
PROGRAMMING IN C++
Jülich Supercomputing Centre
May 12, 2022 Sandipan Mohanty Forschungszentrum Jülich, Germany

Member of the Helmholtz Association

Day 4

Member of the Helmholtz Association May 12, 2022 Slide 1

Chapter 4

Standard Template Library

Member of the Helmholtz Association May 12, 2022 Slide 2

STANDARD TEMPLATE LIBRARY
Utilities

pair , tuple

optional , variant , any

bitset , bit , endian , bit_cast

type_traits , concepts , safe integral
comparisons
initializer_list

system , atexit

bind , placeholders , apply , invoke ...

Date and Time
Random numbers
Smart pointers
Filesystem
Regular expressions

Containers, span

Algorithms, ranges
Iterators
Strings and string view
Fast character conversions
Multi-threading, atomic types
Parallel algorithms
Text formatting

Member of the Helmholtz Association May 12, 2022 Slide 3

SMART POINTERS

Figure: Source: XKCD (http://xkcd.com)

3 kinds of smart pointers were introduced in C++11
They allow memory managed programs to be written
Ordinary pointers are also allowed, but their use as heap resource managers is discouraged

Member of the Helmholtz Association May 12, 2022 Slide 4

http://xkcd.com

UNIQUE POINTER
1 // examples/uniqueptr.cc
2 auto main() -> int
3 {
4 auto u1 = std::make_unique<MyStruct>(1);
5 //auto u2 = u1; //won't compile
6 auto u3 = std::move(u1);
7 std::cout << "Data value for u3 is u3->vl = " << u3->vl <<'\n';
8 auto u4 = std::make_unique<MyStruct[]>(4);
9 }

Smart pointer: The data pointed to is freed when the pointer expires
Exclusive access to resource
Can not be copied (deleted copy constructor and assignment operator)
Data ownership can be transferred with std::move

Can create single instances as well as arrays through make_unique

Member of the Helmholtz Association May 12, 2022 Slide 5

SHARED POINTER
1 // examples/sharedptr.cc
2 auto main() -> int
3 {
4 auto u1 = std::make_shared<MyStruct>(1);
5 std::shared_ptr<MyStruct> u2 = u1; // Copy is ok
6 std::shared_ptr<MyStruct> u3 = std::move(u1);
7 std::cout << "Reference count of u3 is "
8 << u3.use_count() << '\n';
9 }

Smart pointer: The data pointed to is freed when the pointer expires
Can share resource with other shared/weak pointers
Can be copy assigned/constructed
Maintains a reference count ptr.use_count()

Member of the Helmholtz Association May 12, 2022 Slide 6

WEAK POINTER

1 // examples/weakptr.cc
2 auto main() -> int
3 {
4 auto s1 = std::make_shared<MyStruct>(1);
5 std::weak_ptr<MyStruct> w1(s1);
6 std::cout << "Ref count of s1 = " << s1.use_count() << '\n';
7 std::shared_ptr<MyStruct> s3(s1);
8 std::cout << "Ref count of s1 = " << s1.use_count() << '\n';
9 }

Does not own resource
Can "kind of" share data with shared pointers, but does not change reference count

Member of the Helmholtz Association May 12, 2022 Slide 7

SMART POINTERS: EXAMPLES

Exercise 5.1: uniqueptr.cc, sharedptr.cc
Read the 3 smart pointer example files, and try to understand the output. Observe when the constructors and
destructors for the data objects are being called.

Member of the Helmholtz Association May 12, 2022 Slide 8

MEMORY MANAGEMENT ERRORS
1 auto somefunc(inputpars) -> outputtype
2 {
3 auto* heapblock = new double[1024];
4
5 // calculations
6 // calculations
7 // calculations
8
9 return res;

10 // Oops! Forgot to delete heapblock!
11 }

Explicit handling of heap allocation/deallocation is
error prone. Danger: memory leak.

Must match new with delete in code
Even then, leak can happen: e.g., when the code
never reaches the delete

Use smart pointers, e.g., std::unique_ptr
instead

Member of the Helmholtz Association May 12, 2022 Slide 9

MEMORY MANAGEMENT ERRORS
1 auto somefunc(inputpars) -> outputtype
2 {
3 auto* heapblock = new double[1024];
4
5 // calculations
6 // calculations
7 // calculations
8
9 delete [] heapblock;

10 return res;
11 }

Explicit handling of heap allocation/deallocation is
error prone. Danger: memory leak.
Must match new with delete in code

Even then, leak can happen: e.g., when the code
never reaches the delete

Use smart pointers, e.g., std::unique_ptr
instead

Member of the Helmholtz Association May 12, 2022 Slide 9

MEMORY MANAGEMENT ERRORS
1 auto somefunc(inputpars) -> outputtype
2 {
3 auto* heapblock = new double[1024];
4
5 // calculations
6 // throw an exception!

7 // calculations
8
9 delete [] heapblock;

10 return res;
11 }

Explicit handling of heap allocation/deallocation is
error prone. Danger: memory leak.
Must match new with delete in code
Even then, leak can happen: e.g., when the code
never reaches the delete

Use smart pointers, e.g., std::unique_ptr
instead

Member of the Helmholtz Association May 12, 2022 Slide 9

MEMORY MANAGEMENT ERRORS
1 auto somefunc(inputpars) -> outputtype
2 {
3 auto heapblock =
4 std::make_unique<double[]>(1024);
5
6 // calculations
7 // throw an exception!

8 // => unique_ptr cleans up
9

10 return res;
11 // unique_ptr cleans up
12 }

Explicit handling of heap allocation/deallocation is
error prone. Danger: memory leak.
Must match new with delete in code
Even then, leak can happen: e.g., when the code
never reaches the delete

Use smart pointers, e.g., std::unique_ptr
instead

Member of the Helmholtz Association May 12, 2022 Slide 9

DANGERS OF DANGLING POINTERS AND
REFERENCES

1 {
2 int* ptr = nullptr;
3 if (something) {
4 auto i = std::stoi(argv[1]);
5 ptr = &i;
6 std::cout << "ptr is pointing at "
7 << *ptr << "\n";
8 }
9 // ptr still in scope, but i isn't!

10 std::cout << *ptr << "\n";
11 // dangling --> dereference -->
12 // undefined behaviour!
13 }

Other forms of memory errors exist, and are harder
to eliminate

When storing addresses in pointers, we have to
ensure that the pointer is not used beyond the
scope of the object it points at.
If we return a reference from a function, we must
make sure, it is not a reference to a temporary
object.
If we store references to heap object, there is
always the danger that operations on the owning
entity will invalidate the reference

Member of the Helmholtz Association May 12, 2022 Slide 10

DANGERS OF DANGLING POINTERS AND
REFERENCES

1 {
2 int* ptr = nullptr;
3 if (something) {
4 auto i = std::stoi(argv[1]);
5 ptr = &i;
6 std::cout << "ptr is pointing at "
7 << *ptr << "\n";
8 }
9 // ptr still in scope, but i isn't!

10 std::cout << *ptr << "\n";
11 // dangling --> dereference -->
12 // undefined behaviour!
13 }

Other forms of memory errors exist, and are harder
to eliminate
When storing addresses in pointers, we have to
ensure that the pointer is not used beyond the
scope of the object it points at.

If we return a reference from a function, we must
make sure, it is not a reference to a temporary
object.
If we store references to heap object, there is
always the danger that operations on the owning
entity will invalidate the reference

Member of the Helmholtz Association May 12, 2022 Slide 10

DANGERS OF DANGLING POINTERS AND
REFERENCES

1 auto calc(double inp) -> double&
2 {
3 auto loc = inp * inp;
4 // Returning ref to local:
5 return loc; // Bad idea!
6 }
7 void elsewhere()
8 {
9 auto&& res = calc(4);

10 std::cout << res << "\n";
11 }

Other forms of memory errors exist, and are harder
to eliminate
When storing addresses in pointers, we have to
ensure that the pointer is not used beyond the
scope of the object it points at.
If we return a reference from a function, we must
make sure, it is not a reference to a temporary
object.

If we store references to heap object, there is
always the danger that operations on the owning
entity will invalidate the reference

Member of the Helmholtz Association May 12, 2022 Slide 10

DANGERS OF DANGLING POINTERS AND
REFERENCES

1 {
2 std::vector v{1, 2, 3};
3 auto& vstart = v.front();
4 v.push_back(4); // may invalidate refs
5 v.push_back(5);
6 v.push_back(6);
7 v.push_back(7);
8 std::cout << vstart << "\n";
9 }

Other forms of memory errors exist, and are harder
to eliminate
When storing addresses in pointers, we have to
ensure that the pointer is not used beyond the
scope of the object it points at.
If we return a reference from a function, we must
make sure, it is not a reference to a temporary
object.
If we store references to heap object, there is
always the danger that operations on the owning
entity will invalidate the reference

Member of the Helmholtz Association May 12, 2022 Slide 10

DANGLING –> DEREFERENCE –> UNDEFINED
BEHAVIOUR

Example 4.1:
The folder examples/dangling_pr contains examples of the 3 kinds of memory bugs mentioned in this section.
Study them, and check what, if any, errors or warnings the compiler generates for them. Try compiling with
-Wall Wextra . Run them and examine the results. Try compiling with -fsanitize=address .

Member of the Helmholtz Association May 12, 2022 Slide 11

AVOID DANGLING POINTERS AND REFERENCES
Ensure that pointers and references do not outlive the referenced objects
Prefer short lived non-owning pointers
Do not return references to temporary objects
Avoid storing references to objects on the heap

Member of the Helmholtz Association May 12, 2022 Slide 12

STL CONTAINERS
1 using namespace std;
2 int sz;
3 cin >> sz;
4 // vector<double> B(sz,3.0); // <- C++17 ->
5 vector B(sz, 3.0); // C++17 ->
6 vector c{1, 2, 3, 4};
7 c.push_back(5); // append
8 list l{1, 2, 3, 4};
9 l.insert(find(l.begin(),l.end(),2), 14);

10 // insert in the middle
11 map<string, int> rank;
12 rank["Sirius"] = 1;
13 rank["Canopus"] = 2;
14 for (auto el : B) cout << el << "\n";
15 for (auto el : l) cout << el << "\n";
16 for (auto el : rank)
17 cout << el.first <<" -> "
18 << el.second << "\n";

Form: container<datatype> . Include file
containername

Many easy-to-use sequence types available in the
STL

vector : Dynamic array type
list : Linked list
map : Sorted associative container
unordered_map : Hash table

Not always necessary to explicitly state the element
type. If there is an initialiser, element type can be
inferred.
Store a fixed kind of elements, determined at the
point of declaration.
They can grow at run time (except
std::array)

Whenever possible, prefer array or vector

Member of the Helmholtz Association May 12, 2022 Slide 13

VECTOR: DYNAMIC ARRAY CLASS TEMPLATE

Element type is a template parameter
Consecutive elements in memory
Can be accessed using an "iterator"

Iterator:
Iterators are classes which pretend to be pointers
They can be dereferenced with overloaded * and
-> operators to retrieve an element

They can be moved forward or backward using
overloaded ++ and -- operators
They can be compared for equality or inequality

Member of the Helmholtz Association May 12, 2022 Slide 14

A LINKED LIST
A linked list is a collection of connected nodes. Each
node has some data, and one or two pointers to other
nodes. They are the "next" and "previous" nodes in the
linked list. When "next" or "previous" does not exist,
the pointer is set to nullptr

Member of the Helmholtz Association May 12, 2022 Slide 15

A LINKED LIST
When a new element is added to the end of a list, its
"previous" pointer is set to the previous end of chain,
and it becomes the target of the "next" pointer of the
previous end.

Member of the Helmholtz Association May 12, 2022 Slide 15

A LINKED LIST
New elements can be added to the front or back of the
list with only a few pointers needing rearrangement.

Member of the Helmholtz Association May 12, 2022 Slide 15

A LINKED LIST
Any element in the list can be reached, if one kept track
of the beginning or end of the list, and followed the
"next" and "previous" pointers.

Member of the Helmholtz Association May 12, 2022 Slide 15

A LINKED LIST
A concept of an "iterator" can be devised, where the
++ and -- operators move to the next and previous

nodes.

Member of the Helmholtz Association May 12, 2022 Slide 15

A LINKED LIST
Inserting a new element in the middle of the list does
not require moving the existing nodes in memory.

Member of the Helmholtz Association May 12, 2022 Slide 15

A LINKED LIST
Just rearranging the next and previous pointers of the
elements between which the new element must go, is
enough. This gives efficient O(1) insertions and
deletions.

Member of the Helmholtz Association May 12, 2022 Slide 15

A LINKED LIST
Just rearranging the next and previous pointers of the
elements between which the new element must go, is
enough. This gives efficient O(1) insertions and
deletions.

Member of the Helmholtz Association May 12, 2022 Slide 15

GENERIC "CONTAINERS"

Generic data holding constructions
Can be accessed through a suitably designed
"iterator"
The data type does not affect the design =⇒
template

Similarity of interface is by design
With a standard container c of type C , it’s
always possible to use std::begin(c) to
access the start and std::end(c) to access the
end
std::begin() and std::end() return
C::iterator or C::const_iterator

depending on whether c is const qualified.

std::cbegin(c) and std::cend(c)

return C::const_iterator types irrespective
of whether c is a const

Similarly, std::size(c) always returns the size
of the container, i.e., the number of elements it
contains

Member of the Helmholtz Association May 12, 2022 Slide 16

STL CONTAINERS

std::vector<> : dynamic arrays

std::list<> : linked lists

std::queue<> : queue

std::deque<> : double ended queue

std::map<A,B> : associative container

Structures to organise data
Include file names correspond to class names
All of them provide corresponding iterator classes
If iter is an iterator, *iter is data.
All of them provide member functions like
begin() , end() , size() , initializer list

constructors, deduction rules for class template
argument deduction

1 list L{1, 2, 3, 4, 5}; // std::list<int>, initialized to 1, 2, 3, 4, 5
2 auto pp = partition(begin(L), end(L), [](auto i){ return i % 3 == 0; });
3 decltype(L) M;
4 M.splice(end(M), L, begin(L), pp);

Member of the Helmholtz Association May 12, 2022 Slide 17

USING STD::VECTOR
vector<int> v(10); makes a dynamic array of 10 integers, vector v(10, 0.) creates a vector

of 10 doubles initialized to 0, vector v{1u, 2u, 3u} creates a vector of unsigned int with
values 1, 2 and 3.
Efficient indexing operator [] , for unchecked element access

v.at(i) provides range checked access. An exception is thrown if at(i) is called with an out-of-range
i

std::vector<std::list<userinfo>> vu(10) ; array of 10 linked lists.

Supports push_back and insert operations, but sometimes has to relocate the all the elements because
of one push_back operation (next slide)

Member of the Helmholtz Association May 12, 2022 Slide 18

STD::VECTOR
std::vector may reserve a few extra memory

blocks to allow a few quick push_back
operations.
New items are simply placed in the previously
reserved but unused memory and the size member
adjusted.

Member of the Helmholtz Association May 12, 2022 Slide 19

STD::VECTOR
std::vector may reserve a few extra memory

blocks to allow a few quick push_back
operations.
New items are simply placed in the previously
reserved but unused memory and the size member
adjusted.

Member of the Helmholtz Association May 12, 2022 Slide 19

STD::VECTOR
std::vector may reserve a few extra memory

blocks to allow a few quick push_back
operations.
New items are simply placed in the previously
reserved but unused memory and the size member
adjusted.

Member of the Helmholtz Association May 12, 2022 Slide 19

STD::VECTOR
std::vector may reserve a few extra memory

blocks to allow a few quick push_back
operations.
New items are simply placed in the previously
reserved but unused memory and the size member
adjusted.

Member of the Helmholtz Association May 12, 2022 Slide 19

STD::VECTOR
When this is no longer possible, a new larger
memory block is reserved, and all previous content
is moved or copied to it.
A few more quick push_back operations are
again possible.

Member of the Helmholtz Association May 12, 2022 Slide 19

STD::VECTOR
When this is no longer possible, a new larger
memory block is reserved, and all previous content
is moved or copied to it.
A few more quick push_back operations are
again possible.

Member of the Helmholtz Association May 12, 2022 Slide 19

STD::VECTOR
When push_back is no longer possible, a new
larger memory block is reserved, and all previous
content is moved or copied to it.
A few more quick push_back operations are
again possible.

Exercise 5.2:
Construct a list and a vector of 3 elements of the Vbose class from your earlier exercise. Add new elements
one by one and pause to examine the output. This aspect was also demostrated in the notebook
CtorDtorDemo.ipynb .

Member of the Helmholtz Association May 12, 2022 Slide 20

STD::ARRAY : ARRAYS WITH FIXED COMPILE TIME
CONSTANT SIZE

std::array<T,N> is a fixed length array of size N holding elements of type T

It implements functions like begin() and end() and is therefore usable with STL algorithms like
transform , generate etc.

The array size is a template parameter, and hence a compile time constant.
std::array<std::string,7> week{"Mon","Tue","Wed","Thu","Fri","Sat","Sun"};

Member of the Helmholtz Association May 12, 2022 Slide 21

ARRAYS

1 double A[10]; // Built-in or C-style array
2 int sz;
3 std::cin >> sz;
4 int M[sz]; // Not allowed!
5 #include <array>
6 ...
7 std::array<double,10> A; // On stack
8 // Like a built-in array, but obeys
9 // C++ standard library conventions.

10 for (size_t i = 0; i < A.size(); ++i) {
11 P *= A[i];
12 }
13 std::vector<double> B(sz,3.0);

Sequence of N objects stored consecutively in
memory, with no gaps
If p is a pointer to the first object of such a
sequence, p+1 , p+2 etc, will point to the
subsequent elements. Elements of the sequence can
therefore be accessed as *(p+0) , *(p+1) ,

*(p+2) ... another notation for that is p[0] ,
p[1] ...

Member of the Helmholtz Association May 12, 2022 Slide 22

ARRAYS

1 double A[10]; // Built-in or C-style array
2 int sz;
3 std::cin >> sz;
4 int M[sz]; // Not allowed!
5 #include <array>
6 ...
7 std::array<double,10> A; // On stack
8 // Like a built-in array, but obeys
9 // C++ standard library conventions.

10 for (size_t i = 0; i < A.size(); ++i) {
11 P *= A[i];
12 }
13 std::vector<double> B(sz,3.0);

Built-in or ”C-style" arrays consist of blocks of
memory large enough to hold a fixed number of
elements. The array, thought of as a pointer,
points to the first element in the sequence. The
elements are stored consecutively, but the number
of elements is never stored anywhere
std::array<type,size> is a compile-time

fixed length array obeying STL conventions. The
size is available through a function, although it
does not have to be stored with the array data!
std::array<type,size> retains its

“personality” (does not decay into a pointer) when
used as input to function or when received as the
output from a function. This should be your
default choice when you need fixed length arrays.

Member of the Helmholtz Association May 12, 2022 Slide 22

ASSOCIATIVE CONTAINERS: STD::MAP

1 std::map<std::string, int> flsize;
2 flsize["S.dat"]=123164;
3 flsize["D.dat"]=423222;
4 flsize["A.dat"]=1024;

Think of it as a special kind of "vector" where you can have things other than integers as indices.
Template arguments specify the key and data types
Could be thought of as a container storing (key,value) pairs :
{(”S.dat”, 123164), (”D.dat”, 423222), (”A.dat”, 1024)}
The less than comparison operation must be defined on the key type
Implemented as a tree, which keeps its elements sorted

Member of the Helmholtz Association May 12, 2022 Slide 23

A WORD COUNTER PROGRAM
Exercise 5.3:
Fake exercise: Write a program that counts all different words in a text file and prints the statistics.

1 #include <iostream>
2 #include <fstream>
3 #include <iomanip>
4 #include <string>
5 #include <map>
6 auto main(int argc, char *argv[]) -> int
7 {
8 std::ifstream fin(argv[1]);
9 std::map<std::string, unsigned> freq;

10 std::string s;
11 while (fin >> s) freq[s]++;
12 for (auto [key, val] : freq)
13 cout << std::setw(12) << key
14 << std::setw(4) << ':'
15 << std::setw(12) << val <<"\n";
16 }

A quick histogram!
std::map<string, unsigned> is a

container which stores an integer, for each unique
std::string key.

The iterator for std::map “points to” a
pair<key,value>

Member of the Helmholtz Association May 12, 2022 Slide 24

STD::UNORDERED_MAP AND
STD::UNORDERED_SET

Unordered map

Like std::map<k,v> and std::set<v> ,
but do not sort the elements
Internally, these are hash tables, providing faster
element access than std::map and std::set

Additional template arguments to specify hash
functions

Member of the Helmholtz Association May 12, 2022 Slide 25

STL ALGORITHMS

1 ...
2 std::vector<YourClass> vc(inp.size());
3 std::copy(inp.begin(), inp.end(), vc.begin());
4 //Copy contents of list to a vector
5 auto pos = std::find(vc.begin(), vc.end(), elm);
6 //Find an element in vc which equals elm
7 std::sort(vc.begin(),vc.end());
8 //Sort the vector vc. The operator "<"
9 //must be defined

10 ...
11 std::transform(inp.begin(), inp.end(), out.begin(), rotate);
12 //apply rotate() to each input element,
13 //and store results in output sequence

The similarity of the interface, e.g. begin() , end() etc., among STL containers allows generic algorithms
to be written as template functions, performing common tasks on collections

Member of the Helmholtz Association May 12, 2022 Slide 26

STL ALGORITHMS
Typically, the algorithms in the namespace std accept one or more ranges as (start, stop) pairs, some
other inputs which may include callable objects
New algorithms were introduced in C++20 in the namespace std::ranges , where the input ranges are
given as single objects rather than iterator pairs. Think
std::ranges::for_each(v, [](auto&& elem){ std::cout << elem << "\n"; })

rather than
std::for_each(v.begin(), v.end(), [](auto&& elem){ std::cout << elem << "\n"; })

Exercise 5.4:
The standard library provides a large number of template functions to work with containers
Look them up in www.cplusplus.com or en.cppreference.com

Use the suitable STL algorithms to generate successive permutations of the vector

Member of the Helmholtz Association May 12, 2022 Slide 27

STL ALGORITHMS: SORTING
std::sort(iter_1, iter_2) sorts the

elements between iterators iter_1 and
iter_2

std::sort(iter_1, iter_2, lt) sorts
the elements between iterators iter_1 and
iter_2 using a custom comparison method lt ,

which could be any callable object
std::ranges::sort(range) and
std::ranges::sort(range, lt) are

corresponding versions using a range as an
argument instead of a pair of iterators

1 #include <iostream>
2 #include <algorithm>
3 #include <vector>
4 using namespace std;
5 auto main() -> int
6 {
7 vector v{2, -3, 7, 4, -1, 9, 0};
8 sort(v.begin(), v.end());
9 //Sort using "<" operator

10 for (auto el : v) cout << el << "\n";
11 sort(v.begin(), v.end(),
12 [](int i, int j) {
13 return i * i < j * j;
14 });
15 //Sort using custom comparison
16 for (auto el: v) cout << el << "\n";
17 }

Member of the Helmholtz Association May 12, 2022 Slide 28

STL ALGORITHMS: SORTING
std::sort(iter_1, iter_2) sorts the

elements between iterators iter_1 and
iter_2

std::sort(iter_1, iter_2, lt) sorts
the elements between iterators iter_1 and
iter_2 using a custom comparison method lt ,

which could be any callable object

std::ranges::sort(range) and
std::ranges::sort(range, lt) are

corresponding versions using a range as an
argument instead of a pair of iterators

1 #include <iostream>
2 #include <algorithm>
3 #include <vector>
4 using namespace std;
5 auto main() -> int
6 {
7 vector v{2, -3, 7, 4, -1, 9, 0};
8 sort(v.begin(), v.end());
9 //Sort using "<" operator

10 for (auto el : v) cout << el << "\n";
11 sort(v.begin(), v.end(),
12 [](int i, int j) {
13 return i * i < j * j;
14 });
15 //Sort using custom comparison
16 for (auto el: v) cout << el << "\n";
17 }

Member of the Helmholtz Association May 12, 2022 Slide 28

STL ALGORITHMS: SORTING
std::sort(iter_1, iter_2) sorts the

elements between iterators iter_1 and
iter_2

std::sort(iter_1, iter_2, lt) sorts
the elements between iterators iter_1 and
iter_2 using a custom comparison method lt ,

which could be any callable object
std::ranges::sort(range) and
std::ranges::sort(range, lt) are

corresponding versions using a range as an
argument instead of a pair of iterators

1 #include <iostream>
2 #include <algorithm>
3 #include <vector>
4 using namespace std;
5 auto main() -> int
6 {
7 vector v{2, -3, 7, 4, -1, 9, 0};
8 sort(v.begin(), v.end());
9 //Sort using "<" operator

10 for (auto el : v) cout << el << "\n";
11 ranges::sort(v, [](int i, int j) {
12 return i * i < j * j;
13 });
14 //Sort using custom comparison
15 for (auto el: v) cout << el << "\n";
16 }

Member of the Helmholtz Association May 12, 2022 Slide 28

STD::TRANSFORM
std::transform(begin_1 , end_1, begin_res, unary_function);

std::transform(begin_1 , end_1, begin_2, begin_res, binary_function);

Apply callable object to the sequence and write result starting at a given iterator location
The container holding result must be previously resized so that it has the right number of elements
The “result” container can be (one of the) input container(s)

1 std::vector v{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9};
2 std::list L1(v.size(), 0), L2(v.size(), 0);
3 std::transform(v.begin(), v.end(), L1.begin(), sin);
4 std::transform(v.begin(), v.end(), L1.begin(), L2.begin(), std::max);

Result: L1 contains sin(x) for each x in v , and L2 contains the greater(x,sin(x))

Member of the Helmholtz Association May 12, 2022 Slide 29

STD::RANGES::TRANSFORM
std::ranges::transform(range1, begin_res, unary_function);

std::transform(range1, range2, begin_res, binary_function);

Apply callable object to the sequence and write result starting at a given iterator location
The container holding result must be previously resized so that it has the right number of elements
The “result” container can be (one of the) input container(s)

1 std::vector v{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9};
2 std::list L1(v.size(), 0), L2(v.size(), 0);
3 std::ranges::transform(v, L1.begin(), sin);
4 std::ranges::transform(v, L1, L2.begin(), std::max);

Result: L1 contains sin(x) for each x in v , and L2 contains the greater(x,sin(x))

Member of the Helmholtz Association May 12, 2022 Slide 30

ALL_OF, ANY_OF, NONE_OF

1 auto valid(std::string name) -> bool
2 {
3 return all_of(name.begin(),name.end(),
4 [](char c) { return (isalpha(c)) || isspace(c); });
5 }

std::all_of(begin_ , end_ , condition) checks if all elements in a given range satisfy
condition

condition is a callable object

std::any_of(begin_ , end_ , condition) checks if any single element in a given range
satisfies condition

std::none_of(begin_ , end_ , condition) returns true if not a single element in a given
range satisfies condition

Member of the Helmholtz Association May 12, 2022 Slide 31

ALL_OF, ANY_OF, NONE_OF

1 auto valid(std::string name) -> bool
2 {
3 return all_of(name,
4 [](char c) { return (isalpha(c)) || isspace(c); });
5 }

std::ranges::all_of(range , condition) checks if all elements in a given range satisfy
condition

condition is a callable object

std::ranges::any_of(range , condition) checks if any single element in a given range
satisfies condition

std::ranges::none_of(range , condition) returns true if not a single element in a given
range satisfies condition

Member of the Helmholtz Association May 12, 2022 Slide 32

ALGORITHMS
1 vector v{ 1, 2, 3, 4, 5, 6, 7, 8, 9 }, w{ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
2 vector<int> x, y, z, m;
3 if (is_sorted(begin(v), end(v)))
4 cout << "The sequence is sorted in the increasing order.\n";
5 reverse(v.begin(), v.end());
6 rotate(v.begin(), v.begin() + 3, v.end());
7 sort(begin(v), end(v));
8 merge(v.begin(), v.end(), w.begin(), w.end(), back_inserter(m));
9 set_union(v.begin(), v.end(), w.begin(), w.end(), back_inserter(x));

10 set_intersection(w.begin(), w.end(), v.begin(), v.end(), back_inserter(y));
11 set_symmetric_difference(v.begin(), v.end(), w.begin(), w.end(), back_inserter(z));
12 if (is_permutation(z.begin(), z.end(), v.begin(), v.end())) // do something

Exercise 5.5:
A whole lot of operations available for sequence types. The file seqops.cc contains the operations shown
here. Alternatively, (or, in addition,) use the jupyter notebook intro_algorithms.ipynb to examine the
effects of the algorithms on sequences. Explore!

Member of the Helmholtz Association May 12, 2022 Slide 33

ALGORITHMS

for_each(start, end, operation) : As it sounds

find(start, end, what) : returns the location of the looked for value, "end" if not found

find_if(start, end, condition) , find the first element satisfying a condition

copy(start1, end1, start2) : As it sounds

copy_if(start1, end1, start2, criterion) : criterion is a unary function taking a
value of the type found in the sequence and returning true or false
transform(start1, end1, start2, operation) : applies operation on every element in

the input sequence and writes the results starting at start2

Member of the Helmholtz Association May 12, 2022 Slide 34

CONSTRAINED ALGORITHMS (RANGES)

for_each(range, operation) : As it sounds

find(range, what) : returns the location of the looked for value, "end" if not found

find_if(range, condition) , find the first element satisfying a condition

copy(range1, iterator2) : As it sounds

copy_if(range1, iterator2, criterion) : criterion is a unary function taking a value of
the type found in the sequence and returning true or false
transform(range1, iterator2, operation) : applies operation on every element in the

input sequence and writes the results starting at iterator2

Member of the Helmholtz Association May 12, 2022 Slide 35

ALGORITHMS
1 vector v{ 1, 2, 3, 4, 5, 6, 7, 8, 9 }, w{ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
2 vector<int> x, y, z, m;
3 if (is_sorted(v))
4 cout << "The sequence is sorted in the increasing order.\n";
5 reverse(v);
6 rotate(v, v.begin() + 3);
7 sort(v);
8 merge(v, w, back_inserter(m));
9 set_union(v, w, back_inserter(x));

10 set_intersection(w, v, back_inserter(y));
11 set_symmetric_difference(v, w, back_inserter(z));
12 if (is_permutation(zv)) // do something

Exercise 5.6:
The file seqops_range.cc contains the operations shown here. Explore by making modifications. Try GCC
10.0+ compiler for this.

Member of the Helmholtz Association May 12, 2022 Slide 36

CHRONO: THE TIME LIBRARY
namespace std::chrono defines many time related functions and classes (include file: chrono)

system_clock : System clock

steady_clock : Steady monotonic clock

high_resolution_clock : To the precision of your computer’s clock

steady_clock::now() : nanoseconds since 1.1.1970

duration<double> : Abstraction for a time duration. Uses std::ratio<> internally

Exercise 5.7: chrono_demo.cc

Member of the Helmholtz Association May 12, 2022 Slide 37

THE TIME LIBRARY
1 // examples/chrono_demo.cc
2 #include <iostream>
3 #include <chrono>
4 #include <vector>
5 #include <algorithm>
6 #include <ranges>
7 bool is_prime(unsigned n);
8 auto main() -> int
9 {

10 using namespace std::chrono;
11 namespace sr = std::ranges;
12 namespace sv = std::views;
13 std::vector<unsigned> primes;
14 auto t = steady_clock::now();
15 sr::copy(sv::iota(0UL, 10000UL) | sv::filter(is_prime), back_inserter(primes));
16 std::cout << "Primes till 10000 are ... " << '\n';
17 for (unsigned i : primes) std::cout << i << '\n';
18 auto d = steady_clock::now() - t;
19 std::cout<<"Prime search took " << duration<double>(d).count() << " seconds\n";
20 }

Member of the Helmholtz Association May 12, 2022 Slide 38

CALENDAR AND DATES WITH STD::CHRONO

1 auto current_year() -> std::chrono::year
2 {
3 using namespace std::chrono;
4 year_month_day date { floor<days>(system_clock::now()) };
5 return date.year();
6 }
7 auto main(int argc, char* argv[]) -> int
8 {
9 using namespace std::chrono;

10 using namespace std::chrono_literals;
11 auto Y0 { current_year() };
12 auto Y1 = Y0 + years{100};
13 if (argc > 1) Y1 = year{std::stoi(argv[1])};
14 if (argc > 2) Y0 = year{std::stoi(argv[2])};
15 if (Y1 < Y0) std::swap(Y1, Y0);
16
17 for (auto y = Y0; y < Y1; ++y) {
18 auto d = y / February / Sunday[5];
19 if (d.ok())
20 std::cout << static_cast<int>(y) << "\n";
21 }
22 }

Member of the Helmholtz Association May 12, 2022 Slide 39

CALENDAR...

Example 4.2:
The programs examples/feb.cc and examples/advent.cc demonstrate the use of the calendar facilities of the
C++ standard library. Familiarize yourself with them.

Member of the Helmholtz Association May 12, 2022 Slide 40

RANDOM NUMBER GENERATION
Convenient, flexible, powerful random number
library providing high quality (pseudo-)random
numbers in standard C++ without any external
libraries.
Include random . Namespace std::random

Figure: Source XKCD: http://xkcd.com

Member of the Helmholtz Association May 12, 2022 Slide 41

http://xkcd.com

RANDOM NUMBER GENERATION
Share a common structure
Uniform random generator engine with (hopefully)
well tested properties
Distribution generator which adapts its input to a
required distribution

1 auto gen = [
2 engine = std::mt19937_64{},
3 dist=std::poisson_distribution<>{8.5}
4]() mutable {
5 return dist(engine);
6 };
7 r = gen();

1 std::mt19937_64 engine;
2 std::poisson_distribution<> dist{8.5};
3 auto gen = [&dist, &engine] {
4 return dist(engine);
5 };
6 r = gen();
7 // if engine or dist are required elsewhere

Member of the Helmholtz Association May 12, 2022 Slide 42

RANDOM NUMBER GENERATORS

1 #include <random>
2 #include <iostream>
3 #include <map>
4 auto main() -> int
5 {
6 auto gen = [dist=std::mt19937_64{}, engine=std::poisson_distribution<> dist{8.5}]
7 () mutable { return dist(engine); };
8 std::map<int,unsigned> H;
9 for (auto i = 0UL; i < 5000000UL; ++i) H[generator()]++;

10 for (auto [i, fi] : H) std::cout << i << " " << fi << '\n';
11 }

std::mt19937_64 is a 64 bit implementation of Mersenne Twister 19937

The template std::poisson_distribution is a functional implementing the Poission distribution

Member of the Helmholtz Association May 12, 2022 Slide 43

RANDOM NUMBER GENERATORS

1 std::normal_distribution<> G{3.5, 1.2}; // Gaussian mu = 3.5, sig = 1.2
2 std::uniform_real_distribution<> U{3.141, 6.282};
3 std::binomial_distribution<> B{13};
4 std::discrete_distribution<> dist{0.3, 0.2, 0.2, 0.1, 0.1, 0.1};
5 // The following is an engine like std::mt19937, but is non-deterministic
6 std::random_device seed; // int i = seed() will be a random integer

Lots of useful distributions available in the standard
With one or two lines of code, it is possible to create a high quality generator with good properties and the
desired distribution
std::random_device is a non-deterministic random number generator.

It is good for setting seeds for the used random number engine
It is slower than the pseudo-random number generators

Member of the Helmholtz Association May 12, 2022 Slide 44

RANDOM NUMBER GENERATOR: EXERCISES

Exercise 5.8:
Make a program to generate normally distributed random numbers with user specified mean and variance, and
make a histogram to demonstrate that the correct distribution is produced. Start from
exercises/normal_distribution.cc .

Exercise 5.9:
Make a program to implement a "biased die", i.e., with user specified non-uniform probability for different faces.
You will need std::discrete_distribution<> Start from exercises/weighted_die.cc .

Member of the Helmholtz Association May 12, 2022 Slide 45

EXERCISES

Exercise 5.10:
For a real valued random variable X with normal distribution of a given mean µ and standard deviation σ,
calculate the following quantity:

K [X] =
〈
(X − µ)4〉

(⟨(X − µ)2⟩)2

Fill in the random number generation parts of the program exercises/K.cc . Run the program a few times
varying the mean and standard deviation. What do you observe about the quantity in the equation above ?

Member of the Helmholtz Association May 12, 2022 Slide 46

Exercise 5.11: Probabilities with playing cards
The program examples/cards_problem.cc demonstrates many topics discussed during this course. It has
a constexpr funtion to create a fixed length array to store results, several standard library containers and
algorithms as well as the use of the random number machinery for a Monte Carlo simulation. It has extensive
comments explaining the use of various features. Read the code and identify the different techniques used, and
run it to solve a probability question regarding playing cards.

Member of the Helmholtz Association May 12, 2022 Slide 47

STD::OPTIONAL
std::optional<T> manages an optional value

of type T , which may or may not be present
Another way to handle errors during computations
to determine a value of some kind
If the optional object has a value, the value
resides in the object, i.e., the optional type
does not do any dynamic memory allocation of its
own
The operators * and -> are given for
convenience, so that we can pretend we are dealing
with a pointer type when using an optional

If converted to a bool , we get true if there is a
value, false otherwise
Default initialisation as well as initialisation with
nullopt_t create optional objects without

value.

1 auto solve_quadratic(double a, double b,
2 double c)
3 {
4 using namespace std;
5 optional<pair<double, double>> solution;
6 auto D = b * b - 4 * a * c;
7 if (D >= 0) {
8 auto q = -0.5 * (b +
9 copysign(sqrt(D), b));

10 solution = make_pair(q / a, c / q);
11 }
12 return solution;
13 }

Exercise 5.12:
examples/opt_qsolve.cc is a small program

demonstrating the use of std::optional .

Member of the Helmholtz Association May 12, 2022 Slide 48

STD::VARIANT : A TYPE SAFE UNION
A union is a special kind of class where all the
members occupy the same bytes in memory

1 union sameplace { size_t ulong; double real; };
2 static_assert(sizeof(sameplace) ==
3 sizeof(double));
4 sameplace s;
5 s.ulong = 0UL;
6 s.real = 1.0;
7 cout << s.ulong << "\n";

We can access the elements of a union the same
way as a struct (above).
Since both members occupy the same bytes,
changes to one can affect the other
If the union contains, e.g., std::string , such
overriding of bytes would be dangerous.

std::variant is a type safe union .

Unlike the union , we don’t get to name the
different members. The different "members" can
be accessed through functions like
std::get<int>(V) , i.e., we can use the types

to select the stored type. We also don’t need to say
what we are assigning to, since that can be deduced
from the type of the object on the right of the =

A variant knows what type is currently stored,
and calls the destructors etc. when we assign
something that would change the stored type

1 variant<double, int, long, string> V;
2 V = "let's assign a string";
3 V = 3.141;
4 // call string destructor and store a double

Member of the Helmholtz Association May 12, 2022 Slide 49

STD::VARIANT : A TYPE SAFE UNION
A variant type stores one value of any one of a few
pre-specified alternatives. To create a variant
with an integer, a long, a string and a boolean, we
would write

1 std::variant<int, long, string, bool> V;

A variant can be assigned a value of any one of its
contained types. The variant then remembers the
value and the type of the value.

1 V = "0118 999 881 99 9119 725 3"s;
2 assert(std::holds_alternative<string>(V));

The member function index() tells us the zero
based index of the currently held type in the list of
alternatives for the variant

1 assert(V.index() == 2);

Since the type of the contained object can be
changed by an assignment at run time, the variant
can not simply have a function get() to return
the contained value. We have to specify the type of
value we want to read as a template argument:

1 cout << get<string>(V);

Unlike the union, we can’t store one type and read
another

1 V = "0118 999 881 99 9119 725 3"s;
2 auto num = get<int>(V); //throws exception!

There is also a non throwing version of the
accessor:

1 if (auto iptr = get_if<int>(&V); iptr) {
2 // use iptr as pointer to int value
3 // Does not get here because get_if<int>
4 // returns a nullptr in this case.
5 }

Member of the Helmholtz Association May 12, 2022 Slide 50

STD::VARIANT : A TYPE SAFE UNION
1 using member_t = variant<int, long, string, bool>;
2 vector<member_t> pop{true, 9l, "Monday"s};
3 for (auto & el : pop) {
4 if (auto iptr = get_if<int>(&el)) {
5 // *iptr is the int value in the variant el
6 } else if (auto lptr = get_if<long>(&el)) {
7 // *lptr is the long value in el
8 } else if (auto sptr = get_if<string>(&el)) {
9 // *sptr is the string value in el

10 }
11 }

Variants can be made to model members of
heterogeneous collections, much like pointers to
base class in a class hierarchy. The difference is, we
can even use built in type like int , double etc.
in a variant based heterogeneous container, because
it does not need a class hierarchy!

Easiest way to model polymorphic behaviour is
using a chain of if ... else if ... else

statements using the get_if<T>(&v) function
for the different types T in the variant .
get_if<T>(&v) returns a valid T * if the

variant v currently holds type T . Otherwise it
returns nullptr .

Exercise 5.13:
The two example programs
examples/variant_0.cc and
examples/variant_1.cc demonstrate basic

variant usage, such as assignment of values of different
types, performing actions based on the content type.

Member of the Helmholtz Association May 12, 2022 Slide 51

STD::VARIANT : USING STD::VISIT TO SELECT
ACTIONS

Another way to perform different actions based on the currently held type is to use std::visit .
If we have variant<int, double> V , std::visit(F, V) calls F(int) if V currently holds
an int and F(double) if V currently holds a double . std::visit unpacks the variant before
calling F with the stored value. The callable object F must have an overload capable fo handling the
alternatives in the variant
The overloaded function to be used with std::visit can be created in many ways. Three examples in
the following boxes:

1 struct my_action {
2 auto operator()(int i) { // ... }
3 auto operator()(double x) { // }
4 };
5 // ...
6 std::visit(my_action{}, V);

Member of the Helmholtz Association May 12, 2022 Slide 52

STD::VARIANT : USING STD::VISIT TO SELECT
ACTIONS

Another way to perform different actions based on the currently held type is to use std::visit .
If we have variant<int, double> V , std::visit(F, V) calls F(int) if V currently holds
an int and F(double) if V currently holds a double . std::visit unpacks the variant before
calling F with the stored value. The callable object F must have an overload capable fo handling the
alternatives in the variant
The overloaded function to be used with std::visit can be created in many ways. Three examples in
the following boxes:

1 std::visit([](auto upkd) {
2 if constexpr (is_same_v<int, decltype(upkd)>) {
3 // handle int input
4 } else if constexpr (is_same_v<double, decltype(upkd)>) {
5 // handle double input
6 }
7 }, V
8);

Member of the Helmholtz Association May 12, 2022 Slide 52

STD::VARIANT : USING STD::VISIT TO SELECT
ACTIONS

Another way to perform different actions based on the currently held type is to use std::visit .
If we have variant<int, double> V , std::visit(F, V) calls F(int) if V currently holds
an int and F(double) if V currently holds a double . std::visit unpacks the variant before
calling F with the stored value. The callable object F must have an overload capable fo handling the
alternatives in the variant
The overloaded function to be used with std::visit can be created in many ways. Three examples in
the following boxes:

1 template <class ... Ts> struct stapler : Ts ... { using Ts::operator()... ; };
2 template <class ... Ts> stapler(Ts ...) -> stapler<Ts...>;
3 std::visit(stapler{
4 [](int i) { /* handle int input */ },
5 [](double d) { /* handle double */ }
6 }, V
7);

Member of the Helmholtz Association May 12, 2022 Slide 52

USING VARIANTS WITH STD::VISITOR

Exercise 5.14:
Example programs examples/variant_2.cc , examples/variant_3.cc and
examples/variant_4.cc demonstrate the use of std::visit to dispatch different actions depending

on the type of the currently held value in a variant. They parallel the approaches in the 3 boxes in the previous
slide.

Member of the Helmholtz Association May 12, 2022 Slide 53

STD::ANY : A TYPESAFE CONTAINER FOR SINGLE
VALUES

A variable of type std::any can
store 1 value of any type
Simply by assigning a new value, the
contained object is replaced with
another of the new type. The variable
of type std::any is like a box,
whose type remains unchanged as the
content is swapped. The contained
object is indirectly accessed, leading to
some overhead.

Exercise 5.15:
examples/any_demo.cc demonstrates

basic usage of std::any .

1 any var = 1;
2 cout << "Reading int after storing int ... "
3 << any_cast<int>(var) << "\n"; // That works
4 try {
5 cout << "Reading float after storing an int ... "
6 << any_cast<float>(var) << "\n";
7 // This doesn't
8 } catch (const exception & err) {
9 cout << "Float cast after storing int failed. "

10 << "Error : " << err.what() << "\n";
11 }
12 var = "Europa"s;
13 map<string, any> config;
14 config["max_frequency_ghz"] = 3.3;
15 config["memory_MB"] = 16384;
16 config["fingerprint_reader"] = true;

Member of the Helmholtz Association May 12, 2022 Slide 54

SEQUENCES OF POLYMORPHIC OBJECTS

Exercise 5.16:
Sequences of objects with polymorphic behaviour is a frequently occuring programming problem. We have seen
one example before, with a vector of unique_ptr<Shape> , filled with newly created instances of types
inheritted from Shape , such as Circle , Triangle etc. The problem can be solved in many alternative
ways. examples/polymorphic contains 4 subdirectories with different approaches to the geometric object
example. (i) Inherittance with virtual functions (ii) std::variant with visitors (iii) Using std.:any (iv)
Custom type erasure.

Member of the Helmholtz Association May 12, 2022 Slide 55

	Day 4
	Chapter 4: Standard Template Library
	Smart pointers
	Pointers, references and common errors
	Containers
	STL vector
	Fixed length arrays
	Associative containers

	Algorithms
	STL utilities
	Chrono
	Random numbers
	std::optional
	std::variant
	std::any

