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Analytic Variational Bayes (slightly heavier on the math)

Formula for posterior distribution (reminder)

pOPXIO)  _ pX,0)
[, POPX10)d0 [ pO)p(X|6)do

We already know that evaluating posterior analytically can be rather challenging.

pO|X) =

MCMC is a sampling technique which we have considered previously: we construct a
Markov chain which converges to posterior distribution

The goal of Variational Bayes: approximate p(6 | X) with a simpler distribution g(6)

Seen this in Laplace approximation already!

Assume there is a distribution density function g(f) which is in turn parametrised
by a series of hyper-parameters.
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log p(X) = log p(X) Jq(ﬁ)dﬁ = Jq(ﬁ)log

Then log p(X) = log and taking into account Jq(@)d@ = 1.
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p(@|X)

do




Free energy and Kullback-Leibler divergence
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Then log p(X) = log and taking into account | g(6)d6 = 1.
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Then log p(X) = log

log p(X) = log(X)

nq(ﬁ)de =

P(

q(0)log

X, 6)
p(@|X)

pX, 0)

p@|X)

and taking into account Jq(@)d@ = 1:

db

g(0)log

PO g0)

pO|X) q0)

db =

q(0)log

p(X,

0)

q(0)

dl +

g(0)log

q(0) 10

p@|X)



Free energy and Kullback-Leibler divergence

pX, 0)
p(@|X)

Then log p(X) = log

log p(X) = log(X) | g(6)d0 =

log p(X) = Jq(ﬁ)log

q(0)log

P(

pX, 0)

p@|X)

X, 0)

q(0)

and taking into account Jq(@)d@ = 1:
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Free energy and Kullback-Leibler divergence

X, 0

Then log p(X) = log p((é’ ‘ X)) and taking the expectation with respect to g(6):
P
" " p(X, 0) " p(X,0) q) " p(X, 0) " q(0)

log p(X) = log(X)u q(0)dO = | qg(0)log 01%) dlf = | qg(0)log 01X % dlf = | g(0)log 0 do + | qg(0)log 01X do

X, 0 v,
log p(X) = {q(é’)log P )dﬁ + Jq(é’)log 9(0) do

40 p@]X)

F, depends only on @ (free energy)



Free energy and Kullback-Leibler divergence

X, 0
Then log p(X) = log P, 0) and taking the expectation with respect to g(6):
p(0|X)
| | p(xX,0) pX.0 q©®)] .. p(xX,0) 4(6)
log p(X) = log(X)u q(0)dO = | g(@)log 01%) dlf = | g(0)log 01X - 0 dlf = | g(@)log 0 do + | g(0)log SO1%) do
p(X, 0) q(0)
log p(X) = Jq(@)log dO + Jq(é’)log do
q(0) p@1X)

b S

F, depends only on @ (free energy) Kullback-Leibler (KL) divergence



Free energy and Kullback-Leibler divergence

(X, 0)
Then log p(X) = log P and taking the expectation with respect to g(6):
p(0|X)
" ” p(X, 0) " p(X,0) qO) " p(X, 0) " q(0)
log p(X) = log(X) | g(0)d0 = | q(O) do = | g 2 a0 = | g1 do + | g do
og p(X) = log( )u q(0) uq( )ng(9|X) uq( )log 01X 9@ uq( )log " dq( )ng(H\X)
constant!

l
log p(X) = Jq(@)log pX.0) do + jq(@)log 1) do

e q(0) p(0]X) o
F, depends only on @ (free energy) Kullback-Leibler (KL) divergence
. . p(X, 0)
Note, that KL divergence is always > 0 and hence log p(X) > | g(0)log © do
q



Free energy and Kullback-Leibler divergence

X, 0
Then log p(X) = log P, 0) and taking the expectation with respect to g(6):

p(@|X)

" ” p(X, 0) i p(X,0) q(0) ” p(X, 0) " q(0)
] X) = log(X 0do = | g(6)] do = | g(6)1 2 do = | g(O)] do + | g(O)1 do
og p(X) = log( )U q(0) uq( )ng(H\X) uq( )log 201X 9@ Uq( )log 0 uq( )ng(H\X)

constant!

log p(X) = Jq(ﬁ)log p()(((,g)g ) (qe( ‘9))() do
% q p

F, depends only on @ (free energy) Kullback-Leibler (KL) divergence

do + Jq(@)log

pX, 0)
q(0)

do

Note, that KL divergence is always > 0 and hence log p(X) > Jq(é’)log

q(0) 10 —
p(@|X)

Moreover, Jq(@)log Jq(@)log q(0)do — Jq(é’)log p(@|X)d6 measure of how close g() and p(6 | X) are



Free energy and Kullback-Leibler divergence

cor]stant!
3 p(X, 0) q(0)
log p(X) = | g(6)log o df + | g(O)log 01X do
o1 RN
F, depends only on @ (free energy) Kullback-Leibler (KL) divergence

Hence maximising free energy Is equivalent to minimising KL divergence
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Mean-field approximation

We assume a mean-field approximation for g(6), namely g(0) = Hqu(Hi)

l

where 0, are separate non-intersecting groups of parameters with the corresponding
distribution density functions g.

The key property of X

log ¢(0)) IQQi(e_i)P(Xa 0)do_,; o (0_;) = H%’J(Q,)
J#1
where index —1 means that ith group of parameters is excluded.

The proof of the above stems from the calculus of variations.
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pX, 0)

q(0)
factorised qu(Hi) F = | (8, g(0))dol is a function of a function (functional) hence

We need to maximise free energy F' = Jq(@)log df with respect to each

calculus of variations

We require a maximum of F’ with respect to each group of parameters €., hence we re-
write a functional in terms of these parameters alone
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Sketch of the proof
p(X, 0)

We need to maximise free energy F' = Jq(é’)log o df with respect to each
q

factorised qei(é’i) F = | (0, g(0))dl is a function of a function (functional) hence

calculus of variations

We require a maximum of F with respect to each group of parameters 6., hence we re-
write a functional in terms of these parameters alone

p(X, 0)
F = |f(6,q0)dd_; = | q@)log ———db_
q(0)
- - . - p(X, 0) B
From variational calculus this is equivalent to solving: q(0)log do_. =0
a%i(gi) q(0)



Sketch of the proof

p(X, 0)
aQHi(Qi) q(0)

use differentiation by parts

Jq(é’)log df_, =0, recall g(0) = Hq(é’i)

IQHi(H_i)log p(X, 0)do_; — Jqu(H_i)log q(0_)do_. — qui(e_i)log q(0)d0_; + const = 0



Sketch of the proof

P, 0) do_. =0
0qp(0;) q(0)

use differentiation by parts constant

l
[CIQi(@_i)log p(X, 0)do_; — IQQi(Q_i)log q(0_)do_. — J'qu(‘g—i)lOg ¢(0)dO_, + const = 0

Jq(ﬁ)log

Hence, given that qu_i(ﬁ_i)dé’_i = 1 we get



Sketch of the proof

p(X, 0) 4o = 0
a%i(‘%) q(0)

use differentiation by parts constant

l

qu_i(é’_i)lOg p(X,0)do_; — [qg_i(ﬁ_,-)log q(0_,)do0_; — qu_i(é’_,-)log q(0.)dO_. + const = 0

Jq(ﬁ)log

Hence, given that [qe_i(é’_i)dé’_i = 1 we get

log g(6,) = [qg_i(e_i)log p(X, 0)dO_. + const



Sketch of the proof

p(X, 0)
)1 dd .= 0
0q4.0);) J 1008 g

use differentiation by parts constant

l

J%i(é’_i)log p(X, 0)do_; — J%i(é’_i)log q(0_)do_. — qui(e_i)log ¢(0)dO_, + const = 0

Hence, given that J'q@i(@_i)dﬁ_i = ] we get
log g(0,) = qu_i(ﬁ_i)log p(X, 0)dO_. + const

log ¢(6)) qu_i log p(X, 0)d6_. B



Algorithm (Mean field variational Bayes for 2 parameters 0, 0,)

1. Initialise g(&,)

2. Given g(0,) update g(0,) using log g(0,) {log p(X, 0)q(0,)do,

4. Iterate until stopping condition Is met.
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Example: a single Gaussian

Assume we draw measurements y = (yy, ..., y,) from a Gaussian distribution with

1

2
mean y and precision j: P(y; | u, f) = (2ﬁ) o~ 50 H)
T

P(y‘lu,ﬂ) — HP(yl‘/,t,ﬁ) — (%) e_gzi()’i_ﬂ)z

We factorise our approximate posterior as g(u, /) = g(u)g(f) and use the conjugate prior
exponential family:

1 0
q(u|m,v) = e~ %M ~ N(m, v)

\/ 27w




Example: a single Gaussian

Assume we draw measurements y = (yy, ..., y,,) from a Gaussian distribution with

2
mean u and precision f: P(y; | u, p) = <2£) e_g(yi_ﬂ)z
T

P(.Y‘ﬂ?ﬁ) — HP(y,\//t,ﬁ) — (%) e_gzi(yi_//‘)z

We factorise our approximate posterior as g(u, ) = q(1)q(f) and use the conjugate prior
exponential family:

1 2 1 gt
qg(u|m,v) = e~ MM N(m,v) qg(f|b,c) = e b ~ Ga(b,c)

\/ oy ['(c) b¢




Example: a single Gaussian

Assume we draw measurements y = (yy, ..., y,)) from a Gaussian distribution with

1

2
mean y and precision f: P(y; | u, ) = (;) e_g(yi_ﬂ)z
T

P(y‘//t,ﬂ) = HP()’iW»ﬁ) — (ZL;-) e—gZi(yi—u)z

We factorise our approximate posterior as g(u, ) = q(u)q(f) and use the conjugate prior
exponential family:

GGl m, 1) = ——e= = - N(m, 1) JBlo) = ——P ot a0
\/2721/ ['(c) be

(u — m)*




Example: a single Gaussian

Assume we draw measurements y = (yy, ..., y,)) from a Gaussian distribution with

1

2
mean y and precision f: P(y; | u, ) = (;) e_g(yi_ﬂ)z
T

P(y‘//t,ﬂ) = HP()’iW»ﬁ) — (ZL;-) e—gZi(yi—u)z

We factorise our approximate posterior as g(u, ) = q(u)q(f) and use the conjugate prior
exponential family:

ulm.v) = v;we o N 10,0 = ek ~ Gatho
1  (u—m)y - V;
0gq(u) = — + const{p} logg(p) = (c — Dlog f — — + const{j}

U b
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Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,, ).
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Similarly choose conjugate priors for u ~ N(my, 1) and  ~ Ga(b,, c¢,).
Recall that P(u, f|Y) < P(Y | u, p)P(u)P(S) and

5 _ 2
P(y|u,p) = (ZL;) e_gzi(yi_'u)z ,log P(u) = G zymo) - const{u},Jog P(f) = (c — Dlogp ’lf - const{f}
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Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,, ¢).

Recall that P(u, f|Y) < P(Y | u, p)P(u)P(S) and

> . 2
P(yl|u,p) = (2%) e‘gzi(”‘”)z,logf’(ﬂ) = G zymo) - const{p},log P(f) = (¢ — 1logp ? - const{p}
0
N P (u — my)* p
L=1ogP(u.plY)==p—== ) (,—n’ - ~— + (cy — Dlog ) — = + const{u, p}
2 2 . 21/0 bO
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Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,, ¢).

Recall that P(u, f|Y) < P(Y | u, p)P(u)P(S) and

5 . 2
P(y|u,p) = (ZL;) e_gzi(yi_'u)z ,log P(u) = (u zymo) - const{u},log P(f) = (¢ — 1)log p Ilf - const{f}
0 0
N _ P (4 — mg)* p
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2 2 , 21/0 b()
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Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,, ).

Recall that P(u, f|Y) < P(Y | u, p)P(u)P(f), hence

N . 2
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log g(u) JLq(ﬁ)dﬂ



Example: single Gaussian. Priors and likelihood. Update on u
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Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,, ).

Recall that P(u, f|Y) < P(Y | u, p)P(u)P(f), hence

N . 2
L =log P(u, 1Y) = —f - g Y 5, — w3 =2 > "0+ (co = Dlog fy — 22 + const . B}
" L b()

(1 — m0)2
21/0

log g(p) o JLQ(ﬁ)dﬁ = JLGa(ﬁ, m,v)dp = — JGa(ﬁ, m, v)ap—



Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,, ¢).
Recall that P(u, #|Y) < P(Y | u, f)P(u)P(f), hence

N . 2
L =log Pu. f1Y) = =5 —gz O — 1) — v 5 ), (o — Dlog ff — L consti, iy
» Lo by

(1 — m0)2
21/0

1
log ) | La(P)dp = | LGa(p.m. ) - | Gatp.m.v)dp =2 3 0, - w2 | Gatp.m.)ap + consti)



Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,, ¢).
Recall that P(u, #|Y) < P(Y | u, p)P(u)P(f3), hence

2
0

N
L =log P(u, ,B\Y)——,B——Z(yn—ﬂ)z

- B (1 — m0)2 1 2
log q(u) o | Lg(Bydp = | LGa(p, m,v)dp = = ———— | Ga(,m,v)dp = = > (5, = ﬁGa(ﬁT m, v)df + const{p)
0
T n
1 expectation

2
—m bc
log g(u) = — (u 5 o) E (v, — 1)* + const{u}, integrating out the terms
L .
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Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my,v,) and ff ~ Ga(by, ¢).

Recall that P(u, #|Y) « P(Y|u, f)P(u)P(f?), hence

N (u — mg)* p
L=logPu.f1¥) =~ % 00w S+ = Diogy = 1+ constly. )
(u — m0)2

1
log g(p) JLQ(ﬁ)dﬁ = JLGa(ﬁ, m,v)dp = JGa(ﬁ, m, v)dp — > Z O — ) JﬁGa(ﬁ, m,v)dfj + consty}

21/0

2
—m bc
(u 5 0) ; z (v, — ,u)z + const{u}, integrating out the terms
Lo

log g(u) =

n

2
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ich can be re-written as 10 = COns
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Example: single Gaussian. Priors and likelihood. Update on u

Similarly choose conjugate priors for u ~ N(my, 1) and f ~ Ga(b,, c).

Recall that P(u, #|Y) o< P(Y | u, p)P(u)P(f), hence

N _ 2
L=logP(u.plY) == ﬁZ(y,,—mz v Zym“) (o — Dlog fiy ﬁ“ - const{y. p)
" 0 0

” " (1 —mo)” [ 1 ”
log (1) o | Lg(B)dp = | LGa(p.m. v)df = = =——— | Ga(p.m,)dp = = 3 (4, = )’ | Ga(p.m. v)df + consi(u)
. . 0 . " .
2
— b
log g(p) = (= o) d Z (v, — 1)* + const{u}, integrating out the terms
21/0 2

n

2
Wi ] " log () 1 + Nyybc my + vpbcs, N )
ich can be re-written as 1o = cons
SAH 2y 4 1 + Nyybc 4

mg + vbes, L
Recall g(¢) ~ N(m,v) and hence m = and v = where §; = Z Y,
1 + Nyybc 1 + Nyybc -




Update on 5

We apply a similar procedure to derive an update on f.

p P
by 2

N
logg(p) = [LCI(M)dﬂ = JLN(u, m, v)dpu = (5 + Cp — 1) log

JZ (3 = 1N, m, v)dy + const{p)

N 1 X
log g(fp) = (5 + ¢y — 1) log f — (b | 5 ),B, where X is the integral above:
0

X = 5 (o = 2pus + p )N, m, v)dp = 552~ 2sym + N(m + v7), where 5, = Z In
1 1 X N

Hence, — = | and ¢ = - Cp.-
b by 2 2

We can now proceed in an iterative procedure (fix g(/), update g(1) and the other way round until necessary)!

Jupyter notebook avb_gaussian



Non-linear models and convergence issues

Assume our model follows the equation y = ¢(6) + &, where g(6) is a non-linear
function and ¢ is additive Gaussian noise.



Non-linear models and convergence issues

Assume our model follows the equation y = ¢(6) + &, where g(6) is a non-linear
function and ¢ is additive Gaussian noise.

In this case g(6) is approximated with Taylor expansion at the mode of posterior
distribution m: g(0) =~ g(m) + J(6 — m), where J is the Jacobian matrix



Non-linear models and convergence issues

Assume our model follows the equation y = ¢(6) + &, where g(6) is a non-linear
function and ¢ is additive Gaussian noise.

In this case g(6) is approximated with Taylor expansion at the mode of posterior
distribution m: g(0) =~ g(m) + J(6 — m), where J is the Jacobian matrix

Convergence.

- Convergence of VB is guaranteed since it is a generalisation of Expectation
Maximisation algorithm

- As soon as we use Taylor approximation, the theory breaks down, and

convergence becomes more empirical: e.g. monitoring free energy I, stop when it
reaches maximum
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Stochastic Variational Bayes

Recall that the problem we discussed previously is maximising free energy

pX, 0)
q(0)

Stochastic VB uses gradient descent algorithm to directly maximise I

do.

F = Jq(@)log

o . . B p(X, 0)
This will require us to compute gradient V ,F' =V, q(0)log ©) do
q

Where ¢ are the hyper-parameters of g

But first we need to estimate the integral, which can be done using Monte-Carlo simulations

1 q(0")
Fr~— ) loepX|0H -1o
LZJ: e p(X| 6" — log

, where 6" are drawn from g(6)
p(0)

Moreover, V  F ~ l Z V.| logp(X, 0" — log 4(©)
L 1 ! | p(0"
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How to choose [.?

- Large L will give a better approximation, but can be computationally heavy

- Small L will make gradients noisy

To reduce the noise in the gradient use reparametrization trick to draw 0';

Deterministically generate 0 from an independent randomly generated parameter €.

E.g. use probability integral transform: if £ is a random variable with cdf F e F 5(5) ~ U[0,1].
Conversly, Fgl(U[(),l]) ~ &

Hence we can generate any random variable from a uniform one.

Can be even simpler: g(0) ~ N(6; u, o). Generate € ~ N(0,1), then 8 = u + o¢



How to choose L.?

In practice even L = 1 can be sufficient, however we need to choose gradient
descent algorithm which deals with stochastic optimisation, e.g. Adam

To improve computational efficiency use mini-batches: divide data into subsets
and performing optimisation on each batch in turn.

Very common technique in the machine learning!
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Example: fitting a Gaussian distribution

Assume we draw measurements y = gyl, ..., y,) from a Gaussian distribution with mean u
2
p
and precision f: P(y | u, ) = (2ﬁ) e~7 L0
T

Here we are not restricted to conjugate priors, hence a prior for 4 and f can be

H
[—log( ,5)] ~ MVN(m,, Cy), where MVN stands for multivariate normal

H

Similarly for the approximate posterior g(0) = ¢ (—log(ﬁ)

) ~ MVN(m, C)

Recall MVN(m, C) has a pdf function
ptx,m, C) = 2m) ™| C|"exp ((x = m)'C™'(x — m))



Free energy

pOpHy19)

)
Jq( )og 0

- 90 oo L z
R Jq(ﬁ)log 0 do + 3 zl: logp(y|6°)



Free energy

)
Jq( )og 2(0)

pOPO10)

q(6) 1 l
~ — | g(@)log——dO+— ) 1 0
Jq( )ng(e) L; ogp(y|6)
€ _l(e—m)TC_l(é’—m)—l(‘g_m)C_l(e_m)
Gl ) 2 2 O



Free energy

pOPy10) ., . _ 90 , 1 z
Jq(é’)log O db ~ Jq(é’)log 0) do + 3 ; log p(y|6")

log a9 _ 1 log ( € ) — %(9 - m)!C1(0 - m) - %(9 — my)Cy (0 — my)

(0) 1 _ C )
Jq(é’)log Z(H) df = 5 (T”(Co 'C) — log ( ] ) — N+ (m — mO)TCO Lim — m0)>

Jupyter notebooks svb_gaussian_tf2, svb_biexp_tf2



