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Chapter 1

Course introduction

1.1 Introduction

C++ is a widely used multi-paradigm programming language, with a very large developer community,
a very rich collection of available libraries, and currently, a rather lively update cycle. Being a multi-
paradigm language, it allows the programmer to adapt the code to fit the problem at hand, rather than
forcing adherence to any specific programming paradigm like object oriented programming or functional
programming. The language has grown to be extremely feature rich. One can write perfectly memory
managed, elegant, brief, fully amateur-readable programs to perform complex tasks. At the other extreme,
an expert programmer might embed assembly language code directly in a C++ source file, if they consider
that to be advantageous. One can write highly maintainable elegant code as well as somewhat less readable
but faster code using the same programming language. In C++, these two goals are often not mutually
exclusive.

I have used C++ for over 25 years for a variety of scientific projects ranging from solid state physics,
astrophysics, high energy physics and biological physics. I have overseen a much wider range of scientific
and engineering applications of C4++. To me, the appeal of this language has always been the ability
to create rather elegant abstractions while not sacrificing execution speed. It is a powerful tool, and
requires a bit more effort to master than other popular programming languages. To some, it is frus-
trating that C++ code looks very complicated and the number of concepts you need to know until you
are productive is somewhat higher than in "easier" languages. The complexity of appearance quickly
diminishes in importance when one grows familiar with the syntax. You can write easily understandable
and maintainable code to solve your problems within months of starting to learn the language. As you
learn more, you may later revisit your earlier creations and realize that some of those problems can be
solved differently for greater clarity or better performance. With C++, it is no longer a story of “learning
the language” and then using it exactly as you first learned it, for 25 years. That approach (kind of)
works, but it is regressive and hinders further innovation. Many creative people are constantly trying to
bring in new ideas to the language. Even the most experienced C++ programmers, continue to learn
fundamentally new techniques as long as they like. It is therefore unproductive to wait until you have
learned “everything” before you try to use C++. Sure, the code you write now will not be as good as
the code you will write a year from now, but that future, in which you are writing high quality code, is
less likely if you don’t experiment with what you do know. A good attitude to cultivate when learning a
new trick is to ask yourself: “what can I do with this?”

Code written by experienced C++ programmers often looks complicated because the problems we
solve are complex. The language is very good at expressing and organizing complex ideas, and we take
advantage of those features which allow us to solve complex computing problems to run as fast as possible
on modern computing hardware. Simple ideas do translate to simple code in C++. But this programming
language has been developed by a community through a peer-review process to solve real world problems,
which, unfortunately entails a certain complexity. How often do student pilots feel productive after two
flying lessons? C++ is complex. If the few extra key-stokes required for a hello world program compared
to another language deters you, this is not the language for you. But I trust that each of you, in your
respective scientific or engineering fields, have worked with far more complex ideas than what you will
need in this course. If you take the time to learn C++ well, and practice, you can reach targets much
harder to reach with simpler tools.
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1.1.1 C++ standards and this course

The rules of the C++ language are decided by the "C++ standards committee", and codified in an ISO
standard. Ideas for improving the language are proposed in papers. They are reviewed by the community
in a peer review like process. Merits and demerits of proposals are discussed in standards committee
meetings. The committee then votes on whether a proposal should be accepted as a language or library
modification. Proposals which are not accepted may sometimes be re-submitted after the objections
raised during the review process have been addressed. There is no “benevolent dictator” deciding what
is good for everyone, but rather, just a community generating, vetting and adopting new ideas over time.
The first proper C++ standard was C++98, published in 1998. This was followed by a minor revision in
C++403. The language went through drastic and far reaching changes in the next revision in 2011 with
the arrival of C++11. Since then, a new standard has been finalized every three years with the arrival
of C++14 and C++17 and C++420. The C+420 standard was approved in September 2020. The next
official standard is expected to be C+423, which is now near the end of its review process.

For this course, we will set up our tools to use C++20. Even though it will soon be 3 years since
C++420 was approved, it was such a large change in the language that the compiler vendors have not yet
been able to implement all the new language and library features. The previous standard, C+417, is
very well supported by the compilers, and will be perfectly adequate to solve almost any programming
problems you will face. Why, then, do we not stay with C+4177 It is because there is little downside to
setting up the tools to use C4++420. This standard does not throw out everything that came before and
invent a new language. Like most C++ standards, C++20 is largely backwards compatible. New features
were added to the language and the standard library, but few old features were discarded. In fact, most
code written in C++498 will compile and run just fine when using tools set up for C++420. This means,
since C++17 was already an elegant, capable and modern language to solve real world programming
challenges, partially implemented C++20 is no less. Knowing about important shifts about to happen
in the coding best-practices will help you adjust and take advantage of those changes as soon as they
become available. Most of the code you learn in this course will also be valid C++17 code, a little less
of it will be valid C++14 and so on. If, for some reason, you have to write code in the confines of an
older standard, you can do that afterwards, when you are familiar with the core concepts of the language.
There are many instances where a newer C++ standard simplifies the written code. Code becomes more
readable and easier to check for correctness. Although the same programming problems could of course
be solved in older standards, the solutions would often be more verbose, and error prone. I, therefore,
see no reason to avoid already available new features in an introductory course.

Besides, like C++411, C++420 is a relatively large structural change of the language. It will funda-
mentally change how C++ is written in the next 10 — 15 years. Since you are learning C++ now, it
would make most sense to start with this standard, as you don’t have to unlearn previously learned
bad habits. Our great constraint is that we don’t yet have a complete implementation in any compiler.
Fortunately, this is not much of a limitation for an introductory course, since the language is vast enough
to present you with new ideas for months. By the time you internalise the core concepts of C++, the
implementations of C++420 will be more mature. Sometimes we will have to switch compilers between
g++ and clang++ because neither covers all of the most exciting new additions.

1.2 How to try out the examples in this course

You learn to code by doing it. This course will therefore be full of (not always) short code examples and
some exercises for you to solve. Unless you use a modern rolling release Linux distribution (Arch Linux,
OpenSuSE Tumbleweed ...) as your operating system, it is unlikely that your computer has what it needs
to work with C+420. In sectionl.3, you will learn how to set up the most important tools to work with
the newest C++ standard. That, however, can be a considerable amount of work, depending on the
current state of your infrastructure. Do it at your own time, and the effort will pay for itself. But at least
to get started, you can try the examples on one of several excellent online compilers available nowadays.
I recommend (Obs: these links are clickable!) Wandbox and Coliru. These sites allow you to copy and
paste your code into text boxes (with syntax highlighting!) and compile and run your code. The two sites
have slightly different ways of specifying the compiler options, which you should figure out by navigating
to the sites. Look for ways to change an option looking like —-std=c++17 to --std=c++2a. Of
course, if you have a quality compiler of your own, you can do everything locally on your own machine.
Why not try it out straight away? Take the code below and compile and run on one of these webpages,
just to find out how that works!


https://wandbox.org/
https://coliru.stacked-crooked.com/
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// examples/hello.cc
#include <iostream>
auto main() -> int
{
std::cout << "Hello world!\n";

}

Since copy and paste from PDF readers often creates undesirable artifacts, each of the examples you
see in the text will have a comment at the top indicating the name of the source file you should also
receive with these lectures. If copy and paste from this document does not look right, open the source
files in your preferred editor and copy-and-paste from there instead.

1.3 Setting up your own computer for the latest C4++4 standard

This section describes the steps you need to take to prepare your computer to do the examples locally,
without a web based compiler service. As mentioned before, you can do the examples for this course
using the online compilers, but in the long run, you might want to set up your own system properly.
Choose your own time when you want to go through these installation steps. You can also jump directly
to Section 1.4 to dive directly into C++ programming.

1.3.1 Compilers

So, does your computer understand C++4207 Answer: It doesn’t. C++ programs need to be "compiled"
to machine code before they can be executed by a computer. The translation process which converts
human readable C++ code to a series of instructions for the processor is called compilation, and the tool
that does the translation is called a compiler. The compiler is just another program on your computer,
nowadays often written in C4++. In order to develop in C++, you need a compiler. Whichever operating
system you use, there are many excellent compilers for C++ available for you to choose. The first step is
to install an acceptable compiler on your own machine. The usual approach is to "ask the administrator”,
or "use a package manager' to do everything automatically. Do that. But usually the compilers you
get in this way are outdated. No compiler released in 2015 can be reasonably expected to understand
C++20 syntax, which the C++ community finalized in September 2020! We need compilers released after
September 2020. Why bother with installing the older compiler then? Well, we need the old compiler to
build a new one. Below, I will show you how.

How much does it cost to get a compiler? Commercial compilers can be extremely expensive. But
we don’t need those for our purposes. There are two high quality open source compiler suites, GCC
(https://gce.gnu.org) and Clang (https://llvm.org), that you can download and install yourself, without
any administrative privileges (This is certainly true for any Linux distributions. I don’t know how easy
it is for a non-privileged user to install software for their own use, on Windows or Mac OS. Let me know
what you find out!) If you have to build the new compiler locally, your computer will scream a bit for
a few hours, but apart from the electricity bill, corresponding to about 0.1 kWh, you don’t have to pay
anything to get two of the best available compilers.

In the following, I outline instructions for Linux based operating systems, to be executed on the
command line as a non-privileged user. If you are a Mac OS user, you will recognize the steps, but some
commands will not work exactly as I write them. Hopefully you will be able to figure out what works.
If you use Windows 10 or 11, you have access to a Windows subsystem for Linux (WSL), where you
should be able to run most of these Linux style instructions. If you can not make this work with WSL or
Mac OS as it is, you can always install Linux in a virtual machine running inside your primary operating
system. Any Linux distribution released in the last year or two should work. So, here is my step by step
guide to install a new compiler, as your preparation to learn C++ in 2023.

1. In order to build a cutting-edge compiler, your computer needs to have a (possibly older) compiler
on it. Type which g++ Or which clang++ in a terminal window to see if you have any version
of those compilers. Check the version by typing g++ --version or clang++ --version . If you
get 10.0 or a higher number you are off to a great start! Unless you are using Mac OS, in which
case, it is more complicated. On Mac OS, what you have in the name of GCC is usually just
Clang pretending to be GCC, and that Clang is really “Apple Clang”. Version numbers for Apple


https://gcc.gnu.org
https://gcc.gnu.org
https://llvm.org
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Clang are usually two major versions ahead of Clang, (which may cause the misleading impression
that it is more recent than the open source version), although Apple Clang supports much fewer of
the newer language features. Compare the columns for Clang and Apple Clang for the supported
C++20 features at (clickable link —) en.cppreference.com. To learn and experiment with C++ in
2022, it is far better to simply install the open source Clang or GCC compiler.

If the above commands indicate that you don’t have any compiler for C++ installed, use whatever
system tools you have at your disposal to install the best compiler it can. It will likely still be too
old, but it might give us a better starting point. Warning: do not mess with the system compiler,
i.e., the one installed in the path /usr/bin/g++. A lot of your applications are built against the
libraries of a specific system compiler version. Changing the system compiler or its libraries may
make other programs on your system fail, because they often depend on a specific compiler version.
The system compiler needs to exist in order to give us a start. If you use the official tools of your
operating system to install a new compiler, the new compiler is usually installed with a different
name, e.g., /usr/bin/g++-10 etc., which is safer. My recommendation is to make sure you have a
system compiler installed, install it if it is missing, but otherwise leave it alone. Even if it is two
years old, just leave it alone. Use the system compiler to build the latest available open source
compiler (instructions below), and then use the newer compiler for this course.

2. Install essential build tools like “CMake” and“GNU Make”. For CMake, it is better to have as
recent a version as you can. This will be described later, but for starters, get the best version your
package manager can give you.

3. Apart from a pre-existing compiler, you need packages called "flex" and "bison" for compiling gcc.

Install these prerequisites.

Beyond this point, our path splits depending on which compiler you want to install.

1.3.1.1 LLVM/Clang binary downloads

At present, on most systems, llvim/clang often provides a quicker way to a cutting-edge compiler. On
Linux (and Windows 10), clang is not the system compiler, so that one can update /usr/bin/clang++
to the latest available version of llvin/clang, and not break any essential functionality. Try searching for
llvm or clang in your package manager. If clang-10 or newer is offered as a choice, install it. Make sure
you also install clang’s own implementation of C++ standard library, libc++, along with clang. Some
distributions are very literal about packages, so that if you say “install clang”, they just install clang,
without the accompanying standard library. Without a matching standard library, you lose about half
of C++. So, install llvin/clang, and at the very least, also libc++.

If your package manager does not know about clang, you can download it from the LLVM website.
Follow the links to the download page for sources and pre-built binaries. For the latest version available
in May 2023, version 16.0.0, a direct link to this downloads page is here. Find the closest match to your
0S, e.g., Windows 64 bit, or MacOS, or Ubuntu 22.04, ... Closest match usually works. For instance,
if you recently updated to Ubuntu 23.04, you can take the Ubuntu 22.04 version and give it a go. My
OS is (RebornOS, based on Arch Linux) is not in the list. Previously, as a user of OpenSuSE 15.3, I
downloaded and used the version for SuSE Linux Enterprise Server 12.4 without any problems. If none
of these listed options seems promising, jump to section 1.3.1.2.

The downloaded package is an archive containing a plethora of tools from the LLVM suite. The
Windows package seems to be an installer (if anyone of you tried to install it, let me know if it works).
For Linux and Mac OS, install it as follows:

tar -xvJf clang+llvm-16.0.0-x86_64-linux—gnu-ubuntu-22.04.tar.xz

Replace the filename above with your downloaded version. When done, move the resulting folder to
some convenient location. My suggestion: create a “local” sub directory under your home and organize
it so that you can use different versions of various software packages. Like so:

mkdir -p ~/local/llvm
mv clang+llvm-16.0.0-x86_64-1linux-gnu-ubuntu-22.04 ~/local/llvm/16.0.0



https://en.cppreference.com/w/cpp/compiler_support
https://llvm.org
https://github.com/llvm/llvm-project/releases/tag/llvmorg-16.0.0
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Post installation steps

Now, you should modify your environment variables so that this new compiler can be found from any
directory. In Linux, while using the BASH shell, you would do the following.

export PATH=$HOME/local/llvm/16.0.0/bin:S$PATH
export LD_LIBRARY_PATH=$HOME/local/llvm/16.0.0/1lib:$LD_LIBRARY_PATH

Now, change directory to any other place, and type “clang++ -v” and you should see Clang version
16.0.0 in the answer. Try to compile the hello.cc program above from the examples directory you received

by typing:

clang++ -std=c++20 hello.cc -o hellol

If everything worked, you should see a new executable file hello1 in the directory where you executed
the compiler command. Irrespective of whether or not it worked, try the following:

clang++ —-std=c++20 -stdlib=libc++ hello.cc -o hello2

Run the following two commands to check that nei1o2 is indeed linked against the 16.0 version of
Clang’s own standard library libc++ .

1dd hello2

Among the libraries listed here, you should see an entry like
“/something/something/local /llvin/16.0.0/1ib/libc++". If this is the case, your installation is complete
and can be used. Options we used above will be needed frequently. A nice convenience is to create an
alias for the compiler including some desirable options, like this:

alias Clangt+='clang++ —-std=c++20 -stdlib=libc++ -02 -pedantic -Wall -g'

Since this is a C++ course, we stay away from non-standard C++ extensions by using the “pedantic”
option. The “-Wall” means “warn all”, although it now means something like “warn about a lot of
things”, but certainly not everything. Clang has “~-Weverything” for that! We also enable a fair amount
of optimization, choose our desired C++ standard and standard library. We also enabled debug symbols
with the ’-g’. When this is done, we can call the compiler and run the resulting executable like this:

Clang++ hello.cc -o hello
./hello

The alias command and the two export commands to set the paTn and LD_LIBRARY PATH envi-

ronment variables could be added to the .bashrc or a similar shell initialisation file, depending on the
SHELL you use, so that those steps happen automatically every time you open a new terminal.
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1.3.1.2 LLVM/Clang compile from source

In the download page for sources, binaries etc., for LLVM, scroll down, find and download the source
package 1lvm-project-16.0.0.src.tar.xz . You can now unpack, build the new compiler, and
install it in the same directory structure as described in the previous section using the following series of
commands:

tar -xvJf llvm-project-16.0.0.src.tar.xz
cd llvm-project-16.0.0.src

mkdir build

cd build

CC=gcc CXX=g++ cmake -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALIL_PREFIX=~/local/llvm/16.0.0 \
-DLLVM_ENABLE_PROJECTS="clang; 11d;clang-tools—-extra™\
-DLLVM_ENABLE_RUNTIMES="libcxxabi;pstl;libcxx" \
-DLLVM_TARGETS_TO_BUILD="X86" \
—-DCLANG_DEFAULT_CXX_STDLIB=libc++ -DCLANG_DEFAULT_LINKER=11d \
-DLLVM_INSTALL_MODULEMAPS=ON \
-DLLVM_INSTALL_UTILS=ON -DPSTL_PARALLEL_BACKEND=tbb \
-DLIBCXX_ENABLE_PARALLEL_ALGORITHMS=ON \
-DLIBCXX_ENABLE_INCOMPLETE_FEATURES=ON \
-DGCC_INSTALL_PREFIX=$ (dirname $ (which gcc))/.. \

../1llvm
cmake --build . --target all -- -3j 4
cmake —--build . --target install

The second last line, because of the —3j 4 option, asks cmake to compile using 4 processes. Adjust
it depending on the number of processor cores you have. The build step should take quite a while, and
it will make your computer sweat a bit. Depending on what libraries are installed on your system, you
may end up with some errors regarding missing libraries or include files. While installing clang 16 on
different system, I had to resolve issues regarding missing valgrind , missing 1libxm12 and mpfr . Unlike
GCC, Clang does not offer a way to build such dependencies in the process of building Clang. You will
have to install those libraries using system tools, or by simply downloading them and going through the
configure , make make install step for each of them. For the 3 libraries mentioned above, the process
took a few seconds for each.

In the above, I also assume that you have the open source Threading Building Blocks (TBB) library
installed in such a way that cmake can find it. The current implementation of the parallel algorithms of
C++417 in GCC and Clang are based on TBB. In case you want to build without TBB, you can replace
the DPSTL_PARALLEL_BACKEND=tbb with DPSTL_PARALLEL_BACKEND=serial . It is also (unfortunately) com-
mon to build clang entirely without the parallel algorithms. To do that, you would skip pst1; from
LLVM_ENABLE_PROJECTS .

You may also have to adjust a few other options. If you are not using GCC to build Clang, adjust
your cc and cxx variables. I have assumed we are building for the x86_64 architecture. If you are
compiling for an M1/M2 processor on a Mac, you can change the LLVM_TARGETS_TO_BUILD option to
include aarche4 . You can also complete remove that option so that it will build for every architecture
it knows, although that will take a lot longer to compile.

But, if all goes well, at this point ~/local/11vm/16.0.0 should now contain a freshly compiled version
of clang. Follow the steps in the previous section regarding environment variables and aliases (see section
1.3.1.1). Test the compiler as described there.

A typical common issue and one solution: Sometimes, when you install self-compiled clang
as described above and try to use it, you get errors about missing indirectly included headers such
as __pstl_memory . Those headers are actually present, but for some reason clang does not look
for them in the location where the installation process puts them. Go to the folder you used for
CMAKE_INSTALL_PREFIX above. Under the directory include you will find a few files with names starting
with __pst1 . There is also a folder include/pstl . Soft link these from a folder where clang does look:

cd ~/local/llvm/16.0.0/include/c++/v1
In -s ../../_pstl_* ./
In -s ../../pstl ./



https://github.com/llvm/llvm-project/releases/tag/llvmorg-14.0.0
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Clang should now be able to compile and use parallel algorithms using pst1 and tbb .

1.3.1.3 GCC

For a long time GCC used to be the only widely used open source compiler suite. Nowadays clang
provides a great alternative, but the “competition” has probably helped both compilers to get better. As
things stand in May 2023, there are few compelling reasons to install GCC, if you also have Clang 16 on
your computer. The GCC version of the standard library does provide a few extra language and library
features not yet implemented in Clang and libc++. With respect to some other features of C+4-20, e.g.,
modules , GCC is much less usable compared to Clang. Besides, having two different compilers when
developing code sometimes helps finding obscure bugs.

For installation, GCC provides binary distributions for Windows and Mac OS. On Linux it is a rather
straight forward download, build, install process I will outline here. The instructions here are written for
GCC 11.2.0. Adjust the version numbers as appropriate if you wish to use the freshly released 11.3.0 or
13.1.0.

wget ftp://ftp.gwdg.de/pub/misc/gcc/releases/gcc-11.2.0/gcc-11.2.0.tar.xz

tar -xvJf gcc-11.2.0.tar.xz
cd gcc-11.2.0

./contrib/download_prerequisites

mkdir build
cd build

unset LIBRARY_PATH
pathrm .

../configure --prefix=~/local/gcc/11.2.0 —--enable-optimized —--disable-multilib \
—-—-enable-languages=c, c++ —-enable-linux-futex

make —-j 8
make install

Most of the steps above should be self-explanatory for anyone used to compiling and installing software
from source files. A few of the steps above require some clarification. ./contrib/download_prerequisites
is a nice script included with the GCC source tree. It allows one to download a few small dependencies,
such as gmp , mpfr , and mpc , so that they are built at the same time as GCC. You do not need to have
those libraries already installed on your system. The step written above as pathrm . is a placeholder.
What you need to do is to remove the current working directory . from the paT# environment variable.
This is because, one subdirectory in the GCC source tree is unfortunately called cp . During the build
process, GCC has to issue the copy command. If the . directory is in the pata before the directory
providing the cp command, the cp call may be resolved to ./cp, because it exists. That leads to

the puzzling error message cp: permission denied , because the sub-directory called cp is not a
command! Removing . from the paTa prevents this. Along with the course material you should have
received a few utilities. One of them is called pathutils.sh . If you source that file, it does provide

you with a pathrm command as shown above. For the purpose of GCC compilation, you have to
temporarily remove . from the pata . It does not matter how you accomplish it.

Typically my laptop needs about 40-45 minutes to compile GCC with the above configuration. Once
done, we can adjust PATH etc. in a similar way to what we did for clang (see section 1.3.1.1).

export PATH=$HOME/local/gcc/11.2.0/bin:$PATH
export LD_LIBRARY_PATH=$HOME/local/gcc/11.2.0/1ib64:$LD_LIBRARY_PATH
alias G++='g++ -std=c++20 -02 -g -pedantic -Wall'

Compiling with the new GCC can now take place like this:
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G++ hello.cc -o hello

To make the PATH and alias changes “permanent”, insert those lines to the end of your “bashrc” file.
An alternative is to use the environment variable management system called “Modules”.

1.3.2 CMake

CMake is a very popular configuration tool for C++ projects. As we saw in section 1.3.1.2; it is used by
LLVM/Clang. The examples and exercises folders given to you in this course are meant to be projects
managed by CMake. Most modern Integrated Development Environments offer ways to import source
trees with CMake based build systems. The most recent version of CMake available usually has the best
support for the latest C++ standard. Almost all modern systems have some version of CMake installed.
If your cmake version (find out with “cmake —version”) is 3.16 or newer, you probably have a sufficiently
new CMake version. If not, it is fairly simple to install. Go to the CMake downloads page. There
are binary packages for Windows, Mac and Linux (all distributions). Get the appropriate version, and
proceed (Linux) as follows:

chmod 700 cmake-3.23.1-Linux-x86_64.sh

mkdir -p ~/local/cmake/3.23.1

./cmake-3.23.1-Linux-x86_64.sh —--prefix=~/local/cmake/3.23.1 --exclude-subdir \
—-skip-license

Repeat the patH set up commands we used for ccc and clang adjusted for your cMake installation.

1.3.3 A few very useful open source libraries

The purpose of this course is to give you a good introduction to C+-+ in a way that you might use it in
the coming years. This is why we are learning the latest official language standard. Sadly, it has taken
the compiler vendors unusually long to provide stable implementations of many C+-+20 features, such as
modules, ranges and so on. The modules feature is a fundamental language level change. But

features like ranges and format are updates to the standard library. These two C++20 features
add a lot of value and elegance to C++ code. Neither of the two popular open source compilers, GCC
or clang, implements both of these features. Fortunately, these new features are based on pre-existing
open source libraries (range-v3 and fmt), and one can benefit from them even before the compilers fully
implement them in the standard library. These are open source libraries and can be downloaded and
used immediately. If you are already comfortable installing and using third party libraries, feel free to
install it in any way you like. If not, I will propose one way to do that which will make your life easier
while learning. You can later reorganize based on your needs and preferences.

range-v3:

The Range-v3 library brings some nifty conveniences to a C++ project. The C++20 ranges feature

was proposed based on this library. Although the library has been developed further, range-v3
maintains a portion that provides exactly the parts which were standardized in C+4-20 in an appropriately
named namespace : ranges: :cpp20 . Here is an example of its usage:

// ranges example
std::vector<std::string> L{ "Magpies", "are", "birds", "of", "the", "Corvidae", "family" };

namespace sr = ranges: :cpp20; // Assuming range-v3 headers are included
namespace sv = ranges::cpp20::views;

// In case your compiler does have the ranges feature implemented, you can
// instead use

// namespace sr = std::ranges;

// namespace sv = std::views;

// The rest of the code can remain the same


https://cmake.org/download/
https://ericniebler.github.io/range-v3/index.html
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std::cout << "Top 3 after alphabetical sorting...\n";
sr::sort (L) ;

for (auto el : L | sv::take(3) ) std::cout << el << "\n";
// No second sorting. Just look at it in the reverse order...

std::cout << "Top 3 after alphabetical sorting in reverse order ...\n";
for (auto el : L | sv::reverse | sv::take(3) ) std::cout << el << "\n";

Range-v3 is a header-only library. You can download it from this link. Once you download and
unpack it, there is nothing to install. Just include the necessary headers and use it. Since we will be
using several such libraries, we can arrange them in a way so as to minimize the required typing when
using them.

wget https://github.com/ericniebler/range-v3/archive/refs/tags/0.11.0.tar.gz
tar -xvzf 0.11.0.tar.gz
cd range-v3-0.11.0/
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release —-DCMAKE_INSTALL_PREFIX=~/local/cxx2022 \
—-DRANGES_DEEP_STL_INTEGRATION=ON \
—DCMAKE_CXX_STANDARD=20 -DRANGE_V3_TESTS=0OFF -DRANGE_V3_EXAMPLES=O0OFF ..
make
$ make install

Ur U 0 O

r

See the end of this subsection regarding how to compile code examples using this library.
CTRE

Standard library of C++ got some regular expression parsing functionality in C++11. It was based
on the, by then relatively mature and well known, boost regular expressions library. Since then, there is
a growing perception that the interface standardised in C++11 has fallen behind the times. Using the
language features of C++417 and C++20, one can write better regular expression parsers with far more
elegant syntax, faster compilation as well as execution times. The Compile Time Regular Expressions
library (CTRE) is one such library. This functionality provided by this library will not be imminently
absorbed into the standard library. But it is a far better example of regular expression parsing in modern
C++ compared to the old C++11 style std::regex library.

We will explore this header-only library in a later chapter. For now, you can install it as follows:

$ wget https://github.com/hanickadot/compile-time-regular—-expressions/\

archive/refs/tags/v3.6.tar.gz

$ tar -xvzf v3.6.tar.gz

mv compile-time-regular-expressions-3.6 ctre_3.6

cd ctre_3.6/

mkdir build

cd build

cmake -DCMAKE_BUILD_TYPE=Release —-DCMAKE_INSTALL_PREFIX=~/local/cxx2023/ \
—-DCTRE_BUILD_TESTS=OFF ..

$ make && make install

Or Oy Oy Oy

fmt

The fmt library provides fast and type safe formatted output facilities. The syntax is inspired by
the string formatting in Python ( str.format ). Parts of the library were standardised in C++20,
although the popular open source compilers do not have usable implementations. Unlike the other two
libraries listed above, fmt is not a header-only library, although it provides a simple way to use as one
(use compile time definition -prmr_HEADER_ONLY ). Install it as follows:

$ wget https://github.com/fmtlib/fmt/archive/refs/tags/8.1.1.tar.gz
$ tar -xvzf 8.1.1l.tar.gz
$ cd fmt-8.1.1/


https://github.com/ericniebler/range-v3.git
https://fmt.dev/latest/index.html
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$ mkdir build

cd build

$ CXX=g++ CC=gcc cmake —-DCMAKE_BUILD_TYPE=Release \
—-DCMAKE_INSTALL_PREFIX=~/local/cxx2023/ \
—-DCMAKE_CXX_STANDARD=20 —-DCMAKE_CXX_STANDARD_REQUIRED=ON \
—DCMAKE_CXX_EXTENSIONS=OFF -DFMT_TEST=OFF ..

$ make -3j 2

$ make install

Ur

The libraries fmt and range-v3 offer important C+420 features when those features are not
implemented by the compiler. There is a way to use them such that the compilation will revert to
using the native (standard library version) when available but use the external library when not. This is
achieved by using a redirecting header file like this stripped down version:

// Example redirecting header for c++20 ranges
#include <version>
#ifdef __cpp_lib_ranges
#include<ranges>
namespace sr = std::ranges;
namespace sv = std::views;
#elif __has_include (<range/v3/all.hpp>)
#include<range/v3/all.hpp>
namespace sr = ranges: :cpp20;
namespace sv = ranges::cpp20::views;
#else
#error No suitable header for C++20 ranges was found!
#endif

The version header contains information on what is available to the compiler. In the above
example, we use that information to either include compiler’s own version of the ranges library or

the version from range-v3 . In both cases we create namespace aliases sr and sv so that
those namespaces contain the necessary definitions. One can do something similar for the fmt library.
Versions of these redirecting headers are available along with the code samples for this book in the folder
util .

Copy the redirecting headers to a place you will be searching while compiling.

$ cp ProgrammingInC++Book/util/cxx20ranges ~/local/cxx2023/include/
$ cp ProgrammingInC++Book/util/cxx20format ~/local/cxx2023/include/

With a set up like this, you can compile programs using ranges or format by using something
like this as one of the compiler options: -I ~/local/cxx2023/include —-DFMT_HEADER_ONLY .

1.3.4 Integrated Development Environments

Many people (including yours truly) prefer typing their programs in a light weight text editor like “vim”
and perform all configuration, compilation, version control etc. from the command line. The command
line is always there, and this way of development work requires the least resources (RAM, network traffic
etc.). While the graphical IDEs have many compelling advantages, I have found that the extra bells
and whistles sometimes end up wasting a lot of my time. When they work, they can, sometimes, save
time through their auto-indent features or customisable keyboard shortcuts for complex sequences of
operations. In the following, I will describe how to set up a few IDEs on Linux.

1.3.4.1 QtCreator

You can usually install gtcreator using your package manager. If you do that, skip the rest of this
paragraph. If the version available through the package manager is very old, you can download the open
source version from Qt open source downloads page. Download the online installer script and run it.
From the list of packages available in the installer, select gtcreator . Some dependencies will be auto
selected. Probably it is best not to add additional packages at this stage. Select an installation directory


https://www.qt.io/download-open-source
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under your $HOME, for instance, ~/local/ot/5.15.2, and let the installer finish. Set up the PATH
environment variable as you learned in the previous sections on compiler installation. Start the IDE.

e Help -> About Plugins: Enable the plugins in the C++ section: Beautifier, Clang code model,
ClangFormat, ClassView and CppEditor. In the Code Analyzer section, enable clangTools and
cppcheck . In some Linux distributions (like OpenSuSE 15.1), the “Clang Code Model” plugin
is simply not listed. Someone maintaining the package for OpenSuSE thinks it is a non-essential
unsupported extension. Without this extension, this IDE is not usable for C++ development in
2020s. If your distribution does this, you should uninstall their version. It is useless. Download the
open source version from the link above, which retains all essential functionality. Enable “Clang
Code Model”.

e Tools -> Options:

— Under "Build & Run', go to the CMake tab, add a new version of CMake and set the path for
the new version of CMake you installed.

— Under "Kits", go to the compilers tab, and add any new compilers you have installed. You
need to set both the C and C++ compilers.

— Under "Kits", in the Kits tab, create a new Kit with a new name. Choose your CMake version,
Compiler versions for C and C++ compilers. Under CMake Configuration you need to set the
variables CMAKE_CXX_COMPILER and CMAKE_C_COMPILER to the paths you chose for the
kit. In the environment field, set the environment variables LD_LIBRARY_PATH the library
path of your compiler, for instance,

LD_LIBRARY_PATH=/home/you/local/gcc/11.2.0/1ib64

¢ Code formatting:
— Tools -> Options -> Beautifier: In the tab for clang-format, set the path to your preferred
(most recent) version of clang-format.

— Select a code formatting style. I usually prefer “Webkit” for my projects, but that is a matter
of taste. Choose yours!

— Tools -> Options -> Environment: In the Keyboard tab, scroll down to find ClangFormat,
and click on it. Set a keyboard shortcut for “Format file”. I set it to Meta+1 , which does not
conflict with any other keyboard shortcuts I use. Any time I have to indent or format code, I
just press Meta+I .

e Enable STL documentation:
— Download the Standard library documentation for Qt creator from en.cppreference.com ( Look

for Qt Help Book in that page), and unpack the archive.

— In Qt creator, open the dialog at: Tools -> Options -> Help -> Documentation. Use the
“Add” button to add the downloaded archive as a documentation source.

— Restart Qt creator
— Any name in your code for which documentation is available will show a little F1 symbol in
the tool tip when the mouse hovers over it. Pressing F1 then shows the documentation.
e Using: as you would expect with an IDE.
— Open a project by clicking on its CMakeLists.txt file in the File -> Open File or Project dialog,
or the Open project button in the welcome screen.
— Build with Ctrl+b. Run with Ctrl+r.

Comment out or uncomment a line with Ctrl+/ .

— Standard input and command line input: Once a project is open, click on the “Projects” link
on the left panel. In the “Build and Run” configuration, find your chosen kit and click on
“Run”. Click the box “Run in terminal”. This helps with interactive programs which read
from the standard input. There is also a text box there to input command line arguments.


http://en.cppreference.com/w/Cppreference:Archives

14 CHAPTER 1. COURSE INTRODUCTION
1.3.4.2 Visual Studio Code

Cross platform IDE from Microsoft (!), with good defaults. You can download it from its website or a
freely licensed community maintained version of the same IDE from the VSCodium github page. VSCode
can also be installed using the snap universal package manager. VSCodium supports installation through
many native Linux package managers such as yay, zypper, dnf, apt as well as universal package
managers snap and flatpak . Windows users can choose to install VSCodium using the Windows
Package Manager (WinGet), Chocolatey or Scoop. Mac OS users can install VSCodium using brew .

Setup:

VSCode uses json configuration files to store user preferences. Some of the settings are stored
on a per-project basis. Some are stored centrally for the user. The local per-project settings are in a
hidden folder .vscode and can be edited with any editor. I prefer to start VSCode by browsing to
the directory containing the source code and typing code . , which starts VSCode with the settings
I chose for that project. To familiarize yourself with the IDE, first use the top menu to navigate to
Help->Introductory Videos and Help->Keyboard Shortcuts . For C4++ development, you
should then do the following.

Find the “Extensions” button on the sidebar to the left and install /enable

o C/C++ Intellisense extension (ms-vscode.cpptools)

o “Clang-format” extension (xaver.clang-format)

o CMake extension (twxs.cmake) and CMake Tools (ms-vscode.cmake-tools)

If you now close VSCode, navigate to the examples directory for this chapter and start VSCode

there by typing code . , it should ask your permission to configure Intellisense for the folder. In the
bottom bar, you will find clickable buttons showing which compiler is currently in use, which build type
is in use etc. You can change these options by clicking on them. You can also add other compiler versions
there.

1.3.4.3 CLion

This is an excellent IDE available on Linux, Mac OS and Windows, which can potentially improve your
productivity. One feature I particularly liked was how it showed the names of the function parameters
when you are trying to use the function. Libraries like blas often have function signatures with over 10
parameters, many of them of the same data type. It is hard to remember what is what. CLion shows
you the name of the parameter you are currently typing, which is a great help. Support for the latest
C++ features is implemented very well. Two big negatives: it is neither free nor open source, and it is
quite resource hungry. You may be able to get a students’ license for little or no cost. But I hesitate
to recommend it, as it may build a dependency which might end up costing you money in the long run.
I recommend you use open source, or at least, non-commercial tools. I also recommend that you learn
C++ so well that you are not handicapped by the unavailability of a specific non-essential tool such as
an IDE.


https://code.visualstudio.com/
https://github.com/VSCodium/vscodium
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1.4 C+H+: the first steps

I will assume that you have some way of compiling and executing C++ code at this point. If not, you
should revisit Sections 1.2 and/or 1.3. For now, let’s play around with the “hello world” example and
discuss some very basic C++ syntax.

Exercise 1:

[ I O

o o

// examples/hello.cc
#include <iostream>
auto main() -> int
{
std::cout << "Hello world!\n";

}

Compile and run this code in Coliru or Wandbox or on your own computer. What happens
if you changed the formatting of the program like this?

// examples/hello.cc
#include <iostream>
auto main() —-> int { std::cout << "Hello world!\n"; }

You will see that, changing the formatting, inserting extra white space between keywords
etc. have no effect. C++ is oblivious to the white spaces in your code. Proper formatting
is for the human reader, as it is easier to read consistently formatted code. But unlike, say
Python, white space does not demarcate blocks or carry any other syntactic significance. The
two lines before the auto main () above had to be written as separate lines though (more
on that soon).

Now, let’s break this program in different ways to understand the role of different compo-
nents. Where can you delete one or more characters and still compile and run the program?
What happens if you, for instance remove the (a) ; (b) { (¢) } (d) // (e) —> (f)

(g " () \ (1) O () # (k) <<?
Now, in the original code, replace auto main() -> int with int main () to get

another valid and older form of the main () function. The form in which I have written it in
the boxes above represent a new function syntax introduced in 2011 with C++11. Although
it has a few extra characters, it has the advantage of being consistent with the syntactic style
of the post-C++11 language.

1.4.1 Comments on the hello world code

The // sign, at the start of the program above starts a comment. Everything you write after that
in that line is ignored by the compiler. That’s why we could not write the entire text of the code in
one line: it would be ignored because of the // . Comments in the code are for the human readers.
They are not translated to machine code or executed. You can place them anywhere in the code.
But remember, everything that comes after the // in a line will be ignored.

If you want to comment out multiple lines, it is often more convenient to use the alternative
notation /+ text text text =/ . Everything between the /* and the */ is regarded as a
single comment even when spread over multiple lines.

Think of std::cout as a sink which prints what you throw at it on the screen, a bit like the
Fortran write (x,x) or the Python2 print function

The std::cout lineis a “statement”. All code statements in C++ end with a semi-colon, ;
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e #include <header> tells the preprocessor to include the contents of header in the current
“translation unit”. In common tongue, a “preprocessor” is a tool automatically called by your
compiler to do some text manipulations before your code is handed over to the C++ language
parser. You recognize preprocessor directives by the # sign at the beginning of the line. The

#include <header> preprocessor directive asks the preprocessor to, essentially, preprocess the
file header and then copy and paste the text content at the location of the #include <header>.
In our code, the #include <iostream> asks the preprocessor to insert all the definitions

in the header file called iostream into our program. iostream is where we have the in-
put output facilities of C++, e.g., writing something on the screen. If you don’t have it, the
std::cout << "..." function would not be understandable to the compiler. There is an al-

ternative form #include "somefile" which is nearly identical. Conventionally, one uses the
"name" for headers in your own project and <name> notation for standard headers.

Exercise 2:

Fix the following code by filling in the appropriate C++ “punctuation”. If you fix all errors,
the programs should compile and run in your IDE or in one of the online compiler sites.

.+ ()

1 // examples/hello2.cc // broken code for you to fix!

2 #include <iostream>

3 #include <numeric>

4

5 auto main() —> int

6

7 auto x = 2147483645, y = 2147483641

8

9 std::cout << "Mid-point of " << x << " and " <<y << " is "
10 << std::midpoint (x, y) << "\n"

11

12 std::cout << "Naive mid-point of " << x << " and " << y << " is "
13 << (x + y)/2 << "\n"

« (b)

// examples/hello3.cc // broken code for you to fix!
#include <iostream>
#include <numeric>

auto main() <- int
{
auto x = 1000000005, y = 2000403030;

© 0 N O A W N

std::cout << "The greatest common divisor of ";
<< X << n and " << y << " lS "
<< std::gcd(x, y) << "\n";

o I S
w N = O

+ (0

// examples/hello4.cc // broken code for you to fix!

#include <iostream>
#include 'numeric'

N
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5

6 pkw main ()

7|

8 auto x = 15, y = 24;

9

10 std::cout << "The least common multiple of "
11 << x << " and " <<y << " is "

12 << std::lcm(x, y) << "\n";

1.4.2 Functions and the general structure of a program

auto main() —-> int or int main () startsthe definition of a “function” called main . Functions
are reusable units of code accepting zero or more inputs, to calculate a “result” based on the inputs (e.g.,
take input 1.5 and calculate exp(1.5)) or to produce an observable side effect (e.g., take input “Earth” and
write that on the screen). In general, auto functionname (expected_inputs) —> output_type
or

output_type functionname (expected_inputs)

starts the declaration or definition of a function called functionname which “returns” an object of the
output_type type. This part of the function code, where the function name, the types of expected

input parameters and the return value are specified, is sometimes called its header (see below). A func-
tion may have zero or more input parameters, and in C++, when it does not need any input parameters,
the input parameter parentheses are written as we have done for the main () function above, i.e., as
empty parentheses.

Functions can be “invoked” or “called” with some input values, and they can “return” an output
value. Think of the cosine function in mathematics for orientation: you have an angle 60°, you invoke
the cosine function with 60° as the input and receive 0.5 as the answer, or output of the function. The
output of a C++ function is called the “return value”.

The “ body ” (see below) of a function usually contains the recipe, i.e., step by step instructions, to

compute the return value from the input value, and is enclosed in a pair of braces { and } following
its header. The instructions in the body of a function may contain calls to other functions to perform
the calculation. As an example, consider the following function:

auto tanh (double Koala) -> double

{
auto pl = std::exp(Koala);

auto mi = std::exp(-Koala);

return (pl - mi) / (pl + mi);

In the above, line 1 is the function header telling us that we are declaring a function called tanh
which expects a double precision real number as input and returns a value of the same type. In line
2, we have a single opening brace { which matches with the closing brace } in line 7. Writing the
braces enclosing the function body in their own lines is a popular style among C++ programmers, and
one that I personally like. But, as hinted before, this is not a syntactic requirement. I have only written
the function in a way that makes it easy to read. Line 3, 4 and 6 contain the recipe by which the return
value is supposed to be calculated from the input. As you can see, we make use of the input by its name
(i.e., Koala ). This name is up to the person writing the code, and is usually chosen to be meaningful
in the context (unlike in this example.'). In lines 3 and 4, we call another function, called std::exp ,
which is the exponential function in the standard library. The function body can contain as many lines
as it needs, and it can call as many functions as it needs to get its work done.

11 chose Koala to avoid giving the incorrect impression that typical function parameter names like x , i etc. somehow
have special hidden meanings
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A function header followed by a semi-colon (without the braces containing the body), is called a
function prototype. As long as a prototype is visible, it is syntactically valid to use that function. For
the whole program to be compiled into an executable though, a real definition of the same function with
the recipe will be required.

auto file_exists(std::string filename);
auto main (int argc, charx argv[]) -> int
{

if (argc > 1) {

std::string flnm{argv[1l]};
if (file_exists (flnm)) {
std::cout << flnm << " exists!\n";

}

The above code contains a declaration for the function file_exists () , providing only the header,
but no actual recipe to do the job. The existence (and visibility) of a prototype for file_exists ()
makes it possible for the compiler to check that the code in main () , which uses file_exists() ,is

syntactically valid. The program is still incomplete and can not be converted into an executable. But at
least, the correctness of all the places where we are trying to use the function file_exists () can be

checked. This is why, in C and C++4, quite often we make header files containing just these declarations .
These header files can then be included in any other source file in our code where we intend to use those
functions. The compiler can check that we are using them correctly. Separately, somewhere there is
a definition of the function, containing the same header but also a body. The compiler would need to
convert that to binary code at some point. In the final stage of building an executable out of a program
like the above, the compiler invokes a separate program called the linker, which matches up the places
where we used a function like file exists () to the actual binary code generated by compiling the
definition of that function. These definitions are usually aggregated in shared or static libraries.

Every C++ program ° must contain one and only one function named main. When you run a
program, the operating system (OS) calls the main function. Then, as usual when a function is called,
the code in that function is executed line by line until the end of the function (closing brace } of the
function body or a return statement) and then control is returned to the caller. In the case of main ,
when execution reaches its end, the program ends. Officially in C++4, the main () function is expected
to return an integer to its caller, usually the OS. Its return type must be int . If you have read code

like void main () in some book, stop with that, as that is not standard C++. No decent compiler
will accept that.

So, what is this integer value we are supposed to return to the caller of main () 7 A return value 0
means successful completion, and any other value is interpreted as “something went wrong”. UNIX based
operating systems make use of this. While the function header for main must indicate that it returns

an int , uniquely for main () , an explicit return statement is not required! We have used this fact
in our hello_world example code, where the main function ended without a return statement. If you
don’t write one, a return 0; statement will be assumed at the end of main . This special treatment

is only done for main . For all other functions promising to return a value, the compiler will warn if you
forget to clearly write what answer it is supposed to return.

2Technically, only those in a “hosted implementation”, but we can leave that technicality out for this course
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All code which translates to something happening (other than some initialisation) is contained either
in main () , or in functions invoked directly or indirectly from main () To see what I mean by this,
try this!

Exercise 3:

Take this tiny program and compile it using your favourite way.

1 #include <iostream>

2

3 int main ()

4

5 double x = 2.1;

6 X = X % X * X;

7 std::cout << x << "\n";
8 }

Now, try to take one or more lines from inside the body of main to a place outside the main
function. (Don’t create a new function to put them in!) Which of the lines inside main ()
could be placed outside and still have a syntactically valid program? (It is one of the jobs of
the compiler to tell you if your code is not syntactically valid. We ask the compiler by trying
to compile the code.)

You will find that the creation of the variable x and its initialisation at the start of main () can
be outside main () (which will have implications on its life time, which we will discuss shortly). The
rest of the statements performed some action, like calculating some value and changing x to the new
value, or writing something on the screen. These things must always be in the body of a function, and
may only be reached when the said function is called.

So, when you run the program, the OS calls main () and the computer starts executing the in-
structions in the body of main () . In the following example with pseudocode, the execution will start
inside main , write "Hello world" and arrive at line 14. But to execute line 14, it needs £ (7) . It
therefore invokes the function £ with input 7. This is a valid input, as the function f expects an integer
input. Then it executes line 7. For line 8, it needs to calculate g using the just calculated value called

intermediate as the input. So, it invokes the function g, and executes line 3. When it runs the
return statement in line 3, it “returns” to the invocation point, i.e., line 8, and finishes executing it.
Then, it reaches line 9 with the return statement for the function £ , and returns to line 14, from
where the function f was called. Then it comes to line 15, and after that, the implicit return statement
of the main function.

auto g(int x) -> int
{
return x+1;

}

auto f(int x) -> int
{
auto intermediate = 6 * Xx;
auto result = g(intermediate) + 4;

return result;
}
auto main() -> int
{
std::cout << "Hello world!\n";
auto res = f£(7);
std::cout << "result = " << res << "\n";
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Every C++ program has this structure ®. You have an entry point called the main function, and
while executing the code in it, you call other functions, each of which might call any number of other
functions and so on.

Now is a good time to say that the above is just a useful mental model to think about how C++
programs work. Modern compilers perform all kinds of clever optimisations which might re-order or
change the instructions in your program for efficiency, if doing so will produce the same observable
outcomes.

Modern processors also re-arrange the stream of instructions they receive to improve the speed at
which they execute the programs. Do not take the above line-by-line walk through of the example code
too literally. The compiler and the processor will execute your code such that they will produce results
as if they had followed a process like what is described above. But they will often produce results faster
than would be possible with a literal line-by-line execution of the code you write.

1.4.3 Interacting with your program when it is running

Exercise 4:

Standard input: This example examples/math_functions.cc demonstrates some of
the mathematical functions available in the C++4 standard library. It’s a simple program
where a real number is stored in the variable inp and then we print different mathematical
functions calculated at that value. There are two lines in the code which have been commented
out. If you uncomment (remove the // at the beginning of ) the lines 8 and 9, the program
is supposed to ask for an angle to be entered by the user.

1 // examples/math_functions.cc

2 #include <iostream>

3 #include <cmath>

4

5 auto main() -> int

6 |

7 double inp = 3.141592653 / 6.0;

8 // std::cout << "Enter angle: ";

9 // std::cin >> inp;

10 std::cout << "sqgrt (" << inp << ") = " << std::sqgrt(inp) << "\n";
11 std::cout << "cbrt (" << inp << ") = " << std::cbrt(inp) << "\n";
12 std::cout << "cos (" << inp << ") = " << std::cos(inp) << "\n";
13 std::cout << "sin(" << inp << ") = " << std::sin(inp) << "\n";
14 std::cout << "cosh(" << inp << ") = " << std::cosh(inp) << "\n";
15 std::cout << "sinh(" << inp << ") = " << std::sinh(inp) << "\n";
16 std::cout << "exp (" << inp << ") = " << std::exp(inp) << "\n";
17 std::cout << "erf (" << inp << ") = " << std::erf(inp) << "\n";
18 std::cout << "riemann_zeta (" << inp << ") = " << std::riemann_zeta(inp) << "\n";

=
©
—

e Local build and run:

— Uncomment lines 8 and 9.
— Compile it (Type g++ math_functions.cc -std=c++20 )

— Run it (pre ./a.out in the examples ﬁﬂder)
¢ You are trying it out remotely on Wandbox

— Alternative 1: Leave the comments as they are. If you want to change the value of
inp , just change it in code and recompile.

— Alternative 2: On Wandbox, there is a link "Stdin" below the code box. Clicking
it opens a text input box, where you can enter what you want to feed the program

3Coroutines in C4+420 change this a little bit, because they can suspend and resume their execution. Coroutines are
not part of this introductory course


https://en.cppreference.com/w/cpp/language/as_if
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when it expects input from the user. Write some value there before pressing the
"Run" button.

The reason for the awkwardness of programs with standard input on platforms like Wandbox
are as follows. We don’t have direct access to the standard input on the system where our
code runs. The web browser first collects our code and any other parameters (compiler options,
standard input etc.) and then forwards that content to a server, which then executes it, possibly
in a Linux container, and sends us the outputs. There is no direct interactive session on the
computer where the code actually runs.

Coming back to the code above, observe how the output is chained with successive <<
operators: we write the text sqgrt ( and then the value of the variable inp and then the text

) = and then the square root of inp and then an end-of-line character. “ The cmath

header provides a lot of useful mathematical functions. If you want to see what else is available,
click here!

%In older textbooks, you will often find the use of std::endl to indicate the end-of-line. This is now

discouraged. std::endl means "insert a newline character and then flush the output". Additionally, it
was supposed to provide a platform independent end-of-line indicator, i.e., printing a UNIX style end-of-line
character on UNIX like systems and a Windows style CR+LF end-of-line character on Windows. This is no
longer necessary, as a literal ’\n’ character is translated in precisely the same way. And flushing output output
stream after every line is detrimental to IO performance.

Exercise 5:

© 0 N e U A W N e
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Command line arguments: Another way to introduce interactivity is by using command
line arguments. Functions can receive input, and since main is a function, it can too. In the
version we have seen so far, main does not expect any arguments when it is called. But there
is an alternative form of the main function that looks like this:

auto main (int argc, charx argv[]) —-> int

or equivalently,

int main (int argc, char* argv([]) . Like in the other version of main we have seen
so far, the return type of main has to be an integer. But when main is defined as shown
here, the OS calls it in a special way. It takes the full command you type, starting from the
name of the program till the end of the line, and splits it into tokens. The total number of
tokens, an integer, is passed as the first argument ( argc is "argument count") to main
and the entire array of tokens is passed as the other argument ( argv is "argument vector")

of main . Since the program name itself is also in the command line when you run it, the

integer argc received by main as the first argument can never be zero, and the name of
the program is always the first element of the array of arguments.

// examples/math_functions_cmdln.cc
#include <iostream>

#include <cmath>

#include <string>

auto main (int argc, charx argv[]) -> int
{
double inp = 3.141592653 / 6.0;
if (argc > 1)
inp = std::stod(argv[1l]);

std::cout << "sqgrt(" << inp << ") = " << std::sqrt(inp) << "\n";
std::cout << "cbrt(" << inp << ") = " << std::cbrt(inp) << "\n";
std::cout << "cos (" << inp << ") = " << std::cos(inp) << "\n";
std::cout << "sin(" << inp << ") = " << std::sin(inp) << "\n";
std::cout << "cosh(" << inp << ") = " << std::cosh(inp) << "\n";
std::cout << "sinh(" << inp << ") = " << std::sinh(inp) << "\n";
std::cout << "exp (" << inp << ") = " << std::exp(inp) << "\n";
std::cout << "erf (" << inp << ") = " << std::erf(inp) << "\n";

std::cout << "riemann_zeta (" << inp << ") = " << std::riemann_zeta(inp) << "\n";

21
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Now compile it locally by typing g++ -std=c++20 math_functions_cmdln.cc -o mathfunc
to obtain an executable called mathfunc .

You can also compile and run it online at Coliru. Coliru shows you an editable field at the
bottom of the screen with the command it intends to run. Something like this:

g++ —-std=c++2a -02 -Wall -pedantic main.cpp && ./a.out

They are chaining two commands into one: By using the «s token, they are telling the
(most probably Linux) command line that it should compile using g++ , and if that succeeds,
it should run the resulting executable. They save the program you enter in the code box under
the name main.cpp , which is why you see main.cpp in the command. And what is a.out 7
When we don’t tell the compiler any name for the executable it is supposed to generate,
conventionally the compiler chooses the name a.out automatically. That’s why Coliru runs
your code by calling a.out by default. If you want to make it look like the instructions for
the local compilation and execution above, you can modify their command line to this:

g++ —-std=c++2a -02 -Wall -pedantic main.cpp —-o mathfunc && ./mathfunc

When you run the program by typing ./mathfunc, the main function will be called
with arge = 1 and argv = ["mathfunc’]. Note how argc, the argument count, is 1, when
we pass nothing to main , because its name is always in the array of tokens. If now you run
it again like this: ./mathfunc 1.5, the main function will be called with argc = 2 and
argv = ["math func”,”1.5”]. The argument argv is received as an array of character strings.
Our program converts the relevant token to a real number using the function std::stod

(string to double) and replaces the value of inp with the result. Try it out with a few different
inputs on the command line!


https://coliru.stacked-crooked.com/

Chapter 2

Overview of C+-+4 fundamentals

2.1 Values, types, objects and variables

In the exercise programs we have seen up to this point, there were statements like this:

auto x = 15;
double inp = 3.141592653 / 6.0;

In each instance, we create new variables in a program. When we do so in C++, the compiler has to be
able to determine the type of the variable. In the relatively newer syntax with the auto keyword, the
type is inferred from the initial value. In the example above, x is of type int because 15 is an integer.
Had we written auto x = 15.0; instead, the type of x would have been a double , because 15.0
is a double precision real number. When the compiler reads this code, there is no ambiguity as to what
type of variable x is, so that it can generate instructions for the CPU to work with x . In the second
line above, I show another perfectly valid version of variable declaration, where we are quite explicit: we
want a variable of name inp , type double and value as given on the right hand side.

C++ is a statically typed language, like C, Rust, Fortran, Java and so on, and unlike Javascript,
Python or Perl. This means

e before the program ever runs, during the compilation process, the compiler must be able to deter-
mine the types of all objects, i.e., inputs to functions, result of functions, variables etc. throughout
the program

o the type of those objects are immutable for their entire respective lifetimes.

Since the notion of a "type" is so important in C++4, let’s discuss it a bit while we are laying our
foundations.

The numbers ..., —2,—1,0,1,2, ... are values of the integer type. Similarly 0.5,6.67 x 10~1,1.381 x
10723 are values of real numbers. “Monday”, “Tuesday” etc. are possible values representing weekdays.
Values tend to have meanings attached to them, and we are accustomed to interpreting values of different
types in our day to day life, and have a working notion of what different types of values are. Humans
seldom get confused about whether 729 is bigger or smaller than "Tuesday". We understand intuitively
that such a comparison makes no sense as we are comparing entities of different types. This intuitive idea
of categories is a good starting point for our purposes, but it needs to become a bit more well defined
within the context of programming languages.

Let’s play a game: Computers store information in binary bits, which means, to do any useful work
with the values we care about, there has to be a mapping between the values and a (possibly unique)
binary representation which the computer may manipulate. Imagine that you are playing a game with a
very gifted friend who can do arithmetic very quickly. But you are only allowed to communicate with each
other by holding out your hands with different numbers of fingers extended. You need to communicate a
task, such as adding or subtracting small numbers. Your friend has to have a unique way of interpreting
your request, and respond also with this kind of hand gestures. Think about what kind of rules you have
to make for this game to work. How would you ask your friend these kinds of questions and interpret the
answers uniquely?

23
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Bits | unsigned | signed(naive) signed(2’)
000 0 0 0

001 1 1 1

010 2 2 2

011 3 3 3

100 4 -0 0-23"T=4
101 ) -1 1-23"1=-3
110 6 -2 -2

111 7 -3 -1

Table 2.1:  3-bit unsigned and signed integers. The second column gives the interpretation of the bits
as a plain 3-bit non-negative binary number. The third gives the interpretation as a signed 3-bit integer,
in which we simply treat the left bit as (the presence of) a minus sign. The last column shows signed
integers in the two’s complement representation.

e a+b=7?, where a and b are any two integers between 0 and 127

e a—b="7? where a and b can be positive or negative.

Remember, you can not make a plus with two fingers painting a plus, or minus, and you can not spell
it out in a human language. Think about how to represent numbers, how to deal with negative numbers,
how to communicate different tasks, and if all this is too easy, how to accommodate real numbers. Now,
imagine your friend with lots and lots of hands with 64 fingers in each and you are getting close to
something useful! Note: This is a thought exercise. In real life, the finger positions for specific powers of
2 might be deemed offensive.

It is instructive to further discuss integer values, as they are simple, and yet illustrate a few important
concepts. Every combination of IV bits is a valid N —digit binary integer, so that the mapping of an integer
to a binary representation is relatively straight forward. For practical, engineering reasons, our CPUs
can not contain circuitry for an unlimited number of binary digits, which puts further constraints on the
"native" binary representations. We can handle arbitrarily large numbers with hand signs in our game,
just by agreeing on start/stop finger configurations and adding as many binary digits as we like. But the
largest number of bits we can quickly (“natively”) handle is limited by the number of fingers we have.
For instance, the processor on my laptop can natively manipulate 64 bit integers. Assuming that we
use these 64 bits or, 8 bytes to store integers, we have 264 different possible values. If the values we are
interested in are in the range 0 to 254 — 1, we can simply map each combination of these 64 bits to a
value. But what if we also want negative numbers? There is no place for us to write a "minus sign", and
we must use one of the bits to store that information. Imagine that we used the "left-most" bit as the
sign bit. If it is 0, we interpret the number as positive, if it is 1 it is negative. Now, did you realize that
we created two representations for 07 That’s inconvenient, as now we have to check against two things
before being able to answer if some integer value is 0. Another possibility is to use what is known as
"two’s complement" representation. In this bit representation of integers, we also use the left bit as the
“sign bit”. There is an N — 1 digit binary number left after we have used up the sign bit. Let’s call that
number m, and the original full N bit number n. If the sign bit is 0, the number n is positive, and has a
value m. If the sign bit is 1, n is negative, and has a value n = m —2¥~!. For N = 3, we can enumerate
all the possible signed integers in this representation in table 2.1

Observe that we have no duplicate representation of 0 or any other number in the two’s complement
representation, but, there are 3 positive numbers and 4 negative numbers. In general, in this representa-
tion, there are 2V ~! negative numbers {—2V~1 —(2N=1 — 1) .., —1}, and 2V ! non-negative numbers,
{0,1,2,...,2V~1 — 1}. Native representations for signed integers, other than this two’s complement rep-
resentation are rare, if present at all.

Observe also that even in this extremely simple case of an integer, the bits do not inherently represent
any values. The value, or meaning, a sequence of bits (e.g., 101) has depends on a set of rules we construct
to interpret them. This “meaning” is not something arbitrary or philosophical. Integers are expected to
behave in a certain way. Consider the simple operation of adding two 3-bit integers. If the two numbers
we are adding have binary bits 100 and 001, and are integers as we know them from mathematics, the
result will be

o 101 if the bits represent unsigned integers (5 =4 + 1)
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e 001 if they are signed integers in our naive representation (1 = (—0) + 1)
o 101 again if they are two’s complement signed integers (—3 = —4 4 1).

Just saying that they are made of 3 bits and are integers does not specify how these bit values are to
be combined sensibly to produce new values in a manner that preserves their associated meanings. We
thus arrive at a few important definitions.

A value, for us, is a sequence of bits along with an associated set of rules to interpret them. A type
consists of a specification of a bit representation and a concrete set of fundamental operations on one or
more values, which are necessary to ensure that the set of values behaves like the abstract idea it is meant
to represent. The type determines all possible values. A concrete instance of some bytes, somewhere in
the memory of a computer, holding a value of a certain type, is an “object”. An object with a name is a
variable. A statement introducing a variable to a program is a “variable declaration”. The two statements
at the start of this section were variable declarations.

int x = 3; creates an object

e which will be referred to by the name x throughout its lifetime

o which has the type int , meaning that it is (normally) 32-bit long, and its bits are to be interpreted
as signed integers in the two’s complement representation, and that it is to be used with a set of
rules designed to closely mimic the behaviour of integers in mathematics)

 holding a certain bit pattern, which when interpreted by the rules of the type (integers in the two’s
complement representation), translates to a value 3

What possible types could variables have? Like in many programming languages, in C++, the
programmer can add new types representing important ideas in their project and then declare and use
variables of that type. So, there is an infinite number of possible types. But there are a few types which are
called built-in types, such as int , long, float , double, char 6 and bool . We have seen int
and double before, which represent integers ( int is usually the fastest kind of integers supported by
the hardware) and double precision floating point numbers respectively. long represents large integers,
often 64-bit on today’s computers. f£loat are 32-bit real numbers. char is a single character, or a one
byte integer. A variable of type bool can only have two values, true or false , a very important
type for logical operations. Values of these types and operations on them correspond directly to the
capabilities on the processor. Much of the design of C++ is about allowing good programmers to create
user defined types which can be as efficient as built in types, with as little overhead as possible.

In C++, the type of a variable can not change during its lifetime. It is not possible to redeclare a
variable, with equal or different type, while the variable is still alive.

auto x = 4;
auto y = x * x;
auto x =y x y * y; // Not allowed. x is already defined in this context!

std::string x = std::to_string(x); // wrong on multiple levels!

Only the walue of an existing variable may be read or updated. The type is immutable. The above
duplicate definitions of x may look preposterous to programmers who previously worked with Fortran
or C or other statically typed languages, but a python programmer might be tempted to think that
auto x = 4; isjust like x = 4 in python, and therefore in the spirit of the python

# Python code
=01, 2, 3, 4, 5]
L = np.array (L)

=

one might be tempted to write

std::1ist L { 1, 2, 3, 4, 5 }; // This is fine
L = std::valarray(L); // This 1is not!
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This is ill-formed in C++, because assignment does not change the type of a variable. Even if
we had written a function to_valarray taking a list as an argument, and used that instead of
std::valarray (L) above, L would remain an std::1list<int> , and therefore the assignment
will fail. Using an auto at the beginning of that statement will not help because we can not create a
variable of the same name as an existing and visible variable'.

In the following code, we create two variables of the types int and float, representing 32-bit signed
integers and 32-bit real numbers respectively. We then assign a simple integer 1 to both of them.

int v1 {
float v
vl 1;
v2

_— O

[

bi

After we have assigned 1 to vl and v2, what are the types of the two variables? They remain,
as before, int and float respectively. Does it matter? “since they both just hold 17?7 To us,
frequently not, but to the computer, a great deal! This is because we don’t see the actual bits like
the computer does. What is stored in memory in the bits holding vl and v2 ? On my computer,
v1 : 00000000000000000000000000000001 and »2 : 00111111100000000000000000000000. You see, the
rules of interpretation of the bits differ a lot between the so called “floating point” numbers and integers,
so that both the above bit representations actually hold the value 1, as in “the number of stars in the
solar system”. If the computer is going to do any meaningful operations on v2 , and get the correct
answers, it needs to use the correct set of rules to interpret the bits of v2 . Those rules, for the floating
point type will be discussed in a later section. For now, let’s just note that they are very different than
the rules for integers. For instance, in C++, when we write 1 / 2 | the answer is 0, because 1 and
2 are governed by the rules of integer arithmetic, and integer division of 1 by 2 yields 0°. When we
assign the literal value 1 to v2 (declared as a float) in line 4, the integer literal 1 is first converted into
a bit pattern storing the same value but following the “floating point” rules rather than the integer rules.
Then those bits are stored in v2 . In C4++, the rules state that while a variable lives, the interpretation
of its bits as well as the operations done to it follow the rules defined by its type.

2.1.1 Representation of real numbers

Real life computing hardware is subject to those pesky laws of physics and practical engineering consider-
ations arising from those laws of physics. We can not use an infinite number of bits inside the fundamental
units of computation in our processors. Remember how we had to settle for a native bit-width for the
representation of the integers? One can string together many of those native bit-width integers to create
arbitrarily large numbers, but calculations using such composites will be sophisticated multi-step oper-
ations requiring comparatively more time. By comparison, any values you can express using a native
representation can be used directly by the processor for single step computations.

This limits those native calculations to 2V different integer values, and we can choose them to be

{0,1,2,...,2% — 1}, by using unsigned integers or {—2N—1 —2N=1 4 1 . —1,0,1,.28"1 — 1}, by us-
ing signed integers. Typically nowadays, N = 32 when we choose 32-bit versions of such integers
by using int or unsigned int, or N = 64 when using 64-bit versions of integers long or

unsigned long . The number of different values is always 2V. As long as we are dealing with integer

values smaller than what can be represented in int , long etc., our computations can be exact. To
compare two integer values, the processor can safely compare their individual bits, and see if the bit
sequences for the two integers are in fact identical.

Real numbers are quite different. Given any two different real numbers, x; and x5, there are an
infinite number of real numbers between them. There are an infinite number of real numbers between
1.00001 and 1.000011. There is simply no hope of storing them in their full glory using a finite number
of bits.

lexisting variable declared in the same scope. See the discussion of “scope” below.
2Note for python programmers: arithmetic with integers follows integer rules, and therefore 1 / 2 is 0. If you want

real number arithmetic, use at least one real number in one side of the arithmetic operator: 1.0 / 2.0, 1. / 2. |

1. / 2 and 1 / 2. will all result in a double precision floating point result 0.5.
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If we were trying to represent the space of real numbers between, say, 0 and 27 as accurately as
possible using 64-bits, we could divide the interval into 254 equal parts, like bins in a simple histogram.
A real number in that pre-defined interval can be represented by the integer bin index b, i.e., as r = %%-f.
All the real numbers which fall in a certain bin will have to be treated as equivalent, because there would
be no way to distinguish between them in our representation. But that’s probably going to be OK, as
the bins will have a width of about 3.4 x 1079, This is about as well as we can do to resolve very close
real numbers in a pre-defined interval. But this is not a practical representation for most tasks we might
want to do with real numbers. What if we wanted to, say, add two of them!

If real numbers are to be used to represent quantities of things, adding or multiplying them will be
necessary, and their values won’t remain bounded in a pre-defined range. If, instead of 27w, we stretch
our pre-defined interval to a very large range, say, 0 to 10'°°, we will, for many cases, successfully fix the
“overflow” problem. But then, we would have stretched our bin size to 5.4 x 103, so that we will lose all
ability to distinguish between very real life numbers such as 1.0, 0.0001 and 2000000.0. What we need is
a system in which we can distinguish between any two closely separated numbers, and represent a very
large range of values using the same representation. You might be thinking, that’s not possible, because
there just isn’t enough information in 64-bits. You would be right.

The solution used for real numbers by almost all computers today is an internationally agreed stan-
dard, called the IEEE 754 floating point representation. This is a variable resolution representation, and
it is important to understand this aspect to write robust code for science and engineering projects.

What we use is based on the “scientific notation” of real numbers, as in, 6.023 x 1023, The 6.023
part is referred to as the mantissa, 10 is the base and 23 is called the exponent. Imagine that you have
exactly 10 characters to write your decimal real numbers. You can create a convention about where to
store what information, but all you write down are the digits. No decimal point, no minus sign. Pause
here and think how you will do that, before continuing to read how it is done.

If we denote your digits as dy, d1, ds, ..., dg, you may have come to the idea that you will use one place,
dp, to store 0 or 1 for the minus sign, a certain number of digits (say 3) as the exponent (including a possible
minus sign for the exponent!) and the rest to store the mantissa. Your number dydidadsdsdsdedrdsdy

will represent the value (—1)d0 dy.dsdgdrdgdg X 10(_1)011‘12‘137 where dy and d; only take values 0 and 1
for the two possible minus signs. There is a compromise on how many digits you want to keep for the
mantissa and how great a range of values you can represent. Notice also that there is a fixed number of
different possible mantissa values determined by how many digits we decide to give the mantissa. Given
a fixed exponent, that’s how many different values we can have. The mantissa values are always of the
order 1, and the exponent scales that mantissa to a larger or smaller value. Given any exponent, we
have an equal number of representable values. Between 1 and 10 in the above representation, we have
10% different possible values. All numbers in this range have the exponent 0. So, the variation comes
entirely down to the mantissa digits. Between 100000 and 1000000, all numbers will have an exponent
5, and therefore, we can represent, again, exactly 10 different values! Between 0.001 and 0.01 we will
again have exactly 106 different values. As should be clear, by now, not only can we not represent every
possible real number, but the space of real numbers will be divided in a non-uniform albeit systematic
manner. If we count only numbers we can represent in our system, there will be more real numbers close
to 0 than close to larger and larger values. Perhaps you are thinking whether you would ever notice this
non-uniformity. Let’s take this example: Think how you will represent the number 1 million in the above
scheme. Now, add 1 to 1 million, and write the result again in that representation. You will find that
they will be the same. In our crude 10 place system, the representable real numbers become sparser and
sparser as we go to bigger values, and become so sparse at around 1 million that adding 1 to that number
does not change it at alll Now, suppose you added 1.1 and then again 0.5 to that number, and then
subtracted the 1 million. You will be left with 0, rather than 1.6.

The above little exercise with a few decimal digits is actually quite similar to the way real number
arithmetic works natively in computers. Instead of decimal digits, we use a certain number of binary bits
to store our real numbers in a sign-exponent-mantissa scheme, and we have a compromise between how
many bits of mantissa we want to store and what total range of values we want to cover. There is however
one peculiarity of the binary numbers in the scientific notation, that offers us an opportunity to steal one
extra bit of mantissa. In the scientific notation with decimal numbers, the mantissa d4.dsdgd;dgdg could
have at position d4, any non-zero decimal digit 1...9. If d4 is 0, we would just move the decimal point right
and adjust the exponent until we have something non-zero at d4. If our digits are binary, there is only one
possible non-zero binary “digit”. It’s always 1! If it is always 1, we don’t need to store it in our mantissa,
and we can use that one extra bit to store an extra bit of mantissa at the right. This makes our binary
representation something like s(esejeses...)(momima...) for the number (—1)°1.mgmima... x 28162,
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Our attempt to squeeze in one extra bit of mantissa has cost us something very important though: the
number 0 is now gone! That is the one number for which we can not shift the decimal point left or right
to bring a non-zero digit before the decimal point. In our above binary representation, the number 1.0
would have the sign bit s = 0, all the exponent bits 0 and the stored mantissa bits also all 0. So all
bits in fact would be 0. If we wanted to save 0, we would have the exact same thing! They will differ
only in a place we decided not to explicitly store. We get around this by adopting a convention. our
exponent bits are stored with a shift encoding. If we had 8 bits for the exponent, they can represent 256
consecutive integer values. But, we can choose where to put our “origin” in this 0 to 255 range. If we say
that 127 encodes 0 in this range, 128 encodes 1 and so on, while 126 encodes —1 etc., we have one way
of representing all our exponents. If we do that, 1 in our binary representation will have an exponent
0 represented by 01111.... The mantissa and sign bits will still be all zero, but at least, it creates an
opportunity for us to solve our problem. By convention, we say 0 is represented by a number with all
bits 0. 1 now is different, because the exponent 0 is now represented by the integer 2%~ — 1, where n.
is the number of bits in the exponent.

For 32-bit floating point numbers, the computers use 1 sign bit, 8 bits for the exponent with a shift-127
encoding, and the remaining 23 bits as mantissa, with an “implicit 1”7 on the left of the decimal point.
64-bit, double precision floating point numbers, as represented by the type double in C++, are similar
except that they store a sign bit, 11 bits of exponent and 52 (fraction) bits of mantissa.

Exercise 6:

To help familiarize you with real numbers in your computer, as represented by IEEE 754
floating point numbers, you will find a program called examples/binform.cc. The syntax

in the code, apart from the main () function is not of interest at the moment. Observe
how we print the binary forms of various numbers, when they are of types double , float

unsigned long, int etc. Put a few other numbers of your choice in the code, and observe
the output, and try to understand how these numbers work.

Up to this point, we have used an important concept, lifetime, without explaining. By lifetime of
a variable, we mean the parts of the code where the variable is available for use, e.g., for reading its
value (= interpreting its bits according to the rules of its type) or saving a new value (= setting bits
representing the variable in such a way that when interpreted by the rules of the type, the desired new
value results). A variable is not available for use before it is declared. This means, at the point where
the compiler is translating a statement using the name of a variable, the compiler must already have
encountered its declaration, and therefore know about its type.

2.1.2 Blocks

When does a variable cease to exist? The notion of a “block” is useful for answering that. In C++, you
can group a few statements into a block by putting them within a pair of braces as follows.

statementl;

{ // block 1 starts here
statement?2;
statement3;
statement4;

{ // block 2 starts here
statement5;
statement6;

} // block 2 ends here

} // block 1 ends here

statement7;

Statements 5 and 6 constitute a “block”. This block is contained inside another block, which also
contains statements 2, 3 and 4 before it. Blocks can be nested to arbitrary depths to impart a tree
like structure to the code. They are used to generally group statements together which belong together.
Where can we create blocks? Wherever some “action” is happening, in other words, inside function
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bodies. Function bodies are themselves blocks containing some statements and blocks. If we need to do
3 things when a condition is satisfied, we put the three things in a block:

if (condition) {
do_thing_1;
do_thing_2;
do_thing_3;

The block containing the three do_thing___ statements above, bounded by the two braces , behaves

like a compound statement for the if construct. Similarly, we use blocks to bundle multiple statements
to be repeated in loops. Anywhere in a function body, if we need to or want to isolate or group together
a number of statements, we can enclose them in a pair of braces { and } and create a block. But
just like you couldn’t place an orphaned executable statement outside all functions, you can not create a
block outside all functions. Function bodies, in this sense, are top level blocks.

Blocks have the important property that variables which are declared within a block cease to exist
when the code in the block finishes executing. When the code execution reaches the closing } of the
block, every variable declared within the block is “destructed”. Once a variable is destructed, its name
can be re-used to create (construct) another variable of the same or a different type.

void example ()

{

double x { 1.0 }; // these are not the braces you are looking for

{
// block 1
std::cout << N << "\n"; // this is an error, because N is not yet defined
int N { 500 };
double y = std::exp(N * log(x));
} // variables N and y are destructed here, so that the names N and y become "undefined"

std::cout << N << "\n"; // this is an error, because N is undefined at this point.

{

// block 2
std::string N { "Jupiter" }; // this is OK!
std::cout << N << "\t" << y << "\n"; // this is not ok.

Notice that the variable x is used inside the block 1 above, although it is not declared inside that
block. Variables declared in a block A are visible at all statements or blocks which are parts of the block
A, starting immediately after the declaration, until the end of the block A. And when a new block starts,
the visibility of all the variables at the point of the beginning of the block is carried over into the block.
But variables are not visible outside the block where they are declared.

This last aspect is somewhat of a surprise for experienced python programmers when beginning to
learn C++. In the following badly written python program, some variables defined inside of if blocks
are used outside those blocks.

# Python code (pyscopeZ.py) illustrating different scoping rules
import sys
if name_ == "_ _main_
if len(sys.argv) > 1:
N = int (sys.argv[l])
else:
N:

mo.

(S

def (n) :
if n > 1:
return n  fact (n-1)



12

13

14

16

17

18

30 CHAPTER 2. OVERVIEW OF C++ FUNDAMENTALS

return 1
while N > O:

print (fact (N))
if N % == 0:

fact = N » (N - 1) / 2
N =N -1

Above, the variable N is initialised inside an if and else block, two layers deep, but is available
for use later. The variable N in lines 13 — 17 is the same variable as the one defined in lines 5 and 6.
Running the above program with, for instance, a command line argument of 7, prints

5040
720
120
24
Traceback (most recent call last):
File "pyscope2.py", line 13, in <module>
print (fact (N))
TypeError: 'int' object is not callable

So, in the above python program, the loop body executes correctly for N =7, N = 6, N = 5 and
N = 4, but then for N = 3 it runs into an error, namely int is not callable. fact is declared as a
function in line 9, but once we reach line 16, fact becomes an integer! This does not happen until the
loop body executes with N = 4 and we reach line 16. Everything seems fine in the beginning, and if N
never got to the value of 4, the program would run through, and we wouldn’t notice the error. But during
the course of program execution, a situation arises which changes a function into an integer! To reason
about the expected behaviour associated with the name fact at one specific point, we can not rely on
its definition as a function, but we must understand how we got to that point, i.e., what statements were
executed before the point of usage (in this case: whether or not line 16 has been executed before our
attempt to use fact ). Since loops and branch statements exist, the sequence of statements leading up
to our usage point might actually be located later in the program source code. Had we changed the fact
in another way, so that the program did not crash but simply changed behaviour, e.g., replacing line 16
above with fact = lambda x : x + 1, we would have a program that does not crash, produces
the correct results initially, but changes its nature during the execution of the program, such that regions
of code which previously produced good results would start producing rubbish. This is undesirable in
large complex projects where such errors would be extremely hard to notice and fix. This specific kind
of error, which can happen in python, can not happen in statically typed languages, such as C++.

The design goals for different programming languages are different, and our goal here is not to discuss
python, and its best practices, but to understand the reasoning behind some of the complexity in C++
syntax. Python associates unchangeable types with values, such as 3.14 or "pi", but its variables can
change type freely at execution time. In C+4+, both values and variables have strict unchangeable
types, and we must tell the compiler in some way, what type is bound to a name we introduce into
the program. The manner in which we tell the compiler the specific immutable type associated with
a symbol may be verbose and explicit, e.g., unsigned long it = vec.size(); , or the more

compact and modern auto it = vec.size(); , but in both cases we convey the complete type
information to the compiler. auto does not imply that we leave the type of it undetermined until
the function M.size () runs and then look at the return value and decide what type it is. Return

types of functions are also immutable, so that before the program ever runs, the compiler can check the
declaration for size () and without running anything, determine that we must mean it to be of the

unsigned long type. auto is just a typographic convenience, and it has no ability to postpone
determination of the type of a variable till execution time.

Similarly, python does not impose the hierarchical lifetimes in nested blocks, but C++ does. In C++,
a variable declared inside a block (easily recognizable by enclosing braces { and } ), are not available
outside. They live separate lives compared to other variables of the same name appearing outside the
block. Life time of a variable is easily recognized by looking at the code lines where it is declared and
the surrounding pair of braces. Types don’t change during the lifetime of a variable. To understand
how a name appearing in one line of code might behave, we have to see the scope where that variable or
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function was declared, irrespective of the sequence of lines executed until we reach that point. These rules
impose a certain structure into our C++ programs which sometimes do not look particularly “easy” to
the beginner or “pythonic”. The benefit is stricter guarantees on run time behaviour which is extremely
valuable for large projects.

Let’s continue the discussion of variable lifetimes in C4++. From the above discussion, we reemphasize
that in any given line of C++ source code, you can tell the type of all variables involved without
considering the code paths taken at execution time to reach that line. It follows that for each declared
variable, there exists a range of source lines where that variable is available for use or modification.
Throughout this range, we have access to the value it stores, but over this entire range, its type remains
as it was first declared. This range of visibility for a variable is called its scope. The scope of a variable
in C++ is a purely “spatial” concept in the landscape of the source lines, not a space-time concept like it
can be in dynamically typed languages like python. We need to ask “where is it” and not “what happened
along the (not necessarily linear) path the particular run of the program took to get to that point in
code”.

Function bodies, as we noted earlier, are top level blocks. They define a top level block scope for
variables. Formal parameters to a function, defined in the function header, are variables whose scope
begins and ends with the function body. Their scope extends throughout the function body. We will
see later that certain other control flow constructs such as if statements, and range based for loops,
may introduce new variables in their respective “headers” whose scopes extend over the blocks under
their control. Variables can also be declared anywhere inside a block.

The scope of a variable defined inside a block begins at the point of its declaration, and ends at the
end of the block. It is however possible to make a variable “invisible” for a part of its scope. In the
following code we have two variables called name , with their visibilities colour coded. The first name ,
defined in the outer block would have been visible over the entire inner block, but something hides it for
a few code lines. ..

void example ()

{
std::string moon{"Titan"};
std::string name = moon;
std::cout << name;

{

std::cout << name;
int name{10};
name = name - 3;

std::cout << name;

}

std::cout << name ;

The inner block creates another variable called name , which shadows the previous definition of
name in the outer block. This is allowed. Since we recognize the variables declared in line 4 and 8 as
separate entities, there can be no ambiguity about the nature of name in any given line of code. Nothing
we do in line 9 and 10 will be able to change the fact that name refers to a string on line 12. This
can be thought of as some form of fine grained control over variable visibility in C++, but in the opinion
of many, including me, this leads more often to subtle bugs. This happens, for instance, when the types
of the inner and outer scope variables are the same, as illustrated in the listing below.

auto add_till (unsigned int n) -> unsigned int
{
auto tot = 0U;
if (n $ 2 == 0) {
auto tot = funcl (n);
tot = tot + func2(n);
// std::cout << tot << "\n";
}

return tot;
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The above function always returns 0 irrespective of the value of n and irrespective of what functions

funcl or func2 return. We intended the variable tot declared in line 3 to hold the calculated
answer in all circumstances. For odd inputs, the intended output is 0, and everything goes to plan. For
even inputs, the intention might have been to set tot to the sum of calls to various functions like
funcl and func?2 . But in line 5, we accidentally created a new variable called tot which shadows
the one created in line 3. Value assignment in line 5 and the value change in line 6 then happen to
the newly created variable, leaving the variable created in line 3 untouched. The accidentally created
variable tot in line 5 expires in line 8, so that the original tot declared in line 3, which has remained
unchanged since declaration, becomes visible again. That’s what we return in line 9. Although this
listing is an artificial, purposely idiotic, demonstrative code, such errors do happen in the wild. The
“debugging” attempt in line 7, will also fail, because the value printed there will always be the correct
calculated value, whereas the value returned by the function will be always 0. Such situations are best
avoided.

C++ being a compiled language, we can ask the compiler to help us detect such “shadowing” situa-
tions. Most modern compilers can warn you if one of your declarations shadows a previous declaration.
The exact compiler option might vary, but it is something one should find out. For g++ , one could
proceed as illustrated below:

// examples/blockscope.cc

#include <iostream>

#include <string>

int main ()
{
std::string x{"three"};
{
std::cout << x << "\n";
double x = 488332;
std::cout << x << "\n";

{

X = x / 3;
std::cout << x << "\n";

std::string x{"four"};
std::cout << x << "\n";

}
}

std::cout << x << "\n";

g+t+ —-Wshadow blockscope.cc -o blockscopedemo

blockscope.cc: In function ‘int main()’:
blockscope.cc:11:16: warning: declaration of
11 | double x = 488332;

| ~

\

x’ shadows a previous local [-Wshadow]

blockscope.cc:8:17: note: shadowed declaration is here
8 | std::string x{"three"};
| ~
blockscope.cc:20:29: warning: declaration of ‘x’ shadows a previous local [-Wshadow]
20 | std::string x{"four"};
| ~
blockscope.cc:11:16: note: shadowed declaration is here
11 | double x = 488332;

| ~

In your own code, avoid shadowing as much as possible. You should be aware of this possibility when
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debugging unexpected behaviour from code you did not write. Use the relevant compiler flags to detect
instances of shadowing.

Some people draw the wrong lesson from the above discussion on shadowing: “I will put a localized
variable declaration area at the top of my source file and never declare variables anywhere else in the code.
This way can easily ensure that I am using unique names for my variables”. Doing so (perfectly) will
avoid shadowing, but make reasoning about the code a lot harder. The larger the scope of a variable, the
more code lines you have to examine to know its current value. This also makes the code more inflexible,
because any changes you make to the variable in one line might be incompatible to the way that variable
is used in another part of the code not immediately visible. In multi-threaded programs, a great deal
of extra effort would be needed to ensure that such wide visibility variables are not changed by another
thread in some unexpected manner. Shadowing can lead to real problems, but we have tools to detect
and handle them during program compilation. Existence of shadowing should not lead you to abandon
one of the best features you have at your disposal: variables with limited scope. The other approach,
gathering declarations of parameters in one place, has some more merit for constants, especially those
whose value would remain the same for all parts of a program.

Since C++ allows creation of variables inside blocks, which can be nested in a neat tree structure,
and variables visible at the beginning of a (sub-) block remain visible (unless shadowed) throughout the
block, one simple and effective recommendation presents itself: one should define variables in the smallest
scope where they are used. If a variable is only used in a block of code spanning a few consecutive lines
somewhere, it should be defined in that block, instead of its parent, grandparent or some other ancestor
block. It is easier to reason about such variables, and accidental assignment of the wrong values can not
occur out of sight in an ancestor block. So, although the compiler will accept it, please do not declare all
your (mutable) variables at the start of a function, as was common practice in the “C” language before
C99. Declare it when it is needed, and keep its scope as small as possible.

Exercise 7:

The program examples/blockscope.cc demonstrates the possibly non-contiguous visi-
bility of block scope C++ variables. We have several variables by the same name defined in a
nested set of blocks. Observe how shadowing affects the visibility of different variables. Notice
also that both g++ and clang++ are able to correctly show us where such shadowing happens
if we use the compiler option -wshadow .

As you saw in the Exercise 1.4.2, variables may also be defined outside the top level scope of functions
or classes. Such variables are global variables, and their lifetime is the lifetime of the program. In section
2.1.4, you will see how to organize such variables in a hierarchy of namespaces. Each additional mutable
global variable used by a section of code makes it harder to reason about the state of the program using
the local context of code lines. They should only ever be used when no better way can be found. Your
first choice for mutable (non-constant) variables should always be to put them in the narrowest possible
block.

2.1.3 Syntax of variable declaration and initialisation

As we have seen, there are several equivalent ways of introducing a new variable of the name
variablename and with the given initial value.

1. auto variablename { initializer };

2. auto variablename = initializer;

3. decltype (onevar) anothervar { different_initializer };
4. SomeTypeName variablename { initializer };

5. SomeTypeName variablename = initializer;
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In the first two forms, the type of the variable to be created is the type of the initializer expression
(more about expressions later). If the initializer is another variable, then the type and value of the newly
created variable are the same as the other variable. So, int y{0}; auto x{y}; will create x with
the same type as y , and an initial value equal to the value of y at the time of creation of x . If
the initializer is a literal value, like 5 or 2.71, the type is deduced based on the type of the literal. For
instance, auto 1{0}; will deduce i to be a signed integer with initial value 0. This is because literal

integral numbers in your program text, like, 0, 1, 2 ... are interpreted as signed integers. Literal

representation of unsigned integers contains a suffix U . For instance, auto x{0U}; will create x as
an unsigned integer (no sign bit, modular arithmetic ...). The size of an integer variable (the number
of bits it uses in the computer memory) is usually 32 bits. There is another integer type called long

which, nowadays, is usually 64 bits long (although it is only guaranteed to be at least as big as an int ).
Literal values of the long type take the suffix L . To create an unsigned long integer, with initial value 0,
one can use auto i { OUL }; . Literal real numbers like 2.71 in program text are interpreted as
being of type double , which is a 64 bit representation of real numbers. To create 32 bit real numbers,
called £loat , from literal values, one can use the suffix F for the literal, e.g., auto £32 = 2.71F; .
Character string literals, as in "Cologne" are treated as C-style character strings. C++ inherits these

from C and can work with such strings. But generally use of C style strings in C+4 programs leads to
much needless suffering. Usually, we are much better served with C++ standard library string or

string_view . We will discuss them in detail later. For now, let’s just note how one might create
them from literals.

#include <string>

void somefunc()

{
using namespace std::string literals;
auto city { "Cologne"s };

The little ’s” at the end of the initializer makes it a C++ standard library string literal rather than a
C-style string. So, city here will be created with the type std::string and value "Cologne' .
Literals with single quotes, e.g., ’y’, 'n’ etc. are character literals. They can be used to create variables
of type char .

C++ allows programmers to create literal representations for types they create. For instance, by
the end of this course, it will be easy for you to create a type for distance measurements, so that you
can create variables of the distance type. You could then imbue your Distance type with a literal

representation, so that in your program you could do things like this:

void somefunc ()
{
auto intercity { 100.0_km };
auto height { 75.0_inches };
if ( intercity > 50'000 = height ) do_something();

Such extended use of literal values in code is also seen in many places in the C++ standard library.
For instance, one can create complex numbers like this:

#include <iostream>
#include <complex>

auto main() —-> int

{
using namespace std::complex_literals;
auto Z{ 1.22 + 3.9911i };
std::cout << Z << "\n";

The same goes for literal values related to date time measurements:
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#include <iostream>
#include <chrono>

auto main() -> int
{
using namespace std::chrono;
using namespace std::chrono_literals;
year_month_weekday xmas { 2022y / December / 25d 1};
if (xmas.weekday () == Sunday) {
std::cout << "X-Mas on a Sunday!\n";

}

The third form of variable declaration presented in section 2.1.3, with decltype , creates the new
variable with type information from a pre-existing variable, but initial value from a different initializer
which may or may not have the same type. In the third, fourth and fifth versions of the variable
declarations at the start of this section, the initial value is, technically, optional, and one can create
a variable with SomeTypeName variablename; . It is good practice however, to always provide
sensible initial values. There are some situations where explicit spelling out of the types, as in version
4 and 5 in the list at the beginning of section 2.1.3, are valuable. There are many situations where we
intend the newly created variable to be of a different type than the type of the literal value used in the
initializer. One example is in the above code snippet, where the variable xmas was declared explicitly

with the type year_month_weekday . In our discussions of the C++ standard library, you will
learn that the initializer 2022y / December / 25d has the type year_month_day rather than

year_month_weekday . We wanted to make use of information regarding weekdays, so we created
the variable with an explicit type which knows about weekdays. Another example: we may want to
create a list of integers starting with an initial list with only the integer 7. Writing auto L{7}; will
not have the intended effect, as it will only give us an integer with a current value 7. We could say
std::1list L{ 7 }, (pre-C++17 we had to say std::list<int> L{ 7 } ) so that the compiler
knows that the type of the new variable is as given on the left, and not something to infer from the
initializer. For the case of collections of objects, like lists, even finer grained control of initialisation is
desired. What if we meant a list containing 7 elements each initialized to 0 rather than a list of one
element initialized to 77 For this case, we can use std::1list L (7UL, 0); ,i.e., with round brackets
or parentheses instead of curly brackets. Occasionally it could make it easier to read code if we write
the types like int or double explicitly. But C++ type names can become very long. Given an
associative container called themap with std::string as key type and unsigned long as value
type, few people will argue that
std: :map<std::string, unsigned long>::const_iterator it = themap.begin();
is easier to read than
auto it = themap.begin();

There is often a choice regarding initialisation between the = initializer version and the
{ initializer } version. Both can get the job done, but one should prefer the { initializer }
version to initialise. This form is called uniform initialisation, and has somewhat stricter rules on the
kind of transformations it can do to initialise. For example, int i = 1.2; will be accepted and the
integer 1 will be created with a value 1 . Most likely, when someone types such a thing, they intended
the variable i to not be an integer. The {} syntax does not accept this. int i{ 1.2 }; will cause
a compiler error telling us that we are “narrowing” the specified initial value for storage in the integer.
Narrowing conversions are not allowed in the uniform initialisation syntax, and such a compiler error
draws our attention to something that might be a mistake. Besides, the {} syntax allows us to initialise
also containers like std::1list, std::vector , etc. with a sequence of elements. We will learn how
to enable such syntax for user defined types later in our discussion of classes.

2.1.4 Namespaces

So, what’s with all these :: signs in C++ programs? These relate to the concept of namespaces in
C++. It is a way to organize names of variables, functions, classes and other entities in a hierarchical
manner. The concept is actually quite easy to understand, because it is easily translated to everyday life.
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Consider the word glass. It could mean a drink ware, as in, “may I have a glass of water please?” It
could also mean the material, like in “the house has big glass windows”. It could also mean eye-glasses.
We are very good at intuitively understanding what is meant when a sentence includes more of these
different uses of the word, e.g., “I didn’t realize this glass is not in fact made of glass!”. When we hear
that, we internally translate it to something like, “I didn’t realize this (drink ware) glass is not in fact
made of (material) glass”. That is essentially what we are trying to do with the :: sign. It is called the
scope resolution operator. Using the C++ scope resolution operator in the above sentence, we will get “I
didn’t realize this drinkware::glass is not in fact made of material::glass.” Namespaces create a context
for a name. Let’s see how to create and use them:

// examples/nsl.cc
#include <iostream>

namespace cxx_course {
unsigned int participant_count{0};
void greet ()
{
std::cout << "Study and practice. Years of it!\n";
}
}
namespace gardening course {
unsigned int participant_count{0};
void greet ()
{
std::cout << "You reap what you sow.\n";
}
}
auto main() -> int
{
cxx_course: :greet ();

}

To add something to a namespace, we do
namespace namespacename { declarations...; } . Any number of declarations of variables,

functions or other things can be put inside the beginning { and ending } of a namespace. The
variables declared can be initialized, but no statement which does not bring a new name into existence
can occur freely inside a namespace. In our example above, the statements containing std::cout
are typographically within the opening and closing of the namespace. But they occur inside functions.
As we stated before, any statement which does anything other than declaring a new name, must be in
a function. To use a function or a variable belonging to a namespace, we can use its full name, like
cxx_course: :greet () above. There are two functions by the name greet , neither requires any
inputs. By putting them in different namespaces, we make it possible to precisely specify which one we
want to use, i.e., to avoid ambiguity.

Creating namespaces is not simply a glorified way to add prefixes to names. We could create names
including some of their context, such as, std_vector , std_cout and so on. Such would even have
less characters! But each such name would stand on its own. We could not choose to use short versions
vector and cout in a tightly controlled context. A real namespace allows that. If we need to use
one or more symbols from a namespace many times in a block of code, we can express that intent in
our code:

// examples/ns2.cc
#include <iostream>

namespace CxXx_course {
unsigned int participant_count{0};
void greet ()
{

std::cout << "Study and practice. Years of it!\n";
}
}

namespace gardening course {
unsigned int participant_count{0};
void greet ()
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{
std::cout << "You reap what you sow.\n";
}
}
auto main() -> int
{
using namespace cxx_course;
greet () ;
std::cout << "The number of participants is "
<< participant_count << "\n";

In line 20 above, we state that we are using the namespace cxx_course , i.e., we will be using
the names defined in that namespace without qualifying them with cxx_course:: . So, greet ()
in line 21 is a call to the function greet () defined in the namespace cxx_course , and not the
function of the same name in the gardening_course namespace. Such a using directive can be

placed in a block so that all names in the used namespace become available in that block after that
directive. The visibility of the borrowed names ends at the end of the block. Writing seconds is easier

than always writing std: :chrono: :seconds . If we are working on time measurements in a block of

code, we can say using namespace std::chrono in that block and simply write seconds inside
that block. If we are programming about angle measurements, in that context we can put a suitable,
using namespace madeup::angle_measurements statement, and proceed to use seconds to
mean a tiny angle instead. If we need both tiny angles and time in some context, we use namespace
qualified names explicitly for disambiguation.

Exercise 8:

The program examples/ns3.cc illustrates how one can use different namespaces in different
parts of a single function. It uses the number of command line arguments to decide whether to
use the cxx_course namespace or the hpc_course namespace. Observe how it works!

Exercise 9:

In the previous examples, we have used some names from the C++ standard library, which are
defined in the namespace std . Therefore we used std::cout, std::cos etc. Modify a

few of them by adding a suitable using directive in the narrowest possible context.

using directives can also be placed in a namespace.

namespace cxx_course {
// declarations of a,b,c

}

namespace hpc_course {
using namespace cxx_course;
// declarations of d, e, f

When we place a using directive in a namespace as above, the names from the used namespace
cxx_course will be made available inside the namespace hpc_course , as if they were declared
there, i.e., hpc_course::a will come to mean cxx_course::a and so on.

Namespaces can also be nested to arbitrary depth, in other words, a namespace can contain other

namespaces. When referring to a symbol in an inner namespace we use a chain of namespace names
separated by :: till the desired name.
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namespace MC ({
// declarations of FunctionType, DerivativeType
namespace utils {
namespace math ({
auto derivative (FunctionType f) -> DerivativeType;
}
}
}
int main ()
{
MC: :FunctionType f{};
/7.
auto d = MC::utils::math::derivative (f);

Notice how we referred to the derivative function as MC::utils::math::derivative .
It vaguely resembles a filesystem path in structure, with :: instead of / separating its compo-
nents. It even shares some properties with a filesystem path. In a function declared in the names-
pace utils above, we could refer to the derivative function in MC::utils::math as simply
math: :derivative . Just like we could provide an absolute path, necessarily starting from the root
of the filesystem instead of the current working directory, by prepending our path with a / , we could
anchor our qualified names relative to the global namespace by starting them with a :: . To do that, we
would refer to our derivative function above as ::MC::utils::math::derivative . This is often
done to avoid any ambiguities.

The analogy with the filesystem should not be taken too far. First of all, there is no equivalent of
the .. notation to refer to the parent namespace, like we can for the parent directory. The method of
determining what a name refers to is also quite different. When we refer to a variable or function name
somewhere, the compiler tries to understand what we mean. At first, it checks if that name is one of the
names directly visible in the current scope for having been declared there or in an ancestor block. The
name may have been imported by a using directive. If not, the compiler tries to interpret the name
with respect to the current namespace. If that fails it goes one level higher until it finds it at some level
or reaches the global namespace. If it is still not found, it is reported as an error. If any intermediate
namespace defines a different undesirable object by the name we are searching, but we want to refer to
the name in the global context instead, we use the “absolute path” method, and start with a

Exercise 10:

The program examples/ns4.cc contains a somewhat longer example with lots of alterna-
tive definitions of a variable called ¢ in different namespaces. Alternative ways to use the
name c lead to different symbols being found from the different namespaces. The code com-
ments explain how a particular way to use c locates a version of it. Study it. Uncomment the
alternative versions of the return statement and run the program, and compare the results
with the explanations given in the comments.

namespace ABC { declarations ... } opens a namespace called ABC to add declarations

into it. If ABC doesn’t exist, it is created. If we have previously defined the namespace and have
some symbols in it, we simply reopen the same namespace and add more things into it. There are no
restrictions on the number of namespaces defined in a header or source file, and no automatic connection
between the source file names and the namespace names. Similarly the file hierarchy in a source tree is
unrelated to the namespace hierarchy.

Long namespace names can be shortened by creating aliases. For instance,

namespace sr = std::ranges;

will let us refer to std::ranges::transform assimply sr::transform.
It is also possible to open an inner namespace directly for appending like this:
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namespace MC::utils::math ({
// new declarations...

}

Namespaces can not be declared in block scope. Since the body of a function is a block, namespaces
and all their content live outside function bodies. Variables defined in namespaces can be accessed from
any function, using a fully qualified name. Whereas variables declared inside a block come into existence
when that block of code is executed and are destructed when the block ends, variables in namespaces live
for the entire duration of the program. They are, therefore, global variables. Namespaces give us a way
to organize them and access them in a fine grained manner, but that does not change anything about
the lifetime of the variables in a namespace. As a general rule, one should avoid defining variables inside
namespaces, unless they are constants, or there is a good reason justifying having a global variable. Our
familiar std::cout is in fact, a global variable defined in the namespace std! There is, after all,
only one standard output, and having that as a global variable has certain benefits. But, global variables
have tremendous potential for making our lives miserable with unforeseen consequences. A good rule of
palm I use is this: every time I am tempted to use a (non-constant) global variable in my professional
life, T go to my fridge, take out an ice cube and hold it tightly in a fist. The price for using a mutable
global variable is enduring the cold ice until it melts completely in the hand. If all other solutions I can
imagine are more painful than that, sure, I go ahead and use a global. This cost-benefit analysis has
largely steered me towards the right decisions.

Namespaces should be used to organize immutable constant variables, functions, classes and concept
definitions in a project. Despite the syntactic convenience in modern C++ for creating and aliasing
nested namespaces, their raison d’étre is avoiding name clashes, and not a full taxonomy of different kind
of entities in the project. That’s why we have std::vector , and not

std::containers: :contiguous: :vector , std::map and not

std::containers::associative::map and so on. On the other hand, where a name clash
might be otherwise unavoidable, one can use namespaces for disambiguation, as for example done in
std::transform and std::ranges::transform.

2.2 Expressions

Expressions consist of a sequence of operators with their respective arguments, and specify some form of
computation to be performed. For instance, there are algebraic expressions such as, 13(z3 — 4z) + 11—'3,
written in C++ as, 13 % (x x  x x — 4 % ) + 12.3/x, which are evaluated following the usual rules
governing parentheses and the arithmetic operators. The above expression would be interpreted as
(13% (((xxx)*x) — (4% x))) + (12.3/x), and evaluated outwards starting from the smallest parentheses.

Every expression has a type and a value, corresponding to the result of the computation it specifies.
The above expression would have the type double if the type of x is one of the common numeric types.
A boolean expression is an expression which results in a bool value ( true or false): x » x < N
is a boolean expression whose value depends on the values of x and N. The name of a variable or a
literal value is also a trivial expression, with an obvious type and value.

There are many kinds of expressions in C++, but for now we need to know about only a few of
them. An expression as a whole has a value and type which are the value and type of the object resulting
because of the evaluation of the expression. If x is a double , the expression x * x + 1. hasa
double type, as its value can be any real number greater than 1.0, and x  x > 5.0 hasa bool type,
as its value can only be true or false . As in many programming languages, in C++, if we want to
compare two values to be equal, we use the equality comparison operator, ==, with two equal sign. A
single equal sign is interpreted as “assignment”. So, if A isan int , A = 5 sets the value of A to

5, where as A == 5 compares A with 5 and is either true or false . Boolean expressions can
be combined using boolean operators like and , or, not etc. For example, A >= 0 and A < 10
is an expression that is true if the value of A is between 0 and 9 including both ends. The operators
can be written spelt out as and, or etc.or as &&, || etc. One peculiarity of boolean operators is
that they are evaluated left to right only to the point necessary to establish their truth value. In boolean
algebra, an expression (A or B) can never be false if A is true, and (A and B) can never be true if A
is false. So, when we have an expression like 1 < N and a[i] > O, the second part a[i] > 0 is
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only evaluated when i < N. If i < N is false, the truth value of the boolean expression is already
known, and the rest of the expression does not need to be evaluated and is (officially) skipped.
Assignment expressions, like resultvar = 4 « x * x + 3 * x + 9, contain (often, but not
always) a variable name on the left hand side and an expression on the right hand side of the = sign.
The expression on the right of the = sign is evaluated, and the resultant value is stored in memory as
determined by the left hand side. Entities which may appear on the left hand side of an assignment
expression are called “L-values”. L-values, like a plain variable name like resultvar , have a writable
memory location associated with them where the result of the right hand side expression is written.
The assignment expression as a whole has a value: it is the assigned value. So, it is possible to chain
assignments like this: x = y = z = 0.0 . A chain of assignment expressions is evaluated from right

to left. Here, z = 0.0 stores 0.0 in z , and the expression z = 0.0 has a value 0.0, so that y is
effectively being assigned to 0.0, and then x .

Expressions may compute a value like the above, and some expressions may produce a side effect, like
showing something on the screen. To evaluate an expression, it is parsed into a tree of sub-expressions.
The sub-expressions are then evaluated and the results of the sub-expressions are combined to create a
value for the expression. Sub-expressions are themselves expressions. If an expression in this tree is a
simple variable name or a literal value like 5.0, it is no longer sub-divided, but simply substituted by its
value. Similarly, if the (sub-)expression is a function call, it is replaced by the result of the function call.
Sometimes, evaluation of an expression can have side-effects, and that has an important consequence
regarding evaluation of expression trees, which I would like to point out right from the start.

// examples/eval_order.cc
#include <iostream>

namespace mystuff {
int counter{42};

}

auto f (int input) -> int

{
auto tmp = mystuff::counter;
mystuff::counter = mystuff::counter + 1;
return input + tmp;

}

auto g (int pl, int p2, int p3)
{
std::cout << "Received parameters " << pl << ", " << p2 << ", " << p3 << "\n";

}

auto main() -> int

{
g(£(1), £(1), £(1) );

std::cout << f£(l) << ", " << f£(1) << ", " << f(1) << "\n";

The function £ () in listing above changes the global variable mystuff::counter . This is a
“side-effect”. The function changes something outside itself besides calculating its result. In this case, the
result of the function will depend not just on the input we provide, but also on how often the function has
been called before. Same inputs can therefore give us different outputs in such a function. A function call
expression like f (1) with that kind of a function is then an expression which has a side effect. Using
an expression with such a side effect more than once in an expression can lead to unexpected results.
There are two examples of such usage in the listing above, in lines 22 and 23. In line 22, we are calling it
3 times to generate the 3 inputs to the function g () and in line 23, we are just writing the results of 3
successive calls to £ (1) . When evaluating the function call expression for g () in line 22, we have to
evaluate the 3 sub-expressions corresponding to the arguments to g () . We have written all of them as

f (1) , and we have to replace each argument by the result of £ (1) . But we know that the result of
f (1) will depend on how often we have called the function before. We need 3 calls. In what order do
we execute them in order to generate the first, second and third argument for g () ? Similarly, in line

23, we have 3 calls to £ (1) to be written out to standard output. Let’s see what happens:
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$ g++ -std=c++20 eval_order.cc -o eval_order.gcc

$ ./eval_order.gcc

Received parameters 44, 43, 42

45, 46, 47

$ clang++ —-std=c++20 eval_order.cc -o eval_order.clg
$ ./eval_order.clg

Received parameters 42, 43, 44

45, 46, 47

Notice how the different compilers passed different sets of parameters to g () . It turns out that
both are within their rights to do what they did. The code above invokes what is known as undefined
behaviour! The order in which sub-expressions are evaluated is governed by a set of well defined, but not
necessarily obvious rules, described in this link. The relevant part to understand what is happening in our
example above is that the sub-expressions corresponding to the different arguments to a function ( g ()
in this example) are “indeterminately sequenced” relative to each other. Since it is not prescribed by
the standard, compilers may (and do) evaluate those sub-expressions in different orders. This would not
be a problem if £ () did not have any side-effects, but in our example, it does. One recommendation
suggests itself: if an expression has side-effects, do not use it in multiple sub-expressions inside an
expression. More strictly, different sub-expressions should not modify the same global state (like the
variable mystuff::counter above).

2.3 Basic control flow regulation

2.3.1 Branches

For our purposes, when a function is called, the instructions in its body are executed from the top, one
by one, until a return statement is encountered. As an example, let’s consider the following simple
program to solve a quadratic equation by taking the coefficients from the three expected parameters.
The solution here is taken from the numerical recipes series of books:

ar’ +br+c = 0
1
¢ = -5 {b + sgn(b)Vb% — 4ac}

q

X1 = -

a

c

To = -

q

The pair of roots (x1,x2) is written in terms of a convenient intermediate value ¢g. This form of writing
the solution is more stable for small values of parameters a and c¢. Here is a simple C++ implementation.

auto solve_quadratic(double a, double b, double c) -> std::pair<double, double>
{

auto D = b » b - 4 x a x c;

auto g = -0.5  ( b + std::copysign(std::sqrt (D), b) );

return { q / a, ¢ / q };

It’s fairly straight forward: we calculate D , use it to calculate g and then use that to calculate and
return the pair of roots as an std: :pair of two doubles. The function copysign (A, B) returns a
number with the magnitude of A and sign of B.

Exercise 11:

The file examples/quadratic0.cc contains the above function and a main program to test
it. The program expects three command line arguments taking the three coefficients a, b and ¢
and prints a message with the equation and the solutions. Compile and run with a few example
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coefficients for the equation. For example,

g++ —-std=c++2a -02 quadraticO.cc -o quadraticO
./quadratic0 1.0 4.0 0.25

If you tried it out with a few different sets of values, you would quickly have discovered that

1. If you forget to provide all 3 arguments, or give too few arguments, the program simply unceremo-
niously crashes! It would be better if it told us what went wrong.

2. If b2 — 4ac < 0, the square root calculation runs into trouble. In this case there are no solutions in
the space of real numbers. Perhaps it should somehow tell us that the equation does not have any
real solutions.

We have to do different things based on conditions arising during the program execution. We want
to say something like “if AConditionIsTrue, then do something”. In C++ syntax this is written as
if (condition) statement_or_block, where condition is a boolean expression. For in-
stance,

if (argc < 4)
std::cerr << "Not enough command line arguments!\n";

The body of an if statement can be a simple statement as above, or a block.

if (argc < 4) {
std::cerr << "Not enough command line arguments!\n";
return 1; // Remember: Returning 1 from main indicates an error

Similarly, for the function solve_quadratic , we have the situation that it can only sometimes
return an answer. One can say that the roots, that it is supposed to return, are optional. They are
returned only when possible. See if you find the following code readable...

auto solve_qguadratic (double a, double b, double c)
-> std::optional < std::pair<double, double> >
{
using namespace std;
optional<pair<double, double>> solution;

auto D = b » b - 4 x a x c;
if (D >= 0.) {
auto g = -0.5 » ( b + std::copysign(std::sqrt (D), b) );

solution = make_pair(qg / a, c / q);
}

return solution;

The two lines calculating g and the two roots are only executed if D is calculated to be non-
negative. The std::optional construct is one of the many utilities available to handle errors. The

function now has a return type such that it optionally holds a pair of doubles. An std::optional
object can be thought of as a little box which may or may not hold an entity of a given type. You
can create it as an empty box with no value. If you assign a value, that’s value the box holds. The
value can be retrieved from the box when needed ( opt_object.value () or xopt_object ). That

type is specified inside those angular brackets (in this case, std: :pair<double, double> ). If you
test an optional object like a condition, it returns true if and only if it (the box) currently holds a

value. if (optionalobject) do_something only does that something if the optionalobject
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actually holds a value. In our example above, if D in fact is negative, we would never assign a pair of
doubles to the solution, and so the optional will not contain any values.

Outside of solve_quadratic , when we use it, we can test whether we got a solution or not, and
act accordingly. Taking these elements together, we have an improved version of our quadratic equation
program in quadraticl.cc .

Exercise 12:

Try out examples/quadraticl.cc . Remember we said earlier that variables should be

declared as locally as possible? The variable D is not really needed outside the if statement
and its block. We can not put it in the block, because it is used in the condition. Now try
this: cut and paste that entire line where D is being defined and initialised, moving it to the

highlighted location in this example if statement (trailing semi-colon and all):

1 if ( condition)
2 do_something;

What does your compiler say about that?

As you may have discovered in doing the above exercise, it is possible to declare a variable in an
if statement, just before the condition itself. The scope of such a variable consists of the condition

expression itself as well as the blocks of code belonging to the different branches created by the if . The
full syntax of the if statement is as follows:

if (variable_declaration; boolean_expression)
statement_or_block

else
statement_or_block

And since if is a statement, one can use it as the statement to be executed in the else case, so
that we get a chained version ...

if (variable_declarations; boolean_expression)
statement_or_block

else if (another_boolean_expression)
statement_or_block

else if (you_know_what)
statement_or_block

else
statement_or_block

Each if in such a chain can have a variable declaration. But remember that the variable declared
in one such if header, remains visible for the rest of the chain. So, declaring another variable with the
same name anywhere later in the chain amounts to shadowing.

Chained if ... else if ... else if ... else ... statements can be used to trigger
multiple actions such as a rudimentary "menu", where different things happen when an integer has
different values. In the example below, we have a chain of such if statements. The program takes a
single integer as a command line argument and chooses an action based on its value. The action used
here for demo is just tell us what option we chose, but it could be any block of code.

// examples/switchdemo.cc
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Figure 2.1: Converting a multi-way selection into a series of yes-no questions for if statements.

3 #include <iostream>

4

5 auto main (int argc, char xargv[]) -> int

6 |

7 if (argc > 1) {

8 auto choice = std::stoi(argv([1l]);

9 if (choice == 3) {

10 std::cout << "You chose option 3\n";

11 } else if (choice == 2) {

12 std::cout << "You chose option 2\n";

13 } else if (choice == 1) {

14 std::cout << "You chose option 1\n";

15 } else {

16 std::cout << "You have to choose an option between 1-3\n";

17 }

18 }

19 } else std::cerr << "Needs an integer as a command line argument\n";

20 }

In the above, we express that depending on the value of a single object, choice , we want to trigger

various different actions. But since the if statement is a yes-no split, we express our intent by converting
a multi-way decision into many yes-no questions, as in Fig. 2.1. There is however another construct in
C++ that matches our intent more directly: the switch statement. The switch statement works
with any integer like expression, and selects an action based on its value. The different actions are
organized as "cases". Here is the above example written in terms of the switch statement.

1 // examples/switchdemo.cc

2 #include <iostream>

3

4 auto main (int argc, char xargv[]) -> int

5 |

6 if (argc > 1) {

7 auto choice = std::stoi(argv[l]);

8 switch (choice) {

9 case 3: {

[
o

std::cout << "You chose option 3\n";
break;

=
[
—
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case 2: {
std::cout << "You chose option 2\n";
break;

}

case 1: {
std::cout << "You chose option 1\n";

break;
}
case 0:
default: {

std::cout << "You have to choose an option between 1-3\n";
}
bi

Like the if statement, switch can define variables before the selection expression:

switch (variable_definition; selection_expression) { cases }; .

When executed, switch jumps to the case matching the value of the selection expression, and
executes the code starting from there, until it reaches the end of the switch statement or a break; .
This means when jumping to one case, switch would continue with the code in all cases that follow!
The break statements at the end of a case block prevent this. Execute the above code, and try deleting
or commenting out, say, the break statement in case 2. You will see that if you choose option 2, both
the code in case 2 and case 1 will be executed. If you choose 1, only the code in case 1 will be executed.
The default option at the end represents "in all cases not covered by the explicit case blocks".

2.3.2 Repeated actions with loops

One of the most useful tools in the arsenal of a programmer in imperative programming (as opposed to
functional programming) is the ability to explicitly specify repeated execution of the some code lines.
This is accomplished using loop constructs.

The while loop has the form while (something_is_true) do_something, and simply
repeats a statement or block while given a boolean expression remains true. It should be immediately
obvious that there should be some way for the boolean condition to become false while the repetitions
are taking place, or else the loop will continue for ever! Here is an example:

int N = 5;

while (N > 0) {
std::cout << N << "\n";
N =N- 1;

}

// code after the loop

We will reach the line 2 in the code above, with N == 5. So, N > 0 will be true, and the body of the
loop, in the block bounded by the bold {} will be executed. 5 will be printed, and then N will become
4. Then the body of the loop is completed, we return to check the loop condition. N > 0 is still true,
so the body will be executed again. And so on. We will see 4, 3, 2, and 1 printed. But after printing 1,
N will be changed to 0. The next time we check the repetition condition, it will fail, and the loop body
will not be executed, and instead we jump to the code coming after the loop.

It is possible to break the loop at any point using a break statement. For instance, in the following,
we count down from some given number till 0, but stop prematurely at a number n, if the total number
of 1 bits in the binary representation of n is 3.

// examples/while_with_break.cc
void countdown (unsigned long N)
{
while (N > 0) {
std::cout << N << "\n";
if (std::popcount (N) == 3) {
std::cout << "Reached exceptional termination with N = " << N << "\n";
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break; // this breaks the while loop

}
N =N -1;

There is a slightly different kind of loop called the do ... while; loop. In this loop, the loop
body is executed at least once. As an example, imagine that we need to find the first integer such that
the sum of logarithms of all positive integers up to it > 100. We can do this by following this procedure:

1. Initialise the sum to real number zero, and a "current" integer to integer zero.
2. Increment current integer by 1

3. Add the logarithm of the current integer to the sum

4. If sum is still smaller than the limit, repeat, starting from step 2

This can be done in many ways to C++, but we will demonstrate with the do...while loop.

auto func(double limit) -> unsigned int
{
auto current = 0U;
auto sum = 0.; // Because we will be summing logarithms
do {
current = current + 1;

sum = sum + std::log(current);
} while (sum < limit);
return current;

The do loop_body (boolean_expression); loop repeats the code in its body (which
may be a single statement or a block) as long as a given condition remains true. The loop body is executed
before checking the condition, and therefore runs at least once.

The syntax of the two kinds of while loops does not highlight how many times the loop body
executes. Two other forms of loops exist which are designed to be a bit more easy to understand in terms
of how often they will repeat the body. First let’s see the "for each" loop. In C++, it is called the "range
based for loop". The syntax is

for (auto i : range) do_something . As with other loops, the body can be a single statement

or a block. What exactly is a range here? By a range here we mean anything which has a begin

and and end . The precise definitions will be given when appropriate, right now let’s just use the loop!
Here are a few examples...

// examples/range_for.cc

std::array A { 1, 2, 3, 4, 5 };
for (auto a : A) std::cout << a << "\n";

for (auto partialsum = 0; auto a : A) {
partialsum = partialsum + a;
std::cout << a << "\t" << partialsum << "\n";

for (auto day : {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday"}) {
std::cout << day << "\n";

}

namespace sv = std::views;

for (auto 1 : sv::iota(71)) {
std::cout << i << "\n";
if (std::popcount (i) == 7) break;
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Our std::array in the above example, as well as the initializer_list containing the week

day names are entities with whose begin and end are known to the compiler. It is therefore possible
to iterate over the elements in the range with this kind of a loop. The loop variables, a in the first two
cases and day in the third, take successive values from a given sequence in the body of the loop. In the
last example, we show a loop over an open-ended range starting from 71. The loop variable takes values
71, 72, 73 ... and that loop has no specified end. We therefore provide a break statement to terminate
it at some point. std::views::iota(n) creates an unlimited sequence of integers starting from n .
It is not stored anywhere like our array example. The integers are simply available when they are needed.
We will learn more about these views in a later chapter.
Finally, we have the for loop. The most common form of this loop is
for (int i = 0; 1 < N; 1 = i + 1) do_something. The syntax can be described as

for (initialization; continuation_condition; increment) do_something

Typically, in the initialisation part, we initialise a loop counter. The continuation condition is usually
a boolean expression involving the counter, and the increment part should change the loop counter in
some way. The loop is conceptually interpreted in this way:

1. Perform initialisation

2. Evaluate continuation condition. If false end loop.
3. Execute loop body.

4. Execute increment part.

5. Go back to step 2.

In its most commonly found form, e.g., for (int i=0; 1<10; i = i+1) ... the loop body
runs exactly 10 times, and the loop counter takes values in the half open range [0,10). This means that
the lower limit is included in the iterations, but the upper end is not. So, the loop variable takes the
values 0, 1, 2, 3,4, 5,6, 7,8 and 9. i = i+1 is almost always shortened to ++i or i++ . The
pre-increment form ++1i should be preferred. For integer counters there is no difference in practice, but
the post increment form in this context is actually sloppy in stating our intent. It is better to develop a
habit from the beginning, of using the pre-increment operator in the for loops as a default.

Because of the simplicity of this loop, it tends to be somewhat overused by inexperienced programmers.
I deliberately delayed its introduction to avoid giving it too central a position in your mind. We will
see that the algorithm header in the standard library gives us extremely powerful tools to perform a
lot of very common tasks. Whenever possible, one should prefer an algorithms based solution. In case
no suitable algorithm exists, we have low level tools like the basic loop structures presented here. Let’s
close this section with an example where we calculate the total gravitational potential energy between N
objects.

Exercise 13:

Write a program that calculates ™ where n is an integer, using the loop and branching struc-
tures you have learned so far. The program could ask for inputs, and read them one by one
using std::cout and std::cin, or it could take the inputs as two arguments passed on
the command line. Intended behaviour:

yourprogram 3.0 4
81

yourprogram 3.0 -2
0.111111

Hint: To convert a character string s into a double, use std::stod(s) , to convert it to

an integer, use std::stoi (s)
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Exercise 14:

The program examples/G_potential.cc contains a rudimentary function to calculate the total

gravitational potential in a system of N objects. Two for loops are required, they are not
written. Fill in the missing loops and finish the program.
Use the following contracted forms of algebraic operations:

e X +=y means X =X + vy , X -=y means X = X -y and so on for x,

/ ..., and the logical operators && , || etc.

e ++i for an integer variable i means increase i by 1 and then use the incremented
value.

2.4 Lambda expressions

We have briefly encountered the basic syntax of a function in C++. Functions in C++ can not be
defined inside a block, e.g., within the body of another function. Yet, we often require entities which
behave a bit like functions, but which can be defined inside a block and interact with existing block
scope variables. We will discuss these so called lambda expressions in detail, after we have built up the
necessary background. Since they share a lot of characteristics of functions, it would be useful to be
introduced to the concept of lambda expressions, along with the building blocks of the language. Let’s
motivate them using an example.

Let there be a sequence of numbers L = {lg, l1,3...l,—1 }. Suppose we want to create another sequence
where each element is obtained by multiplying the corresponding element of L by itself. We could think of
it as going over the sequence and applying some operation on each element and creating a new sequence
out of the results. What kind of an action is it? In this case, the action is some kind of entity which
when applied on a number produces its square. The mapping = — 22 expresses our meaning. The
mapping can be applied to a concrete number to produce a concrete result: (z — 22)(3.0) = 9. Our
operation to create the new sequence out of L is then L2 = apply_to_all(L,x — z?). Perhaps we want
to filter out all elements of L which are less than 3.0. This operation can be regarded abstractly as
L3 =select(L,z — (xz < 3.0)).

Clearly the operations we want to perform on the individual elements can always be implemented as
functions. But, functions have names, and often our needs are so local that it becomes unnecessarily
cumbersome to dedicate mental resources to finding a suitable name for an action we may only need at
one place in the code. What we need is a way to create anonymous function like objects, which can be
used like functions. This kind of entities are called lambda functions in C+4. Lambda functions are
created using lambda expressions, which look like this:

[] (function parameters) —-> return_type { function_body }

There is a lot more to them than what we have in the above line, but this should get us started. You
will see that it is very similar to the function syntax I have been using since the beginning. We don’t
have the initial auto and we don’t have a name. Instead we have a peculiar pair of square brackets at
the beginning. But otherwise, they are written just like functions.

Our mapping = — x2 translates to [] (double x) -> double { return x * x; } . Aswith
all C++ functions using the trailing return type syntax, the return type specification can be skipped if
it can be unambiguously inferred from the function body. So, we could write x — z2 as simply

[] (double x) { return x * x; } . All functions are mappings from the input parameters to
the output types. In C++, the “result” of a mapping encoded in a function is its return value. The
job of a function is to perform all necessary calculations so that the input parameters are mapped to
the output in such a way that the intended mapping is realised for all valid inputs. The mapping
z — (x < 3.0) translates to the lambda [] (double x) { return x < 3.0; }. A lambda for

an identity mapping, = — = would be [] (auto x) { return x;} , where I have used the auto
keyword to make it a generic lambda. Generic lambdas can be applied on any type of input, and the actual
type of the input parameters is inferred based on the types of the values it operates on. A lambda can
represent any mapping, not necessarily something to do with numbers! For instance, we could imagine,
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Integer AsText +— Integer, to map a given string representation of an integer into an actual number in
a program. In C++, that will be, [] (std::string text) { return std::stoi(text); }.

Exercise 15:

The program examples/lambda0.cc illustrates the use of lambda functions to perform the
transformation and filter operation described above. Here is the code, apart from the includes
and some output lines.

1 // examples/lambdal.cc

2

3 auto main (int argc, char xargv[]) -> int

4 |

5 St sVeetor ¥ 1 Y90y 205 oy Bop 20y Loy Qop Doy Top Gop Loy 20 §p

6

7 decltype (v) w{};

8 // Create w with the type of v, but initialize as an empty container.
9 namespace sr = std::ranges;

10

11 sr::transform(v, std::back_inserter(w), [] (auto x) { return x » x; });
12

13 decltype (v) x;

14 sr::copy_if (v, std::back_inserter(x), [](auto x) { return x < 3.0; });
15 /)

16 }
17

Identify the lambda functions!

Functions like std::ranges::transform, std::ranges::copy_if are “higher order func-
tions”. They expect, among other arguments, an operation that they need to perform as an argument.
This can be given as a named function, but it is most often more convenient to use a lambda. copy_1if
copies elements in an input range into an output location if the element satisfies a condition. It is the
C++ version of a "filter". The condition is given above as a lambda function. Similarly transform
applies an operation to an input sequence and writes the output into a supplied output location.

For the output location in the example above, we have used std: :back_inserter (container) .
Details of how it works will be explained later, but for now, just remember that if you try to write
something there, it appends that something to the end of the container it is attached to.

Lambda functions together with algorithms defined in the algorithm header give us a set of very
powerful tools to do lots of interesting operations on sequences. Let’s end with an exercise.

Exercise 16:

The following program creates an array of complex numbers. We want to sort them. The
problem is, complex numbers don’t have an obvious way to compare and say what comes after
what. For instance, is 1 + 2i bigger or smaller than 2 + 1¢?7 Sorting requires being able to
tell what goes before what. To sort a set of entities, we need an operation comparing two
of these entities, x and y and telling us whether the first should be considered less than the
second for the purpose of sorting. Something like z,y — true/false. The standard library
sort functions expect such a sorting criterion to be provided. We are using the function
std: :ranges: :sort for this example. Fill in a suitable lambda function in the indicated
area to sort by the real parts of the complex numbers, and then by the absolute values.

e Hint: Given a complex number =z , its real part is obtained by std::real (z) .

e Hint: Given a complex number z , its absolute value is obtained by std: :abs(z) .
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// examples/lambdal.cc
#include <iostream>
#include <string>
#include <algorithm>
#include <ranges>
#include <complex>
#include <vector>

© W N e U A W N e

auto main (int argc, char xargv[]) -> int

{

e
= o

namespace sr = std::ranges;
using namespace std::complex_literals;
std::vector nums{ 1.+2.i, 0.11+3.229i, 3.1+0.5i, 2.001+1.51i };

[~ S R
SN N

sr::sort (nums, ); // Fill in an appropriate lambda expression!

=
E =N

std::cout << "Sorted list of complex numbers, using the given "
<< "comparison operation...\n";
for (auto num : nums) std::cout << num << "\n";

ISR
S © ®

2.5 Constants: various degrees of const-ness

Certain quantities involved in a calculation should have unchangeable values in order to serve their
intended roles. Imagine that you are in a self driving car, driving along on the autobahn. Your life might
depend on the program operating the car being able to keep certain variables constant, for instance, a
variable storing the acceleration due to gravity on the surface of earth. Accidental assignments such as
g = 100000.0 can lead to actual accidents in the real, physical world. Similarly, being able to change the
value of constants such as 7 or the speed of light does not enhance their usability. We need some way to
create objects whose values, in addition to their types, remain constant in our programs.

In C++, when declaring a variable, we can “qualify” it to be a constant by attaching the const
qualifier to the declaration. E.g.,

const auto pi { std::acos(-1) };
// alternatively,
const double pi { std::acos(-1) };

The variable thus created becomes a constant object in the program. Constant variables can be given an
initial value when they are created, but that value can not be changed thereafter.

const auto pi { std::acos(-1) };

for (auto i = 0UL; i < npoints; ++pi) { // Compiler error!
// Error, because we tried to change a constant object pi
// after it was initialised.

}

For those of you who have previously programmed in C, this is not just another “spelling” for the C
macro definitions:

#define pi 3.14159

Macros are text substitution recipes, and are handled by the preprocessor, before the compiler ever
examines the code. The macro definition above would replace every occurrence of the name pi with the
literal 3.14159 in the code. If we wrote it as

/* macropi.c: Don't do this in C++! %/
#define pi calc_pi()
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int main ()
{
int 1, j, k;

i = pi;
j = pi;
k = pi;

return i;

every occurrence of pi will be replaced by a call to calc_pi () . You can verify that by running the
pre-processor command directly yourself, instead of letting the compiler do that behind the scenes:

cpp macropi.c

cpp in the above command stands for “C pre-processor” and not “C plus plus”. It will print out the source
code after the pre-processor has done its substitutions. You will see that a separate call to calc_pi ()

is inserted for the assignment to i, 7j, and k. Technically, that function might be asking the user
politely to enter the value of pi , reading the user’s response from the standard input, and returning

that value. In the text substitution approach, every occurrence of the “constant” pi defined in this way
will be replaced by this call, i.e., possibly asking for user input.
The C++ const qualifier is something quite different. If you write

const auto pi = calc_pi();
VI

auto i = pi;

auto j = pi;

auto k = pi;

a real variable pi is created, and is initialised with the return value of calc_pi () in line 1 above,
possibly also asking the user politely to enter the value of pi . In lines 3, 4 and 5, the previously created

variable is used, without a new call to the initialising function calc_pi () . pi has a value and a
type, like any other variable, so that it can be used to create new variables or be examined by debugging
tools. Note that const does not mean “known at compile time” or “substituted by the compiler”. The
value can be set by the compiler, if it is known at compilation time. But that’s not what the const
qualifier says. The only difference from the a variable declaration without that const qualifier is that
the compiler won'’t accept code that changes the value after initialisation. const is a promise by the
programmer: “I solemnly swear that I shall not change the value of this here variable, from the point
of its creation with an initial value till the end of its life”. Compiler holds you to this promise. If you
(accidentally) write code that tries to change that value, the compiler complains loudly.

For anyone who at least occasionally enjoyed sporting activities, it is helpful to think of programs
with many variables as games. The variables are the players, and they have “states”, i.e., the values
they currently hold. They can interact with other variables in pre-defined ways and change their states.
To reason about the program, you have to check what states different variables have as the program
proceeds. The state a variable ends up in, depends not just on a single expression attached to it, but on
the states of all other variables involved in that expression. Just like the state of a goalkeeper (horizontal
/ vertical / earthbound / ...) at any given point in time depends on the state of the opposition strikers.
We are used to reasoning about changing states in complex systems with multiple interacting entities.
We even enjoy it: sports exists! The only difference is that source code, in contrast to a football field,
appears static. In languages like C++, a sequence of changes to the state of variables stored in memory
produces a result we seek. It is however useful to have a few entities who, like line umpires in tennis, stay
fixed, so that the rest of the game is easier to follow. “Programs in which every variable can influence
everything going on everywhere” is a pernicious parody of how imperative programming languages such
as C, C++, Fortran, Python, Java etc. work. Every programming language offers tools to manage the
factors influencing the states of variables in any segment of code. We have so far seen two of the main
tools in C+-+: variable scopes which controls what is visible where, and now, the const promise’.

3We are discussing mutability of the values of variables here, not their types. If names were allowed to change type, it
would be a game where, e.g., depending on what happens, the chair umpire (tennis) might jump in to return a serve.
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For every variable we create, we should ask whether it is meant to carry a state that changes in a
manner that is helpful towards achieving our goals, or to represent a fixed entity we need during our
computations. Having fewer changeable variables often makes it easier to predict their behaviour, and
write correct code. Beyond a certain point though, it is a matter of diminishing returns to try to reduce
mutable variables in C++ code. We can have both kinds. We don’t need to reach zero mutable variables.
It is a good idea to default to make your variables const . When const is not an option because of
the role of the variable, it can be declared without the const . For instance, the loop counter is useless
as a const . But, pi or speed_of_light should usually be programmed as const . Some in

the C++ community argue that it would have been better to make all variables automatically const
qualified, and only make them “mutable” when we need them using an expressive keyword. But not
everybody agrees, and that is not the language we have. For now, a useful habit is to always try to make
variables const first, and only relax this requirement when there is a good reason.

There are some other keywords related to const : constexpr, constinit and consteval.

We will learn to use them in some detail in a later chapter. The only other kind of const like keyword
you might want to use at this stage is constexpr . constexpr declaration specifier does indeed
indicate that the variable should be initialised during compilation. Variables storing literal values like 7
are excellent candidates. This is a different kind of guarantee we give to the compiler than the promise
“I shall not change this hereafter”. A const variable may be initialised with a value that the compiler
could not possibly know about (e.g., from the return value of a function which asks user input and returns
it). If a variable is declared with constexpr , that sort of initialisation is not possible. The compiler
will try to evaluate its fixed value. Since the compiler knows the value of a constexpr variable, it may
simplify expressions in your program by already using that value during compilation.
constexpr can also be attached to a function, e.g.,

constexpr auto sqgr (double x) -> double
{

return x * Xx;
}
constexpr auto pi { 3.1415926 };
constexpr auto pi2 { sqgr(pi) };

A function declared as constexpr is available for use to initialise constexpr values at compile
time, like the function sqr above. While a great many functions in the C++ standard library are

constexpr functions in C++20, the standard inverse cosine function std: :acos , and other similar
mathematical functions declared in the <cmath> header, are not constexpr functions. We can not
therefore use them to initialise pi if we declare pi as constexpr .

A constexpr function can call other constexpr functions in its body, in addition to declaring
local variables, using loop and branch constructs etc. With C++-20, almost everything one can do in a
normal function can be done in a constexpr function. If the arguments to the function are compile
time constants, the function is evaluated and its result is made available for constexpr variable
initialisation. The body of such a function therefore can not rely on another function that can not be
evaluated at compilation time. If the arguments to a constexpr function are not constants known to
the compiler, the function can not be evaluated by the compiler, and we can not use it for constexpr
variable initialisation. There is no problem using a constexpr function normally with non-constant
variables, as it remains available for run-time use. We just can’t use it for initialisation in a constexpr
variable declaration in that situation.

The consteval keyword can be applied to functions to make them into “immediate functions”.
These functions go one step further than constexpr functions regarding their availability at compila-
tion time: they can only be used with arguments known at compilation time. If we want to initialise a
variable, and want to guarantee that the variable is initalised during the compilation process, we could
make the initialisation function a consteval function.

Explicit specification of different degrees of constantness of our objects also contributes to the perceived
complexity of C++ programs. However, not being able to protect variables such as 7 or ¢ against
unintentional modifications is an unacceptable compromise.
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# python example to illustrate the need of constant
# qualifiers

import numpy as np
def (r) :
return np.pi * r x r

# later
def () s
np.pi = 0.

# still later, after calling funcl...
surf_to_cover = circle_area(10.0) # returns 0

When anything of importance needs to be calculated, is the price of having to type or read a few extra
keywords (describing immutability) really too much? Remember also that in C++, the variables qualified
as const or constexpr do not have to be trivial entities like a number or a character array. One

can create a hash-table, a red-black tree or just about any data structure, and make it const within
a program. One can pass an otherwise mutable object as a constant reference to a function, so that it
has to be treated as an immutable object within that function. With C++20, one could make compile
time constant objects of the std::string or std::vector types. Constants simplify programs by
reducing its total number of possible states. Please do not ignore or avoid these immutability regulators,
but rather learn to use them to write programs whose validity is easier to deduce.

2.6 Pointers, low level arrays and references

Up until this point, we have discussed topics which are safe and elegant. We will now take up one area
of C++ which is often regarded as dangerous or difficult. Pointers. As a concept they are not difficult
to grasp, and in my opinion, you can not really be a C++ programmer without understanding pointers
and references. They underpin a lot of the elegant abstractions we are able to use, like std::vector .
Someone had to program with pointers so that we don’t need to do the same all the time. Knowing how
such things work is an integral part of an introductory C++ course. Learning about pointers will also
help you rationally decide when not to use them and when doing so may in fact be the best solution.

2.6.1 Pointers

Remember that we defined an object as “a concrete instance of some bytes, somewhere in the memory
of a computer, holding a value of a certain type”. An object therefore lives somewhere in the memory
of the computer. As an abstract model, one can think of the memory to consist of numbered locations,
like houses in a long street. Imagine that the numbering is done in metres, and the house number for
any given house is the distance in metres between the leading edge of the house and the beginning of
the street. If I know the house number for a house, I can find it quickly, observe its properties, and
depending on circumstances, modify its properties. Since a variable lives somewhere in the memory, it
has an address. Pointers are a general type of types which store addresses of objects.

Given a variable var of type Type , its address can be retrieved as std::addressof (var) or

&var . This address is of the type Typex .

int i{ 9 };
intx ip{ &i };

int+ above is a “pointer to an int ”. Similarly there are pointers to double, float ... for any
type for which there are objects. Pointers to different types are different from each other: e.g., int«
and doublex are different types, even if they are both locations in the memory. A pointer holding

the address of an object, like how ip is holding the address of i above, is said to be pointing at that
object. If a pointer is pointing at an object, the object can be accessed through the pointer. In the above,
xip would be the same object as the one described by the variable 1 .
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int i{ 9 };
intx ip{ &i };

std::cout << xip << "\n"; // prints 9.
xip = 4; // Write access to the pointed object
std::cout << i << "\n"; // prints 4.

For a pointer ip , the expression *ip is called dereferencing the pointer. *ip is a way to access
the same object as i . We see above, that it is possible to change the value of i indirectly, by assigning
to the dereferenced pointer. One interesting question is what happens to our promises regarding const .

If i isa const object, we should not be able to change its value after we initialize it. Can one sneakily
change the const object using a pointer? It turns out that it is not easy to do.

const double pi{3.14};

double* ptr { & pi }; // Error!
const double* cptr {& pi }; //OK
xcptr = 4; // Error!

The address of a const double is a const doublex . So, we can not store it in a doublex
variable. Pointers to objects of different type are different! We can store the address of a const double
object in a const doublex variable. But then, dereferencing a const double* object gives
us a const double, which we can not overwrite! Allowing the creation of a doublex from a
const double~* address would let us break our promise. It is therefore not allowed. If we tried to cre-
ate a const doublex from the address of a non- const object, it is harmless. Because dereferencing
the pointer would give us a const object which we can not change. The pointer is more restrictive
than the original address. It is therefore allowed.

“Dereferencing” with a prefix * operator should feel somewhat familiar to those who have pro-
grammed in C. Pointers were present in C, and C++ inherited this aspect from C when it started. The
dereferencing syntax remains the same between the two languages. This syntax has also been co-opted
for other types of indirect access to an object. We saw one example with the std::optional in the
quadratic equations example in section 2.3.1. The “iterators” used in the C++ standard template library
are also deliberately designed so that accessing elements of a container through an iterator looks like
indirect access through a pointer.

A pointer pointing at one object can be reassigned so as to point at another object.

const double d{8.}, e{3.};

const double » p { &d };

std::cout << *p << "\n"; // prints 8.
P = &ey

std::cout << xp << "\n"; // prints 3.

Above, we reassign a pointer declared as const double * . This exposes a sublety you should be
aware of. The pointer variable itself is an object. Its value is the memory address it is pointing to. Had
the pointer been a const object, we would not have been able to change its value and make it point to a
different location as we do in line 4 above. But what we have here is an ordinary non- const pointer to
a const double . The objects it can point to are const . But it can point to any const double
variable in the program. What if we wanted a pointer that points to a fixed location, i.e., a pointer which
itself is a const object. We will have to put the const qualifier to the right of the * to indicate that

intent. A good way to remember this is “ const binds towards its left” . The const keyword sticks

to the entity to its left. If there is nothing there, like in const doublex it takes the object to its right.
Some developers, therefore, prefer always writing const to the right of the thing they want to keep
constant, e.g., double const x instead of const double x , even for ordinary variables. In this,
“east- const ” style, the placement of const is more consistent whether or not pointers are involved.
Native speakers of languages where adjectives normally come after nouns find it natural, while others,
like me, think “a constant number” rather than “un numero costante”, and may have contributed to
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keeping this unnecessary syntactic diversity in the language. We therefore have an entire zoo of possible
combinations of const placement for a pointer to a double, which are listed below along with their
meanings...

double X{1.0}, X2{11.0}; // plain, mutable doubles
const double Y{2.0}, Y2{22.0}; // constant doubles.
double const Z{3.0}, 2z2{33.0}; // Exactly the same as the line above.

double *» p{&X}; // a non-constant pointer to a non-constant object

double const * g2{&Y}; // a non-constant pointer to constant object
const double * g{&Y}; // Same as above

double * const r{&X}; // a constant pointer to a specific non-const object

const double * const s{&Y}; // a constant pointer to a specific constant object
double const * const t{&Y}; // Same as above

Test yourself: which of the pointers above can be reassigned to point to X2 ? Which of them can be
reassigned to Y2 ? Which pointers can you use to change the value of X or Y?

It is possible to create a pointer of a given type, say, doublex , but not initialize it to the address of
any actual object. One valid way of doing that is to initialise it to nullptr . Such a pointer evaluated
as a boolean expression will evaluate to false , and this fact can be used to know that the pointer is in
fact not pointing at anything useful. Dereferencing a nullptr , or a pointer initialised to nullptr
is undefined behaviour. This means anything may happen beyond that point in your code. If you are
lucky, the program will merely crash.

Fortunately, one can easily check that we are not dereferencing nullptr :

auto somefunc (doublex inp) -> double
{
if (inp != nullptr) {
do_something_with (xinp) ;

}

If a pointer does not hold the address of a valid object, but is also not nullptr , we would not
be able to check the validity of its value as above. Really bad things can happen when we dereference
such a pointer to read or modify the “pointed to” object. It could after all, be the address of another
valid object in your program, or be a memory location outside the allowed memory for your program. In
this course, we have, from the beginning always initialised variables when we declare them. That habit
is always important, and you should most certainly continue doing that for pointers. There is another
pattern you need to recognise to work safely with pointers.

double * dp{nullptr};
if (something) {
double sum{ 0. };
dp = &sum;
// work
}
// more work
if (dp != nullptr)
std::cout << "sum = " << xdp << "\n";

Here, we initialised the pointer dp to nullptr , and then later assigned it to the address of a valid
object, sum. Yet, the last line in the above code invokes undefined behaviour. The reason is that the

scope of the variable sum ends at line 6. The pointer dp though, still contains the address of what
used to be sum , because we didn’t assign a new value to dp . As soon as the scope of sum ends,

that address can be reused for something else. Therefore, our pointer dp is pointing to invalid memory.
There used to be a house at that address, in which there lived a person you once knew, but there is a
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railway track running through that area now. Operations which were sensible at that address may not be
sensible or safe any more. This kind of a pointer, which once pointed to a valid object, but continues to
hold the same address after the object itself has expired, is called a “dangling pointer”. Such situations
have to be avoided with careful programming. If we are storing the address of any object in a pointer,
we have to be careful when dereferencing the pointer that the object itself is still in scope. For instance,
you should never return the address of a local temporary variable from a function.

2.6.2 Raw arrays and pointer arithmetic

Just like we can create one variable of a certain type using the syntax TypeName variablename
we can create multiple instances in a raw array, e.g., TypeName v[52] . In this case, an array of
52 objects of type TypeName will be created. The first object can be accessed as v[0] , the second
v[1] and so on. This is like a line of houses of identical design in our fictitious street. The address

of the first house is, &v[0] , address of the second is &v[1] and so on. In an array, the subsequent
elements are right next to each other in memory, with no gaps. Since the addresses here are sequentially
numbered locations in memory, the difference of the address values &v[1] and &v[2] , measured in

bytes, must be the size of one element of the array. For instance, if double v[10] , the separation
of the addresses of two consecutive elements of the array v is 8 bytes. This helps understand what is
referred to as “pointer arithmetic”.

Given TypeNamex ptr,and int dist,

e Two pointers to the same type are equal if they point to the same object.

e In the expression ptr + dist , the value of the pointer in bytes jumps a total of dist units of
sizeof (TypeName) . If it was BBB before, it will be BBB + dist » sizeof (TypeName)

afterwards. For a pointer to double , it means that adding 1 will shift its value by 8 bytes.
Because of this property, if we have a pointer to one element of the array, we can make the pointer
point to the next element by adding 1 to it.

o Difference pl — p2 of two pointers pl and p2 is a value of a signed integral type (typically
long these days) diff , such that p2 + diff == pl.

o Addition, multiplication or any other type of arithmetic operations with two pointers are meaning-
less.

e Only allowed operations involving a pointer and an integral number are addition and subtraction,
with the effect being a shift in the address stored.

o Pointer arithmetic for pointers not pointing at a valid array is meaningless.

The rules of pointer arithmetic are made to work with arrays. If ptr points to one element,

ptr + 1 pointstothe next, ptr + 2 points to the one following and so on. Therefore, » (ptr + 1)
is the object at the next array location, i.e., the next object. In fact, the next array element can also be
retrieved as ptr([1] .

int v[5]{10, 11, 12, 13, 14};
int *ptr = &v[0];
std::cout << xptr << "\n"; // 10

++ptr;

std::cout << xptr << "\n"; // 11

std::cout << ptr[l] << "\n"; // 12. Same as v[2]
std::cout << ptr[2] << "\n"; // 13

As seen above, ptr , which points to a position somewhere in the middle of the array v , can itself
be used as an array. ptr[i] is just another notation for  (ptr+i) . If ptr is set to point to the

first element of the array, ptr[0] , ptr[1] ... would be identical to v[0] , v[1] .... asif ptr , the
pointer was another name for v, the array. To make this symmetry more complete, name of an array
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(raw, low level built-in array), e.g., v can be thought of as a pointer to its first element, i.e., v is the
same as v[0] .

Despite the array like syntax that pointers also have, it is useful to think of arrays and pointers as
different kinds of things. An array is intended to house multiple elements of the same type. It is a
location in memory with multiple objects stored consecutively. A pointer could point into an array, but
it could also just point to one isolated object.

A peculiar thing happens when we pass arrays as function arguments. Consider this program:

// examples/array_or_pointer.cc
#include <iostream>

void f (double arr[4])
{
std::cout << "size of function argument in bytes = " << sizeof (decltype (arr)) << "\n";

}

auto main() -> int

{
double v[4]1{3, 2, 3, 4};
std::cout << "Elements of raw array...\n";
for (auto a : v) std::cout << a << "\n";

std::cout << "size of raw array in bytes = " << sizeof (decltype(v)) << "\n";
£(v);

We create an array of size 4 in the main function. We can even loop over this array using our range
based for loops. Clearly it has 4 elements. When we print its size in memory, using the sizeof
operator in line 15, we get 32 bytes, as expected. We try desperately to indicate that our function £
expects an array of 4 doubles. Yet, if you compile and run this program, you will see that the size of the
function argument will be printed as 8 bytes. When a raw array is passed as an argument to a function,
it loses any identity as an array. The function thinks of it as a pointer. The array, kind of, “decays” into
a pointer. The same loop we use above, in the main function does not work if we try to iterate over
the input parameter for the function. This pointer that the function receives, refers to the same memory
location, and therefore does indeed point to the beginning of our array. If we tell the function the extent
of the array, it can process it correctly.

void f (double arr[], unsigned length)
{
for (unsigned i=0UL; i < length; ++i) {
std::cout << arr[i] << "\n";

}

Raw arrays are not aware of their own size. In the context that they are declared, the compiler might
be able to see the extent, and use that information, for instance in range based for loops. But when
passed to other functions, that information must be passed along separately. C++ containers which
are similar to arrays, like std::vector, std::array etc. are aware of their extent. It is therefore

possible to pass them to functions alone, without an accompanying length argument. std::vector,

std::array etc. are real containers, meaning they store and manage the lifetime of the contained
elements. There is another C++ way of writing the function £ above, which can be used as an adaptor
around functions in C libraries: using std::span . std::span isa “view” of an array-like container.
It does not own any of its elements, and does not manage their lifetimes. It just provides a C++ style
interface around a bare pointer and an extent at no extra cost compared to passing those two parameters
to the function.

In the above example, we use double arr[] inthe function signature instead of double arr[4] .
This indicates that arr is an array of unknown length (as far as the function is concerned). Writing

arr[4] there is misleading, as it indicates that somehow arr contains some information about its

size, which it can’t. If a pointer is meant to hold an array, we can declare it with the [] syntax as
above. If we initialize it with an explicit list of values, the size is determined by the compiler.
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double arr[]{5, 4, 3, 2, 1}; // arr is double[5]

Irrespective of whether we state the size ourselves or the compiler counts the number of items in the
initializer list, the size of a built-in array must be a compile time constant. In standard C++, it is not
possible to do this:

void f (unsigned N)

{
double v [N]; // Not allowed.
for (unsigned i = 0U; i < N; ++1i) v[i] = O;
/7.

The C99 standard of the C language allows such variable length arrays. But it was once proposed
and rejected as a feature of C+4. Of course, C++ has multiple ways of creating variable length array
like objects such as std::vector, std::valarray ..., so that feature is not really necessary.

For pointers, like for integers, operators ++ and —- are defined to add or subtract 1 in the pointer
arithmetic sense. Given Typex p=&v[0] , ++p will change the value of p so that it points to v[1] ,
and then ——p will bring it back to v[0] . This allows code like this:

void mycopy_n (unsigned howmany, int* source, intx destination)
{

for (unsigned i=0U; i<howmany; ++i) {

destination[i] = sourcel[i];

}
}
void mycopy (intx start, intx end,

int+ destination)

{

while (start != end) +destinationt++ = *start++;

}

The first of these is fairly straight forward. Presumably the source and destination pointers point
to some location inside an array. Our code simply copies a certain number of elements from the source
to the destination using a for loop. It is entirely up to the user of the function to make sure that the
argument howmany does not lie about the true extent of the arrays source and destination.

To understand the second function, we need to know a little bit more about the use of ++ to perform
increments. There are two ways of using it to increment an integer or a pointer. ++var and var++ . At
the end of each of these, the variable var would have been incremented by 1. But, this is a “side-effect”
of that expression. Just like expressions like var + 5, var * var + 2, the expressions ++var
and var++ have values as well. For ++var the value is the incremented result. For var++ it is the
value it had before the increment. The following code listing should help:

auto var = 0, foo = 0;
foo = ++var; // var == 1 and foo == 1
foo = var++; // var == 2 and foo == 1
foo = ++var; // var == 3 and foo == 3
foo = var++; // var == 4 and foo == 3
The compact line *destination++ = xstart++ therefore says the following:

o Evaluate the values of the left and right hand sides of the assignment expression: LHS = original
location pointed at by destination . RHS = original location pointed at by start .

e Perform the assignment

e Implement the side effects of the sub-expressions, i.e., increment destination and start to
the respective next positions.
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Exercise 17:

The program examples/copyptr.cc contains the above code and a main program to
use these functions. Convince yourself that the program does what we just discussed. What
happens if you give an incorrect size to the mycopy_n function, like 1007 What happens if
you create the two arrays with unequal sizes? This program has no more library features than
our hello_world program, and is therefore a good toy to familiarize yourselves with some
kinds of errors.

Exercise 18:

In the program examples/copyptrl.cc we make two tests in two blocks inside main .
In both, we create two arrays A and B, initialize them with different values and pass them
to two functions, along with an extent argument. In each test function, we equalize the two
arrays. In test 1, we do this by calling the mycopy function we saw in the previous example.
In test 2, we simply write something like B = A; . After this, we change one of the elements
of the first array, and print the contents of both. Run the program. Do you understand the
output? Can you explain the difference of the output coming from the two tests?

2.6.3 Built-in arrays and pointers forever?

One of the things you might have noticed in the two exercise programs above is how little of the standard
library you had to use. Nothing beyond what you needed for hello_world . To some people, this has
some kind of value. I don’t have to learn about vectors and spans and so on. I don’t want to think about
all those fancy modern stuff. To me, any sentence that starts with “I don’t want to think,” rarely leads
to anything intelligent. Let’s dismiss “I don’t want to think” and “I don’t want to learn” as reasonable
excuses to not use C++ more completely.

I do however sometimes see performance as an excuse to stick with pointer based low level syntax for
everything. Since we only use low level constructs, it must be “light weight” and fast, right? There is the
expectation that there must be a huge cost for writing elegant code using the standard library or other
libraries which leverage recent language changes to bring us more elegant usage, more maintainable code.
Done perfectly, it is indeed possible to write extremely fast code with direct pointer manipulation. It is
also possible to make hard-to-detect mistakes which might crash the program, run with incorrect results,
run slower than they need to, run with almost always correct results. .. Until you become proficient in
C++, and have developed several proper projects in this language, you are not likely to beat the automatic
optimisations that modern compilers can do.

Exercise 19:

To help you decide whether to go it alone with bare metal tools like pointers for all tasks or
higher level facilities of modern C++, consider the following two functions:

#include <span>
#include <ranges>
#include <algorithm>
void mycopy (int+ start, intx end, int+ destination)
{
while (start != end) *destination++ = xstart++;
}
void mycopy?2 (std: :span<int> source, std::span<int> destination)

{
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std: :ranges: :copy (source, destination.begin());
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They do the same thing, except we use more human readable syntax in the second instance.
std: :span refers to a sequence of consecutively stored elements in memory, like a section
in an array. But it knows its extent. We use a simple “copy source to destination, starting
at the beginning of destination” kind of function call to achieve this. Copy the code into the
code window of the Compiler explorer. On the right hand side, choose GCC trunk or Clang
trunk as the compiler. In the box to the right of the compiler choice, you can enter compiler
options. Enter at least -std=c++20 there. Compiler explorer shows the assembler code that
the compiler might generate for your code. Most of the time, less assembler code means a
faster program, or a cleaner translation. You will see the assembler version of the two versions
of the copy function above. Set the compiler optimisation level to different levels, -o1, -0z,
-03 . How do the two versions compare?

The reason why we are learning about pointers is not that we will abandon our vector , array,
span etc., but rather that we will understand how they work, so that we don’t misuse them. Another
reason is to be able to read code written by the previous generations of programmers, so that you can
update them to more reliable, more readable, and perhaps faster code.

2.6.4 Dynamic memory

We learned before that sizes of C4++ (built-in) arrays must be compile time constants. For instance, the
following will not work:

#include <iostream>
auto main() -> int
{
std::cout << "Please enter a positive integer: ";
auto num = 0U;
std::cin >> num;
double X[num]; // Not standard C++, as the value of num
// 1s not a compile time constant
for (unsigned i=0U; i < num; ++1) {
X[i] = 0.;
}

// More work. ..

Of course, we often need arrays whose size are dependent on something happening when the program
is running, i.e., can not be known at compile time. If your program is meant to make a catalogue of
books the user has, you don’t know how big the array of book names needs to be when you are compiling
the program. And of course, when you need such runtime sized entities, you should use std::vector,

std::string and similar standard library facilities.

#include <iostream>
#include <vector>
auto main() -> int
{
std::cout << "Please enter a positive integer: ";
auto num = 0U;
std::cin >> num;
std: :vector<double> X (num, 0.); // OK. Vector was built for this
// More work. ..

But, how does the std::vector do it? Just to understand how standard library containers solve
these problems and to know their potential performance implications, let’s explore the details, by means
of a little analogy.

2.6.4.1 Whiteboard stack

Imagine that you have a few white boards and you want to do some calculation. You start by, for example,
writing N =4, ¢ = 1, z = 1.008 etc. and then numerically calculating something using those values. The
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numbers you need are right in front of you and you are cruising along at a good speed. Then you reach a
point where you need the result of a function f(x) to proceed. f(z) is in itself a sophisticated multi-step
calculation. So, you mark the point you have already reached in your original calculation, copy the value
of x to the next white board, and move over to the next white board to do the steps needed to evaluate
f(x). You finish calculating f(x), and copy the result from the second board to the place on the first
board where the value of f(x) was required. Now you have finished doing what you wanted to do with
the second board, so you wipe that board clean, and resume your work on the first board. Next time
you need to calculate some non-trivial function again, you copy the inputs from the first board to the
second. Go through the steps required for the other function on the second board. Perhaps those steps
will require calculation of yet another complicated function so that you move to a third board. Everytime
you finish calculating a function, you copy the result back to the previous board and wipe the board you
used to calculate that function. This is roughly how function call hierarchies work. The white boards
we are using for calculating a function and storing any intermediate variables form a “stack”. The first
thing you can remove from this stack is the last thing you added to it. If you are currently using 3
boards, because you went from your main calculation to calculating f(z) and then from within f(z) to
calculating g(z), the first board you will wipe clear is the one for g(x).

The white boards, your stack memory, are frequently reused small areas of storage, so that you have
an overview of everything on it and can access everything quickly. But the white board is unsuitable for
storing a hundred thousand numbers. Sometimes you need to work with lots of data, which do not fit in
your stack. In the library of your institution, they have a humongous white board, which we are going
to call the heap. When you need a large amount of space to store the data, you can ask the library heap
space manager to mark out a place of the required size on that humongous white board for your use.
They take a marker, find an unused area large enough for your requirement, and put a red line around
it. They note that you reserved it, and then give you a number uniquely identifying where it is on the
heap. A little later you ask them for another chunk, and they give you another number identifying the
space they reserved for your second request. You can do calculations with the data stored in these bigger
chunks if you are mindful and store the identification numbers they give you with each of your requests.
Notice that they are not returning you the actual newly reserved storage area. That would be pointless
because the whole reason for asking them was that you could not store all that data on your white board.
They are just telling you where it is. You can save the address of one such allocated block in a variable,
say P on your white board. You can always ask for the 100000th number stored at location identified
by P. Imagine that you finish your function for the current white board and you wipe it clean. You
have thereby also wiped clean where you previously wrote something like P = 82293221 to note where
the library allocated something for you. There is no way for you to see what you stored there. There is
no way to write some new data into that area. Worse, in the record of the library heap space manager,
that area of the heap is still in use, and they keep guarding it, so that nothing else can overwrite your
precious calculations. If you keep doing this, the entire humongous white board at your library will be
full of red blocks you reserved, but can’t use any more. Of course, when you leave, they notice that you
are not doing anything with any of the blocks you reserved, so the remove all the red lines they drew for
you and make it available to other people. But the right thing to do is this: as soon as you are done using
a block of memory you reserved, you send them another request saying that they can free up the area
you reserved with identifier 82293221. That block is then cleaned up, and made available for future use.
Notice that the life time of the entity you reserve started at the time of its allocation on the heap, and
ends when you made a deallocation request. The space with your information on the big white board
in the library does not automatically get released when you clean up your local white board. Therefore,
before your “pointer” to that storage, P, expires, you should send a deallocation request with the address
it stores, or copy the address of the allocated resource to another pointer so that you can continue using
it or free it later.

Now let’s say that again in C++ vernacular. Every time you call a function, the C++ runtime creates
a “stack frame”: an area in memory given to you to evaluate that function. Inputs to the function are
initialised on the stack frame from their values at the call site. All block scope variables you create
inside your function are written in this stack frame. When you finish the function, the result is copied
back, the stack frame is erased and the execution continues in the parent stack frame. The same bytes
in memory which constituted the stack frame may be used to create a new stack frame to calculate
the next function, potentially a completely different calculation. Stack frame is a “call frame” rather
than a “function frame”. There is not a different white board for sin(z), cos(x) etc., but rather a few
that you use, erase, reuse as you need. Stack frames, being frequently reused bytes in memory, are
usually “cached” by the CPU and can be accessed very very quickly. In C++, all your local variables



N

© o N o u

10
11
12
13

62 CHAPTER 2. OVERVIEW OF C++ FUNDAMENTALS

are created on the stack, even if they are non-trivial user defined types. This was always the case in
C++. But the stack frames are small, and can not store large amounts of data. There is another part of
the memory, which is not used to implement the stack, and it can store as much data as your installed
RAM allows. That is called the heap. To request a certain region to be reserved on the heap for use as a
single integer, you have to do this: int* p = new int . If you need 2000000 doubles, you would do

this: doublex p = new double[2000000] . The operator new is your way of requesting that
a certain chunk of memory be reserved for your use. The runtime reserves that memory and returns to
you the address of the reserved location. If you do not note down this address, like we do in the pointer
variables here, there is no way to refer to the reserved locations. The opposite of new is called delete .

To clear the “in-use” status of a block of memory you previously got from new , use e.g., delete p,

if the space is for a single object, and delete[] p if it is for an array. Heap allocation/deallocation is
used in C++ when we need to work with a large amount of data which does not fit in the stack frame, or
when we simply don’t know at compile time how many bytes are needed to store a variable. In C++ the
compiler makes a precise plan for every stack frame it might need to create, with exactly where on the
stack frame each variable is going to be written and how many bytes will be used to store the variables.
This reduces the number of operations the runtime has to do to perform its tasks. But, suppose you
wanted to store someone’s name in a variable. How long should the character array be? 207 307 2007
If you set it to 30, thinking who has a name that has more than 30 characters, you should ask a friend
from Spain or from southern India, whether they think 30 characters are enough to store the name of
a person. If you set it to 200, you might be fine, but most often that is a lot of wasted space. That’s
why, for situations where we can not decide on the exact number of bytes at the compile time, we use
blocks of memory allocated on the heap, and work with them using a pointer “handle” representing our
connection with that resource.
Using heap allocation, our task from the beginning of this subsection could be written as

#include <iostream>

auto main() —-> int

{
std::cout << "Please enter a positive integer: ";
auto num = 0U;

std::cin >> num;

double* X = new double[num]; // no need to be a compile-time constant size
for (unsigned i=0U; i < num; ++1) {
X[i] = 0.;

}
// More work...
delete [] X; // Extremely important

Notice one important contrast to our use of pointers before this subsection. Up to this point, we used
to initialise pointers to addresses of named variables, e.g., int+ p = &i . If somehow the pointer p

runs out of its scope, we can still reach 1 , read its value, assign to it, make another pointer point to
it. The object or array that new creates “somewhere” in memory is a nameless entity. We store its
address in a pointer. As long as the pointer exists, we can reach that block. If the pointer runs out of
scope and is gone, there is no way for us to do anything useful with that block of memory. It is lost to
our program. It is leaked. In the above listing, X is called a “resource owner”. It is our handle to a
nameless chunk of memory somewhere. We have to make sure that before the resource owner runs out of
its scope, it releases its owned resources, or transfers ownership to another entity. For instance, we could
let X expire without calling delete above, if we created another pointer to store that value before X
expires.

Notice that in the above example, we do not “declare a variable” on the heap. We have a variable
called X , which is of a pointer type, which lives on the stack. It holds a value, which happens to be the
address of some resource we acquired from the system. That nameless object is not a variable declared
in our function. Variables like X play by the scoping rules of C4++ we learned earlier. The nameless
entities we create outside of the stack tree by allocating memory with new have different rules about
their life time. They come into existence when we call new , and their life time only ends either when
we call delete on the same address, or at the end of the program. Every new in code should always
be paired with a corresponding delete somewhere.

In modern C++, manual memory management with new and delete is considered bad practice.
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It is too easy to forget to match every new with a delete. Even when we do write a matching delete
for all calls to new , existence of exception in C++ means that the line with the delete expression
may never be reached. Even when an exception is not thrown, and the delete instruction runs as

intended, it is too easy to forget that despite delete freeing a memory region, it does not change the
value contained in the original pointer in any way, as the following example illustrates.

// examples/asan0.cc
auto main() -> int
{
auto*x X = new double[400]; // space for 400 doubles reserved on the heap
// X holds the address of where those 400 doubles are on the heap.
// For instance, X could be the numeric address 337932100.
// work with X, e.g.,

if (X !'= nullptr) {
for (int i = 0; i < 400; ++1i) {
X[i] = 0; // Perfectly valid use

}

// Done with calculations using X

delete [] X; // Previously allocated space for 400 doubles is now released
// X is still 337932100, but the previously allocated 400 doubles at

// that address on the heap is already gone!

if (X != nullptr) {
for (int i = 0; i < 400; ++i) {
X[1i] = 1; // Nasty use after free bug!
}
return X[33] > X[23];

In line 15 above, we freed the array we had previously allocated on the heap. But, the pointer X still
held the value of the previously valid location in the heap. Checking the validity of the pointer as we do in
line 19 does not help, because X is not nullptr as it still holds the address of the previously allocated

array, since line 4. It was not a nullptr in line 8, and nothing changed it since then. delete is
not an operation on the pointer itself, but a request to clear memory at the location specified by the
value held by the pointer. When we try to access and assign to elements of the no-longer-present array
in line 21, a lot of bad things can happen. If we are lucky, our program crashes, and we debug and find
the mistake. We may not always be lucky. One simple thing one can do to mitigate things is to assign
nullptr to the pointer X immediately after calling delete . The memory location it was pointing to
would be invalid after the delete, so, we might as well zero it out. This restores correct behaviour in
many instances. But, now we have remember not only to pair each new with a delete , but also to
zero out the pointer after calling delete . Chances of making this kind of mistakes are not small.
The above code, when compiled and run, does not immediately crash or give any errors, as shown
below in the first two lines. This would then hide a possibly serious bug, which can hurt our code base
later at some unfortunate time. Tools like address and memory sanitizers are designed to detect bugs
like the above. To diagnose possible memory bugs like this, one could compile with address sanitizer.

examples> g++ -std=c++20 -g asanO.cc -o nosanitizer

examples> ./nosanitizer

examples> g++ -std=c++20 -g -fsanitize=address asan(O.cc -o with_sanitizer
examples> ./with_sanitizer

==15277==ERROR: AddressSanitizer: heap-use-after-free on address 0x61£f000000080 at pc 0x0000
WRITE of size 8 at 0x61£000000080 thread TO

#0 0x4008df in main /home/sandipan/Work/courses/2021/examples/ asan0.cc:21

#1 Ox7fead46bbl349 in _ libc_start_main (/lib64/libc.so.6+0x24349)

#2 0x400769 in _start (/home/sandipan/Work/courses/2021/examples/a.out+0x400769)

0x61£000000080 is located 0 bytes inside of 3200-byte region [0x61£000000080,0x61£000000d00)
freed by thread TO here:
#0 Ox7fea4795d117 in operator delete[] (void+) /home/sandipan/src/gcc/libsanitizer/asan/asa
#1 0x400897 in main /home/sandipan/Work/courses/2021/examples/ asan0.cc:15
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#2 0x7fead6bbl349 in _ libc_start_main (/lib64/libc.so.6+0x24349)

previously allocated by thread TO here:
#0 0x7fead795c757 in operator new[] (unsigned long) /home/sandipan/src/gcc/libsanitizer/asa
#1 0x400827 in main /home/sandipan/Work/courses/2021/examples/ asan0.cc:4
#2 0Ox7fead6bbl349 in __ libc start_main (/lib64/libc.so.6+0x24349)

SUMMARY: AddressSanitizer: heap-use-after-free /home/sandipan/Work/courses/2021/examples/asan0
<<<<< Lots of more output >>>>>>
==15277==ABORTING

Notice how the run with the address sanitizer not only recognised that we were using the heap region af-
ter freeing it, it told us exactly where we allocated that heap region , where we freed that heap region ,

and where we tried to illegally access it after releasing it .

In C++ since C++411, there is really no reason to do any explicit memory management with new
and delete any more. The detailed explanation given above was to give you some insight into what
is happening behind the scenes. A vast majority of situations where you might need to work with
dynamic memory, you should prefer standard library containers and smart pointers. When implementing
a library which has to deal with dynamic memory, the orchestration of allocation and deallocation is
usually handled in C++ by writing resource handler classes. Remember the special property of blocks
of code in C++7? If a variable is declared in a block, it expires at the end of the block. In C++, when
an object of a class type expires, there is a special “clean up” function associated with that class, which
runs automatically. These functions are called “destructors”. Imagine that our pointer belonged to one
object of such a user defined type. When it is about to expire, the destructor will be compulsorily called.
If we write a destructor which releases any heap resources held by the pointer, it would be impossible
to “forget to deallocate”, even if an exception is thrown between the lines containing the new and the
delete expressions. That’s what classes like std::vector, std::unique_ptr etc. do. They
wrap a resource owning pointer in an object of another type. They manage allocation of resources in
special “constructor” functions and clean everything up in their destructor functions. Since it is impossible
to forget this clean up function, it is necessarily called when a variable expires, we can match all new
instances with a corresponding delete without ever failing. In our chapter on classes, you will learn
to do this kind of resource management.

Continue using std::vector, std::string etc. to manage all the heap allocations for you.
Need to store the contents of a file as a character sequence of unknown (at compile time) size? Use a
std: :string . Need to work with a very large array of numbers? Use a std: :vector . Nowadays,
a bare new or delete call in user code is seen as likely problematic code. Unless you are writing
library code, for instance, to provide a type like the std::vector there are no cases where you need
to write new or delete in your code.

Notice that the recommendation does not say “avoid pointers”. That advice is about as sane as
“avoid house numbers”. The guideline regarding new and delete is only about doing heap resource
allocation and deallocation directly. It is about owning pointers. The pointers holding return values
from new are sole handles to those resources, i.e., they “own” those resources. It is best to leave these
owning pointers out of your code, and use library facilities as mentioned above. They are very well tested
solutions following all safe practices, most often (almost always) with negligible overhead.

Let’s close this subsection with one valid use case for “non-owning” pointers. The very “C-style”
function axpy below is easy to understand, easy to implement, and most compilers will generate fast
code from it. Its purpose is to calculate the result array res from input arrays x and y and input
constant a , using the mathematical function R = ax +y.

void axpy (doublex res, const double a, doublex x, doublex y, unsigned long N)
{
for (auto i = 0UL; 1 < N; ++i) res[i] = a » x[i] + yI[i];

}

auto main() -> int
{
std: :vector<double> u(100'000'000UL, 0.);
auto v = u;
auto w = u;
for (auto i = 0UL; 1 < u.size(); ++1i) {
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uli]l = 0.11 = (1 % 7);
v[ii] = 0.123 % (1 % 365);

axpy (w.data(), 3.5, u.data(), v.data(), w.size());

The function axpy does not do any memory management. We give it the location in memory of 3
arrays and it performs a simple action on those arrays. When we use the function in line 15, we simply
extract and forward the raw pointers holding heap allocated arrays (using the function data () ) from
our std::vector<double> objects u, v, w. There are no new and delete calls in sight.

std::vector will correctly allocate and deallocate memory for us. Think how we would feed the
function axpy its inputs without being able to give it the addresses where the data is stored. Copying
over one or two double precision numbers to the next white board for processing is one thing, but copying
over a billion would just be silly. Instead, we make the function accept pointer inputs. Pointers store
addresses. The function can access the data at those addresses. We copy to the next white board nothing
more than the addresses on the heap corresponding to where the inputs are to be found.

Non-owning pointers are safer and easier to manage than resource managing pointers, but they still
require some care. We have to ensure that the addresses held by the non-owning pointers correspond
to valid objects. Recall the discussion of the dangling pointers above. That problem is independent of
memory management. One strategy to reduce the risk of dangling pointers is to not store the non-owning
pointers as local variables at all, but instead retrieve them directly from resource handling classes as and
when needed. In any project, it is also a good idea to set up the debug builds to run with the address
sanitizer. There may be subtle cases where a memory bug is not detected by the sanitizer, but quite often
the cases are not that subtle, and will be correctly detected. Once we have ensured that the sanitizers
do not find any errors such as “use after free”, we can compile with full optimisation and without the
sanitizers, for speed.

2.6.5 References

References in C++ are a similar idea to pointers. There are two kinds of references. For a variable
of type Type , there is a corresponding L-value reference type, written as Type& , and an R-value

reference type, written as Type&& . L-values are expressions which can be on the left hand side of an
assignment expression. For instance, variable names, expressions like v[i] etc. can be on the left or

right hand side of an assignment. But, things like 5, x * y or cos(x) can’t be on the left hand
side of an assignment expression. Such expressions are called R-values, and references to R-values are
R-value references. Let’s first discuss L-value references.

double pi{ 3.141 };
doubles 1lvr { pi };

std::cout << pi << ", " << lvr << "\mn"; // 3.141, 3.141

lvr = 2.7;

std::cout << pi << ", " << lvr << "\mn"; // 2.7, 2.7

pi = 3.14159;

std::cout << pi << ", " << lvr << "\n"; // 3.14159, 3.14159

An L-value reference is like an alias for the same object that it refers to. Just like a pointer, we can
read and write the variable (unless it is const ) through the reference. But unlike a pointer, we don’t
need to dereference a reference to access the object. In fact, we can now look at our variable declarations
in a new way. When we say int var{0}; , we create an object of the int type somewhere (4 bytes,

int rules for interpretation and functions...), set its value to 0, and create a reference to that object
called var . The variable name itself is the first reference we create to an object. The type of 3.14159
above is double , but the type of pi is doubles , a reference to a double .

A reference is attached to a specific object in memory, like a glued pointer. A reference can never be
re-assigned to point to a different object. We can not create a null reference. And we don’t use pointer
like dereferencing syntax when working with references. A reference is therefore like an automatically
dereferenced constant pointer. It must be initialised to an object at creation.

Another important difference between pointers and references is that it is not possible to create an
array of references, whereas an array of pointers is a pretty normal thing, e.g.:
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auto main (int argc, charx argv([]) —-> int
References behave like fixed automatically dereferenced pointers. They might be replaced by addresses
by the compiler, but they are not real objects in the C++ language.

Being similar to pointers, references inherit some of their problems. Dangling references can cause
similar problems as dangling pointers. But constant references are extremely valuable as function argu-
ment types, and are the most common way of declaring formal parameters in function headers. Let’s
understand them a little better.

We saw earlier that large objects can be passed to a function cheaply by using pointers. We just
copy the address to the function stack and begin. That is exactly the purpose of references as well.
When a function expects its input as a reference, when we call the function with an object, the compiler
initialises the function input parameter (the reference) with our object, essentially giving it the address
of our object. In the function code, we end up dealing directly with the object used to call the function.
We will see plenty of examples of this later.

std::string obj{"Some concrete object somewhere"};
std::string& ref{obj};

const std::strings& crefl{obj};

std::string const& cref2{obij};

std::cout << ref << "\n"; // same content as if we had printed the obj
std::cout << crefl << "\n";// same content as if we had printed the obj
std::cout << cref2 << "\n";// same content as if we had printed the obj

ref[1l] = ref[0]; // Overwrite the second character with the first. OK.
crefl[3] = crefl(2]; // Error! can not modify through const-reference!
cref2[3] = cref2[2]; // Error! can not modify through const-reference!

std::string const obj2{"Constant string object"};
std::strings& ref2{ obj2 }; // Error! Binding reference to obj2 discards qualifiers!

In the above, we created a string and a few references to it, differing by how the const qualifier is
used. The declarations for crefl and cref2 only differ in the placement of const (right or left
of the object). They mean the same thing. For pointers, it is meaningful to try to distinguish between
constant and non-constant pointers to constant or non-constant objects. We saw a lot of different ways of
writing “constant pointer to (constant) X”. References always point to the same object, so that the only
thing which can be non-constant is the object it is pointing to. Therefore, there are no variations above
with a const appearing on the right of the reference symbol, & . The const in a constant reference
can only refer to the object, and therefore it does not matter whether we put it on the left or the right
of the object. The argument of consistency in all cases (normal objects, pointers and references) is still
valid, and many programmers therefore prefer writing int consts& instead of const inté& . In both
cases, we are talking about a reference to a const int . Notice that we created constant references to
a string object which itself was not a constant. That’s because the constant reference is more restrictive
in the constantness guarantees than the guarantees in the object itself. It does not seek any previleges to
modify the object. It would not be possible to do the opposite, i.e., initialising a non-constant reference
from an object that is a const | as shown in line 15. The same applies to initialising non-constant
references from constant references.

As shown in the above code example, when we try to use an object through the reference, we don’t
need to dereference it. If we merely want to read information from the object without modifying anything,
both the const as well as non- const reference can be used. This is illustrated in lines 6-8. However,
if we want to modify the object, we can use the object directly or, equivalently, use a non-constant
reference. We can not use a constant reference in any operation which does not promise to keep the
entity unchanged, as shown in lines 11 and 12. Because of this, a function taking a particular argument
as a constant reference, can not perform any operation that might modify that object, whereas a function
expecting a normal non-constant reference may modify the object used in the input.

auto suml (std::vector<double>s& v) —-> double
{
auto sum = 0.;
for (auto i = 0UL; i < v.size(); ++i) {
sum += v[i];
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return sum;

}

auto sum2 (const std::vector<double>& v) -> double

{

auto sum = 0.;

for (auto i = 0UL; 1 < v.size(); ++i) {
sum += v[i];
// v([i] = 0.; // this won't compile

}
return sum;

}

void elsewhere ()

{
std: :vector<double> X{1., 2., 3., 4., 5.};
std::cout << "Sum 1 = " << suml (X) << "\n";
for (auto el : X) std::cout << el << "\n";

In the above, we call the function suml with an input vector. The answer we receive is correct,
but after the call to suml , the vector is all 0. This is because the function suml takes its argument
as a non-const L-value reference. Inside the body of the function seen at the top in the snippet above,
we modify the input vector by replacing the elements by 0 in each step of the iteration. This is allowed
because as far as that function is concerned, the input parameter is a non-constant object, so that it
can do any modifications it wants. The second version of the sum function, sum2 takes its input as a
constant reference. Any attempt to modify that input in that function would result in a compiler error.
If we had used sum2 instead of suml later, the vector X would remain unchanged after we have
evaluated the sum.

Why does this matter? We often need to call functions in libraries written by other people. When
calling such a function, it makes a great deal of difference whether the carefully constructed object we
pass as an input to that function remains unchanged by that call or not. It affects what we can write
after that. To verify whether or not a function tampers with its input, all we have to do is to look at
the function header, not its entire code! If the function takes its argument as a constant reference, and
the compiler accepts the implementation of the function, it means that at the end of the function, the
object we passed as a reference to the function is unchanged. We don’t need to write any tests to verify
it, we don’t need to carefully scan through the source code of that library function. If it takes a constant
reference, it has read-only access.

2.6.6 Pointers, references and auto

We have seen the C++ variable declaration syntax using the auto keyword. To create a new variable,
we write something like auto x {initializer}; to create x whose type is the deduced from the

type of the initializer. If the initializer is a pointer, e.g., auto x{&other_var}; , then so is the object
of the newly created variable x . The value of x is a pointer. The name x , as we discussed earlier,
is the first reference we create to that pointer. It would however be nice to make this a bit more on the
face, without spelling out the full typenames. We just want to indicate that the new variable we want
to create stores a pointer type, and not an ordinary type like int or double . This can be done by
using the so called qualified auto declarations:

std::string preexisting{"Exemplar"};
auto ptr{&preexisting};
autox ptr2{&preexisting};

The last two of the above declarations will create std::string* objects, because preexisting
is declared to be an std::string (preexisting is a std::string, so &preexisting is

std: :string+ ). But if you mistype and forget the & when creating ptr above, there is no error,
because what remains after the typo is a syntactically valid statement, although it means something
different than what you intended. You wanted a pointer, and you got a normal std::string. And
the compiler said nothing. It is the job of the compiler to catch such errors. The second version, with
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the qualified auto tells the compiler that you were trying to create a pointer. If you forget the & or
use some other initialiser which is not a real pointer, it can’t be used to create a pointer, so the compiler
will most assuredly flag it as an error.

In general in C++, we are trying to write code with as strict a specification of our intents as we can.
The more precisely we can formulate our intent, the more strictly the compiler can “proof read” our code.
The compiler is our friend, and we are not in the game of trying to “get something past the gatekeeper”.
It is a tool to help us translate our vision precisely into C++ code. Therefore, it is regarded as good
practice to use qualified auto whenever possible.

When creating references, using qualified auto is even more important. Because ordinary variable
names are themselves L-value references. When we say auto I{3.141} , it is clear that we want to
create a double object with the value 3.141, and refer to it by the name I . If we then go on to say

auto J{I} , do we want to create yet another object of the same type and value or do we want another
reference to the same existing object? References are normally initialised from existing variables, the
same as full objects:

std::string preexisting{"Exemplar"};
std::string another{preexisting};
std::string& ref{preexisting};

The creation of the std::string object when declaring another and the reference ref re-

quired exactly the same initialiser. If we skip the explicit type description on the left, how is the auto
going to figure out what we wanted? To reduce the potential for ambiguities, the type deduction rules
for auto are formulated in such a way that it usually does not create a duplicate reference when given
a pre-existing variable or some other L-value reference. It creates a duplicate object instead. In order to
create an alias reference using auto , we have to specify the reference symbol explicitly:

std::string preexisting{"Exemplar"};
autos ref{preexisting};
const auto& cref{preexisting};

Writing auto var{preexisting} will make var a new std::string, where as
auto& var{preexisting} will make var a reference to the existing std::string. To create
a constant reference, we use const auto& cref{preexisting} . Note that even if the initialiser

was a constant reference, using plain auto will create a new object without the const qualifier. To
create constant or non-constant references to existing objects, we have to be explicit by using qualified
auto .

The rules for automatic type deduction with auto are formulated in terms of C++ templates. We
therefore limit ourselves to these working recipes for now. We will revisit the topic of why auto behaves
the way it does after we have discussed templates. We will close this section with another “recipe” for
declarations of references with auto :

std::string changeable{"Non-constant string"};
std::string const fixed{"Fixed"};

auto&& x{changeable};

autoss y{fixed};

With the notation autos&s , we use the rules of the so called “universal references”. The result above
is that x 1is deduced as std::string& whereas y is deduced as std::string consts , ie.,
we retain the const qualifier in the initialiser. The autos& notation also lets us initialise R-value
references, but that is a topic we leave out until we discuss C++ classes in detail. Let’s examine a popular
use case and explain what is happening there:

const std::vector<std::string> V (100, "Very long and different strings");
for (auto s : V) std::cout << s << "\n";

for (const autos s: V) std::cout << s << "\n";

for (autoss s: V) std::cout << s << "\n";
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All the above loops print out the strings in the vector V . For every iteration round, the range based for
loop initialises the loop variable with the next element from the given sequence, and executes the loop
body with that variable. In the first version, it will take every element of V one by one, and initialise
the loop variable with it, for example, auto s{V[0]} for the first iteration. As we discussed in this
section, this deduces the type of s to be std::string, and hence a new string is created with the
same content as V[0] . Therefore, in the first loop we construct a new, potentially long, string for every
iteration. In the second case, the loop variable is declared as const auto& s{V[0]} . Therefore, it

will deduce the type of s as std::string consts , and initialise the reference to the string object
in the array. No new copy will be created. The third version will also create constant references because
our initialisers coming from V , which is a const vector, will be const qualified. If Vv were not
const qualified, the third version of the loop will use non-constant references. Both the second and
third version are more efficient because they do not create unnecessary copies of the strings for each loop
iteration.

When introducing the range based for loops, I used the plain auto like in the first version above,
because that is all I could explain without a background on references. Now, I can recommend the second
or third version for almost all cases where the elements of the sequence we are iterating over are non-
trivial entities (anything other than built-in types). The second one wins out on clarity, but the third
one is more general while still being as efficient.

2.7 More about functions

Let’s now discuss functions in some more detail. We are already familiar with their basic syntax.

//declaration
auto function_name (parameter list) -> return_type ;

// definition
auto function_name (parameter list) -> return_type
{body}

The specification of the function name and its inputs is called its “signature”. It is possible to only
“declare” a function without providing explicit code of it, as shown above. A declaration consists of the
function header followed by a simple semi-colon instead of the function body. A function declaration is
also a promise. We are saying that “there is a function with these properties, just assume that it exists
and look at the rest of the code” In the following, the compiler can check the code for correctness and
generate “object” code for our program.

auto term(int i) -> double;

auto series_sum(int from, int to) -> double
{
auto sum{0.};
while (from < to) sum += term(from++);
return sum;
}
auto main() -> int
{
std::cout << series_sum(0, 100) << "\n";

}

You can copy this code to a file (e.g., seriessum.cc ), and compile it:

g++ -std=c++20 -c seriessum.cc

It will compile without errors. But obviously, since we didn’t write a function body for term() , we
can not build an executable program out of it. With the -c option, we told the compiler to stop after
it has finished compiling, without trying to invoke the “linker”, which creates our final executable. The
compiler can check that our code is syntactically correct. Every time we refer to term () , the compiler
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looks for a definition or a declaration. Since it only finds a declaration, it just checks that we are we
are using the promised function right. We are using it as term (from++) which means we are trying
to call it with a single integer input. The compiler checks that the function prototype (the declared
function) can accept that kind of input. It checks what we are doing with the output. If any of these
aspects were inconsistent with the prototype, we would have an error. Just for fun, check that if you
replace term (from++) by term(&from) the compiler does not accept it. With the prototype, you
promised a function called term taking an integer argument, not a pointer! But after the syntax check,
the compiler can only go so far as to generate instructions to call that promised function. It still has no
idea what that function actually is. It is the job of the linker to match such calls to functions defined
elsewhere, perhaps in a library, or in another file you are using to build the program. If you try to build
an executable, i.e., run the compiler without a -c option, you will get an error saying something like

undefined reference to 'term(int)' .

2.7.1 Parameter passing

// examples/parameter_passing0.cc
#include <iostream>
auto sum_till (unsigned N) -> unsigned
{
auto sum{0U};
while (N) sum += N-——;
return sum;
}
auto main() -> int
{
auto lim = 10U;
std::cout << sum_till(lim) << "\n";
std::cout << lim << "\n";

Run the above program. Why does it print what it does?

We call the function sum_till like this: sum_till (lim) . In the sum_till function, we
change the input parameter in the while loop. Since non-zero values are regarded as true , the loop
runs as long as N is non-zero. In every loop iteration, we decrement N by one. By the time we are done,

N is 0. Yet when we are done executing the function, 1im , which was passed as the input parameter, is
still 10. This is because we are passing the parameters as a value in this instance. When a function is
declared with a non-reference type as its parameters, an object is created for each of the parameters from
the function call expression. If we had called sum_till (7) , instead of a named variable, we couldn’t
have decreased 7 in that while loop until 7 became 0, could we? The function sum_till declares
in its header that it needs to start with an integer object that it is going to call N . When we call that
function with an expression expr , i.e., like sum_till (expr) , the function sees it as

o Initialize parameter N with expr
e Run the code of the function

¢ Return to the expression where the function was called, replacing the function call with the return
value

In our case, it was like unsigned N{ 1lim } at the start of the function. It is that newly cre-
ated integer N which we decreased to 0 in the loop. Not the original 1im . We could have written
sum_till (1lim + 15) , in which case the expression 1im+15 would have served to initialise the
variable N without any problems.

If you now change the header of sum_till a little to specify that the input parameter is a reference:
auto sum_till (unsigned& N) —> unsigned

the behaviour changes, although it is still possible to reason as above. We now get a final output 0 for the
value of 1im after the function has run. In this case, again, the function will create a variable N with the

type it is declared: unsigneds& . Something like unsigneds N{lim} . Remember what happened
when we declared references like that? The reference became kind of an alias for the original variable.
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Same happens here. N becomes just another name for the object 1im . Therefore, 1im undergoes
all the changes that N does in the function, and ends up with a value of 0. Using reference types in
function parameter list is called passing parameters by reference. Without the & in the parameter list,
the function worked with a copy of object that it created. With the & , it created a reference or an alias.
Now, try changing the input to 1im + 1 with the unsigneds& input type. You should get an error,
saying something like:

error: cannot bind non-const lvalue reference of type 'unsigned int&' to an rvalue
of type 'unsigned int'

This is an error because we are trying to give another name to 1im + 1, but you can only give
another name to something that has a name! 1im+1 is an R-value. The reference we created is an
L-value reference. The error message says that you can not attach a non-constant L-value reference to
an R-value, but only to objects which can be on the left side of the = sign. There are two parts to
the compiler’s grievances: non-const and L-value. If we make it a const unsigneds in the function

header, passing 1im + 1 will be OK, but the function code as written wouldn’t work, as it tries to
change N . An R-value reference is made exactly for this kind of nameless objects: somewhere in memory
there exists an object which is the result of the calculation 1im + 1, although that entity does not have
any name. An R-value reference can attach itself to that kind of object. To make the input parameter
an R-value reference, you would write it as unsignedss& . Calling sum_till (1im + 1) would then
be acceptable to the compiler. It is however not a real use-case for R-value references. For a good use
case, you should wait for the discussion of move semantics in connection with our discussion of C++
classes. For simple numeric types, it is best to pass the arguments by value (without any & or &s& in
the function signature).

One use of non-constant L-value references in function signatures is “in-out” arguments. We want the
function to work with the input value we provide, but also change it in a meaningful way. One can also
use it to create multiple outputs from a function:

void findlims(int &i0, ints&il)
{

// Find a suitable range

i0 = beginning_of_the_range;
il = end_of_the_range;

}

auto elsewhere() -> int

{
int x1, x2;
findlims (x1, x2);
for (auto i=x1; 1 < x2; ++1i) {
// work

}

This is no longer the recommended approach in C++ if you need multiple outputs from a function.
Any number of arguments of any type can be packaged inan std: :tuple and returned from a function.
For example,

auto findlims() -> std::tuple<int, int>
{
// Find a suitable range
return {beginning_of_the_range, end_of_the_range};
}
auto elsewhere() -> int
{
auto [x1, x2] = findlims();
for (auto i=x1; i < x2; ++i) {
// work
}
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Compared to the implementation using L-value references, the tuple output combined with the “struc-
tured binding” we see in line 8, is more expressive about our intents. x1 and x2 are the two outputs
of the function, not the input. Input is what goes inside the function parentheses () , and output is
what we write after the —> . It is useful to know both approaches, so that you can choose the method
that seems most understandable on a case by case basis.

Constant references, e.g., const std::string& are rather commonly used as function inputs.

auto encoder (const std::stringé& input) -> std::string
{
/..
}
auto elsewhere() —> anything

{
std::string userstr;
// work
auto encoded = encoder (userstr);
// more work

When we use the function encoder above, we know that we are not creating a whole new string
out of userstr in the function. The function takes a reference input after alll Strings are somewhat

expensive to copy, especially if they are more than a few characters long. Since encoder was written
with a reference argument, we know that the function is going to use an alias for the existing userstr
instead of creating a brand new string with the same value. That alone would not be great though: we
know that a function taking a reference argument can modify its input parameter. Perhaps we don’t want
encoder to be able to change our userstr . Can we trust it that it won’t? We can, if encoder
uses a const reference in its input. A const reference is like a read-only access to the original that
we are using as function input. No expensive copy. No danger of the input being modified. This is why,
with the exception of when the inputs are simple numbers, or other light weight objects with only a few
bytes of data, you will see that C++ programmers like to write functions with constant references to
various types as inputs. I have waited to use parameters like const std::vector<double>s etc.
in the examples, only because the concept had to be explained first. From now on, we will (gradually)
introduce more of the const Types& syntax whenever appropriate.

2.7.2 Overloading

Suppose, as an example, that we are writing a function to calculate ¥, for real number x. If the power
y is a positive integer, we can just multiply z with itself the required number of times. If it is a negative
integer, the answer would be zfy. If y is it self not known to be an integer, power calculation becomes
more complicated, but for the purpose of this example, let’s just say we calculate it as exp(ylog(x)). This
does not work for negative =, and in reality we have to handle the whole problem much more carefully
for special cases. But, let’s just recognise that there are operations which could be (would have to be, or
would preferably be) done differently depending on the type of the input.

We could write two different functions for the two ways to calculate the power, something like

integral_power and real_power . That would work, but it is needlessly verbose. In this ap-

proach, integral_power (x, y) is intended to be called with integer y, and real_power (x, y)

is intended for use with double or float vy, every single time. We are therefore providing the inte-
ger/real information twice: once in the name of the function, and once in the type of the argument y . If
after using these functions hundreds of times in a program, we decide to change the type of a parameter
from integer to a floating point number, we have to change each instance of the use of the specialised
power function. Wouldn’t it be nice if the function to call could be automatically inferred based on the
type of the parameter y? Something like:

// examples/overload0l.cc
#include <iostream>
#include <cmath>

#include <limits>
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auto power (double x, int n) -> double
{
if (n == 0) return 1.;
else if (n < 0) return 1.0/power(x, -n);
auto ans{l.};
while (n——) ans *= x;
std::cout << "Using a simple loop to calculate power\n";
return ans;

}

auto power (double x, double y) -> double

{
std::cout << "Using exp of log method to calculate power\n";
if (x < 0) |

std::cerr << "Invalid input for non-integral power function: " << x << "\n";
exit (1);
} else if (x == 0) {

if (y > 0) return 0.;
else if (y < 0) return std::numeric_limits<double>::infinity();
else return std::numeric_limits<double>::quiet_NaN();
} else return std::exp(y * std::log(x));
}

auto main() —-> int

{
std::cout << power (4.0, 3) << "\n\n"; // int power
std::cout << power (4.0, 3.) << "\n\n"; // double power

Here, in the main function, we have called power (x,y) , twice, once with an integer power and

another time with a double power. We also have two functions just called power , differing only in
the type of the second input. The compiler has all the information to know in each case which variant
we want to call. You are probably thinking this would be very reasonable. Does C++ really allow that?
Try it!

As you have probably found out, it is allowed without any fuss. The C++ compiler does indeed
distinguish functions based on the types of its input arguments. If, to achieve one goal, different methods
need to be used depending on the type of the input arguments, we can choose a single intuitive name for
the function, and write multiple versions of it for the different input parameter types, all sharing the same
name. This is called function “overloading”. The collection of functions with the same human readable
name but different combinations of types in the input parameter list is called an “overload set”. When
using the functions, the compiler chooses the variant from the overload set that best matches the inputs.
The “best match” is found during compilation, using the types of the input at the point of usage. If we
were calculating x¥ for real numbers = and y, where y was varying from 1 to 5 in steps of 0.1, there will
be points where the value of y will be a whole number. The call to power (x,y) will not automatically
change to the integer variants at those points. The overload resolution is done using the type of the
input, not its value. When the compiler translates C++ code to machine code, it always knows the type
of the inputs to a function. It may not know the values.

One could think of this as an example of “polymorphic” behaviour for the function power . This
kind of polymorphic behaviour has no cost at program execution time. When the program is running, we
are not spending CPU cycles deciding which variant of the function to call. The compiler already made
a choice based on the types of the inputs when the code was compiling. This is one of the many forms
of the so called “static polymorphism” available in C++.

Exercise 20:

Read the function signatures in examples/binform.cc and note where function overload-
ing is used.

Overloading works because the C++ compiler does not use the human-readable name of a function
as its true identifier. That name is merged with the types of all the inputs of the function to create a
composite name. When we try to use a function with some parameters, the compiler looks for a function
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with the same composite name. Other functions in the overload set will have different composite names,
so that as far as the C4++ compiler is concerned, there is no ambiguity about which function we are
calling at any point.

2.7.3 Function templates

Sometimes, we have the exact opposite requirement compared to what we saw in the last section. The
power function needed to follow different procedures depending on the specific types of the input
parameters. Sometime we want to do the exact same operations in code, irrespective of the input types.
Let’s take an example. Let’s say we are writing a function which takes two numbers, and returns the
smaller of the two. For input types int and double , we would need something like this...

auto min_int (int x, int y) -> int
{
if (x <= y) return x;
return y;
}
auto min_double (double x, double y) -> double
{
if (x <= y) return x;
return y;

Here, the code in the function body is the same for both of them. Perhaps, we could just write it
without reference to any specific type, and let the type be inferred from the invocation of the function.

This can be done using what is known as a template in C++. We first declare a placeholder name
and then write code with a placeholder name for the type of the function parameters. The placeholder
name(s) to be used as types in function signatures are declared as follows: template <class T> or

template <typename Koala> . As of C++420, typename and class in a template declaration
are equivalent.

template <class T>
auto minval(T x, T y) -> T
{
if (x <= y) return x;
return y;

When we use it as minval (1,2) , the compiler does the following,

e It looks for a function called minval with two integer arguments. If it finds such a function, it
uses it. Let’s say such a function does not exist, and only our template above exists.

o It tries to make a substitution for T so that the the function minval defined as above becomes
a match for the expression. If we substitute T with int , we have an exact match. It then
creates a function with the signature minval<int> (int x, int y) —> int and translates
the template code above with a concrete type for x and y . After all, how the comparison
operation can really be done by the processor depends on what we are comparing (remember the
bit layouts of integers and floating point numbers?).

From then on, anytime we call min with two integer arguments in our program, the compiler uses
that generated minval<int> function. If it then encounters, for instance, minval (2.1,3.1) , it
follows the same process as above, and generates code for us with the substitution 7' — double. In the
rest of the code, we can use the above single function code as minval (1,2) , minval (1.0, 2.0) ,

and even minval ("one"s, "two"s) . As long as it is possible to make a template substitution to
match our function call, the compiler will generate code using the template. If we tried to use it like this
though, minval (1, "two"s) , the compiler can not make a successful substitution. The first type
matches if we substitute 7' +—— int, but "two"s is a string. The type of the second argument matches
if we substitute T' — std :: string, but then the first one fails. The compiler will then complain that it
got "conflicting types" when it tried to substitute for T .
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Exercise 21:

Use the program examples/tempO.cc to familiarize yourself with function templates. It

contains the minval function above with a few uses of the function. First compile and run
the function. See how a single definition of a function template can be useful for various types.
Now, uncomment the line containing an invocation of that function with two different types of
arguments. Try to compile, and read the error message.

Template error messages in a big program can be daunting to the uninitiated. Here, we have
a tiny program, and a relatively small error message. Usually, in a big program the compiler
will find lots of possible substitutions which will all be listed, and a reason will be given why
the compiler rejected each option. This makes the error messages long. But the content of the
messages is usually helpful in finding what’s wrong. Consider yourself initiated.

Some of you might be wondering why we don’t simply let the compiler infer the types of x and y

in minval by declaring them as auto . Since, the variables in the input parameter list of a function
are initialised from the argument list when the function is called, and we have already seen the initialiser
being used to deduce the type of a variable (e.g., auto x = 1.0 ), perhaps we can declare the function

parameters as auto , and infer the output type as decltype (x) 7

auto minval (auto x, auto y) -> decltype (x)
{

if (x <= y) return x;

return y;

We can. This is legal code in C++20, but this was not allowed till C++417. It will work for

minval (12, 45) , minval (0.99, -3.2) , and minval ("one"s, "two"s) . But in this way
of writing the function, the variable type for x and y will be inferred independently of each other. If we
wrote min ("one"s, 2) it willinfer x tobea std::string and y to be an int , and run into
all kinds of difficulties, trying to generate concrete code from the above. The second return statement
will now try to construct a std::string from an integer. The boolean expression x <= y is now
ill-formed. Instead of complaining about the difficulty of inferring the correct substitution for T as
above, the compiler will now find errors throughout the body of the function instead. Depending on the
particular function at hand, and where that might be called, it may be better to use the auto function
parameter approach, or the explicit template approach. The auto in the function parameters also

makes the function a function template, only we don’t explicitly write template <class T> etc.
Many properties we have learned about functions also hold for lambda functions. Their definition:

[] (parameters)-—>return_type { body }

looks quite similar to ordinary functions, except that we don’t have a function name, and we have
those weird [] capture brackets. Lambda functions could be declared generically with auto in their
parameter list since C++14. Regular functions only got that ability with C++20. But regular functions
could be written as function templates since time immemorial since the first official standard. Lambda
functions only got that ability with C++20, to make these two very similar. The syntax of using an
explicit templates in a lambda function is like this:

[]<class T> (parameters) -> return_type {body}

2.7.4 Attributes

When the job of a function is to acquire resources for you, the worst disrespect a user of the function can
show is to ignore the valuable resource returned from the function.
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// examples/ignored.cc
template <class T>
auto getmem(unsigned long N, T init) -> T«
{
Tx ans = new T[N];
for (auto i = 0UL; i < N; ++i) ans[i] = init;
return ans;
}
auto main() -> int
{
doublex x getmem (10'000'000, 0.);
doublex Y = getmem(10'000'000, 0.);
getmem (10'000'000, 0.); // return value not stored!!
delete [] X;
delete [] Y;

Remember how when you acquire memory with new you have to call a matching delete 7 How
can you do that if you ignore the return value of such a function? There can be many other reasons why
you as the developer might want to make sure that the user of a function does not unceremoniously drop
the return value, as shown above. In such cases, you can place [[nodiscard]] before the auto in
the function header. The compiler will then detect and notify when the function is used and the return
value not saved. Try compiling the above program as it is and after inserting a [ [nodiscard]] at
the right place.

[ [nodiscard]] is called an “attribute”. Attributes are additional hints to the compiler. The code
is syntactically complete without them, but if a compiler knows about an attribute, it may be able to
produce better error messages or compiled code with better performance. Other examples of attributes
are [[deprecated (your deprecation message)]] , to emit a warning when a function is used

which you want to replace with a newer version, [[likely]] or [[unlikely]] to mark the if

or else parts if you, as the programmer, know that one of them is far far more likely than the other.

2.8 Exercises

Exercise 22:

If line is a variable of type std::string, the function getline () can be used to

retrieve entire lines at a time from an input stream. E.g., getline (std::cin, line)
will read from the standard input till the end of the line (until you press ENTER), and put
the entire line of text into the variable 1ine . Pressing ENTER without any input reads an
empty line. Use this, to make a program which asks for new names to be entered. Names could
have multiple parts. Append the name to the end of a name list. This should repeat until an
empty name is entered. After this, you should print the names sorted in alphabetical order.
Use a std::vector<std::string> as the type for the name list. Appending an

element to the end of a vector vec is done like this: vec.push_back (newelement) .
Sorting the vector by the natural comparison criteria of the element type (alphabetical, for
strings) is done simply as std::ranges::sort (vec) . To change the sorting criterion,
you can give sort another argument, which is a function one can use to decide what element
goes before what. Usually it is a simple a < b comparison. But, you can give sort, for example,
[] (auto a, auto b)->bool { return a.size() < b.size(); }
as the second argument to sort the names by the length of the names. Try this sorting criterion
as well.
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Exercise 23:

Take the partially written program examples/cleanup.cc as a starting point. This exer-
cise does not work on the online platforms as it needs standard input. The program asks the
user to type some text. When the user presses ENTER or RETURN, the entire line of content
is read in as a string. The program cleans the typed string using a function cleanup () ,

and prints the result. It stops when you press ENTER without any content. The cleanup
function as given to you does not do anything at all. It returns the input string unmodified.

Your task is to modify the clean up function so that it removes any leading and trailing
spaces or punctuation marks.

7
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Chapter 3

One illustrative exercise

3.1 Many ways to skin a cat, and what we can learn from them

Note: A lot of exercises in this chapter use the C++20 <ranges> header and the facilities it provides.
As of this writing, they can be compiled with g++ version 10 or newer or the Microsoft Visual C++
compiler version 19.29. Although LLVM clang++ now supports some aspects of the C++420 ranges
feature, other important bits are missing (as of clang 14.0), so that it may not be possible to experiment
with these using Clang. Most concepts you learn in the following are valuable for older C++ standards,
and some even for other programming languages. Let’s consolidate the concepts learned so far, and add
a few by exploring an easy to understand problem from school mathematics lessons. We know that given
any real number z,

o sin?(x) + cos®(z) =1
o sin(2z) = 2sin(x)cos(x)
o sin(3z) = 3sin(x) — 4sin®(x)

You know these things when you were 10-12 years old, and you know these now. We are not trying
to prove these basic trigonometric relations. But we will use these as our vehicle for learning some more
C++ syntax, and getting some practice along the way. To that end, we will be verifying that the relations
hold for a lot of values in a given range. The 3 relations listed above are there for you to avoid getting
bored doing the exact same calculation in 9 different ways. Switch them around as you wish.

So, a rough description of what we want to do: we generate a sequence of values in a given range, and
for each generated value, we evaluate whether the relation holds. If for any generated value of x the left
and right sides of the equations are not the same, we would have proven that the relation does not hold.

There are many components to this problem, spanning from very fundamental concepts to some very
elegant high level facilities in C++. Since each of the above relations can be written as some function
f(z) =0, e.g., sin®(z) + cos*(z) — 1 = 0, at the heart of our program, we will be evaluating a function
returning real numbers, and comparing its result to 0.0. I trust you can now write such a function easily.
But the first theme I would like to discuss is what is meant by comparing the result to 0.0 or any other
number for that matter.

With this knowledge of how real numbers are stored (see section 2.1.1) in types like float and
double , it should come as no surprise that a boolean expression like x == 0. will only be true if
all the bits of x are 0. If your calculation returns a number with every single non-sign bit set to 0, the
expression will be true. Otherwise, it could be a very small number, like 107190, but that’s not the same
as 0. It has lots of non-zero bits as you might have seen when running the example program binform.cc .
Remember, the density of representable numbers near 0 is high, so there is no a priori reason for the
computer to judge something like 1071%° as small enough to be considered almost equal to 0. To make
the concept of “almost zero” concrete, we need a scale. If all the numbers we are working with in a
certain problem are between 0 and 107199, then the latter most certainly does not seem close to 0. If
on the other hand a quantity takes any value between 0 and 100, a value of 107!%0 can probably be
safely treated as “equal to” zero. Therefore, for floating point numbers, it is usually a bad idea to use
equality comparison, as in, x == 0. . What we mean is abs(z) < ¢ where € is a scale that defines what
is sufficiently close to 0. That scale depends on the calculation we are trying to perform.
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Let’s go back to our fixed width decimal number representation in section 2.1.1 for a moment. Imagine
we have two numbers, x and y both of which have the initial value of 1 million. If we now add 3 to y. As
discussed before, y will stay put at 1 million, and the fact that we did the addition will not be visible in
any way in the stored value. Then we subtract the = from y, we suddenly have a much smaller number,
i.e., 0 in our representation. The true answer here, 3, will be lost, because numbers around a million
can not be resolved in such fine detail in our representation. Before we do the subtraction, we lost the
information about the addition of 3 to y. Just because we now want to subtract a million from y does
not mean that we can miraculously recover that lost information. It’s forgotten. So, even when the final
answer we calculated was a number around 0, it carried the same resolution as the numbers we subtracted
to get there. For our original problem of checking if sin?(x) + cos?(x) — 1 = 0, we calculate one number
which will probably be very close to 1 and then subtract 1 from it. It will be a number very close to
0, but with a resolution of numbers around 1. So, what is this resolution of representable real numbers
around 17

How close can a larger number get to 1 while having a different bit representation? If we change
the exponent, we have gone too far, as it is possible to have smaller increments by changing the man-
tissa. How little can we change the mantissa? How about changing the smallest digit of mantissa
by 1? For our decimal numbers, it gives 1 + 107>, as there are 5 mantissa digits. For the double
type, it becomes 1 + 2752, which is about 2.22 x 1076 more than 1. Using a double type, we can
not represent any number that is closer to 1 than 1 4+ 2752, This resolution around the value of 1 is
called epsilon for a given numeric data type. Properties of different numeric types in C++ are

defined in a header called <limits> . In that header, 1+epsilon is the smallest number bigger
than 1 which has its own bit representation. The epsilon for the type double is obtained by invoking

std: :numeric_limits<double>::epsilon() .
Above, we considered an extreme example of taking a large number and adding very small numbers to
it, for dramatic effect. But the core issue is present whenever we add or subtract two numbers of unequal

exponents. Consider a calculation  + y — z where z = 1.11111 x 102 and y = % =3.33333 x 1072, and
z =1.11111x102. First, observe that the number 3—10 can not be represented exactly in this representation,

and therefore we save only 5 digits after the decimal point in a recurring decimal number. That much is
easy. To calculate x + y, you would align the exponents, so that the second number becomes something
like 0.000333333 x 102, and then add the mantissae, to obtain 1.11144 x 10%, because in our example
representation, the mantissa only holds 5 digits. Every time we add two quantities of different exponents,
we lose a few digits at the end of the smaller number, because there is no place to put them! If we then
subtract the z = 1.11111 x 102, we are left with 3.3 x 10~2. Some how we started with 6 significant digits
in three numbers, performed two simple arithmetic operations, and are left with something with only 2
significant digits! If on the other hand we had rearranged the calculation so that we do the subtraction
first, i.e., z+y— 2 = x — z+y, we would be adding 0 to y, and the result would contain 6 valid digits. We
learn an important property of floating point numbers from this: floating point addition is not associative,
ie., (x+y)+2# x+ (y+ 2). The same mathematical operations can often be rearranged in ways to
reduce the loss of precision due to truncation.

Exercise 24:

In the above, we used our toy fixed width decimal representation to illustrate that the floating
point arithmetic is non-associative. The same claim holds true for actual £loat and double

types. The program truncationO.cc illustrates this using £loat types, and printing bits
of the numbers. We use numbers %ﬁoo and 3—10 as before, but now our £loat type has 23 bits for
the mantissa, which corresponds to about 7 decimal digits. The process plays out analogously
in binary digits. When we convert back to decimal numbers for printing, we see some artefacts
in the last two decimal digits. The fractional parts of a binary number add up to a value as
a sum of a series mo2~' +m1272 + .... If we need a lot of terms in the series to approximate
a number like %. If we truncate the series too early, it looks odd when converted to decimal
numbers. Study the output of this program and see how floating point arithmetic actually

plays out.

The effects of truncation are very interesting, and scientists and engineers should learn numerical
techniques and choose the best available method to arrange their calculations. But, that would be a
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full course in its own right, and will take us too far off our current objective. So, let’s be aware of
the pitfalls, but move on with some more C++. For now, let’'s use double whenever we can, for
our floating point numbers (more mantissa bits), and not be overzealous in setting the precision for our
floating point comparisons. Epsilon for double is around 107'6. Allowing for some rounding errors
in our arithmetic, let’s use without much further consideration, 100¢ as our tolerance when verifying our
trigonometric relations.

The first version of the program to do this will use a for loop.

Exercise 25:

1 // examples/trig_forloop.cc

2 #include <iostream>

3 #include <cmath>

4 #include <limits>

5 auto f (double x) —> double

6 {

7 return sin(x) * sin(x) + cos(x) * cos(x) - 1.0;
8 }

9 auto main() —-> int

{

=
= O

auto npoints { 1000'000UL };
auto pi { std::acos(-1) };
auto eps { 100 » std::numeric_limits<double>::epsilon() };

[
N )

bool invalidated = false;
for (auto i = 0UL; 1 < npoints; ++i) {
double x{ 2 » pi * i / npoints };
if (std::fabs(f(x)) > eps) {
invalidated = true;
break;
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}

§)
)

}
if (invalidated) {
std::cout << "There relation was found to be invalid.\n";
} else {
std::cout << "The relation was found to be valid for all points.\n";

NN NN
N o O e W

}

N
o

Notice how we use a single quote mark in line 11 to group the digits in a large numeric literal.
This is valid C++, and you should never let your head get fuzzy by counting the number of
0s in a number. Notice how when we want to check if the result deviates from 0, we compare
its absolute value with eps rather than using == for equality comparison. The code uses
concepts you are already familiar with, so, just satisfy yourself that you understand every line.
Change the trigonometric relation we are verifying to one of the other two. Could you use a
smaller eps ?

Cat skinned. The code works and does what it is supposed to do. But this way of writing it leaves
us open to lots of errors, some of which can be reduced by using a bit more of C++ syntax. What if we
mistyped and wrote ++pi instead of ++i in the for loop? We will be incrementing pi after each

execution of the loop body. And since the continuation condition is written in terms of i , which would
remain unchanged, the loop will keep running for ever! And what sense does it make to allow something
intended to represent the mathematical constant m to change during the program execution? If you read
section 2.5, you know what to do!
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Exercise 26:

Find the variable declarations in examples/trig_forloop.cc , and make as many variables as
you can const qualified.

3.1.1 wusing valarrays ...

Some of you would be familiar with programming in Python, and when you read the problem statement
regarding our trigonometry task, you would immediately think of something like the following:

# Python code as an example
import numpy as np

npoints = 1000000
eps = 1.0e-14

X = np.linspace (0., 2*np.pi, npoints)
res = np.sin(X) % np.sin(X) + np.cos(X) * np.cos(X) - 1

if any(res > abs(eps))
print ("The relation does not hold")
else
print ("The relation holds for all points")

Sometimes, it would be nice to be able to write compact expressions like the above calculation of the
res variable. X is a numpy array, containing linearly spaced values in the range 0. and 27 with a
million points. When we say

res = np.sin(X) % np.sin(X) + np.cos(X) % np.cos(X) - 1

it is understood that we are generating another numpy array through element wise application of a
function X . The task for the above line is an element wise operation across an array like object. Let’s
try to do such a thing in C++.

There is something in the C++ standard library, which is a bit like the numpy arrays. It’s called

std::valarray. If vl and v2 are of the type std::valarray<double> , operations like

vlt+v2, v1xv2, sin(vl) etc. are understood as element wise operations. The technique used
to implement this functionality is called “expression templates”. If you can make your own expression
templates, you can achieve a similar (or more elegant) syntax as the valarray using any array like con-
tainer. Many C++ mathematical libraries (e.g., Eigen, Blaze, Armadillo ...) achieve this. Let’s see what
is possible using only the C++ standard library. What we don’t have is an equivalent of linspace,
so let’s write a very simple version.

auto linspace (double min, double max, unsigned long howmany)
-> std::valarray<double>

{

std::valarray answer (0., howmany) ;
for (auto i = 0UL; i < howmany; ++i) {
answer[i] = min + 1 * (max — min) / howmany;

}

return answer;

The central line, where we are assigning a value to answer[i] shows how to access an element
in an array in C++. The same syntax is used to access elements of many different “containers” in
C++, such as std::vector, std::valarray, std::array, and plain C-style arrays. The
square brackets on the right of a variable name are interpreted as the “indexing operator”. The right
hand side of that assignment just interpolates a value between min and max , using a number be-

tween 0 and 1 to place intermediate values, i.e., i * 1.0/howmany . There is a function with


https://eigen.tuxfamily.org/
https://bitbucket.org/blaze-lib/blaze/src/master/
http://arma.sourceforge.net/
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this exact job in the standard library: std::lerp. So, we can replace the right hand side with

std::lerp (min, max, ix 1.0/howmany) .
The main function can now look somewhat similar to the python version:

// examples/trig_valarray.cc
#include <iostream>

#include <cmath>

#include <ranges>

#include <valarray>

auto linspace (double min, double max, unsigned long howmany)
-> std::valarray<double>

{

std::valarray answer (0., howmany) ;
for (auto i = 0UL; i < howmany; ++i) {
answer[i] = std::lerp(min, max, static_cast<double> (i) / howmany);

}
return answer;
}
// The static_cast above 1is another way to ensure floating point arithmetic
auto main() -> int
{
using namespace std;
using namespace std::ranges;
constexpr auto npoints = 1000'000UL;
const auto pi = acos(-1) ;
constexpr auto eps = 1.0e-14;

const auto X = linspace (0., 2 % pi, npoints);
const decltype (X) res = sin(X) * sin(X) + cos(X) =% cos(X) - 1;
auto is_bad = [=] (double x){ return fabs(x) > eps; };

if (any_of (res, is_bad )) {
cout << "There relation was found to be invalid.\n";
} else {
cout << "The relation was found to be valid for all points.\n";

}

The code now starts to resemble the python code quite a bit. The brevity and elegance of python
syntax is a virtue, as (when?) it makes code easy to read. This should not be pursued at the cost of the
extra guarantees provided by the C++ code above. For instance, there is nothing in the above python
code that prevents accidental statements like np.pi = 0. In a large project with hundreds or even
thousands of files, implementing thousands of functions to accomplish complex tasks, ensuring that none
of the components introduce errors like this or the less drastic and more insiduous np.pi = 3.1, is
very hard. If a programming language enforces stricter ownership regulations and constant-ness checks,
it carries a lot of that burden for us and prevents a lot of errors. So, despite slight verbosity of our
constexpr and its friends, as C++ programmers, we should keep them. They add value to our
programs.

Let’s now discuss this curious line in the code.

auto is_bad = [=] (double x){ return fabs(x) > eps; };

It made the validity checking if statement very readable. You recognize the right hand side as a
lambda expression, representing the mapping x — (abs(z) > eps) . Previously we had used such lambda
expressions directly when we needed locally defined functions. Lambda functions don’t need to have
names in order to be used, but they are not “Voldemort”-functions. Nothing prevents us from giving
them descriptive names (as we have done here) when that makes code clearer. Once we create a variable

is_bad storing our lambda, we can use is_bad as a function, e.g., is_bad (0.44) . If a double

value val from our results array is mapped to true by this mapping, it proves that our trigonometric
relation does not hold.

The code in the body of the above lambda, return std::fabs(x) > eps; , should be un-
derstandable. But, the lambda function, like any other function, defines its own scope for the variables.
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Visually, the braces enclosing the body of this lambda are inside the block scope defined by another
function. The scope defined by the body of the lambda is nevertheless sequestered from the surrounding
scope. Lambda functions are as close as we can get to nested function definitions in C++, because normal
functions can not be defined in block scope.

Our lambda needs x and eps to be able to calculate its answer. x is the argument it receives. But

what is eps in the lambda function body return std::fabs(x) > eps; 7 We want to refer
to a variable called eps , defined outside the lambda function, in the body of the lambda. To do this,
we have to “capture” that value. This is a crucial way in which lambdas differ from ordinary functions.
Lambdas can be defined in block scope, e.g., inside another function, another lambda, within the block
in the if or else parts of a conditional statement and so on. We can’t do these things with ordinary
functions. But since they can be defined within another function, perhaps inside a loop or a block
covered by a branch, it becomes interesting to ask whether it should have any awareness of temporary
variables defined in the block surrounding their declaration. By default, it doesn’t. The lambda ignores
all block scope variables surrounding its definition, and simply works with its own local variables and
input arguments. The square brackets [] which indicate the beginning of a lambda function, are called
“capture” brackets. One could explicitly write the names of all variables from the external context one
wishes to use in the lambda in those brackets. In our case, something like
[eps] (double x){ return std::fabs(x) > eps; } . With that, we would request read-only
access to a variable named eps inside the lambda function, which should be visible in the scope where
the lambda itself is defined. The notation we have used instead, i.e., [=] , requests read-only access to
any variables from the surrounding scope inside the lambda.
std::ranges: :any_of is one of the many algorithms implemented in the C++ standard library.

It needs as its argument a range of values and a predicate (predicate is a function, or something which
behaves like a function, mapping a certain type of input values to a boolean value).
std::ranges::any_of tests each element in the input range with the predicate, until one of them
returns true. If nothing in the range satisfies the predicate, any_ of returns false. What is a range
though?

A range is anything which has a std::begin and a std::end. The ranges library is one of
the 4 most important new features of C++420. std::valarray is a range. So are all other standard
library containers, std::string setc. When you write your own classes, we will see how easily you can
make them usable with these algorithms from the ranges library. But C++ has had an std::any_of
function all the way since C++11. That function needed three input parameters, a starting point, an
ending point and a predicate. We could have written our validity check like using that function like this:

if (std::any_of (std::begin(res), std::end(res), is_bad))
The version using std: :any_of will continue to work, of course, but it is likely that the ranges version,

std: :ranges::any_of will find increasing use in the coming years.

3.1.2 Using more ranges and compositions

Recall that at the beginning of this chapter, we formulated the problem as follows: “we generate a
sequence of values in a given range, and for each generated value, we evaluate whether the relation holds.
If for any generated value of x the left and right sides of the equations are not the same, we would have
proven that the relation does not hold”. That way of formulating the problem guided our thinking when
we wrote the for and while loop versions of our solutions.

Another way to think about it would be:

1. Let there be a sequence S = {0,1,2,...,N — 1}

2. Transform S into a sequence of equally spaced real values between x,,;, and T.,,q;, by using the
mapping n — (Tpin + (Emae—Emin)n R,zmi")n)

3. Transform the resulting sequence with the mapping z + sin?(z) + cos?(x) — 1
4. Check if any element of the resulting range satisfy the predicate x — (abs(x) > ¢)

If we formulate our solution in this way, we see that the problem consists of smaller sub-problems
which can be individually solved using small pieces of code which are individually easy to check. We have
already seen the last item in the form std::ranges::any_of (res, is_bad); . Now let’s look at
the rest of the items in that list.
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This is only the box. The range you
asked for is inside.

Figure 3.1: std::view::iota “effectively” gives us a sequence of integers in a specified finite or
infinite range. It does not try to fill any container with the values of the integers. It just gives us
“something” that works as a proxy for that sequence we want, like the box containing the sheep in “The
Little Prince” (Antoine de Saint-Exupéry).

3.1.3 Creating sequences

The first problem, generating a sequence of integers within some bounds is extremely general, and in C++
standard library, the function that provides this is std::views::iota. std::views::iota (4)

gives us the infinite sequence 4,5,6,7, ... with no upper bound. std::views::iota (4,10) gives us
precisely 4,5,6,7,8,9. What does it really mean that it “gives” an infinite sequence of integers? Where
are they stored?

The idea behind constructs like std::views::iota is that when we want to work with sequential
values like that, they don’t need to be present in the computer’s memory. That sequence is an idea:

e There is a start to the sequence that we can identify.

e We can focus our attention on one “current” element, and retrieve its value
e We can move our focus to the next element along the sequence

e There is a way to tell if we have reached the end of the sequence

If we calculated all the elements of a finite sequence and stored it in a long list, and returned that list from
such a sequence generator, we would satisfy all those above requirements. But, we could also return just
a “box” (see Figure. 3.1), not actually containing pre-calculated values, but imbued with some properties
which help it satisfy the above requirements. If we store the return value of std::views::iota
somewhere, like auto box = std::views::iota(1,10); , the box is a “stand-in” for the concept
of a sequence of integers in the half open range [1,10). Among other properties, the box has something
called an “iterator” associated with it. The iterator is like our finger pointing to one element along the
sequence. It can be moved to the next element of the sequence by incrementing it with the ++ operator
like an integer. To obtain the value of the actual element of the sequence, we need to “dereference”
the iterator. So, to find the start of the range the box is supposed to represent, we use something like
auto pos = std::begin (box) , where pos will be an iterator. Dereferencing iterators has a fairly
uniform syntax across lots of C4++ types. It looks like *pos . So, if pos is an iterator (your finger)
along a sequence, *pos is the element of the sequence it is pointing at. Two iterators are equal if

they point to the same element. std::end() wusually returns an iterator which points to a fictitious
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element just past the end of the sequence, so that we can stop when the iterator compares equal to this
end iterator. The loop over the sequence would then look like this:

for (auto it = std::begin(seq); it != std::end(seq); ++it)
do_something () ;

When we discuss C++ classes, you will learn that when you create a new data type as a C++ class,
you have complete control over the meaning of operators acting on that data type. It’s called operator
overloading. If you create a new data type called FuzzyNumber , you can make your own rules about

what happens when you use operators like +, — | & ... with objects of that type.

FuzzyNumber a = somefunc(l);
FuzzyNumber b = somefunc(2);
auto ¢ = 2 » a » a + 3 x a * b + b * b;

The author of the FuzzyNumber type can decide what should happen when an expression like a * a

or 2 % a is evaluated. Here the multiplication by the scalar 2 can have a completely different effect
than the multiplication with another object of the same type. It’s entirely up to the person writing that
class.

The iterators are objects of specially designed classes with very specific properties. The iterators we
get from our box above could, for instance, have the property that they keep track of the starting value
of the sequence and their current position. When you dereference them, e.g., using the prefix unary

x operator, they actually calculate and return the correct value for their position. The comparison
operators, ==, != etc. are also designed to perform comparisons not only with other iterators, but
sometimes also some “sentinel” types. Comparison with the sentinels is usually written in a way so that
some logical criterion is satisfied. For instance, if we were generating an infinite sequence, there is no
place to point with our fingers as the end of the sequence. So, std::end (box) in such a case will

return a sentinel object, such that for any given iterator it the comparison it != std::end (box)

returns true. This way, a for loop over such a range can continue indefinitely, we can generate as many
numbers from the sequence as we want and still not reach the end.

3.1.4 Element wise operations on a sequence

The core of the strategy formulated in Section 3.1.2 was transformations on a given sequence. If we have
one sequence, S1 = {sg, $1, $2...}, we want to transform it to another sequence So = {f(s0), f(s1), f(s2)...}
by using a mapping x — f(z). Sa can be written as application of a transformation on S, i.e.,
Sy = Ti2(Sh)
= T(xz— f(x))(51)
where T'(z — f(z)) in the second line is an element wise transformation which applies x — f(z) to its
inputs. T itself can be considered as a higher order function (a function with at least one input which is
another function) representing a general element wise transformation over an input sequence. The higher
order function needs as its arguments, a range of elements it will process, and a specific mapping it will
apply to each element. If we apply another transformation to the resulting sequence,
S3 = Ta3(S2) (3.1)
= To3 ® T12(51)
= T(x—g() @T(x— f(z))(51)
T(x— g(f(x)))5

For a moment, let’s focus on the second last line in the above equation. The resultant sequence Ss is

obtained by applying a series of transformations on the input Sj, which are applied in the right to left
order. Notationally, we could make it more intuitive by writing it something like this:

S = T(x—=g(x) @T(z — f(z))(51)
= ST f(2) | T(z— g(x))
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This means, we take the input sequence and “pipe” it through a transformation « — f(x) and then pipe
it through another transformation  — g(x). For people used to reading from left to right, this is more
intuitive. It is also familiar to people who have used the command line or shell in UNIX like operating
systems. Something like:

find . -name "x.0" | xargs rm -f

i.e., find all files ending with a .o suffix and send the resulting sequence of filenames as arguments to
the command rm -f . The shell consists of a large number of simple utilities, which do one thing and do
it well (e.g., find, rm ). Crucially, we have the ability to “pipe” the output generated in one command
to another, i.e., to connect the output of one command to the input of another. The result of the second
command can be piped again to another another and so on. Such composability exponentially amplifies
the power of the small utilities of the UNIX like shells, for instance in Linux and Mac OS. If we could
break a programming task into small components, which could be implemented robustly and reliably
with no room for error, and if we could compose them in a UNIX pipe like syntax, we would have a very
powerful tool in our hands. Well, we can.

// examples/trig_views.cc
#include <iostream>
#include <ranges>
#include <algorithm>
#include <cmath>

#include <limits>

int main()

{
namespace sr = std::ranges;
namespace sv = std::views;

const auto pi = std::acos(-1);

constexpr auto npoints = 10'000'000UL;

constexpr auto eps = 100 x std::numeric_limits<double>::epsilon();

auto T12 = [=] (auto idx){ return std::lerp(0., 2xpi, idx * 1.0 / npoints); };

auto T23 = [ ] (auto x) { return sin(x) * sin(x) + cos(x) * cos(x) — 1.0; };
[

auto is_bad = [=] (double x){ return std::fabs(x) > eps; };

auto res = sv::iota(0OUL, npoints) | sv::transform(T1l2) | sv::transform(T23);
if (sr::any_of (res, is_bad) ) {
std::cerr << "There is at least one input for which the relation does not hold.\n"
<< "They are...\n";
for (auto bad_res : res | sv::filter(is_bad)) {

std::cerr << bad_res << "\n";
}
} else {
std::cout << "The relation holds for all inputs\n";

}

The syntax of the so called view adaptors in C++20, which we have used above, is modelled after the
pipe like composition mechanism we just discussed. std::views::transform(lambdafunction)

creates a “transformation” like the ones we have discussed above. std::views::filter filters the
input sequence based on a predicate and produces an output sequence containing only the inputs for
which the predicate is true. In line 23, we show how to use filter and iterate over a resulting range.

It is also interesting that the line 19, where the variable res is defined does not actually perform
any calculations whatsoever on the sequence! It is just a definition of a composite sequence. It is only
when we search through the sequence in the any_of function that the actual mappings we have used to
create our composite sequence are executed. Because of the meaning of “any of”, the evaluation need not
go through the entire sequence. As soon as one example is found for which the trigonometric relation does
not hold, we can stop scanning the rest of the sequence. That is exactly what std::views::any_of
does.
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Exercise 27:

Our trigonometric relation is after all, true, so that we don’t get to see that sr::any_of

above would indeed stop processing the input sequence upon the first true outcome from
the predicate. Therefore, let’s take a bogus trigonometric relation that is not always true:
sin?(z) < 0.99. It’s mostly true, but there are some values of x for which this is false.

The program examples/trig_views2.cc checks this incorrect relation using the same pro-
cedure as the previous example. Here we have also rigged the lambda functions, so that they
first print their input and output values before returning their results. Study the program,
compile and run it, and compare the output with what you expect. Notice that the first time
the trigonometry lambda function is executed is after we enter the std::views::any_of
part. Also, notice that it does not continue with the entire sequence of numbers, but stops
at the first point for which the relation does not hold. Notice also that the output from the
two lambda functions, one implementing the map from integers to a value in the range 0 to
27 and the other a mapping from x to sin?(z) — 0.99 are staggered. This reflects that the two
transformations we have composed are not executed in two passes, but like a single pass over
the sequence with a composite transformation as in the last line of Equation 3.1.

Let’s play with the views a little more. The above pipe like syntax of composite transformations is
not only useful for generated sequences from std::views::iota . Any container of objects of any
kind can be used as the input, because they all have associated iterator types with the right properties.
In the following, we take a list of strings, and sort it in different ways before printing the top 3 elements:

// examples/sort_various.cc
#include <iostream>
#include <string>

#include <ranges>

#include <algorithm>
#include <vector>

auto main() -> int
{
std: :vector<std::string> L{ "Magpies", "are", "birds", "of", "the", "Corvidae", "family" };
namespace sr = std::ranges;
namespace sv = std::views;
std::cout << "Top 3 after alphabetical sorting...\n";
sr::sort (L) ;
for (auto el : L | sv::take(3)) std::cout << el << "\n";
std::cout << "Top 3 after alphabetical sorting in reverse order ...\n";
// No sorting required, because we already did that,
// and we can just look at it in the reverse order

for (auto el : L | sv::reverse | sv::take(3)) std::cout << el << "\n";
std::cout << "Top 3 after sorting by string length ...\n";

sr::sort (L, [] (auto a, auto b) { return a.size() < b.size();} );

for (auto el : L | sv::take(3)) std::cout << el << "\n";

And now, let’s try to do something similar, but by using the command line arguments as our input
strings. Recall that to receive arguments from the command line, main is declared as
auto main (int argc, char xargv[]) -> int . This has a long history, and in particular it
is shared with C (In the older form int main (int argc, char xargv[]) ). The arguments we
receive in our C++ program are therefore not C++ standard library strings, nor is the list of arguments
a proper C++ container of any kind. There are many ways to convert the input arguments into an
std: :vector<std::string> for convenient processing with C++ algorithms, e.g.,

std: :vector<std::string> inp;
std::copy_n(argv, argc, std::back_inserter (inp));
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But, we don’t really need to create real C++ strings here. The command line is not going any-
where while the program is executing, so we can use what is known as a std::string_view. A

string_view is like a string, except that it does not own its contents. If there is a string somewhere,
we can create a string_view , which is a lighter weight object, and work with it. This is safe as
long as the original string which we are viewing with the string_view is alive when we use the
string_view . If we only have a C-style string, we can still convert it to a string_view , as long as

the C-style string is alive when we use the string_view. The string_view converts the C-style
string into a nice package for convenient processing using C++ algorithms, without doing any dynamic
memory allocation. To make a vector of string_views , you would replace the type of the inp vari-

able above, and use string_view instead. But even the vector is not really necessary. A vector is
a full fledged container in C++, which owns its contents. Like string_view is to string, there is

something called a std: :span , which has the same relation to a vector .
The usage of span with the standard algorithms is demonstrated in the following program, where
we print the alphabetically first and last word among all words entered on the command line.

// examples/views_and_span.cc
#include <iostream>

#include <span>

#include <ranges>

#include <algorithm>

#include <string>

#include <iomanip>

auto main(int argc, char x argv[]) -> int
{
std::span args(argv, argc);
// reverse order, because span expects a "count" as the second argument

auto str = [] (auto inp) -> std::string_view { return inp; };
if (argc < 2) {

std::cout << "Usage:\n"

<< argv[0] << " some strings in the command line\n";

return 1;
}
namespace sr = std::ranges;
namespace sv = std::views;
auto [first, last] = sr::minmax( args | sv::drop(l) | sv::transform(str) );

std::cout << "Alphabetically first and last strings in your input are "
<< std::quoted(first) << " and " << std::quoted(last) << "\n";

In line 14, we create a lambda function to convert the C-style strings in argv into string_view s.
It seems like we are not doing any work, and just returning the input. But the trick is, we explicitly
specify the output type of that lambda with the —-> std::string_view syntax. If the variable

inp which comes in as the input is a string or a C-style string, it can be automatically converted to
a string_view . When a function must return a value of type ReturnType , but we write a return
statement return something where something is of type AnotherType , the compiler will try

to insert code to make an automatic conversion from AnotherType to ReturnType . It is as if we
had written something like

auto func (InputType inp) -> ReturnType
{
AnotherType something = somevalue();
// Work
ReturnType rightkindofsomething{ something };
return rightkindofsomething;
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If that makes sense, all is good. If not, it would generate a compiler error. For instance, an int
value can be automatically converted into (used to create ) a double , but a string can not be. In
line 22, we are calling the std::ranges::minmax algorithm, which returns a pair of values. We give
two names to the two parts of pair. The input to the minmax function takes a range. We give it a
range constructed out of the command line arguments as a span , after being piped through a “drop
view” to skip the first element ( argv[0] is the name of the program, and not a real argument to

it), and again through a transformation which converts the elements of the span from C-style strings to
string views .

3.2 Exercises

Exercise 28:

Modify the program examples/views_and_span.cc so that it prints the words you type in the
command line, but only up to the first word which ends with “ing”. You will need a view
adaptor called take_while (Pred) which takes a predicate as its argument. Hint: Write
the predicate as a lambda. Another hint: to check if a string view ends with a certain substring
“abc”, you can use the function ends_with asin, word.ends_with ("abc") .

Exercise 29:
Modify the trigonometry exercise example to numerically verify sin(z + y) = sin(z)cos(y) +
cos(x)sin(y). Suggestion:

o Let’s say, we want to have nax = 10000 points along z and ny = 10000 along y. We can
start with a simple sequence of integers from 0 till nz * ny.

e Map each integer i in the range to a pair of integers std::pair<int, int> by
performing integer division operations:

1 auto ix =

i / ny; // quotient of division of i by ny
2 auto iy = i %

ny; // remainder after division of i by ny

or more compactly,

1 auto [ix, iy] = std::div(i, ny);
2 // ix and iy will be quotient and remainder

e Map the pair of integers to a pair of double in a manner similar to how we mapped a
single integer before. The goal is to create from iz, iy real numbers x,y which are in the
range (0, 27].

e Verify the relation for x and y.

o If the relation does not hold for any of the integer indexes, it is not valid.

Exercise 30:

Sieve of Eratosthenes Sieve of Eratosthenes is a very old, but rather fast method to find all
prime numbers up to a given number. Check out the Wikipedia page in the link to see how it
works. Implement the sieve in C++. Suggestion:


https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

3.2. EXERCISES

1. Create a std::vector<bool> to represent a true/false value for each integer from 0
to N=1000UL . Let’s call it isprime . Every position starts out with a value true

2. Set the values for the integers 0 and 1 as false.
3. Create a “current” position and initialise it to 2

4. In a while loop, repeat the following as long as current * current < N.

(a) Loop from 2xcurrent till N, in steps of current , and mark those positions
in isprime as false

(b) Increment current atleastonce, until isprime[current] istrueor current
becomes too large

5. At this point, all positions on isprime which still hold a true are primes. Make a
lambda function which captures isprime , takes an unsigned long index as an

argument, and returns isprime [index] . This can be used to test if an integer in the
range 0 to N is a prime.

6. Create a sequence of primes:
auto primes= sv::iota (0, N) | sv::filter (yourlambda);

Loop over primes in a range based for loop, or count how many there are with

sr::count (primes)

Is it really enough to run the outer loop only until v N? Why are we using
current * current < N instead of current < sqrt (N) ?

Exercise 31:

Caesar shift Caesar shift or Caesar cipher is an extremely simple (and extremely weak)
encryption techniques, which was used once upon a time to send secret messages. It has
no value as an encryption technique today, but it does make a simple and fun programming
exercise. Your task is to make a function which takes as its input a text as a std::string
and an integer shift value. The function must transform each character in the input text by
shifting it along the alphabet by the given shift value. For instance, if shift is 1, each character
should be replaced by the next character in the alphabet. When we run out of characters, we
start again from A’ Assume that we are using the English language. Leave characters other
than "A’—’7Z’ and ’a’—’z’ unchanged. You can write this entirely on your own. If you want, you
could also start from a partial implementation in examples/caesar.cc .
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