
PROGRAMMING IN C++
Jülich Supercomputing Centre
May 11, 2022 Sandipan Mohanty Forschungszentrum Jülich, Germany

Member of the Helmholtz Association

Day 3

Member of the Helmholtz Association May 11, 2022 Slide 1

DESIGN GOALS
Correctness
Readability
Extendability
Speed
Adaptability

A large scale software project is better off being built out
of components which are resilient to unforeseen changes.

Member of the Helmholtz Association May 11, 2022 Slide 2

DEPENDENCIES
Impede modifications
Hamper testing
Increase rebuild times

Good design helps us control dependencies.
Variation points
Flexible adaptible software

Guideline: Keep dependencies among software components to a minimum.

Member of the Helmholtz Association May 11, 2022 Slide 3

ENCAPSULATION
Member functions abstracting properties
Resilient to internal data reorganisation
More flexible design

1 class complex_number {
2 public:
3 double real, imag;
4 double modulus();
5 };

1 class complex_number {
2 public:
3 auto real() const -> double;
4 auto imag() const -> double;
5 void real(double x);
6 void imag(double x);
7 auto modulus() const -> double;
8 };

Member of the Helmholtz Association May 11, 2022 Slide 4

ENCAPSULATION
Scott Meyer: degree of encapsulation is gauged by
the number of things which break if the internal
design changes
Less member functions : better!
If a function can be implemented as a non-friend,
non-member function, it should be.

1 // Class definition: bare essentials
2 namespace ns {
3 class Example {
4 public:
5 auto property1() const -> double;
6 auto property2() const -> double;
7 };
8 }

1 // Use case 1 header
2 namespace ns {
3 auto calc(Example & ex) {
4 //ex.property1() + ...
5 //ex.property2();
6 return haha;
7 }
8 }

Member of the Helmholtz Association May 11, 2022 Slide 5

THE SOLID PRINCIPLES
Single responsibility principle
Open-closed principle
Liskov’s substitution principle
Interface segregation principle
Dependency inversion principle

Member of the Helmholtz Association May 11, 2022 Slide 6

SRP: THE SINGLE RESPONSIBILITY PRINCIPLE

Every class should have a single responsibility and that responsibility should be entirely encapsulated by that class.
However tempting it might seem, avoid adding
member functions not related to the core idea of
the class
Related principle: Don’t repeat yourself. Avoids
opportunity for bugs and reduces maintenance
overhead.

1 class Rectangle {
2 public:
3 auto area() const -> double;
4 auto width() const -> double;
5 auto height() const -> double;
6 void width(double x);
7 void height(double x);
8 void draw() const;
9 };

Member of the Helmholtz Association May 11, 2022 Slide 7

OCP: THE OPEN CLOSED PRINCIPLE

A software component should be open for extension, but closed for modifications.

Closed: can be used by other components. Well defined stable interface.
Open: Available for extension. Add new data fields, new functionality.
Inheritance (possibly from abstract base classes)

Member of the Helmholtz Association May 11, 2022 Slide 8

LSP: LISKOV’S SUBSTITUTION PRINCIPLE

"If, for each object o1 of type S, there is an object o2 of type T, such that for all programs P defined in terms of
T, the behaviour of P is unchanged when o1 is substituted for o2, then S is a subtype of T."

– Barbara Liskov

Subtypes must be able to substitute the base type
Deriving type fully reflects the behaviour of the base class
True "is a" relationship
Guideline: Don’t inherit and then restrict the derived class so that it loses some behaviour expected from
the base class

Member of the Helmholtz Association May 11, 2022 Slide 9

ISP: THE INTERFACE SEGREGATION PRINCIPLE

Clients should not be forced to depend on methods they do not use.

See under "encapsulation" above
Avoid "fat" classes. When one client forces a change, every other client is affected, even if they are not
using the same part of the fat class.
Think how the functionality available through the namespace std is segregated.

Member of the Helmholtz Association May 11, 2022 Slide 10

DIP: THE DEPENDENCY INVERSION PRINCIPLE

1 High-level modules should not depend on low level modules. Both should depend on abstractions.
2 Abstractions should not depend on details. Details should depend on abstractions.

High level components own the interface they depend on.
They specify their requirements.
If low level components implement that interface, they can be used with the high level client interface.
Cut the dependency chain
Adaptor layers

Member of the Helmholtz Association May 11, 2022 Slide 11

SUMMARY
Avoiding tight coupling between different components may require extra work at first, but wins out in the
life time of a project.
Assign responsibilities carefully.
SOLID principles are known to help develop and maintain flexible software.

Member of the Helmholtz Association May 11, 2022 Slide 12

Using STL containers and algorithms

Member of the Helmholtz Association May 11, 2022 Slide 13

ALGORITHMS
1 // examples/strtrans.cc
2 #include <iostream>
3 #include <algorithm>
4 #include <string>
5 auto main() -> int {
6 std::string name;
7 std::cout << "What's your name ? ";
8 getline(std::cin, name);
9 auto bkpname {name};

10 std::transform(begin(name), end(name), begin(name), toupper);
11 std::cout << bkpname << " <--------> " << name << "\n";
12 }

What does this code do ?

std::transform transforms each element in an input range, and writes the results to an output range
using a given operation

Member of the Helmholtz Association May 11, 2022 Slide 14

ALGORITHMS
1 // examples/strtrans.cc
2 #include <iostream>
3 #include <algorithm>
4 #include <string>
5 auto main() -> int {
6 std::string name;
7 std::cout << "What's your name ? ";
8 getline(std::cin, name);
9 auto bkpname {name};

10 std::transform(begin(name), end(name), begin(name), toupper);
11 std::cout << bkpname << " <--------> " << name << "\n";
12 }

What does this code do ?
std::transform transforms each element in an input range, and writes the results to an output range

using a given operation

Member of the Helmholtz Association May 11, 2022 Slide 14

ALGORITHMS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <ranges>
5 #include <algorithm>
6 #include <string>
7 auto main(int argc, char* argv[]) -> int {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names);
16 //
17 //
18 //
19 //
20
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?

vector , string grow to accommodate any
new element added using push_back

sort sorts a range in increasing order
What is "increasing" order is decided by using the
operator < to compare elements of the sequence

Member of the Helmholtz Association May 11, 2022 Slide 15

ALGORITHMS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <ranges>
5 #include <algorithm>
6 #include <string>
7 auto main(int argc, char* argv[]) -> int {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names);
16 //
17 //
18 //
19 //
20
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?
vector , string grow to accommodate any

new element added using push_back

sort sorts a range in increasing order
What is "increasing" order is decided by using the
operator < to compare elements of the sequence

Member of the Helmholtz Association May 11, 2022 Slide 15

ALGORITHMS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <ranges>
5 #include <algorithm>
6 #include <string>
7 auto main(int argc, char* argv[]) -> int {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names);
16 //
17 //
18 //
19 //
20
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?
vector , string grow to accommodate any

new element added using push_back

sort sorts a range in increasing order

What is "increasing" order is decided by using the
operator < to compare elements of the sequence

Member of the Helmholtz Association May 11, 2022 Slide 15

ALGORITHMS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <ranges>
5 #include <algorithm>
6 #include <string>
7 auto main(int argc, char* argv[]) -> int {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names);
16 //
17 //
18 //
19 //
20
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?
vector , string grow to accommodate any

new element added using push_back

sort sorts a range in increasing order
What is "increasing" order is decided by using the
operator < to compare elements of the sequence

Member of the Helmholtz Association May 11, 2022 Slide 15

ALGORITHMS WITH LAMBDA FUNCTIONS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <ranges>
5 #include <algorithm>
6 #include <string>
7 auto main(int argc, char* argv[]) -> int {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names,
16 [](auto name1, auto name2) {
17 return name1 > name2;
18 }
19);
20
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?

We can give std::sort a comparison function
as the sorting criterion
This can be used to order the elements in lots of
different ways. Like sorting in decreasing order.
Or, sorting by the length of the strings ...

Member of the Helmholtz Association May 11, 2022 Slide 16

ALGORITHMS WITH LAMBDA FUNCTIONS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <ranges>
5 #include <algorithm>
6 #include <string>
7 auto main(int argc, char* argv[]) -> int {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names,
16 [](auto name1, auto name2) {
17 return name1 > name2;
18 }
19);
20
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?
We can give std::sort a comparison function
as the sorting criterion

This can be used to order the elements in lots of
different ways. Like sorting in decreasing order.
Or, sorting by the length of the strings ...

Member of the Helmholtz Association May 11, 2022 Slide 16

ALGORITHMS WITH LAMBDA FUNCTIONS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <ranges>
5 #include <algorithm>
6 #include <string>
7 auto main(int argc, char* argv[]) -> int {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names,
16 [](auto name1, auto name2) {
17 return name1 > name2;
18 }
19);
20
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?
We can give std::sort a comparison function
as the sorting criterion
This can be used to order the elements in lots of
different ways. Like sorting in decreasing order.

Or, sorting by the length of the strings ...

Member of the Helmholtz Association May 11, 2022 Slide 16

ALGORITHMS WITH LAMBDA FUNCTIONS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <algorithm>
5 #include <string>
6 auto main(int argc, char* argv[]) -> int
7 {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names,
16 [](auto name1, auto name2) {
17 return name1.length() <
18 name2.length();
19 }
20);
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?
We can give std::sort a comparison function
as the sorting criterion
This can be used to order the elements in lots of
different ways. Like sorting in decreasing order.
Or, sorting by the length of the strings ...

Member of the Helmholtz Association May 11, 2022 Slide 16

ALGORITHMS WITH LAMBDA FUNCTIONS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <algorithm>
5 #include <string>
6 auto main(int argc, char* argv[]) -> int
7 {
8 using namespace std;
9 vector<std::string> names;

10 ifstream input_file{argv[1]};
11 string name;
12 while (getline(input_file, name))
13 if (not name.empty()) names.push_back(name);
14
15 sort(names.begin(), names.end(),
16 [](auto name1, auto name2) -> bool {
17 return name1.length() < name2.length();
18 }
19);
20
21 for (auto n : names) cout << n << "\n";
22 }

sort() needs a function comparing two elements
If we have such a function, we can pass its name
If we don’t, we can kind of write the content of the
function, as the argument to the function
sort()

These kind of functions, declared as shown are
called "lambda functions"
Notation resembles a mapping a, b, c... 7→ value
from some inputs to an output value, although
frequently we skip the trailing return type if the
return type is unambiguous

Member of the Helmholtz Association May 11, 2022 Slide 17

LAMDA FUNCTIONS
1 auto my_cmp(string_view n1, string_view n2)
2 -> int
3 {
4 return n1.length() < n2.length();
5 }
6
7 std::sort(names.begin(), names.end(), my_cmp);
8
9 std::sort(names.begin(), names.end(),

10 [](auto name1, auto name2) {
11 return name1.length() <
12 name2.length();
13 }
14);
15 }

1 double x{1.45};
2 //
3 //
4 //
5 //
6 //
7 y = sin(x);
8 //
9 y = sin(1.45);

10 //
11 //
12 //
13 //
14 //
15 //

By themselves, "nameless functions"
Passed as comparison or filtering criteria etc. to generic functions like sort , which can work with any
"callable object"

Member of the Helmholtz Association May 11, 2022 Slide 18

Exercise 2.1:
In the working directory for the course chapter, you will find a file with the often used "lorem ipsum" text. Write
a program that takes a text file, and finds all words shorter than 3 letters. If you need to use a lambda function,
copy one from one of the slides and modify its code. We will learn its exact syntax later!

Member of the Helmholtz Association May 11, 2022 Slide 19

Function and class templates

Member of the Helmholtz Association May 11, 2022 Slide 20

FUNCTION OVERLOADING
1 auto power(int x, unsigned n) -> unsigned
2 {
3 ans = 1;
4 for (; n > 0; --n) ans *= x;
5 return ans;
6 }
7 auto power(double x, double y) -> double
8 {
9 return exp(y * log(x));

10 }

1 auto someother(double mu, double alpha,
2 int rank) -> double
3 {
4 double st=power(mu,alpha)*exp(-mu);
5
6 if (n_on_bits(power(rank,5))<8)
7 st=0;
8
9 return st;

10 }

When specialised strategies are needed to
accomplish the same task for different types

Static polymorphism: no virtual dispatch,
everything resolved at compilation time
But sometimes we need the opposite: same
operations to be performed on different kinds of
input

Member of the Helmholtz Association May 11, 2022 Slide 21

FUNCTION OVERLOADING
1 auto power(int x, unsigned n) -> unsigned
2 {
3 ans = 1;
4 for (; n > 0; --n) ans *= x;
5 return ans;
6 }
7 auto power(double x, double y) -> double
8 {
9 return exp(y * log(x));

10 }

1 auto someother(double mu, double alpha,
2 int rank) -> double
3 {
4 double st=power(mu,alpha)*exp(-mu);
5
6 if (n_on_bits(power(rank,5))<8)
7 st=0;
8
9 return st;

10 }

When specialised strategies are needed to
accomplish the same task for different types
Static polymorphism: no virtual dispatch,
everything resolved at compilation time

But sometimes we need the opposite: same
operations to be performed on different kinds of
input

Member of the Helmholtz Association May 11, 2022 Slide 21

FUNCTION OVERLOADING
1 void copy(int* start, int* end, int* start2)
2 {
3 for (; start != end; ++start, ++start2) {
4 *start2 = *start;
5 }
6 }
7 void copy(string* start, string* end,
8 string* start2)
9 {

10 for (; start != end; ++start, ++start2) {
11 *start2 = *start;
12 }
13 }
14 void copy(double* start, double* end,
15 double* start2)
16 {
17 for (; start != end; ++start, ++start2) {
18 *start2 = *start;
19 }
20 }
21 double a[10], b[10];
22 copy(a, a + 10, b);

When specialised strategies are needed to
accomplish the same task for different types
Static polymorphism: no virtual dispatch,
everything resolved at compilation time
But sometimes we need the opposite: same
operations to be performed on different kinds of
input

Member of the Helmholtz Association May 11, 2022 Slide 21

INTRODUCTION TO C++ TEMPLATES
1 void copy(int* start, int* end, int* start2)
2 {
3 for (; start != end; ++start, ++start2) {
4 *start2 = *start;
5 }
6 }
7 void copy(string* start, string* end,
8 string* start2)
9 {

10 for (; start != end; ++start, ++start2) {
11 *start2 = *start;
12 }
13 }
14 void copy(double* start, double* end,
15 double* start2)
16 {
17 for (; start != end; ++start, ++start2) {
18 *start2 = *start;
19 }
20 }
21 double a[10], b[10];
22 copy(a, a + 10, b);

Same operations on different types
Exactly the same high level code
Assigning a string to another may involve very
different low level operations compared to assigning
an integer to another. But once we have written
our string class, we may write the exact same code
for the string and integer versions of this kind of
operations!
Couldn’t we automate the process of writing the 3
variants shown, by perhaps, using a placeholder
type, and generating the right variant wherever
required ?

Member of the Helmholtz Association May 11, 2022 Slide 22

INTRODUCTION TO C++ TEMPLATES
Dear compiler, in the following, T is a placeholder!
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

Wouldn’t it be nice,
if we could write the function in terms of
some placeholder for the actual type ?

and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?
For the first point : Sure!
For the second point: the compiler already
knows those types based on the inputs at the
point of usage!
Test it!
examples/template_intro.cc

Member of the Helmholtz Association May 11, 2022 Slide 23

INTRODUCTION TO C++ TEMPLATES
Dear compiler, in the following, T is a placeholder!
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

double a[10], b[10];
copy<double>(a, a + 10, b);
string names[10], onames[10];
copy<string>(onames, onames + 10, names);

Wouldn’t it be nice,
if we could write the function in terms of
some placeholder for the actual type ?
and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?

For the first point : Sure!
For the second point: the compiler already
knows those types based on the inputs at the
point of usage!
Test it!
examples/template_intro.cc

Member of the Helmholtz Association May 11, 2022 Slide 23

INTRODUCTION TO C++ TEMPLATES
template <class T>
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

double a[10], b[10];
copy<double>(a, a + 10, b);
string names[10], onames[10];
copy<string>(onames, onames + 10, names);

Wouldn’t it be nice,
if we could write the function in terms of
some placeholder for the actual type ?
and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?
For the first point : Sure!

For the second point: the compiler already
knows those types based on the inputs at the
point of usage!
Test it!
examples/template_intro.cc

Member of the Helmholtz Association May 11, 2022 Slide 23

INTRODUCTION TO C++ TEMPLATES
template <class T>
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

double a[10], b[10];
copy(a, a + 10, b);
string names[10], onames[10];
copy(onames, onames + 10, names);

Wouldn’t it be nice,
if we could write the function in terms of
some placeholder for the actual type ?
and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?
For the first point : Sure!
For the second point: the compiler already
knows those types based on the inputs at the
point of usage!

Test it!
examples/template_intro.cc

Member of the Helmholtz Association May 11, 2022 Slide 23

INTRODUCTION TO C++ TEMPLATES
template <class T>
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

double a[10], b[10];
copy(a, a + 10, b);
string names[10], onames[10];
copy(onames, onames + 10, names);

Wouldn’t it be nice,
if we could write the function in terms of
some placeholder for the actual type ?
and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?
For the first point : Sure!
For the second point: the compiler already
knows those types based on the inputs at the
point of usage!
Test it!
examples/template_intro.cc

Member of the Helmholtz Association May 11, 2022 Slide 23

INTRODUCTION TO C++ TEMPLATES
template <class T>
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

double a[10], b[10];
copy(a, a + 10, b);
string names[10], onames[10];
copy(onames, onames + 10, names);

Wouldn’t it be nice,
if we could write the function in terms of
some placeholder for the actual type ?
and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?
For the first point : Sure!
For the second point: the compiler already
knows those types based on the inputs at the
point of usage!
Test it!
examples/template_intro.cc

Although we seemingly call a function we only wrote once, with different kinds of inputs, the compiler
sees these as calls to two different functions. No runtime decision is needed to find the function to call.

Member of the Helmholtz Association May 11, 2022 Slide 23

TEMPLATES
Generic code The logic of the copy operation is quite simple. Given a pair of “iterators” (Behaviourally pointer
like entities: can be advanced along a sequence, can be dereferenced) first and last in an input sequence,
and a target location result in an output sequence, we want to:

Loop over the input sequence
For each position of the input iterator, copy the current element to the output iterator position
Increment the input and output iterators
Stop if the input iterator has reached last

Member of the Helmholtz Association May 11, 2022 Slide 24

A TEMPLATE FOR A GENERIC COPY OPERATION

1 template <class InputIterator, class OutputIterator>
2 OutputIterator copy(InputIterator first, InputIterator last, OutputIterator result)
3 {
4 while (first != last) *result++ = *first++;
5 return result;
6 }

C++ template notation
A template with which to generate code!
If you had iterators to two kinds of sequences, you could substitute them in the above template and have a
nice copy function!
The compiler does the necessary substitution when you try to use the function
The compiler needs access to the template source code at the point where it is trying to instantiate it!

Member of the Helmholtz Association May 11, 2022 Slide 25

ORDERED PAIRS

1 struct double_pair
2 {
3 double first, second;
4 };
5 ...
6 double_pair coords[100];
7 ...
8 struct int_pair
9 {

10 int first, second;
11 };
12 ...
13 int_pair line_ranges[100];
14 ...
15 struct int_double_pair
16 {
17 // wait!
18 // can I make a template out of it?
19 };

Class templates
Classes can be templates too

Generated when the template is “instantiated”

1 template <class T, class U>
2 struct pair
3 {
4 T first;
5 U second;
6 };

Useful for creating many generic types

Member of the Helmholtz Association May 11, 2022 Slide 26

ORDERED PAIRS

1 pair<double,double> coords[100];
2 pair<int,int> line_ranges[100];
3 pair<int,double> whatever;

pair<int,double> , after the template
substitutions, becomes
struct pair<int, double>
{

int first;
double second;

};

Class templates
Classes can be templates too
Generated when the template is “instantiated”

1 template <class T, class U>
2 struct pair
3 {
4 T first;
5 U second;
6 };

Useful for creating many generic types

Member of the Helmholtz Association May 11, 2022 Slide 26

ORDERED PAIRS

1 pair<double,double> coords[100];
2 pair<int,int> line_ranges[100];
3 pair<int,double> whatever;

pair<int,double> , after the template
substitutions, becomes
struct pair<int, double>
{

int first;
double second;

};

Class templates
Classes can be templates too
Generated when the template is “instantiated”

1 template <class T, class U>
2 struct pair
3 {
4 T first;
5 U second;
6 };

Useful for creating many generic types

Member of the Helmholtz Association May 11, 2022 Slide 26

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...
The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements
The template captures the essential structure, and we don’t need to separately develop, debug or test these
parametrised types for every possible element type
No inheritance relationship between vectors of different types
No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association May 11, 2022 Slide 27

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...

The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements
The template captures the essential structure, and we don’t need to separately develop, debug or test these
parametrised types for every possible element type
No inheritance relationship between vectors of different types
No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association May 11, 2022 Slide 27

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...
The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements

The template captures the essential structure, and we don’t need to separately develop, debug or test these
parametrised types for every possible element type
No inheritance relationship between vectors of different types
No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association May 11, 2022 Slide 27

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...
The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements
The template captures the essential structure, and we don’t need to separately develop, debug or test these
parametrised types for every possible element type

No inheritance relationship between vectors of different types
No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association May 11, 2022 Slide 27

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...
The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements
The template captures the essential structure, and we don’t need to separately develop, debug or test these
parametrised types for every possible element type
No inheritance relationship between vectors of different types

No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association May 11, 2022 Slide 27

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...
The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements
The template captures the essential structure, and we don’t need to separately develop, debug or test these
parametrised types for every possible element type
No inheritance relationship between vectors of different types
No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association May 11, 2022 Slide 27

VARIABLE TEMPLATES
1 template <class T> constexpr auto algocategory = 0;
2 template<> constexpr auto algocategory<int> = 1;
3 template<> constexpr auto algocategory<long> = 1;
4 template<> constexpr auto algocategory<int*> = 2;
5 template<> constexpr auto algocategory<long*> = 2;
6 template <class T>
7 auto proc(T x)
8 {

9 if constexpr (algocategory<T> == 2) {

10 std::cout << "Using method for category 2 \n";
11 } else if constexpr (algocategory<T> == 1) {

12 std::cout << "Using method for category 1 \n";
13 } else {
14 std::cout << "Using method for category 0 \n";
15 }
16 }

18 auto main() -> int
19 {
20 int v{7};
21 proc(1);
22 proc(1.);
23 proc(1L);
24 proc(v);
25 proc(&v);
26 }

Can be a static data member of a class
or a global variable parametrised by
template parameters
Can be used along with
compile time if statements to decide

between different algorithms

Member of the Helmholtz Association May 11, 2022 Slide 28

NOT A TEXT SUBSTITUTION ENGINE!
Template specialisation

1 template <class T>
2 class vector {
3 // implementation of a general
4 // vector for any type T
5 };
6 template <>
7 class vector<bool> {
8 // Store the true false values
9 // in a compressed way, i.e.,

10 // 32 of them in a single int
11 };
12 void somewhere_else()
13 {
14 vector<bool> A;
15 // Uses the special implementation
16 }

Templates are defined to work with generic
template parameters
But special values of those parameters, which
should be treated differently, can be specified using
"template specialisations" as shown
If a matching specialisation is found, it is preferred
over the general template

1 template <class A, class B>
2 constexpr auto are_same = false;
3 template <class A>
4 constexpr auto are_same<A, A> = true;
5 static_assert(are_same<int, long>); // Fails
6 using Integer = int;
7 static_assert(are_same<int, Integer>); // Passes

Member of the Helmholtz Association May 11, 2022 Slide 29

NOT A TEXT SUBSTITUTION ENGINE!
Recursion and integer arithmetic

1 template <unsigned N> constexpr unsigned fact = N * fact<N-1>;
2 template <> constexpr unsigned fact<0> = 1U;
3 static_assert(fact<7> == 5040)

Templates support recursive instantiation
Combined with specialisation to terminate recursion
Recursion and specialisation can be used to emulate “loop” like calculations via tail-recursion

Exercise 2.2:
The example source file examples/no_textsub.cc demonstrates recursion and specialisation in templates, and
uses static_assert to verify that the compiler does the arithmetic.

Member of the Helmholtz Association May 11, 2022 Slide 30

NOT A TEXT SUBSTITUTION ENGINE!
Because: SFINAE

1 template <bool Cond, class T> struct enable_if {};
2 template <class T> struct enable_if<true, T> { using type = T; }
3
4 template <class T>
5 auto func(T x) -> enable_if<sizeof(T) == 8UL, T>::type {
6 //impl1
7 }
8 template <class T>
9 auto func(T x) -> enable_if<sizeof(T) != 8UL, T>::type {

10 //impl2
11 }

Substitution Failure Is Not An Error
If substituting a template parameter results in incomplete or invalid function declarations, that overload is
ignored.
The compiler simply tries to find another template with the same name that might match
If it can’t find any, then you have an error

Member of the Helmholtz Association May 11, 2022 Slide 31

NOT A TEXT SUBSTITUTION ENGINE!
Because: concepts

1 template <class T>
2 auto func(T x) -> T requires (sizeof(T) == 8UL) {
3 //impl1
4 }
5 template <class T>
6 auto func(T x) -> T requires (sizeof(T) != 8UL) {
7 //impl2
8 }

Different implementations can be provided requiring different properties of the input type
Before C++20, this sort of selection was done using std::enable_if . Now, concepts provide a far
cleaner alternative.

Member of the Helmholtz Association May 11, 2022 Slide 32

ONE CLASS TEMPLATE IN DETAIL
Initialiser list constructors

The darray class we saw earlier in some examples represents a dynamic array, like the std::vector .
It is a good example to illustrate more about class templates

We want to be able to initialise our darray<T> like this:
darray<double> D(400, 0.);
darray<string> S{"A", "B", "C"};
darray<int> I{1, 2, 3, 4, 5};

And then we want to be able to use it as follows...
for (auto i = 0UL; i < D.size(); ++i) {

D[i] = i * i;
std::cout << D[i] << "\n";

}

Member of the Helmholtz Association May 11, 2022 Slide 33

ONE CLASS TEMPLATE IN DETAIL
Initialiser list constructors

The darray class we saw earlier in some examples represents a dynamic array, like the std::vector .
It is a good example to illustrate more about class templates
We want to be able to initialise our darray<T> like this:
darray<double> D(400, 0.);
darray<string> S{"A", "B", "C"};
darray<int> I{1, 2, 3, 4, 5};

And then we want to be able to use it as follows...
for (auto i = 0UL; i < D.size(); ++i) {

D[i] = i * i;
std::cout << D[i] << "\n";

}

Member of the Helmholtz Association May 11, 2022 Slide 33

ONE CLASS TEMPLATE IN DETAIL
Initialiser list constructors

The darray class we saw earlier in some examples represents a dynamic array, like the std::vector .
It is a good example to illustrate more about class templates
We want to be able to initialise our darray<T> like this:
darray<double> D(400, 0.);
darray<string> S{"A", "B", "C"};
darray<int> I{1, 2, 3, 4, 5};

And then we want to be able to use it as follows...
for (auto i = 0UL; i < D.size(); ++i) {

D[i] = i * i;
std::cout << D[i] << "\n";

}

Member of the Helmholtz Association May 11, 2022 Slide 33

ONE CLASS TEMPLATE IN DETAIL
Initialiser list constructors

Making it into a template and writing many of the special functions is easy.
template <class T>
class darray {

std::unique_ptr<T[]> dat;
size_t sz{};

public:
darray() = default;
~darray() = default;
darray(const darray& other);
darray(darray&&) noexcept = default;
darray& operator=(const darray& other);
darray& operator=(darray&&) noexcept = default;

};

Using the unique_ptr to manage the heap allocation/deallocation means we don’t need to do anything
special for default constructor, destructor and the move operations. Only copy needs to be carefully
implemented!

Member of the Helmholtz Association May 11, 2022 Slide 34

ONE CLASS TEMPLATE IN DETAIL
Initialiser list constructors

To initialise our darray<T> like this:

1 darray<string> S{"A", "B", "C"};
2 darray<int> I{1, 2, 3, 4, 5};

we need an initializer_list constructor

1 darray(initializer_list<T> l) {
2 arr = std::make_unique<T[]>(l.size());
3 for (auto i{0UL}; auto&& el : l) arr[i++] = el;
4 }

Member of the Helmholtz Association May 11, 2022 Slide 35

A DYNAMIC ARRAY CLASS TEMPLATE
1 template <class T>
2 class darray {
3 public:
4 auto operator[](size_t i) const -> T { return arr[i]; }
5 auto operator[](size_t i) -> T& { return arr[i]; }
6 };

Two versions of the [] operator for
read-only and read/write access

Use const qualifier in any member
function which does not change the
object

Member of the Helmholtz Association May 11, 2022 Slide 36

A DYNAMIC ARRAY CLASS TEMPLATE
1 template <class T>
2 class darray {
3 public:
4 auto operator[](size_t i) const -> T { return arr[i]; }
5 auto operator[](size_t i) -> T& { return arr[i]; }
6 };

Two versions of the [] operator for
read-only and read/write access
Use const qualifier in any member
function which does not change the
object

Member of the Helmholtz Association May 11, 2022 Slide 36

TYPE DEDUCTIONS
Template parameters can be type names or compile
time constant values of different types.
Until C++20, non-type template parameters were
limited to integral types. Now, a lot of other types
are allowed.

Can be used to specify compile time constant sizes
but also give you a peculiar kind of “ function ” in
effect
Old uses of template integer arithmetic are by now
obsolete. constexpr functions constitute a
vastly superior alternative.
But, type-deductions remain an important use for
template meta-programs

1 template <class T, int N>
2 struct my_array {
3 T data[N];
4 };

Member of the Helmholtz Association May 11, 2022 Slide 37

TYPE DEDUCTIONS
Template parameters can be type names or compile
time constant values of different types.
Until C++20, non-type template parameters were
limited to integral types. Now, a lot of other types
are allowed.
Can be used to specify compile time constant sizes

but also give you a peculiar kind of “ function ” in
effect
Old uses of template integer arithmetic are by now
obsolete. constexpr functions constitute a
vastly superior alternative.
But, type-deductions remain an important use for
template meta-programs

1 template <class T, int N>
2 struct my_array {
3 T data[N];
4 };

1 template <class T,
2 int nrows, int ncols>
3 struct my_matrix {
4 T data[nrows*ncols];
5 };

Member of the Helmholtz Association May 11, 2022 Slide 37

TYPE DEDUCTIONS
Template parameters can be type names or compile
time constant values of different types.
Until C++20, non-type template parameters were
limited to integral types. Now, a lot of other types
are allowed.
Can be used to specify compile time constant sizes
but also give you a peculiar kind of “ function ” in
effect
Old uses of template integer arithmetic are by now
obsolete. constexpr functions constitute a
vastly superior alternative.
But, type-deductions remain an important use for
template meta-programs

1 template <class T, int N>
2 struct my_array {
3 T data[N];
4 };

1 template <class T,
2 int nrows, int ncols>
3 struct my_matrix {
4 T data[nrows*ncols];
5 };

1 template <int i, int j>
2 struct mult {
3 static const int value=i*j;
4 };
5 ...
6 my_array< mult<19,21>::value > vals;

Member of the Helmholtz Association May 11, 2022 Slide 37

EVALUATE DEPENDENT TYPES
Suppose we want to implement a template function

1 template <class T> U f(T a);

such that when T is a non-pointer type, U should take the value T. But if T is itself a pointer, U is the type
obtained by dereferencing the pointer

We could use a template function to "compute" the type U like this:

1 template <class T> struct remove_pointer { using type = T; };
2 template <class T> struct remove_pointer<T*> { using type = T; };

We can then declare the function as:

1 template <class InputType>
2 auto f(InputType a) -> remove_pointer<InputType>::type ;

Member of the Helmholtz Association May 11, 2022 Slide 38

EVALUATE DEPENDENT TYPES
Suppose we want to implement a template function

1 template <class T> U f(T a);

such that when T is a non-pointer type, U should take the value T. But if T is itself a pointer, U is the type
obtained by dereferencing the pointer
We could use a template function to "compute" the type U like this:

1 template <class T> struct remove_pointer { using type = T; };
2 template <class T> struct remove_pointer<T*> { using type = T; };

We can then declare the function as:

1 template <class InputType>
2 auto f(InputType a) -> remove_pointer<InputType>::type ;

Member of the Helmholtz Association May 11, 2022 Slide 38

EVALUATE DEPENDENT TYPES
Suppose we want to implement a template function

1 template <class T> U f(T a);

such that when T is a non-pointer type, U should take the value T. But if T is itself a pointer, U is the type
obtained by dereferencing the pointer
We could use a template function to "compute" the type U like this:

1 template <class T> struct remove_pointer { using type = T; };
2 template <class T> struct remove_pointer<T*> { using type = T; };

We can then declare the function as:

1 template <class InputType>
2 auto f(InputType a) -> remove_pointer<InputType>::type ;

Member of the Helmholtz Association May 11, 2022 Slide 38

TYPE FUNCTIONS
Compute properties of types
Compute dependent types
Typically used with convenient alias template
declarations for the dependent type or the
constant value

1 template <class T1, class T2>
2 std::is_same<T1,T2>::value
3
4 template <class T>
5 std::is_integral<T>::value
6
7 template <class T>
8 std::make_signed<T>::type
9

10 template <class T>
11 std::remove_reference<T>::type
12
13 template <class T>
14 using remove_reference_t =

15 typename remove_reference<T>::type;
16
17 template <class T>
18 inline constexpr bool is_integral_v =

19 std::is_integral<T>::value;

Member of the Helmholtz Association May 11, 2022 Slide 39

STATIC_ASSERT WITH TYPE TRAITS
1 #include <iostream>
2 #include <type_traits>
3 template < class T, class U>
4 auto some_calc(T x, U y)
5 {
6 static_assert(std::is_convertible_v<T, U>,
7 "The type of the argument x must be convertible to type U");
8 // ...
9 }

10 auto main() -> int
11 {
12 some_calc(4.0, "target"); //Compiler error!
13 ...
14 }

Use static_assert and type_traits in combination with constexpr

Exercise 2.3: static_assert2.cc

Member of the Helmholtz Association May 11, 2022 Slide 40

TYPETRAITS
Unary predicates

is_integral_v<T> : T is an integer type

is_const_v<T> : has a const qualifier

is_class_v<T> : struct or class

is_pointer_v<T> : Pointer type

is_abstract_v<T> : Abstract class with at least one pure virtual function

is_copy_constructible_v<T> : Class allows copy construction

is_same_v<T1,T2> : T1 and T2 are the same types

is_base_of_v<T,D> : T is base class of D

is_convertible_v<T,T2> : T is convertible to T2

Member of the Helmholtz Association May 11, 2022 Slide 41

FORWARDING REFERENCES
1 template <class T>
2 auto wrapperfunc(T&& t)
3 {
4 other(std::forward<T>(t));
5 }
6 auto main() -> int
7 {
8 std::string x{"Solar"};
9 std::string y{"System"};

10 wrapperfunc(x);
11 wrapperfunc(x + " " + y);
12 }

Function argument written as if it were an R-value
reference to a cv-unqualified template parameter

If wrapperfunc is called with a constant
L-value, T is deduced to be a constant L-value
reference, and other receives a constant L-value
reference
If wrapperfunc is called with an L-value, T is
deduced to be an L-value reference, and other
receives an L-value reference
If the input is an R-value, then T is inferred to be
a plain type, and forward ensures that other
receives an R-value reference

Member of the Helmholtz Association May 11, 2022 Slide 42

Constrained templates

Member of the Helmholtz Association May 11, 2022 Slide 43

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading
We can

Member of the Helmholtz Association May 11, 2022 Slide 44

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading
We can

Member of the Helmholtz Association May 11, 2022 Slide 44

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?

Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading
We can

Member of the Helmholtz Association May 11, 2022 Slide 44

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading
We can

Member of the Helmholtz Association May 11, 2022 Slide 44

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading

We can

Member of the Helmholtz Association May 11, 2022 Slide 44

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading
We can

Member of the Helmholtz Association May 11, 2022 Slide 44

CONCEPTS
Named requirements on template parameters

concept s are named requirements on template parameters, such as floating_point ,
contiguous_range

If MyAPI is a concept , and T is a type, MyAPI<T> evaluates at compile time to either true or false.

Concepts can be combined using conjunctions (&&) and disjunctions (||) to make other concepts.

A requires clause introduces a constraint on a template type
A suitably designed set of concepts can greatly improve readability of template code

Member of the Helmholtz Association May 11, 2022 Slide 45

CREATING CONCEPTS
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements as shown in the last two
examples.

The requires expression can contain a parameter
list and a brace enclosed sequence of requirements,
which can be:

type requirements, e.g., typename T::value_type;
simple requirements as shown on the left
compound requirements with optional return type
constraints, e.g.,
{ A[0UL] } -> convertible_to<int>;

Member of the Helmholtz Association May 11, 2022 Slide 46

CREATING CONCEPTS
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements as shown in the last two
examples.

The requires expression can contain a parameter
list and a brace enclosed sequence of requirements,
which can be:

type requirements, e.g., typename T::value_type;
simple requirements as shown on the left
compound requirements with optional return type
constraints, e.g.,
{ A[0UL] } -> convertible_to<int>;

Member of the Helmholtz Association May 11, 2022 Slide 46

CREATING CONCEPTS
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

template <class T>
concept Addable = requires (T a, T b) {

{ a + b };
};
template <class T>
concept Indexable = requires(T A) {

{ A[0UL] };
};

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements as shown in the last two
examples.

The requires expression can contain a parameter
list and a brace enclosed sequence of requirements,
which can be:

type requirements, e.g., typename T::value_type;
simple requirements as shown on the left
compound requirements with optional return type
constraints, e.g.,
{ A[0UL] } -> convertible_to<int>;

Member of the Helmholtz Association May 11, 2022 Slide 46

CREATING CONCEPTS
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

template <class T>
concept Addable = requires (T a, T b) {

{ a + b };
};
template <class T>
concept Indexable = requires(T A) {

{ A[0UL] };
};

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements as shown in the last two
examples.
The requires expression can contain a parameter
list and a brace enclosed sequence of requirements,
which can be:

type requirements, e.g., typename T::value_type;
simple requirements as shown on the left
compound requirements with optional return type
constraints, e.g.,
{ A[0UL] } -> convertible_to<int>;

Member of the Helmholtz Association May 11, 2022 Slide 46

USING CONCEPTS
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function
parameter parentheses
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association May 11, 2022 Slide 47

USING CONCEPTS
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function
parameter parentheses
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association May 11, 2022 Slide 47

USING CONCEPTS
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function
parameter parentheses
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association May 11, 2022 Slide 47

USING CONCEPTS
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function
parameter parentheses
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association May 11, 2022 Slide 47

USING CONCEPTS
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function
parameter parentheses
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association May 11, 2022 Slide 47

Exercise 2.4:
The program examples/gcd_w_concepts.cc shows a very small concept definition and its use in a function
calculating the greatest common divisor of two integers.

Exercise 2.5:
The series of programs examples/generic_func1.cc through generic_func4.cc shows some trivial functions
implemented with templates with and without constraints. The files contain plenty of comments explaining the
rationale and use of concepts.

Member of the Helmholtz Association May 11, 2022 Slide 48

OVERLOADING BASED ON CONCEPTS
1 // examples/overload_w_concepts.cc
2 template <class N>
3 concept Number = std::is_floating_point_v<N>
4 || std::is_integral_v<N>;
5 template <class N>
6 concept NotNumber = not Number<N>;
7 void proc(Number auto&& x)
8 {
9 std::cout << "Called proc for numbers";

10 }
11 void proc(NotNumber auto&& x)
12 {
13 std::cout << "Called proc for non-numbers";
14 }
15 auto main() -> int
16 {
17 proc(-1);
18 proc(88UL);
19 proc("0118 999 88199 9119725 3");
20 proc(3.141);
21 proc("eighty"s);
22 }

Constraints on template parameters are not just
“documentation” or decoration.
Different versions of a function can be chosen
based on concepts by writing suitable overload sets.
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the more constrained overload
is chosen.
Not based on any inheritance relationships among
types
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association May 11, 2022 Slide 49

Exercise 2.6:
Check how you can use concepts to implement alternative versions of a function based on properties of the input
parameters! The program examples/overload_w_concepts.cc contains the code just shown. Can you
add another overload that is picked if the input type is an array? This means, if X is the input parameter,
X[i] is syntactically valid for unsigned integer i . The array version should be picked up if the input is a
vector , array , etc. , but also string . How would you prevent the string and C-style strings

picking the array version?

Member of the Helmholtz Association May 11, 2022 Slide 50

PREDEFINED USEFUL CONCEPTS
Many concepts useful in building our own concepts are available in the standard library header <concepts> .

same_as

convertible_to

signed_ingegral , unsigned_integral

floating_point

assignable_from

swappable , swappable_with

derived_from

move_constructible ,
copy_constructible

invocable

predicate

relation

Member of the Helmholtz Association May 11, 2022 Slide 51

VARIADIC TEMPLATES

1 template <class ... Args>
2 auto countArgs(Args ... args) -> int
3 {
4 return (sizeof ...args);
5 }
6
7 std::cout << "Num args = " << countArgs(1, "one", "ein", "uno", 3.232) << '\n';

Templates with arbitrary number of arguments
Typical use: template meta-programming
Recursion, partial specialisation
The ... is actual code! Not blanks for you to fill in!

Member of the Helmholtz Association May 11, 2022 Slide 52

PARAMETER PACK
The ellipsis (...) template argument is called a parameter pack 1

It represents 0 or more arguments which could be type names, integers or other templates :

1 template <class ... Args> class mytuple;
2 // The above can be instantiated with :
3 mytuple<int, int, double, string> t1;
4 mytuple<int> t2;
5 mytuple<> t3;

Definition: A template with at least one parameter pack is called a variadic template

1
http://en.cppreference.com/w/cpp/language/parameter_pack

Member of the Helmholtz Association May 11, 2022 Slide 53

http://en.cppreference.com/w/cpp/language/parameter_pack

PARAMETER PACK
1 //examples/variadic_1.cc
2 template <class ... Types> void f(Types ... args);

3 template <class Type1, class ... Types> void f(Type1 arg1, Types ... rest) {

4 std::cout << typeid(arg1).name() << ``: '' << arg1 << ``\n'';

5 f(rest ...);

6 }

7 template <> void f() {}

8 auto main() -> int
9 {

10 int i{3}, j{};
11 const char * cst{"abc"};
12 std::string cppst{"def"};
13 f(i, j, true, k, l, cst, cppst);
14 }

Divide argument list into first and rest

Do something with first and recursively call template with rest

Specialise for the case with 1 or 0 arguments

Member of the Helmholtz Association May 11, 2022 Slide 54

PARAMETER PACK EXPANSION
pattern ... is called a parameter pack expansion

It applies a pattern to a comma separated list of instantiations of the pattern

If we are in a function :

1 template <class ... Types> void g(Types ... args)

args... means the list of arguments used for the function.

Calling f(args ...) in g will call f with same arguments

Calling f(h(args)...) in g will call f with an argument list generated by applying function h to
each argument of g

In g(true,"abc",1) ,
f(h(args)...) means f(h(true),h("abc"),h(1))

Member of the Helmholtz Association May 11, 2022 Slide 55

PARAMETER PACK EXPANSION

1 template <class ... Types> void f(Types ... args);
2 template <class Type1, class ... Types> void f(Type1 arg1, Types ... rest) {
3 std::cout <<" The first argument is "<<arg1
4 <<". Remainder argument list has "<<sizeof...(Types)<<" elements.\n";
5 f(rest ...);
6 }
7 template <> void f() {}
8 template <class ... Types> void g(Types ... args) {
9 std::cout << "Inside g: going to call function f with the sizes of "

10 << "my arguments\n";
11 f(sizeof(args)...);
12 }

sizeof...(Types) retrieves the number of arguments in the parameter pack
In g above, we call f with the sizes of each of the parameters passed to g

Similarly, one can generate all addresses as &args... , increment all with ++args... (examples
variadic_2.cc and variadic_3.cc)

Member of the Helmholtz Association May 11, 2022 Slide 56

PARAMETER PACK EXPANSION: WHERE

1 template <class ... Types> void f(Types & ... args) {}

2 template <class ... Types> void h(Types ... args) {

3 f(std::cout << args << ``t'' ...);

4 [=, &args ...]{ return g(args...); }();

5 int t[sizeof...(args)]={ args ... };

6 int s = 0;
7 for (auto i : t) s += i;
8 std::cout << "\nsum = " << s << "\n";
9 }

Parameter pack expansion can be done in function parameter list , function argument list , template
parameter list or template argument list
Braced initializer lists

Base specifiers and member initializer lists in classes
Lambda captures

Member of the Helmholtz Association May 11, 2022 Slide 57

Exercise 2.7: Parameter packs
Study the examples variadic_1.cc , variadic_2.cc and variadic_3.cc . See where parameter
packs are begin expanded, and make yourself familiar with this syntax.

Member of the Helmholtz Association May 11, 2022 Slide 58

FOLD EXPRESSIONS IN C++17
1 #include <iostream>
2 template <class ... Args>
3 auto addup(Args ... args)
4 {
5 return (1 + ... + args);
6 }
7 auto main() -> int
8 {
9 std::cout << addup(1, 2, 3) << "\n";

10 std::cout << addup(1, 2, 3, 4, 5) << "\n";
11 }

... op ppack translates to reduce from the
left with operator op

ppack op ... means, reduce from the right
with op

init op ... op ppack reduces from the
left, with initial value init

pack op ... op init reduces from the right
...

Member of the Helmholtz Association May 11, 2022 Slide 59

FOLD EXPRESSIONS IN C++17
1 // examples/foldex_3.cc
2 #include <algorithm>
3 template <class First, class ... Args>
4 auto min(First first, Args ... args)
5 {
6 First retval = first;
7 ((retval = std::min(retval, args)), ...);
8 return retval;
9 }

10
11 auto main() -> int
12 {
13 return min(8, 3, 4, 7, 2, 7)
14 + min(2, 3, 9, 1);
15 }

Application
Fold expression with the comma operator
Make even the number of arguments abstract

Member of the Helmholtz Association May 11, 2022 Slide 60

Member of the Helmholtz Association May 11, 2022 Slide 61

TUPLES

1 #include <tuple>
2 #include <iostream>
3 auto main() -> int
4 {
5 std::tuple<int, int, std::string> name_i_j{0, 1, "Uralic"};
6 auto t3 = std::make_tuple<int, bool>(2, false);
7 auto t4 = std::tuple_cat(name_i_j, t3);
8 std::cout << std::get<2>(t4) << '\n';
9 }

Like std::pair , but with arbitrary number of members
"Structure templates without names"
Accessor "template functions" std::get<index> with index starting at 0
Supports relational operators for lexicographical comparisons
tuple_cat(args ...) concatenates tuples.

Member of the Helmholtz Association May 11, 2022 Slide 62

TUPLES

1 auto f() -> std::tuple<int, int, string>; // elsewhere
2 auto main() -> int
3 {
4 int i1;
5 std::string name;
6 std::tie(i1, std::ignore, name) = f();
7 }

tie(args ...) "extracts a tuple" into pre-existing named variables.

Some fields may be ignored during extraction using std::ignore as shown

Member of the Helmholtz Association May 11, 2022 Slide 63

PRINTING A TUPLE
1 template <class... Args>
2 auto operator<<(std::ostream& strm, const std::tuple<Args...>& t) -> std::ostream& {
3 using namespace std;
4 auto print_one = [&strm](const auto& onearg) -> decltype(strm) {
5 using bare_type = remove_cvref_t<decltype(onearg)>;
6 if constexpr (is_convertible_v<bare_type, string>)
7 strm << quoted(onearg);
8 else
9 strm << onearg;

10 return strm;
11 };
12 auto print_components = [&](auto&&... args) {
13 size_t n {};
14 ((print_one(args) << ((++n != sizeof...(args)) ? ", " : "")), ...);
15 };
16 strm << "[";
17 apply(print_components, t);
18 return strm << "]";
19 }

Helper lambda to print one element, quoted when it is a string, plain otherwise
Fold expression and std::apply to print components

Member of the Helmholtz Association May 11, 2022 Slide 64

Exercise 2.8:
Printing a tuple is demonstrated in print_tuple.cc , print_tuple_cxx17.cc and
print_tuple_foldex.cc .

Member of the Helmholtz Association May 11, 2022 Slide 65

FUN WITH FOLD EXPRESSIONS

We have an uncertain number of containers of arbitrary types, with arbitrary element types (which are known to
be < comparable), containing an arbitrary number of elements each. We need a tuple consisting of the largest

element of each container. Write a function which will create that tuple from our inputs.

Member of the Helmholtz Association May 11, 2022 Slide 66

FUN WITH FOLD EXPRESSIONS

We have an uncertain number of containers of arbitrary types, with arbitrary element types (which are known to
be < comparable), containing an arbitrary number of elements each. We need a tuple consisting of the largest

element of each container. Write a function which will create that tuple from our inputs.

1 auto max_of_multiple(auto&& ... containers)
2 {
3 return std::make_tuple(std::ranges::max(containers) ...);
4 }

Member of the Helmholtz Association May 11, 2022 Slide 66

FUN WITH FOLD EXPRESSIONS
We need a function to replace each element of a vector with the averages of neighbours separated by some shifts.
Write a function that takes the vector and the shifts as function arguments, and returns the smoothed vector. It

should be possible to use the function for any given number of shifts.

1 auto conv(const std::vector<double>& inp, auto ... shift)
2 {
3 std::vector<double> out(inp.size(), 0.);
4 auto res_exp = std::views::iota(0, static_cast<int>(inp.size()))
5 | std::views::transform([inp, shift...](auto index){
6 auto S = inp.size();
7 return (inp[
8 (index + shift) > 0 ? (index + shift) % S : S + (index + shift) % S
9] + ...)

10 / (sizeof ... (shift));
11 });
12
13 std::ranges::copy(res_exp, out.begin());
14 return out;
15 }

Member of the Helmholtz Association May 11, 2022 Slide 67

Exercise 2.9:
fold_xpr_demo[2-4].cc demostrate the last few applications of variadic templates, fold expressions and the new

C++20 syntax for auto in function parameters. Build them with the proper include paths for printing tuples
and ranges. The necessary headers for this functionality is in the include folder for the course.

Member of the Helmholtz Association May 11, 2022 Slide 68

Lambda Functions

Member of the Helmholtz Association May 11, 2022 Slide 69

FUNCTION LIKE ENTITIES
In C++, there are a few different constructs which can be used in a context requiring a “function”
Functions in all varieties constitute one category (inline or not, constexpr or not, virtual or
not ...)
Classes may overload the function call operator operator() to give us another type of callable object
Lambda functions are similar, language provided entities

1 class Wave {
2 double A, ome, pha;
3 public:
4 auto operator()(double t) -> double
5 {
6 return A * sin(ome * t + pha);
7 }
8 };
9 void elsewhere()

10 {
11 Wave W{1.0, 0.15, 0.9};
12 for (auto i = 0; i < 100; ++i) {
13 std::cout << i << W(i) << "\n";
14 }
15 }

Member of the Helmholtz Association May 11, 2022 Slide 70

LAMBDA FUNCTIONS

Locally defined callable entities
Uses

Effective use of STL
Initialisation of const
Concurrency
New loop styles

Like a function object defined on the spot
Fine grained control over the visibility of the
variables in the surrounding scope

1 sort(begin(v), end(v), [](auto x, auto y) {
2 return x > y;
3 });
4
5 const auto inp_file = []{
6 string resourcefl;
7 cout << "resource file : ";
8 cin >> resourcefl;
9 return resourcefl;

10 }();
11 tbb::parallel_for(0, 1000000, [](int i){
12 // process element i
13 });

Member of the Helmholtz Association May 11, 2022 Slide 71

LAMBDA FUNCTIONS
Function
auto sqr(double x) -> double
{

return x * x;
}

Lambda expression
auto lsqr = [](double x) -> double
{

return x * x;
};

Normal C++ functions can not be defined in block scope
Lambda expressions are expressions, which when evaluated yield callable entities. Like 29 is an expression,
which when evaluated yields 512.
Such callable entities can be created in global as well as block scope

Member of the Helmholtz Association May 11, 2022 Slide 72

LAMBDA FUNCTIONS
Function
auto sqr(double x) -> double
{

return x * x;
}

Lambda expression
auto lsqr = [](double x) -> double
{

return x * x;
};

The lambda expression contains information which is used to make the callable entity: such as, expected
input, output and the body(“recipe”).
Unlike normal functions, which have names, these callable entities themselves are nameless, but named
variables can be constructed out of them, if desired. Those named variables can then be used like functions.

Member of the Helmholtz Association May 11, 2022 Slide 72

LAMBDA FUNCTIONS
Function
auto sqr(double x) -> double
{

return x * x;
}

Lambda expression
auto lsqr = [](double x) -> double
{

return x * x;
};

The lambda expression contains information which is used to make the callable entity: such as, expected
input, output and the body(“recipe”).
Unlike normal functions, which have names, these callable entities themselves are nameless, but named
variables can be constructed out of them, if desired. Those named variables can then be used like functions.

std::vector X{0.1, 0.2, 0.3, 0.4};
auto sqsum = 0.;
for (auto i = 0UL; i < X.size(); ++i) {

sqsum += sqr(X[i]);
}

Member of the Helmholtz Association May 11, 2022 Slide 72

LAMBDA FUNCTIONS
Function
auto sqr(double x) -> double
{

return x * x;
}

Lambda expression
auto lsqr = [](double x) -> double
{

return x * x;
};

The lambda expression contains information which is used to make the callable entity: such as, expected
input, output and the body(“recipe”).
Unlike normal functions, which have names, these callable entities themselves are nameless, but named
variables can be constructed out of them, if desired. Those named variables can then be used like functions.

std::vector X{0.1, 0.2, 0.3, 0.4};
auto sqsum = 0.;
for (auto i = 0UL; i < X.size(); ++i) {

sqsum += lsqr(X[i]);
}

Member of the Helmholtz Association May 11, 2022 Slide 72

LAMBDA FUNCTIONS
template <Callable F>
auto aggregate(const std::vector<double>& inp, F f) -> double
{

auto s{0.};
for (auto i = 0UL; i < inp.size(); ++i) { s += f(inp[i]); }
return s;

}

Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values

Named callable entities can be used when available.
Often it is more convenient to pass a lambda expression, and let the higher order function create the
callable entity it needs!

Member of the Helmholtz Association May 11, 2022 Slide 73

LAMBDA FUNCTIONS
template <Callable F>
auto aggregate(const std::vector<double>& inp, F f) -> double
{

auto s{0.};
for (auto i = 0UL; i < X.size(); ++i) { s += f(X[i]); }
return s;

}
// ...
std::vector X{0.1, 0.2, 0.3, 0.4};
auto sqsum = aggregate(X, sqr);

Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values
Named callable entities can be used when available.

Often it is more convenient to pass a lambda expression, and let the higher order function create the
callable entity it needs!

Member of the Helmholtz Association May 11, 2022 Slide 73

LAMBDA FUNCTIONS
template <Callable F>
auto aggregate(const std::vector<double>& inp, F f) -> double
{

auto s{0.};
for (auto i = 0UL; i < X.size(); ++i) { s += f(X[i]); }
return s;

}
// ...
std::vector X{0.1, 0.2, 0.3, 0.4};
auto sqsum = aggregate(X, lsqr);

Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values
Named callable entities can be used when available.

Often it is more convenient to pass a lambda expression, and let the higher order function create the
callable entity it needs!

Member of the Helmholtz Association May 11, 2022 Slide 73

LAMBDA FUNCTIONS
template <Callable F>
auto aggregate(const std::vector<double>& inp, F f) -> double
{

auto s{0.};
for (auto i = 0UL; i < X.size(); ++i) { s += f(X[i]); }
return s;

}
// ...
std::vector X{0.1, 0.2, 0.3, 0.4};
auto sqsum = aggregate(X, [](double x) -> double { return x * x; });

Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values
Named callable entities can be used when available.
Often it is more convenient to pass a lambda expression, and let the higher order function create the
callable entity it needs!

Member of the Helmholtz Association May 11, 2022 Slide 73

LAMBDA FUNCTIONS WITH ALGORITHMS
std::for_each is a higher order function, similar to this:

template <class InputIterator, class UnaryFunction>
void for_each(InputIterator start, InputIterator end, UnaryFunction f)
{

for (auto it = start; it != end; ++it) f(*it);
}

What do the following lines do ?

1 std::vector X{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
2 for_each(X.begin(), X.end(), [](int& elem){ elem = elem * elem; });
3 for_each(X.begin(), X.end(), [](int& elem){ elem -= 100; });
4 for_each(X.begin(), X.end(), [](int elem){ std::cout << elem << "\n"; });

Member of the Helmholtz Association May 11, 2022 Slide 74

LAMBDA FUNCTIONS WITH ALGORITHMS
std::for_each is a higher order function, similar to this:

template <class InputIterator, class UnaryFunction>
void for_each(InputIterator start, InputIterator end, UnaryFunction f)
{

for (auto it = start; it != end; ++it) f(*it);
}

What do the following lines do ?

1 std::vector X{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
2 for_each(X.begin(), X.end(), [](int& elem){ elem = elem * elem; });
3 for_each(X.begin(), X.end(), [](int& elem){ elem -= 100; });
4 for_each(X.begin(), X.end(), [](int elem){ std::cout << elem << "\n"; });

Member of the Helmholtz Association May 11, 2022 Slide 74

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

Member of the Helmholtz Association May 11, 2022 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

Member of the Helmholtz Association May 11, 2022 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

Member of the Helmholtz Association May 11, 2022 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

Member of the Helmholtz Association May 11, 2022 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

Member of the Helmholtz Association May 11, 2022 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

template <class InputIt, class OutputIt,
class UnaryFunction>

void transform(InputIt start, InputIt end,
OutputIt out,
UnaryFunction f)

{
for (; start != end; ++start, ++out)

*out = f(*start);
}

Member of the Helmholtz Association May 11, 2022 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

What do the following lines do ?

1 std::vector X{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
2 std::vector<int> Y;
3 transform(X.begin(), X.end(), std::back_inserter(Y),
4 [](int elem){ return elem * elem; });

Member of the Helmholtz Association May 11, 2022 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association May 11, 2022 Slide 76

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association May 11, 2022 Slide 76

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association May 11, 2022 Slide 76

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association May 11, 2022 Slide 76

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association May 11, 2022 Slide 76

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association May 11, 2022 Slide 76

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association May 11, 2022 Slide 76

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association May 11, 2022 Slide 76

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association May 11, 2022 Slide 76

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association May 11, 2022 Slide 76

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association May 11, 2022 Slide 76

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association May 11, 2022 Slide 76

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association May 11, 2022 Slide 76

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association May 11, 2022 Slide 76

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association May 11, 2022 Slide 76

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

What do the following lines do ?

1 std::vector X{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
2 std::vector<int> Y;
3 copy_if(X.begin(), X.end(), std::back_inserter(Y),
4 [](int elem){ return elem % 3 == 0; });

Member of the Helmholtz Association May 11, 2022 Slide 76

Exercise 2.10:
Use the notebook lambda_practice_0.ipynb to quickly practice writing a few small lambdas and using them
with a few standard library algorithms.

Member of the Helmholtz Association May 11, 2022 Slide 77

CAPTURE BRACKETS
Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

Copy to w all positive elements
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

Copy to w all elements larger than a user specified value
This does not work
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w),

[lim](int i){ return i > lim; });
// Lambda function "captures" lim, and lim is now visible inside the lambda

Member of the Helmholtz Association May 11, 2022 Slide 78

CAPTURE BRACKETS
Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

Copy to w all positive elements
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

Copy to w all elements larger than a user specified value
This does not work
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w),

[lim](int i){ return i > lim; });
// Lambda function "captures" lim, and lim is now visible inside the lambda

Member of the Helmholtz Association May 11, 2022 Slide 78

CAPTURE BRACKETS
Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

Copy to w all positive elements
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

Copy to w all elements larger than a user specified value

This does not work
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w),

[lim](int i){ return i > lim; });
// Lambda function "captures" lim, and lim is now visible inside the lambda

Member of the Helmholtz Association May 11, 2022 Slide 78

CAPTURE BRACKETS
Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

Copy to w all positive elements
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

Copy to w all elements larger than a user specified value
This does not work
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w),

[lim](int i){ return i > lim; });
// Lambda function "captures" lim, and lim is now visible inside the lambda

Member of the Helmholtz Association May 11, 2022 Slide 78

CAPTURE BRACKETS
Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

Copy to w all positive elements
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

Copy to w all elements larger than a user specified value
This does not work
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w),

[lim](int i){ return i > lim; });
// Lambda function "captures" lim, and lim is now visible inside the lambda

Member of the Helmholtz Association May 11, 2022 Slide 78

LAMBDA EXPRESSIONS: SYNTAX
[capture] <templatepars> (arguments) lambda-specifiers { body }

Variables in the body of a lambda function are either passed as function arguments or "captured", or are
global variables
Function arguments field is optional if empty. e.g. [&cc]{ return cc++; }

The lambda-specifiers field can contain a variety of things: Keywords mutable , constexpr or
consteval , exception specifiers, attributes, the return type, and any requires clauses. All of these

are optional.
The return type is optional if there is one return statement. e.g.
[a,b,c](int i) mutable { return a*i*i + b*i + c; }

The optional keyword mutable can be used to create lambdas with state
auto can be used to declare the formal input parameters of the lambda (since C++14)

Template parameters can be optionally provided where shown (since C++20)

Member of the Helmholtz Association May 11, 2022 Slide 79

EXPLICIT TEMPLATE PARAMETERS FOR LAMBDA
FUNCTIONS

1 // examples/saxpy_2.cc
2 // includes ...
3 auto main() -> int {
4 const std::vector inp1 { 1., 2., 3., 4., 5. };
5 const std::vector inp2 { 9., 8., 7., 6., 5. };
6 std::vector outp(inp1.size(), 0.);
7
8 auto saxpy = [] <class T, class T_in, class T_out>

9 (T a, const T_in& x, const T_in& y, T_out& z) {
10 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
11 [a](T X, T Y){ return a * X + Y; });
12 };
13
14 std::ostream_iterator<double> cout { std::cout, "\n" };
15 saxpy(10., inp1, inp2, outp);
16 copy(outp.begin(), outp.end(), cout);
17 }

For normal function templates, we could easily express relationships among the types of different parameters.
With C++20, we can do that for generic lambdas.
Member of the Helmholtz Association May 11, 2022 Slide 80

LAMBDA CAPTURE SYNTAX I
[capture]<templatepars> (arguments) lambda-specifiers { body }

[](int a, int b) -> bool { return a > b;} : Capture nothing. Work only with the
arguments passed, or global objects.
[=](int a) -> bool {return a > somevar;} : Capture everything needed by value.

[&](int a){somevar += a;} : Capture everything needed by reference.

[=,&somevar](int a){ somevar += max(a,othervar); } : somevar by reference, but
everything else as value.
[a,&b]{ f(a,b); } : a by value, b by reference.

[a=std::move(b)]{ f(a,b); } : Init capture. Create a variable a with the initializer given in the
capture brackets. It is as if there were an implicit auto before the a .

Member of the Helmholtz Association May 11, 2022 Slide 81

Exercise 2.11:
The program lambda_captures.cc (alternatively, notebook lambda_practice_1.ipynb) declares a variable
of the Vbose type (with all constructors, assignment operators etc. written to print messages), and then
defines a lambda function. By changing the capture type, and the changing between using and not using the
Vbose value inside the lambda function, try to understand, from the output, the circumstances under which

the captured variables are copied into the lambda. In the cases where you see a copy, where does the copy take
place ? At the point of declaration of the lambda or at the point of use ?

Member of the Helmholtz Association May 11, 2022 Slide 82

LAMBDA FUNCTIONS: CAPTURES
Imagine there is a variable int p=5 defined previously

We can “capture” p by value and use it inside our lambda
auto L = [p](int i){ std::cout << i*3 + p; };
L(3); // result : prints out 14
auto M = [p](int i){ p = i*3; }; // syntax error! p is read-only!

We can capture p by value (make a copy), but use the mutable keyword, to let the lambda function
change its local copy of p

auto M = [p](int i) mutable { return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) <<" "; std::cout << p <<"\n";
// result : prints out "8 14 5"

We can capture p by reference and modify it
auto M = [&p](int i){ return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) << " "; std::cout << p << "\n";
// result : prints out "8 14 14"

Member of the Helmholtz Association May 11, 2022 Slide 83

LAMBDA FUNCTIONS: CAPTURES
Imagine there is a variable int p=5 defined previously
We can “capture” p by value and use it inside our lambda

auto L = [p](int i){ std::cout << i*3 + p; };
L(3); // result : prints out 14
auto M = [p](int i){ p = i*3; }; // syntax error! p is read-only!

We can capture p by value (make a copy), but use the mutable keyword, to let the lambda function
change its local copy of p

auto M = [p](int i) mutable { return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) <<" "; std::cout << p <<"\n";
// result : prints out "8 14 5"

We can capture p by reference and modify it
auto M = [&p](int i){ return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) << " "; std::cout << p << "\n";
// result : prints out "8 14 14"

Member of the Helmholtz Association May 11, 2022 Slide 83

LAMBDA FUNCTIONS: CAPTURES
Imagine there is a variable int p=5 defined previously
We can “capture” p by value and use it inside our lambda

auto L = [p](int i){ std::cout << i*3 + p; };
L(3); // result : prints out 14
auto M = [p](int i){ p = i*3; }; // syntax error! p is read-only!

We can capture p by value (make a copy), but use the mutable keyword, to let the lambda function
change its local copy of p

auto M = [p](int i) mutable { return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) <<" "; std::cout << p <<"\n";
// result : prints out "8 14 5"

We can capture p by reference and modify it
auto M = [&p](int i){ return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) << " "; std::cout << p << "\n";
// result : prints out "8 14 14"

Member of the Helmholtz Association May 11, 2022 Slide 83

LAMBDA FUNCTIONS: CAPTURES
Imagine there is a variable int p=5 defined previously
We can “capture” p by value and use it inside our lambda

auto L = [p](int i){ std::cout << i*3 + p; };
L(3); // result : prints out 14
auto M = [p](int i){ p = i*3; }; // syntax error! p is read-only!

We can capture p by value (make a copy), but use the mutable keyword, to let the lambda function
change its local copy of p

auto M = [p](int i) mutable { return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) <<" "; std::cout << p <<"\n";
// result : prints out "8 14 5"

We can capture p by reference and modify it
auto M = [&p](int i){ return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) << " "; std::cout << p << "\n";
// result : prints out "8 14 14"

Member of the Helmholtz Association May 11, 2022 Slide 83

NO DEFAULT CAPTURE!

[] Capture nothing
[=] Capture used by value (copy)
[=,&x] Capture used by value, except x by reference
[&] Capture used by reference
[&,x] Capture used by reference, except x by value
[a=init] Init capture

A lambda with empty capture brackets is like a local function, and can be assigned to a regular function
pointer. It is not aware of identifiers defined previously in its context
When you use a (non-global) variable defined outside the lambda in the lambda, you have to capture it

Member of the Helmholtz Association May 11, 2022 Slide 84

STATEFUL LAMBDAS
Mutable lambdas have "state", and remember any changes to the values captured by value
Combined with "init capture", gives us interesting generator functions

1 vector<int> v, w;
2 generate_n(back_inserter(v), 100, [i=0]() mutable {
3 ++i;
4 return i*i;
5 });
6 // v = [1, 4, 9, 16 ...]
7 generate_n(back_inserter(w), 50, [i=0, j=1]() mutable {
8 i = std::exchange(j, j+i); // exchange(a,b) sets a to b and returns the old value of a
9 return i;

10 });
11 // See the videos on Fibonacci sequence on the
12 // YouTube channel "C++ Weekly" by Jason Turner
13 // w = [1, 1, 2, 3, 5, 8, 11 ...]

Exercise 2.12:
The program mutable_lambda.cc shows the use of mutable lambdas for sequence initialisation.

Member of the Helmholtz Association May 11, 2022 Slide 85

	Day 3
	Software design considerations
	Reducing dependencies
	Encapsulation
	SOLID principles

	Using STL containers and algorithms
	Function and class templates
	C++ function templates
	Class templates
	Variable templates
	A detailed look at one class template
	Type calculations
	Static assertions with type traits
	Forwarding references

	Constrained templates
	Variadic templates
	Fold expressions

	Lambda Functions
	Motivation
	Syntax

