
PROGRAMMING IN C++
Jülich Supercomputing Centre
8 – 12 May 2023 Sandipan Mohanty Forschungszentrum Jülich, Germany

Member of the Helmholtz Association

Chapter 1

Introduction

Member of the Helmholtz Association 8 – 12 May 2023 Slide 1

ELEGANT AND EFFICIENT ABSTRACTIONS

Software development challenges
Handle increasingly more complex problems
Rich set of concepts with which to imagine
what can be done
Collaborative development
Long term maintainability
Do all of the above, and yet deliver code that
runs as fast as possible

C++ provides ...
Direct mapping of built in operations and
types to hardware
Powerful and efficient abstraction mechanisms
Multi paradigm programming: Procedural,
object oriented, generic and functional
programming

Member of the Helmholtz Association 8 – 12 May 2023 Slide 2

C++
General purpose: no specialisation to specific usage areas
No mandatory simplification that precludes a direct expert level use of hardware resources
Leave no room for a lower level language
You don’t pay for features you don’t use
Express

ideas directly in code
simple ideas with simple code
independent ideas independently in code
relationships among ideas directly in code

Combine ideas expressed in code freely

Member of the Helmholtz Association 8 – 12 May 2023 Slide 3

C++ “GENES”

Overloading

Static typing

Stack execution model

Scoping rules

Generic programmingResource management

Const(ant) correctness

Program organisation

Member of the Helmholtz Association 8 – 12 May 2023 Slide 4

LEARNING C++ IN 2023

“Why, when there are easier, safer languages around?”

Isn’t AI going to write all our programs from now on?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 5

LEARNING C++ IN 2023

“Why, when there are easier, safer languages around?”
Isn’t AI going to write all our programs from now on?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 5

USING AI LANGUAGE MODELS AS A PART OF
LEARNING

Many answers are good, which is very impressive! And it is getting better.

Many are also plain wrong. Not surprising, considering that the internet is full of bad (code) examples and
demonstrably false but religiously held convictions (sometimes about C++!). And the AI trains on that.
Unfortunately, even nonsensical answers are delivered with good grammar and authoritative language.
An experienced developer can, perhaps, use something like chatgpt as a glorified auto-complete plugin.
When the AI goes astray, the developer can ignore the suggestion from the language engine and fix the code.
When learning, you need to steer clear, and develop your foundations yourself.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 7

USING AI LANGUAGE MODELS AS A PART OF
LEARNING

Many answers are good, which is very impressive! And it is getting better.
Many are also plain wrong. Not surprising, considering that the internet is full of bad (code) examples and
demonstrably false but religiously held convictions (sometimes about C++!). And the AI trains on that.
Unfortunately, even nonsensical answers are delivered with good grammar and authoritative language.

An experienced developer can, perhaps, use something like chatgpt as a glorified auto-complete plugin.
When the AI goes astray, the developer can ignore the suggestion from the language engine and fix the code.
When learning, you need to steer clear, and develop your foundations yourself.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 7

USING AI LANGUAGE MODELS AS A PART OF
LEARNING

Many answers are good, which is very impressive! And it is getting better.
Many are also plain wrong. Not surprising, considering that the internet is full of bad (code) examples and
demonstrably false but religiously held convictions (sometimes about C++!). And the AI trains on that.
Unfortunately, even nonsensical answers are delivered with good grammar and authoritative language.
An experienced developer can, perhaps, use something like chatgpt as a glorified auto-complete plugin.
When the AI goes astray, the developer can ignore the suggestion from the language engine and fix the code.

When learning, you need to steer clear, and develop your foundations yourself.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 7

USING AI LANGUAGE MODELS AS A PART OF
LEARNING

Many answers are good, which is very impressive! And it is getting better.
Many are also plain wrong. Not surprising, considering that the internet is full of bad (code) examples and
demonstrably false but religiously held convictions (sometimes about C++!). And the AI trains on that.
Unfortunately, even nonsensical answers are delivered with good grammar and authoritative language.
An experienced developer can, perhaps, use something like chatgpt as a glorified auto-complete plugin.
When the AI goes astray, the developer can ignore the suggestion from the language engine and fix the code.
When learning, you need to steer clear, and develop your foundations yourself.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 7

LEARNING C++
It takes time.
It takes caution!
There is an astonishing amount of misinformation about the language on the internet, some outdated, some
were never true...
Strong foundations in the building blocks of the language, will help you filter out incorrect information.

Scientific method: conduct your own “experiments” to test ideas
Self-study over a much longer period
Collaborative projects with good senior programmers
Curiosity about an evolving language
Two kinds of challenges: How can I do this ? What can I do with this ?
Goals for this course: emphasis on fundamentals, a tour of what exists, methods to facilitate continued
learning

Member of the Helmholtz Association 8 – 12 May 2023 Slide 8

LEARNING C++
It takes time.
It takes caution!
There is an astonishing amount of misinformation about the language on the internet, some outdated, some
were never true...
Strong foundations in the building blocks of the language, will help you filter out incorrect information.
Scientific method: conduct your own “experiments” to test ideas

Self-study over a much longer period
Collaborative projects with good senior programmers
Curiosity about an evolving language
Two kinds of challenges: How can I do this ? What can I do with this ?
Goals for this course: emphasis on fundamentals, a tour of what exists, methods to facilitate continued
learning

Member of the Helmholtz Association 8 – 12 May 2023 Slide 8

LEARNING C++
It takes time.
It takes caution!
There is an astonishing amount of misinformation about the language on the internet, some outdated, some
were never true...
Strong foundations in the building blocks of the language, will help you filter out incorrect information.
Scientific method: conduct your own “experiments” to test ideas
Self-study over a much longer period
Collaborative projects with good senior programmers
Curiosity about an evolving language

Two kinds of challenges: How can I do this ? What can I do with this ?
Goals for this course: emphasis on fundamentals, a tour of what exists, methods to facilitate continued
learning

Member of the Helmholtz Association 8 – 12 May 2023 Slide 8

LEARNING C++
It takes time.
It takes caution!
There is an astonishing amount of misinformation about the language on the internet, some outdated, some
were never true...
Strong foundations in the building blocks of the language, will help you filter out incorrect information.
Scientific method: conduct your own “experiments” to test ideas
Self-study over a much longer period
Collaborative projects with good senior programmers
Curiosity about an evolving language
Two kinds of challenges: How can I do this ? What can I do with this ?

Goals for this course: emphasis on fundamentals, a tour of what exists, methods to facilitate continued
learning

Member of the Helmholtz Association 8 – 12 May 2023 Slide 8

LEARNING C++
It takes time.
It takes caution!
There is an astonishing amount of misinformation about the language on the internet, some outdated, some
were never true...
Strong foundations in the building blocks of the language, will help you filter out incorrect information.
Scientific method: conduct your own “experiments” to test ideas
Self-study over a much longer period
Collaborative projects with good senior programmers
Curiosity about an evolving language
Two kinds of challenges: How can I do this ? What can I do with this ?
Goals for this course: emphasis on fundamentals, a tour of what exists, methods to facilitate continued
learning

Member of the Helmholtz Association 8 – 12 May 2023 Slide 8

C++ IN MAY 2023
Current standard with stable implementations:
C++17.
Latest standard approved by the ISO C++
committee: C++20
All language features and almost all library features
of C++17 are available in the two major open
source compilers: GCC and Clang.
Some C++20 features are still not satisfactorily
implemented, but available implementations are
adequate for learning and testing
Microsoft’s MSVC compiler is currently the
compiler with more implemented C++20 features
than any other compiler

1 xarray<double> rt
2 = load_csv<double>(fin, '\t');
3
4 rt -= mean(rt, 0.);
5
6 xarray<double> cross =
7 linalg::dot(transpose(rt), rt);
8
9 auto [lambda, v] = linalg::eig(cross);

Easier, cleaner and more efficient language
Elegant syntax, without compromising speed or
safety

Summary of compiler support for different language library features for different C++ standards can be looked
up at cppreference.com

Member of the Helmholtz Association 8 – 12 May 2023 Slide 9

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support

C++ IN MAY 2023
Current standard with stable implementations:
C++17.
Latest standard approved by the ISO C++
committee: C++20
All language features and almost all library features
of C++17 are available in the two major open
source compilers: GCC and Clang.
Some C++20 features are still not satisfactorily
implemented, but available implementations are
adequate for learning and testing
Microsoft’s MSVC compiler is currently the
compiler with more implemented C++20 features
than any other compiler

1 using namespace std::chrono;
2 using Date = year_month_day;
3
4 year Y { asked_year.value_or(current_year())};
5
6 Date s4 { Y / December / Sunday[4] };
7 Date s3 { Y / December / Sunday[3] };
8 Date xmas { Y / December / 25d };
9 Date lastadv { s4 >= xmas ? s3 : s4 };

Easier, cleaner and more efficient language
Elegant syntax, without compromising speed or
safety

Summary of compiler support for different language library features for different C++ standards can be looked
up at cppreference.com

Member of the Helmholtz Association 8 – 12 May 2023 Slide 9

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support

COMPILER SUPPORT FOR C++ STANDARDS
Check the latest status of compiler support for C++11, C++14, C++17, C++20 etc by following this link.
Open source GCC and Clang compilers held the edge in providing access to the latest language features. For
C++20, their support in open source compilers is still patchy, although steadily improving. It’s usually
better to use as new a version as possible
Since version 11.x, GCC uses C++17 as its default.
Clang makes the default standard a CMake configuration option, but is very often built with C++98 as the
default. In any case, there is usually an option to explicitly specify the standard we want to use with a
command line option, such as -std=c++17 or -std=c++20 .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 10

https://en.cppreference.com/w/cpp/compiler_support

COURSE CONTENT
Language fundamentals

Small applications using C++ standard library facilities
C++ classes in detail
C++ templates
Standard template library in detail
Some useful open source C++ libraries
Program organisation: expected changes

which means...
Basic structure of a program
Types, values and variables
Mutability controls
Statements, blocks
Branches, loops
Exceptions and C++ control flow
Functions and lambda expressions
Scope

Member of the Helmholtz Association 8 – 12 May 2023 Slide 11

COURSE CONTENT
Language fundamentals
Small applications using C++ standard library facilities

C++ classes in detail
C++ templates
Standard template library in detail
Some useful open source C++ libraries
Program organisation: expected changes

which means...
Strings
Containers and algorithms
Input/Output

Member of the Helmholtz Association 8 – 12 May 2023 Slide 11

COURSE CONTENT
Language fundamentals
Small applications using C++ standard library facilities
C++ classes in detail

C++ templates
Standard template library in detail
Some useful open source C++ libraries
Program organisation: expected changes

which means...
Detailed syntax explanation
RAII
Operator overloading
Invariants
Inheritance and virtual dispatch
SOLID principles

Member of the Helmholtz Association 8 – 12 May 2023 Slide 11

COURSE CONTENT
Language fundamentals
Small applications using C++ standard library facilities
C++ classes in detail
C++ templates

Standard template library in detail
Some useful open source C++ libraries
Program organisation: expected changes

which means...
Function, class and variable templates
Constrained templates using
concepts

Variadic templates

Member of the Helmholtz Association 8 – 12 May 2023 Slide 11

COURSE CONTENT
Language fundamentals
Small applications using C++ standard library facilities
C++ classes in detail
C++ templates
Standard template library in detail

Some useful open source C++ libraries
Program organisation: expected changes

which means...
Iterator based design of containers
Containers and algorithms
Ranges
Date and time
Random numbers
Smart pointers
Text formatting

Member of the Helmholtz Association 8 – 12 May 2023 Slide 11

COURSE CONTENT
Language fundamentals
Small applications using C++ standard library facilities
C++ classes in detail
C++ templates
Standard template library in detail
Some useful open source C++ libraries

Program organisation: expected changes

which means...
Open source libraries enabling the use of
some C++20 features before they are
implemented in compilers
Better regular expressions

Member of the Helmholtz Association 8 – 12 May 2023 Slide 11

COURSE CONTENT
Language fundamentals
Small applications using C++ standard library facilities
C++ classes in detail
C++ templates
Standard template library in detail
Some useful open source C++ libraries
Program organisation: expected changes

which means...
Modules

Member of the Helmholtz Association 8 – 12 May 2023 Slide 11

Fundamentals

Member of the Helmholtz Association 8 – 12 May 2023 Slide 12

A COMPILED LANGUAGE
1 // Hello World!
2 #include <iostream>
3 auto main() -> int
4 {
5 std::cout<<"Hello, world!\n";
6 }

g++ -std=c++20 hello.cc
./a.out

clang++ -std=c++20 hello.cc
./a.out

1 cppint
2 >>> std::cout << "Hello, world!\n";
3 >>> quit

Program: Step by step recipe for performing a computational
task
Expressed using precise deterministic rules in human readable
programming languages
Source code is translated to the machine language by the
compiler
The compiler enforces rules of the language
Rules enable accurate expression of intent
The compiler performs analysis of syntax tree, optimisation
passes, automatic discovery of shortcuts
Same observable effects as the source code, but not necessarily
doing everything exactly as you say.
There are some “interpreters” to try out small bits of code,
and one such interpreter (your shortcut: cppint) is installed
in the class room computers.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 13

Member of the Helmholtz Association 8 – 12 May 2023 Slide 14

THE COMPILATION PROCESS

Member of the Helmholtz Association 8 – 12 May 2023 Slide 15

COMMAND LINE ARGUMENTS
In the argc, argv form of main, the command
line is broken into a sequence of character strings
and passed as the array argv

The name of the program is the first string in this
list, argv[0] . Therefore argc is never 0.

1 // examples/hello_xyz.cc
2 #include <iostream>
3 auto main(int argc, char *argv[]) -> int
4 {
5 std::cout<<"Hello, ";
6 if (argc > 1)
7 std::cout <<argv[1]<< "!\n";
8 else
9 std::cout<<"world!\n";

10 }
11 g++ main.cpp && ./a.out rain clouds

Exercise 1.1:
Open the example examples/hello_xyz.cc in a text editor or IDE. Familiarise yourself with the process of
compiling and running simple programs. Run this program with different command line options. Alternatively,
open http://coliru.stacked-crooked.com/, copy and paste the above program and run it with some
command line options!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 16

http://coliru.stacked-crooked.com/

THE MAIN() FUNCTION
All C++ programs must contain a unique main() function
All executed code, that is not related to the initialisation of a global variable, is contained either in
main() , or in functions invoked directly or indirectly from main()

The return value for main() is canonically an integer. A value 0 means successful completion, any other
value means errors. UNIX based operating systems make use of this.
In a C++ main function, the return 0; at the end of main() can be omitted. This omission is
only allowed for main() . Any other function promising to return something must have an appropriate
return statement.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 17

FUNCTION CALL TREE
auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

Every function contains control flow regulating keywords or expressions.
Some of the expressions may be function calls which will cause instructions in that other function to be
executed
The execution tree starts at the main function

Member of the Helmholtz Association 8 – 12 May 2023 Slide 18

CODE LEGIBILITY
1 auto foo(double x, int i) -> double
2 {
3 double y=1;
4 if (i>0) {
5 for (int j=0;j<i;++j) {
6 y *= x;
7 }
8 } else if (i<0) {
9 for (int j=0;j>i;--j) {

10 y /= x;
11 }}
12 return y;
13 }

Human brains are not made for searching { and } in dense text

Member of the Helmholtz Association 8 – 12 May 2023 Slide 19

STYLE
1 auto foo(double x, int i) -> double
2 {
3 double y = 1;
4 if (i > 0) {
5 for (int j = 0; j < i; ++j) {
6 y *= x;
7 }
8 } else if (i < 0) {
9 for (int j = 0; j > i; --j) {

10 y /= x;
11 }
12 }
13 return y;
14 }

Indenting code clarifies the logic
Misplaced brackets, braces etc. are easier to detect
4-5 levels of nesting is sometimes unavoidable
Recommendation: indent with 2-4 spaces and be consistent!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 20

STYLE
1 auto foo(double x, int i) -> double
2 {
3 double y = 1;
4 if (i > 0) {
5 for (int j = 0; j < i; ++j) {
6 y *= x;
7 }
8 } else if (i < 0) {
9 for (int j = 0; j > i; --j) {

10 y /= x;
11 }
12 }
13 return y;
14 }

Use a consistent convention for braces ({ and }).
Use a tool like clang-format to clean up formatting before
committing code to your version control system
The utility cf included with your course material (Usage:
cf sourcefile.cc) formats code using clang-format with

the WebKit style.
Set up your editor to indent automatically! In Qt creator, set
up auto indentation with “clang format” by going to Tools
→Options →Beautifier.

These are for the human reader (most often, yourself!). Be nice to yourself, and write code that is easy on
the eye!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 21

READ C++

1 // examples/hello_qa.cc
2 #include <string>
3 #include <iostream>
4
5 auto main() -> int
6 {
7 std::string name;
8 std::cout << "What's your name ? ";
9 std::cin >> name;

10 std::cout << "Hello, " << name << "\n";
11 }

Exercise 1.2:
What does this code do ? What if you answer with a name with multiple parts ? Replace the line where we read
in to the variable name with getline(std::cin, name); , and repeat. If you run the program from
your IDE, you may have to adjust your “run” settings (Qt creator: Projects →Build and run →Run : “run in
terminal”).

Member of the Helmholtz Association 8 – 12 May 2023 Slide 22

WRITE A VERY SIMPLE FUNCTION...

1 // examples/min_of_three.cc
2 #include <iostream>
3 auto min_of_three(int a, int b, int c) -> int
4 {
5 // recipe needed!
6 return a;
7 }
8 auto main() -> int
9 {

10 int i = 0, j = 0, k = 0;
11 std::cout << "Enter i, j and k: ";
12 std::cin >> i >> j >> k;
13 std::cout << "The smallest of the three is " << min_of_three(i, j, k) << "\n";
14 }

Exercise 1.3:
Fill in the code in examples/min_of_three.cc so that the function returns the smallest of the 3 input values.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 23

WRITE A VERY SIMPLE FUNCTION...
1 // examples/midpt.cc
2 #include <iostream>
3 auto mid(int a, int b) -> int
4 {
5 // recipe needed!
6 return a;
7 }
8 auto main() -> int
9 {

10 int i = 0, j = 0;
11 std::cout << "Enter i, j: ";
12 std::cin >> i >> j;
13 std::cout << "A number half way between " << i << " and " << j
14 << " is " << mid(i, j) << "\n";
15 }

Exercise 1.4:
Fill in the code necessary in examples/midpt.cc so that the function returns a value half way between the two
inputs, for small integers.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 24

DATA TYPES

Since 13 and 2 are integers, 13 / 2 means integer division in C++. 13 % 2 would return the
remainder of the integer division
Arithmetic operations between values of identical built in types produce the same type of output
The meaning of operations on values depends on the type of the values

Member of the Helmholtz Association 8 – 12 May 2023 Slide 25

DATA TYPES
A digital computer stores and processes information in binary bits
Bit representation of even the simplest entities like integers or floating point numbers is a matter of
convention; compare

1 int i = 1; // 00000000000000000000000000000001
2 float i = 1; // 00111111100000000000000000000000

Semantic meanings associated with a collection of bits is not inherent to the bits, but is imparted by the
type associated with those bits
Small differences in the text representation of numbers like 1 or 1. might translate to much bigger
differences for the processor

Member of the Helmholtz Association 8 – 12 May 2023 Slide 26

TYPES, VARIABLES AND DECLARATIONS
1 auto force(double m1, double m2, double r12)
2 -> double
3 {
4 const auto G{ 6.67408e-11 };
5 return G * m1 * m2 / (r12 * r12);
6 }

1 // Old style, but still fine
2 unsigned long x = 0;
3 string name{"Maple"};
4 vector<int> v{1, 2, 3, 4, 5};
5 tuple<int, int, string> R{0, 0, "A"};
6 complex<double> z{0.5, 0.6};

A "type" defines the possible values and operations for an object
An "object" is some memory holding a value of a certain type
A "value" is bits interpreted according to a certain type
A "variable" is a named object
A "declaration" is a statement introducing a name into the program
Statically typed: types of all created variables are known at compilation time.
A variable can not change its type.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 27

BUILT IN AND USER DEFINED TYPES
Built in types

Types like char , bool , int , float , double are known as fundamental types
Fundamental types are implicitly inter-converted when required
Arithmetic operations +, −, ∗, /, as well as comparisons <, >, <=, >=, ==, ! = are defined for the
fundamental types, and mapped directly to low level instructions
Like in many languages, = is assignment where as == is equality comparison
Note how variables are "initialised" to sensible values when they are declared

Class types

Additional types can be introduced to a program using keywords class , struct , enum and
enum class , and much less commonly union

Behaviour of a user defined type is programmable

Member of the Helmholtz Association 8 – 12 May 2023 Slide 29

INITIALISATION
Both int i = 23 and int i{ 23 } are valid initialisation
The newer curly bracket form should be preferred, as it does not allow "narrowing" initialisation:
int i{ 2.3 }; // Compiler error

The curly bracket form can also be used to initialise C++ collections:

1 std::list<double> masses{0.511, 938.28, 939.57};
2 std::vector<int> scores{667, 1}; // Vector of two elements, 667 and 1

3 std::vector<int> lows(250, 0) ; // vector of 250 zeros

In rare cases, initialisation requires () for disambiguation
Since C++17, standard container types use a new language feature called “class template argument
deduction” (CTAD) to infer the element type from the initialiser expression
Variables can be declared anywhere in the program. Avoid declaring a variable until you have something
meaningful to store in it

Member of the Helmholtz Association 8 – 12 May 2023 Slide 30

INITIALISATION
Both int i = 23 and int i{ 23 } are valid initialisation
The newer curly bracket form should be preferred, as it does not allow "narrowing" initialisation:
int i{ 2.3 }; // Compiler error

The curly bracket form can also be used to initialise C++ collections:

1 std::list masses{0.511, 938.28, 939.57};
2 std::vector scores{667,1}; // Vector of two elements, 667 and 1

3 std::vector lows(250, 0) ; // vector of 250 zeros

In rare cases, initialisation requires () for disambiguation
Since C++17, standard container types use a new language feature called “class template argument
deduction” (CTAD) to infer the element type from the initialiser expression
Variables can be declared anywhere in the program. Avoid declaring a variable until you have something
meaningful to store in it

Member of the Helmholtz Association 8 – 12 May 2023 Slide 30

THE UNIFORM INITIALISATION SYNTAX
1 int I{20};
2 // define integer I and set it to 20
3 string nat{"Germany"};
4 // define and initialise a string
5 double a[4]{1., 22.1, 19.3, 14.1};
6 // arrays have the same syntax
7 tuple<int,int,double> x{0, 0, 3.14};
8 // So do tuples
9 list<string> L{"abc", "def", "ghi"};

10 // and lists, vectors etc.
11 double m = 0.5; // Initialising with '='
12 // is ok for simple variables, but ...
13 int k = 5.3; // Allowed, although the
14 // integer k stores 5, and not 5.3
15 int j{5.3}; // Helpful compiler error.
16 int i{}; // i=0
17 vector<int> u{4, 0}; // u={4, 0}
18 vector<int> v(4, 0); // v={0, 0, 0, 0}

Variables can be initialised at the point of
declaration with a suitable value enclosed in {}

Historical note: Pre-C++11, only the = and ()
notations (also demonstrated in the left panel) were
available. Initialising non trivial collections was not
allowed.

Recommendation: Use {} initialisation syntax as your default. A few exceptional situations requiring the
() or = syntax can be seen in the left panel.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 31

THE KEYWORDS AUTO AND DECLTYPE
1 auto sqr(int x) -> int { return x * x; }
2 auto main() -> int {
3 char oldchoice{'u'}, choice{'y'};
4 size_t i = 20'000'000;
5 //group digits for readability!
6 double electron_mass{ 0.511 };
7 int mes[6]{33, 22, 34, 0, 89, 3};
8 bool flag{ true };
9 decltype(i) j{ 9 };

10 auto positron_mass = electron_mass;
11 auto f = sqr; // Without "auto", f can
12 // be declared like this:
13 //int (*f)(int) = &sqr;
14 std::cout << f(j) << '\n';
15 auto muon_mass{ 105.6583745 };
16 // If somefunc() returns
17 // tuple<string, int, double>
18 auto [name, nspinstates, lifetime]
19 = somefunc(serno);
20 }

The keyword auto can be used to declare a
variable as auto x{initialiser} or
auto x = initialiser . The variable is then

created with the type and value of the
initialiser .

The keyword decltype can be used to say
"same type as that one"
Since C++17, new names can be bound to
components of a tuple, as shown

Member of the Helmholtz Association 8 – 12 May 2023 Slide 32

USING LITERALS WITH PRECISE TYPES
1 auto age = 7;
2 auto pi = 3.141592653589793;
3 auto energy = 0;
4 auto city = "Barcelona";

What are the types of the variables declared here?

How can we make sure that age is unsigned,
pi and energy are double precision, and
city is a string ?

Writing literals with precise types is a good habit,
i.e., 0. rather than 0 if you mean a floating
point value, 0U rather than 0 if you mean an
unsigned value. . .
C++ allows you to make new literals for user
defined types

Member of the Helmholtz Association 8 – 12 May 2023 Slide 33

USING LITERALS WITH PRECISE TYPES
1 auto age = 7;
2 auto pi = 3.141592653589793;
3 auto energy = 0;
4 auto city = "Barcelona";

What are the types of the variables declared here?
How can we make sure that age is unsigned,
pi and energy are double precision, and
city is a string ?

Writing literals with precise types is a good habit,
i.e., 0. rather than 0 if you mean a floating
point value, 0U rather than 0 if you mean an
unsigned value. . .
C++ allows you to make new literals for user
defined types

Member of the Helmholtz Association 8 – 12 May 2023 Slide 33

USING LITERALS WITH PRECISE TYPES
1 auto age = 7U;
2 auto pi = 3.141592653589793;
3 auto energy = 0.;
4 using namespace std::string_literals;
5 auto city = "Barcelona"s;
6 auto bigpositive = 0UL;
7 auto fort_real = 0.0F;
8 // With proper user defined functions
9 auto T1 = 300_Kelvin;

10 auto T2 = 100_Celcius;
11 auto dist = 4.5_KM + 6.3_Miles;

What are the types of the variables declared here?
How can we make sure that age is unsigned,
pi and energy are double precision, and
city is a string ?

Writing literals with precise types is a good habit,
i.e., 0. rather than 0 if you mean a floating
point value, 0U rather than 0 if you mean an
unsigned value. . .

C++ allows you to make new literals for user
defined types

Member of the Helmholtz Association 8 – 12 May 2023 Slide 33

USING LITERALS WITH PRECISE TYPES
1 auto age = 7U;
2 auto pi = 3.141592653589793;
3 auto energy = 0.;
4 using namespace std::string_literals;
5 auto city = "Barcelona"s;
6 auto bigpositive = 0UL;
7 auto fort_real = 0.0F;
8 // With proper user defined functions
9 auto T1 = 300_Kelvin;

10 auto T2 = 100_Celcius;
11 auto dist = 4.5_KM + 6.3_Miles;

What are the types of the variables declared here?
How can we make sure that age is unsigned,
pi and energy are double precision, and
city is a string ?

Writing literals with precise types is a good habit,
i.e., 0. rather than 0 if you mean a floating
point value, 0U rather than 0 if you mean an
unsigned value. . .
C++ allows you to make new literals for user
defined types

Member of the Helmholtz Association 8 – 12 May 2023 Slide 33

C++ STANDARD LIBRARY STRINGS
1 #include <string>
2 std::string fullname;
3 std::string name{"Albert"};
4 using namespace std::string_literals;
5 auto surname{"Einstein"s};
6 //Concatenation and assignment
7 fullname = name + " " + surname;
8
9 //Comparison

10 if (name == "Godzilla") run();
11
12 std::cout << fullname << '\n';
13
14 for (size_t i = 0; i < fullname.size(); ++i) {
15 if (fullname[i] > 'j') blah += fullname[i];
16 }
17 std::cout << "Substring after last z is "
18 << name.substr(
19 name.find_last_of('z'));

String of characters
Knows its size (see example)
Allocates and frees memory as needed
Simple syntax for assignment (=),
concatenation(+), comparison (<,==,>)

The namespace std::string_literals
defines the necessary functions to write literals
which are interpreted as std::string instead
of raw character arrays

Member of the Helmholtz Association 8 – 12 May 2023 Slide 34

CONVERTING TO AND FROM STRINGS

1 int i{10}, j{20};
2 std::string s{ std::to_string(i + j) }; // s: "30"
3 std::string t{ std::to_string(i) + std::to_string(j) }; // t: "1020"
4 tot += std::stod(line); // String-to-double

The standard library string class provides functions to inter-convert with variables of type int ,
double

Exercise 1.5:
Test example usage of string ↔ number conversions in examples/to_string.cc and examples/stoX.cc

Member of the Helmholtz Association 8 – 12 May 2023 Slide 35

STD::STRING_VIEW
1 std::string_view viewse{"Norrsken"};
2 using namespace std::string_view_literals;
3 auto viewen{"Northern lights"sv};
4
5 auto proc(std::string_view inp) -> bool
6 {
7 if (inp.ends_with("et")) {
8 if (inp.substr(0UL, 3UL) == blah)
9 // ...

10 }
11 }

Lightweight entity similar to std::string .
Does not own its content.
"View" over an existing array of characters, either
in a string or in a character literal or a plain
character array
Does not own any data, does not try to do any
memory management
Can be compared like (and with) std::string
objects
Can not grow (no memory management!), but can
shrink
Cheap to pass to functions by value
Has its own literal definitions in the namespace
std::string_view_literals

Member of the Helmholtz Association 8 – 12 May 2023 Slide 36

RAW STRING LITERALS
// Instead of ...
string message{"The tag \"\\maketitle\" is unexpected here."};
// You can write ...
string message{R"(The tag "\maketitle" is unexpected here.)"};

Can contain line breaks, ’\’ characters without escaping them, like the triple quote strings in Python
Very useful with regular expressions

Starts with R"(and ends with)"

More general form R"delim(text)delim"

Exercise 1.6:
The file examples/rawstring.cc illustrates raw strings in use. The file examples/raw1.cc has a
small program printing a message about using the continuation character ’\’ at the end of the line to continue
the input. Modify using raw string literals.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 37

BLOCKS
A C++ statement is a step in the recipe of the program
either declaring a new symbol for later use, expressing a computation or some other action on pre-declared
symbols
Blocks are groups of statements enclosed by a pair of braces.

1 { // begin : block 0
2 auto i = 0;
3 while (i >= 0) { // begin : block 1
4 // calc with i
5 { // begin : block 2
6 auto x = cos(i * pi/180);
7 auto y = sin(i * pi/180);
8 // more
9 } // end : block 2

10
11 } // end : block 1
12 } // end : block 0

Member of the Helmholtz Association 8 – 12 May 2023 Slide 38

SCOPE OF VARIABLE NAMES
1 auto find_root() -> double
2 {
3 for (int i = 0; i < N; ++i) {
4 //counter i defined only in this "for" loop.
5 }
6 double newval = 0; // This is ok.
7 for (int i = 0; i < N; ++i) {
8 // The counter i here is a different entity
9 if (newval < 5) {

10 string fl{"small.dat"};
11 // do something
12 }
13 newval=...;
14 cout << fl << '\n'; // Error!
15 }
16 int fl = 42; // ok, but shadowed below
17 if (auto fl = filename; val < 5) { // C++17
18 // fl is available here
19 } else {
20 // fl is also available here
21 }
22 }

A variable declaration creates a variable
The scope of a variable is the lines of code where a
variable can be accessed (unless shadowed)
A scope is:

For variables declared in a block, bounded by { and
} , the lines from the point of declaration till the }

A loop or a function body
Both if and else parts of an if statement

Variables defined in a block exist from the point of
declaration till the end of the scope. After that, the
name may be reused.
A nested child block may define a new variable with a
name already in use. The new variable is then said to
“shadow” the existing one. The
visibility of the outer variable can then be

discontinuous.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 39

SCOPE OF VARIABLE NAMES
1 void example()
2 {
3 std::string moon{"Titan"};
4 std::string name = moon;

5 std::cout << name;

6 {

7 std::cout << name;

8 int name{10};

9 name = name - 3;

10 std::cout << name;

11 }

12 std::cout << name ;

13 }

A variable declaration creates a variable
The scope of a variable is the lines of code where a
variable can be accessed (unless shadowed)
A scope is:

For variables declared in a block, bounded by { and
} , the lines from the point of declaration till the }

A loop or a function body
Both if and else parts of an if statement

Variables defined in a block exist from the point of
declaration till the end of the scope. After that, the
name may be reused.
A nested child block may define a new variable with a
name already in use. The new variable is then said to
“shadow” the existing one. The
visibility of the outer variable can then be

discontinuous.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 39

SCOPE OF VARIABLE NAMES
1 // Somewhere in a function ...
2 auto imp = imp_calc();
3 while (some_condition_holds) {
4 // Calculations
5 // more calc
6 // more calc
7 if (imp > 0) {
8
9 } else {

10
11 }
12 // hundred more lines till the end
13 // of the while loop body

Type attached to a name at any point in a C++
program can always be determined by the
examining scopes and declarations, without
considering the path taken at runtime to reach that
point
To deduce the type of entity the symbol imp
represents in line 7, you have to look upwards from
that point to the nearest declaration for that name.
Nothing that happens in the loop below that line
can change this deduction, unlike the meaning of
the symbol fact in line 16 of the python

example here.

Properties of symbols in C++ can always be deduced by a purely spatial analysis in the space of source lines.
Static typing and C++ scoping rules ensure that we don’t have to perform a space-time analysis

Member of the Helmholtz Association 8 – 12 May 2023 Slide 40

SCOPE OF VARIABLE NAMES
1 # Python code (pyscope2.py). This is purposely
2 # badly written code to illustrate possible
3 # dangers of dynamic variable scope.
4 import sys
5 if __name__ == "__main__":
6 if len(sys.argv) > 1:
7 N = int(sys.argv[1])
8 else:
9 N = 5

10
11 def fact(n):
12 if n > 1:
13 return n * fact(n-1)
14 return 1
15 while N > 0:
16 print(fact(N))
17 if N % 4 == 0:
18 fact = N * (N - 1) / 2
19 N = N -1

Type attached to a name at any point in a C++
program can always be determined by the
examining scopes and declarations, without
considering the path taken at runtime to reach that
point
To deduce the type of entity the symbol imp
represents in line 7, you have to look upwards from
that point to the nearest declaration for that name.
Nothing that happens in the loop below that line
can change this deduction, unlike the meaning of
the symbol fact in line 16 of the python

example here.

Properties of symbols in C++ can always be deduced by a purely spatial analysis in the space of source lines.
Static typing and C++ scoping rules ensure that we don’t have to perform a space-time analysis

Member of the Helmholtz Association 8 – 12 May 2023 Slide 40

SCOPE OF VARIABLE NAMES
1 // Somewhere in a function ...
2 auto imp = imp_calc();
3 while (some_condition_holds) {
4 // Calculations
5 // more calc
6 // more calc
7 if (imp > 0) {
8
9 } else {

10
11 }
12 // hundred more lines till the end
13 // of the while loop body

Type attached to a name at any point in a C++
program can always be determined by the
examining scopes and declarations, without
considering the path taken at runtime to reach that
point
To deduce the type of entity the symbol imp
represents in line 7, you have to look upwards from
that point to the nearest declaration for that name.
Nothing that happens in the loop below that line
can change this deduction, unlike the meaning of
the symbol fact in line 16 of the python

example here.

Properties of symbols in C++ can always be deduced by a purely spatial analysis in the space of source lines.
Static typing and C++ scoping rules ensure that we don’t have to perform a space-time analysis

Member of the Helmholtz Association 8 – 12 May 2023 Slide 40

CONSTANTS
1 auto G = 6.674e-11 ;

2 auto pi = 3.141592653589793 ;

3 auto m1 = 1.0e10, m2 = 1.0e4;
4 auto r = 10;
5 std::cout << "Force = "
6 << -G * m1 * m2 / (r * r)
7 << "\n"; // great!
8 G = G + 1;
9 std::cout << "Force = "

10 << -G * m1 * m2 / (r * r)
11 << "\n"; // wrong!
12
13 for (auto i = 0; i < 360; ++pi) {
14 std::cout << sin(i * pi / 180);
15 }

Some entities we need in computations should
not be able to change

Simple typos might lead to horribly incorrect (if
we are lucky) or subtly incorrect results which can
go unnoticed for a long time
The const qualifier in C++ is used to mark
variables as constants
Attempting to modify a const qualified variable
is a compiler error, so that we can not proceed
without fixing these errors
In general fewer mutable variables makes code
easier to debug, so that making a habit of first
making all new variables const and then
consciously relaxing the qualifier for some is now
considered good practice.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 41

CONSTANTS
1 auto G = 6.674e-11 ;

2 auto pi = 3.141592653589793 ;

3 auto m1 = 1.0e10, m2 = 1.0e4;
4 auto r = 10;
5 std::cout << "Force = "
6 << -G * m1 * m2 / (r * r)
7 << "\n"; // great!

8 G = G + 1;

9 std::cout << "Force = "
10 << -G * m1 * m2 / (r * r)
11 << "\n"; // wrong!
12
13 for (auto i = 0; i < 360; ++pi) {

14 std::cout << sin(i * pi / 180);
15 }

Some entities we need in computations should
not be able to change
Simple typos might lead to horribly incorrect (if

we are lucky) or subtly incorrect results which can
go unnoticed for a long time

The const qualifier in C++ is used to mark
variables as constants
Attempting to modify a const qualified variable
is a compiler error, so that we can not proceed
without fixing these errors
In general fewer mutable variables makes code
easier to debug, so that making a habit of first
making all new variables const and then
consciously relaxing the qualifier for some is now
considered good practice.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 41

CONSTANTS
1 auto const G = 6.674e-11 ;

2 auto const pi = 3.141592653589793 ;

3 auto m1 = 1.0e10, m2 = 1.0e4;
4 auto r = 10;
5 std::cout << "Force = "
6 << -G * m1 * m2 / (r * r)
7 << "\n"; // great!
8 G = G + 1;
9 std::cout << "Force = "

10 << -G * m1 * m2 / (r * r)
11 << "\n"; // wrong!
12
13 for (auto i = 0; i < 360; ++pi) {
14 std::cout << sin(i * pi / 180);
15 }

Some entities we need in computations should
not be able to change
Simple typos might lead to horribly incorrect (if

we are lucky) or subtly incorrect results which can
go unnoticed for a long time
The const qualifier in C++ is used to mark
variables as constants

Attempting to modify a const qualified variable
is a compiler error, so that we can not proceed
without fixing these errors
In general fewer mutable variables makes code
easier to debug, so that making a habit of first
making all new variables const and then
consciously relaxing the qualifier for some is now
considered good practice.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 41

CONSTANTS
1 auto const G = 6.674e-11 ;

2 auto const pi = 3.141592653589793 ;

3 auto m1 = 1.0e10, m2 = 1.0e4;
4 auto r = 10;
5 std::cout << "Force = "
6 << -G * m1 * m2 / (r * r)
7 << "\n"; // great!

8 G = G + 1; // compiler error!

9 std::cout << "Force = "
10 << -G * m1 * m2 / (r * r)
11 << "\n"; // wrong!
12
13 for (auto i = 0; i < 360; ++pi) {

14 // compiler error!
15 std::cout << sin(i * pi / 180);
16 }

Some entities we need in computations should
not be able to change
Simple typos might lead to horribly incorrect (if

we are lucky) or subtly incorrect results which can
go unnoticed for a long time
The const qualifier in C++ is used to mark
variables as constants
Attempting to modify a const qualified variable
is a compiler error, so that we can not proceed
without fixing these errors

In general fewer mutable variables makes code
easier to debug, so that making a habit of first
making all new variables const and then
consciously relaxing the qualifier for some is now
considered good practice.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 41

CONSTANTS
1 auto const G = 6.674e-11 ;

2 auto const pi = 3.141592653589793 ;

3 auto m1 = 1.0e10, m2 = 1.0e4;
4 auto r = 10;
5 std::cout << "Force = "
6 << -G * m1 * m2 / (r * r)
7 << "\n"; // great!

8 G = G + 1; // compiler error!

9 std::cout << "Force = "
10 << -G * m1 * m2 / (r * r)
11 << "\n"; // wrong!
12
13 for (auto i = 0; i < 360; ++pi) {

14 // compiler error!
15 std::cout << sin(i * pi / 180);
16 }

Some entities we need in computations should
not be able to change
Simple typos might lead to horribly incorrect (if

we are lucky) or subtly incorrect results which can
go unnoticed for a long time
The const qualifier in C++ is used to mark
variables as constants
Attempting to modify a const qualified variable
is a compiler error, so that we can not proceed
without fixing these errors
In general fewer mutable variables makes code
easier to debug, so that making a habit of first
making all new variables const and then
consciously relaxing the qualifier for some is now
considered good practice.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 41

CONSTANTS
1 auto ask_user() -> double
2 {
3 double tmp{};
4 std::cout << "Enter R0: ";
5 std::cin >> tmp;
6 return tmp;
7 }
8 void elsewhere()
9 {

10 const auto r = ask_user(); // OK
11 r = r * r; // Not OK
12 }

const does not mean compile time constant.
Just that the variable will not be changed post
initialisation.

When you declare a variable as const , you are
making a promise to not change it after
initialisation. The compiler holds you to that
promise.
For variables known to be compile time constants,
one could use constexpr

The compiler may use the value of such variables to
produce better code

Member of the Helmholtz Association 8 – 12 May 2023 Slide 42

CONSTANTS
1 auto ask_user() -> double
2 {
3 double tmp{};
4 std::cout << "Enter R0: ";
5 std::cin >> tmp;
6 return tmp;
7 }
8 void elsewhere()
9 {

10 const auto r = ask_user(); // OK
11 r = r * r; // Not OK
12 }

const does not mean compile time constant.
Just that the variable will not be changed post
initialisation.
When you declare a variable as const , you are
making a promise to not change it after
initialisation. The compiler holds you to that
promise.

For variables known to be compile time constants,
one could use constexpr

The compiler may use the value of such variables to
produce better code

Member of the Helmholtz Association 8 – 12 May 2023 Slide 42

CONSTANTS
1 constexpr auto G = 6.674e-11 ;

2 constexpr auto pi = 3.141592653589793 ;

3 auto m1 = 1.0e10, m2 = 1.0e4;
4 auto r = 10;
5 std::cout << "Force = "
6 << -G * m1 * m2 / (r * r)
7 << "\n"; // great!
8 G = G + 1; Compiler error
9 std::cout << "Force = "

10 << -G * m1 * m2 / (r * r)
11 << "\n"; // wrong!
12
13 for (auto i = 0; i < 360; ++pi) {
14 // Compiler error!
15 std::cout << sin(i * pi / 180);
16 }

const does not mean compile time constant.
Just that the variable will not be changed post
initialisation.
When you declare a variable as const , you are
making a promise to not change it after
initialisation. The compiler holds you to that
promise.
For variables known to be compile time constants,
one could use constexpr

The compiler may use the value of such variables to
produce better code

Member of the Helmholtz Association 8 – 12 May 2023 Slide 42

CONSTANTS
1 constexpr auto G = 6.674e-11 ;

2 constexpr auto pi = 3.141592653589793 ;

3 auto m1 = 1.0e10, m2 = 1.0e4;
4 auto r = 10;
5 std::cout << "Force = "
6 << -G * m1 * m2 / (r * r)
7 << "\n"; // great!
8 G = G + 1; Compiler error
9 std::cout << "Force = "

10 << -G * m1 * m2 / (r * r)
11 << "\n"; // wrong!
12
13 for (auto i = 0; i < 360; ++pi) {
14 // Compiler error!
15 std::cout << sin(i * pi / 180);
16 }

const does not mean compile time constant.
Just that the variable will not be changed post
initialisation.
When you declare a variable as const , you are
making a promise to not change it after
initialisation. The compiler holds you to that
promise.
For variables known to be compile time constants,
one could use constexpr

The compiler may use the value of such variables to
produce better code

Member of the Helmholtz Association 8 – 12 May 2023 Slide 42

BRANCHES/SELECTIONS
1 if (condition) {
2 // code
3 } else if (another condition) {
4 // code
5 } else {
6 //code
7 }
8 switch (enumerable) {
9 case 1:

10 // code
11 break;
12 case 2:
13 // code
14 break;
15 default:
16 // code
17 };
18 x = N > 10 ? 1.0 : 0.0;

The if and switch constructs can be used to
select between different alternatives at execution
time.
Conditional assignments are frequently written with
the ternary operator,
condition ? value1 : value2 , as shown

on line 18. The expression with the ternary
operator has a value value1 if the
condition is true. Otherwise it has a value
value2 The two options value1 and
value2 must have the same type.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 43

LOOPS
1 for (initialisation; condition; increment) {
2 // Loop body
3 }
4 for (int i = 0; i < N; ++i) s += a[i];
5 while (condition) {}
6 while (T > t0) {}
7 do {} while (condition);
8 do {
9 } while (ch == 'y');

10 for (variable : collection) {}
11 for (int i : {1,2,3}) f(i);
12 for (int i = 0; i < N; ++i) {
13 if (a[i] < cutoff) s+=a[i];
14 else break;
15 }
16 for (std::string s : names) {
17 if (s.size() > 10) {
18 longnames.push_back(s);
19 continue;
20 }
21 // process other names
22 }

Execute a block of code repeatedly
Loop counter for the for loop can and should
usually be declared in the loop head
The break keyword in a loop immediately stops
the loop and jumps to the code following it
The continue keyword skips all remaining
statements in the current iteration, and continues
in the loop

Member of the Helmholtz Association 8 – 12 May 2023 Slide 44

Exercise 1.7:
Write a program to print the command line arguments in the reverse order.

Exercise 1.8:
Write a function to check if a given number is a prime number. Fill in the relevant lines in
examples/check_prime.cc .

Exercise 1.9:
Let x is a positive real number, and r its square root, i.e., x = r 2. For any number y between 1 and x , z = x

y is
another such number. z and y are on opposite sides of r . In fact, iterating ri+1 = 1

2 (ri + x
ri

), for any starting r0
between 1 and x , creates a series gradually approaching r . Use this to write your own function to calculate the
square root of a real number! Verify the answer by using C++ standard library square root function,
std::sqrt .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 45

REFERENCES
1 const auto x{5.0};
2 const double y{6.0};
3
4 // different entities with same initial values
5 auto x2{ x }; // Obs: x2 is not const!
6 double y2{ y };

Variable declaration: create object with initial value,
and attach a name tag (reference) to it

If a variable name is used to initialise a new one,
auto x2{x} , the new variable will have the

same value, but will be a different entity
It is possible to “attach another name tag” to an
existing variable.
Since the new names are not independent objects,
they can’t have greater modification privileges
compared to the original variable name
xr and yr here are constant “L-value

references” (entities allowed on the left side of an
= sign) of type double

References are important for information exchange
with functions

Member of the Helmholtz Association 8 – 12 May 2023 Slide 46

REFERENCES
1 const auto x{5.0};
2 const double y{6.0};
3
4 // different entities with same initial values
5 auto x2{ x }; // Obs: x2 is not const!
6 double y2{ y };

Variable declaration: create object with initial value,
and attach a name tag (reference) to it
If a variable name is used to initialise a new one,
auto x2{x} , the new variable will have the

same value, but will be a different entity

It is possible to “attach another name tag” to an
existing variable.
Since the new names are not independent objects,
they can’t have greater modification privileges
compared to the original variable name
xr and yr here are constant “L-value

references” (entities allowed on the left side of an
= sign) of type double

References are important for information exchange
with functions

Member of the Helmholtz Association 8 – 12 May 2023 Slide 46

REFERENCES
1 const auto x{5.0};
2 const double y{6.0};
3
4 // different entities with same initial values
5 auto x2{ x }; // Obs: x2 is not const!
6 double y2{ y };
7
8 // additional references for the same object
9 const auto& xr{ x };

10 const double& yr{ y };

Variable declaration: create object with initial value,
and attach a name tag (reference) to it
If a variable name is used to initialise a new one,
auto x2{x} , the new variable will have the

same value, but will be a different entity
It is possible to “attach another name tag” to an
existing variable.

Since the new names are not independent objects,
they can’t have greater modification privileges
compared to the original variable name
xr and yr here are constant “L-value

references” (entities allowed on the left side of an
= sign) of type double

References are important for information exchange
with functions

Member of the Helmholtz Association 8 – 12 May 2023 Slide 46

REFERENCES
1 const auto x{5.0};
2 const double y{6.0};
3
4 // different entities with same initial values
5 auto x2{ x }; // Obs: x2 is not const!
6 double y2{ y };
7
8 // additional references for the same object
9 const auto& xr{ x };

10 const double& yr{ y };

Variable declaration: create object with initial value,
and attach a name tag (reference) to it
If a variable name is used to initialise a new one,
auto x2{x} , the new variable will have the

same value, but will be a different entity
It is possible to “attach another name tag” to an
existing variable.
Since the new names are not independent objects,
they can’t have greater modification privileges
compared to the original variable name

xr and yr here are constant “L-value
references” (entities allowed on the left side of an
= sign) of type double

References are important for information exchange
with functions

Member of the Helmholtz Association 8 – 12 May 2023 Slide 46

REFERENCES
1 const auto x{5.0};
2 const double y{6.0};
3
4 // different entities with same initial values
5 auto x2{ x }; // Obs: x2 is not const!
6 double y2{ y };
7
8 // additional references for the same object
9 const auto& xr{ x };

10 const double& yr{ y };

Variable declaration: create object with initial value,
and attach a name tag (reference) to it
If a variable name is used to initialise a new one,
auto x2{x} , the new variable will have the

same value, but will be a different entity
It is possible to “attach another name tag” to an
existing variable.
Since the new names are not independent objects,
they can’t have greater modification privileges
compared to the original variable name
xr and yr here are constant “L-value

references” (entities allowed on the left side of an
= sign) of type double

References are important for information exchange
with functions

Member of the Helmholtz Association 8 – 12 May 2023 Slide 46

REFERENCES
1 const auto x{5.0};
2 const double y{6.0};
3
4 // different entities with same initial values
5 auto x2{ x }; // Obs: x2 is not const!
6 double y2{ y };
7
8 // additional references for the same object
9 const auto& xr{ x };

10 const double& yr{ y };

Variable declaration: create object with initial value,
and attach a name tag (reference) to it
If a variable name is used to initialise a new one,
auto x2{x} , the new variable will have the

same value, but will be a different entity
It is possible to “attach another name tag” to an
existing variable.
Since the new names are not independent objects,
they can’t have greater modification privileges
compared to the original variable name
xr and yr here are constant “L-value

references” (entities allowed on the left side of an
= sign) of type double

References are important for information exchange
with functions

Member of the Helmholtz Association 8 – 12 May 2023 Slide 46

POINTERS

1 int i{5};
2 int* iptr{&i}; // iptr points at i
3 i += 1;
4 std::cout << *iptr ; // 6
5 (*iptr) = 0;
6 std::cout << i ; // 0
7 int& iref{i}; // iref "refers" to i
8 iref = 4;
9 std::cout << i ; // 4

A pointer is a built in type to store the memory
address of objects, with its own different arithmetic
rules
For a variable X , its memory address is &X

If iptr is a pointer, *iptr is the object it is pointing at
Adding 1 to the pointer iptr shifts it by sizeof(typeofi) bytes in memory
A reference is effectively another name for the same object
When in use, a reference appears as if it were a regular variable

Member of the Helmholtz Association 8 – 12 May 2023 Slide 47

POINTERS
Imagine computer memory as a long sequence of
bytes where information is stored
Imagine all the bytes being numbered like houses in
a very long street
An int object in a program would be stored
somewhere, and occupy 4 bytes, the address of its
first byte is called the address of the integer. If the
integer object has a name x , it’s address can be
found as &x

If multiple int objects are stored next to each
other, with no gaps, address of the integer coming
after x is sizeof(x) bytes after &x

The address of an object of any type T , can be
stored in variables of type T* , pointers to T .

int* is different from double* , char* and
even unsigned int* or const int*

For any given type T , if sizeof(T) == n ,
pointers of that type jump n bytes when we add 1
to them

Member of the Helmholtz Association 8 – 12 May 2023 Slide 48

POINTERS
If p is a pointer to an T , *p is a reference to T . This process of getting a reference out of a pointer is
called “dereferencing”.
If T is a class type, and p is a pointer to T , members for the current object p is pointing to can be
accessed as p->member or (*p).member

If x is of type T , &x is of type T* . This implies that the pointer for a const object is also const
qualified
In some ways references behave like fixed, automatically dereferenced pointers. But pointers are themselves
object types. They themselves have addresses and sizes. They can be stored in arrays. References can not
be.
If p is a pointer holding the address of an element of an array of type T , p+1 , p+2 ... are the
subsequent elements.
*(p+2) is synonymous with p[2] , *(p+1) with p[1] and, *p with p[0] .

p is the same location as &p[0]

Member of the Helmholtz Association 8 – 12 May 2023 Slide 49

POINTERS

int A[10]{0, 2, 1, 0, 3, 1, 1, 0, 0, 1};
int w{};
for (int i = 0; i < 10; ++i) w += A[i];

What does this code do ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

POINTERS

int A[10]{0, 2, 1, 0, 3, 1, 1, 0, 0, 1};
int w{};
for (int i = 0; i < 10; ++i) w += *(A+i);

What does this code do ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

POINTERS

int A[10]{0, 2, 1, 0, 3, 1, 1, 0, 0, 1};
int w{};
for (int* p{A}; p != A + 10; ++p) w += *p;

What does this code do ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

POINTERS

int A[10]{0, 2, 1, 0, 3, 1, 1, 0, 0, 1};
int w{};
int* start{A};
int* stop{A + 10};
for (int* p{start}; p != stop; ++p) {

w += *p;
}

What does this code do ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

POINTERS

int A[10]{0, 2, 1, 0, 3, 1, 1, 0, 0, 1};
int w{};
int* start{A};
int* stop{A + 10};
for (; start != stop; ++start) w += *start;

What does this code do ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

POINTERS

auto whatisit(int* start, int* stop) -> int
{

int w{};
for (; start != stop; ++start) w += *start;
return w;

}

What does this code do ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

POINTERS

void whatisit(int* start, int* stop, int* start2)
{

for (; start != stop; ++start, ++start2) *start2 = *start;
}

What does this code do ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

Exercise 1.10:
The basic concepts of the language are explained using a series of Jupyter notebooks in the folder notebooks in
the course materials. Depending on your previous knowledge, you may need to focus on different topics. The
notebooks are full of explanatory text. Work through the note books Fundamentals_1.ipynb , and
Fundamentals_2.ipynb , before we continue. Ask any topic that you find unclear and needs an explanation.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 51

FUNCTIONS
1 auto function_name(parameters) -> return_type
2 {
3 // function body
4 }
5 auto sin(double x) -> double
6 {
7 // Somehow calculate sin of x
8 return answer;
9 }

10 auto main() -> int
11 {
12 constexpr double pi{3.141592653589793};
13 for (int i = 0; i < 100; ++i) {
14 std::cout << i * pi / 100
15 << sin(i * pi / 100) << "\n";
16 }
17 std::cout << sin("pi") << "\n"; //Error!
18 }

To the first approximation, all executable code is in
functions
In order to execute the code in a function, we “call”
the function
main is a special function. When you run a

program, the OS, the debugger or IDE, calls
main . The code in main may call other functions,

which call even more functions and so on, till all
work in main is done
A function can receive some data as input and
manipulate the information provided in its input,
and “return” some information as its output
The input to a function comes through its
arguments, and the output is called its return value.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 52

FUNCTIONS: SYNTAX
1 // Old syntax
2 bool pythag(int i, int j, int k); // prototype
3 int hola(int i, int j) // definition
4 {
5 int ans{0};
6 if (pythag(i,j,23)) {
7 // A prototype or definition must be
8 // visible in the translation unit
9 // at the point of usage

10 ans=42;
11 }
12 return ans;
13 }
14 // Definition of pythag. Not that old syntax
15 auto pythag(int i, int j, int k) -> bool
16 {
17 // code
18 }

A function prototype introduces a name as a
function, its return type as well as its parameters
The type of the arguments must match or be
implicitly convertible to the corresponding type in
the function parameter list

1 auto max(double x, double y, double z)
2 -> double
3 {
4 if (y > x) x = y;
5 if (z > x) x = z;
6 return x;
7 }
8 auto main(int argc, char * argv[]) -> int
9 {

10 std::cout << max(1., 2., 3.) << '\n';
11 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 53

Exercise 1.11:
Write a function to tell if a quadratic equation of the form ax2 + bx + c = 0 has real number roots. The function
should take 3 arguments of type double , and return either true or false.

Exercise 1.12:
Finish the program examples/gcd.cc so that it computes and prints the greatest common divisor of two
integers. The following algorithm (attributed to Euclid!) achieves it :

1 Input numbers : smaller , larger

2 remainder = larger mod smaller

3 larger = smaller

4 smaller = remainder

5 if smaller is not 0, go back to 2.

6 larger is the answer you are looking for

Note: There is a function std::gcd(n1,n2) since C++17, but we are not using it for this exercise.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 54

FUNCTIONS AT RUN TIME

1 auto sin(double x) -> int {
2 // Somehow calculate sin of x
3 return answer;
4 }
5 auto main() -> int {
6 double x{3.141592653589793};
7 for (int i = 0; i < 100; ++i) {
8 std::cout << i * x / 100
9 << sin(i * x / 100) <<"\n";

10 }
11 }

When a function is called, e.g., when we write
f(value1,value2,value3) for a function f

declared as
ret_type f(type1 x, type2 y, type3 z) :

A "workbook" in memory called a stack frame is
created for the call
The local variables x , y , z are created, as if
using instructions type1 x{value1} ,
type2 y{value2} , type3 z{value3} .

A return address is stored.
The actual body of the function is executed
When the function concludes, execution continues
at the stored return address, and the stack frame is
destroyed

Member of the Helmholtz Association 8 – 12 May 2023 Slide 55

RECURSION

SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame

Function parameters are copied to the stack frame
Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association 8 – 12 May 2023 Slide 56

RECURSION

SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame

Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association 8 – 12 May 2023 Slide 56

RECURSION

SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame
Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association 8 – 12 May 2023 Slide 56

RECURSION

SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame
Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association 8 – 12 May 2023 Slide 56

RECURSION
SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame
Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association 8 – 12 May 2023 Slide 56

RECURSION

SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame
Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association 8 – 12 May 2023 Slide 56

RECURSION

SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame
Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association 8 – 12 May 2023 Slide 56

RECURSION

SP=<in factorial()> n=1 u=1 RP=<4>

SP=<in factorial()> n=2 u=2 RP=<4>

SP=<in factorial()> n=3 u=3 RP=<4>

SP=<in factorial()> n=4 u=4 RP=<9>

SP=<in someother()> RP=<...>

1 auto factorial(unsigned int n) -> unsigned int
2 {
3 int u = n; // u: Unnecessary
4 if (n > 1) return n * factorial(n - 1);
5 else return 1;
6 }
7 auto someother() -> int
8 {
9 factorial(4);

10 }

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame
Local variables at different levels of recursion live in
their own stack frames, and do not interfere

Member of the Helmholtz Association 8 – 12 May 2023 Slide 56

Exercise 1.13:
The tower of Hanoi is a mathematical puzzle with three towers and a set
of disks of increasing sizes. In the beginning, all the disks are at one
tower. In each step, a disk can be moved from one tower to another,
with the rule that a larger disk must never be placed over a smaller one.
The example examples/hanoi.cc solves the puzzle for a given
input number of disks, using a recursive algorithm. Test the code and
verify the solution.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 57

STATIC VARIABLES IN FUNCTIONS
1 void somefunc()
2 {
3 static int ncalls=0;
4 ++ncalls;
5 // code --> something unexpected
6 std::cerr << "Encountered unexpected"
7 << "situation in the " << ncalls
8 << "th call to " << __func__ << "\n";
9 }

Private to the function, but survive from call to
call.
Initialisation only done on first call.
Aside: The built in macro __func__ always
stores the name of the function

Member of the Helmholtz Association 8 – 12 May 2023 Slide 58

FUNCTION OVERLOADING
1 auto power(int x, unsigned n) -> unsigned
2 {
3 ans = 1;
4 for (; n > 0; --n) ans *= x;
5 return ans;
6 }
7 auto power(double x, double y) -> double
8 {
9 return exp(y * log(x));

10 }

1 auto someother(double mu, double alpha,
2 int rank) -> double
3 {
4 double st=power(mu,alpha)*exp(-mu);
5
6 if (n_on_bits(power(rank,5))<8)
7 st=0;
8
9 return st;

10 }

The same function name can be used for different functions if the parameter list is different
Function name and the types of its parameters are combined to create an "internal" name for a function.
That name must be unique
It is not allowed for two functions to have the same name and parameters and differ only in the return value
Make as many functions as you need with the same name, if the number or types of the input parameters
are different. Just make sure the names tell you semantically what they do, without having to look at the
implementation. E.g., good names: max , min , power , bad names: do_stuff , unnecessary names
power_d_d , power_i_u

Member of the Helmholtz Association 8 – 12 May 2023 Slide 59

FUNCTION OVERLOADING
1 auto power(int x, unsigned n) -> unsigned
2 {
3 ans = 1;
4 for (; n > 0; --n) ans *= x;
5 return ans;
6 }
7 auto power(double x, double y) -> double
8 {
9 return exp(y * log(x));

10 }

1 auto someother(double mu, double alpha,
2 int rank) -> double
3 {
4 double st=power(mu,alpha)*exp(-mu);
5
6 if (n_on_bits(power(rank,5))<8)
7 st=0;
8
9 return st;

10 }

The group of functions with the same name, differing in their input parameter list, is called an “overload set”
It is useful to assign meaning to these overload sets, and think in terms of them. The individual functions
inside an overload set are details depending on things like whether an input is an integer or a double.
The compiler to find the correct match from the overload set. This kind of polymorphic behaviour costs
nothing at run time.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 59

USER DEFINED TYPES AND OPERATOR
OVERLOADING

1 struct AtomId { int val = 0; };
2 struct MolId { int val = 0; };
3
4 void display_info(AtomId i)
5 {
6 // show atom related info
7 }
8 void display_info(MolId i)
9 {

10 // display completely different
11 // stuff about molecule
12 }
13 void elsewhere()
14 {
15 MolId j = select_a_molecule();
16 for (AtomId i; i.val < ; ++i.val) {
17 if (i == j) { // Compiler error!
18 //
19 }
20 }
21 }

struct or class introduce new types to a program.
We leave details for later, but for now, just observe how
we bring a new category of variables like int or
double in to existence

We can create variables of the new type, pass them to
functions as arguments ...
Functions can be overloaded with user defined types

Operators can be overloaded with user defined types

Member of the Helmholtz Association 8 – 12 May 2023 Slide 60

USER DEFINED TYPES AND OPERATOR
OVERLOADING

1 struct AtomId { int val = 0; };
2 struct MolId { int val = 0; };
3
4 void display_info(AtomId i)
5 {
6 // show atom related info
7 }
8 void display_info(MolId i)
9 {

10 // display completely different
11 // stuff about molecule
12 }
13 void elsewhere()
14 {
15 MolId j = select_a_molecule();
16 for (AtomId i; i.val < ; ++i.val) {
17 if (i == j) { // Compiler error!
18 //
19 }
20 }
21 }

struct or class introduce new types to a program.
We leave details for later, but for now, just observe how
we bring a new category of variables like int or
double in to existence

We can create variables of the new type, pass them to
functions as arguments ...
Functions can be overloaded with user defined types
Operators can be overloaded with user defined types

1 struct minutes { int i = 0; };
2 auto operator+(minutes m1, minutes m2) -> minutes
3 {
4 return { (m1.i + m2.i) % 60} ;
5 }
6 // elsewhere with i and j of type minutes
7 auto k = i + j;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 60

INLINE FUNCTIONS
1 auto sqr(double x) -> double
2 {
3 return x * x;
4 }

1 inline auto sqr(double x) -> double
2 {
3 return x * x;
4 }

To eliminate overhead when a function is called, request the compiler to insert the entire function body
where it is called, preserving the function call semantics
Once a function is inlined, the calling function can be further optimised as if it was one function
Small frequently called functions are usual candidates
Compiler may or may not actually insert code inline, but any function marked inline is exempt from the “one
definition rule”
Different popular use: define the entire function (even if it is large) in the header file, as identical inline
objects in multiple translation units are allowed. (E.g. header only libraries)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 61

INLINE FUNCTIONS

No assembly is generated unless the function is used
Large files with lots of inline functions may slow down compilation, but the compiled machine code is not
necessarily larger

Member of the Helmholtz Association 8 – 12 May 2023 Slide 62

INLINE FUNCTIONS

No assembly is generated unless the function is used
Large files with lots of inline functions may slow down compilation, but the compiled machine code is not
necessarily larger

Member of the Helmholtz Association 8 – 12 May 2023 Slide 62

ANOTHER USE OF INLINE
At each point in code, when we refer to the name of a variable, function, class, template, concept etc., it
must be unambiguous
One definition rule (ODR): Only one definition of any such entity is allowed in any translation unit
Only one definition of an entity is allowed to appear in the entire program including the sources and any
linked libraries
Variables and functions declared as inline can appear in multiple translation units. These multiple
incarnations are regarded as the same entity by the linker.
Functions and variables (in global scope) defined in headers can be labelled as inline so that multiple
instances in different translation units do not conflict
General function templates are automatically inline

Member of the Helmholtz Association 8 – 12 May 2023 Slide 63

AUTO RETURN TYPE FOR FUNCTIONS
Since C++14, automatic type deduction can be
used for function return values. Here, instead of
explicitly indicating the return type with, e.g., the
-> bool notation, we let the compiler deduce

the return type from the return statement(s) in
the function.
In case of multiple return statements,
inconsistent return types will lead to a compiler
error
decltype(auto) can also be used in place of
auto for this purpose, but that involves different

type deduction rules. decltype(auto) infers a
reference type when possible, whereas a simple
auto infers a value type.

1 auto greet(std::string nm)
2 {
3 for (auto& c: nm) c = std::toupper(c);
4 std::cout << nm << std::endl;
5 return nm.size() > 10;
6 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 64

LAMBDA FUNCTIONS
1 auto onefunc(double inp) -> double
2 {
3 auto x{ inp };
4 // The following is not allowed.

5 auto anotherfunc(double in) -> double

6 {
7 return in * in;
8 }
9

10 x = inp * anotherfunc(x);
11 return x;
12 }

In C++, ordinary functions can not be defined
locally in block scope

That is the role of lambda functions

Introduced using lambda expressions
The starting square brackets are called “capture
brackets”, and they can make in-scope variables
visible inside the lambda. We can choose how
much of its environment is visible inside the lambda

Member of the Helmholtz Association 8 – 12 May 2023 Slide 65

LAMBDA FUNCTIONS
1 auto onefunc(double inp) -> double
2 {
3 auto x{ inp };
4
5 auto anotherfunc = [](double in) -> double

6 {

7 return in * in;

8 } ;
9

10 x = inp * anotherfunc(x);
11 return x;
12 }

In C++, ordinary functions can not be defined
locally in block scope

That is the role of lambda functions

Introduced using lambda expressions
The starting square brackets are called “capture
brackets”, and they can make in-scope variables
visible inside the lambda. We can choose how
much of its environment is visible inside the lambda

Member of the Helmholtz Association 8 – 12 May 2023 Slide 65

LAMBDA FUNCTIONS
1 auto onefunc(double inp) -> double
2 {
3 auto x{ inp };
4
5 auto anotherfunc = [](double in) -> double

6 {

7 return in * in;

8 } ;
9

10 x = inp * anotherfunc(x);
11 return x;
12 }

In C++, ordinary functions can not be defined
locally in block scope

That is the role of lambda functions

Introduced using lambda expressions

The starting square brackets are called “capture
brackets”, and they can make in-scope variables
visible inside the lambda. We can choose how
much of its environment is visible inside the lambda

Member of the Helmholtz Association 8 – 12 May 2023 Slide 65

LAMBDA FUNCTIONS
1 auto onefunc(double inp) -> double
2 {
3 auto x{ inp };
4
5 auto anotherfunc = [x](double in) -> double
6 {
7 return in * in * sin(x);
8 };
9

10 x = inp * anotherfunc(x);
11 return x;
12 }

In C++, ordinary functions can not be defined
locally in block scope

That is the role of lambda functions

Introduced using lambda expressions
The starting square brackets are called “capture
brackets”, and they can make in-scope variables
visible inside the lambda. We can choose how
much of its environment is visible inside the lambda

Member of the Helmholtz Association 8 – 12 May 2023 Slide 65

CONSTEXPR AND CONSTEVAL FUNCTIONS
1 constexpr auto cube(unsigned u)

2 {
3 return u * u * u;
4 }

5 consteval auto cube2(unsigned u)
6 {
7 return u * u * u;
8 }
9 void elsewhere(unsigned inp)

10 {

11 std::array<int, cube(10) > A;

12 constexpr auto myvar = cube(99U) ;

13 auto myvar2 = cube(inp) ;
14
15 std::array<int, cube2(10) > B;

16 constexpr auto myvar = cube2(99U) ;

17 auto myvar2 = cube2(inp) ;

18 }

A function can be declared constexpr or
consteval . Both versions make them available

for use at compilation time, to initialise
constexpr variables or in contexts where only

compile time constants are allowed
constexpr functions can be called with values

not known at compilation time, in which case they
behave as ordinary functions
It is a compiler error to call a consteval
function with arguments with values not known at
compilation time. consteval functions are
called “immediate functions”

Member of the Helmholtz Association 8 – 12 May 2023 Slide 66

C++ NAMESPACE S
1 // Somewhere in the header iostream
2 namespace std {
3 ostream cout;
4 }
5 // In your program ...
6 #include <iostream>
7 auto main() -> int
8 {
9 {

10 using namespace std;
11 cout << __func__ << "\n";
12 }
13 int cout = 0;
14 for (cout=0; cout<5; ++cout)
15 std::cout << "Counter = " << cout << '\n';
16 // Above, plain cout is an integer,
17 // but std::cout is an output stream
18 // The syntax to refer to a name
19 // defined inside a namespace is:
20 // namespace_name::identifier_name
21 }

A namespace is a named context in which
variables, functions etc. are defined.
The symbol :: is called the scope resolution
operator.
using namespace blah imports all

names declared inside the namespace blah
to the current scope.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 67

NAMESPACES
1 // examples/namespaces.cc
2 #include <iostream>
3 using namespace std;
4 namespace UnitedKingdom {
5 string London{"Big city"};
6 void load_slang() {...}
7 }
8 namespace UnitedStates {
9 string London{"Small town in Kentucky"};

10 void load_slang() {...}
11 }
12 auto main() -> int
13 {
14 using namespace UnitedKingdom;
15 cout << London << '\n';
16 cout << UnitedStates::London << '\n';
17 }

Same name in different namespaces do not
result in a name clash
Functions defined inside namespaces need to be
accessed using the same scope rules as variables

Member of the Helmholtz Association 8 – 12 May 2023 Slide 68

C++ NAMESPACES: FINAL COMMENTS
1 //examples/namespaces2.cc
2 #include <iostream>
3 namespace UnitedKingdom {
4 std::string London{"Big city"};
5 }
6 namespace UnitedStates {
7 namespace KY {
8 std::string London{" in Kentucky"};
9 }

10 namespace OH {
11 std::string London{" in Ohio"};
12 }
13 }
14 // With C++17 ...
15 namespace mylibrary::onefeature {
16 auto solve(int i) -> double;
17 }
18 auto main() -> int
19 {
20 namespace USOH=UnitedStates::OH;
21 std::cout << "London is "
22 << USOH::London <<'\n';
23 }

namespace s can be nested. Since C++17,
direct nested declarations are allowed.
Long namespace names can be given aliases
Tip1: Don’t indiscriminately put
using namespace ... tags, especially in

headers. Use them in tight scopes instead.
Alternatively, define short aliases to long namespace
names wherever you need to repeat them
Tip2: The purpose of namespace s is to avoid
name clashes. Not taxonomy!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 69

ENUMERATIONS
1 enum colour { red, green, blue };
2 // ...
3 colour c{green};
4 // ...
5 switch (c) {
6 case red : do_stuff1(); break;
7 case green : do_stuff2(); break;
8 case blue:
9 default: do_stuff3();

10 };

A type whose instances can take a few different
values (e.g., directions on the screen, colours,
supported output modes ...)
Less error prone than using integers with ad hoc
rules like, ”1 means red, 2 means green ...“

Internally represented as (and convertible to) an integer
All type information is lost upon conversion into an integer

Member of the Helmholtz Association 8 – 12 May 2023 Slide 70

SCOPED ENUMERATIONS
Defined with enum class

Must always be fully qualified when used:
traffic_light::red etc.

In C++20, we can enable one specific
enum class in a scope by using the
using enum XYZ; declaration.

No automatic conversion to int .
Possible to use the same name, e.g., green , in
two different scoped enums.

1 enum class colour { red, green, blue };
2 enum class traffic_light {
3 red, yellow, green
4 };
5 bool should_brake(traffic_light c);
6
7 if (should_brake(blue)) apply_brakes();
8 //Syntax error!
9 if (state == traffic_light::yellow) ...;

10
11 auto respond(traffic_light L) {
12 using enum traffic_light;
13 switch (L) {
14 case red: {
15 //...
16 }
17

Member of the Helmholtz Association 8 – 12 May 2023 Slide 71

INPUT AND OUTPUT WITH IOSTREAM
To read user input into variable x , simply write std::cin >> x;

To read into variables x , y , z , name and count

std::cin >> x >> y >> z >> name >> count;

std::cin will infer the type of input from the type of variable being read.

For printing things on screen the direction for the arrows is towards std::cout :

std::cout << x << y << z << name << count << '\n';

Member of the Helmholtz Association 8 – 12 May 2023 Slide 72

READING AND WRITING FILES
Declare your own source/sink objects, which will have properties like std::cout or std::cin

1 #include <fstream>
2 std::ifstream fin{"inputfile"};
3 // Or, std::ifstream fin; and later, fin.open("inputfile");
4 std::ofstream fout{"outputfile"};

Use them like std::cout or std::cin

1 double x,y,z;
2 int i;
3 std::string s;
4 fin >> x >> y >> z >> i >> s;
5 fout << x << y << z << i << s << '\n';

Member of the Helmholtz Association 8 – 12 May 2023 Slide 73

STRING STREAMS
1 auto report(float x) -> std::string
2 {
3 auto a = f(x);
4 auto b = g(x);
5 // We need the output to be
6 // a string, perhaps to be
7 // processed further elsewhere.
8 std::ostringstream ost;
9 ost << "f(x) returned " << a <<"\n";

10 ost << "g(x) returned " << b <<"\n";
11 return ost.str();
12 }

ostringstream is an output stream for output
into a string.
istringstream is an input stream to read

values from a string.
Same usage syntax as cout and cin

Member of the Helmholtz Association 8 – 12 May 2023 Slide 74

STREAM INPUT IN A LOOP
1 std::ifstream fin{"somefile.dat"};
2 double x;
3 while (fin >> x) {
4 // while it is possible to read a new
5 // value for x, do something.
6 }
7 std::string line;
8 while (getline(fin, line)) {
9 // while it is possible to read a

10 // line of input, do something
11 }
12 ifstream fin{ argv[1] };
13 for (auto it = istream_iterator<int>(fin);
14 it != istream_iterator<int>{};
15 ++it) {
16 std::cout << "Token : " << *it << "\n";
17 }

Each of the 3 input stream types introduced here
works as a boolean in conditionals or loop
conditions.
Loop ends when there is no more valid input
We can even pretend they are sequences with
"iterators" to their start and end

Exercise 1.14: Strings and I/O
Write a program to find the largest word in a plain text
document.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

EXAMPLE PROGRAMS USING FILE IO
1 // examples/onespace.cc
2 #include <iostream>
3 auto main(int argc, char* argv[]) -> int
4 {
5 std::string line;

6 while (getline(std::cin, line)) {

7 if (line.empty()) continue;

8 bool sp{true};
9 for (auto c : line) {

10 if (isspace(c)) {
11 if (not sp) std::cout << '\t';
12 sp = true;
13 } else {
14 sp = false;
15 std::cout << c;
16 }
17 }
18 std::cout << "\n";
19 }
20 }

Replace instances of multiple consecutive white space
characters with a single TAB character

Often needed to clean up data files formatted to
look good to human eyes for processing with tools
which rely on consistent spacing.
The program here uses the standard input and
output, but can be used to process actual data files
like this:

cat datafile | onespace.ex > datafile.cln

Observe how we process the file by lines
The continue instruction means "skip the rest of
the body of this loop and proceed directly to
the evaluation of loop continuation ".

Member of the Helmholtz Association 8 – 12 May 2023 Slide 76

EXAMPLE PROGRAMS USING FILE IO
1 // examples/numsort.cc
2 #include <iostream>
3 #include <string>
4 #include <fstream>
5 #include <filesystem>
6 #include <vector>
7 #include <sstream>
8
9 namespace fs = std::filesystem;

10 auto as_lines(fs::path file) ->
11 std::vector<std::string>
12 {
13 std::ifstream fin{ file };
14 std::string line;
15 std::vector<std::string> lines;
16 while (getline(fin, line))
17 lines.push_back(line);
18 return lines;
19 }
20 auto main(int argc, char* argv[]) -> int
21 {

22 if (argc != 2) {
23 std::cerr << "Usage:\n"
24 << argv[0] << " filename\n";
25 return 1;
26 }
27 auto content = as_lines(argv[1]);
28 std::sort(content.begin(), content.end(),
29 [](auto l1, auto l2) {
30 std::istringstream istr1{ l1 };
31 std::istringstream istr2{ l2 };
32 auto x1{0.}, x2{0.};
33 istr1 >> x1;
34 istr2 >> x2;
35 return x1 < x2;
36 }
37);
38 for (std::string_view line : content) {
39 std::cout << line << "\n";
40 }
41 }

Numerically sort an input file.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 77

1 #include <what is necessary>
2 auto main() -> int
3 {
4 const std::vector v{1, 2, 3, 4, 5};
5 const auto tot{0};
6 for (const auto el : v) tot += el;
7 std::cout << tot << "\n";
8 }

Which of the following is true ?

A. v can not be a const as we are looping through its contents
B. tot can not be a const as we are adding to it in the loop
C. el can not be a const as it is obviously meant to change through the sequence
D. All of the above

Member of the Helmholtz Association 8 – 12 May 2023 Slide 78

Exercise 1.15:
What is the largest number in the Fibonacci sequence which can be represented as a 64 bit integer? How many
numbers of the sequence can be represented in 64 bits or less? Write a C++ program to find out. Start from
examples/fibonacci.cc , and insert your code where indicated.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 79

Exercise 1.16:
Work through the notebooks Functions.ipynb and BlocksScopesNamespaces.ipynb and ask any topic that you
find unclear and needs an explanation.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 80

Function call stack

Member of the Helmholtz Association 8 – 12 May 2023 Slide 81

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 82

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main()

Member of the Helmholtz Association 8 – 12 May 2023 Slide 82

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main() f() int i=10

Member of the Helmholtz Association 8 – 12 May 2023 Slide 82

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main()

Member of the Helmholtz Association 8 – 12 May 2023 Slide 82

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main() g() int i = 10

Member of the Helmholtz Association 8 – 12 May 2023 Slide 82

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main()

Member of the Helmholtz Association 8 – 12 May 2023 Slide 82

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main() h1() int i = 10

Member of the Helmholtz Association 8 – 12 May 2023 Slide 82

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main() h1() int i = 10 h11() int i = 10

Member of the Helmholtz Association 8 – 12 May 2023 Slide 82

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main() h1() int i = 10

Member of the Helmholtz Association 8 – 12 May 2023 Slide 82

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int
{

return h21(i);
}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main()

Member of the Helmholtz Association 8 – 12 May 2023 Slide 82

FUNCTIONS AT RUN TIME

1 auto sin(double x) -> int {
2 // Somehow calculate sin of x
3 return answer;
4 }
5 auto main() -> int {
6 double x{3.141592653589793};
7 for (int i = 0; i < 100; ++i) {
8 std::cout << i * x / 100
9 << sin(i * x / 100) <<"\n";

10 }
11 }

When a function is called, e.g., when we write
f(value1,value2,value3) for a function f

declared as
ret_type f(type1 x, type2 y, type3 z) :

A "workbook" in memory called a stack frame is
created for the call
The local variables x , y , z are created, as if
using instructions type1 x{value1} ,
type2 y{value2} , type3 z{value3} .

A return address is stored.
The actual body of the function is executed
When the function concludes, execution continues
at the stored return address, and the stack frame is
destroyed
The memory used for the stack frames is usually
cached and can be accessed quickly

Member of the Helmholtz Association 8 – 12 May 2023 Slide 83

FUNCTION ARGUMENTS
1 int x{ 1 };
2 int y{ x };
3
4 y = y + 1;
5 // What is x now?

Recall the difference between creating a new
variable and creating a reference to an existing
object

For a function f declared as
ret_type f(type1 x, type2 y, type3 z) ,

when we call it using an expression like
f(value1, value2, value3) , we perform

the following initialisations on the stack frame for
x , y , z : type1 x{value1} ,
type2 y{value2} , type3 z{value3} .

Think about what information we are transmitting
to the function, and how it might affect the
behaviour of outside variables used when calling the
function, based on whether type1 , type2 etc.
are value or reference types.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 84

FUNCTION ARGUMENTS
1 int x{ 1 };
2 int& y{ x };
3
4 y = y + 1;
5 // What is x now?

Recall the difference between creating a new
variable and creating a reference to an existing
object

For a function f declared as
ret_type f(type1 x, type2 y, type3 z) ,

when we call it using an expression like
f(value1, value2, value3) , we perform

the following initialisations on the stack frame for
x , y , z : type1 x{value1} ,
type2 y{value2} , type3 z{value3} .

Think about what information we are transmitting
to the function, and how it might affect the
behaviour of outside variables used when calling the
function, based on whether type1 , type2 etc.
are value or reference types.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 84

FUNCTION ARGUMENTS
1 auto f(int x) -> int
2 {
3 x = x + 1;
4 return x;
5 }
6 void elsewhere()
7 {
8 int z{ 0 };
9 f(z);

10 // what is z now?
11 }

Recall the difference between creating a new
variable and creating a reference to an existing
object
For a function f declared as
ret_type f(type1 x, type2 y, type3 z) ,

when we call it using an expression like
f(value1, value2, value3) , we perform

the following initialisations on the stack frame for
x , y , z : type1 x{value1} ,
type2 y{value2} , type3 z{value3} .

Think about what information we are transmitting
to the function, and how it might affect the
behaviour of outside variables used when calling the
function, based on whether type1 , type2 etc.
are value or reference types.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 84

FUNCTION ARGUMENTS
1 auto f(int& x) -> int
2 {
3 x = x + 1;
4 return x;
5 }
6 void elsewhere()
7 {
8 int z{ 0 };
9 f(z);

10 // what is z now?
11 }

Recall the difference between creating a new
variable and creating a reference to an existing
object
For a function f declared as
ret_type f(type1 x, type2 y, type3 z) ,

when we call it using an expression like
f(value1, value2, value3) , we perform

the following initialisations on the stack frame for
x , y , z : type1 x{value1} ,
type2 y{value2} , type3 z{value3} .

Think about what information we are transmitting
to the function, and how it might affect the
behaviour of outside variables used when calling the
function, based on whether type1 , type2 etc.
are value or reference types.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 84

1 void get_lims(int i, int j)
2 {
3 i = 10;
4 j = 20;
5 }
6 auto main() -> int
7 {
8 auto i = 2, j = 3;
9 get_lims(i,j);

10 std::cout << i << ", " << j << "\n";
11 }

What does the std::cout line print ?
A. 2, 3

B. 10, 20

C. 0, 0

D. 3, 2

Member of the Helmholtz Association 8 – 12 May 2023 Slide 85

1 void get_lims(int& i, int& j)
2 {
3 i = 10;
4 j = 20;
5 }
6 auto main() -> int
7 {
8 auto i = 2, j = 3;
9 get_lims(i,j);

10 std::cout << i << ", " << j << "\n";
11 }

What does the std::cout line print ?
A. 2, 3

B. 10, 20

C. 0, 0

D. 3, 2

Member of the Helmholtz Association 8 – 12 May 2023 Slide 86

THE REFERENCE TYPE IN FUNCTION PARAMETERS
1 // Argument passed by value
2 auto find_arsenic_tolerance(Rat R)
3 -> double
4 {
5 double qnty = 0, dqnty = 1.0e-5;
6 while (not R.dead()) {
7 R.inject(dqnty);
8 qnty += dqnty;
9 }

10 return qnty;
11 }
12 ...
13 auto lab() -> int
14 {
15 Rat r;
16 double t = find_arsenic_tolerance(r);
17 // r is still alive! But we know
18 // how much arsenic it can take.
19 }

Pass a normal type by value
The function find_arsenic_tolerance needs, as
the argument, an object of type Rat .
So you send a copy or clone of r

The clone gets injections and is eventually destroyed.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 87

THE REFERENCE TYPE IN FUNCTION PARAMETERS
1 // Argument passing by reference
2 auto find_arsenic_tolerance(Rat& R)
3 -> double
4 {
5 double qnty = 0, dqnty = 1.0e-5;
6 while (not R.dead()) {
7 R.inject(dqnty);
8 qnty += dqnty;
9 }

10 return qnty;
11 }
12 ...
13 auto lab() -> int
14 {
15 Rat r;
16 double t = find_arsenic_tolerance(r);
17 // r is no more!
18 }

Pass a reference argument
The function find_arsenic_tolerance needs,
as the argument, an object of type Rat & , i.e., a
reference to which Rat.
So you send a copy of the Id tag on r to the function.
The function acts on the Rat object which was
referenced.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 88

THE REFERENCE TYPE IN FUNCTION PARAMETERS
1 // Argument passing by reference
2 auto find_arsenic_tolerance(Rat& R)
3 -> double
4 {
5 double qnty = 0, dqnty = 1.0e-5;
6 while (not R.dead()) {
7 R.inject(dqnty);
8 qnty += dqnty;
9 }

10 return qnty;
11 }
12 ...
13 auto lab() -> int
14 {
15 Rat r;
16 double t = find_arsenic_tolerance(r);
17 // r is no more!
18 }

Pass a reference argument
The function find_arsenic_tolerance needs,
as the argument, an object of type Rat & , i.e., a
reference to which Rat.
So you send a copy of the Id tag on r to the function.
The function acts on the Rat object which was
referenced.

Information about the original rat, but the rat was modified.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 88

THE REFERENCE TYPE IN FUNCTION PARAMETERS
We want to change an object

When we want our object to be modified in some
way by a function, it is no good to pass only a copy.
In this example, a clone of the wounded leg will be
bandaged

1 void bandage_leg(Leg l)
2 {
3 //Select right bandage
4 //Wrap bandage around l
5 }
6 ...
7 auto main() -> int
8 {
9 Human h;

10 ...
11 // h got a wounded left leg
12 bandage_leg(h.left_leg());
13 //No benefits to h.
14 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 89

THE REFERENCE TYPE IN FUNCTION PARAMETERS
We want to change an object

Modifying a copy of our object is useless
But a copy of a reference is good enough.
In this example, the function works on the leg that
was referred to.

1 void bandage_leg(Leg & l)
2 {
3 //Select right bandage
4 //Wrap bandage around l
5 }
6 ...
7 auto main() -> int
8 {
9 Human h;

10 ...
11 // h got a wounded left leg
12 bandage_leg(h.left_leg());
13 //Intended benefits to h
14 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 90

THE REFERENCE TYPE IN FUNCTION PARAMETERS
We want to change an object

Modifying a copy of our object is useless
But a copy of a reference is good enough.
In this example, the function works on the leg that
was referred to.

1 void bandage_leg(Leg & l)
2 {
3 //Select right bandage
4 //Wrap bandage around l
5 }
6 ...
7 auto main() -> int
8 {
9 Human h;

10 ...
11 // h got a wounded left leg
12 bandage_leg(h.left_leg());
13 //Intended benefits to h
14 }

We can use a function working with a reference when we want it to change our original object.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 90

THE REFERENCE TYPE IN FUNCTION PARAMETERS
Cloning is expensive

Sometimes, the data structures are very large, and
copying them is expensive
Functions taking that kind of classes will implicitly
perform big cloning operations, slowing the
program down.

1 auto count_bad_tires(Truck t) -> int
2 {
3 int n = 0;
4 for (int i = 0; i < t.n_wheels(); ++i) {
5 if (not t.wheel(i).good()) ++n;
6 }
7 return n;
8 }
9 ...

10 auto main() -> int
11 {
12 Truck mytruck;
13 ...
14 nbad = count_bad_tires(mytruck);
15 // Unnecessary cloning of mytruck
16 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 91

THE REFERENCE TYPE IN FUNCTION PARAMETERS
Cloning is expensive

If the function signature asks for a reference, we
only create a reference to the truck when invoking
the function
The same effect can be achieved by a pointer, but
the syntax with references is cleaner

1 auto count_bad_tires(Truck& t) -> int
2 {
3 int n = 0;
4 for (int i = 0; i < t.n_wheels(); ++i) {
5 if (not t.wheel(i).good()) ++n;
6 }
7 return n;
8 }
9 ...

10 auto main() -> int
11 {
12 Truck mytruck;
13 ...
14 nbad = count_bad_tires(mytruck);
15 // another reference to truck, not
16 // clone of truck
17 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 92

THE CONSTANT REFERENCE TYPE
Cloning is expensive

We want to use a reference as the argument
because it is efficient
How do we ensure that the original object would
not be allowed to change ?

1 auto count_bad_tires(Truck& t) -> int
2 {
3 int n = 0;
4 for (int i = 0; i < t.n_wheels(); ++i) {
5 check_pressure(t.wheel(i));
6 if (not t.wheel(i).good()) ++n;
7 }
8 return n;
9 }

10 ...
11 auto main() -> int
12 {
13 Truck mytruck;
14 ...
15 nbad = count_bad_tires(mytruck);
16 // Was there any change to mytruck ?
17 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 93

THE CONSTANT REFERENCE TYPE
Cloning is expensive

We want to use a reference as the argument only
because it is efficient
How do we ensure that the original object would
not be allowed to change ?
Using a const reference

1 auto count_bad_tires(const Truck& t) -> int
2 {
3 int n = 0;
4 for (int i = 0; i < t.n_wheels(); ++i) {
5 check_pressure(t.wheel(i));
6 if (not t.wheel(i).good()) ++n;
7 }
8 return n;
9 }

10 ...
11 int main()
12 {
13 Truck mytruck;
14 ...
15 nbad = count_bad_tires(mytruck);
16 // Was there any change to mytruck ?
17 // Not if this compiled!
18 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 94

Runtime error handling

Member of the Helmholtz Association 8 – 12 May 2023 Slide 95

RUN-TIME ERROR HANDLING
Exceptions: When there is nothing reasonable to return

1 auto mysqrt(double x) -> double
2 {
3 const auto eps2 = 1.0e-24;
4 auto r0 = 0.5 * (1. + x);
5 auto r1 = x / r0;
6 while ((r0 - r1) * (r0 - r1) > eps2) {
7 r0 = 0.5 * (r0 + r1);
8 r1 = x / r0;
9 }

10 return r1;
11 }

Exceptions

A function may be called with arguments
which don’t make sense
An illegal mathematical operation
Unexpected values, e.g., an arbitrary string
when expecting a number
Too much memory might have been requested

Member of the Helmholtz Association 8 – 12 May 2023 Slide 96

THROWING AND CATCHING EXCEPTIONS
1 using error_code = int;
2 auto mysqrt(double x) -> double
3 {
4 const auto eps = 1.0e-12;
5 const auto eps2 = eps * eps;
6 if (x < 0) throw error_code{-1};
7 auto r0 = 0.5 * (1. + x);
8 auto r1 = x / r0;
9 while ((r0 - r1) * (r0 - r1) > eps2) {

10 r0 = 0.5 * (r0 + r1);
11 r1 = x / r0;
12 }
13 return r1;
14 }

1 auto appl(double x, double y) -> double
2 {
3 try {
4 if (x < y) std::swap(x, y);
5 return mysqrt(x + y) + mysqrt(x - y);
6 } catch (error_code& error) {
7 std::cout << "Caught error_code: "
8 << error << "\n";
9 // somehow fix the situation and

10 // return something sensible. If that
11 // doesn't work...
12 throw;
13 }
14 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 97

THROWING AND CATCHING EXCEPTIONS
1 using error_code = std::string;
2 auto mysqrt(double x) -> double
3 {
4 using std::format;
5 const auto eps = 1.0e-12;
6 const auto eps2 = eps * eps;
7 if (x < 0) throw
8 format("Bad input {} for mysqrt", x);
9

10 auto r0 = 0.5 * (1. + x);
11 auto r1 = x / r0;
12 while ((r0 - r1) * (r0 - r1) > eps2) {
13 r0 = 0.5 * (r0 + r1);
14 r1 = x / r0;
15 }
16 return r1;
17 }

1 auto appl(double x, double y) -> double
2 {
3 try {
4 if (x < y) std::swap(x, y);
5 return mysqrt(x + y) + mysqrt(x - y);
6 } catch (error_code& error) {
7 std::cout << "Caught error_code: "
8 << error << "\n";
9 // somehow fix the situation and

10 // return something sensible. If that
11 // doesn't work...
12 throw;
13 }
14 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 97

THROWING AND CATCHING EXCEPTIONS
1 auto mysqrt(double x) -> double
2 {
3 using std::format;
4 const auto eps = 1.0e-12;
5 const auto eps2 = eps * eps;
6 if (x < 0) throw
7 std::runtime_error{
8 format("Bad input {} for mysqrt", x)
9 };

10
11 auto r0 = 0.5 * (1. + x);
12 auto r1 = x / r0;
13 while ((r0 - r1) * (r0 - r1) > eps2) {
14 r0 = 0.5 * (r0 + r1);
15 r1 = x / r0;
16 }
17 return r1;
18 }

1 auto appl(double x, double y) -> double
2 {
3 try {
4 if (x < y) std::swap(x, y);
5 return mysqrt(x + y) + mysqrt(x - y);
6 } catch (std::runtime_error& error) {
7 std::cout << "Caught runtime error: "
8 << error.what() << "\n";
9 // somehow fix the situation and

10 // return something sensible. If that
11 // doesn't work...
12 throw;
13 }
14 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 97

TRY AND CATCH BLOCKS
1 void f() {
2 try {
3 // lines
4 try {
5 // a line throwing an exception
6 } catch (exception_type_0& err) {
7 // handle errors of type 0
8 }
9 // more lines

10 } catch (exception_type_1& err) {
11 // handle errors of type 1
12 } catch (exception_type_2& err) {
13 // ...
14 }
15 }
16 void g(int i) { if (i > -3) f(); }
17 auto main(int argc, char* argv[]) -> int {
18 try {
19 g(argc)
20 } catch (exception_type_3& err) {
21 // handle error type 3
22 }
23 }

Exceptions are monitored and handled in try..catch
blocks
When an exception is thrown in the try part of a
try..catch block, the attached catch blocks are

checked for a handler matching the type of the thrown
exception.
If no matching handler is found, we look for the next
bigger try..catch block surrounding the previous
one
If an exception is thrown in an area inside a function, not
inside a try section, the enclosing try section is
searched based on the call site for the call
This search can unwind till it reaches main() . If still
no matching handler is found, the program exits with
error.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 98

TRY AND CATCH BLOCKS
1 void f() {
2 try {
3 // lines
4 try {
5 // a line throwing an exception
6 } catch (exception_type_0& err) {
7 // handle errors of type 0
8 }
9 // more lines

10 } catch (exception_type_1& err) {
11 // handle errors of type 1
12 } catch (exception_type_2& err) {
13 // ...
14 }
15 }
16 void g(int i) { if (i > -3) f(); }
17 auto main(int argc, char* argv[]) -> int {
18 try {
19 g(argc)
20 } catch (exception_type_3& err) {
21 // handle error type 3
22 }
23 }

Once an exception is thrown, the program control flow
enters a special mode
Imagine all other lines, except try..catch blocks
and the throw expression being “greyed out”
In this view, the code looks like a smallish tree of
try..catch blocks. Find the the smallest enclosing
try block with an attached catch block of the

matching type! Execution jumps to that catch block.
The type matching and jump destinations can all be
determined by the compiler
This jump in program control still follows all the rules
regarding variable scopes: when we leave a block of code
by flying away on the back of an exception, it still
counts as leaving the block. Automatic variables
declared in that scope are therefore destroyed.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 98

IS IT NEEDLESSLY EXPENSIVE TO USE EXCEPTIONS?
1 auto f(double x, bool& succeeded) -> double
2 {
3 const auto eps = 1.0e-12;
4 const auto eps2 = eps * eps;
5 if (x < 0) {
6 succeeded = false;
7 } else {
8 auto r0 = 0.5 * (1. + x);
9 auto r1 = x / r0;

10 while ((r0 - r1) * (r0 - r1) > eps2) {
11 r0 = 0.5 * (r0 + r1);
12 r1 = x / r0;
13 }
14 succeeded = true;
15 }
16 return r1;
17 }

Contrast: how about we use additional function arguments to
indicate success or failure?

1 auto appl(double x, double y) -> double
2 {
3 if (x < y) std::swap(x, y);
4 bool ep{false}, em{false};
5 auto rp = f(x + y, ep);
6 auto rm = f(x - y, em);
7 if (ep and em) {
8 return rp + rm; // normal case
9 } else {

10 // handle errors
11 }
12 }

Cumbersome because of extra flag variables
A value is returned even in the case of failure.
A programmer can accidentally or out of
carelessness, ignore the success/error flags.
The subsequent calculations will be incorrect.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 99

IS IT NEEDLESSLY EXPENSIVE TO USE EXCEPTIONS?
1 auto f(double x) -> double
2 {
3 const auto eps = 1.0e-12;
4 const auto eps2 = eps * eps;
5 if (x < 0)
6 throw std::runtime_error{
7 format("Bad input {} for square root!", x)
8 };
9 auto r0 = 0.5 * (1. + x);

10 auto r1 = x / r0;
11 while ((r0 - r1) * (r0 - r1) > eps2) {
12 r0 = 0.5 * (r0 + r1);
13 r1 = x / r0;
14 }
15 return r1;
16 }

An error handling method with functionality compara-
ble to exceptions will have a similar cost!

1 auto appl(double x, double y) -> double
2 {
3 if (x < y) std::swap(x, y);
4 try {
5 return f(x + y) + f(x - y);
6 } catch (std::runtime_error& err) {
7 // handle errors
8 }
9 }

Normal, successful flow is separated from
error handling code
In case there is an error, it is impossible to
ignore! The function does not return with a
value. The only choices are to handle the
error or to terminate the program.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 100

NOEXCEPT
1 auto sum(unsigned i, unsigned j)
2 -> unsigned {
3 return i + j;
4 }
5 void contained(int i) {
6 try {
7 // some code
8 } catch (ET_1& err) {
9 } catch (ET_2& err) {

10 } catch (...) {
11 // handle every exception
12 }
13 }

Sometimes, we know that an exception will never
escape certain functions

Such functions can be decorated with the
noexcept specifier to tell the compiler that it

does not need to make arrangements about
propagating exceptions out of those functions
By discarding some exception handling code, the
compiler may in some cases generate better
optimised code
If you lie, and decorate a function with a
noexcept badge, but an exception reaches the

outer most block of the function, the program is
std::terminate d.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 101

NOEXCEPT
1 auto sum(unsigned i, unsigned j) noexcept
2 -> unsigned {
3 return i + j;
4 }
5 void contained(int i) noexcept {
6 try {
7 // some code
8 } catch (ET_1& err) {
9 } catch (ET_2& err) {

10 } catch (...) {
11 // handle every exception
12 }
13 }

Sometimes, we know that an exception will never
escape certain functions
Such functions can be decorated with the
noexcept specifier to tell the compiler that it

does not need to make arrangements about
propagating exceptions out of those functions

By discarding some exception handling code, the
compiler may in some cases generate better
optimised code
If you lie, and decorate a function with a
noexcept badge, but an exception reaches the

outer most block of the function, the program is
std::terminate d.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 101

NOEXCEPT
1 auto sum(unsigned i, unsigned j) noexcept
2 -> unsigned {
3 return i + j;
4 }
5 void contained(int i) noexcept {
6 try {
7 // some code
8 } catch (ET_1& err) {
9 } catch (ET_2& err) {

10 } catch (...) {
11 // handle every exception
12 }
13 }

Sometimes, we know that an exception will never
escape certain functions
Such functions can be decorated with the
noexcept specifier to tell the compiler that it

does not need to make arrangements about
propagating exceptions out of those functions
By discarding some exception handling code, the
compiler may in some cases generate better
optimised code

If you lie, and decorate a function with a
noexcept badge, but an exception reaches the

outer most block of the function, the program is
std::terminate d.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 101

NOEXCEPT
1 auto sum(unsigned i, unsigned j) noexcept
2 -> unsigned {
3 return i + j;
4 }
5 void contained(int i) noexcept {
6 try {
7 // some code
8 } catch (ET_1& err) {
9 } catch (ET_2& err) {

10 } catch (...) {
11 // handle every exception
12 }
13 }

Sometimes, we know that an exception will never
escape certain functions
Such functions can be decorated with the
noexcept specifier to tell the compiler that it

does not need to make arrangements about
propagating exceptions out of those functions
By discarding some exception handling code, the
compiler may in some cases generate better
optimised code
If you lie, and decorate a function with a
noexcept badge, but an exception reaches the

outer most block of the function, the program is
std::terminate d.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 101

OPTIONAL VALUES
1 #include <optional>
2 auto f(double x) -> std::optional<double> {
3 std::optional<double> ans;
4 const auto eps2 = 1.0e-24;
5 if (x >= 0) {
6 auto r0 = 0.5 * (1. + x);
7 auto r1 = x / r0;
8 while ((r0 - r1) * (r0 - r1) > eps2) {
9 r0 = 0.5 * (r0 + r1);

10 r1 = x / r0;
11 }
12 ans = r1;
13 }
14 return ans;
15 }
16 // Elsewhere...
17 std::cout << "Enter number : ";
18 std::cin >> x;
19 if (auto r = f(x); r.has_value()) {
20 std::cout << "The result is "
21 << r.value() << '\n';
22 }

std::optional<T> is analogous to a box
containing exactly one object of type T or nothing
at all
If created without any initialisers, the box is empty
You store something in the box by assigning to the
optional

Evaluating the optional as a boolean gives a
true outcome if there is an object inside,

irrespective of the value of that object
Empty box evaluates to false

Member of the Helmholtz Association 8 – 12 May 2023 Slide 102

OPTIONAL VALUES
1 #include <optional>
2 auto f(double x) -> std::optional<double> {
3 std::optional<double> ans;
4 const auto eps2 = 1.0e-24;
5 if (x >= 0) {
6 auto r0 = 0.5 * (1. + x);
7 auto r1 = x / r0;
8 while ((r0 - r1) * (r0 - r1) > eps2) {
9 r0 = 0.5 * (r0 + r1);

10 r1 = x / r0;
11 }
12 ans = r1;
13 }
14 return ans;
15 }
16 // Elsewhere...
17 std::cout << "Enter number : ";
18 std::cin >> x;
19 if (auto r = f(x); r) {
20 std::cout << "The result is "
21 << *r << '\n';
22 }

std::optional<T> is analogous to a box
containing exactly one object of type T or nothing
at all
If created without any initialisers, the box is empty
You store something in the box by assigning to the
optional

Evaluating the optional as a boolean gives a
true outcome if there is an object inside,

irrespective of the value of that object
Empty box evaluates to false

Member of the Helmholtz Association 8 – 12 May 2023 Slide 102

C++23 STD::EXPECTED
1 #include <expected>
2 auto mysqrt(double x) -> std::expected<double, std::string> {
3 const auto eps = 1.0e-12;
4 const auto eps2 = eps * eps;
5 if (x >= 0.) {
6 auto r0 = 0.5 * (1. + x);
7 auto r1 = x / r0;
8 while ((r0 - r1) * (r0 - r1) > eps2) {
9 r0 = 0.5 * (r0 + r1);

10 r1 = x / r0;
11 }
12 return { r1 };
13 } else {
14 return std::unexpected { "Unexpected input!" };
15 }
16 }
17 // Elsewhere...
18 if (auto rm = mysqrt(x); rm) std::cout << "Square root = " << rm.value() << "\n";
19 else std::cout << "Error: " << rm.error() << "\n";

Similar to std::optional , but has more capacity to describe the error
The unexpected value can be of a type of our choosing, making it very flexible

Member of the Helmholtz Association 8 – 12 May 2023 Slide 103

ASSERTIONS
1 #include <cassert>
2 bool check_things()
3 {
4 // false if something is wrong
5 // true otherwise
6 }
7 double somewhere()
8 {
9 // if I did everything right,

10 // val should be non-negative
11 assert(val >= 0);
12 assert(check_things());
13 }

After we are satisfied that the program is correctly
implemented, we can pass -DNDEBUG to the
compiler, and skip all assertions.

assert(condition) aborts if condition
is false
Used for non-trivial checks in code during
development. The errors we are trying to catch are
logic errors in implementation.
If the macro NDEBUG is defined before including
<cassert> assert(condition) reduces

to nothing

Member of the Helmholtz Association 8 – 12 May 2023 Slide 104

ASSERTIONS
1 #include <cassert>
2 bool check_things()
3 {
4 // false if something is wrong
5 // true otherwise
6 }
7 double somewhere()
8 {
9 // if I did everything right,

10 // val should be non-negative
11 assert(val >= 0);
12 assert(check_things());
13 }

After we are satisfied that the program is correctly
implemented, we can pass -DNDEBUG to the
compiler, and skip all assertions.

assert(condition) aborts if condition
is false
Used for non-trivial checks in code during
development. The errors we are trying to catch are
logic errors in implementation.
If the macro NDEBUG is defined before including
<cassert> assert(condition) reduces

to nothing

Member of the Helmholtz Association 8 – 12 May 2023 Slide 104

Exercise 1.17:
The program examples/exception.cc demonstrates the use of exceptions. Rewrite the loop so that the user is
asked for a new value until a reasonable value for the function input parameter is given.

Exercise 1.18:
Handle invalid inputs in your gcd.cc program so that if we call it as gcd apple orange it quits with an
understandable error message. Valid inputs should produce the result as before.

Exercise 1.19:
In the folder examples/sqrt_error_handling , you will find the solution to the square root exercise from the first
day, with different error handling methods discussed here: exceptions, std::optional and
std::expected . Study the code, experiment, ask for clarifications!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 105

Dynamic memory management

Member of the Helmholtz Association 8 – 12 May 2023 Slide 106

HEAP VS STACK
1 auto f(double x) -> double
2 {
3 int i = static_cast<int>(x);
4 double M[1000][1000][1000]; // Oops!
5 M[123][344][24] = x;
6 return x - M[i][555][1];
7 }
8 auto main() -> int
9 {

10 std::cout << f(5) << "\n";
11 // Immediate SEGFAULT
12 }

Variables in a function are allocated on the stack, but sometimes we need more space than what the stack
permits

We do not know how much space we should reserve for a variable (e.g. a string)
→ We need a way to allocate from the "free store"

Member of the Helmholtz Association 8 – 12 May 2023 Slide 107

HEAP VS STACK
1 auto f(double x) -> double
2 {
3 int i = static_cast<int>(x);
4 double M[1000][1000][1000]; // Oops!
5 M[123][344][24] = x;
6 return x - M[i][555][1];
7 }
8 auto main() -> int
9 {

10 std::cout << f(5) << "\n";
11 // Immediate SEGFAULT
12 }

Variables in a function are allocated on the stack, but sometimes we need more space than what the stack
permits
We do not know how much space we should reserve for a variable (e.g. a string)

→ We need a way to allocate from the "free store"

Member of the Helmholtz Association 8 – 12 May 2023 Slide 107

HEAP VS STACK
1 auto f(double x) -> double
2 {
3 int i = static_cast<int>(x);
4 double M[1000][1000][1000]; // Oops!
5 M[123][344][24] = x;
6 return x - M[i][555][1];
7 }
8 auto main() -> int
9 {

10 std::cout << f(5) << "\n";
11 // Immediate SEGFAULT
12 }

Variables in a function are allocated on the stack, but sometimes we need more space than what the stack
permits
We do not know how much space we should reserve for a variable (e.g. a string)
→ We need a way to allocate from the "free store"

Member of the Helmholtz Association 8 – 12 May 2023 Slide 107

HEAP MEMORY

Member of the Helmholtz Association 8 – 12 May 2023 Slide 108

HEAP VS STACK

1 void f()
2 {
3 int* A = new int[1000000];
4 // use A
5 delete [] A;
6 }

operator new : Request that a specific amount
of memory be reserved for you on the free store.
The return value of the new operation is an
address, which you store in a pointer (A here).

The pointer A is a normal variable on the stack.
But it’s value is the address of the allocated space
Memory allocated from the heap stays with your
program until you free it, using delete

The pointer we used to store its address is subject
to scoping rules, and might expire at a certain }

Unless you ensure that delete is called before
the pointer expires or that the address is stored
elsewhere before that happens, you have a memory
leak

Member of the Helmholtz Association 8 – 12 May 2023 Slide 109

HEAP VS STACK

1 void f()
2 {
3 int* A = new int[1000000];
4 // use A
5 delete [] A;
6 }

operator new : Request that a specific amount
of memory be reserved for you on the free store.
The return value of the new operation is an
address, which you store in a pointer (A here).
The pointer A is a normal variable on the stack.
But it’s value is the address of the allocated space

Memory allocated from the heap stays with your
program until you free it, using delete

The pointer we used to store its address is subject
to scoping rules, and might expire at a certain }

Unless you ensure that delete is called before
the pointer expires or that the address is stored
elsewhere before that happens, you have a memory
leak

Member of the Helmholtz Association 8 – 12 May 2023 Slide 109

HEAP VS STACK

1 void f()
2 {
3 int* A = new int[1000000];
4 // use A
5 delete [] A;
6 }

operator new : Request that a specific amount
of memory be reserved for you on the free store.
The return value of the new operation is an
address, which you store in a pointer (A here).
The pointer A is a normal variable on the stack.
But it’s value is the address of the allocated space
Memory allocated from the heap stays with your
program until you free it, using delete

The pointer we used to store its address is subject
to scoping rules, and might expire at a certain }

Unless you ensure that delete is called before
the pointer expires or that the address is stored
elsewhere before that happens, you have a memory
leak

Member of the Helmholtz Association 8 – 12 May 2023 Slide 109

HEAP VS STACK

1 void f()
2 {
3 int* A = new int[1000000];
4 // use A
5 delete [] A;
6 }

operator new : Request that a specific amount
of memory be reserved for you on the free store.
The return value of the new operation is an
address, which you store in a pointer (A here).
The pointer A is a normal variable on the stack.
But it’s value is the address of the allocated space
Memory allocated from the heap stays with your
program until you free it, using delete

The pointer we used to store its address is subject
to scoping rules, and might expire at a certain }

Unless you ensure that delete is called before
the pointer expires or that the address is stored
elsewhere before that happens, you have a memory
leak

Member of the Helmholtz Association 8 – 12 May 2023 Slide 109

HEAP VS STACK

1 void f()
2 {
3 int* A = new int[1000000];
4 // use A
5 delete [] A;
6 }

Note: Heap allocation and deallocation are slower than
accessing stack memory.

operator new : Request that a specific amount
of memory be reserved for you on the free store.
The return value of the new operation is an
address, which you store in a pointer (A here).
The pointer A is a normal variable on the stack.
But it’s value is the address of the allocated space
Memory allocated from the heap stays with your
program until you free it, using delete

The pointer we used to store its address is subject
to scoping rules, and might expire at a certain }

Unless you ensure that delete is called before
the pointer expires or that the address is stored
elsewhere before that happens, you have a memory
leak

Member of the Helmholtz Association 8 – 12 May 2023 Slide 109

HEAP VS STACK

1 void f()
2 {
3 int* A = new int[1000000];
4 // use A
5 g(A);
6 //
7 delete [] A;
8 }

Allocations with new should be matched by
corresponding delete operations

But, what if we throw an exception before we reach
delete ?

We may never reach the meticulously placed
delete statement!

Generally, because of exceptions, in C++ programs,
placing clean-up operations near “exit sites” is not
a sound strategy
This also applies to other “resources” which must
be acquired for use, e.g., threads, mutexes...
The right way to handle that is by using RAII, as
will be explained in our discussion of C++ classes.
Standard library facilities use the same technique

Member of the Helmholtz Association 8 – 12 May 2023 Slide 110

HEAP VS STACK

1 void f()
2 {
3 int* A = new int[1000000];
4 // use A
5 g(A);
6 //
7 delete [] A;
8 }

Allocations with new should be matched by
corresponding delete operations
But, what if we throw an exception before we reach
delete ?

We may never reach the meticulously placed
delete statement!

Generally, because of exceptions, in C++ programs,
placing clean-up operations near “exit sites” is not
a sound strategy
This also applies to other “resources” which must
be acquired for use, e.g., threads, mutexes...
The right way to handle that is by using RAII, as
will be explained in our discussion of C++ classes.
Standard library facilities use the same technique

Member of the Helmholtz Association 8 – 12 May 2023 Slide 110

HEAP VS STACK

1 void f()
2 {
3 int* A = new int[1000000];
4 // use A
5 g(A);
6 //
7 delete [] A;
8 }

Allocations with new should be matched by
corresponding delete operations
But, what if we throw an exception before we reach
delete ?

We may never reach the meticulously placed
delete statement!

Generally, because of exceptions, in C++ programs,
placing clean-up operations near “exit sites” is not
a sound strategy
This also applies to other “resources” which must
be acquired for use, e.g., threads, mutexes...
The right way to handle that is by using RAII, as
will be explained in our discussion of C++ classes.
Standard library facilities use the same technique

Member of the Helmholtz Association 8 – 12 May 2023 Slide 110

HEAP VS STACK

1 void f()
2 {
3 int* A = new int[1000000];
4 // use A
5 g(A);
6 //
7 delete [] A;
8 }

Allocations with new should be matched by
corresponding delete operations
But, what if we throw an exception before we reach
delete ?

We may never reach the meticulously placed
delete statement!

Generally, because of exceptions, in C++ programs,
placing clean-up operations near “exit sites” is not
a sound strategy

This also applies to other “resources” which must
be acquired for use, e.g., threads, mutexes...
The right way to handle that is by using RAII, as
will be explained in our discussion of C++ classes.
Standard library facilities use the same technique

Member of the Helmholtz Association 8 – 12 May 2023 Slide 110

HEAP VS STACK

1 void f()
2 {
3 int* A = new int[1000000];
4 // use A
5 g(A);
6 //
7 delete [] A;
8 }

Allocations with new should be matched by
corresponding delete operations
But, what if we throw an exception before we reach
delete ?

We may never reach the meticulously placed
delete statement!

Generally, because of exceptions, in C++ programs,
placing clean-up operations near “exit sites” is not
a sound strategy
This also applies to other “resources” which must
be acquired for use, e.g., threads, mutexes...

The right way to handle that is by using RAII, as
will be explained in our discussion of C++ classes.
Standard library facilities use the same technique

Member of the Helmholtz Association 8 – 12 May 2023 Slide 110

HEAP VS STACK

1 void f()
2 {
3 int* A = new int[1000000];
4 // use A
5 g(A);
6 //
7 delete [] A;
8 }

Allocations with new should be matched by
corresponding delete operations
But, what if we throw an exception before we reach
delete ?

We may never reach the meticulously placed
delete statement!

Generally, because of exceptions, in C++ programs,
placing clean-up operations near “exit sites” is not
a sound strategy
This also applies to other “resources” which must
be acquired for use, e.g., threads, mutexes...
The right way to handle that is by using RAII, as
will be explained in our discussion of C++ classes.

Standard library facilities use the same technique

Member of the Helmholtz Association 8 – 12 May 2023 Slide 110

HEAP VS STACK

1 void f()
2 {
3 int* A = new int[1000000];
4 // use A
5 g(A);
6 //
7 delete [] A;
8 }

Allocations with new should be matched by
corresponding delete operations
But, what if we throw an exception before we reach
delete ?

We may never reach the meticulously placed
delete statement!

Generally, because of exceptions, in C++ programs,
placing clean-up operations near “exit sites” is not
a sound strategy
This also applies to other “resources” which must
be acquired for use, e.g., threads, mutexes...
The right way to handle that is by using RAII, as
will be explained in our discussion of C++ classes.
Standard library facilities use the same technique

Member of the Helmholtz Association 8 – 12 May 2023 Slide 110

OBJECT LIFETIME MANAGEMENT WITH SMART
POINTERS

3 kinds of smart pointers were introduced in C++11: unique_ptr , shared_ptr , and weak_ptr

unique_ptr claims exclusive ownership of the allocated array. When it runs out of its scope, it calls
delete on the allocated resource. It is impossible to ”forget“ to delete the memory owned by unique_ptr

Several instances of shared_ptr may refer to the same block of memory. When the last of them expires,
it cleans up.
Helper functions make_unique and make_shared can be used to allocate on heap and retrieve a
smart pointer to the allocated memory
Smart pointers are not special language provided entities with magical resource management abilities. They
use RAII, and a user defined data structure can do the same kind of resource management by following the
same programming techniques.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 111

OBJECT LIFETIME MANAGEMENT WITH SMART
POINTERS

3 kinds of smart pointers were introduced in C++11: unique_ptr , shared_ptr , and weak_ptr

unique_ptr claims exclusive ownership of the allocated array. When it runs out of its scope, it calls
delete on the allocated resource. It is impossible to ”forget“ to delete the memory owned by unique_ptr

Several instances of shared_ptr may refer to the same block of memory. When the last of them expires,
it cleans up.
Helper functions make_unique and make_shared can be used to allocate on heap and retrieve a
smart pointer to the allocated memory
Smart pointers are not special language provided entities with magical resource management abilities. They
use RAII, and a user defined data structure can do the same kind of resource management by following the
same programming techniques.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 111

OBJECT LIFETIME MANAGEMENT WITH SMART
POINTERS

3 kinds of smart pointers were introduced in C++11: unique_ptr , shared_ptr , and weak_ptr

unique_ptr claims exclusive ownership of the allocated array. When it runs out of its scope, it calls
delete on the allocated resource. It is impossible to ”forget“ to delete the memory owned by unique_ptr

Several instances of shared_ptr may refer to the same block of memory. When the last of them expires,
it cleans up.

Helper functions make_unique and make_shared can be used to allocate on heap and retrieve a
smart pointer to the allocated memory
Smart pointers are not special language provided entities with magical resource management abilities. They
use RAII, and a user defined data structure can do the same kind of resource management by following the
same programming techniques.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 111

OBJECT LIFETIME MANAGEMENT WITH SMART
POINTERS

3 kinds of smart pointers were introduced in C++11: unique_ptr , shared_ptr , and weak_ptr

unique_ptr claims exclusive ownership of the allocated array. When it runs out of its scope, it calls
delete on the allocated resource. It is impossible to ”forget“ to delete the memory owned by unique_ptr

Several instances of shared_ptr may refer to the same block of memory. When the last of them expires,
it cleans up.
Helper functions make_unique and make_shared can be used to allocate on heap and retrieve a
smart pointer to the allocated memory

Smart pointers are not special language provided entities with magical resource management abilities. They
use RAII, and a user defined data structure can do the same kind of resource management by following the
same programming techniques.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 111

OBJECT LIFETIME MANAGEMENT WITH SMART
POINTERS

3 kinds of smart pointers were introduced in C++11: unique_ptr , shared_ptr , and weak_ptr

unique_ptr claims exclusive ownership of the allocated array. When it runs out of its scope, it calls
delete on the allocated resource. It is impossible to ”forget“ to delete the memory owned by unique_ptr

Several instances of shared_ptr may refer to the same block of memory. When the last of them expires,
it cleans up.
Helper functions make_unique and make_shared can be used to allocate on heap and retrieve a
smart pointer to the allocated memory
Smart pointers are not special language provided entities with magical resource management abilities. They
use RAII, and a user defined data structure can do the same kind of resource management by following the
same programming techniques.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 111

DYNAMIC MEMORY WITH SMART POINTERS

1 using big = std::array<int, 1000000>;
2 int f()
3 {
4 auto u1 = std::make_unique<big>();
5 // use u1
6 } // u1 expires, and frees the allocated memory

Current recommendation: avoid free new / delete calls in normal user code
Use them to implement memory management components
Use unique_ptr and shared_ptr to manage resources
If you do the above, you can then assume that an ordinary pointer in your code is a ”non-owning“ pointer,
and let it expire without leaking memory

Member of the Helmholtz Association 8 – 12 May 2023 Slide 112

MEMORY ALLOCATION/DEALLOCATION
You don’t need it often:

std::string takes care of itself
Using standard library containers like vector , list , map , deque even rather complicated structures
can be created without explicit memory allocation and de-allocation.

When you nevertheless must (first choice):

1 auto c = make_unique<complex_number>(1.2,4.2); // on the heap
2 int asize = 100; // on the stack
3 auto darray = make_unique<double[]>(asize);
4 // The stack frame contains the unique_ptr variables c and darray.
5 // The memory locations they point to on the other hand, are not
6 // on the stack, but on the heap. But, you don't need to worry about
7 // releasing that memory explicitly. If you don't have any way of
8 // accessing the resource (the pointers expire), the memory will be
9 // freed for you.

10 //

Member of the Helmholtz Association 8 – 12 May 2023 Slide 113

MEMORY ALLOCATION/DEALLOCATION
You don’t need it often:

std::string takes care of itself
Using standard library containers like vector , list , map , deque even rather complicated structures
can be created without explicit memory allocation and de-allocation.

When you nevertheless must (second choice):
Wrap the managed resource in a class
Allocate in constructors (or dedicated member functions invoked from constructors), where you handle all
exceptions. If an exception is thrown and the initialisation of the newly allocated objects can not be completed
fully, handle errors by restoring all variables to their original states. This kind of a function should either succeed
in making the intended change, or not make any changes at all.
Use your allocating function in (other) constructors and member functions as needed
Clean up in the destructor, using delete , if you used new
Object lifetime rules will ensure the clean up, even in case of exceptions.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 114

UNIQUE POINTER
1 // examples/uniqueptr.cc
2 auto main() -> int
3 {
4 auto u1 = std::make_unique<MyStruct>(1);
5 //auto u2 = u1; //won't compile
6 auto u3 = std::move(u1);
7 std::cout << "Data value for u3 is u3->vl = " << u3->vl <<'\n';
8 auto u4 = std::make_unique<MyStruct[]>(4);
9 }

Smart pointer: The data pointed to is freed when the pointer expires
Exclusive access to resource
Can not be copied (deleted copy constructor and assignment operator)
Data ownership can be transferred with std::move

Can create single instances as well as arrays through make_unique

Member of the Helmholtz Association 8 – 12 May 2023 Slide 115

SHARED POINTER
1 // examples/sharedptr.cc
2 auto main() -> int
3 {
4 auto u1 = std::make_shared<MyStruct>(1);
5 std::shared_ptr<MyStruct> u2 = u1; // Copy is ok
6 std::shared_ptr<MyStruct> u3 = std::move(u1);
7 std::cout << "Reference count of u3 is "
8 << u3.use_count() << '\n';
9 }

Smart pointer: The data pointed to is freed when the pointer expires
Can share resource with other shared/weak pointers
Can be copy assigned/constructed
Maintains a reference count ptr.use_count()

Member of the Helmholtz Association 8 – 12 May 2023 Slide 116

WEAK POINTER

1 // examples/weakptr.cc
2 auto main() -> int
3 {
4 auto s1 = std::make_shared<MyStruct>(1);
5 std::weak_ptr<MyStruct> w1(s1);
6 std::cout << "Ref count of s1 = " << s1.use_count() << '\n';
7 std::shared_ptr<MyStruct> s3(s1);
8 std::cout << "Ref count of s1 = " << s1.use_count() << '\n';
9 }

Does not own resource
Can "kind of" share data with shared pointers, but does not change reference count

Exercise 1.20: uniqueptr.cc, sharedptr.cc
Read the 3 smart pointer example files, and try to understand the output. Observe when the constructors and
destructors for the data objects are being called.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 117

MEMORY MANAGEMENT ERRORS
1 auto somefunc(inputpars) -> outputtype
2 {
3 auto* heapblock = new double[1024];
4
5 // calculations
6 // calculations
7 // calculations
8
9 return res;

10 // Oops! Forgot to delete heapblock!
11 }

Explicit handling of heap allocation/deallocation is
error prone. Danger: memory leak.

Must match new with delete in code
Even then, leak can happen: e.g., when the code
never reaches the delete

Use RAII for resource management instead.
Delegate explicit life time management of heap
resources to smart pointers, e.g.,
std::unique_ptr

Member of the Helmholtz Association 8 – 12 May 2023 Slide 118

MEMORY MANAGEMENT ERRORS
1 auto somefunc(inputpars) -> outputtype
2 {
3 auto* heapblock = new double[1024];
4
5 // calculations
6 // calculations
7 // calculations
8
9 delete [] heapblock;

10 return res;
11 }

Explicit handling of heap allocation/deallocation is
error prone. Danger: memory leak.
Must match new with delete in code

Even then, leak can happen: e.g., when the code
never reaches the delete

Use RAII for resource management instead.
Delegate explicit life time management of heap
resources to smart pointers, e.g.,
std::unique_ptr

Member of the Helmholtz Association 8 – 12 May 2023 Slide 118

MEMORY MANAGEMENT ERRORS
1 auto somefunc(inputpars) -> outputtype
2 {
3 auto* heapblock = new double[1024];
4
5 // calculations
6 // throw an exception!

7 // calculations
8
9 delete [] heapblock;

10 return res;
11 }

Explicit handling of heap allocation/deallocation is
error prone. Danger: memory leak.
Must match new with delete in code
Even then, leak can happen: e.g., when the code
never reaches the delete

Use RAII for resource management instead.
Delegate explicit life time management of heap
resources to smart pointers, e.g.,
std::unique_ptr

Member of the Helmholtz Association 8 – 12 May 2023 Slide 118

MEMORY MANAGEMENT ERRORS
1 auto somefunc(inputpars) -> outputtype
2 {
3 auto heapblock =
4 std::make_unique<double[]>(1024);
5
6 // calculations
7 // throw an exception!

8 // => unique_ptr cleans up
9

10 return res;
11 // unique_ptr cleans up
12 }

Explicit handling of heap allocation/deallocation is
error prone. Danger: memory leak.
Must match new with delete in code
Even then, leak can happen: e.g., when the code
never reaches the delete

Use RAII for resource management instead.

Delegate explicit life time management of heap
resources to smart pointers, e.g.,
std::unique_ptr

Member of the Helmholtz Association 8 – 12 May 2023 Slide 118

MEMORY MANAGEMENT ERRORS
1 auto somefunc(inputpars) -> outputtype
2 {
3 auto heapblock =
4 std::make_unique<double[]>(1024);
5
6 // calculations
7 // throw an exception!

8 // => unique_ptr cleans up
9

10 return res;
11 // unique_ptr cleans up
12 }

Explicit handling of heap allocation/deallocation is
error prone. Danger: memory leak.
Must match new with delete in code
Even then, leak can happen: e.g., when the code
never reaches the delete

Use RAII for resource management instead.
Delegate explicit life time management of heap
resources to smart pointers, e.g.,
std::unique_ptr

Member of the Helmholtz Association 8 – 12 May 2023 Slide 118

DANGERS OF DANGLING POINTERS AND
REFERENCES

1 {
2 int* ptr = nullptr;
3 if (something) {
4 auto i = std::stoi(argv[1]);
5 ptr = &i;
6 std::cout << "ptr is pointing at "
7 << *ptr << "\n";
8 }
9 // ptr still in scope, but i isn't!

10 std::cout << *ptr << "\n";
11 // dangling --> dereference -->
12 // undefined behaviour!
13 }

While consistent and correct use of RAII will avoid
heap memory leak errors, other forms of memory
errors exist, and are harder to eliminate

When storing addresses in pointers, we have to
ensure that the pointer is not used beyond the
scope of the object it points at.
If we return a reference from a function, we must
make sure, it is not a reference to a temporary
object.
If we store references to heap object, there is
always the danger that operations on the owning
entity will invalidate the reference

Member of the Helmholtz Association 8 – 12 May 2023 Slide 119

DANGERS OF DANGLING POINTERS AND
REFERENCES

1 {
2 int* ptr = nullptr;
3 if (something) {
4 auto i = std::stoi(argv[1]);
5 ptr = &i;
6 std::cout << "ptr is pointing at "
7 << *ptr << "\n";
8 }
9 // ptr still in scope, but i isn't!

10 std::cout << *ptr << "\n";
11 // dangling --> dereference -->
12 // undefined behaviour!
13 }

While consistent and correct use of RAII will avoid
heap memory leak errors, other forms of memory
errors exist, and are harder to eliminate
When storing addresses in pointers, we have to
ensure that the pointer is not used beyond the
scope of the object it points at.

If we return a reference from a function, we must
make sure, it is not a reference to a temporary
object.
If we store references to heap object, there is
always the danger that operations on the owning
entity will invalidate the reference

Member of the Helmholtz Association 8 – 12 May 2023 Slide 119

DANGERS OF DANGLING POINTERS AND
REFERENCES

1 auto calc(double inp) -> double&
2 {
3 auto loc = inp * inp;
4 // Returning ref to local:
5 return loc; // Bad idea!
6 }
7 void elsewhere()
8 {
9 auto&& res = calc(4);

10 std::cout << res << "\n";
11 }

While consistent and correct use of RAII will avoid
heap memory leak errors, other forms of memory
errors exist, and are harder to eliminate
When storing addresses in pointers, we have to
ensure that the pointer is not used beyond the
scope of the object it points at.
If we return a reference from a function, we must
make sure, it is not a reference to a temporary
object.

If we store references to heap object, there is
always the danger that operations on the owning
entity will invalidate the reference

Member of the Helmholtz Association 8 – 12 May 2023 Slide 119

DANGERS OF DANGLING POINTERS AND
REFERENCES

1 {
2 std::vector v{1, 2, 3};
3 auto& vstart = v.front();
4 v.push_back(4); // may invalidate vstart
5 v.push_back(5);
6 v.push_back(6);
7 v.push_back(7);
8 std::cout << vstart << "\n";
9 }

While consistent and correct use of RAII will avoid
heap memory leak errors, other forms of memory
errors exist, and are harder to eliminate
When storing addresses in pointers, we have to
ensure that the pointer is not used beyond the
scope of the object it points at.
If we return a reference from a function, we must
make sure, it is not a reference to a temporary
object.
If we store references to heap object, there is
always the danger that operations on the owning
entity will invalidate the reference

Member of the Helmholtz Association 8 – 12 May 2023 Slide 119

DANGLING –> DEREFERENCE –> UNDEFINED
BEHAVIOUR

Exercise 1.21:
The folder examples/dangling_pr contains examples of the 3 kinds of memory bugs mentioned in this section.
Study them, and check what, if any, errors or warnings the compiler generates for them. Try compiling with
-Wall Wextra . Run them and examine the results. Try compiling with -fsanitize=address .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 120

AVOID DANGLING POINTERS AND REFERENCES
Ensure that pointers and references do not outlive the referenced objects
Prefer short lived non-owning pointers
Do not return references to temporary objects
Avoid storing references to objects on the heap

Member of the Helmholtz Association 8 – 12 May 2023 Slide 121

Chapter 2

C++ classes and class hierarchies

Member of the Helmholtz Association 8 – 12 May 2023 Slide 122

C++ classes

Member of the Helmholtz Association 8 – 12 May 2023 Slide 123

AD HOC STRUCTS
Some times calculations involve bundles of entities which
belong together, e.g., the location of a minimum of a
function and the corresponding minimum value

Member of the Helmholtz Association 8 – 12 May 2023 Slide 124

AD HOC STRUCTS
1 struct minim_return_type {

2 double min_loc, min_val;
3 };
4 auto minimize(double r1, double r2,
5 FunctionType f)
6 {
7 minim_return_type m;
8 // Find minimum somehow
9 m.min_loc = the_location;

10 m.min_val = the_value;
11 return m;
12 }
13 void elsewhere()
14 {
15 auto sol = minimize(0., 10., cost_func);
16 cout << "Minimum found at " << sol.min_loc
17 << "with a value " << sol.min_val
18 << "\n";
19 }

struct : Staple together objects of arbitrary types
Can be done in global as well as block scope

We can now use the name of the struct to
create variables , such that each of them has a
min_loc member and a min_val member

Can be function argument (and hence can participate in
overload resolution), or return value (and hence gives us
a way to return multiple values)
Names of the components can be chosen to reflect any
meanings associated with the content, making it a good
practical way of returning multiple objects from a
function
Structured bindings can be used to create aliases for

the components. The binding names are independent of
the names in the struct

Member of the Helmholtz Association 8 – 12 May 2023 Slide 124

AD HOC STRUCTS
1 struct minim_ret_type {
2 double min_loc, min_val;
3 };
4 auto minimize(double r1, double r2,
5 FunctionType f)
6 {

7 minim_ret_type m;

8 // Find minimum somehow
9 m.min_loc = the_location;

10 m.min_val = the_value;
11 return m;
12 }
13 void elsewhere()
14 {
15 auto [loc, val] = minimize(0., 10.,
16 cost_func);
17 cout << "Minimum found at " << loc
18 << "with a value " << val << "\n";
19 }

struct : Staple together objects of arbitrary types
Can be done in global as well as block scope
We can now use the name of the struct to
create variables , such that each of them has a
min_loc member and a min_val member

Can be function argument (and hence can participate in
overload resolution), or return value (and hence gives us
a way to return multiple values)
Names of the components can be chosen to reflect any
meanings associated with the content, making it a good
practical way of returning multiple objects from a
function

Structured bindings can be used to create aliases for
the components. The binding names are independent of
the names in the struct

Member of the Helmholtz Association 8 – 12 May 2023 Slide 124

AD HOC STRUCTS
1 struct minim_ret_type {
2 double min_loc, min_val;
3 };
4 auto minimize(double r1, double r2,
5 FunctionType f)
6 {

7 minim_ret_type m;

8 // Find minimum somehow
9 m.min_loc = the_location;

10 m.min_val = the_value;
11 return m;
12 }
13 void elsewhere()
14 {

15 auto [loc, val] = minimize(0., 10.,

16 cost_func);
17 cout << "Minimum found at " << loc
18 << "with a value " << val << "\n";
19 }

struct : Staple together objects of arbitrary types
Can be done in global as well as block scope
We can now use the name of the struct to
create variables , such that each of them has a
min_loc member and a min_val member

Can be function argument (and hence can participate in
overload resolution), or return value (and hence gives us
a way to return multiple values)
Names of the components can be chosen to reflect any
meanings associated with the content, making it a good
practical way of returning multiple objects from a
function
Structured bindings can be used to create aliases for

the components. The binding names are independent of
the names in the struct

Member of the Helmholtz Association 8 – 12 May 2023 Slide 124

AD HOC STRUCTS
1 struct minim_ret_type {
2 double min_loc, min_val;
3 };
4 auto minimize(double r1, double r2,
5 FunctionType f)
6 {
7 minim_ret_type m;
8 // Find minimum somehow
9 m.min_loc = the_location;

10 m.min_val = the_value;
11 return m;
12 }
13 void elsewhere()
14 {
15 auto m1 = minimize(-10., 0., constfunc1);
16 minim_ret_type m2 = minimize(-10., 0.,
17 constfunc1);
18 auto * mptr = &m2;

19 if (m1.min_val > mptr->min_val)

20 haha();
21 }

A struct is a user defined data type

Each instance has a bundle, with a min_loc and
min_val member

Members are accessed from the
object using the . notation , and from a

pointer to an object using the -> notation .

(*mptr).min_val is the same as
mptr->min_val

Member of the Helmholtz Association 8 – 12 May 2023 Slide 125

DESIGNATED INITIALISERS

1 // examples/desig2.cc
2 struct v3 { double x, y, z; };
3 struct pars { int offset; v3 velocity; };
4 auto operator<<(std::ostream& os, const v3& v) -> std::ostream&
5 {
6 return os << v.x << ", " << v.y << ", " << v.z << " ";
7 }
8 auto example_func(pars p)
9 {

10 std::cout << p.offset << " with velocity " << p.velocity << "\n";
11 }
12 auto main() -> int
13 {

14 example_func({.offset = 5, .velocity = {.x=1., .y = 2., .z=3.}});

15 }

Simple struct type objects can be initialised by designated initialisers for each field.
Can be used to implement a kind of ”keyword arguments“ for functions. But remember, at least as of
C++20, the field order can not be shuffled.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 126

C++ CLASSES
1 // examples/trivialclassoverload.cc
2 class A {};
3 class B {};

4 void func(int i, A a)

5 {
6 cout << "Called f input types (int, A)\n";
7 }

8 void func(int i, B b)

9 {
10 cout << "Called f input types (int, B)\n";
11 }
12 auto main() -> int
13 {
14 A xa;
15 B xb;

16 func(0, xa) ;

17 func(0, xb) ;

18 }

User defined data types. Independently created
classes are different, even if they have the same
content.
Function overloading: The two versions of the
function func shown here are different entities
from the compiler’s viewpoint. No ambiguity about
which function is called in lines 16 and 17 in
main() .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 127

C++ CLASSES
Overloading operators

1 // examples/op_overload.cc
2 class A {};
3 class B {};
4 auto operator+(A x, A y) -> A
5 {
6 std::cout << "operator+(A, A)\n";
7 return x;
8 }
9 auto operator+(B x, B y) -> B

10 {
11 std::cout << "operator+(B, B)\n";
12 return x;
13 }
14 auto operator+(A x, B y) -> A {...} // similar
15 auto main() -> int {
16 A a1, a2;
17 B b1, b2;
18 a1 + a2;
19 a1 + b1;
20 b1 + b2; // b1 + a2; doesn't work. Think why!
21 }

For C++ class types, operators like + , - , * ,
/ , || , && . . . are functions

As long as at least one of the arguments to an
operator is of a class type (not a built-in type like
int , double ...), it is possible to provide a

recipe to interpret expressions like a1 + a2

a1 + a2 is interpreted as a function call
operator+(a1, a2)

Using suitably chosen operators to overload, we can
make expressions involving objects of a class type
more intuitive

Member of the Helmholtz Association 8 – 12 May 2023 Slide 128

OVERLOADING OPERATORS
+ − * / % & ^ |

+= −= *= /= %= &= ^= |= =

++ −− && || ! != ==

< > != == <= >= <=> = =

() [] , -> ->* << <<= >>= >>

new delete new[] delete[]

Table: List of operators you can overload. (But remember, can and should are not the same thing!)

Think carefully about the impact an overloaded operator will have on the readability of your code. Whether
or not it the impact is beneficial depends on the use case
Many important commonly used C++ features depend on suitably overloaded operators. E.g.,
std::cout << "Hello\n";

Member of the Helmholtz Association 8 – 12 May 2023 Slide 129

C++ CLASSES
1 struct Vector3 {
2 double x, y, z;
3 };

Usually, encapsulates some data to represent an
idea

Specifies possible operations on the data
Once defined, one can create and use variables of
the new type

Member of the Helmholtz Association 8 – 12 May 2023 Slide 130

C++ CLASSES
1 struct Vector3 {
2 double x, y, z;
3 auto mag2() -> double
4 {
5 return x * x + y * y + z * z;
6 }
7 };

Usually, encapsulates some data to represent an
idea
Specifies possible operations on the data

Once defined, one can create and use variables of
the new type

Member of the Helmholtz Association 8 – 12 May 2023 Slide 130

C++ CLASSES
1 struct Vector3 {
2 double x, y, z;
3 auto mag2() -> double
4 {
5 return x * x + y * y + z * z;
6 }
7 };
8
9 void somefunc()

10 {
11 int a, b, c;
12 Vector3 d, e, f;
13 // ...
14 if (d.mag2() < e.mag2()) doX();
15 }

Usually, encapsulates some data to represent an
idea
Specifies possible operations on the data
Once defined, one can create and use variables of
the new type

Member of the Helmholtz Association 8 – 12 May 2023 Slide 130

C++ CLASSES
1 struct Vector3 {
2 double x, y, z;
3 auto mag2() -> double
4 {
5 return x * x + y * y + z * z;
6 }
7 };
8
9 void somefunc()

10 {
11 int a, b, c; // On the stack
12 Vector3 d, e, f; // On the stack
13 // ...
14 if (d.mag2() < e.mag2()) doX();
15 }

Usually, encapsulates some data to represent an
idea
Specifies possible operations on the data
Once defined, one can create and use variables of
the new type

In C++, objects of user defined types live on the stack by default, unless explicitly created on the heap.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 130

C++ CLASSES
Functions, relevant for the idea, can be declared inside the struct :
|

1 struct complex {
2 double real, imaginary;
3 auto modulus() -> double
4 {
5 return sqrt(real * real +
6 imaginary * imaginary);
7 }
8 };
9 ...

10 complex a{1, 2}, b{3, 4};
11 complex* cptr = &a;
12 auto c = a. modulus();// 1 * 1 + 2 * 2

13 auto d = b. modulus();// 3 * 3 + 4 * 4

14 auto e = cptr-> modulus();// 1 * 1 + 2 * 2

Data and function members

A (non-static) member function is invoked on an
instance of our structure.

a.real is the real part of a . a.modulus()
is the modulus of a.
Inside a member function, member variables
correspond to the invoking instance.
Think of a call like a.modulus() as
complex::modulus(a) The address of the

object on the left of the "." is the implicit first
argument to the member function.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 131

C++ CLASSES
Functions, relevant for the idea, can be declared inside the struct :
|

1 struct complex {
2 double real, imaginary;
3 auto modulus() -> double
4 {
5 return sqrt(real * real +
6 imaginary * imaginary);
7 }
8 };
9 ...

10 complex a{1, 2}, b{3, 4};
11 complex* cptr = &a;
12 auto c = a. modulus();// 1 * 1 + 2 * 2

13 auto d = b. modulus();// 3 * 3 + 4 * 4

14 auto e = cptr-> modulus();// 1 * 1 + 2 * 2

Data and function members
A (non-static) member function is invoked on an
instance of our structure.

a.real is the real part of a . a.modulus()
is the modulus of a.
Inside a member function, member variables
correspond to the invoking instance.
Think of a call like a.modulus() as
complex::modulus(a) The address of the

object on the left of the "." is the implicit first
argument to the member function.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 131

C++ CLASSES
Functions, relevant for the idea, can be declared inside the struct :
|

1 struct complex {
2 double real, imaginary;
3 auto modulus() -> double
4 {
5 return sqrt(real * real +
6 imaginary * imaginary);
7 }
8 };
9 ...

10 complex a{1, 2}, b{3, 4};
11 complex* cptr = &a;
12 auto c = a. modulus();// 1 * 1 + 2 * 2

13 auto d = b. modulus();// 3 * 3 + 4 * 4

14 auto e = cptr-> modulus();// 1 * 1 + 2 * 2

Data and function members
A (non-static) member function is invoked on an
instance of our structure.

a.real is the real part of a . a.modulus()
is the modulus of a.

Inside a member function, member variables
correspond to the invoking instance.
Think of a call like a.modulus() as
complex::modulus(a) The address of the

object on the left of the "." is the implicit first
argument to the member function.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 131

C++ CLASSES
Functions, relevant for the idea, can be declared inside the struct :
|

1 struct complex {
2 double real, imaginary;
3 auto modulus() -> double
4 {
5 return sqrt(real * real +
6 imaginary * imaginary);
7 }
8 };
9 ...

10 complex a{1, 2}, b{3, 4};
11 complex* cptr = &a;
12 auto c = a. modulus();// 1 * 1 + 2 * 2

13 auto d = b. modulus();// 3 * 3 + 4 * 4

14 auto e = cptr-> modulus();// 1 * 1 + 2 * 2

Data and function members
A (non-static) member function is invoked on an
instance of our structure.

a.real is the real part of a . a.modulus()
is the modulus of a.
Inside a member function, member variables
correspond to the invoking instance.

Think of a call like a.modulus() as
complex::modulus(a) The address of the

object on the left of the "." is the implicit first
argument to the member function.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 131

C++ CLASSES
Functions, relevant for the idea, can be declared inside the struct :
|

1 struct complex {
2 double real, imaginary;
3 auto modulus() -> double
4 {
5 return sqrt(real * real +
6 imaginary * imaginary);
7 }
8 };
9 ...

10 complex a{1, 2}, b{3, 4};
11 complex* cptr = &a;
12 auto c = a. modulus();// 1 * 1 + 2 * 2

13 auto d = b. modulus();// 3 * 3 + 4 * 4

14 auto e = cptr-> modulus();// 1 * 1 + 2 * 2

Data and function members
A (non-static) member function is invoked on an
instance of our structure.

a.real is the real part of a . a.modulus()
is the modulus of a.
Inside a member function, member variables
correspond to the invoking instance.
Think of a call like a.modulus() as
complex::modulus(a) The address of the

object on the left of the "." is the implicit first
argument to the member function.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 131

Member of the Helmholtz Association 8 – 12 May 2023 Slide 132

OPERATORS AS MEMBER FUNCTIONS
1 struct complex {
2 double real, imag;
3 auto modulus() -> double
4 {
5 return sqrt(real * real +
6 imag * imag);
7 }
8 auto operator+(complex other) -> complex
9 {

10 return {real + other.real,
11 imag + other.imag};
12 }
13 };

Since operators working with class types are normal
functions, one can have operators as member
functions
The implicit argument (invoking instance) is on the
left hand side for binary operators. That’s why the
binary operator + is defined here as a member
function taking only one argument

Member of the Helmholtz Association 8 – 12 May 2023 Slide 133

MEMBER FUNCTIONS AND CONST
1 struct complex {
2 double m_real, m_imag;
3 auto modulus() -> double;
4 auto operator-(const complex& rhs)

5 -> complex;
6 };

7 auto operator*(const complex* lhsptr ,

8 const complex& rhs)

9 -> complex
10 {
11 // ...
12 }
13 void somewhere_else()
14 {
15 complex z1, z2;
16 auto z3 = z1 - z2;
17 // We know z2 didn't change.
18 // But did z1 ?
19 }

Explicit arguments to member functions can be
declared const similar to arguments for any

other function

Non-member operator definitions like
operator* in line 6 have two parameters: the

first represents the left side and the second the
right side . These are easy to declare const .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 134

MEMBER FUNCTIONS AND CONST
1 struct complex {
2 double m_real, m_imag;
3 auto modulus() -> double;
4 auto operator-(const complex& rhs)

5 -> complex;
6 };

7 auto operator*(const complex* lhsptr ,

8 const complex& rhs)

9 -> complex
10 {
11 // ...
12 }
13 void somewhere_else()
14 {
15 complex z1, z2;
16 auto z3 = z1 - z2;
17 // We know z2 didn't change.
18 // But did z1 ?
19 }

Explicit arguments to member functions can be
declared const similar to arguments for any

other function
Non-member operator definitions like
operator* in line 6 have two parameters: the

first represents the left side and the second the
right side . These are easy to declare const .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 134

MEMBER FUNCTIONS AND CONST
1 struct complex {
2 double m_real, m_imag;
3 auto modulus() -> double;
4 auto operator-(const complex& rhs)

5 -> complex;
6 };

7 auto operator*(const complex* lhsptr ,

8 const complex& rhs)

9 -> complex
10 {
11 // ...
12 }
13 void somewhere_else()
14 {
15 complex z1, z2;
16 auto z3 = z1 - z2;
17 // We know z2 didn't change.
18 // But did z1 ?
19 }

But member functions have an implicit argument:
the this pointer, pointing at the calling instance.
In member operators, this points at the object
on the left side. Only the right side is passed
explicitly in a member operator definition (line 4).
Where do we put a const qualifier, if we want to
express that the calling instance (LHS argument)
must not change?

Answer: After the closing parentheses of the
function signature.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 135

MEMBER FUNCTIONS AND CONST
1 struct complex {
2 double m_real, m_imag;
3 auto modulus() const -> double;

4 auto operator-(const complex& b) const

5 -> complex;
6 };

7 auto operator*(const complex* lhsptr ,

8 const complex& rhs)

9 -> complex
10 {
11 // ...
12 }
13 void somewhere_else()
14 {
15 complex z1, z2;
16 auto z3 = z1 - z2;
17 // We know z2 didn't change.
18 // We know z1 didn't change,
19 // as we called a const member
20 }

But member functions have an implicit argument:
the this pointer, pointing at the calling instance.
In member operators, this points at the object
on the left side. Only the right side is passed
explicitly in a member operator definition (line 4).
Where do we put a const qualifier, if we want to
express that the calling instance (LHS argument)
must not change?
Answer: After the closing parentheses of the
function signature.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 135

SOME EXAMPLE CLASSES
1 class Angle {
2 double rd = 0;
3 public:
4 enum unit {
5 radian,
6 degree
7 };
8 Angle operator-(Angle a) const ;
9 Angle operator+(Angle a) const ;

10 Angle operator-=(Angle a) ;

1 class Vector3
2 {
3 public:
4 enum crdtype {cartesian=0,polar=1};
5 inline auto x() const -> double {return dx;}
6 inline void x(double gx) {dx=gx;}
7 auto dot(const Vector3 &p) const -> double;
8 Vector3 cross(const Vector3 &p) const;

1 class IsingLattice {
2 public:
3 using update_type =
4 std::pair<size_t, size_t>;
5 IsingLattice();
6 IsingLattice(size_t Nx, double JJ);
7 void setLatticeSize(size_t ns);

1 class KMer {
2 public:
3 Nucleotide at(size_t i);
4 auto operator==(const KMer &) const -> bool;

1 class SimulationManager {
2 public:
3 void loadSettings(std::string file);
4 auto checkConfig() const -> bool;
5 void start();

Member of the Helmholtz Association 8 – 12 May 2023 Slide 136

OBJECT INITIALISATION: CONSTRUCTORS
In C++, initialisation functions for a struct have the same name as the struct. They are called constructors.

1 struct complex {
2 complex(double re, double im)
3 {
4 real = re;
5 imaginary = im;
6 }
7 };

Alternative syntax to initialise variables in constructors

1 struct complex
2 {
3 complex(double re, double im) : real{re}, imaginary{im} {}
4 };

A class can have as many constructors as it needs.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 137

CONSTRUCTORS
1 struct complex {

2 complex(double re, double im)

3 {
4 real = re;
5 imaginary = im;
6 }

7 complex()

8 {
9 real = imaginary = 0;

10 }
11 double real, imaginary;
12 };
13 ...
14 complex a(3.2, 9.3) ; // C++11 and older

15 complex b{4.3, 1.9} ; // Preferred

16 complex c{} ;

Constructors may be (and normally are) overloaded.
When a variable is declared, a constructor whose
number and type of arguments matches the
initialiser expression is implicitly called
The default constructor is the one without any
arguments. That is the one invoked when no
arguments are given while creating the object.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 138

CONSTRUCTORS
1 struct complex
2 {
3 complex(double re, double im)
4 {
5 real = re;
6 imaginary = im;
7 }
8 complex() {}
9 double real{0.};

10 double imaginary{0.};
11 };
12 ...
13 complex a(4.3, 23.09), b;

Member variables can be initialised to ”default
values“ at the point of declaration

Member variables not touched by the constructor
stay at their default values
Preferred syntax for initialisation of members in a
constructor is shown here . This form of
initialisation outside the constructor function body
is only possible for constructors

Member of the Helmholtz Association 8 – 12 May 2023 Slide 139

CONSTRUCTORS
1 struct complex
2 {
3 complex(double re, double im)
4 {
5 real = re;
6 imaginary = im;
7 }
8 complex() {}
9 double real{0.};

10 double imaginary{0.};
11 };
12 ...
13 complex a(4.3, 23.09), b;

Member variables can be initialised to ”default
values“ at the point of declaration
Member variables not touched by the constructor
stay at their default values

Preferred syntax for initialisation of members in a
constructor is shown here . This form of
initialisation outside the constructor function body
is only possible for constructors

Member of the Helmholtz Association 8 – 12 May 2023 Slide 139

CONSTRUCTORS
1 struct complex
2 {
3 complex(double re, double im)

4 : real{re}, imaginary{im}

5 {
6 }
7 complex() {}
8 double real{0.};
9 double imaginary{0.};

10 };
11 ...
12 complex a(4.3, 23.09), b;

Member variables can be initialised to ”default
values“ at the point of declaration
Member variables not touched by the constructor
stay at their default values
Preferred syntax for initialisation of members in a
constructor is shown here . This form of
initialisation outside the constructor function body
is only possible for constructors

Member of the Helmholtz Association 8 – 12 May 2023 Slide 139

FREEING MEMORY FOR USER DEFINED TYPES
1 struct darray
2 {
3 double *data = nullptr;
4 size_t sz = 0;
5 darray(size_t N) : sz{N} {
6 data = new double[sz];
7 }
8 };
9

10 auto tempfunc(double phasediff) -> double
11 {
12 // find number of elements
13 darray A{large_number};
14 // do some great calculations
15 return answer;
16 }

What happens to the memory? The struct darray has a
pointer member, which points to dynamically allocated
memory

When the life of the variable A ends, the member
variables (e.g. the pointer data) go out of scope.
How does one free the dynamically allocated memory
attached to the member data ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 140

FREEING MEMORY FOR USER DEFINED TYPES
1 struct darray
2 {
3 double *data{nullptr};
4 size_t sz{0};
5 darray(size_t N) : sz{N} {
6 data = new double[sz];
7 }
8 ~darray() {
9 if (data) delete [] data;

10 }
11 };
12
13 auto tempfunc(double phasediff) -> double
14 {
15 // find number of elements
16 darray A{large_number};
17 // do some great calculations
18 return answer;
19 }

For any class which explicitly allocates dynamic memory
We need a function that cleans up all explicitly allocated
memory in use, so that we call it for every object whose
lifetime is about to end.
In C++, such functions are called destructors, and have
the name ~ followed by the class name.
Destructors take no arguments, and there is exactly one
for each class
The destructor is automatically called when a variable
expires. You don’t call it explicitly. It is always called
whenever the scope of an object ends! It is impossible to
forget.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 141

DESTRUCTORS
1 class A {

2 A() {}

3 ~A() {}

4 };
5 auto demo(A)
6 {

7 A v1 ;
8 try {

9 A v2 ;
10 // calc
11
12 } // ~A() for v2

13 catch {
14 // ...
15 }

16 } // ~A() for v1

No matter how you exit a scope, if the scope of a
variable ends, its destructor is invoked automatically
What if we acquire resources in constructors and
clean up in the destructor? It would be impossible
to forget to free resources when we are done!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 142

COPYING AND ASSIGNMENTS
1 struct complex
2 {
3 double x, y;
4 };
5 //...
6 complex z0{2.0, 3.0}, z1;
7 z1 = z0; // assignment operator
8 complex z2{z0}; //copy constructor

While copying and assigning, in most cases, we
want to assign the data members to the
corresponding members

This happens automatically, but using special
functions for these copy operations
You can redefine them for your class
Why would you want to ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 143

COPYING AND ASSIGNMENTS
1 struct complex
2 {
3 double x, y;
4 };
5 //...
6 complex z0{2.0, 3.0}, z1;
7 z1 = z0; // assignment operator
8 complex z2{z0}; //copy constructor

While copying and assigning, in most cases, we
want to assign the data members to the
corresponding members
This happens automatically, but using special
functions for these copy operations

You can redefine them for your class
Why would you want to ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 143

COPYING AND ASSIGNMENTS
1 struct complex
2 {
3 double x, y;
4 };
5 //...
6 complex z0{2.0, 3.0}, z1;
7 z1 = z0; // assignment operator
8 complex z2{z0}; //copy constructor

While copying and assigning, in most cases, we
want to assign the data members to the
corresponding members
This happens automatically, but using special
functions for these copy operations
You can redefine them for your class

Why would you want to ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 143

COPYING AND ASSIGNMENTS
1 struct complex
2 {
3 double x, y;
4 };
5 //...
6 complex z0{2.0, 3.0}, z1;
7 z1 = z0; // assignment operator
8 complex z2{z0}; //copy constructor

While copying and assigning, in most cases, we
want to assign the data members to the
corresponding members
This happens automatically, but using special
functions for these copy operations
You can redefine them for your class
Why would you want to ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 143

COPYING AND ASSIGNMENTS
1 class darray {
2 double *x;
3 };
4 darray::darray(unsigned n)
5 {
6 x = new double[n];
7 }
8 void foo()
9 {

10 darray ar1(5);
11 darray ar2{ar1}; //copy constructor
12 ar2[3] = 2.1;
13 //oops! ar1[3] is also 2.1 now!
14 } //trouble

Copying pointers with dynamically allocated memory
May not be what we want

Leads to "double free" errors when the objects are destroyed

Member of the Helmholtz Association 8 – 12 May 2023 Slide 144

COPYING AND ASSIGNMENTS
1 class darray {
2 double *x;
3 };
4 darray::darray(unsigned n)
5 {
6 x = new double[n];
7 }
8 void foo()
9 {

10 darray ar1(5);
11 darray ar2{ar1}; //copy constructor
12 ar2[3] = 2.1;
13 //oops! ar1[3] is also 2.1 now!
14 } //trouble

Copying pointers with dynamically allocated memory
May not be what we want
Leads to "double free" errors when the objects are destroyed

Member of the Helmholtz Association 8 – 12 May 2023 Slide 144

COPYING AND ASSIGNMENTS
1 class darray {
2 double *x{nullptr};
3 unsigned int len{};
4 public:
5 // Copy constructor
6 darray(const darray &);
7 //assignment operator
8 auto operator=(const darray&) -> darray&;
9 };

10 darray::darray(const darray& other)
11 {
12 if (other.len != 0) {
13 len = other.len;
14 x = new double[len];
15 for (unsigned i = 0; i < len; ++i) {
16 x[i] = other.x[i];
17 }
18 }
19 }
20 auto darray::operator=(const darray& other) -> darray&
21 {
22 if (this != &other) {
23 if (len != other.len) {

1 len = other.len;
2 if (x) delete [] x;
3 x = new double[len];
4 }
5 for (unsigned i = 0; i < len; ++i) {
6 x[i] = other.x[i];
7 }
8 }
9 return *this;

10 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 145

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR
1 class darray {
2 darray(darray &&); //Move constructor
3 auto operator=(darray &&) -> darray&;
4 //Move assignment operator
5 };
6 darray::darray(darray&& other)
7 {
8 len = other.len;
9 x = other.x;

10 other.x = nullptr;
11 }
12 auto darray::operator=(darray&& other)
13 -> darray& {
14 len = other.len;
15 x = other.x;
16 other.x = nullptr;
17 return *this;
18 }
19 darray d1(3);
20 init_array(d1); //d1 = {1.0,2.0,3.0}
21 darray d2{d1}; //Copy construction
22 // d1 and d2 are {1.,2.,3.}
23 darray d3{std::move(d1)}; //Move
24 // d3 is {1.,2.,3.}, but d1 is empty!

Construct or assign from an R-value reference
(darray &&)

Steal resources from RHS
Put disposable content in RHS

Member of the Helmholtz Association 8 – 12 May 2023 Slide 146

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR
1 class darray {
2 darray(darray &&); //Move constructor
3 auto operator=(darray &&) -> darray&;
4 //Move assignment operator
5 };
6 darray::darray(darray&& other)
7 {
8 len = other.len;
9 x = other.x;

10 other.x = nullptr;
11 }
12 auto darray::operator=(darray&& other)
13 -> darray& {
14 len = other.len;
15 x = other.x;
16 other.x = nullptr;
17 return *this;
18 }
19 darray d1(3);
20 init_array(d1); //d1 = {1.0,2.0,3.0}
21 darray d2{d1}; //Copy construction
22 // d1 and d2 are {1.,2.,3.}
23 darray d3{std::move(d1)}; //Move
24 // d3 is {1.,2.,3.}, but d1 is empty!

Construct or assign from an R-value reference
(darray &&)
Steal resources from RHS

Put disposable content in RHS

Member of the Helmholtz Association 8 – 12 May 2023 Slide 146

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR
1 class darray {
2 darray(darray &&); //Move constructor
3 auto operator=(darray &&) -> darray&;
4 //Move assignment operator
5 };
6 darray::darray(darray&& other)
7 {
8 len = other.len;
9 x = other.x;

10 other.x = nullptr;
11 }
12 auto darray::operator=(darray&& other)
13 -> darray& {
14 len = other.len;
15 x = other.x;
16 other.x = nullptr;
17 return *this;
18 }
19 darray d1(3);
20 init_array(d1); //d1 = {1.0,2.0,3.0}
21 darray d2{d1}; //Copy construction
22 // d1 and d2 are {1.,2.,3.}
23 darray d3{std::move(d1)}; //Move
24 // d3 is {1.,2.,3.}, but d1 is empty!

Construct or assign from an R-value reference
(darray &&)
Steal resources from RHS

Put disposable content in RHS

Member of the Helmholtz Association 8 – 12 May 2023 Slide 146

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR
1 class darray {
2 darray(darray &&); //Move constructor
3 auto operator=(darray &&) -> darray&;
4 //Move assignment operator
5 };
6 darray::darray(darray&& other)
7 {
8 len = other.len;
9 x = other.x;

10 other.x = nullptr;
11 }
12 auto darray::operator=(darray&& other)
13 -> darray& {
14 len = other.len;
15 x = other.x;
16 other.x = nullptr;
17 return *this;
18 }
19 darray d1(3);
20 init_array(d1); //d1 = {1.0,2.0,3.0}
21 darray d2{d1}; //Copy construction
22 // d1 and d2 are {1.,2.,3.}
23 darray d3{std::move(d1)}; //Move
24 // d3 is {1.,2.,3.}, but d1 is empty!

Construct or assign from an R-value reference
(darray &&)
Steal resources from RHS
Put disposable content in RHS

Member of the Helmholtz Association 8 – 12 May 2023 Slide 146

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR
You can enable move semantics for your class by writing a constructor or assignment operator using an
R-value reference

Usually you will not be using it explicitly. Results of the evaluation of expressions might create a nameless
object containing the resultant value (prvalue: pure r-value). A function may be returning a named entity
which is about to expire (xvalue: expiring value) References to such objects are called R-value references. A
move constructor or assignment operator is automatically invoked if constructor argument is an R-value
reference
You can invoke the move constructor by casting the function argument to an R-value reference, e.g.
darray d3{std::move(d1)}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 147

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR
You can enable move semantics for your class by writing a constructor or assignment operator using an
R-value reference
Usually you will not be using it explicitly. Results of the evaluation of expressions might create a nameless
object containing the resultant value (prvalue: pure r-value). A function may be returning a named entity
which is about to expire (xvalue: expiring value) References to such objects are called R-value references. A
move constructor or assignment operator is automatically invoked if constructor argument is an R-value
reference

You can invoke the move constructor by casting the function argument to an R-value reference, e.g.
darray d3{std::move(d1)}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 147

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR
You can enable move semantics for your class by writing a constructor or assignment operator using an
R-value reference
Usually you will not be using it explicitly. Results of the evaluation of expressions might create a nameless
object containing the resultant value (prvalue: pure r-value). A function may be returning a named entity
which is about to expire (xvalue: expiring value) References to such objects are called R-value references. A
move constructor or assignment operator is automatically invoked if constructor argument is an R-value
reference
You can invoke the move constructor by casting the function argument to an R-value reference, e.g.
darray d3{std::move(d1)}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 147

BIG FIVE (OR ZERO)
Default constructor
Copy constructor
Move constructor
Assignment operator
Move assignment operator

How many of these do you have to write for each
and every class you make ?

Answer: None! If you don’t have bare pointers in
your class, and don’t want anything fancy
happening, the compiler will auto-generate
reasonable defaults. “Rule of zero”

Member of the Helmholtz Association 8 – 12 May 2023 Slide 148

BIG FIVE (OR ZERO)
Default constructor
Copy constructor
Move constructor
Assignment operator
Move assignment operator

How many of these do you have to write for each
and every class you make ?
Answer: None! If you don’t have bare pointers in
your class, and don’t want anything fancy
happening, the compiler will auto-generate
reasonable defaults. “Rule of zero”

Member of the Helmholtz Association 8 – 12 May 2023 Slide 148

BIG FIVE

1 class darray {
2 public:
3 darray(double x, double y) : re{x}, im{y} {}
4 darray() = default;
5 darray(const darray &) = default;
6 darray(darray &&) = default;
7 auto operator=(const darray&) -> darray& = default;
8 auto operator=(darray&&) -> darray& = default;
9 };

If you have to write any constructor yourself, auto-generation of the default constructor is disabled

But you can request default versions of the any of these functions as shown

Member of the Helmholtz Association 8 – 12 May 2023 Slide 149

BIG FIVE

1 class darray {
2 public:
3 darray(double x, double y) : re{x}, im{y} {}
4 darray() = default;
5 darray(const darray &) = default;
6 darray(darray &&) = default;
7 auto operator=(const darray&) -> darray& = default;
8 auto operator=(darray&&) -> darray& = default;
9 };

If you have to write any constructor yourself, auto-generation of the default constructor is disabled
But you can request default versions of the any of these functions as shown

Member of the Helmholtz Association 8 – 12 May 2023 Slide 149

BIG FIVE

1 class darray {
2 darray() = delete;
3 darray(const darray &) = delete;
4 darray(darray &&) = default;
5 auto operator=(const darray &) -> darray& = delete;
6 auto operator=(darray &&) -> darray& = default;
7 };

You can also explicitly request that one or more of these are not auto-generated
In the example shown here, it will not be possible to copy objects of the class, but they can be moved

Member of the Helmholtz Association 8 – 12 May 2023 Slide 150

COPY AND SWAP
We want to reuse the code in the copy constructor
and destructor to do memory management

Pass argument to the assignment operator by value
instead of reference
Use the class member function swap to swap the
data with the newly created copy

1 auto operator=(const darray& oth) -> darray& {
2 if (this != &oth) {
3 if (arr && sz != oth.sz) {
4 sz = oth.sz;
5 delete [] arr;
6 arr = new T[sz];
7 }
8 for (size_t i = 0; i < sz; ++i)
9 arr[i] = oth.arr[i];

10 }
11 return *this;
12 }
13 auto operator=(darray&& oth) -> darray& {
14 swap(oth);
15 return *this;
16 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 151

COPY AND SWAP
We want to reuse the code in the copy constructor
and destructor to do memory management
Pass argument to the assignment operator by value
instead of reference

Use the class member function swap to swap the
data with the newly created copy

1 auto operator=(darray d) -> darray& {
2 swap(d);
3 return *this;
4 }
5 // No further move assignment operator!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 151

COPY AND SWAP
We want to reuse the code in the copy constructor
and destructor to do memory management
Pass argument to the assignment operator by value
instead of reference
Use the class member function swap to swap the
data with the newly created copy

1 auto operator=(darray d) -> darray& {
2 swap(d);
3 return *this;
4 }
5 // No further move assignment operator!

Neat trick that works in most cases
Reduces the big five to big four

Member of the Helmholtz Association 8 – 12 May 2023 Slide 151

PUBLIC AND PRIVATE MEMBERS
Separating interface and implementation

1 auto foo(complex a, int p, truck c) -> int
2 {
3 complex z1, z2, z3 = a;
4 ...
5 z1 = z1.argument() * z2.modulus() * z3.conjugate();
6 c.start(z1.imaginary * p);
7 }

Imagine that ...
We have used our complex number structure in a lot of places

Then one day, it becomes evident that it is more efficient to define the complex numbers in terms of the
modulus and argument, instead of the real and imaginary parts.
We have to change a lot of code.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 152

PUBLIC AND PRIVATE MEMBERS
Separating interface and implementation

1 auto foo(complex a, int p, truck c) -> int
2 {
3 complex z1, z2, z3 = a;
4 ...
5 z1 = z1.argument() * z2.modulus() * z3.conjugate();
6 c.start(z1.imaginary * p);
7 }

Imagine that ...
We have used our complex number structure in a lot of places
Then one day, it becomes evident that it is more efficient to define the complex numbers in terms of the
modulus and argument, instead of the real and imaginary parts.

We have to change a lot of code.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 152

PUBLIC AND PRIVATE MEMBERS
Separating interface and implementation

1 auto foo(complex a, int p, truck c) -> int
2 {
3 complex z1, z2, z3 = a;
4 ...
5 z1 = z1.argument() * z2.modulus() * z3.conjugate();
6 c.start(z1.imaginary * p);
7 }

Imagine that ...
We have used our complex number structure in a lot of places
Then one day, it becomes evident that it is more efficient to define the complex numbers in terms of the
modulus and argument, instead of the real and imaginary parts.
We have to change a lot of code.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 152

PUBLIC AND PRIVATE MEMBERS
Separating interface and implementation

1 auto foo(complex a, int p, truck c) -> int
2 {
3 complex z1, z2, z3 = a;
4 ...
5 z1 = z1.argument() * z2.modulus() * z3.conjugate();
6 c.start(z1.imaginary * p);
7 }

Imagine that ...
External code calling only member functions to access member data can survive
Direct use of member variables while using a class is often messy, the implementer of the class then loses
the freedom to change internal organisation of the class for efficiency or other reasons

Member of the Helmholtz Association 8 – 12 May 2023 Slide 153

C++ CLASSES
1 class complex
2 {
3 public:
4 complex(double re, double im)
5 : m_real(re), m_imag(im) {}
6 complex() = default;
7 auto real() const -> double { return m_real; }
8 auto imag() const -> double { return m_imag; }
9 ...

10 private:
11 double m_real = 0., m_imag = 0.;
12 };

struct =⇒ members public by default
class =⇒ members private by default

Members declared under the keyword private
can not be accessed from outside
Public members (data or function) can be accessed
Provide a consistent and useful interface through
public functions
Keep data members hidden
Make accessor functions const when possible

Member of the Helmholtz Association 8 – 12 May 2023 Slide 154

Exercise 2.1:
The program examples/complex_number_class.cc contains a version of the complex number class,
with all syntax elements we discussed in the class. It is heavily commented with explanations for every subsection.
Please read it to revise all the syntax relating to classes. Write a main program to use and test the class.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 155

CONSTRUCTOR/DESTRUCTOR CALLS

Exercise 2.2:
The file examples/verbose_ctordtor.cc demonstrates the automatic calls to constructors and
destructors. The simple class Vbose has one string member. All its constructors and destructors print
messages to the screen when they are called. The main() function creates and uses some objects of this class.
Follow the messages printed on the screen and link them to the statements in the program. Does it make sense
(i) When the copy constructor is called ? (ii) When is the move constructor invoked ? (iii) When the objects are
destroyed ?

Suggested reading: http://www.informit.com/articles/printerfriendly/2216986

Exercise 2.3:
The program examples/onexcept.cc shows the behaviour of constructor/destructor calls when an exception is
called. Observe that exiting a function via an exception is also leaving the scope, and therefore invokes the
destructor.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 156

http://www.informit.com/articles/printerfriendly/2216986

MAKING STD::COUT RECOGNISE CLASS
Teaching cout how to print your type: overload operator <<

1 auto operator<<(std::ostream& os, const complex& a) -> std::ostream&
2 {
3 os << a.real();
4 if (a.imag() < 0) os << a.imag() << " i ";
5 // If imag() is negative, it already has a - sign
6 else os << " +" << a.imag() << " i ";
7 return os;
8 }
9 complex a;

10 ...
11 std::cout << "The roots are " << a << " and " << a.conjugate() << '\n';

Member of the Helmholtz Association 8 – 12 May 2023 Slide 157

AND SIMILARLY FOR STD::CIN

1 auto operator>>(std::istream& is, complex& a) -> std::istream&
2 {
3 double x, y;
4 is >> x >> y;
5 a.set_real(x);
6 a.set_imag(y);
7 return is;
8 }

It is up to you to decide IO operations for your classes
The stream parameters can not be const , because by reading from or writing to the stream, we change
its state

Member of the Helmholtz Association 8 – 12 May 2023 Slide 158

PRACTISE: WRITE A DATA ROW CLASS

Exercise 2.4:
You now have all the ingredients to write a data row class. A tabular data file has 5 columns. The first two are
integers, the rest are doubles. Let’s call the columns id, cat, x, y, and z, respectively. Make sure that there are IO
stream overloads for the reading and writing objects of that type. Demonstrate by reading a suitable data file
"multicolumn.dat", and storing the rows in a vector of your DataRow type. You should then be able to sort
the vector according to any of the data columns.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 159

DATATYPES
Type Bits Value
Float 0100 0000 0100 1001 0000 1111 1101 1011 3.1415927
Int 0100 0000 0100 1001 0000 1111 1101 1011 1078530011

Same bits, different rules =⇒ different type

From arbitrary collection of members to a new “data type”

1 class Date {
2 int m_day, m_month, m_year;
3 public:
4 static auto today() -> Date;
5 auto operator+(int n) const -> Date;
6 auto operator-(int n) const -> Date;
7 auto operator-(const Date &) const -> int;
8 };

Make sure every way to create an object results in
a valid state
Provide only those operations on the data which
keep the essential properties intact

Member of the Helmholtz Association 8 – 12 May 2023 Slide 160

CLASS INVARIANTS
A class is supposed to represent an idea: a complex number, a date, a dynamic array.

It will often contain data members of other types, with assumed constraints on those values:

A dynamic array is supposed to have a pointer that is either nullptr or a valid block of allocated memory,
with the correct size also stored in the structure.
A Date structure could have 3 integers for day, month and year, but they can not be, for example, 0,-1,1

Using private data members and well designed public interfaces, we can ensure that assumptions
behind an idea are always true.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 161

CLASS INVARIANTS
A class is supposed to represent an idea: a complex number, a date, a dynamic array.
It will often contain data members of other types, with assumed constraints on those values:

A dynamic array is supposed to have a pointer that is either nullptr or a valid block of allocated memory,
with the correct size also stored in the structure.
A Date structure could have 3 integers for day, month and year, but they can not be, for example, 0,-1,1

Using private data members and well designed public interfaces, we can ensure that assumptions
behind an idea are always true.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 161

CLASS INVARIANTS
A class is supposed to represent an idea: a complex number, a date, a dynamic array.
It will often contain data members of other types, with assumed constraints on those values:

A dynamic array is supposed to have a pointer that is either nullptr or a valid block of allocated memory,
with the correct size also stored in the structure.

A Date structure could have 3 integers for day, month and year, but they can not be, for example, 0,-1,1

Using private data members and well designed public interfaces, we can ensure that assumptions
behind an idea are always true.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 161

CLASS INVARIANTS
A class is supposed to represent an idea: a complex number, a date, a dynamic array.
It will often contain data members of other types, with assumed constraints on those values:

A dynamic array is supposed to have a pointer that is either nullptr or a valid block of allocated memory,
with the correct size also stored in the structure.
A Date structure could have 3 integers for day, month and year, but they can not be, for example, 0,-1,1

Using private data members and well designed public interfaces, we can ensure that assumptions
behind an idea are always true.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 161

CLASS INVARIANTS
A class is supposed to represent an idea: a complex number, a date, a dynamic array.
It will often contain data members of other types, with assumed constraints on those values:

A dynamic array is supposed to have a pointer that is either nullptr or a valid block of allocated memory,
with the correct size also stored in the structure.
A Date structure could have 3 integers for day, month and year, but they can not be, for example, 0,-1,1

Using private data members and well designed public interfaces, we can ensure that assumptions
behind an idea are always true.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 161

CLASS INVARIANTS
1 class darray {
2 private:
3 double * dataptr = nullptr;
4 size_t sz = 0;
5 public:
6 // initialize with N elements
7 darray(size_t N);
8 ~darray();
9 // resize to N elements

10 void resize(size_t N);
11 // other members who don't change
12 // dataptr or sz
13 };

Construct ensuring class Invariants

Maintain Invariants in every member
→ a structure which always has sensible values

Member of the Helmholtz Association 8 – 12 May 2023 Slide 162

CLASS INVARIANTS
1 class darray {
2 private:
3 double * dataptr = nullptr;
4 size_t sz = 0;
5 public:
6 // initialize with N elements
7 darray(size_t N);
8 ~darray();
9 // resize to N elements

10 void resize(size_t N);
11 // other members who don't change
12 // dataptr or sz
13 };

Construct ensuring class Invariants
Maintain Invariants in every member

→ a structure which always has sensible values

Member of the Helmholtz Association 8 – 12 May 2023 Slide 162

CLASS INVARIANTS
1 class darray {
2 private:
3 double * dataptr = nullptr;
4 size_t sz = 0;
5 public:
6 // initialize with N elements
7 darray(size_t N);
8 ~darray();
9 // resize to N elements

10 void resize(size_t N);
11 // other members who don't change
12 // dataptr or sz
13 };

Construct ensuring class Invariants
Maintain Invariants in every member
→ a structure which always has sensible values

Member of the Helmholtz Association 8 – 12 May 2023 Slide 162

STATIC MEMBERS
1 class Triangle {
2 public:
3 static unsigned counter;
4 Triangle() : ...
5 {
6 ++counter;
7 }
8 ~Triangle() { --counter; }
9 static auto instanceCount() -> unsigned

10 {
11 return counter;
12 }
13 };
14 ... Triangle.cc ...
15 unsigned Triangle::counter = 0;

Static member functions do not have an implicit
this pointer argument. They can be invoked as
ClassName::function() .

Static variables exist only once for all objects of the
class.

Can be used to keep track of the number of objects
of one type created in the whole application
Must be initialised in a source file somewhere, or
else you get an "unresolved symbol" error

Member of the Helmholtz Association 8 – 12 May 2023 Slide 163

STATIC MEMBERS
1 class Triangle {
2 public:
3 static unsigned counter;
4 Triangle() : ...
5 {
6 ++counter;
7 }
8 ~Triangle() { --counter; }
9 static auto instanceCount() -> unsigned

10 {
11 return counter;
12 }
13 };
14 ... Triangle.cc ...
15 unsigned Triangle::counter = 0;

Static member functions do not have an implicit
this pointer argument. They can be invoked as
ClassName::function() .

Static variables exist only once for all objects of the
class.
Can be used to keep track of the number of objects
of one type created in the whole application

Must be initialised in a source file somewhere, or
else you get an "unresolved symbol" error

Member of the Helmholtz Association 8 – 12 May 2023 Slide 163

STATIC MEMBERS
1 class Triangle {
2 public:
3 static unsigned counter;
4 Triangle() : ...
5 {
6 ++counter;
7 }
8 ~Triangle() { --counter; }
9 static auto instanceCount() -> unsigned

10 {
11 return counter;
12 }
13 };
14 ... Triangle.cc ...
15 unsigned Triangle::counter = 0;

Static member functions do not have an implicit
this pointer argument. They can be invoked as
ClassName::function() .

Static variables exist only once for all objects of the
class.
Can be used to keep track of the number of objects
of one type created in the whole application
Must be initialised in a source file somewhere, or
else you get an "unresolved symbol" error

Member of the Helmholtz Association 8 – 12 May 2023 Slide 163

STATIC MEMBERS
1 class Triangle {
2 public:
3 static unsigned counter;
4 Triangle() : ...
5 {
6 ++counter;
7 }
8 ~Triangle() { --counter; }
9 static auto instanceCount() -> unsigned

10 {
11 return counter;
12 }
13 };
14 ... Triangle.cc ...
15 unsigned Triangle::counter = 0;

Static member functions do not have an implicit
this pointer argument. They can be invoked as
ClassName::function() .

Static variables exist only once for all objects of the
class.
Can be used to keep track of the number of objects
of one type created in the whole application
Must be initialised in a source file somewhere, or
else you get an "unresolved symbol" error

Member of the Helmholtz Association 8 – 12 May 2023 Slide 163

SOME FUN: OVERLOADING THE () OPERATOR

1 class swave
2 {
3 private:
4 double a = 1.0, omega = 1.0;
5 public:
6 swave() = default;
7 swave(double x, double w) :
8 a{x}, omega{w} {}
9 auto operator()(double t) const -> double

10 {
11 return a * sin(omega * t);
12 }
13 };

1 const double pi = acos(-1);
2
3 int N = 100;
4 swave f{2.0, 0.4};
5 swave g{2.3, 1.2};
6
7 for (int i = 0; i < N; ++i) {
8 double ar = 2 * i * pi / N;
9 std::cout << i << " " << f(ar)

10 << " " << g(ar)
11 << '\n';
12 }

Functionals
Function like objects, i.e., classes which define a () operator

If they return a bool value, they are called predicates

Member of the Helmholtz Association 8 – 12 May 2023 Slide 164

SOME FUN: OVERLOADING THE () OPERATOR

1 class swave
2 {
3 private:
4 double a = 1.0, omega = 1.0;
5 public:
6 swave() = default;
7 swave(double x, double w) :
8 a{x}, omega{w} {}
9 auto operator()(double t) const -> double

10 {
11 return a * sin(omega * t);
12 }
13 };

1 const double pi = acos(-1);
2
3 int N = 100;
4 swave f{2.0, 0.4};
5 swave g{2.3, 1.2};
6
7 for (int i = 0; i < N; ++i) {
8 double ar = 2 * i * pi / N;
9 std::cout << i << " " << f(ar)

10 << " " << g(ar)
11 << '\n';
12 }

Functionals
Function like objects, i.e., classes which define a () operator
If they return a bool value, they are called predicates

Member of the Helmholtz Association 8 – 12 May 2023 Slide 164

FUNCTIONALS
Using function like objects

They are like other variables. But they can be used as if they were functions!
You can make vectors or lists of functionals, pass them as arguments ...
Although you can run any recipe you want by overloading an operator, most operators are limited to one or
two arguments. () can take as many as you need. This also contributes to functionals looking like
functions when in use.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 165

WRITE YOUR OWN FUNCTIONAL!

Exercise 2.5:
Write a functional class where the return value of f(x) is given by a user specified piece-wise continuous linear
function. You should write a class PieceWise. It should have a function to read a vector of xi ,yi values from a
file. Sort them according to x values. Then implement an operator() function, so that when you write

1 PieceWise f;
2 f.read_file("somefile.dat");
3 auto y = f(x);

you get the correct piece wise linear function evaluated. Use the standard library function std::lerp to
perform the linear interpolation.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 166

OVERLOADING OTHER OPERATORS FOR
EXPRESSIVE CODE

1 // examples/collect.cc
2 class collect {
3 std::vector<int> dat;
4 public:
5 auto operator|(int i) -> collect&
6 {
7 dat.push_back(i);
8 return *this;
9 }

10 auto operator~() const noexcept -> decltype(dat)
11 {
12 return dat;
13 }
14 };
15 auto main() -> int
16 {
17 auto C = collect{};
18 C | 1 | 2 | 3 | 4 ;
19 for (auto el : (~C)) {
20 std::cout << el << "\n";
21 }
22 }

Operator overloading is not limited to arithmetic
and shift operators.
Sometimes, choosing the right operator to overload
can increase the expressiveness of the code

args | sv::drop(1) | sv::transform(str)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 167

USER DEFINED LITERALS
Redefining the "" operator!

You know how to create objects and set their values
You even know how to construct with a given initial
value

It’s far cooler to initialise with your own literals!
Redefine how literals are interpreted for your class
Desirable to enable clean and easily read
initialisations

1 auto main() -> int
2 {
3 double N=6.023e23;
4 Temperature T;

5 T.value(293.0);

6 auto U = Temperature{373.0};
7 auto T2 = 350_C;
8 auto T3 = 900_K;
9 complex c = 1+2_i;

10 ...
11 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 168

USER DEFINED LITERALS
Redefining the "" operator!

You know how to create objects and set their values
You even know how to construct with a given initial
value

It’s far cooler to initialise with your own literals!
Redefine how literals are interpreted for your class
Desirable to enable clean and easily read
initialisations

1 int main()
2 {
3 double N=6.023e23;
4 Temperature T;
5 T.value(293.0);

6 auto U = Temperature(373.0);

7 auto T2 = 350_C;
8 auto T3 = 900_K;
9 complex c = 1+2_i;

10 ...
11 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 168

USER DEFINED LITERALS
Redefining the "" operator!

You know how to create objects and set their values
You even know how to construct with a given initial
value
It’s far cooler to initialise with your own literals!
Redefine how literals are interpreted for your class
Desirable to enable clean and easily read
initialisations

1 int main()
2 {
3 double N=6.023e23;
4 Temperature T;
5 T.value(293.0);

6 auto T2 = 350_C;

7 auto T3 = 900_K;

8 complex c = 1+2_i;
9 ...

10 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 168

USER DEFINED LITERALS

1 auto operator "" _K(long double d) -> Temperature
2 {
3 return { static_cast<double>(d), Temperature::Unit::K };
4 }
5 auto operator "" _C(long double d) -> Temperature
6 {
7 return { static_cast<double>(d), Temperature::Unit::C };
8 }

Defining your own rules for how literals are interpreted for your class
Desirable to enable clean and easily read initialisations

Member of the Helmholtz Association 8 – 12 May 2023 Slide 169

USER DEFINED LITERALS
Exercise

The demo program examples/literals.cc shows
how this is done using a simple “temperature” class
Make something similar for a Distance class!

1 auto main() -> int
2 {
3 double N = 6.023e23;
4 auto T2 = 350_C;
5 auto T3 = 900_K;
6 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 170

Inheritance and class hierarchies

Member of the Helmholtz Association 8 – 12 May 2023 Slide 171

CLASS INHERITANCE
Analogy

Inherited traits: many properties shared among entities of
different related types
Each branch may add new properties
Seems like a good fit to different ideas we may want to
represent in code

Member of the Helmholtz Association 8 – 12 May 2023 Slide 172

CLASS INHERITANCE
1 struct Point {double X, Y;};
2 class Triangle {
3 public:
4 // Constructors etc., and then,
5 void translate();
6 void rotate(double byangle);
7 auto area() const -> double;
8 auto perimeter() const -> double;
9 private:

10 Point vertex[3];
11 };
12 class Quadrilateral {
13 public:
14 void translate();
15 void rotate(double byangle);
16 auto area() const -> double;
17 auto perimeter() const -> double;
18 auto is_convex() const -> bool;
19 private:
20 Point vertex[4];
21 };

Geometrical figures
Many actions (e.g. translate and rotate) will involve identical
code
Properties like area and perimeter make sense for all,
but are better calculated differently for each type
There may also be new properties (is_convex) introduced
by a type

Member of the Helmholtz Association 8 – 12 May 2023 Slide 173

INHERITANCE: BASIC SYNTAX
1 class SomeBase {
2 public:
3 double f();
4 protected:
5 int i;
6 private:
7 int j;
8 };
9 class Derived : public SomeBase {

10 void haha() {
11 // can access f() and i
12 // can not access j
13 }
14 }; // Derived is also called a "subtype" of SomeBase
15 void elsewhere()
16 {
17 SomeBase a; // only properties defined in SomeBase
18 Derived b; // b has properties defined in class
19 // SomeBase and Derived
20 // Can call a.f(),
21 // but e.g., a.i = 0; is not allowed
22 }

Class members can be private , protected

or public

public members are accessible from everywhere

private members are for internal use in one
class
protected members can be seen by derived

classes

Member of the Helmholtz Association 8 – 12 May 2023 Slide 174

INHERITANCE
Inheriting class may add more data, but it retains
all the data of the base
The base class functions, if invoked, will see a base
class object
The derived class object is a base class object, but
with additional properties

Member of the Helmholtz Association 8 – 12 May 2023 Slide 175

INHERITANCE
A pointer to a derived class always points to an
address which also contains a valid base class
object.
baseptr=derivedptr is called "upcasting".

Always allowed.
Implicit downcasting is not allowed. Explicit
downcasting is possible with static_cast and
dynamic_cast

Member of the Helmholtz Association 8 – 12 May 2023 Slide 176

INHERITANCE
1 class Base {
2 public:
3 void f() { std::cout << "Base::f()\n"; }
4 protected:
5 int i{4};
6 };
7 class Derived : public Base {
8 int k{0};
9 public:

10 void g() { std::cout << "Derived::g()\n"; }
11 };
12 auto main() -> int
13 {
14 Derived b;
15 Base *ptr = &b;
16 ptr->g(); // Error!
17 static_cast<Derived *>(ptr)->g(); //OK
18 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 177

CLASS INHERITANCE
We want to write a program to

list the area of all the geometric objects
select the largest and smallest objects
draw

in our system.
A loop over a vector of them will be nice. But vector< ??? >

Object oriented languages like C++, Java, Python ... have a concept of "inheritance" for the classes, to
describe such conceptual relations between different types.
4 ways to solve this problem in C++ will be introduced at various points in this course

Member of the Helmholtz Association 8 – 12 May 2023 Slide 178

INHERITANCE WITH VIRTUAL FUNCTIONS
Abstract concept class “Shape”
Inherited classes add/change some
properties
and inherit other properties from “base”
class

A triangle is a polygon. A polygon is a shape. A circle is a shape.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 179

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS

1 class Shape {
2 public:
3 virtual ~Shape() = 0;
4 virtual void rotate(double) = 0;
5 virtual void translate(Point) = 0;
6 virtual auto area() const -> double = 0;
7 virtual auto perimeter() const -> double = 0;
8 };
9 class Circle : public Shape {

10 public:
11 Circle(); // and other constructors
12 ~Circle();
13 void rotate(double phi) {}
14 auto area() const -> double override
15 {
16 return pi * r * r;
17 }
18 private:
19 double r;
20 };

Circle is a derived class from base class Shape
A derived class inherits from its base(s), which are
indicated in the class declaration.
Functions marked as virtual in the base class
can be re-implemented in a derived class.

Note: In C++, member functions are not virtual by default.
Member of the Helmholtz Association 8 – 12 May 2023 Slide 180

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS

1 class Shape {
2 public:
3 virtual ~Shape() = 0;
4 virtual void rotate(double) = 0;
5 virtual void translate(Point) = 0;
6 virtual double area() const = 0;
7 virtual auto perimeter() const -> double = 0;
8 };
9 class Circle : public Shape {

10 public:
11 Circle(); // and other constructors
12 ~Circle();
13 void rotate(double phi) {}
14 auto area() const -> double override
15 {
16 return pi * r * r;
17 }
18 private:
19 double r;
20 };
21 Shape a; // Error!
22 Circle b; // ok.

A derived class inherits all member variables and
functions from its base.
virtual re-implemented in a derived class are

said to be "overriden", and ought to be marked
with override

A class with a pure virtual function (with " = 0" in
the declaration) is an abstract class. Objects of
that type can not be declared.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 181

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS
1 class Polygon : public Shape {
2 public:
3 auto perimeter() const -> double final
4 {
5 // return sum over sides
6 }
7 protected:
8 vector<Point> vertex;
9 int npt;

10 };
11 class Triangle : public Polygon {
12 public:
13 Triangle() : npt(3)
14 {
15 vertex.resize(3); // ok
16 }
17 auto area() const -> double override
18 {
19 // return sqrt(s*(s-a)*(s-b)*(s-c))
20 }
21 };

Syntax for inheritance
Triangle implements its own area() function,
but can not implement a perimeter() , as that
is declared as final in Polygon . This is done
if the implementation from the base class is good
enough for intended inheriting classes.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 182

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS
1 class Polygon : public Shape {
2 public:
3 auto perimeter() const -> double final
4 {
5 // return sum over sides
6 }
7 protected:
8 vector<Point> vertex;
9 int npt;

10 };
11 class Triangle : public Polygon {
12 public:
13 Triangle() : npt(3)
14 {
15 vertex.resize(3); // ok
16 }
17 auto area() -> double override // Error!!
18 {
19 // return sqrt(s*(s-a)*(s-b)*(s-c))
20 }
21 };

The keyword override ensures that the
compiler checks there is a corresponding base class
function to override.
Virtual functions can be re-implemented without
this keyword, but an accidental omission of a
const or an & can lead to really obscure

runtime errors.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 183

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS

1 auto main() -> int
2 {
3 vector<std::unique_ptr<Shape>> shape;
4 shape.push_back(std::make_unique<Circle>(0.5, Point(3,7)));
5 shape.push_back(std::make_unique<Triangle>(Point(1,2), Point(3,3), Point(2.5,0)));
6 ...
7 for (size_t i = 0;i < shape.size(); ++i) {
8 std::cout << shape[i]->area() << '\n';
9 }

10 }

A pointer to a base class is allowed to point to an object of a derived class
Here, shape[0]->area() will call Circle::area() , shape[1]->area() will call
Triangle::area()

Member of the Helmholtz Association 8 – 12 May 2023 Slide 184

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS
For classes with virtual functions, the compiler
inserts an invisible pointer member to the data and
additional book keeping code
There is a table of virtual functions for each derived
class, with entries pointing to function code
somewhere
The vptr pointer points to the vtable of that
particular class

Member of the Helmholtz Association 8 – 12 May 2023 Slide 185

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS

Member of the Helmholtz Association 8 – 12 May 2023 Slide 186

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS
Virtual function call proceeds by first finding the
right vtable, then the correct entry for the called
function, dereferencing that function pointer and
then executing the correct function body
Don’t make everything virtual! The overhead, with
modern machines and compilers, is not huge. But
abusing this feature will hurt performance

But if virtual functions offer the cleanest solution
with acceptable performance, don’t invent weird
things to avoid them!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 187

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS
Virtual function call proceeds by first finding the
right vtable, then the correct entry for the called
function, dereferencing that function pointer and
then executing the correct function body
Don’t make everything virtual! The overhead, with
modern machines and compilers, is not huge. But
abusing this feature will hurt performance

But if virtual functions offer the cleanest solution
with acceptable performance, don’t invent weird
things to avoid them!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 187

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS
Virtual function call proceeds by first finding the
right vtable, then the correct entry for the called
function, dereferencing that function pointer and
then executing the correct function body
Don’t make everything virtual! The overhead, with
modern machines and compilers, is not huge. But
abusing this feature will hurt performance

But if virtual functions offer the cleanest solution
with acceptable performance, don’t invent weird
things to avoid them!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 187

CLASS INHERITANCE
Inherit or include as data member ?

1 class DNA {
2 ...
3 std::valarray<char> seq;
4 };
5 class Cell : public DNA ???
6 or
7 class Cell {
8 ...
9 DNA mydna;

10 };

A derived class extends the concept represented by
its base class in some way.
Although this extension might mean addition of
new data members,

B = A ⊕ newdata

does not necessarily mean the class for B should
inherit from the class for A

Member of the Helmholtz Association 8 – 12 May 2023 Slide 188

CLASS INHERITANCE
Inherit or include as data member ?

1 class DNA {
2 ...
3 std::valarray<char> seq;
4 };
5
6 class Cell : public DNA ???
7
8 or
9

10 class Cell {
11 ...
12 DNA mydna;
13 };
14

is vs has
A good guide to decide whether to inherit or
include is to ask whether the concept B contains an
object A, or whether any object of type B is also an
object of type A, like a monkey is a mammal, and a
triangle is a polygon.
is =⇒ inherit . has =⇒ include

Member of the Helmholtz Association 8 – 12 May 2023 Slide 189

CLASS INHERITANCE
Inheritance summary

Base classes to represent common properties of related types : e.g. all proteins are molecules, but all
molecules are not proteins. All triangles are polygons, but not all polygons are triangles.
Less code: often, only one or two properties need to be changed in an inherited class
Helps create reusable code
A base class may or may not be constructible (Polygon as opposed to Shape)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 190

CLASS DECORATIONS
More control over classes

Possible to initialise data in class declaration
Initialiser list constructors
Delegating constructors allowed
Inheriting constructors possible

1 class A {
2 int v[]{1, -1, -1, 1};
3 public:
4 A() = default;
5 A(std::initializer_list<int> &);
6 A(int i, int j, int k, int l)
7 {
8 v[0] = i;
9 v[1] = j;

10 v[2] = k;
11 v[3] = l;
12 }
13 //Delegate work to another constructor
14 A(int i, int j) : A(i, j, 0, 0) {}
15 };
16 class B : public A {
17 public:
18 // Inherit all constructors from A
19 using A::A;
20 B(string s);
21 };

Member of the Helmholtz Association 8 – 12 May 2023 Slide 191

MORE CONTROL OVER CLASSES
Explicit default , delete , override and
final

"Explicit is better than implicit"
More control over what the compiler does with the
class
Compiler errors better than hard to trace run-time
errors due to implicitly generated functions

1 class A {
2 // Automatically generated is ok
3 A() = default;
4 // Don't want to allow copy
5 A(const A &) = delete;
6 A & operator=(const A &) = delete;
7 // Instead, allow a move constructor
8 A(const A &&);
9 // Don't try to override this!

10 void getDrawPrimitives() final;
11 virtual void show(int i);
12 };
13 class B : public A
14 {
15 B() = default;
16 void show()override; //will be an error!
17 };
18

Member of the Helmholtz Association 8 – 12 May 2023 Slide 192

Exercise 2.6:
The directory exercises/geometry contains a set of files for the classes Point, Shape, Polygon, Circle,
Triangle, and Quadrilateral. In addition, there is a main.cc and a CMakeLists.txt . Observe the use of
the keywords like default , override , final etc. Familiarise yourself with

Implementation of inherited classes
Compiling multi-file projects
The use of base class pointer arrays to work with heterogeneous types of objects

mkdir build
cd build
CXX=g++ cmake ..
make

Member of the Helmholtz Association 8 – 12 May 2023 Slide 193

Chapter 3

Templates

Member of the Helmholtz Association 8 – 12 May 2023 Slide 194

Function and class templates

Member of the Helmholtz Association 8 – 12 May 2023 Slide 195

FUNCTION OVERLOADING
1 auto power(int x, unsigned n) -> unsigned
2 {
3 ans = 1;
4 for (; n > 0; --n) ans *= x;
5 return ans;
6 }
7 auto power(double x, double y) -> double
8 {
9 return exp(y * log(x));

10 }

1 auto someother(double mu, double alpha,
2 int rank) -> double
3 {
4 double st=power(mu,alpha)*exp(-mu);
5
6 if (n_on_bits(power(rank,5))<8)
7 st=0;
8
9 return st;

10 }

When specialised strategies are needed to
accomplish the same task for different types

Static polymorphism: no virtual dispatch,
everything resolved at compilation time
But sometimes we need the opposite: same
operations to be performed on different kinds of
input

Member of the Helmholtz Association 8 – 12 May 2023 Slide 196

FUNCTION OVERLOADING
1 auto power(int x, unsigned n) -> unsigned
2 {
3 ans = 1;
4 for (; n > 0; --n) ans *= x;
5 return ans;
6 }
7 auto power(double x, double y) -> double
8 {
9 return exp(y * log(x));

10 }

1 auto someother(double mu, double alpha,
2 int rank) -> double
3 {
4 double st=power(mu,alpha)*exp(-mu);
5
6 if (n_on_bits(power(rank,5))<8)
7 st=0;
8
9 return st;

10 }

When specialised strategies are needed to
accomplish the same task for different types
Static polymorphism: no virtual dispatch,
everything resolved at compilation time

But sometimes we need the opposite: same
operations to be performed on different kinds of
input

Member of the Helmholtz Association 8 – 12 May 2023 Slide 196

FUNCTION OVERLOADING
1 void copy(int* start, int* end, int* start2)
2 {
3 for (; start != end; ++start, ++start2) {
4 *start2 = *start;
5 }
6 }
7 void copy(string* start, string* end,
8 string* start2)
9 {

10 for (; start != end; ++start, ++start2) {
11 *start2 = *start;
12 }
13 }
14 void copy(double* start, double* end,
15 double* start2)
16 {
17 for (; start != end; ++start, ++start2) {
18 *start2 = *start;
19 }
20 }
21 double a[10], b[10];
22 copy(a, a + 10, b);

When specialised strategies are needed to
accomplish the same task for different types
Static polymorphism: no virtual dispatch,
everything resolved at compilation time
But sometimes we need the opposite: same
operations to be performed on different kinds of
input

Member of the Helmholtz Association 8 – 12 May 2023 Slide 196

INTRODUCTION TO C++ TEMPLATES
1 void copy(int* start, int* end, int* start2)
2 {
3 for (; start != end; ++start, ++start2) {
4 *start2 = *start;
5 }
6 }
7 void copy(string* start, string* end,
8 string* start2)
9 {

10 for (; start != end; ++start, ++start2) {
11 *start2 = *start;
12 }
13 }
14 void copy(double* start, double* end,
15 double* start2)
16 {
17 for (; start != end; ++start, ++start2) {
18 *start2 = *start;
19 }
20 }
21 double a[10], b[10];
22 copy(a, a + 10, b);

Same operations on different types
Exactly the same high level code
Assigning a string to another may involve very
different low level operations compared to assigning
an integer to another. But once we have written
our string class, we may write the exact same code
for the string and integer versions of this kind of
operations!
Couldn’t we automate the process of writing the 3
variants shown, by perhaps, using a placeholder
type, and generating the right variant wherever
required ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 197

INTRODUCTION TO C++ TEMPLATES
Dear compiler, in the following, T is a placeholder!
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

Wouldn’t it be nice,
if we could write the function in terms of some
placeholder for the actual type ?

and when we need to use the function, we indicate
what to substitute in place of the placeholder ?
For the first point : Sure!
For the second point: the compiler already knows
those types based on the inputs at the point of
usage!
Test it! examples/template_intro.cc

Member of the Helmholtz Association 8 – 12 May 2023 Slide 198

INTRODUCTION TO C++ TEMPLATES
Dear compiler, in the following, T is a placeholder!
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

double a[10], b[10];
copy<double>(a, a + 10, b);
string names[10], onames[10];
copy<string>(onames, onames + 10, names);

Wouldn’t it be nice,
if we could write the function in terms of some
placeholder for the actual type ?
and when we need to use the function, we indicate
what to substitute in place of the placeholder ?

For the first point : Sure!
For the second point: the compiler already knows
those types based on the inputs at the point of
usage!
Test it! examples/template_intro.cc

Member of the Helmholtz Association 8 – 12 May 2023 Slide 198

INTRODUCTION TO C++ TEMPLATES
template <class T>
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

double a[10], b[10];
copy<double>(a, a + 10, b);
string names[10], onames[10];
copy<string>(onames, onames + 10, names);

Wouldn’t it be nice,
if we could write the function in terms of some
placeholder for the actual type ?
and when we need to use the function, we indicate
what to substitute in place of the placeholder ?
For the first point : Sure!

For the second point: the compiler already knows
those types based on the inputs at the point of
usage!
Test it! examples/template_intro.cc

Member of the Helmholtz Association 8 – 12 May 2023 Slide 198

INTRODUCTION TO C++ TEMPLATES
template <class T>
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

double a[10], b[10];
copy(a, a + 10, b);
string names[10], onames[10];
copy(onames, onames + 10, names);

Wouldn’t it be nice,
if we could write the function in terms of some
placeholder for the actual type ?
and when we need to use the function, we indicate
what to substitute in place of the placeholder ?
For the first point : Sure!
For the second point: the compiler already knows
those types based on the inputs at the point of
usage!

Test it! examples/template_intro.cc

Member of the Helmholtz Association 8 – 12 May 2023 Slide 198

INTRODUCTION TO C++ TEMPLATES
template <class T>
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

double a[10], b[10];
copy(a, a + 10, b);
string names[10], onames[10];
copy(onames, onames + 10, names);

Wouldn’t it be nice,
if we could write the function in terms of some
placeholder for the actual type ?
and when we need to use the function, we indicate
what to substitute in place of the placeholder ?
For the first point : Sure!
For the second point: the compiler already knows
those types based on the inputs at the point of
usage!
Test it! examples/template_intro.cc

Member of the Helmholtz Association 8 – 12 May 2023 Slide 198

INTRODUCTION TO C++ TEMPLATES
template <class T>
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

double a[10], b[10];
copy(a, a + 10, b);
string names[10], onames[10];
copy(onames, onames + 10, names);

Wouldn’t it be nice,
if we could write the function in terms of some
placeholder for the actual type ?
and when we need to use the function, we indicate
what to substitute in place of the placeholder ?
For the first point : Sure!
For the second point: the compiler already knows
those types based on the inputs at the point of
usage!
Test it! examples/template_intro.cc

Although we seemingly call a function we only wrote once, with different kinds of inputs, the compiler
sees these as calls to two different functions. No runtime decision is needed to find the function to call.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 198

TEMPLATES
Generic code The logic of the copy operation is quite simple. Given a pair of “iterators” (Behaviourally pointer
like entities: can be advanced along a sequence, can be dereferenced) first and last in an input sequence,
and a target location result in an output sequence, we want to:

Loop over the input sequence
For each position of the input iterator, copy the current element to the output iterator position
Increment the input and output iterators
Stop if the input iterator has reached last

Member of the Helmholtz Association 8 – 12 May 2023 Slide 199

A TEMPLATE FOR A GENERIC COPY OPERATION

1 template <class InputIterator, class OutputIterator>
2 OutputIterator copy(InputIterator first, InputIterator last, OutputIterator result)
3 {
4 while (first != last) *result++ = *first++;
5 return result;
6 }

C++ template notation
A template with which to generate code!
If you had iterators to two kinds of sequences, you could substitute them in the above template and have a
nice copy function!
The compiler does the necessary substitution when you try to use the function
The compiler needs access to the template source code at the point where it is trying to instantiate it!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 200

ORDERED PAIRS

1 struct double_pair
2 {
3 double first, second;
4 };
5 ...
6 double_pair coords[100];
7 ...
8 struct int_pair
9 {

10 int first, second;
11 };
12 ...
13 int_pair line_ranges[100];
14 ...
15 struct int_double_pair
16 {
17 // wait!
18 // can I make a template out of it?
19 };

Class templates
Classes can be templates too

Generated when the template is “instantiated”

1 template <class T, class U>
2 struct pair
3 {
4 T first;
5 U second;
6 };

Useful for creating many generic types

Member of the Helmholtz Association 8 – 12 May 2023 Slide 201

ORDERED PAIRS

1 pair<double,double> coords[100];
2 pair<int,int> line_ranges[100];
3 pair<int,double> whatever;

pair<int,double> , after the template
substitutions, becomes
struct pair<int, double>
{

int first;
double second;

};

Class templates
Classes can be templates too
Generated when the template is “instantiated”

1 template <class T, class U>
2 struct pair
3 {
4 T first;
5 U second;
6 };

Useful for creating many generic types

Member of the Helmholtz Association 8 – 12 May 2023 Slide 201

ORDERED PAIRS

1 pair<double,double> coords[100];
2 pair<int,int> line_ranges[100];
3 pair<int,double> whatever;

pair<int,double> , after the template
substitutions, becomes
struct pair<int, double>
{

int first;
double second;

};

Class templates
Classes can be templates too
Generated when the template is “instantiated”

1 template <class T, class U>
2 struct pair
3 {
4 T first;
5 U second;
6 };

Useful for creating many generic types

Member of the Helmholtz Association 8 – 12 May 2023 Slide 201

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...
The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements
The template captures the essential structure, and we don’t need to separately develop, debug or test these
parameterised types for every possible element type
No inheritance relationship between vectors of different types
No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association 8 – 12 May 2023 Slide 202

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...

The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements
The template captures the essential structure, and we don’t need to separately develop, debug or test these
parameterised types for every possible element type
No inheritance relationship between vectors of different types
No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association 8 – 12 May 2023 Slide 202

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...
The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements

The template captures the essential structure, and we don’t need to separately develop, debug or test these
parameterised types for every possible element type
No inheritance relationship between vectors of different types
No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association 8 – 12 May 2023 Slide 202

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...
The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements
The template captures the essential structure, and we don’t need to separately develop, debug or test these
parameterised types for every possible element type

No inheritance relationship between vectors of different types
No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association 8 – 12 May 2023 Slide 202

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...
The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements
The template captures the essential structure, and we don’t need to separately develop, debug or test these
parameterised types for every possible element type
No inheritance relationship between vectors of different types

No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association 8 – 12 May 2023 Slide 202

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...
The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements
The template captures the essential structure, and we don’t need to separately develop, debug or test these
parameterised types for every possible element type
No inheritance relationship between vectors of different types
No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association 8 – 12 May 2023 Slide 202

VARIABLE TEMPLATES
1 template <class T> constexpr auto algocategory = 0;
2 template<> constexpr auto algocategory<int> = 1;
3 template<> constexpr auto algocategory<long> = 1;
4 template<> constexpr auto algocategory<int*> = 2;
5 template<> constexpr auto algocategory<long*> = 2;
6 template <class T>
7 auto proc(T x)
8 {

9 if constexpr (algocategory<T> == 2) {

10 std::cout << "Using method for category 2 \n";
11 } else if constexpr (algocategory<T> == 1) {

12 std::cout << "Using method for category 1 \n";
13 } else {
14 std::cout << "Using method for category 0 \n";
15 }
16 }

18 auto main() -> int
19 {
20 int v{7};
21 proc(1);
22 proc(1.);
23 proc(1L);
24 proc(v);
25 proc(&v);
26 }

Can be a static data member of a class
or a global variable parameterised by
template parameters
Can be used along with
compile time if statements to decide

between different algorithms

Member of the Helmholtz Association 8 – 12 May 2023 Slide 203

ONE CLASS TEMPLATE IN DETAIL
Initialiser list constructors

The darray class we saw earlier in some examples represents a dynamic array, like the std::vector .
It is a good example to illustrate more about class templates

We want to be able to initialise our darray<T> like this:
darray<double> D(400, 0.);
darray<string> S{"A", "B", "C"};
darray<int> I{1, 2, 3, 4, 5};

And then we want to be able to use it as follows...
for (auto i = 0UL; i < D.size(); ++i) {

D[i] = i * i;
std::cout << D[i] << "\n";

}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 204

ONE CLASS TEMPLATE IN DETAIL
Initialiser list constructors

The darray class we saw earlier in some examples represents a dynamic array, like the std::vector .
It is a good example to illustrate more about class templates
We want to be able to initialise our darray<T> like this:
darray<double> D(400, 0.);
darray<string> S{"A", "B", "C"};
darray<int> I{1, 2, 3, 4, 5};

And then we want to be able to use it as follows...
for (auto i = 0UL; i < D.size(); ++i) {

D[i] = i * i;
std::cout << D[i] << "\n";

}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 204

ONE CLASS TEMPLATE IN DETAIL
Initialiser list constructors

The darray class we saw earlier in some examples represents a dynamic array, like the std::vector .
It is a good example to illustrate more about class templates
We want to be able to initialise our darray<T> like this:
darray<double> D(400, 0.);
darray<string> S{"A", "B", "C"};
darray<int> I{1, 2, 3, 4, 5};

And then we want to be able to use it as follows...
for (auto i = 0UL; i < D.size(); ++i) {

D[i] = i * i;
std::cout << D[i] << "\n";

}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 204

ONE CLASS TEMPLATE IN DETAIL
Initialiser list constructors

Making it into a template and writing many of the special functions is easy.
template <class T>
class darray {

std::unique_ptr<T[]> dat;
size_t sz{};

public:
darray() = default;
~darray() = default;
darray(const darray& other);
darray(darray&&) noexcept = default;
darray& operator=(const darray& other);
darray& operator=(darray&&) noexcept = default;

};

Using the unique_ptr to manage the heap allocation/deallocation means we don’t need to do anything
special for default constructor, destructor and the move operations. Only copy needs to be carefully
implemented!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 205

ONE CLASS TEMPLATE IN DETAIL
Initialiser list constructors

To initialise our darray<T> like this:

1 darray<string> S{"A", "B", "C"};
2 darray<int> I{1, 2, 3, 4, 5};

we need an initialiser_list constructor

1 darray(initializer_list<T> l) {
2 arr = std::make_unique<T[]>(l.size());
3 for (auto i{0UL}; auto&& el : l) arr[i++] = el;
4 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 206

A DYNAMIC ARRAY CLASS TEMPLATE
1 template <class T>
2 class darray {
3 public:
4 auto operator[](size_t i) const
5 -> const T& { return arr[i]; }
6 auto operator[](size_t i) -> T& { return arr[i]; }
7 };

Two versions of the [] operator for
read-only and read/write access

Use const qualifier in any member
function which does not change the
object
Both versions let us to use a
darray<int> object, say, D with

array style indexing, e.g., D[5UL] .
The second is usable only when D is
not declared const .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 207

A DYNAMIC ARRAY CLASS TEMPLATE
1 template <class T>
2 class darray {
3 public:
4 auto operator[](size_t i) const
5 -> const T& { return arr[i]; }
6 auto operator[](size_t i) -> T& { return arr[i]; }
7 };

Two versions of the [] operator for
read-only and read/write access
Use const qualifier in any member
function which does not change the
object

Both versions let us to use a
darray<int> object, say, D with

array style indexing, e.g., D[5UL] .
The second is usable only when D is
not declared const .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 207

A DYNAMIC ARRAY CLASS TEMPLATE
1 template <class T>
2 class darray {
3 public:
4 auto operator[](size_t i) const
5 -> const T& { return arr[i]; }
6 auto operator[](size_t i) -> T& { return arr[i]; }
7 };

Two versions of the [] operator for
read-only and read/write access
Use const qualifier in any member
function which does not change the
object
Both versions let us to use a
darray<int> object, say, D with

array style indexing, e.g., D[5UL] .
The second is usable only when D is
not declared const .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 207

TYPE DEDUCTIONS
Template parameters can be type names or compile
time constant values of different types.
Until C++20, non-type template parameters were
limited to integral types. Now, a lot of other types
are allowed.

Can be used to specify compile time constant sizes
but also give you a peculiar kind of “ function ” in
effect
Old uses of template integer arithmetic are by now
obsolete. constexpr functions constitute a
vastly superior alternative.
But, type-deductions remain an important use for
template meta-programs

1 template <class T, int N>
2 struct my_array {
3 T data[N];
4 };

Member of the Helmholtz Association 8 – 12 May 2023 Slide 208

TYPE DEDUCTIONS
Template parameters can be type names or compile
time constant values of different types.
Until C++20, non-type template parameters were
limited to integral types. Now, a lot of other types
are allowed.
Can be used to specify compile time constant sizes

but also give you a peculiar kind of “ function ” in
effect
Old uses of template integer arithmetic are by now
obsolete. constexpr functions constitute a
vastly superior alternative.
But, type-deductions remain an important use for
template meta-programs

1 template <class T, int N>
2 struct my_array {
3 T data[N];
4 };

1 template <class T,
2 int nrows, int ncols>
3 struct my_matrix {
4 T data[nrows * ncols];
5 };

Member of the Helmholtz Association 8 – 12 May 2023 Slide 208

TYPE DEDUCTIONS
Template parameters can be type names or compile
time constant values of different types.
Until C++20, non-type template parameters were
limited to integral types. Now, a lot of other types
are allowed.
Can be used to specify compile time constant sizes
but also give you a peculiar kind of “ function ” in
effect
Old uses of template integer arithmetic are by now
obsolete. constexpr functions constitute a
vastly superior alternative.
But, type-deductions remain an important use for
template meta-programs

1 template <class T, int N>
2 struct my_array {
3 T data[N];
4 };

1 template <class T,
2 int nrows, int ncols>
3 struct my_matrix {
4 T data[nrows * ncols];
5 };

1 template <int i, int j>
2 struct mult {
3 static const int value=i*j;
4 };
5 ...
6 my_array< mult<19,21>::value > vals;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 208

EVALUATE DEPENDENT TYPES
Suppose we want to implement a template function

template <class T> auto f(T a) -> U;

such that when T is a non-pointer type, U should take the value T. But if T is itself a pointer, U is the type
obtained by dereferencing the pointer

We could use a template function to "compute" the type U like this:

template <class T> struct remove_pointer { using type = T; };
template <class T> struct remove_pointer<T*> { using type = T; };

We can then declare the function as:

template <class InputType>
auto f(InputType a) -> remove_pointer<InputType>::type ;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 209

EVALUATE DEPENDENT TYPES
Suppose we want to implement a template function

template <class T> auto f(T a) -> U;

such that when T is a non-pointer type, U should take the value T. But if T is itself a pointer, U is the type
obtained by dereferencing the pointer
We could use a template function to "compute" the type U like this:

template <class T> struct remove_pointer { using type = T; };
template <class T> struct remove_pointer<T*> { using type = T; };

We can then declare the function as:

template <class InputType>
auto f(InputType a) -> remove_pointer<InputType>::type ;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 209

EVALUATE DEPENDENT TYPES
Suppose we want to implement a template function

template <class T> auto f(T a) -> U;

such that when T is a non-pointer type, U should take the value T. But if T is itself a pointer, U is the type
obtained by dereferencing the pointer
We could use a template function to "compute" the type U like this:

template <class T> struct remove_pointer { using type = T; };
template <class T> struct remove_pointer<T*> { using type = T; };

We can then declare the function as:

template <class InputType>
auto f(InputType a) -> remove_pointer<InputType>::type ;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 209

TYPE FUNCTIONS
Compute properties of types
Compute dependent types
Typically used with convenient alias template
declarations for the dependent type or the
constant value

template <class T1, class T2>
std::is_same<T1,T2>::value

template <class T>
std::is_integral<T>::value

template <class T>
std::make_signed<T>::type

template <class T>
std::remove_reference<T>::type

template <class T>
using remove_reference_t =

typename remove_reference<T>::type;

template <class T>
inline constexpr bool is_integral_v =

std::is_integral<T>::value;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 210

STATIC_ASSERT WITH TYPE TRAITS
1 #include <iostream>
2 #include <type_traits>
3 template < class T, class U>
4 auto some_calc(T x, U y)
5 {
6 static_assert(std::is_convertible_v<T, U>,
7 "The type of the argument x must be convertible to type U");
8 // ...
9 }

10 auto main() -> int
11 {
12 some_calc(4.0, "target"); //Compiler error!
13 ...
14 }

static_assert(condition[, message]) asks the compiler to check if condition is valid. If
not, message is printed as a compiler error.
Use static_assert and type_traits in combination with constexpr , to test assumptions
verifiable by the compiler.

Exercise 3.1: static_assert2.cc

Member of the Helmholtz Association 8 – 12 May 2023 Slide 211

TYPETRAITS
Unary predicates

is_integral_v<T> : T is an integer type

is_const_v<T> : has a const qualifier

is_class_v<T> : struct or class

is_pointer_v<T> : Pointer type

is_abstract_v<T> : Abstract class with at least one pure virtual function

is_copy_constructible_v<T> : Class allows copy construction

is_same_v<T1,T2> : T1 and T2 are the same types

is_base_of_v<T,D> : T is base class of D

is_convertible_v<T,T2> : T is convertible to T2

Member of the Helmholtz Association 8 – 12 May 2023 Slide 212

FORWARDING REFERENCES
1 template <class T>
2 auto wrapperfunc(T&& t)
3 {
4 other(std::forward<T>(t));
5 }
6 auto main() -> int
7 {
8 std::string x{"Solar"};
9 std::string y{"System"};

10 wrapperfunc(x);
11 wrapperfunc(x + " " + y);
12 }

Function argument written as if it were an R-value
reference to a cv-unqualified template parameter

If wrapperfunc is called with a constant
L-value, T is deduced to be a constant L-value
reference, and other receives a constant L-value
reference
If wrapperfunc is called with an L-value, T is
deduced to be an L-value reference, and other
receives an L-value reference
If the input is an R-value, then T is inferred to be
a plain type, and forward ensures that other
receives an R-value reference

Member of the Helmholtz Association 8 – 12 May 2023 Slide 213

FORWARDING REFERENCES
1 template <class T>
2 auto wrapperfunc(T&& t)
3 {
4 other(std::forward<T>(t));
5 }
6 auto main() -> int
7 {
8 std::string x{"Solar"};
9 std::string y{"System"};

10 wrapperfunc(x);
11 wrapperfunc(x + " " + y);
12 }

Type deduction for variables declared with
auto&& follows the same rules. The declared

variable is a const L-value reference, mutable
L-value reference or an R-value reference depending
on the initialiser.

Function argument written as if it were an R-value
reference to a cv-unqualified template parameter

If wrapperfunc is called with a constant
L-value, T is deduced to be a constant L-value
reference, and other receives a constant L-value
reference
If wrapperfunc is called with an L-value, T is
deduced to be an L-value reference, and other
receives an L-value reference
If the input is an R-value, then T is inferred to be
a plain type, and forward ensures that other
receives an R-value reference

Member of the Helmholtz Association 8 – 12 May 2023 Slide 213

NOT A TEXT SUBSTITUTION ENGINE!
Template specialisation

1 template <class T>
2 class vector {
3 // implementation of a general
4 // vector for any type T
5 };
6 template <>
7 class vector<bool> {
8 // Store the true false values
9 // in a compressed way, i.e.,

10 // 32 of them in a single int
11 };
12 void somewhere_else()
13 {
14 vector<bool> A;
15 // Uses the special implementation
16 }

Templates are defined to work with generic
template parameters
But special values of those parameters, which
should be treated differently, can be specified using
"template specialisations" as shown
If a matching specialisation is found, it is preferred
over the general template

1 template <class A, class B>
2 constexpr auto are_same = false;
3 template <class A>
4 constexpr auto are_same<A, A> = true;
5 static_assert(are_same<int, long>); // Fails
6 using Integer = int;
7 static_assert(are_same<int, Integer>); // Passes

Member of the Helmholtz Association 8 – 12 May 2023 Slide 214

NOT A TEXT SUBSTITUTION ENGINE!
Recursion and integer arithmetic

1 template <unsigned N> constexpr unsigned fact = N * fact<N-1>;
2 template <> constexpr unsigned fact<0> = 1U;
3 static_assert(fact<7> == 5040)

Templates support recursive instantiation
Combined with specialisation to terminate recursion
Recursion and specialisation can be used to emulate “loop” like calculations via tail-recursion

Exercise 3.2:
The example source file examples/no_textsub.cc demonstrates recursion and specialisation in templates, and
uses static_assert to verify that the arithmetic calculations in this case indeed happen during compilation.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 215

NOT A TEXT SUBSTITUTION ENGINE!
Because: SFINAE

1 template <bool Cond, class T> struct enable_if {};
2 template <class T> struct enable_if<true, T> { using type = T; }
3 template <class T>
4 auto func(T x) -> enable_if<sizeof(T) == 8UL, T>::type {
5 //impl1
6 }
7 template <class T>
8 auto func(T x) -> enable_if<sizeof(T) != 8UL, T>::type {
9 //impl2

10 }

Substitution Failure Is Not An Error
If substituting a template parameter results in incomplete or invalid function declarations, that overload is
ignored.
The compiler simply tries to find another template with the same name that might match
If it can’t find any, then you have an error
func(1) will resolve to the second version and func(1.0) will resolve to the first version during

compilation!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 216

NOT A TEXT SUBSTITUTION ENGINE!
Because: concepts

1 template <class T>
2 auto func(T x) -> T requires (sizeof(T) == 8UL) {
3 //impl1
4 }
5 template <class T>
6 auto func(T x) -> T requires (sizeof(T) != 8UL) {
7 //impl2
8 }

Different implementations can be provided requiring different properties of the input type
Before C++20, this sort of selection was done using std::enable_if . Now, concepts provide a far
cleaner alternative.
Again, func(1) will resolve to the second version and func(1.0) will resolve to the first version
during compilation!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 217

Constrained templates

Member of the Helmholtz Association 8 – 12 May 2023 Slide 218

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading
We can

Member of the Helmholtz Association 8 – 12 May 2023 Slide 219

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading
We can

Member of the Helmholtz Association 8 – 12 May 2023 Slide 219

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?

Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading
We can

Member of the Helmholtz Association 8 – 12 May 2023 Slide 219

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading
We can

Member of the Helmholtz Association 8 – 12 May 2023 Slide 219

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading

We can

Member of the Helmholtz Association 8 – 12 May 2023 Slide 219

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading
We can

Member of the Helmholtz Association 8 – 12 May 2023 Slide 219

CONCEPTS
Named requirements on template parameters

concept s are named requirements on template parameters, such as floating_point ,
contiguous_range

If MyAPI is a concept , and T is a type, MyAPI<T> evaluates at compile time to either true or false.

Concepts can be combined using conjunctions (&&) and disjunctions (||) to make other concepts.

A requires clause introduces a constraint on a template type
A suitably designed set of concepts can greatly improve readability of template code

Member of the Helmholtz Association 8 – 12 May 2023 Slide 220

CREATING CONCEPTS
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements as shown in the last two
examples.

The requires expression can contain a parameter
list and a brace enclosed sequence of requirements,
which can be:

type requirements, e.g., typename T::value_type;
simple requirements as shown on the left
compound requirements with optional return type
constraints, e.g.,
{ A[0UL] } -> convertible_to<int>;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 221

CREATING CONCEPTS
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements as shown in the last two
examples.

The requires expression can contain a parameter
list and a brace enclosed sequence of requirements,
which can be:

type requirements, e.g., typename T::value_type;
simple requirements as shown on the left
compound requirements with optional return type
constraints, e.g.,
{ A[0UL] } -> convertible_to<int>;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 221

CREATING CONCEPTS
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

template <class T>
concept Addable = requires (T a, T b) {

{ a + b };
};
template <class T>
concept Indexable = requires(T A) {

{ A[0UL] };
};

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements as shown in the last two
examples.

The requires expression can contain a parameter
list and a brace enclosed sequence of requirements,
which can be:

type requirements, e.g., typename T::value_type;
simple requirements as shown on the left
compound requirements with optional return type
constraints, e.g.,
{ A[0UL] } -> convertible_to<int>;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 221

CREATING CONCEPTS
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

template <class T>
concept Addable = requires (T a, T b) {

{ a + b };
};
template <class T>
concept Indexable = requires(T A) {

{ A[0UL] };
};

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements as shown in the last two
examples.
The requires expression can contain a parameter
list and a brace enclosed sequence of requirements,
which can be:

type requirements, e.g., typename T::value_type;
simple requirements as shown on the left
compound requirements with optional return type
constraints, e.g.,
{ A[0UL] } -> convertible_to<int>;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 221

USING CONCEPTS
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function
parameter parentheses
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association 8 – 12 May 2023 Slide 222

USING CONCEPTS
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function
parameter parentheses
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association 8 – 12 May 2023 Slide 222

USING CONCEPTS
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function
parameter parentheses
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association 8 – 12 May 2023 Slide 222

USING CONCEPTS
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function
parameter parentheses
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association 8 – 12 May 2023 Slide 222

USING CONCEPTS
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function
parameter parentheses
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association 8 – 12 May 2023 Slide 222

DECLARING FUNCTION INPUT PARAMETERS WITH
AUTO

1 template <class T>
2 auto sqr(const T& x) { return x * x; }

Because of syntax introduced for functions with
constrained templates in C++20, we have a new
way to write fully unconstrained function
templates...

Functions with auto in their parameter list are
implicitly function templates

Member of the Helmholtz Association 8 – 12 May 2023 Slide 223

DECLARING FUNCTION INPUT PARAMETERS WITH
AUTO

1
2 auto sqr(const auto& x) { return x * x; }

Because of syntax introduced for functions with
constrained templates in C++20, we have a new
way to write fully unconstrained function
templates...
Functions with auto in their parameter list are
implicitly function templates

Member of the Helmholtz Association 8 – 12 May 2023 Slide 223

DECLARING FUNCTION INPUT PARAMETERS WITH
AUTO

1
2 auto sqr(const auto& x) { return x * x; }

Because of syntax introduced for functions with
constrained templates in C++20, we have a new
way to write fully unconstrained function
templates...
Functions with auto in their parameter list are
implicitly function templates

Exercise 3.7:
The program examples/gcd_w_concepts.cc shows a very small concept definition and its use in a function
calculating the greatest common divisor of two integers.

Exercise 3.8:
The series of programs examples/generic_func1.cc through generic_func4.cc shows some trivial functions
implemented with templates with and without constraints. The files contain plenty of comments explaining the
rationale and use of concepts.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 223

OVERLOADING BASED ON CONCEPTS
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4
5
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9

10
11
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration.

The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 8 – 12 May 2023 Slide 224

OVERLOADING BASED ON CONCEPTS
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration.
The compiler can choose between different versions
of a function based on concepts

The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 8 – 12 May 2023 Slide 224

OVERLOADING BASED ON CONCEPTS
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration.
The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”

During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 8 – 12 May 2023 Slide 224

OVERLOADING BASED ON CONCEPTS
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration.
The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.

Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 8 – 12 May 2023 Slide 224

OVERLOADING BASED ON CONCEPTS
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration.
The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships

Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 8 – 12 May 2023 Slide 224

OVERLOADING BASED ON CONCEPTS
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration.
The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.

Entirely compile time mechanism

Member of the Helmholtz Association 8 – 12 May 2023 Slide 224

OVERLOADING BASED ON CONCEPTS
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration.
The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 8 – 12 May 2023 Slide 224

Exercise 3.9:
Check how you can use concepts to implement alternative versions of a function based on properties of the input
parameters! The program examples/overload_w_concepts.cc contains the code just shown. Can you
add another overload that is picked if the input type is an array? This means, if X is the input parameter,
X[i] is syntactically valid for unsigned integer i . The array version should be picked up if the input is a
vector , array , etc. , but also string . How would you prevent the string and C-style strings

picking the array version?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 225

PREDEFINED USEFUL CONCEPTS
Many concepts useful in building our own concepts are available in the standard library header <concepts> .

same_as

convertible_to

signed_ingegral , unsigned_integral

floating_point

assignable_from

swappable , swappable_with

derived_from

move_constructible ,
copy_constructible

invocable

predicate

relation

Member of the Helmholtz Association 8 – 12 May 2023 Slide 226

CONCEPTS: SUMMARY

Member of the Helmholtz Association 8 – 12 May 2023 Slide 227

Variadic templates

Member of the Helmholtz Association 8 – 12 May 2023 Slide 228

VARIADIC TEMPLATES

1 template <class ... Args>
2 auto countArgs(Args ... args) -> int
3 {
4 return (sizeof ...args);
5 }
6 // elsewhere...
7 std::cout << "Num args = " << countArgs(1, "one", "ein", "uno", 3.232) << '\n';

Another type of abstraction which allows us to code concretely with an arbitrary number of arguments to a
function or class template
Most common example: std::tuple . Standard tuple is defined as a class template, but instead of one,
two or any finite number of template parameters, it is defined in terms of an arbitrary number of such
parameters, so that we can have std::tuple<int, double> ,
std::tuple<int, int, double, int> , std::tuple<std::string, int, double> all

using one class template.
Recursion, partial specialisation, fold expressions
The ... is actual code! Not blanks for you to fill in!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 229

PARAMETER PACK
The ellipsis (...) template argument is called a parameter pack 1

It represents 0 or more arguments which could be type names, integers or other templates :

1 template <class ... Args> class mytuple;
2 // The above can be instantiated with :
3 mytuple<int, int, double, string> t1;
4 mytuple<int> t2;
5 mytuple<> t3;

Definition: A template with at least one parameter pack is called a variadic template

1
https://en.cppreference.com/w/cpp/language/parameter_pack

Member of the Helmholtz Association 8 – 12 May 2023 Slide 230

https://en.cppreference.com/w/cpp/language/parameter_pack

PARAMETER PACK
1 //examples/variadic_1.cc
2 template <class ... Types> void f(Types ... args);

3 template <class Type1, class ... Types> void f(Type1 arg1, Types ... rest) {

4 std::cout << typeid(arg1).name() << ``: '' << arg1 << ``\n'';

5 f(rest ...);

6 }

7 template <> void f() {}

8 auto main() -> int
9 {

10 int i{3}, j{};
11 const char * cst{"abc"};
12 std::string cppst{"def"};
13 f(i, j, true, k, l, cst, cppst);
14 }

One way to handle variadic argument list:
Divide argument list into first and rest

Do something with first and recursively call template with rest

Specialise for the case with 1 or 0 arguments

Member of the Helmholtz Association 8 – 12 May 2023 Slide 231

PARAMETER PACK EXPANSION
pattern ... is called a parameter pack expansion

It applies a pattern to a comma separated list of instantiations of the pattern

If we are in a function :

1 template <class ... Types> void g(Types ... args)

args... means the list of arguments used for the function.

Calling f(args ...) in g will call f with same arguments

Calling f(h(args)...) in g will call f with an argument list generated by applying function h to
each argument of g

In g(true, "abc", 1) ,
f(h(args)...) means f(h(true), h("abc"), h(1))

Member of the Helmholtz Association 8 – 12 May 2023 Slide 232

PARAMETER PACK EXPANSION

1 template <class ... Types> void f(Types ... args);
2 template <class Type1, class ... Types> void f(Type1 arg1, Types ... rest) {
3 std::cout <<" The first argument is " << arg1
4 <<". Remainder argument list has " << sizeof...(Types) << " elements.\n";
5 f(rest ...);
6 }
7 template <> void f() {}
8 template <class ... Types> void g(Types ... args) {
9 std::cout << "Inside g: going to call function f with the sizes of "

10 << "my arguments\n";
11 f(sizeof(args)...);
12 }

sizeof...(Types) retrieves the number of arguments in the parameter pack
In g above, we call f with the sizes of each of the parameters passed to g

Similarly, one can generate all addresses as &args... , increment all with ++args... (examples
variadic_2.cc and variadic_3.cc)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 233

PARAMETER PACK EXPANSION: WHERE

1 template <class ... Types> void f(Types& ... args) {}

2 template <class ... Types> void h(Types ... args) {

3 f(std::cout << args << ``\t'' ...);

4 [=, &args ...]{ return g(args...); }();

5 int t[sizeof...(args)]={ args ... };

6 int s = 0;
7 for (auto i : t) s += i;
8 std::cout << "\nsum = " << s << "\n";
9 }

Parameter pack expansion can be done in function parameter list , function argument list , template
parameter list or template argument list
Braced initializer lists

Base specifiers and member initializer lists in classes
Lambda captures

Member of the Helmholtz Association 8 – 12 May 2023 Slide 234

Exercise 3.10: Parameter packs
Study the examples variadic_1.cc , variadic_2.cc and variadic_3.cc . See where parameter
packs are begin expanded, and make yourself familiar with this syntax.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 235

FOLD EXPRESSIONS IN C++17
Fold expressions provide a different compact way of expressing operations to be done on variadic argument
lists
Idea: apply a pattern to the argument list

1 #include <iostream>
2 template <class ... Args>
3 auto addup(Args ... args)
4 {
5 return (1 + ... + args);
6 }
7 auto main() -> int
8 {
9 std::cout << addup(1, 2, 3) << "\n";

10 std::cout << addup(1, 2, 3, 4, 5) << "\n";
11 }

... op ppack translates to reduce from the
left with operator op

ppack op ... means, reduce from the right
with op

init op ... op ppack reduces from the
left, with initial value init

pack op ... op init reduces from the right
...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 236

FOLD EXPRESSIONS
1 // examples/foldex_3.cc
2 #include <algorithm>
3 template <class First, class ... Args>
4 auto min(First first, Args ... args)
5 {
6 First retval = first;
7 ((retval = std::min(retval, args)), ...);
8 return retval;
9 }

10
11 auto main() -> int
12 {
13 return min(8, 3, 4, 7, 2, 7)
14 + min(2, 3, 9, 1);
15 }

Application
Fold expression with the “comma operator”a

Make even the number of arguments abstract

aIn C++, if a comma separated list of expressions does not
constitute an argument list for a function or an initialiser list, it
becomes an expression with pairs connected by the “comma” operator.
The comma operator simply evaluates both sides, left followed by
right, and returns the value of the right hand side. The comma
operator has the lowest precedence among operators.
https://en.cppreference.com/w/cpp/language/operator_precedence

Member of the Helmholtz Association 8 – 12 May 2023 Slide 237

https://en.cppreference.com/w/cpp/language/operator_precedence

Note: Variadic templates and fold expressions belong to the compile time abstractions. Using these does not
involve additional runtime indirection.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 238

TUPLES

1 #include <tuple>
2 #include <iostream>
3 auto main() -> int
4 {
5 std::tuple<int, int, std::string> name_i_j{0, 1, "Uralic"};
6 auto t3 = std::make_tuple<int, bool>(2, false);
7 auto t4 = std::tuple_cat(name_i_j, t3);
8 std::cout << std::get<2>(t4) << '\n';
9 }

Like std::pair , but with arbitrary number of members
"Structure templates without names"
Accessor "function templates" std::get<index>() with index starting at 0 .
No operator[] to access different components, since, for tuple t , components t[0] , t[1] would
in general be of different types, which would be unexpected, counter-intuitive behaviour.
Supports relational operators for lexicographical comparisons
tuple_cat(args ...) concatenates tuples.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 239

TUPLES
1 auto f() -> std::tuple<int, int, string>; // elsewhere
2 auto main() -> int
3 {
4 int i1;
5 std::string name;
6 std::tie(i1, std::ignore, name) = f();
7 }

tie(args ...) "extracts a tuple" into pre-existing named variables.

Some fields may be ignored during extraction using std::ignore as shown

Member of the Helmholtz Association 8 – 12 May 2023 Slide 240

PRINTING A TUPLE
1 template <class... Args>
2 auto operator<<(std::ostream& strm, const std::tuple<Args...>& t) -> std::ostream& {
3 using namespace std;
4 auto print_one = [&strm](const auto& onearg) -> decltype(strm) {
5 using bare_type = remove_cvref_t<decltype(onearg)>;
6 if constexpr (is_convertible_v<bare_type, string>)
7 strm << quoted(onearg);
8 else
9 strm << onearg;

10 return strm;
11 };
12 auto print_components = [&](auto&&... args) {
13 size_t n {};
14 ((print_one(args) << ((++n != sizeof...(args)) ? ", " : "")), ...);
15 };
16 strm << "[";
17 apply(print_components, t);
18 return strm << "]";
19 }

Helper lambda to print one element, quoted when it is a string, plain otherwise
Second helper lambda, with variadic parameter list to handle component separation
Fold expression and std::apply to print components

Member of the Helmholtz Association 8 – 12 May 2023 Slide 241

Exercise 3.11:
Three ways of printing a tuple is demonstrated in print_tuple.cc , print_tuple_cxx17.cc and
print_tuple_foldex.cc .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 242

FUN WITH FOLD EXPRESSIONS

Problem: We have an uncertain number of containers of arbitrary types (some vectors, some linked lists, ...),
with arbitrary element types which are known to be < comparable (some contain doubles , some

std::string s, some int ...), containing an arbitrary number of elements each. We need a tuple consisting
of the largest element of each container. Write a function which will create that tuple from our inputs.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 243

FUN WITH FOLD EXPRESSIONS

Problem: We have an uncertain number of containers of arbitrary types (some vectors, some linked lists, ...),
with arbitrary element types which are known to be < comparable (some contain doubles , some

std::string s, some int ...), containing an arbitrary number of elements each. We need a tuple consisting
of the largest element of each container. Write a function which will create that tuple from our inputs.

Complete solution:

1 auto max_of_multiple(auto&& ... containers)
2 {
3 return std::make_tuple(std::ranges::max(containers) ...);
4 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 243

FUN WITH FOLD EXPRESSIONS
Problem: We need a function to replace each element of a vector with the averages of neighbours separated by

some shifts. Write a function that takes the vector and the shifts as function arguments, and returns the
smoothed vector. It should be possible to use the function for any given number of shifts.

Complete solution:

1 auto conv(const std::vector<double>& inp, auto ... shift)
2 {
3 std::vector<double> out(inp.size(), 0.);
4 auto res_exp = std::views::iota(0, static_cast<int>(inp.size()))
5 | std::views::transform([inp, shift...](auto index){
6 auto S = inp.size();
7 return (inp[
8 (index + shift) > 0 ? (index + shift) % S : S + (index + shift) % S
9] + ...)

10 / (sizeof ... (shift));
11 });
12
13 std::ranges::copy(res_exp, out.begin());
14 return out;
15 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 244

Exercise 3.12:
fold_xpr_demo[2-4].cc demonstrate the last few applications of variadic templates, fold expressions and the

new C++20 syntax for auto in function parameters. Build them with the proper include paths for printing
tuples and ranges. The necessary headers for this functionality is in the include folder for the course.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 245

Chapter 4

SOLID principles

Member of the Helmholtz Association 8 – 12 May 2023 Slide 246

DESIGN GOALS
Correctness
Readability
Extendability
Speed
Adaptability

A large scale software project is better off being built out
of components which are resilient to unforeseen changes.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 247

DEPENDENCIES
Impede modifications
Hamper testing
Increase rebuild times

Good design helps us control dependencies.
Variation points
Flexible adaptible software

Guideline: Keep dependencies among software components to a minimum.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 248

ENCAPSULATION
Member functions abstracting properties
Resilient to internal data reorganisation
More flexible design

1 class complex_number {
2 public:
3 double real, imag;
4 double modulus();
5 };

1 class complex_number {
2 public:
3 auto real() const -> double;
4 auto imag() const -> double;
5 void real(double x);
6 void imag(double x);
7 auto modulus() const -> double;
8 };

Member of the Helmholtz Association 8 – 12 May 2023 Slide 249

ENCAPSULATION
Scott Meyer: degree of encapsulation is gauged by
the number of things which break if the internal
design changes
Less member functions : better!
If a function can be implemented as a non-friend,
non-member function, it should be.

1 // Class definition: bare essentials
2 namespace ns {
3 class Example {
4 public:
5 auto property1() const -> double;
6 auto property2() const -> double;
7 };
8 }

1 // Use case 1 header
2 namespace ns {
3 auto calc(Example & ex) {
4 //ex.property1() + ...
5 //ex.property2();
6 return haha;
7 }
8 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 250

THE SOLID PRINCIPLES
Single responsibility principle
Open-closed principle
Liskov’s substitution principle
Interface segregation principle
Dependency inversion principle

Member of the Helmholtz Association 8 – 12 May 2023 Slide 251

SRP: THE SINGLE RESPONSIBILITY PRINCIPLE

Every class should have a single responsibility and that responsibility should be entirely encapsulated by that class.
However tempting it might seem, avoid adding
member functions not related to the core idea of
the class
Related principle: Don’t repeat yourself. Avoids
opportunity for bugs and reduces maintenance
overhead.

1 class Rectangle {
2 public:
3 auto area() const -> double;
4 auto width() const -> double;
5 auto height() const -> double;
6 void width(double x);
7 void height(double x);
8 void draw() const;
9 };

Member of the Helmholtz Association 8 – 12 May 2023 Slide 252

OCP: THE OPEN CLOSED PRINCIPLE

A software component should be open for extension, but closed for modifications.

Closed: can be used by other components. Well defined stable interface.
Open: Available for extension. Add new data fields, new functionality.
Inheritance (possibly from abstract base classes)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 253

LSP: LISKOV’S SUBSTITUTION PRINCIPLE

"If, for each object o1 of type S, there is an object o2 of type T, such that for all programs P defined in terms of
T, the behaviour of P is unchanged when o1 is substituted for o2, then S is a subtype of T."

– Barbara Liskov

Subtypes must be able to substitute the base type
Deriving type fully reflects the behaviour of the base class
True "is a" relationship
Guideline: Don’t inherit and then restrict the derived class so that it loses some behaviour expected from
the base class

Member of the Helmholtz Association 8 – 12 May 2023 Slide 254

ISP: THE INTERFACE SEGREGATION PRINCIPLE

Clients should not be forced to depend on methods they do not use.

See under "encapsulation" above
Avoid "fat" classes. When one client forces a change, every other client is affected, even if they are not
using the same part of the fat class.
Think how the functionality available through the namespace std is segregated.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 255

DIP: THE DEPENDENCY INVERSION PRINCIPLE

1 High-level modules should not depend on low level modules. Both should depend on abstractions.
2 Abstractions should not depend on details. Details should depend on abstractions.

High level components own the interface they depend on.
They specify their requirements.
If low level components implement that interface, they can be used with the high level client interface.
Cut the dependency chain
Adaptor layers

Member of the Helmholtz Association 8 – 12 May 2023 Slide 256

SUMMARY: SOLID PRINCIPLES
Avoiding tight coupling between different components may require extra work at first, but wins out in the
life time of a project.
Assign responsibilities carefully.
SOLID principles are known to help develop and maintain flexible software.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 257

Chapter 5

Lambda functions

Member of the Helmholtz Association 8 – 12 May 2023 Slide 258

FUNCTION LIKE ENTITIES
In C++, there are a few different constructs which can be used in a context requiring a “function”
Functions in all varieties constitute one category (inline or not, constexpr or not, virtual or
not ...)
Classes may overload the function call operator operator() to give us another type of callable object
Lambda functions are similar, language provided entities

1 class Wave {
2 double A, ome, pha;
3 public:
4 auto operator()(double t) -> double
5 {
6 return A * sin(ome * t + pha);
7 }
8 };
9 void elsewhere()

10 {
11 Wave W{1.0, 0.15, 0.9};
12 for (auto i = 0; i < 100; ++i) {
13 std::cout << i << W(i) << "\n";
14 }
15 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 259

LAMBDA FUNCTIONS
Locally defined callable entities
Uses

Effective use of STL
Initialisation of const
Concurrency
New loop styles

Like a function object defined on the spot
Fine grained control over the visibility of the
variables in the surrounding scope

1 sort(begin(v), end(v), [](auto x, auto y) {
2 return x > y;
3 });
4
5 const auto inp_file = []{
6 string resourcefl;
7 cout << "resource file : ";
8 cin >> resourcefl;
9 return resourcefl;

10 }();
11 tbb::parallel_for(0, 1000000, [](int i){
12 // process element i
13 });

Member of the Helmholtz Association 8 – 12 May 2023 Slide 260

LAMBDA FUNCTIONS
Function
auto sqr(double x) -> double
{

return x * x;
}

Lambda expression
auto lsqr = [](double x) -> double
{

return x * x;
};

Normal C++ functions can not be defined in block scope
Lambda expressions are expressions, which when evaluated yield callable entities. Like 29 is an expression,
which when evaluated yields 512.
Such callable entities can be created in global as well as block scope

Member of the Helmholtz Association 8 – 12 May 2023 Slide 261

LAMBDA FUNCTIONS
Function
auto sqr(double x) -> double
{

return x * x;
}

Lambda expression
auto lsqr = [](double x) -> double
{

return x * x;
};

The lambda expression contains information which is used to make the callable entity: such as, expected
input, output and the body(“recipe”).
Unlike normal functions, which have names, these callable entities themselves are nameless, but named
variables can be constructed out of them, if desired. Those named variables can then be used like functions.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 261

LAMBDA FUNCTIONS
Function
auto sqr(double x) -> double
{

return x * x;
}

Lambda expression
auto lsqr = [](double x) -> double
{

return x * x;
};

The lambda expression contains information which is used to make the callable entity: such as, expected
input, output and the body(“recipe”).
Unlike normal functions, which have names, these callable entities themselves are nameless, but named
variables can be constructed out of them, if desired. Those named variables can then be used like functions.

std::vector X{0.1, 0.2, 0.3, 0.4};
auto sqsum = 0.;
for (auto i = 0UL; i < X.size(); ++i) {

sqsum += sqr(X[i]);
}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 261

LAMBDA FUNCTIONS
Function
auto sqr(double x) -> double
{

return x * x;
}

Lambda expression
auto lsqr = [](double x) -> double
{

return x * x;
};

The lambda expression contains information which is used to make the callable entity: such as, expected
input, output and the body(“recipe”).
Unlike normal functions, which have names, these callable entities themselves are nameless, but named
variables can be constructed out of them, if desired. Those named variables can then be used like functions.

std::vector X{0.1, 0.2, 0.3, 0.4};
auto sqsum = 0.;
for (auto i = 0UL; i < X.size(); ++i) {

sqsum += lsqr(X[i]);
}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 261

LAMBDA FUNCTIONS
template <Callable F>
auto aggregate(const std::vector<double>& inp, F f) -> double
{

auto s{0.};
for (auto i = 0UL; i < inp.size(); ++i) { s += f(inp[i]); }
return s;

}

Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values

Named callable entities can be used when available.
Often it is more convenient to pass a lambda expression, and let the higher order function create the
callable entity it needs!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 262

LAMBDA FUNCTIONS
template <Callable F>
auto aggregate(const std::vector<double>& inp, F f) -> double
{

auto s{0.};
for (auto i = 0UL; i < X.size(); ++i) { s += f(X[i]); }
return s;

}
// ...
std::vector X{0.1, 0.2, 0.3, 0.4};
auto sqsum = aggregate(X, sqr);

Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values
Named callable entities can be used when available.

Often it is more convenient to pass a lambda expression, and let the higher order function create the
callable entity it needs!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 262

LAMBDA FUNCTIONS
template <Callable F>
auto aggregate(const std::vector<double>& inp, F f) -> double
{

auto s{0.};
for (auto i = 0UL; i < X.size(); ++i) { s += f(X[i]); }
return s;

}
// ...
std::vector X{0.1, 0.2, 0.3, 0.4};
auto sqsum = aggregate(X, lsqr);

Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values
Named callable entities can be used when available.

Often it is more convenient to pass a lambda expression, and let the higher order function create the
callable entity it needs!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 262

LAMBDA FUNCTIONS
template <Callable F>
auto aggregate(const std::vector<double>& inp, F f) -> double
{

auto s{0.};
for (auto i = 0UL; i < X.size(); ++i) { s += f(X[i]); }
return s;

}
// ...
std::vector X{0.1, 0.2, 0.3, 0.4};
auto sqsum = aggregate(X, [](double x) -> double { return x * x; });

Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values
Named callable entities can be used when available.
Often it is more convenient to pass a lambda expression, and let the higher order function create the
callable entity it needs!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 262

LAMBDA FUNCTIONS WITH ALGORITHMS
std::for_each is a higher order function, similar to this:

template <class InputIterator, class UnaryFunction>
void for_each(InputIterator start, InputIterator end, UnaryFunction f)
{

for (auto it = start; it != end; ++it) f(*it);
}

What do the following lines do ?

1 std::vector X{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
2 for_each(X.begin(), X.end(), [](int& elem){ elem = elem * elem; });
3 for_each(X.begin(), X.end(), [](int& elem){ elem -= 100; });
4 for_each(X.begin(), X.end(), [](int elem){ std::cout << elem << "\n"; });

Member of the Helmholtz Association 8 – 12 May 2023 Slide 263

LAMBDA FUNCTIONS WITH ALGORITHMS
std::for_each is a higher order function, similar to this:

template <class InputIterator, class UnaryFunction>
void for_each(InputIterator start, InputIterator end, UnaryFunction f)
{

for (auto it = start; it != end; ++it) f(*it);
}

What do the following lines do ?

1 std::vector X{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
2 for_each(X.begin(), X.end(), [](int& elem){ elem = elem * elem; });
3 for_each(X.begin(), X.end(), [](int& elem){ elem -= 100; });
4 for_each(X.begin(), X.end(), [](int elem){ std::cout << elem << "\n"; });

Member of the Helmholtz Association 8 – 12 May 2023 Slide 263

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 264

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 264

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 264

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 264

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 264

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

template <class InputIt, class OutputIt,
class UnaryFunction>

void transform(InputIt start, InputIt end,
OutputIt out,
UnaryFunction f)

{
for (; start != end; ++start, ++out)

*out = f(*start);
}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 264

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

What do the following lines do ?

1 std::vector X{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
2 std::vector<int> Y;
3 transform(X.begin(), X.end(), std::back_inserter(Y),
4 [](int elem){ return elem * elem; });

Member of the Helmholtz Association 8 – 12 May 2023 Slide 264

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

What do the following lines do ?

1 std::vector X{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
2 std::vector<int> Y;
3 copy_if(X.begin(), X.end(), std::back_inserter(Y),
4 [](int elem){ return elem % 3 == 0; });

Member of the Helmholtz Association 8 – 12 May 2023 Slide 265

Exercise 5.1:
Use the notebook lambda_practice_0.ipynb to quickly practice writing a few small lambdas and using them
with a few standard library algorithms.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 266

CAPTURE BRACKETS
Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

Copy to w all positive elements
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

Copy to w all elements larger than a user specified value
This does not work
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w),

[lim](int i){ return i > lim; });
// Lambda function "captures" lim, and lim is now visible inside the lambda

Member of the Helmholtz Association 8 – 12 May 2023 Slide 267

CAPTURE BRACKETS
Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

Copy to w all positive elements
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

Copy to w all elements larger than a user specified value
This does not work
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w),

[lim](int i){ return i > lim; });
// Lambda function "captures" lim, and lim is now visible inside the lambda

Member of the Helmholtz Association 8 – 12 May 2023 Slide 267

CAPTURE BRACKETS
Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

Copy to w all positive elements
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

Copy to w all elements larger than a user specified value

This does not work
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w),

[lim](int i){ return i > lim; });
// Lambda function "captures" lim, and lim is now visible inside the lambda

Member of the Helmholtz Association 8 – 12 May 2023 Slide 267

CAPTURE BRACKETS
Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

Copy to w all positive elements
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

Copy to w all elements larger than a user specified value
This does not work
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w),

[lim](int i){ return i > lim; });
// Lambda function "captures" lim, and lim is now visible inside the lambda

Member of the Helmholtz Association 8 – 12 May 2023 Slide 267

CAPTURE BRACKETS
Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

Copy to w all positive elements
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

Copy to w all elements larger than a user specified value
This does not work
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w),

[lim](int i){ return i > lim; });
// Lambda function "captures" lim, and lim is now visible inside the lambda

Member of the Helmholtz Association 8 – 12 May 2023 Slide 267

LAMBDA EXPRESSIONS: SYNTAX

[capture] <templatepars> (arguments) lambda-specifiers { body }

Variables in the body of a lambda function are either passed as function arguments or "captured", or are
global variables
Function arguments field is optional if empty. e.g. [&cc]{ return cc++; }

The lambda-specifiers field can contain a variety of things: Keywords mutable , constexpr or
consteval , exception specifiers, attributes, the return type, and any requires clauses. All of these

are optional.
The return type is optional if there is one return statement. e.g.
[a,b,c](int i) mutable { return a*i*i + b*i + c; }

The optional keyword mutable can be used to create lambdas with state
auto can be used to declare the formal input parameters of the lambda (since C++14)

Template parameters can be optionally provided where shown (since C++20)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 268

EXPLICIT TEMPLATE PARAMETERS FOR LAMBDA
FUNCTIONS

1 // examples/saxpy_2.cc
2 // includes ...
3 auto main() -> int {
4 const std::vector inp1 { 1., 2., 3., 4., 5. };
5 const std::vector inp2 { 9., 8., 7., 6., 5. };
6 std::vector outp(inp1.size(), 0.);
7
8 auto saxpy = [] <class T, class T_in, class T_out>

9 (T a, const T_in& x, const T_in& y, T_out& z) {
10 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
11 [a](T X, T Y){ return a * X + Y; });
12 };
13
14 std::ostream_iterator<double> cout { std::cout, "\n" };
15 saxpy(10., inp1, inp2, outp);
16 copy(outp.begin(), outp.end(), cout);
17 }

For normal function templates, we could easily express relationships among the types of different parameters.
With C++20, we can do that for generic lambdas as well

Member of the Helmholtz Association 8 – 12 May 2023 Slide 269

LAMBDA CAPTURE SYNTAX I
[capture]<templatepars> (arguments) lambda-specifiers { body }

[](int a, int b) -> bool { return a > b;} : Capture nothing. Work only with the
arguments passed, or global objects.
[=](int a) -> bool {return a > somevar;} : Capture everything needed by value.

[&](int a){somevar += a;} : Capture everything needed by reference.

[=,&somevar](int a){ somevar += max(a,othervar); } : somevar by reference, but
everything else as value.
[a,&b]{ f(a,b); } : a by value, b by reference.

[a=std::move(b)]{ f(a,b); } : Init capture. Create a variable a with the initializer given in the
capture brackets. It is as if there were an implicit auto before the a .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 270

Exercise 5.2:
The program lambda_captures.cc (alternatively, notebook lambda_practice_1.ipynb) declares a variable
of the Vbose type (with all constructors, assignment operators etc. written to print messages), and then
defines a lambda function. By changing the capture type, and the changing between using and not using the
Vbose value inside the lambda function, try to understand, from the output, the circumstances under which

the captured variables are copied into the lambda. In the cases where you see a copy, where does the copy take
place ? At the point of declaration of the lambda or at the point of use ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 271

LAMBDA FUNCTIONS: CAPTURES
Imagine there is a variable int p=5 defined previously

We can “capture” p by value and use it inside our lambda
auto L = [p](int i){ std::cout << i*3 + p; };
L(3); // result : prints out 14
auto M = [p](int i){ p = i*3; }; // syntax error! p is read-only!

We can capture p by value (make a copy), but use the mutable keyword, to let the lambda function
change its local copy of p

auto M = [p](int i) mutable { return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) <<" "; std::cout << p <<"\n";
// result : prints out "8 14 5"

We can capture p by reference and modify it
auto M = [&p](int i){ return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) << " "; std::cout << p << "\n";
// result : prints out "8 14 14"

Member of the Helmholtz Association 8 – 12 May 2023 Slide 272

LAMBDA FUNCTIONS: CAPTURES
Imagine there is a variable int p=5 defined previously
We can “capture” p by value and use it inside our lambda

auto L = [p](int i){ std::cout << i*3 + p; };
L(3); // result : prints out 14
auto M = [p](int i){ p = i*3; }; // syntax error! p is read-only!

We can capture p by value (make a copy), but use the mutable keyword, to let the lambda function
change its local copy of p

auto M = [p](int i) mutable { return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) <<" "; std::cout << p <<"\n";
// result : prints out "8 14 5"

We can capture p by reference and modify it
auto M = [&p](int i){ return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) << " "; std::cout << p << "\n";
// result : prints out "8 14 14"

Member of the Helmholtz Association 8 – 12 May 2023 Slide 272

LAMBDA FUNCTIONS: CAPTURES
Imagine there is a variable int p=5 defined previously
We can “capture” p by value and use it inside our lambda

auto L = [p](int i){ std::cout << i*3 + p; };
L(3); // result : prints out 14
auto M = [p](int i){ p = i*3; }; // syntax error! p is read-only!

We can capture p by value (make a copy), but use the mutable keyword, to let the lambda function
change its local copy of p

auto M = [p](int i) mutable { return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) <<" "; std::cout << p <<"\n";
// result : prints out "8 14 5"

We can capture p by reference and modify it
auto M = [&p](int i){ return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) << " "; std::cout << p << "\n";
// result : prints out "8 14 14"

Member of the Helmholtz Association 8 – 12 May 2023 Slide 272

LAMBDA FUNCTIONS: CAPTURES
Imagine there is a variable int p=5 defined previously
We can “capture” p by value and use it inside our lambda

auto L = [p](int i){ std::cout << i*3 + p; };
L(3); // result : prints out 14
auto M = [p](int i){ p = i*3; }; // syntax error! p is read-only!

We can capture p by value (make a copy), but use the mutable keyword, to let the lambda function
change its local copy of p

auto M = [p](int i) mutable { return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) <<" "; std::cout << p <<"\n";
// result : prints out "8 14 5"

We can capture p by reference and modify it
auto M = [&p](int i){ return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) << " "; std::cout << p << "\n";
// result : prints out "8 14 14"

Member of the Helmholtz Association 8 – 12 May 2023 Slide 272

NO DEFAULT CAPTURE!

[] Capture nothing
[=] Capture used by value (copy)
[=,&x] Capture used by value, except x by reference
[&] Capture used by reference
[&,x] Capture used by reference, except x by value
[a=init] Init capture

A lambda with empty capture brackets is like a local function, and can be assigned to a regular function
pointer. It is not aware of identifiers defined previously in its context
When you use a (non-global) variable defined outside the lambda in the lambda, you have to capture it

Member of the Helmholtz Association 8 – 12 May 2023 Slide 273

STATEFUL LAMBDAS
Mutable lambdas have "state", and remember any changes to the values captured by value
Combined with "init capture", gives us interesting generator functions

1 vector<int> v, w;
2 generate_n(back_inserter(v), 100, [i=0]() mutable {
3 ++i;
4 return i*i;
5 });
6 // v = [1, 4, 9, 16 ...]
7 generate_n(back_inserter(w), 50, [i=0, j=1]() mutable {
8 i = std::exchange(j, j+i); // exchange(a,b) sets a to b and returns the old value of a
9 return i;

10 });
11 // See the videos on Fibonacci sequence on the
12 // YouTube channel "C++ Weekly" by Jason Turner
13 // w = [1, 1, 2, 3, 5, 8, 11 ...]

Exercise 5.3:
The program mutable_lambda.cc shows the use of mutable lambdas for sequence initialisation.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 274

Chapter 6

Standard Template Library

Member of the Helmholtz Association 8 – 12 May 2023 Slide 275

Standard Template Library

Member of the Helmholtz Association 8 – 12 May 2023 Slide 276

STANDARD TEMPLATE LIBRARY
Utilities

pair , tuple

optional , variant , any

bitset , bit , endian , bit_cast

type_traits , concepts , safe integral
comparisons
initializer_list

system , atexit

bind , placeholders , apply , invoke ...

Date and Time
Random numbers
Smart pointers
File system
Regular expressions

Containers, span

Algorithms, ranges
Iterators
Strings and string view
Fast character conversions
Multi-threading, atomic types
Parallel algorithms
Text formatting

Member of the Helmholtz Association 8 – 12 May 2023 Slide 277

STL CONTAINERS
1 using namespace std;
2 int sz;
3 cin >> sz;
4 // vector<double> B(sz,3.0); // <- C++17 ->
5 vector B(sz, 3.0); // C++17 ->
6 vector c{1, 2, 3, 4};
7 c.push_back(5); // append
8 list l{1, 2, 3, 4};
9 l.insert(find(l.begin(),l.end(),2), 14);

10 // insert in the middle
11 map<string, int> rank;
12 rank["Sirius"] = 1;
13 rank["Canopus"] = 2;
14 for (auto el : B) cout << el << "\n";
15 for (auto el : l) cout << el << "\n";
16 for (auto el : rank)
17 cout << el.first <<" -> "
18 << el.second << "\n";

Form: container<datatype> . Include file
containername

Many easy-to-use sequence types available in the
STL

vector : Dynamic array type
list : Linked list
map : Sorted associative container
unordered_map : Hash table

Not always necessary to explicitly state the element
type. If there is an initialiser, element type can be
inferred.
Store a fixed kind of elements, determined at the
point of declaration.
They can grow at run time (except
std::array)

Whenever possible, prefer array or vector

Member of the Helmholtz Association 8 – 12 May 2023 Slide 278

VECTOR: DYNAMIC ARRAY CLASS TEMPLATE

Element type is a template parameter
Consecutive elements in memory
Can be accessed using an "iterator"

Iterator:
Iterators are classes which pretend to be pointers
They can be dereferenced with overloaded * and
-> operators to retrieve an element

They can be moved forward or backward using
overloaded ++ and -- operators
They can be compared for equality or inequality

Member of the Helmholtz Association 8 – 12 May 2023 Slide 279

A LINKED LIST
A linked list is a collection of connected nodes. Each
node has some data, and one or two pointers to other
nodes. They are the "next" and "previous" nodes in the
linked list. When "next" or "previous" does not exist,
the pointer is set to nullptr

Member of the Helmholtz Association 8 – 12 May 2023 Slide 280

A LINKED LIST
When a new element is added to the end of a list, its
"previous" pointer is set to the previous end of chain,
and it becomes the target of the "next" pointer of the
previous end.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 280

A LINKED LIST
New elements can be added to the front or back of the
list with only a few pointers needing rearrangement.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 280

A LINKED LIST
Any element in the list can be reached, if one kept track
of the beginning or end of the list, and followed the
"next" and "previous" pointers.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 280

A LINKED LIST
A concept of an "iterator" can be devised, where the
++ and -- operators move to the next and previous

nodes.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 280

A LINKED LIST
Inserting a new element in the middle of the list does
not require moving the existing nodes in memory.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 280

A LINKED LIST
Just rearranging the next and previous pointers of the
elements between which the new element must go, is
enough. This gives efficient O(1) insertions and
deletions.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 280

A LINKED LIST
Just rearranging the next and previous pointers of the
elements between which the new element must go, is
enough. This gives efficient O(1) insertions and
deletions.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 280

GENERIC "CONTAINERS"

Generic data holding constructions
Can be accessed through a suitably designed
"iterator"
The data type does not affect the design =⇒
template

Similarity of interface is by design
With a standard container c of type C , it’s
always possible to use std::begin(c) to
access the start and std::end(c) to access the
end
std::begin() and std::end() return
C::iterator or C::const_iterator

depending on whether c is const qualified.

std::cbegin(c) and std::cend(c)

return C::const_iterator types irrespective
of whether c is a const

Similarly, std::size(c) always returns the size
of the container, i.e., the number of elements it
contains

Member of the Helmholtz Association 8 – 12 May 2023 Slide 281

STL CONTAINERS
std::vector<> : dynamic arrays

std::list<> : linked lists

std::queue<> : queue

std::deque<> : double ended queue

std::map<A,B> : associative container

Structures to organise data
Include file names correspond to class names
All of them provide corresponding iterator classes
If iter is an iterator, *iter is data.
All of them provide member functions like
begin() , end() , size() , initialiser list

constructors, deduction rules for class template
argument deduction

1 list L{1, 2, 3, 4, 5}; // std::list<int>, initialised to 1, 2, 3, 4, 5
2 auto pp = partition(begin(L), end(L), [](auto i){ return i % 3 == 0; });
3 decltype(L) M;
4 M.splice(end(M), L, begin(L), pp);

Member of the Helmholtz Association 8 – 12 May 2023 Slide 282

USING STD::VECTOR
vector<int> v(10); makes a dynamic array of 10 integers, vector v(10, 0.) creates a vector

of 10 doubles initialised to 0, vector v{1u, 2u, 3u} creates a vector of unsigned int with
values 1, 2 and 3.
Efficient indexing operator [] , for unchecked element access

v.at(i) provides range checked access. An exception is thrown if at(i) is called with an out-of-range
i

std::vector<std::list<userinfo>> vu(10) ; array of 10 linked lists.

Supports push_back and insert operations, but sometimes has to relocate the all the elements because
of one push_back operation (next slide)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 283

STD::VECTOR
std::vector may reserve a few extra memory

blocks to allow a few quick push_back
operations.
New items are simply placed in the previously
reserved but unused memory and the size member
adjusted.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 284

STD::VECTOR
std::vector may reserve a few extra memory

blocks to allow a few quick push_back
operations.
New items are simply placed in the previously
reserved but unused memory and the size member
adjusted.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 284

STD::VECTOR
std::vector may reserve a few extra memory

blocks to allow a few quick push_back
operations.
New items are simply placed in the previously
reserved but unused memory and the size member
adjusted.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 284

STD::VECTOR
std::vector may reserve a few extra memory

blocks to allow a few quick push_back
operations.
New items are simply placed in the previously
reserved but unused memory and the size member
adjusted.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 284

STD::VECTOR
When this is no longer possible, a new larger
memory block is reserved, and all previous content
is moved or copied to it.
A few more quick push_back operations are
again possible.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 284

STD::VECTOR
When this is no longer possible, a new larger
memory block is reserved, and all previous content
is moved or copied to it.
A few more quick push_back operations are
again possible.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 284

STD::VECTOR
When push_back is no longer possible, a new
larger memory block is reserved, and all previous
content is moved or copied to it.
A few more quick push_back operations are
again possible.

Exercise 6.1:
Construct a list and a vector of 3 elements of the Vbose class from your earlier exercise. Add new elements
one by one and pause to examine the output. This aspect was also demonstrated in the notebook
CtorDtorDemo.ipynb .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 285

STD::ARRAY : ARRAYS WITH FIXED COMPILE TIME
CONSTANT SIZE

std::array<T,N> is a fixed length array of size N holding elements of type T

It implements functions like begin() and end() and is therefore usable with STL algorithms like
transform , generate etc.

The array size is a template parameter, and hence a compile time constant.
std::array<std::string,7> week{"Mon","Tue","Wed","Thu","Fri","Sat","Sun"};

Member of the Helmholtz Association 8 – 12 May 2023 Slide 286

ARRAYS

1 double A[10]; // Built-in or C-style array
2 int sz;
3 std::cin >> sz;
4 int M[sz]; // Not allowed!
5 #include <array>
6 ...
7 std::array<double,10> A; // On stack
8 // Like a built-in array, but obeys
9 // C++ standard library conventions.

10 for (size_t i = 0; i < A.size(); ++i) {
11 P *= A[i];
12 }
13 std::vector<double> B(sz,3.0);

Sequence of N objects stored consecutively in
memory, with no gaps
If p is a pointer to the first object of such a
sequence, p+1 , p+2 etc, will point to the
subsequent elements. Elements of the sequence can
therefore be accessed as *(p+0) , *(p+1) ,

*(p+2) ... another notation for that is p[0] ,
p[1] ...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 287

ARRAYS

1 double A[10]; // Built-in or C-style array
2 int sz;
3 std::cin >> sz;
4 int M[sz]; // Not allowed!
5 #include <array>
6 ...
7 std::array<double,10> A; // On stack
8 // Like a built-in array, but obeys
9 // C++ standard library conventions.

10 for (size_t i = 0; i < A.size(); ++i) {
11 P *= A[i];
12 }
13 std::vector<double> B(sz,3.0);

Built-in or ”C-style" arrays consist of blocks of
memory large enough to hold a fixed number of
elements. The array, thought of as a pointer,
points to the first element in the sequence. The
elements are stored consecutively, but the number
of elements is never stored anywhere
std::array<type,size> is a compile-time

fixed length array obeying STL conventions. The
size is available through a function, although it
does not have to be stored with the array data!
std::array<type,size> retains its

“personality” (does not decay into a pointer) when
used as input to function or when received as the
output from a function. This should be your
default choice when you need fixed length arrays.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 287

ASSOCIATIVE CONTAINERS: STD::MAP

1 std::map<std::string, int> flsize;
2 flsize["S.dat"]=123164;
3 flsize["D.dat"]=423222;
4 flsize["A.dat"]=1024;

Think of it as a special kind of "vector" where you can have things other than integers as indices.
Template arguments specify the key and data types
Could be thought of as a container storing (key,value) pairs :
{(”S.dat”, 123164), (”D.dat”, 423222), (”A.dat”, 1024)}
The less than comparison operation must be defined on the key type
Implemented as a tree, which keeps its elements sorted

Member of the Helmholtz Association 8 – 12 May 2023 Slide 288

A WORD COUNTER PROGRAM
Exercise 6.2:
Fake exercise: Write a program that counts all different words in a text file and prints the statistics.

1 #include <iostream>
2 #include <fstream>
3 #include <iomanip>
4 #include <string>
5 #include <map>
6 auto main(int argc, char *argv[]) -> int
7 {
8 std::ifstream fin(argv[1]);
9 std::map<std::string, unsigned> freq;

10 std::string s;
11 while (fin >> s) freq[s]++;
12 for (auto [key, val] : freq)
13 cout << std::setw(12) << key
14 << std::setw(4) << ':'
15 << std::setw(12) << val <<"\n";
16 }

A quick histogram!
std::map<string, unsigned> is a

container which stores an integer, for each unique
std::string key.

The iterator for std::map “points to” a
pair<key,value>

Member of the Helmholtz Association 8 – 12 May 2023 Slide 289

STD::UNORDERED_MAP AND
STD::UNORDERED_SET

Unordered map

Like std::map<k,v> and std::set<v> ,
but do not sort the elements
Internally, these are hash tables, providing faster
element access than std::map and std::set

Additional template arguments to specify hash
functions

Member of the Helmholtz Association 8 – 12 May 2023 Slide 290

VALARRAY
1 #include <valarray>
2
3 void varray_ops()
4 {
5 std::valarray V1(0., 1000000UL);
6 std::valarray<double> V2;
7 v2.resize(1000000UL, 0.);
8 auto x = exp(-V1 * V1) * sin(V2);
9 if (x.sum() < 100.0) {

10 //
11 }
12 }

Another dynamic array type
Mostly intended for numeric operations
Expression template based whole array
mathematical operations
Algorithms through std::begin(v) etc.,
instead of own member functions
Bizarre constructor with different convention
compared to any other container in the STL.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 291

STL ALGORITHMS

1 ...
2 std::vector<YourClass> vc(inp.size());
3 std::copy(inp.begin(), inp.end(), vc.begin());
4 //Copy contents of list to a vector
5 auto pos = std::find(vc.begin(), vc.end(), elm);
6 //Find an element in vc which equals elm
7 std::sort(vc.begin(),vc.end());
8 //Sort the vector vc. The operator "<"
9 //must be defined

10 ...
11 std::transform(inp.begin(), inp.end(), out.begin(), rotate);
12 //apply rotate() to each input element,
13 //and store results in output sequence

The similarity of the interface, e.g. begin() , end() etc., among STL containers allows generic algorithms
to be written as template functions, performing common tasks on collections

Member of the Helmholtz Association 8 – 12 May 2023 Slide 292

STL ALGORITHMS
Typically, the algorithms in the namespace std accept one or more ranges as (start, stop) pairs, some
other inputs which may include callable objects
New algorithms were introduced in C++20 in the namespace std::ranges , where the input ranges are
given as single objects rather than iterator pairs. Think

std::ranges::for_each(v, [](auto&& elem){ std::cout << elem << "\n"; })

rather than
std::for_each(v.begin(), v.end(), [](auto&& elem){ std::cout << elem << "\n"; })

Exercise 6.3:
The standard library provides a large number of template functions to work with containers
Look them up in www.cplusplus.com or en.cppreference.com

Use the suitable STL algorithms to generate successive permutations of the vector

Member of the Helmholtz Association 8 – 12 May 2023 Slide 293

STL ALGORITHMS: SORTING
std::sort(iter_1, iter_2) sorts the

elements between iterators iter_1 and
iter_2

std::sort(iter_1, iter_2, lt) sorts
the elements between iterators iter_1 and
iter_2 using a custom comparison method lt ,

which could be any callable object
std::ranges::sort(range) and
std::ranges::sort(range, lt) are

corresponding versions using a range as an
argument instead of a pair of iterators

1 #include <iostream>
2 #include <algorithm>
3 #include <vector>
4 using namespace std;
5 auto main() -> int
6 {
7 vector v{2, -3, 7, 4, -1, 9, 0};
8 sort(v.begin(), v.end());
9 //Sort using "<" operator

10 for (auto el : v) cout << el << "\n";
11 sort(v.begin(), v.end(),
12 [](int i, int j) {
13 return i * i < j * j;
14 });
15 //Sort using custom comparison
16 for (auto el: v) cout << el << "\n";
17 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 294

STL ALGORITHMS: SORTING
std::sort(iter_1, iter_2) sorts the

elements between iterators iter_1 and
iter_2

std::sort(iter_1, iter_2, lt) sorts
the elements between iterators iter_1 and
iter_2 using a custom comparison method lt ,

which could be any callable object

std::ranges::sort(range) and
std::ranges::sort(range, lt) are

corresponding versions using a range as an
argument instead of a pair of iterators

1 #include <iostream>
2 #include <algorithm>
3 #include <vector>
4 using namespace std;
5 auto main() -> int
6 {
7 vector v{2, -3, 7, 4, -1, 9, 0};
8 sort(v.begin(), v.end());
9 //Sort using "<" operator

10 for (auto el : v) cout << el << "\n";
11 sort(v.begin(), v.end(),
12 [](int i, int j) {
13 return i * i < j * j;
14 });
15 //Sort using custom comparison
16 for (auto el: v) cout << el << "\n";
17 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 294

STL ALGORITHMS: SORTING
std::sort(iter_1, iter_2) sorts the

elements between iterators iter_1 and
iter_2

std::sort(iter_1, iter_2, lt) sorts
the elements between iterators iter_1 and
iter_2 using a custom comparison method lt ,

which could be any callable object
std::ranges::sort(range) and
std::ranges::sort(range, lt) are

corresponding versions using a range as an
argument instead of a pair of iterators

1 #include <iostream>
2 #include <algorithm>
3 #include <vector>
4 using namespace std;
5 auto main() -> int
6 {
7 vector v{2, -3, 7, 4, -1, 9, 0};
8 sort(v.begin(), v.end());
9 //Sort using "<" operator

10 for (auto el : v) cout << el << "\n";
11 ranges::sort(v, [](int i, int j) {
12 return i * i < j * j;
13 });
14 //Sort using custom comparison
15 for (auto el: v) cout << el << "\n";
16 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 294

STD::TRANSFORM
std::transform(begin_1 , end_1, begin_res, unary_function);

std::transform(begin_1 , end_1, begin_2, begin_res, binary_function);

Apply callable object to the sequence and write result starting at a given iterator location
The container holding result must be previously resized so that it has the right number of elements
The “result” container can be (one of the) input container(s)

1 std::vector v{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9};
2 std::list L1(v.size(), 0), L2(v.size(), 0);
3 std::transform(v.begin(), v.end(), L1.begin(), sin);
4 std::transform(v.begin(), v.end(), L1.begin(), L2.begin(), std::max);

Result: L1 contains sin(x) for each x in v , and L2 contains the greater(x,sin(x))

Member of the Helmholtz Association 8 – 12 May 2023 Slide 295

STD::RANGES::TRANSFORM
std::ranges::transform(range1, begin_res, unary_function);

std::transform(range1, range2, begin_res, binary_function);

Apply callable object to the sequence and write result starting at a given iterator location
The container holding result must be previously resized so that it has the right number of elements
The “result” container can be (one of the) input container(s)

1 std::vector v{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9};
2 std::list L1(v.size(), 0), L2(v.size(), 0);
3 std::ranges::transform(v, L1.begin(), sin);
4 std::ranges::transform(v, L1, L2.begin(), std::max);

Result: L1 contains sin(x) for each x in v , and L2 contains the greater(x,sin(x))

Member of the Helmholtz Association 8 – 12 May 2023 Slide 296

ALL_OF, ANY_OF, NONE_OF

1 auto valid(std::string name) -> bool
2 {
3 return all_of(name.begin(),name.end(),
4 [](char c) { return (isalpha(c)) || isspace(c); });
5 }

std::all_of(begin_ , end_ , condition) checks if all elements in a given range satisfy
condition

condition is a callable object

std::any_of(begin_ , end_ , condition) checks if any single element in a given range
satisfies condition

std::none_of(begin_ , end_ , condition) returns true if not a single element in a given
range satisfies condition

Member of the Helmholtz Association 8 – 12 May 2023 Slide 297

ALL_OF, ANY_OF, NONE_OF

1 auto valid(std::string name) -> bool
2 {
3 return all_of(name,
4 [](char c) { return (isalpha(c)) || isspace(c); });
5 }

std::ranges::all_of(range , condition) checks if all elements in a given range satisfy
condition

condition is a callable object

std::ranges::any_of(range , condition) checks if any single element in a given range
satisfies condition

std::ranges::none_of(range , condition) returns true if not a single element in a given
range satisfies condition

Member of the Helmholtz Association 8 – 12 May 2023 Slide 298

ALGORITHMS
1 vector v{ 1, 2, 3, 4, 5, 6, 7, 8, 9 }, w{ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
2 vector<int> x, y, z, m;
3 if (is_sorted(begin(v), end(v)))
4 cout << "The sequence is sorted in the increasing order.\n";
5 reverse(v.begin(), v.end());
6 rotate(v.begin(), v.begin() + 3, v.end());
7 sort(begin(v), end(v));
8 merge(v.begin(), v.end(), w.begin(), w.end(), back_inserter(m));
9 set_union(v.begin(), v.end(), w.begin(), w.end(), back_inserter(x));

10 set_intersection(w.begin(), w.end(), v.begin(), v.end(), back_inserter(y));
11 set_symmetric_difference(v.begin(), v.end(), w.begin(), w.end(), back_inserter(z));
12 if (is_permutation(z.begin(), z.end(), v.begin(), v.end())) // do something

Exercise 6.4:
A whole lot of operations available for sequence types. The file seqops.cc contains the operations shown
here. Alternatively, (or, in addition,) use the jupyter notebook intro_algorithms.ipynb to examine the
effects of the algorithms on sequences. Explore!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 299

ALGORITHMS
for_each(start, end, operation) : As it sounds

find(start, end, what) : returns the location of the looked for value, "end" if not found

find_if(start, end, condition) , find the first element satisfying a condition

copy(start1, end1, start2) : As it sounds

copy_if(start1, end1, start2, criterion) : criterion is a unary function taking a
value of the type found in the sequence and returning true or false
transform(start1, end1, start2, operation) : applies operation on every element in

the input sequence and writes the results starting at start2

Member of the Helmholtz Association 8 – 12 May 2023 Slide 300

CONSTRAINED ALGORITHMS (RANGES)
for_each(range, operation) : As it sounds

find(range, what) : returns the location of the looked for value, "end" if not found

find_if(range, condition) , find the first element satisfying a condition

copy(range1, iterator2) : As it sounds

copy_if(range1, iterator2, criterion) : criterion is a unary function taking a value of
the type found in the sequence and returning true or false
transform(range1, iterator2, operation) : applies operation on every element in the

input sequence and writes the results starting at iterator2

Member of the Helmholtz Association 8 – 12 May 2023 Slide 301

ALGORITHMS
1 vector v{ 1, 2, 3, 4, 5, 6, 7, 8, 9 }, w{ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
2 vector<int> x, y, z, m;
3 if (is_sorted(v))
4 cout << "The sequence is sorted in the increasing order.\n";
5 reverse(v);
6 rotate(v, v.begin() + 3);
7 sort(v);
8 merge(v, w, back_inserter(m));
9 set_union(v, w, back_inserter(x));

10 set_intersection(w, v, back_inserter(y));
11 set_symmetric_difference(v, w, back_inserter(z));
12 if (is_permutation(zv)) // do something

Exercise 6.5:
The file seqops_range.cc contains the operations shown here. Explore by making modifications. Try GCC
10.0+ compiler for this.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 302

NUMERIC ALGORITHMS
1 #include <numeric>
2
3 using std::reduce;
4 using std::transform_reduce;
5
6 auto res = reduce(v.begin(), v.end());
7 auto res = reduce(v.begin(), v.end(), init);
8 auto res = reduce(v.begin(), v.end(),
9 init, std::plus<double>{});

10 auto res = transform_reduce(
11 u.begin(), u.end(),
12 v.begin(), init);
13 auto res = transform_reduce(
14 u.begin(), u.end(),
15 v.begin(), init, reduce_op, transf_op);
16 auto res = transform_reduce(

17 std::execution::par,

18 u.begin(), u.end(),
19 v.begin(), init, reduce_op, transf_op);

Algorithms focused on numeric calculations are in
the numeric header

Given b , e as iterators in a range V ,
reduce(b, e) :

∑e
i=b Vi

transform_reduce(b, e, f) :
∑e

i=b f (Vi)

adjacent_difference(b, e) :
{Vb, (Vb+1 − Vb), (Vb+2 − Vb+1), . . . }
Parallel versions also in the library
To run the numeric operations in parallel,
use the parallel execution policy

Member of the Helmholtz Association 8 – 12 May 2023 Slide 303

SPAN
1 using std::span;
2 using std::transform_reduce;
3 using std::plus;
4 using std::multiplies;
5 auto compute(span<const double> u,
6 span<const double> v) -> double
7 {
8 return transform_reduce(
9 u.begin(), u.end(),

10 v.begin(), 0., plus<double>{},
11 multiplies<double>{});
12 }
13
14 void elsewhere(double* x, double* y,
15 unsigned N)
16 {
17 return compute(span(x, N), span(y, N));
18 }

Non-owning view type for a contiguous range
No memory management
Numeric operations can often be expressed in terms
of existing arrays in memory, irrespective of how
they got there and who cleans up after they expire
span is designed to be that input for such

functions
Cheap to copy: essentially a pointer and a size
STL container like interface

Exercise 6.6:
examples/spans is a directory containing the compute

function as shown here. Notice how this function is used
directly using C++ array types as arguments instead of
spans, and indirectly when we only have pointers.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 304

Ranges

Member of the Helmholtz Association 8 – 12 May 2023 Slide 305

RANGES
1 std::vector v{ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
2 // before std::ranges we did this...
3 std::reverse(v.begin(), v.end());
4 std::rotate(v.begin(), v.begin() + 3, v.end());
5 std::sort(v.begin(), v.end());

1 std::vector v{ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
2 namespace sr = std::ranges;
3 sr::reverse(v);
4 sr::rotate(v, v.begin() + 3);
5 sr::sort(v);

The <ranges> header defines a set of algorithms taking “ranges” as inputs instead of pairs of iterators

A range is a concept : something with sr::begin() , which returns an entity which can be used
to iterate over the elements, and sr::end() which returns a sentinel which is equality comparable with
an iterator, and indicates when the iteration should stop.
sr::sized_range : the range knows its size in constant time

input_range , output_range etc. based on the iterator types

borrowed_range : a type such that its iterators can be returned without the danger of dangling.

view is a range with constant time copy/move/assignment

Member of the Helmholtz Association 8 – 12 May 2023 Slide 306

USING RANGES FROM STD OR FROM RANGE-V3
1 // cxx220ranges
2 #include <version>
3 #ifdef __cpp_lib_ranges
4 #include<ranges>
5 namespace sr = std::ranges;
6 namespace sv = sr::views;
7 #elif __has_include (<range/v3/all.hpp>)
8 #include<range/v3/all.hpp>
9 namespace sr = ranges;

10 namespace sv = sr::views;
11 #warning Using ranges-v3 3rd party library
12 #else
13 #error No suitable header for C++20 ranges was found!
14 #endif

The C++20 <ranges> library is based on the
open source range-v3 library. Parts of the
range-v3 library were adopted for C++20,

more might be added in C++23.
Even if the standard library shipping with some
compilers do not have many features of
<ranges> , one can start using them, with a

redirecting header, which makes use of another
standard library feature
Including <version> results in the definition of
library feature test macros, which can be used to
choose between different header files

Our examples are actually written using a redirecting header as shown here. Compilation with GCC uses
the compiler’s own version. Compilation with Clang uses the range-v3 version.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 307

FUN WITH RANGES AND VIEWS
1 // examples/ranges0.cc
2 #include <ranges>
3 #include
4 auto sum(std::ranges::input_range auto&& seq) {
5 std::iter_value_t<decltype(seq)> ans{};
6 for (auto x : seq) ans += x;
7 return ans;
8 }
9 auto main() -> int

10 {
11 //using various namespaces;
12 cout << "vector : " << sum(vector({ 9,8,7,2 })) << "\n";
13 cout << "list : " << sum(list({ 9,8,7,2 })) << "\n";
14 cout << "valarray : " << sum(valarray({ 9,8,7,2 })) << "\n";
15 cout << "array : "
16 << sum(array<int,4>({ 9,8,7,2 })) << "\n";
17 cout << "array : "
18 << sum(array<string, 4>({ "9"s,"8"s,"7"s,"2"s })) << "\n";
19 int A[]{1,2,3};
20 cout << "span(built-in array) : " << sum(span(A)) << "\n";
21 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 308

FUN WITH RANGES AND VIEWS
The ranges library gives us many useful concepts describing sequences of objects.

The function template sum in examples/ranges0.cc accepts any input range, i.e., some entity whose
iterators satisfy the requirements of an input_iterator .
Notice how we obtain the value type of the range
Many STL algorithms have range versions in C++20. They are functions like sum taking various kinds
of ranges as input.
The range concept is defined in terms of

the existence of an iterator type and a sentinel type.
the iterator should behave like an iterator, e.g., allow ++it , *it etc.
it should be possible to compare the iterators with other iterators or with a sentinel for equality.
A begin() function returning an iterator and an end() function returning a sentinel

Member of the Helmholtz Association 8 – 12 May 2023 Slide 309

FUN WITH RANGES AND VIEWS
1 // examples/iota.cc
2 #include <ranges>
3 #include <iostream>
4 auto main() -> int {
5 namespace sv = std::views;
6 for (auto i : sv::iota(1UL)) {
7 if ((i+1) % 10000UL == 0UL) {
8 std::cout << i << ' ';
9 if ((i+1) % 100000UL == 0UL)

10 std::cout << '\n';
11 if (i >= 100000000UL) break;
12 }
13 }
14 }

All containers are ranges, but not all ranges are
containers
std::string_view is a perfectly fine range.

Has iterators with the right properties. Has
begin() and end() functions. It does not

own the contents, but “ownership” is not part of
the idea of a range.
We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota(integer) gives us an

infinite sequence of integers starting at a given
value.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 310

FUN WITH RANGES AND VIEWS
1 // examples/iota.cc
2 #include <ranges>
3 #include <iostream>
4 auto main() -> int {
5 namespace sv = std::views;
6 for (auto i : sv::iota(1UL)) {
7 if ((i+1) % 10000UL == 0UL) {
8 std::cout << i << ' ';
9 if ((i+1) % 100000UL == 0UL)

10 std::cout << '\n';
11 if (i >= 100000000UL) break;
12 }
13 }
14 }

All containers are ranges, but not all ranges are
containers
std::string_view is a perfectly fine range.

Has iterators with the right properties. Has
begin() and end() functions. It does not

own the contents, but “ownership” is not part of
the idea of a range.
We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota(integer) gives us an

infinite sequence of integers starting at a given
value.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 310

FUN WITH RANGES AND VIEWS
1 // examples/iota.cc
2 #include <ranges>
3 #include <iostream>
4 auto main() -> int {
5 namespace sv = std::views;
6 for (auto i : sv::iota(1UL)) {
7 if ((i+1) % 10000UL == 0UL) {
8 std::cout << i << ' ';
9 if ((i+1) % 100000UL == 0UL)

10 std::cout << '\n';
11 if (i >= 100000000UL) break;
12 }
13 }
14 }

All containers are ranges, but not all ranges are
containers
std::string_view is a perfectly fine range.

Has iterators with the right properties. Has
begin() and end() functions. It does not

own the contents, but “ownership” is not part of
the idea of a range.
We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota(integer) gives us an

infinite sequence of integers starting at a given
value.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 310

FUN WITH RANGES AND VIEWS
All containers are ranges, but not all ranges are
containers
std::string_view is a perfectly fine range.

Has iterators with the right properties. Has
begin() and end() functions. It does not

own the contents, but “ownership” is not part of
the idea of a range.
We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota(integer) gives us an

infinite sequence of integers starting at a given
value.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 310

FUN WITH RANGES AND VIEWS
1 #include <ranges>
2 #include <iostream>
3 auto main() -> int {
4 namespace sv = std::views;
5 for (auto i : sv::iota(1UL)) {

6 if ((i+1) % 10000UL == 0UL) {
7 std::cout << i << ' ';
8 if ((i+1) % 100000UL == 0UL)
9 std::cout << '\n';

10 if (i >= 100000000UL) break;
11 }
12 }
13 }

All containers are ranges, but not all ranges are
containers
std::string_view is a perfectly fine range.

Has iterators with the right properties. Has
begin() and end() functions. It does not

own the contents, but “ownership” is not part of
the idea of a range.
We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota(integer) gives us an

infinite sequence of integers starting at a given
value.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 310

BORROWED RANGES
1 // examples/dangling0.cc
2 auto get_vec() {
3 std::vector v{ 2, 4, -1, 8, 0, 9 };
4 return v;
5 }
6 auto main() -> int {
7 auto v = get_vec();
8 auto iter = std::min_element(v.begin(),
9 v.end());

10 std::cout << "Minimum " << *iter << "\n";
11 }

The min_element function finds the minimum
element in a range and returns an iterator

The version from the ranges library takes only a
range
It may be tempting to directly feed the output from
a function to the algorithm. But, we would receive
an iterator to a container that is already destructed,
i.e., a dangling iterator. Dereferencing should
therefore lead to a SEGFAULT.
In reality, what happens is this!

Example from a CPPCon 2020 talk by Tristan Brindle.
Link.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 311

https://www.youtube.com/watch?v=d_E-VLyUnzc

BORROWED RANGES
1 // examples/dangling0.cc
2 auto get_vec() {
3 std::vector v{ 2, 4, -1, 8, 0, 9 };
4 return v;
5 }
6 auto main() -> int {
7 auto v = get_vec();
8 auto iter = sr::min_element(v);
9

10 std::cout << "Minimum " << *iter << "\n";
11 }

The min_element function finds the minimum
element in a range and returns an iterator
The version from the ranges library takes only a
range

It may be tempting to directly feed the output from
a function to the algorithm. But, we would receive
an iterator to a container that is already destructed,
i.e., a dangling iterator. Dereferencing should
therefore lead to a SEGFAULT.
In reality, what happens is this!

Example from a CPPCon 2020 talk by Tristan Brindle.
Link.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 311

https://www.youtube.com/watch?v=d_E-VLyUnzc

BORROWED RANGES
1 // examples/dangling0.cc
2 auto get_vec() {
3 std::vector v{ 2, 4, -1, 8, 0, 9 };
4 return v;
5 }
6 auto main() -> int {
7
8 auto iter = sr::min_element(get_vec());
9

10 std::cout << "Minimum " << *iter << "\n";
11 }

The min_element function finds the minimum
element in a range and returns an iterator
The version from the ranges library takes only a
range
It may be tempting to directly feed the output from
a function to the algorithm. But, we would receive
an iterator to a container that is already destructed,
i.e., a dangling iterator. Dereferencing should
therefore lead to a SEGFAULT.

In reality, what happens is this!

Example from a CPPCon 2020 talk by Tristan Brindle.
Link.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 311

https://www.youtube.com/watch?v=d_E-VLyUnzc

BORROWED RANGES
1 // examples/dangling0.cc
2 auto get_vec() {
3 std::vector v{ 2, 4, -1, 8, 0, 9 };
4 return v;
5 }
6 auto main() -> int {
7
8 auto iter = sr::min_element(get_vec());
9

10 std::cout << "Minimum " << *iter << "\n";
11 }

The min_element function finds the minimum
element in a range and returns an iterator
The version from the ranges library takes only a
range
It may be tempting to directly feed the output from
a function to the algorithm. But, we would receive
an iterator to a container that is already destructed,
i.e., a dangling iterator. Dereferencing should
therefore lead to a SEGFAULT.
In reality, what happens is this!

Example from a CPPCon 2020 talk by Tristan Brindle.
Link.

error: no match for ‘operator*’ (operand type is 'std::ranges::dangling')
19 | std::cout << "Minimum value is " << *iter << "\n";

Member of the Helmholtz Association 8 – 12 May 2023 Slide 311

https://www.youtube.com/watch?v=d_E-VLyUnzc

BORROWED RANGES
1 // examples/dangling0.cc
2 auto get_vec() {
3 std::vector v{ 2, 4, -1, 8, 0, 9 };
4 return v;
5 }
6 auto main() -> int {
7
8 auto iter = sr::min_element(get_vec());
9

10 std::cout << "Minimum " << *iter << "\n";
11 }

The ranges algorithms are written with overloads
such that when you pass an R-value reference of a
container as input, the output type is
ranges::dangling , an empty struct with

no operations defined.
iter here will be deduced to be of type
ranges::dangling , and hence *iter leads

to that insightful error message.

error: no match for ‘operator*’ (operand type is 'std::ranges::dangling')
19 | std::cout << "Minimum value is " << *iter << "\n";

When the input was an L-value reference, the algorithm returning the iterator returned a valid iterator.
Therefore: valid use cases work painlessly, and invalid ones result in actionable insights from the compiler!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 312

BORROWED RANGES
1 // examples/dangling1.cc
2 static std::vector u{2, 3, 4, -1, 9};
3 static std::vector v{3, 1, 4, 1, 5};
4 auto get_vec(int c) -> std::span<int> {
5 return { (c % 2 == 0) ? u : v };
6 }
7 auto main(int argc, char* argv[]) -> int {
8 auto iter = sr::min_element(get_vec(argc));
9 // iter is valid, even if its parent span

10 // has expired.
11 std::cout << "Minimum " << *iter << "\n";
12 }

Sometimes, an iterator can point to a valid element
even when the “container” (imposter) has been
destructed. span , string_view etc. do not
own the elements in their range.
No harm in returning real iterators of these objects,
even if they are R-values. Even in this case, there is
no danger of dangling.
A borrowed_range is a range so that its
iterators can be returned from a function without
the danger of dangling, i.e.,
it is an L-value reference or
has been explicitly certified to be a borrowed range .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 313

BORROWED RANGES
1 // examples/dangling1.cc
2 static std::vector u{2, 3, 4, -1, 9};
3 static std::vector v{3, 1, 4, 1, 5};
4 auto get_vec(int c) -> std::span<int> {
5 return { (c % 2 == 0) ? u : v };
6 }
7 auto main(int argc, char* argv[]) -> int {
8 auto iter = sr::min_element(get_vec(argc));
9 // iter is valid, even if its parent span

10 // has expired.
11 std::cout << "Minimum " << *iter << "\n";
12 }

Sometimes, an iterator can point to a valid element
even when the “container” (imposter) has been
destructed. span , string_view etc. do not
own the elements in their range.
No harm in returning real iterators of these objects,
even if they are R-values. Even in this case, there is
no danger of dangling.
A borrowed_range is a range so that its
iterators can be returned from a function without
the danger of dangling, i.e.,
it is an L-value reference or
has been explicitly certified to be a borrowed range .

template <class T>
concept borrowed_range = range<T> &&

(is_lvalue_reference_v<T> || enable_borrowed_range<remove_cvref_t<T>>)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 313

VIEW ADAPTORS
1 namespace sv = std::views;
2 std::vector v{1,2,3,4,5};
3 auto v3 = sv::take(v, 3);
4 // v3 is some sort of object so
5 // that it represents the first
6 // 3 elements of v. It does not
7 // own anything, and has constant
8 // time copy/move etc. It's a view.
9

10 // sv::take() is a view adaptor

A view is a range with constant time copy, move
etc. Think string_view

A view adaptor is a function object, which takes a
“viewable” range as an input and constructs a view
out of it. viewable is defined as “either a
borrowed_range or already a view.

View adaptors in the <ranges> library have very
interesting properties, and make some new ways of
coding possible.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 314

VIEW ADAPTORS
Adaptor(Viewable) -> View
Viewable | Adaptor -> View
V | A1 | A2 | A3 ... -> View

Adaptor(Viewable, Args...) -> View
Adaptor(Args...)(Viewable) -> View
Viewable | Adaptor(Args...) -> View

A view itself is trivially viewable.
Since a view adaptor produces a view, successive
applications of such adaptors makes sense.
If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.
For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 315

VIEW ADAPTORS
Adaptor(Viewable) -> View
Viewable | Adaptor -> View
V | A1 | A2 | A3 ... -> View

Adaptor(Viewable, Args...) -> View
Adaptor(Args...)(Viewable) -> View
Viewable | Adaptor(Args...) -> View

A view itself is trivially viewable.
Since a view adaptor produces a view, successive
applications of such adaptors makes sense.
If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.
For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 315

VIEW ADAPTORS
Adaptor(Viewable) -> View
Viewable | Adaptor -> View
V | A1 | A2 | A3 ... -> View

Adaptor(Viewable, Args...) -> View
Adaptor(Args...)(Viewable) -> View
Viewable | Adaptor(Args...) -> View

A view itself is trivially viewable.
Since a view adaptor produces a view, successive
applications of such adaptors makes sense.
If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.
For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 315

VIEW ADAPTORS
Adaptor(Viewable) -> View
Viewable | Adaptor -> View
V | A1 | A2 | A3 ... -> View

Adaptor(Viewable, Args...) -> View
Adaptor(Args...)(Viewable) -> View
Viewable | Adaptor(Args...) -> View

A view itself is trivially viewable.
Since a view adaptor produces a view, successive
applications of such adaptors makes sense.
If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.
For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 315

VIEW ADAPTORS
Adaptor(Viewable) -> View
Viewable | Adaptor -> View
V | A1 | A2 | A3 ... -> View

Adaptor(Viewable, Args...) -> View
Adaptor(Args...)(Viewable) -> View
Viewable | Adaptor(Args...) -> View

A view itself is trivially viewable.
Since a view adaptor produces a view, successive
applications of such adaptors makes sense.
If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.
For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

So what are we going to do with this ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 315

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ nπ

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 316

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.

Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}

R1 = T10R0 = T (n 7→ nπ
N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 316

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)

Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ nπ

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 316

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range

If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ nπ

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 316

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example

Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ nπ

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 316

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ nπ

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 316

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ nπ

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Member of the Helmholtz Association 8 – 12 May 2023 Slide 316

VIEW ADAPTORS

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Command line of Linux, Mac OS ...

Small utilities. Each program does one thing, and does it well.
There is a way to chain them together with the pipe
Overall usefulness of the tool set is amplified exponentially!
What about writing something similar in C++ ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 317

VIEW ADAPTORS

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Command line of Linux, Mac OS ...
Small utilities. Each program does one thing, and does it well.

There is a way to chain them together with the pipe
Overall usefulness of the tool set is amplified exponentially!
What about writing something similar in C++ ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 317

VIEW ADAPTORS

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Command line of Linux, Mac OS ...
Small utilities. Each program does one thing, and does it well.
There is a way to chain them together with the pipe

Overall usefulness of the tool set is amplified exponentially!
What about writing something similar in C++ ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 317

VIEW ADAPTORS

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Command line of Linux, Mac OS ...
Small utilities. Each program does one thing, and does it well.
There is a way to chain them together with the pipe
Overall usefulness of the tool set is amplified exponentially!

What about writing something similar in C++ ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 317

VIEW ADAPTORS

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Command line of Linux, Mac OS ...
Small utilities. Each program does one thing, and does it well.
There is a way to chain them together with the pipe
Overall usefulness of the tool set is amplified exponentially!
What about writing something similar in C++ ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 317

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000. R0 = iota(0, N)

Map the integer range to real numbers in the range [0, 2π), i.e., perform the transformation n 7→ 2πn
N over

the range: R1 = R0 | transform([](int n) -> double { return 2*pi*n/N; })

Perform the transformation x 7→ sin2(x) + cos2(x) − 1 over the resulting rangeR2 = R1 | transform([](double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

If absolute value of any of the values in the result exceeds ϵ, we have found a counter example
if (any_of(R2, [](auto x){return fabs(x) > eps;})) ...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 318

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000. R0 = iota(0, N)

Map the integer range to real numbers in the range [0, 2π), i.e., perform the transformation n 7→ 2πn
N over

the range: R1 = R0 | transform([](int n) -> double { return 2*pi*n/N; })

Perform the transformation x 7→ sin2(x) + cos2(x) − 1 over the resulting rangeR2 = R1 | transform([](double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

If absolute value of any of the values in the result exceeds ϵ, we have found a counter example
if (any_of(R2, [](auto x){return fabs(x) > eps;})) ...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 318

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000. R0 = iota(0, N)

Map the integer range to real numbers in the range [0, 2π), i.e., perform the transformation n 7→ 2πn
N over

the range: R1 = R0 | transform([](int n) -> double { return 2*pi*n/N; })

Perform the transformation x 7→ sin2(x) + cos2(x) − 1 over the resulting rangeR2 = R1 | transform([](double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

If absolute value of any of the values in the result exceeds ϵ, we have found a counter example
if (any_of(R2, [](auto x){return fabs(x) > eps;})) ...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 318

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000. R0 = iota(0, N)

Map the integer range to real numbers in the range [0, 2π), i.e., perform the transformation n 7→ 2πn
N over

the range: R1 = R0 | transform([](int n) -> double { return 2*pi*n/N; })

Perform the transformation x 7→ sin2(x) + cos2(x) − 1 over the resulting rangeR2 = R1 | transform([](double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

If absolute value of any of the values in the result exceeds ϵ, we have found a counter example
if (any_of(R2, [](auto x){return fabs(x) > eps;})) ...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 318

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000. R0 = iota(0, N)

Map the integer range to real numbers in the range [0, 2π), i.e., perform the transformation n 7→ 2πn
N over

the range: R1 = R0 | transform([](int n) -> double { return 2*pi*n/N; })

Perform the transformation x 7→ sin2(x) + cos2(x) − 1 over the resulting rangeR2 = R1 | transform([](double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

If absolute value of any of the values in the result exceeds ϵ, we have found a counter example
if (any_of(R2, [](auto x){return fabs(x) > eps;})) ...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 318

VIEW ADAPTORS
1 auto main() -> int {
2 namespace sr = std::ranges;
3 namespace sv = std::views;
4 const auto pi = std::acos(-1);
5 constexpr auto npoints = 10'000'00UL;
6 constexpr auto eps = 100 * std::numeric_limits<double>::epsilon();
7 auto to_0_2pi = [=](size_t idx) -> double {
8 return std::lerp(0., 2*pi, idx * 1.0 / npoints);
9 };

10 auto x_to_fx = [](double x) -> double {
11 return sin(x) * sin(x) + cos(x) * cos(x) - 1.0;
12 };
13 auto is_bad = [=](double x){ return std::fabs(x) > eps; };
14
15 auto res = sv::iota(0UL, npoints) | sv::transform(to_0_2pi)
16 | sv::transform(x_to_fx);
17 if (sr::any_of(res, is_bad)) {
18 std::cerr << "The relation does not hold.\n";
19 } else {
20 std::cout << "The relation holds for all inputs\n";
21 }
22 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 319

VIEW ADAPTORS
The job of each small transform in the previous example was small, simple, easily verified for correctness.

The view adaptors allow us to chain them to produce a resulting range
Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.
No operation is done on any range when we create the variable res above.

When we try to access an element of the range in the any_of algorithm, one element is taken on the fly
out of the starting range, fed through the pipeline and catered to any_of

any_of does not process the range beyond what is necessary to establish its truth value. The remaining
elements in the result array are never calculated.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 320

VIEW ADAPTORS
The job of each small transform in the previous example was small, simple, easily verified for correctness.
The view adaptors allow us to chain them to produce a resulting range

Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.
No operation is done on any range when we create the variable res above.

When we try to access an element of the range in the any_of algorithm, one element is taken on the fly
out of the starting range, fed through the pipeline and catered to any_of

any_of does not process the range beyond what is necessary to establish its truth value. The remaining
elements in the result array are never calculated.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 320

VIEW ADAPTORS
The job of each small transform in the previous example was small, simple, easily verified for correctness.
The view adaptors allow us to chain them to produce a resulting range
Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.

No operation is done on any range when we create the variable res above.

When we try to access an element of the range in the any_of algorithm, one element is taken on the fly
out of the starting range, fed through the pipeline and catered to any_of

any_of does not process the range beyond what is necessary to establish its truth value. The remaining
elements in the result array are never calculated.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 320

VIEW ADAPTORS
The job of each small transform in the previous example was small, simple, easily verified for correctness.
The view adaptors allow us to chain them to produce a resulting range
Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.
No operation is done on any range when we create the variable res above.

When we try to access an element of the range in the any_of algorithm, one element is taken on the fly
out of the starting range, fed through the pipeline and catered to any_of

any_of does not process the range beyond what is necessary to establish its truth value. The remaining
elements in the result array are never calculated.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 320

VIEW ADAPTORS
The job of each small transform in the previous example was small, simple, easily verified for correctness.
The view adaptors allow us to chain them to produce a resulting range
Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.
No operation is done on any range when we create the variable res above.

When we try to access an element of the range in the any_of algorithm, one element is taken on the fly
out of the starting range, fed through the pipeline and catered to any_of

any_of does not process the range beyond what is necessary to establish its truth value. The remaining
elements in the result array are never calculated.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 320

VIEW ADAPTORS
The job of each small transform in the previous example was small, simple, easily verified for correctness.
The view adaptors allow us to chain them to produce a resulting range
Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.
No operation is done on any range when we create the variable res above.

When we try to access an element of the range in the any_of algorithm, one element is taken on the fly
out of the starting range, fed through the pipeline and catered to any_of

any_of does not process the range beyond what is necessary to establish its truth value. The remaining
elements in the result array are never calculated.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 320

Exercise 6.7:
The code used for the demonstration of view adaptors is examples/trig_views.cc . Build this code with GCC
and Clang. If the version of your compiler does not have a usable <ranges> header, we can use a redirecting
header <cxx20ranges> examples. When the compiler implements the ranges library, it includes <ranges> .
Otherwise, it tries to include equivalent headers from the rangev3 library. It also defines alias namespaces
sr and sv for std::ranges and std::std::views . To compile, you would need to have the

location of this redirecting header in your include path:

g++ -std=c++20 -I course_home/local/include trig_views.cc
./a.out

clang++ -std=c++20 -stdlib=libc++ -I course_home/local/include trig_views.cc
./a.out

Member of the Helmholtz Association 8 – 12 May 2023 Slide 321

Exercise 6.8:
The trigonometric relation we used is true, so not all possibilities are explored. In
examples/trig_views2.cc there is another program trying to verify the bogus claim sin2(x) < 0.99. It’s

mostly true, but sometimes it isn’t, so that our if and else branches both have work to do. The lambdas in
this program have been rigged to print messages before returning. Convince yourself of the following:

The output from the lambdas come out staggered, which means that the program does not process the
entire range for the first transform and then again for the second ...
Processing stops at the first instance where any_of gets a true answer.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 322

VIEW ADAPTORS

1 // examples/gerund.cc
2 using itertype = std::istream_iterator<std::string>;
3 std::ifstream fin { argv[1] };
4 auto gerund = [](std::string_view w) { return w.ends_with("ing"); };
5 auto in = sr::istream_view<std::string>(fin);
6 std::cout << (in | sv::filter(gerund)) << "\n";
7

sr::istream_view<T> creates an (input) iterable range from an input stream. Each element of this
range is of the type T .

sv::filter is a view adaptor, which when applied to a range, produces another containing only the
elements satisfying a given condition
In the above, std::cout is shown writing out a range. This works via a separate header file included in
gerund.cc called range_output.hh , which is provided to you with the course material. Ranges in

C++20 are not automatically streamable to the standard output.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 323

VIEW ADAPTORS
A program to print the alphabetically first and last word entered on the command line, excluding the program
name.

1 // examples/views_and_span.cc
2 auto main(int argc, char* argv[]) -> int
3 {
4 if (argc < 2) return 1;
5 namespace sr = std::ranges;
6 namespace sv = std::views;
7
8 std::span args(argv, argc);
9 auto str = [](auto cstr) -> std::string_view { return cstr; };

10 auto [mn, mx] = sr::minmax(args | sv::drop(1) | sv::transform(str));
11
12 std::cout << "Alphabetically first = " << mn << " last = " << mx << "\n";
13 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 324

STL utilities

Member of the Helmholtz Association 8 – 12 May 2023 Slide 325

CHRONO: THE TIME LIBRARY
namespace std::chrono defines many time related functions and classes (include file: chrono)

system_clock : System clock

steady_clock : Steady monotonic clock

high_resolution_clock : To the precision of your computer’s clock

steady_clock::now() : nanoseconds since 1.1.1970

duration<double> : Abstraction for a time duration. Uses std::ratio<> internally

Exercise 6.9: chrono_demo.cc

Member of the Helmholtz Association 8 – 12 May 2023 Slide 326

THE TIME LIBRARY
1 // examples/chrono_demo.cc
2 #include <iostream>
3 #include <chrono>
4 #include <vector>
5 #include <algorithm>
6 #include <ranges>
7 bool is_prime(unsigned n);
8 auto main() -> int
9 {

10 using namespace std::chrono;
11 namespace sr = std::ranges;
12 namespace sv = std::views;
13 std::vector<unsigned> primes;
14 auto t = steady_clock::now();
15 sr::copy(sv::iota(0UL, 10000UL) | sv::filter(is_prime), back_inserter(primes));
16 std::cout << "Primes till 10000 are ... " << '\n';
17 for (unsigned i : primes) std::cout << i << '\n';
18 auto d = steady_clock::now() - t;
19 std::cout<<"Prime search took " << duration<double>(d).count() << " seconds\n";
20 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 327

CALENDAR AND DATES WITH STD::CHRONO
1 auto current_year() -> std::chrono::year
2 {
3 using namespace std::chrono;
4 year_month_day date { floor<days>(system_clock::now()) };
5 return date.year();
6 }
7 auto main(int argc, char* argv[]) -> int
8 {
9 using namespace std::chrono;

10 using namespace std::chrono_literals;
11 auto Y0 { current_year() };
12 auto Y1 = Y0 + years{100};
13 if (argc > 1) Y1 = year{std::stoi(argv[1])};
14 if (argc > 2) Y0 = year{std::stoi(argv[2])};
15 if (Y1 < Y0) std::swap(Y1, Y0);
16
17 for (auto y = Y0; y < Y1; ++y) {
18 auto d = y / February / Sunday[5];
19 if (d.ok())
20 std::cout << static_cast<int>(y) << "\n";
21 }
22 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 328

CALENDAR...

Exercise 6.10:
The programs examples/feb.cc and examples/advent.cc demonstrate the use of the calendar facilities of the
C++ standard library. Familiarise yourself with them.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 329

RANDOM NUMBER GENERATION
Convenient, flexible, powerful random number
library providing high quality (pseudo-)random
numbers in standard C++ without any external
libraries.
Include random . Namespace std::random

Figure: Source XKCD: http://xkcd.com

Member of the Helmholtz Association 8 – 12 May 2023 Slide 330

http://xkcd.com

RANDOM NUMBER GENERATION
Share a common structure
Uniform random generator engine with (hopefully)
well tested properties
Distribution generator which adapts its input to a
required distribution

1 auto gen = [
2 engine = std::mt19937_64{},
3 dist=std::poisson_distribution<>{8.5}
4]() mutable {
5 return dist(engine);
6 };
7 r = gen();

1 std::mt19937_64 engine;
2 std::poisson_distribution<> dist{8.5};
3 auto gen = [&dist, &engine] {
4 return dist(engine);
5 };
6 r = gen();
7 // if engine or dist are required elsewhere

Member of the Helmholtz Association 8 – 12 May 2023 Slide 331

RANDOM NUMBER GENERATORS

1 #include <random>
2 #include <iostream>
3 #include <map>
4 auto main() -> int
5 {
6 auto gen = [dist=std::poisson_distribution<> {8.5}, engine=std::mt19937_64{}]
7 () mutable { return dist(engine); };
8 std::map<int,unsigned> H;
9 for (auto i = 0UL; i < 5000000UL; ++i) H[gen()]++;

10 for (auto [i, fi] : H) std::cout << i << " " << fi << '\n';
11 }

std::mt19937_64 is a 64 bit implementation of Mersenne Twister 19937

The template std::poisson_distribution is a functional implementing the Poission distribution

Member of the Helmholtz Association 8 – 12 May 2023 Slide 332

RANDOM NUMBER GENERATORS

1 std::normal_distribution<> G{3.5, 1.2}; // Gaussian mu = 3.5, sig = 1.2
2 std::uniform_real_distribution<> U{3.141, 6.282};
3 std::binomial_distribution<> B{13};
4 std::discrete_distribution<> dist{0.3, 0.2, 0.2, 0.1, 0.1, 0.1};
5 // The following is an engine like std::mt19937, but is non-deterministic
6 std::random_device seed; // int i = seed() will be a random integer

Lots of useful distributions available in the standard
With one or two lines of code, it is possible to create a high quality generator with good properties and the
desired distribution
std::random_device is a non-deterministic random number generator.

It is good for setting seeds for the used random number engine
It is slower than the pseudo-random number generators

Member of the Helmholtz Association 8 – 12 May 2023 Slide 333

RANDOM NUMBER GENERATOR: EXERCISES

Exercise 6.11:
Make a program to generate normally distributed random numbers with user specified mean and variance, and
make a histogram to demonstrate that the correct distribution is produced. Start from
examples/normal_distribution.cc .

Exercise 6.12:
Make a program to implement a "biased die", i.e., with user specified non-uniform probability for different faces.
You will need std::discrete_distribution<> Start from examples/weighted_die.cc .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 334

EXERCISES

Exercise 6.13:
For a real valued random variable X with normal distribution of a given mean µ and standard deviation σ,
calculate the following quantity:

K [X] =
〈
(X − µ)4〉

(⟨(X − µ)2⟩)2

Fill in the random number generation parts of the program examples/K.cc . Run the program a few times
varying the mean and standard deviation. What do you observe about the quantity in the equation above ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 335

Exercise 6.14: Probabilities with playing cards
The program examples/cards_problem.cc demonstrates many topics discussed during this course. It has
a constexpr function to create a fixed length array to store results, several standard library containers and
algorithms as well as the use of the random number machinery for a Monte Carlo simulation. It has extensive
comments explaining the use of various features. Read the code and identify the different techniques used, and
run it to solve a probability question regarding playing cards.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 336

FORMATTED OUTPUT
1 for (auto i = 0UL; i < 100UL; ++i) {
2 std::cout << "i = " << i
3 << ", E_1 = " << cos(i * wn)
4 << ", E_2 = " << sin(i * wn)
5 << "\n";
6 }

i = 5, E_1 = 0.55557, E_2 = 0.83147
i = 6, E_1 = 0.382683, E_2 = 0.92388
i = 7, E_1 = 0.19509, E_2 = 0.980785
i = 8, E_1 = 6.12323e-17, E_2 = 1
i = 9, E_1 = -0.19509, E_2 = 0.980785
i = 10, E_1 = -0.382683, E_2 = 0.92388
i = 11, E_1 = -0.55557, E_2 = 0.83147

While convenient and type safe and extensible, the
interface of ostream objects like std::cout
isn’t by itself conducive to regular well-formatted
output

C printf often has a simpler path towards
visually uniform columnar output, although it is
neither type safe nor extensible
C++ <iomanip> header allows formatting with
a great deal of control, but has a verbose and
inconsistent syntax
C++20 introduced the <format> header, which
introduces Python like string formatting
Based on the open source fmt library.
Elegant. Safe. Fast. Extensible.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 337

FORMATTED OUTPUT
1 for (auto i = 0UL; i < 100UL; ++i) {
2 std::cout << "i = " << i
3 << ", E_1 = " << cos(i * wn)
4 << ", E_2 = " << sin(i * wn)
5 << "\n";
6 }

i = 5, E_1 = 0.55557, E_2 = 0.83147
i = 6, E_1 = 0.382683, E_2 = 0.92388
i = 7, E_1 = 0.19509, E_2 = 0.980785
i = 8, E_1 = 6.12323e-17, E_2 = 1
i = 9, E_1 = -0.19509, E_2 = 0.980785
i = 10, E_1 = -0.382683, E_2 = 0.92388
i = 11, E_1 = -0.55557, E_2 = 0.83147

While convenient and type safe and extensible, the
interface of ostream objects like std::cout
isn’t by itself conducive to regular well-formatted
output
C printf often has a simpler path towards
visually uniform columnar output, although it is
neither type safe nor extensible
C++ <iomanip> header allows formatting with
a great deal of control, but has a verbose and
inconsistent syntax

C++20 introduced the <format> header, which
introduces Python like string formatting
Based on the open source fmt library.
Elegant. Safe. Fast. Extensible.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 337

FORMATTED OUTPUT
1 for (auto i = 0UL; i < 100UL; ++i) {
2 std::cout << fmt::format(
3 "i = {:>4d}, E_1 = {:< 12.8f}, "
4 "E_2 = {:< 12.8f}\n",
5 i, cos(i * wn), sin(i * wn));
6 }

i = 5, E_1 = 0.55557023 , E_2 = 0.83146961
i = 6, E_1 = 0.38268343 , E_2 = 0.92387953
i = 7, E_1 = 0.19509032 , E_2 = 0.98078528
i = 8, E_1 = 0.00000000 , E_2 = 1.00000000
i = 9, E_1 = -0.19509032 , E_2 = 0.98078528
i = 10, E_1 = -0.38268343 , E_2 = 0.92387953
i = 11, E_1 = -0.55557023 , E_2 = 0.83146961

While convenient and type safe and extensible, the
interface of ostream objects like std::cout
isn’t by itself conducive to regular well-formatted
output
C printf often has a simpler path towards
visually uniform columnar output, although it is
neither type safe nor extensible
C++ <iomanip> header allows formatting with
a great deal of control, but has a verbose and
inconsistent syntax
C++20 introduced the <format> header, which
introduces Python like string formatting
Based on the open source fmt library.

Elegant. Safe. Fast. Extensible.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 337

FORMATTED OUTPUT
1 for (auto i = 0UL; i < 100UL; ++i) {
2 std::cout << fmt::format(
3 "i = {:>4d}, E_1 = {:< 12.8f}, "
4 "E_2 = {:< 12.8f}\n",
5 i, cos(i * wn), sin(i * wn));
6 }

i = 5, E_1 = 0.55557023 , E_2 = 0.83146961
i = 6, E_1 = 0.38268343 , E_2 = 0.92387953
i = 7, E_1 = 0.19509032 , E_2 = 0.98078528
i = 8, E_1 = 0.00000000 , E_2 = 1.00000000
i = 9, E_1 = -0.19509032 , E_2 = 0.98078528
i = 10, E_1 = -0.38268343 , E_2 = 0.92387953
i = 11, E_1 = -0.55557023 , E_2 = 0.83146961

Perfectly aligned, as all numeric output should be.

While convenient and type safe and extensible, the
interface of ostream objects like std::cout
isn’t by itself conducive to regular well-formatted
output
C printf often has a simpler path towards
visually uniform columnar output, although it is
neither type safe nor extensible
C++ <iomanip> header allows formatting with
a great deal of control, but has a verbose and
inconsistent syntax
C++20 introduced the <format> header, which
introduces Python like string formatting
Based on the open source fmt library.
Elegant. Safe. Fast. Extensible.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 337

FORMATTED OUTPUT
1 // Example of a redirecting header
2 #include <version>
3 #ifdef __cpp_lib_format
4 #include <format>
5 using std::format;
6 #elif __has_include(<fmt/format.h>)
7 #define FMT_HEADER_ONLY
8 #include <fmt/core.h>
9 using fmt::format;

10 #else
11 #error No suitable header for C++20 format!
12 #endif

GCC 13 has an implementation. Our redirecting
header can help us work with clang as well.
We can use a redirecting header to use the fmt

library when the compiler does not have the library
feature
Code simplification and compilation (and runtime)
speed =⇒ useful to learn it. Eventually all
compilers will have it.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 338

FORMATTED OUTPUT
std::format("format string {}, {} etc.", args...) takes a compile time constant

format string and a parameter pack to produce a formatted output string
std::vformat can be used if the format string is not known at compilation time

If instead of receiving output as a newly created string, output into a container or string is desired,
std::format_to or std::format_to_n are available

The string contains python style placeholder braces to be filled with formatted values from the argument list
The braces can optionally contain id : spec descriptors. id is a 0 based index to choose an argument
from args... for that slot. spec controls how the value is to be written: width, precision, alignment,
padding, base of numerals etc. Details of the format specifiers can be found here!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 339

https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification

Exercise 6.15:
A simple example demonstrating the text formatting library of C++20 is in examples/format1.cc . When this
C++20 header is not available in the standard library implementation, we use headers from the fmt library
giving us approximately the same functionality. Although fmt is usually compiled to a static or shared library to
link, we define the macro FMT_HEADER_ONLY to pretend that we got everything from the standard library.

Exercise 6.16:
The program examples/word_count.cc is an improved version of the word counter program from day 4. Here we
clear any trailing non-alphabetic characters from strings read as words, e.g., treat "instance," as "instance". We
use the ranges algorithms to clean up the string. We then use the formatting library to write the histogram.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 340

std::optional and std::variant

Member of the Helmholtz Association 8 – 12 May 2023 Slide 341

STD::OPTIONAL
std::optional<T> manages an optional value

of type T , which may or may not be present
Another way to handle errors during computations
to determine a value of some kind
If the optional object has a value, the value
resides in the object, i.e., the optional type
does not do any dynamic memory allocation of its
own
The operators * and -> are given for
convenience, so that we can pretend we are dealing
with a pointer type when using an optional

If converted to a bool , we get true if there is a
value, false otherwise
Default initialisation as well as initialisation with
nullopt_t create optional objects without

value.

1 auto solve_quadratic(double a, double b,
2 double c)
3 {
4 using namespace std;
5 optional<pair<double, double>> solution;
6 auto D = b * b - 4 * a * c;
7 if (D >= 0) {
8 auto q = -0.5 * (b +
9 copysign(sqrt(D), b));

10 solution = make_pair(q / a, c / q);
11 }
12 return solution;
13 }

Exercise 6.17:
examples/opt_qsolve.cc is a small program

demonstrating the use of std::optional .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 342

STD::VARIANT : A TYPE SAFE UNION
A union is a special kind of class where all the
members occupy the same bytes in memory

1 union sameplace { size_t ulong; double real; };
2 static_assert(sizeof(sameplace) ==
3 sizeof(double));
4 sameplace s;
5 s.ulong = 0UL;
6 s.real = 1.0;
7 cout << s.ulong << "\n";

We can access the elements of a union the same
way as a struct (above).
Since both members occupy the same bytes,
changes to one can affect the other
If the union contains, e.g., std::string , such
overriding of bytes would be dangerous.

std::variant is a type safe union .

Unlike the union , we don’t get to name the
different members. The different "members" can
be accessed through functions like
std::get<int>(V) , i.e., we can use the types

to select the stored type. We also don’t need to say
what we are assigning to, since that can be deduced
from the type of the object on the right of the =

A variant knows what type is currently stored,
and calls the destructors etc. when we assign
something that would change the stored type

1 variant<double, int, long, string> V;
2 V = "let's assign a string";
3 V = 3.141;
4 // call string destructor and store a double

Member of the Helmholtz Association 8 – 12 May 2023 Slide 343

STD::VARIANT : A TYPE SAFE UNION
A variant type stores one value of any one of a few
pre-specified alternatives. To create a variant
with an integer, a long, a string and a boolean, we
would write
std::variant<int, long, string, bool> V;

A variant can be assigned a value of any one of its
contained types. The variant then remembers the
value and the type of the value.
V = "0118 999 881 99 9119 725 3"s;
assert(std::holds_alternative<string>(V));

The member function index() tells us the zero
based index of the currently held type in the list of
alternatives for the variant
assert(V.index() == 2);

Since the type of the contained object can be
changed by an assignment at run time, the variant
can not simply have a function get() to return
the contained value. We have to specify the type of
value we want to read as a template argument:
cout << get<string>(V);

Unlike the union, we can’t store one type and read
another
V = "0118 999 881 99 9119 725 3"s;
auto num = get<int>(V); //throws exception!

There is also a non throwing version of the
accessor:
if (auto iptr = get_if<int>(&V); iptr) {
// use iptr as pointer to int value
// Does not get here because get_if<int>
// returns a nullptr in this case.
}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 344

STD::VARIANT : A TYPE SAFE UNION
1 using member_t = variant<int, long, string, bool>;
2 vector<member_t> pop{true, 9l, "Monday"s};
3 for (auto & el : pop) {
4 if (auto iptr = get_if<int>(&el)) {
5 // *iptr is the int value in the variant el
6 } else if (auto lptr = get_if<long>(&el)) {
7 // *lptr is the long value in el
8 } else if (auto sptr = get_if<string>(&el)) {
9 // *sptr is the string value in el

10 }
11 }

Variants can be made to model members of
heterogeneous collections, much like pointers to
base class in a class hierarchy. The difference is, we
can even use built in type like int , double etc.
in a variant based heterogeneous container, because
it does not need a class hierarchy!

Easiest way to model polymorphic behaviour is
using a chain of if ... else if ... else

statements using the get_if<T>(&v) function
for the different types T in the variant .
get_if<T>(&v) returns a valid T * if the

variant v currently holds type T . Otherwise it
returns nullptr .

Exercise 6.18:
The two example programs
examples/variant_0.cc and
examples/variant_1.cc demonstrate basic

variant usage, such as assignment of values of different
types, performing actions based on the content type.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 345

STD::VARIANT : USING STD::VISIT TO SELECT
ACTIONS

Another way to perform different actions based on the currently held type is to use std::visit .
If we have variant<int, double> V , std::visit(F, V) calls F(int) if V currently holds
an int and F(double) if V currently holds a double . std::visit unpacks the variant before
calling F with the stored value. The callable object F must have an overload capable of handling the
alternatives in the variant
The overloaded function to be used with std::visit can be created in many ways. Three examples in
the following boxes:

1 struct my_action {
2 auto operator()(int i) { // ... }
3 auto operator()(double x) { // }
4 };
5 // ...
6 std::visit(my_action{}, V);

Member of the Helmholtz Association 8 – 12 May 2023 Slide 346

STD::VARIANT : USING STD::VISIT TO SELECT
ACTIONS

Another way to perform different actions based on the currently held type is to use std::visit .
If we have variant<int, double> V , std::visit(F, V) calls F(int) if V currently holds
an int and F(double) if V currently holds a double . std::visit unpacks the variant before
calling F with the stored value. The callable object F must have an overload capable of handling the
alternatives in the variant
The overloaded function to be used with std::visit can be created in many ways. Three examples in
the following boxes:

1 std::visit([](auto upkd) {
2 if constexpr (is_same_v<int, decltype(upkd)>) {
3 // handle int input
4 } else if constexpr (is_same_v<double, decltype(upkd)>) {
5 // handle double input
6 }
7 }, V
8);

Member of the Helmholtz Association 8 – 12 May 2023 Slide 346

STD::VARIANT : USING STD::VISIT TO SELECT
ACTIONS

Another way to perform different actions based on the currently held type is to use std::visit .
If we have variant<int, double> V , std::visit(F, V) calls F(int) if V currently holds
an int and F(double) if V currently holds a double . std::visit unpacks the variant before
calling F with the stored value. The callable object F must have an overload capable of handling the
alternatives in the variant
The overloaded function to be used with std::visit can be created in many ways. Three examples in
the following boxes:

1 template <class ... Ts> struct stapler : Ts ... { using Ts::operator()... ; };
2 template <class ... Ts> stapler(Ts ...) -> stapler<Ts...>;
3 std::visit(stapler{
4 [](int i) { /* handle int input */ },
5 [](double d) { /* handle double */ }
6 }, V
7);

Member of the Helmholtz Association 8 – 12 May 2023 Slide 346

USING VARIANTS WITH STD::VISITOR

Exercise 6.19:
Example programs examples/variant_2.cc , examples/variant_3.cc and
examples/variant_4.cc demonstrate the use of std::visit to dispatch different actions depending

on the type of the currently held value in a variant. They parallel the approaches in the 3 boxes in the previous
slide.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 347

STD::ANY : A TYPESAFE CONTAINER FOR SINGLE
VALUES

A variable of type std::any can
store 1 value of any type
Simply by assigning a new value, the
contained object is replaced with
another of the new type. The variable
of type std::any is like a box,
whose type remains unchanged as the
content is swapped. The contained
object is indirectly accessed, leading to
some overhead.

Exercise 6.20:
examples/any_demo.cc demonstrates

basic usage of std::any .

1 any var = 1;
2 cout << "Reading int after storing int ... "
3 << any_cast<int>(var) << "\n"; // That works
4 try {
5 cout << "Reading float after storing an int ... "
6 << any_cast<float>(var) << "\n";
7 // This doesn't
8 } catch (const exception & err) {
9 cout << "Float cast after storing int failed. "

10 << "Error : " << err.what() << "\n";
11 }
12 var = "Europa"s;
13 map<string, any> config;
14 config["max_frequency_ghz"] = 3.3;
15 config["memory_MB"] = 16384;
16 config["fingerprint_reader"] = true;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 348

SEQUENCES OF POLYMORPHIC OBJECTS

Exercise 6.21:
Sequences of objects with polymorphic behaviour is a frequently occurring programming problem. We have seen
one example before, with a vector of unique_ptr<Shape> , filled with newly created instances of types
inherited from Shape , such as Circle , Triangle etc. The problem can be solved in many alternative
ways. examples/polymorphic contains 4 sub directories with different approaches to the geometric object
example. (i) Inheritance with virtual functions (ii) std::variant with visitors (iii) Using std.:any (iv)
Custom type erasure.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 349

REGULAR EXPRESSIONS USING C++20

1 constexpr ctll::fixed_string re{ R"xpr(^(https:|http:|www\.)\S*)xpr" };
2 auto urls_in_input = args | sv::drop(1)
3 | sv::transform([=](auto inp) { return str(inp); })
4 | sv::filter([re](auto inp) { return ctre::search<re>(inp); });
5 if (auto m = ctre::match<trx>(diststr); m) {
6 auto numstr = m.get<1>().to_string();
7 // and so on...
8 }

CTRE: "Compile time regular expressions", header only open source library
Regular expressions parsed at compile time.
Smaller binaries than std::regex

Syntax makes excellent use of C++20 features for intuitive handling of regular expressions
Compile time regex processing is possible, with great performance

Member of the Helmholtz Association 8 – 12 May 2023 Slide 350

REGULAR EXPRESSIONS USING CTRE

Exercise 6.22:
examples/dist.cc contains a rudimentary Distance class. Distances can be constructed by giving a value

with a unit. Overloaded literal operators allow writing code like auto d = 14.5_km; . It is possible to write
distances using std::cout , or read using std::cin . E.g.,

$ Enter distance: 13.99_cm
That is 0.1399_m

$ Enter distance: "23 km"
That is 23000_m

To read and interpret the input string in the correct units, we make use of regular expressions. Since these can be
known at when writing the source code, we use the CTRE library to process our regular expressions. The
example demonstrates many different topics explored during the course.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 351

Chapter 7

Type erasure

Member of the Helmholtz Association 8 – 12 May 2023 Slide 352

TYPE ERASURE TECHNIQUE
1 auto f(int i) -> PolyVal;
2 void elsewhere() {
3 std::vector<PolyVal> v;
4 v.push_back(1);
5 v.push_back(2.0);
6 v.push_back("Green"s);
7
8 for (auto&& elem : v) {
9 func1(elem);

10 }
11 PolyVal X = f(i);
12 }

Polymorphic behaviour attained using a class
hierarchy and virtual functions...

is extensible by simply inheriting from the Base
type and overriding the virtual functions
But, it has “reference semantics”, so that we can
not return those polymorphic objects by value
from functions
Built in types can not be accommodated into the
same hierarchy

variant provides a solution to the two problems
above, but we need to commit to a fixed number of
polymorphic types in the problem, from the outset
std::any is a library provided facility for type

erasure

Member of the Helmholtz Association 8 – 12 May 2023 Slide 353

TYPE ERASURE TECHNIQUE
1 void func1(int x);
2 void func1(double x);
3 void func1(std::string x);
4 auto f(int i) -> PolyVal;
5 void elsewhere() {
6 std::vector<PolyVal> v;
7 v.push_back(1);
8 v.push_back(2.0);
9 v.push_back("Green"s);

10
11 for (auto&& elem : v) {
12 func1(elem);
13 }
14 PolyVal X{3.141};
15 // func1(X) should go to func1(double)
16 X = PolyVal{"some string"s};
17 // func1(X) should now go to func1(string)
18 X = f(i);
19 // func1(X) should redirect according to what
20 // polymorphic value f happens to return
21 }

We want a type PolyVal , so that we can store
different types of entities in it
A uniform container of PolyVal should be able
to hold values of different types
When a certain instance is used, it should still be
able to behave according to the value it is currently
holding.
We should be able to copy a PolyVal object
using normal copy construction or copy assignment
in such a way that the copy of a PolyVal storing
a Triangle would still behave as a Triangle

Member of the Helmholtz Association 8 – 12 May 2023 Slide 354

TYPE ERASURE TECHNIQUE
1 class PolyVal {
2 struct Internal {
3 virtual ~Internal() noexcept = default;
4 virtual auto clone() const -> std::unique_ptr<Internal> = 0;
5 virtual void func1_() const = 0;
6 };
7 template <class T>
8 struct Wrapped : public Internal // continued...
9

10 public:
11 template <class T>
12 PolyVal(const T& var) : ptr{ std::make_unique<Wrapped<T>>(var) } {}
13 PolyVal(const PolyVal& other) : ptr { other.ptr->clone() } {}
14 private:
15 std::unique_ptr<Internal> ptr;
16 };

Make a normal class with an internal class with virtual functions defining the desired interface, and another
internal wrapper class template deriving from the internal base
Give the outer class one template constructor (unrestrained here to isolate the TE technique)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 355

TYPE ERASURE TECHNIQUE
1 class PolyVal {
2 struct Internal {
3 virtual ~Internal() noexcept = default;
4 virtual auto clone() const -> std::unique_ptr<Internal> = 0;
5 virtual void func1_() const = 0;
6 };
7 template <class T>
8 struct Wrapped : public Internal // continued...
9

10 public:
11 template <class T>
12 PolyVal(const T& var) : ptr{ std::make_unique<Wrapped<T>>(var) } {}
13 PolyVal(const PolyVal& other) : ptr { other.ptr->clone() } {}
14 private:
15 std::unique_ptr<Internal> ptr;
16 };

Let the class contain a smart pointer to this base, but initialise that member using a class template which
inherits from the internal base.
Implement a copy constructor for PolyVal by using a virtual clone() function for the internal class
Use the template constructor to create a wrapped object containing a copy of the input parameter

Member of the Helmholtz Association 8 – 12 May 2023 Slide 355

TYPE ERASURE TECHNIQUE
1 class PolyVal {
2 template <class T>
3 struct Wrapped : public Internal {
4 Wrapped(T ex) : obj{ex} {}
5 ~Wrapped() noexcept override {}
6 auto clone() const -> std::unique_ptr<Internal> override
7 {
8 return std::make_unique<Wrapped>(obj);
9 }

10 void func1_() const override { func1(obj); }
11 T obj;
12 };
13 };

The internal wrapper should store an object of the template parameter type
It should provide copy, clone etc.
It should redirect function calls in our original requirement to free functions

Member of the Helmholtz Association 8 – 12 May 2023 Slide 356

TYPE ERASURE TECHNIQUE
1 class PolyVal {
2 template <class T>
3 struct Wrapped : public Internal {
4 Wrapped(T ex) : obj{ex} {}
5 ~Wrapped() noexcept override {}
6 auto clone() const -> std::unique_ptr<Internal> override
7 {
8 return std::make_unique<Wrapped>(obj);
9 }

10 void func1_() const override { func1(obj); }
11 T obj;
12 };
13 };

As long as those free functions exist for a type F , it will be possible to create objects of PolyVal type
from type F

Member of the Helmholtz Association 8 – 12 May 2023 Slide 356

Exercise 7.1:
examples/PolyVal.cc contains the code corresponding to the slides shown here. Verify that we achieve our

purpose of having a copyable object preserving polymorphic behaviour. Add a function func1() (processing a
new type) into the mix, and extend the existing setup.

Exercise 7.2:
Sequences of objects with polymorphic behaviour is a frequently occurring programming problem. We have seen
one example before, with a vector of unique_ptr<Shape> , filled with newly created instances of types
inherited from Shape , such as Circle , Triangle etc. The problem can be solved in many alternative
ways. examples/polymorphic contains 4 sub-directories with different approaches to the geometric object
example. (i) Inheritance with virtual functions (ii) std::variant with visitors (iii) Using std::any (iv)
Custom type erasure.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 357

Chapter 8

Modules

Member of the Helmholtz Association 8 – 12 May 2023 Slide 358

A PREVIEW OF C++20 MODULES
Traditionally, C++ projects are organised into header and source files. As an example, consider a simple
saxpy program ...

1 #ifndef SAXPY_HH
2 #define SAXPY_HH
3 #include <algorithm>
4 #include
5 template <class T> concept Number = std::floating_point<T> or std::integral<T>;
6 template <class T> requires Number<T>
7 auto saxpy(T a, std::span<const T> x, std::span<const T> y, std::span<T> z){
8 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
9 [a](T X, T Y) { return a * X + Y; });

10 }
11 #endif

1 #include "saxpy.hh"
2 auto main() -> int {
3 //declarations
4 saxpy(10., {inp1}, {inp2}, {outp});
5 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 359

PROBLEMS WITH HEADER FILES
Headers contain declarations of functions, classes etc., and definitions of inline functions.
Source files contain implementations of other functions, such as main .
Since function templates and class templates have to be visible to the compiler at the point of instantiation,
these have traditionally lived in headers.
Standard library, TBB, Thrust, Eigen ... a lot of important C++ libraries consist of a lot of template code,
and therefore in header files.
The #include <abc> mechanism is essentially a copy-and-paste solution. The preprocessor inserts the
entire source of the headers in each source file that includes it, creating large translation units.
The same template code gets re-parsed over and over for every new translation unit.
If the headers contain expression templates, CRTP, metaprogramming repeated processing of the templates
is a waste of resources.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 360

MODULES
The module mechanism in C++20 offers a better organisation
All code, including template code can now reside in source files
Module source files will be processed once to produce “precompiled modules”, where the essential syntactic
information has been parsed and saved.
These compiled module interface (binary module interface) files are to be treated as caches generated
during the compilation process. There are absolutely no guarantees of them remaining compatible between
different versions of the same compiler, different machine configurations etc.
Any source import ing the module immediately has access to the precompiled syntax tree in the
precompiled module files. This leads to less overall work and faster compilation of individual translation units
Since a source file may export a module to be imported by another source in the same project, sources must
sometimes be compiled in a specific order. Automatically deducing this order is a difficult problem, and is
one of the reasons tools like CMake have taken this long to support C++ modules

Member of the Helmholtz Association 8 – 12 May 2023 Slide 361

USING MODULES
1 // examples/hello_m.cc
2 import <iostream>;
3
4 auto main() -> int
5 {
6 std::cout << "Hello, world!\n";
7 }

If a module is available, not much special needs to
be done to use it. import the module instead of
#include ing a header. Use the exported classes,

functions and variables from the module.
As of C++20, the standard library is not available
as a module. But standard library headers can be
imported as “header units”.

$ clang++ -std=c++20 -stdlib=libc++ -fmodules hello_m.cc
$./a.out
$ g++ -std=c++20 -fmodules-ts -xc++-system-header iostream
$ g++ -std=c++20 -fmodules-ts hello_m.cc
$./a.out
$

GCC requires that the header units needed are first generated in a separate explicit step.
If iostream had been the name of a module, we would have written import iostream; instead of
import <iostream>

Member of the Helmholtz Association 8 – 12 May 2023 Slide 362

USING MODULES

Exercise 8.1:
Convert a few of the example programs you have seen during the course to use modules syntax instead. At the
moment it means no more than replacing the #include lines with the corresponding import lines for the
standard library headers. The point is to get used to the extra compilation options you need with modules at the
moment. Use, for instance, the date time library functions like feb.cc and advent.cc from the day 4 examples.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 363

CREATING A MODULE (EXAMPLE)
1 // saxpy.hh
2 #ifndef SAXPY_HH
3 #define SAXPY_HH
4 #include <algorithm>
5 #include
6
7 template <class T>
8 concept Number = std::floating_point<T>
9 or std::integral<T>;

10 template <Number T>
11 auto saxpy(T a, std::span<const T> x,
12 std::span<const T> y,
13 std::span<T> z)
14 {
15 std::transform(x.begin(), x.end(),
16 y.begin(), z.begin(),
17 [a](T X, T Y) {
18 return a * X + Y;
19 });
20 }
21 #endif

A header file contains a function template saxpy ,
and a concept necessary to define that function

A source file, main.cc which includes the header
and uses the function

Member of the Helmholtz Association 8 – 12 May 2023 Slide 364

CREATING A MODULE (EXAMPLE)
1 // usesaxpy.cc
2 #include <iostream>
3 #include <array>
4 #include <vector>
5 #include
6 #include "saxpy.hh"
7
8 auto main() -> int
9 {

10 using namespace std;
11 const array inp1 { 1., 2., 3., 4., 5. };
12 const array inp2 { 9., 8., 7., 6., 5. };
13 vector outp(inp1.size(), 0.);
14
15 saxpy(10., {inp1}, {inp2}, {outp});
16 for (auto x : outp) cout << x << "\n";
17 cout << ":::::::::::::::::::::\n";
18 }

A header file contains a function template saxpy ,
and a concept necessary to define that function

A source file, main.cc which includes the header
and uses the function

Member of the Helmholtz Association 8 – 12 May 2023 Slide 365

CREATING A MODULE (EXAMPLE)
1 // saxpy.hh -> saxpy.ixx
2 #ifndef SAXPY_HH
3 #define SAXPY_HH
4 #include <algorithm>
5 #include
6
7 template <class T>
8 concept Number = std::floating_point<T>
9 or std::integral<T>;

10 template <Number T>
11 auto saxpy(T a, std::span<const T> x,
12 std::span<const T> y,
13 std::span<T> z)
14 {
15 std::transform(x.begin(), x.end(),
16 y.begin(), z.begin(),
17 [a](T X, T Y) {
18 return a * X + Y;
19 });
20 }
21 #endif

Make a module interface unit

Include guards are no longer required, since
importing a module does not transitively import
things used inside the module
A module interface unit is a file which
exports a module . The lines between the
module; and export module saxpy;

constitute the “global module fragment”, where
traditional #include statements can be used.

If you can get by with only import s, replace
#include lines with corresponding import

lines. Omit the module; line in this case.

Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 8 – 12 May 2023 Slide 366

CREATING A MODULE (EXAMPLE)
1 // saxpy.hh -> saxpy.ixx

2 #ifndef SAXPY_HH

3 #define SAXPY_HH

4 #include <algorithm>
5 #include
6
7 template <class T>
8 concept Number = std::floating_point<T>
9 or std::integral<T>;

10 template <Number T>
11 auto saxpy(T a, std::span<const T> x,
12 std::span<const T> y,
13 std::span<T> z)
14 {
15 std::transform(x.begin(), x.end(),
16 y.begin(), z.begin(),
17 [a](T X, T Y) {
18 return a * X + Y;
19 });
20 }

21 #endif

Make a module interface unit
Include guards are no longer required, since

importing a module does not transitively import
things used inside the module

A module interface unit is a file which
exports a module . The lines between the
module; and export module saxpy;

constitute the “global module fragment”, where
traditional #include statements can be used.

If you can get by with only import s, replace
#include lines with corresponding import

lines. Omit the module; line in this case.

Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 8 – 12 May 2023 Slide 366

CREATING A MODULE (EXAMPLE)
1 // saxpy.hh -> saxpy.ixx
2
3
4 #include <algorithm>
5 #include
6
7 template <class T>
8 concept Number = std::floating_point<T>
9 or std::integral<T>;

10 template <Number T>
11 auto saxpy(T a, std::span<const T> x,
12 std::span<const T> y,
13 std::span<T> z)
14 {
15 std::transform(x.begin(), x.end(),
16 y.begin(), z.begin(),
17 [a](T X, T Y) {
18 return a * X + Y;
19 });
20 }

Make a module interface unit
Include guards are no longer required, since

importing a module does not transitively import
things used inside the module

A module interface unit is a file which
exports a module . The lines between the
module; and export module saxpy;

constitute the “global module fragment”, where
traditional #include statements can be used.

If you can get by with only import s, replace
#include lines with corresponding import

lines. Omit the module; line in this case.

Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 8 – 12 May 2023 Slide 366

CREATING A MODULE (EXAMPLE)
1 // saxpy.hh -> saxpy.ixx

2 module;

3 #include <algorithm>
4 #include

5 export module saxpy;
6
7 template <class T>
8 concept Number = std::floating_point<T>
9 or std::integral<T>;

10 template <Number T>
11 auto saxpy(T a, std::span<const T> x,
12 std::span<const T> y,
13 std::span<T> z)
14 {
15 std::transform(x.begin(), x.end(),
16 y.begin(), z.begin(),
17 [a](T X, T Y) {
18 return a * X + Y;
19 });
20 }

Make a module interface unit
Include guards are no longer required, since

importing a module does not transitively import
things used inside the module
A module interface unit is a file which
exports a module . The lines between the
module; and export module saxpy;

constitute the “global module fragment”, where
traditional #include statements can be used.

If you can get by with only import s, replace
#include lines with corresponding import

lines. Omit the module; line in this case.

Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 8 – 12 May 2023 Slide 366

CREATING A MODULE (EXAMPLE)
1 // saxpy.hh -> saxpy.ixx
2
3 export module saxpy;

4 import <algorithm>;

5 import ;
6
7 template <class T>
8 concept Number = std::floating_point<T>
9 or std::integral<T>;

10 template <Number T>
11 auto saxpy(T a, std::span<const T> x,
12 std::span<const T> y,
13 std::span<T> z)
14 {
15 std::transform(x.begin(), x.end(),
16 y.begin(), z.begin(),
17 [a](T X, T Y) {
18 return a * X + Y;
19 });
20 }

Make a module interface unit
Include guards are no longer required, since

importing a module does not transitively import
things used inside the module
A module interface unit is a file which
exports a module . The lines between the
module; and export module saxpy;

constitute the “global module fragment”, where
traditional #include statements can be used.

If you can get by with only import s, replace
#include lines with corresponding import

lines. Omit the module; line in this case.

Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 8 – 12 May 2023 Slide 366

CREATING A MODULE (EXAMPLE)
1 // saxpy.hh -> saxpy.ixx
2
3 export module saxpy;

4 import <algorithm>;

5 import ;
6
7 template <class T>
8 concept Number = std::floating_point<T>
9 or std::integral<T>;

10 export template <Number T>

11 auto saxpy(T a, std::span<const T> x,
12 std::span<const T> y,
13 std::span<T> z)
14 {
15 std::transform(x.begin(), x.end(),
16 y.begin(), z.begin(),
17 [a](T X, T Y) {
18 return a * X + Y;
19 });
20 }

Make a module interface unit
Include guards are no longer required, since

importing a module does not transitively import
things used inside the module
A module interface unit is a file which
exports a module . The lines between the
module; and export module saxpy;

constitute the “global module fragment”, where
traditional #include statements can be used.

If you can get by with only import s, replace
#include lines with corresponding import

lines. Omit the module; line in this case.

Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 8 – 12 May 2023 Slide 366

CREATING A MODULE (EXAMPLE)
1 // usesaxpy.cc
2 #include <iostream>
3 #include <array>
4 #include <vector>
5 #include
6 #include "saxpy.hh"
7
8 auto main() -> int
9 {

10 using namespace std;
11 const array inp1 { 1., 2., 3., 4., 5. };
12 const array inp2 { 9., 8., 7., 6., 5. };
13 vector outp(inp1.size(), 0.);
14
15 saxpy(10., {inp1}, {inp2}, {outp});
16 for (auto x : outp) cout << x << "\n";
17 cout << ":::::::::::::::::::::\n";
18 }

Use your module

Replace #include lines with corresponding
import lines. Obs: import lines end with a

semi-colon!
When importing actual modules, rather than header
units, use the module name without angle
brackets or quotes
Importing saxpy here, only grants us access to
the explicitly exported function saxpy . Not other
functions, classes, concepts etc. defined in the
module saxpy , not any other module imported
in the module interface unit.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 367

CREATING A MODULE (EXAMPLE)
1 // usesaxpy.cc

2 import <iostream>;

3 import <array>;

4 import <vector>;

5 import ;

6 #include "saxpy.hh"
7
8 auto main() -> int
9 {

10 using namespace std;
11 const array inp1 { 1., 2., 3., 4., 5. };
12 const array inp2 { 9., 8., 7., 6., 5. };
13 vector outp(inp1.size(), 0.);
14
15 saxpy(10., {inp1}, {inp2}, {outp});
16 for (auto x : outp) cout << x << "\n";
17 cout << ":::::::::::::::::::::\n";
18 }

Use your module
Replace #include lines with corresponding
import lines. Obs: import lines end with a

semi-colon!

When importing actual modules, rather than header
units, use the module name without angle
brackets or quotes
Importing saxpy here, only grants us access to
the explicitly exported function saxpy . Not other
functions, classes, concepts etc. defined in the
module saxpy , not any other module imported
in the module interface unit.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 367

CREATING A MODULE (EXAMPLE)
1 // usesaxpy.cc

2 import <iostream>;

3 import <array>;

4 import <vector>;

5 import ;

6 import saxpy;
7
8 auto main() -> int
9 {

10 using namespace std;
11 const array inp1 { 1., 2., 3., 4., 5. };
12 const array inp2 { 9., 8., 7., 6., 5. };
13 vector outp(inp1.size(), 0.);
14
15 saxpy(10., {inp1}, {inp2}, {outp});
16 for (auto x : outp) cout << x << "\n";
17 cout << ":::::::::::::::::::::\n";
18 }

Use your module
Replace #include lines with corresponding
import lines. Obs: import lines end with a

semi-colon!
When importing actual modules, rather than header
units, use the module name without angle
brackets or quotes

Importing saxpy here, only grants us access to
the explicitly exported function saxpy . Not other
functions, classes, concepts etc. defined in the
module saxpy , not any other module imported
in the module interface unit.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 367

CREATING A MODULE (EXAMPLE)
1 // usesaxpy.cc

2 import <iostream>;

3 import <array>;

4 import <vector>;

5 import ;

6 import saxpy;
7
8 auto main() -> int
9 {

10 using namespace std;
11 const array inp1 { 1., 2., 3., 4., 5. };
12 const array inp2 { 9., 8., 7., 6., 5. };
13 vector outp(inp1.size(), 0.);
14
15 saxpy(10., {inp1}, {inp2}, {outp});
16 for (auto x : outp) cout << x << "\n";
17 cout << ":::::::::::::::::::::\n";
18 }

Use your module
Replace #include lines with corresponding
import lines. Obs: import lines end with a

semi-colon!
When importing actual modules, rather than header
units, use the module name without angle
brackets or quotes
Importing saxpy here, only grants us access to
the explicitly exported function saxpy . Not other
functions, classes, concepts etc. defined in the
module saxpy , not any other module imported
in the module interface unit.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 367

COMPILATION OF PROJECTS WITH MODULES
Different compilers require different (sets of) options
GCC:

Auto-detects if a file is a module interface unit (exports a module), and generates the CMI as well as an object
file together.
No special file extension required for module interface units(Just .cc , .cpp , . . . like regular source files).
Requires that standard library header units needed by the project are explicitly generated
Does not recognise module interface file extensions used by other compilers (.ixx , .ccm etc.)
Still rather crashy in May 2023, especially if multiple standard library headers are in use.

Clang:
Provides standard library header units.
Comparatively stable for module based code.
Lots of command line options required
Different options to translate module interfaces depending on file extensions!

– .ccm or .cppm : --precompile

– .ixx : --precompile -xc++-module

– .cc or .cpp : -Xclang -emit-module-interface

Separate generation of object file required
Module partitions not implemented

Member of the Helmholtz Association 8 – 12 May 2023 Slide 368

Exercise 8.2:
Versions of the saxpy program written using header files and then modules can be found in the
examples/saxpy/ . The recipe for building is described in the README.md files in the respective sub-folders.

Familiarise yourself with the process of building applications with modules. Experiment by writing a new inline
function in the module interface file without exporting it. Try to call that function from main . Check again
after exporting it in the module.

Exercise 8.3:
As a more complicated example, we have in examples/2_any the second version of our container with
polymorphic geometrical objects. The header and source files for each class Point , Circle etc have been
rewritten for modules. Compare the two versions, build them, run them. The recipes for building are in the
README.md files.

Exercise 8.4:
Each of the above exercise directories contains a CMakeLists.txt file. We demonstrate the use of the
experimental support for modules in CMake using the combination Clang-16 and Ninja 1.11 to build these simple
projects. Test it, and try using it for a different example from the course.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 369

Chapter 9

Closing remarks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 370

C++ “GENES”

Overloading

Static typing

Stack execution model

Scoping rules

Generic programmingResource management

Const(ant) correctness

Program organisation

Member of the Helmholtz Association 8 – 12 May 2023 Slide 371

CLOSING REMARKS
Most examples were simply demo code to show you
how it works

To really internalise the ideas, you have to solve
those or similar problems yourself
Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up
Rapidly evolving language
en.cppreference.com
isocpp.org
YouTube channel: Jason Turner’s C++ weekly
YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 372

en.cppreference.com
isocpp.org

CLOSING REMARKS
Most examples were simply demo code to show you
how it works
To really internalise the ideas, you have to solve
those or similar problems yourself

Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up
Rapidly evolving language
en.cppreference.com
isocpp.org
YouTube channel: Jason Turner’s C++ weekly
YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 372

en.cppreference.com
isocpp.org

CLOSING REMARKS
Most examples were simply demo code to show you
how it works
To really internalise the ideas, you have to solve
those or similar problems yourself
Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up

Rapidly evolving language
en.cppreference.com
isocpp.org
YouTube channel: Jason Turner’s C++ weekly
YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 372

en.cppreference.com
isocpp.org

CLOSING REMARKS
Most examples were simply demo code to show you
how it works
To really internalise the ideas, you have to solve
those or similar problems yourself
Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up
Rapidly evolving language

en.cppreference.com
isocpp.org
YouTube channel: Jason Turner’s C++ weekly
YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 372

en.cppreference.com
isocpp.org

CLOSING REMARKS
Most examples were simply demo code to show you
how it works
To really internalise the ideas, you have to solve
those or similar problems yourself
Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up
Rapidly evolving language
en.cppreference.com

isocpp.org
YouTube channel: Jason Turner’s C++ weekly
YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 372

en.cppreference.com
isocpp.org

CLOSING REMARKS
Most examples were simply demo code to show you
how it works
To really internalise the ideas, you have to solve
those or similar problems yourself
Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up
Rapidly evolving language
en.cppreference.com
isocpp.org

YouTube channel: Jason Turner’s C++ weekly
YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 372

en.cppreference.com
isocpp.org

CLOSING REMARKS
Most examples were simply demo code to show you
how it works
To really internalise the ideas, you have to solve
those or similar problems yourself
Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up
Rapidly evolving language
en.cppreference.com
isocpp.org
YouTube channel: Jason Turner’s C++ weekly

YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 372

en.cppreference.com
isocpp.org

CLOSING REMARKS
Most examples were simply demo code to show you
how it works
To really internalise the ideas, you have to solve
those or similar problems yourself
Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up
Rapidly evolving language
en.cppreference.com
isocpp.org
YouTube channel: Jason Turner’s C++ weekly
YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 372

en.cppreference.com
isocpp.org

	Chapter 1: Introduction
	Fundamentals
	Notes on legibility
	Types and variable declarations
	Branches and selections
	Loop constructs
	Functions
	Namespaces
	Enumerations
	Input and Output

	Function call stack
	Runtime error handling
	Exceptions
	Assertions

	Dynamic memory management
	Smart pointers
	Pointers, references and common errors

	Chapter 2: C++ classes and class hierarchies
	C++ classes
	Member functions
	Const member functions
	Constructors
	Destructors
	Copying and assigning
	Move semantics
	Big five (or zero)
	public and private members
	static members
	Function objects

	Inheritance and class hierarchies
	Inheritance with virtual functions
	override, final etc.

	Chapter 3: Templates
	Function and class templates
	C++ function templates
	Class templates
	Variable templates
	A detailed look at one class template
	Type calculations
	Static assertions with type traits
	Forwarding references
	Not merely text substitution!

	Constrained templates
	Variadic templates
	Fold expressions

	Chapter 4: SOLID principles
	Software design considerations
	Reducing dependencies
	Encapsulation
	SOLID principles

	Chapter 5: Lambda functions
	Motivation
	Syntax

	Chapter 6: Standard Template Library
	Standard Template Library
	Containers
	STL vector
	Fixed length arrays
	Associative containers

	Algorithms
	Ranges
	STL utilities
	Chrono
	Random numbers

	std::optional and std::variant
	std::variant
	std::any

	Chapter 7: Type erasure
	Chapter 8: Modules
	Chapter 9: Closing remarks

