- N

PROGRAMMING IN C++
Jiilich Supercomputing Centre

8 — 12 May 2023 | Sandipan Mohanty | Forschungszentrum Jiilich, Germany

@) JULICH
Member of the Helmholtz Association J Forschungszentrum

Day 5

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 1 Forschungszentrum

Type erasure

@) JULICH
Member of the Helmholtz Association 8 - 12 May 2023 Slide 2 J Forschungszentrum

© 0N OOk W N

o
ST

TYPE ERASURE TECHNIQUE

= Polymorphic behaviour attained using a class

auto f(int i) -> Polyval; hierarchy and virtual functions...
void elsewhere (), t . = is extensible by simply inheriting from the Base
std::vector<PolyVal> v; d di h . I f .
v.push_back (1) ; type .an ovizrrl ing the V|rtua. lﬂnctlons
v.push_back (2.0) ; = But, it has “reference symantics”, so that we can
v.push_back ("Green"s) ; not return those polymorphic objects by value
from functions
for (autoss elem : v) { = Built in types can not be accommodated into the
funcl (elem); same hierarchy
}
PolyVal X = f(i); = variant provides a solution to the two problems
! above, but we need to commit to a fixed number of
polymorphic types in the problem, from the outset
= std::any is a library provided facility for type
erasure
Member of the Helmholtz Association 8 — 12 May 2023 Slide 3 J Forschungszentrum

=
H O © WO O R W

L = B
[A R N)

TYPE ERASURE TECHNIQUE

void
void
void
auto
void

funcl (int x);

funcl (double x);

funcl (std::string x);

f(int i) -> PolyVal;

elsewhere () {
std: :vector<PolyVal> v;
v.push_back (1) ;
v.push_back (2.0);
v.push_back ("Green"s) ;

for (auto&s elem : v) |
funcl (elem) ;

}

PolyVal X{3.141};

// funcl (X) sho ncl (double)

X = PolyVal{"some string"s};

// funcl (X) should now go to funcl (string)

X = £(i);

// funcl (X)

// polymorp.

1d go to

Member of the Helmholtz Association 8 - 12 May 2023

= We want a type PolyVal , so that we can store
different types of entities in it

= A uniform container of PolyVal should be able
to hold values of different types

= When a certain instance is used, it should still be
able to behave according to the value it is currently
holding.

= We should be able to copy a PolyVal object
using normal copy construction or copy assignment
in such a way that the copy of a PolyVal storing

a Triangle would still behave as a Triangle

IJ JULICH

Slide 4 Forschungszentrum

TYPE ERASURE TECHNIQUE

1 class PolyVal {

2 struct Internal ({

3 virtual ~Internal() noexcept = default;

4 virtual auto clone() const -> std::unique_ptr<Internal> = 0;
5 virtual void funcl_() const = 0;

6 bi

7 template <class T>

8 struct Wrapped : public Internal // continued...

9

10 public:

11 template <class T>

12 PolyVal (const T& var) : ptr{ std::make_unique<Wrapped<T>>(var) } {}
13 PolyVal (const PolyVal& other) : ptr { other.ptr->clone() } {}

14 private:
15 std::unique_ptr<Internal> ptr;
16 }i

= Make a normal class with an internal class with virtual functions defining the desired interface, and another

internal wrapper class template deriving from the internal base

= Give the outer class one template constructor (unrestrained here to isolate the TE technique)

Member of the Helmholtz Association 8 - 12 May 2023

IJ JULICH

Slide 5 Forschungszentrum

TYPE ERASURE TECHNIQUE

1 class PolyVal {

2 struct Internal ({

3 virtual ~Internal() noexcept = default;

4 virtual auto clone() const -> std::unique_ptr<Internal> 0;
5 virtual void funcl_ () const = 0;

6 bi

7 template <class T>

8 struct Wrapped : public Internal // continued...

9

10 public:

11 template <class T>

12 PolyVal (const T& var) : ptr{ std::make_unique<Wrapped<T>>(var) } {}
13 PolyVal (const PolyValé& other) : ptr { other.ptr->clone() } {}

14 private:
15 std::unique_ptr<Internal> ptr;
16 bi

= Let the class contain a smart pointer to this base, but initialize that member using a class template which

inherits from the internal base.

= Implement a copy constructor for PolyVal by using a virtual clone () function for the internal class
= Use the template constructor to create a wrapped object containing a copy of the input parameter

Member of the Helmholtz Association 8 - 12 May 2023

JULICH

Slide 5 Forschungszentrum

TYPE ERASURE TECHNIQUE

1 class PolyVal {

2 template <class T>

3 struct Wrapped : public Internal ({

4 Wrapped (T ex) : obj{ex} {}

5 ~Wrapped () noexcept override ({}

6 auto clone() const -> std::unique_ptr<Internal> override
7 {

8 return std::make_unique<Wrapped> (obj);
9 }

10 void funcl_ () const override { funcl (obj);
11 T obj;

12 };
13 }i

= The internal wrapper should store an object of the template parameter type

= |t should provide copy, clone etc.

= |t should redirect function calls in our original requirement to free functions

Member of the Helmholtz Association 8 - 12 May 2023

IJ JULICH

Slide 6 Forschungszentrum

TYPE ERASURE TECHNIQUE

1 class PolyVal {

2 template <class T>

3 struct Wrapped : public Internal ({

4 Wrapped (T ex) : obj{ex} {}

5 ~Wrapped () noexcept override ({}

6 auto clone() const -> std::unique_ptr<Internal> override
7 {

8 return std::make_unique<Wrapped> (obj);
9 }

10 void funcl_ () const override { funcl (obj);
11 T obj;

12 };
13 }i

= As long as those free functions exist for a type F , it will be possible to create objects of PolyVal type

from type F

Member of the Helmholtz Association 8 - 12 May 2023

IJ JULICH

Slide 6 Forschungszentrum

examples/TE/Polyval.cc contains the code corresponding to the slides shown here. Verify that we achieve our

purpose of having a copyable object preserving polymorphic behaviour. Add a function funcl () (processing a
new type) into the mix, and extend the existing setup.

Exercise 1.2:

Sequences of objects with polymorphic behaviour is a frequently occuring programming problem. We have seen
one example before, with a vector of unique_ptr<Shape> , filled with newly created instances of types

inheritted from Shape , such as Circle, Triangle etc. The problem can be solved in many alternative
ways. examples/polymorphic contains 4 subdirectories with different approaches to the geometric object

example. (i) Inherittance with virtual functions (ii) std::variant with visitors (iii) Using std::any (iv)
Custom type erasure.

lJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 7 Forschungszentrum

=
H O ©®NO O A WN

-
S

VALARRAY

= Another dynamic array type

#include alarray> . . .
sHae svasarray = Mostly intended for numeric operations
‘{’°id varray_ops () = Expression template based whole array math
std::valarray V1(0., 1000000UL); operations
std::valarray<double> V2;
v7. resize (1000000UL, 0.] Algorlthms through std: .b_egln (v) etc,
auto x = exp(-V1 * V1) » sin(V2); instead of own member functions
if (x. < 100.0
;/ (- sum () A = Bizarre constructor with different convention
} compared to any other container in the STL.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 8 Forschungszentrum

=
H O ©®NO O R W

[T T S S R
© W N Uk W

Member of the Helmholtz Association

NUMERIC ALGORITHMS

#include <n ric>
using std::reduce;
using std::transform_reduce;

auto res = reduce(v.begin(), v.end());
auto res = reduce(v.begin(), v.end(), init);
auto res = reduce(v.begin(), v.end(),
init, std::plus<double>{});
auto res = transform_reduce (
u.begin(), u.end()

v.begin(), init);
auto res = transform_reduce (

u.begin(), u.end()

v.begin(), init, reduce_op, transf_op);
auto res = transform_reduce (

std::execution: :par,

u.begin(), u.end(),

v.begin(), init, reduce_op, transf_op);

8 - 12 May 2023

Algorithms focused on numeric calculations are in
the numeric header

Given b, e as iterators in a range V,
reduce (b, e) : Zf:b\/,-
transform_reduce (b, e, f): E,.e:b (Vi)
adjacent_difference (b, e) :

{Ve, (Vo1 = Vo), (Vor2 = Vbia), ... }

Parallel versions also in the library

To run the numeric operations in parallel,
use the parallel execution policy

IJ JULICH

Slide 9 Forschungszentrum

=
H O © WO O R WN

e e e
© N O U W N

SPAN

using std::span;
using std::transform_reduce;
using std::plus;
using std::multiplies;
auto compute (span<const double> u,
span<const double> v) -> double
{
return transform_reduce (
u.begin(), u.end(),
v.begin(), 0., plus<double>({},
multiplies<double>{});
}

void elsewhere (doublex x, doublex vy,
unsigned N)
{
return compute (span(x, N), span(y, N));
}

Member of the Helmholtz Association 8 — 12 May 2023

= Non-owning view type for a contiguous range
= No memory management

= Numeric operations can often be expressed in terms
of existing arrays in memory, irrespective of how
they got there and who cleans up after they expire

= span is designed to be that input for such
functions

= Cheap to copy: essentially a pointer and a size

= STL container like interface

Exercise 1.3:

examples/spans IS a directory containing the compute

function as shown here. Notice how this function is used
directly using C++ array types as arguments instead of
spans, and indirectly when we only have pointers.

IJ JULICH

Slide 10 Forschungszentrum

S NERC- R R

RANGES

std::vector v{ 1, 2, 3, 4, 5, 8, 9 }; 1 std::vector v{ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
// before std::ranges we did t 2 namespace sr = std::ranges;

std: :reverse (v.begin(), v.end()); 3 sr::reverse(v);

std::rotate(v.begin(), v.begin() + 3, v.end()); 4 sr::rotate (v, v.begin() + 3);

std::sort (v.begin(), v.end()); 5 sr::sort (v);

= The <ranges> header defines a set of algorithms taking “ranges” as inputs instead of pairs of iterators

= A range is a concept : something with sr::begin () , which returns an entity which can be used

to iterate over the elements, and sr::end() which returns a sentinel which is equality comparable with
an iterator, and indicates when the iteration should stop.

= sr::sized_range : the range knows its size in constant time
= input_range, output_range etc. based on the iterator types
= borrowed_range : a type such that its iterators can be returned without the danger of dangling.

= view is a range with constant time copy/move/assignment

Forschungszentrum

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 11

=
H O ©®NO O AW

= e
B oW N

USING RANGES FROM STD OR FROM RANGE-V3

= The C++420 <ranges> library is based on the

open source range-v3 library. Parts of the

range-v3 library were adopted for C+-+20,

namesp.;ce sr - std::ranges; more might be added in C++23.

namespace sv = Sr: :views;
lude (<range/v3/all.hpp>) Even if the standard library shipping with some

#include<range/v3/all.hpp> compilers do not have many features of
namespace sr - ranges; <ranges> , one can start using them, with a
namespace sSv = Sr::views; . . .

#warning Using ranges-v3 3rd redirecting header, which makes use of another
! standard library feature

brary

was f

Including <version> results in the definition of
library feature test macros, which can be used to
choose between different header files

Our examples are actually written using a redirecting header as shown here. Compilation with GCC uses
the compiler's own version. Compilation with Clang uses the range-v3 version.

UJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 12 Forschungszentrum

FUN WITH RANGES AND VIEWS

1 // examples/ranges(.cc
2 #include <ranges>
3 #include
4 auto sum(std::ranges::input_range auto&s seq) {
5 std::iter_value_t<decltype (seq)> ans{};
6 for (auto x : seq) ans += x;
7 return ans;
8 }
9 auto main () -> int
10 {
11 //using various namespaces;
12 cout << "vector : " << sum(vector ({ 9,8,7,2 })) << "\n";
13 cout << "list ;" << sum(list({ 9,8,7,2 })) << "\n";
14 cout << "valarray : " << sum(valarray({ 9,8,7,2 })) << "\n";
15 cout << "array .
16 << sum(array<int,4>({ 9,8,7,2 })) << "\n";
17 cout << "array HE
18 << sum(array<string, 4>({ "9"s,"8"s,"7"s,"2"s })) << "\n";
19 int A[]{1,2,3};
20 cout << "span(built-in array) : " << sum(span(A)) << "\n";
21 }
.o
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 13 J Forschungszentrum

FUN WITH RANGES AND VIEWS

= The ranges library gives us many useful concepts describing sequences of objects.

= The function template sum in examples/ranges0.cc accepts any input range, i.e., some entity whose
iterators satisfy the requirements of an input_iterator .
= Notice how we obtain the value type of the range

= Many STL algorithms have range versions in C++20. They are functions like sum taking various kinds
of ranges as input.
= The range concept is defined in terms of
= the existence of an iterator type and a sentinel type.

= the iterator should behave like an iterator, e.g., allow ++it xit etc.
= it should be possible to compare the iterators with other iterators or with a sentinel for equality.

= A begin() function returning an iterator and an end () function returning a sentinel

Forschungszentrum

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 14

© 0N oA W N

[S~
AW N = O

de <i eam>

auto main() -> int {

namespace sv = std::views;
for (auto i : sv::iota(lUL)) {
if ((i+1) % 10000UL == OUL) {
std::cout << i << ' ';
if ((i+1) % 100000UL == 0UL)
std::cout << '\n';
if (i >= 100000000UL) break;

Member of the Helmholtz Association

8 — 12 May 2023

FUN WITH RANGES AND VIEWS

All containers are ranges, but not all ranges are
containers

std::string_view is a perfectly fine range.
Has iterators with the right properties. Has
begin () and end() functions. It does not
own the contents, but “ownership” is not part of
the idea of a range.

We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota (integer) gives us an
infinite sequence of integers starting at a given
value.

.
' 4) JULICH
Slide 15 Forschungszentrum

© 0N oA W N

e e
AW N = O

// examples/iota.cc
#include <ranges>

#include <iostream>
auto main() -> int {
namespace sv = std::views;
for (auto i : sv::iota(lUL)) {
if ((i+1) % 10000UL == 0QUL) {
std::cout << i << ' ';
if ((i+1) % 100000UL == OUL)

std::cout << '\n';
if (i >= 100000000UL) break;

Member of the Helmholtz Association

8 — 12 May 2023

FUN WITH RANGES AND VIEWS

= All containers are ranges, but not all ranges are
containers

= std::string_view is a perfectly fine range.
Has iterators with the right properties. Has
begin () and end() functions. It does not
own the contents, but “ownership” is not part of
the idea of a range.

= We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.

Example: the standard view
std::views::iota (integer) gives us an
infinite sequence of integers starting at a given
value.

.
g) JULICH
Slide 15 Forschungszentrum

© 0N oA W N

[S~
AW N = O

FUN WITH RANGES AND VIEWS

// examples/iota.cc
lude <ranges>
~lude <iostream>
auto main() -> int {
namespace sv = std::views;
for (auto i : sv::iota(lUL)) {
if ((i+1) % 10000UL == OUL) {
std::cout << i << ' ';
if ((i+1) % 100000UL == QUL)
std::cout << '\n';
if (i >= 100000000UL) break;
}
}
}
Member of the Helmholtz Association 8 - 12 May 2023

= All containers are ranges, but not all ranges are
containers

= std::string_view is a perfectly fine range.
Has iterators with the right properties. Has
begin () and end() functions. It does not
own the contents, but “ownership” is not part of
the idea of a range.

= We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.

Example: the standard view
std::views::iota (integer) gives us an
infinite sequence of integers starting at a given
value.

Slide 15

IJ JULICH

Forschungszentrum

FUN WITH RANGES AND VIEWS

= All containers are ranges, but not all ranges are
containers

This is only the box. The range you
asked for is inside.
J——

= std::string_view is a perfectly fine range.
Has iterators with the right properties. Has
begin () and end() functions. It does not
own the contents, but “ownership” is not part of
the idea of a range.

= We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.

Example: the standard view
std::views::iota (integer) gives us an
infinite sequence of integers starting at a given
value.

Forschungszentrum

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 15

© LN G AW N

[S
w N = O

le <ranges>

e <iostream>

auto main () > int {
namespace sv = std::views;
for (auto i v::iota (1UL)) {
if ((i+1) % 10000UL == 0OUL) {
std::cout << i << ' ';
if ((i+1) % 100000UL == OUL)

std::cout << '\n';
if (i >= 100000000UL) break;

Member of the Helmholtz Association

8 — 12 May 2023

FUN WITH RANGES AND VIEWS

= All containers are ranges, but not all ranges are

containers

std::string_view is a perfectly fine range.
Has iterators with the right properties. Has
begin () and end() functions. It does not
own the contents, but “ownership” is not part of
the idea of a range.

= We could take this further by creating views

which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.

Example: the standard view
std::views::iota (integer) gives us an
infinite sequence of integers starting at a given
value.

Slide 15

IJ JULICH

Forschungszentrum

=
H O © WO O R W

BORROWED RANGES

// examples/dangling0.cc

auto get_vec () {
std::vector v{ 2, 4,
return v;

}

auto main() —-> int {
auto v = get_vec();
auto iter = std::min_element (v.begin(),

v.end());

std::cout << "Minimum " << xiter << "\n";

Member of the Helmholtz Association 8 — 12 May 2023

= The min_element function finds the minimum
element in a range and returns an iterator

Example from a CPPCon 2020 talk by Tristan Brindle.
Link.

IJ JULICH

Slide 16 Forschungszentrum

https://www.youtube.com/watch?v=d_E-VLyUnzc

BORROWED RANGES

= The min_element function finds the minimum

1 '/ amples/dangling0.cc . .
// examples/danglingl element in a range and returns an iterator

2 auto get_vec () {

3 std::vector v{ 2, 4, -1, 8, 0, 9 }; = The version from the ranges library takes only a

4 return v;

5) range

6 auto main() —-> int {

7 auto v = get_vec();

8 auto iter = sr::min_element (v);

9

10 std::cout << "Minimum " << xiter << "\n";

11 }
Example from a CPPCon 2020 talk by Tristan Brindle.
Link.

Member of the Helmholtz Association 8 — 12 May 2023 Slide 16 J Forschungszentrum

https://www.youtube.com/watch?v=d_E-VLyUnzc

© 0N oA W N

=
= o

BORROWED RANGES

= The min_element function finds the minimum

'/ amples/dangling0.cc . .

[/ cHamplies/ dangiingy element in a range and returns an iterator

auto get_vec () {
std::vector v{ 2, 4, -1, 8 0, 9 }; = The version from the ranges library takes only a
return v;

) range

auto main() —-> int {

= It may be tempting to directly feed the output from
auto iter - sr::min_element (get_vec()); a function to the algorithm. But, we would receive
an iterator to a container that is already destructed,
i.e., a dangling iterator. Dereferencing should
therefore lead to a SEGFAULT.

std::cout << "Minimum " << xiter << "\n";

Example from a CPPCon 2020 talk by Tristan Brindle.
Link.

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 16 J Forschungszentrum

https://www.youtube.com/watch?v=d_E-VLyUnzc

=
H O © WO O R W

BORROWED RANGES

// examy
auto get_vec () {

es/dangl

std::vector v{ 2, 4, 1, 8, 0, 9 };
return v;

auto main() —-> int {

auto iter = sr::min_element (get_vec());

std::cout << "Minimum " << xiter << "\n";

= The min_element function finds the minimum
element in a range and returns an iterator

= The version from the ranges library takes only a
range

= It may be tempting to directly feed the output from
a function to the algorithm. But, we would receive
an iterator to a container that is already destructed,
i.e., a dangling iterator. Dereferencing should
therefore lead to a SEGFAULT.

= In reality, what happes is this!

Example from a CPPCon 2020 talk by Tristan Brindle.
Link.

no match for ‘operatorx’ (operand type is 'std::ranges::dangling')

| std::cout << "Minimum value is "

<< xiter << "\n";

Member of the Helmholtz Association 8 — 12 May 2023

IJ JULICH

Slide 16 Forschungszentrum

https://www.youtube.com/watch?v=d_E-VLyUnzc

=
H O © WO O R W

BORROWED RANGES

= The ranges algorithms are written with overloads

// examples/dangling0.cc such that when you pass an R-value reference of a
auto get_vec () { tai . t th tout t .
std::vector v{ 2, 4, -1, 8, 0, 9 }; container as input, the output type Is _
return v; ranges: :dangling , an empty struct with
} no operations defined.
auto main() —-> int {
= iter here will be deduced to be of type
auto iter = sr::min_element (get_vec()); . .
g ranges: :dangling, and hence +iter leads
std::cout << "Minimum " << xiter << "\n"; to that insightful error message.
}
error: no match for ‘operatorx’ (operand type is 'std::ranges::dangling')
19 | std::cout << "Minimum value is " << *iter << "\n";
= When the input was an L-value reference, the algorithm returning the iterator returned a valid iterator.
= Therefore: valid use cases work painlessly, and invalid ones result in actionable insights from the compiler!
Member of the Helmholtz Association 8 - 12 May 2023 Slide 17 J Forschungszentrum

=
H O © WO O AW

-
S

BORROWED RANGES

= Sometimes, an iterator can point to a valid element

// examples/danglingl.cc even when the “container” (imposter) has been
static std::vector u{2, 3, 4, -1, 9}; . X
static std::vector v{3, 1, 4, 1, 5}; destructed. span, string_view etc. do not
auto get_vec(int c) -> std::span<int> { own the elements in their range.
return { (¢ $ 2 == 0) 2 u : v };
} ’ = No harm in returning real iterators of these objects,
auto main(int argc, chars argv[]) -> int { even if they are R-values. Even in this case, there is
auto iter = sr::min_element (get_vec (argc)); d f d li
// is I, even if its parent span no danger ot dangling.
//dw.,) expired. . \ = A borrowed_range is a range so that its
std::cout << "Minimum " << xiter << "\n"; . . .
) iterators can be returned from a function without
the danger of dangling, i.e.,
it is an L-value reference or
has been explicitly certified to be a borrowed range
Member of the Helmholtz Association 8 - 12 May 2023 Slide 18 J Forschungszentrum

=
H O © WO O AW

-
S

BORROWED RANGES

= Sometimes, an iterator can point to a valid element

// examples/danglingl.cc even when the “container” (imposter) has been
static std::vector u{2, 3, 4, -1, 9}; . .
static std::vector v{3, 1, 4, 1, 5}; destructed. span, string_view etc. do not
auto get_vec(int c) -> std::span<int> { own the elements in their range.
return { (¢ $ 2 == 0) 2 u : v };
} = No harm in returning real iterators of these objects,
auto main(int argc, chars argv[]) -> int { even if they are R-values. Even in this case, there is
auto iter = sr::min_element (get_vec (argc)); .
g S no danger of dangling.
// 1 1S even 1I 1ts parent span
// has expired. = A borrowed_range is a range so that its
std::cout << "Minimum " << xiter << "\n"; . . .
) iterators can be returned from a function without
the danger of dangling, i.e.,
it is an L-value reference or
has been explicitly certified to be a borrowed range
template <class T>
concept borrowed range = range<T> &&
(is_lvalue_reference_v<T> || enable_borrowed_range<remove_cvref t<T>>)
Member of the Helmholtz Association 8 - 12 May 2023 Slide 18 J Forschungszentrum

-
o

VIEW ADAPTORS

= A view is a range with constant time copy, move

© 0N oA W N

namespace sv = std::views; . . .
std::vector v{1,2,3,4,5}; etc. Think string view
/a/ljto,\va, o :Fake o, f;) = A view adaptor is a function object, which takes a
] “viewable" range as an input and constructs a view
out of it. viewable is defined as “either a
borrowed_range or already a view.
= View adaptors in the <ranges> library have very
interesting properties, and make some new ways of
coding possible.
Member of the Helmholtz Association 8 — 12 May 2023 Slide 19 ‘J grscuhunLgslzgrﬂ

VIEW ADAPTORS

Adaptor (Viewable) -> View s A vi itself is trivially viewable.

Viewable | Adaptor -> View

VAL | A2 | A3 ... > view = Since a view adaptor produces a view, successive
applications of such adaptors makes sense.

Adaptor (Viewable, Args...) -> View A

Adaptor (Args...) (Viewable) -> View = If an adaptor takes only one argument, it can be

Viewable | Adaptor(Args...) -> View called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.

For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 20 Forschungszentrum

VIEW ADAPTORS

Adaptor (Viewable) -> View
Viewable | Adaptor —-> View

= A view itself is trivially viewable.

= Since a view adaptor produces a view, successive

V | Al | A2 | A3 ... —> View c e
applications of such adaptors makes sense.

Adaptor (Viewable, Args...) -> View A

Adaptor (Args...) (Viewable) -> View = If an adaptor takes only one argument, it can be

Viewable | Adaptor(Args...) -> View called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.

For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 20 Forschungszentrum

VIEW ADAPTORS

Adaptor (Viewable) -> View
Viewable | Adaptor —-> View

vV | A1l | A2 | A3 -> View

Adaptor (Viewable, Args...) —-> View
Adaptor (Args...) (Viewable) -> View
Viewable Adaptor (Args...) —-> View

Member of the Helmholtz Association 8 — 12 May 2023

A view itself is trivially viewable.

Since a view adaptor produces a view, successive
applications of such adaptors makes sense.

If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.

For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

IJ JULICH

Slide 20 Forschungszentrum

VIEW ADAPTORS

Adaptor (Viewable) -> View

Viewable | Adaptor -> View

VAL | A2 | A3 ... —> View = Since a view adaptor produces a view, successive
applications of such adaptors makes sense.

= A view itself is trivially viewable.

Adaptor (Viewable, Args...) -> View If an adaptor takes only one argument, it can be

Adaptor (Args...) (Viewable) -> View . .

Viewable | Adaptor(Args...) —> View called using the pipe oper_ator as shown. These
adaptors can then be chained to produce more
complex adaptors.

For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 20 Forschungszentrum

VIEW ADAPTORS

Adaptor (Viewable) -> View

A view itself is trivially viewable.

Viewable | Adaptor -> View

VALl A2 AT .. —> view = Since a view adaptor produces a view, successive
applications of such adaptors makes sense.

Adaptor (Viewable, Args...) -> View A

Adaptor (Args...) (Viewable) -> View = If an adaptor takes only one argument, it can be

Viewable | Adaptor(Args...) -> View called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.

For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

So what are we going to do with this ?

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 20 Forschungszentrum

VIEW ADAPTORS

Pretend that you want to verify that sin®(x) + cos®(x) = 1

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 21 J Forschungszentrum

VIEW ADAPTORS

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. = Ry =1{0,1,2,3...}

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 21 Forschungszentrum

VIEW ADAPTORS

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. = Ry =1{0,1,2,3...}

= Map the integer range to real numbers in the range = R = TR =T(n— 55)Ro
[0, 2m)

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 21 Forschungszentrum

VIEW ADAPTORS

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. = Ry =1{0,1,2,3...}
= Map the integer range to real numbers in the range = R = TR =T(n— 55)Ro

[0,2m) s Ry = TRy = T(x — (sin®(x) + cos?(x) — 1)) Ry
= Evaluate sin’(x) 4 cos®(x) — 1 over the resulting
range R = TaRi= TaTwkRo
= Ro|Tw|Ta

= Ro|(T1o|T21)

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 21 Forschungszentrum

VIEW ADAPTORS

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. = Ry ={0,1,2,3...}
= Map the integer range to real numbers in the range = R = TR =T(n— 55)Ro

[0,27) s Ry = TorR1 = T(x — (sin®(x) + cos®(x) — 1)) Ry
= Evaluate sin’(x) 4 cos®(x) — 1 over the resulting

range Ry = TuRi= TaTiwkRe
= |f absolute value of any of the values in the result = Ro|Two| T

exceeds ¢, we have found a counter example = Ro|(T1wo|T21)

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 21 Forschungszentrum

VIEW ADAPTORS

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. = Ry ={0,1,2,3...}
= Map the integer range to real numbers in the range = R = TR =T(n— 55)Ro

[0,27) s Ry = TorR1 = T(x — (sin®(x) + cos®(x) — 1)) Ry
= Evaluate sin’(x) 4 cos®(x) — 1 over the resulting

range Ry = TuRi= TaTiwkRe
= |f absolute value of any of the values in the result = Ro|Two| T

exceeds ¢, we have found a counter example = Ro|(T1wo|T21)

= Intuitive left-to-right readability

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 21 Forschungszentrum

VIEW ADAPTORS

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000.

= Map the integer range to real numbers in the range

[0,27)

= Evaluate sin’(x) 4 cos®(x) — 1 over the resulting

« Ro=1{0,1,2,3...}
L] R1 = T10R0 = T(n — nﬁ)Ro
n R =TuR = T(X — (sin2(x) + COS2(X) — 1))R1

range Rz T21R1 = To1 ToRo
= |f absolute value of any of the values in the result = Ro|Two| T
exceeds ¢, we have found a counter example = Ro|(T1wo|T21)
= Intuitive left-to-right readability
find . -name "x.cc" | xargs grep "if" | grep -v "constexpr" | less

Member of the Helmholtz Association

8 — 12 May 2023

Slide 21

/.

JULICH

Forschungszentrum

VIEW ADAPTORS

find . -name "x.cc" | xargs grep "if" | grep -v "constexpr" | less

= Command line of Linux, Mac OS ...

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 22 Forschungszentrum

VIEW ADAPTORS

find . -name "x.cc" | xargs grep "if" | grep -v "constexpr" | less

= Command line of Linux, Mac OS ...

= Small utilities. Each program does one thing, and does it well.

Member of the Helmholtz Association 8 — 12 May 2023 Slide 22

/)

JULICH

Forschungszentrum

VIEW ADAPTORS

find . -name "x.cc" | xargs grep "if" | grep -v "constexpr" | less

= Command line of Linux, Mac OS ...
= Small utilities. Each program does one thing, and does it well.

= There is a way to chain them together with the pipe

l) JULICH

Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023 Slide 22

VIEW ADAPTORS

find . -name "x.cc" | xargs grep "if" | grep -v "constexpr" | less

= Command line of Linux, Mac OS ...
= Small utilities. Each program does one thing, and does it well.
= There is a way to chain them together with the pipe

= Overall usefulness of the tool set is amplified exponentially!

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 22 Forschungszentrum

VIEW ADAPTORS

find . -name "x.cc" | xargs grep "if" | grep -v "constexpr" | less

= Command line of Linux, Mac OS ...

= Small utilities. Each program does one thing, and does it well.
= There is a way to chain them together with the pipe

= Overall usefulness of the tool set is amplified exponentially!

= What about writing something similar in C++ ?

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 22 Forschungszentrum

VIEW ADAPTORS

Pretend that you want to verify that sin®(x) + cos®(x) = 1

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 23 J Forschungszentrum

VIEW ADAPTORS

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. RO = iota (0, N)

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 23 Forschungszentrum

VIEW ADAPTORS

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. RO = iota (0, N)

27n

= Map the integer range to real numbers in the range [0,27), i.e., perform the transformation n — < over

the range: Rl = RO | transform([] (int n) -> double { return 2+pi*n/N; })

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 23 Forschungszentrum

VIEW ADAPTORS

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. RO = iota (0, N)

27n

= Map the integer range to real numbers in the range [0,27), i.e., perform the transformation n — < over

the range: Rl = RO | transform([] (int n) -> double { return 2+pi*n/N; })

] R2 = R1 transform([] (double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 23 Forschungszentrum

VIEW ADAPTORS

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. RO = iota (0, N)

27n

= Map the integer range to real numbers in the range [0,27), i.e., perform the transformation n — < over

the range: Rl = RO | transform([] (int n) -> double { return 2+pi*n/N; })
] R2 = R1 transform([] (double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

= |f absolute value of any of the values in the result exceeds €, we have found a counter example
if (any_of(R2, [] (auto x) {return fabs(x) > eps;}))

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 23 Forschungszentrum

VIEW ADAPTORS

1 auto main() -> int {
2 namespace sr = std::ranges;
3 namespace sv = std::views;
4 const auto pi = std::acos(-1);
5 constexpr auto npoints = 10'000'00UL;
6 constexpr auto eps 100 % std::numeric_limits<double>::epsilon();
7 auto to_0_2pi = [=] (size_t idx) -> double {
8 return std::lerp(0., 2+pi, idx = 1.0 / npoints);
9 bi
10 auto x_to_fx = [] (double x) -> double {
11 return sin(x) * sin(x) + cos(x) * cos(x) - 1.0;
12 Yi
13 auto is_bad = [=] (double x){ return std::fabs(x) > eps;
14
15 auto res = sv::iota(0OUL, npoints) | sv::transform(to_0_2pi)
16 | sv::transform(x_to_f£fx);
17 if (sr::any_of(res, is_bad)) {
18 std::cerr << "The relation does not hold.\n";
19 } else {
20 std::cout << "The relation holds for all inputs\n";
21 }
22 }
Member of the Helmholtz Association 8 - 12 May 2023 Slide 24

lJ JULICH

Forschungszentrum

VIEW ADAPTORS

= The job of each small transform in the previous example was small, simple, easily verified for correctness.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 25 Forschungszentrum

VIEW ADAPTORS

= The job of each small transform in the previous example was small, simple, easily verified for correctness.

= The view adaptors allow us to chain them to produce a resulting range

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 25 Forschungszentrum

VIEW ADAPTORS

= The job of each small transform in the previous example was small, simple, easily verified for correctness.
= The view adaptors allow us to chain them to produce a resulting range

= Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 25 Forschungszentrum

VIEW ADAPTORS

= The job of each small transform in the previous example was small, simple, easily verified for correctness.
= The view adaptors allow us to chain them to produce a resulting range

= Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.

= No operation is done on any range when we create the variable res above.

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 25 J Forschungszentrum

VIEW ADAPTORS

= The job of each small transform in the previous example was small, simple, easily verified for correctness.
= The view adaptors allow us to chain them to produce a resulting range

= Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.

= No operation is done on any range when we create the variable res above.
= When we try to access an element of the range in the any_of algorithm, one element is taken on the fly

out of the starting range, fed through the pipeline and catered to any_of

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 25 Forschungszentrum

VIEW ADAPTORS

= The job of each small transform in the previous example was small, simple, easily verified for correctness.
= The view adaptors allow us to chain them to produce a resulting range

= Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.

= No operation is done on any range when we create the variable res above.
= When we try to access an element of the range in the any_of algorithm, one element is taken on the fly
out of the starting range, fed through the pipeline and catered to any_of

= any_of does not process the range beyond what is necessary to establish its truth value. The remaining
elements in the result array are never calculated.

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 25 Forschungszentrum

The code used for the demonstration of view adaptors is examples/trig_views.cc . Build this code with GCC

and Clang. If the version of your compiler does not have a usable <ranges> header, we can use a redirecting
header <cxx20ranges> examples. When the compiler implements the ranges library, it includes <ranges> .
Otherwise, it tries to include equivalent headers from the rangev3 library. It also defines alias namespaces

sr and sv for std::ranges and std::std::views . To compile, you would need to have the
location of this redirecting header in your include path:

g++ —-std=c++20 -I course_home/local/include trig_views.cc
./a.out

clang++ -std=c++20 -stdlib=libc++ -I course_home/local/include trig_views.cc

./a.out
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 26 J Forschungszentrum

The trigonometric relation we used is true, so not all possibilities are explored. In
examples/trig_views2.cc there is another program trying to verify the bogus claim sin®(x) < 0.99. It's
mostly true, but sometimes it isn't, so that our if and else branches both have work to do. The lambdas in
this program have been rigged to print messages before returning. Convince yourself of the following:
= The output from the lambdas come out staggered, which means that the program does not process the
entire range for the first transform and then again for the second ...

= Processing stops at the first instance where any_of gets a true answer.

lJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 27 Forschungszentrum

VIEW ADAPTORS

1 // examples/gerund.cc

2 using itertype = std::istream iterator<std::string>;

3 std::ifstream fin { argvI[1l] };

4 auto gerund = [] (std::string_view w) { return w.ends_with("ing"); };
5 auto in = sr::istream_view<std::string>(fin);

6 std::cout << (in | sv::filter(gerund)) << "\n";

7

" sSr::istream view<T> creates an (input) iterable range from an input stream. Each element of this
range is of the type T .

= sv::filter is a view adaptor, which when applied to a range, produces another containing only the
elements satisfying a given condition

= In the above, std::cout is shown writing out a range. This works via a separate header file included in

gerund.cc called range_output.hh , which is provided to you with the course material. Ranges in
C++4-20 are not automatically streamable to the standard output.

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Forschungszentrum

Slide 28

VIEW ADAPTORS

A program to print the alphabetically first and last word entered on the command line, excluding the program

name.

0 N U AW N

// examples/views_and_span.cc
auto main (int argc, charx argv[]) -> int

{

if (argc < 2) return 1;
namespace sr = std::ranges;
namespace sv = std::views;

std::span args(argv, argc);

auto str = [] (auto cstr) -> std::string_view { return cstr; };
auto [mn, mx] = sr::minmax(args | sv::drop(l) | sv::transform(str));
std::cout << "Alphabetically first = " << mn << " last = " << mx <<

Member of the Helmholtz Association 8 — 12 May 2023 Slide 29

/)

JULICH

Forschungszentrum

FORMATTED OUTPUT

1 for (auto 1 = 0UL; i < 100UL; ++i) |
2 std::cout << "i = " << i

3 << ", E_1 = " << cos(i * wn)
4 << ", E_2 = " << sin(i * wn)
5 << "\n";

6 }

i=25, E_1 = 0.55557, E_2 = 0.83147

i 6, E_1 = 0.382683, E_2 = 0.92388
i=7, E_1 0.19509, E_2 = 0.980785

i 8, E_1 = 6.12323e-17, E_2 =1
i=29, E_1 = -0.19509, E_2 = 0.980785

i =10, E_.1 = -0.382683, E_2 = 0.92388
i 11, E.1 = -0.55557, E_2 = 0.83147

Member of the Helmholtz Association 8 — 12 May 2023

= While convenient and type safe and extensible, the
interface of ostream objects like std::cout
isn't by itself conducive to regular well-formatted
output

IJ JULICH

Slide 30 Forschungszentrum

[N

FORMATTED OUTPUT

= While convenient and type safe and extensible, the

for (auto i = OUL; i < 100UL; ++i) { interface of ostream objects like std::cout
std::cout << "i = " << i P . .
ow p oo . isn't by itself conducive to regular well-formatted
< , E_1 cos (i * wn)
<< ", E_2 =" << sin(i * wn) output
<< H\nﬂ; , .

} = C printf often has a simpler path towards
visually uniform columnar output, although it is
neither type safe nor extensible

i =5 E1 = 0.55557, E_2 = 0.83147 s C++ <iomanip> header allows formatting with
i =6, E_1 = 0.382683, E_2 = 0.92388 a great deal of control, but has a verbose and

i =7, E_L1 = 0.19509, E_2 = 0.980785 . istent svnt

i=-8, E_1 - 6.12323e-17, E_2 = 1 Inconsistent syntax

i =9, EL1 = -0.19509, E_2 = 0.980785

i =10, E_1 = -0.382683, E_2 = 0.92388

i =11, E_1 = -0.55557, E_2 = 0.83147

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 30 Forschungszentrum

FORMATTED OUTPUT

1 for (auto 1 = 0UL; i < 100UL; ++i) |

2 std::cout << fmt::format (

3 "i = {:>4d}, E_1 = {:< 12.8f}, "

4 "E_2 = {:< 12.8f}\n",

5 i, cos(i * wn), sin(i % wn));

6 }

i= 5, E_L1 = 0.55557023 , E_2 = 0.83146961
i 6, E_1 0.38268343 , E_2 0.92387953
i= 7, EL1 = 0.19509032 , E_2 = 0.98078528
i 8, E_L1 = 0.00000000 , E_2 1.00000000
i= 9, E_1 = -0.19509032 , E_2 = 0.98078528
i= 10, E_1 = -0.38268343 , E_2 0.92387953
i = 11, E_1 = -0.55557023 , E_2 0.83146961

Member of the Helmholtz Association

8 — 12 May 2023

While convenient and type safe and extensible, the
interface of ostream objects like std::cout
isn't by itself conducive to regular well-formatted
output

C printf often has a simpler path towards
visually uniform columnar output, although it is
neither type safe nor extensible

C++4 <iomanip> header allows formatting with
a great deal of control, but has a verbose and
inconsistent syntax

C++420 introduced the <format> header, which
introduces Python like string formatting

Based on the open source fmt library.

Slide 30 Forschungszentrum

l) JULICH

FORMATTED OUTPUT

1 for (auto 1 = 0UL; i < 100UL; ++i) |

2 std::cout << fmt::format (

3 "i = {:>4d}, E_1 = {:< 12.8f}, "

4 "E_2 = {:< 12.8f}\n",

5 i, cos(i * wn), sin(i % wn));

6 }

i= 5, E_L1 = 0.55557023 , E_2 = 0.83146961
i 6, E_1 0.38268343 , E_2 0.92387953
i= 7, EL1 = 0.19509032 , E_2 = 0.98078528
i 8, E_L1 = 0.00000000 , E_2 1.00000000
i= 9, E_1 = -0.19509032 , E_2 = 0.98078528
i= 10, E_1 = -0.38268343 , E_2 0.92387953
i = 11, E_1 = -0.55557023 , E_2 0.83146961

Perfectly aligned, as all numeric output should be.

Member of the Helmholtz Association 8 — 12 May 2023

While convenient and type safe and extensible, the
interface of ostream objects like std::cout
isn't by itself conducive to regular well-formatted
output

C printf often has a simpler path towards
visually uniform columnar output, although it is
neither type safe nor extensible

C++4 <iomanip> header allows formatting with
a great deal of control, but has a verbose and
inconsistent syntax

C++420 introduced the <format> header, which
introduces Python like string formatting

Based on the open source fmt library.

Elegant. Safe. Fast. Extensible.

Slide 30 Forschungszentrum

l) JULICH

=
H O © WO O R W

-
S

FORMATTED OUTPUT

= GCC 13 has an implementation. Our redirecting

1g header header can help us work with clang as well.
= We can use a redirecting header to use the fut

library when the compiler does not have the library
feature

A S = Code simplification and compilation (and runtime)

tinclude <fmt/core.h .

using fmt::format; speed = useful to learn it. Eventually all

#else compilers will have it.

#error No suitable header for C++20 format!

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 31 Forschungszentrum

FORMATTED OUTPUT

= std::format ("format string {}, {} etc.", args...) takes a compile time constant
format string and a parameter pack to produce a formatted output string
= std::vformat can be used if the format string is not known at compilation time

= |f instead of receiving output as a newly created string, output into a container or string is desired,
std::format_to or std::format_to_n are available

= The string contains python style placeholder braces to be filled with formatted values from the argument list

= The braces can optionally contain id : spec descriptors. id is a 0 based index to choose an argument

from args... for that slot. spec controls how the value is to be written: width, precision, alignment,
padding, base of numerals etc. Details of the format specifiers can be found here!

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 32 Forschungszentrum

https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification

Exercise 1.6:
A simple example demonstrating the text formatting library of C4++20 is in examples/formatl.cc . When this

C++20 header is not available in the standard library implementation, we use headers from the fmt library
giving us approximately the same functionality. Although fmt is usually compiled to a static or shared library to

link, we define the macro FMT_HEADER_ONLY to pretend that we got everything from the standard library.

Exercise 1.7:

The program examples/word_count.cc is an improved version of the word counter program from day 4. Here we
clear any trailing non-alphabetic characters from strings read as words, e.g., treat "instance," as "instance". We
use the ranges algorithms to clean up the string. We then use the formatting library to write the histogram.

9 JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 33 Forschungszentrum

REGULAR EXPRESSIONS USING C+4-20

constexpr ctll::fixed_string re{ R"xpr (" (https:|http:|www\.)\S*)xpr" };
auto urls_in_input = args sv::drop (1)
sv::transform([=] (auto inp) { return str(inp); })
sv::filter ([re] (auto inp) { return ctre::search<re> (inp); });
{

if (auto m = ctre::match<trx>(diststr); m)
auto numstr = m.get<l>().to_string();
// and so on...

[B I N R N I

= CTRE: "Compile time regular expressions", header only open source library
= Regular expressions parsed at compile time.

= Smaller binaries than std::regex

= Syntax makes excellent use of C++-20 features for intuitive handling of regular expressions

Compile time regex processing is possible, with great performance

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Forschungszentrum

Slide 34

REGULAR EXPRESSIONS USING CTRE

examples/dist.cc contains a rudimentary Distance class. Distances can be constructed by giving a value

with a unit. Overloaded literal operators allow writing code like auto d = 14.5_km; . It is possible to write

distances using std::cout , or read using std::cin . E.g,

$ Enter distance: 13.99_cm
That is 0.1399_m

$ Enter distance: "23 km"
That is 23000_m

To read and interpret the input string in the correct units, we make use of regular expressions. Since these can be
known at when writing the source code, we use the CTRE library to process our regular expressions. The
example demonstrates many different topics explored during the course.

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 35 J Forschungszentrum

Modules

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 36 Forschungszentrum

A PREVIEW OF C+420 MODULES

Traditionally, C++ projects are organised into header and source files. As an example, consider a simple
saxpy program ...

1 S.

2 > SAXPY._

3 le <algorithm>

4 #inc

5 template <class T> concept Number = std::floating_point<T> or std::integral<T>;
6 template <class T> requires Number<T>

7 auto saxpy (T a, std::span<const T> x, std::span<const T> y, std::span<T> z) {
8 std::transform(x.begin(), x.end(), y.begin(), z.begin(),

9 [a](T X, T Y) { return a = X + Y; });

10 }

11 #endif

1 #include "saxpy.hh"

2 auto main() —-> int {

3 //declarations

4 saxpy (10., {inpl}, {inp2}, {outp});

5 }

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 37 Forschungszentrum

PROBLEMS WITH HEADER FILES

= Headers contain declarations of functions, classes etc., and definitions of inline functions.
= Source files contain implementations of other functions, such as main .

= Since function templates and class templates have to be visible to the compiler at the point of instantiation,
these have traditionally lived in headers.

Standard library, TBB, Thrust, Eigen ... a lot of important C++ libraries consist of a lot of template code,
and therefore in header files.

= The #include <abc> mechanism is essentially a copy-and-paste solution. The preprocessor inserts the
entire source of the headers in each source file that includes it, creating large translation units.

The same template code gets re-parsed over and over for every new tranlation unit.

If the headers contain expression templates, CRTP, metaprogramming repeated processing of the templates
is a waste of resources.

Forschungszentrum

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 38

MODULES

= The module mechanism in C++-20 offers a better organisation
= All code, including template code can now reside in source files

= Module source files will be processed once to produce “precompiled modules”, where the essential syntactic
information has been parsed and saved.

= These compiled module interface (binary module interface) files are to be treated as caches generated
during the compilation process. There are absolutely no guarantees of them remaining compatible between
different versions of the same compiler, different machine configurations etc.

= Any source import ing the module immediately has access to the precompiled syntax tree in the
precompiled module files. This leads to less overall work and faster compilation of individual translation units

= Since a source file may export a module to be imported by another source in the same project, sources must

sometimes be compiled in a specific order. Automatically deducing this order is a difficult problem, and is
one of the reasons tools like CMake have taken this long to support C4++ modules

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 39 Forschungszentrum

N oA W N

USING MODULES

= |f a module is available, not much special needs to

es/hello_m.cc be done to use it. import the module instead of
import <iostream>; .
#include ing a header. Use the exported classes,
Tut° main() -> int functions and variables from the module.
std::cout << "Hello, world!\n"; = As of C++4-20, the standard library is not available
! as a module. But standard library headers can be

imported as “header units".

clang++ —-std=c++20 -stdlib=libc++ —-fmodules hello_m.cc
./a.out

gt++ -std=c++20 -fmodules-ts -xc++-system-header iostream
g++ -std=c++20 -fmodules-ts hello_m.cc

./a.out

w v

= GCC requires that the header units needed are first generated in a separate explicit step.
= If iostream had been the name of a module, we would have written import iostream; instead of

IJ JULICH

Forschungszentrum

import <iostream>

Member of the Helmholtz Association 8 — 12 May 2023 Slide 40

USING MODULES

Exercise 1.9:
Convert a few of the example programs you have seen during the course to use modules syntax instead. At the
moment it means no more than replacing the #include lines with the corresponding import lines for the
standard library headers. The point is to get used to the extra compilation options you need with modules at the
moment. Use, for instance, the date time library functions like feb.cc and advent.cc from the day 4 examples.

UJ JULICH

Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023 Slide 41

=
H O © WO O R W

T = B
[R N)

CREATING A MODULE (EXAMPLE)

= A header file contains a function template saxpy ,

// saxpy.hh . .
v and a concept necessary to define that function
= A source file, main.cc which includes the header
and uses the function
template <class T>
concept Number = std::floating_point<T>
or std::integral<T>;
template <Number T>
auto saxpy (T a, std::span<const T> x,
std: :span<const T> vy,
std: :span<T> z)
{
std::transform(x.begin(), x.end(),
y.begin(), z.begin(),
[al(T X, T Y) |
return a * X + Y;
b
}
#endif
Member of the Helmholtz Association 8 - 12 May 2023 Slide 42 J Forschungszentrum

=
H O © WO O R W

I o
© N O U W N

CREATING A MODULE (EXAMPLE)

= A header file contains a function template saxpy ,

// usesaxpy.cc . .
4 o <iostream> and a concept necessary to define that function
<array>
<vectors = A source file, main.cc which includes the header
 and uses the function
"saxpy.hh"
auto main() -> int
{
using namespace std;
const array inpl { 1., 2., 3., 4., 5. };
const array inp2 { 9., 8., 7., 6., 5. };
vector outp (inpl.size(), 0.);
saxpy (10., {inpl}, {inp2}, {outp});
for (auto x outp) cout << x << "\n";
cout << ":i::i::i:iiiiiiii:i::i::i:::\n";
}

Member of the Helmholtz Association

8 — 12 May 2023

JULICH

J Forschungszentrum

Slide 43

=
H O © WO O R W

o
w N

CREATING A MODULE (EXAMPLE)

Make a module interface unit

// saxpy.hh —> saxpy.ixx
#ifndef SAXPY_ HH

#define SAXPY_ HH
#include <algorithm>

#include

template <class T>

concept Number = std::floating_point<T>
or std::integral<T>;

template <Number T>

auto saxpy (T a, std::span<const T> x,

R =
[R R R S

std::span<const T> vy,
std: :span<T> z)
{
std::transform(x.begin (x.end (),
y.begin(z.begin(),

[al(T X, T Y)
return a

Member of the Helmholtz Association

8 — 12 May 2023

Slide 44

JULICH

Forschungszentrum

// saxpy.hh —-> saxpy.

#ifndef SAXPY_HH

SAXPY_HH

<algorithm>

#define
#1 d

template <class T>
concept Number = std
or std:

template <Number T>
auto saxpy (T a, std:

1XX

::floating_point<T>
rintegral<T>;

:span<const T> x,

std::span<const T> vy,
std: :span<T> z)

std::transform(x.begin(), x.end(),
y.begin(), z.begin(),
[al (T X, T Y) {
return a * X + Y;

b
}
#endif

Member of the Helmholtz Association

8 — 12 May 2023

CREATING A MODULE (EXAMPLE)

Make a module interface unit

Include guards are no longer required, since

importing a module does not transitively import

things used inside the module

Slide 44

/)

JULICH

Forschungszentrum

=
H O © WO O R W

N
SO XN G AW N

CREATING A MODULE (EXAMPLE)

Make a module interface unit

// saxpy.hh -> saxpy.ixx = Include guards are no longer required, since
importing a module does not transitively import
things used inside the module

#
#

template <class T>
concept Number = std::floating_point<T>
or std::integral<T>;
template <Number T>
auto saxpy (T a, std::span<const T> x,
std: :span<const T> vy,
std: :span<T> z)

std::transform(x.begin(), x.end(),
y.begin(), z.begin(),
[al(T X, T Y) |
return a * X + Y;
b

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 44 Forschungszentrum

o
H O ©®mNO O AW N e

N
SO XN G AW

CREATING A MODULE (EXAMPLE)

// saxpy.hh —-> saxpy.ixx

module;

export module saxpy;

template <class T>
concept Number = std::floating_point<T>
or std::integral<T>;
template <Number T>
auto saxpy (T a, std::span<const T> x,
std::span<const T> vy,
std: :span<T> z)

std::transform(x.begin(), x.end(),
y.begin(), z.begin(),
[al(T X, T Y) {
return a * X + Y;
b

Member of the Helmholtz Association 8 — 12 May 2023

Make a module interface unit
= Include guards are no longer required, since
importing a module does not transitively import
things used inside the module
= A module interface unit is a file which
exports a module . The lines between the
module; and export module saxpy;

constitute the “global module fragment”, where
traditional #include statements can be used.

IJ JULICH

Slide 44 Forschungszentrum

'S

© N o«

11
12
13
14
15
16
17
18
19
20

// saxpy.hh
export module saxpy;
import <algorithm>;

import ;

template <class T>
concept Number = std

or std:

template <Number T>
auto saxpy (T a, std:

-> saxpy.

::floating_point<T>
:integral<T>;

:span<const T> x,

std::span<const T> vy,
std::span<T> z)

std::transform(x
y

[al (T X,
return a

P

TY) {

.begin(), x.end(),
.begin(), z.begin(),
* X + Y;

Member of the Helmholtz Association

8 — 12 May 2023

CREATING A MODULE (EXAMPLE)

Make a module interface unit

= Include guards are no longer required, since

importing a module does not transitively import
things used inside the module

= A module interface unit is a file which
exports a module . The lines between the

module;

and export module saxpy;

constitute the “global module fragment”, where

traditional

#include statements can be used.

= If you can get by with only import s, replace

#include lines with corresponding import

lines. Omit the module;

Slide 44

line in this case.

/)

JULICH

Forschungszentrum

15
16
17
18
19
20

CREATING A MODULE (EXAMPLE)

Make a module interface unit

// saxpy.hh -> saxpy.ixx

export module saxpy;
import <algorithm>;

import ;

template <class T>
concept Number = std::floating_point<T>
or std::integral<T>;
export template <Number T>
auto saxpy (T a, std::span<const T> x,
std: :span<const T> vy,
std: :span<T> z)

std::transform(x.begin(),
y.begin(),

[al(T X, T Y) {
return a * X + Y;

x.end (),
z.begin(),

)i

Member of the Helmholtz Association 8 — 12 May 2023

Include guards are no longer required, since
importing a module does not transitively import
things used inside the module
A module interface unit is a file which
exports a module . The lines between the

module; and export module saxpy;
constitute the “global module fragment”, where
traditional #include statements can be used.

If you can get by with only import s, replace
#include lines with corresponding import

lines. Omit the module; line in this case.

Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a modu‘Ie is automatically

private to the module J JULICH

Slide 44 Forschungszentrum

CREATING A MODULE (EXAMPLE)

Use your module

1 // usesaxpy.cc

2 #include <iostream>

3 #include <array>

4 #include <vector>

5 #include

6 #include "saxpy.hh"

7

8 auto main() -> int

9 {
10 using namespace std;
11 const array inpl { 1., 2., 3., 4., 5. };
12 const array inp2 { 9., 8., 7., , 5.}
13 vector outp (inpl.size(), 0.);
14
15 saxpy (10., {inpl}, {inp2}, {outp});
16 for (auto x : outp) cout << x << "\n";
17 cout << ":i::i::i:iiiiiiii:i::i::i:::\n";
18 }

Member of the Helmholtz Association 8 - 12 May 2023 Slide 45

/)

JULICH

Forschungszentrum

15
16
17
18

CREATING A MODULE

(EXAMPLE)

Use your module

// usesaxpy.cc

import <iostream>;

import <array>;

import <vector>;

import ;

#include "saxpy.hh"
auto main() —-> int
{
using namespace std;
const array inpl { 1.

const array inp2 { 9., , ., 6., 5
vector outp(inpl.size(), 0.);

saxpy (10., {inpl}, {inp2}, {outp});
for (auto x outp) cout << x << "\n";
cout << ":i::i::i:iiiiiiii:i::i::i:i::z\n";

y 2., 3., 4., 5.
8 7

Member of the Helmholtz Association

8 — 12 May 2023

= Replace #include lines with corresponding
import lines. Obs: import lines end with a
semi-colon!
bi
bi
Slide 45 J Forschungszentrum

CREATING A MODULE (EXAMPLE)

Use your module

// usesaxpy.cc

import <iostream>;

import <array>;

import <vector>;

import ;

import saxpy;

auto main() -> int

{
using namespace std;
const array inpl { 1., 2., 3.,
const array inp2 { 9., 8., 7.,
vector outp (inpl.size(), 0.);
saxpy (10., {inpl}, {inp2}, {outp});
for (auto x outp) cout << x <<
cout << ":i::i:iiiiiiiiii::i::i:::z\n";

U w;

"\n";

= Replace #include lines with corresponding
import lines. Obs: import lines end with a
semi-colon!

= When importing actual modules, rather than header
units, use the module name without angle
brackets or quotes

Member of the Helmholtz Association

8 — 12 May 2023

JULICH

J Forschungszentrum

Slide 45

CREATING A MODULE (EXAMPLE)

Use your module

// usesaxpy.cc
import <iostream>;
import <array>;
import <vector>;
import ;
import saxpy;
auto main() -> int
{
using namespace std;

const array inpl { 1., 2.,
const array inp2 { 9., 8

vector outp(inpl.size(), O.

saxpy (10., {inpl}, {inp2},

o
U w;

{outp}) ;

for (auto x : outp) cout << x << "\n";

cout << M"rriiiiiiiioiiiiooon:

Member of the Helmholtz Association

8 — 12 May 2023

Replace #include lines with corresponding

import lines. Obs: import lines end with a
semi-colon!

= When importing actual modules, rather than header

units, use the module name without angle
brackets or quotes

Importing saxpy here, only grants us access to
the explicitly exported function saxpy . Not other
functions, classes, concepts etc. defined in the
module saxpy , not any other module imported
in the module interface unit.

IJ JULICH

Slide 45 Forschungszentrum

COMPILATION OF PROJECTS WITH MODULES

= Different compilers require different (sets of) options
= GCC:

= Auto-detects if a file is a module interface unit (exports a module), and generates the CMI as well as an object
file together.

= No special file extension required for module interface units(Just .cc, .cpp, ...like regular source files).
= Requires that standard library header units needed by the project are explicitly generated
= Does not recognise module interface file extensions used by other compilers (.ixx , .ccm etc.)

= Still rather crashy in May 2023, especially if multiple standard library headers are in use.
= Clang:

= Provides standard library header units.

= Comparatively stable for module based code.

= Lots of command line options required

= Different options to translate module interfaces depending on file extensions!

— .ccm or .cppm: -—-precompile
- .ixx: --precompile -xc++-module
— .cc or .cpp: -—-Xclang -emit-module-interface

= Separate generation of object file required
= Module partitions not implemented

Member of the Helmholtz Association 8 — 12 May 2023 Slide 46 Forschungszentrum

IJ JULICH

Exercise 1.10:

Versions of the saxpy program written using header files and then modules can be found in the
examples/modules/saxpy/ . Ihe recipe for building is described in the README.md files in the respective
sub-folders. Familiarize yourself with the process of building applications with modules. Experiment by writing a
new inline function in the module interface file without exporting it. Try to call that function from main .
Check again after exporting it in the module.

Exercise 1.11:

As a more complicated example, we have in examples/modules/2_any the second version of our container with

polymorphic geometrical objects. The header and source files for each class Point , Circle etc have been
rewritten for modules. Compare the two versions, build them, run them. The recipes for building are in the
README.md files.

Exercise 1.12:

Each of the above exercise directories contains a cuMakeLists.txt file. We demonstrate the use of the
experimental support for modules in CMake using the combination Clang-16 and Ninja 1.11 to build these simple
projects. Test it, and try using it for a different example from the course.

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 47 J Forschungszentrum

Closing remarks

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 48 J Forschungszentrum

C++4+ “GENES”

J JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 49 Forschungszentrum

CLOSING REMARKS

—

Soms \ ‘. " e 7 .~ ‘

= Most examples were simply demo code to show you
how it works

UJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 50 Forschungszentrum

en.cppreference.com
isocpp.org

CLOSING REMARKS

= Most examples were simply demo code to show you
how it works

= To really internalise the ideas, you have to solve
those or similar problems yourself

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 50 Forschungszentrum

en.cppreference.com
isocpp.org

CLOSING REMARKS

m A 7 = Most examples were simply demo code to show you
Lz how it works

= To really internalise the ideas, you have to solve
= | those or similar problems yourself

= [nformation summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then

look it up
=
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 50 J Forschungszentrum

en.cppreference.com
isocpp.org

CLOSING REMARKS

2 = Most examples were simply demo code to show you
‘ 3 < how it works

= To really internalise the ideas, you have to solve
= | those or similar problems yourself

Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
TM remember having heard about a feature, and then

look it up

i

Rapidly evolving language

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 50 Forschungszentrum

en.cppreference.com
isocpp.org

CLOSING REMARKS

2 = Most examples were simply demo code to show you
‘ 3 < how it works

= To really internalise the ideas, you have to solve
= | those or similar problems yourself

Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
TM remember having heard about a feature, and then

look it up

i

Rapidly evolving language

en.cppreference.com

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 50 Forschungszentrum

en.cppreference.com
isocpp.org

Member of the Helmholtz Association

CLOSING REMARKS

8 — 12 May 2023

Most examples were simply demo code to show you
how it works

To really internalise the ideas, you have to solve
those or similar problems yourself

Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up

Rapidly evolving language
en.cppreference.com

isocpp.org

IJ JULICH

Slide 50 Forschungszentrum

en.cppreference.com
isocpp.org

CLOSING REMARKS

Member of the Helmholtz Association

8 — 12 May 2023

Most examples were simply demo code to show you
how it works

To really internalise the ideas, you have to solve
those or similar problems yourself

Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up

Rapidly evolving language
en.cppreference.com
isocpp.org

YouTube channel: Jason Turner's C4++ weekly

IJ JULICH

Slide 50 Forschungszentrum

en.cppreference.com
isocpp.org

CLOSING REMARKS

Member of the Helmholtz Association

8 — 12 May 2023

Most examples were simply demo code to show you
how it works

To really internalise the ideas, you have to solve
those or similar problems yourself

Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up

Rapidly evolving language

en.cppreference.com

isocpp.org

YouTube channel: Jason Turner's C4++ weekly

YouTube channel: CppCon conference talks

IJ JULICH

Slide 50 Forschungszentrum

en.cppreference.com
isocpp.org

SOME USEFUL NON-STANDARD LIBRARIES

= Lyra command line processing
= CTRE Compile time regular expressions

= xtensor (the entire xtensor-stack): C++ SIMD wrappers, numpy style multi-dimensional array
operations...

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 51 Forschungszentrum

XTENSOR: MULTI-DIMENSIONAL ARRAYS WITH

© 0N U W N

Member of the Helmholtz Association

LAZY EVALUATION

np.linspace (0., 2., 10)
np.logspace(l., 10., 4)
np.zeros (10, 10)

A[l,2]

A.flat (4)

Al:, 3]

A[:3, 3:]
np.vectorize (f)

A[A > 1.0]

Al[L1,2], [0,1]]
np.random.rand (100, 200)
np.random.shuffle (A)
np.where(a < 0, a , b)
np.load_txt (file, delim)
np.linalg.svd(a)
np.linalg.eig(a)

= Syntax modelled after python numpy
= Sometimes more lazy evaluations

8 — 12 May 2023

© 0N U W N

e el e
AW N = O

15

16

xt:
xt:
Xt:
A(l,
Al4]
Xt:
Xt:
xt:
xt:
xt:
Xt:
xXt:
xt:
xt:
xt:
Xt:

:linspace<double> (0., 2., 10UL);
:logspace<double> (2., 10., 4UL);
:zeros<double> ({10UL, 10UL});

2);

7

:col (A, 3) or xt::view(A, xt::all, 3);
:view (A, xt::range(_, 3), xt::range(3,_));
:vectorize (f);

:filter (A, A > 1.0);

:index_view (A,
:random: : rand<double> ({100, 200});
:random: :shuffle (A);

:where (A < 0, A, B);
:load_csv<double> (stream) ;
:linalg::svd(2);

:linalg::eig(R);

1,2}, 10,11

IJ JULICH

Slide 52 Forschungszentrum

=
O © KN O A WN -

= e
B oW N

#include
#include
#include
#include
#include
#include

<xtensor/xtensor.hpp>
<xtensor/xarray.hpp>
<xtensor/xio.hpp>
<xtensor/xrandom.hpp>
<xtensor-blas/xlinalg.hpp>
<iostream>

auto main() -> int

{
auto
auto
std::
std::

R = xt::random::rand<double> ({4,
eigs = xt::linalg::eigvals(R);
cout << R << "\n\n";

cout << eigs << "\n";

41)i

Member of the Helmholtz Association

8 — 12 May 2023

Exercise 1.13:

The short program examples/xt0.cc demonstrates

using xtensor with eigen value evaluation. The
linear algebra functionality in xtensor is currently
handled by an external project xtensor-blas,
which offloads some of the work to a blas library. To
build the program, set the include path to include
headers from “xtensor-stack”, i.e., xtl , xtensor,

xsimd , xtensor-io and xtensor-blas . They
can be given a common installation prefix. For includes,
use S$swhome/include and for linking,

-L $swhome/lib64 -lopenblas -lpthread -lgfortran

lJ JULICH

Slide 53 Forschungszentrum

LYRA: COMMAND LINE PROCESSING

1 auto cli = lyra::help(showhelp)

2 | lyra::opt (N, "N_samples") ["-N"]["--number-of-samples"]

3 ("The number of samples you want to generate")

4 | lyra::opt(mean, "mu")["-m"]["--mean"] ("The mean of the distribution")

5 | lyra::opt(stdv, "sigma")["-s"]["--standard-deviation"] ("Standard deviation");
6

7 auto cli_good = cli.parse({ argc, argv });

8

9 if (not cli_good) {

10 std::cerr << "Error in command line: " << cli_good.errorMessage() << "\n";
11 return 1;

12 }

13

14 if (showhelp or argc == 1) {

15 std::cout << cli;

16 return 0;

17 }

18

lJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 54 Forschungszentrum

CTRE: COMPILE TIME REGULAR EXPRESSIONS

constexpr ctll::fixed_string re{ R"xpr (" (https:|http:|www\.)\Sx)xpr" };

auto urls_in_input = args | sv::drop(1l)
| sv::transform([=] (auto inp) { return str (inp); })
| sv::filter([re] (auto inp) { return ctre::search<re>(inp); 1});

(<3G N SR U

= Regular expressions parsed at compile time.

= Smaller binaries than std: :regex

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 55 Forschungszentrum

	Day 5
	Type erasure
	More from the STL
	Ranges
	Text formatting

	Modules
	Closing remarks
	xtensor

