- N

PROGRAMMING IN C++
Jiilich Supercomputing Centre

8 — 12 May 2023 | Sandipan Mohanty | Forschungszentrum Jiilich, Germany

@) JULICH
Member of the Helmholtz Association J Forschungszentrum

Day 2

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 1 Forschungszentrum

What is static typing?

= At creation, every variable must have a type that is known to the compiler, and that type can not change
for its entire lifetime.

= Programs can only produce outcomes which can be deduced entirely from source code irrespective of
runtime inputs.

Both of the above.

= The uncanny ability of many C+4 programmers to type their programs without moving their fingers.

Member of the Helmholtz Association 8 - 12 May 2023

.
' 4) JULICH
Slide 2 Forschungszentrum

while (true) { do_something(); }

for (;;) { do_something(); }
for (auto i=0.0F ; i < 1000'000'000; ++i) { do_something(); }!

Which ones above are infinite loops ?
1 alone
B 2 alone
1 and 2
B All of them

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 3 Forschungszentrum

Stack execution model

Member of the Helmholtz Association 8 — 12 May 2023 Slide 4 J Forschungszentrum

auto main ()

{

-> int

auto N = 10;

if (£(N) < g(N))
h1l(N);

} else {
h2(N) ;

}

Member of the Helmholtz Association

{

auto f(int i) ()
{

-> int
return (i = i) %12;
}
auto g (int i) ()
{

-> int

return i $ 12;

}
auto hl(int i) () —-> int
{
return hll (i);
}
auto h2(int i) () -> int

{
return h21(1i);

}

8 - 12 May 2023

auto hll(int i) () -> int
{
return i * 1i;
}
auto h2l (int i) () —> int

{
return i + h211(1i);
}

Slide 5

auto h21l1 (int 1)

{

}

-> int

return

/)

—-i;

JULICH

Forschungszentrum

auto main ()

{

-> int

auto N = 10;

if (£(N) < g(N))
h1l(N);

} else {
h2 (N) ;

}

main()

{

Member of the Helmholtz Association

auto f(int i) ()
{

-> int
return (i = i) %12;
}
auto g (int i) ()
{

-> int

o

return i % 12;

}
auto hl(int i) () —-> int
{
return hll (i);
}
auto h2(int i) () -> int

{
return h21(1i);

}

8 - 12 May 2023

auto hll(int i) () -> int
{
return i * 1i;
}
auto h2l (int i) () —> int

{
return i + h211(1i);

}

Slide 5

auto h21l1 (int 1)

{

}

-> int

return

/)

—-i;

JULICH

Forschungszentrum

auto main() —-> int

auto f(int i) ()

-> int auto hll(int i) () -> int
{ { {
auto N = 10; return (i » 1) %$12; return i * 1i;
if (E(N) < g(N)) | } }
hl(N); auto g(int i) () —> int auto h2l (int i) () —> int
} else { { {
h2 (N); return i % 12; return i + h211(1i);
} } }
} auto hl(int i) () -> int
{
return hll (i);
}
auto h2(int i) () -> int
{
return h21(1i);
}
main() f() int i=10

Member of the Helmholtz Association

8 - 12 May 2023 Slide 5

auto h21l1 (int 1)

{

}

-> int

return

/)

—-i;

JULICH

Forschungszentrum

auto main ()

{

-> int

auto N = 10;

if (£(N) < g(N))
h1l(N);

} else {
h2 (N) ;

}

main()

{

Member of the Helmholtz Association

auto f(int i) ()
{

-> int
return (i = i) %12;
}
auto g (int i) ()
{

-> int

o

return i % 12;

}
auto hl(int i) () —-> int
{
return hll (i);
}
auto h2(int i) () -> int

{
return h21(1i);

}

8 - 12 May 2023

auto hll(int i) () -> int
{
return i * 1i;
}
auto h2l (int i) () —> int

{
return i + h211(1i);

}

Slide 5

auto h21l1 (int 1)

{

}

-> int

return

/)

—-i;

JULICH

Forschungszentrum

auto main() —-> int

auto f(int i) ()

-> int auto hll(int i) () -> int
{ { {
auto N = 10; return (i » 1) %$12; return i * 1i;
if (E(N) < g(N)) | } }
hl(N); auto g(int i) () —> int auto h2l (int i) () —> int
} else { { {
h2 (N); return i % 12; return i + h211(1i);
} } }
} auto hl(int i) () -> int
{
return hll (i);
}
auto h2(int i) () -> int
{
return h21(1i);
}
main() g() inti =10

Member of the Helmholtz Association

8 - 12 May 2023 Slide 5

auto h21l1 (int 1)

{

}

-> int

return

/)

—-i;

JULICH

Forschungszentrum

auto main ()

{

-> int

auto N = 10;

if (£(N) < g(N))
h1l(N);

} else {
h2 (N) ;

}

main()

{

Member of the Helmholtz Association

auto f(int i) ()
{

-> int
return (i = i) %12;
}
auto g (int i) ()
{

-> int

o

return i % 12;

}
auto hl(int i) () —-> int
{
return hll (i);
}
auto h2(int i) () -> int

{
return h21(1i);

}

8 - 12 May 2023

auto hll(int i) () -> int
{
return i * 1i;
}
auto h2l (int i) () —> int

{
return i + h211(1i);

}

Slide 5

auto h21l1 (int 1)

{

}

-> int

return

/)

—-i;

JULICH

Forschungszentrum

auto main() —-> int

auto f(int i) ()

-> int auto hll(int i) () -> int
{ { {
auto N = 10; return (i » 1) %$12; return i * 1i;
if (E(N) < g(N)) | } }
hl(N); auto g(int i) () —> int auto h2l (int i) () —> int
} else { { {
h2 (N); return i % 12; return i + h211(1i);
} } }
} auto hl(int i) () -> int
{
return hll (i);
}
auto h2(int i) () -> int
{
return h21(1i);
}
main() h1() inti =10

Member of the Helmholtz Association

8 - 12 May 2023 Slide 5

auto h21l1 (int 1)

{

}

-> int

return

/)

—-i;

JULICH

Forschungszentrum

auto main() —-> int

auto f(int i) ()

-> int auto hll(int i) () -> int
{ { {
auto N = 10; return (i » 1) %$12; return i * 1i;
if (E(N) < g(N)) | } }
hl(N); auto g(int i) () —> int auto h2l (int i) () —> int
} else { { {
h2 (N); return i % 12; return i + h211(1i);
} } }
} auto hl(int i) () -> int
{
return hll (i);
}
auto h2(int i) () -> int
{
return h21(1i);
}
main() h1() inti =10 h11() inti =10
Member of the Helmholtz Association 8 - 12 May 2023 Slide 5

auto h21l1 (int 1)

{

}

-> int

return

/)

—-i;

JULICH

Forschungszentrum

auto main() —-> int

auto f(int i) ()

-> int auto hll(int i) () -> int
{ { {
auto N = 10; return (i » 1) %$12; return i * 1i;
if (E(N) < g(N)) | } }
hl(N); auto g(int i) () —> int auto h2l (int i) () —> int
} else { { {
h2 (N); return i % 12; return i + h211(1i);
} } }
} auto hl(int i) () -> int
{
return hll (i);
}
auto h2(int i) () -> int
{
return h21(1i);
}
main() h1() inti =10

Member of the Helmholtz Association

8 - 12 May 2023 Slide 5

auto h21l1 (int 1)

{

}

-> int

return

/)

—-i;

JULICH

Forschungszentrum

auto main ()

{

-> int

auto N = 10;

if (£(N) < g(N))
h1l(N);

} else {
h2 (N) ;

}

main()

{

Member of the Helmholtz Association

auto f(int i) ()
{

-> int
return (i = i) %12;
}
auto g (int i) ()
{

-> int

o

return i % 12;

}
auto hl(int i) () —-> int
{
return hll (i);
}
auto h2(int i) () -> int

{
return h21(1i);

}

8 - 12 May 2023

auto hll(int i) () -> int
{
return i * 1i;
}
auto h2l (int i) () —> int

{
return i + h211(1i);

}

Slide 5

auto h21l1 (int 1)

{

}

-> int

return

/)

—-i;

JULICH

Forschungszentrum

=

H O © WO oE W

FUNCTIONS AT RUN TIME

main()

RP:0S

x:3.14159265...
i:4

auto sin(double x) -> int {
// Somehow calculate sin of x

return answer;

}

auto main() -> int {
double x{3.141592653589793};

for (int 1 =

0; i < 100; ++1i)

std::cout << i % x / 100

<< sin(i * x / 100)

{

<<"\n";

Member of the Helmholtz Association

8 - 12 May 2023

When a function is called, e.g., when we write

f (valuel,value2,value3) for a function f
declared as

ret_type f(typel x, type2 y, type3 z) :

= A "workbook" in memory called a stack frame is
created for the call

= The local variables x, y, z are created, as if
using instructions typel x{valuel} ,
type2 y{value2} , type3 z{value3} .

= A return address is stored.

= The actual body of the function is executed

= When the function concludes, execution continues
at the stored return address, and the stack frame is
destroyed

lJ JULICH

Slide 6 Forschungszentrum

FUNCTION ARGUMENTS

int x{ 1 };
int y{ x };

y =y + 1
// What is x now?

[N R

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 7 Forschungszentrum

FUNCTION ARGUMENTS

int x{ 1 };
ints y{ x };

y =y + 1
// What is x now?

[N R

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 7 Forschungszentrum

FUNCTION ARGUMENTS

1 auto f (int x) -> int

2 {

3 x =x + 1;

4 return x;

5 }

6 void elsewhere ()

7 {

8 int z{ 0 };

9 £(z);

10 // what is z now?

11 }

‘ .o
JULICH

Member of the Helmholtz Association 8 - 12 May 2023 Slide 7 J Forschungszentrum

FUNCTION ARGUMENTS

1 auto f (ints& x) -> int

2 {

3 x =x + 1;

4 return x;

5 }

6 void elsewhere ()

7 {

8 auto z = 0;

9 £(z);

10 // what is z now?

11 }

‘ .o
JULICH

Member of the Helmholtz Association 8 - 12 May 2023 Slide 7 J Forschungszentrum

1 void get_lims(int i, int j)
2 {
3 i = 10;
4 = 20;
5 }
6 auto main() —> int
7 {
8 auto 1 = 2, j = 3;
9 get_lims (i, J);
10 std::cout << 1 << ", " << j << "\n";
11 }
What does the std::cout line print ?
2, 3
B 10, 20
0, 0
B 3 2
Member of the Helmholtz Association 8 - 12 May 2023 Slide 8 J Forschungszentrum

1 void get_lims (int& i, ints J)
2 {
3 i = 10;
4 = 20;
5 }
6 auto main() —> int
7 {
8 auto 1 = 2, j = 3;
9 get_lims (i, J);
10 std::cout << 1 << ", " << j << "\n";
11 }
What does the std::cout line print ?
2, 3
B 10, 20
0, 0
B 3 2
Member of the Helmholtz Association 8 - 12 May 2023 Slide 9 J Forschungszentrum

THE REFERENCE TYPE IN FUNCTION PARAMETERS

Pass a normal type by value

// Argument passed by value
auto find_arsenic_tolerance (Rat R)

= The function find_arsenic_tolerance needs, as

© W N oUW N e

> double the argument, an object of type Rat .
{
double gnty - 0, dgnty - 1.0e-5; = So you send a copy or clone of r
while (not R.dead()) { = The clone gets injections and is eventually destroyed.
R.inject (dgnty);
gnty += dgnty;

}
return gnty;

}

auto lab() -> int

{
Rat r;
double t = find_arsenic_tolerance(r

1 alive! But we know

arsenic it can take.

Member of the Helmholtz Association

Slide 10

/)

JULICH

Forschungszentrum

© 0N oA W N

o
[T

13

THE REFERENCE TYPE

// Argument passing by reference
auto find_arsenic_tolerance (Rat& R)
> double
{
double gnty = 0, dgnty = 1.0e-5;
while (not R.dead()) {
R.inject (danty) ;
gnty += dgnty;
}
return gnty;
}
auto lab() -> int
{
Rat r;
double t = find_arsenic_tolerance(r);
// r 1is no more!
}
Member of the Helmholtz Association 8 - 12 May 2023

IN FUNCTION PARAMETERS

Pass a reference argument

= The function find_arsenic_tolerance needs,

as the argument, an object of type Rat &, i.e, a

reference to which Rat.

= So you send a copy of the Id tag on r to the function.

= The function acts on the Rat object which was

referenced.

Slide 11

/)

JULICH

Forschungszentrum

© 0N oA W N

o
[T

13

THE REFERENCE TYPE IN FUNCTION PARAMETERS

Pass a reference argument

// Argument passing by reference = The function find_arsenic_tolerance needs,
auto find_arsenic_tolerance (Rat& R)))
> double as the argument, an object of type Rat &, i.e, a
{ reference to which Rat.
double gnty = 0, dgnty = 1.0e-5; .
while (not R.dead()) { = So you send a copy of the Id tag on r to the function.
R.inject (danty) ; i . .
anty += danty; = The function acts on the Rat object which was
} referenced.
return gnty;
}
auto lab() -> int
{
Rat r;
double t = find_arsenic_tolerance(r);
// r is no more!
}
Information about the original rat, but the rat was modified. ‘ JULlCH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 11 J Forschungszentrum

THE REFERENCE TYPE IN FUNCTION PARAMETERS

We want to change an object

= When we want our object to be modified in some 1 void bandage_leg(Leg 1)
. .. 2 {
way by a function, it is no good to pass only a copy. 3 J/Select right bandage
= In this example, a clone of the wounded leg will be *) //Wrap bandage around 1
5
bandaged 6 ..
7 auto main() -> int
8 {
9 Human h;
10 e
11 // h got a wounded left leg
12 bandage_leg(h.left_leg());
13 //No benefits to h.
14 }
Member of the Helmholtz Association 8 — 12 May 2023 Slide 12 J Forschungszentrum

THE REFERENCE TYPE IN FUNCTION PARAMETERS

We want to change an object

= Modifying a copy of our object is useless 1 void bandage_leg(Leg & 1)
2 {

= But a copy of a reference is good enough. 3 //Select right ba

. . 4 //Wrap bandage around 1
= In this example, the function works on the leg that , ’
was referred to. 6 ...
7 auto main() -> int
8 {
9 Human h;
10 e
11 // h got a wounded left leg
12 bandage_leg(h.left_leg());
13 //Intended benefits to h
14 }
Member of the Helmholtz Association 8 — 12 May 2023 Slide 13 J Forschungszentrum

THE REFERENCE TYPE IN FUNCTION PARAMETERS

We want to change an object

= Modifying a copy of our object is useless 1 ‘{foid bandage_leg(Leg & 1)
2

= But a copy of a reference is good enough. 3 //Select

. . 4 //Wrap ban
= In this example, the function works on the leg that ,
was referred to. 6 ...

7 auto main() -> int
8 {
9 Human h;
10 e
11 // h got a wounded left leg
12 bandage_leg(h.left_leg());
13 //Intended benefits to h
14 }

We can use a function working with a reference when we want it to change our original object.

Member of the Helmholtz Association 8 — 12 May 2023 Slide 13 Forschungszentrum

IJ JULICH

THE REFERENCE TYPE IN FUNCTION PARAMETERS

Cloning is expensive

= Sometimes, the data structures are very large, and 1 auto count_bad_tires(Truck t) -> int
. . . 2
copying them is expensive 5 { int n - 0
= Functions taking that kind of classes will implicitly 4 for (int i = 0; i < t.n_wheels(); ++i) {
. . . . 5 if (not t.wheel(i).good()) ++n;
perform big cloning operations, slowing the o }
program down. 7 return n;
8 }
9 P
10 auto main() -> int
11 {
12 Truck mytruck;
13 P
14 nbad = count_bad, tlres(mytruck) ;
15 // Unnecessary cloning of mytruck
16 }
Member of the Helmholtz Association 8 — 12 May 2023 Slide 14 J Forschungszentrum

THE REFERENCE TYPE IN FUNCTION PARAMETERS

Cloning is expensive

= If the function signature asks for a reference, we 1 auto count_bad_tires(Trucks t) -> int
. . 2
only create a reference to the truck when invoking v o
N 3 int n 0;
the function 4 for (int i = 0; i < t.n_wheels(); ++i) {
X) 5 if (not t.wheel(i).good()) ++n;
= The same effect can be achieved by a pointer, but } !
the syntax with references is cleaner 7 return n;
8 }
9 e
10 auto main() -> int
11 {
12 Truck mytruck;
13 [
14 nbad = count_bad_tires (mytruck) ;
15 // another re rence to truck, not
16 // clone of t
17 }
Member of the Helmholtz Association 8 — 12 May 2023 Slide 15 J Forschungszentrum

THE CONSTANT REFERENCE TYPE

Cloning is expensive

= We want to use a reference as the argument 1 ?utO count_bad_tires(Trucks t) —> int
o . . 2
because it is efficient 5 int n - 0;
= How do we ensure that the original object would 4 for (int i = 0; i < t.n wheels(); ++i) {
5 check_pressure (t.wheel (1)) ;
not be allowed to change ? 6 if (not t.wheel(i).good()) ++n;
7 }
8 return n;
9 }
10 A
11 auto main() -> int
12 {
13 Truck mytruck;
14 R
15 nbad = count_bad_tires (mytruck);
16 // Was there any change to mytruck ?
17 }
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 16 J Forschungszentrum

THE CONSTANT REFERENCE TYPE

Cloning is expensive

= We want to use a reference as the argument only

because it is efficient

= How do we ensure that the original object would

not be allowed to change 7

= Using a const reference

Member of the Helmholtz Association 8 — 12 May 2023

auto count_bad_tires (const Trucks t) —-> int

{

}

int n = 0;

for (int 1 = 0; 1 < t.n_wheels(); ++1) {
check_pressure (t.wheel (1)) ;
if (not t.wheel(i).good()) ++n;

}

return n;

int main ()

{

Truck mytruck;

nbad = count_bad_tires (mytruck);
// Was there any

// Not if this com

1ge to mytruck ?

led!

IJ JULICH

Slide 17 Forschungszentrum

Runtime error handling

Member of the Helmholtz Association 8 — 12 May 2023 Slide 18 J Forschungszentrum

RUN-TIME ERROR HANDLING

Exceptions: When there is nothing reasonable to return

auto mysqgrt (double x) -> double Exceptlons

1

2 {

3 const auto eps2 = 1.0e-24; = A function may be called with arguments
4 auto r0 = 0.5 « (L. + x);j which don’t make sense

5 auto rl = x / r0;

6 while ((r0 - rl) * (r0 - rl) > eps2) ({ = An illegal mathematical operation

7 r0 = 0.5 » (r0 + rl); 9

8 rl = x / r0; = Unexpected values, e.g., an arbitrary string
o } when expecting a number

10 return rl;

) = Too much memory might have been requested

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 19 Forschungszentrum

THROWING AND CATCHING EXCEPTIONS

using error_code = int;

auto mysqgrt (double x)

{

—> double

const auto eps = 1.0e-12;
const auto eps2 = eps * eps;
if (x < 0) throw error_code{-1};

auto r0 = 0.5 » (1. + x);

auto rl = x / r0;

while ((r0 - rl) = (r0 - rl) > eps2) {
r0O = 0.5 « (xr0 + rl);

rl = x / r0;
}

return rl;

Member of the Helmholtz Association

8 — 12 May 2023

=
H O © XN uE W N

o e
SRS

auto appl (double x,

{

double vy)

try {
if (x < y)
return mysqgrt(x + y)
} catch
std::cout <<

—> double

std::swap(x, y);

+ mysqgrt(x — y);

(error_code& error) {
"Caught error_code:

<< error << "\n";
// somehow fix the situation and

// return something sensible.

// doesn't work...
throw;

If that

Slide 20

/)

JULICH

Forschungszentrum

THROWING AND CATCHING EXCEPTIONS

std: :string;
—> double

using error_code =
auto mysqgrt (double x)
{
using std::format;
const auto eps = 1.0e-12;
const auto eps2 = eps * eps;
if (x < 0) throw
format ("Bad input {}
auto r0 = 0.5 * (1. + x);
auto rl = x / r0;
while ((rO0 - rl) » (r0O - rl
r0 = 0.5 » (r0 + rl);
rl = x / r0;
}

return rl;

for mysqrt",

> eps2) |

X);

Member of the Helmholtz Association

8 — 12 May 2023

=
H O © XN uE W N

o e
SRS

auto appl (double x, —> double

{

double vy)

try {
if (x < y) std::swap(x, y);
return mysqrt(x + y) + mysqgrt(x - y);
} catch (error_code& error) {
std::cout << "Caught error_code:
<< error << "\n";
// somehow fix the situation and
// return something sensible. If that
// doesn't work...

throw;
}
}
@) JULICH
Slide 20 Forschungszentrum

THROWING AND CATCHING

auto mysqgrt (double x) -> double
{
using std::format;
const auto eps = 1.0e-12;
const auto eps2 = eps * eps;
if (x < 0) throw
std::runtime_error({
format ("Bad input {}

i

0.5 (1.
x / r0;

+ x);

auto r0

auto rl =

while ((r0 - rl) =
r0 = 0.5 * (r0
rl = x / r0;

(r0 - rl)
+ rl);

}

return rl;

for mysqrt",

> eps2) {

)

Member of the Helmholtz Association

8 — 12 May 2023

=
H O © XN uE W N

o e
SRS

EXCEPTIONS

auto appl (double x, —> double

{

double vy)

try {
if (x < y) std::swap(x, y);
return mysqrt(x + y) + mysqgrt(x - y);
} catch (std::runtime_erroré& error) {
std::cout << "Caught runtime
<< error.what () <<
// somehow fix the situation
// return something sensible.
// doesn't work...

error: "

u\n";
and
If that

throw;
}
}
@) JULICH
Slide 20 Forschungszentrum

TRY AND CATCH BLOCKS

= Exceptions are monitored and handled in try..catch

void g(int i) { if (i > -3) £();
auto main(int argc, charx argvl(])

} catch (exception_type_0& err) {
// handle errors of type 0
}
// more
} catch (exception_type_1l& err) {
// handle errors of type 1
} catch (exception_type_2& err) {
/).
}

lines

}

> int {
try {
g (argc)
} catch (exception_type_3& err) {
// handle error type 3

}

Member of the Helmholtz Association

8 — 12 May 2023

void f() {
ery | blocks
// lines = When an exception is thrown in the try part of a
try {
// a line throwing an exception try..catch block, the attached catch blocks are

checked checked for a handler matching the type of the

thrown exception.

= |f no matching handler is found, we look for an next

bigger try..catch block

= |f an exception is thrown in an area inside a function, not

inside a try section, the enclosing try
searched based on the call site for the call

section is

= This search can unwind till it reaches main () . If still
no matching handler is found, the program exits with

error.

Slide 21

/)

JULICH

Forschungszentrum

void f() {
try {
// lines
try {
// a line throwing an exception
} catch (exception_type_0& err) {
// handle errors of type
}
// more lines
} catch (exception_type_1l& err) {
// handle errors of type 1
} catch (exception_type_2& err) {
/).
}

}
void g(int i) { if (i > -3) £(; }
auto main(int argc, charx argvl(]) > int {
try {
g (argc)
} catch (exception_type_3& err) {
ndle error type 3

}

Member of the Helmholtz Association 8 — 12 May 2023

TRY AND CATCH BLOCKS

= Once an exception is thrown, the program control flow

enters a special mode

Imagine all other lines, except try..catch blocks

and the throw expression being “grayed out”

= |n this view, the code looks like a smallish tree of
try..catch blocks. Find the the smallest enclosing

catch block with the matching typel

= The type matching and jump destinations can all be

determined by the compiler

= This jump in program control still follows all the rules
regarding variable scopes: when we leave a block of code
by flying away on the back of an exception, it still
counts as leaving the block. Automatic variables
declared in that scope are therefore destroyed.

Slide 21

/)

JULICH

Forschungszentrum

IS IT NEEDLESSLY EXPENSIVE TO USE EXCEPTIONS?

1 auto f (double x, bool& succeeded) -> double 1
2 { 2
3 const auto eps = 1.0e-12; 3
4 const auto eps2 = eps * eps; 4
5 if (x < 0) { 5
6 succeeded = false; 6
7 } else { 7
8 auto r0 = 0.5 » (1. + x); 8
9 auto rl = x / r0; 9
10 while ((r0 - rl) = (r0 - rl) > eps2) { 10
11 r0 = 0.5 » (xr0 + rl); 11
12 rl = x / r0; 12
13 }
14 succeeded = true;
15 }
16 return rl;
17 }

Member of the Helmholtz Association 8 - 12 May 2023

auto appl (double x, double y) -> double
{
if (x < y) std::swap(x, y);
bool ep{false}, em{false};
auto rp = f(x + vy, ep);
auto rm = f(x - y, em);
if (ep and em) {
return rp + rm;
} else {
// handle errors

}

= Cumbersome because of extra flag variables

= A value is returned even in the case of failure.
A programmer can accidentally or out of
carelessness, ignore checking the success/error
flags. The subsequent calculations will be

incorrect.
@) JULICH
Slide 22 Forschungszentrum

IS IT NEEDLESSLY EXPENSIVE TO USE EXCEPTIONS?

1 auto f (double x) -> double

2 {

3 const auto eps = 1.0e-12;

4 const auto eps2 = eps * eps;

5 if (x < 0)

6 throw std::runtime_error({

7 format ("Bad input {} for square root!", x)
8 bi

9 auto r0 = 0.5 » (1. + x);

10 auto rl = x / r0;

11 while ((r0 - rl) % (r0 - rl) > eps2) {
12 r0 = 0.5 = (r0 + rl);

13 rl = x / r0;

14 }

15 return rl;

16 }

An error handling method with functionality compara-
ble to exceptions will have a similar cost!

Member of the Helmholtz Association 8 — 12 May 2023

auto appl (double x, double y) -> double
{
if (x < y) std::swap(x, y);
try {
return f(x + y) + £(x - y);
} catch (std::runtime_errors& err)
// handle errors

}

© W N ok W N

= Normal, successful flow is separated from
error handling code

= |n case there is an error, it is impossible to
ignore! The function does not return with a
value. The only choices are to handle the
error or to terminate the program.

IJ JULICH

Slide 23 Forschungszentrum

NOEXCEPT

auto sum(unsigned i, unsigned j)
-> unsigned ({
return i + j;

}

1
2
3
4
5 void contained(int 1) {
6
7
8
9

try {
// some code
} catch (ET_l& err) {
} catch (ET_2& err) {
10 } eatch (...) {
11 // handle every exception
12 }
13 }
Member of the Helmholtz Association 8 - 12 May 2023

= Sometimes, we know that an exception will never

escape certain functions

Slide 24

/)

JULICH

Forschungszentrum

NOEXCEPT

1 auto sum(unsigned i, unsigned j) noexcept
2 -> unsigned ({

3 return i + j;

4 }

5 void contained(int i) noexcept {

6 try {

7 // some code

8 } catch (ET_l& err) {

9 } catch (ET_2& err) {

10 } catch (...) {
11 // handle every exception
12 }
13 }
Member of the Helmholtz Association 8 - 12 May 2023

= Sometimes, we know that an exception will never

escape certain functions

= Such functions can be decorated with the
noexcept specifier to tell the compiler that it
does not need to make arrangements about
propagating exceptions out of those functions

Slide 24

/)

JULICH

Forschungszentrum

NOEXCEPT

1 auto sum(unsigned i, unsigned j) noexcept
2 -> unsigned ({

3 return i + j;

4 }

5 void contained(int i) noexcept {

6 try {

7 // some code

8 } catch (ET_l& err) {

9 } catch (ET_2& err) {

10 } eatch (...) |
11 // handle every exception
12 }
13 }
Member of the Helmholtz Association 8 - 12 May 2023

= Sometimes, we know that an exception will never

escape certain functions

= Such functions can be decorated with the
noexcept specifier to tell the compiler that it
does not need to make arrangements about
propagating exceptions out of those functions

= By discarding some exception handling code, the
compiler may in some cases generate better

optimised code

Slide 24

/)

JULICH

Forschungszentrum

© 0N oA W N

11
12
13

NOEXCEPT

auto sum(unsigned i, unsigned j) noexcept
-> unsigned ({
return i + j;
}
void contained(int i) noexcept {
try {
// some code
} catch (ET_l& err) {
} catch (ET_2& err) {
} eatech (...) {
// handle

}

every exception

Member of the Helmholtz Association 8 — 12 May 2023

Sometimes, we know that an exception will never
escape certain functions

Such functions can be decorated with the
noexcept specifier to tell the compiler that it
does not need to make arrangements about
propagating exceptions out of those functions

By discarding some exception handling code, the
compiler may in some cases generate better
optimised code

If you lie, and call a function noexcept , but an

exception reaches the outer most block of the
function, the program is std::terminate d.

IJ JULICH

Slide 24 Forschungszentrum

=
H O ©®NO O R W

LT T I R e =t
[R N S I I N T)

OPTIONAL VALUES

#include <optional>
auto f (double x) —> std::optional<double> {
std::optional<double> ans;
const auto eps2 = 1.0e-24;
if (x >= 0) |
auto r0 = 0.5 % (1. + x);
auto rl = x / r0;
while ((rO rl) = (x0 rl) > eps2)
r0 = 0.5 % (r0 + rl);

rl = x / r0;
}
ans = rl;
}
return ans;
}
// Elsewhere. . .
std::cout << "Enter number : ";
std::cin >> x;
if (auto r = f(x); r.has_value()) {
std::cout << "The result is "
<< r.value() << '\n';

Member of the Helmholtz Association

8 — 12 May 2023

{

std::optional<T> is analogous to a box

containing exactly one object of type T or nothing

at all

If created without any initialisers, the box is empty

You store something in the box by assigning to the

optional

Evaluating the optional as a boolean gives a
true outcome if there is an object inside,
irrespective of the value of that object

Empty box evaluates to false

IJ JULICH

Slide 25

Forschungszentrum

=
H O ©®NO O R W

LT T I R e =t
[R N S I I N T)

OPTIONAL VALUES

#include <optional>
auto f (double x) —> std::optional<double> {
std::optional<double> ans;
const auto eps2 = 1.0e-24;
if (x >= 0) |
auto r0 = 0.5 % (1. + x);
auto rl = x / r0;
while ((rO rl) = (x0 rl) > eps2)
r0 = 0.5 % (r0 + rl);
rl = x / r0;
}
ans = rl;
}
return ans;
}
// Elsewhere. ..
std::cout << "Enter number : ";
std::cin >> x;
if (auto r = f(x); r) {

std::cout << "The result is "
<< *r << '\n';

Member of the Helmholtz Association

8 — 12 May 2023

{

std::optional<T> is analogous to a box

containing exactly one object of type T or nothing

at all

If created without any initialisers, the box is empty

You store something in the box by assigning to the

optional

Evaluating the optional as a boolean gives a
true outcome if there is an object inside,
irrespective of the value of that object

Empty box evaluates to false

IJ JULICH

Slide 25

Forschungszentrum

C++423 STD::EXPECTED

1 #include <expected>

2 auto mysqgrt (double x) -> std::expected<double, std::string> {
3 const auto eps = 1.0e-12;

4 const auto eps2 = eps * eps;

5 if (x >= 0.) |

6 auto r0 = 0.5 » (1. + x);

7 auto rl = x / r0;

8 while ((r0 rl) = (r0 rl) > eps2) {

9 r0 = 0.5 « (r0 + rl);

10 rl = x / r0;

11 }

12 return { rl };

13 } else {

14 return std::unexpected { "Unexpected input!" };

15 }

16 }

17 // Elsewhere. ..

18 if (auto rm = mysqrt(x); rm) std::cout << "Square root = " << rm.value() << "\n";
19 else std::cout << "Error: " << rm.error() << "\n";

= Similar to std::optional , but has more capacity to describe the error
= The unexpected value can be of a type of our choosing, making it very flexible

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 26 Forschungszentrum

=
H O © WO O R W

o
w N

ASSERTIONS

clude <cassert>

#
bool check_things()
{

// false

assert(val >= 0);
assert (check_things());

Member of the Helmholtz Association

8 — 12 May 2023

= assert (condition) abortsif condition
is false

= Used for non-trivial checks in code during
development. The errors we are trying to catch are
logic errors in implementation.

= |f the macro NDEBUG is defined before including

<cassert> assert (condition) reduces
to nothing

IJ JULICH

Slide 27 Forschungszentrum

ASSERTIONS

1 clude <cassert>

2 bool check_things()

3

4 ing is wrong
5

6

7

8

9

10

11 assert (val >= 0);

12 assert (check_things());
13 }

= After we are satisfied that the program is correctly
implemented, we can pass —~DNDEBUG to the
compiler, and skip all assertions.

Member of the Helmholtz Association 8 — 12 May 2023

= assert (condition) abortsif condition
is false

= Used for non-trivial checks in code during
development. The errors we are trying to catch are
logic errors in implementation.

= |f the macro NDEBUG is defined before including

<cassert> assert (condition) reduces
to nothing

IJ JULICH

Slide 27 Forschungszentrum

The program examples/exception.cc demonstrates the use of exceptions. Rewrite the loop so that the user is
asked for a new value until a reasonable value for the function input parameter is given.

Exercise 2.2:

Handle invalid inputs in your gcd.cc program so that if we call it as gcd apple orange it quits with an
understandable error message. Valid inputs should produce the result as before.

Exercise 2.3:

In the folder examples/sqrt_error_handling , you will find the solution to the square root exercise from the first
day, with different error handling methods discussed here: exceptions, std::optional and

std: :expected . Study the code, experiment, ask for clarifications!

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 28 J Forschungszentrum

Dynamic memory management

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 29 J Forschungszentrum

=
H O © WO O R W

-
S

Member of the Helmholtz Association

HEAP VS STACK

auto f (double x) —-> double
{
int i = static_cast<int>(x);
double M[l()b][lJ(J][’OUO]; // Oops!
M[123]1([344][24] = x;
]

}

auto main () >

{

}

return x - M[i] [555]([1];

int

std::cout << f£(5) << "\n";
// Immediate SEGFAULT

int g(float x, int n)

int f(float r)

main()

x=5.0 n=11

i=11 return g(r,i)
r=5.0
b=true ;5 x=f(r)
r=5.0

= Variables in a function are allocated on the stack, but sometimes we need more space than what the stack

permits

8 — 12 May 2023

Slide 30

JULICH

Forschungszentrum

/)

HEAP VS STACK

1 auto f (double x) —-> double |nt g(ﬂoat X; |nt n)

2 x=5.0 n=11
3 int i = static_cast<int>(x);

4 double M[1000][1000][1000]; // Oops!

5 M[123][344][24] = x; . i=11
6 return x - M[i][555][1]; int f(float r)

7 } I'=5.0

8 auto main() -> int

9 . b=true 5
10 std::cout << f£(5) << "\n"; maln() 1=
11 // Immediate SEGFAULT r=5.0

12 }

return g(r,i)

x=f(r)

= Variables in a function are allocated on the stack, but sometimes we need more space than what the stack

permits

= We do not know how much space we should reserve for a variable (e.g. a string)

Member of the Helmholtz Association 8 — 12 May 2023 Slide 30 J

JULICH

Forschungszentrum

=
H O © WO O R W

-
S

HEAP VS STACK

auto f (double x) —-> double |nt g(ﬂoat X, |nt n)
{

int i = static_cast<int>(x);
double M[1000][1000][1000]; // Oops!
M[123][344]1[2 X;

i
1 = .
return x - M[i][555]([1]; int f(float r)

4
i
}

auto main () > int
{ .
std::cout << f£(5) << "\n"; maln()

/

/7

x=5.0 n=11
i=11
r=5.0
b=true ,_s
r=5.0

return g(r,i)

x=f(r)

= Variables in a function are allocated on the stack, but sometimes we need more space than what the stack

permits

= We do not know how much space we should reserve for a variable (e.g. a string)

= We need a way to allocate from the "free store"

Member of the Helmholtz Association 8 — 12 May 2023 Slide 30

/)

JULICH

Forschungszentrum

HEAP MEMORY

int g(float x, int n)

int f(float r)

main() i

Member of the Helmholtz Association 8 — 12 May 2023

Heap

Slide 31

/)

JULICH

Forschungszentrum

HEAP VS STACK

= operator new : Request that a specific amount
)
of memory be reserved for you on the free store.
The return value of the new operation is an
address, which you store in a pointer (A here).
A (int*)
Stack Heap
1 void f ()
2 {
3 int+ A = new int[10000007;
4 // use A
5 delete [] A;
6 }
Member of the Helmholtz Association 8 — 12 May 2023 Slide 32 J Forschungszentrum

HEAP VS STACK

= operator new : Request that a specific amount
of memory be reserved for you on the free store.
The return value of the new operation is an

)

address, which you store in a pointer (A here).

= The pointer A is a normal variable on the stack.

A (int*)) .
But it's value is the address of the allocated space

Stack Heap

[I N

void f ()

{
intx A = new int[10000007;
// use A
delete [] A;

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 32 J Forschungszentrum

HEAP VS STACK

= operator new : Request that a specific amount
)
of memory be reserved for you on the free store.
The return value of the new operation is an
address, which you store in a pointer (A here).
- = The pointer A is a normal variable on the stack.
int *)
But it's value is the address of the allocated space
Stack Heap = Memory allocated from the heap stays with your
program until you free it, using delete
1 void f ()
2 {
3 ints A = new int[1000000];
4 // use A
5 delete [] A;
6 }

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 32 J Forschungszentrum

HEAP VS STACK

= operator new : Request that a specific amount
S of memory be reserved for you on the free store.
The return value of the new operation is an
address, which you store in a pointer (A here).

= The pointer A is a normal variable on the stack.

A (int*)) .
But it's value is the address of the allocated space

[I N

Stack Heap = Memory allocated from the heap stays with your
program until you free it, using delete

= The pointer we used to store its address is subject

void f ()

(to scoping rules, and might expire at a certain }
ints A = new int[1000000];
// use A
delete [] A;

}

Forschungszentrum

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 32

HEAP VS STACK

A (int*)

Stack Heap

void f ()

{
int* A = new int[1000000];
// use A
delete [] A;

}

[I N

Note: Heap allocation and deallocation are slower than

those on the stack!

Member of the Helmholtz Association 8 — 12 May 2023

operator new : Request that a specific amount
of memory be reserved for you on the free store.
The return value of the new operation is an
address, which you store in a pointer (A here).

The pointer A is a normal variable on the stack.
But it's value is the address of the allocated space

Memory allocated from the heap stays with your
program until you free it, using delete

The pointer we used to store its address is subject
to scoping rules, and might expire at a certain }

Unless you ensure that delete is called before
the pointer expires or that the address is stored
elsewhere before that happens, you have a memory
leak

IJ JULICH

Slide 32 Forschungszentrum

HEAP VS STACK

A (int*)

Stack

[o I B I N

)

Heap

void f ()

{

intx A
// use
g (A);
//
delete

A

[]

new int[10000007];

A;

Member of the Helmholtz Association

8 — 12 May 2023

= Allocations with new should be matched by

corresponding delete operations

Slide 33

/)

JULICH

Forschungszentrum

HEAP VS STACK

A (int*)

Stack

[o I B I N

)

Heap

void f ()

{

intx A
// use
g(h);
//
delete

new int[10000007];

Member of the Helmholtz Association

8 — 12 May 2023

= Allocations with new should be matched by
corresponding delete operations

= But, what if we throw an exception before we reach
delete ?

Slide 33

IJ JULICH

Forschungszentrum

HEAP VS STACK

)

A (int*)

Stack

[o I B I N

delete

Member of the Helmholtz Association

8 — 12 May 2023

= Allocations with new should be matched by
corresponding delete operations

= But, what if we throw an exception before we reach
delete ?

= We may never reach the meticulously placed
delete statement!

IJ JULICH

Slide 33 Forschungszentrum

HEAP VS STACK

A (int*)

Stack

[o I B I N

)

Heap

void f ()

{

intx A = new int[1000000];

// use A

g (A);
//
delete

Member of the Helmholtz Association

= Allocations with new should be matched by
corresponding delete operations

= But, what if we throw an exception before we reach
delete ?

= We may never reach the meticulously placed
delete statement!

= Generally, because of exceptions, in C4++ programs,
placing clean-up operations near “exit sites” is not
a sound strategy

Slide 33

IJ JULICH

Forschungszentrum

HEAP VS STACK

delete [] A;

= Allocations with new should be matched by
) : :
corresponding delete operations
= But, what if we throw an exception before we reach
delete ?
e = We may never reach the meticulously placed
delete statement!
Stack LI = Generally, because of exceptions, in C4++ programs,
placing clean-up operations near “exit sites” is not
a sound strate
1 void f() gy
2 | = This also applies to other “resources” which must
s :;‘;t‘*mi = new int[10000001; be acquired for use, e.g., threads, mutexes...
5 g (A);
6 //
T
8

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 33 J Forschungszentrum

HEAP VS STACK

= Allocations with new should be matched by
) : :
corresponding delete operations
= But, what if we throw an exception before we reach
delete ?
e = We may never reach the meticulously placed
delete statement!
Stack LI = Generally, because of exceptions, in C4++ programs,
placing clean-up operations near “exit sites” is not
a sound strate
1 void f() gy
2 | = This also applies to other “resources” which must
s :;‘;t‘*f = new int[10000001; be acquired for use, e.g., threads, mutexes...
5 g(a); = The right way to handle that is by using RAII
6 //
7 delete [] A;
8

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 33 J Forschungszentrum

HEAP VS STACK

A (int*)
Stack Heap

1 void f ()
2 {
3 int* A = new int[1000000];
4 // use A
5 g(A);
6 //
7 delete [] A;
8

Member of the Helmholtz Association

8 — 12 May 2023

= Allocations with new should be matched by
corresponding delete operations

= But, what if we throw an exception before we reach
delete ?

= We may never reach the meticulously placed
delete statement!

= Generally, because of exceptions, in C4++ programs,
placing clean-up operations near “exit sites” is not
a sound strategy

= This also applies to other “resources” which must
be acquired for use, e.g., threads, mutexes...

= The right way to handle that is by using RAII

Standard library facilities use the same technique

IJ JULICH

Slide 33 Forschungszentrum

OBJECT LIFETIME MANAGEMENT WITH SMART
POINTERS

= 3 kinds of smart pointers were introduced in C++11: unique_ptr, shared_ptr, and weak_ptr

Member of the Helmholtz Association 8 — 12 May 2023 Slide 34 J Forschungszentru

OBJECT LIFETIME MANAGEMENT WITH SMART
POINTERS

= 3 kinds of smart pointers were introduced in C++11: unique_ptr, shared_ptr, and weak_ptr

= unique_ptr claims exclusive ownership of the allocated array. When it runs out of its scope, it calls

delete on the allocated resource. It is impossible to "forget" to delete the memory owned by unique_ptr

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 34 Forschungszentrum

OBJECT LIFETIME MANAGEMENT WITH SMART
POINTERS

= 3 kinds of smart pointers were introduced in C++11: unique_ptr, shared_ptr, and weak_ptr

= unique_ptr claims exclusive ownership of the allocated array. When it runs out of its scope, it calls

delete on the allocated resource. It is impossible to "forget" to delete the memory owned by unique_ptr

= Several instances of shared_ptr may refer to the same block of memory. When the last of them expires,

it cleans up.
@ » JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 34 J Forschungszentrum

OBJECT LIFETIME MANAGEMENT WITH SMART
POINTERS

3 kinds of smart pointers were introduced in C++11: unique_ptr , shared_ptr, and weak_ptr
= unique_ptr claims exclusive ownership of the allocated array. When it runs out of its scope, it calls
delete on the allocated resource. It is impossible to "forget" to delete the memory owned by unique_ptr

= Several instances of shared_ptr may refer to the same block of memory. When the last of them expires,
it cleans up.

= Helper functions make_unique and make_shared can be used to allocate on heap and retrieve a
smart pointer to the allocated memory

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 34 J Forschungszentrum

DYNAMIC MEMORY WITH SMART POINTERS

1 using big = std::array<int, 1000000>;
2 int f()

3 {

4 auto ul = std::make_unique<big>();
5 //// us 1

6

} // ul expires, and frees the allocated memory

Current recommendation: avoid free new / delete calls in normal user code

Use them to implement memory management components

Use unique_ptr and shared_ptr to manage resources

You can then assume that an ordinary pointer in your code is a "non-owning" pointer, and let it expire
without leaking memory

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Forschungszentrum

Slide 35

MEMORY ALLOCATION/DEALLOCATION

= You don't need it often:
= std::string takes care of itself

= Using standard library containers like vector , list , map , deque even rather complicated structures
can be created without explicit memory allocation and de-allocation.

= When you nevertheless must (first choice):

1 auto ¢ = make_unique<complex_number>(1.2,4.2); // on the heap

2 int asize=100; // on the stack

3 auto darray = make_unique<double[]> (asize);

4 // The stack frame contains the unique_ptr variables c and darray.

5 // The memory locations they point to on the other hand, are not

6 // on the stack, but on the heap. But, you don't need to worry about

7 // that memory explicitly. If you don't have any way of

8 // accessing the resource (the pointers expire), the memory will be

9 // freed for you.

0 //

‘ .o
JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 36 J Forschungszentrum

MEMORY ALLOCATION/DEALLOCATION

= You don't need it often:
= std::string takes care of itself

= Using standard library containers like vector , list , map , deque even rather complicated structures
can be created without explicit memory allocation and de-allocation.
= When you nevertheless must (second choice):
= Wrap the managed resource in a class
= Allocate in constructors, using new , if you must

= Clean up in the destructor, using delete , if you used new
= Object lifetime rules will ensure the clean up, even in case of exceptions.

Member of the Helmholtz Association

IJ JULICH

8 — 12 May 2023 Forschungszentrum

Slide 37

C++ classes

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 38 Forschungszentrum

C++ classes

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 39 Forschungszentrum

AD HOC STRUCTS

= Some times calculations involve bundles of entities which
belong together, e.g., the location of a minimum of a
function and the corresponding minimum value

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 40 Forschungszentrum

© 0w N U W N

e e
AW N = O

AD HOC STRUCTS

struct minimize_return_type {
double min_loc, min_val;
}i
auto minimize (double rl, double r2,
FunctionType f)

minimize_return_type m;
// Find minimum somehow
m.min_loc = the_location;
m.min_val = the_value;
return m;
}
void elsewhere ()
{
auto sol = minimize (0., 10., cost_func);
cout << "Minimum found at " << sol.min_loc
<< "with a value " << sol.min_val
<< "\n";

Member of the Helmholtz Association 8 — 12 May 2023 Slide 40

/)

= struct : Staple together objects of arbitrary types

= Can be done in global as well as block scope

JULICH

Forschungszentrum

© W N U R W N

AD HOC STRUCTS

Member of the Helmholtz Association

struct minim_ret_type {
double min_loc, min_val;
i
auto minimize (double rl, double r2,
FunctionType f)
{

minim_ret_type m;

// Find somehow
m.min_loc = the_location;
m.min_val = the_value;

return m;
}
void elsewhere ()

{

auto [loc, val] = minimize(0., 10.,
cost_func);

cout << "Minimum found at " << loc
<< "with a value " << val << "\n";

8 — 12 May 2023

struct : Staple together objects of arbitrary types
Can be done in global as well as block scope

We can now use the name of the struct to

create variables , such that each of them has a
min_loc member and a min_val member

Can be function argument (and hence can participate in
overload resolution), or return value (and hence gives us
a way to return multiple values)

Names of the components can be chosen to reflect any
meanings associated with the content, making it a good
practical way of returning multiple objects from a

function

JULICH

Slide 40 J Forschungszentrum

© W N U R W N

AD HOC STRUCTS

struct minim_ret_type {
double min_loc, min_val;
i
auto minimize (double rl, double r2,
FunctionType f)
{
minim_ret_type m;
// Find
m.min_loc = the_location;
m.min_val = the_value;
return m;
}
void elsewhere ()
{
auto [loc, val] = minimize (0., 10.,
cost_func);
cout << "Minimum found at " << loc
<< "with a value " << val << "\n";
}
Member of the Helmholtz Association 8 - 12 May 2023

struct : Staple together objects of arbitrary types
Can be done in global as well as block scope

We can now use the name of the struct to

create variables , such that each of them has a
min_loc member and a min_val member

Can be function argument (and hence can participate in
overload resolution), or return value (and hence gives us
a way to return multiple values)

Names of the components can be chosen to reflect any
meanings associated with the content, making it a good
practical way of returning multiple objects from a
function

Structured bindings can be used to create aliases for
the components. The binding names are independent of

the names in the struct .
@) JULICH

Slide 40 Forschungszentrum

=
H O © WO O R W

LT > I T
= O © 0N d AW N

AD HOC STRUCTS

= A struct is a user defined data type

struct minimize return_type {
double min_loc, min_val; = Each instance has a bundle, with a min_loc and
Vi .
auto minimize (double rl, double r2, min_val member
F ti T f
(unctionlype f) = Members are accessed from the
minimize_return_type m; object using the . notation , and from a
// Find nimum somehow
m.min_loc = the_location; pointer to an object using the —> notation .
m.min_val = the_value;
return m; (+#mptr) .min_val is the same as
} .
void elsewhere () mptr->min_val
{
auto ml minimize (-10., 0., constfuncl);
minim_ret_type m2 = minimize(-10., 0.,
auto » mptr = &m2; o .
if (ml.min_val > mptr->min_val)
haha () ;
}
Member of the Helmholtz Association 8 — 12 May 2023 Slide 41 J Forschungszentrum

DESIGNATED INITIALISERS

1 amples/desig2.cc

2 struct v3 { double x, y, z; };

3 struct pars { int offset; v3 velocity; };

4 auto operator<<(std::ostream& os, const v3& v) —> std::ostream&

5 {

6 return os << v.x << ", " << v.y << ", " << vy.z << "M,

7 }

8 auto example_func (pars p)

9 {

10 std::cout << p.offset << " with velocity " << p.velocity << "\n";
11 }

12 auto main() -> int

13 {

14 example_func({.offset 5, .velocity = {.x=1., .y = 2., .z=3.}});
15 }

= Simple struct type objects can be initialized by designated initialisers for each field.

= Can be used to implement a kind of "keyword arguments” for functions. But remember, at least in C++-20,
the field order can not be shuffled.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 42 Forschungszentrum

C++ CLASSES

= User defined data types. Independently created

1 // examples/trivialclassoverload.cc classes are different, even if they have the same
2 class A {}; content
3 class B {}; ntent.
4 void func(int i, A a) = Function overloading: The two versions of the
50)) function func shown here are different entities
6 cout << "Called f input types (int, A)\n"; . ,
7 from the compiler’'s viewpoint. No ambiguity about
s void func(int i, B b) which function is called in lines 16 and 17 in
9 { main () .
10 cout << "Called f input types (int, B)\n";
11 }
12 auto main() -> int
13 {
14 A xa;
15 B xb;
16 func (0, xa) ;
17 func (0, xb) ;
18 }
Member of the Helmholtz Association 8 - 12 May 2023 Slide 43 J Forschungszentrum

=
O ©®mNO oA W N

L = B TR
[I R N)

C++4 CLASSES

Overloading operators

// examples/op_overload.cc
class A {};
class B {};
auto operator+ (A x, A y) —> A
{
std::cout << "operator+ (A, A)\n";
return x;
}
auto operator+(B x, B y) —> B
{
std::cout << "operator+ (B, B)\n";
return x;
}
auto operator+ (A x, By) —> A {...} // simi
auto main() —-> int {
A al, az;
B bl, b2;
al + a2;
al + bl;
bl + b2; // bl + a2; doesn't work. TI why !

Member of the Helmholtz Association 8 — 12 May 2023

For C++ class types, operators like +, —, *,
/8

As long as at least one of the arguments to an
operator is of a class type (not a built-in type like
double

recipe to interpret expressions like al + a2

&& ...are functions

int , ..), it is possible to provide a

al + a2 is interpreted as a function call

operator+ (al, az2)

Using suitably chosen operators to overload, we can
make expressions involving objects of a class type
more intuitive

JULICH

J Forschungszentrum

Slide 44

OVERLOADING OPERATORS

+ - * / % & - \
+= = *= /= %= &= "= |= =
++ - && I ! = ==
< > I= == <= >= <=> = =
0O I . -> SF*F o< <<= >>=

new delete newl]

delete(]

Table: List of operators you can overload. (But remember, can and should are not the same thing!)

= Think carefully about the impact an overloaded operator will have on the readability of your code. Whether
or not it the impact is beneficial depends on the use case

= Many important commonly used C++ features depend on suitably overloaded operators. E.g.,
std::cout << "Hello\n";

Member of the Helmholtz Association

8 — 12 May 2023

l) JULICH

Forschungszentrum

C++4 CLASSES

= Usually, encapsulates some data to represent an
struct Vector3 { idea

double x, vy, z;
Vi

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 46 Forschungszentrum

C++4 CLASSES

struct Vector3 {
double x, vy, z;
auto mag2 () > double
{
return x * x + y

}

N oA W

bi

* Yy + z

* Z;

Member of the Helmholtz Association

8 — 12 May 2023

= Usually, encapsulates some data to represent an
idea

= Specifies possible operations on the data

IJ JULICH

Slide 46 Forschungszentrum

=
H O ©®NO O R WN

o e e
SIS)

Member of the Helmholtz Association

C++ CLASSES

struct Vector3 {
double x, vy, z;
auto mag2 () > double
{
return x * X +y * y + z % z;
}
}i

void somefunc ()
{
int a, b, c;
Vector3 d, e, f;
/.
if (d.mag2() < e.mag2()) doX();

8 — 12 May 2023

= Usually, encapsulates some data to represent an

idea

= Specifies possible operations on the data

= Once defined, one can create and use variables of

the new type

Slide 46

/)

JULICH

Forschungszentrum

=
H O ©®NO O R WN

o e e
SIS)

C++ CLASSES

struct Vector3

double x, vy,

auto mag2 ()
{

return x =*

}
bi

void somefunc ()

{

int a, b, c;
Vector3 d, e,

//

if (d.mag2()

* Z;

1 the stack

doX () ;

= Usually, encapsulates some data to represent an

idea

= Specifies possible operations on the data

= Once defined, one can create and use variables of

the new type

In C++, objects of user defined types live on the stack by default, unless explicitly created on the heap.

Member of the Helmholtz Association

8 — 12 May 2023

Slide 46

/)

JULICH

Forschungszentrum

o
H O © XN oW N

= e
[)

[
'S

C++4 CLASSES

Functions, relevant for the idea, can be declared inside the struct

= Data and function members

struct complex {
double real, imaginary;
auto modulus () -> double
{

return sqgrt (real » real
imaginary =

i

complex a{l, 2}, b{3, 4};
complex* cptr = &a;
auto ¢ = a. modulus();// 1 =* 1

auto d = b. modulus();// 3 * 3

auto e = cptr—> modulus();// 1

+
imaginary) ;

Member of the Helmholtz Association

8 — 12 May 2023 Slide 47

/)

JULICH

Forschungszentrum

o
H O © XN oW N

= e
[)

[
'S

C++4 CLASSES

Functions, relevant for the idea, can be declared inside the struct

= Data and function members

struct complex . . .
o b . = A (non-static) member function is invoked on an
double real, imaginary;
auto modulus() -> double instance of our structure.
{
return sqgrt (real x real +
imaginary * imaginary);
}
Vi
complex af{l, 2}, b{3, 4};
complex* cptr = &a;
auto ¢ = a. modulus();// 1 » 1 + 2 % 2
auto d = b. modulus();// 3 * 3 + 4 * 4
auto e = cptr-> modulus();// 1 * 1 + 2 % 2
Member of the Helmholtz Association 8 - 12 May 2023 Slide 47 J Forschungszentrum

o
H O © XN oW N

= e
[)

[
'S

C++4 CLASSES

Functions, relevant for the idea, can be declared inside the struct

= Data and function members

struct complex {
double real, imaginary;
auto modulus () -> double
{

return sqgrt (real » real
imaginary =

i

complex a{l, 2}, b{3, 4};
complex* cptr = &a;

auto ¢ = a. modulus();// 1 * 1
auto d = b. modulus();// 3 * 3

auto e = cptr—> modulus();// 1

= A (non-static) member function is invoked on an
instance of our structure.

+ = a.real isthereal partof a. a.modulus ()
imaginary); is the modulus of a.

+ 4 % 4

* 1 + 2 x 2

Member of the Helmholtz Association

IJ JULICH

8 — 12 May 2023 Slide 47 Forschungszentrum

o
H O © XN oW N

= e
[)

[
'S

C++ CLASSES

Functions, relevant for the idea, can be declared inside the struct

Member of the Helmholtz Association 8 — 12 May 2023 Slide 47

= Data and function members

struct complex {
double real, imaginary;
auto modulus() -> double instance of our structure.
{

= A (non-static) member function is invoked on an

return sqrt(real » real + = a.real isthereal partof a. a.modulus ()
imaginary * imaginary); is the modulus of a.

}i = Inside a member function, member variables

complex af{l, 2}, bi3, 4}; correspond to the invoking instance.

complex* cptr = &a;
auto ¢ = a. modulus();// 1 » 1 + 2 % 2

auto d = b. modulus();// 3 = 3 + 4 * 4

auto e = cptr-> modulus();// 1 * 1 + 2 x 2

IJ JULICH

Forschungszentrum

o
H O © XN oW N

= e
[)

[
'S

C++ CLASSES

Functions, relevant for the idea, can be declared inside the struct

struct complex {
double real, imaginary;
auto modulus () -> double
{

return sqgrt (real » real +

imaginary
Vi

complex a{l, 2}, b{3, 4};
complex* cptr = &a;
auto ¢ = a. modulus();// 1 =

auto d = b. modulus();// 3 =

auto e = cptr—> modulus();// 1

imaginary);

Member of the Helmholtz Association

8 — 12 May 2023

Data and function members

A (non-static) member function is invoked on an
instance of our structure.

a.real isthe real part of a. a.modulus ()
is the modulus of a.

Inside a member function, member variables
correspond to the invoking instance.

Think of a call like a.modulus () as

complex: :modulus (a) The address of the
object on the left of the "." is the implicit first
argument to the member function.

IJ JULICH

Slide 47 Forschungszentrum

COMPILER [, -
EXPLORER :

Ci+ source #1 X ¥B6-64 clang 12.0.0 (Editor #1, Compiler #1) C++ X

More ¥ | Look after yourself, and, if you can, someone else too - ‘ Share ¥ ‘ Other ¥ ‘ Policies (&) ¥

A~ BSave/load +Addnew..> W Vim /°Cppinsights 2 Quickbench —Ci+ x86-64 clang 12.0.0 -03

tr E; 1
‘r‘ xamz ey{ A~ $output..~ YFilter..~ ELibraries + Addnew..~ o Addtool...~

mod() -> ; 1 Example::mod():
}; xmmword ptr [

Example: :mod() ->
X x4y ty;

unrelated(Example*):

unrelated(Example* ptr) -> 1 , xmmword ptr [

ptr->x * ptr-> x + ptr->y * ptr ->y;

C Boutput (1/0) x86-64 clang 12.0.0

JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 48 Forschungszentrum

OPERATORS AS MEMBER FUNCTIONS

= Since operators working with class types are normal

struct complex { functions, one can have operators as member
double real, imag; f ti
auto modulus () > double unctions
{ = The implicit argument (invoking instance) is on the
return sqgrt (real = real + left hand side for bi That' h h
imag « imag); ert hand side tor binary operators. at’s why the
} binary operator + is defined here as a member
auto operator+ (complex other) —-> complex function taking onIy one argument
{
return {real + other.real,
imag + other.imag};
}
Vi
Member of the Helmholtz Association 8 - 12 May 2023 Slide 49 J Forschungszentrum

e
= O © WO U W

=
w N

Member of the Helmholtz Association 8 — 12 May 2023 Slide 50

MEMBER FUNCTIONS AND CONST

= Explicit arguments to member functions can be
struct complex {
double m_real, m_imag;
auto modulus () > double; otherfuncﬁon
auto operator-(const complex& b) —> complex;

declared const similar to arguments for any

}i

void somewhere_else ()
{
complex zl, z2;
auto z3 = z1 - z2;
// We know z2 didn't change.
// But did zl ?

IJ JULICH

Forschungszentrum

e
= O © K NO O A W

=
w N

MEMBER FUNCTIONS AND CONST

struct complex {
double m_real, m_imag;
auto modulus () > double;
auto operator-(const complexé&

}i

void somewhere_else ()
{
complex zl, z2;
auto z3 = z1 - z2;
// We know z2 didn't change.
// But did zl ?

b) —> complex;

Member of the Helmholtz Association

8 — 12 May 2023

= Explicit arguments to member functions can be
declared const similar to arguments for any
other function

= But member functions have an implicit argument:

the this pointer, pointing at the calling instance.

= But as that is implicit, where do we put a const
qualifier, if we want to express that the calling
instance must not change ?

IJ JULICH

Slide 50 Forschungszentrum

e
= O © K NO O A W

o e
B oW N

.‘

-
©

MEMBER FUNCTIONS AND CONST

= Explicit arguments to member functions can be

truct 1 -
struct complex) declared const similar to arguments for any
double m_real, m_imag;
auto modulus () const -> double; other function
auto operator-(const complex& b) const . . .
> complex; = But member functions have an implicit argument:
}i the this pointer, pointing at the calling instance.
void somewhere_else () = But as that is implicit, where do we put a const
{ qualifier, if we want to express that the calling
complex zl, z2; . h 2
auto 23 - 21 - 22; instance must not change 7
/) W know 2 did .
Ve e = Answer: After the closing parentheses of the
// ‘ function signature.
}
Member of the Helmholtz Association 8 - 12 May 2023 Slide 50 J Forschungszentrum

© 0N oA W N

-
o

[B e R I

SOME EXAMPLE CLASSES

class Angle { 1 class IsingLattice {
double rd = 0; 2 public:
public: 3 using update_type =
enum unit { 4 std::pair<size_ t, size_t>;
radian, 5 IsingLattice();
degree 6 IsinglLattice (size_t Nx, double JJ);
}; 7 void setLatticeSize(size_t ns);
Angle operator- (Angle a) const ;
Angle operator+ (Angle a) const ; 1 class KMer {
Angle operator-=(Angle a) ; 2 public:
3 Nucleotide at (size_t 1i);
class Vector3 4 auto operator==(const KMer &) const -> bool;
{
public: 1 class SimulationManager {
enum crdtype {cartesian=0,polar=1}; 2 public:
inline auto x() const -> double {return dx;} 3 void loadSettings(std::string file);
inline void x(double gx) ({dx=gx;} 4 auto checkConfig() const -> bool;
auto dot (const Vector3 &p) const —> double; 5 void start ();

Vector3 cross(const Vector3 &p) const;

lJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 51 Forschungszentrum

OBJECT INITIALISATION: CONSTRUCTORS

= In C++, initialisation functions for a struct have the same name as the struct. They are called constructors.

1 struct complex {

2 complex (double re, double im)
3 {

4 real = re;

5 imaginary = im;

6 }

7 }i

= Alternative syntax to initialise variables in constructors

1 struct complex

2 {

3 complex (double re, double im) : real{re}, imaginary{im} {}
4 Vi

= A class can have as many constructors as it needs.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 52 Forschungszentrum

=
H O © WO O R W

L
No U W N

CONSTRUCTORS

struct complex
{
complex (double re, double im)
{
real = re;
imaginary = im;
}
complex ()
{
real = imaginary = 0;
}
double real, imaginary;
Vi
complex a(3.2, 9.3);
// C++11 and older
complex b{4.3, 1.9};// s

Member of the Helmholtz Association

8 — 12 May 2023

= Constructors may be (and normally are) overloaded.

= When a variable is declared, a constructor with the
appropriate number of arguments is implicitly called

= The default constructor is the one without any
arguments. That is the one invoked when no
arguments are given while creating the object.

Slide 53

/)

JULICH

Forschungszentrum

=
H O © WO O R W

o
w N

CONSTRUCTORS

struct complex
{
complex (double re, double im)
{
real = re;
imaginary = im;

}

complex () {}

double real{0.};

double imaginary{0.};
bi

complex a(4.3, 23.09), b;

Member of the Helmholtz Association 8 — 12 May 2023

= Member variables can be initialised to "default
values" at the point of declaration

Slide 54

/)

JULICH

Forschungszentrum

=
H O © WO O R W

o
w N

CONSTRUCTORS

struct complex
{
complex (double re, double im)
{
real = re;
imaginary = im;
}
complex () {}

double real{0.};
double imaginary{0.};
bi

complex a(4.3, 23.09), b;

Member of the Helmholtz Association 8 — 12 May 2023

= Member variables can be initialised to "default
values" at the point of declaration

= Member variables not touched by the constructor

stay at their default values

Slide 54

/)

JULICH

Forschungszentrum

© LN o A W N e

o e
ST

CONSTRUCTORS

struct complex
{
complex (double re, double im)
real{re}, imaginary{im}
{
}
complex () {}
double real{0.};
double imaginary{0.};
Vi

complex a(4.3, 23.09), b;

Member of the Helmholtz Association 8 — 12 May 2023

= Member variables can be initialised to "default
values" at the point of declaration

= Member variables not touched by the constructor

stay at their default values

= Preferred syntax for initialisation of members in a

constructor is shown here . This form of
initialisation outside the constructor function body

is only possible for constructors

Slide 54

/.

JULICH

Forschungszentrum

© W N oUW N e

e S S S
e S A =)

struct darray
{
double *data=nullptr;
size_t sz=0;
darray (size_t N) sz{N} {
data = new double([sz];
}
i
auto tempfunc (double phasediff) -> double
{
// find r r of elements
darray A{large_number};
// do some great calculations

return answer;

Member of the Helmholtz Association

8 — 12 May 2023

FREEING MEMORY FOR USER DEFINED TYPES

What happens to the memory ? The struct darray has a
pointer member, which points to dynamically allocated

memory

= When the life of the variable A ends, the member
variables (e.g. the pointer data) go out of scope.

= How does one free the dynamically allocated memory

attached to the member data ?

Slide 55

/)

JULICH

Forschungszentrum

FREEING MEMORY FOR USER DEFINED TYPES

struct darray
{
double xdata{nullptr};
size_t sz{0};
darray(size_t N) : sz{N} {
data = new double([sz];
}
~darray () {
if (data) delete [] data;
}
bi
auto tempfunc(double phasediff) -> double
{
// find n er of elements
darray A{large_number};
// do some great calculations
return answer;
}
Member of the Helmholtz Association 8 - 12 May 2023

For any class which explicitly allocates dynamic memory

= We need a function that cleans up all explicitly allocated
memory in use, so that we call it for every object whose
lifetime is about to end.

= In C++, such functions are called destructors, and have
the name ~ followed by the class name.

= Destructors take no arguments, and there is exactly one
for each class

You don't call it explicitly. It is always called
whenever the scope of an object ends! It is impossible to
forget.

IJ JULICH

Slide 56 Forschungszentrum

M)

© 0N ;U W

DESTRUCTORS

class A {
AQ) {}

~A() {}
bi
auto demo (A)
{
A vl ;
try {
A V2 ;
// calc

Yy // ~A() for v2
catch {
//// ...
}
Yy // ~A() for vl

Member of the Helmholtz Association 8 — 12 May 2023

= No matter how you exit a scope, if the scope of a
variable ends, its destructor is invoked automatically

= What if we acquire resources in constructors and
clean up in the destructor? It would be impossible
to forget to free resources when we are done!

Slide 57

/)

JULICH

Forschungszentrum

COPYING AND ASSIGNMENTS

= While copying and assigning, in most cases, we

1 struct complex want to assign the data members to the
2 { .
3 double x, y; corresponding members
4 Vi
5 Y
6 complex z0{2.0, 3.0}, zl;
7 z1l = z0; // assi nt operator
8 complex z2{z0}; //copy constructor
X X
z1 z0
Member of the Helmholtz Association 8 - 12 May 2023 Slide 58 J Forschungszentrum

COPYING AND ASSIGNMENTS

= While copying and assigning, in most cases, we

1 struct complex want to assign the data members to the
2 { .
3 double x, y; corresponding members
4 = This happens automatically, but using special
5 YV . .
6 complex z0{2.0, 3.0}, z1; functions for these copy operations
7 z1l = z0; // assi o
8 complex z2{z0}; //
X X
z1 z0
Member of the Helmholtz Association 8 - 12 May 2023 Slide 58 J Forschungszentrum

[B N A

COPYING AND ASSIGNMENTS

struct complex
{

double x, y;
Vi
Y
complex z0{2.
z1l = z0; // a
complex z2{z0};

z1

Member of the Helmholtz Association

z0

8 — 12 May 2023

= While copying and assigning, in most cases, we
want to assign the data members to the
corresponding members

= This happens automatically, but using special
functions for these copy operations

= You can redefine them for your class

IJ JULICH

Slide 58 Forschungszentrum

COPYING AND ASSIGNMENTS

= While copying and assigning, in most cases, we

1 struct complex want to assign the data members to the
2 { .
5 double x, y; corresponding members
4 i = This happens automatically, but using special
5 Y . .
6 complex z0{2.0, 3.0}, z1; functions for these copy operations
= . // ass nt oper .
7ozl =z20; // as ent ope = You can redefine them for your class
8 complex z2{z0}; //copy cor tor
= Why would you want to ?
X X

@ » JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 58 J Forschungszentrum

=
H O ©®NO O AW

12

COPYING AND ASSIGNMENTS

class darray {

double +*x;
;;rray::darray(unsigned n)
(x=new double[n];
x}roid foo ()
{

darray arl(5);

darray ar2{arl}; //copy constructor

ar2([3] = 2.1;

//oops! arl[3]
} //trouble

is also 2.1 now!

Copying pointers with dynamically allocated memory

= May not be what we want

Member of the Helmholtz Association 8 — 12 May 2023

ar2

Slide 59

ar1

IJ JULICH

Forschungszentrum

© LN OO W N e

[S~
AW N = O

COPYING AND ASSIGNMENTS

class darray {

double +*x;
g;rray::darray(unsigned n)
(x=new double[n];
x}roid foo ()
{

darray arl(5);

darray ar2{arl}; //copy constructor

ar2([3] = 2.1;
//oops! €
} //trouble

ar2 ar1

Copying pointers with dynamically allocated memory
= May not be what we want

= Leads to "double free" errors when the objects are destroyed

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 59 J Forschungszentrum

=
H O ©®NO O R W

[I I S S~ et
[N R N)

COPYING AND ASSIGNMENTS

len = other.len;

if (x) delete

[

xj

x = new double[len];

(unsigned i =
x[1] = other.x

0;
[i1;

i

7

< len; ++i) {

abcd

y

arrO

class darray { 1
double #*x{nullptr}; 2
unsigned int len{}; 3
public: 4 }
// Copy constructor 5 for
darray (const darray &); 6
//assignment operator 7 }
auto operator=(const darray&) -> darrayé&; 8 }
}i 9 return sthis;
darray::darray (const darray& other) 10 }
{
if (other.len!=0) {
len = other.len;
x = new double[len]; .
for (unsigned i = 0; i < len; ++i) { afb cd
x[1] = other.x[1i];
}
}
}
auto darray::operator=(const darrayé& other) —-> darrayé
{ y
if (this != &other) {
if (len != other.len) { arrl
Member of the Helmholtz Association 8 - 12 May 2023 Slide 60

lJ JULICH

Forschungszentrum

=
H O © WO O AW

I T N v
N R I R RS

Member of the Helmholtz Association

class darray {
darray (darray &&); //Move constructor
auto operator=(darray &&) > darrayé&;
//Move assignment operator
Vi
darray::darray (darray&& other)
{
len = other.len;
x = other.x;
other.x = nullptr;
}
auto darray::operator=(darray&s& other)
-> darrayé& {
len = other.len;
x = other.x;
other.x = nullptr;
return =xthis;
}
darray dl(3);
init_array(dl); //dl = (1.0,2.0,3.0}
darray d2{dl}; //Copy construction
// dl and d2 are {1.,2.,3.}
darray d3{std::move(dl)}; //Move
// d3 is {1.,2.,3.}, but dl is empty!
8 — 12 May 2023

nullptr

y

arrl

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR

abcd

y

arrO

= Construct or assign from an R-value reference
(darray &s)

IJ JULICH

Slide 61 Forschungszentrum

=
H O © WO O AW

I T N v
N R I R RS

class darray {
darray (darray &&); //Move constructor
auto operator=(darray &&) > darrayé&;
//Move assignment operator
Vi
darray::darray (darray&& other)
{
len = other.len;
x = other.x;
other.x = nullptr;
}
auto darray::operator=(darray&s& other)
-> darrayé& {
len = other.len;
x = other.x;
other.x = nullptr;
return =xthis;
}
darray dl(3);
init_array(dl); //dl = (1.0,2.0,3.0}
darray d2{dl}; //Copy construction
// dl and d2 are {1.,2.,3.}
darray d3{std::move(dl)}; //Move
// d3 is {1.,2.,3.}, but dl is empty!
Member of the Helmholtz Association 8 — 12 May 2023

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR

abcd
nullptr

y y

arrl arrO

= Construct or assign from an R-value reference
(darray &s)

= Steal resources from RHS

IJ JULICH

Slide 61 Forschungszentrum

=
H O © WO O AW

I T N v
N R I R RS

class darray {
darray (darray &&); //Move constructor
auto operator=(darray &&) > darrayé&;
//Move assignment operator
Vi
darray::darray (darray&& other)
{
len = other.len;
x = other.x;
other.x = nullptr;
}
auto darray::operator=(darray&s& other)
-> darrayé& {
len = other.len;
x = other.x;
other.x = nullptr;
return =xthis;
}
darray dl(3);
init_array(dl); //dl = (1.0,2.0,3.0}
darray d2{dl}; //Copy construction
// dl and d2 are {1.,2.,3.}
darray d3{std::move(dl)}; //Move
// d3 is {1.,2.,3.}, but dl is empty!
Member of the Helmholtz Association 8 — 12 May 2023

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR

abcd

nuuy\
y y

arrO

= Construct or assign from an R-value reference
(darray &s)

= Steal resources from RHS

IJ JULICH

Slide 61 Forschungszentrum

=
H O © WO O AW

[B~ R
SIS N)

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR

NONN NN e e
B W N RO © W

abcd
class darray { nullptr
darray (darray &&); //Move constructor
auto operator=(darray &&) > darrayé&;
//Move assignment operator
Vi
darray::darray (darray&& other) =
{ y y
len = other.len;
x = other.x; 0
other.x = nullptr; arrl alr
} .
auto darray: :operator— (darrayis other) = Construct or assign from an R-value reference
-> darrayé { (darray &s)
len = other.len;
% — other.x; = Steal resources from RHS
other.x = nullptr; = Put disposable content in RHS
return =xthis;
}
darray dl(3);
init_array(dl); //dl = .0,2.0,3.0}
darray d2{dl}; //Copy LOI‘athCCiOH
// dl and d2 are {1.,2.,3.}
darray d3{std::move(dl)}; //Move ‘ oo
// d3 is {1.,2.,3.}, but dl is empty! JUL'CH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 61 Forschungszentrum

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR

= You can enable move semantics for your class by writing a constructor or assignment operator using an
R-value reference

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 62 J Forschungszentrum

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR

= You can enable move semantics for your class by writing a constructor or assignment operator using an
R-value reference

= Usually you will not be using it explicitly. Results of the evaluation of expressions might create a nameless
object containing the resultant value (prvalue: pure r-value). A function may be returning a named entity
which is about to expire (xvalue: expiring value) References to such objects are called R-value references. A
move constructor or assignment operator is automatically invoked if constructor argument is an R-value

reference
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 62 J Forschungszentrum

MOVE CONSTRUCTOR/ASSIGNMENT OPERATOR

= You can enable move semantics for your class by writing a constructor or assignment operator using an
R-value reference

= Usually you will not be using it explicitly. Results of the evaluation of expressions might create a nameless
object containing the resultant value (prvalue: pure r-value). A function may be returning a named entity
which is about to expire (xvalue: expiring value) References to such objects are called R-value references. A
move constructor or assignment operator is automatically invoked if constructor argument is an R-value
reference

= You can invoke the move constructor by casting the function argument to an R-value reference, e.g.
darray d3{std::move (dl)}

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 62 Forschungszentrum

BIG FIVE (OR ZERO)

= Default constructor = How many of these do you have to write for each
= Copy constructor and every class you make ?
= Move constructor

= Assignment operator

= Move assignment operator

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 63 Forschungszentrum

BIG FIVE (OR ZERO)

= Default constructor = How many of these do you have to write for each

= Copy constructor and every class you make ?

= Answer: None! If you don't have bare pointers in
your class, and don't want anything fancy
happening, the compiler will auto-generate

= Move assignment operator reasonable defaults. “Rule of zero”

= Move constructor

= Assignment operator

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 63 Forschungszentrum

BIG FIVE

auto operator=(const darray&) -> darray& = default;
auto operator=(darray&&) -> darrays& = default;

1 class darray {

2 public:

3 darray (double x, double y) : re{x}, im{y} {}
4 darray () = default;

5 darray (const darray &) = default;

6 darray (darray &&) = default;

7

8

9

}i

= |f you have to write any constructor yourself, auto-generation of the default constructor is disabled

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 64 Forschungszentrum

BIG FIVE

auto operator=(const darray&) -> darray& = default;
auto operator=(darray&&) -> darrays& = default;

1 class darray {

2 public:

3 darray (double x, double y) : re{x}, im{y} {}
4 darray () = default;

5 darray (const darray &) = default;

6 darray (darray &&) = default;

7

8

9

}i

= |f you have to write any constructor yourself, auto-generation of the default constructor is disabled

= But you can request default versions of the any of these functions as shown

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 64 Forschungszentrum

BIG FIVE

class darray {
darray () = delete;
darray (const darray &) = delete;
darray (darray &&) = default;
auto operator=(const darray &) —> darray& = delete;
auto operator=(darray &&) -> darray& = default;

S I R N

}i

= You can also explicitly request that one or more of these are not auto-generated

= In the example shown here, it will not be possible to copy objects of the class, but they can be moved

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 65 Forschungszentrum

COPY AND SWAP

= We want to reuse the code in the copy constructor

and destructor to do memory management

Member of the Helmholtz Association

8 — 12 May 2023

© W N O W N

e e e
o vk W RO

auto operator=(const darray& oth) -> darrayé& {
if (this!=soth) {
if (arr && sz!=oth.sz) {
sz=oth.sz;
delete [] arr;
arr=new T[sz];
}
for (size_t i=0;i<sz;++1)
arr[i]=oth.arr[i];
}
return xthis;
}
auto operator=(darrayé&& oth) —-> darrayé& {
swap (oth) ;
return =xthis;

IJ JULICH

Slide 66 Forschungszentrum

COPY AND SWAP

= We want to reuse the code in the copy constructor
and destructor to do memory management

auto operator=(darray d) -> darrayé& {
swap (d) ;
return xthis;

}

// No fu

= Pass argument to the assignment operator by value
instead of reference

[SSNERO- R U

her move assignment operator!

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 66 Forschungszentrum

COPY AND SWAP

= We want to reuse the code in the copy constructor

and destructor to do memory management 1 auto operator=(darray d) -> darrays f{
2 swap (d) ;
= Pass argument to the assignment operator by value 3 return «this;
instead of reference 4
5 // No further move assignment operator!

= Use the class member function swap to swap the
data with the newly created copy = Neat trick that works in most cases

= Reduces the big five to big four

Forschungszentrum

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 66

PUBLIC AND PRIVATE MEMBERS

Separating interface and implementation

1 auto foo(complex a, int p, truck c) > int

2 {

3 complex zl, z2, z3 = a;

4

5 z1l = zl.argument () * z2.modulus() = z3.conjugate();
6 c.start (zl.imaginary * p);

7 }

Imagine that ...

= We have used our complex number structure in a lot of places

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 67 Forschungszentrum

PUBLIC AND PRIVATE MEMBERS

Separating interface and implementation

1 auto foo(complex a, int p, truck c) > int

2 {

3 complex zl, z2, z3 = a;

4

5 z1l = zl.argument () * z2.modulus() = z3.conjugate();
6 c.start (zl.imaginary * p);

7 }

Imagine that ...
= We have used our complex number structure in a lot of places

= Then one day, it becomes evident that it is more efficient to define the complex numbers in terms of the
modulus and argument, instead of the real and imaginary parts.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 67 Forschungszentrum

PUBLIC AND PRIVATE MEMBERS

Separating interface and implementation

1 auto foo(complex a, int p, truck c) > int

2 {

3 complex zl, z2, z3 = a;

4

5 z1l = zl.argument () * z2.modulus() = z3.conjugate();
6 c.start (zl.imaginary * p);

7 }

Imagine that ...
= We have used our complex number structure in a lot of places

= Then one day, it becomes evident that it is more efficient to define the complex numbers in terms of the
modulus and argument, instead of the real and imaginary parts.

= We have to change a lot of code.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 67 Forschungszentrum

PUBLIC AND PRIVATE MEMBERS

Separating interface and implementation

1 auto foo(complex a, int p, truck c) > int

2 {

3 complex zl, z2, z3 = a;

4

5 z1l = zl.argument () * z2.modulus() = z3.conjugate();
6 c.start (zl.imaginary * p);

7 }

Imagine that ...
= External code calling only member functions to access member data can survive

= Direct use of member variables while using a class is often messy, the implementer of the class then loses
the freedom to change internal organisation of the class for efficiency or other reasons

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 68 Forschungszentrum

C++ CLASSES

= Members declared under the keyword private

1 1 .
‘(: ass complex can not be accessed from outside
public: . = Public members (data or function) can be accessed
complex (double re, double im)
m_real (re), m_imag(im) {} = Provide a consistent and useful interface through
complex () = default; public functions
auto real () const -> double { return m_real; }
auto imag() const -> double { return m_imag; } = Keep data members hidden
private: = Make accessor functions const when possible
double m_real = 0., m_imag = 0.;

=
H O ©®NO O R W

-
S

}i

struct = members public by default
class => members private by default

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 69 Forschungszentrum

Exercise 2.4:
The program examples/complex_number_class.cc contains a version of the complex number class,

with all syntax elements we discussed in the class. It is heavily commented with explanations for every subsection.
Please read it to revise all the syntax relating to classes. Write a main program to use and test the class.

Forschungszentrum

9 JULICH

8 — 12 May 2023 Slide 70

Member of the Helmholtz Association

CONSTRUCTOR/DESTRUCTOR CALLS

Exercise 2.5:
The file examples/verbose_ctordtor.cc demonstrates the automatic calls to constructors and
destructors. The simple class Vbose has one string member. All its constructors and destructors print

messages to the screen when they are called. The main () function creates and uses some objects of this class.
Follow the messages printed on the screen and link them to the statements in the program. Does it make sense
(i) When the copy constructor is called ? (ii) When is the move constructor invoked ? (iii) When the objects are
destroyed ?

Suggested reading: http://www.informit.com/articles/printerfriendly/2216986

Exercise 2.6:

The program examples/onexcept.cc shows the behaviour of constructor/destructor calls when an exception is
called. Observe that exiting a function via an exception is also leaving the scope, and therefore invokes the
destructor.

lJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 71 Forschungszentrum

http://www.informit.com/articles/printerfriendly/2216986

MAKING STD::COUT RECOGNIZE CLASS

Teaching cout how to print your type: overload operator <<

1 auto operator<<(std::ostream& os, const complex& a)
2 {

3 os << a.real();

4 if (a.imag() < 0) os << a.imag() << " i ";
5 // If imag() 1is negative, it already has

6 else o0s << " 4" << a.imag() << " 1 ";

7 return os;

8 }

9 complex aj;

10 .

11 std::cout << "The roots are " << a << " and "

—> std::ostream&

- sign

<< a.conjugate() << '\n';

Member of the Helmholtz Association 8 — 12 May 2023

Slide 72

9

JULICH

Forschungszentrum

AND SIMILARLY FOR STD::CIN

auto operator>> (std::istream& is, complexs& a) —> std::istreams
{

double x, y;

is >> x >> y;

a.set_real (x);

a.set_imag(y);

return is;

[B I N R N I

It is up to you to decide IO operations for your classes

The stream parameters can not be const , because by reading from or writing to the stream, we change

Its state
@ » JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 73 J Forschungszentrum

PRACTISE: WRITE A DATA ROW CLASS

You now have all the ingredients to write a data row class. A tabular data file has 5 columns. The first two are
integers, the rest are doubles. Let's call the columns id, cat, x, y, and z, respectively. Make sure that there are 10
stream overloads for the reading and writing objects of that type. Demonstrate by reading a suitable datafile
"multicolumn.dat", and storing the rows in a vector of your DataRow type. You should then be able to sort
the vector according to any of the data columns.

@) JULICH
8 — 12 May 2023 Slide 74 J Forschungszentrum

Member of the Helmholtz Association

DATATYPES

Type Bits Value
Float 0 100 1001 0000 1111 1101 1011 3.1415927
Int 0100 0000 0100 1001 0000 1111 1101 1011 1078530011

oW N =

o N o u

= Same bits, different rules = different type

From arbitrary collection of members to a new “data type”

= Make sure every way to create an object results in

class Date { a valid state
int m_day, m_month, m_year; . i .
public: = Provide only those operations on the data which
static auto today() -> Date; keep the essential properties intact
auto operator+ (int n) const -> Date;
auto operator- (int n) const -> Date;
auto operator- (const Date &) const -> int;
bi
Member of the Helmholtz Association 8 - 12 May 2023 Slide 75 J Forschungszentrum

CLASS INVARIANTS

= A class is supposed to represent an idea: a complex number, a date, a dynamic array.

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 76 J Forschungszentrum

CLASS INVARIANTS

= A class is supposed to represent an idea: a complex number, a date, a dynamic array.
= |t will often contain data members of other types, with assumed constraints on those values:

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 76 Forschungszentrum

CLASS INVARIANTS

= A class is supposed to represent an idea: a complex number, a date, a dynamic array.
= |t will often contain data members of other types, with assumed constraints on those values:

= A dynamic array is supposed to have a pointer that is either nullptr or a valid block of allocated memory,
with the correct size also stored in the structure.

Member of the Helmholtz Association 8 — 12 May 2023 Slide 76 Forschungszentrum

l) JULICH

CLASS INVARIANTS

= A class is supposed to represent an idea: a complex number, a date, a dynamic array.
= |t will often contain data members of other types, with assumed constraints on those values:

= A dynamic array is supposed to have a pointer that is either nullptr or a valid block of allocated memory,
with the correct size also stored in the structure.
= A Date structure could have 3 integers for day, month and year, but they can not be, for example, 0,-1,1

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 76 J Forschungszentrum

CLASS INVARIANTS

= A class is supposed to represent an idea: a complex number, a date, a dynamic array.
= |t will often contain data members of other types, with assumed constraints on those values:

= A dynamic array is supposed to have a pointer that is either nullptr or a valid block of allocated memory,
with the correct size also stored in the structure.
= A Date structure could have 3 integers for day, month and year, but they can not be, for example, 0,-1,1
= Using private data members and well designed public interfaces, we can ensure that assumptions
behind an idea are always true.

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 76 J Forschungszentrum

=
H O ©®NO O R WN R

o
w N

Member of the Helmholtz Association

CLASS INVARIANTS

class darray {

private:
double x dataptr = nullptr;
size_t sz = 0;

public:

// initialize with N elements
darray (size_t N);
~darray () ;
// resize to N elements
void resize(size_t N);
// other members who don't change
// dataptr or sz
Vi

8 — 12 May 2023

= Construct ensuring class Invariants

| 9

JULICH

Forschungszentrum

=
H O ©®NO O R WN R

o
w N

Member of the Helmholtz Association

CLASS INVARIANTS

class darray {

private:
double * dataptr = nullptr;
size_t sz = 0;

public:

// initialize with N elements
darray (size_t N);
~darray () ;
// resize to N elements
void resize(size_t N);
// other members who don't change
// dataptr or sz

}i

8 — 12 May 2023

= Construct ensuring class Invariants

= Maintain Invariants in every member

| 9

JULICH

Forschungszentrum

=
H O ©®NO O R WN R

o
w N

CLASS INVARIANTS

= Construct ensuring class Invariants

;i;s;tﬁrray t = Maintain Invariants in every member
double » dataptr - nullptr; = — a structure which always has sensible values
size_t sz = 0;
public:
// initialize with N elements
darray (size_t N);
~darray () ;
// resize to N elements
void resize(size_t N);
// other members who don't change
// dataptr or sz
Vi
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 77 J Forschungszentrum

15

STATIC MEMBERS

class Triangle {
public:
static unsigned counter;
Triangle ()
{
++counter;
}
~Triangle () { counter; }

static auto instanceCount ()
{
return counter;
}
Vi
Triangle.cc
unsigned Triangle::counter = 0;

—> unsigned

Member of the Helmholtz Association

8 — 12 May 2023

= Static variables exist only once for all objects of the
class.

IJ JULICH

Slide 78 Forschungszentrum

STATIC MEMBERS

= Static variables exist only once for all objects of the

1 class Triangle ({ class.

2 public:

3 static unsigned counter; = Can be used to keep track of the number of objects
: frla“gle 0 of one type created in the whole application
6 ++counter;

7 }

8 ~Triangle () { counter; }

9 static auto instanceCount () -> unsigned

10 {

11 return counter;

12 }

13 }i

14 ... Triangle.cc

15 unsigned Triangle::counter = 0;

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 78 Forschungszentrum

STATIC MEMBERS

= Static variables exist only once for all objects of the

1 class Triangle { class.
2 public: i
3 static unsigned counter; = Can be used to keep track of the number of objects
4 frla“gle 0 of one type created in the whole application
5
6 ++counter; = Must be initialised in a source file somewhere, or
7 - else you get an "unresolved symbol" error
8 ~Triangle () { counter; }
9 static auto instanceCount () -> unsigned
10 {
11 return counter;
12 }
13 }i
14 ... Triangle.cc
15 unsigned Triangle::counter = 0;
Member of the Helmholtz Association 8 - 12 May 2023 Slide 78 J Forschungszentrum

STATIC MEMBERS

= Static variables exist only once for all objects of the

1 class Triangle { class.

2 public:

3 static unsigned counter; = Can be used to keep track of the number of objects
4 Triangle () of one type created in the whole application

5 {

6 ++counter; = Must be initialised in a source file somewhere, or
7 - else you get an "unresolved symbol" error

8 ~Triangle () { counter; }

9 static auto instanceCount () -> unsigned

10 {

11 return counter;

12 }

13 }i

14 ... Triangle.cc

15 unsigned Triangle::counter = 0;

= Static member functions do not have an implicit
this pointer argument. They can be invoked as
ClassName: : function () .

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 78 Forschungszentrum

© W N U W N

SOME FUN: OVERLOADING THE () OPERATOR

class swave 1 const double pi = acos(-1);
{ 2
private: 3 int N = 100;
double a = 1.0, omega = 1.0; 4 swave £{2.0, 0.4};
public: 5 swave g{2.3, 1.2};
swave () = default; 6
swave (double x, double w) 7 for (int 1 = 0; 1 < N; ++i) {
a{x}, omega{w} {} 8 double ar 2 « 1 % pi / N;
auto operator() (double t) const -> double 9 std::cout << i << " " << f(ar)
{ 10 << " " << g(ar)
return a + sin(omega = t); 11 << '"\n';
} 12 }

bi

Functionals

= Function like objects, i.e., classes which define a () operator

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 79 Forschungszentrum

© W N U W N

Member of the Helmholtz Association

class swave

{

private:

double a = 1.0, omega = 1.0;
public:

swave () = default;

swave (double x, double w)

a{x}, omegaf{w} {}
auto operator () (double t)
{
return a * sin(omega * t);

}

const -> double

bi

Functionals
= Function like objects, i.e., classes which define a

SOME FUN: OVERLOADING THE () OPERATOR

1 const double pi = acos(-1);

2

3 int N = 100;

4 swave £{2.0, 0.4};

5 swave g{2.3, 1.2};

6

7 for (int 1 = 0; 1 < N; ++1i) {
8 double ar 2« i % pi / N;
9 std::cout << i << " " << f(ar)
10 << " " << g(ar)
11 << '\n';

12 }

() operator

= |f they return a bool value, they are called predicates

8 — 12 May 2023

Slide 79

IJ JULICH

Forschungszentrum

FUNCTIONALS

Using function like objects
= They are like other variables. But they can be used as if they were functions!
= You can make vectors or lists of functionals, pass them as arguments ...

= Although you can run any recipe you want by overloading an operator, most operators are limited to one or
two arguments. () can take as many as you need. This also contributes to functionals looking like
functions when in use.

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 80 J Forschungszentrum

WRITE YOUR OWN FUNCTIONAL!

Write a functional class where the return value of f(x) is given by a user specified piece-wise continuous linear
function. You should write a class PieceWise. It should have a function to read a vector of x;,y; values from a
file. Sort them according to x values. Then implement an operator () function, so that when you write

1 PieceWise f;
2 f.read _file("somefile.dat");
3 auto y = f(x);

you get the correct piecewise linear function evaluated. Use the standard library function std::lerp to
perform the linear interpolation.

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 81 J Forschungszentrum

© 0N U W N

// examples/collect.cc
class collect {
std::vector<int> dat;
public:
auto operator| (int i) > collects
{
dat .push_back (i) ;
return +this;

}

auto operator~ () const noexcept -> decltype (dat)

{
return dat;
}
}i
auto main() -> int
{
auto C = collect{};
clr 1121 314;
for (auto el : (~C)) {
std::cout << el << "\n";
}
}

Member of the Helmholtz Association 8 — 12 May 2023

OVERLOADING OTHER OPERATORS FOR
EXPRESSIVE CODE

= Operator overloading is not limited to arithmetic

and shift operators.

= Sometimes, choosing the right operator to overload
can increase the expressiveness of the code

args | sv::drop(1l)

Slide 82

| sv::transform(str

IJ JULICH

Forschungszentrum

USER DEFINED LITERALS

Redefining the "' operator!
= You know how to create objects and set their values 1 auto main() -> int
2 {
= You even know how to construct with a given initial 3 double N=6.023e23;
value 4 Temperature T;
5 T.value (293.0);
6 auto U = Temperature{373.0};
7 auto T2 = 350_C;
8 auto T3 = 900_K;
9 complex ¢ = 1+2_1i;
10
11 }
Member of the Helmholtz Association 8 — 12 May 2023 Slide 83 J Forschungszentrum

USER DEFINED LITERALS

Redefining the "' operator!
= You know how to create objects and set their values

= You even know how to construct with a given initial
value

Member of the Helmholtz Association 8 — 12 May 2023

int main ()

{

double N=6.023e23;
Temperature T;
T.value(293.0);

auto U = Temperature (373.0);
auto T2 = 350_C;
auto T3 = 900_K;
complex c 1+2_1;
}
Slide 83 J

Forschungszentrum

USER DEFINED LITERALS

Redefining the operator!

int main ()

{

= You know how to create objects and set their values

1
2
= You even know how to construct with a given initial 3 double N=6.023e23;
value 4 Temperature T;
5 T.value(293.0);
6

= |t's far cooler to initialise with your own literals! auto T2 = 350_C;

= Redefine how literals are interpreted for your class 7 auto T3 = 900_K;
. . 8 complex ¢ = 1+2_1i;
= Desirable to enable clean and easily read o ’
initialisations 10}
Member of the Helmholtz Association 8 — 12 May 2023 Slide 83 J Forschungszentrum

USER DEFINED LITERALS

auto operator "" _K(long double d) -> Temperature
{
return { static_cast<double>(d), Temperature::Unit::K };
}
auto operator "" _C(long double d) —> Temperature
{

return { static_cast<double>(d), Temperature::Unit::C };

[o I B I N R N I

}

= Defining your own rules for how literals are interpreted for your class

= Desirable to enable clean and easily read initialisations

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 84 Forschungszentrum

USER DEFINED LITERALS

Exercise
= The demo program examples/literals.cc shows 1 ~auto main() -> int
.. . . “ " 2
how this is done using a simple “temperature” class | double N = 6.023¢23;
= Make something similar for a Distance class! 4 auto T2 = 350_C;
5 auto T3 = 900_K;
6 }
Member of the Helmholtz Association 8 — 12 May 2023 Slide 85 J Forschungszentrum

	Day 2
	Stack
	Runtime error handling
	Exceptions
	Assertions
	Dynamic memory

	C++ classes
	C++ classes
	Member functions
	Const member functions
	Constructors
	Destructors
	Copying and assigning
	Move semantics
	Big five (or zero)
	public and private members
	static members
	Function objects

