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Lecture 1. General concepts, formalism, coin-flipping
Introduction to Bayesian Statistical Learning
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General concepts

• Bayesian approach to inference is about preserving uncertainty 

What does that mean? Assume we need to estimate a certain parameter 

Classical (frequentist) statistics output: point estimate, we can compute the confidence 
interval given our assumptions (reducing uncertainty) 

Bayesian statistics output: a distribution. We do not claim that we have found an exact 
value of our parameter. However we quantify the probability with which our parameter 
take any value  

• Bayesian approach is based on observed data and estimates are updated as more data 
arrive (hence usage of conditional probability)


• Therefore, more flexibility, possibly more information 

• Does one have to pick a side (Classical or Bayesian)? No! But we will talk about it later…



Typical use-cases of Bayesian statistics
• Situations when new evidence (data) may significantly influence model 

parameters and thereby require immediate actions.


• Situations where one is interested in the degree of uncertainty of the results 
(which you get automatically when using Bayesian approach)


Example:


COVID-19 pandemic. Non-pharmaceutical interventions: lockdowns of various 
degrees, increased testing - all lead to changes in model parameters such as 
reproduction number, infection rate etc. Same as vaccine and drug 
development which came in significantly later.


Such model would be data-driven and have immediate implications for public 
health.
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Where usually  represents parameters of the model,  represents the dataA X

P(Aj |X) =
P(Aj)P(X |Aj)

∑k
i=1 P(Ai)P(X |Ai)

A full version, where  is a partition of  and   {A1, …, Ak} A j ∈ {1,…, k}

posterior =
prior × likelihood

evidence Reformulated in Bayesian language
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continuous Bayes rule

X, Y ∈ ℝ pX(x) X Y

pX(x) > 0 ∫ℝ
pX(x)dx = 1 P(X ∈ A) = ∫A
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=
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Possible issues with pY(y)pX|Y(x |y)

∫
ℝ

pY(y)pX|Y(x |y)dy

• Likelihood  might be very complicated


• The integral in the denominator is often intractable, hence computational 
methods (MCMC, Variational Bayes etc.)


Note:


•  is our model of the data: data-generating distribution


•  is what we think about the parameters of the model  (prior)

p(x |y)

p(x |y)

p(y) a priori



Example: Bayesian vs Frequentist murder trial
Assume you are (hopefully falsely) accused of a murder and have to face a jury in a misfortunate 
country where the guilt presumed over innocence (null hypothesis is that one is guilty).


The CCTV footage indicates that you were in the same house as the victim on the night of a murder. 
There are two types of trial:


1. Frequentist trial. The jurors specify a model based on the previous trials: if you commit the murder, 
30% of the time you would have been seen by the CCTV. Since the probabil ity 

,  you are declared guilty.


2. Bayesian trial. The jury first are looking at the evidence, such as absence of previous violent 
conduct etc. and based on that assign a prior probability of . They compute probability according to 
Bayes rule 




And therefore you are declared innocent.


P(security camera footage |guilt) > 0.05

1
1000

P(guilt |security camera footage) =
P(security camera footage |guilt)P(guilt)

P(security camera footage)
=

0.3 ⋅ 0.001
0.3 ⋅ 0.001 + 0.3 ⋅ 0.999

= 0.001 < 0.05



Coin-flipping example

Suppose, that you are unsure about the probability of heads in a coin flip (spoiler alert: usually it's 50%). 


You believe there is some true underlying ratio, call it  , but have no prior opinion on what  might be.


We begin to flip a coin, and record the observations: either  or .  This is our observed data. 

Question to ask: how will our inference change as we observe more and more data? 

, prior is uniform (constant density function ),  and  are our data,  is the parameter
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Jupyter notebook Lecture_1_examples: coin flipping example

p p
H T

P(H = s) = (n
s)ps(1 − p)n−s = 1 s n p

P(p = x |s, n) =
P(s, n |x)P(x)

∫ P(s, n |y)P(y)dy
=

(n
s)xs(1 − x)n−s

(n
s) ∫ ys(1 − y)n−sdy

=
xs(1 − x)n−s

B(s, n − s)
∼ Beta(s + 1,n − s + 1)
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Some implications I
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In classical statistics one often estimates , the variance estimator 

then would be  , however in case  is unknown !


Punchline: if sample is large enough there is no difference whether to use Bayesian or 
frequentist approach!

p |s, n ∼ Beta(s + 1,n − s + 1) Ep =
s + 1
n + 2

≈
s
n

Var(p) =
(s + 1)(n − s + 1)

(n + 3)(n + 2)2
≈
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p =
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#experiments
=

s
n
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n

p
s(n − s)

n
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The prior coming from the same distribution family as prior is called conjugate prior.  

This is very useful both for numerical and analytical methods. 


A comprehensive list of pairs likelihood - conjugate prior https://en.wikipedia.org/wiki/Conjugate_prior 

Jupyter notebook 1 - play around with a prior in a coin-flipping example, look how posterior changes 
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Continuous distributions
A typical (and somewhat simplified) question: what is the parameter of the 
distribution based on the data?


Example: exponential distribution with pdf  , where  is our r.v.


What can we say about  if we can only observe values of ?


pX(x |λ) = λe−λx X

λ X



Continuous distributions
A typical (and somewhat simplified) question: what is the parameter of the 
distribution based on the data?


Example: exponential distribution with pdf  , where  is our r.v.


What can we say about  if we can only observe values of ?


Bayesian inference: rather than guessing  exactly we try assigning a probability 
distribution to it, hence our inference provides confidence intervals 
automatically.


Jupyter notebook Lecture_1_examples: example with text message data 

pX(x |λ) = λe−λx X

λ X

λ


