faZd+aCwTlp7KMAAADgUc8++4zOP//rXV4bO3a8bNvWu+++3e37p02brocfflDf+c7Mg06T641rr/2pDMOvyy//lr797Rn66U9/pOrq6m7vefLJEzRr1uW67rqrddll39K1135PTU2Nva5jwoRTFQ6Hddll39Jdd92u3Nxc/epXd+h3v7tfl132LV1yyTf0u9/d3+3I2Dvv/J++852Zuvzymbr++mt0ww03ye/vGl9Gjz5GRx01UrNmfbPL0vNTp5arsbFBX//61F5/jkT5nN6O8XlQTU2TbNu9j1tYmKPq6t43TgwctBUkiraCnqC9IFGp2FZ27vxUw4aNdLsM7CMQ8Mf3WU0lDz/8oGpqavTTn9540HP2bVN+v08FBdk9vhdT/gAAAAD0G5de+k0ZhqE77rg7KfcjUAEAAADoN1as+K+k3o9nqAAAAACglwhUAAAAANBLBCoAAAB4wgBaSw197HC2JQIVAAAAUl4gEFJzcwOhCl+Y4zhqbm5QIHB49oVlUQoAAACkvMGDC1VXV62mpnq3S0Enfr9/v812vSAQCGnw4MLDc63DchUAAACgDxlGQEOGFLtdBvaRinuWJRtT/gAAAACglwhUAAAAANBLA2rKn9/vc7uElKgB3kBbQaJoK+gJ2gsSRVtBovpLW+nt5/A5LJUCAAAAAL3ClD8AAAAA6CUCFQAAAAD0EoEKAAAAAHqJQAUAAAAAvUSgAgAAAIBeIlABAAAAQC8RqAAAAACglwhUAAAAANBLBCoAAAAA6CUCVRJs2bJFM2bMUFlZmWbMmKGtW7e6XRJcUldXpzlz5qisrEwXXnihfvjDH6q2tlaS9O6772ratGkqKyvTFVdcoZqamvj7DnUM/d8999yj448/Xh999JEk2goOLBKJaP78+Tr//PN14YUX6he/+IWkQ/8N4u/TwPTyyy/roosuUnl5uS688EI9//zzkmgrkBYvXqxzzjmny98cqfdtY8C0Gwd9btasWc6TTz7pOI7jPPnkk86sWbNcrghuqaurc954443497/61a+cm266ybFt25k8ebLz1ltvOY7jOPfee68zd+5cx3GcQx5D//f+++87V155pXPWWWc5GzdupK3goG6++WbnlltucWzbdhzHcaqrqx3HOfTfIP4+DTy2bTsTJ050Nm7c6DiO42zYsME56aSTHMuyaCtw3nrrLWfHjh3O2WefHW8jjtP7f48MlHZDoOpju3fvdiZMmOCYpuk4juOYpulMmDDBqampcbkypIK//OUvzmWXXeb84x//cKZMmRJ/vaamxjnppJMcx3EOeQz9WyQScb75zW86n332WfyPG20FB9LU1ORMmDDBaWpq6vL6of4G8fdpYLJt2zn11FOdtWvXOo7jOH//+9+d888/n7aCLjoHqt62jYHUbgJuj5D1d5WVlSoqKpJhGJIkwzA0dOhQVVZWKj8/3+Xq4CbbtvXHP/5R55xzjiorKzV8+PD4sfz8fNm2rfr6+kMey8vLc6N0JMmSJUs0bdo0jRgxIv4abQUHsm3bNuXl5emee+7Rm2++qaysLF177bVKT08/6N8gx3H4+zQA+Xw+3XXXXbr66quVmZmp5uZm/fa3vz1kf4W2MrD1tm0MpHbDM1SAS26++WZlZmbq0ksvdbsUpKB33nlH69at08yZM90uBR5gmqa2bdumMWPG6IknntD111+vH/3oR2ppaXG7NKQY0zT129/+VkuXLtXLL7+s++67Tz/+8Y9pK8AXwAhVHysuLtauXbtkWZYMw5BlWaqqqlJxcbHbpcFFixcv1qeffqply5bJ7/eruLhYO3bsiB+vra2Vz+dTXl7eIY+h/3rrrbf0ySef6Nxzz5Uk7dy5U1deeaVmzZpFW8F+hg8frkAgoKlTp0qSTjzxRA0ePFjp6ekH/RvkOA5/nwagDRs2qKqqShMmTJAkTZgwQRkZGUpLS6Ot4IAO1Zc9VNsYSO2GEao+VlBQoJKSElVUVEiSKioqVFJS0u+GOpG4O++8U++//77uvfdehUIhSdLYsWMVDoe1du1aSdLKlSv19a9/vdtj6L+uuuoqrVmzRi+99JJeeuklDRs2TA899JBmz55NW8F+8vPz9ZWvfEWvv/66pLaVtWpqajRq1KiD/g3i79PANGzYMO3cuVOffPKJJGnz5s3avXu3Ro4cSVvBAR3q99/bY/2Nz3Ecx+0i+rvNmzdr7ty5amhoUG5urhYvXqyjjz7a7bLggk2bNmnq1KkaNWqU0tPTJUlHHnmk7r33Xr399tuaP3++IpGIjjjiCN1+++0aMmSIJB3yGAaGc845R8uWLdNxxx1HW8EBbdu2TT//+c9VX1+vQCCg6667Tl/96lcP+TeIv08D09NPP60HHnhAPp9PknTNNddo8uTJtBVo0aJFev7557V7924NHjxYeXl5WrVqVa/bxkBpNwQqAAAAAOglpvwBAAAAQC8RqAAAAACglwhUAAAAANBLBCoAAAAA6CUCFQAAAAD0EoEKAAAAAHqJQAUAAAAAvUSgAgAAAIBeIlABAPq1c845Rw899JAuvPBCTZgwQdddd50ikYjuv/9+ffOb35RpmpKk//zP/9SUKVMUiURcrhgA4CUEKgBAv/fcc8/pwQcf1IsvvqiNGzfqiSee0OzZsxUMBnXfffdp69atuvPOO3X77bcrLS3N7XIBAB4ScLsAAAD62qxZs1RUVCRJOvvss7Vhwwb5/X4tXrxY06dP17PPPqvZs2drzJgxLlcKAPAaRqgAAP1eYWFh/OuMjAy1tLRI0v/fnh2bQAhEURT9W4K5fYiRYBuWMmA2IBYlTAVWYaoluD1MIuI5Fbz08qJt2+i6Lo7jiGmanpoHwIsJKgA+q5QS+75H3/exruvTcwB4IUEFwCed5xkppcg5x7IssW1blFKengXAywgqAD5pnucYxzGGYYimaSLnHCmluK7r6WkAvMjvvu/76REAAABv5KECAACoJKgAAAAqCSoAAIBKggoAAKCSoAIAAKgkqAAAACoJKgAAgEqCCgAAoJKgAgAAqPQHFy+HJCC8LV8AAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 1008x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "df_ai = pd.DataFrame()\n",
-    "df_ai[\"Arithmetic Intensity\"] = (I_flop_scalar + I_flop_vector) / (I_mem_load + I_mem_store)\n",
-    "ax = df_ai.plot();\n",
-    "ax.set_ylabel(\"Byte/FlOp\");"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Thinking back to the first lecture of the tutorial, what Arithemtic Intensity did you expect?"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Task E2: Measuring a Larger Range\n",
-    "<a name=\"taske2\"></a>\n",
-    "\n",
-    "If you still still have time, you might venture into your own benchmarking adventure.\n",
-    "\n",
-    "\n",
-    "**TASK**: Revisit the counters measured above for a larger range of `nx`. Right now, we only studied `nx` until 1000. New effects appear above that value – partly only well above, though ($nx > 15000$).\n",
-    "\n",
-    "You're on your own here. Edit the `bench.sh` script to change the range and the stepping increments.\n",
-    "\n",
-    "**Good luck!**\n",
-    "\n",
-    "[Back to top](#toc)"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.1"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+{"cells": [{"cell_type": "markdown", "metadata": {}, "source": ["# Hands-On: Performance Counters\n", "\n", "This Notebook is part of the exercises for the SC19 Tutorial \u00bbApplication Porting and Optimization on GPU-accelerated POWER Architectures\u00ab. It is to be run on a POWER9 machine; in the tutorial: on Ascent, the POWER9 training cluster of Oak Ridge National Lab.\n", "\n", "This Notebook can be run interactively on Ascent. If this capability is unavailable to you, use it as a description for executing the tasks on Ascent via a shell access. During data evaluation, the Notebook mentions the corresponding commands to execute in case you are not able to run the Notebook interactively directly on Ascent.\n", "\n", "## Table of Contents\n", "<a name=\"toc\"></a>\n", "\n", "* [Task 1: Measuring Cycles and Instructions](#task1)\n", "* [Task 2: Measuring Loads and Stores](#task2)\n", "  - [A: Loads and Stores](#task2-a)\n", "  - [B: More Loads and Stores](#task2-b)\n", "  - [C: Bandwidth](#task2-c)\n", "* [Task E1: Measuring FLOP](#taske1)\n", "* [Task E2: Measuring a Greater Range](#taske2)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## Task 1: Measuring Cycles and Instructions\n", "<a name=\"task1\"></a>\n", "\n", "Throughout this exercise, the core loop of the Jacobi algorithm is instrumented and analyzed. The part in question is\n", "\n", "```c\n", "for (int iy = iy_start; iy < iy_end; iy++)\n", "{\n", "    for( int ix = ix_start; ix < ix_end; ix++ )\n", "    {\n", "        Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - (A[ iy   *nx+ix+1] + A[ iy   *nx+ix-1]\n", "                                                +  A[(iy-1)*nx+ix  ] + A[(iy+1)*nx+ix  ]));\n", "        error = fmaxr( error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));\n", "    }\n", "}\n", "```\n", "\n", "The code is instrumented using PAPI. The API routine `PAPI_add_named_event()` is used to add *named* PMU events outside of the relaxation iteration. After that, calls to `PAPI_start()`\n", "and `PAPI_stop()` can be used to count how often a PMU event is incremented.\n", "\n", "For the first task, we will measure quantities often used to characterize an application: cycles and instructions.\n", "\n", "**TASK**: Please measure counters for completed instructions and run cycles. See the TODOs in file [`poisson2d.ins_cyc.c`](poisson2d.ins_cyc.c). You can either edit the files with Jupyter capabilities by clicking on the link of the file or selecting it in the file drawer on the left; or use a dedicated editor on the system(`vim` is available). The names of the counters to be implemented are `PM_INST_CMPL` and `PM_RUN_CYC`.\n", "\n", "After changing the source code, compile it with `make task1` or by executing the following cell (we need to change directories first, though).  \n", "*(Using the `Makefile` we have hidden quite a few intricacies from you in order to focus on the relevant content at hand. Don't worry too much about it right now\u00a0\u2013 we'll un-hide it gradually during the course of the tutorial.)*\n", "\n", "[Back to top](#toc)"]}, {"cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["/autofs/nccsopen-svm1_home/aherten/OpenPOWER-SC19/Prototyping/2-Performance_Counters/Handson/Solutions\n"]}], "source": ["!pwd"]}, {"cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["/autofs/nccsopen-svm1_home/aherten/OpenPOWER-SC18/2-PAPI/Compiling/Solutions\n"]}], "source": ["%cd Tasks/\n", "# Use `%cd Solutions` to look at the solutions for each task"]}, {"cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["gcc -DUSE_DOUBLE -Ofast -std=c99 -lm -lpapi  poisson2d.ins_cyc.c -o poisson2d.ins_cyc.bin\n"]}], "source": ["!make task1"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Before we launch our measurement campaign we should make sure that the program is measuring correctly. Let's invoking it, for instance, with these arguments: `./poisson2d.ins_cyc.bin 100 64 32` \u2013 see the next cell. The `100` specifies the number of iterations to perform, `64` and `32` are the size of the grid in y and x direction, respectively."]}, {"cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "100,64,32,0.0011,3324225,33235,33960,1859440,18357,25033\n"]}], "source": ["!./poisson2d.ins_cyc.bin 100 64 32\n", "# alternatively call !make run_task1"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Alright! That should return a comma-seperated list of measurements.\n", "\n", "For the following runs, we are going to use Ascent's compute backend nodes which are not shared amongst users and also have six GPUs available (each!). We use the available batch scheduler *IBM Spectrum LSF* for this. For convenience, a call to the batch submission system is stored in the environment variable `$SC19_SUBMIT_CMD`. You are welcome to adapt it once you get more familiar with the system.\n", "\n", "For now, we want to run our first benchmarking run and measure cycles and instructions for different data sizes, as a function of `nx`. The Makefile holds a target for this, call it with `make bench_task1`:"]}, {"cell_type": "code", "execution_count": 2, "metadata": {"scrolled": true}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.ins_cyc.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.ins_cyc.bin.csv\n", "Job <24059> is submitted to default queue <batch>.\n", "<<Waiting for dispatch ...>>\n", "<<Starting on login1>>\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,4,0.0012,572978,2861,3639,261330,1235,4684\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,8,0.0014,1082978,5411,6189,601962,2914,5099\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,12,0.0014,1442978,7211,7989,811603,3992,5761\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,16,0.0014,1802978,9011,9789,1017305,4988,7017\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,20,0.0015,2162978,10811,11589,1221559,6002,7999\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,24,0.0016,2522978,12611,13389,1435167,7037,9259\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,28,0.0016,2882978,14411,15189,1633061,8054,9789\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,32,0.0017,3242978,16211,16989,1842895,9092,10889\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,36,0.0018,3602978,18011,18789,2042894,10108,12457\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,40,0.0019,3962978,19811,20589,2261332,11191,14233\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,44,0.0020,4322978,21611,22389,2458267,12112,14375\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,48,0.0020,4682978,23411,24189,2658621,13164,15613\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,52,0.0020,5042978,25211,25989,2866175,14190,16864\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,56,0.0021,5402978,27011,27789,3080357,15237,21565\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,60,0.0022,5762978,28811,29589,3283103,16278,18799\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,64,0.0022,6122978,30611,31389,3587582,17820,19681\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,68,0.0025,6482978,32411,33189,3893368,19284,20847\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,72,0.0025,6842978,34211,34989,4289441,21278,22715\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,76,0.0024,7202978,36011,36789,4208700,20936,22677\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,80,0.0025,7562978,37811,38589,4409613,21897,23855\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,84,0.0026,7922978,39611,40389,4611755,22921,24910\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,88,0.0026,8282978,41411,42189,4821904,23974,26087\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,92,0.0028,8642978,43211,43989,5104722,25036,38488\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,96,0.0028,9002978,45011,45789,5238952,26060,27927\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,100,0.0028,9362978,46811,47589,5441545,27049,29275\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,104,0.0030,9722978,48611,49389,5920763,28136,72679\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,108,0.0030,10082978,50411,51189,5853554,29106,31403\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,112,0.0030,10442978,52211,52989,6053498,30123,32279\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,116,0.0031,10802978,54011,54789,6296056,31338,33377\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,120,0.0033,11162978,55811,56589,6468115,32146,33869\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,124,0.0032,11522978,57611,58389,6675248,33233,35075\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,128,0.0033,11882978,59411,60189,6894325,34338,36207\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,132,0.0034,12242978,61211,61989,7093543,35299,37463\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,136,0.0034,12602978,63011,63789,7312105,36353,48105\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,140,0.0035,12962978,64811,65589,7503757,37375,39247\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,144,0.0036,13322978,66611,67389,7692611,38277,40419\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,148,0.0037,13682978,68411,69189,7968094,39656,42113\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,152,0.0037,14042978,70211,70989,8122466,40468,42706\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,156,0.0038,14402978,72011,72789,8328043,41484,45104\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,160,0.0040,14762978,73811,74589,8547674,42493,54216\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,164,0.0039,15122978,75611,76389,8738805,43542,45427\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,168,0.0040,15482978,77411,78189,8948025,44560,46819\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,172,0.0040,15842978,79211,79989,9186567,45735,47659\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,176,0.0041,16202978,81011,81789,9391949,46573,70131\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,180,0.0042,16562978,82811,83589,9549568,47559,54271\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,184,0.0042,16922978,84611,85389,9766306,48609,58645\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,188,0.0043,17282978,86411,87189,9974165,49613,56721\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,192,0.0044,17642978,88211,88989,10187263,50734,52953\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,196,0.0044,18002978,90011,90789,10386920,51763,53773\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,200,0.0045,18362978,91811,92589,10593326,52744,54962\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,204,0.0045,18722978,93611,94389,10791966,53796,55775\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,208,0.0046,19082978,95411,96189,10993938,54691,56692\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,212,0.0047,19442978,97211,97989,11183564,55716,57663\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,216,0.0047,19802978,99011,99789,11413409,56842,65317\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,220,0.0049,20162978,100811,101589,11747337,57952,85917\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,224,0.0049,20522978,102611,103389,11967444,58993,147575\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,228,0.0050,20882978,104411,105189,12176974,59986,107137\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,232,0.0051,21242978,106211,106989,12243039,61011,62843\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,236,0.0051,21602978,108011,108789,12454738,61985,74677\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,240,0.0051,21962978,109811,110589,12632612,62912,64911\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,244,0.0052,22322978,111611,112389,12844679,63954,74316\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,248,0.0053,22682978,113411,114189,13049050,65048,67067\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,252,0.0054,23042978,115211,115989,13274577,66113,68093\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,256,0.0054,23402978,117011,117789,13479975,67191,69232\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,260,0.0055,23762978,118811,119589,13702476,68321,70257\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,264,0.0055,24122978,120611,121389,13885554,69178,71473\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,268,0.0056,24482978,122411,123189,14091173,70236,72538\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,272,0.0057,24842978,124211,124989,14277355,71142,73153\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,276,0.0057,25202978,126011,126789,14477479,72149,74585\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,280,0.0058,25562978,127811,128589,14807542,73365,106386\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,284,0.0059,25922978,129611,130389,14919273,74349,83988\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,288,0.0060,26282978,131411,132189,15262342,75369,108903\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,292,0.0061,26642978,133211,133989,15457489,76550,112579\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,296,0.0061,27002978,135011,135789,15587890,77470,113796\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,300,0.0063,27362978,136811,137589,15736737,78474,80976\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,304,0.0062,27722978,138611,139389,15931699,79424,85309\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,308,0.0064,28082978,140411,141189,16127895,80426,82181\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,312,0.0063,28442978,142211,142989,16353667,81487,91316\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,316,0.0064,28802978,144011,144789,16544730,82526,84583\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,320,0.0064,29162978,145811,146589,16778054,83692,85621\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,324,0.0065,29522978,147611,148389,16975790,84670,86933\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,328,0.0066,29882978,149411,150189,17193806,85651,95908\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,332,0.0067,30242978,151211,151989,17391042,86658,92746\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,336,0.0067,30602978,153011,153789,17579650,87566,101073\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,340,0.0068,30962978,154811,155589,17823659,88601,131503\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,344,0.0069,31322978,156611,157389,18045749,89720,131352\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,348,0.0069,31682978,158411,159189,18233228,90790,129666\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,352,0.0070,32042978,160211,160989,18429938,91908,93827\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,356,0.0071,32402978,162011,162789,18723870,92891,169000\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,360,0.0071,32762978,163811,164589,18839189,93872,104313\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,364,0.0072,33122978,165611,166389,19052230,94828,108456\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,368,0.0072,33482978,167411,168189,19224348,95828,106832\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,372,0.0073,33842978,169211,169989,19409746,96825,98825\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,376,0.0074,34202978,171011,171789,19635914,97934,100015\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,380,0.0075,34562978,172811,173589,19901265,99194,108856\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,384,0.0075,34922978,174611,175389,20087150,100132,113306\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,388,0.0076,35282978,176411,177189,20289560,101187,111225\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,392,0.0076,35642978,178211,178989,20478069,102158,104431\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,396,0.0077,36002978,180011,180789,20703541,103136,118462\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,400,0.0078,36362978,181811,182589,20889687,104097,116051\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,404,0.0078,36722978,183611,184389,21103371,105019,150497\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,408,0.0079,37082978,185411,186189,21343392,106235,146574\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,412,0.0080,37442978,187211,187989,21499750,107213,116228\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,416,0.0081,37802978,189011,189789,21769516,108354,153304\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,420,0.0082,38162978,190811,191589,22016040,109333,166344\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,424,0.0082,38522978,192611,193389,22124948,110298,112586\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,428,0.0083,38882978,194411,195189,22375892,111391,164691\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,432,0.0083,39242978,196211,196989,22605417,112244,161120\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,436,0.0084,39602978,198011,198789,22698406,113231,115888\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,440,0.0084,39962978,199811,200589,22946025,114347,124840\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,444,0.0085,40322978,201611,202389,23138571,115404,122324\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,448,0.0086,40682978,203411,204189,23382319,116666,118990\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,452,0.0086,41042978,205211,205989,23582320,117634,123005\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,456,0.0087,41402978,207011,207789,23777586,118606,121054\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,460,0.0088,41762978,208811,209589,24021078,119638,157473\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,464,0.0089,42122978,210611,211389,24177273,120536,137152\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,468,0.0089,42482978,212411,213189,24354431,121510,124378\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,472,0.0090,42842978,214211,214989,24680874,122798,163001\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,476,0.0092,43202978,216011,216789,24806941,123695,126112\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,480,0.0091,43562978,217811,218589,25036974,124855,131240\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,484,0.0092,43922978,219611,220389,25277560,125834,159926\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,488,0.0093,44282978,221411,222189,25492002,126931,169890\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,492,0.0094,44642978,223211,223989,25799993,127811,292316\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,496,0.0094,45002978,225011,225789,25879076,128748,186367\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,500,0.0094,45362978,226811,227589,26021482,129705,143377\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,504,0.0095,45722978,228611,229389,26309697,130875,185497\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,508,0.0096,46082978,230411,231189,26445482,131853,134810\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,512,0.0097,46442978,232211,232989,26722882,133313,135480\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,516,0.0097,46802978,234011,234789,26902984,134116,143429\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,520,0.0098,47162978,235811,236589,27143327,135173,182663\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,524,0.0101,47522978,237611,238389,27899728,139067,143412\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,528,0.0099,47882978,239411,240189,27539695,137281,153792\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,532,0.0100,48242978,241211,241989,27665652,137957,156345\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,536,0.0102,48602978,243011,243789,27888664,139123,142069\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,540,0.0102,48962978,244811,245589,28116288,140162,167093\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,544,0.0102,49322978,246611,247389,28395864,141365,191687\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,548,0.0105,49682978,248411,249189,28539300,142352,144923\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,552,0.0104,50042978,250211,250989,28772000,143499,153080\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,556,0.0104,50402978,252011,252789,28943938,144344,160802\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,560,0.0105,50762978,253811,254589,29192011,145318,205574\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,564,0.0106,51122978,255611,256389,29371768,146296,173660\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,568,0.0107,51482978,257411,258189,29607085,147402,185216\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,572,0.0109,51842978,259211,259989,29760468,148529,150992\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,576,0.0108,52202978,261011,261789,30001693,149671,152448\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,580,0.0109,52562978,262811,263589,30194219,150474,161954\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,584,0.0110,52922978,264611,265389,30465237,151575,196784\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,588,0.0112,53282978,266411,267189,30866027,152658,345805\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,592,0.0112,53642978,268211,268989,30806266,153631,162459\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,596,0.0112,54002978,270011,270789,31013348,154624,161083\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,600,0.0113,54362978,271811,272589,31227644,155782,158034\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,604,0.0115,54722978,273611,274389,31534633,156837,219588\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,608,0.0114,55082978,275411,276189,31675474,157869,168332\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,612,0.0115,55442978,277211,277989,31953436,158989,218652\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,616,0.0116,55802978,279011,279789,32108644,160138,180416\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,620,0.0116,56162978,280811,281589,32277424,160849,182393\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,624,0.0118,56522978,282611,283389,32423394,161797,164245\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,628,0.0117,56882978,284411,285189,32609412,162678,167394\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,632,0.0118,57242978,286211,286989,32869379,163975,168634\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,636,0.0119,57602978,288011,288789,33151217,165037,223167\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,640,0.0119,57962978,289811,290589,33341299,166215,181218\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,644,0.0121,58322978,291611,292389,33649260,167751,199967\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,648,0.0121,58682978,293411,294189,33719599,168221,178799\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,652,0.0122,59042978,295211,295989,34067206,169536,235514\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,656,0.0122,59402978,297011,297789,34164102,170144,235618\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,660,0.0123,59762978,298811,299589,34456636,171594,235316\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,664,0.0124,60122978,300611,301389,34541178,172177,211827\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,668,0.0124,60482978,302411,303189,34905159,173832,222673\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,672,0.0126,60842978,304211,304989,34988298,174422,188003\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,676,0.0126,61202978,306011,306789,35263092,175911,185984\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,680,0.0127,61562978,307811,308589,35503073,176323,305860\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,684,0.0128,61922978,309611,310389,35672483,178036,180851\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,688,0.0128,62282978,311411,312189,35790039,178289,217803\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,692,0.0128,62642978,313211,313989,36045752,179866,188983\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,696,0.0130,63002978,315011,315789,36175144,180438,195986\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,700,0.0131,63362978,316811,317589,36529049,182248,184897\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,704,0.0130,63722978,318611,319389,36611747,182765,185703\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,708,0.0130,64082978,320411,321189,36811496,183626,191140\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,712,0.0131,64442978,322211,322989,37060383,184588,255521\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,716,0.0132,64802978,324011,324789,37267356,185684,240236\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,720,0.0132,65162978,325811,326589,37393434,186562,204926\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,724,0.0133,65522978,327611,328389,37611724,187635,203956\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,728,0.0135,65882978,329411,330189,37844476,188685,217329\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,732,0.0136,66242978,331211,331989,38097715,189879,238003\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,736,0.0136,66602978,333011,333789,38249665,190960,193797\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,740,0.0137,66962978,334811,335589,38496135,191882,202980\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,744,0.0136,67322978,336611,337389,38643004,192776,211409\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,748,0.0138,67682978,338411,339189,38834497,193752,204307\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,752,0.0139,68042978,340211,340989,39026422,194674,207102\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,756,0.0139,68402978,342011,342789,39292510,195755,242534\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,760,0.0140,68762978,343811,344589,39445808,196904,199749\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,764,0.0140,69122978,345611,346389,39707448,198140,208159\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,768,0.0141,69482978,347411,348189,39961335,199314,213386\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,772,0.0142,69842978,349211,349989,40195551,200268,262442\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,776,0.0143,70202978,351011,351789,40369481,201262,243178\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,780,0.0143,70562978,352811,353589,40454251,201889,204769\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,784,0.0143,70922978,354611,355389,40804167,203132,292206\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,788,0.0144,71282978,356411,357189,40880258,203888,220805\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,792,0.0145,71642978,358211,358989,41141375,205195,222680\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,796,0.0145,72002978,360011,360789,41346667,205890,276619\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,800,0.0146,72362978,361811,362589,41586665,207290,248916\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,804,0.0147,72722978,363611,364389,41696398,208106,211465\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,808,0.0148,73082978,365411,366189,41978951,209272,255137\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,812,0.0148,73442978,367211,367989,42187366,209918,283393\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,816,0.0149,73802978,369011,369789,42482639,211214,322437\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,820,0.0149,74162978,370811,371589,42512865,212010,227823\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,824,0.0151,74522978,372611,373389,42861251,213412,278868\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,828,0.0151,74882978,374411,375189,42979335,214191,262439\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,832,0.0152,75242978,376211,376989,43402619,215543,296991\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,836,0.0152,75602978,378011,378789,43382253,216450,232179\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,840,0.0154,75962978,379811,380589,43665001,217538,261020\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,844,0.0154,76322978,381611,382389,43762162,218196,232967\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,848,0.0156,76682978,383411,384189,44077885,219619,233562\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,852,0.0155,77042978,385211,385989,44269902,220266,357562\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,856,0.0156,77402978,387011,387789,44458368,221658,275183\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,860,0.0156,77762978,388811,389589,44599845,222530,244104\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,864,0.0158,78122978,390611,391389,44856987,223898,229495\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,868,0.0157,78482978,392411,393189,45070339,224667,268426\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,872,0.0158,78842978,394211,394989,45243346,225686,238504\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,876,0.0160,79202978,396011,396789,45425044,226467,285843\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,880,0.0160,79562978,397811,398589,45637897,227585,255503\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,884,0.0163,79922978,399611,400389,45922301,228540,294854\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,888,0.0161,80282978,401411,402189,46210377,229936,317062\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,892,0.0161,80642978,403211,403989,46224897,230736,244030\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,896,0.0163,81002978,405011,405789,46706945,232252,393574\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,900,0.0163,81362978,406811,407589,46846573,233803,243774\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,904,0.0165,81722978,408611,409389,47211102,235424,247115\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,908,0.0165,82082978,410411,411189,47420647,236067,308146\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,912,0.0167,82442978,412211,412989,47664515,237299,252663\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,916,0.0166,82802978,414011,414789,47825500,238210,307878\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,920,0.0168,83162978,415811,416589,48024315,239591,249230\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,924,0.0168,83522978,417611,418389,48204506,240348,286103\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,928,0.0168,83882978,419411,420189,48474452,241766,272232\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,932,0.0169,84242978,421211,421989,48643328,242408,310910\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,936,0.0170,84602978,423011,423789,49041567,243670,350571\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,940,0.0171,84962978,424811,425589,49009612,244295,313509\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,944,0.0171,85322978,426611,427389,49257311,245620,259650\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,948,0.0172,85682978,428411,429189,49415667,246533,254714\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,952,0.0172,86042978,430211,430989,49711139,247671,319628\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,956,0.0174,86402978,432011,432789,49856592,248552,271876\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,960,0.0174,86762978,433811,434589,50136102,249978,265617\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,964,0.0176,87122978,435611,436389,50925446,253713,295499\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,968,0.0178,87482978,437411,438189,51035835,253858,318894\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,972,0.0177,87842978,439211,439989,51188317,255334,306288\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,976,0.0178,88202978,441011,441789,51436023,256205,289239\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,980,0.0179,88562978,442811,443589,51703656,257814,300077\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,984,0.0179,88922978,444611,445389,51801305,257947,349721\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,988,0.0181,89282978,446411,447189,52056854,259676,262216\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,992,0.0182,89642978,448211,448989,52237864,260535,269494\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,996,0.0183,90002978,450011,450789,52526126,262024,274178\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,1000,0.0182,90362978,451811,452589,52578843,262284,265526\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,1004,0.0183,90722978,453611,454389,52896370,263840,273834\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,1008,0.0183,91082978,455411,456189,53074476,264385,308471\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,1012,0.0184,91442978,457211,457989,53382079,266422,284446\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,1016,0.0186,91802978,459011,459789,53434221,266486,275700\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,1020,0.0186,92162978,460811,461589,53712164,268036,277528\n", "iter,ny,nx,Runtime,PM_INST_CMPL (total),PM_INST_CMPL (min), PM_INST_CMPL (max),PM_RUN_CYC (total),PM_RUN_CYC (min), PM_RUN_CYC (max)\n", "200,32,1024,0.0187,92522978,462611,463389,53754294,268076,276795\n", "mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.ins_cyc.bin.csv .\n"]}], "source": ["!make bench_task1"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Once the run is completed, let's study the data!\n", "\n", "This can be done best in the interactive version of the Jupyter Notebook. In case this version of the description is unavailable to you, call the Makefile target `make graph_task1` (either with X forwarding, or download the resulting PDF)."]}, {"cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": ["import numpy as np\n", "import seaborn as sns\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import common\n", "%matplotlib inline\n", "sns.set()\n", "plt.rcParams['figure.figsize'] = [14, 6]"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Execute the following cell if you want to switch to color-blind-safer colors"]}, {"cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": ["sns.set_palette(\"colorblind\")"]}, {"cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", "    .dataframe tbody tr th:only-of-type {\n", "        vertical-align: middle;\n", "    }\n", "\n", "    .dataframe tbody tr th {\n", "        vertical-align: top;\n", "    }\n", "\n", "    .dataframe thead th {\n", "        text-align: right;\n", "    }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", "  <thead>\n", "    <tr style=\"text-align: right;\">\n", "      <th></th>\n", "      <th>iter</th>\n", "      <th>ny</th>\n", "      <th>nx</th>\n", "      <th>Runtime</th>\n", "      <th>PM_INST_CMPL (total)</th>\n", "      <th>PM_INST_CMPL (min)</th>\n", "      <th>PM_INST_CMPL (max)</th>\n", "      <th>PM_RUN_CYC (total)</th>\n", "      <th>PM_RUN_CYC (min)</th>\n", "      <th>PM_RUN_CYC (max)</th>\n", "      <th>Grid Points</th>\n", "    </tr>\n", "  </thead>\n", "  <tbody>\n", "    <tr>\n", "      <th>0</th>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>4</td>\n", "      <td>0.0012</td>\n", "      <td>572978</td>\n", "      <td>2861</td>\n", "      <td>3639</td>\n", "      <td>261330</td>\n", "      <td>1235</td>\n", "      <td>4684</td>\n", "      <td>128</td>\n", "    </tr>\n", "    <tr>\n", "      <th>1</th>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>8</td>\n", "      <td>0.0014</td>\n", "      <td>1082978</td>\n", "      <td>5411</td>\n", "      <td>6189</td>\n", "      <td>601962</td>\n", "      <td>2914</td>\n", "      <td>5099</td>\n", "      <td>256</td>\n", "    </tr>\n", "    <tr>\n", "      <th>2</th>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>12</td>\n", "      <td>0.0014</td>\n", "      <td>1442978</td>\n", "      <td>7211</td>\n", "      <td>7989</td>\n", "      <td>811603</td>\n", "      <td>3992</td>\n", "      <td>5761</td>\n", "      <td>384</td>\n", "    </tr>\n", "    <tr>\n", "      <th>3</th>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>16</td>\n", "      <td>0.0014</td>\n", "      <td>1802978</td>\n", "      <td>9011</td>\n", "      <td>9789</td>\n", "      <td>1017305</td>\n", "      <td>4988</td>\n", "      <td>7017</td>\n", "      <td>512</td>\n", "    </tr>\n", "    <tr>\n", "      <th>4</th>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>20</td>\n", "      <td>0.0015</td>\n", "      <td>2162978</td>\n", "      <td>10811</td>\n", "      <td>11589</td>\n", "      <td>1221559</td>\n", "      <td>6002</td>\n", "      <td>7999</td>\n", "      <td>640</td>\n", "    </tr>\n", "  </tbody>\n", "</table>\n", "</div>"], "text/plain": ["   iter  ny  nx  Runtime  PM_INST_CMPL (total)  PM_INST_CMPL (min)  \\\n", "0   200  32   4   0.0012                572978                2861   \n", "1   200  32   8   0.0014               1082978                5411   \n", "2   200  32  12   0.0014               1442978                7211   \n", "3   200  32  16   0.0014               1802978                9011   \n", "4   200  32  20   0.0015               2162978               10811   \n", "\n", "    PM_INST_CMPL (max)  PM_RUN_CYC (total)  PM_RUN_CYC (min)  \\\n", "0                 3639              261330              1235   \n", "1                 6189              601962              2914   \n", "2                 7989              811603              3992   \n", "3                 9789             1017305              4988   \n", "4                11589             1221559              6002   \n", "\n", "    PM_RUN_CYC (max)  Grid Points  \n", "0               4684          128  \n", "1               5099          256  \n", "2               5761          384  \n", "3               7017          512  \n", "4               7999          640  "]}, "execution_count": 2, "metadata": {}, "output_type": "execute_result"}], "source": ["plt.rcParams['figure.figsize'] = [14, 6]\n", "df = pd.read_csv(\"poisson2d.ins_cyc.bin.csv\", skiprows=range(2, 50000, 2))  # Read in the CSV file from the bench run; parse with Pandas\n", "df[\"Grid Points\"] = df[\"nx\"] * df[\"ny\"]  # Add a new column of the number of grid points (the product of nx and ny)\n", "df.head()  # Display the head of the Pandas dataframe"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Let's have a look at the counters we've just measured and see how they scaling with increasing number of grid points.\n", "\n", "*In the following, we are always using the minimal value of the counter (indicated by \u00bb(min)\u00ab) as this should give us an estimate of the best achievable result of the architecture.*"]}, {"cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAF/CAYAAAChV+O/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8ZHWd7/9XLakktWSrLVslvZ+mF5amka0RBhHXdmVGGWVUuAooOjPOZXAEl58biKIjotI/RVHRGZ2rM9eZ0VHHO47gggJyZT3dSLqzV1X2WpJUqurcP6pS3U1300lnqVTyfj4eebSpc6rOt/JJMO98v+fztVmWhYiIiIiIiJwae7kHICIiIiIiUskUqkRERERERBZAoUpERERERGQBFKpEREREREQWQKFKRERERERkARSqREREREREFkChSkREREREZAEUqkRERERERBZAoUpERERERGQBFKpEREREREQWQKFKRERERERkAZzlHsAyqgbOAQaAXJnHIiIiIiIiK48DaAF+B0zP9UlrKVSdA9xf7kGIiIiIiMiKdxHwwFxPXkuhagBgdDRFPm+VZQB+v5fh4WRZri2nRjWrPKpZ5VHNKo9qVllUr8qjmpWP3W6jsdEDxewwV2spVOUA8nmrbKFq9vpSWVSzyqOaVR7VrPKoZpVF9ao8qlnZzet2ITWqEBERERERWQCFKhERERERkQVQqBIREREREVmAtXRP1XHlcllGR+Nks5klv1YsZiefzy/5dWTxzKVmTqeLxsYgDsea/3ESEREROYplWWRm8uQti2wuT9fABI89O4LZPUZmJkfesmjwVfO3V56F01G58z1r/rfA0dE4NTVuPJ5mbDbbkl7L6bSTzSpUVZKT1cyyLFKpCUZH4wQCLcs4MhEREZGVa2A4xa8eH+TXTwwyMnH0dk8up50tkQa87ips2Giqq8a+xL+HL7U1H6qy2cyyBCpZnWw2Gx5PHcnkWLmHIiIiIrLs8pbFwYEEjz87zP7eMUYT04wlM0xOZ7HZYMd6P5fuasdht2Gz2WgLeNgSqafK6Sj30BfVmg9VgAKVLIi+f0RERGS1y+ctumMJnuga4alDo4xMTDOVyZKezpKZyWMDOsI+2gIetq1rItxYyzlbQ9R7q8s99GWhUCUiIiIiIkcZTUzz6DNDPHVwhIGRNNGRSbK5wi0R7UEvkZCXGpeDGpeT9S0+tq1vos7tKvOoy0ehaoW54oq9uFwuqqpc5PM53vKWa7jsspfwyCMP8Z73XMeVV17Fu971l6Xzb7jhHTz66CP85Ce/wO12H/c1H3nkIW688S+JRDrJ5bLU1zdw443vp7NzXek1rrzyKi688KLSc2655W+54IKLePnL93LPPfv42te+zL5997J9+w4A7rlnH5OTk9xww1+d8L1YlsU//dM/8oMf/DNgkc/nOeOMs3j726/nPe+5nne96y85//wLARgfH+Ntb3sTn/zkZ9m8eQtPPfUE+/Z9gb6+PmpqqmloaOSaa67lzDN3HXOdoaE4t9xyE1/84lew2+d+g+PTTz/Jd77zbT70oY8973mjo6PcdNNf88UvfgWnUz8yIiIisnok0hke7xrhia4REukZsrk8qckZumNJAPx1NURCXnau9xMJe9nW2bhmZp/m46S/IRqG4Qe+CWwEpoFngGtN04wbhmEBjwGzd/JfZZrmY8Xn7QU+VbzGw8DbTNNML9Wx1eRjH/skGzZsYv/+p7nuumvYvftcADo6Orn//p9z3XU34HA46O/vY3p6ak6vuW7dBu6555sAfPGLd3LnnZ/hjjvunPOYmptbuPvuz/P5z++b83O+/OUv8eijj3DnnV+iqclPPp/n/vt/zuTkJDff/CE+8IH3ce+9/4DX6+Uzn7mdV73qtWzevIU//vEZbrzxr/jABz7CueeeD0Bvbw/PPLP/uNe5996v8PrX/9m8AhXA1q3bThqoABobG9m+fSc//vEPecUrXjWva4iIiIisFNOZHPt7x3i2f4KB4RT9Q2n64kkswOeuwl9Xg9Nhx+uu4rUv3MCuLUFa/W7d6jAHc/mzuwXcbprmzwEMw/gUcBtwTfH4BaZpJo98gmEYXuDLwEWmaR4wDOMrwP8EPrIUxxbyBXiuXz42wAN/GFjMlyy5+KxWztvWPOfzt2zZitvtZmCgD4DaWjfr1q3nt7/9Neefv4cf/ejfeOlLX8FTTz05r3GcddbZ/OpXD8xv7BdfysMP/44HH/x1Keg8n3Q6zT/+47e4995v0dTkB8But3PxxZcC0NbWzuWXv4w777yDPXsupq+vlw98oFDKb33r67zyla8+6jrt7RHa2yPHXGd6epr/+q//5N3vfm/psT17dvP2t1/P/ff/N+Pj49x008089NBvefDBX5HNZvnoRz/JunXreeSRh/jCFz7HPfd8k4GBfv7H/7iKV73qdfzmN79kamqK973vg5x9dmFm7LLLXsJdd31GoUpEREQqwlhymh/9pptEOsNMLk8ileHZgQmyOQsb4K+voTXgYdeWAGdsCtDZ7Kv4DnzldNI/7ZumOTIbqIp+A3Se5GkvAx4yTfNA8fO7gTcs4bFV6ZFHHiKTydDe3lF67OUv38uPfvTvWJbFz372Ey677CXzes18Ps8DD/w3l112+byeZ7PZeMc73sm+fV/AsqyTnn/w4LO4XFV0dKw74Tlve9vbMc2n+dSnPsHNN3+4tLRu//6n2bZtx5zG9fTTT9LWFqG6+uhpaK/Xx1e+8g2uv/7d/N3f/Q2nn34mX/vat3npS1/BN77x1eO+1vj4ODt2nM7XvvZt3va2t3P33Ydn8gxjKwcO7GdycnJO4xIREREpB8uyePDJKB/4yoP81+97i7NSaXJ5i8vOjvDeN5zBF997MbdffwF/9adn8JqLNrC+pU6BaoHmdYOIYRh24HrgB0c8/HPDMJzAj4APm6Y5DXQAh444pxuYnWZYimOL5sKdLVy4c2n2G5rrPlW33HITLlc1Ho+Hj3/8k/h8vtKxXbt2c8cdt/GLX/ycDRs2Ul/fMKdrHzz4LG99658zNBSjrq6eu+8+HCxONKX73McvuGAP9913L//n//znSa83h9xFVVUVf/qnb+CXv3yA9es3HPHcOTy5KBaL0tTUdMzjL3pRITQaxlbAxgUX7Cl+fhr//d//ddzXqq11l+4r2759J3fd9felY06nE4/Hy/Dw0HFnzERERETKxbIsBkfSPHVolEcPDPF41wgbWuu45hWn0eL3lHt4a8J877r/PJAE7ip+3mGaZo9hGHUU7rv6AHDLIo5v0fn93qM+j8XsOJ3Lt3vzXK51662fYuPGTUc95nDYsdmgqsrBZZddzu23f5wPfODDpddzOk/8PhwOO+vXb+Dee7/FzMwMt9zyPu644zY+/vFPAtDU1EQyOXHU88fHx/H7/Tiddux2G3a7DafTzjvf+W4+8YmPcOmll5UeO57NmzeRyWTo7++ho+PEE5tOpxOn03HU62zdehqm+QSXXnrpSb9WbnctMzOZY8bhdtfgdNqpqnLicrlKx6uqnOTzOZxOe+lrOvu/n3teLpcrjrHw2MxMBre79rjv2W63Ewz6jnlcykO1qDyqWeVRzSqL6lV5TlSz6ZkcXX3j7O8Zpatvgp5Ygt5ogtRUFoBAQy1vecU2XnvxRhyO5fsdd62bc6gyDOPTwGZgr2maeQDTNHuK/04U73GavbGlG/iTI57eAfQs4bE5Gx5Oks8fngnJ5/Nzmj1aDHOdqcrljh1TLpfHsiCbzbN372uprq5h9+7zSudlsyd+H0c+12Zz8Dd/8z7e+MbX8dRTT7F5s8HZZ7+AH/7w37jkksuorq7mwIH9dHU9i2GcRjabJ5+3yOctstk8O3acQXt7hB//+EdcfPGlJ7ymy1XDn/3Zn/OJT3yUj370Nhobm7Asi5/+9D/Yvn0nbW3tQGHPA8uyjnqdN77xKv76r9/JmWfu5pxzCk06ursPsn+/ecxyx3XrNnLo0KFjxjH79cjl8sDh1z/ya/Hc//3c8wq3ExaOj4wMY7c7aGz0H/c95/N54vHEcb8WsryCQZ9qUWFUs8qjmlUW1avyzNZsKpPlj30THOgdoy+eon84RXRkknxxVU+du4rWgIcXnBamI+zltM5Ggg212Gw2RkZSZX4Xlclutx0zCTMXcwpVhmF8HDgbeEVxeR+GYTQCU6ZpThaX/10BPFp8yn8AdxmGsbl4D9R1wHeX8NiaEgyGeNOb3nLKz29q8nPllW/mq1/9Mrfe+mle+cpXE40O8va3/wV2u4Pq6mo+8pFbT7i08B3veBdXX/2mk17n2mvfxXe+8y3e/e5rgcLU9Omnn8X55+953udt3ryF2277LF/+8hf51Kc+QU1NTbGl+nXHnNvW1o7X66O7++Dz3r+1UA8++Gte+MJL1P1GREREFl0un6c3luKZvnH64kkSU1kGh1IMDKfJWxY2G4Qa3bQFPJxthFjX7GN9Sx2NPrU2XylsJ7t/xTCM7cDjwH5g9i79LuB2YB+FP+dXAb8C/mq2E6BhGK8unuMAfg+81TTN1FIdm4N1QNdzZ6oGBw/R3HyyvhuLY64zVTI/P/3pf/DEE4/zV3/1Pxf9tWdrdsMN7zhqb6/nWs7vI3l++ots5VHNKo9qVllUr5VlIpXh6e5RDvSMEx+fZGRimthYmsxM4XdEb20VoSY3dbVVtAU9GJEGNrbVU1utvTKXwxEzVeuBg3N93klD1SqyDoWqVet73/sOr33tn857r6qTcTrtxOPD/O53D3L55S894XkKVSuHfnmoPKpZ5VHNKovqVR6WZREfm+Tp7jF6Y0liY5NERyeJjhS2WK12OQg11OKvqyHQUMPG1no2tdXjr69RzcroVEOVIu8qcs01V5WaK8zavn0HN974/iW75r/+67/wve8duwrz5ps/xObNxpJd97le//ql667f2Nj4vIFKRERE1jbLsoiNTtI1MEHfUIr+oRQHBxOMJqaBwwGqPeBhz85mTutsorPZi2OR/xgs5aNQtYrcc883l/2ae/e+hr17X7Ps1xUREREph8npLE8fGmVgJM3wxBRDY1N0DUyQnJwBwGG3EWqsZXN7PUakga2djTQ3uXVf9iqnUEXhrwv6RpdTtYaW0IqIiKw5lmXRP5zmsT8O89izw+zvGSNXvJXEU+Okqa6GMzcF2NhWx4bWelr8bpxqZb7mrPlQ5XS6SKUm8HjqFKxk3izLIpWawOl0lXsoIiIisghmsjm6Y0kODiR4tn+C/T1jDE9MAdAW9HD5ORF2bvDT2exT8wgpWfPfCY2NQUZH4ySTY0t+LbvdTj6vRhWVZC41czpdNDYGl2lEIiIisljyeYuBkTRd/RN0DRQ+emLJ0kxUvcfFhtY6XnFBJ6dv8NNUV1PmEctKteZDlcPhJBBoWZZrqZNL5VHNREREVgfLshiZmC6Fp66BCboGE0xnCk2+alwO1rfUcfkLImxoqSvtA6WVTDIXaz5UiYiIiMjqYVkW46kMPbEkvfEk0ZFJYqNp+ofTTKQyADgdNiIhLxfuaGZ9MUA1+93YFaDkFClUiYiIiEhFyuXzHBxMsL97jJ54kvhoYS+o2U58AD53FeFGNzs3NLGuuY4NrXW0B71UOdVMQhaPQpWIiIiIrHjZXJ5DgwkO9I4zMJxiYCRNTyxZWr7nr6sm1Ohm15YgbQEPHWEv7SEvnpqqMo9c1gKFKhERERFZUSbSGfZ3jzEwkmZkYor42CR/7J8oBag6dxUtfg8X7mjG6GhkS6SBeo868Ur5KFSJiIiISFnkLYuRiSkGhtMMDKXoH07zbP8EvfFk6Ryfu4qmuhou2NHMacUAVacAJSuMQpWIiIiILLnk5AwHesfoi6foH04xMJRmYCRFZubw1iXe2io6wl5ed9oGtnY2Egl5qa5ylHHUInOjUCUiIiIii2pobJJD0QSx0Umio7OzT6nS8aa6alr8Hl4YaaXV76HF76Yl4KHOrRkoqUwKVSIiIiJySizLIjY6ycBImthImt54iqe7RxkanyqdU+euIhLycs5pYYxIA5GQl9pq/Qoqq4u+o0VERETkpCbSGQaH0wxPTDE0PkVX/wTP9I0f1b7cW1vFlkgDl58TYVN7PeFGtwKUrAn6LhcRERGRklw+T188xeBImmhx9qlrYOKo2SeAUGMtZ2zys7m9gdaAh3BjLd7aKmzaQFfWoJOGKsMw/MA3gY3ANPAMcK1pmnHDMM4D9gG1wEHgzaZpxorPW9ZjIiIiIjI/k9NZoqNphsamiI6mOdA7zv6eMaaKrcsBAvU1rG+p49Jd7bQHPfjra2jy1VDtUgMJkVlzmamygNtN0/w5gGEYnwJuMwzjfwD3AW81TfMBwzBuAW4DrjYMw7acxxbriyEiIiKyGlmWxWhimvjYJLHRSbqjSfb3jtEbS2IdcV5zk5vztjezJVJPW8BLqLFW3fdE5uCkoco0zRHg50c89BvgemA3MGWa5gPFx++mMHt0dRmOiYiIiKx5lmUxkcoQH58qbZrbO5Tmya5hEunD9z5VVznY2FbHq/asJxLyEqivIVBfg7umqoyjF6lc87qnyjAMO4VA9QOgAzg0e8w0zSHDMOyGYTQt97Fi8BMRERFZM2Y773UNTnBwIEFPLElPLHlU4wiA1oCH0zf4Wd9aR7jRTbCxFn9dNQ67vUwjF1l95tuo4vNAErgLeO3iD2fp+f3esl4/GPSV9foyf6pZ5VHNKo9qVnlUs+VlWRbx0UkO9I7xTM8YB3pGeaZ3nFQxQLmcdjpb6rjg9FY6W3y0+D0EGmoJNrrx1mr2qRLpZ6yyzDlUGYbxaWAzsNc0zbxhGN1A5xHHA4BlmubIch+bzxseHk6Sz1snP3EJBIM+4vFEWa4tp0Y1qzyqWeVRzSqPara0LMtieGKKnliSQ4MJugYSHBycKC3fc9httAe9nGMEWddSx7pmH60BD07HsTNPk8kpvLVVqleF0c9Y+djttlOahJlTqDIM4+PA2cArTNOcLj78MFBrGMae4n1O1wHfLdMxERERkYozOZ2lbyhFbyxJTzxJbyxJbzzJ5HSh+57NVli+d8bGAOtafKxvqaM96KHKqeYRIivJXFqqbwfeD+wHfmUYBkCXaZqvNQzjKmCfYRg1FFucAxRnspbtmIiIiMhKNtt9rzuapDuWoKf4b3zs8N5PtdUO2oNeztveTCTopT3oJRLyqnW5SAWwWVZ5lsKVwTqgS8v/ZD5Us8qjmlUe1azyqGbPL5vLMziSpjuaoDtaaB7RHU2QmsoCYANCTW4ioUJoigS9tIc8+OtqlmTjXNWr8qhm5XPE8r/1FCZx5mS+jSpEREREpGhyOlvqutcdTdAdS9IXT5HN5QGoctppD3o42wjRGfYSCftoD3qocelXMJHVRD/RIiIiIieRtyyGxibpiaXoiydLQSo2Nlk6x1tbRWfYy2W72+kIFQJUc1OtWpeLrAEKVSIiIiJFs/c+9Q+lCh/DKfriKXrjKaZnis0jgGBjLR1hLxee3kJHyEtH2EeD17Uky/dEZOVTqBIREZE1KTaa5pH9Q8RG04ynMowlpxkYTjOVyZXO8bmraAt4uOj0FtpDheYRbQGPmkeIyFEUqkRERGTVi46m6eqfYDQ5zWhimv3dY3THkkAhONV7XNR7XFy4o4XWgJvWgIeWgIc6t6vMIxeRSqBQJSIiIqvGRDrDk10jTKRnmJ7JMZac5omuEWKjh+99qq5y0B7y8IZLN3G2ESRQX1vGEYvIaqBQJSIiIhUnb1n0xpL0DaVITs6QSM+wv3uUA33jHLlbTHWVA6OjgRfvjmB0NOCvq6G2Wr/+iMji0n9VREREZEWbnsnxx75xhsenGE0Wmkg8dWiURHqmdI4NaA952XvBOs7cHCDYUEt1lQOnQ533RGTpKVSJiIjIipGeyhIdTTOamGZ4fIonD47w5KFRZrL50jmNvmp2rG9i27omNrTW4XO7cFc7sdvVeU9EykOhSkRERJadZVmMTEwzkphiZGKa3niSJw+OcnBw4qjle4H6Gl54Riunb/TT3OSmwVtNlVOzTyKysihUiYiIyJKxLIv4+BRDY5NMpDOMJTL8sW+cA71jTByxfM9ht7G+tY69F6yjM+yjwVdNo6+aeo/2fhKRlU+hSkRERBaNZVkMjU/RNTCB2T3G413DxMemjjonUF/D9vV+NrXVEWiopdFXTbC+Vns/iUjFUqgSERGRUzaeyvBM7zgHByc4OJjg4MAEqaksUOi8d1pnI5ef00F70IPP7aLO48JbW1XmUYuILC6FKhERETmpvGUxMj5F/3CK8cejmAeH+WPfONHi/k8Ou422gIezjSDrmutY1+KjPehV9z0RWRMUqkREROQoyckZemLJ4keCvniKgeE00zO50jn1XhcbWuq4+Mw2NrXX0xHy4qrS8j0RWZsUqkRERNaofN4iNjZZCk890SQ98SQjE9Olc+rcVbQFvVx0egutQQ+tfg+nbw0zlZp+nlcWEVlbFKpERETWgKlM9ojZp8JHbzxJZqaw/5PdZqPF72ZLewORkLf0Ue+tPua1fG6XQpWIyBHmFKoMw/g08HpgHbDTNM3Hi48fBKaKHwA3mab54+Kx84B9QC1wEHizaZqxpTomIiIiBampGboHExyKJjkUTXBoMEF0JM3s9k+eGieRkJcXntFKJOSlI+SjNeCmyqnleyIip2KuM1X/AnwOuP84x66YDVmzDMOwAfcBbzVN8wHDMG4BbgOuXopj833TIiIiq4FlWYwmpumOJumOJjgUTdAdTTI8cbiFub+umo6wj/O2h+kI+egIe2n0VWvvJxGRRTSnUGWa5gMAhmHM9XV3A1OzzwPupjCzdPUSHRMREVnVEukM0ZFJoqNp+odSxRCVJDlZ2EDXBoSa3Gxsq+NPdrXRGS4EKJ/bVd6Bi4isAYtxT9W3irNIDwDvN01zDOgADs2eYJrmkGEYdsMwmpbimGmaI4vwPkRERFaE1NQMBwcSdA0U9n7qGphgNHH4Hianw0ZbwMtZmwN0hH10hn20hzzUuHSrtIhIOSz0v74XmabZYxhGNfD3wF3Amxc+rKXj93vLev1g0FfW68v8qWaVRzWrPGu1Zvm8RWw0TVf/OF39ExwcmKCrf5zB4XTpnNaAh52bAmxqbyAS9tEa8BBqcpd9/6e1WrNKpXpVHtWssiwoVJmm2VP8d9owjC8CPyge6gY6Z88zDCMAWKZpjhiGsejH5jPm4eEk+bx18hOXQDDoIx5PlOXacmpUs8qjmlWetVKzqUyW3niq0HXviO57U5nC3k+zy/ciIS8X7mhmXUsd65p9eGqqnvNKFqMjqWUf/5HWSs1WC9Wr8qhm5WO3205pEuaUQ5VhGB7AaZrmeHH53xuBR4uHHwZqDcPYU7wH6jrgu0t4TEREZEWwLIuh8amjwlNPLElsbLJ0Tm21k0jQw4U7WmgPeYiEfLQFPVRr81wRkYo015bqdwKvA5qB/zQMYxjYC3zPMAwH4ACeBN4JYJpm3jCMq4B9hmHUUGx/vlTHREREysGyLOLjUxwcmCjdA9UdSzA5fcTsU2MtHWEvF+xsLu395K+rUfc9EZFVxGZZ5VkKVwbrgC4t/5P5UM0qj2pWeVZizX77VJTHnx1h27pGztgUoLbaSS6fZzQxTU80SddgohCkBhOl7ntOh41IyMe6Zh+RsJdI0EtbcHU2j1iJNZMTU70qj2pWPkcs/1tPYRJnTlbff+lFREROUXoqy30/NfnNE1FcTjsPPDaA02Gj3lPNaGKafPEPkXabjbagh7M2B1jfUsf6ljragp6yN48QEZHyUKgSEZE1a3I6S2x0ku7iprm/fybOWCLDa/as5+Xnd9I1MMHDZpyJdAZ/XQ3++hraA14iYa/ufxIRkRKFKhERWRPyeYueWJInD47w5KFRemNJxlOZ0vFql4P1zT6uf/UONrbVA7C5vYHN7Q3lGrKIiFQIhSoREVl1Jqez9MSSHIom6Ikm6YknGRhKkcnmAWgLeti5wU+4qZZwo5v2kJdQYy12NY8QEZFToFAlIiIVy7IsxlOZUtvy7miCQ9EksZE0sy2JfO4qIiEvl5zVRmezj9M6G2nwVpd13CIisrooVImISEXI5vIMDqfpjiVKIaonliSRnimdE6ivoSPs4/ztYTrDPjrCPhq8LrUvFxGRJaVQJSIiK05ycoae6NHhqX84RTZXmH9yOuy0BT2csSlAJOSlI+SlPeTFU1NV5pGLiMhapFAlIiJlk89b9EQT/MGMHhWgRhPTpXPqPS4iIS/b1zcVNs8N+2huqsVhV/tyERFZGRSqRERkWcw2jyh8FGah+uKHm0c47DZa/G62djQQCfkKASrkpc7jKvPIRUREnp9ClYiILCrLshiZmOZQNEH3EUv4hsanSud4apyl5hHbNgZoqHXS4vdQ5dTsk4iIVB6FKhEROWV5yyI+NsmhwUQhRA0Wuu8lJwvNI2xAuMnN+pY6XnhGa2n2qdFXXWoeEQz6iMcTZXwXIiIiC6NQJSIic5LPWwyMpIvBKcGhwQTdsQST0zmgsHyvPehl15ZAofNes4/2gJdql6PMIxcREVlaClUiInIUy7KYSM/QH0/SN5SifyhVWsI3e/+Ty2knEvJy3vZmOsM+OsM+2oIenA4t3xMRkbVHoUpEZA3L5vIMjqQLy/cGE3THkvTFk6SmsqVz3NVO2oMeLj6zjc5mL51hH81+t7rviYiIFClUiYisEampGXqihRmn2Q10+4cO7/1UXeUgEvKye2uI1oCHtoCH1oCHeo82zxUREXk+ClUiIquMZVnExibpiRbDUzRJTzzJyMThvZ/qins/Xba7sPdTZ9hHc5Mbu13hSUREZL5OGqoMw/g08HpgHbDTNM3Hi49vAb4O+IFh4C9M0zxQjmMiImvVbPe93liK3niSroEJ/tg3Xlq+Z7cV9n7a0t5Q6rwXCXmp91aXeeQiIiKrx1xmqv4F+Bxw/3Mevxv4gmma9xmG8WZgH3BpmY6JiKx6E6kMvfEkvfFCgOorNpLIzBSaR9iAloCHXVuCbGyrpyPspS3gocqp7nsiIiJL6aShyjTNBwAMwyg9ZhhGCNgFvLj40D8AdxmGEaTw/+ulFSo2AAAgAElEQVTLdsw0zfg837OIyIo2PZOjf6gQnGZnoPriSSbSM6VzfO4q2oNeXnhGK+1BL+3BQoBS+3IREZHld6r3VEWAPtM0cwCmaeYMw+gvPm5b5mMKVSJSsaYzOboGJjjQN073YILeeJLY6CRW8XiV005rwMPOjf5CeAoVAlS9x1XWcYuIiMhha65Rhd/vLev1g0FfWa8v86eaVZ6VWrOJVIau/vHixwTP9o3TE02QyxciVGvAw4b2Bi49p4POljrWtdTR7PfgWAPNI1ZqzeTEVLPKonpVHtWsspxqqOoB2gzDcBRnjRxAa/Fx2zIfm5fh4ST5vHXyE5dAMOgjHk+U5dpyalSzyrMSajbbPOLI7nvdsSSjicPd9+q9LjpCPl56bgeb2+vZ0FqPt7bqOa9kMTKcXN7Bl8FKqJnMj2pWWVSvyqOalY/dbjulSZhTClWmacYMw3gUuBK4r/jv72fvb1ruYyIi5TI9k6MvnjrcujxWaF8+nckBh7vvGR0NdIR8pe57dVq+JyIismrMpaX6ncDrgGbgPw3DGDZNcztwHfB1wzA+CIwCf3HE05b7mIjIkrIsi/FUprBxbrSwcW5PLMngSBqrOPldW+0gEvSyZ2cLHSEvEXXfExERWRNsllWepXBlsA7o0vI/mQ/VrPIsRs1y+TyDw+lCgCqGp55o4qjue4H6mtKsU0e4MAMVqK/BZlv99z8tNv2cVR7VrLKoXpVHNSufI5b/rQcOzvV5a65RhYjIkdJTWXrjyaNmoPqGUsxkC3s/OR022gJeTt8YIBL2FmagQl7cNc+9/0lERETWKoUqEVkTLMtieGKqOOs0OwOVID42VTrHW1tFR9jLpbvaSvc/NfvdOB32Mo5cREREVjqFKhFZdWayefqHUsXle4cbSKSns0ChnWioyU1ncx0Xnd5KR9hLJOSjwevS8j0RERGZN4UqEaloiXSm1DSiO5pkYCR91N5Prio7kaCXF5wWIhL20RHy0hb0UOPSf/5ERERkcei3ChGpCHnLIj46WVq2112cfTpy76cGr4tNkUa2r2ssNZAINdRiXwOb54qIiEj5KFSJyIozPZMrNY+Y3UC3N5ZieuaIvZ8CbrZ2NBAJ+YiEi3s/uV3qmCQiIiLLTqFKRMpmdu+nwqxTorSELzr6nL2fQj4uOr2lNPvUGnBr7ycRERFZMRSqRGRZzO79dOS+T92xJInj7P30gtNCdBTvf/Jr7ycRERFZ4RSqRGTRze79NLvvU3csSV88RTZ39N5PZ2wKFGaftPeTiIiIVDCFKhE5ZaW9n4pNI7qLG+gOjR+799NlZ7cTCXmJhL00N2nvJxEREVk9FKpEZE5m937qLt77dLy9n8JNbta31HHxma2FAKW9n0RERGQNUKgSkWPM7v0027a8J5ZgYDh97N5P28KlpXvtQS/VLjWPEBERkbVHoUpkDTty76fZ+5+eu/dTo6+aSKhw/1NH2Eck5NXeTyIiIiJHUKgSWSOmMzl6h2b3fSrMPj1376fWE+z9JCIiIiInplAlsgpNpDJ0F1uWd0cThb2fRtIUt36ittpJR8hb2Psp7KUjpL2fRERERE6VQpVIBctbFkNjk3RHk3THCuHpUDTBeDJTOmd276dzj7j/SXs/iYiIiCyeBYcqwzAOAlPFD4CbTNP8sWEY5wH7gFrgIPBm0zRjxecs+jGR1W56JkdfPEVPLHF4A91YkunM4eV7LQE32zqb6Ax7iYR9dIS9eLT3k4iIiMiSWqyZqitM03x89hPDMGzAfcBbTdN8wDCMW4DbgKuX4tgivQeRFWM8OV0KTrMNJAZH0ljF9Xs1LgeRkJcLdzQXNs8N+2gPerR8T0RERKQMlmr5325gyjTNB4qf301hZunqJTomUpFy+TyDw+nSxrmF/Z8STKRnSuf46wrL987ZGipunusjUF+DXcv3RERERFaExQpV3yrOJD0AvB/oAA7NHjRNc8gwDLthGE1Lccw0zZFFeh8iSyY9laU3fnj2qTuWpC+eIpvLA+B02GgNeDh9Y6A4++SlPaTleyIiIiIr3WKEqotM0+wxDKMa+HvgLuCfF+F1l4Tf7y3r9YNBX1mvL/M335pZlkVsdJKu/nG6+sbpGpjg2b5xoiPp0jk+t4sNbXWcZYRY31rPhrZ62kNenA77Yg9/TdLPWeVRzSqPalZZVK/Ko5pVlgWHKtM0e4r/ThuG8UXgB8DngM7ZcwzDCACWaZojhmF0L/ax+Yx3eDhJPm+d/MQlEAz6iMcTZbm2nJqT1Wwmm6d/KEV3LEFP9HDziPR0FgAbEGpy01G8/6kj7CUS8tHgdR3TfW90JLWUb2XN0M9Z5VHNKo9qVllUr8qjmpWP3W47pUmYBYUqwzA8gNM0zfHi8r83Ao8CDwO1hmHsKd4DdR3w3eLTluKYyJKbSGeK9zwlSx34BofT5Ioh3VVlJxL08oJt4cLyvZCX9qCXapeaR4iIiIisZgudqQoD3zMMwwE4gCeBd5qmmTcM4ypgn2EYNRTbnwMsxTGRxTSTzTE4Mkn/UIqRVA/mwRG6ownGjtj7qdFXTSTk5cxNATrCPiIhL6GGWux2NY8QERERWWtsllWepXBlsA7o0vI/OdLkdJZn+sY50DtOXzxJ/3Ca2Ojh1uUOu40Wv6fUOCJS3DzX53aVd+ByQvo5qzyqWeVRzSqL6lV5VLPyOWL533oKkzhzslQt1UVWFMuyGE9l6I4m6RtK0j+UojeeoieaJG9Z2G02wk21tAc9vGBriLagh1a/hx1GiLHR9MkvICIiIiJrlkKVrDr5Yve97miCQ9FCA4nu5+z9VO910er38PLzO9na0cDGtnqqq46990mb6YqIiIjIyShUSUWbyeboG0rRHU2WAlRPLMn0TA4oLN9rC3jYudFPR9hXaB6hvZ9EREREZBEpVElFyOYKrcv7hlJER9JERyfpiycZOKL7Xo3LQUfIy0WntxAJe+kM+2gNeLT3k4iIiIgsKYUqWXGmMll6YsnS7FN3NEH/UIpsrhCebIC/vobWgIczNwfoCPnoCHsJNNRit6n7noiIiIgsL4UqKauJVKZ071N3NEl3LElsJM1sf0ZvbRWdYS+X7Y4Uuu8FvYQaa3Wvk4iIiIisGApVsiwsyyI+PkX3YILuWDFAPWfvp0B9DR1hH+dvCxfufwp7afRVY9Psk4iIiIisYApVsuhmsoX7n3piyeIyvgTdsSST01kA7DYbLQE3p3U20RH2lgKUmkeIiIiISCVSqJJ5yVsW/fEUNrsNd3Xh26cvniwFqJ5YoXlEvrh7rstpJxLyct62cKl5RFvAg+s47ctFRERERCqRQpWclGVZ9MVTPPhUlN88McjwxPRxz2v0VRMJeTlzc4BIyEsk5CXc6MZu1/I9EREREVm9FKrkuCZSGZ48OMITXSM8cXCEsWQGu83Gjg1NvHrPBlxVdtJTWXJ5i9aAh0jIi7dWy/dEREREZO1RqBIyM7Mb6CboiSV5pm+c7mgSAE+Nk23rmti+vokzNgWo97jKPFoRERERkZVFoWqNGU9l6CmGp+5iE4nBkTTFW6CocTlY1+zjdS/cwPb1TXSGfVq+JyIiIiLyPBSqVql83iI6mi7u/VQIUT3RJOOpwy3M/XXVREI+dhuhwh5QYR+B+hptoCsiIiIiMg8KVavAVCZLbyxVCk/d0SR98SSZbB4Ah91GW8DDjvVNRMI+OkJe2nUPlIiIiIjIolCoqiCWZTGamC4t3ZtdxhcbnaS4eg9PjZNIyMslZ7WVOvC1Bjw4Hfayjl1EREREZLWquFBlGMYW4OuAHxgG/sI0zQPlHdXiy+byDA6niwEqQXe0sAdUcnKmdE6ooZZI2MsFO5qJhAob6Db6qrFp+Z6IiIiIyLKpuFAF3A18wTTN+wzDeDOwD7i0zGNakPRUlt54oWlEd/Hep76hJNlcYf6pymmnPehh15ZAKTy1B73UVldi+UREREREVpeK+q3cMIwQsAt4cfGhfwDuMgwjaJpmvHwjmx/Lsni2f4JHnxni0QND9A2lSse8tVV0hr1ctjtCR6jQPKK5qRaHXcv3RERERERWoooKVUAE6DNNMwdgmmbOMIz+4uMVE6p++dggX/3hU9htNrZE6nntCzfQGfYSCflo8Lq0fE9EREREpIJUWqhaML/fW9brB4M+Lj3XRWvYx/YNfrxubaa70gWDvnIPQeZJNas8qlnlUc0qi+pVeVSzylJpoaoHaDMMw1GcpXIArcXH52R4OEk+b538xCUQDPqIxxMAbAh7mUxNM5maLstYZG6OrJlUBtWs8qhmlUc1qyyqV+VRzcrHbred0iRMRd2oY5pmDHgUuLL40JXA7yvpfioREREREVldKm2mCuA64OuGYXwQGAX+oszjERERERGRNaziQpVpmk8D55Z7HCIiIiIiIlCBoWoBHFBYJ1lO5b6+zJ9qVnlUs8qjmlUe1ayyqF6VRzUrjyO+7o75PM9mWeVp2lAGe4D7yz0IERERERFZ8S4CHpjryWspVFUD5wADQK7MYxERERERkZXHAbQAvwPm3KZ7LYUqERERERGRRVdRLdVFRERERERWGoUqERERERGRBVCoEhERERERWQCFKhERERERkQVQqBIREREREVkAhSoREREREZEFUKgSERERERFZAIUqERERERGRBVCoEhERERERWQCFKhERERERkQVQqBIREREREVkAhSoREREREZEFUKgSERERERFZAIUqERERERGRBVCoEhERERERWQCFKhERERERkQVQqBIREREREVkAhSoREREREZEFUKgSERERERFZAIUqERERERGRBVCoEhERERERWQCFKhERERERkQVQqBIREREREVkAhSoREREREZEFUKgSERERERFZAIUqERERERGRBXCWewDLqBo4BxgAcmUei4iIiIiIrDwOoAX4HTA91yetpVB1DnB/uQchIiIiIiIr3kXAA3M9eS2FqgGA0dEU+bxVlgH4/V6Gh5NlubacGtWs8qhmlUc1qzyqWWVRvSqPalY+druNxkYPFLPDXK2lUJUDyOetsoWq2etLZVHNKo9qVnlUs8qjmlUW1avyqGZlN6/bhdSoQkREREREZAEUqkRERERERBZAoUpERERERGQB1tI9VceVy2UZHY2TzWaW/FqxmJ18Pr/k15HFs1g1czpdNDYGcTjW/I+ciIiIrGHpqSw9sQTd0STd0QTdsSSZbJ6PXvMCnI7Kne9Z87/hjY7Gqalx4/E0Y7PZlvRaTqedbFahqpIsRs0syyKVmmB0NE4g0LJIIxMRERFZuSzLYjQxTXesEJ56okkORRMMjU+Vzqn3uIiEvWzrbMJuX9rfw5famg9V2WxmWQKVrF02mw2Pp45kcqzcQxERERFZdPm8xeBIujTz1B0tzEQlJ2dK54Qba1nfUsfFZ7bSEfbREfJS760u46gX15oPVYAClSw5fY+JiIjIajA9k6M3nqTniOV7vcUlfABOh422oJezNgcK4SnspT3opbZ6dceO1f3uRERERETklCTSmWOW7w2OpLGKW2i5q510hL1cclYbkZCXzrCPZr+7ou+NOlUKVSvMFVfsxeVyUVXlIp/P8Za3XMNll72ERx55iPe85zquvPIq3vWuvyydf8MN7+DRRx/hJz/5BW63+7iv+cgjD/GFL3yOe+75JgB79uzm3HMv4I477iyds2fP7tJrPPLIQ3zpS59nZmaGmZkMfn+Av//7L3LzzX/LwEA/AM88s5+NGzdhs9lpamriM5+564Tv6cEHf829936Z0dFRnE4nra1tXHvtDWzcuIkrrtjLzEyG73//hzgcDgD+/d9/wK23foS//usbef3r38APf/iv3HnnHTQ3t5LNztDZuY6bbrqFurp6brjhHVx55VVceOFFz/t1nZqa4l3vejt33fX/U1tbO7diAPF4nA9+8P18/vP7nve8TCbD9ddfw+c+9yW8Xu+cX19ERESk3CzLYmh8qrRsb3YGajQxXTqnqa6ajpCPc7aGSsv3/PU1Wo1TpFC1An3sY59kw4ZN7N//NNdddw27d58LQEdHJ/ff/3Ouu+4GHA4H/f19TE9PneTVjq+7+yC///3DnHXW2Uc9ns1mufnmv+Xzn9/Hpk2bAdi//2lsNhu33vrp0nl79uzmS1/66gmD3Kzf/vY33HbbR7n11k+zdeu20usNDw+xceMmAPz+AL/97a85//w9APzoR/+GYZx21Ovs3v0CPvax28nn83zwg+/j61+/h3e/+71zfr//63/9I5dccum8AhVAMBg8aaACcLlcvOQlL+M73/kW11xz7byuISIiIrJcsrk8/UMpemKFmaeeaJLuWJLJ6SwANhu0+j0YHQ10hArL9zrCPry1VWUe+cqmUPUcv3xsgAf+MLAkr33xWa2ct615zudv2bIVt9vNwEAfALW1btatW18KID/60b/x0pe+gqeeenLeY7n66newb98XuPvurx71eDqdZmpqkqampqPGcaq+9rUv85a3XFMKVMd7vZe9bC8//OG/cf75e0pBccOGjcd9Pbvdzq5d5/DrXz8wr3H84Af/zJ133l36/Ior9nL55S/j4Yd/Rzwe47rr3s3Y2Ag//el/MDExwfvf/yHOOOMs+vv7edvb3sS///vPgEKYfMc73skvfvFzxsfHede73sMll7wIgMsuewnXXHOVQpWIiIisCJPTWXpiyaMaSPQPpcjmCuv3XFV2IkEv520LEwkXlu+1BTy4qhxlHnnlUahawR555CEymQzt7R0cOGAC8PKX7+V//+/vc955F/Kzn/2EL33pHj772U/N+7UvvvhSvv/973L//T/noosuKT1eV1fH3r2v4Y1vfB1nnrmLnTvP4PLLX0o4PPcweKT9+5/mve/92+c9Z9eu3fzzP/8TExMTpaD49NNPHffcTCbDAw/8gq1bTzvu8eOJRgeZmpqiufnoduYzMzPs2/c1nnrqCd797mu5/vr38OUvf4Of/eyn3H33XXzpS/cc9/U8Hg9f+co3+MMfHuWDH/y7UqhqavLjdFZx6NBBOjvXzXl8IiIiIgthWRbjqcwxy/dio5Olc3zuKjrCPl68u6nUQCLc6K74VuYrhULVc1y4s4ULdy7NXkJz3fPolltuwuWqxuPx8PGPfxKfz1c6tmvXbu644zZ+8Yufs2HDRurrG055PNdeewOf+9ynufDCFx71+HvfexNveMObeOSRh/jNb37Jffd9ja985ZtEIh2nfK3nY7PBpZe+mJ/97CeloPjcUPXQQ7/lrW/9cwB27jyDq65625xfPx6P0djYdMzjL3rRi4HCzNnU1BQvetHlAGzdehp9fb0nfL0XveglAGzfvpOhoTjT09NUVxdagvr9fmKxqEKViIiILIm8ZREdSR+9fC+aYCJ9uH15qKGWSNjLhTtb6AgVlu81eF26/2kJKVStQLP3VB2PzWbj0ktfzO23f4z3v//DC7rO7t0voKkpwI9//MNjjrW1tdPW1s7eva/hb/7mPfzyl7/gjW9887yvsWXLVp588gk2bzae97yXveyVXHvtWznzzF3HDYqz91SdiurqajKZ6WMed7lcAKUGGbOf2+12crnsCV/vuc/L5XKlY5nM4YAlIiIishAz2Ry98dRRy/d6YymmZwq/ezjsNtoCHk7fGCgt32sPenHX6Ff85aaveAV69atfR21tLeeee/6CX+v662/gAx/4u9Ln6XSaxx//A+eccy42m41EIsHAQB8tLW2n9Ppvecs13H77x9m6dRuGUbiX6sknH2d8fJzzz7+wdF5bWztvf/s72bZtx8Le0HF0dHQyPDxMJpMpBaKlkMvl6O/vO2EgFhERETmR5OQMPcXwFB2f4kD3KANDafLF/uW11Q4iIR8Xnd5SWr7XGvCsyfblK5FCVQUKBkO86U1vWZTXKoQdo9QMAyy+//3v8tnP3o7LVU0ul+Pyy1/GxRf/ySm9/nnnXcCNN/4dn/nMJxkfHy+2VG/luutuOObcV7/6dad0jU984sO4XIdnhz71qc+VOhcCVFfXsGvX2fz+9w8vShA9kcce+79s27ZDLdVFRETkhCzLYnhiqrTv02wjieGJw6tq/PU1tAU8nLU5WFi+1+wjUF+DXcv3ViybNbt71+q3DugaHk6Szx9+z4ODh2hu7lyWAcz1nipZfI899n/59re/wa233jGv582nZh/+8M284hWv4pxzzj3u8eX8XlvLgkEf8Xii3MOQeVDNKo9qVllUr/LJ5fMMDKePaiDRE0uSmiq2Lwea/e7SxrkdYR+RkJeN6/yqWZnY7Tb8fi/AeuDgXJ+nmSpZE3buPIMLLriIycnJee9VNReZTIYzzzzrhIFKREREVrepTJbeWIruWKIUonrjKbK5wh9nq5x22oMedm8NlZpHtAe9VLvUvnw1mFeoMgzjQ8CHgZ2maT5uGMZ5wD6glkKSe7NpmrHiuct6TOCaa646qmkCwPbtO7jxxvcv6XUPHDD5+Mf/v2Mef/3r/4y9e1+zpNeej6Uci8vl4jWvuWLJXl9ERERWjvFUhp5oorR871A0SWwkzexaKE+Nk46wjxed3Va4/ynkpdnvxmHX/U+r1ZxDlWEYu4DzgO7i5zbgPuCtpmk+YBjGLcBtwNXLfWwxvhCrwT33fLMs19282eDee79dlmuLiIiILJW8ZREfmzy891M0SXcswXgyUzonUF9DJOTl/CM20G30Vat9+Rozp1BlGEY18AXgz4H/Kj68G5gyTfOB4ud3U5g9uroMxxbEsix948uSWkP3LoqIiFSkmWye/qHUUeGpJ5ZkKlNYBWS32WgNuNm+rqm0fC8S9uKpqSrzyGUlmOtM1UeA+0zT7DKM0n5DHcCh2U9M0xwyDMNuGEbTch8zTXNknu+7xOl0kUpN4PHUKVjJkrAsi1RqAqdz6dq5i4iIyNylp2ZKy/YKy/iSDAynyBWbmVW7HERCXi7Y0VxqX94W8FDl1P1PcnwnDVWGYZwPnAO8b+mHs/SK3TxKGhpq6OnpIR7vLdOIZC2ora1h06b1VFXpr1nLIRj0lXsIMk+qWeVRzSrLWq2XZVkMj0/xbN84z/aPF/7tGyc6ki6d0+irZn1bPeef3sL61no2ttXT7Pdgt5f3j+1rtWaVai4zVRcDW4HZWap24MfAnUCpP7RhGAHAMk1zxDCM7uU8Np83/NyW6gA+XxDfMnzfqqVp5VnMmo2NTQFTi/JacmL6Oas8qlnlUc0qy1qpVz5vMTiSPmr5Xnc0SXJypnROuLGWjrCPPTubSw0k6r3Vz3kli+Hh5PIO/jnWSs1WoiNaqs/LSUOVaZq3UWgIAYBhGAeBVwJPAu8wDGNP8T6n64DvFk97GKhdxmMiIiIiskZMz+TojSfpmW0gEUvSG0uSKe4t6XTYaAt6OWtzoLR8rz3opbZauwnJ0jjl7yzTNPOGYVwF7DMMo4Zii/NyHBMRERGR1SmRztAdK26cG01yKJpgcCTNbA8od7WTjrCXS85qK22i2+x343SofbksH9sa6kq2Dug63vK/5aKp3MqjmlUe1azyqGaVRzWrLJVSL8uyGBqfOrx8rzgDNZqYLp3TVFdNR6gw8zS7fM9fX7Pqmo1VSs1WoyOW/62nMIkzJ5oDFREREZFllc0V2pcXOvAVZqC6Y0kmp7MA2GzQ6vdgdDQcFaK8tWr4JCuTQpWIiIiILJnJ6Sw9scMzT93RBP1DKbK5wsohV5WdSNDLeUdsntsW8OCqUvtyqRwKVSIiIiKyYJZlMZ7KHLN8LzY6WTrH566iI+zjxbubSg0kwo3usrcvF1kohSoRERERmZe8ZREdSR+9fC+aYCJ9uH15qKGWSNjLhTtb6AgVlu81eF2r7v4nEVCoEhEREZHnMZPN0RtPHbV8rzeWYnomB4DDbqMt4OH0jYHS8r32oBd3jX7NlLVD3+0iIiIiAkBycoaeI8JTdyzJwFCafLFbdG21g0jIx0Wnt5SW77UGPGpfLmueQpWIiIjIGmNZFsMTU6V9n2YbSQxPHG5f3uirJhLyctbmYGH5XrOPQH0Ndi3fEzmGQpWIiIjIKpbL5emNJ49qINETS5KaKrYvB5r9bja21XPpLh8dYR+RkJc6j6u8AxepIApVIiIiIqvEVCZLbyxFdyxRClF9QylmsnkAqpx22oMedm8NlZpHtAe9VLvUvlxkIRSqRERERCrQeCpDTzRRWr53KJokNpLGKh731DjpCPt45Z4NBHwuOkJemv1uHHbd/ySy2BSqRERERFawvGURH5s8vPdTNEl3LMF4MlM6J1BfQ0fYx/nbwqUGEo2+amw2G8Ggj3g8UcZ3ILL6KVSJiIiIrBAz2Tz9Q6mjwlNPLMlUptC+3G6z0Rpws31dU2n5XiTsxVNTVeaRi6xtClUiIiIiZZCemikt2yss40v+v/buPDbS8z7s+Jf3NbPcXXJmuCRnrLWOx5HsldaSEMlH7QpWrkZwE6dJ3NjKAQOxkQNtkjZAkKQH4NawXaRJ7FRu0qSK3RhwEcAJCjQpitR1VCdAmlpJ3DRPfEi73EMcHrtcDof3vP1jXs5ydezyHg75/QALct/nnZmX+9uXwx+f3/N7uDqzwHqtXsDX091BMZ/hLW8cacw+jQ0P0NXp+ifpsDGpkiRJ2kdJknBtfrkx87RRxjc9t9Q4Z3Cgm2Ihw4P3DFHM1zfQzZ3qs3251CJMqiRJkvZIrZZwdbZa30B3UxJVWVxtnFM41cfZMyd4x0Oj9RmofIbBTE8Tr1rSbplUSZIk7cDy6nq6/9PN8r3LUxVW0vblnR1tjOUynL93uFG+N57L0Nfjj1/SUeNdLUmSdAfz1ZVXlO+9NFslSfuX9/d0UipkeOf5sUb53shQP50dti+XjgOTKkmSpFSSJEzNLTVmniYm57lYrnBtfrlxzukTPZTyWR59Q75Rvjc02Eub65+kY8ukSpIkHUtr6/X25fUOfPUZqIlyhd8pxQoAAB62SURBVMXlNQDa2mB0aIBQOkkpXy/fKxWyZPpsXy7pViZVkiTpyFtcXmOinG6em368Mr3A2nq9fq+7q51iLsNj9xcoFurle2PDA3R32b5c0p2ZVEmSpCMjSRLmFlZubp6bJlHla4uNc7L9XZQKWZ585HSjgUThVD/t7ZbvSdqZLSVVIYTPA2eBGlABfiLG+HwI4T7gWWAImAGejjF+NX3MgY5JkqTjpVZLmLxWbZTvTaRJ1I3qzfbl+ZN9FAsZ3vqmM5Ty9fK9k5lu1z9J2lNbnan6wRjjHEAI4d3AbwJvBp4BPhlj/EwI4X3Ap4An0scc9JgkSTqiVtfWuTS1cHMGqjzPpfICy6vrAHS0tzE2PMC5u4cb5XvjuQz9vRblSNp/W/pOs5FQpQaBWgghTz2xejI9/lngEyGEHNB2kGMxxqmtf8mSJOkwqyyuNrrubZTvXZ2uUkv7l/f1dFDMZ3n7uTON8r3R4QHbl0tqmi3/+iaE8BvAt1BPbr4NKAKXY4zrADHG9RDClfR42wGPbTmpGhrKbPXUfZHLZZv6+to+Y9Z6jFnrMWatZy9iliQJU9cW+caVOb5xOf1zZY6pTeufhgZ7OTs6yNseHOPs2CB3jw2Sd/3TtnmPtR5j1lq2nFTFGD8AEEJ4P/Ax4Bf266L208xMhVotacpr53JZpqbmm/La2hlj1nqMWesxZq1nJzFbr9W4OlO9pYHERLnCwlLavhwYGern7EiWdz44SqmQpZjPcGKg+9YnqtWYmans0VdyPHiPtR5j1jzt7W07moTZdqFxjPHTIYR/D1wCxkIIHemsUQcwCkxQ/954kGOSJOmQWFpZ41J5gYvl+UYSdWlqgbX1GgBdne2M5zI8smnz3PFchp5u25dLak13TKpCCBngVIxxIv37U8AsUAaeB94LfCb9+OWN9U0hhAMdkyRJB29uYYWJyfl6971yhQuTFcqzVTZqQgZ6OykVsrzr4XGK6ea5I6f76Gh3/ZOko2MrM1UDwH8OIQwA69QTqqdijEkI4YPAsyGEXwSuAU9vetxBj0mSpH1SSxKmri9ycbLC9J9N8DcvzHKxPM9cZaVxzvBgL6VClsfvLzQaSJzK9ti+XNKR15YkzVlf1AR3AS+4pkrbYcxajzFrPcbs8Fldq3Fl+tb25RPlCksr9fbl7e1tjA71N0r3SoUsxUKGgd6uJl+5Xo33WOsxZs2zaU3VWeDFrT7OzRskSTrGqkurjbK9ehlfhaszC6ynv4Ds6e6gmM/wljeONGafHnzDCHPXq02+ckk6PEyqJEk6BpIk4dr8cmPmaaMD3/TcUuOcwYFuioUMD94zRDFf30A3d6qP9peV73V32VBCkjYzqZIk6Yip1RKuzlbrG+huSqIqi6uNcwqn+jh75gTveGi0UcY3mOlp4lVLUusyqZIkqYUtr65zaarCxU3le5enKqys1duXd3a0MZbLcP7e4Ub53nguQ1+PPwJI0l7xO6okSS1ivrryivK9l2arbPSc6u/ppFTI8M7zY43yvZGhfjo7bF8uSfvJpEqSpEMmSRKm5pYaM08Tk/NcLFe4Nr/cOOf0iR5K+SyPbtpAd2iw1/blktQEJlWSJDXR2vpG+/KbM1AT5QqLy2sAtLXB6NAAoXSSUr5evlcqZMn02b5ckg4LkypJkg7I4vIaE+XKLfs/XZleYG29Xr/X3dVOMZfhsfsLFAv18r2x4QG77UnSIWdSJUnSHkuShOuVFSbKm8r3JiuUry82zsn2d1EqZHnykdONBhKFU/20t1u+J0mtxqRKkqRdqNUSJq9Vby3fm5znRvVm+/L8yT6KhQxvPXeGUr5evncy0+36J0k6IkyqJEnaotW1dS5NLdxSvnepvMDy6joAHe1tjA0PcO7u4Ub53nguQ3+vb7eSdJT5XV6SpFdRWVxtdN27mH68Ol2llvYv7+vpoJjP8vZzZxrle6PDA7Yvl6RjyKRKknSsJUnCzI0lJiYrXJicbzSSmLlxs335qWwPxXyG8/fm6uV7I1mGB3tpt3xPkoRJlSTpGFlbr/HSbPVm+V6aRC0spe3LgZGhfu4ZP8kT6dqnYj7DiYHu5l64JOlQM6mSJB1JSytrXCovpM0j6l34Lk8tsLZeA6Crs53xXIZHNm2eO57L0NNt+3JJ0vaYVEmSWt7cwgoTk/ON8r0LkxXKs1WSdHygt5NSIcu7Hh6nmG6eO3K6j4521z9JknbPpEqS1DJqScLU9cVG6d5GB765ykrjnOHBXkqFLI/fX2g0kDiV7bF9uSRp35hUSZIOpdW1Glemb21fPlGusLRSb1/e3tbG6HA/D9x1urH3U7GQYaC3q8lXLkk6bkyqJElNV11abZTtTaTrn67OLLBeqxfw9XR3UMxneMsbRxqzT2PDA3R1uv5JktR8JlWSpAOTJAnX5pcbM08XJytcnl5gcrbaOGdwoJtiIcOD9wxRzNc30M2d6rN9uSTp0LpjUhVCGAI+DdwNLANfA340xjgVQngM+BTQB7wIvC/GWE4fd6BjkqTDpVZLuDpbrW+guymJqiyuNs4pnOrj3tIp3vamkUYHvsFMTxOvWpKk7dvKTFUCfDTG+AWAEMLHgI+EED4AfAb4oRjjcyGEnwc+AvxICKHtIMf26h9DkrQzy6vrXJqqcHFT+d7lqQora/X25Z0dbYzlMpy/d7hRvjeey9DX00kul2Vqar7JX4EkSTt3x6QqxjgLfGHToT8FPgQ8AizFGJ9Ljz9DffboR5owJkk6IPPVlVtmni5OzvPSbJUk7V/e39NJqZDhnefHGuV7I0P9dHbYvlySdDRta01VCKGdekL1+0AJuLAxFmOcDiG0hxBOH/RYmvhJkvZQkiRMzS01Zp4mJue5WK5wbX65cc7pEz2U8lke3bSB7tBgr+3LJUnHynYbVfwqUAE+AXzX3l/O/hsayjT19XO5bFNfX9tnzFqPMdu+1bUal8rzfP3SHC9cmePrl+sfq0trALS3wXghy4P35nj92CCvHx3k7NggJwa69+T1jVnrMWatxXi1HmPWWracVIUQPg7cCzwVY6yFEC4Cr9s0PgwkMcbZgx7bzhc8M1OhlrboPWiuG2g9xqz1GLM7W1xeY6J86+a5V6YXWFuvf2/s7mqnmMvwzd9UoFiol++NDQ/Q3XVr+/Ll6jJT1eVXe4ltMWatx5i1FuPVeoxZ87S3t+1oEmZLSVUI4cPAw8DfizFuvIP+OdAXQnhbus7pg8DnmjQmSXqZJEm4XllhorypfG+yQvn6YuOcbH8XpUKWJx853WggUTjVT3u75XuSJG3VVlqqPwD8HPC3wJdCCAAvxBi/K4TwfuBTIYRe0hbnAOlM1oGNSdJxV6slTF6r3tJAYmJynhvVm+3L8yf7KBYyvPXcGUr5DKVClpOZbtc/SZK0S21J0pxSuCa4C3jB8j9thzFrPcchZqtr61yaWrilfO9SeYHl1XUAOtrbGBseoFTINsr3xnMZ+nsP537vxyFmR40xay3Gq/UYs+bZVP53lvokzpYczndYSRIAlcXVm9330hmoqzNVaukvxPp6Oijms7z93JlG+d7o8IDtyyVJOkAmVZJ0CCRJwsyNpca+TxfTJGrmxs1GEKeyPRTzGc7fl6uX741kGR7spd3yPUmSmsqkSpIO2Np6jZdmqrdsnjtRrrCQti9vA0aG+rln/CRPpGufivnMnrUvlyRJe8ukSpL20dLKGpfKC2kCVS/juzy1wNp6DYCuznbGcxke2bR57nguQ093xx2eWZIkHRYmVZK0R+YWVtL1T/WZpwuTFcqzVTZa4wz0dlIqZHnXw+MUC/UZqJHTfXS0u/5JkqRWZlIlSdtUSxKmri/esv7pYnmeucpK45zhwV5KhSyP319oNJA4le2xfbkkSUeQSZUk3cbqWo0r07e2L58oV1haqbcvb29rY3S4nwfuOt3Y+6lYyDDQ29XkK5ckSQfFpEqSUtWl1UbZ3kYb86szC6yne9v1dHdQzGd4yxtHGrNPY8MDdHW6/kmSpOPMpErSsZMkCdfmlxszTxtlfNNzS41zBge6KRYyPHjPEMV8fQPd3Kk+25dLkqRXMKmSdKTVaglXZ6tMbCrfuzhZobK4CtTbl+dP93P2zAne8dBoowPfYKanuRcuSZJahkmVpCNjeXWdeGGWv4jlRvne5akKK2v19uWdHW2M5TKcv3eYUiHL6wpZxnID9PX4rVCSJO2cP0lIaknz1ZVXlO+9NFslSfuX9/d0UipkeOf5sUb53shQP50dti+XJEl7y6RK0qGWJAlTc0uNmaeJyXkulitcm19unHP6RA+lfJZH35DnjffmOdnbwdBgr+3LJUnSgTCpknRorK1vtC+/OQM1UZ5ncbnevrytDUaHBgilk5Ty9e57pUKWTN/N9uW5XJapqflmfQmSJOkYMqmS1BSLy2tMlG/dPPfK9AJr6/X6ve6udoq5DI/dP0KxUC/fGxseoLvL9uWSJOlwMamStK+SJOF6ZYWJ8qbyvckK5euLjXOy/V2UClmefOR0Y/+nwql+2tst35MkSYefSZWkPVOrJUxeq95avjc5z43qauOc/Mk+ioUMbz13hlK+Xr53MtPt+idJktSyTKok7cjq2jqXphZuKd+7VF5gebW+/qmjvY2x4QHO3T3cKN8bz2Xo7/XbjiRJOlr86UbSHVUWV29230tnoK7OVKml/cv7ejoo5rO8/dyZRvne6PCA7cslSdKxYFIlqSFJEmZuLDX2fdrovjdz42b78lPZHor5DOfvy9XL90ayDA/20m75niRJOqbumFSFED4OvAe4C3hTjPEr6fH7gGeBIWAGeDrG+NVmjEnavrX1Gi/NVG/ZPHeiXGFhaQ2ANmBkqJ97xk/yRLr2qZjPcGKgu7kXLkmSdMhsZabq88AvA3/8suPPAJ+MMX4mhPA+4FPAE00ak3QbSytrXCovcGFyvtGF7/LUAmvrNQC6OtsZz2V45A35evlePsN4LkNPt+3LJUmS7uSOSVWM8TmAEELjWAghD7wZeDI99FngEyGEHPVfcB/YWIxxaptfs3SkzS2spKV7Gw0kKpRnqyTp+EBvJ6VClnc9PE4x3Tx35HQfHe2uf5IkSdqJna6pKgKXY4zrADHG9RDClfR42wGPmVTpWKolCVPXFrm4eQPdyXnmFlYa5wwP9lIqZHn8/kKjgcSpbI/tyyVJkvbQsWtUMTSUaerr53LZpr6+tu8wxGx1bZ0LL83zjctzvHB5jq9fnuPFq3MsLtfbl7e3t1EqZHn4mwqcHR3k7rFBzo6eINN/PNc/HYaYaXuMWesxZq3FeLUeY9ZadppUTQBjIYSOdNaoAxhNj7cd8Ni2zMxUqNWSO5+4D3K5LFNT8015be1MM2JWXVplolypty9P25hfnVlgPf1/29PdQTGf4fEHRhqzT2PDA3R13rr+aXFhmcWF5Vd7iSPN+6z1GLPWY8xai/FqPcasedrb23Y0CbOjpCrGWA4hPA+8F/hM+vHLG+ubDnpMakVJknBtfrmxce5G+d703FLjnMGBbkqFLA/eM0QxX99AN3eqz/blkiRJh8hWWqr/CvDdwAjw30MIMzHGB4APAs+GEH4RuAY8velhBz0mHWq1WsLV2SoTjeYR9Y+VxVWgPhWbP93P2TMneMdDo40OfIOZnuZeuCRJku6oLUmaUwrXBHcBL1j+p+3YScyWV9e5NFWpb5w7udG+vMLKWr19eWdHG2O5TH3j3EKW1xWyjOUG6Os5dksc94X3WesxZq3HmLUW49V6jFnzbCr/Owu8uNXH+VOctAvz1ZVXlO+9NFtl43cV/T2dlAoZ3nl+rFG+NzLUT2eH7cslSZKOCpMqaQuSJGFqbqkx8zQxOc/FcoVr8zcbQZw+0UMpn+XRTRvoDg322r5ckiTpiDOpkl5mbb3GlekFLk5WmJ5/kb95cZaJ8nyjfXlbG4wODRBKJynl6933SoUsmb6uJl+5JEmSmsGkSsfa4vIaE5s3zy3Pc2V6gbX1m+3Lx4cHeOz+EYqFevne2PAA3V0dd3hmSZIkHRcmVToWkiThemWFifKm8r3JCuXri41zsv1dlApZnnzkdGP/pwfuKzA7U2nilUuSJOmwM6nSkVOrJUxeq97SQGJicp4b1dXGOfmTfRQLGd567kyjC9/JTPcr1j91tLseSpIkSbdnUqWWtrK6zuXphVvK9y6VF1hera9/6mhvY2x4gHN3DzfK98ZzGfp7/a8vSZKkveFPlmoZlcXVm9330hmoqzNVamn/8r6eDor5LG8/d6ZRvjc6PGD7ckmSJO0rkyodOkmSMHNjqbHv08U0iZq5cbN9+alsD8V8hvP35erleyNZhgd7abd9uSRJkg6YSZWaam29xksz1Vs2z50oV1hYWgOgDRgZ6uee8ZM8ka59KuYznBjobu6FS5IkSSmTKh2YpZU1LpUXuDA53+jCd3lqgbX1GgBdne2M5zI8smnz3PFchp5u25dLkiTp8DKp0r6YW1hJS/c2GkhUKM9WSdLxgd5OSoUs73p4nGK6ee7I6T462l3/JEmSpNZiUqVdqSUJU9cWubh5A93JeeYWVhrnDA/2Uipkefz+QqOBxKlszyval0uSJEmtyKRKW7a6VuPKdFq+N1nhQrm+/ml55Wb78jNDAzxw9nSjfK9YyDDQ29XkK5ckSZL2j0mVXlV1abVRtrcxA3V1ZoH1Wr2Ar6e7g2I+w9veeKax/9PocD9dna5/kiRJ0vFiUnXMJUnCtfnlm+3L0yRqem6pcc7gQDelQpYH7xlqzEDlTvXZvlySJEnCpOpYWa/VeGl2sd62fLKSduGrUFlcBerty/On+zl75gTveGi0kUANZnqae+GSJEnSIWZSdUQtr65zqXxr+d7lqQora/X25Z0dbYzlMpy/d5hSIcvrClnGcgP09fhfQpIkSdoOf4I+AuarK+n6p5vd916arZKk/cv7ezopFTK88/wYxXx9/dPIUD+dHbYvlyRJknbLpKqFJEnC1NwSE5P1jXMn0jVQ1+aXG+ecPtFDKZ/l0U0b6A4N9tq+XJIkSdonLZdUhRDuA54FhoAZ4OkY41ebe1V7b2293r588wzURHmexeV6+/K2NhgdGiCUTlLK1/d+KhWyZPpsXy5JkiQdpJZLqoBngE/GGD8TQngf8CngiSZf064sLq8xUa409n+6ODnP5emb7cu7u9op5jI8dv9Io3352PAA3V22L5ckSZKaraWSqhBCHngz8GR66LPAJ0IIuRjjVPOubHtqtYS//MYMf/3CLH994RpXphcaY9n+LkqFLN+ysYFuIUPhVD/t7ZbvSZIkSYdRSyVVQBG4HGNcB4gxrocQrqTHWyap+uJfXuG3/yDS1dnOfcWTfPM3peufCllOZrpd/yRJkiS1kFZLqnZtaCjT1NfP5bJ859+5h3P35Tk7OmgJXwvI5bLNvgRtkzFrPcas9Riz1mK8Wo8xay2tllRNAGMhhI50lqoDGE2Pb8nMTIVaulbpoOVyWaam5gE43d/F3PVqU65DW7c5ZmoNxqz1GLPWY8xai/FqPcasedrb23Y0CdNSGxXFGMvA88B700PvBb7cSuupJEmSJB0trTZTBfBB4NkQwi8C14Cnm3w9kiRJko6xlkuqYox/A3xzs69DkiRJkqAFk6pd6ACa3pq82a+v7TNmrceYtR5j1nqMWWsxXq3HmDXHpn/3bXWTa0uS5jRtaIK3AX/c7IuQJEmSdOi9HXhuqycfp6SqB3gUuAqsN/laJEmSJB0+HcAZ4M+A5a0+6DglVZIkSZK051qqpbokSZIkHTYmVZIkSZK0CyZVkiRJkrQLJlWSJEmStAsmVZIkSZK0CyZVkiRJkrQLJlWSJEmStAudzb6A4yKEcB/wLDAEzABPxxi/2tyrOn5CCC8CS+kfgJ+NMf5hCOEx4FNAH/Ai8L4YYzl9zI7GtDMhhI8D7wHuAt4UY/xKevw176H9GNPW3SZmL/Iq91s65j3XJCGEIeDTwN3UN7b8GvCjMcap/YiLMdu9O8QsAf4KqKWnvz/G+Ffp454CPkb9570/B344xljdzZi2LoTweeAs9dhUgJ+IMT7v+9nR5EzVwXkG+GSM8T7gk9TfYNQc3xNjfCj984chhDbgM8CPpfH5IvARgJ2OaVc+D/wd4MLLjt/uHtqPMW3da8UMXna/wc7vK++5PZMAH40xhhjjOeDrwEf2Iy7GbM+8asw2jb9l0322kVBlgF8Hnoox3gPMAz+zmzFt2w/GGB+MMZ4HPg78Znrc97MjyKTqAIQQ8sCbgc+mhz4LvDmEkGveVWmTR4ClGONz6d+fAb53l2PaoRjjczHGic3HbncP7cfYfn1tR9WrxewOvOeaKMY4G2P8wqZDfwq8jv2JizHbA7eJ2e18O/C/N81WPAN83y7HtA0xxrlNfx0Ear6fHV0mVQejCFyOMa4DpB+vpMd18P5TCOEvQwi/FkI4CZTY9Bv2GOM00B5COL2LMe2t291D+zGmvfPy+w285w6NEEI78CHg99mfuBizPfaymG34Qgjh+RDCvw4h9KTHbvm3By5y8/vbTse0TSGE3wghXAQ+DPwgvp8dWSZVOm7eHmN8EHgUaAM+0eTrkY4y77fD71epr/UwNq3j5TErxRgfoV6Cez/wC826ML1SjPEDMcYS8HPU16npiDKpOhgTwFgIoQMg/TiaHtcB2ihRijEuA78GvJX6b+EaZRQhhGEgiTHO7mJMe+t299B+jGkPvMb9Bt5zh0LaYORe4PtijDX2Jy7GbA+9Ssw232c3gN/gNe4z6jNQE7sc0w7FGD8N/F3gEr6fHUkmVQcg7XL0PPDe9NB7gS/HGKead1XHTwhhIIQwmH7eBnw/9bj8OdAXQnhbeuoHgc+ln+90THvodvfQfozt/1d09N3mfgPvuaYLIXwYeBj4+2nSC/sTF2O2R14tZiGEUyGEvvTzTuB7uHmf/QHwaAjh3vTvm//tdzqmLQohZEIIxU1/fwqYBXw/O6LakiRp9jUcCyGEN1BvdXkKuEa91WVs7lUdLyGE1wO/C3Skf/4a+MkY49UQwluod8rp5WbL38n0cTsa086EEH4F+G5gBJgGZmKMD9zuHtqPMW3dq8UMeIrXuN/Sx3jPNUkI4QHgK8DfAovp4RdijN+1H3ExZrv3WjEDPkr93zYBuoAvAf8oxlhJH/fu9JwO4MvAD8UYF3Yzpq0JIRSA3wMGgHXqCdXPxBj/j+9nR5NJlSRJkiTtguV/kiRJkrQLJlWSJEmStAsmVZIkSZK0CyZVkiRJkrQLJlWSJEmStAsmVZKklhNCeCaE8Au3GU9CCPfs8Wv+QAjhv+3lc0qSjgZbqkuSmiqE8P3APwbeCCxQ33/nWeDfxRh39CYVQkiAe2OMX3uVsS8AjwFrwBLwReDHNvbQ2gshhB8CPhBjfNudzpUktT5nqiRJTRNC+Gngl4GPUd88uAB8EHgr0P0aj+nYg5f+8RhjBrgPOAn80h48pyTpmOps9gVIko6nEMIg8C+Bp2OMv7tp6MvAD2w67z8Ci8DrgHcA7w4hvA+4FGP8+fScfwL8FJAAP7/Va4gxzoYQfhf40KZr+lXg24Eq8OvAv4ox1l4++5TOhn0I+GlgGPgd4MeBNwDPAF0hhAqwFmM8GUL4DuDjQBG4AfxSjPHjW71WSdLh5UyVJKlZHgd6gN/bwrn/EPgwkAWe2zwQQvg24GeAJ4F7gXdt9QJCCMPAe6gnclBPqAaB11NP4J4Gfvg2T/GdwKPAg8D3At8aY/x/1Gfb/iTGmIkxnkzP/Q/Aj8YYs9RLHf9oq9cpSTrcnKmSJDXLMDAdY1zbOBBC+BJwP/Vk61tjjF9Mh34vxvi/0s+XQgibn+d7gd+KMX4lfY5/Drz3Dq/9KyGEj1Nfw/UF4KfSssLvA87HGOeB+RDCvwHeTz0hejUfiTFeB66HEP4H8BDwB69x7ipwfwjhL2KM14Brd7hGSVKLcKZKktQsM8BwCKHxC74Y41vSmZ0Zbn2PmrjN84y+bPzCFl77J2OMJ2OMYzHGH4gxTlFP8rpf9vgLwNhtnuelTZ9Xgcxtzn0P8B3AhRDC/wwhPL6F65QktQCTKklSs/wJsAy8ewvn3q4L4FXq65Q2lHZ4PdPUZ5Ne97LnuryD53rF9cYY/yzG+G4gD3we+NxOLlKSdPhY/idJaooY4/UQwr8Afi2E0Ea9bK4KnAMGtvFUnwN+K4Tw28CLwD/b4fWshxA+B3w4hPA0cJp684udNJOYBMZDCN0xxpUQQjfwD4D/EmOcCyHcANZ3cp2SpMPHmSpJUtPEGD9KPXH5p0CZejLyKeBngS9t8Tn+K/BvqTd++Bq7awDxE9TXWX2DekOM3wF+cwfP80fA/wVeCiFMp8feD7yYJlQfBN63i+uUJB0ibv4rSZIkSbvgTJUkSZIk7YJJlSRJkiTtgkmVJEmSJO2CSZUkSZIk7YJJlSRJkiTtgkmVJEmSJO2CSZUkSZIk7YJJlSRJkiTtgkmVJEmSJO3C/wen+hhFIJHd4gAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 1008x432 with 2 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n", "df.set_index(\"Grid Points\")[\"PM_RUN_CYC (min)\"].plot(ax=ax1, legend=True);\n", "df.set_index(\"Grid Points\")[\"PM_INST_CMPL (min)\"].plot(ax=ax2, legend=True);"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Although some slight variations can be seen for run cycles for many grid points, the correlation looks quite linear (as one would naively expect). Let's test that by fitting a linear function!\n", "\n", "*The details of the fitting have been extracted into dedicated function, `print_and_return_fit()`, of the `common.py` helper file. If you're interested, [go have a look at it](common.py).* "]}, {"cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": ["def linear_function(x, a, b):\n", "    return a*x+b"]}, {"cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Counter   PM_RUN_CYC (min) is proportional to the grid points (nx*ny) by a factor of  8.1021 (\u00b1 0.0057)\n", "Counter PM_INST_CMPL (min) is proportional to the grid points (nx*ny) by a factor of 14.0630 (\u00b1 0.0003)\n"]}], "source": ["fit_parameters, fit_covariance = common.print_and_return_fit(\n", "    [\"PM_RUN_CYC (min)\", \"PM_INST_CMPL (min)\"], \n", "    df.set_index(\"Grid Points\"), \n", "    linear_function,\n", "    format_uncertainty=\".4f\"\n", ")"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Let's overlay our fits to the graphs from before."]}, {"cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAF/CAYAAAChV+O/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XecXHW9//HXlJ3ZMrNtdnZne0k5CakkgRC6oahgQAQUFJQmgijqT7ggRbkoAooNgUsucMUr2K56VfQiYKEjJRClnpTts312ts6WmTnn90c2MZBAdpPdTCZ5Px+PPJI933O+5/udzwzsZ77lOGzbRkRERERERHaPM9UNEBERERERSWdKqkRERERERPaAkioREREREZE9oKRKRERERERkDyipEhERERER2QNKqkRERERERPaAkioREREREZE9oKRKRERERERkDyipEhERERER2QNKqkRERERERPaAkioREREREZE94E51A/YiL3AI0A4kU9wWERERERHZ97iAUuBFYGyyFx1ISdUhwFOpboSIiIiIiOzzjgKenuzJB1JS1Q4QjQ5jWXZKGhAI+IhEhlJyb9k9iln6UczSj2KWfhSz9KJ4pR/FLHWcTgcFBTkwkTtM1oGUVCUBLMtOWVK19f6SXhSz9KOYpR/FLP0oZulF8Uo/ilnKTWm5kDaqEBERERER2QNKqkRERERERPaAkioREREREZE9cCCtqdqpZDJBNNpNIjE+4/fq6nJiWdaM30emz0zEzOl0kZXlw+fLw+FwTGvdIiIiIvsS27YZj1tYtk0iadHQPsCr9b2YzX2Mx5NYtk2+38u/nX0wblf6jvcc8ElVNNpNZmY2OTmhGf8F1+12kkgoqUon0x0z27ZJJhMMDvYRjXZTWFg8bXWLiIiI7CvaI8M8+1oHz73eQe/Avx735MSi3DPIiuAo2T5oyF5CYa4XZ5p/0XzAJ1WJxPheSahEABwOB253Bvn5ATo7W1PdHBEREZE9Ytk2je2DvFYfYUNrH9HBMfqGxhkZS+BxJDBqS1i9rILKnmcp6nuNnNFOHFYCRsDhDnL8mrNT3YVpccAnVYASKtnrHA4noK1SRUREJD1Ylk1z1yCvN/TyZlOU3oExRscTxMYSjMctfI5RVhQNc2hWPyVZPRQmu/DGB/CffjcOl5uxl14m6cjHGViEK1CFM1CNMz+U6m5NGyVVIiIiIiLyNtHBMdZv6uHNxl7ae2N09o6QSFo4sFhUlOCo3EGCVg9NgVWUV4Q4KPYCjlf+CDFw5BbjKqnDGaiCZBxcbrwrTkt1l2aUkqp9zBlnrMHj8ZCR4cGyknzqUxdy/PHv5+WXX+Lyyy/h7LPP5bLLvrDt/M997mLWr3+ZRx99kuzs7J3W+fLLL3HllV+gsrKaZDJBXl4+V155DdXVNdvqOPvsczniiKO2XXPddf/G4YcfxUknreG++9byox/dw9q197NgwUIA7rtvLSMjI3zuc198177Yts3//M/P+f3v/xewsSyLJUsO5tOfvpTLL7+Uyy77AqtWHQFAf38f55//CW699XvMmTOXN998nbVr7yQcDpOZ6SU/v4ALL/wMS5cu2+E+PT3dXHfdVdx11704nZNf4PjWW2/wi1/8lK997RvveV40GuWqq77EXXfdi9utj4yIiIjsPwZj47zW0MvrDb0MxuIkkhbDI3Gau4bwEKcwN5NQcQFHlY6wpO9vZI104EjGYQBwulm6+jjcoRDW4OFYlfNwFVbi8GSlult73S5/QzQMIwD8BJgFjAGbgM+YptltGIYNvApsXcl/rmmar05ctwb49sQ91gHnm6YZm6my/ck3vnErdXWz2bDhLS655EJWrFgJQFVVNU899TiXXPI5XC4XbW1hxsZGJ1VnTU0d9933EwDuuut2br/9u3znO7dPuk2hUCl33/1DfvjDtZO+5p57/oP161/m9tv/g8LCAJZl8dRTjzMyMsK1136N66+/mvvv/xk+n4/vfvdbnHLKacyZM5fNmzdx5ZVf5Prrb2TlylUAtLa2sGnThp3e5/777+X00z86pYQKYN68g3aZUAEUFBSwYMEiHnnk/zj55FOmdA8RERGRfcXYeJINrX3Utw3QHhmmrSdGuHsIGyjIdrDYFyFEhGIilIUiZI33knn0eXjmLSYZbWPsmedx1q6emL5XhbOgFIdzSzrh9Bfh9BeltoMpNJmv3W3gW6ZpPg5gGMa3gVuACyfKDzdNc2j7CwzD8AH3AEeZprnRMIx7gSuAG2eibE9egHd65tV2nv5n+3RWuc0xB5dx2EGTnzs6d+48srOzaW8PA5CVlU1NTS0vvPAcq1YdycMP/4EPfOBk3nzzjSm14+CDl/Pss09Pre3HrGbduhd5/vnntiU67yUWi/Hznz/I/fc/SGFhAACn08kxx6wGoLy8ghNP/CC33/4djjzyGMLhVq6/fksoH3zwx3zoQ6e+7T4VFZVUVFTucJ+xsTH+9rc/8/nP/79tx448cgWf/vSlPPXUE/T393PVVdfy0ksv8Pzzz5JIJPj612+lpqaWl19+iTvv/AH33fcT2tvbuOiicznllI/w978/w+joKFdf/VWWL98yMnb88e/njju+q6RKRERE0kLf0BgP/72Zwdg48aTF4PA49e0DJJNJip2DGLlDnJg9gGthJaHlx1KVZxN7YMtsKIe/CFegGmfgaFzBOgBcBWVkf+iqVHZpn7bLr/ZN0+zdmlBN+DtQvYvLPgi8ZJrmxomf7wY+NoNl+6WXX36J8fFxKiqqth076aQ1PPzwH7Ftm7/85VGOP/79U6rTsiyefvoJjj/+xCld53A4uPjiz7J27Z3Y9q43WGhsrMfjyaCqquZdzzn//E9jmm/x7W9/k2uvvWHb1LoNG97ioIMWTqpdb731BuXllXi93rcd9/n83Hvvf3PppZ/nK1/5MosXL+VHP/opH/jAyfz3f//XTuvq7+9n4cLF/OhHP+X88z/N3Xf/ayTPMOaxceMGRkZGJtUuERERkVSwbZvn3+jk+nuf5+lXGulpC9MeiZFMWlwTepzvBn/JNfm/43TnX1gy/jIHB4apLc3FlZ1H1inX4PvUnfjOvo2sEy/Hu/xUXIEdv9SWHU1pgYhhGE7gUuD32x1+3DAMN/AwcINpmmNAFdC03TnNwNaIzETZtDliUSlHLCqd7mqByT/z6LrrrsLj8ZKTk8NNN92K3+/fVrZs2Qq+851bePLJx6mrm0VeXv6k7t3YWM95532cnp4ucnPzuPvufyUW77b74TuPH374kTzwwP389a9/3uX9JpF3kZGRwZlnfoxnnnma2tq67a6d/K54XV2dFBYW7nD8uOO2JI2GMQ9wcPjhR078PJ8nnvjbTuvKysretq5swYJF3HHH97eVud1ucnJ8RCI9Ox0xExEREUkV27bp6I3R8torDDS9hbu/lS/n9FNo9+EqmUXOqdcBMPrk6+Ceu930vXIcrn+lA+7Q3FR1Ie1NddX9D4Eh4I6Jn6tM02wxDCOXLeuurgeum8b2TbtAwPe2n7u6nLjde+/pzZO51803f5tZs2a/7ZjL5cThgIwMF8cffyLf+tZNXH/9Ddvqc7vfvR8ul5Pa2jruv/9B4vE41113Nd/5zi3cdNOtABQWFjI0NPC26/v7+wkEArjdTpxOB06nA7fbyWc/+3m++c0bWb36+G3HdmbOnNmMj4/T1tZCVdW7D2y63W7cbtfb6pk3bz6m+TqrV6/e5WuVnZ1FPD6+QzuyszNxu51kZLjxeDzbyjMy3FhWErfbue013frvd56XTCYn2rjlWDw+TnZ21rS9X5xOJ8Ggf9cnypTpdU0/iln6UczSi+KVft4tZqPjcRrf2kTHprcYa28gMRTlJwOHMTya4CLfX1npaWXMn09+1Wy8pXVkls0me2tdp39+L/bgwDLppMowjNuAOcAa0zQtANM0Wyb+HphY47R1YUsz8L7tLq8CWmawbNIikSEs618jIZZlTWr0aDpMdqQqmdyxTcmkhW1DImGxZs1peL2ZrFhx2LbzEol378f21zocLr785as566yP8OabbzJnjsHy5Yfyf//3B4499ni8Xi8bN26goaEew5hPImFhWTaWZZNIWCxcuISKikoeeeRhjjlm9bve0+PJ5KMf/Tjf/ObX+frXb6GgoBDbtnnssT+xYMEiyssrgC3PPLBt+231nHXWuXzpS59l6dIVHHLIlk06mpsb2bDB3GG6Y03NLJqamnZox9bXI5m0gH/Vv/1r8c5/v/O8rc+RSiQsensjOJ0uCgoC0/Z+sSyL7u7BaalL/iUY9Ot1TTOKWfpRzNKL4pV+tsZsJBajdcNGXh/IIdwzQmXP06yy15HpSFAFJG0HUVeAw+YFqAjlM6doDjmBfPxZW5KoJDAMDCv+k+Z0OnYYhJmMSSVVhmHcBCwHTp6Y3odhGAXAqGmaIxPT/84A1k9c8ifgDsMw5kysgboE+OUMlh1QgsFiPvGJT+329YWFAc4++xz+67/u4eabb+NDHzqVzs4OPv3pT+J0uvB6vdx4483vOrXw4osv44ILPrHL+3zmM5fxi188yOc//xlgy9D04sUHs2rVke953Zw5c7nllu9xzz138e1vf5PMzMyJLdUv2eHc8vIKfD4/zc2N77l+a089//xzHH30sXpQtIiIiEy7pGXR2jVMS309ztb15Ix04B/roNDuI+Sw+a/+UyGvlAp/iC73MrzF1QRq5pJfXk2+20NtqjsgOHa1fsUwjAXAa8AGYOsq/QbgW8BatnydnwE8C3xx606AhmGcOnGOC3gFOM80zeGZKpuEGqDhnSNVHR1NhEK72ndjekx2pEqm5rHH/sTrr7/GF794xbTXvTVmn/vcxW97ttd02JvvvQOJvpFNP4pZ+lHM0ovitW8ZGBpl84Z6ok2bcA+G8Y928vDwQWwaK2JhRjOf9j/OoMNH1F1MPLeM3LJZhBauINuvKZx7w3YjVbVA42Sv22VStR+pQUnVfuvXv/4Fp5125pSfVbUrbreT7u4IL774PCee+IFprVtJ1czQLw/pRzFLP4pZelG8UsO2bbojAzRt2Ei4L0njcCaJaBuftH5DljMOgIWDflchG4LH45+9jNklWRTkOCipLFPMUmR3k6qpblQh+7ALLzx32+YKWy1YsJArr7xmxu750EO/5de/3nEW5rXXfo05c4wZu+87nX76zO2uX1BQMO0JlYiIiOw/bNumKzpCQ1sU18bHcQ+E8Y12ECTKPIdNx/hCotlHUxooIWovIVE+m6K6OWQEKslze6ja9S1kH6ekaj9y330/2ev3XLPmw6xZ8+G9fl8RERGRVIiNxtls1hPraMDZ10rmcDstI1n8anAZYHNT/pPYThcD3hK6CheSXz2Hk+rms8ZfNFHDslQ2X2aIkioRERERkZ2wkwmS0TA9HZ2sHw7xan2EE6M/o87dBYBlO4g68ikqMPjUEQZ1ZXkU+VeSkeWjLMVtl71LSZWIiIiIyITRzS8xYL6AFWkhc6QTFxZYHn7Z9zHKgz6Gy1cSDWRSVDMHX6iaPLeXmlQ3WlJOSZWIiIiIHDBs28Ye7sXqaSbR00SsowEr0sKjxRewqXOEJQOPc4hnM62JQnqcC7HyKwjUzuW2gwwK87KAlanuguyDlFSJiIiIyH7JthJYfe1YPc24KhYSjXuJvvQwJZt/B4BlQ6+VSzhRwPreFoKhEPFFp9BeVsDs0lwO8Xv1jEqZFCVV+5gzzliDx+PB4/ECsGzZci6//Mvce+/d1NbWcdxxJ/Lyyy+RSCQ49NDDJlXnM888xb33/ge2DbZtccEFF3PMMat3OO+FF/7O2rV3Ul+/idNP/xif+9wXt5Ulk0m+//3beP75Z3E4HJxzznk73aDCtm0cDgc33XQD1157w7af96aNG02+//3b6O/vA+Cyy77IqlVHsHGjyc0334hl2SQSCRYtWsKXvnQlHo+H//mfn/PHP/5+Wx1tbWHWrDmVL31px2dfvdfr+c74XXrp51m5ctVe6LWIiMiBbevvHMm+DobWPUS8q4mMoQ6cdgKAB+Mn8MJgKcVOMLwrSeZWkFNaQ1V5EXNKc7klkI1TCZTsJiVV+6BvfONW6upmv+3YRRddsu3fr7yyjpGRkUklVbZt8/Wvf5W77rqHurrZbNq0kUsvvZCjjjp2h2c6lZWVc9VV1/L4439lfHz8bWWPPvow4XALP//5/9Lf388FF3yCFSsOpbT07csw//CH3xGJ9DA2Nsbf//4sf/3rY1x11XW4XK6pvgw7OOOMNfzqVw+95zkjIyNcc82/8bWvfYOFCxeRSCQYHh4CoKqqmrVr7ycjIwPLsrj++qv43e9+w5lnnrXtD0AikeDDH/4gJ5yw4zbqk3k9dxY/ERERmR62bWPH+rAiTSS6mxgM12P3tvBq5nL+Pm6Q7Gvn056XCCcLaU0YRFxBxv3leMtK+URpPnVluVQEfWS4p/fZlnJgU1KVJm666QbmzZvP0qXL+d3vfoNlWbz00gscd9yJnHvuee95rdPpZGhoS2IxNDRIIFC004fkVlRUAvDUU0/sUPbXvz7GmjUfxul0UlBQwFFHHcPf/vZnPv7xT77tvDVrPsyzzz7Nj350D263m+uvv3GHkaqmpka+9KXLuOuuewmFSrnvvrU0Nzfy7/9+81Rekp167LE/sXjxEhYuXASA2+0mLy8fAK83c9t5iUSCsbExnM4dv5F65pknCQQCzJt30E7vMdnXU0RERPaMbSWx+juwIs1YGTm0uqupb+rksNe+ue2cwaSf1mQhm0acePJdBGfP5rWia6kK+Tmh2EdOZkYKeyAHCiVVOxF7aMdf7t11h+JZcBx2YoyRh7+7Q3nG3CPJMI7CGh1k9LE7diw/aDVuY3LTwK677qp3nT42a9ZsTj31I4yMjLxtet4VV1zORRddskMi4HA4uPHGm/nKV75MZmYWsViMb3/7+5Nqx/Y6OzsIhUq3/VxSEqKrq3OH8/7wh9/S09PDMces5sQTP8itt36DK6+85m0jVdXVNVx88Wf56le/wkUXXcKf//wI997731Nu0840Ntbjdru54orL6enpwTDmcdllXyQ3NxeAnp5urrjiC4TDraxadQSnnPKRHer44x9/z8knn7LT+ifzev77v18P2CxatJTPfOYy/H7/tPRNRERkf2ZbSRzOLb8vDDz5AKNhE89QO66J6XuvJaq4Z+BYANr8R4G/BG9xFbNqQiypzOfoHE+qmi6ipGpftDvTx2677fadHk8kEvzkJ/dz883fYfHipfzzn+v56le/wgMP/A/Z2dnT0dy3OfnkU7etqTrssMNZuXLVTtdUfeADJ7Nu3Yt85Stf5s477yUnx7fT+q666kt0dm5J3np6ujnvvI8D4HK5dvqw42Qyybp1L3L33T+isLCQH/7we9xxx/e45pqvAVBUFOT++3/KyMgIN954PU888VeOP/79267v6elh3boXueaaG3banl29nnfeeQ8lJSHGx8e5/fbv8L3vfYuvfvXrU3oNRURE9ndWrB+rp4lEpInRjkasSDOjeHg0cC71bQN8YOQtvI4E4cRcelxBYtml5FdX8dnqIuZW5pObs+PacJFUUlK1E9lrvvKuZQ639z3LnZn+9yzf2zZt2kAk0s3ixUsBWLx4KVlZWTQ1NTB//oJJ11NSEqKjo33bNe8cudpqawJ17bU3vO3nd4rH4zQ01OPz+YlGI+9631tv/d62f59xxhruv/+nu2hnKcuWraCoaMtTy0844f3cfPONO5yXlZXFccedwKOP/ultSdXDD/+BVauOID8/f6f17+r1LCkJAeDxeDjttDO5+ur/957tFRER2Z/ZloU10IHV08xopJ1NhUcS7h6mdtPPqBo1AYgmfYSThTQming50k1ViY/e+Rcxr7qAhcU+vBl7vi5bZKYpqUpDOTk59PR0T+rcYLCYrq4umpsbqaqqobGxgUgkQnl5xZTu+b73Hc9DD/2WY45ZTX9/P0899QR33PGfu9N8AO688wcYxjyuueZrXHHF5dx9939RXFyy2/VttXr1CVx55eXEYsNkZ+fw/PPPMXv2XADC4VaKi0vIyMggHo/z1FNPMGvW20cEH374IT7/+S+9a/3v9XqOjIyQTCbx+XzYts2f//zItnuLiIjs7+zEGDgzcDid9L76NInXHp2YvhcHIGE7ubcvkxHby8Lc+ZTkLSIjWEVxMEBpIJvFRTmck60pfJKelFSloaOPfh/XXnsl55338W0bVbzbmqpAoIgrrria6667Codjy2YK11zzNXJz84C3r8X6xz/Wc8MN1zA8PIxt2/zlL49y9dXXs3LlKt7//pN4443XOOus0wA477yLppyYbfXkk4/zyivr+M//vB+v18sFF3yaG264lttvvxu3e8/ekqFQiI9//JN85jPn43Q6KS0t49/+7VoAXnvtnzz44I9xOJxYVpKlS5dz3nkXbrv2n/9cTywW49BD37727a233uDee+/mtttuf8/XMxxu5brr/g3LskgmLWpqavnyl6/eo/6IiIjsi+zxGMnOzSR7mohNTN/LiHXzWPF5PN+eQeWIyRHeMcLJ2UScQeyCCoLVdXyhuojKYh9ZXv0KKvsXh23bqW7D3lIDNEQiQ1jWv/rc0dFEKFS9VxrgdjtJJKy9ci+ZHjMZs7353juQBIN+ursHU90MmQLFLP0oZullT+Jl2xZ2fxfJSDMjHQ1E8ubT4SjGan2VxU0PAhBJ5hBOFhJOFvCqYz4lFRXMq8pndkUeJQXZSqB2gz5jqeN0OggEfAC1QONkr9O7XERERESwE+OQGMfyZNPW3Ibnuf/EO9yOy9oyfc+yHfw5FuW5sbl4SbKoYA2+slpqqkKUFeWwuCCLM7My3nU9tcj+bJdJlWEYAeAnwCxgDNgEfMY0zW7DMA4D1gJZbMnkzjFNs2viur1aJiIiIiKTY9s2yfAbjHU2MNLRANFWPLEu3vAu4b8jBxMfH+dS/xhtyVn0e0pwBaooqKhlVUkeH8rLpNCfidejDSREtprMSJUNfMs0zccBDMP4NnCLYRgXAQ8A55mm+bRhGNcBtwAXGIbh2Jtl0/ViiIiIiOxPbNsiHu0gXv8Gw231DCdc1BccTnPnEO9rvAs/w8SS2bQmCwknF9FDFYctCDG3Mo9g0SoWFGRp9z2RSdhlUmWaZi/w+HaH/g5cCqwARk3TfHri+N1sGT26IAVle8S2bQ1Vy15l2xag95yIiEwfOzGONdjDUEaA7v5RPOsexN+1niFrfOIEB03xcn40VIg3w8V46FRKyssJlRVTkZfJ0rxMsjMzUtsJkTQ1pTVVhmE42ZJQ/R6oApq2lpmm2WMYhtMwjMK9XTaR+O0Wt9vD8PAAOTm5Sqxkxtm2TTKZYHAwiseTmermiIhIGkv0NNG/6Z/E2utx9ofJGe8hbru4OnoWNg5WZyYocNYynFWKO1BFQVUtxYE8binIIpDrxeV0proLIvuNqW5U8UNgCLgDOG36mzPzJnbz2CY/P5OWlha6u1tT1CI50LjdLgoKCigqKsKp/6HNiGDQn+omyBQpZulHMds7bNsm0d/FWEcD0caNDLZu4uXiU3mrbYSajr+yOmM9MSuLcDLAcPYyHIFqLjr6IEqLcinKP5ZgQTa+LI0+pSN9xtLLpJMqwzBuA+YAa0zTtAzDaAaqtysvAmzTNHv3dtlUOvzOLdUB/P4g/r3wvtX2mOlnJmMWiQzPSL0HOn3O0o9iln4Us5lhJxNY0TAOX4DeMRe9rz9H0Ru/IMMaA7bsvtdn5fLExtfxBsoZqTmKV0tOoqKylGVFObhdO35RNzI0ii8rQ/FKM/qMpc52W6pPyaSSKsMwbgKWAyebpjk2cXgdkGUYxpET65wuAX6ZojIRERGRtGKNDjLy5tMMtzdgR5rJHOnCicWDo8fyQqyKUleUI73VDGeV4irasvtedUUR/x7MIcOtzSNE9iWT2VJ9AXANsAF41jAMgAbTNE8zDONcYK1hGJlMbHEOMDGStdfKRERERPZFtm1jD0VI9jQx3N7ASEcjzd7ZvDQ2i/6uNj7v/AVxK5PWRCGdLGDMV0ZhxVw+WRqiIuijsvjD2rpcJA04bNve9Vn7hxqgYWfT//YWDeWmH8Us/Shm6UcxSz+K2c7ZVgIr2k4ykaDLGaS5vY+5L3wTrxUDwLKh28rlydH5bMw5mMpgDrMKoaSslIriHAK5mTOyaZbilX4Us9TZbvpfLVsGcSZlqhtViIiIiMiE4dceZ6j5TezeFjJjnbhIYsbLuGvweAA+lDMHV04+jsIq8sprKS8L8PFgDpke/Qomsj/RJ1pERETkXdi2jT0cJdHTxFC4ntHOBsZGx/i/zFNo6RrizOSfKHX10ZosoJuDiOeW466u5eKKaipL/IQKj9XW5SIHACVVIiIiIoBtJUlG2xhsayScPZ+2SIzQxl9TO/wPADKAvqSflkSAFs8gVSV+OoIX4C4pYE4ol0N8Hj3zUuQApaRKREREDkhd0RgbX3mZ3PYX8Y12kJ/swU0SN3Bf9Az67WwO9oVo8eXjDFThL6+jLBTgsKIcjtHmESKyHSVVIiIist+ybRs71kekaSP9zZtx9beQOdzOb+3jeLE7m+Week7PeYseRxFhzxKSuRV4Sqq5pKKG0qCf3GxPqrsgImlASZWIiIjsF2zLYrCzhVbzTSLOIvrcRbh6NnJUx4NkAplAd9JPvVWIy+fiY6tns3zOSgL5FxLStD0R2QNKqkRERCTtJC2LcPcw7R0RApv/QOZQG9mjXWSQoBJ4NbaER0aXkJcB7uJjyaucTflcg9JAAXVeN0ekugMisl9RUiUiIiL7tNH+Xto2vkm8uxlXfyuZw+28OVbCzwYOwYHFDflv0JnMZcCzgKxQDeVz53FyRQ2nZ3pxu7TznojMPCVVIiIisk+wLYtYdxt9LZuIxUZozFrIG429nBq5h6BzCIBI0kebI4AjUM2FR82nriwXX9bRlGdm4HRqCp+IpIaSKhEREdnrrESc6HCS3sFRePMxMtv/QfZoJx7i5AJjST8/6/dSlJfJprIPEi8vIr9qFuWFhdS4NfokIvsWJVUiIiIyY2zbprsrwmDrRqxIM66+VjIGw2RtPt56AAAgAElEQVQlBrg6ehYWTtZkNVKbEacx8yA8wWp8ZXVkh6r4bl4OeTl69pOI7PuUVImIiMi0sG0Lq7+TvpbNDLRu5nl7Ca80x1g6+gIfyl4PQG8yh05nEXH/PM5dVkthIJ8C/6EE87Lw6tlPIpKmlFSJiIjIlNmJcQAGxqD19X/gN39PzkgHHuJ4gALbQWMsi/LKeVSWvY+erMPxFlcTKCykOisjtY0XEZlmSqpERETkPdmJcRIdGxkK1zPa2UDXQBveWCd/sI/lL9FKyly9nJEzRkPGPKz8CrJLaympncUVoQLtviciBwQlVSIiIgJsWf9kD3Yz3N7AQMtm2u0A/xivpK+ri4vj9+MGElY2TYkCelxLoLCcjy6dzeyKPKqKT8OToel7InJgUlIlIiJyALKTcZKxQXrimbR0DhJcdzf+WBgPW6b1+WwHraPzedWRTXlRLs8GPk5OaQ3FoWKOnVfC6PBYinsgIrLvUFIlIiJyAIi1mkQb3mS8qxH3QBh/PEJDopgfDpwIwDk5TlzeOSRyy/EU11BYWcf7Sgv4sM+7Q13+bI+SKhGR7UwqqTIM4zbgdKAGWGSa5msTxxuB0Yk/AFeZpvnIRNlhwFogC2gEzjFNs2umykRERA50tm1jD0WItdfT37yJ4f4of8s4lqaOQT48/nvme9rot7LosAPUZy4jUVLL+UfOo6rYT1nRMWS4NX1PRGR3THak6rfAD4CndlJ2xtYkayvDMBzAA8B5pmk+bRjGdcAtwAUzUTbVTouIiKQ7O5kgGQ0zkBGkuSsGr/+Jiu6n8NpbRpB8Ngwn86hnMRUlefQXnE5jSSHllaUs93v17CcRkWk0qaTKNM2nAQzDmGy9K4DRrdcBd7NlZOmCGSoTERHZrw12hhnYuI5EdxPugVZyxrpxYXFz32lELD9LM+Is8c8i7i/HW1JDoKqOyrIAt2Z7Ut10EZH93nSsqXpwYhTpaeAa0zT7gCqgaesJpmn2GIbhNAyjcCbKTNPsnYZ+iIiIpJRt29jDvcTaG4g2byLe3cTfnctZ151F1egGLvA/waCVSThZyIB3KVZ+OScvXUBFWZCK4qPJ9GiptIhIKuzpf32PMk2zxTAML/B94A7gnD1v1swJBHwpvX8w6E/p/WXqFLP0o5ilnwMxZnYywVhPmN4RaBrMoGPzRua98Z947S3LlHNt6LH8jLjrWDS7krmllUQLP0BpRRkLCrNT/vynAzFm6UzxSj+KWXrZo6TKNM2Wib/HDMO4C/j9RFEzUL31PMMwigDbNM1ewzCmvWwqbY5EhrAse6pdnRbBoJ/u7sGU3Ft2j2KWfhSz9HOgxGxkZJTelx9jrHNi973xbtwkeXRkEX8cORgvcc4urGHcV463uJpAzWyqK4JcmJnxjppsor3DKenDVgdKzPYXilf6UcxSx+l07NYgzG4nVYZh5ABu0zT7J6b/nQWsnyheB2QZhnHkxBqoS4BfzmCZiIhIytm2jTUcpa95EwPheqyeZjoSfh4aXkp3X4yb83+PEyftdoBG72Ks/ErKyudwXWU15cEcvBnvT3UXRERkN0x2S/XbgY8AIeDPhmFEgDXArw3DcAEu4A3gswCmaVqGYZwLrDUMI5OJ7c9nqkxERGRvs60kVl870e5u6q0yGtsHObj+XkJWBx6gCOhO+hl21lFV4uPwRSHa86+lvLyYg/OytPueiMh+xGHbqZkKlwI1QIOm/8lUKGbpRzFLP/tizF54s5PX6ns5qKaAJbOLyPK6SVoW/W+9QGzzKxBtIWe0EzdJBqxMru/7KG6Xg5MCTRT5M/CGaghUzqasLLBfbh6xL8ZM3p3ilX4Us9TZbvpfLVsGcSZl//svvYiIyG6KjSb41Z/W0bl5A1UZUcbqI7Q+2cd99hn0DCY4NesFDvFs3rL7nmchVn4FOWWz+FrdbMqLfSnfPEJERFJDSZWIiByQbMtipCdMf8tmGqigIWKRsflvnOZ6DiY23UpkBehxhpif48VXUEauv5ahYD4LQ368Ga7UdkBERPYZSqpEROSAYFk24fp6RtY/jLO/lYJENx5HEh/w7OBqNjuqWR6sY7C2lOJZBq7CChzeHAqAOaluvIiI7NOUVImIyH7FGhlgpL2BvpZNjHc14hls41l7CX+JVhGwI1zu/yc9ziIafQdjF1TgLa7hnJo6igN+nNo8QkREdoOSKhERSUu2bWH1dzLY1kB3zMXGRIiO9i7O7L4TgFygN5lDKwEsn49jDy6nusTAW30yC/yZqW28iIjsV5RUiYjIPs+2LZIWdERijL/wC1y9DfhHO8kgjgvoGK/iV0PHUpSXyXO5x5MZLKOgcjYVFSVU+Tys1AiUiIjMICVVIiKyT7FHhxhqq6eveSPx7iY8g20MJjL4Xv+JJJI2n/Vvwu2waPLMI5FXgbekhuKqOn4YyicnMwM4PNVdEBGRA4ySKhERSQnbtkj2d9O0+UXaNtfzD+8KWrqGOCLyG+Y5m8gHosls2iliILuCE1ZUUlnso7RkJaHCLFxObV8uIiL7BiVVIiIy4+xknJG4TWt3jOG3niM//Az+8U68xAEosh38rb+AwkAeLcEjSOQdS37lLMorQlTleFLcehERkfempEpERKaVNRajr2kjfS0bSfQ04x1qIy8R4db+NXRa+RziaeXIrHHaM+dj51cQqDPIDlbwveICMtwafRIRkfSjpEpERHaLbdskB3voa97IQGs9pqOWN6LZZHW/zrnePxME+qwsepxBwjmzWG3UUVxRQWXx4RT4vTgmNo8IBv10dw+mtjMiIiJ7QEmViIjskp1MYMXH6BiCtqZWgq8/iG+0Ay/jeIGA7aB1ZBVDeQcTqlvAhuwKCmpmU15eSqXHlermi4iIzCglVSIi8jaWZTHY+DoDLZuJdzeRMRjGH+/hqbH5/O/wcjJI8LncEcLeuVj5FWSFaglWz+b80gLcLk3fExGRA4+SKhGRA5Rt28QHeuht2shgaz09MXhi7CDC3YNck/lT8p1jDFiZtFsBNmcejLd0PhfVzqe6xE8ocLx23xMREZmgpEpE5ABgWwmGI120xrJo6RoiaP6KsthbZDFGDpBlQ2+yEss/nxXzSmjIOo/CUCmh8lKW53i2rX8SERGRHSmpEhHZz9i2TXfTZgY2v0qipwnvUBv5iR7GbDff6vsY4OCUXDfj2XOw8irJDNVQXDuHQ4oLWOlU8iQiIjJVu0yqDMO4DTgdqAEWmab52sTxucCPgQAQAT5pmubGVJSJiByIbNsmOdRLtHkTQ+F6rEgzD7uOw2yLsdrxPMdnvc6Q5aXbGaTLtwJnYRX/7/hFVIbyyPOtTnXzRURE9huTGan6LfAD4Kl3HL8buNM0zQcMwzgHWAusTlGZiMh+zbaSDLa3EB7x0BJNYjevY2nkT2QzSiaQCXQn/Yy5IyybW0VJcA29wbMoLS+lNEOTEkRERGbSLv9Pa5rm0wCGYWw7ZhhGMbAMOGHi0M+AOwzDCAKOvVlmmmb3FPssIrJPG4snaQ93MrLhOaxIC5nDbRQkI2Q4kjwyeCz/jFcxN8emwDeLRG453pJaCqtmUR4K8GVtXy4iIrLX7e7Xl5VA2DTNJIBpmknDMNomjjv2cpmSKhFJS7ZtM9bfS/smk4HwZpzRFtaPVfJ4tJwi5wDX5T/EsOWlxxUk6l+Go7CK99cu4vyKMvJyPKluvoiIiEw44OaEBAK+lN4/GPSn9P4ydYpZ+tkXY2ZbSaLhZsId/WyO+Whq7WV14w/JIUYRUAREyaUiv4azDjGoDvnw5B5DVVXFAfHsp30xZvLeFLP0onilH8UsvexuUtUClBuG4ZoYNXIBZRPHHXu5bEoikSEsy97Nbu+ZYNBPd/dgSu4tu0cxSz/7Qsws26a7b4T+fzxOsmsTnsE2ChLdZDiSNI6Xc9/QceT5PFT75+PJKyKvoo7SOfOoysuj6h11RXuHU9KHvWlfiJlMjWKWXhSv9KOYpY7T6ditQZjdSqpM0+wyDGM9cDbwwMTfr2xd37S3y0REUmV0oJfu+o0MtdVDbzMjo3HuGTiKsfEkl/sfp9TVR7eziF7fUpyF1RRUzOb7dbPJzfEAR6a6+SIiIjINJrOl+u3AR4AQ8GfDMCKmaS4ALgF+bBjGV4Eo8MntLtvbZSIiM8qykgx0hIk01/OWXUNL1xALOv/AUt4iH8gHei0fIxmlHLkwRFWJn4LCBRSEApRo9z0REZH9msO2UzMVLgVqgAZN/5OpUMzSz3TELGlZdERi9Gx6HVfzC3iHtkzf8zoSAFwbPZPM3AJW5XdRlR0jO1RHUe1sioIBHA49PHeq9DlLP4pZelG80o9iljrbTf+rBRone52+PhWRA9pwX5Tuhg0Mt9VDbws5I+3cP3QUzeP5HOrZxEdy/knEGaTZtwRnURX+8jpurptDTnZmqpsuIiIi+wglVSJyQLCsJL1trfQ2baJpNBezPxNX11uc4/wjASAA9Fk59HmKWTk/yPsr51BZtJyCogspduvZTyIiIvLulFSJyH5nPJ6kPRIj3NaDb8MfyBxqozC5ZfpeKbAudjDh7JXMKq5hs/tEsktrCdbOpSJQSKXDwaJUd0BERETSipIqEUlrg9Feuuo3EGtvgGgLvtEOXhsJ8b+xFTix+Eb+a/S7Cmn1L8ZVVE1uxSw+XDOLs7OzJmo4JKXtFxERkfSnpEpE0kLSsoiEW4k0baS3b4gXR7bswPcF54MUu2IA9NvZDHpDBIvruGTuAqpK/ATzVhM6AB6eKyIiIqmjpEpE9jmjY+OEIyO0dA3h2fhXCvvfpDDZTZYjTgXgSeYS8XyCeVX5dHrWEC/KJ1g7h4rCIu2YJCIiInudkioRSRnbtumP9k1M36uHaCu+0Q581iDf7PsYNg7O9LdT5LXoyF2Eq6iavIpZVNbO4uuZW6fvLUhpH0RERESUVInIXpFIJulqDdPbtJHxrkaeji9gc3ecI+0X+UDWPwEYtLPp9xTTnTuPzx0zj8rSQgJ579Ozn0RERGSfpqRKRKbd8PAo4e4hmntGiLW8xeyexwlY3fgd4/gBy4YX3cUsmT2bUO6xRLJWEaybS1lBgLJUN15ERERkipRUichus22bSHSQ7k1vEmtvwNHXgn+0gyKiPDJ8BK+M12JkD3JQTpIe/0JcRVXkVc6iqHo2n9k2fU9EREQkvSmpEpFJGY8n6WwN09u8kfGuJjbH8ni6N4g33scN+b8BYJhM+r0h2nPnccLKFZwzax75Pg8Ox0dS3HoRERGRmaOkSkR2MDgUIxzuprHPQUvnIId1/Iyg1U2+c4x8tkzfG3YfzKEHLaQqWEefo5hg7RxK8goJaf2TiIiIHGCUVIkcwCzbpjs6QtemNxhp24SzrxX/aAdBRy+DiRJ+OXgCBX4vh2ZnE80+iMHglt33AlWzODYze7uaKlLWBxEREZFUU1IlcoAYHUvQHm4j2rSJ8e5Gxgf7+VnfMsbiST7rf5T5GR3EyGQgs4SuPINA2Ry+v+hwcrM9wBGpbr6IiIjIPktJlch+aGBwhPaGejYP59DcNURp51McYv2DIucoRRPnRB0FHLXog1SGcinJqsRbnI8vt4gSTd8TERERmRIlVSJpzLJtevpGaG9sZqz5HzgmHp5b7OilzJFkbd/puP0BKvIKGXTPY7SohrzKWRRUzcLvzebjqe6AiIiIyH5gj5MqwzAagdGJPwBXmab5iGEYhwFrgSygETjHNM2uiWumvUxkfzcWT9LW0k5f80bGuhrxDIZ5aHABTaN5LPM08CnfU4zgZSCzhJ68Q8ksqeXGhSvx5ealuukiIiIi+7XpGqk6wzTN17b+YBiGA3gAOM80zacNw7gOuAW4YCbKpqkPIvuM/oER2poaCfcl2NTrYLSziTOth942fW/Akcthtcs5ttqgunAB3tw1+PKCFGv6noiIiMheNVPT/1YAo6ZpPj3x891sGVm6YIbKRNJS0rLoiMRo7ejD2vwMzr4t0/dKHFEqHAleHVnM5ozDmFUUZMg2GC2qnpi+Nxt/Zg7lqe6AiIiIiExbUvXgxEjS08A1QBXQtLXQNM0ewzCchmEUzkSZaZq909QPkRkTG03Q1tpOtGUT411NeAbDNMR8/Cm2CAcWtxY8hu1wMpBZQm/eIWSW1HDSnIV8NLg1dTo0pe0XERERkZ2bjqTqKNM0WwzD8ALfB+4A/nca6p0RgYAvpfcPBv0pvb9M3VRjZts2nb3DtGzcTEdrO68OFVIf7ufs+K+pzeimZOK8IaefrIrFzF++jLryPEqzj8aTW4hD0/f2mD5n6UcxSz+KWXpRvNKPYpZe9jipMk2zZeLvMcMw7gJ+D/wAqN56jmEYRYBtmmavYRjN0102lfZGIkNYlr07Xd1jwaCf7u7BlNxbds+uYhZPWLT1DNPcNchYwytkR0z8Yx2EnL0EHAmcyWx+5/okVcU+kq7lRHwe8itnk1teiz/LT+l2dQ2Me6BnaOY7tZ/T5yz9KGbpRzFLL4pX+lHMUsfpdOzWIMweJVWGYeQAbtM0+yem/50FrAfWAVmGYRw5sQbqEuCXE5fNRJnIjBuIjRNu7aCveTPx7kY8Q23kxSN8Z+AkLJx81PcqhmczA9kh+vMOYTxUQ7B6DjeX1k3UsDCl7RcRERGRmbGnI1UlwK8Nw3ABLuAN4LOmaVqGYZwLrDUMI5OJ7c8BZqJMZDrFE0k6IsN0t7aS6G3mxWghm7vGWRJfz0dyXqJi4rwhh4+RvFI+e9QsyspLCOYcjtPjIeBwprT9IiIiIrJ3OWw7NVPhUqAGaND0P9neyFiCTeF+Nrb2M9DRQlXfixTGuyh3R8l0xAH4pXMNVsl85vsHqSZMfuUscsrrcGZqrvO+SJ+z9KOYpR/FLL0oXulHMUud7ab/1bJlEGdSZmpLdZF9im3b9A+P09raxUB4M8nuJjxDbeSPd/Hk6AJeic9iccEwSx0mw7khYvkrsEpqqV28iAvcARxuT6q7ICIiIiL7KCVVst+xbJuu3hjtzc0MhOtp7YcXI7kkRwb5ZsG/luENO3KI5ZXywUPmcdHSVXjcDuAkCrebvpcT9BPTN0UiIiIi8h6UVElaiyeShLuHaO4apqlzkMrWR8gfbaPUGWG2c8v0vWzHbEZnfYSqkhr6Y3HyK2rILq3Fn5Wb4taLiIiIyP5ASZWkhURyy9bl7R09jLQ3QLQVz1CYgng3w7aX+wdPINPj4tDcdjJzXMTyDsYuraWwajYrglUc4vZO1FSZ0n6IiIiIyP5HSZXsc0bHE7R0DtLRGmaorZ7xaCd/jM4mkbS52PcXlnvCAIw4shnOK8UbnM0thxxGUX4WDo7Ww3NFREREZK9SUiUpNTA8TnN7H01dwzR3DZPTtZ4F8dcod/USco4DYOEgsewIyksLqXEUkJHlwFNcgz87P8WtFxERERFRUiV7iW3bdPeP0hKO0N+ykUR3E96hNoJ2D+WuPn7cfyoOf5Dj8hyEEi4ShctIltbiK6/DFaji9Iyt0/dCKe2HiIiIiMg7KamSaRdPWLR1D9HR2sZQWz12bzPP9JfSNOpnSUYTF/ifAGA0I4vRnDJGAkv42vLD8AVKgMNT23gRERERkSlSUiVTYtk2bd3DOJwOsr1b3j7hzn7CnX00ReL0dbazevwvlLt6Ocg5tu26jMqTsWcZ1OTPw20txVtSgy87X+ufRERERCTtKamSXbJtm3D3MM+/2cnfX2/HH2ulwtVLuStKubuXUlcfG0bnY7pXURvMIzQK8fzFjIVqyauYjbuokmM8WdvVWJayvoiIiIiITDclVbJTA0NjbNjYROfmDYx3NdI75uK58XksrC3gvMHHcSVHSbiyGM4uZaxwESfMWcZH6hZPXH1IStsuIiIiIrI3KakSxsbidITbaBxw09I1RE3z76hL1GM4RzEA3NBfZHDGyUeQl+Mh0fFlnL5CHDmFFGj6noiIiIgc4JRUHWD6h8fp2LyRWMub2L0tZI+0E7QjZNgZ/LjvTDI9bioKchjKnYejfBZFNXNwB6vwe7K31eEOzUlhD0RERERE9i1KqvZTlmXT1d5BT+NGRjsbcfWH+enQKiLDFh/Oeon3Zb3BiO2hL6OYDv8KMopruGXRYRQVZON0HJPq5ouIiIiIpA0lVfuBkbFxOhqaaBp00hSJ42lbz1HjT5DnHCFn4px+/Cyv9FBYXkmtvwYC2QSLSijW9D0RERERkT2ipCqN2LZNdHCMcGsnY/UvQW8zOSMdBIlQ5Ejwm8HVNLpqWB7IZSBrDsOBSvzlswjWzsGf7eesVHdARERERGQ/lHZJlWEYc4EfAwEgAnzSNM2NqW3V9EskLTrbOok0bWK0swF3f5gXhit4YbickKuPr+Q9xKjtoc9TTLd/GZ7iGs6fezAFJaGJZz+dlOouiIiIiIgcENIuqQLuBu40TfMBwzDOAdYCq1Pcpj0yPDJOR1Mz7T0DbBjIor0jyifHHyDfGSN34pwBfMwPVTOnbi5Vxdm4slZRFAgR1PQ9EREREZGUSqukyjCMYmAZcMLEoZ8BdxiGETRNszt1LZsa27YJv/AX+ptMHH0tBO0IxY447eNVrE+eQHWJj76cBYwWFOOvmEVRzWz82bmUp7rhIiIiIiKyg7RKqoBKIGyaZhLANM2kYRhtE8fTJql65tUO8tb9iZCrj6grSCR/KZ6SGhbUzOcHFbUT0/cOTnUzRURERERkEtItqdpjgYAvpfcPBv2sXunBzL+CynmVHJSTmdL2yK4Fg/5UN0GmSDFLP4pZ+lHM0ovilX4Us/SSbklVC1BuGIZrYpTKBZRNHJ+USGQIy7JnrIHvJRj00909CEBtVYjRWJzRWDwlbZHJ2T5mkh4Us/SjmKUfxSy9KF7pRzFLHafTsVuDMM4ZaMuMMU2zC1gPnD1x6GzglXRaTyUiIiIiIvuXdBupArgE+LFhGF8FosAnU9weERERERE5gKVdUmWa5lvAylS3Q0REROT/s3fn8XHV9f7HX2cmmayTZSYz2Zq1aU5XurIvZV+UCiqKICCXooIs1yvXDRTRHyggKigIXHFBuC6oXFwAkYuyyiKUHXqaNvs6yWSyZzKZmfP7oyG3QClJ02Yyzfv5ePRR5nzPnPM5+WRI3j3nfI+ICCRhqJoBJ2y/TjKREr1/mT71LPmoZ8lHPUs+6llyUb+Sj3qWGDt83Z3TeZ9h24mZtCEBDgOeSHQRIiIiIiIy5x0OPDnVledTqEoD9gc6gFiCaxERERERkbnHCRQD/wLGpvqm+RSqRERERERE9rikmlJdRERERERkrlGoEhERERERmQGFKhERERERkRlQqBIREREREZkBhSoREREREZEZUKgSERERERGZAYUqERERERGRGVCoEhERERERmQGFKhERERERkRlQqBIREREREZkBhSoREREREZEZUKgSERERERGZAYUqERERERGRGVCoEhERERERmQGFKhERERERkRlQqBIREREREZkBhSoREREREZEZUKgSERERERGZAYUqERERERGRGVCoEhERERERmQGFKhERERERkRlQqBIREREREZkBhSoREREREZEZUKgSERERERGZAYUqERERERGRGVCoEhERERERmYGURBcwi9KA/YEOIJbgWkREREREZO5xAsXAv4Cxqb5pPoWq/YEnEl2EiIiIiIjMeYcDT0515fkUqjoAQqFh4nE7IQV4vdkEg0MJ2bfsHvUs+ahnyUc9Sz7qWXJRv5KPepY4DodBfn4WTGSHqZpPoSoGEI/bCQtVb+1fkot6lnzUs+SjniUf9Sy5qF/JRz1LuGndLqSJKkRERERERGZAoUpERERERGQGFKpERERERERmYD7dU7VTsViUUKibaDSy1/cVCDiIx+N7fT+y58ylnjkcTjIyssnOzsUwjESXIyIiIjJtwwMDBOothtobaB9O4enBBUSicb618QBSnMl7vmfeh6pQqJv09Eyysor2+i+qKSkOotG58Qu6TM1c6Zlt28RiUQYH+wiFuvF4/IkuSUREROQ9xeNx+kMDNIeiNHcNUrrtXgpGG8k3BikACoChWCU5nmqWVObjcCT3PxjP+1AVjUZmJVCJzIRhGKSkpJKX56WrqzXR5YiIiIhMisdtAi1NhBo2E+luwjXQSn60m/5YOjcNfAiA8/Ij9KcXE8o7gMyiKnzVtRzs83NwgmvfU+Z9qAIUqCRpGIYD0BSrIiIikhhjoyN01W9joG0r48E2HogcSEvPMB93Pc7+afVEbQdBw0tXVi1GQSVfWbaGMn82GWlHJ7r0vUqhSkRERERE3mUw1EtLKEZz9yhG03PU9j2Fx+4j37DJB0ZtF9lZq1i/spQc94cY8GTgr6wiP9WV6NJnnULVHHPaaRtwuVykprqIx2N86lMbOfbYE9i06XkuvfQCzjjjbC666N8n17/44s/w0kub+NvfHiczM3On29y06XluueUmfvrTuwA47LB1HHjgIXzvez+cXOeww9ZNbmPTpue59dYfMT4+zvh4BK+3gBtv/DFXXPElOjraAdi6dQsLF9ZgGA48Hg/f//7N73lMzz77NL/4xU8IhUKkpKRQUlLKZz97MQsX1nDaaRsYH49w770P4HQ6Abj//j/xne98i//4jy/y0Y+ezgMP/Jkf/vB7FBWVEI2OU1FRyZe//DVycnK5+OLPcMYZZ3PooYfv8usaDoe56KJPc/PN/0VGRsbUmgF0d3dz5ZWX86Mf3b7L9SKRCBdeuJGbbrqV7OzsKW9fREREJNFs2yYYCBKse4WxQAPO/jZyI13kGsPc0/8BmmMFHJgTYUFGPgM5K0gvqsRbWUtBcQn/7kjeySX2JIWqOejqq6+jurqGLVs2c8EFG1m37kAAyssreOKJR7nggotxOp20t7cxNhberX00Nzfy4osvsHr12rctj0ajXHHFl/jRj26npmYRAFu2bMYwDL7znRsm1zvssHXceuvP3jPIvf/rgNsAACAASURBVOW5557h2mv/H9/5zg0sXrx0cnvBYA8LF9YA4PUW8NxzT3PwwYcB8OCDf8E0l7xtO+vWHcDVV19PPB7nyiu/wp13/pRLLvnClI/397//DUceefS0AhWAz+d730AF4HK5OOGEk/jtb/+bjRs/O619iIiIiMyW8fEIgcZ6+pu3Mt7dzMvj5TzXk0NJrJVLcv5G3DboNfIIZZTTm1/GJ45YR2n5AtyZ8+/s03QoVL3DU6928OQrHXtl2+tXl3DQ0qIpr19bu5jMzEw6OtoAyMjIpLKyajKAPPjgXzjxxA/y5ptvTLuW8877DLfffgu33fazty0fGRkhHB7F4/G8rY7d9fOf/4RPfWrjZKDa2fZOOmkDDzzwFw4++LDJoFhdvXCn23M4HKxZsz9PP/3ktOr405/+hx/+8LbJ16edtoHjjz+JF174F93dAS644BL6+np5+OG/MjAwwOWXf4OVK1fT3t7Ov/3bJ7n//keA7WHyM5/5HI8//ij9/f1cdNGlHHnkMQAce+wJbNx4tkKViIiIzAkjQ0N0dIVo7DPoau/kgI7f4LV7yTHi5AAR20lDaiYHLF1EpbeMUMYK/NU1VE3zH6FFoWpO27TpeSKRCAsWlFNXZwHwgQ9s4I9/vJeDDjqURx75G7fe+lN+8IPvTnvb69cfzb333sMTTzzK4YcfObk8JyeHDRtO5ROf+AirVq1hxYqVHH/8iRQWTj0M7mjLls184Qtf2uU6a9as43/+53cMDAxMBsXNm9/c6bqRSIQnn3ycxYuX7HR8Z7q6OgmHwxQVFb9t+fj4OLff/nPefPN1Lrnks1x44aX85Ce/5JFHHua2227m1lt/utPtZWVlcccdv+SVV17iyiu/OhmqPB4vKSmpNDU1UlFROeX6RERERGaqf2iMwOv/YrSzHqOvlZxwJx5jgLpwLfeMHIQ7w8l+7mya3YtI9VfgKV+Er6ySU1OciS59n6BQ9Q6Hrijm0BXF77/ibpjqM4++9rUv43KlkZWVxTXXXIfb7Z4cW7NmHd/73rU8/vijVFcvJDc3b7fr+exnL+amm27g0EOPeNvyL3zhy5x++ifZtOl5nnnmKe6+++fcccddlJWV7/a+dsUw4Oijj+ORR/42GRTfGaqef/45zj33TABWrFjJ2Wf/25S3390dID/f867lxxxzHLD9zFk4HOaYY44HYPHiJbS1vfe05ccccwIAy5atoKenm7GxMdLS0gDwer0EAl0KVSIiIrJXxOIxelqa6W2qI9LVSGg0zn39yxkYjvD13Hupcg4Rst0MpBXRn7eWygVL+Z65H3nZLgxjfaLL32cpVM1Bb91TtTOGYXD00cdx/fVXc/nlV81oP+vWHYDHU8BDDz3wrrHS0gWUli5gw4ZTueyyS3nqqcf5xCfOmvY+amsX88Ybr7NokbnL9U466WQ++9lzWbVqzU6D4lv3VO2OtLQ0IpGxdy13ubZfG/zWBBlvvXY4HMRi0ffc3jvfF4vFJscikf8LWCIiIiIzEQmH6WppomHETXPXINUtf6Y2uplMI0omELUd4FjAiuojKPe7iWddhGNBKeU5OYkufd5RqEpCp5zyETIyMjjwwJk/Lu3CCy/m61//6uTrkZERXnvtFfbf/0AMw2BwcJCOjjaKi0t3a/uf+tRGrr/+GhYvXoppbr+X6o03XqO/v5+DDz50cr3S0gV8+tOfY+nS5TM7oJ0oL68gGAwSiUQmA9HeEIvFaG9ve89ALCIiIvJehsPjtG/dQrjxFZz9baQPt+OxQ2Ti4JehM3C5UvHke2jLXUVKQQW5ZTX4K6tZmZbGykQXLwpVycjn8/PJT35qj2xre9gxJyfDAJt7772HH/zgelyuNGKxGMcffxLr1x+1W9s/6KBD+OIXv8r3v38d/f39E1Oql3DBBRe/a91TTvnIbu3j29++Cpfr/84Offe7N03OXAiQlpbOmjVrefHFF/ZIEH0vr776MkuXLteU6iIiIvKe4vE4oc5Ogo0W4c5GnP2t3DN6CC0DBselv8rJmS8yYGfS5yqkKWcpaf5Kvr30AAo8bhy6fG/OMmzbTnQNs6USaAgGh4jH/++YOzubKCqqmJUCpnpPlex5r776Mr/61S/5zne+N633TadnV111BR/84IfYf/8Dd6fEKZvN79lk5PO56e4eTHQZMg3qWfJRz5KL+pU40eg43U0NtAyk0BCKYbe9xlEjfyXT2H5bQtyGkJHHM55TyFlQTWU+lBZkUbO4Sj1LEIfDwOvNBqgCGqf6Pp2pknlhxYqVHHLI4YyOjk77WVVTEYlEWLVq9V4PVCIiIjI3jUVitLYHGN38T+LBZjJGOvDGe8g24rwwdCgvxhaxoiCLzuwlOL1luBfUUFi1iMqsTCoTXbzM2LRClWma3wCuAlZYlvWaaZoHAbcDGWxPcmdZlhWYWHdWxwQ2bjz7bZMmACxbtpwvfvHyvbrfujqLa6755ruWf/SjH2fDhlP36r6nY2/W4nK5OPXU0/ba9kVERGTuGAj2EKi3GOlowAi18PpYMQ/3lpNtjHJ1/p8ZsdPoTfHRkrs/qb5KTlm4gs8sKMHpcADHJ7p82QumHKpM01wDHAQ0T7w2gLuBcy3LetI0za8B1wLnzfbYnvhC7At++tO7ErLfRYtMfvGLXyVk3yIiIiJ7Syweo7ethc6uPupG3DR3DvLh0E/xGIMUTqwTst34swr50NIqyguziWSvxldYRKHDkdDaZXZNKVSZppkG3AKcCfxjYvE6IGxZ1pMTr29j+9mj8xIwJiIiIiKy26KxOG3dw/S/+U/sri2kD7XjifWQbowzPl7IA0MnUlKQSYd7OQM5uWSVLsRfvYjy3Dz2zpM8JZlM9UzVt4C7LctqMM3J5w2VA01vvbAsq8c0TYdpmp7ZHrMsq3eaxy0iIiIi89TwwACBeouhtgbsUDOx0SF+HFpPLG7zmezHqUntIuj00Z6zAmdBJb7yRdy6sJbUFCeg+6fl3d43VJmmeTCwP/CVvV/O3jcxm8ekQMBBSsrsnZ6dzX3JnjHXeuZwOPD53IkuY07T1yf5qGfJRz1LLvO1X/F4nGBHB63Wm2yJlrKtfZDKtr9yEC9TABQAg3YG/WlFfHh9NdWl+VT5DqKouIAlTmdCa5+vPUtWUzlTtR5YDLx1lmoB8BDwQ2ByXmfTNAsA27KsXtM0m2dzbDoH/M4p1ePx+KxNcz6V6blPO20DLpdr8rlLa9as5dJLL+OOO26jqqqaY445nk2bnicajXLAAQdNab8333wjjz32dzo62vnlL3+z04fT/uxn/8XPfvZf7zkeDof59re/iWW9idPp5KKLPs+hhx4+Of773/+Ge+/9HSkpKTidTn7+83ffY2XbNoZhcM01V3HFFVdNvp4tdXUW3//+dWzZYnHwwYdy9dXXT47deuuPePbZpydfNzc3cuGFl3LGGWcyMDDE9753LXV1FtFolJNPPpUzzzwb2P6w5Pca21FzcxPf/e63CQZ7cDqdLFmyjMsu+zJpaekA3HXXz3nooQdxOp1kZmbyxS9eTnX1wp0eRzwe1zSru6Cpg5OPepZ81LPkMl/6FY/bdPaO0FVv4Wj6F66BVvKj3WQZYXKBB/s+jDPXjy+vhoY0LxnF1fiqaynx+SkBluywrVDvSIKOYrv50rO5aIcp1aflfUOVZVnXsn1CCABM02wETgbeAD5jmuZhE/c5XQDcM7HaC0DGLI7tU66++rp3BZvzz79g8r9ffPEFRkdHpxyqDj/8SD72sU9w0UWf3um4ZW3m9ddfo7Cw6D238etf30VmZia//e19tLQ0c9FFn+Y3v/kfMjMzeeyxv/OPfzzCHXf8kszMLILBnp1u4667fk5mZiaxWIy//e1BNm9+g0svvWxKx/B+TjttA7///Z93uU5+voeLL/4CdXUWzz//7NvGLrzwEi688BIAQqEQp512Mkcffexk3ampqdx5528Ih8NccMF57LffKpYvX7HLsR2lpqZyySX/QW3tYuLxOFdddQW//vXdnHvu+dTVWdx33x+4++7fkZGRwe9+9xt+/OObuOGGH+6Rr42IiMi+Jjw6QqB+KwOt24gFm8kYbucPQ2upGytgZWoT52Q/S9Dw0pVVi8NbTnZpNd+sWUJm5p5/rIoIzOA5VZZlxU3TPBu43TTNdCamOE/E2HxwzTVXsXjxElatWssf/3gv8Xic559/jmOOOZ6zzz53l+9duXLVe45FIhG+//3r+MY3rubSSy94z/UeeeRhvva1qwAoKytn8eIlPPPMPzn66GP5zW/u5vzzLyQzMwsAr7dgp9s455zzuO++P/C3vz1IYWHRTgPVpk3Pc/3113DHHXeRnZ3NNddchcfjnQw8M1FQ4KOgwEdTU8Mu13vooftZt+6AyePYunULJ520AcMwyMjIYPXqNTz88IMsX75il2M7Ki4uobi4BNh++d6SJct2qMMgGo0SDofJyMhgeHgIn68QERERgcFQL4F6i9YhF1Z/OmNdDZwT/wP5hk0+MGq76HX6WFPj5YjKJZT71pDt/ST5qa5Ely7zyLRDlWVZlTv89z+BFe+x3qyO7Uu+9rUvT17+d+GFl3DggQdPji1cWMMpp3yE0dFRLr7485PL//M/L+X88y9g8eKl09rXHXfcxvHHn0RJSeku1+vq6qSwsHjytd9fRCDQCUBDQwOvv/4qP/nJrYyPj3PKKR/hQx/68Lu2cdddvyA9PZ3jjz+Jqqpqbr75xrcdA8CaNes48cQPcu213+LQQ4+gpaWZL3/5a9M6ppl64IE/c/75F06+Ns0lPProIxxxxJEMDQ3x7LNPU15e8b5j72VsLMz99/+JCy64CIBFi2o5/fRP8rGPbSA72012tptbbvmvvXeAIiIic5Bt2/T0h2np6MP5xgOkDLSRG+ki1xjGD7w8uhwr5WAW+otpdBxOelEl3spaCopL8DscLE70Aci8tttnqvZlI3/+zruWpVQfgGvZMdjRMUYf/P67xlNrDyPVPJx4eJDwwze/e3zp0aSYB79r+c7s7PK/97M7l4q99torbN78xozPAsXjcQKBLn784zvo7+/jwgs3Ul5ewapVa9623llnfWrynqrjjz+J4447cafbO+ec8/j85z/HLbfcyB133E1Kys6/TXd82HFPTzfnnnsmAIWFhVx33Q9261jeeOM1QqEQhxxy2A51n8stt9zExo1nk5eXz+rVa+nv73vfsZ2JRqN84xuXs3btOg47bD0AnZ0dPPnkY/z2t/fh9Rbwq1/9kmuuuYrrr79xt45BRERkrhsfjxBorKe/eSvj3U2kDbXTOJbLPYPrAJtr8p4j7MgklFFOb34ZmSXVHFdt8pH8/IktrE1k+SLvolA1j7344iaamhr52Mc+BEB3d4AvfOESLr/8G++6X6uwsIiurg7yJ/5nFgh0smbNuomxQo499gQcDgf5+R7WrTuQN954/V2h6q1JKa644qq3vX6noaEhuro6SU11MTDQR1HRzu/12vFhx6edtmGPPID4/vv/xAknfOBtQS49PZ3LLvvy5OsbbriWioqq9x17p1gsxre+9XXc7hw+//kvTi7/+9//l+rqmsnLDU888YP87Gc6UyUiIvuGkcFBAg11BLuDvDy2gJauIT4R/hUlzhA5QMR2EnQUkOfzcc4hJuWFbvK9h5Gelpbo0kWmTKFqJzI3fPU9x4yUtF2OO9LduxzfE7Kysujp6Z7xds4++9y33Y912mkbuP76H+z0LNlRRx3DH/94L4sXL6WlpZk333yDq666BoDjjjuRZ599mlWr1jA6Osorr7zI+vVH7nZd3/nONzn55FNZsmQpV111xeQEGHvb2FiYRx75G7fe+rO3LR8eHiIlJYW0tHS2bq3jiSf+wU9/evf7ju0oHo/z7W9fhcPh4Ctf+frbAmVJSQkPPXQ/o6OjZGRk8PTTT1FVtfOZ/0REROayvqExmruGGLX+SWb3q+SEO/EYA3gBVzydO8fOpKLQTcCznlheOp7yRfjKKvGmJHb6cpGZUqhKQkcccRRXXPFFzj33zMmJKnZ1T9WNN36Xxx77B729QT7/+YvIycnl7rvff+LEc889kxtuuImCAh9nnnkO11xzFaeffioOh4MvfenyyaBz+ulncv3113DWWR8H4MQTP8D++09tZsJ3uueeXzE2NjZ5qeBRRx3Lddddwze/+e3d2t6OOjra+dznziccDhOJjPHhD3+AjRs/w8knnwrAY4/9g/LySqqqqt/2vvb2Nr7+9a+SkuLE5XJx5ZVXU1Dge9+xJ598jCeffJyvfOXrPPPMP3nooQeprl7Ixo3bp1xfsWIll132ZdavP5o33niNjRvPIjXVhdvt5vLLvzHj4xUREdlbYvEYPS3N9DbVEelqJHWwjZzxbr4V+jBRnJyS8Sar0zsYSCuiP28t6UVV+KpqudHnx+FwAKsTfQgie5Rh2/b7r7VvqAQa3vmcqs7OJoqKdj2xwJ4yledUydwyF3s2m9+zyUjP9kg+6lnyUc+Sy0z7FQmH6WrYPn35a9FytvXEqQw9w4b0fwEQtR0EDQ8jmUUEF55MSWkhC3xZZGVo9r3dpc9Y4uzwnKoqts82PiU6UyUiIiIiAAyNRmgJDNPdVE9+0yNkjXbisUPkGTZ5wCOjx+LwLiFr4Wqa08rJLavBX7mQ/DQFKJnfFKpERERE5pl4PE6os4Ng4xbCnY04+1vJiXTx4MgKnhlbRKGjj4tzG+lPLaQpdylp/iq8lTVcVLoAp0P3P4m8k0KViIiIyD4sOj5O+7Yt9DVvo2PYwaZBP91dPXw9878pBuI2hIw8+tIXsLx6EYfUrKTcl01O9kfY9VMsReQtClUiIiIi+4hweJzW4AjNXYPkbb4P93Az3ngPbiOOG+gdryCcfTJLzTIanB8ht6ScwqpaKrMyE126SFJTqGL7E7zf65lJInOJbccBfa+KiAgMBHsI1FuMdDRghFpwj3XRP57KTYMnAfC53E6iLhcd3oMw8svIL6/hoIpKDktJndjC4sQVL7KPmfehKiXFxfDwAFlZOQpWMmfZtk0sFmVwMITLlZ7ockREZBbF4jF621oINm5lpKedx6Mrae4a5KM8xH6uFgBCtpsBl5+4v4pLlq2g3O/Gk3MUhmFoJjmRWTDvQ1V+vo9QqJuhob69vi+Hw0E8Prem55Zdm0s9czicZGRkk52dm+hSRERkLxmPjNEeDNPcPcx4/b8o7XkGT6yHdGOcUiBmGzzgrGJJhRcj+0S681z4qxdRnpuX6NJF5rV5H6qczhQKCopnZV/6l6Lko56JiMjeMjw4RGDbmwy1NWCHmska6cBr93Jb/wa64nkclBGkNAvac1bgLKgkt6yawsoavpauKxZE5pp5H6pERERE9qZ4PE5/d4Duhi2EO+p5bbyMl3sz8A9v5TPuv1MADNoZ9KX6aXKbfOyApZRUlOPPPwqHbk0QSQoKVSIiIiJ7SCwao6u7j+bQOF1tHdQ230t+tJssI8xb18W8aR9ORdGBLCzYn07XQvxViyjx+SlJaOUiMhMKVSIiIiK7IRyJEqh7k4HWrcSCzWQMt+ON9/B82OS+0XWkO+MszRsjkFWL4S3HXVqNv7qW07OzE126iOxhClUiIiIi72Mw1EtX/RZG2+vpGYrxyHAtHcEh/l/u76hwhBm1XfSm+GjNWUtFyXK+aa6h2JtJivPYRJcuIrNAoUpERERkQjweJ9gVoHnASXPXIMUNf2ZBeAu5xjCFk+uU4C9YyTrTRyjtPFylJRQUl+B3OBJau4gkjkKViIiIzEvRWJyupib6G15nvLuJtKF2PLFubBtu6TsdwzD4eL6DrIxyevPLyCqpxl+1iJUeLysnt1KdwCMQkblCoUpERET2eSNDQ3Rt28JQez12sIk/Rw6mKTjGia4XOC7jNSK2k6CjgA73MpwF5Xxt6RoWFObgSj060aWLSBJQqBIREZF9Sl93gJZQlKaeCNGWV1jd9794jAEKgAJg2E6nKHsli9ZVUpFbzHD+h/GVVeJNcSa6dBFJUlMKVaZp3gdUAXFgCLjEsqyXTNOsBe4EvEAQOMeyrLqJ98zqmIiIiMwvcdsmEOglZL1ApKuR1ME28sYDuI1RHhlczyvjFeyXZ1OTXkh/3lrSi6rwVdXi9/nZqPufRGQPmuqZqk9ZltUPYJrmKcDPgDXAbcAtlmXdbZrmWcDtwFvnyWd7TERERPZRkXCYroatDLRuI9rTxOaxQh4NFuGOhfh63n1EbQe9hoeerIUE88s5eeFqPlNZRWZ6CnBKossXkX3clELVW4FqQi4QN03Tz/ZgddzE8l8DN5um6QOM2RyzLKt76ocsIiIic9lQfx/t7T00DLpo6eznqM5f4LV7yTNs8oCwnUqnK53D91tNmX8hA+m1+CpryE9zJbp0EZmnpnxPlWmadwDHsz3cnAiUAW2WZcUALMuKmabZPrHcmOWxKYcqrzexD9zz+dwJ3b9Mn3qWfNSz5KOeJZ890TPbtunuG6X1xacZatqMHWwmJ9xJrjFEb6SU3w4dgycnnTXuUsZyl5NdWkPRosVUVFaw1Kn7n6ZDn7Hko54llymHKsuyzgcwTfNs4LvA1/dWUXtTMDhEPG4nZN8+n5vu7sGE7Ft2j3qWfNSz5KOeJZ/d6Vk0Ok6gqYG+5m2MBxoJjwxzd/8BDIejXOJ+iOqULnqNPELpC+jNX4B3gcmN5kpyslzAIW/bVm/vyB48mn2fPmPJRz1LHIfD2K2TMNOe/c+yrLtM0/wvoBUoNU3TOXHWyAmUAC1sP6s0m2MiIiIyR4SHR+hsqKM+4qW5a4iytr+xOvYSbiOOGxi3nQQcftbW+qgocpPrriKtpJCqrMxEly4islveN1SZppkN5FuW1TLxegPQCwSAl4AzgLsn/n7xrfubTNOc1TERERGZfQPDEdrrtxJp2IQRasE91kW+3YfXgB+EPkY8zU2Op5CW9P1J9VWSX16Dr6IST0oqixNdvIjIHjKVM1VZwO9M08wCYmwPVBssy7JN07wAuNM0zSuBEHDODu+b7TERERHZS2LxGMG2Fnobt/JGbzMEW/jj6GrqBrPZ37WNs7KfImS7GXD56c9bRXpRJVfWrsHjcWMYRqLLFxHZqwzbTsz9RQlQCTToniqZDvUs+ahnyUc9m3siY2MEGrfR2g/b+lMIt9fxofB9pBvjAMRsg14jn1c8J5BZvoRyr4sFBelk5+YluHLZGX3Gko96ljg73FNVBTRO9X3TvqdKRERE9h0j4SitHUHG3ngUu7eFrNEOvHYvuYbNEyOreTK2ikW+XNpzVpBSUEFO2UKWrVtF3lCU6kQXLyIyRyhUiYiIzAPxeJy+QBc9jXWMdtTj7G+jPpzLfX1LcRDn+vyHCJNGX6qfJreJq7CSo6uXcXppCQ7DAA6b3FZaRgYM6V/RRUTeolAlIiKyj4lFY3Q3NxLoDLB5zEdz1yAb+u6ixNFL8cQ6QTsXT3YBH11ZTZnfjTNvNSVeLyUJrVxEJDkpVImIiCSxsfEYrd1DDGx+Dmfn66QPd+CN95BlxHDHsvnfoY9SWpBNIH81kZwM3KXV+KtrqczOpjLRxYuI7CMUqkRERJLEYG+QroY6Rtq3YYRaSQ93c13oROK2g49nPseatCZ6U3y05qwlxVdBXlkNP65eRIrTAeyf6PJFRPZZClUiIiJzTDwep7e9jWDjFqzxEhp6IizoeYrjnc9ROLFOv51Fv6uQUw8sprjYT4V3LR6PG7/DkdDaRUTmI4UqERGRBIrG4rT3DNPV1ICr/gnShtrxxLrJMCKUAH8YPJ6R3IWU+k0aXHlklVTjr1rEAo+XBcCyRB+AiIgoVImIiMyWkaEhurZtYahtG3ZvM5kjHfx1eBmbxiqocHZzcc6LBB1eOtzLcBaUk1Naw2XVi0jLSE906SIisgsKVSIiIntBX3eA7nqL9kGD1wdz6Q108e/G3RQABcCwnU4oxc+yRcWsq15KhT+LvLzT8KY4E126iIhMk0KViIjIDMRtm0BolOauQVyv/xnXQAt54wHcxihFQPNYNU2px1Lu97PNcQyZRRX4qmrx+/wUORwsSfQBiIjIjClUiYiITFEkHKarYSsDrduI9jSRPtxB71gqPxk8EoAv5ryBK8VBT9ZCgp5yskuqOai6lmNycia2sF/CahcRkb1HoUpERGQnBvv66K7fQn9XO89Ha2kODPKh8B9ZnNpOHhC2U+l1+nD5yvi3wxdTUeimyHMErlT9aBURmW/0f34REZnX4vE4vQNhWgLDDG/9F/ldL5AT6SLPGMIHeGyDX49/ipLCfEaK19PmduKtXISndAE+h+5/EhERhSoREZlHotFxAk0N9DVvYzzQiGuoDU+0m+v7P0gons36tAbWZwXpS19AKH8BmSXV+Ktqud5bMLGFlQmtX0RE5iaFKhER2SeNDg8RmLj/afN4CW8GUyjoe5WzMx/HDYzbToIOL13Zi/nIflUUlZdTWnAE6Wn60SgiItOjnxwiIpL0BgZHae4eobO1jcKG+3GPdZFv9+ExwANsGjuUjIJ1lCxdRUtqMfnlNfgqKvGkpCa6dBER2QcoVImISNKIxeME25rpbdzKWFcDqQNt5I4H+Ge4hgdHV5FuRPhKXjsDLj/9eatIL6qkoLKWswuLcDgciS5fRET2UQpVIiIyJ0XGxgg0bKO/ZSuBoRjPDJfTGhjkm1l3U2pEidkGvUY+vZlVVFYv50u1qykrzCYr/cREly4iIvOMQpWIiCTc8PAorcEwzV1D5Nbdj3eoDq/dS65hkwtEY4XY7nIOXl5Mq+sMvEWFFFbWkJeenujSRUREFKpERGT22LZNKBCgp8FitKMeZ38bOZFOiMW4rv80AD6Z20d2WjZNOYtx+SvwVixieVk5KyenLzcTdwAiIiI78b6hyjRNL3AXsBAYA7YCn7Usq9s0zYOA24EMoBE4y7KsCF0/gAAAGvBJREFUwMT7ZnVMRETmllg0RndzI6HmOiLdTTwSXUtjYJQTjCc5It0CIGjnMpRZSjSnhM8ft4KKohxys49OcOUiIiLTM5UzVTZwvWVZjwKYpvld4FrTNM8H7gbOtSzrSdM0vwZcC5xnmqYxm2N76oshIiK7Jzw6QltwlJbuMOHGl6nueQxvvIcsI0YWELUdOFOrWb1oAXk5JxDMOQF/dS2V2dn4fG66uwcTfQgiIiK77X1DlWVZvcCjOyx6BrgQWAeELct6cmL5bWw/e3ReAsZERGSWDA4M0lX3OiPt2zBCrWSHO/HYffx+8BisaAnLMwaozE6h1b2WFH8FeWU1+Cur+PdUV6JLFxER2SumdU+VaZoOtgeqPwHlQNNbY5Zl9Zim6TBN0zPbYxPBT0RE9qB4PE5vexvBxi2Euxqxxvw8G/KQOdLBl3L/AkC/nUW/q5CB3BWcdMBqNlZV481NxzA+keDqRUREZs90J6r4ETAE3Ax8eM+Xs/d5vdkJ3b/P507o/mX61LPko55N33gkQktrgIZgnMaWbsy6X5I/HiDDiFACxG2DNucBrFxkUl1UyYhrIaWLl1Dt8+2R/atnyUc9Sy7qV/JRz5LLlEOVaZo3AIuADZZlxU3TbAYqdhgvAGzLsnpne2w6BxwMDhGP29N5yx6j+waSj3qWfNSz9zc6FqXTepWh1q3Yvc1kjnTitYO8EinjzuH1uFIdVOY66XAvw1lQTk5pDYXVNXwgI2OHrZQShT3ytVbPko96llzUr+SjniWOw2Hs1kmYKYUq0zSvAdYCH7Qsa2xi8QtAhmmah03c53QBcE+CxkRE5B1s26a/p5vueovRjgYGh0b48/BKAqFR/jPnL1Sm9DJspxNK8dOccyDeYpNrluxPYX4mDseRiS5fREQkaUxlSvVlwOXAFuCfpmkCNFiW9WHTNM8GbjdNM52JKc4BJs5kzdqYiMh8F4vH6G5ppXkknaauQXxND1MbfgW3MUrRxDqdtpcy/6EcurwII+tcosV+/D4/RQ5HQmsXERFJdoZtJ+ZSuASoBBp0+Z9Mh3qWfOZDz8ajMdobmxisf4VYsJmM4XY8sR7SjChf6j2DqMPFSZ4GatJ7MTzlZJdU46+uJSsnJ9Gl79R86Nm+Rj1LLupX8lHPEmeHy/+q2H4SZ0qmO1GFiIjMosG+Prq3WQx11GOEWvjr2GqsYAqHuN7kY1nPEbZT6XX6aMtdRUpBBV/94FpKijykOI9KdOkiIiLzhkKViMgcEI/H6e1sp603SkMoTrhtC4f2/4U8Ywgf4AMG7EwWuJexsLaaqvxKwnkfxFO6AJ/DmejyRURE5jWFKhGRWRaLx+no6mNg8zOMB5pIG2ojPxog04jw4vD+PDG2hFqPk2XpCwjll5FZUoW/qpZSbwFnJLp4EREReReFKhGRvWh0eJhAfR0Dbduwg83Uh/N4oLcKR2yM6/LvIYaToMNLV/YSHN5yjqzajzOqqklzOYHjEl2+iIiITIFClYjIHtIf7KGzrZOtw9m0BIZY33UXJXYXHgM8wIidRihtBcesLaW80M1I5iJ8ZWV4UlITXbqIiIjMgEKViMg0xW2b7r5RejZvItr2JqkDbeSOB8gxRrCj+fxhYAMFueksz65kPHsxaUVV+Cpr8RUWUajpy0VERPY5ClUiIrsQGRsj0LiN/uatRHuaMYZ7uG3gSMKROGdnPcFqVyO9Rj69mVX05peRVVrDj5asJCs9FTgk0eWLiIjILFCoEhGZMDzQT6C+jq1jXpq7R/F3PMHh8WfINWxygTE7haDTxxFLPZQUF1CRZ5JZ6CUvPT3RpYuIiEgCKVSJyLxj2zahwTHaGxuJbXsGZ38bOWOd5BuDFAA/7/8gg+nFHOgpoSntYFz+SrwVi/CWlVPgcGIm+gBERERkTlGoEpF9Wiwao7u5kVBzHZFAE6mDbTw8spSXh/0sSung4pxHCdq5DKQX05d3AJnFVVy2aAW5+bmJLl1ERESShEKViOwzwqMjbHnBYnPrCHUDGfR1tvPJsf8my4iRBURtB0GHF7Mki+WVtZT79sPpOYXK7OxEly4iIiJJTKFKRJLS4EiE5s5BYq8/hBFqITvcicfuI8Ww6QvX8lzsMCr8ObRmrCPFV05+WQ2+yiryU13UJLp4ERER2acoVInInBaPxwm2t9HbuIVwVyMpA60Ewmnc1X8AAFfmPkWKA/pdRQzkrsBTZbJ/YRUnFhdjGAawLrEHICIiIvs8hSoRmTPGxyMEGrYR7OzgtcgCmruGOH7g9yxytlMCxG2DXiOP7JyFfHxNDeWF2Xg9B+DOyWbBxDZ8Pjfd3YOJPAwRERGZZxSqRCQhRseitASG6N/yAmkdL5E50oHX7iXHiJNuO7l16JMs8OXQV7iOpmyD3AU1+KtqqMrIoCrRxYuIiIjsQKFKRPYq27bp7+mmu95itKMBo7+VnHAn3+07kRE7nePTX+XIjDpCqX6a3Ytw+SvJL6/h5vJKnE4nunxPRERE5jqFKhHZY2KxGN0tTYSat1IX8bE1aODp3sRHXY9TNLFOyHYzkFbEhw4soXDBAsp9B5HrTqfI4Uho7SIiIiK7S6FKRHbLeDRGa/cwHc0tZG17hIyRdjyxHrKMKFnAY8OHMZC7HyVli2lMzSa7pBp/dS3lOTkALE9s+SIiIiJ7jEKViLyvwb4+urdZDHXUY4RayBrt5KmRav4RXkqOMcIVea/S6/TRlruKlIIK8spr2Fi5kFSXK9Gli4iIiOx1ClUiMikej9Pb2UFv4xY6+8d5eaSI1q4+vuL8BT4jjg8YsDPpcxVSVVPBkprllPuz8OSdhM/hTHT5IiIiIgnxvqHKNM0bgI8ClcAKy7Jem1heC9wJeIEgcI5lWXWJGBOR6YvGYnT2jtLcNYhr81/J7t9GfjRAphGhGBgcL6LTdSpVpR4aUk8mx1+Ev6qWUm8BpYkuXkRERGQOmcqZqvuAm4An3rH8NuAWy7LuNk3zLOB24OgEjYnILowODxGo38pA2zbsYDMZIx3EolGu7z8ZgPPdDThdEbqyl+DwluNeUMOyqkWszcqc2ILugBIRERF5L+8bqizLehLANM3JZaZp+oE1wHETi34N3Gyapg8wZnPMsqzuaR6zyD6tv6eH7gaL4Y5Gno7vR1NgmGPGHubAtG14gBE7jd4UP2Peaj59+BLKC90UetaT4tTleyIiIiK7Y3fvqSoD2izLigFYlhUzTbN9Yrkxy2MKVTIvxeIxevpGaQ6MMFT/Mv7Of5I33kWOMULhxDp/iRVQ4i8mxX0k7e7D8VXW4issolDTl4uIiIjsMfNuogqvNzuh+/f53Andv0zfXOhZZGyM5s2b6dlmEe5sIHWglfxoN7cPHkNj1M/KtDY2ZA/Q517IkK+C/MpayhYv4UaPJ9GlJ8Rc6JlMj3qWfNSz5KJ+JR/1LLnsbqhqAUpN03ROnDVyAiUTy41ZHpuWYHCIeNzezcOeGZ/PTXf3YEL2LbsnET0bHugnUL+FwbZ6to4V8FLITXpfPZe4/4ofGLNTCDp9tOes4MT9TPxVCyktWE9qytsv3xuLMS+/3/Q5Sz7qWfJRz5KL+pV81LPEcTiM3ToJs1uhyrKsgGmaLwFnAHdP/P3iW/c3zfaYSDKKx+P09Q/T3DNGW0cPFfV/IGesk3xjkAKgAKiPriWv4HCqq1fS6vTgrajFW1ZGgaYvFxEREZkzpjKl+g+BjwBFwP+aphm0LGsZcAFwp2maVwIh4Jwd3jbbYyJzWjxu09VUT6ipjvFAE67B7ZfvvRpZwK+HD8HA5iv5IQbSi+nLO4DM4ip8VbWc6vPvsJUlCatfRERERN6bYduJuRQuASqBBl3+J9OxOz0Lj47QVV/HQGs9/QPD/GNkMW3dQ/xn1r0UOgeI2g56HF5GM4qJFi3FvfggFviyyUibd7c47hX6nCUf9Sz5qGfJRf1KPupZ4uxw+V8V0DjV9+m3OJEZGOzrozkUpzkwiHvbw5QOvY7H7sNj2HiAQDyXtJylHLm6lKG008ksLMBXWUV+qivRpYuIiIjIHqJQJTIFtm3T3dlFaNvrhLsaSRloJTcSIItRbgydQQwnp+SOkp+ez0DuCtILK/FW1lJVXMKXJqcvX5TQYxARERGRvUOhSuQdxscjBBrq6WvZCqFW/je8nC3dMQ42XuaUzE3EbYNeI49QRjm9+WV84ZjllJUWkJ1xdKJLFxEREZEEUKiSeW1kaIi27mGaghGGmi2W9/wVr91LjhEnB4jYKbjTSjloaS1VeQX0uY/CX1VDVUZGoksXERERkTlCoUrmBdu26esbomfLS4x0NODobyUn3InHGODvQwfzbGQR1VmjmFmZNLsX4fJXkl9ew5I1yzkvNJro8kVERERkDlOokn1OLBaju6WJUNNWIoFGGsK5PBoqITY6yLfz7wEgZOcwkFZIf95aDj9gDR9fWEtetgvD2PC2baWk6CMiIiIiIrum3xglqUXCYTrau2gcSKG5c5C1rXfjj3WSZUTJAqK2g17HCvZbuB9lhZX0uIrxVy6kPCcn0aWLiIiIyD5CoUqSxtDoOF3Wqwy3WhihFrJGO/HYIfqiBdw5eBIZaU4W5eYxnl1ESkEFeeU1+CurOcqVxlGTWylL4BGIiIiIyL5IoUrmnHg8Tm9nO8HGOsKdDYwP9vLb4YMJDoxxfvbfWeFqZcDOpM9VSFPOUlxFNVy77EAKctNxGOsTXb6IiIiIzDMKVZJQ4+PjdDc10DiaRXNghLyWx1k99hyZxhglQNyGXiOP2tJsFqxZgMddhl2UT6m3gNJEFy8iIiIigkKVzKJwJEp7UwvDWzdh9zaTMdKBN96D24jzp75TCDnyWe9x0+VegsNbjru0msKqWqqyMvl0oosXEREREXkPClWyV/T39BBosLZPXx5q4dGxpbzU62ZZagufdv+DETuN3hQ/LbkHkOqr4BJzHUVFXpwOR6JLFxERERGZFoUqmZFYPEawtYW23gj1/U762ls4ceAecowRiibWCdluynMWU7G0iooCk/Hc4/AVFlGoACUiIiIi+wCFKpmy8Wic9u5BBl97jFhPE+nD7XhiPWQY4zSNLuPB8DrKvS56M6vozS8jq6Qa/8JaynPzKE908SIiIiIie4lClezU8EA/gfotDLY1QG8zHeE0fh9aTiwe55q8+0k1YgSdPtpzVuAsqGRN1RI+WFlNaooTODTR5YuIiIiIzBqFqnkuHo/TF+iiq7WdurCH5sAQh3TfwyKjhQKgABi0MxhNW8SJB5ZT5s/GmbOE/OJCChzORJcvIiIiIpJwClXzSCwep7N3lKD1Enbba7gGW8mPdpNlhMmPu/hj3+n4PVmE3LU0ZNWSWVyFr6qWEp+fEuDARB+AiIiIiMgcpFC1jwqPjtC1rY6BtnriwSYyhjv4Uf9xDEcdbMh4gSPT36TH4SWQVYvhLSendCE/ql1GZroLOCjR5YuIiIiIJA2Fqn3AYG+Qrvo6GsZyqQ/Gye38FyfZj+ExbDzAqO2iN8XHMSvy8ZWUUOFZQbY/l/xUV6JLFxERERFJegpVScS2bbr7w3Q0t0DdE6QMtJIbCZBrDFMI/GnwSNozFrHSU0aj63DSC6vwVi6ioLgEv8PB4kQfgIiIiIjIPijpQpVpmrXAnYAXCALnWJZVl9iq9rzx8QiBhm30tWwj2t1E2lA7T41W8dRwNT7HAJfnPkmvkUcoo3xy+vJP1yzFnZuT6NJFREREROaVpAtVwG3ALZZl3W2a5lnA7cDRCa5pRkYGB+mqr6OzL8ybQ/m0d/XyufGfkmPEyQEitpNeRwHVJfksXGhS4c8iPf8EqjIyEl26iIiIiMi8l1ShyjRNP7AGOG5i0a+Bm03T9FmW1Z24yqYnHrdpeuw+Iu0W6cMdeOinAOiILODl+AmUF7ppSDmCzIJi8str8JVV4k1xsijRhYuIiIiIyLskVagCyoA2y7JiAJZlxUzTbJ9YnjSh6vFX2sl742lynaP0uQrp96whvaiKJdWLudHnwzAMYFWiyxQRERERkSlItlA1Y15vdkL37/O5OfmIGpprvknVAi+uVD1Ad67z+dyJLkGmST1LPupZ8lHPkov6lXzUs+SSbKGqBSg1TdM5cZbKCZRMLJ+SYHCIeNzeawXuis/nprt7EABPdgb9fSMJqUOmbseeSXJQz5KPepZ81LPkon4lH/UscRwOY7dOwjj2Qi17jWVZAeAl4IyJRWcALybT/VQiIiIiIrJvSbYzVQAXAHeapnklEALOSXA9IiIiIiIyjyVdqLIsazNwYKLrEBERERERgSQMVTPghO3XSSZSovcv06eeJR/1LPmoZ8lHPUsu6lfyUc8SY4ev+7RmkzNsOzGTNiTAYcATiS5CRERERETmvMOBJ6e68nwKVWnA/kAHEEtwLSIiIiIiMvc4gWLgX8DYVN80n0KViIiIiIjIHpdUU6qLiIiIiIjMNQpVIiIiIiIiM6BQJSIiIiIiMgMKVSIiIiIiIjOgUCUiIiIiIjIDClUiIiIiIiIzoFAlIiIiIiIyAymJLmC+ME2zFrgT8AJB4BzLsuoSW9X8Y5pmIxCe+APwZcuyHjJN8yDgdiADaATOsiwrMPGe3RqT3WOa5g3AR4FKYIVlWa9NLH/Pz9DeGJOp20XPGtnJ521iTJ+5BDFN0wvcBSxk+4MttwKftSyre2/0RT2buffpmQ28CsQnVj/bsqxXJ963Afgu23/fewH4N8uyRmYyJlNnmuZ9QBXbezMEXGJZ1kv6ebZv0pmq2XMbcItlWbXALWz/ASOJcZplWasm/jxkmqYB3A1cNNGfx4FrAXZ3TGbkPuAIoOkdy3f1GdobYzJ179UzeMfnDXb/c6XP3B5jA9dblmValrUfsA24dm/0RT3bY3basx3GD9nhc/ZWoMoG/n979x9qd13Hcfw5pzPZZFOWhrYJ4nqJRqY5yB8RQWFKssraNH8GQkompasglH7AKmxhaayFplmkMBAygqQ/bMnSoB9aWPEOKXWamnP+/lXbbn98v9PjdTu7O99zd+7ung+43O/5vD/fz/nc8+Fzv7zP53s+5zrg9Ko6AngOWN4lpp12flUdU1XHAiuBG9pyr2fTkEnVLpDkIOA44Ja26BbguCRvHl2v1ON44OWqWtc+Xg0s7RjTgKpqXVWt7y3rN4cmIzZZf9t0ta0x2wHn3AhV1caqWttT9DvgMCZnXByzIegzZv2cCvyhZ7ViNbCsY0w7oaqe6Xk4F9ji9Wz6MqnaNRYAj1TVZoD297/bcu16P03ylySrkswDFtLzDntVbQD2SnJgh5iGq98cmoyYhmf8fAPn3JSRZC/gYuDnTM64OGZDNm7Mtlqb5N4k30iyb1v2utceeIjX/r8NGtNOSnJ9koeAFcD5eD2btkyqtKd5T1UdAywGZgDfG3F/pOnM+Tb1XUvzWQ/HZvcxfswWVtXxNLfgHgVcOaqO6Y2q6sKqWgh8ieZzapqmTKp2jfXAoUlmArS/D2nLtQttvUWpql4BVgEn0bwL9+ptFEnmA2NVtbFDTMPVbw5NRkxDsJ35Bs65KaHdYGQRsKyqtjA54+KYDdE2xqx3nj0LXM925hnNCtT6jjENqKp+ArwPeBivZ9OSSdUu0O5ydC9wVlt0FnBPVT0xul7teZLMTjK3PZ4BnEkzLn8E9ktyclv1ImBNezxoTEPUbw5NRmzy/6Lpr898A+fcyCVZAbwL+HCb9MLkjItjNiTbGrMkByTZrz3eG/gYr82z24HFSRa1j3tf+0FjmqAkc5Is6Hl8OrAR8Ho2Tc0YGxsbdR/2CEmOpNnq8gDgKZqtLmu0vdqzJDkcuBWY2f78Dbi0qh5NciLNTjlv4rUtfx9vzxsopsEkuQb4KPAWYAPwZFUd3W8OTUZME7etMQNOZzvzrT3HOTciSY4G7gP+AbzUFv+rqj4yGePimHW3vTEDrqJ5bceAfYC7gM9W1fPteUvaOjOBe4ALquqFLjFNTJKDgduA2cBmmoRqeVX9yevZ9GRSJUmSJEkdePufJEmSJHVgUiVJkiRJHZhUSZIkSVIHJlWSJEmS1IFJlSRJkiR1YFIlSdrtJFmd5Mo+8bEkRwz5Oc9O8qthtilJmh7cUl2SNFJJzgQ+B7wdeIHm+3duAr5fVQNdpJKMAYuq6v5txNYC7wY2AS8DdwKf3vodWsOQ5ALgwqo6eUd1JUm7P1eqJEkjk+Ry4LvAt2i+PPhg4CLgJGDWds6ZOYSnvqSq5gBvA+YBVw+hTUnSHmrvUXdAkrRnSjIX+BpwXlXd2hO6Bzi7p96PgJeAw4D3AkuSnAM8XFVXtHU+D1wGjAFXTLQPVbUxya3AxT19uhY4FXgRuA74elVtGb/61K6GXQxcDswHbgYuAY4EVgP7JHke2FRV85KcBqwEFgDPAldX1cqJ9lWSNHW5UiVJGpUTgH2B2yZQ9xPACmB/YF1vIMkHgeXAB4BFwPsn2oEk84EzaBI5aBKqucDhNAncecAn+zTxIWAxcAywFDilqv5Os9p2d1XNqap5bd0fAp+qqv1pbnW8Y6L9lCRNba5USZJGZT6woao2bS1IchdwFE2ydUpV3dmGbquq37bHLyfpbWcpcGNV3de28RXgrB089zVJVtJ8hmstcFl7W+Ey4Niqeg54Lsm3gXNpEqJt+WZVPQ08neTXwDuB27dT93/AUUn+XFVPAU/toI+SpN2EK1WSpFF5Epif5NU3+KrqxHZl50lef41a36edQ8bFH5zAc19aVfOq6tCqOruqnqBJ8maNO/9B4NA+7TzWc/wiMKdP3TOA04AHk/wmyQkT6KckaTdgUiVJGpW7gVeAJROo228XwEdpPqe01cIB+7OBZjXpsHFtPTJAW2/ob1X9vqqWAAcBPwPWDNJJSdLU4+1/kqSRqKqnk3wVWJVkBs1tcy8C7wBm70RTa4Abk/wYeAD48oD92ZxkDbAiyXnAgTSbXwyymcTjwFuTzKqq/yaZBXwc+EVVPZPkWWDzIP2UJE09rlRJkkamqq6iSVy+APyHJhn5AfBF4K4JtvFL4Ds0Gz/cT7cNID5D8zmrf9JsiHEzcMMA7dwB/BV4LMmGtuxc4IE2oboIOKdDPyVJU4hf/itJkiRJHbhSJUmSJEkdmFRJkiRJUgcmVZIkSZLUgUmVJEmSJHVgUiVJkiRJHZhUSZIkSVIHJlWSJEmS1IFJlSRJkiR1YFIlSZIkSR38H+HveVaPjaRDAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 1008x432 with 2 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n", "for ax, pmu_counter in zip([ax1, ax2], [\"PM_RUN_CYC (min)\", \"PM_INST_CMPL (min)\"]):\n", "    df.set_index(\"Grid Points\")[pmu_counter].plot(ax=ax, legend=True);\n", "    ax.plot(\n", "        df[\"Grid Points\"], \n", "        linear_function(df[\"Grid Points\"], *fit_parameters[pmu_counter]), \n", "        linestyle=\"--\", \n", "        label=\"Fit: {:.2f} * x + {:.2f}\".format(*fit_parameters[pmu_counter])\n", "    )\n", "    ax.legend();"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Please execute the next cell to summarize the first task."]}, {"cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["The algorithm under investigation runs about 8 cycles and executes about 14 instructions per grid point\n"]}], "source": ["print(\"The algorithm under investigation runs about {:.0f} cycles and executes about {:.0f} instructions per grid point\".format(\n", "    *[fit_parameters[pmu_counter][0] for pmu_counter in [\"PM_RUN_CYC (min)\", \"PM_INST_CMPL (min)\"]]\n", "))"]}, {"cell_type": "markdown", "metadata": {}, "source": ["**Bonus:**\n", "\n", "The linear fits also calculate a y intersection (\u00bb`b`\u00ab). How do you interpret this value?"]}, {"cell_type": "markdown", "metadata": {"exercise": "solution"}, "source": ["The y axis intersection; that is, `b` of the linear fit, is the inherent overhead of the program execution. Even if our program would not compute any stencil operation at all for any grid point, it would still complete this many (~1800) instructions and run this many (~680) cycles. Interestingly, it is also the unparallelizable overhead of this (toy) example."]}, {"cell_type": "markdown", "metadata": {}, "source": ["We are revisiting the graph in a little while.\n", "\n", "[Back to top](#toc)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## Task 2: Measuring Loads and Stores\n", "<a name=\"task2\"></a>\n", "\n", "Looking at the source code, how many loads and stores from / to memory do you expect? Have a look at the loop which we instrumented.\n", "\n", "Let's compare your estimate to what the system actually does!\n", "\n", "### Task A\n", "<a name=\"task2-a\"></a>\n", "\n", "Please measure counters for loads and stores. See the TODOs in [`poisson2d.ld_st.c`](/edit/Tasks/poisson2d.ld_st.c). This time, implement `PM_LD_CMPL` and `PM_ST_CMPL`.\n", "\n", "Compile with `make task2`, test your program with a single run with `make run_task2`, and then finally submit a benchmarking run to the batch system with `make bench_task2`. The following cell will take care of all this.\n", "\n", "[Back to top](#toc)"]}, {"cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.ld_st.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.ld_st.bin.csv\n", "Job <24416> is submitted to default queue <batch>.\n", "<<Waiting for dispatch ...>>\n", "<<Starting on login1>>\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,4,0.0012,119819,598,817,32902,164,266\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,8,0.0013,161819,808,1027,56902,284,386\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,12,0.0014,221819,1108,1327,71902,359,461\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,16,0.0015,281819,1408,1627,86902,434,536\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,20,0.0015,341819,1708,1927,101902,509,611\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,24,0.0016,401819,2008,2227,116902,584,686\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,28,0.0016,461819,2308,2527,131902,659,761\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,32,0.0018,521819,2608,2827,146902,734,836\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,36,0.0018,581819,2908,3127,161902,809,911\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,40,0.0018,641819,3208,3427,176902,884,986\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,44,0.0019,701819,3508,3727,191902,959,1061\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,48,0.0020,761819,3808,4027,206902,1034,1136\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,52,0.0020,821819,4108,4327,221902,1109,1211\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,56,0.0021,881819,4408,4627,236902,1184,1286\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,60,0.0022,941819,4708,4927,251902,1259,1361\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,64,0.0023,1001819,5008,5227,266902,1334,1436\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,68,0.0023,1061819,5308,5527,281902,1409,1511\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,72,0.0025,1121819,5608,5827,296902,1484,1586\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,76,0.0028,1181819,5908,6127,311902,1559,1661\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,80,0.0025,1241819,6208,6427,326902,1634,1736\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,84,0.0026,1301819,6508,6727,341902,1709,1811\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,88,0.0026,1361819,6808,7027,356902,1784,1886\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,92,0.0027,1421819,7108,7327,371902,1859,1961\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,96,0.0028,1481819,7408,7627,386902,1934,2036\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,100,0.0029,1541819,7708,7927,401902,2009,2111\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,104,0.0029,1601819,8008,8227,416902,2084,2186\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,108,0.0031,1661819,8308,8527,431902,2159,2261\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,112,0.0030,1721819,8608,8827,446902,2234,2336\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,116,0.0031,1781819,8908,9127,461902,2309,2411\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,120,0.0032,1841819,9208,9427,476902,2384,2486\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,124,0.0033,1901819,9508,9727,491902,2459,2561\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,128,0.0033,1961819,9808,10027,506902,2534,2636\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,132,0.0034,2021819,10108,10327,521902,2609,2711\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,136,0.0035,2081819,10408,10627,536902,2684,2786\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,140,0.0036,2141819,10708,10927,551902,2759,2861\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,144,0.0036,2201819,11008,11227,566902,2834,2936\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,148,0.0036,2261819,11308,11527,581902,2909,3011\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,152,0.0037,2321819,11608,11827,596902,2984,3086\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,156,0.0038,2381819,11908,12127,611902,3059,3161\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,160,0.0040,2441819,12208,12427,626902,3134,3236\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,164,0.0039,2501819,12508,12727,641902,3209,3311\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,168,0.0040,2561819,12808,13027,656902,3284,3386\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,172,0.0040,2621819,13108,13327,671902,3359,3461\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,176,0.0041,2681819,13408,13627,686902,3434,3536\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,180,0.0041,2741819,13708,13927,701902,3509,3611\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,184,0.0042,2801819,14008,14227,716902,3584,3686\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,188,0.0044,2861819,14308,14527,731902,3659,3761\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,192,0.0044,2921819,14608,14827,746902,3734,3836\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,196,0.0045,2981819,14908,15127,761902,3809,3911\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,200,0.0045,3041819,15208,15427,776902,3884,3986\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,204,0.0045,3101819,15508,15727,791902,3959,4061\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,208,0.0046,3161819,15808,16027,806902,4034,4136\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,212,0.0047,3221819,16108,16327,821902,4109,4211\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,216,0.0047,3281819,16408,16627,836902,4184,4286\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,220,0.0048,3341819,16708,16927,851902,4259,4361\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,224,0.0049,3401819,17008,17227,866902,4334,4436\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,228,0.0050,3461819,17308,17527,881902,4409,4511\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,232,0.0050,3521819,17608,17827,896902,4484,4586\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,236,0.0051,3581819,17908,18127,911902,4559,4661\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,240,0.0051,3641819,18208,18427,926902,4634,4736\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,244,0.0052,3701819,18508,18727,941902,4709,4811\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,248,0.0053,3761819,18808,19027,956902,4784,4886\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,252,0.0053,3821819,19108,19327,971902,4859,4961\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,256,0.0054,3881819,19408,19627,986902,4934,5036\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,260,0.0055,3941819,19708,19927,1001902,5009,5111\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,264,0.0055,4001819,20008,20227,1016902,5084,5186\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,268,0.0056,4061819,20308,20527,1031902,5159,5261\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,272,0.0057,4121819,20608,20827,1046902,5234,5336\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,276,0.0057,4181819,20908,21127,1061902,5309,5411\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,280,0.0058,4241819,21208,21427,1076902,5384,5486\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,284,0.0059,4301819,21508,21727,1091902,5459,5561\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,288,0.0059,4361819,21808,22027,1106902,5534,5636\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,292,0.0060,4421819,22108,22327,1121902,5609,5711\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,296,0.0061,4481819,22408,22627,1136902,5684,5786\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,300,0.0061,4541819,22708,22927,1151902,5759,5861\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,304,0.0062,4601819,23008,23227,1166902,5834,5936\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,308,0.0063,4661819,23308,23527,1181902,5909,6011\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,312,0.0064,4721819,23608,23827,1196902,5984,6086\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,316,0.0066,4781819,23908,24127,1211902,6059,6161\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,320,0.0065,4841819,24208,24427,1226902,6134,6236\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,324,0.0065,4901819,24508,24727,1241902,6209,6311\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,328,0.0069,4961819,24808,25027,1256902,6284,6386\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,332,0.0066,5021819,25108,25327,1271902,6359,6461\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,336,0.0067,5081819,25408,25627,1286902,6434,6536\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,340,0.0068,5141819,25708,25927,1301902,6509,6611\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,344,0.0069,5201819,26008,26227,1316902,6584,6686\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,348,0.0069,5261819,26308,26527,1331902,6659,6761\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,352,0.0070,5321819,26608,26827,1346902,6734,6836\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,356,0.0070,5381819,26908,27127,1361902,6809,6911\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,360,0.0071,5441819,27208,27427,1376902,6884,6986\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,364,0.0072,5501819,27508,27727,1391902,6959,7061\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,368,0.0072,5561819,27808,28027,1406902,7034,7136\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,372,0.0073,5621819,28108,28327,1421902,7109,7211\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,376,0.0074,5681819,28408,28627,1436902,7184,7286\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,380,0.0074,5741819,28708,28927,1451902,7259,7361\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,384,0.0075,5801819,29008,29227,1466902,7334,7436\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,388,0.0076,5861819,29308,29527,1481902,7409,7511\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,392,0.0076,5921819,29608,29827,1496902,7484,7586\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,396,0.0077,5981819,29908,30127,1511902,7559,7661\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,400,0.0078,6041819,30208,30427,1526902,7634,7736\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,404,0.0079,6101819,30508,30727,1541902,7709,7811\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,408,0.0079,6161819,30808,31027,1556902,7784,7886\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,412,0.0080,6221819,31108,31327,1571902,7859,7961\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,416,0.0081,6281819,31408,31627,1586902,7934,8036\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,420,0.0081,6341819,31708,31927,1601902,8009,8111\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,424,0.0082,6401819,32008,32227,1616902,8084,8186\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,428,0.0082,6461819,32308,32527,1631902,8159,8261\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,432,0.0085,6521819,32608,32827,1646902,8234,8336\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,436,0.0084,6581819,32908,33127,1661902,8309,8411\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,440,0.0084,6641819,33208,33427,1676902,8384,8486\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,444,0.0085,6701819,33508,33727,1691902,8459,8561\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,448,0.0087,6761819,33808,34027,1706902,8534,8636\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,452,0.0087,6821819,34108,34327,1721902,8609,8711\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,456,0.0087,6881819,34408,34627,1736902,8684,8786\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,460,0.0088,6941819,34708,34927,1751902,8759,8861\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,464,0.0088,7001819,35008,35227,1766902,8834,8936\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,468,0.0089,7061819,35308,35527,1781902,8909,9011\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,472,0.0090,7121819,35608,35827,1796902,8984,9086\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,476,0.0091,7181819,35908,36127,1811902,9059,9161\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,480,0.0091,7241819,36208,36427,1826902,9134,9236\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,484,0.0092,7301819,36508,36727,1841902,9209,9311\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,488,0.0093,7361819,36808,37027,1856902,9284,9386\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,492,0.0094,7421819,37108,37327,1871902,9359,9461\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,496,0.0095,7481819,37408,37627,1886902,9434,9536\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,500,0.0094,7541819,37708,37927,1901902,9509,9611\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,504,0.0095,7601819,38008,38227,1916902,9584,9686\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,508,0.0096,7661819,38308,38527,1931902,9659,9761\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,512,0.0097,7721819,38608,38827,1946902,9734,9836\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,516,0.0098,7781819,38908,39127,1961902,9809,9911\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,520,0.0098,7841819,39208,39427,1976902,9884,9986\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,524,0.0099,7901819,39508,39727,1991902,9959,10061\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,528,0.0099,7961819,39808,40027,2006902,10034,10136\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,532,0.0100,8021819,40108,40327,2021902,10109,10211\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,536,0.0101,8081819,40408,40627,2036902,10184,10286\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,540,0.0101,8141819,40708,40927,2051902,10259,10361\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,544,0.0103,8201819,41008,41227,2066902,10334,10436\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,548,0.0103,8261819,41308,41527,2081902,10409,10511\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,552,0.0104,8321819,41608,41827,2096902,10484,10586\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,556,0.0106,8381819,41908,42127,2111902,10559,10661\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,560,0.0106,8441819,42208,42427,2126902,10634,10736\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,564,0.0106,8501819,42508,42727,2141902,10709,10811\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,568,0.0107,8561819,42808,43027,2156902,10784,10886\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,572,0.0108,8621819,43108,43327,2171902,10859,10961\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,576,0.0109,8681819,43408,43627,2186902,10934,11036\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,580,0.0110,8741819,43708,43927,2201902,11009,11111\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,584,0.0110,8801819,44008,44227,2216902,11084,11186\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,588,0.0110,8861819,44308,44527,2231902,11159,11261\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,592,0.0111,8921819,44608,44827,2246902,11234,11336\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,596,0.0113,8981819,44908,45127,2261902,11309,11411\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,600,0.0113,9041819,45208,45427,2276902,11384,11486\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,604,0.0114,9101819,45508,45727,2291902,11459,11561\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,608,0.0115,9161819,45808,46027,2306902,11534,11636\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,612,0.0115,9221819,46108,46327,2321902,11609,11711\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,616,0.0115,9281819,46408,46627,2336902,11684,11786\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,620,0.0116,9341819,46708,46927,2351902,11759,11861\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,624,0.0117,9401819,47008,47227,2366902,11834,11936\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,628,0.0117,9461819,47308,47527,2381902,11909,12011\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,632,0.0118,9521819,47608,47827,2396902,11984,12086\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,636,0.0119,9581819,47908,48127,2411902,12059,12161\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,640,0.0119,9641819,48208,48427,2426902,12134,12236\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,644,0.0121,9701819,48508,48727,2441902,12209,12311\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,648,0.0121,9761819,48808,49027,2456902,12284,12386\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,652,0.0121,9821819,49108,49327,2471902,12359,12461\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,656,0.0122,9881819,49408,49627,2486902,12434,12536\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,660,0.0123,9941819,49708,49927,2501902,12509,12611\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,664,0.0123,10001819,50008,50227,2516902,12584,12686\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,668,0.0124,10061819,50308,50527,2531902,12659,12761\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,672,0.0124,10121819,50608,50827,2546902,12734,12836\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,676,0.0126,10181819,50908,51127,2561902,12809,12911\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,680,0.0126,10241819,51208,51427,2576902,12884,12986\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,684,0.0127,10301819,51508,51727,2591902,12959,13061\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,688,0.0128,10361819,51808,52027,2606902,13034,13136\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,692,0.0128,10421819,52108,52327,2621902,13109,13211\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,696,0.0129,10481819,52408,52627,2636902,13184,13286\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,700,0.0131,10541819,52708,52927,2651902,13259,13361\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,704,0.0131,10601819,53008,53227,2666902,13334,13436\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,708,0.0130,10661819,53308,53527,2681902,13409,13511\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,712,0.0131,10721819,53608,53827,2696902,13484,13586\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,716,0.0132,10781819,53908,54127,2711902,13559,13661\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,720,0.0132,10841819,54208,54427,2726902,13634,13736\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,724,0.0134,10901819,54508,54727,2741902,13709,13811\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,728,0.0134,10961819,54808,55027,2756902,13784,13886\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,732,0.0134,11021819,55108,55327,2771902,13859,13961\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,736,0.0135,11081819,55408,55627,2786902,13934,14036\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,740,0.0137,11141819,55708,55927,2801902,14009,14111\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,744,0.0138,11201819,56008,56227,2816902,14084,14186\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,748,0.0137,11261819,56308,56527,2831902,14159,14261\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,752,0.0138,11321819,56608,56827,2846902,14234,14336\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,756,0.0139,11381819,56908,57127,2861902,14309,14411\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,760,0.0140,11441819,57208,57427,2876902,14384,14486\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,764,0.0140,11501819,57508,57727,2891902,14459,14561\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,768,0.0141,11561819,57808,58027,2906902,14534,14636\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,772,0.0141,11621819,58108,58327,2921902,14609,14711\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,776,0.0142,11681819,58408,58627,2936902,14684,14786\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,780,0.0143,11741819,58708,58927,2951902,14759,14861\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,784,0.0144,11801819,59008,59227,2966902,14834,14936\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,788,0.0144,11861819,59308,59527,2981902,14909,15011\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,792,0.0145,11921819,59608,59827,2996902,14984,15086\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,796,0.0145,11981819,59908,60127,3011902,15059,15161\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,800,0.0147,12041819,60208,60427,3026902,15134,15236\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,804,0.0147,12101819,60508,60727,3041902,15209,15311\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,808,0.0148,12161819,60808,61027,3056902,15284,15386\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,812,0.0148,12221819,61108,61327,3071902,15359,15461\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,816,0.0150,12281819,61408,61627,3086902,15434,15536\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,820,0.0149,12341819,61708,61927,3101902,15509,15611\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,824,0.0150,12401819,62008,62227,3116902,15584,15686\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,828,0.0151,12461819,62308,62527,3131902,15659,15761\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,832,0.0152,12521819,62608,62827,3146902,15734,15836\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,836,0.0152,12581819,62908,63127,3161902,15809,15911\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,840,0.0153,12641819,63208,63427,3176902,15884,15986\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,844,0.0153,12701819,63508,63727,3191902,15959,16061\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,848,0.0154,12761819,63808,64027,3206902,16034,16136\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,852,0.0155,12821819,64108,64327,3221902,16109,16211\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,856,0.0156,12881819,64408,64627,3236902,16184,16286\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,860,0.0156,12941819,64708,64927,3251902,16259,16361\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,864,0.0157,13001819,65008,65227,3266902,16334,16436\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,868,0.0158,13061819,65308,65527,3281902,16409,16511\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,872,0.0159,13121819,65608,65827,3296902,16484,16586\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,876,0.0159,13181819,65908,66127,3311902,16559,16661\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,880,0.0160,13241819,66208,66427,3326902,16634,16736\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,884,0.0160,13301819,66508,66727,3341902,16709,16811\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,888,0.0161,13361819,66808,67027,3356902,16784,16886\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,892,0.0162,13421819,67108,67327,3371902,16859,16961\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,896,0.0163,13481819,67408,67627,3386902,16934,17036\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,900,0.0164,13541819,67708,67927,3401902,17009,17111\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,904,0.0165,13601819,68008,68227,3416902,17084,17186\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,908,0.0165,13661819,68308,68527,3431902,17159,17261\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,912,0.0166,13721819,68608,68827,3446902,17234,17336\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,916,0.0166,13781819,68908,69127,3461902,17309,17411\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,920,0.0167,13841819,69208,69427,3476902,17384,17486\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,924,0.0168,13901819,69508,69727,3491902,17459,17561\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,928,0.0169,13961819,69808,70027,3506902,17534,17636\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,932,0.0175,14021819,70108,70327,3521902,17609,17711\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,936,0.0170,14081819,70408,70627,3536902,17684,17786\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,940,0.0171,14141819,70708,70927,3551902,17759,17861\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,944,0.0171,14201819,71008,71227,3566902,17834,17936\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,948,0.0172,14261819,71308,71527,3581902,17909,18011\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,952,0.0172,14321819,71608,71827,3596902,17984,18086\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,956,0.0173,14381819,71908,72127,3611902,18059,18161\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,960,0.0174,14441819,72208,72427,3626902,18134,18236\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,964,0.0176,14501819,72508,72727,3641902,18209,18311\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,968,0.0178,14561819,72808,73027,3656902,18284,18386\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,972,0.0177,14621819,73108,73327,3671902,18359,18461\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,976,0.0178,14681819,73408,73627,3686902,18434,18536\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,980,0.0179,14741819,73708,73927,3701902,18509,18611\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,984,0.0179,14801819,74008,74227,3716902,18584,18686\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,988,0.0180,14861819,74308,74527,3731902,18659,18761\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,992,0.0181,14921819,74608,74827,3746902,18734,18836\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,996,0.0182,14981819,74908,75127,3761902,18809,18911\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,1000,0.0182,15041819,75208,75427,3776902,18884,18986\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,1004,0.0183,15101819,75508,75727,3791902,18959,19061\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,1008,0.0183,15161819,75808,76027,3806902,19034,19136\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,1012,0.0184,15221819,76108,76327,3821902,19109,19211\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,1016,0.0185,15281819,76408,76627,3836902,19184,19286\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,1020,0.0185,15341819,76708,76927,3851902,19259,19361\n", "iter,ny,nx,Runtime,PM_LD_CMPL (total),PM_LD_CMPL (min), PM_LD_CMPL (max),PM_ST_CMPL (total),PM_ST_CMPL (min), PM_ST_CMPL (max)\n", "200,32,1024,0.0186,15401819,77008,77227,3866902,19334,19436\n", "mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.ld_st.bin.csv .\n"]}], "source": ["!make bench_task2"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Once the run finished, let's plot it again in the course of the following cells (non-interactive: `make graph_task2a`)."]}, {"cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", "    .dataframe tbody tr th:only-of-type {\n", "        vertical-align: middle;\n", "    }\n", "\n", "    .dataframe tbody tr th {\n", "        vertical-align: top;\n", "    }\n", "\n", "    .dataframe thead th {\n", "        text-align: right;\n", "    }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", "  <thead>\n", "    <tr style=\"text-align: right;\">\n", "      <th></th>\n", "      <th>iter</th>\n", "      <th>ny</th>\n", "      <th>nx</th>\n", "      <th>Runtime</th>\n", "      <th>PM_LD_CMPL (total)</th>\n", "      <th>PM_LD_CMPL (min)</th>\n", "      <th>PM_LD_CMPL (max)</th>\n", "      <th>PM_ST_CMPL (total)</th>\n", "      <th>PM_ST_CMPL (min)</th>\n", "      <th>PM_ST_CMPL (max)</th>\n", "      <th>Grid Points</th>\n", "    </tr>\n", "  </thead>\n", "  <tbody>\n", "    <tr>\n", "      <th>0</th>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>4</td>\n", "      <td>0.0012</td>\n", "      <td>119819</td>\n", "      <td>598</td>\n", "      <td>817</td>\n", "      <td>32902</td>\n", "      <td>164</td>\n", "      <td>266</td>\n", "      <td>128</td>\n", "    </tr>\n", "    <tr>\n", "      <th>1</th>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>8</td>\n", "      <td>0.0013</td>\n", "      <td>161819</td>\n", "      <td>808</td>\n", "      <td>1027</td>\n", "      <td>56902</td>\n", "      <td>284</td>\n", "      <td>386</td>\n", "      <td>256</td>\n", "    </tr>\n", "    <tr>\n", "      <th>2</th>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>12</td>\n", "      <td>0.0014</td>\n", "      <td>221819</td>\n", "      <td>1108</td>\n", "      <td>1327</td>\n", "      <td>71902</td>\n", "      <td>359</td>\n", "      <td>461</td>\n", "      <td>384</td>\n", "    </tr>\n", "    <tr>\n", "      <th>3</th>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>16</td>\n", "      <td>0.0015</td>\n", "      <td>281819</td>\n", "      <td>1408</td>\n", "      <td>1627</td>\n", "      <td>86902</td>\n", "      <td>434</td>\n", "      <td>536</td>\n", "      <td>512</td>\n", "    </tr>\n", "    <tr>\n", "      <th>4</th>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>20</td>\n", "      <td>0.0015</td>\n", "      <td>341819</td>\n", "      <td>1708</td>\n", "      <td>1927</td>\n", "      <td>101902</td>\n", "      <td>509</td>\n", "      <td>611</td>\n", "      <td>640</td>\n", "    </tr>\n", "  </tbody>\n", "</table>\n", "</div>"], "text/plain": ["   iter  ny  nx  Runtime  PM_LD_CMPL (total)  PM_LD_CMPL (min)  \\\n", "0   200  32   4   0.0012              119819               598   \n", "1   200  32   8   0.0013              161819               808   \n", "2   200  32  12   0.0014              221819              1108   \n", "3   200  32  16   0.0015              281819              1408   \n", "4   200  32  20   0.0015              341819              1708   \n", "\n", "    PM_LD_CMPL (max)  PM_ST_CMPL (total)  PM_ST_CMPL (min)   PM_ST_CMPL (max)  \\\n", "0                817               32902               164                266   \n", "1               1027               56902               284                386   \n", "2               1327               71902               359                461   \n", "3               1627               86902               434                536   \n", "4               1927              101902               509                611   \n", "\n", "   Grid Points  \n", "0          128  \n", "1          256  \n", "2          384  \n", "3          512  \n", "4          640  "]}, "execution_count": 8, "metadata": {}, "output_type": "execute_result"}], "source": ["df_ldst = pd.read_csv(\"poisson2d.ld_st.bin.csv\", skiprows=range(2, 50000, 2))\n", "df_ldst[\"Grid Points\"] = df_ldst[\"nx\"] * df_ldst[\"ny\"] \n", "df_ldst.head()"]}, {"cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAF/CAYAAAB+GZmgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt0XGd97//3XDQjzeyt61x0m5Fv8U6cOHESO7FJQkhIuAQCpFB+TUkgJEDNIacF1oL20JTScllcF7cASdu0J4SWFvrjV25JG05aFglQICSBcoCdFBJLlmWNJMvSXCSNZmb//pjRlhTb0UiWPBrp81ory9HsRzPP6JFtffzs7/fxOI6DiIiIiIiInJq31hMQERERERFZ7xScRERERERElqDgJCIiIiIisgQFJxERERERkSUoOImIiIiIiCxBwUlERERERGQJCk4iIiIiIiJLUHASERERERFZgoKTiIiIiIjIEhScREREREREluCvZpBlWS8H3g94KIet99m2/TXLsnYC9wIdwBjwetu2n6p8zqpfExERERERqYUlg5NlWR7gPuAK27Z/YVnW+cD3Lcv6F+Au4HO2bX/JsqybgLuBqyufuhbXlhIE9gFDQLHKzxERERERkc3DB3QBPwFmqv2kqnacgBLQUvn/VsrBJAJcBFxbefzLwJ2WZUUp70yt6jXbtkeqmOc+4OEq35OIiIiIiGxeVwCPVDt4yeBk27ZjWdZrga9blpUFTOBlQAIYtG27WBlXtCzrSOVxzxpcqyY4DQGMj2cplZxqvwarqqPDYGwsU5PXlpXRmtUfrVn90ZrVH61ZfdF61R+tWe14vR7a2sJQyQ7VquZWPT/wv4BX2rb9fcuyLgP+Cbh5JRNdY0Vg7gtRMx0dRk1fX5ZPa1Z/tGb1R2tWf7Rm9UXrVX+0ZjW3rNKeam7V2wN027b9fYBKeMoC00CPZVm+ys6QD+gGBijvHK32taqNjWVqtuMUjZqMjKRr8tqyMlqz+qM1qz9as/qjNasvWq/6ozWrHa/Xs6LQWk078sNAr2VZFoBlWecAncBTwBPAjZVxNwKP27Y9Ytt2arWvLfudiYiIiIiIrJJqapyOWpb1VuCfLcsqVR5+o23bxyzLOgjca1nWe4Fx4PULPnUtromIiIiIiJxxHsepzS1ta2QL8PSzb9UrFguMj49QKOTXfAJer5dSqbT0QFk3nmvN/P4AbW1RfL5qG1DKmaDbG+qP1qz+aM3qi9ar/mzkNSs5DqnxKfqH0xwaTjMwnCFfKPGuG/fg81Zzw9vaWnCr3lbgmWo/b1P8NDg+PkJjY4hwuBOPx7Omr+X3eykUFJzqyanWzHEcstlJxsdHiES6ajAzERERkfVttlBkcDRL/3DGDUkDqQwzs+W+Cz6vh+5ImHP62mo809O3KYJToZA/I6FJNhaPx0M43Ewmc7zWUxERERGpudz0LP3DGfqH0/Snyr8OjeUoVu70CgZ8JGMGl5/fRTJmkIybdEfCNPhrv8u0GjZFcAIUmmRF9H0jIiIim43jOIynZ04ISaMT0+6YlnCAZNzkgh0RknGTZNwg2tqEdwP/7LRpgpOIiIiIiCxWKjkcPZZbFJD6hzNkpmbdMfG2JrZ0NXPlnu5ySIoZtBjBGs66NhScauA1r7meQCBAQ0OAUqnIG95wG9dc82Iee+xR/vAPD3LjjTfztrf9kTv+9tvfwhNPPMaDD36PUCh00ud87LFH+dznPs0999y36PGhoSP83u/dwNat2ymVihQKBS644ELe+MY3E4vFn3OeY2OjfP7zn+HnP/8ZjY1B/H4/N9zwu7ziFTdwzz1383d/99d89KOf4nnPuxyAXC7HK1/5YpLJLe48Lr98L9u37wA8eL0e3va2t7N37yXcf/83+cEPHuYDH/jokl+vz3zmE+zefQFXXXXNkmMX+vCH389LX/pyLrjgwucc99nPfoodO3Zy7bUvWdbzi4iIiNST/GyRwyPZRSHpcKrcuAHA7/PQEzHYc1aEvsouUm/UoCmoyAAKTjXzgQ98hG3bdvDkk7/m4MHb2Lv3UgCSyT4efvi7HDx4Oz6fjyNHBpmZmV7i2Z6bYRj87//9DwDMzs5y7733cPDgrXzxi/+EYZz88K/p6Wluv/0tXHfd9fzpn74Pr9dLOp3moYcedMfs3GnxwAPfcoPTf/zH/yGZ3HLCc33hC39LKBTi4Ye/y5//+f/im9/8TtVzT6WGefTRH/M//+c7l/GOy/7kT/6sqnE33fQG3vKWN/LCF74I7zro9CIiIiJyujJTs+7uUX+q/OvQWJa5htpNQR+JmMnz93TTFzdJxAy6I2H8Pv0sdCqbMjh9/7+GeOTnQ2vy3Fde2M3+XZ1Vj9+582xCoRBDQ4MANDWF2LJlKz/+8Q85cOByHnjgW7zkJS/jV7/65arMr6GhgTe96SA/+cmP+Ld/u59Xv/q1Jx33ne/8K83NLdx88xvdx0zT5FWverX78YUX7uWHP3yEyclJmpubeeCBb3HddS/n/vu/ddLn3LdvPxMTE0xMTFQ93/vv/yYveMEL3Vqje+65m/7+Z8hmswwM9GNZ53DTTW/gzjs/xdGjQ1x55dXubt3tt7+FG2+8mcsuu4IPfvB9BAIBBgb6SaWGOffc3dxxx1/g8Xhoa2uju7uXn/70x+zbt7/quYmIiIjUmuM4jE1Oz9cjDWcYSKUZm5xxx7SZQRIxg4t2RumLGyTiJtGWRtVyL9OmDE7ryWOPPUo+n6e3N8lTT9kAXHfd9Xz9619j//7LeOihB/nCF+7hk5/82Kq+7jnnnMvTT//2lNdt+9fs2nXecz6Hx+Ph6quv5aGHHuTSSw8wMzPN1q3bTzn+3//9O8Ricdraqm9H+fjjP+XGG28+YW5/8zf30dTUxK233sRdd93Jxz/+GYrFIr/7u6/gFa+4gUQiecJz/fa3v+FTn/o8Xq+XN77xdTz66I/coHTeebt59NGfKDiJiIjIulUslRgayzFQaf3dP5xmIJUhO10AwAPE20Ns72nh6otMEnGDZMykORyo7cQ3iE0ZnC7b3cVlu9fmXJ5qz3G6444/JhAIEg6H+eAHP4Jpmu61iy7ayyc+8WG+973vsm3bdlpaWtdgpksdfFzdwcgvfenL+cu//DOOHRvjJS952UnHvPWtt+LxeGlvb+dDH/r4smaZSg3T3t6+6LFLLtnv3mK4Y8cOtm/fSSBQ/gMhmexjcPDwSYPTFVe8gGCwXMhoWRaDg4fZt698rb29g5/97PFlzU1ERERkrczkixweyVQOkS3vIh0eyTLr1iN56Y2GudiKubtIiahBMOCr8cw3rk0ZnNaDuRqnk5nbyfnoRz/Ae97zvjV5/V/96pe8+MXXnfK6ZZ3Dt7/9jSWfp6enl4aGBr7xjf+PL37xH/nNb/77hDFzNU4rEQw2ks/nFz0WCMx3cfF6fQSDgQUfeykWi6d4roXjfIvG5fN5N1SJiIiInEmTuTwDw3MhqbyLdPRYzq1HCgX9JOMGV13YQzJePh+pqyOET7XZZ5SC0zr1ylf+Dk1NTVx66YFVfd7Z2Vnuu+/vGBlJ8aIXvfSU46655sX8/d/fyz/8wxe58cab8Xg8pNNpHnjgW7z2tTcuGnvw4O0MDh5ek52x7du3099/iPPOO3/Vn3uhQ4eeZseOs9b0NURERGRzcxyH0Ynp8plIjx7m10+P0Z/KMJ6er0dqbw6SjJnsOzvmno/U0ax6pPVAwWmdikZjvO51b1jW5/zmN09xww3zu0h7917Crbe+hUwmwy23/D7FYsFtR/6FL9xzyo56AE1NTdx551/x+c9/hte+9pU0NTXh9/v5nd/53RPGnnfe+SsKNj/84fcXzfe6667nzW9+66Ixz3/+1fz7v3+H6667ftnPXy3HcXj00Z8saoQhIiIicjoKxXI9ktvZrtICfGqmXI/k9UBnRxgr2UoyZro7SUZTQ41nLqficZzqalnqxBbg6bGxDKXS/Ps6evQQnZ19Z2QC1dY4SXWKxSJvfvPr+ehHP00kElmT13j00f/kgQe+zZ/92ftPev1Mfv9IdaJRk5GRdK2nIcugNas/WrP6ovWqrel8gYFUZlFnu8HRDIVi+efRgN9Lb8wgGTMqu0gmF5wTJz0xVeOZb05er4eODgNgK/BMtZ+nHSdZ13w+H+9613sYGhpcs+CUzWZ561v/cE2eW0RERDaWiWy+Eo7md5JS41NuWy2jqYFk3OCaixPuLlK8vemEeqTGgB9F3fqi4FRnbrvt5hOaH5x77nm8613vWdHz/fEfv4Ph4eFFj8XjcT7ykU+ueI6r7Zxzzl3T53/hC6/VLqGIiIgsUnIcRo5PLdpF6k+lmcjMN62KtDSSiBkcOLfTrUdqM4OqR9qgFJzqzD333Leqz7eeApKIiIhILRSKJQZHsvSn5neRBlIZpvPlf6z2ejx0R0Ls6mt3W38n4wbhRtUjbSabJjg5jqP0L8u2wWoARURENr2pmXI9knuA7HCGwdEsxUp9fKDBW95FOq+TvrhJImbQGw3T4Nf5SJvdpghOfn+AbHaScLhZ4Umq5jgO2ewkfr9O2xYREak3juNwPJNnIFU+QHYuJKWOzzdkMEMNJOMmL9rW7na2i7eF8Hr186KcaFMEp7a2KOPjI2Qyx9f8tbxeL6WS6mXqyXOtmd8foK0teoZnJCIiIstRchxS41PzB8hWgtJkbtYdE21tJBk3uez8Lre7XasR0D+qS9U2RXDy+fxEIl1n5LXUDrT+aM1ERETqx2yhyOBolv7hjBuSBlIZZmbL9Ug+r4fuSJjd2zvcXaREzCTUuCl+7JU1pO8gEREREVmXctOziw6P7R9OMzSWc+uRggEfyZjB5Qt2kbojYRr83iWeWWT5FJxEREREpKYcx2E8PXNCSBqdmHbHtIQD5YNjd0Tc1t/R1ia8utVOzhAFJxERERE5Y0olh6PHcosCUv9whszUfD1SvK2JLV3NXLmnuxySYgYtRrCGsxZRcBIRERGRNZKfLXJ4JLsoJB1OZchXDp73+zz0RAz2nBWhr7KL1Bs1aArqR1RZf/RdKSIiIiKnLTM16+4ezR0kOzSWZe5IxKagj0TM5Pl7ut3zkbojYfw+1SNJfVBwEhEREZGqOY7D2OQ0A8Nzh8hmGEilGZuccce0mUESMYOLdkbpixsk4ibRlka1/pa6VlVwsiyrEfgkcA0wDfzQtu23WJa1E7gX6ADGgNfbtv1U5XNW/ZqIiIiInDnFUomhsdyCkJRmIJUhO10AwAPE20Ns72nh6otMEnGDZMykOazD42XjqXbH6aOUA9NO27Ydy7LilcfvAj5n2/aXLMu6CbgbuHoNr4mIiIjIGpjJFzk8kqkcIlveRTo8kmXWrUfy0hsNc7EVc3eRElGDYMBX45mLnBlLBifLsgzg9UCvbdsOgG3bw5ZlxYCLgGsrQ78M3GlZVpTyP0Cs6jXbtkdO652KiIiICACTuTwDz2r9ffRYzq1HCgX9JOMGV13YQzJePh+pqyOEz6t6JNm8qtlx2k75lrk/tyzrKiAD3AFMAYO2bRcBbNsuWpZ1BEhQDkCrfU3BSURERGQZHMdhdGJ6fhepEpTG0/P1SO3NQZIxk31nx9zzkTqaVY8k8mzVBCc/sA143Lbtd1mWdSnwTeB313Rmp6Gjw6jp60ejZk1fX5ZPa1Z/tGb1R2tWf7Rm9aWtPczAcJrfDk7w2yMT/HZwgqcHJ9x6JK8HemImF5wVZWt3C9t7Wtja06J6pBrS77H64nHm9mRPwbKsCDAEBOZu1bMs65fALcCDQEdlZ8hHeWfqLMo7R0+u5rUqb9XbAjw9NpahVHru97VWolGTkZF0TV5bVkZrVn+0ZvVHa1Z/tGbr23S+wEAqU279PZzmyLEch4YmKRTLP/8E/F56YwbJmFHZRTLpiYYJNqgeab3Q77Ha8Xo9cxstW4Fnqv28JXecbNsetSzrPyjXHT1Y6XoXoxxwngBuBL5U+fXxuYBjWdaqXxMRERHZbCay+cr5SGk3KKXGp5j7J2KjqYEdva1cc3GCZKVpQ2d7k+qRRFZZtV31DgJ/a1nWJ4BZ4Gbbto9blnUQuNeyrPcC45SbSCz8nNW+JiIiIrIhlRyHkeNTbjiaO0h2IpN3x0RaGknEDA6c2+nWI7WZQWKxZu1eiKyxJW/VqzNb0K16skxas/qjNas/WrP6ozVbW4ViicGRLP2p+V2kgVSG6XwRAK/HQ3ckRCJmuq2/k3GDcGPDSZ9P61V/tGa1s2a36omIiIjIyk3NlOuR3ANkhzMMjmYpVv6RN9DgLe8inddJX9wkETPojYZp8KseSWQ9UXASERERWQWO43A8k2cgVW79PReSUsen3DFmqIFk3ORF29pJxsq7SPG2EF6vWn+LrHcKTiIiIiLLVHIcUuNTlfOR0u5hspO5WXdMtLWRZNzksvO73O52rUZA5yOJ1CkFJxEREZHnMFsoMjiaXdS0YSCVYWa2XI/k83rojoTZvb3D3UVKxExCjfoxS2Qj0e9oERERkYrc9Ox8QEqVfx0ay7n1SMGAj2TM4PLdXSTj5V2k7kiYBr9af4tsdApOIiIisuk4jsN4euaEkDQ6Me2OaQkHSMZNLtgRcVt/R1ub8OpWO5FNScFJRERENrRSyeHosdyigNQ/nCEzNV+PFG9rYktXM1fu6S6HpJhBixGs4axFZL1RcBIREZENIz9b5PCzzkc6nMqQL5QA8Ps89EQM9pwVcVt/J2IGTUH9SCQiz01/SoiIiEhdykzNurtHc0FpaCyLUy5HoinoIxEzef6ebjckdUfC+H2qRxKR5VNwEhERkXXNcRzGJqcZGJ47RDbDQCrN2OSMO6bNDJKIGVy0M0pf3CARN4m2NKr1t4isGgUnERERWTeKpRJDYzk3JA1UapKy0wUAPEC8PcT2nhauvsgkETdIxkyaw4HaTlxENjwFJxEREamJmXyRwyOZyiGy5V2kwyNZZt16JC+90TAXWzF3FykRNQgGfDWeuYhsRgpOIiIisuYmc3kGntX6++ixnFuPFAr6ScYNrrqwxz0fqasjhM+reiQRWR8UnERERGTVOI7D6MT0/C5SJSiNp+frkdqbgyRjJvvOjrnnI3U0qx5JRNY3BScRERFZkUKxXI/kdrarhKSpmUo9kge6OsJYyVaSMdPdSTKaGmo8cxGR5VNwEhERkSVN5wuVRg3zB8gOjmYoFMv32gX8XnpjBpeeM7eLZNITDRNsUD2SiGwMCk4iIiKyyEQ2T//YMP/1ZMoNSqnxKSrlSBhNDSTjBtdcnCBZadrQ2d6keiQR2dAUnERERDapkuMwcnxq0flI/ak0E5m8OybS0kgiZnDg3E63HqnNDKoeSUQ2HQUnERGRTaBQLDE4kqU/NV+PNJDKMJ0vAuD1eOiKhNjV105f3GC3FaM56CPcqHokERFQcBIREdlwpmbK9UjlXaQ0A8MZBkezFEuVeqQGb3kX6bxO+uImiZhBbzRMg3++HikaNRkZSdfqLYiIrDsKTiIiInXKcRyOZ/IMpBa0/h7OkDo+5Y4xQw0k4yYv2tbudraLt4XwenWrnYjIcig4iYiI1IGS45Aan6qcj5R2D5OdzM26Y6KtjSTjJped30UyVm793WoEVI8kIrIKFJxERETWmdlCkcHR7KLW3wOpDDOz5Xokn9dDdyTM7u0d7i5SImYSatRf6yIia0V/woqIiNRQbnp20eGx/cNphsZybj1SMOAjGTO4fHeXe4BsdyRMg1+tv0VEziQFJxERkTPAcRzG0zNuy++5sDQ6Me2OaQkHSMZNLtgRcVt/R1ub8OpWOxGRmlNwEhERWWWlksPRY7lFu0j9wxkyU/P1SPG2JrZ0NXPlnu5ySIoZtBjBGs5aRESey7KCk2VZfw68D9ht2/YvLMvaD9wNNAHPADfZtp2qjF31ayIiIutNfrbI4Wedj3Q4lSFfKAHg93noiRjsOSvitv5OxAyagvq3SxGRelL1n9qWZV0E7Af6Kx97gC8Bt9i2/YhlWXcAHwZuXYtrq/WGRUREViozNevuHs0FpaGxLE65HImmoI9EzOT5e7rdkNQdCeP3qR5JRKTeVRWcLMsKAp8Dfh/4j8rDe4Fp27YfqXx8F+UdolvX6JqIiMgZ4TgOY5PTDAzPHSKbYSCVZmxyxh3TZgZJxAwu2hmlL26QiJtEWxrV+ltEZIOqdsfpL4Ev2bb9tGVZc48lgUNzH9i2PWpZlteyrPa1uGbb9rEVvkcREZFTKpZKDI3l3JA0UKlJyk4XAPAA8fYQ23tauPoik0TcIBkzaQ4HajtxERE5o5YMTpZlHQD2AX+y9tNZHR0dRk1fPxo1a/r6snxas/qjNas/62HNpmcKPHN0kt8OTrj/HRqadOuRGvxe+rqauXxPD1u7W9je08KWrmYaN2k90npYM6me1qv+aM3qSzV/E1wJnA3M7Tb1Av8GfAbomxtkWVYEcGzbPmZZVv9qX1vOmxoby1CqnH9xpkWjJiMj6Zq8tqyM1qz+aM3qTy3WLJ3Ln3A+0tFjObceKRT0k4wbvODCHvd8pK6OED7v4nqk9OQUm/G7Tb/P6ovWq/5ozWrH6/WsaKNlyeBk2/aHKTdoAMCyrGeAlwO/BN5iWdbllZqkg8BXKsN+CjSt8jUREZETOI7D6MQ0/cNpDg1nGKgEpfH0fD1Se3OQZMxk39kx93ykjmbVI4mISPVWfO+Bbdsly7JuBu62LKuRSuvwtbomIiJSKJbrkdzOdpWQNDVTqUfyQFdHGCvZSjJWDkiJmIEZUj2SiIicHo/j1OaWtjWyBXhat+rJcmjN6o/WrP6sZM2m84VKo4b5A2QHRzMUiuU/3wN+L70xg2TMqOwimfREwwQbfGvxFjYd/T6rL1qv+qM1q50Ft+ptpbxRU5XNWe0qIiLrykQ2XwlHc2ckZUgdyzH3T2BGUwPJuME1FyfKu0hxk872phPqkURERNaKgpOIiJwxJcdh5PjUovOR+lNpJjJ5d0ykpZFEzODArrhbj9RmBlWPJCIiNaXgJCIia6JQLDE4kqU/lWZkcoYnnzlGfyrDdL4IgNfjoSsSYldfu3uAbDJuEG5sqPHMRURETqTgJCIip21qplyPdKhyu93AcIbB0SzFSr1pMOCjNxrmwHmd9MVNEjGD3miYBr/qkUREpD4oOImISNUcx+F4Js9AakHr7+EMqeNT7hgz1EAybvKibe1uZ7tzd8Y5Npap4cxFREROj4KTiIicVMlxSI1PVc5HKu8i9Q+nmczNumOirY0k4yaX7e50O9u1GoET6pF8XtUniYhIfVNwEhERZgtFBkezi1p/D6QyzMyW65F8Xg/dkTC7t3csOB/JJNSov0ZERGRz0N94IiKbTG56dtHhsf3DaYbGcovqkZIxg8t3d5GMl89I6o6EafCr9beIiGxeCk4iIhuU4ziMp2fclt9zYWl0Ytod0xIOkIybXLAjUr7VLmYQbWvCq9bfIiIiiyg4iYhsAKWSw9FjuUW7SP3DGTJT8/VI8bYmtnQ1c+WebjcktRjBGs5aRESkfig4iYjUmfxskcOV85HmdpEOpzLkCyUA/D4PPRGDPWdF3NbfiZhBU1B/5IuIiKyU/hYVEVnHMlOz7u5Rf6rc2W5oLEfJKdcjNQV9JGImz9/T7Yak7kgYv0/1SCIiIqtJwUlEZB1wHIexyWkGhucOkc0wkEozNjnjjmkzgyRiBhfujNIXN0jETaItjSe0/hYREZHVp+AkInKGFUsljo7l6K+EpIFKTVJ2ugCAB4i3h9je08LVF5kk4gbJmElzOFDbiYuIiGxiCk4iImtoJl/k8Mji1t+HR7LMuvVIXnqjYS62Ym7r70TUIBjw1XjmIiIispCCk4jIKknn8iecj3T0WI5KORKhoJ9k3OCqC3vckNTVEcLnVT2SiIjIeqfgJCKyTI7jMDoxPd+0oRKUxtPz9UjtzUGSMZN9Z8fKrb/jBh3NqkcSERGpVwpOIiLPoVAsMTSWOyEkTc1U6pE80NURxkq2koyVA1IiZmCGVI8kIiKykSg4iYhUTOcLlUYN8wfIDo5mKBTL99oF/F56YwaXnjO3i2TSEw0TbFA9koiIyEan4CQim9JENl8JR3NnJGVIHctRKUci3OgnGTe55uJEeRcpbtLZ3qR6JBERkU1KwUlENrSS4zByfGrR+Uj9qTQTmbw7JtLSSCJmcGBX3K1HajODqkcSERERl4KTiGwYhWKJwZEs/anKAbKVeqTpfBEAr8dDVyTErr529wDZZNwg3NhQ45mLiIjIeqfgJCJ1aWqmXI90qHK73cBwhsHRLMVSpR6pwVveRTqvk2Ss3Pq7Nxqmwa96JBEREVk+BScRWdccx+F4Js9AKs2hyi7S4GiOobGsO8YMNZCMm7xoW7vb2S7eFsLr1a12IiIisjoUnERk3Sg5DqnxKfqH0xyq7CL1D6eZzM26Y6KtjZyVbGP/rvnOdq1GQPVIIiIisqYUnESkJmYLRQZHs4tafw+kMszMluuRfF4P3ZEwu7d3LDgfySTU6CcaNRkZSdf4HYiIiMhmsmRwsiyrA7gP2A7MAP8N/IFt2yOWZe0H7gaagGeAm2zbTlU+b9WviUh9yk3PLjo8tn84zdBYzq1HCgZ8JGMGl+/uIhkv1yN1R8I0+NX6W0RERNaHanacHOCjtm1/F8CyrI8BH7Ys603Al4BbbNt+xLKsO4APA7daluVZ7Wur+aZFZG04jsN4esZt+T0XlkYnpt0xLeEAybjJBTsi5VvtYgbRtia8utVORERE1rElg5Nt28eA7y546D+BtwJ7gWnbth+pPH4X5R2iW9fomoisI6WSw9FjuUUBqX84Q2Zqvh4p3tbElq5mrtzT7YakFiNYw1mLiIiIrMyyapwsy/JSDk3fAJLAoblrtm2PWpbltSyrfS2uVQKciNRAfrbI4QXnI/UPpzmcypAvlADw+zz0RAz2nBWhL26SiBkkYgZNQZVRioiIyMaw3J9qPgtkgDuBG1Z/Oqujo8Oo6etHo2ZNX1+WT2s2L53L89vBifn/jkxwOJWhVKlHCjX62drdwksObGFbTwvbelrojZlnvB5Ja1Z/tGb1R2tWX7Re9UdrVl+qDk6WZX0cOAtpU9euAAAgAElEQVS43rbtkmVZ/UDfgusRwLFt+9haXFvOmxobm/8h70xTt6/6s1nXzHEcxianGRguHyI7UGnaMDY5445pM4MkYgbn7+8rHyLbaRJtaTyh9ffx8eyzn35NbdY1q2das/qjNasvWq/6ozWrHa/Xs6KNlqqCk2VZHwQuBl5m2/bcT1U/BZosy7q8UpN0EPjKGl4TkRUqlkocHcvR/6yQlJ0uAOAB4u0htve0cPVFJom4QTJm0hwO1HbiIiIiIutENe3IzwXeAzwJ/MCyLICnbdu+wbKsm4G7LctqpNI6HKCyI7Wq10SkOjP5IodHFrf+PjySZdatR/LSGw1zsRVzW38nogbBgK/GMxcRERFZvzyOU5tb2tbIFuBp3aony1HPa5bO5U84H+nosRxzv61DQb8bjuZ+7WwP4ffV9/lI9bxmm5XWrP5ozeqL1qv+aM1qZ8Gtelspb9RURS2vROqA4ziMTky7Lb/ngtJ4er4eqb05SDJmsu/smBuUOppPrEcSERERkeVTcBJZZwrFEkNjuRNC0tRMpR7JA10dYaxkK8lYOSAlYgZmSPVIIiIiImtFwUmkhqbzhUqjhvkDZAdHMxSK5XvtAn4vvTGDS8+Z20Uy6YmGCTaoHklERETkTFJwEjlDJrL5Sjiq7CSlMqSO5Zirxgs3+knGTa65OFHeRYqbdLY34fPWdz2SiIiIyEag4CSyykqOw8jxKfd8pHJISjORybtjIi2NJGIGB3bF3XqkNjOoeiQRERGRdUrBSeQ0FIolBkey9KfKAWmgUo80nS8C4PV46IqE2NXXTl9lFykZNwg3NtR45iIiIiKyHApOIlWaminXIx2q3G43MJxhcDRLsdL6PtDgLe8inddJMlZu/d0bDdPgVz2SiIiISL1TcBJ5Fsdx3HqkQ3O7SMMZUsen3DFmqIFk3ORF29rdznbxthBer261ExEREdmIFJxkUys5DoMjGZ741TCHKrtI/cNpJnOz7phoayPJuMlluzvdznatRkD1SCIiIiKbiIKTbBqzhRKDo4tbfw+kMszMluuRfF4P3ZEwu7d3LDgfySTUqN8mIiIiIpudfiKUDSk3Peu2/J5rAT40lnPrkYIBH8mYweW7uzh3R4S2UAPdkTANfrX+FhEREZETKThJXXMch/H0jNvye243aXRi2h3TEg6QjJtcsCNSvtUuZhBta8JbudUuGjUZGUnX6i2IiIiISB1QcJK6USo5HD2WWxSQ+oczZKbm65HibU1s6Wrmyj3dbkhqMYI1nLWIiIiIbAQKTrIu5WeLHF5wPlL/cJrDqQz5QgkAv89DT8Rgz1kR+uImiZhBImbQFNS3tIiIiIisPv2UKTWXmZploNL6uz9V7mw3NJaj5JTrkZqCPhIxk+fv6XZDUnckjN+neiQREREROTMUnOSMcRyHsclpBobLh8gOVBo3jE3OuGPazCCJmMGFO6PlQ2Q7TaItjWr9LSIiIiI1peAka6JYKnF0LEf/s0JSdroAgAeIt4fY3tPC1ReZJOIGyZhJczhQ24mLiIiIiJyEgpOctpnZIofn2n5Xfj08kmXWrUfy0hsNc7EVIxk3SMZNElGDYMBX45mLiIiIiFRHwUmWJZ3Lz3e0q4Sko8dyVMqRCAX9JOMGV13Y44akzvaQ6pFEREREpK4pOMlJOY7D6MS02/J7LiiNp+frkdqbgyRjJvvOjpVbf8cNOppVjyQiIiIiG4+Ck1Aolhgay50QkqZmKvVIHujqCGMlWt2AlIgZmCHVI4mIiIjI5qDgtMlM5wuVRg3zB8gOjmYoFMv32gX8XnpjBpeeU95FSsQNeqMGwQbVI4mIiIjI5qXgtIFNZPOVcFTZSUplSB3LUSlHItzoJxk3uebiRHkXKW7S2d6Ez6t6JBERERGRhRScNoCS4zByfMo9H6m/cpDsRCbvjulobiQZNziwK04ibtAXN2kzg6pHEhERERGpgoJTnSkUSxwZzboBaaBSjzSdLwLg9XjoioTY1ddOX2UXKRk3CDc21HjmIiIiIiL1S8FpHZuaKdcjHarcbjcwnGFwNEuxVKlHavCSiBkcOK+TZKzc+rs3GqbBr3okEREREZHVpOC0DjiO49YjHZrbRRrOkDo+5Y4xQw0k4yYv2tZOMlbeRYq3hfB6daudiIiIiMhaW5fBybKsncC9QAcwBrzetu2najur1VFyHFLjU5WQVN5F6h9OM5mbdcdEWxtJxk0u291Zaf9t0moEVI8kIiIiIlIj6zI4AXcBn7Nt+0uWZd0E3A1cXeM5LYtTadiQOj7FyPgUg6PZck1SKsPMbLkeyef10B0Js3t7h7uLlIiZhBrX67KIiIiIiGxO6+4ndMuyYsBFwLWVh74M3GlZVtS27ZHazWx5fvCLo9zz7V+5HwcDPpIxg8t3d5GMl+uRuiNhGvxq/S0iIiIist6tu+AEJIBB27aLALZtFy3LOlJ5vG6C0/nbO3jLK3bRbjYSbW2ixQjg1a12IiIiIiJ1aT0Gp9PW0WHU9PWjUZMosK2vo6bzkOpFo2atpyDLpDWrP1qz+qM1qy9ar/qjNasv6zE4DQA9lmX5KrtNPqC78nhVxsYylCotu8+0aNRkZCRdk9eWldGa1R+tWf3RmtUfrVl90XrVH61Z7Xi9nhVttKy7AhvbtlPAE8CNlYduBB6vp/omERERERHZWNbjjhPAQeBey7LeC4wDr6/xfEREREREZBNbl8HJtu1fA5eu4FN9QM0Pha3168vyac3qj9as/mjN6o/WrL5oveqP1qw2Fnzdfcv5PI/j1KYWaI1cDjxc60mIiIiIiMi6dwXwSLWDN1pwCgL7gCGgWOO5iIiIiIjI+uMDuoCfADPVftJGC04iIiIiIiKrbt111RMREREREVlvFJxERERERESWoOAkIiIiIiKyBAUnERERERGRJSg4iYiIiIiILEHBSUREREREZAkKTiIiIiIiIktQcBIREREREVmCgpOIiIiIiMgSFJxERERERESWoOAkIiIiIiKyBAUnERERERGRJSg4iYiIiIiILEHBSUREREREZAkKTiIiIiIiIktQcBIREREREVmCgpOIiIiIiMgSFJxERERERESWoOAkIiIiIiKyBAUnERERERGRJSg4iYiIiIiILEHBSUREREREZAkKTiIiIiIiIktQcBIREREREVmCgpOIiIiIiMgS/EsNsCyrA7gP2A7MAP8N/IFt2yOWZe0H7gaagGeAm2zbTlU+b9WviYiIiIiI1ILHcZznHGBZVjtwvm3b3618/DGgHXgT8BRwi23bj1iWdQewzbbtWy3L8qz2tSrfTxDYBwwBxWV9JUREREREZDPwAV3ATyhvDFVlyR0n27aPAd9d8NB/Am8F9gLTtm0/Unn8Lso7RLeu0bVq7AMernKsiIiIiIhsXlcAjyw5qmLJ4LSQZVleyqHpG0ASODR3zbbtUcuyvJUdqlW/VglwSxkCGB/PUio9907aWunoMBgby9TktWVltGb1R2tWf7Rm9UdrVl+0XvVHa1Y7Xq+HtrYwVLJDtZYVnIDPAhngTuCGZX7umVAE5r4QNdPRYdT09WX5tGb1R2tWf7Rm9UdrVl+0XvVHa1ZzyyrtqTo4WZb1ceAs4HrbtkuWZfUDfQuuRwDHtu1ja3FtOW9qbCxTsx2naNRkZCRdk9eWldGa1R+tWf3RmtUfrVl90XrVH61Z7Xi9nhWF1qrakVuW9UHgYuBVtm3PFVD9FGiyLOvyyscHga+s4TUREREREZGaqKYd+bnAe4AngR9YlgXwtG3bN1iWdTNwt2VZjVRahwNUdqRW9ZqIiIiIiEitLNmOvM5sAZ5+9q16xWKB8fERCoX8mk/A6/VSKpXW/HVk9ZxqzbxeH01NBobRgsfjqcHM5FR0e0P90ZrVH61ZfdF61Z+NvGa56VkGUhn6hzP0D6fpT2XIF0q8/7ZL8PuquuFtTS24VW8r5Y2aqiy3OURdGh8fobExRDjcueY/APv9XgoFBad6crI1cxyHYrFAOn2c8fER2ttjNZqdiIiIyPrkOA7j6ZlyQEql3aA0OjHtjmkJB0jEDXb1teP11vc/RG+K4FQo5M9IaJKNw+Px4Pc30NrawfDw4VpPR0RERKSmSiWHoWM5BobTi4JSZmoWAA8Qaw+xtauZK/d0k4ybJGMGLUawthNfRZsiOAEKTbIiHo8X2FC3s4qIiIg8p5nZIodTGfpTGQaG0xwazjA4Ur7dDsDv89ATNbhoZ4REzKQvbtITDdMU3NjRYmO/OxEREREROaXJXJ6BBbVI/cNpjh7LMdcGIRT0k4wbvODCHpJxg2TMpLMjtC5qlc40BacaeM1rricQCNDQEKBUKvKGN9zGNde8mMcee5Q//MOD3HjjzbztbX/kjr/99rfwxBOP8eCD3yMUCp30OWdnZ/n0pz/BE088hs9XbnZw88230tLSwhe+8FkAjh0bo1QqEYlEAXjjG9/MlVdeddLny+Wy3H335/jP//wBgUAAgGuvfQmvf/2t3H//N/nQh/6Cd7zj3bz61a8Fyve4vva1ryKXy/Dtbz+05Pv83Oc+zT333Lfk1+orX/kyhUKB3//9m6v86pb9zd/cxdat23jhC1/0nOO+9rWvMjWV5XWvu2VZzy8iIiJSTxzHYWRimv6j8wFpIJVhPD3jjuloDpKMm+w7O0Zf3CQRN+hobtSdWxUKTjXygQ98hG3bdvDkk7/m4MHb2Lv3UgCSyT4efvi7HDx4Oz6fjyNHBpmZmV7i2eCrX/0yk5MT3Hvvl/H5fORyOcbGRkkkklx66QEA7rnnbqamprj99rc/53M5jsO73vV2tm/fwZe+9FUaGhqYmZnmm9/8F3fMzp0W//qv33aD0+OP/5Tm5mZyuUxV77Ma09PT/PM//yP33fdPVX/OnDe96WBV417xiht43etew6te9RrCYZ3eLSIiIvWvUCxxZDTLoeF0eTcplWEglWZqpgiA1+OhKxLi7GSrW4uUiJsYTQ01nvn6timD0/f/a4hHfj60Js995YXd7N/VWfX4nTvPJhQKMTQ0CEBTU4gtW7by4x//kAMHLueBB77FS17yMn71q18+5/OkUina2zvw+XwAhEIhQqHkit7Do4/+mKGhI3z601/A7y9/iwSDjbzmNb/njunu7uH48eM8/fRv2bp1G/ff/02uu+7l/O3f/lVV77Ma3/3uQ+zZcxHBYCMA99//Tb7znX/FMEx+85uniEZjvP3t7+Lzn/80AwMDnHPOLt773vfj8Xj44Affx9lnn8OrX/3/cM89d9Pff4hsNsORI4P09PTy/vd/hMbGRvx+P5dcsp+HHvoOr3jFDSv6eomIiIjUSm66wEBqwS7ScIbB0SzFytE8gQYviZjB/nM7ScYMknGTnkiYQIOvxjOvP5syOK0njz32KPl8nt7eJE89ZQNw3XXX8/Wvf439+y/joYce5AtfuIdPfvJjz/k811//Kt75ztt57LGfsHv3BVx66fN4/vNfsKI5Pfnkr7Gss93QdCovecnLeOCBb3HLLW/iv/7rZ9xyy5tOGZxO9j6X8vjjP2XXrnMXPfarX/2SL37xH4nF4rz73W/nL/7iDu68869obGzktttu4tFHf8y+fSfuatn2r/jrv/4ihmHwznfezoMPPuAGpd27z+f7339YwUlERETWLcdxOJ7Jl2uRFtQjjRyfvzOpOdRAMm5y7rb28q12MYN4W6ju24CvF5syOF22u4vLdnetyXNXe47THXf8MYFAkHA4zAc/+BFM03SvXXTRXj7xiQ/zve99l23bttPS0rrk823fvoOvfOXr/Oxnj/Pznz/Bpz71MX70ox/wrne9Z9nvodpDka+++lpuvfUmEokkV1zxAne3a6Hnep9LGRlJ8bznXbHosfPPv4BYLA7AWWdZdHZ2YRjlW+x27DiLwcGBkwanSy7Z7772rl3nMTg432K8o6ODVCpV9bxERERE1lKp5DA8npu/1a4SlNK5WXdMrK2Jvs5mrji/0vo7btC6gVp/r0ebMjitB3O1Pyfj8Xi4+upr+ehHP8B73vO+qp8zGAxyySX7ueSS/Rw4cDnveMfbVhScLOscvva1r1IoFJ5z1ykUCnHuuedx112f5bOfvfukY57rfS4lGAySz88semyuUQWA1+slEAgu+NhHsVg86XMtHuddNG5mJk8wqD9oRERE5MybmS0yOJJdtIt0OPWs1t8Rgwt2RNxdpETM2PCtv9cjfcXXqVe+8ndoampyGzss5Wc/e5xEIkl7ewdQvt2uq6t7Ra+9d+8lxONx7rzzU7ztbX9UaQ4xw1e/+mVuuumWRWNvuukWdu06j23bdjA0dGRFr3cq27btoL//0Ko+58k888zT7Nixc81fR0RERDa3zNSsu4s0fHyapwbGGRrLuq2/m4J+kjGDK/dUWn/HTbo2aevv9UjBaZ2KRmO87nVvqHr80NARPvWpjzE7W8Dn89La2s573/v+Fb22x+Ph4x//DHfd9Tle97rX0NhYbs5w7bUvPWHs1q3b2Lp127Jf4ze/eYobbrjO/Xjv3kv40z9936IxV155FZ/4xEe47bY/WPbzL8ePfvQD3vzm/7GmryEiIiKbh+M4jE5MV+qRMgykMhwaTi9q/R1pbaI3EmavFa0cImvQ0aLW3+uZp9p6ljqxBXh6bCxDqTT/vo4ePURnZ98ZmUC1NU5SnXe+83YOHrydnTvPXpPnP3ToGT7+8Q/x2c+evKkFnNnvH6lONGoyMpKu9TRkGbRm9UdrVl+0XrUz1/p7LhzNtf+emikA4PFAV0fYPTw2GS/faretr0NrViNer4eODgNgK/BMtZ+nHSdZ197xjndz+HD/mj1/KnWUd797+XVgIiIisvlMzRQYSGUW1SMdGc1SKC5o/R012L8rTqISlHqjav29USg41Znbbrv5hAYI55573oqaQHzsYx/i//7fXyx6zOfzcc89953WHFdTIpEkkVjZeVTV2Ldvv3YJRUREZJG51t8DqfKtdnNBKTU+5Y4xK62/r93b7na1U+vvjU3Bqc6sZqhZSdgSERER2UjmWn/3D2forwSlgeE0kwtbf7c2kYgbXLa7yz1EttUIqB5pk9k0wclxHH1zy7I5TgnQ942IiMhGkJ8tMjiadZs29KfSHE5lmZkt383j83roiYQ5f3uERNygL27SGzUINW6aH5nlOWyK7wK/P0A2O0k43KzwJFVxHIdisUA6PU4g0Fjr6YiIiMgyZaZmGRhOc2g4495yNzSWo1RpjNYU9JGImVxxQZfbtKE7ElbrbzmlTRGc2tqijI+PkMkcX/PX8nq9lEqql6knp1ozr9dHU5OBYbTUYFYiIiJSDcdxGJuYdps19FeC0tjkfOvvNjNIMmZw4c4ofXGDRNwkqtbfskybIjj5fH4ika4z8lpqB1p/tGYiIiL1oVAscXQsV277vSAo5Ra0/u5sD7Gjt5WrK13tEnGD5lCgxjOXjWBTBCcRERERqS9TMwUOj2QWdbUbHMlSKJbvEgn4vfTGDC45J0YyXg5IvVGDoFp/yxpRcBIRERGRmprIzLi1SIcqXe1S41M4letGUwPJuME1e3vdrnbx9iZ8XtUjyZmj4CQiIiIiZ0TJcUiNTy3qatc/nGEym3fHRFsbScZMDpzXWT4fKWbQZgZVjyQ1p+AkIiIiIqtutjDX+nth04bMotbf3ZEwu7e1u13tEjGDUGNDjWcucnIKTiIiIiJyWrLTs4sCUn8qzdDofOvvxoCPZMzg8vO7SFaaNnRHwjT4daud1A8FJxERERGpiuM4HJuccZs1zAWlsclpd0yrESAZN7nwrIi7kxRpbcKrW+2kzlUVnCzL+jjwamALsNu27V9UHn8GmK78B/DHtm3/W+XafuBuoAl4BrjJtu3U6VwTERERkTOjWCoxNJZjYDizqP13drrS+hvo7AixvaeZqy/qIVHZSWoOq/W3bEzV7jj9C/Bp4OGTXHvNXJCaY1mWB/gScItt249YlnUH8GHg1pVeW8mbExEREZGlTecLHE5l3WYN/cNpDi9o/d3g99IbDbP37Jjb1a43ahAMqPW3bB5VBSfbth8BsCyr2ufdC0zPfR5wF+Xdo1tP45qIiIiInKaJbJ6B4bS7i3RoOEPqWM5t/R1u9JOMm7zw4h63q11nR0itv2XTW40ap7+v7BQ9ArzHtu3jQBI4NDfAtu1Ry7K8lmW1r/SabdvHVmGuIiIiIptCyXEYOT51QtOGicx86+9ISyPJuMmBXfFySIqr9bfIqZxucLrCtu0By7KCwKeAO4GbTn9ap6ejw6jp60ejZk1fX5ZPa1Z/tGb1R2tWf7Rm9WO2UGRipshvByd4enCC3wxO8MzQBFMz862/E3GTi8+Os62nhW3dLWztacFoUuvvWtLvsfpyWsHJtu2Byq8zlmV9HvhG5VI/0Dc3zrKsCODYtn3MsqwVXVvOvMbGMpRKztID10A0ajIykq7Ja8vKaM3qj9as/mjN6o/WbP3KzbX+XtDVbmgsS7Hys08w4CMRM3jeuV0k4gZ9cZPuSIgG/+J6pKnMNFOZ6ZO9hJwB+j1WO16vZ0UbLSsOTpZlhQG/bdsTlVv1fg94onL5p0CTZVmXV+qVDgJfOc1rIiIiIpuG4ziMp2fmb7WrBKXRifmw02IESMZMDpzfRcQMkowbRNX6W2RNVNuO/DPA7wCdwP+xLGsMuB74fy3L8gE+4JfA/wCwbbtkWdbNwN2WZTVSaSt+OtdERERENqpiqcTRsdyiXaSBVIbM1CxQbv0daw+xrbuZK/d00xc3ScRNWiqtv7V7IbL2PI5Tm1va1sgW4GndqifLoTWrP1qz+qM1qz9as7Uzky9yeGTxLtLhkSyzhXLrb7+v3Po7GTcqXe1MemNhGgOn/vdurVf90ZrVzoJb9bZS3qipymp01RMRERGRk5jM5ekfTi86RPbosRxz/2491/r7qgt73KDU2R7C71Prb5H1RsFJRERE5DSVHIfRudbfCw6RPb6g9XdHcyPJuMEl58TdQ2Tbm9X6W6ReKDiJiIiILEOhWGJwJOsGpIHhNAMjGbf1t9fjoTsS4py+dncXKREz1PpbpM4pOImIiIicQm66wEAqvWgn6cjogtbfDeXW3wfO7XQPkO2JhE9o/S0i9U/BSURERDY9t/V3pVnDXE3SwtbfzeEAybjB7m0d7k5SrE2tv0U2CwUnERER2VRKJYejx3KLutr1D8+3/gaItzWxpavc+jsRM+mLG7QYwRrOWkRqTcFJRERENqyZ2XLr74EFh8geTmXIu62/PfREDS48K+LeatcbNWgK6kckEVlMfyqIiIjIhpDO5d1apLlb7Ra2/g4F/STjBi+4sIdEzKAvbtLZodbfIlIdBScRERGpK47jMDIxzcBwmkOVrnb9qQzj6Rl3THtzkGTMZN/ZscohsgYdLY1q/S0iK6bgJCIiIutWoVjiyGh2UVe7gVR6Uevvro4QZydbScRMt2mDWn+LyGpTcBIREZF1YWqmwMCCZg39qTRHRrMUiuV77QINXhIxg/27Ot2A1BMJE2hQ628RWXsKTiIiInJGOY7D8Ux+UVe7geEMqeNT7hgz1EAybnLtvnaSlZ2keFsIr1e32olIbSg4iYiIyJoplRyGx3PlHaQFQSmdm2/9HWtrIhk3uPz8LncnqSUcUD2SiKwrCk4iIiKyKvKzRQ6PZOdrkYbTDIxkyM+WW3/7vB56omEu2BEhGSsHpERMrb9FpD7oTyoRERFZtszU7KJapP7hDENjWbf1d1PQTzJm8PwLuumrBKTuSFitv0Wkbik4iYiIyCk5jsPYxHS57XdqPigdm5xv/d1mBumLm1y8M+reahdR628R2WAUnERERAQot/4eGsvRP5xmJP0MTz5zjP7hDLmZAgAeD3R1hNnZ21q+zS5ukIwZmKFAjWcuIrL2FJxEREQ2obnW3wOpDIcqXe0GRzMLWn/76I2GuWRX3K1H6omGCar1t4hsUgpOIiIiG9zxzMwJXe1S4/Otv42mBvriBtfuTVR2kUzOs+IcG8vUcNYiIuuLgpOIiMgGUXIcUuNT800bKkFpMpt3x0RbG0nGTS47r5Nk3CQZN2k1Tmz97dN5SSIiiyg4iYiI1KHZQqX1dyUcDQyXb7ubmS0CldbfkTC7t7WXA1LMIBEzCTXqr34RkZXQn54iIiLrXGZqloEFt9n1pzIMjeYoVXp/NwV9JGImV5zfVdlFUutvEZHVpuAkIiKyTjiOw9jktHub3UAlKI09q/V3ImZw4VnRctOGznLrb69af4uIrCkFJxERkRooFEscHcu5h8fOBaXsdKX1N9DZEWJHbytXV7raJWIGzWG1/hYRqQUFJxERkTU2nS9wOJUtt/1OpTk0nGFwJEuhWAKgwe+lN2qw9+yYW4/UGzUIBtT6W0RkvVBwEhERWUUT2Xylq11lJymVIXUsh1O5bjQ1kIwbXHNxL8m4QSJu0tnehM+reiQRkfVsyeBkWdbHgVcDW4Ddtm3/ovL4TuBeoAMYA15v2/ZTa3VNRERkPSk5DiPjU5VdpPlDZCcWtP6OtJRbfx84N04yVm7a0GYGT2j9LSIi6181O07/AnwaePhZj98FfM627S9ZlnUTcDdw9RpeExERqYnZQonB0cyis5EGUhlm8vOtv7sjYc7b2u52tUvEDEKNDTWeuYiIrJYlg5Nt248AWJblPmZZVgy4CLi28tCXgTsty4pSrmdd1Wu2bY+s9A2KiIgsR3Z6loEFAal/OM3QWI5iqXyzXWPARyJmcPnurnJXu7hJdyRMg1+32omIbGQrrXFKAIO2bRcBbNsuWpZ1pPK4Zw2uKTiJiMiqchyHY5Mz9KfKt9jN3XI3OjHtjmkxAvTFTS7YEaEvbpKIG0Rbm9T6W0RkE9qQzSE6Ooyavn40atb09WX5tGb1R2tWf2q5ZsViicMjGX47OOH+9/SRCdK5WQA8HuiOGJyztYNtPb/crd4AABgHSURBVC1s627h/2/v3mMjvc77jn95X5Izu9wlOcNdLofW9ci6rLSyZEuyFCWChTRBDbexa1u1rDhBgMjNBW3i1kDgpBfAreG4SOLYroSkSZQ4MSDAqB0UqF0UqeuqToHUlWK7aY/t2FpybxySe+PwtiRn+se8HA5Xu0suOdyZIb8fYLHknHdmzu6jV8Nnz3l/7y3D+zmY3le3OTcCz7PmYr2ajzVrLlttnMaB4RBCW7Iy1AYcSR5v2YGxGzI9XaBYLG184A4YHEwzOTlTl/fW1liz5mPNms/NrNni5RXGJwuMT5Rjv8fzM5ycnGVpuTr6u5fjdwwymqTajVwl+nt5YYnJhaWbMudG5HnWXKxX87Fm9dPa2rKlhZYtNU4xxnwI4TXgGeDzye+vrl6LtBNjkiRd6dJq9HdyLdLYRIGJqujv3n3t5LJpnnpwuJJqN9TfY/S3JOmGbSaO/NPATwFDwH8JIUzHGO8BngdeCiH8BnAeeK7qaTsxJknao4qlEpMX5tddi3RiYoaLhbXo7/79+8hlU7zt7iy5bIpcJs2h/UZ/S5Jqo6VUqs+Wth3yJuCHbtXTjbBmzceaNZ8bqdnScpHTU7PrVpLG8wUWkujv1pYWjgz0lGO/k1S7kWyKXqO/a8rzrLlYr+ZjzeqnaqveLcDrm33ergyHkCQ1h7mFpWT1qHxN0li+wOmp2Ur0d1cS/f3YvUOV+yMND/TS0d62wStLklRbNk6SpB1Xjv5eKN9ANj9TuZHsuujv3k5y2TTHbutnJJNiNJtm8KDR35KkxmDjJEmqqWKxxJlzc+UVpKRROjk5y6XZ8vVILUDmUA+3HN7Pkw8cqWy5O5Dqqu/EJUm6DhsnSdKWLS6tcHKywNjEWvz3qckCl5Po7/a2VoYHe3nk3sMM7u9iNJtmeLCX7i4/fiRJzcVPLknSplyau8x4ssVuNbTh7Lk5VjOGerrayWVT/Ojx4Uqq3VB/D+1trV4ELUlqejZOkqR1SqUSkxcXGDu7PtXu/Mxi5Zj+/V3ksmkevivDaJJq179/n9HfkqRdy8ZJkvaw5ZVy9PeJiZnyalK+wHh+hvnFtejvwwM93JXrq1yLNJJNk+o2+luStLfYOEnSHjG3sMx4vmoVaaLAqero745y9Pcj9wxV7o80PNBLZ4fR35Ik2ThJ0i5TKpW4ULhcvhap6nqkyQtr0d/7ezrIZdPce2t/+XqkbJpMXzetrW61kyTpamycJKmJFYslJs7PrW21SxqlmbmlyjGZg92MDu3niWNHKjeR7TP6W5KkG2LjJElNYnFphVOTs+tWkU7mq6O/WxgeSHH/7QPlwIZMipFMyuhvSZJqwE9TSWpAhfmlN6winZmerUR/d3e1M5pN8eQDw5WtdoeT6G9JklR7Nk6SVEelUompiwuMTazFfp+YmFkX/X1ofxe5TJqHwiAjmTSj2RT9B4z+liTpZrJxkqSbZDX6e7U5Wo3/nl9cBqClBQ739xJyfeQy5WuRRjIp0j2ddZ65JEmycZKkHTC/uMx4vrDueqTTU7Msr5T32nV2tDIymOKRu7OMZFPkMmmODhr9LUlSo7JxkqRtWI3+Hs/PVLbbjeUL5M/PV45JJ9HfTz90qJJqlz3YY/S3JElNxMZJkjZpNfp7bKLAWNIojU/McKk6+ruvm1w2xdvvO1y5iWxfqtPrkSRJanI2TpJ0FZeXVjg1lUR/J43Syfwsi0srALS1tjA82Mux2wYqqXZGf0uStHv5CS9pzyvMLzE+McOJiUJly92Z6TmKSfZ3d1cbI5k0T9x/uBLacGSg1+hvSZL2EBsnSXtGqVRi+uJCJaxhLGmUpi+tRX8fTHeRy6Q4fucgo9kUI9k0g0Z/S5K059k4SdqVlleKnJ2eK8d+VzVKc1XR30OHerjjaB9PVW2122/0tyRJugobJ0lNb+HyavT3WqrdqclZlleKAHS2t3I0k+Ktb86UG6RsiqODKbqM/pYkSZtk4ySpqVwsLDI2Pce3v5uvNEr58/OUkvFUdwe5bIp3PHS0kmqXPdRNW6vXI0mSpK2zcZLUkIqlEvnz8+tS7cYmClyavVw5ZrBvH7lMmsfuHWIkmyaXSXEw3eX1SJIkqeZsnCTV3dLyavR3dWhDYV3095GBXu679RC5TJpjIUO6s42eff4vTJIk3Rz+1CHppppdWFrXII3lZzgztRb9va+zjVwmxePHDpfvj5RJc2Sgl472ta12g4NpJidn6vVHkCRJe5CNk6QdUSqVOHdpsRLWsNooTV9aqBzTl+okl01z/I6Byv2RBvq6aXWrnSRJajDbbpxCCK8DC8kvgI/GGL8aQngEeBHoBl4Hno0x5pPnbGlMUmNaKRY5Mz3H+ERhXfz37EIS/Q0M9fdw2/B+nnpwmJFkJWl/r9HfkiSpOdRqxek9McbvrH4TQmgBPg98KMb4SgjhY8AngJ/d6liN5ilpmxYuL3MyP1sJaxibmOFkVfR3R3srRwd7eeiuTCXV7uhgiq5Oo78lSVLz2qmteg8BCzHGV5LvX6C8evSz2xiTdJNdnL3M+MRMZRXpxESB/Lm5SvR37752ctk073jL0WQVKcVQf4/R35IkadepVeP0p8lq0SvArwE54MTqYIxxKoTQGkI4tNWxGOO5Gs1V0hWKpRKTF+bfENpwsbAW/T1wYB+5bJpH786Sy5avRzL6W5Ik7RW1aJyeiDGOhxC6gN8GPgP8hxq87pb196fq+fYMDqbr+v66cXupZkvLK5w4O8MPT13kB6cu8oPTF/nh6UvML5avR2prbWEkm+Ytd2W5dfgAtx45wC3DB0h1d9R55uvtpZrtFtas+Viz5mK9mo81ay7bbpxijOPJ74shhM8Bfw78DjC6ekwIYQAoxRjPhRDGtjJ2I3Oani5QLJY2PnAHGJPcfHZzzeZWo7+rUu3OTM+ykpwfXUn092P3DJWjv7Npjgz00NG+/nqk+cIC84WFq71FXezmmu1W1qz5WLPmYr2ajzWrn9bWli0ttGyrcQoh9ALtMcaLyVa99wOvAd8EukMIjyfXKz0PvJw8batjkq6hVCpxfmZxbatd0ihNXVxrdg6kOsll0tx/e39lq92g0d+SJEmbst0VpyzwxRBCG9AG/A3wj2KMxRDCB4EXQwj7SGLFAbY6JqlspVjk7PTculWk8XyBwvwSUI7+zhzq4dYj+3nygSOMZtOMZNMcMPpbkiRpy7bVOMUYfwAcv8bYN4D7ajkm7TWLl1c4Obl+Fenk5CxLy+Xo7/a2cvT3g3cOVrbaHR3sZV+n97aWJEmqJX+6khrEpbnLjE3MrLuJ7Nlzc5SSy/VWo79/7PhwsoqU4rDR35IkSTeFjZN0kxVLJaZWo7+rbiJ7oSr6u3//PnLZFG99c7ZyE9lD+43+liRJqhcbJ2kHLa8UOTU5W2mQxidmGJ8sML+4AkBrSwtHBnp48+ihyla7kUyq4aK/JUmS9jobJ6lG5haWGc/PrFtJOj1VFf3d0cZIJsWj9wxVUu2GB3rfEP0tSZKkxmPjJN2gUqnEhcLl8nVIE2uN0uSFtejv/b2d5LIp7ru1v7KSlDlo9LckSVKzsnGSrqNYLHH23Ny6VLuxibXob4DswW7eNLSfH7n/SHklKZPiQKqrjrOWJElSrdk4SYnFpXL093jVTWRP5gtcrkR/tzA8mOL4HQOVrXZHB1N0d3kaSZIk7Xb+xKc9aWbucmWLXf7CIt8dO7cu+runq51cNsWPHh9mJJNiNJtmqL+H9jajvyVJkvYiGyftaqVSicmLC4xPzHAiSbUbyxc4P7NYOWbwYDfD/b08fFemstWu/8A+o78lSZJUYeOkXWN5pcjpqdl1qXbj+Zl10d+H+3u4K9fHSCbNaDbFSDbNLblDTE7O1Hn2kiRJamQ2TmpK84vLjFeFNYzlZzg9NcvySnmvXWdHKyOZFI/cPVRJtRse6KWzw+hvSZIk3TgbJzW01ejv6lS78YkC+QvzlWPSPR3ksmmefvgQuUw5tCF7sIfWVrfaSZIkqTZsnNQwisUSE+fnyitIVY3SzNxa9HfmYDe5bIrHjx2urCQd6O30eiRJkiTtKBsn1cXlpRVOTc0mN5FNVpImC1xeKkd/t7W2MDzYy/23D5DLlBukkYzR35IkSaoPfwrVjivML627Fml8osCZ6TmKSfZ3d1c7uUyKJ+8fJpdNMZJJcWSg1+hvSZIkNQwbJ9VMqVRi+uJCOfY7v9Yonbu0Fv19MN3FaDbNg3cOVm4iO2D0tyRJkhqcjZO2ZHmlyJnpucpK0mqjNLe4DEBLCxzu7+XOo33lbXbZFLlMinRPZ51nLkmSJN04GydtaDX6ezxfqFyTdGqqsBb93d7K0UyKt96drVyPNDzYS5fR35IkSdolbJy0zoXC4htS7fLn16K/U90djGZTPP3QCCPZFKPZtNHfkiRJ2vVsnPaoYqlE/vz8WmhD0ihdmr1cOWawbx+5bJq33zuUXI+Upi9l9LckSZL2HhunPWBpeYWTk7OV5mh8orztbnFpBUiivwd6OXZrf+VapJFMmp59/uchSZIkgY3TrlOYX2K8apvdWL7Amanq6O82RjJpnjh2uJJqZ/S3JEmSdH02Tk2qVCoxfWmB8YkksCFplKaviP4eyaQ4fsdgObRhKM3AgX20utVOkiRJuiE2Tk1geaXI2ek5xvJr1yON5wvMLqxFfw8d6uH2o308laTajWRT7Df6W5IkSaoJG6cGs3B5mZP52WQVaYYTEwVOTc6yvFIEoKO9laODKR6+K8NIstXu6ECKrk6jvyVJkqSdYuNURxdnLyepdslKUr5A/twcpWQ81d1BLpviHW85Si6bYiSbZuhQN22tXo8kSZIk3UwN2TiFEO4EXgL6gWnguRjj9+o7q60rlkpMnp9fC2xItttdrIr+HjhQjv5+9J4suUx5Jelgusvob0mSJKkBNGTjBLwAfDbG+PkQwrPAi8BTdZ7TDVkpFvnr70/z2vem+NbfTnFpbgkoR38fGejl3lsOVVLtRjIpevZ11HnGkiRJkq6l4RqnEEIGeBB4OnnoC8BnQgiDMcbJ+s3sxrzyrTO89JVIT1c7993Wz5tHDzKaTXNkoJeOdrfaSZIkSc2k4RonYAQ4FWNcAYgxroQQTiePN03j9La7s+V0u0zKeyRJkiRJTa4RG6dt6+9P1fX9BwfTAIwMH6zrPLR5qzVT87BmzceaNR9r1lysV/OxZs2lERuncWA4hNCWrDa1AUeSxzdlerpAsVja+MAdMDiYZnJypi7vra2xZs3HmjUfa9Z8rFlzsV7Nx5rVT2try5YWWhpuD1mMMQ+8BjyTPPQM8GozXd8kSZIkaXdpxBUngOeBl0IIvwGcB56r83wkSZIk7WEN2TjFGP8f8LYtPLUNystv9VTv99eNs2bNx5o1H2vWfKxZc7Fezcea1UfV33vbjTyvpVSqz7VAO+Rx4L/XexKSJEmSGt4TwCubPXi3NU5dwMPAGWClznORJEmS1HjagMPAXwGLm33SbmucJEmSJKnmGi5VT5IkSZIajY2TJEmSJG3AxkmSJEmSNmDjJEmSJEkbsHGSJEmSpA3YOEmSJEnSBmycJEmSJGkD7fWewG4SQrgTeAnoB6aB52KM36vvrPaeEMLrwELyC+CjMcavhhAeAV4EuoHXgWdjjPnkOVsa09aEED4FvBt4E3BfjPE7yePXPId2Ykybd52avc5VzrdkzHOuTkII/cCfALdRvrnj94GfjzFO7kRdrNn2bVCzEvBtoJgc/sEY47eT570T+E3KP9N9E/iZGOPcdsa0eSGELwG3UK5NAfilGONrfp7tTq441dYLwGdjjHcCn6X8IaL6eE+M8YHk11dDCC3A54FfSOrzdeATAFsd07Z8CfgR4MQVj1/vHNqJMW3etWoGV5xvsPXzynOuZkrAJ2OMIcZ4DPhb4BM7URdrVjNXrVnV+GNV59lq05QCfg94Z4zxdmAG+Mh2xnTDfjrGeH+M8TjwKeAPksf9PNuFbJxqJISQAR4EvpA89AXgwRDCYP1mpSoPAQsxxleS718A3rvNMW1RjPGVGON49WPXO4d2Ymyn/my71dVqtgHPuTqKMZ6LMX6t6qH/CYyyM3WxZjVwnZpdz08A/6tq1eEF4H3bHNMNiDFerPr2AFD082z3snGqnRHgVIxxBSD5/XTyuG6+Pw0hfCuE8LkQQh+Qo+pfymOMU0BrCOHQNsZUW9c7h3ZiTLVz5fkGnnMNI4TQCnwY+HN2pi7WrMauqNmqr4UQXgsh/JsQQlfy2Lq/e2CMtf+/bXVMNyiE8PshhDHg48BP4+fZrmXjpN3oiRjj/cDDQAvwmTrPR9rNPN8a3+9SvvbC2jSPK2uWizE+RHm77N3Ar9drYnqjGOPPxRhzwK9Rvm5Mu5SNU+2MA8MhhDaA5PcjyeO6iVa3E8UYF4HPAW+n/K9plS0PIYQBoBRjPLeNMdXW9c6hnRhTDVzjfAPPuYaQhHrcAbwvxlhkZ+pizWroKjWrPs8uAb/PNc4zyitJ49sc0xbFGP8E+DHgJH6e7Uo2TjWSpAe9BjyTPPQM8GqMcbJ+s9p7Qgi9IYQDydctwPsp1+WbQHcI4fHk0OeBl5OvtzqmGrreObQTYzv/J9r9rnO+gedc3YUQPg68Bfh7SWMLO1MXa1YjV6tZCOFgCKE7+bodeA9r59lXgIdDCHck31f/3W91TJsUQkiFEEaqvn8ncA7w82yXaimVSvWew64RQriLckzkQeA85ZjIWN9Z7S0hhFuBLwJtya+/AX45xngmhPAY5QSafazF5U4kz9vSmLYmhPBp4KeAIWAKmI4x3nO9c2gnxrR5V6sZ8E6ucb4lz/Gcq5MQwj3Ad4DvAvPJwz+MMf79naiLNdu+a9UM+CTlv9sS0AF8A/jHMcZC8rx3Jce0Aa8CH4oxzm5nTJsTQsgCXwZ6gRXKTdNHYoz/28+z3cnGSZIkSZI24FY9SZIkSdqAjZMkSZIkbcDGSZIkSZI2YOMkSZIkSRuwcZIkSZKkDdg4SZIaUgjhhRDCr19nvBRCuL3G7/mBEMJ/ruVrSpJ2B+PIJUk7LoTwfuCfAPcCs5TvT/MS8O9ijFv6IAohlIA7Yozfv8rY14BHgGVgAfg68Aur95iqhRDCh4CfizE+vtGxkqTm54qTJGlHhRB+Ffgd4Dcp30A3CzwPvB3ovMZz2mrw1r8YY0wBdwJ9wG/V4DUlSXtUe70nIEnavUIIB4B/RfkO91+sGnoV+EDVcX8EzAOjwJPAu0IIzwInY4wfS475p8CvACXgY5udQ4zxXAjhi8CHq+b0u8BPAHPA7wH/OsZYvHIVKVnV+jDwq8AA8GfALwJ3AS8AHSGEArAcY+wLIfwk8ClgBLgE/FaM8VObnaskqXG54iRJ2kmPAl3Alzdx7D8EPg6kgVeqB0IIfwf4CPA0cAfwjs1OIIQwALybcrMG5abpAHAr5SbtOeBnrvMSfxd4GLgfeC/w4zHG/0t51ewvY4ypGGNfcuy/B34+xpimvC3xLzY7T0lSY3PFSZK0kwaAqRjj8uoDIYRvAHdTbqh+PMb49WToyzHG/5F8vRBCqH6d9wJ/GGP8TvIa/wJ4ZoP3/nQI4VOUr6n6GvAryRbA9wHHY4wzwEwI4d8CH6Tc9FzNJ2KMF4ALIYT/CjwAfOUaxy4Bd4cQ/jrGeB44v8EcJUlNwhUnSdJOmgYGQgiVf6iLMT6WrNBMs/5zaPw6r3PkivETm3jvX44x9sUYh2OMH4gxTlJu5DqveP4JYPg6r3O26us5IHWdY98N/CRwIoTw30IIj25inpKkJmDjJEnaSX8JLALv2sSx10vXO0P5uqFVuS3OZ4ryqtDoFa91aguv9Yb5xhj/Ksb4LiADfAl4eSuTlCQ1HrfqSZJ2TIzxQgjhXwKfCyG0UN7iNgccA3pv4KVeBv4whPDHwOvAP9/ifFZCCC8DHw8hPAccohw4sZUAhwngaAihM8Z4OYTQCfwD4D/GGC+GEC4BK1uZpySp8bjiJEnaUTHGT1JuTv4ZkKfccLwIfBT4xiZf4z8Bv005bOH7bC904ZcoX/f0A8ohFH8G/MEWXucvgP8DnA0hTCWPfRB4PWmangee3cY8JUkNxBvgSpIkSdIGXHGSJEmSpA3YOEmSJEnSBmycJEmSJGkDNk6SJEmStAEbJ0mSJEnagI2TJEmSJG3AxkmSJEmSNmDjJEmSJEkbsHGSJEmSpA38fxuQeZJ2rtAMAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 1008x432 with 2 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n", "df_ldst.set_index(\"Grid Points\")[\"PM_LD_CMPL (min)\"].plot(ax=ax1, legend=True);\n", "df_ldst.set_index(\"Grid Points\")[\"PM_ST_CMPL (min)\"].plot(ax=ax2, legend=True);"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Also this behaviour looks \u2013\u00a0at a first glance \u2013\u00a0linear. We can again fit a first-order polynom (and re-use our previously defined function `curve_fit`)!"]}, {"cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Counter PM_LD_CMPL (min) is proportional to the grid points (nx*ny) by a factor of 2.3437 (\u00b1 0.000037)\n", "Counter PM_ST_CMPL (min) is proportional to the grid points (nx*ny) by a factor of 0.5860 (\u00b1 0.000019)\n"]}], "source": ["_fit, _cov = common.print_and_return_fit(\n", "    [\"PM_LD_CMPL (min)\", \"PM_ST_CMPL (min)\"], \n", "    df_ldst.set_index(\"Grid Points\"), \n", "    linear_function,\n", "    format_value=\".4f\"\n", ")\n", "fit_parameters = {**fit_parameters, **_fit}\n", "fit_covariance = {**fit_covariance, **_cov}"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Let's overlay this in one common plot:"]}, {"cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAF/CAYAAAB+GZmgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8Y3W9//HXSdI9aZuk6b5vZ1YYhhn2bdhEEAUREGRHEQRR7714FVC5KgqICwICV7mKG+rvuiAKCopeZBOGVQXOdDpt0z1puqV7k5zfH9MZZ4ShnaGdNNP38x/o+X5zzufkM51H3vM958SwbRsRERERERHZNUeyCxAREREREVnsFJxERERERERmoeAkIiIiIiIyCwUnERERERGRWSg4iYiIiIiIzELBSUREREREZBYKTiIiIiIiIrNQcBIREREREZmFgpOIiIiIiMgsFJxERERERERm4ZrLJNM03wV8ATDYGrZusCzrF6ZpNgL3AX4gAlxgWVbTzGvmfUxERERERCQZZg1OpmkawA+AIy3L+rtpmvsBT5qm+SvgbuBOy7J+aJrmecA9wLEzL12IsdlkAOuBbiA+x9eIiIiIiMjS4QRKgOeAybm+aE4rTkACyJv5/3y2BpMCYC1wwsz2+4E7TNMMsHVlal7HLMsKz6HO9cBf5nhOIiIiIiKydB0JPDHXybMGJ8uybNM0zwIeME1zFPAApwAVQKdlWfGZeXHTNLtmthsLMDaX4NQNMDAwSiJhz/U9mFd+v5tIZCQpx5Y9o56lHvUs9ahnqUc9Sy3qV+pRz5LH4TDwenNgJjvM1Vwu1XMBnwbeY1nWk6ZpHg78FDh/TwpdYHFg2xuRNH6/O6nHl92nnqUe9Sz1qGepRz1LLepX6lHPkm63bu2Zy6V6a4BSy7KeBJgJT6PABFBmmqZzZmXICZQC7WxdOZrvsTmLREaStuIUCHgIh6NJObbsGfUs9ahnqUc9Sz3qWWpRv1KPepY8DoexR6F1Lo8j7wDKTdM0AUzTXA4UA03AS8A5M/POAV60LCtsWVZovsd2+8xERERERETmyVzuceoxTfMK4H9N00zMbL7Ysqx+0zQvB+4zTfOzwABwwQ4vXYgxERERERGRvc6w7eRc0rZAqoGWf71ULx6PMTAQJhabWvACHA4HiURi9omyaCxEz1yudLzeAE7nXB9cKbtDlzekHvUs9ahnqUX9Sj37cs/iiTjhYBsDwc10jTh4OVrAVCzBNeeswemYywVvC2uHS/VqgNa5vm5JfKobGAiTmZlNTk4xhmEs6LFcLgexmIJTKpnvntm2zejoMAMDYQoKSuZtvyIiIiKLzdT0NJ1947SHRnC/9gA5I234433kGDFygL6pKoayT2F5lTfZpb5tSyI4xWJTeyU0iQAYhkFOTi4jI4PJLkVERERk3owMDRLa0sRoZzP2QDs5490MTadzR/READ6aG4R0g868NbgKqsirqOPg6jqOzMhIcuXzY0kEJ0ChSfYq/XkTERGRVJVIJBgM9RJu2cRoqIsnYysJ9o5weuIhVqd3EACidhaDaUVQUM1HjltFRZGbQP4GHPvwZ6AlE5xERERERGRnsViM3oEJgqERJpufoyj8LN5YiBxjklIgYRs8YJRRV+YjnnMCvbkuArWNlBYEKE128XuZglMSvO99p5Kenk5aWjqJRJwLL7yU449/By+8sJGrr76cc845nyuv/Nj2+VdddRkvvfQCjzzyONnZ2W+6zxde2Midd97Gvff+YKft3d1dvP/9p1NTU0ciEScWi7H//gdw8cUforCw6C3rjET6+Na3vskrr7xMZmYGLpeL008/k3e/+3Tuvfcevvvdb3PLLd/gsMOOAGBsbIz3vOcdVFZWb6/jiCPWUVdXDxg4HAZXXvlx1q07iIceepCnnvoLX/ziLbO+X9/85ldZvXp/Nmw4fta5O7rppi/wzne+i/33P+At591++zeor2/khBNO2q39i4iIiKSSifFxerdsItrRTDwSJHu0G1+ij9uH3kUokcdhmd2U5UwQcpsYvkpyy+sprK3nv3L0Rb2g4JQ0X/zizdTW1rNp0+tcfvmlrFt3MACVlVX85S9/5vLLr8LpdNLV1cnk5MTbOpbb7eZ73/sxANPT09x3371cfvklfP/7P8XtfvNfhImJCa666jJOPvlUrrvuBhwOB9FolD/+8ZHtcxobTR5++Dfbg9Of/vQHKiur37Cvu+76H7Kzs/nLX/7M5z73aR588NE51x4K9bJx47N89KP/thtnvNWnPvWZOc0777wLueyyiznuuBNxLIInvYiIiIi8XdGBfnqbNzHWvYVXp8r4W38GgejrXOr+Mz5g3E6n3xWgI/dA3rvWpLSqkmL/Mbic+iy0K0syOD35t26eeKV7QfZ99AGlHLKieM7zGxuXkZ2dTXd3JwBZWdlUV9fw7LNPc+ihR/Dww7/hpJNO4bXXXp2X+tLS0vjgBy/nuef+yu9//xBnnHHWm8579NHfkZubx/nnX7x9m8fj4bTTztj+8wEHrOPpp59geHiY3NxcHn74N5x88rt46KHfvOk+168/hKGhIYaGhuZc70MPPcgxxxy3/Z6he++9h2CwldHRUdrbg5jmcs4770LuuOMb9PR0c/TRx25frbvqqss455zzOfzwI7nxxhtIT0+nvT1IKNTLypWruf76/8IwDLxeL6Wl5Tz//LOsX3/InGsTERERSbZEIkFkYIRg3wQ9Hd1UBx8gb6qXPGOUbdcW/T1+BEWBg6itX0dnehUF1Q0UlJRSqH8w3i1LMjgtJi+8sJGpqSnKyytparIAOPnkU3nggV9wyCGH88c/PsJdd93L17/+lXk97vLlK2lp2bLLcct6nRUrVr3lPgzD4NhjT+CPf3yEgw8+lMnJCWpq6nY5/7HHHqWwsAivd+6Po3zxxec555zz31Dbd77zA7KysrjkkvO4++47uPXWbxKPxznzzHfz7nefTkVF5Rv2tWVLM9/4xrdwOBxcfPEH2Ljxr9uD0qpVq9m48TkFJxEREVm0pmNxQi2bGWzfTCzURsZIJ754mKcmGvj1+IGkGzE+6R1gIKuSfm8F2aW1FNU0cK7Pn+zS9wlLMjgdvrqEw1cvzPfrzPU7ga6//j9JT88gJyeHG2+8GY/Hs31s7dp1fPWrN/H443+mtraOvLz8Bah0ti8+ntsXI7/zne/i85//DP39EU466ZQ3nXPFFZdgGA58Ph9f+tKtu1VlKNSLz+fbadtBBx2y/RLD+vp66uoaSU9PB7Ze6tjZ2fGmwenII48hY+ZxmKZp0tnZwfr1W8d8Pj8vv/zibtUmIiIislDGRkYItTQR7WimbyTG4yN1dPZF+bznJ1Q6ppiynUQcBXR7VlLZuIrrzAMpD7jJSDsx2aXvs5ZkcFoMtt3j9Ga2reTccssXufbaGxbk+K+99irveMfJuxw3zeX89re/nnU/ZWXlpKWl8etf/5Lvf/8nNDdvfsOcbfc47YmMjEympqZ22pae/s/vAnA4nGRkpO/ws4N4PL6Lfe04z7nTvKmpqe2hSkRERGRvGuofJDgYJ9gbxdf8ECWjFl6G8BvgB4gXkeM1Of7ASsIZF2CXlBCorMLv0kf5vUnv9iL1nve8l6ysLA4++NB53e/09DQ/+MF3CYdDnHjiO3c57/jj38GPfnQfP/7x9znnnPMxDINoNMrDD/+Gs846Z6e5l19+FZ2dHQuyMlZXV0cw2MaqVfvN+7531NbWQn19w4IeQ0RERJa2hG3T19lJf8vrvNofxI4E8U73YtgJvj54FmBwdv4EnswAw3kHkFlcQ0FNIysLi1i9/X6kN/+Hd1l4Ck6LVCBQyAc+cOFuvaa5uYnTT//nKtK6dQdxySWXMTIywkUXnUs8Htv+OPK77rp3l0/UA8jKyuKOO/6bb33rm5x11nvIysrC5XLx3vee+Ya5q1btt0fB5umnn9yp3pNPPpUPfeiKneYcddSxPPbYo5x88qm7vf+5sm2bjRuf2+lBGCIiIiJvx9TkFKHWzQy1NxMLt/FIbB0t4UlOdD7LcVn/IG4bRAwffdm14K3gk+/Yn8qSPLIzj0126bILhm3P7V6WFFENtEQiIyQS/zyvnp42iour9koBc73HSeYmHo/zoQ9dwC233EZBQcGCHGPjxmd4+OHf8pnPfGFe97s3/9wtNYGAh3A4muwyZDeoZ6lHPUst6ldyjQ4P0xEZJ9g3xWTbKyzvfwyfPYDL2PqZcNJ28f8yz8ZTUkl93hRleQ5Wrtuf4ZFYkitfmhwOA7/fDVADtM71dVpxkkXN6XRyzTXX0t3duWDBaXR0lCuuuHpB9i0iIiL7Dtu2GRwYJrzpZcZ7WnAOduCZ7MFnRPlt9Bj+Pl3JSvcEtdlugh6T9KJqfFUNFFRUcoXDudO+MrKyYERhN5UoOKWYSy89/w0PP1i5chXXXHPtHu3vP//zE/T29u60raioiJtv/voe1zjfli9fuaD7P+64E7RKKCIiIjuJx+KE21vpD25mOtSKNRHgif4A2ZN9XJf/AAD9di7DmSUM5h/ESYeu55KaGvLdGcAZb71zSUkKTinm3nt/MK/7W0wBSURERCQZJsfH6e7uo3XYQXvPEAe3fx9/oo8cI0YOELMddDvXsaZhOZWBSvrSqyiqa6TqLe4Xl32PgpOIiIiILBkj49P0vP4yYx1NMNiOe7wbnz1I13QZ3x85lqwMJytzPYx7KnAVVJFfWUdhdR0npafvsBfdw7wUKTiJiIiIyD4nkUjQ39NFpKWJid4WxkZG+cXIWiLDk3zM8zC1aWGG7RwG0wtpy11FfkkjN61YRyAvE8M4OtnlyyKk4CQiIiIiKS0WmybU1kbreA7B3hEK2//AyskXyTamKAUSNoQNP3Wlx3Ds2lwy3ZdilwQo8/spS3bxkjIUnEREREQkZUxOxelqa2Wk+SXsSJCssW78iQgeI879A2cx5czmRF8Ove7lOPyVeMrrKKpppD4nW18dK2+LglMSvO99p5Kenk56egYAa9ceyNVX/zvf+c7d1NTUctxxJ/LCCxuJxWIcdNAhs+5vaGiQL3zhs3R2dpCenk5ZWQXXXHMtXq/3DXPvu+9eHnvsURwOB7YN559/Eccdd+JOc154YSMf//hH+NjH/p0zzjj7DfuwbRvDMLjxxhu47robtv+8t3zve9/hD394BKfTidPp5MMfvpKDDz4UgImJCb70pf/Csl7D6XRy5ZUf5/DDjwQgGGzl1ltvYmhoEICrrvo469fv+v2dnJzk0kvPIyMjc/tDOZqaLL72tZvZtMni0EMP54tfvGWBz1ZERGTpGo5ECLVYjHVtwRjo4PeT+/NafwYHpTdxrvtpxux0+l2FtOeuI62wmk+Z6yku9uF0OJJduuyDFJyS5ItfvJna2p3/3eODH7x8+/+/+OLzjI+Pzyk4GYbBuedewNq16wC4887buPvu2/n0pz/7hrlnnHE2F154KQB9fWHOPfd9rF9/CLm5uQCMjY1y1123c8ghh+3yeLff/jWWLVtBPB7n5z//KaOjo1xwwSWzn/Qsuru7uPHGG7jjjv9+y3nLl6/k/e8/j8zMTJqaNvHRj17GAw/8joyMTO6//wdkZ2fz05/+ivb2IFde+SF+8pNfkp2dzZe+9HlOO+0MTjrpFNrbg1x99eXcf/8vcLuz3/Q4//3f32LlytVs3ty0fZvX6+Oqq/6NpiaLjRv/+rbPWURERLbejxTp7KBjYJqWQRjtbObY4V+Ra4xRNDNn0HZTlbeK+uXV1PjqmfKeSqC4mCKFJNlLFJwWkRtvvIFly5azZs2BPPDAL0gkEmzc+CzHHXci559/0S5fl5ubtz00wdbvdfrlL3/+pnPdOzw2c2xsDMMA2/7ndxjdfvvXOffc83nqqSd2ebyrr/537rnnTh555GH23/+ANw1Nv/vdb/n5z3/GXXfdi8Ph4BOfuJING47jtNPe91ZvwZxsW10CqK9vwLZthoaGKCzM5I9/fJTrr78BgIqKSpYtW84zzzzFsccez+bNmzj44MO2j+Xm5vLMM09y/PEnvOEYL7/8Ih0dQc4++wNs3nzb9u0FBQEKCgK0tbW87fMQERFZimLxBF29g0RffYpYXxsZI53442EyjWleHVvLnyZXU+dLoz+7mn5vBTkltQTqTCry86lIdvGypC3Z4DT24JffsM1VexDpK4/Djk0y/vDX3jCe1ngEaeaRJCaiTDx6xxvHVxyLyzz0DdvfzPXX/+f2S/WuuOKjO4WBurp63vOe9zI+Ps5VV318+/b/+I+r+eAHL2fZshW73G8ikeCXv/w5Rxxx1C7n/OpX/8vPfnY/oVAvn/70Z8nLywfg6aefJBqNsmHD8W8ZnO644xs0NDRy4onvZHp6ih/+8Hucd95FO8056aRTePHF57nrrttxu93k5ubNS2j6V7/73W8pKyunsHDrv0f19vZQVFSyfbywsJhQqAcA01zOo4/+jrPOOofXX3+NYLCNnp7uN+xzfHyc2277Kjff/DXa24PzXrOIiMhSMRaN0rtlE9HOLdAfpG3Cw6/7GyAR4xbvL0jgIOIsoMuzCmdBFUfUrOLM6hrS05zAhmSXL7KTJRucku3NLtWbza23fnPWOV//+lfIzs7ijDPO2uWc0057H6ed9j6amzfz+c9fz7p1B+FwOLn77jv4xjfunPUYV175MQzDYOPGZ3nf+96PbdtvOu/f/u2TXHrp+cRisV1+ce/AQD+f+MRVwNYn4vT29nDRRecCW1fOrrnm2l3W8eKLz/Ptb981p5oBrr32c9x++9d46KEHqa6uYb/91uByvfFX4M47b+O97z2TQKBQwUlERGQObNtmqC9MT2c3TWN5tPdGOTr0IyqNHgqAAmDEzmQ4YyUnrq+gssjDpLuRQGk5fpcz2eWLzMmSDU7Zp356l2OGK+Mtxx2ZnrccT5Y77vgGHR1Bbr756zjmcL1vXV09fn+AF198Hq/XTyTSx4c+dCGw9YETTz75F4aHh7n44g/t9LptD4K47robdvr5X0UikZnLAQ1GR0fJyXnjt2t7vT6+970fA3O/xwng739/hS984bN8+ctfpbKyevv2oqJienu7tz8YIxTq2X4ZY1lZOTfd9M+VxPPOO5Oqqpo37Ptvf3uJZ555ku997ztMTU0RjQ5z4YXv5777fjJrXSIiIvu6hG3T2z9GxHqReOerpEU7yZ8O4THGSYt7+OXQ6QTyM+lz1xNzLyeruIZAjUlRIECJ7keSFDan4GSaZibwdeB4YAJ42rKsy0zTbATuA/xABLjAsqymmdfM+9hSkpOTQ19feM7z77nnTizrNb7yldtI3+mbrXfW2tpCdfXWsNDV1UlTk0V1dS3V1TX85jePbp+37X6rN3uq3lxMT0/zuc99mo985GomJyf53Oeu5fbb73nTFZ7d9dpr/+Czn/00X/jCzZjmsp3GNmw4jgce+AXLlq2gvT3Ia6+9yg033AhsXd3Kz/diGAYPPfQgaWlprFt30Bv2v2NAeuGFjdx55227XDETERHZl01NTNDTsploRzOxvjbSRkPcMXQ8E9MJzsl5ivXpzUQMH305dUS8lbjLarlj2RqyM13Arh80JZKK5vop9ha2BqZGy7Js0zS3PeDkbuBOy7J+aJrmecA9wLELOLZkHHXUBq677houuujc7Q+H2NU9Tlu2NPODH3yXiopKLr9864MaSkpK+fKXbwXgoovO5dZbb6OgIMC9995DS8sWXC4XDoeDj3/8P7YHqfn0rW99k/p6k+OPfwcAL7zwHN/+9l1cccVH3/a+v/rVm5mamuQrX/nS9m2f+cznqaur59xzL+DGG2/g7LNPw+Fw8MlPXkt2dg4ATzzxOD/60X2AQVlZOV/60q3bV8u+8527KSgomPU+rO7uLj7ykQ8yMTHB1NQkp59+Mpdeehnvetdpb/u8REREkmlkeIhQ8ya2THppCU8R6HmSYxJP4TVsvMCEnUbEGeCYlV5KSgJUeVeQXeQlPyMj2aWL7BXGru5P2cY0TTfQAZRbljWyw/ZCYBPgtywrbpqmk60rRA2AMd9jlmXNZfmlGmiJREZIJP55Xj09bRQXV83h5W+fy+UgFkvMPlEWjYXq2d78c7fUBAIewuFossuQ3aCepR71LLXsTr9s22YgOklnaxt289M4hjrInezFa2x9/W3D7yCSWcF63zAr07vIKKrGV92Av6wcp0P3I80X/Y4lj8Nh4Pe7AWqA1rm+bi4rTnVsDS+fM01zAzACXA+MA52WZcUBZoJOF1DB1gA032Nzv25NRERERIjFYoSDrQy0NTEdbiM92sljY8t4frSEaleIj3n+zICRx3BmKYP55WSX1vLRhlXk5eclu3SRRWcuwckF1AIvWpZ1jWmaBwMPAmcuaGVvw0yC3C4UcuBy7b2bEffmsWR+LETPHA4HgYBn3vcrW+m9TT3qWepRz1JLTraDjtdfoz0yxevDOfS0d/KB0e/hNuK4gWnbQb+zgJXVeaxvXE1tiZuSwnOo97zx4U2yd+h3LLXMJTi1ATHgfgDLsv5qmmYfW1ecykzTdO5wWV0p0M7WlaP5Hpuzf71UL5FI7LXL53SpXupZqJ4lEgktwS8QXd6QetSz1KOeLW7RsSmCoRFif/89jv4gnokevPYgLsMmNFnH47GjqSzMod17EGkF5Xgr6glU1+BLS2fHL0MZm7AZm1Cfk0G/Y8mzw6V6u2XW4GRZVp9pmn8CTgAemXnq3bb7m14CzgF+OPPfF7fdi2Sa5ryPvR22be/ysdki8222ewdFRETmIpFI0N/VSaStiYmeFlzDnfRPOvnu4KEAfDrvGbIcMaKZxQx5VpNZVM2aGpPjSkpnPvccmNwTENmHzPWpepcD/2Oa5leBaeB8y7IGTdO8HLjPNM3PAgPABf/ymvke2yMuVzqjo8Pk5OQqPMmCs22b0dFhXK5dPxZeRETkX01PTxFqbaG/q4O/T1cS7I2yYeiXLHe1UwokbIN+I59xdw1nHVBPRZGbYt96PLkerV6I7AWzPlUvxVTzJk/Vi8djDAyEicWmFrwAh8NBIqFL9VLJQvTM5UrH6w3gdC7Z75heUPqAkHrUs9Sjni2siakY7aERBpteIqPzBbLGu/EnIqQZCeK2wXXR8ygpzOMQdwfFOTae8jqKahvIzMp60/2pX6lHPUuehXyqXspzOl0UFJTslWPplyD1qGciIrKQhsJhwi2bGOvegjHYgWeih28OnsCgnc2GzH9wQpbFgKuQ9ryDSC+sJr+yntuqqnE5XcC6ZJcvIjOWRHASERERWWjxRJxIezv9wc00T/rY1O/EE36Zs9Meo2hmzoDtYTijiHeuLyFQUUVl4GDyc7ModuiJvCKLnYKTiIiIyG6ajiXo6hulq72L7M2PkDnahS/eR5YxTRnwxOihDOSuoaiskRZXOu6yOorqGqnM3fr9SKuSW76I7AEFJxEREZG3MDo8TGjLJkY6t2D3B8kZ7+bZ8SoeHV9FtjHJDfkvE3EG6MpdjaugityKOi6oric9M3NmD4cktX4RmR8KTiIiIiJsffT3UDhEuGUT4cEJXhorIRga5hrjuxQYMQqAqJ3FYFohlTWVXN6wksoiD978EylwOJNdvogsMAUnERERWXLi8QShwXHaeqM4X38U90AT3liIHGOCEmAiVkC78wyqivNoSTuF/IIAgdpGSgOFlCa7eBFJCgUnERER2adNjo8Tat3MUPtm4n1Bska7MGKTfHno3QBc5G7Gmz5GKKcBw1eJu6yO+toGbvJ4ZvagO5JERMFJRERE9iHRwUHCzRYj3Vv4a2IVwdAYh409xhGZFvnAuJ1OvzPApLeSSw4zqSzOpcR/NGkuXWonIm9NwUlERERSTiKRoH94nGBojOGWvxPoeoLcqV7yjRECQAD47XQu/sJy0iqOpDPnIPzVDRSUllOoR3+LyB5QcBIREZFFLRabJtTWwmBwM9OhNtJHOvHFwnw3ehSbYiWsSOvkDE+EwaxyBvIryCmtJVDTwKf9BckuXUT2IQpOIiIismhMjI7R27KJ4Y5mWibyeWkwF/rb+IT7N3iAadtJxOGnx72cY1Y2cmZNI+WBo8lIPz/ZpYvIPk7BSURERJJiODpGsG+c9u4Bypv+F89kD157EJ8BPqB1ej+yfBuo3m8l7c4cvJX1BKqq8bnSkl26iCxBCk4iIiKyoGzbpq+znUhLE5OhFlzDneRP9dI0Vcj3R48CbD7pjTCS7mcof38yi2ooqGnklKJiTt1+P9LyZJ6CiIiCk4iIiMyf6akpQq3NDAabGRoc4vHJ5bSHonw041eUuQaI2wb9hpf+7Gpyq5ZxzbI1VBR5cGcdl+zSRUTekoKTiIiI7JGxkVE6BqYJ9kbJaP4TJUOv4Lf7yTUS5AKDiWzi2Y0csqKY0az3MhjIp7C6ntqsrGSXLiKy2xScRERE5C3Zts1QpJ9w86uMd7fgGOzAM9lDHlG+NvB+pkjjZM8w/qxsgp5G0gur8FY1UFpexXXbvx/JTOo5iIi8XQpOIiIisl08EaevPUjbs20Mtm3i6dgKXg/brIm/whk5zwEwYHsYzihmKP9ArjxqBeXlheS7N2AYRpKrFxFZOApOIiIiS9TUxARdfVGCkWkGg02Yvb/DHw+TbcTIBnJtBxudflbXLacm/2j6cg6msLaRytzcZJcuIrLXKTiJiIgsASOj44SsvzHatQV7oB33eDc+e4DHxtbzxOQySjPGaPQYdOatwVVQRcXKVeT4yrg0Iz3ZpYuILAoKTiIiIvuQRCLBYG8P4dYmJntaCI5n8fhQBdGhKLf47icADNvZDKUV0pa7nPVr13JK/XIC+Vk4jHdt308g4CEcjibvREREFhkFJxERkRQVj8Xo7QnRNuSgvXcEs/V+iqY7yDEmKQUSNgway6ktXUnFmlJ60q6gsLqOsoICypJdvIhIilFwEhERSQGT03F6mi2iba+TiATJGu3Gn+hjMJ7Ht4ffhctpUObNwHCbGL4qcsvrKKyt56gcN0dt30t18k5ARCTFKTiJiIgsMtGBfnq3bGKsq5nYYIifTxxKT/8YF2T/H2sz2hi30+l3BWjPPRBXYQ2fX3kQxf5sXM4NyS5dRGSfpeBp9YxBAAAgAElEQVQkIiKSJIlEgv6uTtqiaQTDY2QGn2b16FPkGaMUzcwZsnMo9x3B+mXVeN3FTBbmUlBSSqHDkdTaRUSWGgUnERGRvSAWT9DT2cNw0wtMh4NkjHTii4fJMqb41dApdCX8HOFzUZ5VSb+3guzSWopqGyn3+rgi2cWLiIiCk4iIyHwbHx2ht3kT0c4t2JEgz0zWs7HfQ53RyUdy/8CU7STiKKDbsxKnv5JLGtdTWl5CRpoz2aWLiMgu7FZwMk3zc8ANwGrLsv5umuYhwD1AFtAKnGdZVmhm7ryPiYiILDZDfWE6Q1Fahhz0dXVzdN9P8DKE3wA/MGpnUJhdwvEHrqCqoI5R96EUVFbhd+nfLkVEUsmc/9Y2TXMtcAgQnPnZAH4IXGRZ1hOmaV4P3ARcshBj83XCIiIieyJh24QHxhj4x9NM9raQNtxJ/nQvHmOclgmTn48dTGFeOmuzihjKO4Cs4hoKahopLCziNN2PJCKS8uYUnEzTzADuBM4F/jSzeR0wYVnWEzM/383WFaJLFmhMRERkr5ianCTU2sxQcDOxviB94wY/H1zFxFScG/J+QbFjnIjhoy+7lj5vBcuqVnBHw3KyM9OAI5JdvoiILIC5rjh9HvihZVktpmlu21YJtG37wbKsPtM0HaZp+hZizLKs/j08RxERkV0aHR6mJ9jGlvF8gr1RVnb/CjOxmTwjQR4wabuIuWo4bFUxlUUecP8H2eWl5GdkJrt0ERHZi2YNTqZpHgqsBz618OXMD7/fndTjBwKepB5fdp96lnrUs9ST7J7Ztk3/8ARtf3+FkaYXsCNB3BPdeImSZ7v4ycD7yfNkUeUtpzu7iJyyOooal1NVU8Nyp5OTklp9ciS7Z7J71K/Uo56llrmsOB0NLAO2rTaVA78HvglUbZtkmmYBYFuW1W+aZnC+x3bnpCKRERIJe3deMm8CAQ/hcDQpx5Y9o56lHvUs9eztnsVjccLtrfQHNzMdaiVtuJP7Ro8iPObgnVkvcVLWK0TsPIYySxjIP4jsklq+uuwA8nOzgcN32ld//9heq3sx0e9ZalG/Uo96ljwOh7FHCy2zBifLsm5i6wMaADBNsxV4F/AqcJlpmkfM3JN0OfCzmWnPA1nzPCYiIvIGk+PjhFo30zqaSWskQVrXS5ww9Sg5RowcIGY7iBg+DqzKwldWSZXXxFl0GdXu5F6dICIiqWWPn4VqWVbCNM3zgXtM08xk5tHhCzUmIiIyMj5NZ3s3k9aTGANBciZ68NmD5Bs2L48cyWtGPfsX+OjIOgBXoIr8ijoKq+vwpqdTn+ziRUQkpRm2nZxL2hZINdCiS/Vkd6hnqUc9Sz2727NEIkF/Txf9rU2M97TgHOrkpYkyHhuqxusY4Yb8XzBs5zCYXkgst5yMomp89asIFBViGMYCnsnSod+z1KJ+pR71LHl2uFSvhq0LNXOib98TEZGkisWmCbW10BuOYo3m0t4zxHkj38FtTFACJGzoN/Ipya/mzAPqqCx0Y+cdTpnfT1myixcRkSVDwUlERPaayak47eERRv/xOEZ4M1lj3fgTfXiMBF3Txfxp/CTKAzkE8w4kJ9+Hp7yeopoGanKyqUl28SIisqQpOImIyIIY7u8j1Gwx1t2Ca7iTibEx7uw/Ghv4iOcpKlz99LsKac9bT1qgmrKqBr5VXYvT4WDrt2CIiIgsHgpOIiLytiQSCSJdHURaN/NqvJJgaJRVfb/nYOerFM3MGbTdxDNKePfh1VQWeaj0rcXry6XI4Uhq7SIiInOl4CQiInMWiyfo6hsl3Pw6ruBfyRjpwh8Pk2lMUwZ8Z/AMsvyFjBesoCWrAndJLYE6k7UNFYTDUVYn+wRERET2kIKTiIi8qbFolN4tmxjpbMbubydnrJsfjxxMy5SfA9JbODfnJSLOAro8q3EWVJJXUc+NtQ1kZGQku3QREZF5p+AkIrLE2bbNUF+Y8BaL4FgW1mAGsVAzFxu/ogAoAEbsTAbSCjl4WYATq5dTGVhHvvci/C5nsssXERHZKxScRESWkIRtExoYp70rQvprD5MW7cQ73YvbmKAYeGl8P9oyDqEuUE6LcwOZxTUEakyKAgFKHA5WJPsEREREkkTBSURkHzU1MUFv62aG25uJ97WRMdpN84SX/x1Zh4HNl/I3EnXkEs6pp89bibuslpNrTc7M9czsYV1S6xcREVlMFJxERPYBI0ODhLY0EQn389JkBe2hKBdM/Ygi5zD5wISdRsQZwFtcwsUNy6gs8uD1HUVRelqySxcREUkJCk4iIinEtm0GopMEe0eYtJ4gJ/w3cqdCeI0oASAtkc2rsXOpLPTQm3UssXw3vuoG/GXlBBy6H0lERGRPKTiJiCxS8ViMULCVwbYmpsJtpEc7yY1F+NzAe0ng4L3Zr1OU2cdQZikD3gpySrbej/T1goKZPeyf1PpFRET2JQpOIiKLwMT4GL1bmoh2NPO3WA2b++I0Dj3FyZkv4AambQcRRwERdwPnramivKyQssCRZGXoUjsREZG9QcFJRGQvi45NEQyN0Ne6GV/wT7gnevDZg/gMGx/wx4l3kFFgktOwjmBGHd7KBgJV1fjS0pNduoiIyJKl4CQiskASiQT9XZ1EWpuY6G3BNdxJ3lQvD46u4bmpOsqc/Xw4N8hQehHDeavJKKqhoLqBj5aU4nA4kl2+iIiI7EDBSURkHkxPTxFqbWGwfTOdo2m8FC2gvzfMdTn3UwokbIOIkc9AViVr6hs4qm4/KgvdeLLfR3myixcREZFZKTiJiOym8YlJOvrGCfaO4Hv9F7jH2vEnIuQaCXKBvulapjwns2J5Fa3OM8grraawtp7arKxkly4iIiJ7SMFJROQtDPX1Ed5iMda9BWOwA89EDwOxTG6PvgOAq/J6iKVn0p53MOmFVXgrGzi8soqjXdv+el2WvOJFRERk3ig4iYgA8UScSGc7/a2bGe3r5vHp/Qj2RjnbeJiV6Z0ADNgehjOKobiGq1fsR2WRG69nA4ZhJLl6ERERWWgKTiKy5ExNTtLdP0kwNEJ8y18piTyLPx4my4hRBsRsBw85a1lZ4yORczLh/HSK6hqpzM1LdukiIiKSJApOIrJPG42OEGp+jZHOFuyBIDlj3fjtfu4ceg99iVwOz+6jJBs6c/fDWVBNXkUtRdX1fCYzM9mli4iIyCKi4CQi+4REIsFQOERfyybGu7fwt+kqXunPoGR0E5d6/kwBELWzGEwrpC13Ge8/eDmllRUUejfg0KV2IiIiMgsFJxFJObFYjO7efoKRaUIdHdS3/wpvLEyOMUHxzJx/2EdTVbyeWt9B9GQ2EKhpoDRQSGlSKxcREZFUpeAkIova5FSMUPNrDLVvJtEXJHO0C38iwtMTy/jN+FqyHDE+kT9BKKcBw1eJu6yOorpGznG7k126iIiI7EMUnERk0YgODhButhjpaqFvNMGfRurpjozyxbyfUOWYYtxOp98ZoMe/jtqildzQuIbSghxczhOTXbqIiIjs4xScRGSvSyQS9If7aB8yaOuNUtLyIGXjm8gzRgkAASCRKMPvX8UBjQEi6ZfgLC+joLSMQoeDQMBDOBxN9mmIiIjIEjJrcDJN0w/8AKgDJoHNwIctywqbpnkIcA+QBbQC51mWFZp53byPiUjqiScS9ASDDLW8xnSolYyRTryxEHHbwe2DZ2JgcLbPJjuzgn5vBTmltQRqGlnj97Nm+15qk3gGIiIiInNbcbKBWyzL+jOAaZpfAW4yTfODwA+BiyzLesI0zeuBm4BLTNM05ntsPk9aRBbGxOgovVuaiHY2k4gEeXDqENr6Jjkl/VmOzXqVadtJxOGnx70Cp7+S61atpbwwl4z0Y5NduoiIiMhbmjU4WZbVD/x5h03PAFcA64AJy7KemNl+N1tXiC5ZoDERWUSG+/to758m2DdFLPgSqwf/hNcexGeADxiz0wm496f+wArKct/FiPd0AlXV+FxpyS5dREREZLft1j1Opmk62Bqafg1UAm3bxizL6jNN02Gapm8hxmYCnIjsZbZtE+4boP/1F5kMteAa7iR/qpdcY4zfRTfwj+kK9s9NUJPlZyh/fzKLaiiobiRQXMxlDkeyyxcRERGZF7v7cIjbgRHgDuD0+S9nfvj9yX0McSDgSerxZfepZ1tNTU7SsWkToc2vM9nTwj8mi/m/sB/PVB/X5v+auG0w4PAy6KllJFDFucsPocasx5OdvtdrVc9Sj3qWetSz1KJ+pR71LLXMOTiZpnkr0ACcallWwjTNIFC1w3gBYFuW1b8QY7tzUpHICImEvTsvmTd62lfqWao9G4tG6eqO0DrspKNnkCO67sNv9+MyEhQCk7aLtrSDOHj5CioLaxjMbKSwup78rMyd9jMxOsnE6ORerX2p9iyVqWepRz1LLepX6lHPksfhMPZooWVOwck0zRuBA4FTLMva9gnpeSDLNM0jZu5Juhz42QKOicgeGhyZJPTaC0x0NuEY7MAz2YPPGKZ3qoIfj2zAk53Gfp4CRt2NpBdW462qJ1BexTtdzh32UpG0+kVERESSbS6PI18JXAtsAp4yTROgxbKs003TPB+4xzTNTGYeHQ4wsyI1r2MiMrt4Ik5fe5D+tiamelsZGx3jp9F1DI9O8fHch6hx9dFv5xLNKGIw/0AKyky+uuwA8t3pGMaRyS5fREREZNEybDs5l7QtkGqgRZfqye5I1Z5NTUzS27aFlok8gr1RyjoeYfX0y2QYMQBitoNeo5AnS8+nsjiXGvcEJaVF5OTmJrnyty9Ve7aUqWepRz1LLepX6lHPkmeHS/Vq2LpQMye7+3AIEUmC0YlpurdsYXzLCzDQQc54Nz57gHzD5mcDZ5FIy+F4n4/OvDW4CqrIq6insLqOZRnpLEt28SIiIiL7AAUnkUUkkUgw2NtDX2sTEz0tOIc6eHB8LZuGMjkko4lzcp5m2M5mMK2IttwVZBRV85llBxIoyMdhGMkuX0RERGSfpeAkkiTxWIxQsJXOoQRbBhxMdG3ixNEHyDEmKQESNgwY+TQUOFi9ppZqfyMJ3xmUFRRQluziRURERJYYBSeRvWByOk5HTz/jr/6FRCRI1mg3/kQfbiPO62NreXx6NQ0F2YTcJoavitzyOgpr66nOcVOd7OJFRERERMFJZL5FB/rp3bKJ8a4tMNDOlok8fj3QiMOO8xXvg0yRRr8rQHvugbgCVWyoWcX7KytwOR3AMckuX0RERETehIKTyB5KJBL0d3XQ2x2macJLsHeEd/R9n1JHH0UzcwZtN76sXE49rJqKQg+x3FUUFBVR6HAktXYRERER2T0KTiJzEIsn6ImM0f/6c9hdr5Ix0oUvHibLmCI9nseDw++hxJ9DKHcFk54ssktrKKptpMLr09fGioiIiOwDFJxE/sX46Aih5iaGO5uxI0HSxvv4+uAJxOI25+Y8yQHprUQcBXR7VuL0V5JbUc+3GlaQkeYEDk52+SIiIiKyABScZEkb6gvT9Y/neHkwj9bwFCWhJ9hgP4PPAB8wamfS7yrkpDUBSksLqPTtR14gH79LvzoiIiIiS4k+/cmSkLBtwoPjdLe2YDQ/RdpwJ/nTvXiMcTzAc8MnMZJTic9XTWt6JlnFtRTUNFBYWESxw8GKZJ+AiIiIiCSVgpPsc6YmJwm1NDPUvplYpI3MkS5+P7qSl8ZLqXX1cpXnKSKGj77sWvp8lRQ3Luffi2vJ8biTXbqIiIiILFIKTpLSRoeHCW2x6BqyeX3EzUBPNx+M/ZA8wyYPmLRdRJwBllfls6ZmGZWBA8j2nU5+Zub2fQQCHsLhaPJOQkREREQWPQUnSQm2bTM4MkWwZxj+8RDOwQ5yJ3vwGlEKgM2T9fyNY6gs9NHqPJyMwip8VQ0UVFRQ4HBiJvsERERERCSlKTjJohOPxQm3tzIQ3MxUqJX0aCd9k2l8d+hwAK7Nex6Xw2Aos5SB/HKyi2s4qNbkhEBgZg8HJK94EREREdknKThJUk1NjNO7ZTP9PZ28Ml1DsDfKSSO/oNHVRQ4Qsx1EDD+ZecWcu76ByiIPpf7DyM7OnHXfIiIiIiLzRcFJ9pqR8Wnae6NEm54nq/sF3BM9+OxB8g0bt+3g3rHzKC3MZ6jsUIJug/yKegqra/Gmpye7dBERERFZ4hScZN4lEgkGerqJtG5ivKcF11AnuVO9fHXwJIbtbI7LfI2js4IMpRcynLuKjKIa/NUNfKO0DIfDAaxN9imIiIiIiOxEwUnellhsmnBbC4Ntm7GmCmkacOLte4mzM/6PEiBhG/Qb+QxmlfPu5eUUVVRSETiMXHcm5ckuXkRERERkjhScZM4mJmN09I3S095JbvPvyRrrxp/ow20kcANPjR/GRP4BeKpX0JaWh6e8jqKaBmpyspNduoiIiIjI26LgJG9quL+PULPFWHcLxkAHnskenh6r4dGJ1eQYE1yf/zr9rkLa8w4iLVCFt7KeC6uqcbnSkl26iIiIiMi8U3Ba4hKJOJGuTiItmwgNT/PCWCmdoWE+5foeRUYcgEHbzVB6EVWNdXy0fjWVRR68npMocjiSXL2IiIiIyN6h4LSETMdidEfGCfaOkGE9TO7QZnzxMJnGNGXA5HQhkcwzaKz00Zp2Gt7CQgK1JhX5+VQku3gRERERkSRScNpHjUWjhLZsItrZjN0fJGesB+JT3Dh0GgAXejrIzUjQ5VmNs6CSvIp6llXX84Wsbd+PtDJ5xYuIiIiILDIKTinOtm2GwiHCLU2M9bTwVGJ/2kKjHDP5Jw7P3IQfGLEzGUgrZNrbyIePWk5lcS5F3g04HEayyxcRERERSQkKTikkHo8THhwnGBplZMsrFPc+gXe6F7cxQfHMnIcTBVQUlZPhOZpu9xEEakyKAgFKdD+SiIiIiMgeU3BapKYmJ+ltaWK4vZl4XxuZo1344n38T/RYNseKWZXew7vdo4RzGujzVeAuraWw1uRTuZ5kly4iIiIiss9RcFoERocG6W3exGjXFjZP+XlxIBfXYJBPeH5LPjBhp9HvDNCZt4YT9l/GB6obKC04hjTX+ckuXURERERkSViUwck0zUbgPsAPRIALLMtqSm5Vb18ikWBwcIRgZIqO7gg1W/4fuZM95BsjBIAA0BI/AF/BMVTV7keny4uvugF/WTkBhzPZ5YuIiIiILFmLMjgBdwN3Wpb1Q9M0zwPuAY5Nck27JRZPsOnvrzHR24JjoJ3MkU68sTD/mCrjh6NHYGDzH74og5ll9HsryCmpJVDbyLv9BTvsxUxa/SIiIiIi8k+LLjiZplkIrAVOmNl0P3CHaZoBy7LCyats9zz+chdlz3ybBtcg07aTiMNPr9vEW7ica5cfSHlhDpnpxyW7TBERERERmYNFF5yACqDTsqw4gGVZcdM0u2a2p0xwOmr/UnozLsb25pJfVIHPuRjfahERERERmYt98tO83+9O6vEDga1PtispPiKpdcjcbeuZpA71LPWoZ6lHPUst6lfqUc9Sy2IMTu1AmWmazpnVJidQOrN9TiKRERIJe8EKfCuBgIdwOJqUY8ueUc9Sj3qWetSz1KOepRb1K/WoZ8njcBh7tNCy6L4V1bKsEPAScM7MpnOAF1Pp/iYREREREdm3LMYVJ4DLgftM0/wsMABckOR6RERERERkCVuUwcmyrNeBg/fgpU7YuvyWTMk+vuw+9Sz1qGepRz1LPepZalG/Uo96lhw7vO+79UWphm0n516gBXIE8JdkFyEiIiIiIovekcATc528rwWnDGA90A3Ek1yLiIiIiIgsPk6gBHgOmJzri/a14CQiIiIiIjLvFt1T9URERERERBYbBScREREREZFZKDiJiIiIiIjMQsFJRERERERkFgpOIiIiIiIis1BwEhERERERmYWCk4iIiIiIyCwUnERERERERGah4CQiIiIiIjILBScREREREZFZKDiJiIiIiIjMQsFJRERERERkFgpOIiIiIiIis1BwEhERERERmYWCk4iIiIiIyCwUnERERERERGah4CQiIiIiIjILBScREREREZFZKDiJiIiIiIjMQsFJRERERERkFgpOIiIiIiIis1BwEhERERERmYWCk4iIiIiIyCwUnERERERERGah4CQiIiIiIjIL12wTTNP0Az8A6oBJYDPwYcuywqZpHgLcA2QBrcB5lmWFZl4372MiIiIiIiLJYNi2/ZYTTNP0AftZlvXnmZ+/AviADwJNwEWWZT1hmub1QK1lWZeYpmnM99gczycDWA90A/HdeidERERERGQpcAIlwHNsXRiak1lXnCzL6gf+vMOmZ4ArgHXAhGVZT8xsv5utK0SXLNDYXKwH/jLHuSIiIiIisnQdCTwx66wZswanHZmm6WBraPo1UAm0bRuzLKvPNE3HzArVvI/NBLjZdAMMDIySSLz1StpC8fvdRCIjSTm27Bn1LPWoZ6lHPUs96llqUb9Sj3qWPA6HgdebAzPZYa52KzgBtwMjwB3A6bv52r0hDmx7I5LG73cn9fiy+9Sz1KOepR71LPWoZ6lF/Uo96lnS7datPXMOTqZp3go0AKdalpUwTTMIVO0wXgDYlmX1L8TY7pxUJDKStBWnQMBDOBxNyrFlz6hnqUc9Sz3qWepRz1KL+pV61LPkcTiMPQqtc3ocuWmaNwIHAqdZlrXtBqrngSzTNI+Y+fly4GcLOCYiIiIiIpIUc3kc+UrgWmAT8JRpmgAtlmWdbprm+cA9pmlmMvPocICZFal5HRMREREREUmWWR9HnmKqgZZ/vVQvHo8xMBAmFpta8AIcDgeJRGLBjyPzZyF65nA4ycpy43bnYRjGvO5bdHlDKlLPUo96llrUr9SzL/dsdHiY0BaLka4t/H/27jw+rrre//hrZpLJnklmMpN9b3O6t0ApLbIji0BZpIooIIJXQZHrAupFUFCLInhdAIXfBZULyL2ouKAgiD8VKz+QtYLA6ZJ9m0wyM9kzycyc3x8JsYUuaZp0Msn7+Xjk0cz5fs/3fE4+OU0++Z7znY5BB8/0VzAajfPVy9eR4pjSDW+zapdb9aoZn6iZkgNdHCIphUIB0tMzycoqmvVfYlNS7ESjKpySyUznzLIsYrEo/f1hQqEAbrdvxsYWERERmSvi8Ti9oV6aQjFa/P2U7Pwl3uEG8m39FAAFwFCsklz3IpZW5WO3J/cfkxdE4RSNjh6SokkEwGazkZKSSl6eB7+/NdHhiIiIiBy0eNzC39xEuPFNRrsacfa3kR8NMBB38v3ecwG4NH8MZ3oJ4bwyMoqq8dbUcZTXx1EJjn2mLIjCCVDRJIeczWYH5tWtsCIiIrIAjAwP4a/fTn9rPdFgK78dXU9rYJDz0/7K+rSdRC073XYPXVl12Aoq+Y8Vh1PmzSYj7aREhz6rFkzhJCIiIiIiu+sP9tAcjtEcGMbW+AJG7xbcVhi3zcINDFtOXFlrqF1TSn7u2fTlp+OrqiY/1Zno0A85FU4JsGnTRpxOJ6mpTuLxGB/+8OW8+92n8dJLL3D11Vdw4YUX88lP/vtk/6uu+hivvPISTz75NJmZmXscc2xsjO9979u88spLOBzjix1cfPFluFwufvjD2wEIBnuIx+MUFHgB+MhH/o3jjz9xj+MNDQ1y99138uyzz+B0jl8Yp5xyOpdcchmPPfYoN998E5/5zOc5//z3A+PP9bz//ecyNDTA7373x/2e5513fo97771/v1+rhx9+iGg0ygc/ePEUv7rj7rnnLqqrazj55FP32e+RR37G8PAgH/rQpQc0voiIiEgysSyL7kAPwW1bGfE3ktLXSt5oF7m2QR7pO52GqI91rjHK0930uVaSVlhNQdViCopL+JQ98Qs6zAUqnBLk61+/hZqaRWzb9iZXXHE5a9eO3/1ZUVHJX//6Z6644iocDgft7W1EIiP7He9nP3uIvr5e7rvvIRwOB0NDQ/T0dFNeXsFRR20A4N5772Z4eJirrvr0PseyLItrr/00tbWLeOCBn5GamkokMsKjj/5qsk9dncHvf/+7ycLp5ZdfJDc3l6GhgSmd51SMjIzw85//D/ff/79T3uctH/3oFVPqd/bZ5/GhD23i3HM3kZWld+8WERGR5Dc2OkpX407CzTuJdjeydbSC53ryKI618e+5TxCzbARteQQzKujJr+D9xx5JaVUF2RmpiQ59TluQhdPfXu1gyz86ZmXs4w8rYf2yoin3r6tbQmZmJh0dbQBkZGRSVVXN3//+/9iw4Rgef/y3nH76mbzxxuv7HKerqwu324PD4QAgMzOTzMyKaZ3DCy/8nY6Odr73vR+SkjL+LZKWls6mTR+Y7FNSUko4HKahoZ7q6hoee+xRzjjjLH70o/8zpfOcij//+Y+sWXM4aWnpADz22KP84Q+/Jzs7h507t+P1+vj0p6/lBz/4Hi0tLSxduowvf/lr2Gw2Nm++kSVLlnL++Rdw771309zcxODgAO3tbZSWlvG1r91Ceno6KSkprFu3nj/+8Q+cffZ50/p6iYiIiCTKUH8/7f4QjWEbne0BNnT+FLcVJNcWJxcYtVJoSs1i/TKDCm8F4YwV+KoWUZORkejQk47m3RLspZdeYHR0lLKyfxU5Z5yxkccf/x2WZfHHPz7Ju9992n7H2bjxXP70p6e45JILuPXWm3n66T9PO6Zt297EMJZMFk17c/rpZ/L4479laGiIV1/dylFHHb3Xvns6z/15+eUXWbZs+W7b3njjdT71qc/w05/+grS0NG666Xq+8pXNPPDAw9TX7+CFF/6+x7FM8w2+8pXNPPjgz4lGozz55OOTbStXruLFF/e8n4iIiMhcYFkWof4I25/7K1t/9d+89pPNNN19NbGHPkXD4//NT5/azguNAwyl5NLsXk+rcSGDp36ZvMvv5uzLPsLFpxkcf3gV5UtXkqaiaVoW5IzTu1YW866VxbMy9lTfE+j667+A05lGVlYWmzffQk5OzmTb4Yev5dvf/paWB3cAACAASURBVCZPP/1nampqcbny9jtebe0iHn7412zd+jL/+McrfPe7t/Lcc89w7bXXHfA5TPVNkU866RQuu+wiyssrOPbYEyZnu3a1r/Pcn0Cgi6OPPna3batWrcbnKwRg8WKDoqJisrPHb7FbtGgxbW0tHHnkO28HXLdu/eSxly1bQVvbv5YJ93g8dHV1TTkuERERkdkUi8YItDQSat7BaFcj4aEYv+xdSd/QGNe5fkWNo4+glUt/WhHhvLVUlC/l23WryMt2YrMdl+jw560FWTjNBW89+7MnNpuNk046hW996+tcd92NUx4zLS2NdevWs27dejZsOIbPfOaT0yqcDGMpjzzyM6LR6D5nnTIzM1m+fAV33XU7t99+9x777Os89yctLY3R0chu295aqALAbrfjdKbt8tpBLBbb41i797Pv1i8SGSUtLW1Pu4mIiIjMqsjwMP7mJuqHc2jxD1DT+luWRF8nyxYjC4hadmz2MlbVnkhFYTa2rE/iKCuh8gD+GC0zQ4XTHHXOOe8lIyNjcmGH/dm69WXKyytwuz3A+O12xcUl0zr22rXrKCws5I47vssnP/nvE4tDRPjZzx7ioosu3a3vRRddyrJlK6ipWURHR/u0jrc3NTWLaG5umtEx96SxsYFFi+pm/TgiIiKysA0Mj9Gxw2S48R84+trIHGzHbYXJwcaDoQtxpqWRn++hNetwUr2VuMpr8VXVssrpZFWigxcVTnOV1+vjQx/68JT7d3S0893v3srYWBSHw05enpsvf/lr0zq2zWbjttu+z1133cmHPrSJ9PTxxRlOOeU97+hbXV1DdXXNAR9j587tnHfeGZOv165dx5e+dONufY4//kS+/e1buPzyjx/w+Afiueee4d/+7ROzegwRERFZOOLxOMH2NnqathPxN+DobePh4Q209Dk4Kf01zsl8iV4ri15nIX25K0gvqubmJWspcOfoVrs5zDbV51mSRBXQ0NMzQDz+r/Pq7GyiqKjykAQw1WecZGo++9mruOKKq6irWzIr4zc1NXLbbTdz++17Xg3wYB3K772FxOvNIRDoT3QYcgCUs+SjnCUX5StxxsZG6WpsoKXfQUPQgvbXOHn4cTJsowDELRs9tjxe8JxNTlkNVW47pZ5Mao0q5SxB7HYbHk82QDXQONX9NOMkc9pnPvN5WlubZ238rq5OPv/5A38OTERERBae4UiUtvYuRt78G/GeZjKHOvBMLP39j4ENvBQ3WFGQQ0fOchyeCnLLFuGrqaUmI5MDvz9H5hoVTknm8ssvfscCCMuXr5jWIhC33noz//zna7ttczgc3Hvv/QcV40wqL6+gvHx670c1FUceuV6zhCIiIvIO4UAXgfptDHfUY+tt5Y2RQp4IVZNpG+Hm/N8xaKUTSvHRnLuYVF8lG2tW8tHSEux2G/DuRIcvs0CFU5KZyaJmOsWWiIiIyHwSi8fobmnG7w+ybSiP5s4+NvXeS75tgKKJPiErB29WEeeuqKa8MIdozhH4vF6K7HpL1IVEhZOIiIiILAhj0RitgUH633gGy7+NjMF23LFuMm1RrDEvTwyeQWlBFm25q+nNdZFdWoOvpo6K3Fxm7/4XSRYqnERERERk3ukPhwnsNBnsqIdQC/Hhfm4PnUTcsvho9hYWp/oJOry0udaQUlCJp7KOH1QvJjXFDqxLdPgyB6lwEhEREZGkFY/HCXa2E2zYzuuxcloCQywO/JF32bfiBbxAn5VF2OnjzPWllBfmUeFejbsgD6/dkejwJYmocEqATZs24nQ6cTrTADj88CO4+urPcc89d1FdXcPJJ5/KSy+9QDQaZd269VMas7m5ic2bb6S3txeXy8X119+0x0UV7r33bn75y59TUOAFYOXK1Xzuc1+YGKOR2277Jr29YQCuuurTHHnkO49vWRY2m43Nm2/kS1+6cfL1obJ9u8l//uctbNtmsmHDu/j617812fbss8/wwx/ejs1mIxqNcuyxx/Oxj30Cm82217a3i8fjXHnl5YyMjADg8RRw7bX/MfmGwq+99iq33nozkUiE4uJivvzlr5Gf7z40Jy8iIrKARWNxOoNDdNVvw9H4LGkD7eRHu8i0jVIM/Dh8Dvb8Yso9Bg1pPrJKavBW11Hq8VAKLE/0CUhSU+GUIF//+i3U1CzabdtHP3rF5Ocvv/wiw8PDUy6cbrvtG7z3ve/jtNPO4IknHuPWW2/m+9+/a499Tz/9TK666tPv2H7zzV/l3HPP5/TTz6SlpZmrr76Chx56ZPINcN9y//0/JjMzk1gsxpNPPs6bb77O1Vd/bkpx7s+mTRv5+c8f3Wef/Hw3V131WbZvN3nhhed2a1u1ag0/+tEDOBwOotEoV155GcuXr+CYY47fa9sJJ5y42xh2u51vf/t2srOzAXj44Ye4/fbvcPPNt2JZFl/72g1cd92NrF69hp/85B5++MPbue66r8zI+YuIiMi44cEBunZup69tJ1awmYyhDn7RfwTbRn2sSG3h0uwX6bEX4M9Zht1TQU5pLV+pNUjPSN//4CLToMJpDtm8+UaWLFnKmjVH8OtfP0I8HueFF/7OySefysUXX7rX/UKhINu2vcl3vnMnAO9+92l85zvfIhQKkZ+fP+Xj79ixjaOOOhoYXwY8NzeXZ5/9GyeccPJu/S655DJ+9atf8OSTj1NYWLTHoumll17gW9/azD333E92djabN9+I2+3hyis/NeV49qagwEtBgZempoZ3tGVmZk5+PjoaYWwsis1m32/b271VNAEMDQ1OLC0Kb775Ok6nk9Wr1wBw7rmbeN/7NqpwEhEROQi93QEC9dtoGUzlzd5MRroaucz6OW4buIFBK41Qio8jDC/HVy2jwruWXPcHcaekJjp0WUBUOCXI9dd/YfJWvSuv/BRHHbVhsq22dhHnnPNehoeHd5sZuuaaq/noR69gyZJlu43l9/spKPDhcIzfp+twOCgo8NLV5d9j4fTHPz7J888/i9vt4fLLP86KFasAMIyl/OEPv+f977+QN998g+bmJjo7O96x//33/4T09HROPfU9VFfXcMcd333HDNbhh6/l9NPP5Jvf/CrvetdxtLQ084UvXD/Nr9aBefPN1/nGN75KS0sL5513PkcffcyU2t7ummuuZts2E5fLNVmU+v2dFBUVT/bJy8sjHo/T19dLbq5r9k5KRERkHohbFoHQMM2dYZyv/47Uvjbyxvzk2IYpBF4bXkaD8xiqfSU02U8gvaiaguo6fL5Ciux2lib6BGRBW7CF09Cj33jHtpSadTiXn4wVjTD8+H++oz217hhSjWOJj/Qz8oc73tm+7CRSjA3v2L4ne7pVb39uu+37B9R/T84993w+/OHLSUlJ4fnnn+WLX/wcDz74M1yuPK677ivcfvt/8thjj1JVVc2qVWtISXnnt8hFF3148hmnU099D6eccvoej3XJJZfx6U9/gjvv/C733PPAHseC3d/Ut7s7wKWXfhCAwsJCbrnlOwd8jkuWLOO++/6HcDjM9dd/nq1bX2bNmsP32rZ27do9jnPbbd8nHo9z//0/5ic/uZdrrvniAcciIiKyUI1GIvgbttPbUk+su5H0wQ6aI7k81H8UYPHVvJeI2DPpzqyl211BTmk1p9TUce7kHyIPT2T4Iu+wYAun+aSwsJDu7i5isRgOh4NYLEZ3dwCfr/AdfT2egsnPjzxyPT5fIfX1OznssCMoLS3jm9/8V8F40UXvo7Ky+h1jvLUQxJe+dONur99uYGAAv7+T1FQnfX1hioqK9thv1zf13bRpIz/5yU/3f9JTkJeXx1FHHc2f/vTUZOG0p7a9FU4w/rzTWWedwwc+8F6uueaLFBYW7TYLFw6Hsdlsmm0SEZEFbaA3TNfObQS7u3lltIpmfz8XRv6XspQgeUDESqHH4SXXV8xHjllCRWEOPvfxOJ36VVSSx4L9bs3c+B97bbOlpO2z3Z6es8/2mZCVlUV3d2BKffPz3SxaVMdTTz3BaaedwVNPPcHixcYeb9MLBLrwen3A+Op0nZ0dVFRUAuPPSuXl5WOz2XjssUdJTU1l7drpv4/BN75xE2eddS5Lly7jxhu/xD33/DeZmVnTHm8qmpubKCsrx263Mzw8zHPPPTM5I7avtl2FQiHsdhsuVx4Af/rTU9TWjs8OGsZSIpEIW7e+wurVa/jVr37OSSedMqvnJCIiMlfE43FC/aM0d/Uzuu0Zsrr+gWvUT55tAC+QGXfyYPRiKgtz6ck4EZsrA3fVIjyl5RRo6W9JclMqnAzDuA04H6gCVpqm+drE9kZgZOID4AumaT4x0bYeuBvIABqBi0zT7DqYtoXkuONO5EtfupZLL/3g5OIQe3vGCeDaa6/j61//Cj/+8T3k5ORwww03Tbbtut/dd9+Jab6B3e4gNTWVG264aXIWasuWp3nwwfsAG6WlZdx8823TXmb84Yd/SiQSmbyt78QT380tt2zmpptuntZ4u+roaOcTn/goIyMjjI5GOO+8M7j88o9x1lnnsmXLX3jssd/icDiIx2Mcd9yJbNx47sT57btty5an+eIXbyAY7GHz5huJxaJYlkVxcQk33PBVYHwG6oYbvsqtt97M6OgoRUXjy5GLiIjMN9HoGIGmRkLNOxgLNOLsbyMv2s2NofcyRgobM7ZzWEYP4fRSQvnlZBZX4602+E7BW3e3rE5o/CIzzWZZ1n47GYZxDNAE/BU4622F0+TrXfrbgO3ApaZpbjEM43qgxjTNy6bbNsXzqQIaenoGiMf/dV6dnU0UFVVOcYiDk5JiJxqNH5JjycyYzZwdyu+9hcTrzSEQ6E90GHIAlLPko5wll4PN18jgIP6G7fS37uTVaBU7euJU9T7Puel/B2DMctBj9zCcWUx40RmUlBVRWpBJRppWtZsuXWOJY7fb8HiyAaoZn6iZkinNOJmmuQXAMIypjrsWGHlrP+CuiaAuO4g2ERERETlIfQMjNAcGCTQ1UND0B3IifvKt8OTS309HTia9YAV5dUfQklZNfsUivJVVWvpbFryZeMbpwYmZoi3AdaZphoEKxmeoADBNs9swDLthGO7ptpmmGZyBWEVEREQWhFg8Rk9bC8HGHUT8DaT2teMa8/P7oZX8LWLgtfdxlauNXmchvXmrx5f+rqrjisIi7PY9v8+hyEJ2sIXTsaZpthiGkQZ8F7gDuOjgwzo4E1Nvk7q67KSkHLr/AA7lsWRmzFbO7HY7Xm/OrIy90OnrmnyUs+SjnCWP0ZER+trrCew0aRuw8/e+Qtrbu7kp6wFKgZhlI2h3E86pZe3KVZy5fC3VJblkZ16c6NAXNF1jyeWgCifTNFsm/o0YhvED4DcTTc3A5IMdhmEUAJZpmkHDMKbVdiBxvf0Zp3g8fsieO9IzTslnNnMWj8d1//Is0H3hyUc5Sz7K2dw1ODhMa88ITf4BCrb9EtdgEx4riMNm4QP80UpGc8/m8OXlNDouIK+0gsKqWvLS03cbZ3gwwvBgJDEnIbrGEmiXZ5wOyLQLJ8MwsoAU0zR7J27V+wDwykTzi0CGYRjHTDyvdAXw8EG2HRTLsqa9QpzIdFhWHND3nIiITI9lWYS6/HTXmwx3NuDobSU34qc/5uTbfWcC8DFXkEhaNu2e5djyy/BULuao8gqOnlz6e8rPp4vIfkx1OfLvA+8FioCnDMPoATYCvzAMwwE4gNeBTwCYphk3DONi4G7DMNKZWFb8YNoO6iRTnAwO9pGVlaviSWadZVnEYlH6+0M4nen730FERBa8WDRGV3MD4eYdDHe383+jh9HsH2CT/SkOS2sibkHI5qI3vYRYfiWfWbGaCl82ruyTAM1eiBwKU1qOPIlUsYflyGOxKKFQgGh0dNYDsNvtxOO6VS+ZzEbO7HYHGRnZZGe7VKzPAv2CkHyUs+SjnM2ekeEh2oIRmruGiNf/nYrgs7jj3ThtMQDGLDv/x/kRiooKMLL6KMlz4q1ZTGb23m8tUr6Sj3KWOLO6HHmyczhSKCgoPiTH0kWQfJQzERGZLX3hXgI7XmewvR5buJXskQ7cVi8/7juT9pibozJ7Kc1KpTV3LaneCvLKF+GtquaLqc5Ehy4ib7MgCicRERGR2RSPx+hpb6OnYTuRrkb+MVrOK8EsCkfquTLnjwCErWz6nIX0uVZxwYZVFFeW48k9UXcmiCQJFU4iIiIiB2BsdJTOrhCNwRhdbZ2saPs57liAdNvY5NLf2+3HsaRiHdUFRxFw1uGtraM8Lz/RoYvIQVDhJCIiIrIXg8NjdJlbGWivxwo2kzXUgdsKsTVSxyND60hPheUuaM9dicNTgat8Eb6qWjZlZCQ6dBGZYSqcREREZMGLx+P0BrrobtjGcGcD3YNxnug3CIRHuCnvZ1TZhxmw0gmlFtKcY1BVtpzNdWsozM/Ebj8p0eGLyCGgwklEREQWlFg0RqC9jcYBJy3+AcqaHqU6YpJlG6Fooo9llVFZdCTHriphMONj5JSVUuz1cWiWmhKRuUiFk4iIiMxbkbEYnQ319De8RqynmYzBdjzxbhzY+K/QhTgcds7LT6crazE2TyXZJTUU1taxOjub1ZOjVCXuBERkzlDhJCIiIvNCfziEf6fJcHs9hFr4ZWQDTcEo70l/mdMyXmXYchJM8dKacwSp3gpuXL6WYm8OKY4TEx26iCQBFU4iIiKSVOLxOMH2Nlp6LRp7olit/2Bd/x9w2QYpnOjTa2VR5TqSVUuqqHJVEPFcQEFxCT67PaGxi0jyUuEkIiIic1Y0FqejI0C/+TxjgSbSBtpxxwJk2EbZMnAsr4xVs8qdyuKMCoL55WSV1OCrXkyZ28MliQ5eROYVFU4iIiIyJwz19+Ov385A206sYDP/jBTxp2AJOVY/N+Y9wqjloMdeQGfOcuwFFWysOYyPV5bjTHUAZyY6fBGZ51Q4iYiIyCE1vvR3gE5/DzsHMmnp7OX0wI8psIUpAAqAQSudrgwXp6wtp8KXzWDmcrzlVXhSHIkOX0QWKBVOIiIiMmvicQt/aIjg638n2rmd1P428sf8ZNtG6B8r5pH+U/DlZRDIqqYvJ5+Moiq81QY+r5d363kkEZlDVDiJiIjIjIgMD9PVuIPelp3EupsYHR7iR+GjiYzF+GTOk9SkdBG0uQlkLabbXYG3fDF3LF5BZnoKsCHR4YuI7JMKJxERETlg/eEQgfptbBstoiUwQHXHH1hrbSXPZpEHjFipdDsKOXZVERWFufhcBtnFXvKdzkSHLiIyLSqcREREZK8sy6Knd4TO+h3EGp8npbcN12gnLtsgXuD20PnYs90U5JXTlJ5DemEV7qrFeErK8NrtLE30CYiIzBAVTiIiIgLA2NgogcYGQi07INSKI9zMLwbWsnPYxRHOei7K+htBWx6hjAqC+WVkldRw0+KV5OZmJzp0EZFZp8JJRERkARoaGKCrfhutAylsD6cS6dzJBWOPkGOLkwOTS3+vqczmXZUG5QUrSSv4INUZmYkOXUQkIVQ4iYiIzHO9AxGa20NYb/wBW7iVnJFO8unFY4O/D63mZdtaFvkKaM5eh9NXRX7FIpYevgJPeIS6RAcvIjJHqHASERGZJ2LxGN0tzQSbtjPqbyS1v436kTwe6VuNjTi35P+FITLoSyuiz3UY6cU1vLtmCe/zerHZbMD6ybFSUlOBkYSdi4jIXKPCSUREJAmNjozgb9xBt7+Hf0aKaPYPsGngfoodYTKBmGWjx+bGnV/OhUcupqIwm4z8DRTkZCU6dBGRpKTCSUREZI4bGB6jpWuAwTf/H86uf5I93IHbCpFns4jHsnhm+P1U+LLxFx7NWG46rvJF+KpqyUtLozbRwYuIzBMqnEREROaIeDxOqLOT7sZtjPgbcIRbyRrtZnNoI3HsbMrcyuq0FnpTC2lyLSPNV4WnajF3lFVgt9mAIxJ9CiIi85YKJxERkQSIRsfoamog3LSd16MV1HePURV8hvc4X6AEiFsQsuXRn17MBceUUlzqo6JgPbk5mZQmOngRkQVIhZOIiMgsGxmN0to1SFfTTrIb/0zGUCeeePfk0t+PDZ5KxL2Y1IpVNDmLySmrpbC6jqqs8aW/VyY2fBERQYWTiIjIjOrt7ibQYDLY0YA91EJOxM9jAyt4YbSGMkcPn8w1Cab4aHGtI9VbSX7lIj5dUUVKSmqiQxcRkX3Yb+FkGMZtwPlAFbDSNM3XJrbXAfcBHqAHuMQ0ze2z1SYiIjKXxOIxelpaCDbvoH3AztZ+Dz1dfr7g/CmFE31CVg79aYWsXFbF0bWrqPBlkZdzPoV2e0JjFxGRAzeVGadfAd8D/vq27XcBd5qm+YBhGBcBdwMnzWKbiIhIQoyOxejoGaLJ30/OG78mc6AZd6ybDNsYpYB/tJpQxnuoriqj3n4WOcWVFNYspsKVl+jQRURkhuy3cDJNcwuAYRiT2wzD8AGHA6dMbHoIuMMwDC9gm+k20zQD0z1BERGRAzHY14t/5zYG2ush2EzWcCehMSc/6B//8fTvrkZItdORuwpHQSWu8lo2VC3i+PS0iRGWJSx2ERGZPdN9xqkcaDNNMwZgmmbMMIz2ie22WWhT4SQiIjMqHo8T7vITaNjGQKCDZ8aW0dI1wPmx37HM2YYX6LcyCKcWYi+o5sqTV1BRmI0378SJpb9FRGQhmZeLQ3g82Qk9vtebk9Djy4FTzpKPcpZ8Epmz6NgYrd1DNLb30ff6M7g7nsU16ifLFqEEiFk2fusoY2m1F0f2GQzkp1G6ZCk1RUUJi3ku0HWWXJSv5KOcJZfpFk4tQKlhGI6JmSEHUDKx3TYLbQekp2eAeNya5qkdHK83h0CgPyHHlulRzpKPcpZ8DmXORoaG8ddvo791J/FgMxmD7XjiPXyj92x64jkck97CsVkjdGUvweapILe0Fl/NIr6S9dYf3cZvTY/Dgv4+03WWXJSv5KOcJY7dbpvWRMu0CifTNLsMw3gFuBB4YOLfl996Fmk22kRERN6ur6eHrgaTofYGXhsr45/BNAr73uAjOX/BDQxZTkIpPlpyj+CCtQZFFWUUe07AoVXtRETkAE1lOfLvA+8FioCnDMPoMU1zOXAFcJ9hGF8GQsAlu+w2G20iIrJAxeIxeoL9NHeP4m9rpar5UfJG/eTahiaX/n41dhxFvrXULj6SDmcVnqo6vEXFWvpbRERmhM2yEnNL2yypAhp0q54cCOUs+ShnyedAcjYWjeHfuY3elh1Eu5tIH2jHHQvw9MgSfjd8GOm2KNfk/56BjGJs+WVkldTiq60jW0t/zyhdZ8lF+Uo+ylni7HKrXjXQONX95uXiECIikhwG+/roqt/GQFs9gcE4fxmoob17gK/nPkSFfYyIlUKPw0tH7kpqlqziy8bhlBZkkZpyaqJDFxGRBUaFk4iIzLp4PE4w0ENzr0Wzv5/CnY9SPLydfFs/BUABEIuX4HIvYWVNJQHnpXhLSygoq6DA4Uh0+CIiIiqcRERkZsXjFv6WZkINbzAWaCK1rw13tIuYBd8Pvx+AC/OjZKUXE847ksziGrzVdazx+lgzOUptosIXERHZIxVOIiIybSPDQ/jrt9PXWk+8p5nHxtbTFBjmDOdznJj+BlHLTo/dQ49rCXFXGf9x5hrKfLlkpJ2U6NBFREQOiAonERGZkv5gDy3BMZp6IkSbtrIi/CfcVhi3zcINDFtO3FkrqT6snBLXmfS7zsVbVU1+qlMPQYuISNJT4SQiIruxLItAIERo28uM+BtJ6WvFNdqFyzbIY/0n8fpYGWtyx6jJyKfPtZL0wio81XUUFJXwcS39LSIi85QKJxGRBWxsbJSuhp2EW3YSDTTxeqSYLUEPrmgP/+H6DXHLRtCWRyijgmB+BWcfs5YrqqvIzkgFzk90+CIiIoeMCicRkQViqL+f9o4eGvoctHWGOab9PjxWkFxbnFxg1EqhPTWV9cuWU+GrJpy2GF/1IqozMhIduoiISMKpcBIRmWcsyyI8MErgjRcZbt+BI9xCTsSP29ZH52gFDw2cQG5mKqtzPAxmLybNV0VexSK85VW8J0VLf4uIiOyJCicRkSQWi8YItDQSbN7BWFcTg4ND/G/fEfQPjfGZ3MeoSekmaOXSn1ZEb95afGUG/7lkDa4sJzbbsYkOX0REJGmocBIRSRKR4WH8jfXUR/Jo9g9Q3voEq6L/IMsWJQuIWnY67YWsrvVQWZRLZlY5jtJCKnNyEx26iIhI0lPhJCIyBw0Mj9G+cwcjDa9gCzWTPdKJ2wqTb7P4WegCcGaRm++hNeswUr2VuCoW4ausYanTydJEBy8iIjIPqXASEUmgeDxOsKOdnsZt40t/97bx6+Ej2NGXzoa0bXwg61n6rCzCzkL6cleQXljNjUuOoMCTi81mS3T4IiIiC4YKJxGRQ2RsbJSuxgZa+6A+ZGe0fRvvGf41GbZRSmBy6e8lhSkcfsQiKtwGeN5HqdtDaaKDFxERWeBUOImIzILhSJTW9h5G3vwr8Z5msoY68Fg95NrimENreSa6AsObTWfOcuwFFeSW1lJYs4jqjEyqEx28iIiIvIMKJxGRg2BZFr3dAQL1JsMdDdh6W9k5ks9vQgYpxPhW/u8YIY1Qio/m3KNweis5tXYFF5WWYrfbgOMTfQoiIiIyBSqcRESmKBaPEWhuosvfjTnspsU/wMbQfRTZQxRN9AlZOXiyPJy3soYKXzZW7hp8BR6K7PaExi4iIiIHR4WTiMgejEVjtAYG6X3zOWydb5A+2I4n1k2WLUp61MWTA+dSWpCFP281I7mZ5JTU4K2poyI3l4pEBy8iIiIzToWTiCx4/eEwgZ0mAx312EItpAwH+XboVOIWfDDrWVY7mwk6vLS51pBSUElexSJ+WGuQ4rAD6xIdvoiIiBwCKpxEZMGIx+MEO9vpadyOOVZCYyBCZeBpTnK8gBfwAn1WJmFnIRvXFVNW4qHcfRhuTy5euyPR4YuIiEgCqXASkXkp7TMjKwAAFd1JREFUGovT2TOEv3EnKQ1/I22gnfxoF5kTS3//b997iLgqKfXW0ZCWT1ZxDd6axZS6CygFlif6BERERGROUeEkIklveHAAf/12+lvriQebyBzq5LcDK3k1Ukptip8rc16kx+7Bn7MMu6eCnLJaPl9jkJ6RnujQRUREJEmocBKRpNIbCND+z+fZ7h/j9b5cev3tXMlP8djAAwxZaQRTfKxe7GND9TIqfEeSm78Jd0pqokMXERGRJKbCSUTmpLhlEQgN09TZR9rrvyWlr5X8MT85tmFygJGRxTSknkilr4hGx4lkFFVRULkYb2ERhXY7SxN9AiIiIjKvqHASkYQbjYzgb9hBb0s9se4m0gfb6Yqk8+P+YwH4D9er2B0p9GTW0OOuoLBuKcf4KjjNlTcxwqrEBS8iIiILggonETmkBvp66dq5jbC/kxfHamnp6ue8yCMsSvGTB0SsFHocXjK8pXzk2CVU+HIodh+H0/mv/6683hwCgf7EnYSIiIgsOCqcRGRWxONxQv2jNHf1M7z9eXK7XiI34iff1o8XyLfs/HTsUsoKXfRnnUBbTiqeykW4y8op0NLfIiIiMsccdOFkGEYjMDLxAfAF0zSfMAxjPXA3kAE0AheZptk1sc+02kRkbopGx+hqaiTcvIOxrkacA224owFuDp9Nv5XByek7eFdmN73pJYTzy8ksrsZXbXBbQcHECKsTGr+IiIjI/szUjNMm0zRfe+uFYRg24AHgUtM0txiGcT3wTeCy6bbNUJwicpCGBwfpathBX+sO3hgr480eO0XhrVyYuYUcYMyy02MvwJ+9hPetrqS4vJzSguNIT9MEt4iIiCSv2fpNZi0wYprmlonXdzE+e3TZQbSJyCHW2z9CS2AQf2sLvobfkxPpJN8K47aBG3g+ciwZBYdTuPQwWp0l5FUswltZraW/RUREZN6ZqcLpwYnZoi3AdUAF0PRWo2ma3YZh2A3DcE+3zTTN4AzFKiJvE4vH6WlrIdi4nYi/kZS+NvLG/Pxl2OCpkZVk24a5Nq+VXmchfXmrSS+soqDa4NLCIux2e6LDFxEREZl1M1E4HWuaZothGGnAd4E7gF/OwLjT5vFkJ/LweL05CT2+HLiFlLPRkRGaTZPu+m109MZ4dqCUpvYwN2X+N6W2ODHLRsieT29OLSuXr+aklRuoLsklO/MDiQ59NwspZ/OFcpZ8lLPkonwlH+UsuRx04WSaZsvEvxHDMH4A/Ab4HlD5Vh/DMAoAyzTNoGEYzdNpO5CYenoGiMetgzmtadMyyclnPudscHCI1p4ITf4B8rc9intwJ24rRIotjg8IR0sYzT2f9ctLaEn9AJ7iUnxVteSlp+82zvBghOHBSGJOYg/mc87mK+Us+ShnyUX5Sj7KWeLY7bZpTbQcVOFkGEYWkGKaZu/ErXofAF4BXgQyDMM4ZuJ5pSuAhyd2m26biOyFZVmEurrorjcZ7qzH0dtGbqSTaBxu6T0PgA+7QmSl5dCca5BWWI27YhFryis4YnLp77rEnYCIiIjIHHewM06FwC8Mw3AADuB14BOmacYNw7gYuNswjHQmlhUHmG6biIyLRqMEmpsINW9ntKuZP0TX0hIY5Ezb0xydvh2AHlz0pRcTzyvns6euorwoF1fWSQmOXERERCR5HVThZJpmPXDYXtqeAVbOZJvIQjMyNERbzwjN3cOMNr5Mdfdf8cS7ybbFyAailp0UZy2H15WQm3s6wZwz8NUupiorsc/5iYiIiMw3emMVkTmir7ePru2vMdTegC3cQvaIH7cV5n/6T2VntJA1mX1UZqXSmnsEqd7KyaW/P5PqTHToIiIiIvOeCieRQywWjxNsa6WncTuRrgbeiBTz96AL13Abn3U9DkDYyqbPWUi/axXnHLWG4upq3Llp2Gy2BEcvIiIisjCpcBKZRWOjo3T6gzSG4nR09LCq5SE8sQDptjFKgbhlo8m+nqWV1VR6iwk4q/HWLKY8Lz/RoYuIiIjILlQ4icyQoZEofnMrA607sUItZA514LGCbBut4sHBY0hLtbPMlUJ77gpSCqrILauhsHoRZ6dn7DJKbcLiFxEREZG9U+EkcoDi8Ti9gQCBBpPhzgZ6ByL8bmAFgfAIX8z9DVUpYQasdMKpPppz6igqXcLNS9biy8vAbj8h0eGLiIiIyDSocBLZh1g0RldbK00DaTR3DVDU9HsWR14j2zZC8USfVstHZdHRHLe6hHjGZcRLCiny+ijW80giIiIi84YKJ5EJkbEYHY0NDNS/SqynmYzBdjzxHjKI8ePQhViOVM5ypxPIWkyPp4Ls0lp81YtZmpPD0kQHLyIiIiKzSoWTLEj9oSD++m0Mtdfj6GvjN4OHsSNk5/i01zkv8wWGLSdBh5e2vMNIKajkhqVrKSrMI8VxYqJDFxEREZEEUOEk81o8HifY0U5LKEpjME6k9Q2O6X8Ml22Qwok+vVYWla5VLF1aQ3V+NZG8cygoKcVntyc0dhERERGZO1Q4ybwRjcVp7wzS/+ZzRAONOAfa8cQCZNhGeXFwPc+OGix1pxLKqCCUX05mSQ2+mjoOq6ukLNCf6PBFREREZA5T4SRJaai/H3/9dgbadmIFm9ke8fBEsJLUeIRv5v+MUctB0F5AZ85yHAUVnFKziksqq3CmOoBTEx2+iIiIiCQZFU4yp1mWRTgQoKO9i51D2TR39nFq4D6KbD0UAAXAoJVOMD2TU44sp8KXw2CmgbesAk+KI9Hhi4iIiMg8ocJJ5ox43MIfGiL4xgtEO0xS+9vIG+sixzZMPOrhl31n4svPIJBZy3DOKjKKq/FW1+Er8FGk55FEREREZBapcJKEiAyP0NW4g96WHcS6m7GGQtzVezyjY3E+kv1nVqS2ErS56c6qpcddQXbZYu40VpKRlgJsSHT4IiIiIrLAqHCSWdcfDtO102THmI+mwBClnX/hXfHnybNZ5AEjVipBh5cTVvooL86nwrWE7KIC8p3ORIcuIiIiIgKocJIZZFkWPb0jtDfUYzU8R0pvG7mjfvJsA/iAH/VuZCSzCLe7nCZnGumFVXiqFuMpKcVrd2Ak+gRERERERPZChZNMy9jYKF2NDYRbdjAWaCZ9oI3fDazkn8NelqW28m/ZTxOy5RHOKCecX0ZmSQ1fXLyCnNycRIcuIiIiInLAVDjJfg0NDOCv30Z7v41tven0d7Zw0dj/kGuLkwuMWQ567AUsr8zliEqDioLVpHk2UZWZmejQRURERERmhAon2U14IEJzZx/WP3+PPdxKzkgn+fRSYIPXRpbysnU01T43rdnrSPVVkV+5CG95Fe6UFBYnOngRERERkVmiwmmBisVjdLe0EGzaxmhXE6l9rbRFsniody0AX817hrgthb60Qvpch5FRXM0xNUs5y+vFZrMBaxN7AiIiIiIih5AKpwVgdGSEzoYdBDs7eXWsnBb/AGf1/y/VKV1kAjHLRo/NTa6rmAuPXEyFL5t891FkZWclOnQRERERkTlBhdM8MzA8Rou/n/7tz5PeuZWs4U48Voh8m0V6PJV7hj9EmS+XUPEGUnJScJXX4quuJc+ZRm2igxcRERERmaNUOCWpeDxOsLODnsbtjHQ24OhtJXe0i2+EziJCKmdmvMaG9EbCqYU0uZaR5htf+vt7peU47Hbg8ESfgoiIiIhI0lDhlATGxsYINDcSbt7Om6PF7OixKA6+wLnOZygB4haEbHn0ZpSyaVkJRWWllHs3kJudQUmigxcRERERmQdUOM0xI6NRWrsG6WhuwtXwRzKGOvDEe8ixxcgB/jR0ApH8FWRVrqDJ6SGnrJbCqsVUZel5JBERERGR2aLCKYF6e7rpqjcZ6mjAHmohJ+LnT4N1/DWyBI+9n2tcbxBK8dHiOhKnt5K8ykV8vKKKlJTURIcuIiIiIrKgzMnCyTCMOuA+wAP0AJeYprk9sVFNXyweo6e1hWDTDjr747w8UEiHP8iXnPdRZBvvE7ay6UsrpK68hsMWraLCl0VezkYK7fbEBi8iIiIiInOzcALuAu40TfMBwzAuAu4GTkpwTAckFo/T+uSDxDpNciJ+MmxjlAJ9Y6WEM87BqC6kIeVcXIUl+GrqKHflJTpkERERERHZizlXOBmG4WN8ybdTJjY9BNxhGIbXNM1A4iI7MFv+0YFzh0m2Y5RQzgrSC6twlS9iTdUi1qWnTfRaltAYRURERERkauZc4QSUA22macYATNOMGYbRPrE9aQqno5YV0lH4ecp92aQ4dLudiIiIiEgym4uF00HzeLITenyvNweA8tL8hMYhU/dWziR5KGfJRzlLPspZclG+ko9yllzmYuHUApQahuGYmG1yACUT26ekp2eAeNyatQD3xevNIRDoT8ixZXqUs+SjnCUf5Sz5KGfJRflKPspZ4tjttmlNtMy5e8hM0+wCXgEunNh0IfByMj3fJCIiIiIi88tcnHECuAK4zzCMLwMh4JIExyMiIiIiIgvYnCycTNN8EzhqGrs6YHz6LZESfXw5cMpZ8lHOko9ylnyUs+SifCUf5Swxdvm6Ow5kP5tlJeZZoFlyDPDXRAchIiIiIiJz3rHAlql2nm+FUxpwJNABxBIci4iIiIiIzD0OoBh4HohMdaf5VjiJiIiIiIjMuDm3qp6IiIiIiMhco8JJRERERERkP1Q4iYiIiIiI7IcKJxERERERkf1Q4SQiIiIiIrIfKpxERERERET2Q4WTiIiIiIjIfqQkOoD5xDCMOuA+wAP0AJeYprk9sVEtPIZhNAIjEx8AXzBN8wnDMNYDdwMZQCNwkWmaXRP7TKtNpscwjNuA84EqYKVpmq9NbN/rNTQbbTJ1+8hZI3u43ibadM0liGEYHuB+oJbxN3fcAXzcNM3AbORFOTt4+8mZBbwKxCe6X2ya5qsT+20EbmX8d7oXgY+Ypjl0MG0ydYZh/AqoZjw3A8CnTNN8RT/P5ifNOM2su4A7TdOsA+5k/IeIJMYm0zTXTHw8YRiGDXgA+OREfp4Gvgkw3TY5KL8CjgOa3rZ9X9fQbLTJ1O0tZ/C26w2mf13pmpsxFvAt0zQN0zRXATuBb85GXpSzGbPHnO3SfvQu19lbRVM28F/ARtM0FwH9wDUH0yYH7MOmaa42TfMw4DbgRxPb9fNsHlLhNEMMw/ABhwMPTWx6CDjcMAxv4qKSXawFRkzT3DLx+i7g/QfZJtNkmuYW0zRbdt22r2toNtpm69zmqz3lbD90zSWQaZpB0zT/vMumZ4FKZicvytkM2EfO9uU9wAu7zDrcBVxwkG1yAEzT7N3lpQuI6+fZ/KXCaeaUA22macYAJv5tn9guh96DhmH8wzCMHxiGkQdUsMtfyk3T7AbshmG4D6JNZta+rqHZaJOZ8/brDXTNzRmGYdiBK4HfMDt5Uc5m2Nty9pY/G4bximEY3zAMI21i225fe6CZf/3/Nt02OUCGYdxjGEYzsBn4MPp5Nm+pcJL56FjTNFcDRwI24I4ExyMyn+l6m/tuZ/zZC+Umebw9ZxWmaa5l/HbZZcANiQpM3sk0zY+aplkBXMf4c2MyT6lwmjktQKlhGA6AiX9LJrbLIfTW7USmaUaAHwDvYvyvaZO3PBiGUQBYpmkGD6JNZta+rqHZaJMZsJfrDXTNzQkTi3osBi4wTTPO7ORFOZtBe8jZrtdZH3APe7nOGJ9JajnINpkm0zTvB04EWtHPs3lJhdMMmVg96BXgwolNFwIvm6YZSFxUC49hGFmGYbgmPrcBH2A8Ly8CGYZhHDPR9Qrg4YnPp9smM2hf19BstM3+Gc1/+7jeQNdcwhmGsRk4Ajh3orCF2cmLcjZD9pQzwzDyDcPImPg8BdjEv66z3wNHGoaxeOL1rl/76bbJFBmGkW0YRvkurzcCQUA/z+Ypm2VZiY5h3jAMYwnjy0TmAyHGl4k0ExvVwmIYRg3wC8Ax8fE6cLVpmh2GYRzN+Ao06fxruVz/xH7TapPpMQzj+8B7gSKgG+gxTXP5vq6h2WiTqdtTzoCN7OV6m9hH11yCGIaxHHgN2AYMT2xuME3zvNnIi3J28PaWM+BbjH9tLSAVeAb4tGmaAxP7nTPRxwG8DFxqmubgwbTJ1BiGUQj8GsgCYowXTdeYpvmSfp7NTyqcRERERERE9kO36omIiIiIiOyHCicREREREZH9UOEkIiIiIiKyHyqcRERERERE9kOFk4iIiIiIyH6ocBIRkTnJMIy7DMO4YR/tlmEYi2b4mB8yDOPJmRxTRETmBy1HLiIis84wjA8AnwFWAIOMvz/NfcAPTdOc1g8iwzAsYLFpmjv20PZnYD0QBUaAp4FPvvUeUzPBMIxLgY+apnnM/vqKiEjy04yTiIjMKsMwPgd8D7iV8TfQLQSuAN4FOPeyj2MGDn2VaZrZQB2QB3xnBsYUEZEFKiXRAYiIyPxlGIYL+Crj73D/i12aXgY+tEu/nwDDQCVwPHCOYRgXAa2maV4/0eda4LOABVw/1RhM0wwahvEL4MpdYrodeA8wBPwXcLNpmvG3zyJNzGpdCXwOKAB+ClwFLAHuAlINwxgAoqZp5hmGcQZwG1AO9AHfMU3ztqnGKiIic5dmnEREZDZtANKAX0+h7weBzUAOsGXXBsMwTgeuAU4BFgPvnmoAhmEUAOczXqzBeNHkAmoYL9IuAT6yjyHOAo4EVgPvB04zTfMNxmfN/p9pmtmmaeZN9L0X+LhpmjmM35b4f6cap4iIzG2acRIRkdlUAHSbphl9a4NhGM8AyxgvqE4zTfPpiaZfm6b5t4nPRwzD2HWc9wM/Nk3ztYkxbgQu3M+xv28Yxm2MP1P1Z+CzE7cAXgAcZppmP9BvGMa3gYsZL3r25JumaYaBsGEYfwLWAL/fS98xYJlhGFtN0wwBof3EKCIiSUIzTiLy/9u7Xxcp4jCO42/LFQ0iYvBE46fZ9U+wXBCTP7JFo8bDYDGZBIuCwbDJINgEiwaz4QGRW0Q89Q7UcKBwYPiuoivsd51jYYX3Kw2zM88+bfjMd+YZaZG2gcNJft2oq6rTkxWabf68Dr2dUefo1O/jOf77alUdrKrVqjpfVZ9oQW5l6vwxsDqjzuZv2zvAgRnHngXOAOMkz5KcmqNPSdJ/wOAkSVqkF8A3YG2OY2dN13tPe2/op+MD+9mirQqdmKr1bkCtv/qtqpdVtQYcAR4BoyFNSpKWj4/qSZIWpqo+J7kB3Emyj/aI2w5wEtj/D6VGwP0kD4ANYH1gP7tJRsDNJJeAQ7SBE0MGOHwAjiVZqarvSVaAc8DjqvqS5CuwO6RPSdLyccVJkrRQVXWLFk6uAR9pgeMucB14PmeNJ8Bt2rCF1+xt6MIV2ntPb2hDKB4C9wbUeQq8AjaTbE32XQQ2JqHpMnBhD31KkpaIH8CVJEmSpA5XnCRJkiSpw+AkSZIkSR0GJ0mSJEnqMDhJkiRJUofBSZIkSZI6DE6SJEmS1GFwkiRJkqQOg5MkSZIkdRicJEmSJKnjBz1szN6HVdfNAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 1008x432 with 2 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n", "for ax, pmu_counter in zip([ax1, ax2], [\"PM_LD_CMPL (min)\", \"PM_ST_CMPL (min)\"]):\n", "    df_ldst.set_index(\"Grid Points\")[pmu_counter].plot(ax=ax, legend=True);\n", "    ax.plot(\n", "        df_ldst[\"Grid Points\"], \n", "        linear_function(df[\"Grid Points\"], *fit_parameters[pmu_counter]), \n", "        linestyle=\"--\", \n", "        label=\"Fit: {:.2f} * x + {:.2f}\".format(*fit_parameters[pmu_counter])\n", "    )\n", "    ax.legend();"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Did you expect more?\n", "\n", "The reason is simple: Among the load and store instructions counted by `PM_LD_CMPL` and `PM_ST_CMPL` are vector instructions which can load and store multiple (in this case: two) values at a time. To see how many *bytes* are loaded and stored, we need to measure counters for vectorized loads and stores as well.\n", "\n", "### TASK B\n", "<a name=\"task2-b\"></a>\n", "\n", "Please measure counters for _vectorized_ loads and _vectorized_ stores. See the TODOs in [`poisson2d.vld.c`](poisson2d.vld.c) and [`poisson2d.vst.c`](poisson2d.vst.c) (*Note: These vector counters can not be measured together and need separate files and runs*). Can you find out the name of the counters yourself, using `papi_native_avail | grep VECTOR_`?\n", "\n", "Compile, test, and bench-run your program again.\n", "\n", "[Back to top](#toc)"]}, {"cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["| PM_VECTOR_FLOP_CMPL                                                          |\n", "| PM_VECTOR_LD_CMPL                                                            |\n", "| PM_VECTOR_ST_CMPL                                                            |\n"]}], "source": ["!papi_native_avail | grep VECTOR_"]}, {"cell_type": "markdown", "metadata": {}, "source": ["`make bench_task3` will submit benchmark runs of both vectorized counters to the batch system (as two subsequent runs of the individual files)."]}, {"cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vld.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.vld.bin.csv\n", "Job <24641> is submitted to default queue <batch>.\n", "<<Waiting for dispatch ...>>\n", "<<Starting on login1>>\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,4,0.0010,0,0,0\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,8,0.0011,114000,570,570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,12,0.0012,174000,870,870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,16,0.0012,234000,1170,1170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,20,0.0013,294000,1470,1470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,24,0.0014,354000,1770,1770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,28,0.0014,414000,2070,2070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,32,0.0015,474000,2370,2370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,36,0.0016,534000,2670,2670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,40,0.0016,594000,2970,2970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,44,0.0017,654000,3270,3270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,48,0.0018,714000,3570,3570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,52,0.0018,774000,3870,3870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,56,0.0019,834000,4170,4170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,60,0.0020,894000,4470,4470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,64,0.0021,954000,4770,4770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,68,0.0022,1014000,5070,5070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,72,0.0022,1074000,5370,5370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,76,0.0022,1134000,5670,5670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,80,0.0023,1194000,5970,5970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,84,0.0024,1254000,6270,6270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,88,0.0024,1314000,6570,6570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,92,0.0025,1374000,6870,6870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,96,0.0027,1434000,7170,7170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,100,0.0026,1494000,7470,7470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,104,0.0029,1554000,7770,7770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,108,0.0027,1614000,8070,8070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,112,0.0028,1674000,8370,8370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,116,0.0029,1734000,8670,8670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,120,0.0029,1794000,8970,8970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,124,0.0030,1854000,9270,9270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,128,0.0032,1914000,9570,9570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,132,0.0031,1974000,9870,9870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,136,0.0032,2034000,10170,10170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,140,0.0033,2094000,10470,10470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,144,0.0033,2154000,10770,10770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,148,0.0034,2214000,11070,11070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,152,0.0036,2274000,11370,11370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,156,0.0035,2334000,11670,11670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,160,0.0036,2394000,11970,11970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,164,0.0037,2454000,12270,12270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,168,0.0037,2514000,12570,12570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,172,0.0038,2574000,12870,12870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,176,0.0039,2634000,13170,13170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,180,0.0039,2694000,13470,13470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,184,0.0040,2754000,13770,13770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,188,0.0041,2814000,14070,14070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,192,0.0041,2874000,14370,14370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,196,0.0042,2934000,14670,14670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,200,0.0042,2994000,14970,14970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,204,0.0043,3054000,15270,15270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,208,0.0045,3114000,15570,15570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,212,0.0045,3174000,15870,15870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,216,0.0045,3234000,16170,16170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,220,0.0046,3294000,16470,16470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,224,0.0048,3354000,16770,16770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,228,0.0047,3414000,17070,17070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,232,0.0048,3474000,17370,17370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,236,0.0048,3534000,17670,17670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,240,0.0049,3594000,17970,17970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,244,0.0050,3654000,18270,18270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,248,0.0052,3714000,18570,18570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,252,0.0051,3774000,18870,18870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,256,0.0052,3834000,19170,19170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,260,0.0052,3894000,19470,19470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,264,0.0053,3954000,19770,19770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,268,0.0054,4014000,20070,20070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,272,0.0054,4074000,20370,20370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,276,0.0055,4134000,20670,20670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,280,0.0056,4194000,20970,20970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,284,0.0056,4254000,21270,21270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,288,0.0057,4314000,21570,21570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,292,0.0058,4374000,21870,21870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,296,0.0058,4434000,22170,22170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,300,0.0059,4494000,22470,22470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,304,0.0059,4554000,22770,22770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,308,0.0060,4614000,23070,23070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,312,0.0061,4674000,23370,23370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,316,0.0062,4734000,23670,23670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,320,0.0062,4794000,23970,23970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,324,0.0063,4854000,24270,24270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,328,0.0063,4914000,24570,24570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,332,0.0064,4974000,24870,24870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,336,0.0065,5034000,25170,25170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,340,0.0065,5094000,25470,25470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,344,0.0066,5154000,25770,25770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,348,0.0069,5214000,26070,26070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,352,0.0068,5274000,26370,26370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,356,0.0070,5334000,26670,26670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,360,0.0069,5394000,26970,26970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,364,0.0070,5454000,27270,27270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,368,0.0070,5514000,27570,27570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,372,0.0071,5574000,27870,27870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,376,0.0073,5634000,28170,28170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,380,0.0073,5694000,28470,28470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,384,0.0073,5754000,28770,28770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,388,0.0074,5814000,29070,29070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,392,0.0074,5874000,29370,29370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,396,0.0076,5934000,29670,29670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,400,0.0075,5994000,29970,29970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,404,0.0076,6054000,30270,30270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,408,0.0077,6114000,30570,30570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,412,0.0078,6174000,30870,30870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,416,0.0079,6234000,31170,31170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,420,0.0079,6294000,31470,31470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,424,0.0079,6354000,31770,31770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,428,0.0080,6414000,32070,32070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,432,0.0080,6474000,32370,32370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,436,0.0081,6534000,32670,32670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,440,0.0082,6594000,32970,32970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,444,0.0083,6654000,33270,33270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,448,0.0084,6714000,33570,33570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,452,0.0084,6774000,33870,33870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,456,0.0084,6834000,34170,34170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,460,0.0085,6894000,34470,34470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,464,0.0086,6954000,34770,34770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,468,0.0087,7014000,35070,35070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,472,0.0088,7074000,35370,35370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,476,0.0088,7134000,35670,35670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,480,0.0089,7194000,35970,35970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,484,0.0090,7254000,36270,36270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,488,0.0091,7314000,36570,36570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,492,0.0091,7374000,36870,36870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,496,0.0091,7434000,37170,37170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,500,0.0094,7494000,37470,37470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,504,0.0093,7554000,37770,37770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,508,0.0095,7614000,38070,38070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,512,0.0096,7674000,38370,38370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,516,0.0095,7734000,38670,38670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,520,0.0095,7794000,38970,38970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,524,0.0097,7854000,39270,39270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,528,0.0097,7914000,39570,39570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,532,0.0098,7974000,39870,39870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,536,0.0098,8034000,40170,40170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,540,0.0099,8094000,40470,40470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,544,0.0100,8154000,40770,40770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,548,0.0101,8214000,41070,41070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,552,0.0101,8274000,41370,41370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,556,0.0104,8334000,41670,41670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,560,0.0103,8394000,41970,41970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,564,0.0103,8454000,42270,42270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,568,0.0106,8514000,42570,42570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,572,0.0105,8574000,42870,42870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,576,0.0106,8634000,43170,43170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,580,0.0108,8694000,43470,43470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,584,0.0109,8754000,43770,43770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,588,0.0108,8814000,44070,44070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,592,0.0109,8874000,44370,44370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,596,0.0109,8934000,44670,44670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,600,0.0110,8994000,44970,44970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,604,0.0111,9054000,45270,45270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,608,0.0112,9114000,45570,45570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,612,0.0112,9174000,45870,45870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,616,0.0114,9234000,46170,46170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,620,0.0113,9294000,46470,46470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,624,0.0114,9354000,46770,46770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,628,0.0117,9414000,47070,47070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,632,0.0116,9474000,47370,47370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,636,0.0116,9534000,47670,47670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,640,0.0117,9594000,47970,47970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,644,0.0119,9654000,48270,48270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,648,0.0118,9714000,48570,48570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,652,0.0119,9774000,48870,48870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,656,0.0119,9834000,49170,49170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,660,0.0121,9894000,49470,49470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,664,0.0122,9954000,49770,49770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,668,0.0123,10014000,50070,50070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,672,0.0122,10074000,50370,50370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,676,0.0123,10134000,50670,50670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,680,0.0123,10194000,50970,50970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,684,0.0125,10254000,51270,51270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,688,0.0125,10314000,51570,51570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,692,0.0127,10374000,51870,51870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,696,0.0126,10434000,52170,52170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,700,0.0127,10494000,52470,52470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,704,0.0128,10554000,52770,52770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,708,0.0129,10614000,53070,53070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,712,0.0128,10674000,53370,53370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,716,0.0131,10734000,53670,53670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,720,0.0130,10794000,53970,53970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,724,0.0130,10854000,54270,54270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,728,0.0132,10914000,54570,54570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,732,0.0133,10974000,54870,54870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,736,0.0135,11034000,55170,55170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,740,0.0135,11094000,55470,55470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,744,0.0135,11154000,55770,55770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,748,0.0134,11214000,56070,56070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,752,0.0135,11274000,56370,56370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,756,0.0136,11334000,56670,56670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,760,0.0137,11394000,56970,56970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,764,0.0137,11454000,57270,57270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,768,0.0138,11514000,57570,57570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,772,0.0139,11574000,57870,57870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,776,0.0141,11634000,58170,58170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,780,0.0140,11694000,58470,58470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,784,0.0142,11754000,58770,58770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,788,0.0141,11814000,59070,59070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,792,0.0142,11874000,59370,59370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,796,0.0143,11934000,59670,59670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,800,0.0143,11994000,59970,59970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,804,0.0145,12054000,60270,60270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,808,0.0145,12114000,60570,60570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,812,0.0145,12174000,60870,60870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,816,0.0148,12234000,61170,61170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,820,0.0148,12294000,61470,61470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,824,0.0148,12354000,61770,61770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,828,0.0148,12414000,62070,62070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,832,0.0149,12474000,62370,62370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,836,0.0150,12534000,62670,62670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,840,0.0150,12594000,62970,62970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,844,0.0151,12654000,63270,63270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,848,0.0153,12714000,63570,63570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,852,0.0153,12774000,63870,63870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,856,0.0153,12834000,64170,64170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,860,0.0154,12894000,64470,64470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,864,0.0154,12954000,64770,64770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,868,0.0155,13014000,65070,65070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,872,0.0157,13074000,65370,65370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,876,0.0156,13134000,65670,65670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,880,0.0157,13194000,65970,65970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,884,0.0157,13254000,66270,66270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,888,0.0158,13314000,66570,66570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,892,0.0159,13374000,66870,66870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,896,0.0160,13434000,67170,67170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,900,0.0160,13494000,67470,67470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,904,0.0162,13554000,67770,67770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,908,0.0162,13614000,68070,68070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,912,0.0163,13674000,68370,68370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,916,0.0163,13734000,68670,68670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,920,0.0164,13794000,68970,68970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,924,0.0165,13854000,69270,69270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,928,0.0166,13914000,69570,69570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,932,0.0166,13974000,69870,69870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,936,0.0167,14034000,70170,70170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,940,0.0167,14094000,70470,70470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,944,0.0168,14154000,70770,70770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,948,0.0170,14214000,71070,71070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,952,0.0171,14274000,71370,71370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,956,0.0171,14334000,71670,71670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,960,0.0171,14394000,71970,71970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,964,0.0175,14454000,72270,72270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,968,0.0176,14514000,72570,72570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,972,0.0176,14574000,72870,72870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,976,0.0175,14634000,73170,73170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,980,0.0178,14694000,73470,73470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,984,0.0180,14754000,73770,73770\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,988,0.0178,14814000,74070,74070\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,992,0.0179,14874000,74370,74370\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,996,0.0181,14934000,74670,74670\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,1000,0.0180,14994000,74970,74970\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,1004,0.0182,15054000,75270,75270\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,1008,0.0181,15114000,75570,75570\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,1012,0.0183,15174000,75870,75870\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,1016,0.0183,15234000,76170,76170\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,1020,0.0186,15294000,76470,76470\n", "iter,ny,nx,Runtime,PM_VECTOR_LD_CMPL (total),PM_VECTOR_LD_CMPL (min), PM_VECTOR_LD_CMPL (max)\n", "200,32,1024,0.0182,15354000,76770,76770\n", "mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.vld.bin.csv .\n", "bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vst.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.vst.bin.csv\n", "Job <24642> is submitted to default queue <batch>.\n", "<<Waiting for dispatch ...>>\n", "<<Starting on login1>>\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,4,0.0010,200,1,1\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,8,0.0011,18200,91,91\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,12,0.0012,30200,151,151\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,16,0.0012,42200,211,211\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,20,0.0013,54200,271,271\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,24,0.0013,66200,331,331\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,28,0.0014,78200,391,391\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,32,0.0015,90200,451,451\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,36,0.0015,102200,511,511\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,40,0.0016,114200,571,571\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,44,0.0017,126200,631,631\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,48,0.0017,138200,691,691\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,52,0.0018,150200,751,751\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,56,0.0019,162200,811,811\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,60,0.0020,174200,871,871\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,64,0.0020,186200,931,931\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,68,0.0022,198200,991,991\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,72,0.0023,210200,1051,1051\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,76,0.0022,222200,1111,1111\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,80,0.0023,234200,1171,1171\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,84,0.0024,246200,1231,1231\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,88,0.0024,258200,1291,1291\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,92,0.0025,270200,1351,1351\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,96,0.0025,282200,1411,1411\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,100,0.0026,294200,1471,1471\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,104,0.0027,306200,1531,1531\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,108,0.0028,318200,1591,1591\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,112,0.0028,330200,1651,1651\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,116,0.0029,342200,1711,1711\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,120,0.0030,354200,1771,1771\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,124,0.0030,366200,1831,1831\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,128,0.0031,378200,1891,1891\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,132,0.0032,390200,1951,1951\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,136,0.0032,402200,2011,2011\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,140,0.0033,414200,2071,2071\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,144,0.0033,426200,2131,2131\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,148,0.0035,438200,2191,2191\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,152,0.0035,450200,2251,2251\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,156,0.0035,462200,2311,2311\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,160,0.0036,474200,2371,2371\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,164,0.0038,486200,2431,2431\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,168,0.0037,498200,2491,2491\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,172,0.0038,510200,2551,2551\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,176,0.0038,522200,2611,2611\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,180,0.0039,534200,2671,2671\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,184,0.0040,546200,2731,2731\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,188,0.0040,558200,2791,2791\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,192,0.0041,570200,2851,2851\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,196,0.0042,582200,2911,2911\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,200,0.0044,594200,2971,2971\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,204,0.0043,606200,3031,3031\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,208,0.0044,618200,3091,3091\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,212,0.0044,630200,3151,3151\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,216,0.0045,642200,3211,3211\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,220,0.0046,654200,3271,3271\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,224,0.0046,666200,3331,3331\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,228,0.0047,678200,3391,3391\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,232,0.0048,690200,3451,3451\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,236,0.0048,702200,3511,3511\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,240,0.0049,714200,3571,3571\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,244,0.0050,726200,3631,3631\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,248,0.0050,738200,3691,3691\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,252,0.0051,750200,3751,3751\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,256,0.0052,762200,3811,3811\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,260,0.0052,774200,3871,3871\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,264,0.0053,786200,3931,3931\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,268,0.0054,798200,3991,3991\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,272,0.0054,810200,4051,4051\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,276,0.0055,822200,4111,4111\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,280,0.0055,834200,4171,4171\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,284,0.0056,846200,4231,4231\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,288,0.0057,858200,4291,4291\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,292,0.0057,870200,4351,4351\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,296,0.0058,882200,4411,4411\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,300,0.0059,894200,4471,4471\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,304,0.0059,906200,4531,4531\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,308,0.0060,918200,4591,4591\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,312,0.0061,930200,4651,4651\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,316,0.0061,942200,4711,4711\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,320,0.0062,954200,4771,4771\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,324,0.0063,966200,4831,4831\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,328,0.0063,978200,4891,4891\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,332,0.0064,990200,4951,4951\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,336,0.0065,1002200,5011,5011\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,340,0.0066,1014200,5071,5071\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,344,0.0066,1026200,5131,5131\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,348,0.0067,1038200,5191,5191\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,352,0.0069,1050200,5251,5251\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,356,0.0068,1062200,5311,5311\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,360,0.0068,1074200,5371,5371\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,364,0.0069,1086200,5431,5431\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,368,0.0070,1098200,5491,5491\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,372,0.0071,1110200,5551,5551\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,376,0.0071,1122200,5611,5611\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,380,0.0072,1134200,5671,5671\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,384,0.0073,1146200,5731,5731\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,388,0.0073,1158200,5791,5791\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,392,0.0074,1170200,5851,5851\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,396,0.0075,1182200,5911,5911\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,400,0.0075,1194200,5971,5971\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,404,0.0076,1206200,6031,6031\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,408,0.0077,1218200,6091,6091\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,412,0.0077,1230200,6151,6151\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,416,0.0080,1242200,6211,6211\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,420,0.0078,1254200,6271,6271\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,424,0.0079,1266200,6331,6331\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,428,0.0080,1278200,6391,6391\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,432,0.0081,1290200,6451,6451\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,436,0.0082,1302200,6511,6511\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,440,0.0082,1314200,6571,6571\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,444,0.0083,1326200,6631,6631\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,448,0.0083,1338200,6691,6691\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,452,0.0084,1350200,6751,6751\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,456,0.0085,1362200,6811,6811\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,460,0.0085,1374200,6871,6871\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,464,0.0087,1386200,6931,6931\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,468,0.0086,1398200,6991,6991\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,472,0.0087,1410200,7051,7051\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,476,0.0088,1422200,7111,7111\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,480,0.0090,1434200,7171,7171\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,484,0.0089,1446200,7231,7231\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,488,0.0090,1458200,7291,7291\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,492,0.0092,1470200,7351,7351\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,496,0.0092,1482200,7411,7411\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,500,0.0092,1494200,7471,7471\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,504,0.0093,1506200,7531,7531\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,508,0.0094,1518200,7591,7591\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,512,0.0095,1530200,7651,7651\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,516,0.0096,1542200,7711,7711\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,520,0.0096,1554200,7771,7771\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,524,0.0096,1566200,7831,7831\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,528,0.0097,1578200,7891,7891\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,532,0.0097,1590200,7951,7951\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,536,0.0098,1602200,8011,8011\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,540,0.0100,1614200,8071,8071\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,544,0.0099,1626200,8131,8131\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,548,0.0100,1638200,8191,8191\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,552,0.0101,1650200,8251,8251\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,556,0.0102,1662200,8311,8311\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,560,0.0102,1674200,8371,8371\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,564,0.0105,1686200,8431,8431\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,568,0.0104,1698200,8491,8491\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,572,0.0105,1710200,8551,8551\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,576,0.0105,1722200,8611,8611\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,580,0.0108,1734200,8671,8671\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,584,0.0108,1746200,8731,8731\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,588,0.0109,1758200,8791,8791\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,592,0.0109,1770200,8851,8851\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,596,0.0109,1782200,8911,8911\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,600,0.0111,1794200,8971,8971\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,604,0.0111,1806200,9031,9031\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,608,0.0112,1818200,9091,9091\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,612,0.0112,1830200,9151,9151\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,616,0.0114,1842200,9211,9211\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,620,0.0113,1854200,9271,9271\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,624,0.0114,1866200,9331,9331\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,628,0.0114,1878200,9391,9391\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,632,0.0116,1890200,9451,9451\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,636,0.0116,1902200,9511,9511\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,640,0.0117,1914200,9571,9571\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,644,0.0118,1926200,9631,9631\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,648,0.0118,1938200,9691,9691\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,652,0.0121,1950200,9751,9751\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,656,0.0121,1962200,9811,9811\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,660,0.0121,1974200,9871,9871\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,664,0.0121,1986200,9931,9931\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,668,0.0122,1998200,9991,9991\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,672,0.0122,2010200,10051,10051\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,676,0.0124,2022200,10111,10111\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,680,0.0123,2034200,10171,10171\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,684,0.0124,2046200,10231,10231\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,688,0.0126,2058200,10291,10291\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,692,0.0127,2070200,10351,10351\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,696,0.0126,2082200,10411,10411\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,700,0.0128,2094200,10471,10471\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,704,0.0127,2106200,10531,10531\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,708,0.0128,2118200,10591,10591\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,712,0.0129,2130200,10651,10651\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,716,0.0130,2142200,10711,10711\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,720,0.0130,2154200,10771,10771\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,724,0.0131,2166200,10831,10831\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,728,0.0131,2178200,10891,10891\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,732,0.0132,2190200,10951,10951\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,736,0.0134,2202200,11011,11011\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,740,0.0134,2214200,11071,11071\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,744,0.0134,2226200,11131,11131\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,748,0.0135,2238200,11191,11191\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,752,0.0136,2250200,11251,11251\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,756,0.0136,2262200,11311,11311\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,760,0.0137,2274200,11371,11371\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,764,0.0138,2286200,11431,11431\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,768,0.0138,2298200,11491,11491\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,772,0.0139,2310200,11551,11551\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,776,0.0139,2322200,11611,11611\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,780,0.0140,2334200,11671,11671\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,784,0.0141,2346200,11731,11731\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,788,0.0142,2358200,11791,11791\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,792,0.0142,2370200,11851,11851\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,796,0.0144,2382200,11911,11911\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,800,0.0144,2394200,11971,11971\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,804,0.0144,2406200,12031,12031\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,808,0.0146,2418200,12091,12091\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,812,0.0146,2430200,12151,12151\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,816,0.0146,2442200,12211,12211\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,820,0.0147,2454200,12271,12271\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,824,0.0148,2466200,12331,12331\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,828,0.0149,2478200,12391,12391\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,832,0.0149,2490200,12451,12451\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,836,0.0150,2502200,12511,12511\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,840,0.0151,2514200,12571,12571\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,844,0.0152,2526200,12631,12631\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,848,0.0151,2538200,12691,12691\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,852,0.0152,2550200,12751,12751\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,856,0.0153,2562200,12811,12811\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,860,0.0154,2574200,12871,12871\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,864,0.0155,2586200,12931,12931\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,868,0.0155,2598200,12991,12991\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,872,0.0156,2610200,13051,13051\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,876,0.0156,2622200,13111,13111\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,880,0.0157,2634200,13171,13171\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,884,0.0158,2646200,13231,13231\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,888,0.0159,2658200,13291,13291\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,892,0.0159,2670200,13351,13351\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,896,0.0160,2682200,13411,13411\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,900,0.0160,2694200,13471,13471\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,904,0.0162,2706200,13531,13531\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,908,0.0162,2718200,13591,13591\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,912,0.0163,2730200,13651,13651\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,916,0.0163,2742200,13711,13711\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,920,0.0164,2754200,13771,13771\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,924,0.0165,2766200,13831,13831\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,928,0.0166,2778200,13891,13891\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,932,0.0168,2790200,13951,13951\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,936,0.0167,2802200,14011,14011\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,940,0.0169,2814200,14071,14071\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,944,0.0169,2826200,14131,14131\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,948,0.0169,2838200,14191,14191\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,952,0.0170,2850200,14251,14251\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,956,0.0170,2862200,14311,14311\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,960,0.0171,2874200,14371,14371\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,964,0.0175,2886200,14431,14431\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,968,0.0175,2898200,14491,14491\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,972,0.0176,2910200,14551,14551\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,976,0.0176,2922200,14611,14611\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,980,0.0178,2934200,14671,14671\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,984,0.0178,2946200,14731,14731\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,988,0.0179,2958200,14791,14791\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,992,0.0178,2970200,14851,14851\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,996,0.0181,2982200,14911,14911\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,1000,0.0180,2994200,14971,14971\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,1004,0.0181,3006200,15031,15031\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,1008,0.0182,3018200,15091,15091\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,1012,0.0183,3030200,15151,15151\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,1016,0.0183,3042200,15211,15211\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,1020,0.0184,3054200,15271,15271\n", "iter,ny,nx,Runtime,PM_VECTOR_ST_CMPL (total),PM_VECTOR_ST_CMPL (min), PM_VECTOR_ST_CMPL (max)\n", "200,32,1024,0.0182,3066200,15331,15331\n", "mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.vst.bin.csv .\n"]}], "source": ["!make bench_task3"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Let's plot it again, as soon as the run finishes! Non-interactively, call `graph_task2b`.\n", "\n", "*Because we couldn't measure the two vector counters at the same time, we have two CSV files to read in now. We combine them into one common dataframe `df_vldvst` in the following.*"]}, {"cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": ["df_vld = pd.read_csv(\"poisson2d.vld.bin.csv\", skiprows=range(2, 50000, 2))\n", "df_vst = pd.read_csv(\"poisson2d.vst.bin.csv\", skiprows=range(2, 50000, 2))\n", "df_vldvst = pd.concat([df_vld.set_index(\"nx\"), df_vst.set_index(\"nx\")[['PM_VECTOR_ST_CMPL (total)', 'PM_VECTOR_ST_CMPL (min)', ' PM_VECTOR_ST_CMPL (max)']]], axis=1).reset_index()"]}, {"cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", "    .dataframe tbody tr th:only-of-type {\n", "        vertical-align: middle;\n", "    }\n", "\n", "    .dataframe tbody tr th {\n", "        vertical-align: top;\n", "    }\n", "\n", "    .dataframe thead th {\n", "        text-align: right;\n", "    }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", "  <thead>\n", "    <tr style=\"text-align: right;\">\n", "      <th></th>\n", "      <th>nx</th>\n", "      <th>iter</th>\n", "      <th>ny</th>\n", "      <th>Runtime</th>\n", "      <th>PM_VECTOR_LD_CMPL (total)</th>\n", "      <th>PM_VECTOR_LD_CMPL (min)</th>\n", "      <th>PM_VECTOR_LD_CMPL (max)</th>\n", "      <th>PM_VECTOR_ST_CMPL (total)</th>\n", "      <th>PM_VECTOR_ST_CMPL (min)</th>\n", "      <th>PM_VECTOR_ST_CMPL (max)</th>\n", "      <th>Grid Points</th>\n", "    </tr>\n", "  </thead>\n", "  <tbody>\n", "    <tr>\n", "      <th>0</th>\n", "      <td>4</td>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>0.0010</td>\n", "      <td>0</td>\n", "      <td>0</td>\n", "      <td>0</td>\n", "      <td>200</td>\n", "      <td>1</td>\n", "      <td>1</td>\n", "      <td>128</td>\n", "    </tr>\n", "    <tr>\n", "      <th>1</th>\n", "      <td>8</td>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>0.0011</td>\n", "      <td>114000</td>\n", "      <td>570</td>\n", "      <td>570</td>\n", "      <td>18200</td>\n", "      <td>91</td>\n", "      <td>91</td>\n", "      <td>256</td>\n", "    </tr>\n", "    <tr>\n", "      <th>2</th>\n", "      <td>12</td>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>0.0012</td>\n", "      <td>174000</td>\n", "      <td>870</td>\n", "      <td>870</td>\n", "      <td>30200</td>\n", "      <td>151</td>\n", "      <td>151</td>\n", "      <td>384</td>\n", "    </tr>\n", "    <tr>\n", "      <th>3</th>\n", "      <td>16</td>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>0.0012</td>\n", "      <td>234000</td>\n", "      <td>1170</td>\n", "      <td>1170</td>\n", "      <td>42200</td>\n", "      <td>211</td>\n", "      <td>211</td>\n", "      <td>512</td>\n", "    </tr>\n", "    <tr>\n", "      <th>4</th>\n", "      <td>20</td>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>0.0013</td>\n", "      <td>294000</td>\n", "      <td>1470</td>\n", "      <td>1470</td>\n", "      <td>54200</td>\n", "      <td>271</td>\n", "      <td>271</td>\n", "      <td>640</td>\n", "    </tr>\n", "  </tbody>\n", "</table>\n", "</div>"], "text/plain": ["   nx  iter  ny  Runtime  PM_VECTOR_LD_CMPL (total)  PM_VECTOR_LD_CMPL (min)  \\\n", "0   4   200  32   0.0010                          0                        0   \n", "1   8   200  32   0.0011                     114000                      570   \n", "2  12   200  32   0.0012                     174000                      870   \n", "3  16   200  32   0.0012                     234000                     1170   \n", "4  20   200  32   0.0013                     294000                     1470   \n", "\n", "    PM_VECTOR_LD_CMPL (max)  PM_VECTOR_ST_CMPL (total)  \\\n", "0                         0                        200   \n", "1                       570                      18200   \n", "2                       870                      30200   \n", "3                      1170                      42200   \n", "4                      1470                      54200   \n", "\n", "   PM_VECTOR_ST_CMPL (min)   PM_VECTOR_ST_CMPL (max)  Grid Points  \n", "0                        1                         1          128  \n", "1                       91                        91          256  \n", "2                      151                       151          384  \n", "3                      211                       211          512  \n", "4                      271                       271          640  "]}, "execution_count": 32, "metadata": {}, "output_type": "execute_result"}], "source": ["df_vldvst[\"Grid Points\"] = df_vldvst[\"nx\"] * df_vldvst[\"ny\"] \n", "df_vldvst.head()"]}, {"cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAF/CAYAAAB+GZmgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt83FWd//FXJvfMTNIkc8ltJr1/S+mdIgUKlZsgBWGBRVBuKyqFFpF1kV1kvSxFEGERRKGLKCi6shd1dUVXl5UHsPpbRQQR8Aso7aRpOzNJ02Qm98x8f3/MzDdJkzaXJp1M8n4+Hj5i5ns7k9OU+fSc8z55lmUhIiIiIiIih+bIdgNERERERERmOhVOIiIiIiIiY1DhJCIiIiIiMgYVTiIiIiIiImNQ4SQiIiIiIjIGFU4iIiIiIiJjUOEkIiIiIiIyBhVOIiIiIiIiY1DhJCIiIiIiMoaC8ZxkGMZ5wB1AHqli67OmaX7PMIylwBNANdAKXGWa5lvpa6b8mIiIiIiISDaMOeJkGEYe8C3gStM01wBXAE8YhuEAHgG+YprmUuArwI4hl07HMRERERERkaNuXCNOQBKoSP//ecBewAOsA85Kv/7PwEOGYXhJjUxN6THTNKPjaGcxcHy6fYlxvjcREREREZk78oFa4DdA73gvGrNwMk3TMgzjUuA/DMPoBNzAZiAANJummUiflzAMY0/69bxpODaewul44PnxvnkREREREZmzTgFeGO/J45mqVwD8HXCBaZqNwPnAU4Brsi2cRnuz3QAREREREckJE6odxjNVbw1QZ5rm/wKYpvm/6ZGnHqDeMIz89MhQPlAHNJEaOZrqY+ORAGhtjZNMWuO8ZGp5vW6i0VhWni2Toz7LPeqz3KM+yz3qs9yi/so96rPscTjyqK52wQSX9ownjnw30GAYhgFgGMYxQA3wFvAycHn6vMuB35mmGTVNMzLVxybypkRERERERKbSeNY47TMM43rg3wzDSKZf/ivTNPcbhrGFVMLep4E24Kohl07HMRERERERkaMuz7KyM6VtmswH3tFUPZkI9VnuUZ/lHvVZ7lGf5Rb1V+5Rn2XPkKl6C4Cd471uvHHkOS2RGKCtLcrAQN+0PysScZBMJsc+UWaMudJnBQVFVFZ6yc+fE7/2IiIikiXJpEW4rYtQOE4oEqMpHKdvIMktl68h3zGelUIz05z4BNXWFqWkpAyns4a8vLxpfVZBgYOBgdn/IXw2mQt9ZlkWnZ0dtLVF8Xhqs90cERERmSX6+hM0t3SyK5wqkEKRGE2ROH39qc9W+Y486jxOjmmszHJLj9ycKJwGBvqOStEkMlPl5eXhdJYTjx/IdlNEREQkR8W7+wmFY8NGkva2dpFML/0pKcon6HNx6qo6An4XjX43tdVOCgtyd5RpqDlROAEqmmTO0++AiIiIjIdlWbS09xAKx2mKDBZK+zt67XMq3cUEfC7WLvUS9LkI1rjxVJTgmMWfN+ZM4SQiIiIiIsMNJJLsaemkKRJPFUjhGKFInO7eAQDy8qCmqowlDfMI+l0EfW4CfhflZUVZbvnRp8IpCy655HyKioooLCwimUxw9dXXcuaZZ/PSSy/ysY9t4fLLr2Tr1pvs87dt+ygvv/wSP/vZc5SVlY24X0tLlMsvv4jvfe9p3G63/fpLL73I3XffwVNP/YAbb7yOcDiM0+m0j3/iE7eycuVqLMviX//1u/zwh98HLJLJJKtXr+WcczZz//1fBKCjo52urk5qauoAOP/8C7n44kt55ZXf8cgjD9HW1kYikWDt2nVs23Yz5eXldtszz+3t7eHss8/lmms+fNifz513fpZly47h4ovfP+z1xx7bwfe//294vV66u3twuVycffa5XHTRX5Kfn3/Ye/7f//2Kxx9/lLa2NgoKCqirq+e667axaNFiLrxwM/39fXzve0/b9/nxj3/IXXf9AzfffAsXX/x+nn76Rzz44H3U1NQxMNBPY+N8br31dsrLK9i27aNcfvmVnHzyKYdtQ09PD1u3foSHHvonSktLD3vuUC0tUT73udv58pd3HPa8vr4+rr/+Wh544GFcLte47y8iIiJzQ3fvQLpAShVHoXCMPS2dDCRSU+2KChw0+FyccIyPoD9VIDV4XRQXHv5z1lyhwilLtm//AgsXLubNN//Ili3Xsn79CQAEg408//yzbNmyjfz8fPbsaaa3t+ew9/J4vKxevZZnnvkvLrzwEvv1p5/+Eeeee749RevjH/+bUT/cP/row7z88ks8+ODDVFVVk0wmef75Z/F4vDz++Hfse/3yl8+zffs99nW7dzfxqU/dwh13fIG1a48jmUzy0EP38/d//7c88MBX7fMyz21paeGKKy7h+OM3cOyxKyb1czvnnM1s2/ZxAJqbd3PHHZ+mubmJj3/8lkNe8+tf/z/uvvsO7rrrXpYtWw7Am2/+kdbWFhYtWgxAdbWHX//6V5x44kYAfvKT/yS11/Og9evfxfbt95BMJvn0p/+WJ554jBtv/Otxt/3f/u27vPvdp0+oaIJU/45VNAEUFRVx9tnv5amnvs211143oWeIiIjI7GFZFgfifTRFYuwKx2lKr0uKHOi2z3GVFtLod3Hm+oA9klRTVYbDMXun2h2pOVk4/e+re3nh93un5d6b1taxYXnNuM9funQZZWVl7N3bDEBpaRnz5y+wP8T/5Cf/yTnnbOaNN14/7H02b34f3/nOt+zCqaurk+eee5Zvfeupw17X1dXFd7/7bR5//NtUVVUD4HA42LTp9DHb/s1vfp3Nmy9g7drj7OtuuOEmLr30Al555XesXr122Pkej4dAoJFweN+kC6eh6usb+Lu/+zRXXfV+Pvzh6w85yvKNbzzK1VdfaxdNkPq5D/Xe957P00//JyeeuNEuVhcuXDTq/RwOB+vWHc+vfvXChNr7wx9+nwcffMT+/pJLzuc973kvv/3tb4hGI2zZciMHDuzn5z//KR0dHdx222dYvXote/fu4cMfvpIf//gZADZuXM9HP3oDzz33LO3t7Wzd+jHe/e4zADjzzLO59torVTiJiIjMEcOiv4eMJMW6+u1zvPNKCPrdnLyyhoDfTaPfzTxXkdY/T9CcLJxmkpdeepG+vj4aGoK89ZYJwLnnns9//Mf32LDhZJ555mc8/PBj9pS5Q9m4cRP33Xc377zzZxYsWMj//M/PWbFiFX7/YBH3pS/dy6OPPmx/f//9D7F37x6KigoJBudPuO1/+tPbXH31tcNeKygoYOlSg7fffnNE4RQK7aKjo90utKZCY+N8SkpKCIV2snz56MXYm2/+kb/+608e9j7r1q3n+9//Vzo6Ouxi9Y9/fGPUc/v6+njhhedYtuyYUY+PJhzeR09PDzU1w6PA+/v72bHjG7zxxmvceON1XH/9x3j00W/yzDM/55FHHuLhhx8b9X5Op5Ovfe2b/P73L/PpT/+dXThVVVVTUFDIrl07aWycP+72iYiIyMzX159gd7STUDqwoSkcoyk6PPq73uNk9SIPAb+LoM9FwOemrEQf+afCnPwpnryylpNXTs9eNuPdE+j222+lqKgYp9PJnXd+YdjapHXr1nPffXfz3HPPsnDhIioq5o15v8LCQs466708/fSP2Lr1Jn784x9xySWXDTtntKl6e/bsGec7G8lKR0+O5UtfupeHH/4yodBObrrpb6isnHk5/nl5cPrpZ/HMMz+zi9WDC6cXX/w111zzAQBWrlzNlVf+1bjvH41GqKysGvH6GWecBaRGwHp6ejjjjPcAsGzZMTQ37z7k/c4442wAjj12JS0tUXp7eykuLgagurqaSCSswklERCSHxbr6CEXiqb2R0iNJe1s7yXz8Ki3OJ+Bzc+rqOoI+N0G/izqPk4L82RH9PRPNycJpJsiscRpNXl4ep59+Fvfcs53bbvvsuO953nkXcPPNW9m8+X2EQjs55ZRNY16zYMFC+vr6CIV2EQw2jvtZAIsXL+G1117l1FPfbb82MDDAm2+aXHbZFfZrmYLt979/mZtv3sqaNevstUVHKhTaSU9Pz2GLhKVLl/H666+xZIlx2Hu9973ncd1117BmzbpRi9XMGqfJKC4upq+vd8TrRUWpRJpMKEXme4fDQSIxcMj7HXxdIpGwj/X1DRZRIiIiMrMNRn/Hhk23a4sNj/4O+lysW+ql0e8i4HfjrSjRVLujTIXTDHXBBRdRWlrKCSecOO5rFi1ajNfrY/v2z3DWWefYH64Pp6ysjEsv/QD33HMnd9xxN5WVVViWxc9//lOOPXYl9fUNh7z2iiuu4frrP8SGDSfZ4RBf/eoDNDQEWLNm3YjzV61aw0UXXcrXvvYId91177jf16Hs3buHu+66g7/4i0twOg+dInf11ddyzz13smzZcgwjtbbp9df/QHt7OyeeeLJ9Xn19Ax/5yA2HnPJ3JILBRlpbW+nr6xtXv0xWIpFgz57mQxblIiIikj2Z6O9QOE5LbCd/3LmfpoOiv2urnRiBeampdn43Ad/cjP6eiVQ4zVBer48PfvDqCV933nkXcN99d3PrrZ8acezgNU4f/vB1bNy4ieuu28pTT32bG29MBQpYlsWqVWvthLlDCQYb2b79Hnbs+AoHDhwgkRhgzZp1bN/+hUNec9VVH+Kyyy7krbfMw44APfroIzz55BP295/85G0A/PSnP+a3v/01PT09OJ0u3vOec0bElh9sw4aTuOWWv+Mf//ELtLe3p+PI69iyZduIcy+44KLD3utQPv/5z1JUNDjK88UvPsDixUvs74uLS1i37jh+97vfTqgYnqhXX32F5ctXKI5cREQkyzLR37vCsdR0u8hB0d+F+TR4nZyw3J/aQNbvpt7rVPT3DJY33nUqOWI+8E5ra5xkcvB97du3i5qaiU1Dm6zxrnGSmeNo9dmrr77Cd77zTe66675pe8ZnP/spNm9+H8cff8Kox4/m78J08nrdRKOxbDdDJkB9lnvUZ7lF/ZU9mejv1FS7mL0uabTo78zeSI1+N8cu9bO/NZ7Fls9dDkce1dUugAXAzvFepxEnkaNk5crVnHTSKXR3d094L6fx6OvrY82atYcsmkREROTIJJMW+/Z3DUu1C0Xiw6K/ffNKCfhdnLyq1h5JGi36O1/7JeUcFU455tprrxwWBABw7LEruOWW27LUosn51a9eYMeOr454/brrbhhziuBo3nrL5M47Pzfi9YsvvpTzz79wUm2cDtPZlqKiomEbIIuIiMjk9fYn2B1Np9ql90baHYnTNzAk+tubiv4ODlmPVFqsj9ezlXo2xzz22Ley3YQpceKJGydVIB3KkiUGjz/+nSm7n4iIiMwdsa6+VKJdJLUeaVc4xr79XUOivwsI+lycuqaOxnSBpOjvuWfOFE6WZSmyUea0WbaeUUREZMIsyyLa3kNoX2Yt0ujR341+N+sNH0F/an8kj6K/hTlSOBUUFNHZ2YHTWa4/9DInWZZFZ2cHBQWKMxURkblhaPS3HdoQidHdm1ryYEd/B+fZG8gGfC7civ6WQ5gThVNlpZe2tijx+IFpf5bD4SCZVKpeLpkrfVZQUERlpTfbzRAREZlyXT0DNEVi9lqkpnCc5pZOEslM9LeDgNfFhuU1dqpdvcdJkaK/ZQLmROGUn1+Ax1N7VJ6lONDcoz4TERHJDZZl0RbrHZxml16XFD3QY5/jLisk6HfznoVV9kiSv7IMh1Ls5AjNicJJRERERHKLHf0dHhxJCoXjxLuHRH9XltLod3PKqrr0VLvRo79FpoIKJxERERHJqkz0d2ZvpF3hOM3Rwejvgvw86j0u1izx2HsjKfpbjjb9aRMRERGRo6ajqy+1N9KQkaSDo78b/S42ram390eqrS5T9LdknQonEREREZlyScui5UC3vQ4pk253IN5nn1NVXkzQ5+b4ZT4CPjeNfhfViv6WGUqFk4iIiIgckYFEkuZop10gNYVjNEXjdvS3Iy+P2uoyjmmsJJAObAj63bhKC7PccpHxG1fhZBhGCXA/cCbQA/zKNM2PGoaxFHgCqAZagatM03wrfc2UHxMRERGR7LKjv4dMt9tzcPS3LxX9nSmQFP0ts8F4R5zuIVUwLTVN0zIMw59+/RHgK6ZpPmkYxhXADuD0aTwmIiIiIkeBHf2dnmrXFI6zKxyjpX0w+rs8Hf29YmEVjenABkV/y2w1ZuFkGIYLuApoME3TAjBNM2wYhg9YB5yVPvWfgYcMw/ACeVN9zDTN6BG9UxEREREZVSKZZN/+bnvz2MyUu6HR3/7KUubXlnPq6jqC/tR0u3mu4iy2WuToGs+I0yJSU+Y+YxjGaUAcuB3oBppN00wAmKaZMAxjDxAgVQBN9TEVTiIiIiJHqLcvHf09ZG+k3dE4/QdFf69d4rELpAavor9FxvMbUAAsBH5nmuYthmGcAPwI+MtpbdkRqK52ZfX5Xq87q8+XiVOf5R71We5Rn+Ue9VluGa2/DsR6+fOedt5pbufPze38eU87e6Jx0suRcJYWsrCugnNPWsDC+nIW1s+jwedS9PdRot+x3JJnZULzD8EwDA+wFyjKTNUzDON14BrgZ0B1emQon9TI1BJSI0dvTuWxcU7Vmw+809oaJ5k8/PuaLl6vm2g0lpVny+Soz3KP+iz3qM9yj/ost1RXu3j97ciwaXYHR39XlxcPS7QL+l1Ulyv6O1v0O5Y9DkdeZqBlAbBzvNeNOeJkmmaLYRi/ILXu6Gfp1DsfqQLnZeBy4Mn0199lChzDMKb8mIiIiMhc1z+QZE9L57ANZHdHO+nuHQDS0d+eVPR30O8m6HMRUPS3yBEb72TVLcDXDcO4D+gHrjRN84BhGFuAJwzD+DTQRipEYug1U31MREREZM7o6umnKRJnV3pvpF3hOHtbB6O/iwvzCfhcnHZcA76KEgI+l6K/RabJmFP1csx8NFVPJkh9lnvUZ7lHfZZ71GdH17Do7yEjScOiv51FqWl2Q6bb+eaV4nDkqb9ykPose6Ztqp6IiIiITJ1EMsm+1q5hqXZNkZHR3wtqy9m0ps6ebleh6G+RrFLhJCIiIjJNevsSNEUHp9k1RVLrkYZFf3tdrFvqsYMbFP0tMjPpt1JERERkCnR09g2bZhcKxwnv7yKzeMBZUpBaj7S23p5yV1NdpuhvkRyhwklERERkApKWRfRAt70eKRXeEKN9WPR3CUG/i3cd46PR7yag6G+RnKfCSUREROQQMtHfu8Ixe4+kpkicnr4EkIr+rvOUsbyxyg5sCPhciv4WmYVUOImIiIgAnT39qeLInm43evT3SStq7A1k6z1OCgsU/S0yF6hwEhERkTnFsiz2d/SmRo/CqWl2TZH4sOjvCmcRAb+L1YurCfhcNPrdeCtLcWiqncicpcJJREREZq1EMsne1i57ml1mXVJnzwAAeYCvqkzR3yIyJhVOIiIiMiv09A2wO9ppJ9qFwqno74FEJvrbQYPXyXGGN10guWnwOSkp0schERmb/qYQERGRnNPe2ZfeGymTahcnclD0d9Dv5vR19XaqXU2Vor9FZPJUOImIiMiMlbQsom3dw/ZGCoVjtHeOjP7esNxv749UVV6s6G8RmVIqnERERGRG6B9I0NzSaRdHoUicpkic3oOiv49dUEXQl47+9rtwlij6W0SmnwonEREROeo6e/oJhePp6XZxmiIx9rZ2DUZ/F6WivzeuqCXgdyn6W0SyToWTiIiITBs7+tveGyk13a61Y0j0t6uIoM/N6sUeO9VO0d8iMtOocBIREZEpMZBIsm9/17C1SE2R+LDob39VGYvqyzltXT1Bn4uA302Fsyi7DRcRGQcVTiIiIjJhPX0D7I50plPtUtPtmodEfxcWZKK/fanABr+bBq+iv0Ukd+lvLxERETms9njv8FS7yOjR32ccV0/Q5ybod1FTXUa+Q9HfIjJ7qHASERERIBX9HWnrJhSO0fLrJv64s5WmcHxY9LenooSg382Jy/0E/C4a/W4q3Yr+FpHZT4WTiIjIHNQ/kGB3tJOmISNJTZE4vf2p6O98Rx611c5U9Hc6sCHod1Gm6G8RmaNUOImIiMxy8e5+muxUuzihSIy9LV0krcHo76DPxcaVtfZ6pNXH+DnQ1pXllouIzBwqnERERGYJy7Jo7egZlmgXCsdo7ei1z5nnKiLod7NmsYfG9Aay3nkjo7+1X5KIyHAqnERERHLQQCLJvtYuQpGxor8rOG1dKrAh4FP0t4jIZKlwEhERmeG6ewfYHY3bBVIoMnr09/plvvRaJDcNXhfFRRo1EhGZKiqcREREZpAD8d50UENqb6SmcIxIW/eI6O8zj2sgkF6PVFNVquhvEZFppsJJREQkC5KWRXh/V3od0uBIUsdo0d8rauz9kRT9LSKSHSqcREREplkm+jtkJ9vF2B3pHBb9XedxsjIT/e13EfAp+ltEZCaZUOFkGMZngM8CK03T/INhGBuAHUApsBO4wjTNSPrcKT8mIiIy02Wiv3elp9uFwnH2tg5Gf5dkor9XpaO/fW7qPE4KCzTVTkRkJht34WQYxjpgAxBKf58HPAlcY5rmC4Zh3A7cDXxoOo5N1RsWERGZCpZl0dreY48gZfZH2j9K9PfapR57qp1nlOhvERGZ+cZVOBmGUQx8BfgA8Iv0y+uBHtM0X0h//wipEaIPTdMxERGRrBhIJNnb2mUXSJmRpK7ewejvmuoyljTMI+hzpUIbfG7KFf0tIjJrjHfE6R+AJ03TfMcwjMxrQWBX5hvTNFsMw3AYhlE1HcdM09w/yfcoIiIybt29AzRF4vbmsaFwnOaWOAOJ1FS7VPS3i3cd4yPgdxP0uRT9LSIyB4xZOBmGcSJwPPC309+cqVFd7crq871ed1afLxOnPss96rPcM9P6zLIs2mK9/Lm5PfW/Pamve1s67XPcZUUsqq/guGP8LKivYGFdOfVeF/n5c2M90kzrMzk89VfuUZ/llvGMOG0ClgGZ0aYG4L+AB4HGzEmGYXgAyzTN/YZhhKb62ETeVGtrnGTSGvvEaeD1uolGY1l5tkyO+iz3qM9yT7b7LJm0CLd12euQmtLx3x1d/YNtnFdC0OfmhGN8qWQ73+jR3/v3dx58+1kp230mE6P+yj3qs+xxOPImNdAyZuFkmubdpAIaADAMYydwHvA68FHDMDam1yRtAf4lfdpvgdIpPiYiIjKmvv4EzS2dwwIbDo7+rvc4Wbmo2g5sUPS3iIiMZdL7OJmmmTQM40pgh2EYJaSjw6frmIiIyMHi3f3DCqSmg6K/S4vzCfjcnLKqloDfRaPfTW21or9FRGTi8iwrO1Papsl84B1N1ZOJUJ/lHvVZ7jnSPrMsi5b2nmGJdgdHf1e6iwn4XPY0u2CNG09FiaK/J0m/Z7lF/ZV71GfZM2Sq3gJSAzXjMukRJxERkelwcPR3KBwjFInTnYn+zoOaqnT0dzr2O+B3UV6m6G8REZk+KpxERCRrMtHfmeIoFI6xp6XTjv4uKnDQ4HPZgQ0Bfzr6u1DR3yIicnSpcBIRkWmXif5uisTYFY7TlB5Nihzots9xlRbS6Hdx5vqAPZJUU1WGw6GpdiIikn0qnEREZEoNi/5OjyQ1Rzs5EB9cj+SdV0LQ7+bklTWpNUl+N/NcRSOiv0VERGYKFU4iIjJpff0Jdkc7CaUDG5rCMZqicfr6k8Bg9Pf6Y/x4K4oJ+lwEfG7KSvSfHxERyS36L5eIiIxLrKuPUCRubx4bisTZ29pJJpw1E/196uo6e3+kOo+TgnyH0qNERCTnqXASEZFhBqO/h6fatcWGR38HfS6OW+pNbSDrd+OtKNFUOxERmbVUOImIzGEDiSR7WjqHbSB7cPR3bbUTIzCPgD+1R1LAp+hvERGZe1Q4iYjMEZno713hTIE0Mvo74HNxwnJ/agNZv5t6r1PR3yIiIqhwEhGZdSzL4kC8Lz3VLmavSxoa/e0uKyTod3PW+ioCfheNfjf+SkV/i4iIHIoKJxGRHJZMWuzb3zU4zS5dKMW6+u1zfPNKCfhdnLyq1h5JUvS3iIjIxKhwEhHJEb39CXZH4/Y6pFA4xu5InL6BIdHfXierF3lSG8im1yOVFuuvehERkSOl/5qKiMxAmejvUHo90q5wjH37u4ZEfxcQ9Lk4dU0djekCKRP9LSIiIlNPhZOISBZZlkW0vYemcIxd6Q1kR4v+bvS7WW/4CPpT+yN5FP0tIiJyVKlwEhE5SoZFf2dCGyIxunsTwJDo7+A8ewPZgM+FW9HfIiIiWafCSURkGnT1DNAUiQ2bbtfc0kkimY7+LnQQ8LrYsLzGTrWr9zgpUvS3iIjIjKTCSUTkCGSiv1N7I8XsjWSjB3rsczLR3+9ZWGWPJCn6W0REJLeocBIRGSc7+js8OJIUCseJdw+J/q4spdHv5pRVdXayXYVT0d8iIiK5ToWTiMgoMtHfoXRgw65wnOboYPR3QX4e9R4Xa5Z47FQ7RX+LiIjMXvovvIjMeR1dfcM2jw0dFP1dVlxA0O9i05p6exSptrpM0d8iIiJziAonEZkzkpZFy4Fuex1SKByn6aDo76ryYoI+N8cv8xHwuWn0u6hW9LeIiMicp8JJRGalgUSS5mjnYIEUjtEUjdvR3468PGqry1gWnEcgHdgQ9LtxlRZmueUiIiIyE6lwEpGcZ0d/DxlJ2nNw9LfPxYZjawj6UgWSor9FRERkIlQ4iUjOsCyLtlgv70Q6efWtCE3hOLvCMVraB6O/y9PR3ysWVtmhDYr+FhERkSOlwklEZqREMsm+/d325rGZkaSh0d/+ylLm15Zz6uo6gv7UdLt5ruIstlpERERmKxVOIpJ1vX3p6O8heyPtjsbpHxr97XWxdomHoN/NKsOHq9Ch6G8RERE5avSpQ0SOqo6uPnsUaVc4RlMkPmr092lr6wn4XDT63dQcFP3t9bqJRmNZegciIiIyF41ZOBmGUQ18C1gE9AJvA9eZphk1DGMDsAMoBXYCV5imGUlfN+XHRCR3jBb9HQrHOBDvs8+pLi8mkI7+zky1qy5X9LeIiIjMPOMZcbKAe0zTfBbAMIwvAncbhvFh4EngGtM0XzAM43bgbuBDhmHkTfWxqXzTIjK1+geS7GnpHLaBbFMkTk/fkOhvTxnHNFamCiSfi4CqGVAKAAAgAElEQVSiv0VERCSHjFk4maa5H3h2yEv/D7geWA/0mKb5Qvr1R0iNEH1omo6JyAzQ1dNPUyTOrvTeSKHI8Ojv4sJ8Aj4XJ66osVPtGrxOCgsU/S0iIiK5a0JrnAzDcJAqmn4IBIFdmWOmabYYhuEwDKNqOo6lCzgROUoy0d+ZKXaZkaRh0d/OIoJ+FysXVtsbyPrmlSr6W0RERGadiYZDfBmIAw8BfzH1zZka1dWurD7f63Vn9fkycXO9zxKJJLujcd5pbudPze28s6edPzd3EOsaXI9U53GybH4VC+srUv+rq6CyvCRrbZ7rfZaL1Ge5R32WW9RfuUd9llvGXTgZhnEvsAQ43zTNpGEYIaBxyHEPYJmmuX86jk3kTbW2xkmmpw0dbUr7yj1zrc96+xI0RQen2YXCMXZHO4dEfzuo9zpZu6SagC8V2NDgdY2I/h7o7Sca7R/tEdNurvXZbKA+yz3qs9yi/so96rPscTjyJjXQMq7CyTCMO4HjgM2mafamX/4tUGoYxsb0mqQtwL9M4zERmaCOzr5h0+xC4Tjh/V1k/lnBWVJAwJeK/g76XQR9I6O/RURERGR8ceTHArcBbwK/NAwD4B3TNP/CMIwrgR2GYZSQjg4HSI9ITekxETm0pGURzUR/pxPtdoVjtA+L/i4h6HfxrmN8qdAGRX+LiIiIjFueZWVnSts0mQ+8o6l6MhG51meZ6O9d6U1kQ5GR0d91njJ7ml0wnWw3m6K/c63PRH2Wi9RnuUX9lXvUZ9kzZKreAlIDNeMy0XAIETmKOnv608XR4FS7va1Dor+LUtHfJ62osTeQrfco+ltERERkqqlwEpkBLMtif0dvavQonJpm1xSJD4v+rnAWEfS7Wb24moDPRaPfjbeyFIem2omIiIhMOxVOIkdZIplkX2tXaj1SJGavS+rsGQAgD/BVlbGgtpxNa+pSI0k+FxWu4uw2XERERGQOU+EkMo16+gbYHe20p9llor8HEoPR3w1eJ8cZ3nSB5KbB56SkSL+aIiIiIjOJPp2JTJH2zj6awjF7mt2ucJzIQdHfQb+b09fV26l2tdVl5DsU/S0iIiIy06lwEpmgpGURbeseFtgQCsdo7xwZ/b1hud/eH6mqvFjR3yIiIiI5SoWTyGH0DyRpbonbxVEoEqcpEqf3oOjvYxdUEfSlo7/9Lpwlsyf6W0RERERUOInYOnv6CYXj6el2cZoiMfa2do2I/t64opaAP5VqV+cpU/S3iIiIyBygwknmHDv6Oz2CtK+tm7ebDtDaMST621VE0Odm9WKPvT+Sd56iv0VERETmKhVOMqslkkn2tnbZa5GaIiOjv+u8LhbVl3PaunqCPhcBv5sKZ1F2Gy4iIiIiM4oKJ5k1evoG2B3pTKfapQqlodHfhQWZ6G8fjf5UgdTgdRKoryQajWW59SIiIiIyk6lwkpzUHu8dnmoXGT36+4zj6u0NZGsU/S0iIiIik6TCSWa0pGURaesmZO+NFKMpHB8W/e2pKCHod3Picr8d2lDpVvS3iIiIiEwdFU4yY/QPJNgd7bTXIWXWJPX2p6K/8x151FY7WbGgikB6FCnod1Gm6G8RERERmWYqnCQr4t39NKVT7VJT7WLsbekiaQ1Gfwd9LjaurE1tIOt3U+dxUligqXYiIiIicvSpcJJpZVkWrR09NIXT0+zSo0mtHb32OfNcRQT9btYs9tCY3kBW0d8iIiIiMpOocJIpM5BIsq+1i1A60S6zLmlo9HdNdRmL6is4bV1qb6SAT9HfIiIiIjLzqXCSSenuHWB3NG4XSKFInOYR0d8u1i/zpdciuWnwuiguys9yy0VEREREJk6Fk4ypPd7LrnCcpkgs9TUcI9LWPSL6+8zjGgik1yPVVJUq+ltEREREZg0VTmIbGv09dCSpY7To7xU1BH2p6XaK/hYRERGR2U6F0xyVif4O2cl2MXZHOodFf9d5nKxcUJXaQNbvIuBT9LeIiIiIzE0qnOaATPR3ZrpdKBIfFv1dkon+XpWO/vYp+ltEREREZCgVTrOIZVm0tvfYI0ihdKE0WvT32iUee6qdR9HfIiIiIiKHpcIpRw0kkuxt7RpWIIXCcbp6h0d/L26Yx+npVLuAz0W5or9FRERERCZMhVMO6O4doCkStzePDYXjNLfEGUikptplor/fdYyPgN9N0OdS9LeIiIiIyBRS4TSDWJZFe2ffsES7UDr6O8NVWkjQ7+LM9QGCPhcBRX+LiIiIiEy7GVk4GYaxFHgCqAZagatM03wru62aWsmkRbiti6ZInF3hGE3pYqmjq98+xzuvhKDPzckrauyRJEV/i4iIiIgcfTOycAIeAb5imuaThmFcAewATs9ymyatfyDJ7ujgNLtQZGT0d73HycpF1anob5+LgM9NWclM7R4RERERkbllxn0yNwzDB6wDzkq/9M/AQ4ZheE3TjGavZRNjWRZvNh3gl3/Yx4tmlO50aENpcT4Bn5tTVtUS8Lto9KeivwvyNdVORERERGSmmnGFExAAmk3TTACYppkwDGNP+vWcKZx++Yd9PPbjNyguyue4pV7WLPYQrHHjqShR9LeIiIiISI6ZiYXTEauudmX1+V6vm9PeVUR9TTkrF3koKZ6VP+ZZxet1Z7sJMkHqs9yjPss96rPcov7KPeqz3DITP9E3AfWGYeSnR5vygbr06+PS2honmbSmrYGH4/W6iUZjAMz3Ool1dBPLSktkvIb2meQG9VnuUZ/lHvVZblF/5R71WfY4HHmTGmiZcQtrTNOMAC8Dl6dfuhz4XS6tbxIRERERkdllJo44AWwBnjAM49NAG3BVltsjIiIiIiJz2IwsnEzT/CNwQrbbISIiIiIiAjO0cDoC+ZCat5hN2X6+TJz6LPeoz3KP+iz3qM9yi/or96jPsmPIzz1/ItflWVZ2QhSmyUbg+Ww3QkREREREZrxTgBfGe/JsK5yKgeOBvUAiy20REREREZGZJx+oBX4D9I73otlWOImIiIiIiEy5GRdHLiIiIiIiMtOocBIRERERERmDCicREREREZExqHASEREREREZgwonERERERGRMahwEhERERERGYMKJxERERERkTGocBIRERERERmDCicREREREZExqHASEREREREZgwonERERERGRMahwEhERERERGYMKJxERERERkTGocBIRERERERmDCicREREREZExqHASEREREREZgwonERERERGRMahwEhERERERGYMKJxERERERkTGocBIRERERERmDCicREREREZExqHASEREREREZgwonERERERGRMahwEhERERERGYMKJxERERERkTGocBIRERERERlDQbYbMMWKgeOBvUAiy20REREREZGZJx+oBX4D9I73otlWOB0PPJ/tRoiIiIiIyIx3CvDCeE+ebYXTXoC2tk6SSSsrDaiudtHaGs/Ks2Vy1Ge5R32We9RnuUd9llvUX7lHfZY9DkcelZVOSNcO4zXbCqcEQDJpZa1wyjxfcov6LPeoz3KP+iz3qM9yi/or96jPsm5CS3sUDiEiIiIiIjIGFU4iIiIiIiJjUOEkIiIiIiIyhnGtcTIM417gYmA+sNI0zT+kX98J9KT/B3CraZr/lT62AdgBlAI7gStM04wcybHJSiQGaGuLMjDQdyS3GZdIxEEymZz258jUmQt9VlBQRGWll/z82basUURERGaarp5+miJxQuE4oXCMUCRO30CSO659FwX5uTtuM95PUT8AHmD0qO9LMoVUhmEYecCTwDWmab5gGMbtwN3AhyZ7bDJvLqOtLUpJSRlOZw15eXlHcqsxFRQ4GBiY3R/CZ5vZ3meWZdHZ2UFbWxSPpzbbzREREZFZwrIs2mK9qQIpErMLpZb2HvucCmcRAb+L5Y1VOBzT+zl8uo2rcDJN8wUAwzDGe9/1QE/mOuARUqNHHzqCY5M2MNB3VIomkZkoLy8Pp7OcePxAtpsiIiIiOSqZtNi7v4umcGxYoRTv7rfP8VeWsqC2nE1r6gj63QR9LipcxVls9dSaink7306PFL0A3Gaa5gEgCOzKnGCaZothGA7DMKome8w0zf1H0kgVTTKX6c+/iIiIjFdvf4Ld0dRUu6ZwjF3hOM3R1HQ7gIL8POq9LtYu8aQKJL+LBq+L0uLZvSTgSN/dKaZpNhmGUQx8CXgIuOLIm3Vkqqtdw76PRBwUFBy9+ZRH81kyNeZCnzkcDrxed7abMWVm03uZK9RnuUd9llvUX7lnJvRZe7yXPze3886edv6U/tociZPZYspZWsii+greu2QBC+srWFhfQYPPldNrlSbriAon0zSb0l97DcP4KvDD9KEQ0Jg5zzAMD2CZprnfMIxJHZtIu1pb48M2FEsmk0dtDct41stccsn5FBUVUVhYRDKZ4Oqrr+XMM8/mpZde5GMf28Lll1/J1q032edv2/ZRXn75JX72s+coKysbcb+WliiXX34R3/ve07jdg7+AL730InfffQdPPfUDbrzxOsLhME6n0z7+iU/cysqVq7Esi3/91+/ywx9+H7BIJpOsXr2Wc87ZzP33fxGAjo52uro6qampA+D88y/k4osv5ZVXfscjjzxEW1sbiUSCtWvXsW3bzZSXl9ttzzy3t7eHs88+l2uu+fBhfz5vvfUmDzxwL/F4nIGBflwuN5///Bf5xje+xquvvgLAzp1/pq6unqKi1PDvY499i/z8/FHv98Ybr7Fjx1dobm6mpKSYefMqufba61izZh3btn2U11//Az/4wU8oL6+wf24f+9gWLrvsCrZt+zgvvfQit9xyE4FAI4nEANXVHm699XZqa+u4887PsmzZMVx88fsP+56SySRbt36Ez33u8/h8/sOee7BrrvkAO3Z8neLiksOet23bR7ntts9QV1d/yDZEo7EJPXum8nrds+a9zBXqs9yjPsst6q/cc7T7zLIsou099ghSUzq0oS3Wa59TXV5MwOdm7eLBkaTq8pIRM1fa9ncetXZPB4cjb8RAy3hMunAyDMMJFJim2Z6eqncZ8HL68G+BUsMwNqbXK20B/uUIj80q27d/gYULF/Pmm39ky5ZrWb/+BACCwUaef/5ZtmzZRn5+Pnv2NNPb23PYe3k8XlavXsszz/wXF154if3600//iHPPPd/+w/7xj/8NJ598yojrH330YV5++SUefPBhqqqqSSaTPP/8s3g8Xh5//Dv2vX75y+fZvv0e+7rdu5v41Kdu4Y47vsDatceRTCZ56KH7+fu//1seeOCr9nmZ57a0tHDFFZdw/PEbOPbYFYd8P5/73O1cf/2NdlubmkKUlJTyiU/cap9zySXn2z/Dw/nTn97mlls+zt///T9wwgkn2u1+++037XPmz1/If//3z7joor+036thHDPsPvPnL+Sxx74FwJe//I98+cv38/nPf/Gwzx7qF7/4bxYsWDjhogmw+2Asl176Ab7+9X/i9ts/N+FniIiIyOwxkEiyp6Vz2FqkpkiM7t4EAI68PGqry1gWnEfA56bR7yLgd+MqLcxyy2e28caRPwhcBNQA/20YRitwPvDvhmHkA/nA68ANAKZpJg3DuBLYYRhGCelY8SM5NpX+99W9vPD7vVN9WwA2ra1jw/KacZ+/dOkyysrK2Lu3GYDS0jLmz1/Ar3/9K048cSM/+cl/cs45m3njjdcPe5/Nm9/Hd77zLbtw6urq5LnnnuVb33rqsNd1dXXx3e9+m8cf/zZVVdVAakrXpk2nj9n2b37z62zefAFr1x5nX3fDDTdx6aUX8Morv2P16rXDzvd4PAQCjYTD+w5bOEWjYbxer/19IBAcsy2H8u1vP8F5511gF00ADQ0BGhoC9vebN5/PT3/6Yy666C/p6uri1Vdf4Ywz3kNf3+jx9evXv4uvfOXBCbXjhz/8/rCRtm3bPophHMMbb7zGvn17ueSSy/B6vfz7v/8LLS1RbrjhJk4//UwANm5cb482XnLJ+ZxzzmZ+85v/o7W1hcsvv8Ie7TrppI3cc8+ddHV1UlbmHLUdIiIiMrt09w6ko78HQxv2tHQykEjNvioqdBDwudiwvIag30XQ76be46SocPSZOnJo403V+xjwsVEOrR3ltcw1vwRWTuWx2eill16kr6+PhoYgb71lAnDuuefzH//xPTZsOJlnnvkZDz/8mD1l7lA2btzEfffdzTvv/JkFCxbyP//zc1asWIXfP1jEfelL9/Loow/b399//0Ps3buHoqJCgsH5E277n/70Nldffe2w1woKCli61ODtt98cUTiFQrvo6Gi3C61DueqqD7F160dYsWIVK1as4swzz6axceLtA3jzzT/y7nefcdhz6uvrKSoqYufOd3jttVc55ZR3H3LaXzKZ5Nln/4elS8edMMnAwACvvvp7li8/dtjr0WiEhx76J/bvb+X977+QSy/9AI888nVef/0PfOpTn7QLp4P19PSwY8c32Lt3D1dd9X7e+97zKSsro6CggIULF/H737/Chg0njbt9IiIiMvNZlsWBeJ+9L1IoHKMpHCdyoNs+x11WSNDv5qzjqwj6UlPt/JVlOR8DPlPM7uiLQzh5ZS0nr5ye/WzGuyfQ7bffSlFRMU6nkzvv/MKwtUnr1q3nvvvu5rnnnmXhwkVUVMwb836FhYWcddZ7efrpH7F16038+Mc/4pJLLht2zmhT9fbs2TPOdzaSZVljn0SqYHv44S8TCu3kppv+hsrKysOe/8EPXs3ZZ5/Lb3/7G1588ddce+0V3Hvvg6xZs27a2njOOZv5yU/+k9dee5W//utP8otfPDPs+M6df+aaaz6AZVksXryYG2+8edxtOHDgAIWFBSPWKJ122hk4HA48Hi8VFfPYtOk0AAzjGKLRCL29vRQXj4zwPPPM9wBQW1uH211ONBqxC8uqqmqi0SPaL1pERESyLJm0CLd1DdtANhSOEesajP72zSsl6Hdx8qra1FQ7n5t5riIl6U6jOVk4zQSHW5+Tl5fH6aefxT33bOe22z477nued94F3HzzVjZvfh+h0E5OOWXTmNcsWLCQvr4+QqFdBIONY54/1OLFS3jttVc59dR3268NDAzw5psml102OMMyU7D9/vcvc/PNW1mzZh2LFh1+bZLH4+Xss8/l7LPPpbi4mGeffWZShVNmOtzQNo7m9NPP4oor/pLq6moWLlw8onAausZpooqLi0ed9pcJtoDUNMeioiIAe7QrkUiMer/MeZnrEokB+/u+vr5Riy0RERGZmfr6EzS3dLIrPYIUCsdoisbp60/9Q3y+I496r5PVizz2VLuAb/ZHf89E+onPUBdccBGlpaXD1uaMZdGixXi9PrZv/wxnnXXOsA/Yh1JWVsall36Ae+65kzvuuJvKyiosy+LnP/8pxx67kvr6hkNee8UV13D99R9iw4aT7HCIr371ARoaAqMWOatWreGiiy7la197hLvuuveQ933uuWc56aSNFBQU0Nvby86d74yrCBzN5Zdfyc0338C6des5/vhUAEcotJM33zQ588yzh/0ctm69iepqz6Seczhut5vKyir27t1DbW3dlN9/qF273mHx4iXT+gwRERGZnHh3v70WKdLew1uhNva2dpFMz5ApLS4g6HNx6uo6e6pdncc5J6O/ZyIVTjOU1+vjgx+8esLXnXfeBdx3393ceuunRhw7eI3Thz98HRs3buK667by1FPf5sYbrwNS09tWrVrLiSduPOyzgsFGtm+/hx07vsKBAwdIJAZYs2Yd27d/4ZDXXHXVh7jssgt56y2TJUtGXyf07LPP8PDDD1JUVEwiMcD69SeMGfd9KEuWLOXuu+/n0Ue/yhe/+HlKSkrSceRbRpx7xhnvmdQzHn30EZ588gn7+09+8rYRP7tTTz2N//u/X3HhhRdP6hnjsW9fKvBkrKRBERERmV6WZdHa3mNPscuENuzvGBL9XVFCg8fJ2qVeGtMjSZ6KkdHfMnPkjXcNSI6YD7xz8D5O+/btoqZmYtPQJmu8a5xk5jgafbZnTzOf/eyn2LHjG9P2F+IjjzxEQ0MD55134ajHj+bvwXTTfiW5R32We9RnuUX9lT0DiST7WrtSU+2GFEpdvamp9Hl5UFNVRqPfTWDIVLtFjdXqsywZso/TAlIp3uOiESeRo6Curp7LLruC1tYWPB7v2BdMgsfj4dxz3zct9xYRERHo6ctEfw+GNjRHOxlIpP4BtqjAQYPPxbuO8aUKJL+LBq+LYkV/zwoqnHLMtddeOSI04NhjV3DLLbdlqUWT86tfvcCOHV8d8fp1190w5hTBg7W17efmm7eNeH3TptP4q7/6yKTbONUOFS8+VQ5OURQREZHJa4/3Dp9qF44RaesmM6fJVVpI0O/izPUNBH2pkSR/VSn5Dq1Hmq1UOOWYySa7zTQnnrhxwgXSoVRWVvH449+ZknuJiIjI3JK0LCJt3cPWIoXCcTo6BxNxPRUlNPrdnLiihqDfTdDnotJdrPVIc8ycKZwsy9IfbpmzZtlaRhERkUnpH0hFf9tT7cJxmiJxevtTs3nyHXnUeZysXFCVKpD8LgI+F2UlhVluucwEc6JwKigoorOzA6ezXMWTzDmWZdHZ2UFBwdjx9CIiIrNFZ09/qjAKx9gVjtMUibG3tYtEOkCspCifgM/FxlW19lS7Oo+TwgJNtZPRzYnCqbLSS1tblHj8wLQ/y+FwkEwqVS+XzIU+KygoorJyekIpREREssmyLPZ39NpT7DIjSa0dPfY5Fa4iGv1uVi/22Ol23nmlOPQP6jIBc6Jwys8vwOOpPSrPUhxo7lGfiYiI5IZEMhX9PXQtUigco7MnHf0N+KvKWFRfzmnr6gn6XAT8biqcmnUhR25OFE4iIiIiklt6+xI0RYdPtdsd7aQ/vfdiQb6DBq+T4wwfjf5UgRTwuiguUvS3TA8VTiIiIiKSVR2dfSOm2oX3d9nR386SAoJ+N6evqyfoS4U21FSXKfpbjioVTiIiIiJyVCQti5YD3SOm2h2ID0Z/V5eXEPS7OGG5n6DfRdDnpqpc0d+SfSqcRERERGTK9Q8k2dPSaRdITeEYoUicnr5U9LcjL486TxnHNFbZU+2CfhdORX/LDKXCSURERESOSFfPAE1Dp9pF4uxp6bSjv4sLU9HfJ2U2kPW7qPc4KSzQeiTJHSqcRERERGRcLMuiLdZLKJIqkJrCcXaFY7S0D0Z/lzuLCPpdrFxYnZpq53fjq1T0t+Q+FU4iIiIiMkIyabFvf5c9gpQJbYh399vn+CtLmV9bzqY1dQR8bhr9LipcxVlstcj0UeEkIiIiMsf19ifYHY3TNGSq3e5InD47+juPeo+LtUs89lS7Bq+L0mJ9lJS5Q3/aRUREROaQWFffiKl2+/Z3YaWzv8uKCwj6XWxaU29PtautLqMgX9HfMrepcBIRERGZhSzLoqW9x55ilxlJaov12udUlRcT9Lk5fpkvNZLkc1FdUaLob5FRqHASERERyXEDiWRqBCmSGkEKheM0ReJ09w4AkJcHddVOjOA8ewPZoN+Nq1TR3yLjpcJJREREJId09w7QNCSsIRSJsaeli4FEaj1SUaGDgNfFhuV+An4XjX439R4nRYWK/hY5EiqcRERERGYgy7I4EO+jKRJjV2YD2XCcyIFu+xx3WSFBv5sLTq3B4y4m6HfhryzD4dBUO5GppsJJREREJMuSSYtwW5c9ghRKF0odXYPR3755pQT8Lk5eVUvQl5pqN89VRF5eHl6vm2g0lsV3IDL7qXASEREROYr6+hM0t3QOm2q3O9JJb38CgHxHHvUeJ6sWeeypdg1eF2Ul+tgmkk36DRQRERGZJvHufprC6al26ZGkva1dJNPZ36XF+QR8bk5ZVWvvj1TncSr6W2QGUuEkIiIicoQsy6K1o2cw9jtdKLV2DEZ/V7qLCfpcrF3qpdHvIuB346kowaHob5GcoMJJREREZAIGEkn2tXbZa5EyMeCdPYPR3zVVZSxumMfpfhdBn5uA30V5WVGWWy4iR0KFk4iIiMgh9PQNsDvSya5wzE63a4522tHfhQUOGrwujl/mI5CeatfgcVFcpOhvkdlGhZOIiIgI0B7vJTR0f6RwjEhbN1b6uKu0kKDfxZnHNRBMT7WrqSol36H1SCJzgQonERERmVOSlkW0rTs9ihRPfQ3Hae/ss8/xVJQQ9Ls5cUUNQV9qJKnSXUye1iOJzFkqnERERGTW6h9I0twSHwxtiMRpisTp7RuM/q6tdrJiQRUBvzsV2uBzUVZSmOWWi8hMo8JJREREZoXOnn6ahhRIoXCMva1dJJKpyXbFRfkEfS42rqgl6E9tIFvncVJYoKl2IjK2MQsnwzDuBS4G5gMrTdP8Q/r1pcATQDXQClxlmuZb03VMREREBFLR322xXnuKXWbKXUt7j31OhauIoM/N6sUee38k77xSRX+LyKSNZ8TpB8ADwPMHvf4I8BXTNJ80DOMKYAdw+jQeExERkTkmkcxEfw/dHylOvLsfgDzAV1XGwrpyNq2po9HvJuB3U+FU9LeITK0xCyfTNF8AMAzDfs0wDB+wDjgr/dI/Aw8ZhuEl9XfYlB4zTTM62TcoIiIiuaG3L8Hu6PCpdrujnfQPpKK/C/IdNHidrFvqtafaNXidlBRp5YGITL/J/k0TAJpN00wAmKaZMAxjT/r1vGk4psJJRERkFuno7Buxgey+1i47+ttZUkDQ7+a0tfXpUSQXtdVliv4WkayZlf9EU13tyurzvV53Vp8vE6c+yz3qs9yjPss9U9FnyaRFeH8Xf25u58972lNfm9vZ3zG4HslXWcqCugpOOy7AgvoKFtZX4J1XqujvCdLvWO5Rn+WWyRZOTUC9YRj56ZGhfKAu/XreNBybkNbWOMmkNfaJ08DrdRONxrLybJkc9VnuUZ/lHvVZ7plMnw0kkjRHO+2RpKZwjKZonO7eVPS3Iy+PWk8ZRmCePdUu4HPhKi08+Ea0tMSn6q3MCfody7Y5HY4AABtUSURBVD3qs+xxOPImNdAyqcLJNM2IYRgvA5cDT6a//i6zFmk6jomIiMjM0dUzQFNmql36656WzsHo78J8Aj4XG46tSU2187lo8DopLMjPcstFRCZnPHHkDwIXATXAfxuG0Wqa5rHAFuAJwzA+DbQBVw25bDqOiYiIyFFmWRYH4n3p6O/BQil6YHCqXXlZIUG/m5ULq+2RJN+8UhwOTbUTkdkjz7KyM6VtmswH3tFUPZkI9VnuUZ/lHvVZbkgmLfbt7yIUidHS0Ye5s5Vd4cHob0itRwr63QR9Lnt/pHmu4iy2WkC/Y7lIfZY9Q6bqLQB2jve6WRkOISIiIofX259IrUcaGv0didM3JPq73uNkzRKPPdUu4HNRWqyPDiIyN+lvPxERkVku1tVHKBKnKTy4R9Le1k4yk05Kiwto9LvYtKbenmq3apmftv2d2W24iMgMosJJRERklrAsi5b2nlRxNKRIaov12udUlRcT9LlZb3gJ+Nw0+l1UV5SMiP4uyNd+SSIiQ6lwEhERyUEDiSR7WjppisTTwQ1xQpE43b0DAOTlQW21EyM4j6AvtRYp4HPhLivKcstFRHKTCicREZEZrrt3gKZIfNh6pD0tnQwkUnPtigocBHwuTljuT02187lp8DopKlT0t4jIVFHhJCIiMkNYlkV7Z9+IqXaRtm77HFdpIY1+F2etDxDwu2j0u/FXlin6W0RkmqlwEhERyYL/3969xsaV3vcd//J+OyNSImdGIjWj7k3PRnvRXuNde23XziZpghhua9eX+hInCBC7uaBN3BoInN4At4bjIjfbXSNpUidODBgwagcFavdF6jpbp0Dq2rXdtE/jrFeitFreJFEc3smZvjiHQ2q1Eiledjjk9wMIIuc5M/NIj45Gfz3/8zvVWo2xy3PXt9qNzXBtbj36Oz/QTbmY4zX3H8+iv3MMJJ03XI8kSdp7Fk6SJO2x5ZVVLtwQ/T3L4vIqAG2tLYwM9fHAXYP1eySVCjl6u/2YlqT9wr+RJUnaRZX5ZUY3FEjnxytcmpyjmmV/93S1USrkeO2DJ+o3kB0e6jPFTpL2OQsnSZK2oVarMXVtoX4t0lp4w9S19ejvo7kuSoWEh+/JUy4klI/nGOrvptVWO0lqOhZOkiRtYmW1yotTc5wfn7muUJpdyKK/geODvdx9coA3FtIbyJYKCUf6jP6WpIPCwkmSpA0Wlla4MD6bBjaMz3BurMLFiVlWVqsAdLS3cjKf8Ni9hfr1SCfzCV2dRn9L0kFm4SRJOrTWo7+znaTxCuOX56hl433d7ZSLOZ5+9CSlYrqTdPxYD22tXo8kSYeNhZMk6cCr1mpMXJlfD2zI2u2mZ5fqxwz1p9HfT54p1kMbjua6jP6WJAEWTpKkA2Z5pcoLk7P1eyOdG0+vR1pcWo/+PjHYx313HKu32pWLCb3dHQ2euSRpP7NwkiQ1rbmF5XqL3dpO0qWpWVarabNdV2cbpULCU/efoFRMOFXMMTzUS0e71yNJkm6PhZMkad+r1WpcmVmst9itFUqT0wv1Y/r7OikXc5y9e/0msvmjPUZ/S5J2hYWTJGlfWa2uRX+v7yKNjleozC8DafR34Vgvdw4f4fUPDdeLpP6kq7ETlyQdaBZOkqSGWVxa5cLE9btIFyZmWV5Jo7/b21o5me/jkdNDWYGU42Shj+5OP74kSa8sP3kkSa+Ia3Np9PfoWCW7R1KFFy/PUcuyv/u62ykVEt7w8AjlevR3L+1tRn9LkhrPwkmStKtqtRoTV+ez0Ia01e7CxCyXr61fjzR4pItyMcfj9xY4VcxRKiYMHuk2+luStG9ZOEmStm1l9fro7/NjM4xOVJhfTKO/W1taODHUy4P3DFHs76ZcSCgVcyQ9Rn9LkpqLhZMkaUvmFlYYHV+/Fml0rMLFyfXo786OVkqFhCfuO57dGynHyFAfnR1t5PM5JiZmGvwrkCRp+yycJEnXqdVqXK0sZYl264XSxNX1VrsjvR2Uiznuu/NY2mpXSCge7aW11VY7SdLBZOEkSYdYtVpj7Mrcda1258crzMwt148pHO3hVDHHax8croc29Pd1ej2SJOlQsXCSpENiaXmVCxOz10d/j1dYyqK/21pbGMn3cfbuoXqrXamQ0NPlR4UkSX4aStIBVJlfvmEX6dLUbD36u6ernXIh4fUPpdHfpULC8FCf0d+SJN2EhZMkNbFarcbk9EIa/Z3dG+nc2AxXZhbrxxzNdXGqmOPR0/n0JrLFhKF+o78lSbodFk6S1CRWVqtcmprLQhvWd5LmF1cAaGmBE4N9hNJA2mZXTCgXEnK9nQ2euSRJzc/CSZL2ofnFFUbHK/UdpDT6u8LKahb93d7KyULCq84U16O/8310dbQ1eOaSJB1MFk6S1GBXK4vX7SCdH5th/Mp8fTzp6eBUMeHpx0ppql0hx/FjRn9LkvRKsnCSpFdItVZj/Mr8Da1212aX6sfkB7opF3K85v7jlIo5ThVzDCRGf0uS1GgWTpK0B5ZXro/+Hh1L2+4Wl1eBNPp7eKiPB+48RrmQy5LtcvR2+9eyJEn7kZ/QkrRDlfllRje02Z0fr3Bpco5qlv3d3dlGuZDw1IMn6q12w0N9dLQb/S1JUrOwcJKkLarVakxdW2B0LAtsyAqlqWvr0d8DSSflYo6H7xmq7yQNDfTQaqudJElNbceFUwjheWAh+wHwoRjjV0IITwCfBnqA54F3xxjHs+dsa0ySXimr1Rujv0fHK8wuZNHfwPHBXu4a6eeNj6xFf+c40mf0tyRJB9Fu7Ti9Ncb43bVvQggtwGeB98UYnw0hfBj4KPDT2x3bpXlK0g0Wlla4MD7L+fGZeqF0YWKWldUqAB3trZzM9/HYvYV69PfJfEJXp9HfkiQdFnvVqvcYsBBjfDb7/hnS3aOf3sGYJO3Y9OwSo2Mz9Va7c2MVxi/PUcvG+7rbKRdz/NCjI5SLOcqFhOODvbS1ej2SJEmH2W4VTn+U7RY9C/wKUAbOrQ3GGCdDCK0hhGPbHYsxXt6luUo6BKq1GhNX59djv8cqnB+fYbqyHv091N9NqZDw5JkipWLCqWKOo7kuo78lSdINdqNwem2McTSE0AX8BvAJ4D/swutu2+Bg0si3J5/PNfT9dftcs+azcc2WV1Y59+IM3784zXMXp3nuhWm+/8I15hfT65FaW1soF3M8em+RO4b7uWuknzuGj5D0ej3SK8nzrPm4Zs3F9Wo+rllz2XHhFGMczX5eDCF8CvgT4DeBU2vHhBCGgFqM8XII4fx2xm5nTlNTFarV2uYH7oF8PsfExExD3lvb45o1l7mFZa4tVfl2HM9a7ipcmpplNTvnuzrb0l2k+4ppq10xYWSoj472669Hmp9dZH528eXeQnvA86z5uGbNxfVqPq5Z47S2tmxro2VHhVMIoQ9ojzFOZ6167wC+BXwD6AkhPJVdr/R+4PPZ07Y7JukQqdVqXJlZXG+1y6K/J6cX6sf096XR32fvHqRUSFvt8keN/pYkSbtvpztOReALIYQ2oA34S+AfxBirIYT3AJ8OIXSTxYoDbHdM0sG1Wq3y4uX5NPJ7wz2SKvPLQBr9XTjWyx0njvD6h4Z54HSB/q42+pOuxk5ckiQdGjsqnGKMzwEP32Ts68ADuzkmqfktLq9yYbxS30FKo78rLK+k0d/tbS2M5BMeOT1EqZDjVDHHSL6Pnq71v65sb5AkSa+0vYojlySuzS0x+pJWuxcvz1HLLkHs7WqnXEx4w8MjlLMbyB4f7KW9zehvSZK0v1g4SdqxWq3GxPQC519cL5BGxytcmVkPXxg80kWpkOPxewv10IbBI91Gf0uSpKZg4STptqysVnlhcva60IbR8RnmF1cBaG1p4cRgL/eWB7JWu4RSMUfS09HgmUuSJG2fhZOkm5pfXFkvjrJC6eLkevR3Z0crpULCE2eOp612xRwjQ310drRt8sqSJEnNxcJJErVajauVpSysYb3dbuLqevR3rreDcjHHj9x5jHIhbbUrHu2ltdVWO0mSdPBZOEmHTLVaY+zKXBr5vaHdbmZuuX5MYaCHU8UcTz04nLbaFXIMJJ1ejyRJkg4tCyfpAFtaXuXCxCznx9PY79GxGUYnKiwtp9Hfba0tjOT7OHv3EOVC2mpXKiTXRX9LkiTJwkk6MCrzy/X7Iq0VSpemZuvR3z1d7ZQLCa87O8yprEAaHuoz+luSJGkLLJykJlOr1ZiaXuDcWJpmt1YoXb62Hv19NNdFuZDw6Ol8PbRhqN/ob0mSpO2ycJL2sZXVKpem5uo7SWuF0tziCgAtLXD8WC+nTw5QKq632h3p7WzwzCVJkg4WCydpn5hfXOHCRGX9/khjFS5OVlhZzaK/21s5WUj4wR9IbyBbKiaczCd0Gf0tSZK05yycpAaYrizWW+3OZaEN41fmyS5HIunpoFxMePqxUj20oXish7ZWr0eSJElqBAsnaQ9VazXGr8zfENpwbXapfsxQfzenijmevP845WKOciHhaK7L65EkSZL2EQsnaZcsr6TR36Pjlfo9kkbHKywurwJp9PfwUB8P3HEsLZCKCaVCQm93R4NnLkmSpM1YOEnbMLuwfN21SOfHZ7g0OUc1y/7u7myjVEh46sET9Va74aE+OtpttZMkSWpGFk7SLdRqNS5fW0wLpPH1Qmnq2kL9mIGkk3Ixx8P3DFEupKEN+YEeWm21kyRJOjAsnKTMajWN/h4dy1rtskJpdiGL/gaKx3q5a+QIb3hkJGu1y9HfZ/S3JEnSQWfhpENpYWmFCxOznB+bYeLaIvH5y1yYmGVltQpAR3srJ/N9PBoKnComlIo5SvmErk6jvyVJkg4jCycdeNOzS4y+pNVu7PLcddHfpULCDz06QrmQhjYcH+w1+luSJEl1Fk46MKq1GhNX528IbZiurEd/Dx7pplxMeNWZIuViQrmQI9w1xORkpYEzlyRJ0n5n4aSmtLxS5YXJ2esKpNHxCgtLafR3a0sLw0O9nDl1rN5qVy4m9L1M9Lf3S5IkSdJmLJy0780tLGf3RqowOjbDubEKl6ZmWa2mzXZdHWn096vXbiBbTBgZ6qOj3euRJEmStDssnLRv1Go1rsws1neQ1lruJqfXo7+P9HVSLiY8eNdg2mpXzFE4avS3JEmS9paFkxqiWq1x6fJcGtqwoVCqzC/Xjyke7eGOE0d4/UPD6U5SIaE/6WrgrCVJknRYWThpzy0ur3JhosL5Da12FycqLK2k0d/tbS2M5JP0BrJZq93JfEJPl388JUmStD/4L1Ptqpm5pRta7V68PEcty/7u7WqnXEz4mw+PUCoknCrmOD7YS3ub0d+SJEnavyyctC21Wo2J6YX6DtLafZKuzCzWjzl2pItyIcfj9xbqrXaD/d2m2EmSJKnpWDhpUyura9Hf6ztJo+MzzC+m0d8tLTA82EcoD9RvIFsu5kh6boz+liRJkpqRhZOuM7+4kkV/zzCatdpdnFyP/u7saKWUT3jizHFKxbTVbmSoj84Oo78lSZJ0cFk4HVK1Wo2rlaX0BrLjaYE0OlZh/Op8/ZhcbwflYo4fueNYPbSheLSX1lZb7SRJknS4WDgdAtVqjbErc/WwhrVCaWZuPfq7MNBDuZjwmgdPUC6krXYDSafXI0mSJElYOB04S8urXJycva7VbnSiwtJyGv3d1trCSL6Ps3cN1a9FKhWM/pYkSZJuxX8tN7HK/HK6g5SFNoyOVbg0NUc1y/7u6WqjVMjxurPD9dCG4aE+o78lSZKk22Th1ARqtRpT0wv1Fru1QunytfXo76O5LsqFhIdP5zlVTCgVc+SN/pYkSZJ2hYXTPrOyWuXFqbm01W5DoTS3uAKk0d/Hj/Vyz8mBtNWukKNUTDjS29ngmUuSJEkH174snEIIp4HPAIPAFPDeGONfNXZWu29+cYULE5XrQhsuTsyysppej9TR3srJfMIP/kCBUpZqdzKf0GX0tyRJkvSK2peFE/AM8MkY42dDCO8GPg28scFz2pHpyiLnshvHnhurMDo2w/iVeWrZeNLTQbmY8PSjJylnrXbHj/XQ1ur1SJIkSVKj7bvCKYRQAB4Bfjh76HPAJ0II+RjjRONmdntWq1W+/ddTfOe5y3z3uSkmpxfqY0P93ZSLOZ68/3g9tOForsvrkSRJkqR9at8VTkAJuBhjXAWIMa6GEF7IHm+awunPvn2JP/hypKuzjTOnjvL0Y6U0tKGQ0Nvd0ejpSZIkSboN+7Fw2rHBwaSh75/P5/iJ193N2VDkjuF+Otptt9vv8vlco6eg2+SaNR/XrPm4Zs3F9Wo+rllz2Y+F0ygwEkJoy3ab2oDh7PEtmZqqUK3WNj9wD+TzOSYmZgA42tPO1SuzDZmHtm7jmqk5uGbNxzVrPq5Zc3G9mo9r1jitrS3b2mjZd1shMcZx4FvAO7OH3gl8s5mub5IkSZJ0sOzHHSeA9wOfCSH8U+AK8N4Gz0eSJEnSIbYvC6cY4/8FXtXoeUiSJEkS7NPCaQfaIO1bbKRGv79un2vWfFyz5uOaNR/XrLm4Xs3HNWuMDb/vbbfzvJZarTEhCnvkKeDPGj0JSZIkSfvea4Fnt3rwQSucuoDHgUvAaoPnIkmSJGn/aQNOAH8BLG71SQetcJIkSZKkXbfv4sglSZIkab+xcJIkSZKkTVg4SZIkSdImLJwkSZIkaRMWTpIkSZK0CQsnSZIkSdqEhZMkSZIkbaK90RM4SEIIp4HPAIPAFPDeGONfNXZWh08I4XlgIfsB8KEY41dCCE8AnwZ6gOeBd8cYx7PnbGtM2xNC+DjwFuBvAA/EGL+bPX7Tc2gvxrR1t1iz53mZ8y0b85xrkBDCIPCHwF2kN3f8HvCzMcaJvVgX12znNlmzGvAdoJod/p4Y43ey570J+DXSf9N9A/ipGOPcTsa0dSGELwJ3kK5NBfiFGOO3/Dw7mNxx2l3PAJ+MMZ4GPkn6IaLGeGuM8aHsx1dCCC3AZ4Gfy9bna8BHAbY7ph35IvA64NxLHr/VObQXY9q6m60ZvOR8g+2fV55zu6YGfCzGGGKMDwJ/DXx0L9bFNds1L7tmG8ZfveE8WyuaEuB3gDfFGO8GZoAP7mRMt+0nY4xnY4wPAx8Hfi973M+zA8jCaZeEEArAI8Dnsoc+BzwSQsg3blba4DFgIcb4bPb9M8DbdjimbYoxPhtjHN342K3Oob0Y26tf20H1cmu2Cc+5BooxXo4xfnXDQ/8dOMXerItrtgtusWa38mPA/9iw6/AM8PYdjuk2xBinN3zbD1T9PDu4LJx2Twm4GGNcBch+fiF7XK+8PwohfDuE8KkQwgBQZsP/lMcYJ4HWEMKxHYxpd93qHNqLMe2el55v4Dm3b4QQWoEPAH/C3qyLa7bLXrJma74aQvhWCOFfhxC6sseu+70HzrP+99t2x3SbQgi/G0I4D3wE+En8PDuwLJx0EL02xngWeBxoAT7R4PlIB5nn2/7326TXXrg2zeOla1aOMT5G2i57BvjVRk1MN4ox/kyMsQz8Cul1YzqgLJx2zygwEkJoA8h+Hs4e1ytorZ0oxrgIfAp4Den/ptVbHkIIQ0Atxnh5B2PaXbc6h/ZiTLvgJucbeM7tC1moxz3A22OMVfZmXVyzXfQya7bxPLsG/C43Oc9Id5JGdzimbYox/iHwBuACfp4dSBZOuyRLD/oW8M7soXcC34wxTjRuVodPCKEvhNCffd0CvIN0Xb4B9IQQnsoOfT/w+ezr7Y5pF93qHNqLsb3/FR18tzjfwHOu4UIIHwEeBf52VtjC3qyLa7ZLXm7NQghHQwg92dftwFtZP8++DDweQrgn+37j7/12x7RFIYQkhFDa8P2bgMuAn2cHVEutVmv0HA6MEMK9pDGRR4ErpDGRsbGzOlxCCHcCXwDash9/CfxijPFSCOHVpAk03azH5Y5lz9vWmLYnhPBbwN8FjgOTwFSM8b5bnUN7Maate7k1A97ETc637Dmecw0SQrgP+C7w/4D57OHvxxj/zl6si2u2czdbM+BjpL+3NaAD+DrwD2OMlex5b86OaQO+Cbwvxji7kzFtTQihCHwJ6ANWSYumD8YY/6efZweThZMkSZIkbcJWPUmSJEnahIWTJEmSJG3CwkmSJEmSNmHhJEmSJEmbsHCSJEmSpE1YOEmS9qUQwjMhhF+9xXgthHD3Lr/nu0II/3k3X1OSdDAYRy5J2nMhhHcA/wi4H5glvT/NZ4B/G2Pc1gdRCKEG3BNj/N7LjH0VeAJYARaArwE/t3aPqd0QQngf8DMxxqc2O1aS1PzccZIk7akQwi8Dvwn8GukNdIvA+4HXAJ03eU7bLrz1z8cYE+A0MAD8+i68piTpkGpv9AQkSQdXCKEf+Jekd7j/woahbwLv2nDcvwfmgVPA64E3hxDeDVyIMX44O+YfA78E1IAPb3UOMcbLIYQvAB/YMKffBn4MmAN+B/hXMcbqS3eRsl2tDwC/DAwBfwz8PHAv8AzQEUKoACsxxoEQwo8DHwdKwDXg12OMH9/qXCVJ+5c7TpKkvfQk0AV8aQvH/n3gI0AOeHbjQAjhbwEfBH4YuAd4eqsTCCEMAW8hLdYgLZr6gTtJi7T3Aj91i5f4CeBx4CzwNuBHY4z/h3TX7M9jjEmMcSA79t8BPxtjzJG2Jf7pVucpSdrf3HGSJO2lIWAyxriy9kAI4evAGdKC6kdjjF/Lhr4UY/xv2dcLIYSNr/M24PdjjN/NXuOfA+/c5L1/K4TwcdJrqr4K/FLWAvh24OEY4wwwE0L4N8B7SIuel/PRGONV4GoI4b8ADwFfvsmxy8CZEML/ijFeAa5sMkdJUpNwx0mStJemgKEQQv0/6mKMr852aKa4/nNo9BavM/yS8XNbeO9fjDEOxBhHYozvijFOkBZynS95/jlg5Bav8+KGr+eA5BbHvgX4ceBcCOG/hhCe3MI8JUlNwMJJkrSX/hxYBN68hWNvla53ifS6oTXlbc5nknRX6NRLXuviNl7rhvnGGP8ixvhmoAB8Efj8diYpSdp/bNWTJO2ZGOPVEMK/AD4VQmghbXGbAx4E+m7jpT4P/H4I4Q+A54F/ts35rIYQPg98JITwXuAYaeDEdgIcxoCTIYTOGONSCKET+HvAf4wxTocQrgGr25mnJGn/ccdJkrSnYowfIy1O/gkwTlpwfBr4EPD1Lb7GfwJ+gzRs4XvsLHThF0ive3qONITij4Hf28br/Cnwv4EXQwiT2WPvAZ7Piqb3A+/ewTwlSfuIN8CVJEmSpE244yRJkiRJm7BwkiRJkqRNWDhJkiRJ0iYsnCRJkiRpExZOkiRJkrQJCydJkiRJ2oSFkyRJkiRtwsJJkiRJkjZh4SRJkiRJm/j/+ZOl1FsRhfUAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 1008x432 with 2 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n", "df_vldvst.set_index(\"Grid Points\")[\"PM_VECTOR_LD_CMPL (min)\"].plot(ax=ax1, legend=True);\n", "df_vldvst.set_index(\"Grid Points\")[\"PM_VECTOR_ST_CMPL (min)\"].plot(ax=ax2, legend=True);"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Also here seems to be a linear correlation. Let's do our fitting and plot directly."]}, {"cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Counter PM_VECTOR_LD_CMPL (min) is proportional to the grid points (nx*ny) by a factor of 2.3439 (\u00b1 0.000111)\n", "Counter PM_VECTOR_ST_CMPL (min) is proportional to the grid points (nx*ny) by a factor of 0.4688 (\u00b1 0.000012)\n"]}], "source": ["_fit, _cov = common.print_and_return_fit(\n", "    [\"PM_VECTOR_LD_CMPL (min)\", \"PM_VECTOR_ST_CMPL (min)\"], \n", "    df_vldvst.set_index(\"Grid Points\"), \n", "    linear_function,\n", "    format_value=\".4f\",\n", ")\n", "fit_parameters = {**fit_parameters, **_fit}\n", "fit_covariance = {**fit_covariance, **_cov}"]}, {"cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAF/CAYAAAB+GZmgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8XHW9//HXTCaTfZ2Z7HuanNDSvYVWylqQpVRWuYBsCl52AbWi4BWuwgVxQVmEXuAKilzxCogKePGi/AREWQq4UKZps0z2mUwmmeyTmTm/P5pGapekJelkmvfz8eBBc873nPM5+ZAy75xzvsdimiYiIiIiIiKyZ9ZYFyAiIiIiIjLbKTiJiIiIiIhMQsFJRERERERkEgpOIiIiIiIik1BwEhERERERmYSCk4iIiIiIyCQUnERERERERCah4CQiIiIiIjIJBScREREREZFJ2KYyyDCMU4FvABa2h61b3W7304Zh1AKPAQ7AD1zkdrvrx7eZ9nUiIiIiIiKxMOkVJ8MwLMCPgQvdbvcS4ALgMcMwrMCDwP1ut7sWuB/Y+KFNZ2KdiIiIiIjIATelK05AFMga/3M20AE4gWXACePL/xu4zzAMF9uvTE3rOrfb7ZtCnUnAyvH6IlM8NxERERERmTsSgELgTWB0qhtNGpzcbrdpGMY5wLOGYQwCGcA6oBRoc7vdkfFxEcMw2seXW2Zg3VSC00rglamevIiIiIiIzFlHAq9OdfBUbtWzAV8BTnO73eXAeuBJIH1/K5xBHbEuQERERERE4sI+ZYep3Kq3BChyu92vAbjd7tfGrzyNAMWGYSSMXxlKAIqAFrZfOZrudVMRAfD7B4hGzSluMr1crgx8vv6YHFv2j3oWf9Sz+KOexR/1LL6oX/FHPYsdq9WCw5EO+/hoz1SmI28FSgzDMAAMwzgEKADqgXeB88bHnQe843a7fW632zvd6/blpERERERERKbTVJ5x6jQM40rg54ZhRMcXf9rtdvcYhnEF22fY+xoQAC760KYzsU5EREREROSAs5hmbG5pmyEVQKNu1ZN9oZ7FH/Us/qhn8Uc9iy/qV/xRz2LnQ7fqVQJNU91uqtORx7VIJEwg4CMcDs34sbxeK9FodPKBMmvMlZ7ZbHZyclwkJMyJH3sRERGJkUgkQnerh57merzBCG8PFTI2FuWL5y0hwTqVJ4VmpznxCSoQ8JGcnEpaWgEWi2VGj2WzWQmHD/4P4QeTudAz0zQZHAwSCPhwOgtjXY6IiIgcJEKhMdr8w3i6+kl1P09W/zZyI92kWsKkAiNjBfQmn8n8ipxYl/qRzYngFA6HDkhoEpmtLBYLaWmZDAz0xroUERERiVP9vb34tn3AQHsjloCHtJFOopEo/9F3GgCXZHSQkWSlLWsJNmc5WaXzWFBRzdIke4wrnx5zIjgBCk0y5+lnQERERKYiGo3S09GOv6meka4m/l9kGS2+AY4P/56PJW/FBfSZqfTZ8wk7SrjqmAWUFWTgzD4W60H8eWPOBCcREREREdnZ2FiITv8wHt8QI03vUex9hdywjxRLiCIgalr4jaWE6uJCUjKPpyvjOPIqDUocDkpiXfwBpuAUA2efvR673U5iop1oNMLFF1/K8cefyKZNb/G5z13BeeddyNVXXzcx/ppr/pV3393Eiy/+gdTU1F32193t47zzzuTpp58nIyNjYvmmTW9x553f4Mknf8G1115OV1cXaWlpE+u/8IUbWbhwMaZp8j//81N++ctnAJNoNMrixUs56aR13H33twAIBvsYGhqkoKAIgPXrT+ess87hvffe4cEH7yMQCBCJRFi6dBnXXHMDmZmZE7XvOO7o6AgnnngKl1xy2V6/P7fffit1dYdw1ln/stPyRx7ZyDPP/ByXy8Xw8Ajp6emceOIpnHnmJ0lISNjrPv/859d59NGHCAQC2Gw2ioqKufzya6iunsfpp69jbCzE008/P7Gf5577JXfc8XVuuGEDZ531Lzz//K+4557vUFBQRDg8Rnl5BTfe+FUyM7O45pp/5bzzLuSII47caw0jIyNcffVnue++/yQlJWWvYz+su9vHv//7V7n33o17HRcKhbjyykv5/vcfID09fcr7FxERkblhaHCIrq0fMNDegOlvJnWoE4fp50f9J7AtnM+iZB+laWE6MuZjdZSTWVxFflUNN+7m8+dcpOAUI7fd9k2qquaxZcsHXHHFpaxYcTgAZWXlvPLKy1xxxTUkJCTQ3t7G6OjIXvfldLpYvHgpL730v5x++tkTy59//leccsr6iVu0rr/+i7v9cP/QQw/w7rubuOeeB8jNdRCNRnnllZdxOl08+ugTE/v64x9f4bbb7prYrrW1hZtv3sA3vvFNli5dTjQa5b777ubf/u3LfP/7P5gYt+O43d3dXHDB2axcuYoFCw7dr+/bSSet45prrgegra2Vb3zja7S1tXD99Rv2uM0bb/yJO+/8Bnfc8W3q6uYDsGXLB/j93VRXzwPA4XDyxhuvs3r1GgBeeOHXbH/X8z+sWHEYt912F9FolK997cs89tgjXHvt56dc+89//lOOOea4fQpNsL2/k4UmALvdzoknnsyTT/6ESy+9fJ+OISIiIgePaDRK0N+Nr2ELwx0NuEP5vB3IJLXfww2ZL+AEBs1kemx5eDIO5+Rlh5JfWUVBbkpcz3o30+ZkcHrtrx28+peOGdn30UuLWDW/YMrja2vrSE1NpaOjDYCUlFQqKionPsS/8MKvOemkdWze/P5e97Nu3Sd44okfTwSnoaFB/vCHl/nxj5/c63ZDQ0P89Kc/4dFHf0JurgMAq9XK0UcfN2ntP/rRf7Fu3WksXbp8YrurrrqOc845jffee4fFi5fuNN7pdFJaWk5XV+d+B6cPKy4u4Stf+RoXXfQvXHbZlXu8yvLDHz7ExRdfOhGaYPv3/cNOPnk9zz//a1avXjMRVquqqne7P6vVyrJlK3n99Vf3qd5f/vIZ7rnnwYmvzz57PR//+Mm8/fab+HxerrjiWnp7e/jtb39DMBjkpptuYfHipXR0tHPZZRfy3HMvAbBmzQr+9V+v4g9/eJm+vj6uvvpzHHPMWgCOP/5ELr30QgUnERGROSISjuDtDtASiNDa3s0hzU+SPeYl3TLCjk+kDdHDKM07kvL5S+lILMRZUUNeXj4FCkn7ZE4Gp9lk06a3CIVClJSUUV/vBuCUU9bz7LNPs2rVEbz00os88MAjE7fM7cmaNUfzne/cSWNjA5WVVfzud7/l0EMXkZ//jxD3ve99m4ceemDi67vvvo+Ojnbs9kTKyir2ufZt27Zy8cWX7rTMZrNRW2uwdeuWXYKTx9NMMNg3EbSmQ3l5BcnJyXg8Tcyfv/swtmXLB3z+81/a636WLVvBM8/8D8FgcCKsfvDB5t2ODYVCvPrqH6irO2S363enq6uTkZERCgp2ngp8bGyMjRt/yObNf+faay/nyis/x0MP/YiXXvotDz54Hw888Mhu95eWlsbDD/+Iv/zlXb72ta9MBKfcXAc2WyLNzU2Ul1dMuT4RERGZ/UJjETq3bibYUk+k20PKYDuOqJ+/h8p5YvAIEqxQlx3Gl1aDL7eMjKJK8qpqOD0z60N7qY1Z/fFuTganIxYWcsTCmXmXzVTfCfTVr96I3Z5EWloat9/+zZ2eTVq2bAXf+c6d/OEPL1NVVU1WVvak+0tMTOSEE07m+ed/xdVXX8dzz/2Ks88+d6cxu7tVr729fYpntivTNKc07nvf+zYPPHAvHk8T1133RXJyZt88/hYLHHfcCbz00osTYfWfg9Nbb73BJZecD8DChYu58MJPT3n/Pp+XnJzcXZavXXsCsP0K2MjICGvXfhyAurpDaGtr3eP+1q49EYAFCxbS3e1jdHSUpKQkABwOB15vl4KTiIhIHOvvDeDd5mawvYG+gRFeHFxAh3+IGzN/QXlCH8OmnZ4EF61ZS3EVHsItxkqKnGkk2ia/a0j2z5wMTrPBjmecdsdisXDccSdw1123cdNNt055n6eeeho33HA169Z9Ao+niSOPPHrSbSorqwiFQng8zZSVlU/5WADz5tXw97//laOOOmZiWTgcZssWN+eee8HEsh2B7S9/eZcbbriaJUuWTTxb9FF5PE2MjIzsNSTU1tbx/vt/p6bG2Ou+Tj75VC6//BKWLFm227C64xmn/ZGUlEQoNLrLcrt9+3sNdkxKseNrq9VKJBLe4/7+ebtIJDKxLhT6R4gSERGR2S0ajdLT2UVzv40Wbz+Oxv+lcvhvZFkGyRsf02E6cOQuZ2mti9GUixgpdOEoKiFPt9odUApOs9Rpp51JSkoKhx++esrbVFfPw+XK47bbbuGEE06a+HC9N6mpqZxzzvncddftfOMbd5KTk4tpmvz2t79hwYKFFBfveaLJCy64hCuv/AyrVn1sYnKIH/zg+5SUlLJkybJdxi9atIQzzzyHhx9+kDvu+PaUz2tPOjraueOOb3DGGWeTlrbnWeQuvvhS7rrrdurq5mMY259tev/9v9HX18fq1UdMjCsuLuGzn71qj7f8fRRlZeX4/X5CodCU+rK/IpEI7e1tewzlIiIiEjvhSJQuTwt9DX/F7G0lIdBCbsSHnTE2Bs4nYkngEzlWslPK6MkpIbWwmrzKGmodDt1gNwsoOM1SLlcen/rUxfu83amnnsZ3vnMnN9548y7r/vkZp8suu5w1a47m8suv5sknf8K1126fUMA0TRYtWjoxw9yelJWVc9ttd7Fx4/309vYSiYRZsmQZt932zT1uc9FFn+Hcc0+nvt691ytADz30II8//tjE11/60k0A/OY3z/H2228wMjJCWlo6H//4SbtMW/7PVq36GBs2fIXvfveb9PX1jU9HXsQVV1yzy9jTTjtzr/vak//4j1ux2/9xledb3/o+8+bVTHydlJTMsmXLeeedt/cpDO+rv/71PebPP1TTkYuIiMTYUH8/XQ31DLRtw+zx8L+hZdT74cjEv3F66tuEzAT8VicdGQuwOsq48ZQllBTkkpSoW+1mK8tUn1OJExVAo98/QDT6j/Pq7GymoGDfbkPbX1N9xklmjwPVs7/+9T2eeOJH3HHHd2bsGLfeejPr1n2ClSsP3+36A/mzMJNcrgx8vv5YlyH7QD2LP+pZfFG/YicajdLn89EWCNHYE2GkdTOHBV4g1xKcGDNgJvN/aZ8gqbiWqmyTkmwrhyxdQKB376+ckZlhtVpwONIBKoGmqW6nK04iB8jChYv52MeOZHh4eJ/f5TQVoVCIJUuW7jE0iYiIyEcTjZp0+QL0fvAmIW8Tif1t5IxP/f364CpeH62lNhvqkgvozV5OSkEVrspa8l0uLvyn55FsiYmAglM8UXCKM5deeuFOEwEALFhwKBs23BSjivbP66+/ysaNP9hl+eWXXzXpLYK7U1/v5vbb/32X5WeddQ7r15++XzXOhJmsxW637/QCZBEREdl/o8NDdDVsI9i2lUi3h20jObwYKCMhPMydOU8SNq34Lbl4x6f+PrZyMZ+qrCI12QacHOvyZQYoOMWZRx75caxLmBarV6/Zr4C0JzU1Bo8++sS07U9ERETmjv5AD+3tXTQOpOHpDHJ0148oMH3kWExygGHTjt++mKMWFVGWn0FfSjX55RXkzOCETzL7KDiJiIiIyJxgmibdfSN0b36bULsbW7CN7FAXmZZBQmEnPwueQk5GEoemlzKcXkdKQQW5FbU4C4s4bqdb7WbmfaAyuyk4iYiIiMhBZywUwtu0jd6WbYR9zUQHAzwcPIrh0TCfSX+ZhYkt+C3Z9KSU4c8pJbV4Ht+rW0Jmqh04YtL9y9yj4CQiIiIicW371N9b2Bpy0OIdpqDjZVZH3iTTEiUTCJk2/FYHqw9xUJKfTUlWDUmFTqpmYLImOXgpOImIiIhIXDBNk96BEO2NDYQb3iSht4WM0S5yLUGcwEN9n2DA7uIIRwGepFUk5pWTWzYPV2kFDluCXiIrH4mCUwycffZ67Hb7xAtTly1bzuc+9wUefvhBKiurWLv242za9BbhcJjDDls16f76+nr5xje+RltbK3a7neLiUjZsuImcnJxdxj722CP87ne/xWq1Yppw4YWXsHbtx3cas2nTW1x//VVcd90XdvtyWdM0sVgs3H77rdx8860TX8fKc8/9kp/97AksFivRaIT168/gk588d6cxHk8Tn/70pzjjjE9yzTXX77KPV155mR/+8GHGxkKYJqxb9wnOO+8CAH75y2d46qknJ87z/PMv4sQTTzkg5yYiIjJXRcIRfJ4melrqGfM2Yw+28cLQQv426GB+YiuXZ/yOHjOTYFIBvdkrSCmoZEPtIrJzMmP6uUQOXgpOMXLbbd+kqmreTssuu+yKiT+/887bDA8PTyk47fgwv2zZCgDuv//7PPjgvXzlK1/bZexZZ/0LF198KQDd3T7OP/9sVq5cRWZmJgBDQ4M88MC9rFr1sT0e7957v0td3XwikQhPPfUkg4ODXHTRZyY/6Ul0dLRz++23ct99/7lP2x1zzHGccsp6LBYLQ0ODXHjhv7B06XLmzasBIBKJcNdd/8GRRx6zx33k5jq56667cTpdDAwMcOmlFzB//gIWL15KSUkp9977n2RmZuL1dvHpT5/PokVLKCws+iinKyIiIuNGhofoaqinPQj1wWT6OzycO/pT0iwR0mB86m8HRlEqi8prKHMuxJp7BuWZGbEuXeYQBadZ5Pbbb6Wu7hCWLFnOs88+TTQa5a233mDt2o9z4YWX7HG7zMysidAE29/r9MwzT+12bHp6+sSfh4aGsFjANKMTy+69927OP/9C/vjHV/d4vM997gts3Hg/L774AosXL91taPrNb57jqad+xgMPPILVauWGG67m2GPXzsh7htLS/nFOIyMjhMPhnX7T9Pjjj46/eHaI4eHh3e5jwYJDJ/6cnp5OeXklnZ0dLF68dKfvbV5ePg6HE6/Xq+AkIiKyH/qHQng6+4j8/UUsgVbSRzrJNXvJtZi8N3IIf46spsKVRWvyMmx5FWSXVJNXWUVOop15k+9eZMbM2eA09Ks7dllmqzoM+4K1mOFRhl/47i7rE2vXkGgcSXSkn5Hf3rfr+vnHYTNWT+n4X/3qjRO36l155bUcfvg/tquunsdpp53J8PDwTreVffGLn+Oyy66grm7+HvcbjUZ55pmnWLPmqD2O+cUvfs7PfvbfeL1dfOUrXyMrKxuA119/jf7+fo499vi9Bqf77vseNTW1fPzjJzM2FuLxxx/lggsu2WnMSSet45133uaBB+4lPT2dzMysGX0566uv/j8efPB+2ttbufzyq6mu3v5X69at9bzxxp+4554HefTRh6e0r+bmJt5//6986Uu7vlR406a3GBgYoK6ublrrFxEROdhEo1H87a30NNUz0tWELdhKx0gqT/QtB0xuy36FiMVG0J5PMHMhSQWVrK6sY31hwfgvQA+L9SmI7GTOBqdY292tepP59rfvmXTM3Xd/i9TUFM4665w9jjn99LM5/fSz2bZtK1//+ldZseIwrNYEHnzwPr73vfsnPcbVV1+HxWLhrbfe4Oyzz8U0zd2O+/znv8Sll15IOBze44t7A4EebrjhGgDC4TG6ujq55JLzge1XgTZs2DW87M6aNUezZs3RdHZ2ctNNX2D16iMoKirhm9+8jZtuuoWEhIQp7ae7u5svf/nz3HDDjTidrp3WNTY2cNttt3DLLbeTlJQ8pf2JiIjMBTum/u7u6OTvoWI83gHWBX9KRYKXIiBqWvBbssnIdHHOsnmU5aeTkXsYGbrVTuLIlIKTYRjJwN3A8cAI8Lrb7f5XwzBqgccAB+AHLnK73fXj20z7uumUuv4re1xnsSXtdb01OWOv62Plvvu+R2urh29+826sO72kbfeqq+fhcLh45523yclx4Pd389nPXgxsn3DitddeIRgM8ulPf3an7XbcBnfzzbfu9PU/8/v947cDWhgcHNzplrodcnJyefTRJ4CpPePU19fLddddBUBZWTlf//rOVw4LCgo45JAFvPbaqxx77PG0t7eyYcN1AAwM9GOaJoODg9x448277DsQ6OH666/i/PMvYu3aE3Za19LiYcOG69iw4SYWL16yx/pEREQOdkMjYVq8/QS3vEVS53ukDXWSa/aQaYliiybywOD5lLoy8OcdhiUjgcySeeRXzqMqJYWqWBcv8hFM9YrTXWwPTLVut9s0DCN/fPmDwP1ut/txwzAuADYCx83gujkjLS2N7m7flMdv3Hg/bvdmvvWt72O32/c4rqmpkYqKSgDa29uor3dTUVFFRUUlv/71byfG7Xjeanez6k3F2NgYt9zyFa666nOMjo5yyy03ce+9G7HZPtpFzqys7ImgtUNzcxPl5RUA9Pb2smnTWxx99HEUFBTw3HMvTYx75JGNu9z+uENfXy/XX381Z511DuvXn77Tura2Vj7/+Wu5/vovsnq1XognIiJzQzQapc/nxde4hZHORqy9rWSMdnFHYB0hEjk15T1WJ28lkJiPJ6MWe14FOeXzuL+0goQEK7Bi0mOIxJNJP8UahpEOXASUuN1uE8DtdncZhpEHLAN2/Gr+v4H7DMNwAZbpXud2u6eeIg4CRx11LDffvIFLLjl/YnKIPT3j1NCwjR//+IeUlpZxxRXbJ2ooLCzijju+DcAll5zPt7/9fZxOF488spHGxgZsNhtWq5Xrr//iRJCaTj/4wT3Mm2dw/PEnArBp05s89NADXHnltdN+rGeffYo33vgzNpsN0zQ566xzpjQb4cMPP4jT6eTss8/h8ccfo6XFw7PPPs2zzz4NwCc/eS7r1n2CBx64l2Cwl4cf3sjDD28Edn0uTUREJJ7tmPo74KnHPVbIVn+U/O63ON3+GoXjY/xmFsHkAs5cXUhBSRGlzlVkZSRTOIW7XEQOBpY9PZ+yg2EYi4Gnx/85FhgAvgoMAz9yu90LPjT2feACtgegaV3ndrs3TeF8KoBGv3+AaPQf59XZ2UxBQfkUNv/obDYr4XB08oEya8ylnh3In4WZ5HJl4PP1x7oM2QfqWfxRz+LLvvRrdCxCq2+ATo+HjIaXSBnsIDfajd0SAeDRwWPoyV7AIbmjHJLYQXpJNflVtaSm73rLvew//YzFjtVqweFIB6gEmqa63VTum7IBVcA7brd7g2EYhwO/Aj65H3UeEOPfiAlerxWb7cD9NuRAHkumx1zpmdVqxeU6OB7EPVjOYy5Rz+KPehZfdtevgNdH6wfv09tcT6S7mdShDn4/WMurowYOaz8bst4nkJhPZ+5KUgqrcFXX8dWaGuxJe77tX6aPfsbiy1SCUzMQZvttc7jd7j8bhtHN9itOxYZhJLjd7ohhGAlAEdDC9itH071uyv75ilM0Gj1gVxTm0tWLg8Vc6lk0Gj0ofrul39LFH/Us/qhn8SU3NxX3e5vxN22lcyDKuwN5dHkDfNn2KGkWSAN6zXT67PnUGhUsrl5IeV4auVnryfunW+36gqPAaEzOYy7Rz1jsfOiK0z6ZNDi53e5uwzB+z/bnjl4cn/UuD9gCvAucBzw+/u93djyLZBjGtK8TERERmevGwmHau4fxePtJ3fxr0vubyI34SLaMUQz0jRXjT/oElWUuGhJOIzO/iLxqg9LsbEpjXbxIHJvqFGdXAP9lGMZ3gDHgQrfb3WsYxhXAY4ZhfA0IsH0SiQ9vM93r9ptpmnucNltkLpjseUYREZl9BoNBvA1uBtoaMXs8pA13MBy28N3gKQBcnunBYo/SlbMYskvIKp3HkopqDk9JGd/Dgj3vXET2yaSTQ8SZCnYzOUR3dwfJyamkpWXOeHiaS7d9HSzmQs+2v78qyMjIEE5n4eQbzHK6vSH+qGfxRz07sKLRKL3eLrob6xn0evhjZDHNXf2cEn6R5UlNAAyYyQQS8xnNLGNswamU5qWTn5OK1WpRv+KQehY7Mzk5RNzLyXERCPgYGOid8WNZrVai0YP7Q/jBZq70zGazk5PjinUZIiJzXjgcpiswjMc7yGjDJvK9r5MT9pFmGZmY+vvXZhEVhXlY09fSmWHBVVVLoSuP+P/Vl0j8mhPBKSHBdsB+y67fHsQf9UxERGbKyNAwXQ1b6G/bRtTvmZj6e2PwJFojDlYkd1KcNoI3rRaLo4yM4iryqmr5N039LTLrzIngJCIiIjLTgn4/3kY3Q+2NbA4V8JdAGpnBrVyV8X/kAkOmnYAtj9bMFaxfWkdhRSUFjmOwJcyNV2KIxDsFJxEREZF9EIlG6PYHafGP0dHeRXXT02SNdZFpGSJ/fMyWyCryXR+jsmY57fZiHBU1uAqKyLcqJInEKwUnERERkT0YC0fp2vYBfZ6thP0ekgfayI1089ZoFU8NHY7NYrIhZwB/agX+nDLSiypxVRmcnZ39ob0cErP6RWT6KDiJiIiIAIPBPrzbttDf3kCgP8RLgwYd/kH+LeN/KEsYYtS04U9w0Z65kOLCQ/k3YwXFzjTsiWtjXbqIHAAKTiIiIjKnRKNRerv9ePoseLr6cTa+QMnQZnIs/TgBJ2CLusjOXciiagd9yReRVJiPs6QMZ0JCrMsXkRhRcBIREZGDViQapcvTQm/j+4z5mrH3t5ET9mIjwr2BczGxclZOlIzkInqzS0gtrMJVWcN8Vx7zJ/ZSHcMzEJHZQsFJREREDgojg0N0NdbT37qViL+F/x1bzrbuCGsTN3Fyyl8YM634rU686QaW3DK+fNJiSgpySEk6Ltali0gcUHASERGRuBP0d9PiH6W5J8yo528s7f0tOWYvuRYmpv52pB5C2dIqKrPz6c86FVd5BbmJ9liXLiJxSsFJREREZq2oaeLzBQi4NzHa1Ygt2E72+NTfvx84kk2hSg7JjFKT4qAvazHJBZXjU38Xcqmm/haRaaTgJCIiIrNCaHQUb+M2elu2EuluZsuoi9/3FJI0FuTrOU8RMS30WHLwp1bizynlxKplXFJZSXpKIrA+1uWLyEFOwUlEREQOuIG+XjrafTT2J+Hp6ufojkdxmd1kWUyygFHThs++jI8dupSyvHn0JleRX1FNdnJyrEsXkTlKwUlERERmjGma9ARH8X3wNqPtW0jobSUz5CXH0k/fWAE/7f84WWl2FmUtXub5AAAgAElEQVQUMpReiz2vHEd5LY7SUo63fnjq7+KYnYOICCg4iYiIyDQJh8fwNjfR69nKmLeJ0GA/PwquYnAkzJUZv6XW1kHAkkXf+NTfWcW13F23hKz0JGBNrMsXEdkrBScRERHZZ8ODg3gb6tkWcuDxDlLU9hIrIpvIsETIAMZMKz6ri+W1DsoKsnBkVGIvclGRlh7r0kVE9ouCk4iIiOxV32CI9oZthBrfxhpoIWO0a2Lq73t6zyRkzyY9N4+WpBUk5lWQXTaPvPIKcm2JGLEuXkRkmig4iYiICACRaAR/Sws9nq283+MBv4dfDy3hg4FMltobuST9FQJmBkF7Hn3ZS0guqOCmmiXkOrKwWCyxLl9EZEYpOImIiMxBodERuhq30ha0sLXXxlBnI2cO/5wUS5hiIGJa8FtyqStMYknpPMod87E4z6IsKzvWpYuIxISCk4iIyEFucGQMT0cv4b+/hBloIX24g1wzQLbF5E/Di3gtspwqVxZtmYtJcJaTXTqP+SsWkz0wRnWsixcRmSUUnERERA4S0WiUns4Oepq2MNzVhK23lebRDH7euwgLJnfm/B8h7PQl5tGceQhJ+ZUcXVXHWUXFWC0WYPXEvpJSkmFgLHYnIyIyyyg4iYiIxKGxsTF8nkZ8nV42j+Tj6epnfd8TlCR0UwhETQhYssnJcHH2kmrK8tKxZy/DlZujNyKJiOwHBScREZFZbiQUptU7SJ/7DRI7/0bKUAeOaDcZliiRaCq/HziHElcaXudyIhl2MkqqyaucR0VaOhWxLl5E5CCh4CQiIjKL9Pl8+Bq3MNTRgKW3ldQRH3cGTiGClTNT32ZlUiM9tjxaslaS6Kogp2weP6isJsFqBVbGunwRkYOWgpOIiEgMRKIRulta6GnegnusmAb/GMXdf+IU25/IHx8TMDMIJuVz5qoCCosLKHOuJDsrjXyrNaa1i4jMRQpOIiIiM2wsHKHVN4jX00Ryw8skD3bgiPhItYRJBZ4bOJ5gVi1lhXU02nPIKK4ir6qWsswsAA6NbfkiIsI+BifDMG4BbgUWut3uvxmGsQrYCKQATcAFbrfbOz522teJiIjMdv29vfga3Ay0N0CghfThTl4cnM8bo1UUJfRwXeZf8Se4aMtags1RRlbZPD5XUY09KSnWpYuIyF5MOTgZhrEMWAV4xr+2AI8Dl7jd7lcNw/gqcCfwmZlYN10nLCIiMh22T/3djr+pno5++Eu/g26vjw22H+MCXEDQTKUvMZ/5Rgkrqg6lNC+V3OwzcFkTYl2+iIjsoykFJ8MwkoD7gfOB348vXgGMuN3uV8e/fpDtV4g+M0PrREREYmIsHKGrZ5jmrn5SN/+KlH4POWEvqZYQRUDXaDldySdTWpzPtoSTSS8oJa+ylmKHU1N/i4gcJKZ6xenrwONut7vRMIwdy8qA5h1fuN3ubsMwrIZh5M7EOrfb3bOf5ygiIjJlQwMDeBvr6W/dRrTHQ+pQJ30hGz/oPx6A6zK3kpAIXRnzseaWklEyj8MqazgqLXV8D3oiSUTkYDRpcDIMYzXb5zf98syXMz0cjvSYHt/lyojp8WXfqWfxRz2LP7OxZ90dnbR98D49bS38OTqfxrY+1o38ikPtrTiAITOJXns+Sa4qvrBsGVXFWRQ5T8Vmmxu32s3GnsmeqV/xRz2LL1O54nQ0UAfsuNpUAvwvcA9QvmOQYRhOwHS73T2GYXime92+nJTfP0A0au7LJtPG5crA5+uPybFl/6hn8Uc9iz+x7lkkGsHbM0yLb5DhrW/i8r1J9piXDMswGUCaCT+N5lKY72AsfS0dGVaclbW48vJ3mfo7EBiKzUkcYLHumewb9Sv+qGexY7Va9utCy6TBye1238n2CRoAMAyjCTgVeB/4V8Mw1ow/k3QF8LPxYW8DKdO8TkREZFKh0RG6GrbS17KViN9D8mA7jkg33+s7FV80kyOS2yhJHaA7tRp/bhnpxZXkVdVy2/jU3yIiIruz3+9xcrvdUcMwLgQ2GoaRzPjU4TO1TkRE5J/19/bi2+ZmoKOBzaEi/taTjCP4AZem/55sYMRMpGd86u8zl86joKycIucxJNr0AlkREdk3FtOMzS1tM6QCaNSterIv1LP4o57Fn4/as2g0Sk9gAI9/lM7Wdsqbf0lmqItsy8DEmF9F1uB1rqTaYaUm0YujYh65xSUkaOrv/aKfs/iifsUf9Sx2PnSrXiXbL9RMyX5fcRIREZkJY+EI3sat9LZsJexrJmmgjdywj9dGavjV8HLsljBfyumhN6WUQHYJaUVVuCprOd/hiHXpIiJyEFNwEhGRmBkaGKCrYQsDbQ34BiK8MlBFW3c/X8/4KWXWEGNmAn6rk86M+ZTXLuRmYzklznSS7B+PdekiIjLHKDiJiMiMM02T3p4AnkAET9cAzm2/pmConhz6cFrACZiRfNJyajl+RRk++4VQWIizrJxcW2KsyxcREVFwEhGR6RWNmnjbWgk0bCbkbSKxv43sMS8WM8r3es8BLJybEyI9KY9g1lKSC7ffaneoK49FE1N/z4vlKYiIiOxCwUlERPbb6PAI3qbxqb+7PbwwdhhN3SOcZHuDtSnvEzat9FhyCWTWEM0q4caTFlNakE1q8nGxLl1ERGSfKDiJiMiU9PcGaPWP0twdYszzHgsCvyPX7CXbYk5M/Z2dOp+jFpVRlHUKwez15FVUk2O3a/YoERGJewpOIiKyE9M06e4O0LPlXUY6m7AF28gKdZJlGeSF/mP521gpCzPHqErJpjnzUJLyK3BU1JBbVMwVmvpbREQOUgpOIiJz2NhYCG9jA30tWxnzNbN5tIBXelxkjPm5OftZoqaFHks2gZQyenJKWHfESi6rrCAz1Q6cGevyRUREDhgFJxGROWJoYID29m6aggm0dvaypv1HOEw/mZYomcCYmUBH4koOn38oZa5KepKqyK+qoTIlNdali4iIxJyCk4jIQcY0TXoHQng3b2KkvR5rXysZI13k0EfXWClPDBxLekoiizJzGUyfh91VTk5ZDa6yck6yffh/C6UxOwcREZHZRsFJRCSORcIRfK3N9DTXM+ZtZnBwiCeDy+kfGuP6jBeoSvQRMDMJJuUTzF6Gs9jgO3VLyU63Y7EcGevyRURE4oaCk4hInBgZHsbb1EDDSDYe7wAlrS+yKPweaZYwaUDYtNJlzWNxlYPSggzS0suwFuVRlpkZ69JFRETinoKTiMgs1D8Uor1xG6MN72AJtJA20kmu2UuOxeTngXMw7elk5DpoS1uKzVlOdln1xNTfdbEuXkRE5CCk4CQiEkPRaBR/exs9zfWMdDZiC7bx7NBytvansMpez3npr9NnptFnz6M581CS8yu4pW45TkcWFosl1uWLiIjMGQpOIiIHyPapv7fRErTQ0GtltL2edcPPkmIJUQQTU3/X5dtYtmIeZY46yD2bklwHJbEuXkREZI5TcBIRmQFDI2FaO/yMbP4D9HhIHerAYfaQaYmydWgZr0YWUevMoCNjAQnOMjKL55FfNY/KlBQqY128iIiI7ELBSUTkI4hGo/T5fPgatzDc2UBCbyvbRnJ4treOBCLclfMCo9gJJObhyajBnlfB8VXzOb+4BKvVAhwV61MQERGRKVBwEhGZokg4gq+lia6ubtzDDlq6+lnf+2MKrT0Ujo/pMTNxpDs5Y1EV5fnpkLmEPIeDAqs1prWLiIjIR6PgJCKyG6NjEVp9A/R/8GcsnZtJGWzHEfVvn/o7kslv+8+g2JVGV84SRjNSSC+uIr+qhvKMTMpjXbyIiIhMOwUnEZnz+nv8dDXUM9TRgCXQgn3Ez12BEzFNC+el/ZnF9hZ6Ely0Zi0l0VVOVlkND1TVYEuwAofFunwRERE5ABScRGTO2DH1t79pCx+Ei2nyjVLe/SrHJ7xJ/viY7VN/53P64YUUFboodywjNzeTPN1qJyIiMqcpOInIQSkcidLePUhn0zaSGl8jaaCN3Eg3KZYQxcDPgycxml1JaV4tjfYc0oqqyKuqpSQnlxJgQaxPQERERGYVBScRiXuDwX68DW4G2howAy2kDnXw3OBC3hstpdLm5aqMd/AnOCem/s4qnceGyhqSkpNjXbqIiIjECQUnEYkb0WiUXm8XrX/5E/XeMO8Hswh0dXBdwhM4AScwYCbTm5jHotoCVlctoNS1kuzsT+KwJcS6fBEREYljCk4iMitFoyYdPUO0dAZJfv9X2PtbyQ17SbOMkAWER6tpsR9PWUEhDda1pBZU4qqsId/potBq5ZBYn4CIiIgcVBScRCTmRoaH6GrYSrB1G1G/h5TBdnyhZB7pPxqAG7M2k5CQgDetBqujjAJjPke4yjghI2N8DwtjV7yIiIjMCQpOInJABXv8eBu20Oft4s2xebR4Bzgz9AtqEzvJBYZNOz0JLpLyyrn0qEMoy8+gIPcoEm3/+OvK5crA5+uP3UmIiIjInDNpcDIMwwH8GKgGRoGtwOVut9tnGMYqYCOQAjQBF7jdbu/4dtO+TkTiRyQaxd87jMc7yMjWP5Pj20RWyEuWZZB8wGFa+VnkEorzshlMO472TBuOilqchUWa+ltERERmnalccTKBu9xu98sAhmF8C7jTMIzLgMeBS9xu96uGYXwVuBP4jGEYluleN50nLSLTKzQawtu0jb6WrYS7m0kaaMcR8fEfvacRNFM5NrmZotReAqnlBHJKSSusxFVt8M3snPE9LIpp/SIiIiKTmTQ4ud3uHuDlDy36E3AlsAIYcbvdr44vf5DtV4g+M0PrRGQWGAz24W2oZ6Ctgb+PlbC5x0Zh31/4VNqrZAEh04Y/wUl75kLOWVJJYVkpxc6jsSdqVjsRERGJX/v0jJNhGFa2h6ZfAmVA8451bre72zAMq2EYuTOxbjzAicgBEo1G6Q0O4/EN09XaQnHz82SMdpJr6Z+Y+vvtsaPIci2juGwFrfYycstrcBaXaepvEREROejs6+QQ9wIDwH3AGdNfzvRwONJjenyXK2PyQTKrzPWehcNh2urr6drqZqi9gYS+FrJDXl4eruPFkUWkWUbYkNPFQGoRw85yMkvnUVI3ny8WFGCxWGJS81zvWTxSz+KPehZf1K/4o57FlykHJ8Mwvg3UAOvdbnfUMAwPUP6h9U7AdLvdPTOxbl9Oyu8fIBo192WTaaPZvuLPXOvZyNAQXQ31BNu24R2APw6U0u7r57aMn+C0RAibVvxWB960GubVLGJ57TJKXOmkJJ2y036iQHf3QEzOYa717GCgnsUf9Sy+qF/xRz2LHavVsl8XWqYUnAzDuB1YDqxzu92j44vfBlIMw1gz/kzSFcDPZnCdiOyjYF8/np4Qnq4BnFt/iWuogVyzl1yLSS4wFikiKauCo5eW0p74KRyFxbgqKslJtMe6dBEREZFZZSrTkS8AbgK2AH80DAOg0e12n2EYxoXARsMwkhmfOhxg/IrUtK4TkT2Lmibd7W30NLgZ8TaSGGwjK9RFOGrlu31nAnBh9iBpSbkEsxaSkl9JbmUNSwqKWDYx9XdN7E5AREREZJazmGZsbmmbIRVAo27Vk30Rbz3bPvX3VvpatjHW7eE3Y4fh8Q2x3vYaa5K3EDEt9FhyGEwpwMwpJfHQEynNzyA9JTHWpU+beOuZqGfxSD2LL+pX/FHPYudDt+pVsv1CzZTs6+QQInIADQb7aPGH8HSPEG7ahBH4A7lmgCxLlCxg1LSRljyfjx1aRG7mKfRmf4L8imqyk1NiXbqIiIjIQUXBSWQWME2TQE8vvi1/YaSzEWtfK1mjXeRY+nkmeAL14UKWpo9QkZqOJ9PAnlexferv0jKutWrqbxEREZGZpuAkcoCFw2P4mpsIeLYy5mvm76OFvO7PwTHWyReyngfATxbB5EJ6s1dy+sdWUlRRTlZ6UowrFxEREZm7FJxEZtDw0CAdnT009Vpo7/BzePtPcET9pFsipANh00qLbTXLjVrKXWX02GvIq66hIi227yITERERkZ0pOIlMk77BEL7Nmxhs34q1t5X0kU5yzT6aQxU8PngkackJLMpMpyWzArurnKyyebjKKzl1p6m/K2JVvoiIiIjshYKTyD6KRCP4W1vpad7KaFcjwcFRnu5fTN9AiBszf0mVrZdeM52gPZ/+rMUUFtfxrbql5GYmYbEcHevyRURERGQ/KDiJ7EVodJSu5iYahzPwdPVT2vob5o/9jRTLGMVAxLTQbilgQcWxlOWlY027AktJAaVZ2bEuXURERESmkYKTyLjBkTHat21juPFdCLSSNtyBw+whE/hJ4Dys9iROysmmI3MRCc4yMkurya+Yx/zkZObHungRERERmVEKTjLnRKNRAl2ddDfWM9LVSGJ/G08NrKQxaOPopM2cmfYm/WYKvYn5NGfWkZRfwdfrVuJyZmHVrXYiIiIic5KCkxzUwuExvM1NtPZZaAiYRNo/YO3Qr0mzjFI0PqaHLOryLCxbWkVlbg1RxzkUOV0T60VEREREFJzkoDESCtPW7mfog1cx/R5ShjpwRP1kWCL8dfBw3ogcwnxnKt50A6ujjIziavKqalhRUUi5rz/W5YuIiIjILKbgJHGpr9uHt7GeoY4GrIFW3KNOXuipwk6Iu3J/xZBpJ2DLoyVrBXZnOSdXH8olpSUkWK3A2liXLyIiIiJxRsFJZrVINEJ3awtdnX7qh7Np7gxyeuBRXNY+CsbH9JrpuFIdnLamktL8dMYyFuPKyyffao1p7SIiIiJy8FBwklljLByhrXuQvs1/hs4PSB5sJzfSTaplDFs4l98MrKfQkUZn1kIGMzNIK6wkr7qW0qxsSmNdvIiIiIgc1BScJCb6+/rwNWxhoG0bBFqxDAf4fuB4oqbJJWmvMt/ehj/BNT71dzlZZfP4QXUdiTYrcFisyxcRERGROUbBSWZUNBqlp6sDf2M9H4SL8fiGqfS9zNHWTbgAFxA0U+lLzGPdYUWUFuZQmruYHGc2TmtCrMsXEREREQEUnGQahSNROv1DdDVtxdb4OvaBNnLDPlLHp/5+vO9UIlklFDtqaEzKJbWwElelQbHTSTHoJbIiIiIiMmspOMl+GR4coKuhnv7WBqI9HlKHOvhF/xI2hwqoS2zjsvS38FsddKXXbZ/6u6Sam6vqSE5NjnXpIiIiIiL7TMFJJtXX7cPbsIW2gQTeD6Yz1OXhs/wMhwUcwJBpp8eWx7JaF2sq51PmWkFm7rnk2hJjXbqIiIiIyLRQcJIJUdPEGxjG09mH/f1fkxhsI3vMS6ZliALAPVJHU+JRlOcV0Ww9muSCKpwVNbjyC8i3Wjkk1icgIiIiIjJDFJzmqNDoCJ0N2wi2biXS7SF5sJ220XQe718NwC3Z7xKxJtGTWklPbhnpRVUcW1XDqVnZ43tYErviRUREREQOMAWnOaC/txdfwxZ6vD7eGavA4x3gnNH/ocLWTQ4watrwJ7hIzyvi00fWUZaXQWHuUdjt+s9DRERERAQUnA4q0WiUnuAoHu8AI/V/ItP7LpmhLnIsA7iADNPGf49dTGl+Jr2px9KWmYSjYh65xaWa+ltEREREZC8UnOLU2NgY3uZGej1bGfM1kzTQRk7Yx9d7z2DEtHNS8lYOS/XTl1JCb3YJaUXVuCpq+I7TOb6HxTGtX0REREQknig4xYGhge1Tfw+0beNv4TK2dFsoC77N2Sl/IhMYMxPwWx14Mw7h/CXlFJYUUew8iuQktVdEREREZDrok/UsYpomff0jeHxD+DxN5HleJGOkkxz6cFrACbweOpY05yKcxctpTSwnu7wGV1m5pv4WEREREZlBszI4GYZRCzzG9tcE+YGL3G53fWyrml6RSARfi4eAZyuj3kYSg+1kj3n5v6H5/L/R+eRYB7g+q51gUj7BrKUkF1TirKjhsvwCrFZrrMsXEREREZlTZmVwAh4E7ne73Y8bhnEBsBE4LsY17bfQ6CidDfUEW7fRMWDljYFCOr193Jb+OGkWk4hpwW/JpSe1kkNq5rNq3lJK8zJITf5ErEsXERERERFmYXAyDCMPWAacML7ov4H7DMNwud1uX+wq2zemadL54n8Rbv+AjFA3ORaTHGAwXEpC1hmsXlRKs+1cHEWl5FVWk21PinXJIiIiIiKyB7MuOAGlQJvb7Y4AuN3uiGEY7ePL4yY4/fFvnYS2tJKWkERb9iqyS6txVNSworiEwyem/q6NaY0iIiIiIjI1szE4fWQOR3pMj+9yZXDsYXa2FHyRhdVOzW4XB1yujFiXIPtIPYs/6ln8Uc/ii/oVf9Sz+DIbP9G3AMWGYSSMX21KAIrGl0+J3z9ANGrOWIF743Jl4PP1A1DhSqM/OEx/TCqRqfpwzyQ+qGfxRz2LP+pZfFG/4o96FjtWq2W/LrTMuunZ3G63F3gXOG980XnAO/H0fJOIiIiIiBxcZuMVJ4ArgMcMw/gaEAAuinE9IiIiIiIyh83K4OR2uz8ADo91HSIiIiIiIjBLg9NHkADb71uMpVgfX/adehZ/1LP4o57FH/Usvqhf8Uc9i40Pfd8T9jbun1lMMzaTKMyQNcArsS5CRERERERmvSOBV6c6+GALTknASqADiMS4FhERERERmX0SgELgTWB0qhsdbMFJRERERERk2s266chFRERERERmGwUnERERERGRSSg4iYiIiIiITELBSUREREREZBIKTiIiIiIiIpNQcBIREREREZmEgpOIiIiIiMgkFJxEREREREQmoeAkIiIiIiIyCQUnERERERGRSSg4iYiIiIiITELBSUREREREZBIKTiIiIiIiIpNQcBIREREREZmEgpOIiIiIiMgkFJxEREREREQmoeAkIiIiIiIyCQUnERERERGRSSg4iYiIiIiITELBSUREREREZBIKTiIiIiIiIpNQcBIREREREZmEgpOIiIiIiMgkFJxEREREREQmoeAkIiIiIiIyCQUnERERERGRSdhiXcA0SwJWAh1AJMa1iIiIiIjI7JMAFAJvAqNT3ehgC04rgVdiXYSIiIiIiMx6RwKvTnXwwRacOgACgUGiUTMmBTgc6fj9AzE5tuwf9Sz+qGfxRz2LP+pZfFG/4o96FjtWq4WcnDQYzw5TdbAFpwhANGrGLDjtOL7EF/Us/qhn8Uc9iz/qWXxRv+KPehZz+/RojyaHEBERERERmYSCk4iIiPx/9u47PI7y3P//e1errpW0Tb1b0rjigjE2NVTTHAgYAoQAARIINSThkB+QE5IAAUIOocMXkkAghTQIhBpIOECSE3qHcVGvu9pV77s7vz8sFBs3WZa8Kp/XdemyZp6ZZ+7Zm0G6Nc88IyIiO6HCSUREREREZCfG9IyTYRi3ACcBJcAi0zQ/GFlfAwyMfAFcaZrmcyNtK4H7gGSgBjjDNE3/7rSNVyQSpr09QDg8tDvdjInfbycajU76cWTizIacORwJuFw+4uJm2mONIiIiMtX0dnXhrzLpaaqmuTeOf3YXMhSO8oNzV+CIm773bcb6W9TjwG1se6rvtZ8WUp8yDMMGPAKcbZrmq4ZhXAPcCJwz3rbxnNyn2tsDJCWlkJqag81m252udsrhsBMOz+xfwmeamZ4zy7Lo7e2ivT2A15sb63BERERkhohGo3S2d1HbHqa+tZv8jX/C21+Dy9aNF/ACvZES0t1zmFfiwm6f3N/DJ9uYCifTNF8FMAxjrP0uBwY+3Q+4l013j87ZjbZxC4eH9kjRJDIV2Ww2UlPT6enpiHUoIiIiMk1FoxatdbV01HzCUKCWhK4GXOEAXZFEbu86HoCvuIaJT8qlPXMFKTml+MoqWenLYmWMY58oEzFu51cjd4peBa4yTbMDKAJqP93ANM02wzDshmG4x9tmmmZod4JU0SSzmf77FxERkbEa6O/DX7WBroYNhEON/GVoJQ2BXk5OfJkViVWELTttdg+tqZXYvcV8Z8EyCrPSSE48NNahT6rdLZwONE2z3jCMROCnwJ3AGbsf1u7xeNK2WPb77Tgce2485Z48lkyM2ZAzu92Oz+eMdRgTZiady2yhnE0/ytn0onxNP1MhZx1tbdS0DVPV3MvQun8yp+1lXFYHLpuFC+i3EvBk7s3C/UrIz8gBbwqllRVUJiTEOvQ9brcKJ9M060f+HTQM427giZGmOqD40+0Mw/AClmmaIcMwxtW2K3EFgz1bvFAsGo3usWdYxvK8zNq1a0hISCA+PoFoNMJZZ53L4Yev5q233uDSSy/gtNO+zEUXXTa6/cUXf4133nmL559/mZSUlK36a2sLcNppJ/KnPz2N0/mfC/Ctt97gxht/yKOPPs4ll5xPa2srqampo+3f+taVLFq0GMuy+P3vf8sTTzwGWESjURYvXspRRx3Lrbf+GICurk76+nrJyckDYM2aEzjppFN49923uffeO2lvbycSibB06TIuvvhy0tPTR2P/9LiDgwOsXn0MZ5993g4/n/Xr13HbbbfQ09NDODxMWpqTG274Mb/4xQO8//67ANTUVJGXl09CQiIAP/vZw8TFxW2zv48//pD77ruLxsZGkpISycx0ce6557NkyTIuvvhrfPTRBzz++DOkp2eMfm6XXnoBp556Bhdf/A3eeusNrrjiMgoLi4lEwng8Xq688hpyc/O4/vprmTt3Hied9MUdnlM0GuWii77K979/A1lZ2Tvc9rPOPvt07rvv5yQmJu1wu4sv/hpXXfU98vLytxtDINC9S8eeqnw+54w5l9lCOZt+lLPpRfmafvZ0zizLoi0QJLTuPQZaq3F0NZI51Eq6rZcHOo+mNuJj34wBcpLcdGYsIjG7FG9JBd7cPL5u3/IPzB2dg8DgHot9otnttq1utIzFuAsnwzBSAYdpmp0jQ/VOBd4ZaX4TSDYM44CR55UuAH63m20zynXX3URZWTnr1n3CBRecy/Ll+wJQVFTMK6+8xAUXXExcXBxNTY0MDg7ssC+v18fixUt58cXnOOGEtaPrn376SY45ZlY/KA4AACAASURBVM3oMK1vfOPb7L//gVvtf//99/DOO29x++334HZ7iEajvPLKS3i9Ph588Nejff3zn69w3XU3j+7X0FDP1VdfwQ9/eBNLl+5NNBrlzjtv5bvf/Q633Xb36HafHretrY0zzljLPvusZMGChds9n+9//xq+/vVLRmOtr68jKSmZb33rytFt1q5dM/oZ7sjGjRu44opv8N3v/oB99101GveGDetGtykpKeOFF57nxBNPHj1Xw5i3RT8lJWX87GcPA3DHHf/DHXfcyg03/HiHx97c3//+AqWlZbtcNAGjOdiZU045nZ///P9xzTXf3+VjiIiIyMwxPDSEv7aKzroNDAdqeXeoiH8HM8iLNHJp+nNELRtBWyah5CKCrkJOPWg5eUWFOFNm312kXTHW6chvB04EcoAXDMMIAmuAPxqGEQfEAR8BFwKYphk1DOPLwH2GYSQxMq347rRNpH+838yr7zVPdLcAHLw0j5Xzc8a8fWXlXFJSUmhubgQgOTmFkpJSXnvtX6xadQDPPPMXjjrqWD7++KMd9nPssZ/n179+eLRw6uvr5eWXX+Lhhx/d4X59fX389re/4sEHf4Xb7QE2Dek6+OCdj1H95S9/zrHHHs/SpXuP7nfhhZdxyinH8+67b7N48dIttvd6vRQWFtPa2rLDwikQaMXn840uFxYW7TSW7fnVrx7iuOOOHy2aAAoKCikoKBxdPvbYNTz77FOceOLJ9PX18f7773LYYUcyNLTt6euXL1/BXXfdvktxPPHEY1vcabv44q9hGPP4+OMPaWlpZu3aU/H5fPzxj7+jrS3AhRdexqGHHg7AAQcsH73buHbtGo466lhef/3fBINtnHbaGaN3u/bb7wBuvvl6+vp6SUlJ3WYcIiIiMrP0dXfT1NpObaed5qZWVjX/BrcVIt0WJR0YshzUxKey7/xKir2FtCcvJLu0nLLk5FiHPu2MdVa9S4FLt9G0dBvrPt3nn8CiiWybid566w2GhoYoKChi/XoTgGOOWcOf//wnVq7cnxdffJ577vnZ6JC57TnggIP5yU9upLq6itLSMv72t7+ycOFeZGf/p4j76U9v4f777xldvvXWO2lubiIhIZ6iopJdjn3jxg2cdda5W6xzOBxUVhps2LBuq8Kprq6Wrq7O0UJre8488xwuuuirLFy4FwsX7sXhh6+muHjX4wNYt+4TPve5w3a4TX5+PgkJCdTUVPPhh+9z4IGf2+6wv2g0yksv/Y3KyjHPMEk4HOb9999j/vwFW6wPBPzceef/IxQK8sUvnsApp5zOvff+nI8++oCrr/6v0cLpswYGBrjvvl/Q3NzEmWd+kaOPXkNKSgoOh4Oysjm89967rFy535jjExERkanPsiw6e4cIfPQ6/U1V2DsacA624LZ1sXGgnEf79sOZ7GCJ00mds4L4rBLcReX4Cks43rHt32tk18zKt2HuvyiX/RdNzvtsxvpOoGuuuZKEhERSU1O5/vqbtng2admy5fzkJzfy8ssvUVY2h4yMzJ32Fx8fzxFHHM3TTz/JRRddxlNPPcnatadusc22huo1NTWN8cy2ZlnWzjdiU8F2zz13UFdXw2WXfRuXy7XD7b/0pbNYvfoY3nzzdd544zXOPfcMbrnldpYsWTZpMR511LE888xf+PDD9/nmN/+Lv//9xS3aa2qqOPvs07Esi/Lyci655PIxx9DR0UF8vGOrZ5QOOeQw7HY7Xq+PjIxMDj74EAAMYx6BgJ/BwUESExO36u/ww48EIDc3D6cznUDAP1pYut0eAoHdel+0iIiIxFgkEiFQX0tH7XoG/TV09EV5rHMhXX3DXJPxGKVx3YSsdLoSc+jI3Jvigvn8xNiLzLQEbLaDYh3+jDUrC6epYEfP59hsNg499Ahuvvk6rrrq2jH3edxxx3P55Rdx7LGfp66uhgMPPHin+5SWljE0NERdXS1FRcU73X5z5eUVfPjh+xx00OdG14XDYdatMzn11P+MsPy0YHvvvXe4/PKLWLJkGXPm7PjZJK/Xx+rVx7B69TEkJiby0ksvjqtw+nQ43OYxbsuhhx7BGWecjMfjoaysfKvCafNnnHZVYmLiNof9fTqxBWwa5pgwMjvNp3e7IpHINvtL2GwWG7vdTiQSHl0eGhraZrElIiIiU9PQQD8ttbVU9zup8/dQVv8kc8OfkGoLkwqELTvYC1g052CKsp1YKRdhL8inOD32M/LNNiqcpqjjjz+R5OTkLZ7N2Zk5c8rx+bK47rrvccQRR23xC/b2pKSkcMopp3Pzzdfzwx/eiMvlxrIs/vrXZ1mwYBH5+QXb3feMM87m618/h5Ur9xudHOLuu2+joKBwm0XOXnst4cQTT+GBB+7lRz+6Zbv9vvzyS+y33wE4HA4GBwepqakeUxG4Laed9mUuv/xCli1bzj77bJqAo66uhnXrTA4/fPUWn8NFF12Gx+Md13F2xOl04nK5aW5uIjc3b8L731xtbTXl5RWTegwREREZn57+YZo3mAzUvo+9s5Hk3kbcVgdObDzcfjqJifG4XR4aUpfi8BaTWTSHrJI5LE5IYHGsgxcVTlOVz5fFl7501i7vd9xxx/OTn9zIlVdevVXbZ59xOu+88znggIM5//yLePTRX3HJJecDm4a37bXXUlatOmCHxyoqKua6627mvvvuoqOjg0gkzJIly7juupu2u8+ZZ57DqaeewPr1JhUV235O6KWXXuSee24nISGRSCTM8uX77nS67+2pqKjkxhtv5f777+bHP76BpKSkkenIL9hq28MOO3Jcx7j//nt55JGHRpf/67+u2uqzO+igQ/j3v//FCSecNK5jjEVLy6YJT3Y206CIiIhMrmg0SqiliVD1evpbq3F0NvL7/pXUdcVxeNL7rEl5my4rlY6ELGrTF5KYVcIN81fgdadht43vj8Uy+WxjfQZkmigBqj/7HqeWllpycnZtGNp4jfUZJ5k69kTOmpoaufbaq7nvvl+MTg8/0e69904KCgo47rgTttm+J6+Dyab3lUw/ytn0o5xNL8pX7AwPDxGoraa+O47qkIXV+D6H9T9Lsm3TMP2oZSNky+Q1z+dJzy+jxGUn35vCnLklylmMbPYep1I2zeI9JrrjJLIH5OXlc+qpZxAMtuH1+na+wzh4vV6OOebzk9K3iIiIwMBQmMbGAP3mP4gG60jua8YTDeK0RXm7Zz/ejlay0OOkxTkfu6cIZ/4csssqKE1JoTTWwctuU+E0zZx77pe3mjRgwYKFXHHFVTGKaHz+9a9Xue++u7daf/75F+50iOBntbeHuPzyi7daf/DBh/CVr3x13DFOtO1NLz5RPjuLooiIiIxfZ1uAQNU6+po3Tf39wWAOfw0Vk2rr53rXX+i1Eml3ZFGfsYL4rBI+P2cRX83PJc5uB46IdfgyCVQ4TTPjndltqlm16oBdLpC2x+Vy8+CDv56QvkRERGR2iUQjBOvraQm0s743nbqWbk7qeACXrYfskW3aLSfZqdkcP7+Uomwnw85lZGVlk2O3xzR22bNUOImIiIjIrDAcjtLU1kvnR/+E1nUk9jbhiQRItoWJDGfxbO/R5HpSaXIuoiMjk7S8MrLnVFKUnkFRrIOXmFPhJCIiIiIzTm9nB60b19HbXI0VqiPa38NdHZ8jErX4atorVMS3EIzz0Zi+GIe3GF9RBXfPMYh32IEVsQ5fpiAVTiIiIiIybUWjUTpaW2irWc8n4ULqAr1U+F9gP/u7+AAf0GWl0BGfzdErCijMyaDItRcunwuvPS7W4cs0osIpBtauXUNCQgIJCYkALFu2N5de+i0eeOBeSkvLOOywI3nrrTcIh8OsWLFyTH3W1dVy/fXX0tnZSUZGBtdc830KC7d/U7muroavfOVLfOELJ3Pxxd8A4LLLLqSzswOASCRMdXUVDz74m61eqGpZFjabjeuvv5arr752dDlWnnjiMf74x0dH4zj99DNZvfoYAILBNn784xtobm4iHA5z5pnnjLZti2VZfOMbF7JhwzqeeupFAH7/+9/y1FNPjG7T1NTImjXHc8kl35zcExMREZEtRKJRWkL9+KtM7DWvkdDdiCvsJ9U2SC7ws44TsGfmUOCuoDrRS0peGb5Sg3yvl3xgQaxPQKY1FU4xct11N231otLzzvvPS1nffvtN+vv7x1w43XLLjzjxxJNZvfoYnnvuaX784xu4/fZ7t7ltJBLh5ptv4MADP7fF+ttu+88sdy+//BL333/3VkUTwMMP/4KUlBQikQjPP/8Mn3zyEZde+q0xxbkza9eu4Q9/eHKX9ikoKOSOO/4f6enp+P2tfOUrp7PXXkvIzc3jjjtuZe7c+dx44//Q3t7OueeewZIly8jOztlmX3/846Pk5OSyYcO60XUnn3wqJ5+8aca6cDjMCScczRFHHDX+kxQREZGdGujto7V6Pd2NGzdN/d3bzB96lrF+0Mde8XWcmfYaQbsXf5qBzVNMev4cri03SE5OjnXoMkOpcJpCrr/+WubOnceSJXvz5z//iWg0yhtvvMZhhx3Jl7989nb3a28PsW7dJ9x6610AHH74am699Wba29txuVxbbf/IIw+y334H0t/fR39//zb7fOqpP3Pssdt+J9CZZ57D44//keeff4bs7JxtFk1vvfUGN998PQ888DBpaWlcf/21uN0evv71S8bwSeyaZcuWj36flZWNx+PF7/eTm5vHhg3r+eIXTwfA5XJRUVHJ3/72AqeddsZW/dTX1/Hii89z1VXX8uqr/7vNY/3jHy/j8XiYO3f+hJ+HiIjIbNUVasNftY6GngQ+6UxisLWGs60/4LaBG+izEgg5slhW4eXgknkU+ZbhdJ+OOz4h1qHLLKLCKUauuebK0aF6X//6Jey776rRtjlzyjn++BPp7+8fHUYH8O1vX8p5512w1S/tra2teL1ZxMVtGqcbFxeH1+vD72/dqnDasGE9r732f9x++708+OAD24wtFAryxhuv8Z3v/Pc22x9++EGSkpI48sijKS0t4847f7pFnLCpmDnqqGO58cYfsP/+B1FfX8eVV14zxk9n/N566w16enqYO3cuAIYxlxdeeJ65c+fT3NzEBx+8R25u3lb7RaNRbrrpOr75zStxOLZ/WTz11BPbLShFRERkxyzLItDRT31zB46Pn8bR1UjmUCvptj6ygff7F7Axfj9Ks3KpsR9Mck4J7pJKfDm5ZNvtzIv1CcisNmsLp74nf7TVOkfZChIWHIYVHqT/mf/Zqj2+8gDijQOJDnQz8Nc7t26ffygOY9VW67dlW0P1duaWW27fpe0/KxwOc9NN13HVVd8bLbK25Zln/sK+++63zbtVAGeccdboM05HHrn9YWtnnnkO3/jGhdx110954IFHtluQbP5S37a2AGefvekOUXZ2NjfddOuYz6+6uorrrvse3/ve9SQmJgFw8cWXc8cd/8PZZ59OdnYOy5btQ1zc1nH85jcPs2TJMioqDJqbm7bZf1tbG2+++TpXXXXtmGMSERGZrYaHBvFXb6SjfiPhtlqSepqoGUzn0e4VgMV1mW8wYE8hmFJC0FVIWm4Zh88x+EJm5kgPe8cyfJGtzNrCaSbJzs6mrc1PJBIhLi6OSCRCW1uArKzsLbZra2ujqamBK664DICenm4sy6K3t5crr7x6dLunn36SCy+8bLvH+3QiiKuvvnaL5c/q6emhtbWF+PgEuro6yMnZ9nNFm7/Ud+3aNTt9me1Xv3oWw8PDpKSkcPfdm+6a1dfXccUVl3HFFVexePGS0W1dLhf//d8/HF3+9rcvpaSkdKs+3333bTZsWM+zzz5FJBKhu7ubtWvX8NBDvyE1NQ3YVFCuWrU/maP/QxcRERGA3q4u/FXrCAbaeHeoiPrWHk4d/A35ce2kA4OWg2CclwxfDmftb1CU7cTjPpDERA21k+lj1hZOKWv+v+222RyJO2y3Jzl32D4RUlNTaWsLjGlbl8tNeXklL7zwHKtXH8MLLzxHRYWx1R2jnJyc0ZniAH72s/u2Gg74/vvv0tPTw8qV++32OfzoR9/nuONOYN68+Vx77dU88MAvSUlJ3e1+77//oS2WGxsb+OY3L+Eb3/g2q1btv0VbZ2cHqalpOBwO3nzzdaqqNnLddTdv1efNN/909Pvm5ibOO+/LW01S8cwzT3LJJZfvdvwiIiLTlWVZdPQMUdfazYD5T1ID75M+2ILL1o0XSIom8sjQlyjKTifg/RxWZjKuonJ8BcV4HZr6W6a3WVs4TXUHHXQIV199BWefffro5BDbe8YJ4IorruK6677HL37xAE6nk+9+9/ujbTva77OefvpJjjrq2B0O5RuL3/3u1wwODo4O6zvkkMO56abr+f73b9itfrflnnvuoKurgwceuI8HHrgP+M9zYx999CG33XYLdrudjIxMbrrpf0hK2jSM7/HH/0BbWxsXXHDhTo/x3nvv0NfXx4oVYxuKKSIiMt1FwhEC9TWE6tYz7K8loauR9HAbP2g/gWEcfD7ZZGlSK51JuXRk7ENybhm+skp+6ssa6WHJDvsXmW5slmXFOoaJVAJUB4M9RKP/Oa+Wllpycor3SAAOh51wOLpHjiUTY7bkbE9eB5PN53MSCHTHOgzZBcrZ9KOcTS+7m6/B/j5aqzbS1bCBDyIlbGiLUNrxbz6f9DoAYctO0OahLyWH9vLjyM3PpsCXSkpS/ESdwqyjayx27HYbHk8aQClQM9b9dMdJREREZBbp7huizt9DW2017toXSBtowW114LJZuICXBg4n3jMfZ/ne1CWVkFlYTlZJKS5N/S2znAonERERkRkoGo0SamokWLuegZZqHF2NZAy18kzfIv41WEmWvZOLM+roTMimK30hSTmleIoruDAvH7vdHuvwRaYcFU4iIiIi09zw0BCN600669bT1Ovgze4s/P4g16b+ijwgatkI2TJpTy5i4ZxK9itfQlFWGs6UL1AQ6+BFpgkVTiIiIiLTSF//IA1t/dT7e3CZj5HeU4vHCpFui5IOtA8XM+xcw+L5RVTb15KZV0xWWTmlycmxDl1kWps1hZNlWdt935DITDfDJoEREZk1OgJ+AlXr6G+uwtbZQPpAC12RBG7tOgaACzICDCek0Ow2wF2Iu6iClYUl7D869bcRu+BFZphZUTg5HAn09naRmpqu4klmnU0vOe7C4dBDvSIiU1UkGqGtvo5Q7Xr6A028FF5Cnb+Hk2zPsyShDoB2y0lXYg4RVwmXHbkXRdlOMtMOwWazaYY2kT1gVhROLpeP9vYAPT0dk34su91ONDrzp7aeSWZDzhyOBFwuX6zDEBERYGhggMbQAHX+XsLVr1MY/D/ckTZSbGFS2DT197OOOSwq8xCXdjRtGfFklVVSlJ4e69BFZrVZUTjFxTnwenP3yLH0F5/pRzkTEZHJ0t3VTWD9R/Q0V2Frrye1vwW31c4DXcfRHHGxMiVEQYqdxowlOLzFZBaVk1VSxlUJibEOXUQ+Y1YUTiIiIiKTKRqNEmppIlSznv6Waj4YLuKdYDLZ/Rs53/k3fECnlUJnQja16fM5ed+F5BUX4s08BLseIxCZFlQ4iYiIiOyCcHiYFn8HdaEwrY3NzGv4E66wnxTbELlA1ALTdhBz8ldQ5l1Ba2I5WaWVFHi8mvpbZBpT4SQiIiKyHf2Dw/jXfUhX40asYC3JfS14om28PWjwWN8+JDksFmQM0+qcj91diLOgnOzSCk5JTYl16CIywVQ4iYiIiACdbW0Eqkz6mqsI9lk8312JP9TH9zN/T4m9nz4rkZAji/qMFRTnL+CHlUvJ8aQQZz8s1qGLyB6gwklERERmlUg0QrC5ldpuB3Wt3eRVP0nxoInT1k/2yDaWlU++bymr5mfTnXQeKfm5+LJzyLbbYxq7iMSOCicRERGZsYbDUVpqqums/pBIWy1JvU24I21gwT0dpxJnt3OSK562lDLa3EWk5ZWRVVbB4oxMFo/2UhrDMxCRqUKFk4iIiMwIvV2dtG5cR09TFYTq+fPgSupCwxyV+BZHJr/PoOUgGOejKX0v4rzFfG/B3uRlOYl3HBLr0EVkGthp4WQYxi3ASUAJsMg0zQ9G1lcCDwEeIAicaZrm+slqExEREYFNU393+Fupb49SGxwi0vAee3e+gMvWjQ/wAd1WMgXpS5lfUUJZZj79mSfhKSzEa4+LdfgiMk2N5Y7T48BtwCufWX8vcJdpmo8YhnEGcB9w6CS2iYiIyCwTiUZpaQ3R+cnrDAdqSehuxBX2k2ob5KXug3lvuJhFbjvlSXl0ZBaQkluGr7SCPF8WX4l18CIyo+y0cDJN81UAwzBG1xmGkQUsA44YWfUb4E7DMHyAbaLbTNMMjPcERUREZHoY6O+jdeN6uhs3Eg3W8dFADn8P5ZAe7eS/Mx9j2LITtHvxpxnY3EWsmbOM80uKSEpwAGtiHb6IzHDjfcapEGg0TTMCYJpmxDCMppH1tkloU+EkIiIyg3SFgjQ3B6nqTqS+tYvDW3+Ox+rAbbNwA/1WAi2JqRyydG+KsirpTpqLr6QUd3xCrEMXkVlqRk4O4fGkxfT4Pp8zpseXXaecTT/K2fSjnE0/E5Ezy7JoDfXR8NY/6a37BFuojvTBFtJtfXQM5fH7nsPxuZJZnlrMYMZS0grLyaucR0lhAQs09fcu0TU2/Shn08t4C6d6IN8wjLiRO0NxQN7IetsktO2SYLCHaNQa56ntHp/PSSDQHZNjy/goZ9OPcjb9KGfTz3hyNjw0hL9mIx11Gwi31TLQ18cvO/elfzDCxc7nKHP4CdlchFJKCLoK8RZUcruxF2nJ8cCqLfoKBnsn8GxmPl1j049yFjt2u21cN1rGVTiZpuk3DOMd4DTgkZF/3/70WaTJaBMREZGpo6+7m9aqdWwY8lHn76G46a/sHX2XdFuUdGDIcuCPy2Ll/GyKsp140ueQnJtFWXJyrEMXERmXsUxHfjtwIpADvGAYRtA0zQXABcBDhmH8N9AOnLnZbpPRJiIiInuYZVl09AzRvHE94Zo3sXc04BxsxW3rwgvc1r4WkjNwu/OoS0wmMauYzOIKfAXFeBxxzIv1CYiITBCbZcVmSNskKQGqNVRPdoVyNv0oZ9OPcjY9RMIRAvU1hOrWQ6gBW6iOx/r2ZkOvk+UJG/ly2j8IWel0JeVgZRSQnFuKz1hCRkYaNpst1uHParrGph/lLHY2G6pXCtSMdb8ZOTmEiIiI7Nhgfz+tVRto6LGxoSOeoeYNfGHwMVJtYVKBsGUnaHOzsCCZFYUVFHsWEOc7jeK02E7AJCISKyqcREREZrie/mHqm4IMf/R3bO11pA204LY6cNks/tm3hH9by6jwuWhIWkq8r5iMwjnMX74YV9cQ5bEOXkRkilDhJCIiMkNEo1FCTY0Ea9cz0FqDo7OB6sFM/tSxEDtRbnK9QD9JdCZk05W+kKTsEg6bM58v5uSMDLXbb7SvhMREYChm5yIiMtWocBIREZmGhoeH8NdUE2gN8PFANnWt3Xyh+2Fy7e3kAVHLRsiWiSs9l1OWllOYnUZC5nI8mZkUxDp4EZFpSIWTiIjIFNc/GKbe30OP+W/iWj4kta8ZjxUk3RZlOJLG//aupSArjVbvCoacSaQXzCGrrJzS5BRKYx28iMgMocJJRERkCukI+AlUraO/uQpbZwPJA238qP0YLOycnPImSxPraHdkUZe+L/FZxbgLK7i7pAy73QYsj3X4IiIzlgonERGRGIhEI7TV1xGqXc8nwwVUtw1RFPwHqx2vkzOyTbvlpCsxh7X75ZGbl0WxdwUZ6Snk2O0xjV1EZDZS4SQiIjLJhsMRGgK9+GurSar+X5J6m/FEAqTYwqQAT/QcSV9mObbc+dQk+EjLLyOrrJKi9HQAFsY2fBERQYWTiIjIhOru6CBQtY6epo3Q3kBafzNP9yzkraESCuPauDj9fUJxPhozluDwFpFRWM7lJeUkJCbEOnQREdkBFU4iIiLjEI1GaW9poa1mHU09dj7oziTU6uebjkfwAT6gy0qhMz6bRXPzWVm2kKKsFNyZJ+Gzx8U6fBER2UUqnERERHYiHInQEuqnrrWb5I+eIKm7Hnc4QIptkDygabCUlqTVFOZlUxW3mtTcYrJKK8n3eMmPdfAiIjIhVDiJiIhspr+3F3/VeroaN2IF60juayY0lMB93YcC8K2M9Tgcdlqd87C7C3EWlLOqtIJDUlNGelgUu+BFRGTSqHASEZFZq7OtjUC1SVdrM69F5lLb2sMXhp5gXkITbqDPSiTk8OHILuWrn5tPUVYa2e6DccRpqJ2IyGyjwklERGa8SDRCW8cAdf5eBja8htv/JpnDraTb+sgGfJaNP0SzyMvKZDD1MJoy4vCVVOLLziFbU3+LiAgqnEREZIYZGhzEX72RzvoNhNtqSeptwh1p48edawhF0zgwqZ6DUzoJpZQSchWSmldG1pxKbsjIjHXoIiIyhalwEhGRaau3qxN/1Tq6G6v5eDiPD4MJZHV9yFmp/0sGMGg5CMb5aEpfxElL55BbVEi+92DiHRpqJyIiu0aFk4iITHnRaJSOzj7q2gZobWwkv+ZJ0gdbcdm68QJe4N3hA3D59qG4ZBkN8fl4iivxFBbi1dTfIiIyAVQ4iYjIlBKORAjU1tBRt54hfy0J3Q24wgFeHajg6f6lJDHEf7kDdCbl0ZFZQEpuGb7SCr7sy4p16CIiMoOpcBIRkZgZ6O+jdeN6uhs34u+J8o+eEpoC3fzA+WsKbMOELTttdg/+tEpKKhZzVeXe5PtSSU48Ktahi4jILKPCSURE9oiuzi7qQ2HqWrtxb/wLWb0bcFsduG0WbiASySExo4yDlxbQnPAlvDm5+EpKccUnxDp0ERERFU4iIjKxLMsi0NxMaOPHDPprcHQ1kDnkx7Ki/KTjZAC+lNlLWqKbroxFJGWX4imtYFFOHotHp/6uiN0JiIiIbIMKJxERGbfhs9LNdAAAGgdJREFUoSH8NRvpqNtIuK2W58IrqA30cXTcvzg46RMilo2QLZOOtFIi6flcsXovCnMySEs+NNahi4iI7BIVTiIiMiZ93d00BAepbetnuPZdKoMv4bFCpNuipANDloOUJIOV8wvxph9NR+axZJWUU5acjM/nJBDojvUpiIiIjJsKJxER2YJlWXS0dxFY9x79LdXYOxpIH2zBbevi8e7D+GQ4n0WpfZSkplDnrCAhqwRXUTm+whIu1vuRRERkhlLhJCIyi0XCEQL1NYTqNjDsr+HjwWz+FfLgHPRzZcaTAISsdLoTc+jMXM5xq/bha6WlZKQmYLOdEuPoRURE9hwVTiIis8Rgfz9NzUFqu2w0NLezouERPNE2Um1hUoGwZacxbgWLyw2KfYW0JZSQXVZJsdMZ69BFRERiToWTiMgM1NM/TOvH79DbuAE66knrb8ZtdVA/XMQvew4mOdHBwvRU+p2FxPuKySicQ1bJHI5J2Hzq75JYhS8iIjLlqHASEZnGotEooeYm2mrWM9haTU9PP4/1LCHUNci30p+i1BGky0qlIyGL2vSF+PIMbpq3N96MJGy2g2IdvoiIyLShwklEZJoYHh7CX1dHTV8qda095NY/x/yh90i2DZEPRC0bLTYflQWfozA7DUfqeVh5WeS7PeTHOngREZFpToWTiMgU1D8Yprmmmt6qd7GCdST3N+OJBkm3RflV+6lE45JY7XbS4pyP3VOEs2AO2WUVGMkpGLEOXkREZAZS4SQiEmOdAT/+6vX0N1dh66jn6YFlrGtPYL9Ek1NS/02vlUi7I4v6jBUkZJVwzdwV5GS5sNttsQ5dRERk1lDhJCKyh0SiEdrq62noiFDdDgNNJod2P4nT1k/OyDbtlpOyTIt5C0spcZcz7DqBrKxscuz2mMYuIiIy26lwEhGZBMPhCA3N7fR+8k8ibTUk9TbjiQRIsYX5sHc5rwwvoNKTRFvqHIKuItLyS8kqq6QoPYOiWAcvIiIiW1HhJCKym3o6O/BvXEdPUxW017NxIJOnQuXEWcPc7HqMYeIIxvlozFiCw1vEIaWLOK24mHiHHTg01uGLiIjIGKhwEhEZo2g0SntrCy1Nfjb0Z1DX2s2Rbb8kz9aGD/ABXVYKHcmLOGZVEUVZTobS5uHOy8Nrj4t1+CIiIrIbdrtwMgyjBhgY+QK40jTN5wzDWAncByQDNcAZpmn6R/YZV5uIyJ4SiUZpDvbR/skbRJs+JqGnCVfYT6ptEEc4kye6Pk+2O4VAmsGgcwkpuaVklRrke72a+ltERGQGmqg7TmtN0/zg0wXDMGzAI8DZpmm+ahjGNcCNwDnjbZugOEVEttLf24u/ej1dDRuxgnXE9QW5reMwwhGLM1JfZUlCLUG7B3/aXOyeItIKyrm7ciGJCXHAyliHLyIiInvAZA3VWw4MmKb56sjyvWy6e3TObrSJiOy2zmAbgap1rB/OojYwQF7rKxxs/Ru3DdxAn5VAuyOLI5f6yM/xUuRaSHq2C7cjPtahi4iISAxNVOH0q5G7Ra8CVwFFQO2njaZpthmGYTcMwz3eNtM0QxMUq4jMAlHLItDRT3NNNbaN/8LR1UjmcCvptj6ygUc6j6E3tQCXu5iaxCSSs0vwlBj4cnLIttuZG+sTEBERkSllIgqnA03TrDcMIxH4KXAn8NgE9DtuHk9aLA+Pz+eM6fFl1yln08/mORsaGKDONGmrWsdAcxXxXY0807uAd/tyKHe0cKHzH7TbXXQ659DjK8ZVXMmNCxfhzEiP4RnMPrrOph/lbHpRvqYf5Wx62e3CyTTN+pF/Bw3DuBt4ArgNKP50G8MwvIBlmmbIMIy68bTtSkzBYA/RqLU7pzVuPp+TQKA7JseW8VHOppferk56/XWsaxrA7EqlvaWJcyO/xmGLkgUMWg6CcT7mFWWwtHQuRb6lpLhPJDMpaYt+BoZgQHnfY3SdTT/K2fSifE0/ylns2O22cd1o2a3CyTCMVMBhmmbnyFC9U4F3gDeBZMMwDhh5XukC4Hcju423TURmEcuyaO8epK6lG9tHTxPX0YBzsAW3rZtkoGeggg9sB1OU5aYubhUJWcV4iivwFBThjYvDiPUJiIiIyIyyu3ecsoE/GoYRB8QBHwEXmqYZNQzjy8B9hmEkMTKtOMB420Rk5oqEI/jrauioW8+Qv5aE7gb8g0k81LUKgGsy3sBut9OdlEtn5gq85XNZlVXCUT7fSA/LYhe8iIiIzAo2y4rNkLZJUgJUa6ie7ArlbM8a6O+jtWo97S0tvDdcTG1rD8f1/oFyRwsAYctO0O6hPa2Mrso1FGWnke9OIiXlP0PtlLPpRzmbfpSz6UX5mn6Us9jZbKheKZtu1IzJZE1HLiJCd98Qda099Kx/g5SWt0kbaMFtdeC2WTgtOz/vO5OC7HQ68/enzmnHVViOr6QUV3xCrEMXERER2YIKJxHZbdFolGBTI8GadQy21uDoaiBjyM9NHcfSayVxRNJHHJhcR2dCNl0Zi0jKLsVTUsFPc/Ow2+1oqJ2IiIhMdSqcRGSXDA8P4a+uoqN+A+ZQDutCdrJCb3Fy4qvkA1HLRsiWSXtyEV+YX0BOYQGFWfvjTEmkINbBi4iIiIyTCicR2a6+gWEaAr0019fjqnqelL5mPFaIdFuUdOCf/QcQcS8ho2wRdfEe0gvKySotpzQ5Odahi4iIiEwoFU4iQjQapbOtjUCVSX9LNfaOBtIHW3ilv5y/DSzEaevnO5nraY/Pos5ZQUJWCa6ics4pLCHOERfr8EVEREQmnQonkVkmEokQqK+lvXY9rV0R3uzLo7G1g+8m/pJcWxSAkJVOd2I2c4or2KtiLwqznGSkHk2u3R7j6EVERERiQ4WTyAw2ODhMU6if2tZuUs2nyejaiDvaRqotTCrQP5xDd8qJLJyTTU38iWRm55JdVkGxMz3WoYuIiIhMKSqcRGaI7o4O/BtNepuqoKOetP4WIpEIP+o8HoBz0puwEuw0ZizB4S0ms6icRSVlLEtIHOlhXuyCFxEREZniVDiJTDPRaJRQcxNtNesZaK3l5chS6gI9HBn+O6uSNgDQZaXSkZDFsKeQiw5ZQGFOOr6MQ7DZbDGOXkRERGR6UuEkMoUNDw/REuynLtBHf/U7FAT+gSvsJ8U2NDL1Nzxny6eiII8k52H4nYfhK6sg3+0lP9bBi4iIiMwgKpxEpoi+3j78VSbdDRuJhuo2Tf0dDfJQ9xFUhbNZnNRGceowrc752D1FOAvmkF1awZUpKbEOXURERGTGU+EkEgOdgQD+6nX0N1fxyVA2b4ecpHTX8o30Z/EAfVYiIUcW9RkrOGbZQnJKy8h2JxOnWe1EREREYkKFk8gkikQjBAKd1IWGaWwKUln7O1zDrTht/eSMbFMVXUFB1oEUz19Gc3wu3uIKfNk5ZKtIEhEREZkyVDiJTJDhcISWjZ/QWbeRSFsNSb3NeCIBPhgq5te9+xNnh3mZAwRTygi6i0jLKyOrrIITMjI366UyZvGLiIiIyPapcBIZh56uTvwb19HTuJGO7gH+2jeP5rY+rkx/nOK4TgYtB8E4H40Zi/Flz+N78/Yhz5tKvOPQWIcuIiIiIuOgwklkB6LRKO2BNuo6bdT5e3BXP0dx34e4bN34AB/QHHXj8SxlSbmXweQz6M/x4SkoxGuPi3X4IiIiIjJBVDiJjIhEo7TUN9BZ9SFD/loSexpxhf0kMcTd7acTJY7PuyEzKY8OVyEpuaX4Sg0qvd7NBtjNieEZiIiIiMhkUeEks9JAbx+t1evpatiAvbORZ/r2Yl0bHBj/PiekvMmwZSdo9+JPm4vdU8SVRy2mMNdDYoKG2omIiIjMRiqcZMbrCgapD/ZTG4rQX/8xy9qfxW114rZZuIF+K4Gs1HIK966gLDOPnozV+IpLcDsSYh26iIiIiEwRKpxkxohaFoG2Tto/eZPB1moc3Y1kDrWSbuvjH72r+L/BCirSo8xN9tCdsZiknBI8JZXMW1RJVrA31uGLiIiIyBSmwkmmpaHBIfw1G+ms30C4rZaNAy5eCBVgH+7jR65HiVg2QjYXoZQSQq5CDildypfmzCE1KR44Zou+7HpfkoiIiIjshAonmfJ6u7pobmqlqjuJ+pYu9m9+mGzLT4YtSgYwaDkIxS9mv4XLKcp20pFURHZxGZlJybEOXURERERmCBVOMmVYlkV79yD+T95hsMnE3tFA+mALbls3fWEvv+06hvTUBOY5cxhMLSMhuwR3cQXegiIOidt86u+8mJ2DiIiIiMxMKpwkJiLhCP76Gtpr1zPsryXSG+LBrgPo6R/m3LS/s1dCPSErna6kXDoz9yEpt5xb5+9NRloicECswxcRERGRWUaFk0y6gf4+Wqs2UDWYSb2/D2/jy+wbfo00W5g0IGzZCdo97F2eSUGOi5z0MuJyvRSnpcU6dBERERERQIWTTLDuviEaq2sZqnodW3s9qQMteKwO3DaLezs+T3e8lwM8HhrSlhHvLSKzqBxfcRmuhATKYx28iIiIiMh2qHCScYlGowSbGgnVrqe/pYb4rgb+2r+Q97oyWRDfwNecf6PTSqUzIZvajIUkZpfyrcoleLwubDZbrMMXEREREdklKpxkp4aHh/BXV9HYEWFDVzxdzfWc2PcoybYh8oCoZSNky6Tc52Du3uUUe+eD+zgKXG4KYh28iIiIiMgEUOEkW+gfDFPf2sXABy9ihepJ7WvGYwVJt0V5o38+L4dXUOJNpcW5ALu3iIyCOWSVllOanEJprIMXEREREZkkKpxmKcuy6AgECFSb9DdXY+9soHkgid+2LwEsrst8EbsN2uOzqHPuS0JWCfuWzmVNQRF2uw1YGetTEBERERHZY1Q4zQKRSIRAfS2BpmY+Gcymzt/DYaFHmRPXTO7INu1WOn0pFXxhURlFWWkkZy4lw51Jjt0e09hFRERERKYCFU4zzNBwhMa2XtrNt4hreo+k3iY80TZSbWFs0QRu7zqVfG8a7Z7F1KQtxZk/B19pBUXp6RTFOngRERERkSlKhdM01t3Rgb/KpLepCtrrSe1v5SftqxmwHByX/BYHJpmE4nw0ZizB4S0ms6icu8sqiXfEAStiHb6IiIiIyLShwmkaiEajhJqbCdauY8Ogj43BKJ7A63w+7hWyRrbpslLoSMjm2OVZ5BTkUejZG487DZ89Lqaxi4iIiIjMBCqcpphwJEpLsI+munoSN75EQk8j7nCAFNsgecCzPQfjd87Dl11OdXwiqblz8JVVkO/2kg8siPUJiIiIiIjMQFOycDIMoxJ4CPAAQeBM0zTXxzaqidfX04O/ej3dDVVEQ7Wk9LXwcm85/xgox2vv4jsZbxC0e2h1zsPuKcJZMIfzyypISk6JdegiIiIiIrPKlCycgHuBu0zTfMQwjDOA+4BDYxzTbukMBPBXr6O1a5j3ery0tIb4Jr/AY7PwAH1WIu0OHxVlOSyYM5/CrDTSXcfidsTHOnQRERERkVlvyhVOhmFkAcuAI0ZW/Qa40zAMn2magdhFtmsi0Sj1f/s9w83rSO1rxmnrIwcIDuVTE3csRdkuqhxHkubLw1tSgS87h2y7nbmxDlxERERERLYy5QonoBBoNE0zAmCaZsQwjKaR9dOmcHrlvWac5ts47YO0ppQQ9BaTllfGorIKVmZkjmy1KKYxioiIiIjI2EzFwmm3eTxpMT2+z+fkuIPKqa/8AaX5LuIdeonsVOfzOWMdguwi5Wz6Uc6mH+VselG+ph/lbHqZioVTPZBvGEbcyN2mOCBvZP2YBIM9RKPWpAW4Iz6fk0CgGwBXSgId7b0xiUPGbvOcyfSgnE0/ytn0o5xNL8rX9KOcxY7dbhvXjZYpdyvENE0/8A5w2siq04C3p9PzTSIiIiIiMrNMxTtOABcADxmG8d9AO3BmjOMREREREZFZbEoWTqZpfgLsG+s4REREREREYIoWTrshDjaNW4ylWB9fdp1yNv0oZ9OPcjb9KGfTi/I1/ShnsbHZ5x63K/vZLCs2kyhMkgOAV2IdhIiIiIiITHkHAq+OdeOZVjglAvsAzUAkxrGIiIiIiMjUEwfkAq8Dg2PdaaYVTiIiIiIiIhNuyk1HLiIiIiIiMtWocBIREREREdkJFU4iIiIiIiI7ocJJRERERERkJ1Q4iYiIiIiI7IQKJxERERERkZ1Q4SQiIiIiIrITjlgHMJMYhlEJPAR4gCBwpmma62Mb1exjGEYNMDDyBXClaZrPGYaxErgPSAZqgDNM0/SP7DOuNhkfwzBuAU4CSoBFpml+MLJ+u9fQZLTJ2O0gZzVs43obadM1FyOGYXiAh4E5bHq54wbgfNM0A5ORF+Vs9+0kZxbwPhAd2fzLpmm+P7LfGuDHbPqd7k3gK6Zp9u1Om4ydYRiPA6Vsyk0PcIlpmu/o59nMpDtOE+te4C7TNCuBu9j0Q0RiY61pmktGvp4zDMMGPAJcNJKfl4EbAcbbJrvlceAgoPYz63d0DU1Gm4zd9nIGn7neYPzXla65CWMBN5umaZimuRewEbhxMvKinE2YbeZss/b9NrvOPi2a0oD7gTWmaZYD3cC3d6dNdtlZpmkuNk1zKXAL8POR9fp5NgOpcJoghmFkAcuA34ys+g2wzDAMX+yiks0sBwZM03x1ZPle4JTdbJNxMk3zVdM06zdft6NraDLaJuvcZqpt5WwndM3FkGmaIdM0X9ps1f8BxUxOXpSzCbCDnO3I0cAbm911uBf44m62yS4wTbNzs8UMIKqfZzOXCqeJUwg0mqYZARj5t2lkvex5vzIM4z3DMO42DCMTKGKzv5SbptkG2A3DcO9Gm0ysHV1Dk9EmE+ez1xvompsyDMOwA18HnmBy8qKcTbDP5OxTLxmG8Y5hGD8yDCNxZN0Wnz1Qx3/+/zbeNtlFhmE8YBhGHXA9cBb6eTZjqXCSmehA0zQXA/sANuDOGMcjMpPpepv67mDTsxfKzfTx2ZwVmaa5nE3DZecD341VYLI10zTPM02zCLiKTc+NyQylwmni1AP5hmHEAYz8mzeyXvagT4cTmaY5CNwN7M+mv6aNDnkwDMMLWKZphnajTSbWjq6hyWiTCbCd6w10zU0JI5N6VABfNE0zyuTkRTmbQNvI2ebXWRfwANu5zth0J6l+N9tknEzTfBg4BGhAP89mJBVOE2Rk9qB3gNNGVp0GvG2aZiB2Uc0+hmGkGoaRMfK9DTiVTXl5E0g2DOOAkU0vAH438v1422QC7egamoy2yT+jmW8H1xvomos5wzCuB/YGThgpbGFy8qKcTZBt5cwwDJdhGMkj3zuAtfznOnsW2McwjIqR5c0/+/G2yRgZhpFmGEbhZstrgBCgn2czlM2yrFjHMGMYhjGXTdNEuoB2Nk0TacY2qtnFMIwy4I9A3MjXR8Clpmk2G4axH5tmoEniP9Plto7sN642GR/DMG4HTgRygDYgaJrmgh1dQ5PRJmO3rZwBa9jO9fb/t3c3IVbVYRzHv2FOC0ccYkjISojsCYteFkFW0KawJBhCspdRMQhSsii12hi9gBE2YS9QRpTVwsWAkBAULcykxoWQBEY8IeVQkdWY5ns107Q4Z2KanDm3O3NxZvp+Vpf7/5/nPNzLcPnN/5z/KY/xb+40iYhLgT3AV8CJ8u1vMvO2RnwvfmejN9x3Bqyn+Gz7galAF/BQZh4tj2sr50wBdgPLMvPYaMZUm4iYCWwFpgF9FKFpTWZ+5u/Z5GRwkiRJkqQKXqonSZIkSRUMTpIkSZJUweAkSZIkSRUMTpIkSZJUweAkSZIkSRUMTpKkcSkiNkbE4yOM90fERWN8zvaI+HAsa0qSJge3I5ckNVxE3Ak8DFwGHKN4Ps3bwKuZWdcPUUT0A3Myc+8pxrYD1wC9wElgB3D/wDOmxkJELAPuzczrq+ZKkiY+V5wkSQ0VEauBF4HnKB6gOxNYDlwHNA1zzJQxOPXKzGwGLgZagA1jUFOS9D915uluQJI0eUXEDOBpiifcbxk0tBtoHzTvLeAEMBu4AWiLiMXAd5m5tpzzCLAK6AfW1tpDZv4SEVuAFYN6ehm4BTgOvA48k5l/Dl1FKle1VgCrgVZgM7ASuATYCEyNiKNAb2a2RMQCoAM4HzgMbMjMjlp7lSSNX644SZIaaR5wFrC1hrl3A+uA6cAngwci4mZgDXATMAe4sdYGIqIVWEgR1qAITTOACylC2lLgnhFK3ApcDVwBLALmZ+aXFKtmOzOzOTNbyrlvAPdl5nSKyxK31dqnJGl8c8VJktRIrUBPZvYOvBERXcBcikA1PzN3lENbM/PT8vXJiBhcZxGwKTP3lDWeBO6qOPdLEdFBcU/VdmBVeQngHcBVmXkEOBIRzwNLKELPqTybmYeAQxHxEXAl8MEwc/8A5kbE55l5EDhY0aMkaYJwxUmS1EgHgNaI+PsfdZl5bblCc4B//g59O0Kdc4eMd9dw7gczsyUzZ2Vme2b+TBHkmoYc3w3MGqHO/kGvjwPNI8xdCCwAuiPi44iYV0OfkqQJwOAkSWqkncBvQFsNc0faXe8HivuGBlxQZz89FKtCs4fU+r6OWv/qNzN3ZWYbcA7wLtBZT5OSpPHHS/UkSQ2TmYci4inglYg4g+ISt+PA5cC0/1CqE9gUEe8A+4An6uynLyI6gXURsRQ4m2LDiXo2cPgROC8imjLz94hoAm4H3svMXyPiMNBXT5+SpPHHFSdJUkNl5nqKcPIo8BNF4HgNeAzoqrHG+8ALFJst7GV0my48QHHf09cUm1BsBt6so8424Atgf0T0lO8tAfaVoWk5sHgUfUqSxhEfgCtJkiRJFVxxkiRJkqQKBidJkiRJqmBwkiRJkqQKBidJkiRJqmBwkiRJkqQKBidJkiRJqmBwkiRJkqQKBidJkiRJqmBwkiRJkqQKfwEuKolBEyPWdwAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 1008x432 with 2 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n", "for ax, pmu_counter in zip([ax1, ax2], [\"PM_VECTOR_LD_CMPL (min)\", \"PM_VECTOR_ST_CMPL (min)\"]):\n", "    df_vldvst.set_index(\"Grid Points\")[pmu_counter].plot(ax=ax, legend=True);\n", "    ax.plot(\n", "        df_vldvst[\"Grid Points\"], \n", "        linear_function(df[\"Grid Points\"], *fit_parameters[pmu_counter]), \n", "        linestyle=\"--\", \n", "        label=\"Fit: {:.2f} * x + {:.2f}\".format(*fit_parameters[pmu_counter])\n", "    )\n", "    ax.legend();"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Let's try to make sense of those numbers.\n", "\n", "Vector loads and vector stores use two 8 Byte values at a time. When we measured loads and stores with `LD_CMPL` and `ST_CMPL` in part A of this task, we measured total number of stores and loads; that is: vector and scalar versions of the instructions. In order to convert the load and store instructions into **bytes** loaded and stored, we need to separate them. The difference of total instructions and vector instructions yield scalar instructions. We multiply the scalar instructions by 8 Byte (double precision) and the vector instructions by 16 Byte (two loads or stores of double precision). That yields the loaded or stored data (or, more precisely, the instruction-equivalent data).\n", "\n", "To formualize it, see the following equations, as an example for load ($ld$), with $b$ denoting data loaded in bytes and $n$ denoting the number of instructions.\n", "\n", "\\begin{align}\n", "b_\\text{ld} &= b_\\text{ld}^\\text{scalar} + b_\\text{ld}^\\text{vector}\\\\\n", "b_\\text{ld}^\\text{scalar} &= n_\\text{ld}^\\text{scalar} * 8\\,\\text{Byte} \\\\\n", "b_\\text{ld}^\\text{vector} &= n_\\text{ld}^\\text{vector} * 16\\,\\text{Byte} \\\\\n", "n_\\text{ld}^\\text{scalar} &= n_\\text{ld}^\\text{total} - n_\\text{ld}^\\text{vector}\\\\\n", "\\Rightarrow b_\\text{ld} &= n_\\text{ld}^\\text{scalar}* 8 \\,\\text{Byte} + n_\\text{ld}^\\text{vector} * 16\\,\\text{Byte} \\\\\n", "& = (n_\\text{ld}^\\text{scalar}+2 n_\\text{ld}^\\text{vector}) * 8\\,Byte \\\\\n", "& = (n_\\text{ld}^\\text{total} - n_\\text{ld}^\\text{vector} + 2 n_\\text{ld}^\\text{vector}) * 8\\,Byte \\\\\n", "& = (n_\\text{ld}^\\text{total} + n_\\text{ld}^\\text{vector}) *8\\,Byte \n", "\\end{align}\n", "\n", "We are going to print this in the next cell. In case you look at this Notebook non-interactively, call `graph_task2b-2`."]}, {"cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAF/CAYAAADacyFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Wl0XOdh3//vYAdIggsWEgvFHZebSAISJVrUQkK2JVuy4y3yEll2ZNdx4pwcJ038T5o0SRundp249qnj2D49TuslcZq4cZI2cdKkALWvHJAUKepSlChSGADEQhAgdszM/b8ARFESJZEUgMEA388bAPdiZp7BwwHnh/vc341FUYQkSZIkaXbKyfQAJEmSJEmvz9AmSZIkSbOYoU2SJEmSZjFDmyRJkiTNYoY2SZIkSZrFDG2SJEmSNIsZ2iRJkiRpFjO0SZIkSdIsZmiTJEmSpFnM0CZJkiRJs5ihTZIkSZJmsbxMD2AOKQR2Au1AKsNjkSRJkjT75AJVwBPA6KXeyNA2dXYCD2R6EJIkSZJmvZuABy/1mw1tU6cdoLd3kHQ6ysgAysoW0tMzkJHH1pVxzrKPc5Z9nLPs45xlF+cr+zhnmZOTE2Pp0gUwmR0ulaFt6qQA0ukoY6HtpcdXdnHOso9zln2cs+zjnGUX5yv7OGcZd1mnU1lEIkmSJEmzmKFNkiRJkmYxQ5skSZIkzWKe0zbNUqkkvb1dJJNj0/5YnZ05pNPpaX+c6ZCXV8DSpRXk5vpPUpIkSbqQ75CnWW9vF0VFJSxYsIJYLDatj5WXl0MymX2hLYoiBgf76e3tory8KtPDkSRJkmYVl0dOs2RyjAULSqc9sGWzWCzGggWlM3I0UpIkSco2hrYZYGB7c/6MJEmSpIsztM1DH/rQe3j++eNTfr//+I//m9/5nS9M+f1KkiRJ85mhTZIkSZJmMYtIBMDRo0f4+tf/mJGRYYqKivn853+dTZu2kEwm+cIXPk9fXx+jo6Ns3ryF3/iNf0d+fj7j4+N87WtfoaVlPxUVlVx11erz9/fUUwf52te+QjodkUwm+cQn7uUd77g9c09QkiRJylKGthn20FPtPHiofVru+5b6anZtXnHZtxsfH+e3f/sL/NZv/S47d17Pk08+zm//9hf4n//zb8nLy+P3fu+LLF68hCiK+OIXf49/+Ie/433v+xB/93f/i/b2Nn7wg78imUzyuc/9G6qqJtof//zPv8ddd32M22+/gyiKGBgYmOqnK0mSJM0LhjZx6tRJ8vPz2bnzegCuvfY68vPzOXXqJKtXr+FHP/ohjz76MOl0inPnzlFUVARAPL6fd73rTvLy8sjLy+O2297FoUMHAGhouJYf/vB/0NHRzs6du9iyZWvGnp8kSZLmn77BMe4/2EZb9yCfvnMTuTnZe2aYoW2G7b66it1XT8+1yK70Om1RFF20vTEWg3/5l3/i0KED/Omf/jdKShbw/e//GS++eOr87V7PXXd9jN27b+aJJx7j61//Cjt37uIzn/mlyx6bJEmSdKmiKOJ4oo+meIInn+kklY6o31DOG7xtzQqGNrFq1WrGxsaIx5+koeFa4vEnSSaTrFy5inj8SRYvXkJJyQIGBgb4l3/5JzZu3AzAtdfu5J/+6R9pbHwHqVSSf/mXf2L58onlmadOneSqq1ZRU1NLSUkJP/3p/8nkU5QkSdIcNjKW5NEjp2mKJ2jtGqC4MI/Ghlr21FdTVbYg08N7ywxt89TnP/85cnNzz3/9n/7TH72iiOSLX/zP5Ofnc/vtd/LAA/dz9913UVFRwfbt9YyOjgLw3vd+gOPHj/Pxj99FZeVyduy4hvb2BAA//vFfEo/vJz8/j/z8An71V38jI89TkiRJc1d7zyBN8QQPH25neDTFysqFfOL2gF2bV1BYkPvmd5AlYm+0xG0qBUHwx8AHgdXA1WEYHg6CoAz4AbAOGAWOA78QhmHX5G12Ad8BioEXgLvDMOzMxL5LsBo40dMzQDr98s+0o+MkK1asutQf01typcsjZ4uZ/FnNFhUVi+jqOpfpYegyOGfZxznLPs5ZdnG+sk+2z1kqnebAs900xRMcPdlLXm6MazdW0thQy7rq0oue9jNb5OTEKCtbCLCGibxxabebrgFdxN8CNwMnL9gWAV8JwzAIw3Ab8BzwZYAgCGLAD4HPhWFYB9yfqX2SJEmSMuvswCh//9AJvvCtR/jmTw7T2TvEB29Zyx//0m4+854trK9ZPKsD21sxY8sjwzB8ECAIggu3nQH2XfBtjwK/OPn5tcDIS7cDvs1EGr03A/skSZIkzbAoijj24lma4gnix7pIpSO2rlnG3e+sY/u6cnJy5mZIe7VZc05bEAQ5TAS2v5/cdBUXHJULw7A7CIKcIAiWzfS+yXApSZIkaQYMjyZ59EgHTS0JEl2DlBTmces1teytr2H5spJMD2/GzZrQBnwDGAD+JNMDeSsm16ie19mZQ17ezK1CncnHmmo5OTlUVCzK9DBm3Hx8ztnOOcs+zln2cc6yi/OVfWbrnJ3s6OenD79A05MvMjyaZF3tYn7lrh3cVF9DUcFsii4za1Y888mSkg3Ae8IwfKlJ4xSw6oLvKQeiMAzPBEEwo/su57m8uogknU7PWDlItheRpNPprD4p9kpk+4nA85Fzln2cs+zjnGUX5yv7zLY5S6bStDzbTXO8lWdOnSUvN4frNlWyt6GGtVUTxSLn+oaZPSO+chcUkVze7aZhLJclCII/BK4B3heG4egFu/YDxUEQ3Dj59WeBv8rQPkmSJElTqPfcKH/7wPP8xrce5lt/e5juvhF+ds86vvq5G/j0nZtZVz13i0Uu14wdaQuC4L8CHwBWAP8aBEEPcBfw74BjwMOTJSUnwjB8fxiG6SAIPg58JwiCIiYr+AFmep8kSZKkty6KIsJTZ2mKtxI/1k0URWxdW0bj7TVcvbZs3hSLXK4Zu07bPLCaLLlOW1PTv/KDH/wZUQRjY6PU1W3k93//D/nud7/DPffcS35+/gyM9rW8TpuygXOWfZyz7OOcZRfnK/tkYs6GR5M8fLiD5pYEbd2DLCjK46Zt1eypr6Zy6fwpFrnS67TNinPaNHO6u7v5L//ly3z3uz9k+fIVRFHE8ePHAPjv//2/8dGPfvyyQ1symSQvz39KkiRJeqXWzgGaWhI8criD0fEUa6oWce+7N3HdpkoK8nMzPbys4TvteebMmW5yc/NYvHgJALFYjA0bAr761f8MwC/+4r3EYjl84xvfYXx8jD/6oy/R1tZKFEV89KMf513vuhOAD33oPdx558+wf/8TVFfX8Fu/9bv89Kf/h7/5m78mlUqxcOFCfv3Xf5OrrlrNU08d5Gtf+wrpdEQymeQTn7iXd7zj9oz9DCRJkjR9kqk08WNdNO1v5VhrH/l5E8UijQ21rKkqzfTwspKhbYaNH3uI8fD+abnvwk23kLv+hjf8nvXr69i8eQsf/OAd1Ndfw7ZtO7jttnfzb//t/8dPfvLXfOtbf0ZJycQh6t/93d9i7dp1fOlLf0x3dzef+tTPEQQbWbt2PTBx1O4b3/gOAAcPttDU9C9885v/jYKCAh555CG+9KX/yLe+9Wf8+Z9/j7vu+hi3334HURQxMDAwLc9fkiRJmXOmf4T7DrRx/8E2+gbHqFhSxF1713PjtioWFmfm9Ju5wtA2z+Tk5PClL32V558/TktLnAce2Mdf/MUP+P73//I13/vkk4/zy7/8eQDKy8t529tuJB5/8nxou/32O85/70MP3c/x48/ymc98Epg4yfTcuX4AGhqu5Yc//B90dLSzc+cutmzZOs3PUpIkSTMhiiKOnuylKZ7gwLMTxSLb1pWxt6GWrWuXkWP745QwtM2w/Lrd5Nftnpb7vpzrtK1du561a9fzwQ/exd13/ywtLfsv+n2vrlm98OuSkuLzn0cR3HHHe/n0pz/7mvu4666PsXv3zTzxxGN8/etfYefOXXzmM790SeOUJEnS7DM0Ms5DhztojifoODPEwuJ8brt+JXt21FCxpPjN70CXxdA2z3R1dXL6dAdbt24DoLPzNGfP9lJVVU1JyQIGBwfOL4+89trr+Pu//wmf+tQv0NPTzSOPPMRdd33sove7e/dNfPGLv8d73/t+KiuXk0qlePbZY2zcuIlTp05y1VWrqKmppaSkhJ/+9P/M2POVJEnS1Dl1+hzNLQkeOdLB2HiatdWlfPrOTezcWEl+nsUi08XQNs+kUim++93v0NHRTmFhEVGU5tOf/kXq6jbykY/8HL/yK5+lsLCIb3zjO3z+87/OH/3Rf+ITn/gIURTx2c/+MmvXrrvo/e7Y0cBnPvNL/OZv/hqpVJpkcpy9e9/Oxo2b+PGP/5J4fD/5+Xnk5xfwq7/6GzP8rCVJknSlxpNp9oedNLUkON7aR0FeDtdvXs7ehhpWr7BYZCZ4nbaps5osuU7bbOV12pQNnLPs45xlH+csuzhf2edS56ynb4R9BxI8cLCN/qFxKpcW01hfw+5tVSwosljkSnidNkmSJElvSTqKePqFMzTHExw43g3A9nXlNF5Tw+bVFotkiqFNkiRJmucGR8Z56FA7zS0JTvcOs6gkn3fvWsUtO6opX2yxSKYZ2iRJkqR56mTHOZrirTz29GnGkmnW1yzmvTeu4dqgkvy8nEwPT5MMbTMgiqLXVOfrlTy3UpIkaWaMjad45HAHTfFWnmvrpyA/h11bVtDYUMNVyxdleni6CEPbNMvLK2BwsJ8FC0oNbq8jiiIGB/vJyyvI9FAkSZLmrO6zw+w70MaDT7XTPzjG8mUlfPTWDey+egUlFovMaoa2abZ0aQW9vV0MDJyd9sfKyckhnc7O9si8vAKWLq3I9DAkSZLmlHQUceTEGZr2t3LouR6Iwa6tVdywZTmbVy31oEKWMLRNs9zcPMrLq2bksazclSRJEsDA8DgPHmpnX0uCzrPDlC4o4I4bVrNnRzXBugrfM2YZQ5skSZI0R5xo76c5nuCxo6cZT6apq13M+29eyzVBBXm5FotkK0ObJEmSlMXGkykeP9pJUzzBifZ+CvNz2X11FXvra1hZuTDTw9MUMLRJkiRJWajz7DD7WhI8eKidgeFxqspK+Ll31PG2LSsoKfJt/lzibEqSJElZIp2OeOr5HppbEjz1XA+xWIz6unIaG2rZeNUSi0XmKEObJEmSNMudGxrjwUPtNLck6O4bYfGCAt6zezW37Khh6aLCTA9P08zQJkmSJM1CURRxov0cTfFWHj/aSTKVJli5hJ/du576DeUWi8wjhjZJkiRpFhkdT/H406dpaklwsuMchQW53LS9isb6GmoqLBaZjwxtkiRJ0ixwuneI5niCh55qZ3AkSU35Au5+50SxSHGhb9vnM2dfkiRJypB0OuLQcz00xVs5fOIMuTkxGuoqaGyooW6lxSKaYGiTJEmSZlj/0BgPHGxjX0sbPf0jLFlYwPtuXMNN26stFtFrGNokSZKkGRBFEc+19dMcb+WJZzpJpiI2rVrKhxvXs8NiEb0BQ5skSZI0jUbHUjx29DRN8VZOnR6guDCXW3bUsLe+huryBZkenrKAoU2SJEmaBh1nJopFHnyqneHRJLUVC7jntoBdW5ZTVODbcF06/7VIkiRJUySVTnPweA/N8VaOvNBLbk6Ma4IKGhtq2VC72GIRXRFDmyRJkvQW9Q2Ocf/BNu47kOBM/yhLFxXy/pvWcPP2ahYvtFhEb42hTZIkSboCURRxPNFHUzzBk890kkpHbF69lI+9vY7t68vIzbFYRFPD0CZJkiRdhpGxJI8eOU1TPEFr1wDFhXnsbZgoFqkqs1hEU8/QJkmSJF2C9p5BmuIJHj7czvBoipWVC/nE7QG7Nq+gsCA308PTHGZokyRJkl5HKp3mwLPdNMUTHD3ZS15ujGs3VtJYX8u6mlKLRTQjDG2SJEnSq5wdGJ0sFmmj99woZaWFfPCWtdy0rZrSBQWZHp7mGUObJEmSxESxyLEXz9LckmB/2EUqHbF1zTLufmcd29eVk5PjUTVlhqFNkiRJ89rwaJJHj3TQ1JIg0TVISWEet15Ty976GpYvK8n08CRDmyRJkuanRPcgzfFWHj7cwchYilXLF/Hz79rIdZuXU5hvsYhmD0ObJEmS5o1kKk3Ls900x1t55tRZ8nJzuG5TJXsbalhbZbGIZidDmyRJkua83nOj3HcgwX0H2+gbGKN8cRE/u2cdN26rYlGJxSKa3WYktAVB8MfAB4HVwNVhGB6e3F4HfA8oA3qAe8IwfHa27ZMkSVL2iaKI8NRZmuKtxI91E0URW9eW0Xh7DVevLbNYRFkjZ4Ye52+Bm4GTr9r+beCbYRjWAd8EvjNL90mSJClLDI8m+X/7W/n3332cr/yohaMne3nnzpV86Rd28at3bWf7epsglV1m5EhbGIYPAgRBcH5bEASVQAPwjslNPwL+JAiCCiA2W/aFYdg1FT8DSZIkTa/WrgGa4gkeOdzB6HiKNVWLuPfdm7huUyUFFosoi2XynLaVQCIMwxRAGIapIAjaJrfHZtE+Q5skSdIslUyliR/roml/K8da+8jPmygWaWyoZU1VaaaHJ00Ji0imWFnZwow+fkXFoow+vi6fc5Z9nLPs45xlH+csu2RivrrPDvNPj77A/330JL3nRllRVsLP37mFt193FaULLBZ5M77GsksmQ9uLQE0QBLmTR7ZygerJ7bFZtO+y9PQMkE5Hb+kHc6UqKhbR1XUuI4+tK+OcZR/nLPs4Z9nHOcsuMzlfURRx9GQvTfEEB56dKBbZtq6MT9y+ka1rl5ETizE6NErX0OiMjCdb+RrLnJyc2BUd5MlYaAvDsDMIggPAR4EfTn5seekcstm0T5IkSZkzNDLOQ4c7aI4n6DgzxMLifG67fiV7dtRQsaQ408OTpt1MVf7/V+ADwArgX4Mg6AnDcAvwWeB7QRD8LtAL3HPBzWbTPkmSJM2wU6fP0dyS4JEjHYyNp1lbXcqn79zEzo2V5OdZLKL5IxZFmVnKNwetBk64PFKXwznLPs5Z9nHOso9zll2mer7Gk2n2h500tSQ43tpHQV4O129ezt6GGlavsFhkKvgay5wLlkeuAV641NtZRCJJkqSM6+kbYd+BBA8cbKN/aJzKpcV8pHE9u7dVsaAoP9PDkzLK0CZJkqSMSEcRR1/opSneyoHj3QBsX1dO4zU1bF49USwiydAmSZKkGTY4Ms5DT3XQHG/ldO8wi0ryefeuVdyyo5ryxRaLSK9maJMkSdKMONlxjqZ4K489fZqxZJr1NYt5741ruDaoJD8vJ9PDk2YtQ5skSZKmzXgyxZPPdNEUb+W5tn4K8nPYtWUFjQ01XLXcCzxLl8LQJkmSpCnXfXaYfQfauP9gGwPD4yxfVsJHb93A7qtXUGKxiHRZDG2SJEmaEuko4siJMzTtb+XQcz0Qg/oNFextqGHzqqXELBaRroihTZIkSW/JwPA4Dx5qZ19Lgs6zw5QuKOCOG1azZ0c1y0qLMj08KesZ2iRJknRFTrT38xf/7zj3tbQynkyzoXYx7795LdcEFeTlWiwiTRVDmyRJki7ZeDLF40c7aYonONHeT1FBLruvrmJvfQ0rKxdmenjSnGRokyRJ0pvqPDvMvpYEDx5qZ2B4nKqyEn7uHXW855b1DA2MZHp40pxmaJMkSdJFpdMRh0/00BRP8NRzPcRiMerrymlsqGXjVUuIxWIsKM43tEnTzNAmSZKkVzg3NMaDT7XTHE/Q3TfC4gUFvGf3am7ZUcPSRYWZHp407xjaJEmSRBRFnGg/R1O8lcePdpJMpQlWLuFDe9bRUGexiJRJhjZJkqR5bGw8xWNHT9MUT3Cy4xyFBbnctH2iWKS2wmIRaTYwtEmSJM1Dp3uHzheLDI4kqS5fwN3vrONtW1ZQXOhbRGk28RUpSZI0T6TTEYee66Ep3srhE2fIzYnRUFdBY0MNdSsnikUkzT6GNkmSpDmuf2iMBw62sa+ljZ7+EZYsLOB9N67hpu3VFotIWcDQJkmSNAdFUcRzbf00x1t54plOkqmIjVct4cON69mxodxiESmLGNokSZLmkNHxFI89fZqmeCunTg9QXJjLLTtq2FtfQ3X5gkwPT9IVMLRJkiTNAR1nhmiOJ3joqXaGRpPUVizgntsCdm1ZTlGBb/mkbOYrWJIkKUul0mkOHZ8oFjnyQi+5OTGuCSpobKhlQ+1ii0WkOcLQJkmSlGX6BieLRQ4kONM/ytJFhbz/pjXcvL2axQstFpHmGkObJElSFoiiiOOJPpriCZ58ppNUOmLz6qV89NY6dmwoIzfHYhFprjK0SZIkzWIjY0keffo0TfsTtHYNUFyYx96GiWKRqjKLRaT5wNAmSZI0C7X3DE4UixxuZ3g0xcrKhXzi9oBdm1dQWJCb6eFJmkGGNkmSpFkilU5z4NlumuIJjp7sJS83xrUbK2msr2VdTanFItI8ZWiTJEnKsLMDo9x/sI37DrTRe26UstJCPnjLWm7aVk3pgoJMD09ShhnaJEmSMiCKIo69eJbmlgT7wy5S6Ygta5Zx9zvr2L6unJwcj6pJmmBokyRJmkHDo0kePdJBU0uCRNcgJYV53HpNLXvra1i+rCTTw5M0CxnaJEmSZkCie5DmeCsPH+5gZCzFquWL+Pl3beS6zcspzLdYRNLrM7RJkiRNk2QqTcuz3TTHW3nm1FnycmPs3LicxmtqWFtlsYikS2NokyRJmmK950a570CC+w620TcwRvniIj60Zx03bquitMRiEUmXx9AmSZI0BaIoIjx1lqZ4K/Fj3URRxNa1Zey9vYZta8ssFpF0xQxtkiRJb8HwaJKHD3fQ3JKgrXuQBUV5vHPnSvbUV1O51GIRSW+doU2SJOkKtHYN0BxP8PCRDkbHUqypWsS9797EdZsqKbBYRNIUMrRJkiRdomQqTfxYF037WznW2kdebg7Xb66ksaGWNVWlmR6epDnK0CZJkvQmzvSPcN+BNu4/2Ebf4BgVS4q4a+96btxWxcLi/EwPT9IcZ2iTJEm6iCiKOHqyl+Z4gpZnJ4pFrl5XRmNDLVvXLiPHun5JM2RWhLYgCO4E/gCIATnA74dh+DdBENQB3wPKgB7gnjAMn528zYzukyRJ88PQSJKHDrfTHE/QcWaIhcX53Hb9SvbsqKFiSXGmhydpHsrJ9ACCIIgBPwA+HobhDuBu4HtBEOQA3wa+GYZhHfBN4DsX3HSm90mSpDns1OlzfO+fnuHXvvkgP/rXZykpyuPTd27iq5+7gZ/ds97AJiljZsWRNiANLJ78fAnQDpQDDcA7Jrf/CPiTIAgqmDgiN2P7wjDsmtqnK0mSZoPxZJr9YSdNLQmOt/aRn5fD9ZuX09hQw+oVFotImh0yHtrCMIyCILgL+LsgCAaBRcAdwEogEYZhavL7UkEQtE1uj83wPkObJElzSE/fCPsOJHjgYBv9Q+NULi3mw43r2X21xSKSZp+Mh7YgCPKA3wJ+JgzDh4Ig2A38T+DjmR3ZlSkrW5jRx6+oWJTRx9flc86yj3OWfZyz7DMdc5ZORxx8tot/eOgETzzdAcDOzSt49w1r2FFXQU6OxSJXytdY9nHOskssiqKMDiAIgmuB74dhuPmCbUeBTwL/DJRNHvXKZaIcZAMTR8WOzdS+S1weuRo40dMzQDqdmZ9pRcUiurrOZeSxdWWcs+zjnGUf5yz7TPWcDY6M89BTHTTHWzndO8yiknxu3l7NLTuqKV/seWpvla+x7OOcZU5OTuylgzxrgBcu9XYZP9IGtAK1QRAEYRiGQRBsAlYAzwIHgI8CP5z82PJSgAqCYEb3SZKk7HKy4xxN8VYee/o0Y8k062sW894b13BtUEl+Xsa72CTpkmU8tIVh2BEEwS8CPw6CID25+efDMDwTBMFnmWiS/F2gF7jngpvO9D5JkjTLjSdTPPlMF03xVp5r66cgP4ddW1bQ2FDDVctdDiYpO2V8eeQcshqXR+oyOWfZxznLPs5Z9rmSOes+O8y+A23cf7CNgeFxli8robG+ht1Xr6CkyGKR6eRrLPs4Z5mTzcsjJUmSLls6ijhy4gzN8QQHj3dDDHasL6fxmlo2r1pKLGaxiKS5wdAmSZKyysDwOA8eamdfS4LOs8OULijgjhtWs2dHNctKizI9PEmacoY2SZKUFU6099McT/DY0dOMJ9NsqF3M+29eyzVBBXm5FotImrsMbZIkadYaT6Z4/GgnTfEEJ9r7KczPZffWFextqGVlZWavjSpJM8XQJkmSZp2us8M0tyR48FA7A8PjVJWV8LG3b+CGrVWUFPn2RdL84m89SZI0K6TTEYdP9PDg3x1h/9HTxGIx6uvKaayvYaPFIpLmMUObJEnKqHNDYzz4VDvN8QTdfSMsXVTIe3av5ubtFotIEhjaJElShjzf1k9TvJXHj3aSTKUJVi7hQ3vWcdvutfSeGcz08CRp1jC0SZKkGTM2nuKxo6dpjid4oeMchQW53LS9ir31NdRWTBSL2AQpSa9kaJMkSdPudO8Q+yaLRQZHklSXL+Dud9bxti0rKC707YgkvRF/S0qSpGmRTkcceq6HppZWDj9/htycGPV1FdzaUEPdyiUWi0jSJTK0SZKkKdU/NMYDB9vY19JGT/8ISxYW8L4b13DT9mqWLirM9PAkKesY2iRJ0lsWRRHPtfXTHG/liWc6SaYiNl61hA83rmfHhnLPU5Okt8DQJkmSrtjoeIrHnj5NU7yVU6cHKCrI5ZbtNextqKG6fEGmhydJc4KhTZIkXbaOM0M0xxM89FQ7Q6NJaisW8PHbAt62ZTlFBb69kKSp5G9VSZJ0SVLpNIeO99AUb+XIC73k5sS4JqigsaGWDbWLLRaRpGliaJMkSW+ob3CyWORAgjP9oyxdVMj7b1rDzdurWbzQYhFJmm6GNkmS9BpRFHE80UdTPMGTz3SSSkdsXr2Uj95ax44NZeTmWCwiSTPF0CZJks4bGUvy6NOnaY4neLFzgOLCPPY21LC3voaqMotFJCkTDG2SJIn2nsGJYpHD7QyPplhZuZBP3B6wa/MKCgtyMz08SZrXDG2SJM1TqXSaA8920xRPcPRkL3m5Ma7dWEljfS3rakotFpGkWcLQJklzmXqYAAAgAElEQVTSPHN2YJT7D7Zx34E2es+NUlZayAdvWctN26opXVCQ6eFJkl7F0CZJ0jwQRRHHXjxLc0uC/WEXqXTEljXLuPuddWxfV05OjkfVJGm2MrRJkjSHDY8mefRIB00tCRJdg5QU5nHrNbXsra9h+bKSTA9PknQJDG2SJM1Bie5BmuOtPHy4g5GxFFctX8gn37WR6zcvpzDfYhFJyiZXHNqCIFgLpMIwPDmF45EkSVcomXqpWKSVZ06dJS83xs6Ny2m8poa1VRaLSFK2uuTQFgTBj4BvhGH4cBAEPw/8KZAOguBXwjD87rSNUJIkvaHecy8ViyQ4OzBGWWkRH9qzjhu3VVFaYrGIJGW7yznSdivwicnPfw14O3AW+FvA0CZJ0gyKoojw1Fma4q3Ej3UTRRFb15Zxz+01bFtbZrGIJM0hlxPaCsIwHAuCoAZYFobhQwBBECyfnqFJkqRXGx5N8vDhDppbErR1D7KgKI937lzJnvpqKpdaLCJJc9HlhLYDQRD8FrAK+AeAyQDXPx0DkyRJL2vtGqA5nuDhIx2MjqVYvWIR9757E9dtqqTAYhFJmtMuJ7R9CvgDYBz4jcltbwP+fKoHJUmSJopF4se6aNrfyrHWPvJyc7h+cyWNDbWsqSrN9PAkSTPkkkNbGIbPAR971bYfAz+e6kFJkjSfnekf4b4Dbdx/sI2+wTEqlhRx19713LitioXF+ZkeniRphl1Oe2QM+DTwEaAiDMNtQRDcDKwIw/CvpmuAkiTNB1EUcfRkL83xBC3PThSLXL2ujMaGWrauXUaOdf2SNG9dzvLI/wi8A/g68O3Jba3A1wBDmyRJV2BoJMlDh9tpjifoODPEwuJ8brtuJXvqa6hYUpzp4UmSZoHLCW2fBOrDMOwOguBbk9tOAGunfFSSJM1xp06fo7klwSNHOhgbT7O2upRP3TFRLJKfZ7GIJOlllxPacoGByc+jyY8LL9gmSZLeQDKV5smwk6Z4guOtfeTn5XD95uU0NtSweoXFIpKki7uc0PaPwH8JguBX4fw5bn8A/O/pGJgkSXNFT98I9x1McP+BNvqHxqlcWsyHG9ez+2qLRSRJb+5yQtuvAd8H+oB8Jo6w/V/gE9MwLkmSslo6ijj6Qi9N8VYOHO8GYPu6chobati8xmIRSdKlu5zK/37gfUEQVDJxge0XwzDsmLaRSZKUhQZHxnnoqQ6a462c7h1mUUk+7961ilt2VFO+2GIRSdLlu5zK/5YwDOvDMOwEOi/Y/mQYhte+lUEEQVDERAvl24ER4JEwDD8TBEEd8D2gDOgB7gnD8NnJ28zoPkmS3sjJjnM0t7Ty6JHTjCXTrKsp5b03ruHaoJL8vJxMD0+SlMUu53+R9a/eMHle21S0R36FibBWF4bh1cC/n9z+beCbYRjWAd8EvnPBbWZ6nyRJrzCeTPPI4Q7+8PtP8h/+xxM8+vRpdm1Zwe99cie//fFreduWFQY2SdJb9qZH2oIg+P7kpwUXfP6S1cCRtzKAIAgWAvcAtWEYRgBhGJ6eXIbZwMS14QB+BPxJEAQVQGwm94Vh2PVWnqMkaW7pPjvMvgNt3H+wjYHhcZYvK+Gjt25g99UrKCmyWESSNLUuZXnkc6/zeQQ8BPz1WxzDOiaWIv5eEAR7mSg4+R1gGEiEYZgCCMMwFQRBG7CSiYA1k/sMbZI0z6WjiCMnztAcT3DweDfEYMf6chqvqWXTqqUWi0iSps2bhrYwDP8DQBAEj4Zh+M/TNIa1QEsYhr8RBMH1TFxG4Gen4bGmXVnZwow+fkXFoow+vi6fc5Z9nLPs81bm7NzQGP/6+Cl++vALtPcMsmRRIXe9vY7bdq2mYqnFItPF11l2cb6yj3OWXWJRFL35dzFRRMJEScdfTJaRTIkgCMqBdqDgpeWRQRA8DXySiUsKlE0e9cpl4ojcBiaOih2bqX2XuDxyNXCip2eAdPrSfqZTraJiEV1d5zLy2Loyzln2cc6yz5XO2Qsd/TTtT/DY0dOMJ9NsqF1MY0Mt1wQV5OV6ntp08nWWXZyv7OOcZU5OTuylgzxrgBcu9XaXc522PwDuBv4wCIL7gR8APwnDcPgy7uM1wjDsDoKgmYlzyf7vZINjJRMB6gDwUeCHkx9bXgpQQRDM6D5J0tw3nkzx+NFOmuIJTrT3U5ify+6tK9jbUMvKysyupJAkzV+Xc522vwH+JgiCZcBdwC8BfxoEwd8APwzDsOktjOOzwJ8FQfBVYBz4eBiGZ4Mg+CzwvSAIfhfoZaKw5MLbzOQ+SdIc1XV2mH0tCR441M7A8DhVZSV87O0buGFrFSVFl/P3TUmSpt4lL4+8UBAEJcAHgC8wcaHtLiAN/FIYhv86pSPMHqtxeaQuk3OWfZyz7PN6c5ZORxw+0UNTPMFTz/UQi8Woryunsb6GjauWErNYJGN8nWUX5yv7OGeZM+3LI4MgyGFiCePHgTuBR4AvM7lEMgiCDzKxrHDFpQ9bkqSZNTA8zgOH2miOJ+juG2HxggLes3s1N2+vZllpUaaHJ0nSa1zOmo82oBv4PvCFMAzbLtwZhuH/CoLgl6dycJIkTZXn2/ppjrfy2NFOkqk0dSuX8KE962ios1hEkjS7XU5ouzMMwycBgiCoDILgA8DRMAyPvvQNYRjuneoBSpJ0pcbGU/zr4yf5u/ue44WOcxQW5HLT9ir21tdQW2GxiCQpO7xpaAuCoAb4BrA5CIJHgD8G7gdSwJIgCO4Jw/Avp3eYkiRdutO9Q+xrSfDgoXYGR5JUly/g7nfW8bYtKygutFhEkpRdLuV/rm8DncCvAh8B/hn4dBiGPwmC4GeYuBSAoU2SlFHpdMSh53poamnl8PNnyM2JUV9XwQcaN7B8UYHFIpKkrHUpoe0GoCoMw7EgCO4D+oC/BQjD8O+CIPj+dA5QkqQ30j80xgMH29jX0kZP/whLFhbwvhvXcNP2apYuKrQlTZKU9S4ltOWHYTgGEIbhUBAE58IwvLDT3j9dSpJmVBRFPN/WT1O8lSee6SSZith41RI+3LieHRvKLRaRJM0plxLa8oIg2MvL4ezVX+dOy8gkSXqV0fEUjz19mqZ4K6dOD1BUkMst22vY01BDTfmCTA9PkqRpcSmhrRP4swu+7nnV151TOiJJkl6l48wQzfEEDz3VztBokpqKBXz8toC3bVlOUYHFIpKkue1N/6cLw3D1DIxDkqRXSKXTHDreQ1O8lSMv9JKbE+OaoILGhlo21C62WESSNG/450lJ0qzSNzhZLHIgwZn+UZYuKuT9N63h5u3VLF5YmOnhSZI04wxtkqSMi6KI44k+muMJnnimk1Q6YtOqpXz01jp2bCgjN8diEUnS/GVokyRlzMhYkkefPk1zPMGLnQMUF+axt6GGvfU1VJVZLCJJEhjaJEkZ0N4zOFEscrid4dEUKysX8onbA3ZtXkFhgaXEkiRdyNAmSZoRqXSaA8920xRPcPTkRLHIzo2VNDbUsq6m1GIRSZJeh6FNkjSt+gZGue9gG/cdaKP33ChlpYV88Ja13LStmtIFBZkeniRJs56hTZI05aIo4tnWPprirewPu0ilI7asWcbd76xj+7pycnI8qiZJ0qUytEmSpszwaJJHj3TQ1JIg0TVISWEet15Ty976GpYvK8n08CRJykqGNknSW5boHqQ53srDhzsYGUtx1fKFfPJdG7l+83IK8y0WkSTprTC0SZKuSDL1UrFIK8+cOkteboydG5fT2FDD2mqLRSRJmiqGNknSZek9N8r9B9u470CCswNjlJUW8aE967hxWxWlJRaLSJI01QxtkqQ3FUUR4amzNMVbiR/rJh1FbF27jHtur2Xb2jKLRSRJmkaGNknS6xoeTfLw4Q6aWxK0dQ+yoCiPd+5cyZ76aiqXWiwiSdJMMLRJkl6jtWuA5niCh490MDqWYvWKRdz77k1ct6mSAotFJEmaUYY2SRIwUSwSP9ZFUzzBsRfPkpebw/WbKmm8ppY1VaWZHp4kSfOWoU2S5rkz/SPcd6CN+w+20Tc4RsWSIu7au54bt1WxsDg/08OTJGneM7RJ0jwURRFHT/bSHE/Q8mw3URRx9boyGhtq2bp2GTnW9UuSNGsY2iRpHhkaSfLQ4Xb2tSRo7xliYXE+t123kj31NVQsKc708CRJ0kUY2iRpHnixc4CmeCuPHOlgbDzN2upSPnXHRLFIfp7FIpIkzWaGNkmao5KpNE+GnTTFExxv7SM/L4frNy+nsaGG1SssFpEkKVsY2iRpjunpG+G+gwnuP9BG/9A4lUuL+XDjenZfbbGIJEnZyNAmSXNAOoo4+kIvTfFWDhzvhgi2ry+nsaGGzWssFpEkKZsZ2iQpiw2OjPPQUx00tyQ4fWaIRSX5vHvXKm7ZXk25xSKSJM0JhjZJykInO87R3NLKo0dOM5ZMs66mlPe+ZzPXBpXk5+VkeniSJGkKGdokKUuMJ9M8+UwnTS2tPJfopyAvh11blrO3vpZVKxZleniSJGmaGNokaZbrPjvMvgNt3H+wjYHhcZYvK+Gjt25g99UrKCmyWESSpLnO0CZJs1A6ijhy4gzN8QQHj3dDDHasL6fxmlo2rVpqsYgkSfOIoU2SZpGB4XEePNTOvpYEnWeHKS3J544bVrFnRw3LSosyPTxJkpQBhjZJmgVe6OinaX+Cx46eZjyZZkPtYt538xquDSrJy7VYRJKk+WxWhbYgCH4P+H3g6jAMDwdBsAv4DlAMvADcHYZh5+T3zug+SZpq48kUjx/tpCme4ER7P4X5uezeuoI99TVctdxiEUmSNGHW/Pk2CIIGYBdwavLrGPBD4HNhGNYB9wNfzsQ+SZpKXWeH+evm4/zbbz7Md//hKCNjST729g189XO7uef2jQY2SZL0CrPiSFsQBIXAN4GPAc2Tm68FRsIwfHDy628zcfTr3gzsk6S3JB1FHH6+h6Z4gqee6yEWi1FfV05jfQ0bVy0lZrGIJEl6HbPlSNt/BH4YhuGJC7ZdBZx86YswDLuBnCAIlmVgnyRdkYHhcX762El+89uP8PW/PsTJjnO8Z/dqvvKLb+Nz77+aTauXGdgkSdIbyviRtiAI3gbsBH4z02OZCmVlCzP6+BUVLqvKNs5Z9rmUOTt2qpd/eOgEDxxIMJ5Ms2VtGfe+dyu7tlaRnzdb/l42f/g6yz7OWXZxvrKPc5ZdMh7agFuAjcCJIAgAaoF/Bv4rsOqlbwqCoByIwjA8EwTBqZncdzlPpqdngHQ6upybTJmKikV0dZ3LyGPryjhn2eeN5mxsPMVjR0/THE/wQsc5CgtyufHqKvY21FBbMfEHnbO9gzM5XOHrLBs5Z9nF+co+zlnm5OTEruggT8ZDWxiGX+aCwo8gCF4A7gSeBj4TBMGNk+eZfRb4q8lv2w8Uz+A+SXpdp3uH2NeS4MFD7QyOJKkuX8DPvaOOG7auoLgw479mJUlSlpu17ybCMEwHQfBx4DtBEBQxWcGfiX2S9GrpdMSh53poamnl8PNnyM2JUV9Xwa0NNdStXOJ5apIkacrEoigzS/nmoNXACZdH6nI4Z9mnoLiAnzQdY19LGz39IyxZWMAtO2q4eXs1SxcVZnp4ughfZ9nHOcsuzlf2cc4y54LlkWuYOEh0SWbtkTZJmi2iKOL5tn6a4q088UwXyVSajVct4cON69mxoZy8XItFJEnS9DG0SdLrGB1P8djTp2mKt3Lq9ABFBbncvmsV12+qpKZ8QaaHJ0mS5glDmyS9SseZl4tFhkaT1FQs4OO3BezavJyrape6pESSJM0oQ5skMVEscvB4N03xVo680EtuToxrggoaG2rZULvYYhFJkpQxhjZJ81rf4BgPHGzjvgMJevpHWbqokPfftIabt1ezeKHFIpIkKfMMbZLmnSiKOJ7oozme4IlnOkmlIzatWspHbq1jx4YycnMsFpEkSbOHoU3SvDE6luKRpztojid4sXOA4sJc9tbXsLehhqoyi0UkSdLsZGiTNOe19wzSHE/w0OF2hkdT1FYs5J7bA962eQWFBbmZHp4kSdIbMrRJmpNS6TQHnu2mKZ7g6MmJYpGdGytpbKhlXU2pxSKSJClrGNokzSl9A6Pcd7CN+w600XtulGWlhXzg5rXcvL2a0gUFmR6eJEnSZTO0Scp6URTxbGsfTfFW9oddpNIRW9Ys4+531LFtvcUikiQpuxnaJGWt4dEkjz59muZ4K61dg5QU5nHrNbXsqa9hxbKSTA9PkiRpShjaJGWdRPcg+yaLRUbGUly1fCGffNdGrt+8nMJ8i0UkSdLcYmiTlBWSqZeKRVp55tRZ8nJj7Ny4nMaGGtZWWywiSZLmLkObpFmt99wo9x9s474DCc4OjFFWWsSH9qzjxm1VlJZYLCJJkuY+Q5ukWSeKIsJTZ2lqSdBybKJYZOvaZdxzey3b1paRk+NRNUmSNH8Y2iTNGsOjSR4+3EFzS4K27kEWFOXxjmtXsqe+msqlFotIkqT5ydAmKeNauwZojid4+EgHo2MpVq9YxL3v3sR1myopsFhEkiTNc4Y2SRmRTKWJH+uiKZ7g2ItnycvN4fpNlTReU8uaqtJMD0+SJGnWMLRJmlFn+ke470Ab9x9so29wjPLFRfzs3nXctK2ahcX5mR6eJEnSrGNokzTtoijimZO9NMUTtDzbTRRFXL2ujMaGGrauLSPHun5JkqTXZWiTNG2GRpI8fLid5pYE7T1DLCzO57brVrKnvoaKJcWZHp4kSVJWMLRJmnIvdg7QHG/lkSOnGR1Psba6lE/dMVEskp9nsYgkSdLlMLRJmhLJVJonw06a4gmOt/aRn5fD9ZuX09hQw+oVFotIkiRdKUObpLekp2+E+w4muP9AG/1D41QuKebDjevZfXWVxSKSJGlaReOjRMN9pIf6iIbOEg33EQ31vbxtuJ9Ybj7Fd36BWE72Rp/sHbmkjElHEUdf6KUp3sqB490Qwfb15TQ21LB5zTKLRSRJ0hWLUkmi4f7zASz9UhCbDGPRcP9kIOuD8ZHX3kEsRqyolFjJYmLFpeQsWwlk93sTQ5ukSzY4Ms5DT3XQ3JLg9JkhFpXk8+5dq7hlezXlFotIkqTXEUVpotHBV4avCwPZhcFsdODid1JQQk7JYmLFi8mtWE2seDGxksXnt8Ve+li0iFhOzsw+wWlmaJP0pk52nKO5pZVHj5xmLJlmXU0p733PZq4NKsnPm1u/FCVJ0qWJogjGRy5YinjhEbH+VwWyfohSr72T3HxiJUsmwtfiFcRW1L0cvi4MZMWlxPIKZv5JzhKGNkkXNZ5M8+QznTS1tPJcop+CvBx2bVnO3vpaVq1YlOnhSZKkaTKxPPHV54a9HMguDGMkx157B7HYZNCaDF7LVk6ErwvD2ORH8ouIeVrFmzK0SXqF7r5h9rW0cf/BNgaGx1m+tJiP3LqBG69eQUmRxSKSJGWjKEoTjQwQDfUxdG6M8faOl8PYqwIao4MXv5PCBeePfOUsX3c+mL06kMUKF8655YmZZmiTRDqKePrEGZriCQ4+1w3AjvXlNDbUsmn1UotFJEmahc4vT7zIuWGvODo2Wd5BlAZg6MI7yS2YCFoli8lZXEVu1cbzAeyV54qVEsv1j7eZYmiT5rGB4XEePNTOvpYEnWeHKS3J5463rWLPjhqWlRZleniSJM1LUXLsfHti+lXFHa84V2yoD1IXW56YS6ykdCJwLVhCbvmql4NXyWKWVlXRP5ZPrNjlidnC0CbNQy909NO0P8FjR08znkyzoXYx77t5DdcGleTlupxBkqSpFqXTRCPnXnuu2NBFlieODV30PmKFC18+KrZ8/SvODTt/RKxkMbHCBcRir///eXHFIga6zk3XU9U0MLRJ88R4MsXjRztpiic40d5PYX4uu7euYE99DVctt1hEkqTLFUURjA299jpiQ32kL7jOWDTURzTSD1H02jvJLzq/FDFnaQ25NZtfU9Zxvj0x17fu85UzL81xXWeH2deS4IFD7QwMj1NVVsLH3r6BG7ZWUVLkrwBJkl5tYnni61zY+dXtianka+8glvvyUa8FS19xTbGJj0smzxcrJZbv6Qh6c75jk+agdBRx+PkemuIJnnquh1gsRv2Gchobati4aqlr1yVJ806UTk0sTxzqu3iV/QWBjLHhi95HrGjRyyUdVSsmj5CVng9iLx0xo7DkDZcnSpfL0CbNIQPD4zxwqI3meILuvhEWLyjgPbtXc/P2aotFJElzzvnlia+5sPPF2hPPAa+zPHFyKWJO2Upyi7e+cmni+eWJi4jl+NZZmeG/PGkOeL6tn+Z4K48d7SSZSlO3cgkf2rOOhroKi0UkSVknSo5e9ELO59sTL/ia9EWWJ+bkvXxEbFE5scp1rwhgOZMtirHixcTyC2f+CUqXydAmZamx8RSPHT1NczzBCx3nKCzI5aZtVextqKG2YmGmhydJ0itE6STR8LlXHBF7zbXFXgpi4yMXuYfYxNGul0o6llS98jpiF1xbjIISTwXQnGJok7JMZ+8QzS0JHjzUzuBIkuryBfzcO+q4YesKigt9SUuSZk4URaSGzpE6k5gMXmcvWJrY/8ojZCMDXHR5YkHx+aWIuWWriK28oDnxwkBWtIhYTu6MP0dpNsj4O7wgCMqAHwDrgFHgOPALYRh2BUGwC/gOUAy8ANwdhmHn5O1mdJ+USel0xKHne2iKt3L4+TPk5sSor6vg1oYa6lYu8a+JkqQpFY2PXnAdsbOvvbbYBYFsIJ167R3k5r18RGxRBbHl618RwF5RZZ9XMPNPUMoyGQ9tTPzJ5SthGO4DCILgj4AvB0HwaeCHwCfDMHwwCILfAb4M3BsEQWwm983YT0J6lf6hMR442Ma+ljZ6+kdYsrCAn7lxDTdvr2bpItfgS5IuXZRKToSt16uyv+BcsYsuT4zFiBWVvhy8ltaQU7KYRRWVDKaLJurrJwOZyxOlqZXx0BaG4Rlg3wWbHgV+EbgWGAnD8MHJ7d9m4ujXvRnYJ82YKIp4vq2fpngrTzzTSTIVsfGqJXy4cT07NpRbLCJJOi+K0kSjg294HbHz+0YHLn4nBSXnzw278HpirzhfrPil5Ymv/T9occUixrrOTfMzlea3jIe2CwVBkMNEYPt74Crg5Ev7wjDsDoIgJwiCZTO9bzJYStNqdDzFY0+fpineyqnTAxQV5HLL9hr2NNRQU74g08OTJM2QKIpgfOS1tfUvNSe+IpD1Q3Sx5Yn5E9cNK1lMzuIVxKqCl8PYq88Tc3miNOvNqtAGfAMYAP4EeH+Gx/L/t3fvwXFe533Hv+8u7tcFARAEARLi9ZAUJV5kRdbNsihrfFVlx44txZJiTzMTublMm7jNTCbpbUatx1EnbRK78iRN6iaNZzTjGbvTaZNODVISTduVBZAUdTmSLFEiwRsIEndggd09/eNdLPbyAgSBBfaC32cGg9337B6cxeHLxbPneZ+zLK2tha3a197eWNCfLzdvFo//deIs//flD5iYmqVnUyP/5PO388DhbupqKgs9PAmg86z0aM5KTznOmYvPEp8YITY+THz8OvGJYeLjw8Qnholl3Xez0dwOvBDh+mbC9RHCzS2EN2+noiFCuCHiH2uIEK5voaIhgldVu6bpieU4X+VOc1ZaiiZoM8Y8C+wCHrHWJowxHwA9ae1tgLPWXlvrtpt5HUND4yQSAZWR1kB7eyODSk8oCYmE49Q7Vzl+5hL9bw0SDnncYdo5cribXd3NeJ7HxNg0E2NBJY+lkHSelR7NWekppTlzLoGbHs9MTUxdI5ZZvIPoRHAn1fXzqYht26jY0hxYyt6rbshJT4wnv1ISwGgc/zPwtVFK8yU+zVnhhELeshZ5iiJoM8Y8A9wBfNpaO/fR0itArTHmvuR1Zk8DzxeoTSQvRib8wiIvnBxgaDRKW3MNn7vfLyzS3KDCIiIixSCVnhi0j9hkZjDmpkbBJXI7qaiaT0ds7iTcuSdjH7H5a8Wa8MLKqhCRxRU8aDPG3Ar8AfAWcMIYA/CetfZzxpgnge8YY2pIluAHSK7ErVmbyEo453hnYISjfQO8/OYV4gnH3p4WHntoNw/ffQvXri3wyauIiOSVi82kqicmsgp3ZFwrNjkC8ZncDrwwXl2TH3DVRwi39cyvgqWXsq9tgsoaVU8UkbzxnCtMKl8ZugV4T+mRMic6E+cnr1/iaN8A566MU1sd5t79nTx4uIvOVr+wiOas9GjOSo/mrPTczJy5RAI3PZa7j9hkQHrizGRgH151Q2YaYvY+YnNt1fV4nir4ZtM5Vno0Z4WTlh65DX+RaEkKvtImUm4uDk1wtG+AH5+5yFQ0Tnd7A099wnD3vk1UV4ULPTwRkaLnnMNFJ7L2ERsNrqY4PQpBH0BX1qRSEUMtXYS79mWVso8kg7JGvJD+HBKR4qb/pUTyIJ5IcPLtq/T2DfDG+9cJhzzu3LORI4e72dHVpBQZERHm0hMX2Ng57dj41CguPpvbQSg8v/JV35Kxp5j/PZIMyJrwKmvW/gWKiKwSBW0iKzAyHuWFUxd44eQFro9F2dBUzS9/ZDv3H9hMc732vRGR8ucScT89MS0AWyggY2YqsA+vpnG+SEfnJupb25mmNiddkep6fQgmIuuSgjaRm+Sc4+3zI/T2necVO0g84bh12waeeHg3t+9sJRzS9Q4iUtqcczAzGbCxc1D1xDEgKD2xFq+uiVBtM6HWLYRr9+du7FwbnJ7YquttREQyKGgTWaKpaIyfvn6Zo33nOT84QV11BQ/d0c1HD3WxaUNdoYcnInJDLhZNBWCJtKqJQQEZiVhuB6GK+RWxxja8jTsyArD5UvZNeBXaxkREJF8UtIncwMDVCY4lC4tMz8TZ2tHAVz65h7v2dVBdqcIiIlJYLhFPFenIDcgy7zM7HdCD5692zQVekc7AjZ1Ddc1QVaf0RBGRAlDQJhIgFp8rLHKeNz8YpiI8X1hk+2YVFviAyngAABTuSURBVBGR1eWcg+hE2srXsL+PWHZq4uQIbnqcwPTEqtpUKmK4tQdvywKl7Gsa8UL6AEpEpJgpaBNJc30syounLvDCyQGGx2dobarhCx/dwX23d9JUp8IiIrIybjaato/YcO7eYmmpiiTiuR2EK/DqIsn0xHa8jp25GzvPBWQV+j9LRKRcKGiTdc85h/1gmN7+Afrf8guL7N++gac+0c3t21sJhbSqJiILc/FYRnpidmpi+gpZYHqi5+HVNM0HXi1dmemJc9eK1TX7xT200i8isu4oaJN1ayoa48SZSxztH+DC1Qnqayr42If8wiIdLSosIrKeOZfARScW3Ecso6JidDy4k+r6+fTEtP3EsgMyPz1RVWdFRGRhCtpk3Tk/OM7RvgFOvHaJ6Eycnk2NfPVTe7hrbwdVKiwiUracczA7nVUlcaEVslFwQemJlX56Yl0zoeZNeJ0mYx+xVOGOmkalJ4qISN4oaJN1IRZP0PfWIL19A7x1bpiKcIi79m7kyB3dbOtsKvTwRGQF/PTEBfYRmxxhIDbOzMg1Pz0xNpPbgRfCq22aT0XcsCWVjpgdkFFZo/REERFZcwrapKxdG53mhZMXePHUBUYmZmhrruFXHtzBfbd10qjCIiJFy7kEbno869qw3I2dE5MjEJ0I7qS6nlBdMxXNrYQ7dmTtI5aentiA5yk9UUREipeCNik7zjnefP86vX0D9L99Fecct+1o5cjhLvZvbyWkT8lFCiKVnhi0j1h2KfupUXCJ3E4qqvDqIoRqmwlFNhPu3Otv5JwdkNU24YUrAWhvb2RwcGyNX62IiEj+KGiTsjE5HePEmYsc7R/g4tAkDbWVfPyXtvDAoS42RmoLPTyRsuViM6nqiYlU4Y6Aa8UmRyAelJ4YTgVeXn2EcFtP5j5i6deLVdas/QsUEREpMAVtUvLOXRnnaN95fvLaZaKzcbZvbuIff3ovv7R3I5UVKiwishwukcBNj+WmJgalJ85MBvbh1TTOXxPWsTN4Y+e6ZrzqeqUnioiILEJBm5SkWDzBz+0VevsGeOf8CJUVIe7a28GRO7q4ZZMKi4gEcc7BzGTGylfGCln68elRcC63k8qaVCpiqKWLcNe+rFL2kWRQ1ogX0luMiIhIPugdVUrK0Mg0L5wa4MWTFxidnGVjpJYvHdnJvbd10lBbWejhiRSEn56Ym4oYVMqeeCy3g1B4fuWrfgPh9m0Z1RS9ukgyIGtSeqKIiEgBKGiTopdwjjfOXqe37zwn37kKDg7sbOPI4S72bdugwiJSllwi7qcnpgVgCwVkzEwF9OD5VRHnyth3bpov1pFVyp7qepWxFxERKWIK2qRoTU7PcvzVSxztH+DyNb+wyCfv6uGjBzfTpsIiUoJS6YnZqYgBpezd1BgQlJ5Ym0pFDLVuJTwXlM2thM0FZEpPFBERKRt6R5ei88HlMXr7zvPT1y4zE0uwo6uJf/SZfXxoz0YqK1SsQIqPi0VTAdh8KuJoYEBGIig9sWJ+RayxDW/jjox9xOZL2TfhVVSv/QsUERGRglLQJkVhNpbg529eobf/PL8YGKWqIsSHb+3gwUPd9GxqLPTwZB1yiXhG2fq5gOyqm2Lq2mBGgMbsdEAPnr/aNRd4tXTmVk5MBmRU1Sk9UURERBakoE0K6urIFMf6L/DS6QuMTc7S0VLLYw/t4t7bNlFfo8Iikl/OOYhOpK18DeOmRnNTEydHcNPjBKUnxqrroMZPQwy39uBtaQ4uZV/TiBfSlhMiIiKycgraZM0lnOP1967R2zfAqV9cBeDgzjaOHO5m7y0tKiwiN83NRtP2ERvO3VssLVWRRDy3g3AFXl3EX/lq2ojXsSstAGvKCMg2drYyODi29i9SRERE1i0FbbJmxqdm+fGrFznaP8CV61M01VXy6bt7eOBAF63NKiMumVw8lpGemMheCUtbIQtMT/Q8vOSKmJfcUywUkJro1TX7xT30YYGIiIgUKQVtsurOXhqlt2+An71+mdlYgl3dzXz2/m3csVuFRdYb5xK46MSi+4il2qLjwZ1U16dWvsLt23ICML9yYlMyPVH/vkRERKT0KWiTVTEbi/P/3rhCb98A710cpaoyxD37N/HgoS62dqiwSDlxzsHsdFaVxIVWyEbBBaUnVs2viDVvwus0GfuIzVdSbMIL61pHERERWV8UtEleDQ5Pcax/gJdOX2R8apbO1jp+9WO7uGd/J3U1+udWSvz0xAX2EcsKxojN5HbghTL2DQu3bplPTZxbHaudS0+sUXqiiIiIyAL0V7SsWMI5zrw7RG/fAK/+YgjP8zi0q40jh7vY09OiP8aLiHMJ3PR41rVhuRs7JyZHIDoR3El1ferasFDHjqx9xNJSFGsa8DylJ4qIiIislII2WbbxqVleOn2Bo30DXB2Zpqm+is/ccwsPHNzMhiYVFlkrqfTEgGvDckrZT42CS+R2UlGFVxchVNtMKLKZcOfe+XTF2rTURKUnioiIiKw5BW1y0967OErvK+f52RtXiMUT7N4S4Qsf3cHh3e1UhLWyki8uNpOqnphIFe4IuFZscgTiQemJYby6Jn/Vqz5CuK0ncx+x9ICsUkG2iIiISLFS0CZLMjMb52dvXOZo3wBnL41RXRXm/ts7efBwF93tDYUeXslwiQRueiwVeI1djBK9fDkwXZGZycA+vJrG+SIdHTv976lgLJJKV6S6TumJIiIiImVAQZss6sr1SY71X+Cl0xeYmI6xua2eLz+8m3v2b6K2Wv98IJmeODOZsfKVsUKWfnx6FJxLPXdq7kZlTSrYCrV0Ee7aNx+Y1TXj1UaSq2SNeCH93kVERETWE/31JzkSCcfpd4fo7TvPmXevEQ55HNrdzpFDXZitkXVTWMRPT8xNRQwqZU88lttBKDyfili/IWNPsbnUxNbuzVyfqsCrrF77FygiIiIiJUFBm6SMTs5w/PRFjvX7hUWaG6p49L5tfOTAZloayyOocIm4n56YFoAtFJAxMxXQg+dXRZyrnti5KXdj52RARnX9DQPcypZGvNjY6rxYERERESkLCtrWOecc714YpbdvgJffvEws7tizNcIXH9zJwV1tJVFYJJWemJ2KGFDK3k2NAS63k8raVCpiqHUr4bmgLLuUfU0jXii85q9RRERERNYvBW3rVHQ2zs9ev0xv33k+uDxOTVWYjxzYzIOHu+lqqy/08ABwsWjARs6jgQEZiaD0xIr5FbHGNryNOzI3dk4FZE14FeWxkigiIiIi5UdB2zpz+dokR/sHOH76IpPRGF3t9Tz5ccOH93WsSWERl4hnlK0P3FtsLhCbnQ7owfOLccwFXi2dafuIZZayp6pu3Vx/JyIiIiLlS0HbOpBIOE69c5Xe/gFee88vLHKHaefI4W52dTevOLBxzkF0Yn7la6GNnSdHcNPjBKYnVtUlV76aCLf24G3J3thZ6YkiIiIisj4paMtijNkNfBdoBYaAp6y1bxd2VMszG4vzo1cG+NEr5xgajdLSWM1n79/GAwc209xw43RANxtN29h5OGcfsfRURRLx3A7ClfMrYk0b8Tp2ZRbrmLtd24RXUbUKvwERERERkdKnoC3Xc8C3rLV/a4x5AvgOcKTAY7opiYTjxJlL/OD4u1wbjbJna4THHtrFwV1thFwCNzVKfPBCWkCWviI2mlohC0xP9LxkoOVfCxZq6cos1pFWSZHKWqUnioiIiIiskIK2NMaYjcBh4OHkoe8Bf26MabfWDhZuZDfnx6fO0df7Iz4WmebgfkeTN447PcLUT0dw0fHgJ1XXp1IR0/cTyy5l71U34IWKv6KkiIiIiEi5UNCWaQswYK2NA1hr48aYC8njJRO0HfTe5GDjCxAHbziCa2gl1LwJr9Nk7CM2X0mxCS9cWehhi4iIiIhIAAVtedba2lDQn9/e3kjbQ59l9tBdVDS1EqqqLeh45Mba2xsLPQS5SZqz0qM5Kz2as9Ki+So9mrPSoqAt0zmgyxgTTq6yhYHNyeNLMjQ0TiIRUB1xDbS3NzI4OJa81wwjMWBssadIgWXOmZQCzVnp0ZyVHs1ZadF8lR7NWeGEQt6yFnl0cVIaa+0V4CTwePLQ40B/KV3PJiIiIiIi5UUrbbmeBr5rjPmXwHXgqQKPR0RERERE1jEFbVmstW8CdxV6HCIiIiIiIqD0SBERERERkaKmoE1ERERERKSIKWgTEREREREpYgraREREREREipiCNhERERERkSKmoE1ERERERKSIKWgTEREREREpYgraREREREREipg2186fMEAo5BV0EIX++XLzNGelR3NWejRnpUdzVlo0X6VHc1YYab/38M08z3PO5X8069N9wEuFHoSIiIiIiBS9+4HjS32wgrb8qQbuBC4C8QKPRUREREREik8Y6AReBqJLfZKCNhERERERkSKmQiQiIiIiIiJFTEGbiIiIiIhIEVPQJiIiIiIiUsQUtImIiIiIiBQxBW0iIiIiIiJFTEGbiIiIiIhIEVPQJiIiIiIiUsQqCj0AyQ9jzG7gu0ArMAQ8Za19u7CjWn+MMWeB6eQXwO9ba//BGPNh4DtALXAWeMJaeyX5nGW1yfIYY54FPg/cAtxmrT2TPL7gObQabbJ0i8zZWQLOt2SbzrkCMca0An8D7MDfOPYd4DestYOrMS+as5W7wZw54FUgkXz4k9baV5PPewT4Y/y/J18BvmqtnVxJmyydMeYHwDb8uRkHfttae1LvZ+VJK23l4zngW9ba3cC38N/ApDC+YK09mPz6B2OMB/wt8JvJ+XkR+AbActtkRX4AfAR4P+v4YufQarTJ0i00Z5B1vsHyzyudc3njgG9aa4219nbgF8A3VmNeNGd5Ezhnae33pJ1ncwFbA/AXwCPW2p3AGPD1lbTJTfs1a+0Ba+0h4Fngr5LH9X5WhhS0lQFjzEbgMPC95KHvAYeNMe2FG5Wk+RAwba09nrz/HPDFFbbJMllrj1trz6UfW+wcWo221Xpt5Spozm5A51wBWWuvWWuPpR36KdDD6syL5iwPFpmzxXwS+HnaastzwJdW2CY3wVo7kna3GUjo/ax8KWgrD1uAAWttHCD5/ULyuKy9/26MOW2M+bYxJgJsJW2FwFp7FQgZYzasoE3ya7FzaDXaJH+yzzfQOVc0jDEh4GvA/2B15kVzlmdZczbnmDHmpDHm3xtjqpPHMn73wAfM//+23Da5ScaYvzTGfAA8A/waej8rWwraRPLrfmvtAeBOwAP+vMDjESlnOt+K35/hX2ujuSkd2XO21Vr7IfwU5X3AHxVqYJLLWvvr1tqtwB/gXycoZUpBW3k4B3QZY8IAye+bk8dlDc2lcFlro8C3gXvxP0VMpZkYY9oAZ629toI2ya/FzqHVaJM8WOB8A51zRSFZQGYX8CVrbYLVmRfNWR4FzFn6eTYK/CULnGf4K2jnVtgmy2St/RvgQeA8ej8rSwraykCyStZJ4PHkoceBfmvtYOFGtf4YY+qNMc3J2x7wGP68vALUGmPuSz70aeD55O3ltkkeLXYOrUbb6r+i8rfI+QY65wrOGPMMcAfw2WRQDaszL5qzPAmaM2NMizGmNnm7AvgC8+fZ3wN3GmN2Je+n/+6X2yZLZIxpMMZsSbv/CHAN0PtZmfKcc4Ueg+SBMWYPfinWFuA6filWW9hRrS/GmO3A94Fw8ut14HestReNMffgV1qqYb4k9eXk85bVJstjjPlT4JeBTcBVYMhae+ti59BqtMnSBc0Z8AgLnG/J5+icKxBjzK3AGeAtYCp5+D1r7edWY140Zyu30JwB38T/3TqgEjgB/FNr7XjyeY8mHxMG+oGvWGsnVtImS2OM6QB+CNQDcfyA7evW2j69n5UnBW0iIiIiIiJFTOmRIiIiIiIiRUxBm4iIiIiISBFT0CYiIiIiIlLEFLSJiIiIiIgUMQVtIiIiIiIiRUxBm4iISBZjzHPGmD9apN0ZY3bm+Wd+2Rjzf/LZp4iIlAeV/BcRkbJmjHkM+GfAfmACf/+p7wL/2Vq7rDdBY4wDdllr3wloOwZ8GIgB08CLwG/O7SGXD8aYrwC/bq2970aPFRGR0qeVNhERKVvGmN8D/hPwx/ibc3cATwP3AlULPCechx/9W9baBmA3EAH+JA99iojIOlVR6AGIiIisBmNMM/Bvgaestd9Pa+oHvpz2uP8KTAE9wAPAo8aYJ4Dz1to/TD7mnwO/CzjgD5c6BmvtNWPM94GvpY3pz4BPApPAXwD/zlqbyF49S67mfQ34PaAN+Dvgt4A9wHNApTFmHIhZayPGmE8BzwJbgFHgT6y1zy51rCIiUry00iYiIuXqbqAa+OESHvurwDNAI3A8vcEY8wng68DDwC7gY0sdgDGmDfg8fqAIfsDWDGzHDxCfAr66SBefAe4EDgBfBD5urX0Df7XwJ9baBmttJPnY/wL8hrW2ET8VtHep4xQRkeKmlTYRESlXbcBVa21s7oAx5gSwDz+Y+7i19sVk0w+ttT9O3p42xqT380Xgr621Z5J9/Gvg8Rv87D81xjyLfw3dMeB3k2mXXwIOWWvHgDFjzH8AnsQPuIJ8w1o7DAwbY44CB4G/X+Cxs8A+Y8wpa+114PoNxigiIiVCK20iIlKuhoA2Y0zqA0pr7T3JlakhMt8Dzy3Sz+as9veX8LN/x1obsdZ2WWu/bK0dxA8iq7Ke/z7QtUg/l9JuTwINizz288CngPeNMS8YY+5ewjhFRKQEKGgTEZFy9RMgCjy6hMcuVkXyIv51YnO2LnM8V/FXw3qy+hpYRl8547XWvmytfRTYCPwAeH45gxQRkeKj9EgRESlL1tphY8y/Ab5tjPHw0wongduB+pvo6nngr40x/w04C/yrZY4nbox5HnjGGPMUsAG/uMlyioVcBrqNMVXW2hljTBXwK8D/tNaOGGNGgfhyxikiIsVHK20iIlK2rLXfxA+M/gVwBT/Y+Q7w+8CJJfbxv4H/iF/Y4x1WVuDjt/Gvc3sXv+DJ3wF/tYx+eoHXgEvGmKvJY08CZ5MB29PAEysYp4iIFBFtri0iIiIiIlLEtNImIiIiIiJSxBS0iYiIiIiIFDEFbSIiIiIiIkVMQZuIiIiIiEgRU9AmIiIiIiJSxBS0iYiIiIiIFDEFbSIiIiIiIkVMQZuIiIiIiEgRU9AmIiIiIiJSxP4/X3vG55jXAd0AAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 1008x432 with 1 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["df_byte = pd.DataFrame()\n", "df_byte[\"Loads\"]  = (df_vldvst.set_index(\"Grid Points\")[\"PM_VECTOR_LD_CMPL (min)\"] + df_ldst.set_index(\"Grid Points\")[\"PM_LD_CMPL (min)\"])*8\n", "df_byte[\"Stores\"] = (df_vldvst.set_index(\"Grid Points\")[\"PM_VECTOR_ST_CMPL (min)\"] + df_ldst.set_index(\"Grid Points\")[\"PM_ST_CMPL (min)\"])*8\n", "ax = df_byte.plot()\n", "ax.set_ylabel(\"Bytes\");"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Let's quantify the difference by, again, fitting a linear function to the data."]}, {"cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Counter  Loads is proportional to the grid points (nx*ny) by a factor of 37.5010 (\u00b1 0.000592)\n", "Counter Stores is proportional to the grid points (nx*ny) by a factor of  8.4379 (\u00b1 0.000247)\n"]}], "source": ["_fit, _cov = common.print_and_return_fit(\n", "    [\"Loads\", \"Stores\"], \n", "    df_byte, \n", "    linear_function\n", ")\n", "fit_parameters = {**fit_parameters, **_fit}\n", "fit_covariance = {**fit_covariance, **_cov}"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Analagously to the proportionality factors, this mich is loaded/stored per grid point."]}, {"cell_type": "markdown", "metadata": {}, "source": ["*Not really a* <a name=\"task2-c\"></a>**TASK C**: We can combine this information with the cycles measured in Task 1 to create a bandwidth of exchanged bytes per cycle."]}, {"cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [], "source": ["df_bandwidth = pd.DataFrame()\n", "df_bandwidth[\"Bandwidth / Byte/Cycle\"] = (df_byte[\"Loads\"] + df_byte[\"Stores\"]) / df.set_index(\"Grid Points\")[\"PM_RUN_CYC (min)\"]"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Let's display it as a function of grid points. And also compare it to the available L1 cache bandwidth in a second (sub-)plot. Non-interactive users, call `make graph_task2c`."]}, {"cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAF/CAYAAACVLiKjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4ZGd59/Hv9NFIozaqq7bylrPVu+tt7sYN12BCbLANDg7lDTWQhJAXSAIkQAjwOoQeQrGNTTEY497i7nXdZm89W7UradXLSCNNn/P+MdqxtktrtZF+n+vaa6U5Z87c0iPtnnvu57kfm2VZiIiIiIiIyPHZJzsAERERERGRqUxJk4iIiIiIyEkoaRIRERERETkJJU0iIiIiIiInoaRJRERERETkJJQ0iYiIiIiInISSJhERERERkZNQ0iQiIiIiInISSppEREREREROQkmTiIiIiIjISShpEhEREREROQnnZAcwhjzAaqAFSE5yLCIiIiIiMvU4gErgdSA60idNp6RpNfDCZAchIiIiIiJT3gXAiyM9eTolTS0APT0DpFLWpAURCOTR1RWatNeX0dF4ZR+NWfbRmGUfjVn20ZhlF43X5LHbbRQV5cJQ7jBS0ylpSgKkUtakJk2HY5DsofHKPhqz7KMxyz4as+yjMcsuGq9JN6rlPGoEISIiIiIichJKmkRERERERE5CSZOIiIiIiMhJTKc1TSIiIiIzXjKVIjQYpyDPk3ksZVls3deN3+eivjL/pM9v7w3zx+f2MhCOc+7SSlbOLyUcS7J+Zzs7DvSwbG6A85ZUYrfbAOgNRRmIJKgqyT3pdWPxJE9tbGL/oT4uXVmNUVuUfr2eQR555SC5XidXrKklP9c9qq+3fzDGerODrfu68LodFOd7yctx0TcQoycUxet28s7VNVQU+wCwLIuuvgiFeR6cDtUPZGRsljVtFqHNBvZ3dYUmdWFdaamfjo7+SXt9GR2NV/bRmGWfbBuzlGVht9kmO4xJk0pZ9IQTvLCxkeJ8L+cuqZjSN5aJZGpc4osnUkTjSTwuB06HDdtp/EzEE0l6QjH6QjG6+yM0dwzQ1BGiNxTF53Xhz3FRnO+luiyXmtI8KgO5mURkJMyDPdz7/D7yvC7esaqG8gIP63e288ymZrr7osyvKeSSs6pw2O3c/+I+mjoGAFhplHL9RXMIheOsN9vZ0xykrNDH7Ao/vaEoT65vxGG34/e56AxG8LodRONJLAv8Phf9g3GqSnK5YNkstu7rYltDN5YFRk0hV51dS3VpHgfbQzR3hLDbbeTluIjFUzzyygF6+qPkeByEo0lWzCuh2O/l2c3NOOw24skULqeddyyvIpWy2NMcpKM3zNpF5VyxppaSAi8Nrf28vLWVlq4BEkmLWCLFwbZ+kimL0kIvlgU9/VGSKQunw0Zhnoe+gRjxZIq1i8opyHWzaVcn7b1hqkpy+dA1C0+ZRI6HbPt3cTqx220EAnkA9UDDSJ+npGmM6Zcgu2i8so/GbOxYlkVwIEZ7T5h4IkVdhZ+8HNeYXDsaT9LWPUjfQIzzV9bS2zPwtq43GImzuylIQ2s/B9v6ae4YoKTQy0qjjGVzAsQSKdp7wliWxZlzAqd1g9vTH+Un92+lsT3EotnFnDknQEWxD5sNHHY7NWV5uJynvjm3LIuBSILOYJjO3gidwQidwTADkQSlhV7Ki3zMKsmluvT41wuGomzc3UmOx0Eg30sg30tBnhuHPX1uMpWipz9KMBSjbzDGQDjBrJJc6iryMueMRjSWZNPuDpo6BjjUOcCe5iChcDxzvDjfwzVn1zGvuhCv24HP68LnHd1ElcFInK37uzlrfmkmwbEsixe3tOBxOVizsPyU19jV2Et7T5jzz6zMPNbSNcA3frWBlUYZf3mFkUk43tjTyY4DPVz/jjnHTaii8SS7G3tp6wnTFYzQPxjDn+umMM9DPJFkx4EedjcFiSdSADjsNtwuB163gxyPk/pKP4vqiplXXUBBnhuX00EimaK1a5DG9hD7DvWxpzlIY3uI1LD7LJsNKop9FOd7GYwkCIVjdPelb/AB8n0uls8r5az5pcyrLiDHc+T32bIsIrEk/eE4D73UwItvthDI92AB3X1v7dG5sK6IedUFvLS1lc5gBIDyYh/vOm82HT1hHn31INF4MvO11Vfm0xEMEwzFADhvSQXvuWgOBXluzIO9vLKtlfxcN2sXlVNVkssGs4N7n9tLW0+YQL6Hc5ZU4PO4eHJ9Iz39J94rtL4ynxveMYf6Wfk8+XojD79ygHg8xYXLKnnX+fWEowkefKmBV7e14XLZOaMyH7/PzcZdHVhW+mexMxjB6bBTW56H02HHYbcxu9LP2oXl1JTlYbPZSKUswrEEPo8Tm81G30CMx147yNMbm0gmLRbOLsKoKeSpDU30DcS56uxa3nVe/Yh+v8eK/i+bPEqalDTJadB4ZZ+ZOGbxRIpt+7vZYLaT53Nx5do6CkY5fWW4YCjKI68c5Pk3DxGNHdlxtbzYR2WxjxyPE5/XyYp5JSyaXTyi67Z0DfDKtjZe39lOa/dg5vHaCj8fuHw+c6sKGIwk2LS7g8FIgjPnBigv8mXOi8QSuF2OTJWnozfMui0tbNzVSXNHCAuwARWBdNLR1B6irSd8TByXnFXF+y+fn0mcwtEEA+E4HrcDr9t53BujvYeC/OCPW4hEk6w0StlxoOeYm79cr5PVC8s5a34JsXg6cUmlLOZUFVBbnkffQIzn3zjE828confo5vMw39D3s7svmrmJdthtVJflUV+ZT32Fn8pALq9ub+P5Nw9lbtYPs9tsFPrd2G22I64xnMftoL7CT67Xhctlx2m3Y2GRSkFujpNZJblUDSVrh2/G39jTyV1PmHT1RXHYbZQX+6gr93P+iipqAj4aWvu4/4X97D3Ud8RrzSrJZVFdESvml7KwrijzeMqyeGhdAz6vk4uWz8LldNDUHuIH922hvSfMGbPy+dh1iynI9XDn4ztZt6UVG/DX1y3OJE7NnQM8uG4/l62sYW51AQC7m3r5zm83E0+k+OCVBhctryKeSPJvd2ygrWeQeCLFqgVlfPTahTz88gEeWNcAwBVranjfJfMy8b22o42Xtray40BP5nvsdNgz1ZNEMv1YdWkuC+uKKSnwEo0n039iSSLxJKHBOLubehmIJDLXdbvspFIWiWR6XDwuB2fMymdOVT5lhT4K8twU5LqpKPbhdjmO+F4eTrYOtPWzZV8Xb+ztIhpLYrNBVUkulYFcggMxOoeSmsMJlt1m44q1NbzrvHrcTju9kSSvb21hcX1xZppcKmWxdX83sXiSFfNLMkl1byjK85sPUVqYw7K5AXxeV+bxeCJFaWHOMT9fR0skU7T1hKkM+DK/s4lkig1mBwORODVleVSX5gEQCseJJVLMCviOeEMjFI4TT6Qo8nuOuHYoHMfrdmQS3p7+KE++3khz5wArjVJWGaWZmEcjHE2P2eGf/8FInN88tZt1W1onvOo0E/8vmyqUNClpktOg8co+b3fMWroGGIwkSFkWLqed6tK8057aEwxFOdgeylQSuoIROnoj9IailBZ4mVtdyPyaQpacUTyq6V6hcJyG1j72t/TT0NLHzoO9hKPpd00jsSQup53LVlVTkOumqWOArmCY+lkFLJsboK7cT2t3+t3uxrYQje39NHYM4LDbqAz4yM91s9HsIJG0WLuojDlVBZQW5uCw29jf0sfe5j46gxHC0QShcJxoPMmqBWXceMlccjxOmjpCNHUM0NQeoqkjlJkGk0xZ9A3EsNlgQW0RRm0hlYFcLMviD8/to6s3zLyaQvYd6svcmEL65jvH7aCtJ0woHMfttFNW5MPjsrP3UB82wKgtZEFdEfOrC6mvzMfjTt90WpZFc+cA2xt6yPU6KSvKYeOuDh5/rZGLV1Tx3ovn8r8bGnnklQOEo+nk0AZ85NpFnLOkIhPDrsZevvPbTRTmefibvziT6rK8zLX7BmJYVvpma+OuDjbu6iB2VEID6ZvkeCKFZVksnRNgUV0RgYIcSgu9lBR4Mzd4iWSKjt4wTR0DNLT0sb+lj4bWfiKxt971P3dJBZevrsFms9HdF6GrL0J3X5SuYATLsigp9FJSkENhnof8XBc5bicH2voxG3s52NpPJJ4kFk+SSFqkCy82+sMxYvF03Omb8Tz8Phc7DvQwqySX9182j3k1hZnfheG/Z5Zlse9QH939USLRBMGBGGZjL7sae4knUvzFRWdw9dl1APzqiV08u6kZgCK/h7ULy3l6YxM5nvSakodebsCGjdLCHA609XPtubMxD/awv6WPv71hGYPRBD97eAfRWBKH3cb7L5/PvOoC/v2ujfh9LgIFXsyDvfzde5exYVcHT29s5jPXn0lL1yD3PLOH/Fw3fQMxzltSgctp59nNh/j0e5aybF4Jv39mD4+/1khpoZdlc0s4c06AmtI8/LnpZPRwhRA4ZcU1ZVk0toXY39pHaDBOKBzH4bBRU5pHTVkeFQHfaVX9IP0midnYw56mIPta+mjvDlOY56akMIciv4fcoUrf3KoCZg1bQ6T/z07fm3s7uf3RnfQNxLn6nHTVabynpJaW+mlv78OyGNWUTHn7lDQpaZLToPHKPqczZinL4o09nTz6ykH2NAePOJbjcbBodjHzawop9nsp8nuoDPiOmRaTsiw6esMcbAuxtznI9obuzPoAAKfDRiA/fYNcmOehpXuQA63pefaLZhfxoasXUpzvBdLv5vb0R/G4HHhcDjqDYfa39A/dQPfR0RvJXLe82MfcqnxWLyhn0ewiOoMR/vTCPl7b0Q6kqx9Ffi/NnSEsK50UWJmY7OnKQlkuqZRFa/cgHb0Rlp5RzLvOq6e8+K0qz/HEE0keffUgD798gNRQYvTW981JTWkugYIcHA4bdpuNWQEfqxeWH/Ouca7fy//88U227O9maX0xaxeXk+9zs3l3J2/s7SSVsigv9lFS4KV/MJ6e1jcYZ/ncAOctrcx830YinaTt5dFXDuJxO4jGkiyfW8KKeSXEEinue34fqxaUcutVCzPP+e1Tu3l2UzPf+eR5p7xZDkcT7D0UxJ/jpsjvIWVZ7G4KsutgL16PgwuXzRrRu/TDpSyLtu5BmjoGOKMyn0DByL/e0bxGdzBCc+cA+1v62Heoj9buQS5YNour1tYec4M4kt+zWDzJ7Y/u5JXtbVyxpgaAx19r5Oqz61hcX8x9L+xjT1OQ+dUFfOzdSyjM89DeM8iP/7SNlu4BPnLNIlYtKGMgEuebd22kvTc9TfSMWfn81VULuOeZvWzZ14XbZSfH4+RLH1iJz+vi3+/aQGcwQjSe5J2ra7jx0nQl6fk3DnHP03t49wX1XLqymkTS4ht3baCjJ4xRW8im3Z1celY1N102b1repOr/s7dneNVp+M/sgdZ+Hn7lAJZlsaA2Pe1xMJKguXOA/sEYqxaUZSpqlmVxsC2E02GjaugxSE+B3bKvi4piH1Wl6UR3X/sAtz+0jY7eMGfNL+XcxRUU+T20dA3S1jOI1+0kUODF73PR0pmuREaiCd6xooo5VQWT8j2aLpQ0KWmS06Dxenssy6I3FKOte5COYJh51YWZ7kRv55p7m/vYur+L1u5B2rrDROJJ/Dku/D4X/lwPkWgcu83GmXMCrF5YdsQ7uuFogn0tfextDnKoc4Du/igdPWGCAzEC+V4uH+qgZLfBYDTB9oZutuzrPmIqlt1mo36WnwW1RURiSQ629dPYHspUA5wOG/OqC1lcX8zcoUpNQZ77mGpSLJ5k3ZYWfvfMHpx2Oxcun8Wuxl72HTXV6bBAvpf6Sj+zh6Zr1VX4TzgFpTMYxuWwk5/rxmazEQrH2bKvi0OdA8wqyU2/213sG5N3Szt6wzy9sYm8HBfVQ++kF/k9I143NNG/Z5Zl8eBLDZgHe7nu/Hrm1xRmjn3zrg1YwBc+sDLz2H/e8wbBUJSvfGjNhMU41Y10zFKWxW+e3M1TG5sAuHRlNTdfNg/bUOWmuXPgmJ/DZCpFJJYkd9jPdndfhO/+/g3mVhVw02XzcTnT093ue2Efr25v49N/cSY1Zemb0I7eMF+7cz2BfC9fvGXlEde2LOuIn8uO3jBf+eXrhKMJ3nvxXK5YU3Na692ygf4/GxuvbGvl9sd24nU7mTMrn027O/F5nHg9jiPWjQ23eHYRc6oKeG3HW1OTz5wT4Kq1tRxo7eeRVw7QN5heJ3i4WtjUEaK8KId51YVs3NXBYDRx3Gsf5nE5sNtthKMJFtYVccPFc5hdMfENLKYDJU1KmuQ0aLxO367GXu5+cheN7aHMY26nnfdfPp/zz6zM3JhEY0mCA1H6BuLkeBxHvPt2+Hhrd/qdtQNt/by+o53OYASbLZ1ElBf78HmchMJx+gdjWEAiaRGJJQiGYpQUeLngzEq6+6PsbQ7S3DGQWfsSKEhXfor8XpaeUXxMgnWYZVn0Dcbp7Y/S3R9hf0s/Oxq62dfSh9vpoKYsj5ryPOrK/dSW51FVMrKGAIe1dQ/ys4e2s/dQH7Mr/Jw1v5Tq0jyi8SSRWIIiv5fZFf5Rt9nNFlPp9+yOx3aywezge5+5IPPY53/80tBamyWTGNnUMpoxsyyLJ15vZCCS4N0X1E9I58GBSByXw37M+qDjaWjtYzCSGPHavGw1lX7Psl1zR4gf3reVnlCUd66q4Yo1NeR4nHQEI+xrDuL3uZlVkpueArqpmac2NhEMxZhfXcA5SyroH4zzxOuNmYYqC+uKuGptLd39Ubbs66KjN8y7LpzLsvpCHHY78USKrfu6iMSTzArkUl6cQzSWpDMYoW8gRkXAR3mRj1giybObDvHYqwdwOOx8+xPnzuhOn6dLSZOSJjkNM2G8mjpCPLCugd5Q+h0yh81Gbbkfo7aQudUF+HNcp3zntac/ylMbmtKtY71O9rf28+r2NgL5Ht65upZZpbn4c1z87uk97DjQw+oFZfi8TnY19tLSNXjEtVYvKOOGd8zB5bTz+GuNPL2p6Yi1FotmF3P2onLOml96zBQ5eGvMjp5yl+NJvys4p6qAOVX5nFFZMOoOX0eLxpO4HPYxmcqTsiwi0cRpLV7OdlPp9+yJ1w7y26f38F9/cz5+n5tYPMnH/99zXHd+Pe86v36yw5syptKYychozMZWIpkinkgd9/+h4507GE2Q73vrja9ILMHrO9opK8rJ7Ec13NsZr3VbWvj5wzv45w+umpR26dnudJMmbW4rMoWkLIv+oYoHQG153mlPJekbjHH/i/t5dlMzOW4ndRV+IL3I+NnNzTy5vhFIV4cK8zwECrxUBnxUBnJZUFeU6b50oLWf7937JsFQDAsLy0qvlfmzc2dz9Tl1eIa90/v371vOwy838KcX9+N1O5lXXcDZiyso9nvIz3WztznIY68eZNPuTmy29H80axeVc9a8UiqKfZQW5RxxvZOx22ysmFfKinmlBEPRzGLusTTSWEbCbrPNyIRpqqkIpH+uW7sH8fvctHYPYgGVp9iUU0RmFqfDPuLpzU6H/YiECcDrdnLBslnjEdrQtgqweXenkqYJpKRJZIpYt6WFu57cdUQL6LoKP1esrmHVgrJT/uMdT6QIhqLsa+njlW1tbNnXhWXBxSuquO78evzD/kGPJ1LppgMt6Y5YvaEoHb0RXtramlm3M6cqn8Wzi3ns1YPk+Vz8y62rqC7LIxJNYLPZjvvum91u48/Oq+eyVTWZ+dfDLT0jwEXLq3jwpQYsy+LKNbWnbEYwEsN3vRc5mcpA+uetpWuQedWFHOpKN/OoHIOfQxGRieD3uZlXVcDmPZ38+YVnTHY4M4aSJpFJZlkW972wn4deamB+TSGrF5SldzAfjPHk64389MHt/Pap3axeUM7qhWWUF/tIJFKEYwl2N/aydX83e5qD9A++tRllkd/D5atqOP/MyiNa0h7mctqZX1N4xAL5w7F090VZb7bz/BuHeGBdA3Nm5fOp9yzNJCYjqZacbDpDkd/DX15hjPTbIzKmAvleXE47LUPJUmvXIDYbY5K8i4hMlOXzSrnnmT10BsOUFIyuY+dEC0cTPLiugctWVY+qG+pUM2FJk2EYDUBk6A/AP5qm+fhxzvs08EkgDiRM01wxUTGKvF3xRIo9Tb00tPWzpD6Q6fY03MG2ftZtaaWnP4LLaac3FGPHgR4uOLOSW64wjqgoXbR8Flv3dfHillaef/NQpkPVcIF8L8vmlFBS6KUoz0NFwMecqoLTmqpms9kIFHi5Yk0t71xdQ0dvmOJ877jvVyEyUex2G+VFvsxau0Ndg5QW5oyqsYeIyGRbPq+Ee57Zwxt7urh0ZTUAhzoHKC304nKefGp5yrJ4an0TdRX+Y948PZ54IoXDbjtm9kgimTrm/uDwxtuH70GSqRQ/vn8r2/f3cO7SCrK5HctEV5quN01z64kOGobxHuAGYLVpmv2GYVSc6FyRyWRZFrsae3l28yHaugcz/5A0dYQyTQ1+/8xeFs8u4twllURiCbr6omxv6KahtR+nI7254+HNMG+4eA5Xrqk9Zv1Suq12CWfOKSEcTbBlXxehcBynw47baae+Mp+yopxxaaFrs9koK9K77zL9zCrx0dCSXoDd0jWgqXkiknUqin1UFPvYvKeTS1dW88Ibh/jlozsp8nv4s3Nnc/6ZlURiyaEtLiyWnhHIbAVweKNnu83G+y6dy2Urq094H9HaPchtv9uMzQY3XTqfZXMD9A3E+MOze3llexsfunphZrPweCLFf/3hDQ51DnD9O+Zw9uIK7n5yN1v3dfPBK43MflbZaqpNz/t74J9N0+wHME2zdZLjETmGebCHOx83aekaxOdxMqeqAMtKb/x5wdJZLK4vpqYsj1e2t/K/G5r4n4e2A+Cw26gqyeWmy+ZxzuKKU26iebQcj5M1C8vH40sSmVEqin28vrOdaCxJW/cgS88ITHZIIiKjtnxeCU++3si6LS3c/thOFtQWEk+muPNxk3ue2ZNZowyw5Ixibr1yAa9sb+Px1xp5x/JZ9IZi/OZ/d7PvUB95Xhd7moP0Dca4eEUVl62qpq07zG33bAYgL8fF9+59k/nVBRxsDxFPpCgpzOEXj+ygMM+NUVfEzx/ezvaGHioDPn720A7uf3E/Hb0Rrj67jouWV03Wt2nMTHTSdLdhGDbgReCLpmn2HnV8EXC2YRhfA9zAf5um+T8THKPICQUHYvzoT1vxuh18+JqFrF5QdsJ9Qq45ZzZXrKmluWOA/Fw3BbnuabkLvUi2qQzkYlmwraGbRNJSpUlEstLyuSU89upBfv7wDs6Ylc9nrl+G22Vny74u1u/soCLgo74yn+aOEH94bi9f+p9XicaTrFlYxgeG1hY/8OJ+HljXgMfl4IxZ+eT5XPzx+X088XojiWSKXK+Tv79xBSUFXp7a0MSjrx7EqCnkxkvn4fe5+MZdG/nBfVtYMa+U13a0c/075nDl2lpe3trKvc/t5ZzFFbznounRrGLC9mkyDKPGNM1GwzA8wHcBv2maHzjqnD7gbtJrmkqAdcCHTdN8fgQvMRvYP7ZRSzbb2dBNbo6LmnL/Sc+zLIuDbf0c6giRSFjEEkkOtPazY38XB1r7ufrc2dxy9SLsNvjXn7/KG7s7+M/PXkSd2nyKZKV9zUE+c9uzXLKqhqfXN/LtT1/Agmm+8amITD/JlMWH/u0JcnOcfPOTF5x0g/SWzgF+fO8b5HidfO79q45Yx9k/GMPnceIYWp9kHujm7sd20h+O86Vb11BSeOJGE+09g/zD956nuy/K1efO5mPvOTMz1e9wjjEeSwjGyNTf3NYwjKXAA6Zp1h/1+FbgE4eTJMMwfgTsM03zOyO47Gy0ua0M2dXYy7d/s4mKYh//+uE1x/zCxhMpdjX2YjYHeWVLC53ByBHHnQ4bsyvzyfO62LynkzPnBDBqC/n9M3u56dJ5XL66ZiK/HBlGv2PZZ6qNWTSe5BP/7zl8XicDkQTf/+wF5GoPrSNMtTGTU9OYZZexGq+e/ig5Hgde9+StuGnuHGDL3i7eubomK2bUTOnNbQ3DyAWcpmkGh6bn3QhsPs6pvwauBJ4fes4FwH0TEaNMH13BCD+8bwt2u43mzgH2HupjblUBAAOROHc9sYvNezqJxpK4nXYW1hVx9Tl11Ffk43LacThsFPs9me4zT29s4tdP7ubNvV0sri/m0lXVk/nlicjb5HE5CBR46QxGyM91K2ESkaxV5J/8fQqrSnKpmgEbhE9UWloO3GsYhgNwANuBTwAYhrEZuNo0zUPAfwI/NQxj29Dz7jRN88kJilGmgWg8yff/+CaJZIr/+/6z+NZvNvH85kOZpOnBdQ28tqONC5fNYtncEi5YWUN/MHzSa15yVjWVxT6e3tTM+y+ff1qtvEVkaqkI+OgMRpgV0HomERE5tQlJmkzT3Accd78l0zSXD/s4DNwyETFJ9usMhukfjJNIpgiGYmzd38Wbe7sIhmJ85oYzqa/M5+xF5by8tZUbL53HYDTO0xubOG9pJR+8cgEAXreTkRTHF84uZqHWPIhMG5XFuWzd101lYPq/OyoiIm/fVGs5LuMoFk/y5t4umjpCXHvu7Cm9Yene5iDrtrQwr7qQhbOLKMx7q/xsWRYPvtTAn144su9HjsfJ4tlFnLe0kjPnlABw4bJZPLf5EK9ub2XvoT7AxrvPP2IpnYjMQJVDFaYKVZpERGQElDRNc13BCNsPdLNtfzdv7O0iOtSzf0FtEQvqiiY5uhO755k97G4K8uzmQwDUV/q5aHkVK41Sfv3kbl7e1srZi8tZs6Acp9OGz+OitjzvmERwdoWf2vI8HnnlAN19Ua5YW0txvncyviQRmULqKtJdNesr1AVTREROTUnTNNXZG+a/H9zG3uY+APJ9LtYuLGfOrHx++ehOuvoip7jCxElZ1hHrhJraQ+xuCnLDxXNYVFfMtoZuXtrayu2P7uSOx3ZiWfDnF9Rz7bmzT9nG0mazcdGyWfzqiV34PE6uPrtuvL8cEckC9ZX5/MfHzqH0JK10RUREDlPSNA1t3d/Ff9+/jZQF7714Lkvqi6kqzcVmsxFPJNNJU3Dyk6aWrgEef+0gL21t46ZL53LxWemudM9sasbpsHPBmbPGglK7AAAgAElEQVTIy3FRV+HnqrW17G5KT9lbckaA1QvKRvw6axdVcP+L+7nm3Nnk5ahLloikKWESEZGRUtI0TYTCcXYc6GHL3i7WbWlhVmkun3rPUsqLjpyv73I6KMh10zmJlaZ4IsUdj+3k5a2tOJ12ivM9/O7pPSyaXUx+rpuXtrWydmHZEQmOzWZjfk0h82sKR/16Pq+T//z0+VN5czURERERmcKUNE0Db+7t4nt/eJOUZZHjcXDh8lnceMk8PG7Hcc8PFHgnrdIUT6T48Z+2snlPJ1etreWKNbUkUxb//LNX+fkjO1i7sJxoLJmpOo0VJUwiIiIicrqUNE0DL21tIc/n4lPvWUp9pR+H/eRd8QL5Xg60Tcyu4ftb+nh1extVpbmcMauAe5/dy+Y9ndzyzvlHJEY3Xz6Pnz20g4aWfurK/dRX+ickPhERERGRU1HSlOVSlsWOAz0sqS/ObOB6KoECL5t2dxzTgGGsbdrVwU8e2EYimcKy3nr86IQJ4JzFFazf2cHmPZ1cfFaVKkMiIiIiMmUoacpyhzoG6B+Ms7Bu5BuvBvK9JJIWfQOxI/Y/GkvPbGrmridMZlfk8zfXn0koHGdvc5DifA9L6gPHnG+z2firqxfwyrY2zllcMS4xiYiIiIicDiVNWW7HgR4AFtSNvEFCoCC9T1FXMDLmSdOB1n7+8Nxetu3vZtmcAB+7bgked7r5RFVJ7kmf6/e5uXx1zZjGIyIiIiLydilpynI7DvRQVphDScHIW+eWDG3u2tUXYc4Ip/Qdz2Akzp7mPtq6B+npj3Koa4A393aR63Xyvkvmctmq6lOurxIRERERmeqUNGWxZCqF2djDmoXlo3peptJ0Gm3HU5bFMxubeW7zIZo7QhxequR02Cn2e7jmnDquWluHz6sfLRERERGZHnRnm8UOtIYIR5MsrCsa1fNyPE58Hueo2463dg/yi0d2sKcpyJyqfK47v5551QVUleXhz3GpeYOIiIiITEtKmrLYjgPdACyoHV3SBKPfq2l7Qzf/9Yc3cTvtfOTahZyzuEJJkoiIiIjMCEqastjOAz1Ul+aSn+se9XMD+V46g+ERnRuLJ7n90Z0E8r18/uYV49ZxT0RERERkKlLSlEUsy+IPz+0lkbCoLPGxuynIhctnnda1AgVezMaeEZ370MsNdAYjfP4mJUwiIiIiMvMoacoim3d38ugrB3HYbSRT6RYMS+pHvj/TcIF8L+FoksFIHJ/XdcLzDnUO8OgrBzl3SQULRrl2SkRERERkOlDSlCUsy+L+F/dTVpTD1z6ylt7+KMGBGGfMyj+t65UMddDrDEaoPUHSZFkWv3rcxOt28N6L55527CIiIiIi2WxUSZNhGAuB64EK0zQ/aRjGAsBtmuab4xKdZGze3cnB9hAfvmYhToedksIcSgpHvjfT0Ya3Ha8t9x/3nNbuQczGXm68dN5prZsSEREREZkORrzzqGEYNwDPAVXALUMP5wG3jUNcMoxlWdy/bj9lhTmcvXh0ezKdSODwBrcn6aA3EEkAUBnwjclrioiIiIhkoxEnTcC/Au80TfNjQHLosTeAZWMelRxh855ODraFuPbc2TjsoxmyE/P7XLid9pNucBuJpZMmj8sxJq8pIiIiIpKNRjM9r4x0kgRgDfvbOv7pRzIMowGIDP0B+EfTNB8/wbnvAJ4CPmOa5g9GEeO0k0pZ3Pd8usp0zpKxqTIB2Gw2ivNPvldTJJrOjb1uJU0iIiIiMnONJmnaQHpa3p3DHrsReG0U17jeNM2tJzvBMAw/8B/Ao6O47rT13BuHaOoI8bHrFo9ZlemwQIH3pJWmaHwoafKoX4iIiIiIzFyjuRv+G+AJwzA+DOQahvE4MB945xjHdBvwbeDaMb5u1gmF49z3/D6MmkJWLygb8+sH8r00tvWf8HgkpkqTiIiIiMiISxemae4EFgA/BP4J+CWw1DTN3aN4vbsNw3jTMIwfGYZRePRBwzCuAgpN0/zDKK45bd3/wn4GInFuvnw+NpttzK9fWuilbzDO4FDDh6MdXtOUo6RJRERERGawUc27Mk1zELjnNF/rAtM0Gw3D8ADfBX4AfODwwaEk6pvA5ad5fQACgby38/QxUVp6/Bbeo9HQ0sczm5q4+tx6zlpcOQZRHWvR3FLufW4fgwmLuuPEbHc6cNhtVFYUjEvSNlWMxXjJxNKYZR+NWfbRmGUfjVl20Xhll5MmTYZhvMAIGj2YpnnhCM5pHPo7ahjGj4AHjjplCVAJvGYYBkAJ8GeGYRSbpvmvp7r+YV1dIVKpEfWmGBelpX46Ok485W2k7n5kO163kytWVY/J9Y7H704XGrfubqck79gNbrt7wnjdDjo7Q+Py+lPBWI2XTByNWfbRmGUfjVn20ZhlF43X5LHbbadVZDlVpelnpxfOkQzDyAWcpmkGDcOwkW4gsXn4OaZpvki6Q9/h59wOrJ+J3fPiiRSb93SyekEZeTnHJjNjJZDvxeN20NwxcNzjkVgCj6bmiYiIiMgMd9KkyTTNO8bodcqBew3DcAAOYDvwCQDDMDYDV5umeWiMXivrbWvoJhJLstIY++YPw9lsNqpLcmk+QSUpEkvidatznoiIiIjMbCO+IzYM43vAb03TfGnYY+cC7zVN87Mne65pmvuAFSc4tvwEj9860timmw1mOzkeJ4tmF437a1WV5rFxVweWZR2zbikST6pznoiIiIjMeKPZ+OcmYP1Rj20Abh67cCSRTLF5dyfL5wZwOsZ2X6bjqSrNJRSO0zcQO+ZYJJZQ0iQiIiIiM95o7sqt45zvGOU15BTMg70MRBLjPjXvsOqSXACaOo9d16TpeSIiIiIio0t4XgC+ZhiGHWDo768MPS5jZIPZjsflYEl98YS8XlVZuntIc/ux65oiUU3PExEREREZTRnhM8BDQIthGAeAWqAF+LPxCGwmSqUsNu7q4Mw5AdyuiUlW8n1u8n2uE1Sa1D1PRERERGTESZNpmk2GYZwFrAWqgUbgNdM0U+MV3Eyzu6mXvsE4K43SCX3dqtK847YdT0/PU9IkIiIiIjPbaLrn/Q3wa9M0Xx7HeGa0Tbs7cTpsLD0jMKGvW1WSywtvtpCyLOxDHfTiiRTJlKU1TSIiIiIy441mTdNlQINhGA8ZhvFewzA84xXUTGRZFpt3d7Kwrpgcz8QmKtVleUTjSTqDkcxj0XgSQJUmEREREZnxRpw0mab5LqAOeBT4W6DVMIyfGYZx4XgFN5Mc6hqkvTfM8nklE/7aVUMd9Jo73moGEYkmACVNIiIiIiKjahdummaXaZo/NE3zHOAiYDXwjGEYDYZhfMkwjLxxiXIG2Ly7A4Dlcyc+aZp1uO34sHVNkVi60pSj6XkiIiIiMsONeo8lwzAuNQzjl8CzQBvwl8AtwArSVSg5DZt3dzK7wk+Rf+JnPeZ4nJQUeI+sNMU0PU9EREREBEbXCOI7wI1AELgT+CfTNJuHHX8F6BnzCGeAYCjKvkN9XHdB/aTFUFHso70nnPk8EktPz1PLcRERERGZ6UYz98oL/Llpmq8f76BpmnHDMFaNTVgzyxt7u7CAFfMmttX4cH6fm5auwcznb1WaND1PRERERGa2U94RG4aRA8wxTfNTxzm2BNhjmmYEwDTNnWMf4vS3eXcngXwv1aW5kxaD3+eiPxzLfK7peSIiIiIiaSNZ0/R54MMnOPZXwD+MXTgzTzSeZFtDN8vnlWAb2iNpMuTnuonFU0SHkqXD0/OUNImIiIjITDeSpOl9wHdOcOw24KaxC2fmOdDaTzyRYvHs4kmNw5/jAqB/MF1t0vQ8EREREZG0kSRNVcMbPgw39HjV2IY0szR3ptt8V5dN3tQ8SK9pAugPx4F00uSw23A5R91gUURERERkWhnJHfGAYRg1xztgGEYtMHi8YzIyhzoG8LgdBPK9kxqH33d0pSmhqXkiIiIiIowsaXoE+MYJjv0b8PDYhTPzNHeGqC7JndT1TPBW0tQ38FalSUmTiIiIiMjIWo7/E/CyYRhvAH8EWoBK4M+BfODc8QtverMsi6aOAc6aXzLZoQybnvfWmiatZxIRERERGUGlyTTNVuAs4EHgSuBzQ38/CKwcOi6noW8wTigcp6okb7JDwet24HTY6R9MV5qimp4nIiIiIgKMbJ+mjwAPm6b5T6SrTjJGmjtCAFRN4v5Mh9lstvReTYPDK01KmkRERERERjL/ajXwz4Zh9JBev/Qw8LJpmta4RjYDNHekO+dVlU5+pQmGNrgdfGtNU2GeZ5IjEhERERGZfKdMmkzT/GsAwzCWAlcD30x/ajxFuknEY6Zpdp7qOoZhNACRoT8A/2ia5uNHnfND4FIgCoSAz5imuX6kX0y2ae4MkZfjIn+oCcNky/e51T1PREREROQoI17pb5rmFmAL8B+GYRQC7wSuAb5lGMZB4MtHJ0HHcb1pmltPcvxR4LOmacYNw7gW+B0wZ6QxZpvmjgGqSye/c95hfp+L1u50B/lILIlHSZOIiIiIyMiTpuFM0+wF7hn6g2EYq8ciGNM0Hxr26ctAtWEYdtM0U2Nx/anEsiyaOgc4f0nlZIeS4fe56R+MY1mWuueJiIiIiAwZ8V2xYRg24CPATUCJaZpnGoZxIVBhmuY9I7zM3UPXeRH44lDydSKfIt2AYtolTABdfRGiseSUaAJxmN/nIhpPMhBJkExZmp4nIiIiIsLoKk3/ClwOfBf4ydBjTcB/MlRxOoULTNNsNAzDM3SNHwAfON6JhmHcCNwMXDiK+AAIBCa/qUJpqf+U5zQMNYFYPK90ROdPhFnl+QAkbelO9CXFuVMmtvE0E77G6UZjln00ZtlHY5Z9NGbZReOVXUaTNN0KrDBNs9MwjB8PPbYfOGMkTzZNs3Ho76hhGD8CHjjeeYZh/DnwdeBS0zTbRhEfAF1dIVKpyWvsV1rqp6Oj/5Tnbd+b7p2R67SN6PwJkUwCsLuhC4BELDF1YhsnIx0vmTo0ZtlHY5Z9NGbZR2OWXTRek8dut51WkeWUm9sO4yDd0Q7gcFaSN+yxEzIMI9cwjIKhj23AjcDm45x3LXAbcIVpmg2jiC3rNHeEKPJ78HmnRuc8SK9pAujoDQNoep6IiIiICKOrND0C3GYYxt9CJvn5N+DBETy3HLjXMAwH6eRrO/CJoetsBq42TfMQ8EsgBvzBMIzDz73UNM2uUcSZFZo7BqbUeiZIr2kCaD+cNHmUNImIiIiIjCZp+jvgTiAIuEhXmJ4APniqJ5qmuQ9YcYJjy4d9XDqKeLKWZVm0dg9i1BZNdihHyD+60uRS9zwRERERkdHs09QHvNswjDKgDmg0TbN13CKbxsLRBLFEiiK/Z7JDOYLX7cDpsGl6noiIiIjIMCNe02QYxiYA0zTbTdN8/XDCZBjG+vEKbrrqDcUAKPS7JzmSI9lsNvw+N13BKKCkSUREREQERtcIYu7RDwytaxpR9zx5S28onZQU5k6tShOAP8dFykr3+fB6ND1PREREROSUd8WGYdw59KF72MeHzQa2jXVQ010wU2magklT7lvVL1WaRERERERGtqZp7wk+toB1wO/HNKIZ4HClqSB3ak3Pg7c66DkdNpyO0RQiRURERESmp1MmTaZpfhXAMIxXTNN8fPxDmv56QzE8bgc5U3D6mz8nnch5XKoyiYiIiIjA6NY0fdMwjM8Odc+Tt6E3FKVwClaZ4K1Kk9c99RI6EREREZHJMJqk6d+AC4H9hmE8ahjGzYZh5IxTXNNaMBSlMG/qrWcCyB9K5rSxrYiIiIhI2oiTJtM0/2ia5nuAGuB+4BNAi2EYvzAM45LxCnA66g3FKMibopWmnMOVJiVNIiIiIiIwukoTAKZpdgN3Aj8BDgJ/AfzUMIxdhmFcNsbxTTuWZaWn503RSpPfN1Rp0vQ8ERERERFgZN3zADAMww5cDtwCXAu8DHwTuM80zbBhGH8B3AVUjEeg00U4miSWSE3hpEmVJhERERGR4UZTTjgEdJKuMn3eNM1Dww+apnmvYRifGsvgpqPMxrZTdXpeptKkpElEREREBEaXNF1rmuZ6AMMwygzDeA+wwzTNHYdPME3z4rEOcLoJZpKmqVlpyvE4cDrsmp4nIiIiIjLklHfGhmFUAd8HFhmG8TLwHeB5IAkUGobxl6Zp/nZ8w5w+ekMxgCnbCMJms/HhaxZSW5432aGIiIiIiEwJI2kE8ROgB/jbofMfBz5immYZcAPwxfELb/rpHZjalSaAtYvKqQzkTnYYIiIiIiJTwkiSpnOBj5um+SjwcaAc+BOAaZr3A3XjF97009sfw+NykOPR9DcRERERkWwwkqTJZZpmDMA0zUGg3zRNa9hx27hENk0FB6JTtgmEiIiIiIgcayTlDqdhGBfzVnJ09OdqszYKvf1RCqbw1DwRERERETnSSJKmduAXwz7vOurz9jGNaJrrHYgxu8I/2WGIiIiIiMgInTJpMk1z9gTEMSNYlkVvKEphXslkhyIiIiIiIiM0kjVNMkbC0SSxeGpKd84TEREREZEjTVgLN8MwGoDI0B+AfzRN8/GjzvEBvwRWAgngc6ZpPjRRMY63YKbduBpBiIiIiIhki4nue329aZpbT3L8c6S78801DGMe8IJhGHNN0wxNUHzjqrc/nTSpEYSIiIiISPaYatPz3kd6M11M09wNrAeumtSIxlDvQAxQpUlEREREJJtMdKXpbsMwbMCLwBdN0+w96ngtcGDY5weBmokKbrz1hg5Pz1OlSUREREQkW0xk0nSBaZqNhmF4gO8CPwA+MNYvEgjkjfUlR6209PgtxWNJ8Lod1FQVYrNpT+Cp4kTjJVOXxiz7aMyyj8Ys+2jMsovGK7tMWNJkmmbj0N9RwzB+BDxwnNMOAnVAx9DntcAzo3mdrq4QqZT1dkJ9W0pL/XR09B/3WEtHP/m5bjo7p8USrWnhZOMlU5PGLPtozLKPxiz7aMyyi8Zr8tjtttMqskzImibDMHINwygY+tgG3AhsPs6pvwf+eui8ecBq4LGJiHEi9PZHNTVPRERERCTLTFQjiHLgWcMw3gS2AvOBTwAYhrHZMIxZQ+d9Gyg0DGMP8BDwf0zTnDZpeE8oSpFfSZOIiIiISDaZkOl5pmnuA1ac4NjyYR8PADdMREwTzbIsevpjFKnSJCIiIiKSVaZay/FpayCSIJFMUahKk4iIiIhIVlHSNEF6hja21fQ8EREREZHsoqRpgmSSJk3PExERERHJKkqaxkF3X4Rv3r2RvsFY5rHMxrZ+92SFJSIiIiIip0FJ0zjoDcXY1djL3uZg5rHDlSa1HBcRERERyS5KmsZBWVEOAO094cxjPf1R8n0unA59y0VEREREssmEtByfafJyXOR6nUckTb2hqDrniYiIiIyDZDJBT08HiUTs1CdPAe3tdlKp1GSHMa3Z7Q5ycvLIyyvAZrO97espaRonZUU5tPcMZj7v6Y9SrKRJREREZMz19HTg9frIza0Ykxvk8eZ02kkklDSNF8uySCYT9Pf30tPTQXFx2du+puaKjZOyIh9tR03PU7txERERkbGXSMTIzc3PioRJxp/NZsPpdFFYGCAWi4zJNZU0jZOywhy6+iIkkiniiRShcFzT80RERETGiRImOZrNZgesMbmWpueNk7KiHCwLOoMRHPb0L7H2aBIRERERyT6qNI2T8iIfAO09g29tbKtKk4iIiMi0d/31f8a+fXvG9JotLYe45ppLj3uss7ODT3/6r4977JFHHuTKK9/BrbfezK233syHPvR+Nmx4fUxj27hxPR/+8C0jPn/nzu189av/dNxjw7/O/v5+7r77jiOOf+pT/4d16144/WBPk5KmcXK47XhbT3jYxrZKmkRERERkbJWUlPL97//3CY+vWrWG22//Nbff/ms++tGPc9tt/zGB0R1rwYJFfPnLXzvleaFQP7/+9Z0TENGpaXreOPH7XHjdDtp7wqRS6bmUqjSJiIiIzBy/+c1dPPXUEySTCdxuD5/73P9l3jwDgK1b3+SHP/wvBgfT3ZY/+cnPsGbN2ezYsY3vfvc7RCJhvN4cPvvZz7Fw4eLMNX/wg+/yxhsbiUaj/P3f/1+WLVtBS8shPvKRW3j44adOGVMoFMLvz898/tWv/hMHDx4gHo9RVVXDF77wL+Tn57Nx43q+973bWLRoMdu2bQFsfPWr32D27HoAfvrTH/HUU09QWlp2RHxf/vIXueiiS7jkksu4++47uPPOX/DII0/jcDj4wAdu4Bvf+A6dnR388If/xc9//isA7r33Hu6559cEAiWsWLEyc63bbvsPQqEQt956M16vl5/85BcAbN68kbvuup3Ozk4uueQyPv7xT5/mCI2ckqZxYrPZhtqOh3HYbbiddnwefbtFRERExtO6LS28+GbLuFz7/DMrOW9p5YjPv/LKa7jppg8A8Prrr/Ltb/87P/3p7QSDQb74xX/g61//FkuXLiOZTDIwMEA8HudLX/o8X/jCv7B69VrWr3+NL33p8/zud38CIBgMMmfOXD71qc+yadMGvvKVL2WOncz69a9x6603Ew4P0tvbw7e+9V+ZY5/5zOcoLCwE0onQ3XffkUlC9u/fyxe/+C98/vNf4o47fs4dd/ycL3/5a7z44vOsW/c8v/zlr/F4PHzhC5/LXG/VqjVs2PAal1xyGRs2vE59/Rx27NhORUUlg4OD1NbW0dnZkTl/z57d3HnnL/jlL++muDjAd77zzcyxv/u7f+QjH7mF22//9RFfT1tbKz/84f8wODjI+953Hddeex01NbUjHpfTobv4cVRW5KOxrZ8cj4NCv0ddXURERERmENPcwa9+9Uv6+oLY7XYaGw8C6SrT7Nn1LF26DACHw0F+fj579+7B5XKxevVaIJ2AuFwuDh48gM/nw+VyccUVVwOwYsVKPB4PBw8eIDc396RxrFq1hq997VtAev3RV77yRX7zmz/i9Xp57LGHeOKJx0gk4oTDkSOSj9raOubPXwDA4sVLM2uJNm1azyWXXI7Pl17Df+2113HHHT8HYOXK1dx11+3E43Ha29u5+eZbWL/+VSoqKlm5cvUxsW3atIFzzz2f4uIAANdd9+c888yTJ/16Lr74Uux2O3l5edTV1dPc3KSkKZuVF+WwaVcHeTkudc4TERERmQDnLR1dNWi8pFIW//zP/8gPfvA/GMYCOjs7ePe7rwLSm68ej2VZx32T/UTvu5/o/JM566xVJBIJ9u/fSywW409/upcf//gXFBUV8cQTj/HAA3/MnOt2v3X/arfbSSaTJ40fYNasKlIpiyeffIwlS5aycuVqvva1L1NRUclZZ6067tcwWieKazypEcQ4KivMIZmyONAW0nomERERkRkmmUxSVlYOwB//+PvM40uXLqOhYT9bt76ZOa+vr4+6utnEYjE2blwPpKtCiUSCmpo6AOLxOE8++RgAb7yxiVgsRm1t3ahi2rt3D4ODA1RUzKK/v5/c3DwKCgqIxWI8/PADI7rGypVrePrp/yUcDpNMJnnkkQeOOr6KX/zip6xatYby8gr6+oK89torx600nXXWKl5+eR09Pd0APPTQ/Zljubm5RCIREonEqL7G8aBK0zg63EEvkUypc56IiIjIDJFMJvF6vXz4w3/NRz/6l5SXV3D22edmjhcUFPD1r3+L73//P4lEwthsdj75yc+wevVavv71bx3RCOJrX/sPXC5X5nlNTY189KMfJBqN8JWvfD1z7GQOr2lKV3UsvvjFr1BUVMTZZ5/LE088ys03X09ZWRkLFixk+/Ztp7zeeeddwNatb/JXf3UzJSWlrFixko6Ot9YprVy5mocffiCTJC1dupwNG17LJJDDzZ07j1tu+Ss+/vEPU1wc4Jxzzs8cy88v4J3vvIoPfvBG/P78TCOIyWA7nZLYFDUb2N/VFcp0q5sMpaV+Ojr6Aejpj/L3P1wHwE2XzuPy1TWTFpcc3/DxkuygMcs+GrPsozHLPjN9zFpbD1BRMbqKy3jp7Ozk/e//Cx544HE8Hu9xz3E67SQSqQmObGY6+mfDbrcRCOQB1AMNI72OKk3jqDDPjdtpJ5ZIaXqeiIiIyDT3+9//lvvu+z2f/ORnT5gwSXZS0jSODrcdb+oY0PQ8ERERkWnuhhtu5IYbbpzsMGQcTHjSZBjGl4GvAEtN09x61LH5wE+BQsAD/M40za9MdIxjqazIR1PHgLrniYiIiIj8//buPD7uuk78+GtmcrVJSts0pYAtBSkfBAqWUuR0FVlvxAMVymFZ6wIiiMqKi6CwCovIushZ5LKcLvxQLkXYRVkFcZVCuf1wtbRIoelBaXommfn9MZN0kqbTZJJ0Munr+WgfM/P9fL+f73vmne/MvL/HZ8rUFh09L4SwD7A/sGATs1wE/L8Y43uBacAJIYT9tlR8A2G7huFUpBJsU1dV6lAkSZKGrCF0nb76SSaTBvrnd1K32JGmEEI1cAUwHfj9JmbLANvk7g/PPV488NENnI/sN4G93z2GipSju0uSJA2EiooqVq16h9raEb3+3SINPZlMhra2VlauXE5VVf9cW7YlT8/7N+DmGOO8EMKm5jkduDeE8FVgFPAvMcb5Wyi+AVE3rJJd3rXN5meUJElSUUaNamT58iaam98udSg9kkwmSacdPW8gJZMphg2ro66uf76Hb5GiKYRwANnT7b6zmVlPBG6KMf44hLAd8HAI4fEY4//1dF25IQRLqrGxvtQhqBfMV/kxZ+XHnJUfc1Z+tvacjRs3qtQhaAjbUkea/gHYDWg/yvQu4IEQwgkxxgfz5jsN2BkgxrgohPA74P1Aj4umwfQ7TRr8zFf5MWflx5yVH3NWfsxZeTFfpZP3O029skWKphjjhcCF7Y9DCPOBT3YdPQ+YB3wUuDGEUA8cAtyzJWKUJEmSpO6U/HeaQghzgY/HGN8AZgCXhRC+BVQCv4gx3t/DrlKQrR5LbTDEoJ4zX+XHnJUfc5Tk5LoAACAASURBVFZ+zFn5MWflxXyVRt7rnurNcokhNDzjwcAfSx2EJEmSpEHvEOCRns48lIqmarKDTSwC2kociyRJkqTBJwVsB/wVWNfThYZS0SRJkiRJ/c5fXJUkSZKkAiyaJEmSJKkAiyZJkiRJKsCiSZIkSZIKsGiSJEmSpAIsmiRJkiSpAIsmSZIkSSrAokmSJEmSCrBokiRJkqQCLJokSZIkqQCLJkmSJEkqwKJJkiRJkgqwaJIkSZKkAiyaJEmSJKkAiyZJkiRJKsCiSZIkSZIKsGiSJEmSpAIsmiRJkiSpAIsmSZIkSSrAokmSJEmSCrBokiRJkqQCLJokSZIkqQCLJkmSJEkqwKJJkiRJkgqwaJIkSZKkAiyaJEmSJKmAilIH0I+qgWnAIqCtxLFIkiRJGnxSwHbAX4F1PV1oKBVN04A/ljoISZIkSYPeIcAjPZ15KBVNiwCWL19FOp0pWRANDXUsXdpcsvWrd8xX+TFn5ceclR9zVn7MWXkxX6WTTCYYNaoWcrVDTw2loqkNIJ3OlLRoao9B5cN8lR9zVn7MWfkxZ+XHnJUX81Vyvbqcx4EgJEmSJKkAiyZJkiRJKsCiSZIkSZIKGErXNAGw5qEraWt+u2Trf6OygpaW1pKtX71jvsqPOSs/5qz8mLPyY87Ki/kqnVTdSPjCt3u9nEeaJEmSJKmAIXekadiHvlrS0UgaG+tpalpZsvWrd8xX+TFn5ceclR9zVn7MWXkxX6WTTCaKW66f45AkSZKkIcWiSZIkSZIKsGiSJEmSpAIsmiRJkiSpgJIMBBFCuAvYCUgDzcCpMca5IYRdgdlAA7AUOD7G+FIpYpQkSZIkKN2Rpi/FGPeOMU4BLgauz02fBVwRY9wVuAK4ukTxSZIkSRJQoqIpxrgi7+E2QDqEMBbYB7gtN/02YJ8QQuOWjk+SJEmS2pXsd5pCCNcCHwYSwEeB8cDfY4xtADHGthDCG7npTaWKU5IkSdLWrWRFU4xxJkAI4Tjgx8A5/dFvQ0Ndf3TTJ42N9aUOQb1gvsqPOSs/5qz8mLPyY87Ki/kqL4lMJlPqGAghrAEmAhFoyB1lSpEdDGJSjLEnR5omAvOWLm0mnS7dc/IXnsuL+So/5qz8mLPyY87KjzkrL+ardJLJRPtBlp2A+T1ebqAC2pQQQl0IYXze48OBZcBiYC5wdK7paODJHhZMkiRJkjQgSnF6Xi1wRwihFmgjWzAdHmPMhBBOAmaHEL4HLAeOL0F8kiRJktRhixdNMca3gP030fY34H1bNiJJkiRJ2rRS/U6TJEmSJJUFiyZJkiRJKsCiSZIkSZIKsGiSJEmSpAIsmiRJkiSpAIsmSZIkSSrAokmSJEmSCrBokiRJkqQCLJokSZIkqQCLJkmSJEkqwKJJkiRJkgqwaJIkSZKkAiyaJEmSJKkAiyZJkiRJKsCiSZIkSZIKsGiSJEmSpAIqSrHSEEIDcBPwbmAd8DJwYoyxKYSQAZ4B0rnZj4sxPlOKOCVJkiSpJEUTkAEuijE+DBBC+DFwIfDlXPuBMcbmEsUmSZIkSR1KUjTFGJcBD+dN+jNwcilikSRJkqRCEplMpqQBhBCSwIPAPTHGS3On580hW9DdD5wbY1zXg64mAvMGLFBJkiRJQ8VOwPyezlyq0/PyXQY0A5fnHk+IMS4MIYwge93TOcDZPe1s6dJm0unSFYKNjfU0Na0s2frVO+ar/Jiz8mPOyo85Kz/mrLyYr9JJJhM0NNT1frkBiKXHQggXA5OAL8YY0wAxxoW523eAa4GDShehJEmSpK1dyYqmEML5wFTg0+2n34UQRoUQhuXuVwBHAnNLFaMkSZIk9en0vBDCe8gWNuNijKeEEHYDqmKMT29muT2As4AXgT+FECB7PdJFwNW565oqgT+RPT1PkiRJkkqi6KIphPB54Argl8B04BSgjuzQ4YcVWjbG+ByQ2ETzXsXGJEmSJEn9rS+n5/0b8OEY40lAW27aU8DefY5KkiRJkgaJvhRNY8kWSZD9sdr229KOYS5JkiRJ/agvRdMc4Lgu044C/tKHPiVJkiRpUOnLQBCnAQ+GEL4M1IYQHgB2BT7cL5FJkiRJ0iBQdNEUY/xbbrS8TwL3AQuB+2KMzf0VnCRJkiSVWp+GHI8xrgZu76dYJEmSJGnQ6VXRFEL4Iz0Y6CHG+P6iI5IkSZKkQaS3R5quHZAoJEmSJGmQ6lXRFGOcPVCBSJIkSdJgVPSQ4yGES0MIB3aZdmAI4ZK+hyVJkiRJg0NfBoI4Gjijy7Q5wF3A6X3oV5IkSeqxtrZWli9vorV1falD6ZHFi5Ok0+lShzGkJZMphg2ro65uGxKJRJ/760vRlGHjI1WpbqZJkiRJA2b58iZqaoZTWzuuX74gD7SKiiStrRZNAyWTydDW1srKlW+zfHkTo0eP7XOffSlw/gj8MISQBMjdnpubLkmSJG0Rra3rqa0dURYFkwZeIpGgoqKSkSMbWL9+bb/02ZcjTV8n+6O2i0IIrwETgEXA4f0RmCRJktRTFkzqKpFI0oNfS+qRoo80xRhfB/YBPg38OHc7NTddkiRJ2iodeeThvPrqy/3a56JFb/CJT3yo27YlS5o49dQTu237zW/u5aMf/QAzZkxnxozp/NM/HcOcOX/t19ieeOJxvvzl43o8/9/+9jznnXd2t235z3PlypXcckvnwbu/9rV/5tFHt/yJbUUfaQohnAbcGmN8rJfLNQA3Ae8G1gEvAyfGGJtCCPsDVwPDgPnAsTHGxcXGKEmSJA11Y8Y0ctllV2+yfd999+OHP7wIgMcee4Sf/ORH3HLL/9tS4W1kt9125/vf/+Fm52tuXsmtt97IMcd8aQtEVVhfTs87DLgghPAwcCNwd4xxXQ+WywAXxRgfBggh/Bi4MIQwE7gZmBFjfCSEcDZwIfBPfYhRkiRJKonbbruZhx56kLa2VqqqqjnjjO8waVIA4Nlnn+aKK37K6tWrATjllK+z337788ILz3HJJRezdu0aamqGcfrpZ/Ce9+zR0efll1/CU089wbp16/jWt77D3ntPYdGiN5g58zh+/euHNhtTc3Mz9fUjOh6fd97ZLFjwGi0t69lhh/H8679+jxEjRvDEE49z6aU/Yffd9+C5554BEpx33gVMnLgTAD/72ZU89NCDNDaO7RTf979/Fv/wD4dy6KGHccsts7nxxuv5zW9+RyqV4thjP88FF1zMkiVNXHHFT7nuupsAuPPO27n99ltpaBjDlClTO/r6yU9+RHNzMzNmTKempoZZs64HYO7cJ7j55p+zZMkSDj30ME4++dQiM9RzfTk971PAjsD9wDeAN0MI14YQ3r+Z5Za1F0w5f871sy+wNsb4SG76LOALxcYnSZIkldJHP/oJrr32Rm644VZmzjyJH//43wFYsWIFZ531L3z1q6cxe/ZtXH/9zey22+60tLTw3e9+m5kzT2L27F/wla+czHe/+21aWlo6lnv3u3fhmmtu5Bvf+Dbnnvtd1q/f/DDrjz/+F2bMmM4Xv/hpLr743zn55NM62r7+9TO47rqbuPHG/2KnnXbudDrcvHmv8OlPf47Zs3/BoYcexuzZ1wHwyCN/4NFH/8ANN9zKT396Fa+9Nr9jmX333Y85c/4CwJw5f2Wnnd7NCy88z5IlS1i9ejUTJuzYKbaXX36JG2+8nquuuo4rr7yWFStWdLR985tnUldXx89/fmtHwQTw1ltvcsUV13DDDbdw3313sXDhgp6mpGh9OdJEjHEpcAVwRQhhL7Kn3Z0QQlgIXAP8NMbYvKnlcyPunQzcQ3Ygidfy+l4SQkiGEEbHGJf1JU5JkiRtHR59ZhGPPL1oQPo+eK/tOGjydj2eP8YXuOmmG3jnnRUkk8mOL/fPPvs0EyfuxOTJewOQSqUYMWIEr7zyMpWVlUyb9j4gW4BUVlayYMFrDB8+nMrKSj7ykY8DMGXKVKqrq1mw4DVqa2sLxpF/et4TTzzOueeexW23/ZKamhp++9v7ePDB39La2sKaNWsZP35Cx3ITJuzIrrvuBsAee0zuuJboyScf59BD/5Hhw4cD8MlPHtFRUE2dOo2bb/45LS0tLF68mOnTj+Pxx/+PceO2Y+rUaRvF9uSTczjwwIMZPboBgCOO+Ay///1/F3w+H/zgh0gmk9TV1bHjjjvx97+/3inugdCnogkghPAh4FjgCOBx4CJgAdnR9e4HDimw+GVAM3A58Jm+xgLQ0FDXH930SWNjfalDUC+Yr/JjzsqPOSs/5qz8bM05W7w4SUVF9gSqVCrBQA2kl0olOtazOYkEnHPOmVx11bXsttt7aGpq4vDDP0JFRZJMJkMiwUZ9JZPtw2UnO/VTUZEklcpOq6hIkky2t2fy2rqPLZlMdOpzv/32o7W1lQUL5rF+/TruuutOrrnm54waNYoHHrifu+76ZUef1dXVHctVVlaQTrdRUZEkkcj22/U1r6hIMmHCeDKZDA899ACTJ+/F+973Ps4773uMG7cd06bt19F3+/xdn3P+c+nueSUSCYYNq8mbPwWkN5mXZDLZL9tGXwaCuBg4ClhB9pqms2OMf89r/zOwfDPLTwIOjzGmQwgLyJ6m194+Bsj09ijT0qXNpNP9M7RgMRob62lqWlmy9at3zFf5MWflx5yVH3NWfrb2nKXT6Y4fi91/93Hsv/u4AVtXT3+Utq0tQ1tbGw0NY2ltTXPHHf/VsfzkyXtzwQU/YO7cuey55160tbWxatUq3vWuHVm/fj1/+ctf2GeffXniicdpaWll++3Hs2RJEy0tLdx//2/4yEc+zlNPPcm6devZYYcJLFnSBGS6jS2dzpDJbGh75ZWXWb16FY2N43juuWeora2jtrae1avXcs89d3fM29aWJpPZ8HzzH0+ZMo2f/exKjjzyaKqqqrj33rs7zbvPPvty7bVXc9JJX6OhYSwrVrzNa6/NZ+bMkzbqe++9p3LTTbNpalrCqFGjufvuX3U8l5qaYaxdu4a1a9dTUZEtW7I/XLvh+XR9vPHzT3faNpLJRFEHWfpypKkG+EyMsdsxC2OMLSGEfbtrCyGcD0wFPpE3eMQcYFgI4eDcdU0nAbf3IT5JkiRpi2tra6OmpoYvf/lEvvKV49l223Hsv/+BHe3bbLMN559/EZdd9p+sXbuGRCLJKad8nWnT3sf551/UaSCIH/7wR1RWVnYs9/rrC/nKV77EunVrOffc8zvaCmm/pimTyQAZzjrrXEaNGsX++x/Igw/ez/TpRzJ27Fh22+09PP/8c5vt76CDDuHZZ5/mhBOmM2ZMI1OmTKWpqamjferUafz61/d0nI43efJ7mTPnL4wdu+1Gfe2yyySOO+4ETj75y4we3cABBxzc0TZixDZ8+MMf40tfOor6+hGdrmva0hLZF6/nQgjDgHfHGJ/tpm1P4OUY4yZ/ejeEsAfwLPAisCY3eV6M8TMhhAPJDjlew4Yhx9/qYWgTgXkeaVJvmK/yY87KjzkrP+as/GztOXvzzdcYN27Hzc+4BSxZsoRjjvkc99zzANXVNd3OU1GR7PERK/VN17+NvCNNO5GtN3qkmCNN3wZGkh0xr6sTgLeBH2xq4Rjjc0C3Z5rGGP8ETC4iJkmSJKmk7rjjF/zqV3dwyimnb7JgUnkqpmj6IvCPm2j7CfDfFCiaJEmSpKHo858/is9//qhSh6EBUMzvNO2QP+BDvtz0HfoWkiRJkiQNHsUUTatCCOO7awghTABW9y0kSZIkSRo8iimafgNcsIm2HwC/Lj4cSZIkSRpcirmm6WzgsRDCU8AvgUXAdmR/nHYEcGCBZSVJkiSprPT6SFOM8U1gH+Be4KPAGbnbe4GpuXZJkiRJGhJ6XTSFEGYCNTHGs2OMB8QYd83dnhNjXD4AMUqSJEll48gjD+fVV1/eaPqtt97E0Ud/lgMOmMqjj/5xk8s/8cTjfOhDBzFjxnRmzJjO8cd/kYceerBfY1y06A0+8YkP9Xj+JUuaOPXUEzfZfvDB+7J6dXZog+uuu5qWlpaOtvPPP5c77/yv4oMdBIo5PW8acE4IYTnZ65d+DTwWYyzdL8pKkiRJg9yUKfvw/vd/gB/96IebnXfixJ257rqbAJg371X++Z+/xAc/eBjJZDFDEvTdmDGNXHbZ1T2a94YbruHoo4+jsrJygKPacnpdNMUYTwQIIUwGPg5cmH0YHiI7SMRvY4xL+jVKSZIkqcy95z17FLXcqlXN1NbWdRRMl19+CXPnPkFLSwsjR47kX//1e4wbtx2LFr3BzJnH8alPfZY///lR1q5dy3e+8z323vu9ANx55+3cfvutNDSMYcqUqR39z5p1OSNGjGD69ON56KH/5txzz+Keex5g1KjRnHHGaXzhC9MZP34CM2cex69//RAA//u/v+Pqq69gxIht2H//DUMa/Md//AiAk0/+JxKJZEeh9eqrr3DaaSexePFb7LHHZM4++zwSiURRr0cpFHOkCYAY4zPAM8CPQggjgQ8DnwAuCiEsAL4fY3ygf8KUJEmSNq/lxUdpiX8YkL4rw/up3PWgAem7q/nzX2XGjOmsX7+ON998k3POOa+j7dhjZ/C1r50OwL333sVVV13Keef9OwArVqxgzz334sQTT+HBB+9n1qxLueqq63n55Ze48cbrueGGWxg9uoGLL76wo7+pU6dx2203M3368cyZ8xf22GMyc+b8lQ984EM8//xz7LXXe1m+fFnH/MuXL+NHPzqfWbOuY8KEidxyy+yOtm9960x+9as7uOqq6xk+fHjH9FdffYVLLrmSZDLJCSccw+OP/x/Tpu0/YK9ffyu6aMoXY3wbuD33nxDCtP7oV5IkSdoa5Z+eN3/+PE499UT23HMvGhvH8uc/P8ovf3kHa9aspq2trdNyw4YN56CDDgFgjz0mc/nllwDw5JNzOPDAgxk9ugGAI474DL///X8DsNdee/O97/0rLS0tPPPMU5xyyuk8/PBDNDaOZeed301NTU2ndTz33DPsumtgwoSJAHzqU5/lqqsuK/h8DjnkA1RXVwMQQuDvf3+daWVUMRRdNIUQEsBM4GhgTIxxrxDC+4FxMcbb+ytASZIkqacqdz1oix0N2lImTtyJceO245lnnmb33ffgsst+wjXX3Mj22+/AM888xXnnnd0xb1XVhuuIkskkbW2tAGQymx5+oLq6hl12mcT//M8DNDSMYZ999uXyyy+hsXEsU6duXNkU6mvT66jKiyu1UbE32PXlSrJ/A74M/AyYkJv2OnBmX4OSJEmSlLVkSRMLFy5g/PjxrFq1ioqKShoaGkin09x115096mOfffblscce7TjN7r777u7UPnXqNK677mqmTt2Pqqoqxo4dy/3339dt0bTnnnvx0kuRhQsXANlTBPMNH17LqlXNxTzVQasvp+fNAKbEGJeEEK7KTZsH7NznqCRJkqQydvrpp5BKpToez579C+677y7uuOMXvP32ci644Fyqqqq5+ebbqa2t22j59muaAFpbW/jKV05i0qQAwAc/eBjHHvtFtt12W6ZMmcpTTz252Xh22WUSxx13Aief/GVGj27ggAMO7tS+7777ce21s9h332yRNHXqNJ555il2333PjfoaNWo03/72dznzzG8wYsQ2HHroYZ3ajzrqGE477SSqq2t6POLeYJco5vAaQAjhDWDnGOPaEMKyGOPoEEI98HyMcXy/RtkzE4F5S5c2k06XbvTzxsZ6mppWlmz96h3zVX7MWfkxZ+XHnJWfrT1nb775GuPG7VjqMHqsoiJJa2u61GFsFbr+bSSTCRoa6gB2Aub3tJ++nJ73G+AnIYRq6LjG6QfAvX3oU5IkSZIGlb6cnvdN4EZgBVAJNAMPAl/a3IIhhIuBz5E9OjQ5xvhsbvp8YG3uP8CZDlsuSZIkqZT68jtN7wCfDiGMBXYEFsYY3+zh4ncBPwX+2E3bke1FlCRJkiSVWtGn54UQngSIMS6OMf61vWAKITy+uWVjjI/EGBcWu25JkiQpX7HX6WvoymTSQKJf+urL6Xm7dJ2Qu66pr6Pn3ZLr5xHgrNwP50qSJEndqqioYtWqd6itHUEi0T9fklW+MpkMbW2trFy5nKqqms0v0AO9LppCCDfm7lbl3W83EXiuD/EcEmNcmBtc4hLgcuDY3nSQGw2jpBob60sdgnrBfJUfc1Z+zFn5MWflZ2vO2ciRNSxcuJCmptdLHYoGiYqKFKNGjWLMmDEkk30Z+y7XXxHLvLKJ+xngUeCOYoNpP2UvxrguhHAlcE9v+3DIcfWG+So/5qz8mLPyY87KjzmD+vpG6sukbjRfW87Spas6Pc4bcrxXel00xRjPAwgh/Lk/R7YLIdQCFTHGFbnT844C5vZX/5IkSZJUjL5c03RhCOE9wK0xxsW9WTCEcCnwWWAc8D8hhKXA4cCdIYQUkAKeB77ah/gkSZIkqc/6UjT9gOz1RueHEP4A3AT8Ksa4ZnMLxhhPA07rpmlKH+KRJEmSpH5X9FVRMcZfxhg/C4wH7iZ7VGhRCOH6EMKh/RWgJEmSJJVSn4eSiDEuA24EZgELgM8BPwshvBhCOKyv/UuSJElSKRV9el4IIQn8I3Ac8EngMeBCcqfohRA+B9xM9rolSZIkSSpLfbmm6Q1gCdmjTN+OMb6R3xhjvDOE8LW+BCdJkiRJpdaXoumTMcbHAUIIY0MInwVeiDG+0D5DjPGDfQ1QkiRJkkqp10VTCGEH4DJg9xDCY8DFwB+ANmBkCOH4GOMv+jdMSZIkSSqNYgaCmAUsB76RW/4BYGaMcSzweeCs/gtPkiRJkkqrmKLpQODkGOP9wMnAtsBdADHGu4Ed+y88SZIkSSqtYoqmyhjjeoAY42pgZYwxk9ee6JfIJEmSJGkQKGYgiIoQwgfZUBx1fZzql8gkSZIkaRAopmhaDFyf93hpl8eL+xSRJEmSJA0ivS6aYowTByAOSZIkSRqUirmmSZIkSZK2GhZNkiRJklSARZMkSZIkFWDRJEmSJEkFFDN6Xp+FEC4GPgdMBCbHGJ/NTd8VmA00kB2V7/gY40uliFGSJEmSoHRHmu4C3g+81mX6LOCKGOOuwBXA1Vs6MEmSJEnKV5KiKcb4SIxxYf60EMJYYB/gttyk24B9QgiNWzo+SZIkSWo3mK5pGg/8PcbYBpC7fSM3XZIkSZJKoiTXNA2khoa6UodAY2N9qUNQL5iv8mPOyo85Kz/mrPyYs/JivsrLYCqaFgI7hBBSMca2EEIK2D43vceWLm0mnc4MSIA90dhYT1PTypKtX71jvsqPOSs/5qz8mLPyY87Ki/kqnWQyUdRBlkFzel6McTEwFzg6N+lo4MkYY1PpopIkSZK0tStJ0RRCuDSE8DrwLuB/QgjP5ZpOAk4NIbwInJp7LEmSJEklU5LT82KMpwGndTP9b8D7tnxEkiRJktS9QXN6niRJkiQNRhZNkiRJklSARZMkSZIkFWDRJEmSJEkFWDRJkiRJUgEWTZIkSZJUgEWTJEmSJBVg0SRJkiRJBVg0SZIkSVIBFk2SJEmSVIBFkyRJkiQVYNEkSZIkSQVYNEmSJElSARZNkiRJklSARZMkSZIkFVBR6gCkgZDJZGhLZ0gmEyQTiYLzpdMZ0pnMhseZ7G0mA5kMpFIJKlNJEgloS2dobUvT0pqmtS1DS2sbbelMN/3m3e+mofM0SOfiTac33KYzGRKJBMkEudsEidz9RAKSiQQZMh3rymTY8Dj/fu55dcyTyZBpjyE3X+5fl9gzXR7nz5MhnW5/vfLiZeMY21/+zMYvU6f+NvUaZsh0mrl+xAreeWdNp2mZbmLdZD+dlus6b6brLN3P2yWP3a93w8T21yORu0/u/sb9dnu327+b7ta5uefQcbf9byD/tcn9DXSXi82tc6N4uyxUW1vNqlXrerHMptezWQmorEhSmUqSSiU7tvH8v/2xI4cxcbsRjKqvZsWq9cxb9A6Ll63u2PbTee8DfYqlSCVYZXa9eQneVM6GikJ/ywO63gHsu3Z4FatWr+/lUj39DNmw/cCG97Ls+3337/nty220xp6+J2/qxUp0uZtov5+9k7/+DfcTnRbtPE/2QcdnbXLD520y97jjOeY6SeQtt2HahueezHufb39fzWTIvheR/cyvq63mnZVrO16P9s8Ierie6soUo+qrGVVfTSqVZH1LGy2t6ez6k9nvDhviz32XSCZIpzO0tKZZ35qG9u8Zec8xmYBUMkkqmSADtLamaWlLk8ls+E6V7HidcutKZmNc35JmfWsb6XSGVCpJRTJBazpDS0sbJBJs3zC84/mUo0FXNIUQ5gNrc/8BzowxPlCygEoknc7QvKaFNetaWZ37v2ZtK2vWtXZ8mU6nMyxbuY4lK9awonl9xxfX9tvsl282TMtNTyYT7LLDNuwxcTS77TiKkXVV3f4RpzMZXpi/nHdWrWd9a1vHxrC+JU1rWzrbf8f6IJ1Ok05nC4v2oiV/3W2ZDJn2oiD35tE+b1VFkuqqCipSCVavbWVl7rnn6/ji3zGh85tR+zxt6QzrW9K51wlqayqpH15Ja1uaNevaOl7D3n5otr/5SRoahlWnWLOurdRhqERK9tVtgFbc68+oDBt92c/fwdPeRiJbULSXJYnEhgIrf+dC/k6HRN6T7O47ctdiJn9ap9m7Ltulziq4k28TO978HC+dbx31XvaYOLrUYRRt0BVNOUfGGJ8tdRADKZPJ8Hbzeha8tZLXm5pZ9s463m5ex/KV2dsVq9b36Et9IgGj62sYWVeVrepTSZIVkEwmO+0BSCYSpHJ7G9a1tPH0K0v507NvAjBieCXjt61ntwkjOXDP7RhVX82by1bz8/v/xosL3+52vRWp7F6IZJINfSeztxv2QGxYZ8e8eXspqiqTub05CVpa21i5ej0tbWlqayrZbvRwaqpTnfewsPEbbTL3Dt7+Rp4gu+7qqiSVFSlaW9OsXNNC8+r1VFQkGVZdb1EGngAADAlJREFUwbCqio49JHW11axes77TXrP2mNrX15bO0NqapjWdoTKVoCK3F7uyItnxOnTd09U51q456/ycYEOeUu23eXvr0rkjURuOfuU+qNKZTh9qnfb85VbQqS2vvVMcXebLD667PXftj9vzmMjb2wRsFGN7kd/pOXfdU5i3kvxVbbzeBKNH17J82aqNOujaT/607te7qee2ceK6/zDv/jl1jr/9Nel8pKP9fqF1bXZ9Gz2fnj2HDfPm/y10/TvaaE3d9tNTYxvraVqysvv+NvUNssgvlplMhtbWDC1tadra0nl7w7N/p+kMLFq6inmLVvLmstWMG5U96rT9mFoqUnl7ZPOWK4VSfaFvf76NjfU0NXWfMw1O5qz38nfGtp9B0f552+l+ho120GZvuxypz03Mf5/v7iyRRCJB45g6li1b1VHtdnsWQIH1rF3XyvKV2e+N6UyGyookVRUpYMPO8kzu+0M6t9M6ncl+b6qsSFFVmezYAd9xJCyzYSd3OncWTUUq2XG2TTrvdcnvs/0IWlVFsuO7XVtux3gqmaCqMsXwmgres+OoAc7owBqsRdOQ1NqW5sWFbzPnxSbmvrSE5Ss3nPpQW1PBqPpqRtZV866xdYysq2bE8EpqayqzX/SrUwyvqWRYVarjy2kikaB+eCUVqd5fmpbOZFj4VjMvvv42Cxc3s+DNldz5v6/yqz/MI0wYyUuvr6CqIsmMj+1GGD8yuzFWpqiqyBYL5Xx4NZ8fMuWnsbGOKvcVlpVUKkkquYUuoU0kSFVBNalNzjLpXSOZ9K6RWyYeSYNW51PfEhTxdapoo0bU0LqupU99TNi2vp+iUU8M1qLplhBCAngEOCvG2P3hjkHq7eZ1XHPv8zRsU8OkHbZheE0Fc19awtyXl7BqbStVFUn23LmBj71vJBO2rWf82DqGVW/ZVCQTCXYcV8+O4zZscG8tX80jTy/iLy+8xXsnjWH6YZMYWVe9ReOSJEmSBptEoYt+SyGEMD7GuDCEUA1cAtTHGI/twaITgXkDGlwPNa9ez+V3PMXTLzexcnV2L0LtsEr2231bDpi8HVPCWGqqBmu9KkmSJA15OwHzezrzoCua8oUQJgP3xBh36sHsE4F5S5c2d5yHWQr5p3ulMxneXLqa5jUt7Lz9iKJOo9PA8vS88mPOyo85Kz/mrPyYs/JivkonmUzQ0FAHvSyaBtXhjhBCLVARY1yROz3vKGBuicMqWjKRYPsxtaUOQ5IkSVIfDKqiCdgWuDOEkAJSwPPAV0sbkiRJkqSt2aAqmmKMrwJTSh2HJEmSJLXzIhtJkiRJKmBQHWnqoxRs+IHNUhoMMajnzFf5MWflx5yVH3NWfsxZeTFfpZH3um/6B/26MahHz+ulg4E/ljoISZIkSYPeIWR/E7ZHhlLRVA1MAxYBbSWORZIkSdLgkwK2A/4KrOvpQkOpaJIkSZKkfudAEJIkSZJUgEWTJEmSJBVg0SRJkiRJBVg0SZIkSVIBFk2SJEmSVIBFkyRJkiQVYNEkSZIkSQVUlDqAoSKEsCswG2gAlgLHxxhfKm1UW58Qwnxgbe4/wJkxxgdCCPsDVwPDgPnAsTHGxbllimpTcUIIFwOfAyYCk2OMz+amb3IbGog29VyBnM2nm+0t1+Y2VyIhhAbgJuDdZH+48WXgxBhj00DkxZz13WZylgGeAdK52Y+LMT6TW+5w4Mdkv8/NAU6IMa7uS5t6LoRwF7AT2dw0A6fGGOf6eTY0eaSp/8wCrogx7gpcQfYDRKVxZIzxvbn/D4QQEsDNwCm5/PwBuBCg2Db1yV3A+4HXukwvtA0NRJt6blM5gy7bGxS/XbnN9ZsMcFGMMcQY9wJeAS4ciLyYs37Tbc7y2g/M287aC6Y64Brg8BjjLsBK4Iy+tKnXvhRj3DvGOAW4GLg+N93PsyHIoqkfhBDGAvsAt+Um3QbsE0JoLF1UyrMvsDbG+Eju8SzgC31sU5FijI/EGBfmTyu0DQ1E20A9t6Gqu5xthttcCcUYl8UYH86b9GdgRwYmL+asHxTIWSEfAx7PO9owC/hiH9vUCzHGFXkPtwHSfp4NXRZN/WM88PcYYxtA7vaN3HRtebeEEJ4OIVwZQhgJTCBvD3mMcQmQDCGM7kOb+lehbWgg2tR/um5v4DY3aIQQksDJwD0MTF7MWT/rkrN2D4cQ5oYQ/j2EUJ2b1um1Bxaw4f2t2Db1Ugjh2hDCAuB84Ev4eTZkWTRpqDkkxrg3MA1IAJeXOB5pKHN7G/wuI3uthbkpH11zNiHGuC/ZU2R3B84pVWDaWIxxZoxxAnAW2evENERZNPWPhcAOIYQUQO52+9x0bUHtpxDFGNcBVwIHkd2L1nGaQwhhDJCJMS7rQ5v6V6FtaCDa1A82sb2B29ygkBvAYxLwxRhjmoHJiznrR93kLH87ewe4lk1sZ2SPIC3sY5uKFGO8Cfgg8Dp+ng1JFk39IDdK0Fzg6Nyko4EnY4xNpYtq6xNCqA0hbJO7nwCOIpuXOcCwEMLBuVlPAm7P3S+2Tf2o0DY0EG0D/4yGvgLbG7jNlVwI4XxgKvDpXFELA5MXc9ZPustZCGFUCGFY7n4FcCQbtrPfAtNCCJNyj/Nf+2Lb1EMhhLoQwvi8x4cDywA/z4aoRCaTKXUMQ0IIYTeyQ0GOApaTHQoyljaqrUsIYWfgTiCV+/88cFqMcVEI4UCyI83UsGFI3LdyyxXVpuKEEC4FPguMA5YAS2OMexTahgaiTT3XXc6Aw9nE9pZbxm2uREIIewDPAi8Ca3KT58UYPzMQeTFnfbepnAEXkX1tM0Al8Cfg9Bhjc265I3LzpIAngRkxxlV9aVPPhBC2Be4GaoE2sgXTGTHGJ/w8G5osmiRJkiSpAE/PkyRJkqQCLJokSZIkqQCLJkmSJEkqwKJJkiRJkgqwaJIkSZKkAiyaJEmDUghhVgjhnALtmRDCLv28zmNCCA/2Z5+SpPLnkOOSpAEXQjgK+AawJ7CK7G/QzAauijEW9UEUQsgAk2KML3fT9jCwP9AKrAX+AJzS/jtS/SGEMAOYGWM8eHPzSpLKm0eaJEkDKoTwLeCnwI/J/kDutsBJwEFA1SaWSfXDqr8WY6wDdgVGAv/ZD31KkrZCFaUOQJI0dIUQtgH+jeyv19+Z1/QkcEzefD8H1gA7Av8AHBFCOBZ4PcZ4dm6efwG+CWSAs3saQ4xxWQjhTuDkvJguAz4GrAauAS6IMaa7Hj3KHc06GfgWMAa4FfgasBswC6gMITQDrTHGkSGEjwMXA+OBd4D/jDFe3NNYJUmDk0eaJEkD6QCgGri7B/NOB84H6oFH8htCCB8FzgD+EZgEHNbTAEIIY4DPkS3UIFswbQPsTLZAOx44oUAXnwSmAXsDXwA+EmN8gezRssdijHUxxpG5ea8DTowx1pM9FfF3PY1TkjR4eaRJkjSQxgBLYoyt7RNCCH8CdidbTH0kxviHXNPdMcZHc/fXhhDy+/kCcEOM8dlcH+cCR29m3ZeGEC4mew3Vw8A3c6f9fRGYEmNcCawMIfwHcBzZgqc7F8YY3wbeDiH8Hngv8NtNzNsC7B5CeCrGuBxYvpkYJUllwCNNkqSBtBQYE0Lo2EkXYzwwd2RmKZ0/hxYW6Gf7Lu2v9WDdp8UYR8YYd4gxHhNjbCJbxFV1Wf41YIcC/byZd381UFdg3s8BHwdeCyH8bwjhgB7EKUka5CyaJEkD6TFgHXBED+YtNIreIrLXCbWbUGQ8S8geDdqxS19/L6KvjeKNMf41xngEMBa4C7i9mCAlSYOLp+dJkgZMjPHtEMJ5wJUhhATZ09pWA3sBtb3o6nbghhDCjcB84PtFxtMWQrgdOD+EcDwwmuzgEsUM1vAW8K4QQlWMcX0IoQr4PHBfjHFFCOEdoK2YOCVJg4tHmiRJAyrGeBHZwuTbwGKyxcbVwJnAn3rYx/3AJWQHVniZvg2wcCrZ65xeJTvgxK3A9UX08zvgOeDNEMKS3LTjgPm5gukk4Ng+xClJGiT8cVtJkiRJKsAjTZIkSZJUgEWTJEmSJBVg0SRJkiRJBVg0SZIkSVIBFk2SJEmSVIBFkyRJkiQVYNEkSZIkSQVYNEmSJElSARZNkiRJklTA/wezeyIXY4PyrgAAAABJRU5ErkJggg==\n", "text/plain": ["<Figure size 1008x432 with 2 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n", "for ax in [ax1, ax2]:\n", "    df_bandwidth[\"Bandwidth / Byte/Cycle\"].plot(ax=ax, legend=True, label=\"Jacobi Bandwidth\")\n", "    ax.set_ylabel(\"Byte/Cycle\")\n", "ax2.axhline(2*16, color=sns.color_palette()[1], label=\"L1 Bandwidth\");\n", "ax2.legend();"]}, {"cell_type": "markdown", "metadata": {}, "source": ["As you can see, we are quite a bit away from the available L1 cache bandwidth. Can you think of reasons why?"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## Task E1: Measuring FlOps\n", "<a name=\"taske1\"></a>\n", "\n", "If you still have time, feel free to work on the following extended task.\n", "\n", "\n", "**TASK**: Please measure counters for _vectorized_ floating point operations and _scalar_ floating point operations. The two counters can also not be measured during the same run. So please see the TODOs in [`poisson2d.sflops.c`](/edit/Tasks/poisson2d.sflops.c) and [`poisson2d.vflops.c`](/edit/Tasks/poisson2d.vflops.c). By now you should be able to find out the names of the counters by yourself (*Hint: they include the words \u00bbscalar\u00ab and \u00bbvector\u00ab\u2026*).\n", "\n", "As usual, compile, test, and bench-run your program.\n", "\n", "[Back to top](#toc)"]}, {"cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.sflop.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.sflop.bin.csv\n", "Job <24645> is submitted to default queue <batch>.\n", "<<Waiting for dispatch ...>>\n", "<<Starting on login1>>\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,4,0.0010,96000,480,480\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,8,0.0011,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,12,0.0012,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,16,0.0012,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,20,0.0013,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,24,0.0013,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,28,0.0014,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,32,0.0015,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,36,0.0015,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,40,0.0016,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,44,0.0017,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,48,0.0017,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,52,0.0018,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,56,0.0022,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,60,0.0019,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,64,0.0021,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,68,0.0022,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,72,0.0021,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,76,0.0022,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,80,0.0023,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,84,0.0025,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,88,0.0024,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,92,0.0025,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,96,0.0025,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,100,0.0026,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,104,0.0027,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,108,0.0027,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,112,0.0028,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,116,0.0028,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,120,0.0031,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,124,0.0030,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,128,0.0030,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,132,0.0031,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,136,0.0032,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,140,0.0032,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,144,0.0033,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,148,0.0034,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,152,0.0035,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,156,0.0035,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,160,0.0036,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,164,0.0036,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,168,0.0037,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,172,0.0038,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,176,0.0038,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,180,0.0039,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,184,0.0040,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,188,0.0040,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,192,0.0041,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,196,0.0042,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,200,0.0042,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,204,0.0043,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,208,0.0043,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,212,0.0044,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,216,0.0045,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,220,0.0045,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,224,0.0046,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,228,0.0047,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,232,0.0047,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,236,0.0048,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,240,0.0049,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,244,0.0049,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,248,0.0051,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,252,0.0051,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,256,0.0053,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,260,0.0052,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,264,0.0053,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,268,0.0054,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,272,0.0054,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,276,0.0054,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,280,0.0055,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,284,0.0056,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,288,0.0056,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,292,0.0057,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,296,0.0058,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,300,0.0058,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,304,0.0059,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,308,0.0060,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,312,0.0060,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,316,0.0062,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,320,0.0062,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,324,0.0062,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,328,0.0063,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,332,0.0064,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,336,0.0065,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,340,0.0065,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,344,0.0066,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,348,0.0066,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,352,0.0067,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,356,0.0068,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,360,0.0069,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,364,0.0069,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,368,0.0070,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,372,0.0072,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,376,0.0071,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,380,0.0071,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,384,0.0072,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,388,0.0073,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,392,0.0074,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,396,0.0076,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,400,0.0075,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,404,0.0076,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,408,0.0076,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,412,0.0077,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,416,0.0078,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,420,0.0078,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,424,0.0079,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,428,0.0079,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,432,0.0080,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,436,0.0081,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,440,0.0082,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,444,0.0082,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,448,0.0084,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,452,0.0083,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,456,0.0084,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,460,0.0085,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,464,0.0085,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,468,0.0086,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,472,0.0087,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,476,0.0089,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,480,0.0088,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,484,0.0089,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,488,0.0089,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,492,0.0090,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,496,0.0091,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,500,0.0092,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,504,0.0092,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,508,0.0093,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,512,0.0094,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,516,0.0094,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,520,0.0095,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,524,0.0096,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,528,0.0096,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,532,0.0098,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,536,0.0097,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,540,0.0098,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,544,0.0099,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,548,0.0100,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,552,0.0101,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,556,0.0101,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,560,0.0102,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,564,0.0103,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,568,0.0104,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,572,0.0105,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,576,0.0105,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,580,0.0106,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,584,0.0107,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,588,0.0107,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,592,0.0108,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,596,0.0109,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,600,0.0110,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,604,0.0111,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,608,0.0111,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,612,0.0112,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,616,0.0112,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,620,0.0113,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,624,0.0114,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,628,0.0115,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,632,0.0115,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,636,0.0115,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,640,0.0116,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,644,0.0118,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,648,0.0117,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,652,0.0119,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,656,0.0119,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,660,0.0121,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,664,0.0120,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,668,0.0122,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,672,0.0121,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,676,0.0124,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,680,0.0123,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,684,0.0125,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,688,0.0124,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,692,0.0125,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,696,0.0126,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,700,0.0127,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,704,0.0126,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,708,0.0127,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,712,0.0129,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,716,0.0128,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,720,0.0129,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,724,0.0132,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,728,0.0131,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,732,0.0131,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,736,0.0133,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,740,0.0133,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,744,0.0133,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,748,0.0134,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,752,0.0136,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,756,0.0136,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,760,0.0136,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,764,0.0136,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,768,0.0138,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,772,0.0138,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,776,0.0139,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,780,0.0139,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,784,0.0140,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,788,0.0140,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,792,0.0141,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,796,0.0142,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,800,0.0143,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,804,0.0143,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,808,0.0144,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,812,0.0144,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,816,0.0145,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,820,0.0146,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,824,0.0148,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,828,0.0147,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,832,0.0148,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,836,0.0149,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,840,0.0150,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,844,0.0150,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,848,0.0150,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,852,0.0151,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,856,0.0152,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,860,0.0152,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,864,0.0153,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,868,0.0154,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,872,0.0156,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,876,0.0156,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,880,0.0156,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,884,0.0157,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,888,0.0157,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,892,0.0158,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,896,0.0159,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,900,0.0159,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,904,0.0161,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,908,0.0162,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,912,0.0164,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,916,0.0163,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,920,0.0164,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,924,0.0165,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,928,0.0166,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,932,0.0166,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,936,0.0167,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,940,0.0167,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,944,0.0168,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,948,0.0169,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,952,0.0172,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,956,0.0171,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,960,0.0172,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,964,0.0175,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,968,0.0175,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,972,0.0176,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,976,0.0177,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,980,0.0178,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,984,0.0178,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,988,0.0179,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,992,0.0179,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,996,0.0182,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,1000,0.0181,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,1004,0.0182,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,1008,0.0182,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,1012,0.0184,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,1016,0.0184,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,1020,0.0186,0,0,0\n", "iter,ny,nx,Runtime,PM_SCALAR_FLOP_CMPL (total),PM_SCALAR_FLOP_CMPL (min), PM_SCALAR_FLOP_CMPL (max)\n", "200,32,1024,0.0182,0,0,0\n", "mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.sflop.bin.csv .\n", "bsub -W 60 -nnodes 1 -Is -P TRN003 jsrun -n 1 -c 1 -g ALL_GPUS ./bench.sh poisson2d.vflop.bin /gpfs/wolf/trn003/scratch/aherten//poisson2d.vflop.bin.csv\n", "Job <24646> is submitted to default queue <batch>.\n", "<<Waiting for dispatch ...>>\n", "<<Starting on login1>>\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,4,0.0010,0,0,0\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,8,0.0011,150000,750,750\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,12,0.0012,246000,1230,1230\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,16,0.0012,342000,1710,1710\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,20,0.0013,438000,2190,2190\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,24,0.0013,534000,2670,2670\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,28,0.0014,630000,3150,3150\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,32,0.0015,726000,3630,3630\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,36,0.0016,822000,4110,4110\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,40,0.0016,918000,4590,4590\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,44,0.0017,1014000,5070,5070\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,48,0.0017,1110000,5550,5550\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,52,0.0018,1206000,6030,6030\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,56,0.0019,1302000,6510,6510\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,60,0.0019,1398000,6990,6990\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,64,0.0020,1494000,7470,7470\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,68,0.0022,1590000,7950,7950\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,72,0.0021,1686000,8430,8430\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,76,0.0022,1782000,8910,8910\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,80,0.0023,1878000,9390,9390\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,84,0.0025,1974000,9870,9870\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,88,0.0024,2070000,10350,10350\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,92,0.0026,2166000,10830,10830\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,96,0.0025,2262000,11310,11310\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,100,0.0026,2358000,11790,11790\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,104,0.0027,2454000,12270,12270\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,108,0.0027,2550000,12750,12750\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,112,0.0029,2646000,13230,13230\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,116,0.0029,2742000,13710,13710\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,120,0.0029,2838000,14190,14190\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,124,0.0030,2934000,14670,14670\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,128,0.0031,3030000,15150,15150\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,132,0.0031,3126000,15630,15630\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,136,0.0032,3222000,16110,16110\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,140,0.0032,3318000,16590,16590\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,144,0.0033,3414000,17070,17070\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,148,0.0036,3510000,17550,17550\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,152,0.0035,3606000,18030,18030\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,156,0.0035,3702000,18510,18510\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,160,0.0036,3798000,18990,18990\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,164,0.0036,3894000,19470,19470\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,168,0.0037,3990000,19950,19950\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,172,0.0038,4086000,20430,20430\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,176,0.0038,4182000,20910,20910\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,180,0.0039,4278000,21390,21390\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,184,0.0040,4374000,21870,21870\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,188,0.0041,4470000,22350,22350\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,192,0.0041,4566000,22830,22830\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,196,0.0042,4662000,23310,23310\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,200,0.0042,4758000,23790,23790\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,204,0.0043,4854000,24270,24270\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,208,0.0044,4950000,24750,24750\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,212,0.0044,5046000,25230,25230\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,216,0.0045,5142000,25710,25710\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,220,0.0046,5238000,26190,26190\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,224,0.0046,5334000,26670,26670\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,228,0.0048,5430000,27150,27150\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,232,0.0049,5526000,27630,27630\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,236,0.0048,5622000,28110,28110\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,240,0.0049,5718000,28590,28590\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,244,0.0049,5814000,29070,29070\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,248,0.0050,5910000,29550,29550\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,252,0.0051,6006000,30030,30030\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,256,0.0051,6102000,30510,30510\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,260,0.0052,6198000,30990,30990\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,264,0.0053,6294000,31470,31470\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,268,0.0054,6390000,31950,31950\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,272,0.0054,6486000,32430,32430\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,276,0.0054,6582000,32910,32910\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,280,0.0055,6678000,33390,33390\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,284,0.0056,6774000,33870,33870\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,288,0.0057,6870000,34350,34350\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,292,0.0057,6966000,34830,34830\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,296,0.0058,7062000,35310,35310\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,300,0.0059,7158000,35790,35790\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,304,0.0059,7254000,36270,36270\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,308,0.0060,7350000,36750,36750\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,312,0.0062,7446000,37230,37230\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,316,0.0061,7542000,37710,37710\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,320,0.0062,7638000,38190,38190\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,324,0.0062,7734000,38670,38670\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,328,0.0063,7830000,39150,39150\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,332,0.0064,7926000,39630,39630\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,336,0.0065,8022000,40110,40110\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,340,0.0065,8118000,40590,40590\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,344,0.0066,8214000,41070,41070\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,348,0.0066,8310000,41550,41550\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,352,0.0067,8406000,42030,42030\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,356,0.0068,8502000,42510,42510\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,360,0.0068,8598000,42990,42990\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,364,0.0069,8694000,43470,43470\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,368,0.0070,8790000,43950,43950\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,372,0.0070,8886000,44430,44430\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,376,0.0071,8982000,44910,44910\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,380,0.0072,9078000,45390,45390\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,384,0.0072,9174000,45870,45870\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,388,0.0073,9270000,46350,46350\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,392,0.0074,9366000,46830,46830\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,396,0.0074,9462000,47310,47310\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,400,0.0075,9558000,47790,47790\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,404,0.0075,9654000,48270,48270\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,408,0.0076,9750000,48750,48750\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,412,0.0077,9846000,49230,49230\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,416,0.0079,9942000,49710,49710\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,420,0.0078,10038000,50190,50190\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,424,0.0080,10134000,50670,50670\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,428,0.0080,10230000,51150,51150\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,432,0.0080,10326000,51630,51630\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,436,0.0083,10422000,52110,52110\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,440,0.0082,10518000,52590,52590\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,444,0.0083,10614000,53070,53070\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,448,0.0083,10710000,53550,53550\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,452,0.0083,10806000,54030,54030\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,456,0.0084,10902000,54510,54510\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,460,0.0085,10998000,54990,54990\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,464,0.0085,11094000,55470,55470\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,468,0.0086,11190000,55950,55950\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,472,0.0087,11286000,56430,56430\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,476,0.0087,11382000,56910,56910\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,480,0.0088,11478000,57390,57390\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,484,0.0089,11574000,57870,57870\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,488,0.0089,11670000,58350,58350\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,492,0.0091,11766000,58830,58830\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,496,0.0091,11862000,59310,59310\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,500,0.0091,11958000,59790,59790\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,504,0.0092,12054000,60270,60270\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,508,0.0093,12150000,60750,60750\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,512,0.0094,12246000,61230,61230\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,516,0.0096,12342000,61710,61710\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,520,0.0096,12438000,62190,62190\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,524,0.0095,12534000,62670,62670\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,528,0.0098,12630000,63150,63150\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,532,0.0097,12726000,63630,63630\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,536,0.0097,12822000,64110,64110\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,540,0.0098,12918000,64590,64590\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,544,0.0100,13014000,65070,65070\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,548,0.0102,13110000,65550,65550\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,552,0.0102,13206000,66030,66030\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,556,0.0101,13302000,66510,66510\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,560,0.0103,13398000,66990,66990\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,564,0.0103,13494000,67470,67470\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,568,0.0104,13590000,67950,67950\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,572,0.0105,13686000,68430,68430\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,576,0.0105,13782000,68910,68910\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,580,0.0107,13878000,69390,69390\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,584,0.0108,13974000,69870,69870\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,588,0.0107,14070000,70350,70350\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,592,0.0108,14166000,70830,70830\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,596,0.0109,14262000,71310,71310\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,600,0.0110,14358000,71790,71790\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,604,0.0110,14454000,72270,72270\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,608,0.0111,14550000,72750,72750\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,612,0.0114,14646000,73230,73230\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,616,0.0112,14742000,73710,73710\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,620,0.0113,14838000,74190,74190\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,624,0.0114,14934000,74670,74670\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,628,0.0116,15030000,75150,75150\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,632,0.0115,15126000,75630,75630\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,636,0.0117,15222000,76110,76110\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,640,0.0116,15318000,76590,76590\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,644,0.0118,15414000,77070,77070\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,648,0.0117,15510000,77550,77550\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,652,0.0119,15606000,78030,78030\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,656,0.0119,15702000,78510,78510\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,660,0.0120,15798000,78990,78990\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,664,0.0120,15894000,79470,79470\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,668,0.0121,15990000,79950,79950\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,672,0.0121,16086000,80430,80430\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,676,0.0123,16182000,80910,80910\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,680,0.0122,16278000,81390,81390\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,684,0.0125,16374000,81870,81870\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,688,0.0124,16470000,82350,82350\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,692,0.0126,16566000,82830,82830\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,696,0.0125,16662000,83310,83310\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,700,0.0127,16758000,83790,83790\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,704,0.0128,16854000,84270,84270\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,708,0.0128,16950000,84750,84750\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,712,0.0128,17046000,85230,85230\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,716,0.0128,17142000,85710,85710\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,720,0.0129,17238000,86190,86190\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,724,0.0130,17334000,86670,86670\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,728,0.0130,17430000,87150,87150\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,732,0.0132,17526000,87630,87630\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,736,0.0132,17622000,88110,88110\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,740,0.0133,17718000,88590,88590\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,744,0.0133,17814000,89070,89070\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,748,0.0134,17910000,89550,89550\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,752,0.0134,18006000,90030,90030\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,756,0.0136,18102000,90510,90510\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,760,0.0136,18198000,90990,90990\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,764,0.0136,18294000,91470,91470\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,768,0.0137,18390000,91950,91950\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,772,0.0139,18486000,92430,92430\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,776,0.0139,18582000,92910,92910\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,780,0.0139,18678000,93390,93390\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,784,0.0140,18774000,93870,93870\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,788,0.0140,18870000,94350,94350\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,792,0.0142,18966000,94830,94830\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,796,0.0142,19062000,95310,95310\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,800,0.0144,19158000,95790,95790\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,804,0.0143,19254000,96270,96270\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,808,0.0144,19350000,96750,96750\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,812,0.0145,19446000,97230,97230\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,816,0.0145,19542000,97710,97710\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,820,0.0146,19638000,98190,98190\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,824,0.0147,19734000,98670,98670\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,828,0.0147,19830000,99150,99150\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,832,0.0148,19926000,99630,99630\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,836,0.0151,20022000,100110,100110\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,840,0.0150,20118000,100590,100590\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,844,0.0150,20214000,101070,101070\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,848,0.0151,20310000,101550,101550\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,852,0.0152,20406000,102030,102030\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,856,0.0152,20502000,102510,102510\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,860,0.0152,20598000,102990,102990\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,864,0.0153,20694000,103470,103470\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,868,0.0154,20790000,103950,103950\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,872,0.0155,20886000,104430,104430\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,876,0.0155,20982000,104910,104910\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,880,0.0157,21078000,105390,105390\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,884,0.0157,21174000,105870,105870\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,888,0.0158,21270000,106350,106350\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,892,0.0158,21366000,106830,106830\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,896,0.0159,21462000,107310,107310\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,900,0.0161,21558000,107790,107790\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,904,0.0162,21654000,108270,108270\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,908,0.0161,21750000,108750,108750\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,912,0.0163,21846000,109230,109230\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,916,0.0164,21942000,109710,109710\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,920,0.0165,22038000,110190,110190\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,924,0.0164,22134000,110670,110670\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,928,0.0166,22230000,111150,111150\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,932,0.0166,22326000,111630,111630\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,936,0.0167,22422000,112110,112110\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,940,0.0168,22518000,112590,112590\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,944,0.0168,22614000,113070,113070\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,948,0.0169,22710000,113550,113550\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,952,0.0170,22806000,114030,114030\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,956,0.0170,22902000,114510,114510\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,960,0.0171,22998000,114990,114990\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,964,0.0176,23094000,115470,115470\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,968,0.0176,23190000,115950,115950\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,972,0.0177,23286000,116430,116430\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,976,0.0177,23382000,116910,116910\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,980,0.0178,23478000,117390,117390\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,984,0.0178,23574000,117870,117870\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,988,0.0179,23670000,118350,118350\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,992,0.0180,23766000,118830,118830\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,996,0.0181,23862000,119310,119310\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,1000,0.0182,23958000,119790,119790\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,1004,0.0182,24054000,120270,120270\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,1008,0.0182,24150000,120750,120750\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,1012,0.0184,24246000,121230,121230\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,1016,0.0185,24342000,121710,121710\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,1020,0.0184,24438000,122190,122190\n", "iter,ny,nx,Runtime,PM_VECTOR_FLOP_CMPL (total),PM_VECTOR_FLOP_CMPL (min), PM_VECTOR_FLOP_CMPL (max)\n", "200,32,1024,0.0182,24534000,122670,122670\n", "mv /gpfs/wolf/trn003/scratch/aherten//poisson2d.vflop.bin.csv .\n"]}], "source": ["!make bench_task4"]}, {"cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", "    .dataframe tbody tr th:only-of-type {\n", "        vertical-align: middle;\n", "    }\n", "\n", "    .dataframe tbody tr th {\n", "        vertical-align: top;\n", "    }\n", "\n", "    .dataframe thead th {\n", "        text-align: right;\n", "    }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", "  <thead>\n", "    <tr style=\"text-align: right;\">\n", "      <th></th>\n", "      <th>nx</th>\n", "      <th>iter</th>\n", "      <th>ny</th>\n", "      <th>Runtime</th>\n", "      <th>PM_SCALAR_FLOP_CMPL (total)</th>\n", "      <th>PM_SCALAR_FLOP_CMPL (min)</th>\n", "      <th>PM_SCALAR_FLOP_CMPL (max)</th>\n", "      <th>PM_VECTOR_FLOP_CMPL (total)</th>\n", "      <th>PM_VECTOR_FLOP_CMPL (min)</th>\n", "      <th>PM_VECTOR_FLOP_CMPL (max)</th>\n", "    </tr>\n", "  </thead>\n", "  <tbody>\n", "    <tr>\n", "      <th>0</th>\n", "      <td>4</td>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>0.0010</td>\n", "      <td>96000</td>\n", "      <td>480</td>\n", "      <td>480</td>\n", "      <td>0</td>\n", "      <td>0</td>\n", "      <td>0</td>\n", "    </tr>\n", "    <tr>\n", "      <th>1</th>\n", "      <td>8</td>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>0.0011</td>\n", "      <td>0</td>\n", "      <td>0</td>\n", "      <td>0</td>\n", "      <td>150000</td>\n", "      <td>750</td>\n", "      <td>750</td>\n", "    </tr>\n", "    <tr>\n", "      <th>2</th>\n", "      <td>12</td>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>0.0012</td>\n", "      <td>0</td>\n", "      <td>0</td>\n", "      <td>0</td>\n", "      <td>246000</td>\n", "      <td>1230</td>\n", "      <td>1230</td>\n", "    </tr>\n", "    <tr>\n", "      <th>3</th>\n", "      <td>16</td>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>0.0012</td>\n", "      <td>0</td>\n", "      <td>0</td>\n", "      <td>0</td>\n", "      <td>342000</td>\n", "      <td>1710</td>\n", "      <td>1710</td>\n", "    </tr>\n", "    <tr>\n", "      <th>4</th>\n", "      <td>20</td>\n", "      <td>200</td>\n", "      <td>32</td>\n", "      <td>0.0013</td>\n", "      <td>0</td>\n", "      <td>0</td>\n", "      <td>0</td>\n", "      <td>438000</td>\n", "      <td>2190</td>\n", "      <td>2190</td>\n", "    </tr>\n", "  </tbody>\n", "</table>\n", "</div>"], "text/plain": ["   nx  iter  ny  Runtime  PM_SCALAR_FLOP_CMPL (total)  \\\n", "0   4   200  32   0.0010                        96000   \n", "1   8   200  32   0.0011                            0   \n", "2  12   200  32   0.0012                            0   \n", "3  16   200  32   0.0012                            0   \n", "4  20   200  32   0.0013                            0   \n", "\n", "   PM_SCALAR_FLOP_CMPL (min)   PM_SCALAR_FLOP_CMPL (max)  \\\n", "0                        480                         480   \n", "1                          0                           0   \n", "2                          0                           0   \n", "3                          0                           0   \n", "4                          0                           0   \n", "\n", "   PM_VECTOR_FLOP_CMPL (total)  PM_VECTOR_FLOP_CMPL (min)  \\\n", "0                            0                          0   \n", "1                       150000                        750   \n", "2                       246000                       1230   \n", "3                       342000                       1710   \n", "4                       438000                       2190   \n", "\n", "    PM_VECTOR_FLOP_CMPL (max)  \n", "0                           0  \n", "1                         750  \n", "2                        1230  \n", "3                        1710  \n", "4                        2190  "]}, "execution_count": 39, "metadata": {}, "output_type": "execute_result"}], "source": ["df_sflop = pd.read_csv(\"poisson2d.sflop.bin.csv\", skiprows=range(2, 50000, 2))\n", "df_vflop = pd.read_csv(\"poisson2d.vflop.bin.csv\", skiprows=range(2, 50000, 2))\n", "df_flop = pd.concat([df_sflop.set_index(\"nx\"), df_vflop.set_index(\"nx\")[['PM_VECTOR_FLOP_CMPL (total)', 'PM_VECTOR_FLOP_CMPL (min)', ' PM_VECTOR_FLOP_CMPL (max)']]], axis=1).reset_index()\n", "df_flop.head()"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Again, the name of the vector counter is a bit misleading; not floating point operations are measured but floating point instructions. To get *real* floating point operations, each value needs to be multiplied by the vector width (2). We can plot the values afterwards (non-interactive: `make graph_task4`)."]}, {"cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": ["df_flop[\"Grid Points\"] = df_flop[\"nx\"] * df_flop[\"ny\"]\n", "df_flop[\"Vector FlOps (min)\"] = df_flop[\"PM_VECTOR_FLOP_CMPL (min)\"] * 2\n", "df_flop[\"Scalar FlOps (min)\"] = df_flop[\"PM_SCALAR_FLOP_CMPL (min)\"]"]}, {"cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAF/CAYAAAChV+O/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xm81GXd//HXzNlAdgHFDZXtUhBxFzcUbDMz77RNQzO11FstS+0u7+q2ur3zNttMTSu7MzXL+65f2WYWhLsliqYcvBRlE1GQReCwzZmZ3x9nOBzgHDj7zPfM6/l48IDzvWa5Dp+m45vvd96TyufzSJIkSZLaJ13sDUiSJElSkhmqJEmSJKkDDFWSJEmS1AGGKkmSJEnqAEOVJEmSJHWAoUqSJEmSOsBQJUmSJEkdYKiSJEmSpA4wVEmSJElSBxiqJEmSJKkDDFWSJEmS1AGVxd5AN6oBjgSWANki70WSJElS6akA9gCeAja29k7lFKqOBB4p9iYkSZIklbwTgEdbe+NyClVLAFaurCOXyxdlA4MH92X58rVFeW61jzNLHmeWPM4seZxZsjiv5HFmxZNOpxg0qA8UskNrlVOoygLkcvmiharNz69kcWbJ48ySx5kljzNLFueVPM6s6Nr0diGLKiRJkiSpAwxVkiRJktQBO738L4QwGLgLGElDA8Zc4KIY47IQQh54HsgVbn5OjPH5wv1OA75ZeI6ngU/EGNd11ZokSZIkFUNr3lOVB26IMc4ACCF8E7geuKCwfmyMcat30oUQ+gI/Ak6IMb4cQvgxcBXwta5Y68hfQDZbz8qVy6iv39SRh2mVpUvT5HK5nd9QJaOlmVVWVjNo0FAqKsrpbYmSJElqzk7/izDGuAKY0eTQk8AlO7nbKcDMGOPLha9vA+6kIQB1xVq7rVy5jF69dqFPn2GkUqmOPNROVVamqa83VCVJczPL5/PU1a1m5cplDBmyR5F2JkmSpFLRpn9mDyGkaQhU9zc5PCOEUAn8Cbg2xrgRGA4saHKbhcA+hT93xVq71ddv6pZApZ4jlUrRp09/1q5dVeytSJIkqQS09dql7wNrgZsLXw+PMS4KIfSn4X1XXwa+1In763SDB/fd6uulS9NUVVV02/NXVtoNkjQtzSydTjN0aL9u3o1aw7kkjzNLHmeWLM4reZxZsrQ6VIUQbgRGA6fFGHMAMcZFhd9XF97j9LnCzRcCk5vcfTiwqAvXWm358rVb9f7ncrluuySvNZf/TZ/+V+666yfk87Bp00bGjDmAa6+9rl3Pt2TJ61x44Tn84Q/T2nX/po4//ghGjhxFKtUQMN71rvdw9tnnctlln+Kss87huONOAODhh2fw05/+iA0bNlBfX88JJ5zERRddSnV1dYf3sNl9991LfX09Z599Tpvu9+Mf38b++4/g5JPftcPb/frX/0td3VrOOecTO5xZLpdj2bI1bdqDut7Qof2cS8I4s+RxZsnivJLHmRVPOp3a7iRMa7QqVIUQrgMOB04tXN5HCGEQsCHGuL5w+d8HgWcLd3kAuDmEMLrwHqiLgfu6cK1HeOutt/j2t6/njjvuZvfdh5HP55k796Vu30c2m6WiYvuzdz/4wU/YZZddWrzfs88+w3e+cwM33ngTI0eOYuPGjVx33bV8+9v/zRe+8OVO2duGDRv4v//7BXfd9cs23/fCCy9u1e3e//4PcPbZZ3LGGR9iwID+bX4eSZIklZfWVKqPA64BXgIeDyEAzANuAG4v1KpXAY/TcPkfMcY1IYRPAb8PIVQAs4DPdNVaT7FixVtUVFQyYMBAoOG9O6NHh8b1F174J7fc8j3WrWtokb/00s9w1FETufnm7/Lss8+QyWQYOHAgX/ziVxg2bPsCha9+9UssXLiATGYTe+21D1/84lfo378/zzwzk5tu+jYTJhzCnDm1fPzjFzSeeWqLn/zkh3z84+czcuQoAGpqarjqqi9w5pnv47zzLmTYsD04/vgj+MQnPslTT/2dt99exUUXXcpJJ53Mhg0b+M///A/mz3+ViopKhg/fl69//frtnmPGjGkccshh1NT0AuCPf/wdf/nLA/Tt249XXnmZoUN344orrubWW7/HokWLOPDAsXzlK18nlUpx3XXXcsABB3LmmR/hjjtuZ+HCBdTVreX11xez11578/Wv/ze9evWisrKSo46ayLRpf+GMM85s89+DJEmSyktr2v9mAy21OBy8g/v9Fvhtd611lseeX8Kj/1zSJY994qF7MnHssBbXR40aw9ix4zjzzFM59NDDOfjgQ3j3u9/LgAEDWb36ba655mquu+4Gxo+fQDabpa6uDoCpU8/jssuuAOB3v/sNP/jBTXz1q9/Y7vE/85mrGDiwIbD98Ie3cs89d3LJJZcD8Oqrc7nqqi/w2c9+vsX9XXLJ+Y2X/335y19rDE+bvfLKy1x++We3Ota//wD23HNvXnllbmPQS6fT3HbbT1i4cD4XX3wBEyYcyj//+Rxr1qzh7rv/F4DVq1c3u4dZs55m7NhxWx2bM6eWn/3sF+y22+58/vNX8NWvfombb/4hvXr14oILpjJz5j848sijt3usGOfwox/9jL59+/K5z13Ggw/+ife//wMAjBs3nieffMxQJUmSpJ3yQ3ZKSDqd5hvf+BavvjqXWbOe4ZFHZvDzn9/Fz372C1544Xn2229/xo+fAEBFRQX9+zdcmvbkk4/x61//L+vXryObzbb4+A888HsefPAB6uszrF+/gX32Gd64tvfe+3DQQS1mZGDnl//l8y0ubeV97zsdgOHD92PMmMDs2c8zatRoFi6cz7e+9d8ceujhHHvs8c3ed9mypRx77NZn0Q4+eAK77bY7AKNHB4YN24O+fRuuhR01ajSLFy9qNlQdddRE+vVreBPo2LEHsXjxa41rgwcPYenSpa37hiRJktRmuXVvk3nxIXIrX6fX5E+SSndfeVxnM1Rt47jxe3Dc+K757KHWfk7ViBGjGDFiFGee+WGmTv0Qs2Y9TWVlVbO3feONJXz/+9/mRz/6GXvuuRfPP/8cX/3q9gWMzz03i9/85lf84Ac/YdCgQTz44APcf/+vG9d79245LLXWqFGjmT37+a0uWVy9+m1ef/01RowY2ex9GoJYir322pt77vlfZs58iieffIwf/vAW7rzzF9TU1Gx1+5qaGjZt2rjVsaYlGOl0murqmiZfV7QYNLe+XXqr223atHG755YkSVLH5PN5sm/OJTN7GvXznoJclsp9DwVa+a/zJcp+7xKybNlSXnjhn41fL136JqtWrWSPPfZk/PiDmT9/XuN6Nptl9erV1NXVUVlZxeDBg8nlcvzmN79q9rHXrFlDnz59GTBgAJs2beIPf7i/2dt1xHnnXcidd/6EV16ZC8DGjRu58cbrmTz5Heyxx56Nt9v83IsWLWTu3Mi4cQexdOmbpNMVTJp0Ep/+9JWsWrWSNWu2vwRwxIhRLFy4YLvjnW3+/HmMGjWmy59HkiSpHOQzG9k0Zwbrfv0V1t9/HfWLnqNq7BT6fPgb9H73Z0ilk32uJ9m772Gy2Sx33HE7b7yxhJqaXuTzOS688BLGjDkAgOuuu4Hvf/87bNiwnlQqzaWXfoYjjzyayZPfwdSpH2H33Xfn0EMP57nnZm332BMnHsuDD/6Js8/+ILvtthsHHHAgtbWzO3X/hx12BFdccRX/+Z9fYePGjWQy9ZxwwiQuuujSrW5XXV3NJZecz6pVq7j66msYNGhXnnjiMW67reHjz3K5LFOnnseQIUO3e44TT5zMt77131xwwUWduvdt/eMfT/KpT/1rlz6HJElST5dbtYRNtdPJvPQobFpPevA+1JxwHlWjjiFV1XOuCkrlW/tGmOTbD5i37edUvfHGAoYN27dbNtDay/96suOPP4IHH3x4h+/N2pnPfe4yLr74ssaw2dkWLJjPN7/5X9x88w93OLPu/N+OWs/P9kgeZ5Y8zixZnFfyJH1m+VyW+gXPkqmdTnbxbEhXUDniSKrGnkzF7qNIpVrqwCu+Jp9TtT8wv7X380yVEuezn/08r722sMsef+nSN7jyyi902eNLkiT1RJuLJzJzZpCvW0Gqz65UH3EGVQecSHqXAcXeXpcyVKlbPfrozA4/xj77DN+qubCzHXnkxC57bEmSpJ6kueKJir3GUXXcx6gcfkiiG/3awlAlSZIkqU3ymY1k5j5BpnYaueWLoLo3VWOnUD12CumBXdOkXcoMVZIkSZJapbF4Ij4KmZ5bPNFWhipJkiRJLWqpeKJ67MmkS7x4orsYqiRJkiRtp9niiSPPpCpM6vHFE21lqJIkSZIEWDzRXoaqEvK5z13OpEkn8S//cmbjsXw+z4c/fDr//u/Xcsghh7X5MZ95Zib19fUcdVTHG+2WLHmdj370A+y//8jGY2effQ7vetcpfPCDp3HDDd9hxIhRANx////jvvvuJZ/Pkc3mOOWUUznnnE+QTqc7vI/NbrrpW4wfP4HJk9/Rpvtdf/3XOeWU9zFhwqE7vN2tt36PAw44kClT3tWRbUqSJJW8xuKJ2dPIrbB4oq0MVSXk1FPfzy9/ec9WoWrWrKepqKhoV6DafP/169e3K1Rls1kqKrb+14i+ffvy05/+fIf3e+CBP3Dfffdy4403MWzYMFavXs0111xFPp/nvPMubPM+mrN06ZvMnPkPLr/8c22+7xe+8OVW3e6ss87l0ksv5KST3tGpYVCSJKlUWDzROQxVJWTSpJP49revZ968V9l//xEA/OEP9/Pe954GQCaT4Yc/vJVnn32aTKaekSNHcuWVX2SXXXZh7dq13HTTt3jxxVpSqTQTJhzC6aefyW9/+2tyuRwzZ/6Dk09+F+eccx5/+tPvuffeu0ilUuy55958/vPXMGjQrvzxj7/jr399kEGDBjJv3jy++MUvM3p0aPP3cccdP+TKK/+NYcOGAdC/f3+uuuqLXHDBVM4++1yWL3+LCy88h1NOOY3nnnuGjRs3cuWVX2DChENZuXIF1177JVauXA7AEUccxac/feV2z/HHP/6Ok046ufGNkXfccTsLF86nrq6ORYsWEsKBTJ36cW6++bu88cYSTjxxCpde+hkALrvsU5x11jkcd9wJXHfdtVRXV7No0UKWLn2TcePG86UvfZVUKsWgQYPYc8+9ePrpf/jZVZIkqcfYUjwxjeziWosnOoGhahuZlx4jEx/ukseuOfBEKkYd2+J6VVUV73zne/jTn37Hv/7rZ1i3ro5HHnmIiy++DIB77rmTPn368KMf/QyAW2+9ibvu+h8uuuhSbrrpW/Tu3Zuf/vRe0uk0q1atYuDAgZx++hmsX7+eyy67AoBXX53LbbfdzB133M2QIUP40Y9+wHe+802+9rVvAPD888/y05/ey1577d3sHteuXct5553d+PX3vncrAwYMbPx63bo6lixZzLhx47e633777U9VVRWvvbaQ3r134e2332bkyFFcdtkVzJr1NNde++/88pe/4cEH/8SwYcP43vduBWD16tXN7mPWrKc566xztjoW44v8+Md30bt3b84/fyq33XYzN954E9lslg996P28//0faPZDg1999RW++91bSafTfOITH2PmzL83hqjx4w9m5synDFWSJCnxLJ7oOoaqEnPqqadz1VWX86lPXcq0aX/h4IMnMHTobgA89tjD1NXVMWPGdAAymU2MGjUagMcff4Qf//juxsvUBg4c2OzjP/PMTI455jiGDBkCwOmnn7FVSBo//pAWAxW07vK/luTz+cY/V1VV8e53vxeAQw89nJqaGhYuXMC4ceP55S9/zi23fI9DDjmMo48+ptnHWrr0TXbdddetjh111ET69u0LwKhRoxg5cgzV1dUADB++L4sXv9ZsqDrhhJOoqWk4vR1CYPHi1zjyyIa1wYMHs2DBM+36fiVJkoqtoXjiZTKzp1s80YUMVduoGnMcVWOO65LHrqxMU1+f2+FtRo8ew+DBQ/j735/gj3+8nw9/eEvgyefhyiu/wOGHH9nuPeTzbHdKt+mXu+zSu92P3XD/Puyxx17Mnv08EyduOSs3f/486uvr2WuvfVixYnkz+8qTSqU46KCD+Z//uYennvo7f/7zH7n77p/ygx/csd3ta2p6sWnTpq2OVVdvue43na6gpqa6yddpstlss3ve+nYVW91u48ZNjYFLkiQpKfKZDWTmPrlN8cTJVI+dbPFEF/Dd9yXo1FPfz09+8kMWLVrI8cef2Hj8+OMn8ctf3sPGjRuAhkvt5s+fB8Cxx57Avff+rPFs0KpVqwDo06cPdXVrGx/j8MOP5IknHmP58rcA+N3vfsMRRxzVqfs///xPcsst3+XNN98AGi7hu/HGbzB16nmNASWTyfCXvzwAwHPPzWLTpk0MH74vr7++mD59+vKOd7ybyy//LDG+SC63fRAdOXIkCxcu6NR9N2f+/HmNZwMlSZJKXW7VEjY8fg9r7/4sGx/5KaSg5oTz6Pux79Lr2LMNVF3EM1Ul6J3vPIVbbrmJ008/g6qqqsbjU6eexx133M6FF55buMwvxfnnf5L99tufyy//HDfd9C3OOecjVFRUcOihh3HFFVczadJk/v3fr+a8885uLKq46KJL+exnLy0UVezF1Vdf06n7P+WU97Fx4wauvPLyhlPO2Szvec+pnHvu+Y23GTBgAK+9tohPfvLjbNy4gWuvvY6qqipmzXqaX/zibioqKsnnc1x99Rebbd6bNGkK06f/pbHEoyvk83lmzvwHU6ee12XPIUmS1FEWTxRfqun7XHq4/YB5y5evJZfb8j2/8cYChg3bt1s20JrL/8rBkiWvc+GF5/CHP0xr92Nks1k++clzueGG7zW+P6yz/f3vT/CXv/yJL33pa82ud+f/dtR6Q4f2Y9myNcXehtrAmSWPM0sW55U8rZ1Zc8UTVWMnU3XAiaR79++GnfY86XSKwYP7AuwPzG/t/TxTpUSqqKjg6quvYcmSxV0Wqurq6hpr2CVJkkpBy8UTU6kcPsHiiSIxVKnb7bHHnh06S7XZgQeO64TdtGzKlHd4dlGSJJWEfGYDmZefIFM7fZviiSmkBw4r9vbKnqFKkiRJKlHZVa+Tqf0bmfgoZNaTHrwPNSecR9WoY0hV2VBcKgxVbKnzllqrjN6LKEmSulk+lyUz72mLJxKk7ENVZWU1dXWr6dOnv/8DVavk83nq6lZTWVm98xtLkiS10ubiiYXxIbJrlpPqsyvVR55p8UQClH2oGjRoKCtXLmPt2lVd/lzpdLrZz1xS6WppZpWV1QwaNLQIO5IkST3JluKJadTPmwm5LL33n0D+mI9ZPJEgZR+qKioqGTKkez4EzUrT5HFmkiSpK+yoeGL30aP974+EKftQJUmSJHWX7KrXycyeTualxwrFE8OpmfQJqkZOtHgiwQxVkiRJUhfK57LUL5hFpnZ6oXiislA8McXiiR7CUCVJkiR1gdy6VWRefJjMnBnk61ZYPNGDGaokSZKkTtJc8UTF3gdRddxUiyd6MEOVJEmS1EE7Kp5IDxxW7O2pixmqJEmSpHayeEJgqJIkSZLapMXiiXEnk95tpMUTZchQJUmSJLXCdsUTfQdTfeQHqTpgksUTZc5QJUmSJLVgx8UTh5BKp4u9RZUAQ5UkSZK0DYsn1BaGKkmSJKnA4gm1h6FKkiRJZa2xeGL2NLKvz7F4Qm1mqJIkSVJZaiieeKhQPLHS4gm1m6FKkiRJZSOfz5N94yUytdO3Kp6oPu5cKoZPsHhC7WKokiRJUo+3pXhiGrkVr0H1LlSNewfVB062eEIdZqiSJElSj2XxhLqDoUqSJEk9isUT6m6GKkmSJPUIFk+oWAxVkiRJSqzG4onZ06if9zTkLZ5Q9zNUSZIkKXEaiiceJ1M7fUvxxEEWT6g4DFWSJElKjOzK18nUNlM8MWoiqUqLJ1QchipJkiSVNIsnVOoMVZIkSSpJFk8oKQxVkiRJKhkWTyiJdhqqQgiDgbuAkcBGYC5wUYxxWQhhInA70BuYD0yNMS4t3K9b1yRJkpRcLRZPjJ1MeoDFEyptrYn6eeCGGGOIMR4MvAJcH0JIAXcDl8YYxwAPA9cDdPeaJEmSkim78nU2PHY3a+/+LBsf/RmkKqiZ9An6Tv0OvY45y0ClRNjpmaoY4wpgRpNDTwKXAEcAG2KMjxaO30bD2aPzi7AmSZKkhMjnstTPf4ZM7XSLJ9QjtOmi1BBCmoZAdT8wHFiweS3G+BaQDiHsWoQ1SZIklbjculVsfOa31N17FRv+egu51UupPuqD9PnYt+k95SIqdh9loFIitbWo4vvAWuBm4AOdv52uN3hw36I+/9Ch/Yr6/Go7Z5Y8zix5nFnyOLNkKea88vk8GxbNYfXTD1D34pOQy9J7xAT6H34Ru4w6jFS6omh7K2W+xpKl1aEqhHAjMBo4LcaYCyEsBPZtsj4EyMcYV3T3Wlu+4eXL15LL5dtyl04zdGg/li1bU5TnVvs4s+RxZsnjzJLHmSVLsebVbPHEuC3FE+uAdcvXdfu+ksDXWPGk06l2nYRp1eV/IYTrgMOBf4kxbiwcfhroHUI4vvD1xcB9RVqTJElSCWgonriLtXdfYfGEykZrKtXHAdcALwGPhxAA5sUYPxBCOAe4PYTQi0LFOUDhTFa3rUmSJKl4LJ5QuUvl88W5FK4I9gPmefmf2sKZJY8zSx5nljzOLFm6cl65davIzHmIzIszyNetJNV3MFVjJ1MVJpHu3b9LnrMc+BorniaX/+1Pw0mcVmlrUYUkSZLKWD6fJ/vGS2RmT6N+3tOQz1Kx90FUH3cuFcMnkEq3qVxa6hEMVZIkSdqp/Kb1ZOY+sXXxxEFbiiekcmaokiRJUouyK18nUzuNzEuPQWYD6cH7UjPpE1SNmkiqsqbY25NKgqFKkiRJW8nn6qmfP8viCamVDFWSJEkCmhRPzPkb+XWrSPUdTPVRH7R4QtoJQ5UkSVIZa7F44oSPU7GPxRNSaxiqJEmSylBj8cTs6eRWWjwhdYShSpIkqYxkVy4mUzvd4gmpExmqJEmSejiLJ6SuZaiSJEnqoXLrVrHykT9RN/PPFk9IXchQJUmS1INsWzxRZ/GE1OUMVZIkST1AS8UTw44/jVXZvsXentSjGaokSZISLLtyMZnZ08m8XCieGLIvvSadT+Woo0lV1lC1az9YtqbY25R6NEOVJElSwjRbPDHyKKrHTrF4QioCQ5UkSVJC5NatIjPnITJz/mbxhFRCDFWSJEklbNviCfJZKvYZb/GEVEIMVZIkSSWopeKJ6rFTSA/Yvdjbk9SEoUqSJKmE7Kx4QlLpMVRJkiQVWWPxxOxpZJe8uKV4YtzJpIeOsHhCKnGGKkmSpCJpvnjiQ1SFEyyekBLEUCVJktSN8vk82SWRTO10iyekHsJQJUmS1A22K56o6UPV+HdSfeBkiyekhDNUSZIkdSGLJ6Sez1AlSZLUySyekMqLoUqSJKmTNBRPzCAzZ4bFE1IZMVRJkiR1QMvFE+dRsc/BFk9IZcBQJUmS1A75TevJvPw4mdrp5FYutnhCKmOGKkmSpDaweELStgxVkiRJO2HxhKQdMVRJkiS1wOIJSa1hqJIkSWpiS/HENOrnPWPxhKSdMlRJkiRh8YSk9jNUSZKksrZ98cR+9DrxAipHHmXxhKRWMVRJkqSys13xREUllSOOpnrcFIsnJLWZoUqSJJWNFosnDphEule/Ym9PUkIZqiRJUo9m8YSkrmaokiRJPVKLxRNjp5Duv1uxtyepBzFUSZKkHiW7YjGZ2mlkXn7c4glJ3cJQJUmSEq+heOIZMrOnb1M8cTLpoftbPCGpSxmqJElSYuXqVpJ58aEtxRP9hlB91IepOuAEiyckdRtDlSRJSpTmiycOtnhCUtEYqiRJUiJYPCGpVBmqJElSSWu5eOJoUpXVxd6eJBmqJElS6bF4QlKSGKokSVLJyNWtJDNnBpkXH7J4QlJiGKokSVJRNRRPvEimdnqheCJHxT7jLZ6QlBiGKkmSVBQWT0jqKQxVkiSpW1k8IamnMVRJkqQut6V4YhrZJXGr4omK3UYUe3uS1CGGKkmS1GUsnpBUDgxVkiSpUzUWT8yeRv38ZyCfbyiemHQeFXtbPCGp52lVqAoh3AicCewHjI8xvlA4Ph/YUPgF8G8xxj8X1iYCtwO9gfnA1Bjj0q5akyRJxdVQPPFYoXji9ULxxLssnpDU47X2n4p+A0wCFjSz9sEY4yGFX5sDVQq4G7g0xjgGeBi4vqvWJElS8WRXLGbDoz9j7T2fZeNjd0NFNb1OvIC+H/sOvSZ+1EAlqcdr1ZmqGOOjACGE1j7uEcCGzfcDbqPhzNL5XbQmSZK6UT5XT/28Z8jUNimeGHk01WMtnpBUfjrjPVX3FM4iPQpcE2NcBQynyVmtGONbIYR0CGHXrliLMa7ohO9DkiTtRK5uJSvm/JG6px+0eEKSCjoaqk6IMS4KIdQA3wVuBqZ2fFtdZ/DgvkV9/qFD/YGTNM4seZxZ8jiz0pbP59mwcDarZz5AXfw75PP0HnkIAw4/hd4jDyGVrij2FrUTvsaSx5klS4dCVYxxUeH3jSGEW4H7C0sLgX033y6EMATIxxhXhBA6fa0te16+fC25XL6t32qnGDq0H8uWrSnKc6t9nFnyOLPkcWalq6XiiWHHn8aq+j7UAXXL1xV7m9oJX2PJ48yKJ51OteskTLs7TUMIfUIIAwp/TgEfBZ4tLD8N9A4hHF/4+mLgvi5ckyRJnWS74onKmq2KJ6oGDSv2FiWppLS2Uv0m4AxgGPDXEMJy4DTgVyGECqACqAX+FSDGmAshnAPcHkLoRaH+vKvWJElSx1g8IUntl8rni3MpXBHsB8zz8j+1hTNLHmeWPM6suHJ1K8nMmUHmxYcaiyeqDpyyw+IJZ5Yszit5nFnxNLn8b38aTuK0Sme0/0mSpATJ5/Nkl7xIZvY06uc/A/k8FfuMp3rSeVTsfTCpdLvfHSBJZclQJUlSmWipeKJ67BQ/oFeSOsBQJUlSD5dd8RqZ2ulkXn4cMhtID92fXideQOXIo0lVVhd7e5KUeIYqSZJ6IIsnJKn7GKokSepBti+eGErN0R+mMrRcPCFJ6hhDlSRJCWfp8iawAAAZqklEQVTxhCQVl6FKkqSEsnhCkkqDoUqSpISxeEKSSouhSpKkBLB4QpJKl6FKkqQS1lg8MWcG+fVvWzwhSSXIUCVJUolpsXhi3BSLJySpBBmqJEkqEflN68m8VCieWLW5eOLdVI+dbPGEJJUwQ5UkSUVm8YQkJZuhSpKkIrB4QpJ6DkOVJEndqKXiiaowiVSvvsXeniSpHQxVkiR1sZaLJ06mYu/xFk9IUsIZqiRJ6iIWT0hSeTBUSZLUybIrXiMze1pD8UT9RosnJKmHM1RJktQJ8tl66uc/TaZ2usUTklRmDFWSJHWAxROSJEOVJElttMPiiX3Gk0pZPCFJ5cRQJUlSK1k8IUlqjqFKkqSdaLZ44qQLqRxxlMUTkiRDlSRJzWm+eGIi1WOnWDwhSdqKoUqSpCYsnpAktZWhSpJU9potnhh+cMNZKYsnJEk7YaiSJJUtiyckSZ3BUCVJKjsWT0iSOpOhSpJUFhqLJ2ZPI/vGSxZPSJI6jaFKktSjNRRP/I3MnIeaFE98hKpwgsUTkqROYaiSJPU4+Xye7OtzyNROt3hCktTlDFWSpB7D4glJUjEYqiRJiZddsYjM7OkWT0iSisJQJUlKpO2LJ6qoHHm0xROSpG5nqJIkJUpu7QoyL86weEKSVDIMVZKkktdYPDF7GvULZjUpnjiZin0OsnhCklRUhipJUsnKb1rXpHhiCamavlQf/B6qDjzJ4glJUskwVEmSSs72xRMjLJ6QJJUsQ5UkqSS0WDwx7mQqhu5f7O1JktQiQ5UkqajqVy9n48zfWzwhSUosQ5Ukqds1LZ5YY/GEJCnhDFWSpG7TXPHEgInvp37fYy2ekCQllqFKktTldlQ8MXiPwSxbtqbYW5Qkqd0MVZKkLpHP1lM/byaZ2ulNiicmUj1uisUTkqQexVAlSepUubUryLw4w+IJSVLZMFRJkjqsafFEvcUTkqQyY6iSJLVbc8UT1Qe/h6oDJ5PuP7TY25MkqVsYqiRJbdZQPDGNzMtPNCme+CSVI44kVVld7O1JktStDFWSpFaxeEKSpOYZqiRJO5Rbu4LMnL+RefEh8utXWzwhSdI2DFWSpO1YPCFJUusZqiRJjSyekCSp7XYaqkIINwJnAvsB42OMLxSOjwHuBAYDy4FzY4wvF2NNktQxFk9IktR+rbl+4zfAJGDBNsdvA26JMY4BbgFuL+KaJKmN8tl6MnOfZN39/8W6//symZceo3LEUezygf+gzwe+QtWY4wxUkiS1wk7PVMUYHwUIITQeCyHsBhwGvLNw6F7g5hDCUCDVnWsxxmVt/J4lqaw1Wzwx8SNUjbF4QpKk9mjve6r2ARbHGLMAMcZsCOH1wvFUN68ZqiRpJyyekCSp65RdUcXgwcX9V9ihQ/sV9fnVds4seZzZFrkNdax5fgarn36AzPLXSffux4CJ76f/Ye+iauDuxd5eI2eWPM4sWZxX8jizZGlvqFoE7BVCqCicNaoA9iwcT3XzWpssX76WXC7fzm+7Y4YO7ceyZWuK8txqH2eWPM6sQXb5IjK1TYondttSPJGrrGZVBiiRvydnljzOLFmcV/I4s+JJp1PtOgnTrlAVY1waQngWOAu4u/D7rM3vb+ruNUlSQ/FE/byZZGqnk33jJaioonLkRKrHnUzF0P2KvT1Jknqs1lSq3wScAQwD/hpCWB5jHAdcDNwZQvgKsBI4t8nduntNkspWbu1yMnNmbCme6L+bxROSJHWjVD5fnEvhimA/YJ6X/6ktnFnylMvMWiyeGHcyFXsnq3iiXGbWkzizZHFeyePMiqfJ5X/7A/Nbe7+yK6qQpCTLb1pH5qXHyMyeRu7tN0jV9KX64PdQdeBk0v2HFnt7kiSVJUOVJCVAdvkiMrOnkZn7ONRv2qp4wg/olSSpuAxVklSiLJ6QJCkZDFWSVGIsnpAkKVkMVZJUAnpS8YQkSeXGUCVJRdRi8cTYyaT7WTwhSVISGKokqQgsnpAkqecwVElSN2ksnpg9jeybL0NFFVWjJlI11uIJSZKSzFAlSV3M4glJkno2Q5UkdYF8Pk92cS2Z2unUL3gG8lg8IUlSD2WokqROlN9YR+blx7cpnjjF4glJknowQ5UkdQKLJyRJKl+GKklqJ4snJEkSGKokqc0snpAkSU0ZqiSpFZovnphA9bgpFk9IklTmDFWStAP5jXVkXnqMTO10iyckSVKzDFWS1Izs8oVkZk+3eEKSJO2UoUqSCiyekCRJ7WGoklT2mi+e+ChVY463eEKSJO2UoUpSWdpSPDGN+gWzmhRPnEzF3uMsnpAkSa1mqJJUVrYrnujVj+oJ76XqwJMsnpAkSe1iqJJUFrYvnhhp8YQkSeoUhipJPVaLxRPjTqZiyH7F3p4kSeohDFWSepztiyd2t3hCkiR1GUOVpB5hc/HEGzMeYt3LT1k8IUmSuo2hSlKibS6e2FQ7nfzbb5Depb/FE5IkqVsZqiQlUkPxxDQyc59oLJ6omfwphh01meUrNxZ7e5IkqYwYqiQlRkPxxFNkZk8vFE9UF4onpjQWT6QrqwFDlSRJ6j6GKkklr8XiiXACqZo+xd6eJEkqc4YqSSVpc/FEpnYa9QtmWTwhSZJKlqFKUknZtngi1aufxROSJKmkGaoklYSWiicq9z+CVGV1sbcnSZLUIkOVpKLJZzPUz5u5w+IJSZKkUmeoktTtcmuXk6n9G5n4cJPiibOoCsdbPCFJkhLHUCWpW+TzuULxxPSG4gmgcvghVI2dYvGEJElKNEOVpC5l8YQkSerpDFWSukSLxRMjjiRVUVXs7UmSJHUaQ5WkTrO5eGLT7Gnk3pxr8YQkSSoLhipJHWbxhCRJKmeGKknt0lg8MXsa9QufBSyekCRJ5clQJalNGoonHmVT7d+2KZ6YTLrfkGJvT5IkqdsZqiS1SvatBWRqp28pnth9FDWHWTwhSZJkqJLUonw2Q/2rT7GpdrrFE5IkSS0wVEnajsUTkiRJrWeokgTsoHhi3MlU7DXW4glJkqQWGKqkMtd88cSpVB14ksUTkiRJrWCokspUQ/HENDIvPwlZiyckSZLay1AllZFmiydGT2z4bCmLJyRJktrFUCWVgcbiiRcfIr9hjcUTkiRJnchQJfVQFk9IkiR1D0OV1MNsKZ6YTv7tNy2ekCRJ6mIdDlUhhPnAhsIvgH+LMf45hDARuB3oDcwHpsYYlxbu0+lrUrlrvnjidIsnJEmSulhnXf/zwRjjIYVffw4hpIC7gUtjjGOAh4HrAbpiTSpX+WyGzMuPU/fb/2Tdr/+DzMtPUjV6Iruc8VX6nP4lqkYfa6CSJEnqYl11+d8RwIYY46OFr2+j4czS+V20JpUViyckSZJKR2eFqnsKZ5IeBa4BhgMLNi/GGN8KIaRDCLt2xVqMcUUnfR9SybJ4QpIkqTR1Rqg6Ica4KIRQA3wXuBn4f53wuF1i8OC+RX3+oUP7FfX51XbFnll2/VrWPj+D1U8/QGbFEtK79GfgMR+g32HvpGrAbkXdW6kq9szUds4seZxZsjiv5HFmydLhUBVjXFT4fWMI4VbgfuB7wL6bbxNCGALkY4wrQggLO3utLftdvnwtuVy+Pd9qhw0d2o9ly9YU5bnVPsWcWXPFE70mf4rKEUeSrahi1SbA/z1tx9dZ8jiz5HFmyeK8kseZFU86nWrXSZgOhaoQQh+gMsb4duHyv48CzwJPA71DCMcX3gN1MXBf4W5dsSb1CPlshvpXn2JT7XRyb86FimqqRk+kauzJVAzZd+cPIEmSpG7X0TNVuwO/CiFUABVALfCvMcZcCOEc4PYQQi8K9ecAXbEmJd12xRMDdqfmmLOoGmPxhCRJUqlL5fPFuRSuCPYD5nn5n9qiK2dm8UTX8HWWPM4seZxZsjiv5HFmxdPk8r/9aTiJ0ypdVakuqQX5jXVk4qNsmjOd/NtvkurVj+oJp1J14Emk+w0p9vYkSZLURoYqqZs0VzxRc9jpVI440g/olSRJSjBDldSFLJ6QJEnq+QxVUheweEKSJKl8GKqkTmLxhCRJUnkyVEkdZPGEJElSeTNUSe2UfWsBmdnTyMy1eEKSJKmcGaqkNrB4QpIkSdsyVEmtkFvzFpk5MyyekCRJ0nYMVVIL8vkc6159lvWP/97iCUmSJLXIUCVto2nxxNqmxRNjJ5PuO7jY25MkSVKJMVRJBc0VTww56aOsH3KQxROSJElqkaFKZW1nxRP9hvZjw7I1xd6mJEmSSpihSmXJ4glJkiR1FkOVykY+nyO7uJbM7GkWT0iSJKnTGKrU4zUtnshbPCFJkqROZqhSj9Vc8UTN4f9C5f5HWDwhSZKkTmOoUo/SWDwxexq5pa9AZTVVo4+hauwUKobsW+ztSZIkqQcyVKlHaCie+BuZFx+2eEKSJEndylClxMrnc2Rfm02mdvqW4ol9D204K2XxhCRJkrqJoUqJ01g8UTud/GqLJyRJklRchiolRrPFE0dYPCFJkqTiMlSppFk8IUmSpFJnqFJJ2r54Yhg1x5xN1ZjjLJ6QJElSSTFUqWRsLp7YNHsa2UXPARZPSJIkqfQZqlR0DcUTj7Cp9m8WT0iSJClxDFUqmuxb88nMnm7xhCRJkhLNUKVula/fRP28mRZPSJIkqccwVKlbWDwhSZKknspQpS7TcvHEyVTsdaDFE5IkSeoRDFXqdNsVT/TuT/Uh76PqwJMsnpAkSVKPY6hSp9m2eKJi99FUWTwhSZKkHs5QpQ7J12+i/tWn2FQ73eIJSZIklSVDldolt2YZmdq/kYmPWDwhSZKksmaoUqs1FE+8wKbZ08kufA5SFk9IkiRJhirtVH7DWjIvPbp18cShFk9IkiRJYKjSDjQUT0wjM/fvFk9IkiRJLTBUaStbiiemkVv6aqF44liqxk62eEKSJElqhqFKgMUTkiRJUnsZqsrYjosnxpJKpYq9RUmSJKnkGarKkMUTkiRJUucxVJWRLcUTT0I2Uyie+ACV+x9u8YQkSZLUToaqHq754onjqBo3hYrBw4u9PUmSJCnxDFU9lMUTkiRJUvcwVPUgW4onppFd+E+LJyRJkqRuYKjqARqKJx4pFE8stXhCkiRJ6kaGqgTLLptPpnbb4okzqNz/CFIVjlaSJEnqDv6Xd8JYPCFJkiSVFkNVQmxbPJEeMIyaYz9G1ehjLZ6QJEmSishQVcKaL544jKqxUyyekCRJkkqEoaoEWTwhSZIkJYehqoRkl81n0+xp1L9SKJ4YNsbiCUmSJKnEJe6/1EMIY4A7gcHAcuDcGOPLxd1V+1k8IUmSJCVb4kIVcBtwS4zx7hDCVOB2YEqR99Qu9a+9wIZHfkp+zVsWT0iSJEkJlahQFULYDTgMeGfh0L3AzSGEoTHGZcXbWdvMfnkxax6+m3HZOWzoNYS3D/kkGwYHSKVg8QZgQ7G3qIIBy9fz9tvrir0NtYEzSx5nljzOLFmcV/KU28wG9q1h7936FnsbHZKoUAXsAyyOMWYBYozZEMLrheOtClWDBxd3YEOH9mP4C5Fc9kUeyhzM/SvGU//6RuCfRd2XJEmSVAwV6RT3/depVFdVFHsr7Za0UNVhy5evJZfLF+W5hw7tx7Jla+h74AnkRx7Bqb36cdSq9axelynKfrRzgwbuwspV5fMvRT2BM0seZ5Y8zixZnFfylNvM+vep5u0S+X7T6VS7TsIkLVQtAvYKIVQUzlJVAHsWjidGqqKKVO8qAHYbtAu7DSryhtSihiBcVextqA2cWfI4s+RxZsnivJLHmSVPutgbaIsY41LgWeCswqGzgFlJej+VJEmSpJ4laWeqAC4G7gwhfAVYCZxb5P1IkiRJKmOJC1UxxheBo4u9D0mSJEmChF3+J0mSJEmlxlAlSZIkSR1gqJIkSZKkDjBUSZIkSVIHGKokSZIkqQMMVZIkSZLUAYYqSZIkSeoAQ5UkSZIkdUDiPvy3AyoA0ulUUTdR7OdX2zmz5HFmyePMkseZJYvzSh5nVhxN/t4r2nK/VD6f7/zdlKbjgUeKvQlJkiRJJe8E4NHW3ricQlUNcCSwBMgWeS+SJEmSSk8FsAfwFLCxtXcqp1AlSZIkSZ3OogpJkiRJ6gBDlSRJkiR1gKFKkiRJkjrAUCVJkiRJHWCokiRJkqQOMFRJkiRJUgcYqiRJkiSpAyqLvYFyEUIYA9wJDAaWA+fGGF8u7q7KTwhhPrCh8Avg32KMfw4hTARuB3oD84GpMcalhfu0a03tE0K4ETgT2A8YH2N8oXC8xddQV6yp9XYws/k083orrPmaK5IQwmDgLmAkDR9sORe4KMa4rCvm4sw6biczywPPA7nCzc+JMT5fuN9pwDdp+O+9p4FPxBjXdWRNrRdC+A2wPw2zWQtcHmN81p9nPZNnqrrPbcAtMcYxwC00/IBRcXwwxnhI4defQwgp4G7g0sJ8HgauB2jvmjrkN8AkYME2x3f0GuqKNbVeSzODbV5v0P7Xla+5TpMHbogxhhjjwcArwPVdMRdn1mmanVmT9WObvM42B6q+wI+A02KMo4A1wFUdWVObfTzGOCHGeChwI/CTwnF/nvVAhqpuEELYDTgMuLdw6F7gsBDC0OLtSk0cAWyIMT5a+Po24MMdXFM7xRgfjTEuanpsR6+hrljrqu+tp2puZjvha66IYowrYowzmhx6EtiXrpmLM+sEO5jZjpwCzGxytuI24CMdXFMbxBjfbvLlACDnz7Oey1DVPfYBFscYswCF318vHFf3uyeE8M8Qwq0hhIHAcJr8C3uM8S0gHULYtQNr6lw7eg11xZo6z7avN/A1VzJCCGngEuB+umYuzqyTbTOzzWaEEJ4NIXwjhFBTOLbV3z2wkC3//9beNbVRCOHHIYSFwHXAx/HnWY9lqFK5OSHGOAE4EkgBNxd5P1JP5uut9H2fhvd6OJvk2HZmw2OMR9BwCe5Y4MvF2pi2F2O8MMY4HLiGhvepqYcyVHWPRcBeIYQKgMLvexaOqxttvkQpxrgRuBU4joZ/hWu8jCKEMATIxxhXdGBNnWtHr6GuWFMnaOH1Br7mSkKhYGQ08JEYY46umYsz60TNzKzp62w18GNaeJ3RcAZqUQfX1E4xxruAycBr+POsRzJUdYNCy9GzwFmFQ2cBs2KMy4q3q/ITQugTQhhQ+HMK+CgNc3ka6B1COL5w04uB+wp/bu+aOtGOXkNdsdb131HPt4PXG/iaK7oQwnXA4cC/FEIvdM1cnFknaW5mIYRBIYTehT9XAh9ky+vsAeDIEMLowtdN/+7bu6ZWCiH0DSHs0+Tr04AVgD/PeqhUPp8v9h7KQgjhABqqLgcBK2mouozF3VV5CSGMAH4FVBR+1QKfjjEuCSEcS0NTTi+2VP6+Wbhfu9bUPiGEm4AzgGHAW8DyGOO4Hb2GumJNrdfczIDTaOH1VriPr7kiCSGMA14AXgLWFw7PizF+oCvm4sw6rqWZATfQ8HebB6qAx4ErYoxrC/c7vXCbCmAWcF6Msa4ja2qdEMLuwG+BPkCWhkB1VYzxGX+e9UyGKkmSJEnqAC//kyRJkqQOMFRJkiRJUgcYqiRJkiSpAwxVkiRJktQBhipJkiRJ6gBDlSQpcUIIt4UQvryD9XwIYVQnP+fHQggPduZjSpJ6BivVJUlFFUL4KPBZ4CCgjobP37kT+EGMsV0/pEIIeWB0jHFuM2szgIlAPbABeBi4dPNnaHWGEMJ5wIUxxuN3dltJUvJ5pkqSVDQhhCuB7wHfpOHDg3cHLgaOA6pbuE9FJzz1ZTHGvsAYYCDwnU54TElSmaos9gYkSeUphDAA+BpwbozxV02WZgEfa3K7nwLrgX2BE4HTQwhTgddijF8q3OZq4HNAHvhSa/cQY1wRQvgVcEmTPX0fOAVYB/wI+K8YY27bs0+Fs2GXAFcCQ4CfA5cBBwC3AVUhhLVAfYxxYAjhvcCNwD7AauA7McYbW7tXSVLp8kyVJKlYjgFqgN+24rZnA9cB/YBHmy6EEN4DXAW8ExgNvKO1GwghDAHOpCHIQUOgGgCMoCHAnQt8YgcP8T7gSGAC8GHg3THGOTScbXsixtg3xjiwcNs7gItijP1ouNRxemv3KUkqbZ6pkiQVyxDgrRhj/eYDIYTHgbE0hK13xxgfLiz9Nsb4WOHPG0IITR/nw8D/xBhfKDzGtcBZO3num0IIN9LwHq4ZwOcKlxV+BDg0xrgGWBNC+BZwDg2BqDnXxxhXAatCCH8DDgEeaOG2GWBsCOG5GONKYOVO9ihJSgjPVEmSimU5MCSE0PgPfDHGYwtndpaz9c+oRTt4nD23WV/Qiuf+dIxxYIxxrxjjx2KMy2gIedXb3H8BsNcOHueNJn9eB/TdwW3PBN4LLAghPBRCOKYV+5QkJYChSpJULE8AG4HTW3HbHbUALqHhfUqbDW/nft6i4WzSvts81uJ2PNZ2+40xPhVjPB3YDfgNcF97NilJKj1e/idJKooY46oQwleBW0MIKRoum1sHHAz0acND3Qf8TwjhZ8B84D/auZ9sCOE+4LoQwrnArjSUX7SnTOJNYO8QQnWMcVMIoRr4EPD7GOPbIYTVQLY9+5QklR7PVEmSiibGeAMNweXzwFIawsjtwL8Bj7fyMf4EfJeG4oe5dKwA4nIa3mf1Kg2FGD8HftKOx5kOzAbeCCG8VTh2DjC/EKguBqZ2YJ+SpBLih/9KkiRJUgd4pkqSJEmSOsBQJUmSJEkdYKiSJEmSpA4wVEmSJElSBxiqJEmSJKkDDFWSJEmS1AGGKkmSJEnqAEOVJEmSJHWAoUqSJEmSOuD/A3IUTI6mIjfsAAAAAElFTkSuQmCC\n", "text/plain": ["<Figure size 1008x432 with 1 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["df_flop.set_index(\"Grid Points\")[[\"Scalar FlOps (min)\", \"Vector FlOps (min)\"]].plot();"]}, {"cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Counter Scalar FlOps (min) is proportional to the grid points (nx*ny) by a factor of -0.0003 (\u00b1 0.0002)\n", "Counter Vector FlOps (min) is proportional to the grid points (nx*ny) by a factor of  7.5004 (\u00b1 0.0002)\n"]}], "source": ["_fit, _cov = common.print_and_return_fit(\n", "    [\"Scalar FlOps (min)\", \"Vector FlOps (min)\"], \n", "    df_flop.set_index(\"Grid Points\"), \n", "    linear_function\n", ")\n", "fit_parameters = {**fit_parameters, **_fit}\n", "fit_covariance = {**fit_covariance, **_cov}"]}, {"cell_type": "markdown", "metadata": {"exercise": "solution"}, "source": ["Interesting! We seem to be using the vector registers of our system very well. Basically all operations are vector operations!"]}, {"cell_type": "markdown", "metadata": {}, "source": ["With that measured, we can determine the Arithmetic Intensity; the balance of floating point operations to bytes transmitted:\n", "\n", "\\begin{align}\n", "\\text{AI}^\\text{emp} = I_\\text{flop} / I_\\text{mem} \\text{,}\n", "\\end{align}\n", "\n", "with $I$ denoting the respective amount. This is the emperically determined Arithmetic Intensity.\n", "\n", "In the non-interactive version of the Notebook, please plot the graph calling `make graph_task4-2` in the terminal."]}, {"cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [], "source": ["I_flop_scalar = df_flop.set_index(\"Grid Points\")[\"Scalar FlOps (min)\"]\n", "I_flop_vector = df_flop.set_index(\"Grid Points\")[\"Vector FlOps (min)\"]\n", "I_mem_load    = df_byte[\"Loads\"]\n", "I_mem_store   = df_byte[\"Stores\"]"]}, {"cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAF/CAYAAABOlYiBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmcXFWd//9XVfWSrbOQdBIIEPajbAKCiOCC474xgxsoICr+RB2RUcbx61cZHZcvA8ygIgguKMKI+8igLDo6joM7CqMgHtkJISFN0klv6aWW3x9V3anudJLqSnffut2v5+PRj6q6W32qDmXO23PvuZlSqYQkSZIkaeKySRcgSZIkSWlloJIkSZKkOhmoJEmSJKlOBipJkiRJqpOBSpIkSZLqZKCSJEmSpDoZqCRJkiSpTgYqSZIkSaqTgUqSJEmS6mSgkiRJkqQ6GagkSZIkqU5NSRcwTVqB44B1QCHhWiRJkiQ1nhywJ/BbYKDWnWZLoDoO+J+ki5AkSZLU8J4N3F7rxrMlUK0D6OzspVgsJVbE0qUL2LixJ7H318TZZulie6WPbZY+tln62GbpY5slI5vNsGTJfKhkh1rNlkBVACgWS4kGquEalC62WbrYXuljm6WPbZY+tln62GaJmtAlQk5KIUmSJEl1MlBJkiRJUp0MVJIkSZJUJwOVJEmSJNXJQCVJkiRJdTJQSZIkSVKdDFSSJEmSVCcDlSRJkiTVyUAlSZIkSXUyUEmSJElSnQxUkiRJklSnpqQLkCRJSptSqUQJoAQlSpRKVctL7HgdbPeayvbD+w6vo7Lt8DFKlQVj9wEolna8rmugwKbO3qpjl4+56/ctPylWfZZt+5QXlkrjHa9q3TifhZFjQ3FH67b7Lsf57na0bsxn29Zm24499rsa+9krq0Y+x+hjjK5zbDuP3W7kWMPLRr3e9obV311razP9/UPb7Tf2O97uWNt937V/3pHvlerX432O0d/3Dr+7qmON+hxV25RKkMtmeN3zD+KgVYtIKwOVJEljFEulkQ5bsVh5rCwrjjwvdyKG15fXbdu2OHY9JYrF0dsNry8y/Hyc9dXHLg4fe/v1paq6qCyHbfuWP1el41P9GajunG477khHeaTzVF42Z04zfVsHd7pNiW21UVVbuR6q6hldb2lMnaOOWdpBnYxZt5NtipXiRmqrrpPSmO+nvGxbB377TrNmrkzVkwwZMpmqdZnyikxm++2GF2Sqtxu1H2SqDjZyjMqyyi7kstlRYXDUe1XVM/JYee9M1Q6ZqvXD7zt8/LHHGu9zjK676j139Hmr3xfIZDM1fd5cNkNzLt0nzRmoJGkGGu5EFwolCsXyX7E4/Lw46vXIY6XDXigWR0JDsbK+WOnsjywbu64SPEatG3mEQrE0Eh6q36ultYnevsHK6xKFqn1GH7/6/djh+4wEjOH3GBOERoUkqrcdHWRmk0wGspltHZ9spTc08pzy43CnqClX6ehV9hvuIGVGnlceM2Med7rNts7ethoyY55vq3P4fUc9z2yrc7gjWX3MUe+zq22GO49jOtPV+1W/Zszn235dVad1nH3Kn2PH67Y/9uhO77jvO1JnhsWL59LVtXXMPtvadmwnelTHuKrtx77v8H8Do9ZVfT/ZTPW243x3Y9eN/b5GHXv095Mdu46dfT8MfyPbBaPtw0PVBglqb2+jo6M76TJUIwOVJFUpFkvkC0XyhRL5YpFCYfh15XmxvK4wvE3lsVAsbntetX+xuH2oGVk+/FcYDj/FccJP+dgjxxkOJYUx64rbB6dGkgGy2Uz5L5Mhmy13iJqaslBiu+Wjth15XV6Xy2bINWVH1ueylc525fVwx3u4M56pHDczdln1tll2uO/wsTPDwWKkrqr1w5304W0ry8Yec+z6cevJjrPPqFozZBneripoZKoDzvhBZbxlE2VHL31sM2lqGagkJapQLJLPlxgqFBnKFxnKF8qPI6/LQWX4+dh11a+bmnN09wyM7DMceAqFIvliaVsoGjcwlQPNVMaQXDZDLlcJBNlyIMhV/WUry4e3y2Yz5DIZWptzZLMZmna0Ty5LLlO1Tw3HHH7elM2SyQxvyzghZpygMxxisuUwMPp15VhVIWZ4n/HY0ZMkpZ2BStJ2SqUSQ/kig/kig0MFBoYKDA4Vy4/5queV5YP5bduUt99+2XhhKF8ZkdldzU1ZmnNZWlty5LIZmnLZyl9m5HFuc46myrpc1fJcLktTtur58Lrs6Ne5XKay3fbbbnvP4W0r21SFmWy2MU4jkSRJk8tAJc0AxVKJgcEC/YMF+gfzlcdxng/sbJvy43AAmmjMyQAtLTlam7K0NOdobc7R0pylpSlH27wWWpqyNDdlaao8Nucqj2NeN427PLfddsPbNuUyI6ctOdohSZKm27QFqhDCIcC1wFJgI3BWjPG+Mdu8CPgkcARweYzxgjHrXwd8mHLfrQS8IMb4xDSUL02pUqnEwFCBvv58+W8gT2//0Mjr3v4h+gby29ZXXvf259k6kGdgsPYA1NqSY05LjjktTcxpyTG3JcfShXMqy3Kjw1DV89am8rqW5mxlWY6WkfBUDjeNcjGvJEnSdJnOEaqrgCtijNeHEM4ArgaeP2abB4G3Aa8G5lSvCCEcC3wEeH6McX0IYREwMOVVS3UYGCzQ3TdI99YhuvuGys/7hujZuu1599ZBevqGRkLRrk59m9uaY15rE/PmNDOvtYn2xXNZPaeJua1NzG1pYk7rtpBUHZiqn7e25HZ4LYskSZImbloCVQhhOXAM8MLKohuAz4YQ2mOMHcPbxRjvr2x/yjiH+Tvg0hjj+sq2W6a2amm0oXyRLb0DbO4ZZEtP+XFzzwCbewbY0jtId++2kDSYL457jFw2w4J5zbTNbaFtXjP7rpjD/LnNzJ/TVAlLlcBUeT2/8npua45cNt33aJAkSZqJpmuEah9gbYyxABBjLIQQHq8s79jpntscCjwUQvgZsAD4LvCJGGNjzQ2sVBrKF9nU3c+TW/rZWPnb1NVP72CBjs4+tvQM0rN1aLv9spkMixa0sGh+C4sWtLB3+3za5rVUQlMzbfPKwWk4RM1tzXlanCRJ0gySpkkpmoAjKY9ytQC3Ao8CX631AEuXLpiayiagvb0t6RJmpXyhyBOb+lj3ZC8bOvvYsKmPDZ1b2dDZR0dnH5u6Rp89ms3AkoVzWLpoDnsvb+PIg+ewx8Lt/xbOb3H2tgbjbyx9bLP0sc3SxzZLH9ssPaYrUK0BVoUQcpXRqRywV2V5rR4Bvh1jHAAGQgg3As9gAoFq48Yeigne7NIZyKZWsVRic/cAT2zqY33n1vLjpj6e2NRHx+Z+iqVtbZ/LZlhaCUyHrt6DpYvmsHThHJYtKi9b0tZKUy670zYb6h9kY//gdH081cDfWPrYZuljm6WPbZY+tlkystlMXQMw0xKoYowbQgh3AacD11ce76y+fqoGXwNeFkK4jnLdfwV8e9KLVSr09Q/xWEcvj3X08NiGHtZ09PBYRy8Dg4WRbVqasqzYYx77rGjj2KcsZ+Ue81i+ZC7LFs1l0YIWJ2eQJEnSbpvOU/7OBa4NIVwIdAJnAYQQbgYujDHeEUI4Cfg6sBDIhBBOA94aY7ytsvxY4E9AEbgN+NI01q+EdHYP8NC6Lh5a18VjG3p4rKOHjVWn6M2f08Te7Qs46Yg92WvpPFbuMY8Ve8xjcVuroUmSJElTatoCVYzxz8Dx4yx/WdXz24G9d7B/EXhv5U8z1FC+wIOPd3H/2i08tK6bh9Z10dldDk+5bIY9l87j4L0Xc/LyBezdvoB9li9g8YIWJ3qQJElSItI0KYVmoP7BPA+s7SKu6eQvj27mwXVd5Avla51WLJlL2Hcx+++5kAP2XMi+KxbQ3JRLuGJJkiRpGwOVplWpVOKxjl7++OBG/vjARu5fu4VCsUQ2k2H1ygW84On7cMi+izlo1SIWzG1OulxJkiRppwxUmnJD+QJ3P7iJ/33gSf744KaRU/j2bl/Ai47bh6euXsKBqxYxt9X/HCVJkpQu9mA1JfKFIvc8tInf3LuBu+7vYOtAgTktOQ7bbw+OOGkpRxywlCVtrUmXKUmSJO0WA5UmTalU4r7HtnD7H9dx51866O3PM6+1iacfspxnPHU5T1m9hKZcNukyJUmSpEljoNJu2zqQ5xd3r+end61lbUcvc1pyHH3wMo576goO338PQ5QkSZJmLAOV6vboE938151r+dU9TzAwVGD1ijbOfulTOP6pK2htcTY+SZIkzXwGKk3YX9Zs5vu/fJi7H9xEc1OW45+6gucdvYr992zzflCSJEmaVQxUqtn9a7fwnZ8+QFyzmbZ5zbz6uQfw3KNWOb25JEmSZi0DlXbp8Sd7+c5/P8Cd9z3JwvktnP6Cg3nO0/aitdnT+iRJkjS7Gai0Q1sH8tz084f50R1raGnOcupzDuCFx+7j9VGSJElShYFK4/pd7OD6H0W29Azy7CP35NXPO5CF81qSLkuSJElqKAYqjdKzdYiv/edf+NU9T7Dv8gX87alHcOBei5IuS5IkSWpIBiqN+PMjnVx90z309A1xykn78/ITVnsPKUmSJGknDFSiWCpx668f5Tv//QArlszj/Nc8jdUr25IuS5IkSWp4BqpZbmCwwOdvuoc773uS456ynLNf+hTmtvqfhSRJklQLe86z2JbeQT79rf/lkSe6Of2vDuYFx+7tjXklSZKkCTBQzVLrN/Vx2TfvYkvPIO8+9UiOOnhZ0iVJkiRJqWOgmoXWbezln792J8Viife/4RgO2Gth0iVJkiRJqWSgmmWe6OzjkhvuhFKJD7zxGPZaNj/pkiRJkqTUck7sWeTJzVu55IY7yRdKXHD60YYpSZIkaTcZqGaJrQN5LvvW/9I/UOCC045i7/YFSZckSZIkpZ6BahYoFktc/R/3sKFzK+869Qj2XeE9piRJkqTJYKCaBb790wf4wwMbecMLD+Gpq5ckXY4kSZI0YxioZrjf3PsEt/7mUf7qmL05+ehVSZcjSZIkzSgGqhmss3uAr94aOXCvhZz2goOSLkeSJEmacQxUM1SxVOKaH/yJfLHIOa88lFzWppYkSZImm73sGeonv3uMex7u5LTnH8yKJfOSLkeSJEmakQxUM9CGzVv51k8f4MgDl/Lco/ZKuhxJkiRpxjJQzUDf+q/7yWTgrBcHMplM0uVIkiRJM5aBaoaJj3byu9jBy565mj0Wzkm6HEmSJGlGM1DNIMViia/9530sXdjKS56xb9LlSJIkSTOegWoGuf2P61izoYfXnnwQLc25pMuRJEmSZjwD1QwxlC/w7z97kIP2XsRxT1medDmSJEnSrGCgmiF+fvd6tvQO8jcn7e9EFJIkSdI0MVDNAMViidt+/Sj7rWzjKauXJF2OJEmSNGsYqGaAO+/r4InOrbz0masdnZIkSZKmkYEq5UqlEjf/6lGWL57L0w9pT7ocSZIkaVYxUKXcX9Zs5qF1Xbz4+H3JZh2dkiRJkqaTgSrlfvjbNbTNa+bEw1cmXYokSZI06xioUqy7b5A/PLCREw/f0/tOSZIkSQkwUKXYb+7dQKFY4gRHpyRJkqREGKhS7Bd3r2ef5QvYZ/mCpEuRJEmSZiUDVUqt29jLQ+u6OOEwR6ckSZKkpBioUuqX9zxBJgPPPGxF0qVIkiRJs5aBKoWKpRK/vHs9h+23B4sXtCZdjiRJkjRrGahS6L41m9nY1e9kFJIkSVLCDFQp9Lu/dNDclOWYg9uTLkWSJEma1QxUKXTPQ5sI+yymtcV7T0mSJElJMlClzMYt/azb2Mfh+++RdCmSJEnSrGegSpm7H9oIwGEHLE24EkmSJEkGqpS5+6FNLGlrZa+l85IuRZIkSZr1DFQpUigW+dPDnRy+/x5kMpmky5EkSZJmPQNVijz0eDdbB/Ic7ul+kiRJUkMwUKXI3Q9tJJOBQ/dbknQpkiRJkjBQpcrdD23igD0XMn9Oc9KlSJIkScJAlRo9W4d4aF0XhzlduiRJktQwDFQpcd9jmymV4ND9DFSSJElSozBQpcQj67vJZGD1yrakS5EkSZJUYaBKiYfXd7Nq2Xxam3NJlyJJkiSpwkCVAqVSiYfXdbHfyoVJlyJJkiSpStN0vVEI4RDgWmApsBE4K8Z435htXgR8EjgCuDzGeME4xwnAncCV462fiTq7B+jqG/J0P0mSJKnBTOcI1VXAFTHGQ4ArgKvH2eZB4G3AJeMdIISQq+z3vakqshE9tK4bgP32NFBJkiRJjWRaAlUIYTlwDHBDZdENwDEhhPbq7WKM98cY7wTyOzjUB4DvA3+Zqlob0cPru8hlM+zTviDpUiRJkiRVma4Rqn2AtTHGAkDl8fHK8pqEEI4EXgxcNiUVNrBHKhNStDghhSRJktRQpu0aqt0RQmgGvgC8OcZYKF9GNXFLlyY/wtPePrHT9kqlEo880cMzD1854X01Ofze08X2Sh/bLH1ss/SxzdLHNkuP6QpUa4BVIYRcJRDlgL0qy2uxJ3AgcHMlTC0GMiGEhTHG/6/WIjZu7KFYLE2w9MnT3t5GR0f3hPZ5cvNWuvsGWblk7oT31e6rp82UHNsrfWyz9LHN0sc2Sx/bLBnZbKauAZhpCVQxxg0hhLuA04HrK493xhg7atz/UWDZ8OsQwkeABbNhlr+H11cmpHCGP0mSJKnhTOcpf+cC14YQLgQ6gbMAQgg3AxfGGO8IIZwEfB1YSHkE6jTgrTHG26axzobyUGVCir2dkEKSJElqONMWqGKMfwaOH2f5y6qe3w7sXcOxPjKpxTWwh9d1s3f7ApqbvAezJEmS1GjspTewUqnEI+u7vf+UJEmS1KAMVA1sc88gfQN5T/eTJEmSGpSBqoF1bN4KwIolcxOuRJIkSdJ4DFQN7InOPgDaDVSSJElSQzJQNbCOzVvJZjIsXTgn6VIkSZIkjcNA1cA2dG5l2aI5NOVsJkmSJKkR2VNvYBs6t3q6nyRJktTADFQNbEPnVpYbqCRJkqSGZaBqUD1bh+gbyLN8sYFKkiRJalQGqga1obM8ZbojVJIkSVLjMlA1qA2by1OmL18yL+FKJEmSJO2IgapBDY9QtS9yynRJkiSpURmoGtSGzq0saWulpTmXdCmSJEmSdsBA1aA2bN7qhBSSJElSgzNQNSinTJckSZIan4GqAfUP5unqHTRQSZIkSQ3OQNWAtk2Z7gx/kiRJUiMzUDWgjs2VQOU1VJIkSVJDM1A1IG/qK0mSJKWDgaoBbdi8lbZ5zcxtbUq6FEmSJEk7YaBqQBs6nTJdkiRJSgMDVQPa1NXP0kVzki5DkiRJ0i4YqBpQV98QC+e1JF2GJEmSpF0wUDWYoXyBrQN52uYbqCRJkqRGZ6BqMN19QwAsMlBJkiRJDc9A1WC6+gYBaJvXnHAlkiRJknbFQNVgunrLgcprqCRJkqTGZ6BqMF295VP+FnrKnyRJktTwDFQNprvPESpJkiQpLQxUDWZL7yAtzVlaW3JJlyJJkiRpFwxUDaa7b9DRKUmSJCklDFQNpqtvyOunJEmSpJQwUDWYrl5HqCRJkqS0MFA1mK6+QRbO9x5UkiRJUhoYqBpIsVSiu3eINkeoJEmSpFQwUDWQvv48xVLJa6gkSZKklDBQNZCuXu9BJUmSJKWJgaqBbAtUXkMlSZIkpUFTrRuGEFqADwGnA3sBjwNfBz4RY+yfmvJml66+SqDylD9JkiQpFWoOVMDngACcBzwCrAb+D7AKeMvklzb7dPcNAdBmoJIkSZJSYSKB6q+BA2OMmyuv/xRC+DVwPwaqSbGld5BMBhbM8ZQ/SZIkKQ0mcg3VemDemGVzgXWTV87s1t03SNu8FrLZTNKlSJIkSarBREaorgNuDSFcDjwG7AO8C/hqCOH5wxvFGH8yuSXOHl29g05IIUmSJKXIRALV2yuPHxyz/NzKH0AJOGB3i5qtuiojVJIkSZLSoeZAFWPcfyoLEXT3DnHAXnOTLkOSJElSjSYybfoC4ARgGdAB/DrG2D1Vhc1GWxyhkiRJklKlpkkpQgjnU5584mbgX4FbgMdDCO+dwtpmlYGhAgODBRbO9xoqSZIkKS12GahCCGcDHwDeCsyJMe4JzAHOAd4fQnjzlFY4S3QP39TXESpJkiQpNWo55e/vgDfFGG8bXhBjLADfCCFsBi4FvjxF9c0aXb3e1FeSJElKm1pO+TsQ+M8drPsxzuo3KbocoZIkSZJSp5ZA1Q2s2sG6VZX12k3dvZVA5TVUkiRJUmrUEqi+B1wZQphTvTCEMBe4Avj3qShsthkeoXKWP0mSJCk9armG6gOUT+17OIRwC+XZ/vYEXgo8BpwxdeXNHl29Q7S25GhtziVdiiRJkqQa7XKEKsa4hfL9p/4v5dn9jqs8/l/gWTHGzVNa4SzR1z/E/Dk13xZMkiRJUgOoqQcfYxwCvlT50xToHyowp8VAJUmSJKXJTnvwIYR/quUgMcYLJ6ec2WtgsODpfpIkSVLK7GpIZJ8ajlGajEJmu/IIlYFKkiRJSpOdBqoY45unq5DZbmCwQNsip0yXJEmS0mSXk1KEED4z5vUzpq6c2WtgsECrI1SSJElSqtRyH6qzx7y+dQrqmPX6hwrM8RoqSZIkKVVqCVSZXbzWJOgfzDtCJUmSJKVMLYFq7KQTTkIxyYrFEoNDRWf5kyRJklKmlhsfzQsh/KzqdduY18QYn7Org4QQDgGuBZYCG4GzYoz3jdnmRcAngSOAy2OMF1St+zBwGpCv/H0wxnhbDfU3vIGhAoD3oZIkSZJSppYe/FvHvK735r5XAVfEGK8PIZwBXA08f8w2DwJvA14NzBmz7jfAv8QY+0IITwP+O4SwZ4xxa531NIxtgcoRKkmSJClNaglUzcDNMcbH632TEMJy4BjghZVFNwCfDSG0xxg7hreLMd5f2f6UsccYMxr1B8rXci0FHqu3rkYxMFgOVF5DJUmSJKVLLYHqOODDIYRO4AfAzcAvYowTuZZqH2BtjLEAEGMshBAeryzv2Ome4zsLeCDGmPowBdBfCVTO8idJkiSlyy4DVYzx7QAhhCOAlwH/r/wy/JhyuLo1xvjklFZZJYTwXOBjbBvtqtnSpQsmv6AJam9v227Zhu5BAFa0t427XsmyTdLF9kof2yx9bLP0sc3SxzZLj5pnQYgx/hH4I/DPIYTFwIuAlwMXhxAeBf5xJ5NErAFWhRByldGpHLBXZXnNQggnANcDp8QY40T2Bdi4sYdiMblJCtvb2+jo6N5u+foNXQBs3Tow7nolZ0dtpsZke6WPbZY+tln62GbpY5slI5vN1DUAU9e0cjHGzcA3K3+EEI7bxfYbQgh3AadTDkSnA3dWXz+1K5X3+Abwmhjj7+upu1GNnPLnLH+SJElSqtTcgw8hZIBzKIehZTHGI0MIzwFWxhi/WcMhzgWuDSFcCHRSvg6KEMLNwIUxxjtCCCcBXwcWApkQwmnAWysjX1cCc4GrQwjDxzyzMnKWagNeQyVJkiSl0kSGRP6J8nVLn6I8BTqUZ9i7jMpI1c7EGP8MHD/O8pdVPb8d2HsH++90FCzN+oec5U+SJElKo+wEtj0beEWM8evA8IVIDwEHTHZRs83ICJWBSpIkSUqViQSqHNBTeT4cqBZULVOdBoYK5LIZmnITaQ5JkiRJSZtID/5m4F9DCK0wck3Vx4CbpqKw2aR/oODolCRJkpRCEwlU76U81fkWYBHlkanVwAemoK5ZpX8ob6CSJEmSUmgi96HqAv46hLCccpBaE2NcP2WVzSIDgwVanTJdkiRJSp2aR6hCCHdC+Z5SMcbfDoepEMIdU1XcbNE/VKDVKdMlSZKk1JnIKX8HjV1QuY7KWf5208Cg11BJkiRJabTL88xCCF+tPG2pej5sP+CeyS5qthkYLDB/YXPSZUiSJEmaoFou3HlgB89LwM+Bb01qRbNQ/5AjVJIkSVIa7TJQxRg/ChBC+FWM8bapL2n26feUP0mSJCmVJnIN1UUhhPMrs/xpEpVn+TNQSZIkSWkzkUD1MeA5wEMhhFtCCG8IIcydorpmjWKpxICz/EmSJEmpVHOgijF+N8Z4KrAPcCPwTmBdCOGaEMLzp6rAmW5wqADAHO9DJUmSJKXOREaoAIgxbgK+ClwFPAq8Gvh8COEvIYQXTHJ9M97AYDlQecqfJEmSlD41D4uEELLAC4EzgVcAvwQuAv49xrg1hPBq4Hpg5VQUOlP1D49QecqfJEmSlDoTOc/sceBJyqNT748xPl69Msb4nRDC305mcbNB/4AjVJIkSVJaTSRQvSLGeAdACGF5COFU4N4Y473DG8QYT57sAme6gZFrqAxUkiRJUtrsMlCFEFYBlwOHhhB+CVwK/AwoAItDCGfFGL8+tWXOXP1eQyVJkiSlVi2TUlwFdAJ/V9n+NuCcGONy4LXAB6euvJlvwGuoJEmSpNSqJVA9C3hHjPEW4B3ACuB7ADHGG4HVU1fezNc/mAccoZIkSZLSqJZA1RxjHASIMfYB3THGUtX6zJRUNksMT5vufagkSZKk9KmlF98UQjiZbcFp7GuHVnbD8Cl/rZ7yJ0mSJKVOLYFqA3BN1euNY15vmNSKZpn+wQK5bIbmpgnfY1mSJElSwnYZqGKM+01DHbNW/2DBKdMlSZKklHJYJGEDgwUnpJAkSZJSykCVsP6hgtdPSZIkSSlloErYgKf8SZIkSalloErYwGDeESpJkiQppQxUCStPSuE9qCRJkqQ0MlAlrH/IU/4kSZKktDJQJcxZ/iRJkqT0MlAlzFn+JEmSpPQyUCWoWCox6Cx/kiRJUmoZqBI0NFSkBJ7yJ0mSJKWUgSpB/UMFAGf5kyRJklLKQJWg/sE8AHO8hkqSJElKJQNVggYGyyNUnvInSZIkpZOBKkH9BipJkiQp1QxUCRoYvobKU/4kSZKkVDJQJchT/iRJkqR0M1AlaPiUP0eoJEmSpHQyUCVoqFAEoLnJZpAkSZLSyJ58goby5UDVZKCSJEmSUsmefILylRGqppzNIEmSJKWRPfkE5SsjVM0GKkmSJCmV7MknaKhQJJfNkM1mki5FkiRJUh0MVAnKF4qe7idJkiSlmL35BOXzJZpyjk5JkiRJaWWgStBQoegz+Qj2AAAYkklEQVQMf5IkSVKK2ZtPUL5QdEIKSZIkKcXszSdoKO81VJIkSVKa2ZtPUL5QpNlT/iRJkqTUsjefoCFn+ZMkSZJSzd58gvL5Is3O8idJkiSlloEqQflCyVn+JEmSpBSzN58gT/mTJEmS0s3efIKcNl2SJElKN3vzCRrKe2NfSZIkKc3szSfIESpJkiQp3ezNJyjvCJUkSZKUavbmEzRUKNHktOmSJElSajVN1xuFEA4BrgWWAhuBs2KM943Z5kXAJ4EjgMtjjBdUrcsBnwFeApSAi2KMX5ym8qeEp/xJkiRJ6TadvfmrgCtijIcAVwBXj7PNg8DbgEvGWfdG4CDgYOAE4CMhhP2mptSpVyqVyqf8GagkSZKk1JqW3nwIYTlwDHBDZdENwDEhhPbq7WKM98cY7wTy4xzm9cAXYozFGGMH8D3gtVNY9pQqFEuUwGuoJEmSpBSbrt78PsDaGGMBoPL4eGV5rfYFHql6/egE928oQ/kigKf8SZIkSSk2bddQNYKlSxckXQLt7W0AbOkZAGDJ4rkjy9SYbJ90sb3SxzZLH9ssfWyz9LHN0mO6AtUaYFUIIRdjLFQmmNirsrxWjwKrgd9WXo8dsdqljRt7KBZLE9llUrW3t9HR0Q1AZ3c5UPVvHRxZpsZT3WZqfLZX+thm6WObpY9tlj62WTKy2UxdAzDTcr5ZjHEDcBdwemXR6cCdlWuhavUt4G0hhGzl2qu/Br4zuZVOn6FC+ZQ/J6WQJEmS0ms6T/k7F7g2hHAh0AmcBRBCuBm4MMZ4RwjhJODrwEIgE0I4DXhrjPE24DrgeGB4qvV/ijE+OI31T6r88DVUTkohSZIkpda0BaoY458pB6Kxy19W9fx2YO8d7F8A3jFlBU6zvCNUkiRJUurZm0+Ip/xJkiRJ6WdvPiEjp/zlMglXIkmSJKleBqqEjIxQeQ2VJEmSlFr25hOSz5enb3dSCkmSJCm97M0nxEkpJEmSpPSzN5+Q4VP+mg1UkiRJUmrZm0/I8KQUjlBJkiRJ6WVvPiF5J6WQJEmSUs/efEKGnDZdkiRJSj0DVUK8sa8kSZKUfvbmE5IvlKdN95Q/SZIkKb3szSckXyiSy2bIZjzlT5IkSUorA1VChvJFR6ckSZKklLNHn5B8oeg9qCRJkqSUs0efkHyhSJMz/EmSJEmpZqBKyFC+6Ax/kiRJUsrZo0/IUKFEs9dQSZIkSalmjz4h+bzXUEmSJElpZ48+IfmCs/xJkiRJaWePPiHlSSn8+iVJkqQ0s0efkKFCkWZn+ZMkSZJSzUCVkHy+5AiVJEmSlHL26BMy5DVUkiRJUurZo0+Is/xJkiRJ6WePPiGOUEmSJEnpZ48+IfmCI1SSJElS2tmjT4jTpkuSJEnpZ48+IUP5Ek1NTpsuSZIkpZmBKgGlUslT/iRJkqQZwB59AvKFEoCn/EmSJEkpZ48+AflCETBQSZIkSWlnjz4BQ5VA1ey06ZIkSVKq2aNPQD5voJIkSZJmAnv0Cdh2yp+z/EmSJElpZqBKwJCTUkiSJEkzgj36BIyc8megkiRJklLNHn0CRk758xoqSZIkKdXs0SdgKO+06ZIkSdJMYI8+AXmnTZckSZJmBHv0CRi5D5UjVJIkSVKq2aNPQH5klj+nTZckSZLSzECVgOFZ/pyUQpIkSUo3e/QJ8JQ/SZIkaWawR5+AkWnTDVSSJElSqtmjT4DTpkuSJEkzgz36BDhtuiRJkjQz2KNPwLYRKmf5kyRJktLMQJWAfKFEUy5DJmOgkiRJktLMQJWAfKHo9VOSJEnSDGCvPgFDBipJkiRpRrBXn4B8vuiEFJIkSdIMYK8+AeURKq+fkiRJktLOQJWA8ghVLukyJEmSJO0mA1UChmf5kyRJkpRuBqoEDBWKNDsphSRJkpR69uoTkM87y58kSZI0E9irT0C+UKTJWf4kSZKk1LNXnwBP+ZMkSZJmBnv1CRjKO226JEmSNBMYqBKQL3hjX0mSJGkmsFefgPK06X71kiRJUto1JV3AbDSUd1IKSZKkiSgU8nR2dpDPDyZdypTbsCFLsVhMuowZramphSVL2snldj8OTVugCiEcAlwLLAU2AmfFGO8bs00O+AzwEqAEXBRj/GJl3XLgy8A+QAvwE+C8GGN+uj7DZMk7KYUkSdKEdHZ2MGfOPObPX0kmM7OvRW9qypLPG6imSqlUore3i87ODpYt23O3jzedvfqrgCtijIcAVwBXj7PNG4GDgIOBE4CPhBD2q6z7IHBvjPFI4Ajg6cCpU130VMgXvA+VJEnSROTzg8yfv3DGhylNvUwmw/z5CydttHNaevWV0aVjgBsqi24AjgkhtI/Z9PXAF2KMxRhjB/A94LWVdSWgLYSQBVopj1KtnfLiJ1mpVKpcQ+X/GEiSJE2EYUqTZTL/W5quYZJ9gLUxxgJA5fHxyvJq+wKPVL1+tGqbjwGHAOuA9cBtMcafT2XRUyFfKA/fOsufJElSunV1dfH85z+LT3/6X3a57QUXnMfatY8BcPPNN/Hoo9u6vDfffBMf+tD7p6zO8d7z9tv/myuu+PSEjvGlL13NZz/7qV1ud999kR//+EcTrrFW1bWvW/c4N9743Sl7r1qkaVKK1wJ/AP4KaANuCSG8Jsb47VoPsHTpgqmqrWaLFs8HYPGiebS3tyVcjWphO6WL7ZU+tln62GbpMxPabMOGbMNN6vXjH9/K4YcfyX/+522cd975NDc3b7dNsVgkk8nwqU99dmTZLbd8nz32WMIBB+wPQDabIZPJjPp8k/1Zx77n8553Ms973skTOkY2myGbzeyytgceuI+f//x/ePGLX1x3vTtTXfuGDeu56aZ/59Wvfs2Ej5PNZifltzFdgWoNsCqEkIsxFiqTT+xVWV7tUWA18NvK6+oRq3cDb4kxFoEtIYQbgZOBmgPVxo09FIul3fgYu6e9vY31T3QBMNA/SEdHd2K1qDbt7W22U4rYXuljm6WPbZY+M6XNisViw03UcNNNN/LOd76H6677Cj/96X9x8skvAMojOWvXPsbWrX2sXfsYn/3sF3jLW97IxRdfxr33/ok///lP/Mu/XMJVV13Ju971HorFEj09PXzwg//Agw8+QFtbGx//+D+zdOkybr75Jn70o1tZsKCNBx64j/b25Zx//t9z5ZWfZs2aNTz1qYdy4YUfI5PJ0Nvbw+WXX8YDD9zH4OAgRx99LO9+999x660/2O49Ozo28Itf/A8f//jFAHz/+zfyrW99HYDm5mYuvvgy9thj6ajPWyyWKBZL5PPFkbra2hZWal7Axz9+MU1NTXz+85+jr6+XM844jaOOOprzz/977rnnbq666nJ6e3sBOOecc3nWs05i3brHOeecM3nVq07lV7/6Of39/XzgAxfytKcdRWfnJj7ykQ/R2bkRgGOPfQbnnfc+br75ppHaL7nkItatW8sZZ5zG3nvvzcknv5DbbvsBF19cHkkbHBzkta99JZ///LWsWLFyzOcpjvptZLOZugZgpiVQxRg3hBDuAk4Hrq883lm5Tqrat4C3hRC+S3k2wL8GnlNZ9xDl2f9+E0JoAV4AJDu+V4fhU/6clEKSJCm97rvvL3R1dfH0px/Hpk0b+cEP/mMkUAHcddfvueaaf2Px4sWj9nv5y1/FLbd8n9NPP5MTT3w2UD4d7957/8S1197AihUrufjiT/Dtb3+Dt7/9XQDce++f+OpXv87y5St4//vP56Mf/RCf/eznmTNnDm996xncccdvOO6447n88ss46qhj+MAHPkyxWOSjH/0QP/jBf/CqV/3NuO857Pe/v4PrrvsyV175RZYuXUZfXx+5XG6X30F1zf/8zx8fqfmcc84dFda6u7u59NJPcskln2HZsmU8+eSTvO1tZ/HVr34DgC1btnD44Ufy9re/ix/+8BauuuozfO5z1/DDH97CypUr+fSnrwTKp1iO9d73vp8rrvg0X/rSdQDk83muvPLTPP74WvbaaxU/+cmPOPTQI7YLU5NpOk/5Oxe4NoRwIdAJnAUQQrgZuDDGeAdwHXA8MDyd+j/FGB+sPD8fuCqE8EcgB/wX8IVprH9SDA1fQ2WgkiRJqsvP/7iO2/+wbkqOfdKRe3LiEbueSvsHP7iRl7zk5WQyGZ773JO57LJL6OjYQHv7cgBOOOHE7cLUzhx55NNGOv2HH34Ev/71L0etW758BQAHHxxYuXJPFiwoj6QcdNDBrF27huOOO57bb/8Z9957D1//+r8B0N/fP7Lfzvzylz/nJS95OUuXLgNg3rx5E675sMMO57e//fW429199/+ybt3jXHDBeSPLMpkMa9euYdGixcydO28k6B122BEj12kddtgRfOMbX+OKKz7NUUcdw/HHn7DLmpqamjjllFP53ve+wzvfeR7f/e63eNvb3lHT56nXtAWqGOOfKYelsctfVvW8AIz7iWOMDwAvnLICp0lrc45MBhYvaEm6FEmSJNVhaGiIH/3oVlpaWrn11h8A5ZGRW275Pmed9RYA5s6tLZQMa2nZ1jfMZrMUCoUdrmtpaa16navatsQnP3kpq1btPaH3LpXquyRmdF25UTWPPj4ceODBXHHF9mMh69Y9TkvLtmvPyp+9fJvZww8/ki9/+d/47W9/zW233cz113+Fz33uS7us61WvOpW3vOWNnHTSc+jp6ebYY58x0Y82IWmalGJGWLyglUvfeaKBSpIkqU4nHlHbKNJU+dnPfsq+++43qnN/991/4OMf/8eRQLUz8+fPp7e3Z9LrOvHE53D99ddywQUfIJfLsXnzZvr6etlrr1U7fc8TT3w2F130MU455VT22GMpfX19NDU1jQpMEzF//nx6era91+GHH8ljjz3K739/B8cccywA9957D095yqE7Pc7jj69l+fIVvOAFL+ZpTzua17/+bygWR19HN3/+gu0+1+LFizn22GfwkY/8X04//cwpn27f884SsKSt1fsoSJIkpdTNN9/Ei1700lHLDj/8SIrFInfd9ftd7v+qV53KV77yRd785jfs8DS5erznPe8jl8ty9tmnc9ZZr+d973s3HR0du3zPo49+OmeeeTbnn/9O3vSm03nPe86lp6f+iUye/vRn0N/fz5vedDqf+tQlLFy4kIsu+leuuebzvOlNp/PGN76Ga675/C5Hxu6883e8+c1v4Oyz38AFF5zH3//9/yGbHR1fDjzwIPbddzVnnvm6UVPPv+IVp9Dd3cVLX/qKuj9HrTL1DvGlzH7AQ40wy99MmGVnNrHN0sX2Sh/bLH1ss/SZKW22fv0jrFy5OukypkVTU7bhZjRMm6985Yts3LiR973vH3a4zdj/pqpm+dsfeLjW9/KUP0mSJEkzxhlnvI5cLse//uvl0/J+BipJkiRJM8b1139zWt/Pa6gkSZIkqU4GKkmSJEmqk4FKkiRJqTBLJlPTNJjM/5YMVJIkSWp4TU0t9PZ2Gaq020qlEr29XTQ1Tc59YZ2UQpIkSQ1vyZJ2Ojs76OnZnHQpUy6bzW53A1tNrqamFpYsaZ+cY03KUSRJkqQplMs1sWzZnkmXMS1myr3DZgtP+ZMkSZKkOhmoJEmSJKlOs+WUvxxANptJuo6GqEETY5uli+2VPrZZ+thm6WObpY9tNv2qvvPcRPbLzJKZUk4C/ifpIiRJkiQ1vGcDt9e68WwJVK3AccA6oJBwLZIkSZIaTw7YE/gtMFDrTrMlUEmSJEnSpHNSCkmSJEmqk4FKkiRJkupkoJIkSZKkOhmoJEmSJKlOBipJkiRJqpOBSpIkSZLqZKCSJEmSpDo1JV3AbBBCOAS4FlgKbATOijHel2xVs08I4WGgv/IH8A8xxttCCM8ErgbmAg8DZ8QYN1T2qWud6hNCuBR4NbAfcESM8e7K8h3+hqZinWq3kzZ7mHF+b5V1/uYSEkJYClwHHEj5ppX3A2+PMXZMRbvYZrtvF21WAv4IFCubnxlj/GNlv1cCl1Du6/0OeHOMsW931ql2IYTvAftTbpse4N0xxrv892xmcoRqelwFXBFjPAS4gvI/LkrGa2KMR1X+bgshZIDrgXdV2udnwEUA9a7Tbvke8BzgkTHLd/Ybmop1qt2O2gzG/N6g/t+Vv7lJUwIujjGGGOORwAPARVPRLrbZpBm3zarWP6vqdzYcphYAXwBeGWM8COgGLtiddZqwN8UYnxZjPBq4FLimstx/z2YgA9UUCyEsB44BbqgsugE4JoTQnlxVqnIs0B9jvL3y+irgdbu5TnWKMd4eY1xTvWxnv6GpWDdVn22mGq/NdsHfXIJijJtijD+tWvQrYDVT0y622STYSZvtzEuBO6pGKa4CXr+b6zQBMcYtVS8XAUX/PZu5DFRTbx9gbYyxAFB5fLyyXNPv30IIfwghXBlCWAzsS9X/sx5jfBLIhhD22I11mlw7+w1NxTpNnrG/N/A31zBCCFngHcB/MDXtYptNsjFtNuynIYS7Qgj/L4TQWlk26rsHHmXb/77Vu04TFEL4YgjhUeATwJvw37MZy0Cl2eTZMcanAccBGeCzCdcjzWT+3hrf5ZSv7bBt0mNsm+0bYzyW8mm3hwIfTqowbS/GeE6McV/gg5SvS9MMZaCaemuAVSGEHEDlca/Kck2j4dOSYowDwJXAiZT/37eRUydCCMuAUoxx026s0+Ta2W9oKtZpEuzg9wb+5hpCZTKRg4HXxxiLTE272GaTaJw2q/6ddQFfZAe/M8ojT2t2c53qFGO8DjgZeAz/PZuRDFRTrDKb0V3A6ZVFpwN3xhg7kqtq9gkhzA8hLKo8zwCnUW6X3wFzQwgnVTY9F/hm5Xm96zSJdvYbmop1U/+JZr6d/N7A31ziQgifAJ4O/HUl8MLUtIttNknGa7MQwpIQwtzK8ybgNWz7nd0KHBdCOLjyuvq7r3edahRCWBBC2Kfq9SuBTYD/ns1QmVKplHQNM14I4SmUp7NcAnRSns4yJlvV7BJCOAD4DpCr/P0JOC/GuC6E8CzKM+LMYdu0vk9U9qtrneoTQvgMcCqwEngS2BhjPGxnv6GpWKfajddmwCvZwe+tso+/uYSEEA4D7gb+AmytLH4oxvg3U9Euttnu21GbARdT/m5LQDPwC+D8GGNPZb9TKtvkgDuBs2OMvbuzTrUJIawAbgTmAwXKYeqCGOPv/fdsZjJQSZIkSVKdPOVPkiRJkupkoJIkSZKkOhmoJEmSJKlOBipJkiRJqpOBSpIkSZLqZKCSJKVOCOGqEMKHd7K+FEI4aJLf840hhB9O5jElSenntOmSpESFEE4D/g44HOilfI+da4HPxRjr+kcqhFACDo4x3j/Oup8CzwTyQD/wM+Bdw/fJmgwhhLOBc2KMJ+1qW0lSujlCJUlKTAjhfcCngUso3xx4BXAucCLQsoN9cpPw1n8bY1wAHAIsBi6bhGNKkmahpqQLkCTNTiGERcA/AWfFGL9TtepO4I1V230F2AqsBp4LnBJCOAN4LMb4oco2fw+8FygBH6q1hhjjphDCd4B3VNV0OfBSoA/4AvDJGGNx7KhTZRTsHcD7gGXA14C/BZ4CXAU0hxB6gHyMcXEI4WXApcA+QBdwWYzx0lprlSQ1JkeoJElJOQFoBW6sYds3AJ8A2oDbq1eEEF4CXAC8EDgYeEGtBYQQlgGvphzioBymFgEHUA5vZwFv3skhXgEcBzwNeB3w4hjjvZRH2X4ZY1wQY1xc2fZLwNtjjG2UT2/8Sa11SpIalyNUkqSkLAOejDHmhxeEEH4BHEo5aL04xvizyqobY4w/rzzvDyFUH+d1wJdjjHdXjvER4PRdvPdnQgiXUr5m66fAeyunEr4eODrG2A10hxD+BTiTchgaz0Uxxs3A5hDCfwFHAbfuYNsh4NAQwv/GGDuBzl3UKElKAUeoJElJ2QgsCyGM/J97McZnVUZ0NjL636g1OznOXmPWP1LDe58XY1wcY1wVY3xjjLGDcsBrGbP/I8CqnRxnfdXzPmDBTrZ9NfAy4JEQwn+HEE6ooU5JUoMzUEmSkvJLYAA4pYZtdzbb3zrK1yUN27fOep6kPIq0esyx1tZxrO3qjTH+NsZ4CrAc+B7wzXqKlCQ1Fk/5kyQlIsa4OYTwUeDKEEKG8qlyfcCRwPwJHOqbwJdDCF8FHgb+sc56CiGEbwKfCCGcBexBeaKLeiaOeALYO4TQEmMcDCG0AK8Fvh9j3BJC6AIK9dQpSWosjlBJkhITY7yYcmh5P7CBchC5GvgH4Bc1HuMW4FOUJ3m4n92b7OHdlK+repDy5BdfA66p4zg/Ae4B1ocQnqwsOxN4uBKmzgXO2I06JUkNwhv7SpIkSVKdHKGSJEmSpDoZqCRJkiSpTgYqSZIkSaqTgUqSJEmS6mSgkiRJkqQ6GagkSZIkqU4GKkmSJEmqk4FKkiRJkupkoJIkSZKkOv3/AmM+Xlek6ZUAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 1008x432 with 1 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["df_ai = pd.DataFrame()\n", "df_ai[\"Arithmetic Intensity\"] = (I_flop_scalar + I_flop_vector) / (I_mem_load + I_mem_store)\n", "ax = df_ai.plot();\n", "ax.set_ylabel(\"Byte/FlOp\");"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Thinking back to the first lecture of the tutorial, what Arithemtic Intensity did you expect?"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## Task E2: Measuring a Larger Range\n", "<a name=\"taske2\"></a>\n", "\n", "If you still still have time, you might venture into your own benchmarking adventure.\n", "\n", "Maybe you noticed already, for instance in Task 2 C: At the very right to very large numbers of grid points, the behaviour of the graph changed. Something is happening there!\n", "\n", "\n", "**TASK**: Revisit the counters measured above for a larger range of `nx`. Right now, we only studied `nx` until 1000. New effects appear above that value\u00a0\u2013\u00a0partly only well above, though ($nx > 15000$).\n", "\n", "You're on your own here. Edit the `bench.sh` script to change the range and the stepping increments.\n", "\n", "**Good luck!**\n", "\n", "[Back to top](#toc)"]}], "metadata": {"kernelspec": {"display_name": "Python 3", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0"}}, "nbformat": 4, "nbformat_minor": 4}
\ No newline at end of file
diff --git a/2-Performance_Counters/Handson/Solutions/Hands-On-Performance-Counters.pdf b/2-Performance_Counters/Handson/Solutions/Hands-On-Performance-Counters.pdf
index 0335248e742ef80058639dc237914d48fa62ff8b..24f50ef681567d697e5ce9e199dcbb65483c43fb 100644
GIT binary patch
literal 357396
zcmY!laB<T$)HCH$ee&V$4=xJ@1BLvgEG`=xeYeb<lGGx7x17Y1RF~A`{FGFEpVYkc
zk_-hy6AN=YJFeoAqSVA(u8Lc0BW~y2F%zhLAO2$E?B0-jCEigid9#-B-MZns?M1V>
z#*V04VvDAl?b`8L<nMPr%PC<+IX}3huLV3gGsjYf&;8rJiZhEp9NshIu>RLgz27e%
z`u$J**+z>8I#cdFx{{nJ@*$$4PNP|ackj_(Eqm5S?OnC%{AT~|@*VS7GbM^P-}7%a
z*|_?#M(Jw(FKJ6(&phw!_2~JJCsUS&{XfgJx2XT5!-*473+J78Vh~)!Y4%xi>6AaK
zPL)2EpQ@j>Z-J)ewXd0>`5`kiO@8fqbt>%oSvd*bpjk%gliC{-Hg4TvabEhu!X$Z~
z9+iXJC*_3RT@*6+(PrE08ZTsz97>w>w71NR;pkLX`FQ7wvOGg?p-Wps=dM2V=n*Hc
z&;lC{)k`~<Ot~pJpH*qnJo_^>wm0&+ZGv;-re?g|vFi378)x+cY+UZQ&F(*mFPyve
z$YT=@%^Vit1m4IkW)&Xy<o>^0t#i3`UFhoTKR*3<vEE$1M`9u~&wHEv(raY~9vz%h
z3O%RUOfr@{wuI-5SU}N@MSV|s&ukIx3zs_nRYz^^SM9m~J623QE)t(BvP1i;w*;qS
z(RP8GCSkJm`Z)z6i@Cl#o}40MGE*;lddv!rLk|w`SrZzkRBmvpYhC8=C0nX_&MSYF
zY~}y?>&(oG{K(e5n-|}|qP0OGLS%{3tPih?w7ia6vM%<Ssu2<Nz;c3+s(|)_fXLbL
zFCGak*WNDUY~*ry*Wuurn|yvoTSHgxIT5}5+Wz-mr3*hft>t>Gw`_;HL1AQR+x&=0
z>n`d&+}EpQZmne*cx;YH+4ct;ula^OkDlJS>3pTY1Dlk&-d++)-`xVvrl&8yey}58
z--)TkEsvkYh_@DVp1f&dc39|BaXA0B>#Isve{I#W+HI_+(y5+5MaF1um{xWc^Et=G
z2Pd*-wX9i{d+c>u^wjLvJ^>aCSJRST@m`a1UKH7L(aLx7ifc_-CVI?$AE!D^&RDf3
z>if04Q#az~bEn<RHJo9yf0q7)$**N<Tv_;5*DA-d9rT&+82;+bzNp!YW}I^HTGOTT
zLi=sfF^S@WwMQ@SJJj@lQ?8ntdg-)Q#^oEIa|<k*k=WYoT(g<2|6`kEc1=shucS1?
z_tU#2&ed^UIJ+x+{kw*i<&4k2Gj0m6Q0P19<hgN8_XM^Wz8)8IX3m++MwcprR3>sf
z`eNtsjmy7FxsO@#9c#*xk4r2ksWH5ayJ>Z)!b|0n%=zC8lA1O(`D&_;UUDZ?N>m&D
zy`3I&2^#xKEPhhHcGf<Z*-V8qMYriPN&XfV;5)r+?QWj#_q=;0EgoIEyLek!*xj3z
zSGV2}+L7(wGWpx-D|Ldqwb`F7n6!J<=~flj(A>aHSGk|Hx4sVvTU#_Gw2<wrYxTZ^
ziSO0TXZRMHZEt%!iGj^6Wy%8O9e-9`|2Bz>@l)y4+olt@Who2BTixBEE#mewz-=La
zyAn_Rj1P8u=JLEYzN1pvx?w_5#>Uptly{E~P6{lydZ-e=LvVSQx6upM#1_7lt_D)q
zu19${ohac;&Mq*&%g5}uDKme0S3!R3h39`e`u}`-zl`-=+&AZ%e+Fk>71^FS`~0+|
znepDI7y17D4rpTE^gzqwj^=*h(*d`7Oaf~xPBTX;XO|~gwt36iJy_PYTk|v&8J^z#
zQ)X%O&Uc;CzA{sO&7b_|Q{>Ls&v*L^^Zc79A$Lgr1p98oX|qqx&VHF_RCrs&N%^&%
zSns2^EQUKgCfu6%%2-@w<@wpGJO0+adyq1J+J}i!LNR9bF&avK%OY;PHSA!?OO^Bg
zsuSaRr|vGpw~2dBPpS95C(Gcy!`QOsR~%zc{F<1A;0^z`&7M8`_?C_8-W(4m&S34o
zGqL00jf=Y{>r@;NGP@dmZh||rz^UEd6B~<}zfb(BuyDeX%&PnyL2eU-FP<%EJnw({
zX3;mH%;{HN`27!D@cLHGo!)aVU%I``(nu~#SU!I@=hm!*q^cu-oA=rjmHKA>ct36C
zYiaq1vkr2cE10Abob~U=yZXq8`L<lCc`4A6JvA={R2LW$RVf%*7+IoJ3X#?M(&j?{
z|J$`T?Ov4auxQ%p+GhnCLh6~9y|dzT7HhmZ<o^EBr9;01z9ruL{xZMK*-JZ9_IU1u
z_8+qpE&K2Dq^r+YuX%Jx-mcT;$7{b!MW24v7}XzFzmwWI`@_kfXIt8J1RtifIXfCz
zp06uEH~m$HTFt{HrD;)>*>$V8W%ns9*AKnAl84=PdH&}t$Ir{%Im_eb?n}RNx1dQe
z%f#KL=+(Z{+NEEP|2$tXE1^P4U+BztB@0uzCn6`-rA&(r-4t?j>aJ#A{kf-=op)CA
z>nBcpFYQ%*Z{Jd9uH~yuub%lHbL=jMo=(Jr%dLsrhmG!7@}zqTN%Z~VNS5aA=e+)|
z`q#%t8P8PrEk1uMNP6AvXBwV&cP_l2x00P{Qis-)y>CA4I%FtNyj<!otK~0+hvDW1
z4ySi7eY31U)x01mQY4MLc(-jPm%o8NXZxib>zg)OhdK0g)_h2v+WWEPvx<(uy*>us
z*HvF7o*N`wbX&XfNH*KL;<YcPZ)wrp(f-f(^}bgtcCNX8WrZV0TfilLPid*BTUT7p
zzP_)edUDcIqs4z`xE3hYeshq27Tep@tF%}kBWBmS>swCfb<OqLwp}4l|J&THGvlAT
zI!<0XDc67Z1BVwi?^3Tmja?TNmC(-<@~rQ~rezaLG^J-YC4K%cc`izCgVVY&*LhjY
z6`ZU19Ix_cGWvX#HIuV8c)(TpyYu7u3onCJ@@8IaHGlOn`d9JWZR!8zf@Ob%9%>D|
z>usaJv9DpacGi0?MIVpyRTq^WoZ~$y9vZcd>*_?2JGzrDcy>;C#~4zz%;?XTyMloU
zk9=n4_U?+Yu+FLd^z6un6WWVkPB>by`=M^&M%IJpZWp(>9jh(K7gPKA<Z^#C^Vy~Y
zMaO?so;eiYlh%2B&w=Yc;idPsl|D`7$tz(^PkmX&p0Z1VIaWWZ?o7GFLDpu2qB`f$
zE4FvSSe|I!2(Y}f{b1RP6*})%EKP0T-4*GbeSO2Uw)%JB{Bu>kpL)eTZ{6r8v$M`%
zcf-cJLM?|ga#?m*K6Yr@vhe&|rS*B7e+17L9Pz0PJ5?o6+Mm2uOXS7OMJ(lCekNM1
z-{&yfv}i3)?cV(x0?hB)FO+njZTst*fY+;Z1@#Y#hw9fY4eQ@<c=s;r={fSZ{H9Jn
zr?JS*r{$XDyH7<|5-o~r^Cdc%9-gqCDgJ3!z;yQoFD`uc$>FJyjf~35N<8%H+_~IZ
z&gu@CAJw^O#a~wVs<bg?{wa9#Bw=^sdGo?oum0+%KMy}H?{DAZ#?;SR_+yTTK*YZJ
zdUZRk{=Kc}$rdo=_|Uf6HDx;IM(MuXEuWc>oXA@EmaY29=L;FxPIE%O*Unv`;Prc9
z+sr)%uP<Eq5Wf3J#4g1HH+Sw$*UWF!`@q!utL6(EL)*UC^%Hr^-0cs=UfJvQ``w2v
z=B0sGUZ1U4rBL@`H@A2U&xSPiB^u`#riH&!&{|~TbLLFZ1cnAjt}x$^Y#u%@W=U;I
zy{kVhqd@s&@9yodTRk5&t&Ki&-_^Rj{Y}I1XYb@4!^|re9*by>Y-tSr93^;p>7L8F
z=Odp*wgn2h+kc<%>cWO46Q#E<tBWh;wJ7i^U}ZL+Vm<9f@m%)aiH(dC88)h2E?{(i
zqV5p5yf!;c+jy(VbHmK(yP7+48O}e|=_q5=Uwd$8NfzS<#k2YuiiZoH96L9A*ROvZ
z6D87jY+g6pO`7@HY}2)Rze_S-tXC9Xa`VoHtWQTT@q}8PcNF-tXF^o=*S&tG1{2q&
zd7n}gH0M3JXksM4=L2Tm^xEW}Gn<dKTh`p)(#H27m7)Bg*rkhQyX15|#okQ(^UEOH
zBG{^||EWa7<i^s;@^um|F&*m~Ik)Y~Je*_G86mXunu+bh*B;$p-aD2yJ~;P&+F8a%
z+uIYm>~~3hn7MdX`|AG{JLR{;KFk02u#)}mMq}=SNe$a%m+89+H_EP>aZky4)zw>z
za*aA8h1&M9-98)i;n0NFQ;RvZc4s~howe<&SLo(%>z;(4-W5{Jd6P-v-5-`VfB(AL
z-<jJk{`oeyyzI>6pP9ksrQbI&ot{~}Iryr>p|De0q2b5XzMZLOs%{rauL~2mRn0zs
zJ$;hF_1^ib&of>Pe^I>Q*X@_Z2fplPp7-n2I$ybsnUz12qvSq#ZC3A9F1Yz`>p4Ze
zt)F>SpY&~6d-33ge14(c7_JH3KPN7a{3okCkN-pd!a2L0Z?YAXygu>&u1o7%ruiRl
z*wyWC_I~+cXSPPQ4)grZC*C^A9vg*>`#t)OYrpz6twNdOwZLAJjl1sVEZhBSZzHd&
zV0o^I{M2t34j%AeO<~?AaQ?e)!4iqN>~RM_C(o^4VE&i2Tu?E+@Iy?wWKgC5uG0ly
z&5NfiUS8k6UvaAEp$CT!tGv<Fh*_d3dFoBZvAO2r>G|vL&57Cb@53~mgt8*#=wyq{
z+fM(Rs@C~ZbZPFICtB=T;z<v=cJ|o3$w;+rTH1d8!0SD~f@DM)xnma9uDy`)mf30n
zi@?05);HR7ty?~5y_S}evDxl@%4dU(!s)4J#6@*Ce$jnW@9OqNCCv5~|Mx>hLcPIC
z4Bp{W(jAKeFE!|`RNz-lZ&&5;QoiN;u2Iw7IeLlg616$S?&;nWKRcG*-#*3o`PJCk
zY>frWgTwAu=%3v#>$dQvLgRJef-~1r{(iX?`64RichQ%N%1#x95j9Dlk8d^E?A^}E
zS01}*)dlsd-1%Pu8x%4GvuE$!>h<<Xl3dD{?`p+|%^L(y{Ve*j_t-*Rq0^%NMrl5r
z-L}ySbHcUGeq?o6-}rD}ZKbcimg86Vxz4kM7RTmXx+<E=aQWhMp*PQuZ|h-qlC++5
z{*KDOPp1VHJ8p}A+Tl}vlV{#mV|#%!#g7l~Vo}?ud-YPu)(dt`XAUenX&f!J<UV__
z&zdto{{B17wZvF;UkSsMg6a2H_J-O^-}u{NeE;crmT!tzFIQeD_-fAlP4V)2_HT+;
zr|<DsH$HDAF3#D#r}n0V{?E_XpE`Po?o*6Teo^0;J>$iui+te^WsCk!{u%RNmk!_I
zL_2lv5AVICvadd9ozK1EYf|*fj9;&^q%-DwOkg_Cyk}vpfc>(ohqvsSU)NOb6u0W7
zU!dpwN0$ydaJ}b_jFFQ)!)_4&O!Q2^`vn?XrIQjj?ol_}cFbho$%L|$?!S>wEH_Et
zxMcEW`JvgnCe#(%i84L7$o(Pw!GF&eew8vR`}+4Qbu43$bFvZr?D=y&*WXX|jEW7r
z1(=rntlG$V^Mcx$m%o-N@l5)5*(35)<m#}F``esCp5$)tuCA_Z`YEy@`s>B}b}i|z
zSIslm2~C`S>Vs}wzL4S6qJ%4l3`-coUZ2g1E&G_GDkio5mdLha6Z&T-q^^5^=E_!|
zd{HL-vQ<{WX&0+zCZF28owr@}?&5g+TT3Hn1&X>&E8UvmyQKB-3xB~2Ch?vN0=JlM
zU7^*w)@=XsWBtp;%l59l8T38KUNi0mlOEf<_>DpNN;&suxz65oTJGc4H!FBpte1LE
zJ<F$USj%Ww^~PA`T2ih?&HrD@@7`IaOLWhYTb;PBz;4c7X=9rP>4%X)bE6eAx1ae~
z+$DeP7*oudo2#rtpLPZ5F@E&Fl;p%4v*_yUTSBvT?-Vw>{cjgb!F73qLf)$vGX16>
zDD(}FHl3*U@D=C%(4~6McJ8}-xICnEdazwo;I8gD?@}gbU+jD8D<E;_?Dtjm3B8YB
zy?ONY`1cO&d^y1&jYGbnQTe<7axve|<rTEb4sB4>{>9|2#JJ_`lU0k;^6Fk|nT9X$
zQe6|LVH|$#aEqJx!tZvWcTWh(P28k--u&i!gV~CVo9Ct^eAjMyu<M2$_u`JDAMdUH
zU|;{+{^dlCG|VQoks(pzEJnr_$W7{}Gw$c#HWN60|9f~wK9|DfJ&)fja%^Drp14SJ
z(-l`k6W0YdHmyB6Eyz3W*59wYg`Zx@yYt+R!&foriEO|8-C9@6pK~0PUdpTRz4TYR
zT>9y_ie$V4QxJ=!!pt+m8<aF=_xzZ~c{1gj;ocSI>dGaGYhNv&%#i73n}2D!(!JVK
ztIf9EvWhcT*Sj0GF*d*YakOUP<uAtXyR&x1JfGdZDXJ#_@#Q_Uj?R9qlz&1lChEw<
zm)Bpe%6RnP^O{Xrx6akvnpS$X|D5Iv|H;?4OuXAR#lR{rBkbJG=X(^c+v!@=q&i!j
zzC9<(Z<+7U_=^|Jwob{sccl97g_`Kn(?{ZL--}7c&tPtoYvuEq9lm<smtsE4<_pKZ
z1RpthV$$}Ln>zB=e`;^4T>I<arns|whciC&onG`J`T5&pjj21kYi6wv`<Qm~*z4e%
zdi|_DY%CeK-8V10s%*WscLF2-gVO$Y>(0(*x7en?x=Me4>Ee37U2`TMQZZjYZ}x20
zGdA-r1n0crNi{O^)3_`dFBHF6;qQ*(Pf5StZLHgTQ2w0jt+~yAch3K|=<x<Ik!f}R
z&QE+-+V8r0$_Kx<yZ?Nx?$^)V!|?K3uGOWxZt+39o#F?h&Q4oASJUg^p6>GtZ{C}%
z`>LeGsObyycHgYjJ$<WI%`045!2YXxdTo7)?E1;Gw+F4d@o)Lff}gIpoj1QsEEinA
ze}851_gBCE?!F=XIFEf%=TB9BmM0taW-nV;ptd69{ff4uwUI|}9GCh1sPJCT{8v|N
z?&N88W!&*Gue6Ts`<%KlvpdVi?v<m@?E3yS-*&y*IcHP;l}jy~B~os_pMPTQ>211c
z8&7XKdOgzc{PxvmWp?@9xq`Eof0sEk(_+)LmoMA*<X8(n7Ja@)DLm=<x*WNi8`xEj
z+`Jjc|9-`^{X19Obp6i|_I1&k2P-0Pip^g0YgTCdrrEhyr@dC%y>Hj<n%{Xv<#nZh
z)qd^ry%`z3{pYK1Pmb<b_^~wdqQ@KAp7-lt>=w-|`lq^UXXXEI@BY01EU&Z4yeg&h
zz5C7Q6aOxpGV_p6dXNX_49WI`KY8}H`b3HvZCNno48zouTfY8MH|DbMpV;41!gi^A
zLJ!*sogWh-IS(eaHM;fkB<`4?(ONcT%R3EA6)!yjRsMvfr$RX9q>HinoU{x6v}v)3
zO5h^51#g&^tB6K_VClDVH%U^M5#Z*d=Da~xP0RKXOM--mlEmSo>Jx=>PK37at-H;`
z>lU!&Hj9@g+tR6wuQg^)In6XnvH8>a1vMgtlQh{<BaR)sw7M^@CQj<E=;H+rKWhV4
zT`zQByW(+3BhRT#lbWx;XjZ(cq`7?77iK@rtJyo3hg~VURHF7Y@@$}yrk$~X+A6Qy
zI|YF+<IXeBWvsI0U-Mie^87~YtROo^mP5+}S28Z{>hjBXSi5M^W$g)pirQ97C%Olf
zESThStvtQ0+UvqU$*H}w`npVIO|z|{9((S55y~;`)P;aPUh~yF?*b$xL+763?m4w#
z)n)hjtmzu_6)uR+|5|n+zFO^+RchbGz-t#bu34NM8Ggw-bp-?OrI}sl7GC4|z9wPu
zn&j`H*Z<dCI9Zht8U8}_Lc081`Ca9Ur9U~|eI={K9eC~M0nV9B(@InKC?}pjP^lHj
zaqaNI{I%@%42zi>|6E>C>Q^B@zvI@~|F5V2XIxkph-J9J$b^`((cH)kwP=jZ4t5l1
zd;eGT`KH#~Idk9d+^V6m?TVEC5iiZCg$c@Dt-s#SJ*oEXa8>Mw2@~d|n57>+y!-q)
z%gf(a`cLS$lYAz;%zygj%}>94arN295jt;L{H8tE69t7XfBM`$w|n(x`P{Fo*RH$$
z@%+`RN1s+&TUpdr{wS;5RbTL>s@#7<xnEh?_h09(ZeP85z54F@tE#W3i?3eO<6r(t
ze){@%XJ<5@Uw1sS@4oE3cl+=EKd!QU6~9m6{;20Q31%!AExvmXGBGUGv~H`cJGs|<
z(YuQ$nl;+LI6QBAki$Rc)qmHg+XE&4IX<-sFcj13b2<9r;2r6*GhB;GXNs<}UTGw|
z!eZe;hou24u3TGjK$l&KC38{G=AVm-ZY(?H!mjn%>1ogk2`B5+RW@r9>ntCKEN!~B
zVoT%$hp7cs$qSsOwyRC5<T{gj;^M=Jfj^ZOebUuBzOeM&($aMbTTN>DJr)K>?90+S
z{&Sg@S=9GuR$I=6M5Sx3^=3Ca(#G^stEg<gq1N3+ToO^~nrk;txu*J6q-m<U@6P8^
za|>5l9gq(**>f%`E?s-Q_cpFWn%c~L(~cQcI>>HLG(F;X;ZWO+o7a>2g?6(vWxi{?
zSIil;joa{f%+G0|ZaFJr7hKWXdqq!AWm3@jxB9hLi}U9guIV%1P;nx5!xO!TqVNe>
z_oN-&Psu-6tbSTv_}T{RuUt1T>@Ij2yW`6|A@8`Unu}cAOrEdX`}l%&VA1Qt@0FgG
zU;MOtU8=t2mSQF4>z3Bs=5^~QoD|p-!5O!QWqsC9d9C0XHl7Dk&TaUk7P(KbX3B%l
zT)Pq~Q|f1(eDu}m${p$SJC+yRKFqmOz!6u?8CT7DPr+k{QLA8O;#sTbcPD&do5pug
zd+LL!ULV{%`HUjHoNhKg{n(TE(e1;e4M`kvJ6YBTHErJ`XR`53$Ual9IVa~{e15v{
z@g9FuO_%l7&pm1z-7e3YrF*Bnslxi-*~#~h%o9z;(rhp%Dr=Y-p=J%=Y#Dcfw)a0p
zi>EBu`tH@QeNh$@1f-8g%J<~9d}QZPYGq-aQ$K(EGWALJQ#SJ**4zE&ngK6=zHO}S
z>G|Bcvieaq5AII?9)9}q<4-S+$2^*lwn@f*VU6403A0XrJp6j{#p=fwJ(hfRexK7j
z<G4qETAIt*Im)x6`+glYyfeFGp-pY|pP#d5$KI>?vpV+w<#qPk#p~nm$Hdj<oSz@}
z=gXVzkB|Pm{CxkMc`qkSHdkMsUQ+b=_}Sg}@6V|V55KZrZ++m*{rgtc?^n{R`(AnP
z+0oPK;?LKg`=35hf7N%LkGWglRi4k<z9H#Q(Sc1fHaKyG1s(M2o_EQ@ckM}qN9=8)
z{2boLb#<PkwLX>g`7pCV)TC`j=rSFK)4ShVM4mX!rM*h|cZ+G&L8-V66)xg=O&ngr
zOZBYVQfpgPWjEYW)9GtcjoKjc-^zg3Gq20;PVuH3;TokB6V~@pUgg>c*-yA$SK|rr
z5R>{S*ZhVp?2ejuD%ZWeEbjxG`lq~L-rzFPu_F8W?uGr<5gR$}!Vji%%0(+}bL8QD
z#gme^D?1|igA>Qi8BP3J2id1Sm^?X1XeN{Hn+Zp@Xh(b$U2}saUUp^h2Scw92UUNB
zc&=S|FmyA^`z?=CTJIb@rTJrmP)!D>-Q6DRXKOa_MI<h&ZrjQ^&pST&gF?`TJuLG%
zZ%gM)b(4@ib9~<9sk0v}{bI^0AK28danL#b;o$=-t-UW#JY_vk_EKJ^>-@I!ac$?{
zY3uTRNzdn+k#OwYp8GjhuX}krb}xTqXdtq7p|-B?vqX=n%^EHF$>+B`>6_+%Tz&fE
z;EJVBCFBccxUCX!4lTd?{)fRYwMysUZ<>`oJg%oRmQIz}UT`IBqe_Ha?#{<K7t<=)
zb!SfV*FU{{{WNux6^}$ZLj*U4K0Y!p^QP?D8#?n>KP}#B!@2Rwf>aA3(_ppxhHE!Q
z+FhJtqU*nR`ZGhDHS^TP)61S{l_sQ|Wq<tjiN*YxmxH*!FR99~o56Ru($e_5^N}w-
z|H}WaxBtU^JdrOQGy51D5SM+>8r}Z>Qw#;#-`910=kScQp8G$%Q%y>7#p{C|iY|tV
zf<0`)f4=!WUn{_JUS?LR__n)mH~H7qT7A~D7mLWclW<YYzVv6!Mw{Du{_#JOq{SDe
z{x)6qeL>!w+M9JhcNFg_F088E6Wzz>cW<A)&CUNC_U}I4n^aTIU$$;v{M@?T=BNM0
zKA&#5&#pRQ+xnfqGk?FD@1MO@EN7{yR%x(yW#-iA;;l?uIUW8undmd<dAYQnmF1qW
z=@T>ey!g3)b*Aq>{j{|5_v=ru{ybXqf4x5c{apWV{C#o%pYOgiv;M*DJLm5IKjO}m
z#@Un2U@U#0LrB7z{hGs3(}tb1kE~#NHJ3G4E1}RoAwbGR>cA3JgO4oNIJBz-R~TxY
z<xuC7IHjw<vU&Q|C#kdcba-BDnl3G_8aQ``_|@n*z2@oB&qb|`DmmLOMyZ_st!#N9
zWX~JD^;dt~iETUlgCVmfBlFLVhKVb0^uO?#sLwLfGT!-z#GVumd4pE|DTj_**!^x)
zh<SW;QE1w|ew!Nqg`2Eu_~-0n_q(4QoOD%5&`KxiYWg?Z)4KXn``CT&H!piX@k*@a
zBv!fSi;r)sO^N%~u_xunyyoeA_nX)5`~Jl?D|d;|$wO?a^FEyU9r&V6{NRV$)h~au
zy{tA#?)%f}?2|R+hw*!N$$iu7Lip~xx6ayQQ0s51#c_1r8jWjP3~wFz+QN4~+g_{v
z{o-@}aZ~m!U)D9zzL$BksOy87pO+RL?!Nt@)<d__^Vd8N(<$;Nn_irLyk^Tx={)Iu
z+aDY~{N4BR_p_J2r-WKgZauVjwae_C30oCw_!Itx|Co2E-^{wvvf?$9a!-TguA4_#
zTh|`y-?hk7`jETFL-)TIDhquQ_$3xs<R9L9F2^9gSN~#RH_v0`Wgi7E|B(4=dsJRa
zrZ(`))HQa-20Iy-m1@XaPVJv_D*fH`vaFYn-X934O=?YyovVMbSex(p;w7I0FaMNz
z+!b}jW2FoCO6~Q}Z-2G2)~UUzaphO*w-vX|HeT4IzDjy?sG0ft`p-}JXBLXaV#!3t
zL}elqWAr*m1k^nH*JY`8A#(Mq-TT(Du^w$%@!GM6<s&nb+9H>Z|My<a>dQ8n$2vPU
zt$bPe@`n%KE?<@YbJGK+kB3|}?`_z#J3=mJ`tSaljlJDlQhyt^@e7!p+m~~H|2^yd
zzdme@snef+{pru`r&oXO=70L+#hZ^GyWie?c=6=rzs$?FmG9bK-%uSsfBn5WtGoY`
z=Oq7m^vB5U+UDrT`P=;KW*gT1`Bt^}?C0sn)7#hc{Wm(Pzqs7z<L`|9&t*3YI;;%Q
z+QKBwu+V9h%et@)vlNcChktH*BYJf23iGU^JDTnn?*Bi1`rT)#+Uvtk90-f!je0KH
ze$IQsl{wvx%9?H&7NYBK|8$C~y!znktp~1C_MDg;{#0wx(G4@jj(glbvnOS`e)GZA
zj-Rq-?XlPw(veblK0JA~@MonTCr<~m>2G_YI%iJ^uf>_rqndwIzpTH$_^)@|;qNkg
zDt_$C{IxIgS6ob_?We0Qk2T_!pS%8HFN^-}k9(KDm%Q}7D^T6BYLkTbANic5xY8eS
zi$gAbuuc9o&#-p=RYR|2742*3g_q1WzhC{P;^c?gEfFVIFMIzxOQdh=3K>lohYMBh
zerb%?+CJzu{1mX;E@D^A72msRgSc_yy<^9m=H5)mmAJon=ZeEWCN5!FmigyJNMtm_
z=Nr<c2~#uE61Fj`IseRA{mFK!JR|ocMg148LYmtq7!~>-T>W|L{DTE`JJv7@dpwVh
z>D7|FTN`p*=)Q+KpTzoe;cwpFDA*TZ6|XTj-|K4A^2wF^UojXM8Z^op$ex=%>)iBd
z=ge2{G*OQ73RH>q$Vp3B{dudogvA{FIp@SZpIf_pm*4G?FQ(+&QM<(FPH4y5hOG~4
zE|%<zu)5zFrO)fA*4TM<X7>`l=hqq1%+Gzl`g7j7?`(2=Yd@}781w5{XZkbKIrkUs
zU+}QzXvw}LtNTmcsxNk}zAnbde8957_Rc!~$AvE^Hzn6g`HPw_DYX>1+IurgdGF7^
zo2%^^W>=_vz>-(Yh{`J#7<mQWUQ5`rZvDG;yP|G9NZ`DAQ^qN$rBFs7f{W8g<Nv+<
z>sz*LTsx;UV{O8Xm-k*iUHIzd_VS<A4_iMxTFUt^^Jm3goBR6b<BmPrz2fS$zw;&R
z5^uS7rv5+v-rZ@-sx_~+T<TjfHFRxA=QC~d!nBwz6>DT1b+)b%l-Xvqb9&XEy8oZc
z`S<Ml`{jJq=l4~`+xPt~Dy}a5o4MCwcTMTP)BiqwdGqM&M^8cPs`8SWL+;z_@7DeJ
z^X^Cc$EJ_3S4;Qgyx%AJztGj^U%__UXK&X(pT2zm+<)hl{!7+^I`qGd<s;uR&X8?r
z<w*z=jtFEp?2;eDv7+N6XIf}gR?@#IM{1PA!gU`tM{HHOX3^Q{zH+X_W^;k$iAIIJ
ztuh^<(nn$@&2Sgm{4C_+T$LCDue4Lf!mFh>Zp%`=)nWOo|MybWjc!pq?>!^6v(BtN
zwdY7r+Yi|zB^~!IkG>C@G^6^;y}lHYz1rHMbw{)=3v6cIXm;lPtY_ukpN+e`qt|bA
z>UpM<axrb)#>9USTQ3^ypKh}Mx{3Yj%<HnjqPp7Ax@XnYj?Ml#@zj=^2K%?0?B8x;
zAMJ9wr1AEx-9bl|D?Pg}bo<PEo}{|`e>cv^XV$g!YRqVR(Iv|e+i7D~+<P*u?)}A{
z_Mgp{{v6D#Q`~W{s<%}uYfaeJm7O;mBP5^kdwymP5K7)?aK}xdyY8S^RJz)>nfJFI
z|DX78gNc2WVP~fE+OLlVvmcagl`>w=J(WF4@$jF(%OKSBC-qMAjE;lJE9@6`X8W}N
zTnp0m!KA+8c1Nr9*A43z?cm+L)8FUJ3kRKdXXWqynXz%EJ&%UqksDV6vXU4q3U_Tt
z{MTf#diKxX&t@D^Iop4E$@FPQuljSm@SQsIyO;E{^$KCN0>R!%)1Dpg<IK9aSo_~E
zPn)E)e$h&Ww#DBR!c;n^n(P-7aL!3~iF|9iEaUpjPTtSv0>)BDq*OOfdv^Vrfc~Z(
zS@#)O+&?XUbxQpA+v62+zYdAqsqb}Xf3xIeQBd^l#PC!3kH3Gu|L2RSXrSDBEP2Y3
zs61t9fL{L~=c)d6tJY<=@bYaeoby%jh}(=KjEzetENJ-r{&Sh{?e3hXYYxBBJM-?#
zn=|hY-}Vnb`|0{2?uRG6IpVhbDcf9AA2ZM9^iugtdv%Z78`K;u@i_hT$M5y&`RDWQ
z)mK&T+gDZi_1D?ct53)4o!9q~`ZhoQ!_B+%%ir7A8D~9?zP|m&{@SX9k~yFM-2K?T
zew~`j>QlGogjorE-Dk!(y=Nbnoni9iYsFLD4z=7p^RlbgmAm#q&-HToe{uQ$WAp9T
zuK&Mt@9up+4eH)}o^CI{UN3&nuaEWr&g}ij{_kAopWE7YLL0XUp5DrN+O6j#yJ4Dc
zl8oX)ZSI-BPD$kyz3-`wKk}<H;`L++4c??vu0Cr`Qw5Tf4=v05BAc$Wq(ikaB7d^P
zBeRaJI!X6dx-)Ba9$8bO`p8!JbFaj`RTosAg&eWzicmjqX0&Wx8}G6;Z@MD(yRXTA
z=Fet0``L4i&&B$mr5i(1*OW3F9+kdTc&y4gRmXm|{pmkWsdbY%J}Vl$<|>$`xi39w
z_Rrw!Y!h>jBy3PpORdZ9Y)<t#F2mh$IIsF#gx_a#fzO$B7mfC3%)GDkQR3=Rv&i5n
z^47_J4Lg5|C%Ikz6A&)A*=YY)k3&ocn?!}PQ_H{J$Uo-r(#2=_&!gHtLaBA`XZyW)
zj~H=0%U`uIJL&Qtwj{%|`nAUO(|!iltBQH+Owu^*u*NxO<Na5MGG^U(@3uU<KIB=r
z-skG<FiB_bgbOpbowGLE|IwtrN33{O{L(Y)gPxVUtQR*7l{<1E|N4<XE^GWhXKRB{
zb&~lhvzG2c6C1V-)@o{(|H$$R`+r_N_2<>oe+*;v4<{dcEaoO&emB3gk((#U=f$K$
z%YK@k`g7~_AC9QD1#2#-^q;zM?$@dH9loE{JHDQOcHYSTS(>2n*{p-2cLF}oc6&E-
z#;IwBPKQ-4|2YvL_}Hj^$L!k%^-C0!pWVtif22m)EXrs8v;3%M^5uNlVc*`_otdxm
zAwu}m*+2gMx93*G9qZJrywl|#STy0n(?iO9KeA%qp8jZG`&~ZkuuL6h)-o|7Dr=dc
zEdG2t13J9$4?MiE?$x^fb*o*O47W{qdsgv=8;3ii;}U_z4WHlt_4D=a6ZxrAu$kN1
z`@PR$=c||V-+uaji2LEu?(jXCKTEdmxuJi)zHjOKLq5~~%178G-D*9y>Hpuq2cMoj
z`n>3G{?30v_x=^v7FU)A`o+)xTl6WfzU<GhFIOK<472=EP*8D%-Ms$poc})`eyD%l
z^>y{>>@_*}->t2`v%hA8a$U{8)ao<0<NeR|)m#5Nr}jUxHl@3L^=o7Kn`?!phIMm^
z-VzMfy>vLMLO*ng@nh$$?kjg}yH%a27$ah~Jfq*{<8jq%?}aB@CtZA{kT&he9@UL)
z)jkeAvojwiytWhF$ZmSgJc%pm8v8~)PaTWS%<i`M%~zJKFr2s|Hz_G$!jUB!6LXGC
zdFAD!Icdh>WY0C8E{VBUGSia2_0G7U5T@A~>Yt>jvFU2EL)$YGhSmN)YwQ&b7vEkN
z@+q+{H?wZ4NqvEeqgZZFXi(|Q9mjHJ-0w2t|GfCaq!~+pF1Fmg)|72Q*p1mY&%|aP
z{==7Kbf#a*E6Mh(yqlkF`x1*=+X}9qGBY%kf5tEHdi%5fvwtQ&<2RqQ#&AQ_S%1N=
zf~$R;b7t%pUt2okzQx)6J+tHwGMzM)>S(nrS(bfh?v7(tcdtquG3~f&vftD<NhZj$
zo4dAi^CahVv-<mI&a)&Lp2?r|%skiA$0xg3Ao;85=h@{mEn>f%{nK+gto^59hPvT%
zm1~7&*QQEHe7iKk(nEdS#ufKFZW`DxTdHy`S=o)PBm2g7wth*sFEeJ&xGN|u^{m|M
zv-Q%Sg*;o@K28>G)UkD|eYEpZhOxc5K=$E3FOI2%UH)@oYu@XMmNoY$9=|Zf_nEJF
zN0hXokLRPqe>}c=`ds?+!fj()N#mAoW`^TxPt1#Zc|Ru$g-bmv_x-$k>Cc-VYI{XB
z44qFfY!6dcJN9+mv5>Z(cQ5~Wmsxiu#QE^Lw=;|x%9r$NcKqFP|KG~zsduL|UElvI
z`>nNTY~PvM>%Y@fmfe=VXY-q@*<5E5mONxiR35@;^5qK~3beid(`9QmN!TX2+NO9Z
z6Q|4SphJv-A)x_Fyi7PmmVA0&Y5UsbOLH-QSa4)y{<W)@ulJ`L{hgE1^<&{mqqxFf
zMYek*{LjbVT%s*}^71d~Wz$8%!*ZhP|CSsuY&+uU;S}R~D4@%2+p5OZ51ph}N#!kC
zF{xOgbBf7?V?LXH?5Qh$-x+@UbbR7x^_;vzFW;a2_Uf0>9GSWM?dta1+1prE?v4;U
z$DYpKtty*SpQFETzOLLE@iX!9xdz7jcN_mNaJ^GgXl(!N%i)hdA09vaU+2^LH_G03
z=I5TTN!coE*th+NL%!OwKxxCJkB;oPcE-<VbEAa1x4)0i{7Dh>IyE~)-yMmV6XE5j
zQ|xuELoleF@yDqXl9y*juo_<V(@9qkJJIR6#fK+EXNKy^2j&Kbf8H5|O<Xo}#s*>G
z;v|XSqh(W4wk8C4It#ykW-c%}uP)Sl|Ek&cfr`tv$$I;k8mJ$6Be=T9N$0q&;q96C
z@B9(F`$sd;KkBr^qV^umA1@C`p5FX(rqjhMXY-#tGcWtBev)mvY2#I=#xrl?j<G2(
zt4_LfHvi;V{`=M&y?z9oo?(=?c-7S$jijpfh?!^4%XA&htJBV_`;*uk(bu#n!r=_p
zn&T@)q;CFk{dT0te19ki*=zmr5xmN}E{VT+2G3i=nP<;)9?3G_|1zhp`1A9aC9*3+
zI0K|Nnv_gex%<b`!#hfOT2jt4|Fyk2N4VBp^Sa(8#e9`D%Uo{fE`htkr*Cx@mL;7$
zJ3la0Ay#2p!K_7c&M)V)or`$;Z2ASMw|+XCg->t(xwh0_H`&s;yyce}pRZ3|r{Hlv
zpGCsL=Jko57iazKerTlGcfqEhbm84UqDQ()l0xUs*!7cp*5U}^j)k1QJ9-Z3^35@P
z`z%~w^W2|j&-!0H8^57=vsseV?TITDJe7qnM<<=R`^P2k-!*%)q^k<+(&}7~cW&M^
zQF_LVkMm}fd=4%Gp~pPBTTS|BdYzV#`np`{Taj(Ow1054h1Aydk3Y_jn;NrBRqFoK
zS2?na?y}#r{mt#<ppb$kPZ6~M)!YKD$rqa)V=mD4{<rqIrM#cY(oE)WH`Ux?qUdWb
zzEo3fi>5?UyNLLu`ui7UQhSBJ-x5y}Z|OUC@ts|d+}_o1AGb+A;Wl4fbNJiwv)}F(
z{{Hs+#vg%Idu0EgddS`4?2&WazTUdJxa{+{%d<a!`}Fhb>g)RJ^y>H8>=$^nr>?Fs
zy<Gm?y?y_)LXHJr-(Fe!-qy(Kna%&dKOT$EcVk!^eE9+!`vE>*Ylha!*BT8LQlB$o
zFS5*(wkr7EX4(8&**Nb0-ru|L{=1!Lzcu{-oqMtO_ejToYZu=yvtDoh{y#74>&`TP
zbgw)2_s8}5KU9wB%vNgiT=QCGS=<qyt{DLg?n26sRGz&_<WKvuwc}%LucU9%I#-=4
z!P9*kd6Sk+>XrC1HT#VJ5s4agw*$=*ieejeEY2P6o@YA4H$_}bt*s<#>KU6(K~cjl
z$1@HKtL0Az-jVL)co=l#kK)G6e|K1JEdSYg`p=QnI_0f;i;ua?jphrAzxjtnJ*nyP
zAC=U)OGf*@zPNKdZsnpYMJL&GeRF2*S2vvb%>S^sq5kLob31tNZt)g+t>`U0``L7r
zXY<d>r~czht@|u8r#JNFD^DKX{EDQce=SFTnd~<Uo%QT}#Iy4ih8>nIl6?_^c^5VG
zb>`~rx+i=&^Iu?WbA<k9>(p%$jyeh=n_hl%ZHn!d@c$ew)Sdb7T<Sl))H?r!<f~}{
zr&DLkoxZ@xy`1}5aBt-NXX|Io@16QH*7AShvY*X5rEbaxj-4_!JNw?#XZg>~Yq}z)
z{Jd*j9HHyJvgBgo(@@RJe=c50oMmtPN@3bklMdDiMu9@fTYWYpaBML$+^c@<@*khn
zx@AW70TUhs?3<CYD`C<(?&aKf&(4=_NOPKdq-y5;ooD11w-y>K3$)^XJk@qtjgpwf
z+4Diq(se(#JHF#@p3#4sLnbvdY4=ab$rApbH&6X(oGh|YP){q?<@lF~vT1hBTkrm{
z;oI<c^Uq}SdY;e5OAfdgbZc*C$e&WrTVeix^W!?9{@XJon2rb9Oq6d)-5s#G`FEa-
zjqQie=KmQdf0S*;%uuF8Ek7|gHAU@1#b%3wDyhGs)i<50=FC(vo*doXv}ozI$E_<w
zJ~DG{TNJY5|2^}~nf+I*bS2I;rcOS~CYLtv%$rZ84_iMxKFU%bb#J~t|F+YA-E%+s
z2J4>wCcKP)hS}O}slOk7y?68J@%)#M+;{EpQopaScmACHvd8Jm`}^Z^{Q2k0+TXQb
z5%lfeo44{G?meA;x_tiqH~$Ue4eRU58fSieckR#Zx0COe9Xb4d-L>m;_Sjh2)|CF3
z?prr=Z*uqj^xxL+Z}@fuO-otUX?8?aU0E^nnP#}!vpU24l>yhn=1dmo_L?-wu<p3@
z|M;Z3?irW+BCb06*mOLVI^v}p)I8&H+=?07R(9O&Gt{?E@@3n&$Z^dxg=ZlVyeo{7
zTOVj%n%Vi&YmG|sM@JuT0pqw%OV6)<XFi%#SYGYyG>z;G6}W8Fv6ICxf38IF!yM5g
zTIMk>S6<2sf3ElR$?r(aP+cbSES&3evEHhQQyn}!eWt2^n{nA-e^Z3qvv9u8t6P5V
zwCeaOVf^w)m-#hNXIi@BrosMa2K%QO*k@n9v+MXAPhp{L8FOdeFxant+T_f7(=+{V
zxRWHZ17l4Le1o*Nl(mPZDIVLT9M<;p>Y+bbiFJwQ7hWHcQodsIe42Wnq1>~4g=g2F
z<*)u3JwyJH(2`Vt_lHfcD}LoBB{`WNNmw&=M&OM57H9ga;`hv+ANcj~pCrA?d#?_q
zn%di>F6H|?yXB{D`_IPi#okUc8)euG!slBat8qWm{&Q{1&$Vqo4X+iwGi-BacpwsK
zS!_Ek{ByX-<{LQzmksQt-udZ>JDn-*zuNUJc-AA988c_R>v(CfzjDTXn=}1)L{>Vq
z>a9AI9C_o`k*lteXX7t+UN6i2C-$tI>+|AGD>7y~oXK)4UFhQ^d^|$a{D=wv=fzJr
zl7yc1tGt~rbkTYtw`-5-+?~5L4*z+f9oqiWw*BYcmY>{`eaG|uiCG=iTwuhyvHkW}
zZ(IG^;H*3LSG#{Ko3=}4#m!^2rb5qOvz~wdm*w3DT{$fIhPb5(7HCTopdBR8{A<FN
zb*t8$&vxMf4LzI%4L#gob6f%)dhkCjefnHvd*XE2wCb{|iWPOg*2eyesZiWg!Fh1@
zwEKC}^7~IuUcU9o!aJpwbq7AMUS7Cn+T-2v=UXyzH!VBq#h$d;v?)ZZDEG&to$^}Q
zp`z=RB3(W1Tu)2Xd!FBS-+ssAuXlg%zjnL++U@?=tM})>UzdMxz5e`o+v<;(Kfe0(
z^R)aqeV;FHzTW)FI{)t9!tdX{Uw<CoBYiA?UB2O_xwU5hp7!kc@%H#zv-Nd#g{41F
zKmG6XY5v9aJ|7FV-2be-xmM|!v?06UQcs->fo_Q-S2k5PN$h?oaO|es%m_Or!{x#o
zKX~dC3ml$YniMuQOF`{ghG?kT-NN3Tc}I$RQ*L&MR;q{HVKcmvnA#xWSG{uTw6`-O
z@{TYaF;O?X=(wg(Jx%0F6ywxg%yZPwY)ej3TrPDw^WUY!x+|9y)NakP>X@m{cSBHa
z&8a)$8_)i^5IM!?^K^a?n$0Dk*|GDRl(%=T^}3BqgbimuJAPbY+TlOXc%SS#en?2V
zVdlkkow?7xvn7@0|9kZ;d{JWE;p@E;M=ps}rzUFOxE?oizVPic@As&kOsiA9=IGP*
zGj>MQ7pc`*9vft~yk?0mQhH|9X)1XnD))%X@l`n@3T-xSz2AJ!ybn(`x~P(70?M(A
zm#tF2(RMee>cxf|g-yDPgf~8$Jma~7*x^4X;`1&#tWkZqAYzfVpSbJgKWs^glOyt;
ztxx=SK<MecPV*-`Ej+www~Kq9swX*J{_{fG+OR?DNJzqtcZTXuHoBeM_4rJ@%~^Sc
zWtacF&}TQ4e8yjH`c97f&9oEAkM4b&t=F~ur|glUS@TP0%rBi`FSJlJe6g+5Ifq_X
zw|6^^rOdLwo?~;iU$0o;b7Eb=6|*d!{jL+PPO@FzEo3XWIkT=WvF==A-4Ea1DuKnz
zI`>_wJRck6Ij`gC-k;es;xlI0Kdf^VnCvI?V8h~V$4~vaFT1_|apg<l;KKjba&K=R
zyfTfu-(o?hr2pZn|IPCIe~Rxssc;=jwjyp>g9X~WEK0Uo`Mw`Ipm$dBh$CV^FF5w{
zq<}SZz8k#JJM8oR+dI2GUrWB~)a&hVuq`NDrLMF8p3Z%l>FeX43ALL{e)^-DH(o&|
zsMzw~x6e0!Z=TIR|Ni{-`SJ04e}6oC^{M~#=i**L*U#&Jc=N7*H~;*75?4R2e0_V@
zzPYx>p!VI<A8+gT^)iGlGkwj<?r_?)rR7qxsFRaSdryq2&kW6LQlcGG1%)2YlwAMb
z?%&pX|2E&Ni@X1~wz|CbbK##G;rVqIak2aAe&7B7XQuk&^MB?Z|ERzJqsx&sot7eo
z&7M6AJ2&ztaW-Ye9l7x;cg=!6|FoW1LE#%6iGtp<kEqO=@yd<o(uA%E*8uJ0qdMht
z3@5TDoigd1X=?af&FxjpbCoO>?aW#4c511bC50T(QQJ5{ZQ6|^Zh>W?vy8+I3#Y^i
zcB>zmBG)15^VxXIPsv+<UUr;_JaR{?t0#2N#>YJ`P4<fz&U}`h_1QT0+4>KeeEqFr
z@kKn_Wrd9^RGwY_b0)WLT4Eh*inGL#qMk`B7rvi)!({*3hZbkg-+Gq*SS{?8_(mZK
z>uJY>xbJp$9@Xsh{p>C{IkWDYS-onmfO7)xHAkJ2k`02I*5_vUf36nnuKxTy?cW)-
zunvjrwO69FQd2cPzQ6e=k6)5|)-&;(&)ikQt3R<w<+^T77TxOc=uTm|;N?GC*RL@x
z6k2Rn|8q^JWx>sT9hDDGNHn~^`A4z;NYSkQHusNgIolt&`YFfss;>1hyiyP6b>=?n
zzon|``?-7T&(+)IkE{~W4XLUQG4*k4seX67$hbb_eEi&FDq^{Hoo4pE)e=`*CN%b`
zUJmlx7dCIx?h|MK9L%1!z$}R?x31O9UQ;rtoqNTBpAmxJW*h4Gd{;be^v9)b?Y~)x
z&d&r7#r7L+3Y)EZ+tjGiXQuym?d`uqZ~eU*AYm<{&9}0-c*7g1NE-#`8K1&)e_k)k
zR7n01#qO3U=CqbgIptnkZQ-4~V~>r}+Kv>O?^{$6aPjG(JN$yPO9I~8fA|~zpJ~;1
zxz(5%%Z#XYo{@<qYC|t7GXL=j!MgM712%Dl@hvI4@7`pive~*hHYIItq`HSel*AU7
zn@2pBI0b#P*l%~0{i&L3<TXS6$TJ7kZiaphEiIJ|;s0l>z|2#B!XfZSH~ZzM57u9A
zKD|9{!NiG^_}4xEP~~G_bcknN`uw)YxziT^$(&LzSsU}bbeoTR`1}02A0Iw{Jv;k*
zc>Qh(?o;iPA0C~-^Lmk=*yQfD-<j^|Z<e|DWB0Y+@$2f}c(j~6DSrOhV|%+hdwzbO
zE$g&syRFi$eBJYMnIew`7b`b$$|kmSK2vtKSnl>xP`pbhN#AYu!~~z<HD@}S7HY@_
zp0%8AtMk9!cbT=?<a;SXKFbOXW*$73QjqL>Omaq-#pHt~t6C2I2v6PAH$8BVp`_}i
z**;0RzG|HXYQZe`3Jhi*J2T6Nb5;FSwa52TxO~(y3?!$XOWB}0_asYBM7~j~ui8{W
zTb=3ravzo+t=>K>e0u-Uq`JuImdD;~nl;VScJF?lcb7N$eLj6UbYf`e#LJSWKD|o&
zW#YO$vTxbd=JvihEvL7qB)BFx=X_8Rl2l_)R+}Jp$Mdh|{AJ?FS|2v-<8S`t#CzSc
zXQyP^)Os`BX{%kMmT#W8zy0I(hoPbC)BR<|HZSq3+kJ7O;=#Rr*T45IWNho4nsDNS
z+1Kll6PKTzyz1LxoiiV6?lON^of4JK|L~x5R9K|oGSScHzQ|u+t*-FFT)xX{uWr}*
z7fEL%rT+<ZEc2XdmLhk@IDGYi9fna$+Jsen7O$5)7Zfo+C$w5)(Z<<~)@uBo+dT5b
z6VqaUybj*DZP^sD14)9LCs+Ki`#HzYV43uyC3_UIDyCmc40YYJipTr8%Z=TF7plZ}
zXivWS*LQBne9!sD5`70;nXjhINK@GN<&#|E8~6X8%pS~8;Fzkbe5U);#mBQ!f8IUu
z+dGhrT|@4(>%=qLVz`$rzgiW@+_`+muXk^s9IAf({kq=&WED2~`?+mT=dNe^;-I+L
zfHRaKl}&T0jL7b3O%oq3Z#ygIxVghn^rq!(As3O%^Z%aqpO?_xv73RPeNEntgr|bW
z$0mfWIja-Bu4~h~M2@5W0dv0?P38%_lsIku^wrCi4`%kxFv+d+EM+lhI=Fe4+3E1*
zw|b;qENv&BRZ0t;bw@0<PQ^xfV$!O!A3at}9;slDikq8dx^Uv5=byH8+|)Xmesbdr
z9#^Ll3As#@#*PWH8JmN9)wbUL^4u`$NY2bFt6c;2H{Dh)J?eM8L)q%mWsUsLk+zWu
z?zegkdKWy&GqlOGWOa$YYj`UwaQ?1&UW%NG|7~7N8a4-IMCQ2j9Wno}bNa<L{l?sY
ztkylp_S=WW8%Tv2F2BpSoz=P6z_!10bIn9Y#b=xL9q16`c*(}ax>0mCU+@fXl_?CK
z0@kh%+P*zvW|5k07CQCX<V1~A=0|6?p4e{l+@fRKyr#O34jqP}mV3QUr9{?NxiNM3
z3UdCpG+3+7D`!xyZ7IFz)|&ly%l3qC>T{H46P&We^8DuAr8AXwgxsvZy!hxA6NM(H
zyDPr0*buvxvs2~DGTlw_eKBE5im@B|Hr3zjcXV8tZN>fjWdx6ay~%40mmhTkQA%yr
zH{6dmHFU+7-tm0bp1{)-wj^KIiudS@jIIq^PIf8h{>l6M&)X{Y`dzW&I32O0i{CTm
zl+XMn#=*aN=YFT^C+z*6aqN$jzRbQb*XRB1^UIDdD%gAUhuER(IWelm*H1gtKa2})
z|1QpRX;RXksefHB8y*R{EqnN!iNNH!a>>bg>?|83oTKiq5z6@Vy2QxFqGRhFb}M&J
zt2g!K(-hLOm36JI6`y`P=Yfrp#gg#D-w(X!Oz^$aeZuLS)fsNlkh3u|H=Z5~DcOJC
zZ8QJJn;ma>Jk1}KHJo<~dG5DM@U^k}-Hy-KeRt`v{NQw{_wU0eOQa30RbINKELXqV
zansS$e37-~OSe6Ip1Y#64a=6b+Q?kpv-#)B-RINt{@l9c;oyI&a<<m1{rt@gy3-W4
zoXx3cn82l}cRM6?)|tFzR}Y_*T<xhX_}(~GXT`J)VX~*+{+UqEH*pF_$`85JZ7Vel
zLS#2h^tZqIJSSAF|G1cDNRzwp&g0MHGU{%hQF-+%f98|&mvy`gADhZ<@0NXTFqfzG
z!aYOryZwy2qL%qyKXp7YL82?~;z!-a!XK`mkM{WGrmjEN(p-3?*XD{?Pv#P<*?C2R
zQ++zP-g7L>>v}IOqm{-H=yi&(FaM9evV8FG(=D>8KVQF=bruM>d$7yxSYDgC{r}7S
z&u%Ie?Ydr9{e7z2k%~C6)5`nbWv<=s_|Dg4!<S2M7j%3uJDb~_dR6QC&-s5crcSxK
zP)ca=L=o9{?~X6s8{I6SvN9()&bGd;EiU-Lx%9U>KVB|5a9_naul`iRub#sFn&HXk
z-k-{Ordu7FQW-mU`H>KTfNv`|>~`-y*|+Y`EE#d*YS*XkCPIst|6UPo<q|p6@=wa!
zYes{C`|UNK_0zMgBsU3uIS`r?b#?Qaq{}=<&ivaT?;QMXeyQketAE;S7X41TT6pcx
zOPf8sEN*2#(s+0e_l4RRa0jhXs42ViMY{gN6aCE-ScL0OUUs*iA=drX=zDVYm4k7$
z$2M=ib~^fZu5MlB^JK}Mu)P~|(*2$a=vbsJ{B<iObcKHU>&&<La|Cv{&E^i8wtcsM
z_r=_NF(ny8uUnTUz2$e=`>;9TuG*RTv+m0&+z8se@A-?v8cBB)TWs{MYR_Kad#G#0
zyM<e3^7yZqZIbY0*IAP(zV}nFW=*sym3dSb?34S`%i~5~PCv`p(<wJUPdse4!y-g@
z_H4H3*DJW$Vr0Ixf3ctXf6Kbt@`s})Yi>Pk##)=WtIYo6)@AR1$Xr`g9B8!Y<eg6C
zrkxunvam5l-~ZZNAfb2Xt868=`qj7@5B=7(exK~A(Js;yam{Leb0XJ{cH32A4-BN_
zJ{Gk4^mdwaE@gZ8jAvrNH-*{Ne5^?o9$UYtrybk2Wm{Ws%f!2fN_2YI6L~hCy{UX7
z>HMRF)0!EsOniP-E@t;lt5u^G3+xJCV()xg`O>_VcUP)bJ1)DUeOcb=?Ziy}rSGPk
zEI+-(Vwz@EN?Y)pxl>iXd87+)e6`;`S36YU#`5;K`Nhu_%<XPks_uNcxi($LTJH9n
zbI(P;_G%sExjFag!X_=Xsyi!GIg=BuSjrEY&vJCg6FGeDP_Fu2F@?@|f(nL)lfH2*
zP+OC`p5d1AfqCcdi7{|17`_%f(6ewi>jpW-Z#tW+bGrX$1PdPBz@g0_7;l=t<6_lz
zmV1X!$^CsR=%b<PG(%2M=<x!U3i(Se?Ej5=>%Y$1^!4AzykKva+Q8G%W*^Tgs_JF2
zUtRL;hhpc=f*TL6tX<)M%hPH16ys^zPF<;EpKw<E*8cy`>Sa_ls<1Qykp?Y7DhpEe
zBm9%HQj<&cgG-Z2Kzz^K#Pn4C@XVBw3<V2QV||a*%=C;B1!D_iedqj~{G#B3#N<?c
zm(;S%<W%>f#7cdq%#z}O)FS8n+=BeP)VvZd3w_7|K>>+Hxy3d%7zz|DASM+n7=jq3
zxp~E4n*xebQ!<lF@{1IV?CfwKIK*XaXl{Z$6#4dUVa~PEx&t5IUtZ)8^<e=^sS{g>
zg;V35FS`m^wrR)NOfh4TI$LQcqLJ5Da6IHr=Q_9dYN!2Xok=+HLMNdy=j79#@;kcf
ze-@s-SWz$W!DyG-1uHq1V+_&#+*^)%?EVxW$zT2L&GnDfR>$|ob^h#l^!e=j?@#7F
z|1I$QZz}^F{K=Duta~+SHv==*`<nMjGV3=#XsG6F7Tb2@qt;T{cPc!)em7ghrJgb@
z7h?1E?c{P{UBncKOf}6mS~cnJQgLfJ``h(9^w(I(tTOAj*s;s{w}7ZiSJt09&o)&4
znf1@`IeT5;osApzempFnBD<*R#qIsCw%*?%bk$i~`*8T|Q=9k#9iOb=`u6_rrTT&+
z`f+=9B;ML(urWF3nxa;R%++hVr+xReGc5c5&??YTCh+R{wO;=}BwY;_-BvH)95VZv
z{!6~cRn=}e@2iS@jyHWfCVc<Al?&^|MOxXmw}kul-nmeJdbj@^e(!j_n)<7)Z=6E}
zzFJ=ufcm3x1=v^U6hmO+3WpGdRRv!S&Q|g+4nAqDcpc=YSEmwZ^>1CDwQ_dY>=TAA
ztQWV}U(KF>*V5X@Lv;FciA7B(0!824uijMV$#HkGR#A^$pyQPl+wN_xnYlt?-wHkX
zWi#(RlGQ(Dn)6>FDdgp06Yg8#+pbJqcg_^#;9W&Co^ATcyEy3NWw333{Y+gJF+p6S
zg_Uv$QP2_)?eGej(7xi;>g8uLc~{=M_u-74`V}XhKwXQv1w{(08uvRDIO!hQ^w&GK
z_Y~(=f%uT;Lb~VwF1wXDOCUUCvVTuas!vdeKy(Q6vo~{JwM2DjuUaJdTuA?H)U%eT
z4#icvr{DkBvH4Z+p+nogE}s*?y|E^UcOocoAT~oCfJ|`-h<1Py3)lSlODz|#T(WtY
z?Q;Q9m+n`mB4_2lzcG1D?3CgTu0?tOgQl((?w=N;^=8hz6NcxyxY`7+?%jRLDZ^W>
zsK*)P^SAPMOafb<9kV@YDr(ujLLn;T<z|!9X=c5@mpt=0Vd}yfXuq<}3la!iE~+3G
zp;N42r!WP^Dqp=VJ@2OZ`ot2gN;Ob2T<98lQ_5*kZK(I%Ew|P<hkV%Iv8v|z8w17A
zIi($3Z4y^^x|}ZlepQciVRew}wu`D-5<!sQIx~Aw(~U(^2I=n)PcN@J-hFB_?`?aD
zpb%H(bE<K(LhtU|v~*obspB?9kdDjuG<0&J>$B<(uL${6a>B}m)%or}R~3j;Sr-XG
zf(n&lf~HBOSr<btMPAm^>d;-az5I>mH9aBGBcfN2ELNS)Wxag9sOS+9Xn@Iq49NNa
zpj>Iyg*!XccP>-v;Cj@Rm3DcDe^y@yS5mju<P{3fR(M(8@sud}&R)3ZR1@<%6`rUY
zLdRG4=-8K@+}py~TE4IRVl2FLKw<niR4~nor|Y#&ssG=G)sHG)wLcF&82Zs>{;A0#
z54HN$S;5H@6lE(MLQp9Mq@??RTjnaa{<+M#*A1+u+6Wi%209*D@$RNc_R0NQ5SdDF
zvDD2!Z_BmZ-_Ma%Thev9m<Ob+?#IJxAy21gPj9(kyHe@+3n5XLu2<Q!-@O(WJtA@S
z*w^`Op3Aqdk+|_lR^RLWmw&Spf3pYvU!c?yk{bQ{)U;ifuCiLTtw_)a+<GowVyf3X
zzMX9=6pBKem5GW8XoR@1E^5*b39+AftNh>Y{qw-FBM0)umKAx{;?wpOoWE`TO(k2r
zHO4tapz?S4=6?qvaiw0=vw2ZdN1*Aw`4Ki*;gKA<CtdmqJwgP2PR=^2e7>9OQIFOa
zAIqfQ?1rwPHt$?k+%kJP7o6-DS{?@%Jm2Pv#lEWgb>Ymi!ueNZI6<!e^)256>M-;`
zhekmIB%e-&Q4iV{Y2A#i+W7e6=Fd`Y%O|Bfty9$M5V`te=h?*1KaSrD-+IM&weJ%N
zXc>L}9U=n21+;DCZk3jIo}!j+(^n{Dg+#xP+UFA@5Fhfjc(vZL?G?wni+FF_cSu}a
z_S1Wpvm+$fK`xC7NnPt+eQ0CqXKA;kla@P!Z2dJitAk|MuUbFPXu0W`46T=IGS6Fr
z3eBj3KMtwc71hV*rMz7<$2mlx^!M~tIddzvJPAsC{>7!QFf7ENWyQO@p<+(aMiY}|
zpc!RZr<RHNJI{41Pk>Fiwdqe^zcqO!3$!Nb<oYBR`b?S2h1FaJN=scma>h8zmDOD8
z>fV{lS9Wu`ux_g_D0VNsi=s>>R4vf)OyJbA9g_`SyyJgVF_o45j;F+y4XS<NlAs#8
zniE_@FWL>slLyXfeRk=t@%Z|!E&bcsY>ByE^EhWJ$9=sT{A^2Ionxf?o9@`1+a^5k
z)`rG)WcbPJNq^gaAL=^1Fza(i^XlE}r44_byt41}{l8xg_NE_J`|Q%a#|5c4JR|to
ziMvl;A|mTU)26-~;@<Jm_w@516?*c`u#?x5vVR?)Bmcv-@c5x`$N1|fSU%d*yL~RV
zcl?g@8TU3nEV|oo@=SNtr@5OCw}ccvJ8?XyS$xU~vvbGlV#60n^>wd~`<=5b^wZWG
z=IdO(UO08?!_{S*&Io=^GJP#Cv+a9MMa=iZ-zz&`#VmTd^LG{`$0wIORa|wD+bc!7
z{Zap`Ph0;kv-&R{zM=m8$(+?svN!7fWq1Gc=xDd}vbEg8*2mKNBCcocvENv6Wy9Wd
zb6;4&ZJr+TGTWQa8Ju);ZY+|DSd;&$bK`FQ>rd@h353~v`r|8h^+@8+33E4pe|Y-#
zl*g`5B_IF)|4qL(H~94Dx<XJwPm5KJ?~a`p>L1E;{G0w4AIqZR-2dyWFDmhOxy|w3
zW3qZzZK`+d%U4Z36Q{4wZx)|YdSvg7soBwC6W({<HmUb4Ke5YepP2OZ+r~-N*C!`i
ziES~T_oMDvN8#E>h3ZaMw|Tzjxn6DNW8}Z(L~~}oh}gEZ_NMz2L$oTbQu-=#BkPVI
zpPLFXHR9^jZ0^c^J2qWgZ2R!WrZuadWNw@;{VTund*|oGm#16buisU0x8wX<d)-}E
zzJ6JlSalwpfPOr>S@voDrOowK(-!;4$5!sQX8FH4-`4W?p^eM-zdrw?y*beI{O>j2
zr@!|5d;NdL)nx8FmM8KKf4}zD`v27B*_Z#<`#)UzdeN=R7XOZ??^D(4c(<*7b>-tz
z_xIlW{JVaW$<M&pAKlA;z1|kztF<QD`uDbQ`4@F>*Z<a=er12z;g<Rz=gxf3fBEx`
zH~%&Ne{b(!+uc4P@#A^-S~H2Oo7n41UvKMwC1!rN{LNPPb#A5)-POb2?9z?g^uPV~
z<-oteMQ;v@<}bBh>1SJ$aOaBiJH-@_Yxe~Y?cVHG_j&qy@hd!2z6RdyGnPKwqud<$
z_u+E!S@U1K`q#Ye!w=<nfA_5$RR6rVaDU0-Uj>)#|6P-9d2RDy^B482?kAsJ_y3n_
zwQ76aHq)Lrf6u>-=h*(g`eW;cA6H+#T*3D5=z)AM_t3cS$N%s782(N%<;SIyU&>dV
z4&<$wyX(&BbC;zLe_4FpE%e6csoOrJ-~ac^G;r;o%U|R}?tGfNTy1yzgqPLQ*Y;ku
z{XRD}d~sF6^F>$g+gIg=B>D%Q{Zae1_qxm0irYQ@`L!>eKfh*Ue^j^Swau^RoAv*^
z{&wB|ug$6rA3OJD|NoMIU`P1=o4;>)*IsuieLXw=_3yoV>q9D@oD?e;0LLr?L&N{#
z|BO-x?WbeuNFgol!{`_VxjX3x`z97=E0}@$TS59HbhWrZT`lxZl>+gdDsVpyvs1-o
zXo{~_rC?}bWQnqr_w8NIn&|Mk-|MsQuhThwE9dm2$2oqR)qQU*dHHS0!hi*Dj1L&h
zWt#i0Rr108M9nFUL8pvz+nHjQ>7>s7Z}6GnJVS7sk&UzW!Yxw{T~IB(WY$^kIW6Vw
z?svsYUTYjH%TeDb9sm1t-Or`dYu4%9wvWFZKezb2rBvj!*$fN}8*(x<85tNDe)2Og
zFg&qmU|^W=pMinF;U6<8f)UTYWc^w6_@mEOE&U6VcgF;o%zAcaLC=(lMomUR&Zk!B
zMXf#da*OWGKkA3>A9`y4^rvOJhH~nXo&`NuCK&16T;jpWz`$^#o`Hcu;Xfk-LxSgp
z)qkZ|gq-?Vu_Q+C+;!o$!?&`wo|?I_Aoa@YUccq;%P$A3G8~wsc)Dm~$l6myJA-UZ
z=G6RJ8j*iLVq=J)u5Q`o`+I9=$8GPhx*PJ}KBC2b^UbWyTQf~&{ao1*7p*t>zu2mt
zN7t1ndv?vAb^EU0R0am`0|h3ZU#GjtRhOwu(=n0it$KUQp*zJiW0uL<vubZ`mWq73
zzoTfUMgK#7Zr?vka<)Aysp<)0V7RhE>vVg2@cBI=wgv`b{-Vb&9gSJ2lXT)(-t~KL
z=UNGVF_GGTdz;w<gBPXU-*!iEB^R{V*Tpd~=y=>(eX921mCfx*zx$6QpLE(6aZc>i
z(V);j>fFEHC_P^rfALjuRN1=ERw|Rb_UW%X$i%>4p*BzJ&%@S>f7_D}Z_Lq{rX8L&
z-MF-BNkh1ibZOe+eY@}O+qZk`&8(33-#z|WGv-&GUh1~^VuC@~>Zzyo_b1)o7jF0U
z%H;R8?@jaTf2UrL|8IUOId8|qRrY@#u56d9I+C^3?^nUc2h#a}W;-lc9i(Y3qicTe
z$HaB(L{GJMq~F;5+~#Sb{NES%=N6x<TwnKfY5d<;wekOd{r!IT`++uIY1iEq=F?B#
zEjWDN@9&|M$bZ}Ge@~bH_ksOU-qxtQn^JF24UhYM?|Yo~zEyX3fA3&d5lVhvb=}(T
z_f6~TYa(~o|KI%m?)Rq$4?1qXdF9fhJ&(FpZ_m4H_wlBiyR!V>7wqr%{nn0ps}sJ;
z?*E_S`+wir*Z+Auf7ZY6>T>@du-{jo=f3{A2{VIE(8`>TGo3f4^B)bmIjN&+X3R?c
znA`D3uI7j}<_B-relYo3x#iWXd&@ulT)%vIdXRU1{`)0v7mdD7{CsIgM(wNM`LR2T
zzBV$Sk1sweYF#!*H>&C2y7+&e#IMH`H~TG@mXgvD`D9%4qf1nK|F5h0oz~^|Yp=(a
z-!1(8w*2g$m$z=+dcXI3cl@76wZ`^u{{4P0xbXA3-S0AUOFRFl?~|J-lE3TaWBK1V
z+T|)9{GYD!vd`M?`>yMI16%fs$JabOCjI|gvi$ESH`CvX$y*p)_<x9-UCs73Gk?v~
zv-$r%M;@NPA@A<5$F24UUzX(E*zj_>eeDO+^_8;q@eB;zE(;?p4Gg|r3MjIeB`I~5
z&+SrC@Z`H$0*(IbFMEX@mOdZ9vv%$B!>O@{#C6VIGBnP1$(ETlgU^5C$0dJXy?p5Y
z-=e0=zv$q$zS!5d)9TLL+WLA;*y|4;7VOC17!khaMct#$<7MydzN_2+{J1*q>#V=O
z=g<DSIp=oSv-S0VU%ZJw!&+VcefNF4e?OAFVrGY#&Hg*R{^vPn{u=j|{mX9MtB?8^
z_^9vx{mPF=r{5{P{`UF2>Vpp+G@Phe^wIkM&tuu~zkeOuTw2C<<o5hOVIo}r|K9)q
zb>8<q@s;226qm<TKHa+i&(p)5E{~e!_q;r*KELA6$N1@|pGN2XT=Qey{Hj+c_3M9f
zD_!K{=l}aPKK|RT>w90C@BbNUH~;^I_B^}KXQJjm+E=^&&!y?_K;?_y;*BK_)%U;j
zPR;J#xWwq_^tQ=QyL2YaJ)QWj;P$rlrTLL>-(_vio__i1%U?4m-<R?I{UA6e=8Vfb
zO|kB|a}PGNXUG3s9bfx$|Nr0L%irGm{CU28$$8uOy`RsWKmX_9)vT`<-R19XfBz`b
zeqzPb!mFXz@0Q=6e%>nk`bW9qA0NEk7As1`7=FF5`(EkO`2SzyZNJ@E|8CdoxKx2}
z2O6L2@A<Gu((du+^Y+ibv->Pd-g{?K%Kua0`+nB{e_vnw<FNdXBkFm(pUskX>G<=^
ze1F;Jv)g_CI0y=u=iRCKdiA>fmka*y_I_XY`+fa_dGD{w+Ege^KOLzf_K$&)Auer`
zj{QdaKX2QsxR-jZzPsjnwyxXVea6hMchAlKqpP+!?`BxqH}1{L%1-;f*%BRc|I9q!
zw~yY2Xd6BLRS(L8y>64wrtSWE?fk8`WlIZxf0NyQ|KCh^xt~W*O<gV1H%)S0Ov={s
zeV_H++z+2U+gJVmZ<O*A-`?8Z-_Pe1zuUh5Z$n4?ar>S9zhCmO9iIR9W_116)$Y4@
zhnv+2r~UhO_+dbH_Uj|ly7hKNcosc+Efnwb_n#!c{h#}j?Jgv3)S7MpO7q_Fzm6|H
zdgXRbkcpMm%ISg(4XnMj${XMOQ~qc#BUAe<ASc!Rv*>!u#dlK|8>vtDuQqdf<E`K)
zMV`W+y24bpRqCDkIRC@8+jjf2uD&|9d)F;1d!@9O-`?*2Q9OV5*JSzM)lZX;zP+L@
z$S-F3rjdPLu+~(&Ul;j1PiQzT$q=v9p6h2OH{U}gMsIpW`0A@2=7rC9y}tMPrGI_V
z`+K#gc2AyHc6Qd)qe+DsE9@oS%z9TXSkl`cwf$Ysy?g23-`%a=lYb#=>lCk}o%4@o
zt=*eoB=N;<abTwS_tjUscC4@YeQIu}yY^JC#XXO19x3+wwdv^hXCH6;{5qSP%T-cS
z+4RVoRGleW?QFvAzaF=<P5%4vii5_~lha*y?><`eGyB^9k4>RgveNhFdHkDw<?8hv
zwtEE)q<q6yKmHqWHLJ94`|BAy|E~}FIoUsaW$x=sDp7iSzx1k2t~}lsdn&Nd`m3iD
z|Fw(~`5y<`?|s{5{`UU<`m?j<8K1X#eUQDr=3(n^AGON|o7wqft5z<5&hydWqivUY
zVfy1^x^w3?&j0sCT|8z(`K!xPz0d6bf8PJ&%kuo4Pp6%?n7j6o>-qC_-{wo3<$U^W
z{ramQZ_(q$_r7gAeee6e*W2>$ZY)mE{p1yY{~<Gb)%Um6sgG}lt%)doa$;iVeAl0G
zT3c_ve|-M(4>z@YGb=*wgxeX2b!Tn0T7KE|<!Q0|(JGT3UC-C6f2<*rx}@idK=A1q
z`qScNeB@*#q<d1@7R?OM317=!U>eOUn|C`h{YR7C%O1Vu%a1O)n31&cjFDzv*y@=#
z+{-5Y%n$kzd~dGVpU!D3lMgPxv0~fhi@*EIW9+^k-@a|vy?@{K|G9Pj-Tt@R>MP!6
z$IEl|##BCy?_8mx^g!Ld^7a+SC#%=(`giwz-SLm}-o9GB{{Or3{h#N3kGUK2{>!~R
zmABvBeeU=BglYD*x@X4a_v-)Oo&W#O^0R5hwST8)tJyg$ar4~N9b@s9wN?Gq$K&$W
z|Nn4Devo7+(9*j4%E99Ep@bxZNq$dHD=(h;Fe8k`?&JHTuebcVyUn<IkM^xMci*1%
z+ud1ow)I(sc+1(P?e9z0{x{nAKR@M(M|AXco3NI@_4VI2|F8LWGyUJU{Qvud^&j(^
z$6SqgR<Nk@|H_Ne45vIKS3V4ybVg+U`)>I+{w_j0BQ^=hofh-nT7P!Z(FeI(&7yhg
z`q!#o*mUash8Yn_-)8Lm{y#HquD}M4iT}lJec$)}uKB)?=bvq2dBBs}<FaV~-?xv&
z<NvH$>3*{Q&vsA~P->B*%fu5A?|$yv*jQj?GmZOb@xq9(Ewg*9^1F{-%_-YHBfQii
z?6<65`%I&A-v5+M^`~gB+u<{lZQ+d#iI02D>z-Vh|IOY0m;L?U_xAhc?0mVbe|@C!
z`RU2~exA*@{i<GQHTQCxJp)6dzRY=9DL=lxv^F>6cK4u<Aqxe6Sl!)LY`%5w#jCfj
zs=eHD=5~a@ll`rW-h4KEuebLL@1x#NObj6^;Trb!Dt0ob-6sFMxN(n1-OCuyEw8so
zt-ri!+2xDE8IjkY=45XzI%)CqJxiQh!LAjrpSub&Bv}60D&Lhhzs~U27w?PAf0L*F
zYK=DAyl?BxJ*8W#r|z#zZC`vh_3CCL?w{{d_A%}?oa}ik=d6pv)<2d4_WB=#7mF}#
z_%h|x)O`iNJ`}uKx^T&fnu{rMCckXAb(gc5tt~0tdUNJF$A7cs{g$iC^)I=c{P}B3
z)Y@%PYm3r!VkBLE2-}-_u`qZ$Y}MjFzNx)!QhQr={@;gNE}ehAK{C9|WdE}{>&|M&
zu05N^<@#@Sy4Bo!Z}a9KS5HY2Ol4t^>DM{EF~!lddh7OyAqyjBzsWFrwd?k5eLL+9
zoAyRVw)YoWev)Tk2uQu<oznI9;TH!L*{-LDKE4SsnSDkio6%`GXT?%m>D#+rH?BXM
zdR6ELsO9cZs&)0%!--cK_ig;=VI{O)_vmt;E23}0n$Kt6-Lk3FHTv_ZzGr^@DHn`O
zoByygFkD#{vr<mdQ&z@<$KCkw#+-VKwLQ;w&GL;~Uiv$#|9&p_uO)u#Q;elG#6ew?
z75+xiHW$p*7RBkz?C*IRC*!5nxc+8VM)}QeIXSO6t**00$(V^{fogXK(N))$Wj|?O
zeDmSOGXW;QF9j4SObX+>xwh?E+Gk7Y+virW?@MEn2b&sb6>eo=U?w4$sc&pEOSUhy
zYw5?UJ5;(AUrfGNa_m%T?74<;Bgv8}-C!4|m*|wMOyRozEKB2VwdB&hTW?-@w`s2Y
zix&kqZ^d3K+rIXu7r#6xELQaDoK||pdwkQwh%lGE&woE!+_|S{#my{^iluYYe^fE)
zKH{^^ZTQ2^(4eKd`RK$9vsq`l=agq?{5+JfXrn@Ris2gGEirqHH|)CnusDjd2IQ*+
zc2l!T4JJu;raFIpx7YdbNw@Fw9+XCHTT{07WzNfj+ckdOC+gp9Y^*$2Z)<BiIjX9<
zTHUm3+RFYp)7=;trZvYbl<7)$KmO^_w+9Z79R5e_+b7liplrtO+q1vty?^uNMhsu^
z>bp5cM#;>dlc!DHUHw{3^-!l^uA&qpL&T(4v!6e!{{3kGpZN>l+mt+b9AEvY&07BF
z6K4N=f9vP{ymwf?_3_SF>09fn?*8)M^LtITUBSWU>ujIjGS8{Gdh=kfcI;a{>4*HE
zJ?x!7&946KWWvO-;M<nzXGD}c_iVcK=|IM}oz53S%Kp5vo$R>%)crrZigz=|oqTK1
zZLTey^Wf<s!Sv^6`YrDLcyr|2&)hktd~S<hW`)Kr=&G>!=Am+QrlX{$aw<!zP3Hme
zzUO?sD*XJ*e;v;Jcx}dN#gZMlcXPkJ>r0z|`Bh<5%vrU$)BYA)iawtlwz_cVlASg|
zQ$O23`>}WKshvkHT_DEH@qW;Kq?n!kSlkPF>l^a*i3$@}vfC|=yM6Uu&ADfN>&mKk
zpMI9Nv0_fxNvH2}%O52fdjFeUQG4%*+-^7byG|zOez{)$fBd!aDUMSflK$Zjy461a
zefVYK#48IQUU@iiiP5~(m$R&FFP)P+-}UX8Xzn+@?Y`@OPu{mT#!CN_yy=sWn1JH<
z|1Y02{NtND=i9{3H#is$WKP$f5-;KN=h64(`&BExZ_EGxuC2c2$@_PeZ@TYS|8n1N
zC*%Ee`<kNvPmgBXm;LP9eZT(S@%vjpuaDdM?vJjl<NVs7AIxI2AIJUQKI3}*!vFo(
z)29ednP{ZP^3mRKp4OMvOSKO}>i?P<neF>C@92`(Up(f<X)5H|2Ic<0BRprq>6Ir|
z?zr&m-hcDofBIcJ{v3a=p30KCr04UZn3a7;Hq|bia-!z%!!0`|pPZikUv~DaJ!``R
zKQVbd_<Sqo?6csQoSDHBg9|@CvH$j;fk8)kr&Hw2nbD_f9)3wsQC3=zVg6$4T)Epb
zZSU#L7x{4WXzk{S^%EmDS?pwF@D2-|=6<~B@53_*Dr=AI`w-!0sS?Sf^y=;Hi;`ci
zF~vu(ZoL`-8mVwdowE9So15|0?JG{y%xv^n7O*OJ`LfKcPZqk4^S7iI@8+m+oWIxA
zXj7#gID7h7%&UEMV8ssKl&<8LhYCz?->|u!XZqvrw$EnU%d4_4n;xnC=FbdL`jzwO
z=JvKpA4?SHY012he$Bmn>Wb$ZB#+*n*ZWpBFT4HrwRhW0qkE@tgYsyI+Du)$a*b(c
zrg1Gj6|w8Xn}rb;c6DFpom}wx%dLC6%D>LEmD_&UX)VJic?O5tRhw)C{P_FQF6|7`
zinh8SZf`LoV@;qMQ@sC%r=r$OkFH(K**4?He^$_VOjfW)Xq=3Xi}25iU1pid|0nL)
zG(9S~c9+}o@LgZ#h(=%EVXG@9`0qv_v%-HyhAZl`_1hoatXQRBbicSg`MhlB^i!cv
zCtS|Eb>r@?I@i~y`qFk^%`knrHA?L{(-V7!hE*pv$#{z;t=zLiwqwbBYZ-f+NjW{w
zcga5cyuBnR?rB!`)@>eY&GX*bg37Fb=v&<?pB5+YOxb2JO>3XU3=0c`X*O1%WWCFJ
zmcDJe>-6*YlFTjNs<rn%{SNkP>&$$UiS{OQ-n^BreimS2G%a7I$oh=*uGrOo&%P7u
z_NbO?Z-pwIDm3#EH*@D<<&%e%R~|lm(r4eDkoj|}-KKwjH20ui|JgiKv)etBjyk{t
zQO5g8`=Xggj2GTJd{LZTc;PRu8mqO(-fx?G^Ks<GYkL;mz4vnBjQQN4P+T?T+|*x(
zU;c{DGMFUUmp1ipF>8BD%*}f>2gClq@^inSEy>#h36NVMtBWdhmM_`+FJPDbq&`*d
zQw!5pAACRY-0eH}9&Rk%ku&@H&rdU%M8Rof>Phj_?z_Kd<ugw#*%%Vt=)d~nmfdTz
zt)rRZJS&SmmUYT!Y?nG&e_+!IP|@7`d+*-8lcU782r?Mx8~qHr@A1k*qgG{#mC+=w
zqnl1K)tGILYuWR8dr8Ob1=sIA+$Qw}<fi?PXG>g^dg*Io_HKTXGQ)!>CpO9Wi~e$Y
zX*cnklV+j%ESdPpN3Z5^{d%+8?1#%O?q4d)?;iP7&G7U64$FMKjXAgcb_eIMFr3kv
zs@s;dGr-2$WY)^`eI-`m(M6Fe*7>VTr|$n*pZmT1XIA6+JkuaOhRx6SKc0Cb(_Hh|
z*DG_AlnVtI`qU@u%gXu5O0Cn~ub%gK<;Uz#U#xoX>*hv3=KJ+V=|gE%Zklp<1@nyM
zf3{1oWyR`cI?liUcw=!|fZHh#N%7`ef9_O#yAbf`LcpgF1wnTtJJY5*%jVr)cJ<xW
zxw?$=WAA+57A0QAYIn{p%R_Q{=D*;oXMN&~Q;&JN`!6cIrmrmJ+r7V&yFAQQN%I`f
zDGy1_$C(rLr?D%|ymjWz;?KpOkKX!JeX1hwfcD#)H?}R>Tj@IcZrZ#Z2is)&Q#F*A
zE2YLf+Y)tF=JyFdh5x?Nx1`#aJ=+$X!_uJYf75>Z#BWEUD|D92Y?|?fu|N0xv2T9s
zbsuc~ZEGg{T9<i-y41((>CX<BH(%cRkNa=^9=pXo0hy9V=il*As;{tE8FTo$xZhJQ
z_ub#;Olt^#WwYzgywx}Nta$dk$SlbD)Q%r#_x{gc_Gf#>#Q#73F6oKbl3J5g|6=C!
zq}SmV+t-vu`~33SD&;Tw%lW0V^2)<sJ*7|miP`HX{NYykmYd9Wnhz%anRnDKwt4eJ
zsi0#^r~IEG%f|3odA5H2@ASR<E6q}_WXso9MX1=cpH(>&zxAI{^y-Tp6Sn8}?%usO
za!==PZrfO9(8#L6|Dx6+i+QhCuix_Lx42UB%16@Y-qwA6x6b+S$@^d3Cf!`L`sSOW
z8P<1$4yYG0%7e1)3jeKI-`g*rm+iAHSFscDQ#W#5dN<`t>GqrJYyTb#t!u9+_f7Av
zSR4Z~e}Uajr%0B4$_qp4HSWrL^7p58JzbUYy*g)h*shwjV)HNGdO3BEU-z`PS3m>I
z4y7rPekon2f^<%mWj%}to0*rkU5Y90<)Pev>&$*j#-0;9>9P~7u=do{R~{y}#r?j@
z$2RIu)zxgj!&iJE{r=vA;rH#Y-&2w_{qliP;Xh-;t0l!t|6SO)#a!g<6z#2ic6<F^
zf4{M9O&R;1pbh)@?$6KLzz7=O4rsnr(i`xqfA2!K2i?oLPARsZ)mU_|?cKFoRj2K$
zqgT5wPjwUnE0j*%<@R^&wUg!&lJnOsyqt9__FCz|X${xc<!rc^V;rOhRwNlYE&1f3
ziMKvgKX%>)YUQ0syQY2F^xFEO?Gazz>dkia|1Jme#|q!jY0Akvm6caUJzITu+0?gJ
zOniO!g=LplfBqS5HRYY{^1DlXt|x5Q01bc#gg#h(>hQ)K+gD3n-n`~sUexLpTx+xa
zvT|<x>vg{8ayOUnQk^{Ut|>#qA9jb_lt{lcZ|8|$9%Q6tm@MXbsU`kF^6RaJ@LO9K
z`m)%4JoaxVXf%I;*Vd=slWyLs$XlDQZ!6)M{wek8gsV&5f4QM|<JJ4D$u1AFiz8>w
z=LY%e)#Q`Yv!qwHUOqMHwDaP}r{B-y+0_t!YvZ}w54ZiiYgYJr!^V3?U|;p>oPM}*
z4oA(_E#dd=&8Nx4*R9{V@6Ww`vRj{i&$?T^Hf-&*E$j@-P5*!W^2Oxc_ix|)vLY|I
zF}zxO=DaLNI-Al<=ffw(*@aJ4tP2Z{uFKC&?>4dw-(z{hUYx;ivhcncX}3DI3G_0A
zD9+ThE4TP|A^-ROZx8-O@B4WB^}C86hrj=QcG|w;S9`yll<$-6>%Z>#JgL-tfAMi!
zd5izk_S^klbv<`SO8E6-Q}qtXGt6=OHM2NwaeZEp``s<NpD%fcv50MUT4`hw_4;;j
z)eko1mnqwp$ZU${oh$e9kFM;ausuKTnu(<_HXMC<<k$Zx1!kIybX}Aijtc$gn)<x|
zNd1@BhvWbKyDY!&{l?dM^*^TN+x+~>KL7twdA7~1pO%HL+x{;0Z{zmdy`OEL*FD_(
z{O*r$x%C_K*LE~$ThHRGXV{Rjvglv?X;s}9pQ~-k&hebuk#l;+84-S7)mQl^r?UzF
zT^O=7YWDow54Wv-lXG*o@r|qZ_AJ`F^K9znmFc_K(v?$}v`rBd&P<7%_i%%e*X`T4
zZ%eG3Td_Y;PWt&JL5bdFt3xXvp3~aawW#Ox@}5&Ay~qCC*;imSPip@B*Asdi*W13B
ze67SPtjt2CyV0n~EQmeJLsHy$ZJ6<KyG=X4{r5ead*(mul@$T2c-)L0uin^_&Amya
zYwO!9Q-1EWJt#Ku=aip2&zdPeWol5(^n1PEXU?>Z4wvnIcrtK1PJ8OIEFwC`a!Sy*
zAnDH3sebj{p5h-op66xpcWrsT+V{G_i=9dQ4AWX8kJXE-AFCI)KUJ~oRK&_K_eD2<
zy_5R-Zg0RUL;LG*4YXye9pl%w`|sK9Q+EA9&Jyrkk??2xf7}U$r=Fc=o>;QDJ-@&t
zSSvhx|7~zh6!(<x$C3owZ;@x&PO*Y=l9ux6B9ocx%in0))~q}c5eI5NI?mrxzB_(r
z1E}lzdP@ioD0hS`3t7k4oA&DQ&d0`Pn_6#`WzAZqmcM%I>a{=joRwAj#=7U5*vTC}
z$BIE^NP?$lYWFFZ-hBa87SnQd_NSX<Fw4DMW4woPzU_;tf8=K0Jn>#1ls8xS=KkDU
z;U{_W?dtOPrqk|cPwZLEe2!Op&Z!>W{BGCPORM=omS0&Guu9{y=@ixJ?1v;TURt8F
z|M|9c+}l|8d}~<0@6WueCrr#i^K$``sXzBt9gp*pyu^D{U1$IEt@F3<jD30UbwPAw
z9mF8_$h!3#zs=h*`Pb#A-_KbcmR=Ko;CYnU>GzBbC+ZJOTBNgo`I^1zm+mE~1h12c
zuFF52Rlc^m|LJ!Ih9~w8OOH*zzuN!Gi`Du&ZD#$L{Pg>`xi=+O<S)N=?bN4g28K`a
z3!F}Us;>RI`n#I${^!|S%eI@xZ`itc-%2Tn`3+W@r{8OOZ~W38eE8y<`8xZz-&@Y}
ztgK39^2C=?VEtyjPrpy${-LI~|M`~LF6VA<x+VMN>bBtIpSEECEp^&xWKfm!`A+BQ
z_oY6Ob^S#kXE*#($v*vl=@hwrw?0*G%&GmlSFPJq{tKu$s|mVr8tOE^&`3Gi(_gP{
zzb3HV-D#!Et`#yt)9zdUe!*I!v!9(o;s4oCfB*AG%B!oZmv8g=y+JsO<ryS#Z#`Q)
zRdxE|mrfsVlx4l%9kshA=s-IEFBNH!uL_EO<_CFYFWKJd_(4RvQBvg+tLiIFV>7p;
z$G2C`>;;vIn>YI2^jmv5IoU>>q2cG5`s3ZrpKoxO$lmqyjm(L>8K_%XVr?2;oNH75
z+$z6zZ|d&biPwzgaWfo{$w*oHIpy54w@YW=lC99{-F)m|hDq$&Q`{kf{m11xmslA4
zg-cF-du7VIy`HyMmhQ-PT)+3;UiH$d=|?N{K>5Gtiole@cUz)*Pph7NI#K=d|MFYM
zvz|jcvtK?<3EcCC<9Km<n@~HOaC_TieO@)EjcbZd<e9GfVxIr{V_CUH*e_Y754z{y
zUa^qY1QjR?dOp8v`8@xUrFkw(&X;?>HYGy6o9lSL{9pO~>&=aCuN*VKVX<xQtnF8&
z*2EtW|KhuOZj{Zmg*^*;rc9J-GCG&A@YnxkXLG%NU%6A()f*u->Fe7ouQJ!0&9gR2
zwcdKGLhtrUMurbYRvTacU-s?i+-YCqU;K~W;`Q{DhmN_)tj^S~z3s`h3$NU``1Jdf
zw^yc|+?lid*i8@6$Tv&sobuxL|E(YXl<#Kzng8*G=qY_3H9kHSHszNKGt6Y<<9l6~
zU){1h=Tr=@>bILW{dzY~GzxOd^5E5c{OCmeoBxf%3URtBS+`d%Wp}^qycpC+w4bu>
z)TXe-AGbzX*>2l>t@5v2bo=RT8;@Iyoewf(U=UOMB%c<v_Wb#`+)MjfvW(4ssp;&0
zKA}hH`QEDX>$?(8YwbUr@?-Mq?-A9KpwxY3VaPh3zO*TGi>GStY7NS@Hk}*xxcs)+
z+9KB4Z?{T#^+BF@_}9!eReS5z2$u)kM>j33$TOHEXJ=)9J?Bd2obr3mzBTy2`gGI!
z&bFsJ|Hy$d<%;Ni5$p2T2EM-cntQ3s5AE=*O#jPQo)pb+J#l;2G1)J-n(a>BO-i&j
zWnef_A22^9cbD6$dEc_4U$iAhrasz|Vp#HXNv$>0)}K4&PQKn!a1>%_zs~82F8lIT
zu8OZ?-^Y3S{Z83u3(oJW-n+hxalU`iEnlf!-x(Mb{yUa}Vxjkn%dOYk%ZtChy|P8h
zclYfoxA4^+RbCI0cd>yKt#k{W)~+Pk8<uQ(wJxrC;>WqgM{gIHM6cD~k#i-RIWF^h
z)qJDa!|%6&`&JALpXRSRvB^f_q|HA2FSFC#7o9w`Wbvu8tmx}IrrtHJ@zVx{62qtY
zTB^oJpYt7`XDd?utsqAy_DYtCbojP?|L#n6Yc`v$AHJ%nefPHYvr-am#6c?-uB?m*
znik{twf(X_kJ>M%%!?VuudlDqxO?I5uGFo!6O*6EFfcg$3*PLq>_)tQb?sMAY2}SM
ze}(qlnsi$G)|-5*`lTJUv3AyvcQP<E{8{dGb(Kt4`s>s0uNuYIYv_KOUv%PX4p+rn
z>#99lU4PV+Z9jZw(rK_tyPrvw3UdN4&FiRbo>;OmCf90L>$_v`t{u3jTe7o_AM7;u
zX-_LwE#P^kwRqRV3cs7lhtsaH@43`^`_Czn*libB85o}IFSNC_6~6!W?c3Nhs@mbJ
zlrQGkez^MWhCunHos)`A+)m>Bv832+8|$7o8yP_ny;*Q$evm+n%BG*698zk^d;bMg
z6_~`XyJGc&rz&^(@olwhqdlwV%AHJFWG@PGLYlGZ=gw)D@3Cr}{^ad^(teM@ulDA}
z&5I?M25yqrRdZ>dY~zCMX0eOcUR`t<R5UT1s8@I8tm$6P{UO}Hzvk`1zfrwuxd%QT
z`yAeNL;S<7Xcc8hNR><Nh`H2cxBqzZ{pxKS52xSXa7i^Xvij$f(;kA5^&M?fCjKdp
zIW^<GjP?IT7fZHk>EDSI?ObwX?o>O?>6#tp=OzVfD#Mh1e7f*z*0US#Wxw>}XIHJf
zuQdNZHv_|hcT09u?3;4b@~1chLqcby$m9JbKNuMpbk_eVU$iBvch&s*nV=HLD9A0q
z`P2>z?Zv15JTJK=_T{H|RozD;@ZjK*o&{}F3MZ<$dXc`i1$}AE3HUM<&}axK>!Yk)
zAxaSILYq~K!XJyv_NT83t!$ik=jo(H7fsUHQkV3AhU%n(+)6KInffiyJ^9RD@Sm98
zf6epfVI!7H+NKnq#PFMUQ{3D84oidjjw?ScD%>~EK;~N5>d<pNmxJ8)-g{9}Rbpk!
z%EGWB+${bb|MFi>FZTtk(x0O@ZT0q;!fDWzGyP$hD`)(iB~v5MrA&In{;F(yumeLw
zRLB4Lk0FjvY$ksD<@{24;gt-f^)f{_dKl+#*|$1$^;Ml!>m$GZTpy!%F8RmdOqIG0
zv*=<gTQ^MxhVIC%TKz{hdEJkDYc|F2xz{Ph`Ij%<y;pPaTHk{6a$mgoPHwT--@4S`
zg4>U1FTn{)3=CqkomLtNcz&0cJukb0|K+uyDSnT?d)&UZBRliFdTEtPx2NpMF7CAq
z3=IEVw4&!&%(E6ced?<z`&zZVCo0ABKC|x$ntuM?vrT%dR{uIt&;3X@f9I796Dgi!
zSzC*KJ`I0!`}?Wo^Qu1WeZTkF+x-1+e!c$hR(XckJmzb=z0KDP&ixT<uX)Pr$^Ch%
zU;l7*{NHIi>fi0OK4<rP&h7mD-j*u&LhW2^p3SS?7qLonSIoQmKgW0H?|S*Zt-bw7
za$Lp31FJ$;n@Z(oXTO#$ugQEh{riu{{k9(t{QX!Fv;KN{$&dB>ezAS5_-NX_{MWzl
z@>gD#JTm<MQQm&f+im{)-q)Ig=DTV?9F)IXdi`x~uI$sIm8-LlvfKZ-_$;mc$FHN?
zH>aPkyd0)5|9pJ?->LDxF4;%wOq-c4+Ub(F@27J7pGUQq<#ffmug6s%72j9Tui`l;
zoT1^e_q3-MUE(B9hF1M}w6dva#nzi5Uv8DJ`>geNr(SzyCQs<Z|9)qd+kL$`RXbeX
z;=>=)>oFUXkKbIRD)HvmQ~mnFv!>=94W=e05gJdP{|KqAZLk0T`+n~2vb4oZWAwVW
zs2g2=bv66Q?nj$DCcoKs``^Neg70@e&kjyr`lwUA?(@v^ca-Gz<lU`$n!Na8;Kcv4
zvZ9~vm|yW|<K5loMZed7nk@hQ%bbfpR>)eP`*mfxUHICt{Cz*2@BcU!e*g2l@8|!R
z{(t}fufBNPj`C|C)GKV}J#MvkJn|xZ-=|6M>%Lou#}t~Xi!wY&4O<t|?q>Y=VbuM&
z+z|6Q=R{BWZaqC=mQ~EQc?sPoY8>aQ7|l;H)H%tev+~dP)yv!E|33bpX?K$KwpH2M
z{MkPZv#+lcw#=!h2)MI7VvTlKi8iD6lGWjRUzz^?Zf`!_|I54b_|p5e@%z5tTW=b*
z>1K}I{OsJ^+?r`S>u-YAM@^5fYZdyZR{KVEdd#l}&GusP^Mw4v*TtB=Ox_yx_S;))
z`RX?pBkfP~*Z*kV{cczI&i~W4$5eehI{nYP^8LLohpxwbp0{!14bU|D$&^pZ@;`q}
z)4ko+)^_jfy7E8A>;J@ft_zPXy{p{+M`@x*O#R<#{XHL)F7C*`uf2Z9Bco693=dKj
z9>vyM+?}ye@lgEEAn6OHQd=1Nw`A|tf3Uju`LDZXiygPia5??If3o7$O7-reN$Key
z9vqDO_zu@97tM^g4c~v?|9?IH-zV|sbITWAx^(AG&C8|v6}NBS+fw@aoA2yxF*P4o
z*X-M7S?9^lXY>Ex_y2ddv~SD5|FK#A&uou0FPqwbKmSgaQ`k4%UA{Ku?k?lBe<BMn
zc-YO)&$ixX;k`0s*ZY0z-{1fLruts-*R9w0egF4+|Ig3!|G&9cy<erv;AL{I+3oOs
zpU&F<`^ay8|4*Xo|E=40eW^M;QMrBhuCM|(Muuk-bxwEs6h5lRvzQkQn*UpH{$H2u
z+EYEe^DpnZ5tgR-f9?j`*|(0~UKy5hto1c$orhGf+QhWHy<az%?cOW6A#eX*<9?e@
z-BY#0EoF3z|Hp*K*B%z%_kq9q+noCumH&U+|G2h&pYxN`_y0T#zyI&s_5Giw=Cd*#
z4F1z+GHco1>UhOXD~0^kpY2zlU-M}0`#;=;?nlm^)~mjL=Dcuc%iMF<I(5ZkzjQ6D
zieG%9RXnz2;|_hNCl4MRxYED(#iH=8+q}|dy?t(6txYFGX7j%<+Ii@qz)yaLg05AY
zWV%xOd!M%joqY47N#~xJ_W||J3V|=zjul6%C};bcT>M|YXv*vV%UE=JIU?r&zO&r!
z)5QJu3)63Je7xpb*mwW>Uk{GB?cX1~C${RPwB3is@Bdzf_wRX|TW>jixsc+UozLgR
zZeEstYw`4$Pq$XDuX}!N?QQj=!B2nfx2)T$v_-VLwNuw^ao`;-WA7=yqt<Q<()9m(
zqqBcah?dvl3Nuv>CWZnhucxORR4z-Lm*q(3T6)V~9MTwGU!?tb=UlmyS!%B){1-d(
zI{v>}_tBznH+TDgVP3!YTU&qao5QF6=9v9HV_bh{=jR+jjo_76K72^1-d*2!zWC?U
z@S1nU+t)>J-?w~u+0*;Q=WQo@sFc0GclpGW@VLsmzrITQKdt6r+r8*w#>R+{Lw7WV
zGz&5^3bJOfF(j-iS$8Ggzj~p|zl8Xj3X|xy>rW&ZzGRB~T{-*q)Q@-gw)-yS-ZbHV
z$jQea_dS-KKK}^&HR0%fqp3?)dj9+O{r}f<*7oTpvs`R;{dnZ9x8p(m*^iZFZ>^pm
zleVupE<0az<NAI7ypNk+zhj`e@Z86hc7I>)7msf!`u}<U|0W~Johz^XPrtYC@0t7m
z|COr?7B8>*_42=9<&>}S3=F|1H_7-uo4WP;luGG~Pkt~=Ii2`zckb<L6<LpW=9X<g
zye8G=`;p9)R7dB~PPfZfU;UVFYgDvk?b>WRVZ-15&q>_+_jCUK%G<fy=T}Mo|Mxz>
z>TGu0_TuL^C*OMhmwnZz>!RO0R9t02ZLBu$xTR6DeQDChW-iZ8KY7i)$;5Q)&NZi!
zPCL$zy%V|hkgH_B`|7JZVv1iyEd0-}o^W}Y?(;dtaeC8dpB8E`))4EC-kvvG>K_Bc
zX_tKwavbTu4r!`>=5;Z8>b3Uzfd$vgs&cHaRZe{=HCOIr%9X%%mFCs|UcZ!_A9UgN
z?b|!<XUzQ3P?;0Mv~I_vO~+i?m)*K@y%)5;w6gM9GkbOZ-mk*K(f9s5v)}*alKCE+
z``7o>C@sGDqs@FzYrH)}gq_gLq<W2|J<sJhmmc1@#%Myi@oU#}yI=V1-*nJz_UToZ
zix}^}JXbG#_~sVJ0!69mY^n3Nw{A%DJ<rVl$N0G(L&C*Xr;1W^%=i6?%WdurQHl-W
z+bR33A^cWt$;s5^caJpbbZh_jl|HfT?fmGDV>>6O&J0e^40wEX1w+HKTTMD!Wv@zQ
zuD73aPCUCgA*y%T;oQ3$7KKWl7oB-N%`9Nu<-Bit*Cd5*pEi)OscyI`Z9G$DXJTfH
z{l~>3_5ogu4Bhc&@vq)?+kd(JZ~ea?J7@3zb)>Z1=1(Vk-S4mSZT`P7KKv;Dlcn_S
zdzB}5&Az|$@jU)H|4(Y4`}g|#y8S=aJlLhD{xE-{Mc)7WNpih&Ew(RRdi2iy`|_PU
zA2!D@>4<%Pb@eVAbG>Ze$BH*1ji8S24vDx$?!rH(vkB|-s%C9(?hMdbEmL&M_io+s
zcW2+;mF)|ybDw>B+Xd@Yg<5(E|7KfqX!TCkyES|LvB>>PI$!VSDBFEJZ~pnsU7b&t
zZ|q4<{<&<K4eOJfB|TFnO3jOV^#6^A&TWbFqT65I`O%kUw_Nqb=J~r<`p(?=aDv*q
zCo0|lFHZSbGPC__yxOx3o|?H?F3}xs3=AJOX-?5%p15UGWnR36t$?5S>(e`4l}hb*
zzqRey+MEp+Ury9f6YCGI51RAaSz0hRNhSuQYr}=0n~yfPC)-#4Ibr|z!_C?6{+}%^
zx2bt;UjO~<{BL#}?Q^bV>)&~{|B-2W&8NHRcmMw5w)=N(?)$2*lHzl3?p(IH^}}|P
z6?OmnE8UM9LE6)WFRupt*)8w;L|QuMOY7y2SAO(mtv$PJ!S-w0m-js1CG+g)o>gqi
zAMxDy&&<$}x;AE|?unrI9LrGYtGvsLTYvRs&05AceXaV9ODAe3wMLeo=KIOd(6H3u
zi1oy8Q})>wYJ+Q8ZDVjP`}#%I>ALM_GZNfQ!Ha67Bc}<^e01dFodTQXpy6i6`F};N
zqoztq+bu6$D4xRjlb?a%%>Gq6?MXM2AMackVr0Efp?mvLp%0$bW?QwZbGCT6Z9B>Y
zQuS4Hsy6dPpJbbIg*lp2vaDCV+yYu`UO6>d^8DK`9%07+&pQ5NW^ib|v@_`c#VzW2
z?e3ee{*savo2>T$Ja{O1{%yhSFIKuw!NyHp`F6#$GvC`^J>L2CjJR)~{)tChW;4ZQ
z-j?#uwb_35UD=GSJ<pp!t5#lxXkBge*kzdPoU+en-#!KJ;NaP(cb$5FWA|OTFE?F3
zWp9(z6hBeVz_7v}Tu!{2{rsBI{RbJ#Lhc8iMJp##9K}F$vjGcTmfeu|(tNzr-RWh4
z&gwUzsi6E_{dTAJ-Ll0eYI5~f`<-TmEQK)(jqK}r3L37=-7wK>N%twm?T2-k?!WtL
zmwK%2a^9s3lbjefP*`gPYh5o3$zHPeUx8Kp8r>6%u4Y)>xyGv<HTC122LDYnZwB&$
zdSW3Ov-LHVcYY1L`=!7nc;z*>5?{C21KM*pZ}fe6@AK|lHe2xzjUa#D0?)cm*=L&?
zQf@LaoX;}nScCtqO}A8&;-{Z~R~QvBffZ!lmE}=W+mmnpTl{$EBeS{E_XE#9-%<h@
zExmU5`Ba%nokd{deu;QZ{l!)D`0-BA;K4qH?zrV2tC!?v-#Jy0x7>Zxj356wz`mGr
zN=&`)dEb#uUwN<2S_AFMXg}VWtEX+f3S!cUO){QOrtY&%RlZx1RpY+(T3Yah?E5><
ztp=s$G+wCtUro{8${P79xFp-Q=8@mJfct^Im#;kB^pz#r<r(*{tn5u5Vqz(bpokL{
z`smlPXJ6I*c{@ZOu8&#C`$CHMR)hPkt@p$~Ts>C&H*faE15G-huJHo1O*-mEM?Zd@
z_Ijqi%z4fBH(|~f((8}*g{2;AJD+(qOY%JHGiA^OkWbC_?c2+<PH*A2{_4hXz$j$x
zsf86`lIP#9Pv4hPR^up^->v#!^0%C<@NYLVCicV}V4t%ka+&qlYmkL7_c$0LZh1XD
zweaDS!}St>uK8Ez|GhT(`u(3Le81b*z29&D`-1S_lRkx?wZ7l}zV_z@>uvQf^Uwc3
zW4e2N{o`fc=OZ_!ZjHX_H~kf(y03llkJ&%oE$Q2p8U1YOL>&$W?@+7oSN2t3=k1V{
zI~(>|dsBqZu7>M%_nwud+H60Zo9rl-@Gv7KRddPX8B!Oe9_Bn+_%m1KKjVQ*0nrmw
z=T&EFe7uzKH&;W@vWjv3>BM*M3f6qG-t~8Dw7&QUM*YQ+&+2`uJMU$RgQsO0=iPa{
z(H%C6t?aj`XKGfd#jM;jH(u~BH~#snNypbWS1-GK_TNLgTV<~@#jU)VX7era>Z%`y
z{dgTE{U=rkJ}vSru6&~Nx1M+MuGh=niqBbpEb{mN6ZL=Ug4_a*xdt7p*=Qqh?uz-1
z6{-6gJ(k6+e7hp;LbkQ-q)p%AE=1oBJezVQ(Am%R)DDkN^Xr}+FfaZu|GAzqVW($G
z*H>P%ps$g;KzVSF%=VdIm0rEI-fSFjz9x6A*xYH{KN?)KrhUAhx%;nJ#w~Vx9)^gV
zRhwiaPk(K_w0Qs9`hNjy^yk2`WYIlvmSig~VicYE`p5f4hkm?&<PKV86|ypD=eEVS
zez4X&j8c!^7m>NDU%Pb2no|jRZ<*}orx<TuECrgek9n5(N1S1UOv-1~RF&;^t7gmf
zrD=T?zoE8R@4?h_H*YK}d7m43eVWASAiac4h5w8PjFe6n*@OoC`Zh%qG8>y{%;s_~
z`mNB$^{3OnTj<{6e7rMfIX9@lc@?l0G{^e?;>Vc6+2?xSuXt7*1zH1n<JQ8SS5_**
zPnkgZ;48SsD!G60<DG*ZyCT-<o>+7}^N(ESZK>@>^KOGGtbeSaDboh7rJIg+KHjOk
zagEXX^I4a==afG*+ix`Q_Onf!7E3{9({tUoy2QP_9c*@~cRAOog{WCnEQQhGA2Y*O
z&G0F#k;kfk{5t$HX5qfYvzDzqocfw`TgRE@Ihz$DBPOtd@?40=5o^IuQraInKZLKl
z!dBADmU}??ZPa`2A6bug)@|>#+zFYI-=x#OwEOSF#gBI`ECDZXh~`DAZ9-S4+K7XU
zyRs~5s`JM;8$aF&(3&Y5KjA2N#L;&4?WwkAQ7X#fkO}r*Q%+57Jh4&sD%+u%PAj)9
zp5?dt<L=zq;X9{(yyMrOV*1%!5@cA2#$0Vp<Ko}1wjW-6Gpp8BtlLxk!>#kT@2u;2
zUbZ7w=L8dIgzOb~V(vZv(*Bm9Q+s+difSCimfscm;Dyre1-mX}Ie3-XV^FO${p5A=
zl+3KG;>hswZEx1b?^T}^zxk{Obg96nqn{isg6FSW_-4g4LBW76(qC@*^>2CnqU!Xc
zeJ4*e>3{>psnciUzJqRS^Zi-&73f6Y4_JFL?OOMW?eEW=bEw_>bX!<AsGb2Uh14@s
z4#uQ*<w4quX%jz}t^clRY&NG%n0pgwhOyz-lvAhrvK~X*hTNMnOlR?JFFo89miluq
zw2pxU3*kBjyp91<$4E)%@bsmD=W7y;*=jCLyQ(Mndsj_a|K&qqe;ohv<%>_&%eQam
zUeSnJW>*v^#hCDJRcNKfw72$F^R)9W@BAoxwZ`xCtOcL%_~xDxiEU3=6vJR}`pnjQ
zyF5D!lE4kJ8IcP^Dho9}-rq0(=UKg7{b}=gd*1c6+kcyS{Qpb$^M9|u|7HC1(>Bw0
z<$IFew*N2sJ^g<9zufTm{~pA@tvUNnbavP-j(Ua#7tT-k^X%R}fnJ6S6HbXq*H+gq
zyy5`~*{n<Kwcw%dioDsUPxWOn7-;vd`6Fn%?{V*WznuB^k3~LCFqyS3>?!N2j^oMw
zE<tl7r%W`O=l1A*kjljHXIUE3FOLO3wqCW>Y<APVTQR(;HrJmToZqFuovxg&Y`Uc9
zbPM)%oR3eh3|Yt560Fas!pEx`C$r{m+H31onWnyT?S4-)oj0}a_$fa3?e`0dtXCD9
zftTrY2%o4IUVnb}jpXYuRz!Cki`<{_>wiV9o8(o!aE<Tn{cE?|n9R})&)R>*t=a6s
z#B+9s;T2&)j^i|^Z2~97G$4+;k{DHtx`H#|WPn)8&&S=1?SFlJxV!$tm-ctHZ+=<J
z|2$JZ@7MGHRzK|Z`);j07XF4K=I<`v?Qxag?!MpsVA=j#g*UaU_3pfSpO-&R;vWOU
z=chZa|JQv6nm2p=RWdc^$&vgFjd|dTW9g)uA6X;!=uSIuarO5jx!ox-FJ!NRru9If
zbmY$O|7r98Z{(QxAG8Fi+jnJ*WQWY{z+B{Z<FYqPuRYydUZt`+(qGb2dZnVq<Ckaa
z-~4BMkg}wB>BpZtzsl`<n6WLY-Y^s1Z<f7kbqBIWqU{fRLfIxA_sNy1Z};x2de*IW
z{CT3q+hq;mx3*mimOh`mdADp@SqL+zDEz7!4w~ag-uv`lfmLw)1Xq>aX46Yc(@)>~
zb+uaQ=iEC@I-p_ohRZtfI{YohUk`*!UzP1iabXd8%eHshW#zXK&qLF4I)1Au7Z)*t
z*1)t1%}n~sv@h!ZJdPUBYN8NO+wscn^0ehf-rGU58byrq;PonyRXE33Yib`tdw@te
zdU6~0574x|L#fx(R~KGvWR3iF_+`z;Z3^9Ci(eK*o3F_Topzu5hsx}m4m-i>YB&9y
zWHf2D&S@i=vmvier_Acv)evr#o;>@~-sk1Fd8+gtfW5mluq-4yXTwEtuU@rJpan+~
zA3USOcDuZJ{pqHyA2;_V(40=guaMQB3UqGQm)L~gSysGN_NvRK&)cGQ-=3|1<JLl-
zi=`fFkR=VTf;B>``j7luZhpsppMp1Po#as+Yq$G;^5z*oT-iV#7WGQ)7Cv6=o)no{
zp10al{)?x0-e*|L5i+|DZaE&`et~!CuR||U+K#&md$%85Q*3!g=L8d|sCyN>PJ??>
z&-V{s+k<yH<vNN9zO{mmpdS1+>GY)38b>kk%(aFrD0o&luM2p`FCU#B*|NWAso8>T
z&@ze4>%X=&tT&tYy8Lzzn^+1X$dOwordI02zTuabJ<q%JaI)po33szNe!W?L<Kn6{
z2c8#4ZH<DgyKu-|6>2GRUQYTv@6t&(VH0D>)fB^tdQf?cR85sJ&PT7NW<yqnOgT68
z*z@Pts(-ZMsHVVP23J$z*X{*Bd+s**G502HDO%^?pX-+|U*2*5_HFBxsgBZ()7^Il
z$#$kmzt;WUetBli&XxNXN6kLHYuDz~{J*bkC;pk0>voEjA;QS7;zAa9fzyFKr^Qd}
z^QhGQ+ug`sx9Pty|DSKWtmSt8%=WK&di?kQ-`|^CgG!HEy-!{LX6MUI#_#L?vu=;u
z`T7-PeN)@JutV|;37r?u&-pC%w|KJEt7W+}r@L)ZcowJ>yoUdoma*BThY{QMEsUCc
zb`AfpH^0xl;kj}>Ixl<ci!Ct+*cl@9{NB{h6FR5nx}`OP#m^~pn)Ajt`Sbbf-#-+8
z|L6Mu%KPH-qWO=`eV40yd7<Fa`)zyw-Ff$YU*%`}nDTS6^~Lvk^Y4FqULF4a-UYQ=
zob?P1sjgE$+sD8cfUa27v$W{x36EDx4<1=~@JM%a=i$SgsqUt0!-T)wJa2RO`rU^S
zPs>ZnO}xXDQ=jCpfR{FL_3E59mI-sqtgfz>KD<@<z4@8s$1zq+i=nfKNBdTHZ|k{P
zv(kP}nAr`Bpy&yz!7Jx;f}4g@j!tW~JNbT_<QFUOD*Tm-sWD-Y)t}F9{Wmw=ZunoE
z+joye=W?!IUbA0LD=)glSw7hy>3ZchN@tFt!E)B+U;4t!Q*|zE;ja_QSoMB|nat^L
z@^=%QF*0f3>xZAc_(1Cx87wR}_x#uM>-n!&SFDq~FhsIr$?v|t=X`FLjuvhGw##Mt
z$LeFpi+9(Q?LVGo_!2S!+P0v_c*g&a@d<HDU@gf{Oh+&(PzD`=Px4|DbWTrnsjK0>
z8?Z`$PT%rl<ssR*W~_U^&3(P+RK>c}iPs7k<-zL*{B{P(N}c`EdTH^>!{_DuzP1OS
zYSK}<Rk|a`7PN}1>8t8=)$Yb3Mh1s}&A*;-J^fek>jj&%rr^I*Q$MmsTHW0i`}#K1
zzFQUR?&lgyl}zCVmCGS+)1GcD*=S!=Vq-pqum9;3=d#s`FE;N_a$miP>3-YReGw+U
zM?q@?98<v=)+{Zj<IMCk)229sN2=f6ytD4irQC@<!uk&`XYQQA4>I%0f{0Z-*YqAp
z%by327<Wy2{wMGDv(UU$(7MOSvvX`f6WI%#UdCkB)aC7M&$pPh_F8z##u+7y>;LXK
z`}R~tUi<B1pn7A%{{?oa^^kZ<;Voar^;>e+E;pNZJFVRM%$pT#pcO~2g4cz(FS>cG
z>h#}-C2H|`tKP4;_H5I-cR4qs_gDF=>`$9L5f(DtPa6xKdFZ~<v|g2psD~_e-P^Py
z-)NHpH#o2ZkaAntO{tsM+LfU71)z52k>c83)#=Wf6aP<f&TEf+vghvW+EYEe%kLiP
z%YrN|SXz|pzV%i`o<^-o%<hKu0W$FumflUhec|q^p66^elg^%jDs;M8;|ZR>Yg;_i
ztF*>_YeTqIdGhW}O!4ivvn~{a5`x12mAyKrKZYdMI8Lj2ChhxVsx#kg!xx+LBi{y9
z{jh=5K@6Yf{|Z@kbz;Oif64P}^-oMXceN};_~g0US#R_5_a$Vv3;h6%Trh&xaDYZG
z8b55r>=Yp?ph5<aLawEoTvI>Cq=uBMOk113;#!L7%Vs;!GT(;nWsLEVHX$fTKv5?2
z^P_Ib>+2tm!diTBzt1i9*4r(U2C66+p6s7BZ{EDl_usyK(|a~)Drh7_%C_e3!;p0W
z(Gy%<c7q4xl#Jpx?0d2)CDBm~wBp0sPVl!H>p@o~P#f;@DXyB@g;yTD_|c>TZp4+X
z%?}n!`M5jRjTux4Gkm(Avn<W-V$rSL468$b_UpUOw-%{>=TVbkve@L-+O`Gf>o#tB
zvdRCG<=QA+=mLnKDF?P!>|&7r`S^nQ|IODITwlk#WlpWzUnV=yeiKl$gF)f{TsFPw
zTNa#u|M5nA^}knVv-jSW<!dYPU)lp6t3Ab$<so^p{`k_KpXWAy)|c`Pe;xin_X1>@
zMA&LY!)Z@NERTW?(r^PSjhBmBo7PvGvb_H9&Xv=D>3;gTpMinlm0wr)bMMGGlj|87
z7^cl|HT>t@F3-Sl;M1vk^{j>Av5BGLr$9@oG(gQ}?;S>~&eZ!Y&vl$%zwo)ZzVH;#
zYALYk;+a89SV%ew<g=GQr`oHRFK7PHlNLU|(d+WH+;_dFH<zeKslM`*6o0q9BCc+t
zrgCbG&Hu0;`F7gB{x3V&X>?pmQ)+*j@N2X0ZZhi?mfzSh=ln@wE9U8+GjD2KUm4zG
zRAi<XAo=t54u=>2XTO{}C*$Fp%1WU#n^pxq_L=={%IwoKEu9}1X}sUE{=KE{^QWPD
z|MSGxZEi3+x7XrNZjI!H|K@)qPjnhh-?3)KSNYF(q%EI5TRpLO(&bM};=h~eo>}qB
z=#AZsZ#hTK?BD+<SLJ`=%RR4HEz}R*?1=1kyL+O3`TtZI{aa~&FPpv9Ulp`Hv-;EX
zOD8nV<9p{!o-?i3{=45&iz$U!k}u0<t$%UmzT2n!nbk*+>3`T#|1#}|ul2q8M<b;z
zpQcr?);NK6EEoFc_g8CmYMk4-W5GW~=RK@`p0E7#ed^!ZV=-PPrT-pqntn>}tKaoG
z=-6Z3?*}q1U$5T~bUt{EMCu&HBLT;R|L&c)lkZRN9C4}0X)BpP(dzhL9?t<SV*4Mz
zy;j<_yJ91!M1!k`KPQ9E&jj<WA4S4DZ13qEF8=9q*-rHJWu^+ti~rdZZno~9Tz6xo
ziyK3P&5Qrc8@?RA&vQG}ziRu&?(27yAMiwnoA#aiwWYURHvcsT!wmN?{}~VX>@1Lz
zx5=%^xieGZYey}En8@FHhG{!ynn&5*^IKf}l4DMp@bgIfg1+-UEG!QHm>VWvIT568
zwaxl_%FQhd)@P0NSq>ZmjqZp|^khEBut5N1@s!O|E_Ig)%`H~{rMUdl&RKnBL4GnW
zX;&Q>xZD5PGkDuD?c<R*(qFcBmH>lTliRe^RiG1WYA*a|2W56<JOKhKpJ8X)80`Ni
zKW)tlb}T0inG<t~pplUQ%8eLjqwY?=y-l$Gef+^^M}w-^A5T`8bkh0tHOcZxJ(J_)
zt){s<dtT|(bv>n0TK+2jek{Wh4=?eTDR+I2%d?2zIQlMW<AHxi9(W&M;;N5WVEJe1
z!5Y~=PxUH($FcSZIrDPAo7Nbjk`!3bt&-Zb`{;5(>H2-Ys}m$RT{-@E1YMEv?$t;X
z{2sE-$$L-gtV+!$jh9P4C<m3C;9J_^VW;mZ<8^V$OJ~ilkIF$)-cF8HYzcbyWX3+<
z?YaIME8kZ9o>v-MdRkLeO0G*o>+Om8lYaS{?tALf8}`w;X>EaswNseL|Bo%V0$)v)
zH`L!&Id{su&xVzkH~g!P{<-nB%DQb&XS@vDR4~Qjd#~2V#o<SjwJV-`T(voO>CZiG
zzt>Zhm;bzTvP=6-X&+Z7V|~fqx%t;OFJTeObUP|EudDCf>5_+0vz5-i?y9)n5_?@{
z;#Woa`&?dgFW!g{iwv_l^u_$cIhGl3Uu?Y0^UNSkB)$LRx+2-=)!HUE<4#zey<9qH
z=k#`q+f`Osw`ca6>XlvLv`CnE?y*#DXUolVQHlvKRYe&u9$Nc{#pyuh@kx2N`~LeC
zygFG?b6P^)w?gB1(5Z<_BlfON`?sZtsfE+i<M+jwwOzT}3jXc&f4fL~%VpcgcWfuG
zVw29ke|t?cw_L^<A!+3k2JuTzI@_GC;kPhid6ygZefoyf(sgX>tY%)9h`p#$`1<E|
z>)F~Gfd}*Lx1IfTFSSSG!jX)u>9ZEOwi(E7J-voSx;E>GjKQ1a<nyZYWY0?SB>lZO
zfB)^*9j9b3dT|J4UQCZ(CXuz`PKt=V;r+h(7CKSN{U^T3-@03An`XUug7b`*{+|zf
zK9zVQBK6YlHe1+BCtVBmss${TYgw+h6x~c;y=}8^*p;g(Q>GtHE?wyq=#g-KZoz5q
zR;dn$g}<DBW*YaZR6WSr|LLlh-sI)nxle4A7K$v-*>bz>mu<@IUW1#WY8EZ89Zv5S
znsih1b3(K;3t!m9<HpZw7OAdjRx~Pczn@gOaPK7H#ziwq%I1rw7^!%zwhNznCD>#C
z$;&BQuCspAnzQSl{c6AdBA>+?N^LLqy~*cme#3OqO<)<@wtpG@wmh@@zunk<%4J8!
ztakMri<HStGZ?R@{CT;0&q)#WN$%?(`Yn6#gxfX#%klZk_y7Go{pIfZz1cyVto_#;
zDn1wL`}ksM-rf9{e7B!_e|FxzG=59sjteat9p5B+9aDZC6nba^kNLxw&Ry9%&be+n
zzs=rk^Ao#9?iZ<2oXZ~S<@v2BN&6&H;Cdl#Lr%J?zoL>wP}}bp)%Ed<C$)I(exkX4
zicP4C#8rLYd9v$PtDo<Cqpg0v?@74dy#48iKcC!uxODH6%F^<8lhfTzRL=A7|MNKS
z*SqKa_IsUv<pf{vmf7teE4!`x^751osaL$W^GpxuzP-Dk{cZN;<zX$G4?dbV*<P_w
z<6e4m(qpZkliLf*ud9bxnb&i9RagXk+4F}}@|1+}9q;?*J@HIR3$I+>R`<pCm`BTL
zDb5)oifmt1J4BxFD7S84W-W0nJtFEdW$m$i*ApERrP%lX-LULneD{O!AIV=6k0-F7
zOlki5$8z<;6Z_onFrWIkDkAx%_rp)~mwsP;YpeVtqu$qBPH2C(+dkFYB<<`2m5)<W
z19!PuUR#{|Zppdw&pIpFn6DM?E7t9w;c!|}&Aj7a1<zr>@F{$sPOK3+zsQh7A#~lO
z|C@ZJZ4|setLVj6Cl#`H3q9HQ`=T<>g)@)8D4r~n3#qu}aMoT@m?b`gJ4Vs!!XwVF
zTHn^rd_F7S)azS}ULEo>t2W$uR=nj=fBGS(a<K&uleT!gvN$VX_VCg{bBB@-yaHCj
zk5@BaFF0~WkN47~<-2;G^IdA>`%v=GO6;WE>&EMDho#pqe3!+sZ-YcXv!J=E$IN3t
zlcLnVZacI5w1`os|7Pdg70ez=^He2oC4>h#m9#H>7uj1TJ5%<LbLf+!XS%=cI&m_s
zJjYCx^SDc%`?^Uvmk*S@SfTTA^{<1>cDs{)FLS+`5RkRdpl1C6U31wZ?FJsZrnIPK
zT{<@Jf=d59r8$RYW!)+EI;d7=`Cwnc=L()J!kT={u1)=Gw%E-|`&E1(m-Wc^=Q|jd
zPm($pv@E_OxOC?e&pE5Ce+ewNvR1YJvPwH=qE5dDcSN$eb=KCVrP4PZl)c_^lP!Hg
zsF2U&TE)p1gPZ67e4b<UZ=JM9`V7uft|EQ>l8$%W?{Jk#zg-g4aq%=`cFn^~DNm&h
z7hazF^=%7VfboO13r?556g_;Pm3uu`Y-GLF%EpTZ7H^8r#_iJ<X-zuw|5D+<buWqv
zzy8@4P|&ja--qG{(dF}BY;=4#H}8>AocfR8&VDPEbKKPp&p$s2+GAwm(!#8JzM*id
znqW*+RgPYEeAU$@1=>P^@sA|8$4TfGwwK-Pn;-kH=;9Ua>VyxkxfD_#SUBx9v{85%
zv;H6F!wV^U^naReR92IC_-cx#`wfK)XC2PZUazfHyRfQuzS2F$?{Arx?@RN&=}@F!
zoXvf*^rqc?ll^a;auR+PvbHSaHD0mi9NTLr-z_}VKGzSW-<scHwQ2p99|d!`&s9x|
zXP?jcu)<v3$KnucxXs1ze51UuJs(fm<@4ql=PA5B#uAe9ddIv&4NF>tl-HL}mlMv-
zn$X4Zzwiiu_$e#jUoSfTJ=<jv8E!K1wD!W_e+oZi_s+M!x3H&k$D4l{U%&0;RJ!x(
zQeD!;o+oo8p0VxAt~;6Tb^2fAfza7o-grmte7;P_%(e4l<9sd!)@<kBN0@}A*LiGj
zzAN_O(x>J5pJSEzPbbtId$+NrNcePZ&hM=LZ~NvrKD9i|7;v!9A^A^GgC$!>%Bn5f
zcb&f$)lnlqaqaxs|L>n^>2Y#)oWFf?S6ONQBU7erRT@?C7Zln)PM8w;W@39%beTd2
z+bRt<d6PTSKc+pkp1$pn?zMFyb5%ReB%JiFntpYjUBw*@7g^^$w_M*{5BXmzXz=G(
z`+vs%=6T04TRG+ih*nMr=pg#hgXu>PrvET{Fg@r{dJrBxn11wNdhgML=|>Ny$8tBo
z=)v@(2h%_PxOwzo`q6{wM-QeS=?BxBBVF@~=U{qpe`_clOmAdjZh|th{pK!vg-Gf@
z_75}P?%l33+c)3gMd&IM?K1x(ZHqXX=E*6^xo%YW)}*Ad;>PL9d9nxll$sQ@Oqb+M
zI=d}r+xNRO|F?YobiP$g!9#4{{B-$wC#_YD_xqeEzh9o-wj^^F=;Z%~%WT}LAO>jh
zBW&6UbSMT$478RSHn0y`WC`E9ONi5OSw>y9{MK8(Ad%W8vvpzKG3yx4@k|j+b&+ID
zb>R&>_T^C0M6abkrkt(!`C(o7Q-5pi9A^#XQyoT3r#hq-^(@Z`asi!44_ci9atLU#
zJp+Ru=bRGzh7_ZRW!A!-5#hNP9wr2ev>HEtGHv3~B<@zBP8YvPDqWlm40q*yFK@JP
zy;!2;c{QrmIx9-+mF>ogNtuBjKg(lp_8)%dHa9PG{{I;t)CD?@Bsqt(vhuZ0^-%af
z_l%LzekY$b-+$Yl;SXPWY2ge8h6{5eV-L<RyJhxv)7Br0R*H!^rhfdxyj5^w%L>u2
zfhT{g$-6dp;<umr6FW*1e>A^q_?cN`5!33FyWM<|6a&MBwE-rv>0jTkDSVs#Wyjw@
ze+98VwThHQD*pD{_8ad0sotBu+#*SRC5xb%M_<{WCEB|m1{U}=&SyDvUvm~yBuk_A
zA4Y};OP1Mott<ages$X$!`;y}7d><YyVQ~jy`0?GvYMJ(<MwWdoLchXvE9q1+MZ_W
zyS`pmS(&i%^vx_`@41JABz8S7Ec~#Tm4SgF<MB85`qf$Yg0Cm#a^8$S)T!bs6tYvz
zFzDI!ptEUTH|Q*0=$^s7^RKaz%LF6Y==tY^W_P5_Nhtootnb&I?DEf=YkI6%=kdpd
zJ8inW;>z!C`S|$!udmnFZog~x_>}hgnWnGbuS`ulKkwh|{Qc|V_dBWxl}5~stax{4
ze|q|JmC2ktV+_mR{h2f8&K0dQVr~5LGox}I9@>4*BKgVA=YCZ$mx{+#re5XNU-R<j
zX7S7CY9#sE)6ehwdq8$^=CAnwRnH&y|3B;#Byx4R|Nhx|vnp@r8qeG-WtL;Hx#9Zj
zo&SEVmaBZSa?zqkw$){OKO8FRKB^?}L6qz1mQ3^SZ*TAadu`V2x!mICs{j4Gs&h@y
zZso4>_wUN@*S@}2EpPMVegAFS{Cl!z$}D8&q%kmD@crq$aqd>#-C5Cp7Fq~@ZF*R-
zSNVYQBdwVS76kX5;rRZsMw{ohhuXcL98E`GT9?TjPgw9LJ>cfjoKUlq!pj~9%75Z7
z_Vn~@pVrmY#n<a|y3xDLGkN>h2hIIYo{PV`y}kTcPbM=vUt*NcvN`f~Kk|<C+{`iC
zz4D|`uN&Xys=T~^-uipb`PlsbvnloTyqZUysqO#E*qo1@ntI;u_Z#l^_?)Y&M15Yw
zY|Cl&TAKDrezUz#P|Su0_guT*#ch6;+v)P@$>jdHf`dnWeym=%ZkF};Z?4_%<c(4!
zHYX(~JBMD~#}^&FIqmDx>Hpq#JnRpQy7f5VVgJGqt?F+&@!Q{h{(NpX!~gvZ3=Zak
zy{g|$tFmU*goSTdX_->UmhmiqTE`pRLP?J4eFdpfF^3|$6Rw2BWxijsTXR>Tv3CBO
ze;;Fny=OXZirOsfy(%&8Wps;j$r%~LMO)8i&FAai{BcI^oy5N%`Ck|2rIhSHv(UEB
zASym4MoXx3O&GVau1Hr=@#k$hH%)SGbZpJGxBdO*^S3uQYmdCYwElj>{JLKsPgomQ
zz1fz#Kj+>aP0{OoS|VI~KcAbOeQnRlmi^a^Cml_?mZY|6Q;)Fvyv;c`g_YfUwna$I
zJagP+-_K{OpU<yPynU_bSkAMr_WMOIzSw@huJrZV{~ooLNk<OM&YSh~F#rAPz4t0V
zi{;$imHPSFe4)-G%=|WoWWKK7pBKCDkEGhgsI|W4_bSe^ipPBVd|q04;)%QE_l*-A
zvgbeg@iE=@`<=<4Me7AZl}s16+F$?eyw*JVBYU!GSiI59D;xi)ZaUyHvH!02ZG(g!
zPrvqi8M3F8mr8B3YF{dM^x8Ay_)Sx1F8cg@Zk6dn8M~jQmmJ0I&K-N#bJBKW#F-3}
z(6DXqe(rqk_v^)C{x&|@e_yY^4qsF8a^-S4>p!nVT>t)f{QdE9f15|<N}ff(zC_1W
zB>sGG(3yX$Pi!o2|8diqMf`J0|9&;UTk&}7Y_r^$Z8@n~0%iC2?M*(`V|}Ll&hGN^
zurRav=kv2CdMsHTzW>`<^Z37?=NG@*o&T~&a`Q}qpSQC0?-!qEejA>`l(ar>Z~nf@
zYrno`hp&s-mUVU3-=F)oY$}SkkP+i*{lU+{!0<20#5e!u<BH^3R?+@6&zA!3dQUbz
zlinA6Y|WY{|E$@M--y}jH9;}^?S-8QcF{9kKOJ4}oZ9#2;2P%LPj8jqDqY<y88`3X
zp1$o$?RyLF9%}tuVY4qnCvMXd!IdGivfkXUe<18{vnTOz`OlxMMLQoENT+YQb!BDn
ztl6?gGi#onntt2qUgO5~xxadh-S&JuCZ$#<`|F9_lkJa-c21A4J9@0w{@K%~+yAP`
z{QDrwx7%xJ)_tSAJ4Zq$C4cL_IrH!3)cf`SbK6B*odRDe_t;iXv;ThQ@_$`5cb#cF
zV$RA|Nis4p_+`A=ytPHDEbsfw??rohi;u*KzD<11eMDR@<(Zq=8zqaQ|7FjgRk~T9
zrr5Xe#~00uf%OLaz1gz*Cr9aKP7japNqYTgkxW&y_jJ3kfPfp{RA=9<a(367Zd>=~
zh`W63ri_b^uIxIqpFOW7a>mKT>}z`@`;Uw3?U~)#<I|CHYvvwNjvu$CeXrV^wRP6d
zNk^4tiW?W6*4=LR<-*_O<9+_MHxoCzy0&hNShI5F!IV>$H#QpF$jzQQZCYr^8!79u
zHw*a!RD_N_-uUgltBR08e9=xBx&G-{>B}^=PWmk8vp2n1muECHM_YNbY1-`L-;9&I
z7F_l6|NQ@G03)at=Y80b+H>SlY4z%y(CWq4Zn+%zyDLA#VA77jPiF<<l0#Mn%;5Sd
z`LpSaQ()Fn?|fI@{t5rBO1^IWTV15Q;I!z1752Y3YIME2b-Yw&-+%p?f9B^;&#7I*
zeQ=A<tP;cd`Vtle8CiOt-#1EUM$b^WS^VsdZRID`>Tho}wX`G+5<WbiUvHImrowK1
zeB{pc+qNxRvZN=n$I|WDQJ*ibt{%@g6SqC@?Td@a{C9Nv)qmW+zs%;#1!jJm4;zA3
zCf)l|^Yf{=ZS}PDRLSqx+cOv3zBbF|=Pc`YJC^3(Z)|4U8n-7XK7M<C{LvpD)3@g8
znr}alW48Uj-pb^}vU!!xQ?v4|Cwvor`+V8E+sA8eUV4<Y@rKvZUpMO9d^qR${m=YY
ze<w2z8bk|HdD@+Ne`}ThJTmQBLD}d2!!L4~j1rUnv0Yp;d#zm5Dl;h&*I7y%qZCEA
zrR`I3WSMz=Wn8^jcg}tHvYwyooqu@OR$lmUe2a{QSk0W?mt|J3*6n(=>zw}jpq1<Q
ze0nuKK5lEt%g4{>*Dt)AxBKO??3pW$xE%QXKECRK!ly4UH-j#gan61FY<BwI-|uE`
zzgK0vasTDr<?rhbxAj`QnB?kul;8f(l~tkV?Z4e{W@=3M|2IBuOMHW8uTbZdldbH3
z9Ufl1wWsp(iooQ8<~#-l3pvlOtP&RKtgMLM{hf!+GOsLKWXm?G?q;>3;&}rvUOvD2
zeR}S5qt~1`6<APFsd01Sg!W$!5$RPw{I30tzxDn9&78Dm#pT@EP0#<={d_9EyX@_r
zzu&C;_xEg0_s`#b_Mzd6Px5+I+yQP5l7WY}Jm7X&_5JFOv!OEkU8Odz=l!;#E32yT
zb^fHf=jy6?eR_JQr=*HWRPl;<8ZP<w-|GH<ce#&E4S5_t-@E+&zW@H-ACFF37jqvt
zJmuoclE0r$KkF1eZ}+TM;s3++tfxAR7PT#BR_n5ewfnr!t6M!%TtwxL@AV*gj>y6^
zG1m!k+p^}D?b))Seqr1Sk;%W__)Piu<FmZnnSw<=v&(#68FfsVXIp)CuJ!*P=D$y>
z%m4d*|NYkd$PEwfEn1}a&*ItA>2ZaBqyx349vA+{!0<qXuZFLD$F`Ga*Zt{xyxBv^
zO!uLlYG(AB>Cq-y&TGpr*9t|p&ibRY&MNxc!<hk_*0ud9U$kW2=ZjC(e0OzJF5JVw
zFu~1fVnwN|?}@O}pG>%#uC;CWP+MQG#;zBbvmi1@KK^~c*PtgNb7#k!y*%HZ^~L=n
zXnPfd!rTidT`uKjZo65}Emd}9huW_D=bl^4DC<(YyToa+&d$6F&$?wX%Cd(<y^I3&
z!A*US;EAu+?(5Q>vf5E#+h)$L1r_fr*PXcJ)fDM`C#z9yyGPQAiN!y5t`Gt3iey+a
z{aW;Cw&)elez|P6Oj(`Ebie8@Z|JuI`TOO~6<2#XLycF9FEv>8xl8_i;G#*~oJkyA
zZJ=Y^88StGtYCS%(WtRM_s!G3&v&D*zglgt6m`6~Q_L&PQ=>jR^MVx5$4}gAW}Z64
zb5lW6-n`!RpS5dD*-e!=ZM%!V&fI6*e%CDh>#M1il|LUJ^ZoPn`r1yHqz?}kwnx@J
zJ|-WwKF;y-ncHfw+N78D%l)<IPrSY9>2vY8h`8Y3(w9ra&&;c>US&Ab$L{Z!$Ft4<
zANeB|Tl@72UwECt`+YOMsd|g)M{KY#z5BF1CNlEin}+MJ6PKl*-Bo*I!$Y6bmzI8i
zUvJ>KXwRPWvgKz|wLYz{-~0Jyy8QC6%&bj5vq~Pymfxv7lAIrZex`B0tWk=@IYWkq
zcS1kD{g3pl%4y7<e?&Gd@4&G|!al!ef8>n*BWWcTcu0QI6v?BKJD2JB2DZIP+}hE4
zp#4wzs;UnM-9LT)|NrNH^Lsy@A2!~We_xERoqzKG8SzWl<#s&(`8?ckb$Dp#xjB}(
zPfi%V&EGJ6=1kN4drj~6{Z<p}-fFroe*d+k%!=o8|5xn2C!Mz=>%oD8l9K=b8{YJ{
z|9j$TR-fBq`~QC~o8Pao%)jSkHoKN*;kUov?JZyEJnMLNem|&X{O0QFIiA%A6B;s2
zW){U&B=Sx_y;LLX;-X6V+Ajy6PWSiQ+i@*@pQ_%j7jrm;&%JxHv3!L(1H+s(Tin}i
zrktKrFzfF$sa;DG+Y=6)-#BT>@hai`)v7DAe5UNUachQ2_xzcKp>0a`!D&~#cF2f%
zwf`x%irSP?n3)-Qe;@M<i6c)Iu8rQ_BW?b1R`xQvl0>zSEKF+!wFEw_zB-GqJlsrb
z^UV7C9}j<j>-AYR+vKHEn&;9W%c3VQ^7sGEIyEKx_A{f+b-!L7508sH`mjJuch~;f
z|MPFglpmMfJg>fP>%j>hFL~=<xemG<=+a`_UHbd~EGmC*=kp`mHqc_umEe~@Y8<ol
zgul*saWd)e`Q3YarOj7deRb)QoO|gT28Ive>~>n7mAO+^&wJD*ZE0zm_WQzI{-tR@
zCto_YWR=#LN18Wo9Xd337OPrwNt2(FSV5rqll^&GUrzpCBIEZjA?|!(iIP;@@08zV
zc^^6QPI_oP>aY2E=l_=P5~npS?`S+Z)cToEX1$Jv#-0y{ybnDrxV_`;-12*6k9&=8
z9am7BbGQEgrTTxxeGUpdtxo;6-%8T?j^}MRWYjZVdtF+Fulo1S`E|b%i;F+MxR|W&
zXY+ibyWAY>^1A5%@qT{qzP#Lir}(`6%)38ctu9?1zQ2s;=$h556O-hNb<UJ)YHH3k
zeO)%w=hzl=bL;neKED_9e!L;^u>Ot*lfJF4`F8X8^SR}Y?QdnC-FUw{U-0w(fXd4I
zv-9Vv9yP9EVDL+Mpd7ijUb#m4UPpvh1*3NL|B83#S~92R^B7-Lk@fWWS~GX0!u1R4
z(S}}UoG(uJ|G<B)%=(%?A5&$cggTGBUcWwa*O$(Fdw>7?cs$?7sQPhleW%N!$2Vtw
zKDXQ8>(BiQozEv6%4k3Te{Su!%G=xi9$K>Q>FMz9qq6hajPviwmhH9`eYVVR?jaw8
zn;Q??uAY2SWpnFP?fAfzA?NLWUnxFsYg+$rug`9`#j%^8>8icISO0&}`~CmZ{`}Y+
zblTW(Vr1RFKS$@<e0zF2+;E|pShsHUw<E#+wpHhC`5&+_GrZ6WIpJ+OTUf97NSOQ1
zSIR8;dw<QErFQ@3!@V^|iJl_no3|<kwkaJi@$Oq@5v?fP?|N~<|4UOdF4^<vs964K
z-nN<LQuDU?9HF7VWAxO88)jrai(eR!VRn7m)UP&wqI_&N-CVQs=&kRp|0-jCGv9Aw
z?Y_P2cK7keTeq4DbzXT}CcERQyIiG~Y2nS($ukVfJKoQ`xc|RH@3OC9Z-mw6Y%O{D
z_w93|c7wb-Eni>n&p2J5eZ9^q=SD%R)5Vj?>3w~f4?k9j$JhM4TmGMUe=h^W@t$QG
zr_vYCdabONJvFQ4sN|W|RkuY}CZz40EaV*&I{m_*S4FeFOq#Yy+Piql-V!0Z>AkxY
z{~s(A>^^$-?771_3$DJB;d8I8oqKXhba?pdqMe&I^|;@8Gc&#K|C7o5?)`GFzgB_r
z=ks~h8$a*fQuEVTRdwm-=l83h&)vQ@=I18A<@UFlrL4;i-PyUl)yZ+9$DYd1%MKk%
zT6QrhGsW!a)1sL*C*K4)9{m5kZC&i|lWVu%yLd90zy0vZlpv*v7fk+M4SyXZ&Cbwp
zj%}aIl!QW0vDK-^`#a~p{@(xm*vxM%XQSQ<wq(}nN6w6kJ9l+fNmOZD)Rk!EeNion
zu@3)U2Q7A+yEEb7ot44Mm#q75@!@lQ*4Ag|tl!7&D3J5q7WeDG5u=$tep`ModGLP!
z|7{f?|0Eckc(QQ){<!+@ce~qoB+ITvK7V&_Z}F!m-7{5}`|aImJkc=qaNGNB`S-s)
z>dyXA^N-j3&X$UgO{u5DiY(l}KQ@!#30@Xc{rT+m%@J#Qdd}>A7j?ko-JPGuXXo!b
zCBy2f`um%#LFub4R}R(x`53JsB4zXAzrF3w^7rqqt`4{R_hVDDob_a7alJj=mHTJ;
z1nt~eS^Vry?`95$2L+A#VqUjaPhR^yI#2fe)3!PBua@O)E82Wm^zhF>?@bquUb^J9
z*i8NZd&^llb6rjxpI>32GRadqbNgkz@P<YI?&Qusn`7{#Bvt9z1|d$abhmPi<mvwl
zF876Lms<U`m>b|W<)g_OMc?2p*C&=-ZO`4RS2?ryN?@;b)$IE@f0bv5L{HN44%*qQ
zb6L7~shaD;z;)qWev=Qh2Y)n(&<R>Qt>o2tlP*>UhJs5MJ0&J|1lj}!*9zxf?*6l2
zs_)jm=RqbvLr?70j5?z}>FFuYNoV%NOjZn5ez#U6PVdPhN$G+dzM22Myu7TogoK2Y
zWTZs##ccAH0(HPX9&o?xdHUUoy=FP9RqyofnUHM0|9tkkx{nb#%S>)f(fRP{OU_o$
z%rnx<rq9<GU$KPAjz2ud;kw14+zRb)uP1QacHbg=k%NJu;M7uEt#{jwX4ifE^JCr9
z-QVkf?0vabUt4y*y?<`CeaQaw`R%*)V)of)N!_|^@V2Sw?bB|xGjpo1_Pkb)w|loH
z@#o%8S0%Fy56PD(o=cn*|NOSU%j3YktxoJeG=J8sIzBkg#gO@XeuR?S&)Li|TQ5sL
z%&iW7^+VU;ZT%i~-&v0%*RzDw=vk-j2$(-L^~4p)r%n5c8aeoHH0(b$as7XbD?f66
ze_NMplO&T<|JS{EbEtwq=h02;x*B%;d%R@&#!?@ZnIC@NJ+pIV&`ZDPMvs!uX(*qX
z5hrvuE&r;#Vm9yTY{BER9-I8m`<^mO;W$^BR^-722F;7jG<_?rw#KX$S(RF2CfC*(
zywQ8^qwDos?9E!8E?l_qpv3Ia^17^}?%RS^Udi~d<iWN7FAMAz^k^iTAK4S^TOk`5
zy>|DyOZOwbu6}oDukXW{+vdqT_qS>+R9(r}^=tC0InwT5Ph2=*(q$O6)I-VTyPV(A
zywBy|K5V{SZ@0d-KQ`L^ZfAzgBfstM|0jDay`@)Eq;oH#WWLd^7{@7s>7bF|vgrq=
z`vl~1YX)w2xv9I`EVFF?>7|Q~{Ciz&JLS#qQ?WIrVHV|2`2OxZ_NM2blwtc{`~3LB
zjU1Ez7ic{Su~}$!|Nrq<DL<??d|cpNmZ;3YaNwk?>z{*fvt{So=hy$uyYGG3S^m!N
zN8Ru5Z%w+qTKev6XUo?oF2-lBzj?1-@cAP4ce`sZ?Y+)FtL9#VF`L-zFPHcp@-NtJ
z`Q-WkU7!EPTYdTeu$T4T{DnOYMvHomcmB-wV2?SOR(v5!dfU~jpSicYaqsC{79E-Y
zTf;HgDOLSSpr_he?Q5wLJyD+9{ED`SKY0{#WM##o(tZE+-_HNvD9pWozJ~IG9*xHv
zS?shNcdk9@a_HctYtgnxqvak2D=sRvnO+dIiFe{AufqK~Yj-%fzA!fKvDz4=W^s<2
zw@~X*$Q!$#{OA8OFf?5DD0p7p_{+A$yICP6UHD{I#k0@<KKlIr`ABJ7gySloPiyw9
z@%bvUHsZkH`5qRj51+6xGz15{uE@JEH^Yow$5gO7*F@-VOo3ywazW*%Zk}z+4Of;3
z**@B&<L7s;B-w9UTvkBu!MhO*ph0<swM_C;eRj?M<69~g7&%!xWyPQJxDVya=6Vav
zTe3xQVcvtEzEvxItC`)`>lmG2^Q@>S18wVMU|1sAZXL4oZ}`lw;+{vAd6*S<sC*88
ztNJ}PF6xSZQpN<0h^)yb+V+<h$gL9WKlb@DcqTxhcT3;%HXFU-rQ7$-dYdc2vR3}m
z<GR8wwhvi)qVIFnOvU2nFFAAK^7AtW&(boM8VT~dGK1zd8n$rNh&<hHZW8vUaHEM_
zU)$Xn%S+#uH7LxOZmhX>VMq?=@2-ul%w26OL@)D5oMeUQnY=`!+c;zE&MQ~vb20fY
z>S*>>*~FRTzT*5Y4|&V!4_+KQv6*{wm$%WCQ#E$!7G7+iV-*-)sy@oiTy;md{MzQd
zy-f>B{X_n5%NOtr=oa1m)^le6_27&XXSMWf&(Ek{+0d_^1r7{{Sqn9_p5%No32AkD
zXqCABZmF*LuCUBV#<XeLnwd&hmsq9WI<e`G&rBB!E$;)V8x59lgYC*}^*VC*U`n^W
z)0>|`34dcnHh%8d(W9`)^X2WheQtUyPT8o>TN*fnYg5Ro7`|QKAwjtIg2~&G9e;YK
zPFX$gZRV3-x`$fc=Y3D<O7IoB_O$SEX_K5yZl8*Ae2RgsrugZjJO0Xnc8oJDiF~kF
zWBuLB0dKR{-1GT<Gfw`M^v$AuFU-@zyn}MmGap^Ll>O`Z$}3z;OE!e*J$d}C8gzmK
z!-TX(eZk~^UtK$o#qRgkwi9d5wNW~!%%SRgt+gfc=F*!p)6KZgKX_eqMJu##LU$MF
z1O^6&U#$CD)*5~N6VtxFQ+`vuSO3pjbLXDS+vy{-_UW`BuEiS4{`12NmOFO7E@lMv
zbrtSjk~{pKCn~#^_i9+w-)f!Pj|+VI*C+n-Q_+}cxiBZ~yJARW{p;w6j488A#6Rzl
zI1h>9FI+VzD~z7x_i;<Tse8L^>ZJ*-?pyjkcx7xd4BFN#lA4)fzjAqpaZxGT-5Ei(
zDiW?2Az^s7MN0e5*6O4_tG@F}y}Pr7ccs?~&-}LfsE*lw4aL)sUKWMk{F$Dnp+D)v
z?e!X>A1C~0@az5)9u#!REH*Ik;=-pbW=sqR3bSO-^X_oECY4_sdg1lIY1YSbKF5pv
z-qCaY$<h|Hs95C}^DjJ)wO@2)$>g*ww_;1MtF5<u6I`pi*RVJD^6{G-3=GGGeoX3I
za{JNatk<%NN!P{Qp7Yo2+Irm2N%-KBJ#8;?ubkd{%KP<~Rcqe#Fb3J>?PqWJQ+{I3
z^_dZ67yNcV&S7C_Q2umVci*X8&gC;7XN$Pc&1s5yweyCn=kKD&wM$qFGsWWPuQq#{
zp1w+6@MC};gNNm`(_g*+tv0UwXd%tWpwPN3Q|kd&NM7!bUvp=b%T>PKyZ)KZ{U4vC
zU#IT2e{ieZl=a5#h}!xvU#ond^FPD+XVkqmUA+9h>AzE}-TGwjEjDoO`oPZcR_5!E
z{BnsEp{rHZOMXYK6-j3Ujned}+ka3MzL@6iJ;UJl&TX$wUAn9P=_SWyy~UkrUQ*AV
zOczfRPfyt$nw~CUT)oOg{TE-2g><0vl#eE7>sRXSa&|oslH9)Y_=SoicMEnhiMY<+
zvH8@?FOSbSNCvu1`M89mU0HX3o#fW{`|Zr1JrOwh_2H-UhyMO>`QsIu=QHW*uae$7
zhh!F)&06r6*({^nTOjqw$_}G>&mwd-O|DIG|CqKh_ssVLAIfJ~RGjH$U|4Q8YuV&R
zvFq=2x5n=a{`+mQbbNf__fx)`=ifYW_v6M38#h~?xpna6Uf*KJXBRrT*USF+GUwys
zW%q6CPMInn?|&6ILsRU*%PfY1Hy+RI7aV5UcX)lxrg#6F{@L%bca~I?J?#<fc`CWo
zdah|m+T5%6*Qaf5+_W^!a`Gjuu)3*vdji!@22O~KwAvbTW9_>0M{k0rQSZh-|NWnD
z`u|<JPwfBHE$X?DdwNG|e{H(2cYjRke5c+C=RJd_l)s-A@U`sFU4_0ImM)jvImIgf
z9ZQ`2eAQVg&FT3kLes_5(pItB@SW-i77RGHU+w?HpYjY0vC1Nzd;T9atNv;yd|h^J
zp=sWSJudOr-uTC8+%f71&-GkYvnOuKA&ql7JIwbRc&l4poSqHZk<7?YVmNEjp|fK7
z&ZWAEYf1y}yvo;4%UAjqKVyc#s@aikMuzc=&P?(A%oOFS-#q2~QD!sHMqvhpy8$A(
zD_3&<-!|=OZiw0(8zW7{j`@F*SD&22c&ny9u5I0dmbFHcYBo+%=nBvW&tH3N-Xi|3
zb?w%9ZL4N1?t7m9tMlFGt+$sfi{0+|KO-&kmCE0Yr4!em-fLwZzkJ%J4;H2nUHT@z
zfpNR{ue>Ii6t2c&w)%0=^P*+3ZUVZVg~|(;sZ28byQ%1l>Yq8EtGrlONPx@lCGiiu
zgIdmtcI8%1zZ<08dt;}|9AANLGhY5ZAkiDM!P6{m!P$^BajD*_$t~tAwl$!`8Nel@
z5QoXtidWi?{fy7wf8t*-|C67O%FE~_p)!+<K6?olDaX%WZT!?eJK)X!<DVooq#&00
z-&(wK$@R>2|CX-Y^{o8g0XFx99j}{%rbRjmyjya@E2Bo~aZBUPn^vA}bsdhXDVqzN
z#UMUge_(n~`{R<u#v*ridnVr0=)L*VWlrYx3s1JkE%nmPzrg2z;<&~p?oB;xlV`Md
zF@lPHhgl03DfaKYbU9#V#=7V1vz~BXSH9<2=4IG%-NH#?GuNq%*1);(N|&VOU((zu
zQ}Uh><V1(4g_%|_^S@mQ|0R{Jbz;xmyoncfzLxqI9@X?A;85DMYf5?&(UaC2OKmPq
z*I4@J%ID&bTQtD?13l)0ntUHu=sK9pl-|1g-V~Rd8l_|E9HzczZSAa2{_^~^{odJg
z>dv7xYkG3z=B;A{hvdt)MH=;Y_2QjN?_@svrF*I3Gyla+|5?}zI*;T;-Z-ScOvG)W
zqW|pRirO}z^XFMXfze>%e7WS#^*c%HzL;M#Y43Qy*jC5yf6c*YuCOcaoNK1+in`E0
zKd>x0F0wB!E1>`Q*PWmvLKr6GHTHY4#P%JVu;HNKg|I#IC2wh~EJ|t;xa8t(G<(uC
zUY)Dgxt6cuk!)Mj!<Z!3`CFG693Zn;?PitDT3vh9TIg(A-2%^v8GV=LxZ8#cuv9ko
z2n&k_e#&W744)ou;;~%jkkc(@28)$H*DqPJBzM=MMT?wIbLO%%eDSS5>CnA<pH{-k
zg)v{VZ$8$V<&=E#?BmwmOd|JBUb0eQj?}tre{6cX^pm2K5g|Mb50+TG;=e3ovS@CH
z8-qvl0e98fX}fGgeP7pSMtpzIFS|Oe?fyLF8#|nWxA%Q9aofA@-_fYQl9Qv<>=w-1
zw&(j7_V$?4(+i5vy$@Y6+55)|Ifer#4_Vfn%YHro^@YIl3)A#6UBp;koLls9$<-wO
z_qSbkO0gVNOTBbdb@J;!$^SZLcOBgl6f|K%>c_8@TEULf9BtXnQy3XuOzT_sUtjc`
zl?%A*b(hiivS9z}ve*9m>%aW!Gv(j=@6hY*HXr|XecvYW+AgsAdrM|q@0R~|mzSo`
zwSTrU+Wk)L>!Z!<=T{$F8qC%sF)jVlN5Ov#47*lu+4IkN?X)=;-ezwNnj@+4_+_Nq
zEU#U<U&Ur`w^A`Q-`2CXI?SiVgyrC#J1u8coS18~Lgl!^!;@~aeU6#z`YU(NZHl0&
zi{!%_pX0M?wjI9kwll-VX1caR;FnJ8)gM-9O!@dlQ`z;hpZ|^Dzso({MbF<~;$yKh
zWs}~tuR#fOVh)|2IPK#Tshx)Qi&tDxnLhj0+8248i+U`i8BJXzcZ-U3ze$mgO#ghp
zQIPlgf2JjiJJuhK43^ATr5N?<@WdZl_fKT#RL=ggn`hhclb5!5{Mr;^>6QHO^3PTy
z!+r&~1xXAH%jfys{lD~Ys-*ghP5ggU82nheynf|~h1Z^qv)X=8@I~hTE&3b79R<#;
zZk^P!Q&PD~(x+-=(AD6~fY&>BC~7bq$ZTAaY4x^D>hb=&@~0{`otm*kW488{n62Hh
z`&;ERWY0gH%(<+#@pn<9kEPE;gH9(U=Y4AH0~UwQSM$Gq;3jCsMB{PhqSwdk85dM@
zRoyvvtM=fvk9XJ#Z|qVt*krd%;>_w@E`Qp)m#&@uB{9?I(waX@f4U}3WO&L1%GeDi
z&VeVVEjuPwJk?TZ^#`sSeS5<<+XV}=eEt-W#P4su#HTu}EO1*|Ly)oW@q@Av;C;jj
zcaJ>sT&<mwnKkXr?+}5EAl2yO#l{>-(JSV=nk;dc9({JE#;FsRpNUFeU6nIQ$NeNk
z*WMp@b^B)3DrW0G%$wknV|}>oe+%0tj#rLH{q&=+YP>yr?a7HAR`I7|F`7c};*$ls
z*uYskQ`s|6&wKIdn46C{{|M#nb@~2&jd|%C0pru&-G6GD!=~FW-m%<M|LUpZQkS0B
zfiIt6XQ=OTNfryAak6sHsr-<8wyTx|dmQU!Ip}>VX3uIbUoPwXpqRxMo{36^O2s^b
zTGO^HbN%hj^)}nv3e3Hf%s8LcpD1SaoiN>dt(0Br<f)rYEsK&J%i<0)H(ja7^S{Ci
zI(38LlAF@Z5|gN?GgA%S@AiM3clF#4j$hL^x7HhM{<G!8>C2X>OE<euPfK5M<&&}h
z<lFB-M?}aU&{UP^iI~&)>si5y#Qen1<yogRRg*7Wd;Usje?dtt7dP)FL%oLvxpjrh
zg64Ksf%Q04EzG?2^qckSZ!K%KE?Mp<wK0?9`>qEc-fr9@G;x2s#Z8^JN3YFza+7t|
zoI|t!%baHguMYE&-&k?!UPk81^*xqnt}6cQ*Nv*XvpM1;qp`LJ$DW$z&@ijS69-mv
zdx;9kdB!z$L9Ckfk=;qGd-FMGvm1Y%bMvz`mp6%qzL7uATl9<f-Nn;O&VHX@l^ZuP
zZk^Es<{Hq69PAU~G-j3UI^4JF?!#qT)0PKHZOl9=R`2wGUVT&0DR~{CovyZjZe4p_
ze05oqA=AbB>&A;pAo}E#F1B2~^u#Ru=$ul+{oix_|7X}#c9+yjUKdkhv1`1is2`Xv
zW*b}A=5s{3<KYSka7$&0<b3;_wQE=Mb-k8t<oV6tyyCv;nvS&pI_4{7BJ2FNIW7}V
z`&`P^>9hEFg&stQc-OMowu#xXwOjs`7ybV`tu)13ZD!5EVomo|W~V~y{4!l8YoFH(
zn8mfE=Ay_H9#Gu&tyr>T$=~UsqN42EWJ)$J&SH77B*W(Bm4vTX!rf#`ZT3GEuJ<o?
zxi>$&dhU~UgM;5WznuMakg4|G-@R=fDMg?IVHzx+{oB87%C%|tZm}PHoWo+lvtIvB
z%DT-JLZP}TNAmW~`L!h1=DPc-wr9K&lY=KMesyxX@1zr3t$Lm_F));b{<98|d2`5(
z!EMr_oOJ<<&pL<Zr&LBAFaEmZwuf3-OLcg0yI95+#$76lPTsVi7p)=Mu{pqqfuTWJ
zF>{vPDp9^$-sK794?dd68S?FlVeDGuAK<zrYUSmZ$7dF9IwjGiGD~XhyS7y`4xjlP
zo#i}9-|4A}qwS)acC|>md3KuSTwivsS`;UgD|U(lwEj<OQO||8qe@q^JkzJyO#8Qg
zvR&BilgZZein*U(h!1vq_O^Ym>WzTN-0UsyI96oo+|z#i|J-A%ufLzOMFcI}SbnqN
z-_OWTJQp?Q`MA!jd%V*^IuKN_vrO4|TDJ6`cj-A<6Q*rn?`@r5%G2w9hyBa{rSE@l
zu4u~2;=5-3=i;rmO5v?0S;iZpuB0?g6{$V4@7j{dDmR&9gyt#j4wyDoUDV6?-|j{F
z$CPI=gU4!=vpS3x^|W95`Op4ZVD9!5`$r9d51Px^<<gbsNYyO7F|YRP?0vt=4&Pq?
zXHS;r)$Ve;4QZdX=fC$gd86U^W@5*WxW5YV@3psz-`!dA>%vU&udmEAi{8zguEABk
zxuv3-oq?giN#^eJ|9m`I>QDdazxe-p+oR4UXGKfQ%+#V@)fcW_CA-n?<9$8BeBZOY
z6DDoYIDEO<D{WewcG|`Yn@K4PGZ6mwF4_10{fhPfU+_)%zpKB%Brx@3m|0crHnz#n
z#Y68*JX*+o!ov8q?KKsz_%OAv&jrL>%Ni}T=c_tQ2iJ|MF1(DXHa|f_Obv?<?1}!s
zmfYLRH-D+sOOww`zFjktotHfSR^gbRx<NluaEhc;SK|~r{q^NPd1XvbK3tf=z`$^q
z_mjK~pX=qmX%n{YyO+K)^NY~_9VsU_{8xNhy>h2xkj$j?ImRo#9NTxeLS~Y}xzNAm
zHsNcgwte`=11{Hh?XOVEEM$8n>$v&u{JT5+1T#-1?Bt4E`*^3)CWD}YPS5$Td5?-7
ziwSg_7oy>O6nxZ#!d#U}Ys-^2-kNpzTGXMtC%7Y~6sAvjw*I5Pz=s>nsbP&XWG8)J
zZ2T!?*`da$%L;t;|Eq3l$byc|kzdm8p>r|e`)w)R#$~f+-2OLnx530E%f0u>9oTG8
ze0Yh5#`y=?-12fJA&Uhj9nk<cD?ukXeR;%v?A2Pi&B_t)Il5%`f9-jHCTY7wgdu2E
zLFd22n~g$tE}5jQQn@Q;rAH&E98~!4Xtgl&*2`X#h?skAr&=zb;Wx>A`Alcq^U(LL
zOG2#u{G^25w5+N(Qud!T^?cZDy{F5L74yO!dF}X0OXh9ImN^9T-VNG+adu*#$M1r(
z<{tagpSkTg)L~(~=3VjohJ`{~=P8_X00j!ePkr71le<rNCg}tn$^Tm!`6jOWZgSaC
z+p^a;Zd{LiGfi$yMwVyZx5^Sn&vlEYIDdWmx>!|-)$Ra0_>P^-=4F}P#ycwe|2~fm
z%Up5sMBd4y-J30RC3DX2^N3_kkC+#h*C9~o`hJC?f1b{hj7{#JTmHvd3$ubxwAugV
z0k_Nd&{=P<{!Z%KHBF;Bc+HmZc}1)KTbCJ4O5ko@)U#q$jZ@%%?@!h5<7))8*dTVQ
zN%h{=@h!FUYgV2R{Xej7(Xtj%&71!Zf6VgIv(DcUbH@9|vkfX*L2H7NK$lT5O!$AP
z&s<`2Xn32{w+p(wi#CLM@7`hZJ@oujCb{D)MA%c7ri3-BZSPoY>RGwSzTU4*2~^F3
zv@yG0<XgRV=Q^XL^~u$``K)a_o36MXTAR*Q-kv$Hef4Hf_M+0A{L}fbYPjkYnZVsA
z(|a@PY?}S)H(j4+)k#bKjyuQI{r&tWp-YT6Z9>D!=9x?n=-wi=mk)Gg5kteD>2Vpe
z%6>1N=2pEWP5WYyKHu#vE#A&*b|3oJCO_v3I9+pS(E_XJS)mKgYESA~GC9x)yzE+A
zQ#12_s;jGOxn87_=grw~^om1|#GU>awT-1Wx+#)v+w=LK{FO}3AHHn4^l#;^JFmNc
zYkqC}yZyek_;X1HQ2iv!BK+Hm<zSwYMBmLbU$3Rzx0`<<t2kb|+W8>Y$#3UB2~IL{
z_6w}r=&7E>-JW@cP4`$aBPj2^|G;;q#^<!>d#0Sd-#<-TzxNr}rOOMJ##$NW_0FvG
z_B(OW+vd?c!KHp#Iv1XZdAV-Vnd8C$s(8zJf*RNVE@8~OlQ=p5_n`ydcHE4bzDVDH
z{%zy!ZzPlN{rh;Q&LW=yY={2RFmJyX-?m1*yrH;<>*(B@OK;j9VVa|QJjP9gG1Wyf
z(9MB2(Cx{7XRqF$Wt%>qf65ggQv2wf*7D2eeV)wZnHVsq@}Z99Jka`aqeVRpQj2=(
zdBM$Y$=6HXziyQO`uf@R|4a-F3`@#`-q`KFWUK!Vv?AK#Xi4|S_!7`{Rt$6Ee!kDx
z7?Bc{|KFt1Xi<-b@+poLil=VaYEPc_(|@JN{0ndAzj)p4FAS=vpqAV<(Od*d+u*@Y
zke@;MgklbObQjz#1&1Sz&72Ts@p8xIyz&W)UI=d~+#2<$h_xVX0oeN*pc-zOxL9|H
z*3soT|B?^g?>t?<^6g_8C(sC*V1U~dfmEB+$x2?JNJMdUf!Bj2zZq2~b8f#q)8ojl
ztY$v;?nN4NBwq%(iFNCWc&P|kdQQ@?W?(2`cbtDdFjz2SRW4VN+0WjMET#Xq9F!?D
ze^uiB`_J(f`$h*9G3i~e&fB*i_EMSf|I*?f6JO(ehCg-u#ZoImtft5^F#M|$ajm?&
zuc~~}y?5tV{c{jr7d)ws*U@0TgHiahQ~IYvH$~iCJz44P=XfQ-*M~l^zij=vvlwZW
z{)cc@yIU6%%C5ibwLEJRzu4&E7d6)NKlBpP?k?!5WR=W2nlMq(e|Ef$&uZywy8MmB
zTz@14{`vhDIibXHhns<c!EZ{2Maue>-y&B%(mVZpqayFwgZn?4@jSY&k}<72<o3~{
zOVqx<oA-BfsgPoQPLzxwyL|{KX21P;H;t`)(>+PGv(a6)(xF@2Jui7Raa^|P-0}W}
zU8K=VR=cSI(`PS#^6An?hKc|C4y8`_ee|&+Mz4R-r0cQfxqp6auKQd1I(Pfo9iL8R
zr=9&(oi+33=H>st-CqCtdcHuXi)>iBSlqrpGpEN@&7CP{nDk(RV!F-8Bb%=1JUe|w
z>x_|hn2mJ4Xz*%NfBV0Gnpn#t*ZQ6@3Jv|u#l_`0X=%{Pc{QJQGMDFne&(BfZB5bc
zyE1(0#>TIo%}zHyZT$O8&Z}mAyY$UB&lt_G{r2(F((m^RkKggu-}~tEdHcw1Z#bJ3
zjVE?IfAZwq?Ck++lZ}6$mpS+0p)!9|qlb!7_BG%0w%->8XxP-Oo#Xf1_WPOoZ#TvH
ztjxu_&(5)YJ2O4ZLq%v#I0HjL(M6NDMLS}q*1O1V%~|g%xB2wR2i5nAUr(N;xM@b<
ziZ3Tmv9`sO=516{{``JT@WXqWC+gjwA7qz5d0zj{_Wbufl9$=|WDaea;bUq4=fhpl
zQs#!MS5i9Nl;_?Fsja>H?d|PfU!^Zxo8+M~W6SZBWrq$aJ@bCHdxFZ&l9!KjB@2&s
zP3P~Ksu{iQ&z}#6`3<<IPy6Pv_H~h|@z4H@+K|4q)6;wpxAi70yT0!4mL*Hp<gRUG
zX1D+GV6lkn-Qx3i*YEpvY3=rZk3anW^Y8cj9!cYG9S{2#Ud`ec{U_nmWA}PZ@x9vb
zXEQJ79rI*mV5r|%Ve@Ro>W|mLkIwzN|G01Ttkjt&k42}x)|{22D4Mr$rRz-F$}0zS
zCI@Ognmb9<V(F**$7HX`|KA|@+|BL#X_;Gx3x1?_b$id0N!uDVBXeQEl-aYVb4B><
zvVtt5zdJL(<S_5$_=?1zr>5#}-`e7|&_iWS(8^o;yq}l<o*Et&TYh&-$dA_>-dR5P
z`Ss_s|IEAIM=$^R)5Q0BQ^cBof7x?yeR(Xn|MYSB|LHe3O<no&wBBr!!bg_3xBY!o
zVwHAg$JNJ~KR=z;ud%!T=jZotFE6iOx$@<&*Xw`1*}OjZWa+Oj(PlY6&b|J6ZdU2-
z8HSH%9Q*kA{4BG#QlQ0$Ke$_%7+2qoeXjV{ciX{h<yT6&dzPfI2rj<4HRj?2IoF-9
za<*@XnI1pmdZ%4qFvGk5H9B>FOS5&vjHP^6>YukQzjSNs{EH@kzg~YmGve~i1(sDg
zMl*jrY=3_%D#hsL5>Ij8c{L|v%kO^t^*Z}aS@iSr%=`QH+E#zFdI9oSSa`V6NgYvt
z{+I^KY4Y`V0zyKHe&io~<F6uQC}DJKZ++MP4~Mk9r`dp3-*37(Cv<h(Y`fZPr>3$?
z&KB!Fx;lLSwv3Cl{`P;<%a?gAeO9m|tytDioq^#+(LIMPMW6fYYrfp-3zs+AUl9Fi
z?ait4_x^h}{kPe57G)XFy;&a4C!aiMaqY^~k1IKRCHuUVq^ZIAE1P2qs#@$HiM;+V
zjlK}xZgSc*ok|z2soPlBsL!jYINbLB(`W7{MXt~HUq5SpzV6w~<L&(NSFe5QuRpW<
zQP=7jH9tR}m%d-|c<R;F@#oK($vzjHsA5?5hDB|*(RxwsxLdo+{co>X8@=6Uu2t(y
z4gL4UXHBom*ID~5cU~E?HDA&^k7?un^%GCFK0fA~vdr82w9d5VJ6)-Fc3g|NvpK!8
zc(buo@28(Ni%Jus-WJ>_E-L!?Uxa}{re9@hPTq=q!|-EoO5YiLUATR^zC^Uje}#V8
zg3Cej_aB7voG|@Xv1rM5r$fpoFRqZV`(IuXH2=S~Lc&C!165xxvOhl`UlS57ZBekn
zYiZ>6cb~uYMn<|lGtIo@TKw$Jw!+74Cnv9ecV^iPfo;{_*ExTEIJfxRPxJdWTl4S#
zlYNx=>T~_vJJD)ejwW6FrfU=Tdbv_i__QU<B6Y%yW?B^7{pPJU`DBRl=B*(DEDQ`5
zS{pr%+)G%;>-qZazdvpMUBcC_DNZf|oU>dv^gR8!*vCp!b>2~<w3#VJQ@DS=ciH*j
zkavsI!wHJ+wbPH!G)~u#`f~nCiH69nouB(1o7)T;FTMXBy>?np&l<nH=eu4nv;FmA
z(xppss;X<}|GB-ldinL&vSv9I(aZL{TozsR<wdE@@eHG<J7U&F=uG1(KK?sScV<r3
zCK-ukj0_BXB0WcDulnZt>R&>&Zd1bKuCi{9YuWF#D{a<!t=x3tcae$Zr#DWqd3Ex3
z`}tqB{`r3WLRM*bZ0TLYH9PD#PF<p>s>t!Hng3q(tCjARHg>}OYJN89UtSnn@0`2P
z`TPv)@ALibesT!^{&xSrYVon2o3cV#>gHcBICsyK_3*X-cEfmO_r%U?|Lh(A|6|^k
zf4_{!@VkR`*`ISy0`L51WnkcQ37m2}t@vuFOHOG{{^RP0#!@v;SPu4mcD-G@<;3C3
zvr}z<?7Gul#dB@N5}lssa<-F}U4DO%6K&<uvCsAV(zotaz23Uid%nd#BfYpi5B7Z4
zlQ7BfnEobW`h2##&uUw*y!`U`h_hs%+m#Pfrh6Qj`|K8*{PJsam*`rb=c!dxincF2
z@@H%L<gWRl;-`9k?(|afR@T!w>nzFNdQ|D^E5Fh;3;y%>IaOB9H$EpJ$=BX`yu39;
zN9^_O?eXEQ_6!Uj))yl-Z9FM>@3-*NRpM=HvQ|Yp1>I&kyj{KflxfoJB|U4;O_SpO
zTIsqoDNyg#)vJAT{(E`-+p}cBqD6~xcdcFemnrr}1=kF-x3ji!%XVDzjt4Cg-|xLG
zCNgqk%E{Wd(RzEo<WE+M{c>F<e0q(tTz~mR*Xa+h^D{j7^03&{I!nvxTGXYx8?<MA
zOzrk`YLgGC6I%3BS0=Z)Mj(84b)w_Xl4P~rUm2x^12;~d`Tth?=4Q5o!WS#DJZzu8
zb<xn$iroB6cg}7Gh6}l>D^t3c9!&cl(zfKQ+5e;OriUzv-(Np%_Ow?=esNblnfYbX
zj3x8K@-J*IFn{!J%6~qo6MVPq%auT@suW^XCQUgi`Q_cu&Ta37S!RWtOk<SnKmK(-
z`?+&hI@Vl@vzr++Cv?GSeWR12YFA#TSQkCA^GW*6-PX*=z_37?>sQUz{eL$--u(Sv
z#p91}SBssmdG!1DwLe0)wkn?fZEd{WGc51iZWrsiS6!Bi-_18mc`;@7>GSjF+|Qrz
zBxBwr2K94_zyI$l=F6_n?LK_)QNgYq_jjB&ub4G2x;{}dQfFG2wyo;vidAyrp!wmp
zm#vF5reD1ku`xYfY4xs?^Rs^@X?)z>rZ8jre6gyZZQbtApQmen-r~$FIcwA3^55=~
zmyQ0*+HowCvaZQkzgnt)hxgm}{}0WX7+bx2+TlApo@_d;_AzSfJ?ZuJ|8Xuczxk>7
zyzSq=-|t7P^<BUBn_v5Hx&41Wb)R{C;G2iarwh*CLqpyqZoauW?XF$Tj}sxkf4|@V
z`5^oMM+Fu>zqQx@IiJp$IZMs6=;WlM++sR@zU6NvgCiq9KAGJA=61MY&W#V-(%aWW
ze0=ll?ChY+U%!?br{61kIyJav-vMENn=?A+L!SNltUt@>sZ`Q`+jaaoIl=Myb#FGd
z$E-_xw&T>Ps&g}q`_GFTyj{Ql->F@t*)!cHdYF{I`}5~d6Z8LME7g4VhTX29wtZH`
zCnovaY|fk6S`p9UEB3ji9@11(E^3N+y>o`{^-R&$tu<Q>l;dZ|&sljjRmkOLeR#?C
zmVjfEmvX=Rf61=B)FYGKZHw^58@8nt|8Do1pY!m|xxY_WhELw^f3J+?vrnhh&(A8o
z%((R4?(FM+d+!xI(8}Nc*J^Ubz1r`G+uEwqj+Wp1$^ThZSZV*?Z?CVeju-Ac;uG>}
z1DEjB8L5*_KKb=E`}@1QXIri$TllEG-1q;VI{VzEA*<5P|6><^ur2TIoog1w&(@w<
z{q_32xBK2~`h2`kcK$74z3IPSt$uHyS$3>Py6XG8+pEKWI!fQ(cKFP$uh*<W?IN4)
z6(5_n->*x4bwzsS`>zk%|JOb4t><h#RR8z&+~@P_pM5+&{o!;Oh6UNKhZNm?r>@^<
z^>URs+w6a`5&@D|zdW3^eritH#H`&rW-K-H-1O<awvKRTi$?e@^`qzXZ;4&Jb^M_4
z#TjnXbRz$}uiqaX8~gR5yL`>Zqv^rR{VM-{HEoaD;Xi*Ld)uA}oo`Pj_n(<*{C<IK
zX?*?Pr>^3$r+iY<XM1^{uKV{>J?+=r@_RcTw!QTEp&ZqI$W%6L=eJwZ7BYIm|FW{P
zty=cS*Wb0O{B*R@L1F82?J%2ap7u2tGpfJ6DP7@yU~TmGn+F=3gR4VBx8{F%ka(uh
zaOc|i{r}?Yc76-!%{4MIn)zY-e_5W@Yt}43n|AlUkD3stn!Zu+!32lZS08^DV|ei6
z=Uv^ax6Nw*|J^2TfA8y?RsM_DpAE{ZF*^Pyu&rL)wdj}ls^xRT%T9)hd*?+&TKwH;
z7yf_opE;*LReg8=VQpIS>fiZXO<wW;dNCIIrvI#qpRLX9chrV0X8-W!=Jw@L@AiD&
zCY?VAwE46{I%aRx(<7bFQ_|%ASne;|?YsWGhwtkWw)Vrve6C!(_U_i!<g2ShKUU27
zxlcT%pzwF-3<fO$jv2Yno<0Tb%*);FvZXJQ-{$w5&vJD?{yjYGZfbJn{Os);PQU*A
z^ZEQc6_3ySPy4m${l4E-S5_GMJi4=|a`MS3#Vd|6yDpx1-tKqBv7Shm*MIZ6*6(<<
z>a_lRm5ClRuYY=~{|FQq85d3NzUeiIuzhoPesPUh<rzKoW~-(jws%%H8Lx4e9(Y_z
z)8NUf;%-yPnO0(}MO2;tc`GmUpZ4$k!>9buzRI|(FM7Due_Q@@vHl0sdX^~tJ2CzI
zU;pa<jdLa)w!O3M@Q?QkONttbo}aV-_U`UnDa*GuU5jM+et$l{{#%u;ak^i!Qpo*%
ze{VmFtNmKK^89~8!Gc3Ao2}PWzujtnr|!4z>FM@+tG-Ih_#K~LciVRL?AddJm-{8E
zeX07Z+;4OBq%5edar>>^;~v5PcPFnrJ>C9rPVmBjZ?DZ8Zr*k_Et}w>@@{YWzXnET
z_nwT}C5z9d{r!0S{r%eS&Re5CUyELE*#7OsV*khC;tUTyJo-3e@w#Kt@uKCkel{-K
zwc?NMe+Td;q|Oa4;J%6OsWbB@#20l2?X2%*)R6il|3`FN{{O2v>vsS7#62T(`Q?xO
z^>?i5|LuKi@3P{$^qaEPMgQ}c9Zr0Gzdk{0a<6>7SohH&tx#rmzMFfi!+-yoF6AD#
zA))YgNp+*cfxPX7J8kBlPc|r#>B-xj{xx;FuT@*LPyM%>$J6JQ=0&d&;b19#cIJ1!
zLY;-W`ul+1w}y;g{{0sBT)OFY{`}clKcCHBKjX|?sbIU`Z$8J>N&c;8U|@gE`0=;w
z)~R~SUw>b*@u1ucnM&=+Z>I^m^rY>MkZKL9ek-Y}wl`#@oZ^GefqGB&2X~<@<(FsP
z7;)#$8=G5O*X>Nx`kd7r({J}Hr2X7c<MT4#FS^T5nf5IsW5xZ=>E9n6^`3EzQ~2Dy
zJ(a?fe;#`HLB2jm-nPo;`Tob3mVTdG|Ialw)mBVDZo;mnC9AdMd)@Z^tNPm|s=s|J
zOEaSy_otstt5%(oulw<B>GXRRA<5ERi{z>@425&w@2d`st~h(<Ow9Ioo3A*xo9Et|
zF+IHDel!C^o4UZ-?d*p{?K|gKrwGpO`m&O<$(=K<*YD&-Z`oBBJzE`8wJxPSUuBsy
zh1>7xpYlyTQl-zDSc{kY%{9uq<Dzy+_RHsbfBU~TzTdCEed*DzzuzK_X8!3lzh`~r
z+Kjh0|9%)t^_HEQl097~vgW9$xZ%VX>vlg|{^*uyxKHJmi>l%Af6W(dwSRNRvAM0R
zNd12G`?VP+v!oR4KA-v6Z?oyizTa|Ix0JU=&Cc8T^q7Z=P`9i8z8`loFE2B0oRpc)
zcQ)nJ+0&=<qc^QQxhdnKy`_v<|MA_==dsT`Y#H*n-@fku<9_KGXTE<vZ@)HryP5s|
zgj-v#{XR5h`uCZ}>Gxh-OfG+a&ocMc)fhd0t*Phc*Xy4%XRzQ^U71qsT-&|VC~f`Y
zU%H!ie6IU`l(VUJVS&GW<JIHl6{5^6Z8o`aA1_DAuKwDY^*6x8LS)jims@VX{Pz9-
z=9_2Ooc+Sp9y#Ct&%Y~Ia`zvT7itBwwWkQC+RV+C=yrLtb**{I&6x(F=D|DP%~$8F
zOS~m)a@uv3lT!2Q2Y=4!><!cw<F3?D7KknSZ_mKM@I#yR&_*`*3z_QzXYChj&(*rM
zRw0wsu|`(ze9-hx?q63w`+^(xjg!th?|e|9@Sl-^VGfIk>(1P;@Vomu*7m*4opSU|
zw)0ba_wFw`=W{COPG4<)y81(D<*Pe~A|u_*xaA)(gZkDDC6haj&tCPt^403Kj@Q=L
z&AohYkH?oZHer^`L%v!zOv&s2EHdW$J!6Z|%qNp{u5g3aR5D!hQxVE9X?^v!?&v-K
zr3b4_uj;63YC3K?Qmi!TbM=&z>zni^rqB9Pd30xz;3?J<_3rJ<UN+m=@cIdx_zJT4
zF)&#CtXY@l?(2FY%6pgelEB^O=W37D^Ifj%zBBE?$2G4OE-{ME)RLJs*}CcQ-TiFy
zHZh*4KVHTl6KC*3xI49@VR`DO#gk9A+<*V<Bg+alhCfFqg={){>A|YiT&Cu^9$!{&
z|E;fj?dvmBgUxrgTseL@aMzyb>S?n}f~LOldDbtY7sL8wzuw}Ith;&X3J+ec;@uRX
z({<=?{H0|*I%3fpQ#@3PuE;R>ZK=??^`z^Hb@Rtr@tbDVhpEnHO|j|bY%=+2X}w;@
z-Ph|}nO4QFKT4Bh8jBb|-RC@#R%|k>NAHfpz4;4!7#K7i>kkC(RZm#C^zPS36GDBr
zuleG)DY$E)Q~0zQ8Iz`NHr@H@O-*gyLnlTzMTVdJ4B&NaPfM-lZ2hftZPwh6Z|+C8
z>`J&=^3q(Y>BD6w{_yl^(_-v)xTp1bF1MN7$}h_Z+G*)<%TsMq+4AN0WVc7JIr>#z
zL)gzy(z93N?Lzlw5^W+GY&R=dckNl^vsO>|D-$@rw+MHt%1o`U=?(P^-)nGV$+B77
z-Ms90_(e9Xl<QjI9OJXf_tKi0*t(CRLY$zuV_;x-dHj9e#_Mmm&99oUPl{*nUc2r9
z^QZc!8<Y}fT|acu>=fIRlyAG%FR5>fI+ED$z7yh`vjHMcH(9@`eN(mDe(^Wq<dpey
zcwYUVGj-+VFOm_9N<Zg6NKMT$GAh*((_%YO&%nTtsWx%Ro3zc_%fjzuK4YI1;;HT{
zeA+gAg33>GRc{@Wts0w;&iuJ+&mudm()sq`r`+!{fYPEuZVMA*_1Aq4!Mtyc>V>4!
z%3RMs%bl%oM{@B^y=lj^-k!WRL+sm&{41v`?rhW$2d!LVSR&tl`Qih=8MBi++w6Z;
z?hBe|2O1Gp&^7S*CBl2=?8J1Isp8q2i?7O<onpPf3SMu8n1_Fy&%)4fS-|x&pL_T2
zr06qo$G=946t+*{sedc~*WG6M_9i`%7kj%HnVjdDt&doK)%P&_4~D+0f_0Tz-ymBK
zDwP=+=G;n}=y7=7+}->By!gI-`rh5o?ne6OReZWC-&1|xXzQOd{w%YPvX(|ZpI3jc
z<9VKZ>F=KZ+3(La-?rhm?%%J^@MvFtlM07}%8KS)si(`5PWN4Ne`R$}E!W7;>~>Cc
zx%J&uFK3?JW-OU*_0r^~{iL}Sx0Yq@%6+_T_sk`;xA?xgl39CH`uNJ+qkTDnBK!>u
z9nCx5zpnM}>|8WaW6~s!nF9OgU#w_gZ+|gguEE~sefRg;icg34Z-0N+UVPtMz1hcC
zFZjcF-EnK#&)q*>sdAUD?#nr)5G%lt7dACXabm<Q?bYIwj#f{qe>kByEN~l_le3)1
zs;%YktSuhh3%t}8+h{o3%{RuOzhjfm`ohmoMc+DE?*6gttn8Bij0esp{tWk77SO-<
z*IlnCTjuo6lJ@M5u)Heu>+-3>-I2c;FLy_EpS3V~CVT%SZ;#g0HwW17D7>!upL{j;
z%e|tTIj)nQ$l2~Zoq8(e)ES;66}O}#rblkP+;Vy1PN$M(bLZt>S>-R1zt+r3-RC~n
z${@>&v##?!&pF)pu=Bj%8*}L^O$EnW*`F1e8nGD0skb_nSeTW(l6solZ@cZ?T)#OM
zAAdaVUmp{<Z$r)3Np3rKHlLn;{a@v)uhZ_V{-rL#Gb?KCQ5hw-Bo((Dm1AyO#jHOc
z)82S)v%2uj^#8~HeVYIB*}Tn9{3NAMu3Iyqsr=5?`_FIIp7^%y`|iB@6U7hS&g-o0
zJE+(j<=Lii%vZf@QQZE8vg+%0{44*s?1uK*{~!OxGu+7Yx*C@BEhqb(sNw#EtYtYx
z2Nk*IpZvdOiQ&w*^H|^NGOuemYyV7&_eLnQ^-1m<ldj$TSA8<BN;|yz%U1q>h71X-
zUwYlmsZlhq|JEB5azd|WZ(YHzoIS3#pXc}JKS>Ste5)75pRu>Gzn%Z)TeUzDPo5Xt
zpwP`u`oDi|zeMLmiQgfsZ~B}+f28Y>PvBJ#pZ%*pny$TJ7tWGusD3MM^ZoVT-+!{c
za@cR}#Uxd|WlDy5n$q|G_kXTuIIt}&yCkXm<}>N@Cw8(r*Irb7uCwS*&D#g%yV#G#
zPHU-Lf66jT?&iklCm6Gr9$s18IGgz|Kf^Xb&q-V_uUz_5Qd<}n*>m1ZCtmwa7{{gM
zx%aa;W*us<PMQ@^&Geq*ZRP(7{)Ktf?{0_7t+@EIg{xbS;V(bKhNq?0cYR9i=K9Rf
z+qG!rC+AlEpCUUCel|}{?Y{e>=Ka459k-Wkk^5pPWA};aMLk2qzRNk~$uqrPe(^r_
zL^HSaqN1+kk##Gx|CBx5>+F|&t87E+wV7>B?*c3mOxR9vFZj>M@XOC~y6;)v>q5p!
zcFS^8?55T`OcH&6d4GwA@X3`ihMyCsW?!)~`sTi{aB7eu$My*l48P<Vz6g6xD(b8#
z`*$Yfw)yreQgKxe?Vfti`)n?n>KypC^83Yu2OYn!c)a0mUXiwl3R}ZJc81zzm!}GO
zUkyp|v;Dni*`y8S##S4j3b(AE_I`C_8P87jXIH|S^`G$d@!ys`+_a(n1jB{@3=8&O
z(VBYY%uKHuw{xyvw;okrT^*O%*QaH?Kda7kb%D;TZyIy!K3}+z-+Ii{O1F@4!GA`F
z|C%Y6X5L)s5@{2<?a8H;{T==mtcgGUL$5sxeP{c)+1+Wk`(3uxU(;o@R3RGXPfW3#
zyWTxG_3O&|fazju-fr<+Q_ZS)i^rAiU-SL9^8#hASG&g^+;IEpH!YFf9Xz0T`Q^R(
zqQ}{}x<}KjyajVh4X?}maQgY~>Bswq`xl03PUErORJQ-3_%2-$yF9b`^+)WSm>vEz
zH`E2`i5P88?^=0ef9au%B|l?(*T0wXh+ti)$p2)D-q!3V`|s>5zLNau*83p-4{AK1
zQ2YDr4r8QOZ)?fcs&BuyT{-<M?37kmOjE-2qx*CJ&pDsGnpduS_LRN@J8Cm-EKOjy
zWB6jv@WOnqpSA2vZI|?0FDpw`^WLY}#nu?;OZI0z>yzBX`nKSn*&6$DhiM;{%bxq(
zf5Sh6;YB^e1^-u9y?*`St66?~pZR93^oL*hU(Pq?bczm36YZN)_`LcX>)yKm6F%#$
zZ8HxA+v2>m$adCB)#SqScg%gxPVv>d;d)SyW4+1!WyNwI-`Z_3Fv$4aztfGm>?#8^
zpkI0gnaQ0!J3n{XGd8b6Z|lGRrIY`M*e?)`mfx)Al~sPR%HcJy1@lAx$~|1?RzOnC
z@~b(^o~Lzjr(d4>t~<0|C-z^<!%oGGm!}?`lX3cGbK`|4?uXgkZQPo_F+O4f1@gb(
zwbznwx|xJ-^r=4_IJ4}8Ww%E3xw%o-m1qCi?$3AZO25S(Isb$+tDg2`fjyp|5_xX<
zW$)tPuSX+O4fFC;Tl2mLADth$?`89}roiN$8Re_)F7CVd@ucAYfAX>uQk(8DT=?J8
z+39_sclokqdXh16JO9j^ZN$MKef@2T@x`AtCA+3}{_%ePp=MXz{vUI9Z+U*tXVa#o
zi{xL;sNG-p{$Akvn@Kh7g^UNRtd0EVmU}Ai*|F$rk^sZCYb&m&CEZMq>$U&+e_!P@
z?*Dr~9E~@s`Tf29{2%%Hch#q={yo@nx$4EgH@W+l{W<Ws@&B*=eSe>+f4BWJ|9kIF
z9XH;Kj13!({klJu>*lJ*dnH&JxKAxD%K8<eYpDDz`Iy@!J@I`(c6L`k`o8jFT&$I5
zwWg>)%Kg}##s}_fSB|hUWCz=QyOErI|M8@^o7Mg1MErdJ`1#kQf~T*fUVWXW^Ic1@
z*)e$a))|sVJbLmKU*2JiOyXYuH~P<SfBSNyf6veB?)~!U<nQA8<ke@o-d4H3J#+JW
zpS;zldDY+dKEA<tec|JKC!_Bi+;H<@h}P62CvsGrlkRMD3B2;!{EOrc{r&$R7D!b8
z`lC0!)6%8qNQLs&=(Vj8ReIWI^;6WA{Xcch@AZ*s`8zpICB;;}{`awSf_Xsjdx={+
zwVxCTDsP_1(>YOK-DRu4?;rjBtQW@-v-8g4gQfK^a<(aX7QIgkRSQl_6Hqq%7P9xI
zr{CVV&bd>I18a3(PT0JDtJ}X#RX(;0I3lKWFSGSpe&5FA8E5a`DSqD{v-6g+Jd|Qe
zG&7PuIYDAOXRFhl2U0VWnxDS^bTIV&&dz3rJgH4O;zloDzPJ5<>-xV}t?K`tB+vi<
zuKxF#;;-*(GzEUQ?Y6ob_G;0$#eL1+Yd&3ET>nM-__x20)W6j~P@eq#ulxUbduPp`
zV$X13nc!3HH=f(4_WwWhOMd?Oj>7KOUU$zp=|o+23rY=tva;Z@>Ewv`otm1~|8D+G
z+<)65O{1FquGsY5*V99i&4iRCg&v!2{P=ah_P70Od;T4NJy~M=tg_{^XY@}=kAI!E
zcvse;d$E@~=Jr36d#Q2d{g(5+nZ=9l=6`9uvv9+~95uHzWyvOq`?vlb|7p(<(_OT1
z!pxbgbk24CY*nAlzI@Xv>nr*H);wI=W-}pp*Q067TF+nnulTUxe0I3zdqq8l8$mDX
z8Lp{&2I<Z0cy3i(xl+*n^R`F!QAfM7e>U$>n3D2$L+1Iu0*wrAlQsOe+S_8eR67|N
z{_;D_f9Z88X;pyL-z00<iy@D;`9<k(i(7l|Q%!OBjdgbx%bvUK_GRA!YYDj`3wcF-
zh6Vo_Us!+5GPSji?K*$r=8K%ezs|-4T+FRI_3i1p1!uHmG#~4=9<DDhxUYP0g4<e=
zmTFHPPzL|yW4L=tkNWwrUhbEtHeQ)tQ*=s?tITo5$ys~S-hVvoT-U#HnS6O~&y7&#
zBdnm3t=4VQQ=f(VN`6iC`*XH2=*}g-*+*yH*;u>v%Y@5|=9;kGIyP4-|AHvTZkss&
ze*P0oAeY^!S(|2TYaiS*@2!sO(N~w|PkEQOWeLCJJo^>%&UbE`V>e@SuSDB1yY1Qg
z9jz5O$|p#G>bEa5vsTWSH`nfViHmXR_eY=0z4W78ZYpv3Motag_3l>gcU~*^wZc{X
zhgV${5(jILjGXrQX<Aa<KI_kmHc6P9Pd3~5Mx^C`Y|Vx>vNl=YT}`&HzRP(0#g617
z??W^!k1H`W{A2$zGjI9q&U4QfUtU|1vOuPO)wbX4q2G68eGET)J|)%L(>h|qy;br&
z|E~Rr>ptrg!@%%M{zARf*IP5EFZVm1by+o5apsSN&+B=Ut}AfJMotX1P^)P>>2Txy
zt>s(nWelV`xfvY(Gyn46d96$B^xfe5LZ7+8WlhMUn2eVASNm$O<o3PnTM<)t`@{@w
zfi1i%j-P<&=vMK(>0)DEzii^H@To~J+n#wJjh=qoKCjYosX$j&{>e?(<>u@-DqNFL
z5Fp~}XyKFrcA5XJw_#OzYO`bhBxYO8T6HJ<*Qp&w53S2n><rbTdY{R@w>Ek9T|)L-
zv~Swu4?o*?#4Ph!=2HUJD*x*2Ij3DgHlH`8eO$6{+lvXsX@Qqcow8q7Q*a|yucFVT
zXHja!8Ce<bS0#?0m>4enZ}_Klx~Ncd^31ub^v`u3ow0M`pZTrqS)0Duy?tH&df8{@
zcPlbu-tyh}lidHC*=y;fw>!c1r0=?$m!>$Wf8N}@o#)bAtDjB%zH0vGdHXf>XM0J#
z-`)4i=J4UV>$zf+ubq~>%E0i&e!=@K)^{V8?UIN!IP<4_-Lwtm(|MAPD{!0-yC1jd
z&F9`XbL0)AY8A^h-k8sx{@&g*1#C_HsaB`7v{jodw4aIde0{>b^}^-eyJ;K0RbRVa
z>=k~e$l<BX)?df#6gMP0tX0!vVED`b!g!L((@EVse;S`m`ps^duM_%X#wY!lMNfoU
zCauw5VS8}n#n|M@b=wc-)h_p5sA9-);Ow>kYHD>w`!1|pxzgLM%8KKT#N0gdnX5s~
zrI+fxM<t`x*NR6sHwENXPkvR--u|YT**>?d`tHFG6AoLt#4$9?J{tOd^1dwB*GCmL
zynJ=l>&e&2>+OGDz5ef)@#Xj*FK*iZo!ejkajE_9<L1#TEtg*Lk}P-q!~gW%k6v5(
ze?Qda_r9GjKhNe%@Ow$?qV}5)Rje2eoORh+c7FE;yYiDxcULLTHu4ZZqNb&%oBC|o
zs_xJCr+#z2boKGs<$YOcZ<+!on_5oY{gT7B>bc(j<4-oq2W#G($IWm<Z(ZKs{H1eZ
zgDzGXa>O*RyW;y)>%RTmx?i*X=l=Taf5iU3cGv#jx#w5MbEwWgrKeWIw>Rt2yCe7b
zx6A)xzP`AA&uj6z{|A28{rq<FpyKq2pV%30g#G&TTb{3d<MQ+Gi)PM{tQAaNeY0nt
z-Ch&ps~+cgrzCCjd-nP1<Il3+>wNzxCa+Am6<FANi|OISxx4MMw+kz87Chq7cBDge
zk<RJtJ9{=wEz8P!b?DixZvFTToz2pb9B0zBC#ihT3oAT!RaZKBYlzSJd78)5&zsFv
z|E!jq_^svT$)_KetvRI?%X>J%xL~>Uj^q=W5&@c>f=4`hQapNYcR4BM74+sTeqBHP
zyV<_~-EosuRtBtbn?CE~(WMt}uAepAb9O`-*P&1IZ=OqB{rOx#M!ipFc~6_Hva%oF
z2_}XE$8ui$&=;@QUF;tJ`$0U@bME<by3RaPzWlbtCDv}c?f0+OKHLv`FTnaUd0P#v
zMA_B!uzdF&`??EyMa&EjR;}6mw>&%P_xo$x4@yXXjmj$9B{Exg+A9C+Wyg%C-Z%R*
z*FEypi7wUF#p|TsRFuyyyJz;s=#`095{sb_sD8S>;pgr8M&Cd^kwul7v-D=C&68R+
zXVYoc-5R%96?G#`p4}~%msyo@Z~b?R*v1994aTb&87>HavHvnb=k&}JE&JkC;BsbK
z*e!)C_Ot7kXluxCyOJ9feR5OyYfcNMhYuFKU)(iyv0(3HX;7a0(p$EB>b%*yI&(xn
zZOk`UJD;*^d$)Z>#Q!dpZcw-TXYsa)_igMfjh>jiy5|_fz;NOJh5D?iUN*tKDbZ73
zTzPV7GM{C-nCfPQEh$qyjZ1F7E4c7VXU4li_Tx=fvW1Kc4*#9!PfXnzutI09Wn}c6
zV3Fi!ZkP0?{o7jf`+L-5Md#W>3;JgryZWx-to^pv7oMDd{#u0%l!<GX-F}-Uru6f~
z&9JJvb%~W~?_Xa#U7zs#(<k4`n=zLvx~?5AzgP95*7{J`;wTaMUnh?Q8E$1@Snz+L
z{1&O+qb^zdmUO9|Zcp~#vD>rxh9QTOd)O0^>hEuFm_OpwS;>C4QMPXL%pG72|3hBA
zy>jLC)f-c0#2Z|hTxJ>n!s7p?KYnxFEb}&Q>y4XQeC3sVF}u_E6{g?+yl_;00(RhE
z$4N_Kj3&;VpQrNt*3&!x*WR0_Yg&Kt$NK848^Ohl;OD%p<!|`E%alfK;rb}i2?>kL
z?YC#1xKndi!1wwZ?(?!a`<95$-uF~VgWK|=l$;TtywtYYZYk??Pdt=S(q~|JQUAia
zH%whHa>cw_*K@9=TV30?qzEnDuWvIa{6^nRU(L&Ut%viaxGI|-E^z#>Q3<x=zNVh;
z(&x+0$xcw+|G}sD`^h<(=MNlOyli>)Cbi{7`Vo1u1-<iTSUmb_HO1cQAR9Og>Pwd9
znQap|zcsD<lvC2f#!J)BCY`PRw`@<&r`hFw@A&$x)Nf6zj+I;Aeuy39tlH&wCko9h
z`q_TIY`W4daKo$ftw-&7d(*xjvacWwff~i{eH-p4eVr^0vf}GpP%FSTxbHmY&KF6}
zpQrvw37=$_`S)1Ejk8*@oS);C8W(8nczw_z!(pjN%l3&9U`@iHfrSvQX*2R}EPi=P
zcBX!RH@BZ-#J}KarKM+oFuVU%&RcwG&uOz4g<4ZU3Fk$9?J{l8lQFi|r9plF17iDb
zT1htF*x>nUz4*QN+oV4&`!GjwjXck;ro{QD-wL-Zc3}hg=I_$L^-I&1d4G)5l)e}$
zZXdp9`>jBmCDlLk-p=;sa=#@YCR_LULf`q;?=QAyIqv8^!oa}rcm4S(#W%0K`4V&4
zX!cZ{lkfKj*Im;)Rpz+j^s70iN^91iefqig)_1A9Vz(P+?SN=Fv1yK`nb>0PLtj3x
z3OaMiEBeSPcY%NVYRa9=_uaQMTE8#&HK!HR<8zMlqZi%))qf5D%nc0-KVDtAa^+f?
z$lZ6n&Yu+#OS78Uv20SsLb;lSQbn3x`?G)g`E7Yt`fn=pCL615w^Iy_4}+|G-!(1!
zzN%|M_ll{fSKfS?vhZWt(P<t}>z4j?-K?Q&zI)o5Gn#W0=jR^p>kQoPn7!M6#bv{#
zAdUI5)64fgow&V*Ghot_6Px3+RhMnK>bg6igzHdJ_7C<;f9v`){Yt0bvjq2infRs_
z&GBRb1>^OEr5|$VsvdYA=N)nX$2!+Y{S~&ZzZKV-@6g`zd9&VhjjpDGhDv6TQu8T?
z6W_f2ygO#u{C(LvR^K`wY;d+cpg4WKt(%hqXl!nRqT!|g>oQVjzh@Kwzv*U|%E`U6
zLudL_{%pFtLR&1$XX5J~P@#W>!${?rwDUp%^Br!>Do)p5J6-<u_M`itWlb;MFWXUC
zH)ZY5r|}F74YSWoyYcUIlRN{%fp4$s!@U;@{QmWGJ11!DQN?Y7qG8_IlwX_v-^^*7
zXIH;|fBYU_0cArWWy2<(&cbdpS0x5eYGh;pH8dGO%@PKXCvXYg2+>m7apTC5BS*t6
z4L`C4N11N#<<C3+Vx5`lCzWIO_I8;+ZT0CnvZJ(a?T6bnv1|UXZR*@~a7tKA#mv|_
zw~w(GE_GN}Tws0v<my?Cw=1LKI$r-0R(4BE?oWEMccXj6|LE6~?|kCe{QQ{7jNGZ0
zT4!#1HRbk+Gcm~p)<<@~dS1Qk>9U$rPp{{`7vt_IeEjgky$a?H|F-|qNm-P$L~nh>
zck$21*k=~aHa#&XB`WUo^SFiP(O0)W{B&^DX2I<Jb(Q%`{y%*7^9r|t`oWwdyB1EA
z{`-FIe~IJm+e+`>3aeeX?#Z@SUjN+KU?$|%yo>d>I8ssBqhp;LR{Cu3#DCwX)h0b=
z-Sf)&uGIQ1+Iw}^S)Z5^{aE-zD6f(F%xTwy|E;UnU!5zby!m5Q+@b70`#<0F_`iGM
z`t%%?MW^@MSA;h2Is4JOJUD63rH67eroG<R68>q=xg#Bgy+Y1C;lFpqS+n1hHgDB9
zZKTP-z>p)q1~jd9;XeZdsD%zn!2ArLs*M3uSurHM-hJuju63Vv;^wgM91vTg#Kd4;
zyK#5T2djR8>ZO}`@}KBOeO+l`r`sUi`PH7`_PRf@pYN_)Zp3up+QDD)4YT+ESzEa4
zmG`<hi|*^kv>!+<U$?8^^)CPFhk4;vr7R3NO4t4~B&?0w(ODk1)h=#FLE+WK-xyzL
zUi;5*=gBp@i?61hGubt<^+2fqqdo7K&3~K;aR7C`cDRY}x^gw|_T7rjB2@*;D))&q
zEhxY7kDDR-gsOBC;{x%B|I7u(<twL#Zpn_Av-?(i%=!DOe<~(^denPD##F%J{f2++
z57gE-m_JaQopg0CC*uNfm&j?Jj0_A3zZ3rQ6PZpy1EUNH#ec0O7JPNUa?70&;+8wN
z%$$<cB7L`<#FA8()a3k>RDGY+y!4U`1tSw9LpwXJ;*z4&#9Xe5TU(_v^KZL-`~8pW
zZC&K5?B3@}>Bo*LIc)Zwt)zMBnCr$3Jk8TIW^=e|sia0nzWMj9ws^v`6T4IocUr1E
zx83(!>ifQL9{h*-UvhH&FUU7B{VvhE_kMlW^rx}!+fU#7X?;`JgVU#Kx^RWDg2c*z
zuX@MB5B}a`&mqaV?$`C{`@hufso6Q-#be_M=B{gb%UC9QRL)+nKkM#}<(kosLdhOn
zj~sn3?KbwlY0xphBl@_1$&LJriue9qw<*sH|LAMrC@6R@{NK*0CQQ3G^4PA343qa_
zUh3iTGST^V<^rZfFWVJab=If5c1f{SM%sk6Us6_fnR-iSa&4j32AgBHb4slHyOafg
zPAc?T|L(C-rPTyyFV!xKn}-$_ioLNpt|J|@r@K3FL-2huz0;MOrdpm7oiT6yfj-&y
z-%1~=tTA73Kr8i{XIIhd?an=mPBeGTpOcV&`RCacGoF`z>S1$bsuN_Jc+}(j&oWWp
z7LOwv`|Zwt7g(Rp)T7Wdwf#-B)$Kg1If{-Q?B+b{_N*wZ-6rzPfGJYy+!_7DtG}l#
zHB9W9@<sE{ZSQhRj?E5Je%<=}<>RyO_H}zJf4|@Et1xF-<@KDtpYtAgxJFw<GA<Q3
zYBx3gxMv8Lf#D}9p->i089nbWf7j2~&%amq=gY${MyV5BZk_xtq$w=2aYA*#^~3wl
z&SYl$Y4YSii<1r4+0!4N9Pp56ddI>Nv1&q#$d>3=of2HU{^uP+gYGZ+X;CS~=Du>?
z1A&thDtGuVuA05Mwf*OEBiZPw^;(zqtn>T4(4gtTuGUsjR#CU0pHFyyhtJKZsV&&V
z9K?D*`1q6}jz{}aU)*vMk82kaDr(tz{?WIn?lz%7Pn#8Hk*OzRC-w6$X-_<nG9`Ce
z`gNNg%NuLY-}Vb_C`>y#{mZ|-UrV$O+*|Uw<XwdQrOPv$E;xPv@`Z1LDHHQa!K<pV
z<~*{~y;KFxH@fLfY+3ZD<ea``m&#Xx{eAD9w=%Kqp4luKp!n#N`ukhUE;y=8co2A<
zX_JZnqfco@=iN)Ao*Z7h)bGJ&m)Q$GZxKFrXM)qeNpjDwPuv|8pqiJM=vsU9KvV6f
zb?5nd^Hf~Co&MytYrIY>X3v^*&3yBYp5>e@e@~reIJ|FjSJ;O0`<9<wv`Rd(s6hRV
z(fZ9hOk?jG&fMPoGsJSPGRFeBX9pjctSAj$XLfndGWF+jQ!Ymc*IC!e+*iBVcxsZ6
zrtMaN3knm2S9uw_I9)ngE#<1&IOAOM`HK5XzaEvkGVASz?whs|*R$Iew*Ryj@9_Iq
zEv5W`smqA}cez=a?akBneg~TpI`)b&pW6CJT69<ZoaQodogK}E?MXuJ9$fqxK~pa8
zcvr^#JMf^=3ZEJ4XTB8{7m)mZCoOqH>BcavB{Rgc?`qdvI^^TJz;$bS;x)!iTR&`A
zE64aJoBtKpvgM{99#3mgFy6_-snqg9@Z)v4Bek)N25DwSCrkD$Q}mErb6n&^g4>+e
zXP>`czU2G*Mc<|WNUZYkKfiv%r(=hDw4LX_T)$am-K2jFZ5AH$CSBZ9X8v_=^plgp
zx#5ddPTx6wC~o!75~=Agx2MifJho+xOoVKByp_@I(nn{NG_t4OD1LIcHL2+D1?em+
z+sqev^_E}n6>=S0;B@$qyP5XFnp<`+vrqlwdot0s>b6Kpz&tfylcRa!pO;?SA$cRU
z+;!%)@4?m9=Z|}4PS5<uu++aw{B_k0yC(B0@23v=-IcXX0e8PGie*xac`V$TZTw@A
z_Ye2(z-cBuPu7){^=;|g|J6-p!P$;kF~td29tqTcy|TNTM|NhEQ_m8)uVsag-ipa7
z@oYTV%v5V}dc~`vyk9Ent0I$4%5&w7w0HHD1k9Q$@-V}5i@H`}YKw%LcT?R&TYixW
zWvdnHlD%a<i*r3*I>hFBED2|y?`#_MwkBh@t&R5@=CZxdcXnA;M*aGt$F41MDO*C1
zQLcW8lXBM#yNxdw)mARsRJZ8;%U3%d))>EgzsTldi5wUIxoIumXR*uqh&vWZ>uVoS
z*gjd+s^9ukMzV2<m($#UWimYO^GnJE_P=X%zdbQGDK&TZUB+G8?5qtoTR)qAzwg@T
z@>T3}3zm3)=nQKYRZ{J+RM}RwU}3oJf!tu*14TQl8r+wzl`)xda!s1%+oit8f35XA
zzTw4^WciK{%Yt9b`J|Vsdc!QcqcGCbK5O%(pVq$?9lN%SX`S!e13%i8=7)>tZ4RHn
zFK}()1c#Hytc5PRZl0@b7k;@k^?G60&Rf+Y>5D7H%)eIU=yO+lmRhWyG;!)I$E3@G
zS6Q4sGsJJ1$9SSMd#OT)<F3s6HN`6Jv6BvNcaoj<we5DO4d)W^vcnVH_MCT?Z1}n8
zUqhnkpBS5{s$+e<u7>X?*l7QDVd;D)v!kg_sWiv_$W5Ed$Isq{L<eng$~*K)|I5#f
zjUq=TANl^lL&!n;dRckY+_g!Qb{ziCo8x6r{e9nzh?H%=8~wNKYTkPB?##GmUF%7=
zdNb?hN3<3D1}tfMbkJ^x|D%mZvo@ADtm){oKJiS9?M(Fp6AdSqm7i3Yr}59pe#tHQ
z=f{MMVgVBm-Y7AV&zJOSwrqI3aYlOb?laxD@}xvB&wMNJQ0<&}S>RPqJ1^ti+Zpl;
z&t;iep0Fr>UpnvG!L{L%Qd`0$6Hh9vjlR#4mXnd`p`=)2Y%1ZI(s4@2S@e$O>_*+-
z->em8JpbHPjtNXZv-abMeH>Bh*LVAFxxoEdZToAs$S2C(OAcRUkrB`j<+^p{)=S|N
zr{8aKm7i5Hy?Vp)saGN^ejQqSTdr!}>n`2XlXU)y-A{YB(saTKLji|Go+AuqC)zH|
z*XL<mwz7X~Mb6jz{}OK)tJZ%LHPI0Z&FS23UiNoF*ve;13q9P~W}JMp?_;z+LuzKM
z`4PK&%g;`){bs-W#1^FnqsBugDzD8pk7M@#TH(_AYsG0F4ky+;t(*z14_JLwk6G+6
zaq3^KKP{z-ahZR?2gA<Qm6?`|m+VA7?wGjuqK%H-b=R38tM|yx-r~AaR;^Z}OJ8i_
zgL4NCAG1GbwAH)ug<I!c1Fd77+cG<wtA+o#WY5}gN=A0kMu&zK4Sd<I-|CWLi?iOJ
zyZfE1+S+%S>&po<XK;l}2e+Q9F`n>6dP2jKgXcdwZ*mgfI5n8f$FlN@_cV_6X=|O_
z{oeL_F0Om)6KF8sNx=J9_S-kkLI3Y^##paO&*GMD-LkdmvCr)}*Lr5ky^p^TqO0)A
zNA}?2D!#r=8A9Gcf3I$q_Md81J!Aj*j+Tt`C7#xrzuxNqXXie>>NJ+7n;9`pH$!7%
zl&0I$i0J&=W+HX>*I&4o;;^W);<><*7q`}COk5ZFcp<;9pvJa28B>>DnRNZx{r3~x
z%hn#bd9RJp?RLlZ;@>|$D$jo6&BS@!enLcJeWg*ns{Q#%FV`zEp0oKr;mkCP`R((*
zoy_@Y$f_pkQ}n*pYBs}%Eidf+ix$@Ws`-@pjji`#<3<Lxmab#ZOCw8E^~%*^6N@*`
zYw&GvtlXXXtLScE{>^pHhnJN`>sV!poo!Ovy-)RYpKlSX-Chmvs7v?x?xiLEyL-C4
zdH1T$n}3bCS&ajv>ZRUK`o3O{XH7l_)86=2ma{wBRHipIPTn|e_qJENwh3~F>95;0
z@9chd4m);pWdjk8We)v!cv#QmtzLLyU)0pdFH_%NYfgz0{CD-$I=%4J%lsMrpRUZ}
zTx(Fp^84-8o2OTc=bt~%m)rC3@Fs>=jNv=7ADk@@7vHQNn|Zor>fs=_mCdGStgOBM
zy6)b!I_r*nX34Luuk!hiZau)0;~gP7zi_9R)!T__kK&utU))~3MSr)Qi{Z=KZjtV_
zyFF%nON(9eO{gQ7mA53c*!kwn65EY0m;HS1!z!_CPtBB9RhMIIXRdQzXKCnHzMFYx
z(2n~j4%S|naKYCiUTyD_7!%jn`@!39$E;s9@0RP28(((iJlnoH>93^r!p>Y-C&d=s
zwTqOSCSP~8-!D7oZh7s_ML(Cnn!4aa%M16f$5!}<zbSNHdUvDp^gD{Ty}P#Nyx#S9
z7XQ=Y!%IYxcLl53&7EG_t9#aPf9~pj%a&_<4!kuD^eo8Tz2sujb^(8JLE-Obyqy(G
zdI|#1{a%&ZcE$aay6)xM${*g`oY$}*?1iIMQn9v_-o`W0`zD_)=;-PAw!Tn&OUswX
z*Ul<8$7WTBeL8tHaboMoSN`_4R}{`&c^7}8e0{Y>y5`KohfRupJ$8(hj<jUE)3=tb
zD&b)N%ZI|p_ZVv3cov<kI73wLR-E!y=B**K{EIy71<vv;&%bB#cF~&^%!hBhUO0dL
z<??U;%+INA{r~3LLyie=Z{*m$yLaLH&zm=|uKsMVx8nG+jZD`rE|j?6#;@P_dey=+
z%N0M*-koax_tv%3nfvn$=4YD6w;P-5=AAB$H@p0jvD)nYKP!QkzSapvLN?q>56lT_
zx*A~3=@hTWb~NYZZjI?jm%Us0IW;)1ExB5#|G%cS!0RVZoCCjpe9_u*TEH;o_{G?(
zcPHk#6i8Ux+P-+WNdMaX*ewT-GSuC@7s4xJviifn^Rs@h`8jRx@#79VIKSs@eDTtV
zcipdT`mau(Y>w>Ryn5Ba!dJ30boWiX`mfaN+{2>#Kg({$y<lhj7WRfo=7W~S`6VYp
zj!8aOFk*OrApO?vGmS?z&lg@;;UiJ3a$rYof()awAT!4Si+4s34yD~<Nofh5S@KLm
zvpJ>nf`X|_3!D7ij$W4>9hRIW-)0&WOt~R($W7UiLt1o$VMlNGp1`2gC^^-9mitM{
zqKV1OW^x-D<vJJdJkRszf5+p0%mr+UW-}iN%E**g9AL5#n7KHx@JyjrUx9UjM^7uy
zgBJ{aJ!cFxEWcT(y7LviG4d_a@nJa5S`d=b=X$pA_)5!5Zw@Hh9!u{%t-?~^lhWsW
z_9MT^aoLl%`|}SPs+<U7DF|UW?)J>$icI~SS&P{m-C`9Tr&%>5Gh5ghvGaa-WaW1;
zaLI{^rO`ntlJ|~l?dfOjzrxtJidmumlRbY_&cnhbC$(%QhE^y&o^5%Ed4;vY1C5)D
zJ*ToRI3Qs2aO#>v+L0bf{0lxcNGwVJ{d(EO^&eXbe6;62ITrOy<{^Jw_J`m6^~{Rw
zCeyJLyq3fiyk=<S?hM~-X+wdw_kTsJw>XxiyDh$WW@~)=B!^qS#HI_}65-kE-Oc@S
z|N6A!@rL`vyjp5Egh!pU*;DuJu52Bjg+ukjfR%d_e{7PA(`}pnKIg*D&JP=YTx(0`
zDAqR9*>}$`>~?#6=4bU>xy#4z&wiWrcS7E}_v`N6*}HGw&ROTUKBidCJXf&k@5a6V
z_syBtJI!oYT<)!pKgtrn{4+fFYfH!D`Qq=-*B$;;^6~GM$!pJ>S<EcF@!-%ZmI+3x
zjV#3si&A>JrtN4_Gh5ZkB^BVLHO+uKF5-#hql@Yl79XCpFeuMw>h)KAu59$_<V@kB
zX?{O!di&*mdVDx}Zn=eg?;nFLe?*SR{S4u<Q&kN5AozUox#LRqYjo{hcc1Z}`e1Qy
zKbw4Z4U6>ro{94x{hRpzg8i@eKQ&}NIX_HSe17;`yORB*e=BQ$xtG^XTlVn7W|8N?
zbNSutR{eJW{iXlaME@U=TRyIQP~-Jv`L6mc{{L^BJHIv4;!n)QpDE9SmF-{s+i3hh
zL%pW2?%9Xp)aT0Q+?DOG{c*mqygo{s$04rJ>B3d+lCMl>4cJ!rZgsh_yg}dxgU6u@
zuXv;OIvRU1WU*!aw|n`K>;0}m2g&1;jF~=ht&Lk~>E5(Kv%}+;k3idE<1OBy7Eybh
zSC?lz^AOnCT(q3e$x>xS+mfr^TPi!#I$2W71<GG3aC!cA=k=VuJ>#?3SyQ1YcO7e<
zDZFJ3@UYr`yMo(u_VtX<QfI|Dlga~LUU6LF?x2|YS*|y^R7XHiOHc7-h*M>H=KH3^
zOcoiz%ISI{ibB@|YQITU?e1VdZSmt#!VCXtoh5NQc#Kz;uG>|AZioHD!`=I5m0VND
zOuH6DjrW+DnIRANJjG1AFK(@O_EgBNUG2@0%hh&k>Cx6N_rn)Y+}=66n3F?#efidS
zn>{wavzE&X`vurrq^^peVfTKy`0STIXB)lT)$w7=&#3lrj@Oe;ZTb1B(2+qg=zs>}
zH3magCfB1v0uo#PaXp=|NMwP-A{mX<I`+Bu=FQD0-}6_JZ~x(kdVBttTD<$V{o$)m
zzaCxvdiwP0?x$LU`rEpna)}>*e|&cS?WZ?0RxSR0cVXW5t?q95@BXadm%jh+y=~6>
z`G2<D-s?R-_Q5^5&#ZEmuQ>&ql_xozkPXc1=u-5$A@DSWY2|~-&P)C?3!d-bkP&QB
zbTV>zq<JYKIONd+%}e_`mMC}e1{%4%($orYVmYEHs9NM=8L*_!LrTfi<!Eros&1_v
zhQU*It=p>fYS+4hD?2!}l@3l@#BtSC@O;dYW(A?^rCZGkua{1pq?qLFqU$QSx?73&
zmD0;y>-^VTDUJOvu_&kGMzG7XMHVZ%U7m|9U6&o?EOJml)n9OC_ag(nOY9v+XFHa>
zwn}mq;SKyI;#w?tdWPnyb=hvKFUSUFU%z;3>x$(aXI(P`#5K=!6kRXPd21E5``iOf
zuV+e<S6pB1N?Uy)_WGS$rqR34y#NVX7GKohuYJ4gnHhVr%i7q@TVKoAx+dwJYTmWt
zLeGkl*y8N#Id82tFV~peT@oNZb=~Wf%{_f9w!ThzyNhkPVo-6Q<S|!%xnJ8}bSRa?
zF2A;J^48aLY+bYTw35$V<fw3KiM_rOq}WQ_KhRdopy#C$w~w<*?yOfGQM<*muXE|T
z@?3T8N#3>M+;iE$b=k4kFWuT2u{$hFGii-pQk9cl)!vWh=Phoob#Scy>a*nak<2L1
zbJ<t(L~LX~yt^rXdD(SOEXmuHsG`}-1W)odT|Dz5EO~b$CGT>#Ny64Iw<;?9VSIg4
z^wQzi>FK6_=OlD}Ytmf2_wkoh>%CFF`uC@LPIqltcGX;4UqO$1dgj-!Mcd}Rt$(wA
z|N7?-AN_fC`PHkhKabw5Ip`5KQ$Jzb-8XBV?f>xR3(q#=ZP&NI{`u$gtG~^GhQ}rt
zD0p<7me9OCvB`;3LFDQ_*5V5)s!0j~TrFDvB{DYe|0!Blf9RcA&7Zxu^S7DXo!@NU
z|EzLL*W#?Xk6&`hh1Iei&#t#=|KH7#?7T!#^;JiaYlw`XvujHXlWODS#u5>iD*{s|
zXqdTJS}p47^N8x=iC0KAN$c98lw_^+vLnd#NS{Y^mqt{VM1qIQH%o=2Hyulqg4{!*
zx=zF%IlRNeU(htxSYpw-*D*2^n-sM!1RZ&&G|@2F<s;w3l3499mnR(?mU`TAtqc$k
zylk56vGaA*PNh?Q9Z_AIc6+dw3YNyIJ6|bX`>KPdSMkxbMQ`*jrN2<BWpe2$@7VHs
zmxJpRnZP{Fpz=V;E3S7+ecM*N-gV{Ou8Q*5ElXF-=(gYk<(X#_ysnq7yj%M5omA2q
z!$%oLoAz<E?Rm{DD-oEpZ(En)p^mA79?2<YNfKW)eRpj*D&d(vMN4^IPta+>8GRD$
zR|DT2JNM0{f9}K(w<yWL(}KJDFD<Y;Rdn9NTKWA3!39Q>rY(MAw<!I^;^jL&XP0kd
zJM=7vWlhftqf@%>Cu?1re|hZQTpPZ^T6%}ksi}dPmP+3R`Clntt#-S6^MS9~BJ-OG
z_1jK$+;ulv(eG8fZL6ot-J2X!16TEIc<OP-edq5NZ&&4N9e%<bb)_a;GH|-s_Dn@f
z{m|<6#&&MIJwLeXJWsn~N!%7hC2kXA)Wm%@OWIJR^?Pks<Sm8Wm#+T3ysf@_lEba4
za744?cKEJvznI6R9D-(Ma=j{_3x7O2<FkL6$<be4lO1Z0zkFR*wRKk9KJCeR+{S*Z
z-<MWQe6%TGX4rkZ^Jc$q-%tE*{^s4G<MzA%rd3O?(_629FJ}L~J-cS;a};cwcUC-e
z+y9;We{P&Nzb8ocZeH2f9sjM2tBRj*wp;t>$MmbeC;#7I7x$;&*2Qb;(lT=k_aB@Y
zs(5UIqQgUh>4rsI9kWcPGBgCfR&Q>ZVl<tjF~V?y#{9^amPVJ7-FDW=N(h#@CG~U}
zE=uWX@ltqd!m;?1y>f}0z=XxdtL|tm<~i13>pm;H&+D0?<VxdHQw7W2Zc0ov3_2g!
zsT$Ij{7j?K_)r7WTtR7NQ@5kVA*=ddJzPFrxt7Q6?#&p<()8z-BoecF6e9a9!sH93
zuDD;A>&v*+TKb^GLPMt0g3Dhiw>j3bRGeQ?lCCVNZ0PpFvgz4kn-%>FtapdF-MzV@
zSI{-tWu9_|-6?guOO6t$7C%-v6}nC72{dziWO?eWyTywBqVjDZr75<v*Q7UB^=<gs
z!S+?KEIoU{mASsxHlM62>zk*XW%o$^#p2^TzA4MqxLlZf_S)u~Rb_A4&aL>_QF=k<
zCG+BUIosx)y|%gdn@r*7i9D~Ai_*P$LNCpo_%&zSytx;PRnEFwt?2KNmnco&{55Ce
zyty}vmz;Hfdc=Kk%<r3Xbu|Ub(!0UpM?vDL0rDHIqhHl(mqJCmpRe%a7GnP@_!?x>
z#(8V6Z8nVRQwfvztomkGwfmF$<;<+^<CAVJ&SZ!cy0j%>;?k^ox0(FHc6)xXGsZuD
zftijikuC(sJ?CU*hB|J6+6HkqUJNg!y}b}^kaCkCvp#Seq&a-|rB5GzU3@*a&aaTE
z`l#mOy@|gz&5p}mHvRpnC9jnZU4Ay3cfHaYZ>`JEUO#1GWJ+An!+4Ehrjt;Ql($3g
zf^VKPoKt#O4W4kQrt}p4to-~hW!c+@-@<SF=ls3<!^iLcHr&12*8TbQX7lUo&+DI?
zwz_4{jwqe*!onYgJAT$}wUP8S+jaZh+lt@cj=VS<yZhDUWwQUj%dP8E-*5jm<K<-5
zzH>9gE0V6woM_^f)3e1mDP84U#}dOJGdHdCeG~t&yKxyWJ~KD4%<ZV;(rL;*)08I}
z7N`6yaMM(2J+{IjHROV%=V`%-Pfs|RswwC89Fg!$cR8nFshn&1=+$DA75!Z2dc4ZZ
z1k;zCTd_r^@N1ye$BBK1R#;n0FMjtXs7KIoO^=S%IgL>HlQZm+UYxt8aAA&b!?}*R
zg4<*~zXr-(cIUZ!Q`Mv8oQCD%H$6L^YJ|(bG_bpLyyr{f#1gkCN!J3ml_0^DeKQx|
zn3HSjxxsRFQi<EW&B1w=mtHM4TG5|Wyv;3n$y`Be<@YzYO|@K{WEUiH#ht@g`PI3;
zo0661#XiVr&gl1XFFdk${zl7aLyq$F<hM6l?rruB>Ye!WM3PxX-<QU~a<fUspXTXa
zDH1vB-qrl8W7p>330LO!KI++%E^U$Ca@F0Wr(f><-z#&^9$R58y*GXG_ng(&&ULKn
zuQ>BR`;39{q<1-==K0>+th!z1>T~8(&A&P-|E+xr6<i7q7^y4ncjnIR4J<dSJfHUd
zresuK(ASAJ%JO^fZdrb@aMgAu)oaHucI@(-vux^<Jz;Od9{vWG(Cg*zT)>jDO^7O?
z&Cy!d-r3QH0&d^`ik4?Kzv+wneB;|z4bCNN%L_Rd`W_6}y=BLQf4}?Ogpd2}%H`mY
z)?bsYC~G(W_e($f<ra<m9=UklH>kbow?6Fh>2jlwK?0|@{91Ono5Oph(b|1+=dNx3
z+yD3L_pdfFbK+~GV)xqZx0tP;rDbIlf8=J_=F1zu`Ocji7x=a7?bo+ecK`QO{ZF{Y
zB2dJ&bQyy;!?K1sO75IHT@wDD>2z8m!Wxvo!s%o9FL~M7f6u~i{N>zz`@_fYdHZkP
z+tNC3Z{?N?i*sdqZz=h2|4^_c_hH57{_7v+OFpz!E^|97vC#0;4avelw;pxlj|x2k
zR?2)DM<pj33MGeB_pQk4lQ@1xaGJFn%LU2MjGinbw;RPrB8ycdkEa}&J5fWq#O<a;
zXz~$T_eFL>635(Y4t4C>%*y0iUgny7<d{cQpG&REf#hc$yEdz8DVLW`J;sroeB@%0
z$^yGd7AyKC_<AN;OHVe`I;IiXr?RSFh4+>6yK~b-G<I*^D5Y%Vw)DA%sr=LQ7s_>9
zZg+1^nmW;1dZ(e1f!kKFxMQu#yEj5Bc5FUbWfpn<T3&8X(dR(PEAEfZtvhuBQbuq4
z=9U~XtN)dOoz>3o+3_|{R_ubR_Dku>`YhO28Mius&(f*fEc$%f>zh^k-}lVwFYuAy
z8a>0%DfP*@wAVLtY@^?&9^;tZpW!2a^~Jem4lq&M+@2LbJLWI!|Dh?dbMsdp?{_)d
z=ILJBeAV$-$L#);0C`mlgQW6p5$DBT-~9FeRnIK2SoyYjzmLw<y|(#i)wZ<b5--m?
zu}Fk?biP;Ixn-&7Tc))cuS3ODo-TIl5{UK85C1DzJm=Pwsyo@|X9Pb=)h&%uxH##i
zx7*&|2iwK#88Z|vm|;oi=0qiQ6I?~O)h&hHvo7|S?E3aPK*%Hd{v#o$*-Z<}G7A;|
zewRJ#Cv*HqjMtO?)~RJ%pFR9~c(-&N8;9q80j*c+t@^h=WQoS@%XXZ$R)lMHzSZ7_
zEjf1%y?XsMXY>BwqUH6E-r3cG8^z@xUwwM^=<M0or&o9XY?_$%`eqFyC@;MI{`F7F
zw9>NOH(&nPQl9qhTb<SG%UM$Y_f*w?lD>Al+g_%u<mF^;8QH=e2WEyEE}dbxsqV5-
z<2z3$fsBbI{w1?Fx?R~g&7i5z^sdr@nOo;6t5$lg^qJzI*%_>~IHV^?&(Cv3@FXLS
zrOP81l`LR+GG$d@mRqN-_X%6?od;%2$yhXHal$N(m-qcO8Kss!iafP5z4Oz8$Vu*A
zM>SIyA93@v@lJ_*^#6kQCw`5Mw`VU(*={bfSjBB+<+Kxfjx<+w-o59lxpS|ntrzFQ
zV5Sc`8!K1xyjnVmZ_0_cy%|$ZXe>-$Ib-^(1#wy>3y$RFrz{TX6{?)Js?yVMkILeJ
zqU!LaPrkXmoKj@u^(J!FGgZke-dEr126o-Hj{bh`+TMj#(~j)9!uB<&wAy^>lW*s)
z?cH3OFK|BSb=<41MJLo0Chv88|9BNt@zzW!)!bRLmj076@^)hPdh|{0^}Uq4(hDt?
zzEf>*+^h1*<K$c4YkN=bGEX}%RHC1$FJbJRyUF~;-Mr%J$))+5-t|6-bov}*_wka3
z?*iX%Y<v5&^YS;nJ9}-fsg3Z`oVZ1XdqaY%7F?Nhd-mGu&87Kk=0OD~-JYGqyxlzd
zd)n)JH^8Bl{(kB9)h~aVw(P6Ox*(sRd}>nX;YC+=iF|xM<LSc|e*J$;mv~=UV5VY2
z0|TOxu_?apV!GQb_(<NhDFU}dn0mn@dGE7Kwh3>4E+k;at^L;P^x@NocU%9RQPA|W
zJ$UI){>#sIzdV{&_3xNk>}-#jX7SHoiXOUkW7*m1{oG6*Gbc5uMKCL=J3G31x0cH3
zFog)G3NU+puF?A(xCuNSvZi$R?w>Qa?Z5oZZtwrCckkZ2yQKT`>doQd`k<zW_OeYo
zVsyfH+^D@DTfaMI-kDD})#bbA9{+vQK5hN`-?8#$wSV5H@2J`F<KHIs==nJx9&{aM
z`yWy2&-v1!b49RFiPud{!7?u<GkNVtlNT@f-#kf1Gc!QT&vQ;tpHAmColse0Z<e`}
zR8FgEgf36<>s0oh8a*wfz{hK8@T!wsC0?RZOTGL&mAqfYZF1b}Qnf_n+q#>Y8-p*M
zm}IIiIH$ssec_bD_h$7Rz85-Yl9g(=PUL5ygA3wLCFal8Y~8!s)T^sE=-@onre~^$
z9QTGiaPT~I&&zM6h3czFrJOh=sbk*1W&~|FPuwK+Ev(Gzs^-)aLOZ7$@y$}T4dSX^
zU7r8>U980>mv>8TR!pD4H^t;l?!CQdcbBi6xb#h&R&!P7?!BF9UWxgi-{s!h+wC^3
ztGd&FkBOJ?guMJyCv_l-&7D&^?|K`pn7-tVrlP}jb7$@QJaPLZm3`hMO>#V{vhe*S
z1J8t0eJ5|5KlhltW9BP^w5mI-TC#?UtZIcmar<|=%v!bDlf8E8YQ=)g872l>|DApD
zced)KCGXUvulRDg`&<z{_jYcsT@~YVsm!4A$-J-Bcw4Va2J^KlTdU<i$eE~?op<U(
z%bhP(m-oj$z9PrUbNl$~oy_ZZe%LZ8>iVk08N2pByt~<ciQQ9UY-!q<s5Fgpgbz|Q
zpUEhBdwrqGgl+p&Ra?who!?%1<n-&k_F2E(WtXy@9d4}Y-KxE${W|~qydQE3OTIM)
zY}gz8V+*&w*~6c+rAlI5HFEZCc__N1^r@8De0}lo?!(&;pS`|1b&tjVe;anzRn`@5
zi!lt6j$D_p@%Fph5&v7om!}t4CzltOZ;h$DvuCfl_A(J;x4_=axeTUGr<k}*jWRBs
zn6bfSii&As%N(Pv$|*mOr`$gLwtvTe(eLFS|DOMwxO?~8Y}@Lu32WW0Ev2@W&U^Rh
zU&j5TAOFd(d-y+Tl|{1B90Ns(WjQkh)O;pnSt}hlnPSDIHq+p0pQo&_q?)16&C4ve
zF1J{v%<}sEVuq24k5Au9iDg+cZd`7;bNR}@>B&ipBquN74EB=^b~~&xZ&^;>qQpB(
zmd{XYeSXDo=b>UVpPU(2F1tKaYcsseVzGSXjzgOz)J%P@f`sI*_!?;Lsm+}c^KfUG
z4~uLtqrdR%*(m|$iL(q>YR|b~Ffq}|fAWmkr-Vx;+p(#IS0qnZr9J0{f#_kEdCQXW
zE;-(9scJbX>UZtX&8Uh*|6oJ&mkaVv{SX&c3Ac#mPS1Y0v|`qkJ0b0bmopVltSfjo
zBj#a_?wqx);$Ka!`c1kt<9kVK%)_OLOi<OcmYD>;%2SfK;`@XvfBU|Mbp;#6^sXHe
zJz`jDZrazp%=5X)LhYC}t=(G-&dyVNk*8GClvmZ`biiV{=I%pBqjp4ahkr6zxKoq=
zm0DTr^}ds$de;thZ!Hk@4>mKuxFBzm=fks4E+|SYOVZsF!F~Nv=Ba0DQdfMPjMd6o
z#j_tCjoK0BFFbShjk{l}jBRJPU3l&z`s;9}OYC+o`LLi<QCDZT|J(WC?&kXrJU4@}
zrEj99z0FLFP)0#+#Cu0O3ba4`UDs7S^MI$7@or=5;@kD&t_Qd6T<yAKtHPBj(?s5E
zfB){yjUx}Xc619Fs9R2Km)G}R7BB1<P+y=GQlI#%%6RWBAN~6`mt+f{y!@<s?;fWJ
z>Dya=eyc3pyZe`I{{M5gZ~uHe|Lwb9&$8^S_gYjIfBg03P0G%sQ{A7B7PWTYJ%9IU
z|L3O{L)V4puiO6h=fCUB;rjW%ciZLu`W$cezW-nQ=fkt_?|t)NalhSz2crM&A2jY3
zIxr_gZ;|mDM&olGIx8}a#aZV@HlFffOL8zy^V@0XHHkg%o6O8Fa={C2CkLbll`MPW
z(=yldz^i0OnU<ITW_6XQW%)??+?;u2X3!eXEo)b<;5oVE!pxvlEz22Q#xsoz*Q_jv
zo_uOX_A2SZWmcjgFMQZ~Po9{ma&5^ywd$taOUDx~F)#Djp_-nQeko$|Rx?AMTWZ}c
z#i^S-c61uAG>%+zGHSL2TkhnOjKL~*));Xnq<WRwojY>j))9-e*&<30Q{9^86)+Yp
zd*gHE`jH#Aj+9(clWo;}KU1KobM8uu;6Brd+ch69$nI*%PM(yIb)KuqxNuG99^cF}
zW}27gbygi>y*P7{@zjXmPi9ZmZ>ZJsESp!*c5KPPDRVvNcqaSaynQ6|jA@|C9>3Ng
z6`5}1t-%$m_P+9YlRL@rwoB#yWip)0%ecgq(ho%lSI<tlU>4|ak(}Js5?rKKwoD{j
zC_mUT>#_!W(-q-!p^J90OtzS872Ibknm?KE)-n}#pNR#Zf-61+SJ<kQsC_lNxghtH
z?ZY`*lU)u?o)1DBkIcGqJLUX7-+c4G+PQOXojtgrc6ls6WA-_lwM(XK&8pd)S)Tvn
z!z1}yo8G5kOUJ~`BAOeZq+`@k5Yt%~&p?N&zoX0|n#@vxjDj3q7pDF3!>1p2=hpcd
z9R1bk8T9wq%hP#Prv9Lz>g%mDm;H>EjdP5d9<%J{>!(UbB@9?qxe8?!lN(e7MZ6Nu
z1ioIc!pXtv<-=GsSE51r@Tbpz{yj;%efaG94gZC|ZGZUqJ*ed66n`F`p1&?`e*7HW
zaLbEHn<LgGfW|@o?Teh(^UP}3?RT$#)_pnh;%n~wubJ<j|G#_q*^g)C(`9vQHyyYr
z`kmXR@Orh+EyKXWNBTUa)w+0tyK-h&B<*cs{CP9+(*Fj{<$aprKC`UUm=3qJX?`^^
zJTh$=OY$<!;^RknCtIl*`Q*&FaGB-Sr72U|j~w~P7_4|)rER6evNxGt&(vhD_`czq
z&L9!{(9+DuQc~@k$-<qTes`8EPAF>4KKz91e8!ATi9w(O>C=Kdq40{-h6h~db7ovI
z5QT}^9eToberaM-#tZ=)-<x-i9Nyt6pLl8AhpeIlPq?0^%s6473M$T7j{8i$#H?1*
zx_N8CHnF}ZnL@>r`Ch5L<x0;0m&Y+{T9dz-bnf(IFAaXl_1udITy7qXvglgwdDi#o
z5#PlkO_xN^-7we*DP!HgnoNDB)|tF(r3=VaH$kQB(I|_f^VB-e`Z7U;YrnXbwXWV;
zuvN_OK;O!po(U4>FOz*hb;Y`Chpt9hEL?ta)zl@1^Ivl9IP`k4ewTL4T99%j|6n8Y
zhYRwUKwb+670DJGmvf%=HCZuxlJ=gxiUHvj8^z+*v`(&=b>WW7`4hhR&;O}OFWWXX
zV!_^1exBE7e%i9C-sSZzuH1Tw_i8m2AH{3ezhuRd#tn&^ZL~1OnZ^^}p7StXd=WZR
zJ`LQyhRl?|&oEj0c**s)hKTBe*WN|_{_yF?Rlob{a}Joz@!BNrGk@FV?z3P1_|7ef
zb<Ma{v+<$mp<P9D&E}sM7w`VN{qNQ5-A`-Es(vOG|NI0hqaV4LZHjrARK0og#&5j(
zef<g6N!6v*8^Mi{@~bQc&rPno7_VV;O+O<Vu<=}w<dtu#Q!Rs!a%CQKipf3S^nb^V
zv;Te_-}Bq_ecto$_T|54zb&2p`s8Z%;=RS{<!-g}j+YnKZ@GK)?(cew_WwPe*2``g
zcqRlL4q=c|V|zKnV)9$n(-)7H2>5)<o56M7V}eXDV~NjA!=)aR9lV1N8eX2VG`XqG
zlUdkOt<cBvlFF@1At7x?TrL<cOx(0KS*vfQm0F*PX!&Hm$7;66T-be9YVT1n@tGkr
z*=5$1yCI(!WWM6kUzs@Rz!X_wYqegJtIyP09q%4_*`V2eC{Sjy)iSBfRcC#_iCd)2
zvJjaky)0nI)8huJIWt(QXNk<3Ei!+>>@R`_o*H)+If-!jpER79>}BiQb=G$lTj}JM
zLq`n?HEcE}e-hIZ$@F@+%x1-G6_Itk!5TJ|+~@BdYE||<d3Q>C;pIX_jfEeQW~hkF
z+uNF+|1e0&_vT%f=5;T-WG<;J{P0HCrkY#4*JR@EPWIBtZHIKVLYyAnjIQ`5mdCxP
zuk)_2(Tdqq_-2@h_}x2nGJ40<6$hT=O;Ufc?6?NYEzxzkFIO)t_$20c?~reZ?BpG@
zPc6t>75nhkwGvaP`q~#Wx^{yy-dnEg+agwi6ra0yNY_qw@~+vhX5=|B{5ajID043E
z@XhQBO+oci%c~PEzxJ)S=ndYj5t8G-Jou8Su)nruYOeYZ{nS6jhjyp$XZ-o@Hn!%8
zAyG4sh8C8nLnD!q#md_S>&~xFczQIXi{;{u#PGPH8&jvm-m|ER&RdyLsIqaIb%@24
zb${Mpw(ww5{veU{#49yiTj<Gx_562x-(7oP&nyw}r?D~Z$9%p#d)|LVwliw-+1nzP
z9(nMKPrkoVNc-)Bs(*DmZiKuJ{Cj&vo!s9~A^BqSS6$paKd<i3?X&UqRo@?9jW9Bt
z!?*sJ!JRc`o1cDJ^)=+tW&due{rvN}{L{}jzPf+?;cx!y|8rg%_|DAVuDU3iX_Blp
zBkQ`JOM>aj3qpD{7AE}QP<dc|W8$<)QZ-k7`gd$g(9AROuspQ1iD~<P_c=b?>XRQV
zQSv+XaLJ0pCj*`qZkobf!@6#t(444$EIJQb6g-YG`El9!-FbYZ$v$$yx%m<Y!n-DO
zS$MWj?zG_SpZv+<;|qT|uhVD3U-|dED}1E%Xo;=gwZ|%p?G5M8|M5Se&S*ckpJBiD
z5ziww>te56npHU`<cs>d&yzKtE%%?_>?XYY!r#ZS#y>Yj-SahjJuApAGw=H5vu_Wl
zd<$4>9%?(&W}TSt=2bW6=sY(++xBPIij%pYEnoQ9{6G2Kpnz!wYx&+Lr3#m3!*G`!
z+~TSKV(y29C-W8UsO;$eI#tf@YF_VyfK#trKL?x@ls<Q}AToDf=AnJZpJqJ{<Knld
zG2T62_tgfT_gUw^mVMol_o%A$dR4{tD82A_v9GmvqIIYH-Y}BAwz_K1ii@pj+h-qr
z{_1wd3?E+Ud|hV0B^?>(?7|q&|Ni>s<HI!LY`aa7oMNjv-7PW-rmSYTdw+fHPNz<p
zKc5cg?cB%j+AW!pWZD|B#UQtH(gVpq%(~NM+TL%^i4(|~>bvsH!Mi*h87Io?f0V6X
z9K3FU=<_2P^Cq8tpEvDu+UCWoN#9@R_}EQ*6EZ8~V$kpN>R&H(83<Tjef-Bsv`698
zhB=a!E1M27377b7U6=M*x<{<%-&`#YaaDo%J!Ut}Ra+Y}n-0$Z{4Y6r@#%<S1)j~}
zeRmpXymwYeZqqpEf8*1n9^)@t#P%!}U_N{N=;NxdOLu<QF>~4rn`bSjTTd)8^!dB#
z%o!oY=yRLrUHyLbWyGQ>8rPiEzRvLrE7a<ksC(dsq*ufvp)l^}+@%b@Dsk45#-1PV
zOLiWeP?oeaf_EWj#AQh?PL~hY0{zxM61BZ2+0MQ$W!BGo`?YSAb6$vGT2R$f%6nw-
z1cQHxduOyORBb=>di_iF<qeK0PdJ6SBKrh$i&ycB%l))lt9r&SUipCT#Wk#T`pdbb
zve~llKZ<b7PO>;3dHwv~4`y8jTyy&`CAB@-w0!fH8Ix9=nEChRmtIFx!C89`MjA1;
zaQ_rbKiQ(PNtWen{@)MNngSN?o~PO-c<|ZQl4;4uSPs^iJ#o0`{<S@j>D?KfWdg-%
zPq&_)QN4&=XV0?3Ggj@D3i61LuU6eAzfCJ8)h_Io%-cn3DqrW%H>;dDH}}|_*3)wi
z$=vKa+W)?H(p&aZZ+iSb&N*hf`^Nsj#JS}UoPxwZB?{iY|Knw<vUK&8=JU1FrRMuB
zf4Jo1CgyNq^|ky*b%VUG&vOg4=#KCF(RWv?wcxVRlLtQhfB7HO@?5iLaN|5|!OOqI
z^kdc2iUa4i3UwAlEb>(SG|9#OytaqQmkyV(X)h))PU{k3otS7M=F-&RC%)$X>68xb
z6r-PlGqt8_dK;ZpoViHDc*kT5ok<sil@1?SrV{ktB`Ne|jovZ0V{HPq1_?K-Q?so;
z9m>9adGd>`LEX)pr`}n<edFw(TdE&Lm+t$@f8n6nsoGST-n40(CY|*<a<}b4V2;0Q
ztLK>rgPa+$(`Qs}ozA&(bI>yGoF!V^smoNR%$^i5Gi3ixpSUS27wSy*j=rJ$C}UlQ
zhCWBA>%wOZ3!A3%O#Q>LYmvg0O_wGz-JLz_xk{8#=)r3tt0wF`GspVcRi7oLrPEwe
zALU!eGm9}Fd-_{kZ`18#OSJNmf11hNU9`9N`R$Z57vAP7-CxG?)^1afNOI5ZKIPR@
zPRYqeYR-OdSDwOZdGqcgyK_Rz4&O9B^7YNkrJ^p|7foGs+%nwf=$wlU59Ypq_oL@c
zVP&S}(`c>aqOvDFerL|kj_|u?^Y>NS#<L|6`;%@wlHy8x%Nb);&av*UfMsx*+jOOl
zFx`@E#!K68?yA~Xvgk>AOu?xWhlN!?CVjeE)cN}B<(G{@!eX@>N_%d9WM%Hub<V8$
zc<Pd@YLdT#)wOq;p~1O%Vqf=E)xEuOg?;k5ncuGzKi+yo^2wU}X)_jS7=D`~$ZFIn
z6V2tfzDg=-595N{if*T@v;}L6_*~=G&n+{LiS?1pcv<-}CHeZq^6r_j?(-(?yz@qH
zy?3bLjy%`*FJE^>=BO??aq^q^i%q-Mzw-XiwRtXs{M8p{WKOZFIb6N;d5uh0s$Svg
zFqvBM-%@IwiTMWq10wE7TrFjo6!dkzi}15r^@}ZErPVJcyUBPi;*6~K+*0pQ?rD-Z
z_v@kjX)e|eclj^ky!m=^#_}0A)i1WJS+6o{!<$Ji!bWdwt9%z7H+eP3ML11%a)y}u
z{nWLxPm)6)-~P9;NH5oC&dwape_z}GGZ`M6whUY26lpm{NM%8)euRHgR%&vIesF10
z35f5Ro0y)eAD)>~lA&N>Vy5qrnwg$aqF`)ctnZwklV22EkeHmR?~+=UnVjlglvt_n
zlvz?7kXq!NpIeZhmzr0?WuXt*M;VY<lv`|LgP}md0%B6Jf+2`enwwV)wke<}H6=5-
zB)>?($j(k5=Nvhgv4Mdla?|<k-TIs>&ub5Se4ZoJ%(F1TWfH5&fkq>qE!nT88okI`
z5hdiToUEF4D)B%{uYm07{&k8gSEpppxOOZ^S!vq^3jyKPp{t)B_gKzmBDmV(q<mz?
z){1!><`%NdU_Y`XBq2xa@yyMMGC$kqm6zXZiqq$;6)Ilte*gKGYqhzBbxxq$rNH=y
zhxdN*)74*ECBM4P4b4?7V#w^A8*#(t`__&Bx2#o++pF=WQ%YQ9O4*lN1}~=9Kb~zX
zXu9|N)$98LwlCPa!hC;ml}?t-{tp*et8<ljqHc(MJbKjL)^^#SH+_=?q8@ErvGM&O
z<?h?Liafi1&gHMqJ)+&e=i71n$e-IYub4b-&~0%H7MA~aE4};-*Tef^@4X)T`TG_e
zot2lNd-p&4dhz`M*9GFE#iSOu%~Du9>rhwk^Fzw|XV=Joue<tB!14;q%d1oDOdDr8
z_%2Wjm<*wWS9pSWaEkNF614!~6>y3rD+t76$zr;~vU6SL6aM{I{vI>GWVtffx8Uh4
zv+wurm;b$Jn>pvoO0^wHzKi+&twawU343ntxXiTnRjc?ZzpHa@KFo1Ev1M8GzsjTi
z_TN9r`n_uD$)0tgFgHFUa_{ZAaw&g;JMM1XoxZ2;vo}O;+u9fV_kHG8FLiomy3`-y
zK1>(E9A>(b^9oBA6O3w{1?Dx*VlZ`lmtFPbqUG7o+xonY^tYZ^sOGVG+4-DVq5szB
zuAZH>EcE!Iwpj{iXK_jG|M%)r;O+Ew&d!TV1D$;*r1{>jFZWJ*slNKO^NU#_Vy1p8
zI4`Yw`FXb3_m!NR0xuuqO+UP3@$B$#_piw6_}sf4Yj@|R<1YJF4#kaImga^A`+l6Y
zXT?G_2`}HXpSSn<9O-WZS-yLj3Dm7{M>_asF@d85N-a<W^WYRbo))N`DD-tbFZzAU
z{o*^Gb0-w~K7MZ2cKrDLw@ds^oSGZ=bXWVFE1Wl1Xy$)Er+iMVCFjbPr^}v-W;N+t
z39&AZ^nW5a*Y8!!!mC>{>ng)f6bGrN!~}a5zn)pJ;E?Cs3BB)UUs?)@ctniDLKNN2
z(C~#jy<wJvZ-MC*lg0a1Y+mK-JE79IdYkEy)#58Tjn-u*We4WhJ^%7JtH~#OSE{=w
zhwjH(kYBBBcihV2>MiB{xHZ+$cS51B@$2Jz<G03xw6E-fW`Ul0`x4gcwm5RnHma&}
z%yeJx+fw(_eBaGvad2)#CyExn*!gJQx9Yz0x2?1U?ZuSXCrtZTEPeR#<M(;dcSDTV
zT8WwJ*<E?B*zPF*xB7(kb=xhqWiuv7#7dd!*`1M;EV$@CXX3=|)z2rs`XsPRZK`Xp
zu(;gwKWaN(D4)x}Rdo4NS4mdUHia0G+HDDM@1)wEoV}~Lb)xbL&P%H^FaP<pZo>6#
zt5z<n@O=^>yd)eNx=H`8P3-(}5tRKh@4Z~=OF?R0m%VE39HZryD!X<cZr;7FCTRJr
z2d7MREq0V=*8BdgciQpEb8c4C{nF*rcSKyC>i;T4cuDBxlM$B>?_XK6O(7-b@)KuP
z|DMj(oJQ+c-k&o!c<vQW$?G8&k5b-jj1={I)#8(NYtNsy?^e@o=g+^tY2jhdxf5<y
z2k%0UZg|>+rc_uGMK4h}1B9RKSk~BVm3~FMG;FIYzo}!DDX+|xo$1led#VDz1PCvw
zUOqkImd!?Z$rvuovv65-*_4(GLjA72&~)-c;<|{`YpF-srx&%)QrJ6d5_{>iGf0Kn
zK66S!wQ<&i<gnmHyRB_@WZ%0M*!g4Q1gk47&Z{#si#axKyXtFtc~x-xtOxah!7snv
zOms>rc@-ecvvJwvjmz4_!>6}jFkPvWIwwGwXXUb!?OgLDJ};W3@Ojp+vo|ZB|E%8K
z+`3fr@LV~bmCFtZswelKU6m7kH6(bCnttjE&bE-tTb_UZ9Bo!|=DwAYpuJR3`>cc&
z<yHH;(Mo1`$p<Z&;TaUY0A$Q+`hR*>8aT99avH7AJio22;;WLW<1tg;9NkxE-_NOw
z@tu(AyZwy@=R(zepn|nvIeU1t@4}7i6!&e@SpmwgX@7ToU;Pb~Ml?eUck8w|n(v={
z@v``vt*r(biNS9E`WkOvZ0)?D|NoeI^&2Kg4*Z|LwC<g)xX|6Z4-dvd3)?FbW4BHX
zer6KCW5J1uUyrh_(|z*eQP(`}cbWU2S3J?$8MWs9+v3Ehw-awZR=yW?x%B3VMbnqf
zv;LaCUvAlTo$o>R-{(!9HO;JDARCf%OH(Qrva)~wrf*u|I8pg^x9WP`=i=sddC3(u
zf9?jZev-9uYi+XM*Z=2Vd~3}ueg7}?)rn_jeYTQ$^-qisf0_04PU`%&Q<1()A%*-(
zWpQubxB#6jne)F&d9Rqrh==cdw{S&h(bgN&*|K&eU%m9<=C4UtCO$p7%IuC=&icr{
z*l(V9=Ugc<y7uM6BS`76v`5%-MdpX5q`>6(Z`oG$x%*e1`Fr%~+k2HNSyN+lx9xnt
zR&amCmgkL`uMZ#j_BzNt?E0$TML8!=Bvzlb`)BHF7xLlA4Dt2nW=*;-Cf_z|+np_Y
zl5S+ZihpzGiSu>a?`6L4vbhqU#@^o>l{L#k=l$~HvU`>P`ko{tW}f=-<Niz4^|@J@
z=k(W=z1uYJ1jyk(cfR?z>EVvc-092S?Du;2Mep~WYCe%Z3(4x7u+-bDmd$!(TB)h5
zet!{fT)>kP-;$WGhfSRRy8E`t{yo|*>n5!}daQK5<i|6ezmILv&sc5!W%^3x?(AN<
zat)p8tV^p8f1UL->ecgm#R<1Q|NN;dZS^c)c4mh>?@Hy}X8QXd?mai@Aa|F{&A6PK
z2e!7##K%DD7Nw%8GP>WI*VbO&Q}=#l!EgRg^;>^^NmZ_1_rLwnJ>mPe%zf5Nf)kPD
z_bU_MtES)o(s7@6SJKt#Zv|owUVk^c_Lsxo`(KyV6mD2{tWv(@e^Kr6_W4_Wy<;uo
z)BAj2`}Ox$Uti{js{i-&t9zenYI>#j|L^4ZVBsZ+Z|XyA?LWkypZD{x{Z8Au9cq7$
z{;f4VAG1btO}u&ao5|bDZ2w+=eop<$_IHh(_Wz!piH|LQ*6e>L%=+hc`!!qJ4H8bC
zcds*u2tJydAM^Xl!&$0dyZLQuuOFSI_UFxsQ?kjAU3c&Q@3U!HeNX)NYp22|z4w(Z
ze<y2RI^VX1@#8INr;6IJgW+{QbK*klgW9vV$=;Sodn3Q*W&gQ(d3(OQT$kV0QvL2%
z(xzptz7NxX|5J;+ynA-tr)X;q@jJhYKJ9&3u;=4V<@=u3zMMK8?d16V|DBhu1%K=N
z>}03eSlUJg|BwG-uMruXc~<;i>SO6|0&F#pJU;zi_Sy7n{pk|BDR14)+g`4ner-zq
zv&*^<rQ`oUQZ-%s>+%zS#dSZQ{hj<)k>}Sp=GXBrXZ_APdURIa-F+G#7mH56CL+bP
z`q=wbYj-bMrs{vzqWZ0@z5UK_yMuESV>UcGpFaQJ_w;$T)eDzx_;{~)`ahrb_jjo8
zzx4M@@^ihFFK>z4*T4H-R;O40zt*=*034|d3=KSg%<ukG?!eYbL7FAP=yU|RJLw1e
zCKhKa7#e~)GeP<!^kcX{{TTEfivsaI7H}sBv&X_^Xo|1PqF`udj(V2N+q;}4De1M(
zYp<@|`zmhgl3QCsPwrjyeec`6J7u?znLTJZnj?JNqJei$+8cofGAH)57^Fn_-C)}+
zHOYe0K-ege@4Yv}?8fUY%#2JDvsHyNs`qU1%JK}=%H6vDd+obguT<ByYooi@FM0p`
z#fug1b*C=bpXY6F`@QmCzwh<0VxYr?+_+RhS1-Q;9sRTdbdB#KIR*xXjw%#Ehbzns
z3=DywV~1R985kJWNFP^v{_FSe^#7ml>?{_SpZPs;dI=~(vt1&Mo|`h?JnBB}OzvrW
z4hDvX(B}~+t<Os?-QClC#EyZXVQcc`(!Y}?-8tG^qiwk(<;v_CC$7H!B~|<J;DT9x
z={q?zlv9`VEa<s1!6;9sD=9nwyZ-ZueX7Oxjs}0ZcG+lu&(s*V7`-VIje^_)+_F3*
z%~!L!e|^@o>#XF=-4=gh?;TWi|LQU)es|#Bf(Y-WMlmc%O2u3^>Ke1_U(9h$+tljz
z_1w&`q6zt;3=9XP+77k)>1_H?_H?!33Tp<216C0^k!_-9_BBSY4pmnRx|&sawP@X<
zE3ZrSnzm{zKKw8%pa1q-zE_)l?kr!>Gi9PwlJc~T>t3JiJai!A*`EwG!&$oFuix)@
z+YuZ2SyyXXJ#)G8Uo|ny^N&CN{5#idc5djr3l9TUg)X}HYI@+GzY|XTcE1nTxZ+yN
zz%bi$X_U0oY2Kc+)NS4>o0od|%52x(_HIIbe*EsIb-wuv9)+!b8hWNO!unD5lkeNp
zHcy_y#IWJw({540H*9Xk%$|?G7Ffj_zc=3%`>n#ows?j2o<4WeiJ#~2X}>eyeem7-
ziJyP?F*0l@D~X+dVoF;2?u{!K*@%AF?XtvrkFiSJ@x@s?&aTdBi7)e6%EZ7B9lm#6
zf6w#T2mM<1<SbP3cfGwgykzS<+e^7AyE~);?n-~;R(W;y{nYg}8&5wivWop$^>*v}
zy|0f+$A5USxPQ-6-SYcow`ITI`RxA5@cX^r%i{k$x|m=8`?uZv{Bygz+3TMf&#!pU
zsBhZO!yo@+@BQ7Sx3|eY;#__8)x*Q?@&A9ByD43)w6C(V{dV(w-KX&Vzm^_<TxKD&
z{ob!t)Au~N#xD2c&;37V<LiDL{%-reGW|&Mr=Nek<9{_({Nef;cy5m6#^mGYrism7
zbmQI5=WEsdVtzhoj{kqLzwX1o@AVZ6*MFQm|Idws&F$;=|2w9-`s4HZfBVGuz9>KX
z+~)mF|Jqmk=31BEFS*RUGlzlUTKKvvY{5Izwn_U)Wo!0$q-_7%az%N!Q|+?_vH1~S
zcbPl;D815s@%R1z3*X*a%h&(eUVgv!dZ%!Br}D>&`}}nu_U?Ya?|R<$_#FlzTB7<d
zIYUGL-roP$`lH*@pr41t<#zmjXTAT&(f^8k=PDyMMu;eWnid`RN4@@2oNJ)b%rl4i
z>!au0+PnMz!uEZNi|^V0z5HLj=-!+1J^%mh7h4!y)As+T{r~&%|9_Q>{ZE;6@}j%k
z&zJK59^Rh*dFKD+|GzBno>O}^JMQ-~^S%Fmp5GrCD559L&~P<{Thubfe1b_F|MKEZ
zzdNqy_PcJ$?l0-i5$|4cS8@O0eVp|ZbFZxUemI{0|L65>;XhQ;`^)Cvy1w&Aa@qTP
z%AYQO_%NZ+x1u&YX5-uC_J2RVyqxaxr0OAe{d4pEKewO$vBPiqXWslBztio1pZxzT
zo`2sX(e?9+zgge^8J3;>pwBu^|NqL&Tc_i`asB*uaj|;cpU3s{=FQ8?%@v)0KzI9}
zcg_5D$>(;@x2eoJwdKe24-cB-_rKfq{Ip~#zs-lAjg9F=J7bg#FWlcB?y}v#{@1>V
z6CZ9)&!6BtL#gUs*=^bI_}a7Vb|2!VpH`JqoAl`4U-tWd-`NYFzi{u~y}NgRf1dw8
zq$Z<o0RzLl=w0iUFYoR>S$2%;rcc!_75}Z-d4ezd-tv8Sy&4h1&2AH&m}a@S%Ddvr
zMfX!ri}LgTbgK98UD|%<)1&pZZ&xq(i~alI@cn)N|FPTs``91z&G`M@-Tz-MpTFzJ
zkDbN)?{0s8V9$G{btk0rc6ipjSiR0FR!eky?(M>l$@_laeea?aD7atj|BHUxZ^aYu
zrPW{9|7*2=<=%VN?`zIJxBLFGzwXQAtx<17*H@kNjw{O65u5+F&)@dzliKgKVS!Vw
z@BjDBUG8URPdPiEOwE&t^98>$FuYzLww{0aXU@&PJ3GodQ_RBGNbNU?j#?zUPu8|k
zx-WC%3aS2#wRP9U)|_|itqPZaBc!kW_mTM9)!*Nh|KE7}>9^m1<$oM#H}Rd!-Y;wY
zaby4ApWpZY-~0A<ISW&+_MgL#h5DuAzAU=`SO5Q0|KrCm>(@Mdf5!6bGxPhIn>A%+
zW##`oaG(C?#>pouDpEer509(#y61IoXYuns+1;^vkL{gp?wOmISg5~>Ek0YCx7|>G
z>;C=mb8IUwS=_iN_~)s<{Nv-i3<<JRPHjCHa_vo24$m##WkpkurC2XDe`9}7eqwXk
z#tpB^Zfc4zuHv3l{Pmg4l*d`}|33V_|8?E>bsv7#f1X`meULkE=Z}i||M&9iKFf<&
zt)Dk9Zu#Y({r`Xbuld+r|NqJ4|LNZ}EyMF?%HMtaZOZBM@2r)a*48)&zRBC3{VaEB
z*y`9XeP=g+dlvaI#OOaG!-iMOK0iH@v2CNWtC6+Qyy=tQ*5tX{tct7O;=ZTPee1df
z=g+MvTy*c$-Y-k_zgO)Ik1hSRY5u~Xl{GKD>nD4u=I{IIDn5Vj$7AAuzW@K%y8riX
zeNYNjicB+_*)I3%*y{M&=+BJh_iNu@xbT4MxJdb%8-@l2{|+=duMV30`T6{NJB!7y
zvoRz*Es2$%ttG|#R!;KI+siK-Q_7Ss&&auc@l~JumdVvhn>NR8xauq&zUba7?snzv
z_y65emH+l+vj3f`?BomYj&y3j-}Bk`X3n?L^}qklx|n@5V_VVxzx*+K{%kuM@#o>+
zFU$Ww+C2a7lhyHmgFbFM{IKHZ>3GxMj7sx$jTim>aoj$qjt`XN&G&sgdp7ubT=n7d
z{l8@k3qt?-+kHB5e%5Ob28JCfS7#aCT({BV+MC884av!GMWVgaFWi^U7yjticY9@=
z`qNz@X0g}T{`tA|^3AHfA0_*G=DdINCi?80-L2mbti76*U-MYL=Evdr9IZ~;HLKj^
zeok+f`}J)8zn8zC$;5wse?9HLaMRg~n#!q5+M-=I#`sFuzLn}uX+O5<>a35u?>!Bu
zQeJf@{mhN&N%<zmp$lR@2Z=-*tkBbb8?a{W$-M3RAIrX%l9P+7ymI<!QGVU$Xbnw<
z1jXQ;n`XX}dR%t0vq|P?;NEi;A$vbo`0(9wwcfK?{dQ#x-=|Nf1iywIj4i)wSpD<R
zzrXA*T~W_||NAJvKewc0%g^%}CchT)*Vfe9z1>^=ef_D=HvfN`=iWRR$Z+83t6lSE
z>6oy;Wt%i}WlpkUg2sbR*DIHQTR%<NU3T_tiuIy<YzEcLTfDdC9pqzZFb!IJwLQpk
zr+Dj|oNyg!WreP@*JMAvef@gEU4NHtpQ~r&xL=8$vhMYf|Gl5)F5+O=5Gm?)EM>Rb
z>7?XMvFp<O)|6X{CSQ2xu>4Ne8uK^hRxd#6|2=<I@U-Z1UA=bZ`Cpd)HOr5D?+#)(
z@a)G*yP3M`liW@x&3rp)a_?24S?4ADv&{3~Pv}lr{MOF(VYx}*`=YJe+tt;AZoYYv
zWxH^Z##gJ!XRa;jQF`9_Ui>IyL+=Vuo5yK!>PE@;%RY-%YTbDzc=O#W=h&jTIkR6S
z{b^mXJ?l-GyT+BRUH&JMDo$}Q2xwisbs-|}z#TWU#5ZQsbVGYimX#g7Ci_YLj^LE$
zvW*?jJ{z2#4{C?5(T!hY@>{g~`r(&*=HxstyZKn~>zOkP=ANkZV~_3y6>|-(FL&8Z
z)I58xEIHV<QtLsv<k_zBwv_La3ucEuY|{a?RwE*j+b@PU^=`e}yJ+>-Hxu)eZ@XS;
zc(p7B)SOMoeCm~JFf}`E_ra8HIcD3-Z{*r4em$`+V7_I>b?LCZd39ffzk*t>soYba
z#fd!nT41IAduG+$ZxJrLzj<tblXG46ll2>)ZOX4085p=Pm)hFK`t+Pycl4%<(d2o0
zCxhS4igwwRy!&vGdso2$=kLNg=C8hf|9<}8^PR=d_3Vt^AJ%)Rz`!tLF}Tz=zIpCO
zmQMJZuE$D8T&-)YtC-AXE+++=%3X~5`(^d<q-mxrtkox<mA)8OA;8eEc1_4STT7F#
z{{4La-a7BEy)Rz(P5%Gu@Ap3+@c;iw`v14P?(JPqZ+-lCLe~6!-F4aH_P@Vvman<I
za(8^y1J~uh_;R=>ecrHy)&1)%<pQIbu{KMt7hTl2n<}I7jgev7vX?cMhO2*{JW&zn
zx9#&z*^eu#{$7;(XeD=bSCifDLn+oVcDJ2wUpg;+E-J0}<k`9dsq!&KuRvKlHh!`G
zyj(eGTmE&h^T*p|Ijb`AOsDzI_?QPRwWd`Eo;X)_Fih=sp{Aa1V9vn>yXLs-?bS)X
z_i<0@<}>=qs?!ChbEhupnIbr)@aop`AFfNPvoc<-<PLuH^|Ett(Wbdc*)KaY+RIzF
zm$H|AVcGVTWe4Z!r8|~Qle@aR!u9B$hwne}8Lc`VAG@Gu%0#0)zN1B^iFdk8-yMsS
zI6q&0-nwf&_v7{2FG&YJwM%}qRQ*l4_1h`k-i57Ui6QxA3ekVk^t1~Y8KN(Qtjj6e
zcKSrc^f?+QCURbVedp%wvd14I?!2kHbn{{ACfRw;-uDm8wPjMjANMnh=M^8rjR;7_
z-!{=yTHHVN^rsM%j4#`{#Yl#=JK_V|I@bc`>%YLkG^H?j)wNg7E9czlb}HMZJuO@J
zSc-LY`3dpvj7_N<Pn6a5PnIguT(|jZ%rr)Z17QK6;#Eqw+kLZh^3GY7*B%sU9b0g>
z(QoI~i2NJxOAK!ENwWp=Gi(rjxeJodzYBx%IcufYXUoTdZ=b!D-Nf#-<?eEg5_?8a
zR^eX#x~gbV0?42Dj$Z!RWh0vRxg)3i>q5Pqe%pLYFW%$>Wfh&ZL2G$?pU&de6gru+
zGRbG#W>Dwk|AW2-GF!S`P3E`XZ&P^1$dHixGbuIUT39l2<~^vlQ@ItCeee2%`jZC^
zVeNwKp5JnN50`n0;}vFx1E*e<)~49p=P6TqlFHqCvg~5nd(qgn>HQ_rH}w{=g_u8O
z0(DfqwZpTTH(TB2RonbD>+X-MsnEvxrr(_vA9wvMWfS<yz;JDvZpf_az>e#OU(U(-
z{J!*dvf$fW%6E-!m$v`mv!48xVUZjI$VvYG;=+qJWfz)FJhNoE_otBE&%`FayYX(r
zory{^A1?f50eMenEjX(h-BvyGvutNlsEoLx-mQnXFADE?I76&^)yIx&ugU}U8dk6~
zY}gXC(`?46S+U){j=K+rth+QLXZe@5zsG+o7hTX33%jegO^O-hh3whqrVDT0HNU6l
z`O_5Z`L_l8S6!EXJ8|w?Xhs8@We|J)__D5EM{DDIz9~|Z-&#f8{n$}f<nL0pjeDEX
zO+Jv*)~t;(R=aH~c5>Fubpb}|w{J%6YWnxDV)mUZpCi^+UoVLP_2LsUj}~2xvA>uR
zX=5^N?X@23P2gOx{+2fT+b#1p+<%+0Nfs1E5w}Cu*-Vi8`}MJ><oij&ti|hMyI++a
zTl}i`cyeK}qHB8l^pj-}150E5eZ^+Yg;aEr^SD@THg;51)i0lubA8>;nK|sBD3}(u
z_G)`tuIV(7wC<;~EY{t~iB-J6Z(rZO6;&JTFTL9K+tz0rBs8?A^qeevwjfq5(P!J~
ztFNA=ST9fFxh4BzN_6knw!ePv$(v#=)+`N@^a7iEZPDvrDck0FoGY=HJgcV8{b|ax
z;$w?%oxN@SMCoS6ZvVg?irgUk#lo(Ced2QPP0sX*d%Kq-*H<4qF8*EOTWSaiLs%le
z>yIOm&;I}#Ai<HyZ*GcsVza#YojO=e;;wc6DPEi2cluO7YpG6;@``kiGJDSLm7;kk
zm=s<yHcY+x`qznyeU=&Ok7Bo7n2{r%`#tXB)v9kE+b6zN%5o?T)?-*L|Ml1J-%q8V
zpPQS#@2-u}Z^r560u0-x6fHHgSiSjff>HFkYrXQv%cA`~Y&U7E?4I8tzJB)pV~lGG
zugsP`_v~zqwhafv?6_?Kk~400JMEG4dtOq!-f;bGx$cbXaxbUdTxb2H{Km{2_5|6*
z_x3dA+*`OqRF0*=*ZKO_FC`myUX4(i>FGcH$;z^`x=MF9-hF6SEPWGPmoa4LzTB@M
z?wPZ?+FqQ&Y*Ex+yBVkc{fKw}_wS*)-KVF=?|tf&-}CvOeEqA{`~UsopD!tS{{0Ki
zJ+F4j=Ktq!fB*ZivHb4mueR@d_2KmTyLEf)g)%=+`pmGVnbrNP&ZNUlj-|fy?Pad*
zfD8*wUlOs(&e-Vhl?zj9EbVP{)o)wMdc}voo~dkmdl$3P!`O>gU)|g=`Rxv=m5Ql%
z{siWKJfqHkZf0q@B>VI~FJ6{x%PX4@wV1o3Ru0sJ?D0PJ<n(6i+r3DcP8OEwKD}8x
z=}d{Dv*b<@N6G7Li*8J_l-ZVWW%k^|&z5ZIR=&l>&(u)*Vwas+sL6II<LwiD)6|W6
zPnOB9eOKXPy;EJu`ZjCy%pCRuuk;>1b1F{BEBh4v(2=3yTxj;!hb8+qdR#kG)*2Kl
zBd)nl`^EeI?PqgLmu1<BKV{mm@kUAP_D|1`^Txbh+%u){@YIbF>(qLpH}+0D>YRKt
z>+BE9$3+@@1x@7w&pKMKg;ZLCS0)%mUC_F7fVIIlSu5Nucy3PKbl<+`Pva-7x-Qwj
z%3QAh=-GGbb7k+{ocxv{L0I7x<Bc3h6=i*!SH(E^<|Z3au8JhVuV419fMr=wnFG$U
zXVxAIy1exGd`WrKjLUa(Q$&jO{^OoI83evE9Js`#n!IVQWyW+*iOFw^OpAlo-%fqc
z``ce0lx;h=&*igz$^<G^USBG$HH!9AN#8ZUCvEa%q#CJc;+ubWFMceU*2TyW$lp+U
zwba%!(7^h(WOLc0-j_A5^SHKGx@_D1D`9zz%I#&l()_n=*7n)M3@W<2SB7LeC+|%A
zKH0@6dexPblGl7c`QLGzE7^9rMy@UkY~I$V-BWKy_wp|PeD-A7$BwFJ3DfUn`9L$P
z!xiQP9GUgR4n^s}!*AnS->EZzl%;;%WoI-mpYK*@#dKX0wcGGfG2P9v;LNJ<igCl1
zqNQdTW!ok<mo=Zv*%@VCcLdt1obaYjDQ-_*-5bz=YQxr4?x{0tkM+22I{dQc?wx?!
zueTjny0z7PSL(Lcd_QH&)NX^F-uiOaym@+N+oil!j9<Q-WOH@hPS+*YyR3D}mvFG#
z<e0KCxY#mG3tN5N{nAfHWBm0J1K4?>dZ}vL?~@5y;h8?$f~yYyd;C}M=3f<Pr34Do
z?9;I9adu~!uHAO$CA(hte>;(LUG&RMQG~<n%tCW?mKZ#~>$1%7=DNjKW&1PKzq_1S
zd+bVr_T;w=4J+6W+*-BuSAmti^=(nFXDQav-r=A=;q04PK38jewt?d>TYK8-XTLh#
zPCr_>F=uPqor$HEQ|@(CU5&HMSpK!;Z=O2Lq-8~^##c{1E4%rm;@+I>>yN%$xGdTI
zu|g-W%>Lz@4@NinK*g@k+I6p2o^;y0`L2VJ@l@T@!3!JI#RC1`cb__0_IB3nlVuDH
zi{uhAuSV5oq^;iAVtI32#JbMMU1zU}f_q!K-LBg{SI?Qk4T^4^wE;$Iw`Vq&9Sci#
zPTm=HcTUdpkRHd~%yYrD2B@DkBZnOnsA9_?^-$Wm+0A9n$v+>K_|3ai<0tqs@7_H{
z@sn=1Yr78dMuMV!!-ie!)YZ9|7tj3sY{A@$WUKgz%Mazwi~aa5__tJd%Iy&G$!{4L
zTx<_q0{55J-TbRE@ys->V=30VlaLd(JGd6?Vq=I{zT*1*`}WUI>@0r%Oh&|AukOiG
zITo|tnvF))t2aI@iSyf5y!#D$ns0b+@+wy5;w;D9vS-l`9TOg3Dy>xto>c3fa!7i%
z)~R5|{oXFS4qH1P<GtA-mG@oi&IDG52(4GTCQr=Xe-xEtF>9%cm6tqk-aNNrF4m0D
zAbO)DHvW$w_ubODwSPA8>&^Ug>1EE|b?YyRpMRrqYR3*x^>z8CU&`)-DcfS!O4lpi
z%(YcC6$|~nC`u<ONBMQBwT5!Iaw?1IlAhOY&>limZR9Z{*gU{S&B^-qrY2V_b{eQ|
zn)}E5@bki)*L-_Ed=b4}&Gcxg`J%N)Q>@pyo$`=esi^UIRkYG8U6X_BEY-FjYWA+H
z>v{Dt{Q9knpdQ<l=w8(`ts>COl`Q!6!b-cv*@er+_$t!M?Ptz85$Lwg?G#6rhva<c
z)yAvLt)HK@t0;5<1zYWvS6?TV)Fp&%J1x5U(GHHni+uO{<{jWYz9k~0*L_Ra{_Y}1
z2D3)i=dU7{+~itZ_2=qVp`}H+248c&Pe!x})AlDV{_Ux=W>;+4sS{T@PI>TZK6cyq
zCvfl5>8Uo`JF5PK?@^gqQ(2b2d*a7Edk)m*wfmHQDot<qUt$YazpTIN&9p{dpFazY
z%tEKs`lsxfeZoZTcIlQ~j|Ja8k=uE7hE&ei4Ob-?61bIKB`UAH_UiDll-=o@V;83Q
zZQH!Hg!S*=kK1OhJr;8Ic#1V>7HGq^q@7vo=4Witk&`+dmVHb%a=P=&-WB0*r#6>G
z`QLb7c1u$nlu#pXg{;e2W>tJgZzibP3Gv;3Tv6$6@A2eg3+5W$JeM7Q!%Ym7=XBP9
zGG^189Ch=_b5Bisx-#H^aQBMk-(8<V2SmV@Zpm6}XR`Tf#GyGk;X2ok6dp}`&Gqx!
z*U~RDo6D4L|Frcx#R|$r)51V~pfirUeGbjYnZA1F-QpO(qY_)JFJ$Jp3tp`{T(`U#
zl+y*if(rK2C(E8cU2r$U%rbJqa+CSNF1u!LFF)bB>0;UZMFq}q$2qTjqhDuSbx&rC
zuwp(WTgpv*yUy;0rufNiEA>F7p2L;qrJ<|7F5H;Dd%nt~n?Xls<fMn^+*SO4Q1;-=
zb7iy6AHE89-nD7^VJY{8Z!)J^%$+{@?H#>pn?>_1Z)~kkUvc-jh~@d03x0Eg!*0g9
z*TOR=y{T4ee|KzI*QbyJ@4MW$B4xX0ypi8DSU?47_p0k(Cw{CkzR`L8rc?5!*e!Rf
zUBh4B1a)IrLA@c68gOsOc<x)5ZPGqzr?2iR)Pz<%0r4T-u06Rad-L@8!NI&OXW=A+
z-Saytrc0dVTmHH9?u?x0nEfIKg;xg;mBjk{i$4uZ<}B8AMU0TY<CBi<w%!V92r_h3
zZP*gE*KX1|{xhd=_lm$aZwXpzrV%}V#(MVPonFbC=3bKiCjY+w$l_yR$)K^_jaMbW
z0TZnjpQqDry7}%2NLgQO?Xqh3zl{DfWpiciKvBW4Xx`G7pf(srTA$YePVA|hWEmI~
zUPVT44U;!hyKOuBEthKXrnzgEYQK2jzx8B-c=w7~{h&nBup&JdN2e&8=ho3hS@{vA
z)-!Y1LC(KsHdXsHZ_3lOO(#F@vAn+S==;Kskn+bLXBcLr`)vDs3tTrcESlGPwba%$
za>CrVPtrDlTUa??J3`8<;!VKi+wNy+P{&1W4cl)pZSq0AL_bi!|Iv=5&84k1zkgZ%
zI^$?9`00<F`co!QczA=mMQPiNw@FD$LAyml-7A*!mq^_XblG}u!~K^DP$OrodtJ2Y
zZlz_0`7B>Qu_u~mpNmX<_w23g#}2~`@!ap4T;?gDL4@9_zkmO3{$Kg-jwQF)QqW*t
z)6BO$j@BQKmF!dUZ@q1!bUU_o!{wZYMOz_hpJ7ql={YUt>Yr`fONvEZi#AP|rNPtt
zwC86T_ThlS00st!E3?lZ{pcrCd5-;C-Iw*s{57A=Kjm&eE!V#yov-ZV+G8%~imhJM
zF@b{iwA$vmrEK5$-g4}FsruW>#DB+G>3~?UYZ(IbYgw9K&9bYvSkoFEwe36WPLZ$(
zw=M@sO-KddV%xkYbN3m=y(L!B>tAP=GcFC1)MGm3A*rdXp=`RON4gu*h+ijsQE%R~
z^s}O%JF8}^h}fyiU$r`&&&a@Fw(;w}#_E-aE3)rSoY8k2Y38^vb<IAV#e47WUv_@~
zwbORnIKak&>m@PX)+r1Opq$45D&a6E&p}NoP;tcoibDnlP+J)kD5x{)*k;`!8bQMY
zpw=A@ji8P#sF?yv=Ahegl8bao7VY0(e{N#&^K)k{HTq)yoba~gU|?u4-E?HdJ<H2;
zKA2lCTKhqPfq~&#U-HBW+y6WU^$i&swkBLIt^Me(Q*yoZ+sD&(J5oLoGd0iGU9Woj
zk5O2WWZ}*LP(AA?3F>>TnbuLYS^dUYxjET=C)a*>Flqk$j?dZVtHk-TSBA88Hy8!E
zor2VH#};X9OMRA*I@9v~qvp?cpFZ(1F)$?fIz60Z>Az2R%{v|Nf`hH#S}^VYfwfmx
z2@9{x+PWvpGCc6rS1a*@tELAAzKL7EY8B(`vu?H1I)96RBF;JIh|#m|sV+v=23m1O
z%%C=S{r%W*t2f#ET#tUre_&;HVSCIIoBrd^zn8BIYbdaok~MY3_EV`M^)?*=^G^D7
zy$^SHZ~4W*V8;8=I!`Iss43P+`SINwA%XL_e#CBEv1|Q$=N5zPzq9T+d|exMdi9LY
z8{CeVpLkfXZ7Zw0JNrsDh6Lx;*S|jeSd(OOxu^W5)6pNP*DndZ{E+)P%eH!nwcOQ5
zf~E_0t^KKLVHS4uWTo_T>!ls`bt{+|5|TATvzk38zS^X8Z?61VzNJ0Yo7@sM-L5+H
zYUAC75iYO0vuqRhU*Bu!G^IITi-F<BCeY;686WG9RVg<5;f6o%^i_oHeV5T+A={rZ
z*YUp9nFGqN*3J*#_vxtK^wTd(uD;%Sec!ir()l$97x&wJnzsE;?d{z1JH_YaPaeNh
z{eE`c$8Puif8W0UU9->fecZ|ryN{jyotw*cZ%ldEXZ?<ch3WhK|C)taH8#3^El!Ca
zzrBwCe{6I5`uU&t{j7QSdH(-1`~RHoKccSiuky05{-0+19iI=f@Bep@|KH8q_r9GA
z-}C6I?z5Q2@cqA1f7X1PeZQt+;rVaI^M4*;=C8?IsQ*F!-^0^av%Y?>|KF$T{V}}$
z>(1QU+wA}UG(TVcZFT%#uZ0tK|NVBo@GJwv8vj2`zP_UDZc+#JCZ6$2@%j|9;i_zZ
zmil*>UyGu2R<T9f&VC%H6qxV$zW#svw*31)e>~p5_xHQqesgws$#fq7UH75+{oUH{
zd&_qJJ=D4|XyuLzzw4fA$IqKL@7E#meL8Y8&p*HXa$|%}-PO?LM_01T{is<Ou;cr^
z?Rq7g`yR{Y-`$w}y#9B7e4*9cN6s~WU;kfkv$eYX|Mq=feI>ujRlj+@cI{fFSGu2W
z>Me@U`FH;R&+qZSF8z=2lfCz$ZMV4P?@80|RQ-OtzUJoXxR>8AUyxx)u)G@e_fW*U
zJszctpXJ_6Sr)Jg)+_1UesX5n#udw|=FZ;4ByIZY?}zJ$|NmM2P}J_^&Bb?@e=F7d
zH{<T^?>}nxJ$$J6aohFRyB~Gs+W&po??2z}^9ASo6|iaf%KO?geacE$T+a#T|K|Ca
zTIbbo^Xc-#hurgj9Qn)F{&8*LZrk-WPv4&mzI)ep^5n_>_J6Nz%e^gM^WpXOJD+yf
z|Gi$n@kILWj`y|iA1b@|b*hW!cQ5~Su6*CpRktSl+X?cy-}`l~yyn~H`5r1l)!*M$
zpRc~B{%^t01MK&9r=PzUzUPsB#{?^b0=wy_yJp<JeEIjj@3ki$f9yE_`INT5?Vk_j
zF3%pbb1^)yoUR|{Ixm~&R&QGSu_DvW*|SftJfie!<=?qVH##e>3xC=@=iAx<0k^Ny
zKub-goPK)m-Vb4a3Ec(xJD(nn|9vamf9|ed58L<G{{PEg^XIYr%<p^S{ydt#_wU>9
zcE4Vn=aaLkxf*(Y_qSWGr~P~=SN~`G-@nx<=XTHFn68wx?_FvBkFV?NHRIxCzCNqj
z#$EYl<NWuxx9|VyFBq}^$I<=$E{opRJdghW=KQ_CFa7_wo+v24`&DY9wg0?7<;*S5
z&;5O-|Nm3>s#RU<-`&1n=W%RzGdus^5AF5}uNWDw&0qI=^36?#m-Es##b#|PJiqqp
zbCHR8|G)7)Zp(4$-S&IUHMZ6j+h?riFYBB>weDm0x2x6PcmKcfwCMNWfBZEMoM$aN
z*?hcj?vESC|NZ%W|Np&jZ>^acx3%6YKi)U@{|El~-%s`Be_vf+S9rfx{^v>mx-Wg@
zd$MOvf1{M1zvJOD>-ROjI%4~u&3gT0!ox@N-#P`YeDZl-x$o!s?R>Igmi~J-W{20O
zr%(4Ndh~X#bvZAu>NA(U+Uspp=hxid$L#Ff8>e+J!C<D(r^jpz8~9$8)|M#U-=Ua&
zY`4!oC4bjjdu!*ey)I+4d%nw6v(;tximxJD=lnH$zTj+{aOLa6@^$}r-}`#+=>5BI
z%eoU(;{4{@ecrbH?&dQquHWDP9hAGbM$IixIRE_f+xztois%2nvfS?L&!;upx@+>D
z7Onj0zw_VXqj$bLJvlma``fKix#z6US*<oXKg}!kV@r$yL&Mg9Rae@Ac0OBhH=!u(
z`{W5#73m&)w>qcyUi#azBE3|<_T}llaqDA}H%^HE_i1B<&b^C*Ifm~~mX((3e?I9y
zXNQqgZ{4rU-|rTmm!Ems$SeNmsp;{bXI(dySGad?`}+ou(!+<v^?rK`ytgwbsN2f*
z>5Q@e`#U>lb2Bq+(Aw16C9_3(u8!Tr84`ZapUCP@eDX-}>l?w%zdb`<-`a53zoRNl
zoX<UP|KF|M_HIu${C@Y_V`<RV+f%n~>-)avdF|<%qS<G^UF@&>R6PIpnYY{bUwUjf
z&G$~p<?b~5gxlNRK1#Lp{|cVXf316#<)?c6r+d#<ZcbnS|Hg5<lIyYmudfn$qHh25
zqV)YA@;eO}7^XX3|GIJIBFme4vpv#WPh^+bb8fAycK#>)H*s_JMk$_(8=eo1Zivm7
z`8LOU`R1=xkBwy{E$`pFxqX&pIrsa<-`}?1ul|1b`@4I4(_7CM|NCPs|MvyE{nwTI
zcl@}rs(!!O@A(2beSVUf%BFXOQoak%e3imH#c5@hiV$dcM;|nEyRl=}UVRTq@kJWj
z5(*-7&q-Xpz3ASzZRLD?d~5zxPC7ZUeBbBTE5ZyL1SUQaI+?zGv4G|JsM#;;gu?va
zb{{)aab5bJ)?NQ=l7ac6cS^6zZVoqibH6@eX19Uer-}Uk-v9r*{%rlNx8Gd9ZI6iE
z7!k8)&7VrYc{W?8vb!@f6rXsf?v}oLrs$@VolQ1NXWsSCv%07lej@MYJ9U@6z0Ws&
zzG)<^$iOg7b@zOUgXen6J1?Fo+5Fpcwz*j7db=B{yT!JHTD*c^r~Qj=T%FQfv;38=
zZq0Ir1Yxc4Eazm)ofDjn>^_*XF2pb|_oisH|B3nxcaI~x_pP`l9abynHl?F#`j?$n
zF+1;Uxqsj5*5(SC^;cKTJkxUe=|U-n4V)?5Q;%dk+q2Q>T1Po(+%M+xOK`_)*5TM9
zMc48Z{@;Zc-Rs(dG4~#}zo#qddsS#CZ-5NLjgI<_%a?Z*akk!MP@Oz4uf#s{`kjv*
zRVC#+^j95Q6g30n)2pf5t(_LG3$1YyI~?rB;IK7J-g9<z@7W`}|M+~Le2(w_xqI8B
z&xmf?xZ>8U;y^u6Gjziir<GPSPML+D;9FXx^tSV{9%zbm{T=B}_uho-(qVT?>=i*X
z-QBZKO?%?A`|~rdn@?OE^ZXW6&HcEd>Tze>PA9Wl54URjKqtgkzuv`Bd{%VRqpv0F
zbU>Yoj~!*d9F||askdlbcAna8@Lc}V&{dm$dloCYZoBz+iS-lv9eWq=ygK9j<0a4;
z`khHjCEu`3n)z^}+jrr9NZ+CK<lGe3bH!FW6uqx7GcbUL-+q*=+}XaSqx|K|MK)KL
z?RpgW_QkphGTXVgg63M1eg>}JzkmPFZ{R_)$hFN33<=w!_S(%kr|!1-EStv8MK}L0
zS-RBt#qEois}66RH^VaT`m5!?Il~0LiWyliGQB+8;zmvNPj*HIhmA3^KF^*AaS6U*
zOW!r$Le?w)MtzdM%eo1syXNnBQP*^}yXrIFQC-P@dXE(t7@|*wtjozWP2;&WSN^Qp
z@z0xnciw+2F!9~b<JC{NZk}7v|4u#P@QUpdZayw9PKw!|`IFtVj-kPKJ!q`t(3@6~
z;G1sWCkGr*4!ZlYHc<Jt>&rSOZkN5K`~FJttjhlN=i!E9u8>|(YE10ZtlU*0plR}#
z3s<VQFPkShPiu<QUH_!Ow?F2+_%`prw|57&&1-nI^f%}9MN=2elWB?8czd$B_?%u{
z!O8v^e(A4EYv1ZAnB^}8O_?_tt&52(v!5BMXg%lL)id#NdDCsh0_ShvuMO_PmY;ZD
zVq<-C-2~k(@m0r{R!E8*-FD{T2Jeol&u!bDt?Vwo{fVE6VMF5!&^is%?-NAVA73Wb
zsk>lT&sz<?(pHmln^kQu>zba=^1c4`=;pgh*A_yC$6O^HB{d%xuM1n>zvS~-$K5VQ
zvvotF&b(8f$QM6<r=TlnAY*I8&A%;DMVjljKJ9;{EB19w!;0heuAn}J<n{QKG15M^
z)*0qAPKB;=`!3vm_eEXO8`s1&6RuV%*Y%%v<lQN<R_5ysU1o-cX)kLcU3R5ie>Cyq
z9vRMwcm3Dd-%@@Y3mI2y<!xEP&TymX)h;`=-Sf|s=+2w-vQ7xxjemM?#ha)*7rnj<
zgL+^awq>ogo065|K2hSVN>Jp@zb+eZ?sDF@w^kN3&l~u%jtP{r!lvto37_;SzVq(T
z4WIAA%P;<Y^5vi3%}qPhpUl4tnOaV;?0u*HOo+?!{<@ogmt1`>H1XYoZwq9$cW=4;
zm&L`Ffnm+sxa;o6KA#oc#Jsroow^fz2xw!+HStj9RkMp4SFkfQES;+5_I>gZpX-kf
zrfj?OqAuw*=W6%z)+f9-?`?Qh`gt`ks422WH@U>#Fzwb!=}l+fsoQOLcG>m1@7sxW
zN9Q{3nh)x8Hf(*lYu+p^H8<nuAPY~vaapF~4;@XM*Ku=e1TULSi9I8zi|W1l+AHy6
zMQ24fb*3!4`FDx-i`&Ba-L57(Cp5iN2hS0gwg#CRZf<cpVm<NmD$~b(Yak7}+POwI
zzP9|)Q@`sE>hOZ*;OC#2Hd{MIc=63ADUQ$)bgP?!=EvVIdTZzUuuTUvixd&DcU`~V
z6ZW*Q6J6J5)-3+*x#X_4(%qTPu|;?E9+bnUa&t=Tf0jr0PStk%F1$PGHRo^s_dF+U
zQ<4RtK70yV)C1}}S<Ib$*WYE5@XB|$4&SX!+whw2=gT@KP~=Wq_PVNSRmHs+Y3;{%
zf0Qi#?YaAz*vfZ5-fh^UD81-6C)hbLTf^l2q@#P68lAWKcV<UN`OhHe?B4ymx6|(Q
zir&;)lm(jL0|(aRyZ%Q`R~EOvxe!sd?04s0^Edm8;zRtlz2^LV7aE}5v(HRRTR*|q
z&t%v96>;hDA$woCoRQgbneU7H@yn5?SV1nk7J9u@@R=01=9vofx!R|LADa2wtctB&
zaQQ}-&Z?~||F8SqIajY79QvkHSKa)3#HW-q+0u1e$jXy1t_gpVzjIIV`-EOsllkrP
z|G=tpZ#t<O7Mq9dk&`=p{p>gOxb3k|c4qfXJ9?~41nREU#=GYGh(Em>v2$ilRoM5*
z5iYj7v~zTpyfE1{AGDYR6dKyAuf0-!x#vx|&g0m18D;jFnJ;;Mm3`ZG*I=`(>+1Q?
zx$)eiMWqHajictP7(aL4?7VW0NA;r}mlu9%yDD6*RJ3Vs#qGC?esh8n1!y5c&bkRx
zZwIDKeq33++;H)4Pn%WuD)xl$>2uwBj&FTz;wIUKQ1Ecp+3n}&TAM#VktNI0uy*mf
z*DE`lEHkdZh_W%g{8vT9VAuRP_vCxsds;=_&YHdU7{i*}E72Vt8O2VwPw_JySQfJK
zTKln0XSbEPeV<&k__t^IiTZ@-_83L!?iF_ZlZzN5uCFjp*Le4+#w<T+_mXCwH;gw@
zijI0ET`Lng{IX_k-knKbcf3(LKiBex>UJq%%kwWEwCRARS#&4;f7WvbH0+WSuxnkv
z|8%xV$JRzvMwjKR((q>u36Br4-UC{HzbI?RS?}+{4AKg(*6vRTh`s!rzugoviuKs&
zYS!0-A>URm)cpDBOY2IXeM)`ZBG+YuzUOi0z30q%&zJK$Gxxg9l!@LGl>(0Sihq3)
zd)+d*NZV$|juP}CvByqcPotEk`u0ez^%pvMCP6EFrP=QJKl<NseV?hFlKg+)Z_lj}
zo}$_y!>j_1ZC$LfEtRib*Bmro6w%0?@OkF6yZ%qYk{92+IP;x)UB9y2)jW%9%Hb!<
z*lJ7c88;~EtiE~bjjD)te6Qn0#)y`Se^WMHn3Jg<=btKl*S~44oZ!oKx5P!)yY6|N
zvGg}*1MkUYuXjzgx6gYJC7-&aM|wri)U3aUBGy^vsXvOn_@-{rjhwrR^Y3&k<>@W?
zkpJ+VdQ2~9&inqW`v+JXdNtzL%s5<ntj1dKz00}Dcm40AeV_bX_QjOBZ>xIVsppuo
zB?v3MV!UB<=AF80@#Kv?IWd27z6<a7Ub4&Cx=HEbSJ$lt)_46uBXb9Cy(+D(u$iCn
zMlpNMgt=zhrGyprE<L<`4ZIv<kFIpU-6`CltfI3vWF_yip0&qPn5QfZ*_KmgUwC8c
zybb@aG_EUHy<2}(=k~pMb^E}Rw_AOmpWeJ(N?P*#>8&Yt+m+=)*IVC$1eMZT!%k_?
zjO7~d>tC;g6ec{mDY{8`<|G@@oYLcqZ=JLi+<7%(!&T?+!k`Jp4O_C#zNkyuvej7a
zwxo5Ch*$4B^;pIG^D1V~$rSI-T6NuXCukh<z@<+|SDh&Cb=-aNO~B^gotIzK6=l^g
zf0G05HJ8{kg0d9%<<eTC>^xI5<C}V>H(%6UdR5%zQJzo@T7Gg>DK`#O&Vm92TFy$F
zr<|>relq;YN{`*!*Khth%lYo6>_X|g{$L9qc}=|)@apE;V{DVpzEj^e57hBG5#cHr
zc$6Ee;?<_sQ*Ru1KP>SpvlsMSr@v~R?Iq>>6J;~+`fG@T?U}yrb#k!l&XY5C&ddQ-
zAdrdVUxzn#s5!+MI6y<d?B-vWWmY#CmIkcqdaQJ`6f|RHCiwnQ;N!M6&x!-}z`<mK
z)SobZcVgEZFP$~>Zi)BKydC(Z?PVPksA{{WwtK$B+_!0Jw^h}-K21q0v)}pB1(eZq
zzhC^z0*VqH-!gl{rn!>ug%;0znf86M+4_!>aQQcrV!I*pv!IFXOQ)vZx-jGB-y=Qc
z%_n14Cgqr>h3D8N{$D7oxYKDGWWB%!Mo4r2Pe$0iX|jILU#I;RhAh01c{hn$bC+}7
zuKA$x;fAH4Nq((Usv^v3d%XS4cg^3D{jS2rc9-=X@zCTzT_11|1Tr0Xv})@wk6U-L
za@6iUP2V-Yr0hr8*KKzVik-JjeWwl@gH9+sy6H{br3gjqDW^KOsQ2xb@yd7ETa<r<
zqbzW%`I=pzAW(S4C}uuYmv_nM{dG2)k7J7#CA>4awg{sQ&kTwjZY*v1Z+n>MZd{@E
zC>Ao2(XfI&B5JAD?)fI-K`FEE`tNf7*L>UBWsmh0`HL}S^V|PV0=q01YeW9%S;#Da
zlzGbGMBS;U0<1s*vOz5N`tjx7XKhnl_jvn@KV4~dRkT0Ly}UIgeRlwOjW5H2Q=le&
z{WtsbbFIriPOOyQcEK^>@XD*N55KHQGP#}8FiCsXUH_;ktLA;OwrkC0UU$xXT(%Y*
z;ASCLW>3B}>m_LJ`=4Wiv&OX5%_rx?I4L&WeE@2lIltun?f<6pgy<%>@517D{TUdf
z?O*9m`J?w<A;C0w=cb)kXBcLb*O|<gIe!{d0y?|wlJ5ULtGO&I{et^<VTOjOH%nso
zFDai<?(puB<Gxh67$fki_gK)<*v=1A0$07R%GzX5t#~wK+r_^sA|H;N-KT!+^$V#o
z`-fReK%2^%jP&L&y3yoVYT3VMPT=0Jdzg1a7sZ|y(@9<$Wo<vHvMS@1=EtJMS1-9Q
zvlg#5+?~|zy7h7OqTAI>w|6t&u3}ns-BWU>l&10u#nd}H^ekVUEZk9fIj(p?-nW%U
z`SpH2l(_nM{kqVJ)9?DHg`MDAUTpe#SJCXd{`0o)H_ppbzAgL7Que&xHtm$|N3BLh
zra^82&Zja=vrSi-=jTm6u73`+$8U{Z>~(dcrO)IxJ^FehM0q1?NVv@+*?W>x%u^17
z3Y(m)>BY?D=k8elJb&7nV@(%$j?kR_t<cGwZ2_5vyXU)D)!g14eO~V6yY8%wE5tz4
zq6ykNpQK8@?vdVc?faZ58$;IdE}JL2McU`7R_Nm2orm*E>?bOhrF|FPfBfl!o|s<9
zc0r@;-8#$>^_PEc>L@w8?x^zP%Af9CZ|aKvUX&}o;0JC?Fu2%8#Kc}dp7MS2%yma6
z8-uE%c@-ghi}FLv9A0L`t_Ecwfv*i$13@eCd*5mZEuQJ36|Hgg2xt<T@8`E~r6;5}
zZS2@J50oGjUNKHrj$flTY38#XcUw2ke5dZW`$X~b-goN9YIe_?P+#_47&Oz<{PYEA
z4X*U%H)-1zd-$5|n!n{&tkNafJ91MVmrX1K<$i}N&08Uh0Czft9kIUo*QH}y_4*e%
zd%qQIzf+*IV3#IjnmuY|Qi;9inG#(&pS07xprUp|RY|zVy$Nr5SI3!$%YvquBBGDI
zs7t!j<?A<1PF^Cv%>Ls}S*1&{<y+Ln0)H=xO26=Y!{xs$pxmhA1FCck4QE;AubUw2
zk*02>TB&vC-CNFI{_i?ZNN+mW&<+WYgiP?j^tzo+W)sht?4Do3T3h`n7u@4W4$O_-
z)13DVG(DA&iK~fU)SBae;(gI2n7w88nd>I_!k2%!F4_Gu#oZ=JXGzDl-y*Hjo4}?e
ze%)nfHBo*>q@s3Q`lsG^>J!V>ca)^_m7Xlz-EjXXbcF(Fp_R!r<K1GjAD6An*_l*g
zzfpVJybb?9oSSgR*-UI9bdo)8TR`TyEy5r3EatAC{T9;DfAer&MTqFZb=FUoLsiXM
z_xk0^N0r67YkJBbU+#UU{&v=G{Z+EJWv9h<JA)E)!wUB9)z@Afez`|x`{a*$@vvHG
zclGU_-5Uc<<pNFTgO+=MW~NWRQ-9=oZo9P9X|rAPEkMheo`P4`34hxSDuEd~s>IA^
z>Yj~LoINL_#6EEExqU0DE_X)gWaXH;K~m1<UAxwG8(fd@NIbUtWlZEeuI-hN0^h!3
zp8G7tdadtLkfTA9+e@RQeV(SQ@|O7gcGJ?XjaO$}{HyZBev7R}`mLi%v(6v>&I$_8
zHM-F&RMOrZ>$-k8`RqIOvWd^v8AgdoYo|aR6P8|LKT}W5?QEz>+8*!ouj+)lSGbqA
z_O^=5jna4kT0{$)p$!XLd)58Y&&HJGO>;ZScP1_V?U~-5pPql4x5&C{#Vs$W!*?X@
zw3=bEUCKM{Tz^`7kmba0M+%oazvNx5{@o?%8Sl+|6JC{p>RASXuWNF(!p*`@oO-JP
znorM@3*QS`GG%iwJI7S)s+IMgvR2RpeZpz?z5o9GyZPUy{N0?=tibDEuedDS*mY=+
zx;1LUzHoQhSzm}NX3zJiC^ouZydrG<|4;vy)PFp3WBojt+2_JRV+nT^|2O8!7PaQ+
zEc#{Rw@wt4Q=`woCaVAa3_l$I<C^9C+l2-01^MyS@gdOGJZPdd)@tV4HO3ptukKs1
z(a&trr8|6}0KOJ#uwvcI&+Uh2Rmi^1d>#~0Dd{K)o1ETz%=dOG-%H5mh~3;8Q%@BL
zBF&dZK!#3A_oh~U++yRs_5dpb!;PGUA1r^axE5K*&A_msbM1HDJKnO#f~RcFjo*Il
z{Ql5?N#K1AkV5(7sfgN0x9Z*XzVqwXPOr@o1WkfM7A)yXacMH5?B53U9U+s(44}3D
zp!N``Jb=wzZ;(4a?eD4QZw^<lwBD9`Q|oN>_NVf9W-Z-)MJv$%)Q+<M-QiE|jZ&BN
zT>H88Q2uAt+^>PQ>pD}zJhT4w&x+mtRQ`w)YvjX&YioStE{X1#s((6dXIPx!sS{Us
zxTQWxe=K!#(c&uc|Fvp;1q;{sN8Ahw&5FzX99MLDr;)hj4$)KA@8jRbOk4elU3Y)v
z^}Lt{Bfb3=e{y2jqpL#v<9K6)PkSD_G--eH^!f?jd0Y94e2XIEzRlmEn_V1T!`&xx
zrrI>=<Ny7Ca#UU=I{(w<F7RzyE$A)QyG!uvwXglg|3socEx)nnzk2H3XR=-K=N$ER
zUbQ-5dNOtApX_|qqYHb)r%yb%<f_+6kO6Ct-%tD#Klgk4Ev5e}#eQ+_c;cwH)AirF
zy-S*7CdW+EK3S<fUvTTu(<iR(nDqZpcg<U{rmOX_I?G+e*FV_3r1_7_<L|FmO(|S>
zk1J-H_doGzUt<!FYCKk|Y&D8|_5bzJ*9XoY3r)OSI#&y{8Q)9iGy^DoVc(2@ph#y+
z?^Ukt+mp(57{s0|U|}!|ZrlCi0oUv`dRs2PE3&(=$KSO(oZ)q6pe@5}%jdD*4u?(R
zV?1Cbag}+)%A$Kp(Prm=rWaSQe!6_G>$j4ud9j}|XY)sAEM{ehaP4`;sGzX!U-NU{
zuCwN8%dLdu8cdI_kZU-b{PC=t_^sSx%fr>5^HTOavDW)M)3X}XK;Ez=Eoax2*_%)E
zPt?ucu+i$YDZ?7sya!ANij&XHjbVu3?s>&{LuI39UvKQO3AdN-JMCo`cKXbP$8UBY
zD0$4hp$z1#%1igG_MBcdqx_jX!y4Av>t2U2GB6|rCx!5nvZNy7!hin%>2vkCQu9)Z
zONvqxb3v^9q%1B&Bcg6OF|;(Wu(RWW>aDnSHYz&*wwqYp`}GN*gS57)74Kj2;&9$>
z&Rrf2CD$F~b(|A)P6>u7g?1Ia)%|q8y3N_kcuR_>2&+k-a?qU5XLp|6X?XFyV5h;K
z2_Atzx)<+u{ZiesBhV|1|CP7X1R)(Msm3WLc~hSW2|A0e7Bf04aILGW!{~@%XWNkk
z71QnA_y25KaPfTQ7wtcPK3i3N?sH*LZszS=w_I@I2?I%9&Ge2e(OCbyNA+jIe<qxe
z=svB#dFtLrAD@5m{$z0adTX`8`Op8a`nyf>`korJD}T~2#$#I|roOxR*XHEAOJ+xF
zrY-d}4A60FUO2(xUv7fOoL%kZo?(ygsc+8dj#O^j&GR|QA;iWrn{E2fKboh-n{U6a
zZ#K(P<aBPD?R6}0PReA)j@%@LDTP)s>x0VUIXzkXri-Rz9gRCX|IT60Eb}v$I-`wZ
z)61XgoL^OYZ;$Z4td)1q&ARcfe7m09rH>_H*R+|HIhblrRz1!5kh}F+{Pn51hC&zX
z@8#=tSEswkYNm*+J7GA(Khvdk4MQDcET`L}*=)}w4<36VCu&+fJ($t&=%J_E^SAp%
zy(`;r)I=$wB_)hGyl?Nv*nb-iI@Em5ZvC29&bh|YqMYN;W5+TcXO<rMfV)q-U32$b
z-l^cCtQb}0$o^Adiqg{PH~QU?VSNWxkGn>#>pt@;Q^flHR4&bP5C16ZRc`&2c6wtk
zL&uf>AwKN)-#m(zV2M8bPpTo4^~b8SrRoWpf9J9tm~Yo-|HtOv%g4+4&%Ib&VR+iD
zIc}SBPs2Yxj!n&6dv3PG#LZpm&$RIJ3GNq@3oIPlwu}C{|C(EKicn+JZP{z;OB<Fu
zt-8Hh?H$+d@TWT$RT<6fdp<d|^4!kt%Z#}Mb^B}zqLiIOJhpnB{-`s1N&i>H*Ezp?
z`Kun-M%F)GA@}8Xl38Kf|0&K#BED{(yo|%U)S*K*MaVEZ=SRw7$K>B$#;5qB^=|ji
zp7T;H>Avl<%8eeUJ~|u4FOOYpB<68@#TkXuf``h}+w-cLrtqeQaonA}k<-0rl7Q65
zO#25RiatLX_mw}-*VcVf&&YXrW_kO?w5Js_MNTT|UQW7tGl#{K>E+DE+sWtpd|pLQ
zu1Kjb^Lx=NXtUw^dEW~Qy#&}D%ELKzOIy13z0y+M!q(I|Z>folX6dF0#}s-hJ<`1A
zulN0Tz+<*TTZF8`!x<u*SIxJ$e$&F8Y4zl}XO*q*-?Z8AZ_ZoQ3xCf&3vBJOyMOc7
zlud=(F1OsVnC+hC`X_38idvJCW0d{uTWq`Hcvl&gp7^5~pT0ELfc5Fe<p(DmsVnt9
zx=dnqUe5Cz`{}Ox&T!BEFlp!SWoKTW*I&7NM|tF3y|T!?Zl~qq)BSnxJy-ueb4Pz>
zQTVgg-RGA3hHUd)S|F?E+GG55MynS44%t9Y8O9%me-g8#&)FV|P0GtYw}1AG2k}vl
zrXNvRCRTj@MYCszp5C__kJInN)@?p7e<^96%}!}^_Ko3X0)e*Yg31H8PsmF!IDdNk
za`X2w4$H1SIr8l8@<qR%K8tNR-Jg3e)WdA<-FVYj_fH<LUO$;w_1FD)(%JjZW;nzg
z_nV(%`TkZ|&MRg4cO7o~R{pKsboJNfuT7#Ar4#>ev@*}xw_<u<qH)2T$A_2sht010
zs;YVEc%M;_+r+%jpJR@_dhp<vNa%E43H}2MSQT~qcj)cWOUnPRC2?s_s_XuRc3J<=
z7Ea{y+?Scg_fF43#KLBYw_NsDJ@M=l{(2JmB|NoJp)Z7&KYsgGZ(B~%blo43Wlepz
zc{QKvxcvT~Q+cD+BBoeSsPEBig|<6!Tbbgw3$lfEToUVFUp1>w;E3z#W7Fs42c`-f
zZBME6TPE3bM1Im-^M{Mt9IlCoUtHBVZOY8_sJ%BPbbDI7kD9Y8RPABQ<q5CKObR+h
zq_W#KO#17;YsaR-w?`bOyI=V|=k(!sm1mwR#+RM?I*H?VdyL%GjDp9l&u*{#*?)Uu
zm*vG{Q>2%?^|`uu6Knh06T6I<3fsCbFxktArY)JqcvY?V?B(AkvrC?|2Xa20Q8jaZ
z@@J#N9j5}eEk4C`Y~dNRWvSog?-Z_ov@mz`_TtWSxANm=6%?2({4p^vV6X5b#i_;3
zT~m}#{piami7UDr_F7<zq4C~x_OCB?@z>5YP*9olX@Y?Du60!+PbZtcx14ogcli}t
zCgwRSs~rWG3pB7wI3`?M{!Y60#|80=wjst3X0*55h`dth>b&XpI^~sTxwYlreieMb
z)57GE?!CjEITJ*;={rfC&h=mXwJ-Fi$$OjqIey&@ZZ|yczP9e$we{P=-&T*m7F=qV
z<NIBE^rO=4->0SKuh|y;dDb24D<_|q+`E|atzMpEb=YgSo^Kh3iv>1+UDJPO^1)e#
zJNf_Sh3&iBoVQfmuHx^}edj{9F8E*5{o+fuzhSS_&U=UI-!k1={QJi~e$53I0%n)v
zJb1cd|JNPZw*08Q&cra?3(8#n8TFo`|80!E@4NP1*H5R>kv(SX+L9e?ZHHGyx4%3Z
z5aXVdJ0bB@|B;8k&&>0(JSdqoX->qcpCRk&<Z`vnrEQQtvtF~cBI~%8(4K&7@jVjR
z9Cd%6=@({5aDXaoX!V<#mjbD}kuGy0;cTbTGipcAs2x3{cJz!|=&8h}(8Fn=6#QJ>
zD=b+|;PXkL)aV(tqi57&IrVz<jN09!XVjX+kDgIGdPeQ&8MUKl)MAb=BHenA?~Ga_
zP-kW+oKb6JY;0zLJQn)qE_;PY=^?fcGjHDeop&p*%siEIq42Cl9STZjA~_mnSDan_
z-=DMI9dRJ;V3~UQb!-1X|D#P$&jsgnG;l3Z-+eQs`hDuN*#i4x^c*?_5*ojMe{%6`
zeVY32e6=TMLnb9kfX@i$a}`knoe1o36|^yqA;cCx2aEiT{2k0bn{VdS+OJ)|{(fP~
z^38u&If6{N;lASTw>|fqwmm+PSAF{dJ7_K>;Y8v0XD9z|yY%*;LY6!O1H*xR&PF_+
zSI@fBC;jtVTEX^EeTkmSCY$^3?Qv87`a3y-Q$RV%rKdq+qGFQGjsTIBL7r^J>gC&Q
z^N%}!`L^6~U+><?-VM7H+>UfeFd8a3AE{Vz>uK2Dy6C&Va%bM&_~-4-2YK6HZ7i+3
zpL_N4%api$5pBjKm!1wm0c9hX9(M6ACH9-m<;5GP&hy*0dTrI$+i%Y*><b0C{`Urv
zcUgxR)bG9fdsE_sECT~Wg1y9xEj>;b%GvYm=5w>{-5Ha1qDs&8qDk-62M3Owc={<+
zOSb*6?V02wbzDa}Bql1#^cX&Sx##*lxh>|U$5!|T=Bl~Jm!Fg1+j>4f(C~-s4))9M
z!?!)>Y)$H1(xGxvF;Zc=_tT;kRqRG?-}HMcY!20>Z@rbI!pXqUsz3RxRjp^cy4u}e
z+f=TtJNa8B#m`A#pHF2(O_J}<RS)WX<y{^=E1IeJrZRxz#`|S1O8rNjI+z$3xPo<L
zK5a2MHutR01x3%Y*3EyWUW|P6Becl+p!(b{!<gKihawD5#uQF*2xwUUU*UFk+q`m*
zZMH283=FJI%U(`6{x&zaquOf!nX9+%ZoK@$RQac@Ra1x2B7yS`8E3=KNF<tgl%9Hd
z<=_YHo^H^lI0l(*MLXwM&)8I*^zzwzo_qPBmi;Y0(>KiRSG=$0t?hNS@?>G2WqA5p
zy^F8B_zszOtlD1u`T6`a&p%h%*!e!!-;r?f%*^BYH#YoxwOV|B@wr3V>;L4QxAC49
zv#s!PTfg0}7#*?i)mGM@ANSku%DURUS2;FzZu<P%Sx18o>P?7U?ba_>ebIILtFLWy
z>q__E|9(WcKlk1qPYscRop&z#SwEf<>=(WD)ywqxe^1wbw=Fs%7<{u*sPo9m<#PE(
zGpqNVy0WrVRCFqfV~|MY)2Y|5T=k9F{A_ON>wm@9W52(BWo!5CMzgYe-#ok8XL*-*
zJfCOnZ}Cv&o9X+KS6!n0Az@+i<#%${m@zN}{0KU^WcO0VTNmeizkT$hp6T0YLA#UA
z+I<3LQ@w)ZR`!O>ev&%1D*Nf%NzM<M&aJ50U2;A4d(_&gyu7!?^y5Op%{yfcXP)~1
zd49ca+@6-h4@=6dF2B68K59XTR_(i;;WyZC=6w74JX|-f<|DWMpSiMc_H!)@%ITbA
z{QSx6yeO~05EH4tPbT+QsfC8$zE}VM?z~msZ>Gy{wq5^Tcz(^N^*Jw7;veR2zx&~w
zbvApQp<I9U-(UIbcfBfau6%kuzWy{r@OkU^O{evCXB_K^yt2>!AqNA)gX>*v%<rDH
zxrCpd=JT?ju~BbV?!+(gSxp{Be;C5AE6UgZvWWKFxzeMUXL>QmKPBsk)%T{`m(_0E
znXNBwl$&$%$wOD>^TDyUJ#YPEWBtBu^iVOIt$V-j_thzy!8cEtR)6b^-kx`}dHw0f
zAN6*od@R3T`}tve_Or9ro9|!Qnr%Pfv?#ZD+?CHOebi=Km&cudyfOLpzF)7pJyevY
zpS~$>kbcfH``Vt{?_Ub5`S9hNf5?v5{A_M=-^`1}bMCAP^}qc#_hZGKhZ}C^nC6s5
z@BAb<eRcM&Ey>kpiJPu|o>MF)SNSCH^fcY4pMSo|$q8PwR<`o<+3lOX16GEps;1tr
z|F8Rd=|_Gp1_qf36W`y>hP(BjzItJF`+iu;9WJALn}y#l{}a-jw`l98b0_t$&sx3Z
zsOqo73CgV7UcEim#{1fMrcdO|l^Zwy=DJk;Y|fu=w^ytC+kKksZ&&r{WGKIV&3`%l
zoy(SO+qyON_{U$rau2un-*_2(Bd+w##^W2~t1d0kd|7fTY2}T=dH(jXtFKGn_+|Pb
z{QtxD_cy;?``&H$`AoOc#21gc&sV=%IhEh$LxkOY`^P=OewI&77GJ#by;E2BY`@JX
z7S}-W*phd@zTW?GWw)TR+q(Gwva9467~a(1jJbFDmPnDwQ=7L<GlJ)SU*{eA*VuBN
z|FeH9xY%5mHJsAW+bE?I%6(<lVT1Y2TVKgqZkqA;#%*)^2doeC_Wks)+2^1%Q75`=
zy^q>!Ng4BX?+&uR|M};0edJnEuGXUW`|LhzAKyK<;E-qeokDMg2lH)zAE}$HxBpMl
zq$O9fzJ7Yj|K?kEwM|~xxqJTVesk_@*50{k)22m>W}Sa7e7iitdamr>RrdnjWtDH#
z8SOlqmb~0=#s%9IVcBN6zZn1DVPH5=H=*OG&D!3JeQEJJ-z(P~df9zX@%QY`Qz;UC
z^DmX1%<{deoVTf0|FS3Rp2!aF=&xlfpGWMiYqq_8_1*6G>!kBzc1=Hhe^=@0kH^p7
zEWDGpy7K+r`ggA)mo81Uk$XS?f6eDs@qgFu+__R7bbe!1^Pg8tjRuo{zOQw^5p?@=
z!y*eN#{d82gMZf4wX1*gd-}yMRa{l$L^mfR!vRGF8IGIImAkE1<;4ZdtPdAV<n=7c
zUvOGlMeFvNk80~5)GXT(k*;;UATTH3>$h7gm(SA^>QwWcwduI`iL}l7`+lss{(7eA
z>lWGN=jK%YIjwL1|CF}=oZ@p%+alc-U;KW*{`(o@^DpNnete|rmwr4hFL=$06&r5f
zcJGleRhhYE`}VM~u*ACz3=MnTjeE|&<k^yUTWEuE-EOVdYLdSmUYN<^IB%)X$(CIm
zNozKoShO|d`YT@LddnN@gmx}`#Va}2um0Um@i%4Lo;^Eu+3$Di;@H@`N4oX*>4<g5
zRy=H~`Mx!5m;Sa-PbRM}v-vyih22l*Ek#e~&#!p2(fGX0)Y>yoi~Q~X_Utp>@Hc0I
z=-bun_r0m*Eq*qq=H=4q-~Ft9y-2qITcT^d<9nk4&*r+n<$Iq`WME+UqcyYS*yU>?
zWhT$}yp@0YDr)b`$T|7x9d+l7m&_0OeI(2&_0Qvvi+zuBZTt{%<ZJfCH}79M)z#M3
z_bjWgY}E^|4h;Mm@a@jwA96c>*8IEVeSZJ@eePSM-p1)={r$E6e*OQw(Rn+I`==W`
zxqq|yvp>fj8CgRmx0H$<9qvl9|CZdH?zugG9cRs|w5FI%zpoe0dic+|V%nM;AuCTz
z(OPk9*Tsnue1&gCTqjDMU7+{7eQi~{CSQB;-BR<iQp@lAULAe>@wEPasfkPs2mB0q
zgt^@I@XnsJF3fL*^R%*+Ctp-wOs+dMD{HCd>WHlAH-E5g-nGXo+a%Vnuxh@BKxc=9
z)aQFnSEZS{#dP0P|8mNG%dyRs_tVb$UzfM$ZQuPpxcOkg`@Q_{=TDCf4z^Y~J=5^<
zj>Bb-H5eG)Xv{xdEt|_&9enL_*!)Yif)_e3@0&d(fAeIf9vdYcK27y=^Nb!Qb-QYc
z3LLRfX<HTk;@3Tfx7TmwALV0UNRanbpBx*zZyU$cf>w3QxC<BTIA=~4aOqpP%c3-S
zRhEy{<o@`)6)W_ndkKnz3JeC3EfGeqZ*9}Oc+sOp=2FV^S)8S5-tir>+Cl|cPd6<&
zbK>eWZC}x<;-fis|NqYq>AMr~m4Sg_!GjAXvIV8TqNRi1U31adXJvLy-t&Lhw|!He
z_ZmzRh`+BVzffo0zVwQ@eu^q5Gd*}h`571(xWe_Of8DZuyQ*qgxzGC_JIwwz&p0!s
zB>rRHhe@-#CMEaDs*8Jx8y?*i)VoZia^WjR1_lR3@AOY|-{x+7*4uMm&#NReV}H+?
z{Zcl@hXv0EdEdDt<&`{XYN&+H)u}>;>%w|gm21qf|DRH~{oU-^UTO1xuU6OpKV$44
zsdG)zI4$?a2D|B}edkzIhM(tccP_tIx%%?WgLeD3T&cKQYQ8FD)jngJ|9@8b+sAqb
ziX0Z;7LPljx4B$s_lN9tJ0ES||M%~n%Ji?bT!#%*JoTcteOWep+BX}yTi<`*DL!BG
z=cD_aw{@RqYgfNxo#eH2n*RR1`|7l<E1pihE>rm=@Xdm|_r4uq{=VV;#M(V6CryRb
z-l(*fSnbWYSjp75;d#r{W5<5A%kA2}aADo4Da!A6y|!Bu%fP@MbL9Q^E!WhoqE93o
zZ-03)nz^a-&oS0Z>xFpi4_vi=QfjmJXVvYNMM|d6r{4}_SanZv`F-00{hcX==bPp0
ze%Q_Q;S2bBLvCBb!Jm(hUESC(U;pRg@_A8(hk3Vuo7=dyP&{TsN9}{pmEt-x&TmuQ
z8FQ{~mdBC#HAP3CoOFM)<BX`boRnEkh28x6$G!WHKmPdn{Qe);_sw0m&TpIMx|pBO
z=lZQ(xzhIco6jvyiOI=_L&IageY-8c!S(Ic@OY8#qxJuPNAtD+J*BPx_xAmJDfY4Z
z{`BoEetvddt&(-c*Q?#}wWV7_Zv8*DyZ+y2;jLShXU~$VwhLW(#e3SHKHZwv*Xx_V
zaxo<QUz~aC{hJpYY0=IucW&0?JkhnBX^=BtBx%XhF2Sj$Y2CYw7F$Jzhom@ccfM+E
zv(Yy5#)esj$;bBp{g(ADJ?-zW{PZ(3wiY~WwLYggUAwAEZsT96>im5_-S$gXy>Fl9
zq2e(qLE_i{-**mki|NE{f7dNLz4GhT{q?_I9=HGX;_t=9$G^R<l&|@4Pdb0kw<nWV
zYjo}Uc1wG?|9r#pcYor4zpKiB866pU)WF9==GyDl`8AuqJ)1p!Q?uLR&f53!^?Tpl
zNKQ91HT9WQ;&NW$cEJ9BzfR9I?ti^|h41XT7cVx<FTJ+Y*SG&$PsUcOZ;SWt70ni8
zIPh=c>C1E91(clLHD`USKylWmIK`QFCrNydtV(H}B`z?VS!?l<8>?1tkeuqJ{K@I6
zwohmIyMOb`ljfdSKlk91ODDg}zp_5JdfutcvaZV)t=y{pKfUJ1#+chv7^l^LK3o6l
zW@Giwr{Q1C7It-=3ih|Po#~?&S>${Eg#5pPud35^<jit@`2Funs=jw+rTcq}mut7j
z)xX^uZY%el*Zj_^0FBPK-&gm#Exx?`{GH6J(K|m)T(#;|<YvDUX~z0{zuc*O{&#!Q
zxp}pZKn<ZMleKTKo!oZD_C@92uH?+jnQ{039-nvnt&v1m^|7zNl=_b!wcBtr>)N`%
z56&2$zqu`U_1$~#ib}uMTFpMQxZkeg{a$`cnX*46j0|t~-|xJ*V)s(TS2>DI-@Z+G
zGrv)*>D=ArQNF@c<}ZFbrT0O`>E%&wa}u|GsFZ1%(RU=^>w^D$cVa6aG#)QAefhBc
zy?D3l=Vx<wK33T_VWa%nv%ckb3X5a!x^z9V`FiD)yIf^Wc=xVPr|wTu*;)5@`{(EL
z_dd?;uK&K<UN35k!SvH_D-53}7!<tS>fP~ndGN-oZx3;c3+&!EpFLXg|EKBd>=lx0
zr1SUW9_?zswx;rU&bA&Y)3(!p=ZC)dcwFB0?-%0|E8A6a3<vgI-uwIL^HR&*Qo>yA
z)>dafZ|W?`<ZSxeVR)!xLD@By#U~ZKy;qm2rb_9tcP@M-JLQP_{SA*5PKv%MnIm+n
z%xd5JH8DRu+}r=&tCn9@R(rwO)pe=c;$-e=UQ0jzuALrN#kleBnm+ygfBaR1cD`8T
z{r~sAZS&g;FZ+5|%YT3R{rC3w+-i?M?r`~JFRm26^2&MJ?_3*qCx4Bw|GVYqIqUqr
zzu&R@suiE_I2iDxto-Yo;71>KRDJWBK5g3F;`92qea~CJ@A*{ZeZTe3kH^Q>@BjB{
z=ks|dQ;aTVJZa)SSNHGd{)fkT7!vd^@;v5K`SaEO$=v9Qz~x4-Cr<Q?i~E-L!(?vI
zi^*ZnmY6P5>OPlb{G#Nj#SK2T$geqO(f9pdzkXdVbMs}+{;UrRlqY)B*u6jS+2-$;
z$6vojzu*5q@L&CUp?~qYxogvk%bj1nDKRs<Hv4SYx69@CV{aR8eZJs8UHSt)h1qBC
zmEGnIk0~s*n!E4qHtFy+6}#?F+jj8AuCLFd^Y=bHXZ?Qb&9<+6e)H`fzug|rFKu?`
z;fDOXyHa0XN<H%JY>U^@uC-IMukAVf_~WZrYTsi0@;BbzkoXtWKQ-Up!^~hYCpAbj
zJUe*HV$0{*&yU(_A2tq-{3Ua87w4Ze`<353wf<;L-g0GE(G7`>6aJe2=TKp*4*FUa
z`l;+qO|^Z6faR|jFU{|k+-()tdts@Yd_4JURMf2anvao-FK($Q{Qgt;=uy@3`+pgJ
zH`JbD=C@gO^;Ou~s$E;Rw(6#cxW*Qrm9NUWFIWAj^SG9Fu5r5D{=Esc->2`lsr>mg
z{O_$+n;#GM&h+{9@AvfYHC3l|%R@p!^dbuEZd;$X%GUdB_5a6l>7z-U)-SvD?dpF%
zea_jWqpKUe?@!}A-=6a}pQnVazI!#XDK>U)cub+E*3_i^M>3b6jok8L(`3I{-Scf3
z8ulek+^~G-Le;fdU(-s~>Gv<ZzS6_ZRY0@t`STZjD?>%aU!Mv+e3Wf!kb*;uLB*3k
z_PVbxa+CMozW1w-C-my=w{5oj?cFZ#-{UlW_1+a38t)ezFIyYacg(BcK(frI_iqk*
zET3GtH*k$#hoGUHn&hVaHO&{dY+gGz^IsQN`H9PUqBm{-FP`}LuhV0e(k0XGYZ}bB
z`b^6=Q?mV$g4>JsMIOCwRwkkO#}{pT%u{XCv8o*e>n{o@C)vmtoq1XmR~@}!ui@+5
z=k9aotF_h2>zftZ?w?vKpdxDMD7aQfczQ%>sIrI`E7Orx7A>Lq->nPy-~79_FaPl4
zg*U<spO~_)KF!!aagoNi=aPm>EJr#d_*I1ruWrm;eR%#&v57lm&J{mC?|IVZx3=!-
z0LH#;*VfDku)P$eqkC<Bu;yeXy)|9G&n1*Uc(*wD>xR(x7hY7}Sk-PHC#am%lA)CR
z{Ya60tq1FyO;fy&wrEWHsTTV&EN_;l{>-D%=PyrN*)!E@bL;WP%6e<MsxvvZz51$~
z!u<Zs-TCPc-gV#Jf2eWmYI`#V1};h8%Z+}^_wO})n)TFePNT{5n*raCe#;N2(Opy&
zm>3vg7L;Mozwt(z$n>25XHDf69%S73TXu)_yxxtMpKYJs++4Lbrp`ugqQ{er>h_@X
z$@`bTDHjW5aA-W8W;}1(HHY-${*jaK%FdOm+uZhA<K@0bvXTl@Jy$+GvvI0h^A-<V
zN44pR#Udhnn+|MW`Q>io?DNl?9P{<2ORj1S7CHJavJE`0_RVIh*YSrk@67WK>a!i`
zkl^;!np|9wwD4Fj({r}KP2SGGD^=#EpP0Sqx#(-r$xCHjh1|lz5;uf#x+<k~gck1q
z|4DY&Wg{;3+iY8IC9QG(5y--DL;O(O`t4g4FJ5(Ovr5stp1km}Q%}XN56>UFe05xR
zZ{ds+*Jn>%cFO(q**ov{`@NnZAtO@2AH%?4A@lU*p8F3uZp@x_`BfW(`?I?xV()_w
zfAe&76BCs1n-Q?ac-rie$y15~1@lbVR)8+^YSo#&*t+(kpZoG1FO?Jb1ke56c_K&C
zu|{yd(3F0|DPh}-eqOr7<?OoE^ImQ0Zov*7a9f!x%tq+r7Ly}$bbSu!d6w1A)`_1j
zqo{V-d+O{zGO^2RRKlb6%){p7uY1DXdV9X1<U&SJ!`wk}QKr?KuNBeKdlp_f=Cbjw
z@Xo%PFz;tuSOimD6zAPbG1OhR%2YB%>#5G$hgGW$!DGG_7EeBJQJ<1i?rwSenpbo0
zsyXgX%epv~re3zP_<X8cWbGc|sZn#!Ma3?<JY7K_tVJW`Wy&RRC+%r%S>T?@XO_O_
zn}4V;UL!Z`qp+N(=t?tBZ*8r$q2Etby<66L_$>p-PYVKEofY$oYuBuPDqYobcd~`j
z$Cn|AdnYMO;;}z)acStX?*0ukyPh1Km1(0_c7kcaD@Fzf#@G9<MyQ+&+vV}vf7dzv
zCz9JI^}OV0`dgu|ef`DhieroCOzM;>p1N&`Pyg!q3}7var=M<`_wCw*y`6vM?Vp7_
z-*eurKktMn|8vXdC;uo0Mh0X~nG#VtZI!f1)DhN(RqPB5th%E9JEEnPWY4bEe0prc
z9F8sV+O^?s0+DTxmz(Hio;BQhH9cb0>5|JVe_A`Z89==ft|*mR8-7pfTbB^|`1PhO
z-bY)ms4P_L*!D(aV%4t7khRUqfityApQf2kZ{Gp&e1Rd)<6^5nYkM>Owap)eq}}P2
z{LB4u@lDP8ke|slz7dvD85=Tmuc}LR`TcvEuv_X08`y2F8naJU+?wV5?OB1wpUPdw
z9(Km5R;->Pea1MYA%yivTIJ6TuiJVJrBZ?}^1!_#*j>)DxvV_o!k@^(ip_1DCp@G4
z1Qes@h==>j#fgZ|mAj<*^_kadj~0a6guk)xIU7AGc5Mi#tE$=Y!ujB4W0w3rokfD3
zZ#QM_+ZPiW7a9~+cUeDt+h#>`@HByjOQqHO;v2X3=kjkgubC>n@9gQGllk-1fA-B4
zNl6iO42-b+cWQC_^r<hWUV5qGsbmPz6*Dtr)n)Omzc(vZFFyOXQSH6xWJ^QG6OviB
z?#7!I9a}W#*<_zf(W`xnEFUp}Qd>ilShu?ESNmhu(K8k}&w3MNe9&K5c%KKqwxG(Y
z)Fr`&ZL4+7uk}q>;VsVj0~SBxzLyoZpT2!<M%mU|lNX&od@RGFYW}ZKSw|O%!Wql+
zr(gGxFn@RCl+@fHmx=0MZM?zN$P#u)n5)h|y)$;+H-o1I$8&PmOKp-BGKxJ^X4l3s
z(e&D+sK+ye#NQX~-MJ`awXSO%11OURoVavz&+46axAygZyY2c>kM}M2Q_=d)IY*vO
zSgOUSxpm^JqRPnDdr_5JT&lk4`x`040`OwOfxDL`yvRA%YLmZY*$$@8&qx2usb~0u
z22`I<=zso7xBQBq&ZUl>b6$3EgA)>$IH<%<ubz_rU9IKYdbeZOHBanF{Jq3LSu@yw
zuECi#lf;&OEy^wI{5L(iml2#LM3%(NE3=H9c#Jm^)HPW3IZkk9rFKn{`r4VRo=xlY
zVVoKmlVlpP`gF*v(-XxZS~jKFJj=`Lu!@%0|Mzvt(_am1no8mn|63d`_%mgjci8ER
zGxXNY3kV9+c~B@I&cIW9b@R=-ou_?kYir*>zBh57@td0p3<nZb-+Z>Ry?D*w>FYPM
zp8cNP#gXmd<SbC=wm@9`yo~*xm}tT2eivt*GL89T%EwUMEtPWq_4S`^Spp0XF1Q)@
zSPR_$HoxC|@4xA~^|7~petCN3)$1txf4`;w=iPjD(w()<?5|<0vi_-gMce;fQh%;z
z^ZZP*wtBCTXr%Uz7nKYKB0HMjRPHT{y7H|^fZ@S}iJr@CbI&GL2cJv-u6okkNjYfd
zpP-|!l(b%|U$xtKb-59rw*0<LtK4*+2p$PhVPp7x<(>a^sRbK(-~NkXXlM?!5z74c
z^7z*KmSKB$KYhJlr{BJO=cD`IXGVojcQezPc|lOQOV1`z!tgc!BkuWYcDy+l$h}^=
z^wLdHW%u0ol?)8O@91rRCF;R{Ib+H1lAl&{c_0%}g&!o^I9-C?+UNF}<|X_o%UtE{
z>LSYXJ^$clQKP_}tJZkuOqdcTu`2tN?ldXBbhD%*t2jC~8mzu|VD9?#4fi{xsttDB
zUjOd<@r+qF%e4jGeeRGDR8EqKu$%tf>K4<tWowrAiWl0++uxeKz)v7|j_$2D=^}}V
zg#ng<F*&sbHzJnC_z1XvvojR%P;gt*)gbX*uuF-3r)AFc(ER1;Azy6nZCv#BsRDz;
zLl5=I^R_M9wqwIt|Ib$Da?>NV6^n(MP8d#^AJVTczS7(Gsh0Hdf|-$8t}zS&FP0X3
z*!(SQ%f7Su`s|Dhd^;kHqVFf%|8s7&{l0?y)AQH+?ki~hWY3@X>(A%)+jl6%l(r|W
z*_%}NWQM(`e$}c^o7m6Ud_6I<^w_GdAj2v-1{ofYwnVO<UlZB$9y<4Qe0<Qg@poAA
zx^oWE$(OF4;<Pqj=4H=2J2WI`Wl?F%#Fihw=IrrFFj%ea{(`4!l8T_Rg7cAxhPDKD
zJ%$4d6{nxBx)pu*UPf)qyMos9-L}fA!AI|g?@?x2vMD0dE;*;wQ$JP2eOi{u(i7Ya
ze7Y;D7z$Q+rhnqg*ZKGP`I7CPQ(j!UU?=HWp4M&WeNOMP=bNsNLQA8<!ZJ66M5-il
ze_{d^bPY~ooIh;Ne(hWrmUm>Pmx>&}Pcp|NuA5fM<^m61$#!wt%-y+V&nwQ&Q=J1@
z3>iBa8CJ<LI5aNGymkNP!~E=9lgw}0eiYotuU@!KVw*pg;iWwbeoRq5tJZvGiQMv_
z)4U?BM;JhL(Sm}fpGubNzstRMY-_!8M=7}HudCXT?)2G3sy4`aPiV>%vFK9KZH1w3
z>&>l%CV~qEhl5@&i{DLao3VK&r-e%Ay6~jQQO2`2{<+3Fskg3gTd>)r#ip7)Q%|o6
zWol$7glKt~B%$`^b5-=Kx152s9uq#B#JlWUs><<A`4~sD&EF-7yCR=SO<w1>a#z6N
zrwWD)pg_=wF*#h(<mtYA{{FAEaaUHJ+O;%gRfmF^n)_C6weT0GqAV}Bx{A#`ns(u3
zmu8lQ5;KFtRpy4Ksh&&k<oXJ_7vH<C*HLb|JY@axR~}7~>tf`WK8f>O>YqAkTGaE1
z-1HOGdAV`z7Z^Y#;{u1HhZOz27vGn@F~iKt=Hh2#eQ66pRmUX~^X4xO78Q*TF+Gzq
zVdWKf=^r*nSQ$VieQS5(j0BV1^5d7j#(V6sKV>W@DtT3qrC%)nq^`ls)VzxuEtiJm
zuDdj4+Di?Y9ColCR-O5$E8pZU{C2Eo`&{|bQ^o&oH!Z)+Qo5^Rw&M$KZto_o#Y=Yl
zPT1YP_14?-61_0DEuF+!?w!14@z3LPmY$rxo^SnZ<vR+h9XifGHP^;RmEN22X;V<`
z%6A$Q8LU$n!QR>6DlEBM{aJQ)&~5w4%VM(BmZ(XZI@V0Gid(SNbJeRiO<Yq~dWGkO
zeFoKepo9Ra8J6!~YxwltzTP!TkL%R!p6&K=)l~l=z0>xLxr>N0D_i%qn9|Tf&Q@sM
z;GhU;s83jYQu29jPZo3Dd*4an-n-UUxc~A@4M>p+jw~%XsxdiEOZdFLa~uPxwhK5h
zX=O>ferEacE4RbEh52~jPM^GGjzUdjwwqacg>R*F`n*L))@%=pa#ezcGpp{K&y~@y
zgkyD6Rya>9Vl6%-dhzkikE&eZeflLDY9GHo)e62kaoMNLJM-$<+Z0V8Ne9%rD7RwD
z^(~CQ{`_WOS@{>8Pk*EKO@=fs1OrocR{hYJ?6_)@uezsDCp3wkT5>tIam!ud)7xu;
z-~11o{JrZ$jHcrgi7ejZQQ3i)Ct1d+-VX@Ooun-w&H&1AB3mj<o@L&XD&A(~xLf7o
z(nO~IcK@#zKPeyGmt^>GO8=vbvs{a>Cal}zs^JpD07?M?J2GbRRom{n)|L`}y8q^<
zvy6^~dlDzUiH`zLi~HZ#lP~+WWR}q6!1c5I65DkcKozRUrWn2JPx)^Ajr4bSU;0=#
z^qjV0u<LF0zh`{3^=Bo7`j>F7E}6DUXzo6iN=A^wKttF?^Pa6ubQgZRnfvivsayX;
zvu^A@S*WB{zSijJ#E^+ulecU+6cAY37t#efPdSu-!2(xjM^O8E^HuTX_T8anKOdKC
z{tNR<1-Gwvnv{k)zrFOzP&JBkx-oYl#FmGz_FbKE{W-_vx9>6vUt2Fd$;K*qU9e?c
zb<j#T<D{Ie=g#k+5gfKkSMzG{6hHOPRf|vXGBA7#zPkBl&R@4zuV4S>-K1=N?q@bT
zBOh<&tg@SLA6{D<=|5ZHS;$kH%C;y$t7erGo3HdlWbmx$nIyFOT#&8XV#&{^C$9mU
zv-0kpZF}l=*F9aI?|S>RV?%SemR$b-!pHvddp7=j+CJU(_tmHTb^HFkz24JXZ{BvT
z_(hMml}*CD(#w^P=l!_5C31SK@u#NO?sJRsT<?nPbZdUWz>u*2Az#2JHv4_kn;F<!
zJq|qQNO`-@=iI)+lo!UL!a<W;W+@2q#H-83THcG$ve#T@<r|(CR$SS^&A`CLnEvw8
zQs(m)^Vh!)4UfJ0`To?~Z=WWdU(W2IX3VpB{k=UdN**dk5u5^#{S0{?e`S@GzGiv7
z{?-3ybKh)V&$)fy_wQ%F?2r1?RI|!QfIG`gb?s$V;qzB~tas;aDQ$5L4q7yMrK!kK
z$DRmjL1iPCwvNL2N}fSF&-l~MIoazvFTS~b`pgS2QzBvolKXwE?q0m`AoJF=vaSE-
z=>6Iru6+7OUdTV=^AjAsL?=Zi@A|}QI$3v{*UblYyEd35<+}8o5D<9GxPA7j>)#o6
z@0<O-O78vN2YK=H@5?XFOuN6<!Q%PHf<8mR-m<cvx0UAbg=b_v|170;KsD3WafxJ}
zb^fCzvmUDLRaIGYZMOE*MgQ+*>4^GomhTYER!(9`>5$-80JjQyq*Bh`E-YAH{O+d0
zfq#NsOQrYy&iWj!|L4n{Pv4fWKexYX>hHy&>uc`(aQ4<XbotiR$<{gCk2dFp>Q?<~
z>DG^~*pquJV)4eb7KfJTQ%np84tAxK6>7vZ#^kU@fBg`CUGDVd%K3-oGV;&txGnVY
z$o<8o6Dyuc{gmRqE}rltuu*Znj_|ZwUk)GBT3YkT;l7(#HfU`S$mb7u>sH^>TOHTv
zaP@HiqX(%$ndQ~q*<Oj|?%vjRQZw(WC=|b`=v#Pa$-mQ+T9+y9be*N8XXx>y=t##_
z$V#Ag=c|YB8a+@D^H1F!6*Wm$x+9@o<>u0~Ca+1Ax)o|?C!YyfJr}xOW~F&JkMM_f
zMSTVai$4oq9dvA7_Hx4Qr`g#)JEJTg_LWb1EOqG6$);n)D)Fuog&pY`)A_|E&TQwA
zUVm9@CG%cq(EZ<`{0Ry_W6mY#7q`8frZDwY&J5A|Xs2b}H_sgxa14rEy40<2<1Evw
zTdLw#hDCSnVF1-}3nnbx{F5(SVdqo(E%)`h$}=<OPdStC-SgYVdXty-H;>#UyJF(P
z7H$ulr5a@XiHU*1;cBy!7%$r$UEY)D#FSoScxwKWT(fM(pTDchjac*#T(x}ic;~K9
zFQ*Bn&+duga}_uas<s(IY&8N*eA%t6@5J6aHs#d2KH2xx3tK)(f?6R#TRrMN38pQM
zn>M-sf)r0xms1i0s8$HrQB-;BsXxoM+T$g8f=8^bR<7?j^Wk$>xzcj6Y!$hmAGY|Y
z=xvl(bJcC?tqz!PR397q7bhRNdFIF4Jxks{yimB)X0yYmrxA6t!L#<3Qj_mQ{B*fm
zz}W9BFnNLm1E^pWS-0W*?Vq2^XFGM7<uAMO`Dn?rY*Wt_oJ!|7m}CCFG2AstXsxHM
z*TUee9T7Jnq1JGb=P|G9?pskOpOx<E2%cGb`oxkRg?-&;`aFHIw(jiJ7ZHuzI!$Zu
zy#SZM!-A3!Yu5N!z0J(!vz}G-uPkxR=ff3mkEL`@eI2J1{T$L=FcS^E{%79_t%;t3
z;t(xcDpVe2u6)m9d^_pVg4M4l-SOs{6e!>_>)|iUU9*awN}M*BoVO;Tc2<zan@X;C
zfuN(|SFyKtB+dxXNiKKon18*%N%qqgZ&$aiEElJ&`!mtv*pl$=g?%C~PG5Z*8nrmk
zyD+DNhXK^+;|c?}?wh_X>sj6_U;69Pp7g`+n;x5M?Ry@S5)mO3GOe>)M|kbF$0fVo
zo|ovp00{?&)F97t@8APZ@66eH<L<?q8?Roy<HzavMB<cxR!i3+R^e4XY>}PMI5tLf
zfNGS0uL~9&ofO$_EtUHx?#fojSw$;nPMDOkglDT(VO(dNq~6@5>65&Ym)^?>{rD49
zelmpegW4dD;nVl8ReYKCv~BLEp5F&Ayx~xur+CN8H--Q6SHYhgjRzMQhT8@Od6nMJ
z%8_wm2B%V{si#x-zFoWU+p=Fh`wUM6{xqAX`lGz?yXgB93@dp$Px-CXG?wsnyDM0<
zasv;jhFtK<QPF#8vFyGbryou+uh#%g^3I>KWGTx=y-F7^%dj-Ld*^~roYLZ%rq%7z
z1M&_-==ue&Om_aowTo6y<taOHY2A9EX<JuL6f!E^Tom1~x?Dr;Q^`}U;HRul)AT^Y
zHlUDRUvRPH-u;(fwwqNb-Q?{QTCQGX``waxX1aQ-MCOcqjrHqxtSVY^QX%+cn)ELI
zZJ-sD4p+59ZpN%TJ%7vY<fdQWpFUJ8y{E0Rc`3`pbFcm$s=TUJDxJU1YyI`eT(_l{
zz*&JIbo~U?MS=d_&R1@pVR<vDrTawswASaF9*du_dcw2|))qf}W@>p?)w-N;aC|a^
zt`{)m5&l-SXKgQM_-m`GlHKZcKEF0AxAICgbr>E}@Sh(V`v2Jrso;rs7R>SsR1pF>
zE@bbaspp^XUAW|~aR1gEy`uVs;1+qt?<L<e*Io=zo8bF;lHb+H9JaaZB-n3*)@!bc
zQ#`%o^1ExtIu={L&lW#seYNs_{Nm$gPrKYc#4h)E9OpUJKX=Nsh_7L{zZOY80xc;G
z+1n(>-+t#T@5gh~mi0VqUob~{Q@nPyzo&p^oA`qlbGi(V_sW&6+quf6nx}ua0H`T)
z;9)d;Mu%HhaMm*Cg){EXfBE85bksjZ|J_qkeB1@zxM$a`iK_P5SvqC%>Y&-HO_ruw
zbv2iAfD?B|9q;=1=hh8HmAf7;U#nTJEn32n>=%0Ock!|>OMiq+O8B>+udQV%<J7>Q
zoU4(m{V!%zYioyr7IivY{Vi{O&ARMKL;j85HNojGuh*}9)V7J|xPRuIpxIvW#mQ%X
z80~dAF~2dC1#DGa>%6>h3+Zota<PxZVvekM;?*2@_Ta&8&|MU(w(rj{xm3HWX70M*
zDmNc3S{Whw&CboCr$f+?$;hQ=Mb-W{TV$W8fhRT2?2B&Pb5A3T=?JLDuHXi$W%Wc{
z`HG5f)a_mLzOVhM=mSY`%5C@4v{8uPTHv>zm4Si5qUG&-*&X}KjPLE+=dJV3sT<Va
zXF1ZrBluWxj?cpR(-sDKetY@p``1kQc22O_;2NBJi--~^c0k=S22iF0r3c&`(8wDD
zxFL>LF_z`PSaf0$B4l$zvv7I1aE@8@{)xYS{i<tzbE2>K-!15};<C-5>+9g{M$ls2
z8|6Egr|db{|NbfHehr2<+$x6+n9pxqy?0&h@$VG{+t2C~v8s6cf%_*F?jO6i#w{XN
z0MxR8tU3;PyX@6h+XL&~AKQ5^x2W23$L;IKul=mu9_kMsHC)5eA!w-N=FoFOz)&tm
zqe~`*e;M1&&t)=qUe2jD10_#}-%CW^ZF~OJCXM%PAZSj2VZ-{j|F-lnuYS*Wr^Zg4
zr>c18nF(KGx)x<hX&-Ftow&$CX<~?0=meEYi{l-CML^~|TSz4LxGT+@_A4UYJABS&
zy{uDDURaCyJ}LV4Q&)>^KlAizf!fnI=c$WysZLt7@D)pp-qh0zU&)@3xVhit2Ah0u
z+l~BnQET02Ffat1$e6{)e)#RdJ%?p=GwXt<=Y&oS)OFk--&wOWCN?rTY@_O$4WI?Z
zKM@Ox)ux{g)-ug2XTQY2&~WH=S<mfza#^>hecbYKv0vyp>BT?$Tc2;5tQV5{^U$OT
zn|wl2E=I0afB9uH*C*Wq{&hz#e&)M)$X$@7S%!h(L4&ud@VjZpGTgoOE_}>OD{42l
z^ZzjaWYaSl=bswA?m@m;r}HHY*ZHW6a`xG3+!GYP9|B7DIj+og)f)NV)lP2vy6uBF
zv_q^SxzEXHS(496uR1Rm)hn}gwdDRM)HJWCvNo^(ce2KA{_)3`Oa3)+i=CZQ`KOKd
z_4<8PA1$Bj?D=%+{<kxmQ%<Hzo9F#_vH1Maq{98n(>LFAm#>{L_te9Z`I|NrJUq(P
z`sk#3_=d?$jP}-xuD-f)Ts*eq<(ACLzirJYcG&;@@;JVJZ(l9ro8`x4&42&-tRJ`e
z+1#h6^Y?$dWq)pVx!T6R0^5zx&zbFU<X-jr$+3HH9ha{!xw=Zc{3~00_1mj4dfO8Y
z9=hxH5x&~!ZON-wSO0scJ$^o~TJf4B1A|7*8~uR!*X1*AOexx4s4RP`$KCH(xO>|6
zXJ3RxBNqqA2KI<Z=tLDy-L~V2R+kmaJ)>3k^zN2k-y4>l>U?<H(QfgpS4-d5n`15|
zUN`S|fBhb*&X)Q0|3b^oxhOsS{=3KR@)FPB8=kAfZ0Gu@P1o6(7QXsH>Gjy)z`&oE
zy#GJ=Sn+0h#q+t_!K;exemvMaZ`Jq1{P#~kE!y^q_d^!@1h1uW^?&pA_x<>O@JYc*
z)o%6~Ri`wU&#iv<XJ_$qZ<QSjEEyO?=H#e7&dlb!IlFk@Heboh=5?us_kKqIY_DwN
znQ*G%#FOxu=WMc^R^C(*{m6Hch40#`?@#+<<8$8KI^F6c9c@%uaq+<CkZ^wC?xPs1
zi0{|`zk74D|D9c>r~T$X{aA4&i}&{D8^<5zEpyzr<m>DGZ(qHt`EpTx=bd-?y$%X<
z?Ek-+=c%f?bYZ}Xty_;KZCn@m`P>{!^}k=&*ULS)%J(4t|F4uYGYa1vx_SJ~qHF8^
zI%rKbH8+1%@+*7Y&Uc;aa-|kBrlyDU_kQ)8q%vJM+A1gF?4HW>jjC7k^81e`=bY8m
z)!qI1Ty?9H;%_T;zd3(Ss%PIk*Ipk0&IB%t=e|pb?kFj(TD~JL(3sKE^E9W@;ey+h
zlTIGaRhz4+BDK&wJj!*^VMPJ1*GCSR<wVRsnR4n>-ODV{3gUmi-y8CLKB+DbO4sY=
zm3}%|Z2$Ys<Im^qU;q0(z5d_N{cQiAN=a?InRB?R>R#WCqLX1~T$DaO?w_sZYn8Np
zeOY+jkB7e>9?q_|Pvr)6cYmMK&gWohx}CrO=eFC^_I|mPt*h&s^Zw2EBfoyFeRE}c
ze4Xv|)3skN{<Z}zfdBRHcmBpz3=9YU9slRX=XSaG{-5;A;C|pHNIx+2^>6(>p9&xU
z+7{8Iy?wQM`Hgd(=XZtfeDN|^Z(qj4kJ~aIpE)*bV$<Qp&js1vhwW8%7uzgf{regF
z9)&w+&Hs0v7xz$^lzRHz)RQT;&5w^=wf*tHHm7=Xl(q=h({=Nr0|S5F%FfTf_2uxh
zv(oaFPyXfai!8reYR*?QRW{+(#^ZA3ACEql>|M6F&uUrv<c9~=mxb?%J1^)ibM^Pj
z6@iPtRx$rxu<BG;NQlnVviDtU*Q_bBk`-3_bAI20PGR-$IyFB&2>LzOpYDD!!$hv1
z{Xb-p@%g8F`?f9EtNA#STlG_Zo4cFPO=;2mNXv-~%KcnjPN%FUZ+v#}RiKyVe3gE;
zB#W^8=~aDougyIssodTUU1)6e;W8@|V|34re$C)zan*09Hm|8Ni$446>i-i@i>&W%
zP#5dY&UUx?dZkNLd!F2x)v^z^rW(Dx=U;v9zrwcr-<#fc|NlQ@^7-e#Z8x3|Syi58
zH8)YbLzIny;ah8o(aUYyx2vS`m7lrw@!f_yVw^LlgBEdmtjY;FS~A(u%WK_}DO0Ds
z&+}$qCC76Lvevlj+{PPIeP`DhNcm=MZM(70f7^~7DHFKYub!P@AQ85%=E*7T`rUuG
z^n9`Z_wiNb^Vl2K%)cvsd=Si8{rc6bJCC;?u)CX=FTcv+)~zUQ?bRET7#I#r=uq7p
z>-+WOwzG3Of@R)^7%NIT?vt@;*B4k3GK=q|#k_SfiEA#*)^_{&bMXZ6Rre-be);A3
zyy}AoK5wvnGtvFs`LtpgzNI0n^7no{=cqSF<s`dY#haDO<?O%T`RSDSJyZC&Y`N2Y
zNgXlm--a_>P0h{cmED?ikF654U`gF~w%Ol<?C)c@yfAkbI$?f)&F(Lkv^Rj9CAT2c
z>cYz}+s&8VT{~yP=dDjf+*^v*d{`cQRQgbl${BN)C(13Z)1DrFwIxfk?8H09q6f`~
z`7DrDpRB0SsD77N!++=g-@KELj(V?J-TwAz(XHFJ<th?>c8S*CJN=aBr}=k<Kf+Ar
z?(RJuf|7D#n{M_jUwc*X=@vGLMW2^Tp8W2bvTXNf!zJ@W)?J^Yq`i68)sU5LF^R^?
z$6^<11TB`ll6r1K=zD|Gw_EGqyx8#mZ;_4Mb@~4l%AZ&m8e%<{6`%9-&$>N*%Y8k+
zlFV)Ke^ZKcPO;rGbJBi2>1vUQT4m(Ydr^s^ooi2IuUPnsx6!p*?3-=#!fj<o6#NhE
z`2X*z{r^9~@0ZK)r8oSJ=Fwez@krg9zeQ?3GiogIWmp*+WLx*h<$F7CTHVT1p5rTN
z#}joVC2Qxay%x$mMPJJ*Mg8OJHkCe6U8*YLDs;pLyo~tUj`_Ts1eq8ZMAq2M{ciat
zuY7^x!Y#X%J|A8klCtLcKNd%~Ws^nD$|f30rC8pq*y|VW@~~+iXwH-&;J~JxHSOkd
zcX#y_ns+>!`)ZHB&$Ah8-W~oiCur>vO?laA+Dn#(?cI7yW%}$1;-KXX3?iE{G@j(H
z>o4Cb;K)9=XB~%}xA7U(OZuxS-Z8j859xWBb=vglRsV=p6){~3YD$LS)~QCo-EjND
zQno1R?N567@)w=@eRARzHCe|E@`7$ck6!!FiODk2@O^bLYi*Ew;RK0Q_Z&0-{h9pp
z?yh_$!@N5`R<Hl}*Z90m>c$Arn$X0<zhd;v3m-jUoR_zKyMFXG6B#~jk*?YK`}W@F
z6j&W*`}f)G_1RnB`12YTJ$Z5e|3ClR^Dlin!2G@Cu;RCmlT@$!%=ln`I$feo#j|Xt
z`Q0sBo`1Zs@BT5gg}nRb9bCUZ?mK8H<ocug?l10}RdzEqd_#Y^%$x80N1jgC_gWg{
z@}2kcmg}+Q&gY*l1}!}O{XTx4-}3J6ZcueJ)vLFZhhc%klTTZ;Cw$mqQgCaZ*b%Ex
z%l;W>M1+rQUKp$yx-l?0Tl9shYS`SRyFwOgs&+)Vw5=-7cu~H3qqkn<ozD;2<@fok
zO=b??%PzO$_m|7(E&lzml&{;-w$`HG_FKq)$+Yu!6W<osx=+*JpZxAl<(nOc6Zijm
zb#(o{UAvwOowALq`53t|V$S*J_P<{I&Aq*C!`0&Rzh1vyzkl;(&z$d3o1T>CJdED|
zZ}z=|fs2p*`MO@e&_ZV0)!4e9N4IWOUgkG<+v5j@$9>+{a=8Zb+wEBNTyNL<z29DS
ziSp~m*V*6peZS}PH0k^ptEw+Ep3kdp%k471S0No{z|g>~D%oE-OIrC{np%Rm>aKeo
zefcL|xPOol_uBtGIBI*2#ZtqQUfOx9H*mT-9cf)vz9V8=&dUvnrpd>8>VLnzYT~;-
z{{Pz^$<1PVdkT(QHXn3wKD@16zHUyfP4Tmj{Ps2R1`;7FLzwmVuUwgUX^C>j+v$!I
zPd|;X|NGSN_?Z`TtN#5I-~aWRbk2EWiLPH?_wY(zyI+2PQ~JEhiMkPQx<gi*PLHp<
zy1uqNYHi=&jQsq!)+eT&p2t4Z$7=T3i7H!HAKX_}C8s^HBj3JzUczq8`RCKC<$hPZ
zyYn-BPN5NKIp{x;Z<Tv>dHXE#qa)^g+7f$a&pI_uQ^zBcjuTeP=U?_U<~M)&>d7nC
zEIt0hg|B4wK>KrStqX2GyHb7pHhlH&x4g-}56iFH_hi!1!)?6pYZu*qdoAm$jNkW%
z+;8e{ay|XH<9Fy@f4iSAcE8`3mVI-P>wZbYMZfv#%%acU+A2S%@|orBZMj=--;Q0k
zZr|tqKOPl3EiAaUMp#Ge^{J`-U+yYd<i*^5b5s3Z@p)Nyxymhv6aQbHpC@-n;KsDF
z?{~{BWcn`q%`QJ87|bs5ru*!Yg$v^r27LJvyZv@(NXQ*y&y^vYTrGt-Pe0{algz;I
zo9V2<y@X5exIS**bG+MPYUK7FA1RJU%b$D*`xnx^Z^>LMw}_OBQLDaIISaa8RWJ(K
zduU3<^LPI%)vtB_xh3hNH@D{h!hMhTyjp2<JFrA+R@ClK^~c)fPjB^=O!)b??7=(G
zy2)?Z@jvhE{H(VlL2&x%)Z6#IUjP5^>Gb~#12ppYeB36gEf=-<ne679Mp;)R%Chb+
zpHqI1)%N(Sjk)i4JWl%_{ov>G_?ok(;Wqz%D4)0a9JF6usCM0lH=ir@_Y^SxK9FE=
zr~3Wj=E{{ht+oGt?r(KkI6ME}<7K|~J(9+G#}Dq>wM*7G@%No>eY@XxidX;p(Ej>k
zG8@AN|I|yF<=M$ME>8NsmGg1zw=I9JzEEjOco&f85u7xC$D!qBC%tr!N3MSU?^F6W
zi<Y)k?A3j`L3Z=obHio$+W+cDZ@6JU``5Vz7c;8md}bKToO|WcC7ZH0KQ3L`RQ;~<
z#sBWRl24yb+voq%lK=6t+0(w+z0(%!-g#F~u3x^hrK_v!m+#xXhd%%Lsc!%Mj&}8j
zzA0W$mw39@e7kwvHgx^{2YsRaH|j3j^HiT(_3h^J&7tQLG+y2HI4S1x?Q8O6IfeuG
zI$E9QJ!@+?zuho-+wR5Bm;8@A#;d`pbhhBH%-opxnu}Kw)tY_Q&pY<~vAFH3dyd{U
zpLnhLCdC}|JFdAfXZho52c?M{-sUz)hG><hrhYvxUtjU(WATmuVWBsFz1{n@%GPS`
zyc>1*v~M^1EGtU-Em#LyiR%bkiCcHHwDaA*-`^(t&58~-u6cQB_PokxtQ#YYRNi07
z%h%U7-n3MArcd4Hv%BW4?X;GCBg(_3*%hL3qrQM+8*5ldNxs<Dn^~7$ep%)#?cOi<
z`C9aP`RX@?KMpc8NZ8C;)_k$&uJBotHIpmMw2ksqB`<H>&z|}3^v>3&Y&+vk=7w}!
zdFJK2GO&B~`~weG&pVs;x;7?0{(gSS3O0T#cX`{t%Vw|J{oxR+?ef$&6>H=+{_RUI
zzgv2H^Labv$tUx6KK(ZD;62Ovb-zCT`n6W%Xri{P_11Ld`{MC6|2~~Qzd3d5mMu9y
zKe4mbTTZ<mSKX=`WLsUa+<$)M`@N_0_SgPgUmFZxl6xxU((<`x=@%EBzVYtIQStwA
zo1ew<wL4#~{1!XE=F^?G>x-W^zj?j?->+yU#{ZjAy+8kyIc#wBsOt7RMeG}Ex#fR9
z`1gByy3x!<i{5pweZbDokif7r=GyIhVq45p_vZdt5j^v=F7Lc~syo!XrH*&~QB2GX
zNEH!}E)lzZ_}09;E{g@F-f*4#=k;%E==yxu*K^xt-^{i8aq#XwJG7RS-t<#XGuE)Q
z3Ot@rU(9c1HTTTx-lS5eo{o<n&KQXH?~ayUEPK}e*%{xuTQdLh)_sUBvpHSxXNsDp
z9$)A=O-*gBt6i>4a!D+Us*Sl;Ui4u9nqAe9X?<73{J@-Q8x97Bf{4x|L1p=OZr@v#
z8?WuXJJe^z^H=Kgm#1@VRi1M7u`E;fsgRZ0=8s>gZ<zk=NyOfLx1ayIYH_=)S>EL{
zGed)O+`MzY=k_^72j9ATs=GvM(>s14<^4XlOF~jQ4@o|gK6L8h-Ee!uaQ%1tesH!P
zdEgMXci--$@6G$9)otavPRl-$Z%~YXkhn|gZE4RN`&_HJZw&ecIThTFRGc`mBxvF}
zvHaq_#%{IJh9zac@}}<zIaOxY#uM;r!kR^SPgV$Lzt&MLT3Mm^=+LSNhtT!u%6Hb?
zy4TnK^le$e_V|tOH&&VW^1oeJY7w@+ASq@4&i0>-k`^kghDyhpqip8A`LO)fUBleN
zv%4yGw{aGDxcLjbi>Y+0JGCP!S^Bw7>dKP|>jJ**e3@!AFU@{}T-Z@t1C!&gc$c00
z>UV47cHX*z4-##Xe^#z6*pMKxP4m%hE(Z3C`=fj=JpQ)zihAtYIR))DZ~LD8<ahH+
zQIB25v4r)KpRevpt;<uweT`=I{doFH-Rub)`;mn62kx%?Td;BJzUZ$t`}7tD=uAA(
zzUpn_>U)g+6J!5=`Wa&)l@ji}HLBk}Zljf=+mVPFpLXs!eotzXxoYj)`Ol8sy1Vh`
zmE*~*Z{O&zP*~Z))%9sr(YcPtzEvxov>e(ZM87v5%)ctV;+1IAzR>=+EC&~uPe08Q
z>m%a3_?7Gf3C%8LA<v~jM-%t$75l#kWPCu-$rj@Y+p2|1PH$g!;Cj}r<LbNL8_Y~y
zVgFfQOY71tm5D;C@#$-YyqBI3Se>L8zPI^ho}>(4_-fr_RxR?b3=N9noUMC(qaV!$
zEo+$dD#-X@y0UuNv#XPjJPhJo?;Lmh^2{m6yyo64vhDBR@j#&|`Y|KJfyDM@pa1zS
z-@n!HZRYJchIu?5JS(T2PMyDDvQv-AA#)dz#ph-jt=e&C#YF$(hL1q2R2Tv-Y?|3~
zS~!RMiLKvtj_0pm?Fsitt6o=k$wSumjLF4CbDum7f33Bu*Gu#f6R5@8&?M%cX8Uz^
z(p>Q3;gXdzA1o{R`s#>_V*iRzfw`Y1%Jh0BuDLQ>`&qY32RCSGE(2)ZCUO1o>$fJ9
zZ2k4<OMBpK^C`PxfASko?J+#0a6V!B%`>T6Pp>*I5t7tpCDsX9Z2a)l^H2Bu(xZFc
z7aTuz>;A?iuT@i4W&BoY)6~|VRd8j+q#ZAeA|o?5`o;I`0WDBr0L@=khG%<k`MP`$
zX#O%QL%v<%zmQG);e~#|oVJs+f`avQH%e)(a`#@kxW00d<W5G&lHRVirgzVNrKEEU
zmh721?~>e!xe9+CR$T1&Y?FWR$|~h?rPbw2w{|7X?KwTO54NWDqKWK_601W#v+a+U
z<jj+ZU9IrA?d{}4JxA8eFvyy5bB)1L)AY=4?=PTrRG=^bucHc|ZXWeN_S$W|j#BV4
z$)8GPSB|YooiZz2)rd93&9gH!f2CG%_BnUhx=$g{1|!2~IcZGa=3jQ5&+3)pQ?jzC
zwC&*!&9&ZP-kHAY(Z~NSyK~}sA;%*Z708-i)~w%G{rBi?-*2f_w&T#|z2~z|PMD@}
zqu)aLONYqutCGG|nK3b|jc1w0@Ch-4hRz$D-j(%O&)~@UY4$wpiR;`|YofiDExP&W
z>cz)jye5Vxb)E=Wq_p{5(&g7B#)TVXLF-x=L^hQez0Az!vYz#M-!~tlkJm2<zRdaO
zb<;g;ow~!Sy_2-&-&$fEwswt_qS&VW*~=7Qi*qjqT)2Jd!UWBtisWhQww9hzQ$4A{
zsdV&1jm+V|#a%vZJL3{3i@gr1v3mqroO|e~L67~MqOB%RZ|{5DHn*$C+woW_%SI)O
z{z<F0dL{1;P%{DVx$vCXw<t?M65_TsIcAS@vw5v%btJH>r_?KlU7r)u^L+ap^`Ax#
zTFrOE?KLM)iO63sr8(VOP#mIVi;K>)%*+=Zh0@M@wygfS=1rEQ=V^{b&tIu0pIYiZ
z?RL+tiA-;qx;=WJ@xP!oIkP%_!p&XNcuG$M>4^$nn{Z@%=SBMorBkcc##&8WZ@$`R
zs_A3545yV@PoV3-wf&#h@>MU`Yxp?tvFlu2&8M$UWK3G{KJ>4(V~0}HBG4}B8&;RC
z-tf%rQ}Jw?@#nNYn_Ry_5QhLbb#r;BO)c7P`t#1e`IlYG%5&=898L1`I8$cV_GNO`
z)>9SdTC^rRY6baTJf#9#r5vR*v$P`VV{ZIMTYK-xu~}*>R3xqRBd6P3UNU_buY1Z<
zr`C-@`Rf9>SVT`i7oLmxUUr;*`uepAMca#<WGD6HM}A0|wcuH|d9RqoAsgr2Njn_!
zugzE;Hf`pL|Jm>T5|nrITlMWXpPp{>J-7OeWleSYUiY%%oL!lGC!A(2?z}arE$o6)
zKvXD4)YMBIs}-&|uyU;Mnz%w^Wya)HOjoveUS`UgJY~X!mI=>p{P-p#cmCnd_pfdD
zye{F~eJ|E}n|c1*_wHd^e#`go{rB|$vHjocKi{*ib@-;S5R`KpoVMOx8&aVtKd*A{
z+xhXCteel@SysI;f9vOyPJUaae%bqd-iNQhZ0fF;iWP6~-ve6q=5X@W*)p9_&(`NY
z-S$Qy!hV^lZ(phRhx?hyC`bK2xMAJ(JN8d_d)a!Iudg%mOaZM&TM*GYb?TQxA*q#)
zQ@dwLpFDn=JuZXq+iK(a8+=kt=dJiEwbnX;pXdKF`xO^6I=K&&h3(zAapUItd9!9&
zrKjv>V@!De!eg$F$*kTp$4;-B?tRWj>*wuV`4#7Frc6G&RPX(heGk4mv;UP_eD;ss
zdN0=`hHZJ5^;KVoZPDdpI<W3aPU)e}OTqfb<Ex&W4vw!>_+2h<T=TzpU-17G^Qx`F
zvs#+|e*Rm&Wc|OESNHaRx&Qy@U-_SRrR)Bs^Y`zN32W|}$DS}dLoe>-IlZHEH>+)b
zcOs2_Wi3P5Os|a-=FHYR{=7BkNQC#3s9pOt@9whtCw<M;adp%-nULK~*BTc-KKM}j
zYi#<wjr|uG-mEzL)?(e%&Ba=`#Ml`haH)C*nQgTBI^Tcaj~B}Ef0oa$d3O5zo?lz_
zcg+7El<~59-K!es<gl-O^?%+m^WUq#`{ek)lsDn>HWl~Rzu*6L-M^22cbQkqF}$%@
zI)B>3l38V6Uhlq}rp9O}q->ZMu={G)+7R)_M<2aDZ!vBDR<p@&8!whWD-*dN`rW_f
zPS)k>Q{VLN|2UH1&u?fX%GoHfe$T4yWmmq=VcrxivuB6TG9AxP=X@8G>^h>N;FhFv
zjC*Bx_Q{_wgL3>%x$#Wh5q!!fVu!Z!O#c^)%_UxIUf%KIOLUF%yn_$z4c5J#KCiBJ
zGRwoRfBR47s5mEu*iH4i^PuR4+v<BiMSG147~j|(^-<eu5ZbH1=hmxw-P=!f=lxpo
z)3aS6BsJFWac5NDz3QAb$M4^Ny~p$HOksv~EYiDfoQn2ec;nYii55NwMZfsJD$!kQ
zOeTA8On73wE$xz0*!6XFpS+&mwVjvjtQ@ZYy6N156}y*DUp=2;hfwDx9qpg@k2A(R
zRd!3-)0C96)%xVlmrf<y_6l8_{<zQY*UDc%lD8^XZTy@0TR7Euea3t9Z@iUlZoXmC
zhD|)3fg88|XV7Da>C`%!lvTHDkIDRX9{$tVA8S9g-)8eBe5=$ZwZ&!n(Q53+`Tza9
z5o$L*aJ8jp3`3dxD!GQckH1{?zckasu}{VO-p==5uBE+6I;qOB?(*@h-)s6lo;>If
z^<8lL`tw)cm#@4Esd~KLl@%FDoz$I^we;|<N0S!MeRbkc{PX(6uM2;_$z8n9Jb(AD
z-Q^c#rEK4Pld1dc=?vL~;uW$!bn<88qc`?U>9o1GOK;A)z3$)doc$G?8#y)5()e28
z$y@&qylww&E9QJ%_XsO!X16QsRNA7OVHTG&+T-me{9ovN&f4XsB8O?@a|6G&KAta;
z`TCLX%h;XE*7lhfGBbqoHx!-RG{^6G(PjOsle=dnow?-`dGyrdrO|QuU*)%LVdMR_
zs5Iz3ua)!Sb@TT9-ua6YR90w2uD<G{d*<ol;<qI~zPi2d-|Uxd{kh?5pr_d8MY`!9
z(%=5u?I-g)LL<W{gY{vp3LD5}r$Tk7J~}<Kby1b(M0>&d6PoF|i&6wzmaXZ`-g^D*
z?f2hXKE*1}yHIc<K|v3+ax*|La@yyoX}_*?Z~d{xO5W6b65qxd8NcN9?x(!GCTC==
zy=<bM|AlArW&AApmkYiMgY|6i+da8YFHL##+K?SVE9*8_YzfJ&z4YnFf;3g_Xs=jX
z*4u{u|8K<i$ZwM>T~xu`$p{Vs)2yve9{s5~Eao|lJ?XyvjenhiInt~Pbyo{%y<e!9
zzTo(!T$zC1dl)yj?qFzG#qMzN)Yh<?ylwkF*eB^Ftx}gMx~F&Q{;9j#FM7mw8>iVU
zDrH~uFVR1tz-jqx1%0r))?D5$72TIEw%kAd?~)B)-rl-+bJ4$w>tEP=&x@rd$354L
z;(M`o;rU+qQcK-M8j~czp?v-2>iIf)N4gHx_+9PszaRE{n`6$mwPpK^!|f%%XRWic
zdQ;xRd5-^wjGufZ*dvp!O1+J+39f&fsVQt2Hhpf<F(t3ytI6lL@b~QW<@{VX^>qG6
z-b(g%=eBnO5FJS;H^oGFE`Po}>oj+gqFMNM`&rVLIp*r$kYCLmYuT%wv@`5E-y9jM
z4~g^rmkO~ybaP?`wF+8adCV<Qnd7z2=c>%bl%MDBINPp@IX|<#Xw%Kil6%IMFTT%6
zIi1*l`sU%a$G{<WGU~0LPORphk8@^NEM0$O?p)EuH?D18Yp-$tZL#F!ZO*0M+jr()
zu(f!#J>t(3a6<M9JN5i>aq!cpm4@P1uWYKHXRUeikiOJ>+a=v8SKq0=PVCiA_{?8l
znc=fIjPsBwB#m*E{(7a}S&>$lw(9Ek8F?(1{O>NRJE+UCTHbZ1_4?2EDt+_o=NBI+
zJo0eMj?g<<JfK=kWX;`)LNl|93jH>JkdJ-3WAEHocEw*O=ZocMM=;xcf8jL!?hWe~
zaxxz+W9%Gn_@{u@!Yzo{>SbwZAKZ1;`({D8>BqaDo@n#lpP=@$@N>81RO8Hh%Zq-U
z{p&nmQs%Psmm{p8B+wP+vHbCRTl>j5d*il<O#0Z*eZQcqDOg}tQFz#6OOr>Ia<`s;
zkICJ*|Ng>@LgJu6)0nPu`elsn9F4NQ|6+X&)ACi%CY{yc`1<Qa)3;|0%hLmEH!oCw
z!PT>4uWj7auG=S=7*<p@6q!nYeR3#A(dvFA=WFecA<qA=UgBN-m_H&uaHZ+YcL#e8
zzn7hB@$lpSIakY`NwRbDg4X?utcuZD@@(1XlSjJOF3ea};{SMlyXncRLf0plN^ZUV
z;9KpNw!;0#@4T+q?)Uwf*^9E-mtP89WCU5a$z#$KZBylyLAlQ=y<hFu?OhV9vy=6p
z-s*i9e|hY`9%XcIOUgAX=EHse7{$Zw85uNozUuAm-TQTYaB%SR{x!cd#idx*S-dUN
z7L7aOo)*2*HMa8PMZbEx`fyLPKRtEdV()6R*2dqnyKq<fQ_Hb`XP#Pp?s0BmW7uJ|
z>Yk<U+nnm^?B}<CC=|G^2-RBIdNV2KTgdAFy*;bc|9`5zYj4Kw<Q<k8vTjM{ALe$Z
zz0AyZ*LQ!7T{DH5Vcnlq<qMyE|Hj6+RCCI!izTX(-Bn`q49tbfEZ+;Twkz1&-*NE4
zu2a^9D$8DP{@H%FQ2^}vnHr}*Et|LDUDKVP-8IrOds051PB}G6<^2Wz^U@DH3w_-u
z8F^oP^T<be=L$`|n^7m#vy=aa%{S@XdVf>x`URi8w$<%5f5FvzbC0do)Gmpcy+=5V
zRF0KT^HQ~%yR5h7+3m=yyXUwknEy!5NtH5;{g%*kw#wGXbgPm5-k29Q(cfAh|FnPe
zZ<hZQt4%Y4Z*o6dc=B(1-b@?0SDR<-viImY<CerCDfD=1_T|w0T-m(4+sexpzFW&5
zTk~Pk{k~A!Z@ad+E)D8Um3o+R)9$aVd+IsG=O&Au2)5MhUY}Wczx4O-MYs5^s%z&x
znBe=re!JA_P^s1OM^5CZxJ^(r)H>_8_SM?kx33*L|2|h*o@Lu~ozpu*vQq0-O`8!e
zK24|BC0gj;mV)!IocHIPmE3(s@N~p<^Cutp<>fxe*M5GbzW50n!;RW|=NRu4->csK
z?fQ0ej-2kY-E;d|iYLxY)B3djZSuvEr)3{kzW!>wnm?5#JMg~tO*XsIPY)dWk7n&@
z-NC?6eSDe!=^bY*8dlf5_vrbWRjL`>zvjxUZvED<d1YSORvU|VeLlIW{zC1Edza1A
zR(_iqI&Yz1^F^1QGj0OPl0uL5Hg8^@$}l~CV}Q@uJyE^-9Y0sBoL6$<r@NQ>^IP{0
z-#yw8D7{(c>MrK&aQmN2!rWuPD}Q5TJx}Q!HR?9*y>e)!+xz;|wbyQ4TE6CfbghQ|
z>@KVPlT{z~UYC2v+bT0nFHppj2UI*vS$#D}ZPLx7bGGc6V<}O4<EH29qtpBaR3dp+
zuba)$!u0Om7QH8OGLjo^c5;K%i>!^xS6?2dcl_Ctm@T_^y_vH4^4SO1wbgfRSydb6
zd#A|ZF;~<t_Pq-q?*7s?-!8M`4rptGW1)(t){@IFTUSOUEey!B3A3AU?z(+;rOAqu
z(^G5XUU$xLudaDKU*7)NM#+#>vpt|LyZmm+w4{ec;VPl;IPDEDRa{lMR(;+^WU_7J
zyw~?@SNI$K>ALd#ZDDm)<z`vXDm0DA#aAQaVl>Y0zjV?C+(eXUITv31{bbf#S-#p^
z7Ly8p`R-Hn&qz6xGfzPuydrs1klyS$^Vc1Fe)Z^5cWw8y;#JbS<MuEA-8yT{=~Z{V
zw<$}7KlrZJ_q8Hd>g(Afte|zZr&K+I$}Hv1ZWZ4gq+IsO<z?aOh>!CsS13p`UuzZ?
zZdR;bkyyQc_4((4D`6hFJMmFx&dc8Cw_du&TE2U;gg5E)(Nm@8&5o<d+?sQ6{$~D?
z@4QuP?)^P%zjn^Dgm`6Zh}XIEQ>H(Al9RIR;h#FQ1yiN!lm3SVhoy(EYpL9S>*@Z|
z4-fQNo2=GG3HVKt0Bf3}bNXjVmF2uyt7j>7K05iu**58zD#vPh(a8B%%kNixZMdJj
zuB3nG@4tS%vyOlxW~Yj$-?LRWgY~yeU%q9jYP5E$Sa#6upZZ5{+m<=+s$P+1m+^vk
zr}JXD>C4;AZ!>}xi%&Am`g-M2j-u7=$j%d2@7x#5%h|T1e^y<IgY@aHKGDYk#~zx0
z?XStqxpZNx6>r~Uh||I~=lh@aJ-f~3Vae6$6`x`+eKrf+#_1G$E$!;N*=n}Td&~Bh
z-nsI4)9VsgD4#A`7SOMM<}~;DOfK(fX_wTd**1On-fI2&t}WkjhluM-zq8FfD40I~
z{Mw*?(1Pp`Ta7SKTTk!F;>~MIT;k)Z*4X@vI=k0j`nT!jV9Sfs%z2)?{d>2zdA_V=
z!nPTp<Q(u-WNnn5`t#+FRSS15&{tg~pJ$sSsCqi<`Q)pTQ?u(26qy)2E0=v$w9o#=
zU0?9lp5+-oi<Bp6oLX<Y@YL}$Ut3}|cDOve`s;}Ir>~0r%4xgYUUS}JKK!n6f%9TX
z(As~8tHEpfu0(daZGQMNO>2$rv1wAr+PRO19shsgTaQXsSM0q-Upp3>mn0QD;@ciA
z;_7JOmI2yAv^?N!mF-4@*}f`qnY=EOpIUp}=gADZyLzs_nDL^+NpJVQe<is8cuILp
zwuvOnD>2!wlb2pP^ZD12)5oF?X+D3mXwCF3@hfXr+)qCFRqpx>(`${2{uw8hy_Qna
z2QBUl*72OQsq^WXM?SV27w8?)IeVpfr?phmx3a^lkALm1Tx*_l_xe-I+OL!Mf8t%?
zf4}dM7HB1Qh;3`u)~J^!lI)B=yKOEvQ~sV7za#p)&;6|DlUwIxXiL<*zkmJu<@eGB
z^4n+d)IMPaWi+p_{B6lAPZg=;#QrFEF1@LldM4?(4u}1kdsjBd8?f=Ul=>C_pI~kw
zWb!G^8tk@hPHC#9_Mx$H0Z$h_bNkdj_2P2r$9|zNFJB9`>{ZX&8}*#;2Gim1zni6c
zr|n>1I1snKDmnT8d$!o%;NVjy7b%w-ZOkyUnXTceKXvcvlW*R?kb5QQZ$D+a?@_(?
zFAhAI_^`RI|6<y{%hkWmmVwr=?)|*RY)`S(ed}8vmfYaqchA#jrnG1CjZd6T8=sz*
zzGp4=NiXBwwyNJY&5N1Cq>EWWC9dAHKULeUKK1Fp`TIlt^sbwllXuNDmcLNle68`}
z;e!vezr?1?-8nA8$iNV?*EiyI*{R4IyUXU6-~2t3vEOs?vl-xhU$Jg}%QM~g@4KBF
z_xF9n`EwyRs(L^jUQksQ^!1)i#_ofvd(nHtkZNM8>rx@}9WrH+{E_qiZ?kco+X%Xg
z@V3`O>rb&$i+|}dFdWb;+sXeRuT0W^sZja0SMNStzpq`*bHt<Ph)0itb5cl(k(a&h
z;k^4dt$W^n$&{~V0d?Jllut~M5RKyM1g}<R2X9;eZ{Pr(&jva>4LsruYFvZLLr~y>
z&I8uyPdoqb$@4qy<(tcMZg19HJNx!A_U~yWvwb^lIt!m~dz5=~Lgz$@sh_i3??0Qq
z<$Czn8N$*&nP+e6zFNC8w?;smE2X=+y3#K%i|yUh%u2I$Yt`L)&K#5Nnt1(~>?Zf{
zujlUDN6RKIikY`*)AArI>&w^X7D>;XDK2@3`{TOZ*UxRaGfg(CZu7f4yBG}fY-Hl3
z^_y+?uG(%UJwsSJ^H{dtPwR@u%|1KdN~QQ2>E8dQw{C-R`_b<YybkW#EGT}zt}=JY
ztA|~8rnAnNoM857(!z<-q3<`no3l~7>}2@H((Na=-nkarb^nAyaNcgVnUj4^_nzOo
zw#B*U`SBA;m&&%L#7VELnx1UmlUsUMd~0`3h<Fw2o+k>y@05OToej2e`=!s@{`IY}
zl~dkas6G3GYh4*gi}lu*Ny>tA>)GxvW2<z1{QdQ|BNYp?wGDLjcXF<Oy7TCfj*m*U
ztrF(DW8-bu<D|E@YMeIGWME);<27d*=n%WBpat5Y{IECxjZuSI$ql_bF66G+R#C0}
zu8-BB(Zq!z!Mt?GXZGzC6R&dL%`8{GpK(|JsA?QzjNh79j5p5OzR#_{6?RLJL4$pD
z6+>C*`Q0aUXP^K1`sVHE+&yn&pUm@1m*4wjy6x{w@m&|07;==uzA^*|Z2v#`dTv+x
z{}0!~+z&HvSR8Scc|&!~pR~o|yKX;ooA&+M-iaSo=kGYU-sd)Gh`PbsI(oKQbwSx<
z)u0=V(yNPiu{F#+%oxK^kv^wbMVz6G31qitZd9~%wX}EM?AlXd`=)=my!7~XIo4-c
zH4J5ZAbJ1WyLtR?ioM?VnV+Go2_774K<N_ZebBB9j4%P!cZ{H-6_lV^f5p$}=ReDZ
z<w`<x1p@`p4M#RM`fiyyC8<UFZaIl1sV=F>`6;RTKB;->B^e5aX2wRy$8fI=&&|JW
zCh%`x{KDGFjNQ+=H9B1<Eb_gzF!t7t&h2#>T+SO)-B;`E6q{?}T=%EX=F~Kqr5W1~
za+Zix^1tsZ=l8!C-d`zFcc$C&PhkGGPy4D=LJDPWa;h7-C28()@Dy_A3Rg{Znek}j
z25wg+4&Nj_TRjhtnc@bno>N-VKE62XRk3{Pcg8w>^?NT&KTD`~X+855lk4sfnkfEZ
zg787-e53zQ=0E%FctG{*`_;N!H@BCXUDjB?>TJW&x^FcfDnE&t@y}2&3JEJNn#|iY
zp-6uElG4ywhMzx6-M{`bD>mgko8u9u|3_D8P5%*R-sL*=T%eb?`juO6Uo1EkmCv?u
z|J;{*w6bd~S8rQ-ZqA{vdrfn{L~XMbH9X<ec=Xt%kGo&qeEH?c-5+PxzI9PeQkk?d
zI*aG!LGD8Vf|?cT3=Gwll~U7$PPsC3`>7t&)Z1Cl{g73E?Vl5ldNb?GC!fzNsGBxT
zBVkQXN^)vT*qWYeS<x?KnEED%GxSc{cT#s9!-iWj?G2AFlwZAiVCH18+iS{h+}b5%
z@p$caA=?Jl#5b>NrV27U{yphnxc|`g(rF6|g6~QyehkmNImhS9Nyl@X{!6+~f8E=*
zwtCTV)sz)kuKag-l%+X}f20ZXuyX7UIMbeSJhn|Z_1c=NQ;m6yN_VsO#9HNM&564)
znUT?7^S|}s7LEuBVUH(%Y!cCH=4JV{S_LcFXRBq^)K3>>-59W5En@bbw+2_HJrH~{
zW5bCajzjE?L8p$){H4!!X8#{q!T4{iJYOu8?}UEc!JvO|zsAJa_Oso44+jcGw*Nlo
z>86t6`%jMLaYFvdj$68=hKAB_yH_&niVB+it4!(9nG(n=c|xh+g;B9yq?h46pPu>8
zmp?zpw1QE*aDm?;rxVsfE065{@%F*dw9a%T{_`w1950-Bw}0IyDUZJMCvy$eH`{Jv
zjQ;i^cTvNc$9f*Zlj}2ulIH~M;GAc)=9+zy#PS{$c7^b|`;nYNoofHyYv;ajHp<*_
zf5~))pv)US65DR2PTNotyeJ?{>iPP)e%h+fEf%j%Woz$PDN&&1DbeY-_Ms@FO}lFD
z607LtvqNU@K4c)bbdN!3`m(as=C?OZPnf|HY06V<+At;PK)3p_w8iP`os}gbSRU7H
zz4}9Fy+N|iuA<xF-OVd&4bGT6$bGdYg2CQ%$Kh?IeAg52`(Bo~_N{jAy3d(2U;Qzg
zy=;4C90LdcU-r)v{uNDL8~E$<)ss*DB;9(gzlHaPlf;4NeU}$?a0qU%{I?`(?Pn!v
zrA$WaZ1r~>@2s@b%^UY_@lsKFEPZb6+l67LeRmbT+3xds(w7qc=`;6!oU?LIb)~SR
zX`5YsD7Q#kNoms2Wllo+YFf*D&$c-UwR-+#)0xurbH3G)+i~~5xag{WeUg+A!4?}?
z{qcEv`%^d19ly<wZELG#<93`hqtu}O?b-)@K~54=WtZ-gVLUJY;b9TWlDs|*eZ~fj
zEi11tXqxS1)cvbrrWxCzulIfDzI(m-^T&Pf1q~;7K05cBQTX&;?lUXBzM2H>*8Qz-
z@z!n)`|}OQT6j9SoRtMUFJ2D)rFvLv6Q|wP%)hQ*LML%~-uZAWHqK#A<)S}T)q78w
zo)Sx#nz!$PfcMcYjGjrEht{q9!t1qG`a)myUyh!f+e!1<!qz0MO848mZ#{GPiD$bT
z-RE*$p1Jzq>R5iJ*!kH(+pd>>E1f-c-TC`GO6f{#wyVv$TIMbAsc7E)XP<MU9^5co
zt9W+4p5F#OjpymBH?KXqFM8gxDYsVtpZ`lF_JX|5g&nJ(8u7@~%}MNkZBSNvVq;*N
z@Zlr;K9A~;`1ESnHE&w;?Aa@0=4bcz7CuhsIe+qKwHNED`m55;_g35von6}QU9-=^
zdiFoFe~*RSQ&MadzMk#7`JMGv?&Ni!h2F|Z?w<bI)ppnFuA?6LUK`Rv&YP*tch|i0
z*Gk)cvHPu*u={0Yo^SN>wZ;3Do4MuL6s_GJ7d<x*Tk<!+#5vgGndNyg%^J;z3|<MZ
zSN%I7cFpkR#}_YNB+tq&PP{EEp5}h}Q^bxvamlW?4hR(0-03b@dHJl|A|nC453XC!
zcwbvRjhUb4^zX!<xfP5{81Ba%{;2$JOT&e|jEmNlM8)v_68DVQa>{$gyPGd}Z&>|B
zx<<z??9miHR{1vPA5lws_};D$o_lxQWOWC>g8eRqJUqS6H4eEwJgonpVR}wb9hPd!
zn5dg`O^hv(YpJU<&U+s=5IO$-pQz=w30I$}>g(^cdhTd8Cuom_q_aBD9haE~|EnkO
z&HI;7@o_=FS^p(9UHMCOKg?c5My7sB6Lq}TyDNIt<S^O!s-m++n!?{Y@4K^kndgj<
z>iS^aYoEpUR$X4*yRRyCt@!Dka{bG$H`i4cn##`e`@Q(%hIfiTvVyMKMz5WJZS!%@
z+8x5r{7xU$ieHz1`*XhkuaDbK-%JaVmtZ-T!ETjxSt5DuwrjI%xH50^@%-3s^U=7U
zmF<-K7S^sUxsw|9`Ap!oRw#&8$nNZpP%-FvVxr>q>4>Y|q;!?_vPMFJ)9szQ_Pcjk
ztDMhbaE>{0Zqn-~4YxMS91s-W=`mNX$?Y05%OfSRle2AwUNZ_6T7GEbc6{~4!D@q?
zjDYyg%~xJ3W+mC~5R#SQa&x+&yiqQOlV6W(nnhWaht(#z8c+VXqAHFx?J`PAuMbZD
z@<4TY`++Kk)xuzor;*TW#-aw(yYpQ;`7>Ce=R9ccWNlQnU-0CQL*n_An*tF`EM9y9
z8;x5|`>f&6;bfZ3v&`|dH+R_7jcPYHZDSCS{<5N~aYg4ud+GMwjMLrUzw{4n#TNOX
z>q-c=QA|utQ6t|s`?iBX+xwrQ)mswQzByBO=8S1(5eKJl^NXc?YEPJXwmLU4zuf=+
z)aI~EgS{eAY@Ojwx29IixO!OO`=bM`yBd|(R2O{DE;rioxVZ3+x8_M+|F7R<ob)5_
zeE5*trud^{-emq-ju|!yehcGtJf!ZvE%=ytDeL!-SLXJAp548_CwJTGuZ#EZi>kA=
zmbJUDqi?V4zkZ$m?#g2((Pws9p4oQ(_U`xH?>;PuVP6|QyXyCW+5djr_<HyEB5Q-p
z^GAe(SyE3e`8a>ZkM%QIrfP<(1*xg=ZZ4g)$mfaTQCVTe%o(XoRW}@`a;b7n^*C%0
zvbm+=L>8ygC5sK`);fIL@~11Si8=GeS`icfg4Q7a0u|oF0jW`SOBOwFlA5;Qhq(sN
z{skc-I!h9_2d!AtagcenMoNx4i?8!ajbp)qfhTVGdu-zo4HXg8n$qQTtj+1hrc22;
z!?~Kfm=4_tdUGjn?W9#o$GTK`wFA8mM`Rvqy0f7p>XvAA)-DgZz*0s7GqK%UqSxMO
z3DgoZUE`t4n{1kz(!WuYnQQBo?$ARaYi~?pbkhBAc<tr_d*uVY`aDdJ?{m1kD?XJM
z*HM-Bw<YPO|Bs?C!cPvw9LJUz%!p~QnwX+op?!6RW45%RK<oRzqE=Oo_dFI)blauo
z%cr<7Gool^H>W38+bz|DjbHAEU)#6F({Se#0k+xO*MuMbr1<`L^4Y~7k6rCIcl!GJ
z%-vfu{LfyjnQ>?Olp8$zUp?JfUfX$;=evDc`1I4WFHe4W`|GDiuRlHc^lH&;_eVFA
zuATjxQ~P_<i(T^%|Eza@GKV*%HtBWM^QMSLC)WLY)yYzskhitAV$<yXWuKGQ&o{q)
z_1D3D)&JklfBW{mYk5WBn(k|>efQQp@RL7$N;vGxfv%<+<LRb}oV^h{lQ=hQQuz9A
z+7iLl5nhQ$xZ);MZQOJ_Su|mzf@$K@?GcNOZbS-cD0e7`zQ4AD=i4-+DF^)~RBhyX
zyKw;zUsFhrsaEsJphhDL&QFs!d}`lV*3QX&>VcBS*4?grr#Q?kG?ceZ6ZA9{n<AL|
zA;2w1SJ~}ole&Mk4p`iDJI|-gLrNOTTc=Gl+0LV+p?uXC%!x1+n=&z%Bfu?7SGhCo
zpzst$GlMCLYg0R(O>=Bqb~j1GIqLL;1yb6+5rU^CTr*P1JeH)fI7A05e0^G>RZqU`
zo}0b9AC<3{eKmi3zs%V^c1^YC9$yxCQu^Tc^m?9Ufful)2TP*TgNX@R;oz-eDA4x)
zUzf~s#mj0dy|i}z+Su;;vH95PKAuH-Ja2m57&ZN?HlBN3F!h7V8dr1u67`qQ7VeVo
znz8?wbU1&$%9YDAZ!fi!IP<SRsVF`u$@tH@!@=)=33W@ptMe6m{ky*GYfiZTw@-yz
z<8<D?{rU3Gs~-gxyXVZ8Im_>V-hWpnkIhWqT`T9Wk-uhMpLX}1=SIIMy|B_9yXETY
zDlRYYkG*Gec9(2-Q}MJW-ZR&}o;zAKRcUwC_2&vFWMA*o4Xf*)Djl{#MJ^(6!mJJV
z!dHLliP#5D6QapWbGI6qu6e||Qe1nd`5Go2u_yJ1PQ^E{rcPMOlqw>)<WZKRWX?^~
z)GLCHuZ~Xo(58Ao$x-WAlhLA7{{vo4cRn7~K6om?ZB+zogzJQ=)l)0GMQ0f`-7k?$
z1}QpX<S1#!6}0{V_mqj+VpAS&R`?pWdWo)>vt;7s)Si`M-7-@GwZx_fMoj41SkW!I
zut%XOM7yHMS8}WA6PDBqH&Q1&(`&8?cKamCeQLqR(+WYoSEo#DN^LaCcw?mT@_?1x
zExT6p*<08BIP2!hv9n+1tV!n=%kBT$KfP}1-Yb45F;x{y3NSGuDg|Iv58YQBL|niB
z>xwE{V0G>K>hJfi6~>(4>2oef_BMXO!CTgS>Clh&Ygfix*67s^l=FP2<f$s7Wx4Z6
zZQ;e%Z7#=Gu06Q-{_gb2)xVtP_C#eDUOrw{A$xemlDuCZ%BDJfu-t0;!=No-vi=&?
zEqgV!mD|fNpT2+WZQu9!zYllY+x)nl-~KqS{(b(s?fH88%fh$cUj6)b_v_iK6Ma{%
zF<YG|8-D!!@!kHjAO7*Y;&<yk-`fu}t^a=9^m}*v*@CnSO`&OP-gIB+2^CWQFFfrJ
zt4`zw6Q*v7%<^rwu5I)>oRq++%$s~wvfHNBCOI%=N$eUSzlZ=fQMY-OkJctQN?r|a
zG3t=atk|}I=j)UOJyH^x;@t~)G9v=q&h~6+QQe<(_Ed(#l!ZM}l9}b(vLfUT@uXh4
zXSC|&w7}Cw(X6K)+%vM6d2AAE_X3`Gy3HpyJ*W(0JKn~cT97Z9vn$nL%0$~x4d<%U
z0+)524{>sznsCo(Nrc#*DXiTKd0y%|`)ucFH0n}sG}^MA$Mmj|$=nSKc;4zdZ_d=w
zSR5ML3KIVNUH5U(tol%w?-hp^eEb;i>SeUee^qq&v%r+P)=mFpKKwe#KfOMAC$_|3
zN?c+<s~&u_?-+pF3RdeJUwbV6IbogeC1=kQ>}u2VBAsR(aw>N|Eq1A1-gVZSNgKXg
za+1u6OMY|EhQof(w%-pIahG=cEqHhE?)tm!CuQq(^!i&R?|xYuH}ANCm{#7eUzKI0
z8~4~+&(zDG_I&y2$=$0zC;ByPKAJP*_|0GMG7Wj+m-)YMQ(&2YAlbIXkVVmd>6Oh7
z7K&W7G1z{~?$4Lm_v=1C$*%*oCYt|0{=B^()NFY8!8as7YQ5RlPmSt-WyQ*LzR9de
zT*|QMXPVyZL#JfDZH}*qP?=R0uI+UEl&H6ecK5PGop%vOjhFO^F3yNLbSi&?!kdj<
zNeeS>#p)iA4GT(j5%fJA5i4m~;TFoqa&b%d)P(+}ry5jd{pZyF&%9<`kBsePE#?T5
zx9h~pQd3q$tm4sFlqs=VTUq`5no}NYQ&l$TRD`51NDoY1a?NPc%V~}qjt9Y*dk&vk
z#gn7Uyf{@SEH&V0P-;T9WXCkt^Q(G(B?g5^-iTtGl_$C8lz_hDRL8Zc6JAbJT-6h^
zF+}o86r1Yhh&_k9R`F!%HpfLDyLsimmCJV{Ij@?ZZy6@II~9F?b>8s#KeGpU4}QIn
z{Ouo9f-OB*5S1QG%uuU`gIVD8P|GEIeL<=FrX@3Xn)&jpF3dF8n{ry{mWbFc>7Z>B
z_SL4oKCj2?t#516e3pNk&g}k;_Q#6&^(<CJ7s$N!dw2TUUdg+!%U><I9yCdM|J8@7
z3*t8K`uO^6(&qiYAC~X`^X_8&|2uEZZ(G-w?)+C$XI8f(E`Cq!{MfkIlG8GmleWH?
zmbh{M{rh$CrOWkCeO>f6ExdjA`NzN0{eQjA-M+nl^}8cWJf5__m^@+mJdZ2I7hEpi
zT+?G?`2J|p$@vkP$AUh|6d%@_IC0vBd7<7?VIOQ*5>nl69lca>1X4UqWe$^)5@UD!
zr>^reeT|Q=<SZ?*DF-_zrmddJc}l`2U88yC#I}tKdfx1GkaX(V(k;56CurjW9!ZJH
zN4?vdLiw&HX*hE!zYWvAB*=Yg!p_qIroF7G8`2w%O5PcnM2Xc*VV>qBX;m(nwe$1|
z<|&Gz+@~(=JRM-z8#-@8%Pb=y-`Hbw$~Fp3St#n=I8`Du{6l7#+X{CfqYX1Awyjp>
z)voCDmDKbBD=M-{GTgxC7InZ%{<f8C!R0%@w2gE_j%d{S-PGkS*1xoGzQ{banwqcD
zw=&ZVv7`Z0L!#1v8Ojjn)fwK|cML?_zW)`C>T`Vj!t49e+)E{aLZ1$lT;_B>!OUhA
z9JOr1zuy{{dc99y2+a^QyMJg~4&QaVnj5vn51eiu@YJa;D330;*}0hi=F1r~FZ%XB
z{UUT|hUV^<|2`|VJqZ5d^5(FF!h-8l45lpR(3y7l?3a)IrL+GYF5mzAWx4;qU&r(I
z-?aO2`t#T2mnXk`R8{+}uC}PI(o9G5QPNh4X&Y|T-@RWK$=j~KsOVzZX6@ztHZRw2
zzkAPaZ5wlU+(rwNH6a@|C8lot;~(*hEy5yM(R7W((M^vtGY==NXK8ayx~V_yNSiCG
zH;?zxP02d*mLFZ#!;)0_p!YqCx36T>1|Lbzqnqw$uGCbn77cb2+W1Do`+4R{P3Go^
zZ!JsrCqA|C_x6=c4Vd=VPy2JvRA0%6Xtr;6j4Vu29W)}A@vPBhF1{Y&E6HHT9?W)i
zn&ZaggT)!A8eSOBFj}#V=he<sgCp?~%Xn7lHgCyZvy8`K{$kDM?9&M^B0k9YO0G<p
zX|!V-&%2$e1xG5QPEI+vHFZNtZ|W(5`4^`sZcX)gA*nsnXh*_Kqb1vTety?|T#~h4
z>%d+cgOrM&;ew0%TAoaM`c*RYwtCCQ(t}rbr|%R^-h?epAYGM-d)(W^6s_6loqgLu
zr1kq>(al>D*4)|oc}MZ~v&n)&pBz$z#gi|I@N9K%2K6aV6w8<&O_}T}nR3qQl5363
z>&Hr;Pg^)YEpXfM=Y-9gGuIEw%w2hM?=q1y9~Q^VvwCH^N^;+Q|8@G$%a<QNeD&?0
zM=5nRm9-armD^9|T=Kn}vbADv>D}!Q|IAlZ+cYot)5#$JbE>N^vTLO`t2oNdh|ZIn
z|Mu7R*!{O|Pyd>>vucaHUH#`Rk$>itw&!;}U3Rr7R!_d-(((;Vp*oroTsoppcJI6+
z61E~D%k*g1)W`|E+ox)WZPVh52%PXX$+a%qn<XN0f^Oo|?-4I~wVfqjvE0myUa8d_
zd$7sKgkw|UnpHe$tGQCA)GLG8->wOUrn@LP{!?G~r&8}>Y;3Fdfv2oD^WrCctF`1`
zr*fifr_tY|OCJO|ZqxqBlY8XQ(W}xIdsiPblYXcDey7czhl><$KMksIcGIgkoa$(H
zhBbf5A<+lCa@%`z&0be3-uf>3fS0c+XPdrag|hfMj{FTAn-cXZoVmlB%>R_#|8T`<
z`s3Po&U+tj*B*ZVt@rZ6y2gUEIqId4)j6KsIW7QhKwdXj`f>Nb+3EJq!J!P;(gIO)
zASR}0gG&dqz~c+GUA9ph!pg#S8*je8?BzlW6VpZ0EoMwulCVNHD5l_^-QuevSC2js
z$zY58fAG?&nl*nuzTc(Ju6Kg5Z&6Lt?%TWi_gepsk=f2_xbt6o%sl4|Z@qQ<_s`4y
z#=rm1yPNO%>V8&lzn>%j=jzj6zmHb_FWnhe6E#0RPIp#iU*@)1ro}Vf%75Q(AAa`b
z>`iyJ+<o(;sQ7aI&*#(QYTtbOwjs-pr%UmNUKP`qg}fIU+Z|%LK9#<kVB*hHvpuHf
zi0I)HqHOCH#k88}7RsIv_YoF<K2h8ClF6B)%HbmGm`+XgysS5U&eYY?J3MyIF!?Vm
zzMpY=m2!2%f_o<%W|ckHZr#7*inQg#Wr^!d3LC4Gg)^m|1?8(e?0Ut^v!wFTTJu9w
zADhGn?roIKyft_IntKipUtN)o_|3K`RWBs}!hxmt4%{-|5b@1sS*P|&^A+ECjqaKU
z>^*pB>Q(8G-)uAANiVsl!92aHIqSZH*;&&n<&##d0ecT_%{PenX48Lf!Y##^SG?<L
zn|;6Y%I%%F<UI3A^Bv!K&F-4dSpI#&Rq3VQdWCWdV!u4T#=0YMjn1~Vz1<Q!r%s(V
zTRHHw&A-;5U&aq^w~M<KWUj@MAj}MisxVB^8V!NjR~!V6-~TJ}yP|Qgg|YSK&A+p9
z<(C|da*D4i5?NdDU~Y)tiu?EWrkE_3*(WkZ@u9rOCQf^^pC8i?Cm&$QJ-pyb8HfC~
zhgSvS;;sbznq}PnFnISKmlvzA7}V^E7I5$p*&5U$H$hWLEHz{KQnjsb?(ygUlh|?7
zzNUBg`@-)c`TO2}oBh^#&%UVp^XBvB=U<z?{(5@&_33wmI>cAIZa;GL-|2t<KCiN_
zoxElCw%M_}YaaR5*S`7oFZ1eLi7(yS{xK^HucpLA>i!oFuQUtKY@fMWDm>JC`{&RG
zb-hjx1?6zIAn)Tbsn48D^a8#2$9TBMWW~7Z`qzAo+i^yEY2n2uy*(?Y)jjWi(6L%d
zeD%^~y?Hw)RWgU_+7?c|zw^|YqtAGmwtlgWKe;E6Kjs;)SJulJ*`L}R9t(YDOWpeA
z^wEMNsrMGFnpS6fezG}>bhugml8yN)*K3>A^F3a-FL~B$@~!vDu6z#J!kOlmZkPvs
zd{cSSINUJ*!wvHrrT0%f<FzZ8X<qS0`pvHVlzBT>RW={rcktD$(|a!ds$u%v)>G^J
zulBx${IaLqJniC6M-TsE4Sd<Es<SyO{?r%gjelf5ygSNYc`AJlw$wn}@S~YAY7-J^
z_|YLO-9G)<tr{68r^^aOo!y4HTy3`$54L`}U%vIXnDxOgmmDH>?lmu+_|@RUhp1;K
zBb<LG^X{&h@N<`;y!+>ePQ5&{f(#yiuc^w*ys#qePnrGhopJZ(&hML_H$6Q4^ySyH
zSLeya&d^P}d*__l>glf6YbEvX^H?srw>$2}SCa|7ccT4eH0tLrN`Er(;MaE#ci#W^
zYP<g5x98vH?X7(A{};pV<9A;jUu0buct$+;+U=TOC-nbHhp&p!ERN(~cjQEP^Ch9_
z7wY1}4leD<DUTQW7NZxo?uo=rgXtl9Cu8n4X&Y@))vG+Z^h29p%m+6iw{5%i*WUA(
zvXg1g!D$oE7HM8&6yI~OaUySVXuityol1KSo;mUVi0b<Ts@3aQ@;MAQ-L1X(s`rVy
zUWK#QeS!NX;kSwn_b4vS_sF{O`PGA7gTjN-LBHCz+%dm$P};DVbI-!1`75$#ao?L!
zwf>NF)UUQ<({}E$e$ZsT<qPlBX}0el_TH&x4$U|4tzDe5`!`p~fu#?)dU9rP-#bxj
zcY{MOE#+{`RcXm1Y~gzkmc5czJ^kQk#C?|t<Fk`*y$o$BHaa43*5><K#s9Z8&3Rv*
zKk$6={iCnK!?7g_qJ|+&EzpXH=*gE1L>lh@6|G!iy!T06<(1OXk_gu|zZCeGm+F*e
zL}Vsjug||VC-%V0ACH>T68vVFasKr9_0{Jhzl%Vbe3M9Nd{39u-V=e}PASZl(zHBv
z{auk$K~{_7&sVQkWSy?fsXz8jah_aG^wm_GoipqA?K^ef|M}zTpI6U5Y2n54bn#6M
zuM;coZtZ@nBbBETvv}90cST=x>wn+Y|66#Y>Z3t7n^j;>vRkrpMo+MhNGIp=uH^D4
z!DR}3C4cgFeo>unQ)tK*6XeL#`MPMYirr(Q1F0fM8g}k@F4Wh}ecp9tlZ3(aZ!wn&
zIhkUd9RIk-{CdAr#P%^$e!yCVw%u`F^S&))$v0S}&~|$1LFrwOneq+RDX^V+y7%D+
zj_?P(%S4Ve#>#U|w_7`%Ex%w5NC(@VL@T`yZ0|qwo@;vc>E4CA#Wx$wE9U1HNN#xU
z$^NONSyF)gy)d6#(V>S24#>QVNHA!BVa(@vnC-HEbf7>$`-@;c#U?i8d$O}i6CUtg
zd@kd}{-%mu%|AipiQ?}i&XX2|_cYn0u(N%dP<u_W@<u}XrvwH5o6BW`c$==e+t*#=
zt*_pmx9RuYvbkHUyA4mzO4^^%?Yr&9l;7L7M3!w|Ju5B!rIu}8_{&Y3GB3*523r~Y
z+GMHo_lKwXKk@rPN%3me-i4(;)@C`kx3S9TW2#;4^R!3(`^|qh*S@K~xpv2zd%r&Y
ztgxxK{rN>OZHBIQbk3!;%l==jzQ6b4c$L<}`!a4?z^dSbtX_BiPtAJ!K75^=bxp-L
zZk-p+m$0QrqJ}|DEzt_8*!<ZBB5m)#YuC*5==*5CP2_1(XnEk;sOyW~Ce2iuG(kkO
zQEbk--`}mbd46v#GtQjMDt4pb-eK*@>c<zj9}#HnT{!2k-^FJgapD@)$rBaBvOBwE
zW9Aupt=Y8VM%^r%Ev5Ij^WLAd{NBXUyFTe%r#;Q)Zan!f@p^jvt;2f7vCb<`{PGRo
zb+$I_UijSAvvhvz&dT|<{N?jUucqsSzqNXGZm-_-s86l(0h4$2AOE+-?%KJ~+c!#c
zZSq#fR$A@2QE3ypTx;IB>;D|ZQdF+j{M)!D_U@bHV{^~nC~J<nYyacG4doUcvBg~F
z>)!11-V(Q{)3CiP-aN--O<8FB?Dab;k8NLm?CNo@`!Vb7V&X*J=Y^Laef8+qvs{rF
zzdehxV=E*4j^_szT;7=X;FJGMpA%o)ZzliTGpEl+Zn+3|pX#!fAh(V0jnDj>EcpAn
zn~w>TSdaWho^L5<4dm_?=w!^0I9lU<z2ENl#5??jGt@Jb-xo>MS@hPigc<!fIWzy{
zIsWPC_EGJM2Wz~qpLbyH{OrKYXd#gK@xY%K?mRXDH`wGn9yI#QV0W7T*FdUa0Ru<Z
z(rgbthYK?{I<T<11aJyF^0}ONxL-rTky&VqhxpA)dnAM!Ii+SS5MC#E<p2xwRL2G<
zzJL?LZB0@O5*EgA1Q;-|9=^16TVFs!QsYxbF17^;LTydc^xJ$Inpib%w7h1KU3g%j
z)7HY953ciaIxF@EJYYKYdPmWMx|a_BEyeV@f2?d&oIfGz*?!Z4ypBm+XG`V@CqL?U
zomG6`cldn<=MR~TSdyhVabvS)1}Jssje}Xzh5`)_tLHnp>-TJ*b+N}}m)Vl`OBYOH
zi#oeG!L{en)-P|hGtIa)mra*x$}v86PxSQpP4mz0VsAe;U456!)2Da0@2xi9x&8g-
z%ZA5K<oyaXTYs@Xa?|X6_t)s@Z@d0H{qpkFZ>MKgmlggjjNty5wOQ)gj$8Nb^4cE0
z{_=3X>l0g+CXs{v_k<azy8q-my|`C6yX^Sx_<|qI?e05%)mps!R{r6Bvi$r0?e^w}
zU(Q|fX3KrqQ_qCmt2`%Fd2=~5>S`uRpTCyj@0sJtb7Z4x-~qE=w%)r`I-`P)neFmD
zmEy@XrN*19Dfi2iCFdtSnzZB?bGY1&WVs9H?OYb**cE(j3_kB`EWp`huCRnjapCi2
zksPfJYAqp(Pp-CHm~O79>wB=HV`_(n?0oe(y(a?d@}h%Rxh<L3t6;1&#XreyNtTP(
z-=MxD-oYlyTcj4+N;{^xyyQ69b0Mpx?2kTEvt-~sCo|<DQ>E`YE*<{9Z)OWV=@u;g
zl5Kh3jU^!^+v|qg{^y;QnTyg`5_fKU^<qb+nNve^RPZsgU%5h2vzACYhV-mhtZOy@
z%{<0kyRN0LG3V_l5fR(or`fxzjJ2RH>ch{o@fF8Bb+DxfA_r(u3#uEwp!vIoht>71
zeQ^@`rkBoSl=yn^FIAL}1x?`ja<$!BdbIJ&efLW@+E^wBD+-z=-{7A;{owh;yYlVl
zri<?qIdyxte0I6f&i?tEE*o}Fm|ZvRa`BhsXK$A6&fk3X+duuBe+Qolu9G*ref5`|
z-uda~>B}!4{rc(k78~3Be~ivpUdS<&er9p|-@SYPqIiz$KPtLdwN-O@`}@n!#rJ=C
zb$wmFy!hdXvzxvPFe`BXxcK{ogV3vk0)n?KiZ1WYy_D|zXsu_1P-O5Sv#PABed>zY
zK?+l^xd`5VvBPt%CS&T>Wj(oHZcjN>=ijr>)G%2(|H_j83qARK5B5yRYDqX=eQB<s
zq{S@3pxz1ddIOA`Yz$@!u9TWsW#;tt!jUwWRc=ef-7@@rZ}up#_@%XkDNnJ!7i^}i
z;Sd>|ed=n*osEKD7n=$efa804oi2Y}x(mz4vmGzG1xrizsNa3>8L(C}S^BS8qJ_!P
zG?ybuF0!)bZ+j91xXLz21iEjZHk~J1NI=bc#)jUy?;<ZQsHC~9aXT`vm&00F$iqlE
z$yDiE;*pyv{n8h%R&(ckt#r<mnt9`_>e9fg|IFTeH;<{UU{aeN&xI{15H~i9*6+R%
z*nQbS;K0Xn`=fSd8+xsGZ?-mGFZaB;qGH~|xHVHAziVk)t08(W|NT2ZsSg_aI8I$C
zlbe)tX#NCw)pxU*#b2?@9R0=nuI_!D@4Khjg*INAFP5Dz{VsJ#Bl6Cd4~3%6A2feO
z)F<*V-W2DoRZe@6{KI5#<+hCSnm_OO?f*VJdH;`vO!;s3`r55~_wJc-?{1F0&+YEj
zueTqza*xRkJ1iA;eEsp=`m-PYaoj1l<-Y8zcgEqr9%p_p_n-an%%Y_$=giVLvd@tD
z%g6b%e!QP;kTJP}>55vD-J5&rNA68&ULNu5*rWyghkf^$s9sZRw0mQgYPx8bLuBuQ
zG!|RqCSTK)f~LJ)QU}j+upR!svSn%K6^=Z&4XMhfa$G(g$!alCJ~B=4Pxa*-mMS4r
zr&)qYH#xeNtF`5^nCag#xMLzc(e`*Ai<9Xh-rc@3)0VZ|a=FkRd%DtWQN^)5mSb5i
z(rxcA=de_sTjR@Adn0$!4wH#e6K4r(N^grvQ@&xmTJT1X!(q222GWZ2Tze0su}pfZ
zW@G9Zpj>3Eq<-2r%jNHF^#yKE(p>&McZ>1+wTm%kcY;91d+DSnhRJ2GolJ~gCmY+p
zDn0mHd_RNBu9($W5`+bj1GT7wayJ6Ag&m;@;#orRyEo_FoY@!ksySlK*AGi425fOU
zup~t3O8)yd=WZ?*stMHaK4kMGFY@1=r^gH5-D~9j#dth$|H0aOyTd0}|J-FE>3#0S
zvh`IJyoov?cfLHWDy`i3x1!E$@9tZ5Gq$CRPtR{Rb%jLq@7e8V4QgiH`?FC4G@Q%1
zh(DP_vc_}azmAy;dWE~oj^BR&@55zzxj$F?4;OCV|F!<^pNjH5KetKx&3CD~R9AlC
zuzK0A?aTh$XxV6L=pgMc=IQTi7!mxX^};NPTQ9y_xo%nZ<m<6K-$@I4`({7c*m-mo
z*OrUHlWj7+HVeM+HdOX9UGyc#Wmc~OzoLnXhK5k-7wJ}Gp~%Gyx?Kx<`xX~;cJ*>H
zr7r4A@0#>qz|{Dl)YK!3xVBt;KXuW~&P9P&7F@Wypto;vnug2bO^y?_L^!R)Y}-}4
zc)LOtde}NoEZq6`$bti0tl$3FOyuR_lM3bGS`(0PK4636!g3h~36YS63a@6AobwJb
z(I{$F`u@j7k*zh(pdlsT376|TNiIVTi%bzIk(h-K<}DP6Ty$c=11{F{0dxGn$uY*n
z%5Yr~=QKR!;gL6Yrn}&8@qj;jAN=i(-+0o`09&dsQ6OT8vWb}~Y8xUj`?i6=fsfy7
zxonRusIc-Zx7xd|gg-eoHvQYBo`7w9Ox|AZY<IWc_k4bKOUvFjiMB!_8`ieim(`sp
z`_30LL41eMQ`tMu_g0(koW6eb<BdY8=CxDrW^*JTeYH&g`s%wMzwNgF^QE1={_Ep{
zJ8$#<K0W&F@z0xI-evtxyfrU2W}oaeiO--$#RjW;vibXR+b**&l-Y7$Hs$+=%&N~%
zrvLl36_kDol7e^+E`Jf+YuBSV<qe}(M)X9%Uj<3mHupX{9=Ie>BT%L~g!M)9(iQIM
zTBncCUop#cm4iHwdup!|zhS^_FGWXr9`}uIqMegouXhi9ak#$gQGI{Y4wt2Ttc?yA
z*><OMiE!}=O|=#gVeK-z(c5J#q7yg+V#L{ikWQsmB~y({!WuV1MD(Y}2WkX0D}^3T
z*U}W>5egOUy0hTKw1pnVA{Uz<TwlDwu`yxB7nx}q0U8?|8>cNi!NscH*~P_bs&V2|
zm(pjUsUloi0TWU+3fi3VY=yK$mO2JrFnDR<thoA%3m2=o#*I&1O^1X+MY!?;Hl%7~
zv^j}w=@jj{wP1zW0*m=yI9Ya>h3DzsQtptbJkpcryR_%buk#1LR38Er7T=qbBd{e4
z;zn)FQIo|Cl$pJBm0pu#Uk|>e3p2B-PPVC<XzG-hZ^==t{oQB6w=DJL$}JqT??+72
zu{-u}!rOgTB@3i?36-#a&wPJQ?fb7Fnf^(|MVHg}?s1c7J>tv1eKo^_<PVyg+XWjo
zAJ>S9-psL0;@vXy{k^wj<@f(Q%wJ#e&HO(9@w@*n#>eN{$IbD7pSMkZ+1sC2zur#t
zRa|SfI<a^4<I5laoldj3+qva(UHOI6>S@0o=YIcwe)hv73&d9l@vN%w;n=#BA+h^E
z%h7s9Eol+$5Ds20!RRm1nr&>V3jz!!Lk^0`I;*apq7ib6SIZ^mqM?ZXR3$TwgJSCQ
zzW6OT;<Aw4=ctR|Y7M2*7|oO1BC|DuL|tD+h_GyM=<HMq4P3I%<=}p&nHnlpDh7c8
zqO3>fX`6N{X^PC!SkcvF6&EOQZjnN3ms(eh>%^7mD<Va9eOsKeNF!8)^>?ThYs7*R
zE`h5wypC&gz1`uED$E)lSa5z3$7YR^seVUY4u*>8$ZFfRv3mK41i32Ob}OA*biu!$
z$5(_$t4r#y(^56AE5>JL@T^Mc?pv4^_+q&`pRY)dR+rR&iC0OR;ssv3YEg*z@7Quc
zS+(eO%&8MO>-m;WXM7+3mqqztq9T?AVoBU6t{Fyc0x37@xNMI-sIc->zY8ii7N^E$
z|ALnrT;Ou!+Lo5RYXbUOnvV!R>whGF?A^V_&!3pWoA&Jey{}Z>{rf{<YblH8Pmawm
zs^F|kNHPDnBW}+8wd?)*j_ZrRK3!N_Q&x9N*Ko<vtc$vd8~0Yml-}L`@$+iegTL+C
z<b=Q0eNdRM;J)g<kinM1gsW-wzjxpN`?9?M@6p3~`)}U+_TT3Bzr6a-*;i%%37+cT
zHhZp&UBR;dU56F~Dg?fW4spnMd{oOwbgHSAM+l#;7Soo*^5vW6FZQ~$f+<&`&r7OR
z$aSadQjXk+u0_)Wg+)9UMJ)6X?MjjC5}H@Os==vIl*{FGU}YZ{m+QKKl+ythSXezn
zLO><`erb^}Y=N15UR<s#1EyqDE?3itSQM~OL$oVNl8di6Bv508lViq=l5@o(nj$d^
z6AlNYtPk*D7YWnY;dJn5QAkyv()|Sq`T<uGExZ;o?EJ2*(3_NTSm&kWAsJC=5gsO2
z*|Ksj5v~c<_FlYPe4pai9L@`wv7ke!)pIe|mP8A!v({5ZyCN2L2#csMw)15O7e75U
zOkTakfmyBObj&G-CE<*ZE;p@ruV*}v@Baf^svvGO*A%V)aUa^o_}^7~=HSy^o9)xm
z<8;3|>RhY(a@0d(tJ49ODI8z-mzSl#z9>{9RB|F!?p>a+oz738bG5|}_Ut(@RiVAS
zy!v}lS^D}L7mswDJUjpCC#gS2X5Rht@^Du9p8s}ob$#vaAAcQxxa0Qy{_yFyXLo=8
z`S$C#zk6)=@2N6gQ|z(&Y*xhKS3ka1{7yBVvrqH1@9(>gdi?Uwub<!dvR{7p{@NQn
z>SC<#k4w1mnEX1)yhLzCfbHpt3wwoE|BDu}bv(IyVL-qeX|2?Z!$PlK`nmq;6$*Av
zZ7_SYXi|8HpoogAXvSd!EzK?#(G3d?oTUGAxYjeea%*L2Y-nS;`N1!h*OkFBmDhFU
zLXBz86AK*|wl!sGoG8+`pub|#!Ua-XRbpI5tzO(+CL%G;2QPl|%hYfZ5Xsiq(blBf
zzNp1L<iiCg#(UnHx3)-sy%apLMYL%XgTwN>cNfWZYpj`JwYtIY@R}`e!kkiDIjnd$
zR~ZCE%(UuuTz+>)vA>&O*vpe0x{?<^?dLw0x_yPZ^41iU!zVTNsW-PAwUu0{s(jPq
z*wHoqDhIA^owv|#5=Y~*Ih&%BHH9bst246GtN8v%+--SU54NO0)EKUbxgl!90wpOt
zyK_^1^XB!_zAcPc^YukHyt(=R-p;uf4-3@@PEkx`+PPaMzVG)2%kM7^u+}xMo_POY
z?Hy2av+|-$FR$V5m&W;V&Jxj?dB48Yf%_j)oA{F(B5GS2K5rNBVw!ol{pF{dg}WdB
z4X^+4j^F>^v)iCV^85Abw{L&m{PHaAciydev9bH*uBkq|nr6Btv9!kGUhPeu<>gv?
zF4vVmIIDi{%klYl@7w0K3A6t_rF2s19Mh#WY)1cs#s1ccxtz?JGqoutk#T0(da;D_
zUX7cJrmW#oxSSWp;~jQ#R;c5$hdPSQ6FVBb*h-CFNJ^$?bx&KfDkVU@dDg?#Q(Jic
zbzGRzbM0itw38lQZr|RtPGC$_OP)7v(~IqEWTxqy02y$1_0-RkL|b`gyx(HSo31I@
zx>+bQjCp3+=B`PNb3$8qI*cVhZ{e;vsLDOH=gLWsY2lJ9Qa*6mg{dl+8cj+y3OM;d
zv_?f$x!kD8h{xvAq^nbU?wmX^?c@qCw*Q8n3sR=|xozBYYQ>HeS5;<f$&8siLPixE
z1%rc(HcW2(Kd0xjr(9^mY<~%<Gv~E_Oq2K4%j@0R=TgKy_1EWy?fP{LKhCGuVoMyB
z3PiO!%~2Bv^2pVR=(8Tmz3X^SDw>%1PLF$)<TSf!VVOsvV(ss9S<51WeDp0v5{=p3
zcRh9g;e5l^qQEik0oN((9s1SZ(~8#XuX?=k*_=CHeD&5V_Do$hdtY5tY<#Z$y!pP6
zcEe3@yJ1Gy?5i8vuKxR0Xv{Nz`RV;)i5zx|^ykz_Fspo!2%fi}RYS03Uc`3mdw)N)
z$N&5ABEL?qZ};E1|DS*E|9<@T``Hh__^Oz{Eoa|Z^T<>GbkbR;lS<pxa9Pb?`*_|a
zExkz93^CysZ_2l4U0b6P*)uDYv7~JF(N7<zgicNsy>K&F%>KNWf25{{q(qw0vzs6D
zBqbv^HR!HxI#;)uVfvaCDGFy&&TM|XW>1Q$Ds!P)^1T0=-SP8U-P|VXcufm+NZ-G^
z)s4+N%*-fBS^1j}o0Meerml&C(vlm?cxsNQu9lKqIdNi@nzELph)s}z(Ta(Vw)2f9
zO;Y@=EbGQ*YP2HVXwoFdqARK<Mn%fX$NL)n_q+)Mv%lAzQiv(*?&-O7Lc?~lqnq25
zH908-%FWek%F>cWP0N!&oZg<#p8rc3%=M=;fB3VVS*d@@iM7R=%A5a5b^O<<`2Wg$
z(v5It%!FZNK;)1nz6#{ooSA=3KWDAvPuh5Gv3_sMB2gx_r9un;eSi11Pe%8k`awR<
z&l7g<{gC?baM8Pi3!8sAhOekQSbKA~`Q+-qVW4(r$>r@;mAwXDLgux5Bj5Iw+y8ku
z-QMQc>iM8mrO)*tBb@E4-!9LrE-U<57opw-sy`mTs;J-dcb}x+{VA_}f8SjgCuisX
ze%{~9@u2$S4v)H+U<3aXOLu<d1h08Q&wqxiaNc;{S*mZ=JwNT^B-J&MO|?;{s&+-U
zR)u|=A{Z6c&{8XP?v%G!;CZJbc5l-RzpM$`>~v*KQ|-UyI{(-sz1Xg=xp9)iWU`_E
z;oVD9JkEN7Ot^JcC~8yJBta?3gGQ2<PM!$Z9C5Ovx93L>kJ%Je2JdMak{c%qcHg}#
z^dcqYQ;5S!kKP^;o%D~BTD{z|QdBl_?@3TsZl5JOrRUCx6Ky92&UlA~7<nl#mat3Z
z(3ISmrmDKw#HcIP$m8S+^&gX_^5mry81UF=N`74t-8Jc8FOONxsR;{Gt{5i@sya(a
zCe7?wka9)X##vqYkk2t2-ITfhe{ETJRqAq_)7R>#@G;z3s+YRv`MqxkRO-cQYQ9SQ
z?#=p-Em06Rs)=5efai!oqnbzMbR$+<Z;m&<-u5Iw=u_ZC?--wqV1pxix_nFi+ikX<
z-Nkk}*drq6S%RmSzP7!X(S9BYb$tWLr*F?}U;EQ!X1{t)#*-;cGwV(~Q{6F9dG^cS
zXPM@1meXZVzxzUAqia)uUF!p*7c%?&=Euuyzj^=fw%zt+-!s<BmHj^Z?OfcPwd?!)
zmwjISb$VuPNm-$lj&j@4EJK~djsJJ<-y6@{Uf#9oa@pp|XW7qvxxfDIJ-c;n%<O;9
zautiIon_*;y06(Cr`Y{W$6vSGF@67P(T!=T>X8>S#oR93EDW2qStx57`-PkNVL?VL
zoJ;PU_%M~{e-qCuE$@>j0ynLgD5xcQ@cW)9lk`Gm<q#vM^C?f<+%}!KaH3;s&kb?O
zFZp4!HgA|XQA=`VIw=27dMYisa?-@AeWw=~q_?`ctxI__@8klvwmYdOzTVuVB{|cY
zZC+vA+B+u}c(Hx0nSRiV?d1K9Kh{OYoP5xClHvIko`uXaXG_MMeQ;;}hfAXKuAjDE
zp5YRHL1XjtuR*39OSxB+8oqe5gL?|^r%O+#_HwlL8dbmZDh>}YR}wQnRr7e=W6$~F
z4VvmxUN5!T;IPE7En}MI^NAkyZYOQ!3w}Q2tgX)6f-P}a5L1;H8Kdq|*czQ%eA`Uu
zU)_GE@_47a9tQUu<J9A4Wm}g|-j@05W$gwVIk!c*eyXQLUrzt?J9+{GtHA~huM(lt
zBAvAiZ}jBe=*>78FKl%1!*m~!*7}M~cYOBkpA++EhELKIkCW=tw|}VcGw^aT+8Gn;
zI=^n;&&Tcj)A!fy`}z0Nv%}}-+xb0j`jjE)`&{ML68-L%Uw(bsFRR$~vFD=XL6P$Y
zhg6;!x3ON|-npR5WIp4;J*UbxKYG2UVrFff&Z?TpXZiRR+zNYHWyotTbRlE1_y>y%
zmuG%{bas!%8ShhRaXk~CT^8=iK6o~mxqjir_i}lsyPv=P^=;8DQHjmnMLWG$KmF@k
zHUI6ZH9K}x+<2C{Q}+dz?NrfUlf*M3?M#E6On)8iPg(S^&}qxb4j0bJlPxEAWGg%M
z%Wr-aYdJT#adG?CZCUGzK3nhg{+yJy&UbauZrwlDS8K1uyjiAIb%noDNY`MQYuvr`
zr}vi^yA^yny=}&G)*HI9VLyYn{j*XnD8IHPZrSUtk{b%x&q%n<F}yHI?)6>0+8z5>
zUi#$!OVz|yQrUHCW{#-BU9sY6Djf}M9L`PV$9~yGFY8}AkLmHn;=j=@r{6xV3f(i?
zNHR0lKrDCDmYO@hon1bc({5eZR&~#;eBP$it#`LFRBcNAth?6AD0SDyOSdY&F3qyu
z?>|3Bo_9-!-JgH%#S6dgI_LHIhD~nU)OE9VR|fjm=B<5uX6p?*e^&OpXC(a={rB|@
zI`0;pu$%G!$*AtU9(9pY`GT!m`4>Jtw(Ee_+Do_R&huWJ^Hgj0C6+)L>FPCk`SY%6
zf4Dp$mc>0J()jtY)~Nlv?ykFj`}v+7**U)sr~3Lybe?=Z|JLcdvCe@XT^70|CTV&l
zESa&Q@jvr{rim|39jZ~ju<Fc2BW}|xbGVLd{4hKIf404c?XCkGB6>K&_C+k77bf!Y
zoBR2TKc!|Z5ApbTZo~cWe9oROoZpwq`N=w+nb@<EzpbiW;Bc9f)vOzh%J&)i8INvr
zzPPWk<L3(Z$9Fk-I|5o8>TBQBm$;WmnJ9NKCI6mvyZB?()uN9QcLTZlL+<-9CCTjB
zY<wzmGt(*i&+T`=?X<agBgAWoOaFe;(?YXNqvF{%id=BGGxM&V?z>I@B-KO&FAA34
zO}nu~s54^DkBlw#hRHoDsj;T>&DauBmuOyO7MA$;rJs45m)1*<#|&LTIUBSrT3>9)
z?qA6{G2!$>4Y3WkCY$}buqM5%#W=$M&@Yck3)ejNn0vm8?*_xQ;w5hBw(Qk8*NRQW
zdmN6Z?sYb{JW$nl<HVZs6ZhFR&wI_x9C=<)w(+aX7R5EsSN@E-R(zms(>;mD8`hZn
zi0Z!H`Hf@qJdTz_>KpiM9&GJa_mEPnwQnf>7Njm5zvw`A3;#9$8Wv#{&qv+5+m9Np
z6}xyfQgK6A-JBH%l_xQAbo@w44ZHi~s8+S*<Q~ni4((UX{m#dx2rSv~WnuU9jWfR=
z*uZc2KJJWI=ra|zd5vw0bN@}aBD6M&mD9Gj-=tjH$Ra2?a<+qAck<Kb{w-gH`Xp5C
zzIa?yo1!%JOV2NdIS)H@mxYHnhkA5~C#!f|>}$N&YwUlnVOi~yfI|L9Ev;+C=iS+8
zu6asWMEIKVN{7Nm<ulg*OsxI)ZwNiKsZ#jwwu=`Hf2}>e_Ho8^Prma%0^S-)DyvNn
z+<IDJd&f*E8<A+fCfO*JHyfVK;ksd1sHWJU*}}iiGya!&h4fqNroOX&G5450w)|S4
ztoweNrOb=hud{`JE!VI7IZtO<#&pXX`40ydb9aYawteGpn5%o8$l|@NuG@b$99pD(
zjcs;#`rACSXC(`d-@KE<_g3lumeb+AUiP`47ik^$P2fMLsE{`2n(?ufiK}k5#;o~w
zVJ=6PMeqG18&n>8tlVy(^TdfG`JHpW=;B)!s%Gfk-cZRCy{&K)_qX%PkDf?)p1XHs
zMs8$cO?Hr~fU2y#&c428S>p!`mN#Y@#;}V&+ta)A*y&xl4<`s6Xb~+=S-bw}*}Ye4
zr>)y_mYq}Y)!$`uZGV&4AI|M~HMhOkz-Z;dy4p2=eBFPj7yP<3{ly!re}&phBzH}E
zxUD|*wqRp(xIdrRuQ?BX8Cc$)>0L1W*&&%*v-5u^Jb%1@Z*Zk_+jo=fMJJbCOiKLZ
z+v*WJv(;wfM*B7~r_PSq_eGMGnYA+W8l@92iOgMbE_|u&q?~t|pRO%<x7TvHXRhJ*
z8B-<p>{!0~S;|DNr*op6*QImE?^?D|zByo<d&kQyp>z3GHmYw~?k@EzaPOt$ng#A@
z)l<~Jc--9QexgXl#jWhqZ@o-gq3!;8Rtt74_ZNF*T)Eai?{|vfn!wn|t0!|W)&5`n
zy5#F_`PlPs_JlpM-tg6Tx6a&^k?h^C)$d!$Zrp4TJma-i0sG>QYKKB>IqzrITyI@1
z#?IkYc28&l;{pqgBLxyC=FE|nd9-so*V(C;o0T6as>r#likCO?m}L2_##Z&Khl};a
z*S#`}XG@5_vo>6H+*<Z_l~{qBT=n-`SJ^q26nZO01$Q?r-Fp1`cHu`alke3gWbE4O
z+gh`hT`FjY0%Ps%-CfrA4ki85Ejlf8-ziwAX<NB%Mxul&i)@kbZ>C80DAon4#}CIF
z2u^Xlq|g4Wah*u=-pU2HYaHZWblrVcZXE665$`cuJlLF1a@y&H#-xLP^7=f|attqv
zR!7X2nznVShd7^X{QZKXr;h9YQr%G`D4IS;coNH<)=s&-JZ!m_OvE?;&spVrFvhT2
zs%rkbP1A#m<=q1B$ey2YIN)6)W9Fnj_n3Eb{TAG!3J0viwy5V%;aKv++?_A^2}6_N
z5w<jj>X{e)WPD!M_1gqJx~I2N>_;w_5!VW9OPj`q2~6I`;TeXun^}_1FLMh|InAP5
zpfOKop^BVWcYDUx+La0VCAIIQS)Ii^f7>05^Dy3cZ<U|j8S{L$H-h)&KUy&!Vcuo8
zUHsPjsjuJYY5UpEPcw9knAm*Sa*|%8&Vg9l^;TUvmTglSgX^Exq&I1DOcj2+^6_<V
z1qFAnu7x=-J$lbg=lgb}=cU7b!*sb>M;Nb_969#*>_^dCM$4K1x*hLyd?&Nyu5Gnd
z((}*H7qo6p4{*;h;VU(0->^cNZRW8ZHdPrO%`>ksN}pJIuj<#i(@#3$yL)F_Exh7w
zn72xB)8GB9`~SZE|5@mt2A1ZQA<`^jNM%8)euRHgR%&vIesF1035f5Ro0y)eAD)>~
zlA&N>Vy5qrnwg$aqF`)ctnZwklV22EkeHmR?~+=UnVjlglvt_nlvz?7kXq!NpIeZh
zmzr0?WuXr_A15HOD7V<g219{@1;nIc1w#;{G&ippY*Ro{YD#8uNq&)nk)0jx^LDt5
zEKN{0qrAOapL6AT?SYTaYgE`Ioep+P5H&f_XvniB`_)vV%U1)os?2arP|Z4(cp#-$
z$!eN>taEVq$!i8{dzZSoynJ-DaYn@2C{uekE7Jv?5l21$op4%y^mB{vF~I~mfyqIQ
zhC0WL(+^ubU;Sp!?$2VMsyr{M7v|Vj&AS|3mvgYz8FZH{2=Cwutuqh%@Zs}j>F(XD
zteu`P7ztVL+);XP_2d7E(ZP$-JZ}h_Hk`?-`raS^x5l}$x-frFc9>4qoE=|Qwx-VA
z%g6KUXnw`xm?Q1e|2;Xg<LUGADQy>~b-4D{PPf}!v);MIu{+xC$HqW?`!BEL|5cpj
zH(s&wNrQ5WqxrtS2m5Q&j^7dZS9*6HPhQn!ek&&l6Xl-=`+YO@Z~x!DeyYv=3sY_c
z2+msEHcMggtV6HPiXU>;KbJY@L)_PY0+v@;W?r3QY1%l;!FPdLz+?y|yuuU2gHxPW
zmZ${?uYgl5SwSEkOBT}=mY?e~zwqz7@%h(vqspM=vmPAIzICfQ{{GkF-%>s-@iRTx
ze$C|Di7S^Cee%BlQ9H41+5PH&Kf5k(O*aOscFx}QQa=3ui_Q9Xzd4&aZZq|LwP&0D
zmbJIvE@O}UFP2n(_ub9)cYiEWFLk<RdiGA(pZWLywW^moeKSq<gE$e>Q82feuH?MJ
zlEnn08fSrdjk6d`9sgxly?FR@E%)o=D#FK|p9Bb}L|k6J{Y>mXec9JhS?Sk~ENYvj
zaCjEi?ESyIp3Zpt`OuOlH#V(UsCHt*viEyGyKMSYo;9ugg6&qNtT`dVDIu4iZ_{}j
zEc|5Ava_?#wXZzBZQaZLS7f!k?!Il~Gq*kQWxIf)iuP@*Yum0&Tch70mDTj{%9UL!
z>Pn0XbzJyN9gmr&dXVp###s-PgMvS9R(;NQr}R*9zT)dyYI+%b{eF8c7w0Rgo9|t<
zd;im&+b49-;wpP@^U8DXgzj1Memq$<HLFSHO33zvqdQNq->Z73%d>u&ZuhkEcBb=t
zTi0Z3<>uN;^R4@GC;G(E^S(3D!xSEv&@grI&0+#4A}F;$4a{4h=HUCGKJxOLV~^Io
z;xl#pX8QK#wJ9qi7pa}twd~~EqkBKDi&VeDa`Rfr<-SV-w}gI!j5D|0aVv}KEU#}T
zuc)K%gi_yPDfK<!d*gj4)cU@>!m@J}Ea}g^I(_>4(iVe^LhrEnxQJ^vUkfaZ|I=oE
z&JuL-H7H-A;s;s}YfmHwTzl{QPExWUa@zS5AO5KA&^i6wymFgD%rnoq3)BLHYu03~
zT0P5dzo|-f)gk8HhYtNRJbC1!qO<RWNZ+UJ-@?9Kzw+OoV`E>b?pEXMOYO519?y>Z
zROFj_`+2M9$&D|aeGT@^@;e$O_op=U>?eU;%fpuRP6kD|$=ia5$&ZDyn%-o;GOvH$
zbLH;4fWTh`mzy762{CyU@@C>rZEi>k@t4nP;>o_XE9=zmSnYY;$8VdJwz+;?Jh?O3
zxowuh<@XfD2FQ!B+zrb*c5J3sLw)Dpmr64iD-SJq;Wu?mGo31bEBdC?x14ORD>|KW
zSxr9qRVPnfgT~p$6@^Z|20gR#ZUss?MJtJ!egoyTys8g^>oiTwO;pW7Aco||nm)a|
z?viD%@V(Xd<dxdN&X){^79JQm6BPU4bOTLAPzotAVRgQnsVX?G#IE&ws`a&hS*Ruv
z=R0++;t{KBTd$m3<0+rj^xqXZhR%RvC?;yNP0PELqM47E%u0wb^|g-qabt)06_%UV
zujKzbcU%A7TRzdLOL@(0CBl4N7yBKRn;Cs|<F=*SQfeJ<1qk!3UN-am(Z{*7t;DbP
z`>FM{f~<Y#`@Vh=q^LxckuYz9f(Yy*s5haM11#$_Knh>9GPveW_N==RcS7$jR6DV6
zneFXaLZ;qVSR${R?A*J<{GRFSmRSn7q4AJ3f0l#qgJtaD(Y_0JF4Ww(P-z9{rgfQq
zk6XU4`o5ZT(|XOhvlPNjr^*zx7`!;Pee<tRpZ4|%u<7QVe07@pv{kjN(wFZ0AC6fr
zhh&=r|D#{NSDMIwa^AcT2iCQIO`g>GSh4m=SnSm=Ki5t-6R|AXcjLf4r+Mb#e{xRl
zWG<iE5u+O4{dI4t;+jhBH5DaSX20Iu-Xl|0c&znu{V#vzFSDM;|Jv>GWa+X~*94Lv
z1?`f48U2vDjQsyW&C*>mmhn1Ux9`c%d(`yo!;2%<i^EP{Pm=z1Z0@`N{TtcE%1!os
zp8isK`f-bYAv?Y<^zXlrJ+0jNUtZ$9EUnvi`aWKLzVbgKvI?9xt|(M`{#$BArixj3
z>G$o6K*q$&ta!O?>(qzFy-QyzAMXy$-<5hKZnKT_r|<VZ2VGtnak|+%8&ag_&N<`k
z+brGX+FQGG{mV!9>SCw<KP&p?UZqLa)EeDwTi>4z++XqI&R=8mwv+7ZyyY!pS3mUL
zn7Y{gjp^?f*CE+FZiiL2*IQjfCR5vwCquQ}*DU*YRL{q{=I-YFtIzf?6S#Kg<J{Ft
zmz`Ap^tS|@)I2~*t+)T5um0BUlBt#VW9~MIK357qc|A$|dDm|(w@1sw&-vZ2pL*v@
z+n#P0Igwr~(dv}E(BrqJ-J0~3HB(vNei3h;M$wb1jg5QP>YVugY@1HhJz1~;!d2(`
zs(wA$`<QP^xrxlb?k^J$Z$0K`Arod}`E}~Vs<WST|Hi6(N_bZMvEuf!bC7~YvG&Qe
zYoWpS-fGF-33zhiYmzqGH?dE9c3!&nZS%tir%r@^+H&Lj>)-1t-_E=I@Y?(1^;_Sa
znK04%`v2I#_b2n;NH4t314=^;d#XRZC=cG8A9kd=d0pIZRdp8mN7~=dSr>2knE&gN
zokc|O=R@DC>vnGZ+#J8<-MJ!lcIP|)&-U*2tA8bJy3&4<@O#;y;NZhY=F9%?nx(+}
z`2XHtI~(h(pS{Wde{pT6^45pv-@jg6`>V(|@$ucy$L#BhzX#WsK1_0|Ex&L7(mj6u
z=hfNg_WkdSezolHGxpMR0&F_Jf4=z6o*h+r`t^0Y$|Yryk1sX*-!0s^%+ua>SK9F(
zE+5~$x1GD{<$K}ldv`v2dgc4FbGN_y&DeNe@=$}z-6;Zbv!j1JjkgO9xI6#K#9O(?
z&D(GOX3zfB{5gHrd&`@Df9F12XT5L2s?0*~A20Xq_q+P#+%)<B$2bqEn(v?T>t2b<
z#Xn~*<}c5x`ngoyDe-*${Vz^C{@EX!$9Y<A{?t_~|JQ%14_dWs)2;LWKR>%ZSCQw(
zk&9Q(`-*43`akhylE&@+T)xe>*00g5`xc!0FgyP5AyLz{e<xqbS6uh=SMB9Fiafub
z{gsY?7x&@Rsne!+_tbiR$`6l^49?J6HE+l2bq~8{O|!N9{b%d;zkjZ@z4s|^DLDDc
zes=k@`}69a{aHHe(6eg2n4i{r>xAY07o898kJ+(kS$6!7JFWL`{k-|(Uv=~x1yH1d
zaO4mD%831yTo{LD8W|!@0b%qQg4~_-gMAZ=vlWcMJ&_=N5;`GVpiT&ScSC{r?gqFA
zgW28SGBm~4-%v0#H#0^#5##M$&YI|_bKn1uxR&JYeosaA<}}sGS8tXpI4H0l;%nvR
zX`PlkYg;3m*GryMwq0>f3%AH}E!A;;Y4uijd+}{as|)waUVK<S_gnlfCS4PU#)!D2
zlb@Cyy>-5}PcBmMp78C57XS9dSN>cob8^#{)1806exCFEdq~EtZ5#{?4DQOpstgPa
z3a=O$7#dc9jxSv#$H2hQQH3Jta0PT0Y#`{|(__i=p6uJUZQG~)?{06;e>1UAzRZK2
zk%7U$-6#0jo*)J3>XcJ=%>FhrFfhz0eKxb^(~7`dhb=tbFf%aBuomun)hl~O+ulxV
z(b*56xbMrjGP`D%7y|>tvG9eNw^Rc2?`+(=@wGAE?*~&Xjf6U%e!eBMx3d4ZB%iw_
zr-pLslAZ-US0)&p(^m^_J-yWD^~A~db&YTC2)}i5ftlHA*-MW9Rx&U!JTnmSD><&h
zou9r>s(BYP1A`2su-^kI7U3Po+$A-^rnF7@$T9mL%eqRry{lvNZr_(bmv(vc*OrA7
zH0Pf$-lem`Xx7<lzpDIGm(HxWU^sB*>E|f_`bB%yugP_>RVTg7`8Q45ENm9f7U`Qc
zzZ%tx;zFn1eVDOk#flkA=l@!kGi}B8hEpptqipO{{8YB@?gSZ;=#gGDckjo)wpAN0
zKaSOycJ75ei?*-m*}UVcu2miWJ7b>v(X(lnH_!OIfuVEq@rNrqkFsg7G9=7OIz02+
zyo}5{>#Qf85Z9|)y(x?><mr^JXY1BqdR1z+Q$}p_$%ggy^L&#hem<bd!Z5>n*0QgB
zYOWi&+qyok%hynSzpDJ!pH-VOTisRmI4r&#8=X3f-#&Op5+?(LPRz}ieXGsoc#eKa
zxGtQ_f3z+5=AjD*79C^z{b|~+hH%ame*42$Zj65ZSX$*(@B2&M`WvFwiglaLKOb9s
zcHLa-^S}PSum8P}Keqg+X!zTk#gl8!@S4{==&%3t*T3%5n!9=W|L@$p_dzr~=Fi{v
z_D@T!o(g{4S$@Cv_~ZWnw|mXsy?gnx&_d?ZkNbb`u6=ziS75(G&HL*6wU0XGJMOD~
z`uV4gclJ5E-+QXx|D98D;KGFjCBgih9I@^CJ02|Z*4z2!=kxy`J{;!%^8NesqMg38
z&F&W*K5J@f`swJ2bibvO(&v`G+j@Op{+;io&*#pM+F5i}b^4ywB~LaUm-~5;|KHWe
zA9?uIMO_8wSARTO9~>EJ`EL3DU)T5l`gL7iH2!XmnYsDzviJKEUtUTTk1dH)n=JM|
zyzbg$f4jo#vHw3mo1HHh|8(W@x{CjQ;|12+&px|ln_ThhweqW1t`yY|o$_(XWIws@
z-YSz%+E(BDe}MUaOl+*}&;1iud|qz<ccXso%ZY{WeV1Rp9>4$fzTa{}`CXqS83L3h
z#VFo*xzevj#8Q9uW%ZP`X~EsAWcGXUR(wsk{wOeK+Ns44{tA6n+fx2MeY#HMw^Q2n
zJKyb!jovP&-^aqV*8cxb<Lj~I%_mG^W9KS`^#1P5+wOj3>+<>k_KU}sth7-QI=}OI
zoWgQG`#%r&%TFzmtNo%VDEWT>|AlRA(>tmjd3U7$_;r21vi-;D`~UpBxA*%A_p%a}
z{QZBYS-<=7W|?pF5oP&`2lx8x|H!}F{ob*1ea*9b_wH%0-}B{0^7gfno6Bas4^cTS
zo%dtIj*B;M79N+K|Kbf#-H*fDduneKpa1(`X~VtJ>(9g2#pwRi(h~0c(zQZ8Z+FbQ
z=ktDF<y6lR-(LS^@&AnM=+Iwl)<*XWuaDnz%fIH4{JxL9$Mg1lRGz$lM*ZLG@Ao~H
zUG6*cbIM%xQ<cB|N38z3X7jnqKOgho-`YBRvLu6;j_+l*q?ZXAyY{P#>BJO?OG!*C
z*StC{Z2hL<)$x6|P0eojE?fLTY5q^Cum64@eHXvyg6(1Tn;TbF-hOrLr2OWjqh7o3
z-n)BOGcP>+cE4rX#xo{L7dl$Ld^)Y)`#bXa-0$b!*F29ldZjA#F@1jRv*`O(HFw<A
zggW2XeZL+5|JQccbJ0t-pEP`XqwtoC{<GQl|GcVv9;;C_ujUE6eZ}R}>9Ifle6ANb
zxk-m%=ih(V=FMZi++U??7k}FR-(&T4`+mi~ufG2^nf>s-Z(H5h?@XJ1rgD?f(%t7Q
zpEoU^_lrMJY-YoBok*)!#Yb1)-ShKC{NGpN!TZ|O=lwYN_q)ALetgwS*7SLm=ib+S
zpIu;4a<|l+kLSzZFU#%aq@;Ge-R9r5{m$LHU-x~F{rY6Gf46(y{e54V<$o+#@%h1n
z2lH&@tBzayiL;l#v&p``Zgoc$!-fSiZ|aPU^2B{pp2W`EwW{HI<)vM2`>)@8ReDYH
zT5AEL`QobJAAjH1&-Pm$9mTYM->Q7EqIWyR|NP!xUw?bs<au?!)cI|{%$SoVoBjKn
zZ2XTyck}mr{PpOlcip$m^Vh}hzV});?Ua7q$ItzCzb5RdeZQB#V^7l7D5l2bWuKG&
z{kneL<%ZRd{&chT5f{JR%3eRkeebt#f1RD1jrio+u3bxBwQAL^+xKJkR+R+RJe|6~
z=83Yr?Dx%P`S*S`%h&j~7|d+=|7rSkcUy-mAH?@pls!EaI=Q}dV!-5+Danry`f1Gc
zc{b5~-?vYv>-T*;cK3Sx|Ap@If1h3U|NrG-yS%_r`L8?q+8=Aj|9r-+|L3Fd{2%U;
zUtOxqX6yd`zF+g6NV*Y&%-TycW85w7#YMOZzUgE;%)Wd6k2`(5-goP2FZg|2?N@!(
zsmJ#7SKIkp)_MM!`EvIBEsA%J+m)@pnkCHm=$y5E^sZNaDN++3&a3@4Q`LLgwQJXW
zzw8w2e%fPvuJYAN`FA&qFHiRW_u-PazW!a)ET-+NS7-myulTgq*QKN8#X|kgDP@;^
z>*M3=U4H-Si0|^Ve#;|RpUR}yU$y`5+v4kSzw-){@9yFakNvuRvc12B%&PVI8umrM
zUZ(44^(b_4RQ!6G-gR3^zpSjR=kJ}%{`THAF`Lt3^YbmHdfm*~=KAZ*CT)>dimw<C
zTvVCmvAsR%;Kah+?>u7uRjk<-+GSIIs_j|BE1rs}Y1<FSWG;&7dFAU7x7u9oa!7|y
z@p;?o{M~PZC)fY_`8>Yj^V#Zi*6-&kRnM*Y)YmDut>WXP605uS_Sp+$%>AUQ8@=t%
z`TDw#Q-bd){-1R=Ext1K{?qC4k#b7$6%YF#z0SL{BQnmle8rK~q6@R`<fweQ=B@v?
z^5>_I+YRiV&-q;beqUJ4-9XNWxYg!o*Xw<Xw3@4BpS1PW>A6pu_$zOx7(Fezxp98<
zzY{Tf;eSH)W6#tuG*o6S`R%#IME$nB?Tx=G3$$j3S48dYy8rsim9UF}-7Czw_4a&t
z^y<~C$Nlz+pV~W@JpH($`g`4{9^-S<G*e>AcK_XU`d;mM+wyyb$M1gq%KND0-%J1c
zJ!xmH=C4nE)4YDqr(3Vr*T3JEt9~j~lHaZ(-n%<~$?8wX*TnDt_^4a|_o;BXeXrM@
zmwy%g`rW%-uh&`sJN|#im4_1PS6`W4e<QTM`01&uxw*eWtMvDNS$^=~L18}&&wJW&
zAAaBee{kdFeeEt!?s}*wZF;XFI@?b0$F5yg$DfrlG)z4CPF?B7SGW6rPS37Axapm`
zub%tt{eJT&e6{-fs^)E-(-mVY!3Xy~&&yu+`NZe*`#*5U@A!Q!I$z&DqHgWI-}kmx
z|NbVsyZk+<Fuh;#IPd4~)4#sXeiC%8aPozFd%xR!Ix(G{jjd?s8ji~9?{#Hw4zJty
zYwz^<x{IsVzmqO!d3VuW{@?WapKW{oUhKc8X7}&MasPks%FnA#_MG_PoXzJqpTcyW
zx*XZ_bXxtN<@LYTcvQ5eX`j6wTYh+jfX!K{x@X4oH$`<f=g$9qr}p$T-RawNx2-xm
zd;6b<{QGAcdHNsk*0<ANq<%Jx;lP8G?~^ZuCA06IAE6a()Au;M`s=i#am&v?wy@eY
zUnWs>a{Rxq+qzwne%5>xm9yBef8)kdvH5ds3wR^kCZ6B-d2ar_((B@B|3c>fy7CrO
zpeOg+)?N7+X+JUTWjIH=h0N2EMLkm{O38gq`9AqjOHN2!k@>3MojKXpUzM(leE7Ee
z$ch^~e3o%d&yGr#?0I!C;@aBV1&=z_`T6<%mv6nNa_QxlW4*JFJ+omrAUN%OHv2E3
zrJ|dZ?oHh_e?{q4rK@wd?DOoq-TSI8DD%;w-H{GgX0z@tiw%up-{29?vg_Nl=)CIN
z@mJT^eeHIatK9JC#Jjulb273jri91eEq^|DzMg&2N!97G1qWT-pG`e~N_<n)+NEOG
z7#fr{mzLXWu9={_W$SB>qnB<@e5WqA_qS)llce2Q(v~eN%;jyq-Pq3aW0lLQ*=ZZ3
zvwwav+ZoHwzz}?C_k0n(&B7n^>ixes#3wEJ-D$Z%Yk5vio-T{^uK5CAmo3YbdcDH%
zaBznb!vUWC6WiD)zh!?iwQTY3`5htKxBA|9GkXwvr^H_ImF%r-)9A+^726lLeP(O_
z`_^-g(<7HfA`Aw#OW&y<Z53JgqQGl^&dM8qRRYwb#eRn#_53cp=$_A&>(#%0AKrN5
zK#uLglPRa3M>g)>a7v?Sp2fr;;mi%5Dw857K7TT`?BKkJ^n9D?)9?EG)b(%5EnOU=
z_`2A74anlNi%xlMzJ1rE+y6vT#VHPk3npvrXK9@~CZ@NOn_uN=tlw_c2c`3NE^+L;
zUHSU0TG&ycuM7+g6GeB={~~hyt;?Qn-u@E%mFx4qTKUJ_kC`z+_U>O67h48~1dC0e
zc;CKX{hFj+nZ03n*pEA>jy=u0d9ClAI!J*5Kac9AgA+qV-sZopyYwowEa%I~b7j7I
z)_46u-KPT=KFzvjZJ?vSdGhNN_N2_paOYm#1y=pBD}RM9=cv>J1up|b!@<<zpXUnp
zY`Gd?AT#-{zmKS>uio!f*Q)9hMO_cP4q2r;rF(_>Ld*`=fhS#e{oS6W>^`-7{)(#a
z!jf-Z)HQ8fX6kIOHMv*%Vp@d&1B1t`WnXz!|NqE(FZ}=SvFZE&KXRA<^^`Zh=G*4`
zKM((}`gK)2zW<8VnsmA6``;ZhE#LS52Ydd#!r!6M>#bJj9(TL{Xqi-z+_6~&A?r<;
z)F<D(p}5yI+3h9YV}*_U3=J`M^$YSNzG+XpylLq>^?ScwCC|$8yLmxpyVUC7oGIMx
zOOh7pIv(du?>=?x$tn4Q8|=$_swR5q%%8v7*ZbvPZ%{{!CAB6xYlfHjuK7J%whC`I
zPQB~@BxlW!8;>F{-1WB*RZlbu-4S!DM9%Unr^&mDdxFMiw;N8r+;O?pD9G&;$0>{J
zrZOGN;@(TuEH3^~`f+*o25p(ik0tuDPEUGvtJptg&yn!WN5Zc!(kiik7&0d|xc^me
zY@lJ@59>Y6J+D4Si-S9q?();UD_?F6DA@B(eVtTvX62e6FIFx5&AI&1!x^oCdp|jt
z{Y=r*E?{Kfj!~Qa{#EbvD6#UE$A?$GQM&o}$l7xIi_LRa{dif|q@4GP^Ufzhi^}R}
zs|{CJGbF@$s~8^)$oYRFEcx!lr0>GBmtI=0wLC8~Fnje8-d*z_<eEQZS?6fbm|Zhv
zBFH}#SA^}ge=lD7ZPVIgRqT^Lt&?gGo!=`vb8_hGRldu(vQDhDxSm!V$;QCI-Fxq^
z$|Q}o6L{P1UHY3+7<{&`_iT~hwrTIw4a`9O_p0xc6LwfgOY^)Gzb*Tw?opuG`hwG2
zMY#9;<^(0pGyKjUOES&2?Nz^adHRHKZp&3?ejP2FT~idb?PBV3h#HBgxXXu_4}VJ9
zeW<AG#e;+I)I*i7%5L|{{c82M#GVl}7VvoTUH@<WIi_llVvXiThrFn}^k&=oyxa+^
zHU6w}`YtT+m4U%vSA~(V%?_uslJAp+ubZ8kcGPbB;iP3yD`qUqtaa9`-LcMnelKrZ
z($aV8TlrSsU!4>2Oo(&+)z@FHgwLKaffZzx^696a?@o028J7HU$v)Xuj>4?wx$o2&
z0{IyX=Br%3*;f#w*FQD7H??@v@6MG+AK$q2Oq0brz5CUQO`kUNfCe{uat-F`ZP_|m
zJ0*GHrg!Q}SLbfKsUCj9%<RHn7O=eU`?^c^F<IH_c3msf-%q;hzisWeQ|HQfP0e=A
zXK=A)XjquKY3I3n6`9gE6Evo2y{_AoR_N@YTVnrFt4|B6WaH7vlC|G&Ok8_xmvU#)
zcj49d{-*rCrMCax%|3`@6Dp3rQ%{ZVb!~IoHDBXe!>c<R&gh1pxCC{B-t5!zFTAI$
z+rkYFjC*XqgW}JwoL#GQ<LBOUQSDQU7{LyCdDq{mb?q^yUvqMvdwdt}jx4hed>WSg
z$n35^!y-9`125Q;S2k;>I4|Bkf6l(6;sIaR9+Qgw<|Pc3KJaOl*eiLlgX_NUd=P)H
zhou@6@b7MEO?>MY@%C%=*R{u9%`LHK1SOQ@(<#NW4=V~%?)bg0n{;va{E%5%vts!6
z{`LfwPOERctYZSjGMl*cIhJnil&^DBc2^5muD$Ws#bwvq*R!4+Et3wbWd9{Rg&Q2k
z-j}zW2-vj6Cak81XX%sJ(ymaKUA?F86s<P&zZ<=4{)MM}AZ0x6@9Ts-x3sIhstc-q
zl~ya-8o%^6Cuj&t;$DH)ZNa{&+oYtg{!Mx96`E&y?NMM(7~3nbzi+T5tvvLr^H5l_
z?Ztrq1(n|?&y9}aite?PmR|L;jtMlp)i&+=mU;VJ3`z>_<Yk0>pS-nq(`MPb{tN<N
z84kPvwJgjw$u6u|`P*~z?TvnA_80ZHE&k2faI?EAH#hgwv3<3_y|#P1pOP=AU}sD?
zIO(qcH}PjFx2u!xPE7hfS?lKCl-h;AJ70-do=-}15<4K{viDPgS>ChR4;>jIEWW%`
zZ$7zc?Xg9*`ETnsWwu89o!E8%)?XHeXDY9HrB57_?E<N@&`K@-`OYILMW5?$vQp@q
zx=SxM>F2NHUeUGRATQkcyD&p>@+-+kPodjy&OK*3P-8yl)IK4ZieKfj@zt-M`q#fT
zm;bZ;|NF`DweL2n$JagUpS#lM-;U5%q3K)i)?J;(ZoldAx$pV6|DH2_o|7HB`-bZ|
zW`lAynXASge8oGbSk~6{A3y2o04kepY-TO{>K?qlobOfrt}p#}_ZC)8znmBQYW3Ys
zr*_{6-@Rn#vFCwW+P+gJ1`AHP=n$Cy>5Mvm->z5h4EX$hUR9nLVYmM5T}~1Bz};n)
zeX?J_s6R<9JLtqbWueQmA4^}aVp{e2N9d}39$~U~|1Mdt?<Z*~>L{5$@nneM*@qiA
z7spldNl(3W%x#OL91BCT7kC8il2+HJcj|WAlkWyik8ySUF3iwY%2E5(OS$;z$^15U
z#sdLKhi3+D;GR}$zj9mXuh8cwU(fy%xAf}koT7_=Sq}UOSeQ9$V!S+LEb#Fk-NirH
zZdlLI(e2lLUl;U#%TI3U6R&QcFtfV5HI#e#Z_adO(<ME}%(;bkFcf^zd|#(zzEon`
zU4JbxQ!|lW^F^ZO|Jdu*J2!MALm!)qErYx9#3xM)BQjTSTz9X+Y`MQk#MxzHp%YhY
zxNOM&sA1-<`jiQjkRMOF>)*8SP*`&7!rd1RY}n(ya@&@wsdJ<M7TsC5@nD|OMp;%+
zik7%>@SS>V;qG$<H40&SZuq^gdsI4a%euh*_s+du6TC(=$CM3}sNJTWdt!Cy<F`Xv
zT?zgs5`9aJf4VB)_20JcQ&m>(ue{_{m*b9pHwTUJ8f?o@x+~Yk>VE9)F6F|TW)5Zc
zmZ{F0-{f3>Q#M1}cg=NXkhPDcUe*;AwC2=*N%%gwVO37#!;8^k)pO_F(o#!dY*@j5
z;KHVzHPiRW9z7A3oO;)PR!pB+{oMPj&9{GEU1HA&GT|_&X83+0;rq0A>PqKj_urD%
zFwy%~DFc;uzHE}KFip?rgxgcq@}=+8{dT*$>@wbFc4F<ZJzt?}l21S1%3Ry|C?`kp
zo~y8A<@Bg<-JrXkuV+8m0m`r-XS@ii`aXHao-=+ayZZuk=E}aTdsLVc@rth}CMP`i
zu{0kjS4+%(Q+FwD#|>-^+?#(}iWnIJ`5Ou|XNk%AuvNQlld8`CE<Ewowrwk0-)e}M
z-}MI#iXV8uS7twvThr;{!;rkdmA^d~_-)hqwz_NbJ9P$!E6fQ6ohe~Yc3zs318Sn`
zm)LKd@kcK8_A9rYPS>87MZBzI0@WXGYP;u)+`8qO`uNcYhoF0^yXVgVw@EMlWdV)0
z_pH0|cgb>#JoQJhITcHOd)Ah&zFzt1SK3aGZP!3)T;Ua?f!WQ!OZIN)N~-r?V;u9Q
zE@|DG4?Cy!p1xbussnLof}Dic67RoVw@>eye<Sx<L-@^&7uDI{&Wb79HJ<_G(S=V<
z*On(l#HB6gzdN<mK6AxJ){y5LwL|y6%K56L2UgTC#K1QF>{IK*ACoq`?qoY`c=PX(
zkid&iHm&Em@{@bD22<SfpxlKq3=E6p5;BgyQ&)am7W?$Be@N=>S#CSqK@MSXu|4p@
z#P@aovU?my<7-S+woAR1)hV-IsaawlxqFGD-jW5sIYHqn5vw=f{(`yAZ_(3*yMw+9
z=huEU^fg_clQAv2_o}AZDOOODZJUN@9xi>SE|+?_Xgf#Q>)RnmlNLdZxf`IQ%l`I@
zucp(+z`Oo_cb|M-{VOcFH}$T+ja<5g%+eBu24#`2w{G2XlfAh;|Ne^RM<;H$%e`_;
z*e8AUuS?6G#)znUPgiaH$$i)VNz0nmZST|>7?NG~ZWLTAa^;lqeI9<M&w;R}AG`C$
zl&U4aJ8$n>wKa~vY}KRXzd0EWYzWL>q`1AX|NI99P-<{{vh#22wlZ+H?}pCQx=_o+
z+{H19w;vTooB<_o36EB_^@_7@xNKhc^f>?T2UAY!!=^gc^)2cFl@7N~Z<DgV@%KpL
z)!Cx`TXe!+uS#DHDvVN>^jr~`QuynLzx;IXndg*y_vs|h%1>5XF1VaK^~}>xvJY=a
z&uy-MD^s&L`@`3B3o{l~Y>eG}d*i1WZL0gC{`wc^*7}O3KFL|qv!HECq1;TRSH2~U
zv6()3ZS2cyYC)~y>oFcniw_nQf|`f71pE3+><xd~^!c8SEn2-%tUu`9UzORXS`JH|
zI&srO(ves5@$I}ax38y)<9;68D45&E-ni3D#D98P^6ly*+gi?_+%1bwy$S#NPQ55<
z+n(Q?3=Hm#oa?U|du$eU`}$+;YlA1Ix;ne(i%dKI?tLep+?%=})u6dK+0V^`z6+mo
zJLMs{Qc>ga7vK7j{8y=x`TC3G{);YmF0;RBzv*g3<@d>H+wa<M>T*)CIb3G{FlPy<
z<KAR+&h<+2cAhidA5)f1c-1Am>F&gd@6^Ng{yy26EuDHgY5weY>I@C6y(`))9WHO#
zw{VJGjQOUk5i5UtuD$p7$j-!>-setMy;|*?<IV`mGj7vPKj(K5dK%q(baG^2OpC?V
zgZp-@OgnxoZKty9+N8xX3=9Ha6EaSgY*Ut*zIo%O-=1dSZ|W{RD$L3JEYdW0vukNc
zq-7=}gTkwWH`pG(Oz<zMFKo@x3Ay&yWy!9~X1||s-Bg>t_mazZVbH9bfx+J2p8pFn
zMO%MpESk5+yUhOPwp-fPw@t6y(Asf>50vYAbS9rI|8~sl_6auUjUkcWC!2OlGi5FO
z-5FjO5~(51z~Evl5oI$|@ZdTFb?v6uE!LAX-q&ra&7JH~x;Ae4iAqocY*@kWtX*cW
z*>gkog?yc^g@B~g%eqAo%&UqI8*P7+^L*uEP*l0tN<{0;e}8TF{1@T3Se^4<)?IoN
zIPF)K-`zLdE4uE#UQ-&O39)b1y}v3UH?r1TxVi4i-y=!W?)qN|TQB$KNbdgi^Ln#E
z(~Ac$pfpO=qs7cG{bd39hevOH=E8puza>Rm*B;&&^j)|-cdAFJ`kHU2T1CG4fyyL@
zE6p2IH|^{zu(2@8TV8H|^2J?$EniVzz2moz^8P!tAoc*bB?^iya7&b1JLRe0rn`GP
z_k_KvQ&PJ7t<<;bbkg46orgiqGO(RKpq8l74dKbry<5M#C_8IbhR;nBotXF7X#1V4
z9#8=w@HL_2X3Ream5Xv(?~K(R#jgDAx%l+HE8*3z()O;M3u=;rgZdt*Nou#_YQ*#C
zUGp`f!&eopHY~iImTJw#z~FGjc-z4UuRNn|`!_s{SW&-Y&+n7xbanq7I$GAtdleKB
z3@*0L+NJiIy|;OLU)62eX1L&0@g}Im;>maYZ*_O4EQYs8^9q~qIA2>24mg3YJpN_&
z6N@2(OCcxUslVpF>mLFNFNQ_)9=^Qm&o=ojd$d^pySh!8J3)<2P({ShQ3Wd9cPn=W
zZ4j0hUfF!tf7;e7bHgGOUx!bXf@(g<yL{8ZfHhmLMx^KKfM%jnzfXP~wz6ooAymP|
z%voj<{?n%&-zL6m{)ydFvb+zheskxQ_`!4jpk%xuVR2k^bo9^o?{9CX-?;PyG<T{b
zp_OAA=279?*|X<#aJXo|T=liNQy!N={JM9$%AUZP=Q)gS)+AbYIi>Hu5WNdDnqKN1
z+vv36^J>3p(Zvfv6V%_sk{{2t__U4xP3Ej`UIh=P*IRwKUHkCiA*Zga=%pu$)z{~L
zs-7CQ{@&jsF(+GeKq=3+`Apd{$s59o?>DN)Z;RC4zUD(t%ria{Py-KYyXEsD&Ej8w
z<oZ8fdAw%dv00_wcSFsVrSk9Z5orYV%sH|=Bs;6DEHkaoD(>}AnRY(AxSXl=aA4tM
ziGF1(6Pc$aGa@A&L5*e>(<MFbZII@xauw&T8>c_@>|qjTU`V*verWsC)lvmNK{w}K
zeD2}@z^I3vfuZ1v+g|5XqtG+2pT{eJ$0Mc)UYTGdwb{t6zv}DPKFivFJL4Yib_f6!
zhMLMN6jMzyG?uV1fYKfVsOVt;B{TT!JZM}B)a(J3B`7oapjH{OAgJ30YP>Ljat)?w
z3i#IpKuiO5%t1{XWM>@UnZf(-*RS7?f9^4J_kUNUInkqMasxOJPkHcaKK_$r6nf>l
zbzj>G^`d)sTy1~;nWG0D{s?f(@{sJm72v^%vi#tHgxc<~^=sFzEvdf0uXb_YnQI4M
zo_@ON@85?xX13A!b|OYkKUexSwFbLwz8Mw&e&rgI&+FM3W{7sCs7Z8f{oY}J@mqk-
z+_U#LzP2b{+Sqo9?|FJ$rHl4b^TG`!)xX&JJ5N-GhL*K2-neK{(zLn{vo}R9y62?1
zcv<Gh9}_IP@4Qp{ca?#m{rlo2_OmWE$7*Ojj(wjHbT9PvhF^P6y}HIWdF7#i^*3!&
zm(2FlkuI;v`^COobGGmKq;rRzl+VeuFIE$iULeBIka_C))_40{HmFB+m2Z65v*&bl
z{9bS+@~q*yWWdy@qiJWh7g#K=diuC{aZ*h5!7u!BS)Y`jC$?qwD={#rO+59)>d>#2
zH67)@tCQv?*7}9<`%D$J>j!0Q{<65GM;C|Oes=t+L;D{s{_0;}KkSI{dReBCVl+Fw
z@>BJ-`2~ry+*3_v`pETPp0WPy2K}76g`k=;=$NySg!kTimOtFCKZxg+w{|wXdHQ@{
zZse=gw&_0~sqTyVxZE|Ar<C<xjH|6Bhk4+w$?WcTt$!ZW+@GW(q`lSu%=6Eit9@^%
zh|i3zddV8L`fAd~XP<Xwue-Um_<7|1|9|uCzbt&cZpWilw$*u)`gcBT<Nx!qfB*lJ
z{`0ope*1L(?c37(9(8r^|NnRSoO6#jwd}sX+x@=c&&T@RACKL&wYBAQ-?;ZHbZx)|
zleg9Pf4>v<|C4Z0$#>6jUTL$rwcjeg-}`O(v0>rDgDy(<Zrsqxi!V6nIz6W7=I8VO
zA3kiCfARkP`KLv*&2slWY@3~(mGz{1;`upVs^_g<-^pHIdw<9K*H^>icfQ|u{&>>H
z9J9q5=g!wWD~|ttD?F~|V`bs>+4=kK-FdS)>g&hn$K`&9rKUbzalZEFQ+xYQC#G9l
zTd!V~Q(F3UciG!}I|BDK@bCF@Y5u>r_v=D}gSGFkTyg2?^!Uodyz*k(^LIW~+rQs*
z`srOU@1pbnMg#|co?Bj*_4HKe^q5cU3ghQh{I34C=l|vT|9VzcE&ua;_qSW+_Mc9K
z=Wbh7_+C{1&9>Win)fc=&==%$@BR7q%nbdUdw)X~Kw{9dWB$&E2baif<Q5YP`r;n^
zNiV$j?0PG6UG2WxJF`}udfxQw_aipxohvlt`DV{uVV;+veb>}%yYK%6hHvlwzNzXx
zZSSX3@#}WyUB9;Wc(-z+!|U_)|IU<NzpIcG5FWmqBlL0IqT6o;3*Ww6{{OwJc&t{x
z&DSgZ=WV|;RUWJPak#$zlBfD~`+pbR<%K4G{P$ZvE2E%OL1|x0McexNzt*3G>wlh}
z|Nd@ue@%+J`-gA0^LIY(JD+!Ji>uA2M)r4qe;oh+aNlpaDc?_}zkB<3@26AV{kCPd
zXPIUn-?z=b{#Ww#`1-{)j0Y2{LqoTA%wAfeegD&r{8#JiYu`?bw)^w3|Nr^N{q~Og
zCS8xKcD+}6#?brUXZ!l1k4Nj3;|rp1uey}px!Wa6#C+eErS-oqO@AkPvgp&S|JUpP
zK7Vx7d)egAERl;kW6Eys-v8@r{l6Q>?aqGpVu(1gX=hD%{+^Phu?8Zteow!wfOUR4
zE3Ur^{R8U#SZZk-+)dL?7Qf`R^ojW@<I^Vma@+pbZTu~+UvmC~XIW0xy=}V+KOJ8a
zvGG#g_VV)buG?3yeoO9){Bx&xztzK*xAwm-*3YT^R;j=L&!rvnOYc>_|8uT<pX%Z`
zCBgb{H`DihU3>g^ZHm&wAMeWd|NXkYKKjWXCl7PNs|qr9K~@z!cH3L9<M`u`CvMl(
zC;Zy_>)ZDIh5vqvpPHk-Wy_DF^Cy~DAMCIHv!tWy(cV2j9(`Uuzb?(nc9-J0Yip0!
z{yhEN|7YmDibw2AKc0}z`_bUhtH1xxb7uBk`g^|=ecbf_{QsZ#_wG&nxX#}?cX`Eu
zZ*QZYPFTgU^3nZA=KFt^s$8l*DjI%D@vyM}ox1b3<z0_%zvbI^neo6O!#StKcFh+N
z59*jR{p`!j&0*aq*K0j`UUy(M%O1b^w-dL9=(RNY>}4wVa!>pD_V&~7`~R=y(9_jz
z43EDW|7Yj(xDW6D|NEPJ+pp@^%lS56E+iMtDqZvTc6rT1?(+Q~kG<{|*Z+C*eBG|H
zw^i%6&(Pfe<LG(&UoV_LecSup?!w)>smLn}*6mEYez4wVbLG*lZP(+fm)gAAy8XSp
zl+={Mf;Fqx*S()-`(Av#`=6UTKd-rVEqPgFdwAT>)7JM2f9)v$S!1{Q>aS<B^Z)!j
zuRpKmll8H4f1Z8*nLh95%!-x4e;!ReyYI&%?$zPzHMy59WS9H#eBZtkyYH1=Or5^>
z_rv!6zb<*#@A~_#|I~_by_r6CpH5tNF<igzSM2jS#f>NG7g=~u)2V&f`h0t?^~C%d
zhJr1ZKqDp7Y~LO^p5U)zVxaTB=$5Y1rMZPU&JI`AQ}%u>TfEh=^7rC-6X#+qGbpx@
zDZlsg=B3c`+2;A8lJ9P&&lfaYv~647qVroLbkgS(o(uN>TX25f?0Gex+NZ}=RlZyo
zD7+&!HnzRQ$-ihl$3%YHFH66DGtb}k^8M@AuaDQBslHcyHZpxK=y0rO+xOSzU0<hd
z|NrN2^SnDYpY?0M-F*J{h5LWSMfcq8K3)9(YyEQX<M(Smf6ZQByZy(V)YH@MRy;mC
zxxTZpk+J(|Ox@eNE0@p9Gn#oPuV3S9pX_qIOYJS;oqwi#EzQ}seNE>5ou7R^Zd|$Y
z=F2sL{1XJXEj*~2_qkSpp-=7So@<xqYi!jKlV1!PWZ$|j%4OH&YvwP7H?7+2xA9U%
zqMZ9)<%B!j*N=D>-^xtCQ+)p3?Y!Stp3JZN_fz~{&F6Wa&s8r!5vM+XPx7L6-MBp}
zbN#k&f6vbnwY<jj^fX=Z!dJK!BXlurFM0VR{BGwHl}qz}C||l{eBQ?P><abgLEiCI
zB7u{&*Z+~8ep*#4Ozx}K^;f>_6}F4h>YhqXbZxzvwfd@7-U-FSF?!~&il6TNG;wE4
z*gdiHW?F(w4A174s9nD)eLr4e<K^RT4{a=QlV7&dB=m<3Xf;WZ)3x>IX1`N+v0c3T
z!=digt5<u6ul03N(d~D?yZig(^f`rPnjJl<+i&adeslNxo#N-R<#%G^?=Q%_<zN5n
zv1#_TpEbJ4@-<JVUXQE)TfIHkI#BO)#fO8xqoV#S-gN8NS84ryKQ^tedHQhoyI+59
zq*r{qneJy(xcg>~-_oG`eLs(>NR~{|Ubo}bv)T4LDnDOK?!OwoqT`QN(6e)M)2H4$
zI?vX8XUw~qBG+D)ba9oGmz$cJo<Ft!%D=z)9R+73xfwot=U6DO-@?tS7N7h6eV@vw
z)|sjkpD?W|I@OkDsd)QM*_q2=zX>zGvwgoa&8pw#{~zxCA6j?k@BRAiQ}fg7ulByL
z-Mu~k{>JL>^N!2^|JG~%E-qw-dhGtX%be;t^4~d`8?WuHeqZ@yqCP(l&y%7^!B5}b
z{e5$zJ+}61wf_D;i^AjYZm;?I;`HNrmCs(b%k8?KwYAg#{;sb-I%m!6*;@0nYxnzo
z-!Hn$|GD$rE;uwaG-F#)>`!Jt`@d&0?XE8FxBH|2{}XTJ@5S<a*Zw&>ujtgu{r|qM
z*W2}C(#-$HvK9;0-<p}>XvlCt;Rye}6A7F4<|w+}zu@tG@~u^3+mkPI`DZ8IITss!
zwB=3WiWz^T)@+ZhjNi-5{>|KM+qp-RH?yz1c<RR0t3Oxz-~D$&Iezxf`e*I(bqkg*
zefsCKzLYRy`cIu%d*c;f9CDS^R5pzf*tGLcqleS{39_B#om1)__Wn3_|3*UoSF69u
z!kfIKW2Y1<6<-SHpOJm`?7q|b`;CNNmhQGSuF=|lyY}7A_e+*AeAwo_EcN^3M^0Vm
z3SySn7T(D++q&XZ;p!_6iublwh}=H(qOPb#@N3$^b+O@7^+h5!r@htPe&^e^{i{H$
z&H8OVCH$OtcelO8#VZ9n|NYxHJAdE8KPUQRm;ZZvf8YNTd){p94dL_uxhkFEz(f-X
zZ`nB$-gdVAYJd7=PEamq#nidc(M+rC@}B3eSZ7kWQ8qB&ZpJ^Q%gUZhcD-cTz46s+
zX|?+uObiW^_AKi(2;X(duSTXz{I=$f?A1|w&k0{MdllWg(rfSKV@Jze_G)I#Iu_Y9
zbB?_TBSV_T<g2^qi>Rl3U3)BPWslv~(9BgCW!Bep^CncE_!W9IE_Gpy%U<WowQ1Ql
zc25efO!!t%Vd+1|{*lfi5rzVfM<;vaUREvo&0T$>%w1^bp{|o!*-K9p-@a~sk~4DR
zXPq>)l+G&SfcW<>-}4_&V&43<MQyU?{B+iLOj?UiR6f#qG@pk-?f=mo`5LOrlb-H~
zP0`SNzbbUi+PLR!sd+p7t_6qZCVgmKVcxB!eKxQBvW}f%_d`u(28HR@ch8@)Zj10o
zy?Ht%_K{mo+)jvpwc4_Dv;G3Dy7il{9X!GT>S0MlYt7|u<M%sJ*7A6!Q*}u3Qt$-l
zvRBn7s^-@9CvCp;w*|CtyC+v;p5FWkZ(n+!aLww|Dn9Vq##esJW$_@BU2j0^Bp4YO
zoKI&*y+2U!v*nG$nj3$Qga)fB-Tk<F@1w;X<-Dd)HOZ$_KF97Ylzh|FDyumubMNoY
zm5UbL%#FW#OF=!wbx-jHh;2N26VI@D3vXID<3#1A-<@X{mD^heZqxauWw-Y?r}%9_
z&>D-z%vsmub@NQc-gLfw-}#MCZ1?;t7HgC)t&M(kNj+t+-`08W)IlB1gq)vy$`<G=
zy1#ki)ODl4?cUS1>+P0-$JoFF(_6cGiyBw3Gc+t*YP1tH`B><*O<BZSeE0m2A9qeI
zdzxpdc>7V{s@y*h*gyf6+^u%$sqiNDUqVIwdArZ*DBbPrwX;;b{bbW@?U!{-p!spO
zWtma$6N3DXo+{k^FT?BJ)qrH~73Y$}SN+;Cch!!p)h{5*+NPa-`c-iE1iPf=<_?@k
z+k#uy9@7#t-7S;bXmxW_#1ZSIvtT|@I?3ujEnrLgqS(Eh6TclPTz&M(ca7U&)qg=V
zPhWP*hH>BZ2hIE(IAG!{-LbTJ;UT$Atrg()sg`f2HC(TJsM(vhT=zlfp08z-J2@jk
z{d0p2HF2+B`cK&=CHyf@Bk)b#qHCeQ_nz{6J)3EjonrLz2yHDb$Ov~HI2c`C`mEb*
z9ye>kTaKf_lC`ThdIh(he;cv?imrM}v`yFEuK7#A>T)(d^x3f7Krvck`)g2%{7wDp
zHn07!Y$|IfgJ*&+Ko-F8_<{z>Hr@EOMBu%W^U-(eU;UyTLe18G*it3B|N6^yYm-(R
zf}Ob~N3ULC(uD9^C(SfIrfmG}ncQ3(>3ugdPIZCR-?*j6@|MPc?FA2#irinn+^RNe
zo3YIFyZ$<9!QJkbWlLX8kM7+mI(sTCG@CbuRIl6|>u++!KITSd&cvWx!HId#r%iK6
zblSFY;jT+Zj+TK<OsMqb{?7ki{^mrb8^Y2(%b&)+y9HXPdgzwhPG#4<myd-dgVkls
z%-OfuJnWWpn981zT{r$NIr%hV_l|?_OJ8woh8&GM8kP)NN|2EAF-6Tn=*^Mi?>v;I
zUtgY*d+k)is+{=SD&HsMmRW-ef=1{5s@&Y%rMG{7dn;X<vW<_4VZ(|Gf0x+LniRaT
zC~8}|0XXk7Ufr2EGrDZs=PRL?|FX<zU12ULc+stO+e~>D1|5@~d*0Lqy~+{q=6xOA
z+bOWz?8bDH>u+w{xbv#?*WPnc?05YeEIX<ew>>)cY;&RTZAICX1bzmwz7VVHf_4^)
zw*~vsH&uNXhLi()4k@dr9DS>$EiTSjEdN#QWc^~dXQ0JD1tC&h%TGs($#<xvd>3|~
z8tJkt*!(9~bD7uV(|+HD4`>9wKY=#md*saN8RxTYYdf!7v&X-ex?*3(_l;Lne_QbD
z)#B#Y=j}SW|3>)kBjK-Cu8!ll>u({d`FKxHRnfK5D>Lr!@cZe3r!el!b$D1X1v28(
zaabeSZ2Ehi<4<?QZcvxvIo=jr^<6mF)phdid(YNS7T#1B8n{aL>HKTAr5Cp?=rK+)
z3iT<r$k`Q`pW~9us>h(C(V1eVp`OAmzq{)3(Rb?8ye2;1wl*_Imu0tD|KX&x)rJQ&
zmR-$RTElttOn7oY34?(hc=@-}_sL0nxcNoYQ?lPoYq-8MuhYBl_R7+$YM>Pm&8r0d
z&+Ps4YsLXnyHg&LnvX9!)@-)DFkN8cx^j)Z@6Vq2H!tb?WY^a2w_oO!tx~eS4VsBM
zy3#}Pe%xmJMs5a+Q%j62|0eAY`aU^8$M(|SBhSlnV%|*?-t@?SYp=Z6ftsWL;}{||
z7IkjfSN-NhUh>_EJLX&$^jvp!^_v?nCJS$R9bWbO_oFHB1rhfSF1gd~l!jCct<9C&
z|4Kyhd}wqiXc*ITx;1E$*I-7D-u<i6{B21^>X8%QwgpEP#w^*PHhr;ffcm4@1FQW{
zSiQ|LWdmi%V``IP3`z=C8&3SZ$+Fh%T9#R-P5Ga!^>&J@Uq$yu>OvQHFkdzSEsB{x
zf%hx_Y0x0<>Tt{C)%V|rM(y>>-wRq^(^18ckWuM-KkLndmK^^QP!aTK<!Y`9(Acd`
ziG3kx9r%W;5}?t*Gs!b^);-p}>;GtF&%Ub>OIIFxUbZIs)ugj;|A3~S%kvprY#9u;
z-6#NMurKe__jcAS{Oh@OZP1gQldqefoObkV9{cJfMuD#k2QHZScJrt{omy68>6)_Q
z#@{9PGC!|Awd|=}t$UZ-^4;4`9cj@4St$`|Hr-y};&v(Rqq{3MUHF@Fagp0}aKY2M
z_L$3w)rA-SvVgL6kM7KKWi5|>X>|pZfTm7m#54V6w$Jd@l}ml?6&jbLo_Bjqi9I8z
zbWWCjSr;U+o%^U$ZRa7s<ZhYJw280E@-jb)Z<ET-fwWq{R!78LKJ@qS(NK|A%Sgem
zPh#Ii?frd{v+8<Mt)lDR%WmI=!QS2C6Lvq#XWQ1>@|X0tc`xk-&y|~YOFwB@bE52<
z7WY%|VgP4v72_hUu)f=+?vHlvu~W_79QG?T_4h5cowBZ*Z|4~nZ<GbwIb&Jo--{uc
z^9?_41Q#=<5zL?_#?f_0=l#msH6Jut+OY8Hr%k^-3oqzNbRBK`y7rh$N3ir8?^)Sp
zIXTmAt_#~3s0VQvq%6s}j#ie$a+IADyBe7K^tU3|%G&`>@9P$=U!<``$L_*(jW;IC
z%I!a{KDBaoO=Hq`Ve9B#Muk_54GTfj=Ms84OD?FVSReYhZ{ee(W$UD7ca$7o7ZSbK
zZ-02<)ez7$cOX9lkM3;i8-HEo_i`f@2K(xE-j0qI4G`UbePzgH=zO^D#4~KpN44L&
z?0Nl0x6FQHluupg&27szUbuGdWwG^|X<pz>VVY8)(Qb)}%QBfaPF#D8>!Y4cz?=zd
zH%7ZGiQc@#asGr*(fqx4Q<9v-K$Gk|I`gkr{Sscv87cUFQD@H{@3rg2R=#`k^=y%%
z>)OMoj+TK&#1k@J`m9ryvA^+GMZ{Zt7ih^-jok6J)I3Yj97&e+{RN=8>jO8E4$u7L
z2wD<fW-sXJw`7;B^jFXlY}4Jcpjm}QatzLwP1cqhXl|F{Zu|1A?C-@Xdsg4e%>HV%
zea(j#vE6&Sc29$@AIP~Gv(I|cgx@_U3wJ*Z36l}mTzB$m#^>v-T)A(VRz2Dhttk%n
z<t&e)g8@E$H$->MKeB13(|6&`D_ukT;@|3)*?+XindWth6%@H`W&++*-QFBI9`JvI
z&AO22sJ*Aot*xtVU9&3R6qGO(UNIVM0k^R26s<-4Pw%!V4OO}{cgwbm?@PB;%`N4E
ztR*;b!{}!7UH>NAUuSZ(7U!FWLEF@s0w33H@VJ(_{*g5s*j3Rv7Q!+!d#~=E|3&Rn
z>o@gKNTqpSMLos!+~ygeStl1;22hJDMMLt9=9)zsM|PhG*!bIXZW3?B+}YE1Kix5R
z_qto4Os(@_#r12~!v0;a{r#=i*67_~H7kyUvZtT&U)Cu-inWP+QMV~05HbmOEA8gr
zBax3mD+vU?9t-x$T>2$!-p^(A0te2hUcT8Eu*X(p>c@4;GUuOtS$hoB%s9TWbg9<v
z`CBSPK+OyWhbyxkKUwc-X5c%SU?cmc^PPU4yCC;hRW9pZ-J+10u1l<IyZ!I?Ifa5(
z&WYb<JkS)j@Z?>M<+*nlcW!L1xol&R`U$kme2<xX{=LVAZHEK>m`-JUFnVUHYhw_T
zQ>$dxwy1ey5_mc@J~WE^c3?;USHIg#@9PfT1WjwF#wdW6k%Q*&`O`z*dz?Gq_c`~>
z6O%_J3wzwOlhtP5u2=Zw_WZ%?NB-9zNXI%Ctv389Z~dS&FY;yVotWKM!guf3>6W<K
z5Hw59tErr3{_14mj>5}vnG4qaS$C4(@8?sAtB<#@YgL$dhG*$#{WsjA%Tkl?POMm0
zaO?IO@REey@c9$Ig4*jR4|cz8d#w4f{Z*k^kXx3Ar1*lJQdgzTx1W5RTzvZrKNEKs
zsOZ_AV|vYc#+34_R$tz!OHbSRWXqc6^WLd5G)P*`;k*-g{ocv_a`zk)6i+<;%>L`k
z+GAd4-zFWN>Du~EJ*&AEvPSiF*ov*&PDLGc+sVMN`Nf3ksWOQ^52WN%WwfWBENw|T
z`c~u1JN1n|Vei3<TPmkqJEWGp7PPp3#kQH6%IV6fOWGFnv}ff_Pi2ru)tJaP&G&@d
z3-1&67rrqoKCpVuu9NE9rLs$Io}CKHf-;sawhtzN$|j#}@)~Tr6Ev>L>+1CvT)pvU
z)#n>iSH*ZdT(xr5gCuLv6qvy#aP_LMyM&`{(czVIEb>;Z$SArQ&i0B+cvIJX@Iq{E
zQ1QT%YcW-K*)AuPVrf?(Xro1KUi;NUVacEg=7fY<%Xp7mYE>0EYI*a6!^Yp8m-7TC
zzB{AJ%NRO;!q;oJebv-b7#Un_4;=VZxpukz#{C!mx*Xe`p``pi==G}Tz31M(p8eG7
zrqxkUp#)xP11^;E`CqQ}Z&G^Ln*6fo-rpscLLPp$Fw-e!52<y!wq9!~WZs&gxr;YF
z#ot=;J!p;BUl$e2iLd-_Ubqv*QFb<u{jNV~>JU=Ns(t_dB0D*C&ueL|GW(U~w_LW}
z-gHP=JZMKYDAy{yVmvnO?9<)KoR)d&k7JdliXM0E%FfxaK4azQ>Tcmpre)esnLtH=
zv$S8T^`VVP>AOLz^mS%ym)IN5jtY6YBed#tlHmI&o337n%MuEjH%^%|;ck3{hu|yu
zY1N9_SEn_E-`sgsUp%NndX=_sOb$CJGT5eFHxYbxN<4_?=;cp(<+-7&uU8(r<yO1e
zFmz@4E$BK39^J`Tch6^WHoSSq?~X_6m$k>Vz}sne9px?JkKDiN#_AhcJfOJf(Vcf@
z%DOGt{I0vJg?~Ezo~(u5y$7$(IAG%YTH0&sH%Z}-dPX64vex)*?DE*2xzl>VD{f7j
z(yQPIQ+RdoL{a75-=5(9Q%Cv7l!d=fE^@uc23@J!${Crywi)W%oRcMC_p{chOUZe?
zt={Z^=NzIeTIzfCJ7{Z;+|jh9(4`i)6KrI4W`p|gQ+Cb&5&HCt?!Jaq`b#oOZh|6%
zA&?)mcJ;%7f}c)Z2O~EA?p(dh%Vig6`^(y6A?de+%JcJkx)>Q8t~3{>Zu+_IUWMij
zR_Bc=QSa-LR;|b=yB)sW>;$OZlgWQu=QQ0KG#6|z$Hgc(BYXLKS4F!rSli>pU4OqR
zy4`!b{NL9dI$8#r+XW@&ukOK1_iEg#UbMIQ=sR^&zSSKiucz<&!Wp?fcr9oN6lm2+
zwB7pB@2X9y(Y;68j6dn+*M5DpY?iF_?5APLpe{VvaiA`IU%{H%6sK**GT!N5->E-4
z#WmmkVzijJT1vEy*Vf+pa<JRBWhlkkDONAg4+M1p@1}`Od?!1*rY<z|tCe(YS+Oc8
z9V@&#c)-M$n_ul|$J{sh*X4ar?v~2RVZ2)T#w*nC#ICH>5u)56!`h~uJ^4=kXyNVz
z4XZhqcF*q+x&EeT3+t;CQ1YCT#r>2ClqW#RnES5(qJxK8a?<lR{_eb*^r?DE?rQ13
zakb!;e4vIiNFk`<tS~K4{$`fX5%BWO)0x{@_M9^oH$TxTa<6LlNl;zJpzumE!fyT7
zFX~;<y`qm|O(6aEZjbUyzm_$u@;`A+GfZzAGsrw=Z^**dmK*~a@ANP4)Tb`vntyy_
z;>zf_%;(|Y*zc%n6PG?GbH_RCewNNe{VmX?t(wxao;r1<Z3m~gh85`<vzEECO)k<3
zJGOh@!ldt$tCs67(3%|v-QNak4>JgS<pC`-?@;-|d2?dLbdOYV(OvUR%x+BIeg!mw
ze))Z9)|;?XtPBidF;}v)v$g-f-dFp(CuZ)$kgz;cHSwU5w#Q0uJ0FW}UU_t}%yzG@
z{W+#-;MGD3uciv!TX7~`pn2n!e@>f|b}GBBsNb>S@(rb>x0ICbp3~KBJk*kt>|DCE
zv->S**}?iVH!9To_Pk}T-dXdnb-!C&&EEI^>)k<H9~SK1ruCq7-iB>~dP`P7bG*RU
zWonz}7P5V-`{(rCynfI5w6!sJqxKiCj*s_PsP#>2n-nN8_gX%Kt>yR=JS{ilvtHi1
ztutm$w*6xi!~*K?ftFCHyn6X$$y<~5FG`42%13*DWqo$2pR+l!EtMs8Ne_4#hMc5Y
z@KKZY!+kF-uH88OiDw^pDMuY-DMvAQDM#QlIxginP;rL)+uZG2w@&>(^=#$x$fbp^
z&HgrXZ!T$%Qhntq`TSk|$2EW4m-S4!Xkj1rBhzkatKF*OmWF4wJeU3td|EpDpQBI6
z1WCD=6VIP0&TZuWxkYDc_A}ANJ#%`CL)`Y6pPR^PwaWb4cjLkq;io5Brm}`Ey)@J8
zou>I*<Kjup+za<S{&($Mrlt1&3!f&JzB|UM@%T&k;qS+k6CC?ro!s15oMd$}V%Deh
z4`29;PMy8xc+S)B^x=P^<rnYxbn73O*i?Al&FA0$>F;}8Y|os&pUQa7v%oCr)S^K1
zMfU{%KJAG=y6lgh*}MOqk=qN~A1yDQ5S+J-ugI?`%J2W3*`9?Ok8c<m%`l19ocX@j
zWv}wbYKi~h$Nw%fJ6XS~b04!`<%Hn8N%yn)Un)FTS^m_g=-!$29Z?TbpXAIrS^v=U
zp7nj{&Z^?C@#2>?FWwNXX)l@ZKI2c#+^I%>SE3s)7oGZlXwy97H4>?FRMrO^bN*Xz
zTPgeFo`trSiSJ@A&@maR(^By)w@I*4yLBw9?RNA=YcU39qhKZm_uw|^>Vh`kF!fuR
z<yP?-ca|?Ys@<U68EDJkUVP5_P5W6DS*C_UgH`MgR-CGwoO9FW)%vAx*Djm?P3`98
zl_l?|_(xaWaFNz!IG~dh!q321_)Xp>FG%OEhJUGw4MTAk$ejL@=F)RBwx4~;^S*cY
z#E(<vTbxZ-dkgB49k}AP@nwK|`f_<C@v{eyz0$ePU{F5e0Bghc<11#yFwEfYdBteq
zl{8sK+PX(^yYt^EGi%nmDm(W--F%?rF|$Fr#8u{kFH80+f6&~VbVvI?LxNsN#w<5c
z1_p*cuO86SAkZ)as5J!2$DmU|5bKUW-Dpr(6tr54oq>UY`B!~&p{6djgI$Qa9LCVX
z0OeAtvr*Ccx6MTA?ynd4X0*FIGS1b=S$^BS3yMcCox9;JBhjV1oGItz)Tug=7ys{5
z4xHq9G(1wWZHwUC7d2Mq^FDvnxEJ1EA+fJRUGvZ3dnpfVzY1Ir`gK(Ql&Yc!*E8NN
z4wtS!(>q%0Vls8jj)|IW8zzNROi}FXG*^&Pj{o@Q*>riaJJpjb=0AA7ec|^{vL89z
zq_Q9JrptYtn6}S+!5qa^OU&oQeXX0je$u}Nt~<Ylmend%E7m;PwVmtm(NlkvwDWgx
zo;5X?UMbS<n00Nkis_-x3f+?=zOwVYzUMmQZ%C4lch8e`QzR07HtTfdd!MPu5<6Wv
zX{yr1#yKgUkJ~9OY5#To@cq5p4<F){;C%o2ch$^$Qq@z{Cr;a8Al|&x&Rytt>r(kg
z{~Qc1?Ov5IkK@X}jY}l%S6PcbsDF5`u6AFT(e=FMC?Cb9rP^lmTyM?{%(wA;m(6qJ
z_5Yn4uO0Vg)8?ymh<y@X{q-V`pkvHR&rK03h2EwdfgT-g$rs{mIhJ~4g=fulD>Q3+
zBC$NNZ2GaC^WF9`Wj*j#v2^iPe%Jlz-RiA}ex^At`4jfy&7YLXx15x<L~Y`WTvRj#
z>T|O0a@|b#5O}2&Unleb>$k5T`p-Y^Hh+9wUSHqmi~C+zk^WzEZKnN@(A51NvBlAc
zL8<WQIlm&^i4Pdp&Of}}#cPSg?PquF+s{9V(PCZXBKtZ<OEK0}S$th@Is25N6&k0O
znCRD;&h35w{POS6Yeo9kW=rpCJAb4xI?(&bl!B#UiDrF|GJgcT+kb860h38r$`4wf
zVttXltMQLr?=rPt(>bq93N`0%>eHTaBl$3!;fkC~Q>DJ1esH}m^1AWm#N(THS4=7o
zEmq!kIeFTWZUyQ4?4NgU$lZF3Y2}<E1D}Z+h4H12)gH(>gvPw+bMm!FnzG|U$N621
z%Y_n8eSfi6aWm&4r=3ZuC97+9@a09e-zjjrSs}UPpwgK`C0DH$u>54{(*406p=v#W
zZB27(XKl7G<Ejr43HtNcmdmcc!MST{_>G`-i_hPRik#Z$w^pb7$V9iSUV~@rBF;_Q
zH~s3;M@+9-&eSr*7<(*MnAf7NF5O(rrt*K|$+XV7^K!%@%1>_NE~(xW8MJP(zyCJ9
zwQDB5wNQSYviV4nu<xe5HOp;TdoA>{Hvg%Jy2rcj;t`Qu*H6asSo2F6Kizx!U&9x(
z3yE4;$HHnl!k+E&nVdT5nXKWA+4G;MUwQOP)ucQ6^4HI^eXr|ZeAF)fF}bz;bH=*H
zooAXnr!5H$JlB8LN&J+W@nZF}UtM~PV-NPO@INDUNix}D$-33MST`KLWorL-e`Ggz
z_RjTJ#Ig++noYO+;&HCi?LtDo&7|8wK5uL%-QF%=sIvWN+Qqk#r8yjO9y|Huau!D$
z>HaoszjA8Ro|{RhD{l)s`sU?WlvwQCcr>is{O6uD)|J!L>eu_N&9VM_Y15{gGroK{
zmDW9VVSFv;r4I|2_D%_0GV7Pk){QqTcHD72x{2vA-wc<4?3fLSS+b1V<m_3UyUZ88
zc=O14UVOedmu=AHS1OynzieV=f4DB@L%^=`ojaPvlDJaeCdW%n^XuuqE^oea>i4+)
zjPgg_f801*ZgIc(*`mL~y5E-zw3~{rd$6MX>6HnuH@iK|Hg7&46nN{x#@U}mRUMRF
zm5=>Dc&00nmDB6{j4vTQ1}#h9cg;21e5!NHgFlvYPA~91S#xE_&7Gp^7CW*JGI8(s
z*~0v76Yn8S1F1(%I`iJmT3#Kg5L0oyu44aW#x=Y*-!fct+b8$+JpXnfv#kr3T%I_m
zxAKR_xoNLzRMMNvttV}sIKNzF`{lN`CI=@;eO<pMt>o^u$Ijai$H+;iKZxj9<yQ4X
zMLT_AZfM|!WqMEQ?s=NFy5y?V-(C0oVXlOKwAK*`_dPSka&HPW`|8f@E)|eW+OT`)
zf0ZBmXLNENUQl~4=KABE*BDp4?r(V9V^zWxzxTnWr9NsRi(~?iy>0Z1o#B@(`ucO*
zduH|*B^lA@LUf)y*JQh@y(U&IXTqh9pX;iwuAaH-&$`JA4d=)={`UW}d%=W)%KwuW
z$xSJFQgK4ze!AY5%@y;K*fMvX@96cJ=KZQGcDwA<K(1e&?-sq4&%V0;evV;z&>NGs
zud8Qk6}?+MJM^1HzHRtgwk0u~N0z+%veswoe%%-A%y+QbN|gK#N?U%*`kC0Y2+8eT
z1yQrDc5psl{>f^ANY`dQ<*;IV?wyMpLLXO4|B9V5H{bF6T5+?ApUt_)3vV|3E9-ml
zrrO<<_XTI}gZ&1qZx6=Qy*tFkc}L;>=JP3RN1t9uD$nU(U4O&f%glj)!MuWJ>aKq`
zA2}nP_Pe2Qj+RVKz=i~Muj<f;G8+EL#&30wrmBWXWvYGOn{GSv1m~d#Hyrv^indL8
zcz*G${IJV8&-uS)*vX$r_pJLDu6Jrr#>dx&&z8&oV_ma~Hym4?YKFM|f`pUMMvr42
zJ&t+wIOfsgn6aE~eFb#jb>l4fnX=&XW<f`LgOAl6J&t+wIOe;f$1!6+79Kt8j2_2q
zIeHxP=yA-W$1xA-<Cu|dg2#ItGpHvr6pmvyGBGhixjyvGUG|#ErT^GJJomh$;ycTB
z_oXGXH+e}iDRnH!adhDm6kz2~;aDM~ZV_;>ky%v4;=`Ai=l43=yNl;>Xe@9jpKX@8
zxqQ~&Kl9E0Rqx$4g~_$K=HB`}4_>~PtelrW-)z3!<L?thTm?agUVm^u;sDz22%1C%
z@j<Is8SrqB<rO||*d-Aj5OCq!=}VU`_36&_D~sv{8B)+^;5YMg6m#V9X~EC7y)$P5
z?GWuxo_qGp+rCS49hH;h85kH2>@2>txJs7)+1A{A@r&m+ft^!#dBydwFQY()c+{x4
z2FAMV_3M9Iy2t);kF@_x<y^CT9k;oQd&4zY#Jbt78BcW>E$V47TGXcT_-E@uh15+`
z@_cW8eNmzI`is}@ih$QMuKKMOysyQ;z|c@E!R2qZs9QS!{J%V&E3ym>3=hl;E(!18
zWKu5>mIoW8p}e3?<8l6)-|7XC&o73#E*5M*EY#UjmDQMLtSr`@SiW<?sS`;XRfSk5
zpFCvF$G}jfG{<G_*Q)B=oi}A|U-<L3CvT6BK9izy;qr-d%lU1ro)_-4v5WVel)_*8
z%2-LzWiR)N9ue1{HF;I;lTHVJ>}6(XFc#oy<=v*X_vB&izaCFkPH|gnV{}Nl!y)4B
z6F>b+UPAAZf7xi|sR+F~IEP(aq3Zd=&#iImg_klgG~|7<m^<y1a9pzK%L|{GdpBmh
zVZ0u)t9IW4#{-EHE=P4Lr)d~(-)@%9&_1`}b^W}#$DGbFzj0z<D0p`y$*{WlVpy=8
z!PP(3Q9<b+`+92(=R_}5;1EAryfIWT^4KKr>g+2_J1a~c*ZlA~DC*6?z)<jztKGSG
zo7&!^@+&Oo<o)xK+Nd&lp^4S!z$eF3-2AGtHWjS#ESMP-K0$GE>YR4zjuqE;N*XWQ
zaP!R)l`<W%z5jl(CLiy!E_rc4ce~EMZ?|@OPhZ#Jzd7gT{Q6%nFWlQ3|EXfnw$D*(
zr)967`|sOrc}|w53U1r?&ir@(-^zZk7r*aBiqXfPe=2_GZeRQI_I7*M!2CTQU;Tc+
z-&sK9?{Sy^|Co>U&)-t{S@{b~-uBb)zpuRdMbF)5rqSD1tJCG|{yhHnHd>a?-9$>(
zU_r{wO`%Q;4fYv*RAp~&EPSkXZvOram*3vnQCORpxPJBef5F+OH=lo3@qDhiD3@z+
zu!5>;>%8(`U$STTq%GfE|Nn3KdHem7>&nHtr%s!;FXQ5-Idkr0URJwkum0uRvFEq;
z{{G7@zbF6ds;ggi*L=Ci?r-~5V(-6+9v0f(yVK6jbz0aF7rLuQJif+rdA=YA%QU^c
znXj+yS5;Rp|7*MGb<O*|<#{(ZExx>QVZe)Lv&C(GJ~69WyuqHC!9jcf`TSKD4^6`Y
zw?)m{ALw>7?n6wRWZ>7wQAR%}vN;MmPgC_dAC~%j?a%w?zke24bk8&Q#)pEkvb@Nf
zokzRHd8A4N?=HHSQv3DlzN6jKFU~xcVRB*Ns>_m3i&$l^+x>nMe|g#2j_nsZ(;pqt
z{21J>9e(eg-qSaCcJ}u5_}gyv)tY)Su)mJGiu1hvf3KQj`TPH79d7gesQLQ!>uYPH
zYybb{=a(>;Ft6zKwX@}Szg}0LU!!Jcwl8J%Rjc%KJqMfHzrDM=e0H>#`sviuVV9WM
zod5p)em~dX%G#KnyB??f{{Fw6Zw<fQkBr1b!N01plC#fxx!YDns7-!<|Nq?$iOMe?
z+E&}?XuP;;b$x-O^NX*`uYY^D`~R>0dYj!fKi9^tKQlXjU)9T{)8`sJKl-|6(;WB3
zlYi|f6ppKY`;?ViEHRypVMoG6d565&SA#;YT?q)43X(11sFeGw^-#{z@rTB`xl6Bb
z>&*(d<i7NDnD=DiSLbeW+rFwT-tzFZGH?3M34zR)+Qe4wo~LHNf5P#{rX~_E9zIE#
z7q+@PUCQdh1<sd0J|@pSXPS9w>iRvOl5Af6{JT$o|DErTy4RQf+unNr|Etyd_W%E!
zE;*+>Yxl{-9;wosC&Qk#ivP3AycA;f{OIzSO({pu%nat2|2NTZS}xNB8)M_sDOqpo
zu4GT0H?Q!xZ29@w-<P*?=fA5kc(e0)SzP_!riydj;mb;|v~UL7{d(cNOXnlYoVjx^
z=fzd!dV8_ef4_Tuc})BF`}NOPF5h;%J^jp#qNAe1d~$ydCK>9-?YZ-EOZ}&l$Md#V
zzr9uc!Z$C&KrhCk{QJA}FErhIB)&Yi*I)ShP0`M2dV8N<@;-i{H~Dy9^o9gI(9v$J
zs#2Y^*7jMsZ@HK8HuU!_iyS{i=8ycpSKXN4^Hep`m04<1(9>HsOM{mFQ%>7$?{Ve#
zSsAMm1re^)l#ElSXUmHj6+W8s{a$tTiwoWMzjNMi%RPV0e{-2h(vcO%<*HZg+U2$U
z^uIr!{eOLVxjg9aEY0~9k1o!&-hQ;*JpZ28b5S#E&&3zZ(o?mxwO?%bdOu&Td+Pl7
zfWW|OX0Kj;-I}*uTaNv_L)f%wr=Pz1YU=9xc5+hW&CcljzuwD>r%vIidOp|ug@Bm<
z0d+r_d~?Rw!|V6|+q7Xr`1SXG>Q@{T7KHuZu0Ex}Vo&n%;^Y1QH`V-HG&_G^>hp8r
zcE8_DetUcSrK9=g`t#4<-}<^$*}ZPp?|0UZ0{i{W>x2d6=JM_hyfK-P;ol0UhZ)I7
z3(I3GudMR_CYfq@TYur2@EUPrNtcBdNe`b#E|GGa<u`M#xvxf+?WE#|SDx4OR*8T2
zT^gUh`(tbwNBQ%)**9|dWEITvYIb~GWo>o&g5<l?`rlL2pLe)CntXQllqn@Yp9<Uk
zdeOYpJN(VPzXy9HH%GZ|wQkHdk=nigP^|r}7QTtMx8*JjzSSkV-CJdU=6*XB&zQ2C
zPfPyvsz2Bk`2IlS-_Os_FJu4p?X7+JJKk9R<4K0zDwnqDCLfFO+alw*MESuC!|)4-
zOX5r<URj^BPCH}q>;ApHzoXVpOE5U`u%P3a@oA&YH$j_zKDa+Bv^q0&sa^8a)6zFy
zzrLIBdA;Di*+)xE19Pl{1NEgAc)Tt3Kls4J(!R4)@>J{MDs|EQVe6fjDZcdCoO!uz
zYxebW+uu)428XYWvdX+PwdC8bCzArzXZtKa&DZKwRlC-0a_OniQ)kcqemZ@zvU{A=
ze<PvJDO0DOn`OE@x5K9BiTbbF?r!f#;TPxXRpq`6xSDCU=<~IW$@`x?E&a#wm{V9y
zKgwi&-Tg97i@LRO=J)5GOJ5kUA(wmh-8=4qf7<$g7&IU3a8s6jo@<?IBK7yH|K1Dh
zXYw;JoC`j?cfQH2EZa3!o880y>c?I_uXJg7j^tH`lPQ-PnLmjhd{WsM(yF8DT*)|R
zg6kFQ=ga)&&YLr*=A!H2UGsYUqPSX%4!2e7?XRh^X)WnG{`l-1%j(O^dcWWQKfy(5
zsm80x{&w%~?#{2OQa3L-KhyaCv)TDFRwWgGw)LdXt29zpp6nN%yZq(#^%cLq%-mg;
zTmRvpyMOs*DXAWQyNdsz;b$Lww%(cj_1A0h3$G(1B0>T#)J(m%G1-21%(}$GdVT#%
z!+$KBJ*~v%ZFSU(J=vRYzIb!n_2{mCz8bg13zOs685&%~I*<AMvI@T%cq;OI$raDV
zVrGK(9?p<eof+;W@hGJ?cG5xbvw^QZeM;R_bA>x_{qc*8ptGXipPMpS-M{wD#`bG#
zBCl`T_;za*x452^VbYaFuHNz0Z=XIrJ^Q`fg2i$B>zE&H-&8iM#VqH>mgM7?{gxX`
z^<GfSKit-C?Pr#MuXl5rueQGa+b<k<&dt3YU-eS{<HP-bQg#2nKQ8~?uA-n`L12OK
zJ<;%<{M(}5(IrP>_WtTSE?+;xuR?e3+9kSid)CBqyi4PiuSl?+{rC03ZSHcFM&{=F
zc4r<Iczdz^`|<c-u-eOa7FAyiWNk0r<YI7W`dn?ZY*o?vg_AbD{x7Pfxm|F&%3qt_
zaswB`T%OA21?JAnB8@j%IO{%DdD!wMQ+fBkKd;NvH&-TajK98N<HoSH=UyFbeJr_y
zGs4Yk{@zcgxcTjV+_<Tq_4illWVKk!iVv=DZ&la0zglRo2x^_~76vsc+v+PeMx06A
zC?T^jtJ)->zNRC&e@e-5_e#xo%l~LwzWjMJNz3`n3)2PL4@){6wK|$G!6<TjU+RMu
zaw^mI)&Ay}uk#EJ4ldty?X{DJh?bt*1;giz3<vV(z15g}^r6j1=MyoLpBQ>XRoVYM
zXZ~e(LfyU@8c$ZuebjjJRZgp3{L+9kxy2i0wKY2x1iqdVTNKA1u^}PvbuEL-XWs?2
zVe8|5?_Phk{C@4;<m1M<(PFw$MVo>TznwCDdfuIi{M*x3ub*d`dTPu4w6oPudT->E
zWs6^9VE7QtW%koIbZVZn>y=gOc|5*ZnVj*s>^$kZlE`5<ud}*)=l5Luy5Dd5*~gbG
zQ<${cR!n~}ulCzfmKbfTtEI*_N~cT@7pRY6XJ9y>St(Pt_+rT0r>~{&F80x1q1oNC
zM1|#|%f{R{|CE0(%?x1*FY43s)_&Q!`yFT(1p~u5(XK^n)-`<nad5)MDNoHhoYfRx
za=SiRzgyjlWsaTZOkd5`lUZv+X6yU=?tZghJta8M3cM`D!{TAUiJ0J*YgYF}WF^}j
z*ZY2AS;CWJQ)+7`zsgy1W8RvLo<@}~clwKnaaZOv?T`?42HiH(aOCQx-=2}K9%1Qu
zLFR9y#r`^a9BW|_Tohr}mJ^{L+2%Dz@zmobr#7E|CuRj+bkb1Vy+~uZdCHn~T_JxD
zlw9L%Qqz1nP56l4^{H{&9wp6;IxjhE$(c!6MWQpKB)dD~x&^=f<48L*<51qUJ7@Df
zPacTQ+nIZP-CL{JZ!-+TLDi;ECy%7jmz2-DV$S`3zyEf^isjG!{m;kjt;*f4e(B$1
z`SW%Eeya1ZH81MeS^WIC{97q^{hFtzRJFtITw5of{OkDym6N^F*VjjHx3jBxx2^X3
zyYKP!e?=#y97(#U8N6=SvswS`4ur2?zw=?+>vg+c%}PBTwr%dy)$706e!sJ>z``Z}
z;u6pBxa!=`n{VB#|37#8y(-;(+cu}4mp0E+`lij$;3ClLqWep#I=1pg%;_@eZ$Ezj
zdox*7^{T#5P2TdByuMqSa#Pk^TYK)k`ZSL7FV*=JUj3bS%a*zP;i01+8|CY5Zd|!?
z#q~<J`s_)Q9KU?H>~Fub_V+aFcRO~!Whv>|{qGm+mxilZGi|GnJvivx>ZJI0>HYV&
zx8<I`u<)?8Uh(N^$GN$?7hTklomXRbe@~_Pym!w`Oe9_|*-`rXzMtjOrPJfg3LlA7
zX}|b7)B3wVGaFBj{n@6v@4mC;c08HnZGBE@>M8TwTRPLV_r$$#VlD3Ks`~!kUO`#8
z`1G{>7iXuL&Cc7AShm0J=*pFuH`X&S)Kxb=yXSwZH*e9MvtLbKq_f69og8TAxaCWo
zlD5a=ucuF4KJnXVNq8zJtA_ZZd#qjOJX>4$c6GDw`+o2C#)vlu8viCAi!m&J_opwI
zt94PuIpwHdH>#h{-G0mW!mky2`|tbz-{=y!@&Eba+3Dx!{eHVWzC7lc?)E#|l8;}m
z{{C*Ea>(vE-#;GTeZT7U*WBClQVk?lhv~}NR-K9brhfew!yN|&flimG|MRL}E`1(t
zW&Z85=k~igU(&YaMTJdUw{c@*-1%!t8dJ4q`sA6-25pY5la{OZxc{Q--=^s$SC+F#
zEu9kV71YkWcV9o>Wi6MlcZ8+|X`ee0_-d1?XO4}gOrXBwPy31w_1jdcId*@S&=ShI
z^||8qw<UiBJz1w8VVZY9J^KIhy)TTy9K-pe_I^HR`cZg?`Tae6zD`_YX}L3ax!>~5
zey=6Z+|J*h`tZ=v)>c>9=?>~nR?mAS3^zSqQGUPn^VjSDGtFkd+wnMWqKA*k_liHg
z#~(}DR^==Y%zu4N{nMvU>vtqMS;#C>zCOqDfA5UP$NhhOJl+gy=p>8HHL6~6|H1nG
z|Gs~F>o48=wOdSgsrk&jl`Ayv@BeS_Z@cyH&*$Z(hRM0PXE!FhKkmPlTl(Sx<NE8-
z5fL5p%^4bs8~^RtDEa!W=~KpF-qW%71s?2uB;_G+h3#W_;H0N%tM44zC$lwg#<~Kp
zRlA<@|4`JBS|qo{zOmY<-|p9ylWw{9{&4h9ulah_*t%~Kv*h1ZYu4;|zt5VTSL#rL
z!S?+7zm5p|&(8_;p1y8Dy#>F_4g2I{Yx??i_kF##Unj!AT&T0;&6%4IH>{7^+9TKD
za!4)s@t>cYJM(PLCm-nu{IYuE#=^I^ZnyF7w$Rmm{IK18O>8y)<dbib^j2T}b$$Q6
zU0GM9cE()16%iY|HSw_R_dA;>9)6g#oQdIu;KzIZYj}J2w_N&~_Fm=t>ZoOwz2|B~
zGL?@qElf)DT<11bX#$_%gBG1dapI4;xVUcBMMg#4+PL)cNx#(}dp<6^b8+LultQcA
z^a9qo+vZzGZ?_AKUtj;@;n^Ou{?FO!>gwTY!GC@{cI<RX+Z>s{>t)rVr|bIi_x(Ke
zw(NevVc-9E*G=2J;`Oz)`LcPZ(>8CN!>v|p7ytU@b&F0Hsrq-W;@4kYe7_^<s8E%|
z;*-1H@B1&O9lHAJ-m0(vp3PqG-Y=JJa&3Lw-ln`SRkkJ9mfX)cJFE1q(bH2?z0=Om
zGfzA7bZu{GX;qb;RoJ)p@jdcp3=PK5_+4I|kt@H+==V5r-~K?ao2@B5qTaWj&7Qkb
z;KmeZ560jb6IWk)nx?LvzBul}*%jrRCR{iCJh%37Wy|^J(QBuzTYhun<Cm8%J?^*p
zq_TUn`hhD~LbA77RUODMnKFHP*4CR}rpwp;@T|%Cv*<us`Gc~r+hZ+i&fAvjL>74)
zNbGq&Z)^0nHwhd4-Y2Z}P|5o(vE|mSS!;B3Z6B0a@yl8nWL-%ud3Jm6@6A7Mq|d*5
z@!Ox$?1-41MVY&wKat}3y8Yg+ny063xAQue&thO$t|->MQzy;4G;+blSr6BUv-t8`
zskL@2IeD_Zy--`mQ){on{IyrSHWkf3cg1KXPm@H;qJx?4d#{;@*?+s1Y4_S><J_>v
zk#aYF$M(orR^8oo_4D)defOtb{1~-&)v8nC@iltJ!J8`zKmQe8xiXXA?uUl0!}(7y
z7W<!i%4MY+8XkVJvFBjI1y2pR-{)=^pSPJhJKCV^jm4s$t9Hnjy}MKP`RwWQX^rpq
ze!uqb@BPcG-2+AD-rKd~dd2m1Z;N);9P62>zxPZ3E~~%Q@AvxdfAKAQ-AqvT`1ZEk
z!rgOsm%UvOf8>AMCk_UN+@sa@g)dHfA6_ZCZN{mp1gYP%e-t0dnR4Q6sK5NQRp&fT
zPvIBk+_6&KK9c2v;LVSR*6SUTy!dQQ_U^|u>DMYwtw3#}ot$$z$wkTV4U2e`B&ane
z$klov>0?5<lVspA?j>yp3%1;QlzZhhYv_E{-%?8qwP*KSdVBu2-q!Bw?~~Z7RZW+q
zJXx{nbET%HhH}XfaBJ*aZ}9w=ziZEL-*%U0^GwI(U2^@JH)8d+7#T_M{JQR*^e^b}
zz80fJJ@r?ltj<jPC479&)~A8ly65kIXx0D!I-#-WVWh6rGmjusFLw3iY1&0x@6Vi0
zF21osuI#8>$*aXxvhP>CIGFvlAmn}j#LopG{PlYl^=K$>QJwn9i(h{G)ew`aWc$jg
zYMURgU-Mj2_xlygl_KKNPeXXU&Ph&L`o!BchRyFpQn=0J!(!>RA?tG$UjIsY_r8=}
zkAcCViNjsVEqn64HxFh18ypQ*?v2`!Vlh`C=3$BSbFaB>fk)?Pg)G%9<}y0^$ma@o
zo%3?L#@pXGVrqW8d4J5}@m1UF{q?Q(dnU^sV`H$;wcCC>CiInQNN}0${*?<go$TJ_
z)m{3ov~XU^ai2;5S}dHW%#2=hcBh8r&eXnp8d87sPO$ucl3mSoJuCM?QDseCzipMI
zdV&5HqitU}UhuK}DXPp`v{w3D@PZzVWToz-Nq(D8M#a7}e!ai<+j`SVHMehkPp({8
zyhr5v#3fu@rVsB;HlC`f#o2#QA<+3v*Yha<d($Rbs0g(lPW)Ik*EU>@?eFF8yHA_6
zl)H~ED_5zx&afbRqQ{XZ8JA|)9$e+D^|^dfN2@>Eqk82!kENNxQ+uWu_A&)coI8J2
zz_LYg6Hdt2JioZhXy%%Ewi3<u;sI_94Lch4p9~3oW*BlT=U2shb?ZBiUoYO|c;{G2
z-GMXb)l;P$tF{?g|6j+w<GV1p@n>PbBiF3BbmjesTAL+yj~;N}74>GB@5On@f1|8U
z>fVA2Qy5!UM$L^X)9miFPGJO%q$@PKCI_xQ8=KB;F5zown%{j$P4Q*;)*h{HzEI7!
z*Pqy=ZoV|io#!-nnbUi9&=zcl2`3IsoU!s#i+8->#+N(enoY871<ur+t{3cH66U?f
zY~D4si%XWg6uHT2eB{yp`76a=v4IZJXXrffylkfSX`5qO?do4<u3vEQ*>3L-ZEY|4
zgLI^W6GguH`oAp>Ke(X8a{gQswx>)kwhRmnN3P!a-FbCc`NXQp?s0q757);yRXt&G
z+#g}s8gXlTeBYU)bB}w5o-{ToQWF+shG-G(J?itzD*fxm4NIrJHS|zQ6BE4qXojm`
z&uUdeM)R|p=N>Fg(=MrW<x0J{-uUT)JkXX{h6x=^cKcWEx)U5Pxb^B^ZJQ03q+}<T
zWH^1AXmE6c;ge@mn1WXQeEs8}WR|DVbE7HT;J$#+tlMd8H?wBHow(rNbH;Q2DpP{J
zgg)N$PuUYUi}9w_##73()||NHHTi~yIA|X+gUUJy*GL^c_m>M7teo}KtSh?8{^z0U
zlM5%Tn{F^|x=wNDui~q_rrq-o5?=t>I?dpbvM}L7Ozg`wt2?5yPd9bxzganF!*9Ej
z(ScoCCJRaXr%z7lJFPc!{pF=9>Vii^LU<tVntuIhjzQEaTbaEljaNOaWK9*FIHg0O
zN#yh)J;{6N4Q?}EKS^7?#WG1x9J2Si;fQPCl)JK9=2%FWOf#JO_0WV!r>dC5udC;2
zyVR7~JFc=<oxk?Xq|~RUjf{^QMOE8-y1xWZ&?r1~QA#Y%?G26>G`rqXGf(`Eb8X{^
zvrYb=B6<0Oo@BlJ>oR5D{+$~lrW{i25L_Vv4F<LO=VL<SBqzN*yU*lsdh?=omXr_&
zfyA!FL=CoQr%kdZ`YcFZuDRup2t1%qiyMW7wyokfk|}Lkpn322$>4J@6}MTqu3Gb$
z$15o7=&YF3X<?_lv>f(A+?D8>92gxtH#WZT%sTa)U;KZMs_!|(_~zA5&3H?V#@TC2
zI=gpfy}h+3X{C?LBo!_20rCu;+9EtNR%!F(Z8~)FlX;kbewFdeo+X!O_ABKs*<vs?
zc+Sk(s@h6V!?RtI;11IlxMpslyuZfH@>S3*sU=gKeS-dHzWVN4lCaGwMc`Zdsm(`b
z?sRSb)x9^-#!d_pJ>fcHo6XH`WS^SlW2%#0n;Y<9*=Bjq0Dez9UcsF3Nt?oMbT7Wt
zdrEJQmG0b&HBMy_HEw=J(?7HYI)HXIGk7RGEV!{~{Wg<X{p=xClheCiPvu!=y7i}E
zN=vhdH%ph~QA?>*uIQLW6TB|W1#g;XP}$<35tRRJr`LCN(|>c`<WD%dhRH~*_v5|~
z=gtItIQywFkTH6~#Kl*hX8qKRx&lqzGfyXN44M8@dX-1It$sq~2}46KgJqxj_@0H_
zjyz>`@qtQf*rJoQZqpB^7;q#RXt9Aa5~r3_chu`wZ?>i`efUKy+T!l7`JHS2uZVIp
z{a$w{&{uwypKo~fljfsJ`&L=r2JJXxWKdaEpc0k;apqUkJF9AA;+u7{9!?aLbA0oy
zueAG<>B`otIh_i&(KF|+7wmfR^7n!ihJtT_>lZw@u6M!P+dH~FI{KDhL0T^ZgSbxr
z<;;~@U!_)eJiF&F_5D}ZH}=h!XM7VqwAgIfAqB0plO{^O?{sg;n6)<-F&>aiC^3G%
z^>mHxRSt%NhaE?g!jfxWZjXQS`?|RQ-pVKM((RPv;#XR1@J;_S{Y<=YLT4A3(KMge
zn`;hMy!5@zEpB(A{@SK{)8l6b2DHp!XGrh4dUnqBRhJi(P3vV~sP}m2aU~^xm1$+g
zaeI$%FH{AM`+1fMwrI{sedKq-Cp^?heaQ;rsk{D^%#_(XpW(pHf>)<2c6;R5R@;d)
zJg9m8y(+u!Uq#9J+3oRldupD?^S$5k`rZEb^=01++qO1Ia?fOO-8xJ2+r!mucXp&b
z_H`Ebe;aJ`(|>1k8+U5a6h4M?6DP}E^`0Q3HhJls%TKjMnBK5xD4*&unrE2py!hb}
z!`%zt{f-FSdeBt!gQI-e-kx(cBF9gL6^h*4K6OgU^6pDdCP(V1o$81c3^>NpRTZ1Q
zuOfN3wCTA8AE&&}+gzD!`0CDE2gLN}U6Eebv)`6kb+2Ffh`seGd*KZoh1oComF!&i
zNKIb0D&^r6Ltdt~nCa^SR^9qm_o(1Upxc|S2BU8ZY|U?;J=`$aZLi<^6&?KLJsIgY
zIT$9)a5~tqa@C>GaKWuFciJu1$*MhMdQ(U^?u=>5hdp6&eZH$aJ+EtS{%pSGOC1x#
zgo1?|eox-!wq@JN_d3#y3_@MUU#_wG@pmHs|DU&R|KFE={rh>Fzq5X<cHf+J&$n29
zX?>!U%hAjFXZNQ6dr)~g@6^xF$$y{SyH|e6C-!54U6CAviq@n>D_r92=N#~@(NI2B
z@o$=;SoclYxV^eJBJ$6ys*RU0>h#R7xx#)?Fzx398A)aRlRB55d0jT1!J~GHV};_W
z846VoSo9bU$opFenTCg3yw*~h7S(rMp*Lb5=abqCCKG(!{wZy=o@^}ph^H=Uo6~gr
zXf@}Z3=jB0<-@-df8y4!Ty-XU#iokI@s*o-!_L<>g`4&S%t*Q=@yX3GFs$x=DJ!$_
z6HS?Kq8j21prd_M^tu+!DQmwccy;!kPp9~={wv~qIB9ar968a@kE%bD*)w(C>~zUm
z6*E~iRdrz!1E?CGup`OvRL+X>5Ly12*^_M83UBxXZB(CQ%-J+Ym2+vql)Q@!d0C%1
zZ`yIC?vJmwKk0fGv?rNCL6CJe)3aIA?)k6zW&2Rk^xA=nYyS*S9#;}M?B^wWXwM9d
z<g-8i&CD|Fua-Q;3bu*!?BkLvx0|+J3y7%SvHfwe=2MZ$Q)VbIg-n_eZn9~<ny<-4
z-Fb_yJoC7bb7ws}SW9R3B8}Bo6ZL;<UWhncB<-@$P4MOI$C7`GEjF(=m@`*ro#?lR
zE4CQr&NI=i{m6P5w0C%s9K)RHhaOJYx$9JDxZt)ca{R0IZ_;K-ylwTd+OTWO<Rte^
z$MjClDEauH)oSg8<7yo*S4e>NMKh@A?Z2LF5|w@D%rCd+9FMt;PN}IRJ6U}WJkz%1
zpt$JQiy9?me%rLH{imOC-U(ippipS~z3vh3%zk+;iPMtnsvHlfD8?)+c&2^tqUK4@
zzb!%WUV70JRWCl#G>Lp1xpx0Vqd+Ur4p#;bi;Estg5tB+>+;XeuC@E0{jO22zG7*D
zf7zs?j+}R8rbfpo`RiA#DQK{0^_?_*K@w=&F2jT!OuoL)X02M)5Rv~a?aKSN;+ALB
zm1~+h0(gX-Z`wysTPgM-*rdl~shfri)PV~t|0pJxrfzuUekt%czloRT@|Gp{O3o~~
zp~<xJ%mMiWlhQj)EkEA#=L*z^I4ojg#F;dc8`-Csd#~zje`x#v0GI!#fU=)kHSh1#
z*w?*wjp(<BtG0X>;hS>WMa6Rw%wbVg_AA#EPY(5SyAWZw^5xzXqbY9b`=;IV=L%gj
z$#JJtq@v>7iHcKG7sNq)a^g>;M{Toi!5{BK>z@CVPMH$xaZKxvYP|dJr>9wYo9_AS
zbel16^{I1LRn=byAUQ2{W5lY{v!qtfIQQ#R!xP(d#mOCcliqL&<+x7@(m#=`y)}7r
zciQrF0|^z!9+!)dNOCm&UKbReY!vA|JEc_ZyvXzJl|0p1r!}lqrz}0O{?+ukOT83Z
zj(W}XIhz0v=%$Amdyl@h{Ahc#!scfBl%qLk_s(}|onNueEBu4+q(=)BELHdZEEI`k
zN)&qqN!*=hlDE%Xb?Pr~=#s^KvKw-XdKPPZiu(8c@6FP(WsBlW6g(%YUV4&y`dqT1
zB#R-7C^Lh@73KyO(f5Ckgawx=O^QqAOpDwvclwXxRijl)zYAa8(j9a;NHlVj(8`b%
zM>r!P(UUSU<4nd^(`z9`tM)&v;JviMbSBSI;Ulx(eRSNY7d$im?6eP;H%-0yQ&K3C
z&GC!dN$`e5g~XqC<cdRAUJr1!d{yzU?e4yP?aec-rd4)6aF-62d;iyE%FNwS(~mza
z3e*E1pY9Q}G2%?7*;V<U{yQy;&gd4+kP0)1pD4`o_ft?z`lL<q`>G<!-uoO)*!V+A
zvb(d35tM%%l+vwN9elSwyQH|k_Q1C*-pXlqk^+J*Dl>wQ%dHMv9%gv#!xgJmJ%82k
zB}Ni^1B@V6MKr4IU%Bc~Y`o;=my>JVygPocNf)`h&#h$6$&^_?D|u$R#RimYbSmEI
zaKXquUW6AMr$SS1=NX4j-Far2{GpwtY45*W*!|P9H>fFN(T%cYO^eS&8El&FrW)Yw
zuC}r6uVe^#h0aoDhKBnZuS7*ewq$GS>gHbe*j_T{Q;9U=x$=t<XP)I;nqAx2^<H(F
z^P&lnF26!p6c<aZcYnTI`>5T&R5wNMWoM@^U$*eOFayI6-MNo~mv3?1{o%UVqPeNc
z2YzaZ@LZiP_y6f-e!l&?z8+b(_1oNTxf?%^8o&P+6B{^Nrp&4$(lqn24zu{?e_w7K
z_IA5xwD|rB&Tx^KnwfikPTX{&l7ZpF?4(k`PrL5dP3vXgJomh8=IT>>+g8ONl05!)
zP000$uYbgMzc}N*F~?_T;EnRMje4PzXX?ox^*bcHiGg8)!;IJ0*T1joDoc-@t{*S=
zzdXBpb52kF&DLeh1YGB??tT8*vaX)Pn(@>PKOM2+9e<XVzB}yh#r*$Y_2uvR1@)Ev
z={NMhO_4ACr0LlfHv3pm>Si{->3y>nOO&+kdha?@(yO!KaEeiY+nZkKx}*jbPr3fP
zb2WwkZsVD$^K_10{6c|*az{z!i5&~~+zAPMWgcc2Tl#21Wqk0%dk*$?k`cOwm6e&k
zpL7z_^4t<HzRfcId%4vpDc?ns(bPrqy!i5ts$BgI+0_;Lb~WF6m&e%8J}ccF_&ksO
zkZr$snj~}G{*|ll<gPHO?#$mi)2%zb`9Z3sWN!eEv~$|C=TDz~m7WnlX`zSbGoPHf
z+HL}2tHo1~-0Lu6%IYxs_fCRm)9m)c5_iv3%1T?${d7i(@to=Q)1QmCzFqwP%DehZ
z@2~g6SmR@~{+4at_N}(_Cxd#YWtPLTjn_-(T`XU6XNT?gW$wSu?##WAI{j&C$7IVF
zy&Mb-=kirbCwV^<TC!PG=IY`2*mMQAz_7&!<3gnj!qs>3E}Ebzlziv;EWiF)+V|E!
zX;EJEC1tALs?(EKT^4$>E&>#gr#hsVPTi=zYrm@e(u(N{0$)EYz9G9X;Y3XE!&R$!
zqQA<wx4+Q+r@1EIt>E+`kxX^feJQ4@Cw*QS>jkTNc=|a>ZZu~))giU0N8Inq;h&lo
z`akcivx@e}=XJ^A6SdekC5TT@QdrPsLej^bu7`gw@oW{I`$#+VmW-jf<WnYw25zxM
za&y=<x{7YhowiB2@mN;d>NpV-PmlA~?@pgqUdbH96cyJM7jYmgYiVTVC!e!LY*nE1
z862)Ovxs%J=x#OTt7ZLrU;p5h_c=n5J3g9SbpN6utyokXJonMT%WeFAm(x0fEI=2q
zFf5W&*`l_8{lbfJk5zhkw{`dEpHA8)Vl>Ms-L5O}xRluj1$*y>8#jNRVp$ng#|1iU
zp<x9(=h>&+k$v)?B(){Z{hH#icuLXLwk`TU^&S?_{M({g>ZBVDDo?dGl}w%-Rn2^T
zQ6Bi7gb4+UHm+E^?_ONAph@WN+JoC||Hj_CAocL~O`YYFy$Uyn$_4(v^5u{_7rRHR
z%p{psP|>CE%JC5wYxA;OvtFq+-g|O#&Ho)5e~OJH{gxZcyGnVM=D*G8HEKN=?~}H|
z*cH^_1GRsIX6Xx<g@u`g{&%r>_0yNv=#-vH$8_22MmOes6e?`qARoL=FzwljEjwLf
z@&sS8GJsk$oZ4dDmOj1LUVUm<X>~HW;<WXSTW6(?TH4M1-`wt1rnWMxwN+;7w|$2W
za_#JB6y5~!(FvuA8+LA6cF#4;a>a^|M<o8Y*BH&XW^~H0gKKKa$%dS{Ci-f#XR3uS
zSr`Y^z_hUAV8-Y9KW1%uIr%T|rWw8tZvDUXZppt5Re3%$m`lQ_SHaeO=3H}+*|S>N
zuY>Q!a8xRe)P44<sNPxhaA3UDl=mCcH+No8d&yqc^)^BCwM+AjPir_WYoDd38A$Rp
zNi;*lt*PtSqHDjbf)}sd;~8`N#k^+~aR&=lM!Q+A6k+u@D{avWo+>2vC0rwP)icmh
zHVhqA6IL9WxZ>ceV%h)mGHechm0TLA-OsaG=~DmR;Gon$Zh`Uh0}l9K)hzyG><StN
z1lM0eGmk&r6f(7vcWTSxc{xQkFD0ZGulV_AefJGE>EMf(etUj?tTFGTrcaU~M-qn?
z8zii?#JX?#@@{+eNqAz(-ld-DH_f{WJsbtToc8?~<9W){`I1qv>dZ_3gmy-pO8_-v
zKyKTibTMM_+5A;26GH2cf0J4w$i05)_sP>^CNEypQxX|x>VC@ms%8o6%c4pv#|77u
z7(jKhM~tuC`jxBh1jmbReqH&mt=#tLapzZuR1P1S!fe)dW=hbFJHI{M&h2{Rq}ShF
z#K^$Fuqe(c``zCqtIj+~l`CHU!}r(hj_au^ipm`JN4IUBqWZH-aF<eV(u4pj?^9k*
zJ3-4&1N94!YMgqLamjqwjpKGcMbbwSH&6Jonsbp!K*VGdBk!4ErzMVtrk~zg$u%|V
zXu=mKP`%F(sGr!{)Oc)_S9z`Ll~vDw^|U3N@}8Gi^4s>&{6#!{bC+-SHr33$xp?zu
zweBOj#UhI{7(hWceSwYN@};ZJ<Zb&SaqZRFdovH3Z_!!Z0va_s7P3U+a^8+50gFYJ
zc)4%7`C}i*b&KMdvfuqZBD+L6cEKNer_cU}CU`nkiLxjzi1^PFKYyi=Rpnw{r#_$A
z+P>#q-m60_xp3&=hMn7Ptz6F$on;x<tdg|zd}U}uQvdTXo`*MMPD=U}vf1mpFFafA
zqnAH(v3(aCIBj#DdY}95?~&{ke=HYiZk{Cd{h;K@|ALoh_9xwvFxtG}`kO~<uJmjv
z`RSp@UJBCTvX{jzaLQ@n3(<eXYI}qBhYMs(5zw>rJi+;B_l1mod*<8JCe#K^v(WZm
zc+v^%v;sx9y-iI`+v2B9o2HhNx#;4GrGD=(gtMHz>Y2CLBIn<g_%H7hCbm3`)il~=
zskJ?WA$;xR?9XDWuJEuiTMIKVFvPqFTyOet>*<<K1rZ*zu&KLWYfJCx`Frn*+vaTN
zQ{FX`x`LMUPPtXNE3VSjxtKjgi`C}c)ElLsfDC+JU(!=va{7H;LjR%_$M)9uOZam*
zg>ia%avTyrnbNgR>YD!MX{O%Ormej4wBx4C8*Ok{mS=s;nQp=UZQtLWh9P0+(~Ec>
zEqruFW~NzwK-DqV{om>)^~bV+PwO}*3ahJo<PPZt-@j+>-uFA@{IVVmCeZqjo(8E!
zJsnkNAF1c=uJkyc_W4-Sm7TX6b;S5>7leMWeW%7>*1lO=c|nhcGPrm9<933<i99*J
z-@fmq-&RD%Dcx`6W?*0_xYvH@{?l0D58t9e?z5kF{}+oM-(yhH|C6}*-peF|6Q8So
zigQd6Om&eAbaUVhJa%M_&mwo*&X#(=>GkX0f7t5)wgXast7T}okh>}z)QtxF92C4L
z9Po)9pn@DEgPQ{y7zejFLCOemaLPZ>*&tN&SB5Vhv|zmTbc&|gY;lYQ<Eldc<P~3C
zw0wWZb?=W)8+U_)fI~wW)PzZNR`de70MuUxX9N&ug2b*}Ve1zxSWvoS%a$#%-u|X#
z@g`D*7CI9>RxCHWmy>oR2{iTOCmE@;&1F%7QRI(xj0_I_A9mh-wkl}-#$5-G|G73<
zvg^pZXoHrcJ`0>P(?89;ZnkLaGV@&<OLzS4UEX@GGDffeeE4LQo6hoodOTPH-#ck4
zy9V0LpM9_U$)}K->kJGJc#b3)PCp#`y5q`Bo0n7bPtVR$S>o;|@a44lRj#F$d$$O&
zHT$e6O`B_UsZ@PhX;sa--@SK5I$Np?o*!&&yI1_9X5sbME}9Gs3vS=+GkTdl*HqnU
zTGY1PaY7q+ES|IcPVmb>bB{xwcS71LIQ-WJr#$Bm)o53HqBiGb;NES=pWiyVqe<*;
zzRley?Q_`EXMPJ{VPJUSwBTg^x>W_&!(HCA@jE-e*4>wF5zqH9#8snhs-p47&yt_k
z?Ej{BGGv)bv7WX5wijC#-;<nQXKQQ}>GgWU%`*ubtA0Ew@7Mous6=k+#DfVMB27nP
zwztG?{LBr?C2bmyGYg~EnqDgiZPpL@mfQE$oAc?E2~%1WW@&8mvDt9GAa|FC?}^G?
zfA-Xv{oeDZ$L{W&>#n!D&9_P4E`6+d|6<zbZDsQ%x{p?Uo3%kt&uF$`GS}?0eqKq(
zlP<nqA8%0hW`}b--<_h<kFwX#-Cgps>xaqdX@7q%pU?O9?r+up<Js2huV(H1cI##S
z{=X9)KD_4hI{*8E^Y{JVZtXrjUEgS?PtCveccbr@-JZ3t_II$z*JIM__x=B8&Ek0R
z_Kp4j8$Lc(2Q3h=ZM^;V)9>1>QYl-T)Kgnlub)@><3s=L?fIn^G8Z#S4m3<kJsrl`
zdg#ZgBhzJg*pBtiwy6Ji$Zz}VJ$v4qRG0r+wRfV2g{td^1I+z4-|wtj?9P9AaaPu<
zOP4O)%;B^B^JcTY(abYtpXKcTo$izMm*!#9o31S8Ev6F@663S}!2EvM-#_n`f9Ggj
z^kdqk&{?M0=QgEkzkGOgb$Cizn(Jc0nLhi{&dy!AGE>@ooxaYS(yv$RUzL1)aW;O}
zmu1!OYaLdG%>8uRy#C)CS?ho29u`>3dau86YwPz5(N{j|>WKL#{j>5uBWnHLPBg%6
zilC{B<Zg%hXHmLl)i)<LfM#4eK#R3*Kb;jI9U7y;wPI(`^cDK<ODAW4ezG#t-1uL$
z!r_-(LM{dq`(h^K^0$BWx$@d%%htYEGj8v?KVybjPKAZF_4YMyjyyWb&BnW{Bky9y
zrhUJ%?ms$u`h`S_iPVdLt1o+sb~g28&#(QqKJ#+gk!a8Y*-qi*N6yQwi>ds5R6PDt
z*{`|Q+b>T1xN`Y6&!t9I9T)N)^&kFx9^ZNX$J_1kxi>aw+NIXk-rZHY`u+a@4;h)+
zE(Pb^-Su<b?tj0YOg?|)__66ZTce(znQ2(@;ljPWze{4aSHIu;`PuC0$HNz_^E>}k
z?Q-E})4RvacV6yYwPsDk-m0gu<#)?3x*mR%9TXTSCcpG*TK%t=_g-FJ-?_fP(Q*B?
zoi74QvX-!K%c-n6J?(7CrZ>Bu#n*gX={NoE+&S*u(_f^dotyLb`~LrL&so1e`reD7
zfjiPd#OQk1&M%^g-ftgHcvd}ILpN)O>yPykuD3ik+D0Z%PB|xKso^_W^TEdd6GUI+
zrEAOPFX_$pt$SOQ_A>3U<nL!0hp)R!ohwpY%(jGAH>lj!x2{gH|9EzW!G*&oPui>v
z+g|^_{BT?Ejm^&we|)SiYhSnK@=i71U7x0g$Mv||?!W*2>Ga=mH6OS7E&uZS@A`ee
zK7BsF-{<+BX%o&#n7&%_{9k;<!}pWbe3ur-)tplG4m&f)^6Q6(@-I_vs%4xqHs0*B
z?3mx;c}J6iG(<i=Jmcg0J^SmY)Bk7KRA$*czi4D+^z!=u{5Mnj?eF=z+g3&Q$=TYZ
zoe^Ca@SCrYjaTZ^m&^WhKgEKUqFsAD@$|I6GyQsx_y50i<Ay=<F`cTd_p4r)uD<G&
z|21`b?^1OM!=!*e6SQQ5UcNudZ(ozYIdc8pGQU3)9)5VJY?gb=Lwx@6$B)fr84k1_
ze*aOzw=YV3@xctKYajeIQ^hA4Dmu1kg!u~nU$p3tPUSM?o&8?ZXV0BeqbTy^O8J9%
zm-35$zkUDo!b0Yff|DmMOqp)J{?C!l;Ct2Y-!634|MzC|-rL)3rR~q&y4WGOSg!ib
z!dI`f=IZ_aeBS=$<>m9ezGg40dDQ7%{_c*L{JlMu+0M-q&-z`;*m5^==BZO%uh++a
zz`C;CdY1Y7V@tjB7hP|!>y@?E)Aqi7)@sVsxjVjGGMwAz<?o-q`KGDq)%|~pzD)Ag
zdt33$T&(-;?eCU*SH<pkRS~kR`r;87_}=W`l|7}e@4qR#J^!Cc?z1yDZ*Twq_r}Kg
z*Vq2`wt2Nxl!K-0O+}yHvptpdvkVfs=Kg>2C?);5jAc>9iwh5b9A#(t;O-hY<+S)F
zncoXfMjS1;#@*B#bSYNyMD1Dom<eaJ#5le*?NM18w(4YPO4jmCGsF`*&t2b_qW^BT
z*Zy;5k9WTjcz4eF`i7e_cJucaK0drQ{O;5#Jd2F)OpkxJIJw0`#qQ=FPfyS3@pcav
z_uED6DmnV@uKbx9hO0|Mb_?%tTl{fL*$cg6mlTU`Z_}-+JqupqKFM$S&Ud?BAMc%A
z@!<hKJKvl54GHHK_uGZW#1wtYx2^lL#J1XQ$>Mu!xBq+Et#6l|yME=$S@!j2w)uH^
z?>;?Uy{nFU`Q@2Yj$~E8z5C)~vII|C%(?~Mwpmv)7X6%1pl|h`wb_xc{c_p8jmhg5
z{P*?s73OI9!t#+rd+MndiGSo+7=9>sx-FizD=Iy=@<PnxFURi{el7fcxV-D$MMK*%
zuNTi&%ze}tDe2lT`bBv82G1fDt+wNAb3&GjubZe+c{6o-{;e&EZ*P5#J#Sa}=}PG8
zX@0XxROjy1+nI9Zq}t_|o17O;h>Kr+F=cMi)S}|gFDy)po-F;SuRPHsGV<k`$l_aV
zCzRdm7TurDS72#5H@?(eUES*KMSUyXx3|AXnlFy~6O;8idb{)Wlyh^kQ;Z~IH*O1D
z|21mwy9L*m-<^5?hpm#!>6=+)r)&K`I=6i}U%9*T=KuO|5!+M~sZRdO-r3VR7#SYy
z5#};6y>>0kobyXse%W32)``M3Mu(Q$vuLs%Jn>?-vDadufIUlldcNo=zN>P(@|rVv
zxu3tEU*6uVw<#}{EDg{w&)M<()9K@z{p+gD`j5}HEdI94SNi?_|B9V1UV&HC=hxiX
zU4H+|m!3XhY^&in$A-N|SqpEi_wcm-cV2nBrlU!$%?D@AdZlNSVSPQ$y8P-YRaMny
zHvYVQ&aLOxmz<KZE{k~`rW3o%Np13c-$Yg>#@NO-w&bj=sQ#MeFYfb{SR9k%W+<rp
zXx1vN<;A?!T~g0^(|LuZbC{ZHE*j20>^aFR<?A0toyutulNVok_9cDu@5ON)RknS6
z1=nNCYs;6-v8jBO+;6)j?d+~?y}9eJM(-#9<$5vQs9(3T_4VWTb!1rj-&%jaA@Q(V
z$u5Upwd})fzSd<nZ%eEeU*wSeWR_F0<8jL8XLl{KuWkAC>C&D(-=-gbd;9y%ZMps%
zZ^~4Cb8ObLid?QP`}FBk`!5%s&9$Ci`D7ydj+i{}bnWijeg<i0MDNC2L0(0ld%IWG
zvgphA`}O9zx2~rD&&|ro*_Zu1#ax7$!J(<+Xwo;g#d~+{IT>=cNb+8W)T(mh<3;^`
z5C6Vc_QP-6rm!3Bi?7%Pn7HWqCQeu!u<^2MSuO9i_v>=^SM~O8%_<G!*ONJaz;}z0
zRBzkY*Vo_P_;}~0{k5du-_}Y>N={bye=WdRU7`PKr@i6@ZgFt?O}wSRB4y>;b)OAZ
zzZFTfuv+%=amuEjujWd)-tzodcXR5YFF9*lCh9$ZDv}j=Y_g^L-&c%tvNJPZZcaP9
z@#dPMosV?HRi~d;_uC_+%F6KLE~}GZ^TA6YzkJUu^Z#akBFT(V^7lpSKgT2L<Yz7j
z3^+0&ljWu5sy8;W{mY&AR!KqEz2BB*t@{3MbJf>d_iNYg`~B{<to6Li+nX{jPMSPd
zD(^IS`Q@72(<=fO=kIv9?0(u->#`+9X}9iu<zZmhuR8r|(n_t*<|g0kJ{1T2?X>Oo
zH_M$;^J1|D-?UABCMupQ_ZlsK@B4D)nP<lXWBR%jU#aeTcR%G<^rGO{@}^jKq0TL@
z*#j9E7`AjBTeNN0F1PN*chs+#SFJ01H)+DXAHn@HQyh+l`|4iG3~Ac1z-48~O38{Z
zHjCsK7#LJG6sV+a`4w|~pQ=x)%=|#HttyizW<>nlnD4ZzCtu`CY1a|W%$uv`)bs`{
zaoh{;SSd{W8RHk6I&=NPS({!b``%kVce-2h6<^Kxr>ds6W^grcu=k#~^uiO{$-xtj
zBncc52;l*Dq=Z6r#ENH0tu=kBt~9f%TmSr@mj%ZXSsgFvn;$J!TdBr#@<d3t$)q}=
zRu|9+PDj=ArJy~YvrX-@7cNP809ve^eZ6e1UiFz7+I+HB0-Y{xJd(GLzNxBxd#v|$
ztlo4Fm0h3DRT~?d&h-s0KFoVPw)Cp$>1k`1?2p-))Oq@;$}D+S!IkUQRsH)}zwPb6
z>5DWbsk}^G2VK1m+Avu8dhPW`?~SUz?J0b$CUkc1y$JcrCyi}v%6s2_es)(PKc{_O
z>eExIqN1t0%gyZ#9`~BZ-QD~9?+=Z|7Y$NRU3q#s|L8hah6x#qHbyModom{U)QX$u
zze%VF8qeohCUj);xlEpoR?f4+&rbY&X_M%#rjngDa}}x<r*u@+^SqVo*;epyy)E1S
zACC_%TefW7;(Lqx?JR14nU=`?y1w6Tk?^Hp|J?ll#iG4=x4s-uogQ=R)~6?v_utd~
z{dD^8vUfGh?k3B{)qJ#+>vuoDwfy}&VfDU?7eAl*^m=xFUBRi7Mn*>4bAHYa&@h?p
zYktRIcl`cGSFUW)jW!b(6SMtt;W1x(^1&v{qeoS>rtZ4iQ{oV^I{4)Z@&BJ@Wv5-#
zU-XnQ@A5L=9e+N3ys?sjLCEpIbMw&Y)jU(r?w$Wb>fV=WQ`klSPWtjW=-X|HqGB&b
z&C^25p07Et>*43;wo~A%o(QDT9~xuxVej{QeMghn`QFGIKkM3A{Jeb5rH31)Pn~;X
z&(F-NiZ?e3XPf6QdOXoZDbxC_x4x}?%@0*y-#RPPZL>k!3)FnG?knEeQ)#~M_q*tl
zbBme7cF!q)aiP(7w%NN|Uz5DNxb{v8TKVSL?CJB*PMbD`r;A?$x+eYQitxa|f6ML9
zs?B<Te(IB_PwW5vTz);ydimR!($Zh&?QZWbd;4qs{(t4WS?fNZoo+O<$FJ)~Hv>bR
zc;4=-F`;4aQ|A{HHZPm?^UCa?NfU%x<|o~bJT=MYr$(-R?;;n4xw^hdi(@*f#JjBD
z#|YaudaEzLrhf0)lP7+2t>&If|G0VG7U<ga+~S^-DU(i5^-25ul>5v6qMe6w%(nJc
zmE_z)EG6Gs9lZOlTl<Oq|GvH}d#k_iht2fUdmnXiTE%|5w$^{kzG|D9z4G=i7q-9K
z{o~QZl6z5`pPiexia}OsZ(M$2qM~g~K){ce%d20W&B-wM_viD(vi_AzH@`p3pTFbl
zHB+51_3A6{?!GVQS<k>w&=(+*T4;9F)FSe@ebP?eM-x0feuc6WZdqBLdZ}Qp(bhIY
zt;n@gvp$Qy3K4C-$gS#p#oOl}zucesx+mohy|ZoWVwwHT=H512&3c!hgQ^=F)IXfO
z_CHg9S5K(Hn(n9Dt)Yw9GuM`>2rUf0cx&tTBbyVftH0G$Ty#BrTb60b*_p+)f1+%y
z-j>=3Tjk&D)ehII{Pj}3>}}P`<QrLUAKuK`dS?FpniRjKLAHNBJX?2t^R8W4huf;(
z?Mzp0KfH8*%(k4X({%eUZ(bepYSN^GKF|K|Ic@*{XHsFIXIvbkEX!@(<5^qfY<?WR
zwe|JK!)y!%eJ#$8#idI(uQN(o`?RXp)bU~VJjIeHw-xLJ5<cYEto5BVbJ8qZv*i!8
zHttC6Yt)chBsa&>$|G`ZnpNz@#J+#i`69fQuFCylDD^sgeVikI^<KGO`TFzEZ%;eB
z>&K0LyI%<>CyB~Vm)y^ve0SH^wTE*n_r^_LX{g!xw#@qKt8ddUZ2k7ZCi&Qu$zOYG
zF8f|@Kb$Dn|NV^dS$3({ufBYdS{Ju>TmAn>KUhkB?fL!g_v6Fc@7HyQ{kHF4XIb;(
zcvsgaQ12yw{qe^O@4t}$|3iKLd?EhzhudOx{(YU!&A{-5VgBvhby}Mv*R(s&vYK2T
z_F?`@pY{ph!QLs|BClTS>s?sEV)Rl~hR^SW(yO`KD}vv>P!ZZ_F?XBsjwZj`=Naao
zUw%1ST-Zb9(w#eh{O$i<-%%+1vi|cYu3K_T7cY+Z!*+F=z_!J2cRm0O5iHDoapB?e
z-Cq2574M&%yj=BFD{6n;-F310A1eM_jy-g4?*9x~Gl^IEdrN<wn!5e6;M%PhpB7!Z
z*n2cd*5-$EXz0^6-r2X#?aRC@{IRi(?eU@3;@kKBY)n7TetP=)L;g|>2P7A3oO;Ro
z(s!Q2%k4F%0~0p{g4T&1>@AGrid`Pasr$)Wvv8Bk<kcrmOxk?mH|L+gMfcvPJ~?sm
z^|iJ0?CZ<^Z0qT}{_0}b`ncVRhi%W>ZueFYxKnz4@5f_)%X3~Y?zfY$uM1kPUbg$g
zuh;8Ynh*YvymxW&al1bsj#a;}eUM{TaC@6>-uB|_>tw%l|M>4M+AsV2=}C3@R09d6
zi9a5;%Reugeg4(H-|uFJtuFoeNL4-h%0y-RpMU=;I=3ZmXJmM>FGD43<?4;EPal33
zwe7Y-PsICTA8z3_+LOK63w-tRRt1|_Seiypocq7U>86ppVHcaa^QC%il~2EJ=G=>T
zbKNv2XHDqp%~eLvH%UzN;ITf)8hT9bes@)ulj4R5n;UZj+@^dyv?g)G$^2ETO0I|h
zk+~WcvDoVQ_wb_n1-F$&4!fQDW3yGcyeMmzmh-{qg_8r^78pt_@tJmMZGWZ+H|Ug#
zXCK?Yq^;k&Eh_4Frq_Z%FH2PwRmG0l#*LnvlpNnV*oJGLI}@5!D)gm}DV-fujX${4
zbu_7L@xicYxr{Ywpn1{E{{8RE57ww2-s-cYd}C-{qWroj_0y-KCrvw-U=UykUcT%R
z^Dy8<K-{ZK)1_<IG|Mf$nG=1!9<p0R{b*l`@BBG`9_~CUmD<%%9?JHL6|$`O%zcqH
z+s&@d+&k$~dCR>hNl3@p;!tGb!72Y-XJsAZDU6zCWF6k_-pjZsPF$nw)s59M4&T4a
zi!d@&wOmfx7Bbb;G-Tqss>B5sWmEIZ{FmGo@775)Tkja<;9<OU)}DnkZ*|wd{kw$0
zmDy!)@LKKex1V?ZtWmrqHz)Gk;_vcR`c9e*4@z8<1GDGei;KROV)(9G<n`Hmt55Dd
znqzBw%8~PqOlioX*g{wPUM~edN#A;pht~ofu2>5Tbsl=Sp<?g3c~J_@2Rn{lxOs{-
z#LepY#cIKQsSE{P3mpz5@V_{_&*Llq%x(WY7Kh16KHU1H?vtVR^89T*GmQ>vc?G3C
z&u(#=!Y%N%if!`ANvDIW3mSi{=1yf{==i+DcG{=pdu>{m0*~isO$q9YeRq;K@MOR|
z+vej29bJ*1bT+DmuRI%f`q_dQ@c8nC9kZ(KGfi$~pPDVTx}Gn)Zj<WjSz6+pcHsgo
z-H&$OSQV9c(Nz4a=jl^Zy4{Tnt_pw_o-wFw@=&>xQTFPs;N*o1!~fo%)G^b&EogSN
zy`tC2iIy*&H$8RsnG>^A&)!+h9kzb_!mOsm;+y(;&Z?=aeZQHXO1dWB%=-QZdvRn)
ze&7uijU*3aR>_@OvG;uJ_@N8ITb^x-(hXhuuT5+A{9CV2n&1BWz3cu3qgj7Mj-Ly<
z*4dV_^!q;h`i7`u$wtTE{sGMi9}Ib&_|kXYmRJ0nnwBzc^1N!)wdm4iQRX($l{R-;
z_k0Oy^;&yq@iFiufx^UA<&DQ?Wrcs$56srRo<7BGEsJYT@wp@;iE!^pYxd-<4w*b@
z+S)VcUh4~e|6i&m`wF^l7__oo>-3&uT8HAk#}%x&CntB_vc&b%MTMiA3`N}%?U&iS
zo_CM=@{}f(YZ+6xA8c71=XkJQ{$Ws5)U9<(mrF4+Fmz12=RYScc&>6-Hn;2Rex8zA
zEk#?drUmhGT9(ch3pD&^>-yyj#p|9vGsSqu3JC}Ex!<00&vo0fIfsRzf!o(a%-AHN
zzjovE53g_c+gDGoe16vR{r!#a7w>&v8yovNZO4wxtE&u`J(`^qp6eC8<!xK`@fcgJ
zbcg>nsne!)&S5XGiimaJb<Mf(ZQse#TSdEiJ8Bsi#QPj3-w%m=2i|><%=lHjY^%Yu
zUBCa|+I{(f$NT1UkI!GeoAtFee$ub7?IyD(+AKdl??_q!PgzZ?g-Ya&f{<3$Rnzt~
zEV;2kL?raewKj*P7I8}&#AVomQWjoYv)RJ1vE|4{XQA7jb8pDS>XvT5^1XKc`DPpE
zv~=6Yl4mnaDs6t%dFi|Tw=?;5_5aI%U;khHY_m<hebcHnMWQ~R7b*X^@uoALhrRUH
z-0#bdd+_YgT$dmE-pR5$*!A{f1%?OPuB@0cJwEp5pZ%);zx=N;|G0errTRzHWzPSv
z)A%`M{m)s>SNFXCapp1q-J5&f@1Je|=lI9@|L<DceYv=_{hs{X?s@Mk8S<o-<_G#M
z&y1gc|E-xZXU9Z|PQmK_z-dowmTvxf>GRtwmK!H+`cf>mF<9E?f9z}bJ7s@0lUL;1
z=5ZZa_FU``<Nt}w1>c01DH-n5U45^0@4Eb3io1^=T&+DldXmcf`z%^wvwfJ7RNRt|
z@E);{;o+M7dh3;2E2g|Dwer96{?)hR@`m=pS4FfI?M>pC{+4li{k#5W?+sq6vphVb
zs{ba}h{f>TL@(8MMV2|+L*IYuIwrV-p<qGDtg|&qsksmQM57j-5%>4fk9Ik!#K9aH
z98mqv?hS9%S-;b3>P`t?ecj0&&=ET~=jkP9jc;`(YzvtiKAqeYlg+#7_3FiE#Y4C1
z7TdoUkk)hjaro75*1cCB&hYbnrEaSjt?}+#`y8pSOcNQqRNm#B@%s0FBXjsqP|$q*
zW+2zw{qn3=R_KbH&Z$=>&z+o|`&sktFaO!|R-c&Gc1}I|@2`~|)&FK(%@T5*cw|P`
zksr(@pUWRGG2|Kl%`=}LaXYIsduyj-+1ro*Cc71;h_p;xqt)H#y8mB^f?SbY;O=^(
z6eB_L4`!}cnH!oHU6oyC{PbaVyx3~ZVEyM4vdaSN_7%U8{?xhS_P(Xob`SX?nK!rl
z%WgGiGyKG~qKbjx=p>bulWyv%hgbjf^{vfbod5g&R@bQtwU_>#k97>cUL`%vb*_2M
z|2Gf+KlwcOzT)pbZvHENeq4td7#LT{F*rE39d=ACUOYp8-@VVvKAk;2yWVu^D!=z7
zc9Cm3%yy@~YCfLKxZX3{`stRNf1a=gd}Uzpy7spJQfpZDPw7{8Rv+`bra4`Ak%`Rg
zeV6L?-%mcZ+mHW@Rd@Y0;a=A-Z5)-1A+`(+ldg8PCM7MM?c4EHw|4!P&R2&wE%?>&
z@aW^oD_0$xyy=eVLrzPkkN)k8wWextEcf7H2<2xG$<pcdei@>=vnub!eGT5Gr_bfC
z)SNE=w`^5Tp3kp)|NCC9%=AA|dMnHD2j79E#~1>>GCau5v5?9az1{kxE$^}RuCi;E
zdQwLwItt9ovc0hJ=#iC&XGd+%RD0EVj#YQs+~4{_k_@Zl7&O8*hiR*YMa?W-xGVKl
z+Wb7-eI^|2SC;li?28WEy?yO*lXVMB1%6L0@UdR0s>cvw%MhUFIce3-n9O3;%R#m4
zGgm+1mcROEYqUVwKB-L$?H<NjnG~0o7``yH$gzJHw$c;qn<?2Qa?iEyhU{Be|5h{B
z_^pH}Z&H1ffYDzMzwZeNw`K>}XUyTMR4O+1yUtU|xZo9I!=%#NZ=I61ZrrOkJ@}X3
zHlqvwJU_=;KbGITF3V)qo=V5395eoIG@kgQ*6r|5cO5|~uwO#<hG^yKn18yN-^Z`|
zdF^p_f87jYKF1d)CX4n)KkohWhhLtr$|vr4WbZ85O$;ll7#1Yt&-uILnz!h!y<79G
zxb$zeRd(O_$kh}r_CM~EPjyc1<G+%tZ^_OpuC9$cSI5+_ik-pB?8SF(>DOPs+*&c^
z%2wmP!k6D)^@pll-n;8dr1RdSj*vHuk4vr?TYtA-YxaoA;VLtOYqt5T)+1iU)sMeE
z{IWWA?edSW&P(l25^dSHMsxLD$<vqm<>$}kVoQrjS2uYxffb~Mb+XFJu=h*6_Wt?y
z?aZ_1I)C@X=ImlgeE$0BL))_Na~FQ-T-zy`o^ei+V~53WPO#r^X4vSdnP;!O>ZrIf
zH}9tV(e+;+`Iq;<ZaG+AEb@BS%UNghXLRjS{y4v^x`P{>!q#4Y`{a7~?Axzfr+tah
zo}+12fBTQ*ehZnCt0tX_G&tM(*uB2?-IJc%E9Tdj7lI>Yk?E`6lGG`u%w=EyzkWHc
z_=IV@hBZr~%{Sku#p(UOH{aslSrh!O;E3HpNQ!hgm=dX%wt4E;>%UuleUnd{X`I;f
zW#ujQvb<jt*5=MCF<Iknm48ICQ~&3({(r}B`agQY1`c8qXu0`o#gv+~6068JHcS5f
zioCmXqfVGh^jQ(f=(M`82d$axR(t-}d&C6tzUym~+0jqyHeHcbi=U_ce|7M>2uKl`
zeBtc<T8jspY(h5MKH@ySsA})+Ts^VbEo`8q?4@$LXzeYHb$c$I&0UcdJ+1DXqS?QN
zmH&4>JTqydu$ffQvmMujx3MR`bNHb==O!O0#Z1YukrKZ=d+L>28#er`y8ruY*X29<
zHFtjPoI6`<(^AWqt8e?+Ry{ix-{G>xZLLP#gd+?MtJocO{<@o|7VT$tWNpsZFW2I&
zmre?lkz`F&S-tJ*^8RDboZmTkN`G^E?v!R+$jA`N->_)wuET#`-_Oin&$)HW%GsqS
zwtg}A;qrP-UC`zX!?LrDoaHB^W_)c)m%kQg^V@UA9k3;ZDxRxSjF+ChT35ID>MOgO
zR$-Z6?9+Z8?^t$cLa*ss^~}f;|MT@l50{)?C45v~$&g{eE5?9z4+{c3mYP`~3)yEn
zweH!62cml|X54&PvuTF#-Qs`pd=<V@kLxEcw>9Q_&Ql3?+oaOpi{CtRv;Md##_#3s
z$mJp1IxgK0sdox`Emtz5_}O8t^b2q1e|3BOx$3YDRL9ls)<eg#%x4Q^zg%9e9=7UM
zxsP7`g&)1!Y$C5#T)K8S%KwKs-`sDNZ?vX*#4tEqWnK`IoEhV_e0$d8-c=V)>+E0s
z({l5TuXFdW)SA86tTNG1sO(7Fx9?Rparf(EvUtEcJPu#1(2mZXUtJe->&n*6=L#<>
z^u^`QuPUoZIk!?<GX3<o1(|A(K!x8m1*o&OzS?@|mzVZrfmJWR&U-7bZMfCuPwel>
z&W^ERkdp5~?Zl<?d0N#>v>YFJZ30^pGD#)$^Uj!M8?J3#_USCUm%mT9>UM=UHKr-f
zzWcv?n3-@PS#E}y%;n2^qSK|A8=7OkK70Ouzw)bT)2Hjp?|gLkUY5Xtv!>IQ<m?Q#
z{oXXCGWPbV8}6)&Z(Q%m@i)EqxKyHR+0T7HXC!Jp>O6CPN6ehREDS5E!V5Mojm^oQ
zUbgQpKhurfdAnn8MC9hIJ^ggbuHb)%Z~a}o@lWuv^|F`MPHUwfEb(~CGwaVr|MR+j
zSy!71%sUwwLf^B^zTeBsv_tP}(aISSk+M~jj@~QzcXRV6bD2dC1X}vmtj)6FmnlF0
zBgXOfqNCa68EPHe417j`)1JPrIv^_kL@)ly?WYe+XUFfnGfAa#eqH7E+c7$3Gg*$T
z_#mMgsdsJH&9l6Pe_zi!wk>zY_Kvx8Kl)#l&y)VUTxP5D<jTF~Z+On%uC=>*(C#<q
z=7|y~CrI#fO!X?U^4-1jdGDH6cTd@F*!{=!n^Er!y(25ONU-mX%c|TtCE{hOuyF6&
z^V|FP-1&IaWas~^x^=5IT|c{7xBP_Mtlx8ws&2mOly}B0NyRzo$k{bj;@2LoyYWp=
z?@Dad<*V%Le?E@5`Z)Ny<AuB{w_C4xE!%#_Agp-ieCc{OWiL6$7pG@!y0uqei(J19
z*RFnPnfIGtmWaz=mFBRWlx`-ZEGhK3aZCK_s_-|t;>Yyg=kAtg;S-6Rw)$+H)^(Bi
z>ZsV;M&FD1Hm($J3Df^)`!VOjV~>^RGi(*pHQs$;kIgb=H)LeUyV3jRK<(xG_hNs1
zJI2=7oM0m*9yELFl~)TUTru0uReLwy?A)84|7~Acr+Qtz;(IlBdF)2#beo6eyYD`i
zFKoKNz+ir~RDN1vH@GSGv1o6e`uvEs&x+RbIG?O}eev7<<0d=jew?^QYxSJa;4OyV
zBQ9jmDty7iCTnOU-8qrRvFCbrJ^yKj4{B%6DNN1Z8WwNxWMA&9r!qxn6;Gu_eodb{
z|6{f8*O}$Z&S+IDJmYhJBOLXJiQ$e>i0y-2o|8h(<xDpZ|Me48Y+Gs6Z2IOAeeLgx
zcU!B!uH1F)_6EI|dj!)h{;>yNety305MLw%Lnwd1s)q#uH$1Lf%0A6}-^=ys$~|8i
zPp&_^r|_8dMx|S;em!{H{&!!4{e#NoHw|8@>w~py^2^^5nv;Gxv-;6|p1EtF#rFB~
z_mb9qk&C@oaxOnA|Jfx;aPPbw3=AQ*4m(vmS55aidZfsF`@&VZk-v7P@7}2YRqSli
z_v<;UuX6gIlDS@W=v%^@!;KrF7ONS8?O6A*BF0C3^~tL>$$yg4tE}UHpFOF*%q8>r
zvaXy=zp8ZSkJgXMS!~i)e_Xh-xppN))2_Pu87oUB|6Er1Gc!B+uHw|5M<+Bm?k-%P
zS#kf-n)2dDwPx?9m`m}`+<8R;RQhT}Zw}L5qrcslbKx|z(&EP-e+Yk-zb*NHgQ{|N
z=<RFCQsF1WdURVCt8bb7Tz;cN1_Q$?xdkqhR6;k+y!0$ffBv6WKPpz;s7m<q)Ogp{
zxwEA<ZCv)1XKrKsuJ;}X(hH;C3%gD{0ttb(!;b6j_=;NJ?S22F`}|FJ)@BQf`ftJy
zB@5Nw&A&GDz5a~%<?fG-`9Lixh80x}lS*&RbxPW~bE{rxQ2w01E?WOnKf4PnzYmPn
zOp$qZwmtORf}8fQdym-X83>4jtk8(s8=;f4ret$xG4uQF+G)<lKTl87w<x!oZxeYD
zR9y4VkND!cD6T#3tl%aFhJddNQj#-cbgl(YeOR{4X8ND_Z;AJG%4(nIdwDGXJFnWg
z-9JTrS<J#6w_kt0^p=5P!7Im;ZHo)@{>IpDwbRRebu04ujvsp+Ul_kFUln?&X>GWf
z%jv!anO3hlkKNDSTKnIz_z4>*9=)z)UEzMMz4q<bsLkJxo^#rE<>!v4@=mX+;;&7)
z`Y!i%;P&!|+r{3^DU(z;d9S3$z_6kU+*Capv`TLom+tXn#tYA_F5CE0tYz-{HBSnx
z`sKTK{`xil)vr5#^#_(d3Q7ihB_Y}K)Y9#*I>XsppQL2pw$pmia&Y<T|B*sh-WPJ1
z-7PsQXW-*{XW~!G>92oVC#9d{1x4hP71!TAF%OfD&R+HF+jHykHB(xu)%X35JKXIY
z85*{eYniiF`iIBw?WATD`DNWy<OX@?)HRLim!IZsGJ3Zx-ahbelk+-jmz#<lv5~J0
zk1?q~4!m7*`qu($k+O^}M_9q?RZkXe3|T*~dgJ{27fiP2Ht%tLV{_f^bN=6oJ4&*b
ztY=?aY!!b)a$a=Atj|+!tAK;-l<5n8uGx^bYRvna|93tL=e3@{p}tI~Tl8X_VT<;+
z1GN($%g>r?`bv%E;lpnJkiu!!;DDP|ws_*%C&Iq5R@W=izpdX>bWqDH3{+~KI&!gG
zXC7D8S<~1H(p|Sosva?clK<05sXK4I5kFVEe12ru)onU|=Q!t-xvkruYm;M`C4Oe#
zKEqXC+hiB+I4!@&zxLxB^~)~oAWwA}%k^@<JeyTi8sX7*d+Pp-JC|Sa)t~$F)OyRy
zuAIyl%U*4>E)Cvz-@fKj)+~{hY7ZW8aIe1p_K9$I=RV!o7dy7?ue$zXwpw9|P|HQ>
zbo;`2JvaZ@?LIFQ>c7)TO}LPe!QpE2B2(+;x4lmkKI(3qW%jMeZ|5_Cr}pdiF1LKR
z>-ft%MssHru;w0|VJ)&Xd#m9muzx_k$~iaJsf6#|dA9S|HSyiu>rHap)wb0g{Ihgd
z&YJAKp06J*G5@r2XR_b)SP@qtW>Cg?D#gd%+Iyrdch9vM87Y_Fzpe?>=UaB);_=)F
z!Cb@b&n}#dI8ho=VDoCb^`9rKpl}BFC4aiTul}zTehJ!_{NnWeL%93$!+Oc*YFwUj
zMg848&qHUCxyuP|Py!Y4p7u0qW5k_^cWLG!U)SdNf8TyJ+4}JR!{79^0$2D|1U=im
zW!{I_iO&5$n^(<Me3<71c3P`c|M8<Gn`WGx_qsZ`_1fR5=g+O$9Q-_g)v0NHivNBD
znY=K3nR|RK-|T+x00stzRr4nCwmp6uw0qZ|Nmie`*3B*SQeA8zr21Cgv@Ypb>ME=L
zyjgv-)6?!wthkWGIY}Ipt2HAxhiR)!yFIfdz*l<rPybN)Hz#Mgf7QRcI(prTyRag#
z*2>C!VIcRROh}Nmf_m>~r%l$*uKivWStPdqtK8Sk^FEt{np3Z9pG-Oad_JFrzm=@o
zb}!!~28M=J%VQRAoT6QBwDQZ7U;DG7Z}$aWRQR@>^&$7#&8(lBZcE>uF~h{~?5@Qh
zCEK&z1o{Ld85k@ALi6kD{$0wSK7IPsIeyEpYUQjk+b$HOn)%|%zFU2^*SmLy^u}-A
z7Z7Io`5Eg}<BV_T|0S8MyDUA!hk@b2g7CfFyzhPI`YXOVnv|HVdS7DSrJ|>wruK8y
zzY|G)?)QAM`f90in^)FG)fNv7Bj5B}m<XSdV_<N&`nz6leYv%={fE}Q8&#I>|5ASV
zP1nZBrromh6{fHo&wl0J6j$x^x#6VkTdw1G<K~AiwK`J6$iNV?clGWIZ>MbD@coT;
z<mXS@&#tPwC!n|6Y1zvcK_+$Eua^Bgrn-y+6yk5imtWqp{`~v0+46rEMpV7qu5A2`
zlQ&&=-$x0~Mv2ae5{_+0Jg!zBZk@Yrcg!WE0V?bN8>F{v&6<64!*L16o+BPT3eHJ;
zOhdE^r=L#TULyPYll|%7AA&m=7#Q;32mN6Fx$>0FA29}o2WG{q%O7m&VP{|{xE;3l
z_0piu{MXOz6+q)eV9QpVNtqJ&^-bC1eRlur<R4Z$2q+s0DH}HNbOtV5I)Q@$l;jye
zE@uQqCFlypRiJeUpkW+PX9SeKK__}&WoBS#_>{r-Cg0B9zW(L*m^tOsHDe98-{qG(
z^J1O3>L-<Be{Xl?pK9~zIkIBTcF}uh*S}n_{*|G6+009<;@ekv7vKJ?a8GN3EuY*I
z%gR{e4+{RLy9?ji8YZQfy$kNyWA<(`^R89pKc8=&E2wsAt)@1+*3xd{w_U+`=Ek43
zn%NcaY1d_?N8Ovkzh%$nclUQO7{0TUiIdK6WZt`~JkiWRz3g(2{*GtWAKtOgEHclY
zV0m)Oo`?NA4*h#0X5XOA8a}6Y$FFavvz0^n^G~1O#851B#x2I!q-gQ0yO;RWYeaTG
zTYW=x`$_Jdv4xs-=FL7kXPcgwlM?l=?%i8enWQ~7Zeo-3!n~htow%x8+pc}%+PIId
zZ?&YaM(<^cE1sZPKK1<8>kth~pTGU9zlg7*=ghIaIfuf3-mT1C^6KsNW!-mON`4B~
zTsJ+TE%koAx$3d)R@<2_f0{M>L#xgA84`wZOV<lL{+f3^{Cwl}W3!#6q|Ov!U|`7e
zmYK!~O1I1mprV-pRH88;qNL$&#p=@$Z$Ewti;?ASV9M-ZIPmt$Lp}LBk3GZgzw+9>
z`=?`gjh5d>t_NXBq5KEl-uayOBd<EMone8@npccF)>hpM)w}s;S-yVUy{zxK@3pR%
z?5cQeI{(|FyZ2r>aWfPMZ(POR&{XmHea+Ej6(8lNZ?lq;Yp6ZCO0MDd@vHh~zrw<A
z-#Po~o~V9G%~|$$pJrxOgSz7dx#HQEzrLGux3*K{+rvYzWY#ez{NKPV&QND?Z;QG(
z!#C#DRSbEPZ<QqGzG0hoXWe(j>YtH^zE79azsr5*<`0H9@?l>Y?%3tN7qfY?Y{#Sc
ze~bs}1X3f_K%2a73$3m~4+YGiK_p&>#(%OaO1Qscxx38BK*2yEKPijL#zx;QGp8iA
zNZ&0du_V<cH90>eRo^EyFTEr~!N|nO#LkYZxTGjGF_)|2*43!o;@f6I|LXQPUDjuh
zRcfhVzjd<R`*K;;<a<lkF8?c#YO}@l_^f~>%7K1G`~QjQt2oZQ*6n)ttZy98#NFNO
zyU**1O_=P@=^6CHS;+Na{;U}N$^M+r+%#XtwJ0h^a8C2-J>Vs!zjWu3BLPR}C|u@Q
z9u+t-psmttlBS{Nv{}&)#qIT7Kkf3WYqejmH%Z)nQp=JXOWIV#%{eFDFqrA1>2GMP
zv~$LO=loB<*1tYErAy@M>h*~MKj)u*ll;#8^`4ma#8Tmwyw%SFcSgoNU2QsV&;B3m
z3Uh?oSk2G<kr#Ffni7BgDp$%<H`l3W-_~4Oux8HhgSEf!E!Zk6*!pSf^!qzJAGrSA
z`HA^${hnV@?dIPjHx@q9a*dSDVPAUG==fyK$y|RcXHWn4@cDx6XEuL5=5Hp?l0Mxy
zcaE6us`fzbFO`A!tsaWocip(}l(bN!;)vz1uTQ`4-%~66q^j^CPjFgOjPb{5x?USp
ztWNx?E1a>mHFo2*7kbf=`!kyVy_4UeaOn82vW<L;bN+s`<mvtP?;`&nX707Ct+fAm
z%NN^!yY^*Te90T<KGhHAWs5$4EuXBJE|qX&hoS0)q`z-dv{W)J6XmTI8K_?TWu?98
z!v{Hu?JG`g{hy*3(fP}azwK1%-dP%3cCK41GQlCMvreyh$6?F!b9LWw<ZoTSTIdX$
z#=$8i9@Ywi$6e?1PP5=w+s3bI)1q0kB|~31xL0v<?Ur>77hf-&5yWi6<s{a#e07eH
zN2$QG^R-eHUEU$jDg_EHb6txSoWt6`Z#cH}biYXKoo8`L`*v*HmUqC?W$~Upe4F%6
zg&m)G;P_O{HJSQr_^0PzVz^Qgxb-okXVX5tPf91u4$4h9I?asduVrKS&iP3@HD4W#
zP1K&T(5|eyhbLsU_G-PI`i6^i4Vlhf*mEmJ^x@^X<=?&@5-KqJXr(C8XkK<<>Q=|F
z4+e7`T)sVjY!I(ezG$^)-`02O``tbXNM1~+*|ARdfSDvmbI0yA!Utbx+ke|4z9n^5
z?F%Epx-yr~^Pfk~{dw`sDUG&yzvo15vpks4{NmYpMW>btZaO~OWM^mo%iP?sY2Ng&
z2eRHQDHHtW8#A}oDlQ@@;=W;L-m0rblSRAhqqjTFjl5!JzvJ%tL&EYp5_dve18d`^
z$iHzv@GEojP7h1grcGPx=S_{X`9DebeOFld)BC@?66MbZc%(?G8zu8NpE6&`GqrE=
z&wyjnKAPM~n>`t1bB&|JHeTz!xLUE8YxT3gHu|e~#V+ff@0~iY$wHXlYs+f+J3rR4
zIKAwiB3))3%HJ1wq1VK8txVJ6jSHVC%H=s(+?uxNexZ#96Z2%}bmfJc8T}HKj!ttI
zG1K~LZS1Gn?#8ja<@eHUi4V51Czow6`YM@yaI)XKrx%vABwc#9^YCTCwL*QaQrmdq
zr_OoIsIIWlE_wF^ht2L&JsRu<ytKdP2yh<M&F5nj@(N*Y;br*wFloW$Cr$~g8chun
zwN^aWR0`l`ckq=o(LYnVO3K)a-$A|o&Jn&sVRq>|J3VD3HWV>*9x+*Z*yB>7NRoC$
zz!N2r%_gabJ2NdfExv4Mc>jBC!)>{5?JT=kUt~IYyjZNb@I&LyZ(#;|ja96Qj)*1l
zCF#keZjrH75uDWQbZDc}n-dcb9J5hi3=j=H&f3bI<1tx1$2~woP|^Q{U-*QFMU&*F
zDQl_*YFe5q$hlq@mlNWTSky9i12f}CkMC2rI48V$c=VmYLCaPnu|r308+={3+rsnS
z`t-w!s^9Kx-YhpiSH3DL@-h1~)7rL8W*eSvUH&}Xe<|C|NTVN(s>%P0UcOLu4$jDQ
zeX!`ojvJpR+P-~oWrLh}{4eE;1^isB@skU`+wCiUUv2h6;Ds~~zs3szzs6QYb=Goo
zpAYL6eylT?^X9?YEscddcT?jXE-hoMPqmJHl6NcM?LYel9;RKzcNtti85m6nJo({&
z$P@OmJ#}jK=RC`_)cqT876$zfw^*s<*R|NvlSfUB!Sz*r_=0amlk5+9mfpJN<iE!5
z$%a?X$NRo~yxOjLNA6QeLzaG?;p1)98^bT(<9*vZ$3WwCo@?-zg`d)EJP-M*IF_$=
zjcj-SClw`Be^$Y>xYI3QW<96V^~%5-yS@DGny#y!vbOog^{mJ2uA#MG7QboySRYne
zcXgls>LM<VPoZV8`tSZ84e6R^U-g>*c7kDvvHzdS)4#tT*4n*$@0RH=zhrr_>)Que
z1eqEh?fv}L+*(uYWWN2@!&lkmg=8=C?O@$=a7sm4q&<h*h23#H$*pO!8^wbAyADV8
zI=_9@x&Qw*=FE${2bk0*gnYgF%zS!y;Nr<i_x^3}?y=+34H3*Kx&PqwUV{T$=j3PJ
zJv+a{A=_eO?pn_GtqBTCSzl)FJ@@L(@z8B&(tT(7D{c&$ZN+wYqH@{w-F$0vCoG)*
z{lDdbz3SF`)D}ihSh%5PGw;vLwuSc`SzkxiJ=R-xd_$f{TGX3^e<$2pxz>8w`fvX_
zFRB#;ZI%r_f1~c0pvIFd?n7seecCtU{`%L;n<g^FY-LTe|K8E!rLz6cj&rY1yIP*#
z-*Wcb$}5Y$&Ca~>=A46`7fViJ?P>e9V#V>d?;Sc9*nikqEAh7Kr-(&?nj3Ewz0N6$
zS{B3_t!?SOE{HXhb=&KCFSqZH`S<bgck%zf-fsFScgwQ8ZCbaH$kO2FsR1e`!N;qn
zXJ+gcl~nJYX%?|zZA(qrhkvSx^VQ~<vF@B<Z`r!^P}k{wNB>IRx$@p4bIqT(Trnv%
zGKT~+R=)LhJ^v+AXoq&sZn2Gv4cxMprx}#Ib0{wpYtOPUI;m^t#5P~IRMWiRS<>-e
zQ@QwZ&xoD-F1YM*(K7Ax6L;>njd?K9&G}<r&MRfErpC*QWcE9Ezv;WP&~;jUyK<&o
z(6g;)ujxHu&SJ_w_$zDq_l$`fm8-URWS^1KHLCXM7hBnTe{rwh`fcvrI`enBTX$u|
z&T@B@Tk9@;e{OES*vxlTTb_OYeeT9$*{65cxl1ed?v~RvDs$;~>pg6g)Grokv&X%A
z%CYwsl^!R5&zShq_<IJ_6OX@UJhtBQ_M+0|2?x`?@2+#VKD9m;WZlKZuFu?FUsRgy
z{w2de;7t9)Nwt-acDZzwX8k($ZM)c^gjFT+ueVg6e|F7qTg8vH$!ki(L%x1!ecZY3
z(YNila<}ZT6Nr0#XF=lYr`MHspXwIoPOC1I;Hft*S}%QOUsk>0@082F`oAO|F!DaF
zcV7}X(|2F>A8Bc?Mut08N5bshnyO@r)crkO&oF8FmPOc_Z^nq`TS#R=s(yrjQdVkm
ziGFZtQVEFfnVXoNsvn-2Qj(!yVQ#MPk(!yFQ9|>pXU)y^1By~pGLuX4ixiCP>~Oa&
zxr~hrjgi}yZ|~L@T>n~o;Ny35$GR!^Ih|z+l9YNrW^bJ})u@2?Mwiej#><&Mg%m7g
zmzMs^(9OMkxc5?Y_PaL+A1+`sm~i>(wi63>b6r0?$7RRbuH7>qI=<jwQnD91;`k$Q
zvJU4(!C7^jKc5MQ*V_Dhz#9MM_rCAHtIz-5H~H~CPDapnS1@k4zux=WM5*NrUxU{F
z{`ym6e*K@abRJ)|DQ-XC%=|saz+~q~^FX`b6aM;1%(@exXeJ=t;hUoXr)J-90P!Hy
z#zqito3_>r%aoGHU%$?L{w-%AcWm9OFhToi1s%M%ByRs;zFmCk(y=Km>X)7!KlOat
zv-BsbQc2C*;+3_FPDvd*!@50nt*q#;&@Ub)N7zmto3^R+@}`-U!A>jWrp!$U>ExZ%
zlY8`l<kqC-7s=WZ#$RhP_Grnyn3u7`&8cXkuB`deUH`Nq?UtL^7soA9G|R}&Ii1F1
z5m;G%^WNsf|6dI9La%rIxY**HbKzO}wrzsa9lS@_l7vB&8pubyN5Irs&SsE5%)s7h
zAdl(rI!PNG3KC&c;$}wQo26)$k(~3GKj*wA_w8#U$3LrWOY7jhRnxoXgy!r0=6lt)
z7G=CS^?1h(g_$?<;>?X&?tZ*6^|;=~#v2Drg^ql4%vrc(gN2>_Zd2!+3&(CuJ1bGJ
zsOZUuMf=o?zqf?(Y;>G`|K=?ZP)tCh2NEFy5K5gViFsq=jU#MH%o`cWVK(>s=2&_s
zY4+zsydx*XyU{Ud<Iz=WQ+g|xeqRsvP+Kl%+YN=CH~eZ|PL1Y1{@!=J=UN#lZ-c&W
z-buUN{C=IBIWJgmjkM&UcNIDZZ>XAiXl?V;*Q<M~KX3NmDK``z-N=hHS86eTo>$o0
z(vd8^!94r?{C6kr1VqTppD*hr#Iw<{D1P(Vs1Rwfe3`f_-&5Yrn~>4LJE{Bas!mWe
zGH(P^;Mjyl>a!L{P>?_Z0V$m#F%=4PBu&|mumv9fcIT7q=XtAY3$}vX(#N~&!?FAO
zb{DPy@$S7f{&1hY?R!-xuTtOIl+#}|zw`gu?wHivk$gJl)9rkj->cW;cY);gcJQtf
zh<>xL`d`MGwaoLxrCnrhPtyOBkvhL;{yiPD4vTHg=5sA>nulEt&k-oh$xolN+Uxbs
z>J1=Uxb$smRQ{ek7cVI7A``v7bn<%3?WO0cLAG!&{Qs5xzURN2N7=$V-hQ1eRag6U
z+G)9Wzn<hiFS}>IMq{thb{iF`q~@?=-|TH)*LQ|4i~aUt(=7K_>uh)B`WD*cCxJ55
z+OFK#AFt<|Oc9!W;m=38cDA|e_9whUil`{j+mAlHecv8X{$+XSS^58)d8Ie`Kc629
zPLL5z8@+QboXURkHae>6%d_xw+ut|OmfNbDW$e$NAYxnnrd<AQ`I6$;8@A=EvsJc4
z=NLcQzJJfZ*3HxH_iRmgy+PJIPe-Tk{CPfA&bAv1rfzJVP*z@ZrR`DfS@|;&lmFd*
z|EH)T@c!hT)lQ(iTblDQ*jR4&zlyivbyKfw?goYHDe<)DZ`SO0KNn-@kRy<q^L|c5
z_@A=F`EjSjq+KL$>#lG6_xOH|@ym2^X_cPb2cHD3x#QNooc#NIQnN?$?V2~~-+g}F
z;=VksM^M^DD*9=uxLxV0;#iBT(K!N{IlS{*Vy24KC>goPMt_|Wal=Aa%&c4-q|o&)
zd%dPvhsm~Y%1FfoN--$R1}-hYnTr8G^Wbr<ZAbh2^`v*Nigx`I0g4yTW8Y>jRbKWd
z{O6rZe|q*rG%1>S7;V#2jjz*Oe*0G7!g$yIH7w3K6H;>QE3#c(&&_}0%ek;BpsXnn
zoQ=-w&J9sFd(m)1%(g<2$7)wj+27EQ4&RSSKYlN{ZsLR|rkmni&%OI(x%B7E&q1J!
zRDC4O3{n<?vrymLSKyM6yex#2o3Jw<tV;5ZpI=#bpZWN4a9tn<DL$6=YI6E7xf^b`
z-Nas5e_BEZ@1*^1=VCsr-MZLmf0tY&s5p6fBWPQm)f{uxmRF89Io+n-P`G&`jAxEv
zY>q%}4r}tVdHL`PU=p|juv#+Zyyn^SbEbpKhTIfL$zQm7SJ;vMHW%ld32(0FgnNRD
z1=^I9{y{m1yDn)LpFYYq@%T1y)?0K#;nj^_kn*r929)j1*Mo||AF$%R%+!mk`|;<^
z%^-zs;$LlN?sm@+sLVMFF453q<<I_J-QxMeZEEKK)J~<#@4w6GJehN8pk4L!HOi*v
zBwj6z`~Lc~AGC)5x54E9Nru1`7Ug<1#iwtC-qm_^-0AbheOzgLlCj?ownfRj-FM^Y
z-qsHD>HF+H|Jldhw|$3KNcYvffzoOF1((@fe7Uvq>h#{SEg#!%U5@|V&sTNUuIOyN
zk%P*{r&C%5wC6|9nm_S+&6dwjkNI=f$FItC*6k~cUsISrF<&p&$FoA|?Y?PYomm@y
zmfHGX|G)6~KF+7D`G1{1Uz~UR#_y0B+kP0!ewkH!Men!A^%F^_qpY>QtbTE^#${v3
z<+dc<-p6nEt?%AgdgNJ}-j6Wv)h=6a<ccTn&i3=$u{0y)^Tl)BPwgtw+xMo)uRU$I
z#%9tDzoTCJZ8h_~IIcEtn%%pKBPsh<z?!8SSN~1UzHxiE@#6b2r>^<7M@OlyIy&v@
z-fJ(X_s_34NltvRe|`Api|evQ>kQ3yW`oT8eS=N@&8Nll^lNOAv+qRjVNQxREI9Us
zuX}CX##;y3tJl^m+yA=ZG^6%?xxM1XukR<AzrHy8UEYp&GB4&`&H3{%URnBknRD2a
z+2BS>_iC4|5r^me@+fnUQ9gWAvD!}Z`iawZMh+~y%B@6y-|Lw9wAkyj@$;o7(i3Yc
zZ){m8=3cE|R+xV|c+tH(mkNVdIfG5OUz~2ec3stu=lecBZDs$z?`OvGtyN!aC6=v|
z`4Z&5H%)%yGkZw|CP{mL-@AVwOoXQSXNzlfXB$3nd3s_Q?^cUj)f-oee-~4_cjv^W
zz3GSlz0_SNbTP?3Cbax)U%Ov>roB&X?Yo($-G1-<7QgFyNNsI6``$EgL-9hGHot!6
zoKolLA02lhi}$@~S@8B<WyO`5e_j8FTz_+L*$uB_`|964ZFR5vUO%h)euX-F`16a$
z#quowzFhy@^q=+eE3-}~Y3up?zPYjb2;0fmf6LyT*Z=o!=H~1FpKkfF@Xv={_gA07
z>m{Nib|i$ne_9@5|M%~$wnMMPY;L{3xt_27@2t)5zwg|f@S)mY%)&Wi>dE~te$@r%
zTz-G&X64g`e@?ni{$^kMzJ24@>VF^Jl<s}}GP-`lF2im0z2B>HzjgP%&vAcu@80*e
z*mD9=s&NJiEwakH?)>{?thw{+QQ1@R#W{fz+m>r?v)^B^?8(AauV$CEv%mXWlbj>$
zb@=n{e;W<AZJ%cMeV%Yj*skQ_$JVzOR-80$-+x)+cK7V?7QN^H-b+ay+WP*Bg|M2w
z{4I&-zwuZ8yZ3HPeR}`b{O&R<=ZvX#?b7?xvOCuPJH557@0wh!NZY%;CflxTo_|mF
z-TzO|^*eLV-8ZRgellylozV?Rr`I;$UK|o%eSD9}-@`ZFMObfqbbPa3udYb>dEeVX
z0TrG(lf(ITU--E$e$K4_cNO~tqB5`D@3s1TfA##G9~^TMFFJ3XUT3~3?*7y5^Q(VV
zZ=HVR+RxVWSO0xnc7EBr${klYnZS|Cz~I3CJKidGMhCVImkFZ7h3_U_BVz>vg&=(r
z`ea<j7RLHcnI**msYTBDxdr)osd*&|7W$Bp_<+Qs++rIWYzn~6C{{4mch1i#&CM$Y
z_w(SrFD^q<eBCbvLo)+o1JwQ(XUOcIweRa~qZ}I|S{M`)&+L<!ee~N6<G6#y$>(p)
zJeQ(2^UNflqUUCw{{ELtGK;Hcf4NtG>yDc5?BeQ6CjaM^cwTyIwl}kCw$Hg-r9Jw_
z+gQxZjvagL@n-de3;%4wof;g)%(e-NeW;U_ceA;6c!oazqr>mN*VNlPPEwHs9qrWr
zWC|!Io_H`YFicPeP5tzNj+U|%VqjoUaA#s*XpjM&)l{Uyz`$@~B2170O})dU;B`;^
z>q@TZb_F%r?TDLiXY=L}*W#Wj6OEdTf}Bt7*mUBlQ(2jm<tM#EibjQ&M!!Dp6w_2r
zUDC6l=gI`5b+?Xqf^2a>*zM`#$+^gB;e!`15)59%uj02bP!M-DjNEs|tF&yJ<H850
zc|q>+)|F8T4%(8L$=al#6Ie2tz1ef3vZ`m%?zs>B4a~2f5SL<L&=GyMbvbMEzbz(r
zgIZ545&E~}(EM9Md|R179!~x&HeZT?fx*&f<=#J^io@5J*`IL#ar6AY^Ywq%$1j-#
z^?$?E7Q5L?F5ImA7k&R%^7`wOCr$cw^ZdUs-?MEA20xDK*Ok@O+<E@_>b1Ndhs6JN
zdoAT+VXFVNJbwGla}qq2udl7`pI7}ZruxSM4X=m6_o`mMRi9_!V9UtBVEO5xMcKOV
zFK*sr|D#YX#l8Kyn9j4A4@-XR-v9fke(lTC(cAN^Yk%$i@VNfh^7>G%sqsHgg&P}h
zR`LAxDt!N^%k%#|X%&zAchdjg((T)yv)liOe|X}@%=3TL7aLxx|65-Fef#=7pKdiW
zpKqD}vS?$d1}IY3Nt);13s@QQP(ZS7PwHvqhsPf(zrH^G&tdyNAD*0iyhvi!j2RxD
zo}B;JUafkza{0VaznlC2uiTt|`w;u=S=;`6Xs^F~{rc|G*WY-hU#(DQU|4--$L;zZ
zdzYu5_<J%vTjZ0<F3pKDlE?dckA0ZWzV^+c>-|$yG?&e{`g5=T&++qz4L_d$|3`o8
ztu62C|F5_E@gVKX%<c34ozh<a_QuBFf4}?JzK)LPcRyKv@25$;BLhQN<A?Kq^N#O0
z`pTlVP(j73S9IscCI-u*Ty4F$_uqf7y>{8xH~LV1^TC9`z``GnX=z~=F1upZ6)an`
zZrxN@H|_2J{yewO&a6}t;cDZ5_T2s1+5CHZHs-}{JehJWYwP=czu#XGW@wmt?lu2B
zoBQ&96TUfyuX4M2Ddpbnh>R=CRd4T~Ec5e1&9}|-12sf09<Tq=et*W>%|Bm-|MyrL
zBx~{E%|zw)`1-%1%?AVG@4xu`^N@e_zn}4M-@U7Q+#CMs(<f;uv+v)m4zbsNSzNy*
z>imijuc=;tcb>0pJjBGXq3A2$?!zBHR=BS}F0OUTyZ*Jq)o-_$dZQ-J`5)yNbxH8j
zs#U9Q9*>QUExte3R^s!P7P&o}A0|%M@T>n-TWik6)ivE{q59c<9h|>drneuQU}#}+
z@HAKIlAbAoR|-m}8>)2WPH#WNx#{z<6+wzQE6-(T8ci3qn=|*@lOo6U{_$6gr$3Cp
zZ2I)unwc+}85kHm^Ugf|y*>H*z8`ai@Bb@2e&EFu?`p6AKQ3F}tITuWscHOk`{L+F
zm2YP(JZQaS*N*zB9UxsN-6k#ZmhXvN!}ogW!3i2yr#{*9FD11$a$U^6N!yI#mR<XJ
zTYbmlXXlQ{vM?}su*t=5xSI9<Q~ciV?)CZB^|>kc(>`Cnck|!u^=2kv5@BH-Q`Ua8
zo4vF6KQnXD(xT4buaoKzu>b0H)H9bb3VSp?v-RI*P32UU)Fo|G43G8NJ>PwNeY9V_
zK;NX)XJ_tLEKLkwtm(S9>F|xBKbPMdoR$5%dPd)zrB)T!>u=n#lMWP_zD-x{=C7PX
z^B;Ka(Vu<$B%};#)85;2a6-mzn=4sc<M&uD3ppXb@?>_N(NrmATNB~O^HlyssRhnI
z>!fJ(Zcnii9}@$EjmTo*ef73QU%BsF{+nC>Rzm7~T}J**bNkOX)aS3&)sA7bHR+ys
zptSx`(%t#(t)=xpw$8Q+a69F}yU`|<r+xLh*~wz7?^b1M{MoTC<o>0UTM?_`HMiUA
z)!7tv7C$-lNuYSi(NEp-e;%wqwDtS%+No2o?*IS0{=?q)wcpR0-w#_E^28%f59atS
zJ#z6MD%|5&pS@`O#LqkM-K~%v+cz5MNAKR$wfTq4$vQLsgBLDbnE&VG{~!0h*Ugw8
zFL2Xp^Y5S^590rSjjwy6oUfzi&erU>bdtUd1B2%gy9b+Y$f#TWs%Z@9G<^JadA8ij
zlfkP+R{!3t)@Q?_tnAFyYGiDz{U<`8rK@XIe%<H(L;dz&S8iu@{Fh$;?XJUt|GoJ&
zYnLCF^PBmw;OCX#^KJjXJ)J(k`rFNT%i?E$4>?_)zVFM^^80_k|Np!HzoiJ*(&fwl
zU(5e{Zdd8+^K-NRU$+0dOT+8of}hu-^X)$#Vf5l<aByOEUi9_Sf~P%yC)LI*?fG(H
zi^)vyo?WJ&UQSki%n@TH_QL8<gS<=dX7|8<5qI`$>91e2_U?yE-sers^6qU}nfU+T
za{K>3@BjPQ|Np1;{h!)v&5XYMeX3u-a?6%C+3~+0FI>3Lzvj{6(9o+(mp<LJvhhs8
zDIWWb{OyrC|3ALX|GzY9tzF@x8`t-JyMOrkzq|MUzSUm8r|iK2<A+~f7VZ3D#l$ed
zLfP;A!fo>ozqNgww_j2F>C|VR=FaYUxpI|hC`-{3XNBpf_kY`(AGh~b?&ipT8OtBv
z>;E^uum3Oq-0tC*m*4CDUbmO7n=pI!?-z@$*Iv7PQAYAy$3=A+>#`lYe}A%mU*ls|
zYW)64i}9ZYD>F~?*Z(lDt=${FJ@5X8g?(1c3>%&tvM;mF?}=K|x9#*qxmmuczn-ZT
z$7c4`gno&itUSG8RgwFT^UY!3^8Vg>m?81+^Cj=~d;a}u&)H^dSZ`f!*>LlCRPL)Y
zt~%AvW<Iz7c`|->^(pQ3d$uJXfA{^q{nxemwYD;<_bZ=YuF+&<h|rpR@4&{sePOE?
z=cgFihHkBozIcyqvZ8jW?)4U#p8`C5d|$qQzj`%ylIypNFXg4BO{KWE-ZI&KTXgRA
zdz+q4tpB}TzW$N$|H_Jr7e_jiA2vvQ7A$*n<LlM+bx(gjk3VzzG=Hnpbp7~M>(=e8
z{CsRz=~1=GmVX@Y)qcOf(wKq4`%&6|m(^zrAJxpaSC}UD%I;^**=w(CrUp5to|wq*
zXz{c5ef9mfuU}uy2vYI<^F-Y~G&1t<L;m_N=5>#+A9DZq=KQ|jH_!jOX1?!Zd;Z?9
ziJp_{-d?ZUyJd^cGi4JKlf9qMEw6uGUS}*K)O^sP`19k3GCvo~|6P2w%57=Ts*qRb
zYu|BSkz{CK7v$(l-^He5=Dxi)X6=;x)o1hbjMnO32%H(YM*gJL6VKk%OB&!NPTT4D
zV-E}8A2d5Y@tfT96a{_jtxGR%NuF$|o4WSPg$;Eo3=9YM3aY+5^mSs`>cwlTHU8w)
zM&_MP3x4~{^p>+Ts8O`Tdb@eSo1FaBXD`~nI(cE$ynAtbmM=6gH=cS5+-iHY`=WW`
z##{ceFTS%MEed}2+1h(s$kUZminN^j_Lxsn;apwvpi1{XD>uV|w|^QhboT8lXxek>
zameZ?x6MVin9RKPG(AAF=t-@p)5@~lb2Bq{T@_b7tZ4LSWvjj8zEcbgJiV2C+rG-!
zUVmNk`*ZOY`J3Szlam|GTwPO7O#H5IecQmw>P1nn?p5|Fr=KpGq4W3FLjlQuEI+lF
z8LsIBPC6Gay>ZUQ`Fo9Ygi~(6?&;4xv0nF_*o%dV?sgWfPBUj`#~k86v5SX+L4|p`
zdcl{R_l~oZ6V5F54z~Y%<JVr^*3eY8I-kkPj0_Bqc3*p)v(?J4^c#Cq(o)OMNAE73
zy_(01)z$>mB5kN(I(VUaF0<Hb<vGfxT1WeOk3Dk>4ve#!st9Vz9x*p~W|>heV|)Ac
zCzhV7x9;;-)RZ_knze2LhjE9y$kO8Q_UPQc;_x<B$BZ>+ax;y>*PmY0-Uey|3*0}l
z<o}B+b|%h`@0~IET5NsoeWpQbdd3PKP-9tv&vVkcuWsKKR<18rkPuqkwaM;E%)N+-
z-u%2^X}frZFZWvOy3ZCa&UacI_GXp&Hj`OCY*iWHMm6^f`MEh;t@`G^F0F1}c4y1=
z`8{7QEXndPg80fM(5gE1M$*>u80o+ht;@Wey(h2S)FCGYYLy>gnlt&I@>^T>T-(Eb
z`C+?$wa!)D{fhhLLWq~uJugj_OJ9BU-@l`c2_CC7&(&>Rx~CDU)v4y+g_Y;(y06x4
zzCU$U;G0YXQ}bC|#h0O8+P80_2mjfN#e3!AFXVVs7uR3?#`{w<D~Jp1qj?iFww3d5
zk9zxjeZSU|L(jCFy(jNHG{+O_;eCbM{})uBUubr`<MQ;m3o8r5Prmzg=u8RJ#~(c=
zU3n|9JwkT5K3|K=%Cg#T+5O?yroR>~f+?u@dvNme--kIb*}d?(sxf=ElC6oGEi|54
zzhG}Tfl2@d28O~GmyK^f1z0$i-IEB_YSFz~soVR^XmTIK+YU9!diO*4eb2vW@n3&=
z&z9vS*OxiP&YA_yNfT6FUSdyPYj%9*I@I>eIR+K5$L0F<D?ZiCKl-eIXV+G#r~A%6
zd*&8g*EbESznEud^xAKaWozT=S6J9Te(WD=A2fS?;6+GA?ogKy0=LROJvwW+)ajpx
zZ(Q-@l~+6<p_ah7Sa_dvZlCj8+sAtKd1<HGzfF64C*{nAOU}-HH3^}ip_}`6@7k5r
zr}N*DfnkG+is!3cmT4Prt)1R>sQ<OsS6y}=Y45LJF03g$y^%NYPRRBgc1DH+wV!`9
z?YBw(zxVy#?_cXTl-`r5Ey})l{om(r=l2H1$NMRpO)If6O3N@v>oIsY@rbNSFcZTE
zg*VN5-B$}2Ej};KF;&9&Ufr%|6KC0&+M3Kze)xFeMH}(Sucp0KU|`sxesIE%xb*-3
ze>|M2U;ln@^7E?gA<}j4*Xr*7e(l=a**z^DM<OoQnpM?SIoa<!IN_kEn<Tge7o%w^
zBlY>upC@1cSARP8qGi3q`oBLmOUu=#+||0*-sb)BAm=0%-M8*NekSFmrDxAsoUgUf
zzQ`_aY+z~gM#xpOF#P$02Q1+d;P&nm!;{$(eoS-C-E_m;Z$I_mKfBDRws`W+btdln
zR*8Rn7_^6ZXH3MCh-jwc%K80OU$U7QCfKO$ZA_M}T^r_p|3pgFs;vLp7VYI#a}Lv*
zdQeF<>+bxWbM;Q&j5{1I!qBjL*G>D2S;ccK?my@6SlYVF-!6LdRxAIdPrkX|nZ0!W
z^*F~F*Zu0IOf(8|JJq4OCQ(6S-b<+sH)QU9E8H5iZ>`z>ohP^Kb8we53=cY!&CJlC
zVrcWu_Qo@dOZOhn;dzp}yl%(Rn&WE8QC(f99yo#u^oXr4p0D=UWo^85dsq9R_t&OB
z-Iil^bzS^ZTN6;Pyy5rrZ)|;YUuSQ<_1oQ6GV1E(+uh$yM4qKxa%Kh<3K0i-_i=V#
zt$XFP-(F+dY@_-2BR4J8@?Sb7SQ2EqgG^(>i!VnHqSpbNub6>~qXb6h<ay1xw(Ym8
zW9B*3^?g(RtyPwza{+32hxe2vpRc>=q`ygD&vTk3GP!l(&XXb0b9662Ebln|lvBp`
zcJ+m45)z+ZT)J}JW?Nmpb7G%f>nZSH0;mlC^E<vwe$!26$Bl>P{CxE8(%De9rA=~D
zV8_`sCcM~tj<Nfy;JJyKSxALABPjb}E5!5se=a%goeCa4DC}5tr7-tKQt6!CMmii$
z$*FnXlXq6dhW#jvTGb`P2@0JKQ^S|`RqM82eI+6FJ#E>_`L{RL`8R7?J3B*-@R(Gx
z)_fEH+3LB>2PZ^?PWk%j-lk<<RT*FlxIeHvEw}ou8+N>RA7^jW#?^M0oRiI<evfeY
z{~~2e`?0sYV$YWC{g?7|u{2kZ>7NWXu+x>hF5T2VEVg>@<69k0dM2S#QL}uex<<Z%
zhTD0|m-d(L6<@e!{N_vA($(=dA~&txHvt+dHIr0gUlwkQdiy?JhNErCtJ28z+oqU@
zJb^{Zd2x=pyDsE!yp{iLcaUk9E$^~tZo!FpQd1$JcHP|QW>%?;^>yo)+_QKy^WUw%
zwNKIB^=yAEB+L~9ZEnlHTxeNe8=@#~7A_ez>x}3#AE=i<_U>L@m2pc(*)P7V?b*>-
z)!nbTjW54k2r*jOGiZDAoutw^`z!>6mfre$Q~qZ7&47jBCtwO5e`WWNd$D~^;SKiK
zl~Sq2!AshYtytd92CCdPG~7!pU(&v8@%6{tqEDCZFI|vTo!jWPc7YK%om)69x=~hn
zBB`_ly(9-a8&r}%{5H=y*LJb6-Cn=Xm*!oHoy}F6nWY8J1|81ezUkImGU>b6oEL3b
zsPg=)y7ueSMNf;^6c|BC;bTP&sFu+&Yfrwg_NvDBTr+d?S)Yoxgs_3E7nq-X;%?Sf
z`S&kA|8hS1Q&PTu)vt-SYI?imq(CXz!3NxE6!DuNp5Lb_dg$7#Khw@G3sSZ<VXzcp
zXkhK}`@y%>l5gwxp51?T&eYU@uX}sv$rYC`IWvPC-{C%K32Ha6=D?PfA^!Zlpk$_C
z*RNl(XYu;0&t6CtEnliJ|4!5vP@ir##Oeb~Z<^PIt$zIDr`>$}kfbvezhBOB&-!%b
z%LVYz+#{|wm)A=jPfPw*{k<bd@qXCs>z7jW3}3C_0h_%~aQXLu=<^T1%`4n~f5OyH
zUd2Dp`5yZcB07~3l>d(?dIml3y%@IoaGB*L=gk{^?q5n-r+s$f<_`W1kBU-4L$BT`
z-@R*Bp1sibO#V6nh7HSns+x~mRUPKsgxVjNdWxY_A%2^HrSzLT`=aZAzBjNlGOWIL
z_Fw1zzdw)O|MTr){g0!mxm}+opTAb~*|@(pBi~X{$Yaiu8Q1$Hy<%21r+6_$d}VU{
z=ySc{=(88w`d3f+l)Lq(uJ5w1tY0oLoK}4Jc;a?`=X17l!e5071sFDH@%C5$e|ll6
z{-2*4|Ns9VQ?Tpr`fXF{KO0-$tJ~Ekz^OC4rQiMB+@pQg1wRB{etpUL_XnFZ8?+Ab
zj&=*2a!a58-<KO(zw3W#y?-|<`oouGRo<y>rd#=Wrz@rU2sNpAo}QrmxX<gD?=<g<
z59^pGA3nV9!|T9D>&_iK$hpqol!v6I^0ZYwdHD}+?A#Z&dT;%e$qPf@uG7DBIbg=@
znO?k(lGDR}Y~SSCw^jG@--#D@i;7G2FNv3CC}21LrKS`1dnNbZe+we=PSw<<pPaVJ
zW@?aMYD4=R3*o=^JDg{iHQmbov54uwD*=u+zmhM14}SOmzkPq@|B&?m-*{Q~|Npr5
z|I^;H{dpP+E=(sC9)7-cvZwOx6L(O38#6mqM(VT7oLlY3o^n2Uo)InOYi%Z$5qzV)
z&3mGeUi*^S*Vz~ztaI_Ss?S|=^;O1uxk;Rx+CJTxcJ|q=M>&nP84XKZ`dAojYV`ac
zytsL<+3fg%8Sc}U)jiwzwOX31xI`10WA1N_OJ9ApaMfme0TJypGxgu;-Hk~N(Ax1=
z5S*d>6(p+G7avF}Z7E*jw)93|_=P(udZ)aX8-a7o54PhrYt4>d+`L!M|G<jt`@U5i
zO)hoI<+AT*0B2Tk(f;Fw|GD`u--xp;+-S6Y>BSIVNQOyJ6rTKV@$;(awS5Z<^UK<v
z?Ua38e*H2euSMLrD!2S-Rz0k39(ON#TfO_s7ag-tLGlZvOpjjM_qtYCYHL#X-i<pi
zrkJ@@Wn>&-180eg_Ewbzt1t@oHINJgE!b!8ef$bku!l)~Go7i`z3Ih5i1hP0U*t32
zTV}kLEUVgl>8k!4otvTYGv+Q_2=TUsis!CNk8`%(y1(B-fXDOd>rHXFn)xeEJpJYl
zE@o=>IlQ>i3T>t@3VXBC+|+y~xS0;g&HE;v3|sy9#?E`5;C6a){nf?NpMtOak%8DQ
zEOd19-NRz5|Ni+J*cx*qCN(3|D13(T%Y}>}?MKYt&3m;lv$)5i_NL@4@$#u}*6E+|
zS>DbDiV=Z+70<hUh22*Re?4;Wn38opy*?#A)wwlJ5w766yiKLzCjPVR%<DpWH|;!m
z<xYmtE2!Bz3(9ZEzFhe7#n&HBu9YwIWmnvai(U|@y@Cf6p9*~wG`7XcZHkbcYwk9c
zE77|&&U^9BGfNgj?Y=+bboq|G&jX?{8tUMgiANJq8tS<kCoBJ+JoRf+%+5KC9-vrt
zu#t=Z@Z_gm_t}RMCE2E@YG<E4+q>+KjP6v3$Dd0SZI60;-1^s^e;0QB`O<G2x_7Nv
z{NhFJYzK^<omjPM)rZ^b*6FQcV>qcV(e>@Z4gGsE!CEbAum04X?Yq>iDuY2Myl>9g
zzKiS^m0dg;Jkk~mUzC$NKI8QI>r40S*`D)UZLyy>KX1d+vlAH_raGY&_Wz$TUS1Yt
zYiq(F7u7dMwx@^B`5d1Q6T_sI<Ki~=E?&<n{=&2Ka?lk2Jl$KjBW6tZ<>zf^pR4?w
z&D}|bK}GcUg4I`FS=8-2|D1oV{t2Yg-(!*tCxeIC!3i0AO)@N#_ov8*YdyK0^*L(R
z8C5sgsf-g`ERB{eZR3+>sMz5)=bkgTm3QoJopabJ?Xyp<%_T1fhla2@TzYz9r|?Zf
zb1x=_X}v0*bIskN*Ybhe)yIr#y}|A3b4qp$lg!+i806M@=6{HA&$n>=*6Xuu`KoXB
zL0h(8OgZ7T)QBO>t#8imIu(Y5$~$l7XKc0foAdrN`;kjdch%>0ez~w>%9jfa5rLLM
z3>$Kq6hD?+Z#eo2qm+-BX=!97adLtRgUXc;JH7|(eq0dUUu-mC`rKbx-aq?#K}I~Z
z6k?cQu}GyfPJU~|+uXa(56fSlE{dMzvsD!$ZIs3@ZMBs#fph2H#^mR}qSk)<7wF#>
z_VvrRN4C7JJ7<DaiCP-XQP{ogh|JFA|J~2D{CFE{U05CyGpU(j!koM>zFTg+Q9u9v
zcXQHA&+mWEP0|gm)LJ^{6hnmLySJvV8S^K`oLTj((}IJ+Q%OL?AE|JD()#bMG}pdQ
z8`tjteQcV$xrl%g;~I-oyWNhlpXoC!epEPJpzHVkiVvX5?qqVtnc{*hd8z5@6Xq}e
zdtzUgtTgu)O_1vjPJ4g-{whhsjYaQ@L3N#+QsAU>v9kZ>+gts<U0?X<Zm_x5nVIwd
z7aW%Vvpm;7M_0*(DdMG=O#hs{FAG*CMGEPqt-HQl{mWx%9?6)*DHDy>-8Ay^`Bne%
z-r4g0`1i79>8TlUm3xZ*fBV{&Q<bqpYNcXoj4g}jq<0^#^WR%3`&sZ&-i_MpJ1Xnh
z-~Y;&lPl|7G-b!?;(~%E?H;3`W2O<uUf24amOQ@l+&_naH3sS1OlF#gOHSd+tACQU
zq-{!J>V(s+pjxl&?}^`hQ;M7KIz68FC7U^d6+C1!u{LAfS1Ztv&90_rYQ>--8^#S$
zcW?iixVitm^3t=ui^^{(s0*?)DlB9>Zo{72r<`6LJFg*deeK(iUB_Sb+!8UXV%Tu%
zZfe}`b3b#I_Wv|oKlhJ@a;ncWqqcYlt9885Ymi2DOhU!ex!*V+zUslN`Pge)%I90$
zN8Q{0GOS6}^M7#S=De`g$r*QM&s<iQcl_7gudSB5M6{R_e0R2IPT#q>-^G(5`|?%L
zm`dF$&`^(d_olde(bqye`FR<Np2$9a{N_^s=FCZMVhq{s_5#0-R-4xqy*TxCAGoh@
z@5Y@BBk32QqPHh~p<4F0PR0$(zV!RaZL#c|_qMdUxpimedi%(qFWQ<ycx_D>3i?0a
zI+MyAp$r`Y+FTwZ8+fAinAhR;+d`hCuXwqTu_5x)?zH39d$<`^_ZMIKe_8l?{cnB0
zKj-T$v*io+ZrJ?f_57+gm-VmY>YP?}VLA|VYIoa-7X~VvLI+-{d0x5-t{4A5axhQ{
zU4Oc2>(V_7m8Q!{G3=NxQ~CSTV}=dCelRTz7XNja^HbV>ZP&Fog7a_PPBD7AEKrhR
z$A1}4hSkycPo%8ATKFdB{Sy5Qqa}Mc?tgU=G)xpH!T8`{k&5t5hOpHWH0HgP+ZKT~
zRCMxfKf?wSOCg4^`Gwp6dsLr4h(1`vJCzYsQ-B(z+mrWPeO2)vTn%+?w%@dV(?X~9
z6D~V5gNpi&<FEPW?YSWDH$k3fN08~MXKKO4i%)|37@$dO+<goNhd!1Dq&`N+mkT*-
z!SiG@OTJuS09ApHq|1NuZT&8j^;&Z7hnJ<Zrhl9A?pDYO@8DobP&MQrGf5?OTYvPL
zZ^p6Bih;KRCVl=jdFt2Hokf<+6Trq-*z9|7@^h`&?8AmHu4PU6Z8m$hwC_*LC@qM~
z&l^6;+j^_N{7dEEg{41V%2%(diq75V=E~0tnvYkQm!NUWIeC9YvCm3@ZDG&1o6Pj$
zez_1FDmn=zhsrH3IX{*t{`qy+l<D6=Lq%6Ip|VGmJ%g^FHSE5cx7S3)D=0Se+-&wU
zv%S8;y!H7<({bxxQMrBd6w9N!KAl|aS}o1}c@tE(&H=j@SzE38=D+{^)A=>G5n}iU
z?57<~iWjRgFC>-5{7UdyIU#@b$?Tgs;Qj^J(Rlh7u;_&LFDf<uR3y*bxAbI8_$=jg
zL3wbH#!SBVU}N9CW;6HqAHV}M%C6PYzHMtlph5P&nQ{8jEc?QJ=j8>wxl89)s9kbi
z9CQhq6x1bz{L6VG*7W85-r=QrKTP^&ds;1{tqIuStUUeI{9CR0wtuxyXRf@ta{aa`
z?{9cO!a9KwsRA+b42z$4`%=m(-G%LJ;6%g#8i9{Vk)QQ%;z^#huU@`ATK$T<7#3bn
z-0r)qK3n&x1~lL@v*f&e_-^Qc3)o9CjSDJ%J!&|bw*OJVs;QseN`IOyefB7;WC+-7
zf%_L`Jb!S-&P2~&!QTD%#9C2s+x!J2o{uPdUHX}=yf)0e`uhZ*38qt?Z_6>eE|LyQ
z`{zN!Eg)YeoLPK%)x63z75UAY?$e!8!D}}@#=b9(I%feHF>kf}+<I3vdex^XTvZti
z4Kh1*R;^mKh=13vU1{>?<!1hFQMKWC;K<Un@Vk}r?+Y=nOS3|{WJ_7ArF~z20{PTM
z=W@ZJI}^;!1Ju4KH2gNRc=q%8wRh+1fB*PickAU>_W0^Ok7m!m`SDp}mXiuY!nL9v
z_hUUG_Y^;<K2m5nDy+Kl@v99-Us;r=MhLVVJ9TH8TX1RNHV1xQh6iS+%d0QTPP%X8
zQ_Q@>c)I$BcPpj$e->BY_w{^w{uf`H?a6<y+kbtL9(N~Vvt7FYCqsw!!^aa(&Uyaj
z*O!*Mn&w7Hhf_P4PF1{o_QJnE*80*j4wj?5OMh*jzy5YydWyW%I?&v!rm|dJ-=5+H
zJ#sxS_e8F0F8`~}%fH(t(Cf}sOA8Co$mHa0J^vhDgrwK6zFN2!JWzipBPY*jChx@f
zb;sQ9iuA6YXari%l6LaxA*JKDgzTPNFg>o6{PdC>i@@Ugl27w>rrZC2n_T~QbN9am
zKQ5|k{eNO?eeXuRDDOlD1|73Pz5oA<%mU8!)^=KOB<KZBxuwVd_vHVq-<Qh$|2^8W
zH?8(u{{Cw}{?|U5SUdadN~vj+SQ+jZJ5E|+`un6Ys78A{DPZ}k`kb95utB2lCNs*e
zi>HC6A;OhGv*Lo=qyOwNYZf@LO7x%Z$E^O#Nn7{V7aB+it-hYR_g2uofQhH=Oc)we
z9s5|q6yp_2UOClUINp0xzI25s`!@0X)hCU?WjlkVkV8$a@?`ehzQyU)>a~uO72o#$
z4ZWTH`TESwGxsrq^7#?PuAu7g6OLxtqmCL)6JQ5Ro4@-8>h@fDCQ<flld*~ZJFT0s
z@iS)n@$-UGrh=U3q+PO)*M=ScEza(=C?t5!--oqRc}1&Q=g3Kcie3jByZRSLTK5$+
z{Yf}5byc8=`K(#9eL!;n3=Bmo4bVA&2>12J#f_vd-M0z&ngJO(0!!m5)lW=h0GH~n
zRT))o>NS>DXV<^eyBiz70$iwre2%417oIx%6etT!P-fIQ@R)nvo(uQ0w%%sH8`WEM
zKkf59w_wM<X{SJIk{BKp^X%mJ`+A`Qqd;$v;lx>>gUkgL=oMM=vka%lulKI3%)fcg
z*KO`JSZGXADZMMR`G(9k?}>7=c3qld&OgI^>MQV27N`yc4P`x+tzB#8etv?ruItYu
z(-!URZLPcsD)3KCWDrY`FWDL;d;I+OpMMs9WtGggkNxc7J8u@$^cYBwVWX8^t--R8
z6Wgyo*_vZEU7|FE4ODIl-0!$ty<+Y2g6i`-ZqJ`R^V7m-n__2kf%^(z`F0gg@%)~s
zHGH?9F8uJgH}%&vwcyy5aiBf|D6V#>?LGKdcJEqjCAxw;Q^)&e#_-iw>mJqY*B8*z
zy;A#VrU!qo7pO%A2{I3xyQT>nt#-YAthKZzIyXgr7I**%R4$7d*u1m7^3LMUHSkdS
z(tWpr_9ZW#C?~~mVA2F8yOYLxetq7PlOM7N{c!ve+aDaTB53~KMGF3lKDhO<h`CN#
za_;qFvDJImR(q(Oe091Q+-I-^h1okrwYH{*E)u*QNhWH3sz*N@T)DwQkGtaeTm=rN
zF24(DTq~_A{Q`gdUGl5s#KZ%!J3u`PrQa96^!ub`g!<>}-wTeP;SDO=zRl3+oOHfc
zTlQSr(VHh;6d#?p_}VFDL&M<22>CkczMhNatuJm*;c?XSzjc1P45!WuH=K1z#A?I9
zNvwN}h0ktY+<DG2@uKErr_bjCSFq%UsmP{@aj;H3<l{DnuY0AH<I1?5tcvbT8<`wG
zemTn6eYWoC!w~JKx6PlJo6qXzHd?{Mu;$+qiJ9f|s>2_ZM9lH++O(kl9%qw*DEsn7
ziGG19vgg!}uH0@E+O?tTeS?xa({`TTYQ9@azc1{tY5eo%3jh1nH+F7xnC-;R%dln|
z$cNWO{aPjq|8vN{UlKG&SSHo3{Eg+TEiY~?wArsCCHcI~)p7E?GoQ~r@lbf^;<>9J
z_efIdmUv07{kH{PE;PKp=KQjDHiob$pE<M2=hcTlTAO%uWtrGamA3homeqYux;{^x
zDwhQ&uIXbtVp*>7iiLGC=MxVFIpq0bQ02D;Uim3_PENWY|F&H0`Ik+1b~zUo#fWvy
zEDz&|id7L=ma19Qy?pUPGvnJCCBH%+K3-jYZ>9{V%8{>j%b)f<4oR<9&<LAh9DgGg
zG;OkSK|33RT$YcB>q%?F_k2fB{``FI-^m%lO2(%zG9LZ&>E>>s<?h1DpU-7B2|V9w
zdv(G?sW}TCJn?uShqESaNbT&LB*NG9`I>Lf8At2<uXfdQAF7|VcAqLVH)C4*Y>{QR
zcIxU}{(Fw=5Ravh$A*K3=N)H1K5;W{x_ZKuY*013(Q2_-Yd#}G#3fK9?#rF{cIV%7
z3m@zeR{DG{c%gxAbs6K)mD?jfy^z_`Ro#1H;sIwRub|^s6T7b#zB{!+fumP+Vr|B%
z?#(-;*%;obt930rvFG!XT<ynaT3lz|7cTZnQGJ{7xocxWR!X3FZ|B88x0!Cz<@Y3?
zcsxifs$_CM_iam*EMg{no&J(`Hima1!iztj`z&^|?`8Qs4*TqTmaC?`aM>Iazr<th
zZqt`Gw(sXm4EgQYEW>%{D3%^nCMcYhJPluTM@Cfdx?lNhqt6`s_d4Nz{c34XxGGaO
zGX~CEHQTRCi#Jr&ok@G1y@1u#oA<LyW8TlcutIdVndI!*K55QYQyDk3B`uPeVk5l$
z{UM{@5n><C**kaeNV?4q-_-MI=iGA_E7P}5lWuhAJCbE)V0AMKydvNm8+Y+#yI(F(
zlS^4wO6lb@tkzTW3d$%_GI=zkt1a1h^0{--%H46{Z}x1qGPSz6=7Ko4tMS=$n-dLH
zohN8(=u9$k4+{-FD)aKyt1e3kyQ1I5)1N4WnFmfe=T?>RMmF4Cq-f#BOB>do42hg_
zbp1Jou!10-A8FToWoGZc__-vaq;p}Vy2g~ti#sLR6!+JdDcp;abYHn_Rm4imPv2IU
zOaFMrcFINOh}JXIp~U^0Hm8)=CYG^%f5G7KYlZ}um+@)UbJ3FN&-jkssC@n*|Cr{k
zml-p1CuJKO^Hk;;s_xSCw$L$p-*a`2vbdCZPqmF8`^Hsq^{OvnEd>RMNvmKj1<>%-
zlFFGvs`IVi?drVDUc2r_@s(RIVmmjlRzG+1j-}OmoA;`EmnS?-R~A!YckGHZwM!J6
zRX(q}CX@f3X&4{>ZWqJA`TGt|Fg)@7=cTC^!BbT7eiO`p$ATvItRCM}o2+TxD^zG2
z<aTPunf+%^G2N^5et72Y9m`MGG$$uLn;SZDtI+fJ*VX4&S3j~nXI-pWq^UM5M(@Sf
z?pHyvmwP$7*IaClSsc^NucshfSN7+Z{=NM#zp-?28`=H6w9M8wEw`)dQ~}8J855RB
zaJAfd?07xmgsD_f`~AMw`)to`rZMfSROcvijasIp>pgMiS`D4hW$BuS>Mt$I-+cHz
z*Q+b4^UI$FE$Q)0npyP3>AU_pJ{h$~4`Tm^_PDEU{xE&n-s%?_?(^SXTHvIYv(9LX
z$xQ7tGapV*{@!B#ryb(03VXvqA=UM-uPyofWpC&9TahV{a`9#7vpYhmfoW$>Sv0BD
zzS~or@#_2;?wLN%c=kVk6!au0CUR1?O;KLQoaztXR!r|`jwn2KccR=Z=iI);<@)Bv
zPmjh<l$!-wPQjp~rsj9n`uLjJ7Wvj<%YB5N|5pj|KW~~YC3@`D%~Ij?cL7&8xzrpQ
zehAgorx>mOeYhfJ)81d@*2kjP_I(GhzF20ld+EtPM;5<!ce^9f4r<~ai(W74Sij|d
z<eWMCWlx{E+qG#z{Xc%IR)f6@Kku;?NuL&Y#dX`)=)k|{V!EanUKF#J+gVd<=Gh@L
zQ>EtLg--6;hb%u2HfV<mzg(D^XC(PGbIQck6OGm#H1c|QJ@x&OJ*C3x&(B-`R!^><
zlzA!ttkHcjF;?GM3MY1oI7$jnRKEFvnLqgb25TAl{?ad1HHw=R|DI(I?Y}0Laplb#
zhBZ+^GtS$l-*rjPdB6F(X1C;nfTb?#v!32mYh77(?vzDjaHXO1gwLCKDlC57JM1hV
zbadNkXR+0bKObA+qzCWc>n!D7(*`R$XO_o4d?3Mf#@cb+3^{9`)AM2-3SZ?;v#F|H
zq}95L>4}Gf*}G4&U0*JI>GAtfR5C06ZtSkr`wWbGZFe_J6&5}kkaDk5P2rxLSZbaB
z8O@2RLW|F8A8Rt%dr;eZt~I-E_ZjQY)+!EtEMmV7Dtk_U`&exCU!Us<9#hPwJlXTl
z<>|7by-w%sOdKxNZa?*B@@H|R0<=KyN~`cfa1lCt`-!rwH+weEn|+C)NM(ZuXn4Ez
zU)buqcF=)^?`E^OinfHXRb+q)QMMy9rxwmJObk?Gdp=hIsT3_tOO=_sASF_-L55RD
z^Z10{4?_5RuggbGpZ{;;@>ScfKFbdIa)E)fuQN&G)*d5!oqJU}+(&dC>$|k^EWT)P
zT4M8wvLCTCqfYNJW++mb=4>GHcHu_wvRR++7p90^a%R>E^qHbE^SrHbnT1%SdEvVy
z#Y^tr6t#Z8#;@1UMElE8r;EATkC&uy6xAJMcIZ3eY-;t;+GZ>NS@f~<f__iK2eTv1
z3v=!nbr}m^FfufG&(a!nA<g%!wRFp$PnF#{?uQpm%6DdX;-T{VybWYEjAhPrC0moy
zrIz_}2Kic7Pe0{xVEVW()#>2P%I7;LpWCe5z47z8CWR$0mMu=)mU*tOHn?0P%UC&A
zujf0nf_qZxN7Rv#kGd1(X8p;j%GhwMezTD3{NLY7h4Z)C|Bl)CJmb=`=X2A;{O3rE
zEq^vQ@+PR)vbweQ!qu!&8T<RsKevMlqJJe{x6P_CwKa(l2Djaccg@b1k1RR0WJYCr
zXv#gyIef<4EXh~*?ESrHySmYPo(7rDP<;uZwbR*j!;UZIKQ@Ky=eAjUrk#Bzw7Bn7
zLa6G|6MH`AzE<<=vu@J+|HC8Yp5=@A<xL9xZ*~gJ%{Zqy>HfBh#VOJD&*m~tP~Mo<
zYq7WeRu$j&?>)Q!?wqM9pQU$u=fxS0{JddFK2uyyzMfSa{%DWuw!{6<=30SONZKpW
zpQ**yeCNz9_Y-FUo6~q>{*FsWr5B5>K3oPLvIz-aHQjhelghpf<<I8~U#p$F-FH-T
z@{ynVEw4_5ott=7m|OJNtP_WB6(3Go<rlEx(0QW`g4_%fls8IDzW3l`-@UNei_0rO
z%SZoDTx8q3Y|okyt>*UmBF+CY_HVYZ+$?+gj<tyT@zjMgD$`v}q_{F8yY3_<p38Xj
z#kXsf$SN*|CmuSD{A@96!+v*u{=3g%#g>5Yo#|PiwaS_=7alA+>Jm6*kML);xyjGw
z{+(>N+$Ab>(Rbx%(~s+IlKr>XGx?q*!-<I=3ldQK7QS_-(=PvFs>;}K#V~NvA;*HU
zHy^H@c=Seaz44zVmCsiMEfPNaDQEJb5bN~RIcrw#nW1>1Qj?jXNJXygVd49QWyc?G
z126H^{(5!VCt2y<mn*fjnt%IrO{{!gDSXyY`|$~<gO%zhL@y_|XIgSOpUin*{AAwI
z7jHYySTi$N3VGt}kUY>c4CHZrHaDH=(c8qpXW!4*J9m_rxKBT7D0b%EA*0<!eL6<(
z&xEowJn>k=GWp(ti^UUbGk&=%*_!z0YTvsZ0P2b?GBmV$Z&SYLrtszWHiC86_7sP#
zyx5txvu<uu+5UYu6J4LpWdtR^2WkIXj%L|c?z=B9a@uFt^Z9G<2F+a_bg5~>u}Mi6
z#Cbc6h0mUwu|Y#P`Ptm5peD;sr?{JMc6AzSKYqcov~3j=gQd{wU<HkN`z#VR-dt}n
zCu?cV@3ueB+=>ew*``L$H4NlAtJf;b+wDB*xUrFiv`i}F`#;7lCnhACNTo?XH?{U}
zb%m5K4Kh2Qf%_d*eRJN<oWb)XeR*9){L#K%)=bSW7uGzPq2XyXzdG$rfsTyib6+d>
zUvpy(Kc92#4Vxx3Gd1i*ck7}vH>MT_8L?Qtwqj&BF>!{H*QM5MWwF(Z|DFo?aktHb
zzjtR^t(mQfwz4K$jqz)>zO(mt=T|XBskJ?uyC8t;)|wMH7V7z*SU-caW7o|MGt#eY
z7UX7Vkm=lAP|0-soa?uRk`iBEY+02qr+Y6r|5Ey<9517zM*<AWxTnqhEwUI|)cEwO
zaRqa0oO<qW)h_RHE9M6;BZEWVk=ot&o^OeeU9R_qy(tMaG#9HnTl?k0N(oSl0jbGl
zl6i6C;S;Yqi<usUY~Gxgb#LZ+WrhZs&ZS};ZTDXHym2mGdwpftN%_^<8F?maPcLs*
zE5s;izJAF_N^4A5Gb`4-aM{O5b&Va#q98XINy&Vc*<#r@=WS^vliS{JTaRnYtv1dI
z{xQq0AgJez_5E#mkM6vUX!=*F&hhEyRw2<}i=uB^E%$3bdSY80D9xUjSn<Ne^VJTk
zoQ+oJVkP;OPd?Ul!p`LC(VHq$j~;XJoU&(~Wx49P=oITe5zmT`&s*%-eQ&D9dHva&
z^B$eKQtY)$!Qed)gMzzK=T4hO<@D+((ER;+J>S1?l3#<Cw7qz-u(Pu>`185X@4e>i
zm+cN#>-@Z*|H{O*a}F~at`10CGjm?E-`trcY4;=<7>b^pDqVX$(=yrqs-*x==Tz57
z{r9@rt4uURvrBk<xPC4Ed+yPbGi5r(?*rz@Om9tkHdl0_ZTO*`2D;u8qjk<m`p)6&
z*4kvj!0_b6)uZwpb6>s5-)gn)yKlyouGrZ<XMNQ+E7ndu4lY<OW>{Q&{rT(n<7XUC
z{{a;*R<jnL)&BYPV(+}=_s-6`*XO!872>2QLjx<xyU?WrwO=|<9e>3YWV-s{YtfnI
z-~7+@$=;KSoMZc_v~9jf?I!hK@}XWPf~Pk7as|IFN$F`hx@P6Uqdbo1rt&a=c0CEZ
zzRX$De(YXhsf(hxls2z!@3K{;k=m=<)3WYW-g7BFbIM{<K*2rEqN872ilffGVd}c*
znZ9>t!Ii}#AyVtWo8~&sTfVff+V*{c?j`5RGuQo_Iv2E_YqRkrLwnC84Wsuq!UFmH
z-A4P<|4BM6S!{XheU8qI?I*s4L`=!NB*t}W)f*ng6K!>%-E)Q2YLl0&ww+j;ac}<(
zdC1CzOuhUSCu%!vO)h^vSFAqE*6{DShY9Lu`>Ww4jrFvfQwx=DZ`Ak^#SBV<mp-sM
zE!X=Jz2@8Ozw1P{CY9GF7Eiu8W%f21Ps10p_ixx{tfq77$c)PLr(ZIX+}2G9FUy|z
z_T`2Z!c#!$&!Nxd(bs;TZMS6H&wum#)uiTpOZxZfZP%aaC-VEI+^bB}oO2^pWU-;)
zgSqu>0-2$mZijOopV`&9J?z-Tm0NX+_&{TJ{Jk1pZ|^#b&3^o6s|WvC*jnbw^@6%a
z@81;r_sibfccKj1h`Hw1EBi|1SJJ|acS^TGPGBfn;u97cYWn@|x^?SRezvnVEsUR6
z_~+9Z_QT)>bFHze)vvgXFN@FNp2oCqrt7xj&)(lPw`J57cK+-auwt3JaA~De-O;sT
z(_S=(%v}&typ|c1lw(^SC;Kd@>2L|Ox_9yWdiV8x7PVJjZ?fC7e$hguaJ|llE)r62
zW^PtK{iU|+;>4pjD$^ZjbTv=37JPbhS+uT>aqszwX5!E0f_EAIyE9Mru)Ex^2~ReD
z<6ko^-frI0+!d2cn!K&7-&tDf{fyao{_+x6^;zlR{&RL4^)2uef0A>Y2^2J)BD{Sk
zja6<c#N?c?P~kq=vQbAfR{y+?Ku_rA*J|fX>|V39c4Z5Kl0!JpUb~Ibq0&5(JAcP<
znB)b&`chP?6@I&R`a~tr-X}>%UQK07qlb%%Z+6S{$iSzN4R#57FUzsfn7mQ*H1jk;
z@G{x}=Tkdmo)jfcOwL{XeBJKb`K><l>T($v8bW7Sgx_C2#pdiS1_p-JH&)HMp2i@=
zz>sir!z><@J*uFkGoX=R&|$KmEfk>1JO<D}DFcIw`O~O>Po5Sfy4Kh1^H~7erW)iN
zaI8IIrs-Ve&6_U^{rV`r^SC8=_r?@K&<52L7#mbUix)wo+ze1VK&ym6Q$4U9qoMAe
zoI(p%t;%}0J2p1<N{V4<SM>Iy@-efQ?!K-S=znU)j`xpLf4VK}nPOO3x8}p;KkFp=
zeH8R|xQ1zFeY;(ncUP=lfLrtlBmcUm*`MaEJFvAT^4zr72esWKcS;F|xW!2ew|qSD
z^v7AFnwHfCm6I;aT6O8oRI%@qqR&jNY;Vq9xTo;A^bVcrPqwGl<*4UfXf)E>XR*gj
zkNKFgaJ6aiL0z>n_q$)&|2*O^I;nfrah<2$>EHkUMoyctoAufQ1D89i1<U{ad%AU^
z3}+oT`wq2(S39cpq)L_D*UgL9{;B$Do&Lna{SOzHc3V4doY5Rp<Xt);d(!EmkJs-t
zi?kcvi*su`I8CeR^DU3Qn2-A%KRF3}7yZn4e<SzaJ@>vUOur*rr@Vi8bIjzJY5YP;
z@_+QUn8vxSJI4M~Y~SJM=dzV8i(L2VB^avi+I#==JibpwC;8v2YCd*4T~iQw?`yP0
z)Oq$b5~+KfB^LF3|5aQ2-0H)v9V#rIlU9H>mA?~x4Bw`Vlmx)h14;tZt~u?#Vf)}+
zSxz6j0;i@XBZH37$-8wQ7{j&VGQ{5>{nP)bPUD&<+lDz3{VWZ?c_x1UyM?`T9>WA1
z5dY}1!`3<M@}J+mc~{omKdJo2rQC1%?|&tx&);?-OoL%V3rNwCW#?7vi|$BR{Z7bB
zQL$t4&^V^d_~72As5`wq;<rwg8!}HWH22*9y0iPw2^UXLlB_t9W_)w+xk!Dxg?ew>
z=l*8&oXjB9SeeTZ(VC>TgHb^cWbE$rO)pm5tK|{9_ga(x)Bj0ld1jrPE0ccJlcDo)
zg$jd?);-<Bn%+w9?oMNvz|o}Q83H<k<9pXfY+Jj*sTVzXKr8eZ62AVdPnj`Ag)22L
z1$qc=YF-NH*jghaQw3rUur;zYK;GnjH0pKn<86Zf?|}}mof^b_Oxnfj=Y-u~j6B!R
zRC(^VJh{?jgUii1CzkXrdjIC-llt>b45|*(zAmVE`@?a<5xwuNcmFo}*r}-;{NOC)
z`cPc`a{H6yri!l4oV*{33p+d}_H1#OBxJ4~$|bn=a+;jC<e`;|los+7`b-jR)Sgvr
z{ryur`^=hfwfzUq&tCoHldLC)n^g9sn6tu46Vr?&1Jx!z(AqgGmj7P**Z8o*f}#~4
zK3)_lwW}{n|62QuZF7yCN|wR-Rf?YMk%n8Z@07b^$Ip4NnY%pgoljhhMVH~RE$co%
zIyYCUJmQIKnwI%Id$G$_`rQ9l6#bsK%q*j#_-pc~@2lN1dt5%f{{A|#^!XNV;nppO
zdW$5!2o-3}jk9OSKX~H7uGG&>3Aw!uT}#*dEoWMz`{<>4e16N8OK%0bmv$tGPWF9P
zS^MzFY@gHq*>WB0|F79}@TFdBa9@g7^11smQ{0VRSUOiOdwQ7p$D-L1ElWH)bPq3R
zE)wvXc**eUrc>QjNnJOWoO*S9)rK-DeyK3!l@lI4(Cyvv<m{W*y$8Au+CTblYUCbX
z)~Rc<NUQZZbMiTl!ynJz4k~}7BPrB!Y|j1ZY1>}4{=W74_meu$sY<>fKBa}z{%&#7
z5sg1o$0DrK*%w*A;<VQ5<4rAEEt>XMTUrENj)on%W1-wP#bru?_}oQ1jc5Dk&3}F7
z?(xJsyKF2Xmmg?zoZJ&~BEhD{lk0WjCX=a^Ctj_IDvjN+wpLQCW7)40M;LeByEb>m
zoBeYqv$^w}iazpY_4Iddr*(casx=jE4cWL*e^=JZg%O4qH&2_Tywoo&D7(e5|71?x
z-@U!|JwdXp3$`+bs0TkicI{7bGq24$7JJJZOq)J8>n2=_-|#m1SJejAkc|t^^KY};
zn$!H&MD_YXu?dl)u^VFdUFN)^oH_ZHjMMtLyvr^g@vV!t6Wj2qO}S~|_L8f`Dk~(O
z{M)hSRBGhSKbd0hx^k6fFV0nZ`(WLv^tvL>+E#TL{;uWgyV6grJF983@$AJNhwu0-
zys)FtvfO>ygaa(wpCoH}&Yqc@uX`t|sp4ov#xBp>XV031xd+(&V2I+4vHV@X;!1?c
zRwD<|;9nA3HNxZ8hBL4}=-lQ~%YA9~?oWkVE9#c+j1Lp@%PBegI-Ol{&XU#LWp(cg
zPdeM}EnocY6cdxu?AUc{k`8Fkwq!ef<}i2q@@I+H{7#(KbH2HD-i4Kg%b)wF+P2*B
zVC!2L8S(M$&W~G6mWT=&zA%tFwR+*Q=6w4<hkfgJpZ1xfuqMd<f42F@`_8^>Go}4~
zAF@9^tXsnVt)+_j#_38!{nhM`87A-jYPtUX-L=P7eY^Cfa@UDJf7;Kik-I*vQ0C6Z
zQ+8L^)D@>6`K(dPyP;C3ASGk^%I)rN9p@h}+J0e4{kin5-@ALYtIy0^_I=ro(|bPV
zGC#51R_3dm&Yp9;)uHK>@WxmV)enw2;(qpww_8)Ty^oe&9<7$I7<J-X$E2HKw<hFR
zzK$`jW#ro_+xY5Mko2Tl_KbgX-!46t8!Y|x^q<zd=bX#3KYR9Vc_%ny%LMg=KWUr!
zavb7z9hUC+eR{juh2M-ixvBS;UtGP^T4C2q2_6w+mq@9PRx%T&2rSvqv*MVpp4IuI
z6FLL9zW@4eC@PaEH+!x92R~7h`zp2<Cx;v~65JvmzRaL6^6%FT3{tORS1GTG`*T9V
zE##8^1NUPVkF5Ci$$b}?alvE$3pcjOoR2q3*E-qUoyZfEaq5x7UYmVMng;zD<yux<
z2ULZ;j-26}&cWy){CY;#)T@*C%t-aG+y4H|75NYEEWfkQ*<XIwLgml=So3?{o1XKS
z7Vh?Ml?{0iaW;9=#}9k1dM-FSby6*7@w)BOPS@=J7k_%azi!r^zvrXVuNs#8bKT%@
z?$jO=*GZd$-+D>9uDmtrb6R-6{UR5Iv$N-x9_Y5I*~z3`Z*V&NbnC_iPE1c$-*w$w
z^!%8tS-$HV-`gR#SM!~@F_F18!(vhs<AqP*XOlvA2_9%)TFAS5?}0zXG81z8c%wG(
z|4aGQx-&NA-LL9Lk~3b`isg8m;^1!awRdRT(-HT6&8E!AAIIu#B5d#V9XtGV5z7bD
zBo^iaT5da84>ElE<S)l%w{DZ^z1d99KDCK1Ok63(ux*RGKmW7sXAZvDeM;xOx@m)?
z)!nB8yOUD6FIh40F^ale{^D{#Fo?5AprGZlKZA_oO`H9@Gp=`6D%Iu8%XogtX@kSc
zgpbMlEcboqKRK;?*J_csX0<2yWcT~ZPjWQ56%f<Q?iyMbH+T2pZP)c=%WpW%`|?9}
z+k`W_>q_%iy;+%Ee?x80Un?_i_TQmbc%sv6l9mZ5Mhg~(+NQOCUYDTpG&+vQ`(WVt
zcztociJY<dn`2JBD(F76(Bk8ab1Y(0Pl-xB(%EHsSG6U?<Atu`r$-;8t#jgk9#6S`
z@z=MXhptH{nJ;==?*BL8<yW(Y4Sa&D&Wk0?)nmH$U)aWXqf^X9X0N?{>CT(ZS*&>}
zmK4`MS$gS$DYuk1&&-uM`aE;emI$jSl`OmR8;d;B=G9c_ZQ8x&#jfvL+Gba)TA8sY
zL@X%r-n+O+KzUnp2WRxxGr8MdaNS`r%d8F9owq_HOFlV1X{!;VZ1<g_@BL{}_nsXu
z*PUdlZ5Q|A`I6;j(uPm&^zWNcR~cN-bWVTaiPNVP69OX|MO?L}>T4bMoOr3uL&(T_
zj`A)3R41+O_48*huoX_opHy~W@A|3-@hjTa{J!UzoA^BLWBCNf&eZ6r?a?=1+m&vf
z&U<v{;?uX!3Qi1qk<@=TFta(&Ic46vx9MsNxBLIzcBWomWW$nlvt4iR`5gFkXZz*1
z%X|(@I-wjlC89#u`_boLTVhz=KJ4tZY37mK{f^_z5tAU3Z+BO{;0a)HopVa~@bTQw
zN4{n77)H)=4ZD6ed-m&fTjvxx?Aqw@q{Hs`yK6_3?tTfVUb$pK(9b&c($|_xTei%0
zn^Rq-ywKp%x9<H7oA0jAlzJ>4`eluj|H6Y;Q}**&uTXiize2RHz5er!Bm43;=-Ze*
zSknGvg`;0lQ5nyQm};xI(>L=jx=4GNaj=SiyByql=}Kb2$>^r|e_z<U=cM{zYdBdT
z8cu|dDKatDr_<4~CZ_uE!;1(U9cyB2VuswRdwaJ!ASAr0;p1h6MM@{K1;pYTEP9lz
z-6CbV?`k-9Is`s=k#Naj(V1meKF*amuIjCJY)Yq3lF6BjBN``msT~u4<<c1_CVA6k
zaac)#h|oo`009BlIKislM^77E`tmZ(=hg4O2Y34JDSaLHYPFq!g*)ip5YRzIQ2gP1
zs&vGyBf$(NYi!S%oR}kD(v{93;d5%L<?ZDY)Hx)0{)at#lX$(Nsi84k(2(&6i-53$
z4}@eeWIW>H10q=jgc*{UIye>78fJ8G8hHD-e*OCBYVxhcuH5_UE!t)<Oit$7zr?;H
zPO9wwUok_*ONM{HZWZ?V%rJAtD$$**-)Hfyy4L>v-lnND7=n|f)@-_)u>Ok7o!{?U
z*VWIR?(EahX_(n_?#rc`JzEsq|GeCtlEmcGeR5s+)<<V22F_Z1^>6s?zxO|#@8mSl
zReQhp+O?nE-uh=WUjBX<tn@c`UpkY@vdXziY7H}>ZiKm%Aqghf36lajALI#;%9Y0Z
ze{B8jwEy0H0bvEn%WJ08p116Y{?22_ILR<}Uh%?HCzm}*Kf>a1Eac&;btUgYA6@&j
zD_5N7;}>ynI|a1^H)d=yx}-gKs^P=6hFf*+=)dWoF0ZO~;KhtTo7VZBkTYESpxrRn
zR;+H?42H$YLVpjnuj0GDWna!+*2gz@ZY~oLzR){E?&2oyw#Wb5rU(ir<oGPVqU%2S
zc5T>pZnq2jq8{G*@K5>(i-d4+&FjEfi8;4fotw+m4t&XsyR9d2gr!7(S?_LtZo|TF
zm)4zAQ(MqI<CLv*>xR&sg2D=t!8a#VDgL@!psMCzv~2J7Ftg~jpL>-+9LILsb^MyW
zJ3M_FQhW|&{ZY6Yezs`_!^s(9?{_6%xp{=8L@@Z-l{a6Sd5^H1@c$f>G^MWka&ZUe
zgkDeOgys9QUjH^d!gAuM$eJFT*=5Nm4|pD7IdNo)Oz_-!fjTX|q4h~jDM`N+-uC=E
z@c#V~mKk!v@$z@&SN;~iR$gjm$k^Yjd9rY3*^kF}O^>j69GxN`v_{s(Uf$EEA;jk@
zvsK>_mKhSkCo86wNqkz$Zpav9xb)VstoAMMg*!MWbe*()e{Ww<zeaoKb`aOoVl7A6
zN{fGaQx()4w3f9fFLj&e>vJGE`Ib;r=@XB6vt}^7%$z4-tNiA9{GX>8uj4tk<!Me9
zx)ZSZiH;%Tv13afTIlLLal2&b?4!Fop+)|;-Je?dB&J=0lfxEReD?5>(o?OS-N|WS
zq~>}^=6b`)ck{RSeU92T<)X*0>lycEG9)KQ32#c=y!iXPjk@cjw@ta&@$>ML+ecU=
zq$g*cnX9Glx-|Ire9w&SQv{W?EO*?M1P5(rdF|58wf_<hpWddMddR$0ge!@ur%!Wh
zVdTow)qBMy;<n{#2H%U&b17goWOO_BWP)5)@O;tw^{Y2`a=uVfQ@qo*DzCKG%#bnm
zNJ(AKx5qaNLFu#Pe%xorz=uAdV0`(=Tt3@7&_@XrC@LF&=_+2?{yjuUSi$n_?7A~M
zz~(IboVoi{2d9Cv&&5+OEv>&_7Zg^Io-A-~^VEO8jr;^aoEPGIi!v%dH$4W$Z;Ggp
z^t|OWpP%(9R9ACQTNYh@$=GWPyZUkgVFlsKJ2oHEeevn3-gz~(2OAA5^Q2}@pL6+%
z#P-=U7*@{Un_4R+yeFgn$t;E>rX@+MK4iQJzZ-pano&cJ&v%)Y6(!gDkFa<g36WkV
zz^)|vXo4&#)<w7K7{7A``R16iTEmQndOx4FyA!_Lw)^(*bbBYKf#tGkt-t?gdo;aY
z`4E&GkA2zxWAmeeTXIQEKD{eb#e06=d-}+~^}UdALJ~-)fUtu2<cyoF&6#ovqQSTI
zB-U5|yJlYgqZU-mtjrbX*)5wqD@;!02+It+v#&*9g&>2Wps)k1_=5>zDH##PB{=V0
zdcAmS_V@lD7cPE#d>!oC<=6UnE*~p-@PqyDf3w%xNlZRHC(VBEoV+VG_1pZ|*Wa#Q
zb_J#U%eT#gzC@ew+CF*o#f$5*&4D8`>b9CitnGifcGXw8n}zX0!U<76tHsQ_9Jj}x
z5n6O?x6hxSyT2Y`nPG8OSl7BRE@pn-{O_kgMb^=hM7NVSe9O#s-_Q8F#9z^0z(C^P
z+A}vDmsd1399$AJb8{}U_w0(chPJK8XR^%$jRrxh3+&Vn!Nj$N2OP@Q7M2}kh&uVU
z>EJ&f2ko7IXWp<B$VmNit`SSHKtk-p<NlWo;l*bcaVuYn(R#$y!8xHL(_w3ePt~g<
z?vkf=26u8!nEmXi?!3aQOHb}Pw0+JDhRzv5%Qc;TFX<Ojim&XO!LYJ?*$vC}g2D-X
zGhFU&(DwPvaB{{k>y<7?o;j)q8&CPXj3bH3r!Vt?<L+grrl0@0)H3vFtfHDj(X8*x
zSe%6%TPU$>v(s?rn=hFfH7jFkH%1<bQ&BtcWyT!lO-HMqS7!Z|x;K;IW#+vzKhFyY
zC$!C2v&qPO)&6&1Z@%UQmt>D5@7hE>-S9a{$&k^=P?g=~#l1;N)BF|H9F&%A6+WER
z8eAK@K6mQr4$c>TKCo&>BCdB=$yUFZ>h$hg&%Rue0+l}SYUs@4b82b_I%epd-x=^U
zCHRwZ5|c{us)EpPtM6Kc%Am4*P0tsv^i&@UP<{0?HFov{+oUK)5T~>5p>t?^Hj5$S
zCPT@_84c@_td{0k&hqhT@bUS$);;qGi@{muc|9}C-r4CMIdapxlXF7P$~&6_Iif}X
zUlyCtyE4aPufX5D9YUaL@m{v}?6uc^x`ER6<pqc3uD4HdyQ8A!V5F94S~ua<>NH1C
zRnlF4H}m_c4LSE(bZfh(q#j`@QD1gu<;|Du(bp9(>Cc`X@WCl>(f61nrd_6Ii#r2<
zz4bkx`TNM3pZo8>(~s%?B`kbl?F<v9vR|vW?aTjhws7^DGmmyAI$hygrJ}YV+K^RS
z`TVlG5k>`*{-t)MmxvfL-tE`4TxMmvID%ug*556DyK~|el+7x?+m|VKVeSk&59`JD
zAAaxtwm9#m&FZEfcU<O+cXAroE!$@|eM@tF;@*E->u&B@(HZ?qL^EGlIHAVJvu{^w
z^#6+TvyVY_>FF7toV&I*KYy;=$vL5GWtGG6i8C04leHw*U*dD#_XS+vgxrpJJK<X`
z6R5n}`TXwf@K=IQ4L*v2xSY#H59)~?zrR)poHPoST<HK6yGF}&7lyj`Jz3ewIbq(j
z&Wpx}>i!*#@4Kf63QOMOnTd+#lls6Vao7S2XHe<a)nd7haq?aJ#98bf$F``Y98Pn8
zZ<`E?El<;Dep4qey3`4(y1n+i)}H(JGrKUT=FfV(DQNolDt!fzsqJ3^X8&6Aqq=SS
zN#pk3eJWkAULRe39GnK7cJPL7{W~lB!q?!3vt}I9|9Fn2#CX}~<Sp{&`?CMK2pTe~
z9fj5_cMO+hxxRa~`v{AKeDJOxXOG{C5}9mu#3Ukh_rW+%pN5Zys-0K!IT!BRyL^+g
zkJMu0y&aq{&Y9%@TD<?ks!mul?g&fCYj%Om-KTEty(96qZn;v@`mLq^9t9;a?Gg^&
zQdD*B+~3lE+u1W1l#_%GRc^afAAgK9i76#n=<lL%KHdDdf;lr7X3kjSlyvyB$>%*Y
zHQ#}1rjplwRc@W%9y}2NH9Vxs!*;O7?)!5C9NcQ>eU(2?DxM|txJ+1BLG<#%P5#ME
z;&1z7gdISED=OFfcUAT3n?Y<7dSA|K7MObO*F;d+lXY0+k;4)vnN7-|8g$XL)MI-=
z&5e^5$Yn``W%4C`CrhQXOO@6&fOLK74w&~t!`ZT2%aAeX@}5N>yz|0iXRXn$ISq=g
z%$#2uil3%F2REQI<vvXA@=RHtrty61UrB3FTK3$|@l<2K$?{b@w2!cO>@_ZJ!q#4e
zH)2uSw+-rc%NG5r`uNH)iRno)*Zw2c!VW$MCW{1bRVx1)o5ZvP+Td1EbFfnDy*M-O
z2+N6MDc4s=eSCI80~Era?q%oB-M?eX42EK#&$kpoHLkk0+I**Z3JC^(qGxVy_WQ`f
z*zCE}DE&6uG_#L9jJ(<X#=JJH@T$Tl({0JlkRzfIpSXUp#;N7Jj9#K6EX)4cYo2A!
zm!;FBUzHgAKFZU5J>ti+n6h6cBKtz_y$sbUHT-%sO|Ux9WzGAqU%R*V^Q4s=SiLjt
zVyoP*S&?@-`;Dd)FOM=&dpk>{t4X{_c<=KvnKLyD7rb6>GTrD-!1Css`pe?;4_`8W
zE;B**nzedKnW%Sc&b(Xu+&(X=f4HRSigbR7%$c7O>>=GJmMpJ&k)4(aixOSg;0I;(
z52LQ^f1J?iEt%(W@n%5Yx8IkJUlBGpFaG!5dUw}Sy>C5s%OXEMOp3X+qOW<TzS#B(
zxBl9*I@vk9p51(+eLm7i?Jbl3!Q#U$D`ZWU9uCNCoWWzh<VB7}`o9?^-Pg}-`Exch
zHC3z}?5f4TUdPSfdvC*`>V*Z`B`+*ye2rRpS!7{t)tl^Zi~BvdA2|JQewxp(quEso
z%S6t<SRvQ#S-kPtL9O<=;=;P}lLa;w$Nla+^5mLw{<6i!>DkMbufJuo=CS{mIq%)Q
zJxscF#U~jBdFRF*4HCcHCwO}Kmm?<rS9o`Sx;*1q=bI}$Pxokw?P;iMoIaEF<IYYy
z{isq2olkFPK5Vm+JyUCV_>pPYw0%24m6Yr9@QqiF&Uy8^DtC2ETD(NagjK(sk00#0
z{_6b_A;H<~bKk67KeH85!ESuO%EP_K=gy_&9+lB0GH0@rxBQ;l71#!f?C(dFAhGQh
zyDLh4ooi{8D0l3exw=`iFMDUZJh8s^Jig+?i3B@l{#&M@`)by;?@NQFCGJ}>d)&-d
z)mld~fBE?%(?;=ue0Sut{|};W&A%#Zm)W6NedzG7Iju|WZC<vvD9n?&aItGDcmLHt
zpPugA6@O%7UX{wSo{;DMr;|E3U)*Y#v}5nD#j>T&|80XRjRW^=ikZ7(t*P3^f_?uR
ze9vFYt6d!#J)!C!*Y()_pRMzQzh5YH`}Cmtz3OKk#<>>`*UCvHb<LW1z54UnBNw(j
z$c}!#<=B&7o`pHT7?yfpyM4RFP&Ux2Mz%WS`?(OS-%}=Ex16WAV6jh`_@gf#w_jRX
zuX$wRde`UAikztug+~Q0?>DtO5f>F{trow><auVS&*Y+`>d&veOxm^aTm3sw221CE
zd2eQ(*5-1N|I783Ep88L$*sL@;@{D@{g=JK!r3*YhME7GpUJ;W;_{jE=j<w*d5Q}j
zN38ih&r^Exv)ih<>bLXP3+)TPeLN-h`{|mG^5<>u>Mi?m|5Y7B;^*B@n=9KI?wu0l
z?!U%1rzflT<;}Oj-F7wmYJHRr>z(@<QIxfNhLd@J#v9w$1z-1EZ~Mr>*!+C@5Bnc^
zxBHGwn{i~-(z9>tXDxrYC9~@9HS^iGk6x+%zkb$#)#5#0r>5?-afC%5h%UMQpZPJT
zAl7rLEfJ$T-~*zA3lfu4^<7fSGLut-+@17;eG`kb6^x8Pqd>%*Qw<*g;-cO;)yP9V
z1kb6qG&eRx9qeIGkp6o2e_{6NNviyj_l!Fqzi||6F<?&J_9b&+s#w$mO&f=Y|EIKz
zWpMwIU!eQ+{&L*_jVYU$wgh}@W7kj?P^h-<6h6K&`S_=8DW_-sUtiK0VDnV*_~XA>
z1?Qh%zWZ|Z<-5=8wuc-{FaXV2KJJ?ZI(~Y>XVBFBInYg{mi!D13{Pwr7#P5UCn`Y)
zQ9oy7U}%`b4w`_M1I_%y1;J_z@-o~%pD{Jv$<&ze=UDz`RZ|m-NRAbX;4`PEOqA+V
z%-X7Dde!Dx@w}EjJD%C33hC%wnP3#;23o1Wdpuof3FsVbgq;O0nVO6Y426&QS?0XG
z_e7=nQ?`P{ojtoRCS4LukFJ*4w{GX-qy491W$!KByjk35Yk9?=)!VP<-o9;8-u3oI
z<jt(DUTv9WWxMX|yYpq9|KaZyf8VcPdu#Ll(w|LxE;U`bU@`mF{g}{9vn>DUm;}?;
zzvn*RR(AfC(eY<@dENG^oz3#`y0Uebjqf?X#c{uTU4KSqs!6Iz@R)7c6+DS2ikH{z
zi4DUHi4^U1VJnY)_`}|GTU*LLa<~7sci!o#vJ-uGoR^n)RI+!U!}9C-7c#d<P1V}g
zfB5xhb4%N`e*Vd`ci(!rs>njsduET7_aZ;9iPIC$ZC6jdea7p|E9c16%iQws{fu7u
z#mtyLGiO4_w}-o49lLgJ<xfp@`KhY|SI7S>DW7^+)mcwt>-_3NDe3LyrIB~ny_(h|
z5*#?qRqfZkSG7hnSPr_!-TpNtPB~vi!e>JK^>+n(em~v!_}Md$KevJ|YS?;z4nAkG
zOX2*ykjUq2$}CdvsZ6Nc(`X+4HaF|Fk4c8g>a+Tu{+lKKZ`~KQIIQw7<H>sUbEl{J
zM=pDj@h-whIe1ch)uxS$w!Qs)cB?6`-hBHPA6d2dxBO&wtnLb2cIir(`rRPU&XP&r
z?4sgz*L#`0zW#Q_bPuh_&+h5I?{zmPnFM&M$Zs{ie&IpS>#b&GyN^E1NLF0XHszzo
z#IOF{r-QFwQIvjmNT)kzDVw3tO#!)#oawq3HnFmv^<BrfciY{!cO$PVNn76BaPpe1
z?a>_zOp@QF%+7h0vM%M@GoNioB}7tA|GJ<(`}<YPbdjYeS8uxH^U3OF!t->Mms?)h
zX+0?V{VLk()$F@pbw90luABNcJ8hMw`dyvbAN1De7M88M8>v6LVD?pw|C1(vG2&c$
z(Iahv>m;w;$FDw|d|fO}RkQxp{sy`KyXNw7%Kv^HyXoijCkwy$Z<ab|wQGZl{?QfJ
zJsufKZrymL`18DDi<jM+x<KvyyUV_&leUZbpMUdK)%u&M_sZ#KPlnY^T~YWwIQvQP
zkAs;@y;j`Xu)6N{y=BGzbMC1AIr)5Fas21TWqoa8<<Yy3CtdRvn7BiY`E<IL_Y@xG
zhi>aHpZKFLwdLr|X_Bp(s+A{$Oy-6uXKvcIFxGDU-QUqqW4+xUT(}lsXYuog%Dt_-
zYtQlZFEOdF@J=y(`E2Tqr*}_!q_kX=Uv&F%{_79>{zV>LE}fkd*36^3KIos-UW3rK
z|2f5LYxaH0PMh^I`nZ_oEUSCJ76sjFGMYSTvW%|mr;jJsA3t~M*E!C~scNUSW{2ml
z+&b&)q}3{ZYc-4ad<fjRCtmWu;pR;~Y;#qdeqPu;J>*!~z0S$q#cSTzZhhYyTD|w)
zfse(T_itUZWAWwhx6(!9b1WBJUa6iMt*f>-#l7<KC&$x!JS(}4CO=tz#y@ad>d7xY
zktL}Qr>`w&Kb~%su{3&LYJPp>&x5zL_S;+R)d+2R_B(r3RBT-5?E6;RcJx1;Bl>v5
z<ox!t(_GFaODZi0IA$@)_vJL(-t1GaCi(2TJY7WXc!7<E)%ra<SABZi`&%`|rRtQL
zf%RFH=zva<&)%0*4Za$(ak8x5Ci5e!IyN_X_od|ur;9$W3|{_3?ew$ArtUv;jE|}{
zdj4E}`|)JoeV1-L%Xk;Db7k7wzF%4G!C{7%v`>qj3JopwyV>XF|Mbb?B7LjURYG4=
zj9<R`AoXRE^p;q&%%{Jj-_;jR-hFxhf-8EK%2ltk&9cOO&)Z~W?K&>qm9)uk_MF)|
z(jhlf>h>h=|C7y^e^+$bhwAAa3sU%I-rduqax+IfJ#tg-GyQFH6S_1xpFP+Wx72In
zi>K*NR0WOZf703<s4iW)HcHlqgN=#vnakQeXYUj=g-q&NvO@IzG}A3*r?xEl*E(}r
z>gVFmxy!n4T?@Cn8N6@5sgYCV!=6J|eg?l4ic#vFzJC3h36ge+aeXT4EARc)&z*F^
zO!IivRZHW^XWP{8-`rOey!Ohw<Im58EQ%}L`+DotYQM+{_Nw}kb$27L*1W%e{j~M2
zFJCSRKYQxs_4~d0HJOa8>2}=9Q)4Q>eKEJY|NGS`F3C?@j{dxFztd&ryXm+2JaQ&k
zX)m3Sk!1Mt))Uu%7uHvneg1N2%a@eJOIBR4@4x@{tMzTw3+CQ!VaFC+U-`88!%t_?
z$r4(|HkQ|CO-!0pqT0Q&#U?Uj(QR>6!FRS7wq=$dZu`V0xlo5M$oZ#BivCi&Ip?P+
zXviPQ^!}v!@x|6xY1{v=K5J^+eR;~_)kc<{2jte*|GQG6T5oP`Z6CM){=7*R<z2o>
zTQ0fZoA~AB;-$gU&gabbjO=+D&RMUwJ)CJ~&4NqrM!ViDdUC^O;#}dE%8z}vN+>B$
zv=geCdO?SKNs8mofRvrF5n17Bi{n4JPMCk{lk&-bH@}ykS}xPyX1h)QiOn=crc*4s
zi(O<m4L41lx<&Ez_Z$30p1W49Db{-H#;cp>zB$@V_gl*2DSM`@{HeKFZRywQGl6D8
zlNi2T*%EqXOWyjNX{P&Jgts5pFD^QD$mXV7m}LyFuIy3ElbgOyx}cz#6F;~3KI8L!
zySCNxO>g16=@ohQ*Va_No2T?<PE=gzZkBVY-rqO7vUK&C**(F_l%g|kUYcM3N#y37
z5X(76QJsR96r<H{E<0s^($i@3Wv(D^?x2)z?bVy=>$dD(xO1_Jed_mrVX2eXFPZGJ
z*KJ#$k>AZ<X-j7DSZzHbUOE5Mq0H8m!JmUt9;>YM$eb}T_ujQGHO_R&m7Uq;7WaM@
z-S_-lyubX?l>f1t-=7VwwzhI!84_20^rms&%&DT86L)=o|2k+AkNwYgGM%ZXJW{@;
zJk@&d>ZbJHCh(!pNwIqu*d^xJ-c);da@w2>e?u>mK(j4IpC`FI)%BjZR7Z4cZr=HW
zZS$9I-sBfMWjz<Gb-DBE=tpyF`i$m%xo}!IRc=jM?4mgBg-deci<j=X@OpZV;!-~I
z-j%nkY=q3Gs;$2BMWxey(zGQm;&X$PN`u9goVcX1c&eA#w$feJwL%#wEuZ{Sx9zV!
zw8XeyZwlkQs`BIeuZ4QIAL&rNY-}G9ttx-bT<q!of0eCTj;ivj&m6ny-F-@H_LJB@
z^FKe^R{rbXuVZE>JwLgr*iL_<`oHRE)J*p1O&iy2`f0!4y!<TRarW%h>+Q?^e4T$6
z%fFlS)a6vgn>9L-yZ&vh`(Jv0rtNl>zd!lQPqr&Pon@_BdoCq<pY6#cKGoQzsUd00
zwudEZZr5qA&Wcw3eDctOiz}XNoist^(eWD}R=&AC<!$z@(5stvFWb6qqq3^!{CSf!
z^6$&!y`NIsGspS)8Q&G9kB@!&b^QLVd#^sttMplsn7@PXyEpIaS5Z%^ue^U)R3vBF
z-{Zu4+*vZ!d23?$-{{p^<)PbMs??-RjJqzWEL|GevuW={5z$%~&p4&dg`XNW@7a}_
z?Yg)qDPRYuOX}vfrdE~aS;xNZ-Ma8{VVcO&e=p9w%nVz6X^TRq*Q1U<lLIsk>d9C{
zsY<!sy0`2}l(_HdDdC<L)jucSjn7*hJZpWB?y*-@%hyDu+?BDhuq<7{t9e-GeuihA
z(WIM`FQrsZn3?t}HTzZl>+VzLcK4+@+;=&@51E~B?yWLOcT3Lo;+$o!myH)oYn>5$
ztgN4RXUp=!vcg-FX3h+oT=)0fFW#qLjf7@S*mHARS^f)-{N3gEL~d`~ym@N*t@eU4
zo#{>9TvJMn^1XijnN;GLqhGtH`k~41)O4S4w%@;hTdTgiQ+;;hUR55?>ZiY>bvmnN
zM*nmv3)}i;MUI)2$?@}NUoQTr_RD$7&1vWJg0_V!T@09JA{m<89i6nIX4a&KPc~cR
z<(-rC=2~QardFp{NHVo}U)Jl!%VN(@ub;GC<-=JWzv`Eh?+Vo}d!`!y^=;%Pm#d~*
z?SFilHp}h0X!_X+8{QRF*KbbBjV*rh;?EM9*Zk*ae7n>Bbat8fi_)y0KKXkq8kgLT
zUmv0DJ+Y;_v-7z=|JK{JdlLT_%fI>ct?=k+@h6^sd#jI1xd*qqd@i+qJzaik`9V$9
z#WlC>FJ9}N*tYjXl0x=W^RTy5^(VgR@mw}NHaPObty{L6JT%t!e^QS$J-JKcdY!@g
z6We{nde)c(ud@}IUVeS2Tzzf#nuC3_vf{0bz4zH|VlG&)^6rZ3r^Fq<31q!;e!FIq
ze9@ynF*lP{o=^OILgPxoiYLD>z4>y&?fS(_fs>|By6Wxo^6}HBSJ%$|ZgS$=SBK>G
z+po8)yh_PUHIz;fR==5gF6H*3my#2&v7Th#?YuTd_xJ1A-rTvH=4KaGs?47&weN|q
zS@GMscAojO%go*QL{52h73*wDDy{xAmHpPYtCmxjDMZdZ#dBJ%(rd?G9ZOI7yCv$k
z-%p*L_3z_Dy|q!bfA-9g{XMJPU3Nq8iIVQkx~>nCJ6a>By=$*f;d^D0wK{Tr(8@Wo
zagp(-bDl4m?d+?Txy<p+qtn0sHg63Tn)m6@TfI%w-v18SS)tSWY2w~*k*<-cpDj;!
zsrqQ!)^ASgT{9zZUq$1m*Z*y{FFbm)@^`<Oe~bQBm80qRZ~y#vOY7w{ma>PMs;dg3
zXXPAPY@b@Mpuj!v=LM%rH(vca{8>8X=I#emR$Ar0n6c93u>Ll=9q)D*KbahA_u6`X
zjPB_hy3=(!dR*M3e;!F~xGn$NYoFkK>&&htK37-lzmb}h7ax|pvi8s0x04R5J&#bG
zIGZQx=KRh%t0W9JYlJ4vd?Tr)9($t7zsyWUeBaKj^>5l#TcSHsAFeF2Fb)<@J-W55
zeevGQ*B^_dx`zn$>quPY4nA+4SrmB9Wv5choa5gol-~R>`OD`o)z&JOn)_dEebwzZ
zcUO+zwoNA|+Fle3PhWj{cE$ylGXJUn7KU6Gx%K`}R&;D_cQo7dw~=YHJj0qMwWqL~
zOIU@7msHp2`uSIF`nbdL=A>6D_d=~>PTfr2^jYg~u<o&&lP@i5PDm-%&_4cb+qq+A
z-{;NRmMhvjiSKJvZ;s<<<H=mcx~wxjcfR!eJ5N>j=hyY?^L6jvkD8J?Q8vRfd~V$S
zGgE!Se?_nt{kr=jPHKKd_3v3m$LFuJ_xt&E8M{6A{E24SO*Jc1E33b+uGQQA{`PTE
z{>Mj;>TM4<yLnOlSZQG3?OX4@eXYHw_WGFex?2xx9xOfUd+uDm&Y9^h^D-`2McvuG
zI$B3<@0+i!d<WOBp7xg|^1AO?Z@aXxu;|_4V(L#{$)C&;`jPThy}EPKoBgGKrtCbb
zxoOwuUre*h%}?|d_MM$GbDD;BXyn9gyKExOg40%=eEj);_T7Km_up83aYg-idGF(2
zSl@p<QF$kvRk-zy)V^Jt7TuJ*wfV}55Z0N~E;UWjtUNi*B{n~o**ACY`}Hfi?yfzs
z;%@NmZ%3~&o2`D>^i<WdZ1bL1^73!0-mHB)`@6}ko~X_SQ{J}|#r0-QE4<e^IkorO
zx#_>{BEm&2mA%XYpX+E(;}EUQFx}+YAv3M^<z!o<hBpHG8fRzB$(}o9?w#*T`;7jd
ze0JgI<JQP&KUKfAJXZI#<9_>;@56y<F6U?KM?QG><!FV~x0b1M(}I|G<?OPFt9S0M
zzWL@&=jU&!mDah12RHOzyK_Ityl__5F_W98|L&izKP^Qp@^tDFl{A;R^9#ORT6B53
z$d>Y7YnC<d?pv;NW^(O=o+~a-^Xeb{*lBq&GV<Ee&&zKqCmX!lI`Oxl*8Wo*x@vb9
z=jYsxzJ1I$?nI@;Y8AGvt<h_j>{c+={Kjm)_U*iIySvKP6FaNcsw`~zaPrFksQAD4
zUe$6wOxrm{rCImpj9lZ?+h;Cw1y6nbIHmUEa&fa$e(45R>IAJ0znSgbea>dtg@P4(
zA1=Q?|NF7$qWbl_+^-p_R-SY}f5vOG#G16)%F@%f<3rZnj?_1P@tJ+vnG-gvj?9~y
zwrRPVR8{_J4-WaFsZ-ScN6ndgYUR`Bb)ol#UscO-RQ^4+sdd_fTgS>yR(>+pIJthh
z^))78!-$M4wey!N*7vs9sIHI|=PPp-+{YSp=-1q@Pi%_hjxCuwJ1cC@cI6^|zRv9B
zx~JkTbQf>m+Nomc>AgEUDm>S6LuPq1%ht)yp3mF7=0;J*QzhmWJ)IStv3@t+yeTo+
zZGSsv^_){?me;K|Yxr)8n&kO?^=YwZsVY0IYlXCTn;cqsbydDxbj_(lHBVV4di=jR
zIY<4>>DsrOxjNgI>+7A6d0<(iR243|c)}YYm6ml?dHN^4Z{8Q!wMDi1!F;2JM3vXy
zCf#}Rb@!|PZ-01(G|y?@=yK_j_xv}Ne>Zon{HfW!EVbp`$$RfA-><Ia-@ona`}gl-
zOmvGce&IP8WEa2S@Z;M%*H?a?cP#d*Zth$5_g`ma8P3^dP=9mIn>mN0V@jg7_81hU
z?KN6>?Ap1jsipGyH~zmm)pgSHTK0b9=+2m0lfqKY`iY(Y9&8D++x_uWn(3)e!NPtO
zTY2AVg*vHO@>^VbHuc8*-v!~d-tJXJj|68nUYNTgJZ#P;gZ1~be;zM5r>$$7b2}_7
z?Aq=4-G4ZRCtMf55qdSIa6xX^M&F&!^cH<`xP8iZt8Z@J%~@vFwzt2T$(pPGo^;tu
zd2PA+8E)G@&oBFKmCwJkKIWJBUfy}umbSJ>XUs}Dv1z8-bG73Y3?WN{Zcgf5uB-Rs
z*rFQu;`W-r$~@(&C1I<Lf_+a(&ipNX>#b(z;eRR&49w>%UrzdL_9iQ0pMw6EyKBmC
z2B%D4^L%my)4>P7SFh&UtaGvY_g(WKsjXVS3Vf%xf6_Ep4>vRX=kVZQxLN+)%Uepy
zuC3S=rlI$?(l%{}$BD`N%Q~B9a5No!&{uo*f7Jf}4#~SeZCzPpF_l|n-v13XX@RdU
zMc&NoU%zl`akgu+YwqkY;a%rf73tsn>^H0C*Q2Hv!k-RpSMZ!(zv=&$%<|^Vhqdq9
z?hT8blY7>~SLTte_>-rSD^1QX(6@ZKtZUW<$w#KVdVIH-7CVN`^8B~<eyG0X`^mh&
z<*T!+R~`LucB$*>XD5ywmERX0Qt(Y>c9FWm)3)22G=Kj4q`6$@#Or-mSLEjW|7(BE
z`#twG|GCyjuf6*8=X3ni)!XELT%37%YW0%S&tCTbzoU@(>5j0vysh!;m*30s?%l0;
z`EqIHw<Uq0(<a*Gt#)yc`m8o<)2U_Z_cd2%W|&KEnOr>isr55{mj2mujW=89+AC*X
zy>{z=Z1C3;ucL(zmH#>KYaU<Vb<)syb5iB4%tem3k1sZE{E-{D?^fLPmz=gy;oD?H
zSR{C#O<l78`_+9@XJ^UPSO4D9B(mOKVfMV|c6XlImE?V2<C!^quAT3rSuJ~npFcIR
zwmtvvy<ca8ryFP#?^@Y;&(FpFku%B{Y<&Fv{91nw`?#n6`Z;rEO^=CuJ|$uLyh%T{
zn{QvL^3t0-SiUy-^|h{LIkR7`U!Pz7^s;SV+V`36;`0pj%eP!r(X-Uw^-}Mfed3<1
z!peVtKBX;=EB+aIS={&Zi@N$XoBK4aatj@|9!}-GFVo_FC*cdXeWq@rx9j5b@=I*_
zC3G$Gy?)(}53&1oY@4U$wb$q8uD-s~{B2&u-n$c1jYZR=SIeHOuM4SrtsGxc^|yO@
zdW?)+_pht|-}mg=<Wza4aFXZuN5^;H|C=@cyu5+*R(sp}x~fed|C)y8*9Jz;nqTzq
zlTf#3`S-4^-}i6Htn2)HI=A%sJd2-SR9WZeud98y_)~IPTJ7_eixr$FK0Mze!GHRc
z!C$w%67Lx;M9Oxz>bvdV7H%?2xb){t+v{4kwktn5+^%cC{G7Y0=HK3}xwpTWoH%bh
zT`acf8PCa_`nspwH>dylTCb!1=5x{aH*21B#-xZH-57dIGT3RkOwQUIzVh40ZyrB>
z$wTsZ2Jht@&&>6?rs`S$f3HfO8ogWp{02SyT^2?MI=i{#YZ9Fo1y(<H<(_&uYyF>d
zcRu^i&ojy}eJK3?)HgG`zu&%X<9ok$x~?Dp{crCdZJwlWmz|cv^S}1$rT@P!AD^GQ
zZffow{&VwI2CdvzyXotk$xi&QrRVl%N<Nz-ZmDxS`bscc$HzZ5^V$ui-rTtUXLtJb
z)TJ~3y?@%hSUhRHzCyj$>b%IUE0^s%`uD5S(m>JF=+x`aTlvf1uF28T^@!a2_5kZ?
zZ=Wd9t7(BU=BZa!H+@R|kyPAUB5lg~_~ql|%q2a^yV|zLZBn?n;APJHk}c)mB&yc^
zK9}<{Bd^Hyd--lYzBy@^G?`iU?vq=t7ysw~=e?D)Pf73FsIh<Fy~-tB#VPaJ7cSXe
zcl+}Wj%1$9j6(Ylm((KXt$H2%^mp{~7I~4kMb+VZb|?Q`_sg$8etoFFzK`wa8HXO}
ztbQY%X|l?s+i~Z<m(5#4&+pk@oLqVM%%d$&xj$>D9TRT$OZGN9CD(U#jd^i;X2KPZ
ztw;X;TfFn-vpXA$v%fsF&%3R9%=J+G^!-J3_g-9o`St$yM{e`&KYZ@)+x7frsr>r;
z>!0ko9u`)!^X-9;#l_G3Jni!w>!Q8g`}OUAuGsU&<TCr~Rr*$?uUIM{D5y=*neAB=
z*VjAwGlNghoa@OY-CtC0^wxdVmCbz{$62Q9cmA0zuk>l@C69l7ekPJ0-9K;Q&!5k3
zeV#sjOL>)jM0Dw!H*dWC=T8%;i}RIV`|5J{rDgpS+xwWAr_N2gw`aHE?PJ2{K_<6H
zRP3oc=^x7X{HAwz--+Cc)2pMy@>Xe{^qv_vWmeIPpHT-BK5RX&756X2KV^eUb6Hy8
zswX=wCtnsm<UjRa#@~PX+pbM(&vRVz>)WOzJ1?IvbHwvbo?c|j&tS>VtNU(kwe<Ek
znRf#2EwEWq8s+$E%b_b1=TClacW3M7RZrtzfA=mg-1fAkawoUf+w*(2fBvky)&2aL
z7#rQ-)uA(ab~T+@@<IaC2DZyzckA|zTa~vaH3fbR5P#62afU0FGh)tB=gW)}KC5l`
z^{j9Io^4C_><ZnrR_*Sjmoq09uj${rb??HfwnoMR9Bj(VkB45hRDCkH{L&N2*34)v
zDf`<ozkfvEo?lU2Z7}0Q{&CUyd$+9Ee)`bT|D46e^Qy|*PcE?i{KCmDY=On?U$<BH
zZCtJr#KrJr4`<frd2RdmY*H2Q`Ek!PI8Ai<(_3eSX6&)6*Lc45i0$*MCOhu^-1KSl
zS$4e$yQfPQJB9D5+p#Wcb)dYty1Hgy_>5G`WY5MUpi(!@ca!d{X&1lWn0Dqw)zizi
z>AJdIPYp#6xHz0(b~rb?V~*^--0In8Q_VeEPHmjM{_nXrXI4C4`fAIpl+F9>=Dn?q
zi+|9$eS7`Bonfm(mq+sc|B-OLXOYS3$p1H|-BP`5tmNqH^!&=7DR%Q7$(&8O^6z}<
z>5v#pZUzR+{6n`Q?tNHZpU1<}+{t$K<L9Dt_B)R(c>imOe)J~8y0?`=pX6#PKmUsT
zny#a1kz3ekFYxDS{QinBXLG%mrI%Ix@j86(fxssQ28HLo8S``3c^bW3_xIeJM>*YY
zcR!16HCtWyzVYFn&|mXrUDMwtcVg>o^`|QPKddj}tejqxoTYLpwj%3feEj{ez{_DX
zGAHhQWX#0SFsGf7o2B{oH?y-^e!+Q~cch~?72fr8{~{{nyfLr+@xt)!KmHi)Ypz}7
zJkKI6?b@rie4O>_vQxch%Yfzpd5+b!uU>oCdhdq$vzc$Nahq>{<JBjZcM0Yh^6OT|
zeawptoc2}y`MJU}Q1ZUCrY-X5wik&ixBq@Plev1E%!C8S(^(i8Ecu%^=H^fSGbilE
z`Ki3yo?Q6*Tq^30^U2EU?A!l-2L7C8+gq%Dd!1GKG)MVedlqkRe;4WVD_H#LXGTT_
zhjWJ?6vw%FB~=yKmq&Z>-%sDM@T%?3^M`lGZrQze_o`@qlWpc(OW)-e<m%)bNN>Gw
zUwKNC`*W4Gpa5w4(tzhrqr=U8%Z^?){w@0{p*k*Sdl)B6v;4ZXpe&Zv9&E|zzdCSv
zBu~0*aK*7nPLn6{gEm)xew35HcJt!P_O@-yXR1nVQEN7v7QOn4*|z_0&*tu46{Yq(
z>U?Ba%%tgaW=~A<yi#b%3W~GdIl0x+!iV_R^`<_E$XmF5>!OeS|L?50zG}Ti^)Ex?
z%_qu0Q>f)BIrnc*NjHx^`)fwgysHuSFI_y&Ah-Vi$L-rrCz!`t)W4Yil!<|%NRCZS
zg6H4o#YOY=XUxsJ6?wJj&z?CF@fqG`)81ykN^ZDrzkWr2;r$XuMShS^`&zzQzrG(8
zx-xL}pT-NOLYuoTC!MVfOLkwr|L$8;$<n+3ckREYx;WNKJ3A^-%ax6R;mMwfVmxf|
zKTG`GvL4M1*U8L#ol{t;_B0~7Cb#Oxq}#v5${n}QQD0p9YOc}ZxX*hhFAGRvU=Ub8
zCp;=@Rmqg8Q#J2ia(pQAy8K%BHA{W_>|J4t{ro+r)NkBxR+K%p>C8I*Icsxs^lx9U
z`S)p(g#TA&28I`YvdJf$%NHKoGqu_%NT`3_Ov{exx7V=CcV7JKueaU5F739Dh$I8U
z5$)%i83$fp{1y9kD*K#teO;+Ln>BRQ=Ekjl_c82bp1;O($r7n99tH-s+!^Q3zrOVE
zx~+nnJgeO0R&JIi{aTr<GuCNg&mJ6G5VZ2r8r%C$=kLCpKHtq2G_l<?YtHrZHfewN
zM*CYE_MdvV=hd8<&XpT-UWA>r-TJ(=>agYc1EEF?3<)2SPHA}AJ&xJSk>37&X@B|j
zXUlbFO*5SG@kUkl`Og>Tu`@6{n)7+r_A^I|_H6w!;ay^3&74=?PpMbO<h^fQ?kD@G
z`NSK|W7o>^tADKOK3p8P!e0qwKab;ocQ*D}XOy<bzm)sLb}G%g>-+ERw{@9oJzafY
zx4&L>E+(qx%9%HceznI$esjye&HK*E%|D-aYuMtz)tfd?I(~#Xmp#xKG;c1csl4K$
z;OWZR<D2Xz&HuDqZgJdnLvQ!}oSPONl;p5aQL5vfaQLFxg>c)y&%zeRRo^<a$8pa#
z?rys)^LACH$5vfR-0qc^^UC0r>DRC43_q&MRLMF>La#a97`!^va9b<y^O^r9DsR5)
z99ObL`Z9aL-hBst#eVHxma3xqs?E-9_SK9F*{fvN>HWPcH@~rY8v{c^M%B4WXU@dO
zKepIxT)ODu+mHGhXC<a>Tp6-zPf2m<_A=|4ErI8cZew6j;Imx6eaf}+jMp3gKUnuf
zV(YajS5>997<UD=XSeM9wq&cd%)tbMUm-TzuY=VmbX=LDP-a)3@b}!W%HW)+vm37J
zUe7BltB8)B_hMdNfBzhI28I)r%FEYmy7}}Q?{&v$*SKAgbzxU`^PR7h+0M$qpgigG
z4*yL_zL9esm(L8HW7hNd%vp|D{ovU08=6(`{Q7P)F*FFCtZdoS@_{+``n!TNGjlG#
zZZmF-^sQR$d3~*I|La^v28TJt_bhgIC25p}nQq@!Ek5N|d+nK>-<IfY595^IuKJvj
zp+Qmd#@B7aH+Rkb8r7TiP3887=X**%t4n7y9b8~lb8_u<@ek}xbLNB6&+N~OF5h$E
zt2vlZ@b}!Wm#vwdZ4dk7D<wVW#?{w$TPv#u)=ka(=~*quz#y@xQFgm7@9c)uTlX)-
zUB6?vUd2{U`8;oYQS@7j3eC3Nm)*}XGcY(`uYVmfeYT3a&xvPyzgo+FD!w;m$CEuW
zPp@h5UH>!b!pZtP{}s0S6CZ<O;GU&^V|T8z<@$XZrzd3@9!Y-E$(CES>Er8fHvGpy
ze*IG%H@)Th-rRhpjKZ>a_wHAnD?IvfwoBNomFreM4migxyZz}tEd~aKeU|IJ_jJEA
zE?ji4?NeKVQ&UlZsh^Hot*`U%g>#l~d0u!&jDg{Z`tz?9?o(gP6Mp$*Pu1+JGt$kE
z8$W+}%gUzxxy`N53=9V*e5koyS5oyiT1)Er)FrDAnQ!kFULE=VBb(J>PJhchZ;%I{
z?D=sk`u4N0tZ8CPkCtjpbD8@mC;Pif0mz0PhjWh?rZ2Mk^W^3pp5mD0Nro?-E!Q7j
z{lum>YUyR6gNzIgcZ%Y^YwM~#;0^m`9mBTwSeofE%jd4!pZ~PT;AUWWH2d=efvoez
z&z8=9TvZgO@_g$qzHQGZg4}k2_szdbVP6A@HAOr6X3dg&&nat__u6vGXA5wy4qgAY
za_`(O^M!sFvva>&S?}5T((~iI34!Y`W?jjByYSl{Nb-7Uu;KS}Uz1atPZYg<R^jil
zG^jOi;dQyp^U9!vv*YQW7h9Ik=n%hc74vY;bQ7k_T+jD3KYzYdMKZ#Kk-=e4(Y#5o
z78S=W+1-EO`t8pJzyDo+akld7xg{=hO=~8)?1}WPS_e+(6F=`-vhiKx`u+vizRy2)
zVXN#_zVLar@5FCw>8Qo#CRbZL|H%tlY$Na<)B=`{33&Z)#ht)=OT>5G*miGgPT02-
zKIeq8&VN4Tvh$u814EC?xz|N?aXsScM~Yg?zsPUT%_uFe`lDPRcx>UE<*&c|ip`sE
zFYsiCE(1eH^*QO5ef?+nR_I<x>;BCuP_}#NcKgs4{X;V%linxKNSrb`bL#xM&=-E@
zFEgJ_oSCsFn*)4}Q!0z8%v($SZ<Ak53EOqAt$*oU{V3;VV*!q1rHn-ux2k@>zV@l=
zXXdq4za-Kue*XQGobKBE=SyXcvdKk@>jL0YOipoRS-iQD721=Vc=+d?&6hT`#7Vtn
zlls)RBdgu`YLbCusj{)<(}@y&&-z+E<W7$4U}QKTaP-Q&>+V&rmCw8Wzx6m(X0gqO
zQ0o}wvZA;{3*GNr)3iMA07`YrlRhV1NzUv3A``tml8>!<Ywz2otSgnxT(e86=k-C$
zg}CXvRsH9<CzX`^vf1abD)q@cZ^61FYr8;sEn&x(;<~seD^@EdZZJPDT|8^<LigY$
z5nq(ej($+i`^u|37Ze``LYC`~-!L~UiqptnI>Y^o<>qNFu?iBq_T9*M0190Rt=#<+
z^B$$_&d_DQ{n^dz`AmK@`AeXxsLjupvueqf=c=>6Dq99VofN&+ZRynyI~f=n7QWhQ
zt6yYx@5s(?k3P(KZur8qQ@Q%jl}Qp^Q`uyDD;XFPB);6w6WRIuBg^T^xthwiXG||x
zVS9eXbFhPWl6pmi-(J(wo%DGUkFrf*wnb#o<P-)51D#))=ezItsak#TZF#mgZMnK-
z=8@Z<g{FS9DUxGg=%_!}y=1Rm?XmJ(+-%Kf-51&VS02#?l_>`{yigDNBJoV+Tkm_d
zy?uWBkBeIfS@wUkVPG%_0u>{(6$0Ns@SWuTZ^zq%5W^(c{>pFft$P$%vQ7H9c*+);
zGnLAB=S|PJkYSnyF0>O3A3RU=X|aB#$-iCp=WBxyt*cMdef3ZHB<*BjU~o2Xc&_I&
zM_SE%cb`x7ya*#@<J)OzAeqARm9d-dvUFCR&6R7;TO!}a$iQGwWa;l&deL6JLoEFH
ziTD<f(4Jpeo4V|b^POyet=YNO_@{@=7FGrZ3AZe-3(n_?D>KeBGcY8_u76u8{K_GB
zi!=XWkMxHO3=GLqZ!2S4<=P(dE`bzJg@<cAGpAqvu}GTr_m9gfE<Lg`;y=v5z#tJ<
zn0a2?ddYG7uM)rA`k!qJIQQ6!hk?Q2oU{*@%vsUQvR1h^M{q6h`caYg1CQvt5qoAV
zzFB!h4(#Mr#q&~jKeSTI-hA}0=lZhUOTFd$?GLWF{^a?x6(L&F`VU@(WRL*2EDOHk
zxF-)K4-0*jlA6=#V6YC<M7Xvzy?621tZUb=TSr>3#ljjFsY}{EE)H9rl*283?(=7_
z!$QAyA4{5IAGLVr+R5O$-bUq6qI~jn331N)*nd`8{&%yB%9cfe)(a+_kv{i$TkU<1
zRG*m1f;?=qZ`rKe0xIG*_CHUQIrjA1&p(YKpfaDqGJj4c*L{_lpiI&*$K0=24wOn5
zEc4f7=al|`_Hygmw{lOfH=BEI`(OYGlE<^=&XfH;>-6gADe+Uk*}Pi~IytE_InFI>
z(VsQhuR5OCtoB@fwZKA}fuX1J7U#czlZ8st7Mo4_JZtXUm>h0~84v!{#RpG5{QR@b
z!O9h@gV~uF?YdhoT-G<~?DX{XJlR~Kw0hd7)Fo=yOt)&^_064|`NW3dz!5dY^BE>H
z&qlg`2z(#4_SSRd=dJJFXm8xTc5S5Hlr39&7}H&}W=zbo5-7bhZT2b#1~rTM=abE%
z`x8z$x72V&t<_UK`t0Kl_K!tHaZYYtNzSWpKj*KgWlV3M4)VIdC%2o&6&rOeI>d|a
zn3dcylki!QUzmMmVd|{epm6)x_-#+inUG+o7n5$6fnxmthxPY6`S0%S&Ay<&e&x;j
zYmujSe_6A>Jf{3^|L!j}pU+<Rv;TYKwBGK3e}7-Ni?5CRe072PuClkUPV4Vq@;-4}
z{{5=svio1;=H0$^YhK;2PLKcD>;HbAs%@|M{Ag=Y_EctH+4j6iKIfPj5_r7*x8E<n
zAHVB+{EmW;kNfSF|F7Hg>DB%J|F##-ZO^=%cBkz2+`WIVzRan9HdEbwfr!j@-wiWL
z-1aV8w^CVvL-yw~TYiQH!EbLiYu~H?AG`nl^6S!hdp<r_Rb6_i`17+~ewz=+zkR!4
zYq)ObvtLKM`|oYbJuUyQVEyg8i6(0I3J&*PUVc6#uI~Te`WqV(bJNqG``7>aytDZE
z^($}oKkD+nSMm7oz2s?^lQwGIEx+@z`_!quaqHF1&Hq1}U7xx&>iW9azsv3a)*b7a
z8NDsX%Ol`!;qkk!u1AfY9OnNYnRY4fe235XZMX9*AGS>PxBEF|`TV*^C)NLddp27>
z!(>*szTNwGyWg)}Uw-0@{jV3nMmM<iZNA?rK7S+U<>%-60dX3d!OtFUI<03S)yr@D
z#r);wy1%zXwdK~YUq5|gZ0*<5CwmeX2dzA`J?!O$6`@sYZ>20yV_;}mb0_5U%VV<?
z`%-Ssd6S%;{@wP>%jNS+53-7T9}kbO{kZ%7-(L^g<?}N$cRro=f7k1E)oJJFz5f0?
zR&V<C*L%NSo2}BN8?`0n>nr`Gzvcf|M8+vO`^~d?dMi6WVtd}%x7+Wp`toMt9<N2A
z?(Wsa#g}cr{|S6q`S+{&vL#D24E-L>nzZrT8_oSsr^VkbxxCij=HrS#yWeiJw*UL(
z@l<X5x;GosdDsr0HNU@NPuasmN3*ZhXr9bDJ8OMcw|f5VZKm4V(M_3-jtigIq|S)l
zUFOA7^Je4n%a?M#-}^1S^m+Zi=jT;A?f(5Ro>*yJu;5!GyWGU<b^m`qpHutI^5;+1
zCwmenPt3YizCicl0?&;SI}UL$Gzf-;ZF{?Nxm<Q`Zs6*xzrTg5wMc*N>grN`;<?>z
z@y4jNPoM5Cv6|arqnhAZp87Oy@<|oh<#WrHeVJol-`HaCGSh5!^_;Ffug+P&_vDzL
zQ2zVvcAMXCy4@Cke7ilq{`=kSwRZXL?beglsjTpwYvpT|c5cqvIhNb=?!KDrZx^bj
zes|Jgl|P=xn^?QU)>OnWWyHqbZ55B(RP|MS(&r`VUtCmc^<sDVIL#}WUwm$V?T?4m
zw&!kps_RbwK5xpDkcfzw*jU$d(ta~ncD^pNm?TsRDrFpwY~1`ize{?TgTjx~@&DfZ
z`z^1jJ2x!;{f}?k&wFs(m)~(Z;nH&NXrJ%XX1+W8<;9A{V!vwk*;b#jl{<f0fB%OE
z&Gp{CzEih+f3;d)i}}S@_RkF|`up$SfBdIo&YYN;Kfm9ruD-VBrqKI$dp?_;tTg(h
zw^_tnaF>5!M1icEhnv?Tdx1OE2Tq=>WMJsA@idc^oO$Wvqwe$CwQ1+)MF(z7|NN}?
zRD5)FG&gs*%CxnyyR8)OD5yK?+V2n8wKs0PitfuB8xrU81Ox=!c>m<o>GG}HcW>HM
zbnDiwGtZVhd6H83P&$9lt>fNeIuU;kvj4w*@uH&f=V!CmyM2xSv3<Yoo`Q#u&YW3u
z?b<Z`{V`XU+WIHme?EVGPFB{Gch}?VT|x16H*fo%)(Y`y-}V%o<Bl(S{h58o4KaoW
zLB9&O#UDSNuCIAI)qcW?k}ns%r~aF?_ua17^M1ekEx&!Y^U|RB;<I17#dIgyO?++e
zZqMiKR&)I%H?7LLKQ%n=*3Fmu{(jp%Wu9%&x%1rS8(8yqKK*v(O32JRyWj6Cec1Xu
zEhWWgwps1#Yr1>)e!G#}Kl#GX!}4)6=H<<|uWvm3&|=DGF;9n(O?Thi{CsWA&mhh<
zg2BtC#1x(6U%&6yr!6M84Ug*tS4FKodH=^T$?0)b`;I1st~=Zz9NKfX)7{0nId~_V
zncthT?!y<S3Dn)W=`SClDJ!m{Z&?~>cYl}T6-YJQGu!CewRdMvX~{HlUcG)jzT{$g
zeC=1+=7Tq$`rF*!*3a*{Htc4O=f*u<-}X$HqOvz`^|v2PpdM^Oip~E&_v5Qx{>)yt
zb7A#~!v%`ZTQ#<att{GMk;lz&;Dp8dJ)fV-mr7JyuHUjH<fVqT_Un6_f6sSo?g^Rv
z#AY3+Z}9lohxq*4s^?1uJIibN%|30)Ra@&eb<UFXnG6gGCiC~%E86!tI2}rO_ul%<
z+sehddyl@`a+I}LeR;O&oeVYxgNvD4tER8MnzQZGn}&-5JO0+iM@LVNv!Ah9;&IWP
zZEM!7*?!>qW5v4{6*L3QRrO~+<z#5M5>g#J`S8meyQa?z!d5dguG=2!wb0YY$IDB~
z$4m0u9C7dDI2EQ-=j#^7^<3xSZ@rtB$hfF&%0#0kqo8AYn>Gdg6gb}aBd+~o@{HGu
zx32FN++8n+w6#Fg{n@|DyX)7z-FP(b&Ah|x3=9TsNB;h+jAgptaPIu%9ac=8Gg=#@
zg4|AldKxPq?pV{)#l4)7f#Fy>`nCgbTb}{cp@Zyy05xS9K<ya@1#J5tKrLhj@csvM
zjbK6C8o{Q4)nL^K7M#JbWpU-RS+imq9SrIoZ@)Q7N@|V{3(}?ufvr(fXJyHKw)A(3
ziz%LG#3?481-cLybdX}(V`IS}(3Wh34=fhBef?P}`~LsU_c?v{e|&$vC2oB`a=1t=
z^7QijanE-n4|u@gzz>sEw?7L_|L-2Ne(T2Dx_s`^+>EA6dZvJnj67`UvNr6fmC8{j
z1_p`wofA;EkQ@*cUH{s^%iDW#y)GyXw!dO#U^wD0bNlnDL%Y5&c>!u1TRbm4SsW|%
zx#|rw14D!1gwIn{u0P%wHR}rl1B07`%=^h}p6pz><@U`S&yRKg%XYUSIaSdze?q3d
z(AOo4f3r%~W@Hq6vgx__Uv&v6&49L)WLZptbOQ@5^Q3E!Y}+1k{9-f%L&FcXLqB@0
ztlqi?$xe@FU|{I!*&(z2?Z&lzY&HxG4HJ)iHbB|gg1+5_oak<AH}iX}tE>C=((*NH
z)_D8B1f@>~gJVT;C6kozF)}dp%%9^vgBcWvmimi+Gv4u-U$=R|*=Zv0Z*IP=iyYr4
zD-SRD9a#nPE*sOq9eNJfBIJgc*!|bJyG`!8{%2ueaHtV}*wMP@(uS6KeNUJe7!q#q
zzS)smQWCtYI(tqxU-8~jW(J0YkSBW>T}}ATF)=X6L^9juc{f0u1K$PIGk4B$)6EPF
z43Bl6m)aZm7k>ps(b~ql;jIav+*Vf<cfUQuvyOp*VX^S_L{Px`|K0xlViHJFjCX;p
z{-=gpa`mhX3<p*$TFSz}pfKzH`|PZuA2suoE%-}IUpXioNLRd)<(rfg6cn_{YpD{b
z#j7}RLb}PUGtbsIvUERObahp&T~VBqfy9&>cduR3k@t#<I@VzP$RYkf?IcD9iTgEn
z{Wo)Ln-uv4KWS!c-8DsI_VLGZM^3XB@6}c0XJ{yt*Vj0d@ykMG1MB12pDX0pK%K7V
z^M0SbyStqC*Hcr|-{-BeE2q!<`nB)%y5EJ<=jHGFdF$o!`4u-)#ZT>*|NCN*Y4$#;
zFD}>D#n%3OI{l07nQw2S-|u)VzV~cyboA}Z{`P_|>)&quzpv=2`bUlT4Cl@V&-$2j
zvh1$(pC_TQRg(l6860euEWiDJ_j~=jzx88w{5WU*eq!Hw`~P3Q@Bjbyvj2bMy3Yo=
zw|Z{p?cTh7zt!B_^ERKKxQfS0y$|B~Vb$Xi^V)ocCUc49{Poojm>C#^?`%H5uHygS
z^1pTS<MMZWJT`y&l$J$@o}HDJuXxb^_U+qCwP#JQ>&Ml6*_Ipq??Zd_-FJM84L`O?
z=gqOJUH0kI@Av-?xAA6MTU*!vx;+2<T<iVI(*BEv$9y^_{r<b$<~d^Bp)dD6?u!oz
zd-t`<cIVEY=J)?-uf7WEKiL0$`Q13}%$-fC!A?!D`mEpSX=zPUl&|}7-e_`JwOh)r
z?RU#gbE?m&`E+u*&EGG={&qjNo8SNAu=rw3&Bw~}`?dMCd!5t%U38y6>0n&N!=2CP
zRUb?9235bGoIGb5@lTH}TX->}=EcJOp7X!HzP>KvV?}N4-k!IwR<E~avRv=&@_KRQ
z`t2MZ(sB$8FW!B*e16x1rtYPWSFhjq<L>*qzaI|wZ{M=zPSNT5yQSA{H>aQf`unfm
z^wY1u-m7};D|A#$H)>PW*Xfu3_Sf&x(VwWO?mw^S?N;+O(c7PWyPY3e_01zr_2R0<
zi}&u_`Ep+MzZGBh{QD&x927J~LcP%UWJLA1Dff#`ug}}{@|ya*ijaSI%Wlt|U-#?d
zsj2ez-)<PQH9vedJ3l0DcfrF)rrG<Zq-;w&8-DcY<n6h)XHA`|dvMEw1p!6#jLxi!
zwN_=a`*!1UX6Cl)_kVjYeYXGqIen6geEpx9C-%r%1pGe0+<zi_|Np<m=j?vZ`SYh~
z;<?I;j=DlWe&yYJz44{r$?m2b><kAowiN}RT`ry7W-%$XcvJt}xp(6a-1v4SxPR-m
zZ7Z(6s{O4ce5kk5)%B>*rzO#gFGj4r_UTis)m%TPc|seO?A}zg{$$FezRP~r!Bywx
z?{{#T@x^5JSzABVqB~`8Z(ZGfzwY$r^ZPPPr0&=K{#t&&_V)A7WhFb5UwSp&y0Y@}
zlH_M+Zl0Q1{QBBjyPr>jQ;RO?TKXKCU!oJSA>(M*an*)vSFgraJXBpBUax5BU*+Z>
za_RY{rKeS%cz(Bh{^xeP{J!gt_slK1R8;xi)6=uH_2|{Bq3&wWReRnX-DVaYv`0O0
zd-M;fVCPdFl8%y^$y;_=Z4Fz^$G#?U$Gb4MMLlcHjXLB1eM;xI`*A(<@-l0gzWln+
zCX#j%JYN4_h_AYO%Gd46#Bk5;Zo<Dptz34Le+W3gPB?UR=)~#zaeHn&{~Q|j?qh{j
zeBIAhcezR%Q`4_=%kNeFd@4S5x_4Yi+m)AF8XMwwr4|{rz1ZYY?&!Gh%=6#x_ZwG#
zo1^MI?M~tG^(xPGqqamyb{hG7$#G9xb6VyULucnP=ffF7LQHqH)s&@<IGH|pZLnxj
zdF1_*>$ewwO4>hfF=$?f<?%1o5{p|Al7VoqIVdc+v-rmg$;eOnFO=W>?mJ#rf8qW2
z+c}a(H$I>L?<`sO?aj{e`+x7hzP^6GX?9=H9W(v)7ao7C`T2CZyX@A2x3{jwt=Csq
z-@otP!>?8Mt6rbI>}OqkxUF>V+<ABIG<`6<oG`u9YmtE0`A?r>-@et`ZJT|1nr~Y1
zq?<XJ`Q`h6z0y9#P`96_s$ib--OtbUtA0GRpI`lswQBFbt=Ho^c@&I4U*G@l>8jQ1
zrvA*&%)GaI`=c)HbzO2N@9gBBSM`dseX*UX>D#H{aY1QkGJHyQTi?m+50myvdN^BA
ze$Mt6@ATxoQWj1+BAFb0qv7`Fsy(~CzOT6c_+w1pRVIdp!_M>WXPCs*{p?@A=M($P
znUU`DdqZB%pEIZCdhGW*<@f)4$OWyuay_Q_?;=<4CH_yWdaU37S?jkvxNXg<Tjfuu
zPA@ClmB0V5-qQ5`DW5;9czDj*^>o_p;NalYqWAlLUuzYgH+$kl!`xe6)<$pt^6ge~
zzir;<XTA1+9=5)G`R(UtaSIuC|NYS$5-v*T?^z|YdaiBty;-L5X(=gg`wLD@ndGha
z^WoL-_<7UPte?$D_3~eB`cwM8#p6rf=eI|!IaMlAxQJ{2?Yb{Fn6A5TzEf~Fy!D&S
zw@6K8P!p_2dHuGs{IIZx96l@d?fbW=d*AO@tKUoT9Mh|Rv@^Z7Mx!w2eD~1?y+f=F
z48j*apa1`N>GXN~pUslq)o#NhuB*zxz@Yqo&*yW~>#r!TOR9Y*$!`m(m)G}e>oR~E
zxy7K3xW}d)yl)SxsuxH4ysflZFUG)-aHeymt^POl2nGg*Bk%4M@2@;>``<Y8(iD&R
z>GLXIZM`11YSpdpv+w`;cO$v~wb7qjTUY;oy?@>L^Za)`^#ne|SG|0CdU}0w!Q^!-
zZ`L0boxbPevEQ{k!SU~RJnoCX0~!eW62C3y;qLc!IYu+(YQN~)|2Wt`Ww!DC((7+8
zFZ2EXu6(~esDX1Uc*0Kx1_zrn^XspCJU;)&?fds`-ez!hoh(=TMf2s2&FSCw|Np&I
zeQwFAh3&Wb_J1j<{ystc?Z)GBJ0CQ8|El0PE^(sLYt`$2JyA^Zp!)jq^7B1~9@9@}
znyG6lzW?|8|AxB1QR}bIo;0cG^V$8UPMr#y^?KjeweQzNZN2oi?EjzV`)65~&*S-d
zi2J<l_dCXB(ZBxu<eu`;=F5e@VXMC$;;#Sj@Avz=b-#7j@B8JKm36Dv{NI!6`@0S7
z_bXg__Wh!}{GX@#{1IzUPHf-&cmMzI(LXD{UbPQedBscS&feXB)a`e!TKDe2nVFmG
zKXzM(XkC>!Q5mZg`~86XEoO#<KOf&kywv?&(V={Cs@(e7Rc{Q=g}NSncUo`vg~u<~
ztX=!}ss8(bs<@husn_GGn@je5yLFo1?#FWLcR#k4Y~Qlw%q-LA$L;q$yIX$0>cv8P
z+aC|^m%Y99^U37;YQ$K})2-ZMI#u6picSLeRX^RFWg0)X;?bwI(c90=G+w`QWuT;+
zRo(B~yXC50Tx@Duw0wS@)61Wi=l^@Nbo#vM7iamXE$x4@$Nta5^Fp@uKMr??t^b#F
zana)AKIdM`{Sey0A<n?iv*twM?XE7{>#^UHJ&Ve!kF5&Tj<5Onv#+mg|9yE$Bg2bJ
z<~&q?`S#!M{|d6NudR*TRWh^1=B3^9IrYCk9R9u}`P`hH`+r?M8@Imv@-p7*F~x`X
z|NFYHr{L0(lWvc%^QYY2lzREf%B4b|mi&&s|La^c|Gn#v_sEvt>11nm<n*|DHMCny
z_F)w7zdtrnpBNY<?w17j%ideI;~`(o(a6Y~v(0kn7$!ff{r>mgME7}TPM(~)rtG-v
z{s6WMuleVhEe~7$w{Ct3OY^~Zj}0Yyf|pJC^Zx(7<jqUvORqS2woLjgremSA`0I~D
z^W2u&o4ERxJhBPe;cvviATjyXYuVr5LZ3Z<zB@*5ZCLu|n@o)dPV4W#aNJwvSna=`
zUQaXLyk5Uw=%xP3cNg9NZ%R0rv^Q@4#EBoTMXxVES-Cmw?9H8<eblB4*qO+@%r}}D
ztM`0`?!|`w+ioCVFtojElU{c*!^G>mu>YUGU$4j4{rkD!+}!+b?f17;dlQd#JwNko
z$%}_mKYw0w`1$9!%BP{KstY5EE_p7GsrmTb*x2~_`S=Zqhj-muW}51CQg!;D53g41
z`+IMeEk3i!<9{o+`2Vl#`E_G<c$}=6ZI(O3FgffCcX04!P@`r3-#7mw)}B<KU*omp
z|Ig>~Unb9wNi~r8y-(-6N8r&Ld@}_~PqvoyoGHBB#+I%i&~yLCThL&}G4UQ)|9SCM
z@X&?Lrq2tmuBzR~a5|`8zAI|&rkj(JDz7&5-`4urr)JB*&=BY+z5HX@{*^`3GfuF|
zfVu{%&r3VAo4K=&Sc5uSh7FImO%(nl!dWY~x0i>Rf#KMk8~*o?chtx<wzM3yiAw%(
zJeR$^OOD@%nIU1y<*cuI;j3@v*gooi+r*N$|NixB*OpwDemwQF(!-pN>G3>Y=II#5
zc^iQiho*MG-MVy%#P_$ipBIFDwCwA<vDVYq*Vo@aeBKl5KbH9s8oU+ET~&9&Q+?K)
z01qcj5q!M9N38p9(!#dI9?s3$mt=p}h9;e=oVfWTTkQtZU-znOLO`W*Lc-h1jrXN3
zt<LjaPXzTNk7$FuR?A|i2kIqRY+@^LivJ$HbV^&G3j;&L#<`!BGS_>{Uy@^BIG|zD
z@OYbTo2A}b(7exQ(1e%rD^NEujoCU+`tOm=FLI8Dii3jd?1XvkhEuFTk_zjtG*?T0
z<YQn+`153s-p#%hpq`anQQVW4TU0<@S3|{XuXC$w`XoUeGhI_q-61hODeL@W2VDk+
z12ddKQ%6X{8sL!!gFjmerSiWozhAafn)`YgsIIu`vHiK=dj<xEV`b;Gxx4?|`g`rv
zog7I9h6JByd+r^IXY#EA`QOQUR{A;6x)qf-W!y+(0?tME0;W!zHf`$Eqjg8NLE1XI
z7%XLSk-M?S1-3?sCP&}kklp^aZq2mC+Zh-bKKiy4O66xpEV15Y@5;`=Ai?<2D$ko4
z6kZdLQngdwFmd@(mKV_m5?|PxvbK7y4f^`yx`ToQ2OEDGyR&`s!ugz1y<W>X_j<&=
z`^>&)U&DF%FTehLdi^lj;!0t~`W5lQOb;t3aBA8=4WH`uOkMF$aEsNG<t6RQ>kDMq
zcPq<svj5j#ab}58XTp>Ei^jrl?2;druiA6m`SXN=8%w5sVrg!_uKw`#%d*PT?8_zp
zC2ridWm}m`9j}}nv+bT&uNC=!>+r2k*>HVTne^v__osee<P~r)qG{FZ=a<f_UrpVz
z_iWITeFtBdi`FF{e7E>T=9bud6)6^*Z$2n0{bqi{VOm{ili%uTM<W&oYIj$qJUr>)
zsdH-EvM3&1z4P;CUE6i6EcGG3%r7yX9H))-@{fP|hFk5LUbto5tVd?g9!hlHTvEQZ
zI!V7qfAyN?)6o@)HeYz(Zo4J<;g!;j!;AiX{l9ujUqSkk{i{yjU;JO>mDLWXF!>nu
z)rar0r+>Zhg0EC-zucV4uM4;KZep8Y$=|YF<CF5qoQ&LJ?f0&w8EwBLW;-sQxPHl>
z$@*)Kzn<Rfm+@y|WY-!0io*-TPO3avFBhLNcU{-4(4VW_)=uM{?sNG$cg5d@@ArIK
zc7^?ZY(>kf3n{j7lFjjMs*^9T3bm75eqBHL<i?pHwz+!hF6Xp$b$kD9U9%=f=b7Bk
zfVr~w`uyUnf5f-nR=?}@X@b4!w$f|cOSV|pdWi(owO#f+bTIyKZHng1NwaM>Yve{H
zW_eB8ciKpiIcIf7R%vC5WY9E~pPJp1|GzFgmDADk!AauJuKg+tKP)>|Uoc~VQA6Bn
zvlm;VdRN_jo6UW`W_qblim}YkWv)W=e60Sw6FTEI_vn(zH($K?qMdI!?duw?dC_VQ
zPI#GQJbCRP+b42WL$1_k^}Yv*o$8wwFa6@fv2=2Cqu0OSri2uIrA_gL8T~p7y|;Au
zrA>?vwcU4cg~^T2`|`HO248zs`{U)$&nb`X7T*4R%xll&^#PkN2Ujjwd+K3M&fA=_
zGPA9%b*J7{%l~xS=bb6G*kyabf$4vl)~3{#rtmwIahN=e?ebe+pImu3eRlR!)v(EW
z_Lq&;Dx|(#lXFvWWo}OWpS5qTznPZ*U173tF3(o0hYviiES%r|&491(+XII7GP^HU
zsqAh~zy7>^EA_jYLZq(s*%XtEefNZ|YDyQ_ZJEC0P14ENyj5HMR!_8*=Il6E)*rUo
z&m==w)w1n-PD=giy@!QwUJOxN-eY{F=Q+2B+?C9bTLp_d{8oqEbN%u!>HF1Sr!Rd`
zGlFb;KYhNSm!oj!T=|Nh277)@{vR^&|JMzdLR{Yp*V|5Av0v@WCjHeV+M%Jcx0ZIl
z$<>}5wyEw)mg&OZQDIk0MQaMoE?qj~+q<siaN2_Q(9-RO<?}s5zl-jD_2GW#-Q`6u
zS|=v4@$cO#=YHe0#qRyD<I*&Z{yNLMd|7_&u$kGh+Q&S*j|SeqmRr19>Wf;8)`QQi
zPrDy~XXi6r+G1Dx^GLQ-Om)_+C%0!!mCCwt+S5GSbd`tkX0NFN`(=OqXq8T#_cqAQ
zT{`-;;w**Ko-HC8?lx0OKV6qScvy;0>FhN2+af~y@~-on&R)4oMltZ_<;ha1M_2s%
zC2{;ZJ7bm9?A@2uXJ`IY51xLuH*R&{E#E2AeiTGk8|+!fm-{khx7uuvrH#)Ltdl+@
zM0+aKT=3i$c1m&OfraHFl{+sz(wOa-s{ESYeC3G^RdbJ}T=CQQkqw<McszIar=QG|
zHeP#Eu;zZGes}k!%Q;uPn7loWo}{Xr^!H2?n&DJ<TtR-7Uf}vb`8#ieB7HV}I8t(L
zv5xw0K8x}Y)Ay^3!>(=H`{Cld>2~*mqb6+HyvlXjywm4qgw2{S6ctn|^)uAUE!6sh
zOZ4=k`+GdAzD;QN5x&(eajm#7^}gr)1dj_P|Ghoqy8bMFHsiq}zIm%m4%Z&4Uv>4x
z>o0sSR9R<=*-cTN|5?dB-`)9e+~&=nCtlxnYf`W3&XYoiRd27oANs!Nw@TF6St-`Z
zo?SX7KP5edUbfX<61u~+S?81g&#w-_zn4pA@4Hi$5a;=;b@>#JSt&1B7#NZ@pL=e5
zT{JCDK4;sKiu3+u%S?4G3lHnHr|A5=I%h?+jq&RlH*bFSHtzW)sM~ipZ>Fi~=T(L~
zcuvmw?7FB2GV^da&_k3*u5q!e*Ok}XZP&x9GtJ{N%m)*4op*0OY^`~G)zyOaGY?*Y
z%<F)bR~SJCo|Uhsh@LFlxczx=%-)byb4rX)^D;0<gm)ISEH~$J232f3Op4xCCV$BT
zouia2@_Z4f4dB1{*T2eBzAumcQaSd29}{S>9XttgI52W%;M~ta!H?^5k8s@Cm3n6}
zVyN3oSP@j;gQpbGN36ku;MyKMr2uIHxObE#?R$Ia(xn&ir%#=V5J_4Y)L+`Y_xTZ>
zyAG>eY&Dbr>^pk+lk2jcDTQBh!fwp^p6#^#`9_B$5vs0FUW>$TzfrwtdlS#b=Pq$-
z>|0p;o*Xp_TDLH~$7qwuv6Ve*q#vg!ZF^pN-*~c}j;iwH5Ver0O5RcZ-7z}eY4Wz}
zPL<Vn;?p<EOxqi2w)$hX$bz1Y;_ao6IcDs5TX|~H0VY9jov<&v8T<CCci$=anldwG
zqs*6oxlT2GZT<(+n&hUtefj%0^{&Uc!#8esvqq>Lywp+G?RNJ>rSkUZV}23)S8tHp
zKf&v6RZe67Qn(2{wKt``3N@0y8(r!#i4mMxs%)wMt~#M6usUY(*N?rga=%{B_rI1=
z`{p9w3iZ<}-A@CY?p-+FH0wcXN~X-I@E!f%&+VExM|}Ew-6YMx@2|hIU737UQu=zL
zW^(@az=Vx&zH6_!QrscBxTm&7^pwSg_oeqs6Yg5*gd9wmpamKXw~uLOWMDvw0hEb^
z2Dz`_7OYaVJJ9t!o>3xq%M^wK6<h^(tNA{rt=enrVLpxXtA$qHQ?7&~7v`}i*tG9)
z<Tsm=!NIVY<!vRyvCtE*A9tRKt?RWpp!IFV_2a>_mFnM?Z<%<os(Ka^1CRKv&kPgz
z+Up<4B_}OWwz?$vp5X{TNMHZH`Kq^WA2vzOyz%;@<<Y<U42~HJe+5luEs&ph#^gfs
zrj6<+S}bf#=Ds#&IKp{6m+`@g7ex%>3~jO??Vf2tQAgP>-Y~l`ohLPlvt3GdG5^1!
z>$VJqPStV^ABDfVJy1Qo==kQp3<)<@HXT$51+{kT!3(9pX_B~vdg?!Wn$AprF3ii3
zjExYdz`14Sl%y8vyX7R7q`IUg=clCV`=sWjmt-gyni!hc*>M$@6s0ESa#h^A8}>T?
zwwb{Hefyn$t1*k6U9KYL*z{#*$;(M<a=#X8GToe(tGnsN3qkY0ugk9l_T_3s8}dk4
zSuplr*<1PDy6U^!XN^BI#0!5czE|?}Znev+h!x+Ol_ixYcI<V~7INj;nY5DQa?C<D
zL2jqV9qn@BE*WoGeS#NBZa=elbLf-3X7}8G?3Jlry!}k_hlyFwdY{X2cZw|(FVO5r
zIwgJH?)UPm3J;oo_b=Pn@?p7Wqs!D~&fcy6)Q(PGBD3Lyf8c|CCttmjneG|3`>$H1
z%d$%C#IPN!r_Vj$Jn894mGaxg*JjQulbO6^M((D_y(-NP0WbHz+H>nyr2ghdc^^{$
z$O%1olq4|iN^V3NUrf;N1p6<Sml(OWvd@0{*i-v!T94!-v*%HodB!e^mW3`(jZqR4
zn;QbX{(fvQe5QU?HmmY*Ttj@%FL{UZ;IyMm=S08We<uEVRcQT$s?{?D&!w*Zex|bh
zU_(r3dS%}eqe_p7t2T#LGdrBSe5H0?vWuqH3f_5nK9%iLH0OM{lsR*@jrr`g?Juue
z>88CrQ|Rb&<mc(%Ua9I!A2+7`d--*J?ZZM|Q4IyJ(;O=whWwar`Q(@t<Mr)Xm#>8K
z*UXu<Y{lhGhwk2);+MVSdCL+PhlPu8wU<QAHu}xB?|X%Uvyj%yh<puEwUve$7xtS)
z1};`ln>+0T>ubhu0qK92NeWJ}ti5V-a`Gng4;@Dm|4dK2Ei`qC@Y=_JrS9%xa$Toj
zo?M;Yba-n{kFNgS$;-;pXCDyqjFWt#<J0RtS>*a$pYtD5p1rz!DK|7?kylus7W>5e
zBIla3)63t!J2z{^r7xa0*qjZyo~~j#q8Ar`qh!;K^Ihw9GOXs9%#f$jvSa-{S(z!^
zIrdv;`yS<BRp4&9!Vs{=l)-b&g4&-wA)oK8(Kf2xlrUBASA$<`!*cenU9<nS@7t)M
z#ANV8^10l;+m>>{N>3Y$C)BUo`v1}+wI#a@q*VkI-?ZxbPCh?jTX}AH`+_qM8SaRN
zDCo;f&y0DS%lqz%+#zNK560F2%NH}`9gh1=K9u*VLwiR^SmwJK`G4+x>twWddi(2<
zcm{L#^et-@m#b+nt2FlJ_hFiFR={EAf)=-p?4Ku;-aTrt;G4#cx*yMO87K7oHn*9=
zthqEkq2}&dZC{Dd`-^!Cp9M(A2r!qHF`9eIi)nZzZ9Uq=_|nQ=P4V{me=EH+gH1i{
z-b~sXm0rpIqcrMjpAQ%NwaHs%=rO;!{`QZ?$J<iuZx{K5rEK?{doa6$vtb$kOIMc=
z_KoW5*0M}z7sTXmNx3e%QCv{=V%{20iTPabR?f|SFkR@(|2^i3<*d7QZqinr|Fmu5
z$p@laj{kjnG_l*UH2?qF{noeb=C>*os(hRJ@6PRQ)j@_={I}?D^?Db?vt#e9Xlvi4
zr#F5}deIONb#sC6GXoY0J4UroW5!6mzYJcd{-<O<Z5O$|K;z7rZ%gkQl$SmGc2ITQ
z<JI>Q9w_{E552X>;b!f|m;cHdU%&kM^X=}__tzJ?yXCShiOTC{*K&Dj$D%fQjl+5O
zYoCu+#r2x0&F_D;iJ{)@s>rfiC6->(GCA{mFRpN(=d-$9&ij4u>5~($o=MfXYG^fM
z=MBZ|)oa$h&Dk8?U0pVJ>E|UUv+vw7&z!7OX|i#h%w)M}clY^|c+$6Swb(9}dwct<
zO<B3Du|*t~cJHnh#Hv4?%#|Fv<H_^1iK1)5dFGvcx}icwEWSOwVg0v><v$;O`*ro@
z&zD!<-u~Qu`gXXy-uXb)1==sx_|AP|-u(QA$cD9>m?XZfN$maC`zrL)*R%_dRhE}%
z{0QJ<Y|&ioEPF`1LgVqb|Momy|G6EHN{C1Y{r-KhIZ<Zu!~gvmhn_F)tlyDgaWvzI
zpUK@Bx9f#INw{tO)FdD`v#@7k+bZE7KQ7Pb4OQU5R+tlY)19%QF-loJ<GlA_1CitJ
z|B1f8;S@Fb`kxBRa}W70CC=R&sp+gPlH<D4;D2>=F#qIfv25!UcYfVFh5!B&X3jm$
z4EJ~$*><0NxUy}vj9$2y#<nQ$6Y;ywPkgX3RP599_61qx@@sx3ot>9!H+$Qva-Hbu
z-%q>lx-n(-7c=eYuXT8pTa7fD41^qiU(1W{E?DJLnp%3bg!N%^-RI}|?$g$7|E(mG
z>3lA-iAVLZ;d7<LJ@U$}>3+`aCQmY+#ANbqdijjM_fxamZx`jAi!c87b6&ncQYYch
ziME<Wfz7NZ_@&Yrj|fW5lI@k#N!WYB&6<0`hvv3r<+uLu<X%{w(_=S1$IsFE9Mg;+
zj>ZuVm5CWrIuDNb9(Yt@X1wI0@zR~=?g}?F?3*2ZaX+I%(3&Mp9@4_XI~Ondnt%B2
zQS*JwUcK0YA9PYG=*mGG8-3h$sj;CcYViAeA2yI^e_z-2{f1N2{UtxIKbCo?AbaiR
z?5Rd2P6xxLaDBc#dy<BQS()USeM=@d-&3*qbE)0z1E0(VQ$DvH><?EqujbMdx4dC;
zJ<93pqc-8b%ymU8=E*BHo-jJN<F$dS$gGDq9vy#`wtSPUnf#jnNq?uUwfnvBt=XCw
zv+tiH4WmuFA8pHdc6w8Xuxd((d*PwQ4|5~-U;DVw=;^6l+saw1%d9t*Y`=Hy<GjrM
z7MC8+*!=j$<OetYHx*AR+3~?*8b_a6tMVQ$qkZhh{RED$R&Z8&84+YL)1u~vT4VD6
zM-`$yAtIM1dT^_+P*83X4pGSLh+-Ahkb0@%%jM24njy95TG1m5>z6E|0zVxM99doV
zt?0EgKUexxpUI+UcG9`yvl$d~RxN3Ak)9m&I$j{RPVG)?4Rdw4M<<pDFfk;iF=K3K
zjuHXa9YN`z{lo70k7T1gUVG14a<Y)Gd;;I=H)p*htrjL|d$s<2>+9R1DJ>_HA+P!6
z!gmh)xSx{`7#BEfw|H{MmZMyDPH4fd4GBT3x3;`GSnFr8EG%-xyZl8(H)GDHAI-U{
z({*~&O#RbJep4m{${ywH-}QA{-{ae_9!1Y~NST>%N8zxD;bxxWTS4)ozotI<@3ggX
zp!j*yZri>*@o&WO_ES@|U*EbX`sU`_?J_?PPTbL+taie%-BNf?pXj{9odsK-cdRTr
zqnBReJ3D!Qk&{S@i$$AAd%MPj`g4Zv4_h<>OqMB65L0()Tqbx$$;Htx*=pv3qnv>W
z83idFOy0^Xmj2P7^VsLOd*h<QMPgnT9{tb=*qy%Z^QrqUEPHq}epW0kpEyrzrNYI^
zc~X!6m*m<>uk*Xd*xhSxhAj$Ah>8LO)F_w%j)LRw>$=Kw6xZr|PTnW;yny{>!MS^D
zrYscZ+O{ZU#{GNKjx;Ym+}-|l;+;=%hx+Y*Ix@XiU~E@Z3_t8rk@av@%jv1iUURof
zPSHPHq-0on%<<<R0n@+#oJ-;tS$Dimzi$3EF6Y|UzeRyM+rF;aaresUugf}w7jIh8
z^~lBTZ}k4^wU2^R(=@VY=V^4vpPs$=^1mCq?#iyJSmdk7wYFuGhJmYz*8>YRt@ASN
zb&pfz+|P?X*O2{WA;~`{=HsD_&zqe8H#$4Awz*r0ge1&-AfPQH9x}oI!3CbeCaw-w
zE2)X%egTciidnsJtYVc*ltuMr)-$cHc%Wg^>uh}FWW`e9kOPnRE-no?_(qQ7`qKZR
z6Aa20Pky|;A!y31GY(0gZB##PKe}sv+wSiCjeUL<*aF_1sDL*#LrMFnWq<soKQ>s3
z{z<YjvT-dp-MMU^EbZsN|Am=z4>P+A8@qBF`@@y3tA+H!`Ep)unHI2*=Q8K<E1K+2
zKRc@kM5;wh%WTtJ6vlI0(0-b^`&8fkzZ33?zy6l<`Q}&O-N{FH?Tgp@baYwV)9tQ%
zW5g@xXech$>Jpawn*aCP)-M04D;KWG-L)`b(QW<tdE0+$&5I~IF!4ux!JGLHJo*=R
zE=l%$sPV9nM{v#pChNxJ=k1G|xnz1vwk&CV9GXzD&f*(;-$yNpc#%tnajb2Z4{Y?{
zcAs}I$5>=5uhxl-C6Al9R6sg?ovsKqb7jmaS2;Cvd2vg!=fe*Rnm)@4tn;oHJdl{v
z)z@#%=yW5*leN=KZR@rF3T*t`@AURDzEJQ~z!C$d2IR!Rba?G+xoyI=={ojteZ@PP
zOCr+q!%kh`WQ`8gI`jYDl#mM>A0BLat$b4Ry`WvqVRpId)TYMxrpTA(8`|4qMc&lB
zlvs97;%Jw8{ag-@xn*lA_H=&=E!{mM{d4KoGwVKQZ9KKv;$o0%s))K$mf3EjzW3d$
z_nL7YNS~ygXt9Jr%<{`?ht#{d_bYxMye%8Qe|zlRoS*vnW%_rY?d<8Fni+rX%36Jk
z54YqCRb-AI<b1TE;c>^3<|PGxUKR>0>uR<yY~l*I;Ni|Hx<I9AamGUy(FMQCWn`G$
z`L$+T^l+aY?3peiW4yxQvcT3r;o~>G(*qh8HYT%+MkrY{bII@qK3>42^qFr}uxGlA
zj7sa{Cayc*86R%q5Z;?m%WQG6|4UHPs;Oz68_isK?C*B1Z=1c@|Km>ctJq?|n5Y;q
zLOCV;?hVK6W&;uS55Mh>T5Gv{7n(dnX7?t!w$yc>&Dy7IWlgj)lPS4hxAA0x^wijv
z%#H^K#Sizl*C#y?)mR`Y5|pObvYc%l*N&LXfQ{28ITsrAD|c-alj^$b98mt-{8HV7
zZysjvbHmN6C#_%o`>9fN&Z^L|+2N;4=e15uu+eBXSmgNqQttfI1uJ}JY+9D*>-Zz$
z&Y!5a{o&@flO^ZPJSO0Ih~xUCgq{_e2kYjnoMYi$`<$cLy6{Gf<uCR2-$w(dP5yCk
z;hCZz`-`t=$XJS=)3}?c$JL@PBhGqBxKHZYil2o-;;g6o->K+v1=(B3EWb22uxZwA
zjSKTio{O-GT;%UdnC5Kz@I>M{p5~}UPb)Spo_43m=4PO`IP2!yO>yGiLK>XxZ~yW8
zew?XiWkdnvM4!tMn!mR$d6RwU?ooA_biakzqQQ))Xh5rmXZU&_F%W2b|F26X+T*p#
z+2c=k=)H5?6><IEnklZ~8aKLv690bRrouI~OWe_V$pvRMS-H4h6IyJI4<<-7MOxY%
zco$U`w&`+j@(inF5pDUlmo5&kwj@9O>#M?8p|*3|Bxf!rllH<R+n*kterlQho)7PO
z%iZ@?zx}n$_Cr#1{QB^pS>gGgPA`hf@3!&V5)vqSw6o*a^1A;KNAFL42`P(~-R7U4
z_x-rmyvT2z$^W?d{;}~j9XB+&<oL8uM-Y;73)tAjJA^|Xcq~aiu-bt^P-Z=o;<T>j
zV3`<;b0)G6Lk;$MJdg;oFj}FYteB<T%q23hq=_rz%?e*N@jheG(ln2yi<`K>rJ72U
zaL9*p_Lk3=;#oM%%vjZr&1TRvyy~_2NW^TVU-C!N<heoB@Uf#Fcd<nQ(&7GinxaN1
zS6<&mD~oXT1RRea;}eT<E;?P^!hipGd&^#<gA1aYB;S~AXrC4P<V{VY<k7I~lb@Eq
zvk(%9PL2FmA)a#jQ<<H2`s$*Iap_NMW-d)!62Rsv;HI?V`fVki_n%kKHDh_eS+sV7
zGmldQ-``uoky~e*->dnMb~^mMZ}e5^x+mwpEseDof4I=->eQ>Dmqp*~e7oM_mjRzI
zzx!cvJ}&!97cV_*P`7weP_WA43-|E_;fK@aa0UEobZ+Jn@-JW$T~U90VPL_D)rp%c
zv|jc!8?SJvR?K2<=IRlDDKSCVKb^gOkC!`-)`qx_TOE$9Pu#6ImQOloVd2NhS=ID7
zWWt}C!1!nH-1Q^wGlYGKuX5>{8lrRQ*b$e!OTB;cc3A#qVNW%miX|4zh#FioHb5O)
zy8&(tf!d==$HgxFnzV0;{&CAYj#hIvn`@`OXlYujA^L2)x$0Mgn;(n{YE^8%?wuyz
z|A$}jy%XmL@6MRtypL9jhA-U_W8t`RvzY78NAc=hLFsce=F2ZycE9e#JMS{<o&Vna
zT6Xu;)lK{6pYOW4D^6tl>Z*M)qJ>E&ZlNOTTCeW^I-4yjuWh_<O|DhEfc-S{{r|ol
zUw-@Sx-R}LnG7>CXZ~gn3Ya;`U=8!s^m7Yq`*`Q%teW%prNW0t3i^DkeE+Q5{SF!?
zi$us>Hk>AUoJpTg?)e24%VZIO{+CZ?iKq849amn#d9Jm1(#wDjCKffBq@#t3Tmc_B
zvcwlLn0CJuXwf*(!^y6GYNy`ewGBef<`$+g+!?+r9hHS<Ki3Sj(B1hnbI0x<YzyZ5
zox&FCMD~J>P+CGa!1XZuhu!tAeY#7&s-Eqij?oX>zg_j_!HW-FXVj`}-)B-&@x+^>
zI=$(j0n6s183*P?m4$9PJrz>?#J8RAY`Btn{M7Sy52g=3MJ!JyGzD}Wws>^>)3X(u
zUY5)6`TgkbynMUe`!dV-L|p%V+I8QJE35x(TQU8$QopcnXozc}(xQKB@9zuyxYEdW
z%2r=<5uZ2TPOrcHc3+qJG+7I$f8u=qIFDEKExRboIWM`RV9Ij^LB9?r>w^b>78-f3
zvX1Ova&KN-Ba$&go4vm1${9=dyN*FJZx=goE6K>SF79#)khVBGGqK#Kqp62O-KBAn
z;1x3$#);Z1OqW=2Y_U+}dUMm_`qFw1ft))cb0p%KmK+JuJ}Z=*+x3FK!?c~XT>So4
zA<qbGp-*Hd*b*i5r~7&zb^sUtmTDV1H_!fSb1jK~Qqr28lANyEEIuxs0sr^T&STLQ
z<gYR~%vN;5XIi_sT-pOkiv{*FJs<cF#d4>s&RHjO<4UIP!kQ2Bh5J?p^PT!Vdqu?c
z>(HRx1PNNzln~d#LyOCHuYdGo+nyhn)C3~cW^A37*cBt$c6jEBoL_gjU*C(^o<95f
zy8K(RzaO6axAMMS*vInJQ`5KlKIc};`>on1%y``I!41hrFB%?uEP4E=TcpqCL55wp
zOm&ZN$O6{hl8S)FX)Xm#TqSPI?hoockN@L5w}Q!4Wo{trEH*#2w7z1US2-b!y)(~x
zE@?GhbwKE#WaxtoP`6k@$+?e9%U}*$pIgw&7Ymp^S87@4A9g#RnBj1|eQF%XY)~)k
z*pfPR`#(o#^tY{^T)xD^f)7h1m=o0zHZ@0W2+g?LKg&Vj!2RFhZx*X<c=PV#MwMen
zX6;@kzTSQ6H@U220msagk2j9S{r|nmd`7qK+RS2puM0ZLpTEvN>BI9vFwo^yw^ILA
z`KCuQdwD08K349ly}mVY#<hN5uMO{iXvEaMOx4ol{dicw|JW8Gt<%EFJEG4VTYNHO
z*N&NY*t<W*8oZp%x4HUr-2ElCp(`@1-~abKyYlKMpDSE{*FSu#f6;Hpxy8#X_aE&M
zOo}l)T)xxMVBx%Ef!eJZ^DO!74}Fw)uw!~x@g3Q-3k&z;Jt$zZ*rROmZRdjz;RiFr
z8t?bM`>`h4Vgr}OYZg9LmNLfWx;B4=D&O>dZ7=U`KV)^mdN=dwUC#>7w>~fZb$C|o
zgR<7=PwY;7e{kW_ziYcgqV9L+W~~eoC`vuKqbFp~#znqCt6U<ktvj(qhb203W?r{!
zTpH8yB7TJ(NB;+fd3Pkd;^1HKQpmzru`5)`alzUA_tH0c9`G!ee--oK-)tT2!VR`&
z-Tg;R=PW*%@=@=HNw(3JX`LPB5qVKTwTZXoZ~WVA_IvTIKXzr?U4th#emj$My{vsg
z!nF<8Lr)toog~_^s-bx5lEAH@3N~S$QxCjNSQ#w2%{0NFqQhuvr>Toi>5)Y_cT$U%
z^Ui*hU?a1wYR1YHHHCp0;=UiZAGH$Ra&=8@kX?NL;op}hUs_g{74+}fuOmxr`Z*Uq
zkw5;=Ceh+RK(m$0|HB{WJb(W*Ah!KOS+i2EZ_TRse1l^fldVsb*zy<iH9z^-eDJur
zJ>$BSoyV{xK%#~LOw3S5BCpQy&A#m*;PC#hX!Vwawdc;%ojGHwXgQ_D!tqOxxbP>&
zwp&Y&wtl&vzExRu%Z?{O9NlM)Z|oN9pDL%lQ=U(Din!IXPi*Dei`AQdSFH1^I%~P>
z;l@9ETwa*2lzz8ghvNYICl9%*hEI-$&OiAyC3dYpynO$&9DaWLzyG%1xBodi{`cXs
z?+?PK&pw~N{P5MY&;C5h+G@EsCbs0XOX0@267Lw9ee!wx*Y2+8^-jH!w_BgNPv&j!
z{(E=r*6vomoVL-XyVWDK=i-OHq)+lkIDB+|NTi4;hd4jhb}JO~Rt(#CrtR9%BS#jU
zXLQ@xaPq>Ah#8M2+64EyYcz?vpZm4!$g+wQ{gB6kg1o)!BU&PTHXc(}Gu@(RcC^`c
z8h5UV_kp%=XP)pIR~l+Rk2m!`dEv*brJC|V-=qV6PgInMGN1ixp&av-h9@m;$Icq<
znU$&Q5oT&~?@tb^=56hsDDFcOdDpI=DcW*s*^ZWdvoeiL@{WZG9NKhudXzxt!3z~%
zE%&dH^w#arkdlfw-q;lIK_iBHkt6Tg*}klva#OP%LvCEybu(l_#5=p4Vl0YFI^RDi
zGrRGax8$*-V`0rcN0r*Hle)&m`bpD;U)wzVb=dfKauv24r_6~OqA)SFK&~1<i9*^C
zoG7fS9PgcLcay)~_C!GFQQOk#J7!E+lCUCHNXFxT?bEp{6;zkDi*;?N%+BHbZTNco
zhIbbiHve*%zQXR{-M4qzPwutX*6UY2_F$R**T<@dB9`oU`7dqbt~)hWwlmkQGfx)}
zUw!uE(^p9mT&+i|40Q@O?yimGKm7dVpXs?Q4`$XV@+&jA`b#KZF&8wFzJFtzt&Ppk
zzvcVuKVCl%PB;HQF!SB#+a7=Y@cU_=vD<FHd);Kd@2&pbMY}rHyG(W~F8+9R+nu@6
z*AAaQxG`m__t6_a9|$y^QuTK{q~kuN=kDpJYU)f{(~sPkA5*8=er@t2O}4k3!qV0A
zWsa#$Z(?f|ma3kvoKZB>RD-d5W3?r(m#yH+4Q#4MQvUQ8{hWUyGeE*N{BWdSK+j(P
zzLh5xGXqpMftA&sbdj3Uk@4nlkideIhFJlNM3Uc6<`xtACKJ#+NkMY=^vw%g&NoR-
zQAv6e>!+jf$g+t|RbHRRxO%^cM@|u^iALmw8^50@ZMkeD%Il?f^v2$pjG~<x0bU-*
z-aXaPI9V(^^^~aLx!->3d(St%+ab#(mtP|AG_Yw$s!!&b$p4BvbASAJ$6kA|Gz3c_
zVL{Y@iHRvnL+$E}z-(bhfrk5kMSss|_PjH5?#;Qixta1ymTr{UC&76%jAKTJ(87P!
z<}*(^sy^yo;C)EkqfEbs=eunA!|VeBx4E4ce(QVq*es^!;nz~$T`Me$CG5A(e=Z>&
znk6BB|Ge4n<@p<aGwx2`@qgd#{B8al_QdYry-Vi(yX)7@%TIrO`u0=W4DOFPrqa(W
zZr9(muZiQ`AFY;qvutxVcN_oX+42A0^0(i!vsvF}d|SiKgC&CFk<zgx2Lg+8?gu@2
zVzc?Z{q)Pziz+8Mt4?11;*I~ir%y~~#jq}0<ZkJ6_2ym~`KK04%MYn7KYDZToLMqV
z#hvb!UXT8?7yUASqUBpONmpaZ$(z5QtYU5Dv`FXn@_O+m=G}+FN!m${o=dHEPyf6?
zB|((i>-4hEXCg05pTpkTxH=->7RTJZ{(LW0)F<j{IGwz?cMiL&!vtN8pbIyDE^Ro`
zJZWL?sisLAt*YnCd{mh}iB<Laqc?Hqnina&HG7~D9x!L`X;pqNR>4gRrp%eMH=ZkK
zp4#-2O^Z6t-BUkaI4j1HyUVMzO#k@gIg41A9((l0{ax0U=gJa%yKnb?d&ua?eab1~
zkj?Z>0b4(NecbZ!?dthK5?%AKr39h|ZcNP3Qo_M3NXft@yH_DU-EEfS%UKg-yqxZA
z096;WM0mD(cXPkIAAZh9EGnjoljY{K*fn>b8or6%_^|o_!`p7hm46j#?zL{#+_QJh
z!k$o-_Lttjt2+(C)+O%xzeAy6hDMN{pc_Nm3DJeMN}*}bKV(*Yzg~Fz@ZtU)|3$y|
zfBg3R--f%kN3MQ-cKGPelH%Pv_w0(yJ-0qQ{O}}A{cGKco!y7GAHIA2>xcEJcc#7F
z_IuldBUk?wzq)((ag{~kjm<KXPbP{mSe{aCcv9oK^OI7M(P_mACk?Ht=g(<488~_M
z(I;7@W%|>7^;{Run*YRL_2z0zey_esS~Fr&pLgzFpl!J{Qcs+l>*<p>wMAN+WyHC;
zLQB5sh1+PzxL#?R6jb_6J^bI4&kH<6Lb<)PUcIR+k`w8@lr!&1QBwN*qN!;+xA`0I
zoHXa|>B<1F5CLv3^^&rG8X3_ZlUD~$)YVvX_2$nfLQf+5ZZs(^IS0z>x!o(*DyS`g
z^X5<BgbPhdBBtrwT|q_P>@2q|;Bb4I;~40g{=SIi^AnZG0Ism~??si<E~hwZE;<)J
zVfTzTtekC+T^Bz3$jcchX;~bxE%r)8*WHNLdHfaspP8?a>Tt%ECWsnEGBHCL!niua
zF+12%pyB<$F571Z)y}<n_vTED?pwzwsndtMCkEW&ViXQkx>EoC+1VdUf<7)#@Q&N(
zylM86<P+OJ9D3fsc#D~Nd70ym+wI}W6_pDe!=kb|AGd$|CX~2zN#dUR?Gf?0_vg*;
zy>5QH`}FIt-`-@^TIy&{J(>opE%w*m;W_;K<5&ILLJntE#tJ2}1{9~9WLO?9dh+L)
zeRn@T^tP$#Za-e}`D?+QxAKqV>kfXr{PEl4v>$hkvQB^7?Hv8#%=W)aW2*g%R5vZl
zDl)a6|7J4Z(^V$}MLb@rgfm>c`TGginWB!QB2aX6oxG~Sd0M6Yz`1`<o~)d6rbzPO
zla4ui{rhY*WR@NfnKDVi8dMy3h%j+`DS=YO!{u|L0w%5cY=7#c{lw1;GN!B&n-X*5
z=HDke8ourkx*CxuZ|;^^9_e?aDafnrTb;-T)>gx=F4m<QpyU`4aEn3oMw3(I+`Ffz
zM)KWkayoSG-BTM4%d8}Bud`3y{M88H_v)OrnsupH**81OwVPvBiiw<i@g`>7-_t&Q
zi-aNrW?a3wH)iHjt;hhCjm5Xh?QYHG<5~W8LB+1C6DO@%5fBmfEYw<Y`S~e-k`K=o
zzt8AlT`r3)MG!Tph2DO+;n*E)C;%BwvGbU3d{SlR&RuWhQl_sxeYkt-rWahGG4?h0
z?`5Wc*%<UuDdX0s<rkJbbw6QWt6#$>;V@q!>XLX%`R)%%T<6!Te9+h$G{f%2aqpJE
zu9la7XCM9c;e+bC{YU>M@A<vUKBt_&uyk`}ZKdJed%5e@<%iGio_+P}2Axi^*GD%T
zIr{MO!+(#fe%#%#=y2KXy?he){PgR8ZndxZ`tDz$?VOp@7?S)ZHYoQntaZy|{UX@;
zwfE`F%Kw&q^B)*Uu5(RXr9NlLo160QUY<%co#P_t)t3F@rnO$<LklH`XN%V{bftf{
zvU({I(mvBCeD-tuD<9)8eq3|8w(OFk*!g?c^_E9Y4>pZGJMZr6H6a$O`!1~v^>X_1
zCf5C$)|`;=3sI_~A8j@Z|GIQ>Pnqc2P$QG`@2>Zy&y_1!rhRmCd93H=zJpP%3f150
zltl7HgXT7D<r4k!ruOZs?Ov9zjzqP(*zCT3(SPozHKAOl=iimy(+Vy9b^KCEkWIC{
z;H>Rl!Ldo%Q@w6({=PN4^jhk+u$4{o_P)Lm?Yh2U!mO=cryt$ye^<2Wx2i<nX2%Z|
zhgDSNw*Ef6X`7kR?Q2QD3?E+I{J#2IpF0=k+BHj}hSyBYQHIy9&hYIPb`)@U|F6qV
z&7kw^#n8L8r8jL)=t)mM*gbK>3vdas=KsA@Av+yAD+H&hJ#1CEEGc*QvzqbC>_aTy
z4uqVTH^J`BrPYRe_hhZqo1NwNSp9cZ<A$6|mwtS_+rz-NO!2zS0igxk7z4f7en)ue
z9{l<H<5zj+?d|RPhyNYlP%rat-+TVscMosab#u?&Jreov&BCv5Uw!uI*;iHj1Ws-K
znzQe~&4;HS{`*|@Z~NIJX18;{Z#y`1@88GE%fI)({y8(zzwB$ua#pq7r-W+UcK@<}
zBjsDhdv@K5U9nFS-WOm0k`g{uZTB&WH+THrJUw}CTJ!CxVsGx9Tb;x$!kMzFi)reE
znaT_Gt=D@cZ+2$ft}XPY_MO41NoV^$g^0R7O88zDC~9hb?nxPI^WU3S@4w;jE1S7|
zl|~}>H@k9?P{GZ@-&ReS22wROtL#*qs2k_EyyJmWlge86XswZX^S9?f)uz=?LQi%a
zy!Tx1aAvC6msKg52j9J2wras%XSOe^IHn}LPj892d+uN7MqStK!kpji%AM4$nbvnP
zvG3j<ynS;vOWKE3D-t%8TeEI|yg2srs*LP|=^J*-{9VSm?6Ke5OK&Q!x2(`p^^VHW
zJRSA-!KzQ$2WE@gGupTJ1Y%1cL=6O*SQw)AH_m5YaR4ueDZX<cXO8*jy0cd=$t_u$
z%^A0AlgQc)57udDU-^IU=AQKFUPqgocsTDn8}&aq>}_Z4`9nxy$u`FccfN_-dw*!P
z=AJz(9FL#sN&I!gPhYWjYSs+9J9=T^v$sD_zx?&=vqzt*wp#9viskb@wIf2mO;x9?
zod0!Vh56opOLdluc=sKVxI9B)DhI3fva%VhM?cRz^!DMu>^t@SzuPN5=hokN_wKQL
z-op<+3%+OC{>hWrnz;MzKHiFFS@qt_-P(KmvW#|l&GYBlYHxMY&Aqp8YP!|YM>nhA
zxA>PVy7@w@;+x;{lP{KBT=~K$-23aBe!uybc7|@b7;3mWMD+Z->gD}=536hrRT2I4
zX70LY$L}c`NY52J|L)}-t*sYR=dD!=IPls2(o6dV*=J|Hl;TTJG__heZ|?U#;dw76
zq^<Ti_vohW+(_017X@dAZkmw(+?c63lJ%AskK|b`Rq^xps@c<~vT<r;glRI(+j}{6
zyVq|w2i-K$mRC1zW#`R16Lm)G#G{+PdnVk~l4%SwTrDsm{rz6;ys6)M9VVRBI&yS#
zwbgd7==7j-X`*(1^~K-(+FyQ25i?kA5PE*+hnh|M<puh_t~~VdyZbpSp`eIOCst(T
zcYZqGWUgPwkbkf09kygb)QBbeSjCNlS+^Yo*dA2RPwE#taq8TgbLZY{1r1j0aQq@9
zE_?~v`n+AfW~SSc9bbYn#Ap9c$WFC$`=zQ~!zr+6pMt?F>$djT3fs2Lr=?O>EPY~7
zcV+!_fp#y`9{G1-w+}zQUiW|RefzK5?|*B5`)*@=Z2rC2IsN9_XP;g@`|7hlRi#&T
zIX@@ueKBo=MUCB^`l#~#w|h!9-z{4&UGo08`Tjq*<jeN%u8%5LpO)BDduZR2JI587
zJou+5y8oSFx#@Xl>;Ij8aj%Y)tg&j!uu?kztwcZFJ!99ZT|%dqOrBvg`})+#<AT1+
zowww~hCf<zxZ+BvVeHy@{{z(PU8kqd4auH5>*nU4HzQXotnh13-Q_iJ?Q4norK+c{
zXbBa6%85%~+vHiQkg<zvp8C0#WhIZ+Hm!1=7v-uDdj49v`aP{ByN=u}IW+I=>ph{H
zUTslPmsR_e^S3KtZ)n%66%nf!sGPr+9)7weWm?kONkSE7>n<l>EU6NYov|iVDE$1h
z(tBFJ_*Za5u1-lge{4O6OzO3lXFFfcu!){8`(U%*^Nh7l5a+YsjB1szxqUIV=i3RE
zLxo%KrOVErsc_0+=Algn{7Pk6od07!e7nk@XWG9LGf@~D5H*5oVurGo>*@{g02bSW
z>iVN{x)ZL>ocnjiPBWGENdo2_agUOmCN(WA%Pds<`+aW4vaslwD$SOo->Ns1tIA!g
z`YO1Og=c|2kLfGvLx1)5NFIL8&1vJIso5j{^||UHg~&rc3U+re*dC2z|8BtG_Hv_J
z(uMUq7gUtVAKPB<b4N~Y|F_@o|NdLK|K~RQobvv^ud+V>`;)V0-_4kqxb<e~;j2&Q
z%}kD3BYsy%y#0LpZvWTs@(*v~yPf;p>cNqF|2Dq7d-w7#Ys0rIyeIcLl)9WOSz5Jk
zLEr!GzVuk786~2d(_d#VpYJIiIz8DiR`L9^($s5HCDdh=tG2E4zNY1}YIVliLy<QA
zGMu?DFRe-55+=A}-r4nYw|fQ6U9h$5$(x(I^o}p~`#&vsH3viGw&joSm)_HIE#<ga
zB54~Pznf|Qixyw?M>qHAo!zAoyqaU#tDAeyMK4{|$Ks=YbMseYr>|ibS7-R;tQ8Wj
z+_tZ5>zQ3=u4x5c*jy@mc#Zbes8$b~XnW-iTf5>WC|=K6>l9-<JKlO;>8Y6|otx5M
zTWt*Utm;2dC7y4kcK%uE(-p!R*R*C{_{>`Je6g*`!4G?a1#0TDgp~O$pKj3E%6F!$
z!0`W^5AUw>C&u^2VoMf8j%%XKZa_OFpyf@r&klNnhb(qR-D=)qGOc~Oo6|*bljBPM
zdlT!^o57uuLw`IsO@4Abr_MX>hmeBHZbyxb?-KXk9|lz^7ZkM5&OG$xVqBb4jAk~d
zO1Tz(8&aiwd-SPlukG%rcs_5ps2s7wLSnynx1TlGGdu48r8dJpPWO!+t2tbhH8$Ax
zEG`OMf8OL>-}m_AhrfUPU~sR-TBiK>?~nZP4}biu_?~I}Cr|SBroZnJxaa-cvVZAf
zujxH}GyO^=yRWPFUQ(QUX0x}9c5LGMz32HhT-tb1@TqX@!6#d*ciCJvOkAq{V5_}V
zrBi#})SME_(A69(uHQ><&zqW5q8hr|LoaUk^2sy(g0^<a^2Sv!_s$bFv^tt4dV5ja
zf91J<gm-0$wq2ZeaB`@ETZ7nM|Nd3sImU|~c6{Er?Zv$QG&`16H3Ht<_s+9Us;pP*
zICuQcqVGQow|29-b?y8lnbrO7=chBrFaB-f(XD!Z`lGsC>HY;--S^J7zp3*)HvQ_~
zNh`LzsH=M?Ze;iS_p6#yx>e7$--(;q34Z4e%(`eBKksMA9sMO29$l%jyPB;eAa`F;
z%O+05af+yLd#YZlYEZrIqO}jtcFXT-s%OTQG>9ABG)L>N`exq&t$O$?YPHVs^|>CC
zUpqhr#)Mphy(OoGCW(mciWV}P@b9<Zs+qIeba#qGB_8J9rt;a~#YCO*_ZJ#tUKpL^
zeV6w9p6|Q2k)^3?G+oVWCtmk%*;rJ1`R($f-wM7z_<sNIzmxH{@Az-uof{vUV>fS}
z&-C!wn?Ikv`s_(ksh!TuM@f4nrtPq(v5u*a<*&~=b}483UGL_HpTGP&dOc3Es{HR3
zxxNx*2Kf`yndICY&dn1jVyx^rurNyI<*)glr{4eh=uEq%R{Tk^zaRImh|jEX{h{If
z*t=1;>iKGu&#hCYtY_(d_cQ46>O<nfru$?rJd*!3b^n3zg+EmnelT1eU$jna?)CLf
zpS_hHdatR|oT9tyxpwhiqt)?VY2EjJZuqIn`cOOYZ;)n$%uK=BkEZ*VXw;aliqCTE
zzW3VwmH0Oofm!ha8=^|ii`QTE7dx<`Ml<@$KD!COR5|DSY(Lh1LTvAK{R?NrH8kV7
z#O{7x8J|+`J8@Qgz_wdrdq2B=?S5n58Ti*JMz<<nK55QRp;hrrDc$d0FRz>U*Ysr3
z@|rVZdp{R`?!MB!qT!dS(}oxA?@O}SwO`Duc0T%ivS_1}<)-LmbKHO4{A;=7oYl(@
z56|+8KAMVUVUn>SQ6rs(MkXdGP0@(ld?k0DfA``yzM9^&g(vxZ_0r#$F2`Pd<u~1J
zMZ8ms#sryH8<#i~-`T&uyqxU@=gUu<LbrM~ajvng%Q>HXUZq}jLcy=bBMN^%rEK!3
zlT!KnU2o%=Ox?)`nQQMdpPN&3GNJ0a<GJ9*mBCg|dzv3=E_(b$)1Prklftg=&GE`t
zf2M8o+MJ)c%{Tx5IkV44b@u+W`1SYh?Ssp2U;NEKKhG`S{$9<CZz8A8ZMgi_F@5u$
zp8Y(#*V`_8vGJ(QV)ni@VaZj7_xN_ZUtzL4>s>S9aq+ds#d;n81?T6o%-8w&QiQd9
z(~;#%I2V2Wxw*RL!H(n4Lj-b<r*Alt&LJNa`{;5I%f+gis($~7^ZK_O1>DPAR)2^*
zuRraB=i{G8ImBIVe@=fYH{WPpe2=N)7P<M)#od2w`S>TPm1|M$j~v$d+CN)QiL_pv
z7r#c-af@yJx+mh^e`6!w{yfUbvFPa!1@;gI7bcIBUm1G27yV^;%D3RjsuYPQ8BH0L
z?FtQL`~o818G5-EeU)T6Z#aozk&Y!BqpQGM_7|RRf)0uonN0*-PS0k!urq(Yqo&s+
zM;39H*Tx;}DvMjxC9kM;DDUciUesE*@4(~Bhj;xi{rPm^{>aoh-T$gKN#(1}|NZ#<
z=BsJbzW(+<{j+NCnSxXE<oD^!zajs*$M@QKRim&Q_2wFWFXya$^6mNE+gFn-!?t%O
zo-6o}Uh2E9;mDz>@kU0<3yQ_h><M5vJLf{E?!&lR8PUlxA@ckG7rsw<cUN$GOX`8p
z(A-}JQO_I7Px-w2S2TtFznpWHiE`hHSvA40JEr>FUUlj67bpHX3exMcdahPI;1M?K
zdXQx{uTSH7$YksAo(19`^jpoR`uAC~G;I>L{8IboLhCeHV~xcJ-g1@4YTi*3TQYO9
z)-t}+-lm*BCp30t?qt7Ke{O!*>GiL<H}{4GygV_hNxNL_`|T|i)psQJwyzKffBdE}
zZ2#09$#>i)TI$T%9Kb2ylOSTSrksf<_|%cYeHYlT^dukQJGvwIeftul!d;5?Q<8p8
zeZF&JKwqTz)1n(+bC;?M%qX1jMP~BP+N_f`=dT;ZKU|hP>vi!A{?$?8f%BVIZ4_SV
zAG%d)={}CQ$#<47KC$=G7U{=!4N^Mm3*trYsqOT?KIM+(9r4sxJg<ra6V@%+rxCY2
zXnyzM8s4unS8Xg_ao+5SyJPLIHxU9~T_<*Q`cFBsoatli;pziidptrD9)#Rd&NjNV
zYsR-VOV{PDI_9@vufsI<sL82jlKE|OcWW<CxG-nd`I~x;VMpvH`oF%JW^#Vn=C@O0
zdhQrxZphjrspqy})}vinR=3TPrC(|*XWy|~r1sK7Bs9XJ``dvmwTi`e@4siV3esHY
zcjkLuip7O2t-A~<!7EpNY>U!Y3iP;I<a~44tMnB)z1RO6rOT|~-CbUu-abL<Ph+Gf
zdy2T~i}thztrQ{U1;_JUGXf;qPEYH;zV3n3+L?i-8{+ab53fA7IAh6mR|(#?4z2%P
zTfSeum?^0DZq=;L^&9%aN}jVt1b7>{nMfs^oVf7F=Gc?@ZJ++B=EmOPTX)EBrZFS$
z*|4JgD#Ls8HtavV;r&!Tqtb`x#Lmdx$j%6U|Krf?z5DlnU;MAaI(~m+;`Fs?>^%QB
zJ@5*j{O6w0{FU8)Zk^hE0>=!py$|y>J<7lTm-)<>8E>&vpN2$D0T`MZqV(4HM&8c5
zZ6Q#5f4#srPra;Z-@UtQUx@i`>=rq>&F#CQ9@Eh<p@rMtY<(K{udaPj#^k=F<DD{J
zlx97VIeSKuFa6Dv{VggI|0cKu{^*{3(d1|GggsUlJDuDTC-JNkUM6@@>!ol{kHN`=
znu&eu_1CL!u6+Oc!TTqF6%KZ+|6lt{pf={t9o8vantI9(TiU!F>@o#|SR`dn-g$Pj
zVg_Hev@VPIR?Dq?|C+BmsDz2lmf}^fRTG@P#?2}^R9x=qyEw1620{tX{=Mx{R;%3d
z_x0<r&q{_XCoa+w(ysq@Ag=N9qEq5$H~hKEW4HFysu|DDF8|y=eg6Huwza=setPod
z&7V(qkAJ=#7auT@?{ZdHs_=(Nw=HC@t@_gG<PuzAR50bUdYi6O=M;1Qu0rJ_8OE)G
z$5^g&gnYcEyJMQEP_p^`@7$(aR)l*hulueb+@2$H$;JGH+}4>qqRV(W7FHL$Ox$ti
z@u|GRN@k~zaxvSO!;@8JZpm}IVR1+HiGTN|W%r!k-<tNfCZgqr=%L8HkG?$GHFK)O
zqj|Y!ze%Qj_2fyEIqUM_)}#x2B#t->aA+iNTTySsQq9zo@xzAW;K!9xueL0IclvjE
z^X9$J%Z|I9|9JSsWTBfq!kM>|9OnnV5xNxnXogcvN1C<Z4f$Fo%Ue<}#HK{FH#mk|
zyimM_wc}GMU!m78@qlg0(;~Qq9&eHLoG9yI<M7C?XJ+5TJ&!dE*RmJsuYR}0(sS2b
z^}`Py8p_sfYUNwk?6T+EuK9VErWb$S-EsZ=_8sQaB6e@|ZQAa!X7ATmEiL78Et*r9
z7AT8)Bs_24ZXOx9@6FelmoiJaze@|7=x)xmO?vs}mhE-#`=0|%qj#LV$fI|(=Al^E
z(%EP3JYKcp&Yvw2ehZ2;PR%yoYj@m6H+|}Dqa!oUZsH2NbMEIFjoC|Y+Qc6?wI*iQ
z(wvLRT4!y|Pi*+H#OHI)&Z6pL3XP#vTQ>#VIFjFZ{-3Ua&Z*R`FIJYAu8MDUu-Cop
zcz!}jTKS7FYU`!kPpxoil<Ez7pZEP<&ZTEXNfQ$O`E`a~T&N}8tSdf+`QD3by0z!k
zR^Q=0Z6mKgJ44K2Y0sR1#!Dh|N~i9AUShhk>*taUdMlsT?@T|d%DZF9gOBn@ckC*?
ze0U09^#dNalwa#h-8R=wnVM%XKY}Y+WA&3uy_>T+y5##deY})BZS$u18wDp1+`j+$
zdhhl{i+YL~+i(3YomHDH@%{6{t>)c1b=8rnr}Oum{rLL!fmxf@v2D~1d0n+ta@*C@
z0c(m>1@AbR9*9ranxN9_eJx-CpNFJ(Va@w8i&`1K_$`0uP1?FvpX2DPV-J#oCu?tz
zp7?D4E`$CwvG3D=DZYDu`<4w~gc4VS;HP$1!?J%i+b`~a^Td^<X!qG{Yu}8CP1-Ga
zFTa1C=qr|ZU={C0fj9kstsEYied1VhD`dT-HQU;PiwZj1l>}!k_uIfb$4iZG*`<Od
zA?7|o8es|tk0<DVTjjv%$R*$G#dXvF4ext*Cut4E?Tc8d?)hzCjhQq{#!Gdo2&dBR
z9W6qA&aYVfB{FWgewPg3?ocZ3;gL|N&&-RR&Frt1{&}hNuVafQ2dij2Dw*%9n<V6U
zGHIi`x{IcRtx&VAf}+-rN4fXKyGo0D47NyZ(|<MZ+1Z=?3vTb8)HgHjLM2xsU+S#D
zfEy)8Op+xIuIxP+cgOU-LqP7@euI~XvsIJ@p04@LBlw_fjv~{O^NVvP*@m~>NWIv{
zBiLbU>&%kSp3<?-^Il5Fxy*Yh9SpnvN*`LB+R;4YUP?#UGWk262SelB&m_(b(KveY
zo}bp8ItO*puF}uK-W@+4+>dZtm>L%=_SE9PrO*7Zf5LqYha~na{xm;>V}<T|`Q>Xr
zb0#ep)J<YD+`06@hVqX`+D?_*x_?;F<|Uqg^C!>r1G}!+o!KAawPf3!-=8u&!yWq+
ze@X0H%2mbcnEWDL<KRqz54)OcPq#RxX)m<hr8imXT%)ClwxR39BRXQ6<A2_iufOlI
zbH<VVx3j*h?%xt`oALeXp2+Jt|NnfmFP8p`W!t*3A=2bvNM%8)euRHgR%&vIesF10
z35f5Ro0y)eAD)>~lA&N>YOL>(nwg$aqF`)ctnZwklV22EkeHmR?~+=UnVjlglvt_n
zlvz?7kXq!NpIeZhmzr0?WuXt*10RrBlv`|LgP}md0%B6Jf+2`enwwV)wke<}H6=5-
zB)>?($j%P;K0q!bb3>Hr?6-GnbFO@qJ@7GKUcjSrLc4<Bi3Orb8Up5Tk8$LL^)9+F
z;ZjD49BY@fqQ$Z1;1bhd_S0;>X$C1JVvLH>Np5#8xIW}pz4St!Eym56Y3*YH31*hH
zjdl{5;eDqpzIm6&zT4HgKHSM}O8f6;zxVDbzMnmdn~?zqeq_CfE%~!2xPi~|`u^*)
z`i{@sbUV^%`O2*?E2cEDsdLWF`=cP+Z}e)y<QBihj~6io9-OYbN->%%N?L4A*8S^Z
zY45pJvx~l;$?lR{)HG$0lucoHgmFb(_5aPX@n5oMM8$u8xOt*;$b?^C*XKN(E53MF
z{<)rl*Ut`}P}K6UT=iz|?d#j#pRE1+^4im%-G?@`F@n?<g}lz2an<b8i3Z)@TCS`w
zJ62^Sc|KCt^_nKS`=6uKqA1hKs$hvLm*(t#c;?bS-r!f+eKx|DF03nELnF#JSjt4j
z-o5vFu4?+>GgmF&pSKmabzxn(Z}}^=z{V90AqrXoQ?XH^3R(i99b7J|*eKRTLLfOD
z6jNX)mkaA698}{9J;_Z=7i>*DxYF}#?c<G;7p_*+^3Ys$P`JF+v{`=L{OIVJ@e{8e
z6%bug_g6dm$B|<n6EpV22Z}p~OehMuX}w*3^$a<u%N>vOj!6bOt_obcJ27nK3WeIh
zP+y%)-<Xel&r3~X{wo|^5#~GZp2()x&##1uoq3(r!4=fKYQwvPVv7)~oxA*P%9Kh>
z2QVC(^h-lRQx~gUX|3?~uBdUJ5pvgD&RP-_HLj*lKfIHa4J`e`rMS8-FE_Q$^@)J!
zlA6EW@m;Gj9{(^fxu;*$!L>^~G&$_;<oQ!VefSq<x)ffqP}X|k7oyz%rEXolPsoIA
zE3ABO*jW``ww@zy8S{UEb>P#dW@&3>!e_<WFW<H)Ar54y#MN7ohwZImH|eUU|9|v2
zv8Z%@#T%C|0-{TPd0q8g!~{(uSSfJY5$*5-B_VVQN4kL~CLHMonx>cnV}nA?vYcWi
zc2}Nw`RSKl`wE4vE0)RJvt6vW=jWqq5l7#~@&!7sy1xHM&#pxF_BrP*ZPiwH7kY(U
z=v|RlxzeEJ@5VKH$KnDTR~-1tzi!rwL+fU(-T3n;NK;ne+PS8G7GG{P&z1X9__OiC
zRftz(2gIx4&LJPCP5bbp50ViS!LfR^XP3aHSI@77Jqvf?3p`ja7<v(s1D*(omKd)(
zw&s@l`xTHJu%gf{<igq&ZgMaG#{3U=Va@Dbb-3m2_xK$zWzT7MNv*5Duy)0#BI(Ux
zecG$%2S-O5=v!xXaP1Ne{kLt-oWI@u{_EZe_s`{+=p1t4?(6t2aGnK~3DCemr5do6
z640UpJ^E481fj(6YTCxx?Q`_ji;FJNU1c7BM{4zs*pLb9R<y~=6xluhG9!3VlZk8T
zY429WH~nu#MLW1+{y)$b480M$+0<;mMF-a<(W}0**=u9!96+gl614DXTmkiu3+tk$
z)e5VSO7GO|lUw|PvoC+t*xTJVzkJ#S#pl1iN6iJ@Zot665Wf0}f86;NaK1dg<kh~9
zH%?BlxwLv!&Xty3`eq`Qm-gK_y0?`lKkvk}rfY4i%ay`UUP*fU`_`d1wF^^x-_5J^
z4ev4e_4viM&Gx^%`EAo})qYOCZY+cpuPXf}`X*05yz5(PWezegA}L?;{+$P%yARDe
z$nU;((#oUHwtu(3{n2%Q+sdz|@^-UrE>-q0OCLTnzjkx`yv_59j=JZk>8x7R`}pvM
ziv3R}b}qFtpCW4Nx3o51eDSN!vr~0zl(MG!=$1V{y5ikzW92)$b{bSJsoePK==X0o
zimw^3`!V4~kIU5=p}(KVie7fkkP4h*axO(-)j8f&*WSG^`(GWpXQz4k&$CVCdG=yk
zy_ShZ-`=PG{p<4R>Cg4K4ok7A^lw=gS{#0Di=FMaIkBdJy*8JA@BFtuW^SPBH?h}^
zE3Vx&SiR-=qE``Xa-U3OjQ$pyX17Wp&Hl%gP_e5U<SHl5-SGDx_w^}<D_uPwpRWJw
z{U*00@R)hH>Bc3dMIdJ<PSeqT*ZDd=L$36}t6l$MKc0LoIbr(k8C#2DBLB|0b*icI
zrl+!U{(W%h?Y(hy@6@#Ps^ZmZ{`p)JSEpocbkse&Q~I3F+xrGf_dPpdd{VhL`>S+`
z%9J(oAH)1@(`{8i5u#8Z?RW0q(c|jj-#d@{wLF;^mz~c0|3yjS^EM^-UE<n1cWj^V
z@T}-H*&M!hFXix)7m`-5zFoa{^OKwzJFTAo-T8c-#LMEl^FN)NUs;mRZ<`KoLHzk2
zS^wsF=S@4cM~i*rXBAHuZu<YGap~jpvbX-s{<g&aO;6VKCFi5>#g+WI|Nrux_T?6q
z9oznFbhSQr?@xy7qvzE{=i&vgUYm8W-r{G&3WZYU|8e`?K6-CvTK~7&IN4qMu>Z8J
z;dwhmLL;^m{5kOaeP-1|@mz7QtoR)@FW$@TeEB!-?ELuZ{HrJY>tmntD4yJM{a4LB
z$<UX3-^XqKm+^GV*>ahxhX=g_d24^(cr%^tSlgRFSKC}d>ic+a82|1)qJ8z_?{a>r
zz1Jn3CPiHRAaGCe`tNt!%~PkBPbuB<>F8wbLpPY`2G+jbT)cbQoXlUx{%v@0@U~E(
z?^<5{_kUBBR`G}b{THmx5x(R3)g#(hFWy+^d%SK|$E)7(>#g^6|L^+OT5#9?*Ie$)
z^W-OYta_|(^)FCq)uL1H|CJuyeNJFfOtsF(d9R#8Wb>EnecAN!NSDF02Tuc^n%v)G
z|L4Q+?XhB4=g6z<3%vMxVyg07MV0EDpNq_AsqG7`(p*(-c2DmATj%NSqT8NL<-Zpg
zS{xa2`C9+qH?w}nWzYG4MZ=vVyyC_2$LIg%9$t2SUx(J3h)ZQZ%l}*PRQ-E5O+0K{
ztk_l4^)<`iX5ZdFw>TkltuPBXJ{cGu)W4h0b}OM0+ei)4L<dG&I>_BgKiD_1I9mbI
zMi0^_p?S^)YM!Gv#1)8dh=beqm<@3*(1{zkTjC0a254)H-`?e{h$-D`{~%?O=dS6q
zwux}Hu3M;iH^M72YL`ZbMvOz?f`mq;D#p~W>pS8Cb}pLkI>FU(#|f=hPuD9nB{<!5
z^x}59#Ktvcn%<Tr)w@!RjK8Z~ezweWmYVM+we)-6UtUiCH2Y-Ar?WGkOfLR3bMj0d
zHDd+_4{1SV28Id$NyC?7%G_%%tPY#1E_Bjt*XKQZ@={Y@=Sm*S=sDJ5IBTI{na)Iy
zwDobZ&a?kFeYjrsQ@`~8HpOHUx8x%dXD>)N&lc%rU~u@y%%HGkTlF7vd;9(8yfQO0
z=N?U1`cF4HRgj?}cJBXK5*M@9t(wahz2k<?$BL(`LbbKDwWG3?PEU6i>TJ<neD(N@
zxpObC4xhhfP0nG)hO$}zXKj^VcTjqJ!N$&}57$=)PhS`NJ2fqB+c}p_%2TI)ir4Np
zoar-d`g-1d5qqoOr&=&v@cSI!`)l{ptoK`Pzn$-pn(C_EW`E1$1M90>TaW+xy1JK%
z!OG#^>g478SGFzMvnS7V`gHw%m&K85ZKmXGona=KtRnRC^77p$O}aZJ7aPt}Jho%?
z=lHp?wWj~y-{Xh~+qUo7)_S2%m)COZa-aOj54>pqZvX#zDMpJIC4JtI$R1Psb*t~5
z^Gm&_pP5nkOxRz<?E68P(kqJ1?EELstl<heF7x^4Wq<qEhq(6_-pWjut9;Uu@bu^N
z^n2CsV`rP?u3EEZjzQw3pU>kbOrE^Cc>Y)Ue;*18)R)h%d&Zal^Y;CJRSyn01}~Sp
z{9tRp-LK=HK7CD}S6SAa%(E{-J8aG8HQCp`TL>GwC7U?+Z0uB;c;?pc6H>cVFCUJt
z+uGyS&$0bcQuXJT%je&#cwBltw*2wl?{;4vG}l`_?%90n(c&YIKU!&*-zoI}AlO{*
z_+$0nf6r!b&foP?-2TTwQ-0eo_TTUSZx_{`cE95B`SN$oY@DC`>wo>#Twb$O(|n%c
z<Jq^l>l=mrEM9&*{$Iw$!QY7?WBaTxzw~eKo)efIpYZmpnBF#j?eMx;Q>WhD{9I1*
zYW-QWk{8q1|D3b_zw7O`+2%Pn1Y-6*XnNlxZT|0CbiHKD<_Mi_$K|SP{{Oarbv=Lf
zvBRd<W40DNbl(`^`v2c=w(H+sTulD<CUX0oqQ@^TCO<o;`}5cJ^S*Cy-(Fb#Zs+IM
z@%HH-9w;7sdgsoa)B6AKX)doR{PjihV7v9J70&1Ee($*+U!Qw+*45|p>klsR3~p}u
zetG`C<4vscEb|XFF#i7gME&~JeXD00b06=q)G*&3T<|l$zWUG1^m(tYt^NJ`{r>CA
z{qJ|{?|by^c7EKJjEf&0vfBT;=-=f3=T`Q5y9W&qm(Tfhb@%&!z8^YS0`pH!I{Nqb
z`_Gf-|Jf6~-0$Yin+I9AxaV8`d=hN4n_)ro)BVfJt;>>sZtt6ZFYec){nNI6@avP?
z{ryK%-Ph~wJd$An29Kr$_sLs-dl0zzm`wE>@g|)eWp8I`uix|NR(8E%(UTVyHgR!r
za(9YuZFwmkS5a8-@Z<6SHOFPQ#}uDEpLPFy`M%=H3Ea)x<@YLoH}n5{7kz)1#*RM+
z**`Zkl%G_+zxIFO{;z9`gO1nN|2Qna{8F6Pg!6j4UQC*0Uj608&hPhr@A?1lPsp7f
z7p49GzS?q&>-~6UeqPqL>dpRtU$5;deJxk<p#NZK_VsmZKPx^vQ>pypO4dD|q!+c{
z|L)7bZ@d5Z-R|ZsRj=2UvmJbQr+E3<SzpgP^V{a!UVrz_?svP^M{m!Y9#{47vcG-h
zAx?GHZe_Qgny*)<Ke1<cQSr0is>$W+=J|I8ShiXgr|ti6=uErZE_)8o_j^8n`}dol
z=TLk>^O`kl<ZP>0#GAf+ezCaz&W=Lozs)-vm(Tn4`m(=$Xr$!r9fg<o{pRz~eYg4i
zK6W{aRR{a4kIQ~9d3kB+zp70aC(GA;>{e&{&o8mz|Axe$M~~+7OB$J+XfnU^;j_XX
zxxyoXrFnajj($?^`>}s+-(t63zC-Z^i7zhvQSfE^xX$VyU+kWWz`1|S^X~k3cX#za
zj_nH`95~u-@2C6h>DRb@H9L9P7=)y+9eHLuJ!0#U%TGQVDM!A2-q@=3U)Hi{{eyUK
z^-C{a|L2u5QTb7RN^`m2>~B*oi|?H{*LQ8_!A+^&^<P&@zu)zG-`?-<{(rljA6tAj
zbnE)s*J~~7|9$??GI3q_`Z!0fnl~HWgI~|JF3)`Tn1?A+;7t~v^ZMA`X(uQ3v-3*b
z3Gg}d=6?NrcKJV#*F>&ozxm~yb^h<W@9XBzo*i90`$3WG(Py*Fv%ORtpPW5;@@|#o
z>bf~=OLLbzyY*mQ)_qHcC9_kEB>$(>t=X~R)8XsJLLcA!J;s*(_LX4O!pX~`HYWYF
ze*Z_iwDRXC|FHFOTd&7e_sdvj9c<zce(lH*wYx00va(Wu>+`2iLY*!GUtirhxvTW`
zuClk+Hm9HO>grOTSFuL5KmFGi$^F0Y+P>d!Z@*(t<>zOw*YD5!^yEAnzh-Ift8?PI
zQ5N-eFFOR;+4wCu3WU}Detp}n&n@?JS84X^mRqgd_E~EkS(zn`QfBb7HI(?&Z9FSl
zoSs+l#a&u{_qL*o(HEOEWBva|K2P31Su!)e`i{*1+*Jzq?$&<KpQal<YxZr;nLcM`
zd|aD&n2+Py`n})8_y4-;JKHSx%$c5;f`jFJwqG_VwENEfcGdR#o#Hn)n(tR-`@OZ6
zwEx$!e16@hFPHb<*`9x&nNK1vC}_{+{^tvt`F8$zbh`f6WqH<z`eLi+7$iRW`8+<L
zIM>hb-1dE?=U!c1y?)1|Q*nFkKA+Oo|NHCu_Oy__Ox`uOw!GY1{e5L^xVyaV&o=40
zx_3LDZ$Gu*-_P^m`#<*9Z$HQ|AxvoX^sp%+NAJ}dE>22T$-jSx^YUV6zVkiXE;A?1
zJejiTaPN+9um9^te+%4S_j_xa(z_qe>p_Lyyt-dM+5Tr0RO{{iawxy<^P!MMxt;xX
zQ6J*}f1SVmUR8Q?a?V%%uosmxwUbTUjF-&qH=NlKUiT$!%@U1$J1mqZO|^Y-A>-hc
zHMZ?<rWsE*{rmO*oBxYXsZOu?{<vR!+n>5=`tfBqQ|}x5GdSsAecN$%?o6HdnK!>0
zTei=Uv3>BuWBNSVM+Z;WD}H&@y?NGez2EPw7cA?!Bh)Tub?*-&$40BWeQW+HFLIwZ
z(Kf+n_p0xw>KPc;PW+QJJNa{b=Ts53Q(~!4O8UfnPHN5&x|zJb@5jy)^$ZNXH!r=_
zs5Ml+#<)xNlRU!#zg73&p3s~jb<_7Q-%oyq1-w_^mdR9knbaq_zbpf3@D=ULYyWe7
zmfqeki#mnX|K8p|H)wO`oT^uy_CF3@O+F@bWlH&c+v>2?)TcWN&#pVJ7rX08cD!}w
zg9EziW!8Vc824K~+o50o(|iAqqrS~-yqsZj)o=d)f5^|TKDo2PrtnVT@%fd{ZcaSm
zH}BfhY0-HSmPKEloSc96q3-(K@6?aWem{C~@o}??w{N%KuQ|YYc)5?|u{36f;~sS@
z^V|y)lTzE?mz}6z`|`(Q|B5FQ*|R_0pJSPylA3C2_-AR}{=&z{)Sm6Hu#vk{d3N^Q
zU8TFf-)ooJ^EBAsR<LFN>-GDW#_zAozP@hnr&Fh!6Rc`~_00XjGF|_F%C$B1aU~a*
z`tJPrec$)PZtHB{ZrQB2BjMN*&-r&>s&FyvcKfkQ_EUWJEQ`WRz2<S>AGXW$$XIAB
z{>8F8{>P!|P23wJ-kh_}um613JZa;pgU#&mWjDX?E_u1B?(eVYyq$^n_Dni+=ERGO
z$$mB;r|kdp^rDNBAj_JS!Tpw>&%E@v`+2=xexJRuaq;`T-+#U<U+s7C+xGpo|N84~
z?ykNrCtvsD;rIRj4=;57Jp0p%cl&;yJFWM--th;w-uD+5AAdT%zy96M%YOEM*KFG4
zpMJ*T^Nz>+zFdpmY@UCw=4R@BY1^tdt3tKc@B6hXboHqwY5AfPJM!y)Z@N`3YSZ93
zdD*gm%f7zbUB9{DVbiBipIp1eo;~NEZ}#@}_Itlhr=FfBSNmlOx84uGf@W_0KgTkc
z&#iniQFz_nZ?ERene!mcu|~!)=}BmKtneM@^>KT@-P`?NI{(k*(~L|P>~i0hi5wH3
z-m>QQ#Im3I-`;s|y!1S}LVf4q{&P}AE`PsfnEcv#zV_cqb@~6_>;Io?<9({X=ffTI
z{gsIu{yk{k|N7R}*Rkbyrw5ka`8@6S`~UAhpWm;*Q9swZeBbwb?aC8Ryt=yj`;Fv&
zVSk&-$H#iXwfbg$yBYsq$KS8|ewY8tySu;F?S8l8<+A_3KK9p(t=a$g+w6n8zr5e?
zKbK#2$;p?O{rzM2{d{)2`r94lQp*Yn@9BDcLE&e0zu&J<_+VlGuOjjJx!7xKB8@9P
zOn9JtZszA>SHu55nCSlR&zH;oY@UWY+8;~<SLuOGvsovudv^BHrON$(-~K(AUU<&(
za+7=Y->=(`JpQ=8=4p$tpT){^+OG8<4*uT%=jq#n=~drurk|PhHA?GquZ(5ZwKdnD
z+B4jmeWBd?lHUKVTOaq^fBbY>|JN~dJq?|jv@0tv*8cj!D+ann_0y+MGmX1fF=ebt
zIx%74!Pe>Vbq}}iuT?1hV$4xr`Y!$3o5*(gx)gzbO{X38)|@O;cJEs$|IbLu_TTLT
z`X<r-FJxE_Cink!DoA{Dqq(@aSX}RqhDTSw&8G{w+wa<>opEfJEvuMY9<%Sy<nuMp
zj7{_Vq|NPq>^Rt}=-kF5XQQL8uD-)2;Xqxtczulef8QAfnmhhKaH^}TD|oxGJxur6
z)2FpxF6P|kVR-9Oy8ZFqh{C`ZyJa({|6g>tkLTak5~Z6HPn~jU4(FA%($Qc4J$wD$
zPuus~mc3fJJpb-IBfZ^ks@dghGK$R(_T1V%JzKBr<)xjG{9C=Jud9B0b^neZZ$CcX
z{$@kWh6jgFojUdJ@Auf9o7S9jldn0#%rEox{{O!ZUa#N(?fd@!ZyVX)?S0(0JNv$x
z`SxH}SJ$(%EiI$}eNhxTdFt%hn^l%V{l{P1^h8}xyBf2*ve;Eigy}$@U)@IEjX&34
zdsXIhR&$2TqdfQEAD{m`v;6l%_}$Lu=UltR<VvqxTsd`d->e@el=<`S?a^HPt08B?
zfhKNu8N-JU+uwV??TX%8Rr;a+`nuTDr>`%+r^?a2e$S_%$eYU#K0Pk~|FdFy&+V7T
zi_cj;zgu=&-~MMxq}x};yRX;(zquvza_~WIv2NSXXMzv5ZofB6m}NI3^S9_tDTUY9
z-L?CDGg*Jvi%FL*RdyaRGc5n`;2^hn-Ib_ju4fZ&iE=UQ_D=eG$yeWg$G=8zv;776
zZfS1sT3+5g_ak+=vY-Fw57Qt1$S<yaSA6_#*==3*c@;$_Qod_hDqp|bU2mLxEb^**
zwQ;k<w*UW_^>@9v6rH#8;Thxov!+fpEqmiA9$$0xNay7G56#-k{OxV8{<rx5hg)yw
zlcrby-2ZE@+flS!{(Rx_TEmWc(__m5ujak2`15(b{l7Jv&w0jP-JE{D-#)J7US&Lg
zUcuL^*V*_h&do8e`~RDL)22<6PaY8sui5WsS^nsVrmO4uC0@F^e|@!Q&M|#G|6odv
z0mGZB%zJM$y3Wk97k}+=>eMxLp=h~pn^NV!zTO_6t@h}x{QtKO)AVAEl8?>ww+X!Q
zrJVE8<I3lAzjnvpne*%Lk!clgw}#KFe0Fm6x?hEJzlQx!YK@z3cQ<@ZL^|KGjGi<P
z;o}j@Zwu<q09U@x<uZ-tc&HfbuaBO5sZY0a%9=H6K;C<K>8S4c`lnByuAJV<*buv5
zVczjAZx|O}-h5l}|I+n)zunp$Y5hN_jbHwvmVE80Dd*dg&9xZb+WtIhcJyAgYFJRn
z>f45@o80XuPyEl&u%UB(oRD^<+1+!u75`s7_3x^F-lOcB|MvT|F*tbF&r*4`k^laM
zw;tdBOrJY9IBwsz?CWy-KD@R0!y3QrL3gSM!<#uF+mjPt7Jn>FjXrmKqTgM<pZU^z
ztG-5V%{uz)>+0y&e999&=87L%9C}QmW&eZjR3iqHa(<`M?Ta^jIvgq4S@FDa@#OaT
z3vW++_fub6dw2Q!Yc-<oe`}Ii7R0LTZ`&nX%_sZndG{Z7h8Ew@?TdG4e0%48^==>I
zPT})?d~)k=EB<F>NDQvM*JrtL(xO*+?q#Lhle_ZTLFxmN4!^pw=Xv(I+Y7<U9)>Kx
zJ#p*#MvzY#85Di%AdF0>?au$087?_7-|Z6&R<31#4Qg~a+{n57_Qka6#V@8WX7{=B
zb^<7@Zu)Ic_DNGoviKy=Ah7Pqa<H*5{fDN3S_3sFW5BH#j?J&~ju&6O+ZPIM<OoEC
z-t9|$f6S{ZYnQC0`@E^4rT6$C3L`(=zVueZXU!iA<>lTbN79Si{I7wn6SxGXwk!Z!
z^AhSzkTq8;t?!-icm;N6$K?3X?T??n`dk)LZp{aA=!CBIQ9?)d<?fPoK9-&a@z0JI
zVCB0mzzjXe_bI-vu5RwsOP4NLbszNl8@=t662paAC)d|)Uz||1WO<(ZtXq!v^w)-|
z3tsEX$lb`nuw~khRjRY&suKP(PtU3QxUc8Tnme88<+ICzmml^Q{&y*|O!?&cm#;xe
z-)vcxcf9H5#z{(d`Ci@r`0?K__9o+7pHAdA%kwd0EIQJ5b$0syrGFltHvjv0+mTyO
zEg$c@^R-9X+TYSX`@G^Ic}>|(|0hnrzSj5se*gLJw(&rQt*o!{Og{N!nQQU&eIG-9
z?g=**`gpF{?YqT~KYGr5r+QK(mCv58-}>Kf{kM5LuRJx2y7RDEPdj?Phsy1|)lnOh
z=IS1n=)EXmc&yLp@UFXkg3-HVrHzctrsNtN`y$wxVpb?0xuo;q`hQ8y+jEY(GAt;(
zdbjWQb^C&idF*GsyR3QYSDtSC<@(^(#SNn3j16uo!XIz2uh0MS`n>s{kEd?jdA{kp
z^zEldR_~fqQ+kfk-8xg+cj8PRHS0UgWq-E+1&#8!B`?uUizvO<xAXkbXStU7?pqRy
zOziibyPX)E<8rzGztw+shArjiZaco7^q*mYtor`0-i<%kTjaBUl4od%uemxY!ZY#B
z-RVY2vz01;KlQV*wo2J!|K9l@bHfHtH7#xNGllo~p4c;R?AN{9xAVN3`I>WYrcF0~
zclzbEw+{c98@60<*q(go`sQy}!Q2n3`$IrkYNOY7=AZlwPP+TD3fC<0fN=c4)Fs!X
z!>>a1Z6fVnzuzT$qMkt@ZR>8?rx50|C*kXFUwpqpe{Em6u_Vae*{ky03j^QmeU<0_
z{;!p<je7No#F;mDUOZoNK4Rm!nhF0I6jWZ7S+n(@)||2EcH<v*2E`|PK*mlGdo^!+
z^8JYrgD*X~exTBNnM>8XOe2t;X18CL&ENrr!6`^4d$~s!l3CeamMQ#abhvTlby<z-
zEPF?=qYo`xb$jC$ldzyAU@H>+>$dKe-5I-B*?zil&89qXU`_y2OIYuM!plSa>fOGX
z2kpTej?HbmWG`?2Cc6}@d!cuosC4rCy)r8MkE}WhabMalS%v?M6U0ia9sV&Z#J(tN
z_`~iHb>r4sjWvG?w&k&(sAp)g`uP$pJnP1`+Z*ebFFt=(&c<&$^Amf9Lus?~+{4Pg
zEjV1{=5z5a!%zMOfvg3$3lALeSpH6p`I9`u!bP_kKgly>PX6<%+?s2dOVt-s$qD}%
zIA;Gib#&vTLkfQ&M$ZT>w@y3W)tyypz0B<w&lRvy8$741?>bwZ=e>P#_4_%6%iZ{A
zEC8F97`*<rp%>T%PP6_%obGFK<*kK|vGws3kVirwg0Uf`*3ZuMoUMjBcg?QbhWcSa
zA$Q+;SmcBKW)Ab)1+bM{Hf+5eC=nkOb@}aySJo%MX5~Q4(#?5UCL$iDH$!$$;MKP?
zENrvo@AAFa@KfL3e*d!~&}j2ivsjh|d)4=^$~z7!*j2CI?Mp7PUa<Ja%=_oPwy&Cd
zFYEa>F+HXW^Nxn=-TU&W_O<+;l+WJ$DJf4&tbX0eOTTj^^Uw7b`xhFUq|aAMe*Jdd
zwCMD;Se6B`D_@n>SXhT`+IrjY$A&pfcllmSC`<bv|1Zq<WVdb%OTu>VDeI$t{!xC)
zAG>emhi^xIZJJZKyv+9TvU8Kq3IAKroK^N;*&}ne?V_hoOS3Qket+3L@hqtHSox|f
zCn{o3*|p%OOV_jJm&n;Hdw%dZ>;H7OO+3e!W%OiD`5(0V#Wr!q;O^3OcRP>D+VyPO
z^tIDv)7x#UM76KoH0rr1(QCMNa{S&r_x+3aZP~RcyVA|A@+RBojha%)zeOPBka6Gt
zYcikL%Kww<Y_{IZabVqc-|foQ+n3!Ie0%kLfr5$A<dZ4Njq5*_--})UKk5Jc`{#QE
zlXGIN-;_x#_Pr=^d;hZc|Fd=eZ;k#m|M_ymq@J})&sAD4I=tMZ;vQe}7EP(-8K35V
zu4h=H{QPZ0iQ0e0C6S+s@9|Ce-@~BbdnCM0=E%Mq)%xj2%v^u*yeavz^JX*u=`-gH
z!KqO6`CEo3_6;Q)bGI+{f0wvC?Ya2{kO+g7*<C(|f6N}UpDe%4c%q&m(`h^Ng#Qee
zn)28c{xdG=1{F%ilcle}C}a2}?~q}7;jM(BD_F^)8Gp3Qj@?`Pu5688sde93%^7RJ
zCMYfeQ<;unRhL}<=DC~HC#5aVQ)50+&#>@P!1m;<Yj(<|)(k)S6-rL}LzKCI8VVa$
z-45It2^MhDmR!Fk=7Sr!Y@6_(!O0ISe97tX-M(7)w6s@X_neqCAL7o=U3dFDjW@CP
zUIzK9VZ+MnZzbjj8$ev@<N?)tH}7~uV5s$<60qGZFuPkIX0+<w?R#|S$EI?K)6T5g
zEqnghGrR3uZ-2a+@s9-@P8_pW<sF~26I?|){A1>*{sghmL@<7*Mpz8Q>x$cRw=2)G
z{b2ynvi!)esT(VeA*MdrR$|@7t!+PR^VZvjrrGzIA;Kjm*C!pmmUsNpnLBxwi|yoP
z?L5J5cFMS&cU%E#4%;qS<z;DKB{Pf~{;&&}P0c=ScK+AuJobh^>@6|A+mq))m^MFi
zZ@+zE`LE^F-@XfP87BO15Xjnad*b%+dtIWhdDtEPF&|pI>h{NnYa%=^UducFV~${O
zi8aF$dxe%c+nF8yF<)x>T*h#s-r<(YeztSB4J|J%?mr3Q-v}wU=1P9QchlC}g>l~&
zIL`&EKI8_bF1dzoPky&~W94~O^L1CjwqCddrnY$2?UH5KZT|o1^XJ!N^mKLCZoagv
z+hNzmw+uI?&Z@Opda&b~ShvFq)yGpe{#>6|@y6c#&&&3W<?*NFOxB(D{D1N55_#8l
zS<OF;TjstwRvdTs-%cy*S5h&VQ(YqkE;-)KJN{$6Tl>p0hBr!QZ~vdpm0qe86|KXx
zaEgzbw)pg%nqT2h`QzgZpRb>2$825y@6x*X-<9W9JZ`aXh+XFV&HmG;Ti>3$%(uG>
zo`hSgy>VsD-P^{Xw#u3u&n3m*=RNj+QFy`dqU|>mx9G)^Nj<yc(muSdP!3<-cWK(R
zY1d@dt*zbZrmbg|>YfmJ^OuX#&9dmLU81jZKy!L)RpYj4fQqw=<pF*Nuf*PYyTMdy
zv7}V;tPU5W**p5zto;4|)pN7I@e2fb=Wb8V3Y-7emn~s?_NCYRudGYm68QFTIFpm|
z#(g?w<<F+&x%cneCCl*kEMMRMZT@}#x78n;(UzR^U=Ju&yxsi!{O!bS6E|a%V<s1W
z9j|BHHv3P|^S2s$K5HVM?U7}8JO2;+n?0bqJ~8LtY00Ug6Zf6F&8YC7QE@4ldg%m-
zN2lFy%NP{?Gp?NruE^BfcfAIuh8HiuRMd@2Z#DFK>OaM~g_&5T)NFA8YdhotrY<>!
zZci@sT(e}wr^PoVPx9R5WBAF>k^kv-j9m5mr%`wN9z#;v90;ZR0%Vort_yD&9R4+L
z30QyI&?^0i2t-%%r`s`crT6+ktx<+2_8dDaZXSv#oS4VX@JYU94wzcfU3Ir_y=%Md
z(%Xy;f7lZ@Z@nED@$=%GwRihgM*i-B7<)l=|E;@yes_!A>J_bOCV@4!T-bKE@8B+3
zh7<Jye!L~tZa!yU?cINpLE*pSjhx$WZv<~=X86f}Nb~C32(!;SdEf6{2ex3LU)|Na
zeO;3lJ(-m{QO~x-nqk6!g)OUg%eHR(xqitm*`1U3U(CPrWK-yDUp9uH{7y@E-Tqj$
zX2*(Mw<iYQeLG{)t1_2WU3)*tgM8r1e7Elp=ggh45T!>e!G`5dieH=8{uvxBGp@cb
zOX0UU0+Gp?^fBUVrM1+HGKPjf><fdgzSXES3;XrwTHf)@i+>hF+>$ftq)X}c#Vc0b
z7PL9Y*3&5lYO6T>Yc^1`zstw)#NI=gx5S!FcGgT$Q%O*mP7T?<c+n1nk0)!u(j3NM
z%7Z(4m+aBjsoeL^K!VT!T-A4rs-6c8YxI@8&ou&toY_Zz`>v@Xxi8D!SgL$i0PE#g
zyejWF`}*)HA}_(7I02!eG8Wu6Ov(!T&je8w`)T#<w-)<;?U98<g4NZ#eTQyTuTMKt
z3J!-ouga|3`qo!TLfp+UU-xbwsAySx8Jtu=MGM2v{w<z$(Ys__PnynuQO0n<@7ex8
zfBxLc2j$B6%nxa2qgupPU4Ls4xSg3HsO-~^@RwnxFV~jkWj|DUvn9nwtor@aPy7Fr
z9A5liux0;?3m;?s_APte8SdIHr}&4_!Rxim|6GH;TMGndxo&4>n3bXa{r}VaQ2S$B
z-zk~s&GZSW`*ZHt{`)ciK0Fo8x1G54`Gj-vJNCQ|ub*c8D&iqOgVYw|-~V6zKYL$q
z8lp?o^UeO)k7Hk7-=DYhTkrBD?dfj2zT9~HVe&5dFFP~N?>p9E2r3<v*UtGLRQ*z_
zr(xw(tMIo+9`VULqZTc1D|<?J$<9>^pSxXoo@i|B#EF9I*3VsgQKI)EkKwUp-H^hi
z@_2oA-_L8D^}O%+avmyOS$La~VeMp*@<+8<$G6V9Te@}!N2$uS>AC-&&p#!<r{wbH
zay9d{r)~di$-A8Q%H-pmHTQl?@-di%ry0$BQ^0@g<Na^zLyx`KBfHHFG;?u8V)nY1
z$Lr_*Z~nI8)gIZU`eA2E@9{BY)P9nG+x;1oO5LM8jwMf(-xC)YH04K1om-e+$%`Ku
z2Se)bf%358ma~=CRqtk2|H!<Uc<weM!zcNLi@{XpWKa$5@K4z{q|~~LJNa{|HG{)H
z<trs%DpuuMt<-F5P!@e+@1!@=C+Ek5v%UKNL$@<CJh4AC@6Wa}>uc9bthv<OcRiiS
z!*HU$#dmI=`+Lv$+c$nY+~s4K@SkJ$+fwUY-(T)K`Ew_u!#`yoh{?JZ`RoiQ>X-O_
zT3rw7>4Q`*-Szyf#gF@&*yR?1-Ilm{>FvOn84>^L+{*k)UOc?mqzQ4mV#wXM6=r7d
zD<L*)UX^$J_|c7%7U|yY`+F?x?T5>685n-{3#fs*Z%Z_GhJjt{v^H=1V*!W`WiaI-
ze!I;2*HgK=s*)QMcgZp+{1-G^ndk0Wm{@Z$S`s4g>`D05w-pN)J&C-_$Kddfd*_ek
z+(}1WcgZp|{1GoYd8+FafBMTZ28K`ZKOj_8#){j9rmO!KK-9;6T7CEJi#y8cXT%pD
zR);9zxcaUv<*lX3s@seVC+Zi5Tz&iF!PhQu*$cAa$S%>1lhTuy>c0S+3+lz(TdASf
zrC+1142p>f|DERiF<aZe_xGd!rPjw@fmL~gf*K5;<3V13vftqLt+yIJI{z2!x?Sk9
zC1Fz@JA=ai)(K#0Y3th(Yc3;WV_tTK3I7jG1;szZPkrB<w`F@~3HFDUTl<}otJnZm
z+v>YF@A$-vg29_UvCZHCnb8XtU)s9%Zr`CFhw337S^*woX?>M<ya?j!%|E(WH%_{B
zw{P<5^S2XEfWk@-9Awk=vdXQMY=1wMD|9P)AqW-|H~YFvmfe+m8N|O5ljlS1=={;e
zDtfea>ih6=>tDPOkIkJve}4S$vzIPi`eqC&1Qk-0-acQrW%Z5eK|eoQKds+WbotC~
zBeVPywvT$ieV<1q5BV8hTqyhhZ@-oG{~+z%w%lU-w^!W#%-_>-{_d5P-)9*<&pmbe
z{E0JXBKBx1Cr|EOrdc&DH)eBMv!%phLn-C7jGpR}(|4EWoBv$TxblGbpLlz|YtyG+
z-{$=0^77ve<zB)cE6*Qwv)xvd@^sQ!Ny-18rZ6*<Ifbcw=Ko(=<7eXiFMA@ie{<-5
zm+0$Vyz?i>)SUP@cUOP(-om$SGjg}@ta^Jf^=j7sXHrlLC2e;-TXR#j-%{vg&Lg``
z-zNPJI$kq-)93u_C(d-GmG!ZS|N8do()Q`gZ=XB*Vg=ltZ!f%iUw`F)@cyz07Dk2%
z|D)o6-~7qWAdvL-(U0}Abqox<eU5N2Fg&rxjc>((mP}3bNNeBszvSoLL!b^_ub{EX
zu`<h<d^7)7eSLLn+4uR=ub(wb={c6sBLQk(WlUZq$iM)ah{T7ttjbYdp=)oy|J&@P
zOP8iynxbiHv3;5Tvga>mS*w0FIkv4@Z2KwUn-aYn|Ne>ic)6zi&HwBM-ld(vUMnkS
zU7Z(wS^VZbho~Jh&fQMgyzM~AJ)P`hS3h-1E?&E__t=Z-Wa*9n*KfT4q)9aT{5nsA
zOw*;abk`pAU8fnHrriC~;2vB3{_T<5PUY{cyR+@?Ii}>CUj;S!cUa&2&#utkvd~0T
zZ~2=K?8TSGbBoq)&6vF<^4*vBdnI#=Lu`4=<xO^&Ui$I*`ggaV{U82Z<KE_()BC0%
z<C)t3xBucF|GBj7aDFbYU0`r=c7cCguo%n)v)bF)CkuKu{*!oHmbLc9o9e}Xw%@Kx
z{>+m1!8%s?{Fb-1(RUs$@?AIae#30AmD^PQZ2hx-&83>2ZO5kBv`YWHQ=32Kf7#2=
zGne(OsH@))*}d=V&xN<OlJDF*ZF@tf{D+9&+0CuO#>d>8dJN6JSKj?0Q<I+~I`d@8
zB@qUOOYMK_85lmvqhp8P+xKoR-TFZ%&X0+0i}Ou4h8DXUSL1UYY9GmauXEV<rvvZ3
zsn?gYmZ|>!->`+d-nw@4G#9sqZ-@WcEBtx5e&XfO>y?|I>BRZ=H}uZgwd&a|*?YNX
z&u%M!#nBL!@?YK|dFKYv{5uIXYjy@$zv`@Yn7!#gKgZ5v{#$nKHSPtq+nd!3?>)3O
z`#8_l!QmhC4Nud^RXdND&7P-YeCvVF=PE^q+l7C`7s#$GR*+brd*eTQi>3F{Z;Rd@
zIk)rKK5uWkuw&QePT9(@RDIQ9!CR2D4b!`(@=Q_Qf2N8K(I<S=CNE=Pm|*wjKQqDQ
zf*G;@x$m#x>%+E;lc-~lj0`ML4y-sE^*aBtnb7~b`qrxXZ{p5$<Zn7!_aaXJs2tz*
zZ1W8JHO$T%r>@zs?a8TAWzC2GzMre8I=f`fkEJ5*wKLQ#7gzpCvyid;sk_jVt3G3q
z<R9P3FO`1kDjq6Yde_N%$rOp1J!@2=wDzC$@LM4|XLs$Lf=N<mQw~`OYWllfiEvtZ
z?CkXSVroD4dDS)9@32%g`uVf{>xO;)_u|y2hpSyY@@k6O_3{lyNrwbdQ;TeW8&rhz
zxlg)$u>IlLulAGcW9(HIbTuq7ociE=Ub@hdDIdSh&foPmv+2@Xfo^H1VA;vO@4B8H
z>NcMlHvhU!N5p^U)aLcOMa-Hs4kw+<|8^?*Ap4|aA(yi@t~e!pbiow?&FwtS-%dG7
zD&IO5a(b7>Y|pTBYNhvVuBhJ1v?*BQ<|V9qAbJ{y>YaD|(v7ALT^GLDs~4MW_Rh)V
zyv#OF|DfX~tG@cX(|)O(>k{^iJoEFf$?Wv4<v*|fIsWt%|M6zmz`pjqHq(l{O@gaU
zs=U-JHb#etr$<ina$~6$y&SZ%BgiK0ueV+9s_R>IANNSC?cb{VSV~B$_hjClQpMYb
zlbjZnbbR|U|E}-5XIDSnsbN^SXoiIWU$5e{S2MDvnonLd=V|<{2iB6DbA$qH)9wii
zSu9E3z4R@Asp02y|NU8Krd&Ng*~)(JiX(hRt`%O%n?7zR-nY4j@AAz(8lTt9yJI`$
z^0JK0A5Y8;6m*MnS+1zL<m5@C)tg=KJ^A|Tip{*BMH*=-t39|TSiG@WXmT{!M(y|e
zlj)rbb1u%fdENhR#UsYALYJTOuV~OR`*L(;RMd*Z9d9DNwL7l4YiH_u1`AGpxbgRX
zzIshVGbV*w3|-UK=xr*RHJ{sTo|BC8H7lVU#hW)1xMzN4+a^BKj(gh#Ewe8-6JCd&
z7Rzzhy4k3!;w)-=LvMW!Q~Sh2OUl?UL^}(g;#_*?+5T{TRTsG@6>4nn+m)?eywXy;
zo^H>xd-MHT&08l^V|7<c6=$1$H}<_+S9j*`gM0D{J8sG==x+aX`ufx4<L|#+tWW#*
zSTFlDzeIR>Y!TanTi*`IGp1dhQoZn@3+u|`K7sxZuia2v$zC#X(|(1>eU+E~uiiAv
zqu>_fuDH01EH8tkV~<%ZTlkKx{Z_E;iE!V*d-bL=D?|9}WTOm@6dY-7wNj1$A*gjc
z)oMp>xLlaS!{u}KS$yAVD(_dd@B7hHvNJa11jud=vAv@E-8~}q$I0`Re_y26pMPH5
zwCKjc+c}{O|DN^N@%J=2M?X~bU-BVs<+RGV3(X%S^6X$pTj^vPp&)U1`FiuZr!(F@
z`1(4a%kg3j3sbVg-ZhOAec8KhqHQaVriojmIz;R@IqPLV<KaQpf`gUGdvgo^?Us@_
zv@*=+Z~2zmom#Vw=R0mUxlzIWu`Tod#Kk8Iig-S(+jMNE%zkSd+pVp4GPz1*v+91|
zc%p5e^J-0uZr8Gt>HnH~k4`ywgmG!etF<5Q?l$c?Wa6c<gr8C23;${H(|NNGOk)WT
zc)v4*<*4M7+h@<2zqJ!xILXmdm+=u_zqQ<ng&apu3pZ?A`{9Df>A4*3pXO{#+5ENW
zy0B@?+&A;sogTGbp8R{t4u+0*RkIXj+-BE`2PP}u(q5uc5icAy>B=vu1e*=H3;I~t
z<CuguHaOi_`>*fAZAIJ33M;CV>Xyit|CKMld-C)u*51s|LdL6l&t4T;wCKm1XGavG
z6O3AR2yZC+E4W!E@2y>QROi2Quk|zvQ+a>P{4d8S%OP{YJuYyjkXnjJwgi*&jze3;
zS1!*uW+uGjn0G_-CM|c?v~_Dl<<%8y*KAl;9&eDPG^sw^w=Oz#zCs4CX!BDUrk$}-
z=T@g>f3KaZYyV5}Rp+<QWz#15OWw1v4%gY_U-{an(JpP`q`t>XPKM1t(($%LDkk~i
zj&FOqHuXlQ7x#pvKgf~0W6Ga<!&5_l>os??H%?kB<MM8NtoXf<*LtVw?A_D-!}i^>
zSSzrZp?0(CIYv?aDPC;9OBHWc)-u(X_F2kZSYP~BRdDjxYZ?XRZ*&)bzoOBwxcR1T
zY5dZ_2eVy%Pq}ed#cMl@4FCDpc}{Z5LfT*c@p5hS=eg_jWd4QwPk6kX%eGWnwy)VY
z)g-S*FGcJW>&e4@UeYgeUCZ1SES@8EUbre`!RHxk`W?~@Pdh8e9!>e{wySUEck!3&
z9*b?NJL++N`H|0WA52&?-(&mw!~pr1(G&g%?|N%@so!jU{}<gI?hEw}+g;nuIpy5s
z%Bg41^%Zwa-)3N^b<R9R;CaR0p9N{#Yh|}fpR;WZ`#nkH$shd<G5)e;s)?QN1Z&tO
zV;)_Z#+-NP->%MJ>tEHZ56+%1wb-}(n)~l+=c}7{oA*?I`_}fc+9W#u-n%>Bn(p|o
zG`SNVBe{LyF3W$17Cs1bX0`rwNHEBA?{{&ghu@Uz6a^+RI&FI7GNbJMeCN8~g{w3-
zs;NcIn<dGs)1jNjzNa(ietcWV{dC{5*7woJnoF&n4pyokK2dheN`Ho#*=Coov#fUC
z*KL_|SdB%g;BM~gm#US&|NV7MomanIZqnU3QB`G{wkhA9ebC@Pd2DaY{_97>PyEXN
zoxN?{9<Gy%qMZW1$fyhY>mFqDKJu%me%FFo9y<@arB5@CkvwtwTLkmk&Em|tCU@<!
z%J;52w{MQdBA?EKvo|%hKeAqX*x~BmOX^Fk)c3F39DU$@#~ZPL#BzS&+uQw(XWN_)
zlGSEyl2f~XYnv`>+z+|uH*@XmKOegu>MQ$rUe=U%tVPGa>57C*uTXsX{dmZEufI80
zuLPFl-Mv|q&J)nEH*Kk@;j!QwU;Fv%f1Q>$G;5Z`(#$YII!KR*tsq8p+o^4&PwY-@
zV`Ed4dn(@EtuDBFwei45VI~h%8z+gb&?(z{IHJ3^Y!%LQtkgQJa8-0Ki_aY^v2Oio
zi(FH-8b#fF#kFpMpwEe2B96PYJmz$**<d8bv%A~7-CgwQQl|qEEe8ZPeQy)!m_4oH
z?_HhKb$0ayetI9Qi_gt{|D>GxBrjs4wng&XtL5RX!3{gU6kn6+dSG-@TUIq>cTFgZ
z_{&X49i6tWtM7TBBx_$VAz<z0FyF>y4#5jFQ7Mqf1(6J|;02mc%EET`tGEfFvo>4W
zNt*1vex~!|$6dcKX|4a`5<DR#`1EtJqebjT)MKN2vc&RVT{^@lzuhWiou<dSm1VOx
zX<hQ({nqcy^3)@<e=RqEw(EQIli9C=Zy2}mZk#l0*)`pl(?33Po;s_kV^-AvgIj&4
zpVhn~;!^Vd`>R8T3|{`ZZNhreR5a{~_|Z?l+Gj1xlQ3KMadr2+iy|sFL;9P})LKeU
z_lupqcR^}YWL)85N#}ksf16dB9-CGMUl7UQGGU#?<eQ0&YFq}EL#G^qXEA{T1C?q3
zhth>9*eH~Mf`%8^?xmp6<1ztJbH4eO>Yva$dsAjU&#Zgd&yE~X7GL-Kc;~F9l-W^s
z+cl<HE7-lfl@zks#rtLcn>#BtJ+`3)ol4ZNqYHa@d>uFWe${*<d8jSI(>Hi;`q%yb
z!2*%NzF~K_B+go<u&H|gXYX(A*E0A2>|Ca>bJ?M;KZ_#b{uey@dZjZkc!Eo?Etk>v
zr#UfJrMcglre&s99-Y;+{`wV7XgHyV1vG$g1POYg0f*WGO{BDAv37QrRqB`RWqK7W
zVuA&HgU`qPxX><sXR~TJh_^J>j(g$RX=byUGG_f+-)QY@@%`&O5NB4+;WKY#kJ;~6
zYk4}WiDTBP%q5#PFH>k*wol3TpysSoJJ!5?SN?B_X2*(^)^a)9mgoNbyZ@Sq%cUzj
z+SPT|dHnxqf5+HASim*-zu`&?L!NmTy+NGc(V;4B$5PLlvId%LeO)cD+Qxk^bG>HA
zqLs_7{_L=6$=|c#ZJ4j4i0{^_$9t}q%{4ChJ#~I2*P;w9lao6)y`6Xeti6m0>qL{U
zp_yF&f`a+4oLQE|rIfMiS$vgtt-sQa@6DGttW;NP`Ed7sHrJx8SD&XTzR6vz*|BP+
z{Z@{|_+`ruJlC|aoo)50jAQ!RKL1~`^-HQ9!!pl3`;l_tOPsNKTfzOW?tOQn*J!SY
z4^Hm)=j!vHc3!vZDPM>Gu5A)mb?#kxFqQq^tN8PlD>PSx2b=5Pjr`q+oV|S3RO!6k
zJnyzC>({KTa}#R4r|pZaeAH;yYU_MMK-+TX%8lFWkMEVgvVNsN74Pm>hs>wx-TwT1
z_OFM38l_EHzvgPK`?_E?TU|;0$N4+I@6LJHF=>J34=!KTFTB}(zVHnAOK;z|xeGK`
zlm};;_vhW-9sj%axc$4p2|M-EA75ITy;*#VkM?QpxXXp^9Ld+RxnAA8(#$MB|L(5O
z+_kSN1wrw5tL)^w+L@Wv#-^+nO}1_>{&~+#*R14%h|A@We-Ew8Q*Ez(Sq@4DS&<e?
zJb%7Uw!aRN;&`if<6Gfg{Y9D<uEDSMJpb(a7Ub(_;;Xt(+i=O$s{WjgB`XhoxW3<W
z%A~TL%M`knz2pDx$G`B?WbtoVT#I&omyY=}RS%+>Yu^8mV1d}+>qpr3oBm(g3@UoK
z7M?BL*d4DEwNA5R#ma(jrjzw<)P7mM|FVe7g^<OK$?M`|_y3gsno{lS$l_bOXZeN|
zuhP}`-i!|xa15Tlj`!`R{~y|a#kmB35T9*T{>*iC`kv5>R_To(hs6CXx%f5w&zq%!
z{NJvLxLgc*Y1w{WFFQ)|R1_$Az54OHO2y6h;Pw1h2SPI+Zdbl^NE?z!zy9d=dcOpe
zLf891iegA%l7UXK&bkCC>rg2iB_HD~XbIOOVt#e6!fKQB;u@ojs`WF4ojvN4Jf0r@
ziBT$51Y4T(osF8lH#B%cOz>N?)X*i<%Wlt|;eWcrd~3?RMFy`AyPL9}G`+ffLpq0a
zlB%ii+Vio(YIDsUgBNHPyk}333r=*c3)ER(zalg1&WnYSuYc`b4=SYPSZDq&GSi#8
z%dFb*^p;I~9({>yKBVl=?&~<ocWx7;v?Zo|MFa`1uz(h3SSg}PxDWr=tbE5Bxzuv@
z<H=vt+d}N-$lp5q`a;Ri7Ufw@D)3VL<j%s3YrEd8?U$c<BjxIS{VO6W*F$#uMvA^%
zdbg~712nMYt$$zJ9DeUx{;Z}avtX5>z_sV=I47T*eIf0m>)CYQZ&jdTWLo#ToR7EG
zi)V5v?fPD=|NZ;J=g<4EgA9$B7%y`Awfy`ZX<L)**!|z*BR@M_R@Jv#iW;!B*A{#@
zae3kCH{V|7-+Pz+azak<a&Wy4sufWa43x*@TPqv8&B9~FwXgkxF)Gzdn_IG`ukU)G
zl>YT@=tB)fy}xrz+vh+J1xTMUYkQ0L%(YLSK74-k{`}9qYd88kzg3Jfb}N1J_1;I`
ztClYNZfxA!Dw404T{qo1I`3xebFGz8Yl{9}G)SwJ_?PjxJm2cWQbnizZ%a!4pZ~YF
zao*;(pwH6^R%X9?_1($iwoTsEDd%=>ZSN32^{*hcX5}lekr7w#1?}5uwl}=R{q~)h
z>sl+Lbk=V=`tJw3WVGJ>IsY#*Z*AA;-xwMxQTV@H>V;*tg8Dr%m94&C=av^{>^5Ee
zZ9>=5RpwK|u5YmZR4bdkO3}>x)wSwZQL3Tcv6X99W*?7})zf_uS=~{waSrEUsW+C{
z0_yknX_fj;UAlJH_pUpuoh%CC{zo0YCt?!1cj1;@ZIfQi_ImSnbKuJRF^jLq-wOn}
z=uPLTa_RkMZ!g@Pd%V3YI_jF7Qml4;z^w^syx-=`)$}dBQFiUIZk(0z>{Yj-*D%hi
z`gAAT%`77L<I%pd8`p~d{nA{Suhn9>_`UV!Sy|T=<|kI~t%-dk_w?|y+HBtc-{1dT
z_3hfq{8Q%Ui@$$xE?qZi)ls3xA9nvTKe9L8;zr?P$<p`bk8~dfEv<aKX-j;ZN!I5Z
zp~1WETv>5#!ldbWSEW}KcT{amu9m*3admd}3-)kX4zL+Ur}@q5%HGe_-IkJn?*6y(
zt?eAwPo20U)^^_R{n@svb5h4PZg25^$TU}c`SSc38(y;)&&uts70TkjSoLVuw`#BI
zu>2M06ki=}lfND9@$p&JzU?m)ek7#KUA-h@WBl2bIiJ4C{yy9hzjVFy_oLI>UetV!
zpB4UQZp0;r^OE45<;y4Ew3b^VrM>&=M`iDP8S4|A2Q_2spC65{3HT6_x|V(Q?5K}_
zm7nJK-v4U<|I&`xo9D`0dHK%sargK7>ZH7@|6h5o{}B}I`ZHIowrcOP1^1%fo{6l<
z`F7_Zcb$dOwpy<rw|8qTw~4+SB2oYP=-M<s+Ye{HEbg43mA`lQ+t1s-MqGdLVB)pI
zX(d1YY?M4F;Ai&aYMT41*;1A{rI&BsUe2Sr<56?E+jWzxWe@udTh}H<uDAb`6B_KD
zq<dd>^O{$mudI6=mR6=!*jBLVM$b3JJ+&7jo9|bx3-q&D^EUWdot0(D{fN6)%K7Uz
zKI+@cu6I))Px9~LRm=3^Ma8Ds#9Y1N&j0uGb3cJB>0e$~pRatoQS|)VAFiRnr{gM(
z=7iQgx~JcgUpMEYtAx?!=+NMg_dEVCT(#_%-^=gwCx=@*TSUH=4PC!n$oFWxmuk_>
z?<b#J$h~~hcd7iJZ*3nYOV^bI1t<Ss_9|P%H*fdqX5*G9wY#=;HyiKe_pQmyda;Kw
zdj7tTPnJ0aex74?)cBKsR@R9(@7ia_{mzQKS1T*4c%|&|Tk-mj|2ChOwYwKGqvrU<
z$@|}lPq!>C_-VY~rYb1dH-6Wf7u)0h#r-;F9d79ej!y;#hJWRM%tei^XJPC7A>Gh{
z@2CK9Cy}V50$}|^Y91AU)Dt9hRDh+41zJ~-vtns!t^S8OswaJ>-87mhnUD~{dwN5&
z_d=~{yJDhix?-1zzTW!lOI*&x=!;d=d)L;Udb@Z*sMdn5rOOvB-L~~a(nT-b9oj1t
zcuy!9oH0<GJoAm^?dtoRpFHuoHhE^siOT!u+Y6rA{{KAh`<|b3%`NZ$`Tu?rN7DjM
zhK33cEk=fh59~x^g+Gi80--P4q8~RlPIOX?*!Q%&wDik&{@X@V0(qwjriQqs<|v#@
zN&5TiTSnV{gP*$DKeYF^<a$V64Ui0UOAR@eam+=PfkEIOaahAkn~|YVprz}-$bW6$
zsZm|!=_X?N%Wan$74O_w5?$$Ka5ZG6?i?MK%_e+)Prmc?_~<Rk{IoxEdd#2Y20N1`
zZw^i4Ov}Afe{`1G{`H5>9Q(WP<KO)^XZD(ETSgvR_A2D7^qSb8LD9iyjhF4O%H5hR
zzt*NO>#n+ZT;<$T``4~L`}pzATb9}08}AD*pIUOSbY9i&^!U{)XPx<U*3Zsxh3?HK
zR?8=K-mkg&@woiPupi7F%bWtj_I#@m2ze)_C4BUJM^W|4jYiH3x9!!OGoxzDowy7w
z|2OyJVm%h_neg|Pdi<^_ifZ;<+>>`M`Qz1^pk?CYIy1p2E@WQppY*G%o?YB{W(_~<
zRMl`h%hiF&pSCW$rnsW=>&oTq#&LUBE-T#D&NbQB^nUoq`?KC>zq)L3!#=%$Lq+XB
z=YMY%HEH3cvyasEPkXPjs^9Od<<~Q(f=?As`RA`X`D%GdR^#OJEAIH|?)&6%c2>x=
z(BDTgv!~vupSxOr?|rNA=`wYy!k^a^OZ=M^tew3e^at~_y}MQaY&rM5xn|*yP>m_-
zTvuP7%GEs5^7iSR5RI+V)zsc!Gn=;PYDn@^vzn>^Kkuuo+qNuocQao4Qo-Ib`fSmv
z(>b$tZt<F+<+F6l-$kLC%|7Q0L{Ce-Uu<=8%A7w_yr<cn(h^?kzva{ONUP9aJ9N)R
z{!8!<QS;i~IqUXK`BgQK{PwvlN?Y{l)yY%opPslZ`t<5)|JzrWmrpah?mSukMCVEq
zgReK^e;=Ihp^|2zwo3l?*3DC|WlcNwSKMeS?=t;LBepfs+p7u+)}(FonwV|uzDRA2
zikk7okXJLRHqXjpa$9M*@qY2_W%oK(_FM}2yzffd6iM%U`rdE%AKI#z{=al}ZGvTK
zdHJ`myg#pM{b5{cx7=yMY4M_;3gT|7Ybtk{1ZtQ)JIy~e@AJ`VvyM3#7GHg~*~|N<
zcD!GH>)*@Kg^E+tr+yCGw`}8v_$$^^V);&{Eczkp)}He5u+CgRGgjZNy1~XF%es3X
z&VRPDWYe8_Uekm;GpzzUt*0sootv{_Z}eQnn<mB2J~;_J<p`}jdh*-J50iYt-l;v$
znEx;8<lpq!QH=$nr~3Vltz5al%(l*V_v^>sCIq^**mtxhojJvNvqo_?_x?{uZ=WhL
ztedKyCB6Fc%V$?Ed~m7UR+OR5w$&-%WbtL^IKw%*o+q@9EeO%%QSDCDF#Q=i%Ws;z
zuAjQl+OvtyO18z@LX2v*7~Q_(ukXLayHPciFY$NkroWG)EGLVq&&pcn?LX&C%F~-Q
zcbGWpH*h!#v{Y&f*QI_IzFDIdt#R*}n!1<n!@HlHmsWn;ZLNFqsn_1r?%4KcB}P4=
zYjqPlyp{x?ycAxkv~ic^R6WyWYSD*g9{Lk9Q^Q<s`LgcKs*{6@r%7vf>z)s&$}pO#
zI+^n}sKDY~Ccq**^H0S`ZF9Tgq@-)@UE7~Bg!@NuD+hUduQHvRlj*nBY<bkI$+|B?
z(xbh-XWYJYvgD;1Pr=!jC)ZypsjBi`Rr%lY^vpFjLd#EcHL!8i+uGW0Ew8SwPOr^a
z_brp(F;bvyXHH#-P57T#CwhC*PhURT*%`BRuZgYEJn7jdT2JQxW4L~6QdH<4ulDV$
zql03z!=}DlwrtX!Cob8$ZbZz<(DMzs6lb_pc2?|c#st^){aFpO#a@c>bbqyP?ci*_
zbs-}yL&w@=mabn<TKjP=VdvzT4=?6eo<D0^v1^y<)oZizqOZ!_D_bAEH#fAZG`p&F
z#;Yjpo9m=LtrAZB<b5iafuo*1Kdp*8dX;VE)6PiYxSxu(brYwY75&!h^G5dE8)?0J
z?{x3^y^%i2(;KoWRxNzSw<!j*O1GGnugiOxlWmvvdDXY8XWy>Aw6rCht8(efZ<k7D
z{0Z_5U&+|;T;q?gchT4HPtKYu`7o>Qv2}iY{+;xD{o1#ZGV&*%{AP3e&YRwLeACuq
zHQ~;!vbx!~qYvF)d-v_!T-~K}uFLqf1g@X+^N>fniztJX+8^ER>(=!>t?PXE&M*4d
znxdbFjH}(s?W{LdCzO1jckwQB@<SJiPv3a_t{mCD>}z&d>Dt(>rNPfL)z{qGkhXul
z>08}C^{tv(i;c9DPf4u&5H9yB_6lFk=N^vpSMJ-#M4T%=W_4uK8UdE-cC|w*wr3}-
zso0%vvghq>>$n+vnjE!ezR+sjGkJS1NB-fLz1iL6*UPsp3qBcndWP)zFa7CPt}R>9
zb81D8#^XueZSzlmEuEm7`eXLYpRZ&Nm##SOWneY0c2)k9mHQqpFXOkDy!WlwC*{-A
z_NYrI&r09wyK|@VT<7d<IT^RN)O|g+b@lbKEfzUU3{vMd@%+Blw)4}MEin<fU)XHg
z+1k|PZd*#!wPxy{srftEdHdVdm!fxDpR@nE;qdNThgOIm+gCbwZIK*<i}Rv~>zwm$
zd~ZlC{^>qn?$6D>+WxmPT*mPd|7LkD-rioiwKX&U^|HPX-%j|-zP5_u`&Yqz_mi1x
zYKYsEKuP|k&(m&97tOGlT%B?};r(Q0e%p=TFV1b=dFf=o`TF>~#aDJE^F<fGNzCrM
zb?4$7KTQ#aBP}1q9UTR1u9|<E?Ebs{lgIz_Wp7T4H>D_T%=JFrnlAry&*E#c^+#^?
zT|K*sh2fBVukP&A_y50`CvW@djlbO8V7W_oZ{7X)skq-J^Y*XDeG$8NU9IM2;HdA_
zpRRB7;l{l8b~}FWoBy@f_euEHC4QDwhgUu?pIeo4{nxp$uZ#>W`!zV49z0zB?e5>n
zbHCeNF*ll*o$WjS?;hXt_L-MEZ(my;ysm<cfulaq&}`!GXMcCU+m(O3Z{NgF-Id1v
zH!9wF&fYG++3^`OL(6`T%11L7uD`$g@ojz^<B4bUZ{PWOEPU>drpad8w^@XVGYI@!
z^mL*6_qw0a{UG;0D>34!(YO8Fk<9nn$Ks<AgTf!zGv~|R{C*VM|HW?S_RVX5Zq>K^
zrkXDE&_$P_;e)uNzrFRRqyH<O+-sj7d--0`$yW6}KfWA}p56O_iQ!QElOEqEc{`tf
zwBG+e#k=^^BXRlPr=QDY9=Bs~_|d&g{>!(!73uHyJv^g7uk1#4eAS&<+r&&k{^yXA
zJ6-o~HGl2z#`L~hS3a_f&#$`kF#9SC$iXl7*V%nA-)>`IGpqLO&*OW3x!#_$g&!od
zQh=qr=6R?7zvIfYuWyh2_<DK%?Mo}wKo0d4p84l^Ugd*(?elHFAMwqvx!Sopdap7_
zD)6_P(e-<O7SFdgE;*?`x8R{=^xQ3y3<Cd@vaip($p7zf?e8|@`ihU4>2o#&Ix;Xk
z)ZbM0t$)w^;_qTy2d(RWuSw>QU#tK!De^o|Ph9cky}phg*4?*!{h{|Q7ZZbw(K+>^
z6}G#}b$se}))YKdP4}t;DNaom-pPOO&*G1rf2OXtPR=fGZ(?9L6rUo>b@2Y5*UY=w
zkKL>KxY9kh%*Y-TT3hP(yq+j;f9e12{eSjM-nKTJ7bLprz1@#9viEBrO+R<5>flWG
z6>Oj=yLsTkk@R;jY~Ot_UBCN7#Z?ASlG0{5sGj#Xb6r5i=k@dEcxhRHRNmVE|G`Rj
zIr)mar~Pj1+2?Bt^4_Vk_p-Zxu5<UZUiVrxU1psW$hn2)^?%blT`o(<U7XDEpAi&1
zYrc0j%76Lxce{Ar?G0&Dvp~+DBFc5}`MzHT*JoV|xBIUFwz^~YZ*}YWcWnPii_6@<
zG$#n+@*KVY=kHg1`LQ<pylvrRu;wFoi~p~yRh}7d{a@mECCIoVqFe{V_kBKcG1|(%
zgf|}K<vrE%@2b-h-h}GkS#}!~?MiwaO}F>`J+iEH_4&HE?GTe}zdX5jyo_((BUX3S
z$-Dl7y!Gne+iL%^ZKm_L*LDYi4d?AmtNY{ezw$PJaUM93_r15<VI9vAw*+kPqX)CU
zzqcw1cK@+d1RMm`zuo0-TmD!ST=JWd;ZQtJ&FjW=q0VLE^EO3lf^2xi<@jOk@AA1t
zU)oA#*REn@;HVe;{$X<UZ}#J|uRy$wADY{L&ANPYvtL0dKgctU>~gm+7eCo`O>Fsh
zP<~zU`o8(T&GjX}4W*|rfs*w5f5(3vz8&26Hi!$P-ucJv&HFZg{jkn#DJW7qPK$Hd
z*VZKbHk20XY=Qdx+m{PBT=I4sf<vqMxBP2=m05mvReQmHmN|5PUNV35<$bH5PHsEC
zssF8v%~8)dkPrCe>ay|$Oy<^X`M}P=QE&L+bF6cx%jIplbG<<Bzxe&fx`oPS+qRqS
zUL_4mKd}NV{qJRLs!mHSWnhqUt;!U?e))26_4e)C%dfR(-OiSub#31vULIebzO>$-
zObom!kyZc1raoNu^eEe>8|M~&`1ay(i#>zFw1@d=J+rUfz8)c4&0SS<Jwa=x#ired
z(^wde82$-$jtjm!x4!rG+v_1#SH5@jzSZsf#=s!u{>!rF?XB3qulyThV^80^eC_Vu
z4<2~}EcW$jKU!~ZzhYc$v$97@Yq8Oyo>LOtAH<LCaBbarOC+N1-5=xc-}%M44sOZ|
zs;zbAKKJd-y^RYmo|*P__3N3I^XzA8Ep7u<e~XRej83L3I>)zZDNntz@%=xZdCxW;
z;N24Z;PGxR_iBqP;tUxYr;Xl3OEa!snRo5jG2J`KOBdU2v%1C1kfG73z#*008-8NL
zdsFkf)>iX=Z~kAmF84*ksSc2vw3JWnP<bW)t+chDInd@-^7RSEe;65h#f7InV0a^Y
zuE+05&reVZs`KToEO);7`uMfrBv^Z%r>AZE-9z#W3V)6|-oLjoMd{+!w5i~z{qj~$
z;`WZRP^+a?pw!y`A^i-ffKL+nXU16%5@A1_eDh-Gon@sE?FZg9KB|oS@&}ZZZ4TYP
zcQNQkb}%@VIsVZ8`lob#={#{znsfgVegEdIOLHJ8(DBD@>t`9@#OwQ`7^0%{qfcIe
ziZa+F9iMs6k1pH?vX8m8+WX;oJBZ!qKJYMb)E9EqS0A^!Ju7_svZ<i-oh0y&ZO(I6
z27!M`$>$$bOwX<cWlSHQzO?IGwyt0XC9!z3>GHErly2h&o5Sq9_~wVQwcylQXkamm
zGvE65ESOPlT`=n=e+ZZP7Mpwn6abGBGD6OS1MJwoi9X)No3^S#@^h{8V#&MUvRM46
zvCZv=pu*&l&_6dwkklNypONOfdotKpJR(gA87j9|J_oBwD6tWLX8#*3qqAcVJ18;?
z{@i@d&ybPu@~8Z}moI1Dym9-s^zjej`}VXa#xpFK`10rK>lZRU9@;nekUYbM6PLc8
z33>Z!_Eu#BwQs#CLY>R{LfdK?8`zdTUmxeZc;>ln(^8BUiZD1lUbXspepGw>*Ss}l
z|FmQ8Id7L|xNzgkpR2O}ylm@VF))~HVXgZ2s50UGnl`sh$L01#$ucx(wC~Sk-dA|8
z={LwHz50>$pR&6?Ufd^q^N)+#{$+RV>KPnd4#(%7TmAM!cltkRsnT3?1_iEHcb~7f
z5xhNb|3Sg@3O0sC2QKdW+G=kL4t9BG<)_@gZ$0N{=qUNITK0MG=dE{7+1B@cV`Y%K
zdno)zNAa`ST=mK~uT2ZdF80!7XlOG_KYu@F`IqkJEC0D2-~4v<B{Ok`1sBhXXT;oF
zoMkgR{;JX+Mg~FN`p^7dj~R&grF=S8!`Q%4uq8j%%eEdAMjz7N|1^GJebz<o{?2Qa
zaSRP@;n$zumH7}Y^X=+qb_N%VKY^<)-ek`Q7u?=IPCo&8_E5Zz2$!Q;bio#V1_8#;
zb9d*hyZi5%rA*4LdyQL*&+Tfdd=_u1w&~}GYnA^P8aN`R&D(!8ZO6_{54gDNtNt-G
zv`vpYBw=p6t5x@^>J)XUMXU3xew-FLJiqoIL&J;q{Z{VP>Cbk4_{Om7V_2G)jDD-V
z`)?+OK)!lo>sPBTd&^xE6BXXQ%WB$gjk|Z}ZY?k8Pd#+|?A^JSZ$*Yk20BC9qv0h#
zW>5Q^w(P)8rG&~A+yB{Yzu|N9zI}`a%jsR7U%&ER-S*~|t;D^)USFT=^uSaX-l>6-
zAXNBMWpbyL^@&%uO{MD|mn}cL`9|!oY3t1kIYZlOW#4i$nCv_H_Op5Y{QGOpud+-1
zx9{-OIZWzrKC?3%QTd~L?aT|aw;A_YpT{>I+YE{}rA6yL|1ouOiME?M&;B7lLx<;&
z?wy@Ec2j+p1ZS}_98vx=wfsc%%<1<nSdOWG+Vz*AL85j44C(XFK;^a6E35PI&T}TD
z{`5)twD#O*CI**7Ot$q`i#JU%JzDgk+-7z@sPItWdzgPsN5WiK5|md2C&n2(Kl;t0
z|JH}=`<C6@#>C*#z-%XGHV+(~N9NepU$y;{RM+-=*`=+ut@aEGQey9ZzSit4?)7s2
z%~j9fAabReZSswIZ<h+N2!p(^D5-JY{#TN5S-}ZwteA{%erm0q3reAmKUTXP$khGV
z*&sYK>4)(fZU&dbOtMj%)%F;0A6x!8f6txI={Lj~I-GyZp7t|o#{XmLprmtg<A)9T
zZ(HwXF~|G#{h6`i&1dyLj0}MrUTD`Gd3&b*@wcDM3`!}2;XgW_-<$^tSM@)>+%<-0
z>L1UHnLN*)L4oh#dYP|T`N=D4R*66V$;_}Qai34{?(Ok8>pz6aeJgF{XHbxu<Yln`
zqmSKGACu*xTnrsemev1~tj}2+|FJyJ%^)CYwMEQe;z{dU%nSnm9wph#-hLQdavg0+
z1Xt(5KTf~=32G?p(2)J`Pz9VfCx4i3`i7f<qkiMV46q_WP@+5(A0yJF@E9V}nX^s6
z#8mPdD?`iv2#NF04o5?j*c^&i3+Jf^d97u?#f%do)&F>YgR7k$NO3DK{InJ(bZGuO
za9->Gv|&Aj)ta+U;GWs?P)?9z1^yKs{V-kZAGjG&v~=G760fOX_QUm8K3~@X7nU+9
zpIbwWCi<vB8aMjW^(8)o+;pR5f6N5Gm)}4>t2ptDo9`<~bjOLO+@PAiW&e&7&p-*8
zqkd!Ho1dTv<)}BDSh__YRPeg%g=dsOn5uuCGDAETBLViSMByrM6*lqF$~cI}d|rTq
z&jMbs-K?2Vwo05q!ReCs?j7^y&AYXG@7}$e?Lu<rr~jLJV1qt`fZ^#$IeZp}eNQ)?
zU#q}TwC*h^tiQT%&)i#E+<K@|u8Qv|x8sE?Dd3W5w!h`EwFeBgN8F52+yjah7tdV}
zukBd9I(cXOqTRcV_uMtN5xlo9e*3PP>CD>7Su1)@br@+SA2}TF@9&?V|Nhh4z1Qy}
z3WHW*X6K_H%<ZOW-hX-k(sEeTbE<*^QWQ)p@+p26kUzJ1zpbkF+K!twg*UD<$}>1j
z(K)>#KX;P0zyE9QHD+=V5jG}8Piz0ld|+g7@lfJuIu`ZV+3d~lBgW3}e?IyC@4=(s
z^Hp)%d7n0%2DeSXHrSXS-X{pEKsyqALYj7lwAIGm;|0a@f=i#%!Cvidj#;-OeIc_Q
zD3;}5HLv{B#Q5pupoomnkpHj{Qeg^$?dGWeII$EGA%Q=N4}hypcfEL<tKE>q?fFA{
z$)wJdLmR;H>R=Xr;Vq~US~&5v_?#!8iZ@B*-z7-Wn4!V<`xQ7QceL!UxsU^KP-o0J
zNNZ#Mhw0^zB%$>Ol3!+=5cB`~2$CDxWArY3hM2q+(lBUWT+7JtP#;?J_w3jPc7gUE
z%Lm|ms5G1VQs(k1P|s9?qY0EK6#g7_)st`8-UimE_HaFD7T{2POp5oz^*2{Sn$ks<
z4?&K8B>Ye7@IFv^)v{mWgcZcZ#YS(m!8t<bP<-W$>kwD7-<%V?7u5dAc{1k}s7>@}
zanU?z1<XEqdU-J<?3{m`hPW%~FeIc-JQ20K!VYRf9e`Nv2GO3Bvg!Hxi;$++&Kd!=
z{S(0LM43bJ2l>Dyhj=8!h04>lEg&V%qAQ=%+rhcKJ?MPAmn<Y|*OzQrZv}FgPReIi
zad6JsapI{AI3s-ItpDkB3u22fBslyY>OT+B2ekmDckY>N!_06fzUNT<g9d&Eg{n(l
z2CE-|%a28R^Uw40e0f?l(=GDh-QAO0oeoNepDB1b?d$8^!7E+UcdGK$!$u#U*JngM
z-m=`Ly@>Azg96*3C)=|^qpN>Ub6I5gt;B!%<ehUqTo++Ec;ZCDk8inmDsCjr->vg=
z**u1D>EB@<4`z#jiZFr7oiWSy*7`11v0rs)yH3qxzBQ-IG(Vp`leZ_*`dgaY-kF<i
zpJ(2BdY7TYzbBw2VsD}M{hgub%Gj^X++K9723%wwxFjVbQ*-ll-NRei_6FB^!s9A`
z_R0FU3U9w#c3Rl~&z?IHe*1sleIGMPbVcl&yXF6nf4v^R`$4eXzmNNOzT3rr_Unto
z{NL-|W|zzT=?V=`dwy>D{x3`Gqpp=FrpkV}c=__?gnzGJy^45uHDdQV+dZ+{x2@g1
z`!fG4#$a315VzEnr_&3+zk9OK=D^47_}$6Bzg^z<>+1TLx}TzF&z{}NFUr;GqV#bg
ze{A@^>fdkU?`=r@yYaZ3u%G(mhsvF=s^rdaUDx}zRDZ9+pQsO-4_CLx7w>(c+;3BJ
z-uC~`uJApN6tsh5XWrdiez)kf{r+!T_s5;zJn7^U#+(pu`G2Pv^8%H37R&xIT>bCg
zLnp<EYxB><p66*37JfW)-#*3ttN3>GtXdB0Hm&(%)Hd;TfSi5dY2El;Z#HeO{kD1j
zuGj0<#}^!I^<7%GRn~f*l(aN&{`%eT^6!6Hc7NxuSNwKA9{B%%y}#~PBY({2i~aXL
zT-&}+_s<=9Ik|t6?SDRYm#<y2dGqI0tM6UEy7l9>+j%=bpR=~IvO4_Z>fOCByR`2W
z9_GDn_w&hQ^|>XV=Kp&c-;!9ElJeuQ{J(@B8ETU)Kc6Z7_ksWab=mSeQM+&K+jsZ=
zpJ(-PrB|;$%&Pf$I)2yBXXo366IFP_6Arhnn<d2hFg#-EC+)Jbb((A4+<zP?vHH8Q
zzc!_$<jL3d^>-!H=SZ$Q%*=o1|Hb~gij)+Unn$zm|FN%oD1Pq#&d)E+_y4@qt+(sP
z?fd)EYij<)zW;UkvcG+DLc;m#d!OGmHvTKvR(!7V-_z;)ZDT4bQ`hZ$w%5A+9f$ai
z(%09x^?p2EU-R_Z>h*fxtlRD%&Hr<3echYn`S<ozdcVCLes{&8mZ)_0n?Y^+XU<&z
z@9yugD|z)#6XV%y7!C+k{dm~U#?F4;?)M$r>R<VLzs8?_s9$ow*8a~C^?!ADca>hX
zjQ{(pJ8%Er)6-*$URFN;n-rY6#;m7#{=YB2iSKs)diDQ%|NkGY_y7Oh-u5=}ak|~-
zpT4ur_J5um{^#fX{l9m;w%e9<b=Cdfd#~63|9#)~`yKI?lka<s&sAOD{V#vUghTF!
z!}q*c6hC|0jZdflerUh{|4q7m<ze1>@w8JHFJ27MGQGY%Ah!4W-uJ6MWwmgwpQX^=
z)^_jzzx{ij&Dwu&N8#hm=k0z^+rH<a@%*1oH}>V<-}m;mKX>}S?e)9=E|&lMy1(X$
z@WUh1bfeep{nobZQb5I9?>`si_kRBMdi~!Y$L*teRCdP9$e3SOb^Kww{KxnI>z<!f
zpC2{*58n;Y$g|qcPhZZ6Se%bcm{)xBlO3psv9a*Hf7!jikLR-QobcJ-`pur;=Qf{D
ztleJsa_ah;Ql*I%C%yH4JYZk{^7ZYzclT=M)L-mAx7xREv(?)zmrw6Z|NSj^|L3{+
zq0)z+i2Kbca5_Itx4pDP<oDh_`+qI6*7JA{-@jX4|M(!g{Et7+|J&ur$jj@Ww_KfH
z`+8o%(L+zf{kCu2dUdnZ@;RISR^R`9Zj1Z-{r}yq%k65PPMtpeecS!a9ctOv*G2E$
zwN}R5-}32|Pw$!^9ueR7VW+{9){kFU^(!vU(bSz=cQ#w^-}L&Qk5Z?{{`3D|@;Un6
zC;RD7_QpN>VD5inc4_)P(TYja1G0;?CT2ukzxb$}kwK?3$E^DK-1043w%jW`zSeiC
z-P+sv|369J`>?FQ>Wmw=-QJ~3KP{Z&qxSjdpEJh_PENkO@}y+b{y(R`%NHKG#wsqy
z^7Wlx*ypaR;VWbPE*Bo3Tk!X5ee`XKV+W^Adp2w8`Kd~8GUxw!a=-oKNA38XZ;wga
zf1TK0Q?m|~I=Vp_-tzw+aejXOxy9!`hbR5$291@y-~YzuA%DXUi}zQ4TD|4FXTGoS
zdZ4>(tgq$w`~M%WUiWKr(T~}o)z!aGocQ2a>;8Q2k7LsIwNIzM_gWfM{r#P+tgPjq
z56Wq=Zz`YveN=t_xA^+Xvqz=PN_zYHmR)|Cbs{=o$AO0rPca?#_<kkW|Idf^`}VKb
z6wm5PKEgkz;?c>?cCTM9FVDHP<>w*p_`+W=)Bjz|{~Ptz)ce+L>#XYqcXyR0KC3=o
z{qMZ$^q5^C>Q4p#rETB0IaH7#Vdb5&+q(MoKUc3RKRic7ZQk#9zaPeYjxV`*^m_dN
zg|qX1y-A(E_w9kWkGc8Pzj@97e3iam;W=aGtl80e`~SR6{4u+9WBR<xZ%e1|``D$e
z=dChHSNH7u>ic!<HD}(x**w4gvak8Sckknhp3O{;Ej(&{@Atj^yZ-&kUcdJn^UfHv
znw<rKo9$lTtFHg>^Zfl8UQ3%7eCR9x^FF00%YXCZKI?xg7H^BKdYPYhyR4)#{80SQ
zsn=`%zK*ZGy1FiP<-Kl~zp-<*k0@H)y6%{JYDL?r4x?jBdUluntvNj{mp9~?MBKf%
z!SjFZ{`c?S_WghRpV$AMHyhMYif~$A|2KbG(8~S4R`ctpHiU&SG)#SYO!|M~$>}e1
z)EF2HL4A9UdIkp@lRFFN%RG@*|HJ4|v-GmAvU2mMcxAQyA9}g(?_;jKJe8jzDf{oQ
zca4qv9zNXLyXnx$luh5JoG|2n_wY8T_tibYYpHpj&6>ur8<FbM6&$o7OEVl;Oz&;T
zH=5aT!28G}e(ux|Sl2o(QcC~N+W7nX?&t?TU-~h?%{0U<)kSjZ#*ayhgcuk&>hWWp
zxG2t5RaI44@4tQfw#w5sbk^3quja=#mvpb4RHgO!(_az&ll+^Ev>u=O8Syc5pMq_@
zuW@~q=)!qgQ$y>IWxWooS1uNPq9FZvkFQ=9chBdvNZsoP!+j)kdrybB?U$b3Id8w^
z|2FRE9IJM<eMeS#UDeIK=DTj5Zt=Wh7E{Wv?SGRy&HI!3y7RZ5zSayl_N)7G`D4We
z&-17GUI+{F57UeO5WMrB+w40*rnl5`r?LNW&%gYMXW8)$?-Q=Ao%pl9?r)yRzm604
zcPGp~a_vNuYq0sl_m=;d&&|)~{uej<>+&rz+as+%yw2QmQa5yQ?xnQI|J%w9js_l^
znR?~nmXMt{-@840zw>AGS^xKI_CI^}({T3d@<&a*W;-kYeTxkNX{a<f`ToK8HC>gG
zxxMV4m2J*{e^<WvL-~uk87r5&825|Cge<;aXjeFWNl)?In+MZ&KIkvlIgdTkFm;al
zL5;^r_3NImZ@%B_tt80OsKvl=q-CBx1H(gpbezCC>vdHOd*xic=|7pmW^EB-nCM?>
zEY1JPXG3wU%Z_>Cvq}TcIdjVxRsCzYp}L=W-rIyvN(Z<WKIiYK`!xG`)|Jce!q#67
zt^YUs`J<4l?&2{yrQ3F{<7eCu^5qZX8F8-Z1<xWkCzmcVdw#O!z^99!*<J4ZxgI$8
zwbP=nC5-2)dY`e*k9a=mslCGwW($F<3R`a|-u;!Fdf6z(^<JaG0VBgV+#8yFr2n%<
z6jl9e&|qI#^#3Mf$!Xnhn(UvWd?(+XyfyjwIX(^@VcU9#BcJapR-BqNqm<vNL3KJu
zlY=M&Lz2^ZdC*inUVMP@$A5)|JG8JZ{xVT8P{>cp;<B;9bNPy;xw)MkS8+*EYGN)|
z#jV;<-~QWX0(-xQYb-x?VAjKSjZRCG8{2LtU0&v}X`jelxgA2eg4%(7c5i;%FF!F+
z=5{Ez^o0TwnRC_o7G3*XbQXO`4m|eIfAONueJ(12oYNm3O)+vSn&_6T>Zw-Tb4pd+
zM|Fn7lcozc%>jBIPOe+hb}Bh($p8MfG4SH~+%KGU_IZo8@88f7xM)Sv#Wd-SQ#9t!
zR_{5GcyZYu?Rz2D_C{@wUb}P2$8Np2i&D2<MoOB@(|j6h|6q~XQG+t=X-EI%E_zf}
zEo|50d^<As{=-iZFEd})rYo+H%xQe>ZZ2{C_QRIbm!@URxh2T^xs-qT-uS<Je+t;<
z2#9^R(bU}8?#dW=tTUz3;Ydf!TFIp*_tr=xZ+sWO@fiERysctA$K-q89e>9Y_4sl5
z-M2pN-_qZfsm-ZyUTEJfc+S=0Rbltc^IN|)uYFxVbE@5$H8+mkx%(jd&AM4TEG5J<
zeAA=W&Ms~EuyWhC7it@Ov{$*6-+yxX=^Vxu#fASOi`6=&EPT=b>&v6dt5a4n@?39{
zJ7&B-Wlgrvg44kY0$gGt$8K*sobdXW<L*OewC`+<TsbpaHL361{CkNP{x)Ri@E6GV
zlsko+A7oEIz_spYs?c?-DVt`O?c7*t7%ShfR)3<ZmP59>ZQ0#BuD``J-n`G7_4#On
z$~Wo7+t2QP{biri<`p&CQ&_B@ugpCYF!$%Szd9f4^6%W_tqeF~9?bo5X>>(k`Ga@=
zUT$C7_qa<#ZNbNy1^EfAZ!`JC*74{$U1bsydCO7G`GWJEnn|U=CYS!YOn$br3zptr
zTv+>T=iyTEU-mN`_`+26R|`!!^dT`g^4;s8rv<LUn#%<g41{(5^<@1%vd*^Z#sc0m
zdw*ESKYu0sN;}2RNNat^tM-js8qyaoYMJEor`~qbk}N*PRXQ>L6Q6IKFS^fW-m&@_
z%D>KB`@FIB;N``Kwb$5M@3a!;e5ZKE^u5iCsyTDc&sqNB&g(n|n}gC5Sl?f~^3`?O
zfrf^Vw>wq~?DpZ@v2KC=ap7fOyx1o#&2oGD`AGVUL);2M3alHuE#I}f7FjGTQET^H
zkg`$I_|SPB`}GA!);uhpwBk?Eu|GS5Z1Rr3U%2{{!D$z^A0I7!jVAg}=81W@uVtdB
z+F9q9)wlP5*t>UusduV{;A@WJ316-T9rWbOwPOF~n*P1`nb`b_{Tt=>{D1H!EnX};
z{NA27?3?dDj%}Y>%6e^|o8FEED*o%1W+!NTe`25RSSI=>`}Q=8qpvnr)NW?U;tkrk
z+SmWW3Nem23#Sy9Wx|Z_*Y96+{n96yO9xB6H}^cTtn&^v%K!1@uDx8L)lJM|!O#Fv
zDuDL``X^-tm*ndEDHs_T=(}YW6_+R&S{NAPDKd=AEi94CjJMIT{lX_jYtOG=;r=Y~
z_Se4~qZB_*Jh@1fn@K6x$VuBc`9h1N^i4UDf3@dcX5D^UCi;a(XSGIMgXZqtes`<i
z?OmRC^R3E~05_FC^INV7{cri`m7%`I*vb9j7I8Pu>5~k?el)yxWa)k#<RaQ?s-&j6
zM*L)S;^Y7!a|_)mK|vPn`!8~cw_ZBO-T%GU?@;x^HNl4-*Rr2UXyH25-SAu4!KuM<
zgVrG>&I*SN);}*26+bAiF+JcfRbOamxls2*aLdbCZU@-)H_qB3ArQv4u=!}!jAe_%
zBrY6GF=WX46e09p>Sc8F!;+@JFZVR=Fl+T}P2v7-!PLa}n3JR0M?pbvwu8fjBqc`2
zZqGTa^Vb|{;yM$-X)dy2<Eeuo1<6|*S3bBa#hD_M$uxm6(Q`7F(8mi7Y=PHQ71;UD
zecZ<7z!wqVs^Gq3k<tWZi6Frfol}|})p;i*&IuMe(NLh(q|&L7$v#PCQHqJjq&N%h
z=tqVeDRP@_crF)Qx){tG6?5d(Esuw)>y)JqX}dT`H)|O4u|3>Yv6T1G+lEzZk1>2x
z3OT`Gu+ULHi0j0e)(dX@o?^_#1|0Ks7OT5X;A*REW}M`tTs=X@;oAw3b&GF{H0_mY
z<Ye>7xX`Y{YBYz3@8ac)T@Pl83v#|;p3o@T#A>7@tF+mk(elw$w_WWmr94F%UKIxp
zxGbIUZ-M@#<i!)FOI=K^b73x@V5AgvBj-U-iNRq7&jZ5Cnr})lrX_gw%zFRe*^3$R
z5lV-wl5a&hy=#b5QCq&4MQD!;U($q%e&?-OcaoLZ-r9Pqh)7-vUMM$XUWNHZ(dIMW
zI_b%gN*xA463o|(CW#%`krH9Lr^WtEbPLPW<GYT=yNOA3PEk0zq@;)WbobIrVb$KO
z9w9--QEM3#qI@zkmAYG9J36G*HkGI-7d2RIt~vfV?97n{wO~t?M=gSrqTP;udDgJ<
zbh(g3yUD_ym7#r4PggNb43N<|JSpf*?B#t+Cmxu$J-co3)y2~$iXA#+dH#3qqFNct
zKk^)2zayGgxK%haHajVDiS#vG>EAZh?AUbXC+ixodTo55AP~TFv*?LsQ~H&NwG4Mp
zb*25N=;TbxQ1~QaevoAfr{-murPGXF2?{JU6H#HC@4D93H^ET(b>^-`UWIwrwArRx
ztrlME=rLuYkMJw$Ni)6&^nUj0T<no@uf5f9(Xqf3(d5pW$5X?;pO8)N=y+t;CGg{*
zXq&KG&~4pR!K;fTY=j+D;)=vpH&2;uc3dKGvVf$kkGAG=p4m(J+jcjF-e8WJyJgmo
zFEU!3A-B>i`xE!9Nu9_RS1O=?OhWmc@|WvXZu7)$gsr?S*(mpsPkQ4oe|uj)@z19J
z9ojeQ@0&3v>)|JcMN`-(i1WR>Ki?)^?_B)3Yw44p_xr1_Px~L~KQG4r{#m)F_WYmc
ztFM25|39}veC;oT*)}uIi@!d3dbWA?zN#wAdi%;95pidxr3=mY^!3T}lao&>?`ddU
zug-7q_URLO{dphm@8$14eKpJQy7<|rHD7=KT>kml9~QSgGv=;8KPhL=@>jc#87$E>
zy}>cz>$b*UrD8Hau2mXYrgrh%QB|)zQt?Dk=>dC+f%!WZ_q#I=e|^`rck}k>ryM0L
zR!p_>3zA&lmoPt4`9Ag8Zthn<AN{H_%(tt#bxI@ZnA*a%*Wye$Z?kUuyzH$)bKZul
zd@=WaZU0)ad@<|v@~&H#x89$(_osOn+nveTCQ9$JodOm`-dI?YFIu;~|7)+q>NWqS
zWcZ|sPk()K^~+a(vo_s+wN9@ter>h1Y}5p|ZOh%>lw>T<*}{7+z((C9;{{t!POa@b
zBliW$7yjSWE57ae%jg9E`XKhA*<oMLb=Mz$eDL_{?s-X{9$P(^mi=KEJvpU%P4*VQ
z`U8imgVrjXos_<L&#rGP9~$P@f3<sV!+2Z2D9&QF%+^0(f66xYIk+$Q|JN^X`_buk
zt#4{eKJZG}YL~>Vxl&Sd_}{wy%MQ<a*xh?>+uoZO557+dd2`Ig^LJTYZ{VM(tM}SE
zoRqh1{d+#E>9oAkntO4&c58mEU1`?)M7+|@?9%6G-}@SMjABm8TmL4n{b{kq?e>)q
zvp4pd9(#H0Q}$ll>|Yz5%-617KH2G>jQv*&CWup%F9^P<W)_XUzTV}2;<f#)zh>o4
z=r`ewz7iz7BX-OES#l<F@yVR>lP|@;DdkFU|E8%`JpF0?+_>{$>EEAl&OdbMPxY%7
z{`|rv{y)Bmxj#GdMDEQz+lS6kGCPIsmL8pG|Ij#Ard8PPN~_?(^S3TO*<Sz8n?-lc
zN8Vq1exAL0_4Ps3xgpGtcYE7?U9XueooRl(WLr*mrf>eDi$(7jb-ys_=H4YRdx6>X
zrnm9j4lngq$aL#2_~P4f*VW*A#kQ#Rx7_bV-MX#!tEkp=_xG${&$86S@{cOF6qv=Y
z_uCcsGrv2$`((1g83o_zJFeKxIA&VsI^$OQZN3d*?^}Nb{;4&Ky{n`D{QZ%|{?EfV
zPn~g2|H$N@S$p?b#>eYDJ8W8#*!%qS&Ewx3cin9Y6BDm7aM)bC#U`D30Y8J>o<FWO
zG7LMI9L$cdTEx2R{in-EzbIAzDcT!xu5F)G)BHHS@YlR|p1dsCYMS>cqp&%({(`7o
z(0$q9Ezj0h3tH^0`j(i{y#CW(|LMAq-|w^*^<RFveDl%@!@2us^NMkOZRN}PFF9px
zU4_~IK%4ox_w}Y-zx?y3&z6!i)13KJ`j6_lTZ!e)cikR+=l!+YXSnxP-tD&WfBHM_
zOj!5qr<R}0H{X-9p6}dOc5>s)sou|Z@}9b+rrvB1OfK9MxBp!FozUNRo?rVV8x#I9
zzU^{W^7Vf;;j`znea@|{ld-n{@+?0;zBK3c!n^xp;u8G47o4z)pS`Pl{ny<qE0+aH
zE;#$5*O%SyN$kQ0&69uIJ?VW?uy5_z@aCV(Z0vjHzCT`g<L2DX3pdNdV|K0nD!6X?
z%G0Vbv(|rqo}Oww=l$_><=e|`y;pDeRvcVwSX=aYLubQ@Pn$Nry3ifvYi;~NN$mOV
zC_(Gp_V=fD-`KhF^IH$GvwdA>RunwFQ(Cy>wVufH->Y8d)$hB%tL|B?V|c9$x5&5B
zt6$4nH%@u-=EJjZol~FY3QJBDzb{dFz;DI0>kfAhn;D*O(%vAvN=TU9q3(d6)?2H<
zzE*E#;dRS@?cDox^Iui3M-g60JHwKF3;#HLOtMrl?42v0|Gw(Xy5j}Ek9?9odMZfN
z`r)Tfo5N<vPJ8`U^0v-fvvYI)NJsNqcy3kt#w_Ze`q#_!?<ZzK&!=iCM>l?UH&dK@
zS65Q=_q>|I%zqPd=e+ki#pSfN_Cr}mf)+=jNz;B?#y^Z+w|zX#^>jCfl)ovJd}1xO
zTj%Rjhfmw<Mg8wwm>lA`;-&LF(<%<HaDhJ=Efak^-(Q{fsw!xymPm%_G$!40_uf0l
zx9@M)nPa&sc9*=I)t7|wFGqvhS8Y4P-r#nxQTcA_9KY@7E&e^ydOqWQ$GanErXTeV
zy<I-PZC}W%^|ubNTe_@R;jxw9-bG^P;<97uUOv-h)xxHkCu^?w@^RIz6YQog1)?n`
zQi}H)n`*c+>fe|Bo^nfOQIW|l`Abi)KmF?yD*emgjz|pe!fmQ-#x5&fcx*KWnWf$K
zZ`p;dET=+^Zmr%Z^5fLL7ultfZM$c!zp|8nvEUzBjSq9Zep<ij&bl1c%G-bUoP=Gy
z%jTzTYmJu%U-W&I|Hd{&E#zz3j^jU1*+tvVl2HiB{jgY2Ym(rqNrrb?%i25tGd(!A
zJ`}SZZDL@IXh;W_CY4kcq=N5SHFU<)bT+p%F+pxRFRkK?2oB%=t#jg>%V8^3=T-S-
zd&*>OjcUJ^wKgK1#q|iIsEp(x1%b8}PlYoAn<fcxd=_zd7U`H0aB<bvEZ6L{TW@*2
z%~<>Q*7|Q{^7{_gzT3~=wKaVI@9+EnH$OW#XYch7>$cw8d+lad$Hm2*6FrWs+aCXR
zSLIos>%O;RY?zpB_xx?1d+&yb%o9bMn(5UuAE<Th2tOt;=dFgH+Or!M|Lm@Ly?@ic
zt(RVjHVODwFxK~V)yDn!BGYc)x$;MHRWom*X_tUt*dm>a#}~bK`TqRuyx-qS)+8M}
zGjnqoTf0m9&)>gRKK(4F8>RBSXPSMDQvA|@pTD)9UjCpj*mdB+1clZh+vt6f3n#4p
zD^eu?-=VeUDVw;t`*YJzFSF;wKFt>Ka-HG6;Ew7Y;|uq_-#vN1G+>p8@e{j)iJuOz
z|DRCJs=fE`)qe-QuIBtKntI219amt*&&R%98v3ps9}=e7xCn|pSs(Q9{?mV2JM(9>
z2d(`uZFTe0e_rbk6y!VF{=26hv2t2_3+v<Ojz2iXo(ioATD|AcALlDYYc8fv{mU$U
zwN5U}as4TI`)TaIA56V>Fz#WKdH=kXwtuE-?Tiv!D)yy9>&d-;t0p+~XRHzL=HmP;
zZ>AXYbp4mV!M}AXXB@h&e8xIpq0}_(1)rAJe>%SB8wV$6kK8?Jn?0{4*41zI5`1C&
z`@F=T_luh3Pr6@neWxP+$@S;;_Z&_pZYEhmA8)OQJg=`h&Hk}TmGH}hSsgKf?B^z_
zD0Kt~E#~N|Xsehe;T<7-Uifi`IES>8SC4weBiAIRg917qg+3Y?PMjb-xl{8<$fM9C
zsgF{Ib7wg2@jIh(Pa#dXxMSxLn@74yb|1|)Hbi*ran@0~ry3@p-5Gi$>(IOiXA6P8
zBT-4R4_(%%&*|iC;odm$hD(mxHi30V!jhyn&Mi>B(<ysI&dHZWxUgmOgzbwrWU0K8
zHO;#cz4(yZ*8X1=S7JYA80v;~*vtHV_o7bQef4?OzDZ)2`qn7t2MKE&HePRk*naoh
zoq^~7nk`FyWA)m6jqkPZ^ZF&98@zihF1GJNez4A5^}QB#zkft;d3ZEa-^?$<Y~f_d
z(=v(S8;-}Fs;T^RdZzw=L&LI1Kf|+f#c!*fT6SvJlh04u)dDALsrk>VDLge#^G?YA
zmAt|JzI&~{?lavaS<}eZ)5F8H$>rMhXq~U66Q6p`H2v<MTiekZo%fTu^RV8nKgSuk
zTpxwAFJb%gcmca?VxM`I0>htg?d`cGDN}x%>^?a0lfql(wTDigo*7o7&FObb<bO|W
zlv>A>b^nfX1n^GT@{{4pE4%XxUY*Q!t8X@wKDT*=sOO0{!hdd*tX}WoB6elowzZ9y
zrZ5ZsjO2+rar?68&FVwjkL_Ht;b3k`bz0Zro^V^uJzU)9*D^K4Z;AM^PVk}Ko#|Ul
ztTjwbJR)VI!o!1O!=;0yd-nd0{gC(JXyWllY)e=>q~|!wPZN3W^7B;Nm->nOYhCKD
zPyV#Cexm12xsAUk$v(OfWpr@CWpybfqscs-0zb+(-n47-y&k+#Qa!;qk!5!9wyOct
zg5(1y9*tPsX5vzquB-GVZMDQrB|}*eAsLYn;h5_Y(U$|{W27}!KghduTIASTwyBOM
z!#=0;WUUr4ns~-{_1Z0~l=v60)o#3(vL?}2w#{wDf>j<mB?VhuOXlBppTDna!~UP!
zmNk6r^}mwW?;E?O=+4KuK&5Ndzu)8<TAj>a8eS)TOZr#r5%tdb2g3`rzkA(uzq&oE
zYF(XZ=vkkcZ+E&HDqnHj%r&iPPgd0XJ!0){@AdC5{!q5%;kF+Z@(%I;R;*k3@J0J~
zDM8i@o|x+~oNvSLe6FcK)gQR<%+>ALWnsFT)|`!HeSe_o$WlRV=jW~OB7UlgZ4kHh
zZ&z_$p4aOeDYdQa@tH#`%ND=szRy2z{oZq2kC^QQ7mA5ET>rj&=9(W#o*m7aXHQx2
zGMm23RER9zUwE|n_Y2-him&YRqvuYID86-Knqy}7iads?{2hTGA7ss%pM2c@{PL3x
z^~-9ax~sc?uY6GKuyE%5h2nvHTyfR&>s`g(y5F}pY4(5kS2X`@<=xNWOI-KmZhx1=
zdh21%?3|5`j?6*9_SfB?dkNIKt-szZcSFZ{l9!o?@1boiEa7jTJzP`ZxVbRui6di(
z!{)w8+n&CTTHtIxM<%+bv+~06qWcpImu>yGy6G9)h9<7lb==?ImP&tlTpko$s4A<)
zakHUy%cDD4*+*A)$842+I)S@2B5U2kCiTl@FMoV}nW0;h`tEPof4i8)0z02@>2HnY
zd^ho3-tV8CK695W*!{yNJJf!|_WR|r3eBl<rz^GVcvKs%H0qfxep4s?<?Zx$<xBRL
z6=jw*FZmJ@_xa~Dy99fyjaM^gc3;+tG*WqC`YXa#c)zLj*96a*E7>Am&W+w1{e0i6
zHwMw$xNW+dvO+~?omw$jvD0Vg=9}iH-@1I6_{3}nr+vxZ`}gkz7O_+<F#oh6KQv<H
ztvA!0J?r;YuG=SVw_soFKSup+vCO*{m%Uja$JBdoUqj_-Hd9`Y*8##sOQuiUps0Ax
zHu<l?7QT+7D`YAH3ME9tR=kjPD^GS}oRhkKqP)Y-bz$DIisj4P9oNje<Q3wf#+Z`7
zBllH@x#4N&AJ-Ju+iVrx6tmzb11Fcm{%FpEl7;v6yLY7T7gE;z?k{!m<?<4XwZ3X<
zi$%^ze0DOB_PXqIX499uR^d08s=u5zx_n7u@8&xGWtUiQ&AeqhEo9m9<;y;31lZ4w
zJuJMZ;%-!&N-^v9OFLf0#v85Lamx26V{7$|TQ|Nf@q5v(UHbleUB#x4LN#8BtIP90
z3Eh@`usZU+vCKTRFK;75as*B5`ak7&@BG>PIdlG`nT+!$-u}KJ_<8=bwT<<ykHqiR
zh+cegw0i%-&W<hn%}!q9Z8Fib7M@hHtK~`26N?YVMHZeP^FL32alX&mZ~msc5BIX}
zUbkp^%7sah)53!;-YH%nzG5QFo}aC~CJ#gO<}ThiNzb~a@Z2$r>FLRH_%r#HFJAmD
zeo<lzU+u{&lWiuxTV5?5*0B5E*E2^<j#+T8_iABbcpI}SZc^>38ok?hcy%^;>=9$l
z3$ft0zG~xPe)~%N%|hO#F}LcRf9Y;=w!b_t@VD?GWs$BEcQ^FTs>;^fbSTyHk8tni
z*4cJ*_bln36!-sM%;Q80@4IoOX+r<+{8>6VH_^BE(QIE4F~^-3pEvXGYS!L*;pE4=
ztkLK0ZERg#dUt-=!`xK+3x2$eZwq>M-MC%)H0ynz=(Y`-XR6m8-(V^><+I|ig`O!p
zd%gCF{TK06F3iq<dh%WM_C95y3*I78pWfx$9PXe0Q|iBve_V9M{cVzbPp692*0gy(
zds`u>CVJd9#HjNPd;H?v3p7_9T5Y0mU$!i`c-y-A{Ee@t{@(v>?*B{Iq=Id`+@^5Y
z{x{)rw(qZdv-?+DVw7|FhpIo}J)ECg>%C`W8`Su}dm7WSdFh8myt7&~;;wWaDPMBk
zdZ*tmy_=V2hhGl3!um%2c=`Itjo~E?r=!x_X9#>~U*Hs48&at#96T+G;pl~sfKNxS
zuD4rn#j<?m`nSK9-+ITmf63Z~Q@&__ITLU_xT9i&&k4mP8PA_Z<SbFkyS9K^R-yBr
z^y|q|yQj*Z{_xG&_|epf7avNl>A%J`{nI9Ei^E;5JlX<UGX=D69)FR3CB@m0o3(ZB
z)8kpcC9f#He0EZ(--lOa;{<`pLen-D&)}T4@VWfEeC_Hj_wP&0ni=ruJFB&c^j;@r
zO{>0~ACGq&n7A#d_Qvg|cUu>%`L>`+I;B+n=>Nn2%rm2ye$`!Qe3ly35YcgHQpL=P
zTuRYfZC}pROgPS`>G{Evuiu;3H|5HblA=SY&O7(<Y_67jlAISmyTF*)KtH~<dugn%
zyiDFs7Wu;;Pw=_+F1lv_eD9jYJEvN1O`TFAd+~P2RnFQg=6-u^Qcs_Mn1AuoTF!PJ
z%Ye4?i>9C7eOmpd^~dukrz|jQNe#Tyzj&#>@YTqvKMI!rd-1V0{a@SMJuchiO$0I)
ztYN>a<j>b<tF!8dv(1lZ40EUKzIWQLNOQv<vwyBJc6lc_Jtvq(efzvV?%t-Uyi5K?
zq-8%m%DPpXE9^i`h5Dg`v!`3+%;5QRT139%-jn4ED{e;@to>4?JuP;L?W0Udnag5E
zJ;KjFv|o9-r8R7F$DxjJCr!7#BD>>?n5*MBGHm`_`SS6p|2i2*mOqY)>G#BXpVsCE
zZ&-P;;--%I-MG7PGRx=MZE!vB%_DKQEO-00DJ<S?7em!rkE;Y<QZs4$J$IeiR*C*Z
zll&|`_fVCoN2j`df43rrb3LQ|t^c|1*LmMbfBPJ^fxB5?mMdrBT7IENRsRgKEOd^P
zzKP9@I{M&s$@&F~ksb53Im=#ZT3@bhznu2T)p_ndF`oc#_Kk(w6L_ox8`sXhqmXjZ
zMS0FitC_dme|j1v89gd_xw6`{u`qMW6<eiL*IPC>*e<fAinY!<5#_vhAGckrRBq-Z
z%O1m>5m&vplyBf+lr#9}#Oirz+sjE?JYSy7DJj};P0;2*{QLX`6Iydl=v|C&yIi2P
z*6^jnDns5YS8j<3otstlxo?Lw)5nQIY`+f#KW~}HeQ=xSpTzBTR(#gwNk4jO?%e*V
zA#iue|N1p6&+A>SXV_bywN>$_XLi$<YR7fScZ~mR2%HkKUc~E(=|Y!(T!m4e^xpO*
zc7)d^WL*6IaI0qRg;l>5l7F<^OZ726%zLfM!1&V#1#K0*=f9gPCOqRRxXpNca}}5W
zr$@)$T6Q-+`uyYjkIb4GJj+baTfeWlDJK}W<MbY;>D(8NG>dFfUg(&A;_RB!sh3vY
zJ9FVt+1yYktux|Aufx1T-TZ`B+{jc}Vf5&7u+Sp2BbG@E-|gW|nqXe!$|BWkcH-9q
zk5>nO7zc)C1w5Fu--_qWbN7I+25atI*&SqS-g4|hfAuqyM>j93+deknF!y<um%LtZ
ze!upXhZf;?9G1psR>)}Go7Z!}^@YtwN2yNrme<N(MK=Anw*D`DqTeU8>XOJ3rEH#~
z7y2q)l{1fX225_We*a$1$CrQ8GG5jq@t6P0x9TZp`TBS2?mC<QJ7dGjxR!Z4wf&xK
zzo064bJw#ipL5&$Ho2b{lVLWQ_GsIG-Sqs4+>fWkZPV&F6C|#-#K>vsV=H+>`zQIc
z?GNcU8qV0OFSYsOmTAp`D-UeVw_4?_6sucyZ0SeGx9R0+X3y>|W>Wc>XSG((b$N2|
zRLzMicl`04)$&vGPw|89n~@6h>ThQ2bShVL?cVAC&TB54bK7Ot2U7nNH>8z5UL|ti
zR^_XeFF)<nTz<PE!k}K$uJ+sG&+G{sC+bUC9sHnrr}OAxccI@8qTgJZ=)R=$yPl`_
zt)+KAJDjyQ(4C%O>gQVV^8F#p9qs{>ndfi5lNYqgz1R7EM5M}1*T|!hu1DKHWpC!5
zXq$dk<l58lX=aa~{C^Ud)${Jzr(H{9Ux?b6<z7=iD0cY&f{NcAkJc^M_@=aT!NSJ(
zNeaSWcIAXkUvA87cdgH^<aft|Z%-2Wzdt^E`Twf~21}81wfU*G5uZDBSN#(xzRY$v
z!>()oQUB-874jy%^E=CwO{@5I-4su>PgiE!e5{UNO84*7?a%gBez*K%{A0=1$7?U7
zY~f$~|DjzK`*-*KeAj=ybSwGufLX{@b-#!Bf&&M|Uy2pSrWvo3e$;b&P31Yi&#8g}
z*&L?Ne;Kh~;wlyU^JMD%_X`Z|b$>QYKXs|#`09&4Urc*7MS>-H$AO;DtnRzE#71pq
zoA&?vtBvw2=WSVT`1sC4jfnmmAs@Kygji?KI{UTB_xt%b5eDf;-R4bN>L8TyW#vbo
zdB<kVTd&z;xa|26Wp%k3Yf}D9o-}vL)G4bE{=ATU=4dY0vksY@Ta}7-jK^l^_;Sj3
z_8BebTK##J*6&+c{RbsqEx)S%vvAv`NfMm@mH4{s?dmod7ag40cYN`G6ShnCM<v%O
zeLC@=<?teA<`;(=X52m#dZ|EZv*q_EkB;5l8Ex?U?1N78ADl)7`XAPEXY#%2+qrz_
zybF^8)~@S25uW5WZ+p&Lk=sW%JPC+$FR~X_xajW8^Xx~g<inM_{oChWoO5ttL}N~!
z`}$K0+%Jp7yuJP;@Ib%bqqW`N%?_4kJ@|7oKZoBjy2v-@^1nS1i;c2{)g~TH>^OS&
z_s5o*_2T|Bo*m@eaxs2=+ukb|9_`=p+~85%-QXQ^`fo3VOU%|VaS!6I^sEY9CVN?7
zqS1$m4=23*;&s=K;~0<eUFmc;op0ZKJ(YI63V*4ox!EoMR?3IAtvSsqpWCLE?E2>r
z$M;O(j=lRlX%&O=uJ=X7yN@<+W@-Ape>zwF)F<j|3!lV4O_jdq{y6vI-u<OK4;j-v
zUruYj_jX>mQeETy2St_P<^KLhO&yYQy8I`l7PPsxWECj4rtb}m*e><|L65}O1?GC^
zPxxwaBuzX$A^q^Bn*B=Q-)1a%6H^y_*>_7*^pTKxXS6p-yzV{RyvR)IO4ZVNzK5?J
zfAR5~U2f|-1;M09k1NNP9{cpVtx4iu@98V4uX-k&bgHY{=Gw1mCKhdYUP+3_dy#Q>
zPixg=!|O5m>m2h7bbZ1y^ZZ&Deq=Q2ys;_LEi6MjdP`;IFA1?N3$A8XrfKv&y#LVV
z(D|&hC(q_Is3iUUclY)O1M|N9NA?`snf1A}a>8jR*F3-8#2Fox(z#p}FYX&BWNy7>
zm0Rc3r{6tK`jq|+mR)!5-Z(qQ?Q`QMxi`y<o8unTXH;FDapzEX!OwGo&*mR|S@A<t
zeolllyX4}YkF0g-k#(Y3PMar|A3yo$j}r6k#4W4lyM227)2q&gD@49WxARo$Pfx|R
z3wm!Gd#2U;Mn{;;`~KYgQ(EpUKBFx;GwN%cc9?xRc%_&nc%5W=YLle(-IcDN1EeNL
zPl=AW+Qj*Q*=^SwnYao1ItGqQ*9pu2xnZFA^8NwM`{m(TrzE#5o|-auo8{X4+Yd!`
zq>i(vsY*RoXnU$||93@xwO702<PUX;pJ(RVxjtI9PXAq?Yq#goPY&VlzXtzo<*{cK
zWt;QyP2aVR43ZW?hjz%;SG9lei>f=c?4#MIJ({IX*Y_{EEEeIJUfZIpC*bEP9P+Y{
zqiPSYR_!jyzD*gjoy#ic9ALg2_rWV*#dbD>?31siG_`%2cjrxBLVb&~-LajQ7faS9
z-B>o)Kz{PYN%QWS=XftXG9!1<1q+jTVO3U|dm2A|%6>h?arV-s`_`;_@%PaAPa6V{
zKk6@D)bAqBexY&w(HCDG{jE;!N&mkuWp{<y50S`Oa|KkSKdC0})l*3=E!4Vv@0Q%H
zSrtq-oCD^@#(g=herDpaY0(8!ovv((o}5$OR9%wsV%piB&lwtLbanOCuC)%i#CYXE
zr)g2$mo`=IZMyku1de?^Vb}LgIJ92**|G)PCMC12ilX-N{dih=i0_8XR>zH1{pYhP
zx*x^wv*zBLa-047siN*v(ld`J%|Fqg5^wXQGyIO*8TsSq>eQ{7_D)=yc=Mc7^A~}K
znYL!S@r%zfW^$TOFJ59U&tdl4kz+;BVUzr~NoK4+*EFzh*m3ORitx>w+&>FOEHJt}
zrSnL+#LD1XGBW*(+mdSS{5Cmh9G7`ErMG`?(cSpCIs6m-AE@X`&N7m^mZp+*<)HOl
z=5nU5(=La<uvD?Cd}w{sG2{A{6{jA5GM&(q816dHA@6KP<m8UxKQpd9Sr@!w@;9d4
zVll6q`rS;IUP+s?@Pf(7)E6dk=PrxCDpr{9^yE|apNwev8>>Ht=-%3yZ|lRjT<N-$
z>+fs-4rE_o%YD{&Y1W=kO=onnl)DygPhC;6ufmV#>h4(!)Hg3$u<MUUy05;8<JM&+
zOOoQZU3#Ig=ls9VT8!V1{O`UkIDH~_+ctH5iFrF1E8di`^cU4+Gkg8|aXf9x&78|W
zZeC*)F<7u)@$X#iXKP-r>ibetSG3E2Z~i{(4b=(NbCzcnH(ZjPlUVuvoB!mub7mg7
zVZv)C)a0F9_4wKQlqEGWMRWLBf{OQ-It7^s+m?$*)^B=zBP+UYU&?H){cdcm&-T3P
z(wTg4!pxbgPapalp*~0B^@`V7t1{Y!6E2FWOb`CkcKOTFcW1e;RlO;j=K23{V)^~A
zuXAI?Q*52rnQXFJ68C%C-CZY*G|lS|fAmki5PJ7wTu{zB(-^UPO7|r8l_uG3`I*L`
z%Im?si9P+oauxnlD_$sO?Upa;o6ckU%W7fqnr5lHstcc$+dG}@f3vIN%i({@dGBw2
z%B^_Y?)JA?Z?k}MO{Bw(;E36*;t@~07Nu{SBj?xCF{R_h(mtMDpVNz?7Ax1swcNbp
z_UI<_C9NliG+!(^^H%WoqixInRqBiWo4#S46leCi$%%JW?|6&aRO+{y)T~Y|SkB5n
zBWZT9hfTUe75m<=A*u0`4QvZTuk5SXYGuZ>-PEuxrFLJF<>bl@e;#a{_U;mQLGz@4
zyNU~>*Ya?3hFxp9axFak`t{Z@?&;O)k90Y2XwUx595nsZa)&<$ns+LP2kRZW-Ip(K
z@?2Tq_M{+Tt*5^BS0h6wX$4GUF?sOu2kWuzstXhLvtHb9WV_b%=h+>v;+3zjy}k3e
zbwMll;kQ*xkq6s8)#o3+Cn$1ye$nr55}gtMyK81xO%$75&$B?`VgHqgQ@%@YtN3&G
zfA)7%=9nDqtsC;%PUzF|$LoI<e@nUjZRxf@v-amnZ(ROV^XRW1W^>BUDQ8|++B5Hu
zPsHxe7o+??$xEL<yYcJc&8a14E}8lqa6K<o{h=}8kN@w|GvQ0Fd<(qre+~DWJI$vq
z6mQ<T<w~ZD^X2<qZ`ONep4{($o4xd@Nl>`&|Kixl;<*!j?>tfqd@Nh?rBA}N=%0yw
z?yZnJ)BJyxsVyqpZ}f`)i&a(SG24fEIr4uGFTMVw(`IMw)7{20^@k2$nQ^aw-@%nX
zjPJ+vPil1*`TgxL!>eCWRr=r0ui!oS_=7#ef6Wv5Dz6ty2k%<Iw`y}&@x&*=%l7Vi
zZob3eq0}#_`G4&m%$5+|ogw*ISaa?V4yH_ns3Xyr12Rr&Ypl$Etzpe}r9WME`G>`_
z_hzc!W}3J3p6rY%e*Cj5W=Y>xK6LyMqfO7AqKVHgZ%BNp`P;~htIf7%y=KhAxRXD;
z`_v{D=)F!jd2ofzG24Rbr}yscJ+xYF|C1X_TGySiI$ztj<LLwSI}r`XZccOdOlzFE
zOMee@M{sM~kyR$IL`3b_=I(b%zPKV-yl#?g>$D$Ys@pux<_H`KpLm#c$=W~LE8l(S
zTo|RVk~7z}!ujK#vLAef+YJwMh(~VevAJFMW<{>;l;fi80Z%8%n5ZdQTNz8;P~hn3
z<hcFj#2+`Wna7PT>TT+czL9eI+eUq(W%XKnFE=i`kg%TD>)Wf_^%_g1&xZ)VtNF8;
zM{1JRVx5JdzdzmAiVTrSYRr2T;r+IK+ojWgkN+(@b!F?4e?9*iHYR4T%-^QI?H!;0
z+FM5cY}Q(Tb}MH+@;?&O_0~(L`#|!X)w7dC?`=zpK5ZDup4ppsWWM-c8-;%}H!u9j
zS5z5%pfs9ikEZtS?<|WoIlH@kyP2+8A1exJ>$*^3^jzh?*Q%?ILVVKEXT=|VmI%$6
zpk{DUVo86KLYC>yBj>f6wmhrr{9kaJd7k(UWyg%#2P^mNp3w4PN5WPs3k!vF(ti{z
z^q1+ZvslX57qDV_P0?Oi&efZlybo(N@g18dc5g$8V|Ai$=zmMLDZ3=z`gvKcmKQIa
z_~FG#rESm7Esb!A(cV63ovL|?%j={MJko3LCoE_>+1Haa*OIgRuE1m=A^9hUot@#w
z*tPFHobN2_leKW0!;ZugC-tt$n;L9=!ei6u`f$E%Re54@v0Gr9rl~&9@&gyL!;Y&&
zs_wj+aALK7#x>?DF;N3i+t#IG4`)4y>S`@MV0Pv(>%NZrGOzc~o38It+GEBp|36Jb
z%OL#aZC2jP8{0ho7~90NP2MWGRg!gLsP~QfPxqs~depi7_WfDO-ZeY&bfU?`{n=M_
zPwJV6&(hYB51DiN%&wMaMqmH_R24mz<#<g=$Gbo@VPfHpTUxP+HZGedOc0#Etnl$u
zpQ4JQlmklhT;}@36nClaWD|E~oHsvf$IGpq6-|>C^G)$ho>ytEZLPnV<;I~~u0l3j
z*T!^dXs`6nadm2}H}-cmT6W=6Pf)CDOrA{lu@Bk?^=rL6FD+4H+HL=2n~L@M2{YrP
zVxnWF=KlMV{*1q_(eAL<tO>&DekRKUE~VD)cvsvKsVRQ@*7BqGuS`xnR#Cgha$$$;
zy9>WuU);#G`jg<4`sHHji9SzVPko`hho8?({ngyGe!YDU&w<xX>z7J~R;1~CN}kxE
zzbba}YOT`btLGTG_m*ol96f0MUVo8^(A7<wjy&38l<<4u=C2Q~XYfBizNJ1sEI4(I
zXv!_yL+AY_MD`{J&R{9jS(2i%RNZdRy4;61#B8#PtapS~xW&&EToTN%-rPv?cIn5J
z-$M4P{0~a2T=_CM;i8D=k$rz(3Dp0yz1JV8`S@FY@yV_uiyze{i{&wH{Jp}Dduki=
z&AmBc{h<?7Zk_YmrDJ<bIaTd}qD#`*zinl6wXAd>d0p%;c_1dgl)ucv>h#XEQ0ERy
zj&04~?Y{p!tLXE4Y1SQ2xdxfHKPQ}L%9_0Dp@mH5%Rh63ROUS5dU3PN``NiYdEX!3
zJ-`0`-@=p6^Ev+SW@4Q$$T|PZOvSfuX9Tv}Kkq5o&Eora-AbF=JWF#TV=mU+j_B~?
z;9tH*S+|)_tn=;WM|;BmXP+_FJ<n%zJ;`jQ&#^Ox$!tcOxsLa^9{c#8{f$w0Jhs_&
zQ!-}PO^ppu7N)L^;EV`PzqU{C<lb#veAjPO-{$k&x-@HTa^UjN+q=ZdkMicYrg$p|
za7@_1I>l7+<j$QeOo{4iluih-h=_`;4vXG>qioq$zt<%j|K7ee^W9&k_5aWOkKMAZ
z^wz)sXFl71e`x2q@9CcBw$JxG|2;wA@o{0H&K6!i&KSWx-xkV7J2xqr%<9P4T6Xxb
z_Lf;0g#{a*%N;6Sf8_J;&X(i(bKKuOooN*}LwU|GyWhW6@9kIbD186VuSVQQ?7m>|
zhuJfF<G&yIEp+cO2j@dw&53)oc53~6HF4)>v2#b%(rmw6m^1a(k~1QuK5ODWo>=7C
zEi!Rt*KFmkP_MaGYJm^??U!hp-de(vx~Ohl((Is>7mjO*YHf8}8L`vy#mlX;!?e@Z
z-P_{4F>2-tpUw*!O+m`0uQZObl}<4VTs~)MKxVMWEa`ZWz*|Q$w#KdXy>d2G=enkn
z$S#%CDN_1DX)c<Rk2G3#sib-}MJ+!(Uo>m3lA5Yg;QF4h7hAbXlcuPdMw#^2hi3|Z
z?OGzDE9ZYexni}#TEF$(UV-W_MQ<csSam>J;_F7is*CIVdfP>#MCVDa?e!AfyVG=8
ze}MWck*d_TxGlmfLtIvudd}+b$q~<=I%Sbu^MqBw>c{?M)b=U4N(xUDS{wN4*f-J0
zpBL?q`tRxU@Vb=JxAtn^*<GpeYp-jXuG(pT?16nZmt4@F33^?;T!!&=|AZYqmfdl;
z(Wy-Nla!>nvF1+j<Lmvmb#7YeIjvHAv^RK<5vRJ}w89pC!<ipcGm^9vm6r*A7vM^=
zGHl*4|AV@mN}AB-j+;kh9wjE}8TMDS%<$Jy5EIhwn0iF(k*3mw2;Vh|*94_IdXK0j
z84J4PC~gzH-6`v0@R4Vs>OTdw2Np?^g3eC_?|Uh!%<nn<VN!+e2Pp~phkvWz`@9q@
z5{h({T)E%ZqULy$^-Sx}YQOyV7-gPc(qFsdWV!#jc}BHfKi{YQ_NwJI@ywt7>%x^{
zBl(*PGdC~4>ihedp7LRX%{2k;e6yZs7I<DLDcP^%w6v?^Mdw@jg706xudZ7BWbM4V
zo6Xfb1oY0QCG>ONzs+4G-DW%G?}W9SyCUSj$Z<J7Ryq7)&6z2ghR=?OrOo*4d$W&;
zE!6XE?zwrh=KU!;rp})K{<rt--xX)lw%>Z%eMr#Re1Yz~&qmVe%zQFo(TXYo*UcwS
zm@#qbmNh2ETAysn=dEV$;>&+7wSdX~?1jvwFWS5;vSc>}<rOKf-;x^QY~6iN;o+vY
ztn5<rgU@l;?Pf8mdK~AWc}~NBnagaw=F`O=q~pKXm}Tc1o_?XQrRTey($c#p61JH*
zt6te~;Y8@IZ{jy4AKr}VW?t*y9ba|vulkMyb%Gyu864H;IK&fu*tpfT=XT8ZuEn(*
zo^ou^=Y12Y+n##Sdwzvegpy9$2HnG%{jc-)y^#4-CE~kK-)vFkrcDNM;X6|lHea@2
z5t-G$Oo{2PZu`V7|5p6fG|f~^EbFTK9u)swVb1b<k-zSg?0+jTb+f9U@|o0KOTUWW
zWk1jS_0Yl_Z(ko)3O}8^RPwa9@487<(aIaX95rvBANlRbxwqO+HZEA_lXu1ZO|FOR
zqP$N%auvtLuP)%+vRh7flHzAR%{PAjVUgFm-|!W?@02=|cj2I6ndYrnUIvf6V@HmC
z@UmOX+P7)>x;VA9d%o9vvDVyka&Lw^zgSp8)8rP;LzhAiU0Hjm<lEK5n<jBZ7tTC=
z^Ht84>9+kEY&pGm*PY{<zIolASwi<zU8Bw|`Wx?gq5K7(zRBs!%Ff?EKP|ZPYh9~u
zVN~`4F0F`yo2%aRy7IYIoU%AS?O5)^n}?Wwd+9M=dBd!-B(ikb@z=#O&ux3xrR=b`
zw&?icep}f;OKb$n<hu4wnQ-!oedMGdq4(!r8SwR8^ij?)k^dC+Yn6eg93LlZbfMmZ
zC+@`;_r!bpe>wCc-s7gi#-werpIt>}sryLP3E%aNuR5JPrF2hN(9OVmyl*!DHC$NK
zarRP6-tE0-1=u$(D1GtzOKfP*)wDGx)(a=KUTf?7x6WI9#zf`P*n(NRwmsVO;O%zS
zMa50YXEwIZx?*a<dO_x)yu=hErA_K(3;v5WT&yyzzqsu3yqS9OyACdPo4Co*F=|fw
z>1HOeO`nU4*B(rAd70{Q@Nk6ATR+2T{9PNbe7yB&@3~s`h=qqfFa56dGA=YODDd6A
z7kg5I*KPRr%j%dw?g@{rDjn8aihLhD(5Q-(4(Ct(v9jH4<D*k+csIna*|EHmd3rGG
zR-GxgPE{UfkUGCW^9Ae8>rN}T3+R27{M-EVrhs_WZ<SM0VLNL--l)w`ouzpp!)&i$
ztW0gpvdwH!n-la^4&}Wol-~Bzj9=`d+l=#Z_x+k~O_>`jF#qI>lh<?C#z==aGn*u{
zFsrZqz1D{BHPe%?ijy8b^0XJaEp&O2UUbs`?B9*6`j|y(ckJA_ioI%OznPq1hW*35
zhqjTsr^q>6`7n<?t>xW5|9QMS=QJ+2S>KcYZ1u+Gij%i(3r~x`3H*6l*r06cL)Y`{
z%T?Vk<gCAF`u=p0*0q(_C9g4RuMyFBb5d-}oBaEW7=B6{OeuVo`P=E)ge#T3>-Aro
zTFtDqy*-D!LCC9xA;-e+!s4AxOpSl`KiIj-{`=!97uWN-<qJO_K2a4`*(_eAwMtqw
zW%*CNcaavX?VoqX95-6#9@V-`+B>v{O`La)oY0!vYqfQve8gSzJ6a3;B+?hxP2IBp
z@dtCptEx-6_ZxhV^nc*G+Rur-eA;$v33aXyebZjav#q|GwQ*BPx0?RO3~3i9lkJz?
z6vc0*t$r%iSmk+(+jM75(aFm`^RM)96fhmHKjr4x8?77p+eh%gx~az=axA;OAzt~J
z-Bj+mvTnWac-Fk$@#sb83X$KYDX*XGdXQ=nbK>cr7t<%5-}7+#rCmoh-JZqtQX(l*
z$uBHX?7#8;XA=Yxwzi0^JmVwcx!!5=hV0miqSKCso8OxS*QRLfpS@k=FuTsJKg{2R
z|99=}s`ox3S0nuUT=Wh1|2<oOZN5AyIb)l9<Fe}BYm1nT61yZ7B)`m<a@0&~lFUY)
zh*h5zXNpP`rMt~Blwq%2=%65Zt1B$_H=C`NJ)?4EyK&T~Q(UvZZdY}^e(F?YMV+J{
zSJ(v(PYcbo1vWp$Kctz?vhY~w?wO&dS7z;^lWa53x_3_Pz6_ytvp&x_85Q#O<>Z5*
z=gQXHIBQ(H<U#Yrl^>H?6P5g36ZiFr7K(A~n7f{L`;S*|4!sri75W+UapBQ0>6p}u
zVKFaxEo?+SO)qn7-g?!GGrB&td13sG1I=sy#s_dRE;%=e(aWc4e@JKZTJhpG(OTK5
zU+!u!o3HxKKbL1$>&1WE60UdmoaNi4=DhI9|NWX@Om5DKjVVdv?Gnr3k^Q0?-?jB~
zOY73RWje>VhOL?(Quxcuw?CjiE-8SkD=RNYtM=eIIi>9pMr&_Q;GKC#OnR!5(>6_e
z-K$xeMl*dhqhh`4{_#I5JUwwqee;I+K=$AKuLQmbmqzHUI?Q};%iT%)_a-R2G<0zv
zeE7@G`ux`OYlT+I^iRz`R6I}Ifa8B)^Ya~Vel^KQE@C$Hznu3`<Oj3=mpiwGo-^-D
z31E4rwmkXH&L5034yv;~TmJM_>(}eG5{eA5Co?_eIsUhZs?FN$a9*__$LyQlwB4~v
z&t~@~y55*^>P_$O`&+Va>{#)-QLo0uChs6`_qXtmiAU3RXH+Y8@?0;yw`HZt?Uk!<
zH+QbEkBWI$_xX9y2FBC-(~rKWnwcQ<?r_pP%_R$V7cif8Vcntg-ceG+a|idy7L&?<
zW;Z!_Bz9dr|L#Qv2TQ&eM^(|Z2mSr|6HN_mt=&wnGfe!DdODtso&W2+HT8@~0{X80
zJh^zqzp(l{9q*R^@6cOt+Gu$z^SxU++oD$&WS&}A+oD#xFEQf7)XOz}Arm6ZB8wG$
zubi^nzjSJ2vf&G{+tJ7OXDwClUZc12@ptCZR0W*`&yW*rm5j^GZsxHXixgH?^5nHB
zdGPOQEfAmOcmCrWH@TZHmpyxR?HjXfXr9CZyXgLnKc6=7UAdO>S}9x0EONEz$Fu)*
zYxb}8m52}Zw7t)D<*M+)?xzBCgv3^QpY$_)`;g06a*4Rz_hsfaC#o;s;mnrYp<9vb
zlNs0fZh^<Thf|)v7M{c{v4!<#)!x2CDI3;k7?r=C|LEM?YUbcwQWNDD|9)Cv`sB}<
zFvnZxbk_I3ZxFt6G`&Cmn{?yBGjX9Om6pYG>EG&~E^82KkUh)!)b*sVQ8vY$4gGJp
z{qugfbc+a{$vj-g`)1L!_4oH($TwY+eO*TTPlKSpebUSmF^^VCYxkuudp_UD#L<eu
z&pR@4X5U8ks_&k;`Je9gJ$9?PXkiexeWOw`d&T0;!Z(|ae)3*vxAL#jlpER=*4g@N
zAF>;K;Jj|U<bT_jho8Uw);{8WzGZvO?+N_BY<CG?uKScaGjs9Y1GDFSws|-0k)h!h
zrmQv3k63v=2=4ZMdM!DJIny>H_i*^yzjqwhO<#S)Da<SOuFa$O;*1k_YSk9l2zzW3
zH{<)fG<WIm##%|fV;{Por5iQn7e$!-nYd`@(Z3J#f0;Vv7Vd2RCE+_IRb{o2P(#=G
z3_F$fg>2Wezc!2ZNURMv+rbs{V!yqM|F<7;M-8@~n0~J%$?b3otEzUe@aL<?bluF_
zWDL!tx<4y)?6sTSlJGe#xgeR*`M11PhxgBnQx4}6-*^_VzbThl@iyD;*2QZkckWkm
z>II(2zWMa`pGAs>=3%>EN~)#QB&Vn6+6PSU%c~3Uo1NCOHnwqY*LvSqM|TRRRPg@&
zyR~Hcdg=Jv&nn-!9o{sF``fuq%B@p*Y75JKqY8Q6CEs$odryE@SU~2#iOzzSpVP$`
zNY)*Gpl5yUQo)py`r+?=O;wq!voEK*)L$_zakS&8eYs~}$>$mS=j$DtZgf6Y+@+rV
zgQ$w&&kJAWey{(f{bRyQzO}|HRakFSc%1P!TEmmNO>6SDLrz{ZK0dF^Xo?rUk}zw3
z-E>3U&&!yPKKM0%^VMR%0*ASwHoMuUCAsDZoPSqn)_e9zL$J<Uk(zTS4>^V24sVTh
zIU;^nJ?^tLkL}C34<8*B{QTjF!K}KdN1YDGQ}65U*6{e7q`1>SQ#<7JnqI#<JjELx
z*H?<1{bbGj?i2Ui-s3apyt?qD<&Q>!^Mje&rW}sUJ*IZrkn66hEpxN#^3@uO%VNV+
zOr3<LpFLX4^Z)y^eVYr|W-ZP!K7Ni_Nq2rt+iY&NBfVTU?I{;dU!NLgwd%Eu?+>nk
z<ec+sG*j)Ad4F7+%=>Y{`QT&v_fNd((mK;}d}V==rLnEKUiYPm)8F26;^w^V+p6Wg
z#C4AdtK$6Gu?OQ+Pd#LQv{d8Fv?G#UXZ@}PrLAp9<J!7FbIIqNiOF*<k4kawXmV@$
zmAK{i<LUiMhd1QER@c6e@<n2nO#7Y}`8I3keKh*rdSVfePGt_`69+Nzn{rV*<+zVt
zX?S}1>4H@~*?#N%*PnZTE^=%0No^gU!|C&9>^k$Xw!7T$i^jf9s?I`NAFRJE*u37o
zyr$*G{<d#Ff4^K}eAY1Hv8Hd>PH(=esiNz;tg<cLDg^aRzJ3q>QZ6ey^{zqB>TQcw
z%oB2IPf=z+Bp*L@2^U|de9hyp+wKJyRb45q?dAEoC4DV_jIfY^fXRnFGIw}m-(EFc
zYJ1dq2j{}?XY#((`cHlxYjXR0tx0r(!Q1-_Sp4_AS$XA$O>AIGr)l%asEnmaCmf3>
zx1JZD9O!+BFSzlTkoKjnls(+{@5gW3kZ1I*{m3T|k6WANBvT(2eiRg(`>OHZx^@5l
z?O5lr^Tv-m^LAHV+$DGN`HAD)M|<5)*KItK{6Ad##P&IV!e&I|T6_*EW$T_+>UlXQ
z^65;yM0KwunZ9q|n19b*`sQ=9spwYKs|U)ya9v))bufCpx7W>W-Cs3M8Zz0$fA`oY
zG*RWxa}S&QlkM*NOP#(qRqww4#wOjJAKkB;Rll41m#efy<KCIs>vEe8U;Di1o7&As
zxvt6cR42^+d$%_I_7wjgoc<3?U0FYho$WP^f2@)xD4k>M_vrl*nST=}%-734SZsgn
zHa~B)_rm+1F7I-m?eRps*yo`*`%1UN`&6YR|IS?T%pu0leE&X2DetruTaUd>E7M81
zp?|XarMXRX@7_msr&seP$CchocxhH~_wQWyxUBBjN9tQ1b*2}57ySSEisrS)zn|S!
zIJET7y(inA{GE99yaUsVo=Ecv7r*~wx!v(_$MbuSC)t(gcR75oT4*<C*P%Z@Kezro
zbf;Ww0sDm}etV~SmtwJ4!L(DwWhdj_N2%Iq{K#+)TOab5^KQS|*7>_Mo-KJ$viL*z
zg{l1V$FDy4{qw9?3G30msZCbr6YfQxcowy{K8WqQaK3l9*9OK}X=$#37YmjdUF^1>
z;9Q-3=Ijo~^6PtxRxR0aBu~FCbH{Vt9}^b+-Cz6ZQ;+=aOV%oDh2H(k%oh4R=}%bv
zp+_C}+$I?|#6OVWQTlq;>a0n=Mne5+2kl1olKu{zTVi>}Qx9Z{**ag!w)$nw|8uKD
ztl!jiJLhavj*R<gcRMa&>x7Amd+u!R{y9bD_d|)J?fYE#mG$+%@YmRsD$IWo<?Cs%
z;gGF%nT<yKR$IaKQun-*`<`8sQkcfo>v`juI9K7-k9n6})uN&_?v$(5Zb)D$IJvL-
zqqgOqbw&1%qC$?lOi#V)z<%}m)uL1D`TJ5nynGrh5i_+-d(!tKllGMOg$2x?H@*G*
zznqM+vlC>V)_YsUi7at@zgeZ{!`#%v)u(5!;PE|oj>oR$bc0Ej@lLZl)>HQcywMGr
zz?k>+cb)8opr~gu)}nPgLVQxamVA)v`^e>!yx{r0{U?0-AC^_Jicb?hwNUJqj)?5H
z^>2k%N5!2CURgNfL$AGhjhyFodto`rJ*I1a&yruY%kpeNbxhdgf6KSUezs;<+xIFf
zYt7b}X$xLwOcu}jtTXBBB&Oth?2$i&j%c0C^WM5uX?4`eMGdcwzux{5oqRPbVY1@c
zmHB6NlZ>9fIiG1{%J^H$rur4jF6OtNTnt5jug+fmBh31;_c_zqj)z%qe(;++O=|UK
zhN4J=s3Kjp`h(|ex`Y~yr_b`f*;G|5S+?s^WZ2oxSb5j@i5>Yjr@nr6++%*p^%uhH
zboEx=myJ8e{?D@T&;{9yPjj97f~q%ezF}CXG%H7cyS191)1NE<8Fx7x%)vG!YEH(G
zsF9h0A@YW!sbSS2!r^lB9A@-%g-A9R=osJJy0t)S%Bn4kZbylB=dWqH<u&z#SHpys
zbRm|74GP8W?HUSCRTcNhH(r_6zU5lp+SsYdOH1EuQ{A@P_U*RYUU#qEySewzMsvoa
zx&LpeJfBx=T>h-?{`=o`_hmU1rwR#mro3#76@0jGqW`-)TfLWGeS4<DN+V&ipYZb?
zUwU@*2*^+E*r%uTSW9oB-~J}MKjpXTqwdylIz8Gh(SPK8zs0fWZkfkbHaps@g@QU;
zdc4lXh)RfTN!#p~@8un`(pY45Q&Si_%L79f!Q`MEu8^GYV`{H?UY_jaT59IE(Y7Fb
zLDKef4gY;Ye!Se$HKSr{(BuUdR5g?y@oOo4&%L?ZUvQhbP0@L~{|D|T%$=PS!_C~O
zkR-aXuR~!<URI~utY=vYK1TwT#GPweB780!F;bcV+7IK@se7c`MPg&`4Zk-^Wx@}S
z$URa`lHX@M>4v|IN}S@Nj>AWc#GRZxI-j<*&6sjRwd&-0Jx)FG80Q%Oon4m}UpjwB
zu5`Cgp0fW5v6G)P<4?KN+WTAQXYDKd*T3O9vqL=R9sb(bhi_khD)yAkT54x#xGntl
z|Fr6O`NtFWJJ=kH>V(XEc6C)%c=8>d?yUc$X-U7b{1)cc|2=yaa8J3{YFEH69Hi|2
zM()YB%*%2w*dkw4Ki%EGE}qw6Uk|&0ORqxZZ#|tu{FmlUk4{NT=<L-ud?``VQd9q?
zd-b+|+Vyh#*zA@+I3zlMk?V=S{^!>PetTlNb({HDg9Y1u_*{H>J@@&obIh-<9Y0m7
zb3;sY<7Wjgx7&L^bN9)!-wbhLzkcMv?I#abzH+?g$iwFR%+B&6>*m)--drhubHV!3
zedA*eQ=67t<@2;I*}S_;{YcHvmNQWy(x-j&)gH%dcO*Nf&a8PQ{k)=krexETEk;pk
zmx{EGf77Yy%X#x;Ewk0V6K>sJFUneKHe7qW<HI5bch>WtCvS<%k(m;`bx-HTraPYw
z6>({$%DdOKhRMX$B{?UpUO6|DVei#H(IPK2*QXylm=X0;Zp%g%-5dO2K_zuBu5O5*
zQTM^|st3F4{)CJC)A<-yZQpw4)S|b+MF}j&mdJFi^RZdQ(%R7F@#0PT!3*iJ7gkR?
zr19YPq3=!UTV;LPZX}*lkyV##j<SrA`LejFlWpTp&zB-G#?F>gmNfT7={a6KYP#Xt
zOBtiN{`SW&gzq}I(rRC&!OgH6oEk5Rp3g7flzz0e>iE023uo!K&EULwwA}sv{(pHl
zs@SuCtb0&-m~Z|T_4`Zfg@hF~-v@to?Gb!3Rcwj)bIB>z3}5eD%ii98``y8#I=*`k
zf83~R`S!r_#amZSUs}KGYx^gSErsTvVq3-P{!1)*_-S9g>6vN8CmdPLZZZD5bo_`^
z%vBM)*@2ywPjnhBf1K#PGDA4)F=K1YpKv8h@9B$=-v9OgR8Ql<XMEhQ@AWRvJ+qxL
zt10Kz6ZVKLa_gpD{>z>`@BSv;qMA>yS5IFbD^>L~Refot`9hZo9jkt)7&$t6Ixc&7
zHJt16fv^o<buasJeVaH<%z!2J_PYg3Pu#6%HT$YuF5e#a;o`;jw{9ftaO&%u{54#!
z=MQU7L-$P6Y>hW|8N%;4g?=dIO`iLx^5@m`(>{vlWvga&)<vaVnYJoqZjAD8-c76%
zmx;XDsb|y7o02U4Eru&Usd)jf*GaZ^)~`33Jghw8b_U!$8S-S_#jgyf?%ca^+RChO
z+FSW=8oN*Z+d6liz-sm<eCLg_R;bqBvllt!(lDc^M49#asf_)<Td!DhN1ngLd@Xb7
zuZ2H3e~5V2UwFW<@aXPUi5x%Ae*HJ`;;b!ydAxikTB^P{Cgf1RNp5{odc{8eyEchD
zD%Wqk<Ue{?f-&s?%Yl!QPX(Gar>&YR@?J^0Xy<yBv_EZ=4ZYbF-PTMiUmiJW^5sh=
zC#P+hC)d67d7bd#kURT5H=nuC^n02^WAVHO?qyRm{yBf1eeT~})*Y@NYVwm_9lOF}
zt7gV~qPlmg7MoORy7$994sPs^K5zBBIrrCfQwQ!Z>r-cF{OVpLrku|-<rt^!%9Rr4
zOMI6ZiK$z@toJnA_W9bq#Z$G!)=j^dJpVf{ui0F?UHy($kz(mOY$vCzYR*oun;ALX
zcJsT>{}whr3pQTO!yk6lI;_-|=WFAfZTC;_<UeBdWXblTX^U=II9Ogel2)|p`$W;3
zb<5L!|6jap^HEjtw;S#R7PwElp#5IK{K>XU{1-D$^7}i5zxZ{Se?r=|u#?T-^EkP0
zS3h2Td%AwS^nZmvk;j-bS$6m|9QG5MyxvdE&*{JCt>5)Qnrh~ny^G`@pJ6rCQm<Jn
zT*vHP9=+W1t239KtC_{#!jp}1;R(i;GfX1B+@6t?acg48o5P;1+>vTWtOFeEtz$kb
zw@uJKH+lP$-Zg1_jnj+xWEQ+i*>WgTiPdv|!lh}eB6nS`eCMMOtzlWt6LNOz6X6Le
zFI69`=B{sdv2<-;HrqEh_t~+$^qx5)B~8!WnREnS*e3COnbcgJvC?v7k?Z2}SDv-J
z2Ekhn-MRZq)p`F1&K2JJ=O6GsWt;Q$`HwK;YT4#Yt+xS>KWOS`Xoi>_VR~cxD|m~d
zam3N4hIpR)Px(YSD<2q4U2(1bftK8wb2BXN1;wmp4B?qR?;P8So;}x2g*3AjEGrK&
z4!hNNTI9~>?S{*j9p2G8Z-cX#`$fhbA$4L~v>xv$VLt4-FJ=PkinR$(bhwQldfjYR
z=3o0~M$SW>jXxero_Y2>)o*g?gTBAor_}!D9l5{D)bh{UoTA$WGuJ1ccDwmfX5+1y
zx7{VDF8<A({dh*Z$hJiqljNee8^%i?D=jhD5cf@CLYi)l>(M3mU0&&?G4RZLm%Z@C
zidA3I)}54mB5QHNR%%ll%bIs=2Pg9htv>SfQ(bJNSo4yUWpe61(&=gJo~n;}nm+#e
z_=@GhWcE!5HeRVv`QF#I=eEMlrrQ^1MNMmDo_gle)K$W>y>}Hpj&U;A{vvww@PX&L
z0hO!j?tEJNU7>2vxeI5mGR`-5bWL`>ty*z;_wJpG`oB74KEAD>yicWK-t0x}E`EO=
z=NL>}a@fP~{*}oGSDfR&wsY>x>fQs_=k9&UQOC_G`XbJ=?%K3JKJw0c)DCm}=z3N3
z!OHcu_2zR~rpI*NCT4$OP2=iuoZlt&LjT=|yt%zwN||!X|D+WgM%|kqH0}HX*QYV+
zFP0=s;EC|Nv1r$tX}jbucpcnp^zYEznwpF`S*u?i^4N4Epy5SMo@u*T1v9V3v`MpP
zRCgS9)9}&t3M`#=ZPVI2A)Yq{xonl0rT$&*o@H))Py5jO?DV-(f6}V|=w)7=_SA6Z
zpRTS;iCmAWckP&X;+=D@wf2<;qX%_<X5x?QzUe#-cHn9?*tf%2D*M<%m3JH(3op1y
zUMP-w68q|o{ldxF|D<-^Iu<FH$8h(7PxxH__`4kUjhg3wJ+WT!`n3aFO+`&rjN_#i
z7S9iVYA3%#U*Oqo@t#@Q6~~uvTKQ<n?%%ye^VT2Q{Ot0d%<rv9rzibqIum|<Hn!%c
zB^k|6Gb1yU=4WpudxXeyv2Qx5WjQN)7IzzNc1iBkbz5wBtmznAlT^UQMGG!<>+IDj
zUD<xG`n^KZn=ai5G1HS-SB|JG>%3^<n>Xoy&(9N||J)B^$$z)^KmYGDMsLoPpZh+q
z_}=Gvk&?+NM^2;|wf;TzUB`UQ+{E1E$B*BBJ~k(E+wWK=8`;ob=fynq4KK0G{IaQ0
zMas)-abESJ>Sv$ByFQ-gQEtBY<-{M;p!z>qQ~v$nvz^gznA($SRJMG1{fj#{i=XZJ
zx$b<Uz|`5@tM~uBV_E#{>@3&*{Mpv6GuF?@&3n4z`eF4G=MSH~bFq5<&Z{}IZ$5in
z+w{Wz?wRF3D`s22Eie62V)nhz?EaSe)j!jAhi)r-mYrjsb1&ojtvB`GxBai#+kfix
z#mQCXk3!RCZJ4t)Wle8R?>0kgo-*UUIqe(0<kAip96KYBreWM8d9EkHXU4=c8fhlU
zr#_sKa7#F5^jLy5`B+bST#}lBzOj<=#F<C-obpLqW)M6x^Gr#anDOk&xib&%Id~@d
zUdl6L?it%>xSmN$<J>%DV?vn0dn4_cp=YwvcsEbmn6gG9`&e7#`J4nZqxXhoXVlV+
zH@9v~-)3}s#@jP~Y2uF$L`WGJ9qX_>_(wNd^Y;}8lN(6_NdXB3hXV{sjQ`xzIP#+U
zaqO}9O`mU={p9%>_fyfbh<oQY#m#L~_<t6!_<w=@@Sb*A`8=CHZ#vA~Qu->gf^3T3
zo;VfAwwTGSwAV~N*W4=iOJXqhWvk2ke=z(zH^cQ%^r3|tm5+(_@3r?cewTkV>1gI=
z%{2An{gU$y{ym>=BCO`K<Hx42r{nbh_vxxlU%$9fEcH6CYI=;C!|wCKMmzfs*M6GT
zvia4cwHG&joG5Vc=X929p&`$=cYe6J%>TrNn03B!Jf?B;7H|oFKi%ngWLN42nLkFH
z&E2+^LVD#VN>=gMPoFt&Hg9Om-gwV|9`8eXf?{!TT`?lhb@-V>gO#s{bhkgv2r7FQ
zz2oFWjyoDRp5<AxJb!Rzrt;jKGJ0?2)DMKU&wahf;>)ypiNZUK+lth7#H4FP=7}xv
zm@GHR->r5p_gRMC2QL#t9{qUV{dv=+g&n8+^uK>qtL|ue(&5lHw`y_e?N-t9x2qag
zpVc@YHtT`nT*ZHl;VcIdcgyXXcem*FqQm?ap)mn#gbsZ+k?h<t;Y8Ponhi}W&$)QU
z%@X#z*ifKnX1rn<<M#zj#V*1;KQ9E_>U_sE#pRjG(iL9Uw)_xNDt4VXKXd|XYK)c1
z8_|<1%7e3m?OND2%VZRmvwxQm+!L%5T+3PPyYQSR6K{c|pyER>j&t4G7Z&6!ZZeQo
zHWe%sNSVfP&)r4ltLLQrO{x{Mk2X|$b8oreYpPN|BV=`HvEKfd5#rOhZXTE_K1J-}
z+|c_|5-<2VYfgE$?y9JgtC67k#-A5nz2aK;B}ZtcM*oufUE7@Y38_!=%u(5~ZJSf}
zzK+QSi)`lqTWP{5qkDL+#ZiIzS2%9fzJGu3_4}tA_d8xyN^=VH3d`DY_S}XOEiaBt
zsNi^XsN2bVR{ib{wxs^blV5kfjDFLwGWrd-cfZ+@>bXv{!`B|Ko4R~?@#6f?4`(e?
zyXaC>XBMi#tIsLK>>w;B?zrz)^;Re0X*>d_TSZ!@bx)lTIwi6p-Zpye2`xXy6VH4W
zZ3)^IRu<O&{_>L#$4)b?o8R-egVAu7*D+!3P5;b|_;@e8(Cl;9E-anruq<-oLhor2
z4+G}31(*20yR+}7)J&~e4PizX7kN(LdHmArwREeRJ%{jf57jkxkB=sFbocb%*?+)J
z%R*Df(txwZA~dsRVg#GJvA@i-UE*gaw*PEg9?mPGX*gGRRioR|y0b28U;fk!dAX;w
zX3>+%kQGy>J1(8A&GNfLrR}MEtmXI1cOSc3{QJ1IFZlXHZoYQ^o!&ktE*#C*FId;F
zwQ_~lN^wQ|eF|!;UtD>)jK5*`|C{S7y&|^$wLR^7Wcr%$BS(%MZJzacO=Hr;^9S5@
z&Tmb5YND-aG^0v(d$zBCN$v}+7l#(^+G}+$`qObyraQMPk8axdIN-19juUqyKMGEq
z{BU*InzHqQ)4xmU^qltf$<ErvYI&fx=Gsw5&bWu`*qLl<LOu07w{bpXxHl)=bZbS|
z)8hGaqJQ73vVLuOYVQV<^WRI{+``nR6kk2~RO^33LH|zs{q4$ycg*|cUK_f(Y47zh
z+;{on%|wl(kNV<fOn)Gs)2(*f_e<hm1v^Wn4wlLLMGOTexD=nUb-%2V#Fm(IgR$fK
zH-|O*BQu-N?2S8cvP-RTMMTKM{A0iVnr9a73;X8Ke$r&gybSF>yS|7Ug_N}3m0Hfg
zmm8>DzmIEW%3V`KIj<l!e#ZZ48$~V|Zz_I0tAASDvIX;F62G21#hb5Ln-IJ0JiDai
z&B&5&-hW3MAI2H}7OUIK)m!joa(jlxtFuxiivrd6tu@_Skp1-ej1N2a_Sx%JK1gG{
zSs8o8VGH~30QTihHBZ}r^FL4!aZf#RdA<e5!#`flS=pz&rEbUS`7M8GJ+DWBPerOX
z%tr8MyT<RQ*)r>5Y|Hj7eY<;+=$mZ*OK#!I!<-ebSAKo7JU%XBcZ|tN-YI(7sp=)u
zU-bQ5dcNwRYW&8+qlyCDbEH{Vv}K<j6e!prdg_&{PU6X;q_=K-42BP`Jh&GXH0ioR
zT7vYsL!!5|pDtawvgGf)luM8FX8G*$wOX@?y)G?Z>+aTFoAx~F-ZlAcLFexM59B1>
z+V*d)n8>kh`L^13r$27jVY;5n!kzc)aixWnue|M#$e0dymgw1cwO#h5ww^uN_gOaG
zZhv`Z``%3x_UNzKwk2BQ(>88h>ylfiukWibIayWfueSegXRe69Y}ozi%I^Qoiz=ND
zSR}2O?a8xTXNkc^{%1i#R{YPs{p5Pp7Ekk;&1m>wl2F8)c@rmcs>YOh>|C#<apm;l
z64kziB6gFiHpj+%nz<o!^V>tN(RRB&-(B11f8=q%`*@inA7ei6o0AZ6@}(rVE_;Nx
z(J%GfiP~=emu&jq|J&#U|DpD{v%h0&YVXu|#oRvHarSrf;pE3cSEV>!D_%P_UvH7%
zQrGM6Sv9&(^qo?2zYx^;Wy18(3B0Lkp$C5^Ch@4Ktxi5syD3~ySX_|%po9L|s}HuP
z>|bP{raN<5L1AQ_=v)48=I?{M_@?@_hNTB|KjB<mwoK&iqUA64-}ocubundG;OgD;
z_We&%zWXvgH(<pP^_;|L{@U#N>t5?wPQEHQ?7!n+Kv%ZN0tGvBBV|2ZhC_`#6HbX5
zwqMnp_kcH1VDtQ*7wZC69F%`FY0;xci&oD2u&Pz)qxrTiv&3Qrc4(}wGe5?fb5$jI
zx<b^As{yP2^y;p>8vaS>j+OxHZ^gQlHOqS)bgeRc_g_!kk=Nd5ugUtzn(0N^orsXK
zy`PR$zIc+ie!oADtI&y6wFkZZ+fMDu`^sqM<9dDV)qJIyPyb&0k#*hnsdPn1!KV##
z^!9b}S<HHB|9jb`W3iEroAZC~>&@?KIqo15dGE#SW1@Vg_OTVaw1;Q7vOZ2)c$9yU
z#*2Rwo~*6Roj6~(p!nJU&dVRSzW?_oD6W;iOjOT{+m|<+Wu2(jsi`a8O!P_OIO2Xh
zdy<fXrqk27{i|!V3tSZ3Y<;t2FO|!5-`O6^U%jg>N_+SE!$DbwEc#qOp4H6pJLB@`
z%KrIEsj1to5+3l(jga}yaJJBHDZ9}VTcb%$hR#9%k1Q%=H&mWe7s_+tQQq2@=dEOx
zTd%ym^6~#kllr-0Yk4&dJYsxL88RF{IaguLSA~#io&CS<xQm4{#qXZ|<ZhVBecM}3
z^y#DA%HWuFvv1h8@Lq3TSH5Ip^jp&h)0U)EHs8y0IlKFH{HFUQ7LBvarzkD4SXkeB
zk@@?UlGS(Fb925ioWH%;+Arb%;$q<!?wQRtmxGVl=+3)vitqJ?X;POLxMh54EttrY
zd^q$<<gGnZj^FS|+EV*m?17lBGu!e<YxMt>`rqWb{>PhRveYce$lv*fJS{&~6qsK>
zw%4`Kr0Q_Is=lCi(qC)C!-=Q73)XDh)5YDeAntp?#yz{ZX8k(cdGHE%^eU~YISDGJ
zMmd6KOaAVhBqQe_Ff-3Ik!`O0yPfZTS{cb6ySVhw*NNKgTwD$T3cWFNmb{xFe(kIN
zj)VoF+e%l@Wk0v%;hWD5d)6LJTKjTopRH_s$pe;O$HF~dUODRUK|pouo}Ep*&Y#Z@
z3G9EX@s9JA#Qm*D90gwrJ(hibR(12m<<ArAg3?O1a$Pxa^DD#ZC(<_B3nJfyowj8<
z7<@AQ#o4a!)zT*a1K&T|r}=45?Ddn&zI5dLZ~7}a>&%TBUpo<p#Imx)sAuLgX4W@)
zzx<Z^)%(kiv+nohFNBD+9ha5xU~O5p|L|U;4Topt%}<#Y;oUh=_hBacft<4r2eNlv
zUDdeRo;}E0_2-fe8F%MKJcybT!=2XqGqZhaP+ISv>uLJzB`-GgDZO7MKJz%!>rUQ{
zoHh=9laoc+FR-oEe*Iy_4l8#C=?KZKmZ#2{7wDZ~4t0HU^F;9n*&2qq9}4fSY|{4q
z`Te2ZmSZBhk3N+*v95XkW#fixNsGeVvW-_RFO25spKh;GH1Ws(?YEo~73%j~m?b1x
zv|ZkA+1LH4=U+)a(w^}{{rBaMSEJdy&VR9%jd~?h`qb*5`^q;PFRW4Dl;M?fGA<@(
zQt=A@IlB}NnV#rd*_HEQeZcd=Kl1Y1re;3W`2Kd&?-28eq0NEI0{BjBOl;oZ^1V7o
z(!^;q|MCB!k{pZ=JkmAS8}$pV|Fxm{K<w&&A2v)nbF`lGw(Pyx%KN(C&EHUSeX+1~
z`4`39s()=$-)-TWy6dlbg}>GvG0uX!Pa{$qFHdBS^!5^;swMOJ`}RYb?_z$>j8@`n
zT@*QUUM6E@;nTlgSG`ypzDm_OdGDMk^XJwVs!X>;>~Y}C_K&Q4+Wv`|Yu^gHcdHdD
zCU3sKxp3nP=G&LQU$eZXD&wu^tLLfrmBH_Pr`Mtj=hyU>d^w?WCe!ZGQr_KsGDY)k
zUcB-@+F#QDV*Nr9`;PN*Nq3Wz?@rZza$fQ!)2!0fZ=ar@%s-u9$?Ozcm-x-@bG(~&
zTlFk@J<a3$uNB@BQ@Ee7U%PYZUS0RqpZ}E~@%I+Z;`Z&eUHbn}sDFgfr`^}*+x>kf
z*eCMQbMc-XZs$EW#(QY3&D4yV?3wY`GV1eu&&<DRYTxh0J6it>DpF1I{$O-gZgYy+
zKGTIN%W`+6EPL>MOV}65$L4-%Kaba5mtVA_eEO4j`fY3mtDB8ZWIDHotg;CCm~S%U
zR{Yk<RoxqfR!tT5obv0AQjA1wVpyza`0^!-=a>Yn7S-`n4(~Z>bya~Q-eXs(j_L>P
zW1_Vt8v}ml2$?Ql^sH&ymz57@o>zN#rm?ysb^W9N)pPF{8~<9+F|GEy*EwsJ6MiRr
z&#1)PM=$O;->b{Hpt-6dqeCd^^5V;nKD^$4UBhV6W@qh}Z(>7&e%+Z9mEIw5!FB%H
z*Jq4d4IaEbvtNDU%;s~tzdL5^Sv-Gs=cD>FXA5unM(tT@x->a&Mj!vQuGuYeVP!2Z
zdTyBT**@KFR__~k*H|*FBD5v6+cjYR<V$QfH8r2EY}I7_rTOmi=Xu&wQ$m#_ck-qc
z)LeO$9k#zS_rlE5U7e40wQSF;$g{1Rr{ur%`hFHKuEyU^7W)pUUU9THyI~<)6VLhf
z{<eotO8Ry+mv70q;~YNoS6s_HroK79PisHoE8r;n{N%!_^8eawU#_2g=VQjfl$o!y
zUa;Rvu0L~Gs><)5?oTw6&qkzf&FXyJY#b68v$N*mt+}VQ?}>a3v%7pM@AZZC-v1|f
zsa>gdo+H6_(R0><9UTwmo^Fi(@b2vU^H&zj#ILH5Pnx2+F7;K`gH_sIQhEMN>`5CN
zeP+0~{Wp;G4XpeyeUhDm{k7kDU0W@xx8|9id#1c(j#}-j)voNClmE6qPSJaP??K3(
zcB77*V?Kwpf0`J*dicfuD4#`G`27PPU&lJsy6idoZHm~;-h9rQ)pHLYTB>b+=hd&5
z&w6KHzx~$i<#y(9`@LPsTbBJ{%#8nE_99@~3QoQoyDX2jZ)57-oOr*eqHnE6vsudZ
zzfQ*{B^ocAG|_8c?~FfItgIn(>LQfa9qDA!Oy<sy|M@^I;N$93m0Op$mt+;1_&R0Z
zJ%3-)YuY8(hp(&!zMZ=io8J|^>{PYclIO4DJ)ci;{IsZQL9fq2KNHCid9~#?tK}UR
z&zP`z{nkCJcEp(|Dux&ST*|-h(WcdL;l9#(?5}f5cZ5B!wsib{FSSlYIn|46q1KMf
z%@VA)CztOm{1c$2bAD@%c){kdsDN*GgCE6-ocU;^rlq6Cu;;+mfT_YKKh6p~Et|mW
zQuz6Qg#Yo)hV><N%AZc3U8wuy&9z+}I>%3$H$)#j=EQPjS(~$ri&)X0BP&)Mdg8_4
z;jim+-q+je&3(Q*i*L^_(fqkn?1IE)fvEV2@pI!QOsZVqHJLlcGqkRG(i+varnm3z
zew!`pA20AzT5`JI9E<voH_quQ8MSci*8S!)H>>bZ3&&E+vuB^09<?lx-l1pG_S3fZ
z%j17r?z>#JYxhzWeLD57#JPXFzWzum)V0{b%3i$VpMA>ys_zRTQ{<vo9G`P<&7I!W
zH<p+4&EFmHVzZ-)<L|1+A<Oq?g`E#Qb??Nz%B-$D|L_+TYqu=+clA5+d+$vzHNLLp
zhA&l=*-o|?@BK7!zO$OwRHs^prTzX64gLP94z;zZse5lsH$R+lPv?+qnQYmP!vUvW
zY<_TZ()9xFxl^AWTibl))f>l0lT^7+_$2>XTz)!?`Omd`Ywy{0yk&d&<8Az=_&Wy^
zpM1Tya=p7fPi^3nSG!xh?<-pvZQHMvsmhmNG3``J;)S0Lc1wQWTw=QSLgV2t`uk$F
zUR>Owr*tg%XwRFNi`;XRYQD9~f6**u=l>A&o3-H2bkAN#0j4?ZzxT|Y=(p25A>Ksp
z%e(n{i;tKV?c4kM#mmK^tqa4H0#7&pb}swg+WqgiDs$eqCql9r|D%mQ?n=|R^;=1?
z^k09>Bk6zgH?MfFo?a5M_;|$mJB!op7Z$I$_$D*O<YE1sPPU8>kNq>W)}0edyB(nu
zpI7|-<9GACJHMXnx+-&uK}&bvI{g;8`~EL3#2nZDca!mlI<IHz?|7ZYU;kfi6aH;)
z#guP#LHJkT;Ycf!D+kU0$Y}aVsZDX0i`K|%EmfSoW@mHJzs>h@3?)4F>w7+5<ajc|
zLSrWH*M5e$zYkCOTR8cA)aG2pxNg&)9qZ&*_-~0=WjdwoaRy_Zx>KwBu~{{(<-cat
zRLozUoA)d54;R<oOEtkx!OpXPU0J>^zD8}uWRu<6WzGh<vhRQFf4ivV`hSkvC3*dS
zm6)~_oICff_{iLZ>C1PC$IqJZ{I<Hq^6#(C%4qnV%+D_0IU&S9apvtmS7*xg+buil
z_}y;$u{`5hTuTEUzM3Z^p`~{FhTCuE?IP!{YZ$VL^Hr_e`N8gY&7u0=XB+K4G^lJc
zwkz9N`~39d*rfdQH!^p`4zu4%vcI@zLTjGR{eQ<6dGsH>a7icWs=a0ZlMTitb=!|F
zE-=}?cHZOiWfdU~ngz9UFD+3CkXki0^zpXeJI)4pO^JKE`nw|Y#8v5?J$F=%_GHJ{
zuQ245R9N69_Vh{NK55z3gKKzJDXedO)hI90TU#>WgXX-;r@9J{^V=R#^A(f&tKgzi
zWOk%qYGspAs`c*PImUiz!dc3Gu5!FPr_FfIb<rdvkg;>tUKbyZMT^(j&NI$?Uz_)o
z|KO>Ax3yPvu3n;j*IxGz#|+uVEpvi$&o)mvw8cxW_3VaxW#>!DpPjuG<!>phwb=Vf
zt4ves_md5BZ>{e5nLYf*{pGCG_F&O<FO%=>)sbxeJaJXrW92soBJ7vM8(i0%?jQMW
zbz$!Q5H;KL302;IIl7%snizGRF~4{Elj-^Y{mxa2SNfmce{@36=+X`K1@jx)zeFs|
zGKttN=UaYRZ?Wmxqq!+>Yh!wE|M>V{*Y3U0c8=#e1bUa(xoC8+yfEdgTkoQ0_Ux-W
zk9IzZtTItyn!&i@URS`yd++z2RMoVZ+1xXSNi{!EIB1p7&&TXe&NZ_9?{dTKS|_jY
zIDh#1QrYv(y8^n?zpmfsmZ)#CA}GnlNRgM%QMmo{(}2kpCBct3&RR5Wid3Ipa{#mZ
zrA^-a_8z&cdYf%F&)OxnD2CNVOwdZ-l5blh|MxbT7==5kXH;vVjdYjpSYTnl{?(J1
z)Lf%eLc!+6DHG>#iM4;ecl?k2g*l9UYRtWh|8bk!yjHS_R;&N#di(zAC+GJ^{4S6G
zXykifO2$R~R*5BQr3F9wWL`a7QhT^B>UBx@1E<WNKc=Z($msOEB46Hj;qDvVPZsa;
zpHJK(EM&1MitpY7CpGo2J6=RGtDbuQ;P|IS`oTsIb*>ciKNV?R<b1Tf>)eu%@9(Ca
zyIOf^cjXQhecOJ~cB$M?l6ETDKLRA|e5^yv-xL(4b^TLcY-3ye<HNPCD__=3*)-)&
zx9-lv?jBQ<|LI%anZ|}?D#Or_oT&_B3)G`~D>);gOLvtA&H56Oy|#B}abGcS;p))U
z*OqR58@l^e?LzG-mx87-G)`#IY1xo^|6KK^b_PX(vY>5DtxT-DZf1$Ey}GLO<&L=H
zr84OyHi>+n&;DH=>i)dydENQ%2S3kIf3kni``^F!zHU4_%Wm$`w9TDQdaJjs^RCPI
z-uGk)Pp67<w9f56AJ{_MRQByq`W7Ab=Kjr%*6ACQnld*YX_2st{ZM)Pe!6e+ywr35
zuKv0{b&hr9n#}k+V)apZz4k|oFH9~Kuj1ISQ|FwC*zBW;)i>8~sz3kl-9~pYy;=P%
zwjVAybBCRN64h#9?yp*t^YYTtLq2Oiw2MBJniw=kTlAc>e3z@x%sl}rp|(nQG=(@r
zE0q%aB9w&I-J7<h{P4BXLqA_{dndL|*weL(r_;c5uBKo*r+N2gm!PFD7!&(^6sO$z
z;XFfia$0w2(#(*b9R*8+W+;Z7a*a$X@d%luI_bE$7{^m3*M$))UFNqYEj0+As2JM0
zsa0!cfX>-TD>grVbn&~T(Mm6k@DmrR6r&u&RZmXQN}cAU6V5sD$P&}+{1+=uoentq
zRO@I)q{eAS>&>Z=uXdQ)uU%<$Bxq@Xs#f69rzu@6H<OmeOj_t#bTPE3^~Wx*tfdjN
ze)GTNZs7{dYg39=3X0or-gnCWjqtxSuXuLGEZSQaR#to6|I<;er5=+$pRl+1QJ>7J
z%UNF{^)M~*PWF+={eLDMO}c+5?Y@2P!7Zt4LN8z2bZxV_|7}ZKX6+rOC!}2Zl2SxB
z8C>(Z=DQ|3Vsqs7O?9VtwU_F@w!8Ls4SNLtCb=}*Lse70s$>gh8@|@OCUi~fTGlnG
zYsG7}t|?vfbq(*D-Zf{}=&o72CU=d>wX$n`*Zi*OUCX;B7iOg0x^?>0Q@4&!+Nc%b
ze`Icf)a&hUe&3M3A@<Gl+wM2^ezPs#u55`Go^m;VZrv>7V{^~Ho%`_Ew4}wx;df2G
ztKB~9fB(-%ou_L~Z<omXdHc<WwaYBa&t~p=yYTj#;-`D=fAGqmU;q2_AKpLO|F=E5
z|L@CefpzL~>UMja%iSOJ9lZIaz2v3JLH!VoluOqZWo+51duw6FRMm5RTa7Mqe>v!(
zW9jtV<%Z$K6sdSM(dXJusk(D@FaA@@b@o)ce5~Yy^vjnEw=Z72*TKZGwlXwuD>r}7
zF6DpElIGuA$u2wPcJH>J%eUrEV%i!NzT$r1Ka+VYFU}BgTP?N!nCUy6lu5-i*1p=>
zVzx4161Ucc-&=e|&F(B)btB!BZH;2J0NcZm=La?xhtG=N?eza<=-b!4JW2Bl{7u^b
z=AGhpxsZQBwdv-<&0!PD7z$Jj-|kp@WnrtAPh9Lhm5k<2=lp#cJr5o&y5zOilfC8S
ztMz^?_MuPLS-Z<0zxy>rAZvr0cW+<<(_Y`D{*zAkaB<D{EkE{2Dd(1D<dO5&MWwoP
z+MaglX0EPr+q3%FkDCWSKb|klaV$7o=tXhH>Ev#gmosOV*{DTxd{(%+f3e!yy5izn
zKY!28`mpFS>-1B04f>ovl)hYCxP90C_qJbOmPgEKTBFUmw)~_0&lUAQPPA^GU-Cz8
zUt{6rnWvI(aj!~_{<mV?k=tdZ>-hDXSXpdh{<%Ed{L}yG+qy4#Ib|I?+wVtz{-wTn
z{ntIt64_#2zO1i~i|*bO^hoOBsm*WLqE0SXzVmCd%(6!7+g)cKT)6!6=O?C#CTnuv
zzkBg2`?`si&|~fU|85<M{PlYNzBifg-|XLL?H1kFq5S1_`^$B9zA1S*_m7{iJrVu+
z>Jz4ap6=X|CXLe?xS|`kemJSgwLP=+8PDde9Pbz3nya|NEyYp#rrWoP6)jIbF!84F
zzHB#?SZ#al<GGCw!yjnLtbH-fT+~#I?ONE}&Mjf(WeGO-UpRa=wCMYr_xr|QCU%Jh
zbME*&vN96?8P4gkB82O4sd}(XmD*?7|IF{^s~gSRQ-1Z-Z(&n~rJrKOyxgZQl<oho
z`c1q}U`~kg)fa0Pu43F>rc!?NuC}>xvC!n5o7Ls7&g=O*fAX7&{lZD}kH7lyHs-wK
z|BJUSKD{V=H9A34C)8&8u`@MQ(#66C{K;qLy_Xc*8~j0a&$T}%f37;b<KXuXeJO8^
z9Sr()e@%*;%~9fX{`&KC^3uC+eB#@~rmi*b{LwUjvm5Q|`F$JI-~TaLxO-;4?yoaP
zGoO_eN-yZP@p3yM!19o*huwe6Meh55C)IJhNd3@$D15uz-TQlY)G?lv+47ieo!}dT
z^QqGx?r++@*C&5cgh7<?$%pL+oVNzgJ;xEsFR}OI-lu0Kxg?}@y^Gsk_I+LGCUr&G
zAluig7R>sz^VP<i8z+DB$ZUBhxhP)7Y0sx;7nmoPfB65%j^Di}#PVVNoXdwwV?W69
ze_K7*XqAYO=bXq_4?K2qomk|;5nrv9I^9<O`bmzZ_Aj<1W$DKK(wH!FTa0zy<gWoT
z_qvor#IJIE6;NgO=(%3eR8pE#bW(G%yb?>rN`<F(KH7y<YTIS4P8zyPcbfOys5zZ;
zTZZGV%sY*{k5(<VnWrGwZoKZ(RmEQ%K|A{Ox<3ANF6qoa@ceDDptD{$yZg!7GjVKD
z79N7L=ak*tINwoiqgPm5c)!Z#oSB7R+aA5@4LlpdtZ;PSrs7*W*7b!<zmxgJQJImE
zCFHOG?+?pYHl{6Rg1iPEaSG=rR)_^B_?VtvBX%h5((NmKdq2LO*B@{0BkQztDc{T@
zk;vQTEo<(+(^|yyPuiR<=AnOb;vMq`U%%|;-(9ezNV0t4UYRb%xk_frQ;*l3EK=Oe
z<^ECDye6n)&9(oMuJ`!U6tA3}X8Y~Z)e~zz9e;aG$J*(x-s6(ON^QIH!iwJcw=brL
zyKh>3BJ;yvmhbh)c1>WCJKwPT`z|K8cg^1}$s0aCBAcA?No<PkzZR9h>nG^_Qhas!
zaiG0NsnQB1hYPG_exlpOqE_a8>7Kmy;P&iu$wGNA#gZF0Udd3^T048qYemr~SJ?EQ
z&12j;Wj<GpRQIEOb@SJsZ$10(wN&nrUyCn#*4IAUrDqiMOrzaPVagqq@R=_2f|SBi
z1$ivD_EZ{td!`@uc9Yq0&gi|2T^t)Gq_xl7nSZK#y6W`scbjf?e_%W^bwhjB(yWDI
zsVm}+T<wZGGWA601D&-^0*s;Or2K7d)u;7-{_=%6IDgRr+s|)re~F!cxm*7t=aJ6-
zqGgB7W}cgqq^wfrV&kM%_gvtSeajDf7rtZfWn9aj?I?=9rSNF}E9st63u&j&!1Oya
zzY4~te3DDK=XlFt=e+%A&KVYH?<mt)9-`6sFf4MtvX9x!W;dlJ+*2DkJvJ<Ea&Kxb
znV@#b=hplglOFBT6$@VHo8<ocB}=$zz=x@GKa`~G*c792WEW@1*QRq1b{ASpy}a+g
z_u$M2b#k*amRS0kbIr0_zPvg3OzoY0Cyr`9j1t_Pn=)1M)P(e#-7-`E8-_M2w_oV<
zO-jz0Robdor>;0n=JiAQN4xxg{>tu`%Q(5pt2uN-%%=432hThbxxv@{`|`c(H46{<
zhi-d*kT2)pEZ*;2Wz8$B_6q;rRnV3?{bz$+WlZ6wPb#N^`Y*BAPX3pxw5PZrBkuCC
zs2b<oMEN~EwIwePEpIA(vCbx>!ASJ)<nQLk-Z^-_Dt&jm;Kr*<JAKXxT}rs!QeJTT
zr7HJH^%JEja;GFWbVj-8E-295+#>w6E$)lS&sTfw4!wT;{hQ*#%R9T5y*e#s^(L}R
z>1f{MxjQE=T@)f~vS3GVy5?VlN4hW53%iXRZRSp&bM}Yh)b;nCUG<UMC#bkz?w~45
zgka(})8N}5Yj1OR2Z<>8_64%scyw2Jy_(aF$mcJAScJ8Bdswbi{OTa#;Cylg)0C^J
z>H@rV*)|7y%Vw^vxP0a8j<q)yHW=mHTdMn|<e&jhSnt+70&lZyKQ7ALzjQ^B__65s
z8;fS`*z@ywY+i=aZjYwz`?|lB<P@)-<EDQ_K)@;T%LjHt^LKB*SN^_xVxCNJN|9aH
z7w-5^*N;Sb&R?u3V&fv{?B{p9$H%CB%ETyzEeeZ^R`_sDKbuj?bNjDaJm1HU_m>qO
z+qv=P#{JvnKK@>mx5%z;i9qBcrPGh5ow(Te_oH%dUtM*xB469RW!EzwHP*(i;M-U^
zsZQ=^t(j(#h9h$e-<1^`QjYsywPw?;+gr_k(RAyn%?Ee(d#S1I*t+*C^VjywP#w<Y
z%l-dWYgo>R+C0_b+}Ew4vLCl!=MnhwX~u17zEE?^PLG)ROhI0&PI4(|T|C<wQfIS_
zO(t;DEf!IhkXu{Dbc_FosGSow>OZbmyd`FC%-mIHQ$vC?cc_FhwP$7Ro}=Ls;OBG6
zeaplfn?61|5%XPCPHwjN<PW@!HM;HMXL+XXdaA(O8ydIMbyEBa58wKjLuZ=OH+-3}
z!|?*kU*EsB&VQMem#_1Zyw~ftmFMx(mCREW9gTUm{e34|tem&;maJKH<DNSad^0Wz
zt?*^x-=QHcw&4DQ)skhNn=C4i2S;xgXIQrR$`<uQNBOGK-tX33KKu3Y1(L6F4?ooi
z+Vtgk(s?DP|7}tscT@P{#eMWnnXWSv-j-zIz9nR)ci>~6SDvT$tTdE)DkObl<C~3t
zE;rd(+$-4f`E+>PviB@f?RAeE^iudjs!lm_wyH(CcG>JNIDJ`S@2CDh+oVFXlybD<
zLUtI|=Y}23JMc|=R=d!`t9J!oWLIoYeRCq9{CsDI$OJq7m;J}z$)s<O^Ifoi!TrbP
z#eemG{$k2K6%ePu&UfI{ow=I3gIvoG-@W1NtofeH?_k7}FDH&D<aJGv4tp;=by3DW
zP1{d=uhvEEz2EoU{MyzZ){N4YF^gP!SN>)9d)Bu8!>^=S{}09pXR4evdM3EXK;gSa
zg09V;s{fNGy`9DSL1dd@h=Ax8=lC7V|6VEheqd>S2zO!auB{AR2J`k<Ea2uobRp>O
z<*K)?cP>oOTWK(5W^cxf9q0H~h40f?=4iY9Tjv$^Z7NTnrfYgLXd7SKrd0a8?-KX%
z-`T6AY~C911bUZiIyF1IIU}FczV6Z@bD<a6B~0;=yWF?<Pv&-+wdK7l%fi)nh5yE~
z@bA98I;vUz3vbV%$~QB16t7QEHsH+OY%cmvHzlv_>kZ?>zt?k|JMdX{{=QB_uPSBx
z8p|S+TVe6nBkwXrY;g>p!11y&^CVZK>$-mpigwo*aO!`%scB{_@c83h-hFBLYtOdN
zmi6kM=fk?Fr(13JE`IA@?u`~KZ=WirPL=+CCA9RH@;rgKXOk-~E@4Y8o9w$Xepl$y
zKmX<5&5Em?`|n!l+xOqUD`&j%*`i!lEq?c|vHA0)<Jn)<O~1VE!?Gm)BhNk@=Cfx}
z;0X=ctZmSAd#};vV;iMc-bv%oSk?8H%il2N(7j1t{>+uU^mYSVby>>)XeRrtwap>R
zIP|rzXD?*pv8!F1x6>(Tp0eO+uT6^F(Vt({&GP-6d2Z@=mVzBWJ{-K4`*_EWy_*<A
z8ymK3U3pLxJmqrhN4sCnr?cN5taobQv2c=jZ~g4y%I7~8@8m5yaeUJCG@Zy@$uH(G
z{CZuz`_^r#*{k{%+s5w^ynWJM`fP0R`+d*n-HtN&aZdbre3k9HO~-!poL%<y|EWmh
z8D25RY^I!DqjB%e<;T-szj`70u=wKSBOkWr@0Vg)qn5D7hh=SK$|?WEpn~LezPze4
zj3VwesNFx@TVHWEpkI8dm-m$_W`Q(sg&7?iK3C7yyTo|s_Oq8Q2G^FXzshxFgK7Qe
zc{Z6V%jze&HSRj&_qacwp(@GZ{_>YuZ?elQYaK#<@_H<~xolHtPQsZTo=H>xuX34s
zPhxsRXse19^Soo*Ul{MOe#6rw&n?ZI%4GUPWc`iii>F^0*Q_*&|MU2F>$Fb=hED37
zC+i=in#KNHf8pkFlSiW3r>?0PFKS@iFOs+HIm@vqx2md+(>_txcZIEJoHpy>xr=&t
zt`r1BCK_4$d~8bjCUv+{{Oa;eFQc=wKNdfCi&kg&*`b`n9e-eJ+*)sT>4cM;&*YxT
zdSfM&bL($*))e(cg=ey^-@3XZ^?KN|q@VY?QuY+BUn<aLc=W%Eql|$5D@CVs41K#g
zr2Pyu{~G_FpV`&?P0hB^q4?@iM`M=LEI|U9+vV=mDCp~#zE%9?cSp9c^+3C+#H!OQ
ztsCO^YAeUC(Y*J=#oYJ7yInu7^qNYn)@C`XpcS{%ec8c!x0DO%4s1(OjCLE(td6Pr
zGd1Ay{HPZ#-^Bg)d+_x3$-H7X^W02v-RCPj=9431x5<5fq2DgGfBo)jpPzlODExKD
zC0{(Du79JB;FND%Uni%|_TDae#BJtUjw|-;3U&$iHf(-6ecu;u(FxVt7lmATlDFWw
z**=r1pI3h8&y#1=d11Q9HmZ8#N`;vx5BFM{iE7R4s(<=$-j9^eM!jquD|RziR&3tq
zrhKAd>!KyGi)?0EREFB`<tV>yy;`xubk?fVf;Kl_g`SMqv*r77v9FsChi7VQ1<&1>
z^v}^l+cscB&hN&`180uCle+nF-UE|8H_VJm{<S8~;=Z3S|Gn*ImkG*`=D)W45TazG
zvQxXZf7=cZb;g|C6)JISEttQoee9mqboQRuj)`}bwmgo=Q!)Gh=FW||;T4}>O6t`y
z^z!C!o%zV~W95SMJ#}9WJ=iH%CAFtBHi-AR($nuEs>@TKWp))!j(Rb>F#HGG_GJ(3
z3vUO?e_;uj@T*5u!%ar2J<<BJYTk{oO#z>0XtIBgl&Tf<pWa?!`psm2=f1zyzs%n=
zUJF}$Z$8KAO*3YH*SYS&eahI8i7P%Zc2DPyb-60vzU;6v+WwU5{bmXKvW9vCov)sb
zd|s2+n1s)rw>m6kX{zz(2XQ(pcWq$ZYRUU=o!Wl!`php&wQKeD=U2&W*W#6mO<lnB
z{!4jPbj-WpdzTwK`I9p%KFry^c9rnshoW(O`TvB^7}wNxS=px7e_FOSGw6VpPw(B%
z4^IPs9bDM?D!}9dtL%jgN$tMyfaI2c^X8rG^X=dGb6uVP^!kAJ8w10Z>~WbnTj~6<
z&E>DUPJjB-ykqyx`XjfW<aVnskZOs3!uE21mvqsOx9l^|=sf$TWi0pU%FbD~rha>R
z=Y{@{`+V}DvCH{_>SW=T1*fFe?1($we?-pO==%-s>dX^+kNjRUdEWW$%OXB~`TcvV
z?XftC_KUwByZ6awzG>#P2o;EptiI5n&poXrQNY^LsKV{QZX1rjx2!C;t*&g_ef_SS
z&Aht`pPxG$<>=no&i}YJOy#<^f_Pb(*q)e5$9DeNueMC+&Al^!AKTos%$@<)n)cc!
zoBd6+@xLp!yLta)%N{nT_E`6bN6s7Gxo!C3l>g){_rk0_>y8D~J1AYv;K?{=5LYjG
zE38`A>wb8#-2Zvfa|CW4;S&@nozH&!wf{@!9d7E^JxjQrMcVA$;jw<JmDc0r2Vd*7
zfBrh~>tT4!=1XerpZ<$YJ+(<`uid|6SKBAeyDwSNs-b_+XR~$YBLUmPG6$|tl?pmF
zKXA?DC4!#Z^CKs-&NwN>q3)zBwIllc1>GI1&qZ>ZnopYXES!V;NAE9}4HMZeZJRms
zfUKK|UC4r&zM_}hSi~Flwa)uzr`yp!w@zuBMUdRg>aSd}^%KpV>IHuD*KJUFz`Nsu
z>D$s(I%)r!&jkA~@oJ0nYI)CA_n*DWY?EX1nk}aToaaBBva3YoT=nTDnI0Bd3E8Ub
z)|mO-%hsypRh$s-V~K9~u;AU2wl9<ILMo*e_GJ|ta-Lb!qgr79?ahmI-A#&Dq<Z+|
ztgXscelEJ~@<T}GV1@TN5#DE9T8`<)GanV-=<kZFoO|!DP;A{qb2;mO_e=J^cTBsP
zl=*Su<<0_~4@F-u3V%tv^Co`fG$Z~O+d@)2%Y`GgU1qj6JYC6lZjnmK=Lg~OmoL{J
zU6B31obBg&=@93wyWW`HN!k?Y?Jc)EdXJP?vUhd)T#=X-;pO)iyf<8STXex8Gk5+z
zj&%pi@6TEO{?Elz%j*+W7d=+}wR^R6oLh7J<Ks0KEVOi4`D8QI&ngDbT`RRKQQ=nQ
z8!cO5{&j03@64&S_~+lYt{}XmM#9|eiI~=@iy4u8Q$yQ2Hagx<@6FnOu=;ra-YfU+
zbjFCU@}2i7%3SW3!*k<Z0rHbrBX>s2oxRx_eavEy+uiG*4tq9qO*t8{vzAlNOy*VR
z6*Gp5yuLFZvNuJ4Sfk5+y_-9wkh5z0;l=L{tbhJiF-o%YZSMx(^mF^?C8S;Z>}ecv
zpiB16X=%YftS>UZ%n^T~`z3bc*&TKYS6Ay~u}?hyVAqyCp+8r;#Cc`yvf?W-zUp=L
zfnrtv=F2zvWsh|1+$W+KoOo~g{t|V$D}FLXyI1Y8Gub7)_1~mFE-wA8CR2^f=A3zy
za>YCPV#~LG?D?1Ggrr%{J7lxH{AzJWdS!L~o=*z{k32Z`c<P&}XD8mUo&Nk&*o59c
z4K}y#$h}})Bx<!ry+mUD$D^P8vaLg$4@iDxKmWVB>9~Pu_};UNuFmX!{J4DP<{OJk
zAOE!5xSWN{A@8K_a{J!1NB71aYw$`nkjTlHCg!}UKEC%_^XVF?a@HwL$JUvM8*KjQ
z_HN<k#PWt!j%p4QdTvym$^GVL!J~WcUBR5XT`5hn^`BO&Sp?gyOVn5Y*WZ0}qrm=l
zZ~cGEHXaji5C~k(o5{j<A-cpWXPcUkcE^R^$}tChIS>B+XP2G!-#7pMowttmao^WO
zZh8IfKht87pqbcaQOLOf(ZtBo+|G`xxTGjGF_)|2*4psOh~V_;`x%S(YF+Z0Rd;aP
z_ebxpc;#lVURxR!{%RkCsHkJWMBhVlPG$<)b6Rp*7&ryCF>LBs<g~hjEA&d(<FMQ7
z@B6GS+x30pT)p?X>p!2_(=ct@`Rg<5+dkZRe)8<^dB3gqe=k4xK1R+kPv+p`kN?C3
zw`Eoy*;M)3JV#)8=lp1cdf&2`tV{DA&i^;Hwkcu$la2mAH*T>%-Lp7<{n!5g?-}<0
z);jn7^zZ#rKm7$+^lMIim|DdW-{~(eyHD@n^y7T2f;DpeJ$@%A*~#xpICx0(QAuXn
zrGH1>On5G?Q<3<url!_XB~EISjY&%Gop~Y~RkT$#RrGT6Pu#k|yHHX3s8EfuX39DX
zU6s1{q?jzH4huz<r1%hzlpm|sK2%JMHh0bA`#=4HePi8^(!~~^9b&ZFOjD%{n`gM5
zdD<#;Uhs6s)FW(3#v7-Kdma%g4B@h$tberPZ$}}Er;mb~P``lVk&-=i6<@iJI6YE*
zRGMVDk?DQ3>l(E~9p)XTN1~E!`!-Fy(W0EIc&L*@X;Q`H8*VOw)*UzNSoqnyAK0F=
zerta6z3+aR{ipw({=544TG{fJ{nJxU7;Q@b^ZK#%iv59eh3C!uaPG)j;hUaq4WW#_
zlNU3sJn*&g|3{BM%Kv|6JQ8_0<<o))M}{o^mTLQFo3d4HrhJ}jzk9B&vQDX#Zo;yx
zR9^NB+auFO-c-!}9TbveaDqXjP&njLX#n51G_9%Ceia6*jly-#dD#Z&um8NwL}m%I
z?aqvgp(ekzsyq+<ZrS={bNdCp#B`+<FE~Ew%sOlDY-PPr_`XKMktY-7*M=srWEX6`
zqq}gkgYrf3+~-ZM#s5A{cU_{zDI{!t@FdR!!8<v1EGxZab_Sl?GQssG=fVYxite1s
z+Qpc2HSM{kh|aF>;@|(zEh%$QKg_zw^w7hAVmAghy?qVK;vL$!Gmf<?Y$^G0EaB3D
zvy2C8k8JwhvfOC*<3rod#>mC*-TVI0f$Q=YSEM++2n%_Bsd9nl1(7@bKh|$m>OHl9
z)pY9fNmnnJCKTV2$vL9`+U1(jW>J|de|}GI5uX%2DdS-0*N30uZ(f*pt+4RH>3V}Z
zcGq<7$cU?kPOVs*zWaPtM&q%xz^6tT|7vF&6!}-^=|%)*tSFxIQtpF=S25Sj1HC)<
z@A!C9^w*!8OD8(5(AgsCBRNl1oZ&2^$z$OyjJb|`RvERk#!T^jezN1~y+=wr>ZHuV
z*S)-RN1{G0m^;8%tp9DIMi~>|)`@fVTZ+5B3!P7u>$REBHf2e`!UTuRi{YB<b3g85
z>Ta05ZN}{rt;Kbp7AeV|&}elIyxn}yNpQt{J{FVK_Miy|<ZDZPZz$y6oxUl2Pj&s~
zE7eQ>2B`n5?3i2fuU$%R_uAMSbNIZf3_Dxa9L_L|{8%`fmp3VjFKTO)sF}W#zTP?Q
zFmFfCm1~UjV>#Wue_N&BtM@bMpR(L}(+zG>9;3;jz8B6tIAG7S@p6ICQi}q%lnbdj
z%=?46UPjpMRPcWG=KE}ypA-13nnQvo*{*q(wqntK_1Lo)`pi=dYwbT=^iKK6W0}&h
z&LU#v<y8)bYbwR#o_>4OUNAXu$pqnv8EU(7bRP1nFP3<;@mTi1H>G9sKKLokI^er(
zXG+k##)ns(rNge*vfAg0<b5`{lOd$*QXI&1>)e_%;zj<&EaJylFMswBIid9<e)5U?
z=WKV)uN3$-{pB0?LurP~GSz4DM=IDFG)L=t-BR+M`fjn8$Bs$OCaP++i<!(G*LbAf
z;?Oo-+<#U&`Q?2#k3*5q3^RnZpGl{xtZ;nvpy}=T&NCO?GPxPHNZehk!Em%&s=sOF
zN0n5Sot@u<e_pDWOOwdsjeIKmRBo-j6Pu6g+0y!N#%7@vhVR7OFU+Z#()n=j*C!k+
zTJ9Gr%G|VD!=yI5hI{Sv#qOS8j-1zcke=2WBC)OLq)wGprJUps`-%1W{r3z%&3W?h
zze3rn^~bjVn)Sea+w<8EFNa;`3TU$Op1bVKM8?pNoRujHZiU3%d~XpJ#TR;E|NgBv
zzBpcA`MO}{uC19LGG|5GvmLSJ(oN;jndK6;B_U%*rP_R(=1D*0C%+F{nr5&-<HqXg
zn#m50OF!Ov+2j`W;b?E4wOpF%YyCSLvd$WR;re6}S2y?1@q;%k)HWn^Y~}xWVbS-1
zYpM0uTFbZ|-dZPoJEmC5bz|RLKMUu%`~TfLzW4nKvC9hD*P7bAve~3#d7q|bA67I8
zPSG*Fxp0bB`0nBtH8B#mm~tm>3ka9Ez4@dLTi0xx;(sx0X*E-8m%J$2w_^E%<qT#)
ztEcNm@6cQG%vMTgnO3kRt6KI-=lHp&RycA=X|jI2<5apZHtP6}16kXrN&1SGF1^<H
z;`Re3F4p?yANPA4j;nX6{rpp3`E4QB&f~`|Rw;`Y&QEXG<BeuNXdT?gV;GQEG<)^?
zMe|)_li&QUJf8ka<OHK{!HWy8tiPNuc)xp@{ClM@3GBirba$RgzW=~w@w|hv^*8R#
z<=JJIB<r)FjN|T+9V@i|<(SXXG?{LqaxuwZ#TE81m7fYY^CDEghOxa-`%@_%+I1#0
z;SkTYQ(B)gIaj2#Et=wd@|n#USwr6I^2YD4Ognu>VNdCuhZ|PBdVJnN{)+t8@GD!w
z=doHJ)pfhvdgq6$%vQ~?;-k$!<QIEB->sFL^deB9qkp4KC2Q*AYb#yX9@1C77wx6)
z*ra6nS|UnG>TUKFj>?6Lzgn)@;aFt&-7w9G>C}Tr=je5cTptUA6JK0aQ*^gG|8s5M
zr2WMbAMITquanEXwS8vYjIY6VQ~vC<zg-gi;@s+q7g-lve8nr2xoO7d!=3tV^9A4E
zmd`i7`rw+is8sAisZA@sL@ix@^>W3FFXxiAEfmF%*d8=A$@%yu)7y5}a`~u*!hVv~
zTCvks?~qz~f2nAT=DXkfHQXNGoMFG@=c$OquM>Xn__;WT{lEPN+fokJ#E32YnKkt%
z51wx5a9g~wEmM8{q1H`@-|a8Iq1V)IC4P1HoY_sE#S1nUeB1i*UeCSQy#+t|Z|?7z
zb7<=2Q2k5nC(iM&pD)3(YO$R?^J}C0j<*s{!EF_L=P%5+`<%XhgL~^;&$s%QjU6S!
zwggYk`6!aJ@ScS5Z|f&v@0>Z!?f$-;E3k%XZeXrawC~aY*R5%mpDq^}UrMSv^8S+f
z!yD~=V%H1Z*YEwV^eeO^eND-<Nz>A92Nt((J^9FvY0Ay$Md=RfuP54{S$A%Ie%6PQ
z3x^L}n50;es_~+WzozN^4e{w*6YZt#R{eS)c-7l+-39O9U5|4kBfdViv=cvcvG`p6
zzJptw!(H8*XFTryvT91WrQC@H44-_D1tn|R^+rYJrd5^sz1n4c!Fln`f_JyO>P~gm
ziTYJfe7t@EYjJXMwZG!M+$ZI0&x`JB|LJSx_+s7qBkCJ^R;tT>@rs@I=j@j$G7CbE
ze&f2Md*DgVQkM8Bru%wZ3>@xuyu0Jz?o^Yu?~z2+*Yzq_y^9>bJFag?y1?!o<7IxA
z=UP?v<3yA1Dz`d37FeydjO1}SUeLc{l4hf;_GL|l{#zI4{rGnM_=U$?`Mq8~Tkh!b
z^7Ahi`3<M;H-@|j{W<&l5*Y?Bz3o?x5?0%!eBV;5l4bG!)v<~@2mkKocRhFOl&?qF
zY}K_T$`LZtR<(VvzO&UK)SCOVq{b!jsS;wvAC=}_TENKpHO>Fg%lGUTkC;UX2%X-i
zkaKGFDbMpK&zxI*Ci7dx>ge{58?t<E{@z!*Z*n}RO}&Ee!pX0mR<0J>u>9$aXvu@@
z54KHd5Z7}x&0k$&r59^9`}~|tvz@&Y;+xt_QUez<EeQ$hU9;|d&AN@|+mpp*nXQe?
z*W47HI(PcwU9IQ-m3sd&-gq_O;g)Nqi(40cdt{x}v5ZA-!b`6L_nQ}{mwdX-=VC42
z@O&Zj4u#EfkIu2o^;&=7nOE3bHm}`_w=^?yOPrnBky8HW;m144$>;y~@a)|0qklNL
z)2!m^)-V6w@4gTs-WPvXsA64*%ohGfb@%&@-%(26=b3(m>54=1-g8%@i?_W~`VzSB
z$1@8nDIudvlS<z0c`UerozLTwXxp(pLAqr!bB_dUXs`Bcc|PaSqAznyGi5r@hTUNb
z(@|Kw^;6E_>&zO@%>urrW%4nfyt)3R=*`vb;Vb`74?Q*G$<Ln`kKUZ|`TDuWohO6d
zSKL^2v(@guz5LQ7_jh$`>en88m9XH@!>w0uy{--rn6pgp?dy9U#}CP6IyLQ4UueTE
zq^KM|OUFC3#aYmF(N-~y(p$5<SI0Q#Etqqx#*}%LQ0>Ml(d%kbwq~y!Z6j9ARnN{d
zy_2{5h2^EnRs1WW(gTf{4GZtMRL%)oHQ8BD^zN)HzmGC^xvzD7;2d@5gYOCLKbdDA
zyuPE7r)1un?8F{k+w(TlXjWI+<-{BFD!6wPu6IqH|HA#To%^2e=db15?Y$lFOrWYv
z#cwD7-!5bG#d;6#z9<iWq<m9bEIn<0m!YO2pV85-o;@N*X9s*R(42hvUe4O}7LN}a
z^v<+m<2h=fYct`b>+j=N8lUx^?J|7Ax#eucoo(yon*=`!S4p)R9NzcSKX<X#^rQ0*
zp4yOk&uKo_`ZYQ6eZL=ub=+BGGviG!V^*A+d9-~`>p_<Ah}WlfovNPQsI~fPx8wz<
zjd60vDqX8A)oy&KZrXbzEze|r)~j6WJM5wbOLmyKuMS?RSiI!ds@rpG_Z#lc<JfEX
z<h<8K9mP9yV`X#s%T;bHU_F(i`}SSf^~3@P)h&*5V-_2VI4DlNvZ(k<)#|=)?&Wre
z&)(Xv(AV~66HorS@JD7b!E#sTX}8o)SnuIE>D~Em^Cb^YnloLpUAk0MuOL`2^e|&(
z(#36+FHTM>>-pOBG3R$-{^{EVHAil(=ULeMV`<_0(E4pJ7Fuj}h+i@7ncMMWM<4B*
zo}HU^fJ?3Ts%nVducRs81MRcigU?P?-WR02e#)iH1)lnPUJvGp{ax2z<FW5x>4(LA
z$KnocYhapPpZt*ZzWj2|R<mgJiTQ_`XB>J^WLNPd^@@SjhM6nfI%7MpXC65^>+T(+
ziDuRI=C4Z^OuBL}j4kTz-QyQo{xIdYbG^!O`aJJKh2IQorIl$0;WJ|2edawI5oESG
zto5}^{ED;p&3(l<cdt15_c!}Xz85PjZba#2p0VS(d*Q{}oG&Go=O1k|;WFb``#H1r
zh2;DP+}mXDikD^Xn!F@vX3Md=&e?i8q0*uYmM*E@vF@edr*F<CB_ZGB_PKMKMaNF#
zTCvbit;E%Kb1%1r0n-Y;H)h_Yf7xS0D|W5hlG*0FXi3Cmcg`rGXI|SM9^3Wd(7Wgt
zSGQk0dv9W!lnUpsDgm~OSGjM@m8usDE1Bb<-_T#=`2Sv@gw*6~OY|o{5|5U3Q7@X}
zH*L3>wcPF_WoI9%vAxRC4fFpQouFm^Y@d!%`1H~Tj5~rtH5YGooE{ysWp20NOO=&(
z77IG$HrSanv**f1mtN)#tXzGSH}{JAYu{H_CZ#Mmm~iH!)Em`4ArI!xeG3fMYIx6G
zeDsFxE1OWEH_OuQp0ae4Zwd<!-d=v()7N$n_gv<$%~w986y<Zcz5Mcf&*!cOD!aop
z|Fq4us@ivu|6KU&PTsto8ok^%&Y!K2Te0HNV^f|jQ%kqrEi|#by>OaTM}Ft*?cK8{
z{d`d2t*x_eRq#E%n5Cl6nwZ$QcwZel(_+~*SHRh}+Awv(yT)%;n>EYNy_z2OxYI55
zYFOo}1&sSYakoir{3~`;(k$=g&FXn>!ViR1R_yj>6`Qg-TPI`X<|`hTgpa#+Fst2Q
zQgb@6WMSt%&%L3?9@=l-cqfmOL&9K|uG*iiS6*ym^+|gz_gmiTiNH~8!z1L}U}0ur
zigI2?Yb1M2Ncgw9#|LJMyN1k5Zd2LU9vEyQm1OctO{*(*qk>YIrt(}yHa3YW{dBgM
z3VS(&LL4?~XY~j^mN0#l;B!aB+icgx9JA{9qLcam%ei<?rhWIXEVzHC{JrM=pXbWc
zU8YPGRTb)tD=984zW2hebZd9Fl8a&btkrkSjZPTf`EaTF(CH~3x;!N8eI6WP%D=jw
z_x>-{Z`WmBe-u$YCGEUUL@ss5J?Y#XdJ5Ay`^u(l^>E4O=INhjc=uxAvdu~+YIp8m
z*FTilw)pYx%gZLdj$vOf(e8R#Hms_OU2D;l#(#YC6z%x5m+$r|k67HHWd2w7UO<aQ
z#mT=m&1KdaW!5`R+RB*aMLgPdFmdMVTfMK%_E`SqKQ^m9Tjb%vd5%Z61q!=NUTJ=#
z@`_VcYsS{8tFNYIX>Xl-%d^s`@!CUWjVuY(Wf`wnvn))THZ61u+IB@F%fz&8)8dFM
z9o41B0`-H8PR*<8teRQX`e;S?%FZh)Sw>%_zFK`{Gi{ya<-2%UaDH&#73(XzulQt%
zeU&qv{fql6qv`yjMPh;Ht|Vn~Zk-b4rn@{WKzrrYDcoDzqP*8Gz7{O4VV<S@)Gv3D
z&5E;E#FB2BCEe!Bx@zF%5;^gt>Y~;~Iv0Brt=qTqR_kmN^%wr#WxZz2nn`Q#Z#lR8
z?TegWjYqtTnkyS`p1QIx;rpR^4-dCh^Zc)AIo=_klXfE`XP?x}tn6gzl;0;;?78^a
zZF-Me^0wZcsphxxrp9iFwSRqfp6u^?HzsZTd#U=d%`w^f!js)IH@)0scJuqUec#OE
zxT;>BJMA5xSC#rs+xD^ZvDZ6z=ge9jxLa4@mAuwLORtt1K~=Z;oX?lu^1l6flA`Fg
zw5;pX9_Xh?RfhU8UvW0g*fm4wjZSW$84J7i)Po0kPfeTF)+TmN%r<=C<&@sQ^ZRS`
z+yoEtzHHpk)uG|KM?So-Jaf?&LEVJ=T({VKEt~I5?EkVLDL=#|VvT)e<?^tlojI((
z#V%aSUL|?k^7@1~Qm1yYT`xMZ{_eqh#e3~1$Ct^p{%PsHwA)TT@8*l=n`R{6U-GOp
z*P`}c!h2u7qxJf!U!O}YI+eV`z@yi%|M2hn+4`q_PMvEgQQH(0d)(B?u{4e|>u>7B
z9RE%;{!cTF|Jr+f{nS1CZtZmoYx$_+cRtTuZQK9riFlQ}xG!6J#6;%px;zbybv&P+
zU0C?f>80Q0yYG^(ma@8rdikHb=K9rJ^y4j0eX$rb&xJ-S6>9nGUe6TT%lZ95!N0f4
zzxrMu-*rw-L-)$GNxY|nR!w27P_N?@f8gZuZ=1PD=u}?4;sAZO{fqjStPptbqR;B0
zvih;5$0>h3ulGFfCzhYjjt$=@6LvVn-bU`UOtMgrvBI=Y{jlrXm5t;@Czy2juI%~g
zqf@a+L37G-QB|==iQ=jMcLdDZzg-~f?e~>lk9LThIN9k_k=?8#Zg}mtkoMG7J6aO-
z#EmE0_vxRxw5+Lij+SN*duV1=<SqZaO`dt3FF&qau!(=Quh#P}hs7(kfB$oi6iZuk
z*y}3q)~BhuF=9z_yWe(Sc4E9S{ra>wk8|q-7JjYGu-&M>%3nuC@cgbP6HX-ZeJtTD
zIa%xA=VtRv)$>XGd_Rq+f|3_KA6&l4I(KP`+#?m$C-L{h_`@e&Jgu~a)w1j2{-~wX
z_x9)A6_tA-9r3<=j&@s&?>sffbv)laJx+G{wR^b5E?j5z;WMj>V&KY`!m%Q0U9Ars
zh1Xr4rn~;~GTj4P{+v$w^40X^!vksd`K}A*m(PCm;Ni1v&CH%cO!YH0Ob_YE1YMQ%
z{Ly`1?Bu1SVum2eRNolU#>hm~#+%|SX{@4B4Nk|*BGpq~xh((E#=@=T+!U*}NPMH|
zGWEpjJwm(xw8Xny>-fjM$z6LVt7?!<rfAx;^U=K$CY*bJy}TT~-EMA|deOE8!bhx9
zyqRV>hTXcNm&@N)k=GXBGTphDVR_S+mYyebFK<t0OFjPlh^mvw<QeO;9{M?c|F=nK
zS^X;>&lnCCmMsV3<U}t#{k?Fm`5MXfo2|c>td`UKnloRZEaaBT$~Ly0GD=fq!Y*yE
zdjECX`~5dQKMbunu;AhP`$v;4t}*ieKmF%>McJ2i%$iSSe#hnpyIS)vm8=ft(zfn1
zna}?0-rBdDD<fX)%IjtScC<T{)AJ?U4z@S#MSQkPZg+F@e^N2h_#6CW)n@B&B|k5(
z_3wYZ`^)XGZ$i8R79S1TAyD(Rd0nzD`}u>%&)oePZrJN?@jl|n#;}lt+B0^2XR=qV
z&3&}c$XMTaf9`!z4VGuW3U~7J7tY-Mx5?>{=*`BPuZ^!-3LM!meG=2Glh^Kk@jot>
zAG!VF(TV;IHx=wxo}Kzsyg4lT%m!A^1t;%bmWY)X5?lCf{>LM-y^iZ^zTPcwQ~0|=
zI8L!}|7C5lO&7{CcQZZO;rhb;mxI?tdvTX`=PJJ@F84&oX_FXkE=X$nBxGf|WbU46
zeY~oM`AuAMYnN!xTCmqvB<bf?`+JK{&-P^caH&j_Z&9E?RZ4D$`&Pca&Yu?EU+TWH
z>Y6`?^SVp&_v@S5iya@#+-W??adp6?BOg{AWSdudq|~I^RKfCU|8Y|x(-zq$S_<|4
zffw&}U2BeKDE|KA(pB#1>*gM=ZgfvAxjxUfH8tSe7OmA&WTHg`#hzQgel40Iku=}l
zA?aRNhMJnms|z}F@7`Q5_<!r4*Cx$^URwgYju^`&&6>^m?)Ifit1rH;-+ztWG+=7r
zq)8L!P2}k0saDyewP@+mU1k3*=W_>t)NWat^D%5rqnl3ksg33nuWtT*qAh-c^52B1
zt2clC<^R9#<ENL=+x6DYKYnxCiWa%KFJ}BRY1|sMBbiHopZoGqm&tZVPB==QeLu;i
zdDCX$SJD<!+>^yVbAK>8@Op;Igz~ZszOaH>%fH?)x82c@^Zs6DzP{F(v+Y60I1FWr
zlm#xYzqr__DDl41hoWgt_dj)?Gu>;t_qgNn8pGdmhGkEx<<C5QAggjOcG}4e=Hjkv
zBlx*zWcJHkv@m&haq<4bz7@`|9&S6_nS6Whoxb_D#Sf3nwHDu&|LpWf#g|#)*DYmU
zTUDQR-@9wI_`AEicNOlmoVS@rQFQKAc|(^FpQfLkB1@B2&(2SH-C6w6L#OTo-=dxQ
z5AK|7`om(AHE*$UN|XGGQ<555t2265^7HkDweFBD{4ZIUAtKdn_Gz=-^mUOtYgbNw
zeZ2f#y#0Skq4!5)G}0Fsn4ES>esTZ*$>bkfuGSaLo*BzNuk?rh`DYJ*U+R8%eETmA
zry7e6?K?G=))&=noF-0~Cpz2hhFk2qb$J!v6q7if=e^i{S^bsBHi1Xt$2@lL;S78z
z|Dq!Q!^CnY!~VLZ-PWA1AFT|VTjcTV!}^j<a|}KuGMoQ(cyG%S+qS8CiEv!MkSVuf
zl4ARXScxCS6)gc%FNtz4Ops^E^7wer>~E;ie*@!<e|_HP8eWUwi2r;->g<ASnYGSN
z_1~5H#V0O0q!W9kQcSbB-%u)Q^(p?-;RY%0OD-su&%Ntx+jU|0%bSm#bbdK-m7B$s
zt=kb({YWP!@!gt#O#F`vL}cZ2;<hb}U%916;6e_|BKx|E>GPX*EwQe>e)g%Fz(wP(
zwBP&IlyN@HE^IGp|G#Udj9jlshRoS0+xynaJ?39IcPm$wtjcek_t&q({d0$((!tL5
z6KCFZnE33UCdPf{_IqV6Ux)Q~|G$i$SNl(J&h5BoQ>3R#-{$jCHwpQivFFGgKBM5p
zHRW61YJFv5JH26s$djNwJiLb=cSbFculs7Q{9C(pQFT>_mzKWZ-06$T(-nhu%Y0jS
zH8Jhps(0aTvm<ikLq45ocl*ZQ!D#%G_3?%yqPHhx?9tVbzkK2qlU#e|;Z-Vq!KEjh
z)4%VPyZO@ki}cr=Jrl}9ejT_IHRa+Ru07(c%GRCwE~Qd$p2^LQ@BZ|3gY2gTH+40x
zHk*msR{q@f#GxpV;kx}Hrxm_`PX#>gNT1AWZjsoubK``+drMDvr+<(6AEAF;{?g|C
zTq~WrN)jd-PIHa=HT9sgMb)m2`chKb`$a1+ze#d#l4zc|<fFvn-w}t5*t{*nQVpgZ
ze>_3_ltj|X#^Pl!m`XIl)32{|pIUXz^Mu>VAm)$7H>Rb@`k2i(zEv~BukQNoR9%BN
zFMs;kFFg68cc1*%8tX4^VLms6gZNeJJ+e)fEM56`Z**-}t!I?G-x2-CPb<FKZ|s@y
zn$_Y?Oz_bk@0x=as~-7vQ|Q{lbr<iv^jsHsMc}1DV8FkWkK*MQntwf5UiZ}HG)L)-
zt4^C7bvxGCxpwme9XoKvZGPB{Ws~lmyZ^R+a+^j+(26S`Cu%ZI;Fx#o!YbRJJF6Eo
z8GgAoVa19EPp_B#{c?5jWcz|cThuxis?Rb|o^bBFzOC1l%@>`z7<IM=xHAZ@R7&s^
znPMxnc%|Z!w+|!59^d*smGPM1`83JAf<q@9ML5>KI#s&p_1=t#_rjNUdEeq?YcFgH
z+O+=Uo3B+?T!$0`-*rtt!Qk|K8M~onNmaC)YtnJ9EzZ*}&53%(d#37go$rSJ_u*cL
z*f^ff)2vGIjr(xX<I|zy$z9F)j|?L7vH}C7MI1}x3QOy5GGAGwnf7b%zaI-MHOu;|
zFFv|=BQEH3LWkzZ39~aeGjspHlZh&2-4ZDOXgW)$&c6Z{7pBcAFL;)oGBR3zML>P(
zhG^&O>)PJT;^mp$9`|bco3HDdYZK1v<*&O`^4ZC6ZHmEWmnCr~2d=723EaMlbN$h5
zCFhTVcVeZxt}QYx^?kvyeSrtp>w}t=#h0GF_^|z<ZNN3PxgIv$@rT?Cc=e{v(b`?H
z;D_0r_GLddef7D>7r`XmduEqMdr;}3_q>OWU3m7~bANeNOZ<Zkul%)ch4ehuY0?zY
zRpRM#yYuUv;eH3@((f_<#LOj^{`0W6-ILON@DJ~jM<>*#Y<#o-(*29qUvGc${Z%A8
z`@)Yazc?5yDOxGOWZB3wd&-n)Z>8n=)cpzzSh<2;Pm)f09U{uJ`^w9T;Ny`>=KJTB
z&)3k~^MzkAO;$tr!W@ms6J+ytr1B{2Ha$7RT=dgE=j%?&TUxHVJF`?6=e*O4V5{@3
z`|9}i<<$c<m#$RLIbQErKRxezNo{*{*PeBk`FF=|mwsBXhcEYX=efHs?D<`t-;~!b
zxBeD!z_Bts;9#}sIZ>m^&T{EFDSmTp3g<ct-LO{H*U;Z0*TwG9WIC}$O6XG1pQKY|
zZ|D1aIGN=C<B^NGUE3AZSMkn&|602_I=iO?%(^NNDH$#2b!Fr4b-jLb)DsE=fAL#h
zwKUzwc2-pGaB`Rsdso>y5v}5GYk#(vll+-2nQOj1ILI*fk8^!jO*dzr?vpHkcGV^C
zpNV_1Nq*Fky1V|4)srs|O<Gbr6{P-Fe={jKqifrx{MwAC=*$j9jf4CzuZQOsmB-)x
z+#{prBa-BD@_oAPvX3{8zqhOY_Cs3b>4nFPs|;73%~JH#5#gJ1TgA%Hah`JKWAVp*
zExoI5O74DB{GuoC>faW*^b(hAmomccO!k>^gMBT_{J*J3?Mg4OeDe)pKN_1cCqOOx
z?sxWWx&}E(OKvynMICM5&A#?S{2VEdZywp4e@}eRd(pmWRc)Gnn?b&4uiE3!*D6+e
z8F9EaS$Q`uUYf#Yl^>g`HpOyR{F{^exHjegN!vVO-mh-kSzi3}BtK-`s)+lMJM+kX
zi=}g&SNpn8Y)lvan)Ib}`<Lmd%W5XQJa)rGdfU8Tvu)>DrR=%ov-QS4e-)PfU+w#@
zOYSnY`m*s{-<;-9wx;#j<`LrOPb#XKSMoPMne<yb|MAD$Y6t&Zcy&T-ozyI^t?df}
z7HeLfmZ7y!WQKnKyRyf!AC?u^bfr%gi;Mp{XE%F#)Tu6sYb(uGSicrA@NIjLoNnU7
zrPcAFGwp`aeu?>WSQ4&P%D#E<P)6!nlLW8x8OOa=Dn_3sPGiyLW%ayxLef4#J5Rb|
zWvwVrRMMyVg{(pDzlvW-aF{b}?aJnT7bLIzRH5#h`4J)ACp&VkPHNr#e*VLC-gdi6
zetqioKAl$Bmb>ni%lwyt2ZA>WG-zbb-R0rR5^J-><;a^aeo9l#(oZhGKPUJ1%rzV3
zwKjh)Dk?UyoUn*@WvDsR<)GN>SIh;sJzo0S;Je(m%1=@k|F7R>yV8XH%c6tqyP4VK
zZ&)l`bT>pN&WZ1@{I<uMU%oldt6bP3a3tU7u+I5qiMQSJ7bV`Ye35tKzE9JNh8K(P
z<SM`XRG~IYIrVnz_WB1~YI@(@X1BV#);rzyPLJNk@QJ*ME6)esysH?uQqfY~(kScr
zv?mS`EZu%b>&`6*E-7U$QJS54KT%W8^l53)DXEV+LRGB2_TO@q?fHGDJqp_O=h#wX
zs|t><-k;2+tzG;1dKDaETt96Jv(WvUVs_-*{KuBPw~elbu(G|dJ!%`=*72@t@;h^b
zQzBQI-FO;*cL;x(8hrF_Ox}ZiKeQ6EzK3oRJm41ZTD)%FuC6=lZf%VTd=Vb&xbD|A
z?I#r$*E}^u-z-`C@T^>n#v8A%+}<arU$15`PJMW2rVY!qA6MH9->eSFa!S(BP*@TY
zD0O_p^vO0;6{8clKkF^JrZlZ4Sib)BL38dZnQtuFVrlJf5^r?+Sw9r{5HKrx!P(V5
zdHwc0XD;8~zW?FF1gGqzQeV!4JI&%Fr@HKNaV{-o?vIsOGTWwnS8<Nv*2?tnKR+Me
zb^eRY-KXdNb1Sc$zWMoUncX%ow;pxp|9qkJ#R*H^;>Leskq6^@m~OD}GUaRAzPMQ*
zb)Zq{W%}&?^H0SNg}r~0!nXF0@Eq;EZCf5nPBVMsy5hIz{e{Nrr<AW3Mo20oZq`XL
zXqCHAq|$6InA-kF;OoA5dvz*iu|Cg!(Z@OC$5q8wK`qrExSfxw`yMyBCg?Aa_3z2u
zG-0QVCV@cxD9@7EjW@RnNcp?zSw^KauUT_jH|%kySpKZcKVtI|dgsmB6PJ4Pd&T~u
z;{w|EHhozkyZy!P`HI;#H>&~;EEH#(E35KLVe|BgGY)?rN;-?lTwZ@9xvj@u{z}7<
zxu#aTH}CB*`?FzrtJbDTLQIxZG*+^weB~2oh$~F|cd=b0Rk7s;)1_u7$#30Xo^f<A
zt6ey9ocF@9$8w$vF3su7_f>V6_Hg3n7TenYFFFrzJt`<C6XrdMebtL+@74bHYl<1O
z3zR<Duhg~o-lWiXf2%*e{3+j%B>g|$V`jydCb_GVEVOxIa;@K5rWqK&HFeTVp6BCg
zvS_}IWAYAG)*$!kN6($pGncO|etPQc?C`MjPjU)(d~~R~m}9T#eRIBn-S002Dl6*Z
zIYR$meW&~7{|kmU5#Ia~9CvbsOrQLjQS0m>mXVo!W@6=?+Z!(0+RVwExZ%2Qg<zzH
zZ-2EIkKzuY)Aw?IvoP7K?5h5*x%_LU-&%%c8@FZcSM*x2d!h5;lCte3D_q>In#?y%
zc5;5D__OZ4*!(}LOHX@U6FIE7Y}vxUlHUc2m`x3D9XNK-IBmVBt(${eQrNEWspc2g
z^URaCyxrga@_)}?vwt;S@k$FV;wwM+oMYXS9V(w5k}|Dr#??nWoU_xWbRP|v8hxk8
z?1A$N#fvlJzi;PDX5v)r?b_s=|B|;cVQq_U#+)w>97_rkCrp_md~So&w(0pRWM;G$
zES%@AWpeqGo%+1WezU!{0&<7<+8@8f_OEMkrq9d2`4b-hbiO<F{F&N~$0t0W{Y$yZ
zEQ7=6{U6WpJHDHb+ee6~&*%UBy?Dht`<(*WFSoC6`7^cT<hf7BvM#B9c9L2kBT+nm
z%h~|WmM*DQj*SaM<4nEvj%{+VwH1t?*P$1EonKMq*rJ8AGE!RiYfUzH(7kcpiFrz?
zlJ=LWYfi?LFZ-(9!c$adx+Xtm#=~jP{V&}vTwcmI_o~G8$#=xc?G`7QpHK{zeJ*IH
zZEdMNO(uQ&BE8p>ovj`f+>+T}^-pMDyu$i(c?`c7Z&<$NPt0TUSwXp`ix--9vNCS%
z{+4%7_&RTB06%N&^b7H+U&XWpIA^Bqn|!&#q{t=7<l?Twm)h8Ca+;*-ep;WFiwfs^
zcRr%vuIDQ;|0Bv97k_=Hct^u<;(8{fpXUYtsxDg_x{!I!ff=`&b^DC=q;K#}FAq82
zHY-V<DT}W=bL+ziY>~5GoVwDq#%%=)zm2QdcH1J?DvM6HYxllr>AS3TUw`@(Z{Jg~
zr()vHs-J%^H{KF>_2ti-XP;y~Y54Ey_hl9j!wIfxdsVl$@?smUSFebgc3CWP9gCWY
zmfDQ;?7g?kz7@=O_K*K-YT{ckIdsxw$9>yU{0jv`W|sE8=#kqh#MNz~_4mZ5xEb<#
zlNMyZaQPXh(PH$wub|`Mhw^2~SIkZuu3}X6{9sz6q$d}oc(ATqIi&D~`DUj1i=FRY
z57@p_v^8hiw$?0;fMb~pxuqn&tZT6-%1i$IQ|yJ}KB;587h2=47%g44<;bUx4|rxz
z(QZB{yGX)E&86v<zTeC}*2)qyZU}r(U#Zv>H;dU?;gE$QmszdQ9pO6ZQw=K(ln(z1
zObeMW5z8~-pHaBc56AoY#j4HnZ~k74_%gAP<58#Hy`>-ZZ^!yEgr}QqWUC6>nv+%1
zq_UWmvC-F(MdtCQgX~k>xUW2@i`!@@Vb*xdBCLtO&TzJ8h{Sm>(HibMCu}eNNYuU<
zYkExd^@2|hm9>HHb=rnEITk-jI=EBftp53{7w!~jo420jW;Hu}Fs&tTN1aRh<hGj3
z&nBijTg}YoE?qk7PEzl(s9+tQ&5|c`D>6UrKmJdCvZd4`Y!fl$+?!)&XpFK>b!#Mh
zNXYeT`yL;dyIO(i`bEX3aYEj2HXe&e3KwzBX<(I>b!;;_9N<=U-}(JsPj^;svqg@{
zoqlf?A3O5H<lA#^pHGvDKl8nh|36bw<c#;H|F7d;r>EWBdhSm3_j~E@^XseMH+L8r
zE_6}4c;Tt{GyV8Y6>qrM*()1rj{Pv5chBqp+k?NN<vHI69NMka_*(r#(!py>ZnMV!
z*8LGLb-7&AYf6smx{&V*f4?>^{bw~h=0|;0@D>jh!*Xt}Zmyf})`e8~%`+%`bfxvv
zfe#7s`SPuApL7Z@?~(UkXPk5QP_DSohOPJCy;Bcw{qgfw9{-08TjxJ8I9Rqc#<lLt
zR#{d44W*yI+<f;wRr~v<*ylU%UCVs?$TU0m?KKOlwNchphu-JBi(EH_{r#PH{yrx1
zSM%>2xcT?l_xQw3$4Z#DPQ7*Se*J=3S?b%qEoTczyW()FNy;TMC~S)9(V%8cP16=B
zuag?muXJC<b}g=WRhuPYI!DT}cZuBsx4^|K4X;FG*_bx|nlQ`5chRzd;FXzI+^>|p
zO3qR<?T>QMT_P6Py;60GENCL;X7FiE_AJ$>9%~nc1!u3=dd2EgXVJ2l6<@EgWhrls
zoZ_SV(!End_*3xejHMdBSM+vWI=^VX_kOXD86Ptz^ZS0A-DlEk`d8noXP<(kO5yaH
z(>Y0cU*)guPiwf^kYs%B%;`5Pb{^T2`hcBzGP~WT6Ot+BD~<)_yi88b63q-vv^`~Y
z`IqJEWAmhJvJ57jS{lz6X{S>A;>yD6wtW+Rp31v<X5-HP)9yyM-<SJU_Ssta{?BKz
zA9t4ru5NXHk^fXnaMo&J?$dLY21w18o!*?ve@B4b{_t9@+^-Xvw_EYcWuH5F>RdCE
zn*Bzj3Bd=xT+Lo?RWD;GDR%JEqr&*U*D)2x3(XC_-kkb#Pu!B<l7d+mJ1^?L=n>I-
zTea`a&ttFW&*5fro42IrxuTK1qQ2nCWpYPkc$#-E{B}zBU9tJDoxhH&s~vTc5uPp^
zb^hvsy~fMsYrf^)bl!0+LZNWQh6xg<;&ONW`midZz_l)D#ht0MXEeH|r|z$b3+7ll
zAvbuTUT9(AgejAzG_8EP>C0Uy-7CgBH(Wo?Uh~M3<I0WY?ELon-KRW#`<dOA_VGMc
zw9?*X^KJUpP2aC+EK+2elyk^SNqeWwiBl&|Ib3m#%qo~=%VPBL!RB)PH)o$Nu=Ab0
z>-R~k$hB6opBh%`Xs&&r`=KG=h;mqq*}}l2FV1tn^n|yscK>irHtuU<ZVca(j7z4T
zrwY!06)e<z*tsC(it0mAUHjTL9}Dh~(%_P)85&|W9fxo2RhV^n`U?sF51(?Ho#bK{
zao<|lyPaWiMOe?fm<ii{UjJRm`s;V4Df_l9SIxH<*lx5@?h)pW+s`}wTFcayVnqS*
zX(HYGe|=|)tWjCw$h3Gx!1Us+6T;_(HthSA+o-c$#AL$Zh$9)S7rOdh2WTI3QrO76
zR;IBnNjS$!Xn*V5kEi562Bb9k#4p-D!Pb1gLzlb7gMagD9yPEnc$jhI>Hhfrb(K7F
z=OP=z7HmDy#G>8k5p`E7m$%6yZ&QHBbcen2;*1{)I|Ki9-(|iVd?oW#$c>XLxE5va
zWZtlU)v`%1{}pUfG2$ruan+f#f76ReRT&Sz8YOSJranLKn&Q&Fy}Cc-Cz*L^EjV_X
z+lkq7%@TX-E+4sf>oRYb{}rk^udq2VKGC~x>(RgIXMc61>)wq{^0xSvnHn1@%pdyE
z(lau(o&Wk=hG*G#pJm$UlogfSZ%p2}TE|XNk@3ozzABBU7s^Yr<KD^5+rg%qJ+b@R
zuMd}>`ajf^T5x+&aybXrmH@7DS-;(3cP(aqRy}z0?auh5V4IAaZoB7ReYm?kJoH-O
zgy}&Ord*C%-<p%KPVQsTV@J8C&je*e1m``Q^=RU%OYi4rC|`TYchO!pZcp9OS)rGI
zD9o7sve?Gf*=>`at?hh9U$<v@p`igCPH(NB-jqsdZL_KP6Z3xh{4Iy9k6dki-cWPI
z$);%PHnyf&v-|6od_VI1X8~i0fyy%1)+AN2l)}IXTnl|1o~<k6%WSj0wEM|}?S~({
zT3S-byyeCHr?T~zB*kpvu4o;tGx_9v-sfxFjdiTLvzBcAH=FP1>l^*7^;_J2J$@s;
z!+tySok`m?CATmg^@uxtaO#%)m_6$K-70UMYjNB<J=HlZEU)hJKINlx58ScbQ}J_-
z>gu!)?;ZrLdUGKo#q#H@FJGJv=e-V@>X`T`<NVBWamC=2uZNXY%vctEJpDSOY45dP
zm#a0N&70g8tIndJu4y#)56A3+*9o;VW|wnrs{HX*dD6_?3r&m+6;;~;xNfh~2sXJE
z9%dr@)!LeAzpq{M2Q``IBcJP@-Qf24a(H`&f_?poo~PMjeP926{qubO{2hP4dj4*m
z<65`k!ctM$Yo$U4+AXu)-aoos;*`lE!1a;IRbs!Z5L?$avlXkJ2dM4My1A^<&Nz01
ztBoAP?3o%L@@_A`8GI^LNmXc}s{Q^o8s|OQg_iNJE9tWeanXBYp}cC}+}m3h{qecE
zRJovar}bYxv*XV$r=Ne2aB}I{bS24evubbrDK(fZ`8S1YliM|axqT0oEhu|wbv(D*
za$D)f<l`&-clX`hb@l14M*U;Cmr}K_oqKY_)Hr<3zfXUjKbNa1zg4*O-t=!7hra3u
zDt}zc7kVeTU%)?Z$|4D$yE2`=?mp^XzVd!bUrJc)v|rhXwBEcqS>0KLB_l+2X5`Gs
zfMXk8&FYxd;1GJ_+*#e#0=@U#ngzOJcDyWKvika(`NpSRtN-4c8hm}H_lES?nZ@gj
zd>MC3bW1OETDGeFy_}#}|Ecb?2dgK}<$3Gq{kgcSc;TtE?VCK#GF}vuY|c;Qk1VP2
zVOrr3Dl>g{i(Ha@q@P!u6hm-aWYFR01*PWs_eHjHo=Z{;+AwKb^#MJ;{R_$~8<t<U
z(|9n^LHvy}PuKBTTPmG-+F7lR&ED|3PUG1{?p+o3TR!K{Xg&98wRc>NSY5}T6i&%P
zsYTi`OT#`a(CRwv?@+yQE|2`t)suoB2`ipa+hMh;<#f}UFK<eg)Gs#JuE4G(Icfg+
zEr&R!u5kPy$jxaRBH{O#(W%lYIA@;zjU$)#2}sX>(9d2n{q&*CQiYSptu&raJmFBg
z*6YK=)$?X9;w-sZ5iI{yJIUnU(~mY={JPe@uu{o%6*l^AEM*ltalhx}1>wC+TQl}v
z`?Ziyv*etW(ER|DXs-0V>wIq2u3q<2r^IO2)bfop4lmqt%Y%7oP3(4~73Hm$GQt{P
zZ0^th{P;rM%JKzwCEhV_k&C?W=I!pO+JAp)HLdfF%U)J|Lx^?J_RMQf@(wRryJzE!
z2>A;Olea&6ePg+k#4nd!>H<kSRc>&ubo^NH;P*<y13t4pYOj=C{QukK+I>>*j)o?j
zKJ(!21a2ScD<K~`rb}qC{SM;nyf|@RSC{VB)eQ%oH%RPnp8ja*3i&$mlM`MZ-Y>Z#
zARx;%{&j$z=aqshs;<Gy7aHDZJN$01^r}~3-)`y@Ex&l-{e|ibt&=rp)*O4b?M{2s
zC&S(slb1Z}{OU9@rrRuI?fjP$wyukPz9{*>>Jr&Wc5gN9x(xCR^_+@QbU(IiFxz|c
z&gXg6iSuN(xk+byQ|KyQ)XU<ScYoTJW6ysU-ThnrHsehg+n04L^U{7xa`OkiU--YP
z?!rPvm%R}kLP<;3t3+Iy*vP`q%fhdF*K7Yh(OE9y=0a~yaI&v=m&@Sz+kT8!ar>lS
z5zC%0E{xg|ubp*yq0u58#-rZRPpWnqzh`~MXjQlEeAChcXXgGk{>9L{@9$;ZecXL{
zS~DiE^W)F|8~a9N!iv60+FE<Eu1`EMlV5$$ZXWADJ*g*p?3vkTojx^V!Jipb&2?Wk
zE?LDF_4E1#(Yu!w`IFq;{2#S&oQg^gn;_b+`{H`9lWttU?S)_F@AsMQ+!if)Nqw_U
z)qF0+6<-fDD(;<B^={uG;Y{-*O~x1V3z$_k1h2l1zT^0wOCgBYZuzdMGhS_eXJC`=
z(JHa_#id}A`5s(`ViP?0tiP<<bK7>>yuY4{y1HA}N>zrYmAQ$n<lFl2YEk73uYGSW
zO`HDx{rrk^obqN~UQ$)Qzg^oGb$EPLd?_q+B}(YZ1cN-zKA|bgdCtH5`k}(@{ju+*
z+Iy?Rn=JowrBr23KmWJtooc2+(TO<c1a)-{Ro|@_R`J{KpY=^qMs#<vXq;AeQGb#5
zm-I_7jvTx3Y(`l17EiI;64Rgap2<>f$zIs`KFq7E?MuT)y<CH~6Hi$4dsVbm^cD0U
z7%lvA=Ea=_Y8g#;cAYuIeZrG1pjdhJw2LLxm-koyoZ8!eeqlmV(x!WzRW<_k-#a(v
zOYP;nnWQOHwza)UC`atCCesQ#4uKleFNHbXOCmJBt!awduu}iJ%oA4MwMRHul9Ow0
z%@F#<CM(O8dw}nTqKQEH1Lx4j6O3zDtaESQ@v|~$L$m6|a~o$nO}U&PrLiix&uxCo
zde8ha#&zOynpPJheu&;_d-g&}eOZFB<a`-km%Sd{LR*v$85XvwCHH+fxoG(fpZnMU
zak?u={<S*7m?6lhYqa~@7tV!-;^w;x?{G}{p#1mGg1O%Mtr3%Bq81cio%-U&bEl)l
zFXb$c2p(W{yv3(xcr{v<=eU*S4vw3JTLafJnx2&8`F(!!T3_`CBE|LRwl6t+xa|M#
zmQOo8uRG;NB?}z3TdQ`5DQ|;N*_7XgZ`O;}^-ipA{JH3#6MO&i#qvv{ZDrI8yeAwN
z{dKZ2G&*i-@8s~nZ&!1}Z#rCxKR3zA`wrv(zjDW8xc3x0Zx);4nwqEi;U0VY%yY@d
z^@=^1RE3S2jmxJkow{$)JVm!xfle_Yhy0c^uQqDp{MzyCoLcX`;Kku}Uk<MI<uq6R
z6uizQjp49aTuA5|_V{C|w{QKNBfaA}>$JQ)54#y*6T@bOy-d#d5MndU>x#gQL!r)b
zfqa>YTMbjn9L{`wFSqwl+FZWKm-~|xSMs~^Uo}5q_b29L_N2E?VRuh`ofJ1O;!68!
z&b<+PJx^4<+p*3$OKJNn)AAElEB6W7FKS<3P*@gM_(`45HtWsgpZPXldya+itM9A%
z`N440qYInEeS##k=3MDI#cHY;`Ec46)dmy4_tJ@B%+)`R?$ABuYH4`#tXi+%TE7h6
zHPZS#Q{S$9`LOkSZ%MfKJeTI(-Jfi=7Bc3%YN*JRpTxCvlkL_jD|0PPk)R_^_f}t-
zd$s#%RF(C<X&dwkqffc*ou$7`>3Pec8%3f=Ch_lVQ$Ln-&~N4G;BV@3o;JI9Yt>i3
zWc{zB+-v3_w|?RJGVzoZMoza6sP*5N5I=ijF_Wedf7-6vF437Ee|AY-irV7rR$BEl
zbYZ}>`yZ@l`Cpe_{`}|no?}-XMdcqn=+J$9cV>vyzXs(^To&hFcuz_E{{HKvTGigR
zhr!Ek=(&9Q?R06fXxS6al2cnYE!TKpXztp?Z}zu4(cbg*3jO2$Tdp1FbzZ+Z;FebI
z#pCh33k9YfR>(gY-WQ*E`>b+eoI`0vZf5bf!gY#^W9n53pTFpvYBO(YSL!;0S&7Nd
z;tDGciXPH^aqIks&snv*8$@2Q)s}d$dwP0KYumN@#DpiZ8(AkcMn1h()zE%!di8{*
zZHm(tbVpq|?+_qW%ir{8>4}_M-bMvG4}Ig9&%kz5@}u4M@_9CQc(<J5c;dCL^7+3H
zhgA}f=+9Hmb_$yOcDi1~laFUT->rJ`=H|K2;pcAoKK+uVm+5-F<i!7#5g(kCGN)Sk
zpL9K_*Ac9?LV24$+q1>0;c{~_{)zHFJH5a{S6D09G;`Jtp8LNdCjI$3b?R4h_Xh2G
z`-S$~vPS<&7MbbRW?CPA>GA2!zicDkUwq#f%I&Iq%rkHGf`$JNm)Z1%h3&X*A$(7u
zU$%Q~g&8A%l?hv5ir6cS+uQqpT##4dE8Jdn?8(ZET~l&PZy6Qen-n@--sVc&uEKZ0
z;_8Q|EfK%yu=d5~^#T8MH$M276~6mKituut$jvfI38p^x7gwEIpj?t_x<&cezxNSc
zy2pACq}}-RJTSwc>h+1mQFVG!dPjej9KFl^+rE8uK|%338|RlVE-4i^#aI7joLAuV
z>nKma`I$T4I_DjZ=v4gs^>=0CZntkQeWa=-(^XzM{jFxNzw=+C_VJ!&ou@h0bgf}p
zwrE`h|FsR>8P9%B74MICIVZk$t5v(cOvxKt#b^ngwc%#gljZWW7lk+MxwF0D!qXo=
zxtD!-5c(usPDor*+J)=PH?7L5Rd>IMR0kLb*A=QTFZ#Ov`95XN%}h)?TurKt=2<A)
zDNkb1UuK}Ezm%g(L6~dvr&m|c7M?v|bNTL%KK0NAii_6m+Mu#GVzO+AXgrUPuWO}l
z|J#ioueRjg{`K{?)vjGuR(^9{+<126Zxidv-;Z*Y-SsVQ9CVC6eNcGj8OvXSLI;nx
zbya*5of9s&eXko+(8c@tHb%`2RmCmO`Pg*-GY4pI|7L0QbH(-I=!-SK<hOq-D-&y9
z^QfRBUcN~_nWfV(Vwe2diRb%^OW#x`M*D~VwA+>Iq9Av1`GMJw^e!Fx_Ue_95xccu
zzsRa3yj@Z|V-`+0oh`!4Yii0nhczs-^={S2<MZ?Cs=gnuwE8wnp>Q%6chBqt@?Te8
zci!cGQGj!v<2}cHj4I#D9hFv?PJEdubs{xFE%$%lo{S(#-KhsB*4fN9d(Ljr;I?Hk
z<8;fi9c~rh*l+#bup-`nb6@+OQ)}+O411(ldyPMC`|TsveNnH4p9`%0ziDpUfe9a{
zJ8ztn<)Aj%bN43BJ7!DL+GI<W!rpiAE7%@0KiR9r!JgJ0m}dIsY2oxIUl;sYQQqa&
zt&;P6Z?ijph}her2L&xEdJB&4yne6Zg}&TN)5{IAMnV52D{g4>W~S!lPx87RpU|HB
zNB%-`%JE>U5XYJ~tJ4!sf4rX@oMTldvhB#U^T!p0Q$GD+-Sp(ya}RY(y@(A5J|0`#
zF1~+9(buNKDNOwdhjYre9WQfg++_ct@Y~USE7mla3&#Ik9=7{Z{lV979>k@+53CE+
z&bq#^DCvLQo?{(<eGe7hvY4>ykL7-~el2mQonJZ%Z%Fai7;#<vQ)*GRV#kbwa<hN^
zNa-^a|G?8Yb=~bBC)c!|*0-;y@vZ(Gc3j5&U1`S!30dpF4iSk=*Dn+McbaZcN|`Kt
zStoJ5L}2En*}3tL*V*xMYP~mp)HzY|?5%x!O6E_fZwq&J5>%YGY7<+ngI>1a`p}HE
z>$3y*P5V)-y=j`$^7>+r&fo7Itof*Vd-HTr2kGGJmp;s>=8@bdmAY$BT>Y+tx1^*(
z*S7p!mhR!#<>&cf%?%F0l;7M}g`e73$a84++!wwz;Y)Bz?5DXJHxB$@|Iza_tf_kH
zs~o4)qQ*VTP3LC3@$p_@p}zfL@O<L{PbQ<y-%i#sr*T~74T@a6(dxq8OB?lB)K#Xw
z<86}A6AD?GS+{cbovHf{oM~SdCD*!8v-Vux@|xrhp5ylnR?Pfbm~XqY{pyzuukEhC
zi?>|<xaa6rZ~oP*cOAC6w%_0H&cEhMuUt3Jz5Lwe_qoPnX?&so)sH{&srs{Y!R<S7
z789;sbn(i4cFs$KecAFGQB&Hugx0PI;}GH2JoMXE_hZAoUt#Y2$8SCK$d0<M-oyOM
zC&=VgySzx%RR_@<AqVm_?zI1!xNg(N^lK)k^hJ}7I88I~xnDH#WPQT=KmISz{+N&{
zH8)1S(rTaQ-^iks;uX%Dtcpr|!lz^x8O-c8U*NoK{<n*E7d-s7UN|uS;P+yi)t(b_
ztQ3^@zlk|(KFiD3aPdOpC#iflPZ=HWS<#%b{py6vb!>O1OIDdEFL8B>;orLJa)rRG
z7MF}2FB|RD<<iz~dGl<#U&N;?Tf*%3ODAPs`~IVC%Cv_|w$Dg;b?^C=!)G+y85#e`
z9=UV0Co|y0?C%w|otoFVR&QOzH}~Gx!(Y;!1!b1K<aiV%w`f!ORF(9lLgI(rY~0l5
zi#?vbMCqJIM#x;AU8^jn2M85yY}sLLy;nnfIfIu(QuL00Ur#XneVzF0*8HirJk0v<
z9koAgvT|mi!#|PDR~Ws%H_Ui&We!*5t9uV>oW6bfu)*Q`vt0F`t1o<YeOzl26``xG
zyxBdhDzB=LFT{BLzx6BkXu8e+=~X{lRkNW?|5CDh@&9?Mos8$rE+vZ>?e(m&72ys2
znzHHZf7QwB|JSD(W!pvGP}030y6}OJf~Bb)D}U)USJk&(ETW6G0>cV#PMAG!ZsQvN
z6J49MiW1F}1%nlIbR6c3q-SL0HJr5CS@~b)Gh;&DGT8;j+4^U%XI#2$Y?}IV=d)+I
zrY|KUXTDrIYmeR%Q+bUL{(t#hSEg%Wn@%9-9#mr!BRf09sTav935kgbDJde~dCGZv
zI4*qq`1S1h)8-}@zUp|MIqAdZdGqgt#2<>Me>nHOY`6K$&nmXFJ?@O>|H>KvuKeHk
z;q$Haa$%8dY;EhC6g~;tchsmeD6MT|Sv*mISz1|Hygtj*H@GS=DRNbu=f;H-=QTEV
z7S}nZ2BuZHbv8|GY}~j`Z^D)kk5wTBmx4cd`J6kauYc}bh{qZ4zz>%`Uk(0nTA!UO
zO)KNcb4`_{X)4c_Xg*o4*|Nk<qlIlZ8>{vX_Mh!+EZMIXTFM{$dRqUK?-|Bj?S_mV
zTZ|11jW$Kp#2@~?c<-CtDL<Qv6cbzJ1?|(i*ZtKkSQF{@!y!97)IGMed}>PhwVO>_
zRfD6KoA|$fHp9I9WKQM2woH2)^_uN-?_EEvcKoQ&r1OU@JKI;!ZvV}4o%NmU<|>B;
z`_ped;k2=7ul}X}g=uH4ZL!+N5C0-Gm>7O;u9|=)s*K1v=iS)M0Bcn7b90yQa9@E$
z)%FX#UcUNgJ$0BoXQD;bG<(DS>;J6zclD^&=>rEocnY}ed(J*_J*&eK+X)F<#FG+|
zQ$z&LuFJ~N*Ey^2seA5>_j%8&+L~r2my8Vz3eV}U&^hIEUL(-J$iU#*Rn|$<xICwF
z`Bibnb)LNW^Xbu>Gr2k|HM!!d_EmA!{e0?h(1*46k4@{6D?LZ%n6&;eX`OI|qxC|<
z^#uv6-xdB}Xh`t2H979Qv+k$s&Q41Qcf(c8on>rlZf;`z@3VjGtJnCwZ~2^$)mK%Y
zy-%-?5t@7E-o7O{WuE2i9A#5WLZ+8bEfN1J`c2gL-&x&@!561)+%`Ko_x>)|PsTTX
z_xV}gtDVxkzVH?Q^Og7CrhWao;bh^)mM5PJ{2o1g_3WYD>C(B?k2lFFyqJ5zcz?bT
z|M_DtFIWFs_U+4=*E4@LceaP?MR<MP&%v;ZueBXp<QX9j>37S_DM>BTcgsmENp(q0
z&QD3z_esr5FUe3aGB!qzt=NFmc}Em@_Iwt#%L@&iu=a{@*OfGB&dkf<X7UaPJSUnp
za9BQhFMT6}-!|dN$DX%_YmazF2shTTE|2OlkXX%pE{~II;qi+RK{AfgqThAgO+EcH
zu6q1eRA>2hZSMZvzcyw`1#VdWE=XK|LE(--z18j(?{->jeJxWcR90}nl5v53^l{5J
zQNH!JzW$i7;rs$a3F|`(SKsQ{()~Sr&IPxGB|62sA8nglB$ci&%9iP_GH0VuMeKBz
zwg19zi~e0um#XmRXKk|4w%X3!i#@0Qx%+mdYD;dOom1JAHtFu~)|JmEYwfq+upu`F
zTX2~mf-AT*sid+XRX?P%Al1-WA9v^(o1ugrtXO(d%=ML%r}T2!x36DKOc*+Er2K#P
zd+W1w;n)0`ZSqDv_9-*#P8j|dNS|2!;^?RO?Vi&b8y_xK=%_i)uN2SO;8Ch@@P+P?
z1BXtW2n@TNn~<<3Jt5)AocMsqDKqB<E?O{g&B}y~%*=I*6H*cqRz8?9J8H_zIWv|&
zm>n@`;;h*bOi!L@usl~!Up6g7E8|AWlqn(+FJDieKK-@oGqKlC#h2dBe5ElZeOihJ
z%TlrBVpEqc)7bI!`BaS`s?U~bIow&tzHrXxVs0<*pl*?x&%r_6pBm03ZDF<wnAg}j
zaiZ!MclP_|cWQFit(kki;{EaRXY-%k*LGR%JHuvSb=CJT&p3I7|GoKb7rZDhD81a>
z+}$}ixVfhMa?7=uy7prK-c9_$tdbRdD{A*_73pOrzLQ_Se)o2sVQ2IDl85}yGcTvr
zoR2;6&AL!(w~ToA&l<UNo;ESIHg{I<&@0xTdE)TrzY94S?)Eg?#uk4_+XZn)n2{+;
z;S?KiFssEtVDEG7XFHaPEY@Aht@K8#Y0BMcrPFPXr)+7Q)gr<FuXeIV^$W$B=94S?
zr%#{adsXA5!q089w!c^~-78|wmmEu{_T~_kvko5bw&~rgNoiAg+Bwr$T5!_03v=w>
zpMUyt(xvIQxBA_8OxT|nBi=kAw>Eg|=_ds_A?p>-b2=1#Y?{28`wgE{`45q__^<_2
zvl{NM&3U|JZtu^df>W8jx|B{WU9Gx~)vv8^ix00ykr(%g*Si!}9NE8p`_zkH|FlO=
zN|&#j929SJZ+(UQhr*-o{qd_iYB{T<jWyai<TyXvjC!y8Or&0x$E&qpqt~oa^t^m?
zScx*W@FQoI-_!yn{k!(XdITrR9J^nh9)IiEpNx<x>Ce?>toXd5Lo)KkqD>dP7VpYA
zJ6U=w|Fez8XH(shPs#Udtn|$}es`I<VN=tKMdxQL<S*v_tn{L}Y2Cl{eQ{elFP-I|
z$39P<U)4={;gnmyt#(zNi(UD(?7Lal(M3nkUpbrdZ=a{V#~0_2^=2<@mcKU+6L$I+
zCi3%c;FIg0l=#IHEP_3IrbM;7skv^vsodpz&!fabOorn`)9rX=lWkkKUgPv#bVIGA
zWl6+^_uSlf?JN~qYl;-_2>nv}w?KuT`&}|)WS?AaMu5oC$K1SCN*fy=o0c{SO<{Ig
zZ=!KD&-?G8l^zjdRW*v9H~zi3xy)Rsi|=HR&x^h<-Wv@Rrxag~x)iq~!pW<%_rsAC
zg((szO+QVF%9w5!xa@uUt50e3-Tv=+Trk(RpouG3*?SF>cK##R162pkEx*ypx29qX
zL-2yA^x&*X^6keii$`1yO_NBL+2ZuuX7m2EW&CG07MAg?F~0n2&FlTr??s-R4=6qK
zygFll%d*ceGJaa{T}#oLT5^!ZC#|i1_x(+22|^o$&2M;yozr^XcTmMAV)Escl68Fh
zYODG~*I(GsAhRa=^r!xQoyVVL_FY(!cdD?;w$GyQ=$vy6%Z@5OOw!(w<>%}cs4(xr
zO|9syDvuUuNP6tvFyRbmN48YTr5eXp_M#UjFPi_X(tCeY|J>2o)7SJrpUb+q^nc3q
zxz_&zuV3T;{9@hu9F5i0(+zCwC!215%{@(hX?FD{{@iV*XVad0_pY6_mc{(rKj!$n
z{}-{PO$!ABh5V!}E*l#>g|U%|DQZ>bn+?v};b#iHHD~E;5pmJz3hDY=^nJte89jLk
zzD_;t|7(4x*nXMt@a&VbkN0|Z?OL<-(}Wsp<)|+gv~^|u(#n_?9(K%hlJrphbML5@
zTb^f-$(_1Sf{H(XROYYxwK3xsx9|LO%e(BFkJK%mBi4Q3+djS9sh=#a?J}Q`%A)Wy
zR#g4Hn8hB?%MYDr)LM4>y=3HjzNmL{*|u+O%31uHCqHYroBJQ~n4=^9Vu##>l+0Pq
zVWF0ey8r*mZtq<u9{#ROEqTgQZM(c5sYl<KCPZyov2k;A)QQ@D-L&Un_8%<_GYyuS
z+<Twi%NzaiFC(``;cF~GXKa87I-;vJGt}0$Za}_=aG}J$`(@{r7Ki!V63Gvj5AuAr
zvQa~s^Wd5pfovD|^9T3mJ}rA!R{8F}YSylwyMwo<=3cgR4s2?A@*+A?p6i#urSD1t
ziob3wfA{R>{ODt+fA6v3xB0M#-yuMRkwHQ~?p<NYeEX|UU+li;BO<!{{r9VT<y(&m
z?G&46s1R*xv~Ftu!W-vUzw|o>cPktyS<)do)m6uGjZ#q%YwvrFMa&Bp{rYj|&@AHv
z6Sk-qTz{Q%$8XlM8wdX>-g;bQ%yKbHxnr7Mmc@_$$6uLwD~hYDqm}PD3B3Igx&D=O
z!LNe$S1O^qz1lw5WgT!fa@=$8UD}L?eaqCQrRMtOA8@<4&X~8?;&tMkAEHJMmz19<
z-1Ge@vFG|r)sM~FbJ&-6f8x6zocxe4Yr>M+tP0(xjEQWf|E*@Q8M0heU~mk5DEne+
z@-ZhruFeOmbuzh2gH~i|vVZ=mz!Ul1ymX;L%1xP=O;S&9d=}kl#jo-|d+ip*^01GR
zJ6^RXo+#WrXP)+14d1Spzkk%k%xIaWA>JF6Sdmzj=w(%SZcT#i!_Ll3iH$CoV%WT$
z7}x1~zYs5W**LxD$+DpS%_mcJly0g{e*18WfWMQs+T4>7iDfna>K<LXY_Vnkgblf$
zleA3PH~-R^-j_7lfbV4>>stfq?@E(gr{pMU+?i+>zPBXz=X}?ghtmJ*w*L!Xs%P@+
zKWk-p`R8w2!%n<Be#xM5X@bzXrD0~~_v&i?zdZcy*X%bzP0v{!A3R(m6);y)QEkTK
zKRouc0<w<m%CEIQ{>ivT<du9u!5OZdYcH?Qd-=Vb-z!RQnn;9hiQPp_(|)gwMq70A
zEvA@E`Pf#p(MLyIoR_Usdx`Ajc(XdzDs0J`sK%|au_a205Og}P*+5{=Z|xc%e$fO4
zP9Y~Q6%UzT0iH|ZI`=N|I2zF=^XdEDt(p9`4aX0^so3KkV0zq*pPT>QTb1aD3j2)I
z#Ch++nD!say`Uo$!&?+t{!aJ!xeW`dUY^M|XW~EiA+pTaMO|0j^u_JZPh;Gp*Dd(I
z>hoa+@z?t-xAj*xZoK&S$mcnQay1KH?zzE!U*<|ltNNpRYnZy@YKm7z9p6%(yf2Yu
z?}rJZt(&`RbZo@ZE_-g6yN~ho;SCQeW5s#4{QAzj{;}7(y?<Wmcqvb5do)9|gLUdu
z55+!Pv5wZuElm|0opla%d`Wu$)Ar$+<VTNhCB{VTv$pKvKE3(MRjyBGw%t>Ai&67y
z=4OqXth(Rwx^*X)YvD`(l^e7chGf3zXj!yW#Qv*gkX5pG*WH7H9ea0fUwrI>$p1Et
z_t%oL@2<FeVa5LDw*C7L`n0XO^O<>e{DP&}BE}3+-r#PA85@|OM9f5R#JGO{*A=;}
zyUSg{Q<Ym&(KYE}yVobiBXU7Y5_Fu!e*QjpV@tPQ!|TV^{Ar6e*<D*UU-4JT;;e$U
zb>_Don%tY~wBx~6b0ts5?^$tv|JJr$>snEh{kGa#!6oBLuEW<FyU>$tCS?ylec8bA
zvS?lZ+2mP;D}2qHrZ6e|S`>5njogM?uRk{VpRt?cc73+?nscd-J&U)0Yh#`znG`5u
z7b~<YaPhH|+qh!0*J-54h%2mKC6MuD|L)R`9VM@JmpVPuf6|luYr?vwWfqkl5$Zn=
zK99I_`~HokKBtzMd=Fg0`Nm^?Jo62~6E`NlwLNiT;?yOdEgB|uFXP#^u;|o-0}mt^
zrcReWw~@D@<b`_4f&Is|f81`^W$n)Vsru96=bB&H{)c6{pAP)@lkrR2q--pqZi3W#
z!5!*G#wdd*u>rgD4l9V<{n=%`%$fDu1iceMPftv0Hw&Cw!_by3u4%(k@!|gU1Z`*b
z9p{Tn&MnQYf4SDrA^+e>Mq!^@s~RrqIx6*8WP7iYnlkO>ic|W%A6mA>AFAhWcDQ(I
zx#z~J`a8Q{@o+7#t%|pGs=e|zH6q#R^6it1&siG&<)j$4iu%nz)%#;w_4Ne?8P<ni
zUgTS9taH!);sW0T9+yRSWldL}d+0^$5rsEBEymXv-tTH#5c)suYoCPrPi>}$UypA)
zc|(lDe)FV!#m9ZUXC~zCi#es*;_JNAwQzcCM)&&S%IC(b_Sh#E=j&sJma#cfa{|=G
z)Avux3NFdj_fs%5G|_j<EGjNhFf=eUz|+<+M(g>Vjm|8-d_wH+zq;0awi;Sr_U)ZD
zYZVJeio%-61sZk|?ke*N-#lndt@~@eUG?UsHD;SQgPXO(R!_gZ{k-k>dwG!@=Z)uS
zJ~zrP+&FWBo^V|1r0kenHQD2)DP9X@=bBER$zgOk>|vIXGV?k+V-0P61vdx36LY3a
zP&5*En(}n*!K<l`3uQk!7t9oyaJJX|V2YE+T+bdMB?smHmrEB~1}<)KW<0ghp?1MS
zF@g0L+}U5O3P|Re@<k(}bEb((bWpsrZ~BGE<Q?L2wKiM=>uuC{rLwGpdcRz4EO|6@
z2_sX7N3+_>lx0m0jIXCGS$8N#h<oa+XPaiZB}F!{GB3~)Ye*~E60wBUsAW-!$sxyB
z{gwP~l|ga~PA3$wUlEx;=T>0Dr!E80wzTk>lbYHVxlO8A<D}{AY`AgS6?P}nRjMl5
z&fW{9xHCkjEm@<^Yj`SimTi=9d5oaa74>uNb~Xo2FvJvZGV@v5uvIK-vffO!#hMu_
zJqt_Dm@GRU&~qtJLexQoHD#;fmII=joR-bi`>}ZMvV~U0TsoI#+>FrZJ?Wralj)Oq
za#u=f_CoDt=NpvUxMy3gUGczJ{HcTZbH+*2xLCbsMQS<l?Rd#ldd{YO>6W0G>Os<r
z7OS2$_MfvMl3{Uy{~wi0X$KFKME%sU;M~{H93#ZTmGhj-t;MOyIv`B=s)gVx1;e%c
zn_2?I7CTryY+S|WmLZ(M;HsLrh*3a;?~+6Mj@SiSMF$+jjwd<%wh&^T(o)0e+j^<*
z)ru6x?IHmj(^@vo@?zx5+95H``G$rMV^PA(6h_^|v-j(g*MELlVfXTRutihL@BL}&
z_w$RsZ7TPSpIl?oE!Zd}*W+${$N&D}@)eH`zu*6#T}bTj@)w5g^*d!U9v@iV%*~^<
zBtdFl=7vZ<v#kd=B*?sRsl56zYE>B5>h(vLToam=eUX#XPI2Ld{d$TEodsf5S?&p*
z4`@DeTj>0R8FA&U3_01;9|Um=_;PLwZF;h2bIS&1mV+V!Ec-Jz<Sw5Q&f3bAeZ(c~
zPWO?hkSyJzQr#!t-U{V-HD!4jaB?o(%yOUie9%u0&ZlWj4MoMTzc`h*I&2B{I<>_A
zMH|aWVWFIK&NOxo7e~!oH95YTw;qd#XsvL4xp7DQks05EL`#E2O|sYcsd}bKtqyK&
z%BeSzI=`&YyXCj(ju0We>moBA%;B1=TJkhT);P4tPt{_1YPd_up~6xv@hOV?)Ew1S
zew-7!!zb`!lHRR%2P|KD_3aGuIJ)!fu>kJOU21F3+z6eqwr26Aa#_jApPpYhQFuw^
z&&?%CUIM<HoimbR(mA)yF7<lK-Qdf}nEO9^`Sv}=EQ*SXProdb49iv89C16c=_Vsn
z^bu35yCq61_)E*Chj1+wczpWzm8hVPY9_^VzP=TT(MoAa>niA+@X#lnbC>eGRcxKw
z#SPvDw|=e@Q2Dn1lKS6GlBTtX^!L8gaeT|<c#!MmQ@$yiQqORwzFV;<%wxw2e>aZX
zG2Tha(v$q|`80LD-NCbJb&G=aqe$!6lS+4vyEDAKe0!b15(gg7{W)p}FT9)Hb-GVT
zMBLgzz$>g^AM?^KmhebrI}6Qs!P%Z}9T#G{{X9G@c0Svqx$y4EsRFU89ewO)0-9Yu
zURqt@;j@0X(*z4%4MA{ha~gYG4sE((?GP}JZOWa-pj8$IVb?nP&vpGi`{deN>&*dP
zoKH8Jh8X5QK4|%(XoueJ=_~i#aSoHJPdNVb=z?;Cf8XXU+Zb?_HIl2=;AHjYk5A5R
zzUTSR?6=j7*wpYD=|(5*@22XjKklxypMR%vcChw-`4{tdME6Mbxbs(U{&Vi||A#pu
zEVinTZ3^o8yZ;ycyTAJ=i+<jxi*@s@_Uku2d6@7`QSWg@&BV=@Gyf&oN%OfyT>X5{
zbmm@*)f-k>*-c#5wc`tGfnYED-pG85eLd;=Zya@HuDe~o{WUn{`LDT$R{9>DEN!dz
zY-7xsRAc7X<v$nyJ1RHR&T5{EOiHxH&SrM29Fr9}8`?{67*tgW^cn{n>ThM4apQ5w
z%L#{bc&x;vRhaoVez2e9dj28n^D7S?-G6mxk(S%hlb#EfwO<hM50-k8c}lk=#`x*t
zwEiRhU)?UZ1n^oXdL5Knw@l^gLfPNG{>d%6Pd;RsNgww9?$7${o&1`o%pMPFcGV^}
znF;Iq<V|}zYhlCkZhu}a<I1WdYeHToPc>Z3Sdp{Au;H?T)>`S5t0os!mS(<~cVt$@
zqR65KFS)N%xsLK2Ev}G_?w+M_`NrIZNB%TiI`Sg=f85K>VV6BWwFO?e_U(AK>c3{W
z)u!3^yF+tly-)vNr!zNy=d7yyc`?uXzuwxnbSry6PowicpE<GpyH;Avme_bLsB&hv
z;(`bJwV#H`2|iF?C#IyOzv@wX2jBfa6Utxy_&qiHhg#;Ij(34dUl$3TRN7hMzt&`u
z+mZcR4?Zawg$R|r-XmN4b$N5z?B(k>%`~^TarF4@s%^%Ws$Z`cRSODE*}=d1$a{<I
z#U-!rOTT~pIe#(Z{etg{@8!O&@tyze^|t$e#Hvew=-s?)dnvc;)$DiM)79Tkkl*&T
z`F5o8|8~3Xo|sC-b?0{eo@dna{kvw`CG(?&SIQ<t^u~Srzw^h9KNr5eJN!tatmCnI
zwef$8#nP(;-_#Ts?w)n5T)u1ZxfHAFf~&JrnrvT(x}LweIIzCPP$Kr&{11;a(`u}w
z7U;SA8h%?~e)ciX@%Dbd`!@T^fBpKCns4zYmgm^{Z*l$Ws|)|N|J-6PdFKI(czjjF
zACD~o1veSnm(EuI`QQ^*`YnZ<|F-x)4^Y=#Y!`BGa@+>xIV;%y{=N9r;Jih(@#*#F
zjn?0MxS`zgXyS|%xeI|s{c*EzE`Hwp<rquQ@?Qed{OpJ46s7(&5Z11neE!{r?vHD(
zFOR&jobk6w%FpfpHk6;WJAZt0jg!|#X)6i-&;F?^SG?(8zcFZz$NEo#hc}iO>`S<u
zm|u1D-#PVUGr6ZZ-%8J<g-^CgpMUH#=aKr8H%mVB`hM1z5Eeh<X5ry<t-!|V>(>Pu
zwey|_TTS0oTXsNhL;D*+>y-YR!evMPC7i!uSbZ*T!}K?%)rb9VXj&&ff1_J{yy}he
z>&@J4KX0h+PGbJ1{=1v^rm6Hs!`+GVZ?^c}>^XZ={M*#p<oh@8uQ7ki&$juX0Q<fE
z&kqgeZ>%YCT>awf^UZ(qSo-|-dnTK&nYCzc-UYvvQt!`{?XkADx3RE}3VoVjvnS&D
z+;?ZJKV%=Yj(a@!<JvvKL0bjSpUCN-r*!OcSU}p;inOT}su#mFr#$l2Hk`JlLMn5k
z%26#*Hf@s?9v}9al%74InPM$<)2wGr?%5NUuJq<y>&Xf4t*NW|^yuNsz3In~Kfd_m
zrq73#&e(L}?$*wgJ4`lic)M`v*+aK7HW`>*{_;#dJn`zGysL+n`X)OlEEaQ%*~+)`
z<*wX)hpgn)_twcB_R~4KA$W7BwS%ng)7kHS7*DJE@#@9V$w7iEK3eUc!(TnQH2CLy
zv#C?oF59&5Y6#P^Mbp2&NHx)WvudT2F*lFr^J@Y82@U_g=$9GK@vqN(Aph*L=4t!$
z)rZ|)*k|$ney?Qw?^HUgcYuzFW;XZR=Zm{*jNbOES9&*PbaRImt@y})VoULcyI<~l
zMEtQTu#TSi+5X%-d%Jkvm?Kk4h1z1bDV+%O7TR^SVx#!G*^}DOO}8o8Gfz}z`HaMl
zmJ?i2YXmm_F<n|~z3H^tl7t|~d534naJ|y`&NVyp!ZvS@H=IE$%D3#lvqgPE(rSg0
zPd|<xJo#@@XKU-VGx2+t70oux@PF|;Ch{hatG393^3BOQpA2(Nk|qYMm2STH=a;fg
zd4Z&_wB|*xrd#I{<<0E%oR7TBoA-Zj+WoQs>!|X_efg(Fii>JKJ@~RF<cPYl&qu9m
z>rWVb__>XzxtQ&*$MY9g)AYWq3cbC(`r=Z3J3jN<U*>yTzP<UZU+?F$uuW&~$A0qJ
z{nuKkFgN^Ewo6H#wvwIgo%*UDD?(J3bZXQ~3YJ!_4u0!3`{B}^+IKy6+<p?3YhCQQ
z|MauTx_(>Un-#x0->ca@!z6dv>axeBDS^euWwNZ(rc774w90eQqrc}=JNwSb@2&d%
z>G;l5f24~;lkeA9zN|g@{`|5<ZN<NT?Ruy)d$yD4G>gT1c+aJ$um5&F?yp7mjrzcA
z6MEk!_=sO-?95$oXWy=~8rKhK-7|@Qv`%VAvnuzUz_^C0f?sd0zI?cs{rGYBruE4;
z|625YE^SS{;H|@&cg<q8wnM6Pa-qbH#q;m7T<2(PThFv=c1v&L3brSwx^_KI5Bqp~
zO6r=3N8i)_zxa8%_{_Imyms}sKjhjeede;Ly1JM%X8IPv?dpbyt~0FF-)KFrPW1eR
z1Dn~FuRHkj%hkz`4=bPf`Ycv@ULw2A^#1=9vpNm(xrG;gja%^FTm8k(=IGjg%YSGs
zxZW&yV71Wu()>2&Ybi$my3QsR|KGgnRFY+jgD6kqt&DmTS)F(Ce0H^`5|`B3)#}gk
z-=W!~$3IPen`pai@WjaNvXQ>Kd(x&@h;z0a`73{b$N3XxH_XHoX=oDM4T}g$P16s`
z&o5B`%{vF_d*-F(D}V-ig7iIIqHWAgEG#T7lM*eHObrrKO;QXDO-zkb(vr>0Obks7
zk}d2AtBBPP&a6u1GBGvO505rfFjg>%#nZ_%G(^2?!}MxpKxnGWv5(&??-x4=h6DtD
z*rc&qV>O4yiXBXgIGVUQB{<(n>xRwnUYeS>BvsNYN>FX-vq{-E(@vWN|GgNp_^MBG
za&U9%O$%RB*Y7sZ%m4j6lfUoznYq>HZQuXaS{hQmJuD;4wPaP8mWS<uO0&7%t6$b=
zTy@vHw>V*|&%~WG!?P`$KQl%7i(hhE(O|JN{&H!+!tA9IzXU>l$Z3kj@{1ORborV)
z{><~>T)^*qG|h{1Nx#F<t6nc1&7D=}O}I2UuhENhnvjcpvzPAlOWk&iQ!nbN&d6()
zs*LvHxXU+nw$@VfyPT$Jo2S^7h|fQev|{6Z&-dQ*TeNmPtDltht>ERtfZXa-zQz8I
zrE7}cS(e_^XS;IxYF&x`TmB<Imhdk)&+zfy^OnoC4neI`8oyX7s5+lgxW%=k&7*U{
zdFGe#UY$$W8`nGzV!P~oU`1_E%@<dN^?qI=wVWr;PZILI-B_3yl=LET!G~2-B7Sih
zyqq*e@e7B+)!*{%m%<x2{X94M<KykQn__wwyElHzTR#88zvC6N7-T<fo#Il(v+F;b
zrso%yk{?!@C%>qCS+F*!?PBnSiTCpT7v?+sj#|pIJbl4pes4*~^G?U-O`YVW@4&xT
zL$x=qrSE@?msPE>)kkSf$uB}Bo3@J?y}W%vv)=pUqW2EVtFp^f_VUcF3-B`g%V4GL
zeoEt)VoBM?DKftVOZ=8jiP?Al-_m*46;%6=I`n5wGn#d@N$-YkDo;1B?YkvYYNk27
zIMlyXWW$$+c|TgGY}Bz`sQzCqRmR((B+y^;air4%??p>RHhpQ+J3HN|ajAYu=<?5J
zUpLEIuRDFUbB`2PZO)d<`ftj2?blhZov5@o)V@=dNA2I1|9+FFKDbfhw$AU_)q)w%
zX8Ya$xbll;iPo9W_vJf(zjc`Lp5Ie5O_HTp*UgL5TjdP@J=@C>Y=>jMf4dYUCV!@%
zeTh$cXY0?C)l$Y0Z3q6msr8dQ9WY~^il%Yoqr|)tFU@q%hM!k&t7=6ECFYfR%sgtu
z^Xz+t=2RU`gYA7DE0ZMoimhF{sy8h;^v5#pl*}}f8T-?`3eV3inNh!L>6zq{O+U+*
zihK`|;=H^!@RY31%?%fnQtiC?bRNHrGS%6+;m!IbS2jI4$n|DY(D6z9r!A!-?g+1C
z2rHN}#X9oXp;xw1UDfw`+pn&7I~A+bx<P51rFxoEL-Ne;VLQ|xvqThco_lYGX8zrv
zh})N+%wyX%M{iO0OQBs&>y~)GG`i&xe)0Fqs9m$xE&P5#t;&4w^n1tOKiIc1w?w&i
zLf(Stmy5p??rMLxV0R|Bt;77K{+IuLslDYGzd--;^-OhJzxc(^UuIVI?Q_4s==~?_
z;{m>myX^wzrRz&MG-uS`YX7$QVhKa<g1{@W7f+h>sa^E3YDx<zua|bcd-wcZ?K^)@
z-A(LD-1=@xekjxHn(1dQC)9qMe`e{1b!(<qTCIsbYIMHgZuayusT*qDQ|ED7tGhod
zx{(^4vaTWaUHr}s+I16+xXYHF*9^VywX(&wJ@uZYX6T01|0h(MzM18pQWm~qH{10C
z>!LO8#umPtRTSR4Tknqf{zkKdaRsjL;$5a+NG)NFWv!n2|N3A4RW}u#FpJyblEk8t
WilWpsE@M+uOA8||RaIAiH!c9A|3U}=

literal 254641
zcmY!laB<T$)HCH$ee&V$4=xJ@1BLvgEG`=xeYeb<lGGx7x17Y1RF~A`{FGFEpVYkc
zk_-hyQv+i=JFeoAqSVA(u8Lc0BW@SnHWR3QAO2xtmy=j{+@vz2yjjc6ZP_?`#btKw
z%Z(a09=Rxq#>H69{Z}m>F+oYRx<<D83~S?E+v*JwI&W(~u5f?QUS-%E|0q@Z{qmXL
z|LR{^TzF!I$h|jr7Q3_<K8;gwl~{Udw(j{q@u3^nG*4EtxO%lRGB;%6%Lk=5#d_Dh
zI=TF&wTaW=5U;eJBc2+;S-D37vvT+7>wisKxZ3l8%16!GJ|<<8jbiuC2=IJf!LhSr
zjqD@V5GJ!uvll80S|-Sy@Af?4`HDYa;l=!g6Ae@uIDCyHi=?8vH;2YG^F3@>f3bVh
zpB%SC$G0E4ziO4^N}J>9n=fg+kY#aBwm+TyHix0B*;PK?xuPu3%u{H8?kTPC?Cx$=
z6`urkC(Q{@EfuevV=;L$@k3MHv)32PcAqo8`XsgSn&0VFC%d^zm~s{rY|8!Q`%m<G
zq_>Wrv!{^3$%9gxGI9-G?zjDG91ywe`mUhfxJRciPu_p8#vtj5d}77wJr^S{A5!?}
zyI=}u{W&E=L8EWo7jhUs_Df&cxTkUEvLhdz9`BfSq%Qj}*K_+%R}Un2tvBPkBl=6V
z$KreOc7dBFVY2o5IRz|>C;eXF@=E^dOg*XTF)KKn-XGqxCL~Uw+~Cx;+`A=_ncpSm
zslPJjlK=Fy)%fGRO<dLK?)z7|W;kBZ@ToL;bp2__6ux3Ex0zZ28<rf{tgh;%5azIO
zliL0(ueIms-7VrdDZu->@BGKq%ho5agz0`Ny=SrYU2XIV@2TsrCgt8a%JQ8>ZQZGB
zAB4I0uifgsBY*LUvwd98w3Gb`c1M4RcxAQv)7sN67oXa26v%D5rmD&_v08b>ug#k;
zzD#h@h<|p<@=)R4ORu*UbDoU6ZgyDc|MP9Ha`i(WhrRaRn)mkHj0r6B_Ba-Gtou<S
zo#>N$z%t{C#U_W|2~($@t%%J(os>DZkcoZ4ogAON2cwcbOu7xDmS+lGjSAR$EcJll
zzMu>tU(wXZ_ip)0-g;ehP-nL;+vMl%Kbb6do;eu)<Z$BF{Fc)SGhQ0KSa9y$>#dqy
zD>+&ZtnxU#?$SB6DM9Slqio)5>HN^2Rh3c{lD?8hvU6`kv%paiZ5f$IvrQ#Le$D7N
zwR19wHQYSo`{_!abbHnpX?ItLmpdG~G-2a!hMU?p0>?8JDnwk{siG)st9<dSgG#9b
zo0NZ-%A>?N_t;OwJ@hO*Qh4I$-Uc3%c_!|cSQPGRN3%=$ce>1YTq&=>+}i&B><Sf*
zgH97Y!i8?^P`R>BAn<Za;G_TRLhnw^2v%6PX=`q`!?AxXEsq!Ftuj0OsM<N7t#3xb
z_Z4gBrdDs%y3H2NRQ|TmGHbuj+vgj17bWm%?OeU9hr2#@TJ)5huT4Me9$HVG+AWj1
zbzj4?MUlA$H-4VvO$(lLc5UKrm4-$^N!1q|>-N1`x_60+!@hMzyVWj*<*GdLUY%Xu
zdPw8_X^kz<16m&Pn>>)e*VlHHHE)uIf{zfJt=aazGqHD~jb8b=_kC)WEL>ypy?Sqe
z+lvViEX|3fYqzTO_&hh*!d8Cyt-%A8+26|6aD1QEV)x#?=1F+{b>4#So1`CoZm$ay
zKV6q+HP?T`%$GX+We@JR3*DK_8t(YW@8{fzwo7hr#4k8}e5mt1g?G)}&ZiQ3r9ak5
zYri|D^B#iQblxuuo|5-;mvWv#VaSX6bDvhHAI+Qf-mX-l%56rA{RECOcOA{e=GQ+t
zvGQjgVrXySyH=~p=JvTPOCv_n<CVkrncU~shkaGNwqUlk)opc^nt5LG(|zT|x%(#@
zid9wf*fjp0aWvVMJN!r9@;rv$7HgC`54FfW;C;ssaUl0(QW=ND{!q!|WeNX7%}vYu
zG84`}Q)@W>@ia$4s#hq_^WHnM#?N^s_4J887e21c&~oTq(30nO4%DXDacC%J&g#2+
zuQf@qR{FVs-iM!=b~F9sl-@Q;-2J$pqa<|Z`CX1vE$**~Wo13X_vTBn`9d*MpC115
zf-Te8*R9j!`hVA`xc2nnSZRral75p?e9p?>|I5GO!!l*A)VvgENuQdR0;(GfiK--w
z%q-23D~Y3$+4;9me5|f-<$JqOL}BfY-8F2Pe3cfBmo2^>HETNjbHO?duO#1zT^^^(
z>i?d7^XAkN->Zf18<hCpC6|?@mEDu7k^a!gUH?Nt<imAYmDdMncOQIWD_=1EXx<ri
z@oq-`2%YAG64U=w6d3-$TDf<{<+mTUclR^A-k#`s#7U6RtHr9iw#+8<^Uo~-uS@KF
z%QFMxEyJCQH&l0a%slU0Y_z&9S+nJG$jdoyrJeCF8LXl%SY*C^^JLPsFTBq(Ze9sB
z^XFU?BcY?cd4uey3!cTLt6#0rF>y?m`_<zv!#3%soZ&3S`BEuYj;|HpU@$2+Z*^2I
z|0jtev10CZU6tz@EV*mecW=5Qb4Y^4VPpOR;ZUCAN@C}9mg;-*yKC6~QA-WJViGge
z+(hG{?pa4yd0l_O;z{ajA9laUpE%*oF%^@CY-gs|xo2csOg%S~?S?jg&hM)4wL4iu
zCN4QHFtK1=OnA=fTWeOms&Xm6yJSnr<foRs*H*5Q+BLtgE;}SJy>wa_OTx^?g%9nF
z?i}{o6cj!6KzG`I!x>W>LudQWQ+>A3GpO8?&%@I&%0@!$<JV({x*g?0_sX*QO@8pO
zYi796Ubd3@e@PsVYHR<U-{;Qiy(4_G_=5Fz<>!hX$dq0ek5zoItnO+_^u=#XPrI9!
z#N>b4axLr;w{vEO=F-Kp`0re`ZauiXGW~Gj0p{m6rq?IEJ@Ab+uJ+fvD<14U3QX&)
z!kooQOB(OB7V?`+VJ$TI@#*2gLuH=-j=kT-BzF8^f(*CX0TF?R%g(G?rE_Esqj>Ow
ze%0^h3YSvn-)D;M+Hv2J#pmap@;;*nY)6kMtIth0?Mu3_xym(Le)ieeTt=a-ftz*A
zquLraTW@CeDxNFq9i_`1rRsQ4;e1#2=B+Psjz&HGd}YP-rJGe9s}6Haox#>+SG+*%
z%anUlGPW-W_nUA3P)Np0LL&E8>g%}P$7gyMZF_%Ix?Jn@RUQBJZ7aAg73+nyNqpJM
z=2iSG`dq?=uwxx}%xcop%$=vI{BPjixVT5@`vkjZ`w|i#l(H0;8QK1;sWYstF8cPe
zq5o^me^2?-$=X5=Kc0U2{N=5F{_hJv6@?dWbxphH-PF{yBg(G#k)j2Q{9K=nSF9S1
zKNT9R@G`pTa^6<pvW;u_W7b=Ko9`T0sP`!Rb&~vBA)WT<N7r9To%?y{dfw#kMGW_j
zZ2oZT>!G(R4pewo%~tdMJL8t?%;!(f*4cU<WX!&|RN6?t&&t2ZweME>T&1ge;%>K|
z9t!t9{N|i-)oYfJX)@cyqwm`r9S=+09JBDy+hq3}J73%Qeq;RIIDM+(9=9Bczb}_h
zV`oZ#EPa1*`?c3B%@d9;T<yQR!1u_^4@>OodA7are)lKqqK(yt@>gqv|0tNOiaD|S
z!v4J#FAm2%d;4E;@7hfHvq76UrfhEha@^g*^z^!~do8x?*kiV?qtN`#Bd=$B{kHiw
zz2DTH6WgE`Hu<k-!QPU!mCfJo2nl^N6lKmbzohZM%j%uw^r>Hk1EaT0*t#?9;Qv&H
zTN1V>Cg!+(RsOK#?bAJHq`R8?4S&f^{#bul!ca28*V)(o(Wgy&)UK>DQ`>2@E%NRA
zOTn@W3MZ^eDb3%zcT?ZPbruZr9$H!lL~J&s?WtHaYgbIjWF^m4MU%xIXKjCWIdrF=
zI#-kQ6UWKH5q8#ptG=Yx{F~-3Y<R4t=u_BlX@hs3;T-3U#0t1|J}gR?^8P)gfIqtX
zyv_CZP5%qC4W;h6{W?6E>m8?>?LFJnJ$eOqzU_LuT<U$lBg^EHteGlHG#@{lVf|k3
zeE+ide){)otdvA0=Ie!|nxw~E{amk7n3MMN7N1$x<b#>wGSAsIep%wm5}CCqCU}c0
z`=k|-VPCE#J=>acz(wTMX7yRAg06nn|NG`x^JE(^RedSid1sYr?#nL5eN)y2=`ikC
za_5%8g!{af&->2pQ10@qSa)OU_395k?QIrns~6U4Y~qr2SDwB3A;+1uM%`0FbY_2i
z{O9idaE+_o`+jISezn-nSbs_1_;1ghQqLQW?(v#ct&+t%t}YV@cVcl+RtXk;cGY6R
z0`6v|y=yaDK8h9Ty$m{cb^5iP5h@Y#Ela+{@t#UAUYIpmP0}q|w$l2$+3T6-;u3gX
z${ek<Z!l4QwZ3(AUeEm{(G_#Pu9)vPVflu8;wo3&)vPi;_Dp%(u)sRwo7bzOZNUq+
zEIP#RHe*}Rp+vE1x6drm`?2rG-o^Z(RR%k1XB?f8B&fGQbV|Y8w?T`qz4_@E$|khz
z{8@)v%Uk|03C?Z)pXs-?_sj3OS--C+M&Euecz#iLb;HlboHbMbyub75Kx*KhhS<ed
z>KU>*%)SY%zW9;v+VixaZ@CQn)uU&MEYYyMQM9mU+pDE6iIZ8~?eBz(-d;B2-tisk
zlY~#qR5<zd`@W=*JH1`EFN&{V-&|_-DkSe#v(r&7!!>%@Q{#E%-~QgP{~Xtig*O+U
zI{$Wy3S-1wA*tx|U*j*`db{({L%m0DcJh{Fic~0Ty6F|io^uc4I^XL0qpL#2mh-<e
zm$r?fn@v}YrBI^EkMg$YyULTBZnrJX2v4zCTIS1I;w|~|7kBvgIDf7W8BgVA&02n_
zL^$EYE-wY9e|r~sZ(zvH+H4wpvNY<3ns&%awijtr6Sw_(AjPNf^`KtlR-*;WPA<8Y
zy77pL`!6{m=UArmWeXD~gsb+3Wlg`d;#6Mdhlg)29lCvu#Z0ZCZT$`3%MUJ<`Pkf^
znBjQ2WLef(jzxZ9FZZ1MzBcFGw);olekl6$jAc&kfw{#cpKqu6ZuWov{`WnTrVlc=
z`nZ<rG44xi%QfW`{ZYMp+LWVux|>9dq<YjEm+#)tXu!6zf9e*egIr=f+!kwQ-IThc
zcI}ANvR$iRUAeH#*r4U0+{8+@y>SsmKJ2FgZhK9*l;mExPUqSc=4pp+uFPHb^oI0{
zi$8Mz|I3fa_c^bBe~!%JgZo|!3qEme<oUK%bcdtW{s+#}czxd`?>G`yz?YR3yzG+0
znXAW^`0UDO@>Wf4+fbDLQ73rwb~i&7vByqp7jgwfFWy^tLP^isKd<PtAKSvCzjtiS
z^}DdT%`oC9@1`bwsh?Nm8?Q<)b>&n(>nQR5_BxAYAyz%ne+y=uaWD?c-fF5@_}nLD
zlW@eFvSW$IO*VXeCig0kUqU?4mOt`?O|-%}))^ezye8IY)Xv?xYNMiLkXLIS$DH|#
zwW5rpyO%9U>zz0A%%_F7T$(C3p55MkJMRCDyq61)GMi<&9%A4YzU*`LbLh<TyHl<#
zlk(twdqw^@?*=z#%bQYqui^}9_`lt+IpMO`?|<*E2LbZCHooBSx4-)(Azg3B`;Ye4
z!C#zDs5L#GcK>bg#mi62rT_S!7P;-Q-#$2J{x1Ff^4vcP1m*ti@BZ+kQ)v&kIrH&*
zi@vPZH1$1csppe&jMF^(c$%Hv;`i-~&(E37{D0jx-^BA}{i=6gPTIHLzIK+=0o&!0
zvoiuWXMMe^lX*+s<9E^K6>8?G`)24|X404ya#D=>#y;Px^M7t$a_j4zZyQaDDm!=B
zo?IO6lALzqy5PoZ_69GmMS0$@+!f%Pckf&DWHYs+wJV!nYF{h9dU|?%sN3DbJp~Kp
zZ-06BEOP5YjWtgX-&h?kTm9<aKBb-iBpGAGU1py6vR~)V`TC!-4$r;`Vm4=u42c=@
zFgGzpZp}WO5t|)iDA4x)ujun4?w3~bGgFuzwYoZPT)ORb>xwChw(4w&*3rIF|K56b
z?1rsz-<5JAFHL^KX>-P=^8Cy?KN~?io6v*uzW3KH5AS~YbGF&fJyRzwKg#d(-uUe7
zt(hPHetvVb`|{VHZ>x6hx^vt7<mTCXYv-*^%Gtbn_UWfx@%!%l-c|AaLHg;hM{}e8
z`mNqw@+o_3TwMH;$A>p>cVFJUx%u$p?|<Xs(+W3#J^Sm=tJC-FKezpS{gli2@BZq~
z|KD{SeO~_8OkKYJ9G{)+pY+N5)8ubHdYE(P^TfL?8Y`E~$?!WeNymD&+R7}?ySAR1
zZk8KUe0R>WGgPj(a=Rzl$hwn7<#fu*8I@W`R~}PZxg((Tj*}DTTaBlC7Pfrb@`TH)
zFY&bIX5(vHXR#j(u~PGXv*q9wju{f+GWShqM;irtZ4H&4KKVl5<bs<8PM=vd@)*75
z%)D5)i1jO5UjL3Hk)Y_-=_+b-r%X{;YU=UymPxqD;srlCw(!LSM^7~G*>z&!DuvXA
zMS6OCy}KoJjvmU53EDNa^5}}wGQJW^vR=&DYxMX^_Mw)fWU1~c_m#JP-I;u)mTx`#
zN--z#RUE7$RrxalwV2gge0G1kye+hfd#SQCi`L2$^Hi<!7q7ijkq}bZu9aPG<#*6Q
z^<fF)>}P^I4V?UE@ye_ynr`*UNiX)*BE`~^ilv&o?TS(XOI?2)VzkH$GPt?$P;;z%
zYGSEoV(G_M(&4EqMMGW93jS<aSNgEx+Upfr8L~TtS4@%7l{n}a#ZvjXackVJYl8Y~
z%hoE#vaS+~a=*W^{aUwMu4$mGxz3bzr58hXWXpCkteE2bI;z0;<DZylw;Af+8#h<o
z%(7*Ux^6WoW5J~hyUbLRJF5;A+1%RF7<hH<HSGnZYqR;*u5P`SSgh5-=_C-z(y=fw
zcWd6qqE(Bv7M8Bv<LIgzyre8&lCkN_O1}fwyZ?pFUVdYS)bZ@xz<J6_{=b)A+gWYi
z{q9<Q#W(h|3BM;|$t@;C<rY&T)ZF5mE#fH9_Woa&rP_ta*SmMEV`DwqA^+O3hvg$P
zliDJe3-$R|zs!;lK5uEVd&8M8e&^pEj`j~f|0(w%>!;T4;C+cd3%1$Z(EBcb^pbg^
z+Uak_eDVr8PRTdxYIc|JDgXBG`Nz8Ix{^<yzHXj;*u4EWyVs=W-}wvPKYD%ix4yaC
z)^%34=RZGwG40~4;{SKQowP4kZa8+u%H#&a1ha7Eki0jtTMGH#`m!9HD3z#SHt9v#
z>5%2(^Y?B49RK!DdiBr8e;$2#6a4qo@$+%H{(SxO?EjwMzr(EV^#2`F`zw#{c2s4a
zYRWIQ;*ikP263%qm0mX<mfkBW>wK>+ce={1l|T1amsbFnXy(FK8ZEYgtX|5+4=aO3
zOFB=bEJ)G{In?RZn0$6}i^sHOioQLk!a{g-g>H0tEewzp(-LCect*HFN;|<Q<Zpfm
zhxK}QZn-#d?e*Q$uZM1WrO}(0IA@L3<2@UlCU}S09nq^5t)6n@s)5g*iQ?LBpJ&Vr
z{U6*cxp84xYtZhbm9dw<zl&_SX%}&DQKvN9k%wi+PTiQWJLqKW&L?>XV*Wict&ZV-
zD0}!-Ip^th311hMPd&6as>)pGqn1O*iKzz9zjRJ^b$+jHE>m~@lXgT{-FZJJRioe;
zZrM7oOpMn&EPvLr)cM0J)rz;O6~<@ZnIxue(TX&@nN+d2a6ujG>h~=2sy|r5HtbsT
zT!GsqE@7Qj;id}p3eP+fmie+(2NwzLarO(&3O}KI&dfWlZL9DeH67`u?WKQ>H4j>I
z&U%tH<8;!R^YUq8dk%=Mk!Uj4JUDyWgW}V7LXCp?GR^z`%-B&nVeSK6=VQ(v(o`!x
z3+<Wh!hYT-bkh-sw0mz)_<e{IwPeY!6|I@_VDIMW^Y?7O-?+9(r8X_XYx)M3wg;Q9
z2u(}o+{ZLEdY)SLeXS=3n>UxJ{{ZQEAJSB=cd&fb-O@u&J$GV?Pu0zR^RUcD^7ztc
zEeEPh{CcE|;`lbTnD6D^ePaIm{X4!(rx~*>!;)#tiOMv_7I-qv>Q%2lX9Wb99N8gv
z#6!SdAwkKj<;VNAv*coXKgtx`NKK#iZf>01y{cVl%k+i)Cg{)U`NVs9clXPKWxM`s
zsNHYT^1t10S<|qAvorJezpwXxUTt6h_EYulJ$dT)_12%$x7+eKJ-xp_F6TVod|CUu
z_5zRgUf%nc`OfZNHDAA7e)%u{@ubJ%&!<}&?fYx^FYWh}V_lX%-+tY3=H%(cn-7P#
z|BraG{bKaA9hOno_oSLKWz3b*GP%KEV3HE-^z!VkW|PMP`RCf^xi9<0xS8dC(Z>Jc
z)BbaIr$^XIab0RqjoNU9Yg$*M_v5|`(%o)rxUTi4{Nxk+-H;lyA%<&O_okpUF2l)7
z*VP`~&{H>cp#^`0Bj@Rb>T4Jp@97$|p3~(PO*p%u<iH^w$%8zn1-ZiJsp|w8pEL?d
z$x=F0b$r7gzQmtOKUR52HkE4~tkyrs&MoR`rg64??Jl0V<r|VX?(JlGAJoJz%Gq^{
z?@si!MJHz^@*Y(0ymDP&Pd2CBMv*lQS3<b#s*X>qS1&lap{Z;`3CF!!v6?9lg5%}h
zoaEFn_gna)tlKHfIor@?`u?_u%%?syT3lW<#U|slp3f)a?XJ=J+g=%5p0wm@`y*!W
zk1tov6kENha2eO+4722>>}5x-qs(OF_sYoU80(&{2z`9P@cE3RbIU*0P2VDRGFwcQ
z=VbeoC)xTsQ6~+e+kHf5ZQb=hvUpp;#yzUKa?|*=Pq&|+=3c~h_L}2Lt&90lb*WoQ
z+)s<2c8|0xcb3_4Wy?0_vu^f<JJ<bao0V~KPkQL13pHDLjrHfa_D}lCanmJ2JcDbe
z<eKfB3Q~*2ed3(B^)Jl~pC8(PO>ynClc!eY%#!#$>$7Rd{F9!qe;?|ue5Shj%|&MG
zrTbR>&Z>OB_m$hC%ldI1dp>AsTy;LP%fD~#XP1Rt;nwR^;`z5f{%Ga5RfFZ)=h9a@
z6klI%oRxd0z5B`YKhM9{F+8`F{)m}Pj17p&Cgv!UPfuq=XU{PgXnX%#d!M)TleZae
z#TRmYm^FPpF28lnY~sx2YP+%UXzQ2z->=pbnX`YtC7v|hHuJl%jrHdjQ@7b~-zAt=
zT6}Eow)=V8)Q`Wty}Y*D**yF9M}D685UY~6w?BT5KR;syhq#z_i9(Q8Oz)0WQ@k4a
zKU`Vuw(`u}6N@8KGmkn|+t(NW`PcnA_Ws`AtMB{^&a<BuUVr~y?EO93`t##$t3O`;
z`0CTo)AHx^r`*2zdh_S*s<Q77-@W~P{ds(^_ObkR`G%YJ|IYdITJq!5?egDG@A>uf
z=+&qC)BhWvRA0>R^YQ769nY9I-~F7m<@2fsS93qTGOT!LS(*7c;X{&{zF^qfiIqo_
zKV@0#?@4($H{5k8Z`_-cr}s>ZG+fEsucoAZJ$z0@q)*(XN#U2Dh&H;htPBh7wsei1
zA?~26-*{?;Z``Sqr&B&SMGA7QpRvvFgZSx7dzQVIuGsqW_p6t`rCwHlk(Ux&vW9cT
zSE+vuzF`kjOCCMF{N1$d{`W6?H7a_)UX*@db#+@&?aeQHol;AG&C{$sZ(6G#*Lc}Y
z{gL5@tZh>(k9LO7-k0uofAf;}s#Y@>?6V3Mk&l@ENOb<kPcN&by`O%u-TuWk``5nE
zgOe<*0w-uG#Z*50_334`JV<KEv^_Sp_XE;emb@yx5<dN2W@4P9dYo15`FZ=Ed)zl~
z{j__5u;lKB3jy&nuYaj!UtjnB_q=`LUiZ!4s5M{c7dmqEY^?Y>VZr|&jppr>=Pdp3
z=u7Qkf00?vb3Vk~*=QfNW1rRhikn~ddi;uu`X%?)L*<40QLjjwBVp&_YroqjX)9m#
zkDIlRea4g4qRR~W!pk4YGF(3^tTA_PIII55ed6BtyO+NYUCpFw6&Q2MLh5qqYwqed
z!us>~O}|ll|MK@&mqK$&lER-<U)*K1{_gi_7n6SN3;b0#=RQxIt$)<T&Px;21rCL+
zTfgh~y%d-3m%op_{H^w~`tUL7NandG?s{`1y;1)7>)np|o37{j^w<~5Y~Fl@Ib>6;
z!V4LtvfDTQey{)YEWT*B=q4;V$(X2|WQNwKL20G!hE_N(vHVFYEWH8-f~rmbs#j;<
z(lPuv$NBwn9pk&!n?DEq{c?MEO?<-2k1ei-aiu>?cG}$3>!1HKNm_hi>TlIq{0s8t
z)ZVQ7x1oGfdF8j)Df?yiTh)Gk_u|WkzYqU0Dj)s$m-)u-e`U4bzWQl@&yS5c`myx=
zylZvm{`TJ%{~yDft;_4ptXUeodP`H9Xk#?vq9{u{i5pxV!GTwj6q1g1@Vv9UfAs6m
z{-UqDWBzL8*Tu!g$ISaa|JR=vZ@+!{aP{Nq|94KU{Z^fqcD?R<7yn`I*QdI<tWG>Q
zI&II9$>Q49EczmklP-qk&prR_k*l^oUtCY~bgxfFzHz5GM7vDg^wrdYuTOtlF_SmW
zZ?1T_U);R|Gk<xcXfAtTXSlvXU0-vp(%L-|29=4g_lPX|#FDHMbieIMfmU4E?CT%)
zvgu3idp>Pny4U^V1xJ=8R^|G3UteHRSQ~iv<EMw!%f8rd=8rpbQMV%V$LYBxX>o_Y
zi(OpA3(6&tm%nE*Tzl@WoDrKobvc_^%X`~y-iMpl9{Mh_Z&&r@fa%#evP<p0uw?R|
z=>FIyeogU@K;(1P35T{@+!Jw%T@|Dhb>xp_VdKZFnzz*^J^C|_O`mpb`?Iy_ojh9@
zeUvkNczj;*&ER|L?fsN{>8D=T#XFL8g4P>wtT8EEHsR{eTaQ_Jo^vn%?0V_vvL{R-
zd%miOeO_^X&d1cyecK+mI{#d>@=t`3nts1)O779lB-ICAMxRAi?pUq=dv%Tf(`?_T
z)-K;x87j=&^`m<E%*vC#wSs()wU>Mpz5K(FFT3~ZHtxcJ&k<36GMYIY^S$S@vFrOh
z%=Uh`dqY{lI>AF;7JX}cV-nn~6YN^#`@9nFw93mWN;&;VGt4=t9CaqgV6${W&*2|h
znSUZgQd^HY>&D1$>gVb{$Z4#7rv1~_=hqk3Yz_T+Z_}XzK1m1f?oAUsB%rlk@y*M!
zzpG`Z)jfK3;eYmVHt8$dWIA3Q%emV7@9qCz7v&ddh>2jyL1skdAX78cCYyJ*sH1?}
z_kUfHY6d&6tzNx)8yl<Z(c`6xT8=di2VACb{CfX)*Yf0=BU=+DA23+C^YX)h+E=f4
z*F;q){`nBZx_`?a%jmqf(`T0#b;j<xy{W$cli+1NZ@u5!_4)kt@72bg-@o>G{B`yC
zbNYVg@2%~Zn{%i3M@fCrp9dHJ9$u_e_Tkfm4;}n^c5!?DefadDzsm9Nn=dj`-@cpv
zYxUo~_rs1HUcWzYedVV&4^Mvl{CL04r{J%%RO{AnE05beOJJ?m>SgP<D6iVLN|;kT
z*0N*8gF`V%qCx!EcNskt3)Om3a#s3(e9}i_!^2C3S1T;D>u8KrR=e4`vn8Ejss&@r
zM34Dh5&yi-m?beLg|ZoLiB?YAD!f`%+qffBG2~)pYr2}4eMe}Q<C+NdXG;Z>7X|nV
zYz|6EEm?Hw$dL%EjR#^)rH?H5<)*VmSh)MqQcj({Tcf-t*8AxEQ#IVLBsTro`MiHi
z^6JcreVMh+FEjo!>+BoDn`h+rWPLEG4>GSWGPk$hmMJW8%=yuIo;*uq!`(_@Z9ju|
z{S4mybLX{$<^vis#Z8izFQ=)Ag&#?pVZU~^{pqy2Eg`+zv@b`CGWPzFT7AaJr~PO2
zjH!wLzU2K|bN7!!o8kfAgiua#-+4Eat<J31{m1_~J?Gi^yt<34)b2G$C>%6mOP@Pq
z2JdI-j;Bk1Zk{RcU-FsTsdb`B<IbcoEyf2&ULJZgX~x97XW~ikk1UxjpS~m@Gf|$M
zCCBf`=8l=wIWzV*%s8&F>{@4}`F^J5+g_Y%{m3~@BUo7b@Si>dZ?g{3mq+%@j$bOW
zIp;{$=ZM0sD?52Vvv)}HCQY^4_~M!S;a<g;TaRv9w$rF^*N4P^TuE2iH{Lii|L&g~
z6E8$bPwLo|8!ooqsIY(M-xr2+cA6(yIGQCnT<L5TEs^eUEzR+pGs7ue&Fswlw+Bql
z^cUXfe3|x-=i{v^9^Lk{oq-C)bF}l{Z_j^Knb{pw^m|p@l=7fbOQy-PLC*jEAAS0H
z+<YIiWQ5icEE&g=sElKQv+8+w=uK4Y)w`jkrWzV*@XAN~6xYZ5zsr2nlkIHSWy)^O
zT-u&lQSo}_D#<#YOof_D3wrc<=j*qp&wlulTR!LQ)@O;IMNhAG$=0{a*;f-|a8bi1
z?dim8E`G^rr{{F_%rOd<yj{6*VzH6o`Q)TkX%;DAQFXWW>?%IqefQ`2!r#?*;(GJz
zbIZl2KY#r3;mgyD%V%G1KK%Il>ClIJEFyKnGdKR;XZ^cu)1K{d8|o@I9zFHt{k30z
zWeY#vyjn7Q`}=-Bemj{z$&>eo$=`VNE^GI5=G|{Qui6?WzB;1CYUt~zvwAaE0OQif
z0WqJIg*Usaq?rhMD}-gKFB3a*rg=tKapnq^EyqG8y38#+rsIF4K<nJx8Q0x<Jey~1
z+_|-9p@kz)<!8%q)iWh?4Lfp_+Fo%d#Yk;*(wut9=-Q>W=9M>lIxXKDPs=v9_ntAo
zc*cH(;-vw?Gs0w86d$v%F_KQY`^V^+)7?KEp#rND|1o_H4iZ@17W#xgaZdiR1JBxK
zlze9P6}W6*?<E|S9lCO>tFKVyJmZad|9Fyaojq?h^ZwyKu6zCDjC1>aJnNQg{Vz`{
zn;l_ZFIl`auWq5i{v`(WuF7rl3zWiaw2NOSrq9`U#QaE+`Tl|#@hWHHTaT<TOM13e
z>!ZesVzp~$;~mfJ`l;Ifb7{*@Mxm8ilHOwHy}oQWewV;q{#l!C*_E^X8LS(no~@sH
zGN^A`lb|U>$;|xnM&7)Rsd;r54faROkT(v}l)T&8p?xO*fqU_}2=o1oGh%1oKm6xM
z<`I*LOP1A~T)Owr2d4FBXUr)1Y|W<j?pgcxCW-c+qKnM4LL;+EHoQnKJ$ARX<)`q!
z)QY{rlMU=!M2~1?nVEjh*1Dy}^xSf`{bd)P$vY~|>(3?Di6jba4hqf<&D@bHePQB3
zOX1ViNf}SAH%dJ_FZC?^xR;Y<S8?{~sO7JV)zXAFN}SsLbF=TW?*{g})`#4#m{J&7
zA|7&CS+IKF%zMX{FU<9sck6Wpk9u~PWLRivu36;q_3P_DKjBX;mlMX!RVGHn<th`@
z>c}@+#$CYS{ZG;2DG6KFt$O!sSJaIM3EYu4Wt?(a3S|T$xHye8{@)8V)z$5qx|#2+
z-kEoxvA5f+u7~dZv-bhh#{;gK^ETA%i;H_VU3`7*#<|^JQvav(%vX3br}pOmkH0Ur
zFMjP`F5h?kbNO`f{qthy{VS`gIdtXmpO2h!cmI|Ce)*bz@tpA3yGMS$y(_%f^7+T(
zf6xElDb2X1H!LkGk)7kC&;sG2=+4H5#|^!?s>)7}_9d~0_B2bK6gG~#TlX`4@6YnR
zJEQgY-MteRTYpmj_p>+C|2}=W`}6kypOfW!?LQXtJ+{C1ac0L!w>7LA`I;km)Hb%c
zt~oA$M>AkybyM=|e;IDGyJj44>uH{GO5xg?j#B-ktei_sqLwU%@B6F@dpzqE+B}*g
z3Vf0lxt@_&n`&j&|K#Wnmcq28ZGw{(uH_0`jyuvbd4{m5%83$@4Wg~P&OJ4(cJXQd
zsoQaL@6Www^aGxKzqe-Vml-QqH~yIO`H11NPYyj9GvYU#nIGnzbmo?p_EdpM5j{RW
zXC658wEt{9_2<&5KkF{sHP+^}P1c!In)W%`Uf^?L-OJRvherE%dp|$p#Xe=tHHLY&
zlfTV5()P3VsoUW{f%T$>zMstx7}P)J&{H_O=8b|~Vb9OBe*z-rlF!6%pLxHwW1^{}
zPtv-bVMS9UjfE$(C&{+`6g~B)E8>XLS2n35i=w^yTi>d!(_=CF?9Su*g6FgLw4YP=
zbZ8zE5;$77L|4^<b<U1m0yoa|UkrEqYS6LOX#Y2pdhS_)Tf7!@ZCS&0ZTA_UGjbh<
zJfF3v{|r6#M<P38%M?$a!&MrNm5*LIP2fB7%V2-j%=oou`h7!m&gwhnAAND=;`6n7
zEbTw51vXcIuAX^+!I}BlD$nk*b_dIttTEesJY&ZE#hS+x>za+~TY?0G{aRBu-rp6j
z-j|z}boh_Zk%}4jSDeXTd&Yl4Zd%^wiscauD%HzocHV59!TUK{|Fir5h$EZqPQQI+
zVz-W^X<O-|_1|v$+2~moKFP~FDtxogT3>z9F5}xh%?0%bf6w2?Tyt644NImnB`Q;y
z8lq<^_*k|<B(#_0(@|*KF;T$8>A)Hd!AJYI?^-t5)NmfN+3$-wSFL&Zub$syd-*%(
zG9mpLB9CL2`A@&R`RkW2t^V7J1ZQ1~U$lok_34|-zdpCm?Oy#^{`0fzdv?z2ug_bj
zr+5DO;^xcK+w-q4|IO~czWlpH=JS;Fa{jV)`(o$T+TQ%T`dr}tJvUrZf0i!)SNQkU
zy)MI_Z>n~l`MCS=<-gy5|Bram|BBiB&iZZHb{nLo8HLYLwMz|U$Vqc`dSJDfQ>@QX
zJKAT}t2TpX2i9K4hL?@n|Mnkwqi1+iX!51bNY5lbPalD%s0B`}^Bp^9v@4ZuKfWTT
zb7x6XUhfQX|0Ksv2CN&q!lVsdWoJt09;r!Ny+fdQf=b)0BWGr^NE=>PP&<~SEWBCQ
zaHHRvAffKN;zzO+BRc}KZ9ArYKCYJ5@6jXvIeF$yZ}a`dv+k>&l|Nx2a&1cdlFBo+
zFJe!2|9l*G!td^%b(wYBP3lD%wqEMk`Lid*z{F59I_cKg_uFRNzx+o~@4&{lUW=vV
zjEfde?7YZp*!f;1%scbhde%#SOwAG}3e2!LGFMb**BZNosfiuB&)m6^Qszno39Zho
zQ<{2WgQ7tK=iHe`&o@^4?EaZ8VEpO`$7G4+KUWrQZ0eQRCKtTUsHiD)r>dCw8NW5I
z*Cb5N`pXnDN3A&^R+20fCT|fNvGeZKjW4YXx2mLN)&&VHQ%RFL((%Z^prAj}d_Rlf
ze#8CCe=c0|Q&OR+b=%{KiN^a`j!f*lscU#7udczwK4F&qqa4EqHG{nKdRMrwG<I6%
zb$XiHUoo){m^FWO^Ty{NHA>ogit@wzrt0mP9iQGQbFH&*mb}W@^M>k5t^&c?M;3*p
z+>z`4e8K5VQ^eb6{U!5{n4CQ?w%eF5xG?0BR5P=3kI$Of_nT*weQv)qdB*ae%2_TM
zxkvWcMz|O(HMIFwv)5*2`%2v?nOlp0ZTPFT=<pWxRoa`6dN7#RSA2eAzO!8W8J0X_
zK~$cxKpUewn-$|O;P$<;Yxk4|rYl#iyPxaA#JRC>&PSyqjx&xhI;uQg(D3)$%5}FV
z<#@+sUp#Z*&dgamdDHjV#ooRBo7emVd!F0Rmbd3uzuo=#+gtvPKNUkNt^dt^YTV-N
zk#l^1oxNhiwUv?;&CCj}!EEYN=E*ZRKjH4Gc<tq<a_xenfVAS`A1~#P&)>J>@zb-n
z>u-NOUiNq4-aqeuJ^S=3xBBCoN5`M<m(xEtfA5c<Uwk_J<L1wq_weM|-LuXA@3E^5
zn7$@HHZDE2{(I!#haEqkn#+H?y{G2upGSYTe_qe?$@A+(#eHk~s_l$!=^8GnPC7GL
zB2e&kt-9I^Ys2n)1{bR9lal^TIkKgr)F+8=vV^msuujrEMPrX7kqgp+8*UzwRKC&a
z80<Lr$dT?DZi2?bPaM}MN1Qt)$Du9!cy~|d1(md@BX_zY3jBOLlX#x!GJBlS7QTIU
z{&cOn?0*`c%QZerR~hv7aPBr?a(&Sskt&*0YhM4}cj~gA*3*6l|8@28h&Abye0HkK
zut9ImM!U1;J$;t{G>&!cIsGRs$7`p@F6M$Xo!o6khHceJhG*~ZJad2Pnf!BiDoe!k
z1ZEnBPhQ&b^ZAh<eG%s_c>0|FGjrYC85`4VOW8bo7HB^@B{}=qb(Lk8|J*JA>^}4U
z?xy5*QyJrAbNVN=cAhlZZ(2Iz+4+Bo0?9g`pU0fpZZc*5%F}$)BErticoBQdZU0u`
z#YXnujs9n783d{to=}}?vE%fiyRCkotA#da*1b!uduCL>Ai$+ee4@5P+L<E#eV_bd
ze)dH?FtPWZIe+UJ`I|lsA{$d?J$wFPY3EN{!+ForwLhn~?@!msF!?QU$^F;?)|`j$
z4lVns-1&3u&&8msn!k}lTGIH!7l~DRd)IHd`{(9~KGi~XwTNfpTA$mC-kG?+&U(D0
zdDr4~K4;258><=41W9<yKYM;hDl$%W;{~f`)lW-1-#&X@*dTlP&!N;hLG7fKribjz
zrdS3}p22K4_2+*3cgsKS=xtOikU9R`zCvKyTc5Lh?{=3?$gBTw+WbGWRD?VaW}Y%7
zZUusc1!_HXFgwPbr~Un3?Ryv7p7$=9Xfi9?he@-u@Xp(XCI?$gSe@Toderdy{&VxH
zWc|E5oB0px+1xvGZqHr*m(rQj_lw7I=*O*k;CuS{>!(laDnIVh-I)Du*PH)GzHnY%
z7a9Gn{!iVPhcA9zzT5uz>z}(%kFHOjzI^{&x%o3Rj`jQhc=2uhZU6ZC8C&<gdd2qm
z_Fdu4wdWuA|DON<vx#C<_ZrirrLr5RZQazeVd~Zy+LC%#b;6cDIxD?4;^LI>l`3KL
zZ+v|9?X>;tv-@A4y<7G1?Xz#MetG}jlz*=7X8gQ;*7d*b?VnxzBW(ZN;QwRc`Rx&t
znGLTy>Zo*Xopj{RY8Ph1i%bQpBEDoCpV2)d|45Fj+6A{WomPhF?~X)VX<<FGW<zO`
zo>6`etDdKi<C-4|$0i<GqG}klGRDDYs#b@o;oO-s<dW8$QfSk7ePoN8q2AP}^ImUO
ztTy;?E9A%{!;KXRVHq>->z;j|7ae9LB0e|5;(+1Ish!C^?LTFYl+2J{=ASh2+3^4Y
z>yA(^mE~N0r)PHZehwGtuKv8;q<-nyKZ*CaSlkZsE=-%6HG9Skp3mF2YVm(oo;FEh
z`Ol*Q9mir5u61&9nbf5veFU}en2+Sl*zYxK|1=Z(BTs#U68?IK9!WkkXX>Vz@`fR%
zZ9i8p`x*F2ePh}RgQ_0UV@io4^2X_@H_zm63A4!&_-s<YHudzWw#7oCI^LNE_KTSx
zbgu4x#GYh#rhkohlI~gkK(8-)oq@|9GBjK+d9=@Hirl74xAy*wo@Jk5T+gy2N}a9D
zLVMy#<8sec{73fid|v#-BWcnz{U)cg)mBmRVw`hU84F84a}R!JcSc_Ito*EJ`hWS>
zHkS15Sg>=AVPR?F;Xf~qX!CwfHt4LJwcjLM@9v*KPI33WW}A=a%#g25y_#4z!82*%
zGxyjwf7OjS`rHdI&zUjfvf{B<2KFKIk3`LqkL+0TRxbPEY}E|CoV2800?8R|W=Xx5
z{`6k{v+B$hZo@5}TZNlXn)UC!mH+?9=S$|xj{RL<F^9)GINEQ|HQ5`_FYmacU-AEP
zxxqH+uUIk`af=nq&?+l%uc-~(Yg({%-TPJhqErNgrElMqY07QcC@bK?#m8mw-_G=^
z?&+c_n-$M;g$14WJA8Pz|6beM$9c_9i0AqJWWK$7_1lky)nA<NKe})>#rog0)9D=T
z>uRm{)t44ketvkq>~Hz*e^=uEmDUzleqCr=U-j|v=K1~N&;95BFR5ClqQ2hW@BD`+
z&-!O?-@o7P@AX~JeqDW9x~^ycyS4i*?S5t*-}B?`^1|8E_uK5Y`2Y2fz1h#CuZ_C<
z;_klxc_5GF!i=a06AOk_=KP#aPmj%IF}WXMI;&$6r>C-#L*9{lymC7p|DPUlNBNma
zhpQ0x%p)ybGd}tG7%Bx!p5fq;Y}m6;WaDqiV(BAmD%EEk;pv)@oO*__C-Hp5`)%nx
zI$~;KA1sq&bA>)@Bwf@_X8GCuUb6d7m=Wvbbv{098|NLd@=cO7%4K@s>Jy`5?6K1L
z-OP>i!fTV0KI(SzewN<CAoWb#K{F}jS@`*jFLocd(OIl^K~Vf$#B%E-waF5}f|C>f
z&HJO!uJV-OL=UHX{Hz-W`xCiYW*iaen(<KK*&7c}oz1PDJfUJ{_3epu-W4azIwM64
z^*=}Zc`tQ2+BxBS8RHZFh*Zg>!+(x>p2-yIPW%`5Z2N_EQ<#$7z8qWdYD>|vWj~j?
zZtHO5S$L*D;@SCp73nnjWX|&|S`BpXBv|`>jux7nS+~T<zG&usWnJ-*tD+k=&eU9U
zThHp2?8X_-&KCt9*>dLnqE3zTQ*+|pDm{OFXtR;OTl0)<33HzL2e_U&^=F;u39V#H
zbLp8@>ut0%XWgGX!|(Ir=|2rm{qa1n`>kCpR@HWzBX``)h&zJa(VxE?)t_3^v2gL>
zI+pi=M<&VZ-qEX=aewn?Zr{(s(|&fI`t$JT{e9urb^c0jwK02mYV)M!KS4F*zc;H~
zeNO#3`0nb@;tID}_R{-*A3DPFuH$QF-6SLX%>8F)ynlASCsXc3sPGG+Bm3<8)W7a{
zJKO2_-@sbA_5519=Fa@Bm?XjZ^c%DOzTfQsnRMc@<R9YJEm)$BI-Jdtg*5gey)Nup
zxo-ZtRnXSnYuAougHGlqk7JIEzu$f?_4nSSTe;R%`Cv@ote2-3{<?B~^WOWf+<vT_
zZCsc6`*YUscROl-JLeUixK?8QulG~rQs<~VP-`!7ky1?1)(efRf;oksWd%)%Rz7_6
z?xKuI5ox+>l+L-%+4KtB+N*d3YVDo=dc5fG!adN|UL|U4?@R=^wRd&$>~iz`f0ebr
z7UZpnkBwWr>HpWrzYn{9JU5sBb{yW?(*d>iRQIj<mTtG{mh8qGouLBRhMlc^NtxD$
z>QmX0q;_;l2Y*&q6Z7{t^P?|9`EDm?p}JZqo1xg2*$p$c@||1Ms&gm#T3HfLlGkL3
zuDLU=IP!E%k~}hJh1klqSvo#zF4`LAPo8l^;aXy&gvYXPa-Y@WHl()Jq$XYd6L;vf
z$^IJ#`?uuPt^Og9c%#oZ@MuK9clR}$cs6GKV=$ciOkDoi^bL+{w2rjKW?H$Wea<L-
zC|A7i{l*=p^?aYTPb#RrJ9)F(hsE|;ly111+1dH3P0N37<@;P-*Br6<%?c~SGpEv)
zWD9nm?_j+vyg9RuWs{>%kpQ>pinYhNlHZ(Sag5t>JjvYtfa?>J{jUu6-!iZdcX(BK
z#whCx%j?qA{-b&S9GZORJ-cppX1(2+^9fVd@_Qa?<doxnHr3yA=WP24$0wMmZM<=I
z{^37so&*UVnGo~)M2X6#7>n2^d38DGRAxOhmwM*D?!}Q7=1uQy)2ym^rngq}1W(MH
z%~PGXN`9OCiHa5RCnnfcO<wrBpfDmgH|6qQrWCuo`9^p0t?u-HUaIh-JVi0eWu?~I
z+4>DS?<R!K`eZKsX?t4r^smZ6_h)oj-gI75x#mu4>8<+>KFj}}ZU3v=_V;(T%aP4>
zE~{pUGVNTc-<$JlKV#&bSN84yq<Q}y{&{vszK_hZC_&FtF_My(WsTMa|L<-47cKki
zcw&%pRfFq`*3&l%FAFRF{<mZQ<n__<Gd6vj{^?Ai!Pd8HcFKS7J-&TqS@mK4`+xYI
zjw)d3OPLuG)0Z-`FtJ2#`0b5)U3_Po;QxF3AI<VpUp`Z~<@;i}`jwYU=5)$l4YYn6
zA;(+l?kO|>gtq6&p#Q)0I47__s?e7czJ0P$<y+&?N9}i6)&9?&z}dDxWs%08!;^nL
zezHD%a<}|h7iDGD`7w77J}+*XD415X^@q*gd3J94*V8wj<~N`J@8`#7ckA!Xoy&dd
z;oqB<Gp9vL>YDHC>eBLjxVQGz&!~?!zl**GEA%GWB$v1uJT>kyxR{f+V!;#+v&WOX
zbRM*8E=+IAQssDNthF*N?U+Psy{(S?{I!R~r|$c{diSG8(cAXy-q9cI^ug8e{Nkd2
z1%kFmDkYbTi?7zv?9y4vJ!Q$!vwuqa@+OO%?M`29wMsSSkB8b+jvS9vL#2s{MMdXS
znBHcs+`r`Wk2iC;Y;@&gl<k8rFBiFW$7k}PeY4a1SEt4t>z-NL_U-$-%g$fka43J*
zJ-u(2c<O;F!KoMJZ*MeK*&+M;s<ZBih6O7o<(&9pwrzj6PVa1U*Uae7*U3Mx>7TOb
zf0p{`O`Of~%84oKqRYff{=dxp%Ej{SVRG29?F)>ote^Mz-nU*<8FGYoW@z5otx^Xn
zlYR0fwkjmf`Z(*QQd^~W*wRo}lW!&o_g`3gO}qH^(pMeh-@j+shN?}Q%5-|^dA~<5
z+h1hY^cv=NF8b56;$>~juA5^2a*TDdpC7umx8d5ZW3_T?<?>Fg_~G?y&XEtdEH^}l
z7BW35)_yO&CHM9HYiu&YM>My(378&@omRg&OLx+jy0p6*r|<qrzkexJOxMhYZ`bjo
zmp8Epc^CdX+<!g&TIc_=&}2rpq)#v3=Nj+d-l3q*CE4oP%)w)FXjRzKSzZTEd?`Mh
z)|_D5o~^ZQtGQ~2#-+D^pXz7JYCnB9x9Y~rD0Au9oyU6&mx#VL@|FvajQeK5qEO<j
zzW0oZ^AwgdT^75}ekxf|<)(BrWO{N4Pe5-%vjl&LcX#mGV}>R#Ji<QDSi7i1koW4j
zfCyH`!;Nmj9UPJ?wpm=wU{Yp#XV-VpCaphkXH?o#qn)xAVKMzzA9t`-Nj;6VTYcSY
zV`G`JkMhFZJng>A8J=8dycl-+)03Yj9^vbc%{*^veB-VBX5S|cd;YFZdTINuv2gX$
zmduG|#Xmk@5X^Sj@aog8cO}xRGWec7kNu<)t0oY6<#vRrHcP|Z1LxGu1YYe(EbeR(
zQt-}nxKNjVPl1Wm#7uUPlHU5|df#%Ad%Ya@J+x&Oy^;`exc};f#iyQ650tYNn}2;)
z!zT&B@B5=>o}29^Z?MhWTHuoK)zrU#mwlE!aVz|mfkWV>r!~{>*grLFny>UT-X_8)
zoy8@9qxs7`#T++zCne3u>2FRS$W#^D#v{h_?QNZ`h)bT@j2q{jO9Qwv#dtbC{PoJ{
zl;A6w&l}3b6d}4}@}2cfh8#+-bBhZL{&*$|Pim2utp63_mCNtI+7htncC9hPU6-Wx
zd3HAo{$xxz@Vtzn?tt3)%IR4ue=@>$p085*6VUPUz`gyvbruRYEL-H>H?A}|c!cjb
zf5+uigB#8t4(nFV&oQXW=-R-;R>Dyy5iwEcLajwzh=;(AS9J^vC74zg=+<X$%Ri8o
z_2+MOVfm|1$_tiVV)qkfDHpLSU$Lj=k%j0Ir>@g_oBwhw;4o@rtCZ2rdv^5m*Do0?
zFV09D<jB7I^zU5_4hIhRo=FD^qP_EzJC=ypY3@rmu}zUNYd>(ncsHYH{N&JiwbD|T
zf;0m~4d0dQl$}`9KK;-Gwu3J|Y3%L)-Y;+|TZt*?erccdl*Sp(?A)F2?t2@$P1<zf
z%;Ay*2GP)~YY+P*{Ma1N-=;Wqq4LXvueLmn2rlUA;d%b}%u}7MVj&UX1q&ztzw=^Y
zO&>$>!Ja=Suj$wy4ZXM_OZDZ$k9@6v=H4z@wazpw`{CX7|2OsSPI>wBPU6?OYL`Ap
z+<$uW@q|eX4BRWVmM@%C{oN{Tde-ii?S)qL8xEhEf608?)~-*FZU_eXOuWYUeb<}a
z^7RV$r^g;TU24etD2q|y&>vd^4P%*|oR0ULw0<AVNe&Ocv!8Qo^mO;BX+M*<v?RQf
zDtme}(^@c;BivMD{(lc^LFElKCDXq?ZJ+&JzJBkn%I^<9rCYyz=a4;TE{FCJ(Ywa8
z<{4Q!a<RMFon80Zwy<RPy6?XIUw?1W_`JNbG%q+}cifHn^Ec<DM!#Pzyxi!e_GI1*
zO@*wH%k8dR@ew!@Y2dt^VFOD@QsZ1%minA&Cm;Sez4rf=3)3Pu9}Q#<`Chqc!`jL{
zF=p*euZ8Ydyii!h^E;#D!-_iLk`F)nd->#EpDX-!;>Lz^lgfHiy{C!1s8llBQeeC*
zR8#N-OLEP3tN3I4g*61&PPSWIJJzG2((-bW>C}`}39Xz~URt+8CawO{uzPXyVeON4
zSD9PNuP<kq{>&rmR_d#Q*X>IpbQg#JPB`q4VY7uXwKU`Y&nJtf?TU?!*l~LC@p(@D
z4;J;k&-yy6-EI3h$C^+vlL>#5xO4W~OugHcu-tg5-k#4IO_LJ7Pmve8V#V?OSN=-Q
zvKJ~Xe?m%MPWlzZa*)aY^7UmOA4$!hcgcv+`NndEPb>6K@9;LWu8R1x@&5Ytu?Za3
z^WViN9=O0PvwBy`<6lOv;tIcWbK0w!xh}k-7WnN@(}P(Y)h+%SYvL~7sbA2=sXZZd
ztH<S?I~=!pU)ksKPUX<9ob?_8YcjQk5+VZczG|{o@^n{wJ3Z2r<F48ib0<sw7On5D
z7h|1n@-4h1uJx-WYme)SgS%Tky>-(3)_O{A;S`Ts_KOpKglV;=#!qKUXg6J^Z}x3n
z@z#HmG2d=|xW8|8QsZ~C(^sX}`QGDvQ<A+sCF=FO>kQ#hyEi&IWdtsflTKYFDYcDz
z>*IB^*DMjJ71Cln^2H<Jie=b(mRpCtHpg*BF}8f^Z4|z1&i3%`rj=Z8vcEH}|IE5&
zz37u(Kg9%>(9NF`!pe9Wzk4Vw3ug*F#c@^HF(~Jb4YRWEmd^%zCF65{gimlj@SXej
z<3p?&YY($}UpgkX+xmT(&4J>RDaP!lcC383>)m}FtqomDz5ZqUBvn+8PqI3ll^lMp
z>eY#55}Gf?3|kCV&D~!Vrd*p`^5FQ=V8$mKbp2Me9-k<1;cSuco#2K8d1{geg6A*E
zy3DLT;kN3=vx=FALeEcFb;C<LcN@o|NgCVlRIz^abzH`H+hKxBRP)P>_acrrlvQm1
zRRn27XnZ<x*|Xo{<=*zmaqs7yE_6>{qBs4^j$J$6ZQ6Asc>AAJ=8dzX_3nMzy-a5Q
z?d#hkOItT)tz8vy{9e0{jPL9Yxk-1qcu!sa7Eo~QNyJ6&!nZG4e<{8#Tpkdi5IgmB
zjUl_tant9bb~it4zGs&F_2xq6tSNfZUr%-|zx`^TU!kq9zeRUO|F5!JsSl<y&R4hn
zaLOTJ&a)#=6;C~$zR+E`M@jb8=duS^H91rmTA2HHoSM&PkuS)TDR(Amw!2f-nu_P=
zuAHn~(y-Spt2jmOWw2;r<>V#ZKb{^DKDz9}`_KRKu4uE`J^zwAXVMudqq2;>f4^K&
z-);B1=F!A8ZEs`$h>58P{9KW6um1QVpXe^TbEk4=-c*;a3SVrMJaLZf?j)O-$jPBI
zVsfLJ&$lV|DQ`Mm{NL`XjOOo<*S*D(_m984aGNvtYR+=E_Bfl|tW3Mj%@-yc_N|!s
za8uRgCBi~X?#5Y?eh2DUW`5fE;bmYi-+a0E6CYlFY-3gP?ot(dO;yU{gU?@x<vhIn
z_|I<n@<6=<>1Q`?TXx4mNY3YCf<P;aP;u#-U5z`$9HXwOT8p}vZpobf^!DNRhkv9@
zDDGie^v>;sUoYR$3(w|toPT4$BU-vldfi&{xiV8qRzKgh&SCE9S8<E3=}pb!`1i5>
zKXa+9h5=?T)(mMBD5SC=RX@T%DJwO(L_fGRsRYFL%uP&B)ep~1DalZ<Ff!HmNX<;o
zC{ZxBFxGd@&&e+eE=WvH)ptoP%S=vnFG{S`cgid&4oEF>&d)8#&r8iK;j++&oRAZc
zSd?3AV}qeU!2)7Zv4SCpQJR}q47MqtC^aQBxg@_x!N|@|-woG^J6z^wC|!WJmkoIt
z7<dkE_^5t2@x}GSZ33E>3&c1NSR}|8@JX=uFoW<h#>WkX438TMA;K`JV~jn_V5tKZ
zFewRkh^}Ldj~Sp+2{I5}AcH^{EKCi<j!k43Q2UAVOoGg4U_ufM6;cNE0`ouvd-~N{
zEW6UokY@5RvTTsMlYX#oVsW+txFiVDC!rAF0u=)2*<FG7><%tLFta<Cp((!nu3%_s
zX^3)q%G<l_30J=U{r~Y!oMidUZXJb9F4Gn@abF4Rj#?WkvX!qcD|_m$g0K1_fzlgX
zWjdInqXo00w<d%XJa8!7uzZby)3?;;lkWW6|Guwf0wW{mPc=Jvx%mA*?|uKh_x<<J
zAbQvPke`45889#~XiS==#K6Fyu$qy9p<xXh1A{{tGXn!dBrlZ9ut|!6f#F0J0|P^f
zDFXw;gsU(vLdym2jNQMOwX|jJ=I`%zlM@z>i;HvD)sifAVQu7E)Z`$$b!ph@9J6kv
zO|w|Gt~;Hz@Z)9$Eg871Z1t+eT#Qglz@~mtx^>UQc&GOF6``xT{rs25F*4Y;UVpuE
zjn3za7!lWS4c*Y+HT&M3kB-`VR&4o28Si(mLL+nU^6j?Q=~=_Z@WN4Lg=BA9w`$<h
zpg^fufk{{7{LRx%_uqeCaK*#*_%Suv!w>epl2~#2adtsfgdQV<ZO8G)n<A7rv-Zvi
zSr_ur@V(XB(BD_@$i*-21{qg*yNIh%>z&8?TkD^FtB{@(C&t0RaO>&Einz+ue@8mQ
zW6JM_PF9Qk`DSzR5^wePzklE7|9!PuzyIgrr;oF;vuFR;(bD>JRR37{#hgA_>s9;q
z#YNq#dfnUA)g^DNHS^s6zwh5Zvwy$){ko>6zv?@#Ro$*LU4HxZ*PkX?>+)F{7Hn0Y
z_ha(qn?GKy{%<l{chaSzV)5NEdTY0xKI{;8@7#?WKRP-(gl+cc@7<d5<;7)X<+XD?
zH@=<LoU-+3_x+u3HfcN6+kL%atiJDBRe0EEHb1$Xf~v#5pvdH#IDh~9ZvAQd|9<-|
zbcKo2VKuMogxBl$zk1ldoL9yo;@16|&tLaef4BQ^K)L$cn|apXS9Wz3?Z01t*7SOO
z$;FmuA1!1`&)Zq2UtcFX>2n*ueChMK<=G~)!sBaSKJK6X>MPq+tv55%<8nk#@B8!V
z^X79_zdM3|9Atm58}-G1s@K#xbF4~V9X5;Ja{YDf!`Afuf4^l{mVbF+T>tyF_0!FA
z^)<VEY7!F@Gc!MKNK}5e^Eu;Ozw2c=>-TOukf&e$<KarHxplX;%v`y$Hm)l3-mcQs
zck}%3@2h>k_q*cen>vdprPbBdg@!&|y?)=n<@SFI@9*22w_RIx>3L^<TPaD&pV#-F
z)6&w~@$p!8aBy(?xjCgzr%pdJ%T!%^_5FW;e{N2<S9Cu4<xbUW+2!-=(jp4#@2%bb
z?_IaP-RgDg_C4;~ea`m#k2e-?LL<*U<x4g7-{E<@T!`Vq=9;Y=Gmf?`lDC|+(RuQ*
zId}dYZM(fa-`m%B@}G;Vey^`9y=wjbkNc)sM>dt;|NB0<|7nHIJa+j#;Yr7L6h8On
zzj`%P_xJP#YMd_*vj3ld{`usB$+LGyIGtSNx_<xndq&L%BjVprICAZka@d+5F>cjA
zG|!*DZCU@Xm|JX*oV4`sPp9?I%rve()}t=2UzdKo@9p}1y9{(H{sjKp^XHTH(%RG0
zeD(KySQWQ^|NnoQ-QxTIu8xnrTh_Aw=UH9vX?uPj5#D_1^5!S!_y7MZ+I{rXr_=u@
ze5?FC@8@&-|7Evx%RPQC^Oc@o{Z4iANtL(3%kHFaWh*=6xhi_c2h+~B?{|#9{(Syi
zFXF@bFy-lz``>Ijt?u*V>ASm?`~Uy_zxUs-`W&;_CDZ#Wo=&aLxv}BhMR$3n)mxu^
z{<-%cdtITX1_Q&}%>Nr_*#H08vj6Yfsk3Ii(v3E|opbT;@AT(S-+rpvyKsTpqD5=k
z+1BfC%e(vM+3dzYS8m*pke{!>sH&@5d#vZbdDWMh>GLYXGWN%A-n1!5GCJvzU|#sf
zw6m*>&q*jd`rgvt{iaJge@|Fc*xFy;9(Aj?l+BK<`KTISv(aYC)nmQ859FA6pLP}Z
z{qbhA|LwC`YZreAkGGKFdl`A_ZeIBQy1&kMRRdd_X8rhZ`1>^7-xnSinwyw>dpY^q
z#T6?3@9ymU`>0!g>bEmz*3|v=yS1nC@r{j*vh9zL|M!{I%sxM7`*h2>e$59R!mLl+
zE%`38Ns3{Cx>Rvd`|cxs-EZD7{{H@c^~#l*TeHt*n8XzvJYQTqeNF7{UtQXDwKGDl
z&-pp8;?c?}Q?5*#8&~r&U)p@#^gX4gb+7+@s(;>0ec^@&j28@(`)U}jytjXnbTS}&
zcHb&9=bzS<txJ1e-K&<DvHWx;?C#lT%#OK#e{Frg@ArN2xQeT3n>~}F_xyO<=YDlp
z%`A1F_1C?F7hh~)eOFXdv#$J&?eo%BzcB7JQ$1EtA!Jv3NyYf=yuU8BdzGiC+^fnC
zd{O1uneqSM_eHt4x3%%zUb-~Z<JONam;0TWw^^}iDOdjedfmx!$*NVWHf(Tk)6hNK
z-oNMRwA-6D{d)HFZPv~IU83{nmtM1UpJU@0s2yGx8kaZyo2vIcS<_c0nU-I#TztQO
z{}JIY2if1ZT6H}=ZJ(KuF`>_UdYwVikrjQ%GB-xNdiBcbZSwJXf7jRRmRLz2Zn8f1
z?aj@*tDfJw71gb3qosA~Y0=YXdU;aLI}Qh4PuueF@2}L;Up#)_+gn}s_Lg17g$e6c
z@3^-){_N9lW~rv%Rx>hO=(GR#(SQBEUzg6B$FIMf`M2)>%jNx?Z`r;4{5-wArymfs
zy0zkJ*8e}x_n(<*{Q7-;edN-h_~Nsr_WytC&vG|PJ+=4qGuz_Fz1LTSXwCJjzaIPD
z>wmwE(bcC#ziRfqdBga8PH|lEd7%=OGoHt{2`k@x@#(Za-&Sv{Io9R(a<|_t{C>Bb
zWxcM)&j0_~m;PQlJ#Jrp{XbuG*1q<6Ww#`!#}rkr_@8*V&Hl@Uy{f8>+1z@2zjXCI
z`+iDW{oEYOy9ow<v&}y5dYu=u;la_9lk)@E^TZbJ`uXht=@Tb%Zhn5beE!ayo9x%)
zs#9xf{xmQ$Z_l}@Bm4W?TXogqzhA?bE>Ax*$8z<~bjgKF?rpzU<?QrU{=bEC$)+gr
zz^!-t%WI}izy7l(_N!oFp<rq%d)~F6pveChy6=0OUc$ZUc)!n6?v(<%uQ@^lRw!t#
zSo`SF-p<aue@a|DLnZ~r)&1Q1<44P5>u3G;ak~m1|Jwb2UX{%8pFbX7R`o7@CbQKb
z)h2n>-LA0Jp@xPJ=gw+9yl494$(u`FUTSJ;QuUselAazO7UnnCs`UQ8+DQj5U%s4v
zW`>}w?Akf{J-2HYs8y6OGBC{j{%-gG%C}p?)&2Io+re&H`0uCvWbxKN$ufGYd*$u_
zwMpmAFv$#h;Xl>OwDQxFi;LaclkNoj+kQPF?60A*+H~&vu=9oi3=CFpr|;hr6la^!
zBwv~G%YRi9UwQ7q6@iN<P2!82khC?**-=-gU`|CuV&cL@&z2nhnH3Ywz`#()6uDN}
zZhrp7MXryJ^#)&=vt<Y0l)qUF4fB?)J}>LuzwS};PQEW2kINa)K6^d3JT|@R-IL1V
z<2rip4g~9*QEl|jy1L3>{r?1a4aTdE;6@YQ;%(RNTnLaB6kPi1N$;V8Es^fG&z5UU
zUJw=?oxE{Ie{QDbt2NUmPu^Vq{@%~e&sST2ulXWeCc9#<Qo;5a9Gmy;+BWg@GLfxf
zi>+2D1UQCVNStwY+o@BVX3g?CwOQLE=Ht&@|E&VnhUITQx-}-M?|kWk+_N){(=RXc
z)!+Li=tY@Mmrzxn;}Ta;m^kn+x|oriJXwRi?t_eX*lf$<XPZ(_zbX6eYkoInYt;O@
zUoU@tex9C^;xor0@Sd-)Z|%RI&!-xzuS*E)-t?mTl&sDy28IRY7BOMJlLJoc-QJcP
z{AP~H`|#VL5zc#=7#i*^6u0HS@|ZVutK0J9$5~Ao7#h|r+ptFL#(J^DYo0#EyLKFv
z0<};zJ5N8poOw0P`N0ak>Ea9w44Y<c+F@(AH!N2P)Oy`C%V_hgZx8BB`x=?Ra+_v_
zuMd@Oj_f_Yof#x>Y11tK<yQ-ML_n?BDK92ubH{*MK@MTTlOEKWZaukxGkHJ6BE!|0
zSJ>vdErpu<Y16E@)nO|`)b?&$IPtXuBLhREuV;+hdOztIvXdQ8mo5OiSZCpD2j|GO
z6SKKN?PuT0NL>T#wC1+YpayfKZ(*b_C@dKq!h$oxKL46^J{)FQ$Nl&Dc5G5-vSQe|
zK#kz8haZ0}xmmP-))Mn9agb9*4nE~fG5y>4+QBp~KEYgiD>qn~fLEID^~O&>$`}|f
zcxPBwDXXiezr3`Rm6g?dn$F2{=km697ww2jF-<mDebw4F@FAO)1OvmD4B2<#()M+K
z4z+Rz2L<t6cD0Op7j7(jWBswGtPBhbj=wJ0e``hH;=UWMo{?vzuf3Ac=+|RlV6cr}
zZxz4x<*lZKuxyppj0_EO{<p8n3kVC}Tl%=ayL&>KW2*B4TeFydU$U7xeOF&^yXUlh
zu@X4x39L|lnzr@RC#(7A@0Tu(4-3=QO?}FjY4u9#>G@x7+qX==_1Y<a;qCp3AuOUS
zS{+<WrB}M5*1mf3Z_T|T{X5gHi@o5FVL!#h#lTRti|_mDvvVwqZ*EF0+x>Uh?7U4;
zYj^J4nY&vf-7Mx{Hn-FHyy*+160e0`-MJ!`f#E{-=3Da3eD_@~XT7_*kn`_Mfn2?n
zE0&irGC25OUp>!I)QU|@DEHYTFHj#xVYO!S^9yUH3FNL?SNw5?Ca5PA+;Z*r)kSA7
z>G0k=!3>JzYiIAs%@11~v^r#=y>L_H+8M#uz>&=vBbWc#&r~qq)HCbxCnm67mj2_{
zYXnzZcx`fVqMM#RxC7-{;2m~Z#z?>Oq8g~eVc0ZFX@`y7-ggr!Jv+?A!%cqtt$QT_
zit}BOxBq5Mx+*ni-mNP0QXWu*-<@}Lk5%mI<OMNY;B?}3GVAS|aPG%J0buKz9{kLj
zH7zztxi_k}>u(m=wSVv2yY~C)m8{S`XMI53x)f8^6w~eNul~$ZI+&*Q&@dRHDst`F
zx~&@?JY`)v^{buy_O~FXZq0jIRQ)x|cXc1<#kBtG@o|?uOhLIQs+{Xh_~mVz<8^y(
zmx1zN)b~%n|K|1k-!@x)lx0)Y#Ji3Vb=yDwV(OoCY5U2niD|V<BDc>6buLe2-97R4
zqvz(gh5-|W#Nz_oK(4Z#x^1y}QBlz}z1XOLfDI`pC%t)-^Kw)5_jl~_H5*o~I+eBc
z)NV;hNv@gf;RdT;-aebPahkrl*v~(8TfJOUnHd`7mLL9`_4s&y{EmV|FE6j+>6w?8
z#a6%FD)eB<&lijPwbJG8$mJ`PZkv8}(qkRJ>Dw30@^)loaCm<zYq49emzP)8zs-C0
z)SRBCE3D=-p)Av@+SRo+X;W0j{#nc3Mz7rX@RH7hDW(hz7fx@A(sp%q<>cg)@>SsX
zG`6#g+ohqkdTaH*sG>D9LH?`K%MGu0@bRgb-e<3;x9HA8zAZ;uysK}^B`xmx7L~p`
z|KX7ZA69}2WPufn_0DH`dU~p=s>ZDkUwqMH^Oh}Jo(f(%tf9aD^{(YMo-e0Qy*lmI
z>m_^dUDSA+``fd}@cG;IS>JW%%*f|x^#@lH4zgPpg{`*QX}@~&afjrjBsM;oANQ)?
zd+s(_YHMW`rC2PzYn#LMdq1-h4|+RxpQ_Z-U|@JL(dy26v*KrGQcq92`S#oFyj>@=
zwmy6I%x}Kk--GP(bIkMOQc_a<{Q8QXJv4Z}nssy3jxPaWS0@P6JP~1FaL7NARnL=k
zb7}tlegFS`-!E#x?|veyP%QJEelcihz@h)L^t|YT8PyNFp3HCv)8?3W89b(7ebMRn
z)h)6qrp<A}>84^uxA{Pc_Vuwf*DivRo@Ta<D7aYOrM<d!9rIg@)kh<{v|riA$$#Yq
zrG52TrypNl5h_*M{&~_wiI-o0mcLoQY#*o~e(U1hw=w1WM!99}ijfzq=2l(Z7W7IQ
zl!g4Z7`Lh1t3UhU@Rx)OnQduD*W3&{CR+&7<lE`S+p)fEN10fG1lZas=^6JW=7#Nk
z#m?6Zt~@?Te7!Y!b5dBY_Sc`5JmCCx%J|ii9jmOu;~aUn@_`)HRqVAtVy)ZJtB~^F
zMXkBaBkj!gXm6+Umf#^3&C@?7uDn{hPE?v}Wd+E;!E+oXx9!uMxbyy-r<K8=%(u)!
zYwD{_hBHM?&xuNRuc(HoIym!U<jILU<2PsXf_yT?eQ8jvmD=Jx%RavLJsM&Ut_;te
zj5M6-Dd@fL)>+ntaHG05|DJZ;!ah3ufDm|`rps94u$jWyS--!|bDQ4Y3L5a4_AP_`
z$D7UPpPifg`eVhSMT_Rud^%}Y`|Hb*n_(+M_FFA~|M-8*-;1mMPM<ULU=afY!<3gV
zzO4=o54ZntfVuwf>-gz9k)K}2|F8P><)v-;x!=oNcwdYEez^VjE2%p=><kPG%u}}R
zt^R)O*s-*<G_T*5&*yATI@;CM)iuxhbNHOOS6_VD^E*}UG$RAU3*JcIpjmhG?r%tJ
z-l8A5$z_(StL=|vn^t~&_}G1E-L7Q`)perXObiSG3l>|)>nbTFottCnZ})S_<(D?U
z-)vS^R^EC`xkph=ZI5@lf}Y-^<2-e@MVIHCSzVF)a$EX4+v_W?Z*tJs(C5G!=qSP@
z+A_aLR<_j2(%2*FP1)}zR_?xvT*u1Fx#yq1-*rh}d-dOm$~zw(dUG>>UG#@@$5tQv
zn%o$cCJP?HVqG}>>O@GTw0K{-dt~HHlUlp`@&A8a?-W*_b@ti3xNc_SMdu}_?fLS%
zR=VtF<T6HvhD9=8>$WbRUsrW@mTBJh>N7J8zuzs7f3MNH`rPa7%U68cx!v4%XVHrX
zXI>;rIJ^2j=Kg=%M8){oB|}NAsa>qx3=AdyVby;=9<PqqoWXOeTAgq9*JHQR|LuPG
zE`Gj|!riiv=G&{KQ*LxgJzv)}OR7El66?(@(?VVb1{wCOE(Mi4OLo7Xl~@>d`SSnB
z{gvkf?{q9#vq~}j;jLe8=MP`+-}B<jmZ#a=aZ#IYK7Q)C7?gs_Vq9l^{T^>@b1!S&
z@AqG`w@oiC((p{{)$4z<XU&rn@$+xLzyAE|-@NRXm)?I1oCnr2$2IZ`zmL?sc>;#-
z=lafHtNY<+e*tTD;LhZ5$FnWQ#zsQQ&arw@bM4l|=e#?$_iCx%DPd5W?lbNVEPsC_
zk@?cv{}H=#pJlJ!_I9<6&v|Wg@zo)Ti`iATys7xQqb{%iy{ue2I4Q>-Tygzg@z)I}
zh1tTaV=VL6{Js4<`nK)=Gta-TzY}7lp?pg!FXN`I;w_uHlvmSVcYm8&a9I|VpI&zr
z1+F|NGwI8dwafoM>iME?E^@XqyS6s@wfmm;C)R7N&$KBnNV<JcUvhGy;mdnJGIlSX
z$bJ}H*<HWz+60s%boWc_u-*Tv^ZIp>DOb1Fls|oz)a+-hWWDZfgV^GCr;2~)-H)$5
zUmUM{;_jx+3vRvt9z2hM;X%enmNUxI#YI6SOA7B<OE2I1>+g?=E2sCKHId$$*Z=*u
z{3(?cl3!+(wOjq3@}%cT$N6ibUQ2#wB^T~FTXO8dkzn>C>PKhnjMM|=cUgbt%enq{
zs(#&$e^R?gtN!S*MRp$_R?XdY@TFz3$D_nHFYk^W57X8E{<^bo^|q;Xn|G#s?7I6u
zdZYEZESX#8X4;lUs@Ifu`Yyj3um==z-;!NteBJ-^XG3xO(wa?a^`5S^b(yhIH9rpc
z**rXua$%mSNo1U;Y47Xusq61&{!glXsJ{C9>1eIch&fkP7Wyu_y+d&2rRV-@L%L7N
z28uP`JW<5Kz!3Si!o$C3$InNN$IWs|mVDgvQ1jELirPuvxZd;~y0Cgr-CMrj?)RVn
z|MX_f=61FJCG-5BeyfnL&b^w+{5XG4hC;U(Xq5S=$S$|JLgISspXu%H&ieQDWM6&F
zj<@mi-|(1c>bk|&Y_ZhVG}5*Vy0p;ox^@5LyxZYdUwrcN+xsxRZr%beP~&{3(PSn0
z8759a-AAVXax2emt}ahJyGq{ca8o(IXYb~er7pbZI^?D#zV<!tY5qoQdRp#Y>-8&^
z#e0c#GlE?3G-zdr@}|d8_ZXMldN}FGwD1t!v-xJ?_1m^NEDlRmaXS*_YdFy@bGk?P
zb%7oAv*T8qy)ae(x{>c>&r8SWb-5?B-%poPE#98jJ{L56%(MOY_kR9*i>2{zRxo~S
zf4TPH%gDWJbME^67JdHJf1BjVtQSIoVt+UM+xTfxS^xFzs~1!qUiay)t7&EH)zx(x
zUw{4)o2++e4Y%%&KDY0mOdAcR-#soRu_``i&ebJPc51I&p}#g~M?#4FTsPhOOSR9x
z_3mY6IP&d}*3BoP;a9Bh-s4P9S#qp>d(HRz^WXl-3jTQNtm^*jE1YMan3ht!v$Fi?
zsk2A3%WtGUUU7AW`O~TXKfh|u-6=L<O`CkUztmUHOtZ??e>^rJ_vEjAlF{$X+s(CF
z^~;*uiSb`P@>RM<eX;8GS{xRw%v1a5@YAW&1m+24XO>Q%u*xdEcCotQt(vCu65O&3
zvbW6LmepKTxAxL{Eu534CB;zpsO-)9U!M<|UJ}Z@R=MZj)!V1^q-R%Ne3`k)k~`1(
zjr{ss_1`p4{#?3M|4;s9+wi$c(QfXGcdyt}R~~qF-lAE)yS1}k-+icd_r^lcbUweH
z%`^Y~y7p`5|H%6Dp@%p9jyRcRQFuiw^v1%IUX#N9hpgUHSDR;l()M-v4eryg_u9?Z
zdGT#ko2Ycxlk1)t2aZS-S2?-31-1As{+E}1a$9ZazXyR=t~ku-o?xT?{#c~1*y3&8
z?{8|~-@Zg*bIk?KzsahrPqM^UL`j))GuRi(*Us0MUU2;X`!62d`<C6?T5$8*_WdV*
zmwBIj*(|IwP4~pzSyJM5FPr}L>gAu4&Q@(dxoyq8mz=!PqU+=*q)oQ-Ki73Ji_d0e
z=Cj=Nd;i}|FTNLLZ)06n;I<{Fyi7Fg{fYJK))fC@K9ur1;{J=m>YDNxyA+Qwo=9GG
zr>3)aw7&oN^Ka9swm+A4)h;dlsk$}#8_PHTc2;@g`j<D(+|YQuZ_=(>)vcdWf8^vk
zW(YL<3Cm`7beg!iOFiXY9J<;>YO3j-2~%Y>omb9IifO*AyuXp_?N_(G$1*M)ahqv0
zS;=XC9pB=MPj60(H?2!qwdFYbdxPzH>XEz*b+1mXmcE{|{r{UScAM^Ua=(eX{Qui@
zXTQG-zclB6|NH&(o(&J?wccJYyXJD%lhXHB58wN#<i9-lxa&-zoMk;rJfd3`zO~4m
zcx>f$p8wy|t<B%B`;k`cdAaS9%59_24=IJsami*Gsm5R4b=_??UM%_}M{(0F|0Wmh
zNR6jgYt+(G*9O;hsF>S+$U1YfvG3FGMQe5$?q9NQ&#r}gjztDuj)=RgA-Qhby}O?>
zm#H;}?Q{LqI`JR(o4zoAtEuJesW*NdX?LGdA~soX>#B>dKb^RK;PvN|>&1HAWYbOa
z?nb}-_^aLQZ;j+N`)|$p-$bWcE1ju2*<q#Izmm0K{v!YDEO{dKc`jL}`!+qDG=1+b
z$D}zq+a@LJvO7hzJbV^k^6J~1OV8I%=lS;Y?{DwdT3K^uo}3tXQ0GQa)|{vFPjAaV
zzdp<EZpWIoJT>mT+xO)s-F~!o*^h5}ULSt`kz2oh%__z9E7JT6*DgNzw#eK3|A&8t
z%$L^G3MoCg%eH*^f-@Tp*VlZW*LC&wDXW-gCRvN)l=mn9GM{Uu5UE@K^qza%KQjZ~
zgR|MxkIoQIKI3UPZAnIP$rQsoD@>)fyyB~S?U8auf9+&>AHVJ4PD@z!d2H6Zvu1nS
zYh5?lQeFnzrpr(NCe=RdcynXMiZZ?1J-tS;6<PD;civX2Smp1s`+c9K<;!~QveU;_
zn5S%gdV2c#xz^#^`t0VvKWF`Z&xb?Yk$dX6u4GM(Tg!R((DyY9-+oW#HTT%X^>)|f
z7h&RimUe`#za1YE`~FMD6|K2px}56|#HsJk*>pMQth(?Q-@aKzPcN*pT7LTR>ijQL
zLavBUz5f12{R5fZ%VZ>%U0#uDl%m0zvQXyPw;xO9A1ZP$oxA$3=cF^{3TLNH6iGCD
z;lyZIuqI4A>tdGastb9po^!3aS6$E1pB$KZHS48Zs^O9&(Ls-y!jom*+P+meRJGSm
zviLI(lf!zI>^EJr+%^Yh_ZoNzty)uh>U`SIQ2Q<MK4C#AtD8GFE#sY&E&E2}c1Ks#
z^1Z7L#@*HUd-|H9^;NC?yJUOkeRlu)a$4oZ*Cyg~Zav>W|M^?pb-w;RFAhffD&4xW
zGFV(MX2#sPe-HE9#}uD6eLlZ_U({JP&Rj8_-l#>h_dI%}B(#{v{muU=bsKZV&3@hz
z54{q8)k;?Ax71y^{`=B*_J+SL@Z6xiK5xqUX^!O&juok=ySC3RE#;jT)xLU}-G@nX
z+n$Hl@7-BZdD*jKtw+t2gS~9MDkmJ)Tv?&gdFpx9o`1f(wWVU&CnfnTF|@p<r06fr
z(cNgh#N+>^;yJn-_=B1j8%|IPo%Ah5b?fR4ZdDx98oa_nZ)RS5BGFybW%nUSK7;cf
zzyJEHChbQB+!t5-e#mpkTYrAZ^;56(52pF`nX0?Z&J}D66aTQyo69|{=BVh`(yvCM
zcI&U}+xr_&zIF39zs%+X=GpaES292PX<C$YLh5|dm9k}9?#iwI^6jzz_N<ahvHGp<
zlP0?uW=<EKz9yD8%6IDF$UtF>dbewpo1C&ss%HDYntpZG8lKd@!oP}7Uax+%=2)F(
z*vutv+qYkPxNc4HHH#Rd!cA$DQ`GD?)cUGl@HqZJ^B?0&PQkyyyWf`0e$MNEGIr<p
z=KSyX>TXVun{&14cled9Ten_PI{V{CMU&L7jx~9Un#0Xxt_BEsMLnAoKS%J{*Pkhu
zl@5Bx`E579@u*NP=et++46PiGv@a(k4bSerkg`|N`K^BO8~xRjr!SemNo&4}V&qPb
zW0R&%x%@VI_hG%88=o%!-pOzOe9Dsxvpf#XS2_AU{N3lRRtwiZ-R`+`QXs4F@~A}-
zp00a)0v08<M5eFLT9du&dZEV-PxbW<{~J5R#UxhR``CF`O*75ZSadSrZQUFf+w2|p
zawhy)KG~5;-}ymc+NDV$_a5YwcnVFeEUv5(`jle4CpSLTai+7HTU_A7U%|hQ&ADW5
zrg|>vLiW=07q&UrxqInvSoZCAuHdn0>5|jJOml8z-k%nKRV4cAB#Yq3hg3_vYNk)E
z`}{EHXMpF`O|~7qMz8p5r_Bnvysk;==Se+zMR}FW^CfJa2ff<<dA8C@7s>rSF<tK@
z%n~;B{>k$``R>uIgOV4OH$CoqxKdGXd-$p1>blS=ss*uqI*P}q<)_#f{k8uT;upE9
z{z+KOu?<Pi7Z>@LdGzl2{&ilq{)uUmUe;>Qzu={OE-OoK-GQPTFD9-(P-ycyX5Zbc
zsWq+EHvY+n*L_-VE_$-xq0@cS2mg5n9%2jos`3h|?EaM9zx4jQXYZY=mk$ox&kT5$
z`t@7TPtIFq*QcM*UQ?NQ^4X?SZ9PjkBE65eNU7wU<bPHazPP5Ied%qTWd{s-rytk8
zANjM$)m`GX^j+1dyq{kGy7N$Tlit+%9ogHapDa(0u3M`3qdO`orYfnWraN`2(*2Cc
zd8tc9q*J@PjgCe6Ui>7e_rCA%)!kgH+Q0X|J{J6Ysg=sQ+8=lK&DQ_+YU-B~_o@3I
z^Lp+MTNm@Q-Tu$P95ZW~KJoaP!XF<Vx<`ahyZ*E0pWdurJ9czz+7y-4JL&5qt4XZU
z*B+Gi=6P0cdgj&3KV3BP_Wb3W{uS+HKAx3&wQRxBx4E}n55@1fTJq|^kDenP&qAlJ
zIm`XFZ_=p)=Z>DTn!ZNQxxIF_`K~^<^4!`4rj(}|mTHE#rX+B)%zAM5D^q)q>i@TT
zt2kp7lvaDVFJ8XzqONcL@%vt#Nwt%ejVCFoN_wo&TD9W-l<<3drf)nvMP{A(%dJLn
zGo3mu5*sIb_iXZ;zH$nu-pY&&zKIL(&RiHd#gnUanmu#inY3vNTJyD{Pu+Fh`u3S0
zXSY%Fq>QKKH5$85v{&t^^W2!$d@hA!O<d};tk<#8-@~SbnVImb&W@`*8PXb+vN<sH
z`KEAlkCmsmq7Kb*F`TKlHcWT68|RDauB>hE)=tXYAh9(l=~Lw2phYRCQn{8^1UDT&
zzLYIBXld8e*kpqfUct*8x3y0CP$qt@<=f^}hYmRvEA3sX?!q$f^K1dZY|~RQC(d}C
zo5t#SOeTNwN#m17!Li~uighN3zby#6UR`%1I4)!Tbi338Z|nj$b@uj}c=meFG+%x%
zKqKa>^UYndsX=d+^ZVH(2Q+Otp|)qwvckK5zi+)Q%e2%yTUC_iv;WG93;s=qb3~k%
zH=goto5VD+Xu=fD?#WYLHJH4Pbe{Zwd(!rnPZMtzPM<&bYR$Ux-PH{#A-}y|r5N)4
zHJPL}fwRLv{_DPb7xtCSWcwMYc;EEq4f#4TzRzc;vifJ)d|BR8e6;P*gDLFirkv1T
zb#v45pi{p4I``XX8yjmDoxEN>ZN27%^*&j1Qs11M6#qrFQ9i%dsLf)v;pYCe8}F%l
zw}$NfBY7%r(zhq+{eKuHw=S&Ya{m41>1&0~C*5CLUzbliZOwcs_weuIUbd%_6z-RE
zS}p(5U0D66+wSJStH+WeFKzlAarx0<`{?k1(AU3?O1}Iw`(P5+oITpz)Bdn+2sdRZ
zyY$-Rb@{EQ)^-MWza75k73ueGSJ4U`gZp`!6YEk`gqAOAdfs~i+;`ZwP2o%LG)pO4
z4M(xSnX*4mwXoJV=iUv@?7rY_67nE3T0Oy7C4TAIYOS`f-L{Mq17B&Vsr~tpZrXp`
zxbo8z>-T$#pPZPuI(+@U@As;Ui;H!|xI0;1I6jGf&+{)}TCQ_#^YVKyr{yS0OGiHT
zzH`!t^T~o~e^0Nfc|EV_rk07vm15R!dTl`=8SZm?{Og*$wI)qabaZEmODlS^!jbdj
z#)rDc9^8$OQs24RXv0JPH_yJXyDLfOL@&v?w}o|5FIRR`wOFhDr6h?<=4l@HZ(P~&
z;lnc7_DlYWk+F`MbGMwBKQAF?>eZDh%$2OqPh5TQrESuDpW6%8%n1H<{OIj7OQ(J{
zdiJQuy|A*@bLU~vJGaY^l&)xbf0<2np0$ywuHvJ1+o|){p1i+v|Eb3xckhj>4o!Bx
zyl{S>N2S+2*(s97f0q1Ej5HKt-S&R%oo(xje(yUK`+K#OF|VSK*RN%6U%j__EzG?a
zJ1;!o?w{A;c1qW>COL$~UDdd$r&A!hE$zwy7tM!fE1$0Y^!?=DB-OyR_Y<dI;x3)C
zK{|c%4XGV9?p($dvl{((c^vf&T^A7_ky38LUZ|OP@`%yA_}<s{i9XY&^ygf<_cP~t
z{q*+}ew5x@VHcFTdYjnu=~q1GZ(>MMbNBo<l_56ram?nmE|=m~|D4omIQt2Et5;Hc
z&)S`?ag%hHd`LA)Nt|#aD)P2Qa8SfEjSbf=`Tw3(sGT<@@3dFvB-H}<y3~n#<FvG+
zcd57^bD#Z~`C@$R;{vaaiD|uuRfUzOYSf-8QYyAGP>y=`Xt%EFKL@4jC-vnc*Qv7f
z%S=#+wE6z}?o!dOMv0%^u`a%x+GiKLHUIa%RTr4l62te|<<=kesJU{Y{hFooR+amj
znzrk&i{I+LA5$K*_OaX7i63kBE?lwVPT>Rd9=i#jRNr`Yt9*^`e_j8TRlT)t!inu)
zmzJB??b6!+G~F{lsK<zVlgTnwm$>?m2i}<6KGoamzjt5Mw60wb{H;BY8O1Mr?|S*&
zpAE+CYVlQJ_xBz(_1=GTb8-FFlFmLO&u_eM^{0Q@Q+VjXGo9{v+v9T|AM53}`EcO(
z`~C92J}>IlJ9YA;q*aN=@2d{7fsS1_Zod59o;Rap#vHAUE7z=YbZW?PNnY%;sj$?f
zDkb{HgGup=?Y3VRPc>9=o6TQ*z_6fW&$5jd;_@%7Oy#-8v3Jc=m7`{C{MS!;w@saL
z^P+^xmnk7;Q^MKbbt*6Bl5y=aITbKTQ?=Ra2<N=lEBhxcbDcjaCpXej$aCrZ3mX<L
z%jsOK%(UHUN{z9FvQ^0gx3q${-;5%^dR0w!s0o_2_2;aN%Ix~cyN!ldSkC>PGDm%~
zmZ0O}u<4=fUT#U350t!K!T6E+QqIMR?bhL&mfib$(7f6{GFHJ@X}*$h!0iY3f<uB6
z%6Hspyv(MO&VQ~)?v}Zlt>K|1{7be!>iQ-7dv&?^)s}Ut{C~L3QnU6RWQmu(v;2lq
zw1<jmTiI^5Z!+$u`MElc&UHmCcR3u}de!ym*PzZw&xu0kxZajlx^9(K&Ga>B@}AV)
zYw}KS-QA7*z3j^0Tv$@vw)9A}@288se)*s08O;2#-c0PR_F8FkCDWyu#}f-bxU^QR
z4m{<e79F&J<%Uu9T=fqN?E6D}GeevI+?wF(F->pg!B-A$Jaf3SIpQv<Y)!tBnNl|E
z{S__ciT5po{w>`5Df)ZZx;rs3k+1iBy0dSl=i2^?ce?AQMsc?qRGRB9{OkP6D4u(I
z?)&LdrPnSzxnTK8h%wb`iKe%AQqR(-NB_;Wm+adbWBxAOde>!rAz|U}?(WZ@K5g2x
zsqF2o)a|z~U)oWx$#8Vd@4k{7PG*M}u8xZ;%PF1pcw+ryuc{6%ne{n>Oovh)%ii4i
zxN1}El-&By&-O>|pQ1cJNO$(1vi97)g_~ws?b=!LLf}JUTW(2Z&AtOGC(NBGKJ)47
z<6rkbIm4ql*>B!?^_v^(UkS>6RZjF4>IqvtO+YN~itInm3cYd#8FTiM&X~}x=K`ip
zjS;oDczI2?fvm-uyGF;`%R)`cIp==6w`rEj;jQ;L+-67Xu}u`)`-EZj#~bhKmU7+u
zv+1Y*$*rGWtw`sLo4eC4u&eyn+2vc`2w8b=y*qE`hZXJ?yHs`b^zwdvc^SOShg0_s
zXw?5|)=~k+1=ll5S@sy8IsV(NO=y)>{pFUh=MAf8>v_MLU-e{;OX*_qG}FRN0akVf
zh61L7<Gi3LO3(_{zPRc3{9isiZ_%p%v!D+&F}<K^#p1j<tMtxinMGf}SG#ud_1%l4
z1Kq(ZSU9d++_>Col>lg@lnrJCXiY2wXvF{nXucS-CKkM06*Tb$SvL#jf|t=k)X+xD
zkCPY5zOsjeS=HFpi}%{7sqNXbr!OkR=v4<7lc)=8qg9so+OV5BVy-EsoLRBcuR1+W
zcMP$B%UXR4aTjF*4Z<^khR2y17+$z;*_$92maiTAtM=dCaDL+#CRa2V7Iataop<V#
zQUCF)cb0AmdHeaNhNNn+hivB7s@b}Ji!G<!xhlOWswHxNas5~J`)~d}jf~Wp!qA|n
z<ajp2BwD9aYwD^@<~83cPGog0Yq9$D`!An+ua5o3jh@F1D)KGZX5Bqrb?d;7@B43t
zhh073#L4hNNv{8NQfCfdmV^39BV}*D)3%%Jcdk)eXSIHQl<c=>>edko3=FZmE-n=)
zXqrAJZqn67%DvO)%-mSkUVHgnkr)SqgMazcsnef4efy^7KeyPP7iGKa&!}&cIjp_@
z%>O5oQ;(PTsrl~Ov~AnApXV1XIu!pWsYZP2y&D@Bzk2<8>C?5_@2yy|;)mhlNiYB0
z|9>y<-{*b5-)U*wsBaQ)yH_mxqILPQqb^d@Yp0(#mtpu2{CWHSy?4x3SK7==mOlLC
z<o15~`iF&cY);PIxbdT)prHDW2+$h2)YRphqTEweBXd7KDxdYg=GDsdpr9cC4>1|l
zXOmW4UiJG(d-xTTPra-RU!?Z`|GSo%o$ub3%;vj!^5*aU-2eB@@8yqItMzODd<@!q
zZ$VJ2?dLPy`g=|Mt^R%6ZoWF?Rr>tek2BN%C7I3s{Q2|hRa)}(HP@b;y#D-IoluwT
z*|+hvUzhf{Fm*+(t$H%izO_tttIXjBM&|mjt5?5%{d#^~)wgSFXFt6=|L>beuh;F~
zIC=6Ft!cGCpFU5YTl!5f{aZ8tz3443=4(yWva~FHb)`LbTgLk9zYlSrulxP>`loj<
zE~cMK&or5JTz>w#t6ALK+}_^Z?Yz>3=WY34l<eA;T>W+{YgzTp!~FhNUw*l~?5vOP
zTV>X*d3Uq6-@d#(|9<uRS`RNzx2rK>>-YWoHUHn2<F&uP?Yg^e$`m_(+b<a@DNo}6
zTdiKP;=wWL^}fEob1jRnO%0DT%Dy&d&6>L3-=CkK_qT;d^>Xp+wdHf_e$7lg__uQV
zy<fZa_x)J2YuB$n>vvY)?>yf8IN<hdv5d)%(eJ-}ILgLQvU0td*xDNbB4QStnrG_Q
z^y^Dmn`E9jId_-Vh9ygW{Cpli?MBJhtJ8gF6hwwhDZRMp`u*zsnFkZrtS|Sl+4cP%
z`@PEN_d!c&kMvzom~EC@^KR#KAGOI(Hg8j&Vlip5aqzL5%l&7ae)_56PVRAmPv7_N
zfAsn1zmNU(C)w|o-9B6U`<wma9>cjamxRsVk#zKVzwNZ*A2-jCx`x+iYt`O=|9&sm
ziTktd$f<40f6nITMQ(a>SAE`$sq^NE&JxG6cz27AcIJGer*^BaYUxgTC8k&7yXc|q
zcc0pSKX-DA{n>o=gzDAUvYStZ)&3NHf4ArU|9}7E>i^oC&Gy}O+I`QbQ}$*#5#L`d
z=AU@=R-$3nYw43&3=MHl_k2FK`s%9>A3l8fa;B;2@5z&znVBz*)BfzgxcI!y=QEqn
zJS&^`UsqF6#O~JDzu)iAtNS%m=*p5<`743*SBKTAe^jlIOa=wIMt$3+TY<hok&!E}
zzxMU9aWaVAoHn&5rfJre__CX#=JzUc3z+up{qcx%;oUUx_?naA@jCpeTMHlSaU4C>
ztvBn#&Gh-(W?zj`f3tpHfrZSa&0BWgU03(_*LL02{Ps2ZH#hOC?lChlX*;z%c9MJf
zyE}Csk52chPD=~hU#FgXZ%^Ty8wdIhe|%i8cJ^Si|F+ww=lCr@n4qv)_E63hGYeb0
z{qbi@tr!~gjGsMW-hIUH%--Fz%7Z;^CS6#3F$1<9x1jj6?)AT*^|;6Tnx$PnH-1pG
zHMie+=V{iybeHGlY`>!O0%z-|*{t&X_38Ba<2{z27z6hIpU|!9yf)Wr)h(W<@1K~(
zyOqA*%ikwcndP3kweIgN&=PTO{XJQmZ>nt6jr&t}d~sH6gRYmGyw<l32hL93dpwo#
zMd<k%M$%h?DtcwuSQ);=ef`?EYSpTThu!ZLoz9Jnto{6{jFq|l=))D+w~I?kdX7K7
zx!=Cv;azw6T8UQ`w=&afKA*k*^XG3TMnAV37bV<!rT*Tl{y#ZG>2J-albZq;`@R07
zVj8{i5oq!L^N!D|npsaztv_}8?WKJwCwDJAZ-u;0*VO;Or>FBxOiVnEFZH&UFiZ+@
zf4n6^r?iwkE$hvV&HulyZ}m%0&S?6MvP#$Ml!|$I;bn<Kx5c_k-dxv@Ugm!5`@6fF
zv#)=1Y;G%w?ft&)^VOcln=A9b%;>e+cZQ)M&hyZ5<$j;iopbEw>swbJuzWs8T~^(1
zPRaGy?b1BQKxN{DvwOm<Q%~(JzhCR_<djsr?B!+k+*eoJm-$woc>Oig<dwVJ&*1y}
z{@#*3+-vSP&p7=WuQ^Mf!M``@;_c@aynmw7>Ty9+M`uD`Zu_L1lAlk-+izXIWc2LZ
z-16JG<tLV~AurO^bNsw)_BvkIGv0bTZLa*^ka$?W>czcDlMZZUogP=^>YiHqbgFRr
zxjA~qrn$Gyyk57v@L-d;y8k}MwPEe8EA#gK{BLAr6#Y%7csttiT+Wz4Mb*jErq!V=
z&wcpjrvIL=*QBL-pY_+z5wwb2+r8q?@tUxd=ToL%H+^4g`|i;rrBkQ)?yX5Z`)$+n
zd-p8f9t*xKto*}B+hw&ClPHVUisxE-_h!$SQI{d~NHW;{!^h*^=6Nyo-|q(ZKemvs
zuc>-rboJbqHFK=8w*Fahb=8a+AN<Zb<wq%;X@f4VT)^{u{(s}jKt6l7{N39WbSikJ
zRIxHF*k1Ky;!FFLKi|e)7n3=Wl{YOJ)Vv6e3o~ZX(|jNSYEYDX^}LsG^5xUWvl$mw
zSg>(1ypW1od+*^2#dQxQnr7)(Zu%qhxas=rQ%-AxW>%IkGAzixkyAKzYHDd|DEoHn
ztgYvdmo7MUj_uS6WzMWke<oaIYU*csT4Ty^;Nx=85>@`n03q|xz<qH6?yus)RNsU%
zGcfG+%s-taw)ot^t)TUd+h2T;$Vg3ndSzws_qVr~Uw;i>O}sbn?k;!v+AA+hmMvLw
zW}dCJnwneY=VY^tZtYhq!$GURHqY`}I?JZ=(~FCXm)feUKVP|gUe%wE$KUV&|4)5>
zP0^JVfuEn9ove3h-Ikw*l3VX=W@cdcA|)%wyftd=!UbYt6;7`<96EHUSK3^PhmA8U
zu`&IK-=7bM`9&@4)0(dx+*`oN;IRID*4Y}n`-@z=kM&B2hlEU-Ge_o?gsiOY-PNmB
zO);|<TYT;5x5_;+j=T&ERn5xxH$R52DF$Wf5+3;rC(}>JZ{D$^V_N;O<7{^4Wb%5r
z%ma3FU0l`Y09`XCyB&Gq@YPpKmMl4R=up7-t}d>rUa4E7`hPG!eOhWafB$Q*{a1a1
zYx35cd>0K-b(<Y&CHjf?;WKAw6FE>jYwN1Xzc=%h^OT&MV>#O_x9Z=|=U;yv2o`MP
zk-T){#*VD3TAB5q&zkG+dZEO6uJZEZ+dKC#Ffe>!lYJL{dt>tPKR-Vk8yTtj&C#e|
zwrrVK#%$B<Yg;le&w77z;hi<d7IQN&IJ`fX_4oJp``dD(SNAEq^+aq+>74ZZcuoRn
zrS1#cs{6*vN<d9=hp^zBFm739Rme)<PcOD+^+p|iTL4+@6{0ou=89ZU5@b+VtvUJT
zipLTf3?QcIYF0T;FVG^y6w}l+)5X)Et9uvfOu7n6o(w0lPNkS-yxz$t0%|W$IVobp
z_UilZm9gNIEz=$N{OiwHIeF-c+{4O_VEYb6>VBD_=@-ciUP}PkK*5k=s+wlntk;vg
z0Mw~ic41B0lNwX7F*#wz&_&52v#;*h2Hs>R;=MX>HqWfA_U>D(AX8MkI!$h_mWEoq
z$YS-zIiU51C$dh7NT+J8&U-KsV(ghUX(c;rw|<R@1FxCkI+GQ)*u*jwvW!ea@07@y
zEZz_Uu;2ZBM1DioCa?5i%iZCbzCH;Qs0yn!gL0;9>;WwyUC@5H?2DV9-?>Xmy}7x#
zrs+gZnmboFcA9>?UHQA1{rBI0{`qdt=X2cpdjcLt>h3?|$jZ#naBt?-WBu~=hk4C?
zW|?SyS?;oBW$<#nm>mH{xB2b=6r44^KBxZQ&#bLQ<)@EE`Mxf@Ra>_|YU!d`j0_I>
zr$H++v#z>Mip<SjyTt>v!t$h}uFj75vyZ=qU*DM{$hJz7f#J)xHP^blmR9|GxxD`S
z?)x*(rnMjb_^4Z7tL9kJ?7Z8Kp!nQtzq-;!?qvGsXJ@4?i=Mo?y88XT-|z0+iRnIC
zbc8WE>Co;HwnvYYZoQrNmfK|RKECP$oX(;FjtiPrC<M62&bzuT?`~97l$N9Kt)-bp
zGt1uIGA(&=L76WiF7El~pS#z6IejYYcCGi@uU^IFbx$XlXm@9RuXDCqr3^9RPs(eL
zwPB@2^<nAfExmnwboBJjojyIe%rmoWx2>+O@5$1|*E1LCROQ`fWMHV;f>_o(>15un
zmujo8&YC^jy7t!>&ERD#nx==^{d_X{QsBeSV%ere)-enW7py@Go1@Bhnyg?y8=W&H
zGu+V>v`Dy0uT+2D_8S_>uDzFEe-1ngPH7f}VUy3lU%#d>2+B7MbjvKNWCSOIz#^Xq
z-||^gOGAvo{65`73B1>zi(U<YD0Z3YIdM1lN$_&wWgd|yC#p{6E#=M2k^*Ok=~pKy
zE#29E7?SoJBt0jt+F$@p_o_ycTRb<4L3ypGe7a6(ulo4=Z-^P#BEPVrkleky=U6`i
zueTK19QEN76I8LPSLfyzTVB~fxvZD6uDs+F+<kLB8)(_(sVOr>c5dHs?eW*Z`w$QQ
z4PG20cYj?|7G&Y4NV-SZmaxTfd-wMIVgqHKqlT}xIvXv%o~Qp<FB`1IMS0WXQ`vK>
zy|Y#pf%D*;#J|Z`wXVL(1+}6WQcRz6n!oh(+Pv=J6i6OjCU~>Z_378vGIq$?Pp>ms
zmr|}vfxR+O_t1o?GCQ-PHKB5##ap$irPkkzgJZy^&)cZ39@%qi>HYVMAAw7VLY}I#
zmWP9`<>+g#&06pdB6h6bCv<g){Q6VN-!U>Ye9E-OSkgaD&u{tXPW5>aJByYcOpq|k
zxslv&drdg~hFGFSZo;AI(p`0yW|woWY-C|zXplqBhbwoUesgoP>Qc{!;FTd|yZ1gn
z_qlcXx5%A4e|#=&6`wor9B8@dlr@Kw7r>T8Uw&Ay=l8qa!OMImE>NpKcI?=<JC%O^
zJrZ*y=k6}b_ubpA3R+A$bKB&<PoF=JUVH8Nyy|zi^Y?F!&=I<&a^~xuoAWI8{r?ia
zzxwy*So1iO39X=l|HqnVA1hSW@k*JzXk?d**kAYe?e_csF1pLNwzta{9+)xXgWlZ6
z9XmRbrC&|jyy@Tfqw7wedpmz_TC!z8f@~vnbi=A^&9pgl)?Cd}_nD#acKMv5uCr;k
z_f~&DsXo8v2;=F~uWRh;uTQOujC{M1xB6hml&7md&9BaWt8CsA#LoZ5DYKMCiz7rp
zwB=ruJEQ`$sy^TM;>C-Li{0zLUJbvbr@3~|9vj=e>GNmg8)dAwT7UoDqFYb1xgw@8
zGBg;K?ugHQc4p@3X}X(lzcs&GGWlxO*|TT=UY`H&%ZJ1K&!0TW*m^5+bDFE0+qW+>
z?Q07TnMZs5`}(qP&65*nmUv8KV_;ZdqP742{iX5?ZX_>IEaiP?|M#u+R4>!F%Yt?9
z<oQl41#N;@B(p-{%RVcsf5#oFR~Jlv_br}p<(krcn^L;hcPDEzFdPV6Zq>CQzv#-5
zkAJVf*Q)>gShntw6azzmkglu3v0e|&)mahWYWF#=|9RE2R#O0+3I(Qmm44k(r?=g_
z{At|Yu-cO|d`_`|^Rejlb-!<V`fYzdSHJxFmEG$l@5irwwhWS0B(kQynikK~WAJ)f
z?fm$#s|B~0Hv6)jVrO6|$+la_!KcZ$HS5ujf7jz@?A2WVsIz|Ez4$2inV>PVS)1mV
zD}8;p+J9wk!TE~ZtM2!o7Z*b6-O~?xUPzkHH?ugr?Zsr-&EjiyH&|;3gIzhnqx;`F
z?e=>gK2QGS{d(E{Uw8LUf1guOr6I<^P@q)!?$5&&A*+hpm-d|K`+Yurx80Aj`{J*;
z_3dnH@0<u}_H%v+wpz($)>rd*n-6;)YQC?T`ThO*GTpy+|Nl%}`JB(6)BNKf$exL|
zGfPfXuanwlyZ_bR_22jWb-h=u{k=zWQpvduPqwshaIu3zM?`UV|JQk|+u!Q1j{X+=
zZ@P5XwDr0k{yh@LDuquxKW^h-e##6gm+tDD>iu~Z&$FkhW`Dlf^qP(PKJ@mNpI9C5
zb!ElmM=D#6x=3m&fxP%SO>A-ApA#XKqPJvMZ=bsER@k>^%dMYIohf2yVVoAQYi+*Q
z6u;9`w}DEkYilPZ>z>>=b9&E7ot10i_pZ%3`)$*msnz#>SM|rOem7sr)Ij;y5|iwx
z8kU{lN`6;x)7hGjFJFFImH#E@^!huymKVLgcj|x5Htm25QlayIbgX%D;()fM(Ydss
z)fHwopaQIveRH7op87d^mh9biZfA0RX<VRhT;kd3(p>hDd*iL7zRsFr;XQxHhbcQg
z*nPaTC8FmJBRJXk?O0K8cm?CfPm{{lpAXMie?K;4a(vMA_^|JP`IpXLtIhLOEbo%4
z%WR>XXDqWd6{BW7tC)Q<WkD0j&WA1+S6r=q#B6=Zss7jBf2X3J|1)x5csDR8GCnA9
ze`)^H>$AJ~pV@TVnVrh$HaX@ZwTRg_xnzUtp(VkE9HI;io1}J4d9wC}!yhBQx6+sI
zTzvUyT9~Ov9`~~CZJ%Zx`*Ug6SL?TV{p)wi&kf7vHg{=zz4**8hs%rlx5(t2@?QQ_
zGXfN|7g%|!d{5WrE7tAbzwKab;N^(G$2$Bb(yL#^nDT`Oy8h+=ttH#LR$eRLC`0+|
zu7b(ul=PEVxJuu<BA0XVRP?9Fm`9-9KfLzSyq0#EynZ@$;*E2=<<|QbMf>huz3W`)
zTaFZq%xl+n%kbu9YHqQ9C3UA)FW-7GFSoIjiO?IqJzp+enbG{#t=a5`P{s8X)2F+w
zzbsKI)mhFq*KKuRp@103n^xi7Ql&2<UM2pTX!AVdi$_K=OMK%rH~;3%FQ0z$3ceKQ
znYyAo{FnWi8&|YK4YsW0^?j*(Ws1Ra{%tR|W}PgvnrSfm=FJzEGEJ>sE(&FzEtR{$
z_RI1;uAi708rHbY3vTyIeVy_@uYbMfG1f)1FTX9_6=iaJiv?4A#$3PY$6tOk-PI@X
zH7bzx{DI4+s+M#8bQS$?rOs;B4_&eHBFnC9zCSmw#IC)>_WR0;P@@hv**EKW%j{D=
zFegvAcO`48+7BfKCWaGPFIG04)GXL|Xd~~t&%agQp42uv6%rC8oK?PaZ{GUzZ@+n7
zR`u;SzhL;|6U(f7%zIg9H<s^h-1Fk&uf2BjTkJC}Z+!Xj$G%EVb*<;8$uE}W3O-PI
z%X-VS{ol<mT>F;V`TV~mCy{Hw!FKyF)7yi6jnl1sYB%g%xsuQNhU?ucw-sX#@zt8&
zc$!eHP&~<+v0)9HOe_zVjKtN<q(weL`*uB2uCd$SV)_0cPkF`+?rkS_AFOMNt!Z4g
z#k+6HySVu-4*T_Q*nF7eapRGH=Jy{>v3nZ%vr1T%9v_smlJGYdtI&98`t*>)3~sLA
z?HO%WE2ICcyquY$=hVDnmes0gliRYM1y2$`#eWW9x7S<q^ZW*}!`tNc@5(%L_AkqG
zC7mf&{3ZO{Z%TOgUcK}5LBPSjg^W(Z#S4~Z9%%k+&MT+2Vnf(pbJn}dw)4$wxM2TP
zF<5BU_X{6%m+jfBX=!oG;FC#%-ia(rOH1$Rdb%1K5t~vx%gV}%zk}-Ho9Xj&uL@dR
zeCe{*XoYE_73<x(N8a<ZSj^X-pj^v-YpLX)&8gF$^{w3{lf&QRa_rex(|(th%Gvk6
zvj65!J8e*ZxnfV_|5n)y&TsN>J{|~Z{r9EaZt2R{e=kdJxh>zF%Kz_zdfQfs&h?og
zi3bf$djB5?Nc@*DeVV-ZwRbEFEVJ9T^2}P8BFR<4{);o)tF!Uxo}DjdRpoIl*8Mbp
zRpyIl6Sqq|J;)*>c1`JYn{3VcrzR%;4&DAaAH!}O+#afHx2f{htTr2orcm8qng32S
zU%rrZ>y}U4<t<yyE8o^8bvyA`TO<UR<Od4+%38nrd10mPk9n^q=rKMNYhHY>^u>cj
z-Bn6&E}ReD`a81SFSL86RmmLP=Z;tJrI+6LJn`AO$*vcx#G*v~*qi08LftPH-%vcf
zWp0o2@`n=)x5!kw?%lm<)xNiTwixFGEOE{6Huy4Qjal8FAJTa{5-%<B)V0pLx2N*%
zuF{hyPp&CzycV4_)l1ld;nw73mU?=N)~xx~l6rGl%XPnb+{gAY>z=i3|7UeU*CHoj
zdRFlAX@AZ4ih509Pg=U)_5Z#H60_VY3eFt7*k-!b%-{3H+h-qTj8uJ{+kRTl`gHB`
z{Uonh?iCOAH_yKm;?=$<)#T+X>6k?JD(fFR&kD;t%dh%;Af?6B)akv9#Mb>sALQQ8
zn)jwz_`*4LxjCnpH^0f&Te3lndF#AAV)@(V?QvFnFyUmj-kE3oHYHZGm#saj-nR9R
zV?n_j-Ful*HxJItzG(3yQuo&E<Ck}(e@T+snsv`MUHg^U(spQ<?C8^?voj1IuUtOw
z*V+6!=Tat%TRPHK9$tYO#y*cF>gqgLr?zRmm{3#gaV2}^|69+Feyg@y;@zE4d*Xp^
zbB498yj|Wlp53`g+3YK~@BDxG+Z_|T`q?Y9^uPYHes#0{MMJyafrZW6XB`Y<l@Lu`
zwQimLk`?^cYfKL<*z)_N{N0~f#m~>}{c_3s_m`K4!$lYlobP||b9!#y^G11_yHl@T
zTNk^#@bR(V?{>dmVW*&`wrBP02G+oz_l3D&ZN^uh)_nW>{r>Z(PkZI<<8F0#cjxbX
zIt?^z^XA6JcKKC%_ME$(Dt^4Mq(R<f0jLk?_@c9P33zYaYmH5});ccyR`~eX+4=VK
z!6O8_t~}gy>&#5!>AKNr+i&N?x@^@s8#k^_*4(<H;EEu0FKfw};H8h&xic^@oH{#8
zgb`d{fc95{&eB0lBZ7u7AV=$fkKX}LBQEI9tbVuT{k^@v53<XzS+#0Y)LKhROG!z|
zko4^<)~o@YowBd?_m`^Ls;XZ-lE#Y`FTTDu`umH;{Z@0&O_?&~=H~R{M~-;Re_M8h
z^YfkJ^R~a=Z1x6k3|`hG;(F>2MmOT!uimL~=281<e%{$x{I_oZ`RBVopR?BA^TFxW
zirb!?`mwvVELfnhCF=ExKh=)Dnalj=-*eW^JT*l#JihkpnVH6_N@r%9zyEYvKmFj_
zb!U5AOd?;b-}~)WueA9osoXm|3eE2nH0R{YRXkw)DOUUAVLNCg?3%~7%9ecbn{jrw
z`TpPUcFXlYpX9AK(ZH8g^VIzRf70jreSg%ge`<Qhiwg_WHt)RqRa$%RJEi-5tJm$y
z`uFGO{{Mg9yZ1;G{(igte%0%>^*;{FuUPyp)kG?P&&Ol^cE2(XwQw%HKW*;+M_<;=
zdbRSn!|Btfx98kcx~ly4(v)vqU0h;!@)Yg8-1_BYv*gWkKzsUC%$g4xWL?pCX;k>g
z<>o7I@7=P6NjqZJNgAj5%r^5~8dMr09uiPqXdxrCIQ6vPs<}6A+$g)Azvj!X%H)+{
z*RNgk>Na`&__4OO_R7V1>aSNXS+e9Xd-J`IxghJiySjvggiNG*w|EEdv%I8gWi=~x
zyY$bReXiYNz0&4>uaqn;Ew2P>x$X)N4c&S>ut@G{8Pl1$*55CA>%YCc-2e0ScCMhl
zKYwa8pMy$xSZ}MxE&2A>+4tY4FTEbC;%5K%%jNyQ@4i2iwmIdsczn&qySW0TOAaJl
z$Xohl$E-_1yDj46s^1t!PK+(TTPk1sMR4gtne6N9?(QgjT>Jg5d!WYT<BuoqFw3~G
zfL*R4;qR}n+wa%yPRZ_a%`8><nR9PXrLucp%-*W6cgyeFW?$3kVolkq?BV65rK$O`
zYVV|urIArlw~E{~{PxV5GiPu0_jB{@<JX3H$BKxFwe1QI2|3{(wEF6;Joi&?S$_Qc
z{r>Z(PsjS@_1_*ndUX4pqSIfm$NRHtx)&8~3R}%9+h_T7N^p+Z?28#WyX!vx{=4SO
zuG81nMlU^}y25j}iLct^g9!`zs$2{*wg*+k_<p_e`Dzl%9@x2m&)m&G8kwxx`^Pfn
z#DrtVj)krc^ZY$Ke_!QASMky-g6ap>ZojuH>1daKvyiZ`xK4yY<);)a56hIhrd3~F
ztl#%bOQ#|?s<N`u&CTsLC=uqV#LN7gtGvH*N$vG@v1Pk$ZEfdTy%IdQ;Ir&hn`|x5
z>9$+Ko^XGD(9D1B$`uzkw`WhDq@<>9TvFC8YhC6u!@zNyp4;NUe?GpxQ!i{wJ3A}$
z@-ox=e-+Kl!tP~lSN2;1DQoPlt!HxuP5JZZPrH2Gj#aC?R$u-1kiXvI`JCcgvHLe(
zdhOONu3z`_>2&Ao^><3I$3CB5Z&!NdZQ8jxJ9BOtb)GYueHOg6w`^ZfRhaMB2cQwd
z3$H)kVFGoLK#L*>9P1VR;Y}IC-pe}*AFKJ!`tok~doeMwd8OAPEiElUIs3SL{hwpf
z`59ZIGWBA1e0aP4zL^Bi6j27%<o!|&aj%>C?JAy54F`=~<=)=rsWaQAa+BZk>W8i3
z-`?CbPCqy2=H_(aD-0U)zppZUiMk$NU+d)5v}I2Dy~^nAd7-PXT3T9$#}pp@{eHjx
z&fE(N97O~fo`Ox**3;9wl4LX!G;6PFYFhf`#YI+D*2!wVi)uh+s6(XP|39C%W?!FI
zcuaD0+Sx@WU{OacEiJjqClf)gK41Uu^YZz1T047<7(oT@(uyw^-H-Q5m!GqIej~@s
zGiTCmEp2U0F$S*XpML+H!o<MPV6-uw7t|pmay7_>tN-km-I=9=<$y|}u30cNH8emz
z2mWcecm8b)fqn1S2l#6<8~Fx_sEXYb$-Vr1mq*m@7Yj9+T&Lycs$QJ>WXaF()>i_y
zP0`@~vdv+l*eu2N&-41Xd_J7W*J}T)Mdn|iy5<~tK28bIMRzx-B)hO2nz^c>C1zpB
z5#~dS0$A5BkpJ1@rZ}DNd*^zm^ivKN0%thR-xIxJdHJ0CkLryjY3pYm)(8wSOy5~H
zL*>-;b5puI3=Fo#)Rykgd7NhSl(BTP)c*3Sc*RiPh!@Mg+U3vlU1k?*`*60!{pB9(
zOzLK@jlB`_F)w?n>aGo|3v0vQNZn2Gob$ZA%>4S+yLnsc%zkdG;TQCq$^TKKB!AJ2
zY?qdz<S*=!OY%2aWp65K&UWU{30Z2|Ki?*M)*Y|Ad7EuiYZp6a7f)34U3R)G`P;1T
z#xL4cCMe_{nYVEN`e`#V^RkvVHAq`tcz(ITMJLNu@}qjNn`Y^B;bRg{9$8nNneUV&
zS!%zeaPN8pfe$(B9#8d6h*>uw!ep0M_UkJP)+F>8AF>oHS@*R(M1*U*Zn(saGYo;V
zA2~gnB*H4R*UMHx`BmOm-BTikmF*#Ue;I`SHVB*kXsm7gv+HR|<DE0NE}sy~T&TTz
z&0FCgPW6ft|J`w1=9}$$s8;&^66LS`hW?f;sh=<2d2M#%mh7vUH&)$W7W?(}vRNMG
z@k>%CuiJ3ruEdu!XD&ZGpM3ls+uX7_?OXCTDdq9W-kw?eAh<T%JTp<&Z`R+9kHf9j
z&hII`X7FZd=I`g-`yUGQ-g%xJDn8|e$Bnp}ES9O&6P@LkdWh$GmlhsyTJ(KF^D4Kz
zwc0AXq&Ba+p71sznTgx$kVk~7gpz>w=K8v_ysN3H<~$9740;WrE~`%b{POIc)7FE9
zoNURe&P-RX)TFj(-gvoYUFpeimH61Jyq<k*J?GAH?BkRac(H4t+?t<XHk8l#{B&EZ
z4YN$-MZd<EGm@q+UlyHnj=j#v`10L9@ijYU&5zytr@&BNyMIa88I@8OQ6C-V4|Xe}
zbmT)tTOL?$Ut}h8&Y7XU{(_1A!eV3QynQ@(Zm+r7cav9g;+pK)O8@vCF}63ddOYfv
z`o7lY$%*hoxd{S2qM7N31FTyZ9qui9?yy_*u@mo#mV2HK?=Re){{O9JyQS!<`UhEC
z_1DXlnm5ID|G02>9aFHPMMe*sXLFmGdCP=%s!R85naq{5cfZ~ywwGe9PT#F`C+7-=
zi^U%`<kQo6)+o})krQ{^x7*z<lAUA2|A;+y!Ul>5n=7JM_q(rIu%NEu1>cTxr5A5R
za@Us5dwqK)?|iREziR~kJ$&bL$!2@Sw9=5vzb-T_a&)<=xF{|<!<yreifz~0{WWth
zi5W3<%j(`-*jB=z;dD!J8HY;e8<YLbMl5#4`}y*o{%bt9{h#JBInnm;=?e}9{JDMk
zw}wln#UFFN?>7vW*H%<sELid7q{gPN{*L#5eK;UJXA>`zpnZ<OQx_Lc%`-PM%V!iH
zh^SG{nRMjKw1VXybPCVg>Bq&+om*dLSl=pZZX16*?NIctys&yzuSh+8t0eLFMxR$S
z*4>cQ<$oac)THkH;-6dh8l2h6{#PJjb<E)lUuAwbrK@h;bxJ5s+tldHy1kqK*q5fV
z2|jI8IyvF)gYQ3U>b^dE^qI-hD0{QVtGDZaSl@ng?dzMc=dW+7=}Io%Y_;;tmGh5s
zqf9d`XZLC-dDa>)db4-i#`!aDuzvli`D@Zm0l|q6B$E|yFDsk6F1ccn^5^9F?{xF#
zZ23{_<>oVYPEF_A-8Us-wtro{X4jf~iUnIM6`y=52|2u|bM<1b+>jf4o>xttn)4-s
zjbC8>p3kS|-&3#Xosqr0ym#9yz1YQEbs9&0K7Dd8k72iK*dePT<=r3sZLaS3Z?}v2
zHnlv-_VRb0FDiU&Y*8OO&uf0IdB@o=<R$q%<UquO&VY)<B{t`39#;2w@qhSiezN=3
zbJat8IQoAs^yIOLwOu;p`S0AMC0`zVfBJrgM8;G-<5g#Sn$8&TtrTqZ<b6It>gRt?
z-|}F-dkS;h3+^6{)jT}GW#Zq9(q-&+|32#H8AYDPtSih7h`BSw%)|(#s+i%MEo~^!
z_WrM^)h&hHvo4<T*!AsofRM-Sy{4)yW~|O{FFkVl_1=1M<nFRd*$Wi*By70mR9Er$
z#nm=>MyE^SElpKRKU7M``8@nNTkO@Y&VU*FUVY%Yw5yQ&^7Q`h*GK>T{`c+nSEIPt
zdo?ri;^N|Bb;5g=D4!P9**1G_-%a&B7W<pO_Pu@k_iNG5%&OlBVLqB^Jqm_vgPHnH
zuzum)5X6$F>ve8Q@-^#@+xBTU-n_3ncK7{`-Tm+D-+r6@cCPM+M^_iK&eQpyvPJ)0
z%}ajw+?UJke|?miH-%R%U773P%?%q@o?2Fr9;{+CXY<PD4GWcLKgwCP$uYoe?ejL5
zMN15egXj8oPO+9|Np?QP7R1lD_|Qbfhc8MSF3a#q&PgiRpzdxGk}C1|im}D!-t3g^
zhGMOgCm%d%Yq{vuN`sW56Qygy#I6_mv8hYTygRA+YL3~m;*4(_^KQR;JcqYWLgwYk
zm0+<Ia+88%PDJwf8Cz^sU%s;V%Gv+&bANp)xzXDr&@F9gzSKFRB&y#p_$5P6rtCE4
zxv#v`v`?h4N-j)ipOnR3;Pd{3PU>%NOS#u4Qe-7JwzD(v_Vesq$SwPE$F!4KM$x`*
zpS~<usor0CXj0^vs#RWjY1>wv37b06)-L1ILc^!QX{N6~YVDkT^OjL`^sz@jPo~Ms
zUAA-Wt2yxYOxTR0T*hJN`DfNewB5OtZS~3V`sRpqvDarTE9-9jQBMA~{9M&G-cx^d
z!e$@MDrP&+KfC_ajDIUP&+pDU_E+cHoTIaf&&`uJ{C~yp@8u8r^4~W{l<QraYg}2^
zwRH8lf0edBFUN71MP?=RR|~$L)p^*fKks$aUG4z>_=@ju_yd@?OJGUH#zZA!V~neJ
zp~<*<i({Foa<578+v^KeCTy$j_U6dtYP+@cXzQ2z<!+0u)}7org+qEz+*_|_55F#+
zK6jtLfotu-kih$ezqZVdJ9GK7xzWccualSmxVDE2Tz4`$JAb|S?ZbEbH~bg<_Wj}C
z^M4a}@8%AlZZ5tanx0!KH%97&Z?LGbzEgKs=e(Pzd-?6X^S<Zz_uRYpJ61l;{(oUz
z^*3p=<&*#Ke3SBWGppY^3%w5~)<`6KNGxgD(I;r>u#C%Lq0;jJPn9K;g8UdIycqVr
zpBOn$N#5=$^RJ5xo(xRvE^HmV0jlgF-Um1qGfdjg_>|q@D&t0`Bm;*>oR{pw9Xgts
z9<ga0Wl%MB;9=9yULX_QWUz=)E18L@hCzi-LwZ40!v<9jN7<Gi@>U)HSrw+2G%;LN
zJsZmCY2t8FnC005lNHSuROjAGyUG9(VVJ1San`XifPJC&Exwzox+fV#nL}(GPs&VT
zFBSM?==f;Tw4{b33>(!oW;ee$<7mUN;EL*8(FxvBE{u(Nf4n?woNlUwuuTnkHBIgA
zxx1IRmMd;D@_nGFbU8pa#Mx3#kg>$&ia_MtYnD=rl9X1Zp4n?x9vm&dMt0)YOa|>M
zQ*2$Yh8!`;==#yYarY`nvzPA^%~j8oB(Jz$$&D4ASmLr%aZ`}*)!-wq7KyNz3YNxh
zHk-dLdqddT)Jp;zmwQ|gm}>a_k5GR{(RI^fZ6~@)J9S+(S9J^VyjparR5z^7YS9&e
z$gO$~eIBt>3IfDM?UWX+%hutYIQ8`;8`lIqFaLY4>(lF>@J#lVV|_EzSZTfH<t<uU
z*UgO8x7DpWygPkAV}rmQPAqBHjHtA0YK&S0$94xpir}3&ifd<{^fB7`^|e!3;??5x
z)X0+7rnMTP*Xr}tCeORJ>-r{vD2?Y&YCe8>dUE#TI*WpZbq7+{+<##A{!aHv+xp-+
zYrMUlEL&e%!I~JmW5>(W$64DRC|8|$aoCE5OKxWh!?y<46V6A1YLxm!UN_FD=~<~`
z@0+i$x5f6(|1ZDq*ZqHR|NkxdZM&=Mi)*XDzWVm`>)ESCM?JdFChcrG`tbL|cem3j
z4NsMpY`=T`@3yZeUfgY-`!#XX-~V=ppZ$4s{P4NF+QR0|%Fm>2implq8o4|$+^E=f
zLtvwl*G9#z06{@}TbEDr0-iGjQ(tuKP!w{VqU*YGQV&n^vK5yyIyNYslAWlb#N-;H
z<2prakqDcsN}ER2l#C7zDWz2%MH@sm?$Y3WwWvwmCHA@tZ(x{9hNjo6MKuqVBv}Km
zn^x+?UY{Z=$nGkl>*^V+lDx~KUP|ekVM%OpM#mzhB=5j5@u>zHN>+-mc0Icxpz1nB
z$90jO*5Mr<|J<&W#tJ%IH(lPgLPKez$kbO#TsCQ43tn4=yTo3<bF1`H+1&1>D?-Et
zd0r`b7%RQm<+nCgJ@-13uB*tZZVvWR!Lr!ybw*Z;uC1HAE&Jd!C8iLU%oCpS8(;5w
zp|w~!>#bGxZm~@wnKv}}UMWqH6fBK>er?_6ZP|(5f~&eS0>oV}n_ky_wd>s4*!0}%
zlXP7JV~-@B@wA_{PV$x0n%7p_%XDw8bJcNOqW8$~dWOfcY`54BNu|uUQCniCCuk;>
z21;FVbpZv*rCVDwcI$zK<gU1?7%#e0s=GF}d)sRvaDe!qa9yun{h7y4URC5m`1#Uz
zk;WUNui97Z7MYy-*iwG}A4ATv8`rU<XiK6}v>AG7oG%PY(SN#Z)g}qsJeI7kdHT8`
zYNbOSOQ@)brVu9+>&idXX~)toZ;5gA2>Z6>Uc|S><@0OHm*)%n1lAjfUQzaw|9*M%
z*)Ly0=cdFKFU$NK2`Y`JzTWclOWnp;nf-G4`*Nl~eD&$q-DkgkKD~Oh=%|O)rkI0C
z`>kKhnEUYPPti5uZ}Q)5JN>l%>}&STNj-{*4#xzp8ydBSWHCNq2x?^tSz{XV$VD^Y
zpo~Y+-@`7uAHV%x@I#WX{NdaF!-d=TZ!L}6Q?cb-_3j<!ud;3KA3Pj*`{3Wb_Hl>f
z-KM0w9O4ahbwARkq3*7-pySJ#n=VEii)7MWM6Hy{T#`DxyeCePu{bnC^VAiAjY?Xe
zR2`zwwPKsdN+u>}8Ig%5E>+4$pLB@yDJ!|MSS9sXEHadGb1OQw;z4KN+ny7WqUkO3
zl-agU^s`9o^Aa!PWVs_Ln!Ln(nxU7jdxDi$^DB=>XE<hWoZ4sXb*>}2??R1B^DmEG
zn_MNQp3|^g{HCYqbfA&^#rhY@KgD}?ZO&eBWiIbc$<TBaUH25bM~<~2ACIiCmR^&r
zyvTSJNa$4auN7wL=^QS1Z+4tJ;bq3KMP}pA6-N~3|J6J;Q?NW;*;={K?MBg*v+k*9
zrf(H_3DUhcO})VFN>Rue_e0G_S?A74Xq2a`zrT61+N|JoprQO#!`dkeEUjN#N4`7f
zcW?9L?>QQ}?u+bB8S?#n<9}hUZ=+Xv*{6BF_cl95^=U~hcC2kFOjEgg^NH>3J?Y6`
zWS*|jG3I%t{N`NRZ<i~QmFLyo-{iO>v9jNY@0IeDnSpQ5slC7X#5Owq_gujl{XyR^
zp7#B{jc2m2g!YZ&skJieW>!Q!4Z5bZH}SxG`#qJPxX-^nn~s^XEsTgt+34*I?`&y9
z5x4JuMK_l?lzrWCJ~zI5lEbYk@#zA$M0mD(cXPkozrJMs8;fJFgOqagZDvh8^YHUU
zbK}2rE{VL>_MP+E+ArSh^6IBwKF#&p6reO?+Wl7_Y>u`r@;klWeDl|L|H5zl<GkJe
z;p6wR?f34qzg~U&wE6b+>(}Y)Kbw)bZC31=%Q@eZ%fHu_78-SxmTbOv?eV|2XI|WG
zj{lnZ^0>YJ{rP{|u6}&-`*PnjyT}JGdJZ$Cr=2xyo8-K5{*I1`8Vy>@TNInQT6!W)
zm+(X^U^z9DN%WGjv8}t?rzwJOB@<oJTW(4$G+dO_<F%@X!9DSdiMznui7Y-Vjh&KJ
zj&<0&w`wc<G#fR!yWNrWOm;abvGO@b)`gBo3wn-7W*&%{BdD6p(i_-0PdUeK(f<qX
zpZFyfTF(wny)xG~q34D~>Ulv^`Hu_ioXX9PH!QWDy~FTPMo-uCj#>RF0rG)122JmB
z`i`xTQ2ruQ_<17VE9Iuc^}M?_@03tBa(iMq>6x<a$B8|MPRu=PsZf?~EU9ej_Q>+m
zE9JiCUmd$Qd#7HRd-mGqqg7>r=O>2AU%lukd9hKjG`;(4&c=DXCyS1(?YMq>yW#h`
zm*?67I7{6?O3hME3tpc+=~TzDGZPOeFMgM^ao*Z%n;C7~cm7<#^Gf;Uxnm8N=B~ZA
z`D&Hfg6A6M@&^~#U3&MX>c0Nnn_0HeYtxyl`@B929y9!2x0G4=?YV2$HhXWG$NR{#
z>6x<3Wp{zyn^gl!(!;Heov1Q%J1=M^FUWU_Lr$_VJ)~#i*Bl>EAU#Tdzj(WMz0urd
zW|dd2$oW3k;bxih?8u%K(z8CF{>^Q-=LfgC)>C&ZX&32I3%AUilGGx7x17Y1RLE5`
z`aY?7=_MHoW~L|?MLb1x^&oBJv+e8tT1{cORF+@JxzP7u!0s(OCj9&DwRq#~U6#`u
zHW*fHjp}Tlo__!C%ik=)YvgCJyf*inUv{~>vg+S5pIv%qDrfD#@=)|h=|XTD8PuFD
zx*~Ahu#2rtg+U}J<?Pq(Q-m6VyewH0pD9S4{`C0Iw>MrSwWL?}z1#M?YR~`blrP`*
zo&RO<{qg^IiJw0_I(}JBr*_+cW@A5Yo1&}A$_LJ^2yr_qIrSLF1&LH6x29e}dt0|(
z_7WQnFG)zOG-fh!OX=D1+~aj+&~v_-%023CoO1+03FuPsl0%NlJf}3u-2x;#jV~SJ
zI4Ci7-eRq-3k+8D2l)4FvX(w5@$^{7;-?<UW^U<rmmDRQzRNj!>crgMn-ZOdPNye2
zeVzDdft}a8HzG6c+|=j|-2F4$ZRK;0S^bw5*q!=#q~q>QO{v8xJu9Ab%<lhWV0UT1
z<j&2-sZY-Nos`&U_-NkZD>YLpFUaiNthr&w=E+~*q}a~h`h3M#jirvYE<f5QT3bh+
zKX+~O&Mz`gpDD{-aes2|*@0K*&RyHQ`D;$&JmoCANfyuc&cAz8XvdDto4>xvv5nsF
zykj;fJ8iVyZTDTgylmS%-)oyyzsq=nbJR6u<<56Gn?Pc%Reei-t~fB`dtG7r^iwD1
z`d-_7vTB<LDDzCUc=35wN&0jNmOD37Y-g`c@BStun$yGfb>cB$<&yNxUvsw2TYIr6
zB<X8lqhsxoyEj?2l*`Sc&!@e<$#q5Y>K@S=C%Y=!@7pgLY+ZZh@Am5#J9aJexxC8G
zXiex{t(O)L?{2<-c;emnSW>kGQ6;jODN5`4#(D1;N1g*8tN(YEmn7ctGdk&0^me^-
z;D)#NvIH}AIZC}xi@mA8@1qtPUcHv1c~e(@?Vj(7b>{CrB{!<xX4m0;Ypg$i{WS5}
zPk&0srmWq1Y17ZFc7Db6Q%i5w{H!Rb+VFdy_5ZS6Uh2ow<;~Ld`~CaE+Iv#m!`cf9
zN_TEe{;OWI;Xlu|^q9Hv^VfyVH_LxNSG3rVRk(A>o^z3kTZ5z+mItk#V7n@dNpop{
zC)ZXr-N^ri%TC`tdVb5_x!bP4{JZ|`yHBqc#lN_?nq9o=x!F6Juiba{xBhnjt$Szh
z&-Uvd>U%}n1!qlcn^?BEEzjkRTgTlM@1#%axRpvwz0%Ph=xm;3zACwoYlh&*DaA*=
zJzX#8EU{6#Q+lhR`_h?$hnKjS^qlC4lJGPaDo~a!cG>G*I!o^4zCe@N!K*LkFq$vQ
zTT*#O@VneqtLHL|_oQ4mx87N?Q?So+)n519OLC4TyO&*Cbo0`#iD~9qMm;%}0l&+<
zlzY;)Us0L0_GWLF^v4;CuT?Mc-{Ag9!mT7*<m|SaFWs*8zM7$|I9s`TPI2F&o0Dd_
zZNB<F=d11QfBWv75PQpF=`XcJ=wg_2SH|~7&ndMR!(^LNyxLeUi)8-4y1!y;uE(S&
zfw_+hm+Z@2yt72bI_|f|!#V#q8$Mmg;>qCD8S5FtnX19~HS&<>YL}ALSDaSn-)4E>
zC9=6?-cqB?X&!AtY6maoeJ)fjQtgX$dM{*qP|x<5*a3?vU7DF16SYmlvkbkD?mjZP
ztaI_bDN9`TE_{Ed<>pkCw9Y-=Hks42_606lVV)NLD%$*(0I%vdy{n$PLl)o5@e0h>
zSr-z^nKbRj?kkJD*PB0<O^^7cx!I}yv}E8lpFJ|yu3b~wSa|2pq21~A44!W<t;9^-
zmWD*7ZW9ZX)I9^<-iW%TuzOe4o#WfqyLu|*rlU4EN@cB&y%tcq&2uJWiD7&H;pK(<
zWp@PZf1q(KzTm#uyR%Q?>IIH_JD$n=71%B=FfHha@BQ`ZukYTK-~add_V52b-+!C8
zcjsr&sK)!edvS5GXT(*X-OMtJKalf1yZm>tslB8wxViEA@0&9(-qz0ln)>Scem{Bt
ze}`XHeEgg1-fvfV;G!%)zs2S(o`cI@aBt#2&A@0o-G$-k^Nu;M16^ubrUd!z>r=j_
z%x<~)n)i|;{ThKb0YZyadV{*WG>ezJNJ^=mYYwQIqk71%(<b@ll%NnVSIvc~oeNV}
zo|Bs-)b8hLBP_9W(Ub_yiK(4S(>R@^jJ-uWf*yHw_6V7KNluv*F>OiZ%A~5g$VbZ;
zTzSiT(0KM<V~wSEG>%@_%(AeOGa*3V(<Z>E`uUnE9-2qzE&Y`l+0|U-xoa<@P4`Xf
z;Kd<LL0;2T1N4^~?rl+gqv>f-J$=EHNkLlEmad39r5^VvP@}ZkdCinF_f$1iL%cE~
zy<ROn)0}ql&D=c=H+N@z*Sob>IeOZrs+B!2Ra+_+q<qu6wKs5g`P+wXo_kx)U-14T
zGUd#@o8BhXi_7w_yqkMqQ^*x>kz;3qOsd88Prm5|E55t7#A`*|BFDWVpBpFLl-^oB
zx$J${ieRO$Lj13mp5ULd>E`S$AhBJ`jlEu}T7JBw;j1un@5&&f>d9sKm)^}ivFXTJ
z@6t;%BE8b`zXhGSx8&~Zt<~4(<}X({>s=adzHIuYo6&m~+?>6&dUM%(nW||?8F5`7
z9_{^7_v-!ngIkX_J5)EuW<TEa<dK-imXvMZXQbLcyuA9qhxhAaSQ4`dQHdF&TL>F#
z1~)*AXH9%|YrV6lLT)YcAYHhWZ_e?vJ6T$K53G*OtgNW~^Ulv+eMZvX15-BEJ^qqv
zy*J8N|NhI6X<Cz(UEOZAw_!)fwal+ytJ)0N4k>81?&x7qUGaqHfTF0@%DzQX2966|
z7!9<p2x^|SUw?1@+O0S5|K-|kpI9z$_wU|Y^V_=%N-K*$K701{>D8k(2WO<czFEV#
z`EUQ<x8J}1$(i>0P1)wv$A7O^Ps@M*J9K{7-yi$GZ?KE~^Ki@Lwdc(&EFW(;D7;!u
zW2&ELb6SyC(v&M2f~8&xLGE3@-e^qy@6dTsLovkb)s!uPK_*@&H-`jY)tG9y`AE@%
zkR8E6CSEyHj%;?huxUy}`x2Fn!G{)b`E~XN8G7B^?D9-i?uz%MzA1O^MQN$_B}}=p
zdCD2@qGwBuxR&PSuTe>Q^J`rLPjJ=@i>etnj;J(uX+GvuEA=^Pkb1afo|>WYQ^&JY
z?%t0vWVBv($H39V=SikeaImDC?^D5LkC^;Lh0B`59ojm1gsW$5+UfatMyA%w8ER+x
zI(a6G7Kr%=8=Ajdkf*iogVa=ybp-;4Q+VfeFZY~1TZ8YF+EHPjbp;usb1rIGtOkj3
zoV#P<r5F%iv2MmBZJCP(k?i6xG8f&r<6^OFc2P;|^sdg>hbP)jdhJN?7j`TbemEoV
z)J4&Cypy$M*0xUGTHrZP&BXkoL7rB>;Z$X{LXglVF}*jLPQ}4epC{@u&r2wRiru{I
z@=Q(cithzczl}+!))j0Lo42O*`mqa!s>Q<muhe?neU6IGThpqZ{m`;%){Q$V=TG?N
zhyRr|^LZP#$f>$B_W#o9b1I@d&YcdrWALfqV7qudV|m4MEKO@mqGsI9%uyR5$W80S
zx92>JFP+&M-#*FV)~{<*1a65iK|6+NCP&LIWjj0Ei0j#^?alw*ZqK(b$%i;^F)yEW
zOL*D&+b@r%RsC~QkIdFI$=$c@q3EHg$mM6J_jjKL&7=If{j_MG#r|I#c2-r^6>f_u
zTx7N>=3!Fx?(F1mocey}ACw*Y_Um2I&Oci!tMjk17(6$*?qa-#@pd%JO3{hw%XF^v
zxt98gss_(9+?-^6&FBA&H)Zvoi|_rNS6=@4cl_?ZZ@(S8R`u=G!KnVSB9m9IZSEfZ
z8+iNZ$A9wc9@-~Q>RV~ZaJF%!g<7ePWx3DNDP<xTCZ9|Z@Ok@m#-_we2bQ#TPEKCr
z5v=Mx`NWLOQ%jQ{Neb>re)MF<4a2D(lNT&q8EdDa*3{Q2rFP`Nkv>nE;9ir?ot+61
z<|j4PtPY8Ar5pON%1(Bhb>)r=NAogIKJ!?vR`C*_lo>2lvpCN9wlweRbbff$p!E>9
z<+4{Zg8YRS?(Dp@An#Gpfho=pmr5<;>eF<eb>Z%m`3q)05j2<@u*1YhglqkS8Jm(H
zc?1`kUtEx<wXnd{XW@rex_hd)rwe7CdZ#9J#n+WD^HD&>SFyOgt=%rOPTW0mc*n~v
z0$0|32%9gp5G0{@?~tpq?~^>O=6}mpKW$jqa_DIEjtcJZ9+Qo`SMt45d&#xjB$}Py
z=N?FWnMZJ;`BlfeDzOibEtvY@z!Tk=y{+1=vsUf)oVQ@M++qQb@EsE!I9pe5FZe2U
zFHCU89bc;zvrS|ZxgbL8OfRWCQ)_d)yJTTO_CqPI@ZF-^72M&SCM)kw=Skk>sUYHK
ztoDK{zd>g5)(<=vE+0wAOX4x#d+*EtWrdq89WVZy<L7zJ$7Ze9+Sh73{<(gA&-#Ae
zU&ivzTUZ*~h6cn<7n-7t?48Y$HWX?7UdyGMJ0bS&{fXQDMo(e6bZz&NmJ7=gR>Vfd
zc--H2>8kG=iS^DM8w@K<78}Z^+sSMG;S&g|b)2zbU+|A@ocUo7zqSi~+O(o5;_r&X
z+#aWuRM+f_KX+~SZTrIC`g!jkJ>P%(ZdI|g{<-z%@5S!7-ET2lpQW<QbhduNw%=QK
z|Ex5%mzrv|D>DD}$A52+yf_=X|JCVL^8a`Js`w(kj!%8R{o4oE+|4a49zSGLPdhqA
zDe+8aa+F#^XG7*J29>NuXTAn|cTQ0d4rcLWeWflmf5sctq*MKdPy0Nz)fA2|X<I3w
zwy2MD%RHqirxa$$E$95e5M1c9G?B@~=S`+lUgj!GY2nH53>TL8G_-m0Os<;65j88~
zn2+$XKFx3+mOf9OU^Ab|%RA5be&V@1Wj@nn?L8(w>k3Zr2G_DlFME`kR6LpQmD-tV
zpEq3Y20nKT96y<K?(}3Y6@JL57H+XAaTbqo)vPObOn6_Zz2cfKB`Okb;l~?XdrwO3
zlgY}Rn({j}`I|a-A5snVdBwFnWyT4E&gGd#=2IQ-9*KR}#5-Ag&YITATMGjGgU!H#
zmHnATAc0L{ao4qEgER9kec`$LMWoeX*P&J^wQ!3_?)2=30XDu%cX~D+^O^iYF1W09
z^VWiGVsYYCZ7cP@M9nG)Fkh*?=dFN9xJ5K~diKK(TVJlTzFp0`JYyf``i93m%+ZZm
z(|Y~fO~ZvdJNqE@!4HwfN!l@MTD!Lvi1-W7nq3iK?)ziHvRmr1leZRZ6pQ=+&q~e6
z{N#eXStaw;3P8%XiuK*ReB_y0<;T3L{jZ{L3EX<J(&6^yb!~B6-Vs-_cAmLeZua>v
z>-@OC?A1E&e_=LB3=N2zI5b1KFBfG{1YB~@nwh<yPqlH&S6xlTEt)J+)5XLu)yHR=
z6v~)C7n+dUviH_iJ^uCb_wK%Y-XeU(+;7q=_GS9pFRwoP<<nf>UE6{(Zq=;5tlhG8
zqwnnX&$~gz@ajW6*$&qvi=7;w>=X%Dm25V<xNVN+`3MPbS?=4PK0o_=G0A-Q>-f*#
z&hObf+y39ZcX@g1pKrc=db0WS_5SDmrfK_a*%6@=zT?K<8?m+fBjnB&&E32A=C!wf
zuM2MuFaNv3fA+q=_p^6c#Qdq--W)7H_d!DcU(R_ErTv|J2A&D0`c_(~T{(~v;ePVV
z8-ths4=j<L9O`4qzU<MAGlow+f@`k^CY~{gEb?KMQsefyX5d-mBa$hUmAUGrv~cjt
z8CuOgcMLs?eBR9PTH<-v*KFBro?VB$SIw{x(R(xFilOHc&)KtC`tB@QobZZEe`g|B
ztG94<Z-4S8kIAOyoQD=<zT(mkF`OE(V^Q*=w$261Js0fsEbuXxY&!%}t8J-P=(BS9
z%5z&xmL}d=(r-AG-A9NkJaYz*OmLsc!rhwB4KGi5z&N?>(Anr6mE7umCaUGayswst
zaOLa9I6r)*duLB;aHmNsRB(FNNhgTl^|G6W6L)v^gHq#(g&)c`CoL?<){Qw3Z4tSo
z^Nw$7fceu+|1S%cw1zwMos70fUebBj*J#CTj&GStp!(@#w8e5zS$@(WuPTP40~Cx|
zx_jzMK_OE<nXk&<J@z4!Xz(kp_07qj#LmfN3YAaheWmt}OFU<Wj=@Bbm{8`WXKJnB
zTp8pUz}K3b{czHr*3E9S*6j3rD7o|H+hz7AkFAX5lGx^cQ}gAl&gG$kk*nJh-~4Of
z*Z;@F=kv-KTM{Q~e$mj_6s;3^JMXreK->G@A};w_j90SK&r2^bw_W1#a6#sy-5LfF
zozprzmS`CjURwVC-J2+-OjWy+jtqy)Tqn=DIkVr`zTNAeufoE2>_TVn==(mK{bc&*
zlwWt$+9H;^6xF@-^KTH+&Mn$kVLhvN)~b`&HW&VS_4MfM&)xCy`>dq>RfON2sbE^{
z8@Q|ZUx!TT`U&s4e7|Ly$?doPzxnypz*$ApqFjT$G%}_&2`petd3DI>Q0~sHn&DH5
z4+a~EOu5~(#eI&b?>_I-=QDq5*8W|X)8+dv+4lEaw>4{hqS6h|<%#{>Y}Z}(&pf#z
z$ww*SlHBCJ85T)F9h^Q#QV!-yip!>_Y0NmoIQfa-WG5dn!;cZZ3u;UYt<Gc>-7Pzi
zqOA7Xu&`~0%NjMc8q=Lt(rRj=29fQaCmTAAkEjSv?z(y;aQ2aeEhkG1W-2^<$K28<
zbWSzNsKfJk)}s}^llV8!>d8p#5<1s=T!q2#W`r-(R!`oL**%sCMuCS|71SOYW=gI0
zTx7PgF>5lfP~L&$E+IXZq)Q#0N3()f`2MoKqV`$WfR(d6#^Hv>L#Jw=NlI#Rt34N*
z%}mS^4v;dv^VVC+H0F_nULjApeB)%d!cB)o)Q@X+S$v<fsKa~CVbyaFqmEV?t?(-|
zc$HE$=ghwMDlVeaEjqkqj@<PSu!z+6pLVM8ny`!H^m)Nk3Ogt7IOG{~JHr3k>&dMP
zUkR^ZRu?Ocd8o0jK*U_&)ybgs{?m9v=SN&AWOw|u;xSixVe94{i3{iHRMc*IV|_*a
zv#-V0k~!|O;TApFGRJy5z8(pf|0A&WRt=A!Z>_`Wx2d*!S6!QaIW>;yLZ<Eg)U!3F
zXTyH3J9+wLNwjEb?9?2`Yu(+u6#t8;&b%(~e1_$(|9t01;tRz7h!-yCc&atCKp`*c
zpy_|D=Q}qu*ky(7P<GqBQLa|w@IlF?Yjj?P?)#9lMRx7yXUnZ(w#SD1?pT#^XkyMx
z(bOAzwPuB$f1kQFE<D_IC(r+LpTAn^8ELI93YxOcXH#Wx&6)W}AEa7W9OPkKDPx>6
zb?^C)t2zZPr5={?^jpFasat-ttn^~a*Xn7q%nNxg`nZR0E^PSv+p=z|XQxlx|Bd(W
z>K+!KrFHR07S~5^U)E_Ft1cYmo^RZK@piVkInTO-+t*$ZU!UgSaP!^O_w!_vz8sY8
z>?%$&DLE@PUHrA{-8Z?NH~#;WiT*ElIym!D9Mdkj`hBK+YdM&&ZM~%@C($J6GIO1N
zQ8vpl0q#xNTTgF3+M3OO{oQX5lXB?}X`W@pPa<p%m@Hf~{ciu?4!LKywyI9vtMxNz
z^86&nXI5UEJ5;C7PMfpS>GeZjXYMQSyWg(cwMxEX`^;(U%C6{&ic3vCrg!x2<8wNK
zf3;4WO0BC_5A+gw-IytUZttW=Ap*+PjT@|45;;w`_5W-%Y)}h&wa)lu+~pUtDM!1P
zS_aBE32%6HPe(=IVD<N88TpfwYm461X?LnWznT_2m7gal>d+Sd89S{Xh<wdkwD`_r
z_SE&Mp<%myx9R;moqpYGj-6jEi@L}9t;af#xbIlLS~T|hT+h>`<#P`EDcdP{*6+2>
z;4kJYJ^!ZAr<v>1@&>6XLFKXYLvJqPvswP|@tRfJ65qGVH_loVy0brWp7GOpp}+R^
zST1i_8K)ZmU21bz!FsQK*N<>kpIzDW<kP;r*EUscipySG_$n@Y=es>6Hlgclb*HZX
z5_S4b$lkJ|7431^JL@io?EWKddV62?JJy?f#e^>EZ~oiN`&{5&-3HsD1^eGgC%(It
z`A^hARwpd4XI?K~X(!v<a_#zl)pM~?!pTjN_s>h#|Nmfb9}`%Ktx!gqA}4%*xUs3e
zM`~tzMu`IG{&45~ocyBTg2d!heV5d-%;Z$}qQpvlr_7S#fYc)A{M>^4ywtoBE(?9g
z%uYaJQEst~4Tb^*3w^Lj#R`TX2IN+8V^jTrqSTbk<dXa%1tWZyigTHxHj3U}Hsobs
z;5oeEqx#*(41Z~-B~KchR2aA$TMsxTD1z_?fd~!|)?pE20%7jPR+#h#fdoZ}R0IcD
zicyRStg`{E8zcq7ASn<=(ur;`H@Z$VgAsP3>x3G7zzJq2noe|sae4-3unr3j&%g}E
z2nLu=G`|vb66N7bw37&j?+A<YgLjxy|JF{#lE)2^I?LdkhMZ@E+@17;eG`kb6$}kP
zWkHZW3B>>xs2FfU%kT=sXLw`m8J^3~6km>4FtjuSso*LuDN0Su<*K;#_AYyZNa?Tt
zAJ61?zQ5Vx&~Sm%*MY^>rGME9g^vRKj{fJF|1~guvTp702y_rW-zCB?`ejW6Q_~5@
zK5JH&DM|`w1DvZo8o#8R{(n<8CfOs&;Z$D5{wLq|{hoXC=FCd9oBqqzCT+fH!@$7s
zpe-bfk%581laGOcK?QXC-GnC$3=AGcpnLF6GBPkUsIW6II80(jQS(QwR`>9+Ug_zR
zCM{aEs=xod@p&6zVd2LzCY7I_9B${&&doeC-+q7o{e7RGo&EjcF#qAhhnH^7zP`>l
z?M%X7CI*I>xhmrF^6%fj*Y7=Y<jBh4<?CX0Ub56sRCLUiu_}47uwCxe)z#C#nV6ZC
zotmP#CX9ihL3_cr#jB%wgj-u%yB395pX(CUX5*DgF_DU#%D})7K4agvgZ}n^zg$}z
zoojYGI)88JzYCu}eKO6yrW3pC%FWM5#p82sZaSJ`)GKel&wIMw{-56}D_z4@zx|{e
zm$4$=&rdP6EK;O{sZlCWAz;Dhm8*ng-c)l=x--YJ_(|c_RiT`moZaI3>x@hc4L2qp
zZaeq+c^j{^S=t$i=7S0k^Y82^e0^;#Hy_`++Fzw}PT!AI*%l)HUo%NHKp{Yxi-oJC
z@Jp$rrkPpUuP-kvD=R}M-CRDu&MM`E!1LhACzqI3eS0G*DLHe>lq-9yzu#J}<M?CK
zyUE5g|7_mOeZwbKjCGO20yhy3kry?qR$Vbnx>hkSCNMCts%qD@ds{Mt6A}^v0s@{2
z8W|aty}M&s@W3J6KP_$9HH(T530YZLo72wTaA9Cz(3>yy{p8dsQ+(!F1j>bmPL<f6
zaZ$-N(5+X>H1SYNpRDyM4(;%DZ|?3ce_HYV(`o(p_xHyiGne4u<m5aTTf)G=utP><
z_SrJg`~SFPVtqZ&*8jb{w_fssn$nH-s@+n3)?lB8l#6v+>g(Um(MvxXr?qNT)Y`D{
z8Nz$-Nyy|}dillvd_-*jx>v7jCl+yg@y|PBJ+E$>3OhqVw$S4}dunQGrLUA^8^l!9
z1)Y7idj69fv*^H!kt_2fBA&3eU#yB(X+F2FCv9`@TTzAw*UmgEioeg06!TZvbn2<N
zJNK^rn*T&4@Ame(?y0=23<3OhpCUO!zDao(_0<-Mg3|S?H}|U9Wv$Del>4RJ-DP@t
zneV#OGrXto`}%VEX|3-z-)_8E8*Lun=Q`Us{n_&QbxOUlyUTL!?|WPBmwR&)|L0Fd
zTfeOe)wcWjq**&=W%jcdTA&;gzBTpqb@Tf*r$y^7-`!oFcmH3mtoybI9aEK^{c}9^
z%)Z^T|6h4TG_LDc{n6&Q{QI#lxt<#{F+AAECwJ%ntJVKCbag*|`c(Jlqk2-(t=VUv
zot!LhU;NA`GBR>^+1vRwMXL@btXQ$4;^|ZtPEWPqipgphZ)Jafds}&K*lORnPZyl~
zzr43!@M+5CO-8w9(Jn5{x6&0<pI+(KKX>;0`O7a$7Q5S5J?^caa4vuU-)Cpd?{A1&
z>*#pUh&eE@xBTs`kGHb*w`N}cc4FfElrt-X)6KH4{rR&}*0w6;>#OrQX0OZd=f1!F
zeH*)cO~vhPy6^XX_lu0&sdMzl$N$$CI=j!j@_POLn!BZQ`Q>arTyU<}*3ydF_eXj2
zPN%qkFBbQgzrObOZuxz?TC3_?TQuDkKkt#;Y@T~7A}Hw7jpTmsH_<x^?tOcE|HKU2
zsy~TuZhSOSFMf8$M5=eWpX%vP+w$)h-r5p5{YgaSU;iSj(5a%Ki4VKj860dkmd5{@
zw)f@!VkPtPt~WO~t_%0_va9~}@}$45>EAZ#sy8=2&fQ}FGi7Sr`sqJ}BqUTUbH2Ti
zjIY^fW%ljf)z$XC{{FwO@1N$GQT^p&;KYgFw*Pq0T>gG{{*MO6@{==KTSNChFZujz
z{i{vRdDqrtHnZP1E=YLu@$qrF>YOXT->?7hVZ!&hcKP@0RadW#-R<QTvFAsuyO;N*
zH8+=@{u*DmGc4`R+wK2L|6PgNl3`i#Vg9L8UdMZ9YxoBT2T#+h{rz<M^Pj(d$y%3v
z=~P#%`F2zMQvI776V>N+%r-e$*Yo4d%s>DB=1>1Ibxuvvqa%gd;p-+>Y)?D8>gMLh
zv(57(D<93T-)E%xa(Vf^jq;gOJx^Y)ez)_w;nv0L_w8~By}JKj>5)F!+xa^lx=o6i
zD^a559?r<HBje;rbzZjSBNmzEudl`4x+E-n_s!z|d;h=P&R-Me?daGzefsqFzfU&L
zEx%(J@V?;p+wwPee>azuy}kAJ@Av6xDNDS|GVkwmp4ypz^V3wZ<ynC-F(pq<_?O?S
z+`dJ1`_`PBY5)J#_BmXOy8TqGIj%}G&TVp8NJw&L;iVmazgY_lJrfZX^|D)C`|I}h
z{K*F2Uo2j{b-7r#s=2xQ?2vZ8xm)}s6Q7+~zIpTJ)Qc$@e&=3ZxUeB>xtiwNbJpyq
zqKeMkSg?NozxC6eRDJ!mc=__>Cbza^DhKa=*ybHDD_iO0%Tll>zq+086W?I{cG8BM
zIiY;4r#AOWU-u4(-jJ}dzyE#p`@O}lLN=K_`>DVG{l15`)%QOA{eC;X*3|LPofj7$
z&uQl3=DvLSa`e`$zq5@4mbyPXp0+t|Rd!|SFWag+U(Ohx4|``*_-M!W@A~G8r%HUk
zkvutX=hObM)m!8D&pv(nboRVk>({xKZnL%RjdBhxHJw{gzVJ$RV)yp@-}`He7#L#K
zEc0Egy5r5Qt%na6o?L!2C-2UV%)~^;goFu4EIgAZz1m{9yL5Nr-(RIhPLYu-Hyd02
zOj+y}xN)O%8{gjl4-WpFx_nRWZLzmK+i(5+^=oU+&0nYWuY3J|a#Gm6|KF8$vF+d9
zTFY8~nrt)GPx8vDQ0bYH{Kq9rtG~UO)^^6>^E2J-TZ+$LzkY3V<@Vm+y|=gLTbI3A
z@omc~A1mkdloaR8HL<&INj}!{Kk~9ox@t}I_G51pjIXVY{(f4bXkF{u^9zD^aC0&+
zh(GywT>k3IlBnNz%kAeGs~@a9dic%Fk8I6}2O1h@o7ew6!2Ert&$8F+UI&GRsU_d5
z{XV}>#`4pH=I^cT?j`SPYOAVNm8^^S_;FpVH80!Vg9&p?UY<PlepBV=@MiY^D{o28
zur6PA@x{um@iiZ}N*br_|MBQf>S?<vJ7<}_z4_ol!prH$)<pV8>r7j);K9qw^Dn#Q
zU0wC{SnvP3w_B%|Se4$|5^1XYKzI9>d1kqv4)gP0Uso|<`u-1xiZ_X*6}ukqyMFY@
zmi0#eS~&lkm%b8COk8$u?rt_Vwye3|?^)-(yOX|m&z_WTb3o3vouu~v*Y$^eJr$Q1
zIDU`WXLR-d``EMR^eSGR&Am90@&EgG-~L4GlG<l93Dizlu<P^*i<=7^FaO$7r=_L!
zZvTIO`T9LU>-VSZo>unumSO$B?5lB43+%*yZd>>H_37{HcIC}wU}!j&V6Y})W82pc
z)iKh~PreN4TgSvup!?$1)@a%C6BD1@QU6pdF2um#FsV4WYVM(np$rbT1*PZn+PTBF
zZTtKLYpW~&-X4DYKL$27cMk89-u${p(s)T=P|&9<!TxXW?~h-8*>|SV((?EB)=hfy
zB`dIV=2{kp2iLw-B?n%NjK9zDH0Z7?ub%MZC7Xiod(V0D=<(yffB!C>IAexI>8mSK
zwZp^Yq@<;_3)dE%zn#DT?d#W|13QG({dyz}lMc7>e!3zWCIBjGzB&|a(A3x8y}@99
zXyM8gtFpH4a&ej<q5gI65l_GFLb<-^hgVhq)&G1tU4PGqCX+>r7h9LS`0(|5{Qbh?
zvg<aKm8e)UH2l8&@=Idk#5L{SE9CARe{TNH>C>0X{`q%zT}|7(_v^LjP`28SN5!MJ
z<rvQNd3?P8{iUVdUzRLgYMOP$Lt08wa^}Q|50$tx_Zu5LKgr0@Q1#p#y#ZJDjbGX<
z=gbU4wr0nodpimrUt1f!{BG7yr>h^=mG3vs`~9;jD)$@P*Rr$w+aowdIIeUsH8RCc
zQ(4~G+dJ2;wkj@ep7FYwKF|4{etUD%*vQC8Q*&kY_jkO~W<I{Yyqug9|9$!LMb5VB
z&$B7(&y?HDI6LhV7x#9@^0V{hUpX~8^lAub1c;XY?`xNO?-UdgqLS&8oqubKrh$Qh
zhQ<j?6Jz7xY#E!1fJ@Pv)6OojO*qitZ}-zhO5JbHjqUmI>*Myuq?AhRFg9RdSka$#
zM?E|!2z1;<Wk_gf(w#-F-6F1%rdd~7IEAgs-u!^J;n*a3+FDvza>ei7|MzYCjvYJx
z{r&CzfAe{}*Uz6n*WzCJ`1URah67utJUMje&@|oXu%(wPSH;xS{Q0T>@#DwJzhAG%
z7Alr@9nIQ&D@V)x0V4y$*ArVm=Ehe2PKvTPzy<0m<hifkte@68Gv9&{)Q9-)Q*=j0
zf`MVelRN!oB~wBD2alq6?(2g=or(sP=gU0L70#Q}`We*E@H}@{V$0_zJC@2YFesed
zDQgRgH-<@bcB@&gi)96wW}a$MK2HYJ*qZR<PH)`%9c5FknVA_FCe8V+Y6;3Z43p-}
ze)K{MtY6!<ToLSsa^Ipmt)R2cp4^#o@MCUl&2eT1h85{ww(>}u=f!w=b*)-uXJ>cb
z=ChBFPfziMKR-WTUmLyr^2;w(f0uYpuKM~)b#7r{;r*J=z6Avvwy^U^7?iz<2#@qw
zSHZx*a6M{LcYpu)@874pB_%z&vNAY)UCc|FD=UMSyUSG`xqbWhg@w+b`(UQ&M(^3P
zXG#5+7Z*QWc`6okzOsmcVS(JLw=Y(SJ$6Y<T)0SMD*M-0SG|+wfGW1+%{M=N{v2DS
zDC)XgD`qzr1H&uH+PBT~>wdjl8@=5ttorrZ?W<%HudWL9on?}FVL{`!l9Q8E=huAl
ze0;1Ibfx?DjEjd#rv)z$w%EnRz_4zuih24u8QpcNDk?g0dv=_<06Ir?>-D(m=X1-q
zET63AYc$hm)v8lJl->J$e0;9FEZORBZ*t{*k^aJyDfc&LTzSpIw)a|__d*R=E?9@0
z3(8EJ)4spE>u>k-NfRsgEc5(zUtL^WERNUz`}y41$VkdGE9Cc-;v%lKVYgFt{maT4
zO-fc3ZQJ0JeRyeIody>xlj$Od1rDJrRs|j38*4gGJv=02%Dj2&wwmYO5|NOQ5D|GI
zv#b35J<rK%d;k4<{r2|u^0KtFw5;B<v&~npdc{+wH!%WI`#abMKepRBY0{)lVf9ms
zQ;a$byTx>aL{hJ;2ozTHd2wUo<28|+y}Z4b`_Et3J7>a#3(I_GYX&cS^5n^hjJmoy
zZgIUUufOVTnNu}MhJj&6+N79>h#Q+yPp>Mm@}K(q%Vq!b^(QYa^^PsG<h5Gbw0i;r
zL&GoEy>8Pk7nV$Y4@wOxmgPQ0GO)yYVdWi3NZOzD_k|WTHCL-y?t9D#&JmLx*M}7x
zWd^5KWoYuXR)-~IYa?*)+w+|7%dcGJY;2$m@ZG2A&17Z}%RKeMO0m^vvy!(%a*Ood
zd;6Be?1SXN8Ba?3RE{%-fh!Jcwz*3EuuOP<XD!5iUo{_IG0M5Kqfk>*bJeO}KYrMJ
zK4WZXXn4+1tULAFo13%E^TR|^zr48U+|IXl<>k<6!RIfAGB6bAs_y*pqoTgPK2t?a
z&2O$%>C;nF&pBpaTjS~HcW*<Yb6s6sPR<)&^SdIVqM^CVyLFZy+~~iq36$|)O}y2&
zF3ZqQL`+PpE2#3quF}_Se6p)nWqEjb?63QKZGC)v@bc9vVc>lAwGX`yAG*`t)^=~=
z;kGDiBO@ba<;BbVrh68BQ^_(b28H2{H1y(q-;;cKsaNGYr(a0f^gfcuI#{iL-@kdc
zf_Ly~IYCO_3s1d@X5F}P<K^Y$&!0YJWoOT}oj7q~W@hGGtI|&^wrH=rb?(;FCn8a6
zx1Elf_vQ@~|8K@eL6tUhgQv*8I2!gk$lgAx(E(!AgvqP4O7GkbeOy`O>gqb_*p_e0
zd}lK;GdDLi&2eVuk=Ri4vj}`3@a!2gDt^D+e*MZzB_43Gbj8~A-DGV|&6yU3i)>b{
z(lX4uxX86@QIC{q)}a<oS?e+xn~D$fY^(EjzcrKme9>J#_s))uCad0-Onquoo}K_s
zsca}I_43P-&1q*>8Ev`c7ar;NPMw{B;nm#i=eKulQ8~VKHE0;;dES=aCqoP7LDEj<
zq{q-QQ@%M)5j4;<X-@Q|!V*z%DlN4Hmq8!FBSCqd>%%QUC5lH;-pK{QJB>l7P@mkX
zy4UaF?OmW@p>w{IWk4+e2G4W0l3%h|!$AW}ljc}&dOsOvNjBU%<z_#abwzjl`=GUe
z>|~kmphW&v=iU_)1%3VePft#sJbBV>@y5){%g)>V&hhZ*D1LF6-(E-A<8abO6;;)>
zaeH^=-rj~NrN8h?7$m&8u~Bd93bu0~v#xtg3KmIya$=%w)t3onH8p?i|9$M=S^V6p
zT`zW5NVbZa+P+_}Rtr7evV5_7f8B#d_L!2uuaI(gs#O0vHdfY5L%))DcPw>v*WS7q
zwkE<b<%Ga@j<qqMV0k6}H@`1&Yn1)37mMv`f6cLf@#W>^+uL$i?^&ORSt=i$Bm>UP
z*CQrXzuWn|rlw|<ZQ8D)r>ElfR#~2(Kied8(#e#d(9)}`LXk>i8)#|#WWDL1zc#vI
zvp;Lbu!t^%js+Ega^;W7>i&9BTRcA9{ON4}`_1N)lhv)~yScbz^xn8}<N5r0J7wj?
zfs5U?`rE57zmT;x_S&bEbn%Sb;+;zu9ePy5CI0j0LM3SN9=dRqm+belt7YPo!s9BR
z9+$75V_(1TVunrqi*>QPxwyFUc0Lt@j4a*QQ@L5iK7B*+)C;S^!99c({#kd_r%#!(
zCFA0v7cX8U9&S5%dBqBi&XQ(!{(sNy|F3l2a^CK@j+xoEPaiKsN?(nxN6(*cFL>y*
zH|~8@_p0DrGyd+YtAazh_!$^p6;H~(y6Wn~!|kg}*2V3;b#tC=b=lN~=b|U?P-{LX
z_ux$0>~kJ>85taE3vz3ZH`^37K+>(j$(ORfpFrCgWi@->v`;!OGA+0iTqqi^UDWjC
zV?dEyC_A_`6@K$xQt(mn2Nh`JBEaYJgZX|>qu0#QVh1&A-Yv_Wyx>yN=}w-!?Yv-t
z=}(%TeiUGjU}RwMJolF6hm`cp8qXqd=9-o?i$#6uoRtQ}s~{O{_BP+<(`T<eewn_~
z7F^oTH1ll|;pczn$^<s+`1R8lR1W=r&>54(4;Fa7YuZ9j&Gev6+?w_f4Rv>=s-;R-
zZ<ksAhk@b1+Lzf<6Q)l$ul)4n$&-}D7jJCIyqrG2)=Wj^h^2|1-n-fP`#AZw-Jh3x
zpn);@c;D1xFE1~Ds=9LJ%6aqVowxlCK4xmx={L`Fcf4&oHb39C&}i|3Oy+tsCI*Ip
z`;+D@(olBqdvkGd`<BO#AOHW@Uw>w<_4ZF3(5#{Leb1Lm-gkGEf*KEHZ*F`%BJ7`Y
zV}qmGqgma$p6~3fgTr#|%nDzW=CCj@9PqtbQDUm0;n7{VsQCH0%*@RFmTSMhzRoXg
z<|8%fxs9#u_qVs7Z|Z*gICaO~>dCh5#eK`>CMq*9FnrZLX&JfpTEE?|75?+>LVr!y
zi8RW%u%PhqF<INHD~AhBuBC0Z>_6b<=9ZR{vg6aF@2|z4KF_WAf8Ty;Xv7UZ28IUf
zOaGrqoVWcxr@!BSD)UNMD`#EQ)~qKdCU$mqihuvMaADo_YEIu}Qs-N$Ya*swdhf5!
zKkQ#vztb^PbX(i%MbnrXLESrrfCcxbg1STg^K5ozTvX!Bo%&l@Nok8)PR^Up=k4cD
zoOp3XpmOD`*|S%_o#yTDpMPP&!Tf!-etrwDX6;_{^yE3c6`2{IIriIs&-?jtnKF0y
zpMv=J({j#+KYhL&W<|_w)}YX(ebu|Otatr7rM>>okH`I=pPx6E>J4Q}g*JD*Ph4)g
z+rY?d_wPq?=9?QE7jN0J#krktUHqYc<|gm%F1`5c?aBH1ws~7`-dM)S&>+3CaDGfs
z(4|GL-HR44-r6m(Xwf2-OT2P6Kj#1cv;4_6^xSvPZZ7CJK2Sq$Rp@FPTU%ivp;d2=
z75i@DIQ)CNmZtIgTQz@Nst%rLG_;FjGvj7pcpxTnJM^w#X=(pDtCL<HcV=$NxjgZL
z!+Q4o{L6M$ExM0SJ=nnvZQwoMZQ>rjexc23jla81>puO{6Vi_V^`kv}`g>2?*dtkt
z3=DdGD&M=W^)^52d1bhzynD$M<MVsA{(YKi|EJ)|m(;td91IK}s$WF1PL=$!%eu;B
z@6O~W%VJml|E>7-t7vueU)$Z=%u2J9vqVLY%=H4-Mpu9SmSDes=gqp=v)=hx{eAnd
zXMLT=@AKzG^8IUXt2r9_Hb<Lq^%(v1dY0_U2<k|zUMDrT%K3J|&+w?cd(|e-4|LvP
zR{x}O`=ml>pj6vWlim;cmk#Xr+!0@~!GFU1i>dol#6Y#=y4X0k+V3+seyYE{obKh9
zCNk%Yj>XKt9q%K~U6Vgwt2{Gs{j8?Fhnx2tZr<zsXD`#=9>=<Q-`wN<{gtcVgI&tn
z!di8D|LfZ=)fVq!C&fq1n-x1_YW$?B>HnwC4BzxVV%^Q8wSR>2{bLubPoFT~@WAyK
zuTwvKz4p7}mi*s6Ja%za@%haqRg$GbKSI8}0(s@m)P)*e8}={%v-(cv)|*{kTIWQj
zJr|$)RD8<(iN_CpGHy-%>H1XNh^x!{tm{%y)4PYxX9Vo+snT!u<1V{YX7g&v@q~ch
zs=1EqrAk(9dD~z0dw=oVbM;nNHI%K}ifX~l(HM!)z(2J;pY%^H{w4j(^NP0aW|8S(
zB9=jOziHT}icY&!RGhhU>6#d+Z)J{!KVKR@za^Ts`esq$cjt*R%P(tM&0Q5PIyWmn
zqkq56Rn4nBlcuj&_4wjHe=&EVg#}yQnroHV6x)=3(dd)Q^>N**zwcX!<@c!mVt>)x
zKgG7UOrAbXHS7PgC&~3=fzMUv**lU==e@q@_IqdW&#yD&=FH|`P&oO}%iUI9fA1ge
z-3P?ISf<!~|7_p=_hORn`VIE~R(*b6pSJpJ($**)v)}fsAFn)`wK2;-_gQi7@fl*9
zYkiI@Z2l(nc5B$|t6BCPIfV~rztWU@o@#egkj3`g`z!zchdX|_vpCtQFJwjUV%w|#
zK3`x9zg)jATKZwknm?5$&rQxR^<8?2<JO1xdta^#@0>96XKKoG4!O{K;U8C+*gkLG
z{P(oZ-%VcHy$@e!>*#5%w>fnF{ma12sB_Er^Q=1TJw@w%#XlFV^956{)EVlpEInAi
zb<wMB>*}_~TwS~Ovz6^C$+COJN1a!eW?bFQZ4+Db%%^bcVg1Lyt3vkQxXN#v?{`jm
z)fKBRkDhP-milMy&Q)J)U+-yX6}`4+&m-=cC%GfGi*HGqnpNL;?dRJ1<e*ZSRacCj
zC|&=MU*q=Yns(@7yY&m!ynDZ5l~+UmM3wgLo`!jBbN}qtdaq}BN$dY+`&+laO-Qd-
z`d{g>|7px^yS{6mi+A6W<3B#-O}xnS=kH6u<#b*vE2+xJo!#zUI`{dluyp^W|KfXp
z79W1~@XeO}rw;%86z_lP@$>R88|<qpGTy&iXlhgU@BJN#bAokpuM*?6`1x<I|Mz*r
z-#<*p|Ifc(zwUGR<)1%K?!5VVg~_M&&sJTV`SHV#tG}(>*ME8N@$<*p=%w2}Pu*YF
z`6%)6y&DVxCto<e&C9vppu+zB^u$%~F3F#IBFz~aGnMJ@92MI-&({4cr&kqjC<<Eh
zM=1TlnvbeidH#N_{+Bgt|HnzMgjao5eeU~Y&y{TJd?oP@lRjUa*OM!^ja%ZTp^3!}
z_uEf{pKjf1XI=k-b?^ID-34o}8Rp1|+t1&szj*Dn%$qskFKU^Y-qf$ZR>{2MM`&%L
z^nv%c+4S<bw^!bHwd;wv!3U-7q0brW?bkOQy0mNm(p6e>qgr-d(a)MB)39sRH;b3~
zvY7{;`rp3yN3DFeeY-=W-rsd%t2jVy7Wk}dX~ER<>vk}euYbz6bKSq=Ebtk@r01`+
z)OS8exPSVu*usT%Im_1dFa<*A96!$N7XsZD2^wf|fY0E9Cv+J=T?oi5FKBX%0o?7R
zr<wxS7wg~Me*RQ6a_zR$=6^2)?4L8o>C~G|8UnD2BREvm;>LB}Npp_uI6dphmhB1N
zrK#}w+3xc-Q$Tlog8G;czr1pYe?NW0jw^ru{I>po|G~FFHTze*3<cKk`N+_iqR7Zq
zSF=hx9hRB1vCl5q#m$%Y)&AsMT|Ix>*eR1jJti?T>`?A3jEl3|w~trEH8D5l)t@D^
z&W78cyqU9Y(W1>kFE(sA!CjmC*M8Tk>o>Rm=IWjbnv3j%%|+U(9i1u^e<$zyulY}S
ztbQBK(v4x^V<>p+Ulqorx-JZ??e^rD)|sG*fj@1&vxWYDU0<GK*8l0#rfX|&pPOUp
zZgs!z_u2h_o(eV}Eckh^{N<(XfBrJJ@$5W*^Ye}5#qan3KRC~}I`-4|S;pyUx3?KO
zxBaQSzE0L`_S0XltN+YfsT=(*@&7;Ore^0Qd$X=~ZQ8U6JpXvs@@w7VKb7-A!)Oh+
z=GfK#dOAJ6;`iI{%1Tl<a<(bE*IfcNwR9G)((^o*WA^&1xUlZFoS#+a=Co+<*|WR+
zy^gl_+T=-_BXq3huG^*ZJ#c&8-K{F(($(*$uD`W)lmEFhc9skbSyN|MM=ih1&c;@0
z!S`)z)>Stt{k<ak{mIAe7HPcNQ<)zYGG+gdN1rn@HHE&a+`C(N+(EMH{oZCaKAAnm
z&%g6Zn^nD9`7*w4=eN!0r+I(*`1y17qs|>_zKg!Uz5V%=HfPvs-$nPF`E4)l|KD)x
z{p_hzHG?Pri1__x>5@5BACK<*`LlA;3b+2cFUO?+E6fFj<Lvx>iCd$Zo0{g=6lH~k
zJdWL6w&&X|@7!BkrmAQq`^~l59J%?~bN{z5E-J4MuTR??x&L=w_5FR@ZGSvCe0y7N
z<@>$mr%s(x-P|Ytzh2g=WQynBf4@#&kG=l$!9iwz+b`P}En4*Sw7t=6?I%zB?SAcG
z*-?JK_V<^UZ!#}0ljxmioOb5kmds>N&y&ghwtA=c6+GPY_V)gXhSgtw9KNyfajM_5
zGcz+yr2OZ4O?#Sqf8XORnVa=aI)45&|4E4J#g$y3PV}9-*J@uze_QtdT<4uTnw!#(
zztW$Ob8}Pa?y|S-JUdr=Pk(J)`l{yl+j6f}zklCfz9wd8&BH_GH8nLUb6#GapLK7~
z(a-1qKmPLaa{cey9GpI9XK(*f@aFvFIqJQ()n(obX4=<pTrw^9_BOl!e>Q)*#cx;f
zec$gkeu;wVD%%bnT6Mp8SLNq$(Cl{pxu0tyFSGIQOMh_S#^dAtw%=~7_<leB;lsq)
zw$;D(RQ{i`W?R`?Ey=`>kIH2=bzgowK7Yc}2|kw9-+H#+|9AaoaQ4MTPahnt*V5LO
zHP2gQ<Lm1ix$Dc@>GAWPzkXf*=Eg<!c{4uTOpo{YzcJZerN?iUN#w2cb5Fj%uit%S
z{gWrc!s>m|JB#KX*=?E~c6OfZ`n4>}&)dh(obu(e_4^uy+?i8s_CB9iEgNk8>(y%R
zkkG%c<K5rf*!Z_iI#1=~)m+6=@GRkv-dg!pzy5sI_bj`)xBB|Cv;Tj8I9$K?`@Q3g
zjEz%|-`x0k_i?%E7^%d>MDx2PpV!4&ZxK+|d>eD;&abZ%l|2``+rN3ZW2c+r!N|-K
z^x4txcQ-xN*7du(XvdBhCnnB+x94+SrgvWU%}r<j{rxS|xMu6N)4ptbzXa{+QG2^$
z#WA7BOB54L6chad0~bEod~5ms+TUiJ#r<|xQPo)+BZ`WPw|JJmxZwGEieTEg8Y^q-
z==Il6UzjuJ^1_9QSN(j0Zp|&{yVB==zw$Y**-^owb-gOfXPgC%W)$SxT3_2?{Z?pF
zirW7+o}KR-+1uXT+xz)i^zRVKg`W%^({CR?9-Vz7N3Q&C>Gu;8leP9g+4sBc`<u$s
z-|y$wf4$1WS-jZ2znD);N5{wCKmY2g(znH`3qSn1x#8xT>8}>W&8+K}Gq?SGX7f~Q
z|2Y=#-oAZYqh<JR<8igSMW^N0hGp-sGoL<v`gNPFudYv8zWn3!3u`8CsL1^E-E`uU
zFW{J25nEPvt>6CL)mxE~Gk^Z9oH&tJR`cxk6))~6Ud+3@tN!0lugoV;=G@zsn>}6c
z?y6&F=k2|={=ZY)yN5S6m%g~*n5m*ZKj(^umRZ?}3k$!?+w9o?>BsGDxfjn>te(4m
zef;TZYxn;tTD!%6o=xGG7yfT=m1f-EcX^_+{mI~$QykYuZJikTwO~%*_Vn|4nK^fM
z#06#gT0g0&t)1ImwYz+O;qPy`$NOZj&I_CAnf~HR*oj+PSI;$E_sL~W-j0RGca>(J
z;WJ9!bV)Dy#7;3YUuMua*biNyJ@@K<pY7=>@%PuCeb%bz$&G7kZ+rdUkf^NYBcVL^
z^RvA_e?0cz^W)K-b~&lE%{PzrRIaJ~EEcMEX=m~Ei;IsRJ^FY4(InH^+Ew4*UEh{_
zrb|@*{jIH+6D~;e9P^w!Z;j2rXJ_Mi<^C+sdY=C7&P=z(%dgdaJbFFt%naT9y*W4A
zt>)(4+LGSf+`KeiYIB;cZn2z*h)wOU;#()yMs2;f<KzAHd%sQcTkbd8Z1u9Id!J6b
zcX^p_-H(S4Z;A4M`XnA#v2M*8pS0b{$6qHU-3phiKh*Mnw$<0p4F;2Sk`o^6Y(7VD
z;&hef^Y`mYtm^($#KgqZ)zt+A1k}{jl$2~K4)F6k7wm64b>6(Vz`(-Cz2<(i&3xBi
zKV3D)w))$%v$I8AC2gy|Tv+H_|M@Lw`rz8>iaVE6KAk_OH{;j&eChVzy}fS__^(`j
zk?Tm+0?<&{3NcAZb!n4~DE;gGOFDkP|9|<o{Q5mRs;7r!UtcHt`T72^x1oH`iznv4
zw%UJT)vA`ZYcHeSvaNSnB_Hc~c)0!l@B9C!9e;UwdAJ;C@JdWKYE9vd{q_Ibc%_#F
z-#U5n<fVU4Ci_1-JA3-1Nsp9PA6t+<UxtA}?>Kl8_nFYK9oYfBo_gx)&kr;*Gqc}%
zFRa{u>D<|~rF@|xOINHok+pT&^y%IU`Z_u$oGX2OjaSwxB=qWp2@~r6{#qNq|DLN@
z(E7(VmJAH*IAeF0t$xh6^Vh;-B6H@=)BEYOd+tV?w)S@KeixJ67dr|cgYM@0eAayW
zlqo$DhL3)|UVlCA(uPFm+?Eq3PW1Hfgm?b=mK_cnj(RZ5vuJDd{<_-PX1Vujzu#T7
zXi?x|x09C{nb~5Fl)S3o`SIOg=AYU<y{V#NnF0CYF0mQ{D+F0r#fD8=by@S&(p~r2
zR;eiN^}cibaN6dTtEvQ}y?Z_NjEszoje~zrGpsyw>eM8;=NG=;udjc1XXmGB|Ni}}
z{q^PMzS`X?mXeCPx@&{gfAfCPdOv^l(WyHh9n9J)Ha)B$XhZhDrp0>T!N#k8p<mO_
zJ^B5MP2icHdrxue;xeJfU0vtA7S4_KzPr9+h2hE8wzgwOj;x8@UH0L@!A}~w&liUB
z|JLnayzk$yY|h-LPoLi2mizkt{{8KL|D9u=rXOE-J9qoj=g-yE)apJQWY-H)f9J%+
zP!NCc;Ich?-W)nq6LwT}`Knb{UkPzKt~d8usQ;{WE6;4p;<T8UJ58+IOiWCV9>0xW
zV4Zbk1*foD$(tL6udb{#PCFxEk}=_E(#wmBkJo;`tM07&`R&ck?vv)U|DBx*9+Q8q
z@{a4=WM+mP>T~_%#l%il?T~qOFz)TGNip4Gy3_RI<94Qhd~`HwvFBtp?`b-g`N5aZ
z&N4kMDju|agFhbw!xj7MN4A$rezAg1c5YvCT~ky{`Y5=k{r#{gKX`0$-50ChrpLC{
z9M%Dk8iY=s6E{^Led8ohyWaEMU5S!!N1rfggU1Zz_nxZ@&dJjR4`Alac=F|z9c*rC
z_r<<-VFl0ue*Ke~zn_4o2|bGP+|NTTy5`xp7&2E-$J3V$8}xtIo*fPz@ywk(r>tZu
zsPWpM^1SRvA9!JC@okmm&$}Q@|L5<VKnoT?YZvybEPoD~VOY_xxO`gT@qYRK?(Wm)
z&+~I}b@li6_w|+Wfo^1dc({G*Hj`)P=ilF+f4}ncGtl)C4<A0fbaQL=bxGs29VeW!
z$`w~WxE0F4Q1Dj8vNP#$JHNb5#fMi{S1<RU|L<P)drNjz6_t!$=XO5ZFBhEmR(-uR
z@7S?pelv}ZJ{6m!Eyuv%P#g02;?+5G<}kDK@yJ*N-1?;P_RgI<pWUN3CLLYi*xci`
z*!y^>EqLPiYe4VsCzmc?R#s9fv6{Q(siBQcOqG+9lU9FlT-?62v$K|ZPq(Vx_v2Bw
zZuGVpKFdBnK3@Lv($UaIs}{WoX$6JMgDB6U(up%>+}MzKc*YEgw=Xv&9zND1nQS1j
zE$^;X-klw#udlJPvtPGsy%4bf^xhV=$@|+MyQ#1(j>|s0G(d!lCCjDJp;51PQg=_!
znKNg$fSTNXa+^18TC)6<1!yXGf}*q5TJFi$UfkTgyk`z{#pr!Iq~ZMv3%{w>(E+Qr
zJ`A$A7ionKWom_lu6%rNoz(fs+`PQKot=@p%hqmr8h9&|Z*5vi%9}eogRLj}DWCKQ
zEk7_YHQgGyIZba$L@9V;^Q&*JdwBY}Ig;Yy+Y=5pH8eE*_)+l^vD850?NsgXZ}09}
zgVr$oJFUNePyPS8&`@4BXD6qoV)41zDwbOhor(2eU^rkp`AO84jEyxvKb^Ae7S}J^
zcDzqEI<-dk?M}7kxKvQlx+48bc8cX!D^L$r;pEQTNssHGL+m`@nHP_uJg@cP+R#D%
zJ|3&9XP^^YeP2NB9R`o0yi*Hc6HnlB03<Z~$(L0#LDRPkljcOLS%MeVfYPZq+rDzh
z<bml)%XP6^Z*mlaGhN;ntKXBnrY(K~=1ueLTOS8rkMKSD!tLo(q$e_fMh<^pd@bS*
zpW2F_bh&R`l!hfZCrZA3k;VEOl11NU{C@Id7CQq&z<MD+-NSwI_HyFl)925Z7ZDMW
zmzS57eT%tpS`1@Kwsh{(C!ma0kgK{=(m0Jr-md1ugM+KX*Uz)7{Z;*b?{k?c6DBM$
z<&(Aga>1D&w65S5e2%ucW&e#EH)iMU($vyA6*?{09W)&9)wkC@ytt@{PsYNa;DJNt
z>BU=$i;K_8=N|16ZD!*&lIpz_w>|Ifg@w+cp}d@&FR!n^|Lg1P*mO(YTcZ4+VS@r)
zm7QO{eCg=mnCqvWTgk)EKYgCo<0;dpuaDfEc4C6!x#=c3Hv+QVA;b0Oie7!~+dbjK
z)zzR?5EuW?6IWML^D61??A-Z6v!(4<>^oJHnSY*cyfN`%O^xl=<pr`KEzrd4J^zW4
zva+$Uv94IR-}1@F*R0Wbxzgy|^7(bI?kFzbs{*QXmix)=zh@ubJ!g*7>!*M8LNvjP
z4!F)uyK!G{yGJ$Gbu4pT6(y!7CMIfXX>V_By)?}|v%RGyL{3pzIr;gyxwkq?W-&6e
z>BR55leP8PvuA2*YWM1Xztx)(VF@m}t+&d?&PA<39xqLYuR2(~C461X&E4hi7c5YC
z{-c?l|K8^G^SRsas=alWuiaAk_?X_7IpDeAm|)L!uH9m%r|Yl3v$^79QhN298yiE9
zT?bF-7M*=+Qjng&z!300#`^xX)cs{sVI_3Q^LISpJO!GInid>bvg#0MeMy7L^J!nI
zwl={gRwYYds}Q0uy%vGiGv>ZUa8aWdSGl0V+kJ|xVCGNzQUzU}Fk8(MRK+o<SemC^
z&;+}A!jn6b;*QU41Xl~bljr=kfiKrN0?mx;-rV1P3hJOf9$3cgg66>6YL<J05}$#R
zb3p$iUu=0Iw(`ZU($`{oF&Ue0invB@O7V<{xUr}5v)!K$hd+EMkh}%0BCagTau44s
zx$FZ2!-9G0*sF-Qx3|CVHNRK!{cgFhTCk&I<Hd|Czmk)am;20ow5WU4=JyRI(K&3k
zpozdM?51+DXHTBAEO>C>KqK=~U1)PIc2~(u<$fC_L%&=9{{5RbZ(g22)Ol4)zp2a&
z3}0QaR~uUvy7$ZVc6CV^Cb<+A7XJVD_jsS|YS~SH9(C()%ekq<ng8d<$JkvZg)3c6
zU%d5PcPQ!WvNsG23+mK&-ip+jcDS8iKXTKOJ$q`NoS4WfZPwG<D{Gc>V}@Ze58L5u
zYom|%N^j4*yX(P&2e+0BLsva~x-NCl(e9Ikz=LEiwbMHV(qW4gE~t7JO`JG!=FFLs
zZj@NfwMk1&_3STR;j*2PnN33W*SEL3%iqU&7Tr1+c5!pMzoaE(UE9|E$n#kjZe8Qr
zY%|a6^ml{VHw$8)KR+I+0ABXb!nGt2GL2>9uZNPOtohegS)7}5dsAxn*|gOwR{Z#O
zJOB2!T<y7&{%l#u&M)WV>zjLR%}npLBK7jkHew>vH$P-zX!x~o+v3&6>F0X7yQ4QG
zI662u)YR<xf><80=k>bXb$>n{w|>7TIP~i5{Cz*~RllFQP=EiQPyhb@UV1#iKt)Bx
zqWt1cpGn46lVVswGrnJ&lQzemo&7ZK<l@z=N1qDE-!H1)ANF^*>9P-cO^^A&4bw)Z
zx$lK!V%OH!?B(q`1RB%|sE={>^a~ZK&u4}%=869F-Eb4A1eoyTj>*Z5P?qUQ$@4H#
z<CBtHH$f{fJc{0F95@~kl4TaXMnsMQv?8wOn<;;*s!Rf;F7Ym^ISW|}ls#$l`^na)
zL6;ggs621;^t-JNE~8Z}%Y`4j_9$`%SHvoo<&PgP4HsRy;K?1koqvxP_b;8B3Ys`o
zu`G{>a{c)En)UjMh+j_+KK*Zd$c=%4;m(wQQPBzY@sDpR{kGfrD5&_{%}txQ-s!S4
zFx;71wN`h-{_P776x#3Ha@kd`uljW6LC_qk%JWxDHNC8TFQ!e3UGa6vzdH=z8qK6W
ze{tEoIVzTOSKXLAC;7PyxHbB8@|^yKJI?&Ox_aeJ*NeP=YHhw|+N<w8G^wk;Zr}Xo
zwG0dgVy~1PJ^b<U@yCxIefs>lxvA;V<Hw5^FV^Od-JW;%P%C$?+3ZCc-qUnAxw$t-
z=xk0ue{WCa<}W>RwpA}KEL=C^NzM7%#Bi^&hhK9KiG~)wn|!;_;`MFjnQIp@RhRcB
zon~NQcsKV++L;-KH9tNaY-V2{x3}uomzVGNexFx-VPEa<dlip+%kS4-Pcae|5s~Qq
zR<R}R?5rnGp72VWdHm?^?cMuw+3ZD&V)TT5R^Q&g;dMw@V&F>4Q%_cF$=#Pfb?MWK
zg_A3dUL+LRfl7xRty2B#o;`UYV^NUs;6Nj&&UpUp8F)p>mx=Cj6D88myMapwxxT$6
z&h31mp{6P-OXBy}y}rJ_{2=SKeN~~{xq)i?+Y<K)y*wu}H9B`&bKkkcCo6^CY?)~O
z&f@FG`bjsu7#JF|R~62Wsj8}SacS{eK6#rByd!vVvHRjhi`;r70%KzC?63d7G5NSw
zmy$B5qLo$zFOoXUDjxCs(7NW6-!5D`@nm)DwkwxiTaSve9u-|H&HlGUD}J8WiOmsf
z<7<i+Em-oXPkJ_+Rh;T6EuDF6vbT8|7z$phgj;tXE&B1{p{n<^DbuI-%UA|6#pL9?
zarIG$tw@RgxpH}b?f1l@G{+75(?2g;cu;ZQr!P63KYcnQrRrs`{9DNy9bDwKYfJZ?
zT8r0f9&24cyfXd$tD8Pjkvos}@BedkMzz(~*Y{d{pBssCK(k(KlZv>c<jk2fH9LKm
zUp|=}7B=mRMY~stv_V3{#fACz_f>y?H&sPldCAhHrLV4>JiO8S{LcDyVwRSzVXNP6
znx<~OdqGkE)wEzyS2^jnUndl1pMCZ`*P=%0yH8?d#fEa1hV+bv>*tsy&9|B6{`l51
zJy86`^PMk$KY6$I@RO~l|5q<rb7#{dd;8KZz95m`vOfQIYp1^Mmke$zH+^wlcKJGk
z=r2~G(p}ve0^r^<6KvuhPl<PAL04B-{{Fw)a&K?Dq<J&%=clJ(t4+<#%?%Ade!HDt
zel&EkMqOX<Q>mG6v^|u<4;$PMj%;oBf4V(eO2;;LHk+*1Iqmfu-q_5!yLIc!Wo3e%
z%RhbQI;C>B_OJ7-{r!qxOD-;aQp5lIdu?dVud5rAGt>9qo4m~TPfp>_C$6{cZhkpk
zzEf;kNX_TuU01((M{T{C^9R(L^%l;_k~AxRcINy2`go?9Hs@xUdRMviN^Q-*Z<h&L
zCL;9p-JZ|qZrr#rO*i^p_4~b-EGs@dSg~To?Y!M@_x*lX{pF&&w0Yi}S*PFB>z(|W
z<uBd(Q_kN$Iw~)7wdzi_gRV=TeZ8+beag(;$6f9S2<x59KE7~GF1u0J=`)Mjw|@U@
z_9s2Pt7qrK-@%uJ1s`oLyUpoYcWLvZdiV1p)AIlPyK=IJNq5WMpFjU?zb5B%XX2v0
z(|f)hV&A>w^31pAM5fmNx_a@H`9|yDh-p*fgDTtBw%9W;1kAm4ZgTd;MMpn9J+1v+
zCvMM=7>1Cm%Vo6qLAw?n6c;ku9Sh<AZOZ$6(w*}Y{k)3|`;O~xn>*#mH9f0{^}(rU
z-t(n-UC9=DsBXJ=U3biW+sI9`RCea&`qb`nQ?1$ZyWW0@X}-jU)cjxa*5-G<27mi4
z&2Rtpz}NV<es}9_%uNmiZ;CqpOmX7Eeed)CXlg#~S+Z5_VO{y18(Y>K`t+-7?<8gZ
zxo4_B{nK-6_A|Qk`ThGT->Zru#AhxzbF%+<vDn&M_t!^Xc`$pnW|z{-fTD*BpX_OW
zpYi&A@_xR>hjJ$F%)M%{qV~(qxyve9Q$Ou9-_}22=Jl!|fALD`QboqNTfs9u&fUCp
zfkFRyV8ZIFYLyo)?HCvexOdGoPLDgfU0+jk|C-;kYiez~yI0qxAKsU2nYp~X?Q8Z@
z*6E+PPG75)6uQp#WkdY&2X9y2|Ca3LSa?+4%H+kRTXnOiF1pl}FJtSRmwRzbW4+6U
z?I|ng+NVyRGVA!g%YmP+`7i%eE_-g0duXWIo!gox&Szg<7qa^7<Iii4tBU){RNcL9
zzeLuq)a}#dS^0iEf1FDi))!trcja1dv&utRn~Cb0xz``&oGdU}*}`9b`p=IlNwfF9
zudgV5iTHKX-0rse&d5oTtw*(jqqn_0@k;l&aZz`<`rLPSl(rm7s!shmFaLXb-ERBC
z*S+uS7(ECm`sXeG{@*u;WlQ$<optW5n)}4&WYhoKlf}dyh>E@|-?pOW<1FU?zrOot
zS{^lW?Ckf{{JCD|w(>_4r6bE7JNlRG`v1mf=J%KT-WaQ{m133pVpVza`0Pn$HPdAt
zz0c(OG_ADA<m(yt|DKojsUKbtt{b*`$&Dkj%Tq3H*;BD>#h=sp{%YxBCT2e~U;oUw
zHS_;lzpo!nSbpBrw=#@gbDKX+EnTebhh%A=;5m_Lxwq$MURcR!AFrvSZ#k{%n#hx-
z!J+PHTfN?<m}UuvonB+)w_*SEZ%4C@UW9}t&b+Cm9U$$P^zLMjQ@wois(Gi^{A^7<
zx-@O&CgUroW_>q$HAmTF&on`s-u*EPV<LhSo#!fhJkizMY;nHlN}A8IC1F;ULDSAz
z?)#=^c6?#Y_TQ|5Z~X;U2x<th?z;0t`SA1S{JXpFtB1#X?wh#d!Je5OhYfz)?JT=^
z@SNZ+Gu}!5-`^Pu-nuNEbjbequNm{VFLd8sP$?z$;_lAW87wPj-*Pu8+GDmYeDm}B
z_e;0!NILW2Tb$cpc`LIYuiCF{y+7x}$1DH8o|E9z<G*(=?c%Gy$1k7X*3Z|scjwF$
zR!$lH+E2|#vwj!PpSHa`U+B&IoqzVbf0sQy)&GzB`}a!kzyA4c9seg|yGz%xhjstI
zKR;*09A7v4kMpIMU*;rv)?MFj=6Pw>=k;@|<|+vmKRGaCZu@3?AD>?jPrPha|E$t`
zw=((ic{BOhTc1>C%G*u7zczP=%8dGTmI{miPMH)Rl(uhWZS#A+G_|>>-e1shDOz<z
zf9CD$;cwo`3D27uUSza*f#;6-Ec%l1VxM2zzMQ15%D?x=NB+CFW~6-n^)FyrkG}K%
zTa&*XKgYXW{>-T}y3>wq`+B@bZ|$K&&3pgv)(-vDdqn(Xaqas4Ni%l;Z~1#pKYPEW
zCg;}BkO%eU%b(5D{ahgP=G|@6S6^-haV}2lw!OYRU#uv$JHWGa)3Ggrd2jD{Tsw2U
z`qGy7XQnb}x&HhZv2KmP>c_LD&bD@C`zdAq-g|mM=K6%m3#4zGPgr`RPGR$oGdjw5
zZrC~9-mY~q^4{XokOe&xq64=5b#N=ITiH|KeEY++UM5vduhgXum)>2}bK?5)cj1}E
zE7Mg~<L@84qGzR|`Si@X`I}T7w`E8a)Xpw=IsN1J`6o<Yh2GS%+Qu=}UTBHB>S_b4
zOZ$tpgDWO{?>}DjP44u>8XaeAQ~s$vyT51j`KX_IqP==i;g0=lWGdrNc5f0qbxbo~
zOMjw^oX`VJf7Sb^n@&WZs5zB$`qaeSHwQXnJYU^&+k0lx8XwJ>Hoj-|a)ci0+Y0Si
z`l5aE=hUTJ^MtM}D=cs<-1%kB35^b(kC~TMG>oo1kGK_C8GrLYlpE_Qc~P-$U#7h!
zY(J|{1>by?;_G$(=A^D;iTl<rYEt>=T{HcTj%4_!+LDw5FO8SF2c1iKCVIMQONNBR
zi*%cLaSF;6H*8YoJ?-a;RGPWq%v8-A(QXs=Gp1~|pH{YP$sMJ729tiC3A`>|I)(NZ
zu5XT9QlBy--_7r1XV2zzuG6V(DO^>1wNC5(SIIi<E!Fz_={()3%RgP)l<3_*zu$40
zW<CFjNvGl?eGmP8>YLj1X}Mp<g7C{6^^u~V#Jj(E_@**v2t8E4J!6l`*OI`7e#fxs
zA|7=&{8PoA&Cy+3!<X&5arZKlxXM5Ay^AWYT!{bsL)@@d-`_bi()H>;uk%x+o*(@A
z|5X0D4U1x49MR8dy^<<dcX$1j#HF!2U;fXU`=?4qUY?UHb!&Y>`2G0D+%|dzf4Jw=
zo$apqDek!Q!1ui@s}G$&zj?)mHSdHkt?W9&Y@grEow{#zHPgST`^&aQ?XEwScTwZQ
zPHhi6t!;0-_wUcwex5f~^)=tA=cnX%n-sm%uF8IU(9_wvmHl^yZTIyz)BQO-i*B*$
z23Mrs<X6tiR{rTA{qXHp_9us{U&XKEFL25ExupJI^W6FjdCNWZ+HYsPtp0DeC%69C
zl7-i|W+t7V^2t;9|G{+~0`EPYt$$a%Ol|2Gnk-bljOTB1H>2&W6W&jlKRr#YPC4_@
z*~-nFV}irym*MWJZ#^$f`tjoJ%IVuHlArGT)3oW~-{|kJL^PGx+$(z2o$qJT_d(in
z!`zxxCy(ELw3YqRrtV)c@}^I&J)3k`rS=xT_HT)lo2lpg)5P{{|F@y$kN2(J`{P$%
zU|9e4zUunhWkL5so;m(oI#=&sMewAWIo?uoMc$uhym-)S9ds?<J~Arp<wd(k@8+FV
zaaeP!Cg#x6nyh>G7N6{WD|Mpl?vKBkKX**sQSiLi_mJ;D`L*^cmTr>*&ihR?n*Y21
zx!OCAi93V^-{=Z%a9nYI+1!=YeRHPGU-3Gs<?f}O3w3r(W7^7~F6gNAAkTftWT}%P
zDUW7<U*`GF@I`26{M*IO-(=4IRMd>-5)pgxwVjW*#H#dmzvQPx{jHM%Dq>F?oYWBF
zI{nuA^Os3gsuAxkrc8ar(K;z(_ZBnHxQ*(2ihi%Nh?MU2sr%jc?8L8$f=<jfsvA93
zCe563MdR`m5shNilb+s-jC?s$HtBjcOs@P~FlUx#w|=FQnaa<flTGz62AkPOelzYf
zR!e2OWyX2VGPp?P>zb?oSXJaUWlZW<o#WYY<(tfDZ<UGip0<mR#(SCtKCDx}bl&UK
z#{Zqmf}_p2CcJfVD|ln{Wx|rHYaAV-`~t(`I=^vyZDWboZ*Ey@bUbq2y?IuZ;xqUC
z*}5Qi%cnkGr`pMWPp3|al(`(DqU%{WH@-mqv(9^MQB5t=?ENaztv@Zd-E(^Ty-UR)
zGJ<o~ttRV#0-q+$oIYd4+`pQar}V1t-*BgL)e4sKpO4*{HXi*r+wocOw#G|E-P;~G
zEn1>^!F$<C-RWUWzx5|?PCa*jv(fWOXHIFK>s6TDb*6J$+LlbOH8#;PdXsI<eVhH_
z9^F};^?Ah?@0Gun9baExcx#pH@@Ln>{(GMfJN#oR`yBh)oAY$PO-)^$cuy~9-s;-5
zXUh_~BQEn?w@DV?;gl6|W7hMx<sw`7v^VQrcCS^M|Mgt0?R5XU>tj_<#!B7#UK{%E
zVqSSrCCkf;eL`7UXN0&*rn*nypLdG=>yzRry96!yC6g1L#An85XYRcDG4bc=zR;gr
zxIY<NJ$JENs9IwoysEZ!zUEZ_lIK4Q(z-(z#m#u!uu|=N&Po>d=O#<7jLuGA@PBTy
zwLj(geC1mgJ%bl)FShIU);^`RW|Hfi%Tpv&=AS(`cY)FEbgt9NPBn8_Cu#nucs2L(
z6#tCQ$lf>imoBqNk6!kE&a$Ifz9+RNu{^LjGBZ9xZT=}<r<yt1|3lIi)<m7&WRV^%
zwzhD`{A~(Gw}sUH)SQ!jb@ke|C3BVu{yR5y^1R?DCs>{@i;PS3Jg3!T^wTQbudJ?f
z&&n?um#0kCTp7;f=&-bT|4!DW7kU3|-F5oZln>9}=N7Ch&|Gmut<(M1sfjnI{n5?W
z>R#p>{LG7KJBxen(-S$Te*|4q6Rf*svQ)R;%)_Q=9*btNYWCs6E78ky(~QD5-SjZJ
zwoJ2l>dfdnDu?2uEsbtZ(o79Ked=PD#zL<{GtW3Ln7>>^!}xQKSJ}cNcb0)n>h{u}
zWX%24_v!pcJC^tR1jMOczQPxsy;=9OjN~ir%TsQivkR`W+VAqO?!q>=-+3?3IL-B&
zD5troC&7Qh&ZE3dwOe|9w=q@*S58sA8unx6p-odRyDI*hx9RDLJEw9^uhP)b%a?h$
zeyxn=$CYQ8;`5u&>=X&Swk^liD6(?Z-vEzW(=u<}H#y^9cOhk4>a;h}`4hJP3BLR7
zoa3D*ht_h3BzLX-$ZA^pzf5Y~=i@h9_m=l2e%I1H)Ov3JlBJg|TTAEn{h9UU<1QiV
zCmuzA`W`!Th;&FbG98TNF5v`k4Pp=n4=yQy_We9Kwd+*5;>sGU{lE9If|uVhu`Y55
zPhGdJXc9Nyx4n1r1CI-{6>besfK5)>eGYU2O@Dv}fI!nQ3}AC`FCko~P+J?j;qmeQ
z<42D^eg2%CmG$WH<L>V6!EaV8VcqI;0<@XA_Sct9n>M-iO6~pesC(hUg+^&x=k7=X
z4dzsSezrDp^Rm*{*F;WSJ&`rvy8PX?+}k#`w$|nE{@f`(ANpIn?|yao>H7b_?_ZCr
zKAW~Va_zN`kB{FkyPYfYV%22RKkw`RTbr7O{@xmP`PX{(sh7^qvD_Rtt>Dp-&ia3!
z=ck{ar^}dhu!;5ionrpkU$6dRnZ%%OFLbz_|Ni#;`G5AkzP$W={J&4)KQ(3<rFQ-4
zSsTB9U;O^MPtqU$_+7gvy1D-UztGiTGtWMAY-aPkvdm%KvsUpq0|}n|eLt7|kpYce
z96!GNR(#=~d%LxsEPuT3_q*sV85fiLZLe+3zHXR&tVhoF*T>`X%N@c&>t+t~+wUoS
ze5{d~J*&R*+TZ2J_G*RN!v>)oy3}(kr<CR8>COHcs#t#kw0SSP9K2`A_tTu^%hR{#
z-CdG?V?*L3&Lx4l>g#$wefpF>zqagHk7U=PD<RxmC8DCDqMqlb^^2`_NK8z;`mgKp
z_j_0WXoOyEYGTSfkz7$x5f>-Ny6e@G@1ZFvDQ^!hsQaUF_59-1FJHbC6cn_Y>v!vu
zhJE-YVIiSI(`rQ#n>T{G+jyn3<_3wpJb(WD`fb5M3a{UCRlMDL{oTIb?~e6KTi4fU
zOz^fWeKlpxEAx95$-lq7-M4R_(91o0_MH1Kn!fqwkG<ug9*63_UJXCqEB*ZOW95y%
z&zj#~^Ub(}X=j4LiftNs;hMHrk52t~r}+HI^*h<+DiR(a>s`ZpePi|aceTI2*?v4C
zyoPIfs@ZJSGh4H-=bf6OS^e#eq;XnLOMY0lx2VUZ+fA(8>-PWqHP^b_Z<dLsqGID!
zrb&0+3xNlrGB-x3_?}J<3k!Q1yJp9yM~@#vw}FI)E)~nn%#5nf%Uk!yQd&eLBv<|Q
zTdp7fe!uURwZ67JKRz=(CFRfC{QBw-2iY|zcxT?&urO}@^}eq$<#$UD9y}Nq7x(;s
z*XEl!p!nyLv(d<oPMWjj>BZZ(Z(qJVnQ5mh#B(cuRnCja$jI>VIdf}kHfSCqjsIKd
z7nDsRpFkTymM&dtUG`?ex8w5lHOFPkuUzTWPWbZTV)VA0n@=t*aBSXwzpnbpiHRa7
zmY!I@Ue2~E=kBhnhYLMp{rvn&O1}Ku|LDiw@~tQM`~HZk)C+q4esOW}a{u{xx3*}q
z7Ih~CeD@2FGjZLNzIV;cKNd%i9-V7jZKj~0U}v|l^7FHt<KeDBL6;6RGCyrTe)_cc
zJU3TY&n36FW?%1-G@kQ)GY2>KWXG#zkGx)8UVeU&Yj@Q4Jm1Ecvnzv_FY}u_YySN8
z*I&!m|M?i5zjrGnKSbI6|MU51w|MsSB|b9@7RK+d6M3;}wr%ydHeP9!2zGXMc2?Hf
zk4MEz^}DJ=SKU*yWMF8h>Id(`1s6g{i<?2iwG5zHO3317a6whzUlqpKkR34JuGXzb
zVq@0TRa>@fiQ8Ls^!V}pzu)cd?Cg}U`>`-?{q*Dfc0V3$K5zH=%a@c`#)8y0lbH*8
ze|<Wwf4}PW+W&u^+qd(}PrG1N^u(k2;D&;ShlJJr_Ix^}t-tSwk|AHi>*V<|4cS+k
z`RybG1r>Ym?X8x#sR#(Y`s2qB`@b*!Ute20Ipq4fSnDuBhU>@eEE%qAfDVD$vv+TI
zclT03QPHc5-TSXxxgx0SwxJH>`U7)ozFrOAUH*RG%Vo2LgoGlbK})wEm=zTlgO&tX
z7C+nb;Sl$1v)oA`$E_Ga%ecQA)c*QnSNrQu)$6qf4<4NKT;=N1r%yLVG3>B7nznhP
z7-(uh5Ij2#4i`k&fixqZ1_qji2U*6zuw&9c``0=vdbm>aQlKZ5rRJsNCuMON8WMHd
zv!R6{${kpHBct<gn~BujUoY@Yh1vM<@1;i#N?x0lcwhJa6DHm$tlh~N?WMc3@Z0Nh
zjUcm^0cDStIqTUeRj#vn{#bBs?MaWehwUj{hxE_siA%aQb(ej4JpbU~PgcK6r_BAM
zXw)?EU|Y&!Z3($s>WP~!ehL1UceO^UM(*#_zjj`0mR^}8*nDSml=8`xEx$f@=UJXR
zut_I%LW<z&HJa0yB_62hzt>ePh+Aj-u`twZv+Kk8_x9V`*Vg{Kef#_J=7kHC<e&Rq
z^?CN#@%^8qu)MV6kFRZ04D86@n$N@ZJm<g$7mbO*J$p5Keks1QH#{`sLKxFh9>Whz
z+xNH$DBUV_+Hs%D`kZL_FNxp>yZb~Y)wNoMyl@FHxaoF_Q_UyWB&bJYN$czhR!al7
z6q~HQaIE!0U2oYDO;i3UeCCtg-WN`Ndr`;vtkOemQ7ze6r|njnZ`3<WKGn??X}3ys
zQdh3EI_jowrpFSZm{Vds+hgBJE1$EQFaEo7cjo(`aE*DhcvH$d_pZEWu<>nApyNKR
z+&TF(6r(5FU1%ws_DRxvf0VLs$@W>+lFocf7j$wN_u7PH`go}(+iInHskYcGytMn}
zt4k9$c)f7T)M)G8667`6>#5vQorNJPQ%}kHOHT9@{;u(qbE(zJkgpY|LcCTg%nj0U
z-1cGR+bQ$HCTHdv_di$HWAtDB>RMnv!#?%1YqV;O=9ymIwBqiac}M?x{86Zu2$~`I
zN_*1gX~%sNm#loZtZmBf#RhD**gt7Z>dKfpO?~GxpYNv^YgRf1H5LZVyAV}yOTS<B
zY2wnqk)IFPF{sbo<lpjAu=_FBn%BnurPH>jn{B)6ayz7AQ?_Ob+lh4r*8>CAPMo-Q
zg87EeO%rYMv=4oCQA+;Z(%?Ds-qjF=zQ`@Rmapd6Im2y2o#6GWZ+@w#-?Es$rgOP^
zHrIihoz69%ua^bgK0f8~0>(^7C0%=Yle5$0mDL{YnrnXiR>JE^mpr7ba+sAnx+?fz
zT|N4CPu8o#IK9=oe??UDEa80oJNZ+}Oc~9U$}_)g=s$K~qMZA&{Hj{xNU_(-wo5J~
zILws!uwkv(8}H?+){!=oSSPeUj*-v}KkE2=MZ@NX<I*oaS9o+fbTtMv?|Aa|%9mF)
zc5D038m^p>RVvwQ@wESpq3eW;hQYBW&o>uEtvUYlnh5KOmX80|ql9~PetUIHiulpb
zzxj>EMX3Y9M;4v_`uRj&_EdR;-OD4&oh;>Qer*#lY8IJ#U$v!R#SGb#v8Nf1mOrwq
z5oZXw!&<ZY+qNYfm01%s)jK}Ut^Hr4<5JMrV&uP8B4hDF)?~xkM^ma3WV5@NL<CHx
zRsNW;XqMv2a<jtftaIJ37tN8&6iWVZNP~ao7Y~-!FsYAsbE-vJj2Kgo-pGsG`(=H}
z1sB0+c`=ux#!VWBxiWL-u`N=(ytz3;<IhY-6Oq4n6n0&IQzyWCa~`kDerFEbj<!kW
z?}Pp`ca;_V*rJi&pr2wb=V~isw>D+P1CC<R&9&NHWd#zaYIwSse3SJm9#+T+eBH7A
z`Xcw{727lgPgbe49lAX;WOwM-P04>I9Xzd_zNNPQi;AL$M70@{{+5m3{{8Y^Hq+t5
zD~G#YY!8n`1u`zT{9!M`5X$y}W!k(wkrUpOPOWX2e@#Z{o@)8}X--~CHZ;GzzWF7?
zl!t%zMOiM2xGy%ncd_`@B8QN;KbL0pES~=HqOYMukx%jVl%U(uynUW_tM69WM&CKt
zE#ACP#ioAiic{I<_ey$-Gpc1wHEjdU;}(mDUOQW~;M3KmYwzCTjSE}7Nz>-=(c0`=
z=hj*VJ2+47FV~m8drL!Wl7i-xc&m?^+m-WAEWE|iogd#+eQZj^9ixhkbAzv}_@mt-
zzK7+OO^HC??LY6*$|@f}(^p@r9J5B}>akNoj%(K3IGT0ujKYJwqB-W}Q}=$^!XK~x
zIW(~P+p+px{J&cnn*z9I_OrD;nQHxD@7IO9O9OW-*|G9nO_|Rry<aTt`?R|{Ugh1<
zdpCQLpKAx#k!_9a;U(`(BhtC&Pd^vyxb2-EqawrKPrDEKPI2A7ZRMWC3B9X*a}o|L
zJ+rCIKRowK<K?$U-rVo2fA{NyU#>LgVg(_cJ!ZEgf~>98<~?0E<NU<(Da&5z>BvdH
z4o|P=Z{tz<GmDFVj^T`w?-K%C&&1W7Ke+kOC6%&Cu70;NU#Dc{b6gkrrf1m9vBc*>
zgJZ1d&j%Y6EOu{Nm~L{+CU#4=MoxXNPSk}zYd-jGi%1OZTeJ9m-2T<I%v{HBoJ)P7
zV{!Z8lWpNUJe;auT&%U8@aGY~!4!{-?<(c-0e8YSO9}M)UA+ENBvx&s9b5Pr#*nXJ
zhg2-~_8D?mS^8F7TC}UO$5rH)kJzs#(U0!NHXp8L4*4JA+kHbQx@P;zV=HecOk27=
z@|s;_%_f&f)4m-aY#gin?s^3CF0MXvBVyIvuWLfSt-12=)c)ij9}d?)oO*37w)&O0
zqvj2b%#iOZyBd+3f7?vp-@f>TwUZe-pLMHvIZsGDeQS|xS6b)xx)t2b8#7y1>+Gy5
zoTX%6r_x`x<Vbe-nga<IO7E9EF8&@+uC95{y}u&jf5-8a{|?_vdi&SvtJ?WayY|4o
z;zz#Ww-k(`CRJa4YQ2BL-QJw0j%PFVSE+JLo#L1E)Xikk<OOF9mMzVZk2J5n%JzQw
z`kv(rl@CcOt^Ah$=M0mGOQF#3^hHgn<)!}{b{$^zn~z0yYPai}xgqQ2Vxz9qUOl<&
z?qk!nI^l@|hE0F>g@!&n<kgnws<*DgV9JpV+|nBZKYNvAX+KZW4v}=>?EPD9tXg;R
z1g}TEo%QT}JLkx!%r<nfEH0_vrY7had_+S2r`77~(xG0mYQ7uppWIfgl(Rx?UFy~y
zowFK#@4dO&V*8y3x0Z2oe1E-2Fnfmz*Fvq7yNMqrN0^5fU0k`VXyK*A6+Mepz6u;;
zNoq})@0<HAVM@hx{clOZ4tz`H+%1pq=6NKds<Q2L{3{7zw?F09Q`EnyxLSI<cfYWg
z3U1<1SAP86-j*dpNxLNF<3EFgd{>+qjoXZBv)g9a+qKo~(r{+^d~uO;=AxPR4?nr&
z;{Dj<<X)bqnNqi(++G;emE@!Q%2wsJtAODDuXong*8O{yRQK)IqdQFoegV^V-r3cD
zr|5ax(Heo5f40AGE;jwEbndZMvS-gH3$vzUtv=D+{6btOm;Kly{Fc3J#f(o9AMYHz
zzbfdx@!6vNZ`WU6#e9=#jq7K|5Dl@*oJQ9*dVKHRZP;@4Xn^^v&AHi8@+Ew0OSjI>
zO*Z6q-Cm%5d$(E9Rv(T>C3noNUal&5)_qO%OD=Cy-?pjp)sdwO%pG4jUHN9_lAIfx
z<rwO{HS~1clm)xPvTr>z7gs-NvB>c6u~#zdlHzsGFZ^1*`n=+c{rVRkYE4g^_2Dwl
z?<m>0*Vb&E@-vUrbI+WWG-L6qRnwo{Oc!}{Zg0u2_}t_u(;L0MV#!+@eop`V`Db^x
z{W=F{VQJm0e24p2R^`6#(!01VW>I$N+uOgLd;Pl3u9|!2+S9C{6I}u}nc}@CZ+Bkc
z|Kb-m`J}MKmW=J}3*xT!eeZlI`*_ZLCz(?hn-9JA`6_YsO83m^MXJ9xF}tQ$z3=*c
z<l1>ns|T;1JXsqsx6&xOUHkEdJefIJ<^dID{sLCEvWh8u4_67FWp>F`xHE5h=|Zhf
z8Il%ZyY3u*rMJeeb^5MvSEJg*{iBw!&iTo<akX{exu(Nzon}$1z2fa2yzJhP{V`Ka
zCc?##Pm=es!0h8jd~e@pWTrSYx3nCInD4d2wr?8$LI)4;J3^;+*#1*@x>>J2g-KB?
zD2-F_P@=`HY8S(RF6UXyOJ^J|*fZsktm<E*RLw%Z!ykiAl}$;?;1wyB;7j>Y7?8Bi
zQYDe+Y@-q1;fwcFpWSknQoA6RaVpW`p1StE;HGa5#e9bi15de4iK%{&$n~}{knixv
zdrNcNJDsZ&o?UHxdr!7ZUS)B<tC#U#+i4Ynr*{6+Xw^;nU2pK`-{JcgUOa8YR#<_K
zT?TavY;5%1aNdV&Vr+p@R?YDBKI|aS_Woa&t=WcN<KL#6!?SHW9<d+no~l&ma4>8N
z*RS_?-yZ1*+EZ~s@u6)>xv-pBWkqMDQN{w9j1yCZ&z!yVrZnxlf^=T7*TItSsTDmJ
zp3U$rueOX@^M2mjS7+D7z5RJQYj4E8o0lK|JX&&T?ws@e-=0r?e0g!2OsvFNx3d!N
zuaAHIdU(xEJI!gHr;o1UF%Q4{aJ%~7irY`WzFu>4(+S3i_c<kEQ4A^GA`9Y@C*9ce
z?7q@R@g-XvixO_;PhgtVqP9eT_ml*OQ%xcsPWnLtDqAeMgeJDcsfekh3l<y}X;k^w
z(OG}i<=tdY7C~Fj6?fHNu|CvYB%!1>Dd6;x4<}W+I%cYTF=}l**{M89xl=cPr_i!{
zf(I9gyD#w&%KEPPy|1IyQ)XgTr^lL^n!G-aGLBna1+>a6o%B0H7Ptt7RI_Bh6Xe*d
zdLl{0J0MrcW!1up2Cqe&>q46xjYYoAd%&bR@4+qA8`|G2lcW}SxE$Q-v*DRh<2rFy
zy#OVyb-7KOvor)-*}HWXo!IJ^vYa{V)=7DGlTzK3HTz}eJT_~~IM%r$b(;S1-~FuV
z*6%moi0Z`>_eMnB<85M!T2IZ0^*(GM()RwZ=*}3$)t2h&mM7Q7i!b`&`0?0D0sDjp
zYNuHKeos4DxQJ)Hi{+Nu=v!$|74IJQK0BH5@hPUZjcd-`Idk@0!Z!X*p0#}w&lJS#
z^&k9dnPPk=uJ3~7>x)ckudAN#**u{!#&S0E_805g4(BgUJH0!7cg5!J@alh?BF;T4
z|MsP#YU6(EIdlB`zb)H+e7XBw3x!^_#d$o7pFaNdEAdk9KFuk!pKW&Cx#yv${l7PV
zewALzmH5IKx{ZsKwM#nWk=TEhsdbE6W*S>w)U-0O>#QtaccL~a^`O$UkRDgw)6p#o
z5oacKZFCV&5uB~JK)^Gv;_=i3RzWw72%U&|s$b8Ab!6-4pK3TUscPdQ4P`N%K(~*3
zmZ+`yBHDc|Lgkc3{^BK%ZVIJtII3{!z=26s8zt;Fx=7B52r`_ep&Z$>h$lX}js0ws
z|Dv9l4K9-Vw(+drmAYgZ4^y|!sSjIIE3WD)o2E|5>hPT6xHWacWt|^AuWx!S;#sBJ
z9J0Mf=6XaVSp3<vjkiMA6wPpz42fn-y&AEICx5SSYRfI7L-)7${9RbPjA3)tg3}v*
z`8Ce?<#4b^xp;oiZ|=%p5(V47^4*C_oP;ek5Op)Qi3wV2@b!KIDGBWS7N~zK4~;Fo
z+pMu#Xpe<a$1Z~n#-~r|?D$`I`^#&V)ElR{f>icQDCznT@MPhoXVX6(yLwof>ubrg
zy4*gt;vb<r--Eo24u9We^L^cPowSM_Gh^rIulMh3&ksMnS^xCo&)u8z<~h&OO}l&N
z{I&A)-RpMC`rQ|0eV)T(X0dHuxt^-@UjKFXzFG<w`QOd@{UgP^{>`(SaewdSguizG
zeg1oXect;zon3$VpZ>Z~wRPp`>U&?}BkX)4Saj5$%(e<^4K0gMG+XnCbLIBvgQja@
z*0V%(PUzYgbXd#m7>|z95;dK=Zr0QZy_}~M+&%W*?Mgh<WTYV!WGFV}pjnzmGneAm
zBvtc7M@f~IKPo!^7<4q8b94gO*qyZAiM`*zaq2<gsf4S+Zh5CpeC=AmBe$F<?QGL|
zU&))dPXx5}1h=i2XXF*^mK&9#;e1TfImBO5_3Z|hQxghL2?X_CoicH;?>f!J>jZ+<
zKhX4vU|HkgvG=Z$hVtzv${RrTZk)Y=CBn($Xhdea=q#gG{KksMcTHaS)~e!j(7Pl1
zbF8nN+<#tkcIDstmosl)7x<ig@ae($71IO%VoL)S3I+=KNm*R@YXcJ_)Y{;**I@^d
zw(oXFb);t;+d1d-nQOP5w8A*^)`)y$VvP>ey0X1|&YW!;N2e}mZ?m6}B4p?H>!a}J
zq&<aCpYyhFvMe??XP<l1{-oO0nH)afBmDUHW*etnz8lY<cDg-$cg6PZse5apb<#hx
zTieZ!la()fKK=5=i(fwE*krXyBp67VINL|q>F3W^JNvGCLyXCM-BT~0EwldnZHauo
z_5N7jS+d<t#b#{ML7Uc<^4)a$^5E3P2NPAx*Zkfd@sc}?&sI!SM{LcJNwYTW^V7bZ
z79~)<=0RkTZkW#QuBqH%Vmb+)M<X^IbP~}?J86H&Yk$L4?dCbGLa8ptCsi$fdRWYR
zilDN$*0EPp9q%!98!2sE61V2TwunVNGa`$QORr~L9nQwe?Ky?9QB~AmJ9on-4d$%V
z3|D$YT_rarbQ&$##^W)IRX($~)o)7U*3<>BrZFz!(TZ5avqqOWbUTkg>H=5&QwMGt
zO$bfyG`f)_kQ$IH`NV`<&Q)?{LZ{J+Z9GADjV72~?t&H%JVntufoxZ&IYzQyE4*I6
z{KK>2wWt4mc6Q}h>FQvt^2}`MzyHFSdmkjdXa4anH2_Qe8ygZ8|E6g1e=z&Dfk^xN
zzuF}|j)hCrU)t_{ee0b;)Gg7=r;VImT5;%TN^6$<uT6a&UOwf*=>%t$n)VxAKP$eq
zZ}^$Hr|{|H-hiK0#oJBg*^2)J`o5cLIqPAy<(@C=t}jXZ@h#Qy+)W3wf-URH`!@R;
zx`x-ODl+a~e|Wk1YqQ_K<IBF^emC#U*T;GLZ{EATy8G+dn<on@_uARV&X0+iTYlQ5
zaAQ=7_x>C9Z}RKc>^iKzwCGaVX6<(Vn3s3=-@RwIb{BJZ+S-_{SC&0lIF;p(f7H+S
zTU+9`vP4B5C|j;-lPNm!$il2t{e<07H$!#fw}?aq9%$S8XpO3en;0YiosVlXuBLcw
z&{USRx;IJq_S|XLQap5`Jlfb8rLR4zjOt3!;Jz^_>|gNejx(2oRGdQ(q%9YXt+|*K
zK3VY2j?*)4Y!I6?QKy=JtxCe~D7ljl7O7r1#bhS^<3;7QMYDPy9FIMAq-?pXsbuQr
zgG(-SF`2DtO<D1@A*Dia!`%bIlP2oAt27@2s}aqZ7v^H5!Es}Q*!lBePDUN9IpNy-
z)RYw^moWWHUb}hWzEvO6_ACgt-?v)fRBhKuoyaBUciK5Q#);L~Rk1NTCQrwf5=@9o
z323!}clK=uk=E}&MK^CrSaa^RUD|Au*eNYG0(Y+*ZBb)&etYSW!>9Mga<ZpYX5?(r
zXg(Vmv8$tByH@7(AJcm~K7Dj^`f2sKIM<K;^Gk2DTj|eI+Tx#nxU<_X*zEA%?>E0b
z{dD{1&4SY1dw%S(*}Z4qi)SL2atvQTtJ}7(I;!Mu|HId_7e1KNdvMv5HLvGh&X}pW
z^X_^>j!!4<Wc~hdK5yRJXD9F3<!xL2wYm2DuiN&wci-=R_ro*9FKWHn(+?B1Yk9og
z*Ca&RZ19+{{@E5)9WHhq#%Wxe?&b>mn=d>js9ou}t@~)+kw;Ba8>h0|6q>g0Sd-DD
zr#z`Df+>e@HyNGiYBoB-xhYnM^Y`oknJJEe6L^z9wme<PljQhMUFWaGG$+ZR4GVZq
zHRY5?bEU4B%8*)+D|x5nbimvVN>dJQO*Po6^Mfb#NfRqn{KR6TP1`3e;905b9F-^e
z#4UBoQqLx%CEIvBeUq1FMzf@P<Vq^>a?hLNcRNYLIs5d5Y0+#y3l20HZP~`t>znK-
zd9lkuGAg>Q=yb$E*$oSL*6KQc*L_?gao?(9v$Ved!*^SqIc^0j8SB^ERbTy>*|AH0
zhh-(>mZV^LY^lMVsMKI$f?6;5dNUh>dkHeTC#?H9BSkGd+t%Z#R=2qJ(u~%owHl&d
z?$1`cEVi^lsN}{w?zd{ua+`jC5c;}kjnU5yT(SQoO81AT&$Y7i?z$zSyyBf<{JZGO
z%O-?;FSs4O=K1=nuM5N9|N51?HBRSwRgK|ZNxogDU%z}&Vzon}e^y<=h1p+b?R&d+
z{`JkvJ&P*>PBc&J4&8U>PU-Xe|6U%yt(X3O^0Naf={?{4o;Tjwa!lod2jiJ%*Pl%I
zd|*#~w`=^y6-f(^rATTkELT~xe)ZJzO`=9(Mq-M~6V^m*T%`7xTTG&RPSM5#Ir2`Y
z^dpWkJ^7=o^NUsIM&iu_5gl`y!n>zVG}*a|X9Jt%(<IjI$DNLSI-x1CTI2Au{3nr;
zW=hW+)#EtAOsaLl+I&xFmTy%G(OJzIA(?mC$cyXPqOPYVtYK~3Cp5!9ywI9<K4J}z
zJ4lhiyA4X(ho?__=(?RJDb?XvQtFROMm8PCnq<W`8P#M;%BgbCi;&#;N=Td8>omhf
zUFDs&Vld`LqoS+6Yj`wtnHTY_Neut4x#rdx)025-T5}egIRyOexFK})`|;&(TUIaj
zSDBLf6-x>*LAu5VPd^d$`oya<4t8AuwGQoE<<&0;ueQ1y8ybH7tHSObdWrgdJl*RI
z9`tA^ugTB%Ezfn3wCM~|`J<>Z_rt}L$Nk&aGcvzuYn=2>!0yfAZcCeb)kgP~rtLo`
z$Hgi41gV^nzrR+<VNTGRss=#;jZGeGwr3+x6jj*o|Cf8`-H#8ta&<=zC-3=NXYuYE
z|Ho%l)#a6j`*+@r+j}Q2=6($C>q(!oHcMUGVO3{&ul^p-^L(wU%XQ@!PN(1da{Tza
z_wwe4XF76+y^9cH^*XNAsq<f0>_4kc+y(*O)f1N9zj^4&1_6<7p6-*E48vkKT)MJR
zYtqvAHCLuKu83IHGwbB1Gve=AS8F@(cb(}YIrYS)k2xQkrus^<q`VZ*HcIvBN<Fop
zQ^z*(<NAnYJu*vY7_FGJ^#09L%X$_?EaS=2ZI0RAGe>+))~N^Aj4XB@d&Ju9BY7u^
zP5gY5{<5A`5zBb;bem(h_avQqppkQG!Zo8KrKeXc;|bCUZrd_V@#f|S*>P#!K9ZNB
z+IHkgPMyC&V1f1G11r<Ed^zoUS2C({YIjezlK1hLSSik_-0F{4rTpyQsrP(eRO7=h
zP69T%;Y*GrpHyA5wXXlnU;R@bOdh=5Jl};iB_CUQAZilP#M}V2L^zlwZ79(8zLraN
z?}mGQZpytSxs&9aoGxv65+p8sON3{ub2InJ+v#DmHsl%ZT@t`HTmJFg#J`Gv-mWjT
zpIfe=|6bxL@4MI6Y9;Re?mzl;;S!g;KYH!c<=TY0rT5py#l)}6Kks*J_3W=lU;cXX
z>DQuYw<SljF6#bGs{X#^)h_+VKjob{F0j7|Zj)pCz_FJ-p5w`Dj#krtp1g10`~SY%
zdEfS{`TnxsXTR<H|C;}X{hRl7Yj!<WceTviee>i)<?t$LaZ^407zyd=?$`e08q9ul
zs#lvM{KF~H$jk4lL~~*+3O5#|UNbo}_1V`&7j|6Oyi9dn&55H6?k(u_-rIO&R@(LM
z#<X=S?m49S9*%j{s}bY5SFpkKZBgY{w^=)`NGoo5R{!YK{|4=|F>CH|beg_hCw_==
zdX@5(eS%$?dSBhd)~&g>;FdXuZnfO!Goe?cLw>VGzLS=@BAxmuC_mt>^c3G>(|nef
zpM#c2g|Deqt~wpV!XERgH{!RO%ISIPvv%&OQogoN(DyrU);*3*|0nrIJoeg}uX4Fo
z*)0Er`@^98CAZ9j49+gSH=(wxrReIuiE+P=-Mlf+rNaE|>AMM4B8@ZHcZ%*vO_D3h
z`_J)dJ@fo~dl}xPgfU}F8$=C&o0y=?FJGPEn|<3sz~TK*(dsP@Vd-i1Y0qZ$%Xv9n
zR;XIp&6&&8c4O($)-U(VpU%DFXR!Cn1U|F(37NTa%JyMg_nFyN==1n|<$ZYCYEIw7
zv(dap8Je0s-@ks4NxZNo@z1Z!ZMW|IePO=;*V*Ly&&8W#*S`PtdiB%e-J3uDJ^SfX
zO=VeW?ai~sOK&D!J6pKz@3y_Q5hcg{PkmkTH7l6EeE#ur{koUy<9F|?jVW;#6LgSY
z`JBm?r@`=RN1*VP{^CG0xyT>)t4<cL-}2pSXQkoBi<7T+S9*Rvbya(DWvbb)uSr%P
zl0FNWS$)$wyE<gO(Cq07((xy~|K0UoBW+X}X|A&I;`==+Z};BVrFh2ec-%GKwQ)&z
z0}>X;>n~;2f8FM0Cb#p|-iobxDr@4h?p`?Lw*9kE#$6AC%1HB)?e_yp-%kB^rh7r@
z;saam-?*6joHfc^C{*9&^QoLK*7`YjJqkZT?XK3(x~pOF*1YV?YuADYOP@`>@nYL&
zr)#}c^PMj4YCPk1{PU)~D}QZNU$goC?v?#p<!bd|Q(i#IV)pgj8*O(TFj&ia^yN*~
zi9D814fM}6d;I2Bt%~~a@QJzF^UO`y5&>}oi>TKpUY!x^E$t}M_Wrl_Gb8TVZ)f&@
zHr&3oDsajwoqHy#9Z?)6g5E5Dzn?oN(>wLS)GabX_qy-Sooh4a?BUb9te?wH=`WW#
zC4T4Xty;;u&lkT*IpK1$cmJuEJKGhL%N~F2k7Rg}{6aN|pZSN&UVaJTDThTmOn1+J
zyxp8T{Pt}7zt1+_xB2q?`|P(_wU_75)6wVSKlc9l>Bs9&H&4F&IImCftk~wfcj>op
zzkT}Nb^CuM9r3l{vx}<E`@O$cR{L|qi*Gtr&%8c#X={h4o&A4ARsO(KDRFVVL&rp!
zv!&)uH__9Kc{7ze^0J<I+p($YdSQBrzK3JZN^`V&Uy(k!`PsbX_c+84YU_P<^IDTx
z9(QF=<GzB_uWm`#OwL^06ZkL9uBnQ-(NwqaWPFTF+%r+fy^Rx1-=6EvG}m8$@4zkd
z3nljjAjL?;Z??3{F`36j!6gLi>3QNe3thjmUESxn?6+H3{(~b+L8ZuvlKUrK^<H|O
z9F$-1R{9NZwOw<Svzp#lw(I*2PW$cFw&k%Cn4L4rdvD;c8kMhYSN16;%sg$Lf8mO`
z$6m#)`6u?jmu^q4u6=lSi(-oX-u)boY(6iZJ>`_@+W&gJ$H&TpH<zoctjdtak~B<-
z8+SA_My)%1v!xA1T)+PnjjBqpxj1>=mnFHEN(6-_wJn@&HDdz5!4*ATy(RzcF1=7I
z>w2ly{prIGy)?HQ?dkHd$Nm_l<Wx=+4Cl*!ckNk)iF^DePv^dgXMaTKoj=KEnPPme
zetvAM&i=XcdZu4L{rUXq$=$0z=gG;O7u%fYxB2Va&x>B?9oxKL%rd+B{V$)5+nblZ
zsQUEi=CsR(u8wjMJ8s$8d<CVSo%{doy}9lh|6lw42fjW3_U-s0>zZH<b5Jt*c|g6k
z<Md72bv)~IPLy*`*3!$1*;lai!j4VCOCD7&y}QS#QJW)3KfKaECT1r~jOT<|J1$kP
z`|-^><@O%MX)G(t<8tmlJ8IV4&AM_1_dSl*Zl)bB6S{Uj=#AJB^SNz;=#%<KUh>bm
z^7_3GJY`*39=EV^af3j0Me`zsuSKpE%AtA{&6^ayR@s^5dwf+qEWPequcqkv)s@a(
z_a89i?@;jA8*^!oVre|zhc@q~kTas?F@pC#1mFL#<mTs<mCmpB$vot>|H`|5SH8-<
zLe4!8m+yNR`n{JW|4OapL1~+>yxV5&+;sbKlX=A}=|8v3{f>WAY4VB9H@@mFcy6g;
zfx%}Dqa|1V37%Qcy|1o{(cLlJ6I-GnYWUI29Ie9{n19PapyB>^?N1y*9y!PRayb=q
zW6jqt%DSHR`tXc^28NjjGCLFR?w>C!ulsh<y31;%Vjo+JYsBmK-LVw7!(!p^teM&G
zOk>katBT32AFU-jJeFzlZrZu?&S8y7K5RGNcrU+lR4v5bsZ=^HXR6+H*NQr;e>F8z
z=EnB4=O1@p{`_!Wzu+y&(p|Q9E>1lczBuo<LK@pz?^M0={b}m`@4hU#U0P@TYMX>$
z%b}K*pk<0(0?(9=gs6$k%<~K8+jR89{-;9iF*lk_5-v4)GEA0P;-BzIP-1Vlg!7q3
z!$Xe0c+}o09W!7vIObTz({_?kg5BVt<352IKg1K(RdD1S;1KB-DV`wb-m`$&KtoRR
zsX{H=;_v-QOh=WU%A|BZt$P0F__e=}s^X5{UwzdkPJ}C2<oadbb<0m%#EVJCuCUm*
z?$oYzA~RigU)7m4MQheI>*FF@E9PIh-TC?c=6~z&oDkVr?7uQA?26yP3*Q;P<bO?D
z{q3<F-%Ps@@ppf!EM)fE|1aU(+^OC=OK)-2%P-BH*KhglN!|8Q{-d=y@Bj6c<w1<)
z_lts6jvhF>n8jwZ!Rw&cNzX!JcYa<o<N58WWv9+=yCL>2yFTf;VMg@hy8l}Gr7OkW
zwG~$%&SHLd>enr)L$h2iCR}*+FzEU0YVoP1jM@8Ei7h>}HqHOpk<@QJb1WpjoSBnR
z_<Q!83?ZgOk*K>*c5hcW)F{D{Sgm4qocmzM{<gyCWp^!wuduY;40@AaaK|sRQe$K6
zks~Kf@+<GKbruL2-TF|FGkd>H09(e4WxnA}x!IMgY#$0%%iRlUJ~E}*<(Kq)mRF8a
zr<TbD1oN*r{#Bu|>cAW8nQx8vSLA$Vd|^@izxKg_TS}d8=gYTrbOefhIa8gY(sEk#
z)HgQy_`fWZpLZU`mePqEWHm)?9^LTm7IqY9c({B2qJGI0J)u|QuZB<ms-U;-^#*a}
z#GA2-2})iqU+>?(YARX48OO48a*4c^v1HsV8=lAeEQ=!UKQX$_zw7tjYSW$5*LP3e
zxJ2a6mz{Nc)nvSN@~VF9NOJkW!^r6F;^iPxqMLTfux8dh8|&oqnm>H)^9w4PX3Muf
z&il`CJ^c3V)7>xcp8a-s%ibNk>a5o&w_i;&U6Wb*r)tmdO_Jy2MP57pzPqrl_L*1x
zpPPU0UQV+pzND!U5y19nN%qOfeg8#N>g83uCrlR$@o?X6EpoGoMPt#rryf?nc)i3z
z8iZcY5_tK-Ohb~Z$6@C}1yR<@wx%y4DH;aMp3VzHM7rKrw5M=t@wNs9YRE30z{{$Z
zkfk9ICR*}J)3eUoNbCl4adP9U)xLM%O?oitNwaEdR`7n$L{F|>wntgbet*@@TChCO
zm=?0a_byXhnw(OBncSXF53KiPYZ&uOM)b5VuxaV5RG3riao}hT$1CR(f3^H1{C+>V
z*wDe{^2PT3WF6lWCl^trvKnSb6Jf;%dj%&>=@6;T^YRWhP~Idp@&8W2>62~!6_$%1
zar))Z7<o)$QS|aT?t;H>x0F~t{M#MBYkTNyEXl!)$T3&6<PexG>?m;HW4ZlNyJrc-
z@7|nycV=JItLBI`Ute@j47kO`C>*GCCI9`ob59ot)dWsZJn5jfU8a88AB%If#SfgS
z8yDZWcku4}yQ@#`t%;TG-zrja`T4icQimdnOD`Wje)a3sZ{I#8Rh4i4YmlqIZry#p
z*D{4$BYCqU-oBq_cKAbP)#uxbB%1s$I`i1|C@%S?yI6)r>BZwSi|&5>xZD2Emv;5~
z&yNf4yp{heuU`jE8}p~!_WXT!;oq8PUiH^oyn{9Ob_##_m?Jnl>(SEAh}l|S63ge`
zT5j$-KkJ3Bsk40B>{BZ_ou@P#GJHu~**V`dF=7_O*3Jd|yMMQA7Cf2!#?2+e?S#Rd
zBi_MDxvMU;-(6-S-6&UVu5>J|rRV>ZBmWm<nkiN5WVr|_3rXBtZX_LOGf8UVk&cv`
z9ZlZCs|7XO5{z;xXZ9-ehxR%cGU-Y?e!McpvG+uh%eESM$IXIQpRaHeF<ca3)^zyN
zlq(%dZX!lGmX9yBWU+J#ru?*Py4q28d-`T6$0U|Wvqi_2c3$BSQ@*iDFtpd<L+<RV
zU{U2)IY*u@@#i~m@>YPOoa~Vk$;aMYYt2ZxR?l!L^Wbms{S0rWdfma69EcovHL$be
zf-dZ>xOMeLVD@bT0rn5yYq@NXEvT@1SyEmV`%=!!d-u67sgjC0vMkejri$#!x1WE`
zP^V?@n}xz=={nJ7^(p@+ysfh;NQ^m9D0BV6zBhMvAKY6TKj%v;$K4OPHhWqwOpm$q
z;p^q3>WZ3AzvJuvKYBm^d;8mW7w_L)Bd@35cKi3&<B7F}#pQQ(i;sYM+KGif3UAcJ
zmp=DD_1JUw+d7*&wQ}qH-hH`#`kk5n>UTcNL5b$I+84!yFFO~!J9;SK^i041xoSU+
zh2@L`7u=E%x^gLK+2lf@(^G63BbG63-7=eVQL2-_<`uUS0p5paW}IueD8-mnxzy*=
z`<ahYSSn9t^zv-oV(lmR+$Y6N#Z+l)j>{BF;n{+oy&k&K6V;S&1RE*`^d1maUb51s
z<jj$SJtwkU+S-nDsw*Eco*@|7dqP*bakAjiViRSL-UU}SJk=;(mf|)+%28K(;@J)v
zn{?x*s~mZiaud&X7_v{6RLpAGlEcypvS5)Lhk1_WOhL;^G2=xm1eZRoWH~u!<qSdB
zUJYI8gOdecu&xqZaem=6F{4<%Z@U@ie3P~R^`-u>#r@aDY1>tv#T|*0o|4?opI^uP
z{CK<#wsb(;kgFN$RLqUQZec@kvEVAVd%`;7lRieDUlrPQv_IeZBWbBjxw=S>>&k+<
z>d9xyjxPS8;*~M8{axDO`AhAmmB!0jX~>sYPSM}7dvCSj&gc49Pp;6MINNUO;p~>c
z$h#%~6Ga(nc<i1$Nn}a*Cgk*YqQJ)9hmXI!I=SfX$A`1+|9oh7umAiPl<EI`z54C%
z)1zOWrTxyk6&Dk`U+$Vr2B`Fik=-woZ=c`xS-sFQbHDYJ!|7$e9;bfa-aq@{nMJ{q
z4_p#CIm>9<$N96K=$l-;<g(JVwIjErX8w^`lf=ccgK`$%SL3}lWp7G`@5GJ0eX}oJ
zQb}V8ResSacquTr<tE3+MIf%m_v-md7gl;6?0JyIa(v$GH03MWvjk&$AMERyaDUc?
z9*+m6vjkU4O|&voN{X6wqUXfbjyoTVU3k)5oYv>KJ;`!;ceBI6JJ?8hiIn2T<kQWP
z6PvE*xOtd5S=IG*6q+ejg&I4p7QD4t&~WZ7fdz^O1179k9DgR$t;tJdl51+t;``RF
zn}uQ)IVCr3GzfG*9%wAQ(#3V7#!<6hy^lU<cS(z+n&&*0caQb^c8)Rju7JpE?{<Nd
zl%(x`mi<cKt}EK=R{VaW{#-e>0ZW=NCvFhd47H7X13a+O@UXi6sGM%ZYU9oEo3FQh
z36Pq#OlkU#85fo%tdI?g@%UexUVf!Z<gzzk;)a>cOI-J?`K$0mPR42i|1PIbtlv}L
z-}8C*_4ccZHJ0w?wUaMrw`^SYYT0`8)u+4Pe*Jm#%fqbSnYZS}#_W^7*7*oLxO(fp
zU0&P6&tKlncV&6N{By#lc0mR4{s}8(eHl0Q3$HFazFYp^htu+Mf3KcDT)2Jz=l^?u
zfBaYRyViKlK8=&EzwbKw&EIi(^CBaiK-H{}gLd=QBn1ZsE{<4a@qLBF2L8j=N4-N*
zdsp3Pzq`UoD%4iVso#t9_Xd%p{)<Jrn1o!pT=N1_P6upoQZ!RwYgIDWDB38qG~mQ~
z0Yfd3rH+9*&Ik9nsJ1RL(KyxZc<_Axsx2;}txeJ*b9ml|%w5PKbd<|AHz4G2fXj@9
z9YUd^UAGpjII8zj@X>vZCO%iT#znk`txcULs&Yjx*7}xc&Xw88CEL}*<SN~^I8Eb;
z=G>%qrO6H#+afQuwyA2l_G;Z|zdLu4Bv+-^@-+c1Y_1!4SU(DdigaCAz%gwh2Un}j
zb*0c&B{PjjJV$>n$rrw`^=ML3^<0M|$z3Pc7HcYR{>Lr!C-TF`tND5D{<+xF1#yG1
zXoK@N4t7CWl>Qfw^Y|o%mWP&Ky_#y<(f!)$%~6ktlGcV!4Z&;Mx9`d>xS?7hw8e9U
zb6V9Qe|7o8E%}VhH@KZUzqNh%C=loK@TWKLri*hledfRYAeFdyP2#UFbzAN4*30+X
zAAfwf;`8H*Tk`LYzg~U!Ex1tlo_8x2QYd6@jpfabnY(Y^yL~zBpVc?cEx958_QQw7
zs;^IG|Esup`0n8{i_IELJ(_(}K5<AlEK*kM_<H$FNA8@+ulL<fF4kxgQ_TqUkPF?=
zJ8zNPdy$JmqQ%{(IB&nO@Uqd03K8lD6&V_R-XhN3T0Oac7Hj<E4&-Z{;F{X*q$ScM
z`#z*ib(Muk(83Ax7M|GR(&@ZVl<TczmyPp5v88;iVH#gJMJ@%0bnaiwAuYnn(`EJR
z?n)!)iMm>58eCE$rC+2~jYW<w5~>V2X!c7rHcjKmq7{yTiyQ;pk6WvHi*&ndZo8O2
z<y^pxSS!(XrBIEa^8p!gi;gT@z{Q%le~Gb$2$$GWKGsl;6_2gC*xC=(wVrqoP|(^G
zd_It`Rju2py-8c-4!g+o$@Yy00<JeD)v^dK&Y5AcrdU&2@c;8OZa12?pRZ#y*_(U_
zTY4aF02Z^H5P|hDtS?xXeRU80dR2fw$>7*Q@33hL1jX*~P85B#fBUZNGYJuUINFk?
zTfM3Ic<GI^@w<DC+@BcT1NR-Qy|+7ja`n$$R&v@&WtYP(_p}*Y3%dK|X_ct+2hCqh
z7uyY6q->{%+*;ql`b)yjH-BEtR_l9p-`nT^`|x0WolM{EziapJxlw0hKl@&6uD#Fg
z&E2QBAKrCj&#g6Wrfd4jkI&AZ{qT#YtKY5nd__NwO#WAO`|sJqX%>YSlSQ&ZCasXE
z7GeDI(I@cF`#{5tkZBq#Uj?$%-iTc}W4gu>xucxF3}lXai)?fYeQ`K1WY$83&Q+jn
zenmZC!^#zsTwfX%Iv;dgka75(*V7L>f;b`<bNn)pnL2&NjfDvU8n-rx9Ibad8xYdz
zwI)#X*M{9es(OJ-oeu^s$T(aO($2)>A)+O+(s81WbED(pCYOm$6Qx8tc_#N&Mrwv>
z6g4YF-wRa8p7Q3>MlF$@juUmA9RnAqO!r$5Fon%kv&~aIX3-+2MqaKhJgnyfPP9#%
z1m^5n{9unuYHO2}NQxxayoDM<p(0#a0T=4qAJtq67kF@s*}3%_pOTxLw_aYai}L1w
zrCxt(!EH;=?}?_^(gks2vgT-Qii4m@n}&zg^PSxFPek`FnV7bY_oSkUiSP87S4mE@
zn--RN6e`yKK9{jAHpoX`S0qvS@VcX)lz%(#es{5v`x8_6;yum3ca*PJ`~Im(wl~JB
z>~gy0-ZlfHO|$Lx#>d9z=AS>m%-sBT`Q>kKUj6#I;n<Au*;hBTUH$hi)0jto+3EXg
zM+IuS<Sc&~uyI^<UhCK|q`2kbku`Te{#$Kd^BvUHcw2Di?fbv->+5PP?$zGpS-!vJ
z)6&216qftPynMf?%XOklU``;<g|_s~D;BR%lHVWJwb?Z^!+E=QsM9u$Zw?Dz1oCm-
zx=<*h8|WZ*^g`RbMK2;nj;LyxYDlnf$^MGfG|*7+2+0d55YZ@kVXh@5a*46!<|3^v
z3m<DVJJq#199`hS<@zf>;DUX}qSU3U94Cr&9g$rh(skNvqvJ%;t~<senQcmy6PAg!
za<MucU-DeCODQlRV1ZMkt@FfmjZH4D&5JZdmOhttowv}T(~HeDP{ZqdzyqGvoD50c
zu2lgcZ)TL}c!wBjcr08nuUte`C-CY5h1RC3wnb+GPWUQKc09<%`klvh=E4cFR+~Yb
z^8s`GznL)3@tY<sR69pNxp&6Jwccx$C;sI&_&evrx1;=<l>)HUA{N9A%bFUZ_B?#E
zr40od9#+@2_Qg%uZoGK?#jT3AQ(B%SpH$U5wnbASt6hZsQhoed6GxR9aa9>?vn?ya
z&G--L@6MLvmD12R={zNUX8YWq7Bl(hZ+d8W{KeTXi)G@JdMs0nYxhUz@PFU`=HK?a
z_P1Xz|C_jb_x9=HuWxU@{POhIUujYE<6`FVpLVF*7{%iqBO}K*d;aQ&KRg%C*>d~c
z>4y(rfBAV<|L@oA^4ZU?7NiI=M!1`)Z8BgIiePH_8O*|Q<JrX0_tTE9kKDMqLyBAQ
z_LU=5d!u>gKHalHXxqvePo=rJPai*~)Sj!AR+t=^$SM|g%<R8#_y4(5RVCMLn51&}
zYRZlU727wd92OVzHmdP$3!l@&av?Hu(!*?{noDOUrLcH&OzH`kEO<|)IdtQW%>k1H
zvy7a=_C$NkeX1h4QB9fc?3x>qag!!y8411Ot=YLRcTGfuBZxccS;_<zWzn!HDFwc4
z)@OA**~G&pf!Nu8ZHv#Hn$#0Bd1CXU1G}g3gs*$>+<Nj%)BBURtSsMdQzBNCsG1XO
zc)DC{Yl_0TlQWjHUAuW@UhsmM*PV|2bYvCmKghnhN3-|L+yBCUPB*QdY(H^%W;B*!
z!h)!wSQGSO0yQB>WvcY9<9)eM#YEm)uh4Lr@4*1;B^DF@{q~y0>D}~lr3sH&@rQR+
zm4d$&Zrey1tlM`WCI0@on%gt`C;$AgQbNkxD`T1b*AGH>B9aU*f8X6&evU2Qcv9)&
zW`=9O9o_~rXdEd1VO3jKeD_<y|I_d4Z~xuAx9*nww%yg$l^gfjTF>1Vvp#>>*Oy11
z{@l<bC%*dVhL)obA8z=$Q>t&i$ZOBtZ}-XB6)oRi_crhI9;v>VFOx)V(_3eW%BKJ1
zu(_|<{m(IM*5*mi*DxFiexIdko}M~o4Udgzx?+0b*+oYpB^s7L(os~twnix>L7n;j
z1jkvMHcgngmR}*|h@V?eSGYE}<jS;4MdebXNohtW&aM`1>A7;!W7mlV*CQ>`7fzUH
zEg5Mnsge?Kw#&)wT}sN?-91VvQ)W$V<$0AdA<c+ua^tyex{B#j{oEM$9++HQ942Vw
zrM_6>Uh0HoqYdvKTr`xtXKHjSWX{o)guB8@6H-JUtQ4zYQe&<?%jMJ7?&dbTDxCY$
zo~RQk757hM1m{l^H+sb<r|cERHm_@Q!8tD{w-+fb|NV~LJW?OpkZHc=eA(~yi~hw)
zDZ6d<vFvyG!*TRS(ZQ=H<@ukb@5h!ph#S5%M_mha1Gy4evt7zl`D~2zCFhKcS$cb~
z9Bolyb$&bHfzz*VvYE@wG?z^m>)K$;UY+_``Tg-*?=CieE@BREy0drp-CgFJtN%`u
z^_^2(^f|n;lCv%;#r%G4Tukgb`?>SazF&V`{`uFNPp|Gy>{QeZ>rUkCetY(Fmc+g@
z;`?>E?)4k?h-7@3+}@Jx(fVq$fKu~0VbCJN<%Qpq@7VTVzhD0Q?6<l<kDtGn|7Lza
z?C{Ix0KQv!WuHEE`u|$3Q@Lf0PUIU?ZN(Qg8~b*hI@PZ8#c{KML;C*RQ}?8ao@`2q
zWGyM1Gu5P9MLXr}DZ!F&Q(W~o_wY<xlacbo&F$Sx9-iYmCPrS$ixbXAda+fVJmtn_
zYP2HVXwxLc*=lYQl2=YF`0vK{w^>Kkd0!dh$rBIU*pAOD@9vAtNhwfnu2x&z;vB}N
zs{G5#ZSG&D_)ib-2pO7iYe|-V+Z~;fa$;#--^oo}FWy+3KH)KG>XaS{Ey>cdIj+a=
zI&IQnoBNmP{KFZcJv}#0blAqHZkVWO?_(q>xpLw}E4AjmV4gIH=XE~Ptu5x2Sbj=^
zGIMXw=g9x14B^wO+kS0#<}gWg+J0uKPf^ph???V*A8Ze|XJok^o`NNPSQ0m$X@**j
z%<%07uN3;%W#^|Ly!+SUU9Vnkk~?y=ls8UBa@t){wmE{SpyBPip?(pPHk?r^d)iCN
z4>_046Df?BwTS00P`z?_H)!Bu_jCQ57mswDJUjo@2dO_tX5Ov&pSac9u11>Q{@CHi
z6_62%W3N}g{e8Oo=h?I0?(PANWZSMO_E>#3E8_60A5SZOR~pZmKjrn3zwZLt+xtJS
zzCZ8F@!Rk6LCb<%5B@f6n`qlx_o<<dhjm44>kLVi^J{+RZ+yWi#&WQ!OLT8SBAcgo
zg#T(*jfjOwOBEtm9WLpGeem8|6tsqEQrpH$LAovn7jaDb&(ZylX_}UD*qTMB7Odk*
zI()TjRZq;uh^Yr-C37Mr1^pwQxJsThPu;Smd+MJiR?m%G9`kN~4BHSQ8L_cRL)kId
z&HM1xMXcJBk_<g=9X+**XH`Vxl!;EkZr;0_&adhT+88iZaJSK-)YJv>t3pF0H)<<K
zy)z1!68P%*43DW3cNtAeO<ka|_{y`+2oO(5TC9dsU572y?cJ#p({}eXE%!a)IJGfW
zG9yw_<&?(O(+^ghI<Sss%fg=1k^h1lva@ZSe+LRO`C6uKKNh5>R9Rp2b1P`EP^L^a
zwh3QLqQ*20Esaf4nif&H#kb9b{?+Ywx~@MlO@-sVzWHVSvs=yIF1a4}$kRSTj$iwt
z*>a(mUOjK`tl!Vd7{uV*J?Uu7apCqRmp4iCkG^YWJ#lfqveBUr{XHVB_BK&@Zuet*
zp4rcs=;r2Sw`)h^ZR4hif@viicgY0zEbsB_eHPqf5Lo2JJN;YuAyMUbRy%k7SgAUF
z>dUfO_4A(jU;aM-lhN%Zm*eaA{rmCvc6a=}`1&0?>VAJ-|6a}5@n?nMyfY_u=$uN~
zJENpr=tAb?rv<x{mo#UYpS+xON%6{oOVtrh)e&twUdOX|&*wiK!0yec(<-Z@+p&A!
zy_-gt4qjsL4rV_s@Mzt7F|mUmZu(4rC^uc{-LF}Nm6r^H+cqlmHtJ^H$aX)oUn-`m
zzdNJ<v_N_7(a)|jxfwsYW-jJ+)XBZ^I{TRF_Z>SP^E&G0-*}yUXlZiHm5*)98oUeo
zy#>LlE6;xB@jfrT<`M6;$ebLxIlp#Zt*frzJlkIE_3WRyvxJ+T?|y2gIlcVz6TQ3B
zGVSKy7r&Vo{-mT;u1xip?dgj}-ybL}^!ojW-DuM*#o4*8E-FSoeQ7>QdXc7&c5kWK
zJp0Uw1CM`~2JQ-bW<UA1%IW3%-d4ZuQtGeQd>?fEhToMRllPuHThVBEcJtlXUB7>)
z9OIDtzxzabB;V(0I;Y<##@5ecSn~18*EqG;Tg@X{*o@l*(|Pu!<nFzz_PzXi>Zae#
z|L(E+XDwOrX|6Q;gAJ#9B%3*QG#IG3T>ZG6)9~??n-iD6Jk_j~<>S(OIpyiQbh)aZ
zFY@>Q{czD#=U(Y6+eza6!UwYp`pa*AI(N6?%e*Kt=^1NH<W`;dUT(g1a=7QrJ2{hm
zUp-uL!nPrT`<>wWymj)|v^!e-o-`>OOnoxvz5XgCDP_Z||Ld3S+*`VIi;O0VsrbjG
zCKq^>TtXk&Hx)Kb{Fu7-8F!=AB`3|lIr&}!fhzB6zxMC#y|#mIwS;rj#)vbP3k6;G
z{LEKmi{G8##lhv2+<O1ptc4s#R${yASF%dweVAr+CA;yN$E#^~qd9J6FJMksbxfo{
z%<V|LR`#O!T|7z)f@Vg1HP3C1TM?<KaAMlyZ#~=MOnc0Z6inerso<ZWzf?mbM0exL
z?tgdXZ~om@ac6JAs+CIwayO~pit$UDzaVsT^h_78ElLU}^Do!6NZnd{gERS=i4WV9
zj%m9y_Vc<aE%Uv7T7NU6ma>AYsJ8G1(}RCooK#zuNS)w2CTRXCB;H_I;Or}6!trTm
zqzc%=3N9MVd;Z5*qW|D029YAE$E;4zjpG))VL8UVq%Cca!`BNv;#TW6w@FX=$j4}T
zprY}{g`RSaTYjl~44C|q_c#<W9OK?H_fW;e>E~1TINV&>W8Nam`*`k??zWGIe!fVv
zxfl3iUf%La9YWTra};<?KNc>z9^j|&HR+l$&!V;?r+!7A*Wi#6^w#aJnK`BV<I~8g
z`hr59C;d!2JbJbSZoHwVyMA-cRJ*yJM?{QWX7)|xKYT<)`$%ZE(dXrfncpW|WzR4d
zSlzFZ=E5B7aD3sk+C+iSYnz!krcF>z->oUev~r=^>;%Tlb4gE`b$4&zJ{EO!75l6l
zClev3FEjqu^a^_Ds!gA+zFQ!Ld94q_|7~h7&Kg+EbnH46QF{HRL<nd1uN`lXD!Z@H
z5ck+J_v<qIg*zN)ZDGo)n%BJYLPypoQ<**Md;1CtN@Fa0swE2!o;;U2soBYHMe)o<
z9!X`JG`}iNIJ)pi;(pfSamTOBXel_N(K$7L(sJcbyVreTKA3PUZpJ+pN0wt=?OyNO
zEWfQ<ziwU4-T5}DyYo*bHEqj0@Lg80;!oxxwGPR`SD8r)seJR)yoA5oeKVPOB<Y{Z
zw;tDRsb42{=jcokzwNu}+`rj+-<H1rvgc}8z>&<;+Zw}eubPyjctick?s`6tl#6S)
z`AR3hXuP7xHf3GZ#iDt|tLJ8xE-~Cuyz<bAkl7O)z8)`$6pMa-vD|gjt)0*I{9C%C
ze69T3!_$qpAN`aGmdHsAv5x=s_iT@w#P($?Z@vya&Bgn@>UsKtxg5;5MgDiZZ80*R
z@GDC5hEd)Lk(7<E)`xi4%xqf49#qa178<Hx=D^jp{$cd=Mw>9%v<K`NOaHGI*|M`_
z(|*fk9iPG)-UkOLr-h%dSYCOpu-jT!Ov2glXur>)Up;D5c6m<@4JlJN=o*?C5_Tm%
zOL~#|$$(-Gu4tcE_iTPV4VIiP9hiP&uA}iZ1NL3nD!G+HW%bJ*bUexFYBSoPK36bD
z-q?A@jb*h{{@gVGQ_c4;`g&8;-V*`&d#iTsTv9$)jJy8C0)dU$-L)p?VnY&MC{2<0
z{A%)Tap^q*i~oteS!-Cx-g{+U(1~A}dw=&9utj-(x!n`Y?EK+_rp?D!CFecft>x4T
z`LII%)R$jtF3Wkm^%YnpC$Q~hnG<uymDTE7(p_$uE~-j%sZDSR>({7uOOaI$+9ofU
zaqU<%Z=Jo$S{=^gPwE)Ds*gR1O`i4q*psg_e3<=jJkH<!(D2#Kr1Pw?Uw8Rf8%5_o
zI>H!pJZ<j8z?@w_E?u4bJh`um!?-%+{-uYDIt@Y_JDQJWE;LQ?{eJvqUcQ)d+qxg=
zYEzw}cGrlVmFEBd^Y(v+nq|RQYjva<s*uWpRQ(A5q^#8B68+%Pq!JL{GdD3kRX;p4
zr6fba!pK73BQ-NUqeQ{j!dTxqKPSH^xF9h(Ro^AGEHgRPy(qC#-zl@CI3TsiIX|}`
zKQA?}gv&zTB{exeB{d+iD7V<g219{@1;nIc1w#;{G&ippY*Ro{YD#8uNq&)nk)0jx
zea&3v<|u2--d;B3Wnkbryy2tz-NF~q(oRdBG`OiSyl*H!VEsTAgg@|Au<v08;d_kl
z8_Ho)ANU@~5|p~fxQ7|6>wvWo#6*NPBsrK=1v|t<yi)HOpe8<$<%GEprVU9BCIxpo
zLK}t@lCSz$NbweCU|@5)I}^-(@X)~YG2H2Rq>v&+nGqTzM0pFJkKyrnZz2QKeMET+
z7EaiF43Ee69x(S2<t<n^!2<)y$A~0Iwd6Tjj^TOjL~I>8qz*quz72AB(hv4cEY4Oi
zv;>t0LHZ;V1zez_06o(y5TEJ6<p^e`=Q1?Km+KV_O%2UZdKz!<a>j^!{eQgh+XJ^p
z0s>bQJbk&>`+Q!0P2Y60iRSN{i5dTl&bEh_&4~DWp!v$xO*TrsU(%=j`uu$VB^Te*
z_t(c~l~tt0MJ`&_pwM2#Wo`Wb{ksRdiq<SyaQIWztK>iL&b*14A6xNz?%c?^i!}5Y
z7#J>?*|sw<Ff?3XV_;x#l4f9FSjfx3z|dmGz`!7Ii-CcGBNudw%N9nc8ix$f-QplM
zNLtqQecZKHQ+>I^w5hkE>k=0DhlSaRUe)1pX>{n-5YPy4t=fC;{{86ag}y4=qIh#(
zX;lPfNwO{i-NMNs^5WHFSydJW1_ihs0rnD>EZ02(MLf6tnX1p1`ZOqd*Pq1H$vWNv
zYfcOPkGZ$+&%(bp)74^Ux$Dh7{PdFZ>HT_}l5AV^W$QOC^xOQl>2F5qt)=NVY;|Ub
z?)<W5Q{gt%>Ct^j<_GWI-MVAPmq!&x-!a^px9&#n!>7tqPW9LPGz`}Z+xb)5#(C!@
zCjI!9qNSlB>6>NkV|QMXIVH;P^!3}V7g+|=y{_KYeCoyiO>6tZsQW#ppZnI$l;_#H
zkz=uA{<J5r>jSc09LRdQ*~N6L;#5(O^l4LG?>C)Qc{c3ZwS9%Gt32{AoUVT+yX5-I
zc`q+-3Uy&v=<DpV?4-WV*|Ym6goi}c9E>S()Dk)@RJ<``N=N&%M?x#F=ycDY`m}B7
zq(x?1cE($Myzazv)qPsqyGL6#EjwqHev@VHU;AsSH~cTe=G@d>-gQ&&Y_!?Egv#w2
zdQ)|e*Ofk<7E^dy|Gs;y>h9R5i%(w*y{fZITX!Mbwu29~N~d1Ac#-dh{C}-@p748`
zb7!w!=(2wItG)X!sfFBFuWk46RopkLvwIk`lY&p_9y)tBqUd1FTJM#ex;q=6Ud;Sa
z`bhC#cGbcVZvCm!JEllkZP|5e#in-m$or0^&a>m5Uq3K+-Zp8sNl$|%S(h7qzPyR+
z@@DShPkJ3|%JwaAS@ot!$b9j=!*^f2Oe-ii-XY2RXn%lQ+@tups{`L>UFcr;@zDj1
zwyL=+)_FWl%D50ObIUeldEBg$j|(e8U#^|#vgOMC8C9k`JKC>ZUmF)bE#=F#O1-{~
zr&C_N=>B=;TR=9uy~Ya1v^2T@o)>huTzVZEH6|Rp+I?YKe8{fH4!`~-NA90%6&{mh
z$*6KEXv6;WhV||d3#OmASZDWWeKfPaxqr5oaOBy;zDrE(KCpw5|8>`>u!Fy3)$6S0
z1ZGWhX5Ra5-`>D(HS<>UEP*G_J=K^&xyAQJsmkZWPnxafdT(EGq55{~U71S_Rm=<w
zPP5xibbUIyZHoRj`TeR_%Fi@t)c4j-0Np`<A#LOP7m*Wh?7DX`!(;xmb#Bb5Yzz#g
zbBpWNy^eA0l;GQ8KIsS>$O*TW-mAZqaUn2)fx#i;vfkHy*)j55Ac<MazHO2G@&%N0
zoMyLOybM-d+7KC3axI^C@c~etT^2h@NBTt?*p+MB%{&bYUTT0cTjrd|NxgHVSs57o
zmYm9WIdSr2<=3m>{_|{JK6@r6Cudjs>PkZc!|f}J7A^9etR`zwa3I0JXO6|keZSvb
zz7prT=};&K1H*xtAv1GItnL<{x80t3d0FY}Yo@ukzO3DTZ`1r;6(5uG^WU%E_bcn+
zq1OC8AKe@s8<%}MrE_wQ94iCESEVgKfBr0ecPBD;d-iobQ`4(;ua5Of&#(F9d9kCT
zW5?q@>wSN}Mf<*;x^%g(zrQpC!wU9=XWgbfovI!F?Zw5zbxTeZ^h%qD-CnqG;memV
zXWh~^7FS|mV0fOi=aJ0iWxk(3ed_A$+<DBDmF?G+Z|7K8O*L+7FTQv8Y(_Ol?*b+0
z)j?OoGK^>XsQb-{*io?X->1#JiHV8J{pW}2`+9hLZ=UN>s-UeMzpXCN@olJ*v9W)y
zxY$&!uB2*?-aVl!I9QoX7db3&c>3b&uB@^gODo%7=d9oV`E*(zbc59F+0i>aYkz%-
z+?q8tL&m<Y=KsIHcXyXxzw*y}QqGev8Vn2tN}=Dj$l6wwJUrAYC@A=fmECuiiQr3J
zE3044{B|6ioRVfa5ji<;{(ir|{`%|Xesf<ve!O_)UL)_A4h9B>SMC|v_xAjpsO)~K
zH)eO)+FKt!eVS#SKQHb3DV@{r*0HVPW?-1pcDb%s)ciUtD21-weCJd1`i)E=cJJhr
zn+~8bRoIegyCqW3Wx;Y@P;qY}cPnLIwFsDb{!A+eDE)+qJI#hNmz7TPf$Eam{s&Y`
zY_n>Jt^-vZv#*`pv`9m*Cea3*wq~iEPCD^25S(01HZSQ=1jmij>|@T-wz(ivmsKK+
zf{28%Uw|dwDn+Jv34U<;R+~CkZYjud7W|8wGu0+%US8(A+<$)D_Pp3`G2J)nXXo43
zAMFx7c<|t&y9=G$fBdN6ZQZu%@?ubyX!s>~tLobu%ajunmd~%-b!lb4&8HJbI)zPl
zc&Cah3EW~}aIodfm9;Kg)4f||rTO)zpjcU<zVPhEudlD?-`=LHp^@?C#>Tg|w_iV}
zH#4;gR2wcl`|70nd>PB4C97Az{`U5^d#}{i#KUa$_4UX7IeEUUd^?wuD@&oxZYFEe
z4TB5rwH$BZX)X5s1u+qkC1$(I-bzVHRegDJ(QmGmWt~@8*uI>-E(^YCO`JJ1Ju<Lt
zp~SPf`lrsAd}6wKCE8UNc5Bq8i?2(szPYjM6o1`Z%VM`&8LN^PUtV6`ey6CrtSnB;
z+V)iXEe3{$&jnY+r%sr#q4M*y&FSa={e55m{qyJO{dIpoJUo27S6W<D)HMAZ=t|oc
zU#r5yuSaf9yJ>aLMDUhM-cLpbhF8HE)rU{j`2+<`x@9oaXV%@No45skybEMtc;GVU
zlQe|ska2m>rrEDAL82?F>|^$t7n$Jlg*UkR)(!ziaQg9mn`!*PGz=WsscD`UU+QdM
zwRjhp8#_to@>y_EHH$xY(jj(m!1}&EGwIA<J5U3}_q9so!#a7e+R`-7XP|gd*pfL{
zMH`&-IdY@Yr-?8_lFhQhNk??;!Mc7g^nErBqN{RRbR8&y85a6J)`7;X!j{ZAk#Gf*
zp1ul%#HjCWo$Y@fWUpahXec%eGd-AMlzVH-%P%i4zrMCM`{JV3zbc-SgoK2)<=tI%
z`K4Qrgkix02j91oR8E7^7=wCn>W-H;H$VUM^t7~jUQFSnjzV?+d3W|yeqI&2`q}yU
z^{=jI=C+!3g0e|NmGCXAvNsY^Qc*9L@JgG3ZWUgCot=f{%d4xePwVf$az$@u>decF
z85kDqYcXTLbm`KeLx-+x<0u0caH`q<(#zc$85)8O<F-SJHLa#5sg8wfG<f&iy=rFC
zx(IrwVo9uXbVf!-R#w(*v)mZH_oc-;+S>8crbexGNlTlTF=f`%NkW@%wJp1+B?7zU
zx9Ce%tf}?3b<a$a=G)bVt&h_^T~t=~?RtFu-viA28ClPDxBq$I#KOSvAZFE@Om7d5
z8+$50-`t%3|KIohzkmK*8^6Eq$A^cHkM(wUb#?Xi-P@iY|Nh?IqdAM+`}1yXS-Gt2
zWYKB<eaE;M7_Lmd@U3m?-x*7msBBF%kXYt3bJ5wq6H{FSV|F}cXJ9BWI(JQ3_2eei
zu%gra;PS(0bIQ(ZjiB&j02Ls!eLyYH7PGaJ*OZGsgeHwyw=N%prh>~?=9wu&N+&bj
zV10Pe=KBcbe20wH%nN(D1tAFrY@@=KtBjLepyk@U$Yr3?M&Oo-|D#us^2^Q`6zU8M
zeSfR?^)oRrI7Q2H<bvz47PGh7yPvYhC$oaes;IEC;#g>sI=y439;hI^%2?AY%D_<I
z<;H$FC@3f?Ik~vF`0t-TK5D@(E-ks2{`~wLz9vFYMn>nBtW`-zfB*Fp|6<-`DsN$A
z03{X|5owc*fRd6gx3*?Ke)MRXZgiUc*NN_OGc5`iUHkSt36>yM8r?}rO_jB&*bu+J
zZjo-=qPcVDuKoMh(7Vg;`J(5bFe=as{kCQ4(xt5}EfPFz;-`<!XnXJ=!B9;>;egrU
zUteEu&%G@sB4SeZ=Ek?Tx3g2~RXm?*u`n<M^gGQ?_P6`_<itef*x1<Z`S<OzuB_md
zHv94Ww{@LY!UF%?_dWpu%;x3cg120nFJ%doE`+q|S3Coy!51@)(^Wi;BzTf$Oq{5A
z?8e)&3AbL{+PYez9$Ngx1%ryezXu}06|BDg{u>Lfce3gG^6m>=!HrtMhE}Q>8W?N{
zT^)Av<VlbxbL;a$o>*=zd~spn<>mhOi%#oG-7NMD+i@S1jO_aS`u*nFSeluc85&-^
ze*JoiQKup35^(dpn2?Ywb1aMbWGoh3e;peen|^jy>g$T#56?_HzeNyKE7Wr3PMkP#
zb@=*i@{^}bSz>mDXSw6Fd1iVp3=9l@$A9iS)&<I=4HuSG-uc7~D(qf4WjuzYuFH1D
z&~m9(Xg;J+d~19ftjt1j@#MGtOP8N*zPy;BVb-s$N#{<UG@0$a&LZ8dEpA$B-;A`(
z<qmF(XYa3{aPY%&;~AS<%|M0n3P+`ll@%40)#jI8mW2QEU1L6*GxyfgiA<VZK>-DE
zd)7&r@%-I<zI5Me_niWa3<1TpjL(Gf^Y3e`nJt)gB-?Y(qE(m6qxqd?FOm4+Bh9eD
zt^Rb8z=GEBDaLUf3zmaYyM;6;+3xrlSC#o@mg)Rka#~$R1quK6R+oo=e!08+{hyD=
z->*;Fo0++?_V>3v-`>`LK6`S0-L6$u#rr-ST9JIbZoB;Dwb9299XfQ&VpaX`+lP<$
z{Z*5aHd|v|`RT}39W8zR{GXrtbNJKG&DoZJU(V^a>Bc)T)90BnIK*Dwo?kDhlf(c0
z&COH;iCbG=2b^8r{d2YaEfvpQfx9&qoxizR^6V_vxaVKP?6;iUq$5;(^yAN;mD*uC
zn{9h~|GMAa_ICZ}IE%Zw_9-Agl%BW!{-^ZZoSB-M$MbeBomsJ??yoq%?UxN1Q>IO;
z`{4NK-rn6_-e)IHoT$Iw=H%(q+V=MK_x5b(m$zGS`Q`0xx#F^aZ`|5CzjMpR;^+Og
z)!*c7DqbAxJ*gdDx90N8Lx*PV`SmLM-#<pBtu=qYrq$Q)pE6~N=j4AE_f&ebO9y{^
zx&Qya+qd)2>*(oeX==W_|Nr7~d3lwz(`U|jcyydUdzP1*do!!!M%DlSzH^0#o4Zb2
z?l)IbPA+l(6IttRcWcY9Ys>Y%-~T`F;v&|h{y%^IsQXl`^_;vc>52M$ox58yn=`g#
zmHz(mQTRw<#GZ<aA0KPFy0*T2`SRhzhm+Ng{{HbJBxaVy4EH{nS;pzxriVXzaZ&$H
zY54P}r|o||o2{EPTiT3gp2f$n2M)9)1uplWFVrn`n3a3dG~MV;<?r(fKm7gkN6oh@
z`-(=%Ihn~8Z=BotK7IHQv7_MR3`6C4Raphs*WKN`d2`zNc@t+<dAZmcK0C<%duK%T
zk6&M2{=V#QpOQMa_SMQ6$K|S<E`)J{%gn6_zyEE?wO?*I!*O}>$~Dc;jPBlQDeGPJ
z$Blp8x^>_0-%o#htaP#4-hhaR4W+ODyY<N^AM37o`1bAGDJd@>d-}}z{_*(#ntwkp
zDs8N+s?v+y6}0|(_ZgKY*OD&{ixw?1Og`3qvrqPS?!!Z@-Qx9^HY6TivgG^y%Jgqn
zRvI7q@%Q)luH`0qcaD5?3;Xru!i5Xv_kBx>i?wxhWDFn8^qafO#pTYYce^*=-j@6S
z&1Pkn3xb);il6IU>z%VZ=jN&j6Wo;Uh3?V6wf%nG=k5Dr6%RgnlA^A1<m~+ajVIQh
zJej@Br&3w-<ziXuZQV!IE=`&~eY;1O_w+i8tSc6VpU>OB|M}cLoP~wOZ@!&tPe{Lm
zW$o{8;)W(_X(#TMmkaYBE%KXdwKd~nP~jK5|9}3A=~S58**W%zYv!Ju^z>0eSDDY5
zfYQL%*Vb14|63Wn>`cYWrJd((%`0AB5`8N6@7?Zv(`+%z<YUq4=jX|qy?HrJH$VH@
zn=r$DJ9boDTvWeo=~6z)Pe+>h?R1pX7Ou7F1XXyY!T0xFT))St>`2GO=xsGum-*ga
zupq%Z;?BQZN5_Na_x~I}dg*mo(d)HmT_5j$zpd`aL-nfH@2yQ!Zrt8mojzSJ*7b={
zuHZA5IYGzWUAOK|N?QHurBahlgu&<S_v@~{{E~h?t*ebAcX#=FDf_yn8CqhuH$IMi
zb=kUPNA|BTEAQ^Ue|f3*_M+9ohVM>HbPf#6mCZlU$h_ahZCgOKjC|FK|F`pJyL5$G
z3+~;kE1UWEH~$Rl@4BVW_WxPB+aqVu#r5%9I3`}TJa>CrZS{{23)AQK7H+&}bMu;|
z`nOwU2K)cl{Z601R!>W7&!d$o8xynk2)p~d*<?|bmGS!O>g^J3ZEdC*4`$Dt8MyBF
z#0$?B&1(Zy^8t@{xrN^J4Ex6Yb=Ld4xAs(aA2`rv|7Sz;;Wqs%pZoQuX$!@~)meT!
zXZ?QFzoH|-Z}PPgv#TmA<Gx-N*RAqTS*+?kO}h7(c)X16qwrAw`F6G67CN(+y}f0b
zcjrWS+)R~86LK%Di?!dDef?m9K}?~r)^7E-qMu<eweq$}#O{?1nOFHNQt;EM-tS*@
zUh{bS`_Hzo_Y1nTX~TwNzrVkqZS<7)IQN>8!*}l7xzcvxnv&GD6Wte9S}i>@>FM1=
zXG<9wN<;4N`#W9d=YxKGzp~e5>#deWZ?6tp8&&tvX=8@Cn3#<HyhllI<DzyJ&HPpQ
z^Uj?Z!!O^y>1mt@pRXizuTS>&=1u2zMVx<E`sT(<|6J##{^!r1=jP)R?0kD;<Na@M
zZ&w$d>wA5@UQuf0%H`$n{+#^OeIrNg?X|V<C2T4(miv{<+g2T^I~l$G-}!Cve0S=q
zXWy^;{q;!aW4&ws*G=>9T{?Ywck=Ob(c5yw+#TMO7JXVe_t(4Kxt5le*DSA>zPPY)
zRchDc$@AyuTQ8Yk|F8b}`T6A=%l^sQ{>t7tlbegH$L;!o0}heXa;JakQWX&w@0Qgu
z-+W_|{=OeECPxH?kFTx$-M97or-D`U%sjX4srf0T&EOzg`u{KgzVG+;ym-O5Zr!?9
zGiJ<K*e$MK^=_x)waE*2rO%g@6D&M^W264r+26lCIOs3I)AsGHb&tIL!+F*3s{elF
zbZ+Mh(s!x&_w%CuK8ssbs*aC2h2x6%T-vi|kGp)WNACTa;v;u<c8bpbcgFbeGT-jo
zdn%J3AM3rnReN{Vr&jSePmhlO@9VeUsVV*uTV7hWF|O+8v)Pkf4_$uwMNv`l)$vau
zN;!YOT<%Xgt$nx6u~{zo_X-;uo3M3%-t?L;^PBl;mx^ay-M_-Z%Q0)7>(&4N`{MKY
z|FK*0cdy-gV_x^nm+K^rmvt@C*p_%^hWP4R$N&9hS5Z3`yRYWvia`A@FE4+;v-8fz
zWcL-)e_kwRo^76=XkVQ2WbOC6*R|E2ac<;(d;9*%d$$f>|Gw<rUiq45Gu5R{KE&=Q
z=*)fg@p1f2+v;5s`egxc^4G>mtPWoHW8+DwNmHllpWeD--GT*d$Nf_F8sy);{C)e2
z%5>p-Kckenrp%mqyl{cT0=H7{s$ZRMy@ys`<vvv2Z}sK0{_p9!(MH+VtW9_L2&U&w
zkH4~(>E`}*U#emg7Wi*1J9u!*lqpkg+=%$PNo4X#5kbMk*(!(fotzF`TN~}FCuf*+
z<Uk|y)&h=GRkuJ576z%}<FbLKvv0gobYG}zXIFP&f#b!C7qhRg>+SB2-uC8_?bB;(
zqsu=%IeB)rdAG;+6UzN1FE1_ioGg8R=hC`my`Z+*752kzw(;w~Z9jGXO**utY=7GJ
z(UE{Hn>TOH4K~lYVNmeEVQ-wgfWU>-;p_GH{|Vx@Ui@uKp&}Cl!wUC>y1Kf$Dk?5}
z^}>0Yo12eH{9c)un3!d4Vq#)z8!K$RxUTKuS%+9g2GggzYJW)YStPT&F1$bNvvb+?
zMWvq~tW@5$W#`s~jpxjKxwx_pI6^`#ZeDm`U|chs`OA{<e{Xs(p2(N?z3kNJl63mC
z_4~JPOGWdaYhi0d`}_L(=3ZXbd;00#JieIr)$Yc|pJ%aDq@|00*mdQZzO-J=Vo<E~
zO`l%x=lAUAXUp(8!RxPw|GB1?(O$-tVzTS!Z}yw_&Y2c`%}7W{SRJ-@(&WjD7cV{<
zu!Wh4DJS^%mzSHXzP`G*xBB_BXLWzSUOzou|M^u0h5|db=8cJm1A<KdzrE;ktJom-
z)02}MH*W0g?A*6+pW0;49!a~JA3F*kFIu$7Wzy~K`SUq)lb*b|xOlc%?y1#`3=9vB
zwQM_a;>6X};kWxey}Wk)u;)KKMKjo<hJk^>+-}QNo!Yne?R?M6-rCa36sQoO%*Dc0
zay7d2uhZ=P`^$6JKeCEhzy+RCaA?%H(A!x)1w4pK$-D)4ZUZsZ0iN4HOhceghk$2C
zz*@j+z~c*GE#N7W2KWq$!`_rVdD*8<YEDR9`fZxL#EZ#Or~12^cEdasGBIxb=kMRI
zg=GkLt_^dZy^AYuN|ak8^mg!Fzbf2089^ON*u2XXem6eGEpCEW7A8ra@@n0dy6UgT
z(Qg6Ud`dRfcUfJ!r1$&rqJP<QH@=ZynzN_$q<DHjdYGPHfZo4k`%6~q|2k>Kw%+~G
zU0q&i<{G9YSy?FhZFXRt_1oj|HhHPH9~XU$-`!cpy~kp5QKsAJ3V;9YhYn48bv{1v
z%+lqWW!@X^PwMjCQ2#FVb9hA2)aq3s<#pn_KX!SS_W2yG)%@>N`on17pTw(^Py4Pi
zc)oPm>eUOETzQj_cl4r}Mt$1nQ?@~?b_N}N*tBlTv{!QXUdi9K-<{3p6*V{Z^6Rgg
zbgbk2eu_VzZ>iQ-?i={;$oU(qf1Ql^s?vUb^+Q&xs%ulHt+*V!aKiM<uS?Fm-@o_n
zT3d_Rm56;4Q(nh=8lK)H;dO1{O(VCk<K2eOP9L9cJ4N(%#pzU~YhRQj{}l#GZ!#5_
zy7lR%(#U0}U;WW5%e`G8zI)p(jc)x%XO+Uz=Px}n-|MpIx>@Jm$<O^NKlfbTs=Fz3
z*ZukP==kKP4{rDF&-r)y*oxfPovN?j$i?ha<$Jz9$-1=6f8CBJUC}{>y`gV2kE&YR
z8BNXc+{qmGP#}EHDsA(Pcjj2lUA!r7&WmSR0{e?s?Y~siU#hoj)%@p=9u-_)wX=1q
z@2Ypt{_cGIvf}aj)TMg6R$VJv`t*g3O-y&U_v+1J?9wZC-%1YZja~ieXu#R!FIWBV
zT6u4m%=M31aru1P4}1T)zGcOdU$@s?e?5!s=Y`8*_d893W0XXv&p7(QX=O;w!Alxq
zydO8XXc>AhO^f`ayOHPZ?NomKZC5`A@h+43m>s=-J5OoV+=G|I{zt`az1H^k!qcGJ
zw+vpC=3SeXy5#G^t#6YuBaU}`pD}&<ZPt&E&)m8eUBBYhm2K~WZhyMI^p8jO??=wB
zZ(rTzBR+TCrq&%H+iq;SI`yx?^{IO|U$xg0caQ&*8*6rdsbtKXX$kXNO2iL49aWto
zpTB*=>99oe<#(&}|6ba7pXc_saEbM+C%$55H9c|W%;UE!Q?GO|Eu1IbaUpE-+&EY9
zGdq8(?))i!PJEh($V~1oZ+$**?yl2PN2f)oS;tK|VYSX}@9aSRHn+u&xg86)FJC?T
z;)AT(jGx&TcJF-E%l0~6a5GO;bLtA?S6`DdHt=anuQ#67E9k$)X3LqC`rQ_LqCw*_
zmYtJ=G?lk&C?Ef1ZoNKY$(G`u;w}N!)8m5-dn<QH?y-&8YulT2!{Ws8(|2FI%==Ja
z-1YI%`rWA+U$*ewy=u5_+WxA&eUEuSxwO7X<#c9btNNwSeaoNEJ$J@_a`2SN<p<3|
zRdns;%j@O0rzM*I{JEp^o3CBoKf8DP?&aN^w@zu1ByY@oZjk=1i#P1}^5NtiXZ51K
z<#YclE62aJFD|}n&iQHQ+qC}^7|tiupBJdtH~jLg;AsIP1B27;(y6ukDxN>=nd@#;
z?{B+YW7-rk!AlSBmGvH${@G&wiI?}oqcy4^U*0vCr1Spg*EjWL^Q~%(!fp0g-dG+#
zz2lnTzlpv1kDjQ3)MP5HtKF@i`?v4$&FA_idrl@Fus!=OOH}63`=h6sKw}$Q9!;OJ
zCN#Rvx^~-w%E`0my}P>T?OI;T-<%-FOC?Q95xl<bjh*O|=Z3#7T3c=5SatRHWbg>^
zKTx3Fi~oFj{ql2P_pN@J{M~Jr)XytYU|W5@{d{C@e=js3#A;Ff>)p}ji~fLzdo9Ji
zmQ>FF7gKW3M)TRZ4{p3GY#A6<IKMi5(lIj7E~5NFf6t$Z7q?Ho0Up3xd@axSX7QId
z!nU)vcjkCpWn^%e`}oC|3@<OQoSdAzymj;E&p(;c)zP70et2W@ak<(r7ag0~eCJpM
zp0=+17IU%fy?@D0+b93}d^Ic?7*=%4eBE;N`0;LsZJC$V412n}war5(sTex1kK4Ot
z|KyYR=U#XjBe&apQgk%~14BA@Ze(O6JHOnU>+9!dbT7<EPfx#n{=-3b`9ELR*RQ?t
zcbRE=ard_O{=1jwMl`Hv|H{U|a8B&jrAwEboSb;rnlri+3ko(!B+st;@!?_a?QOiW
zRw2KuXY6^r!*BWP+p0}T%nS{?UT5X~42+8U)nET7`B;x+){@oB4mixeb#LZ^1)rw3
zE=w29xj+BkgLtJVlgGcBrPn7lIzVRJFKlhwcHzPW<MeYLlT;?nlt@cS=`eh?<jk2f
zlhytEBn+LloS$#MUc;-d?%$To%QEXV5#z&gJ14H*_bYVy<-6C-);v;)`M;ej6x3c3
z;SgCNvo|jMY~NZf=V;7^!xhiO#6<f)ADVB?v#+m9Ok9|@Ue30_W_Re0{q@Y{acdYD
z7WfsHe0}lc<YfDwPbRa=RXFf0_nE15j7Q!MG&xq9djH(hc#qRsd)}tmpW<O)cxB~2
zKeM~1CuVQeR?u+qlA_N&vesdnf0sS!k1^b%duP58D2UF@+%Nd>L#GVC`QfvQc2gul
zY1TyMmfy2&8L!eWyw)@Zr?(Kld#zvI9J-zN><(o1^TtH`q9Yqr!xh1^SJPzeCcb`|
z$HD*5t{t2X6W#ruZOM4F{Q76!k6?jN%S!QcPeckgLk6X{EMBfto{@cV3O{u2Ra9j5
z(FytM!P9HL#<NomO{8`>OM~sU+~PUy!ZR<(u(huC);6=n6TRIT85kD&9zHW^&E=gR
zSRvCSZ!e^US(t+-cB8_zPR6u?mtRDsi!D6s0ny#tZnpVN)&tPctV70SGuU`^!ZZ;G
zbM`l9@C4g|l@hW(-kzSFy}f78p8fjyv++zHK|#T7o}g?0E-m%`TD4c_G&4J&j8RI*
zvTv)de41$nYTc}m$I`&gnVEZuncv1B;Q+&2zv=Vm|Nn59zx>sem)maVT|O5V37zq=
z=-1l4c+;j$d~!B7*2mjl6m!0K?%cU;zF$9n6zudh>FVzG_V&KIZJU!ccv#eL$*FnU
zwrtrlVS+&OL4{jM5;8J6$5>ccZlvAVlzMuOWwGBpo1dRf>u=Aw85CR{ddgf0bYY{=
zt#vDwhh}BHdU0{_`<>6{rJbE+InUnU!t!n9Y8opVZw17}?Ad!Khkv19NDEV=RG>n@
zf?52z3l}a-KR0Kh%E<(Sjzl-NHi_WEZ5uXhSg~S7{=T2jx)$mp692qg`vQ`to!RtO
z(d1LuLf9<v)Wz3due!N0^r_{M0|yR-t&LJuSMS~?(Y5XG&Wrc!|HtO0q^E;IMK@~8
zg)9H2du>`h5j5b^@VTI*sswi<Ic#mz*4p1?i!ZLw@bdBT*`9aTWNUbu@psU$@mIAi
zu5NDY;`ZKxOvZsOK;5z@d|JK>xb3O_Xv_VM2dAJ@9;Z`WC#F<EX3=h+NsHw9>Ba({
zIw{MTth2Cp_G>24I)r6Yy{7Fx_z^lKmnrVwF9gwYdLg)v)No;0?b2%(j=`pFw=VBp
z4N0Z97oN@8DbNV&NHttomYKTTof9&No0?_^nFK6V*fMix6=dRg{S=VrLGvXRw&1i}
zs<fr>D<s#&X+kGUZlyzK;=;n6W<!DtlpU^IUd#saNQ1DU)r@JACJ9MP&z?Q|_4DWH
zMl+R^lyWBDtA4+iSK3U1hi&o2ACJ2A%iiCMwcedFO{6()`E~I6hga?y-TnRY=<_DC
zuPpPOoj$+z+U3iiKRi5aXlQtQTkhu%A1?T0Ox_8eF)#{ko4sbunr3$XZ?CWWZ#fF>
z8tyKCuO~D+V@uA>puj12?!>%(6SPvLct1Y_LqNP!bW~K7heyZ3go2GVc4q`Yi8y3V
z?%7$U=J#ug7rXUt+3cOR`OI}tA)}tWXPWx|ACLQspP!4}l;T;M#s`}(PUxJmj;-8$
z@vXLH0V2@LlC$i#w6?X)vn+O-q|$s)p-oa!GO6b;PxZGqGYt}*l9G}(r=4B3dD)sZ
zHIZRiTZLxMtXwoPK48)Hohx!PUafTsg!U%1+}B?Z-JHDo)aAvEjg4!gwtD&biRBuK
zyaliAm|y?z=TY(aIp+EI-fq9YZtL9b^W>fy=Q1!HSZQHpYgPH_$&DK~jvR4`kB^^x
zQUzR6-`P<Z7#JA5%tupCudlm1`1u^u?6A|*bhirKQUMns{tI=DjEcU#y8117(xgdO
zjxC>Gx9VoBQS>^wr%s^x!;m>2r3H6Dr`zV=TvGr|HuATib7q<HkomT?d>i6yPeB$T
zEc<vN4K@uNxAF*7uo9O1q?T)NK@(P#`pK?Gj}C##3kIjz%Vw%Z@>oKWp%i~^m+F>6
zh;>`mT*-Nv`4~D~j7ZX9>`t@6nHQ8AVd<9vvU(wUE=MkSCP(0w$@-8-plLOQEt&If
zp1HahTt)o75LR}Ye;sIbi{H@~2~ilWkPW`Kw&mWQV_6L9RUd3-_n%`CX#G35tZK@6
zP%ZNOk;a`P$B*+%nPgmE=9?rTE}m|`GV}5>PEO9lZM>In{hM(%2IQ4j!5ODdowBO<
zkg&h*uS+zKtF^WDZ8K9Fn?0qkuemJ_EMC}~@4~>q@Kp;j<9AW)FlfHd?f37)p#1${
z%DVXQNYM1%dL@k&jqUBLGfcQXel0N%id`$n`bZ%F()|uOyinJ~<ja|v#*<VedDslk
zoH!wnye`!@GV<r9HCM7!jf_7Rofqva%ky)zOZV9NJxq}Gkp)z5ia#{vr3gz%+*lR5
z`pJ_NP_4kn!EvF^(@WL$`J<!@#h^Lf2O%<Zo#)t87UksRBqc3czkdD66rtocetEmR
zJ3CgaSTWbSeBYN#-ami->{_%Ye*eF-=J(&++q+xr+i{(fZj0lV!)8mBl$FER$K~3q
zX=-}rmb|&~@pk_Hs}KIoIBPV$kBNcd`QsK)nF-E}PP30qjq>jg3I`XHCYzTaQsJ3R
z+Mv~q7P9HPnb$u3qOp*dp&(b~<ebTqGtH)l{MVF}tcsjwSu$(sTqeohynp{3*$&S?
zmvBz()*8qR`2kbG&a;OPpT502@aucURFhX{)0}3PWiD~(S|lPeM_hkH8}I)w<zgTU
z8@l%UdhOX;yYsbr)|`sK&gs|YzdBNS>p~bP)i+4}dV0#SVOd<1U&VY-?Yv-J#ml7|
zv#-@;Rj<%Eb)fO@_jh+=&n|y|Z|~>h^85F9eeDv}joYK4_UvQ&yh<&#v<LhDeeIN(
zIc?gmvbX75_ny|@WAN(6#`|xNm%P5Val?iUX4k%M-)~#<=0^UajfsbMO;-1hIlbu9
zr%%)L|DX6)@a#<H?{9B+o?9=r{Ev_HLSBXd^Dl32*I!-rwBP2_j9&%k=f$!$FO1#I
zceQ5MjQuNCtO#Ddd$sXq70;xHS-<!Hzq_gUd4IQf{hN31;(~&Tetpq2-BSDU=<|yg
znOA+~zMf+y^}nP`;NtT)H+#~~Dy{!qD7H{n;efr)nwO%_r=&)vhvwDP)!pk7Jw31P
zm*m&PoHzFC{;xjza-E#%=Uxtm2CK*Os{dJ~pF1;UO7iwQmwaqu_W$c{m#ez*>Ghf|
zUz+)azQ4O08kN=8(^K>Fsb^eV+|QpsKR?@B`{RS-T)+F<a(BOYas1l4zdkKIg8Qq!
zy|JzMaG_Uva`?JG5iEThHmI%N_iNVv`UVc|`1-v!@88!~RZYFLq~0X|UQld)+A~Re
zdwX+p^NV86rEiO$o$>Ovwk>(FK+SiSipm+Qk{1Vdzuy-c6Z7QZL(959+H0fk>IK~`
zKF=#>@St$xF?P9%4f*$9bV+NPy}bWF?%}If%QQY+S!sOuu=1Pl<;VMS%kSU)+SUH_
z_xt_PTQVANnA+R_=M;|1zH~%ro88Zpm&<&mU7T}Hf+hiXiRs6c{HgE?3{0%5s;a2?
zvBdMEot>TNbhW-$6P4SaotgRe=~RoVFWlvKuU7v2)W7d%TDQkWUTHS}IX|ir5}Y?`
zOpH0Y=t#lArX{JTr@gtmJ37QsW~t}oM^dI-bB&Ly^zFB>kdu?+7T1$BPCF9p&-?Dy
z*6OmdYj18E2L=0Ub}1dR`H^5Rp3NUW->$a)*UR=bYc~7aihjP4>@RRji~ApFiNqCI
z+!K8v;EBF1K3jx^pV$8RXg|NcZi`3Gym|Ayr?0#6`s>b}JC*!h-1#-Mw4{vF_RIiH
zN{H#jY^eCC&MR%^<5l&4Zh4yjTr20E`}^zHS9m=>=KJRQ?aj}bv#-_sdNR3xTkh?D
z=d9lg%{-rBvhT~K)$jM3mw$ZJfAz|bU$579?NL(d>&RHNH|wgD;lDdOiv<O@^GJW&
zlc68`EAeQrj}L4PP*qh`G=JmAx7+Xkd7B^ZVPI)_lasUX^YeOzMJYv}W@!fB^YHqW
zalG%X(#Fm$Po6%VJ3&A{%ogh$Aipbk4zSP+a}H3#9&-+G1=cx0r44$qyB6I!<hm~R
znoiNNp6%!6*;?n^xU3s}@7kK1Ym;gU3qLM${V!rzeqw^UT+N3>K|{`5QRmr*UIsEa
z_}<)SpL_d!=GB?O%Zmf2oKi2%7QSV=>eO%RFK?y)p3+Ws?~&M>dOAG!))rnau5D||
ze{W}HWxZeXSw6c?Yv<Q%&lY{WTOMuy=Yz1IsY~=(v2SJX@7-ML9X|1fOLWW5h0g3N
zA1_{XYpQon(~P%|`#~p?{+nNaZ+FhkNxrkq&doHwU)MHS-M_;@Q)qTZ`I{S_TaHRh
zw7GNVPW6`^``<hW*)~zu>W*pcuPg8FzJGaXY4pyoT@vL_PApupVq0JT6X;x_^?y0&
zT;ZJ1YGGV+g<p2RKex_r>9*Y8-#$EaK5r-eIBBoq{I$h?GPbt^|Ni^^c7E-)T`N`u
zOj0@SEiAq4n02AYQN3=h6${sfufLZhAtiNfL1TVen%hn}cc<B|E5R$wN<BY6(`90o
z{`cW<AFuSjia#GWEm8e+|Fr(`dzH^)ug3RPbp2J|nB%LjfBuwk!^Ioha;raX&%gig
z?{E8pe}8tKp1y3#@0jVoPF%ix*lgdW-Z^%7W(&XVv|`^Kbo1%dQ%|dxuio)HspKo)
zluu`j&v#7-&)c&+Ju*F_s_NFCpT(0VO>1p6y|=&q{uIsp7|r$Jn-X8GOm}R_5#-H&
zvh-1jZEl)hKNCZi&vgy=xhd1r7p&f2zPiKLds<DwGoPsKdEZwh?<(D$es$H;@;ic0
z-@OZrh?p>OqM%^m>G*$_YM-7;eSF+s;G~1C?W?zMYro|z`z0bcZ<_vp4ei%!IvQSI
zTl@0H#>vg5a&|Q@md(!N;^h^7tL)Bap7G%I<I4wb-(J2zA%3o+jm@GZOH#hSn=5No
zBI3OH=AA8>J91+~b5ka(`JSKSnSb{e-$!%PuU9TEc7Nl1``X(7o8K;A-hTgH+Osp6
z>V7ifw>K0f7kz%FyLZnX>#{e0{{8;U##a;Mviivr@9OV&%WoGI75(}9*E}yq-E8Zs
z)Gp?!^XKQ^esgv8f6!`>pTB-})rx2f?Yvp{tf`4<@kLVugMewNx3}(1;yilvsHpya
zf#^?1#pm-&f7@g6$+|3O`_Xr|9)v9P4HNMU>xt=LU|13SZvX#--|x*9m$f}`^=hcB
zu&{B-$49Q`ZOxBV8HId*v-z-VhP3s!rInxW$=UqiY(98lUoHE@doG_UFlQ7Moxn4S
z8;%t}FS=h>z04zO-MTzEIXUCBJ*r_Ml9jK|nz!@I{n_E+&B?j>UQO||w@xiBER%C@
z=V;|EiFiLd-|yV{^U&GE=buBm7X1OuCW>p_o#zOiO+0dJP0Y`m()m7fjh>czPWtob
z&*MkSc1E0!{rB(p#pm<?@6Nbi7X3PXo@AM!@m<s8V^^+Rxtw(Rcu(cVRe#^!uXjj#
zbm!^m>Ag~4o#xxs9(~s@YklZw)!G+}`}uUlZyhPz@qS;Np`m|AY{vb6eqXQ2?b~Pm
z_1)hG#^-G`ncf|0_0BQwm;Zn2&CSb4D>gPK)n|V_6frmGs^pJZ(-2dMD>HYV-~V<0
z@prk`wtKVKGi`Ab(J(gde+(MBde!pfi*T=0>;Ii`0{f1gS{Pq<bAQgwNs*iHtvs08
zbs}Ro-{L&c6aQG3U4PBQT)XPC&T^~C5n0<>oIr_ufob_2!O+c}YvqboU0$5#skViY
zA;5n{x!g+oIa>EuEId0Eyohl5;}y$wRaI5Z%)<8C9ZfNEb#b|&<~eD~gb5o;Ux&^0
zGfz6w(a6l6m6+~zx(c$K)k4~RZqUb%ADh{DZ*9q(EOG4U(VPBJ+w<<8oUCr1e{WCL
z)m1+~Kc8<^>cwrn_};>^$1nHpVq#c#v2=F;|DG-DOt+-M=N!W`Iw3=a%kpk)NPKXh
zv1+fKg2ICE^>OiaKbMO2IW??5J|*4y?nRvjaTbOLQ4+m*tgO#Z=C0^Hq81nRh_%dA
z|MV)gCE%5OE4J%GoAoXxx36s2V6atIN@~`;dFv)7Uo^SV4$?36^Edm`Cn?XKKM(t_
zS+#fHqwriO>n*_w6K@>hUZdt5-Mjjkt;agofB<IL98{p}r4<wH*%@aArDkyR^4b<Z
z>rwG!Yj)%@HZnRQ@q6XUl`C^^Z7JNj=la>k*9FC~dDbgG#+!+BK*w8(vK~C!h0@i`
zy}dJVq5pil)#2->rCM5B|9-uGf8B#d_6k!528Jtg?#tcP{pZO@OV6G$<HhUO*+w&u
z%y@XXy<gf~PfJV7%Bt%AzS_Oj-^G;O`{nL#$-MlE<>c!Lp(|HR3siu1mDg3RE{Tz1
zW?%?lcTy*5GgH8IiMa{#7z;C5O7|)j6&1zRe!V(b-GA54ovrQd{&THN6%-QQ-`iVQ
zSSYR+lW}Lq$2T`OGcz+EoinxXNa^N;gH1m_KVKiceVuE!n21OAk;M6SwZHmgt?%5u
zdwXlPdG4((UiC*l7Qc7<`M&<Yb@{s(*T9rWIqR~V_xJW{Uf@;l`>@P+w%>fawf`bk
zzxrYAxRhtIy8pV@SF0YjiqETf)Y;O)GEr1WSXjRHOJLkV^H<Y*Ph>s1YM*go!QbEC
zyXA9jtG-AWrF8sQYh3uq<zv~ePp9>(zrIqfyAdjL^5X71J{gM*X=kN2-~998Fn@Q5
zZ{wD<XJ=-vTeq%TOjqdrVzb;^6_u5tzm)stSDUv~l-vCK@t9j&PsTXSr=3sMtxv`>
z=}5=N$H#*gNS{7@IQhkeh4HmtL-*JHz4AXL?0;<VcCFCo{{3m-bRKZU6FPiS$$DSl
z(SFUj*5zTh-`?8l?dvOg@$B8Zdy|j%C7qe<Z>L%Jx7%&0a$)V1DN}srTAA9}#Vx-a
z8p_R8!YnEx(&3?7*S&%@>&Aw}rS^}0>?~KV&wll_va)iKV%x!k2Q4ivMP9TC+pl+W
zc9vyleqNz{_2=cqnVFf2ii&K_j$4if>}fqRqoIKz?uhvWozvRk>)u>k+`hs!B4UPB
zkcex~`Lk!&mMr0@k=gz_;oY5`e}8|^zqMuM+qce*CQtkA{|U5L9c*F+jc9M*zTG2V
zPEJm={)lGRq4RsComyU&->)sdvLY}pE>0;?KWfX0OZOc`Jem(KxU}fXPA|!odRce2
zWL`evzh%aZ8SD4`>RP-|w))$foBQkkYp>sPXyFB&%{O(5qF-NItL`^vNB;eN6P4Y&
z=A2Eu7}Dqx;O*nH=kq!1^0&9XKI+y#H_Np9Fq2bsDSS9+;>4o{%F2iL^^07ee=^0Y
z@X?V&t=wO$_O5Wv%35V*XKfw*NB!#g^Xo57l-d6J!SeZaR%LG@&d;-TwYIgby|E#&
znVo-`!z>{&u{0B@tCLN0Z*Tkh{rmS1A6EQO_6roLdv{l$oljQCJzB-=qL{P4zkhjo
zIai2!ljBm?mBmw6eV(7m&BK#(bya9l(I(Km$7R-9=DnZKS?~Yz>2&q`z0aRLQ<J+_
zcwF}A(WBPo??m3#|9u_LZ}%f1RJl;LN5U}a_O{&r8?&ygxcKO3_x$R2mRw6T9~}>W
zes1pe{QK{c_O8&?*49>1TJ)&jqVC;YjYqx8{|+nv`>cFx|Nno#Z*ERMeE6_tz+4Wt
ztMV(K#$N865qbTz@;%Fq8#g{bKmYsJuckA7&dxG@tXl0XV_UT)et+Gg@}Bng_KF)z
zJcTFTD|>%WR$e}TccshWHr}I4yxbpEy}G#g_@P$r=q(wJja#1e+y4U%wH6f@_qsj)
z@$vEdz2EP_vhAa8{YjH1UD0+u)+>E|b+|rP$zfF$m7IHfB2zNz>+9|9_kVqTJ$%1L
z>FS_!;Kc!R<nDvE>R?+VfWGvgz;d5~T*Kto7Z)GD>~Fs}?d+^8SFXIfyL-0JvVOZ?
zFJ7<TAGa~7^<sv|;ispk*MGa2{_fp78Eu9rH-Bk{=i3V(ALF<GQ*e5ku6v)1;LkTZ
zpU*2UEv^0k_j|v*J*XFSW}fZrBWw=8Ut}^r_`}98CnF@JB=!An`Td2??O&?)o=lN4
zNI1~OEA7&deRr2>J4eH}i<j9B{A6WiUCHb3fBw)Rr;8bvmUuotH`jl@-QO>l{flcr
zyF(oo|NFlG|J$3JmwQjw+njdxQ3hxiXM<R3diwr<zg~le*U!u}{{MOY{|<)ZhK!(q
zINRCX4f5sQ@AqE6f3Lr2Hb;S_rKOA*gVge1k=Dfw3=9hj!5b^UAqdg|G7>bt#s-?H
z!LmX1)tvwA{>OB=vF#To>Xb=CGfR{s%=bn{7T-1#sC&Qu!Iz~Md{`daO?v5Eyk&Bq
z@!5r*a*KM}r@inH_T1un>iGWmj}}yPY|C-Ym2nr?@cSWi*>~nnm2gg9jz1S%jDL7f
zI%!mC>E-ut3a9D~A@9i-U6oYKuBbR)SIsq=Rp*-XA@@tU)6Qc~Tnq)ZZj&!)TP$lk
z8s{g$`PVs(BP@nd;CK*=f?T7<H6M3zuk9YkCU)Fyvh7g$HNi!Hl8EV~M|GUe%M3R%
zzWlp;^ZER^-hV$UzGaqtdv*8s<%0o6jmI)9<9peg6{kjhllDxXa<58RiBqcouujNt
z+00A1??l(W_*SrV;_}o3>suYFlM;R_<g_M=JnP!-5OIIq$vCA+cDg-1-wuZC&6TLk
z=a~7<_2L%&x?}ux=hRa7@i|(by__lNR4ioY_xX>}mV47~TIoLjspYo%+vFF*TQ>de
zt6p@wi}&D>|D4Wk$;&E}J*1_Y44?G;;JqQ9(<T`lv@y;>Z)w0b_JDiQ2O6F~NU@*y
zwCCn;&QEm?$}2<mHZ&P|$uWrhZ3vURdp^KGZ^uXHe7Cr39Meu7-@onb*Y65>S{H9*
zJ=)sq@QkB-Wsuxc-6u^?L~7S2l*z0(bS*Xaa`&X_vonu0o!Its`*Tyz<LlbR%x4JQ
zE!#b#zFzD`Z(x;ovi06n1#?k3vD@+6KODQh@2K;&WaY~0S@*wBS{#yaF5~vwqCmM*
zho<TY=UVKU&w7Go^0K#KIp_4nD<gX@X3f1X(r&bAf?mwKo72^sxz<=Krv47k)Xi{C
zFHU;V9l7gV9)FDTW1iW1^Y5DeI;6O<t7bEku&%)bhg&B*E>=x`8!JCqM*3oBlFtjp
z#X{MP8^pL(|6KU;=uMU3UOhfvv$Y0`^Q@OPUVc7tC7b%x4>H-ym9)=4Tb)^E?Pe;h
z?l$9Cz0J%p|N2kHYjU}NUBByM&9P(EDyhoSYMBhaMQJw=FR9+6ld&hOvX?!+KJWX3
zg$%D=?Z07n@_|F<@tWT?3|qr(!yP^^dG)cMeNL$yf88|B%R)idYznu}Y@0RltwgPL
zh}MGzp>DPtGiEfF&2E^SR$eB1qWN(1v?*_sZq`Q~^kfx179IEX<IWTN(pSG+*fOP&
z{grKtoaVw9<24?$pDh-dBHg|7#gwbvKVnoL_B^rSSYflS;n1zlss5oC+OA(z-O^Z_
z!<*|MAL}B&=x;-p*_}T1#mDa-TH9x~V7Ak)+Ka#Jr);@&L_N1sx1M+V;jJdC9!)-V
zeDB}jo17QUuX-6KE<K}vVlb=e!rOTtgo;FL?`A!4o+78af=l|I;x7x=tslfzxo$re
z7t$BbIqk@S)$P?Adwjh%R>wd1&~tvtZnxcDJk6_&+zRuLD|UAjHuoIXR$S6>K}vh!
zoR24Ot9r*hKgs^%V@by6e`~9rPMMRSc1ZSkX4pTr(8DT@Pk-r|efqG|r#@w2Xv%6O
zv(McbCZ|`gyP8%xZ*BL4x+Rs?A1WO*9XEO<ieFH&d1sIs$o24R@9VcaTwAjPdp9ZF
z$p0f_5OD9w!o)+zPwzJBi&@^?Ykr+&Y3h+azt5>{?9S^<ei@w(TliV+m+s~*H(E|E
z+xz6uT%S9ekF`2=FTVI9E$-Z&!sok!wL0ob|Cao+ih0MnJ1l~wee>2`6IQ9cOK|Mf
z%v$7I8n}Z$`(0QL&n}<qdGS52^(}nz&Of5gJ#)=jdX#^KO`7iw`OTZ{H(W5%zw9c(
zqsafZA<gP{(yVHY4VT{jcG`bkpUwFo?}dWG$5D$aKgyhnznJT{!*9MuK<kPbOS(<U
z;+zjP&J%w)d+`IEQ;}kgVXiynGPcaLxY~Y2rs>nKXvzF{m43$ksx|wp-+S(3y5XVf
zq<Mae+9i*Vc~(2l+?;u{RO>~HrPGdx)k>WQeU25(b@mdkbxai#(v-3^Q;ZJ{b=<Yg
zpjPaa!jm0Nt9827_AQ&6$#!$Xv_cuNonKg;E@Vt&?SA>^P-5(XcLB|tuBzPnWne8o
zpH*?ghh6t}ZnzV>Pj%vowTEBbvYjS!_v~iZEo&FuP414pSMVj3!8vk9($2^!pHH_2
z8=Q9f@U7v^s;fIchbejV-0|w!-828$?9Z-$$|S#48I^OsSodPCe~;@K>FX;}*P3g(
z%<)rNb?fua|B4+&>e;@ZB469zmeNd0NI6<)?rhx>YZ$=C_&rqp@iOs+vX|mE<u2Ok
z7vK3I@_FPBJKxhLTaKM`D=uIBBr9#FE+^k}XWM!<#zj-Y(h4`_WwhPAn#Q+j-r7_1
zuI})>t2E1e>D!{l&p})kuA(wM$6AX0Zk>8~SpPp0$9&gym=&Cn0n%}HgipILF{0PO
zHzr2<WFLIv$jQLK!@TjQ`Q6SJt0#C^?2x(8&GJB{K*)j<gy*pMF@dmp<75W)#>odf
zAE<zEfe=K=92N^sur#9|6Ii+dtOO>F*94dacujy=0Ja3(4KNd+PQ>m8m<j3-X;fdJ
znb0^{1tO2?4bqGt!h{2!5DOqdiQx!{3G@zW6-G!*;0<bs5@=Y$ya9`DSUBM|fr^m@
z2`5NUqPqdjiC99q$&mlFFt&qlj0}*@LB@0N4Wv9E=HMH6Q9#9mZ;&%R;e&6C3{j5d
zeS4R?q37$r;~!_Hr=@>86}NWllYLPwH;Ps%tL_R^IVspB^WP&d-7_P6&6Xz%y00y~
zba$as_oPd%eN$G5#KsiejQw`*-kUdPKL6Qoe14nRwQZ@>XMU`kYwN%N=h^(a&o=w-
z8*i51e{-f`)~qxJ28M?10TN6M3=EHC85kHk%0Vlw?}1LZsbFVdaM;7lz`*d4kAZ>V
zh&AXGoc9b+K?S%Ph{jh<H+jEn>aX_*-D>s9Mn}g$effmW^7J!;!YpbXoJ_?fR<4F^
zEi4sTdnV_Emw)toKfn0;SwnXpff)*F9A_@Z^Ede@GB7llubg~!cl!L=Z!^>9dHVYH
zc6R=JHalNPNXX0Ed-3AM&(F*h785(RfSG~e%G_J=dw)M{msh!DnsvqF)U0K`GYlLb
z-Tn3T_2Wm6=2gAYbdzCVI57Fq+_P!3?P{x%k``Uen9^-s{%%XuTA?>fY%(q^_<p~B
zz92gT!-pjm+Y=5pMd$C`>N#2M*U_FHo?1!&mbSK4t7grge;#VxpWC}-t;^or*=cNN
z_fO|HCpY(+%gKEm97&Jv$`l`AY2-|5Iv}&tb<gittJi;fd%OH@>2=SaCnhR?zgPYK
z!b0cEmoI<KE(Ud`lM4zy$bXwWIXI#`-(wo*=~G${j+B087lj)#*D0{aG=^#Q*$VSh
zuKM3!TvS$7T^hPN?DTZ~``dD(V`A=XN<E#o>!q5X6azzpRp@s4>@^yv-rU?QEG(>T
zC(#P_(}{}hg^%6#Uf5au{K}OOHYo;%2X`JsYl9;>?#bfy{OkXJQh3hD!0<up8TX$b
z`)`z{)K@vSPfH9;WSqmxz;J*&=Edsr)Uwd4TejQZJ-!m6QRuzM;=<qOBdhu3ALoFR
zMSe&5^lg0W<r5<Ros{#vYyn!}^YPr{$FU3c``_Phe!uv~jca$^En&iQ`#oP?Gh9^}
za)CR$tbXHbj_08Bj_y?!?I~Vimv(fC#{XTPFHO7nReb;M*NfNl7e|4T=3MtnCTDk6
zrI+zF?O*@%VWX_|Hm>^G!{^WM+x*!h&rqG6fkEM3rNnOMscYrlw;VlQQvd(k_R{Qs
zhu81y*S-1c6}!FcIjtumj0_C(o;Ll9cx<#=?!AwwshaD~r>mZYmv_be{rT_wKF|LZ
z)wf(HHpV6^-!|jU6_Q*b(L2YGfuW(|`M;0vuBe{*#W*d|e9O!0YkyAP-Iw?8--#~&
zZ&Ezf%zta5T(9R}Ggy&%c)<#T{}-zEr3v4^!41kzc@po>O}O;xXLQvu(~0x<G+nyO
zUR3^f)^`2BKektI`pSPixaZi0U)R_a|M52cJ=9#QDtL{5!>Mg?4XPLJx0l+1a+|gM
z$8&*SU)|MoYFZP%t$&id=JYAI_*2E?&T5}KqkZy}{=~P}zC1p<^xLVos<(gsp7nQa
zn*H^#Q+3zwbBS#}>b~*E44t&eq53DT<y_KUn>M+>-^ql9f#JyR{ZjAWn0A#<^$h6F
z6w<Mus@?5>qhI`XpZLu_(U-R`EfU(DVt2BsDAdib@MGtuNkQ(JGZ(9sD}FqeV>HXB
zE9b1*(Ipn!MNQS7ZmDv$$X7kMp(Z*`W4*~vJ+9!Np>3C==H<LkD)?)Wyevl~Jo3I_
zcxa{LdcFMoA8P|PmR_4u{$khKd%GTOTfRkSe{l2W>cyY48)EM(B&ob)VsO~=J2<D_
z?q2B0ong<j^CVuy*BbA3woNR)aZ09WzxwvnRcGJ%)Kx89<Fj@3s=Et4liT-&`cHei
z>RG{wwIQCpmySKmd71O3$9dJC^A7?}pMJ`^{>L=a$NB#a!%kJNYYNntsNel<ds^H5
zS(4gQ{qOzQK0Bl&uui;+`EkBD@BaO}y}lQGn)S(}Dk{9~lS%f9Ex}Xyj|Et6598W+
z>~a>*^4Q3g+gDkcgk66BzIxr23l&kmQ>_EywnUvVoBemnVS})(pF`g^Y+NO~B5!(6
zy4{Wa1wEl(tJ{*MrZ3)@w)}PE76Yks-|YU>)cVcQu%5lxLj7^Vn%@)GoV?t<@!b2T
zTg3j=O?xC1efImqH~;5mo9udQ@#ki(1^eTIqP{<Cj~-oWYTY@<sd-I!dDfFK{e2s&
z(l^XFf6-dyjGF2Nf5RU?=WJ#!QML6A<z1!y_GG{FT8^fm^c5UUPkBR{(+XOh&OY#J
zKey@GtK*>sxnDOeD_?iNbMwY2r<hZJ=JGzB?)UOZdHB@#3qNnGieLBt_wVSguG}h%
ztHP_o>P$qBr(QVq`c!_<zx$uc+PZdqihf~TzbWRPhxO0+z2_&#N^a@O*50bOzcVb;
zT&p~=u6*kEJ)i2bL(flK_^EF0B|q!6bHlFYYM-yzTK+M5XVB&@#%rr~T-W;MRs7G{
zReSRP|L@jqx%~e1m%}UmNo-y9&0+PT$+P6vESz<5^(%?<|K>ZJzHqc&y*hi_<gTPE
z@&V~pQ5L6be;gLO71<xMw#V6bp5p7OW2^VX8A^q$J+|CMx96LD-1@6ud#)dHejH<C
zQ!j4z|H?~2nT)-!CTSe?*;Bl{BHgU|t#ra%{S#L4lfQ1b+t<Ny>Xep211FR45tc^F
zU*38z`oFFCH+M6*kn`^@=X+i)TXP0f4La=k+*c9qoxc`bSMChlvpM8fkP*0?I)2<b
z3{*#c?1NOF#iuLMO(cA{;(Nix=RLvqGOPL{AI@G6s#ecMKbjl+bZR6hlYd@T@f=*I
zKALNO6l%t~+mB@BtJp!s$UTwwKMp|@&Z~I-;3$NtWcKeH9|MEH`#qds#~iU<pQH||
znAaz-yZi1~k7V(W4~edUfBycJuYR-f#*G_twp9^2VymxeT|ajGc=_vVXKVT9U9|?;
z|C{;b$&-$bjzK>@9OhT|pSP#zsh6hx-!GR94Gr@uKAhVg_TgM41H*&ZEXzADZu*Ic
ziS7DdzH<}Eb$j}EUaOvClzQsf+1aMP(VJ2_<Amkq^~HCWy!`axF#q+{;pc1l?xmGS
z{D?>fnb0G&=hdS7p{v8z#_lfr_~@vlq-0=VpxNx)XJ=-*y1M$?ew{K~W~WTWe$Myz
z3S-Yqn4M(F&%n@d-QarQ{=dJzdV6@BIDL9@j=H$6*y#rco89~6Vkh5z_C#dWsxWtJ
zF+ss8Q$rP4cOR})H=7;1pW}O=p?gBp0Tx5Yggz~eE<+ui4Q{&GALF{ax{QpBzI-~?
zEB*TV`uwd?++1^*mt@}BRr)$9`EJJCHD}hHnzlWRfq_9kc=qaYRaMo;$9gBPU8FJT
zZBS59QBjdx#RJCn!wXksot~yEEG&Fi<DO;A$3C!*M|Wqow72WW@B1_5ROsrkozExU
zj$K_Y_DGh2;e(!d-j0noBlj|cnpFBhZlD&{5o?eX!^d;EkLMmfV4cp$!0_>0^`qFI
z*6Ba5ae<=eb6>^r?#-a8$Q`6X;hrEUm35SZk|V<-Sx^h@K~w#69r+$6P;!YAdLIF?
zAwOxe^%=FJ874(S-~?)}v3a%5T}B3mM{~b#5C$3Y@!V{S@b?w*tl&D-e^2oWF?o=4
z6z)}WM@z0Q2U+^u^_0w?x3XXr!FwLB6$J~Xemv&`a?KIz{H}7Cbl{%ieZ|*~NJ7%P
z(EB%hkPLBd_9IznA_bYw0Lvk(qgSo64Cw`BmyYtdMQ0YCng(It6MFw<UBz)|XsmuD
z3w4U_$8(NwTYtThy&uI0^71{w_Z8U?KZNdioDcQcjf&?wU{?!+T+y)I=z3mx^06Mv
znjae$Y5e>5uiy3?=v=XXe}Aj{&YCiRzPyagoH=vutcf%(x5%*u1*^dOEGMRzfPe`i
zc7Hw`J~>%^eaucHL&L%k4-VG;{uaBps?^EpkoNjLkNDcxuD=%vYCs=&eWhsM#m#dy
zbaYIldMzz2cbC0=b$NOJl@np7cJADnC-`2b#(;}~;e+3^sP~1ZrfAMK&%b7pdvcPh
zq@?7;i4)Z(8@ry|=Ge>@BrGLW_3yE){y8QFhDWiyXXjW3Z(AL<c9w1Rw;hF#|2gp|
zCN`E<oe>mt6kGlIz+$D>KcmjhVafA&*5L?C^RHCyy}iBt{c-tv9X-8uD<lmP9DIMh
zy}mx)$;s((8*jgy?W+O{AGOIj#>U2r7cKhtVVk98>#9{(@3y3-iawFmo>){@H_<bZ
z@w}{jh>?2_GqgP)GINnc_70Y?*gf8!o|W%*KG)m#BPl*Ue($jilQ7};U0q#$^7iZ4
zcl1h|Ut1q<ucM=5W>$7~mTB$pZ&TM!x%+TxWb^Bzk&}~DZZk44ybq4uQ~mSl^zbzi
ziXYdt)lQu<rAOM_Z(G+Qk8P7nGztqqD-G0qqjnS|?ydSdY4YT|Pd3ap;mEmeGvy^a
z1A}<jp3h&u=3ZRndiFOLKY#qbnxC3eb)&aU>3NaYUR#;7<d4B$28IK_L%zRyvZL_v
zq)C&EjE%2)Nq~y%^02$F?k@41oD#k9+p^4A7c=hctu|lG#=!7k;>UN3`|Xk%7#JA#
zsNZvScRw8#diBklHy=I}w0@t-#K2HdvPWA-XO3O%uU)0D-<0jXne*=M?(bJt25avt
z<6&T6kP~}9Y0@MwFR!5B;Khp<U%qtd+1c6ZrtdyKRAXRZu!t>Pzdi5PmdtN&Zl0ZO
zzCA)`(_GW+X;%zV7#JAlNxfeamYtWEcl79<JvJvRc_bMa8mw2pJ9?9mnXN~{@X@^L
zcbQjK1Xfl3y0p}roloY(1V#piimW}-wpAs~Y`oXjL{6SLQ?qrVvU}L)R!|jI@Vz44
zM2dZffe*-KGVjCIMqOPWZ?C!M>$T|R@!q$X85llnsMuciHp=$i+PJ;HrmX(*)y56f
z4Ve7s?xUmKUk|NbzwZ<S$d+lZ>?B;{53gQR|NkG@Vat#0W@hIL*|#F|*2BZ?l8|8i
zYMrj`H%H_4rcFkB7kGPnXJ1_<>I@3k%8&0Bb?aFzRj?|5SM#{n+z9Mp@%P92WVLVi
z$y%4azSe8V#K7?3N5%5VIq92ketUm^{`Bd~GiSwB9u*BY$O3sl^8L2l+h%otDm*J%
zTU#3&8(m#pd8N(%yja{X0a{D3J@l@1divQ}rbSOq=<okyq@duiZLxd5oK1xR*byr~
zzPlb@FKd<)ar9{5VmIB`T~ic6L2#u)Ttp-!B0{6Jqoc#N`kRb>-JTsgW`N`h(y#t~
z8@oPkFKE&)I&Wv{fd<CIZM?>_&w?{^1N-san!(Fnv<fP_mAtsHaK(y_^PY?h3<bsM
zHHFt67JPYg^K#nem*S5fJ=#_New_vv*c}r;o_i7$6?IAi6tELs#m$j5%enF6<KzGD
z|NmQ`c(~1Nap3x#OG`MRDKhU^kL0Gidn$`vdt3J0-Cb@B4UD=!AKlqF7#I$0{_`<f
z)yT+b-_K{#Zd?ou2b4p$S52Qc@85^R{GbgNZi@?#_sPEB|Nq}I-`Q#B=A2x?$iT2;
z?W?f&LPA38c0QZ+_V)JKXU~aLTn!EX`@a5v@(Bh81{>3RZ}03ZzOo{)Ytf7R*}Pm_
zS{fP&P?^@&R#}UJ1&<!hv#nmVXpsaY_V3=m*DGQ8Xy5O5(xzEc?&igBPCL8Ewfo=C
z^Yvku?ez8YA06pr=a<_Oq2oK-Y_45xRYpd}Y_r^?q@*wFch9h`-WHQ`fsujXoc|ta
zg9L|yf)Dlof8SrRVnyicuwH5Nb?N8lUEN|X)vN5@_vY5t)l()<o;<(m)k^hw6;7v4
zPt)b*;7C{l(q6ph_qW^m)w@Ej)O^2NE^Ad{5nO$;scM_>T&vQm&u7gg<3T6gt=YAI
zue4pw4^2~L_r5ir%U7-P+V=Y5;`X}27Z(=R{{A-Cx_sT)wB#e8LjkA!^!e$t+GV{>
z#fJqaQ&xE{H%>eA;rn-aqm+&*puK!6R;)O5=n$u{n$7n+#r(EkF38`r(b3u9*Ket$
z)X`a93?C2)IsI{6?(J>A+825(Toe>I<@dYY@A<2J{QT?+9yoY;b^R;j`g?X;V`F3a
zox<bZ`g=nr*Pc45Ii(`9TzJ~lqsMpe_}$!PnFMXv_$|~pCZ*RHD*N8<*9&Fe%WZtJ
zziwr(e`z}Do0GG1ZEfx9_j&jBRNk-u|F{0%XZh}<O5**p)@fU#o`#j}uKoM#>&A^6
z=a?`s%u)R*8yiuvX33I(P}v^0wWrU7goN6@-<@a{?c}87qxLy|XYSOk7cXAi^!LZ(
z{{JEI`~Q6M_VV)DoOYItS4u@(+C0yu=*fwe7M9L7q4#=wzg#MOe5~*i14F^IPoFl$
zoYtH8X?J}6R^F|%R*UTZYjfP%^MkAF@zh0!5C1>q&KEBGUQ8#VV3~A?@WrU@d4Dha
z+s_S}IcwIbP9_Ei-Ay<BT-?meq(s{eMSEuPbF2uDnDJj+IBV)w_dc1#6h?-EaH*T`
zoIEP(e{KsszB_Vrn&BEyQQGl_pMhbOal!%J-{0O^p7y)8)_bm1X_9Z0UhJ+XZ?{hm
zUngl@cIDaG*{>d5NIN&@+qc{QrylzD_V&I%pSm}{$^H4s{L`nRub)<h=KuY^e?7R#
z#52GC-_85~>%Lm<yDV$HZ(Ze{Vhfq{j`IAlBfIPVvfZhC9{W6-=j<Fe28IXzH~0Q-
z|M_{oRpFu|*RSXQ`SIh%jk2=cwU3T`Jl-d(t*e`Rd)wU>&dIekHK$I2n$Wr@HI)_}
zbQL$foWHyH`Szfdt7hGK@@}{Lmsh39Pv;pM_h-!#lf1d%m#jt2j|+1w{hvI4KGSDe
z;No}xZ{J@x<&^%uANLozo?o>}N=8P>`ofOF$!~9O*NrgP?mN5t`<tJUQGWAm)>eKN
zTmF4p`TKcSSKpr~op<}&)6(m)_BB5`bffL+pH3C`_RcL5;kWrv@cY|zk8pqczwi5G
zt>50;`}*DP_qtkIQ5zrm?%wN@SNH$#<HwKm>VG~J-?Vx2GQZj*NgLJF)N=3aSh!?K
z%9|S>C$Y}2|2K1O^nZ2T-DP`=zPw;h@lQK9Cv9T{pRAR}@!RX}ss=B&i`)IaLG2zR
z!-Ion@6Y`Bv%6>Wn<wvO7p>d1WSRT{#f7=2rgZk(%__K=8mr3h`E&pO*i^IGs+X^<
zm)Ciyqp4Z=_SV(Ezj!0|{(9Tf^Cdh!R?qX@zu*5?)?YsOdi{Qzf(H+z^WVJv^=03o
zV5|FEUS6K1bJzCYk1P9X^Iu<H4qB3Ytncsh?Dcz74Nm-3v-y0cUgf~r$jx3-I&ptC
zY47^0#Q5cs_wGI4?@8U<C>~ew^~=4eZ8=xB=hxfzzPwrZ@{;(!zwgtTn3%r5y)7;O
z|AF=UHB*1p{{D94xPR3P#pm8<j`uzN{;IS&Wm7YIy{viOnNw3=t9)L%Y@L^vSKh@%
zp-<1<uPuM7zyHslN8RVdvzBV_thk-a9JBZBT>JWki!=_m-`|>h``T%}-?w*mmq%~Q
ziQHY5o0gW=%*I>w{ax)*(eMurObid4%04_`l$V!3Sr*jSy*uVq(B(CepUv;ryzSQi
zw|rG!QxntQYJqL}|9>r;{cA>S-j0XM-tYVEre$5;SN(SDQun?Tj|G|6*ZtL;TmSFp
z^5kQG4laKpCNBQ==I766&F^caau%<R+WPZh``mR?#1`wHI~iL1T+Q3K`Ezi^Y>#b|
z5AmAcv8n!cX3-)i&fKft{~r~PzI2K2e*J%qzl#n(JaP8y#obx=_ch09@-Fk8J!$Gx
z)poV(&z_{Tx3-4gob9rGcK$o%#ZPW+jJEszCfW90>FcuIt65W>W}D?M*?wAY^;yeR
zdiVBzx#a!-=lS|y-`~qiOV6G-@#FgXzuBOZ7~OgvoMB@);2TqVa(+a`YSCHC=6>>8
z6mx6C!&=XLZgIVD-}x(^P8H{uwOX;==I=9RcD{YDR;}LuE9>>2pPN-5_DY#9d$j7%
zA*YklYom|<dB`^>Ncs2T%&fP2_pB^^TXi(K-*<h?*VpTR|NZkvThD8owDq@ztJm*y
z3%xqe_J7{yo9Fgy-~YQ~a@VG-Sr@sxlB_PvfBu_#b???kN5$i7em<S9?lYs{dTja8
z<Hx-tvnmuA8447$Z*7^mWaiu3+a+W2Ew<i%>pROtS4U?>ynV!`xh^K1RaK{V>^Oa|
zzJ9KWhOTX3VC9DgjW1pt`}^x|-ErCfH}?K+KV_SL^V80M;U!nOIXH5zYCYTg{hG(m
z1C8<D-~HX0d;8nlTctNPKTqGOF|{c4^|joTbe?tLQTzXvwTq;%M{UU{UAA<0Lqo%&
zMW4dE^!NYiS{uFn&F$^s`zucQg{fRzvBE7VVsl!l>$b^$e)T(lZaTedUG(&<@`<wD
z-MjzDoSFEuf7ymi*PWh|)oMO-GBAiQ`1ts}`AnaxpHHVxKRd^A_oKC<o}MS|?Ci|%
z-AKQ@?0g%Kq=ca0#f^`bE?v6x(x+?Dzu({7oc`iMBd?T8*{dt6%F4c4_p7pRetR4L
z`^Svh8XbOHlZBu5=G^*{d4J#E)pr`z=gmml81ePf97}E?;mOa=R3`oWWS+8qncrMF
zAt9x&K^1>KYVx%!TUe+lCbr$%QTloYuk<zj2!rb>LCgGV|M;+1e7$<zZ>G`1dDU#M
z^Vd$8ZU6HLk0sacy>BLYTOB*L&3ftIW_~-H%A%Tz3YX=6b6;OyzdoE#!r(=x`m*1@
zew}(3x@FJTYqwRB_~h*(`1`isDY|VrLqB;c_wrp&PfyRkyX$KsyIjVN4T)}U#}2h}
z>+k>b>3079*!^LFuU<Ka78P-YhOS<GPFbmG(<ZKp1-p!&b%2MMLf@a5$jmEk_I1-l
zO>OPp$L)XVM{m27vu^A6+PwSw-tK%Z7V@*KD{IH$@^fL97rT;pxVhI{R17JOb#iLT
zxxOy;b(QDsncIVcgO>)?U#$K9?yij&BZI@*4<A2PzSiBhd|z3JIJhwYY8F<kI5+q4
zzc-iWem}nZ#fyxat5(gLJ6BdtF0Oq2F(%MCwnug!I&|pe<>l+6pVyr4hIeF|o0`C_
z>HeN_Pft%(Rn?U%S6;k$F*7ss^Ru&)XFYk60`4K?hJLSl4QfxGp9gB2b{|!`9l1Hp
zlNa2=J+~@)@8+nrJ9qB<75|_U-kTAh(kpFW^YyB@>Dh$MQ;!{qvB|yVv$E!4tLx#m
z-V6J)SNG|}?o!cMaqsPR{xvH=HMIRd!!N5=@4EV{_Us(Xw~xA$^Y{Nf_xASo%vp=Q
zr>{%DeEZYW{4cLclRZ3EObK6GwR+2zFXyb^7fr7)PdLyZsO)y9_`Geel&P1$fBdeJ
zmj@b|El)Et>?i>3SO0zAf8U2g*%K%7n)=?}{5*Z{zopZ~yf3Zt+;jPV(|`RtU!Tvf
zH!FVjrnqL0by-bpRMn!kkLMm1gw)*n{QmLX*@cDEUw>Q|zn}4W-L+NH?=CKOH_y0`
zaCVmI%$YNTBrJ=Tu-N&PFfi!J?A&=%ZSu~#zX{E+e+NZx&r@#QSv)z`GO^|23Y*Vo
z7Hu-RJ;!qMrOW)@|0bU)zwBGfbIx^9H0Vspuh-*Evqb*BSj_o;@AhYN%fme6xOjMa
z`sbHibUj=4?oZjhJvUda^8B~^_dCJ8Rd*wP))^c3d*x5kTz!A<;dcJBGe5i3)y+Gy
zCUEh)>-#Ui>DK?ZJ>%l$Rjb(8+kIvj>@0k&c6)n%^oE4I*=FM2HdCifR`<`ox98}~
zy>IXCPXGF<+{E|qr_*b%$Cm%Su<(1%%}+nI*YAml%9^b3`v5cl_Wb(JlCNJb|9^L5
z<K=gEcfZ^B``)5Oi$t~WZMl8=$+PeG?c;*(p4Q(#VeVYh(pSo2-KK_ynU9b0s;a6c
zAMcx<T>tN9`nJ5k^S8XY_4U-n#qtwuXId7|I+|oz@?wEZ{_e8rK68IntgUg5DE;X7
zE}?;2-JF5p-O4x5&!*bfmQ9=cW6RE4>d#hbt<SouwJi5`+4lSQeqZw5UGn0>%Qoq}
zX)C_3ueaS)^t9{w{Q8Uc@85s$N3O*^dP|07_O;-fH*bEwS3P~n3NhU%$r$Z=p?^z0
zyxnfC^3>-0oup2q=xsUkOtW|0`S$gCyqrbBhhFn<(<I7&g>TKf_2ng~`6vJG=i`3=
zx3|A<v#b5}_Wu6-H#h3{eY+LS);w*>ln-Z&|4(Gto_1C%b3?_))9YS*JN@J1$089S
zlgX2WR{yctGfg-8>)YG=w|qG=!|?Hwq^MgDmwLzl_`ZKWCkMx!?fLmNf12O#*&O!j
z``g>foL?8Vt9kvrvGGsb-n<DXN<KVT|M*yM<j$hGDf_Nm3H9_m`AZ?B;``mH`~Q6U
z+^xS)FZHFD-o3Kh4B`3J&(FuN&^YzsVL51Z^QP1P!nS|(+w=F^?bYGy?W(?Hq@<+W
z-&d=>Zz2x^Lkx#X*_m0U;Y?@yWN(}2{(91D9#{KxYU<ZlSJ&T3yS+{Sc%Q6(>xT~?
zwAcOk{q61TFDc3wee*X|eon9c_Qxpeifzy|gYbZYI}d)Hd3Zf8y6TBX8_TS+x3}gO
z?Vn%&Z{@s=s{&(UwxpjwZ+^dK^%T`JTeGe{YnLzE6%^I8&q6)??A+NpXP4aBQ7C+}
zENDWDRW-a(vA^`Sm}kZJ`}SV@Uldpr6&HV5cWe9m1>s)JnU|NPq^8b1o3_(TUENwo
zXV0m7D!cC16wCj8`et_izNeed+g*DcyFKrE#M*P~FXvuf*88RGX6jah?5jt2Kc8P;
zcXd^$vRluE|KIXXPEwsYbLL|A{%0}l3<rFF9EmAi*1A1PrO>x7Z-4EB35w-!ZhS2L
z{?67fGvKG{(XLJV_s@^JVB-A#-u6D3%J`?Vd1NeptXjS9->cPYKR-V|t;Ia+%8ahn
zT-@BoMn+NF`&QPi|B~-xn`&<2yS8__`RU*9Z+-1LE;l=F=cnuO-+%x786Gnw$Gq%~
zb9j7h@2XX{)&K6MZJxVx`zrU7SzG^1TjD!OAzOV)c=6pXQSG>zk4LTF@7Wx^J#W+0
zitRN&i{v~Q7-B3oZ8F;b|DW~VIWsFw?CtfnR!!92#VR5?b^jtM@$#R$->;kE<mdNo
zn(l1<y(aIb_^sQu>h|yV>!;3^j>%52|M%k0tzXUT{4Vb1@2<c9X8rER@ppIaL-O{g
zo__u-{$i-Ug2IN-)ib`|i&lQh%wBhQ_xI=9a&K?XzMgn~-u$PFLQaLQjov;n)^x`|
zulKj}%RLegw|!S#H81m}o`S-HM^hi2*8hL|+S=%EZ*Q-Tw@Fpkp0vVFA^X~zbtlTE
zTCW5(@2{`*-n#ol-^m46@2&~mUKJh`BqSvjRcL5o@#9FR@SGPQAFA~3{cvcJvb)im
zuz25K_dXd};o^-~_@zp&H}l_9pL*VAbH<+^KP-#q?fCu9an`cC<@axh=|;`F<hk5$
zu6wVPaptANeC=7=r^i<3p6}N0t9`vT_4fAqw~v#*ecWjC<wDD;x8}LOw&dUc7y9nJ
zu)ojdh&5G}=jO0>c6t_FKRtbaqR~v0mdB>&2M;Q8avFa*wl?~B&W#Oq2b*@PO*Sfh
z^*G(?-s<)H%3fXR{C>wcqCUIz&YzR&=~JdnJCzq-<azwYjk4ui>OUN8SNHGZ=kK48
zye5ACAJf;2%xtzFkCep6$KTxBHEsL7s@X1Q9v)`j-Sk*=`<<fbyJu&8{L*@sOIY1c
zM@#G1_5J^@t_WPbWy_YIpP!%ZJ2%sK`MUE<=FD*lz4~g!=Z=mAYt}Hyt$Wu49VobJ
zUG&7^aGUSm(vDN7PW}7X|L^p)wSThZmj^9<dwaX>_d88m_x%d3Hb-u}9a=8Y6|5E&
z*prypXlm7xwa(kaV}@NVXa~|)|1~>bE}Ol~Z|*5&VFrdPvhwotx8L(hl{x2D`ccoo
zpy1n^oBnn`Q{v*{JUluUX|(gnt_oi-2O7e%@pyi&&@^V(XTDSN+XJR-*kEw;R?fE9
z>-WzKW&w>}J&sMi`e&gW1A|5Q9QpqTH7d4m=8Ub^yC<3bdU6T_!-4qJjX$0}Prv;(
zRcCia;Wlk8t30#lf49z_?NMN0n5U|uvS`DHh`e`!p``{=Tm1q>LT&$dFP`)^Wl^^A
zz0&vh{(fn-`qv2>N}X{3qNC%%Plp4pu<HLPS-9%)UCSQ@pcO82c2|`Dd^+9O1T=Ku
zk;nm_#$aGzC<xyA^W4ond-ik+tIOF`Tu9nzl6$M<*O!+I7cRVC^V!$Q$tg24v!vw9
z9LwTEhYm@UFfcUiN}gqwd+X)aj~_n@olsI%uC1-jzBm1jOAu(lnT=m=Px13}{r3NM
zxcAE)ZsVP8n0!pR-)7RZY2W_+e*gW=&CmS5H8nS0y*s;vnQ6_@qh@ON<{}o%yzFsX
zyuZHJj&uDh@$~gOpUpaN_j^tG`+J~{;lH2H%irD#oxHE9xp{Zl+f~!8OJ7ZyH&0LT
zeAd=uM~`~;mZ*O0o6N?*u)r_$@1q=fao@}Pe!trdinCW&R^GgM^X{(F*Z21Ro*Et}
zDIpP2yL{EEeLtVgwypYd;>3xJD=Q|(NlHm+ef|0K=OiY{a?l8x)cX>*#Tyr&-ck5i
z<zDTtm&>!St?~5nnbO_N#=GiS8+?rHL>sU4ze9Gdt*qBx8oIl%7=Fy_gQm@dzE>*u
zLdE3d>UMV@erQqlCc;#A^5n_<G8PjiO<JVk6%rCsRkbT_{_NS>l^fN(%VDz=mA~8r
z<2m@Xpv~$=ORHA!%*40l_7X=^j6geuUf!zw{H*r>-|y#bzt1`P=+EW--`?JyZ&3)^
zeiIb8E$61M`Q0O)piOhjvpzQm*8O}seae(6X=i7>)W2(%cPFCg-W$}VH8U!%?<#!_
zIzMX4sdIC!moHmpbb*0^;klb{{2beo7XeXGQjb{~7#=)Z6}`9m$HVq^9?45Pi=S`5
zU-$dtartnO)KgP5%kLDjgR;bfZL6a9-rkhz{rlV7r5j3KUYZ_Pm3g#Fv|C(14K&1h
zC$e;Pd1`8^SohNx7Z?Bh`7?G`$;4T2-sH6LFfbelejJ;V^JbB2_oYjh*6n;IwNu0L
zJ^y~t(OV49!%OwgottC%`T6{MJzZT{`?@_bcQz&;*WG^S5NNhw$L3dI@AY=QShTbF
zd05Pzi>;tR?hjWgmS^7T64k!8E_U|p*|TTO`gJutJ~cJ<Zq4VjJ)qS_w^zM8dXtq~
z3^Z}T%+7b_#EA*rywYYdn^HKz?fsP>^PZlXs;Q~DxB9!8R4?20={>SmB^^-1pBGp#
zF)=M!aD4ZoMN0Mc^)OF-e|Hyj^}yzvJnQx!j^2=PaO?HB(;!z?WbLW`a?#z`*m!rz
z%b<XOf|pCDFI&F+`0?Y$pm~FLYj%~NV`F2}i`ikIuCA`DtE;7@rKHsKkqI>Nes%4=
zudlEBZ%a%}l(j0kusQbszrWz=3IE=5c0QREHG!A69B$`_n)FIMo$!psndy^2L-i?p
zq^--=<XD%zxv@6d{1|BHy*cFj_HxjHM!QNf{rvb2gAVx7T=hF)ied7xJ-^@W{`~xW
ze|Pum+uQTk$L+1Dt%W({`tB#spYQ*EuR4Fv$77HC?e#d{UyIJ)`>0D>!h(T;;e2=b
zt_Keu)cyVS^Y?H4$W2e0`R#6O%bmSQqqDO!Jg!ppFgpXo1J93sp;yn&HeVmN_t#{9
zyO&p1US1Kn_{;V5>+9p~6A!WM?0N{A-dIv`eQosi2@@vltNraYqr0bP&5HdG+oa>F
z-<lrdV_-ON_))Bv*D2NMF+op5*YEqKl?*bw4djWgoavJ%e?G`A|K{%Q>5$M3U4IXB
zWz(@9$?9)!c7D0!?cO6{m~ukEHIR#oYtrP&)!*Np1x+thMC|eQ@!{d+t^IP*{eJcP
zz18pcnrmvV3|}87U-#o-6Dv1p(v;!dnpfiK<!^2n=HA-!?(S~ybEi+9e0g*8@{m(z
zwzhM@>1R(xcvx84#)u^ko<A2C5J)hQ`da0C89L?gwR<yP`{Qo?eHRYTxtq6MWA&<2
z-~<%6hnt&wwoT=xI6gkUbsFt$ZLk?9v%EVeK>4;psTH(34ZQrK0W|sCuq%Dt-FK5F
zPrklBe*Uy+(`L<*5*AiAwXOQHAwnl?b?B*&A3xsRRhkT%qOeiB7h8U}^l%&R?$_&f
zYlYkW{c^eL3Nr&kL;KO)J9bzc6JcODQ2i)&>Z8YxO?_WqT6+30zkSU5I9oPZ28IL8
zkMF)-zh6#NG<EaMv~zPTYkz%NKCkK(f4-2ISj6((B7%ZPj_kICmu*G&E7WiLZ4>KG
z{qW%6V)y=aCw(CU47>5HBD~G-rm3f=r%}K+VOi$uYiqlEd!H_01a0Qux~FRTlqp{h
zvdgEWr}N9(*;rUusH#3~WS1+jkXf~ATh2`*L&J%JkQI{VSC<x@T@|`oB9(!mp|}k^
zmyZZC$SP29M1t2O2!JNw(U*^cC;q`|&^3Z)+R>Mog4dmb;{(ZXghq735jG;!plbxH
zd2sH`)*InPMW23seSP`TrJ&&8<fNn}Y5)KIovh}2>il_rKE7$$vrV&)bucq9Tv>T5
zX7BEIyI#lD|NZ*n#fz?4M~)mh*v#(zY;vxX6VqW{aOTs~)6>(^TJ<Q&&+pv2*xkRr
zyi`uT>1AndJ{=r*Gb+lvdU|?JobZ@@QYH1KS;hs2EQvzU(#_Pe!?j$Xg{1$Km6~Q$
zm>-uhbWCWPp<v+tPU8KdMT`27r{}fzmqhnM8h3ezHf`dvD7^c}@hDu!@&J)!-suNk
zeK>k^!-fqvZrm`<zUC3REr^eo7Z%?;G2*-8?X9hsm-)^%$-H!^mHYM8)zjz9Ia9#Q
zz)%siXZEY0oy$^BPty)tlQ4ymf#ICwzO784l^^V&r6j1!g~1_<6eXo6&j`e9F!42(
z>Yb{8>R5)&%pay#6AiRPb4`3rSMV)9`8<Vr_t^zAdb(b2|F-I2T-Jw;ujX1<PhmT^
z`OKp7M{hQ~X*rl<I_u0+-Y1JnUO!F`i7_v{v2~Ns)wFBh&sO%QsxP_p;&HY~^q1-@
zr~E8_Z~q}By7{x*X|E+gQYZdO@whcF_Sr1zeK6yr=?opVz3rQVo}XRX`)1YNkm7qQ
z)24h&yZ?!8)9tRCH#=qKnoQ^}T9THTFmWDF>blt{CZ2NrS@`Y==S{1AZ!1HsbKioL
zzv~^>;|*!Qv-nNtmuGu4erxhRaWCd=y}2{|+``H7lI$xdvR#VMJN4rQ@0X2J<t>9Y
z_xJ29ei2js^p5k(uy<D~CkH*Bd&>6<8{h1Mio8DO*v?sRwalJV{%TLB%%+$r(I-RC
zbsLEkaRe=1=@vf!+{{TAC$kkTKgX8VyxQM)e#uWmsjqBissXwMZ};@<zp|n%e12N^
z{Bs~Bnq~J^zLL?K={Pe!oq6-;MN!XW>TAuHtX$n#l6OV=#0yX6P~G>JE0<R>HwWI&
z-Rpl-Thm+mWn{iWdj3=E(5Gr@$v@+E>SgW!x>9mZ`NM*__tY-umuHpB^__f@qg<|a
zc<HKh#vA^)e_qgDw({`(iQzSJ^P}#3)jXf8b|S8_=}y^>E!;o9KjxghU-`ekO-E1N
z*C`7M9?ea6S28VLZ>SK$$#a#tSGjiktnwQoH@!IXpPf;cw7<>&cFO$=%T7%5y5X7?
zw@dl4`%SH{(pnFFd&TVCuhp3r&o4>l>I`#|%2YirYsr4~kFwkU1l1i2ABFp$>f2+|
zDdM%4BY7{|r{6)gWiGb!G`EK~DfQHSy}BsoZN;>(s1zQaP$s9R;S-}KtQCEB;=OLN
zL&u}=_;o?t#ao0~iw=2i-((yWI4^3-^FMR7zCQ~0ztk2sN1vBRtbV7)PWLirZOdn8
zO!hf`Qr>U9^q7LBr&E9af{TyzYprgdes9SsywCAm^7QVis>uauU(40zT}pZ$JoV4K
zZ7e6wWh`wy$Dp`GI5R<ivc|XDmFb25q_%mUDVlQq$Bs$URv%V+p6pt<ZQ_KGk9U^u
zI2U@guE@ye*{6U0c85gL)z$T-^gpDpunIaOU;rur7T^E-&5)I^KJNc<%a7-5FVB8u
z@nfy#rmZPb>C-e$S%19go%JrU`1I-8sQ9IFr#HOy2rcHbJnR+`9PCp3d*S;ni|$Nj
zbp6z__Q=kt1*_DHJCDp=!0~&%wbr5@7u!y?ZHMn$hr2)db--ZdMXpV!FYTMYN9my_
zXRgjkAEmikxjt!2>!uuWKO6SwOr@l~=aS&2#XZ*;PF7~s?Nagk>E5ilXXdh7a}D2B
zOuJ})K;-JNnU_?yc=k+QA|aHUbtmqfm(iTC8lRvAnu}Ux7JqrUM$`J?n+xmr1sX+q
zHkLiwQM}Y^(ZVAZyM2@9m`tuo`?6Mj;_0cMx#nuCo>P!`5%W+(_lj3{uU%MrZ~xVs
z>6sH>J23HHW4OLQw0lWovFItOj42wL4}+Q(-&I=~*mr2>uT<@_YbWM<^&Ztf5UzQq
z_}#XPkF-tCUDZF?XLkMY*+=PLJ{GU5^9-8u;dzYx=i+sKmcMNt%J`=<$3G7_<@@CL
zlc>qY(Xp$mRL_-Ud@I#^BiZxxbcNf}ny2S?s)c72+?dl{R&;Uax#uyOC4Li%-(GkX
z<yE5hM)K*qIouQM*0F92dj4v9%#>)$>36*5dUqB@r}y?3dwOQc@GahV?s?Dub*kp+
z6{TMlem{;$-fYc&{7n?c73mW@A19aUPRSB|U2~4D>*Uo1Yi!c3#hJE#nrdHLcu}-+
zuIakceV<w#{;G8a?c-3t8JqRQZ>j(Dsu@9b!p#f!H1gy>W!toURd(f@?WOywzSi_V
z7qz&3V(u&Ltg88<uWQyR{JTACPPSrz-@h)^?Vnm5uFv&q{v>L8cB{aTXy)s2mbWG9
z_McmRE4I7)*(djzcb3%n`u#F_QTy-OftZaw<(nFdZ7;?B%V$1Xx_s5=I3CezRo*A=
zc^Y$1xZXT9??tM4=+VBb>z|jusW@4ASAFsGo@<o>>*wA7c;8px@YAy0q5JpU-<Vwg
z$Z^T~B^#=q@5{Lz=G8Dcey?5bdec@jyNyqMf9}o5y0R?idE2J<_pVQ#`SsPqTb)YB
z8)Z}N>+`zuUVq;1xa`EVzQxtDFLyuP-t=-2-?JBGpRx~6{JVNqZ2)IpMwW!~MAtgc
z)s-)Wl6)Te_O83|*eCg%hS(B!&syCJ0bz^cqc=vZcz&2WORPz`>C`4J3+cOI2`&Mg
z!cUGdDK&M?R8ZqcKWMMC;>6+SFP!?zzxB-DGU@TNXR%M>|D^uj?zzo)`;M4@d*ikh
z*Uns~DR}npI@zTx?kiP~zx}=4Q^eT(^`ie%XDqyYcIxjyro%N+asPHt%oWL=FuyA!
zf7=YDS%3B3Xs0C?TzQ`@;=DAcoRJN@z}7l?>HNJ*<g6E&WMpREe|;ofUz0cLN1Soc
zq8YcInz^5IEZ*$hyUzY+(4SY4x4u0nVFaxY-M(y|#)O>otfJ0YwGWOQ6ImQzyFZTq
zh5mf)ugXu`KZ7n@dvBw4Pxh{MwD)qmWgEJ4cH5bm=PhSxDewc;(Q}s<$=ppgnB^mQ
zwkK`%*YEY-pa%Uyy%+gw3uOMfa_;x|@4*dLn0`5Aw{r1*%}t`}jNk>6%%;B=985HJ
z-S$icyaGD^!Jos{&5e-N!k_0=JpW^6a6SAu69Z`ZvEsdrCE#_+aZb8tE_M}lmV=rJ
z&sAmI>kKXaf9U%j3brKtLRY_JZS#~3$L26HFdR4?v*3Qz!^{7yiqA}SJ9-AXWYnQ)
z?nUzs(7L{R?uhXh1<<l)q{bkD2IKi>efKR_Yq<5llRpF6g2dq?P+TJS{gmwESPu_}
zx!>f)#7=a+el|l{jl)MknC01v_3Vzz1Q-|&%mz1Ph-sq+Og|%j<>I^h`|B?)@%;Jo
z=fQ&qPo6vpI&g!>LjTjJPilU1Dn2}L>^^#FOXlU5mzTG<wbgw-YtG5Zxpe8$ix)2z
zKRd(8%{_TqXxO7UmEUfr&#!zo^U9SgGiFGromhKfhW*DQ!qMAuHb$+TYgIbSFxhSD
z`Fxv~bKT|Z|9os><u>sR4h2m-?)dlX^~}Ye{oE@4{`#7knfdGTt(nK}bElm$$-T9O
zJ3a1ruXOqIx#eoAs-CMNb`(6!-G2Aj&bobd#-6JtA3yovU~~DqJDUDYpaXNva%TML
zs(Lcf{Ym3@$Ou&MJTd?EDPPXbl&|}dcy(21+3vs7qVp#HIm@zhs`~tzOUI9=UtHw+
zN#WInh0Xi-*F#*W|LKK<ML~j>*QpyDlda3&)!eWB-YaFA_2<XOGZ%k8ef_%nyzTd#
z8yi69ApNp;&;EDd<C>Yf8sg@hJ$drx*6itLR!m9NetPFl%(<_ho&LSNyfr&~@12#w
z%fEan;j9c>ZK|i|mjzmE<mkv18usYUhMPH;m;3ws_?SrbrqAM5dr_mQr8Vh^?*5!F
zH#zzF*MIuitG@U1pWmUNUg;8r+ibj2Po6$CbbmhACf?Q6HB_Ew&*O_FjC(C+Pn;+y
zDVb?BbBRuL<pxjRj0}zCzbluldNn(L-_6DD{4=}VdZk`YHPQ^4KYxCF>QWcyV{c_5
zHY6NeyZzp+C7zSJ+WCc_*zw6)sXYGkX7l;HySq#k6da1?tzZBC<@x+s%RVkC-{<jZ
zo_+nl8HUM!{{B_%1D%y~>b~QdiPCJ%TIxq1r=2?U=8?@T!{j!b@4S*mDTmv5d)j{A
z*qD6$++6F&j~`2NeNWkbTlL}A+}qzKy376ic02$5?)P?`k9oRxpPlHktCd^4?B%7W
zpfjajENo9ZKkw{@hKlgt@NR@k`Drs_<ISJAbkFU5^5h9KJKvHeOEkKaiYLySx9<A$
zXU|UA*EBabuU?aK=UgM`vg-T$YOlwZ&z;gQV_Ecm?{_{~t0|mC^1V`~MzhcUdhH@>
zUB<)7`SI&l+rK}3FPqH!a&G$F-Q}knythr>l=Jt`pEY6H#ZLqeE;!}+amUPE4gbFB
z!IuFCO<Ox9lEJ?J+1c6O|9-!3|NTy}ShuU*w*345j&us&-j+N06J(3qGUL!kG7_d)
zSDw$W-*<6o;^8*^Js%F8n5aBc;k)Ab*x21=clT6oKKM0n-<&yf($3DB`|r=O$@eN%
z_+@@BpZLev^Au<l;@r8sTU#{2Zh1EKT}_4?=MwRAE~k=nE-mpq-Y>sCe0^L|QBk*;
zuEoyt-Jr9_{O8+!;y!u(dbl2B{O{Y_+rpr&bxF!LHZki~Z4!DO)Gucn6cm({lr%$O
zd(n#v3r|i~fByXW?6c24K0aRl{@&hG&&}t3Iky;eHqysOM}OUpm#g`3aGq_ok^A%5
zprA|a@-+&X)+#D078al`nCX0x^RrfRYlBL;3R}{;Squ&9-23G~+YMKRuD*2n^6t{t
z)8@<pUA|ra<6(RLo{w!ebEdt0y?#IF^qYvaVaK={tdqa;G5A%z-}`-<PUNSH?(%=X
zT=t*z#H~-}<>SYn|9n3G|JUpFpP!wbZJf?`lds`7Sh<u{Nk&S_5|MR#zumgKyIi|#
z(wsSW_SgR}eSOXIO7`t-y3Q;I{%)*dXHa)_ae2XNZ@>T1qa;m}ygNIxudmC@%q+iK
zD*l)mREEpFzwB>+cVqH#(eN0<>Tfx2%%Hx$O>|z~yD6H%Y3Jtrd@|WT@6L|EMRLhZ
zU=2EoiVH!9p6xE@=j5C?K|N4kU%x+*@xim6S<4K$7#JAhnn5)adVe3JmjS6)iWr&*
zaQ@Hlw`bm5YzGOLDHtf^CuMQj*yy`u=9Hus>AU45mZZ9*Cg-Q5>ieYTrI%zV7?~Ov
z+u3mymlUNY=5kfsx*8pwfBS@J-TU<lzg$c&R=k_8d#OEPw`<p1rrT0)ol{u0xT+tz
zv`G14<nE*YzR!DDa6-}7Q^j?+#+(S}s&fy^-=()Lev$2>#AB}#B=Ya!i)VUO^^&oF
z9F&?S9&B@&zFlzQ2?I&px4MaoPJccAqbSj1j{dYMCx4jTziX><^V$8Cd#`<5R>95O
z_qaCduI9dw=G!)>KgFBhKL0J~=*#QvOKv>5UF+%aDCPY-^=Nb3TAz3CHqR=1{%_XP
zleg|h9qnFydVkaoizBBcoLRCboOU`Z=6&$-*7=ftCLKXxzR|i`SN7+1>9gNZT5Eg#
zwOt*Trtd1w*Cn&Xw=Q|T#KWsg_4tlUYR*m8xlx@#+QQ}^kDbyhsQDYRq}tqP+v_+7
zH^r5%U-#t7EA;Z1o@YFmJjb))=eLLNtnThCtb1)|e!F&K^ok!3mu=yDRcm$JLrPG0
zrW4QRz911JuIZOq4oz|Q?lO4jcOyzdPOxc4$eI$Po-Gdojo-(<59V}jnVIg!G2eYl
zmxWNol;UsZp3~mUc_%oL;b>N`Y_pT(A}^N*E?(0=-}~aMxZ>M9MUQ<;&0X&)B-(oX
ztGOv$7sKIFx@8JWrqi6w$5OVwVBMM`!otYly-09z$*Orb1Z)c*9AviTHMqHry~{=9
za-GHw`L-7`x*Ou8B(!@X>no(*9S;8Pzu;8#7uzHEGiPV;Y}$BA?aKyVjhF^6#mQXD
z`fs^R@0w667yR?xMT135MHA*+Ry)7oL7l{+$5LGzCYmX3%4c&34e8y~HPJ&$Uh~b2
zP>BP4%1<X~c`WF<{O)G2kk8!eRhGIzPh2PQ@(E1{bn?szXmI>+a*Nqn<F@4{P8LST
zj`Qd1Ts;&Q<yAEQvew~m(V`Mwr6!vDV=RCDKb>nk)xYxX-kEP?m+XJRJE`2~-h$%i
zydF;{2v$7pTU5Al+N5b$8lokxdC9zAP;B%gz@4iyezM^~TeIUPd5dlxdwqjXI&R^D
zy$-BGZ9GQnWisxW`EmWpoYDGAS?)@!ZBL+F|7~NHuYZ44-~M*Yf7|}v?oZzZ>IGOl
z)wJs;9RAaI<~9GLJt^y-dwolqw0HNznj88zZ`M`voja!g_4SXXTz`UkzIkURsK&Vl
ztoheo`D$jooc^lV{WYJRWI60JbBxa1C@D+s_jihNerYy!V<~IdNlA&Rx5L=7wiPh_
zKmG31l-E_l&R-Q)?U`WlZ_e)4{VEBD-z)du&gp)2ZTi`Jy{FE$fAV|9cKgf5StXOx
zB%^dBmw#-}y5_rS{W9C9{CN|e{?yN#Vw3zYIBv=HulKkAEaT+36k8OWvv29m%S{3@
z`%4d9we~wJ$0>4TP0)r6%Wg-XpNqa#PQO$CGeqTg{EM%XzP;->(BxaaT4{alZuYi`
z9smAKuiEkZO^y=tapw1nWcKu1@84J@&~rpS+Kq>EkBs8fH1_3(AN4vjW&7^`wT?0K
z;@1OA{t6LWPhQ(Te_iuDcICML+nv~^*EVT2_2e1Xlnb$~nD&|P>fb6Qrh+PGE2D*z
z1$bDtD&($uKUwK#;`BR9wdG%Ucj)9eA6L+;T(Pd7H|n;IbN>6fsSVNPeVM#Bv>#o1
z`+oO?<%VpT9Qnon4E?WFKd%>m_xQNY{_@5AW^3MDyQ|~B{c4+Mq0@%vDO^q0XPDi*
z>Qde?!!=@++2+f7o;)o^uN~qev+GY^yZ`N|i^-J0C86wRGv6=qnVMVGoikr-zS-^4
zUlCKEtUSlA%2enWf9UUuw1D8$*<ZgE%H6xLSm5AsD{)gH!@Gs+u0GoHBX!2%Me%!E
zxFpR^ge?$zUB7GJQm%XV3gqVeTDszT$oa+p*US+vnCC8DI+w#D-g4&s9sC{VbN1>7
z#OKVJdh*qj5}y@vMy)2vxtk9BS9iR4DfjaE_4n0YvaUIN!=m5P!suCYsE1+mynV?f
z&p!(X8?<g^d4J<ck_%VfLyH)T<xfrK&q>>^dsyO{u<XY5VcqsG9<FrySY%xKZJYW7
z>*CwO1^?Jn&U~5rYo1lK%;Yy7+c-`v`)+IJ%W|gei>=JczO~OYs%t*5<gjnCmAQ5$
zX3NR6?CMwdQp&zBmO8fOY~{9f$J09k*Ijj~&$zyMx7__%XVy8gy)JjNp2oj>p7TW;
zi|Lts%s+*4{SQ<=+ot~D&#m0^h70>tHZ|mI+m>GT*DTlnK-Ir(=~K97Z&O!TJ?Gz@
zrRfJgCb{tOop|=Hde#?{-G#H4MoQQ|{w2p8_&{pelfp&cSly&%i><$WG(y5<YM$WS
z?bhM%drf)Vb9zl(zDLG=$?xj?eC3F$%^^8n=I_UScwAmgl@7WY@?(nX^~|!g`3WK-
zclegf{KTi`F^TWp_jh0JWtXfBU0ois;qXr#m1y06FF5zRc_jE`?39h;<vj87o4KWm
zY3BK^x?Ypz9TJNoEhjsgw{2Z?Y2U<WX6L!rEc|9*{qxab+3tPk7teo~{-bU81g_3k
zS6+VL{XU`V!er@p55GK@e#a-j?!Yu>{%PM;W=**H?48|xQClA6N2%(2&or<<mrc9f
zzWev`&IdfMm*zQe|5W|Wd4NN#qpWnB?7dB#FSHCw^ON6SN{LoG<bU(ZcNV*~tvT##
z`fJX#r8EjCi)XS#ug@>Gp8NjIL-p#I1+HcD)BU&4P72jOdtO^qq$w=XQcOyfN%Gz@
zE$d4w4QhT18vVKa`H%Uem5#GEm<314mRM-bUE(pJFKF4i3oEC1bYA2NlaRc-{NeVm
zQ3-6HjXCcMJx;!8xKeO(n%!^XWd3OzE8oVai$nw$tYx2l|GT8(-K&+^8TTKx>O6m`
zr&5v~P#rxd{^Qm86FhEhe&EjfdgY-7NtX@JUcJ5Y<yHN7=e&v^pG;M<bEo;-?v(C4
zwB9Rv)e1jLj;@NzxSe(UcSDYx++9-YYBJ$4t8A<w^Cn5HqyxD=t~@8=)+qHgg@qq!
z$ePzBVK8UC5}VKQ&?5~W-gH^`9V~Tyll7xj>ybu@uj`zX|9oBNT>Q6B$?L^M%fQ9j
zNgn3Gt~`<Fq6MALt^XNz;`+A5lfF*ieBfbaH7`zR^)0a?>42U;nzJUn>6!E*`?iP3
z)jn5m;e(!goKN43^Kb83xV3uY13weKyS?0+=kG+XvNcMuoV;Fp$&Q@jf6=o-ZY!ip
z>A1h+UUFZyV%gRO9P*KOU&P)kZu5EG`Tyrzj^s<JK70mkY3+fR1OKd=p{ubpaJlH#
z?VU+tu7PS3Uq=01u*_|r+>?LO^W9~$O7a!n%w9X;Wy2<&1%4m-#D4d_XR+E;@PFB=
zONq?8qpqm0?)|H^X^ZbV+v)ErgSt9+a$PHH_C`#)akIPY*2dG^%O*5DYvR%qeHf)#
zJxRjDX5)vpwu$B?l?!uc=dvV<NH69MYxj@6U95WOTk54{H&(?@FAe(rv;03RW0vI=
zY^_10a}z@<3sUtX{FAa$lS}l2OOr}Ke9zp(^i=)u%#@N01q%~Xx*aQJO8&7@hP(_6
zJcl=YRKM%^;_~G-0Zq#UC836y2YeFLK-fTd1}6xgVVS{sh9!;3m@$pXxN+tIA8bm}
zn8;INAe^8EvIK-dCV;SU<4gu5i%3ucb1I4{FyBBdB0&k%!w|P%HwCK_5`vA~ki{A%
zsPThU3HFdZqrwPr2uip?q8Vlk3E_rf3Z>zO8u}yzE#4HVA(x_BI}uAhH#9)>`tTkr
z1u74SI#vo+6j1Y6DWptK=vXNuBMUQ>W2N5QWv>w~{m=d(?ff#|OC|amB3!u(w={5^
z5D;+H<dfU@$bsd5M|6r7Ym0ke;Itd<>;ZxW4R35kT_yy&Y3{D>FInn)`^<lH%M-!g
zjbfTAFQ4nKulW1)UD40Kb>-hr-hFz=X!cn>1_lO(2PHRFFo76PY(S*LIc5-rg@Z*1
zi(;tI@`GESw`%LIHJW+mta<&?pjBbvi-d3Jng~d7TyV%xc3{5SaW?JbQ=#_rl_H;J
znLanvZ>-CCUdu4GfsM&T;1<UPhw>R57h6D1@#D1Q2hk8xhFu&qJYDXVZ?G{!FNW{7
zRgTZuwHhl|^m2U__$0l%*z@%26Pl}D-8<NQd~eyEg>LC9R+(LS(W{rXd3}3}tNw)y
zw#A*(9tMTY^vnNJB3^mQm2uv>q{PGA$!4=Je>QcpJMLcjwyG?**G_Y*igNtqzy+GC
z*My#E(K26n$#+GOc;$|ZYgBCXj(<DmZE8BN$nX~f=vXF;sgFKobxu$hDtO)67PWVx
z5WjF$Uhkrwn{R^h`Of(Gq#3u@&bAEbIH|R2&5A3m6<(UH0iKDGrCxrPu1a2JaYY+L
zj_f|V<)&+><WEtN!cSgXw9ErH^k+-kZx6FGx@|Fi^C>T_tUF7XcCKznJF#x^mKV0q
zR<72VdGX1YuE^G@YLg??9$wZKo07%rc3Sjxo={!R`>?&rwRykY`sSUF-}sivck91|
zQ;Y95v(%jX*xf3A$$O>H3_+&7OZvZayu0LgREK$L{3)H^pJU=yF1watBJKO-{1G0B
zj2juNR$O|?qb4=^SbCb%W!9=)+qg^e#UI==J1}?J=3Un&1jm%>h1RNA?q9K{?byd~
z&)qFm7pgtILN6Z*;0{`{_=CIWJC}XSHbtG+>G3%5QfSqyJI5X;rQN*v<j*Q8=j{gP
zpR>2^>iTKE&vaF9uDcOiDer=r_qW+!dDSzeJh<reX%j2|))V2HiJN0qlzzGzRTZZ6
z$g?FTsz_?Vi<i$8cX~cEduKDP^h3$H&&{_kI+@-0qB`r=r&G5a^sh_*mTT5}e)(#r
zT;8D_j0=6PZ%W+PcOY%^2G#-{oy|Av_IoS}3pacHJtjo!`XVJ>tH!%d%v<NM8A<52
zw?<rZHutrvOTO*9?0I-bwhnvakC?KQj!R{Cmi`M{x<_rXgLC511OrLk&MsH$(!B?l
zTzq8`bt^DRiD~KN7iFuq{ma{?x{x<8GBr0b^Xt!^OOvN_eZCS^b?CVBqxF+6oSXN|
z^ZX^F3)i~NC%3bn%4A%0yZY3+_y01BZgpRl+Y*+qrL}sQfum#BqR#0~GH>2`b+%M~
z<$A50JNa<5=C0Pt(!AG!`ROqMi~hc@aeVYti7RWHip%c$Tc5)+zLp+evcy%;V9i#e
zEB@DRxx3}7EMM{I!p%LOUoPEw^!l=;oV8Pus)C<}TK(Fbyy4HxeYq<>EUyjsi__b5
zR_j8r)td6xez{Y^H=Qp3H?>l2>5R(Ms^uonukFi=;p+|(XVu|y%VoaPVsoy|IWxTY
zl%{gqk5f&1Vpqy(R0nb_-tp|A+9uUoYu$~^WPEse3+k6dA9$A>IepWq6?ZPjirkHR
zsw*D+Y;nWZ=M`a&nOk>HSwDqS(=Sy#RBZb7fUQ5OI#$kH@zX*^?7G!~ZG4wMZReg4
zyh`|!rATOI6xU)A-ryo_o!T=;Ta`3F*JWDhMErAL&p&miK32oy<jR7{pLVxbmgc_q
zJRM`cCiw8m%rMof%h!v|-4hbBc(KX(MF-psJH%#h5^uFkli@o1ck$nqpUy9zUbFe5
z%vav1E8FMwWr%C&>s(!Tv%2+Dp>(}@)#)pLHLj*U$=<TnEs9~U>1?5@>sKb`=<7a+
zTvSxLc4OXSy9*byj~vcj8TN8*uHBrt$hF+xrd6JF{ViOq@h+G*VBYKxF(RqocjYG@
zyk$In^XZxPE8o7zy)=92v?cr8MWruBowV7S^t<)2XQhqaSIuh|<{hk&YkxK87f)zf
zq-yU;>CZ05Hz-&Nr<nhp=r;BKspC_dlzp9Kn^#T0B^$l7y1{BskY?_g87C?`1S1YE
z;LPY=xYjg4X5n4t?$c*a>Mu|1(wVX@W4ePi!~Om8ISW3XUph7BjE3&oHM)yyQVlj{
z)SpSZ_|ISIQIOQ)H%@{_#DX;{ZT=+~ylu>B=hc{!A{r8RPH*w?Gfuo`TY|W4wFQep
z-znYtd%3P7h_zUy)3JK7-Q2&s0xwPawA3jsu+sGHOU<Z@%5Qt}zg^3ie`=1^lDjHT
zg>F@szJK7`?fyIY)_KFv%O70VJFvGnI@EWqqUrjkQ!lq>NZyHMO=6s0c4^AbbIVrD
z)G=BUzPc{<Pe%Hm$M>{nw*KGEI(@#E(9I}Kk%G&gwT!q|v~Nxkl6#w-8Mfu~GOa~3
zTu*jRTVB58{DF0hQ!M-9H7u(3DcHt4PjzD4lG|YY_Lk=K6w$DtrX_Dx-d@pk2uN9S
z$IUunmGG){a~^4BNiFqpsJ_3&hPQR$H^(BcX<zym@#vZfr@Y+S7prmOSGv_xp(@=~
z6<JLy0zzF=bL%?Gu5Z-w;{Ou$bgI=Ufh`_uYf`?5**sk|TXx-IH~Z41KQfB!T(h1v
zNH$MPIdvkV)yE@uSJnBa%$=6DR#kidWJm<RopMDpnx)F~HCt^}_Hli&c{`(g6n8B0
z@)x~od`R6Y#C7gk&%e{MrfR(kO4Gc`e>A&(s>zMxS7U$ecX66IDeA*E_SGx$15%do
zoRu+L`YV3lR~u8ktGcZhCv`>f9sgwb_{-F!S0|O(Ti4ww?VMz*`+5HJPnmQ04syNX
z_qnjd#>Meww5q98kCI(`REv}G*DS9yJF|2{C$0~2`n=@Uf)+3B*wC%}R^4)t7uqI&
zcELT@UXSc)K4%u2_Pv_9Nnvl&orZv@ZT0J|Je7k(jkT41?dso3zWUQ|C-7vkKzD0Q
zmTcFyQf5`xtMy;=i=TOYT=dn`xr*iM%O|_D&ZoXQIc;&L)4KWXE-%%BPOyBDY~ICE
zniExQF6WgRZLfB-uRO|LdE-4fImvroop%L_<cj1LH2%AIalMdlZegV9Qm$L(;a6Y8
zy6&+HtZQm3tJ@;(e|GJO;NT#`z=(zJr#<x+cWyhEI(6D%gLy@TE51rFzuo`(t=;Nu
z-shLSjkvWwdu?e|jk;xjG2~eEx~UJ>ivC^vM^o&A!O;b=$Bj03ugZAsUv0|eyhVNK
z%3inNt>-+teXFHzy}Weq#9?0#>xfy##T!mVEAoAudU3v~m2#>@n!D5PEe!hM{I7Sa
z+%gK-x5UBO)Zw)JJugSjW4?#PKUq%M_-*c)Whnvqnrq#w?l?2wb*{Oa5uR=ta41c3
z?N-O%TBjnmeUDphekrc<`^Ga(m$D`{IA0Zd@$}V8y+sj{4^*d`mP}d~cWUAG52qVf
zpUhPCv03!pZcVwid~3`3<lrZ(r1hm-e*d^Kr;B-ckw#r)-`>c7#S3K|K5mbmq5gD<
z+c)8fAv?Z%-0JLZy;8tm@}WxM&Tld9^=mJ_x0&X-)oXX<?LhNon*(z%_*iZI_(Jrh
zaz@gDMK^=o7Vgs3T08Ii=S;5Y!jBhS`#Y`ZMb5nkd5wpEx86DUFnV{=%dV@_L?`SL
zuGLy#Wiw}rziiPNVOfpd!0WL;Uf*1O^XbL6AtHxXs0Vys@WkD+)AC&@d$i@Rm@j|N
zd2eyEzoc8>(6fKS`K5kAL2=Hn#fv2-75&^FK5s$STlu&Co>hMjURivSb#Z%3;GHdJ
zm$;=bSh^^4<@3wGHhoVq(|tH~jnS()^7}-bKQDZ`M8rFrS9kf^-i%dKt@SUu^GUtC
zbL?@e`>jBsrKJ-r5BMnOT1*LxiL?FrQ*X<u1oM_T?Q__57d2}1Uaaf8=DF>whRE!v
zi!RUJw5C1!#bm?Q4VO+u{o3JUeSL$%&fID*MvaeN7oV;%^5PVYn!D{-QChpuw0j9l
z8h0IE7qc$D%Vqwy|5w-hhD3{=4Tue!8yGNiR`k4C={xoIy<499nl(j7YC=cF7T@J-
zYy37oEz+)<cB)zPa)sAg_R@%(N2iJ#d%fJ6u`nc0i7RD`Z@K7a&3r@l`AmQA^lq(^
zT5vJ*=Bia++s{9J?|)`l>bmMTU1iVjT347pTV<;DNF`3|*2nNP*HGQF(~hUISMM(4
z*mh)x+Fbrcv9YU66)xGEuWS&S*B^9eiHD=~d?8=nR;_Qctb(_;%-a{V=ebMRZik-_
z-ZlF6x^L_G_xq(xR70NZ9*y5tzobeO_dZ#@HGPHFi^C^{`PqWMm42CUeL>Xgqs-g3
zyJ_n@wXgSoxi?3-D<k_`OqyTo<mGZ%e}6O|-2P(q?!MHE>cY2}eCl_;UaPOMWa59T
zcn8a^-Ybsxo(&HQG=APb*~H*&>x*6T9vO#SqZ^KyoA32%4by+Hapm?q_x&y{VOzBJ
ztomxdeV-yCJmyY*cB1k`Wx{pdkT_RKZ-41`tFlgiHUAR0b=S2MIqNmfK8b9Ws^#l@
zd(%tp;dNV<Nz=j$&0ObJ?9@14rTVouWA*d30w-fzjX2-OL~)*7yLG+Jfy+ggx|oE0
zz4f&Oi!xcvIsH|hT%6Zj{#Snf>A)RaI_bK1TfQ_#pLiZ~Qg8X$s=Je$j~w>(_?+|h
zwb&!=#dm$~)}HU3t^TW^-tu-)k@5Mea~%O(OZwjg=GtcPZF}!@Z(HMwz42#sw$7Pf
zx=`a}?&Igrru;5i<5>Re$k9VfqtDr2H2%>!`#9g0i+6)U!fKzy*sb03#q;sD)rmo?
zW<7F9Ibm=6)Jt&kCca$u3}&bQB~{9~mYO#&PwU#2|D~|iPWW1c{jW>&9q+AEn|yle
z8>3qZzbZZ0kNmitrmGzP`SLz(ACIMPRciMv@jvwM+WGlUr*56{KjZcFQ|@AK9(&2#
z&FoK1ow~Jt-s$qmA70CC-t(Qe#6mOw=Qi%k@qL`%rYSyGe16b2OW|4cgejL+WqsMQ
zcH!B^r%g${=Z+Q`b4*)3<G%Kx<#{ffWlvicZ>{+LQRg;$((Q@HT%jV(87#A|MQe(E
zwCtSTU1?LcU&H<uPoT?b{fo<<OnJ?tCbctmfwik@tB-^1%}>^K*Elmx>Zi6W+Zub%
zMZWC6$Eo}EMzcSO=^7Mwo@bWbbBk?<`M(6Avp+qG>Iy4)_s$7YTf+a;e4qXr$B5>4
z)?N&~Haoh_iUMB#6s@1Dzu^43EqkASwwT5pv9!jkT7;3?d-X~el?Orp7WYog-Tmsd
z;>qA>zkl1lO<ejc%)`az^wgC(V!1+@hvqz5RkQV4#?4nzergw<=gz(N>8$88D_5>f
z&x5=(q8R6Ie)0BR`Sx<tm5tMKJa$bAw#%>aFZ*1-Be&+<;o8sxHv{f0Tzm58mq|~)
zOnP(3>r|O}oWGh_L8j@F{;69w-l(xyTR)|~#5%Nd*)+R<M*oYtSD(@<^_ux$WqVZh
z4sKQ(KHo(p!lz<c&Eu;5W-pJg_rLoyT<vVI(v!e5RVyav?{+vn{a;>Tb@#4{7`~$}
zzrOQ_|K9yCQtZJx=M%+M2k&h<CUarY`FoN-rNp{jZ}urgtz1@i|Kyv=)4SQq`DHFC
z@3<GsKlA+|<GIH(jGl^SU;d<Z>67V~h|p#AOR5`Y&-j1&-|8=tv$yU2{+jvB&MlMj
z6612Lt(zO?u$QfJTD|&=?)j72*RM&<IJ|3XRdUt5XIXwbZ&rP5&&>}E3Urp{KJA+M
z)b!=gSy%ROJ*!Tslbdud*LI20K9?g)f4DmODm~e?n@eP!)2(GUlx|(Kzg#YR{!XRN
zWX**s%ZkKX*>;q3h6euF{g(GYj844Z)IA?VSoUh1FVZwS7s$kLM=p1oHH&sm{iWqE
z(tovG*nhjuX2ID_`<GAo_x0VE{er8qd9&-i7cME?Uv%&3noUx3HwH`Z{=LqyNbXMX
z7A>QAJB`(Aa^FV(H<lNbvz(r9$rm0H8n|?KVUb<`+9{l$uS~n$Zgkyr_St8a_H&j<
zMupc++wb)&VMn=i{C2mvZT^C}XM|<jzhzAg4tbim_x0bidGb}!+um?6FnpKD-Q`@9
z`aH;c-aFx<c(Dg(LQPvQ@;P!nvB_}E`s!9%>03Fq&nbG|u2(fxnOS+QE6=GeT*&y2
z-~D%RSaM$ashDKJ7n;2}YrlkhHZear7PZ&oL@M8^z@E=R9b8_k>|?%#yEV3*tep0K
zbyn8=3WFW-;`TFV)Te*X`aY?9?}y*63=Dm1lCz(-HLu*VJM*3Q<b0RvjmF{Khnt?1
z{b-c8<ezmWWz(JiCxi8}K6rnf@+7F}^yN<`tV?h0`hI;uVe{V9emj91r`(rK;EZwo
zGkH4K_c<qir9HMxW8pVfw7qS7=y=)x4mSOUrRhIy%%0jji!!NFtm?^Gyyva$Nd|@k
zovvHL0?v8+X}=VFSNnMLEveen-h-E8ugK`njbEgzv$}3cbc1XdcafaQ!_QvpqN+_S
z{}%+sMJ`<z+whyaf6M2u6Ed=Sj_ZqEST%K0^uamyPm69i-n-Os&Fgi4J@;MJnqMVL
zCvd)=D<peGcSHS_dN0475hoUxuAeC1JR|>cx>(HaMvtmG)^@LuAQJ%w2XC<#PhV+0
zo9i8X{dDEkt!=jIo62NQ8%g;V|6kvJTUJ)&#EI)N7E_&#`FRW8U%a^6dBdJ}S8u1U
zi>k9$F*?F*$uHwySo!s&x9fDH(=+C)CTx6RJb6?8l$`S)*ZdGYeyHim^i8L}uuTq9
zTXIkSkv8|oV(tz1UaScG+kbdpb9P#0>arb~Mze3~h^?)zlM}MzzkZC7VN1pq_ZJdt
zJp8m1zw!AzZ2dAR-%R!Lx$bW<Q!bUspO?C~zPJ19rbXwk%~>=zd_#Y>wtS>Zw(H&b
zjVryEo9jiCe{*uvoPT;*Y+O*+uZ$wb{?lo7Dgg(c@9@;IuYA6KlGfdpvIyN1l^@LA
zCco_8TzOniBuG82&PmI3`=O&%+qM)-_g|~q<fkZi=DYN-vTxDV4_>vNxpZ%$ovm_B
z)85$kH{TXC?}_18c@}X_c6axs&!(|XwigN*7%ps_`sl^arZr8c6!K5=ua7;a75(9L
z<kZ<O?$(zsGMK*M<(<Z0OXn(<&elD-?w2lq(z?aIYyQ3<pK9CJf-ITWzs>u*=+EoB
zmr^f3G~uc||AqJE?VHopmSj|zxz?)gK9jO@;U4d;=K|uE8cUpIPWtn9v){X-bFc63
zx1WDroI}Sl;ZO_b-s<n$Y)vaaJ+c4)Cs=R0%pOUbiVr&qA74;@%k?$l*Njc?wojS!
zNGqP7^XZ<Zpv4gfDtGy3zxp-LyvEm2?O}i2p2M|~AyLvV4L2{Cba>MpSK}2w-`nsp
zFnrVBGxh1~b<zDxzQ28QJZYy+)chq=IMr>$pQimyJC@APBD*_ahrXfuvbkBuFP@Q;
z-Fw{TV&kEx#LTZNwU2gA@2>l6TY7!t8ucnR<L`Tydj@SfUG{hCRqIRb%TnW-%K9$8
z)hWMQG{tJ?@8h4v^kO8Wq;5S3PCnizYgwdX^{6%^bn*TffnlpwE<A7L7&q;9NA{|(
zt*Td!cK_QI5D*mjT2s8Y-e`~aic|CISD!lXd@6CX5x2=1CAR9_i&7aG4)|)l5Pezv
zBj?^pZ`UvCZ!fC#>=663<~T=;vh$SczI4^)Q#mT;)PLPR=fKjrbEiAm?5I}wd-}xn
zKSd8-^;fTdV>|I{$$WuZqIz-FQCiOoldUx7Y|j<s^4g-VC#n{w=XZYnhPzi=etQ0n
z+B;G5-3_mgKJzEc_%`ob{r0M^<#t}4ZjEjCxQox*m>4oJObD0bu73A$+sd7yJ72Au
zQ8w>u-jZK8m>uV@^V>5g^xL5Y0o$eX_6t3EYnABoyf{-en?J_)#*{S^IK8y8j`MO)
z=cw$9RxG!F?mNTaV2+u)yE|y3q|wd$ek*E!zuj*C|4*@l!-3!L_sa_jHNCrWr=;rf
z#m}t2{nL!?^Y7mZ|8}JLplp+<T%OafE0ZQgFEpQFbEox7y0pD{xZ(ZAdr=d%n`pY`
zn#}rZyHw=&g=-892Lw2G$VO{gZOeKv?dU?rcM}y)Ma|vl|Gcd}ebUh+*DYaXJYjz-
z_39tXue7!PdCcOR=B>8-6L041>)w3&^y$wZKVE!UQvB@9%2lg=J?hra@fQ^lSrMXT
zHhXX3<72GcVsGy5o__dXxypOHuDqMAv#!kfwEAZ1e)VS=TXu!*+tj|B%}(Os>Pg*m
zp5^A*P5E@c_qoQyul<}A$rb5atQi<g+Ad}+GPpit_A6t?&ZiIdr&Uhxe;#;ZvAf-T
zd2#XZ_p`;~;^NL6*pPVG?&p)qfBw|i@4x*gYj;#^rqRsV@6Vc7NXM~How)vHxsml|
zhsnV)sawLN=AT~XZ`{0#?ZR<!Z*x-#nRjRJEoz){?eSZYti5+z{VsR#9iMqk!9-v|
z?}0|Cj-pjTH&<j&dzW_Za@JP2#TTz$ovQTV+uPfR4;^}C7ab6Az-6y<JKx5eIni&L
z>rbSZz5k_M{P$o8WB=t_;ny~9Rl0E5^n&**Rq^{b`x`7<7|v(^wU&tA#>&93gWb}9
zZP@;w&t{8!^-&A<@bIXqu@OCX?3iBct|{Q{@);~*-KtZ)_Wyh)ttTGO_;dLew&bFy
zm+v0W6gNJ-==RDusXK96kG4+ut|wGr`*hKyt|<GdEVhgc3=3`+$2mA003Guzns;kU
zr{s@!yWa=gZCx7G8|I%FuJYiA#(R|oPej6FPwHvwtUVW=t)DXG+N<6q#_}tR-&VW+
zviN1n;wvh-C}jHe8~?XAGcqvDQG9-It*q7L-*@}Ex4q_l9RE)0$`tASqSHe2ZDv$`
zscBq#(?W;eJg~nnF4igZZSxad<JU)cIb4@BF)%os+x?#}$~o?MSXZMVqt)KRlgEnF
zgRl0UtW?|lvncJRyk}+oT>S?dBKvIxu591D-bt<GQTBWAWX1W!KV??wPtSQjTq~My
zCwlO4)H^ld7n-*7!#*8pKDd3}ha*Q1#q-7J>a7?2WXWIpt#*%l!QN;)&`gZN^Sk>e
zlxw9wUFSVf@zh8EHe<#9l8mJ{ifvZAr3-wL&ST2$P5e6VwELvb%zKw4%e}gw8lw8(
zVOcW+14F}{baOtHwEr7^Z!&%2dgbrUw!VX1bL&&%&S@=Qo;PRJrYQT@yC18HZgs9^
zv;UW1un%-5DML8}<08qo)|s4@bMrVVm#p0{y>$EMm#XI8?MI)Q%G+G8jCg;IqY`wm
zLVAJC`kim=rv1G9Z}r^U6+O~ob&vTse5#b`s^WcS(|mD@y`lP^t&3t8$Xo@T#!$|4
zyld9cZOSi2K7pdWepBOw<1cP_O^gi*jf;$4|K~^Rp-)<O7tCM?QD$IZP<Vb*aP!SQ
zFZ;K|*ZbElXukgcXxW~lk=OeUa#h*PkBiFxbocn?nkh+MjVnM0<2sz%ym-R)e+gPo
z_skQ#x8Ckv<KcawU)d@=mny~W4c;EU>9jGI33D=2)UEz#1_p)$vF)!vze_vu`{{wJ
zvBx+4D*0CXaAMh;+pMNiiaH*3dV5{+4Q`%$`_6Kns$fxdOZ8$qMh1ol@`pa|+5N14
zi49jJfBDDyje?5(7p*TX-xIX`>G_gp=QnG<nmoPxSLw&YYd=BaJuW1pbpM<Ew~pO^
zyR$J@y8e{uo~@hGcYOb*EGhYO)}~Xpp58w9d$r2;zY{^n4mTV-P<eZIvr}B}xgSA`
z`=8wGk+@)Hxwl1Vp3kB6S0&@Sf8Wms-TT7uM|ivayy=rBefoMm{`?%v$&&jjJ}PCc
zoyYxBwSL}d`8&23{8e*bZ4pv@zx3eS&E2ccEuU^@zF_VAc9yT43=9n4m7c%7u`&6{
ziHWSNth3E>7uj!(db@mnU02j<?|g%GcS=2<>g{>_dF|X=6+ABmO%#s(U+A}Qg+BuW
z!;a{@;(KKe54CECt>NJ2UVOm4ep~*1x#OQ--7HgCykN_(zv<SW{~w&LKJT4y(<~MS
zhKAj*&5nQe^77KSeUahwU8ZTGS!dP!V_hxZH}=KtSZfG6PC4S->l+)Di;qp)n0tHM
zi4z`Iqz>np)$jj2X~KEQi~Du6Ky#39&gP!G?Kj&j_sffmudl7WoVC?t!nA4Il8$m+
zk$T*}WY6iyRDJtfacU12n}K5YU{Rch$B8~!Yd#r^3)}PK<>lq8rg(g44d9-9@{{#8
z#kx&#6YW;;f)eqbIqoh>7nA#K+h(nLUgPHJ>H2o_-`krC4=RD&7I3b+yL<Q1@48{@
z<9fS(KhBxwa^mfsW6Yt93=9l?Q$Dxx%lEC?*}6)q_R-Tvc5`bgWBwG#fHa1jtNwIS
z{e4c^-{0S#fBwnT*wCi#GvmVU^8DMuSFc_TUgqQJ=l86@VzQd=tLy9MKfZP={y8^~
zoAA0bAnzVOU1_#C{e0b<jmLMDygc-0=8PFTl8^UgUS4)LX;Le<cw1ZBy@-7^KZ`nD
zHl?4R_vOnM(1A$b-`(x|J+;sN+%wh+ujW0m7aKugk$3mmmdDrDMjt+WIJf?i!PGl9
zwF4bw43k)RS=iYx*YL^NyjT!AEjD82y!9_d8=FBnJK=g>u}%Ncq?u>aZqIjHd@;r7
zZq+1CVYLe?7cX9XzxVq*AGOU>pFex{>*r6y!*+IdKY#w@i%Q);_uRt`k^CiJoZf>%
zhy7fop`qdD=jZ=FXy(6>W2U;twOcIkr0%i!y;Y{E7IXc~)6dO`+?-bX@u>L!l!sHi
zGK=@uPhFMyJg(boHUGSmujPd=Sb22bE9N)Z+Q`7mlA*9ga6zNg?9a=5XMekuz5eT~
ztEaDDH`mwqUmB#UqH-sxhO6?+iRYgmKYDbmS33N=<}7DFzdonLpRy6NLchPeo4>mt
zt90qfl)P)lw6!joWKNoDtv~DRv&M^czH<fM`7$#?W}^#!u_bMe?6naqn?2|G+qZiY
z54RbopL_EBd2m~IPfyC`{3_4+VXIB0de^O6H>CxX`o+Y;zTZ69%>Mt+=ktPsf-hgb
z^z`)n{OoM;j&FKetL;k6-Y-12PcBdCOC19P!-nGRCo8qX*VX*_czp4qMN-E4TciFy
zo1JfT{X=U@%aP;9gA;Rd-dtMhy?4(Zw|+U>%1=)knc0Ja=9p$r3(+dwaq3o)#ay8;
zk8PVS=7VDQVe!5B_5Xfe4UaE<eXaM=tp-NsA2t7U-S{{-ZtN&b-h0S*wwWPw(#DF1
zhg$ohgIQH?9e)0a?HJ36Sk@Qjpc(%Umimf{3%6`3`Tgzf{rdm4H8p=0I5xNON?+TW
zeO)XfxIR{+z;L(CEn9)Ppu215C_We58S`(?)uY|wpj)5o{#MD$&wqHhegBU~-F?-I
zA6pmL?KQb@`>JmjI4M2QvFw+zEK2$O?CkGvZ@KyT>%U$NudS^OUl(JUc4mfY_O&e&
zvQ}M`3@SRsUdrvz4@x=eCo7AepS!y)clPSl**Q6Hrs+oS*|YAh%#PsYes_13W?Nn@
zv0Qy7!>F7iY{79*JvaHuo?EwW9qkr(cXPX@{rqFa>uYO4s_gboIi0xuYq2xf*!J_4
zrlzJdXU@F5+<$#^#m`Sq7c5X{JW$jd<>BGseX3G5_wU^wHhfi}qS&Hq_Ps9^H#eo4
z%WaI_UuQdY`xYy$^=r=Rt$KBXOFb8~2Trr--nX~6L3dcJFSxQI@b<Rc?99><#l=(P
ztXWQ9j0HuGWKo=>W8>RsakCJor@CwV&Mlwr)pEzd|IZcBAw?Fh=Y%_5Dl03$aupXB
zuiWDrI^kxH-TXiyF_rYqkuN|CG9K_)uJ@mB7hm@?b?+foZn1#M?o|sGZF)7S>z2Wt
zKvo6@2AQ+I`}2RFvwm;$`^{$Oc0O5?j0s*#wY0QuZBF-3O?~Qb|M$uwEsezsCdozr
ze6U0pR5p2^Tb#2!@o<}{c9@J+$%-{=&fLAbH-3NJVz=I+;_S%p6HaTbN!c7xCnxkp
z6jVe`nzOy^?Jc|7U!cQKboVrE;?~|fHAzmq9K1Xv{bZ%5r>FNcorxz?YJY!QdO%!M
z^k~x7Bl=1yqFJ|o>|PAI4!Pm;lRc4}(=I+<>OH;g|KIPGpPwyVy7cRdi;ow!%e}h0
zd%M%cpnX#ULKlaJU-|ZV$|9&98#n9K8<UTRg@pY1cwBzUPrLtrisR$&o8PaQ%ryV<
zb-%KOPrW7nX@OUx6zrOlt~~jq+~!3OH>aQ9HsRLEEzkBa$eah2r_WDUrfsf#duwa-
z_B>r(-MgDoPk(%Tyt}Jw#+K_sDdJ&Xt~TYG^0MFn<@<fjUq50)!rfh^=k0#$e7-Gl
z@7}%B({!^fw@wa?kbIz-J2Tz^oJ`MGN}J_)cz8${rEp9x{qy(l=1rTTJg!RkE}Qd6
zYt9ysY0uA8x-AY=+IUB4#>vXi(9oofJ6c109X+?+OK<{*-t#k+wZFcAcFmMn&F%gg
zwU?D!?91!x>sv#7#rCy;tnr)kd7015poj<wS=qH0GZrmcR8(9Hs!NKB<l4`E3VbAf
z9+cJ;?>_szEof!Q$w{hNTdma9j~_qozBI@*ZCSUte%zLfi_>(Yot&L>TPLgg|NDI2
z{%MgVFTb2k#ho36-{ya=(b->d%uOF;o%)%|!)?5`cN8wZ)TLSZYUT24>*MRYJts|`
z>_6Y`?d#XokD=Y&C5uCR%K}q>JN$Vh2})I~Zp*AWb>hT|-^*|2oI7`J-_ajdbMvmP
ziTwESV_%*Aq*qbSE0<ln&J4*sfp@=D+&j`K{4#L;bz|n9IdkTi<=(oJRK_i)BVkpN
z;o#uVe7+9SPc*ju{qOht_Li0##e1Jj&v<z;TG34$<kIxhm5q&!U)emS>&3G1%hhc5
z^qXrnb;^{I&H7oOl&Uqg>ug&7ogE*qhR5ICU9R7Lc<0wcnp4mIiw&Q8YU{yIPtF)s
z@nkRFb(5nYf5E?t4h?Kh(u`6s-aX%Aey^fg&bsu~mEGm<-Oj!K@$vD>l`Hw}{}}K-
zfBw8*&h{7Rpq{I%#Xql^K3&|{Am@gG)^fo=fBxjzI&a-|DaFV<`?08Krc}+VqAJer
zr-zJZ=bJIznZ1?!Yd>s3)7K3**SN`X?>_t8;Mv*Ppr+grVgDQZ+6%dp*UotO@9%GQ
z6_qQ0_vJb|G75j?leIdMwmEm>c{|Z5S+;jtery6~<8`;6?71FaU;Fvl+0W0<_jh)7
z_V$7f^bgR;xx{@T#Cy8l(h&2^ODbEV&L(YK67<sie$C;hMQ?Y;eYzTz&k9Lgd_AdV
z_x~Nqh>X11Cu^<oA$Dg`>!N!X7CKjdc~QtO_O5R3cGH<>*Vq57p6^$8o;RaguSou3
z4;!SabYQ;wV%^;BsXKP>=9f0}(Gk;+-j?(I-CcFRISHF@e*E~6-|okP;BDD6mxV1i
zuhjmS3Tk;5By2xfsW$oLhlht}o8|s`yZydZ`8%7kHxbXSyj>T&+wR8$=BiVg+N%8K
z;5OFs^Obw6zfU{;bmPX2Q(nEQD}FT5T`qEK*3`{mUi+jhL5soW*gjWPQE_o`*%6^P
zHTeC#z1By%DqpqB*A?8F6TV3FgXOy*yI-J#Pb?D8X=`Zw`0==ZecWCtQPHobwAc5@
zSWY^dmTfX?XYq4BNuwh>wOfnkZFhR}!u~F(x;s(H+uh$Et|1b<%;)C5+TSlOE>1r`
z&$i&ffxXq=^&&PL_*pzJ>h`t!ymLXtjLa?H_slh~uB?<aPW$rma=YBstgj7>%qu3y
z6&DxJ-R)LVmF(%ts|U{b%g<I;?VWdid&~kgp-vT{&bKOQ$?vv5zrf|a`lalnWm=%R
z`9)sUy=xgJa<)}dJWJV{51Qo|&78B_?bBNG(2tXpK{o(4OnzpwG{~~_RY=;6yLa!J
ztqIVWv)irUvkj=+{xoNM{r`W{B9(t;t-TYf@SymDC8(rWxG|9R>k93xkatQ~K(1DJ
zZYkXxrY`(B02G=HbDq~&`oGsYsGrEdz`#&6uh?*wPw3UEaKS#1g&={IYs_ZE#>5=8
zm<I~g6P4#&7hk=&nCCgDT4b<1f3qlVs_OHHdq9a);kjk(xz*RAi{xOsC$CKCd;V}A
z$bSuUo~M{Z*>*ow5><klJ^AULti2&ek~c@L0PPKQI9I%GPWaNpzMy4(43_65i{<LR
zfa>Q7pXUU%hUp*u2=*w~oo6#%K04Yht{b%__4Kq07XqRaOH02_(F~q6d9tO<xh0;H
ze|>$O-hQ?5F{pX_z~tS(k2YRK%l+qn`}%clIHDol($d0j|7XLhRj2N~I+S1%dR3yJ
zRt{9SwePO6@n3%V>@3sQ-TM0~UM`*f%64n=@jie1zf;(nnwt+FKFlv?^W(+h{#&83
zA(8o$dO$W^I3(HIcIlE*v*YzcuNQ8ZkZUya-S4CgH)SSzXieR<F~WDB{E66emGDCE
zK(GH(lvee(YjdR5em!nbV8hSA5M{<y>9jCH>EpiUgoi#mVzwPDm|r~aX3nx3YcEa-
zT&y87@4NByxmKlGnwpu1S~$zI+q{-;*}2+(Y0=+!A>FkL-RtAG?`kcmU#NQlT-M#K
zZf%Xs%X_D5^W^5Dd$sXwa{bBzD?WYR{BFVaJ7?#V|M~Ip%9Sha@^v%XK7an~-Y@s}
zr270Xuda4iUb}wXTwUFLVZeogxVSh_+u9mh@V&kj8nR^L-<eax{rc7BF3eNBbN{UT
zEhcd5{o>wqqnSN!xBkzHu3)}-_@j;V;)^M-b#u&CPdt9;UD`S6?4vy2-`}@aR9yJ(
zdoDY_+@H_q?cH5mmMmYcuBv)=w)y#cvo<?*%Wnr)tQX(7D<>x>b8~TJBz$>sQB+iv
znVqlZ?bhpQXJ@HS^?JKjZ-)H#sT~tOGcYi`o0vYYQpxn|D_Q?})2CafoH+cItGm1V
zUd`vNRjs$T=S$k`cz;^|_{II<ah3m`oP1pVXHjRTx?6wU!)uRY_Egk8JHwy9ZHrWI
z+Sga_bD!q#G5q%7q4U|my?4^Gw*CG6-Iy740SeoZq>qPMx!>+wow>y-T(H0Qv>>Q`
zHnY7w>*AvScOvA3FXw)Hb3Wt2iHY|6{uI4?b@lbEe92qe-wVjw|4us}7M68wP2|r%
zpY=`4LkliSzj|V0yDx{EfuZ32-ye@x)&4G%?q#!!H%L76WLxg-z=u1F)A#?YY7ASw
z^x?<H_upN6+sG|G>G}Epi<T{m(h%AE`CQ9}4Si>xbc>(2FIL;QZQHlM-_^@siA<e7
z{r9WY`Z>3^y?<u7`qI_VV?5{Q{7g(sYl~a|`7`$nqtsnKYTiCJ8w(yzm$fSK@$)Mx
zOgua1=lcf_!c3lBTI!vl7^>xe`}MKo{%<cYumAs#Ic)vEx~Hc^Z*PD9yud=)o$vqm
z{rffa^cJ<o@B70p_4ayv{m-Y<O}&=7hlH3ID=zhkYMUP4C(PB#$*H~K$(NT$LRat8
z*3(<Ivse1NT2Wl_6B}7@0lC3)&Xn)RZ|<qLm>dV5&d9Sp_u!!Oyz0Cq-A}FO*4O^~
zsqQ_!E<7;MuJjdq@v|B+!HXv|Ou|A#Uw-|Sd08z;<n^tszdMDGXZ(0R-~5uw)2B}r
z6?5-ZJf0i8-0$2B!(PoC0bkdPt9C_2hlTyRna(}q(DwWD9=v;Z?ubQKw$CvyZ||8_
zrN6GMl-G^_cmMtVcsY6d-~IM{a&|QzZs%X;U}@3}UUxT2MQz#blar5Y%$#dexhHh>
z1a9$j)z!ZP40w5X7R@={Q~dRnXjjAiy4_I=1L{5=UGDR+`n~TWm0x$uvvW>|1x)z=
z_4@y%ne%JSzI{BN%*@0z@$<V)Tx;zv1b0<|hFgy7#qRoWnE!szw&cw>BO_<(O>3_7
zJa}-e#*>Q%?T06xOwrT~ue6bCwNXpBSdf<17NN7O(Os^xhimboMVc*v3tf~lKZNEy
z&lMK-KQqJd>v8$(+^vV^T5o@MZ|~)V3*q6{Z(I^(-Fo4|H<Jq+lUa(N-dP!}{_DHE
zhravaDTg)wTy!WYxgNTD-(rTShzJSs?}s{t>jTd%KD0~U>*eQz?A3uMiZ|9|K0L|H
z{>@}Z&fj0QKJR0-rn0eaJ$3S=+qvDpwRG+Cx<7AYU|_iZrDw<Ag*)ocr5M$JxwzzL
z_y61LVt+q+v?%egj{Wphv+Mg;b5Fgpd+Gh&@GJK%{F--_bQ((VWM*nw&CPp!EPnsb
zwAL8C<y*E_ey&Pmv5P;z6Y$MQs+U)<zx(OD!n!RVs=vMA;qPBiVP0Kk^VDWm<zCk;
zAJscQy2@Fl=guhndpx)Bo)`negSf>hk6*rYWqy5qeX5s|lG5eNm(R_$K5Y{n7$_(r
z;<Hi5@MBB&*9IBZtqlzdQrBL8ow6n4!I_!CCQb<n7jonERG+R2i+=j{?dppeDnct~
z&zAPxk$d}Dw2zSN-Q55G_Flbub&J96?fL71<u)fBy)<J+UR>NgQPHQz`()Ra+w>>h
zpQzmK?d_dW@%mbJyx&w06;o5wFJiNHCl%VfpXK$s|Mo5~a7q7Qo|?_V0E?<G*~!QD
zcm%#|WS2`hm1?xzve+(q%Zt^sW@U+W+t&TL9lN`1xzO$J25IN#oqinIcP_x|^tp3V
z#?O}Cx;0DE_?bZ~Z_>K+o8=OW{pVUa>rKCW`t7~F%6ji4{r%5>dwclYeE)qnx7b#H
zTXw-RD`ZZ4yOx&Lt`#d@RGoY6#W?X~nV{fY|9LjYSi)wT<=)!&;n0f0$8Oppr{rv_
zZr;1Qz_EYdmrESs;gX+id(sYNJ$ZQK_oKLfa&BpjX~(u7kCzvdyL?YLd+yu=cmF_|
z)_28!{*=6T&++?%)~@dE`St%^o}FFJ$>L<ahJE)h+n!y$MfG+3hZknfcwA|b4=VTk
z*Tnw5+{T-Iyubdqo%6h6hjY8<eO_Z<rFOV7nt`FAI_bv;!7uz@8|GYp!?`{rc=oK|
zhe?+6+UGzTC4LJRxcq*&X@AeP)eJ|O)<twY;AUXBa6@{^fxTILle<sPHF5XuH}x`q
znC)yG<X<NGd9P^FpB<n!%k<OhSFM`hk<wB1O<+f_TeDm6spt1khW6;%J}<P)sW~Xd
zz_37XXG~~RR7hmxwL`BP&!)}xQL~QV>GM#T>U9@f<2;!Es9=YjoZSj`^&OUib^M@q
z)&WaJa4W|`eYaiy>9oyr9;h<#wt#vB3wkd&d{15Z#_IXWr<0!5b-Mk_;kcup0h+yO
zyx`Wrw(GM?hZ+m0N#}I})PP}tkPTq3V&f2!hv<Zm*z}{wP|2|R<FwiZ(jFT>KYVX~
z=f+KIem<Lj`thr;Y$Z&)TiKjIV|uwP84IKfm%P*aKkLQ}!$MF)is69e&95JAE*@TQ
zj=Jc7VIu=?iy4#2h29%EVadl`v_Ug47OLRk1qKLNAak~~_8#cm>$!8!rfoi&^wC|u
zRzyr}+O%nAm7kt$+GJE-{(Wchb2fJN#os`^R2lu}fs=|$OP4n8t^V#e*9vsr=*N#A
z3kwT3ZrnKAEO(Y&?XOc)wF7^HTH9xr?>u+gNU=X8ENoMR&eo{fe}8@+m#?4W^<rY1
zx0hD{RFUNS)ke9uKnLK?KKm^7^t7i>pH@~@7Fx(?EqC|#_ty&45Xk@;$8h{~W%08!
z3y=3oo7a82nV!G@?>E^qjw`2_eg7T4GUg)Z8%Ze+aNA69LE{_4=Z0;((q^^4O7ipH
zH#IRWzIftc!HbO>He5J<{Q0)atFBJn;a|iZzx#qihJpk0!d?d65dPU`vz~0+kharq
z{i;=3`uhEn_x9KCpFMka&`KU|?%TUcwWnTC=6wtvc5>L9HSKZb)vH(Y_y0As-E=dD
ztCEwGQ%5ZOSdZjnb^o|cDV;uQv#rbZR)JdF2R;_fYi~cUzyD9rdIJ@el()CGt|$bJ
z^;I+PZwG}dN)pAw!6Jk$rBf+!LyXa7-|m^be94kGcXn>xvBSd7ZeH8hs@mV*-UfDp
zqN8jD=kd>FZ*CYCJvq_T)Z{zc?Be{WwcjrL+q?3DQreB>YBJ}ecN9GA64gF*=#a*T
zi}T;!-o76+w<7@RxY?OLtcdgU<Sd>x?P!u={~3^(3>IbR(<cg`V5-eJRCzn|^0Hnz
z+p4>}N~6|JW4m<eQrMb^Mk#PX@?(y;kkF>&<9*ERd|%$)zJC08yPT>JXBOC^hsAP&
zoi6>h-z2g?b0h~Oi{fHp?&$8z-&plED+Dw#(%}4T&%?v*i)Vq{FvsAz?awEZSAZ_Z
zWN5$K@_W^pdA8Puh8Mr7^PZn+%x(&r{Y#iX>w|62+UV_mb1W`?ORuQ-@#Ev;<-W7q
zyjU0*3e?;dFWj=_M8buwAF4ETQfB)s`@K&h$IM-2lGoC_@(;g7d{0!GlyANnvs_r>
z?ZdOo3=9YEx+?l>h<K~q)BV%F9?~0H%;&1#byvz)(zMIz;ms#KH+}>rCnY^QKmUA+
zbyduk48f@hsi0ESh^^UAY2w4{zHb?~GEF~STps?a#I#%}RNDU4mdwj>)o-`P?XCLx
z>({fVPgjPlYH4YiUBjm_*P<{fElq9yd44XgS*F?3oEBQt{`&Ie<>l<`?7x5hfQBZQ
z26Y}|W?<NGyQ0x+!}4bdyLZfZpWt+^N77iza#e^{?YEohix)3;c6QEuuy*^sqSDgb
z0w1nok@sr;^JK)ur%#zu^58(@zrVjhW9jnse?BhpoLp2?RQB$UWx|1m+xwDAx1P(%
zI~FzBgC%M$-`?YS3mc(5Iq|7ep9Zb`y|;2LsH3B{Y<A4L9h*;n{#4}NBk}FeXZ@?X
zI(mAuOkVCiE?2!M@8P$%(f4XTZ{1s6o`2`Z>t|<Q|NYBcTl+W9w%BZTs*$OHi;%E?
z&5wsmZroU&XZZGL_w)V#svPg{`zsw2)$6u7@2>yEiF0RuGQTJB`q?u%35hEw+!l)H
ziG7w1w)eHj-(B?d)TT|FR;*azE?>K)`1!e<Z@$Y*%RwhASsVK#KYR8p=$0@C%bCi1
zg34|I=MKLDC9$&y4?AzoxLBX3v)tk5-SX@g_h%SB-uI^{Z?m5B?{Bh?9;e^8*^+r}
zO=Kniszsd7b3t=0>-YUy6}>%g<Hn85Y&;J>=gX`3s$K54|94}5{r^3CY~thNmjx^g
z2(WZ@>uP?{&A`C$;c@@!Z*Onsnn?YqIoQHE`S!M4_txj<=KlTlnl)<ew6^2@^}D0D
zv+Kop%(MUBJ!@9h!hkR5tc4F9vND>iA7}Ib%*-RVZr%ERfBv17!69*R?^dthw;}iT
zzS+muc!h^c8ru{<Yo9q&vTE<S^ZE&=ro1$osbl!@$f4HwvKJQ&EiF$TZ8a@^w!gVK
z`r-`l>3R!WLsr`4u9ud#-|8>lWl7C$)U(<XprUo@(xtbz=l}or`~Bm`kJ)*pOmc2)
zSQoqdUecs~`+pHSVxW1M^Yd)WHxz)z39P4iJ?+|hdLBGYRkyb0=uNLZAJ=y{(f;2L
zVf{THlz8Q>zg-uPuh~@d^VFwLpH>Fj|M+rQUrE_oviI1kRa%>G{&?6vd6{qb`)g}|
ze|%hj@x!jt*%?t%#wI3T=9b^{_OX$aw|{#*-aJ_G>E^2Z#<OX2Eedn4tl04?D>pOq
z=AKIK8G`rf|1+1D?=*d0^Y?MT_VNDuZZ&^z@4qh=O9n5m`|@`CX^jJCXPG{~u<$;=
zyxot({PvtIO`XE`lQ-(zKeklWvh<aO>Y^h@9<PmVkJ(vt@b>NYCeX>*Ufx&FScI>O
z`S-A0^nU&S#X&3oyxHtOgZ1}=X3fQJy)j!~si)nH&<RUS{8#^PbIj_sRli=|xN$?B
znVI?ZRiW8u_ch-;lzZt$(at}WtGmVZ{pMH{{{8jU&d%;|JAeJhqvEPUo_i-gKR0*w
z#EFhCCrs;cJAL+S>M3t8uNQw!o+ZqSioN-u^5gCuWul^)8>Vi2epVh@?_LCriOl%j
zDdTtQ_v4&<_H&}wd(59FXt!PBV1|jRy88bQhqsH0KAj@DX_L{*tLNuf3d`JC<=oEk
zdeVj?Nts@!LiMKKUg{mL)!FsR>+s5znMoUG9DmF!VK9SBS$VNWOW;D&$unNx6>1f7
z_3_z$bF+Q%#<+y<7u|#F{uJ&F(73a!^z^&C*1T-BrKP?O4hp`mr=1P8RaB-N<KgDE
zFL|LLI?tkTPyPSKntc~?$|Q|czWshbJz88j?dhrf)vL3)xwsxbinFNtqVaUkix=z8
z_+<FJZc(rL^5W?;wdD`h=SghKzn}N)<}U9Hv)RAD)!s-c668{KbUZk7=FENj{+XL~
zt=%4wmiuI*L0)k5>k|`|XPf8W+nyg^QSoE-`hBlnzXp{ghRMg)L~dU8E+fA7>(!mb
z&!_3do|<!S>BQ`;tQTvK9Xayn%Vqz5yI&e%pxMv_p&Rb<zEOLA?0<V}tG=F|l-Zj=
zwO?1Hd%a%Oa{oB?o`s06Wr1zr#$LDN=F`qKwSO}net&aQQclkCW8Swn6{jjqK38>L
znc=nLqv-oCwI_Ra7C+Csz3uGPtEOgVWv8d<#>K_?R4(_MyQ}ndSos<4@O3IGDlF{m
z{St;v|Gs?x4mz66{`Z^BKYmo)t_{7gmXU$sP0aa@+cI6dqcv_;R7DjX{q;3_=A@2}
z6FZC3=UbPX+1O07%$J7tOj%eptClPf6A*CO8L<9(@TICJ6OW&pW9h2Q!WPAq|F=j}
zGkohUt^EA^PoAiBy1aV!%uP7&_O_p5lU>})qj!~@-2YGX`18-(^Y6zjw@EwNwe<h@
z`uvK@%J7gW>1k;_lE&-emc?vNOU=yej9GVMSE+EY#zc>-tgIKh1v~Ggt-YakX0Fn$
zM@PGrm6cyl{amr9^!2r?x|z4Py<O@(J@3T1SPj{vxr_`94ZAq~HAMR4{@$8ls2>zk
z^`Mb`X3@+ux##Ab7t{T<YT2?`N0a*H|Ce1~cX#EHZ?-)*H$M+zT4<=bG&McFSMqaE
zZtmG0$>JG@*ydUkzIi(R@f!9UXM&fXn{fK+m!jR}?>oAyk6pgJx%T&l&(A04OI70N
zy~?e<x#jc8$;W3L$hy4D_qKSPglXQLj8><ci{15a@0K=sadCQ_)WcU=$@|(b`b6|v
z&heONY;0_7VzMRg;nUO8o12<gm>fUr%B(w|{SemPeb@cx4^RI41=Sy%jvhUF-v0lW
zXJ>b_FfEk5)@=LdU1W3br5~?9OMT6qm3n&GRqLeZNtT;-%{#Sm8WRJ<0ojP%-<EH`
zSC#wcNBJA$CzkDQPxrjNy}e(~c30fP6@iPl<=$=sHOv~U4QhULm}b|>T7B^hIa+(J
zl9iQpTYl_~0M4n4*+A`H8H?wgE{pc;`L+H0$+Ksd7F|&QHTRgG@3E`>1-iHLE0?%V
zgu~Mnj-Zy=?<*^QuiEqZob`FT-)}A~bY|z3S`xIftE=nVo14Lrkv}i{+b@Kf8o2HD
zhQz~NqS}12Rv}?w&)&Vew?2M<;9|F(J9okrt&QEi&40e#`+dLlUV)CEeYYrmUge|B
z=l5mZ-POA`<?Jl^Z8<k5%$@u7<?{G%Z*K0s_oK5@-R{SOw+#%Z=RWaKd+e>>TleFk
zWBIpBm6bc!@B4LVTkh{XL%+hpi)Uua>qUK;U-fiv)zLTiY6En{^yB}{7mu%L-D&xG
zj-~Of?flihUZ%_HJXcj!)s5WbqBi;K+uPHb;zL40lIuWAe;F36T(oGH&6j}t{`P-=
zq$#toZ;u0wL3((5%UXY1TKAW2!_7BoQ4;+8S9=xLugl;6_kHpCy#?L!4+|RRm}g(p
zsoGQW^3wbL|LyYc?b)(ri=1th&6f+#d#k^PX^6a-2x>WQZ)q*fc`_q3bgEG26wXS}
z=xVK1;QH&kcklL}X>|AY?RLu;^O6_A?)`G>R<4|BQ(3j#Z*Jz9`1-$3r^jE@m?{?-
zc=1e)kdWBvlubK!h<|^3+c^2ym9w+UPd@G96uwvWZs+sbTIQVNf9n3%{;&V{d8^N}
zwBLo>DnCEF^ms?%`VA2|YJAI<E!*?;+J8|ov643uA0M_GzyDphQSHyZTx*<j<?_E&
z85kNSUyQd~v%lnn{JECv?-b)Q&hOq4^77?M{rxh_FJFE3{CWMCi$2Q=o}8F|zv8j1
z)QwH4kInDv%(46|ETyNf&(Ggq^LFdU-R18+JR*LaHP>Djw|7&~)2{sev1<b~_WyVk
zoObKQi*@$@c61fp1C5Bz2aSm4-)}!Z-+x(5M97k~W170UGp)=0oDO|DaNxn!)%(-A
z?$_5}YU9n$+?KR)hUUUK=Jo%Cy5=o*v#o!0BtCYx-2(&5^KC}&lfz7EzP*WD!v>0h
z^Eb}jUbcMs-k;C1r#uPKI=|SRe|`M^ZM&kfO{8*@yIhi<aoKz2cZ;82-Wa^x&+bQp
zK3AoQjP&m(jm*^<3PzhQe|Z`FrK&dQ(#(&K@Be(ez1HOLwYAPIhyLGHx3IL-G}$8C
zY9l3Q^<`!LzQ`*NHhq0}H(WtrM?`<$(<dqAZ>#3NUd3s7KF4f*?C!GH*VZmwx-@!Q
zj%D4Sioig@$=^V|w4WcGs_)%(E-bhHu=UfoZ=POOw--7eckSNy=Y4(nuV23c!)9B4
zc1~ll`+qC7ILGXEhKWJqvtvIwSPq%x-U3~pvhvG|OR8-`ir`B1YfwP4n5V*n_<C2r
zyGJVbn>^fgl$Bd-P4xD6H`C{*)=3|}eY^VRrql?~sMmvi8hU!CPMzZ6;8?M0)uW<H
zucen#jB@Y%c&)3pP@??FiHDai2}#}CRXTa?oS?g(p8oIbdw1;lXIop_@;5i4^q;r3
zyT|P;>Wn*gv?}XHn4XyTs#RKVw{^`bu*q+p>a=i%VKUp_m+#-tpE|YG4-^^yk66F&
zd0t>~=EL{<|F@LBKDITxUQ1j1@Av)bAAUB4uCANtv842P`nvOr8JivL)6V?gntQvi
z?e|w{gQ6#!<Kp51123kZo3ra?_SVeH-&)1pdZo>y76yEKaq)B*Xtw0$rj{8q*7-d1
z_OiOX(7EC+=hLF2M>;R7`BsIi6~De;->|mkNXPU0Rj>cEFg;wme_Hka4N{ddmyQ;#
zo)P!^+go7{mb<%3t;^m-q^3Tdpy&)*ck(RS0y0B?|4%6Ru!k@M_&`xf{FCSD71itu
z8$rFvgiVLt5;sSBE!|=mZ2E9d?tHsiyPr>l=lVTQvi07ZaImTF@2`czphEV>a<wOW
zG=rCkh>5wmyJwrsTCrlqojZ3ph1C{-%hor+!t2gY_FC#aO($^mRZB}tJ3BkAsa#h<
zF_y3$6u37wBz{>DqNS{?JafYLE5ZKY;&zVzWBvQ>)t6+{#HU;T%<NTrvZtq~r^;5r
z+FCl4pMl{)%8r=2&`{Pz^X9VTH9N+Kg`IiM{eFq2wDBeMg%t}x6~~;Om~~pZx~tac
zWIz0RAZ@d++GJTBHb@Wq?9|Up%*?NOcSO81xdFPNCIYmiV-8RI;jbS)INDkqJliQX
z_4B=o$GlZ<uB-&jv0r=z@;cu_&g;+5&NhF)`~AM))mK-Tf&_nGZ~47y&%a-<XPf8G
zv#+o7@$t#Yd2^tVxz$M#HokCAVfCg>n`Eua)<kYjdv<1~$k#SL*;|X<`LBT1{x&c_
zw`tqG`}c;#!$*=nZc05}_WoY&qa&PVvt{Mw|37HvUt|XIk&F@O{`AA`{Q0-Gyxe}j
z?)9CWpKokTo*BG-ciG!t51RR3XkG!0Nq`0`?(MBU{q)m~8xdZmadC0mKDo<Prd(YW
zy26Wrfq}vOEU3REC@5&MAZ&H{`+KrUM{T|y=C@y<1-3^2xu}Q;Xu)1MXc1^v)zhir
zZhbN*(>9w*oxQWOxSdC`2{eeoP;h0AxV-%O0F7lnGdI=#{&sP(`}ujc)ejCdR)2pN
zyCH$G2sE<QP@8q7c9Q>GE7Rm-J$ALfE-a2(D`$|vAbKe|FHa8=K#j%o;?_U^{L@4M
zv^IdV`)JasvuVZ<IXlx=d)8jeu&Mf@G5Hk_TXXJ>6eDngVUV$St~vG8%HZWjhu^(>
zw=J>N2|C#G0JIRG?urPgr6BxlkF`PhyF0PF%bq@Yl5=yDs)@-IuS=IMsrk=~0ayEe
z=i!5wv-o$<eD?dpVgB`TdvBdTe?Ck|US3{Y-2Gv{+;ac<eXBr8xZuPbabe-dj~^%h
z4qh8J-@g9e$K&$L6RVayoHR-3iXF(#$4~cEefsoi&z?ONGJL$37cXC~K6L?jbaWQ~
z^?BlcpaDtm6(Q?huzcg;ZDE5R`txnx=bD-tE-tPfH|6%j3y&W<bZA$4X};UqbtW^<
zoV``y>MB)|R2_$9JhHmvUf9Zzw$|3%ySt{gy`0!q_}&)ej<l;W$3Lf?pSQRA`@2Vv
z9)a36yLac`-j<7f2vV{5UVB)nx0938wRN%GQXtRnFsH=<NsyuC4cRdvj3(@xTe~l&
z7|qgQo>o82NPP0lpP%#l)uvk=PJ70GdWPuMW0Njv-44;a&UPkA@qD~$;>L(G*;BK!
zPHSanF1VL*P3ZKU89$>>$FA!QdhUO_<@!IP|8LK~ejNQg___b*uZ1t{^``4SD6Eh%
zGu9Tr&2jx+SGV_G&evx?{F<y+Dt^N%{kC^Z^{f2PTl_M1ZDW}xWY&H3c_E99+3d5s
z%r>3ApH`atOz-RR(v5oy#l=?zPHW|!{Zqa-ZBeU9wA@U_RWjY#`7sJlu3mYuUVrY_
zX60^I?gNR@@@tI~e>GgpFuTz3@z<i=J7)a99v+h?v!%Dpd4JZ9&36r!x2YT6cFTO>
z`a1FMpZu`7_7Q8^)R+G|u!SRZ*2N5?8E4oQFJ<dlmfahip1Ef8<}+WSmZwFgWv_IW
zo9_F6#SyE8sYR!Ke6Gu_41Bfa`c}^w_A`YRPFQ|f^2W89QPBr)iCt&sxn_B#w)9!=
z#t7a$zh|#~e8wvK^<lNwTnC<R*eN4+{?mzNTbsoiD%UI7g=;<QWW5u$H!wPR!@tYn
zSEYE^g!@lF{H){cwfA&NtjFs)XH5*xHXPnqqSf~`Hgew9ubz{49yCk(yLW5O|NZwO
zrkz^&^EL0Zs8p%$xI?#s(xUrKBg3`(wwh(G-F0oL?%`{4dAf-k*L^Kp_T0GD#3z5l
zu4@5{jk$ix+={yxefg#DR;%WN5&L(4{2{Y<o!`s*)}MP<bLv`t)mH3x=Jxq~<)X~l
z>v2=6Sof~Gm#|2xY-yF)rxl+AoG;v7dF7Sq)v8s`vt@f;8eGphbSX}WF<j@#r5UNS
zZUw!57LxFCuS{BW;;w5lSGLAv_$c0=B=chH3)z`7cgD_FKkKFS=;G?j8Ku>x#)rQ0
zT?^<eO<A`7QuKw3(uTACUE8)z*KYO0(g|`YLUp?xcHRjsi2qh~W&ZkSQ=W^3f9?9R
z(97XmcIS%6VOJ$))C#TTxuQH<WOhdBvd~#!Ij{bnDVuQf%*A(;uf@$hm=bBuGi~ae
zo6}>YpZ{W;D7h{?Z+7R}n0$k4QQKwD?7Oq8YWEGdWl7DY)*khj%4U8`+#<Wuy7F#g
z+FBp^r90AF_;bDb)Skzm)GL3KcX(5-##(77@2=e&kIZ_wqWSKwTmQG++`F%Ldv0#-
z#LFeN>AMYn^WV<vd0JFEzdV=AtUcFg)@!!8yY{wrwoSXcxpaO0UH|y*g<qS6U#Gq7
zDovi2bl0lF)a2Ry#W!@HS5E%${d-O3KF^Lnw>8fAO_yp-_0^gtwV)~?zB}o9)Ztxs
zt{45^>MwtNlKJ2CEi8hkt9(;SS5Mp~cSd=3w&ed?URg;}=Vl!}%Omc$v`_58tq)(-
zHt=kSV6uxov+c}ru_<S--@mxkpJBUql}`5k)#4^IqqgQ~^K4nWpm*xbM}4{-;?u8&
zguPy!^+iNM#feMIrs~U||KHx3nyoVGfBfUj%->%Q#Z)a{8XLCzQtHC)BgaxErY4l0
zY~tMGAbw<m1BYRpf}(>7H`@h+4@{jMs)xAaDk>8>J~nA^O!A0m;#lI48tD)fo#CC{
zHf@@p_1l~O=Ukp9#wKoBqW8DX$#34gZN-)U&R3p$Z@FAouiZ!a))&#*hgEZes;s@d
zOQXE5ZC<&mSEDnv%auR+*!+`!%SBw@`d`m_FMZ+B+@uR>;WItHGAu9O`tQN5Tg&R_
z8YkQ|PWUK%?OEv7e8nZ(Rd1Ypqq5NK&ds|5In%Yiv>G3k$X2;~Zo#p}k4Gzxhb++F
zyTn_y*K>Zv*)CJ7B|TZ;UrargOjAEwqBUvW>vh{b-@LfAO2Jn1p!VIwsdZu1UyiP^
zD)^{bdt0vW#7ob(xh+csUtY@ydHW_W_x+n#dx`37UH@AmuO^5K#JWZ-b_^){w(dOd
z#kE)d?%%#kCG6XZtUb?sEUi;^%lw)##qp|O-<?-I$MXKBKHo9-r`&QG*2ZZC#op~-
zmW#OFYu~3f@!gcQJUrf8@_og+mGXaQT|VoO9bx4neaZHh)vElYE06Y-ZDEPBe&T!j
zagS!%<j+C9JTIipt(kRY4_^D=8#(WkOPThi+b<?GFW<iK{Pn*nW!l<>_AyUBrQNcX
zG?SdPa9hEOt-)%oyOx>VJhkA;^z4hd;otM^GpfXo)Lzbb?>c?o)D{00`uH2|Nc|N0
z%kTNG9Bt{%FTZgfTOqM)*P`WywL%y7g->js+U)-S!?)(_;|~9S9>|cn@-F^1uZ{ng
z_vJff*6Pasy}wjl<Y+?1u8W0BUcEYgKW2(~=!B_ezdJ9s-h5eA_A*+NuV#*fzxj)7
zHa$c3+SK=tiY_eYsntJL@VoHIiT78gT{OJDY@_&kX1#kF<!|ImQjh-V_L8}Hjp5iq
z{rA^xulzl6?p#JzRw|oEL}#QzCo6xFNzmdJD|NT$hi{8l@z#DfV7q(a#eL%!?^+Hf
zTs58+Ir|ImtGCi3wHJ51FFPu$XgAAo^?H{26`Wp9y>agYLOmDpt@b>$`fgfT#91TT
zIPPunKVG)k%$-x|{mCfh<bv4!9dU;)NI#5@jTH<{`>OZ$$?FZX-Iqjm7aOZMd;hrH
zysK`l%iG-<i|)&wD!chV;E9xNQA?fdlsVInY*$v@cr`wMb!Nue%sn?H_AEWV+j`yN
zjO**pX7WX@jVii(ZcEKx+1UNB7P}bT`8n&t#bVz3b5`yD9hnmFta8pgAIX_rN0Ykv
zs@}3q*tciHi|n(Eky^WcTzDrP_4WL$s{CReo&ql+zct@yF&>xT@$b>km=apFBt0c8
z>dtvdv*wc%BvzYCR<H@TYYP1lGF8++dh(^3UgUC%^Fec_fBfDR$WmBzPha@m8@qUE
zn`+C7hs!6h?EY5Za)1824Nt1)@{9I;NV&0hrrGwgNWH_EQ*F}s_ACColDs(O<pqHZ
z{(C&^QHLfe#J)89IsI*s#oH@S|DP_je#yeXaH4X58_W9tSK9dIud^@Qw^I98@}X1j
zxs9~{&6xeV=t<R_#YM(3FR$I-VPHCY%EX&5KlR^ZV_<l)XQ9B$ca~M(ZtY7p4WE5m
z*6efqzbW<$O@2Q-BpAlM{RjgCgQb3^tZnhz$A`t6*FFrie98UaFzu1Dr5Wh%NQLLB
zTjfIU*8aG3uRdNfcEZktU&_h#&mTT-Wdv#LG<Eym<oP9E?yYrL@t^i%`=^PY`5V3R
z=8^v*OduzpT=TB#_Wm-N%eUQ{6VFX)pI5b}<8%cBL&KcuU%2+16aD|^^V)MADc1SR
z_G+}p*Rp~fJVoK-yNOBWj~N&kmdMp{@q$#dgI2VH8sU$$7uMVP2li-w5Lw_L!Xd(O
zrGx3{(@@otbH%$a%Y6y1*!!m`*J&|Gsza)g>F+NW4^Bn~h9Du(isJ_Gx(je)9z5?0
zI`okNEC@O95~POV<N+I-``@0Po*uq7N|dWLMsNE4_xhTei5f>-4J2YVCb|0h_Fm1>
z)zgdHUAFf4W6RQ4S6*FRefZ&r6BCuqb8kKQTJ=;r`Q4ETH+Pl3zMa4S@5|+&`%Hrt
zxG3NK_iT2)oNd*Ww9QkePhTIsUGJI5@jc@D?R>JgHl=p2T4if%tH1ZlrOEzwo{f+E
zs(zf--@j({>dVWwR)4MM3OV)V*X#BChne<&I;DNy=JT0fUtg=n<=ozudu>f5&##KP
z^HuJhWHc^+cW2cqt(m;FcK1J@x7Sx+HB~$Ol;Dp1`};C4FFX0C;=5l}{)suZ)n(`B
z*-rFGd3I)|&=JjmMK?DjHXlv8xvzG&jQitby~S2@4VPOy+q+}J;^cF4ET>MLs=x2Y
zqZUr#X*!XcDn341>ODPZ!H-S1-*SuTfTrzwB#pn6zWgh1dNOq7!;1UccJBOnXJ>Ix
zROachTa6A4j`HH0Bv!3hapCsUr%%6r{W|Gej@j)aox-W-H=noD?sSwgEKkZPDJxqS
zySwb{EK|3|ALF(za45WT?V6fqjGs+a<EBlUlKcwKRDZO&sO6QNz1k#Y_T<UJJZzc)
zcTUz!oj?Eo=YtBSd`llz-2e9K>gt_4cdAYHytQfSV!v+{Hgd;mWxjs-QuE_syWM>M
ztiXVP1@EUUI`J<+L!@|lip#HDj+~pDp1xc@Ur$Txm3@syfYZvgYp1Tex2yE^#^mFd
zE?rXjaP#fA-ODXPLuY<}<n-x#bpGD2hq(1E=K66yy}doZzmji}1E&N}l9=jCt<+_^
zJXl^|TRYkF!_MdPZtt(R-#gL5Z=OwLXz13OpGCWr5?z%9JF8MtQ?<j_+0_2}GD+22
zW!7a~&QOJuWw*EGf^J^+pJTBx=jNtfY4c0E3eRmFe*XN)%gcNB?%hd8Qg7e5Ve#RS
zZri;3@Anry^-4`$x=16a``53k+Ij_n2}?Jee%iHja-B5O@qYRJB`+^sSsA>v_U)~$
zt=!`0=G)I_Qk~M&#I*V5n)|L&_H}!1zuk8GZMlEps#QkskGhtYZvC>Y#U}IgwTA^a
za?H4<h#XW%3!Jnr=<vtqpZCPQpJAA6_xp`8C`x0b`xl>`Z9d<!_}Sd@dmE$HetHPH
zdCJOa-|u(Une|^Tx?f)IzyG=)Pvg;U@%rCyx3im8R#sY<zXQ$XvwCS5)rN+I$XFH~
zS@2gXp}4r%)AQurV42TxdrmYeXRAc&d;WfOwEOz{czr#+We%Q#Jn!n$mG+x1R=J!Q
z5omcMY;DxlOP40iocZ$mZ})z=vl{)~+~Rs?W*9pAd6(^uwbRkjnR4L!-|zR=M{ZvB
zU%w<JHTC53q<2RGKK-njI(6#OrAtLLE?&8IZQrj~s}}~G$T8E8-Bt4G$w_dEuK;c7
zxmW$(_OEzqT;0#7nU|LZF4z&hzwU2%e68xn+i%Nu$E-VV|Nqaw?nyCIrIuOpGcYJT
z{rDfW=pMX+45=sqcMrjWh~h>;a>h$0h8@l4pMz%2=Gj)idi`46ch-~dzsuj=Dt&OE
zk>BpefgH2b-~N8Te}8ZF_Ooe=*E6UXt$WVsz!P8d@o1l{^}c_<UVnam-g`;(mW+u<
zlPbU8EwBIc@%Y)<=J~g_bWUJb_*iJm&yY03zP>ImZ=DHf6H;vKT8*yz@8{cAf4jH0
zTJ`hPsZ%eyG6>0E|IDD!_U28_-iHMiw{G8F8W<4~5f~U49&Vn0&*m39gC##h(D8?d
z+x_R+{QU8_KmX2-iT4;B&M`NL2y(E*RlnV8ey<|=a2qc>zuc5F?(;#%=sIXc?5)~*
z{`qX1%1yW5PTQhBQ(uDTk}iYLoWRh~D$q@LUkhycQ3`cL=%5$I;1E1=`agrC^?4p_
zM@SnZj*!N4agdprxt$&2;-I}!Hz(cR@zFMZ;S<%6B*!C158sTPem(q+MRxw0D|QjV
zdL2z}F~LiGg0A`Ov+HdZI<e6Gct)%pL%<8S#k((x8~iXjz%2jofuqNR_4XcN&GXfp
zKYH`ruMzoeDCZ-_EVEz+Tl2(UM;;$c`FHX6(iQE>uaeixJi0Jh>2%)N2%hz7`3%g3
zf*%+Hxn66WIBB4E?=t^?qs#MezPvH_oWZBVC(hO9sQokR*{JSoFSzrq$m+;huh$=0
zJv}qkZu!qe8sUrly6^ni;`@5(&y{hvZl27Y<Y`^6>bliXdZxLAk9FYcu2-8S6T25*
zaOpQl>o8)I?Xobg@zk-;ifG#)al=sQ&i6E>`T3W3E^^}SZq0n^yGi8d)~L|)yVi<&
zuG&3q>B|hOiE$r}x^SO%ulX=Pe0N@Du8SCtlSuo%v<3DOhJ6Jx8MERJr&%1mcbx6?
z+@HM-vI;)?EoT=Tskt|+_G^XzLZ!9sYEp`C+I3g_d~|u9A+Jr+?)t3h=QiXoH*}rx
zSnQfS|D>kc9wwRX3$A@O);zFaN8Ocs5>`G<mt-%g{n@$V=;@#}Pp-`7>+Nb~RFW{!
zanngCulQEzU&L{oJMs7YWxKvUwYyf>#^ih;epkx;c5@e#M|$_>f4{Z<OF_=8`Hr`b
zpPy0{pAso^ICH_Ddw;($7>cy%ow+(Q%b})=qc<j`U36kXkCS~t<Fcqj2WGW%is$fm
zJ=osuJ)Oa6{?>?Z+XOzZQoXg^b)(td>sxht755!^G^Mp5YSHBsA4|8MN!}bYKS><b
zTeM$3_Zw52!Nc9ke-aqmB{bbEGW3=2AA4lcVSmL{bANwBA;&tCzW4XT`9nICI1FM|
zXlFZ}H+a#jSh%6Le}jtQr`l_RUv3^#ap7??5|^~PH_IYm>Kgl{KV$Cs>}|g}`Pq&5
zn1>ww0-Xii#dXD!R~#Fh>J}MI6kxizLifbW4~^F>SlG{<ls~w)W06AE=|3}hbN9D9
z_JyqI^G`8sVej~rdobp!DwDF5O9xv5f5)fGM|Ma@{ttCMIi>RRmZ<bcVZ1x0Ut1<R
zHP?6ZjVGNaS+1;zxKUc6eULH#WphnU_;0H%2OcKPxvA-q%5<iB*7>(lk)bo>mZ)SW
zPGWFQb`Hx`f5GE&xJEQnEp4XkzN2D|9@E6GoRzx5Ry@1BVP|sBmQQ?%mwLU_T=O<}
zt_;sjTl}(MuISc9;=d<seY)5rT#7;Gr`Fj$zN)8RO+0I+F!6P=fTH53!i4huLh~7?
z2|tUSp0xK*h;y6EB)erRBMcT;FPl5(XabX?R;v0kLp_ma?4Kpde{pv9aBuTiFE9CO
z*}NSGx9R7d_!)QNxyGX{d(ZSAe=e$b!)o>UrA{a3ZZO-Wyh*xC@Wxj&iHyZTN3&i%
zP2IRw?$zA)Pfwrp@RfS-NagtM8u2q-`=Yvn?#+4qPt!4Q`n=uMSJ;nlU+z&ZowBBt
zCn@dD#SYJ%6WeVSmun=+YFcsC-uborG1Kfv0-Ihv4w}Lq-rk_x6)Ej!A;atRc-n@C
zFY0c%y9hA#@d;+uO=#l?Se0>w_4f^{``6+cKDMOHn(Z<--XidRsDy#?3HIWuogWhO
z^<=KxSB<^jy5oD^tJ{X_xXa4U^;urhdiKCd>5STjl^d9s>D=D3bpG<dOG{qsol}0r
z?i=#1sZ)COyqSBZ{oI+VE5zR6_K~rxZ!4pnOu(g^_X5p2l0+T1FwTD4IrGdp-zSnS
zTpthKohvF-{GoQrKf&cwi#j5j`gYv!STbYjad%w@IrYTn3+z`2C2F(jJv;qI{EYtP
zf5#8L`87Ykl8>+5Nl?T=L29z~yvHiOoC?Q|E$Mx;p_idvc+&#jr9mH~*KXlIbM(90
z?Spli^#Y3P{><q9b*VMVK{hkJM*gR5!h@vD^y|KJYs8no`>Sv9+}QP8qh0*XHi5Jc
zA3P?$-*T=|$o#a<*`?a=Cu?*ni9FuWJK4tITJEWTdgu1riY(Xtx!a<!;D~L{sY0tQ
z5wGWo%oJ9cCvh%#!(>@TxrtU6C0ds#AJnq94t&UBC^To4+YELM4lA3BXMSuEo4F>t
z*80oGnDu@VPxi<z`XH$2-@<fF@zpD)x*0425y@o^A<xDCZ~0yj5WnKZGVhipy-`>5
zOXk!ZUuk#Zsc=Vma!rD`Z35$s!{<8Z@cmDmJe4Eu(TTlbds?>k1oFha49VWvZuIe0
ziM#rNddUNheHzzGm2QVhHtfncoNzMa!|XK)QA^$ja+<%F%y0=k#<HB>D16l;8!1OC
zPC*SHx&3h)4}MPip#8_NU-s8MD+8|Q24-g}S7~=0*{y4~%K0oa%hi=jLZ%u^RYYg*
zv)F3?sP^WP($9BIjDz`FK3=<`+qwOMz|m7ZIh7N(oo>D|js4|58;|c#9iw||t_5se
zyg6>!&-B-dvv1wlm$o8aaYKadLk=6wRZ8p6w7>oI&2x2@o5<zlbDp1fFeq(qvy|BQ
zkmL8h_r7fsx33Fvo#y^?BSiN9+WFy2er{c9xbMupwX63fDJrn#svkMBb-iwBnlVH8
z)y!!#-vyZ*J#7{18NEBkBeOnkhU`ssiCrJK;<vm0ylJ=pgzkq+Ns%IvVL9a@r)Eou
zY^<ERaMkP;??by!2i@C~d+=AT_xX1m8dl4GyXziVe(yI=#NrHwmzMnjXZk%i1}?pI
zs%O@ulXJIQo@r0mu<}gZRL|HcFaJN;^F5Y##g}z0wqI+bI&S4iiA9KK#z_ZtZQZN9
z;!MPo&-rV51;1`|jZjq*PJMsPS%mfC-q%^OsdkMg^s=;H_K966;=42Rg}4pNlTEr)
z>W=a){^DWJ*VMQ2<m#C_>(;Q$PrI~bF1!7Q)I8CUuV<wdUxXy3RzEfPVzzVXgXY-s
z+@;H>typr0dG*;JYh!(`M7^K4KbYre;OZ|d%jOq`9%$;lZBq4rq2Z3TNj53YcGte&
zd|;Eig*#@=1BS_#tHdHVt_!%7-E?~ypA)ZGxd7+#qyo0wS9wjd!c}XJ)Y{InSTuP*
zU!ekn(D4ZqG|Y}ETwnWALVBUfHXXB@cfL&B5SpE<v27Yd3#*n#k@e~uS9*iLyuY(b
zf|=1wh23|>t^Dm}#|~RA|HV5!vvJ9$NjDem?0#wQAUI=!!Z!8C^9uyNWSg&b74x5^
zeltzaI=e}C_HEX;8!y*hyz^JWn&HhMgBzx`?!rA05+?2yRwk1V#2$LS<L{QYnOE<K
z=ek_GBQCnSbe5^uj%lHPS2&;ad3LfW<=pvm3!;mzANw3TJ*l;d?=1VwH+ovu%ci$2
z5T5oz-QRD2I9E;ABjNn1-wb+W_5|PZ-&ei3Bx~)eO2<vkKc6>06rCfv>d{x*p1qr!
z=Vo=ju(nQ%l;&4B&l94ugF!jRk<-z_DDvByTW8MH-scE8`P=vFPVpbhWS>?VUjKg9
z;J~-r+17G<&EKvT-=C1fShwD5DL30T-f3IfuP>|p_3iEQ@b~|JAMCjh@tz^{^xSiA
z?k_ESqcCgf&V@B=H1@~oull&{gjjNiN#nf2sSU-R(~>t%QT_4f;|_K?)vMR%O}!^F
zP2FDO49}ZO{%!lN<jKz1=A{@vd-g&jyH#^fx86wEDp_;$M6bzR`LwP{^8>uM-bxqU
zWN>au(aP_76L<D;l-<0&zW$fJTC%(*wiYW<S6v#LSs*u9?@o{RK5QUz^!{Iw${fYs
zld+T44A_cyu-`1mW0jxNv#Fl#T1a}!&$qe0?R~yAk{Qmo+P6HP_u=uh%Pe~p+A=I9
zycX=ynDzXHmh1G|R+T`fBO0+&*DJeqKH^&1-M--NzVlnIrpda=JW3FC)6v*=wS}Gg
z@2@#Ge@>n)=wvnbgW+Dwq8T@Gey0Y8h#k9{)3w#?P0Gw|r*+NV-+1%k$JvOv`X4ha
zW`Eh${I24f{GGnEy$>@U=qz`9n#nyociBUKqqtK=xn2i5uhwlmxB0G#O(5HpM`8~o
zf}J!MM{q{jbv}JwyI^{6^CZ5m#Hil3@{Y#EjP@BWhclm)OD*VI_S7|h0blbCeyNwj
zzN`Hh|2;SPBxCYu|AjeE<)fB2d}v<g*LbA6r7!hxCSTRz*CG?@E?m)EuxEjw9&1C@
z#0!U(GW^)sE~dwNpx?HHDehuN@~qcaWZy}y`VzA7RSCZWXTN2a%OnBKyWx5X@df1{
z8FP$mYq7<eB{BUBV*^u^SexPNeb_;u?ft(lOSKK1o9EB8y_Up3DQV44NlsU779W?+
zfd6|rrTM3d>C4SZ{Jzb2x6Ph2#Ss<koEAEqGo{Q91#^e1#;mgmcs18JU?0!%&LdZ%
z`JaAvzVc-^|HazQJbknIvG=!F2d;Vj`>9fV&a2S6=qsm7Cm!z%Ra>>lVq)O`Yx(i3
ze}v4GJ#}lDG}oi!pPpUMu8+B!_dT>`iLWBpT9$<eL;^D#A6o@gJTobANM`DtseLxl
z>`3Ra)egy(7j_gcTv)$gqD5vyM2m9aCx>G!?GX=8oMidO!FN{R_{LeXt;;XZRQ3yK
zbdy^Y=ExfL$-`Yc&ccyZS(IHyIAnn-f8cCS);3S8BV5N<&3qIy{h_nNp&Pw%efCUV
zfmyw+M^YobM3x<WIlpapcfQ*+Uo|YjZe&DMup6RWx^wr&c~E9y|FFB>wNH1+SJkuq
z(;v&cQ;@xObM{oD5~qV<Q@B3wH#fcO82QmiqE_XCbG(#Y?UQPb>hz{Y`KHL1>Km3%
zi=FzW=&8iAa}q~SiT}3}oM81f;^!X$PlkD(dRrb&U`m;F*Z>ru{;8MW+f{r&y4&`C
zO<C>bcNH7gy`SD)vvFnk&)h)$>#lO@QL9#TJ#umR8@<1F?W2`OZ%^M^_L<ea?DzA_
zZ_DD3x=)j}U}HKyXKu6l!xaZMy6kFRViCs1C-iVeCf~XK=425Isk@G@-NK6;4#rsi
z=zi=ZqT#sM`dq*xo__g0l|!6?3yg#ubs3ji8o%k2SnMG9uqSYVC(G6;$s!U`cPA!`
zL@3Fq96kADr{(q39UKBVH$>)0<T3rp_uG0&$MD*+j)x5rr4a??A9>AAc^t$R{-)%F
z|8!sPBL?7PFB9$YTIKBVCp+}sIqr(Mes9eb*Kmy+T|tR|zi(4((vG#!@MwQBP4duT
zX*r`eGdbA~3!OQY$h<rIX5>k~@V>-XJ%MX#B>IFIS6=R$`rSNm<GS_Gz)eL7Tu?}U
z%&q*m)|csnPti<CKFtOvzQ?mx<ovqJ{r+CX_UE&&ugkwB`~Ts&e=G0Xg?-#;WIJW6
zuepfNop0VUta8VFA3WeGyiz#Fa#^#yg;d6a49j8}n<F2!E;PAW9b28i)5+2o-gvI#
z0gLF0`r`-pAK2)~I?K)K+Jr-nGc3<7Tw%E4fPkm^iUXGp6iyQJ3t*fiP|D`WYEpMa
zQX|U3gUh`_bjEt-LzOSps}3GxD@c-gx%5bg_F19i+^!e#yDrY>4Of4^VX}ESw(z$g
zD*O#B(Tg3z;lFH|T$omz*d4x1zqy_j6)&A7znx-X-p{i6lKla>sItIKpQk3zuu2xu
zp8w~yi^Hoe$xk20Uiq@y{9f&cyz}PoK?P6Tn%B3X1y3xb;F+eiYLSIt;Qvec^H=}a
z4o&PIYb(D#-e%vIxBa))yo|{VHj{0H+nl))SlSbPL*`lV$vyCxVR<gmDu`9alZBnx
z&yD%`dwrR|?=31s<^-~Kxmj`fsm^`;KqJaxG1nOuzH|KU{aPDLE?sOB>5~j?FmcIs
z6SYu!$s!uDpfOohcg_MP?TikoW-gtH_E{lY3JR84Oi!J`#bH*`EPOb^!OI7h^s^10
z?SA;|jj%(m-y|$SZ)`|Z&>Nbe2ED)cVFQWw_jO&Mq(9rF{+`V90``|1&fQxxWuY+F
zwnZT`?%$gdvT)PGRD)lW9QZ0HfB2xxulQyzC)+;Gw59J4%!?`u-E<ln^zna6loU#D
zZT$38aS|xliYGa9C78A^Jlg;C?EF*9?$>^J*Iiz{@8_Fe%kF+mioLHd{xd0f{ioZD
z;?{NB_-zRZ6g}G6@oRhC@2I24Pi@i9o_$VS#^UY#wYT5y>*Ck>ebkWAeXcCKf5YNG
z4jQtoU1EG}GS1BIJz5*s3kupSo>`pZxjb<(*94ApE11l~W#&A3aHeqC%M?de4wnKR
zO&QUUhNiX^p#h9(E|)m999)^*PtSbp<GPl2WyzTpOiKD$#;Y1mbl-ZgvvA$%4}uCe
z3N$PX|FC#;t_+){dhC{nVT?d>z1W@D8s-U(o?6&qz=Wt6FhFZ5!3!VDZ4<6}&gwr|
z7<;F=WaGNMk(%A>0yc;)J@o5+uBYvqbrlzyW!1KyF|gV5u<?Mg$AN_^7N#;SyT#6V
zS;ST@xDvg3VU5H(;m(!ja;JXJUJ-Hq`f1mFH?FMyvuVZj*Gm1ui%UXW3zZg^?Oy-r
z$F@B`OqL0_E^8_CO6c-XDOjUC*LQ!l;N96Tz9oIW_0@N`u>G4i^MAcf7OlUY*0yci
z%eFS<+jZT^%zf5P&Yuq}rcC8~+3<Mgg9~R0UoaeJ7p-_Qv2XjF0v<Ne9>t9ZF8*h2
z|Hq=f;y}91rHNfvlP8xwdnwa#YlSE4EO#rf&xaJlEN(7gI_!Mq<`SmU%CfdA8)iK4
z(JJsMc#&=OJoU##ZwdAbr$2hH7g_2i?Xjj<GqB?2G&{C+e)kxoUYXy=7V_pqg}k9L
zYT7@T)eLIw)OJ~Fttl&ebnczp<qI-h3(dZYb+?$YE{uxOS&|>0`d0Di1#iAxYs}Nb
z?CQQ9mi@uNc|(_T)-LvkJKJW<th+AelQUEJMEvgS6OY``;{JJBZ^f;{%QN=57K_|o
zzijQR<`ZU5A7{<f+y2yQ@A*?#)w~aT1PX~bN}OC!oBuuEwPKx5X=>@!64r;ob>E+7
z|Idki-|uR1$*m*F(MeNCLODu%L%i}-;p2wOEo_SCTrQEQmg#)K>G!DMgs_aUs7x`Z
zj4xmMLwBoLdk+~lb4^jVXy%$EC}ZqA$C34oyH#00<2RP}<&(~-x}5E>TYA`H#eu4(
z<UNNbmdG7HBXE4B!>^C-XP<;9*ak9Mik`R`E09-gE;`{t`QoX6BN|Q|(FzpUcx|KM
zyDc03=2q<Z#TX*w*M=qdO_1(I#675OY=|<ZeHYQ#v;{RbFaMo^rM1~PTTV+iu4Pi<
z<jd#MDk@GMe%DpLkmZXrXZv5~M=J%xTX)1%Ij-Cu*8OPdd_R#T_bLKy>|Hn%(lvA^
zwTMg!5^58)7c<|l^*Zmj;%)t#@1FeH{PtCv_UF*j{WH=(mu@|i_c?3hsm&IKD;67d
z35%BI-+i{V$A9X~eQQ?U-uJ*`yS?4roU+uKl$&zP>+1_Xys`MAZ(;V}OvRGLiVq~z
zEUX@6s9BU)$<C7NlMGF$T$1c2Y9VJKrq<`&Zn2oF!_#Upmkqy6`<{X~nR7V1W;JmM
zR4j3JWId7M?(4|fVdL_)@R3FP%O4Avo)kJ17_4$IK6vr@v7LH{TpNU(gFj^L;B;7W
zB|};0b&QutodEl9)^hRtQ^Gx&utfn;^9sg>MkqO8I=H>>0Bi5h{%eD!y}!F@su(|8
zPW#Q<=L~GpD&HK?E;yiQAz>)f(k`awWf5<&Vddp0r=KP<>N3I0Wv29(2X0)G|9o@J
zwpHRkO9RhOca>B3I<cbbQH%TAs_3Jj%5|}i!X_Vs=4pvtF&b^jZ%*d?IxGF!E@FG?
z>hJ6FZ}I+Kn*RUN`uVGW1k94UbZeQk(6^G`%6#JOg>N_?W%Mu3^l?|vm3disX62(B
zv2zwMc_&-VT+k{U@*v}Z$NDCo|FXyZnw0xl(`UV`5KWoG)+eOiw^=*uX{Z5L-=UI{
z07o|#^%V|62R9yXGVWaA8^AbGf5pWm1v-}wacce8rw}u(Zt-&iu?3GGd+E3MP7Rrm
zksOr$*W3Kh>Icu>2zO61pNB2<iR&Yyh5ih1v%lf}KhgI$oT4UQ|6_CRA>XBkbM{7R
zI;)H1xUMw#UmYyOKbcpb`MNuk<&(WF{qA;?4p?(M*vDz`!n%Dq-#V=wF%}zkUXF75
z`e?cF!Q$mIA?Nu$t#j-n{vZ7%8(sg+`F8Hjtebbvr$5cPt8?mhsB!$dQzpS0ldU|B
zC-USUezw)Gzg1KI+Sa}N9`dVa$M62Tv1I$rt1lZ(p3D(F(X+MZd5lP%#O=lt#>Y2S
zTktXW&DJ_sS2|}|OY&cXM;?AG?rbt2-&=fBv2bJ+$_#N=05xVJFC1{JlR54upuWmM
zXr*6B<D$mk2Rk3kak=6e(zq;8Rx&i9<AFz%MIh_6wiTfvj1#4|URqL663{s74)eoZ
zT>F`rj^(^N@<X>FqgYim<<^Wlw+f<o{;7cKU6Ip%m#~FCaeZC1&`0ZZJvFuOFW%8y
z5|N%CcIpBrYjmL2ng924dKYbalxpzHBfrw~*TaL;1wd_1dlust_6hvDyESh9JY+cA
zYOSjFd~n0()W%OA^_&>yDQ=G{@^I96@LTZy^zeGE*>#_f?dHFi`}5V_*R#tGcc<1`
z&wsi(bnl7v-BtT^K3N26EY|807W}IJ_t(y@<EN$|wR^s91GRge-Dqr9e|{smfQL`U
zaj~@<|C}DS<4n4JGS6>t7CDJ%NZl<|<T4TLn`d$S-xCXtzy!~d<Bdy>at1!gC}8O;
ze#2tvERwP0qAW|4jAh}u_Y2&-S6SZ_V6{>{#2KiNS&-7vbUD^h|MWvehYfcZJ~;AD
zmEqztFRf`A$wBr0_x^XD+$VNtPA$`n{hm2kLf@3gE-z}kb2>QfABU#>_)UK*EJ2As
zaV~P=j}AI`@<_Awn*Jx#zH`X$dpMaT&XMVxb5rnNmx_!BiyA&JW%t^<RjO-wo#n(C
zRgV`|?CJg#TDlujvaf@d>|XAvBI-t2X1k60-gmE-&*cg{Gvz}Rw@+Y{a)AUpsAf>R
z#eebLkzad3HN(Ffo2y@%olpG}J@e)1S-akH^S${NFT-W=je*aX|M-fA#}!MGa}FrV
zS%|6kIsdkBWc4!y^`y>LJg_**eS97lpDc5G6PL{7>?v-d5o#7DA4|Tuz7<_v@@EB;
z+<K-?i(Ll_A6{HOiC?z8y<)DpWQoHhZvPLAio$ZDH4gXhU!Csy<GQzm)rHd!lM$^S
zi?@FDrl1&zX|+_s76U|edd(~hk<0$8Gjj8983-J||33JMs)t{abzO&Q%azdFtzGNZ
zq`vMhbz)>nVQQarU{}8V@$|5bOPyz_`KlH49W4L$e$ww`)e0_;hO>@Lo@b@mFPDBO
z6FD+n%R^a}h1;$8bFoLkk{w)bo6pZ(bZ)yxz56f8yKhTk*A$!Vk-R^DKJU4A$EG*m
ze)!{0n#GH@Ih)QUFPEO=7klmItBt>J8RWIC<<4a*+26CSe&$=37p33++{i6lEU~yn
zsY%n>;*g70%k0IeFRJ(%AFJI<GG6~E|7n(-evvOn-|ClUtCyd)h<<k4>U!ZG&F)oN
zrgL4d)`aFQ@?5w$b1VCV6{`Q1-11Fm+c5JXqZ=1b?ut^&)7mctzTdUJ&fk6^E_RQ3
zcH`&uSId_3?>nA%`SClZTbmCi)R_LMcpoO=Ut}BWcJ))n%9XLNxNrYE@NN3eoAOVe
zeP0qYT~B?lnvu7`yTiY@+VduD(|ct#-*LO%!nsdB=WJiK@bi|_<(6~4sh#!umHYGk
zSGi4#^u92u%`q3A7A?MRg<0?7)4n2Kf3FpM_d4gd(4rit9e38Ba$V@TI=Xsc%`OZ1
zyYuv>Y)f3u_0)f%zev|wA)gPcLmvtIa2c=&_MPSS%(MSLQR^>zNDGsg>y%Em?h7nE
z&!=~HFh?9(!8)0x=Xrt%b3{|bB(sDm8V38CEq5k#sGn)#<XrZ2-FGe>+lI~~UhYXM
zN2JcLk9c&XS=n=Kg$mmRsrv`#RB%iQ(v~~(#%ImPn0JzP4Vp<un+sWweP7!q%%55I
z{KzWy<3c^}Q~Yd$T+aMWKWV}K*iv%2{Yi~&zZ46Yjujt$zCixj`dKPBxH=xN^gO@r
z^FZ7vRn$d;^;o%4fIybn51&ZZi9Ssq+utOy@JD%Es7Q95rLH?=nP9pNN9&ZpSx%Oo
zbp<~@JYzp%v@#uAawlqx!Nkk}HMt+my6qs~@cwU?ZPbRa^0cz_wDp`P7pffLT{L~y
zj0;N=R>Vfdc>LeDDNQG%@TIE2H8cL^a$PxP+r~rR85Dc-Ihr1;x1Qf!VA!(#x@kuI
z%wmasJ@)#FU$<T{u&Ikl@S13_>DZO!EfNc_nCx40CFzA7@B4qZw%FSI?f4yE_+RFI
z{X72KcY|Z@=Gn!>@|Ay|{d)H9tIs}_m0s56es;9#qHbd0kFts%yWaiVx~AuJ+3mkO
z9-O)O@ALKD?axcg(`L`+JeRhn#^kb3Te!*P=?0H)`iQ7+=4v~ZzU<@~jixTSvs$6f
zuhVXxDQeNGGzvD{lDACV*vCkeMM(7d%;Np3+h6f&3O3%nGi6Ti`L&<kwAqBRG#t3O
zLt2HO(|ySzHTA1E=gs-2`CNBm$4(zzMwdb}d&~2kZaPPcnu6x6J<WKoXwF*omM1xJ
z=bD3*y|yiw(6ITVG~)u+)IVKbVpDjo-u(6CLX*+Fj);>@lOpGwJslaqq14+pIi~SZ
z&fhQxi_?rz0bG+ee?2KUf1Rb%mIVe4n@e}Taa`!ZA||4D_2!<Kc~6ZZ0#rIbi#}P$
zRxQKyu;N0<!yh&*fxjntM{M#~pCvx+L+0V%=KC2ny_-*CNfBm54SkrHp>+SQ&Tz~Q
zb`)rM|F6sT*+G?aZ_d3r7pMEyF-q$6VQ=My8LbVS8iKF(mw!(CwIt}{0)^Qv`t5sE
ze@c9M`{~eh2gcizojTvPKKyI9N9yqDZmE*c;%5eRIr93P;h|X)_ILEIh2P%(JpJ+4
zv)>+ls@iM2J1U;fyK~PCoi<h7Z{_^66D!R3{Y#B>X%T6RU<~i*ROC#oW)Ky8Zv49J
z`0w=vKls|&cl<1~c=zr5hxYh_KQ()PZ;`AkpSk7qx82UWAI!}E?QPk)Ip&znNlmrq
zlS^+cj4|8EvogVCr<qgo`^l$&1g~3l^6INMaee8QYi&-3>Ye-d<jcxA>`NW878~u<
zI(JV!+(v_|$BI=|Nj?30k=zt6A1U8;lQx%I9*xwSrl~P8sPvz^<zMw8F%h>1Avd0E
zvDiI-&bcDp{>d>ukKV+tiwc<0pc);pNG<(+wByzV1uW-oHcb+;w4Q(G<=en@9jr@b
zL+9K*T^S&>p^J5C>gAhz=bS5g>ycFCI%jS^>qHw3o~9hfi8JQx_3yLMU~<ZFoal7!
z-qS_wOC6-AvZ@A`mgzrtJgJ}=8BnBmF7xisjB+cDIn%Z)KYtnKew!`)kkGW9Q>L!^
z>+Dq-^WoW1{)>%e_Sg~yQKK;?rYP-_t22DFr42#Fgs4?j;+rg$vl-83O_1?&y0hU+
zkht(H5uUBy-P|wtuis=G=~4J{>4j7B?~_hGGkg>MzHL3DbB;fc>DF)_`R@;Nc-HHi
zp75IKEn&a4f4W4tm(;P}-@EUAd?+nbci^F5-hTPM-G7<atl$1#@7(d(x8FX!dbX;%
zZtp&+X;V%mZI+m}!=ldeUhO@e{n2i@H|xqXxZC(2&yKHq%OAgYfAt+6^=(Tf6xBUE
z71kx`h^}~YLvDiBq|Zn8{g3gBJF)fqW*Jp8%X8=cJ&E(v+kBE!V7bXj&PAKccMAFX
zHEMO8oM^Rsy7uH4>r);Ze2S!2f0jRWGJfLZNWY6si(Jm#Q+F2=amp~A*>q{v%(-_@
zf7EF=oGG(#bGhZV1zQ-6R?V2R>hqDn3)5p}KAq&}crs$u=HDkP1B?o;WfXaxyZ3Yz
z`%(t+jSH4cn!9&C*D7|`22ULg&x<#IKRMFubRb4o!*ccJYD<1D=IdFGCxhnRJ$+K=
zdXC!8NhfdqUg=<~A-W@W?yNZ}>F+0Bw$w1)#M)|PWj#H+UeVWYVQf`&z=~Cy<#%>p
zeAk~)aZ6Toe%^#7D%x5i({$Cf1+CYuvdORb{YqWuUN=9s)Iih-k%=kF!1UD_2eTll
zflGF;LVmiN)Y&tpik4Gab|k)Bs;6e6DUmf@O#IUR_f@8G;7X(Ato4ma*ZVilPdNO&
zf$<nS+rp2W4?pY0@H~9GmG$k~DKc&Pk8gXo+`Dn;!;eBo2E#y~3Cdp>SQiPTTkMPS
zm~(ge!@Kdnx3w>qFZ{3lZvNxH=l>?|uI^fW`)vE_(+}U(71tJTzZG+DUEVI$;J7v7
zcZI~;^V{3kzkU~gx*}%V?RUpn)7O2Q-+#~6X8msC+i8|_p9(oo6)xMiXwJSCnV_kM
zH7uul`e|53&zG4N*=HPT>6reyh$Xad(Uc{V=Pa_EJ^k~7B^r~m0=9H~KC^#;t|h-$
z-=dXlM<>i(>#uiFCq1M&N!4=pbZvD@)>%!H7%zhA48`fT8Zx4Rt7T?y{(3T%->cKh
zf>l+yV{;|QZl|fqW!v<Q%Zc>PO5{3KF-1N7wL4>VfR2_kFPEWJ^!%8{%Ay=ojg)6O
zaeC(`Ylk&Y+GG)J&((FVD9Kdg<c*uZo-AQYoilaSwFOV+%sG4d>H-co)3uH#+s<8k
zD&kkf7Sw#`<ec>i<)&ApRV4bvSr0#!6;gU@SsWoYvF=Z+?|qjyTOR(MegD9uj(jW$
z!knlvD-$!c;^APIu%m#(`#M*7;|r3jSMA=ldY#^G_M54XjVcU<#9|c_l)PHLzJKc@
z%Big_C$hw|qJ2sCN$<<~35TvXFy7*JUiz)=L!x+`@5854*(A44ky+;d_O<Gv6>AcI
z{m9$6>*k)lduHUlHw(YMef8O+XJ1uC7(G2&WvElQad&+T|KZ;+zv?Hm2nZilu{^{P
zps96@=k4V)L37Wa$>rz2|LC9l9s6Uu-~T>b_Fdrr2X4N2zVGv|AAUcrFnZhVcek6;
z*L~YwlvJdt6*}XoSJLyzmM{JNPChBR64G_jv*_Et;wZnOofmY%g+V!P`I#pcTAOFY
zgr?UQeG1W=|AZ?#pk>wO-*Z1Nn6hH3u13(!o4aMI0<uC*iis?J@+NNGoF^vH0b3S*
zwm)@p{{&_JE*BP$;y{UjxqI_vD+9OOOgxnqzG`!|wdL)t#b&n^H*NmD+i}w}4wKz3
zN8flAecM;Qa?V?$v!RJjCExO<uhnWg+jnu5)0%Vd-mcMdI=gN`sH$V>w>tL|MccB?
zEjA~YecM<5Ce-t+-+@(=6fJje|Ger++VX_ZlRf9|z3mEb?Jvs;J-O;!<%gn8?Q#-*
zpBGfrymC}Y{>^-7(-o_(8=4a@ADAs}&$!*Q;v=?nLDWE+i5beoIjEqx1DZjs<&wSr
zpwv|PY(`102cN3q?S!hA(^OS7bxO9Y<S5ks_Ol7TGevi&NL1oy`J9u_l9%{zJ5<{s
z@U<Zz;Jid$*~7aM_vT$ya85m!_-E1f=>qLurajx|i`_na*LnZ{d++D}T7CR);_ltA
z!^LO!FIRv3^y;%We~PwR?u?jQ?tN%ag#Ip79lrZ~*W<6>oj+@$+3no#w-)@i+4ui#
z?s}W5^1oZ&^_3i!_}x<b?9OpTw}o;F*JQpL1?tUnxBB<I<kKX-p1!GkSth%@=DoeR
zcTKG0V&SFE4?FvcKjqBp>s_Z6D`c{ZYu?(+o^!INcl(s6hMuqYP_J**J6{rVM$5G;
z{qxqzl_^Drt38y?UwgSK(zRX5A#rn;2S|6iRpMqZ-v^Z`YFk{~FRlr4d?|9^h1b`d
zJ!K+iwX7T%m3_k=b{ySYX|>twtQWgT@45-;kF}W?&uu+y6WPi*IsNrk=IvfVyQW-x
z!Bw%%uf1^D>C8=Bi|hQN&HSf7uXI1TrYXiII$rRD`04_q)hY_-uVqiaqxI{17wcKA
z&dKSYOY%hjR=YZG_G0^x)Bdhxi>@%o`MqCXKdC&=63BK+WLnHAg`{Bb2kGtn`E?9y
zmiC)sOBO_p@R^vSHZgDbX5V%YV0%zqe^gF)!qvGq`)BSnQ)!<dVBQh;D#>Yf)50>(
z0)@ZdWwVzF>gw$kIh6D{Df#51#0#sZ9&&CF_{!QCaNn@zUTb-BMYUoh`%2UHkE{Rf
zX|eE_Xi)ca#{p1Wp4`~)%<`8_<3OPOm6#)&f1AYp+xYlf!T%fY>%aVd{_k66{f&3;
zeqa6i?C{T<6~()E?${NXdv0BL_}xtj;3`C{{eAoH{MYaDXN%s=*?#vmn|j~3{{8pv
z+OFR%ynFA9Pl4jCRUU$$mS|73i4Q#f-}U&i<g1N+1(&8iy7}u3*DSw~_KkkKq$a0-
z-u0{K-cpf^C9F2l*F*C~EnXdoTG~}H&qDatrPRv{Uu}w59iVppS^Dv1-m5NqH@sX@
zv2C65oYJXlLoL+Le=GU3d)+y!q-;^K4>`4EZ`KBd98X!R<Y_be`qN1Dl(kAe^Ul8B
z6PmUDw85;X)+DWYYvTo3(q*q?S^3Rdd*1KWn!{FGxn6c%-ds4B?{vwou5&9ly!5b<
z-mi4!#o9%yU(7juMXSYQ-r4hg>2vRWn$g#l{@Ut5WccQ-UWcCC+;c99^^2Th@U}2d
zmU-(JSj)d%$l3DPaq)qVD>;?;Ri|%Q<HEdoZcNYqvWoxD)OT#`>BE*hh#G>#s7>x?
z3p)xl-2bcn&5(V1aavh<*|)2g>^!`aEo%&gy23bSczCz`x^KN#vN%l3E=0q7QvZZI
zML#7z-R&=sHfXRj5V@q@;=lVt8qfOkSrZl-EjOsUxPCf^^I6lL`Sv<t;<LY_6%wa?
zGB?JRc*ne1_x^h9_rjXr$Bmd?D1Y_2aG0UvM)D+$1@hBduKql7=<UO2>+b)5@%{VX
ztKUHd&ddKFg`ow@eY4ZMZszU2&O7hM?c%qSZce;)b;g;#?#~yUGB5b`l}Rf3lttc`
zik?4rUtgI=PMOTyv$r?iRNbn)=wzSZ+_yJRD(`059P6^0>-npk+A__vWt?lZSi3e?
zTCevC+uaj3b<*a|rMusRYGxfz2o>x&C%$F!|D@xaV;NU>rIc*5vu?ZpW>u(bR;gM3
z^H9O9le0osuC$1@SK1Kj>ThoNdc&D@Y3Z*wYnN<Ep0HAjNz-cf_RXs%#3>ta&5U(T
ze_h7(`OONSP{E$7H-8B_Ub5L8G3lmfp_#q)`mQ+T4Q@r77SEWw_IBv3w?@&S9*aP3
z>YC?jyg5|Wt;CPp-+lM*#)pY}k3D<%jeR1I<<kvMg4hIqPxtt<^}*fM^P}CWm9eA?
z3!(-`P0)L$;9|q!{a?}QEe>I2Y4&N)ZcPAnLKLc2HgkG%wcT2JwDrmT^fxozRCas`
z$`GHO-cz0{r)^s)x{sYBP+oxJtK{LkYJ21lpWMkJx8$14G5ud3WgaQG9;*0Xx$U0q
zpBLNx|9;!J|KHBLYt8xpJ}Ub9@=eK}U2${cV|2roPw(!|i!(SsZF3&q=DXYPzP+CM
zeRra3d+xPp*$a1j<nR5tCBLt#`1g)CeLkSt#P+4Pj8ek8g+UKjytkZa(eLx;{M#Q}
zW9Plu@uWG{t!P{N_q4Y+-gMpa>`Ze%dUKcTgYLQOl5KB@`kZ_AcGb<$t<61Y?hpR7
zm;Et+W8hadV~v*Rk(<A6EevnHqNlprYweSqd*@ak%9=hov~__+^mgws(X$)@j;pz@
zKCvlM+mZ@O2CFkd6B*K9XHS2e;+_!tQ0d&Wx1UN<j3Po+CT;$z?X+!`N`N)v>aHn|
za%$gpg|q(tn^?J`>&T2bXK!CU$)_|cmNETx+0|8(F5UCH@y2D&+IYcL;jZNlJw+?J
z9MsZ3XFm_UXv?JDnYKJyG5K}blhBLx7w6nu)nsXTd!x1V+i9FFf8S_q*q`2X!uh1?
z8SRS)a+Zrdj~BMvSIwq=q<=BCL_ySet%*6xBC)IRx}@%?oNk1+_2$jHH(zgg5+L-5
zZK8Lq&k1&kBv5Ch{{F`FmW+ZIssduO%Qxyo+N}AyZo==E2Usf`wKd*9kTZLiQ?Pvc
z)x!8<HFKNO*NZu7eXsKN-%pch>VM&V((Vgm(zgShso5VywIj;zx9jKg#k`+a_w%j%
z{@SnG_ix|*_1Q`Nb>ZdW&kvt{`|8uHw2fB#<6=rbx0pnq+huvC%)acq{^@sn?@oHN
zEiyl~T{->tdH?)(@zd{4JnSaRepU2h>d!6Lk4EU)2OgJSwAeG8Yh_<|>gVF)tCBBr
zK3}kShEDYL&^aYVt*iPLr+&7|73Gr4I&n)&v+3zX?S-myubf!YykzYpudO*X?<_7X
zIlN@;q>T|~>o12X3e3II@ycscj{ouhFC3y<14>+OX|XO&eO=6cO)IdZb4#cf<LPUq
z5^Ax1x3qY!ZmOKSm8)}|ORnfn)y+Azt`6CvJG<9ys*x|*WD>E>u3S(()-_l3XLpp@
z`qPX3wmn!Fs=(4vm{IGi@Or9}9fMi?s>c_8{SoxFV+oRPG2%P>drfpiP0{C^eN&Dt
zER8>O(p_=2|BA;SIQMls%Fl1OJ>MkchP}Px6T85o&oN%-*N96l|Jblzy`C|Xr|%iI
z^g-MJr#Z?xlB+Y2E0fv9Y2TjjiMqv}nW@vR@8*;VUA<YYepB+i*HL!XNTDAJJNG_G
zo}B;vTy5D42e}tqCx!3aJ-2t(ozvW9rBCK8o^5yHws*@!;oUF)-AyXpT3KCZ7JENO
zPj7wr?9HpMKHcCWBL4d5h9gJceJix(dB6Pneja58`4iWt*!DDV+Bh;*irO%#n%EeZ
zR9F0X^!@&ye;4o9+?C(9oBe;ge&LUj9e;Po)s;s~I$U;pugr%t%l|HoZ=3&T$13^F
z4^LjWwJ<)XPNQyS@@MXi61(Q_xB4y0_Vsbfi@WOsJ}ZA*{VCh_=TQlszdx@oue&u}
zp)O{t{=|zHe*X!5>;0uAV2i%yhK1GpEq*6n+_xl(=kD*TH~YK3skW#5=&$=4|6}7f
z)z0`6x2DH5FZ}*9`K`C${ux{KRTnHQwvYTcD_(5>lr8#8H!S@8wbAi+&{2K$x86&W
zUex{DqOVh@ni-$v*>>;mgtYxqTlIYoUf3J|+I!kx^`a~L3LKrEzh)Nx^Ff(otv<(z
zwtLU}qvAKcS)a<-^J;qc!s`9k#CP(jOxhp)`S9bfdCu?a8q@YWME)%@nA0}T|E(V9
zuE&xMA1h|JtmxBJ+kR$g&!+R%bGM~Qe|UDZoYA|93riZYByz|TZ4f-LTi6iP;1I2R
zb7<Q+m6>PGtUi9X`A*^2h?<Q-e6|Y{w7ptC-?vtk{N|^%k3%Zz#{%DNH7zx>^L|Jf
zH0(7f*kazo|NBE0m;QQ_6JFjY6Mv<|>kEc?NiFMtFSh&f;q4zkB-_~ZmEY$-e)nHu
z%>A7EadAG|%WtoKef#UTM`^XTI-1XprWxuK7XB&P^M8+Ioq12rjk@v;jNq>A{%`Hx
z@88RtAD)>hnBY@*CB!X)ahlDs8H;PVl#^Ua=FI#x|MyAb{XCoH7n;}yx!2d7zpnrM
zmHV@BgYf+<Z(iK<UnM_VUfIN6$^Ctu$m;ns<~yvclbrNe{@2O)kJ_8(JH7T+EBUgo
zj&<IT%-7ywr6upfe;>Mbp5@jrr<t;Me_!2KU}Asens`vroSTBNKMUV-tAFmk^ed>S
z=*zykm}g(TFZ~J<k=^^7^UQDk;@8~jrC;jmC#csd=G7)9x_^It{a4VL^#!lHRf@j6
zTVD9>@ugo%lVtAx-nwtaPtVNSi!FWU-t#XPE*0IvTxQg)cH-5G8b;p@qR0F)Bv**3
zIi<M&Z!+RmauiM}`l4K6c{N>I!f&(V$1ep(|B0{F2#yeYHr3;9@*%s2XS?U`iJQ)f
zEkz)WcZO6Jr0PfbCuOB3m*@wVCY6Brp1FzXsruoWDJ2;S7KRr39;un>86^tF7RLI{
z`8oMT!3BxQsroLdWtqvT?nQ}}`c9c8#Q~{B&iT0o`FW{%C0rKzE~&}+DX9U8MY+W`
zHW&&NEFdNoD;R<prMY><V4DJpQd2UMOY(~pjO^_6-7<4ZQj7H6auQ2YA?E4(q~@iU
zWN?|Ap)5~%dzle*V)r41-_x&gu{ChqzsIoOi=mJ4cti35!v_)|T)<<&Cd1sv2*MN!
zLkt2N0x=(AHkrZ<V1ph=fD8d)r~}Csc4LB@f(U^E9*6~C!^ssM)WLYbPzVtj@DON7
zCOaJ2;D(SJUN{1sD#7@`h-rWAL~NPc6tTb&BeMp%JLw1eCKhKa7+Hb}fgpVn@;?_S
z|D)%01>$o$xbVQt>0E}U__Df!p^>E}O8e#QUG^H`um6vKyrX)z+0QL9bi=0h58~_#
z#9SOjj-UUyx<R4ign+0BOKS5rg%ex2R;=iF;qSVv;nQzT1*Pa|8k<tLE?nBY?#a9V
zzUy?C`nKOFn*OQEu0rO1jNbIqwU@r!eP3IwzH(I-69YrTy_7Q0X^R^{*ZUnYVqjoM
z0-ZtG0lKgO%oRAzz`y|JDokT!U;uL+beI_!z}$uiHU@?VeL7EftXs0A#5GVm!`a#S
z@7il7Txls+I+z-n0u=%lFG`8z;`_Gy)<&O{O<moow|-Tgmy|JG<N!JX=E{px%rdGh
z$i{(9X8<_}Y&yh2AT9&gK?wJ~J90>mVV&=)Rb8DY3xDol;tkzBC+6bpRo`aZ`K@<%
zkIDZ}vwvpqd$X)6^KAY5%BzQF2fnEMJa6@dvv(?6pRHic+Zh$1Tj9G`>GjT%{DrfZ
z9pcw1nx0j(wcsAx@*mad%Tsq%ak|PseRWlI$I5A64t3X;>b)!a`HJiQ(p`FuD{t67
ze)aZ6RpaStdpEKF>or|{)NbzL+H<#+jg60goptrmy2BB-)TaJA@JOt{cK;XC)vd20
z>az9v+5gQo6|Z4`W@~W!@SMrX`l)AGXKjk#P=5Tm%1wvJjtDm8C(K8eXsBI%H$$r|
zbmQzJGRN&hvse7gUHZUh>xHCqtRY)J_-s8P)pcgi8^x@9HKyOiucq=Iy?I6IsP5ut
z>r~9!H7Z{^YVMd3b>@^WYuGxm%|*fYPU+iv8yc=~xL~++mR>v$+vL<8x|2SsSN?x`
zUh|>e^ZH3os&ZXtP0!m=;qh)4*PVi`K8E}{rDvy~*RMT0Gwo(x_`iS5vHJ>E&Y1h~
zRb!Ch?u}bar~d=_Z13??8`8r0b@nzbwOgz*HRjhJ^Z9QQr-f9%%syAYVEX*mTtcS{
zLVtU_v3xXN`R|QfwWG_dmM>aswfx++6K<C0w(UK!H_5Lrxvye}vQunVaJtQsHD_`r
zi>>-}d1}&irRlF?{#}aw$uAOoRYKEoQgQtcSzgQcn;oWYxo_AfpFExS=FgSNPwn>n
zXkGfJ^i<mO|DRI1Ev6UjEDCO%x;tvwgZzVg-0u0lyyScG`t{FAZhrsHdiQ$oPvyRM
zMXu^)+C+7&Z<R|==ZW2zXJoU!B=hW1+xMyZ8$S33-^=2v|0gyp*d$aWGD1tOAZFH%
zDF21=t5xrW7W8cvlzNrFb=l5{8<C~g_os2~wOToYSMOzOyqWtX6+4w~VL7=86DFLh
zTi|xYXok#04R!CcCqs%i`6Oi(`^_zu`J6jbExJ!x_vWV1>TMa;LDO|_Up2Wcxb`2X
zpk_+<$()HYyqlHvPAt-OYQFjG<--@dC!Xy)ptvlJ|F}uH<i-uf%bw(TRGNQ&e>T4V
zTG^c`pPRbpd_ONa=~Mct>1kHay;;SJ^&a>*O<${$&--ZOBk_qfKhK=fQ?WU4PG3~H
zUgkIZ3CS8Y=Ih^{GwgPl|4&PBmC@xZZ@RO>cA1%4E<0CWY3zGba(Yns%1AF3+3t2_
z&PbcBD^I>r?A+$RV9M=p1~YB9ZcFxzymRH!)T0wyjxeRA-xIod!t%c4B%Ri2h0nA)
z?Nu2W6sGO;|F9`_Wu~XsuS(Oudx{KQ&-w%!2hF{Fr|tC&RiXan>s9_${`8F7H_2ag
z^78E|AE(*u@sax(oPK!H^@4MSE{4ww4H+05basb54liq)R1~(eAk5Qp`Lem^&n9L*
z_l<lxT{rz(!Ivn@f1wkdv%K#yZpx_sJ=^8mrxG=TiHB`!WhJ{CWkE$%Ko!SnukF$P
z8qfVTl4jLJu^5>utNxEWc{=_R|Fl0&HmmL`{A4{{r#Pv;Bl%VI(Ugx$`HTz<NjL3J
zByP+3z4P!lWA>vVE{3LmYx0;r^G#@0)+vqh2wiouG4!d{)uUGmJp>sT8Y05x1-|)`
z|Lrn+?s9%DPIsB-B?g{F1-!+*8kS48S#H@T6XpJCrPF(HP#G8MBX!zqyX?(*#U<^3
z*Z=L??BS7SX>)0@r@D8q^x3QV1@j8|z-AU^`UK`2FTYuLKg0UpYR`?H{}#&e-imy+
z#UQ-@(E=5aS+P?crcIq!`=EW!-}|dG!%mu?SX{{7|7-h+#ECL<Sr{0OY+5aPqR43T
z_jRZ5?Y%Xn_F~N9#^Y=MZ@ZFvvT{EI1H;BQT5Lw4TmOCxzBWxY%dKmtU-9~D{Id_g
z`UE<?_sFKzUY?uN@_t;XOX`o=I?sRk^Rri91=le!JYd`S=E=#)%<OzuZmnFoGBY!C
z|DR9YzxVmw{&-jN{_)u%M_+GKx0Na_h!K)zU^t+g6uCBP>%O1Qq}SSJUQ*e8_uaDf
z0ijpt*k*6qrZds`)sH*29(+8@UokKoXz+S(a_Zc<xP3K0mHTZTEt{#6effB#eSKPI
z&ePuqJd7k67!1~2IzDY}{QiAWTeEtl&C8BYpT76&={bL2+s-Qemi2jsO5p<`28JEQ
zI=?@i)<1nCR7~ns{KDH(a&jNGPusttH1yRvQAXYOe6R1cZ=M({Tfg0H0i+sQv1a3&
zH#av&Z_n%P?$$oNYt1zi*Ffz&cXgE|(`tXtQNC?_eQ$o}9?#sb?~fcYxwkU>dHcis
zs~jR6A{|T*qgG7R@lJiSOY7;5d!VbKkIR;`u(R(DPn^;-<&6CO>4(>U?t6EBx*j7#
zL$rqNw4IL={;!#DXZkdy^8QWtO%*}O3=9v%yevC*rk$1AUhUcE-T(jR=JeI=XAYWb
z8Za;vh);dXFn`wEi8~)ETkcqv-u-)p9w-64RI5H8W%_qd`R{v^ZaS4RGB9lPkzaLp
z+UEMbJIjLCm2-kB?y60)H<zWwe8{OWFJ)z5IAUa*`aV`YbY<GQyDhtz7#Naf=Dm5&
zr~Uljmz+BjyLCY6f9AYR-`5#eR#dxeUAh948kb3{DjzNTAwKb>iobjp7s%LM8|UB2
z4ti5E6|CXj#y3|OCr_U*6V=`YHgjIia=wTxlLxDwfc2}Zsyh1mnz)-RnFHY;7xbBY
zGG;QU_0W;JYtvjSg`X^^90jKcgR*VO;#I5uUSTYDQTCjqp$_(`+s=Zhy)$z9G8}Zl
z-t_+#yuWkh(lq5PuqSsN+qD0i_rHZf4i;NMDc|U>1>3Z_b{Tyc2M!p4ijvErVY_C{
z%;J0a<R91p+N!3GK1&Z6aDlb|I&L(xF%>LPtmEye0&3_a&HQ)e3d`i_^PjwQR)pB;
zmBkbbR+ZKgF-?Qr;GR6#wM$oZ&6;(hGX<>ZeMH&ECeMv08$oRq2c64PC#|aGo!mSF
zY`Au)^>iIjOGe=Im#Niyk@cXq%nBYI)jQLtPBpFk^yKVp^XkgVtr-`S4z+L|>q^z^
zoRmKy<>Qhr28IQbj&IToUe@8TE$yt7=OiIv;ofa8v$B}n4Hy|5mIl6YJoDwtm!;m*
z`6P{8Qj7|Xb<Pwpb`+mvVrV$E<i@>C!s>o3tgL6}*;b#PrdwB6r!;?S-rZXkx7TW!
znf|qjKg`0wFx7tA%^b6dXQWKCOlp37xVyXj`}_O#cXyTk`}a?Ejkd{^{Z89WZEO_w
z&z)SN<{QeaoW(9SgY#}{Fdr8SmrJ8V?<w19t}ZSSI@8w0?(Qo4{OoLVb929p<)tl|
zmxZpSZe6C?6;)_$rKtEdDC^Jb88eo7Ge)weIenLJV>#v6=+LMku;Sv=lt``Q>!BNy
zPdhm|-P)45IrFmGMX|;+SzE8IjlOQN-r)Ni37I1x$GUpnKO$qEcjv@J(0#<ZV%{+^
zF$oC^3b#f3dK!3cdLr(`$;jaFv_Exg_Vs^19{2a|yz3RU=!v}6$uutx1_mwma@*7U
zXU$Xj%^GYEP9fIQG|ML6Z2kpK(EoOxd17-ObS>pZpZgKZW~t1Ch~E=wg``=w1-DdZ
zLYTjf8&!cC$s5mbSag8XliPw-t2!ZZp4JfKmM;lP!-60+9jQMz`Y1uum&7N2P*!SN
zpvCi(9h5bhml&<<1e<W|L@L;uM~s}080m%bfz-Jjm{1RLsWA&w;8;iM7l={sCi;X*
zMzeubwVg;km#YpDKDW`Q(C4KtGstXEQe)VtV?M2LWf9mE7oEl1c|ZyH%QA~(N#}py
z<Qt!rmoGV83+$S?#ggoXAki}d8+}wECJH7=-UkPN@6wjvixw}owYA;5XOBzujSY!!
zZ*4U`6=wWIo`E4Ic%#n@%i^?<kSPzhMQycS26ASD*O9gRJ3T>NhpFzGds7d$@dk%(
z4P70kzxPW}LPEkx?)J7{;V-tewX<jR=1e~CI$3i=*ZTT<G7>Hpq6?v=v{KT|MXudh
zS5{1%JJ&Yz(vpvlkNeNH+WMq4a&2bUqOd!CejXlIZ<S@wnz3w2TI!RtjgEB^LMu2}
znOGM&EO47XIdx@EY`Cf{yU0u*A6r}7<fNpsH#ZU&TwgAGWXjn+tl+GaqqDo>V^Y>C
z<)T%qc4b{%)y69=r8}*#iHCt9V5Ug5z~!v1d~!B7^0sSt1+9<UYnXgYLU)=W*x$k%
z*Oa}z<vm@`^hH?lJtGE&fR_azeGExAr#?5*o#uIk9~|PnsWGc$Kr9}?(?8VIK*>Xr
z5fTMw1YpU+BX!kWND5<HZ~+pzZU@XEF(R?iNBYzGN>Gy8c!pu4&!jU@llx)mW^W<L
zeg_?6CTMD5I|;W`<n#+jqL`aJ^YI>-@Rwt-^u?D1F2ogsBq4<rkK;yRs8u^cEWxf-
zo(41DLuazg3VD#=OS#h)P2lAFYq^o&=`$h_&z?`6<1NO(5Mm@&-kZv!!^|*6c=z3D
zQ>G+rPMyBt%+BIXi(-@6+)^h<Me58uc<^D`=cz6_-+RGH`&9dhlzaE~)zw|~{$Vup
zsM776BSy}~PQ4+azW)A#?^kTtAQk?hpxicJ^13EF!xZt^y0_2kPtgDIc)sv^rH^r1
zJD-1*Kf3AW=Jfj&k9+t3|F^p_Zi`dCB*TI^^|Ln#FZf-(a!SGG{QLW2cbB=kxJbMf
z1t;GSE7e}z)922~+1LHKvNCvn)ho^9rAEi5F*4k_{Ojxe+CLwEuhObJnda(hDq&p~
zBq?9<>&wc0wbg54e*V2*du&^7^!3%@@zQ@Tue`k1(9o8h_tp3J_1|~={Z^KAuHXLO
z`@{UtQ`6FJ<!mc^`>y8O&Bl52=7oQ|bZ)M-b=H;BpP$uEu}{Cc>Z$$TEs2kg>?pe5
zYh9Kz+c^DL6RZ64Wy|!Uzg?Z|Z}*k|x?0@7v*!1eZgqBYK0dbBEc@E-w(eBpv@;bC
z8rie1ugl$GzBLI{5Zv)gN_w;<GhZ*_gXh+)tD&K`B`ciRIBvcz+x&CW=IVW)&;8!F
zZ=dV*J6p4le|cFLy!@QVPF-#7>`O~FUS4*zPvYaRskZOic>nMI`|VqJ<@9Asm)8Ay
z>7Lq?s#G1Rqc`dNxw*HEjf}QLh>3}<3s=+Doc8w4&f@d)Y!A2bYX9El<os8=B>M1S
z<}Jq}^^2z+ol`G-%rQ_yKx2ZnRk`1`2(SOy`*luFd2^`svyxa#8(a43tQ#8^n$@45
zcXxBz*&P*zv0K>r>lXUXj!r)}M{kpppPyeqz=aio$yrxA3}zp7R(adF*uCGX?$3%H
z+r!r0dUWr=fdg-EZ{Pd(+m&Z$qvb3%tS^7RFZcE~{Vh*f&EqDiY`(d16~A4DzfR5L
z-oSIIHEsOzKOZ#5{`yksW^-3}`<*Mx{rAV${rq{TmHY2+{;s}v6K2jdtot+LaQlA|
z{e^jVPk2sF;@-QfSGr!t=*iM1f0fgH+Nxr6l$9ROu{5s#_f!4izNgb}v+>o$sd%iu
zDkX0I^T|o!q-T@;zrDG%bajT!j|a7Lt?vGQy?(clu&`Xc&9jT{^EH0NB;|WddR*EW
zF>~6qYrD&Pwr~Hwr&3-`J^Fr?_PaMXjg?aG)qc0#TlMu~*w+Kh{CT&xZB08n>+f&=
zn!jHszI>T^^XAR%cdv!LdF$N%@5i&*>qA0s?)xkLaYCQ$`<Hij|DI*~`Y5w`{=F~f
ztT!JuV`pdQm$zG0_SWiFUEZA?C+FGj@0xCwcu4wsY<cZPr_-BiQti(jJ+^6W^maMB
znjOyVe2Z$IotbG@`)kj~W74^|x9KLvhGoxMv_kZI=F|xjR&CvEv`O^nlzQP~KYN`Z
zQ5z(p`u_;m>~C}K{doOy(diC>1=D_p$J|ac&C7rF=nu#B*zo;{hmYOeRhoHoQ|RV2
z-FG{edr#GJ)YKGj<Cizf42rqD?5r!3hrhqLw6O5!D-Dd!N1UhW$6Hl@>nVJEZ^P}Q
zVykYI+5P_$Ab8#7@!s#x^kRM-EI!XG_Wj?_=L;7)yYKmM==8a~g{RL6e>`KncT4k(
z_51Di#qIsIYSpc`eW9H$Mj02ne{%o+$?D>A<=5Zu_J<Cy&es1mxBQ;?&-L~H?UHWS
z{Vo08%B?xS=2PnqWmVOs7lM~8TQ<+K*ve>A+`*qpq8zNxYyN(n&dx6vv*Cg8MLDxK
zKiBX3^=V=IKh>s?lqX*&tND8R_`JFN{N%5%i`VVnx9{Z5ofg&K_I!T6c5k))%`KUy
ze|^o@5O{xNm8|~fqvG)|Z*M=&E?=|iti1KNuW@^SZObT}d}57rn@#!SUf%!j|K}B|
zy>FRm{8&~{N&EF#^W{H({koO2ZF-#4mcqww6Zv+RR$C}5Ctp|~?sKmB=&d?GFDv`J
zJFhpV?Nx8O-X-eoDl*SJe_=(Opig{l>6Z<O%Hn!4AO8LRe7tAoi%+tlAC5;JxolJx
zD=K~Zmu2SL7cXA?`0-=K3XR2o7(f-<gSM2&y2riS`Q+`k6hH6dmHzkr<#PG@FBj9R
zzrXA3+2i*_E?s?srGY_!N!`E7%i;006DJl1vTR-S`scUXqS@E$vNu0XNlCf3F4lc^
z<m#}uYQD2}*4%r<mo!brWOvzHwPmHRT-;pm?#RC{H?hmbrTX>Sh>4o{yVn+&pM7?A
zcHZ8v--5m$*p?f;tK{XYhYuBR#qPTE|8f6+(TzE`x5aPq5D^nAd%ZTd{LPJJM~!ls
zot&JGUVeLL=iUUJVow+CjS)pfo60^vI{Ia?dw<r(H}|UFpXT=|etz!8=I7xbU#$&$
zEnojfFKOoKt#5B{-yXMDW3BNT@9FGExUcUretl)7wCGg_6Djk&U745LKGn7tSVb~0
z=<VFQ@^#<3BAd{aCuAPoSMImDw)gj9CASD2xmGcY;%8shL|%S&_P2)8qG$7LcOUPq
zUi)D0?(+9ByS{i&+|tzC>}nCc?TvQszW)CA_wNb`mbl#8^{`EP>ugO;alg4%m4Cl}
zjah2GGVN?sw^;4Q+}mM-lJ~3g&mC%=Us+lCR9`u08Ars@|4iZf*7YuRx1XM2>JK_y
zbcs`N=aJ;+=l`#G!C(|0FTZwU%E?7nu1xuU?{`2>P0pJoZ{DmCGQ0M4a#dB;)ApR{
z3xCS9e&3|CrS5MPbLrHlajWJ;urU-Eb8<fa_U><JHs~5eOUspRy&cPZXUp1Fxy;tD
zJG*?zk|oQRcdrqXlF}+_^GIk7n>1_ItLM+-mwHWo^XAP|?dg9fzkPXi_4`Au@BjaN
zt~mMgi+fjA=HDv~ci-rFYwxX7{&OtqUR*eMtao+?@3hq7-`~nXd3fVfr8`g7tE;O&
zKhRivcGgynuaf`Y|G%{+YU`b6TdKZxU0a(kW_+~d=BD+&eHQ~dXPf6|-Q2Ww+lGh(
zPj;|5UpjC9e~SHP0egG<x7kagc2|C$HoxZ6!m{f(H>V%r>VCKP!UcngCtY;S^8P5+
ztG;}h**Y!f&W@W4o%hRImxbIG5{#>@{j2p$_R+SzsheiX=QA`^3$DyQ*i?Rgj^*2@
zPuH&Uy1(yyX8U0^->%uF*;Q$2Z7L_3+4%%-x*l2l?ymg$u(eUAr>!k}e=o8?b^D#7
z+qbr^PEPt4x;5)68?V&6`}^N_ZGXOOcGUh4hc<KyyLbCco1C0|ecj*9=lRa;zkd1h
z=bg{z`T6<P{d_v{;6X(tgQLgKn^{^deRFsBcP?)3^YKNux5c~275!9o|G1)E?$x5L
zyGwTdf4ThkT${>8<?kg5KR=tDzxV&Yb{FTI!&5XT&#!vL85;WgyZn^<vEgf@zA`fZ
z>dLsf*nNG~*H^o1I2#*7tx8|%$Vm$bSk(V(U+nHb!?HN){Jj3zGPWso>-SkjwQOiQ
zZU5_q@cR9BF*y!bS6z+T`pZ5y?f19xUa7A|>*EY%tx8_q*f`nD*uvt+*6YXmrOmxU
zbTu?0*8J4k<E#>@yWR0uc<zb+M?-_JzUi*x?|Y_xCqQC@PoqQQohvhqkFN?}AMIs+
z%(Tq+%(mR<^|8MfpBBt??F>*|^ki;%nZ|M6AJ_N4>+hbuj@L+A`SFz%7pzywwEdBu
z_4tAbs5fHJGCf}Iq@RZPyDEXn-cy+w0t(IY?ks!H_UF0%>CRNQ@3%KDv29=b{iClB
zsP(-ga>vc$BfIi$drm%732wsrgr`Lo%`=(-X&qm-oOZHrwJvB@!(r*;wB*xgHa%|H
zy(($?siIx+3=BO_mQH8eo?rjGncr^F-H_0)8;|eml``Gt+CBT!rw_8$+ivD;o1MS!
z>3h5PFE1~jSMg}!>vgAX<s*E2`u*lwiQ6zA-IN+%|L<o~=%2c++H<Y%UtjE=|I>?|
z`|Z8Gue<fd{O44>bb7`uwr6(z(UYIHW?lU>zwVYnVbYw6#{GXjeOB)O^LqZ8x5wrG
zi;Ia}TM;OH@!#9+f4!&Gy!uo%{m3S!jc4BYBy)i}WIN{nepj7va+2%MjXBTHy-nM^
zvuCDHblj8KM#qeH-_;A7SAY5b{r`vg?Mrt)*?xbW$jqEqS7u&a9q#YxDQQ_W<3#t~
zs;_%DUEh&-`2Ve~yB}-4j}ScVvPmadNBH8kr!(`9PBYKA5YU~<D`m3l*UU4#$uo`j
z7;ocYc+hui`~KovTg>}qEZ4*`R6jkH8oTRGeo@?>7kj@ydv|NAt@`n>^>KR_I>&$g
z`qkIld$#50wfF08>w6Y`ex|#twED^H{Cz<pskgVqTa~=Hve<q7)z#rTaep?dcnS(`
zjjKFbsPr#%^|bo$cW*s-ut3?pZ_lq+uYZc~*16fl`kq(TDkjBf^5Z2x8xObby|vu`
z`-~a$!m^X@@3XZk-&g<roor-eq;q>;#=SkML6?4ROpf>V+B9p9xNp_Jp9@>BZL9oz
zY@TiP^glh~`f)YC-)ge+S*-IfIBy%ftNgvHl)C@C8Aho^MMaZ5Cjb4#du5%%y=}R#
z@9mv`b64r<R_>GM?W{NKFuvwDTde%omw4MMo50O!YdeJ>_sQE^B_A{SD6lbEzWU95
zCEo1SQU(ux&ab<r5$9U+<!=7ouW4y%Ze?ZPnE7qK+(<Tz-j;K3$4B>#`P23PKl^w*
zc~$6YyYzECtlV~Hmh1O~l-RG2{+{dL@ZjO$dN!6H-RU|dx{cZD)1H2t21?@&t|xxh
z2A?}9-+fMe|J2iUu`>PAx2s+5zDwHIe*A9v{oPexKQS`5#q61}FYz${-{1T~pT%{f
zUOazpo`27Mk!|_AGyV4e99#q@o~)^<vHMf7QRno@lP4V=9q;b4ol|e};lo4cj~_RS
z>-<pB(aE{Dr+k_Je51NQ(n<g3+3r5#>|&+)<%-giudhTGZ%sclBYLS<K%A48c;m9d
z$IE_tySc@wZ~Oe@<YPO#ed2mCE5g_Bt2j2-dV9aDb=JvAOS7-96JzvSbMVQIEtOsi
z(*+G(S*9E~pr!hLKEM4O{ZCKb<#h$m|9i99|N83k!)v$Sv&*}aeRr4bm94LvmA3Io
zeL15(|Bt$b#f>L>lqzce{8q~R`u@JViq^!gu5}-lPLC7R%zAjp)ogas=9?}BGRA31
zcXv%p`dj<!OU9)oGc&9oHyc%dtG>0m?)TfB^XAP{Quy}z`<1ii_irsbyEgasw)_hV
z9xC@+=-t_pe0<xU@F!LF@)jHFA09fYwD;&Szdz^er-|&zxN0g6?n&=h`TN~#vz!|b
z>i)9T{r|fw?d+`f_Ha>S^W0yCwzhxk|3|++(Q0|~>+AapQlM_#zd!z44C9n0i$?XI
z;8i-+u}0yR(z>Va>z4UOi=0haCd8j4HdWri)o%B5x#Oa`(c5yKK7CsH=ZB%-gK0WH
zLsAxq>E;OqF1x^Np7&>A?(Iwc33<1_ot~h0*yYmK&!6Al*f{y~q*=OrvcL9vi@R^X
zR(d@)e*eGT-{0N}T6*4jb8GAD8P`?{ONuT%tCRXy-A~58?9GW8hC9XOPMkbxS@oqu
z?6g(+yH#h;oH;Yc_P6iHo=Ga|YHA&A9E<g?hux_Y+bTTs%#$69Dkrav-ah5}?Zdg%
zr#n&^8n_+^mhL{?x9-!fdyja{U0U1Pa&K;`yt*p2-&Sn0c(adld*6xuMP)Z9O<wt6
z`~6R|_wBQ*&#tbi{hM`Vh32EavI_wMipSD6UtJUV`%h)|!Zm91HhNA@ldsv}!7|Y_
zJFNE8$@ceqHZOQ!ByIM`An(qTO*wT3^WW`!)2Z|8uHAE`Ajxk%QA@ohoaTA;cye{;
z`SSa7g@uHE{rlamBX+u5pYP1MbN_b#zIpj_aQ2B!H}kenzkd7tUB3y5%eM0{Jh=C6
z_xr~0_v_yu>3sZC);{<4w)jmcfnj0GPFB|VvM68N@pfBTw|M=Mr&FIiNiqET`Lnmb
z|7AHPqdU*e&R%oP<zn2vn#|YN%;P_Pv-$hQxcJ$g+HY?pCx71Y<jTtYlK1ycpFVy1
z$(yXG?eC%|KmI+{+O=$D@bY&ngX=AK?|3I^^W$hUdwuW}??6*SLq{EX!NAQ|(sS<a
zI@=|Bzhk;u+?((B*NaN)UyIydcjeVp?IU}S_sRbKeE$B{h2PblbJ$GY%>U-X!scFS
z^TM4@A3yxDRW`eH`}XhK`QcgSM{j+4e`@-)X;E9VOedZMwce}0uiG>A$I_*uahqhm
z7f0@RI-&l!si9;v8$*GA`Te_<=jP13yUX^?!-osc3L0h{Y%2f#?d?mO6wS^#B9fJN
z9~{&_JLhLuzg++9v(KjK=2tyzoql`!{_HC&rdNOMy4d!|{`Z>$;_)&sWV+%$&yUgB
zQ~Z3Lk|3X~Rm2mO-FNHW@BRMu&Ce}m;ZwCj{pQ(xJY($N$$G4Bu8LX3^K)<K*M94~
znG+cL^y&0?-3qy0Ug^3EeAZ%L&zi?~{#d$oe$^`f^>MY!{rg|vylmL@dS3Oe4B67;
zV?J|?Qa?SPU#}JSK6`!db+&0U=ll&iZ~J`<$FfJJyJRBNuB;A^U$Sw=4ELiYkB;oP
zapPsub=|l>8}F`bX=&+^|DU$-=}|ME83t8vZ(TLbzLs-w(NeSEoRdpDAOHJ(|NU0Q
z|F_P(UcWv(?)Ofef5#Y(1wjTHFSNC_v#Y2q$@~5G&Yh*z%iVRpcICXhyU*PIcH5$>
z9e*7_&7E`b=8l`C?2!`X<^J<u-QIru)YSXa3x7_Jle)A1eghk?)U?NDTXJt#y}c!0
zTU&d2(}u#VkQcJ5r-L$9)X$7-s^07R>DaWDpwZw10n2=6ANBjue&=(^rXF2ph6PPm
zR|p1vTepd8Q{m%n*;(^<-#0ZZPL@oDv~;dVfQFtI{F(aLBl|<#uCSz;bEHp)2!n=q
zrwDf+HMX^FO=&ASneu3_%DuqwA7Lfy!&mp}P7bjKtC;@a!G|SFTDEL?BJ`W}Nz?Ne
zO^lLD+>|DFmR~UyJgu|S`4nj6a)HeMXWLs^uWD3Eo=ZronYzF&&vKhj(g}M8h7~1u
z-aqo5bh7fzd}w2<xHuIw46QItvLRBeum>`@`Rlk*q?smky2N_g(_Y=l&=F9pO(!Pl
z6bcA4FoZa%&fT7Kpn*}{f8LbTo7b;@|9U+>|Hg)e|1>9UOl4qrAk~w)apOitM#e=S
z@0Q>1m9hNvdj0-uwZ(IjPlxC(2()2f2$(rVByWq4+LEP9J&)~RQ+*B^0i7DEDIPCn
znssHF@9dD!x%Tz@6oZzi%q%_*86_{!J-W$rvRdcMOG~{UKYH}+?CkJQhZZjUC%S9x
z!-swMtob)DmX&xREg<Lcw?}Qxq5y>e1umAX5XX%^pC2^y_sQ8>X=-X(SnOyy3Y$*M
zzAnGjV)x0Q%bSdMrmXo`C$XbXA38YQdSX+^v30AH+%uLgUq0WiHY$64{QiAjQ?(o&
z9osl26}|I*@|T@~L2GhS^=Ts`qc$E%rDdCRx_!jt<?|;5{ueU_jUOM_DsuYJp+k26
z{}e0dZJc%-v~XuZQQ`iA#l5=9kRkkg8_(=KDFhkV{nD3uEApQuWP;+Q%;`D*FG2>I
ze;GaR(=`sZ0nHR#p6q%$c@A{0U~0Lq4<rs>b_u6|mJ7{PoH6(Q5t9?Dpj)2S-36yP
z28C&oO_tyHq(Y<Bd>Yi;V;!kA!otvzZy$)Pv4hU(ziMhw7xkv9wf$iR%}WX<MZR<N
zIR|x6o*~G83>(jId^#7MwhVL&Rm8Gvoy-5Avlu1!lHMvT>jb5ShKOa_Z%a0nO@$_~
zyp6`wG^g-^Z2huy?)DyNYOL<IgiO~Q>rCZx2al`!yw?R)2n+(JdjwC5gdQ=<Vh7Es
z{L0(7WR=><brT@@>b-85i_T`_9Xt#SAzITOz4P$$s(Ly#yieZ#-OHDe+w<;ze0;pU
zrA0z{nr4?L*t{6+jXsl>?5q8~E%UP5mgMB*<)D84rxfL!jYk|o9TiE@Y5`*n4Uf|)
zPTgX<esir-XXu8Bf<3TqX2dlAz$r(&#ogWAr8TA*ZUfnCH7#iR41>g`_3QJ$zq{)l
zYXqB~bMTqG=Zv^-kV8X%nQ$9;I8K0-$#m6<2r+5t>Nhtw{`gT5skb-&Y?g1Z)|(rP
zZd~N#T)AlC<f)5iEP1lzOAAZ>y?VFbi5Ie1ptE|PPJ+|rq(j%fyuAGV-CgVSb29$^
z{*U*Vom{eFRm$_4O$-bRiZr)vf75UOucN=ezo)0>QK$Nmvr${KI&0E8B9;|_ra(Y>
zNjh)G!v_bO+3qAo7V-Uj9`zKYvvB|BKi;dvzzr#eBSy8!Gf!4pMS@1#8Ioq++vrm`
z&u<!JE^S${PO;395a=YE)p4Ux6{C}Gpb4cTMst%R-yNL}O70C2%kp)K=WOqRCI$Pe
zh12SxGaC0+`fQw?0_B`jxmtM7$Q3%XwQi33&*hLrUa~wx{X_z&2veB$(tGRbNoODv
zBbRNbX~sZP?}3S@QuOw*fKo?QuxRL`l1<<l-fFGO`#L?L`DyNH5#i;N!ISRFM~t33
z!ZMEcLj}l`kK?-=M)1TAE4AN8ESn_(N%U+Usa;w#p{cYgSfo?&KiC%gt9g^4qQ8#A
zO|UqpcAC=&w6Mdcd{xpUP^He$k^0NcD0GS8)Xk7Q^={{x!Z$$>IW1}L!tx`>j;)K_
z{A~UHe^L8tDnml1EKHKzo65kj;FIRI?Q5Ld`MSk)S4D1KwsG5a$<rw_FM}tPm)*Fx
z>Dt<8>B8!%d+r&5g0tb&(b(hDG(oi#!_@AjGS@|6>n;-ZXLuRU+_T5lRfC)JtNCdm
zRTGgw<uWE{srT!+(Q4DRkE}Kx0ZrY78U?vn-+uPO*t+^#Q~S{~(H8>jc^0|7VTYzg
zu1Tq&3B0^2fy)z*<?!e;GcZi`*tj=USlusXcUf*yQquc-dz+h@!q&xPcDya+`#D|3
zeby5hNd|@ovpQ1OTT13thwh$nBJJkP3!tR3;8Vfw<{5n&%Vdu%fkge6#ZTrb92PwN
zW=^0OsJtjy^la|a`!3K3opoC8>$IC7o!~?^ITadtj7gFACe%ZdY}}kcA2aJ@NodU9
z6|v|z2~9uxQ!UR&FPrN(4O(*c?d*ZF3X^8SW|L3JemZ{xvS>k^9b77%k=S@fPc7&j
zr;!9?#<(hQOMcQNNE+F7NiQ@{4O+DCgx0BTovB8UM!*??jXn90>AZ7up6eP%TR{EN
z4NVb>L6HX)|ASf+3`dM)i)YU8*mP6J8#H0dkTkPz<C&YzYMw^WvUy3yMxU}T({6UA
zf|H?mdj8BOJ*ixv^a2i$;u_J*I=4lkp^~@q%_T=4X{c<nUhy#_Xz`rZ5TRz>{-+pJ
zwF{gs=}SE)Jlzm9ff}MVP3WC<(UTJ$g36O7Pi}5%N=i;vR#xT}I=v-7sR&eX2h5yu
zCE6_Q%#0Z`W|(GQ>v;L%;$q&7d%Kb*$=vn<l?79MHttOgTV4A9-(UHf4~-e1i@6T9
za6UgjpP!TSVrBJJ?~QMqqQ2cb9OjiF6S_uHTrVcY9#VC0UlBNAfB4!}|K16n_M2}P
zyEe-7?V<-sQCqV@4VOQO5R;19xL()BM#0kLOH=)X43_YZH_INp*>b-8vmOfrL-+w5
z@A>}w&R;(KhHc{;u86gnqUJpDE*o1~LcZ?$c5iE*Snu+8ov*I!63f?g=H&b2>-Egv
z6P&Og$eD6|`MjqfG)wDrkmT-lUA?KMSywEozpc5OXFmIEQq{XVmWJ-%ZS`i_9<jgp
z;q$i@@te8w9i0o^()qtJLvvEN#DlKg$|fdT5)Zd&hpiFFH5ASL%MMByA#tj*M`Wza
z-gF2mKRY*9T0%lXTKe=kCI*HJ>eH^S4u9XRzb`?ak%1wG)o3^9!fsH#iF?^CsMcnf
zvdBh1RPS`qQMVIZarP?&S-~0F%_=Xn^4O*a3H!NfLsR$svMO=u)ez7CRY1EwF}Q>7
zas=fb2JqTp(4ZRwc(E^-3tsFC=7QJ$9*~W=lce1*V`-Fhq~pnxCkqxVxN+mgi4z`L
z%e$8>SrQ&s`Si!f$MfdRD}8-U*1oRB!{fxd*xhdZa&xCn4c(k}Rx@~6OIur)YV5fq
zp~ltU-b8Lr(~aL}qoviwB-wT2`DAtfdwVK3PoEy%EvBpHGvmRh&%OM%vVXtt|3B9-
zxoy>|u0=d@Hamis`(5!UPvTz>DI+i0UF*92f9isuXB(4`OYN6)ZsV!^^YOU4-yDrg
z2kz`FmalrDcyDplUpK)_pFR7Nlaju@xv6ZoXVK!t)!*J|)@|jHw~P66pyv16?XuQo
zBJ%03>6^Z<n^pV!n{Mo`D`}hW*8l&jWFD;GT>1H|xvh=Oz1r`wADyqPi8PLnkDoq2
zzvjhD*FPmT-)<y-{P?k%jd$0}WwU>Me}8{{{C@GcibkoIr*Gfh9lk#9^|iIHZ*5)u
zEj{ICeZig8L3srNm$SCMyT3m^#A(aXkS*uu+n=uv5r5?0YnFQ}Bllzbzm>tuT`Yv_
zziiLD8+E1<RDJ7LTr98@4tFmr`}X7G<KsP&%AP@mTNgM~dHVZ{cSio1bYYdSnAkIL
zu+6R4KUI{KwJM_{^XjV5$&)6nnE39<^Uz)?Q!hTYsgIYR<mF46XIHx`YHL>7=EyBa
zL;g(YuvAo3+~ZriMB~(>quq-aFLu>cQc~J7bCE_;T~X1d(=(MWZM?s(NzypY=EDKz
zt=ZSl{r|Yo;aK6LBb*!Or=Op<H}$lby}kX!^LzI0?XKIma@DE!d2udDb-&+kXXlZ4
z@cOlO(wE)u_r3m9E?{buU{DY#vVHZG)>n_Xd}bIp)})obzgK&ASLqwx$2WEsKc8n?
z-Nq|@Y@LDH?6Yc<A{V>$w(-mFtN#A(-{0Te5@+)aqk3ILW?Pr%tqxneE&u+%N8S3z
zjvn0@?Vz)JiCeE!`uTZVZ@*P~-t}^4@pG<kDUV)t_x9SBy@{x)*`srMk=Sy-xtE^J
zx37=;vrtk*<Vlg*@3&evc9p(<c(~oV<b}em^mB7wUS96sFK4SUq0j}if=cXdg%@P~
z)LyXnI`_Z-dExTuMrQUSeBv{Gwj8~3{P^+Hr@N(gx<b7s-J{FR%bR;+!^197ZI@^t
z*V%nZvcB`}YTw`6Tm0<I$1h(*%x9ZqPMSG$XYOsYi~rtiK5te2F6NF;4C~)tUvKXy
zd|b8s)z#Jd5gQid-`^*4!s1AJ_-wOWv)o%LMRnF^vbMUpxrzO)dF<@({)pZEkEim#
zJ%VrT|Nk*IG~AeXch{8@x=oHZ)1`hc^;GhZ+RyMPJ^4t7pr)o~V`JmSjT^7W*W2cM
z#s2wtT>cS%?Z<AHKb`t{*H(pkKiMp6UDhLMtoA>IJ25fwk=}IULQ_|F_v6QpySusu
zDmYsfK00z@qVnX)lXb;TbL;OZI4)bh;}6&!r>E)8HqW2;ZEMf-`StsfkM~{iD2Frz
z)_R;gc<`X3qoa2CI-TmkJFA1<fmdH?*`5Pcpol`I0cT0)b$ID1#vOZKym+BLzozKr
zrKQXL=4M@A7n_sw=1?p5{@?F*``iD$lC-ho<s#SaeZO95>+9=(6J=0dyq(7(bwkzH
zS3f^LumAt|J3GIe2<Mvo`}^eN<lgW3eD306_vQZc?NU#P7)dfb2CKdRnwPw~s`FTE
z`Q6e72N)x#B_}7#*Zp`Hx;m`0<JyWq<uXC2QUN)+b*42nHF|M-G^Dm>UCp|@>}-7f
z->*+5`){fT?agp7xBv6u@VU9x`Fp=!+p)vq8ylz`fARRw&(Dk9dS{trUYec1Z)e@#
zD#434)Ir-i7BpX6?C$RFe!uXz?7@QvmF9GIOq(+0NFHNC!K78I-mo$-Fx&<A-G~V^
zaM_;s@IPZXZ%#J0jXOl08)9T=fpRwX)u`zF+ZJMV_v016q&{i&{p?rRWmmHMvMZbH
zmdl)Ja*q@Oa#RJgJl8Fa*|oop-}U4o5zBp=5;|3asvl+MS@YZ9{QXXl|FHZcO|JTl
z=Kg!?=T=|tzr{Ua+NA2|<{zq@3@$lUKkw$ApJbC(;$yHdxyOL>!;GR+s%_6(gigIW
z{o>P~>wLK}F0TuJCC{<z-G6Vn>l~NI`uk)5{yg3O`F#9(ySiV0p1wMqA8*&I)>Ksg
ztY7Vj{wAfEb8fenan6`_MAPR*WG?$_m6}<-RVSoaQx_{d-Vzir@z*DFEeW1Q3P-~n
znYfC?B3Lyqetr7?Uh|acT&oyFM0&!xyh7uvGA6U{K6FK=VE3+*%lmJBN~@Ay+VUXN
zF24QfpFF91uCJB6mR}APdtN#15^L3t$TaN|+2tAY>?6(wocuriv(Zrlp?lZ==d`_!
zo}F<i*hAarm5Z>1pr2RZxuAr@9rb~mE8QGaF8OR*x#O1AT&^P<GyM1e*(rF*<GQjK
zx4^+wzT0-}Jk@(hI_Ze{|DI{*a_2AeQu3;p{dD)-CKj2K4ck_Rbt}7G;1P7Zb>@Pf
z;1(yH7c&ZETf4OjtXQ79i5z`kAM`ie>vGj4b%DeOa(4sY`-U%4j?7+?p&l^n!rADB
z)<>GAXu5FRTzI<J$WP$0?B~8*u_yN*UA3w{(_doFE5Xu#N3h7uym0D@ryJ%=_E^u0
zYJZu##d`V%w}^6{$86^uy$lZtES9alc-KjwmF3FrzM1_~8ogRFm)me?Y^~TXBeTeb
zo%y69%cLN=9PWjI$AvZrZe8soq3V(O%-7^m(3RHri4zVjpLpccgG1K?cmsY&rL~Lf
zYs>m^==uk_Js&Km-QJYWAM+#b!qcUPu20~N`w_>nvzdFoFl)QmzP6H%L)QzeSA5u+
zX1DW$=@~w~8s-xhMfNr41d7`om;Kw?f4%knlwIxtE7!MZ1pE%OO*nSj#a(<aL*HhX
ztrc$rKfm(2DR6dkiJX}6|3^pIW_a{4)vj=G;nJ|l?fkT2N7rT7FC|H$%OVulWpsZx
zaGfE<p{5f(=koHzh~SE)KTbP+4=A+Y*s8qRuEEbkL9n@!`Q6XZH>(*q)xMQ{T^3ld
zqOHhO@j!5g+2=;H7_Wr|TP*pXWOLNGxNdNMCBBQhJ;!X<4vQNt8`fIqSkCDxJ??1F
zyLiQdj>~<E{swStVc#s3Xj%1kT3m?Nk|TUu=cP|MB=A@^yT^aCLFk0WrhRR#v*%^l
zb5CcuYVa+!u}$>rLbkLG;+hZamNZ%}>nN()pkXSLQsua|{N}lX2fn>D;0(PG`qAvS
zO3f|h^RL71E0*jjOPOZ8#M*}4>yz)_f{6IIxG>-PA0p4+pU7#sHZl0?eD;N+H;oyV
zy<8{jGvSc2t4=^oop`UB&VxEBwWl6GZuagKE5F*@o)MRlZ9Omjd!}Hhd12oAg?nR;
zx5}y%?rULAm~(HRtgk}gUz64M&KRUcMjVi?=4W5GrE2QhMW%aBUYhl?%4JHt=X95c
zOK!DfCrnm6xHk7wwRI_D@y>7S-}AaV-s(PByH|qev5EdQ<)`=0pBBBCp~U&|y!)&l
zGiNsby}d$1oJBh6dWXn1Lm%IsY3efC$`z@R=kp?Eq%uD&nR{D|efJ}iUConcPO1|*
z_x{c5_JT_Jn~74c-FNu9&qOg#5=mSX{cMNXWzPrd-%l&W={~-sS5W`=aNOGX&b&Wd
z{PK@o3)9<;=R1`+ZV-I<KUF8_<Lvg8vTLR-wT@oXGi7J3#65=wo2c(oKOHJ%Q=H(J
zBy6QP<B#I6okr6O&K}*_Fj-;ko2f1L-#jb~vM=AdC$@d{?$t_X_J6cH?Hv|fTf%aU
zZ}zoDi)!D4Ur$R|XD@r#y}r9GWuB_%G`X8OUIucR6>sxQmO6EPZc{pY&2vZ3f9bQY
zl<)u8lD1i=WJ~0OvkktJ9t+=S`uF3*zstW5Zhyb6oY}><es}21=PHw$++~>Or}^E^
z<jwP2#WKfSrud&B|MUrWm$KUH*{?6Mo^$K;avneDr!Us5=(?qlWFV{X=GmdV-?#LZ
zExh3%G3l_DF3009N3`DFGq_{CJ7xB(Qlp;j;+4j40*|Er&FcNM*@ycC-_mU<(Z?S+
zr`%aR<9b@`@jdln(q%Jamo=}vHT^l~j{N0*yuV!E_WiPn?-$(TrXF+d@QfvFe`C%?
z-?|qUy0GCu<VjZ@eZR|Bn#}d?CyLyiapB>cU3JwLmokgTE;1E~-RFE#?!W}aQ&!t{
z+I-V??G@a0=HA=JC!s&?Kd4*Yq<rRTcEvu;+~^p4pKHcz0s{U9W!zX(ZplCUtKM_(
z)t~L(wtlPGcx&@{bNMVDrizI5?}Iq^d^R_I_l3DG`0=E<-&&WxGl}V|K5%B+o}Dg-
z7oL$Z^tyG1J<B_b;dZL6$e9@C0R67LvUAH$_BG8+<^T7EOKr_;x9MN&eE(ngeSX<N
zt22*gKRc;vz47Ym!iNvv#@1VwTfX0T_kFDU42P%_*EPQJJ#XyZd-&%kA;|+L9p>ck
z?ymWMhEdAz?y_^?&Kcq}4Bj%$`BWh=<GybFcP0&Pl?gr5jU_FF*}J&<jiMK`iYMqM
zsrjE5didA+b6varZNrd-mX}1^eqHw{us8c4xn)^hp}3gAr5g>?q%(?g<XHbDr^HW<
zm?f#BRKPi>_snO9Xos^l_50b{JVTBYSJzJy3!HWQX#aNQ8(eccuTPl%a*vYvg|(G0
zoO++#bLzeQAy~X}X^eD1p%d$de}NJ{=XttIXFT(a5xIEiUBa{IjF~egWS%<q=J#e^
zf#=tJTpoNmG;u|pr-16}Dk=S1RYfhG5U#4q$!X7a$NdqNIJKZH{&yHl|EygZ1%cNd
ztXmydF-_TX<#nIA-}F{KSg^W$O~$?|g_CQZcux7EmtJL6v1z7x-dDc0J7XFW6@^u%
zR32S*xNrUJ&*zGTyb@m<?-!ZG6}9xhu{41zEc^dIu0O%~;ytz&4bo9pg!dVn8tK#N
zoB>lKeWK49us}Jc?d@epP6h@Z=8Zqi@6OctGTFmohs*^L&I7>@G(U)da0S-~kqRyw
zRuG=Y<j**d$-i+qgMZ`l1Hlc;Nl`Y11=BbiRt)1HMxxq^TbUOVvg^R=ATETt4q_a{
zW|$`kDN|*Hcos<=#KR9Xk&T1cJdcSuWs?{%)R7i`*kZ$zfx_@ZiCnM)8<(p<JPUCh
zvWJNcKWJJ38wZOGAxz^)3qNeZOtoZs@Cx%u>sl;_4;ULD9hHjr@BvWCK+NF-@Irx#
zhYuiUe}ab(7@MM<G;)_SLFDP*{~zDXv{tz(!@}XR$IB!p>hEF~mXFI^{$_4XSTl98
zm$uTPBXSKws~DwwosO)25W00+*pvprk6A0CR%&o?bWBv{^t_>>GCR3{=FfU_Ztn($
zm28`CR_?DWtJ{2D#`?F-?7RHujg7M}nCP-FFfjZ|Si;4?z`#+@z`&sJhmnDy;R9$o
z@sK=`f(}2J85kTk7?tl<Ubi+kB=qf(xA)V!H{F)qW6UJR>%!b<wy4p8S@vXx$&sV3
zZ0SEHKPh)QJpa9BMKSx2>ISa`jSkWm9Tqg!CHO1>4N`t-23Zd_l;I&i0|P^gJp%)S
zz&{2C2Hb)NHqKbd#NhDYa?AJsmH+)e|2rT4Z0^UYKdyf~yLun%+NG}=m*$?{`uFzx
z`4{=tyt#e&U%GY5b9cGsGLK4+j{3|K|7QL@UYQVnJW8tQ!Gxq!uU@~N{at=m*@-;U
zv+>gHdc2kuJc_w-Cl1=mS7*+S{TV;y|A||96(24(>h@K69Jfoje`&GYrN(C;<mZSL
zow&rT|9b`doqIw5rBB9ZzP;vfLhx(xiPuw}q!{ju@$#6>{89eZ#NCrZdyY+zcAr}p
z^<J*Up5eux0)^n_gAb}#tcvRPHk`>5wmFdNuH4p}FDI_NnzSX#XH(JU;E6(!wpWsj
zX7}iAzx3qGjuh6-<*YZmZE^~$Qo=u7NHY8N?Lmq5rcGCOcP9SdUU&P;g;~aYE&^xw
zH|?t5df2-r^2rCM`+iP*Hxo}Rw7xk%VT-f5{fFAsS-JCUpIk`3VA6f{O-U7>_LW;L
z^O|S3|Csmv!Suq}TS`7?|Lk~jMNM~WZ|ZTM@ZZb_4}K{#xbbuU55WMQwf~J}{><ji
zoO|>Ch5aT^4jlgL&A+a)z`HqrZF7I^Yx!MYE~sbiPQO3N%)8cK^wE5o8_oMSy#3E@
z`NM|YoYV3PXH@_515uy0-T7bAp8K*s_TR1yT@y)OvET&WEkgeo?tau*buq(WTb-Gw
zQ_+?ks^2{rxHiucsl4$dFQe@ArGV9*NfVC9x^Ipynv|lZInh^Y_T8XGs}wiw6S2CR
z^_olWXUSyIr0SOUE6Y4O7p>Uj&*}N8q*wRdGO_*|rc+##=BR|6biP0NS5ZWA_mmw^
znN7Bsrg>&eZWr3DlNP+<sPx^M>JLv1EVVi_HZ`qLtDfwea(<J)C7Wek{x;+4`CE>D
z_b<M$KKJB<z$QieANvIN-cMos-(&LhpMFApr%!L&-}s7LuITF~5@*sDuUgTbv+w`z
z&Ay!%cl_7>cHsL8#U~H=_~WlUTYWvl;>X-f6PZ81%%%A1*roZ_Y_>O-vH91Wc`(7^
zgKv(-hSd|y{7Vv^oj9Dm`$fm}f+N5FrRNAI^{_j8xyL!(b~cp}^8NGi(E;cG+Ex;-
zw{l+CpZM|P#H?FthXbem3U;loem6%a)nLo^FCBkhge4`Fl$JVguj6d7fAD0YiE^j9
z%@v)Au9rOL9^SeBVyc<cVJF{7b6(AkDdn54BEcD&7`A!Qs^2m}kEX0&bZtiJq${eg
zz5OQDC~KeKdo3ONY5uCrO-(5Zoz|ZM4$XPv>!l*(*)v(_r0u;N@vNfVp_O9sT3K)3
zeM(b%%hICsv&=wp@A`}11NbbIuDp5MRje)7FD94O#k0M_cuw?Gp-4-uGeUxC-<BOn
z+s<NrvSVW6vl$+%Z!h**nyDBS6OysM#pCCziQ>x9C%0|dw`Q5ftThVN)1sydt<;Wm
z{IudqgH5-Hm&_Ea>7j?#rd4Kqv|G7mfybYz?Liv;TIXN97M#*NrD|Gbr28t@ET6Cm
zhl?w{_h_GRp84zh%d?(q*I%p1`0(i{$Kr<<9Ii#_9&`RY^S$*p=GpRR(rZdzDn_@=
z=DEVmQGbB*c@{6rvuo#micL??kM&OOwmvgk!e<i8w`-=iUq`D5{P@)9qVap5*vz&{
z=c#{WGflsqoApbqf7MB@Nvmf?-7)3$<BUt&Y;NemH(BEPja%hcZwZzfNc_#O->BxC
zGQ;(gZ}(;C2aA+-CQVRD3*9AZnPz!QPH@_i8wH-#p8|{mazZlhKgsZP@_WzKm9p#w
zM|Q{#bD_$~E8M5<J?Zx(^hekPsSdvFF0K(yTP93n4h;2rV!AC&?Y+W6onEf*WydXJ
zyVfY*_L?*~TsP6fE9tRP)T}w1rmj&~c;;o0Zd&uvoJYKD3@!ExF0WXnW_iZGATsp!
zp5@Ctg(j&8ophdb;K{>#wYp-Pw`aS5>Rl5MdR^tG=9;a=D|Q|Yj=dgp|H-#+firtI
z&9YxA+x*0`)A8Ou?d9r61cbz8rQ~JRZlAhrx_giRU2Vl8hy50um1q52m!*H{?d|8=
zy6xNflWIoFv%hp~Id#x{_nzgmzIJRl=GK17dqS<5<=*Bc8w0P&O<cIoK<nX|=^JZm
z?e`h4=sCvlN{)lq&{M-_i)+~GSB+XmZY_o0jG#K~_>vW?T8tMT6p%|Zljaruwk-B)
z->s_r^q`6rCv!~mHP>oxH~;1KOXY*-s>wOeUweG+?c8eJCn=lw@mss4?WTaB@S>QC
zoSGF&^xP*$f4cVIvT%;=A?GN4rU_Rxv{k-vO!rk;Vd~9iEcs-iuA0xGX>T04l9g1a
zMb_RtUH<AX=h?)4li%L@G(U}nf#D&4<LReiWnoq-XFOMB+aA|WaZf$`y;@32Dt7J7
zb9>fb+_`(##kZE%Cahpte~)vb*yfEZk6ym;q^qCP`uCKI=zfEnt4_Y07BfXi{^DgZ
z#fj^_X8F1r#RSFdc&}o~nKeo3to@@y+9zw;r%Le0d9Z=(s|vdR<kqgudF5M`uRN0V
z%PrKrKke=0|Ffd*JiI3u5$wA+IB@IXNx|=rocQtLLfZ6A<?-GjJ1U<{xVO?XFz8;@
zecq+%F)cPd?**Ubylr_sQ|572+204sQ|?MxPL={y!B$RJx4hSuI;C<ua_`M`%l4&S
z{=W78n>D4orWUOJ&J|W&dpdEp%F(v@wO%#-8rhpKS1-C<$$aS7@*`h-`>vUsEuWj&
zrF$sr<%O#Z`_>(l3tV{BUg-}b$lzPs&p(X${`TJb{i_2-OxJw1lb!TgDr$Y#hwk1@
zX<xRxx<~9;ero5`ZsF>=Go_|a6I!crFDKndGD&I86%|l3fu+l;J@~Ry)cX9=^?#SW
z+Uy%zoh7w4?fu#6@0Kx99v)8p8#)Y%y?rOQ?BDFyDSzYswf*5eyT6{|)O;@~fAL)@
zds?vdbqxlFh6L{VrAwDuT3VKtmTug*v9hu<Gc)s_tE#H%&!0b|x96QbcW$0#@v{9j
zN4rG*?S3v<mN`jrnoi`T2@@Pv&#^e`*T2N}{rfW#PS^6cufG`(7*%*;Z=C<@yUAa6
zuH0w++Ut#URaMgaBOZF%tPBkwuJ60KIlW)nTu)m&`{t(9&1q+=9=3}A=?)4GE-o(a
z?(U9V*Q}nCdt*c5!$Ym-?f=&#B_%mKH(xy^kf{E-qQ2!o_0+@bw2uFdpHjOkv;TDM
z2d7(hoq^^(Hl~NF|HoZTG2*egI_-k;94}^&Wr}6HYcDVJ^`53P@uy+(u`_e6w=Y|!
zW@mSA`<D3qbw;s!t4eQw*k1DT((Sz6zLVykad&sWEH`(>mPK_(ms{_<5%qTe%ehx`
zZ0v1+s@FcYS+z>zmgYTf{Y5XXf=vI;92yd$qOLyM=brK2lvz`zsHpz?aDCm|+uOgt
zyqx~$$46gZ-|2BxFJ;T`IEwu|nDr_;tZv)pUF#w*&0Bm^_o2Sc6`NmkuAC@%zg6m@
zV3=oJ;6pJjE(V4}@zVoEQcq9Q^`53vxHCpr-S5rS)z?k0#}vQu&Dpj>xHhD-^X_8)
zpvxwmResaIhrjy2bzM&7$?{cVm$s*GxtPJRbynV9tG}nXFDV^rGI(1$o$ZpYREHT8
zuM6`_)jvy@EC~q<^O|Qo)5mD-s#TLFCFd(;zVFgrw_)3^CzHIdt&gw2^C5k^bx5f7
zLfxp?y8=ISx9`67G3n#9+}+=Q%1JpnwavZzdDg?_Do5mOGS_ch==zU)pZ(6fiw;%)
ze3mq3C|__exo|SwM9S)h<F%O&&!=tXl`u&7`RQq7WTes5pUM3{+qTS;`f<@+{^T#Y
z{^ytd?f3rqbh<KJ_VB&hvsbsC?GroyZBy;)|GTZvWbI0Pvhw4_M6u0=N5v*4buZ~+
zU^sA+yFTgM97{_}%huLbLqo&L%E}<4%u7pF1}{%bNm&!SyX@DOmwfHcm$xihw5am)
zv(&V-xZ1B*K~q<u;jyVEQtkZmb$`EJzpU~$DCFx~)BF4XzJLEWJfG*h$HXV%XLYAA
zG937SXhCMwcdMkmyuYhNO8fV|Y%Skjv%C8KhRs!RCK{?nXM}_^r~d!)b6ToH3ma3e
z3v(lzRnT>w-;0D-&e~RU_Pcy-Xx#M&Q&vc)nfm^V{Po{@wYn)Y14A9pp?HO&>M75=
z%>JhrUp)|<JCiwBsH$c8@}ozOw*(r4x+3Bsv!ZO4R=>KhrFnN-_5H8n^Q)fztljxh
z5!6{>UC34aIQX>LyER28_8iUGWBYo|XEv2!U9iTMZ`VxiKfRjXwJ5GS@c%ze!{tj{
z*q@%A$p|VW6-)V+tJp91o@rT^krgB&$^_~F9bCC-+e`b|TK4}|9lH2tUg710N%CN8
z)O|0{i{1Bga&L9Yzb|&SYJYY9Ub$zxLJZU;;r4s~w|u+Ge(&?Xd;jbSdG`=v)SKV7
zU)R@vc)K7t*F3gJs=SDifkA!pL@kSxv*yk_nxEIxx4}<hvfn3W1_pIW+j{l>Wts7H
zyT9kl=d8bX-KO}?g%t&P&%j1GuG)9<>y=Htv&*k6yP@=MU*ZMHl^d^cf*rPYfBlZy
z*XwqDoIcMmsX%{o=fyIxo8oq_lF7an9`oz+74LH|opTu&8uVPmublj_oqu01hjIT-
zh2B-5uGM~p?_bNm^)5BF->uNAZNtF8@KFE6PTN=a?S7aUn&mtRV5<QIm;MUNyQd!4
z|IaEfecZd)Z~KguSquypzV3MN*d?>9iYxAaR`kt%@v&bgFHBbnQUr(o8L@pE6RRu#
zu0KAn^j<?s7Bd3_3&$}f{|?z|DYN%0_WpYm>{$m^`RCu(eRpz<_~d6eg))G0`-I}1
zQ~k}u<`t(UrAT}S9g)|vKjHh)Yp>Lnt541Yofz`ta&!IK^&T$-zfG<y3}FQa#m-l|
zo}IPMYUlScl;XL<1`(@YyMDq2bDL(vcyO?k{g#S-zxJ-_k1s7hW*C6nB=E24j<kGk
zdG!@(w|Q<*`)_YtzA&ZssOs}CFD2z2bHR=>xNP!v>i2DKZPCZ#X1GDbCj2hCeQ)jV
z@3G~9|2gvB@PN{gWB%Q3dnYD7>t_49NDCaEKXUJemb+!Gxp-plU$DT9t7aCfU(Hhe
z6DSG^fNgKrP1XeUbp`&FB%WTkD`54?{34N1Mv!?2^Ixyqb-DVxf#gabh#&gW$|Fl3
zzwG(R#L)2Wz@44DwRLsRo;<m7_3G~4-m|AqdwY9-*4NV1JbC{7{avNmWo6&a%rvfT
z^|$$WB>w-e>r0lX%#^n(dGY4v=H0QpdAFb1K78*3>g-=g{4x29S>Bx;Yu2nuJw5I0
zEYsJm;&C7Jy?lMoo;|Cpr&qQ!Cf9uDvsu}HA~#sy+O_*!j?uhHLT6`lGBB|0J16sP
z>+QF*&2puT(|XRF4tbWHmG#H__t)3c=grGAo87#IZTq`bukULgOEUYI#>BwTxZZei
zgsZD-QPHN8PkJ4Ve7(FTP5SZUM{<5>NJvOf(4-kNDxS|R=aV#AQXLw<`SRxE{>Q5l
zYb(_m85r)i?w5bCY<AwRzu#`_ik+Tin!U_t=BA{hT|0K{NX}2%Jokh3DiyV|5}xn-
z?}x0K_3iTJ>e3qFIcM0Icv)_BurcwLFddHf^72YeUAjm^ZL;UG(9qDJqCKy?znqP!
zc-Xq>)3)5(=d9oFNzP9~l=~MBPW}Hkb>__!pRR3XNTxOUNu9_rDcR7x#`yft%{OzH
z*?1!M)$9ZXLBI7g?Zk`bn=3y*+q7v@u%G49>b=bS^wwG$Z*^bMD*TUu!QuOblZW>e
zKRa{s<Vj5(ou1Cllc!Hlp5!@M&3CSqsj_nN+gn>NFZVCEkeRhiR8;irY;%2MV`F>!
z`p3t5-4<U=+IVKZ{r&rbH*~LD**@icuFSlNhi-E)FqDY1btc_?-NBrG<9mGkRQ<@G
zXPdXry{_IVUuIn?A+QiS<kEM=^zgo_%^!cyk_)_cuX7?OC%w?)sJEZ6Doffs`<!35
zxdc2bz5i}vvaRCWD|vrNF8OdfBFns`Wyx~Ef1p(D&%RG@?aSN7R%(a5APOcFS5JAH
z`t@ZdEQi`x?+w1X<sN6ub8b+|w%Sl0zu8B)swEhj4c`2YO3CWxTnx=NZ|`1DGLlMK
zyz>?_X#A(-z`pgWdRA9bmVATQ_wCwtl`jcr#6gl@4(?lj)D1Kc)nae^K_e@+d9rsc
zsO0h&&w3SY^1e3i#ZP8X8&USg>DoB3{``mi^B`r3_YY$!o<hTgAnz;uVYScu#13-b
zF0T5scb>C?jc>BHVP;@BG(WCFWb3u+$@ZZ9qVVTsgNnWHV>^9NE?&+LRa+wZZ&qqn
z_tWin!Pc<9`5nd6HsMDG)YM-b^&0~hrU`##1KDA<p<MoZB_qgXcUR;V94lU_4=T7`
zHZIF7<x9_*G8IxvKe+zp%MP2Y9Fg#9P+>Hm?}}xNkt%4c?$CU{L-RMA{xN(52~)26
zFA!n9L-WgTY-hKv2Rp9+!*d>f)7Hqd5I??D{Ij#l#poGWPZekVohSTYZwmjDnzQjD
z)C9haS=-iMJi2rr*aU80zy8~ckGUCvEZVivZ(qUIEn7^~)t9eZr)OqnrmwHBt9y3;
ziX}@_?CtAcUt4?g=1t@Db2+=Omfx=}f4lX1pS1bA4WAl<u3xB{Y~NPP$ly?Z?WAq}
z=JfN^c*0|1bS_73PTLwgW!9`&vu9f;9%?yk7AWGnP0F^aq~W^A{<q-JYTtmngpt2@
z{l}Nf{_!;*kLLd7U^e|zS^aOvVPjBez6}oyoH%Drj?v7NxMiN6o<T)#eE0o)Hha>f
zNzwUxO+RF3{m<WBINzRu;lkX~r~RQj?!L4C_pzVf_R9o){jv#X#Yz|P>lhmTI^nc@
zk!#z`-(UKk`d)r|D_7xy!-C!ng$oYq*3ed@R+mzuAEY$t`MP@b>hgDYEGs{y%v`^I
z{dJSG4-3xBwf=tNJW`=jkn(e0mb=fAt#@55PSzJ~ffrB`i!WX{$hYYnPrcdf+yf1a
zr>E<mKXq!-$}`80AD2)58@IQr_S?<$eLvObRV-S$QggxjZ>0s3K|Xj}`f0=aIhMsm
zMMYfP+{sBvpFVwBl5%N@XYg{rvnNhO>@Iuz<>h5rzV>CAuCA`1pPfB@=FA&6)6nMy
z^X@HYe=otnaAB>aN>}N6<#&@3<5w<?xBv8T>GNgx3_h9MGl}hH6qMrFBFM`k^}<6|
z{@YV=JF6udk3J6EBFFQaiJ>8{@56P)-|s&k@`aQM{_s5J{3AQ#Z?1XW4RHpBlH%h#
zZ(V;{Wc%~UWLH<$(9lp%PtWk!(yOxNcLb$Y?dI9C{^Iw~5EB>h)fYcIqp7R=_wW1q
z`@75EZ`!nJ`TV+Fn>Kw~*e-V|+VrYr%)^CgtB)SBW@BJrDgF_?x9aPv(A7yvNh$xf
zT=tVT$+(a@J$BjQtgNysC8x7{Vi_15%FE{z{}U1tnl*d&U;ep%=}Ae8_*S2M8s@aN
z<ToQjL*9Ffy^)cTk;3YJXU?7T^Ygp6IsN=;{rx(s^J_kJ=D*yKc(^3U*Kd24X>lQ_
z&j0q|`>WOKPnCRpbTrqyrj@NZ@$0LrRx8!=&&#X-VPt4nz+eA<|9`tukw<TT1}{?H
zaYdYgfu;IKc23TpPp9>>v$G#Re$37%BOxlf^n6xP<&^;L!}}N*6jmI*e`%>VHy2lo
zUU*E*oG13HuUeJ9x)T5QRk+m}wdLLqK?RS(jKlY(^Y?r_V|@P1Z1eY@PV1Y`^yyk8
zA})UV@QfKV{{P<p|8lhHP8-l5y1<o(`7bXm<+uM+ke0UW{lX{vSFhWpWo1?M@6XRF
zp87m+t~9X7T5xk~_H|bAn1YCh8xjvMiODZrk~!=2+K98Df}!C7Z~erH6Q@p{+AiwV
zIpy`*zB_WE+?)^9&NDE89HTlt=F<UYev7$&^`73|r<?ihEULa_?7cei^4b$qX4^0`
zG$<5YDgKvsX2!?U@&AghtOyj3EeT9YN-8b=dR)GK&YU@W5)Lx$y*lyq+EWnq34HYz
zFJ4@~_uH-6`TKsJRG*)7V}qieUf!)OnURr^VXNQ0E8VmIc|T~@pvmG7XZO(}XYIMy
zC!T)H3oZ*A7Vy@yva%k(@oe4hcb7tCEo1l1vp)x_4IHKZeS34$`Rb3IHgi6+GcYt+
z{jvRW!8zpY!4JnR>lqjnB4kQ6jLprj+wZUYTV;FwVk5Vm#5Yz3hJ(`o?o~YI{r~4k
zr|{Pp_dBmx85mgVe_S?Md$&^7s$g<DsCwYI_aWUt;?~^jisIntjF9<iSFfw9`}lbO
z_p|0^X1|^vJ*~fg&1$QnU7?dNCYXV$QHKw0`zt>``}utR{(n`r*C(D{TL3od(}(9D
zEA)1~SoGvc%BvGk10_DQGB7yG{WHtC5fBj}AuL?{@u;{rmyA`(ioElGig$%pf!Y=m
z+V``|*90t!-j?(8#p3=?pFewhd$;pSt7#e-8ynl%#f6tXDbl|4P?CXxrSivT%gtAx
zoSgjn^=of0FBJ~Ghz$$E*T<FLt6aXsVeXZQm(Om{XJEMC{^N6ZXXnmUp&kF~J{&#@
z7W4dZ+2rll>+$jXYASPc-`>vO|M%zf`QhQ=zm*o$S={vs+0pu)i-CcI>A2)s9Sw~i
zzwiIAd)#Xt77}ve@I2dUyWej%SFKilzcy|SD1kA^w(PI}_j!J|xc<IhuU6Mi|Ml(V
z<@D?8VnJ#w>(jtdXT?$9waCTItxe`f>-J;Ej&*c!?7b@Z98~q~ZP_oV>}K=jg0tRq
z?ImCT>~CsnnyBplO7BnQj;q{YFYNyR@Av9etIk<IpVQXXrs&)@W%~5<GYp->MVG8t
z<$lp=CrBL!*YTaV%(b*uZP;)jZ~OGAQ<pATqN1iISN-?WrAu?>%-OYT*Nq!D_UzfS
zWsAxGMUy5?`t#?{+UV_R>FMX^SY8hQ(O>^3`Q@dhZi@p$uYxvTO^eRs+`?6~Gj!%9
zaAG@LXtibC&Sz3HZ{=)jWM=<0>3-?;*z%sQ>F4L!=H1!x=uy(lbF)lWzg=|Y%9T5J
z?r;jLZPDHH=hNx?Rj=2ko}RY%(<yE5X*xfj&CX|9+cYPy6_ozJ2>mO2bK~N-h08K`
zm%q2WbqX@tlYFdaV&%+JHNL*R^_lzY{$9F#`Rp_2Us8(~EvlJ5Y0H)^JMO+?`13O%
zJo`s7sDNf^U(EOWUitl6qp1$hW`ESw*0z4T<#OLPPgr~Xt;*!gprA=pWWKjIgs+dA
zJAeNE;^*h8-|c*U#`rwX7OtXSZMBfnVgX-$?eA~4Ic_|%R$scb*S)x-ykkjdW#!NO
zy3ez_^>(eO|NrlJ-2Jp}tBX@7&5(FIf4lk4)LBy`u5J^E?cN5P8?>_j^Y`2K{Zn5q
zaBMa*Hn!fee#(?7r%rjf2KuN?_F27Z)siL6x4*r*s;#X2_%Oe{P2P{qw`EtYntMTP
z?Yg`V_G{LBI%jTfbz5vv_Wvgt+^`zVz-{ruX4#bEmQ&xJumAV?(o*lYW!3KAQa9gZ
z<B`}<^RsB?^p$7i%g=x|V(*(dYu2pucE8{B7@y<Vvg%9h+tcTFGcq(hD3}wy*Jq~D
z)3w|0RlV7G{G9FgJ8Rag@z&pKqNDRh;`RBN#_H<o%QtK=P*YRW*Z22Q^POc<`szwg
zPtVru>wfd??mjHYm=zWhVv>Jv&zUo4uE$m9o}FcywmFh3f8Wn%4-dDq$Nc!bCGPEM
zaEYWLp;9VazI4~FT~oEgy}0gd%bopX|HkCwe9~rXR`>l-;s5>b_3BTm+WR95j<ar)
zOWYI7#K^2<B9Ngh#bI(`qLtm7>~|-;K&!%IihW&Nj%+?}_xs)M_v>PJU&}B#H_!HW
z6Sp46FSD}B8uQ9$VW76CgpB&1m8(F<Dx{vCR{P^&dow%#Je$f*`A@d**zx0D_4}!=
zj`5D?{(k?N3`#mL6#k^9r5!tZG&MEV^NP2h-?!=Ubw8i#@BK1KPU}SZ<n->DpjP*S
z<`3H|K0fN{>6vgX{(Z&wyXF45Pouv)>ehd?uxU=-(JVu@2mbvG3=Ab{KUS|<Gsn98
z-S+!+)+r|@+|Jwm_Sx)wGpSx)Uf#;e%JBHwt#w)_o`y++%EW{6|I*ISla-eTt^Zyh
zu`%gT3+K+AJ3)hv)$jL)2LvqG{9$>)d{Cdkq_0Zr_O8;`&(6#=PCCLd^VZvM7Z<yG
zFZ4Nm`gCciqu=&Jvhx@j96q$$Z@-<pH7Zrj#>U3T=u-WqX!m#A5<W3<S5IA)gH#eX
z!ULy(mZXb+wUO(uj|&Zr4V`d#X~8*p1_q9QAJRA9toy$E{?BL0$;p2|AOE}ap2Fi#
z8i5bP?rAVED4aNa|M&a-{%>0<&i@R~H3T=K6dc!B^1Z*h55!?OG~dsH6Vi&8Uu#~u
zY#O9nVdDE3ROL2&ST3H|zpAyRU~)QWc;GVY^yAgR&Uv3e4U_s^4@xwRo<h}e>-C%e
zDclN*)ITqqF8iJbk8QndJAJq6oc#7Ga3`d;#U503Fg)}(uQ|LATq|<a?>Yb~<`w?D
z)co^v9jMI*b^*Ulms;@VlMay1-iPAt{|>d^bkSu5b(8oiMDl-Z{_r^u+;y1$A>9bv
zZQ!W4dJq<}*~Ok2I@odG@x>j`-ktEjsOo<!*uj4A{_!}AAIu7b6i5R9z8qSc0S%70
z3Y%4}pwf<`zKXNHE9==DNH;F<$KvPUZcNFcwJXH*et^ce?B{-{FcAiIf)qMtSeKU*
zGpxV9;Nl`z?XWclGkwxF|9rRm{kbz|c-DMaUT}~d)SHmK`{w56<Gs?;r%v6Pb8}PV
z=Cr*Z4sri;UAc1Q&Ye4t9zCiz{dBxV!Gi<0^LFdn*!%%4`v3WCwyHu~Yb$HWkH<|Q
zH~Lr^-@Nhmo9}G1UP)uOXQ^7BO-)VzE&coJtGB<u`E35q*)wO(ob)H<*%{;WS4`Hf
zTc@`ms~yyOVmNd^5H`rJHgh_-6fP;aZGOLIbN>B(w$<NwR@^GomIAjpX3SuIsPOOe
z{Qn{%B7dIh*S|b*$}IXyr`^0GM>6jBEXulgG4WqJhrkvN=%|Q@z(aji)uo#@1qF&s
zKB;nf)haDb%XeX~udUtv{a!UUH}~)F@9$4c--uMSp51-7>-N)+_AU*7PF{qUGl@NJ
z&g|AFtcrau!$-S~^n+*i_xIa>Q+s`VJ!lVyeEpw~o6lKkGrYcd))$o13SK@*yl+|j
z?8%cSB4T34jvRUN^r`2`C7zR)`OTd*apK0Zx3^wiUT!VJ=X<%UtLxd>+0$pv{CR+x
zf6JCFXJ(n6-v0B?&(G&=KA&M&Ddie!s@nnzu7-r92^!b-_WfAG``aq^l<ZIWy9S@G
zXrF(7Tw1ljK*0&NIAvvaTWxbsbYN<hS&%COgF?lGoW4_!x$Eydkpy*&OGN%zK+@J1
z!GC+w#fqSr&HcycA65TWD1p-|qdB<!acF+sk8_a1P~hJe!GAU}AHV~7yB_B4ebAf;
z9*Dfm%5PrD2JZE@!ZMuw!}EtgWqiYj<^3P7SDlj&|IGx-OL9AGp$R{)0Mtiy_;EQF
zmMcmQf`g9Xp})ONm)c4H0Psl4^7aqQXMvlDE%tK@w6&mv25}l)r=SIicwYZ8Xun=u
z&UI@+JEZLJhvlFzhkPMpDStmygm8=3fCnAo4$WUQ(-IO4B~4I|2txCjZL2-ZOMhGJ
zT^~P(jDFZZ^nVIU@D4vN2g3{pWlyM&;wo%r-8{o84=yH{SFKt(>ln1CX^IX^Jq2Sg
zH~lk{15yNbe|Y}!>z_hU(W>z0rQ#pWSw1i)3H{q+3yClm$>Qhl))6s0VdIvl@BrjK
zfhks&ch1bSt-iCP@aWN_MsrQG!)`;fw6L0wMP8!9jr*V7!GW@W@kTtu5SOms$V+r+
zvG;#%32}_TzrJOQ7AaX;-b^uSt;nC0<OLe(%!|?og+arDly_zBIh$SQzF6+z({nE~
zf6~mB7LA$DV}&v@M4$~74TVD(qm`Fly5}IqCKI-spW3r{pX;;A>Fl@W%k;w2^)cwk
zWV>mu+3f~K=4txzdY_G^{`~RdN8YV1@BWI{Kx!$ixi)XC)6dPBGiT1BLx*O}n6YP%
zjpj^~%u82R1{)h0U0WAxUHhw~{qVxfsKCIBdn!L085`f$<!Px31T_@wK%J!>5-O#o
z>y_;+5ATz&58YSt)V$wkr-GeYPr0W<BI>jdoA5hu6IkfsGmVGmox!1MfA>cHe0ylU
zRrMfq?}NiG&>Bkl&q}q$2QwBxliq>1fjiH0gNovpt?q$m-FE#2*GKm7u?F8Cmvv&^
zLNXm^y_Pwsuh(L~_e0zVM~GE(Kk)r7f~I+2c(Oc<oaUkR;og@0*XEZmmIK=$e&-&y
z-3l3SW@m3Lh757o?|1;3+E6tPy`cA=RldcZ!C^zNh<|SG*5i*CX<4mUb!x?`EQb_}
z&8B*K7gK)C-z@X+y~acTi)TPZi@+O|pRKK~E^gmUBz|0bo$$n{$|hF+pNVgF&YJ1Z
zygfXA#&2I*{5s=de_}jC1K+;)HtSBDkeC#|UD;QS_xs^pIVa8E2AKK=nu5CSR-J+&
zP3xrkYA(OCZ{BlvXIkD@CI*M)tJbfVH+|LA)MPK8+bU_iY}(Yf(`Jfl-@CW7xP5)V
zv;QC3e_K6exb<$^k|&E@ySe&ypDaFayS3n9vU~Kd+}qQxt`7hEgZZ<(kE`p?O{w{F
zE`%xE-y;5R%C!&fpy-*Kb#>L$^tn?%-m5;ExBd49*Hx>sW_>%M-2eUE-Q&|QmA$=n
z^CkO*vh9c4`+uCxfA?#m^_^|Gui52GoPK<k?`he;{ob$VoVl!eKQh{*FGd}fzx#lJ
zp=8;jMcbG8?0kJxeEPI0H6}$*UQD=Fw{_E|yJye(8pZDTF!Oevw0-@*#k0-xZ*5Bb
zoZN5w>5Q@eFQvfb<i~3wzt?}i`|ZVx6?g9ZG>dLJvLkf$z0R(#d;4mmlaelN$^0%R
zCidpm*6affUm`a@lj3PR=5}1z-$u(jR`2=*#pm}bpWl7IC-_R)_N!Mz|Nr~GKP7+D
z|EH&?@BQ~{wNdiMh$jq>9_PMgbFVx$W5$fPx4+A`-OQ=`cJrvOZ}0YdR(T&DC>HTZ
zo7e5F_$XYoWz)YSo!jFJ4i<103#+H~%U0iAK7U<iX6DJ0GfgutJh*jhmSyq3favV$
zSI^mg-?K9K{lvMy`PA&|>s(!DzS-bE-%i;*E-EI*q<-J_`+;#sdCmX4dAWSPzu!C0
zAFpe;K+T$xZMnC%UAumLe(^c~?5sDFm}(#T*Zh1cUjOs->5UsV{xe;_uj<XIsi*5d
zcE91)Kl5d&UT5=p`~O`}=Iz;YXaE1dTjT%#G7r*g)!*|WD=6qw?RVem2aWbRF+WNo
zB5t&Bny-)jJ%9ecFEyTZ&FuVVPySrIYSpHYd4+FoWb@x%`~Ky=A4zY!_4PD$YQl_C
zgM%lZOtHG<Jt4j3=hN#s+f@E1dK~(!exj|d&0X&2<tEmCbrqF2cXyXxS`r;s@z7NB
z{`UO)H`Dp2Oub)Q{`Aq&e*2$K;!~ETpP$Fd+N!wL`C;z-q+efti|J}ryxS@6yyyAC
zN|lS#rceL+>gw;m-@}(KPyh4diTjW2`MXX36dq(}aIn9YvqB>>{-biaQBA_BR!R50
zpFILEZqi=2<5q$}kA&f;i|*nf;o+)kYMwtgB#LkIt$QnFQ7}RO`<&8iH|N*?o4G$=
z()=@X>VD0%tzPEh>U#1|=JL65VcWb9#e1GSKHEIM=IhnzOE)ZCdUSi*Zo8i;y)rXY
z>}U3ObXdGgtgy+tefY!gU$56|X`M<xGvigY#`=)HCGPz<K78Pazhm=y4bT0T%|@SZ
zW!F!gp#Jg8pU>^Grb}m@jf}j$_vbVFWj-^19g|+~KdZ!j`4-cM>tz>;O+F|fB%Qic
zi-F;VNZ$79tE<Y_T)R+yPm?S2?d7PQML%`7-%<NKskd+U&a1ord*943(d;U6Ss3`O
z<_OoV`TxFjyyrQTeA#4e^ZG@14`*ziKOxxPw)Wzp^jl(HGFzf_|2+;7=|3~4_S*qf
z@3?6{B4YMDS~`82-One*?$yUOCa>T9cH76p?eR|vOy*R-t8CdXtZJt9Wum6I&_4!-
zUxkUsHd?){+tY9VZ$tillloIXf4%;?bLZyThwEb}PMp}=+b93EOK;DMrPJrlH&i~J
zVs!QDRZ~;bZ?CTIzI!*WBJtT_{_|%~?b5TmckRlR6tmfX72oejY3DosPu6S6?Y-5{
z#pBn=T79`A@LuBMvH5>g_TF84>h$SJlP0<M@2k16K+*hOMegnSJe@r~S=B8YH*TEt
z^Vyl7fA#Ao-i<VWs`zKCzMj<-F9wDMo7Y5q{FXXB_GP_>rKiyO>G5@iTfQFe+naZB
z(eb#-r$;q|>mIP~EWcaopZM_c_Itm$Px^>;m%h4Et@3B<?%Rsa=T4s6S9)uUCR_8x
ztgTO;ZmmD)zWbcz^F85ll`p67|8sPLqVsa!-QOR!e-_u(($M&^`S{~$%O}Tf-F<ae
z>HpfVSEu`^ZC<wW`@QP@7b`yaY!3FfU7LTu?&eMV_t*8$mTNtnVHhc2^Womq@V=L8
zwi%S{S#9ia<1JsPZR7DdGbCbT?;eQHJg}%SL*as(Nr3vT&FSvv=lxyrt<U<W{rhbt
zFE^L%{yVQaO>Xzk9=GPRVpkVVchF{HU|?A`JOAI#lPRap*Do^utbLV>fk9wKT-D3`
zx%>Rzfo5J8D1!!r89)Pz7uxg6U#i!o90m<OUeMos^VW?B|9`LhPWnsv&3fN%Vs(|B
zp&{?+QPpeL!mMRVLtNP<dyj4Vp7QS21HH50*3f_E$tUMbnBZhv5+iU&b26w^$RMi-
z8i#w~@m>0xsT8l{2ayF}KP+g>SfFRQ>Yez%M~{^JzXX?jSpM-sXodo`mGh$gxXUa7
z1_lRvP*aZq>_!1l9gBO_x5IP8VAeX!KHU}1=_}T*-TQvu@3MDyGPg$k{`&g+gJ%9?
z$B)<ld^&w|+SwwjxqGX>$8AVxJexMz^tSF1&&>r752??qc=UGreY?j!#u*D7l&}6<
zZvXe?WPdwOUS3(7iVt^o7T^Bc@wj;X>Y5J+*;!dxXDwT~s_OaN^0=~_sU`u_Crjz+
z>FH@}f3964yY^r6f~7vi&(18|Tl;R;>vhukdkoFZ!;Rb%6CZB99_Kx`<m&WkDRw`#
zrOfm0wDC$mQ3j2KZ@*L2T~mE_j%Dyao%@x~=U!awe!BhH#MUeKJU16UK4yNu=JMl@
zf8M0qPcHFeW}Ve8Uw0#Eqs`YV!Jo=a3LYHj=;$c3fAr(dYoSlqKYpJ7zvknkqx=89
z&2Q(Et@{0TyZ=0!%3E79O#-fSadYqfdM!G9ZIo%+8HxM$Vb=e`FYk@&O1%H~P1)~d
zzO$F?O^sV-6dxSyytRb$XZq!z&*#6NEpJm%P+7Ut<-mmt7mCl@hI{4hda2eaXmmMG
z(T{KX>8}r(`OnR>y`5knvsO1_f!>uHH#9EB?CY)Joibs<g?H{U^Q&WjzRfl<Gch^Q
z<1=~Eq^#`h%msSt^TRbYHIMVL9sIcb$cFcIqN1WFPo7kp?D;HJtG+8pNM7FmY>8rM
zXnf_<sey~#Jfpw7x_UZXqgUx^X=&+OF|UFp_xzfgnwmByA78d?*{}aK84DUVWnb4@
z`Kpy$yzbl0^obKEPGUNI=uqFEj>{&!=lAL<F8s6cxZG@`R4*5o7L~8d=T)t``(8mx
zgQ3}RckiXQQC%O}515v}i}{(d=jXH8;cKH@b6NUIUta?)!8_I?8RB~2Q-#f>|CcUb
zPCqy2=hg7|yLG?cPP)EwT0@osXH9Es>+?Cq=j#9ezQ6nZzUqH}eui*!)T>9smK#jE
znHm)udUe}-arOAPxO;uF)?)f`IVMs|bx)l>UHjD3)bvyTvl};VlyR@zKKa4t^Y;JW
z?S8Mf^NG;R`<v6xw{Qw?+Ppb)LBplh;rg3zzL9Q`GRX*tiHV7bxG_<_aMrSqJFlyn
z<=@lUs(aG^S*nzroSc-D7jtQM!iBuWCA+6RnzR3J4suVRa@V!p7Z&&1{rY-6UO#Hf
ziL9-s4sSkhw|nW*)VH^`8vTE@dVO5w)2Z&-M?4KGKRuZ=Y0~%TuWxRGPR^cfQK-Z#
z67b~l>p!2*$8S#a^?2>tQMTJwSNH9Seha(rySn~7JYhfQiF}~Z{@UN)_EvxY_WF81
z+bgky3m&&N{<*{>6rPzN|C9U7$&)MBukQyheRzF;zkTT?)or=A&C<?D{9MPy%{{rj
z_Sct*B0r9b$Df&Jd%OPfgq9YT$SZk@e#-(EyXnU5`O#y1Zb2i{*>$nILE~&!uU?&b
z_F3lTWxW!Hi|&FQaw<B1@7FWN=YOm_G1IE_)r*UZGZ*MhpFJBi^ywwm-`(Ba+pDXk
z^{QfV$@*!a#i$G~I6xyPL>591x7RW*aCYmJGOhdb12ht|XOE4sv9Z4X`=8I}*T3KU
z{ok+a`)8d^o4N1Lr_=d+KDuROXq2)lOt|=&ok4bM(bH4u^J~k#zPcK{Eob5!^TJ0i
z-A6w?ne1Qp|L^yHyI(JwSh+pw7?|X3>lrQt-n@D9<jIpp#zjv~oSkhh-Fs}$o;|PE
z?an*eB`U;n`SRtJN(_ylbqz0896920->0IYA~<;RnJ+IdKmYUjyuP-!w0)h;S7y)-
zAIEo#`|YB(=iS|qc=*}*`Tn_}h0_iOt5>f4`S*Rjeg3^Y?ecX${(iqdUBP26Snk3s
z)9h<20vEgWNC=9Hs|yA+CFJJnUS(1^AZg;eSPV2;+ceJ}G*&?D)}aRZ2mhHFmW#__
zZtpZUFhblk>xS#5W(7kF3o|=AuHurS)Wlq_id#n`U*|tI6Z(H|ztdiQ^~cwE?k|bj
z;@bUA>}78Ci*<zu5`|g1&K`04^1-WU)6e(TDyprYvL;)Ut-sN(k(Fli=WMfa$`?Z=
z!8Uu9Ad!EMG9q2<br(%GS5cBswNSkHNJ~jb)yJ*aT6I#!#$N*WQ{PsV?fY?c(xVB}
zxTa`uD(PO$^cM=!I3n?yBW&54TWj{rJG)Y>aJN~R!s9Bpkepe)k=t&ro&C5lD&+Pi
z*Ugsg`Q4@0DlYxI`LXMUh;(rJX_NEs|4yHp=^LA}H1g+n`RogO4RW`A;aQ%VeQM|B
z5<P=OF$cUPh3>51a`M)1NktX6zLW!x8Xs+$b5>L>j@4RYb<w=WD^_p6Y@fV+S>C2q
z%4^q^Mbxd2Dvk^_U!PX&Te0V)@2!&gW|ddp1;k%}nfA85Y@wI~{}ztMXCcZ;Rna0Z
zdp~wRiBXsnu%GRromHcF?yWl?Ea#fca&o!Mk?14i%*MUY=4FDo#W#uNJKbM?J+xEQ
zO{wbpX@fQE_ZEA8Xmm+bmvApWDzL1mA;>_e{>9Q7xBHLf4LpCkW_@tuTRh>{pV{oZ
zYqNx{3=i;b-k2mFUb%H=2E)58ax4mVe>R`yiCaExR>Skx8;$PUuH-(*lv%K4LU!rX
zEtLzUS{OB=`c)P!|C+!VG^KBc)aAI8r>APHy5&m(1#Wkg{I@K1GoCD!*|kB2`Cor*
zZ=6P?(ySE|pM1Jp=%Oy8sVN^`)s&rcYV*zZ<^_u*6!pHwGsvp4Xxf<lsDA%X&*lD;
z|2IwQDjvz_Yk%;RxcKABvwhdnb|+^Xl5n?KSgmwcp-WWu_VYXH4sC{$Sa>EflqvPR
zkG@g3s`-($8UKg0c@t_MMQ;$iF8Jv7AyJQ-yqeR3*9#v<_om3}@0;oSq47!bvG2lG
z{;lRY6Kjr?P7w(IqVI6N{l|@G|Gx@;*xs_^j&QE{qsJFGmFF1AKit#(;gE=U<<xb2
zJnvf^M0LLLzHi_@^!w93)Aq`v0_z(eC?6F`*O26{<6hxw&1AVrIe@KIO|f79b+MkG
zz~kiGCG#8%ou|AkT(^DRg@)O)nPVFhnk?>K7iC)ac$bsHj~(j-IO_5ff7}0b%D;O2
zn(0B+2>~ZNUf29z))LTV;{EN7my@2VT)y{_8Gm-xc1mq-WM6ud`)-8OfA<#=_b%71
zQ8@NxM&{>Bb5=cMzAyN#WbGo$NmcIe=U+Cf4PM@A+048Bb+M{N6NmEs#?pulyfX~B
zrn1{7ZSZUrnVx*|VPq?}L3P+eKb1bAdrW42tL8_XVVUi6X<N49?VsMOLp2?2jl{n7
zq;Q4q-LN<0L|NGsv)UU?P8a{*Qhv{pvv}L0&!_*ICP}P1mEyj5^76~9fgT;4J$yPX
zGp=-;Oo?x3d&8O;>v($CX3_E&4-Dci`|F1UCM?-_H9+9T-<!sBy;M51Y@b=F?B~0w
zJ7K$f8TXDik_&uu?$^z``6JQe>!Oa9F3Z64R|*f9KiG8lQSH3AS$__c6|Pvv^w51(
z`T~`L-g=E+>KX_9a#k15nJ>|`@%WbiMN35szCL5y*DqLNF^4OBYl(Bly)COP4<uTY
ztUAqf!emLwi<rMF?Jn~qu5FlRq+y|uY|QDayM$$dt)*_tmtxVsjP?6!o}5=~H+Z>v
z#ZfEm{6C3%4}47BwdZAD-RgHY=d;dF^m)DPtG?xveQWJ6e0M+g?M=1Iy*$N#n@#GU
z#=pOodHhwGeejRTRTcF&{@!`575(#I?bff%pHId~{xMj!dj%`kET&tcWpkKcomnp5
zbcE-XOV8t0>qq{xrPn{s{&hCz97kWhapvZ=?XJuJeKcFU-uLbC_m@81@{yf+I6tr>
z;g#}_FQ>faN^)=MoVS-=cloy5)HMd{%dUl|Tz}0sJ381ZB9%Wo>{}VbC%^5l*1hRT
zJ@s^#$7}Y_OIOD+NwAgvx_mNv{=;brhTa~39{;ZQUpq}rL-Fs{K309kj5E1x&pzp&
zyTikx^VYU+rL=vlMZ;V%ZTrb_VcU=KuYcp&^3?P1?z>kSFD2&R&u-r<-4yN{(|Dtp
zp_;Mb@Z^QD;q7LQ9epfkpK-lfQ!baGy<^S0H=7QM2$Xz`{a>6~cVE_&qgUkKPUEcY
ztIw=a(@(A8tMrj)lw6?BxWcG_cUfu9-z%%!Q~&JV`MLPnsYivZe)oTLmTWfs)-vs7
z3WLzHXz}2(PiAMg-+dyv^pbzxrCnREr<Pq?d*<xDnKt|?mMjt-tF~Q#{ce|!)87+r
z-tUY4zuT(NtZV;rdM@kH!?$K`WtiO16>szU<-YkY?Mgk>B^?YtYI_3@`rQkjdp2Nu
zZqw4(*Pj-=`=7?yyZWvD!S!3ZRhA`Hd#2Bil`*_~RM2Owue?EVo9myd)V;UsHr%sK
z%#FT#YyOw69U3lYtGtre9Sp2KlopvjJFe*I{L@>@%U1XM&ozkrUaaMJ`s%sk%S>nY
z@>f)xKDG4v-rcX3@O&$<GmB%?T==udC?L`3$I?|{cAuZzetPzLaQ3X-uMd4-zjs^u
z?z@VF=i&=q$-UF6mstK`W9CY>LV^4s%_Up?pIE(={P*LP|IG<HSaxI^B5lY9AHm?C
zloec(tM8{^WMH80mRVF>qF`ulX`zq10yi=@G(fJv-$uvgOCJ}leZPK&`%A^sKmTzs
zF?YtAI^B)f5Ua3Ofo01UvyjtE4lZr_b^rUExvD#3-dSkx<dkXP7izz=H~pRM_j5C?
zuV`^<P7&kWKly?i_u5uYw+!_)U!B|^797-gD5MwhaPQ$#K_8K@t`$=@xE;x0&GXaa
znB6kTjca-9AqR{0>knGHXRwLe+L_NdT)l7&tDIfA0l(J@g~c3V>jOIlTDs14c^oeh
z5Y+SRlzce3rC#u!);Z7qhlxcMM`w!&vetwIappc;I!Wx{0e@9ywi#Xzd%u0~R4h0v
zFy)Z#Nw-~EJx5}^yjgeymi8LVip$dP*|;OJnV*~cNTXxRVzxOJ{QidXKe9dBah~Po
zu?|NDO|cUb*H|d1Usx?OAvo!eT+Aef=`BlJnY_aei?@2LNh^BL$ZB$e@v%fA!@0RE
zMk_YyF-gWm`X3T(;Psfx6m8bT$-3*oO4aEef;EXbeo9^&x<rzLE_AI)l;d@qb5$ne
z$@%R*+~Oj6ZT@;zMY@rKJJ|nJcy2n_KYa#Mrog<1n`YVMUwLr+bqi0EeEx(g-nu=e
z4r!bg&luU{E_h5#naC*l=SRb-%MXqpH|uri;|On-pI@+;&ED}4>o3_9CZivmU3Q13
zF3_F8d^(g-^3Q_2MxMH+uMTYX2N$j~{lPhpm8p(N?Jz@Fqo$K!drLgq$HUwzVOC;x
zLftIK&8}|f@e#~oXWo%GVaAGysm%KqyD3U<kP6I|cp$7C8GpcVh4bQuWaa6S1u{m-
zA_X;%&T4!Wu-tvj=&|Y)yVtzg8fq4tH&j%^S>sO57xYYAn7NMk=%b_TPYz_<$qcYO
z;lJqv|4T>J2Yl^UlPj3n<W{;&o8)e(yorS?Fu#H|ziq~v#Ag2BN4NMZSUWvhCkgF$
zln9eMeY99WL0*LA*})A8s+PtP=OqF?d3Yl^baFE{ve>>a-=UnrccSs(qtrz9b*~w|
zIIIxxFk_qeqHX(fvAG<bFCMTcxy;Q9xAjy_)Ji+pte~jivu4I^7e|8?QpqbKukfuY
z?-N>l<UnDs7uRg_o&{6Q!r1ORK5@`wWk1~?xOH(@a7Fy0@UHhllRG*T4d)$9jM6bV
zd;gE;+JHyy)&KZH6drwam$ve(ZG0{wA7$|&OJ}{+lnGfMZJutOt2{y6`^$t1`CR3R
zx?9&?Rs6MLqTh@DM>YY4&Voj3zg-l2>Ji1Gdj7LrTyAnfh`qO3)X&W+9V<<AG_F=X
zJSiZ`&OQIs$@5H$6PNiOxfJNLwX^ZnvlrVR)?V@POi{b-m1KB(+9vOMgCrLnTkmx|
zk2mNf9o30G?PGZM#_@vI%55>PW9HqkR9V_z@#NL+_i5>;kIvH9$ja%|Pfx$F&!)lY
zDI?c}W_ABG@zqbiuCA)J++9&-Rvr7l+}8TPL4COWS$+E_(?73P_y5Oq;`)5MYn$JT
zcR#KA_Uhl+S?}lF*SmMVE@EBYtE)>{mhGAK*TQ<f?NR9+C8odS($=T_uc<sYe{y7P
z@$Pwh=b68see?L!+{-%Rzn1NaHQ66iziZt(|A!Y&|Ej8$%yo7Ba4U2QdrOR~$b9o{
zO&?0`$sD=qdX;;Iq*RNa)8~%gp>m3jcSG06ebvY^JNIS5rfByC$`=G*__JNPJV}t#
zarc9#`)1XsdR3Kw_TK#NrN*y`UA67Lp((}5PDk@D?TB!FZ5>}%_wkwi4#~xz`CmlD
ziu+eeOFm3H{9xmbJ_q*&_WN(us#bk_eb;xt_Lr$nm)`|H{V~`5f@st`0qyiV@82Ao
zx8l*A=DaI;e=b}MWqjUk>uwfPUnYHX!~R^W?NZ$<f2}(6zVylTC40;dFUk9<@f_kh
zjuI9troRVmBl0)jtBu@xd-nF_=Z~MWU8yda@A4xw=FcLxlqJs}&R?_S-7&u8&$rz_
z#5G^~-d`V893S}q)}Fo5bveKGE;gGQGAo|{@z%f5!AI@&R%NUbse7(h_M&IoN~1r^
z_7oqph>fiCzE_^Mr1g$j&+VLdMq7Mu<uB#({J&}5Hw|NChZs62$G)iW-=3Ye{p{U@
z|L%*Y-}%3Ls!XP2`B|>{4S~w@K1fb?FIBQXYk%eJ(@vYGiw!r}2QF9JK41OUl>YXD
z6u+N7yzbwo@Lw%>;`cLz*NtV@nZAF2*4KY_6wIz^70W5CFE2OUv1Ib9EjMF6{Z6wA
zG0a`}(&qfN3n#sfzCF67-td*y%!{0{9iahtRge5$lXuPc_m=?gu-mKdt$Y7!^7YT=
z<y#~6iTY2RU9~aKZ+F|5{L|M@-!%T<l=WOYCTl+PBN_X~JKqj2WM1=ZZ@~So`YWHG
z)s^n9P@h+~Yu{>V!}vQLpItY{-Hl(LKfU{*OjSx>cj({j-&2C}o$Rd^zVrW4W4Zt2
z=e<$-;a>~Xg6Ez5n$ES@_;0EHw#~c6<=cO3>v{kCN1;r;{*;{+cJX^xhd+8+^KqS=
z&y!QavOoSQzsT5Ex$#F>%$3#KPhV~S`DmBhzV{P9Ts2_we6aa;=;nKy{@2{gshzhq
z?UD5M*)i{*-M%q%-`tlsSJvD=y({wG`gMVlZ-Y)PU&gI-UUya4+)%w!r+35_Rqk6|
zD`6_C?p`>xKg0Jo!|iLoWn=!8FvZl>mnOXT`j(cEfBfy^klz<J-@kXSB<J<Q`}O<x
zHu`oSbpLFZyzBJ(Y1Wr>R)(-;=;zc}bsSs~#8YO^rhNQu?#X++Z@53Vul!c0)V|HV
z<=n>I7gw&GBUL4}-CVVLe}4Yg9ed|zy_b{Qb@t}=Z^g^%w$zlo(mM9^`i;F`9|wwD
zFOhH&bbmW{UdH=l;v0*D-yRp=sIB+NVgvu;Z*l%xzGo$g9o7?F_jJzrqjnK2IVYA?
z{<OZVTDbhey?%`?`kN-QU2LgsH7oL2=<FGL#$n;%9lKbpuio=fF@G!ZY3I4aKVI=9
zDhVgn#2%TnD<$yN&HmNiCc<wQ*HyewT>o-~+&aE}tC!4Sv`d?NzwTc5TxqSZUn5IX
zGk0IVuvg4NQ*)W5Mwv|bpBc+;^=F4(5`KGmN7&LyVKWb=O+U6(>*&gF!qR+~ZyN^r
z<;=QK@Z_(}>|=BG&DcDBSKs0dZ?z&tS`Y49zC=esBvp||(1%gc$8E-q@{)7gYgW|A
z<;(xRZ+0Zse%UeW<kaPpCRu--_vx77)6i8CiBe2`+%ql}897z4xc}6+{%`SN6~R~H
zF|VSg%vt+QUgOj65RRoP%VPO=aJ#-{YMS2@piw<nO}S@vzme+CjfWpk4rFC9mptg_
zz4C1?ua-IE+xodS5zZmo#aHC%2h84kU|N!9=fbOpBaT^{r+Pc3us=6X<#tMWo6^$B
z>-D_mc)DJ3sD*=u^s=A??(92LukG0C+;ZqrQJPlM<^BZ<^QCUpn^$e{TCv7_cFvan
z$EV!CecVKQS$5F26?g5zPxWbg9SgV=>u3}+t0!PW&!d-57!Hb0o2l=0tYG<<Z4CnI
z%04;KIrZ`{rGlQSo9XT3uu8t(+56f|X#dGfN24xwDQk<jD-U(LiT0b6?O5IB^ghUD
zri_x$n^>#o#;OZn$2u+4=w_eo%*8b+(B{^Thkg>=-m5DFEL;lu7buiP2hREN_GFxA
z>G4x~(r@>xJkwvu#TsZcWk<8VD|h#v3LQ%ajXB;S9}|i?0)A+POj~t`cl)9#TpWo?
zP4~7w`Oj>$cCsv%(J6C7#OPFTX;MjLL8?Be1#IYyr>$#lZfSzt)?He~84(=5{afe6
zIhVs$s?Pg1C(KjkRlr*3?5$d1a|A>L*+U9aIGWG21S*^n*fdFiBe9La=scI!<VB&`
zTSeDyy>=}u%RT$;^}4Owe}9mDSNy-$Va?uOclZDQD{sR8?9JY`^1az>_nr%L>5=vB
za8W9|&DQ?5Ec)4woVzdI$O$}n_f-7Nk6+gwIFvtpX!K6BX|~EEwSHxb*M@U^&TLHn
znOgID|EB+2k0lv7b}ZF@aNe-+JokJ#;ScJDvh`<VwkYWw6Hq$jG)4E9$CtS;4j!uH
zzBj8i^vpct^mnr!OqgL{FMq$_=b@$E(@)tZJ>j2!;=0z9Iy=Wtl0T+<xH=SgEKt&@
znO8I0Ns<41=!w05nM6LB&Yl}9JLlTz^tI(h6W52cXdb%5{N$XV9An+QB6oX#*9k#}
z(eGqs)c7TSw%;+fIB{D4j=qJ5rT;!J&GPBm&LZ>bDkdx43KmqdnW4=e*uwftbLx-s
zo%4g<2|tq)S@&U5JNxOsO*YI*dsx2ysDA%oK|!TQgh8EL$NYrAa|cfqEKQ#g@3BKB
zyCg2#JSlm{`sy7E!e6$_pKjj!(QAFed5(j#-OnGo`?qPzrvlfK9Se>-D}MhJ+{Uuw
zc*5R@5RV!6H*gAi?N^v@zxDjocFmeQhxagvoJ!ouq*eb*z5Y!0_X!gkW<1<`@bGH6
zm*2U=wV3ui|0~)2KQ`op@=uM}Cw)bY`i}K~`xIOryCg3YFg|{!woY~9E6L*<qdm({
z{jZ$7f_bybOb(T%4nr1K8)qBu9(A40=bfBKxLZUORn>${J}P|_Iw+v?(dZ+WVdn(l
z;Lgk=C67Xr*bFDna6O|Ir~FJ{z3}IbpGTOI6hEqM?5OCD@X=Acr#4OKbjQ^rQc1cS
z`!*<F6aLo1ys@!B#Z1ueNZO&9H=J@*w+Y_n6i;H`IQfR_4xzjwc}jCQ)E;rVH*QYe
z5T)`;(m3(V?Bqkow)FqZIAi-U!caG?<G%dvoSglw%}3LP*gd&3ov%&YzGAw@UE}q(
zhwXQN-f4LLui3ifKW?Y5>+(+fKEHo%g8jqS;?wqA$Pd+t)!1uOc>T!jE$@y>>YMFL
z`F*J{&8E01_UybG%hyv^u21n@q+aQ_ZEnroU#YJrZ_?f5{i*j;m*(kZUwppKJLP+N
zp5Cl~pT1aLHjhwReNg;G!-^FL9Ew9~_uh<&7Y~(F+5F_+%60sP#jDTMD-_;HUHxCe
zVWG#LR}CTUbuuN(m3uj>M1M5DU)Zrhm(S;d<5jzY1$R7mGjwx&%9_S{->Ye{)m8oC
z^|LrtmcFjL$Q;6~nrp|ib=G;Kl~qN{@A)r3*XXU2<tk+K+{E7Q@FQ)ZiL6_nugP9u
z^0gqP&a8Rbhq98QbN@PIKb~8eQy_hF-qcqLkEi-`tv__gH<aN+w-on%Yppx8e@~kB
zjHRuOjV-kO+SRKe*RQr+VM~5rC%#9zrtrqbAB>rdkJ!>LA6GfL^P=4*#kcWK-b+or
z|8q&ryZDq%CvD#)bk*8Kd#k-Nxup`D61GW?lj)zH*>1OuFKe{SgjsUpq>esYQ))V8
z={5JT6ys?t6lDYNux{qqdr`~nnuia28w)$zHJ0n9*RGjdVZY9HLTg9#mbFg%otIx>
z-FWp+W$X@Dt(h*fE@f-$t~zmeg=6#@(-+wh&h6_2wN_{eam&V}i`hQlyYzgW{LB1(
zi?tGJgeG0t{piv(ZP~K@!Bbkk-rHH=-gEAQ^$XMcZQokz#D5lETK+-wj#;es?+w4o
ze7}EPzi9Q$%+EI4wA0#et-f~1YeM+h7m+uT?!Wl@)LP_TpV@uE`H%j-TrGdi)bz`~
z`u&1|4aW}pUfp`3?r3d)`SQOKvZrF|SEu=34f@P>IjTZhOnq%njPNdllJB$3H#9K6
zsI*eCRLgabd39<7Z}c+}H6z*7_&;?|g5LUu3B3Qmkz=bu{jPoXcM}eZdpo`1eJM8W
zrNjzOf98{ue)nq2*?8nn;|cs<dHhk+kx9YsTY0>qT}qi()Hw8Xv0uOVr$+i;rCluB
zALFOSQFo&5oMVe;;X3<MWN$}N;D<K$KPizt`nCUG<k(I99=yl$ziEH`M5&)!?(S<B
zUD1Bi>}pOc6Z?|3x^?|#o&vRTtFJbR-N=dE6l5mieCXT}7xAy#62mMOSI!Wt3}6tw
zux8<s+@G_=UR>aroV?pklmA!5J8PqR8xH2@K47X33rMs}dA4tFW^3IazbuV)OPpC1
zXK$Pkc4qCiFrU~bi_Yn=3yUPJREuTxU-tg$huKCK*q$7^^MCEX*d30FMMq8Jvi7pw
zS#&3c|KsEtR-TUGAAeq3RhRI7&+APQY}?+guHdedQEj-=sAs--PM!9bx6|{=m+qH)
ze(5Ef=gXUWo_U|GJy2Is)xLP`=EqTyTq;?iw=8rgZ%|f$>)|<bAzQ@DySHtv#rC{P
zvG?C5Zqvn-JymqosTanIo<2J#UsS*Swd73a6tf+y_9gpn-@g-B#I$Rn`l}iKp%Ixo
zE}BlC^snl5QmyzN_uAdBY~ynF%6)Tvf6v#JMQZO?#&ywQD>5CT+GkB*&h<X@>`2A-
zGror}+)@@>TvVa**g$K|gp0es=KVUtwBx`%h5OA#zH4Xga(j2Oqs>Bh=`@XrK1?V4
z%8y@|n2-?G`eCi}yvm1SC;l*={p~%${?}cnhQ-2v>q3v%{+=q~xwHOK$2p7D2e+6>
z%s3NdkaULo;0kSDbAxS?zfJTu$bQSt-F)e?<l4z)_IgXZuNGhVeKymlyxccYKfpdV
z;=J&lipOkmD#eV~Fa3D6H{R&fk5g-Z{%iex^VW`UPaa?3zy9jp+sgkwk41m9IEkIk
z`zZAK?t{g*p4iIFQ~UCkH6%yOw66ct`;MKi&D|OACt3cJ3*7x}^JVee$GVO4eLi~U
z@9oO?^62mV3o0(R?#@Vh%hjm$+_v+ily8!kWs$@W$(!>R{@DIQ`^)m>GHJfIQ~#fP
zwD<bO(?%I5wN7iV%y?&ahxv*IV}5O-s;^D<qT*1opxcWjp3C$USMnYEx#E|E&{w-1
zJ;xUIzVKc)?@1?5{8^(2-n?7aH%+=E`8Q^d7N-#7748*Pp64PTAC*ZK-*7_bV~o@W
z*M}x=LOv_p%?Yi~{mwh3D)svFOZgLdf6e^XVK+rWaAknY+vd4fzTDQH$m-|)XnsbM
z>77q@=e&Puygd6}-%PHV`^wy{&zFBVuN!4~RqEPxjeR%05(TGd*J}RgklqpCEh9Tk
z_g>w@b*3@vU;kPnoUi@6u`K69e*5GrPv@P>zFu9nep}nx#5n0Y?Q0De-}!!#-&g6g
zY{;jrKbC7qbw*cfoiDk&zm{uaL)@|pU8(y&^4J%i^ZA!LZ_majjitsiXSH>Iy|9^l
z==KMtm=Kw7!I~<Yq~~~+I|Y}trmw8uC;evev-dZ?oGY51&0qI+_m`zxRrS7Vumvi8
z`E%Jz;#cLH<oj36d8V6|h_63he{@H}z7P4_&#HLtPp-C1U$|W)ZktoEz|rnL<&Uv1
z&py6WxJ&Qooyp;s1FmqsIllZ`?v%##p8cQM)PLU)_|Sa7DYdqwQc*a1S{TF83n2lY
zj(%Nlx7v#9`HJ<qzm`Y8XTSeMcHxvS+F#BDJP+pjm@xBz;*yN#&t|V(!j|`Lf$>}Y
zPD_F3bH%nd%b)*H=Db<BX;G4rQDpvBR=?ESyJsXGWjf5&;-l8$^X=O2SD}^xXPg`#
ze*83f>tCK%6G}d&bXHH}niT2L<I8*cj&TfU&c)CC-?vY-z4d-M|5-1ckAItFXSJ(c
z_UQ6c)cz;pSFmIqkNvY$x9`ybWz`9LMK|qe7y6g@eYT0MV6A<I|7Rmp2N{=S&pkf=
ztdrKhde^fiWJ6+mlg9_Y&JKTW-=ssHFRvU~y{jl!a^1Vi3H{l>+m1xfY<T^tbVtms
zn_up2oTmLja8B2&fGZkVe~a#)d}kW^?Ao-zOT8}s!B-1kEZ$f6=AmYGon8IxY41F2
zR-JA&y3-xE^NHI0q~|B>)w!DrVk69s{<R4E#T7U=wsW@iSNHAbZ+Dx$f2g|2c|j9{
zY^vo8snWE9KZb!v<sTh1XM2%yS<Qd<im3-aS^pF-{Ix^LUBz+QiEq#2ZTF^ROL@FK
zx#rrT)7{zO;%nMmKa?%mE3UuszK!UQa1A?#y$8=ba9-Q~(Cy{bFrD2VwTBMdSgg}c
zkx)PPkALN3OJi9-B`)PS&ZQDxgWgn~e17AzlY{WX<;(il)z!RZQF_47W%==1hRyrr
zxm~`!2TwoSmBp9A_rT)q$F{doaf=SW*tUB2m9~@!!=Ai=B9|O4)m*2?JMO>Ca_;`8
z;`VvktB4ZUqR5&|pY!idnHmWH*jSfuxg)3Sc1_3jhP@Ik7jnEhvTGLzT=za6aM)0B
z-Q)M3m$ljA7gw|JYC8Ri@z`+E<L=~##y+!GPA@IJ6=mR{D|7JJS~sINF09+~vYHPp
z@~pC$UwiC|`%f>UWaG!Cl9}uwj2~Z4xuR=STKdcB2B+b!1vy-%6SwZF%2lsnGJSO^
zC0Qc5VB3o6E8ZtbGTAKn-^w**$@?oRt0x-=-Iy^YVJq{F=K0tB-4%^*P6%GKm+Se1
zoT}tc4^3*VT7spcJa#0!IBETG8TSEQRUW>k_G5y|;!U}ee;l-Xt0PnP?n^;`&7Iq>
z8Vq+A{jXoM^1SBNeeAXcW@{CndS)|iWp`MYc*m%AW8jn!X_X}>d=y>(aTQjbiu?L5
zvE%x_<=Gd%J>0so_QI-4{o)<Y@2@VGepr01$Uytm4Fzq1>7Rc(+ISSR{<y)oeA903
z^B*1^i`{v;@zLiW<v%2AX7Hq$=<j(_a+ObT-j6Ajyz9gkc)Dw(I6F0mrJq`5Y$zF;
zpR(#>;auJ(lL!@q*JW9uX?aE(HzidxjD?MYgcqA1w@z4?w?{N-f_RZ5i&VGS>0b|A
zZcS|Yd@=Olf&+8*+wr_fR}c7Vu;$K}>L6Y7mSY$DtDjlCihMtLUZF(GdER4swf%D6
zk6(SoaYi&eAnW=Ix%RH@%F3n_rTB9ucs*hiyrrSr`sUxcbN|^sDF@G*XTqv^QYzMP
z%i~>(CT&S(x{~r}^7nG(;L9A@w*nZ-Xa1`Xe{Hks+J`AO7Fqu}$Im|dmFtU{)sIx_
ztYat5T%75*|4P}G>2LQ26bN0Y=(_!N`<%VLdY$~AwuCu_lvN}qNhzmTo%<a4+4<kL
zpNqe$Du{)@KmAL_X6@4?7p;PK(p9D&OI98|XJOv=r0(3uHEx${PsLAquqrS+$W+Qq
zSHo0`clmzDsXH{L*7MaAl!|ek-~T4$*^)q;qp^36e_ztqta!LYFst{zK}7NHf-tUx
zx0b&{cGaYvcza1+_)L7~?(>Rw>KUfJ{<&!3WuEv$bK~spOu8{Ke`Bz^oT%@fa@VR)
zabN!ln*KkKx|3yfq0S-idhuTm>KuLbYK|5C_E;%q%2%75IPHl@s(8A%sQlUWXEj~Q
z=BNfoOplMe)pPRyN9C-Zw~s#US~54oNN)DF%*lzn-_-}~$qp%e9xPHlDdxe21LYeh
zutxdvtv-2Kf^qxSd+mAi1@6qVdh<|mPvy0E*)QttN;}@`>ab_ag?6v9KXRwXF??44
zv*({S{}8w*efGig1+^M7dz+^%7I<>@v|#h<V~XWcYyV8${$y{(_Md-@cU->pK`cYd
zs>AH>2Zp`9=iT@7J^!`St>o1S4?$Pe{T||r8xD%U6ibc`Gd?H%XwU0At$uyoDH8>j
zbDPepnQ{1KtCVq_(a-O@Gw%3n-+R1tQ%TLE(9Aui+NO>YEVV5GlH#0wC9ABjx{0p&
z_5NnE`7GO){;PYq+ZHESW(6PA-=WH7W-9%fb++7``+F<?z0$Q&^=?fG$h<5x!)B_T
za(t-7>hmXj9r|nxZfgEeH&wT^zPaR3&5LWZKNzxJ?}*8{rK)K6@7Il-P)_;Qs+pTx
zuU7g_t<Bx4{?O*@<z2>qSh6!c*R<3NvLEH&F8`({reN9Qk1y=kGG)$x#1k%9n)G35
z@}k4cFPa$*xA(4I@~|Xq^UE`zj@2%EyW`i{XPwu7PEUCd_8?gNlFS9s>iAOQjj9{1
z_E;I&bA&%>-6p*(Qomi){jzn?FUk5&Gq$9{-uts9CvJNmbEEQVrA*h=6R*m@tm4@f
z>U;3&KHqn&e{Lw<+w{Xh_|6hGz1Sbeerar3dgX|z?5Xa{?5X)jT~i7qk_xXY+9W=^
ze^_`~;Rn^I_se<PnXg><w0}ps{j0dU!CAI(w^pvbU>=yUZ;9BaNn20pNH23#N`2sb
zH}LRI(^<^|J=$k<^w0EIym>1<Nu}W8x~oA!X?w422z|~feS^*O+H<i>k+%+4?%cul
z@N@B%qmE41{XW{}IZm%ASQqf%-}{w^;?;j@zLxzFUU~Cb`9+uPlK=Tz6>T1@(YRZ8
zWcA(0QBU+gNXO{DfAi|yx*d!jJ-#3P%=pilbqDa;c|45F=eZ`^S8t$vtY=Q|X=C4$
ztc^NFa-T9HX1<Spa%kR^DY0krvv#$H6?@M-WnAf+R=c;ZA|T|r!wxf#)60@yCvUB&
zp1;c}cmhkIj>^i%mmmG;b#CN&e=0R|lS$QyBt?7s<7<wpn(;+%yr3h+<GpNi*O%6)
z=6fk?%&#rDzEezX_mwHp3$tY$)i|Tg!q0OZKP6Tgx65oAtLX~Uta*}M=|8qxe(&JU
zO7=2-t>1a4B;&rH%^BYZ>kW)8#Y^|8@%!k6%qYq(Iovv9d(iTx-QQ$or-iLv7yMlP
z*{=;Rb}szWw042v+rxR!%%u3ImnNIfmH5K+-}$oiuPI`2Etkvp8T{utcj&PH&j(AS
ztODfM`fGf!J^U#<P<U4R9;<Uto{PV{!ME4-FVCd=N5Ve|2Ri(ixMNa=@M(X}i>+m=
z_|vz^<lH*9sB@3}{#Nr<mrW<EOgsEXNJ#n0LgnD|oH0ecGp2UBz4=mT8r5-0GI-+3
z4Xaqi8@@}deCxVLAwD9Z!Ru_{ogW($nO?>ppYndUy6F?XTNfNt=I*lGoBw>{Rh?M}
z*i+PBK31Iebh+K$tJ`g#wm44ykeB%RXTF`|qh;sx-vzs#_B^_ZL43XM<)5lN_PnCM
z=6`?Db#Vj3ObekyJLVSTZU5jGRd;LEN4`%xR7+jV_b<6D9_{hGu0vN(VAm4HRVL~z
zwsBTV%?@+y)w$)dNb=qCj|WN^Y=lK0TK}2Jn^KzP=v=v7b2;}7`G+gE*Bx9V(KcUX
zTPeTJp`#hD-}jwg>%Gure)56~EG85AJ{5#iFg|^GyDWw+_t~^xn^r9<=e9q4*ln(l
z#nDbXkyts0_Wfduud~^{NO}CvnLRj1=*EN1DVcsr3vy1hxA@MQaHaHUrcZTtbw>83
z%!GcYQoqWJ`tru=Qqg&bOSuBKZC@Voo^kt(3m4wrmRP<qAVW)6Z|z#^s7s7j4!rzY
zRQKkYXm|O#tTh71KCiIrdnX)Pul#J;LjH^wMkP<SRmpuj`?=xn2HmR7Nq6hsmwr$?
zy1yu2uj=M5{=6wOyG}{ZT%z<|<9~|0&6CdX`;KSi)%9!Ctr=|tmnK^J9b$Z`c*uCy
z+NgbQ$Jv*t-eEe|c(2Uj#tUx61wP!tdv{L1DfMEnl-S`<Qtff)pDoC{+MdvMO2=7D
z=zi*wzL%d1ZK_I--m3B0<fL)j^o$|<_Ps@C<KyP=PxODFqANMeOw24rZRMfn?>kuE
zFuw9VzWze7N6EA1_bKiRVy`aJ=|3Ot$ki4rSt_;DO!>B&;PVfHYmIV4TGZtk%9wXt
zVg2rAzVuq!yyX{oPKH{n+dpf$?v-awcC9Bu&3|mXcCWzU>B5*@&mXAGVC!?$Gwu2&
z`<Kyt0q?CI*`=nHPgx^xUJ(=Vet#w;tLDQTiB+YB4&`C4j-@|4ADh}<V7a>L(uA&N
zOUJ6}hqd44hjae$`LlnAY@yuVgpBG>O%FSz8;<9>f6zF--E6^={<<8u$g^R+^WRB0
z{A0d#e(C<=qjOYauTGqJ-v8`}b>B~xGnd)F>G~d!_nE(lSv}(F*4L9oq}A0l^<rD2
zoeDB@{QoSn?U~Z=-}$|bA?x7wK98<v3!cAIJl$VDKPLUG{-ie{&#s?Xa9~Dw?8Mv)
zFE?%SnUzx`XU(_#wACxC*;=<An#{P$s`*r8|4*6PrP;S1@xJ>#C*{)r4fn5?e@=^j
z&c5lLqPSF~4DbC9)6O1SX{5P5<MT@Ylnaq}FUAGsthpL1dQYj&uIBZTJ^5eHGI+^N
z5PQONZrOP+w@WKtC}#b3^Xm&QF}-E=@JR%_=`3xhbMLELX6fIo-1+_QKjC%nBR=O=
zy!~DE_JrnU0p*%dha1ijvw7t=oM?49pJQ+C({tj=i5XM*cy|3(x75AZX|I21%{zsU
zdl)lCi=K&;6kS_)V(v%lOaJyv@A}~#alNn2^!v#T??m4%<(gNdUut!5PRG?qTZsu)
z;dV#A3tr@Qd*3ss^}4|QzB#kpYqzT{WeYhaUAJoU3YDn>A&>4iJijI`F@M^TCg(Jl
z|EEf}UwdNyxMYrJ-klxk`@;`prMKPw-Ez8#_v!z8ZOn_`O|^d-^=9LnZGXgn8Y~M;
zTV2nyz~NzkNc<_^<+oM*51)OhzE`eg;;N-$t4!s&8cY9YC+N?~yuJ0(toZ-ea~FTx
zVx!tEcfalD1CvwjVh{H|Tz=@5ZU42Z3IA^t74F-rFZU}cDSTb}AN}epHyX`Z9@pQ>
zP1&ck^jg2ufAz$T#mZBz7Ja_5<w{|Q^X2<Vcdjql^5p*K%$5&*i(B%4&F9QNDchg*
zXqtJa)cZyEb|+mq@$=%J9?8oeD=SZJFBa(K7fSx;uzq29+I?}owS1TCV`iT8e{?c7
zd)nEuADsS{kE`tdumyii-?vk4DaT#j-{1Z+y!sPWb^lBHm9__kKim)0bA5_F@oUDh
zD}F1QU%g2Zo>X&aOL+NzHu(S#oB!E&rtCeau4$IHQunj4=G-qFOqmQ(r=l+fWSr2}
zSegA=!<zF-zqrh@kI8TE$7$T=lUo`myCZ6jwAn`)^L^1Rzpp0RsQT>l`TX+6hMp_U
zGox7!%k3)=c^9@m^<V4alPWQ1?1G9^tojSNZ-iDJC~>G@e==KW`ko`LH(wN9V4TnT
zW4c{@k6OfZXV0+4iB$?b&p)2JFu`J}mQ85q@5z^^XV^#;e`}tfviHKI3qmcqlX!)j
zerRP`G+vqdf7<hJ@~>BIWlDT~=FsZq=T{F;um1gIX4Q@}O3|O3exHncU8T{l|84mx
z)twnJNq#<IJR2Gx$V*FZJKOlPcZyNJ;YGDoz0sFau6~=ye<{62Y47dEWfv2c^Z9&y
zV_jmhm7CvM|L)%x>5?WY;cl~?SMxpFAGv9Z#Sxy^D<`Mj`o4B)_;3H8?<TfhpLFZ<
zt;4_CWS81m%H7zt+h%LoZzst&>pr~hTH|RUTdlgzc%_ce`Eb2;U0W+|znZJ7o+`UU
z^_R`VNiUu=emp-%^lbTr)wBNOM<qYty=iH?Tr$)%q9&%wWJBD>XK|8RPQoYe82@=<
z(ygo_b9uXzy~l~<DTR%z8dPc*m`O3MEPcWi-|cZ}(r?v=f9EQ*My!zQJT#MKUR3S$
z2?B!hGIDY<Z{**z?h}|J9xWC>=N5yy#uaC~o%h;WN^deQO%!c(e{_y>y`9y<y&IOT
z`me<7I4k0-oR`&hdG*4HA6}eP+4e+l*(}!>?d@&rRL#?mWh8wpkX(Fs&Elq$eP@z-
z4JGB<70pal6fe|rO%|9Uu%=>mJzuFoX6q}ahga+K{5Eb2KYnG>=8qX7z4c|;cU#V$
zo#{HWZOa}5pT>nV#ne@AsxHgA@bs#<Nj9TxH`k1=cZY&DfB5&$ZPm=p$IWz(aPFIO
zU+nqz&guG&r9D>S-&2)EL?u>ldE3+$8R0DQPg3qr)5%+BZk=gbu}buf{m*>eU8?qr
zo!kEGIehf&nx7K0j@;k;V$zc-(%QYE&%SHvrKQF@a?kkn@6RNz+N}!Nn$uKwaBT>&
z&&i#-%z!Z|!sCpONBGW9MQW-_s;BBT{TDs<sVQD%xs*-al~FDyYe(c(&x$P*7xPVV
zer&Z_$68%~HOq}dx0VXo_^plX)ZkuO9OIhQ7;o(FYS?z+)0rS&*FBo^Tp$0qx}$Eb
zuW#5=RmN(KCw(gF{?n(%N5w?POiljtB>fqG-A1#^PP1l6=ld8f3ktezH|P7#LjuW%
zwtZXq(fn)53_Hi!2|hYW?frg#l}bMG$rh??G+I`!yeaXLmr+;C>yI|cOTTqIc%99!
z%=}^2gY3*SQMqSbHIXWhy0fm&p0adZ&W_3dh1T10B@}+>ZST^U>XI2fEo4p{TaLX<
zzU?Q|Tjzfoy}dvEYRJoM)|qDgA2ti7gguTBQFFH8UODrmq$mITz-WtYtmhl<<mKtg
z&AXn;mL+l^`>W40Jzu9;vZ4AX_fHCq%lg3*Vd5)P`5~a9L;gSC`_mfDkNDq~oa;Me
ze22N#%x-q#_rSSQTBYs9RX5(`bvt<W^tN6xQ$A)}%J<-<L(<8=ZRd(uzu3$c<$iW&
z%g>MZ(#_xh-SKGi_16De8k){`xA_11Gogz6+<WW!g;l#^o0ipI51E(T60}Wc--`*Q
zGDlS0Tmq&AK69+zeB@VT;l0)WP2bI&md-ve+fa&!t@hfELgvVut&fi>|2^`b*<AT2
zmP@pZ&5g;J$2K)Kut1*2UK_y~5uAQ)pWw;8+q(F!->BX_AtZX$H7l{wsI6<W3&UeJ
zcAc2!pdg@-$gPp>G^x0lljV?KgzE%V4h=1hu(jLDHoo=Ao_p<O((mnCjqm<$jr%|I
z|L%<3?CJmKSN?l$cSrr?_Br48JfHKuMqViCO@x!u#0}Qd-rm`mdi3yZGj{gYY?Ft9
zS#Ni_Ps=n7eDuKSylu<#xX$PMKDHds?{R<kbf!(%4AnWm>|XzNz4u-4$c*y;3j02*
zcfJ4M`NQ|jk@eM&YB=8;wzPbhCgL48HD+qf*B5UrKQB)fHkPZaxK@;#<hIGm%58l`
z$-ySpt`44~X9bUPE%lR~yWqod`Jky%xk-DB9POhwx~>d)kvxTKYSiKoo%<4B&b;E)
z7QGyvcVk(^N}m9=_G}SHO+l&BB}sFwf@UrVJ{PcJ%So=Yz4~1qxlU7})?ZV5k)}QE
zmB>S`*hNM`z2cgem8W(-I-uja$jCBo?d6B(xwiTV&Xt+BAlyy!OH`|sV$ftE)mg{)
zuinC0<(jlftpE69!9Af9!j@lmRa-6ml`F?E!}S4g&#xH;do#k9A3Myomg{`aCAVcA
z_wGntZeJ~2!nM~ZR{vIKfYzcbyIg!L*tT_V_wotrck;NnQg~7Q7CY~WYkK(n`z~pe
zF8<xM=Ff}ykJRJZ)zz|$+^%Q2r{CSQ{@Uv)Qdi%|Cx4jl%F3@<=OKR7s&$6G{r^q{
zmC5ha<tEx#l__qV5n=W0<;LveIa6}vg!Mv&3-6tblWY-IKP_>neTK&mArr%y69j`h
zsySE<r_OM*arhz3FL=3A@`z88*hdb-*)yDNyw0dT6a3tndZZ|c^`nWP#~PI|!R(IG
zBUMSv8z*uonF&UBtUY3uWW90n1)+Ko;R2qGEgfn_o%yN{C;1;+Qti3tS>@M$-tYU)
zTRZRSoZ}D{<o4?QW4`-_@BN;gyYuni<Mlo_j2|Y;=RLYByjjh6ZpgRxnfrp`nSC!s
ztJ&N9oO8y#EaTJ}&8@-vcAh?AaE3?z%DmoZ6|Z82Ohj!JxWiW-I=nmi*RQ*GYin1{
z^Qi1z?*HwAoZgJnTP1HKANv07&%9rX{HgXS*)4w8*!Q+KU6eQ}V5M!G8qsspkoDy=
zo8W26^Bt!KRj=N>dzbb4o{uMw-TwXW);Bx3%{SMU{aj>l<igjC$<OzkId-#wx&3Mw
z!^bOMdsS4Hq-*J(KHJk}bAImgtj0x$Z|$hkIPNc85}~<kA5&ix``Rh9W6o>mz6`x^
zY>~Ogj-2X)jmOfa8#bNSYwU^IFFvXJ(&<SW7nhxW@JZ&+F>%}ev$tlSHL~K+eYm&Z
zBh%byhOTb_<5eA#0?}=MTg%)k%#J^DIDO&K^th7$l6o8BS@!7peBy2jIQ(n_Pa@-E
zv+MgFWk_e(F}?BrTOD>P(euh9_4y)VoZON*rweX9{<T}*s(p`~^W+!ZycvCKOr~59
z)p>RPg#jN^>$62CI~>YSCt7UPFRCvp%_>|mchUX5S8kg!JYQKZW^aBqU)v=uzw0W;
z=9zk#cU`|9{Oqu|KqKw-tqUDfKS^Z%x+FAt^^SAb7<6hso?STCd)}Rmr88~Vu84Z_
z{`$4|t7h{R-+33C-~U*YWztu6eIct+%00E#yP2L^r=up`ReYxr-g}eR%Hous>+aPI
z3@6XdxRDWea=H28z;9Qso?bHb`@HUd3a#cl#oxYI*i__Gu*kqKVvo~|J&`j`?W>9i
zi^<d0Dz%KB!~5;hbHSqxYZsor8u+g0+O*KXL%WxFoQ~Y`Uz_t6-`$6;X%)LtUoh_D
z>5IO<b;D7=Y|{`YOK!dBrF$1%ILP5I{rpDIPG6ho3HkBojyBJ#ozN1p`rH?nSiZ{_
zZ-v&etk~|KSN-N=`Zjx2{ubHxB)y~Q2BrR@>f*<D8sF|^UTkvtg!JA1J!1Q{d?vIz
z*8EGG!)@{NVvfmk^Gm{e4Zej3nR%?4p?keXu=N>-aN9kX^2^ijeUeChyIwSW%k)yl
z-#PIm9WqHqri#&J`G!ZFcrs*vMb)OOCU2G0KI69{Vd2t!d)I%y#G3ZQBUgRSvUR%F
z`W3%(n^wGed-2%}Cf`$9bC@!weemb;l9anBd-;Aj_W_T&Gxld3&OBc-T|f4H;9`!O
z4GOxawmx;T<BqJfw7m8<$>pW0$HBuHI&b|9r}1}gyz=qZqP^#8*&`O-`MmTy*UPxj
zyrjf)_g36d3GUnQ>zC9qfm9FwjYqnzw-od~c%V_`sU6O~^vBBPu#Jzr)_&a(zh*~z
z1@rV+PE(yJH%?W!+e@8Z;Q4~}=5?pe?E-3FC4Vmdc{4%0>bJ@%nV_AuA8-84u$-lL
zAwzAiT&zr`)3VKMQO1e-DhKl3aY}D{X~r+|$!*5zxcgpBx28;;DnI?;i<8%Lbz`(c
z9BoY!S^lc8{k_(P@3qa7uZoi%KJv5{x-4^djb3cZ|LEI|r@k?Z)b3chaFcY^ivDZz
zf*JM?^B&qp&Ytql{mO-T?8{r<?2DhrYB{HIxy|~X+()Z7G*_IweRrex^S6ONPd_#+
zoBGi8Jo|E0_X|GjCx*U1z3KGz71t%MF=*?EYrHwBw&ltD`->QUN*m0mdnNh1=GlZR
zmA&h=-x^xYw7eTV=W~NlS1Ut~Mc9SKH=CFm|LlLT^VI$?535{S&*zpd{Oo+9Dy*_u
zyvk^mtYXUYpMLKmEm+$>?~pkzv@ANRbD5NPNR5>^>l(R7Yophm)`{{FcU|AzXy7N2
zytr=imih-D%$crgF6G{5@IA`^fvdKklXdyD?bZ_NTp#)-y^?2KeKl+2rjpHS<_inB
zT^vNVA9hm|znQiAp;SYa=Pl-|mNh{ijeXW%>ES3~I$nRu&8v5|?#$ml4-c%HcI*+y
zvYQ*?4?l~W$~{-siT7Q}n%6rXz4*9-<+o|Z>jzd3Q!Qc+r2c;~ebV_I52s(+bz;-)
zSv;8%NtsN3VTo-2jrXTb6iC?GBC_g?kBaAd2jLCbb1RBII~s0&Zx*~ag=7Eh?IH)+
zb#DD&{wBQtNZiT&s!8|jgn#!%-*ErewDs5K%af8bmbo`BtLnY7fY~T<lB5FXml;!9
z&9s_iwtb0S^+};qRHDeeYK<Wed*wa{1<6}IVKKkiY}M=;5ASThJiFMNd)Aljs;<vJ
zbxBs#Y5H-6UEt`n&|J1K=BN0FG*KyghlR&IGPJactX*^#+sw1>owIje2GhD(pJ$wu
z3VHf+>cP-+Wou5HHQu}ALG#6xACp-VZTwx6_VtMtiE-?hyS{Y$k5?~_ycP8o_!;z3
z(KSpuCiP-k%*(G9HX@&<mpSd-den<^c71a5!T6g8n%Dk~58z~6a&8izmrv9Fkk00{
z;>B&EwXzex+|yt-U-g%NF3+yki~qDGT<`8V%ePC-S@FsL{hD8RZcYjfsYny;63XF`
z{h}J*wDogK>(aYrI>$}JR`rJz{^Ii89?%|_6kybqla--UdGMT^l6j=jn#c*Pl6Tak
zr}{We)6_RTnx$zn)8}MVY*E}j{zrwUCmyM9-f%yF{Wt$BfiJ?P5gMxwH{aWGchYv#
zdfS%fF79Iwf7xkY-+F$n&`O!^so8gm=ZPC|{1<F~zT?fWJ@S!@m<|1d^FE6FVD|s=
z=C;st=6w|oEbr8oC*869!8qfXI?J=A&t9}{y<RJ!$Pjxn&+j$=?-tQxvyC0kA1%%i
z`=-~nJ67r0tlovKH)foA)BF4Wl<XTjR=jT1t8uZ(JILGpE&Ss`*R<Uk)pngc*Gunh
zS*db*<?6f5ohz)PLY~!qejc=e@AUrkn<t`XCJ4Pdo-|KUW%2F;=F<*8cj&x#e5nz*
zgZpGlNaa1Tn+9K`cU?K3mt8NxlJCV)mDTp3zdv8_>czXa+f1)BO#G1gIi8)3@9Ug3
z)r?01`mX&vxp>99u=<#Oxds1Q^cI{pTHeZh?^epTXzjwxQ|oG5)N1zSd3>09xn^6)
zgb1^UVujEvry}<+pW3+C@P*Lr=->KVFHQCg6TSZFcjK;0@=_Z#j4I~Z$Oq3(+1@0{
zwewC4o4J$V685`JJGgz9rdO6J_rEDg4i5Fc-T2MR{7dlswMTFKDRN-X%AQo(Xv#W!
z&Bd-CY5(N*-M_BZvwqW#zI?`4uR15R7TuU9Bel@`oR`_#hg?PyOT_KIFS}lQqWbb3
z&TP#cx)r%4o_QPJE$~?PaLV)7!jrfqwy^%J+S})px?zcdQu^ol$>-lzGY9Vynkc`R
z{Yio8k3V0;9B&=dS=*i6E_~%^dVl;k>9)omxzLYH%lx_YZ}m@?Gni_;dREivu;i~%
z7PS)_`rmx^U-#RkTjb%H%)@oOZx&5kch~BEzUrFH%QD(O8U+3AlV+ZXd9+emyDxp$
z^LQf@zgzr%-kFXo`!=#yefP@E{}kKz*sbQGg+bJIL#1T)ip8CUZ#EtM(7iHl<zFR{
z+ovn7v-MX#`)&B4@cQMY|J%Mi{QT|r=_B6fcWkezp2)w8|88fd{m)Hjw%nWd-uHZ!
zT)Fqh84^K!SFaT(%{}s2({-8AYr}2xw#aSS_GtCBx_1iK4~HfwYA;-uC-dz)cYBA-
z)VgXJVUKO1COjWi*Q)+*td-<*`^^0;&7dhiC`05==c1jhwTbz^OdWg!XEy(m=$*b)
zedVRcja}aPRx0fWtFC94GC%E+SQ~zA=cm{g`|Vx)OMk~5HQ0J$`n`rl?oO#ckDd+|
z`gG-(ubbH{88h>U?jpsGy>^pZ-ahL+_Llc2&)fPJ3VKf$pZt5XeWUvA+ll)hJNV{b
zzWD9hv4#8kybC&=;=J|lzZYlav^2cMYd!P9MqXK2(^`jEt6d)zEpumy?W&S2(^{vt
zk^Q;fgombI`mbM#*_T(7JNxlYY2K4v`Zuh-`b9zvz8t-Kb*1aY9sQZyCDqNQJ_o+-
zNKcScJ+s$_-}kdLQ~Aq{&wefTiJMuK-=)cTLsD8#`Pbre2f05nzVLngRaM&k@81%|
zeN!sm?Na!4yMMg`=ZW@ppKsJ(jz8G$Q=Bok^XSO~#~hvF7A014Y>u3{L-JYhp)LE*
zI6nR(wNUEvpRc=nGCR#>HQ28IpR=~FxQRJy?W3Ev8(6fH_EwbjZ_Uh6W1o|hx%@$~
zpP1C5Tf3CLC@JlGVfAs={lpi3uQ`PE`)0JOw_mt&S;*hQO7C~xNms{L;>@0`oii1q
z(n>=Pxy@*m{r@^SqwT(A!SvV{85ZYK!dq32K6ho3=CO{R%%8qZN?P~0M#=OqJUk-v
z*DYyzVHUaY3P)#*nD}wSKlZb#&L5J@=-T2dZ_D4YrRI}lp56=r^HbktCOPuQM+ZGz
zv8vSMk+#Fujk=3>wfyWcc@XU{cBIiRTylGf?Pl#w3e58s96GV2XUm)$K3?u|+p4+G
zs^pl8uFw$_`xqqBQj=H4TD?@Goxf}PqJU_nbPYr6Nbi+fWoBty=~0__ZgXp&>9dq<
zmIqu?Vz1gRyz7s*>*8_Vr#oNAS@`1Pj3k{;i}ruqQgQ6m8*wGB%Nw6;{5gSlW{gX;
z$I&Pqk;%-{{H8XqQrf1uQg5x+dhP0?W@_6PD2UFlU6gIy_D%QB(F@8yPEBL!ys~G1
zt}D+zxw{_)lm3fcdi{R+WIuEF<lf~bGgI{}L#9sKeJXoxs>DOr9T#p~cfWXl>-O-H
zg97VreL7_2#UVL`SDvFf$#qdyb-|qj((AW>n=|RM^19cnQ%)?`EzW(g>On)pf`8AS
zK3MlYXZ0$*mwHl1d^z@}mo0w3TRQgrqM7^NFP_QNocW*aX!WBM|K&%XzT!IUyGGLI
z8k4rDFW(Gl-I{qbdZL83&HQ9KO=4o0%H!A{|Nd=iEuCy=uQJWu>C(KdCp5Ubd%5}F
z2YmltTK4Vh(K5FaM~^-KcIRsIwGwYTce^-^G8M0Ht5xMb?~iiam-=M;p&wd@XD(lT
zDRRq_;8|Ixbxs#>S_ddSF4(eF_Qrdi#QE|o^ww*xW7@XYeTGsf$Gxi9q)*dg*SLH3
z2|f6^EBe#a4wZlQ?vH-X`|`8yP{udC@}G5GqB$3P?RPCZS-k#@`HIEPAJXoX_$te6
zn<u{2{GwR8w#-+Zd2e34er0=mRm~;;3ZeCyXZkm1<gNKBrCzxCM#Ag@p?dXaANpJV
zltdcO`)zoyuHZxzQ|+|**KBV&DD8id%(Xwl!%*s*Zq)e~=UvQL9~JHT`IYxlgpKc7
z(>&A7iy05sdEWEh{qUyO8`1C8aciZ&u6oSoz5U?pSFbHT1!bR6vR}yRZ_~WH|Hu60
zd>iHNo8M;>)O-3>WvklT{uQ@4KQ1s%yXW9`|F>|?;kL)~s{6gGF7DNkx%;}cs_+$8
z@$++{&$u?<pV=<w^4abW$6wB~Q3b9u^v>T?t=?PQ`eDL@#k_GlW4@+;VVHHH?A4+f
zlbbI09*T1ex2s_aZ+`#WJo<vDh;bCxtC;3WcgEStU;lYZ#`y2h)zvz{meDm+)YbLy
zOfOgce;$1A)|#0=WV;*s`_#%ui;{NleX(@myX_C0yT1MZw(|7lx;I|$Cv5TB@q77N
z&o|zmqH8(3m8+yZ-5Bc{lMNcKn7=kTyhm^T-@Qz08RRb5Ds9q;o^dvWXL;n7$xFhw
zelL~zl-+jgjaO{2WU~9FJBw<!?LCmCXd5lLF<tz#rslW9fnEHyopO$GaWCfosCeaI
z7ic=`(c1%D-*s+(n;;Wb-o8JpLVv2|tl;DZ2`v??y6$+6BVk8(`ijrg$ZRb5KXXgt
zpTq;Izuz5Q|K!82Q-4=vJL(FD&WhxH8<L;?S#y7!#iVn~r{*RVgi5XRxF_uW>5^q+
zU2IgIp55=wijh~Fi>7?neOVDWL2B>$Nd{-ir|`YiO;);Wdei#S&jdZ$pq0H(UKzX>
z`Q$Wldw?I?j;Zf|Z*?yATv_}j<j2D#!>O7R4`o{%J8jV0IIsG@ma%Q$?WdwK5q=uY
zQW;wVN?z#SRt?*F=h5=uB*TZV>-~PnOj>taQfy;wan^NH`;f}wSr5PMSfldSKX>P|
za)v0G(9kOx**kR{uU}--zw#<l;k6>`u|51oA5}X-C&f<F%C1bCI?0vs`tsM?Uzi_X
zarJ<j<Er5MlY&pAoVhjsZblZ%x6q1jS2#=9Z$0fyIrTmKYRD(uvSsaaa?P6CxHmnV
zYo&8FEZy$OhJ-CoB7FWe&8_57Wk}aEoW9{_>9e3WC9RvcbP4aa>)NFxcz=`j^|Sqx
z?K0O*RF9n<6SUuY&m8`L*?)E%w7zh}nq5})n^OA3<UbWA7vs{(d*(O%IQgGBJn3LH
zww*nuWQ>R!nV6a)kBCkUs}7M4m7Dirh7b3m)LCMEWomg_4{dbK>K3ccTDx@Vd-0`f
z#k3zzWpNUk=NYBJAu?;Hvr}fH(t07LmUM+}pC;VhCYK$nyIkz;hSfr)*B7r|?OOi!
zUZH;VxqB?XBK~Gio>P79?46mv|JL1q+}HBqv$BfN$wxchR-5Nr{CLtg*Sa+7Zr`1$
z6Sd>6WCqzxpC>4<cEnxfk&yhvkD}tg&hF{C_gnS%{oH@v98OB{4em+59M4<)oRA*V
z-Oivl<HKZ+6D>V^mMbeMhv#2;>3cJ4saE*El9VT_M72Li==vL-jPIF{AFPu8g2z%a
zYp2s}rTbzVjh*&+ryr<a^)%6Ht&L{r(hEyYmS%qXyR!Ys$HLj)j-E{Z{<iPFu(;eu
z?KR(*NrXGFY@F|*Ao5SE^O*ka>kczIl3f(rzAFg2u2GItF%vR8qLySV=ndL_V%-^g
zBrl17<MfWh-;WBjcQ_w8{o|jq%L;x)#XlWOj}#_(Z1TJG-1(Qt@0v%u?|skR@BVkv
z-{wE7|E!<Pesc9Ck(a7js-=ndj6dt0iRZ0uW{6R0WPczO|Kn%r&7WWVraG+;Q~#dz
zTfgMXS3^e!0nw%<XL&u%zm)&(Qa_q>v*k);*z_}JbQFT)wLKG)msHkVlYU;gyH~R5
zNsm%s)}^9TTm06|Y<+z~js3mMg^zA#fguk6!%yzcZZ3QNKPZ1f$14#@i{QBGO;W!9
zghYelzDE^{EhzG7vk{vTA{u?_!ISz$POG}Idfql<WoKokHv4hRX0^~_*>CFl`sgyp
znZc)LOXzBBnG&V3VnUtBf7Ph6l$R&JzA_7DzsymU{li@ILULxpv4a`gQu%KMG&1ou
zJQazR`Rw@SypMgw_Npb57sYRQ-F}w2;Z^SHl1&-6x9~_b8t!dawED_%kp&_Fzc0)D
z)sgtMgj;XbA_J};)eo%|cO2tgw&?DLgf2h9e&@A3dL4fp&#5#$IrK$_Yu&uJp*)`M
zQd?tYZR*ZWnQP3N!Z*Ko-opFu*_OZlIqe`%_)6x03(v3Jf9PaZb#c|(-P?|4*hwd;
zEt#(0yRZ0f(3_}ZoA0YC{%Di7dwK3h=fA)Z=b&rLADxy^)-am>WQw??$Zf{0d8fCY
zZ@-;?m{rI3Z{y?1(cD%J8R^l*`riL7ey&hu%)QY%&8AoG$2&uh!%J)bXQZUvwtS+=
zYPOT{-=*V6qwZYw`KPg1g!{x!rgsP3yFGe!*XoG|oKUZ^oV0NZtL_iAKk;WIBywJE
z3I4Lq>+Z@V@daup(%9_}EZSNywdbAvlrMjlt^N2oIKH;v>#eB^r^kJoX7XNb3Wrc&
z<?<Oe0YQP2(kq@my_B<oHK+1&$>gTmC3{7A9A93G&M@TSiEop0;{W%>B8Ej?^6$2}
zy-lZ6Ua;K!@bBnE`zFBx%k^cZt*P9xhjJa6%>93MSs&S+B5xC&*%en_p*nd-P}Y@M
zQ@z-)AF1n&nYct#xO*%2`2^*gS6YwGIyw7>$BU-Al*R75tJcImG56S4zwy+;2=4Q*
zsu)sVXS_<aon3MJn|XOt^vi#zeEmC2nT`5yNQz#W^xwun<m?-E&z+WTT<a!YN-URJ
z`Ppn!<5KoH##~oxKTrOkIjL^@MP{e&^3a1BpI*QItGsyYO?HVT=cZI?zBndwpkNc@
z`lR&NHSE9G536{rE4%!@)7^k6hH*1f-+7~UiI_!^Pjx@4KXI}vpK(NV|HHL2mMRM>
zUpujD^IJ*Dn>T0iRG0bp-@R9S{I3DGw0-S5Bas4kA&p1#)DjN#FrD3>Uw1kCk7dK`
zmIvF_m*xBTUr0{++_2_)#L|=nfmP>tp1T@YO^90KYyaxP{&kE|3+i>RyIh<<b*ogR
z@B)*#7cb8~y)i*=<)w&u?{xojZ(7-0{!MOm(58a5Q{;Yc$<NsE^UOvIwwFtO&e<rF
z5^&0I-Nc_2Wp^*$ES>+2pLffgd9kTGcCR|PdDZK>73D8W{!Tk*G2zX^$@dQ3JpC$&
z;c239_sP@u+WnsV;+-w~pMQ2-x3}Kzg-0(J_)oiVI$yE=$$lH2iy05U`#Z(I`2F|$
zgtTiRrx$(8?drW-{`mCy^>KU6{=IvbK2u?d;Df_VGT+1uzn+>>#ntA2QStv|FVEJO
zH%0zRq-(DXt$LWf_k(oguG^M}SH4UBpt<Sd>RxTRFFTl}Pagboa8vwo5$DVEmL$FR
z*Sd4UOYv$mQ`^pmujCC{oC@cy*_x3eS}gHK*P>#=s_B=C)^|Kn`P<}~9ky}H;o>9%
z;S-|H_pI$#y^s9F=`rbx(}$-=_d6YOx@c%=7F@l1?aJHI%F9{i3jA5fpv_X%KZ8a5
z<bm8RH>SmHU8AY;ddfbr8yZo0uk(I4EsXymapieLQDyVdhRy$M?x!WMPc}IF%ukeW
z{-sG>L9WS02W~C?-*WA_t7hbeN9l*Rw>qaf30gR<4E>dH=cu#kPGR+^)2~e$ydD)5
z-4G2@USDctx<GKwTiL5UGp!3|FRJ=y^z3PgMDz<z^OQmn*_Q6q=MJ-#T2C7q#QgDA
z{n>Df$?e=m1Ae{f_iVK<e(FCFc5Yse{JhgSHF2**Bh|~^%)c0D^v3PglP6a`m=~XX
zdnk8bo9gTb%eaq7<>$#KPm%jR{n}E4?}l$&I8|)F-Dyk8)wzE2<N>yqcO7O;-XJ`6
za-wkL<TDHsHkYq^UF5uKsT;G|{DgJk1a{MB{G2oHeswaC)eP(QPW`*<R1MqDiIr7z
z4BpP^l~ob#Fy=b;T0QHMLx$i9_T!s_ChDjNe)`v(qP=ag@oFP+cCDG~jaOgM6}@}I
zBK(5y>U&is5-s~USNWOu+}_VA>C%5)I%-FiKow)e>@{!0ADo@=PApqqx@FVx?M`lY
zv{~lQU&ij@_vdbm!Neu*9&vX~CIqgq<GJ>G{@(BZ8rN6veaTs8&H402nQP&{Wsmj*
zIImK>&QX!w%eu$!VwL+p%eBX5thasSv*(0Qv!O)R+SZ4UzD?M+)1%t2L3ZB#7(KO9
zzl^oJCBIB)EoNY6RbG0a?$Xo?Pq$qE-eAV{Zt^Gbe9_0wk4vgc#oZ>IKgQr9|1_*H
zqn6`B!{eE)uMQoS5p&86i(Gaoab5E59WT31g=>E45y|)wu9vO%WMAwzu?6QUEq`47
z_JOPJ|4N;tPd`$_J{z!pw2i&vQS<%bH`y@J1w1#-OKvNA^E|<LKBtjp%g3d2u38lH
zFE3u-#Ko06fys8ct76*wf0=yio@&2%EtOumL$0KGbL`iJwO^HMUhCAEt=JJ36U=@6
zN>sLI+P?dBu@CmVI`C7$z+uLFK8dZ7mFJhQx>==V@WD;>eE8$Y(~|#u9xx}pKJ=d{
zdvcK&w#J@08I3(NLqikf#$InEdxc2q_IbWDWtmt`SZoUXKa+#WOW09B(13+QMWsPe
zAWMPq68Ft7n_m81^8H@56UQY*5#Chg72Hf+UA+o70{+Lpm;CeS^PT))k3IMP?>E1h
zZZ>)DPrsk{KF|ApMoU6j*==FKif!vkZtcpttz%tXU2p$C{Mp&U8}H@bJYICIew#<#
zw2AYBPy9ES;OZP{^r~EG*YSV#DH8vi6Gb#9znJ(lx#{1Jqb`3x@>Weab4DV$wdw9l
zVG+ancY7+=ulr&zu<l#QcaBXn?DOw6Sr)(eSjv69fP3{$v2A+Qd;dB!@3qy9`SUIE
z#<{KYvp3$epYreW<wvgd_T1P1%IVqViT%qH>-)VuD(BvoTZxm8O11OOHqWcdeE0uL
z*^ipN`)^%8+FoV;kM)^rV(UcS<n$*ATY7IMZkS#8a8K{mQy$E1hH1wP)Xqet$r#Tw
zOjR=wp6S^mdDz(Bkm<9D@ytNOXJ?GhY(7(b#$ICL%tJn@aS6)|FVCELMkY<~vypLs
zWozVtJ*RY1#0=LPde2yT#wg7)`DBEl_RP>TS;uBY9$u50BN2V9Z)5s3W9b>aXQI!j
z9h-RbOitpQ8Eem&rCD#DeDkP<aW;<xYx0pf3I9UY1l8myNaYxEm}?mBNYjw0lB&xV
z$@{YQqu%55H(7J07fmZ#|7n8I&Z9BcXILh$I{qh5DCLrE*_#{l3fK2)%YFa-BkJ<k
zWoLzVa84B7H{YW6(Y8)jVSk@Z^R6Two8daE_E@yt);BAYne?x4eV^wyKgZ%`)+g4h
zIae(|r=KxC`~RoUug$^p_I{dkxVZ7W?J>T~-r*M=y1Q1lZIa%n>9GC3veDYk!?maS
zrfi<|X>B3rNkf6Ntf4I?SFebdcYf%6?0#g)gx5jSoSWD4uTVbv*DFb2?>pZJ#>Sm3
z2bbE(bOu>H-*wGx?&-67XWFgSS#D4=xo4X?ougY{*IjQ~aj;v{uC=04r;Z->GFfZ&
z-8AO8he@7@4A*v<rs9HUXC~fr;+y{6Uo2tu=X0eSWqxVi@3(u$6KxqBv(R`-t{Hd0
zv>CE-K5BJ4xz958K6rju<Dv2WY2r^)oh7HwkCA=g{!KtsQ=qZO_N&+PZQNno&95?F
zpAkG)f94~_xr+bVrn4T{xcgo8oV!JrH>nF)lm=xqu>`tyTCUtNL*vv5rwy%=c`i!l
z&vh@l*`T4PXuf43>-Pm*+%Ca9_4fnrb;dD;91&TPx<dO}3Ck3v;>gfB;gi@yW6ZX^
z5j}Zi>daor_s-pwj3pJ7jp2JZ>Lkr(GPYFuFV*yDc6s2m`0!#C4s9<jPnV-^qKRh5
zRNT}ZS5$KSkQFR^<etg+((FOH9Dkgw>;=c>EYEuTwSli+hSlC(s%a$rsd2U5N}a_M
zuf~TbyeM_HY;wE)lF?9UW>fIZq!(X4Fz{EIP4x*pcER4(YGK47%@i$ZX1Td@FGT7*
z3YoJ=XIZ`1vWCebJA{`@KU&P@xcmLvyVcD#d%tgAVSOa##OV{Kdp6ydl$<OyU1}cB
z!kCaq7uVnG-!EviNQnDZk@SnrI_VYL@99g`B_GX=TX=f=#p?aHjvrrZy5MhtbM)*C
zt=+cs6hquXTe=QTkeDjsyYI*4sHqY&`6e7_o$eaay>&wPwCJXIn{8oFr=~MJDPFcQ
z$})bn#p=V`H7)*pnAGrk`NNbXhn}<v=^eU}|FviKuw{HPwrk$DsC1%3+!j@})6;G)
z;@sD9xwJp;?w)@_GZkkwg_&Jll(~Xw@=LGR(XHDYIz*nI6kQ|tF-bz@sLJs-@lQmg
zr-{v!o5c2S&Mu>!K5Lp5?^Ne2{_FirQ<?eT@$HPKRL-QGmRb;cY5mMqrq=h{v*yn4
z^PgJV$JKjEYsJ?u4F>fSk8J*P<n;5p9kqWrj@#F)e|{zON6+EH%lX2=Nt?cWb<I1w
zQPi|l^sJJI`t&2ur_Qyy`%SN)-2UcPho-By?{6wpVNBVpWv8eqX)?#3c}jN;pIt)b
zI_32XVi(OkcxLsE*zB@J`Ofj4^0QuidsSg?$+4DY$Hvc_e6!CleAfMeul)2Y=0z%x
z!`^TBmUSV7UrNVU%jaxX_HIVj1GN>`?nW}**XU<Hc#rXw$#;|XDH;s+=a$clvN`&x
zwg24O+U&n-yDKlnMZ}2|SgEV)i?7=GYeQCPK*5ynf8_5U;<Wg=nw|fvrJI}f|K?{u
z!u<357tU$0X1lzHr#{(Q=(DYBy_vwI%Zr^oC4M@K%JXK5B*(FK<|;iCI5tn#^W&{X
zk=Oat-b~zSJfk4#s+xdlch;Y)5%Tr3#l*8jzn9GL+kS;zwk3Yre-|GY{u^^&NS#^8
ztfn=8jZ;?S`Xd$jogtcs6<5TrX?Zi}&!J`C7Ehg?amhdG=Dv+thqEWyuQ~m_-dtVX
zzQ65;P>7t+Q|bNrAE&Rr$f0h#tG{j0y)};dQePjvj@ry^9#-3>Ip6B#kIS3P^TZ~^
zUU27eQ7`B!DAPUqeE;rhem<wl96zJKo=pXM8;rJWT)1n|*4uyQ&J@{qe!|BiGmk8s
zcvX4g{{F7{`;HV&`g)l=S0=1$+lKYlA=2UVBl(xcyq~&RzP>K;E!V{@1}^)SgwDAT
zyF`%v<b0lG(`yc@O>K8(DwroAqqbAyu)>c7^$^qUh=Y?vkDQw<!;o|!^T6uOix#bL
zJ#$cRPIK6;(^sd?oLTah(IB%>oOSZK!1mHF2hPj2T*|$DT06@w+v+B-_|Dzk?<Q<a
zxs&ZZz2iYa*6rntGWCazQtrBKc#>up(=hqMn}d7hj~=aXDcEp7SM`%@*f;g+bKmFu
z{BrK7tY463W%Pz^H@8GQkrliB<;9li_kMpn=(_tWvq#-t@!c7Ar4jY%S9$-L&pMmU
zq$cQmHz&!W*3ehDI^Rxp;pc*VkDgq#Fe<#+y;(u-j<M6J&BaAU3!7H+ujdPBcl%Kl
zzV6U+jaL5!_j1Ii*D6`$l|}4HInBO(-_DDlCsxSJYCh#`IWPNuxB%N~3)|#{XF0M@
zy45e&ExP&QeaN@}JM`OY)c3r<z3;y5f%}*DA6gvUb8nBmj+UZk=wyzG%txYrAGXeL
z$-MYDnsL>l&&i)p2yO{fv=w<e^@;P;%Gij)B@+BAU(Tv1n*JvAsJg4VgTw`IZsCvF
zo8m*I=1=wW-mz!Zj=pc~%U_pky1Ji8b6PH);qs~D>W;v!cNc=c$mbNYFU>Hzz2dUB
z|NZ(6hH+mu>uF5=AQ*ki)ZzZE`pl=#oke|jJY>I<prO8%D_~NL#N^3SM0o-oj-9@`
z>c`<(Jn|o!Jv#3DANziNg^2)*XXZvv&%zM@A7)OiKeVGG{k!!<?kwF^FZoz$Ti&XT
z)f&2Qs#Z*?OVyV8I&}}vb}pBr`}*Z2US}%1bf1gboL?%j^!CEX{-+dwv@z_Gy*@1@
zcCBrpT-DCmuipzfPi)yRi{Zo7$qTPsS#Np3ZPm+Ny}uMLMcQ%nuK#j(V%)*SO{=$`
z_4&wJa?Dfb|H<&J-{OLJUGIOZm5vwX>{ry-wC7^@+OTt%0-7xs9X`Ef(V>Es7X&#r
zn!I$J@ND{zOOqVJA3W3jBb)xn`~IJM>amUG<x}-ecAe<SVO=MjwMumgo62MfzLSL~
zJ2N#Wh^_sWbuV<UsD+Zi;zqTtd@rr-dhcAX{m#Ct&29CL)rY;Z3}x;Mez@9dF?mM!
zky49!Mk}|)3)>X6t<&+_*DkhW!X;+O&tfwjCL4NR`*UDXA-|#eoVrk+Ymf5Q-t4!U
zv&MSm?Uj%JPq^IARqM>FsS>h9?W#o2<f-cfZdM9ptv=H3Jl}O!*Ou;gX+Iaw*w!km
z(myNf<FZY<D=!4Ukw5JAa`L+JC0pYkTR)nnvvJSC1am1KuEQA~d|S4&IZW}8h-~JG
zcKaS(uQ&0q@@s|5>lM$e_<Wf8x^1NU!ow=NLZ;mNpS5D4U0Ykg|H&!7{hPLARvdIy
z=3Trx{;^q+T7Po;-9<LNPop+>+g4ZEy*~K-g><}nda$_jf#@lwr@l#LO#acjHtW?#
zwQHh5CLbBIJ2z_`v%RN(vfn%Xv7i2dM_cafs4~rHxP8QJ<-zbr(KT5MV&7cX*z0`2
z{Za9kw4=M5bG!a06nt#pNxisk^$|mBEBh5G^?pftPK8N^Qyenu>N3OLh0lntX*~Uc
zKjEu4&yKUl@5%;>neg&g8?<b@cqDONeVxjowz~f%({7wxX($^Q$$p^bY(xC7dA|0S
zR=A(5lh0g|b<@7tb@#t3Lj9k<xEbW@p0m<9xs&&l<Lu_C7Zx8@n^nob_llL+C7(B)
zwI>*h=E$tJZ1|QDe!Jzk%WEdaH;JKdp55?eRQ#OCxFS30+_5>$`43`WwDNcRO^wOZ
z-p9Rtq4B;m6SePgPTMf=^841gV!>Ovx-M*K{FbU|6H_=}!&T_Zdx5q?9CbAp`=%Ke
znZLJR61pL^|Etc&N}s=T|32LDbz0-xZ<qF;*>`ba?>X1-wU75tUoFS=_E%Bg;-_=o
zomO44)Ah&UmE1~u*nfU3HPm%9ou$<G|Lxy(TDme%_tkyY3*}Gw`a<V&NMFaKjf;yq
z<H~PnWwe&n_x)dN#?o}K)lXz!=snSWXD6~ZR<Hl}_ps2+{{JG|toNJx$8^TYZ>+iB
zEG%8llX~mTAJgc&nX+EH{$8(;*NUIUQE>Hdgiq(|iOiL!wWf!xis|}Zekk)@%=ekn
zO0yhp&WV}7=E0&RuM(dH@*44nh6r-*TQ_%h_gu~A5>a}wDhF=`o5iy%`qa>+pY8Wc
zNhI#+oNqZXTE7l|d$ZS9&sX#KCGE@Fm$dgbUN&xa3Hfz$?NqK0cP=%3Q{H#$#Oecz
z-!Janm#9&<pxU9H_i2iyr^K_?^vLxsEcz$Cezq9uEvVdo%=0Hp&5k6MWWOoAA&YOg
z&S&LnyKU98^mW*Y@|J6i*96=W8*7e7-LSCC-DvwiUa9W-swEK_*|Hjc_s4wgP!--+
z`Sbbw{gn;EE;UzH>EthP&7JjO=9+7>LKn%->?)hTNcMl{9Mhb%TMz!4Zh5b(K7H}_
zmc27~9JiV4`_5-&$NO2DvseGHooniR>__kAh<^_+d~MIT_gkCm`*dgS8Rm|nA|(sG
z)`iGk`g|fo>Ws{~TPvH7MsR<<BqFrhayyIo@vAegU%zx!^QA|yd)C&rqv9u1lQ;R<
zYPHrg-n9}-e~|ikmg204HMKTVX9WirFN|*6^5D(!;KFYwY>%V`eE+x8@8x9a@&K3F
z3#(JN%Q8J#F0$;|Bz^hyfvVzaAuN{*O|_I_np)oMSfldi(|OZXb9Vgch_Y&&78+t_
zxO}1Tx7~V&9+x&-ED&?sGxzWF5ToiVJI@LTPB#B?Svl};`%6R5*DH=nM;Tkaaeei}
zVCNoRiG)<~j?<ne9$j#+O#VFmNvrMU1E;pDZHm)re%92ZcjEks73Xx$YFs>TBtQRq
zr0T@0D^m`c%{cmT<F)rU|7n#u=HGj1*0+7lSIfzD5<AjnRcbl>(+mjWxG8?_qv|`s
zb5$R6-dBCd<=nOZ-J#5zGNtVKnHMV>))jr-%TdcR$Ke0+=SO89$h>=bc;VZGKViyR
zPg3gjq`4Hg><%;UaF6XfzWuUM(4QZ+pQda~Te~fG@0rK<ByWZ5$M5=ZZ>@LO`mQSN
z`5B_-r4l!m*M}??nDtk|v!`XpmLnIIyx1^TyCHhZr(fICX9aeizqW_>V^Ev>)Mauz
ze$DEdHaqy>%!oXN^STO;_swog(~$kMGD%~i{Ht2?!)|l3*KR(xvt~=og=Ovg+)Abu
z-`sEM_iS^V?z*Sd8qFGMXVvx`NuSvHJ^i2Fw*woOJrnDTf6q5d`H^qgf-NUvYJ4A9
zn_KF~?aMmcyH9>y{O-D~)sq+7$?W*_QMAS@`<VQM@4W5K?vt+^+3;ZP?8kpIwKv#E
z|1@oXeq)x_3#YQX{!cQE%C7MkIX>Fm@lyYCpu^Rdzj+^N%~6`5we8EZr{(LJr#8H5
z5@)OOSTCj?C~)g#-JfFt+a}%@T(^gDV!qD(ud8;XwiPKT*oOais#@MZN&KsFZi>~n
zMK4$UGO#^+?<Ygl(J4)}bFY>@J-bMgbAOYz-o9$q`+FW$A6@e_XvR6m_Uux|=|Ls=
zv5(Y^iq@?WdUfcQS@*^bwzbpMkIy!k=qeYwyJ7a`Q<FBmpU1U+lR;m&!N!Rn4?f_Q
zTl%U=qR)TMjzf~y9CWsS*#5P|qw>}Ed+S~5T3Jh4=ij|0GWU7VZ?1yXH(5H`TFz*A
zG|dR=n=d3CJu8lz;pWVxH(Mh!+naYaRu_C;Y}YwIpL6X;UBR=aN59@wmE6hxN{G90
z^$P90i6^3xG%ViSd%NZ4(=V(O_fISSc%<|5dzsriU0vD)61P8{CuywHKVM+srUiTV
z?pnBqA&=>L`>_oL3;OFUc&gpGeluxJy)q@dELr6D>1&U@k8XYNMpEq9!(abd|IWI*
zSmY<uwvhS7Rhzd+hi|sOZ&mZoY2|;mi7oG>?<`mQ8(Pe^ZW3Ghw`=FqUi{oVweR{V
z>$Z?5B73Ym!i-X{)JaW_Gpd{7V_~cz|FbfsD@NOd{ra!p?CigPUuQEnzkbcE+j)ni
zcj0E1@|;&UTdaAW&QavH)2Za#exWlk^Nyw0+H<n1dXbwt&X^s$&*r>M_Tlz-b!Wc?
z=9rhWgx|JLx8L2GeDZYj=JO4820vGyxLVHneIa|`la~)yEtzUD>G1NEK4NZj`(HRq
z^()VvQC+a+-_i2Zs?4*l#U4pnHDlsj{a;PlTmJ7`(fn^}+ymZyvkoNm{kK_bDsrgt
zbK3kZ#+O!?@Jrt6t#1B!IaMWQ@sr)Z`{vn2g-a!B3-uc1RGiNH|8&v+f|DJynIje@
z-`&qFygs{q)82a3CHMX}sP23E-{G>t+PEu;&34DDp3O7)E;#pC&$E3VYJ&fM-^^%W
zyZ^r-ZBgkwgX{N-j&l9J&A)$d+1q38;knNP*#fdZrq(L*{HSwk7qg1{`kn89eU_*8
z-T&8xGX8DP+r8=kLgf!>%C?CX*%t2YZB{?J=BvA(N^X5MBf0zN+6{VlF7{ckcw#T<
z(tVKQkDdBnZ@0#cB_cC;zczp1z90LK@p!jnqv%5316RYQoAau_Qq~R2;(dD8!n2`X
zaN#lQbl;7q^s9Xh_nbA|w!K!rj&bR}NJdG)nS!~_uY%2W?1D`)J9lT7IZNcq=Cka5
zr+4u5epj0dCF(U|ywMis=IbjT`P~RvvTt(C%peg16^nGfS7(_t&TG7TRknY^HJ{5y
z`~P+uGt1R_bT=QfoB!@^nu)O1!efWEZB?9nwwHHsGv!&%$)8{#C*EJRYx@tq-zn#6
z|6ZMFSJ1y?(`LJp{gtmjKdyb0kp4#YuGnI?TaOGb{$XvMr*r@BsYw#=mtMH2mvr~O
zWxvRV%_WWIM;8}t*|2)%<MOnM>kg^~&T}tqQF1Z6sP(GwcI=%rjpe8Gd9MDRF>!8I
zT4&Q8HLg9mcWhP}_DU))2osz7Bypp<Z0o^2T(1_aXnxiBK4h(P$%Ida^Db+hDm-4!
zd_>J(IEq;@M#am_W`fkpX04U8@4B6nT)tVe_u}%TzPA0-qn<DpmRwG14i^3{WT-l&
zZ<k-ixgFIXUiu2Ocplz<JwQ0zBfcyk?24d)JyRs>)LU)Ul1n4E#<0zPe8u%xin@q<
zh?8N7V_0R`ThTYcTlr2V)^3|!U|o3Rt@w-CvU$t3YzjLnzi)b?8PgH+RZ2e5{n#(V
z!%aIqqYVF^jqj0eUuq;-A!Hcw%00qFQGZfr%EFIv)AB1m)yo*qaQYkZ&(!aQvT)De
z=624CGYz7v+zxMfeKE)Utx?oww>xgv?zv{)IcER){kL@0k3D7HT>f7!_H%@OH0=y6
zHVnM_VSj#@ba(KH$8Rh=SPj?%_KU4uw)g(|i?+I2bDQTh33YDI;aDHi{pTaI;6p||
z_U~oh_J=(~QpF#h{?w;Fdsjqv`q%Xf-5#oJSz-Lh^;3+POp_U(xYk0&uPc&YZ*1Gt
z*TdH5*L;D&ebXmx{`;rju;^{K+CFcWnBH2pMIC(+6XvnpJ}|%9mGhmzQ@NLNTXpA7
z3ku2zT998`weZS}zOE~0&dNkCTGDj%=brl;7nBR1XK+90@ICPVR^fT2;&S^})_f|x
zJU?G+e$C!5_O(a7MH(avlM>hrPx!ok_<>i|<gn-RX|la#H{}kvUiieh!fWAf)n$S8
zdn}w5-;91%Ym+g#{Fa}`!;Y;&e-6y`@s=*QxSUaIN&bW1uQr`GE_$eAQv7|Y33qDy
zDgLQ*Pp**fnRf1~>!(vnF=10;k94WI_5FK%>`AY2V`1`EwOt$APZt}1vA4W>bLZn@
zrPor@o~MSSitM`_Xpy%k=J%C)=At4IeXi8Jlw!yQL#cTw`AJz^#^#n}%^O%6BhMSO
zR&qLog#P{~%l7V$NZ`&s-f7>1vZh6+%!*pc@ve(oOSA2iQPUd(gEzm=SvSA2KCIQD
z#MQNX(K5AXGj{eq`!scDNKjN=?ekj;|9`hW%)?XrwYGjDcltA(_m$^A+nq0F6HLwX
z>vUNZE*l#g6RtmF$DNa!8U`89Qqp&p@7Q0x;@?{Smg^c1OD7uK@_BHCDgWMQ&3*rj
zo_){hz9^!4O44uMmHq9n=9jm<oL_vh`F^r*WQWU_<#h`u1~0#H)3=z1tB>pMv$w)&
z)>qHH`+IWo$>M2i-KVTQEOLA4yLokvf?WG^x4mnO+vdI8!gph=ponAKowVO&0Snf)
z-#LD_es%7Ju-jWdeckr@nodDn^6nFrPj`i8-<$bK{-D%s?ItJYJAXZM4&N8(U3|}M
zzER4yjCn_eE*2H1f9Ad7cB=Q5&rahyv4uW5oY#AVf=#}1nRZC|L<TvpSa`)C%Ocfx
z;}s4suihnbOH-!sns!z7R?U5+F|TT}lymRWV}bdBk5_VDamg|=ZLONVY4N?q_m(dU
zyu6Zsh2)j?E61<MoSIj(KxXC7D@<96TRWnBbQewwI<2Xm#kzG;l<V4M*8;LvmQLaR
z%DHvkEr*@o+_v555ej^^Bza@TJdNNlQ*WkizMJNMWXp}XIjZ~8-(@AHJ<R?%<=X;(
z54%ZkCfOt`GYstcHg)HE8Tl{o7Hl~<>0oB_Zk^*1Zak8vOYV8)JT)x&bK&)2HU86*
z-;#FR|FG;K|C+OFx!2UEU*C93aI(9Ihx5|&ZtG+!zlXlNT5QA~IqA*+n?HJl`ne=Z
z-*3ISKDP31>XxG!>n}D$tzih<uf=+tL-3Q^6p2`2Kkuv0?-or~U^Poy5ia(4x6#x+
zTD#?5IWVs(TP9)cHCyy6BO{lqgTvlMJ9qBeH*>So`Kd1~W+uP*Tz&qihR+YLUFu7e
zbd)sCwQC=b4iS8{A#KA=)>l=bmd!B}rf)G_p`)auk|teQy*X+n*L_yAvkTS*XG*M|
zIep?Aqf>i$rf)vEy)^s!%60com|IVBvO5&{GI#y?nCm|+&OX0UzT)QF?7sPVZ+D$q
zxI=#Fns*_!E|ntUOqvrjH&#5CFHVu{jC?uaSWCFu^&;L0>rd*s?T)iLu}yq+v0}gF
z#n0U#>h`-29<6R&{P>>ea=$HeuNMALU+Az))5ylua@D_t_GNbaR~Q|c>|9;VwPZH$
z`ZAeISDuN7Y2LBaR)2b0Yg2ah+=zl-E?iSPe`enPxFntH3*Vi_zm?{EFTTZEUa2ec
z_iWtNq7yMIX6c8cvp;Ig>E{;sc{3<JBJ`HM?`prEI``*GRxsqdEv`8{Y0+Z~k2Bs{
zKH1!Fr<9+$w{=yGp-y|JU4_ZCo32NfFLCA(4i|~N-sDj~#lO!n$KuqA?4*OTKfM>)
zY&BTOFnjLQzg5dr)~{j6$|=+6PTrYv;v8T9{4H+NnkBkrIj3@^=F~7uZ=P8=|F~$%
zs^9}^VKXHTHE&W`Yx4DI)Xf`PIWr427i{5N>8bOa%W>%{-M=4=Bh}J$oV*sj&OYTm
zd#BG4o5<bDVZ1*Rg5!esG;jYE*%@}<X|<<~;PxX<N;e~S%LrMVQJkmOR<=|8glG5h
zJt`Cbyt>M!YNMoUCAjC-t%Yk_zBtcWGULyw=!cG8m#TbQVkXX&_?tcbOVjg%z0pp8
z_xycT!&mG&VezTZqo+j|#(g|Fb7H2zIhSyk@V7tT@=PjVd9?R&obcj&eedtTO@CIf
z{rp++jxX!({Vlt<>i=%Kf7<X;+@BUFuaYXIeZSkAbxhTy6<PyBj)w{U5eX6cb4T^Z
z$@Kw@A_ifeQHsvmR?9BWpR?e~{5h8;zG!Vb@FgOrd3w@v@gJcnjW6OS@<yFHt2^z{
z#?uDI>EDWuEZF$stp4ux@&AjI<eZhRa3$$(Qkv<dZd`jwDVMXsB5zfI$8_h(`pa9k
z{P?ouZ15eUKbs$IN)}dV@;ni2R(yOxa(brWW#htCDrN#TwX+xYxc@Bq>6h{FYw@wn
zwf?2~R}@?O_NunXOfmB^3DBSJJfrC_*RQJUbJtCqn{I8tn}uJ}B;!x6&79=ij|=#p
z*Bsb<c-tFKz2`UHXG>{ERcLtXd+V*ZQ@-G(i9z|g-De*p&ilMd^z}ybdHUV{K9?U~
zC|93S{6g?<P{@T-lg}*JqCau-wO;|>AHD0n+g|$C%3RiZqR^s?HJWoccYG=Qz3|z!
z;18C?)#p@w9v|$REn{(Q&ZpJgw+>FM>oqm)wFyaklJ?~7y+T2*hMh$b?~Xd>91D~G
zf8fFbo&9UBN?yGA;QWT?!nLzcT$26L?ff}5d~NZj$Bz@)PV}!TPN{TV5GHPzQ>V0|
zXq&mqHP*Hk*ZkSPuCVgDudo07_xmrEzl%iU)GPPjR24ItID3mKN0KG`7w*04I}4<r
z`?otqmF*F7PjH+j!ymaI<xlbB+ZIdYwomHgRI|));gZu`sx7r}sj5WMkE#1(mY<$|
zg7HDCZqOTl<@zr-oaXcQitTkj=e*suJ*Z?&zd+NRrTc5Xi10u9bI>-q*rIvbLYL0E
z6?Sa%wjSPUQhm}~^Jx3=tCKP~GM{QG<X0yqMjl;vZTEpYc6$nb?rGId|0K6zpV6k;
z-`|>oG}6m7SBc0(ONa@*w*7ls^#sqx^YTiD`Kl%p1*EoQ?7H^r$@Y%_VgGVh*>SK&
zsk=T}*>7;xmwCE>@MV*XKmOD69Zf@)imNYQzEs_T>98EfTCVK8YggXbJS|OAs+)VE
zU-Vwb<%<to@5)q*&a~g%uk&-~%}f2$Ev>EA{rj|hvv^<p{<^xaIp<bIXqIHTwwD~|
zT(h`!cH5Un)+Jf4DuNPjd|e)O-6}#Nxw!%1=NHCEZJsf|TbwcOs7lkG-1)1vHU*bn
z|9j)#2cAv4YBw)kx<Nsm-)lx(N9M&SCd0d2vRbPAWkQY97mMWS+P#jr8+x}?V#}Gk
zlI0#7ob7&8h_Sy{{CMpWPut#C0vl6I&!no^Z*x|@c;a|}{ew3b>|XxbI{S^~wxe}#
zA5K<3C$qEibI)zIeKPN->XjGGJGt?kaoC*Km*T97pPyS=+THte&N}~<FP6M(uv?ro
z>5Tpo4c6K5wbIc&Gh5peJ|6xqaMrdV*!}b8M;|ZTEGwJ9XtzKoeZht;ixgMsDJTR<
z?)cVlI={o&`69=bzWM*QmK+V*-ums_{QG<ApMEh_(K{Sdpx?UirJ9uU|9{&34<A3P
ze`=<j`>l8DU;X6bkF_svUN|hhw~1-5MThQ<0!8hE+9o<0cDlxDQ#bgQRBl=J?`C?3
zqR{4N*Um;SGCMfcV3$G6t#_UsT>pKJS2j)G!`oHy#X9zin}oE#N&aMKq4xUalb^KQ
z{r-CA%k*72_FF!OU7z9<*YaYGfv*mWz^#^9Kbn@*)bQs{Jt}^TnL$`mQrPXua+9SN
zqFW!i8r|s<S6_DQwW@}X@ZyIIUJJJfymS|NI#tZc)Y<Fj#xMza#VjGFqfTZEF9_T?
z_VA!nXi>EVOLMQii}NP&ZEsdi%H=kk^fbRDvN-=P+o!Ajx)(xr-8!da@WVg<(~U+E
zt+bbiwoUe!SlkhKF)KCBBW^;StH=^py{OmjRwB!yS10px8@@=^yc1J=aN{GVvlAy5
zOx(HikDl4%0v1{EggM*xxi2)>DsUl3Vv&7)$?W+Jx0cS{8-DiDJq5l@jkEW5EidGH
zlKsK%<+9w>%L*$bxSW(Tul=dKc}3vf0^4isB`<EQ-D&l$T9NOp+OjSc8@@xvn+^pT
z{te6GF?e6sqVa{T>h-_w_Z8oMT3S2}%bG7dQTQ^GkMx!73X`a$DKmPeaJ<*uy?sgr
zLvw0`Pgjj%T+5jc8A-Y?-0%Onuv&v_?TbFXsS~pN9F{MA@%LrN2gdfjFJ1^Ji)U4d
zOk_*D!#LIE)1rxIorMmV)V=f2DLgh!MfyEgm%53OeY1N~l)d)J$1b{2>$m<3Y+qCQ
zyX19A&YTI=0lzM2gm-!5aq2lUo``zHE13Ih$4>QQ-<9@Q=JZ~>yhhtA(qFoxWlyd1
zCiRsUroWcVQF?hy&b1)FJALvO{enZ%ZX1<eS7%LZzxHeAyH3A#w^t|EiwCu&WZqXf
z>^s@yy9N{6hksMz)?V#4-7i>q=}paFM#EnUoin~Z``+1-`ekC#njm?des?AQDRv4$
z$zg#<7#_+iYsAe+JNElUU1|Nr#S+O`3v1oh`d`Z4`y$A^=z_GM?Rg>1M<0Zo!xx?T
z^LAc&Mn^-3LTX7&#U_1~hTT>>vZ~|Gm90qla!Nu%P;kSKPt(Nj+t~dwR`<!9@<Q}%
zffdumwe>Fpn)-T0CVf2~#JpAI>qD<19nPjj!Iz}76a;l`?ux{C_aEB6{pjYIzr-yP
zJ?i(hns0p?b#ba*%C)akIPwd-?H&mD1$dO1NR{uM)z=W<F~RyVt5L&)$jpB}W^=b$
z?^Q~?FSNyT+MOvuuQ<<S9j@x#(EL8o!|9jT_ddny6u-C+L7qj<#X{Xo>mCV2`gtw<
zpQpj%n>SHy{TIcoFi}HWx&M|II7(lu$7a-p`-rd9yYPI<n+ej%UYWk<ujNEl3SJSM
z|1hx0MQpo0&!NUhgAMIYnOTzkA@kLjZU}X~uG7Bel_}5cZnv)<r);tl*>7y<p1mqW
zcF%-Z<(Kx6NrvZN1uQ*xVCo9zn;qegL?0gf!SHScr<?Z0u3K&;4YQ*)TCXO|-=bLP
zobqD#2S$x7p?;M)E!72ldWU~LN?w}&UF2@V?+X&)yJl(LVc|}Q)o-`V2<!^`viRP#
z7p_&?zPSHB{zH^c`~R{so(=Muo2(C>Xe<zws`>j{{ZGu)D@SWTs^rOd{cL@AZ~uW%
z`F~Pt*Y7*9@*dM~xANfd<;7R0zKn>DUbrxNmpVhx4iS!)9Q!t3AD^?I`nX$_k6Y~E
z_^G+o^Q+<3Q(SGa8TC5~?|UYR?Vnpa|A*?H5B5Q4ZUwO|xEahQZRPPlD4*$OZ|C0U
z%UtG}zm&>ocs5~|2M4o%+u55;-3OLmTz+o9sxR{y@!r_>%0G&~JYPL~_eXBKKxNEA
z`BIDBUuWI4(ESynZB;6|HBMCcxtqs6<!2M}SMRxN|GzowIM>WQH;T<=Qu}0Wi&~w9
zG-l6wJzqM8-L+Qdv{Zzd)T7|ZwTryAznSA45oS_-E<|ol^d7Fs{5#(J>=xW>?^$NI
zPi3>+9;0P8Gb*B|>%M+tS$^Qrp)K<_o8G*7uj;sn)Y0THA#O+A7|xJqB3os@URRT4
zfAnCzZOsk$OZ#8-P1H9$xVH0HPR9QqTh{)u@wERw$K`O9h&1~h**EMTBsUr#X8Say
zF?rqV0G*lJ_svgs<8$DwbLo%&*V%pg)4B8~S_um##7+6L^SZE9f5oSNo74T}6g1oC
zeF^M6sGZf~vN7O7cwX|$8wy5!GSc?)@4Mrd&zZRIsM>75_W}3%-<P<sr<~<=+i!EN
zp;LB4_k+#Lx13llCUtO`VAjGFvb`c+sk_U*h;M7m{rt82%cb1;aiJd<>izTHcGmx+
za`qB4_W7Up$^MzSCab+roO#CfF1N=YGP(BzXufP$a-6&Jz(uD^%yYM`FcLcD^VVB>
zQ=UMid0z8HHvgK;X0=Oy`{ebPSKs|7->q`HYf`kumOBL#Ur5hhAiP-LW~sio<hjWu
z@6Y;9u6x;8f8#+X^R3gpA>Fxooh=QX$GX3Z-YU7c&q-SE+RIy_QD1gmn{_8?YE{$v
z+>7qw$4@F+s%Kg^KbiE~JO9DO`F*XH2WNdq^JDH+eYH1WLD1Ay-Jw$hn9l5Nj=uhB
z+mFcsHdE4tpT|aio3oo)eU>-3<h6ar_A7suFzEgDB-uShja9X!($y$urT>)hG8=={
zHc{U{7I4ipRdzc%p&($oSZCEw58p{syZ$WAIB{kEM$7M-6)x56h8c~C|3CXou(~kW
z*WGc2+=|dU>l(hja9$#F<b0ijPN8gB_cYxZ+rR$feAo5l&d<l<`>gh7SS^o#HYu#c
zx4mZf(I)*xOSWEY^-7xiNWoGkYje8N$}Kaw_tg{>ea}znn;S55>g>6b*Pd!iDNXP#
zVKz8B>(;U8<O96=F|9lKH$1((y`#Fm`1@tAWT*45z9;N;-_LFqwj#q&q`Q5B?|;=Y
zo5r%+ujfhoa5(<?mU8A(j@GuSKYT`y{T$u@o>QB2M4`jx#N8LFv2y;-#!GX$H{U+~
ztvftpfAxy1arX5^e{bE>-8g-MYU0ZEfiK@O?(S+^@@C104&Qa2bq^T$jwkI)yI>d<
z%%6Lr=;HT?u692O|92kE^Lt&_FTU8mFZ)6I;=-U9r|I>j|60W49Pc*m;oa+XaiwcB
zr@-`y#gUpa)9VbGlb)R^nSW-dpGiogT-Dtj#fKQGqtgp+RJqM;u)6qwu|U42Wnaab
z70stV-WCjJ^*P(ub(dws#OW8#cpukWxOMuP+4^iRr^ULQ+Z8K*@@Zbn-T<Wt@A6i&
zwa=Rpy}SH9istRfvo#QYc6Ro$=J<{Nz8r`5c`iMo&f+Y<GL2>G5u-P)F6FKZw09W2
zSI$yRIw}73XSs~cjN6&JZ5>SYwF|5d_ien-bG)H_(wv&oywo7?J9P=W^6yj}aL)d-
zj>Wgs@Ze4>|G=ppA&cS`uYA67^4c%L-_PpFM7!kPxKsG+%fde4x$N6_eE5IJ<JH3#
zcJq?O)%ThHe^4iP>${xA(xh`2?kg7m*l;~dYJuZ}+;z;dzx{<R0xbUK9DW#i$L7Y1
znNyA|SX$p)+<Kfra$eS?M1H5c{`qfh3zyi`h_;LF6EeH(!Y2H}PT$?{gVv%o6Zsd}
zUD_zlQoi_M4fkCW2I2jd2V%Pl)az0mey@1wbmZ1U^Ojfpe+t}a5SXRla;0^eP<(jG
zohXIg<BH33OgFha6VqL`;$zC?yjdAGocj|Sck%9yON;tm(4Ta<K|^h(N!I1kU*Akq
z8jnYQk+%5a^*`-*=e_$oylwWZ|M%evqcGq5zy}YRZ^eJFcGxsmH0t%_*p6%e)BCwY
zQ`A_06lypIv7h*3drsUY$$6XWJ6<hbl_Sq)Ka)SRq5Sf!LkeON_RR9v59i61d;JkP
z_V~xS0HzcvIZLk_kH7QF-HZ<w**5R+#Ys!{Y3=&8-0%P5Zp|}xF0wz?cO<PhNuO5z
zZ)T0vfA$48+WzY=;jyW5YtQnS*Zd_W*Yu}lnt}08T_?@M^Zi^*7R|SFJ-l=0&mimN
zKl}Rp!sYFERD67Owfpq)!Z3?1-(QtqldxCxzIork?)F}LnJM*pEvx=ZZP)&5FVY~J
zc&TCEk-G|!&VBwjwzsM@PBU|nopE+A_v;uZ=b34o)khn|Cw5*c*-`wCp-J0p?b&U6
z93Qm1Y|k$*&RV~03Ri+u)~d2sn^|tH-*UnyyEeAFYpaW(&BU!DuY$jwDz7rDeyXbx
z8M0>)$2X&^Uv<y#aG&sac~{VHQ-_Tg?aCzYBugw&PgzzOQYrNR)C0?h#x)f)KAoTO
z{*j;heJ=%(=eqnej#)OQ_kQ~PrK@L>!{X>UT8Y8cZ<7Q=o{E^x|MHh-m1o(rEB`jE
z|IWav$lJTYZF0#kmkrOFw52rf3Ui!{;ZRXaZ8uso;pszJ9riT2IV&Ge6!JB$_3B)H
zcOkF%#|s+o7SB|Z{K4M0#Bk~DZ=yRn>@UUbNxO2?@2_S2RoM$0|1l?2ea;Ul)IKZs
z?}lQS9edfkCjoEccM7b2S+39auX#mEbY*kfij=$r+bPV+S3Fm9Ep=G2!jVImJL{qE
z;-^VI!dEUPe`qy)(d2rU!70f{Zq-D$XFp~KRoY%@@a4VYoGESOe*c72Z)y6B{Z1b0
z-^2g@*~?>m!sMUE+qT;}n_ix2yK!#G-HppHYj10kF<O*-z1{D;*Qp-G>o<E>+<o+d
z!BxgZ`g8d4`NzM1emZMS)dowB+uo=AO>F|Et}yNC3R8XZ`<lg++#7PY8AAiuf4+Tw
z(LSYAO-q1N(rw@5%M}uvoRdtBCC&G2`~B?($JIZNzKhvzTJa`+zTv}Ny;pSQn%fhs
zyVo-B2uxDAufXwqzuOmEpJ<Kd-xiIACz?h3F4U)OaLuj_IL;<rB+qeCM(py%U*1wF
ztCX~ZKN(9e5W4o5b5q3j52~39RitO8W`@djMD-p!ed??9Y0Wd5T1{Th&M&@vRdCjp
zJ!{mAq;5W{pCr9kOP0aN+0Lu4>z<g<Hq*@k%BSzi#;s#evry7%NYAz@&wux1U)#Cp
z(&-md64$Pobcg5Dm7}-2xfY&!k?o>hk|Dlu!-nQd#moHX))XvciFI>7b$S7VSMIk~
zCz1C3<}r)yOk)?n3S7hzf6P7Uu>$L(+-+tKqV4|-tO_3A|E84Jc`-8n<>|;t|Mu7X
zHT1spf4bi4B}xZ3a-7vXA9(SO!so4y)7C$U=3_d2@RsAQgSow0pZw>pUUg1$!<HOv
z&A_K3D?_A0Cnls>wnQ6e-P!N{N8X1!Q5nlLgoPm)(-0;`hDONK5J$r+LxQjGvKO?F
z6U|ihmEQB#@`hFD>aA<HmQ}4)J|`R@D9D;3*W{y^(xRgBK~+VuO-1F*W;U0=g=;Mw
zO|w=Pu9AJXJ8tXht(P~I-`)0m%kka!ZZqm`d;N7^{k<stlUCVJ=hW`|`@8P<_Wk#_
zSGpu99DMw7-i-~Z7niNQxcT~;SnX3{dkyl>o%-|R%odmbi~lFgSGlpgLdUi(mFdO@
zhhNWDHMIQak}LK<`Lpilk8tM;!7K;6XFl0)_laYl(0#jC`}g(f_itRta`JI6uip*b
zz+>u9)I`<xT9n`0^V8eKa?+hGQ?C5^ApZPpb>=ylnp#sEN1=Tcc|TVDIKng0LSI?e
z#;!X2$Euy#&)e1ucYZv(<-^QHZ$7jvx$@)8lY+paijbg^AJ0yt&Q?0CY_|6P9>q^L
zch(>H_u#!%U|v{_nwxnh*GC@1-Wkq&9CRM8Rk<c8-Qm0E>=8btd8ar|@lN?5W$?z(
zMZr->(M7{hw12LvO~3nomow^O0{Oz-ovKHIk|a0I=}-t0(C!QcUBlM5S<d~Ihl^0)
zk+es$N!)_YIgej<yiDeh;}bhtJ*T{>JpIffLuST94M!TJ8wDHpv&bsVSG_*r`Y}DZ
z*9)fws2@Mt^E+!#;h|t*JMKE&AHO@d3g@?pv@dWk>HqWk;@-(={=Za0j>os#C>DG_
z?o>8)Mmtv>N5b|^>a0`Cnk9Wg_HME4zUJuEs`V`QU3Ow?oIdLUm$eU;NH3IH^EO27
zds9OGyv+eBr%s>Anq<1I)a3nAXDP0W+S4z5@y=+R@xA<-%z=0AhE4B60xktU(KNAr
zp_2K&Ew9G;Xvc|W`>3n~4AVA5&5ZVW-srYQ`|hb$&h$SoCx?5aN-bGd);w2IW$})e
zj)6;zN`JVSUUr=JO#M8oYUqQoE0@j&gl2D&cTPOCyT0gu{*t}iyCn5k){6XaJ}bc{
zvFU?O)i0e(^Igx+;dRaDi<R|~-eY!Re|yBYbq^x)@@tMvTiGp~wViK{^q+6VQlUIt
zcRt;6+Qng_)%z;$%Kk7;Q?I>ZS3)LwN4Z~joVxeaF}J^)qB3qKZ))hBRs4R>gPbaN
zsk8O<zE9>{zgD$r_c`9Wzu|4(Nxn_IA1?}}y3T$Y@_r@Tto196w7Dfsp2tm1C{9XI
zJR2XhD1Xb`H?lb!LdB*SD6aS^#NWE{Gt-U3FSg825j`7Q>kwetysl40f+?=-(9HU4
zA8+W&Iac#&yl7Ps+F;gvGvgr7>@R1PqS&IgMoAi4d#P*bYlV9|IBM!%GP}juuEoA<
z`MqjKi`i42I_z4(E5l<n(RA&DM5mCrYp<UEy)1s9?xddJmj&s(Q{A*f+Co>~W!)lj
zYKvCoN}*FzH<_H*yKc5%N9!G?JaO^ktuZtDG)zA8RXuW9dnxR|3J0!PheY%WmZ>nW
z2%l{CU%HC>VumD_<SW03!woz3Fl`AbV~@xXx9ACdJH=je=k()Jdh8p*Z`^E(UYQ|d
zKJnQl&zpHXn>oKdY~8EQe@d?L?z?tb??pc|)V$oHXD&U;lqcq1AQ&TIJKIHZjm?W_
zA=ZeU?!hzI7w%867vIut5PRp~#0CHE)GM?fE=rc~s%}`5$=p9bGVPa#j>)u=k{^;%
zoL^51{|l&lw!CN0wVwHfkKd)ThE8}Lxptj9ub{v*3#m)CM&8F>?6K!%|8h97%hP1u
zSuUdq>F+YNxp_7@3#2JaALP5Xw<0q3(B8uZe~K5I#w|HM^GfW;^#RKs#QZ7kTVQ!J
z<HoXyos;BGxf#szwfm_TCEOyXdNIDv?V!D}w@OpT()Ip}=c}DpsJ-C-Bz@kE84oKj
z{oNl>wrTyj?SG8^yKj4M?f5${;BrwwgO&f>wHgzcLZkA^i~_RPl*w(EUALx9%3|K7
z$h<#Gp5GAN;Sd{dZ_@qj+8=Aa3oY%Q7M+)x^Crk&OL>>(u<q8<$y$#b_=;Yw6<#Ga
ztNwY`^|fqimeL9lyK|lve-Zk`B3IY?=k-0=kNhRwaX&ep#&RUYX3S>L%dfBR&UWiA
zXwRK3>lc*1uBK%1f99u7QcIpjT?n}OHo*0|)7F!h_Q?B+_Pv-Rb*<9yo>kP;Z6VP?
zVVf4`@AYgcwJUrzXC{x$XWxGZFL56|WEVQ0>ssJxaot(_tropgmO67xD%q6P&3mbD
z`0SG_9GRpzSvl|2ly-(*I<ezG($+VI60*Hhryaa8`vDVIYi)beKIyi;a1q}RtbacJ
z$^TVTGi9;cC((DS|Ln|nThq27SCV}%Pl)v0Ww&m>NKZVkQC(m2*t?WXq(LobUHMPl
zU+Fu3JHPJVF1YJIoA9B%b)Co8J!nyGowNJXf@ilROHy~tGgge!-_=$aD9(H%&LlKp
zRfgYU*9GCLHkY_=@-Pf|)TPGF9H#uQu49f<Ft3DR^VcAELtVC|A@Q>|+TRUn*{Qtj
z!Q7K)?6!SmGG=)%xAEqgQ_ET=8!-5`uj#Yu|11(wsOad=y<_A0f-ApdXLa*xykMJE
zu<W>`xO+c?qoc&>$>M=_dcILtG=EsVT5SH(#ADj>=dy0=x!twoO?~dg1Wl}sFLZw5
z^o}jfiKlBr=DptOg`HeZ!Gg~E=3Ew^T=UL+%DBnS9&kZi<HMzc*Ou^pX<jq`)50(7
znQmOmW-1SyJ0+~qZT01D)t5?nJbpEbe|jqJ|F4+5l6Ctzz3Wq^u2AehwKCkK#B9qO
z`;Biu2>BgoEvkPgA!TN!^6s?FlnNQEh0=YJzvk$DR^21Lvi%a*Q4#(>`67!q=G=LI
zsV281`Rhc_J97lL9sb9EW8NFrg%V<Kou%&2FZ!URu;^&Qie#H7susJSH~ikbZdLIG
zhq-<4;?MXV`uTZhrp51HE!*z?z5V;)f%lv1MQ^ft&kx(@lRok8{J6?`juq>cJ-Qn)
z-8F98>29^k%D?f8-tXf{(BIU~vNv;H_{)_GIyCMs^E5YKVHTwAcJv?P&d%Q<XL`@h
z+{$}sN<dnGw69pQ>Xm@GmD?V@Idu1CVeKORm)QkBf}`7CcdWgCtDf(#)*jPcrT0|M
zz71{n;qzX7vsOSOIJ&iuaqc=E>$JMu!r<&;XYse}ZE@chb>F+tZTI10eL{R)a0Ang
z6M|RUc~{3V8SV6&ba8gT)b>#OY21$vSymmJ$r~=o|HWe0EZ3L`0n5)+G(S!(4sqOg
zF(7lrk=23vYtNrOsedA-mit$RiL77!dkept7uPpw>K8kDXZ$-O+xqvoz<V{R;>rV}
zGf(_cn;TGaJN)6}+3r^-Gh4YvPJA<WP7l+9DNn=L*NG);DG&N%T^)7LnMq>Fx?^SQ
zmzp~}<!$_9Q1$q{%2ofOh2I_2+lwx=cE)m<-{qU8=6#yc<g-RpyT^iEx~!EvM~)Tt
zYh2dc7pbi~*;!EZv1jf3+lOC#{PjEf<t_1r9uKoWf3!~&<!_wwddg90A>&OAlTNOB
zCAp&L-FCA#zhiFH9J|{6amV4l_jmSJ-crkp*>y|h-IC}7ImXvb>hC;X$G+-XT+kVZ
zmFu=R?VsQ+FirD|ltA$NFH7hBI4&TyzyDeL`-FI*En-(io`^hoCT_`nOZrxp_1}sJ
z(`9dx?`Pe=nE!)!zp`(f+QpMy(^QlFwGB#*{`eorUDse{A%Az@(ai00_a_+5wYiyB
zBE4V-Q~9~BOG1_&EB07rK5lqf;$5G3z08U)sp$H;J92a5Ll*4m^ZQ%r`Ad1@)(0D+
zrK&I1EL{F)npBcz9ka)2tpe9b>j`CFe(Sm1e&76jq0Sz~&vFmWwHht;Tc<0cf17iP
z*|JUDjK&f^elD8~_s^bJom28p|Kx}2?vkK@X0x1|Pv<=T|H5%{tVNx!_k(>&pC^=Z
zT(9nDn6va-Qu0hk?f~|)*WAME@2)&nY~b)y=+@(x5gzyE&JBB}XC=hiIYCu#+Uw{p
zt*ti-PaUZWRod>r!SHmcC9C#kOQG3oPuzdLwfW#9o2!4`DroKC44Ld1bikqNU$j-_
zzoP#dU-wHc?eLx-EE7Gi-?IL-$&9G8zT4QB&YJt4`^V#;Q^{Px8~$yr>h5K1U%PhI
zy<1n>ogT83+N~^?-ODVbdh+C^eNSH5c(mSaom7&!%tpv-W#ZaWhoyU0?cH?jX(@B6
zxyWkCfUp;*uAbgeduU?n;&<=ai`V|mxcl|l?BC~1W!~7CF@)^hYcjWSM@8Nqoj7gH
z$&QMmw`X3fe{OeF`P!lHin@9~+^(qo$b5R?_8pcy8}ruWXMDQ58{cLs&FWcpS@6cZ
ziqAU^Y+v;GzI`9ley2VC{#SEvb)F7bCvIymv;0<j-O-t|1NtA7y=nLUIO&a0XVK^W
zqmrTm{5zF?zFWle(|SSGgee#Ea<`jU`k5unXuD&?_T{OC?wtuITQnEHa@g!%ebnMp
z?Uthf`}AL0v?xAOH{otIuDkz7K6ml52}kE0^xBvi=N`|Yr}tIo*w+H#oO>&7%)Tea
ze&tO}-mY`~tp{1Gb$Y9-R{g%+cq@3lu;GH%qPaRv*}|_<W+ePQ%(6Xk_Rd>%Yqr+k
zZ)7YuaPZSFrreo9ygLu?UVklF{zvc4t8rTnNgwdKV8VE3UYvAx?-tc?NA@=>UwznN
z9m{@z&F=<#uTiht`X(W*wTsV$-482%QIYe#_|BFol^;!>yuW!j?1oy|Yklo+S^m=<
zghWmoUsBO@<@}X%=ck*apL6Qc!>oCymgbzBv~*hD%-(rxJ|wJ3=Ur~&e#`1!v-06<
zbr-v@Jv9EY&YLmkC3E4k#&s^bnmu;~_cLGL>*Q_CEM_n(>)hh3hjRt*x&JxQtTubj
z;eA2s#a=IRE<BksU9EU?3;)%L{wGCa!UMi6lzqNYcfo{j_aiD!e*c~4wC=3F@ab!h
z-F()S-+b?1$!OYdlB2fDH7E2zp;X|`H1+KsE6(~qT(*}tWY(^=lN<fA-wT@X$y=>`
zu)t4syZSlb2Q00JCuOluKK!I;erDeBNvn)9r&i2=;kD(cXYi8QiPl>`RGbpH%NpCa
zckb0k)BZ4D;MUDOH?2+Xw`R;Vw*zg9uG+2Tw|)NjexmJ*c?;Yx&sLl0anxj;TvV{<
z(pw70+g&`Bu756>a%S`VHof%!jk`tan~$cJImnip>{S1?Q#YpIn!y6M4Pi60XWPA8
zdGPMm&0deqJG+W}1&_Y>n5TKOiTm}R&DQG|o8NQ3{;Qq$?>cd}fS#YLek=Xg*zKkG
zqi?Q_llP6<s4Y8hh>LM=-uXb}-AwVuE<O98;|KQH+WyYF8TD3f#d0=bt4Hbi&()sZ
zOJ8~^vFxf$_UnU>%4URUv3Y%YHR;Y1$xpcg?zZ)M$sO;Q{TH8%ut@&d^mK<{K-3mf
zUegOa4j=dG-q`B(`0H!4Z*Q%f7Z-jgKa#(v_vWXC{53Y)M0Evjn68`in{U>Bi>N7$
z{!&HR^Ndfcnriiye&st}ALq2gxbnMD+cW#l%Rd+B2a9<XZ(VShE9{2K)t{!VrY{}#
z{y4XWXJd5i=`Fv)FD1UedHYgZe}P|a^Crhcmg>m9jPxQex2UqLw6JT})^bh^@L8#I
zRJO!+#@VplyO$>W^UB4q&7ETEDg9KgW{G66pzXEl{q~mC|5jLt$jkq@_y7K9=6X3V
zhvO__vB`XW(aW@gHHyO>c#b$qJqZgoy)b3!YQb*tdgkdbj0<?b$(LEIewD~Cx@c8e
z_^gYwzj-lx_Vf1$vG%X#lH)%pyytPP@ULv1fBh!|a!uLU`K5f)l>bF%7KF3<r%22H
z&gV?D)xb8ALC!q{#wI8O8ObRLiHQj*DI(=XoV`4JSH6AxdiMNjbCU~Sbv)0U^kMV7
z`FBF%55?0zocmt3+kEC{72DY!cgFL7<&1w<{_p$n`PO>5ut+wxw)IU4pM>o@YSbB&
z);6*%o+!X9t*k6wpXKQrTosrUxhl?c<HCva8XG%{>l{-9)2iG$n<h3kZd|7~VM~a|
zs*r+9!5_SQ&YjcOKX)#~<BWIUhfANY27frM&(4*mmGR`crpnSZm1j#dpDfpGS>mSA
z!nT`@ReJ~f&vrJJ>{kmd<&S+mt$)h*4CAhLLq?A+#s-E)n<8rB4}V|0_s#B<pG`%I
ziLLU2_G#Vg{^}O2iS+y7kR2ZC9$Q*IHKqL8&8DrY!O_c2{NF#DVP1YRr*dCgroD}N
z&GxzXt{+xAepG1E`NNi-?W<?E|7N+)`c8IpmBWJl>9?M6+Ss&L|5E?Lw6oT>SncD7
ze-Ro?3?E&qy0AqRIR~VfT3DdORcj=Bh{*GA^Gg%UTwD@lVv~)Wg}zEgui1DkE|8^H
zL(9ynNhfvs(ls8D0Xw{>-s=`&6m{7s$m^+dvA6c>42k*2n(X2iJ)2)M`TNInKkIjQ
zH)ZzUHGY2P+?loefA9XzCv@si(<BcS=GbZLX6#S8cOuo#uS?<Rm5bVYYeO5OoqDI+
z39$!1x-Il^Zk&?7C~NmQ(;u($7yiE(xz9OJs8`l9X#W>ux&2#B<<ciG|KDbtsyXq(
zJH~~AkB|4rS{Ke!vM{=G|GNK6gSt02I2XH5ejLKy@6o<9Sw?1i1)Ii|M8<!7(M@|~
zWR6?(7DlWKm@NNSwoSW9#%9moZ7jbmG-_nRDtBA%sN0nARGqIo%xd?pnokF3+?Tvv
zx+_L-SFX3h#<NvBQl^~ki7S4gIw@65Tlad<>=n9unSW<>Ox&xfy-GjT`Rn2wP3u$h
zl2-l`apzsY7F3ia@KwxoMpgSG&Bm(!s`*k*yi3~x|1W3@R$ejjN=6pXS4GolQtrMB
z)Pg3j=wEU2ib$4}>FinFXBR&U=3dcyMJda0YfI6RX+eHhicZZeS{N3fz0!Y0=oIa(
zv!a}L24=4;y~37Nr|;zyIYC}(C7-ALNeRydPYTxG+gs*!f9kTR8&Mg$@1k}^-&>IT
z;%tfO-`PHz)dwpKk5~D>jLrVKaO$mBHS(47&0cF>`+05ux3!xJH)p=QzCV7+TZZVl
zZy9&5EPGmZ!|u#KDeJBFm+iOx|31e$+$!N<!(`@v)&^M#?RO&o6-~Ikpg5nm{`HXu
zmd*eFmepU$cr5ZSx-+UNO>)VjNmpe=j;0<<PyAWSf8_A_g3U4Ug<GDc-Cp?kYoz4N
zn-fkyQJKd2*=xq0N0U2OFL&u}|G8mD!j<cbZ#}zPc8}S|H!ZR+LF8p+RFf1>&=+p2
zvj>m9^`CANTmJU(X2k;<lR`L|T%Koa7M@u1Nb$_!-v-)u0=Hf)zGlV${Xol+B^Dj&
zkBkpz|M1#T{j2-;{Mz_G4C{={ZfMDHc1&IHHDia!-;lF&zh#zw=eoP?>T<Omo#&f$
zVpr*TioSd+Cc0nSNHC;lnZc$l51*!=Xxi@h)LbRLBYEi}dBf#5*~>osP?CMkYj@9g
zg8G8)l00J*PO}8D^IjL<evS!F@NMufNNDh{EpQI@t!2J1y7KZPjg>Dx-xgSBw8&r*
zfAf!yB^H0q);~WbyhxFCOV6f|;6ve#Wu9(&zn*R1`RT6ff@Ym#YGL|KaYct3q&$~2
zcgkk`3@{OhPB@+TL-$R`^!*2zC$es;>AUCD_h(KFAAjkgz4rfZa7Hdv%y_Z1K6ZCm
zCX3vm+YNC`zMg1%;^VEdHsgVmv%)NS{bv_j1B4H_J37@Q`8;4cpKv~QmPn{kPV$wV
z)~kMqSwzG|9xJJ{h!c}#ie}DQ5a1wLlE`bq;Wl$))$d?gX&#T%g#6CN_MKLdnjyb_
zI8+$)hki*vKH+Gy?Nnd(b+Ik-l2_7ynBSO|E?e;a<z;)Ji0JceJDldd)mW`}Puro=
zDJ;nC<3#1F>Wx3IZAhHNz#TK!cKaiXH+udTvbHWr+;+`Du)l7B^yc#S!X6nH{A{BZ
zZ@0g+aSOB6gsF*(8}DjqU9{nQXHokwuI_Khwd(<g@67sYy6wo{X=|dltW_#HKkw6~
zEV)hPPt{UQuf0$do}uktYr_(7q@tp=&Bb-uj`yFu!leJI-|8rBJN)IeGWVTnYfEOT
zv>aGdvR`;*W>M42D_3OLN-|$oUwNvS=+*nbMO}NMtW?4Oi^0h;aj%YU_gwM$9Meya
zqbyI(nX)yv&2Nso@LOop-yaHAB0|AQhc<F`fBGTe(N>_QQCn@?U*bIH<y$U}8(Cam
zlXfi-lj=FobxxmmnK0w|{3itry-XK`y^}?@y>RS5_VVrjOb1T3vMz~^up<35o5Op5
zu6;0ZOXSf7sTyJ5qWJU{|9vdHhjosA^8OI#6LtGojEu^jzp*XYvVeESZFe!9xjQeU
zu6n?k-4(LdYOam8`}A3}(m!pBiWL)Dc;lh%+jBK3op0)@I+iSRxl&up+go_$c72uj
z(R-z)8&)4tcydbd^hf@Utoym{DB09-UtGX`-@Ya12D9tM&Rek?mn7VDOWn9>-Lf?$
z?>9CWJAX|0^s@c>;|P_xe~r)2bDuPSpL=bqCG#@9Sj+q+|JOg?_vh1-wfX**=N{)4
z9XeXJ_esaX-iAocdj{^}_ZMw-4HV$-;nz@Z>D|N;U}oxA$=iP^bGqv5^xwYG&ACDw
zL~|074s3tfkQXmFzc0k2N$lUBJzG?CMY(3m?J%;C4zRP_u=vc1Uv*)>H%+>HRJ{LC
z>a%lCZr_lK_Mc}swY^o`d`@55jn#dE#bF0co;4pAo?yGF{?7wRdq&gZ)pN}CAKW~~
zdT#Cf`df8>o}DfGzSW5_@6j}!-zie(*Uj1XrhEPQ+RAVL_~R|~&5vCY?A`gzbd~Z(
zlLeP{zX=pN$t}}$^h$5yjiMJRi>`b+XyN4V{&4f3ZHEnK%r&gDIpQ$EFLuVfiSrnb
z@~mFjvx<i+%suD!g$GR;CK6wrb)pXY?>oCT;-y*fFR8y<cTcz9e=NSGc6C?y`>>@N
ziPp(W47V(peahvf{7#<w%#ZGMyXEwjt=?VnNs&F(@Md9Tg?*HY`|k^n=B#PD8(^2w
zuN8lod83h)*!?4MpJX{VMg=tQQm88zs%l_<61jU*FvE;Vn+|y$WLvwd@O9e~&lp|N
z#je)tZgOw?{6li@UG6=#d=BdxT&%t`B*xiXT69u8sZ!_C#(gbQ`JEaY=3QiEUl>_&
zSf`}z##UQvMP_>k#-iM)J$)~_Lb9hYt@!-7cuR(ToXYXz8&02#<?IwN)Yzi5Y{L15
zo-1cUQfid)%k#vhOcZ!I|HaXTS)OZOsEclm6_N5x*52r{+g$IqJloNW{{*Hl;5`yH
zSM`%el(5gM9a3E^Du#h+i@E-^d{Up5!4qqD>yrQ1u7I=QtTxhXA8nA0?M>;;@cHHF
z=Du93_}c3&ZdWxT`tN-C#?RxC8Ih~7gTvj}!s2mp<(+x6uU4OTkWP-MWB0C<@ykB*
zB~T@#e3jF#^8s9EwFGOQUDQn!u{!aSO<(HZf99Qv(zEuKF3+i45a1WE^IrPX6uH}r
z5=>^K>At&i?!L;5*%NBJ8D;ld9zRglA^0LWFW%tDN6!tslbnSL?th<@+$d@OHT+Vs
z-H+#|tDRWy^y(ko_Hto$g1LcjK%|y}W7;c|H^rhV?>fGPPs>|V$jHWjAn1=-T#xwT
zxF51A?$h}HWiAQ`Tsplb+re_l0p&pJb~QgI<qryS)n(Qp_g21osPk#b#RKvec4sIh
z@|;<7;2Phb_C>D*dtU@E3HR!Cn&{Mj?bX})5)<|=yt(1nfq(8kmS;*!Om$OP_A@+J
zX5BQs(%EJ5#hibc*SB)y%iUhQ)ufu^=<Z8tNs80+Pf7`I`up?Ty}M;sN>?@QI`7h$
zRy|W%Ebx8mAFn#21&l6xLwW?0cZLh)ynK<+)E?E;-sTtT@Lf{MUHppR8x4-~-HQ4q
z4gZ24vrX{!wAC^GbVI||YQ=OD$pFK^Wv-kt&4)ZDU%PuCXQ6P~kF&8nXVyg8FRov}
zpSO39=9a@7zwR^+HeETfcmL_RLPDm7T&XMluWC)Qe685BetN?4`5R@v3i>&F*A^NI
zPZEw!zSO_$#HrN_KZa_ZY*7#mpFGPj(xFq!rF3^|^vk!7N0cV-4q46>Y<n)+_xsEM
ziPh6%-Z&I@EHN;C?*92kXPxbgJ1=EC&;PIpJbV10+T2Apw#K^60#%_Ytxkdq!*q7;
z`1o^gwfg)|kJ?K&9lEuSv2Dh;ZpNbm6K5U1lPq*zOX&OtjylCY!O;1$-x<FW{BY&n
z0@)WKKg;HKUi-58kJQpwtKYA0K40=YT`>M|g0%jsl<L(BE=p7;vc7eHp_n(DJ5Hzn
zW6wtqo|K>$M|SP_b;HelOPpM|`24rrXSj^3Rwb;z09sc3`p`kyTPZvfH9PiMMY=_l
z1(aP-J+$nlby@qH*1a2cTiL$1DVoY05_f(@QpwzXU*5~rr9NJ~S!2qK9hW6sl-nm(
z>@Qos>au-nT)&J#`;oV2A1-Ke{9GLu+WK{Y=_#LVmo@>lU$0*X-(W0^(D|U(t|bu?
zyvSOmW0%&<${3ULo8o6&%$T$C;=>P7Z(8OaYA)2ai;?S@b751LRLP9_lg}PhirA4{
zdgqtHRh1bmr@C$=Tl*c{o-)UZ|N5uCXY<#b{>_%>__wbnT&<k>rurOT8O!+oEmfSF
z?<+3H7)-9V+0Xpluy0X);5-k%{eFc4v;21meBF8L;|zlnQvI%re=PL)-BeeVadFnW
zS6laII~4Q2Yja}$9imfv>TR%t4Py+)lAKhb$+e~n3-<K3b5D?r7riVIveURX@&Egf
z$M+_Guq@7h_B}=8aQ8o>IcBzpI``yV2o0DTBz|avtmu+82brfGzBY-W?eA8T1$tHX
z2Ju(t<coet`69gi<mpPD{Q{M-%jCE3$f-GcWBIxTXS8Rp-*7NRWzIQA=Nj(^j_V)4
z+qrM|VdH0F$Cu=v`D)AHK4aVC<N6;x*jke>IbYr`x?E)Ms$Y!HR)ss(^pwrc?)Hw-
zSXp&)jbw^h`P$DXZx&`;j(gj?VovPz#g`irU+b;#zI$MP<mR7~E%&fjq_K<VuDDyN
zvD9R##?mwAO(w5oJ#*4T;Ld??hq5}cnZLelOu6HJW~;p1zC&qS8E;DN4>DZIZp~+M
zZcW`GotxQp+3sa?wag>U{m;C2oZJ%k=H3%0<?<L~1>T9#|7KY~xvLZ1E`P~++S<sy
zRX0~ox2cM_zWCGq9j`fi-^%sW{`+%KIpz3b_4PAU^kZz6PM^{twQ`2qy(dylC(eAD
zCz&>NgMUQB?4)Zej;U4hcrBc)y`{JF>f)n~pK7PZ?)flp=DSrV=B}tuuj>n!ymDwk
zmO`LagT+RVed|x1Sdyk%`ABc&jK8Z&mX{~*?7G*qJ}X=`@7~sPE1s?P&Dd(Dzs`lX
z@QHKZ#LkV<8?!%Mie(q>SChNlQ#T>Jths*IOt);s=nEIat%@&S$$aQ*pfUT#gy5;u
zN`*8p^DnKg>6-eI)AE$prK__Q*D7s&(ltZ<{L6znYP0-JrP81LEI)fJ)On}ClP5j7
z!ZtHgtQH=XyvaH@x##Y|Cx3U}O^J6~{QcweX%&GH{iUCKS4FtIbC@4Jt<;p&=24r=
zm&4QQH_umpIk$K2hmH6CwPgC2ig!!xWJ~^MD!?Zg$@6Jy?c+bZWj73X(%3^?!bGp8
z&wG%4+3Uo*LwD@9mF{d<uAaQpy5_)!jhpqXZ6AMrpteOm<;Km>e{UVCQq~$;r&KJq
z2wM7ZUe>1TKiqO#<{sElVX}?m!nYdvO;-(%2$eYYSIy+`O3(SPF~PZ3%~sudl66k!
zC+?&RO2+rnOV>BJTQ!EwZj3p0J>OcQvPGol%gx{ve~+v^k00&)ymz1V(fEmTEiae7
z`!v&4xN`BV?y8fa%v^6KblG_vnwq^Sw1y|Ay<%#Z@YYmD19{y&HUCrou3xb~fQMD{
zWx%vG-WQK9|9Sn$#7FBjwO8*n6uI+p&eMtyEIFUwKTK(?*#GbNp>+}S41Xo;KmUSx
zwcuyzGpDbs1-kz~SZ31|Hnl2jo!TBnSxceYoNL6sS6eUzrqpKY+7&b$F%Ve9_t|{6
z+3n5@qvK|~^5&RTFFd{UH~$y$_4EIh^sYXs`i|+<>ghG#cu(!r6x|zFxpl6N=*LwX
zrg|%ig&lZO`)WClmDlu82je7}|E-oe##tKgnse*r`hG3m-e<Q)C~cvl%(;c$@8{V6
zP>pGHmfn;$JIZ~xT%_<HE2;Y#o$5Q+FKbGBw&kq+r)>9AK2P(%JeSOqzm{yY@^#vr
z#1*n%-`%@f_&)i|*Wz7!YoZD&ODqkRUS)OL;1=U>`JC?lf=5hIwFl$!3x1tCdElO?
z@zH-Vy{qa>CD)s&{$kPe`cupq+c(d+yotf?C!=cO$BTuEOAh8}hA&amzqRSKpvjq*
z_&F!{rTu?>Q{LmCPP0Ot-Pw6w3I{zry44PJpY1+>Zz})K34E23H%({#`caiIPh#DF
zg$a5A(xI^v!)HV-IL)K!ufecv)0QP(2l^ro?aaIP=GnHLTlenW`t`}lYiHN}(T{jy
zBc3Do?cg2fwKgWEGFCIs%~>k1#OY&Ldc=7BgEvlxzDaR<`2OGV?nMaGE8f6+(UM!f
z_&cn<b>*?{are6uZ?`<V@PFUV{cG1MoM}Ct$Y{$^*CMI%EJZTzhVp*#%{*@`3yZIZ
z{FK|3>ZTxfYw^M8M`byeox^v}w7jvgVn)Qdt6JKkTuXx%t_ZnyEiCNXC$osP;@>5X
z&VO;^LgDkHIn33eQz{D{#cUS-u~_bJmBaG_sYM5^kC-2^@3``>%!8#@&&t%5eYfN^
zPs<&q)$A{OwynDGf}zoO=1<`*3l^R|@k;1C-^EV<e=gPhV!SV+3_do5PyK3rSIcI>
z@t=RM>p%4<ne+9V`gx^WKT>b|bSlnP?|+mc+Msi6a$%}%#Ts9~ev4;bYwpbwa7pWV
zUv_P!qR@=BX){GP#2<LO>ALl+!|zzd&Q9N$Th1?=t$F(XyCaV^B5MM|3)b%|ynO%8
zrQBtl)+w|9YJb=;Jv+F|_MXbrZ~G7OMSr)ykeqh>JnxDrM{e9dabVlx`XkeB6n!bk
z>CT<s=OA|C(M#i$)8|h<I%au(uJ!ewzYepD@7q=LbkF4qrv8A-QKidHmpL_lvVU0k
z?PlYQo(1ND@!zJ0?Y>-p_;t?zytMa0b&mR(W($Op{yXlu)bsc2BhFiUxK}a%Y}gz3
zG@Ik;C1>}<>O0>*7PxR<fAHgB6BAqY+V_H!XFiKM5bQcFdh5H#FF#L<+x7p&s(;7M
zUYmLD&ufu|f^21LBy^2pUiK{x{xNlfPR?HKVEttM*@2lCV{`96`X<NBsr7Q>BhNtj
zS)~<qALSJPo6L{OwNsq;=}}a&litgT3&LN$UH>w$Z{Cq&;Z4sM=x(rEbD`Kj<JgNs
zx--3t7Iv=8TTy$&zR9G1u2yJZa?QpARx{W__xAi<mu>HRYoqt;*j;>!I(~mPNfu>V
zlgD}5`-XVj>@P;Us-C}<h&au{_OtiN^yc)Pzk0Uiq_10)Z6cdJ&xd=VLU#Gv<#o#!
z_Nb&pU47iFc1B>?>*d?rm3b3(WG2k-T-WjVTf2jfJnyR~QyQLpou^fw@XVolYJ<{+
z7P<A&>NV-7c+SU}ubgSObocx_N2PxK&8`c7A8VKW;OyD0cR5yTw<)ukZE*L!^K0_8
zSI(PrC#S#rFrTyZtIet(%Eup-RDC%*A^J~U#>tGk-ch-~wi#(KE?a%`mPl*2(cUFq
zJkz>%ANjt^Eot?;e__7-2Y)Gg<VW6B?hUgw)0Fyp==<jyt%WjdQxD0Vux_ZDxN_6F
z?CU0{^@Wm`Cbj+8SNKF}cK!XlpYtzCe@HwnQkCxeMVzzRbpBhNPmJ+5R(8e-z7~GG
z&v?q4W7!uIPy1JAyw6r!uC+qc?{RhHJy8|U<|swo<v((smhUo(Wn8@YvdB@tnX8hX
zZ<*nI<TlrdEW6%!Cw+})NnR2%+}9mtn|X)7*ICHq$fl*$Cyvy{W!_ZQk=wlC@TOBc
z_RlW5x%~NT;Y(3%6K*EWS(^S`n}exnvWzMV=XSwjcH?P^iTQEDJ-W+W^w(YRj^aIb
zVSj#&uJF<1S$#?iMHSSFs~?{0NfAnlXm>v$Iyvd@<SQx?x2(RdoS=Pb^Q}W0xLZ~3
z%v||XGID3Y34z;6z5VX&lJflq-~RPHv3g`v#r|LCy6W=d3_pYYuCuJPX-;yUyxHsN
z$=}Y!95=O<l$&f{o6i?o=kPnc^!o+&M_iSLH*JlA%9o3!II@0zC11NrI_S$x`|r0)
zBK1suPmru;|9}7Gric%DO2%b!ksFGRR_=W9xXDEJY;@$Bpos71Hf>{iZC9o3Jpb7u
znYntVrm^93cHO?UYo(E?uCnb`kLh>&zFez4+V$^0zpefzC2ZsA<eWimYHDGEyohrt
z_zLD-epikpXRl12W&ONlnd058Ti3?sT+MqI+TEqyq20pJIH5&FfT?j!isk*2PC`sA
z4mTWGQbI+(XWiX(BWr8--DSp?H{O0*^82yOvvYr&bC=J3d1mkVy&r6zTU!3F|M$Lj
z|6l8vb4xsB^rm|+U8d(Bwf)Jz-q%5sE<gSB#b>6`%SO>#C6zUWj&IE8+{oX#@%FN!
zq(z(?k8~OqO?r`a`~EV&g!zg7|Bn8f-n!?u#T-uYdeQw+`F-)Jmp@D`w%&JVmgU^T
zvkyEhs<`9zF8hvs(f-OG2X7XqB{&+t-(P<%X{p!xX{paMj`E+MZSFs3p?Lj%r8uRl
zCpL*bs{Y_RF=SoHQ*Y5*>_=ZO4cchtu61tG$)%5uW=}F-AMtli#j)bm=3VnAYb|+I
zveROxfwSJ^j>#!PE1i_*YMu*Pb@bC~`y)b2m4cT|)fAn@ew5qvQOQO()u|^wcwb8D
z3=xf=p&I6S^`}uU+x_lTslshmu?wfBb#3+9=%YAMJnh)g$Im0ZTEo@^X@9J;i#zD9
zs%;w8>!KT+c{C#F)1=hvhFQgzwifP`l8h76-u&U5&(b9Z=bjxm&E4g*P%wMx(OWy_
z@T{~5UKV)r^4ADGJFlhFdYv_{oDjKLKi$rI&9t=TtBs!qo&B-1aP6PD^M9zXxg4ss
zv+hsq(;w^PpPt?#wbJJG!Tq-%{7)0zqw?=y<`K_FJFcHlv9CYzuwc30gEO-X=5OxU
z-LrYlY?DOWa$)ni6a0gOW&G@(tNAfKPdk@yQC{@!(Vf#XPwwph%<$atob#OH7R46+
z1<#7a3dM@26-+CdRygmm&hs@7);wABXw9=V4^@h<6<sSfD=;fED-5z&Ip^#glXGI{
z&g|Ij`@rw%z0<Xmc2CTnyCL<^#Licqm6Pv1$$f5rdcReq*-vey>Qnj4_Y@rdCH*VU
zXaC2$E8AwPaNc1lK2&YK-$J+k*3bB<{_{=l8qXCixxXp!$C3}9|9AYUs&iU1^{q{J
znOm}E;1toP$Cg~*#x<2Ia-CJotxH!g-MqgfU&Alu_6@#7<yj(itBdRP1AGJWS7@#H
zHsRpkdl?IMp2#nneSm{)`O(0n*llt1!Xq-yn6EXqaZP(s61MedoJZWl=xfh6Yev3#
zbtrX;on`zy-YA2gUwu>gE-lo(owS|hZDKk{+k=Sf2O2Mn&x+sQu<ujI@9JjfBl17o
zXDKu42XlsKB$%l+olV^`{h}X3f$HYBOBNql+Fs-onwufC_29zT>3)%mmaJK@BqraK
zDRnFRDq+O~A(gNF79U=+eIBPH@5P9~WWmUTPcF=w6zbJIOHt_1o4JSX&FZed@xSW)
z?I}yswjG)k{-dL+S!Jr1gS^sN&phT!9D!5f>n9yI`yl)#Q18(~&qFbx^FjnKZZ9u?
z^Dg_k=_=vJ+VTG{9rFBgw4cBF*6v^H-}f!-a*Py-z0+Lw{pF&|$<cOEzZNE(OuwGS
z*}p65#RSnWB2z3sz4_VSYq-QYf6LO_Z&*|0FTdk+HoeBN<zjA$ysum4JcSz$*Do+i
zv|hZ$ESoQX<GWT&+uqc>tClq#`}1JaD&dRQUajMEdT`(VLJb3-@cVVLd&8eF8B4rS
znPqb6=8cY{3h9?5oG#2g^x=ZYH|dA$f7bIYwJ*EAsP((rD~E$ms<b4OgS*OYKIOiN
zPUN`bqkQ?ry2MqDJB()RebCqH`DV)zk-9@$+rPLc|1X_l{psS78&@OdZkYStTJT2n
z?*BK>m0n$)Aa^EM|L!Tj$}HY$<_-J;Z<f7};EU4#B@&na@9@l3wo7jQKd?*W?`4OL
z{O5m)=z6o5Y<%8*Ii0U(UUsE)T)T3reu^;X#>M9{JVn0pEDk;#QQnl9@!;0lL-~8t
z6D}N*SaCpkkJ!HFYyKCk*neSdikCvO+RaM6c}?rtIF*me%*pHt{^=BRUQFX>+<ER}
z(<Z9&GtPZ@qHGdhD*s_&9f_1O<K6)NxnCH3Ii&h8%<Fq@t94AML4$RwPshi1j#5It
z54Ssu+rG+Le6mfjy?$SEFSqfDNAKNr=UE+l&K<~kUFw)(yqsIJM1j0k2WRWy6*uf3
ztbg-4;IN!OyZ_<(8<AX9H%<ne-#zyfvwb1+&e(kgGIGA&GLnTAhYKqf`xswlkhqcV
z7bkuH^2BF>J9X<amMEO~Vat1%<HY4Nl4%n8i=+}d?7ZhM^W>bJ?zvg>t>~1)Sw$kd
z%#Qb0E7skyOB3gtWaX2ppLW~4=jOVvA_mV6d=+k<cjEX)j+gQ)zI?6zUg5#BbBg`#
z%m$?!2Ln7MKD{_^Yd$~L<&i{}@P4&pYkcDq-~XE@c5T<%q{*98440)=9Lbz+vGLkm
zuX}m>5)Ov)`(LQI+WFpAR&yTH_M86~@2Z!--OKo+hWXyTLI$yawdW?ummKT1KK5bj
z?1GkmlHR}ML#>|wK5<L1e~scY?$ugcBBzQ!t@^R`!l{zS^^@{=_l6d?P5A5`7Wqj>
zRm?gxum0XXnM)2w*Q`+4GkM`OPJ@H}$#a+NzyJRIX93Ro$VL6P>J{exnZEq^Mvcs+
zrx~6)Wd1lgFKDOM)`(?O19WW7=I_-ndzrr4FLn0oj>Y$QSVclEm`(59TfJtIj<4aA
z{0-LJCm3_I3;8dfy5gjJj%n|WFz%|2YnRNkDfbj@(Ogk<{l}||TO!mn4HnK!o?dbG
zk8u3{*1Y{)a`mjfOZxukW$Qc&kjh=j=k@ML+wobQ^DTSc${+i7-<AL9`8)mR&wNU$
z{-T&uzbs$l+QU4K@X}q6&*gMUEx!Kl$d@vu&s(1!`sp`sX8f`8rpAkpR2*+j-MfzC
zZVGqgiVcP_JYfqCb{d=W>fLgU&Xj&zQ{v+&6&@O~S++?1UcXw^s>a6ibEd3UzN`H4
zfxzo!1;6-qI=??sX|l+^Z|_0tBm1SSuXI%8>GRF9+rGXz{7C%~%j1W&pWWVAdi#Zz
z^pvFYMPfTn&6m+u-st?oeZAn~m?JwIy6(-B@b3J|QT}o7@jrjJR&U?#v1;2PrHZh9
znUBx)EDDL>?*E=&8~?p?noZcfdCadnBE7@zsNUkZ^h!4Ni1^RR+GaPl%?{#Q)jv(1
zmC3e6!-Vy(n&7>AmNovDPem2E=GMvY@%i&^>Sp<FKBw}Z>ulz%ywHE|zQk@(^_AU!
zwkP!8P5u&b_vn_JA8l?P%y%zNzubT6{6$NP^aG#I$fSumzq+||k6+!7DeF(hhre8|
z_4n`8+K3k_|K@D`b?K(w@*|#0tz=ILU*8;}9?Z^bk@q<A)E55Rx<AzmyNwwq7U-Uq
z+H1z_e(a`yt9R1cE%&bq@V!l1k!Zd?xrlA9t9GVsKvjTIqz{|3miqQx-z=HK>czfZ
zj934__bHik<NmFDY=7p)t+M;)Ww&<G))LKtG#PfuGuwV>=dP<uZ<g%RjEVPki?tCr
z)+%NAd+`g_H|jIDTv^H}8{npKq|?IqU)bL46-o)8)-5jU*Zs7%AU`o^h4Y_V_kK10
zvh|SmR=c=l<NdZ^r%cn;D-YMyM_)}?us5y2>HM)hQzsUbPM+O$?BkP*T)QUdF|U%D
zKj-|DW3>ebu6l+?FYIY5TE5Te{5|Vwj$B9HC~y31V|#yvme1w%&9^qLU1Af)vpXxR
zeD_B0hcc6Lx?U~b_>;YR(dE73EGcj1&4|h1d-kfb>0D1iXE>|Zg`1&IS3lYL^VJsF
z{u4J>elXdntdlKZ>R2CKf4<=VffE}~bA=V`b=Fj6v1~o~X~PQ1wp;gVuU_*AyD?X<
zUD-c%gG9rI5SDD=gY0t0oLMePA99)&Jx9qq^81ljTPqzTw6ksrKa63Yb?LX?>5tET
z1!lBW9k*ltrqlV-;f-X@h5d0eI(n{eYB?6*<+v?%V{ehjN4KB4q1%M+7+zG{^=RJ4
zK%wLFnCG}W%Xn89C@+(D<M!8=tMwP(W|(*(U(%p0_h8X{Mw1Eoq0^SGD*7C5>$;%z
zzh=(ri_26GeReJW6#h(a@{?Saq}jVFEd-<X${yU;RvzWX-oCrKucVCWSn>Xs1#h-B
z-??^L_@ep?+eBmg50m!m-&n@^oMm%@wa%Hi`MVT-tJv>2-m#zatM7$Gk6VAgjFi&a
zz~;)2Vws%Z{(bE_xV`Y`^DlL^8}@Hpr+R_)$ccGLym`~++`pYt^`vQm{<7cVC2O~|
zZqvNUe)7+PQ_I^@KOA_J+kf)<tF(i{M@|*QEngw~OUd@_@o%O4dp<2KGt0b{c)pp*
zX@M4(l=32uEg|2x#96w|k}f-O`pi-@?srPZ*EWCNy?^qBhjsz~Gj1(jJ*l`zbykvs
zm+scJ67RnJ&G>fk->g+^@z!se&vm^MTEoi~oqo)~yhhUV{)~=w3p$;APpZ8Xi!}>~
z7Oh>rfy?&ozH{Y^Q;yt@yDIf-L4Jb$97VnpyUe=7n5+vUpMCy0`}0ldM9Ys~_T`GZ
zs6S}!>(>`t!?sq$?VS7fvTawdmxgX<xOj8HY3~+U%jn=Mr#9tWE;F9ku&W?j{`X}=
zJ*f`PmV0dV#i?r#``?P0#U(tKEksj(`<GJrvM=x1v&6SZADX45|8n)}S6nW&iJPwI
zuRo$|HN|QzUvK8UthLYn-@j_Uw@k41?Ml8c?7uc<&B;l3e>3gwirwi|*LL<@zt}c?
zdz?Ve(X?aBIF;8iuqZNx`fOIWaI(^#YBo1px$RCG->TJJOj+@QDF>cClHK|GvS@Z9
z=f^WAwwb#!ayWLJoG@uA+hn;@2i}-pm6{)Vnm4j&<|Yeal_Qg`Z&TD0Qo7gr-DSh_
zjPvL2nX-FER#!5gn|1Kis)FX@rw#J>6@T1)uDgCe`~G$X*^*YygXV9Tlf7GiZ<Y?3
z;Jrl0d%ku4-4B_9U#@?DmzSTNv&yRHd(9`eoV_1X(!WjGy-g=}msS3YxBh(lOAOy_
zn)ajMsOz%&=WAZ(SguTYe?CQAMD?fdlb^e+Oe~9beb(6e{?zsPyv%{ZTc)Tt-Ba88
zY}uxjOH^+MavW_@OUXE(e16`s^ZK)1pKKCxEnIk#XUbY739lo&xI@h5Iy-LKboM%{
z;G&ZutHn<yl;&MpCga*!7rn`^clRc})BKC${d+`ymF|}QJ<B%FJ|L9Qcv?nrhHR>K
zgmmWA+oAh40<$+AQ4I@C?0mOi{YT%DrY~-H6gdP0y*Gq}a74Otn+ayvSt*8S6s6kp
zOw(=i2z<1oM(@+VNm)Fd4_I~wzt>UGHd~W+Ueav((g{yzYkykU5%6F8QK7`t9hX|~
zItp!9zaCoe`*G?A`KiL~Rh+Vi0&GhQS3C<?>A@KE_tjj_+r>qfroDCAKJnfPb)LFK
z2V-KjPPON@N?$5JQR1pC|JF_9<=XD^@h;6vclm^{Tw2sRdy3U3^;g_K&(3hjV%u%l
zy!UdlQarEu-<_<!IrSfZXl7OXKe3Ka;ZL0QwE{oI)8`Y!r|YTLF8loO*!x%OzQo)r
zpI}w@E8u;e0+XG0rc%b7)Ykr~YE#!3p4RblXB7Dt!uZkfh1L0K^P@kc3v3A9`iSMi
zlU#?((($+I|K0dK{ag=&;HoVTY^%~In(DWnRn(2-)71-kRsTGEU&a5wMu&3qmTzbN
z9lCj?o4Qwf>ZK>Vmt>aeqz2m0YCfJ*Zrak}mc5m6wfg3QKrTW36@NEc{=IV|HRbrx
zh1y{%cQ~WHw>>`_zx%ITf^f%e_iKCAt@xJTa%(%kX9xeshu)7~Jrgc=jSPDD^4(j1
zl|z3&-7e3$BrYoP)M3rk-Xqy8`3!e!3O1-+iMh#iz1T}+Ctr$tvaz3E|J^c217_cE
z9L+m+)^0v4<?pJ`Fsr8U{mq4!Z8Ml+l;SSFJALedx#*IdvnMW!rl@aUAnob@WLNIm
zh4mY9-D^*XA6fWt`;><}N?*o2+xlktl1kr?Id>0V)43FX@kRfyvfnGNC;4;EzMy-5
zVf=n}m*~=m+gxVoC+6Szvc_*>`UwWh6@OVvKR!z6T=f2eNM24*kM@@@zsuO$eC*hh
zk6S;P^(G`#ZRXB<5h1gLC6xA_Z9I5t*{N+6Iad=3F20`i*R|lr>TB;(j8)#~hMF0@
zS^e4Mch;R0=~+?#<33-kRbMf$_HD1PK$}+eikv+zyvO9^=F~kndX{5Tyx^ae+-C)D
z1#1`i-2U~|c3PYT$M4tt{Bm+RZ<?J8bk-LqzCFjVQ!PZMQSs4>6BjrqKKLW><@M{3
zBW=%4-iynxeo>ItY&3yebAwg=X)&h{%bBKn^4{FAPy7ATPn+F}=5O`mpLyg|uJyDB
z<;4ziLE8l0`yW$IvXT6wRkpgob~pQZHofH&S9P3sKK5GfCimWp+t0PFKDkS(_;1-x
zr{%`88#eXSKge9Y_fqG(b(YR`$N6O^S*7S{29$<7v%l`2d1%SG6-K9ev%X0dxd%3S
z=9f=BuHN)9OewXd?B@sLg}#pi8XwM&i4TrSFgm(l>1SaY=MLw22Em?Y%6a08$`+p7
zrtmYS)AH(vEx#;(hG|uPyX>vv5b^e)htictH&=gU$x^f}eHXQ2=RD1l{RtZq4kUT8
zu;(t5^?ajvDfQsoLdm@QTN7(TO2jVsW?cI1A@V)<^1>UB1D#8LJ>_2UZ%zVBtw42<
zgce^Io9&Mo->lZQ%q^7vePnUwr-##p9?ovGuj>;sV4u76&dMWuvvx&4G&EZB;4Igh
z1QUsakBn}f4q5i*6R(S~z0sR~7iV3Ep9K%sE@a*!pS3{n)eJL!>xpw`*@?eXop*Ep
z!#Noe;d}o&vw!Q`cd2yW%YY}M5-Kdk{vtf7-KP$|*bwzt`53>0evFHByi;3oQ}f2d
z|69Jk`+ehQzjhZ}zxtuZ2dA%A_b*VnBo+~|A|YKWe5$92wB|{sOgB3L%Ug|;EiUED
z{CdM}@=}~5_UC;;t{&l4iBYzG?2(D3H@v&#_c?EqkW+v5HP1rJiru|$f8)C?Zwgj9
zdaIPalM#$<%-?6zocFu&X|R2A=h=@!zn*>Sn*Pz}@{frECF?$Q*-W2Uc4^y&t>*%H
z?;2dVS^B_emQ&lbt2X!M>{S2vu%tYt{Q1G!B})~p<8u!L3(xzy`b?mA^UCx0R{o##
z#<t?Y(r?f7-s}p<{VJKYH{}QO;`@&ds)jL5dK1c@nyaAgR@vnCSbUZ3$p-Dlt3mt9
z^dt@6zv{eZ#&DI_S90Rag`rDQuAY0k$tE?X>E!EAGp$a1d}7gKa`DD9jq6p9&K&JD
zE896?n<MLu&bhUg%8T+DeH|{xxvakMcB9HAk&qc%L|gT=+Esg_i^ZNU3$$FBY0dSx
zD=#f-rj${S+0NZ}{$6nGz46L>L)xjF=%VLq)t!Gi@7^<SmDm2`+#$IOEX)OGFK^m5
zZ3Ew=X&)}V7F}EMqvC(FcgOT&cHYZ2d7JA;b-i7a^}cty_?^_*dsFtr?3pFfd$+P~
zR|4Z*4W3n2vu`)=b=d0E{<mYIfXO_glAE^|N;SPZ=kUU3fqF@U#uM>%D=$drx_&&l
z=}PRA%he}i_MZvosa&w?gxP}r<jW^d-JP}|EZc0hY=zGhN3R6$-h1v^f35N*r!<^f
zx$)^n&J^YP>nA(RPh3gh5?HjjPcC})X2EX`-l^p+9v57bD+9Oao)W)nU|90~{xZLp
z`yZ~A-d+1+{Uz&CtxtD8-Ip`yT8?d$n4A-bjm->@2Z@mu$a5F>a$JNgkl%iR*UMM`
ztfvl>=ghyT3*@KS8}48KXU)H>N3~8LIPk$!z-8Za_KE9R9hTTmNZ2Btl#rYvB5-zH
zR*t^TS$$94b7#EIdtTMnG&8wmY+z7$PJe~YDWCHifd)nf2G_2#PMXH$IhD(=iYu=3
z<jtQ?kKUZg)mf>@6<4*dimUGDQ-^~-ti6A1T9;huIWotj^^ZyGgex4a7ZR>7NMQZ0
z@c%+Xg0HQ~ap#?NKV5frS~|EJu43*iV^ec;6YGDU{bOIf#_xU0=X|Wbs`~7GdVP%0
z+%xy~Ey*eKENAB^n_3bwy?knk_*c<yqQ3vm>Rt@KICbN;*~z*0ce#EtzVW-y&+=aF
zl;-t?ulS#@y#F@s>(>n@3pchr`CQ=l=;5np5A9Bu&aHmDNlxL#+zZD0^Nsk=AA5PZ
z`q#2=U(URq`K!6JJzOus>+60FhMA9B3$a9=B{}Cb7@MJ-77dHMC*5DZ@O744FZ=fO
ztBDCi=Z%#A?|yH6mM;97KeJ8VsK-8KX59(H{{ra~t6v=bG{4<*T4UqG#R?rY$N81w
zIU77m6%M}8J#ygCi4%cgmva*m)}$vSJed<85IJS$yud{ZCazhTkdc|WZgE0NLc+=i
zGiFCknK@_1@&~gcCQY0*JA&!S6AhN<>gmg-g=l5mNSQK4B;w`k>C>mbR(&S+`l<NR
z+nKL4rle0x(O_9Bwp?uL(q$Suo<5(d@k905GA)NY>)030`CQEH<sH;5Qu8@DsQXjH
zxuh-3Rsr)GJ10(5{o>Ak|NKr(?z%N|&sV%ZUjA(Uv-{dE%YA3qEUd2j{^c1bukgP&
zzwLq-<prgeyPLZ^2M0ITlwWSSHdEJL?BBbIKbTdrqHjg*o~<Ii%*1!{>(}qz&NJ+6
zUSIN%|9R%+w3_p=C%#!1O6`^r@BUdMch1u$#@6P}>K%H;`ZG@){`_|#2gA2}4R5i<
zA33{IOf692&$TbsBREm!*!}YK*_X|hZw?HcH+OczqH~Lt(o!ypePc{p*>ZR5vy;8I
z)IQ&s`OIjs;nRNiDOc3CJ<hv4Tf)(?<l=MR3EMBWRtkP`bPWG*9It=N<>fQ>^UUY_
z+l3ZS4DiYgul~K~USCvvdimlAohT-syI#-U&;D}Q#op;_R`a>yUyRA7icj)WC*FVS
zTDMl?QwC#OF<;V>D@Ha}s$FO00&_mOvb!fOY+RtTgW1$6IXXIf?gf>u+(R!nh;Xz1
z5nOm#pMB|uc)gZrCw~)xNlye1)+%Y7Zayw8CF1(=$6@Dr895J9eCIA`d9vVwF0bdt
z+d=y;2=<;h<XRsgRAyIQ_M*Fuy**V^t;Fs3(ufv;Q#&(tGxcM1R8x<5RU{b+c=bGy
zs`T`JQCYhw#{R^WscYqW|5YA;$X5M;MRb|_^hi~!yho`AsvO=2e_14}Ew6jXWW}_d
zQ)WF;U-0pbYS`7|Jdb;t!!qI%wp~B-rSYb@{+Z^~GPk+Kf6E`wZTcg*%I`-Ff9~Fl
zS5DQZk8^HN30}E`TP;z`_|xsb(@dEsH_Y92@Z1KjXFII<f(<e~&n-#&S^4AJOWUx$
zPKT9>HY94Ex3}BYbiVk9)8bv4$6tQ6cy%PS*ot|USbIzN+DEf2c_m#NE1J@?bJnT|
zvb&yixYgR4;^z=^Sz+=sZY`TB&i;M-PF^prl&>q)dmFi}er9>Nx87g%-H+~k?ccer
ze#Y@{HBS#m-re3avGwMfnX&OYl|kF~>Hofv6?=V+*}gM3Rz-Rj7XP<TS@i!hwzNsk
zb{sR*om092`5wZB68r9#om*NQ=5tFVKU_Y@^V!Nq4Q0WFP63)zU)*nBd3;-ub@^_a
z@9%|7@BX>F^7f`}FXt@OaC9vCvUUwWYc0piYQYYH+Bd=FpWmF<ef+dGZXUZ_#XWWf
zjV=a;9_GE_yM9@pD=qsTo3Fyvb@%t~{}0^jc6zLHOW`>Y*4vZ)G+1NX_11re8LI?Y
zX84J0ShJ_W^?0buxm623&T}bYm=ZcKF5*_f56MYozu#BM^qh9QEMjeA;k0|MUYo+K
zT$YPhJbT&x749ip!Iz(to4fM(Y>q{u??0^Ar`Rt3K5XuitniZ@_uP4Rda5;CzZJ`4
zeCyhU1Dn>IefaUV#;wYQ>*Uh!_Hgg_`sG>GBXdkYD30xYVTH$^7rM7EzFcCn`1_TJ
z3UgDROL3-q#2mMH%$-#)e5OgGDNCSX!Kx2@Urq!j+iA19eh8hm<)@Tp#KuXjJ7XBw
z*0$f?mB6qmM{He0Z_$^Zvtnj4PkO&K?AD~)+CNNUz8@5LvZK=Pyy)_&Y)8M;78$Df
zID5BryR0$TVzS#rdG5}Xunngdu3Q-@v8^RIM#|fPF>j663-RKJjpDtj>67}6J41DJ
zZmLdx`>;pA+risvs$X<sTG7Y4J>N5VZpC}tSXXH|Gp0eZw$0mhL#9OYmmN*pX7;it
zo>cNO6MXXCW4?BrRe8<%L+38=-e2JTe|3zw%>VyQd)Du+{2gWd<cqMT#PLZ6jN+5B
zZ%60b@B9BHvHY`dn(DdFO$r|h;&@k_n<F54#;~qWzF#{u>FoA>^M!X>+A)3Qx3EZT
zy>sqo`1UXDzui^Wig|rn|NQp+7gJWbAC2I=HOW}UTf(ctd1Zvsw64=^&AU=B&3mbz
z>CD=PnXF9=3=l^fxn<^*q!#JB<s_D*x}+xOr=;rpq~@iUWGEOJnIboEVgq*P9X8;(
z^Ho&l^1=yondY)EH!?HJ{c@OF)8KP)UBe5;D7io1dqtF;*@YfVEPoQX?eEU-W{rQI
zH888rSYz(v9U;l-Hfyc;SHYg6Tf$WrUk*I+&H1?hTMm`VJ(h>Azh1if{=o}hGUB#*
z6x@0J&nCxP>H2TYh9D+~e|NS{J0dOPr`Gdj(nfu=BiGIs?AYe)*k*c6+VT^p)<qN7
zb#*b#2QLVj3T4|*4hX&4@M@Ra1oQt@*2!}|gl`U5ZWDR+YV^#z7tfqJH}6<M>c027
z-?|s?xl>hDr_nYeQuQB0yj9M0Y{6tkR4^GEVFZ(c$lae^*2|n(zfI6P5%l!Lq;|8w
zxit)J+2WcuEEON_Ur*3>X5VqXxa8c@-1?Vm{T%WSo@5mExwWd{qOPM-k43ikDyb>c
zUamN$-}|9uTl}GV?q-LJr<Qwetg64W`xOt@^4h9+Tc_G9e^Vopoi5)#$@rY5;a^UQ
zVXLU${8PO@rd3~GV31*b_~k{urN%n<>@P0xJ>YR!WLMU7<++Dmv>s7-)6-&njp6;S
zwgsX8)4ujesQ=VvdieGDwv#u+IP5o1%2#~c*L!9{?!K5)sx7|GJ6#K>w`O#&FRpxU
zylRhqa&bPkYdcJl>hX}uf>eF~q^#hQTzx+UOJjYv%%b8F1q(w{ecb8I*uVs(MSV6p
zI{5Ypp*s8hPWiJ#xSp-rIp@|bExp9)EM^a<IRx2oL^t^Nxae4JkKcdSc#`gEDP@_W
ztjC*7q<VK%|N6abd9<3+Gr?Y$GfGDvh`9UA=m-|x7~wkSsGzviIW?h>1GS=@smkXf
zRajd$_bh2GjB(%is36|G>+p>Tw^KJfPFP&xdUrTNS#^$UilmKtNQ&vV+Z}-?mHFb2
zIjjy4k&0^K*m0Eg#q<o}!-fe{E+oiGoL1=&UNGsX2LG3h5ylxWIyARPJk2nP<jiO|
z%k=Cxk5sSiv_}%Gyt)e*gBLL!Z?JQFxWG}~`Lt<F0b}@z8PQt=-iED+U39nL{(>Z~
zWS%caxY(qo=oRq9WN>-u)|k#Xp!>r3f&P@Ey`uLPnz_A|+H*#bw`6;(Hrrkv-;S2q
zfhu#-c#~D+4)`SUo?z(rJosT+SIU`<iAtF&4^lHk7XNQ~$RM<f_e@VHPrtP2Q87bP
zw!&sP17WEJ_lhzYwj5%bk|8iBg=f|Q9nr(Q4%2pJ3um^?o!ED<%u~{VZ&AsTwJft5
z;(3~xg(r3%WZ_&O(OYr)L{Zj4W~mn}3bR8EA~|mySi%r=pgpM3mccevYzD)RAlHrD
zD;GBk_Zf;vs7h`tn8Khe;e1*3aF~x^!jc)AEcl|?Dw($#_(}F17IS`gh(kdxLsU#t
z<D;HNi&(|)@Apr>{Qi5&9^br6O>drDUejX{;~SLmKx@%O!%ABzF?q=ojocR=TIv7)
z@z_3=|M=$i#^;~g8y$WaeAr^eT`rcl)hbcmGC7X%bFIcd3*ApIQznRA(4M<v=AoSv
z{~hz2H?<(PK}P-eq@2{qI59nr16#Lm*9>T9S+&jK>Wo5XrsaE8Z-m-Ce!J6Re&U8t
z{|p$vE?Vzy!S4~E$hk{bk<VkpUey_<F$b2GGhSaU7dCg!;RWw4!vv>qepR*9z|Q>W
z;%7@aUoPc{^j^F4WZroWxlcX0m2MjvT6S!2nZUbjJIh^N$4w0^uF*m&ydD$ws&>rd
z$vn_xy^cBjQ(d5@+1d75lS8?8=4<zaX6P-PurQ)puW^E4yHnevTuw6u$1hU_KG*#V
z>D4%|UG>?*;Z(%eQb!pM$wG}3jf>L+IBL4SPhD_BO7FwRgG*!fHl1TyTEnvHV!_Ng
z`^6e}wutS_VlNbpc%rrCg!V;V&PLaDk@1|fzI{nI?pUq$ZxzGht#4j4$rdc)TX*`K
z+ZyKAmoD5BdLyNG;cD2rvr<!nLf0+HQrxqP@2skX;;rgUoKINQcAW5yc1oBieLLFe
z{GJ6y_jVr%schslxb<nD-iAht^yVp9`E$2Pv#rtp?b#re$txZrX)-OgfBBS^lf*+^
ze{1QAXPNGFEzf$QTqWz8{p$L+wk49$w&%2;Ue(iiB@oqGUo?Zy{bbp{x5|CN0kRpV
zwHI1XHqrcia&z+&6WjiMeWz}}5c}ez_Oi5OK961FuIEqQs>u7XzkG7DvTN~+Wk>7J
z|2@3e=C<#tFE`)SFWg`lkmq<+WkK7W1+UD#>Z{*<-Lunw^IAr}e=h>>N>81hXV(7H
zKsDX<S6Wn`yQI&%_fPmPem}~ya<}rs)l%;pXa1iPTsFx_^11mswx&M}s~w*fT`#q_
zJ7co`!uEUnuRK+_@om?F53NP}&Wj)a{fE{5($i9@6zv(S+L}U~WsaBeXg0OYNL64K
zn-E^Lx8k@{Sc<~!s{-*NN1uxd7_{ATay;9%$s|N8K<P2>+kM@_#mgL+T22KnXi4aK
z6sUUbQJv{y(QP~|PH%cuS1}(J*(cBtBpt6_@J9H@J%vM;Y}%yGdoFyvb5GfmU-C1K
zs|q;G{_uC^@7)h(9+W+Qn|H#2>9?jfn!31gd>7RVx$a=~Jh<H1lIyYajVQKcK{0lB
zR_?gPH*TnQ7ysFqx?sQA!R!MQ-@U!=qrTQ5=K9nH@-dRTXMJ61cly#S+Z*qGU2^NT
zGf3K){&I)G;tBia|GgwyX7>C}zS`M~CKkurbF2Q$Jtz3W@t~ROlm2s?!n8|jUerA=
zd}`XeE4T6l-!F~b8Tpm`bLFd-_*-cGxRc{+(tkI5OT0-$iuK!!?ct@{@5CQ}r>8w%
zWmjc<m|X1EbH9&InsArj^;GGfEq(9h&5asbKF_Fh(wQY)S$z4u+(j>EDeJBG9ZRSF
zy=p5~7IoLd=-F?BcVDil^1S7LcTUL2>W|{$d$$b(XQsAIwXs>8Go|zVk1Z_jyYuI+
z2wcCqPRi}tM9FheuYH-*6VIsGwY$$@{qpTY<liqff6l9>zU5!$K7Dgm8o!oBk<nhQ
zk4)7PmG)B8wzvLvJw2Us@}fICeboe&**))?OxbgW?PtN1yF2Em7d$BoS`v3}_20{T
z7mKGKe}7-?aiNjSQ+Da&KVu(ldAsarg3+$_Nyq;dnEsATPCHk_Fh%rx{nEv=qcxax
z)uWFxaGReMJ!p92UW3tuH_mSjrE*fuADb+Cvc%{8Jy*9$dkc$#9lmxLZQuCq)`56_
z^AC5K7Rv-z7QW1T*LzI!UtIX!zs*1AE_rHfbmnwQL)3|{9Wni$zj6)y-ko@!8MjQ>
zr0Y(ys-@rh)zjX~JSjH_)_9nAxyM1){8alA3H778KPUPXO-k3)-2ZIJp1DgjceZ&+
zAF22BH2me(^@ZE!v6_#O#!iQ87UviI&U+F)e|cu3sLV~J+bQjDCQVQ2|Ks^j>Gu;+
zONI6)`JdYMs2+dPGG~(Ur@lSv&!04@Jn7;&F`>b($T{z1M~zZ)k-O2P$<?1``gk~c
z8L7sf2>;Yuqi%oVYKe`X_oOsu6B|h%Zw;r5;So}7A9EQcABpCF^y*;S_$c&<)%|}3
zb(?mtsIZpjpWc~TCCtrXqAZpxplvqyNK#CRq4u+jZNEE(yZN;rxu$ixriJ=MJ@M#}
zn0w-UVg1{J`HS~;d{w$+dhWh<g7kzoo7=)cH=9CMu`RL5bBfw)dg8p1!dHXV4xi|Y
zkH22LckQ=0dwYB3H2En#WllPO^LOl3NHgx(XxTnv<+~dfTQ~HmD)H=Q{>SCl8tY;a
z=d$C_mnku-&Hi;?%^MG@?%+8c&hRX25>JqLP|WGpDbG&5{^ILDA*A~5Ulxz&*6+`k
z>uWh5=z07l&B{;hw8qEzZk?a~rc8P3(#h!M!|1g`Y-W^;=XT{k61neq9zT%yQ1`L(
zPXF?w`n<0mZ_)7hRXM9iI<a=Y@tk;zuo^G#^AjYuuZqk6X(GLBa?%9<OYBVb)^E&r
zu*bc863_5$9*fCpCj06AN)OJpm&^CXg-x4b@c+pANAttx{%Pi6zR#B38Ob)e`_JaN
zzZ*_#w1p?DOgn8}CH$##<_ph?=J!)BpLFUIJf$DiQX?ew&*7J;#r572`%{v;x{A8&
zx{C7e=gY>=Ie+qf<VGLMpI4^bPAHnpb@cW`|I2D$b3}jLnV-4Ud4A&DE2o#0hc{e$
zp*DNsdafc56_<K>gYO;l*D`A!ni=EUP|54ETlS{##j<Z1(z_+Lq&Ga0@7T(iyL9sH
z-Ra`$?)=QF{`WR)D>^mX^ONdb9qwx%iogG<`c<j9bn$EU*W1_km-UxvIp<hJ%#IgZ
zlWGyUB6!!f=G&Tg|1ZChox&X3_~X3j(tAf=vHsdW)%1SSnYV0f)QfLbs^tr{uh)8i
z?!T2qo~UBSGo!#aR_}QgzMbz}BwqZVcemvA7{l1r6EnMh*7vwHa`|s^-L%E%^y@%%
zQ=20l&*o|0v+3(lc(k48W|!}#nNwKrToYcmbj_J_ADg}{W_opR_w?t>`PEW;{&i0>
zy6kl-#w@HSAjf)6*|~M|r{`J=2KI(BzMaXf|1Exg+@GIG&p#B*znFUdtA5qOuC=!5
zPwy1-=uO+E6uG;<JTShXMz$%RPxZ*D8G1X;Z~A8Uq$%uhF1PWkm%96sJ_oLOxc2hr
zw{LAH)ZTfj^Y6;JsMzXDw|sw0XUR41l-u2T`c3Sc{9Wq}kIuW7oqw12`N_7==kCeu
zwYtl6Qe8auo^W<W{y(PPwn(;wvJE}a9EaZ7^CkRTCw_my&1-2j=BEyXmU@;<pR!$L
zrq8GK0j^uUueC=0dbxo8)dse>)7v&Bne4tN8ymlz;iQ7D-KKBe2|OL2#ScvH7iDK{
z_ivN`owBw}Zo0wsxld~}-pLz#Dm!55ZyA~(`di>0L_|<(nto7zeu)BTj5kQ%GcPS)
z!AQYCAxPiTCECW^(8$clFxAW`(J&>&&?3bk*~C22(9FQX$ighe$kN!3u!>my;LNI2
zE)zpj{qSf*1!D!HSUf!xLjwy-<i4KiwdjDUp%TYFevh2Lpy`yOhznoS99Nff9UO8>
z&cP}HoIwTxmoJ>?(FrzIGTypLh+lJ=W{cz$uO+RXtWzzc#C^pxjZM#nn4c|q7@Asb
z|N3uU-R5Wi*CxJ?ydRaVtW@-Uo!}Kuwz-)ue^Qi>A1#rKb?{aYQaEJElzv81*52))
zC3mJ~tk3idMjiRf&Y5qK6iV4*@ukqiW7jmn5@VGuj@|sVLPGn(yY+J$UH&adRjK6?
z5?+=nQY$62-RE@1FCLYR!QJwA**t%`ciZ1(^eo<gUSgN9(dN+85x-<qUQe4=SR$^X
zALPwYJ5M`+PxHny+X?$PG=E;*JSoU(i7iLbjlaJSmY6SD9Dcgum(Y`x?r8$QjGk=S
zy-oN<oX7P3X`LnVOMa*8F8pG8V&~$hLoXOT@;6WO{8D=2=hCP{FQq5!<ItV_a`uFO
z)=^3?6i+<89i{X#@q|PFG>s~jqOT3pGOBot=DdjQ&Hi_5`2`7uH#4S1RLOMw3qKul
zi}6TlcIRUCMwasWW0!*+F0txzevwsJ8t<)S%e!QkYUe!0OKe+JE|)icnH?3BVLsvG
z-f5X%bS8Z5o)%KYcjBl2>5^Y|6W(WdF1B@WoH9-Fi%r0beK$+07&Xeur`xU-Z>(Gy
zWt1VmVS$6U+FuThnd?=%<Cw(OU6|yn&%AW@mM0hd8;)9Ud2)#{!E^UCn<`d~-78e*
z*Rf6E&zR|I&#qN>Dac_z!?fM$xn_TbRusLT=48ck<=?ZL{44gq``YsR*z*gC^Hx4B
zQN2)k+xq#N3D@rnm!=8Mw>ohD=DoV(vD=fZ#FwoJ>)!j+?LY{7_RRB-n1er06{}|N
zYl#e9@>FhGpuy_(8JdZbyur`U?VO&fb7q!z)Eiz)zGZdWru~j!N|5@s<;HJgfn|o#
zr<JBD%qV^LZ_D;<jx)bxbiZ%*X}I~|U2*kyzn08X7dA~%<w;v?y}Tz?$mg@B?&*j_
ziDtX=x6M%%N;_>HC700Il=(Bzo7LOo%r*NhA)AgIs8|;k{pNR9>&<uf&TB_3JM`wv
z)lHLB8Pld$e-7EGa%ju7?8*tMoXgJc)m<GKlu%ZlxiWDk+vek&KN<YKy_av=%ggOQ
zOhlhWt=WE`<71is%7({}>u!f`X}osHYFC?`&+C_2yQZ04bk9_db(dfG`XyW4G~0{o
zFX@&D*EZ!XkAAuN3+pYf_=UM8{CEBBm%RO=P&-?0Y5qmwE!}08_+M0SnSTH5zk9Vl
zzh5f+of7v{=6Cn|pZ*Vad&Sz;XRXlxy4d(dg_MtShQ?f<$1g>s+%IPs&Gj>W*i!Z)
zJ@w$p%qxXvb6lfK=P)lXTH9Cr&_wonq1>Ep6|&C{TmG2dmwwQ)#N{|^LDj!2A9F06
z8?E$OjB8?#7eA=k>wny}V4v@`jdv#(uiR_9>fs%M+N}3n)zUXU=lPfL&Y9h5b$niY
zwbNV4Ez8f$Q?3qL_2AB@H&6aER_gwpiCF{|mn0UIR1~GAaT%E!8ylN)sj9mAyKw;k
D{BqH-

diff --git a/2-Performance_Counters/Handson/Solutions/Makefile b/2-Performance_Counters/Handson/Solutions/Makefile
index e725a41..1db4b2f 100644
--- a/2-Performance_Counters/Handson/Solutions/Makefile
+++ b/2-Performance_Counters/Handson/Solutions/Makefile
@@ -34,42 +34,42 @@ clean:
 	${RM} -f *.bin
 
 run_task1: poisson2d.ins_cyc.bin
-	$(SC18_SUBMIT_CMD) ./$< 200 1024
+	$(SC19_SUBMIT_CMD) ./$< 200 1024
 run_task2: poisson2d.ld_st.bin
-	$(SC18_SUBMIT_CMD) ./$< 200 1024
+	$(SC19_SUBMIT_CMD) ./$< 200 1024
 run_task3_1: poisson2d.vld.bin
-	$(SC18_SUBMIT_CMD) ./$< 200 1024
+	$(SC19_SUBMIT_CMD) ./$< 200 1024
 run_task3_2: poisson2d.vst.bin
-	$(SC18_SUBMIT_CMD) ./$< 200 1024
+	$(SC19_SUBMIT_CMD) ./$< 200 1024
 run_task3: run_task3_1 run_task3_2
 run_task4_1: poisson2d.sflop.bin
-	$(SC18_SUBMIT_CMD) ./$< 200 1024
+	$(SC19_SUBMIT_CMD) ./$< 200 1024
 run_task4_2: poisson2d.vflop.bin
-	$(SC18_SUBMIT_CMD) ./$< 200 1024
+	$(SC19_SUBMIT_CMD) ./$< 200 1024
 run_task4: run_task4_1 run_task4_2
 bench_task1: poisson2d.ins_cyc.bin
-	$(SC18_SUBMIT_CMD) ./bench.sh $< $(SC18_DIR_SCRATCH)/$<.csv
-	mv $(SC18_DIR_SCRATCH)/$<.csv .
+	$(SC19_SUBMIT_CMD) ./bench.sh $< $(SC19_DIR_SCRATCH)/$<.csv
+	mv $(SC19_DIR_SCRATCH)/$<.csv .
 bench_task2: poisson2d.ld_st.bin
-	$(SC18_SUBMIT_CMD) ./bench.sh $< $(SC18_DIR_SCRATCH)/$<.csv
-	mv $(SC18_DIR_SCRATCH)/$<.csv .
+	$(SC19_SUBMIT_CMD) ./bench.sh $< $(SC19_DIR_SCRATCH)/$<.csv
+	mv $(SC19_DIR_SCRATCH)/$<.csv .
 bench_task3_1: poisson2d.vld.bin
-	$(SC18_SUBMIT_CMD) ./bench.sh $< $(SC18_DIR_SCRATCH)/$<.csv
-	mv $(SC18_DIR_SCRATCH)/$<.csv .
+	$(SC19_SUBMIT_CMD) ./bench.sh $< $(SC19_DIR_SCRATCH)/$<.csv
+	mv $(SC19_DIR_SCRATCH)/$<.csv .
 bench_task3_2: poisson2d.vst.bin
-	$(SC18_SUBMIT_CMD) ./bench.sh $< $(SC18_DIR_SCRATCH)/$<.csv
-	mv $(SC18_DIR_SCRATCH)/$<.csv .
+	$(SC19_SUBMIT_CMD) ./bench.sh $< $(SC19_DIR_SCRATCH)/$<.csv
+	mv $(SC19_DIR_SCRATCH)/$<.csv .
 bench_task3: bench_task3_1 bench_task3_2
 bench_task4_1: poisson2d.sflop.bin
-	$(SC18_SUBMIT_CMD) ./bench.sh $< $(SC18_DIR_SCRATCH)/$<.csv
-	mv $(SC18_DIR_SCRATCH)/$<.csv .
+	$(SC19_SUBMIT_CMD) ./bench.sh $< $(SC19_DIR_SCRATCH)/$<.csv
+	mv $(SC19_DIR_SCRATCH)/$<.csv .
 bench_task4_2: poisson2d.vflop.bin
-	$(SC18_SUBMIT_CMD) ./bench.sh $< $(SC18_DIR_SCRATCH)/$<.csv
-	mv $(SC18_DIR_SCRATCH)/$<.csv .
+	$(SC19_SUBMIT_CMD) ./bench.sh $< $(SC19_DIR_SCRATCH)/$<.csv
+	mv $(SC19_DIR_SCRATCH)/$<.csv .
 bench_task4: bench_task4_1 bench_task4_2
 
 clean_scratch_csv:
-	${RM} $(SC18_DIR_SCRATCH)/*.csv
+	${RM} $(SC19_DIR_SCRATCH)/*.csv
 clean_csv: clean_scratch_csv
 	${RM} *.csv
 
@@ -82,32 +82,25 @@ graph_task2c: plot-task2c.pdf
 graph_task4: plot-task4.pdf
 graph_task4-2: plot-task4-2.pdf
 plot-task1.pdf: poisson2d.ins_cyc.bin.csv
-	@test "$$SC18_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task1()"
 	@test -n "$$DISPLAY" || "No X forwarding found. Either reconnect with X forwarding (-X / -Y) or download $@ with scp."
 	display $@
 plot-task2a.pdf: poisson2d.ld_st.bin.csv
-	@test "$$SC18_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task2a()"
 	display $@
 plot-task2b.pdf: poisson2d.vld.bin.csv poisson2d.vst.bin.csv
-	@test "$$SC18_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task2b()"
 	display $@
 plot-task2b-2.pdf: poisson2d.vld.bin.csv poisson2d.vst.bin.csv poisson2d.ld_st.bin.csv
-	@test "$$SC18_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task2b(bytes=True)"
 	display $@
 plot-task2c.pdf: poisson2d.vld.bin.csv poisson2d.vst.bin.csv poisson2d.ld_st.bin.csv poisson2d.ins_cyc.bin.csv
-	@test "$$SC18_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task2c()"
 	display $@
 plot-task4.pdf: poisson2d.sflop.bin.csv poisson2d.vflop.bin.csv
-	@test "$$SC18_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task4()"
 	display $@
 plot-task4-2.pdf: poisson2d.sflop.bin.csv poisson2d.vflop.bin.csv
-	@test "$$SC18_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task4(ai=True)"
 	display $@
 
diff --git a/2-Performance_Counters/Handson/Solutions/common.py b/2-Performance_Counters/Handson/Solutions/common.py
index 1891a03..9033865 100644
--- a/2-Performance_Counters/Handson/Solutions/common.py
+++ b/2-Performance_Counters/Handson/Solutions/common.py
@@ -1,2 +1,22 @@
 def normalize(df, old_column, new_column):
 	df[new_column] = df[old_column] / (df["ny"] * df["nx"])
+    
+def print_and_return_fit(list_of_quantities, dataframe, function, format_value=">7.4f", format_uncertainty="f", _print=True):
+    """Use `curve_fit` to fit each quantity in `list_of_quantity` wrt to `dataframe.index`. Print (selectable) and return the result."""
+    import numpy as np
+    from scipy.optimize import curve_fit 
+    _fit_parameters = {}
+    _fit_covariance = {}
+    _quantity_padding = np.max([len(_str) for _str in list_of_quantities])
+    for quantity in list_of_quantities:
+        _fit_parameters[quantity], _fit_covariance[quantity] = curve_fit(function, dataframe.index, dataframe[quantity])
+        if (_print):
+            print("Counter {:>{_quantity_padding}} is proportional to the grid points (nx*ny) by a factor of {:{format_value}} (± {:{format_uncertainty}})".format(
+                quantity, 
+                _fit_parameters[quantity][0], 
+                np.sqrt(np.diag(_fit_covariance[quantity]))[0],
+                _quantity_padding=_quantity_padding,
+                format_value=format_value,
+                format_uncertainty=format_uncertainty
+        ))
+    return (_fit_parameters, _fit_covariance)
\ No newline at end of file
diff --git a/2-Performance_Counters/Handson/Tasks/Makefile b/2-Performance_Counters/Handson/Tasks/Makefile
index e725a41..1db4b2f 100644
--- a/2-Performance_Counters/Handson/Tasks/Makefile
+++ b/2-Performance_Counters/Handson/Tasks/Makefile
@@ -34,42 +34,42 @@ clean:
 	${RM} -f *.bin
 
 run_task1: poisson2d.ins_cyc.bin
-	$(SC18_SUBMIT_CMD) ./$< 200 1024
+	$(SC19_SUBMIT_CMD) ./$< 200 1024
 run_task2: poisson2d.ld_st.bin
-	$(SC18_SUBMIT_CMD) ./$< 200 1024
+	$(SC19_SUBMIT_CMD) ./$< 200 1024
 run_task3_1: poisson2d.vld.bin
-	$(SC18_SUBMIT_CMD) ./$< 200 1024
+	$(SC19_SUBMIT_CMD) ./$< 200 1024
 run_task3_2: poisson2d.vst.bin
-	$(SC18_SUBMIT_CMD) ./$< 200 1024
+	$(SC19_SUBMIT_CMD) ./$< 200 1024
 run_task3: run_task3_1 run_task3_2
 run_task4_1: poisson2d.sflop.bin
-	$(SC18_SUBMIT_CMD) ./$< 200 1024
+	$(SC19_SUBMIT_CMD) ./$< 200 1024
 run_task4_2: poisson2d.vflop.bin
-	$(SC18_SUBMIT_CMD) ./$< 200 1024
+	$(SC19_SUBMIT_CMD) ./$< 200 1024
 run_task4: run_task4_1 run_task4_2
 bench_task1: poisson2d.ins_cyc.bin
-	$(SC18_SUBMIT_CMD) ./bench.sh $< $(SC18_DIR_SCRATCH)/$<.csv
-	mv $(SC18_DIR_SCRATCH)/$<.csv .
+	$(SC19_SUBMIT_CMD) ./bench.sh $< $(SC19_DIR_SCRATCH)/$<.csv
+	mv $(SC19_DIR_SCRATCH)/$<.csv .
 bench_task2: poisson2d.ld_st.bin
-	$(SC18_SUBMIT_CMD) ./bench.sh $< $(SC18_DIR_SCRATCH)/$<.csv
-	mv $(SC18_DIR_SCRATCH)/$<.csv .
+	$(SC19_SUBMIT_CMD) ./bench.sh $< $(SC19_DIR_SCRATCH)/$<.csv
+	mv $(SC19_DIR_SCRATCH)/$<.csv .
 bench_task3_1: poisson2d.vld.bin
-	$(SC18_SUBMIT_CMD) ./bench.sh $< $(SC18_DIR_SCRATCH)/$<.csv
-	mv $(SC18_DIR_SCRATCH)/$<.csv .
+	$(SC19_SUBMIT_CMD) ./bench.sh $< $(SC19_DIR_SCRATCH)/$<.csv
+	mv $(SC19_DIR_SCRATCH)/$<.csv .
 bench_task3_2: poisson2d.vst.bin
-	$(SC18_SUBMIT_CMD) ./bench.sh $< $(SC18_DIR_SCRATCH)/$<.csv
-	mv $(SC18_DIR_SCRATCH)/$<.csv .
+	$(SC19_SUBMIT_CMD) ./bench.sh $< $(SC19_DIR_SCRATCH)/$<.csv
+	mv $(SC19_DIR_SCRATCH)/$<.csv .
 bench_task3: bench_task3_1 bench_task3_2
 bench_task4_1: poisson2d.sflop.bin
-	$(SC18_SUBMIT_CMD) ./bench.sh $< $(SC18_DIR_SCRATCH)/$<.csv
-	mv $(SC18_DIR_SCRATCH)/$<.csv .
+	$(SC19_SUBMIT_CMD) ./bench.sh $< $(SC19_DIR_SCRATCH)/$<.csv
+	mv $(SC19_DIR_SCRATCH)/$<.csv .
 bench_task4_2: poisson2d.vflop.bin
-	$(SC18_SUBMIT_CMD) ./bench.sh $< $(SC18_DIR_SCRATCH)/$<.csv
-	mv $(SC18_DIR_SCRATCH)/$<.csv .
+	$(SC19_SUBMIT_CMD) ./bench.sh $< $(SC19_DIR_SCRATCH)/$<.csv
+	mv $(SC19_DIR_SCRATCH)/$<.csv .
 bench_task4: bench_task4_1 bench_task4_2
 
 clean_scratch_csv:
-	${RM} $(SC18_DIR_SCRATCH)/*.csv
+	${RM} $(SC19_DIR_SCRATCH)/*.csv
 clean_csv: clean_scratch_csv
 	${RM} *.csv
 
@@ -82,32 +82,25 @@ graph_task2c: plot-task2c.pdf
 graph_task4: plot-task4.pdf
 graph_task4-2: plot-task4-2.pdf
 plot-task1.pdf: poisson2d.ins_cyc.bin.csv
-	@test "$$SC18_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task1()"
 	@test -n "$$DISPLAY" || "No X forwarding found. Either reconnect with X forwarding (-X / -Y) or download $@ with scp."
 	display $@
 plot-task2a.pdf: poisson2d.ld_st.bin.csv
-	@test "$$SC18_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task2a()"
 	display $@
 plot-task2b.pdf: poisson2d.vld.bin.csv poisson2d.vst.bin.csv
-	@test "$$SC18_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task2b()"
 	display $@
 plot-task2b-2.pdf: poisson2d.vld.bin.csv poisson2d.vst.bin.csv poisson2d.ld_st.bin.csv
-	@test "$$SC18_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task2b(bytes=True)"
 	display $@
 plot-task2c.pdf: poisson2d.vld.bin.csv poisson2d.vst.bin.csv poisson2d.ld_st.bin.csv poisson2d.ins_cyc.bin.csv
-	@test "$$SC18_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task2c()"
 	display $@
 plot-task4.pdf: poisson2d.sflop.bin.csv poisson2d.vflop.bin.csv
-	@test "$$SC18_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task4()"
 	display $@
 plot-task4-2.pdf: poisson2d.sflop.bin.csv poisson2d.vflop.bin.csv
-	@test "$$SC18_MODULE_ACTIVE_1" -eq "1" || "Please load the module of this task, sc18/handson1."
 	python3 -c "import graphing; graphing.task4(ai=True)"
 	display $@
 
diff --git a/2-Performance_Counters/Handson/Tasks/common.py b/2-Performance_Counters/Handson/Tasks/common.py
index 1891a03..9033865 100644
--- a/2-Performance_Counters/Handson/Tasks/common.py
+++ b/2-Performance_Counters/Handson/Tasks/common.py
@@ -1,2 +1,22 @@
 def normalize(df, old_column, new_column):
 	df[new_column] = df[old_column] / (df["ny"] * df["nx"])
+    
+def print_and_return_fit(list_of_quantities, dataframe, function, format_value=">7.4f", format_uncertainty="f", _print=True):
+    """Use `curve_fit` to fit each quantity in `list_of_quantity` wrt to `dataframe.index`. Print (selectable) and return the result."""
+    import numpy as np
+    from scipy.optimize import curve_fit 
+    _fit_parameters = {}
+    _fit_covariance = {}
+    _quantity_padding = np.max([len(_str) for _str in list_of_quantities])
+    for quantity in list_of_quantities:
+        _fit_parameters[quantity], _fit_covariance[quantity] = curve_fit(function, dataframe.index, dataframe[quantity])
+        if (_print):
+            print("Counter {:>{_quantity_padding}} is proportional to the grid points (nx*ny) by a factor of {:{format_value}} (± {:{format_uncertainty}})".format(
+                quantity, 
+                _fit_parameters[quantity][0], 
+                np.sqrt(np.diag(_fit_covariance[quantity]))[0],
+                _quantity_padding=_quantity_padding,
+                format_value=format_value,
+                format_uncertainty=format_uncertainty
+        ))
+    return (_fit_parameters, _fit_covariance)
\ No newline at end of file
-- 
GitLab