
PROGRAMMING IN C++
Jülich Supercomputing Centre
May 10, 2022 Sandipan Mohanty Forschungszentrum Jülich, Germany

Member of the Helmholtz Association

What is static typing?

At creation, every variable must have a type that is known to the compiler, and that type can not change
for its entire lifetime.
Programs can only produce outcomes which can be deduced entirely from source code irrespective of
runtime inputs.
Both of the above.
The uncanny ability of many C++ programmers to type their programs without moving their fingers.

Member of the Helmholtz Association May 10, 2022 Slide 1

1 while (true) { do_something(); }

2 for (;;) { do_something(); }

3 for (auto i=0.0F ; i < 1000'000'000; ++i) { do_something(); }!

Which ones above are infinite loops ?
A. 1 alone
B. 2 alone
C. 1 and 2
D. All of them

Member of the Helmholtz Association May 10, 2022 Slide 2

Stack execution model

Member of the Helmholtz Association May 10, 2022 Slide 3

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

Member of the Helmholtz Association May 10, 2022 Slide 4

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main()

Member of the Helmholtz Association May 10, 2022 Slide 4

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main() f() int i=10

Member of the Helmholtz Association May 10, 2022 Slide 4

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main()

Member of the Helmholtz Association May 10, 2022 Slide 4

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main() g() int i = 10

Member of the Helmholtz Association May 10, 2022 Slide 4

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main()

Member of the Helmholtz Association May 10, 2022 Slide 4

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main() h1() int i = 10

Member of the Helmholtz Association May 10, 2022 Slide 4

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main() h1() int i = 10 h11() int i = 10

Member of the Helmholtz Association May 10, 2022 Slide 4

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main() h1() int i = 10

Member of the Helmholtz Association May 10, 2022 Slide 4

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main()

Member of the Helmholtz Association May 10, 2022 Slide 4

FUNCTIONS AT RUN TIME

1 auto sin(double x) -> int {
2 // Somehow calculate sin of x
3 return answer;
4 }
5 auto main() -> int {
6 double x{3.141592653589793};
7 for (int i = 0; i < 100; ++i) {
8 std::cout << i * x / 100
9 << sin(i * x / 100) <<"\n";

10 }
11 }

When a function is called, e.g., when we write
f(value1,value2,value3) for a function f

declared as
ret_type f(type1 x, type2 y, type3 z) :

A "workbook" in memory called a stack frame is
created for the call
The local variables x , y , z are created, as if
using instructions type1 x{value1} ,
type2 y{value2} , type3 z{value3} .

A return address is stored.
The actual body of the function is executed
When the function concludes, execution continues
at the stored return address, and the stack frame is
destroyed

Member of the Helmholtz Association May 10, 2022 Slide 5

FUNCTION ARGUMENTS

1 int x{ 1 };
2 int y{ x };
3
4 y = y + 1;
5 // What is x now?

Member of the Helmholtz Association May 10, 2022 Slide 6

FUNCTION ARGUMENTS

1 int x{ 1 };
2 int& y{ x };
3
4 y = y + 1;
5 // What is x now?

Member of the Helmholtz Association May 10, 2022 Slide 6

FUNCTION ARGUMENTS

1 auto f(int x) -> int
2 {
3 x = x + 1;
4 return x;
5 }
6 void elsewhere()
7 {
8 int z{ 0 };
9 f(z);

10 // what is z now?
11 }

Member of the Helmholtz Association May 10, 2022 Slide 6

FUNCTION ARGUMENTS

1 auto f(int& x) -> int
2 {
3 x = x + 1;
4 return x;
5 }
6 void elsewhere()
7 {
8 auto z = 0;
9 f(z);

10 // what is z now?
11 }

Member of the Helmholtz Association May 10, 2022 Slide 6

1 void get_lims(int i, int j)
2 {
3 i = 10;
4 j = 20;
5 }
6 auto main() -> int
7 {
8 auto i = 2, j = 3;
9 get_lims(i,j);

10 std::cout << i << ", " << j << "\n";
11 }

What does the std::cout line print ?
A. 2, 3

B. 10, 20

C. 0, 0

D. 3, 2

Member of the Helmholtz Association May 10, 2022 Slide 7

1 void get_lims(int& i, int& j)
2 {
3 i = 10;
4 j = 20;
5 }
6 auto main() -> int
7 {
8 auto i = 2, j = 3;
9 get_lims(i,j);

10 std::cout << i << ", " << j << "\n";
11 }

What does the std::cout line print ?
A. 2, 3

B. 10, 20

C. 0, 0

D. 3, 2

Member of the Helmholtz Association May 10, 2022 Slide 8

THE REFERENCE TYPE IN FUNCTION PARAMETERS
1 // Argument passed by value
2 auto find_arsenic_tolerance(Rat R)
3 -> double
4 {
5 double qnty = 0, dqnty = 1.0e-5;
6 while (not R.dead()) {
7 R.inject(dqnty);
8 qnty += dqnty;
9 }

10 return qnty;
11 }
12 ...
13 auto lab() -> int
14 {
15 Rat r;
16 double t = find_arsenic_tolerance(r);
17 // r is still alive! But we know
18 // how much arsenic it can take.
19 }

Pass a normal type by value
The function find_arsenic_tolerance needs, as
the argument, an object of type Rat .
So you send a copy or clone of r

The clone gets injections and is eventually destroyed.

Member of the Helmholtz Association May 10, 2022 Slide 9

THE REFERENCE TYPE IN FUNCTION PARAMETERS
1 // Argument passing by reference
2 auto find_arsenic_tolerance(Rat& R)
3 -> double
4 {
5 double qnty = 0, dqnty = 1.0e-5;
6 while (not R.dead()) {
7 R.inject(dqnty);
8 qnty += dqnty;
9 }

10 return qnty;
11 }
12 ...
13 int lab()
14 {
15 Rat r;
16 double t = find_arsenic_tolerance(r);
17 // r is no more!
18 }

Pass a reference by value
The function find_arsenic_tolerance needs,
as the argument, an object of type Rat & , i.e., a
reference to which Rat.
So you send a copy of the Id tag on r to the function.
The function acts on the Rat object which was
referenced.

Member of the Helmholtz Association May 10, 2022 Slide 10

THE REFERENCE TYPE IN FUNCTION PARAMETERS
1 // Argument passing by reference
2 auto find_arsenic_tolerance(Rat& R)
3 -> double
4 {
5 double qnty = 0, dqnty = 1.0e-5;
6 while (not R.dead()) {
7 R.inject(dqnty);
8 qnty += dqnty;
9 }

10 return qnty;
11 }
12 ...
13 int lab()
14 {
15 Rat r;
16 double t = find_arsenic_tolerance(r);
17 // r is no more!
18 }

Pass a reference by value
The function find_arsenic_tolerance needs,
as the argument, an object of type Rat & , i.e., a
reference to which Rat.
So you send a copy of the Id tag on r to the function.
The function acts on the Rat object which was
referenced.

Information about the original rat, but the rat was modified.
Member of the Helmholtz Association May 10, 2022 Slide 10

THE REFERENCE TYPE IN FUNCTION PARAMETERS
We want to change an object

When we want our object to be modified in some
way by a function, it is no good to pass only a copy.
In this example, a clone of the wounded leg will be
bandaged

1 void bandage_leg(Leg l)
2 {
3 //Select right bandage
4 //Wrap bandage around l
5 }
6 ...
7 auto main() -> int
8 {
9 Human h;

10 ...
11 // h got a wounded left leg
12 bandage_leg(h.left_leg());
13 //No benefits to h.
14 }

Member of the Helmholtz Association May 10, 2022 Slide 11

THE REFERENCE TYPE IN FUNCTION PARAMETERS
We want to change an object

Modifying a copy of our object is useless
But a copy of a reference is good enough.
In this example, the function works on the leg that
was referred to.

1 void bandage_leg(Leg & l)
2 {
3 //Select right bandage
4 //Wrap bandage around l
5 }
6 ...
7 auto main() -> int
8 {
9 Human h;

10 ...
11 // h got a wounded left leg
12 bandage_leg(h.left_leg());
13 //Intended benefits to h
14 }

Member of the Helmholtz Association May 10, 2022 Slide 12

THE REFERENCE TYPE IN FUNCTION PARAMETERS
We want to change an object

Modifying a copy of our object is useless
But a copy of a reference is good enough.
In this example, the function works on the leg that
was referred to.

1 void bandage_leg(Leg & l)
2 {
3 //Select right bandage
4 //Wrap bandage around l
5 }
6 ...
7 auto main() -> int
8 {
9 Human h;

10 ...
11 // h got a wounded left leg
12 bandage_leg(h.left_leg());
13 //Intended benefits to h
14 }

We can use a function working with a reference when we want it to change our original object.

Member of the Helmholtz Association May 10, 2022 Slide 12

THE REFERENCE TYPE IN FUNCTION PARAMETERS
Cloning is expensive

Sometimes, the data structures are very large, and
copying them is expensive
Functions taking that kind of classes will implicitly
perform big cloning operations, slowing the
program down.

1 auto count_bad_tires(Truck t) -> int
2 {
3 int n = 0;
4 for (int i = 0; i < t.n_wheels(); ++i) {
5 if (not t.wheel(i).good()) ++n;
6 }
7 return n;
8 }
9 ...

10 auto main() -> int
11 {
12 Truck mytruck;
13 ...
14 nbad = count_bad_tires(mytruck);
15 // Unnecessary cloning of mytruck
16 }

Member of the Helmholtz Association May 10, 2022 Slide 13

THE REFERENCE TYPE IN FUNCTION PARAMETERS
Cloning is expensive

If the function signature asks for a reference, we
only create a reference to the truck when invoking
the function
The same effect can be achieved by a pointer, but
the syntax with references is cleaner

1 auto count_bad_tires(Truck& t) -> int
2 {
3 int n = 0;
4 for (int i = 0; i < t.n_wheels(); ++i) {
5 if (not t.wheel(i).good()) ++n;
6 }
7 return n;
8 }
9 ...

10 auto main() -> int
11 {
12 Truck mytruck;
13 ...
14 nbad = count_bad_tires(mytruck);
15 // another reference to truck, not
16 // clone of truck
17 }

Member of the Helmholtz Association May 10, 2022 Slide 14

THE CONSTANT REFERENCE TYPE
Cloning is expensive

We want to use a reference as the argument
because it is efficient
How do we ensure that the original object would
not be allowed to change ?

1 auto count_bad_tires(Truck& t) -> int
2 {
3 int n = 0;
4 for (int i = 0; i < t.n_wheels(); ++i) {
5 check_pressure(t.wheel(i));
6 if (not t.wheel(i).good()) ++n;
7 }
8 return n;
9 }

10 ...
11 auto main() -> int
12 {
13 Truck mytruck;
14 ...
15 nbad = count_bad_tires(mytruck);
16 // Was there any change to mytruck ?
17 }

Member of the Helmholtz Association May 10, 2022 Slide 15

THE CONSTANT REFERENCE TYPE
Cloning is expensive

We want to use a reference as the argument only
because it is efficient
How do we ensure that the original object would
not be allowed to change ?
Using a const reference

1 auto count_bad_tires(const Truck& t) -> int
2 {
3 int n = 0;
4 for (int i = 0; i < t.n_wheels(); ++i) {
5 check_pressure(t.wheel(i));
6 if (not t.wheel(i).good()) ++n;
7 }
8 return n;
9 }

10 ...
11 int main()
12 {
13 Truck mytruck;
14 ...
15 nbad = count_bad_tires(mytruck);
16 // Was there any change to mytruck ?
17 // Not if this compiled!
18 }

Member of the Helmholtz Association May 10, 2022 Slide 16

Dynamic memory management

Member of the Helmholtz Association May 10, 2022 Slide 17

HEAP VS STACK
1 auto f(double x) -> double
2 {
3 int i = static_cast<int>(x);
4 double M[1000][1000][1000]; // Oops!
5 M[123][344][24] = x;
6 return x - M[i][555][1];
7 }
8 auto main() -> int
9 {

10 std::cout << f(5) << "\n";
11 // Immediate SEGFAULT
12 }

Variables in a function are allocated on the stack, but sometimes we need more space than what the stack
permits

We do not know how much space we should reserve for a variable (e.g. a string)
We need a way to allocate from the "free store"

Member of the Helmholtz Association May 10, 2022 Slide 18

HEAP VS STACK
1 auto f(double x) -> double
2 {
3 int i = static_cast<int>(x);
4 double M[1000][1000][1000]; // Oops!
5 M[123][344][24] = x;
6 return x - M[i][555][1];
7 }
8 auto main() -> int
9 {

10 std::cout << f(5) << "\n";
11 // Immediate SEGFAULT
12 }

Variables in a function are allocated on the stack, but sometimes we need more space than what the stack
permits
We do not know how much space we should reserve for a variable (e.g. a string)

We need a way to allocate from the "free store"

Member of the Helmholtz Association May 10, 2022 Slide 18

HEAP VS STACK
1 auto f(double x) -> double
2 {
3 int i = static_cast<int>(x);
4 double M[1000][1000][1000]; // Oops!
5 M[123][344][24] = x;
6 return x - M[i][555][1];
7 }
8 auto main() -> int
9 {

10 std::cout << f(5) << "\n";
11 // Immediate SEGFAULT
12 }

Variables in a function are allocated on the stack, but sometimes we need more space than what the stack
permits
We do not know how much space we should reserve for a variable (e.g. a string)
We need a way to allocate from the "free store"

Member of the Helmholtz Association May 10, 2022 Slide 18

HEAP MEMORY

Member of the Helmholtz Association May 10, 2022 Slide 19

HEAP VS STACK

1 void f()
2 {
3 int *A = new int[1000000];
4 // use A
5 delete [] A;
6 }

The pointer A is still on the stack. But it holds
the address of memory allocated by the new
operator on the "heap"

Memory allocated from the heap stays with your
program until you free it, using delete

The pointer we used to store its address is subject
to scoping rules, and might expire at a certain }

Unless you ensure that delete is called before
the pointer expires or that the address is stored
elsewhere before that happens, you have a memory
leak

Member of the Helmholtz Association May 10, 2022 Slide 20

HEAP VS STACK

1 void f()
2 {
3 int *A = new int[1000000];
4 // use A
5 delete [] A;
6 }

The pointer A is still on the stack. But it holds
the address of memory allocated by the new
operator on the "heap"
Memory allocated from the heap stays with your
program until you free it, using delete

The pointer we used to store its address is subject
to scoping rules, and might expire at a certain }

Unless you ensure that delete is called before
the pointer expires or that the address is stored
elsewhere before that happens, you have a memory
leak

Member of the Helmholtz Association May 10, 2022 Slide 20

HEAP VS STACK

1 void f()
2 {
3 int *A = new int[1000000];
4 // use A
5 delete [] A;
6 }

The pointer A is still on the stack. But it holds
the address of memory allocated by the new
operator on the "heap"
Memory allocated from the heap stays with your
program until you free it, using delete

The pointer we used to store its address is subject
to scoping rules, and might expire at a certain }

Unless you ensure that delete is called before
the pointer expires or that the address is stored
elsewhere before that happens, you have a memory
leak

Member of the Helmholtz Association May 10, 2022 Slide 20

HEAP VS STACK

1 void f()
2 {
3 int *A = new int[1000000];
4 // use A
5 delete [] A;
6 }

Note: Heap allocation and deallocation are slower than
those on the stack!

The pointer A is still on the stack. But it holds
the address of memory allocated by the new
operator on the "heap"
Memory allocated from the heap stays with your
program until you free it, using delete

The pointer we used to store its address is subject
to scoping rules, and might expire at a certain }

Unless you ensure that delete is called before
the pointer expires or that the address is stored
elsewhere before that happens, you have a memory
leak

Member of the Helmholtz Association May 10, 2022 Slide 20

OBJECT LIFETIME MANAGEMENT WITH SMART
POINTERS

3 kinds of smart pointers were introduced in C++11: unique_ptr , shared_ptr , and weak_ptr

unique_ptr claims exclusive ownership of the allocated array. When it runs out of its scope, it calls
delete on the allocated resource. It is impossible to ”forget“ to delete the memory owned by unique_ptr

Several instances of shared_ptr may refer to the same block of memory. When the last of them expires,
it cleans up.
Helper functions make_unique and make_shared can be used to allocate on heap and retrieve a
smart pointer to the allocated memory

Member of the Helmholtz Association May 10, 2022 Slide 21

OBJECT LIFETIME MANAGEMENT WITH SMART
POINTERS

3 kinds of smart pointers were introduced in C++11: unique_ptr , shared_ptr , and weak_ptr

unique_ptr claims exclusive ownership of the allocated array. When it runs out of its scope, it calls
delete on the allocated resource. It is impossible to ”forget“ to delete the memory owned by unique_ptr

Several instances of shared_ptr may refer to the same block of memory. When the last of them expires,
it cleans up.
Helper functions make_unique and make_shared can be used to allocate on heap and retrieve a
smart pointer to the allocated memory

Member of the Helmholtz Association May 10, 2022 Slide 21

OBJECT LIFETIME MANAGEMENT WITH SMART
POINTERS

3 kinds of smart pointers were introduced in C++11: unique_ptr , shared_ptr , and weak_ptr

unique_ptr claims exclusive ownership of the allocated array. When it runs out of its scope, it calls
delete on the allocated resource. It is impossible to ”forget“ to delete the memory owned by unique_ptr

Several instances of shared_ptr may refer to the same block of memory. When the last of them expires,
it cleans up.

Helper functions make_unique and make_shared can be used to allocate on heap and retrieve a
smart pointer to the allocated memory

Member of the Helmholtz Association May 10, 2022 Slide 21

OBJECT LIFETIME MANAGEMENT WITH SMART
POINTERS

3 kinds of smart pointers were introduced in C++11: unique_ptr , shared_ptr , and weak_ptr

unique_ptr claims exclusive ownership of the allocated array. When it runs out of its scope, it calls
delete on the allocated resource. It is impossible to ”forget“ to delete the memory owned by unique_ptr

Several instances of shared_ptr may refer to the same block of memory. When the last of them expires,
it cleans up.
Helper functions make_unique and make_shared can be used to allocate on heap and retrieve a
smart pointer to the allocated memory

Member of the Helmholtz Association May 10, 2022 Slide 21

DYNAMIC MEMORY WITH SMART POINTERS

1 using big = std::array<int, 1000000>;
2 int f()
3 {
4 auto u1 = std::make_unique<big>();
5 // use u1
6 } // u1 expires, and frees the allocated memory

Current recommendation: avoid free new / delete calls in normal user code
Use them to implement memory management components
Use unique_ptr and shared_ptr to manage resources
You can then assume that an ordinary pointer in your code is a ”non-owning“ pointer, and let it expire
without leaking memory

Member of the Helmholtz Association May 10, 2022 Slide 22

MEMORY ALLOCATION/DEALLOCATION
You don’t need it often:

std::string takes care of itself
Using standard library containers like vector , list , map , deque even rather complicated structures
can be created without explicit memory allocation and de-allocation.

When you nevertheless must (first choice):

1 auto c = make_unique<complex_number>(1.2,4.2); // on the heap
2 int asize=100; // on the stack
3 auto darray = make_unique<double[]>(asize);
4 // The stack frame contains the unique_ptr variables c and darray.
5 // The memory locations they point to on the other hand, are not
6 // on the stack, but on the heap. But, you don't need to worry about
7 // releasing that memory explicitly. If you don't have any way of
8 // accessing the resource (the pointers expire), the memory will be
9 // freed for you.

10 //

Member of the Helmholtz Association May 10, 2022 Slide 23

MEMORY ALLOCATION/DEALLOCATION
You don’t need it often:

std::string takes care of itself
Using standard library containers like vector , list , map , deque even rather complicated structures
can be created without explicit memory allocation and de-allocation.

When you nevertheless must (second choice):

1 complex_number *c = new complex_number{1.2,4.2}; // on the heap
2 int asize=100; // on the stack
3 double *darray = new double[asize];
4 // The stack frame contains the pointer variables c and darray
5 // The memory locations they point to on the other hand, are not
6 // on the stack, but on the heap. Unless you release that memory
7 // explicitly, before the stack variables expire, there will be
8 // a memory leak.
9 delete c;

10 delete [] darray;

Member of the Helmholtz Association May 10, 2022 Slide 24

RUN-TIME ERROR HANDLING
Exceptions: When there is nothing reasonable to return

1 auto f(double x) -> double
2 {
3 double answer = 1;
4 if (x >= 0 and x < 10) {
5 while (x > 0) {
6 answer *= x;
7 x -= 1;
8 }
9 } else {

10 // the function is undefined
11 }
12 return answer;
13 // should we really return anything
14 // if the function went into
15 // the "else" ?
16 }

Exceptions

A function may be called with arguments
which don’t make sense
An illegal mathematical operation
Input at program run time may have read an
arbitrary string when expecting a number
Too much memory might have been
requested.

Member of the Helmholtz Association May 10, 2022 Slide 25

WHEN THERE IS NOTHING REASONABLE TO
RETURN

1 #include <stdexcept>
2
3 auto f(double x) -> double
4 {
5 double answer = 1;
6 if (x >= 0 and x < 10) {
7 while (x > 0) {
8 answer *= x;
9 x -= 1;

10 }
11 } else {
12 throw std::domain_error("Value " +
13 std::string(x) + " is out of range");
14 }
15 return answer;
16 }

1 try {
2 std::cout << "Enter start point : ";
3 std::cin >> x;
4 std::cout << "The result is "
5 << f(x) << '\n';
6 } catch (std::domain_error & ex) {
7 std::cerr << ex.what()<<'\n';
8 }

Enclose the area where an exception might be
thrown in a try block
In case the error happens, control shifts to
the catch block

Member of the Helmholtz Association May 10, 2022 Slide 26

OPTIONAL
1 #include <optional>
2
3 auto f(double x) -> std::optional<double>
4 {
5 std::optional<double> answer;
6 if (x >= 0 and x < 10) {
7 auto tmp = 1.0;
8 while (x > 0) {
9 tmp *= x;

10 x -= 1;
11 }
12 answer = tmp;
13 }
14 return answer;
15 }
16 // Elsewhere...
17 std::cout << "Enter start point : ";
18 std::cin >> x;
19 if (auto r = f(x); r) {
20 std::cout << "The result is "
21 << r.value() << '\n';
22 }

std::optional<T> is analogous to a box
containing exactly one object of type T or nothing
at all
If created without any initialisers, the box is empty
You store something in the box by assigning to the
optional

Evaluating the optional as a boolean gives a
true outcome if there is an object inside,

irrespective of the value of that object
Empty box evaluates to false

Member of the Helmholtz Association May 10, 2022 Slide 27

ASSERTIONS
1 #include <cassert>
2 bool check_things()
3 {
4 // false if something is wrong
5 // true otherwise
6 }
7 double somewhere()
8 {
9 // if I did everything right,

10 // val should be non-negative
11 assert(val >= 0);
12 assert(check_things());
13 }

After we are satisfied that the program is correctly
implemented, we can pass -DNDEBUG to the
compiler, and skip all assertions.

assert(condition) aborts if condition
is false
Used for non-trivial checks in code during
development. The errors we are trying to catch are
logic errors in implementation.
If the macro NDEBUG is defined before including
<cassert> assert(condition) reduces

to nothing

Member of the Helmholtz Association May 10, 2022 Slide 28

ASSERTIONS
1 #include <cassert>
2 bool check_things()
3 {
4 // false if something is wrong
5 // true otherwise
6 }
7 double somewhere()
8 {
9 // if I did everything right,

10 // val should be non-negative
11 assert(val >= 0);
12 assert(check_things());
13 }

After we are satisfied that the program is correctly
implemented, we can pass -DNDEBUG to the
compiler, and skip all assertions.

assert(condition) aborts if condition
is false
Used for non-trivial checks in code during
development. The errors we are trying to catch are
logic errors in implementation.
If the macro NDEBUG is defined before including
<cassert> assert(condition) reduces

to nothing

Member of the Helmholtz Association May 10, 2022 Slide 28

ASSERTIONS
1 #include <cassert>
2 bool check_things()
3 {
4 // false if something is wrong
5 // true otherwise
6 }
7 double somewhere()
8 {
9 // if I did everything right,

10 // val should be non-negative
11 assert(val >= 0);
12 assert(check_things());
13 }

After we are satisfied that the program is correctly
implemented, we can pass -DNDEBUG to the
compiler, and skip all assertions.

assert(condition) aborts if condition
is false
Used for non-trivial checks in code during
development. The errors we are trying to catch are
logic errors in implementation.
If the macro NDEBUG is defined before including
<cassert> assert(condition) reduces

to nothing

Member of the Helmholtz Association May 10, 2022 Slide 28

ASSERTIONS
1 #include <cassert>
2 bool check_things()
3 {
4 // false if something is wrong
5 // true otherwise
6 }
7 double somewhere()
8 {
9 // if I did everything right,

10 // val should be non-negative
11 assert(val >= 0);
12 assert(check_things());
13 }

After we are satisfied that the program is correctly
implemented, we can pass -DNDEBUG to the
compiler, and skip all assertions.

assert(condition) aborts if condition
is false
Used for non-trivial checks in code during
development. The errors we are trying to catch are
logic errors in implementation.
If the macro NDEBUG is defined before including
<cassert> assert(condition) reduces

to nothing

Member of the Helmholtz Association May 10, 2022 Slide 28

Exercise 2.1:
The program exercises/exception.cc demonstrates the use of exceptions. Rewrite the loop so that the
user is asked for a new value until a reasonable value for the function input parameter is given.

Exercise 2.2:
Handle invalid inputs in your gcd.cc program so that if we call it as gcd apple orange it quits with an
understandable error message. Valid inputs should produce the result as before.

Member of the Helmholtz Association May 10, 2022 Slide 29

C++ classes

Member of the Helmholtz Association May 10, 2022 Slide 30

AD HOC STRUCTS
Some times calculations involve bundles of entities which
belong together, e.g., the location of a minimum of a
function and the corresponding minimum value

Member of the Helmholtz Association May 10, 2022 Slide 31

AD HOC STRUCTS
1 struct minimize_return_type {

2 double min_loc, min_val;
3 };
4 auto minimize(double r1, double r2,
5 FunctionType f)
6 {
7 minimize_return_type m;
8 // Find minimum somehow
9 m.min_loc = the_location;

10 m.min_val = the_value;
11 return m;
12 }
13 void elsewhere()
14 {
15 auto sol = minimize(0., 10., cost_func);
16 cout << "Minimum found at " << sol.min_loc
17 << "with a value " << sol.min_val
18 << "\n";
19 }

struct : Staple together objects of arbitrary types
Can be done in global as well as block scope

We can now use the name of the struct to
create variables , such that each of them has a
min_loc member and a min_val member

Can be function argument (and hence can participate in
overload resolution), or return value (and hence gives us
a way to return multiple values)
Names of the components can be chosen to reflect any
meanings associated with the content, making it a good
practical way of returning multiple objects from a
function
Structured bindings can be used to create aliases for

the components. The binding names are independent of
the names in the struct

Member of the Helmholtz Association May 10, 2022 Slide 31

AD HOC STRUCTS
1 struct minim_ret_type {
2 double min_loc, min_val;
3 };
4 auto minimize(double r1, double r2,
5 FunctionType f)
6 {

7 minim_ret_type m;

8 // Find minimum somehow
9 m.min_loc = the_location;

10 m.min_val = the_value;
11 return m;
12 }
13 void elsewhere()
14 {
15 auto [loc, val] = minimize(0., 10.,
16 cost_func);
17 cout << "Minimum found at " << loc
18 << "with a value " << val << "\n";
19 }

struct : Staple together objects of arbitrary types
Can be done in global as well as block scope
We can now use the name of the struct to
create variables , such that each of them has a
min_loc member and a min_val member

Can be function argument (and hence can participate in
overload resolution), or return value (and hence gives us
a way to return multiple values)
Names of the components can be chosen to reflect any
meanings associated with the content, making it a good
practical way of returning multiple objects from a
function

Structured bindings can be used to create aliases for
the components. The binding names are independent of
the names in the struct

Member of the Helmholtz Association May 10, 2022 Slide 31

AD HOC STRUCTS
1 struct minim_ret_type {
2 double min_loc, min_val;
3 };
4 auto minimize(double r1, double r2,
5 FunctionType f)
6 {

7 minim_ret_type m;

8 // Find minimum somehow
9 m.min_loc = the_location;

10 m.min_val = the_value;
11 return m;
12 }
13 void elsewhere()
14 {

15 auto [loc, val] = minimize(0., 10.,

16 cost_func);
17 cout << "Minimum found at " << loc
18 << "with a value " << val << "\n";
19 }

struct : Staple together objects of arbitrary types
Can be done in global as well as block scope
We can now use the name of the struct to
create variables , such that each of them has a
min_loc member and a min_val member

Can be function argument (and hence can participate in
overload resolution), or return value (and hence gives us
a way to return multiple values)
Names of the components can be chosen to reflect any
meanings associated with the content, making it a good
practical way of returning multiple objects from a
function
Structured bindings can be used to create aliases for

the components. The binding names are independent of
the names in the struct

Member of the Helmholtz Association May 10, 2022 Slide 31

AD HOC STRUCTS
1 struct minimize_return_type {
2 double min_loc, min_val;
3 };
4 auto minimize(double r1, double r2,
5 FunctionType f)
6 {
7 minimize_return_type m;
8 // Find minimum somehow
9 m.min_loc = the_location;

10 m.min_val = the_value;
11 return m;
12 }
13 void elsewhere()
14 {
15 auto m1 = minimize(-10., 0., constfunc1);
16 minim_ret_type m2 = minimize(-10., 0.,
17 constfunc1);
18 auto * mptr = &m2;

19 if (m1.min_val > mptr->min_val)

20 haha();
21 }

A struct is a user defined data type

Each instance has a bundle, with a min_loc and
min_val member

Members are accessed from the
object using the . notation , and from a

pointer to an object using the -> notation .

(*mptr).min_val is the same as
mptr->min_val

Member of the Helmholtz Association May 10, 2022 Slide 32

DESIGNATED INITIALISERS

1 // examples/desig2.cc
2 struct v3 { double x, y, z; };
3 struct pars { int offset; v3 velocity; };
4 auto operator<<(std::ostream& os, const v3& v) -> std::ostream&
5 {
6 return os << v.x << ", " << v.y << ", " << v.z << " ";
7 }
8 auto example_func(pars p)
9 {

10 std::cout << p.offset << " with velocity " << p.velocity << "\n";
11 }
12 auto main() -> int
13 {

14 example_func({.offset = 5, .velocity = {.x=1., .y = 2., .z=3.}});

15 }

Simple struct type objects can be initialized by designated initialisers for each field.
Can be used to implement a kind of ”keyword arguments“ for functions. But remember, at least in C++20,
the field order can not be shuffled.

Member of the Helmholtz Association May 10, 2022 Slide 33

C++ CLASSES
1 // examples/trivialclassoverload.cc
2 class A {};
3 class B {};

4 void func(int i, A a)

5 {
6 cout << "Called f input types (int, A)\n";
7 }

8 void func(int i, B b)

9 {
10 cout << "Called f input types (int, B)\n";
11 }
12 auto main() -> int
13 {
14 A xa;
15 B xb;

16 func(0, xa) ;

17 func(0, xb) ;

18 }

User defined data types. Independently created
classes are different, even if they have the same
content.
Function overloading: The two versions of the
function func shown here are different entities
from the compiler’s viewpoint. No ambiguity about
which function is called in lines 16 and 17 in
main() .

Member of the Helmholtz Association May 10, 2022 Slide 34

C++ CLASSES
Overloading operators

1 // examples/op_overload.cc
2 class A {};
3 class B {};
4 auto operator+(A x, A y) -> A
5 {
6 std::cout << "operator+(A, A)\n";
7 return x;
8 }
9 auto operator+(B x, B y) -> B

10 {
11 std::cout << "operator+(B, B)\n";
12 return x;
13 }
14 auto operator+(A x, B y) -> A {...} // similar
15 auto main() -> int {
16 A a1, a2;
17 B b1, b2;
18 a1 + a2;
19 a1 + b1;
20 b1 + b2; // b1 + a2; doesn't work. Think why!
21 }

For C++ class types, operators like + , - , * ,
/ , || , && . . . are functions

As long as at least one of the arguments to an
operator is of a class type (not a built-in type like
int , double ...), it is possible to provide a

recipe to interpret expressions like a1 + a2

a1 + a2 is interpreted as a function call
operator+(a1, a2)

Using suitably chosen operators to overload, we can
make expressions involving objects of a class type
more intuitive

Member of the Helmholtz Association May 10, 2022 Slide 35

OVERLOADING OPERATORS
+ − * / % & ^ |

+= −= *= /= %= &= ^= |= =

++ −− && || ! != ==

< > != == <= >= <=> = =

() [] , -> ->* << <<= >>= >>

new delete new[] delete[]

Table: List of operators you can overload. (But remember, can and should are not the same thing!)

Think carefully about the impact an overloaded operator will have on the readability of your code. Whether
or not it the impact is beneficial depends on the use case
Many important commonly used C++ features depend on suitably overloaded operators. E.g.,
std::cout << "Hello\n";

Member of the Helmholtz Association May 10, 2022 Slide 36

C++ CLASSES
1 struct Vector3 {
2 double x, y, z;
3 };

Usually, encapsulates some data to represent an
idea

Specifies possible operations on the data
Once defined, one can create and use variables of
the new type

Member of the Helmholtz Association May 10, 2022 Slide 37

C++ CLASSES
1 struct Vector3 {
2 double x, y, z;
3 auto mag2() -> double
4 {
5 return x * x + y * y + z * z;
6 }
7 };

Usually, encapsulates some data to represent an
idea
Specifies possible operations on the data

Once defined, one can create and use variables of
the new type

Member of the Helmholtz Association May 10, 2022 Slide 37

C++ CLASSES
1 struct Vector3 {
2 double x, y, z;
3 auto mag2() -> double
4 {
5 return x * x + y * y + z * z;
6 }
7 };
8
9 void somefunc()

10 {
11 int a, b, c;
12 Vector3 d, e, f;
13 // ...
14 if (d.mag2() < e.mag2()) doX();
15 }

Usually, encapsulates some data to represent an
idea
Specifies possible operations on the data
Once defined, one can create and use variables of
the new type

Member of the Helmholtz Association May 10, 2022 Slide 37

C++ CLASSES
1 struct Vector3 {
2 double x, y, z;
3 auto mag2() -> double
4 {
5 return x * x + y * y + z * z;
6 }
7 };
8
9 void somefunc()

10 {
11 int a, b, c; // On the stack
12 Vector3 d, e, f; // On the stack
13 // ...
14 if (d.mag2() < e.mag2()) doX();
15 }

Usually, encapsulates some data to represent an
idea
Specifies possible operations on the data
Once defined, one can create and use variables of
the new type

In C++, objects of user defined types live on the stack by default, unless explicitly created on the heap.

Member of the Helmholtz Association May 10, 2022 Slide 37

C++ CLASSES
Functions, relevant for the idea, can be declared inside the struct :
|

1 struct complex {
2 double real, imaginary;
3 auto modulus() -> double
4 {
5 return sqrt(real * real +
6 imaginary * imaginary);
7 }
8 };
9 ...

10 complex a{1, 2}, b{3, 4};
11 complex* cptr = &a;
12 auto c = a. modulus();// 1 * 1 + 2 * 2

13 auto d = b. modulus();// 3 * 3 + 4 * 4

14 auto e = cptr-> modulus();// 1 * 1 + 2 * 2

Data and function members

A (non-static) member function is invoked on an
instance of our structure.

a.real is the real part of a . a.modulus()
is the modulus of a.
Inside a member function, member variables
correspond to the invoking instance.
Think of a call like a.modulus() as
complex::modulus(a) The address of the

object on the left of the "." is the implicit first
argument to the member function.

Member of the Helmholtz Association May 10, 2022 Slide 38

C++ CLASSES
Functions, relevant for the idea, can be declared inside the struct :
|

1 struct complex {
2 double real, imaginary;
3 auto modulus() -> double
4 {
5 return sqrt(real * real +
6 imaginary * imaginary);
7 }
8 };
9 ...

10 complex a{1, 2}, b{3, 4};
11 complex* cptr = &a;
12 auto c = a. modulus();// 1 * 1 + 2 * 2

13 auto d = b. modulus();// 3 * 3 + 4 * 4

14 auto e = cptr-> modulus();// 1 * 1 + 2 * 2

Data and function members
A (non-static) member function is invoked on an
instance of our structure.

a.real is the real part of a . a.modulus()
is the modulus of a.
Inside a member function, member variables
correspond to the invoking instance.
Think of a call like a.modulus() as
complex::modulus(a) The address of the

object on the left of the "." is the implicit first
argument to the member function.

Member of the Helmholtz Association May 10, 2022 Slide 38

C++ CLASSES
Functions, relevant for the idea, can be declared inside the struct :
|

1 struct complex {
2 double real, imaginary;
3 auto modulus() -> double
4 {
5 return sqrt(real * real +
6 imaginary * imaginary);
7 }
8 };
9 ...

10 complex a{1, 2}, b{3, 4};
11 complex* cptr = &a;
12 auto c = a. modulus();// 1 * 1 + 2 * 2

13 auto d = b. modulus();// 3 * 3 + 4 * 4

14 auto e = cptr-> modulus();// 1 * 1 + 2 * 2

Data and function members
A (non-static) member function is invoked on an
instance of our structure.

a.real is the real part of a . a.modulus()
is the modulus of a.

Inside a member function, member variables
correspond to the invoking instance.
Think of a call like a.modulus() as
complex::modulus(a) The address of the

object on the left of the "." is the implicit first
argument to the member function.

Member of the Helmholtz Association May 10, 2022 Slide 38

C++ CLASSES
Functions, relevant for the idea, can be declared inside the struct :
|

1 struct complex {
2 double real, imaginary;
3 auto modulus() -> double
4 {
5 return sqrt(real * real +
6 imaginary * imaginary);
7 }
8 };
9 ...

10 complex a{1, 2}, b{3, 4};
11 complex* cptr = &a;
12 auto c = a. modulus();// 1 * 1 + 2 * 2

13 auto d = b. modulus();// 3 * 3 + 4 * 4

14 auto e = cptr-> modulus();// 1 * 1 + 2 * 2

Data and function members
A (non-static) member function is invoked on an
instance of our structure.

a.real is the real part of a . a.modulus()
is the modulus of a.
Inside a member function, member variables
correspond to the invoking instance.

Think of a call like a.modulus() as
complex::modulus(a) The address of the

object on the left of the "." is the implicit first
argument to the member function.

Member of the Helmholtz Association May 10, 2022 Slide 38

C++ CLASSES
Functions, relevant for the idea, can be declared inside the struct :
|

1 struct complex {
2 double real, imaginary;
3 auto modulus() -> double
4 {
5 return sqrt(real * real +
6 imaginary * imaginary);
7 }
8 };
9 ...

10 complex a{1, 2}, b{3, 4};
11 complex* cptr = &a;
12 auto c = a. modulus();// 1 * 1 + 2 * 2

13 auto d = b. modulus();// 3 * 3 + 4 * 4

14 auto e = cptr-> modulus();// 1 * 1 + 2 * 2

Data and function members
A (non-static) member function is invoked on an
instance of our structure.

a.real is the real part of a . a.modulus()
is the modulus of a.
Inside a member function, member variables
correspond to the invoking instance.
Think of a call like a.modulus() as
complex::modulus(a) The address of the

object on the left of the "." is the implicit first
argument to the member function.

Member of the Helmholtz Association May 10, 2022 Slide 38

Member of the Helmholtz Association May 10, 2022 Slide 39

OPERATORS AS MEMBER FUNCTIONS
1 struct complex {
2 double real, imag;
3 auto modulus() -> double
4 {
5 return sqrt(real * real +
6 imag * imag);
7 }
8 auto operator+(complex other) -> complex
9 {

10 return {real + other.real,
11 imag + other.imag};
12 }
13 };

Since operators working with class types are normal
functions, one can have operators as member
functions
The implicit argument (invoking instance) is on the
left hand side for binary operators. That’s why the
binary operator + is defined here as a member
function taking only one argument

Member of the Helmholtz Association May 10, 2022 Slide 40

MEMBER FUNCTIONS AND CONST
1 struct complex {
2 double m_real, m_imag;
3 auto modulus() -> double;
4 auto operator-(const complex& b) -> complex;

5 };
6
7 void somewhere_else()
8 {
9 complex z1, z2;

10 auto z3 = z1 - z2;
11 // We know z2 didn't change.
12 // But did z1 ?
13 }

Explicit arguments to member functions can be
declared const similar to arguments for any

other function

But member functions have an implicit argument:
the this pointer, pointing at the calling instance.
But as that is implicit, where do we put a const
qualifier, if we want to express that the calling
instance must not change ?
Answer: After the closing parentheses of the
function signature.

Member of the Helmholtz Association May 10, 2022 Slide 41

MEMBER FUNCTIONS AND CONST
1 struct complex {
2 double m_real, m_imag;
3 auto modulus() -> double;
4 auto operator-(const complex& b) -> complex;

5 };
6
7 void somewhere_else()
8 {
9 complex z1, z2;

10 auto z3 = z1 - z2;
11 // We know z2 didn't change.
12 // But did z1 ?
13 }

Explicit arguments to member functions can be
declared const similar to arguments for any

other function
But member functions have an implicit argument:
the this pointer, pointing at the calling instance.
But as that is implicit, where do we put a const
qualifier, if we want to express that the calling
instance must not change ?

Answer: After the closing parentheses of the
function signature.

Member of the Helmholtz Association May 10, 2022 Slide 41

MEMBER FUNCTIONS AND CONST
1 struct complex {
2 double m_real, m_imag;
3 auto modulus() const -> double;
4 auto operator-(const complex& b) const

5 -> complex;
6 };
7
8 void somewhere_else()
9 {

10 complex z1, z2;
11 auto z3 = z1 - z2;
12 // We know z2 didn't change.
13 // We know z1 didn't change,
14 // as we called a const member
15 }

Explicit arguments to member functions can be
declared const similar to arguments for any

other function
But member functions have an implicit argument:
the this pointer, pointing at the calling instance.
But as that is implicit, where do we put a const
qualifier, if we want to express that the calling
instance must not change ?
Answer: After the closing parentheses of the
function signature.

Member of the Helmholtz Association May 10, 2022 Slide 41

SOME EXAMPLE CLASSES
1 class Angle {
2 double rd = 0;
3 public:
4 enum unit {
5 radian,
6 degree
7 };
8 Angle operator-(Angle a) const ;
9 Angle operator+(Angle a) const ;

10 Angle operator-=(Angle a) ;

1 class Vector3
2 {
3 public:
4 enum crdtype {cartesian=0,polar=1};
5 inline auto x() const -> double {return dx;}
6 inline void x(double gx) {dx=gx;}
7 auto dot(const Vector3 &p) const -> double;
8 Vector3 cross(const Vector3 &p) const;

1 class IsingLattice {
2 public:
3 using update_type =
4 std::pair<size_t, size_t>;
5 IsingLattice();
6 IsingLattice(size_t Nx, double JJ);
7 void setLatticeSize(size_t ns);

1 class KMer {
2 public:
3 Nucleotide at(size_t i);
4 auto operator==(const KMer &) const -> bool;

1 class SimulationManager {
2 public:
3 void loadSettings(std::string file);
4 auto checkConfig() const -> bool;
5 void start();

Member of the Helmholtz Association May 10, 2022 Slide 42

OBJECT INITIALISATION: CONSTRUCTORS
In C++, initialisation functions for a struct have the same name as the struct. They are called constructors.

1 struct complex {
2 complex(double re, double im)
3 {
4 real = re;
5 imaginary = im;
6 }
7 };

Alternative syntax to initialise variables in constructors

1 struct complex
2 {
3 complex(double re, double im) : real{re}, imaginary{im} {}
4 };

A class can have as many constructors as it needs.

Member of the Helmholtz Association May 10, 2022 Slide 43

CONSTRUCTORS
1 struct complex
2 {
3 complex(double re, double im)
4 {
5 real = re;
6 imaginary = im;
7 }
8 complex()
9 {

10 real = imaginary = 0;
11 }
12 double real, imaginary;
13 };
14 ...
15 complex a(3.2, 9.3);
16 // C++11 and older
17 complex b{4.3, 1.9};// since C++11

Constructors may be (and normally are) overloaded.
When a variable is declared, a constructor with the
appropriate number of arguments is implicitly called
The default constructor is the one without any
arguments. That is the one invoked when no
arguments are given while creating the object.

Member of the Helmholtz Association May 10, 2022 Slide 44

CONSTRUCTORS
1 struct complex
2 {
3 complex(double re, double im)
4 {
5 real = re;
6 imaginary = im;
7 }
8 complex() {}
9 double real{0.};

10 double imaginary{0.};
11 };
12 ...
13 complex a(4.3, 23.09), b;

Member variables can be initialised to ”default
values“ at the point of declaration

Member variables not touched by the constructor
stay at their default values
Preferred syntax for initialisation of members in a
constructor is shown here . This form of
initialisation outside the constructor function body
is only possible for constructors

Member of the Helmholtz Association May 10, 2022 Slide 45

CONSTRUCTORS
1 struct complex
2 {
3 complex(double re, double im)
4 {
5 real = re;
6 imaginary = im;
7 }
8 complex() {}
9 double real{0.};

10 double imaginary{0.};
11 };
12 ...
13 complex a(4.3, 23.09), b;

Member variables can be initialised to ”default
values“ at the point of declaration
Member variables not touched by the constructor
stay at their default values

Preferred syntax for initialisation of members in a
constructor is shown here . This form of
initialisation outside the constructor function body
is only possible for constructors

Member of the Helmholtz Association May 10, 2022 Slide 45

CONSTRUCTORS
1 struct complex
2 {
3 complex(double re, double im)

4 : real{re}, imaginary{im}

5 {
6 }
7 complex() {}
8 double real{0.};
9 double imaginary{0.};

10 };
11 ...
12 complex a(4.3, 23.09), b;

Member variables can be initialised to ”default
values“ at the point of declaration
Member variables not touched by the constructor
stay at their default values
Preferred syntax for initialisation of members in a
constructor is shown here . This form of
initialisation outside the constructor function body
is only possible for constructors

Member of the Helmholtz Association May 10, 2022 Slide 45

FREEING MEMORY FOR USER DEFINED TYPES
1 struct darray
2 {
3 double *data=nullptr;
4 size_t sz=0;
5 darray(size_t N) : sz{N} {
6 data = new double[sz];
7 }
8 };
9

10 auto tempfunc(double phasediff) -> double
11 {
12 // find number of elements
13 darray A{large_number};
14 // do some great calculations
15 return answer;
16 }

What happens to the memory ? The struct darray has a
pointer member, which points to dynamically allocated
memory

When the life of the variable A ends, the member
variables (e.g. the pointer data) go out of scope.
How does one free the dynamically allocated memory
attached to the member data ?

Member of the Helmholtz Association May 10, 2022 Slide 46

FREEING MEMORY FOR USER DEFINED TYPES
1 struct darray
2 {
3 double *data{nullptr};
4 size_t sz{0};
5 darray(size_t N) : sz{N} {
6 data = new double[sz];
7 }
8 ~darray() {
9 if (data) delete [] data;

10 }
11 };
12
13 auto tempfunc(double phasediff) -> double
14 {
15 // find number of elements
16 darray A{large_number};
17 // do some great calculations
18 return answer;
19 }

For any class which explicitly allocates dynamic memory
We need a function that cleans up all explicitly allocated
memory in use, so that we call it for every object whose
lifetime is about to end.
In C++, such functions are called destructors, and have
the name ~ followed by the class name.
Destructors take no arguments, and there is exactly one
for each class
The destructor is automatically called when a variable
expires. You don’t call it explicitly. It is always called
whenever the scope of an object ends! It is impossible to
forget.

Member of the Helmholtz Association May 10, 2022 Slide 47

DESTRUCTORS
1 class A {

2 A() {}

3 ~A() {}

4 };
5 auto demo(A)
6 {

7 A v1 ;
8 try {

9 A v2 ;
10 // calc
11
12 } // ~A() for v2

13 catch {
14 // ...
15 }

16 } // ~A() for v1

No matter how you exit a scope, if the scope of a
variable ends, its destructor is invoked automatically
What if we acquire resources in constructors and
clean up in the destructor? It would be impossible
to forget to free resources when we are done!

Member of the Helmholtz Association May 10, 2022 Slide 48

COPYING AND ASSIGNMENTS
1 struct complex
2 {
3 double x, y;
4 };
5 //...
6 complex z0{2.0, 3.0}, z1;
7 z1 = z0; // assignment operator
8 complex z2{z0}; //copy constructor

While copying and assigning, in most cases, we
want to assign the data members to the
corresponding members

This happens automatically, but using special
functions for these copy operations
You can redefine them for your class
Why would you want to ?

Member of the Helmholtz Association May 10, 2022 Slide 49

COPYING AND ASSIGNMENTS
1 struct complex
2 {
3 double x, y;
4 };
5 //...
6 complex z0{2.0, 3.0}, z1;
7 z1 = z0; // assignment operator
8 complex z2{z0}; //copy constructor

While copying and assigning, in most cases, we
want to assign the data members to the
corresponding members
This happens automatically, but using special
functions for these copy operations

You can redefine them for your class
Why would you want to ?

Member of the Helmholtz Association May 10, 2022 Slide 49

COPYING AND ASSIGNMENTS
1 struct complex
2 {
3 double x, y;
4 };
5 //...
6 complex z0{2.0, 3.0}, z1;
7 z1 = z0; // assignment operator
8 complex z2{z0}; //copy constructor

While copying and assigning, in most cases, we
want to assign the data members to the
corresponding members
This happens automatically, but using special
functions for these copy operations
You can redefine them for your class

Why would you want to ?

Member of the Helmholtz Association May 10, 2022 Slide 49

COPYING AND ASSIGNMENTS
1 struct complex
2 {
3 double x, y;
4 };
5 //...
6 complex z0{2.0, 3.0}, z1;
7 z1 = z0; // assignment operator
8 complex z2{z0}; //copy constructor

While copying and assigning, in most cases, we
want to assign the data members to the
corresponding members
This happens automatically, but using special
functions for these copy operations
You can redefine them for your class
Why would you want to ?

Member of the Helmholtz Association May 10, 2022 Slide 49

COPYING AND ASSIGNMENTS
1 class darray {
2 double *x;
3 };
4 darray::darray(unsigned n)
5 {
6 x=new double[n];
7 }
8 void foo()
9 {

10 darray ar1(5);
11 darray ar2{ar1}; //copy constructor
12 ar2[3] = 2.1;
13 //oops! ar1[3] is also 2.1 now!
14 } //trouble

Copying pointers with dynamically allocated memory
May not be what we want

Leads to "double free" errors when the objects are destroyed

Member of the Helmholtz Association May 10, 2022 Slide 50

COPYING AND ASSIGNMENTS
1 class darray {
2 double *x;
3 };
4 darray::darray(unsigned n)
5 {
6 x=new double[n];
7 }
8 void foo()
9 {

10 darray ar1(5);
11 darray ar2{ar1}; //copy constructor
12 ar2[3] = 2.1;
13 //oops! ar1[3] is also 2.1 now!
14 } //trouble

Copying pointers with dynamically allocated memory
May not be what we want
Leads to "double free" errors when the objects are destroyed

Member of the Helmholtz Association May 10, 2022 Slide 50

COPYING AND ASSIGNMENTS
1 class darray {
2 double *x{nullptr};
3 unsigned int len{};
4 public:
5 // Copy constructor
6 darray(const darray &);
7 //assignment operator
8 auto operator=(const darray&) -> darray&;
9 };

10 darray::darray(const darray& other)
11 {
12 if (other.len!=0) {
13 len = other.len;
14 x = new double[len];
15 for (unsigned i = 0; i < len; ++i) {
16 x[i] = other.x[i];
17 }
18 }
19 }
20 auto darray::operator=(const darray& other) -> darray&
21 {
22 if (this != &other) {
23 if (len != other.len) {

1 len = other.len;
2 if (x) delete [] x;
3 x = new double[len];
4 }
5 for (unsigned i = 0; i < len; ++i) {
6 x[i] = other.x[i];
7 }
8 }
9 return *this;

10 }

Member of the Helmholtz Association May 10, 2022 Slide 51

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR
1 class darray {
2 darray(darray &&); //Move constructor
3 auto operator=(darray &&) -> darray&;
4 //Move assignment operator
5 };
6 darray::darray(darray&& other)
7 {
8 len = other.len;
9 x = other.x;

10 other.x = nullptr;
11 }
12 auto darray::operator=(darray&& other)
13 -> darray& {
14 len = other.len;
15 x = other.x;
16 other.x = nullptr;
17 return *this;
18 }
19 darray d1(3);
20 init_array(d1); //d1 = {1.0,2.0,3.0}
21 darray d2{d1}; //Copy construction
22 // d1 and d2 are {1.,2.,3.}
23 darray d3{std::move(d1)}; //Move
24 // d3 is {1.,2.,3.}, but d1 is empty!

Construct or assign from an R-value reference
(darray &&)

Steal resources from RHS
Put disposable content in RHS

Member of the Helmholtz Association May 10, 2022 Slide 52

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR
1 class darray {
2 darray(darray &&); //Move constructor
3 auto operator=(darray &&) -> darray&;
4 //Move assignment operator
5 };
6 darray::darray(darray&& other)
7 {
8 len = other.len;
9 x = other.x;

10 other.x = nullptr;
11 }
12 auto darray::operator=(darray&& other)
13 -> darray& {
14 len = other.len;
15 x = other.x;
16 other.x = nullptr;
17 return *this;
18 }
19 darray d1(3);
20 init_array(d1); //d1 = {1.0,2.0,3.0}
21 darray d2{d1}; //Copy construction
22 // d1 and d2 are {1.,2.,3.}
23 darray d3{std::move(d1)}; //Move
24 // d3 is {1.,2.,3.}, but d1 is empty!

Construct or assign from an R-value reference
(darray &&)
Steal resources from RHS

Put disposable content in RHS

Member of the Helmholtz Association May 10, 2022 Slide 52

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR
1 class darray {
2 darray(darray &&); //Move constructor
3 auto operator=(darray &&) -> darray&;
4 //Move assignment operator
5 };
6 darray::darray(darray&& other)
7 {
8 len = other.len;
9 x = other.x;

10 other.x = nullptr;
11 }
12 auto darray::operator=(darray&& other)
13 -> darray& {
14 len = other.len;
15 x = other.x;
16 other.x = nullptr;
17 return *this;
18 }
19 darray d1(3);
20 init_array(d1); //d1 = {1.0,2.0,3.0}
21 darray d2{d1}; //Copy construction
22 // d1 and d2 are {1.,2.,3.}
23 darray d3{std::move(d1)}; //Move
24 // d3 is {1.,2.,3.}, but d1 is empty!

Construct or assign from an R-value reference
(darray &&)
Steal resources from RHS

Put disposable content in RHS

Member of the Helmholtz Association May 10, 2022 Slide 52

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR
1 class darray {
2 darray(darray &&); //Move constructor
3 auto operator=(darray &&) -> darray&;
4 //Move assignment operator
5 };
6 darray::darray(darray&& other)
7 {
8 len = other.len;
9 x = other.x;

10 other.x = nullptr;
11 }
12 auto darray::operator=(darray&& other)
13 -> darray& {
14 len = other.len;
15 x = other.x;
16 other.x = nullptr;
17 return *this;
18 }
19 darray d1(3);
20 init_array(d1); //d1 = {1.0,2.0,3.0}
21 darray d2{d1}; //Copy construction
22 // d1 and d2 are {1.,2.,3.}
23 darray d3{std::move(d1)}; //Move
24 // d3 is {1.,2.,3.}, but d1 is empty!

Construct or assign from an R-value reference
(darray &&)
Steal resources from RHS
Put disposable content in RHS

Member of the Helmholtz Association May 10, 2022 Slide 52

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR
You can enable move semantics for your class by writing a constructor or assignment operator using an
R-value reference

Usually you will not be using it explicitly. Results of the evaluation of expressions might create a nameless
object containing the resultant value (prvalue: pure r-value). A function may be returning a named entity
which is about to expire (xvalue: expiring value) References to such objects are called R-value references. A
move constructor or assignment operator is automatically invoked if constructor argument is an R-value
reference
You can invoke the move constructor by casting the function argument to an R-value reference, e.g.
darray d3{std::move(d1)}

Member of the Helmholtz Association May 10, 2022 Slide 53

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR
You can enable move semantics for your class by writing a constructor or assignment operator using an
R-value reference
Usually you will not be using it explicitly. Results of the evaluation of expressions might create a nameless
object containing the resultant value (prvalue: pure r-value). A function may be returning a named entity
which is about to expire (xvalue: expiring value) References to such objects are called R-value references. A
move constructor or assignment operator is automatically invoked if constructor argument is an R-value
reference

You can invoke the move constructor by casting the function argument to an R-value reference, e.g.
darray d3{std::move(d1)}

Member of the Helmholtz Association May 10, 2022 Slide 53

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR
You can enable move semantics for your class by writing a constructor or assignment operator using an
R-value reference
Usually you will not be using it explicitly. Results of the evaluation of expressions might create a nameless
object containing the resultant value (prvalue: pure r-value). A function may be returning a named entity
which is about to expire (xvalue: expiring value) References to such objects are called R-value references. A
move constructor or assignment operator is automatically invoked if constructor argument is an R-value
reference
You can invoke the move constructor by casting the function argument to an R-value reference, e.g.
darray d3{std::move(d1)}

Member of the Helmholtz Association May 10, 2022 Slide 53

BIG FIVE (OR ZERO)
Default constructor
Copy constructor
Move constructor
Assignment operator
Move assignment operator

How many of these do you have to write for each
and every class you make ?

Answer: None! If you don’t have bare pointers in
your class, and don’t want anything fancy
happening, the compiler will auto-generate
reasonable defaults. “Rule of zero”

Member of the Helmholtz Association May 10, 2022 Slide 54

BIG FIVE (OR ZERO)
Default constructor
Copy constructor
Move constructor
Assignment operator
Move assignment operator

How many of these do you have to write for each
and every class you make ?
Answer: None! If you don’t have bare pointers in
your class, and don’t want anything fancy
happening, the compiler will auto-generate
reasonable defaults. “Rule of zero”

Member of the Helmholtz Association May 10, 2022 Slide 54

BIG FIVE

1 class darray {
2 public:
3 darray(double x, double y) : re{x}, im{y} {}
4 darray() = default;
5 darray(const darray &) = default;
6 darray(darray &&) = default;
7 auto operator=(const darray&) -> darray& = default;
8 auto operator=(darray&&) -> darray& = default;
9 };

If you have to write any constructor yourself, auto-generation of the default constructor is disabled

But you can request default versions of the any of these functions as shown

Member of the Helmholtz Association May 10, 2022 Slide 55

BIG FIVE

1 class darray {
2 public:
3 darray(double x, double y) : re{x}, im{y} {}
4 darray() = default;
5 darray(const darray &) = default;
6 darray(darray &&) = default;
7 auto operator=(const darray&) -> darray& = default;
8 auto operator=(darray&&) -> darray& = default;
9 };

If you have to write any constructor yourself, auto-generation of the default constructor is disabled
But you can request default versions of the any of these functions as shown

Member of the Helmholtz Association May 10, 2022 Slide 55

BIG FIVE

1 class darray {
2 darray() = delete;
3 darray(const darray &) = delete;
4 darray(darray &&) = default;
5 auto operator=(const darray &) -> darray& = delete;
6 auto operator=(darray &&) -> darray& = default;
7 };

You can also explicitly request that one or more of these are not auto-generated
In the example shown here, it will not be possible to copy objects of the class, but they can be moved

Member of the Helmholtz Association May 10, 2022 Slide 56

COPY AND SWAP
We want to reuse the code in the copy constructor
and destructor to do memory management

Pass argument to the assignment operator by value
instead of reference
Use the class member function swap to swap the
data with the newly created copy

1 auto operator=(const darray& oth) -> darray& {
2 if (this!=&oth) {
3 if (arr && sz!=oth.sz) {
4 sz=oth.sz;
5 delete [] arr;
6 arr=new T[sz];
7 }
8 for (size_t i=0;i<sz;++i)
9 arr[i]=oth.arr[i];

10 }
11 return *this;
12 }
13 auto operator=(darray&& oth) -> darray& {
14 swap(oth);
15 return *this;
16 }

Member of the Helmholtz Association May 10, 2022 Slide 57

COPY AND SWAP
We want to reuse the code in the copy constructor
and destructor to do memory management
Pass argument to the assignment operator by value
instead of reference

Use the class member function swap to swap the
data with the newly created copy

1 auto operator=(darray d) -> darray& {
2 swap(d);
3 return *this;
4 }
5 // No further move assignment operator!

Member of the Helmholtz Association May 10, 2022 Slide 57

COPY AND SWAP
We want to reuse the code in the copy constructor
and destructor to do memory management
Pass argument to the assignment operator by value
instead of reference
Use the class member function swap to swap the
data with the newly created copy

1 auto operator=(darray d) -> darray& {
2 swap(d);
3 return *this;
4 }
5 // No further move assignment operator!

Neat trick that works in most cases
Reduces the big five to big four

Member of the Helmholtz Association May 10, 2022 Slide 57

PUBLIC AND PRIVATE MEMBERS
Separating interface and implementation

1 auto foo(complex a, int p, truck c) -> int
2 {
3 complex z1, z2, z3 = a;
4 ...
5 z1 = z1.argument() * z2.modulus() * z3.conjugate();
6 c.start(z1.imaginary * p);
7 }

Imagine that ...
We have used our complex number structure in a lot of places

Then one day, it becomes evident that it is more efficient to define the complex numbers in terms of the
modulus and argument, instead of the real and imaginary parts.
We have to change a lot of code.

Member of the Helmholtz Association May 10, 2022 Slide 58

PUBLIC AND PRIVATE MEMBERS
Separating interface and implementation

1 auto foo(complex a, int p, truck c) -> int
2 {
3 complex z1, z2, z3 = a;
4 ...
5 z1 = z1.argument() * z2.modulus() * z3.conjugate();
6 c.start(z1.imaginary * p);
7 }

Imagine that ...
We have used our complex number structure in a lot of places
Then one day, it becomes evident that it is more efficient to define the complex numbers in terms of the
modulus and argument, instead of the real and imaginary parts.

We have to change a lot of code.

Member of the Helmholtz Association May 10, 2022 Slide 58

PUBLIC AND PRIVATE MEMBERS
Separating interface and implementation

1 auto foo(complex a, int p, truck c) -> int
2 {
3 complex z1, z2, z3 = a;
4 ...
5 z1 = z1.argument() * z2.modulus() * z3.conjugate();
6 c.start(z1.imaginary * p);
7 }

Imagine that ...
We have used our complex number structure in a lot of places
Then one day, it becomes evident that it is more efficient to define the complex numbers in terms of the
modulus and argument, instead of the real and imaginary parts.
We have to change a lot of code.

Member of the Helmholtz Association May 10, 2022 Slide 58

PUBLIC AND PRIVATE MEMBERS
Separating interface and implementation

1 auto foo(complex a, int p, truck c) -> int
2 {
3 complex z1, z2, z3 = a;
4 ...
5 z1 = z1.argument() * z2.modulus() * z3.conjugate();
6 c.start(z1.imaginary * p);
7 }

Imagine that ...
External code calling only member functions to access member data can survive
Direct use of member variables while using a class is often messy, the implementer of the class then loses
the freedom to change internal organisation of the class for efficiency or other reasons

Member of the Helmholtz Association May 10, 2022 Slide 59

C++ CLASSES
1 class complex
2 {
3 public:
4 complex(double re, double im)
5 : m_real(re), m_imag(im) {}
6 complex() = default;
7 auto real() const -> double { return m_real; }
8 auto imag() const -> double { return m_imag; }
9 ...

10 private:
11 double m_real = 0., m_imag = 0.;
12 };

struct =⇒ members public by default
class =⇒ members private by default

Members declared under the keyword private
can not be accessed from outside
Public members (data or function) can be accessed
Provide a consistent and useful interface through
public functions
Keep data members hidden
Make accessor functions const when possible

Member of the Helmholtz Association May 10, 2022 Slide 60

Exercise 2.3:
The program examples/complex_number_class.cc contains a version of the complex number class,
with all syntax elements we discussed in the class. It is heavily commented with explanations for every subsection.
Please read it to revise all the syntax relating to classes. Write a main program to use and test the class.

Member of the Helmholtz Association May 10, 2022 Slide 61

CONSTRUCTOR/DESTRUCTOR CALLS

Exercise 2.4:
The file examples/verbose_ctordtor.cc demonstrates the automatic calls to constructors and
destructors. The simple class Vbose has one string member. All its constructors and destructors print
messages to the screen when they are called. The main() function creates and uses some objects of this class.
Follow the messages printed on the screen and link them to the statements in the program. Does it make sense
(i) When the copy constructor is called ? (ii) When is the move constructor invoked ? (iii) When the objects are
destroyed ?

Suggested reading: http://www.informit.com/articles/printerfriendly/2216986

Exercise 2.5:
The program examples/onexcept.cc shows the behaviour of constructor/destructor calls when an exception is
called. Observe that exiting a function via an exception is also leaving the scope, and therefore invokes the
destructor.

Member of the Helmholtz Association May 10, 2022 Slide 62

http://www.informit.com/articles/printerfriendly/2216986

MAKING STD::COUT RECOGNIZE CLASS
Teaching cout how to print your type: overload operator <<

1 auto operator<<(std::ostream& os, const complex& a) -> std::ostream&
2 {
3 os << a.real();
4 if (a.imag() < 0) os << a.imag() << " i ";
5 // If imag() is negative, it already has a - sign
6 else os << " +" << a.imag() << " i ";
7 return os;
8 }
9 complex a;

10 ...
11 std::cout << "The roots are " << a << " and " << a.conjugate() << '\n';

Member of the Helmholtz Association May 10, 2022 Slide 63

AND SIMILARLY FOR STD::CIN

1 auto operator>>(std::istream& is, complex& a) -> std::istream&
2 {
3 double x, y;
4 is >> x >> y;
5 a.set_real(x);
6 a.set_imag(y);
7 return is;
8 }

It is up to you to decide IO operations for your classes
The stream parameters can not be const , because by reading from or writing to the stream, we change
its state

Member of the Helmholtz Association May 10, 2022 Slide 64

PRACTISE: WRITE A DATA ROW CLASS

Exercise 2.6:
You now have all the ingredients to write a data row class. A tabular data file has 5 columns. The first two are
integers, the rest are doubles. Let’s call the columns id, cat, x, y, and z, respectively. Make sure that there are IO
stream overloads for the reading and writing objects of that type. Demonstrate by reading a suitable datafile
"multicolumn.dat", and storing the rows in a vector of your DataRow type. You should then be able to sort
the vector according to any of the data columns.

Member of the Helmholtz Association May 10, 2022 Slide 65

DATATYPES
Type Bits Value
Float 0100 0000 0100 1001 0000 1111 1101 1011 3.1415927
Int 0100 0000 0100 1001 0000 1111 1101 1011 1078530011

Same bits, different rules =⇒ different type

From arbitrary collection of members to a new “data type”

1 class Date {
2 int m_day, m_month, m_year;
3 public:
4 static auto today() -> Date;
5 auto operator+(int n) const -> Date;
6 auto operator-(int n) const -> Date;
7 auto operator-(const Date &) const -> int;
8 };

Make sure every way to create an object results in
a valid state
Provide only those operations on the data which
keep the essential properties intact

Member of the Helmholtz Association May 10, 2022 Slide 66

CLASS INVARIANTS
A class is supposed to represent an idea: a complex number, a date, a dynamic array.

It will often contain data members of other types, with assumed constraints on those values:

A dynamic array is supposed to have a pointer that is either nullptr or a valid block of allocated memory,
with the correct size also stored in the structure.
A Date structure could have 3 integers for day, month and year, but they can not be, for example, 0,-1,1

Using private data members and well designed public interfaces, we can ensure that assumptions
behind an idea are always true.

Member of the Helmholtz Association May 10, 2022 Slide 67

CLASS INVARIANTS
A class is supposed to represent an idea: a complex number, a date, a dynamic array.
It will often contain data members of other types, with assumed constraints on those values:

A dynamic array is supposed to have a pointer that is either nullptr or a valid block of allocated memory,
with the correct size also stored in the structure.
A Date structure could have 3 integers for day, month and year, but they can not be, for example, 0,-1,1

Using private data members and well designed public interfaces, we can ensure that assumptions
behind an idea are always true.

Member of the Helmholtz Association May 10, 2022 Slide 67

CLASS INVARIANTS
A class is supposed to represent an idea: a complex number, a date, a dynamic array.
It will often contain data members of other types, with assumed constraints on those values:

A dynamic array is supposed to have a pointer that is either nullptr or a valid block of allocated memory,
with the correct size also stored in the structure.

A Date structure could have 3 integers for day, month and year, but they can not be, for example, 0,-1,1

Using private data members and well designed public interfaces, we can ensure that assumptions
behind an idea are always true.

Member of the Helmholtz Association May 10, 2022 Slide 67

CLASS INVARIANTS
A class is supposed to represent an idea: a complex number, a date, a dynamic array.
It will often contain data members of other types, with assumed constraints on those values:

A dynamic array is supposed to have a pointer that is either nullptr or a valid block of allocated memory,
with the correct size also stored in the structure.
A Date structure could have 3 integers for day, month and year, but they can not be, for example, 0,-1,1

Using private data members and well designed public interfaces, we can ensure that assumptions
behind an idea are always true.

Member of the Helmholtz Association May 10, 2022 Slide 67

CLASS INVARIANTS
A class is supposed to represent an idea: a complex number, a date, a dynamic array.
It will often contain data members of other types, with assumed constraints on those values:

A dynamic array is supposed to have a pointer that is either nullptr or a valid block of allocated memory,
with the correct size also stored in the structure.
A Date structure could have 3 integers for day, month and year, but they can not be, for example, 0,-1,1

Using private data members and well designed public interfaces, we can ensure that assumptions
behind an idea are always true.

Member of the Helmholtz Association May 10, 2022 Slide 67

CLASS INVARIANTS
1 class darray {
2 private:
3 double * dataptr = nullptr;
4 size_t sz = 0;
5 public:
6 // initialize with N elements
7 darray(size_t N);
8 ~darray();
9 // resize to N elements

10 void resize(size_t N);
11 // other members who don't change
12 // dataptr or sz
13 };

Construct ensuring class Invariants

Maintain Invariants in every member
→ a structure which always has sensible values

Member of the Helmholtz Association May 10, 2022 Slide 68

CLASS INVARIANTS
1 class darray {
2 private:
3 double * dataptr = nullptr;
4 size_t sz = 0;
5 public:
6 // initialize with N elements
7 darray(size_t N);
8 ~darray();
9 // resize to N elements

10 void resize(size_t N);
11 // other members who don't change
12 // dataptr or sz
13 };

Construct ensuring class Invariants
Maintain Invariants in every member

→ a structure which always has sensible values

Member of the Helmholtz Association May 10, 2022 Slide 68

CLASS INVARIANTS
1 class darray {
2 private:
3 double * dataptr = nullptr;
4 size_t sz = 0;
5 public:
6 // initialize with N elements
7 darray(size_t N);
8 ~darray();
9 // resize to N elements

10 void resize(size_t N);
11 // other members who don't change
12 // dataptr or sz
13 };

Construct ensuring class Invariants
Maintain Invariants in every member
→ a structure which always has sensible values

Member of the Helmholtz Association May 10, 2022 Slide 68

STATIC MEMBERS
1 class Triangle {
2 public:
3 static unsigned counter;
4 Triangle() : ...
5 {
6 ++counter;
7 }
8 ~Triangle() { --counter; }
9 static auto instanceCount() -> unsigned

10 {
11 return counter;
12 }
13 };
14 ... Triangle.cc ...
15 unsigned Triangle::counter = 0;

Static member functions do not have an implicit
this pointer argument. They can be invoked as
ClassName::function() .

Static variables exist only once for all objects of the
class.

Can be used to keep track of the number of objects
of one type created in the whole application
Must be initialised in a source file somewhere, or
else you get an "unresolved symbol" error

Member of the Helmholtz Association May 10, 2022 Slide 69

STATIC MEMBERS
1 class Triangle {
2 public:
3 static unsigned counter;
4 Triangle() : ...
5 {
6 ++counter;
7 }
8 ~Triangle() { --counter; }
9 static auto instanceCount() -> unsigned

10 {
11 return counter;
12 }
13 };
14 ... Triangle.cc ...
15 unsigned Triangle::counter = 0;

Static member functions do not have an implicit
this pointer argument. They can be invoked as
ClassName::function() .

Static variables exist only once for all objects of the
class.
Can be used to keep track of the number of objects
of one type created in the whole application

Must be initialised in a source file somewhere, or
else you get an "unresolved symbol" error

Member of the Helmholtz Association May 10, 2022 Slide 69

STATIC MEMBERS
1 class Triangle {
2 public:
3 static unsigned counter;
4 Triangle() : ...
5 {
6 ++counter;
7 }
8 ~Triangle() { --counter; }
9 static auto instanceCount() -> unsigned

10 {
11 return counter;
12 }
13 };
14 ... Triangle.cc ...
15 unsigned Triangle::counter = 0;

Static member functions do not have an implicit
this pointer argument. They can be invoked as
ClassName::function() .

Static variables exist only once for all objects of the
class.
Can be used to keep track of the number of objects
of one type created in the whole application
Must be initialised in a source file somewhere, or
else you get an "unresolved symbol" error

Member of the Helmholtz Association May 10, 2022 Slide 69

STATIC MEMBERS
1 class Triangle {
2 public:
3 static unsigned counter;
4 Triangle() : ...
5 {
6 ++counter;
7 }
8 ~Triangle() { --counter; }
9 static auto instanceCount() -> unsigned

10 {
11 return counter;
12 }
13 };
14 ... Triangle.cc ...
15 unsigned Triangle::counter = 0;

Static member functions do not have an implicit
this pointer argument. They can be invoked as
ClassName::function() .

Static variables exist only once for all objects of the
class.
Can be used to keep track of the number of objects
of one type created in the whole application
Must be initialised in a source file somewhere, or
else you get an "unresolved symbol" error

Member of the Helmholtz Association May 10, 2022 Slide 69

SOME FUN: OVERLOADING THE () OPERATOR

1 class swave
2 {
3 private:
4 double a = 1.0, omega = 1.0;
5 public:
6 swave() = default;
7 swave(double x, double w) :
8 a{x}, omega{w} {}
9 auto operator()(double t) const -> double

10 {
11 return a * sin(omega * t);
12 }
13 };

1 const double pi = acos(-1);
2
3 int N = 100;
4 swave f{2.0, 0.4};
5 swave g{2.3, 1.2};
6
7 for (int i = 0; i < N; ++i) {
8 double ar = 2 * i * pi / N;
9 std::cout << i << " " << f(ar)

10 << " " << g(ar)
11 << '\n';
12 }

Functionals
Function like objects, i.e., classes which define a () operator

If they return a bool value, they are called predicates

Member of the Helmholtz Association May 10, 2022 Slide 70

SOME FUN: OVERLOADING THE () OPERATOR

1 class swave
2 {
3 private:
4 double a = 1.0, omega = 1.0;
5 public:
6 swave() = default;
7 swave(double x, double w) :
8 a{x}, omega{w} {}
9 auto operator()(double t) const -> double

10 {
11 return a * sin(omega * t);
12 }
13 };

1 const double pi = acos(-1);
2
3 int N = 100;
4 swave f{2.0, 0.4};
5 swave g{2.3, 1.2};
6
7 for (int i = 0; i < N; ++i) {
8 double ar = 2 * i * pi / N;
9 std::cout << i << " " << f(ar)

10 << " " << g(ar)
11 << '\n';
12 }

Functionals
Function like objects, i.e., classes which define a () operator
If they return a bool value, they are called predicates

Member of the Helmholtz Association May 10, 2022 Slide 70

FUNCTIONALS
Using function like objects

They are like other variables. But they can be used as if they were functions!
You can make vectors or lists of functionals, pass them as arguments ...
Although you can run any recipe you want by overloading an operator, most operators are limited to one or
two arguments. () can take as many as you need. This also contributes to functionals looking like
functions when in use.

Member of the Helmholtz Association May 10, 2022 Slide 71

WRITE YOUR OWN FUNCTIONAL!

Exercise 2.7:
Write a functional class where the return value of f(x) is given by a user specified piece-wise continuous linear
function. You should write a class PieceWise. It should have a function to read a vector of xi ,yi values from a
file. Sort them according to x values. Then implement an operator() function, so that when you write

1 PieceWise f;
2 f.read_file("somefile.dat");
3 auto y = f(x);

you get the correct piecewise linear function evaluated. Use the standard library function std::lerp to
perform the linear interpolation.

Member of the Helmholtz Association May 10, 2022 Slide 72

OVERLOADING OTHER OPERATORS FOR
EXPRESSIVE CODE

1 // examples/collect.cc
2 class collect {
3 std::vector<int> dat;
4 public:
5 auto operator|(int i) -> collect&
6 {
7 dat.push_back(i);
8 return *this;
9 }

10 auto operator~() const noexcept -> decltype(dat)
11 {
12 return dat;
13 }
14 };
15 auto main() -> int
16 {
17 auto C = collect{};
18 C | 1 | 2 | 3 | 4 ;
19 for (auto el : (~C)) {
20 std::cout << el << "\n";
21 }
22 }

Operator overloading is not limited to arithmetic
and shift operators.
Sometimes, choosing the right operator to overload
can increase the expressiveness of the code

args | sv::drop(1) | sv::transform(str)

Member of the Helmholtz Association May 10, 2022 Slide 73

USER DEFINED LITERALS
Redefining the "" operator!

You know how to create objects and set their values
You even know how to construct with a given initial
value

It’s far cooler to initialise with your own literals!
Redefine how literals are interpreted for your class
Desirable to enable clean and easily read
initialisations

1 auto main() -> int
2 {
3 double N=6.023e23;
4 Temperature T;

5 T.value(293.0);

6 auto U = Temperature{373.0};
7 auto T2 = 350_C;
8 auto T3 = 900_K;
9 complex c = 1+2_i;

10 ...
11 }

Member of the Helmholtz Association May 10, 2022 Slide 74

USER DEFINED LITERALS
Redefining the "" operator!

You know how to create objects and set their values
You even know how to construct with a given initial
value

It’s far cooler to initialise with your own literals!
Redefine how literals are interpreted for your class
Desirable to enable clean and easily read
initialisations

1 int main()
2 {
3 double N=6.023e23;
4 Temperature T;
5 T.value(293.0);

6 auto U = Temperature(373.0);

7 auto T2 = 350_C;
8 auto T3 = 900_K;
9 complex c = 1+2_i;

10 ...
11 }

Member of the Helmholtz Association May 10, 2022 Slide 74

USER DEFINED LITERALS
Redefining the "" operator!

You know how to create objects and set their values
You even know how to construct with a given initial
value
It’s far cooler to initialise with your own literals!
Redefine how literals are interpreted for your class
Desirable to enable clean and easily read
initialisations

1 int main()
2 {
3 double N=6.023e23;
4 Temperature T;
5 T.value(293.0);

6 auto T2 = 350_C;

7 auto T3 = 900_K;

8 complex c = 1+2_i;
9 ...

10 }

Member of the Helmholtz Association May 10, 2022 Slide 74

USER DEFINED LITERALS

1 auto operator "" _K(long double d) -> Temperature
2 {
3 return { static_cast<double>(d), Temperature::Unit::K };
4 }
5 auto operator "" _C(long double d) -> Temperature
6 {
7 return { static_cast<double>(d), Temperature::Unit::C };
8 }

Defining your own rules for how literals are interpreted for your class
Desirable to enable clean and easily read initialisations

Member of the Helmholtz Association May 10, 2022 Slide 75

USER DEFINED LITERALS
Exercise

The demo program examples/literals.cc shows
how this is done using a simple “temperature” class
Make something similar for a Distance class!

1 auto main() -> int
2 {
3 double N = 6.023e23;
4 auto T2 = 350_C;
5 auto T3 = 900_K;
6 }

Member of the Helmholtz Association May 10, 2022 Slide 76

Inheritance and class hierarchies

Member of the Helmholtz Association May 10, 2022 Slide 77

CLASS INHERITANCE
Analogy

Inherited traits: many properties shared among entities of
different related types
Each branch may add new properties
Seems like a good fit to different ideas we may want to
represent in code

Member of the Helmholtz Association May 10, 2022 Slide 78

CLASS INHERITANCE
1 struct Point {double X, Y;};
2 class Triangle {
3 public:
4 // Constructors etc., and then,
5 void translate();
6 void rotate(double byangle);
7 auto area() const -> double;
8 auto perimeter() const -> double;
9 private:

10 Point vertex[3];
11 };
12 class Quadilateral {
13 public:
14 void translate();
15 void rotate(double byangle);
16 auto area() const -> double;
17 auto perimeter() const -> double;
18 auto is_convex() const -> bool;
19 private:
20 Point vertex[4];
21 };

Geometrical figures
Many actions (e.g. translate and rotate) will involve identical
code
Properties like area and perimeter make sense for all,
but are better calculated differently for each type
There may also be new properties (is_convex) introduced
by a type

Member of the Helmholtz Association May 10, 2022 Slide 79

INHERITANCE: BASIC SYNTAX
1 class SomeBase {
2 public:
3 double f();
4 protected:
5 int i;
6 private:
7 int j;
8 };
9 class Derived : public SomeBase {

10 void haha() {
11 // can access f() and i
12 // can not access j
13 }
14 };
15 void elsewhere()
16 {
17 SomeBase a;
18 Derived b;
19 // Can call a.f(),
20 // but e.g., a.i = 0; is not allowed
21 }

Class members can be private , protected

or public

public members are accessible from everywhere

private members are for internal use in one
class
protected members can be seen by derived

classes

Member of the Helmholtz Association May 10, 2022 Slide 80

INHERITANCE
Inheriting class may add more data, but it retains
all the data of the base
The base class functions, if invoked, will see a base
class object
The derived class object is a base class object, but
with additional properties

Member of the Helmholtz Association May 10, 2022 Slide 81

INHERITANCE
A pointer to a derived class always points to an
address which also contains a valid base class
object.
baseptr=derivedptr is called "upcasting".

Always allowed.
Implicit downcasting is not allowed. Explicit
downcasting is possible with static_cast and
dynamic_cast

Member of the Helmholtz Association May 10, 2022 Slide 82

INHERITANCE
1 class Base {
2 public:
3 void f() { std::cout << "Base::f()\n"; }
4 protected:
5 int i{4};
6 };
7 class Derived : public Base {
8 int k{0};
9 public:

10 void g() { std::cout << "Derived::g()\n"; }
11 };
12 int main()
13 {
14 Derived b;
15 Base *ptr = &b;
16 ptr->g(); // Error!
17 static_cast<Derived *>(ptr)->g(); //OK
18 }

Member of the Helmholtz Association May 10, 2022 Slide 83

CLASS INHERITANCE

We want to write a program to
list the area of all the geometric objects
select the largest and smallest objects
draw

in our system.
A loop over a vector of them will be nice. But vector< ??? >

Object oriented languages like C++, Java, Python ... have a concept of "inheritance" for the classes, to
describe such conceptual relations between different types.
4 ways to solve this problem in C++ will be introduced at various points in this course

Member of the Helmholtz Association May 10, 2022 Slide 84

INHERITANCE WITH VIRTUAL FUNCTIONS
Abstract concept class “Shape”
Inherited classes add/change some
properties
and inherit other properties from “base”
class

A triangle is a polygon. A polygon is a shape. A circle is a shape.

Member of the Helmholtz Association May 10, 2022 Slide 85

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS

1 class Shape {
2 public:
3 virtual ~Shape() = 0;
4 virtual void rotate(double) = 0;
5 virtual void translate(Point) = 0;
6 virtual auto area() const -> double = 0;
7 virtual auto perimeter() const -> double = 0;
8 };
9 class Circle : public Shape {

10 public:
11 Circle(); // and other constructors
12 ~Circle();
13 void rotate(double phi) {}
14 auto area() const -> double override
15 {
16 return pi * r * r;
17 }
18 private:
19 double r;
20 };

Circle is a derived class from base class Shape
A derived class inherits from its base(s), which are
indicated in the class declaration.
Functions marked as virtual in the base class
can be re-implemented in a derived class.

Note: In C++, member functions are not virtual by default.
Member of the Helmholtz Association May 10, 2022 Slide 86

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS

1 class Shape {
2 public:
3 virtual ~Shape() = 0;
4 virtual void rotate(double) = 0;
5 virtual void translate(Point) = 0;
6 virtual double area() const = 0;
7 virtual auto perimeter() const -> double = 0;
8 };
9 class Circle : public Shape {

10 public:
11 Circle(); // and other constructors
12 ~Circle();
13 void rotate(double phi) {}
14 auto area() const -> double override
15 {
16 return pi * r * r;
17 }
18 private:
19 double r;
20 };
21 Shape a; // Error!
22 Circle b; // ok.

A derived class inherits all member variables and
functions from its base.
virtual re-implemented in a derived class are

said to be "overriden", and ought to be marked
with override

A class with a pure virtual function (with " = 0" in
the declaration) is an abstract class. Objects of
that type can not be declared.

Member of the Helmholtz Association May 10, 2022 Slide 87

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS
1 class Polygon : public Shape {
2 public:
3 auto perimeter() const -> double final
4 {
5 // return sum over sides
6 }
7 protected:
8 vector<Point> vertex;
9 int npt;

10 };
11 class Triangle : public Polygon {
12 public:
13 Triangle() : npt(3)
14 {
15 vertex.resize(3); // ok
16 }
17 auto area() const -> double override
18 {
19 // return sqrt(s*(s-a)*(s-b)*(s-c))
20 }
21 };

Syntax for inheritance
Triangle implements its own area() function,
but can not implement a perimeter() , as that
is declared as final in Polygon . This is done
if the implementation from the base class is good
enough for intended inheriting classes.

Member of the Helmholtz Association May 10, 2022 Slide 88

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS
1 class Polygon : public Shape {
2 public:
3 auto perimeter() const -> double final
4 {
5 // return sum over sides
6 }
7 protected:
8 vector<Point> vertex;
9 int npt;

10 };
11 class Triangle : public Polygon {
12 public:
13 Triangle() : npt(3)
14 {
15 vertex.resize(3); // ok
16 }
17 auto area() -> double override // Error!!
18 {
19 // return sqrt(s*(s-a)*(s-b)*(s-c))
20 }
21 };

The keyword override ensures that the
compiler checks there is a corresponding base class
function to override.
Virtual functions can be re-implemented without
this keyword, but an accidental omission of a
const or an & can lead to really obscure

runtime errors.

Member of the Helmholtz Association May 10, 2022 Slide 89

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS

1 int main()
2 {
3 vector<std::unique_ptr<Shape>> shape;
4 shape.push_back(std::make_unique<Circle>(0.5, Point(3,7)));
5 shape.push_back(std::make_unique<Triangle>(Point(1,2), Point(3,3), Point(2.5,0)));
6 ...
7 for (size_t i = 0;i < shape.size(); ++i) {
8 std::cout << shape[i]->area() << '\n';
9 }

10 }

A pointer to a base class is allowed to point to an object of a derived class
Here, shape[0]->area() will call Circle::area() , shape[1]->area() will call
Triangle::area()

Member of the Helmholtz Association May 10, 2022 Slide 90

A LITTLE DEMO

Member of the Helmholtz Association May 10, 2022 Slide 91

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS
For classes with virtual functions, the compiler
inserts an invisible pointer member to the data and
additional book keeping code
There is a table of virtual functions for each derived
class, with entries pointing to function code
somewhere
The vptr pointer points to the vtable of that
particular class

Member of the Helmholtz Association May 10, 2022 Slide 92

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS

Member of the Helmholtz Association May 10, 2022 Slide 93

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS
Virtual function call proceeds by first finding the
right vtable, then the correct entry for the called
function, dereferencing that function pointer and
then executing the correct function body
Don’t make everything virtual! The overhead, with
modern machines and compilers, is not huge. But
abusing this feature will hurt performance

But if virtual functions offer the cleanest solution
with acceptable performance, don’t invent weird
things to avoid them!

Member of the Helmholtz Association May 10, 2022 Slide 94

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS
Virtual function call proceeds by first finding the
right vtable, then the correct entry for the called
function, dereferencing that function pointer and
then executing the correct function body
Don’t make everything virtual! The overhead, with
modern machines and compilers, is not huge. But
abusing this feature will hurt performance

But if virtual functions offer the cleanest solution
with acceptable performance, don’t invent weird
things to avoid them!

Member of the Helmholtz Association May 10, 2022 Slide 94

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS
Virtual function call proceeds by first finding the
right vtable, then the correct entry for the called
function, dereferencing that function pointer and
then executing the correct function body
Don’t make everything virtual! The overhead, with
modern machines and compilers, is not huge. But
abusing this feature will hurt performance

But if virtual functions offer the cleanest solution
with acceptable performance, don’t invent weird
things to avoid them!

Member of the Helmholtz Association May 10, 2022 Slide 94

CLASS INHERITANCE
Inherit or include as data member ?

1 class DNA {
2 ...
3 std::valarray<char> seq;
4 };
5 class Cell : public DNA ???
6 or
7 class Cell {
8 ...
9 DNA mydna;

10 };

A derived class extends the concept represented by
its base class in some way.
Although this extension might mean addition of
new data members,

B = A ⊕ newdata

does not necessarily mean the class for B should
inherit from the class for A

Member of the Helmholtz Association May 10, 2022 Slide 95

CLASS INHERITANCE
Inherit or include as data member ?

1 class DNA {
2 ...
3 std::valarray<char> seq;
4 };
5
6 class Cell : public DNA ???
7
8 or
9

10 class Cell {
11 ...
12 DNA mydna;
13 };
14

is vs has
A good guide to decide whether to inherit or
include is to ask whether the concept B contains an
object A, or whether any object of type B is also an
object of type A, like a monkey is a mammal, and a
triangle is a polygon.
is =⇒ inherit . has =⇒ include

Member of the Helmholtz Association May 10, 2022 Slide 96

CLASS INHERITANCE

Inheritance summary
Base classes to represent common properties of related types : e.g. all proteins are molecules, but all
molecules are not proteins. All triangles are polygons, but not all polygons are triangles.
Less code: often, only one or two properties need to be changed in an inherited class
Helps create reusable code
A base class may or may not be constructable (Polygon as opposed to Shape)

Member of the Helmholtz Association May 10, 2022 Slide 97

CLASS DECORATIONS
More control over classes

Possible to initialise data in class declaration
Initialiser list constructors
Delegating constructors allowed
Inheriting constructors possible

1 class A {
2 int v[]{1, -1, -1, 1};
3 public:
4 A() = default;
5 A(std::initializer_list<int> &);
6 A(int i, int j, int k, int l)
7 {
8 v[0] = i;
9 v[1] = j;

10 v[2] = k;
11 v[3] = l;
12 }
13 //Delegate work to another constructor
14 A(int i, int j) : A(i, j, 0, 0) {}
15 };
16 class B : public A {
17 public:
18 // Inherit all constructors from A
19 using A::A;
20 B(string s);
21 };

Member of the Helmholtz Association May 10, 2022 Slide 98

MORE CONTROL OVER CLASSES
Explicit default , delete , override and
final

"Explicit is better than implicit"
More control over what the compiler does with the
class
Compiler errors better than hard to trace run-time
errors due to implicitly generated functions

1 class A {
2 // Automatically generated is ok
3 A() = default;
4 // Don't want to allow copy
5 A(const A &) = delete;
6 A & operator=(const A &) = delete;
7 // Instead, allow a move constructor
8 A(const A &&);
9 // Don't try to override this!

10 void getDrawPrimitives() final;
11 virtual void show(int i);
12 };
13 class B : public A
14 {
15 B() = default;
16 void show()override; //will be an error!
17 };
18

Member of the Helmholtz Association May 10, 2022 Slide 99

Exercise 2.8:
The directory exercises/geometry contains a set of files for the classes Point, Shape, Polygon, Circle,
Triangle, and Quadrilateral. In addition, there is a main.cc and a CMakeLists.txt . Observe the use of
the keywords like default , override , final etc. Familiarise yourself with

Implementation of inherited classes
Compiling multi-file projects
The use of base class pointer arrays to work with heterogeneous types of objects

mkdir build
cd build
CXX=g++ cmake ..
make

Member of the Helmholtz Association May 10, 2022 Slide 100

	Stack
	Dynamic memory
	Runtime error handling
	Exceptions
	Assertions

	C++ classes
	Member functions
	Const member functions
	Constructors
	Destructors
	Copying and assigning
	Move semantics
	Big five (or zero)
	public and private members
	static members
	Function objects

	Inheritance and class hierarchies
	Class inheritance
	Inheritance with virtual functions
	override, final etc.

