
PDC	Summer	School:	OpenMP	Advanced
Project
About	this	exercise
The	aim	of	this	exercise	is	to	give	hands-on	experience	in	parallelizing	a	larger	program,
measure	parallel	performance	and	gain	experience	in	what	to	expect	from	modern	multi-core
architectures.

Your	task	is	to	parallelize	a	finite-volume	solver	for	the	two	dimensional	shallow	water
equations.	Measure	speed-up	and	if	you	have	time,	tune	the	code.	You	do	not	need	to	understand
the	numerics	in	order	to	solve	this	exercise	(a	short	description	is	given	in	Appendix	A).
However,	it	assumes	some	prior	experience	with	OpenMP,	please	refer	to	the	lecture	on	shared
memory	programming	if	necessary.

Algorithm
For	this	exercise	we	solve	the	shallow	water	equations	on	a	square	domain	using	a	simple
dimensional	splitting	approach.	Updating	volumes	Q	with	numerical	fluxes	F	and	G,	first	in	the	x
and	then	in	the	y	direction,	more	easily	expressed	with	the	following	pseudo-code:

for	each	time	step	do
				Apply	boundary	conditions
				for	each	Q	do
								Calculate	fluxes	F	in	the	x-direction
								Update	volume	Q	with	fluxes	F
				end
				for	each	Q	do
								Calculate	fluxes	G	in	the	y-direction
								Update	volumes	Q	with	fluxes	G
				end
end

In	order	to	obtain	good	parallel	speed-up	with	OpenMP,	each	sub-task	assigned	to	a	thread
needs	to	be	rather	large.	Since	the	nested	loops	contains	a	lot	of	numerical	calculations	the
solver	is	a	perfect	candidate	for	OpenMP	parallelization.	But	as	you	will	see	in	this	exercise,	it	is
fairly	difficult	to	obtain	optimal	speed-up	on	today’s	multi-core	computers.	However,	it	should	be
fairly	easy	to	obtain	some	speed-up	without	too	much	effort.	The	difficult	task	is	to	make	a	good
use	of	all	the	available	cores.

Choose	to	work	with	either	the	given	serial	C/Fortran	90	code	or,	if	you	think	you	have	time,
write	your	own	implementation	(but	do	not	waste	time	and	energy).	Compile	the	code	by	typing
make	and	execute	the	program	shwater2d	with	srun	as	described	in	the	general	documentation.

1.	Parallelize	the	code
A	serial	version	of	the	code	is	provided	here:	shwater2d.c	or	shwater2d.f.	Remember	not	to	try
parallelising	everything.	Add	OpenMP	statements	to	make	it	run	in	parallel	and	make	sure	the
computed	solution	is	correct.	Some	advices	are	provided	below.

Tasks	and	questions	to	be	addressed

1.	 How	should	the	work	be	distributed	among	threads?
2.	 Add	OpenMP	statements	to	make	the	code	in	parallel	without	affecting	the	correctness	of

the	code.
3.	 What	is	the	difference	between

!$omp	parallel	do
				do	i=1,n
				...
!$omp	end	parallel	do
!$omp	parallel	do
				do	j=1,m
				...
!$omp	end	parallel	do

file:///home/pleiter/kth/prj/pdc-summer-school/2021/labs/openmp-lab-exercises/advanced_lab/c/shwater2d.c
file:///home/pleiter/kth/prj/pdc-summer-school/2021/labs/openmp-lab-exercises/advanced_lab/f90/shwater2d.f90

and

!$omp	parallel
				!$omp	do
								do	i=1,n
								...
				!$omp	end	do
				!$omp	do
								do	j=1,m
								...
				!$omp	end	do
!$omp	end	parallel

Hint:	How	are	threads	created/destroyed	by	OpenMP?	How	can	it	impact	performance?

2.	Measure	parallel	performance
In	this	exercise,	we	explore	parallel	performance	refers	to	the	computational	speed-up	Sn	=
(ΔT1/ΔTn),	where	n	is	the	number	of	threads.

Tasks	and	questions	to	be	addressed

1.	 Measure	run	time	ΔTn	for	n	=	1,	2,	…,	24	threads	and	calculate	the	speed-up.
2.	 Is	it	linear?	If	not,	why?
3.	 Finally,	is	the	obtained	speed-up	acceptable?
4.	 Try	to	increase	the	space	discretization	(M,N)	and	see	if	it	affects	the	speed-up.

Recall	from	the	OpenMP	exercises	that	the	number	of	threads	is	determined	by	an	environment
variable	OMP_NUM_THREADS.	One	could	change	the	variable	or	use	the	shell	script	provided	in
Appendix	B.

3.	Optimize	the	code
The	given	serial	code	is	not	optimal,	why?	If	you	have	time,	go	ahead	and	try	to	make	it	faster.
Try	to	decrease	the	serial	run	time.	Once	the	serial	performance	is	optimal,	redo	the	speedup
measurements	and	comment	on	the	result.

For	debugging	purposes	you	might	want	to	visualize	the	computed	solution.	Uncomment	the	line
save_vtk.	The	result	will	be	stored	in	result.vtk,	which	can	be	opened	in	ParaView,	available	on
Tegner	after	module	add	paraview.	Beware	that	the	resulting	file	could	be	rather	large,	unless	the
space	discretization	(M,N)	is	decreased.

A.	About	the	Finite-Volume	solver
In	this	exercise	we	solve	the	shallow	water	equations	in	two	dimensions	given	by

where	h	is	the	depth	and	(u,v)	are	the	velocity	vectors.	To	solve	the	equations	we	use	a
dimensional	splitting	approach,	i.e.	reducing	the	two	dimensional	problem	to	a	sequence	of	one-
dimensional	problems

For	this	exercise	we	use	the	Lax-Friedrich’s	scheme,	with	numerical	fluxes	F,	G	defined	as

where	f	and	g	are	the	flux	functions,	derived	from	(1).	For	simplicity	we	use	reflective	boundary
conditions,	thus	at	the	boundary

B.	Run	scripts	for	changing	OMP_NUM_THREADS
Bash:

#!/bin/bash

for	n	in	`seq	1	1	16`;	do
				OMP_NUM_THREADS=$n	srun	-n	1	./a.out
done

C	shell:

#!/bin/csh

foreach	n	(`seq	1	1	16`)
				env	OMP_NUM_THREADS=$n	srun	-n	1	./a.out
end

