
 1

OpenMP Lab Assignment

Overview

The goal of these exercises is to familiarize you with OpenMP environment and make our first
parallel codes with OpenMP. We will also record the code performance and understand race
condition and false sharing. This laboratory contains four exercises, each with step-by-step
instructions below.

For your experiments, you are going to use a node of the Beskow supercomputer. To run your
code on Beskow, you need first to generate your executable. It is very important that you include
a compiler flag telling the compiler that you are going to use OpenMP. If you forget the flag, the
compiler will happily ignore all the OpenMP directives and create an executable that runs in
serial. Different compilers have different flags. When using Cray compilers, the OpenMP flag is –
openmp.

To compile your C OpenMP code using the default Cray compilers:

cc –O2 –openmp –lm name_source.c –o name_exec

In Fortran, you need to use the intel compiler. On Beskow, you first need to switch first from Cray
to Intel compiler with:

module swap PrgEnv-cray PrgEnv-intel

and then compile with:

ftn –fpp –O2 –openmp –lm name_source.f90 –o name_exec

Very Important: Do not copy and paste from this document to your terminal since the –
symbol will create problems when compiling.

To run your code on Beskow, you will need to have an interactive allocation:

salloc -N 1 -t 4:00:00 -A edu18.summer --reservation=summer-2018-08-15

To set the number of threads, you need to set the OpenMP environment variable:

export OMP_NUM_THREADS=<number of threads>

To run an OpenMP code on a computing node of Beskow:

https://www.pdc.kth.se/hpc-services/computing-systems/beskow-1.737436

 2

aprun -n 1 -d number of threads -cc none ./name_exec

Exercise 1 – OpenMP Hello World, get familiar with OpenMp Environment
Concepts: Parallel regions, parallel, thread ID

Here we are going to implement the first OpenMP program. Expected knowledge includes
basic understanding of OpenMP environment, how to compile an OpenMP program, how
to set the number of OpenMP threads and retrieve the thread ID number at runtime.

Your code using 4 threads should behave similarly to:

Input:
aprun -n 1 -d 4 -cc none ./hello

Output:
Hello World from Thread 3
Hello World from Thread 0
Hello World from Thread 2
Hello World from Thread 1

Instructions: Write a C/Fortran code to make each OpenMP thread print Hello World
from Thread X! with X = thread ID.

Hints:

• Remember to include OpenMP library

• Retrieve the ID of the thread with omp_get_thread_num() in C or in Fortran
OMP_GET_THREAD_NUM().

Questions:

• How do you change the number of threads?

• How many different ways are there to change the number of threads? Which one are
those?

• How can you make the output ordered from thread 0 to thread 4?

Exercise 2 - Creating Threads: calculate pi in parallel only using the parallel pragma
Concepts: Parallel, default data environment, runtime library calls

Here we are going to implement a first parallel version of the pi.c / pi.f90 code to
calculate the value of pi using the parallel construct.

 3

The figure below shows the numerical technique, we are going to use to calculate pi.

Figure 1 We calculate PI solving an integral numerically

A simple serial C code to calculate pi is the following:

static long num_steps = 100000000;
double step;

int main(){
 int i;
 double x, pi, sum = 0.0;
 double start_time, run_time;
 step = 1.0/(double) num_steps;
 for (i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

Instructions: Create a parallel version of the pi.c / pi.f90 program using a parallel construct:

#pragma omp parallel. Run the parallel code and take the execution time with 1,
2,4,8,16, 32 threads. Record the timing.

Pay close attention to shared versus private variables.

• In addition to a parallel construct, you might need the runtime library routines:

 4

• int omp_get_num_threads(); to get the number of threads in a team

• int omp_get_thread_num(); to get thread ID

• double omp_get_wtime(); to get the time in seconds since a fixed point in

the past

• omp_set_num_threads(); to request a number of threads in a team

Hints:

• Use a parallel construct: #pragma omp parallel.

• Divide loop iterations between threads (use the thread ID and the number of threads).

• Create an accumulator for each thread to hold partial sums that you can later combine
to generate the global sum, i.e.,

 #define MAX_THREADS 4
…
int main ()
{
 double pi, full_sum = 0.0;
 double sum[MAX_THREADS];

 for (j=1;j<=MAX_THREADS ;j++) {

 #pragma omp parallel
 {

 …

 sum[id] = 0.0;
 for (i …){

 x = (i+0.5)*step;

 sum[id] = sum[id] + 4.0/(1.0+x*x);

 }
 }

 // calculate full_sum iterating over sum[id]
 …

 pi = step * full_sum;

 }
}

Questions:

• How does the execution time change varying the number of threads? Is what you
expected? If not, why you think it is so?

• Is there any technique you heard in class to improve the scalability of the technique?
How would you implement it?

 /* set the number of threads to j and start timing here */

 /* stop and report timing here */
 …

 …

 5

Exercise 3 - calculate pi using critical and atomic directives
Concepts: parallel region, synchronization, critical, atomic

Here we are going to implement a second and a third parallel version of the pi.c / pi.f90
code to calculate the value of pi using the critical and atomic directives.

Instructions: Create two new parallel versions of the pi.c / pi.f90 program using the parallel

construct #pragma omp parallel and 1) #pragma omp critical 2) #pragma
omp atomic. Run the two new parallel codes and take the execution time with 1, 2,4,8,16, 32
threads. Record the timing in a table.

Hints:

• We can use a shared variable pi to be updated concurrently by different threads.
However, this variable needs to be protected with a critical section or an atomic access.

• Use critical and atomic before the update pi += step

Questions:

• What would happen if you hadn’t used critical or atomic a shared variable?

• How does the execution time change varying the number of threads? Is it what you
expected?

• Do the two version of the codes differ in performance? If so, what do you think it is the
reason?

Exercise 4 – calculate pi with a loop and a reduction
Concepts: worksharing, parallel loop, schedule, reduction

Here we are going to implement a fourth parallel version of the pi.c / pi.f90 code to
calculate the value of pi using omp for and reduction operations.

Instructions: Create a new parallel versions of the pi.c / pi.f90 program using the parallel

construct #pragma omp for and reduction operation. Run the new parallel code and take
the execution time for 1, 2,4,8,16, 32 threads. Record the timing in a table. Change the schedule
to dynamic and guided and measure the execution time for 1, 2,4,8,16, 32 threads.

Hints:

 6

To change the schedule, you can either change the environment variable with export
OMP_SCHEDULE=type where type can be any of static, dynamic, guided or in the

source code as omp parallel for schedule(type).

Questions:

• What is the scheduling that provides the best performance? What is the reason for that?

• What is the fastest parallel implementation of pi.c / pi.f90 program? What is the
reason for being the fastest? What would be an even faster implementation of pi.c /
pi.f90 program?

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6

