
PROGRAMMING IN C++
Jülich Supercomputing Centre
May 9, 2022 Sandipan Mohanty Forschungszentrum Jülich, Germany

Member of the Helmholtz Association

Day 1

Member of the Helmholtz Association May 9, 2022 Slide 1

ELEGANT AND EFFICIENT ABSTRACTIONS

Software development challenges
Handle increasingly more complex problems
Rich set of concepts with which to imagine
what can be done
Collaborative development
Long term maintainability
Do all of the above, and yet deliver code that
runs as fast as possible

C++ provides ...
Direct mapping of built in operations and
types to hardware
Powerful and efficient abstraction mechanisms
Multiparadigm programming: Procedural,
object oriented, generic and functional
programming

Member of the Helmholtz Association May 9, 2022 Slide 2

C++
General purpose: no specialization to specific usage areas
No over simplification that precludes a direct expert level use of hardware resources
Leave no room for a lower level language
What you don’t use, you don’t pay for
Express

ideas directly in code
simple ideas with simple code
independent ideas independently in code
relationships among ideas directly in code

Combine ideas expressed in code freely

Member of the Helmholtz Association May 9, 2022 Slide 3

C++ “GENES”

Overloading

Static typing

Stack execution model

Scoping rules

Generic programmingResource management

Const(ant) correctness

Program organisation

Member of the Helmholtz Association May 9, 2022 Slide 4

LEARNING C++

It takes time.

Strong foundations in the building blocks of the language
Self-study over a much longer period
Collaborative projects with good senior programmers
Curiosity about an evolving language
Two kinds of challenges: How can I do this ? What can I do with this ?
Goals for this course: emphasis on fundamentals, a tour of what exists, methods to facilitate continued
learning

Member of the Helmholtz Association May 9, 2022 Slide 5

LEARNING C++

It takes time.
Strong foundations in the building blocks of the language

Self-study over a much longer period
Collaborative projects with good senior programmers
Curiosity about an evolving language
Two kinds of challenges: How can I do this ? What can I do with this ?
Goals for this course: emphasis on fundamentals, a tour of what exists, methods to facilitate continued
learning

Member of the Helmholtz Association May 9, 2022 Slide 5

LEARNING C++

It takes time.
Strong foundations in the building blocks of the language
Self-study over a much longer period

Collaborative projects with good senior programmers
Curiosity about an evolving language
Two kinds of challenges: How can I do this ? What can I do with this ?
Goals for this course: emphasis on fundamentals, a tour of what exists, methods to facilitate continued
learning

Member of the Helmholtz Association May 9, 2022 Slide 5

LEARNING C++

It takes time.
Strong foundations in the building blocks of the language
Self-study over a much longer period
Collaborative projects with good senior programmers

Curiosity about an evolving language
Two kinds of challenges: How can I do this ? What can I do with this ?
Goals for this course: emphasis on fundamentals, a tour of what exists, methods to facilitate continued
learning

Member of the Helmholtz Association May 9, 2022 Slide 5

LEARNING C++

It takes time.
Strong foundations in the building blocks of the language
Self-study over a much longer period
Collaborative projects with good senior programmers
Curiosity about an evolving language

Two kinds of challenges: How can I do this ? What can I do with this ?
Goals for this course: emphasis on fundamentals, a tour of what exists, methods to facilitate continued
learning

Member of the Helmholtz Association May 9, 2022 Slide 5

LEARNING C++

It takes time.
Strong foundations in the building blocks of the language
Self-study over a much longer period
Collaborative projects with good senior programmers
Curiosity about an evolving language
Two kinds of challenges: How can I do this ? What can I do with this ?

Goals for this course: emphasis on fundamentals, a tour of what exists, methods to facilitate continued
learning

Member of the Helmholtz Association May 9, 2022 Slide 5

LEARNING C++

It takes time.
Strong foundations in the building blocks of the language
Self-study over a much longer period
Collaborative projects with good senior programmers
Curiosity about an evolving language
Two kinds of challenges: How can I do this ? What can I do with this ?
Goals for this course: emphasis on fundamentals, a tour of what exists, methods to facilitate continued
learning

Member of the Helmholtz Association May 9, 2022 Slide 5

C++ IN MAY 2022
Current standard with stable implementations:
C++17.
Latest standard approved by the ISO C++
committee: C++20
All language features and almost all library features
of C++17 are available in the two major open
source compilers: GCC and Clang.
C++20 features are currently being implemented,
but some important features such as concepts ,
modules and ranges are available for testing

Microsoft’s MSVC compiler is currently the
compiler with more implemented C++20 features
than any other compiler

1 xarray<double> rt
2 = load_csv<double>(fin, '\t');
3
4 rt -= mean(rt, 0);
5
6 xarray<double> cross =
7 linalg::dot(transpose(rt), rt);
8
9 auto [lambda, v] = linalg::eig(cross);

Easier, cleaner and more efficient language
Elegant syntax, without compromising speed or
safety

Summary of compiler support for different language library features for different C++ standards can be looked
up at cppreference.com

Member of the Helmholtz Association May 9, 2022 Slide 6

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support

C++ IN MAY 2022
Current standard with stable implementations:
C++17.
Latest standard approved by the ISO C++
committee: C++20
All language features and almost all library features
of C++17 are available in the two major open
source compilers: GCC and Clang.
C++20 features are currently being implemented,
but some important features such as concepts ,
modules and ranges are available for testing

Microsoft’s MSVC compiler is currently the
compiler with more implemented C++20 features
than any other compiler

1 using namespace std::chrono;
2 using Date = year_month_day;
3
4 year Y { asked_year.value_or(current_year())};
5
6 Date s4 { Y / December / Sunday[4] };
7 Date s3 { Y / December / Sunday[3] };
8 Date xmas { Y / December / 25d };
9 Date lastadv { s4 >= xmas ? s3 : s4 };

Easier, cleaner and more efficient language
Elegant syntax, without compromising speed or
safety

Summary of compiler support for different language library features for different C++ standards can be looked
up at cppreference.com

Member of the Helmholtz Association May 9, 2022 Slide 6

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support

COMPILER SUPPORT FOR C++ STANDARDS
Check the latest status of compiler support for C++11, C++14, C++17, C++20 etc by following this link.
Open source GCC and Clang compilers have held the edge since 2011 in providing access to the latest
language features. Both have C++17 language features, and most of the library features implemented.
C++20 support is still patchy, although steadily improving. It’s usually better to use as new a version as
possible
GCC 11.x uses C++17 as its default.
Clang makes the default standard a CMake configuration option, but is very often built with C++98 as the
default. In that case, we would need to explicitly specify the standard we want to use with a command line
option, such as -std=c++17 or -std=c++20 . The version installed for the course defaults to C++17
like GCC.

Member of the Helmholtz Association May 9, 2022 Slide 7

https://en.cppreference.com/w/cpp/compiler_support

COURSE CONTENT
Language fundamentals

Small applications using C++ standard library facilities
C++ classes in detail
C++ templates
Standard template library in detail
Some useful open source C++ libraries
Program organisation: expected changes

which means...
Basic structure of a program
Variables
Mutability controls
Statements, blocks
Branches, loops
Functions and lambda expressions
Scope
Error handling

Member of the Helmholtz Association May 9, 2022 Slide 8

COURSE CONTENT
Language fundamentals
Small applications using C++ standard library facilities

C++ classes in detail
C++ templates
Standard template library in detail
Some useful open source C++ libraries
Program organisation: expected changes

which means...
Strings
Containers and algorithms
Input/Output

Member of the Helmholtz Association May 9, 2022 Slide 8

COURSE CONTENT
Language fundamentals
Small applications using C++ standard library facilities
C++ classes in detail

C++ templates
Standard template library in detail
Some useful open source C++ libraries
Program organisation: expected changes

which means...
Detailed syntax explanation
RAII
Operator overloading
Invariants
Inheritance and virtual dispatch
SOLID principles

Member of the Helmholtz Association May 9, 2022 Slide 8

COURSE CONTENT
Language fundamentals
Small applications using C++ standard library facilities
C++ classes in detail
C++ templates

Standard template library in detail
Some useful open source C++ libraries
Program organisation: expected changes

which means...
Function, class and variable templates
Constrained templates using
concepts

Variadic templates

Member of the Helmholtz Association May 9, 2022 Slide 8

COURSE CONTENT
Language fundamentals
Small applications using C++ standard library facilities
C++ classes in detail
C++ templates
Standard template library in detail

Some useful open source C++ libraries
Program organisation: expected changes

which means...
Iterator based design of containers
Containers and algorithms
Ranges
Date and time
Random numbers
Smart pointers
Text formatting

Member of the Helmholtz Association May 9, 2022 Slide 8

COURSE CONTENT
Language fundamentals
Small applications using C++ standard library facilities
C++ classes in detail
C++ templates
Standard template library in detail
Some useful open source C++ libraries

Program organisation: expected changes

which means...
Open source libraries enabling the use of
some C++20 features before they are
implemented in compilers
Better regular expressions

Member of the Helmholtz Association May 9, 2022 Slide 8

COURSE CONTENT
Language fundamentals
Small applications using C++ standard library facilities
C++ classes in detail
C++ templates
Standard template library in detail
Some useful open source C++ libraries
Program organisation: expected changes

which means...
Modules

Member of the Helmholtz Association May 9, 2022 Slide 8

GETTING STARTED
Set up course room access...

Recommendation: use two browser windows, one for the BBB lecture room, one for the JupyterLab session.
In case you have direct ssh access to JUSUF, you can use a terminal for most of the tasks.

Follow the instructions in the everyday.pdf file to set up your working area (it’s just one command to
run!)
Download material from your private working area through JupyterLab. It contains a copy of the slides and
all the exercises for the day.
Draw attention if you have difficulties

Member of the Helmholtz Association May 9, 2022 Slide 9

GETTING STARTED
Set up course room access...

Recommendation: use two browser windows, one for the BBB lecture room, one for the JupyterLab session.
In case you have direct ssh access to JUSUF, you can use a terminal for most of the tasks.
Follow the instructions in the everyday.pdf file to set up your working area (it’s just one command to
run!)

Download material from your private working area through JupyterLab. It contains a copy of the slides and
all the exercises for the day.
Draw attention if you have difficulties

Member of the Helmholtz Association May 9, 2022 Slide 9

GETTING STARTED
Set up course room access...

Recommendation: use two browser windows, one for the BBB lecture room, one for the JupyterLab session.
In case you have direct ssh access to JUSUF, you can use a terminal for most of the tasks.
Follow the instructions in the everyday.pdf file to set up your working area (it’s just one command to
run!)
Download material from your private working area through JupyterLab. It contains a copy of the slides and
all the exercises for the day.

Draw attention if you have difficulties

Member of the Helmholtz Association May 9, 2022 Slide 9

GETTING STARTED
Set up course room access...

Recommendation: use two browser windows, one for the BBB lecture room, one for the JupyterLab session.
In case you have direct ssh access to JUSUF, you can use a terminal for most of the tasks.
Follow the instructions in the everyday.pdf file to set up your working area (it’s just one command to
run!)
Download material from your private working area through JupyterLab. It contains a copy of the slides and
all the exercises for the day.
Draw attention if you have difficulties

Member of the Helmholtz Association May 9, 2022 Slide 9

Fundamentals

Member of the Helmholtz Association May 9, 2022 Slide 10

A COMPILED LANGUAGE
1 // Hello World!
2 #include <iostream>
3 auto main() -> int
4 {
5 std::cout<<"Hello, world!\n";
6 }

g++ -std=c++20 hello.cc
./a.out

Human readable source code is translated to the machine
language by the compiler
Strictly enforces rules of the language
Rules enable accurate expression of intent
Compiler performs analysis of syntax tree, optimisation passes,
automatic discovery of shortcuts
Same observable effects as the source code, but not necessarily
doing everything exactly as you say.

Member of the Helmholtz Association May 9, 2022 Slide 11

Member of the Helmholtz Association May 9, 2022 Slide 12

THE COMPILATION PROCESS

Member of the Helmholtz Association May 9, 2022 Slide 13

COMMAND LINE ARGUMENTS
In the argc, argv form of main, the command
line is broken into a sequence of character strings
and passed as the array argv

The name of the program is the first string in this
list, argv[0] . Therefore argc is never 0.

1 // examples/hello_xyz.cc
2 #include <iostream>
3 auto main(int argc, char *argv[]) -> int
4 {
5 std::cout<<"Hello, ";
6 if (argc > 1)
7 std::cout <<argv[1]<< "!\n";
8 else
9 std::cout<<"world!\n";

10 }
11 g++ main.cpp && ./a.out rain clouds

Exercise 1.1:
Open http://coliru.stacked-crooked.com/, copy and paste the above program and run it with some
command line parameters! Alternatively, use the compiler you set up yourself. Alternatively, save it in a text file
on your computer. Upload it to our JupyterHub. Use the terminal in your JupyterLab to compile and run.

Member of the Helmholtz Association May 9, 2022 Slide 14

http://coliru.stacked-crooked.com/

THE MAIN() FUNCTION
All C++ programs must contain a unique main() function

All executable code is contained either in main() , or in functions invoked directly or indirectly from
main()

The return value for main() is canonically an integer. A value 0 means successful completion, any other
value means errors. UNIX based operating systems make use of this.
In a C++ main function, the return 0; at the end of main() can be omitted.

Member of the Helmholtz Association May 9, 2022 Slide 15

FUNCTION CALL TREE
auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

Every function contains control flow regulating keywords or expressions.
Some of the expressions may be function calls which will cause instructions in that other function to be
executed
The execution tree starts at the main

Member of the Helmholtz Association May 9, 2022 Slide 16

CODE LEGIBILITY
1 double foo(double x, int i)
2 {
3 double y=1;
4 if (i>0) {
5 for (int j=0;j<i;++j) {
6 y *= x;
7 }
8 } else if (i<0) {
9 for (int j=0;j>i;--j) {

10 y /= x;
11 }}
12 return y;
13 }

Human brains are not made for searching { and } in dense text

Member of the Helmholtz Association May 9, 2022 Slide 17

STYLE
1 double foo(double x, int i)
2 {
3 double y = 1;
4 if (i > 0) {
5 for (int j = 0; j < i; ++j) {
6 y *= x;
7 }
8 } else if (i < 0) {
9 for (int j = 0; j > i; --j) {

10 y /= x;
11 }
12 }
13 return y;
14 }

Indenting code clarifies the logic
Misplaced brackets, braces etc. are easier to detect
4-5 levels of nesting is sometimes unavoidable
Recommendation: indent with 2-4 spaces and be consistent!

Member of the Helmholtz Association May 9, 2022 Slide 18

STYLE
1 double foo(double x, int i)
2 {
3 double y = 1;
4 if (i > 0) {
5 for (int j = 0; j < i; ++j) {
6 y *= x;
7 }
8 } else if (i < 0) {
9 for (int j = 0; j > i; --j) {

10 y /= x;
11 }
12 }
13 return y;
14 }

Use a consistent convention for braces ({ and }).
Use a tool like clang-format to clean up formatting before
committing code to your version control system
The utility cf included with your course material (Usage:
cf sourcefile.cc) formats code using clang-format with

the WebKit style.
Set up your editor to indent automatically! In Qt creator, set
up auto indentation with “clang format” by going to Tools
→Options →Beautifier.

These are for the human reader (most often, yourself!). Be nice to yourself, and write code that is easy on
the eye!

Member of the Helmholtz Association May 9, 2022 Slide 19

READ C++

1 // examples/hello_qa.cc
2 #include <string>
3 #include <iostream>
4
5 auto main() -> int
6 {
7 std::string name;
8 std::cout << "What's your name ? ";
9 std::cin >> name;

10 std::cout << "Hello, " << name << "\n";
11 }

Exercise 1.2:
What does this code do ? What if you answer with a name with multiple parts ? Replace the line where we read
in to the variable name with getline(std::cin, name); , and repeat. If you run the program from
your IDE, you may have to adjust your “run” settings (Qt creator: Projects →Build and run →Run : “run in
terminal”).

Member of the Helmholtz Association May 9, 2022 Slide 20

TYPES, VARIABLES AND DECLARATIONS
1 auto force(double m1, double m2, double r12)
2 -> double
3 {
4 const auto G{ 6.67408e-11 };
5 return G * m1 * m2 / (r12 * r12);
6 }

1 // Old style, but still fine
2 unsigned long x = 0;
3 string name{"Maple"};
4 vector<int> v{1, 2, 3, 4, 5};
5 tuple<int, int, string> R{0, 0, "A"};
6 complex<double> z{0.5, 0.6};

A "type" defines the possible values and operations for an object
An "object" is some memory holding a value of a certain type
A "value" is bits interpreted according to a certain type
A "variable" is a named object
A "declaration" is a statement introducing a name into the program
Statically typed: types of all created variables are known at compilation time.
A variable can not change its type.

Member of the Helmholtz Association May 9, 2022 Slide 21

BUILT IN AND USER DEFINED TYPES
Built in types

Types like char , bool , int , float , double are known as fundamental types
Fundamental types are implicitly inter-converted when required
Arithmetic operations +, −, ∗, /, as well as comparisons <, >, <=, >=, ==, ! = are defined for the
fundamental types, and mapped directly to low level instructions
Like in many languages, = is assignment where as == is equality comparison
Note how variables are "initialized" to sensible values when they are declared

Class types

Additional types can be introduced to a program using keywords class , struct , enum and
enum class , and much less commonly union

Behaviour of a user defined type is programmable

Member of the Helmholtz Association May 9, 2022 Slide 22

INITIALIZATION
Both int i = 23 and int i{ 23 } are valid initializations
The newer curly bracket form should be preferred, as it does not allow "narrowing" initialisation:
int i{ 2.3 }; // Compiler error

The curly bracket form can also be used to initialise C++ collections:

1 std::list<double> masses{0.511, 938.28, 939.57};
2 std::vector<int> scores{667, 1}; // Vector of two elements, 667 and 1

3 std::vector<int> lows(250, 0) ; // vector of 250 zeros

In rare cases, initialization requires () for disambiguation
Since C++17, standard container types use a new language feature called “class template argument
deduction” (CTAD) to infer the element type from the initialiser expression
Variables can be declared anywhere in the program. Avoid declaring a variable until you have something
meaningful to store in it

Member of the Helmholtz Association May 9, 2022 Slide 23

INITIALIZATION
Both int i = 23 and int i{ 23 } are valid initializations
The newer curly bracket form should be preferred, as it does not allow "narrowing" initialisation:
int i{ 2.3 }; // Compiler error

The curly bracket form can also be used to initialise C++ collections:

1 std::list masses{0.511, 938.28, 939.57};
2 std::vector scores{667,1}; // Vector of two elements, 667 and 1

3 std::vector lows(250, 0) ; // vector of 250 zeros

In rare cases, initialization requires () for disambiguation
Since C++17, standard container types use a new language feature called “class template argument
deduction” (CTAD) to infer the element type from the initialiser expression
Variables can be declared anywhere in the program. Avoid declaring a variable until you have something
meaningful to store in it

Member of the Helmholtz Association May 9, 2022 Slide 23

THE UNIFORM INITIALISATION SYNTAX
1 int I{20};
2 // define integer I and set it to 20
3 string nat{"Germany"};
4 // define and initialise a string
5 double a[4]{1.,22.1,19.3,14.1};
6 // arrays have the same syntax
7 tuple<int,int,double> x{0,0,3.14};
8 // So do tuples
9 list<string> L{"abc","def","ghi"};

10 // and lists, vectors etc.
11 double m=0.5; // Initialising with '='
12 // is ok for simple variables, but ...
13 int k=5.3; // Allowed, although the
14 // integer k stores 5, and not 5.3
15 int j{5.3}; // Helpful compiler error.
16 int i{}; // i=0
17 vector<int> u{4,0};// u={4, 0}
18 vector<int> v(4,0);// v={0, 0, 0, 0}

Variables can be initialised at the point of
declaration with a suitable value enclosed in {}

Historical note: Pre-C++11, only the = and ()
notations (also demonstrated in the left panel) were
available. Initialising non trivial collections was not
allowed.

Recommendation: Use {} initialisation syntax as your default. A few exceptional situations requiring the
() or = syntax can be seen in the left panel.

Member of the Helmholtz Association May 9, 2022 Slide 24

THE KEYWORDS AUTO AND DECLTYPE
1 auto sqr(int x) -> int { return x * x; }
2 auto main() -> int {
3 char oldchoice{'u'}, choice{'y'};
4 size_t i = 20'000'000;
5 //group digits for readability!
6 double electron_mass{ 0.511 };
7 int mes[6]{33, 22, 34, 0, 89, 3};
8 bool flag{ true };
9 decltype(i) j{ 9 };

10 auto positron_mass = electron_mass;
11 auto f = sqr; // Without "auto", f can
12 // be declared like this:
13 //int (*f)(int) = &sqr;
14 std::cout << f(j) << '\n';
15 auto muon_mass{ 105.6583745 };
16 // If somefunc() returns
17 // tuple<string, int, double>
18 auto [name, nspinstates, lifetime]
19 = somefunc(serno);
20 }

If a variable is initialised when it is declared, in such
a way that its type is unambiguous, the keyword
auto can be used to declare its type

The keyword decltype can be used to say
"same type as that one"
Since C++17, new names can be bound to
components of a tuple, as shown

Member of the Helmholtz Association May 9, 2022 Slide 25

USING LITERALS WITH PRECISE TYPES
1 auto age = 7;
2 auto pi = 3.141592653589793;
3 auto energy = 0;
4 auto city = "Barcelona";

What are the types of the variables declared here ?

How can we make sure that age is unsigned,
pi and energy are double precision, and
city is a string ?

Use the proper literal types.
C++ allows you to make literals for user defined
types

Member of the Helmholtz Association May 9, 2022 Slide 26

USING LITERALS WITH PRECISE TYPES
1 auto age = 7;
2 auto pi = 3.141592653589793;
3 auto energy = 0;
4 auto city = "Barcelona";

What are the types of the variables declared here ?
How can we make sure that age is unsigned,
pi and energy are double precision, and
city is a string ?

Use the proper literal types.
C++ allows you to make literals for user defined
types

Member of the Helmholtz Association May 9, 2022 Slide 26

USING LITERALS WITH PRECISE TYPES
1 auto age = 7u;
2 auto pi = 3.141592653589793;
3 auto energy = 0.;
4 using namespace std::string_literals;
5 auto city = "Barcelona"s;
6 auto bigpositive = 0UL;
7 auto fort_real = 0.0F;
8 // With proper user defined functions
9 auto T1 = 300_Kelvin;

10 auto T2 = 100_Celcius;
11 auto dist = 4.5_KM + 6.3_Miles;

What are the types of the variables declared here ?
How can we make sure that age is unsigned,
pi and energy are double precision, and
city is a string ?

Use the proper literal types.

C++ allows you to make literals for user defined
types

Member of the Helmholtz Association May 9, 2022 Slide 26

USING LITERALS WITH PRECISE TYPES
1 auto age = 7u;
2 auto pi = 3.141592653589793;
3 auto energy = 0.;
4 using namespace std::string_literals;
5 auto city = "Barcelona"s;
6 auto bigpositive = 0UL;
7 auto fort_real = 0.0F;
8 // With proper user defined functions
9 auto T1 = 300_Kelvin;

10 auto T2 = 100_Celcius;
11 auto dist = 4.5_KM + 6.3_Miles;

What are the types of the variables declared here ?
How can we make sure that age is unsigned,
pi and energy are double precision, and
city is a string ?

Use the proper literal types.
C++ allows you to make literals for user defined
types

Member of the Helmholtz Association May 9, 2022 Slide 26

C++ STANDARD LIBRARY STRINGS
1 #include <string>
2 std::string fullname;
3 std::string name{"Albert"};
4 using namespace std::string_literals;
5 auto surname{"Einstein"s};
6 //Concatenation and assignment
7 fullname = name + " " + surname;
8
9 //Comparison

10 if (name == "Godzilla") run();
11
12 std::cout << fullname << '\n';
13
14 for (size_t i = 0; i < fullname.size(); ++i) {
15 if (fullname[i] > 'j') blah += fullname[i];
16 }
17 std::cout << "Substring after last z is "
18 << name.substr(
19 name.find_last_of('z'));

String of characters
Knows its size (see example)
Allocates and frees memory as needed
Simple syntax for assignment (=),
concatenation(+), comparison (<,==,>)

The namespace std::string_literals
defines the necessary functions to write literals
which are interpreted as std::string instead
of raw character arrays

Member of the Helmholtz Association May 9, 2022 Slide 27

CONVERTING TO AND FROM STRINGS

1 std::cout << "integer : " << std::to_string(i) << '\n';
2 tot += std::stod(line); // String-to-double

The standard library string class provides functions to inter-convert with variables of type int ,
double

Exercise 1.3:
Test example usage of string ↔ number conversions in examples/to_string.cc and examples/stoX.cc

Member of the Helmholtz Association May 9, 2022 Slide 28

STD::STRING_VIEW
1 std::string_view viewse{"Norrsken"};
2 using namespace std::string_view_literals;
3 auto viewen{"Northern lights"sv};
4
5 auto proc(std::string_view inp) -> bool
6 {
7 if (inp.ends_with("et")) {
8 if (inp.substr(0UL, 3UL) == blah)
9 // ...

10 }
11 }

"View" over an existing array of characters, either
in a string or in a character literal or a plain
character array
Does not own any data, does not try to do any
memory manangement
Provides an interface similar to std::string

Can be compared like (and with) std::string
objects
Can not grow (no memory management!), but can
shrink
Cheap to pass to functions by value
Has its own literal definitions in the namespace
std::string_view_literals

Member of the Helmholtz Association May 9, 2022 Slide 29

RAW STRING LITERALS
// Instead of ...
string message{"The tag \"\\maketitle\" is unexpected here."};
// You can write ...
string message{R"(The tag "\maketitle" is unexpected here.)"};

Can contain line breaks, ’\’ characters without escaping them, like the tripple quote strings in Python
Very useful with regular expressions

Starts with R"(and ends with)"

More general form R"delim(text)delim"

Exercise 1.4:
The file examples/rawstring.cc illustrates raw strings in use. The file examples/raw1.cc has a
small program printing a message about using the continuation character ’\’ at the end of the line to continue
the input. Modify using raw string literals.

Member of the Helmholtz Association May 9, 2022 Slide 30

BLOCKS
A C++ statement is a step in the recipe of the program
either declaring a new symbol for later use, expressing a computation or some other action on pre-declared
symbols
Blocks are groups of statements enclosed by a pair of braces.

1 { // begin : block 0
2 auto i = 0;
3 while (i >= 0) { // begin : block 1
4 // calc with i
5 { // begin : block 2
6 auto x = cos(i * pi/180);
7 auto y = sin(i * pi/180);
8 // more
9 } // end : block 2

10
11 } // end : block 1
12 } // end : block 0

Member of the Helmholtz Association May 9, 2022 Slide 31

SCOPE OF VARIABLE NAMES
1 auto find_root() -> double
2 {
3 for (int i = 0; i < N; ++i) {
4 //counter i defined only in this "for" loop.
5 }
6 double newval = 0; // This is ok.
7 for (int i = 0; i < N; ++i) {
8 // The counter i here is a different entity
9 if (newval < 5) {

10 string fl{"small.dat"};
11 // do something
12 }
13 newval=...;
14 cout << fl << '\n'; // Error!
15 }
16 int fl = 42; // ok, but shadowed below
17 if (auto fl = filename; val < 5) { // C++17
18 // fl is available here
19 } else {
20 // fl is also available here
21 }
22 }

Variable declarations are allowed throughout the code
The scope of a variable is the lines of code where a
variable can be accessed
A scope is :

For variables declared in a block, bounded by { and
} , the lines from the point of declaration till the }

A loop or a function body
Both if and else parts of an if statement

Variables defined in a block exist from the point of
declaration till the end of the scope. After that, the
name may be reused.
Type attached to a name at any point in a C++
program can always be determined by the examining
scopes and declarations, without considering the path
taken at runtime to reach that point

Member of the Helmholtz Association May 9, 2022 Slide 32

SCOPE OF VARIABLE NAMES
1 // Somewhere in a function ...
2 auto imp = imp_calc();
3 while (some_condition_holds) {
4 // Calculations
5 // more calc
6 // more calc
7 if (imp > 0) {
8
9 } else {

10
11 }
12 // hundred more lines till the end
13 // of the while loop body

To deduce the type of entity the symbol imp
represents in line 7, you have to look upwards from
that point to the nearest declaration for that name.
Nothing that happens in the loop can change this
deduction
Nature and properties of symbols in C++ can
always be deduced by a purely spatial analysis in
the space of source lines.
Static typing and C++ scoping rules ensure that
we don’t have to perform a space-time analysis

Member of the Helmholtz Association May 9, 2022 Slide 33

CONSTANTS
1 auto G = 6.674e-11 ;

2 auto pi = 3.141592653589793 ;

3 auto m1 = 1.0e10, m2 = 1.0e4;
4 auto r = 10;
5 std::cout << "Force = "
6 << -G * m1 * m2 / (r * r)
7 << "\n"; // great!
8 G = G + 1;
9 std::cout << "Force = "

10 << -G * m1 * m2 / (r * r)
11 << "\n"; // wrong!
12
13 for (auto i = 0; i < 360; ++pi) {
14 std::cout << sin(i * pi / 180);
15 }

Some entities we need in computations should
not be able to change

Simple typos might lead to horribly incorrect (if
we are lucky) or subtly incorrect results which can
go unnoticed for a long time
The const qualifier in C++ is used to mark
variables as constants
Attempting to modify a const qualified variable
is a compiler error, so that we immediately notice
such errors
In general fewer mutable variables makes code
easier to debug, so that making a habit of first
making all new variables const and then
consciously relaxing the qualifier for some is now
considered good practice.

Member of the Helmholtz Association May 9, 2022 Slide 34

CONSTANTS
1 auto G = 6.674e-11 ;

2 auto pi = 3.141592653589793 ;

3 auto m1 = 1.0e10, m2 = 1.0e4;
4 auto r = 10;
5 std::cout << "Force = "
6 << -G * m1 * m2 / (r * r)
7 << "\n"; // great!

8 G = G + 1;

9 std::cout << "Force = "
10 << -G * m1 * m2 / (r * r)
11 << "\n"; // wrong!
12
13 for (auto i = 0; i < 360; ++pi) {

14 std::cout << sin(i * pi / 180);
15 }

Some entities we need in computations should
not be able to change
Simple typos might lead to horribly incorrect (if

we are lucky) or subtly incorrect results which can
go unnoticed for a long time

The const qualifier in C++ is used to mark
variables as constants
Attempting to modify a const qualified variable
is a compiler error, so that we immediately notice
such errors
In general fewer mutable variables makes code
easier to debug, so that making a habit of first
making all new variables const and then
consciously relaxing the qualifier for some is now
considered good practice.

Member of the Helmholtz Association May 9, 2022 Slide 34

CONSTANTS
1 auto const G = 6.674e-11 ;

2 auto const pi = 3.141592653589793 ;

3 auto m1 = 1.0e10, m2 = 1.0e4;
4 auto r = 10;
5 std::cout << "Force = "
6 << -G * m1 * m2 / (r * r)
7 << "\n"; // great!
8 G = G + 1;
9 std::cout << "Force = "

10 << -G * m1 * m2 / (r * r)
11 << "\n"; // wrong!
12
13 for (auto i = 0; i < 360; ++pi) {
14 std::cout << sin(i * pi / 180);
15 }

Some entities we need in computations should
not be able to change
Simple typos might lead to horribly incorrect (if

we are lucky) or subtly incorrect results which can
go unnoticed for a long time
The const qualifier in C++ is used to mark
variables as constants

Attempting to modify a const qualified variable
is a compiler error, so that we immediately notice
such errors
In general fewer mutable variables makes code
easier to debug, so that making a habit of first
making all new variables const and then
consciously relaxing the qualifier for some is now
considered good practice.

Member of the Helmholtz Association May 9, 2022 Slide 34

CONSTANTS
1 auto const G = 6.674e-11 ;

2 auto const pi = 3.141592653589793 ;

3 auto m1 = 1.0e10, m2 = 1.0e4;
4 auto r = 10;
5 std::cout << "Force = "
6 << -G * m1 * m2 / (r * r)
7 << "\n"; // great!

8 G = G + 1; // compiler error!

9 std::cout << "Force = "
10 << -G * m1 * m2 / (r * r)
11 << "\n"; // wrong!
12
13 for (auto i = 0; i < 360; ++pi) {

14 // compiler error!
15 std::cout << sin(i * pi / 180);
16 }

Some entities we need in computations should
not be able to change
Simple typos might lead to horribly incorrect (if

we are lucky) or subtly incorrect results which can
go unnoticed for a long time
The const qualifier in C++ is used to mark
variables as constants
Attempting to modify a const qualified variable
is a compiler error, so that we immediately notice
such errors

In general fewer mutable variables makes code
easier to debug, so that making a habit of first
making all new variables const and then
consciously relaxing the qualifier for some is now
considered good practice.

Member of the Helmholtz Association May 9, 2022 Slide 34

CONSTANTS
1 auto const G = 6.674e-11 ;

2 auto const pi = 3.141592653589793 ;

3 auto m1 = 1.0e10, m2 = 1.0e4;
4 auto r = 10;
5 std::cout << "Force = "
6 << -G * m1 * m2 / (r * r)
7 << "\n"; // great!

8 G = G + 1; // compiler error!

9 std::cout << "Force = "
10 << -G * m1 * m2 / (r * r)
11 << "\n"; // wrong!
12
13 for (auto i = 0; i < 360; ++pi) {

14 // compiler error!
15 std::cout << sin(i * pi / 180);
16 }

Some entities we need in computations should
not be able to change
Simple typos might lead to horribly incorrect (if

we are lucky) or subtly incorrect results which can
go unnoticed for a long time
The const qualifier in C++ is used to mark
variables as constants
Attempting to modify a const qualified variable
is a compiler error, so that we immediately notice
such errors
In general fewer mutable variables makes code
easier to debug, so that making a habit of first
making all new variables const and then
consciously relaxing the qualifier for some is now
considered good practice.

Member of the Helmholtz Association May 9, 2022 Slide 34

CONSTANTS
1 auto ask_user() -> double
2 {
3 double tmp{};
4 std::cout << "Enter R0: ";
5 std::cin >> tmp;
6 return tmp;
7 }
8 void elsewhere()
9 {

10 const auto r = ask_user(); // OK
11 r = r * r; // Not OK
12 }

const does not mean compile time constant.
Just that the variable will not be changed post
initialisation.

For variables known to be compile time constants,
one could use constexpr

The compiler may use the value of such variables to
produce better code

Member of the Helmholtz Association May 9, 2022 Slide 35

CONSTANTS
1 constexpr auto G = 6.674e-11 ;

2 constexpr auto pi = 3.141592653589793 ;

3 auto m1 = 1.0e10, m2 = 1.0e4;
4 auto r = 10;
5 std::cout << "Force = "
6 << -G * m1 * m2 / (r * r)
7 << "\n"; // great!
8 G = G + 1; Compiler error
9 std::cout << "Force = "

10 << -G * m1 * m2 / (r * r)
11 << "\n"; // wrong!
12
13 for (auto i = 0; i < 360; ++pi) {
14 // Compiler error!
15 std::cout << sin(i * pi / 180);
16 }

const does not mean compile time constant.
Just that the variable will not be changed post
initialisation.
For variables known to be compile time constants,
one could use constexpr

The compiler may use the value of such variables to
produce better code

Member of the Helmholtz Association May 9, 2022 Slide 35

CONSTANTS
1 constexpr auto G = 6.674e-11 ;

2 constexpr auto pi = 3.141592653589793 ;

3 auto m1 = 1.0e10, m2 = 1.0e4;
4 auto r = 10;
5 std::cout << "Force = "
6 << -G * m1 * m2 / (r * r)
7 << "\n"; // great!
8 G = G + 1; Compiler error
9 std::cout << "Force = "

10 << -G * m1 * m2 / (r * r)
11 << "\n"; // wrong!
12
13 for (auto i = 0; i < 360; ++pi) {
14 // Compiler error!
15 std::cout << sin(i * pi / 180);
16 }

const does not mean compile time constant.
Just that the variable will not be changed post
initialisation.
For variables known to be compile time constants,
one could use constexpr

The compiler may use the value of such variables to
produce better code

Member of the Helmholtz Association May 9, 2022 Slide 35

REFERENCES
1 const auto x{5.0};
2 const double y{6.0};
3
4 // different entities with same initial values
5 auto x2{ x }; // Obs: x2 is not const!
6 double y2{ y };

Variable declaration: create object with initial value,
and attach a name tag (reference) to it

If a variable name is used to initialise a new one,
auto x2{x} , the new variable will have the

same value, but will be a different entity
It is possible to “attach another name tag” to an
existing variable.
Since the new names are not independent objects,
they can’t have greater modification privileges
compared to the original variable name
xr and yr here are constant L-value references

of type double

References are important for information exchange
with functions

Member of the Helmholtz Association May 9, 2022 Slide 36

REFERENCES
1 const auto x{5.0};
2 const double y{6.0};
3
4 // different entities with same initial values
5 auto x2{ x }; // Obs: x2 is not const!
6 double y2{ y };

Variable declaration: create object with initial value,
and attach a name tag (reference) to it
If a variable name is used to initialise a new one,
auto x2{x} , the new variable will have the

same value, but will be a different entity

It is possible to “attach another name tag” to an
existing variable.
Since the new names are not independent objects,
they can’t have greater modification privileges
compared to the original variable name
xr and yr here are constant L-value references

of type double

References are important for information exchange
with functions

Member of the Helmholtz Association May 9, 2022 Slide 36

REFERENCES
1 const auto x{5.0};
2 const double y{6.0};
3
4 // different entities with same initial values
5 auto x2{ x }; // Obs: x2 is not const!
6 double y2{ y };
7
8 // additional references for the same object
9 const auto& xr{ x };

10 const double& yr{ y };

Variable declaration: create object with initial value,
and attach a name tag (reference) to it
If a variable name is used to initialise a new one,
auto x2{x} , the new variable will have the

same value, but will be a different entity
It is possible to “attach another name tag” to an
existing variable.

Since the new names are not independent objects,
they can’t have greater modification privileges
compared to the original variable name
xr and yr here are constant L-value references

of type double

References are important for information exchange
with functions

Member of the Helmholtz Association May 9, 2022 Slide 36

REFERENCES
1 const auto x{5.0};
2 const double y{6.0};
3
4 // different entities with same initial values
5 auto x2{ x }; // Obs: x2 is not const!
6 double y2{ y };
7
8 // additional references for the same object
9 const auto& xr{ x };

10 const double& yr{ y };

Variable declaration: create object with initial value,
and attach a name tag (reference) to it
If a variable name is used to initialise a new one,
auto x2{x} , the new variable will have the

same value, but will be a different entity
It is possible to “attach another name tag” to an
existing variable.
Since the new names are not independent objects,
they can’t have greater modification privileges
compared to the original variable name

xr and yr here are constant L-value references
of type double

References are important for information exchange
with functions

Member of the Helmholtz Association May 9, 2022 Slide 36

REFERENCES
1 const auto x{5.0};
2 const double y{6.0};
3
4 // different entities with same initial values
5 auto x2{ x }; // Obs: x2 is not const!
6 double y2{ y };
7
8 // additional references for the same object
9 const auto& xr{ x };

10 const double& yr{ y };

Variable declaration: create object with initial value,
and attach a name tag (reference) to it
If a variable name is used to initialise a new one,
auto x2{x} , the new variable will have the

same value, but will be a different entity
It is possible to “attach another name tag” to an
existing variable.
Since the new names are not independent objects,
they can’t have greater modification privileges
compared to the original variable name
xr and yr here are constant L-value references

of type double

References are important for information exchange
with functions

Member of the Helmholtz Association May 9, 2022 Slide 36

REFERENCES
1 const auto x{5.0};
2 const double y{6.0};
3
4 // different entities with same initial values
5 auto x2{ x }; // Obs: x2 is not const!
6 double y2{ y };
7
8 // additional references for the same object
9 const auto& xr{ x };

10 const double& yr{ y };

Variable declaration: create object with initial value,
and attach a name tag (reference) to it
If a variable name is used to initialise a new one,
auto x2{x} , the new variable will have the

same value, but will be a different entity
It is possible to “attach another name tag” to an
existing variable.
Since the new names are not independent objects,
they can’t have greater modification privileges
compared to the original variable name
xr and yr here are constant L-value references

of type double

References are important for information exchange
with functions

Member of the Helmholtz Association May 9, 2022 Slide 36

POINTERS

1 int i{5};
2 int* iptr{&i}; // iptr points at i
3 i += 1;
4 std::cout << *iptr ; // 6
5 (*iptr) = 0;
6 std::cout << i ; // 0
7 int& iref{i}; // iref "refers" to i
8 iref = 4;
9 std::cout << i ; // 4

A pointer is a built in type to store the memory
address of objects, with its own different arithmetic
rules
For a variable X , its memory address is &X

If iptr is a pointer, *iptr is the object it is pointing at
Adding 1 to the pointer iptr shifts it by sizeof(typeofi) bytes in memory
A reference is effectively another name for the same object
When in use, a reference appears as if it were a regular variable

Member of the Helmholtz Association May 9, 2022 Slide 37

POINTERS
Imagine computer memory as a long sequence of
bytes where information is stored
Imagine all the bytes being numbered like houses in
a very long street
An int object in a program would be stored
somewhere, and occupy 4 bytes, the address of its
first byte is called the address of the integer. If the
integer object has a name x , it’s address can be
found as &x

If multiple int objects are stored next to each
other, with no gaps, address of the integer coming
after x is sizeof(x) bytes after &x

The address of an object of any type T , can be
stored in variables of type T* , pointers to T .

int* is different from double* , char* and
even unsigned int* or const int*

For any given type T , if sizeof(T) == n ,
pointers of that type jump n bytes when we add 1
to them

Member of the Helmholtz Association May 9, 2022 Slide 38

POINTERS
If p is a pointer to an T , *p is a reference to T . This process of getting a reference out of a pointer is
called “dereferencing”.
If T is a class type, and p is a pointer to T , members for the current object p is pointing to can be
accessed as p->member or (*p).member

If x is of type T , &x is of type T* . This implies that the pointer for a const object is also const
qualified
In some ways references behave like fixed, automatically dereferenced pointers. But pointers are themselves
object types. They themselves have addresses and sizes. They can be stored in arrays. References can not
be.
If p is a pointer holding the address of an element of an array of type T , p+1 , p+2 ... are the
subsequent elements.
*(p+2) is synonymous with p[2] , *(p+1) with p[1] and, *p with p[0] .

p is the same location as &p[0]

Member of the Helmholtz Association May 9, 2022 Slide 39

BRANCHES/SELECTIONS
1 if (condition) {
2 // code
3 } else if (another condition) {
4 // code
5 } else {
6 //code
7 }
8 switch (enumarable) {
9 case 1:

10 // code
11 break;
12 case 2:
13 // code
14 break;
15 default:
16 // code
17 };
18 x = N > 10 ? 1.0 : 0.0;

The if and switch constructs can be used to
select between different alternatives at execution
time.
Conditional assignments are frequently written with
the ternary operator as shown

Member of the Helmholtz Association May 9, 2022 Slide 40

LOOPS
1 for (initialisation; condition; increment) {
2 // Loop body
3 }
4 for (int i = 0; i < N; ++i) s += a[i];
5 while (condition) {}
6 while (T > t0) {}
7 do {} while (condition);
8 do {
9 } while (ch == 'y');

10 for (variable : collection) {}
11 for (int i : {1,2,3}) f(i);
12 for (int i = 0; i < N; ++i) {
13 if (a[i] < cutoff) s+=a[i];
14 else break;
15 }
16 for (std::string s : names) {
17 if (s.size() > 10) {
18 longnames.push_back(s);
19 continue;
20 }
21 // process other names
22 }

Execute a block of code repeatedly
Loop counter for the for loop can and should
usually be declared in the loop head
The break keyword in a loop immediately stops
the loop and jumps to the code following it
The continue keyword skips all remaining
statements in the current iteration, and continues
in the loop

Member of the Helmholtz Association May 9, 2022 Slide 41

POINTERS

int A[10]{0, 2, 1, 0, 3, 1, 1, 0, 0, 1};
int w{};
for (int i = 0; i < 10; ++i) w += A[i];

What does this code do ?

Member of the Helmholtz Association May 9, 2022 Slide 42

POINTERS

int A[10]{0, 2, 1, 0, 3, 1, 1, 0, 0, 1};
int w{};
for (int i = 0; i < 10; ++i) w += *(A+i);

What does this code do ?

Member of the Helmholtz Association May 9, 2022 Slide 42

POINTERS

int A[10]{0, 2, 1, 0, 3, 1, 1, 0, 0, 1};
int w{};
for (int* p{A}; p != A + 10; ++p) w += *p;

What does this code do ?

Member of the Helmholtz Association May 9, 2022 Slide 42

POINTERS

int A[10]{0, 2, 1, 0, 3, 1, 1, 0, 0, 1};
int w{};
int* start{A};
int* stop{A + 10};
for (int* p{start}; p != stop; ++p) {

w += *p;
}

What does this code do ?

Member of the Helmholtz Association May 9, 2022 Slide 42

POINTERS

int A[10]{0, 2, 1, 0, 3, 1, 1, 0, 0, 1};
int w{};
int* start{A};
int* stop{A + 10};
for (; start != stop; ++start) w += *start;

What does this code do ?

Member of the Helmholtz Association May 9, 2022 Slide 42

POINTERS

auto whatisit(int* start, int* stop) -> int
{

int w{};
for (; start != stop; ++start) w += *start;
return w;

}

What does this code do ?

Member of the Helmholtz Association May 9, 2022 Slide 42

POINTERS

void whatisit(int* start, int* stop, int* start2)
{

for (; start != stop; ++start, ++start2) *start2 = *start;
}

What does this code do ?

Member of the Helmholtz Association May 9, 2022 Slide 42

Exercise 1.5:
The basic concepts of the language are explained using a series of Jupyter notebooks in the folder notebooks in
the course materials. Depending on your previous knowledge, you may need to focus on different topics. The
notebooks are full of explanatory text. Work through the note books Fundamentals_1.ipynb , and
Fundamentals_2.ipynb , before we continue. Ask any topic that you find unclear and needs an explanation.

Member of the Helmholtz Association May 9, 2022 Slide 43

FUNCTIONS
1 auto function_name(parameters) -> return_type
2 {
3 // function body
4 }
5 auto sin(double x) -> double
6 {
7 // Somehow calculate sin of x
8 return answer;
9 }

10 auto main() -> int
11 {
12 constexpr double pi{3.141592653589793};
13 for (int i = 0; i < 100; ++i) {
14 std::cout << i * pi / 100
15 << sin(i * pi / 100) << "\n";
16 }
17 std::cout << sin("pi") << "\n"; //Error!
18 }

To the first approximation, all executable code is in
functions
In order to execute the code in a function, we “call”
the function
main is a special function. When you run a

program, the OS, the debugger or IDE, calls
main . The code in main may call other functions,

which call even more functions and so on, till all
work in main is done
A function can receive some data as input and
manipulate the information provided in its input,
and “return” some information as its output
The input to a function comes through its
arguments, and the output is called its return value.

Member of the Helmholtz Association May 9, 2022 Slide 44

FUNCTIONS: SYNTAX
1 // Old syntax
2 bool pythag(int i, int j, int k); // prototype
3 int hola(int i, int j) // definition
4 {
5 int ans{0};
6 if (pythag(i,j,23)) {
7 // A prototype or definition must be
8 // visible in the translation unit
9 // at the point of usage

10 ans=42;
11 }
12 return ans;
13 }
14 // Definition of pythag. Not that old syntax
15 auto pythag(int i, int j, int k) -> bool
16 {
17 // code
18 }

A function prototype introduces a name as a
function, its return type as well as its parameters
The type of the arguments must match or be
implicitly convertible to the corresponding type in
the function parameter list

1 auto max(double x, double y, double z)
2 -> double
3 {
4 if (y > x) x = y;
5 if (z > x) x = z;
6 return x;
7 }
8 auto main(int argc, char * argv[]) -> int
9 {

10 std::cout << max(1., 2., 3.) << '\n';
11 }

Member of the Helmholtz Association May 9, 2022 Slide 45

Exercise 1.6:
Write a function to tell if a quadratic equation of the form ax2 + bx + c = 0 has real number roots. The function
should take 3 arguments of type double , and return either true or false.

Exercise 1.7:
Finish the program examples/gcd.cc so that it computes and prints the greatest common divisor of two
integers. The following algorithm (attributed to Euclid!) achieves it :

1 Input numbers : smaller , larger

2 remainder = larger mod smaller

3 larger = smaller

4 smaller = remainder

5 if smaller is not 0, go back to 2.

6 larger is the answer you are looking for

Note: There is a function std::gcd(n1,n2) since C++17, but we are not using it for this exercise.

Member of the Helmholtz Association May 9, 2022 Slide 46

FUNCTIONS AT RUN TIME

1 auto sin(double x) -> int {
2 // Somehow calculate sin of x
3 return answer;
4 }
5 auto main() -> int {
6 double x{3.141592653589793};
7 for (int i = 0; i < 100; ++i) {
8 std::cout << i * x / 100
9 << sin(i * x / 100) <<"\n";

10 }
11 }

When a function is called, e.g., when we write
f(value1,value2,value3) for a function f

declared as
ret_type f(type1 x, type2 y, type3 z) :

A "workbook" in memory called a stack frame is
created for the call
The local variables x , y , z are created, as if
using instructions type1 x{value1} ,
type2 y{value2} , type3 z{value3} .

A return address is stored.
The actual body of the function is executed
When the function concludes, execution continues
at the stored return address, and the stack frame is
destroyed

Member of the Helmholtz Association May 9, 2022 Slide 47

RECURSION

SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame

Function parameters are copied to the stack frame
Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association May 9, 2022 Slide 48

RECURSION

SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame

Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association May 9, 2022 Slide 48

RECURSION

SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame
Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association May 9, 2022 Slide 48

RECURSION

SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame
Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association May 9, 2022 Slide 48

RECURSION
SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame
Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association May 9, 2022 Slide 48

RECURSION

SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame
Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association May 9, 2022 Slide 48

RECURSION

SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame
Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association May 9, 2022 Slide 48

RECURSION

SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame
Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association May 9, 2022 Slide 48

Exercise 1.8:
The tower of Hanoi is a mathematical puzzle with three towers and a set
of disks of increasing sizes. In the beginning, all the disks are at one
tower. In each step, a disk can be moved from one tower to another,
with the rule that a larger disk must never be placed over a smaller one.
The example examples/hanoi.cc solves the puzzle for a given
input number of disks, using a recursive algorithm. Test the code and
verify the solution.

Member of the Helmholtz Association May 9, 2022 Slide 49

STATIC VARIABLES IN FUNCTIONS
1 void somefunc()
2 {
3 static int ncalls=0;
4 ++ncalls;
5 // code --> something unexpected
6 std::cerr << "Encountered unexpected"
7 << "situation in the " << ncalls
8 << "th call to " << __func__ << "\n";
9 }

Private to the function, but survive from call to
call.
Initialisation only done on first call.
Aside: The built in macro __func__ always
stores the name of the function

Member of the Helmholtz Association May 9, 2022 Slide 50

FUNCTION OVERLOADING
1 auto power(int x, unsigned n) -> unsigned
2 {
3 ans = 1;
4 for (; n > 0; --n) ans *= x;
5 return ans;
6 }
7 auto power(double x, double y) -> double
8 {
9 return exp(y * log(x));

10 }

1 auto someother(double mu, double alpha,
2 int rank) -> double
3 {
4 double st=power(mu,alpha)*exp(-mu);
5
6 if (n_on_bits(power(rank,5))<8)
7 st=0;
8
9 return st;

10 }

The same function name can be used for different functions if the parameter list is different
Function name and the types of its parameters are combined to create an "internal" name for a function.
That name must be unique
It is not allowed for two functions to have the same name and parameters and differ only in the return value
Make as many functions as you need with the same name, if the number or types of the input parameters
are different. Just make sure the names tell you symantically what they do, without having to look at the
implementation. E.g., good names: max , min , power , bad names: do_stuff , unnecessary names
power_d_d , power_i_u

Member of the Helmholtz Association May 9, 2022 Slide 51

FUNCTION OVERLOADING
1 auto power(int x, unsigned n) -> unsigned
2 {
3 ans = 1;
4 for (; n > 0; --n) ans *= x;
5 return ans;
6 }
7 auto power(double x, double y) -> double
8 {
9 return exp(y * log(x));

10 }

1 auto someother(double mu, double alpha,
2 int rank) -> double
3 {
4 double st=power(mu,alpha)*exp(-mu);
5
6 if (n_on_bits(power(rank,5))<8)
7 st=0;
8
9 return st;

10 }

The group of functions with the same name, differing in their input parameter list, is called an “overload set”
It is useful to assign meaning to these overload sets, and think in terms of them. The individual functions
inside an overload set are details depending on things like whether an input is an integer or a double.
The compiler to find the correct match from the overload set. This kind of polymorphic behaviour costs
nothing at run time.

Member of the Helmholtz Association May 9, 2022 Slide 51

USER DEFINED TYPES AND OPERATOR
OVERLOADING

1 struct AtomId { int val = 0; };
2 struct MolId { int val = 0; };
3
4 void display_info(AtomId i)
5 {
6 // show atom related info
7 }
8 void display_info(MolId i)
9 {

10 // display completely different
11 // stuff about molecule
12 }
13 void elsewhere()
14 {
15 MolId j = select_a_molecule();
16 for (AtomId i; i.val < ; ++i.val) {
17 if (i == j) { // Compiler error!
18 //
19 }
20 }
21 }

struct or class introduce new types to a program.
We leave details for later, but for now, just observe how
we bring a new category of variables like int or
double in to existence

We can create variables of the new type, pass them to
functions as arguments ...
Functions can be overloaded with user defined types

Operators can be overloaded with user defined types

Member of the Helmholtz Association May 9, 2022 Slide 52

USER DEFINED TYPES AND OPERATOR
OVERLOADING

1 struct AtomId { int val = 0; };
2 struct MolId { int val = 0; };
3
4 void display_info(AtomId i)
5 {
6 // show atom related info
7 }
8 void display_info(MolId i)
9 {

10 // display completely different
11 // stuff about molecule
12 }
13 void elsewhere()
14 {
15 MolId j = select_a_molecule();
16 for (AtomId i; i.val < ; ++i.val) {
17 if (i == j) { // Compiler error!
18 //
19 }
20 }
21 }

struct or class introduce new types to a program.
We leave details for later, but for now, just observe how
we bring a new category of variables like int or
double in to existence

We can create variables of the new type, pass them to
functions as arguments ...
Functions can be overloaded with user defined types
Operators can be overloaded with user defined types

1 struct minutes { int i = 0; };
2 auto operator+(minutes m1, minutes m2) -> minutes
3 {
4 return { (m1.i + m2.i) % 60} ;
5 }
6 // elsewhere with i and j of type minutes
7 auto k = i + j;

Member of the Helmholtz Association May 9, 2022 Slide 52

INLINE FUNCTIONS
1 auto sqr(double x) -> double
2 {
3 return x * x;
4 }

1 inline auto sqr(double x) -> double
2 {
3 return x * x;
4 }

To eliminate overhead when a function is called, request the compiler to insert the entire function body
where it is called, preserving the function call symantics
Once a function is inlined, the calling function can be further optimised as if it was one function
Small frequently called functions are usual candidates
Compiler may or may not actually insert code inline, but any function marked inline is exempt from the “one
definition rule”
Different popular use: define the entire function (even if it is large) in the header file, as identical inline
objects in multiple translation units are allowed. (E.g. header only libraries)

Member of the Helmholtz Association May 9, 2022 Slide 53

INLINE FUNCTIONS

No assembly is generated unless the function is used
Large files with lots of inline functions may slow down compilation, but the compiled machine code is not
necessarily larger

Member of the Helmholtz Association May 9, 2022 Slide 54

INLINE FUNCTIONS

No assembly is generated unless the function is used
Large files with lots of inline functions may slow down compilation, but the compiled machine code is not
necessarily larger

Member of the Helmholtz Association May 9, 2022 Slide 54

ANOTHER USE OF INLINE
At each point in code, when we refer to the name of a variable, function, class, template, concept etc., it
must be unambiguous
One definition rule (ODR): Only one definition of any such entity is allowed in any translation unit
Only one definition of an entity is allowed to appear in the entire program including the sources and any
linked libraries
Variables and functions declared as inline can appear in multiple translation units. These multiple
incarnations are regarded as the same entity by the linker.
Functions and variables (in global scope) defined in headers can be labeled as inline so that multiple
instances in different translation units do not conflict
General function templates are automatically inline

Member of the Helmholtz Association May 9, 2022 Slide 55

AUTO RETURN TYPE FOR FUNCTIONS
Since C++14, automatic type deduction can be
used for function return values
Return type ambiguity will be a compiler error in
such situations
decltype(auto) can also be used like auto

for the return type, along with the different type
deduction rules which apply for
decltype(auto) (Later!)

1 auto greet(std::string nm)
2 {
3 for (auto& c: nm) c = std::toupper(c);
4 std::cout << nm << std::endl;
5 return nm.size() > 10;
6 }

Member of the Helmholtz Association May 9, 2022 Slide 56

LAMBDA FUNCTIONS
1 void onefunc(double inp) -> double
2 {
3 const auto x{ inp };
4
5 auto anotherfunc(double in) -> double

6 {
7 return in * in;
8 }
9

10 x = inp * anotherfunc(x);
11 return x;
12 }

In C++, ordinary functions can not be defined
locally in block scope

That is the role of lambda functions

Introduced using lamba expressions
The starting square brackets are called “capture
brackets”, and they can make in-scope variables
visible inside the lambda. We can choose how
much of its environment is visible inside the lambda

Member of the Helmholtz Association May 9, 2022 Slide 57

LAMBDA FUNCTIONS
1 void onefunc(double inp) -> double
2 {
3 const auto x{ inp };
4
5 auto anotherfunc = [](double in) -> double

6 {

7 return in * in;

8 } ;
9

10 x = inp * anotherfunc(x);
11 return x;
12 }

In C++, ordinary functions can not be defined
locally in block scope

That is the role of lambda functions

Introduced using lamba expressions
The starting square brackets are called “capture
brackets”, and they can make in-scope variables
visible inside the lambda. We can choose how
much of its environment is visible inside the lambda

Member of the Helmholtz Association May 9, 2022 Slide 57

LAMBDA FUNCTIONS
1 void onefunc(double inp) -> double
2 {
3 const auto x{ inp };
4
5 auto anotherfunc = [](double in) -> double

6 {

7 return in * in;

8 } ;
9

10 x = inp * anotherfunc(x);
11 return x;
12 }

In C++, ordinary functions can not be defined
locally in block scope

That is the role of lambda functions

Introduced using lamba expressions

The starting square brackets are called “capture
brackets”, and they can make in-scope variables
visible inside the lambda. We can choose how
much of its environment is visible inside the lambda

Member of the Helmholtz Association May 9, 2022 Slide 57

LAMBDA FUNCTIONS
1 void onefunc(double inp) -> double
2 {
3 const auto x{ inp };
4
5 auto anotherfunc = [x](double in) -> double
6 {
7 return in * in * sin(x);
8 };
9

10 x = inp * anotherfunc(x);
11 return x;
12 }

In C++, ordinary functions can not be defined
locally in block scope

That is the role of lambda functions

Introduced using lamba expressions
The starting square brackets are called “capture
brackets”, and they can make in-scope variables
visible inside the lambda. We can choose how
much of its environment is visible inside the lambda

Member of the Helmholtz Association May 9, 2022 Slide 57

CONSTEXPR AND CONSTEVAL FUNCTIONS
1 constexpr auto cube(unsigned u)

2 {
3 return u * u * u;
4 }

5 consteval auto cube2(unsigned u)
6 {
7 return u * u * u;
8 }
9 void elsewhere(unsigned inp)

10 {

11 std::array<int, cube(10) > A;

12 constexpr auto myvar = cube(99U) ;

13 auto myvar2 = cube(inp) ;
14
15 std::array<int, cube2(10) > B;

16 constexpr auto myvar = cube2(99U) ;

17 auto myvar2 = cube2(inp) ;

18 }

A function can be declared constexpr or
consteval . Both versions make them available

for use at compilation time, to initialise
constexpr variables or in contexts where only

compile time constants are allowed
constexpr functions can be called with values

not known at compilation time, in which case they
behave as ordinary functions
It is a compiler error to call a consteval
function with arguments with values not known at
compilation time. consteval functions are
called “immediate functions”

Member of the Helmholtz Association May 9, 2022 Slide 58

C++ NAMESPACE S
1 // Somewhere in the header iostream
2 namespace std {
3 ostream cout;
4 }
5 // In your program ...
6 #include <iostream>
7 auto main() -> int
8 {
9 {

10 using namespace std;
11 cout << __func__ << "\n";
12 }
13 int cout = 0;
14 for (cout=0; cout<5; ++cout)
15 std::cout << "Counter = " << cout << '\n';
16 // Above, plain cout is an integer,
17 // but std::cout is an output stream
18 // The syntax to refer to a name
19 // defined inside a namespace is:
20 // namespace_name::identifier_name
21 }

A namespace is a named context in which
variables, functions etc. are defined.
The symbol :: is called the scope resolution
operator.
using namespace blah imports all

names declared inside the namespace blah
to the current scope.

Member of the Helmholtz Association May 9, 2022 Slide 59

NAMESPACES
1 // examples/namespaces.cc
2 #include <iostream>
3 using namespace std;
4 namespace UnitedKingdom {
5 string London{"Big city"};
6 void load_slang() {...}
7 }
8 namespace UnitedStates {
9 string London{"Small town in Kentucky"};

10 void load_slang() {...}
11 }
12 auto main() -> int
13 {
14 using namespace UnitedKingdom;
15 cout << London << '\n';
16 cout << UnitedStates::London << '\n';
17 }

Same name in different namespaces do not
result in a name clash
Functions defined inside namespaces need to be
accessed using the same scope rules as variables

Member of the Helmholtz Association May 9, 2022 Slide 60

C++ NAMESPACES: FINAL COMMENTS
1 //examples/namespaces2.cc
2 #include <iostream>
3 namespace UnitedKingdom {
4 std::string London{"Big city"};
5 }
6 namespace UnitedStates {
7 namespace KY {
8 std::string London{" in Kentucky"};
9 }

10 namespace OH {
11 std::string London{" in Ohio"};
12 }
13 }
14 // With C++17 ...
15 namespace mylibrary::onefeature {
16 auto solve(int i) -> double;
17 }
18 auto main() -> int
19 {
20 namespace USOH=UnitedStates::OH;
21 std::cout << "London is "
22 << USOH::London <<'\n';
23 }

namespace s can be nested. Since C++17,
direct nested declarations are allowed.
Long namespace names can be given aliases
Tip1: Don’t indiscriminately put
using namespace ... tags, especially in

headers. Use them in tight scopes instead.
Alternatively, define short aliases to long namespace
names wherever you need to repeat them
Tip2: The purpose of namespace s is to avoid
name clashes. Not taxonomy!

Member of the Helmholtz Association May 9, 2022 Slide 61

ENUMERATIONS
1 enum color { red, green, blue };
2 // ...
3 color c{green};
4 // ...
5 switch (c) {
6 case red : do_stuff1(); break;
7 case green : do_stuff2(); break;
8 case blue:
9 default: do_stuff3();

10 };

A type whose instances can take a few different
values (e.g., directions on the screen, colours,
supported output modes ...)
Less error prone than using integers with ad hoc
rules like, ”1 means red, 2 means green ...“

Internally represented as (and convertible to) an integer
All type information is lost upon conversion into an integer

Member of the Helmholtz Association May 9, 2022 Slide 62

SCOPED ENUMERATIONS
Defined with enum class

Must always be fully qualified when used:
traffic_light::red etc.

In C++20, we can enable one specific
enum class in a scope by using the
using enum XYZ; declaration.

No automatic conversion to int .
Possible to use the same name, e.g., green , in
two different scoped enums.

1 enum class color { red, green, blue };
2 enum class traffic_light {
3 red, yellow, green
4 };
5 bool should_brake(traffic_light c);
6
7 if (should_brake(blue)) apply_brakes();
8 //Syntax error!
9 if (state == traffic_light::yellow) ...;

10
11 auto respond(traffic_light L) {
12 using enum traffic_light;
13 switch (L) {
14 case red: {
15 //...
16 }
17

Member of the Helmholtz Association May 9, 2022 Slide 63

INPUT AND OUTPUT WITH IOSTREAM
To read user input into variable x , simply write std::cin >> x;

To read into variables x , y , z , name and count

std::cin >> x >> y >> z >> name >> count;

std::cin will infer the type of input from the type of variable being read.

For printing things on screen the direction for the arrows is towards std::cout :

std::cout << x << y << z << name << count << '\n';

Member of the Helmholtz Association May 9, 2022 Slide 64

READING AND WRITING FILES
Declare your own source/sink objects, which will have properties like std::cout or std::cin

1 #include <fstream>
2 std::ifstream fin{"inputfile"};
3 // Or, std::ifstream fin; and later, fin.open("inputfile");
4 std::ofstream fout{"outputfile"};

Use them like std::cout or std::cin

1 double x,y,z;
2 int i;
3 std::string s;
4 fin >> x >> y >> z >> i >> s;
5 fout << x << y << z << i << s << '\n';

Member of the Helmholtz Association May 9, 2022 Slide 65

STRING STREAMS
1 auto report(float x) -> std::string
2 {
3 auto a = f(x);
4 auto b = g(x);
5 // We need the output to be
6 // a string, perhaps to be
7 // processed further elsewhere.
8 std::ostringstream ost;
9 ost << "f(x) returned " << a <<"\n";

10 ost << "g(x) returned " << b <<"\n";
11 return ost.str();
12 }

ostringstream is an output stream for output
into a string.
istringstream is an input stream to read

values from a string.
Same usage syntax as cout and cin

Member of the Helmholtz Association May 9, 2022 Slide 66

STREAM INPUT IN A LOOP
1 std::ifstream fin{"somefile.dat"};
2 double x;
3 while (fin >> x) {
4 // while it is possible to read a new
5 // value for x, do something.
6 }
7 std::string line;
8 while (getline(fin, line)) {
9 // while it is possible to read a

10 // line of input, do something
11 }
12 ifstream fin{ argv[1] };
13 for (auto it = istream_iterator<int>(fin);
14 it != istream_iterator<int>{};
15 ++it) {
16 std::cout << "Token : " << *it << "\n";
17 }

Each of the 3 input stream types introduced here
works as a boolean in conditionals or loop
conditions.
Loop ends when there is no more valid input
We can even pretend they are sequences with
"iterators" to their start and end

Exercise 1.9: Strings and I/O
Write a program to find the largest word in a plain text document.

Member of the Helmholtz Association May 9, 2022 Slide 67

EXAMPLE PROGRAMS USING FILE IO
1 // examples/onespace.cc
2 #include <iostream>
3 auto main(int argc, char* argv[]) -> int
4 {
5 std::string line;

6 while (getline(std::cin, line)) {

7 if (line.empty()) continue;

8 bool sp{true};
9 for (auto c : line) {

10 if (isspace(c)) {
11 if (not sp) std::cout << '\t';
12 sp = true;
13 } else {
14 sp = false;
15 std::cout << c;
16 }
17 }
18 std::cout << "\n";
19 }
20 }

Replace instances of multiple consecutive white space
characters with a single TAB character

Often needed to clean up data files formatted to
look good to human eyes for processing with tools
which rely on consistent spacing.
The program here uses the standard input and
output, but can be used to process actual data files
like this:

cat datafile | onespace.ex > datafile.cln

Observe how we process the file by lines
The continue instruction means "skip the rest of
the body of this loop and proceed directly to
the evaluation of loop continuation ".

Member of the Helmholtz Association May 9, 2022 Slide 68

EXAMPLE PROGRAMS USING FILE IO
1 // examples/numsort.cc
2 #include <iostream>
3 #include <string>
4 #include <fstream>
5 #include <filesystem>
6 #include <vector>
7 #include <sstream>
8
9 namespace fs = std::filesystem;

10 auto as_lines(fs::path file) ->
11 std::vector<std::string>
12 {
13 std::ifstream fin{ file };
14 std::string line;
15 std::vector<std::string> lines;
16 while (getline(fin, line))
17 lines.push_back(line);
18 return lines;
19 }
20 auto main(int argc, char* argv[]) -> int
21 {

22 if (argc != 2) {
23 std::cerr << "Usage:\n"
24 << argv[0] << " filename\n";
25 return 1;
26 }
27 auto content = as_lines(argv[1]);
28 std::sort(content.begin(), content.end(),
29 [](auto l1, auto l2) {
30 std::istringstream istr1{ l1 };
31 std::istringstream istr2{ l2 };
32 auto x1{0.}, x2{0.};
33 istr1 >> x1;
34 istr2 >> x2;
35 return x1 < x2;
36 }
37);
38 for (std::string_view line : content) {
39 std::cout << line << "\n";
40 }
41 }

Numerically sort an input file.

Member of the Helmholtz Association May 9, 2022 Slide 69

1 #include <what is necessary>
2 auto main() -> int
3 {
4 const std::vector v{1, 2, 3, 4, 5};
5 const auto tot{0};
6 for (const auto el : v) tot += el;
7 std::cout << tot << "\n";
8 }

Which of the following is true ?

A. v can not be a const as we are looping through its contents
B. tot can not be a const as we are adding to it in the loop
C. el can not be a const as it is obviously meant to change through the sequence
D. All of the above

Member of the Helmholtz Association May 9, 2022 Slide 70

Exercise 1.10:
What is the largest number in the Fibonacci sequence which can be represented as a 64 bit integer? How many
numbers of the sequence can be represented in 64 bits or less? Write a C++ program to find out. Start from
examples/fibonacci.cc , and insert your code where indicated.

Member of the Helmholtz Association May 9, 2022 Slide 71

Exercise 1.11:
Work through the notebooks Functions.ipynb and BlocksScopesNamespaces.ipynb and ask any topic that you
find unclear and needs an explanation.

Member of the Helmholtz Association May 9, 2022 Slide 72

	Fundamentals
	Notes on legibility
	Variable declarations
	Branches and selections
	Loop constructs
	Functions
	Namespaces
	Enumerations
	Input and Output

