- N

PROGRAMMING IN C++
Jiilich Supercomputing Centre

8 — 12 May 2023 | Sandipan Mohanty | Forschungszentrum Jiilich, Germany

@) JULICH
Member of the Helmholtz Association J Forschungszentrum

Day 4

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 1 Forschungszentrum

How do | write a generic function to calculate f(a,x,y) = ax + y?

* (A)
1 auto fma(int a, int x, int y) { return a » x + y; }
2 auto fma (float a, float x, float y) { return a * x + y; }
3 auto fma (double a, double x, double y) { return a » x + y; }
4 // and so on for all the types I can think of

» (B) auto fma(auto a, auto x, auto y) { return a x* x + y; }

s (C) template <class T> auto fma(T a, T x, T y) { return a * x + y; }

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 2 Forschungszentrum

How do | ensure that that generic function is only considered for 3 floating point inputs of the same type?

= (A)

1 // Please, only use this with floa

2 template <class T>
3 auto fma(T a, T x, T y) { return a ~ x + y; }

ng point inputs!!!

1 template <class T> requires std::floating_point<T>
2 auto fma(T a, T x, T y) { return a ~ x + y; }

= (C) The two above are equivalent, because requires is a fancy annotation for the programmer, not
actual code
= (D) It can not be done

IJ JULICH

Forschungszentrum

Member of the Helmholtz Association 8 - 12 May 2023 Slide 3

STANDARD TEMPLATE LIBRARY

= Utilities

pair , tuple

optional , variant , any

bitset , bit, endian, bit_cast
type_traits , concepts,sahinmgml
comparisons

initializer_list

system, atexit

bind, placeholders, apply, invoke

= Date and Time

= Random numbers

= Smart pointers

= Filesystem

= Regular expressions

Member of the Helmholtz Association 8 - 12 May 2023

Containers, span
Algorithms, ranges

Iterators

Strings and string view

Fast character conversions
Multi-threading, atomic types
Parallel algorithms

Text formatting

Slide 4

/)

JULICH

Forschungszentrum

UNIQUE POINTER

auto u4 = std::make_unique<MyStruct[]>(4);

1 // examples/uniqueptr.cc

2 auto main () > int

3 {

4 auto ul = std::make_unique<MyStruct>(1);

5 //auto u2 = ul; //won't compile

6 auto u3 = std::move (ul);

7 std::cout << "Data value for u3 is u3->vl = " << u3->vl <<'\n';
8

9

= Smart pointer: The data pointed to is freed when the pointer expires
= Exclusive access to resource
= Can not be copied (deleted copy constructor and assignment operator)

= Data ownership can be transferred with std: :move

= Can create single instances as well as arrays through make_unique

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Forschungszentrum

Slide 5

SHARED POINTER

// ex bles/sharedptr.cc
auto main () > int

{

auto ul = std::make_shared<MyStruct>(1);
std::shared_ptr<MyStruct> u2 = ul; // Copy is ok
std::shared_ptr<MyStruct> u3 = std::move (ul);
std::cout << "Reference count of u3 is "

<< u3.use_count () << '\n';

© W N oW N

= Smart pointer: The data pointed to is freed when the pointer expires
= Can share resource with other shared/weak pointers
= Can be copy assigned/constructed

= Maintains a reference count ptr.use_count ()

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Forschungszentrum

Slide 6

WEAK POINTER

1 // examples/weakptr.cc

2 auto main() -> int

3 {

4 auto sl = std::make_shared<MyStruct>(1l);

5 std: :weak_ptr<MyStruct> wl(sl);

6 std::cout << "Ref count of sl = " << sl.use_count() << '\n';
7 std: :shared_ptr<MyStruct> s3(sl);

8 std::cout << "Ref count of sl = " << sl.use_count() << '\n';
9

= Does not own resource

= Can "kind of" share data with shared pointers, but does not change reference count

Exercise 1.1: uniqueptr.cc, sharedptr.cc

Read the 3 smart pointer example files, and try to understand the output. Observe when the constructors and
destructors for the data objects are being called.

9 JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 7 Forschungszentrum

MEMORY MANAGEMENT ERRORS

auto somefunc (inputpars)

{
auto* heapblock

// calculations
// calculations
// calc tions

return res;
// Oops! Forgot

-> outputtype

= new double[1024];

to delete

hea

block!

Member of the Helmholtz Association

8 - 12 May 2023

= Explicit handling of heap allocation/deallocation is
error prone. Danger: memory leak.

Slide 8

/)

JULICH

Forschungszentrum

MEMORY MANAGEMENT ERRORS

= Explicit handling of heap allocation/deallocation is

auto somefunc (inputpars) -> outputtype error prone.IDanger:lnernoryleak.
{

autox heapblock = new double[1024]; = Must match new with delete in code

// calculations
// calculations
// calc tions

delete [] heapblock;
return res;

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 8 Forschungszentrum

MEMORY MANAGEMENT ERRORS

auto somefunc (inputpars) -> outputtype

{

autox heapblock = new double[1024];

// calculations
// throw an exception!

// calculations

delete [] heapblock;
return res;

Member of the Helmholtz Association

8 - 12 May 2023

= Explicit handling of heap allocation/deallocation is
error prone. Danger: memory leak.

= Must match new with delete in code

= Even then, leak can happen: e.g., when the code
never reaches the delete

IJ JULICH

Slide 8 Forschungszentrum

[
H O © O N0 0w

-
N

MEMORY MANAGEMENT ERRORS

= Explicit handling of heap allocation/deallocation is

auto somefunc (inputpars) -> outputtype error prone. Danger: memory leak.
{
auto heapblock = = Must match new with delete in code
std: :make_unique<double[]>(1024) ;
' = Even then, leak can happen: e.g., when the code
// cal tions never reaches the delete
// throw an exception!)
// —> unique ptr cleans up = Use RAII for resource management instead.
return res;
// unique_ptr cleans up
}
Member of the Helmholtz Association 8 - 12 May 2023 Slide 8 J Forschungszentrum

[
H O © O N0 0w

-
N

MEMORY MANAGEMENT ERRORS

auto somefunc (inputpars) -> outputtype

{
auto heapblock =

std: :make_unique<double[]>(1024) ;

// cal tions
// throw an exception!
/) => ue_ptr cleans up
return res;
// unique_ptr cleans up

}

Member of the Helmholtz Association 8 - 12 May 2023

Explicit handling of heap allocation/deallocation is
error prone. Danger: memory leak.

Must match new with delete in code

Even then, leak can happen: e.g., when the code
never reaches the delete

Use RAII for resource management instead.
Delegate explicit life time management of heap

resources to smart pointers, e.g.,
std: :unique_ptr

IJ JULICH

Slide 8 Forschungszentrum

0N U W N

[S
w N = O ©

DANGERS OF DANGLING POINTERS AND

REFERENCES

{ to eliminate
int* ptr = nullptr;
if (something) {
auto i = std::stoi(argv[l]);
ptr = &i;
std::cout << "ptr is pointing at "
<< xptr << "\n";
}
// ptr still in scope, but i isn't!
std::cout << *ptr << "\n";
// dangling --> dereference -->
// undefined behaviour!
}
Member of the Helmholtz Association 8 - 12 May 2023 Slide 9

= Other forms of memory errors exist, and are harder

IJ JULICH

Forschungszentrum

© 0N U W N

DANGERS OF DANGLING POINTERS AND
REFERENCES

= Other forms of memory errors exist, and are harder

{ to eliminate
int+ ptr = nullptr; . . .
if (something) ({ = When storing addresses in pointers, we have to
a‘t‘t° i = std::stoi(argv([l]); ensure that the pointer is not used beyond the
ptr = &i;

std::cout << "ptr is pointing at " scope of the object it points at.

<< xptr << "\n";
}
// ptr still in scope, but 1 isn't!
<< sptr << "\n";
g —--> dereference -->
!

1ed behaviou

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 9 Forschungszentrum

e

= O © WO U E W N R

DANGERS OF DANGLING POINTERS AND
REFERENCES

= Other forms of memory errors exist, and are harder

auto calc(double inp) -> double& to eliminate

{
auto loc = inp + inp; = When storing addresses in pointers, we have to
// Returning ref t ensure that the pointer is not used beyond the
return loc; // Bad ic . . .

} scope of the object it points at.

‘{'°ld slsewhere () = If we return a reference from a function, we must
autoss res - calc(4); make sure, it is not a reference to a temporary
std::cout << res << "\n"; object.

}

Member of the Helmholtz Association 8 - 12 May 2023 Slide 9 J Forschungszentrum

© 0N U W N

DANGERS OF DANGLING POINTERS AND
REFERENCES

= Other forms of memory errors exist, and are harder

{ to eliminate
std::vector v{l, 2, 3}; i i i
autos vstart = v.front(); = When storing addresses in pointers, we have to
v.push_back(4); // may invalidate refs ensure that the pointer is not used beyond the
v.push_back (5) ; f th bi . .
v.push_back (6) ; scope of the object it points at.
v.push_back (7) ; = If we return a reference from a function, we must
std::cout << vstart << "\n"; L.
} make sure, it is not a reference to a temporary
object.
= |f we store references to heap object, there is
always the danger that operations on the owning
entity will invalidate the reference
Member of the Helmholtz Association 8 - 12 May 2023 Slide 9 J Forschungszentrum

DANGLING —> DEREFERENCE -> UNDEFINED
BEHAVIOUR

The folder examples/dangling pr contains examples of the 3 kinds of memory bugs mentioned in this section.
Study them, and check what, if any, errors or warnings the compiler generates for them. Try compiling with
-Wall Wextra . Run them and examine the results. Try compiling with -fsanitize-address .

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 10 Forschungszentrum

AVOID DANGLING POINTERS AND REFERENCES

= Ensure that pointers and references do not outlive the referenced objects
= Prefer short lived non-owning pointers
= Do not return references to temporary objects

= Avoid storing references to objects on the heap

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 11 Forschungszentrum

=
H O ©®NO O A WN

I o
© N O U W N

STL CONTAINERS

using namespace std;
int sz;
cin >> sz;
// vector<d B(sz,3.0); // <— C++17 —>
vector B(sz, 3.0); // C++17 —>
vector c{1, 2, 3, 4};
c.push_back (5); //
list 1{1, 2, 3, 4};
l.insert (find(l.begin(),l.end(),2), 14);
// insert in the middle
map<string, int> rank;
rank["Sirius"] = 1;
rank["Canopus"] = 2;
for (auto el : B) cout << el << "\n";
for (auto el : 1) cout << el << "\n";
for (auto el rank)
cout << el.first <<" -> "
<< el.second << "\n";
= Form: container<datatype> . Include file

containername

Member of the Helmholtz Association 8 — 12 May 2023

= Many easy-to-use sequence types available in the
STL

= vector : Dynamic array type

= list : Linked list
= map : Sorted associative container

= unordered_map : Hash table

= Not always necessary to explicitly state the element
type. If there is an initialiser, element type can be
inferred.

= Store a fixed kind of elements, determined at the
point of declaration.

= They can grow at run time (except
std::array)

= Whenever possible, prefer array or vector

IJ JULICH

Slide 12 Forschungszentrum

VECTOR: DYNAMIC ARRAY CLASS TEMPLATE

data data
data data data data data data

itr itr+3

= Element type is a template parameter

Iterator:

= |terators are classes which pretend to be pointers

= Consecutive elements in memory = They can be dereferenced with overloaded » and

» Can be accessed using an “iterator" —> operators to retrieve an element

= They can be moved forward or backward using
overloaded ++ and —- operators

= They can be compared for equality or inequality

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Forschungszentrum

Slide 13

A LINKED LIST

A linked list is a collection of connected nodes. Each
node has some data, and one or two pointers to other
nodes. They are the "next" and "previous" nodes in the
linked list. When "next" or "previous" does not exist,
the pointer is set to nullptr

Member of the Helmholtz Association 8 — 12 May 2023

. data @

nullptr

Slide 14

/)

JULICH

Forschungszentrum

A LINKED LIST

When a new element is added to the end of a list, its
"previous" pointer is set to the previous end of chain,
and it becomes the target of the "next" pointer of the
previous end.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 14 Forschungszentrum

A LINKED LIST

New elements can be added to the front or back of the
list with only a few pointers needing rearrangement.

@

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 14 Forschungszentrum

A LINKED LIST

Any element in the list can be reached, if one kept track
of the beginning or end of the list, and followed the
"next" and "previous" pointers.

Member of the Helmholtz Association 8 — 12 May 2023

. data

nullptr

Slide 14

Q@

@~ ®

/)

JULICH

Forschungszentrum

A LINKED LIST

A concept of an "iterator" can be devised, where the

++ and -— operators move to the next and previous
nodes.
Member of the Helmholtz Association 8 — 12 May 2023 Slide 14 J Forschungszentrum

A LINKED LIST

Inserting a new element in the middle of the list does
not require moving the existing nodes in memory.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 14 Forschungszentrum

A LINKED LIST

Just rearranging the next and previous pointers of the
elements between which the new element must go, is
enough. This gives efficient O(1) insertions and
deletions.

Member of the Helmholtz Association 8 — 12 May 2023

Slide 14

9

JULICH

Forschungszentrum

A LINKED LIST

Just rearranging the next and previous pointers of the
elements between which the new element must go, is
enough. This gives efficient O(1) insertions and
deletions.

Member of the Helmholtz Association 8 — 12 May 2023

Slide 14

9

JULICH

Forschungszentrum

GENERIC "CONTAINERS"

= Similarity of interface is by design
= With a standard container ¢ of type C, it's
always possible to use std::begin(c) to

data data data data data data >< access the start and std::end(c) to access the
4 4 end

-

)

= std::begin() and std::end() return

begin()
itr
itr+2

C::iterator or C::const_iterator

e

{

\

depending on whether c is const qualified.

= std::cbegin(c) and std::cend(c)

= Generic data holding constructions , . .
return C::const_iterator types irrespective

= Can be accessed through a suitably designed

s of whether c is a const
"iterator"

Similarly, std::size (c) always returns the size
of the container, i.e., the number of elements it
contains

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 15 J Forschungszentrum

= The data type does not affect the design —>
template

STL CONTAINERS

= std::vector<> : dynamic arrays

= std::1list<> : linked lists

= std::queue<> : queue

= std::deque<> : double ended queue

= std::map<A, B> : associative container

Structures to organise data

Include file names correspond to class names

All of them provide corresponding iterator classes
If iter is an iterator, »iter is data.

All of them provide member functions like
begin() , end() , size() , initializer list
constructors, deduction rules for class template
argument deduction

decltype (L) M;

B oW N e

list L{1, 2, 3, 4, 5}; // std::1i
auto pp = partition(begin(L), end(L),

M.splice(end(M), L, begin(L), pp);

[](auto 1) { return i %

lized to 1, 2 3

°

[=XNN

w N

Member of the Helmholtz Association

8 — 12 May 2023

l) JULICH

Slide 16 Forschungszentrum

USING STD::VECTOR

= vector<int> v (10); makes a dynamic array of 10 integers, vector v (10, 0.) creates a vector

of 10 doubles initialized to 0, vector v{lu, 2u, 3u} creates a vector of unsigned int with
values 1, 2 and 3.

= Efficient indexing operator [] , for unchecked element access

= v.at (i) provides range checked access. An exception is thrown if at (i) is called with an out-of-range
i

= std::vector<std::list<userinfo>> wvu(1l0) ; array of 10 linked lists.

= Supports push_back and insert operations, but sometimes has to relocate the all the elements because

of one push_back operation (next slide)

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 17 Forschungszentrum

STD::VECTOR

Reserved

Size Unavailable

memory

.

Member of the Helmholtz Association 8 — 12 May 2023

std: :vector may reserve a few extra memory
blocks to allow a few quick push_back
operations.

New items are simply placed in the previously

reserved but unused memory and the size member
adjusted.

Slide 18

IJ JULICH

Forschungszentrum

STD::VECTOR

Reserved

:) = std::vector may reserve a few extra memory
Size Unavailable

> memory blocks to allow a few quick push_back

IO - o

= New items are simply placed in the previously
reserved but unused memory and the size member

adjusted.
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 18 J Forschungszentrum

STD::VECTOR

Reserved

:) = std::vector may reserve a few extra memory
Size Unavailable

memory blocks to allow a few quick push_back

(T - oo

= New items are simply placed in the previously
reserved but unused memory and the size member

adjusted.
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 18 J Forschungszentrum

STD::VECTOR

Reserved

:) = std::vector may reserve a few extra memory
Size Unavailable

> memory blocks to allow a few quick push_back

(T - o

= New items are simply placed in the previously
reserved but unused memory and the size member

adjusted.
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 18 J Forschungszentrum

STD::VECTOR

Reserved

S ' = When this is no longer possible, a new larger
ize Unavailable
memory memory block is reserved, and all previous content

I | I I I I | I |..I] is moved or copied to it.

= A few more quick push_back operations are
again possible.

Copy or move

Unavailable
memory

[TT T T T T T T T

Size

New reserved

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 18 Forschungszentrum

STD::VECTOR

Reserved

S ' = When this is no longer possible, a new larger
ize Unavailable
memory memory block is reserved, and all previous content

| | | | | | | | |..I] is moved or copied to it.

= A few more quick push_back operations are
again possible.

Copy or move

Unavailable
memory

[TT T T T T T T T]

Size

New reserved

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 18 Forschungszentrum

STD::VECTOR

Reserved
Size Unavailable = When push_back is no longer possible, a new

memory larger memory block is reserved, and all previous

| | | | | | | | |-l] content is moved or copied to it.

= A few more quick push_back operations are
again possible.

Copy or move

Unavailable
memory

New reserved

Exercise 1

Construct a list and a vector of 3 elements of the Vbose class from your earlier exercise. Add new elements
one by one and pause to examine the output. This aspect was also demostrated in the notebook

CtorDtorDemo.ipynb .

lJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 19 Forschungszentrum

STD::ARRAY : ARRAYS WITH FIXED COMPILE TIME
CONSTANT SIZE

= std::array<T,N> is a fixed length array of size N holding elements of type T

= |t implements functions like begin () and end() and is therefore usable with STL algorithms like
transform, generate etc.
= The array size is a template parameter, and hence a compile time constant.

» std::array<std::string, 7> week{"Mon", "Tue", "Wed", "Thu", "Fri","Sat","Sun"};

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 20 Forschungszentrum

ARRAYS

n bytes = Sequence of N objects stored consecutively in
o memory, with no gaps
p(O] pl] p(2] p(3] pl4] pLS] = If p is a pointer to the first object of such a
#‘ * #‘ 4 #‘ #‘ sequence, p+1, p+2 etc, will point to the
p p+1 pt2 pt3 ptd pt5 subsequent elements. Elements of the sequence can

therefore be accessed as * (p+0) , = (p+1) ,

% (p+2) ... another notation for thatis p[0] ,

double A[10];
int sz;

std::cin >> sz; pll]
[sz]; // Not allowed!

ude <array>

lt-in or C-style array

+ stan

SR A S I
=
}

(size_t 1

10

11 P x= A[i];

12 }

13 std: :vector<double> B(sz,3.0);

Member of the Helmholtz Association 8 — 12 May 2023 Slide 21

/)

JULICH

Forschungszentrum

ARRAYS

n bytes
—

plo] " pl1] p[2] | p[8] pl4] | pls]

(R R N N

p p+1 p+2 p+3 p+4 p+5

double A[10]; //
int sz;
std::cin >> sz;

+ s E y
(size_t 1 = 0; 1 < A.size(); ++1) {
P = A[i];

© W N U W N

o
N = O

}
std: :vector<double> B(sz,3.0);

-
w

Member of the Helmholtz Association 8 — 12 May 2023

= Built-in or "C-style" arrays consist of blocks of

memory large enough to hold a fixed number of
elements. The array, thought of as a pointer,
points to the first element in the sequence. The
elements are stored consecutively, but the number
of elements is never stored anywhere

std: :array<type, size> is a compile-time
fixed length array obeying STL conventions. The
size is available through a function, although it
does not have to be stored with the array data!

std: :array<type, size> retains its
“personality” (does not decay into a pointer) when
used as input to function or when received as the
output from a function. This should be your
default choice when you need fixed length arrays.

l) JULICH

Slide 21 Forschungszentrum

ASSOCIATIVE CONTAINERS: STD::MAP

std::map<std::string, int> flsize;
flsize["S.dat"]1=123164;
flsize["D.dat"1=423222;
flsize["A.dat"]1=1024;

Bw N e

Think of it as a special kind of "vector" where you can have things other than integers as indices.
Template arguments specify the key and data types

Could be thought of as a container storing (key,value) pairs :
{("S.dat",123164), ("D.dat",423222), ("A.dat",1024)}

The less than comparison operation must be defined on the key type

Implemented as a tree, which keeps its elements sorted

Member of the Helmholtz Association 8 — 12 May 2023

l) JULICH

Slide 22 Forschungszentrum

=
O ©®NO O A WN

e
SIS N)

A WORD COUNTER PROGRAM

Fake exercise: Write a program that counts all different words in a text file and prints the statistics.

A quick histogram!

iigiﬁg: i;giigi;? = std::map<string, unsigned> is a
#include <iomanip> container which stores an integer, for each unique
#include <string> std::string key
#include <map>
auto main(int arge, char rargv[]) —> int = The iterator for std::map “pointsto” a
{
std::ifstream fin(argv[1l]); pair<key,value>
std: :map<std::string, unsigned> freq;
std::string s;
while (fin >> s) freql[s]++;
for (auto [key, val] : freq)
cout << std::setw(l2) << key
<< std::setw(4) << 't
<< std::setw(12) << val <<"\n";
}
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 23 J Forschungszentrum

UNORDERED_MAP AND
STD::UNORDERED_SET

3 g g = Like std::map<k,v> and std::set<v>
s g S but do not sort the elements

= Internally, these are hash tables, providing faster
element access than std::map and std::set

Key Key Key Key Key
/ = Additional template arguments to specify hash
functions
Y
Unordered map ‘ JULlCH
Slide 24 J Forschungszentrum

8 — 12 May 2023

Member of the Helmholtz Association

STL ALGORITHMS

1 .

2 std::vector<YourClass> vc (inp.size());

3 std::copy (inp.begin(), inp.end(), vc.begin());

4 //Copy contents of list to a vector

5 auto pos = std::find(vc.begin(), vc.end(), elm);
6 //Find an element in vc which equals elm

7 std::sort (vc.begin(),vc.end());

8 //Sort the vector vc. The operator "<"

9 //must be defined

10 ..

11 std::transform(inp.begin(), inp.end(), out.begin(), rotate);
12 //apply rotate() to each input element,

13 //and store results in output sequence

The similarity of the interface, e.g. begin() , end() etc.,, among STL containers allows generic algorithms

to be written as template functions, performing common tasks on collections

Member of the Helmholtz Association

8 - 12 May 2023 Slide 25 J

JULICH

Forschungszentrum

STL ALGORITHMS

= Typically, the algorithms in the namespace std accept one or more ranges as (start, stop) pairs, some
other inputs which may include callable objects

= New algorithms were introduced in C++20 in the namespace std: :ranges , where the input ranges are
given as single objects rather than iterator pairs. Think

std::ranges::for_each (v, [](auto&& elem){ std::cout << elem << "\n"; })
rather than

std::for_each(v.begin(), v.end(), [](auto&& elem){ std::cout << elem << "\n";

= The standard library provides a large number of template functions to work with containers
= Look them up in www.cplusplus.com or en.cppreference.com

= Use the suitable STL algorithms to generate successive permutations of the vector

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 26 J Forschungszentrum

STL ALGORITHMS: SORTING

= std::sort (iter_1, iter_2) sorts the

1 #include <iostream>
elements between iterators iter_1 and 2 tinclude <algorithm>
q 3 #include <vector>
iter_2 4 using namespace std;
5 auto main() -> int
6 {
7 vector v{2, -3, 7, 4, -1, 9, 0};
8 sort (v.begin(), v.end());
9 //Sort using "<" operator
10 for (auto el : v) cout << el << "\n";
11 sort (v.begin(), v.end(),
12 [1(int 1, int j) |
13 return i x 1 < j * Jj;
14)i
15 //Sort using custom comparison
16 for (auto el: v) cout << el << "\n";
17 }

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 27 Forschungszentrum

STL ALGORITHMS: SORTING

= std::sort (iter_1, iter_2) sorts the

elements between iterators iter_1 and

iter_2

= std::sort (iter_1, iter_2, 1t) sorts

the elements between iterators iter_1 and

iter_2 using a custom comparison method 1t ,
which could be any callable object

Member of the Helmholtz Association 8 — 12 May 2023

O © XN U R W N

e e
N o oA W N

nclude <iostream>
~lude <algorithm>

ude <vector>
using namespace std;

auto main() —> int
{
vector v{2, -3, 7, 4, -1, 9, 0};
sort (v.begin(), v.end());
//Sort using "<" operator
for (auto el : v) cout << el << "\n";
sort (v.begin(), v.end(),
[1(int i, int j) {

return i x 1 < j * Jj;
1)
//Sort
for (auto el: v)

using custom comparison
cout << el << "\n";

JULICH

J Forschungszentrum

Slide 27

STL ALGORITHMS: SORTING

= std::sort (iter_1, iter_2) sorts the
elements between iterators iter_1 and

iter_2

= std::sort (iter_1, iter_2, 1t) sorts

the elements between iterators iter_1 and

iter_2 using a custom comparison method 1t ,

which could be any callable object
= std::ranges::sort (range) and
std: :ranges: :sort (range, 1t) are

corresponding versions using a range as an
argument instead of a pair of iterators

Member of the Helmholtz Association 8 — 12 May 2023

O © XN U R W N

e e
(SRS IR O

using namespace std;

auto main() -> int
{
vector v{2, -3, 7, 4, -1, 9, 0};
sort (v.begin(), v.end());
//Sort using "<" operator
for (auto el : v) cout << el << "\n";
ranges::sort (v, [](int i, int j) {

return i » i < J * Jj;
1)

//Sort using
for (auto el: v)

custom comparison

cout << el << "\n";

JULICH

J Forschungszentrum

Slide 27

STD:: TRANSFORM

s std::transform(begin_1 , end_1, begin_res, unary_function);

» std::transform(begin_1 , end_1, begin_2, begin_res, binary_function);
= Apply callable object to the sequence and write result starting at a given iterator location
= The container holding result must be previously resized so that it has the right number of elements

= The “result” container can be (one of the) input container(s)

1 std::vector v{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9};

2 std::1list Ll(v.size(), 0), L2(v.size(), 0);

3 std::transform(v.begin(), v.end(), Ll.begin(), sin);

4 std::transform(v.begin(), v.end(), Ll.begin(), L2.begin(), std::max);

Result: L1 contains sin(x) foreach x in v, and L2 contains the greater (x,sin(x))

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 28 Forschungszentrum

STD::RANGES::TRANSFORM

s std::ranges::transform(rangel, begin_res, unary_function);

s std::transform(rangel, range2, begin_res, binary_function);
= Apply callable object to the sequence and write result starting at a given iterator location
= The container holding result must be previously resized so that it has the right number of elements

= The “result” container can be (one of the) input container(s)

std::vector v{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9};
std::1list Ll(v.size(), 0), L2(v.size(), 0);
std::ranges::transform(v, Ll.begin(), sin);
std::ranges::transform(v, L1, L2.begin(), std::max);

B oW N =

Result: L1 contains sin(x) foreach x in v, and L2 contains the greater (x,sin(x))

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 29 J Forschungszentrum

ALL_OF, ANY_OF, NONE_OF

auto valid(std::string name) -> bool
{
return all_of (name.begin(),name.end(),
[1 (char c) { return (isalpha(c)) | isspace(c); });

[N R

= std::all_of (begin_ , end_ , condition) checks if all elements in a given range satisfy

condition
= condition is a callable object

= std::any_of (begin_ , end_ , condition) checks if any single element in a given range

satisfies condition

= std::none_of (begin_ , end_ , condition) returns true if not a single element in a given

range satisfies condition

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 30 J Forschungszentrum

ALL_OF, ANY_OF, NONE_OF

auto valid(std::string name) -> bool
{
return all_of (name,
[1 (char c) { return (isalpha(c)) | isspace(c); });

[N R

= std::ranges::all_of (range , condition) checks if all elements in a given range satisfy

condition
= condition is a callable object

= std::ranges::any_of (range , condition) checks if any single element in a given range

satisfies condition

= std::ranges::none_of (range , condition) returns true if not a single element in a given

range satisfies condition

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 31 J Forschungszentrum

ALGORITHMS

1 vector v{ 1, 2, 3, 4, 5, 6, 7, 8, 9}, w{ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
2 vector<int> x, vy, z, m;

3 if (is_sorted(begin(v), end(v)))

4 cout << "The sequence is sorted in the increasing order.\n";

5 reverse (v.begin(), v.end());

6 rotate (v.begin(), v.begin() + 3, v.end());

7 sort (begin(v), end(v));

8 merge (v.begin(), v.end(), w.begin(), w.end(), back_inserter(m));

9 set_union(v.begin(), v.end(), w.begin(), w.end(), back_inserter(x));

10 set_intersection(w.begin(), w.end(), v.begin(), v.end(), back_inserter(y));

11 set_symmetric_difference(v.begin(), v.end(), w.begin(), w.end(), back_inserter(z));
12 if (is_permutation(z.begin(), z.end(), v.begin(), v.end())) // do something

Exercise 1.5:

A whole lot of operations available for sequence types. The file segops.cc contains the operations shown

here. Alternatively, (or, in addition,) use the jupyter notebook intro_algorithms.ipynb to examine the
effects of the algorithms on sequences. Explore!

9 JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 32 Forschungszentrum

ALGORITHMS

= for_each(start, end, operation) : As it sounds

= find(start, end, what) : returns the location of the looked for value, "end" if not found
= find_if(start, end, condition) , find the first element satisfying a condition

= copy (startl, endl, start2) : As it sounds

= copy_if(startl, endl, start2, criterion) : criterion is a unary function taking a
value of the type found in the sequence and returning true or false
= transform(startl, endl, start2, operation) : applies operation on every element in

the input sequence and writes the results starting at start?2

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 33 Forschungszentrum

CONSTRAINED ALGORITHMS (RANGES)

= for_each(range, operation) : As it sounds

= find(range, what) : returns the location of the looked for value, "end" if not found
= find_if (range, condition) , find the first element satisfying a condition

= copy (rangel, iterator2) : As it sounds

= copy_if(rangel, iterator2, criterion) : criterion is a unary function taking a value of
the type found in the sequence and returning true or false
= transform(rangel, iterator2, operation) : applies operation on every element in the

input sequence and writes the results starting at iterator2

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 34 Forschungszentrum

ALGORITHMS

merge (v, w, back_inserter(m));

set_union (v, w, back_inserter(x));

10 set_intersection(w, v, back_inserter(y));

11 set_symmetric_difference (v, w, back_inserter(z));
12 if (is_permutation(zv)) // do something

1 vector v{ 1, 2, 3, 4, 5, ¢, 7, 8, 9}, w{ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
2 vector<int> x, vy, z, m;

3 if (is_sorted(v))

4 cout << "The sequence is sorted in the increasing order.\n";

5 reverse (v);

6 rotate (v, v.begin() + 3);

7 sort (v);

8

9

Exercise 1.6:

The file seqgops_range.cc contains the operations shown here. Explore by making modifications. Try GCC
10.0+ compiler for this.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 35 Forschungszentrum

CHRONO: THE TIME LIBRARY

= namespace std::chrono defines many time related functions and classes (include file: chrono)
= system_clock : System clock

= steady_clock : Steady monotonic clock

= high_resolution_clock : To the precision of your computer’s clock

= steady_clock::now() : nanoseconds since 1.1.1970

= duration<double> : Abstraction for a time duration. Uses std::ratio<> internally

Exercise 1.7: chrono_demo.cc

9 JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 36 Forschungszentrum

THE TIME LIBRARY

1 // examples/chrono_demo.cc

2 #include <iostream>

3 #include <chrono>

4 #include <vector>

5 #include <algorithm>

6 #include <ranges>

7 bool is_prime (unsigned n);

8 auto main() -> int

9 {

10 using namespace std::chrono;

11 namespace sr = std::ranges;

12 namespace sv = std::views;

13 std: :vector<unsigned> primes;

14 auto t = steady_clock::now();

15 sr::copy(sv::iota(0UL, 10000UL) | sv::filter(is_prime),
16 std::cout << "Primes till 10000 are ... " << '"\n';

17 for (unsigned i primes) std::cout << i << '\n';

18 auto d = steady_clock::now() - t;

19 std: :cout<<"Prime search took " << duration<double> (d).count ()
20 }

back_inserter (primes));

<< " seconds\n";

Member of the Helmholtz Association 8 — 12 May 2023 Slide 37

JULICH

Forschungszentrum

/)

CALENDAR AND DATES WITH STD: : CHRONO

1 auto current_year() -> std::chrono::year

2 {

3 using namespace std::chrono;

4 yvear_month_day date { floor<days>(system_clock::now()) };
5 return date.year();

6 }

7 auto main(int argc, charx argv[]) -> int

8 {

9 using namespace std::chrono;

10 using namespace std::chrono_literals;

11 auto YO { current_year() };

12 auto Y1 = Y0 + years{100};

13 if (argc > 1) Y1 = year{std::stoi(argv([1l])};
14 if (argc > 2) Y0 = year{std::stoi(argv[2])};
15 if (Y1 < Y0) std::swap(Yl, YO);

16

17 for (auto y = Y0; y < Y1; ++y) {

18 auto d = y / February / Sunday[5];

19 if (d.ok()

20 std::cout << static_cast<int>(y) << "\n";
21 }

22 }

ULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 38 Forschungszentrum

CALENDAR...

Example 0.2:

The programs examples/feb.cc and examples/advent.cc demonstrate the use of the calendar facilities of the
C++ standard library. Familiarize yourself with them.

9 JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 39 Forschungszentrum

RANDOM NUMBER GENERATION

= Convenient, flexible, powerful random number
library providing high quality (pseudo-)random
numbers in standard C++ without any external
libraries.

= Include random . Namespace std::random

Member of the Helmholtz Association 8 — 12 May 2023

int getRandomNumber()

return Y; / chosen by fair dice roll.
// quaranteed to be random.

Figure: Source XKCD: http://xkcd.com

IJ JULICH

Slide 40 Forschungszentrum

http://xkcd.com

W N =

N o ow

RANDOM NUMBER GENERATION

= Share a common structure

= Uniform random generator engine with (hopefully)

well tested properties

= Distribution generator which adapts its input to a

required distribution

auto gen = [
engine = std::mt19937_64{},
dist=std::poisson_distribution<>{8.5}
] () mutable {
return dist (engine);

r = gen();

Member of the Helmholtz Association 8 — 12 May 2023

AW N =

o o

Random .
distribution Randomness engine

glue with lambda W_J

std::mt19937_64 engine;
std: :poisson_distribution<> dist{8.5};
auto gen = [&dist, &engine] {

return dist (engine);

// 1f engine or dist are required elsewhere

JULICH

Slide 41 Forschungszentrum

RANDOM NUMBER GENERATORS

1

2 #include <iostream>

3 #include <map>

4 auto main() —-> int

5 {

6 auto gen = [dist=std::poisson_distribution<> {8.5}, engine=std::mt19937_64{}]
7 () mutable { return dist (engine); };

8 std::map<int,unsigned> H;

9 for (auto i = 0UL; i < 5000000UL; ++i) H[gen()]++;

10 for (auto [i, fi] : H) std::cout << i << " " << fi << '"\n';
11 }

= std::mt19937_64 is a 64 bit implementation of Mersenne Twister 19937

= The template std::poisson_distribution is a functional implementing the Poission distribution

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 42 Forschungszentrum

RANDOM NUMBER GENERATORS

1 std::normal_distribution<> G{3.5, 1.2}; // Gaussi = 3.5, sig = 1.2
2 std::uniform_real_distribution<> U{3.141, 6.282};

3 std::binomial_distribution<> B{13};

4 std::discrete_distribution<> dist{0.3, 0.2, 0.2, 0.1, 0.1, 0.1};

5 // The following is an engine like std tl 7 t dete

6 std::random_device seed; // int 1 = seed() inte

= Lots of useful distributions available in the standard

= With one or two lines of code, it is possible to create a high quality generator with good properties and the
desired distribution

= std::random_device is a non-deterministic random number generator.

= It is good for setting seeds for the used random number engine
» It is slower than the pseudo-random number generators

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 43 Forschungszentrum

RANDOM NUMBER GENERATOR: EXERCISES

Exercise 1.8:

Make a program to generate normally distributed random numbers with user specified mean and variance, and
make a histogram to demonstrate that the correct distribution is produced. Start from
exercises/normal_distribution.cc .

Exercise 1.9:

Make a program to implement a "biased die", i.e., with user specified non-uniform probability for different faces.
You will need std::discrete_distribution<> Start from exercises/weighted_die.cc.

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 44 Forschungszentrum

EXERCISES

Exercise 1.10:
For a real valued random variable X with normal distribution of a given mean p and standard deviation o,
calculate the following quantity:

(X = p)*)
(X = mw)))?

Fill in the random number generation parts of the program exercises/K.cc . Run the program a few times
varying the mean and standard deviation. What do you observe about the quantity in the equation above ?

KIX]

lJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 45 Forschungszentrum

Exercise 1.11: Probabilities with playing cards

The program examples/cards_problem.cc demonstrates many topics discussed during this course. It has

a constexpr funtion to create a fixed length array to store results, several standard library containers and
algorithms as well as the use of the random number machinery for a Monte Carlo simulation. It has extensive
comments explaining the use of various features. Read the code and identify the different techniques used, and
run it to solve a probability question regarding playing cards.

@) JULICH
8 — 12 May 2023 Slide 46 J Forschungszentrum

Member of the Helmholtz Association

STD::OPTIONAL

Member of the Helmholtz Association

std::optional<T> manages an optional value
of type T , which may or may not be present

Another way to handle errors during computations
to determine a value of some kind

If the optional object has a value, the value

resides in the object, i.e., the optional type
does not do any dynamic memory allocation of its
own

The operators = and —> are given for
convenience, so that we can pretend we are dealing
with a pointer type when using an optional

If converted to a bool , we get true if there is a
value, false otherwise

Default initialisation as well as initialisation with
nullopt_t create optional objects without
value.

8 — 12 May 2023

© LN OOk W N

10
11
12
13

Exercise 1.12:

auto solve_quadratic(double a, double b,
double c)
{
using namespace std;
optional<pair<double, double>> solution;
auto D = b * b - 4 x a x c;
if (D >= 0) |
auto g = -0.5 * (b +
copysign(sqrt (D), b));
solution = make_pair(q / a, ¢ / q);

}

return solution;

examples/opt_gsolve.cc is a small program

demonstrating the use of std::optional .

JULICH

Slide 47 Forschungszentrum

/)

STD::VARIANT : A TYPE SAFE UNION

= A union is a special kind of class where all the = std::variant is a type safe union .

members occupy the same bytes in memory = Unlike the union , we don't get to name the

different members. The different "members" can

1 union sameplace { size_t ulong; double real; }; . .

2 static_assert (sizeof (sameplace) —— be accessed through functions like

3 sizeof (double)); std: :get<int> (V) , i.e., we can use the types
4 sameplace s; to select the stored type. We also don't need t

s s.ulong = OUL; 0 select the stored type. We also don't need to say
6 s.real = 1.0; what we are assigning to, since that can be deduced
7 cout << s.ulong << "\n"; from the type of the object on the right of the =

= A variant knows what type is currently stored,
and calls the destructors etc. when we assign
something that would change the stored type

= We can access the elements of a union the same
way as a struct (above).

= Since both members occupy the same bytes,

changes to one can affect the other 1 variant<double, int, long, string> V;
2 V = "let's assign a string";
= If the union contains, e.g., std::string,such 3 v = 3.141;
4 // ca ring r and store a double

overriding of bytes would be dangerous.

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 48 J Forschungszentrum

STD::VARIANT : A TYPE SAFE UNION

= A variant type stores one value of any one of a few
pre-specified alternatives. To create a variant
with an integer, a long, a string and a boolean, we
would write

1 std::variant<int, long, string, bool> V;

A variant can be assigned a value of any one of its
contained types. The variant then remembers the
value and the type of the value.

1 vV = "0118 999 881 99 9119 725 3"s;
assert (std::holds_alternative<string>(V));

N

The member function index () tells us the zero
based index of the currently held type in the list of
alternatives for the variant

1 assert (V.index () == 2);

Member of the Helmholtz Association 8 — 12 May 2023

= Since the type of the contained object can be
changed by an assignment at run time, the variant
can not simply have a function get () to return
the contained value. We have to specify the type of
value we want to read as a template argument:

1 cout << get<string> (V);

Unlike the union, we can’t store one type and read
another

1V = "0118 999 881 99 9119 725 3"s;

auto num = get<int>(V); //throws exception!

N

There is also a non throwing version of the
accessor:

if
'/

Ttram

STD::VARIANT : A TYPE SAFE UNION

if (auto iptr =
// wiptr is the
} else if (auto
// *lptr is the
} else if (auto
// xsptr is the
10 }

11 }

© 0N OOk W N

get_if<int> (sel)) {

int value in the variant el
lptr = get_if<long> (&el)) {
long value in el

sptr = get_if<string>(&el))
string value in el

= Variants can be made to model members of
heterogeneous collections, much like pointers to

base class in a class hierarchy. The difference is, we
can even use built in type like int , double etc.
in a variant based heterogeneous container, because

it does not need a class hierarchy!

Member of the Helmholtz Association

8 — 12 May 2023

using member_t = variant<int, long, string, bool>;
vector<member_t> pop{true, 91, "Monday"s};
for (auto & el : pop) {

{

Exercise 1.13:

The two example programs
examples/variant_0.cc and

= Easiest way to model polymorphic behaviour is
using a chain of if ... else if ... else

statements using the get_1if<T> (s&v) function
for the different types T in the variant .
get_if<T>(&v) returns avalid T « if the
variant v currently holds type T . Otherwise it
returns nullptr .

examples/variant_1.cc demonstrate basic
variant usage, such as assignment of values of different
types, performing actions based on the content type.

Slide 50 Forschungszentrum

IJ JULICH

STD::VARIANT : USING STD::VISIT TO SELECT
ACTIONS

= Another way to perform different actions based on the currently held type is to use std::visit .

= If we have variant<int, double> V, std::visit(F, V) calls F(int) if V currently holds
an int and F (double) if V currently holds a double . std::visit unpacks the variant before
calling F with the stored value. The callable object F must have an overload capable fo handling the
alternatives in the variant

The overloaded function to be used with std::visit can be created in many ways. Three examples in
the following boxes:

struct my_action ({
auto operator () (int i) S/}
auto operator () (double x) { // }
}i
/) ..
std::visit (my_action{}, V);

o CA W N

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 51 Forschungszentrum

STD::VARIANT : USING STD::VISIT TO SELECT
ACTIONS

= Another way to perform different actions based on the currently held type is to use std::visit .
= If we have variant<int, double> V, std::visit(F, V) calls F(int) if V currently holds
an int and F (double) if V currently holds a double . std::visit unpacks the variant before

calling F with the stored value. The callable object F must have an overload capable fo handling the
alternatives in the variant

The overloaded function to be used with std::visit can be created in many ways. Three examples in
the following boxes:

std::visit ([] (auto upkd) {
if constexpr (is_same_v<int, decltype (upkd)>) {
// handle int input
} else if constexpr (is_same_v<double, decltype (upkd)>) {
// handle double input

e B N

ULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 51 Forschungszentrum

STD::VARIANT : USING STD::VISIT TO SELECT
ACTIONS

= Another way to perform different actions based on the currently held type is to use std::visit .
= If we have variant<int, double> V, std::visit(F, V) calls F(int) if V currently holds
an int and F (double) if V currently holds a double . std::visit unpacks the variant before

calling F with the stored value. The callable object F must have an overload capable fo handling the

alternatives in the variant
The overloaded function to be used with std::visit can be created in many ways. Three examples in

the following boxes:

template <class ... Ts> struct stapler : Ts ... { using Ts::operator()... ; };

template <class ... Ts> stapler(Ts ...) —-> stapler<Ts...>;

std::visit (stapler({
[1(int i) { /# h:
[]1 (double d) { /=*
bV

N o oA W N

)i

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 51 Forschungszentrum

USING VARIANTS WITH STD::VISITOR

Exercise 1.14:

Example programs examples/variant_2.cc, examples/variant_3.cc and
examples/variant_4.cc demonstrate the use of std::visit to dispatch different actions depending
on the type of the currently held value in a variant. They parallel the approaches in the 3 boxes in the previous
slide.

9 JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 52 Forschungszentrum

STD::ANY : A TYPESAFE CONTAINER FOR SINGLE

VALUES

= A variable of type std::any can
store 1 value of any type

Simply by assigning a new value, the
contained object is replaced with
another of the new type. The variable
of type std::any is like a box,
whose type remains unchanged as the
content is swapped. The contained
object is indirectly accessed, leading to
some overhead.

= e
= O © WO U W N

o e
B oW N

Exercise 1.15:

=
o«

examples/any_demo.cc demonstrates

basic usage of std::any .

Member of the Helmholtz Association 8 — 12 May 2023

any var = 1;
cout << "Reading int after storing int ... "

<< any_cast<int> (var) << "\n"; // That works
try {
cout << "Reading float after storing an int "
<< any_cast<float> (var) << "\n";
// This doesn't
} catch (const exception & err) {
cout << "Float cast after storing int failed. "
<< "Error : " << err.what() << "\n";
}
var = "Europa"s;
map<string, any> config;

config["max_frequency_ghz"] = 3.3;
config["memory_MB"] = 16384;

config["fingerprint_reader"] = true;

JULICH

J Forschungszentrum

Slide 53

SEQUENCES OF POLYMORPHIC OBJECTS

(Circle) |(Triangle)| (Circle) | (Circle)

Exercise 1.16:

Sequences of objects with polymorphic behaviour is a frequently occuring programming problem. We have seen
one example before, with a vector of unique_ptr<Shape> , filled with newly created instances of types

inheritted from Shape , such as Circle, Triangle etc. The problem can be solved in many alternative
ways. examples/polymorphic contains 4 subdirectories with different approaches to the geometric object

example. (i) Inherittance with virtual functions (ii) std::variant with visitors (i) Using std.:any (iv)
Custom type erasure.

lJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 54 Forschungszentrum

	Day 4
	Smart pointers
	Pointers, references and common errors
	Containers
	STL vector
	Fixed length arrays
	Associative containers

	Algorithms
	STL utilities
	Chrono
	Random numbers
	std::optional
	std::variant
	std::any

