Lecture 3. Variational Bayes

Introduction to Bayesian Statistical learning

24.03.2025-28.03.2025 Instructors: Alina Bazarova, Jose Robledo

Analytic Variational Bayes (slightly heavier on the math)

Formula for posterior distribution (reminder)

p@)p(X|0) p(X, 0)

o|X)= 22\ PR
PO = T opXIade ~ T ppx 0o

Analytic Variational Bayes (slightly heavier on the math)

Formula for posterior distribution (reminder)

p@)p(X|0) _ p(X, 0)
IR p@)p(X|6)do JR p(@p(X|6)do

We already know that evaluating posterior analytically can be rather challenging.

pO|X) =

Analytic Variational Bayes (slightly heavier on the math)

Formula for posterior distribution (reminder)

p@)p(X|0) _ p(X, 0)
IR p@)p(X|6)do JR p(@p(X|6)do

We already know that evaluating posterior analytically can be rather challenging.

pO|X) =

MCMC is a sampling technique which we have considered previously: we
construct a Markov chain which converges to posterior distribution

Analytic Variational Bayes (slightly heavier on the math)

Formula for posterior distribution (reminder)

p@)p(X|0) _ p(X, 0)
IR p@)p(X|6)do JR p(@p(X|6)do

We already know that evaluating posterior analytically can be rather challenging.

pO|X) =

MCMC is a sampling technique which we have considered previously: we
construct a Markov chain which converges to posterior distribution

The goal of Variational Bayes: approximate p(@ | X) with a simpler distribution g(6)

Analytic Variational Bayes (slightly heavier on the math)

Formula for posterior distribution (reminder)
pOpX|10) p(X, 0)
J. P@OpX|0)do | p@)p(X|0)de

We already know that evaluating posterior analytically can be rather challenging.

p@|X) =

MCMC is a sampling technique which we have considered previously: we
construct a Markov chain which converges to posterior distribution

The goal of Variational Bayes: approximate p(€ | X) with a simpler distribution g(60)

Seen this in Laplace approximation already!

Analytic Variational Bayes (slightly heavier on the math)

Formula for posterior distribution (reminder)

pOPXIO) _ pX,0)
[, POPX10)d0 [pO)p(X|6)do

We already know that evaluating posterior analytically can be rather challenging.

pO|X) =

MCMC is a sampling technique which we have considered previously: we construct a
Markov chain which converges to posterior distribution

The goal of Variational Bayes: approximate p(6 | X) with a simpler distribution g(6)

Seen this in Laplace approximation already!

Assume there is a distribution density function g(f) which is in turn parametrised
by a series of hyper-parameters.

Free energy and Kullback-Leibler divergence

pX, 0)
p(@|X)

Then log p(X) = log and taking into account Jq(@)d@ = 1.

Free energy and Kullback-Leibler divergence

pX, 0)
p(@|X)

log p(X) = log p(X) Jq(ﬁ)dﬁ

Then log p(X) = log and taking into account Jq(@)d@ = 1.

Free energy and Kullback-Leibler divergence

pX, 0)
p(@|X)

log p(X) = log p(X) Jq(ﬁ)dﬁ = Jq(ﬁ)log

Then log p(X) = log and taking into account Jq(@)d@ = 1.

p(X, 0)
p(@|X)

do

Free energy and Kullback-Leibler divergence

. pX.0) - J _ 1.
Then log p(X) = log and taking into account | g(6)d6 = 1.
p(0|X)
p(X, 0) [[p(X, 0) 6](9)]
] X) = log(X 0)do = | g(6)] do = | g(0)] . ——1 do
og p(X) = log()Jq() [q()ng(é’\X) q(0)log S01X) 9@

Free energy and Kullback-Leibler divergence

Then log p(X) = log

log p(X) = log(X)

nq(ﬁ)de =

P(

q(0)log

X, 6)
p(@|X)

pX, 0)

p@|X)

and taking into account Jq(@)d@ = 1:

db

g(0)log

PO g0)

pO|X) q0)

db =

q(0)log

p(X,

0)

q(0)

dl +

g(0)log

q(0) 10

p@|X)

Free energy and Kullback-Leibler divergence

pX, 0)
p(@|X)

Then log p(X) = log

log p(X) = log(X) | g(6)d0 =

log p(X) = Jq(ﬁ)log

q(0)log

P(

pX, 0)

p@|X)

X, 0)

q(0)

and taking into account Jq(@)d@ = 1:

_ pX.0) 9O .,
W= 101 6% @ “
7,
dl + Jq(é’)log 1)
p0|X)

q(0)log

do

p(X,

0)

q(0)

dl +

g(0)log

q(0) 10

p@|X)

Free energy and Kullback-Leibler divergence

X, 0

Then log p(X) = log p((é’ ‘ X)) and taking the expectation with respect to g(6):
P
" " p(X, 0) " p(X,0) q) " p(X, 0) " q(0)

log p(X) = log(X)u q(0)dO = | qg(0)log 01%) dlf = | qg(0)log 01X % dlf = | g(0)log 0 do + | qg(0)log 01X do

X, 0 v,
log p(X) = {q(é’)log P)dﬁ + Jq(é’)log 9(0) do

40 p@]X)

F, depends only on @ (free energy)

Free energy and Kullback-Leibler divergence

X, 0
Then log p(X) = log P, 0) and taking the expectation with respect to g(6):
p(0|X)
| | p(xX,0) pX.0 q©®)] .. p(xX,0) 4(6)
log p(X) = log(X)u q(0)dO = | g(@)log 01%) dlf = | g(0)log 01X - 0 dlf = | g(@)log 0 do + | g(0)log SO1%) do
p(X, 0) q(0)
log p(X) = Jq(@)log dO + Jq(é’)log do
q(0) p@1X)

b S

F, depends only on @ (free energy) Kullback-Leibler (KL) divergence

Free energy and Kullback-Leibler divergence

(X, 0)
Then log p(X) = log P and taking the expectation with respect to g(6):
p(0|X)
" ” p(X, 0) " p(X,0) qO) " p(X, 0) " q(0)
log p(X) = log(X) | g(0)d0 = | q(O) do = | g 2 a0 = | g1 do + | g do
og p(X) = log()u q(0) uq()ng(9|X) uq()log 01X 9@ uq()log " dq()ng(H\X)
constant!

l
log p(X) = Jq(@)log pX.0) do + jq(@)log 1) do

e q(0) p(0]X) o
F, depends only on @ (free energy) Kullback-Leibler (KL) divergence
. . p(X, 0)
Note, that KL divergence is always > 0 and hence log p(X) > | g(0)log © do
q

Free energy and Kullback-Leibler divergence

X, 0
Then log p(X) = log P, 0) and taking the expectation with respect to g(6):

p(@|X)

" ” p(X, 0) i p(X,0) q(0) ” p(X, 0) " q(0)
] X) = log(X 0do = | g(6)] do = | g(6)1 2 do = | g(O)] do + | g(O)1 do
og p(X) = log()U q(0) uq()ng(H\X) uq()log 201X 9@ Uq()log 0 uq()ng(H\X)

constant!

log p(X) = Jq(ﬁ)log p()(((,g)g) (qe(‘9))() do
% q p

F, depends only on @ (free energy) Kullback-Leibler (KL) divergence

do + Jq(@)log

pX, 0)
q(0)

do

Note, that KL divergence is always > 0 and hence log p(X) > Jq(é’)log

q(0) 10 —
p(@|X)

Moreover, Jq(@)log Jq(@)log q(0)do — Jq(é’)log p(@|X)d6 measure of how close g() and p(6 | X) are

Free energy and Kullback-Leibler divergence

cor]stant!
3 p(X, 0) q(0)
log p(X) = | g(6)log o df + | g(O)log 01X do
o1 RN
F, depends only on @ (free energy) Kullback-Leibler (KL) divergence

Hence maximising free energy Is equivalent to minimising KL divergence

Mean-field approximation

We assume a mean-field approximation for g(6), namely g(6) = H qgi(Hl-)

l

Mean-field approximation

We assume a mean-field approximation for g(6), namely g(6) = H qgi(Hl-)

l

where 0, are separate non-intersecting groups of parameters with the
corresponding distribution density functions ¢y .

Mean-field approximation

We assume a mean-field approximation for g(6), namely g(0) = Hqu(Hi)

l

where 0, are separate non-intersecting groups of parameters with the corresponding
distribution density functions g.

The key property of X
log ¢(0)) IQQi(e_i)P(Xa 0)do_,; o (0_;) = HQQJ(Q,)
JFl

where index —1 means that ith group of parameters is excluded

Mean-field approximation

We assume a mean-field approximation for g(6), namely g(0) = Hqu(Hi)

l

where 0, are separate non-intersecting groups of parameters with the corresponding
distribution density functions g.

The key property of X

log ¢(0)) IQQi(e_i)P(Xa 0)do_,; o (0_;) = H%’J(Q,)
J#1
where index —1 means that ith group of parameters is excluded.

The proof of the above stems from the calculus of variations.

Sketch of the proof

pX, 0)
q(0)

We need to maximise free energy F' = [q(@)log df with respect to each factorised %'i(@i)

Sketch of the proof

pX, 0)

q(0)
factorised qu(Hi) F = |1(0,g(0))dol is a function of a function (functional) hence

We need to maximise free energy F' = [q(@)log df@ with respect to each

calculus of variations

Sketch of the proof

pX, 0)

q(0)
factorised qu(Hi) F = | (8, g(0))dol is a function of a function (functional) hence

We need to maximise free energy F' = Jq(@)log df with respect to each

calculus of variations

We require a maximum of F’ with respect to each group of parameters €., hence we re-
write a functional in terms of these parameters alone

p(X, 0) a0
q(0)

b= Jf(ﬁ, q(0))do_; = [q(ﬁ)log

Sketch of the proof
p(X, 0)

We need to maximise free energy F' = Jq(é’)log o df with respect to each
q

factorised qei(é’i) F = | (0, g(0))dl is a function of a function (functional) hence

calculus of variations

We require a maximum of F with respect to each group of parameters 6., hence we re-
write a functional in terms of these parameters alone

p(X, 0)
F = |f(6,q0)dd_; = | q@)log ———db_
q(0)
- - . - p(X, 0) B
From variational calculus this is equivalent to solving: q(0)log do_. =0
a%i(gi) q(0)

Sketch of the proof

p(X, 0)
aQHi(Qi) q(0)

use differentiation by parts

Jq(é’)log df_, =0, recall g(0) = Hq(é’i)

IQHi(H_i)log p(X, 0)do_; — Jqu(H_i)log q(0_)do_. — qui(e_i)log q(0)d0_; + const = 0

Sketch of the proof

P, 0) do_. =0
0qp(0;) q(0)

use differentiation by parts constant

l
[CIQi(@_i)log p(X, 0)do_; — IQQi(Q_i)log q(0_)do_. — J'qu(‘g—i)lOg ¢(0)dO_, + const = 0

Jq(ﬁ)log

Hence, given that qu_i(ﬁ_i)dé’_i = 1 we get

Sketch of the proof

p(X, 0) 4o = 0
a%i(‘%) q(0)

use differentiation by parts constant

l

qu_i(é’_i)lOg p(X,0)do_; — [qg_i(ﬁ_,-)log q(0_,)do0_; — qu_i(é’_,-)log q(0.)dO_. + const = 0

Jq(ﬁ)log

Hence, given that [qe_i(é’_i)dé’_i = 1 we get

log g(6,) = [qg_i(e_i)log p(X, 0)dO_. + const

Sketch of the proof

p(X, 0)
)1 dd .= 0
0q4.0);) J 1008 g

use differentiation by parts constant

l

J%i(é’_i)log p(X, 0)do_; — J%i(é’_i)log q(0_)do_. — qui(e_i)log ¢(0)dO_, + const = 0

Hence, given that J'q@i(@_i)dﬁ_i =] we get
log g(0,) = qu_i(ﬁ_i)log p(X, 0)dO_. + const

log ¢(6)) qu_i log p(X, 0)d6_. B

Algorithm (Mean field variational Bayes for 2 parameters 0, 0,)

1. Initialise g(&,)

2. Given g(0,) update g(0,) using log g(0,) {log p(X, 0)q(0,)do,

4. Iterate until stopping condition Is met.

Example: a single Gaussian

Assume we draw measurements y = (yy, ..., y,) from a Gaussian distribution with

1

2
mean y and precision f: P(y; | u, f) = (;) e~ 701
T

Example: a single Gaussian

Assume we draw measurements y = (yy, ..., y,) from a Gaussian distribution with

1

2
mean y and precision f: P(y; | u, f) = (;) e~ 701
T

n

P(y|u,p) = HP(y,\,u f) = <fﬂ) e_gzi()}i_ﬂ)z

Example: a single Gaussian

Assume we draw measurements y = (yy, ..., y,) from a Gaussian distribution with

1

2
mean y and precision f: P(y; | u, f) = (;) e~ 701
T

P(y|u,p) = HP(y,\,u f) = <fﬂ) e_gzi()}i_ﬂ)z

We factorise our approximate posterior as g(u, /) = qg(u)g(f) and use the
conjugate prior exponential family:

Example: a single Gaussian

Assume we draw measurements y = (yy, ..., y,) from a Gaussian distribution with

1

2
mean y and precision j: P(y; | u, f) = (2ﬁ) o~ 50 H)
T

P(y‘lu,ﬂ) — HP(yl‘/,t,ﬁ) — (%) e_gzi()’i_ﬂ)z

We factorise our approximate posterior as g(u, /) = g(u)g(f) and use the conjugate prior
exponential family:

1 0
q(u|m,v) = e~ %M ~ N(m, v)

\/ 27w

Example: a single Gaussian

Assume we draw measurements y = (yy, ..., y,,) from a Gaussian distribution with

2
mean u and precision f: P(y; | u, p) = <2£) e_g(yi_ﬂ)z
T

P(.Y‘ﬂ?ﬁ) — HP(y,\//t,ﬁ) — (%) e_gzi(yi_//‘)z

We factorise our approximate posterior as g(u,) = q(1)q(f) and use the conjugate prior
exponential family:

1 2 1 gt
qg(u|m,v) = e~ MM N(m,v) qg(f|b,c) = e b ~ Ga(b,c)

\/ oy ['(c) b¢

Example: a single Gaussian

Assume we draw measurements y = (yy, ..., y,)) from a Gaussian distribution with

1

2
mean y and precision f: P(y; | u,) = (;) e_g(yi_ﬂ)z
T

P(y‘//t,ﬂ) = HP()’iW»ﬁ) — (ZL;-) e—gZi(yi—u)z

We factorise our approximate posterior as g(u,) = q(u)q(f) and use the conjugate prior
exponential family:

GGl m, 1) = ——e= = - N(m, 1) JBlo) = ——P ot a0
\/2721/ ['(c) be

(u — m)*

Example: a single Gaussian

Assume we draw measurements y = (yy, ..., y,)) from a Gaussian distribution with

1

2
mean y and precision f: P(y; | u,) = (;) e_g(yi_ﬂ)z
T

P(y‘//t,ﬂ) = HP()’iW»ﬁ) — (ZL;-) e—gZi(yi—u)z

We factorise our approximate posterior as g(u,) = q(u)q(f) and use the conjugate prior
exponential family:

ulm.v) = v;we o N 10,0 = ek ~ Gatho
1 (u—m)y - V;
0gq(u) = — + const{p} logg(p) = (c — Dlog f — — + const{j}

U b

Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,,).

Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,,).

Recall that P(u, /| Y) < P(Y | u, p)P(u)P(S) and

Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and ~ Ga(b,, c¢,).
Recall that P(u, f|Y) < P(Y | u, p)P(u)P(S) and

5 _ 2
P(y|u,p) = (ZL;) e_gzi(yi_'u)z ,log P(u) = G zymo) - const{u},Jog P(f) = (c — Dlogp ’lf - const{f}
0

Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,, ¢).

Recall that P(u, f|Y) < P(Y | u, p)P(u)P(S) and

> . 2
P(yl|u,p) = (2%) e‘gzi(”‘”)z,logf’(ﬂ) = G zymo) - const{p},log P(f) = (¢ — 1logp ? - const{p}
0
N P (u — my)* p
L=1ogP(u.plY)==p—==) (,—n’ - ~— + (cy — Dlog) — = + const{u, p}
2 2 . 21/0 bO

Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,, ¢).

Recall that P(u, f|Y) < P(Y | u, p)P(u)P(S) and

5 . 2
P(y|u,p) = (ZL;) e_gzi(yi_'u)z ,log P(u) = (u zymo) - const{u},log P(f) = (¢ — 1)log p Ilf - const{f}
0 0
N _ P (4 — mg)* p
LzlogP(//t,ﬁ\Y)=—,B——Z(yn—,u)2— . + (¢g — Dlog fp — — + constiu, p}
2 2 , 21/0 b()

Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,,).

Recall that P(u, f|Y) < P(Y | u, p)P(u)P(f), hence

N . 2
L =log P(u, 1Y) = —f - g Y 5, — w3 =2 > "0+ (co = Dlog fy — 22 + const . B}
" L b()

log g(u) JLq(ﬁ)dﬂ

Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,,).

Recall that P(u, f|Y) < P(Y | u, p)P(u)P(f), hence

N . 2
L =log P(u, 1Y) = —f - g Y 5, — w3 =2 > "0+ (co = Dlog fy — 22 + const . B}
" L b()

log g(p) o JLQ(ﬁ)dﬁ = JLGa(ﬂ, m, v)dp

Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,,).

Recall that P(u, f|Y) < P(Y | u, p)P(u)P(f), hence

N . 2
L =log P(u, 1Y) = —f - g Y 5, — w3 =2 > "0+ (co = Dlog fy — 22 + const . B}
" L b()

(1 — m0)2
21/0

log g(p) o JLQ(ﬁ)dﬁ = JLGa(ﬁ, m,v)dp = — JGa(ﬁ, m, v)ap—

Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,, ¢).
Recall that P(u, #|Y) < P(Y | u, f)P(u)P(f), hence

N . 2
L =log Pu. f1Y) = =5 —gz O — 1) — v 5), (o — Dlog ff — L consti, iy
» Lo by

(1 — m0)2
21/0

1
log) | La(P)dp = | LGa(p.m.) - | Gatp.m.v)dp =2 3 0, - w2 | Gatp.m.)ap + consti)

Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,, ¢).
Recall that P(u, #|Y) < P(Y | u, p)P(u)P(f3), hence

2
0

N
L =log P(u, ,B\Y)——,B——Z(yn—ﬂ)z

- B (1 — m0)2 1 2
log q(u) o | Lg(Bydp = | LGa(p, m,v)dp = = ———— | Ga(,m,v)dp = = > (5, = ﬁGa(ﬁT m, v)df + const{p)
0
T n
1 expectation

2
—m bc
log g(u) = — (u 5 o) E (v, — 1)* + const{u}, integrating out the terms
L .

Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,, ¢).
Recall that P(u, #|Y) < P(Y | u, p)P(u)P(f3), hence

2
0

N
L =log P(u, ,B\Y)——,B——Z(yn—ﬂ)z

- B (1 — m0)2 1 2
log q(u) o | Lg(Bydp = | LGa(p, m,v)dp = = ———— | Ga(,m,v)dp = = > (5, = ﬁGa(ﬁT m, v)df + const{p)
0
T n
1 expectation

2
—m bc
log g(u) = — (u 5 o) E (v, — 1)* + const{u}, integrating out the terms
L .

Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my,v,) and ff ~ Ga(by, ¢).

Recall that P(u, #|Y) « P(Y|u, f)P(u)P(f?), hence

N (u — mg)* p
L=logPu.f1¥) =~ % 00w S+ = Diogy = 1+ constly.)
(u — m0)2

1
log g(p) JLQ(ﬁ)dﬁ = JLGa(ﬁ, m,v)dp = JGa(ﬁ, m, v)dp — > Z O —) JﬁGa(ﬁ, m,v)dfj + consty}

21/0

2
—m bc
(u 5 0) ; z (v, — ,u)z + const{u}, integrating out the terms
Lo

log g(u) =

n

2
Which] " log () 1 + Nyybc mg + vbces, N)
ich can be re-written as 10 = COns
SN 2 : 1 + Nyybce 4

Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,, c).

Recall that P(u, #|Y) o< P(Y | u, p)P(u)P(f), hence

N _ 2
L=logP(u.plY) == ﬁZ(y,,—mz v Zym“) (o — Dlog fiy ﬁ“ - const{y. p)
" 0 0

” " (1 —mo)” [1 ”
log (1) o | Lg(B)dp = | LGa(p.m. v)df = = =——— | Ga(p.m,)dp = = 3 (4, =)’ | Ga(p.m. v)df + consi(u)
. . 0 . " .
2
— b
log g(p) = (= o) d Z (v, — 1)* + const{u}, integrating out the terms
21/0 2

n

2
Wi] " log () 1 + Nyybc my + vpbcs, N)
ich can be re-written as 1o = cons
SAH 2y 4 1 + Nyybc 4

mg + vbes, L
Recall g(¢) ~ N(m,v) and hence m = and v = where §; = Z Y,
1 + Nyybc 1 + Nyybc -

Update on 5

We apply a similar procedure to derive an update on f.

p P
by 2

N
logg(p) = [LCI(M)dﬂ = JLN(u, m, v)dpu = (5 + Cp — 1) log

JZ (3 = 1N, m, v)dy + const{p)

N 1 X
log g(fp) = (5 + ¢y — 1) log f — (b | 5),B, where X is the integral above:
0

X = 5 (o = 2pus + p)N, m, v)dp = 552~ 2sym + N(m + v7), where 5, = Z In
1 1 X N

Hence, — = | and ¢ = - Cp.-
b by 2 2

We can now proceed in an iterative procedure (fix g(/), update g(1) and the other way round until necessary)!

Jupyter notebook avb_gaussian

Non-linear models and convergence issues

Assume our model follows the equation y = ¢(6) + &, where g(6) is a non-linear
function and ¢ is additive Gaussian noise.

Non-linear models and convergence issues

Assume our model follows the equation y = ¢(6) + &, where g(6) is a non-linear
function and ¢ is additive Gaussian noise.

In this case g(6) is approximated with Taylor expansion at the mode of posterior
distribution m: g(0) =~ g(m) + J(6 — m), where J is the Jacobian matrix

Non-linear models and convergence issues

Assume our model follows the equation y = ¢(6) + &, where g(6) is a non-linear
function and ¢ is additive Gaussian noise.

In this case g(6) is approximated with Taylor expansion at the mode of posterior
distribution m: g(0) =~ g(m) + J(6 — m), where J is the Jacobian matrix

Convergence.

- Convergence of VB is guaranteed since it is a generalisation of Expectation
Maximisation algorithm

- As soon as we use Taylor approximation, the theory breaks down, and

convergence becomes more empirical: e.g. monitoring free energy I, stop when it
reaches maximum

Stochastic Variational Bayes

Recall that the problem we discussed previously is maximising free energy

pX, 0)
q(0)

do.

F = Jq(é’)log

Stochastic Variational Bayes

Recall that the problem we discussed previously is maximising free energy

pX, 0)
q(0)

Stochastic VB uses gradient descent algorithm to directly maximise F

F = Jq(é’)log do.

Stochastic Variational Bayes

Recall that the problem we discussed previously is maximising free energy

pX, 0)
q(0)

Stochastic VB uses gradient descent algorithm to directly maximise F

do.

F = Jq(é’)log

X, 0
This will require us to compute gradient V ,F =V, (Jq(é’)log A B)d6’>
q

Stochastic Variational Bayes

Recall that the problem we discussed previously is maximising free energy

pX, 0)
q(0)

Stochastic VB uses gradient descent algorithm to directly maximise F

do.

I = Jq(é’)log

X, 0
This will require us to compute gradient V ,F =V, (Jq(é’)log A B)d6’>
q

Where @ are the hyper-parameters of g

Stochastic Variational Bayes

Recall that the problem we discussed previously is maximising free energy

p(X, 0)
q(0)

Stochastic VB uses gradient descent algorithm to directly maximise F

F = Jq(@)log do.

- . . B p(X, 0)
This will require us to compute gradient V ,F =V, | g(0)log 0 do
q

Where ¢ are the hyper-parameters of g

But first we need to estimate the integral, which can be done using Monte-Carlo
simulations

Stochastic Variational Bayes

Recall that the problem we discussed previously is maximising free energy

pX, 0)
q(0)

Stochastic VB uses gradient descent algorithm to directly maximise I

do.

F = Jq(@)log

o . . B p(X, 0)
This will require us to compute gradient V ,F' =V, q(0)log ©) do
q

Where ¢ are the hyper-parameters of g

But first we need to estimate the integral, which can be done using Monte-Carlo simulations

1 q(0")
Fr~—) loepX|0H -1o
LZJ: e p(X| 6" — log

, where 6" are drawn from g(6)
p(0)

Moreover, V F ~ l Z V.| logp(X, 0" — log 4(©)
L 1 ! | p(0"

How to choose [.?

- Large L will give a better approximation, but can be computationally heavy

- Small L will make gradients noisy

How to choose [.?

- Large L will give a better approximation, but can be computationally heavy

- Small L will make gradients noisy

To reduce the noise In the gradient use reparametrization trick to draw 0"

How to choose [.?

- Large L will give a better approximation, but can be computationally heavy

- Small L will make gradients noisy

To reduce the noise In the gradient use reparametrization trick to draw 0"

Deterministically generate 0 from an iIndependent randomly generated parameter €.

How to choose [.?

- Large L will give a better approximation, but can be computationally heavy

- Small L will make gradients noisy

To reduce the noise in the gradient use reparametrization trick to draw 0';
Deterministically generate 0" from an independent randomly generated parameter &.

E.g. use probability integral transform: if ¢ is a random variable with cdf F; ,F(5) ~ U[0,1].

How to choose [.?

- Large L will give a better approximation, but can be computationally heavy

- Small L will make gradients noisy

To reduce the noise in the gradient use reparametrization trick to draw 0';
Deterministically generate 0 from an iIndependent randomly generated parameter €.

E.g. use probability integral transform: if £ is a random variable with cdf F £ s
F.(&) ~ U[0,1]

Conversly, Fgl(U[(),l]) ~ &

How to choose [.?

- Large L will give a better approximation, but can be computationally heavy

- Small L will make gradients noisy

To reduce the noise in the gradient use reparametrization trick to draw 0';

Deterministically generate 0" from an independent randomly generated parameter €.

E.g. use probability integral transform: if ¢ is a random variable with cdf F ,F¢(5) ~ U[0,1].
Conversly, Fgl(U[O,l]) ~ &

Hence we can generate any random variable from a uniform one.

How to choose [.?

- Large L will give a better approximation, but can be computationally heavy

- Small L will make gradients noisy

To reduce the noise in the gradient use reparametrization trick to draw 0';

Deterministically generate 0 from an independent randomly generated parameter €.

E.g. use probability integral transform: if £ is a random variable with cdf F e F 5(5) ~ U[0,1].
Conversly, Fgl(U[(),l]) ~ &

Hence we can generate any random variable from a uniform one.

Can be even simpler: g(0) ~ N(6; u, o). Generate € ~ N(0,1), then 8 = u + o¢

How to choose L.?

In practice even L = 1 can be sufficient, however we need to choose gradient
descent algorithm which deals with stochastic optimisation, e.g. Adam

To improve computational efficiency use mini-batches: divide data into subsets
and performing optimisation on each batch in turn.

Very common technique in the machine learning!

Example: fitting a Gaussian distribution

Assume we draw measurements y = (yy, ..., y,) from a Gaussian distribution

2
with mean u and precision f: P(y | u, f) = (;) e~ 5 X0’
T

Example: fitting a Gaussian distribution

Assume we draw measurements y = (yy, ..., y,) from a Gaussian distribution

2
with mean u and precision f: P(y | u, f) = (;) e~ 5 X0’
T

Here we are not restricted to conjugate priors, hence a prior for 4 and f can be

H
~ MVN(m,, C,), where MVN stands for multivariate normal
[—IOg(ﬁ)] Urtg> Co)

Example: fitting a Gaussian distribution

Assume we draw measurements y = (yy, ..., y,) from a Gaussian distribution
2
p
with mean u and precision f: P(y | u, f) = (;) e~ 7 LK)’
T

Here we are not restricted to conjugate priors, hence a prior for 4 and f can be

H
~ MVN(m,, C,), where MVN stands for multivariate normal
[—IOg(ﬁ)] Urtg> Co)

H

—log(ﬂ)> ~ MVN@m, C)

Similarly for the approximate posterior g(f) = g (

Example: fitting a Gaussian distribution

Assume we draw measurements y = gyl, ..., y,) from a Gaussian distribution with mean u
2
p
and precision f: P(y | u,) = (2ﬁ) e~7 L0
T

Here we are not restricted to conjugate priors, hence a prior for 4 and f can be

H
[—log(,5)] ~ MVN(m,, Cy), where MVN stands for multivariate normal

H

Similarly for the approximate posterior g(0) = ¢ (—log(ﬁ)

) ~ MVN(m, C)

Recall MVN(m, C) has a pdf function
ptx,m, C) = 2m) ™| C|"exp ((x = m)'C™'(x — m))

Free energy

pOpHy19)

)
Jq()og 0

- 90 oo L z
R Jq(ﬁ)log 0 do + 3 zl: logp(y|6°)

Free energy

)
Jq()og 2(0)

pOPO10)

q(6) 1 l
~ — | g(@)log——dO+—) 1 0
Jq()ng(e) L; ogp(y|6)
€ _l(e—m)TC_l(é’—m)—l(‘g_m)C_l(e_m)
Gl) 2 2 O

Free energy

pOPy10) ., . _ 90 , 1 z
Jq(é’)log O db ~ Jq(é’)log 0) do + 3 ; log p(y|6")

log a9 _ 1 log (€) — %(9 - m)!C1(0 - m) - %(9 — my)Cy (0 — my)

(0) 1 _ C)
Jq(é’)log Z(H) df = 5 (T”(Co 'C) — log (]) — N+ (m — mO)TCO Lim — m0)>

Jupyter notebooks svb_gaussian_tf2, svb_biexp_tf2

