Lecture 1. General concepts, formalism, coin-flipping
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General concepts

* Bayesian approach to inference is about preserving uncertainty

What does that mean? Assume we need to estimate a certain parameter

Classical (frequentist) statistics output: point estimate, we can compute the confidence
interval given our assumptions (reducing uncertainty)

Bayesian statistics output: a distribution. We do not claim that we have found an exact

value of our parameter. However we quantify the probability with which our parameter
take any value

 Bayesian approach is based on observed data and estimates are updated as more data
arrive (hence usage of conditional probability)

* Therefore, more flexibility, possibly more information

* Does one have to pick a side (Classical or Bayesian)? No! But we will talk about it later...



Typical use-cases of Bayesian statistics

o Situations when new evidence (data) may significantly influence model
parameters and thereby require immediate actions.

o Situations where one is interested in the degree of uncertainty of the results
(which you get automatically when using Bayesian approach)

Example:

COVID-19 pandemic. Non-pharmaceutical interventions: lockdowns of various
degrees, increased testing - all lead to changes in model parameters such as
reproduction number, infection rate etc. Same as vaccine and drug
development which came in significantly later.

Such model would be data-driven and have immediate implications for public
health.
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Formalism. Conditional probability and Bayes rule (theorem).

Conditional probability P(A | X): the probability of event A occurring given that event X has
already occurred.

Bayes' theorem provides a way to revise existing predictions or theories (update probabilities) given new or
additional evidence

P(A,X) P(A)P(X|A)

PA|X) = =
(A]X) P(X) P(X) Where usually A represents parameters of the model, X represents the data

P(A)P(X|A)

> P(A)P(X|A)

P(A; | X) = A full version, where {A, ..., A, } isapartitionof Aandj € {1,..., k}

prior X likelihood

posterior = — Reformulated in Bayesian language
evidence
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Continuous space

Let X, ¥ € R, py(x) is probability density of X (and respective of Y),

namely py(x) > 0 and J Px(x)dx =1 PXeA) = ,[ Px(xX)dx
R A

pX,Y(xa y)

pry) = J Px y(x, y)dx
py(y)

R

Then, pxy(x|y) =

PY(Y)PX\ (x| y) B PY(Y)PX\ (x| y)

SR ALl
e [ popplydy” O < PEIPO)

PY\X(Y | x) =

continuous Bayes rule



PY(Y)PX\ (x| y)

Possible issues with
J i PYO)Px (x| y)dy

e Likelihood p(x|y) might be very complicated

* The integral in the denominator is often intractable, hence computational
methods (MCMC, Variational Bayes etc.)

Note:

» p(x|y)is our model of the data: data-generating distribution

» p(y) is what we think about the parameters of the model a priori (prior)



Example: Bayesian vs Frequentist murder trial

Assume you are (hopefully falsely) accused of a murder and have to face a jury in a misfortunate
country where the guilt presumed over innocence (null hypothesis is that one is guilty).

The CCTV footage indicates that you were in the same house as the victim on the night of a murder.
There are two types of trial:

1. Frequentist trial. The jurors specify a model based on the previous trials: if you commit the murder,
30% of the time you would have been seen by the CCTV. Since the probability

P(security camera footage | guilt) > 0.05, you are declared guilty.

2. Bayesian trial. The jury first are looking at the evidence, such as absence of previous violent
conduct etc. and based on that assign a prior probability of W They compute probability according to

Bayes rule
P(security camera footage | guilt)P(guilt) 0.3-0.001

= = 0.001 < 0.05
P(security camera footage) 0.3-0.001 + 0.3 -0.999

P(guilt| security camera footage) =

And therefore you are declared innocent.



Coin-flipping example

Suppose, that you are unsure about the probability of heads in a coin flip (spoiler alert: usually it's 50%).

You believe there is some true underlying ratio, call it p , but have no prior opinion on what p might be.

We begin to flip a coin, and record the observations: either H or 1. This is our observed data.
Question to ask: how will our inference change as we observe more and more data?
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Coin-flipping example

Suppose, that you are unsure about the probability of heads in a coin flip (spoiler alert: it's 50%). You believe there is
some true underlying ratio, call it p , but have no prior opinion on what p might be.

We begin to flip a coin, and record the observations: either H or 1. This is our observed data.

Question to ask: how will our inference change as we observe more and more data?

n
P(HZS)Z(

)ps(l — p)"'™°, prior is uniform (constant density function = 1), s and n are our data, p is the parameter
)

"1 = X)) S(1 _ AN\—S
P(p =x|s,n) = Pls, n| )P = <S> :x(l *) ~ Beta(s+ 1,n—s+ 1)

[P DPOMy () [yt = yysdy  BO2 =)

Jupyter notebook Lecture_1_examples: coin flipping example
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Some implications |

s+1 s
f p|s,n ~ Beta(s + 1,n — s+ 1), which is Ep = ~ — for large n, similarly

n+2 n

v ()_(S-I-l)(n—S-I-l)NS(n—S)
T 2

| o | successes \ | |
In classical statistics one often estimates p = = —, the variance estimator

experiments ,

p(l —p) . . s(n —s)

then would be , however in case p is unknown !
n n

Punchline: if sample is large enough there is no difference whether to use Bayesian or
frequentist approach!
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Some implications ll. Conjugate priors

In the coin-flipping example the posterior matched the well-known distribution - that was nice!

Our prior was uniform. But what if now we use a Beta distributed prior?

x“‘l(l — )c)ﬁ_1 . n -
P(p =x) = and hence the posterior P(p = x|n,s) < P(p = x) x5(1 — x)"s
B(a, p) s
L st+a—1 n—s+p—1
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S

The prior coming from the same distribution family as prior is called conjugate prior.
This is very useful both for numerical and analytical methods.

A comprehensive list of pairs likelihood - conjugate prior https://en.wikipedia.org/wiki/Conjugate prior

Jupvyter notebook 1 - play around with a prior in a coin-flipping example, look how posterior changes
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What can we say about 4 if we can only observe values of X?



Continuous distributions

A typical (and somewhat simplified) question: what is the parameter of the
distribution based on the data?

—AX

Example: exponential distribution with pdf py(x|A) = Ae™, where X is our r.v.

What can we say about 4 if we can only observe values of X?

Bayesian inference: rather than guessing A exactly we try assigning a probability
distribution to it, hence our inference provides confidence intervals

automatically.

Jupyter notebook Lecture_1_examples: example with text message data




