Lecture 2. Computational methods
Markov Chain Monte Carlo, Laplace approximation

24.03.2025-28.03.2025 Instructors: Alina Bazarova, Jose Robledo

Why computational methods?

pOP(x|6)
[POP(X]6)do

Recall that in our target formula for posterior p(0|x) =

where @ are our parameters the integral below can get really nasty!

|
BUT: this integral is just a constant! Rewrite p(@]|x) = ~ p(x,0) , where Z is just a normalising constant,

although possibly varying over a large range.

What to do?

Markov Chain Monte Carlo (MCMC) algorithm

Monte Carlo integration.

| fOPO)p(X|0)do
| p(O)p(X|6)do

where fis some function of parameters @ given the data X.

Assume we want to compute E (0| X)=

Markov Chain Monte Carlo (MCMC) algorithm

Monte Carlo integration.

| fO)Pp©O)p(X|0)do
| p(@)p(X|6)do

where f is some function of parameters @ given the data X.

Assume we want to compute E (0| X)=

Monte Carlo integration evaluates this integral by drawing independent samples {0,,f = 1,...,n}
from posterior distribution p(6| X)

Markov Chain Monte Carlo (MCMC) algorithm

Monte Carlo integration.

| fOPO)p(X|0)do
| p(O)p(X|6)do

where fis some function of parameters @ given the data X.

Assume we want to compute E (0| X)=

Monte Carlo integration evaluates this integral by drawing independent samples 0,t=1,...,n}

from posterior distribution p(@| X) and then approximating £ (6| X) = Z 16,
=1

Markov Chain Monte Carlo (MCMC) algorithm

Monte Carlo integration.

| fOPO)p(X|0)do
| p(O)p(X|6)do

where fis some function of parameters @ given the data X.

Assume we want to compute E (0| X)=

Monte Carlo integration evaluates this integral by drawing independent samples 0,t=1,...

from posterior distribution p(@| X) and then approximating E f(0|X) ~ Z 16,
=1

(law of large numbers)

Markov Chain Monte Carlo (MCMC) algorithm

However:

1. p(@| X) can be non-standard, and hence sampling independently from it would not be feasible.

Markov Chain Monte Carlo (MCMC) algorithm

However:
1. p(@| X) can be non-standard, and hence sampling independently from it would not be feasible.

2. Good news: {,} does not necessarily need to be independent. One of the ways of tackling the
above problem is to

Markov Chain Monte Carlo (MCMC) algorithm

However:

1. p(@| X) can be non-standard, and hence sampling independently from it would not be feasible.

2. Good news: {,} does not necessarily need to be independent. One of the ways of tackling the
above problem is to do it through a Markov chain having p(@ | X) as its stationary distribution.

This is called Markov chain Monte Carlo.

MCMC algorithm I

Markov chain. Suppose we generate a sequence of random variables {6,, 0, ... }.

MCMC algorithm I

Markov chain. Suppose we generate a sequence of random variables {6,, 0, ... }.

Each time ¢ > O the next state 0, | is sampled from a distribution P(0,, | 6,), which depends only on
the current state of the chain 0, and does not depend on its history {6, ...0,_ }.

MCMC algorithm I

Markov chain. Suppose we generate a sequence of random variables {6,, 0, ... }.

Each time ¢ > O the next state 0, | is sampled from a distribution P(0,, | 6,), which depends only on
the current state of the chain 0, and does not depend on its history {6, ...0,_ }.

Subject to certain conditions the chain will gradually “forget” its initial state ¢, and the distribution
P(0,] 6,) will not depend on ¢ or 6, and converge to a unique stationary distribution

MCMC algorithm I

Markov chain. Suppose we generate a sequence of random variables {6,, 0, ... }.

Each time ¢ > O the next state 0, | is sampled from a distribution P(0,, | 6,), which depends only on
the current state of the chain 0, and does not depend on its history {6, ...0,_ }.

Subject to certain conditions the chain will gradually “forget” its initial state ¢, and the distribution
P(0,] 6,) will not depend on ¢ or 6, and converge to a unique stationary distribution

Hence, after sufficiently long burn-in of m iterations points of {‘9;» t=m+1,...,n} will be samples
from the stationary distribution and the desired integral can be re-written as

MCMC algorithm I

Markov chain. Suppose we generate a sequence of random variables {6,, 0, ... }.

Each time ¢ > O the next state 0, | is sampled from a distribution P(0,, | 6,), which depends only on
the current state of the chain 0, and does not depend on its history {6, ...0,_ }.

Subject to certain conditions the chain will gradually “forget” its initial state ¢, and the distribution
P(0,] 6,) will not depend on ¢ or 6, and converge to a unique stationary distribution

Hence, after sufficiently long burn-in of m iterations points of {‘9;» t=m+1,...,n} will be samples
from the stationary distribution and the desired integral can be re-written as

1 n
EfO1X) »——), f)
1

I=m

MCMC algorithm I

Markov chain. Suppose we generate a sequence of random variables {6,, 0, ... }.

Each time ¢ > O the next state 0, | is sampled from a distribution P(0,, | 6,), which depends only on
the current state of the chain 0, and does not depend on its history {6, ...0,_ }.

Subject to certain conditions the chain will gradually “forget” its initial state ¢, and the distribution
P(0,] 6,) will not depend on ¢ or 6, and converge to a unique stationary distribution

Hence, after sufficiently long burn-in of m iterations points of {‘9;» t=m+1,...,n} will be samples
from the stationary distribution and the desired integral can be re-written as

1 n
EfO1X) »——), f)
1

I=m

Important: We can construct an MCMC algorithm which will have p(&| X) as the stationary
distribution!

Metropolis-Hastings sampler

At each time ¢ the next state 0, is chosen by first sampling a candidate Y from a

proposal distribution ¢(. | 6,) which depends only on the current state €, (or not even
that)

Metropolis-Hastings sampler

At each time ¢ the next state 0, is chosen by first sampling a candidate Y from a

proposal distribution ¢(. | 6,) which depends only on the current state €, (or not even
that)

Candidate Y is then accepted to be the next state of the chain with probability a(f,, Y),

where a(6, ¥) = min (1 w>
| " pOpX|0)q(Y16))

Metropolis-Hastings sampler

At each time ¢ the next state 0, is chosen by first sampling a candidate Y from a

proposal distribution ¢(. | 6,) which depends only on the current state €, (or not even
that)

Candidate Y is then accepted to be the next state of the chain with probability a(f,, Y),

where a(6, ¥) = min (1 w>
| " pOpX|0)q(Y16))

Now denote 7(6) = p(f | X)

Metropolis-Hastings sampler

At each time f the next state 0, .1 is chosen by first sampling a candidate Y from a proposal
distribution g(. | @,) which depends only on the current state 60, (or not even that)

Candidate Y is then accepted to be the next state of the chain with probability a(6,, Y),

where (6, Y) = min (1 p(PX | V)g(0] Y))
| pOPX|0)q(Y16))

p@)p(X|0)
| p(@p(X|6)do

Now denote 7(6) = p(0| X) =

P@O._.,10)=q0,.,10)a0,0.) +10,. ,=06)1 - Jq(Y\ 0)a(0, Y)dY] (1)

Metropolis-Hastings sampler

At each time f the next state 0, .1 is chosen by first sampling a candidate Y from a proposal
distribution g(. | @,) which depends only on the current state 60, (or not even that)

Candidate Y is then accepted to be the next state of the chain with probability a(6,, Y),

where (6, Y) = min (1 p(PX | V)g(0] Y))
| pOPX|0)q(Y16))

p@)p(X|0)
| p(@p(X|6)do

Now denote 7(6) = p(0| X) =

P@O._.,10)=q0,.,160)a0,0.,.)+10,. ,=06)1 - Jq(Y\ 0)a(0, Y)dY] (1)

/

acceptance of candidate ¥ = 0,

Metropolis-Hastings sampler

At each time f the next state 0, .1 is chosen by first sampling a candidate Y from a proposal
distribution g(. | @,) which depends only on the current state 60, (or not even that)

Candidate Y is then accepted to be the next state of the chain with probability a(6,, Y),

where (6, Y) = min (1 p(PX | V)g(0] Y))
| pOPX|0)q(Y16))

p@)p(X|0)
| p(@p(X|6)do

Now denote 7(6) = p(0| X) =

P(0,,,16) = 61(6’7 [6)a(0,,0,,1) + 16, = 6)[1 - JQ(Y [6)a(6,, Y)dY] (1)

AN

acceptance of candidate ¥ = 0, +1 rejection of all possible candidates Y

Metropolis-Hastings sampler |l

| X)gO1Y)
2(0)q(Y|6)

Recall a(6, Y) = min () and hence

7(0)q(0,.110)a(0,06,,,) = n(0,,1)q9(6,|6,,1)x0,,,,0,)

Metropolis-Hastings sampler |l
n(Y)q(0]Y)
" m(0)q(Y|6)

7(0)q(0,.110)a(0,06,,,) = n(0,,1)q9(6,|6,,1)x0,,,,0,)

Recall a(6, Y) = min (1) and hence

Hint: one of the as in the equality above is equal to 1. Moreover, multiply (1) by 7(6,)

Metropolis-Hastings sampler |l
n(Y)q(0]Y)
" m(0)q(Y|6)

7(60)q(0,,110)a(0,,0,,,) = n(6,,1)q(0,]0,,1)x(0,,4,6) (2)

Recall a(6, Y) = min (1) and hence

Hint: one of the as in the equality above is equal to 1. Moreover, multiply (1) by 7(6,)

m(G)P (0,110, = 7(6)q(0,,,10)2(6,,0,,) + m(6)1(0,,, = 6)[1 - JQ(Y |6)a(6;, Y)dY | (3)

Metropolis-Hastings sampler |l
n(Y)q(0]Y)
" m(0)q(Y|6)

7(60)q(0,,110)a(0,,0,,,) = n(6,,1)q(0,]0,,1)x(0,,4,6) (2)

Recall a(6, Y) = min (1) and hence

Hint: one of the as in the equality above is equal to 1. Moreover, multiply (1) by 7(6,)

m(G)P (0,110, = 7(6)q(0,,,10)2(6,,0,,) + m(6)1(0,,, = 6)[1 - JQ(Y |6)a(6;, Y)dY | (3)

ﬂ(9z+1)P(6)t ‘ 6,1+1) — 77(9;+1)Q(9t ‘ 9t+1)a(et+1a ‘9;) + ﬂ(9z+1)1(‘9t+1 — ‘9;)[1 T JQ(Y‘ 6t+1)a(et+1a Y)dY] (4)

Metropolis-Hastings sampler |l
n(Y)q(0]Y)
" m(0)q(Y|6)

7(60)q(0,,110)a(0,,0,,,) = n(6,,1)q(0,]0,,1)x(0,,4,6) (2)

Recall a(6, Y) = min (1) and hence

Hint: one of the as in the equality above is equal to 1. Moreover, multiply (1) by 7(6,)

m(G)P (0,110, = 7(6)q(0,,,10)2(6,,0,,) + m(6)1(0,,, = 6)[1 - JQ(Y |6)a(6;, Y)dY | (3)

ﬂ(9z+1)P(6)t ‘ 6,1+1) — 77(9;+1)Q(9t ‘ 9t+1)a(et+1a ‘9;) + ﬂ(9z+1)1(‘9t+1 — ‘9;)[1 T JQ(Y‘ 6t+1)a(et+1a Y)dY] (4)

The first terms on the right-hand side of (3) and (4) are equal by (2), and the second ones by equality 0, = 0,_ 4,
therefore

Metropolis-Hastings sampler |l
n(Y)q(0]Y)
" m(0)q(Y|6)

7(60)q(0,,110)a(0,,0,,,) = n(6,,1)q(0,]0,,1)x(0,,4,6) (2)

Recall a(6, Y) = min (1) and hence

Hint: one of the as in the equality above is equal to 1. Moreover, multiply (1) by 7(6,)

m(G)P (0,110, = 7(6)q(0,,,10)2(6,,0,,) + m(6)1(0,,, = 6)[1 - JQ(Y |6)a(6;, Y)dY | (3)

ﬂ(9z+1)P(6)t ‘ 6,1+1) — 77(9;+1)Q(9t ‘ 9t+1)a(et+1a ‘9;) + ﬂ(9z+1)1(‘9t+1 — ‘9;)[1 T JQ(Y‘ 6t+1)a(et+1a Y)dY] (4)

The first terms on the left-hand side of (3) and (4) are equal by (2), and the second ones by equality 8, = 0, |,
therefore

n(0,)P0,.|0) = n(0,,)P(0,]|0,.). Let us integrate both sides with respect to 0,

Metropolis-Hastings sampler |l

n(Y)q(@]Y)
" 1(0)q(Y|0)

m(0,)q(0,41160)(0,,0,,) = 7(0,,1)q(0,]0,;)0, ,0,) (2)

Recall a(6, Y) = min (1) and hence

Hint: one of the as in the equality above is equal to 1. Moreover, multiply (1) by 7(6,)

ﬂ(et)P(QH-l ‘ et) — ﬂ(‘gt)Q(eHl ‘ et)a(‘gp 9;4-1) + ﬂ(gt)l(‘gﬂ-l — t)[l — JQ(Y‘ et)a(‘gp Y)dY] (3)

”(9t+1)P(‘9t“9t+1) — ﬂ(9t+1)Q(9t‘ Ht+1)a(9t+l’ Qt) + ”(9t+1)1(‘9t+1 — t)[l — JQ(Y‘ 9t+1)a(9t+1’ Y)dY] (4)

The first terms on the left-hand side of (3) and (4) are equal by (2), and the second ones by equality 6, = 0,. {, therefore

7n(0,)P(0, 16, = n(0,,.)P(6,]0,,,). Let us integrate both sides with respect to 6,

J”(Hr)P(9t+1 10,)d0, = n(0,,,) Meaning: if 0, is from the distribution z(.), then 6, ; will be also.

Metropolis-Hastings sampler |l

n(Y)q@|Y)
" 7(0)q(Y|0)

7(6,)q(0,,116)a(0,,0,,) = 7n(0,.)q,]0,,.)ab,,,,6,) (2)

Recall a(6, Y) = min (1) and hence

Hint: one of the as in the equality above is equal to 1. Moreover, multiply (1) by 7z(6,)

m(0)P(0,,110) = 7(6,)q(0,,,16)a(0,, 0, 1) + n(0)1(0,,, = 6)[1 - JQ(Y |6)a(0,, Y)dY] (3)

(0,)P0,10,,,) = 7(6,,1)q90,|0,)ab,,,0) + 70, IO, =) — JQ(Y‘ 0,10, ,Y)dY] (4

The first terms on the left-hand side of (3) and (4) are equal by (2), and the second ones by equality 6, = 0., ;, therefore

7n(0,)P0,.,10) = n(0,.)P(0,| 0,). Let us integrate both sides with respect to 0,

J”(Qt)P(9r+1 10,)d0, = n(0,, ;) Meaning: if 0, is from the distribution z(.), then 6, will be also.

Hence, once sample from stationary has been obtained, all subsequent samples are going to be from it. This
means MCMC has converged. The period before convergence is called burn-in

Metropolis-Hastings: how it works In practice

1. Start at current position X.

2. Propose moving to a new position Y using proposal g(Y | X)

3. Accept/Reject the new position based on the position's adherence to the data and prior distributions using a(X, Y)
* If you accept: Move to the new position Y. Return to Step 1.

» Else: Do not move to new position, stay at X. Return to Step 1.

4. After a large number of iterations, return all accepted positions.

Metropolis-Hastings sampler Il

The natural question: what should be the proposal distribution g(Y | 6)?

Metropolis-Hastings sampler Il

The natural question: what should be the proposal distribution g(Y | 6)?

1. The rate of convergence to the stationary distribution depends on it! And hence
the compute time.

Metropolis-Hastings sampler Il

The natural question: what should be the proposal distribution g(Y | 6)?

1. The rate of convergence to the stationary distribution depends on it! And hence
the compute time.

2. Even if the chain converged it may mix slowly (move around the states). And
hence one needs to run it for longer to obtain reliable estimates.

Metropolis-Hastings sampler Il

The natural question: what should be the proposal distribution g(Y | 6)?

1. The rate of convergence to the stationary distribution depends on it! And hence
the compute time.

2. Even if the chain converged it may mix slowly (move around the states). And
hence one needs to run it for longer to obtain reliable estimates.

3. Proposal has to explore the space efficiently, sometimes it requires to perform
experimentation and craftsmanship to construct a good one.

Jupyter notebook 2

Typical proposal distributions

Most typical one: random walk, g(Y|0) = g(|Y — @]).

Typical proposal distributions

Most typical one: random walk, g(Y|0) = g(|Y — @]).

Example: Y ~ N(0,, s), where N is a normal distribution and s is the custom
standard deviation

Typical proposal distributions

Most typical one: random walk, g(Y|0) = g(|Y — @]).

Example: Y ~ N(0,, s), where N is a normal distribution and s is the custom
standard deviation

Important property: acceptance rate - how frequently the proposal gets
accepted. Ideally should be 0.2-0.4

Typical proposal distributions

Most typical one: random walk, g(Y|0) = g(|Y — @]).

Example: Y ~ N(0,, s), where N is a normal distribution and s is the custom
standard deviation

Important property: acceptance rate - how frequently the proposal gets
accepted. Ideally should be 0.2-0.4

This can be tuned during the burn-in period. In general:

Typical proposal distributions

Most typical one: random walk, g(Y|0) = g(|Y — @]).

Example: Y ~ N(0,, s), where N is a normal distribution and s is the custom
standard deviation

Important property: acceptance rate - how frequently the proposal gets
accepted. Ideally should be 0.2-0.4

This can be tuned during the burn-in period. In general:

1. Acceptance too high -> chain mixes slowly. Acceptance too low -> chain stops
moving.

Typical proposal distributions

Most typical one: random walk, g(Y'|0) = qg(|Y — @]|).

Example: Y ~ N(6,, s), where N is a normal distribution and s is the custom standard
deviation

Important property: acceptance rate - how frequently the proposal gets accepted.
Ideally should be 0.2-0.4

This can be tuned during the burn-in period. In general:

1. Acceptance too high -> chain mixes slowly. Acceptance too low -> chain stops
moving.

2. The larger the variance of the proposal is the lower the acceptance rate is.

Typical proposal distributions

Most typical one: random walk, g(Y'|0) = qg(|Y — @]|).

Example: Y ~ N(6,, s), where N is a normal distribution and s is the custom standard
deviation

Important property: acceptance rate - how frequently the proposal gets accepted.
Ideally should be 0.2-0.4

This can be tuned during the burn-in period. In general:

1. Acceptance too high -> chain mixes slowly. Acceptance too low -> chain stops
moving.

2. The larger the variance of the proposal is the lower the acceptance rate is.

3. This can be used during burn-in to reach the desired acceptance rate.

Single component MH and Gibbs sampler

Instead of updating @ en bloc it is often more convenient and computationally
efficient to divide 6 into components {60,...6,} and update them one by one.

Single component MH and Gibbs sampler

Instead of updating @ en bloc it is often more convenient and computationally
efficient to divide 6 into components {60,...6,} and update them one by one.

This means that instead of g(Y | 8) we will have g(Y;|6_., 6.), where
9] — {91...Hi_1, H_l_leh}

— l

Single component MH and Gibbs sampler

Instead of updating @ en bloc it is often more convenient and computationally efficient
to divide € into components {60,...6,} and update them one by one.

This means that instead of g(Y | #) we will have g(Y;|6_., 6.), where
9 j — {(91...t9i_1, 9+19h}

— l

n(Y, | 6’-;')4(91' | Y, 9—1')

Acceptance probability will then be a(0_;,0,,Y,)) = min| |,————
m(0;10_)q(Y;16,,0_)

Single component MH and Gibbs sampler

Instead of updating @ en bloc it is often more convenient and computationally efficient
to divide € into components {60,...6,} and update them one by one.

This means that instead of g(Y | #) we will have g(Y;|6_., 6.), where
9 j — {(91...t9i_1, 9+19h}

— l

n(Y, | 6’-;')4(91' | Y, 9—1')

Acceptance probability will then be a(0_;,0,,Y,)) = min| |,————
m(0;10_)q(Y;16,,0_)

Gibbs sampler: g(Y;|0.,0_.) = n(Y.| 0_.). Acceptance probability in this case is
always equals to 1!

Single component MH and Gibbs sampler

Instead of updating @ en bloc it is often more convenient and computationally efficient to
divide € into components {60,...6,} and update them one by one.

This means that instead of g(Y | 0) we will have g(Y:|6_,, 8;), where

n(Y; | 0_)q(0: | Y., 0_))
| n(0;10_)q(Y;16,,0_))

Acceptance probability will then be a(6_., 0., Y,) = min | 1

Gibbs sampler: g(Y.|0.,0_.) = n(Y.| 0_,). Acceptance probability in this case is
always equals to 1!

Gibbs sampling uses the property of tractability of all conditional posterior distributions
to get samples from the unknown full posterior distribution of all model variables.

Gibbs sampling scheme

Assume we have data X ~ p(X|6,, 6,)

1. Randomly initialize (91(0) and sample 6’2(0) ~ p(6,| X, 6’1(0))

2.Forstept=1,...,T

(a) Sample Hl(t) ~ p(0, | X, 6’5‘1)

(b) Sample 6 ~ p(6,| X, 6})

Laplace approximation

The idea: find parameters 1 and X such that p(@| X) ~ N(u,)

Laplace approximation

The idea: find parameters 1 and X such that p(@| X) ~ N(u,)

Ingredients: Taylor series expansion and Maximum A Posteriori solution (MAP)

Laplace approximation

The idea: find parameters 1 and X such that p(@| X) ~ N(u,)

Ingredients: Taylor series expansion and Maximum A Posteriori solution (MAP)

pO.X) "V
p(X) - J oI p(0.x) 10

p(@|X) = , concentrate on In p(@, X) as a function of &

Laplace approximation

The idea: find parameters 1 and X such that p(@| X) ~ N(u,)

Ingredients: Taylor series expansion and Maximum A Posteriori solution (MAP)

p@.X) "oy
X — m, concentrate on In p(f, X) as a function of &
p e np\ov,x

pO|X) =

Taylor series up to the 2nd term: 1(9) ~ f(6,) + (0 — 6,)" VA, + %(6’ — 0y) V*£(0,)(0 — 0,)"

Laplace approximation

The idea: find parameters 1 and X such that p(@| X) ~ N(u,)

Ingredients: Taylor series and Maximum A Posteriori solution (MAP)

p@.X) "oy

0] X) = =
p(0]X) p(X) [enrndp

, concentrate on In p(@, X) as a function of &

Taylor series up to the 2nd term: 1(9) ~ f(6,) + (0 — 6,)" VA, + %(6’ — 0y) V*£(0,)(0 — 0,)"

......

Even a crocodile is shorter than this expression!

Laplace approximation

The idea: find parameters 1 and X such that p(@| X) ~ N(u,)

Ingredients: Taylor series and Maximum A Posteriori solution (MAP)
pO.X) "V

0] X) = =
p(0]X) p(X) [enrndp

, concentrate on In p(@, X) as a function of &

Taylor series up to the 2nd term: 1(9) ~ f(6,) + (0 — 6,)" VA, + %(6’ — 0y) V*£(0,)(0 — 0,)"

Even a crocodile is shorter than this expression!
Hence finding a good point (MAP):

0o = Opap = arg max p(0] X)
0

Laplace approximation

The idea: find parameters y and 2 such that p(@ | X) ~ N(u,)

Ingredients: Taylor series and Maximum A Posteriori solution (MAP)

(0, X) o p(6.X)
p(X) [elrOqde

p(@|X) = , concentrate on In p(0, X) as a function of &

:) i 2 T
Taylor series up to the 2nd term: 1(9) ~ f(0,) + (0 — 6,)' V£(6,) + 5(9 — 0,) V2£(0,)(0 — 6,)
Even a crocodile is shorter than this expression! S U

Hence let us find a good point (MAP):

0 = Oy 4p = arg max p(@| X) = arg max
’ 0 pX)

Laplace approximation

The idea: find parameters y and 2 such that p(@ | X) ~ N(u,)

Ingredients: Taylor series and Maximum A Posteriori solution (MAP)

(0, X) o p(6.X)
p(X) [elrOqde

p(@|X) = , concentrate on In p(0, X) as a function of &

Taylor series up to the 2nd term: 1(9) ~ f(0,) + (0 — 6,)' Vf(0,) + %(6’ — 6y) V*£(0,)(0 — 0,)"

Even a crocodile is shorter than this expression!
Hence let us find a good point (MAP):

X, 0
0y = O0),4p = arg max p(0| X) = arg max pX.0) = arg max In p(X, 6)
0 o p(X) 0

Laplace approximation 2. What is good about MAP?

Note, that 8,,,p corresponds to local maximum of the posterior

aAADALSA A

Hence Vf(0,,4p) = 0 and the second term of the “crocodile” conveniently gets zeroed down: e

Laplace approximation 2. What is good about MAP?

Note, that 8,,,p corresponds to local maximum of the posterior

n AAALD A

Hence Vf(0,,4p) = 0 and the second term of the “crocodile” conveniently gets zeroed down:

1
f0) = f(Oyap)+(O0 — Oy4p)' VS (QMAPH'E(@ — Oyap) Vo (Oy1ap) (O — Oyyap)”

Laplace approximation 2. What is good about MAP?

Note, that 8,,,p corresponds to local maximum of the posterior

Hence Vf(0,,4p) = 0 and the second term of the “crocodile” conveniently gets zeroed down:

1 1
f0) = f(Oyap)+(O0 — Oy4p)' VS (QMAPH'E(H — Oy1ap) Vo(Op1ap) (0 — Oyap)' = f(Oyap) + 5(‘9 — Oy1ap) Vo (Oy14p) (0 — Oypap)"

Laplace approximation 2. What is good about MAP?

Note, that 8,,,p corresponds to local maximum of the posterior

Hence Vf(0,,4p) = 0 and the second term of the “crocodile” conveniently gets zeroed down:

1 1
f0) = f(Oyap)+(O0 — Oy4p)' VS (QMAPH'E(H — Oy1ap) Vo(Op1ap) (0 — Oyap)' = f(Oyap) + 5(‘9 — Oy1ap) Vo (Oy14p) (0 — Oypap)"

Now posterior, substitute f(€) by In p(X, 0):

elnp(X,@)

J elnp(X.0)40 ~

pO|X) =

Laplace approximation 2. What is good about MAP?

Note, that 8,,,p corresponds to local maximum of the posterior

Hence Vf(0,,4p) = 0 and the second term of the “crocodile” conveniently gets zeroed down:

1 1
f0) = f(Oyap)+(O0 — Oy4p)' VS (QMAPH'E(H — Oy1ap) Vo(Op1ap) (0 — Oyap)' = f(Oyap) + 5(‘9 — Oy1ap) Vo (Oy14p) (0 — Oypap)"

Now posterior, substitute f(€) by In p(X, 0):

o 1N p(X.0) N p(X, 0, P)e%(Q—HMAp)TVZIHp(XﬁMAp)(H—QMAp)

pO|X) = R 1 —
fe Inp(X.0)dO J p(X, ‘9M A P)ej(e—eMAP) Vn p(X,0ap)(0—Oyar) 4O

Laplace approximation 2. What is good about MAP?

Note, that 8,,,p corresponds to local maximum of the posterior

Hence Vf(0,,4p) = 0 and the second term of the “crocodile” conveniently gets zeroed down:

1 1
f0) = f(Oyap)+(O0 — Oy4p)' VS (QMAPH'E(H — Oy1ap) Vo(Op1ap) (0 — Oyap)' = f(Oyap) + 5(‘9 — Oy1ap) Vo (Oy14p) (0 — Oypap)"

Now posterior, substitute f(€) by In p(X, 0):

o 1N p(X.0) N p(X, 0, P)e%(Q—HMAp)TVZIHp(XﬁMAp)(H—QMAp)

p@|X) = Looks like a Normal distribution!

I elnp(X.0)df - J p(X, ‘9M A P) e%(e_eMAP)Tvzlnp(XaeMAP)(H_QMAP)de

Laplace approximation 2. What is good about MAP?

Note, that 8,,,p corresponds to local maximum of the posterior

Hence Vf(0,,4p) = 0 and the second term of the “crocodile” conveniently gets zeroed down:

1 1
f0) = f(Oyap)+(O0 — Oy4p)' VS (QMAPH'E(H — Oy1ap) Vo(Op1ap) (0 — Oyap)' = f(Oyap) + 5(‘9 — Oy1ap) Vo (Oy14p) (0 — Oypap)"

Now posterior, substitute f(€) by In p(X, 0):

o 1N p(X.0) N p(X, 0, P)e%(Q—HMAp)TVZIHp(XﬁMAp)(H—QMAp)

p@|X) = Looks like a Normal distribution!

I elnp(X.0)df - J p(X, ‘9M A P) e%(e_eMAP)Tvzlnp(XaeMAP)(H_QMAP)de

1
(Pdf of the normal distribution N(u, X) is p(x, u,2) = Qr)¥? | X _1/2 exXp (—E(x —) x — /4))

Laplace approximation 2. What is good about MAP?

Note, that 8,,,p corresponds to local maximum of the posterior

Hence Vf(0,,4p) = 0 and the second term of the “crocodile” conveniently gets zeroed down:

1 1
f0) = f(Oyap)+(O0 — Oy4p)' VS (QMAPH'E(H — Oy1ap) Vo(Op1ap) (0 — Oyap)' = f(Oyap) + 5(‘9 — Oy1ap) Vo (Oy14p) (0 — Oypap)"

Now posterior, substitute f(€) by In p(X, 0):

o 1N p(X.0) N p(X, 0, P)e%(Q—HMAp)TVZIHp(XﬁMAp)(H—@MAp)

p@|X) = Looks like a Normal distribution!

felnp (X,@)d@ - J p(X, ‘9M A P)e%(e_eMAP)Tvzlnp(XaeMAP)(H_eMAP)dQ
1
(Pdf of the normal distribution N(u, 2) is p(x, u,) = m) | _1/2 exXp (—E(x — ,u)TZ_l(x — ,u)>)

Hence O|X ~ NO,,p, — (VInp(X,0,,,)" ")

Laplace approximation 2. What is good about MAP?

1. How to find MAP? lterative procedure, gradient ascent.

In pymc function find_map which we already used in the first Jupyter notebook.

2. How to find Hessian V-1n p(X, 0)?:

In pymc function find_hessian

However with the large number of parameters this also becomes too computationally challenging, hence one needs
another method

Jupyter notebook 2 Laplace approximation

