- N

PROGRAMMING IN C++
Jiilich Supercomputing Centre

8 — 12 May 2023 | Sandipan Mohanty | Forschungszentrum Jiilich, Germany

@) JULICH
Member of the Helmholtz Association J Forschungszentrum

Day 3

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 1 Forschungszentrum

1 class Example {

2 double x{1.0};

3 auto operator () (unsigned long i) const -> double
4 {

5 auto ans {1.0};

6 while (i--) ans *= x;
7 return ans;

8 }

9 }i

10 auto main() -> int

11 {

12 Example one;

13 one (5UL) ;

14 }

Spot the error!
= We are accessing the non-constant member variable x in the const member function operator ()
= There are no constructors, so it should not be possible to construct an object of type Example in
main ()
= The operator () in this class is not accessible in main ()
= Nothing is wrong, this code is fine.

IJ JULICH

Member of the Helmholtz Association 8 - 12 May 2023 Slide 2 Forschungszentrum

class Example ({
auto inspect (double x) -> bool;
auto inspect (const Example& e2) -> bool;
}i
auto main() -> int
{
Example x, y;
double d{7.0};

0 N U AW N

—
o ©

x.inspect (d);
x.inspect (y);

=
S

Based on what you can see above, which variable in main () remained unchanged between lines 9 and 127
x and y
Only vy

H vy and d
4]

Only d
@ » JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 3 J Forschungszentrum

Inheritance and class hierarchies

Member of the Helmholtz Association 8 — 12 May 2023 Slide 4 J Forschungszentrum

CLASS INHERITANCE
. @ Tree of Life

Analogy

= Inherited traits: many properties shared among entities of
different related types

= Each branch may add new properties

= Seems like a good fit to different ideas we may want to
represent in code

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 5 Forschungszentrum

o B N

CLASS INHERITANCE

struct Point {double X, Y;};
class Triangle ({
public:
// Constructors etc., and then,
void translate();
void rotate (double byangle);
auto area () const -> double;
auto perimeter () const -> double;
private:
Point vertex[3];
}i
class Quadilateral {
public:
void translate();
void rotate (double byangle);
auto area () const -> double;
auto perimeter () const -> double;
auto is_convex() const -> bool;
private:
Point vertex[4];

bi

Member of the Helmholtz Association

8 - 12 May 2023 Slide 6

Geometrical figures

= Many actions (e.g. translate and rotate) will involve identical
code

= Properties like area and perimeter make sense for all,
but are better calculated differently for each type

= There may also be new properties (is_convex) introduced
by a type

IJ JULICH

Forschungszentrum

=
H O © WO oA W

I = B e
[A R N)

INHERITANCE:

BASIC SYNTAX

class SomeBase {
public:
double f();
protected:
int i;
private:
int j;
Vi
class Derived
void haha () {
// can access f() and
// can not access j
}
Vi
void elsewhere ()
{
SomeBase aj;
Derived b;
// Can call a.f(),
// but e.g., a.i = 0;

public SomeBase {

or public

= Class members can be private, protected

= public members are accessible from everywhere

= private members are for internal use in one

class

is not allowed

Member of the Helmholtz Association

8 - 12 May 2023

Slide 7

/)

= protected members can be seen by derived
; classes

JULICH

Forschungszentrum

INHERITANCE

= Inheriting class may add more data, but it retains
all the data of the base

= The base class functions, if invoked, will see a base
class object

= The derived class object is a base class object, but
with additional properties

Ny’

access of base
class functions

Ny

access of derived class functions
ualified by private, protected etc .
(q yp p) 9 JULICH

Forschungszentrum

Member of the Helmholtz Association 8 - 12 May 2023 Slide 8

INHERITANCE

= A pointer to a derived class always points to an
address which also contains a valid base class
object.

= baseptr=derivedptr is called "upcasting".
Always allowed.

= Implicit downcasting is not allowed. Explicit
v downcasting is possible with static_cast and
dynamic_cast

access of base
class functions

Ny

access of derived class functions
(qualified by private, protected etc)

IJ JULICH

Member of the Helmholtz Association 8 - 12 May 2023 Slide 9 Forschungszentrum

INHERITANCE

}i
class Derived : public Base ({

int k{0};
9 public:
10 void g() { std::cout << "Derived::g()\n"; }

1 class Base ({

2 public:

3 void f() { std::cout << "Base::f()\n"; }
4 protected:

5 int i{4};

6

7

8

11 }i
access of base o dnt main
. 13
class functions 14 Derived b;

15 Base xptr = &b;

16 ptr->g(); // Error!

17 static_cast<Derived *>(ptr)->g(); //OK
18 }

access of derived class functions
(qualified by private, protected etc)

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 10 Forschungszentrum

CLASS INHERITANCE

= We want to write a program to
= list the area of all the geometric objects
= select the largest and smallest objects
= draw

in our system.

= A loop over a vector of them will be nice. But vector< ?22? >

= Object oriented languages like C++, Java, Python ... have a concept of "inheritance" for the classes, to
describe such conceptual relations between different types.

= 4 ways to solve this problem in C++ will be introduced at various points in this course

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 11 Forschungszentrum

INHERITANCE WITH VIRTUAL FUNCTIONS

[ctass Shape = Abstract concept class “Shape”

tate(), - areal) ‘ = Inherited classes add/change some
ranslate(...); perimeter();

properties
¥ N

: . . . “ "
ciass Poiygon] ‘lass Gircle = and inherit other properties from “base
Point centr; area(); class

doubler; perimeter();
translate(); circumference();

std::vector<Point> vertex;
int nvrtx;

perimeter();

[class Triangle class Quadilateral

npt=3; area(); ‘ npt=4; area();

is_convex();

A triangle is a polygon. A polygon is a shape. A circle is a shape.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Forschungszentrum

Slide 12

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS

= Circle is a derived class from base class Shape

; ;i;iic?hape { = A derived class inherits from its base(s), which are
3 virtual ~Shape() = 0; indicated in the class declaration.

4 virtual void rotate (double) = 0; . ; .

5 virtual void translate (Point) — 0; = Functions marked as virtual in the base class
6 virtual auto area() const —> double = 0; can be re-implemented in a derived class.

7 virtual auto perimeter () const -> double = 0;

8 }i

9 class Circle : public Shape {

10 public:

11 Circle(); // and other constructors

12 ~Circle();

13 void rotate (double phi) {}

14 auto area() const -> double override

15 {

16 return pi * r * r;

17 }

18 private:

19 double r;

20 };

Note: In C4++, member functions are not virtual by default. ‘J JUL'CH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 13 Forschungszentrum

e
= O © 0N O U W

o e
B oW N

15
16
17
18
19
20
21
22

Member of the Helmholtz Association

class Shape {

public:
virtual ~Shape() = 0;
virtual void rotate (double) = 0;
virtual void translate(Point) = 0;
virtual double area() const = 0;

virtual auto perimeter () const -> double
i
class Circle
public:
Circle(); // and other constructors
~Circle();
void rotate (double phi) {}
auto area() const -> double override
{
return pi x* r * r;
}
private:
double r;

public Shape {

}i
Shape a; // Error!
Circle b; // ok.

8 — 12 May 2023

CLASS INHERITANCE WITH

VIRTUAL FUNCTIONS

= A derived class inherits all member variables and
functions from its base.

= virtual re-implemented in a derived class are
said to be "overriden", and ought to be marked
with override

= A class with a pure virtual function (with " = 0" in

the declaration) is an abstract class. Objects of
that type can not be declared.

IJ JULICH

Slide 14 Forschungszentrum

© 0N oA W N

[S~
AW N = O

class Polygon : public Shape {
public:
auto perimeter () const -> double final
{
// return sum over sides
}
protected:
vector<Point> vertex;
int npt;
Vi
class Triangle : public Polygon {
public:
Triangle () : npt(3)
{
vertex.resize(3); // ok
}
auto area() const -> double override
{
// return sqrt (s+(s-a)*(s-b)*(s-c))
}
i
Member of the Helmholtz Association 8 - 12 May 2023

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS

Syntax for inheritance
= Triangle implements its own area () function,
but can not implement a perimeter () , as that

is declared as f£inal in Polygon . This is done
if the implementation from the base class is good
enough for intended inheriting classes.

Slide 15 Forschungszentrum

IJ JULICH

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS

= The keyword override ensures that the

1 1 Pol : public Sh . . .
) ;uziic,° ygon : public Shape { compiler checks there is a corresponding base class
3 auto perimeter () const —> double final function to override.

4 {

5 J/ return sum over sides = Virtual functions can be re-implemented without
6 } this keyword, but an accidental omission of a

7 protected: const oran & can lead to really obscure

8 vector<Point> vertex; R

9 int npt; runtime errors.

10}

11 class Triangle : public Polygon {

12 public:

13 Triangle () : npt(3)

14 {

15 vertex.resize(3); // ok

16 }

17 auto areal() > double override // Error!!

18 {

19 // return sqrt(s+(s-a)*(s-b)*(s-c))

20 }

21 };

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 16 Forschungszentrum

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS

}

1 int main ()

2 {

3 vector<std::unique_ptr<Shape>> shape;

4 shape.push_back (std: :make_unique<Circle> (0.5, Point(3,7)));

5 shape.push_back (std: :make_unique<Triangle> (Point (1,2), Point(3,3), Point(2.5,0)));
6 ..

7 for (size_t i = 0;1 < shape.size(); ++i) {

8 std::cout << shape[i]->area() << '\n';

9

0

[

= A pointer to a base class is allowed to point to an object of a derived class
= Here, shape[0]->area() will call Circle::area() , shape[l]->area () will call

Triangle::area()

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 17 Forschungszentrum

A LITTLE DEMO

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 18 Forschungszentrum

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS

D *d=new D2;
d->f();

f() | function ptr
g() | function ptr

f() | function ptr

g() [function ptr

Member of the Helmholtz Association

f0
a0

function ptr

function

function

function

function ptr

8 — 12 May 2023

= For classes with virtual functions, the compiler
inserts an invisible pointer member to the data and
additional book keeping code

= There is a table of virtual functions for each derived
class, with entries pointing to function code
somewhere

= The vptr pointer points to the vtable of that
particular class

.
' 4) JULICH
Slide 19 Forschungszentrum

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS

IJ JULICH

holtz Associaton ~ 8-12May2023 Slide20 -4 Forschungszentru

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS

= Virtual function call proceeds by first finding the 2_:?5;"'5‘” b2
right vtable, then the correct entry for the called
function, dereferencing that function pointer and - function
then executing the correct function body B function

function

= Don’t make everything virtual! The overhead, with

modern machines and compilers, is not huge. But

abusing this feature will hurt performance

£() | function ptr
g() | function ptr

f() [function ptr
g() | function ptr 0

function ptr
9() |function ptr

Member of the Helmholtz Association 8 — 12 May 2023

.
' 4) JULICH
Slide 21 Forschungszentrum

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS

= Virtual function call proceeds by first finding the 2_:?5;"'5‘” b2
right vtable, then the correct entry for the called
function, dereferencing that function pointer and - function
then executing the correct function body B function

function

= Don’t make everything virtual! The overhead, with

modern machines and compilers, is not huge. But

abusing this feature will hurt performance

£() | function ptr
g() | function ptr

f() [function ptr
g() | function ptr 0

function ptr
9() |function ptr

Member of the Helmholtz Association 8 — 12 May 2023

.
' 4) JULICH
Slide 21 Forschungszentrum

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS

= Virtual function call proceeds by first finding the
right vtable, then the correct entry for the called
function, dereferencing that function pointer and
then executing the correct function body

= Don’t make everything virtual! The overhead, with
modern machines and compilers, is not huge. But
abusing this feature will hurt performance

Member of the Helmholtz Association 8 — 12 May 2023

f0
90

D *d=new D2;
d->f();

function
°a function
>

function
function ptr
function ptr

f() [function ptr
g() | function ptr 0

function ptr
9() [function ptr

= But if virtual functions offer the cleanest solution
with acceptable performance, don't invent weird
things to avoid them!

.
' 4) JULICH
Slide 21 Forschungszentrum

© 0N oA W N e

[
o

CLASS INHERITANCE

Inherit or include as data member ?

class DNA {

std::valarray<char> seq;
Vi
class Cell : public DNA ??27
or
class Cell {

DNA mydna;
Vi

Member of the Helmholtz Association 8 — 12 May 2023

= A derived class extends the concept represented by

its base class in some way.

= Although this extension might mean addition of

new data members,

B = A® newdata

does not necessarily mean the class for B should

inherit from the class for A

Slide 22

/)

JULICH

Forschungszentrum

© 0N oA W N e

[S
AW N = O

CLASS INHERITANCE

Inherit or include as data member ?

class

std:

Vi
class
or
class
”JZ.)NA
Vi

DNA {

:valarray<char> seq;

Cell : public DNA 2?77

Cell {

mydna;

Member of the Helmholtz Association 8 — 12 May 2023

is vs has

= A good guide to decide whether to inherit or
include is to ask whether the concept B contains an
object A, or whether any object of type B is also an
object of type A, like a monkey is a mammal, and a
triangle is a polygon.

= is — inherit . has — include

Slide 23

IJ JULICH

Forschungszentrum

CLASS INHERITANCE

Inheritance summary

= Base classes to represent common properties of related types : e.g. all proteins are molecules, but all
molecules are not proteins. All triangles are polygons, but not all polygons are triangles.

= Less code: often, only one or two properties need to be changed in an inherited class
= Helps create reusable code
= A base class may or may not be constructable (Polygon as opposed to Shape)

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 24 Forschungszentrum

CLASS DECORATIONS

More control over classes

= Possible to initialise data in class declaration
= |nitialiser list constructors
= Delegating constructors allowed

= Inheriting constructors possible

Member of the Helmholtz Association

8 — 12 May 2023

class A {
int vI[]{1, -1, -1, 1};

public:
A() = default;
A(std::initializer_list<int> &);
A(int i, int j, int k, int 1)
{

v[0] = i;
vI[il]l = 3;
v[2] = k;
v[i3] = 1;

}

//Delegate work to another constructor

A(int i, int j) : A(i, 3, 0, 0) {}
}i
class B
public:
// Inherit all constructors from A

using A::A;

B(string s);

public A {

bi

9 JULICH

Slide 25 Forschungszentrum

MORE CONTROL OVER CLASSES

Member of the Helmholtz Association

Explicit default , delete, override and
final
"Explicit is better than implicit"

More control over what the compiler does with the
class

Compiler errors better than hard to trace run-time
errors due to implicitly generated functions

8 — 12 May 2023

© W N O W N

e e
©® N oUW N~ O

class A {
// Automatically generated is ok
A() = default;
// Don't want to allow copy
A(const A &) = delete;
A & operator=(const A &) =
// Instead, allow
A(const A &&);

delete;

a move constructor

// Don't try to override this!
void getDrawPrimitives () final;
virtual void show (int 1i);
}i
class B public A
{
B() = default;
void show()override; //will be an error!

}i

JULICH

J Forschungszentrum

Slide 26

The directory exercises/geometry contains a set of files for the classes Point, Shape, Polygon, Circle,
Triangle, and Quadrilateral. In addition, there is a main.cc and a CMakeLists.txt . Observe the use of
the keywords like default , override , final etc. Familiarise yourself with

= Implementation of inherited classes

= Compiling multi-file projects

= The use of base class pointer arrays to work with heterogeneous types of objects

mkdir build

cd build
CXX=g++ cmake ..
make

lJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 27 Forschungszentrum

Using STL containers and algorithms

Member of the Helmholtz Association 8 — 12 May 2023 Slide 28 J Forschungszentrum

ALGORITHMS

examples/strtrans.cc
#include <iostream>
#include <algorithm>
#include <string>
auto main() —-> int {
std::string name;
std::cout << "What's your name ? ";
getline (std::cin, name);
auto bkpname {name};
std: :transform(begin (name), end(name), begin(name), toupper);
std::cout << bkpname << " <-——————- > " << name << "\n";

= What does this code do ?

@ » JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 29 J

Forschungszentrum

ALGORITHMS

examples/strtrans.cc
#include <iostream>
#include <algorithm>
#include <string>
auto main() —-> int {
std::string name;
std::cout << "What's your name ? ";
getline(std::cin, name);
auto bkpname {name};
std::transform(begin(name), end(name), begin(name), toupper);
std::cout << bkpname << " <———————- > " << name << "\n";

= What does this code do ?

= std::transform transforms each element in an input range, and writes the results to an output range
using a given operation

@ » JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 29 J

Forschungszentrum

=
H O © WO O R W

[I I S N~ et
[N R N)

ALGORITHMS

#include <iostream>
#include <fstream>
#include <vector>
#include <ranges>
#include <algorithm>
#include <string>
auto main(int argc, charx argv[]) -> int {
std::vector<std::string> names;
std::ifstream input_file{argv([1]};
std: :string name;
while (getline (input_file, name))
if (not name.empty())
names .push_back (name) ;
std::ranges::sort (names) ;
//
//
//
//
for (auto n : names)
std::cout << n << "\n";
}
Member of the Helmholtz Association 8 - 12 May 2023

= What does this code do ?

Slide 30

/)

JULICH

Forschungszentrum

=
H O © WO O R W

O I N B W
[N R N)

ALGORITHMS

= What does this code do ?

<iostream>
<fstream>
<vector>
<ranges>
<algorithm>

#in ide <string>
auto main (int argc, charx argv([])
std::vector<std::string> names;

::string name;

= vector, string grow to accommodate any

new element added using push_back

-> int {

ifstream input_file{argv[1l]};

while (getline (input_file, name))

if (not name.empty())
names.push_back (name) ;
std::ranges::sort (names) ;
//
//
//
//

for (auto n : names)
std::cout << n << "\n";

Member of the Helmholtz Association

IJ JULICH

8 — 12 May 2023 Slide 30 Forschungszentrum

=
H O © WO O R W

O I N B W
[N R N)

AL

GORITHMS

= What does this code do ?

<iostream>
<fstream>
<vector>

<ranges>
<algori

<string>

thm>

= vector, string grow to accommodate any

new element added using push_back

= sort sorts a range in increasing order

(int argc, charx argv[]) -> int {

std::vector<std::string> names;

::string name;

while (getline (input_file,

/7
/7
/7
/7

if (not name.empty())
names.push_back (name) ;

std::ranges::sort (names) ;

for (auto n : names)
std::cout << n << "\n";

ifstream input_file{argv[1l]};

Member o

f the Helmholtz Association

name))
@) JULICH
8 — 12 May 2023 Slide 30 J Forschungszentrum

=
H O © WO O R W

O I N B W
[N R N)

ALGORITHMS

<iostre . d
<fstream = vector , string grow to accommodate any
“vector> new element added using push_back
<rang
g = sort sorts a range in increasing order
finc e <string
auto main(int argc, chars argv[]) -> int { = What is "increasing" order is decided by using the
std::vector<std::string> names;
std::ifstream input_file{argv[l]}; operator < to compare elements of the sequence
std: :string name;
while (getline (input_file, name))
if (not name.empty())
names.push_back (name) ;
std::ranges::sort (names) ;
//
//
//
//
for (auto n : names)
std::cout << n << "\n";
} .o
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 30 Forschungszentrum

= What does this code do ?

=
H O © WO O R W

[I I S N~ et
[N R N)

ALGORITHMS WITH LAMBDA FUNCTIONS

= What does this code do ?

<iostream>

<fstream>

<vector>

#include <ranges>

#include <algorithm>

#include <string>

auto main(int argc, charx argv[]) -> int {
std::vector<std::string> names;
std::ifstream input_file{argv([1]};
std: :string name;
while (getline (input_file, name))

if (not name.empty())
names .push_back (name) ;

std::ranges: :sort (names,
[] (auto namel, auto name2) {
return namel > name2;

)i

for (auto n : names)
std::cout << n << "\n";

Member of the Helmholtz Association 8 — 12 May 2023 Slide 31

/)

JULICH

Forschungszentrum

=
H O © WO O R W

O I N B W
[N R N)

ALGORITHMS WITH LAMBDA FUNCTIONS

<iostream>
<fstream>
<vector>
<ranges>
<algorithm>

#in ide <string>
auto main(int argc, charx argv([]) -> int {
std::vector<std::string> names;
::ifstream input_file{argv([1l]};
::string name;
while (getline (input_file, name))
if (not name.empty())
names.push_back (name) ;

std::ranges: :sort (names,
[] (auto namel, auto name2) {
return namel > name2;

)i

for (auto n : names)
std::cout << n << "\n";

Member of the Helmholtz Association 8 — 12 May 2023

= What does this code do ?

= We can give std::sort a comparison function
as the sorting criterion

IJ JULICH

Slide 31 Forschungszentrum

=
H O © WO O R W

O I N B W
[N R N)

ALGORITHMS WITH

LAMBDA FUNCTIONS

<iostream>
<fstream>
<vector>

<ranges>
<algori

<string>

thm>

std::vector<std::string> names;
::ifstream input_file{argv([1l]};
::string name;
while (getline (input_file, name))
if (not name.empty())
names.push_back (name) ;

std::ranges: :sort (names,

[] (auto namel, auto name2)
return namel > name2;

)i

for (auto n : names)
std::cout << n << "\n";

= What does this code do ?

= We can give std::sort a comparison function
as the sorting criterion

= This can be used to order the elements in lots of
different ways. Like sorting in decreasing order.

(int argc, charx argv[]) -> int {

{

Member of the Helmholtz Association 8 — 12 May 2023 Slide 31

IJ JULICH

Forschungszentrum

=
H O © WO O R W

O I N B W
[N R N)

ALGORITHMS WITH LAMBDA FUNCTIONS

<iostream
<fstream>
<vector>
<algorithm>
<string>
auto main(int argc, charx argv([]) -> int
{
std::vector<std::string> names;
std::ifstream input_file{argv([1]};
std: :string name;
while (getline (input_file, name))
if (not name.empty())
names.push_back (name) ;
std::ranges: :sort (names,
[] (auto namel, auto name2) {
return namel.length() <
name2.length () ;
}
)i
for (auto n : names)
std::cout << n << "\n";
}
Member of the Helmholtz Association 8 - 12 May 2023

What does this code do ?

We can give std::sort a comparison function

as the sorting criterion

This can be used to order the elements in lots of
different ways. Like sorting in decreasing order.

Or, sorting by the length of the strings ...

Slide 31

/)

JULICH

Forschungszentrum

=
H O © WO O R W

LT T I R e =t
e R N S I S NI T)

ALGORITHMS WITH LAMBDA FUNCTIONS

auto main (int argc,

{

e <s

charx argv([]) -> int
using namespace std;

vector<std::string> names;

ifstream input_file{argv[1l]};
string name;
while (getline (input_file, name))

if (not name.empty()) names.push_back (name);
sort (names.begin (), names.end(),
[] (auto namel, auto name2) -> bool {
return namel.length() < name2.length();
}
)i
for cout << n << "\n";

(auto n names)

Member of the Helmholtz Association

8 — 12 May 2023

sort () needs a function comparing two elements

If we have such a function, we can pass its name
If we don’t, we can kind of write the content of the
function, as the argument to the function

sort ()

These kind of functions, declared as shown are
called "lambda functions"

Notation resembles a mapping a, b, c... — value
from some inputs to an output value, although
frequently we skip the trailing return type if the
return type is unambiguous

JULICH

J Forschungszentrum

Slide 32

=
H O © WO O R W

o e e
SIS)

LAMDA FUNCTIONS

auto my_cmp (string_view nl,
-> int

string_view n2)

{
return nl.length() < n2.length();

}

std: :sort (names.begin(), names.end(), my_cmp);

std: :sort (names.begin (), names.end(),
[] (auto namel, auto name2) {
return namel.length() <
name2.length();

= By themselves, "nameless functions"

© W N U W N

e S R
ok W N R O

double x{1.45};
//

//

//

//

//

y = sin(x);
//

y = sin(1.45);
//

//

////

//

//

//

= Passed as comparison or filtering criteria etc. to generic functions like sort , which can work with any

"callable object"

Member of the Helmholtz Association 8 — 12 May 2023

IJ JULICH

Slide 33 Forschungszentrum

Exercise 1.2:
In the working directory for the course chapter, you will find a file with the often used "lorem ipsum" text. Write

a program that takes a text file, and finds all words shorter than 3 letters. If you need to use a lambda function,
copy one from one of the slides and modify its code. We will learn its exact syntax later!

@) JULICH
8 — 12 May 2023 Slide 34 J Forschungszentrum

Member of the Helmholtz Association

Function and class templates

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 35 J Forschungszentrum

© 0N OO AW N e

-
o

e I I S N

[
o

FUNCTION OVERLOADING

auto power (int x, unsigned n) -> unsigned
{

ans = 1;

for (; n > 0; --n) ans *= x;

return ans;
}
auto power (double x, double y) -> double
{

return exp(y * log(x));
}

auto someother (double mu, double alpha,
int rank) -> double
{

double st=power (mu,alpha) xexp (-mu) ;

if (n_on_bits (power (rank,5))<8)
st=0;

return st;

Member of the Helmholtz Association

8 — 12 May 2023

= When specialised strategies are needed to
accomplish the same task for different types

IJ JULICH

Slide 36 Forschungszentrum

© 0N OO AW N e

-
o

e I I S N

[
o

FUNCTION OVERLOADING

auto power (int x, unsigned n) -> unsigned
{

ans = 1;

for (; n > 0; —--n) ans *= x;

return ans;
}
auto power (double x, double y) -> double
{

return exp(y * log(x));
}

auto someother (double mu, double alpha,
int rank) -> double
{

double st=power (mu,alpha) xexp (-mu) ;

if (n_on_bits (power (rank,5))<8)
st=0;

return st;

Member of the Helmholtz Association

8 — 12 May 2023

= When specialised strategies are needed to
accomplish the same task for different types

= Static polymorphism: no virtual dispatch,
everything resolved at compilation time

JULICH

Slide 36 J Forschungszentrum

=
H O ©®NO oA W N

LT T R e =t
R R N S I S I NI T)

FUNCTION OVERLOADING

void copy (intx start, intx end, intx start2)
{
for (; start != end; ++start, ++start2) {
xstart2 = xstart;
}
}
void copy (stringx start, stringx end,
string* start2)
{
for (; start != end; ++start, ++start2) {
xstart2 = *start;
}
}
void copy (doublex start, doublex end,
double+ start2)
{
for (; start != end; ++start, ++start2) {
«start2 = xstart;
}
}
double a[10], b[10];

copy(a, a + 10, b);

Member of the Helmholtz Association 8 — 12 May 2023

= When specialised strategies are needed to

accomplish the same task for different types

= Static polymorphism: no virtual dispatch,

everything resolved at compilation time

= But sometimes we need the opposite: same

operations to be performed on different kinds of
input

IJ JULICH

Slide 36 Forschungszentrum

=
H O ©®NO oA W N

LT T R e =t
R R N S I S I NI T)

INTRODUCTION TO C++ TEMPLATES

void copy (intx start, intx end, intx start2)
{
for (; start != end; ++start, ++start2)
xstart2 = xstart;
}
}
void copy (stringx start, stringx end,
string* start2)
{
for (; start != end; ++start, ++start2)
xstart2 = *start;
}
}
void copy (doublex start, doublex end,
double+ start2)
{
for (; start != end; ++start, ++start2)
«start2 = xstart;
}
}
double a[10], b[10];
copy(a, a + 10, b);

Member of the Helmholtz Association 8 — 12 May 2023

{

{

{

Same operations on different types
= Exactly the same high level code

= Assigning a string to another may involve very
different low level operations compared to assigning
an integer to another. But once we have written
our string class, we may write the exact same code
for the string and integer versions of this kind of
operations!

= Couldn’t we automate the process of writing the 3
variants shown, by perhaps, using a placeholder
type, and generating the right variant wherever
required ?

JULICH

J Forschungszentrum

Slide 37

INTRODUCTION TO C++ TEMPLATES

Wouldn't it be nice,

Dear compiler, in the following, T is a placeholder!
void copy (T+ start, T+ end, Tx start2)

= if we could write the function in terms of
{

some placeholder for the actual type ?
for (; start != end; ++start, ++start2) {
xstart2 = *start;

@ » JULICH
Member of the Helmholtz Association 8 — 12 May 2023 J

Slide 38 Forschungszentrum

INTRODUCTION TO C++ TEMPLATES

Wouldn't it be nice,

Dear compiler, in the following, T is a placeholder! i i i i
void copy (T+ start, T+ end, T+ start2) = if we could write the function in terms of

{ some placeholder for the actual type ?
for (; start != end; ++start, ++start2) {

sstart2 = sstart; = and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?

double a[l10], b[10];

copy<double>(a, a + 10, b);

string names[10], onames[10];
copy<string> (onames, onames + 10, names);

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 38 Forschungszentrum

INTRODUCTION TO C++ TEMPLATES

Wouldn't it be nice,

template <class T> i i . .
void copy(T+ start, T+ end, T+ start2) = if we could write the function in terms of
{ some placeholder for the actual type ?

for (; start != end; ++start, ++start2) {

sstart2 = sstart; = and when we need to use the function, we

} } indicate what to substitute in place of the
placeholder ?
= For the fir int : re!

double a[10], b[10]; or the first point : Sure
copy<double>(a, a + 10, b);
string names[10], onames[10];

copy<string> (onames, onames + 10, names);

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 38 Forschungszentrum

INTRODUCTION TO C++ TEMPLATES

template <class T>
void copy (T* start, Tx end, Tx start2)
{
for (; start != end; ++start, ++start2) {
+*start2 = «start;

}

double a[l10], b[10];

copy(a, a + 10, b);

string names[10], onames[10];
copy (onames, onames + 10, names);

Member of the Helmholtz Association 8 — 12 May 2023

Wouldn't it be nice,

= if we could write the function in terms of
some placeholder for the actual type ?

= and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?

= For the first point : Sure!

= For the second point: the compiler already
knows those types based on the inputs at the
point of usage!

.
' 4) JULICH
Slide 38 Forschungszentrum

INTRODUCTION TO C++ TEMPLATES

template <class T>
void copy (T* start, Tx end, Tx start2)
{
for (; start != end; ++start, ++start2) {
+*start2 = «start;

}

double a[l10], b[10];

copy(a, a + 10, b);

string names[10], onames[10];
copy (onames, onames + 10, names);

Member of the Helmholtz Association 8 — 12 May 2023

Wouldn't it be nice,

= if we could write the function in terms of
some placeholder for the actual type ?

= and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?

= For the first point : Sure!

= For the second point: the compiler already
knows those types based on the inputs at the
point of usage!

= Test it!
examples/template_intro.cc

.
' 4) JULICH
Slide 38 Forschungszentrum

INTRODUCTION TO C++ TEMPLATES

Wouldn't it be nice,

template <class T>
void copy(T+ start, T+ end, T+ start2) = if we could write the function in terms of

{ some placeholder for the actual type ?
for (; start != end; ++start, ++start2) {

sstart2 = xstart; = and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?

}

. o |
double a[10], b[10]; = For the first point : Sure!

copy(a, a + 10, b); = For the second point: the compiler already
i 101, 107; .
string names[10], onames[10] . knows those types based on the inputs at the
copy (onames, onames + 10, names); X
point of usage!
= Test it!

examples/template_intro.cc

Although we seemingly call a function we only wrote once, with different kinds of inputs, the compiler
sees these as calls to two different functions. No runtime decision is needed to find the function to call.

Member of the Helmholtz Association 8 — 12 May 2023 Slide 38 J Forschungszentrum

TEMPLATES

Generic code The logic of the copy operation is quite simple. Given a pair of “iterators” (Behaviourally pointer

like entities: can be advanced along a sequence, can be dereferenced) first and last in an input sequence,
and a target location result in an output sequence, we want to:

= Loop over the input sequence

= For each position of the input iterator, copy the current element to the output iterator position
= Increment the input and output iterators

= Stop if the input iterator has reached last

@ » JULICH
Member of the Helmholtz Association 8 — 12 May 2023 J

Slide 39 Forschungszentrum

A TEMPLATE FOR A GENERIC COPY OPERATION

template <class InputIterator, class OutputIterator>
OutputIterator copy (InputIterator first, InputlIterator last, OutputlIterator result)
{

while (first != last) xresult++ = xfirst++;

return result;

}

(<3G N SR U

C++4 template notation
= A template with which to generate code!

= |f you had iterators to two kinds of sequences, you could substitute them in the above template and have a
nice copy function!

= The compiler does the necessary substitution when you try to use the function

= The compiler needs access to the template source code at the point where it is trying to instantiate it!

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 40 J Forschungszentrum

[B S N

o e e e
Gk W N R O

ORDERED PAIRS

struct double_pair
{

double first, second;
i

double_pair coords[100];

struct int_pair
{

int first, second;
i

int_pair line_ranges[100];

struct int_double_pair
{
/)W

it !

}i

I make a template out

of it?

Member of the Helmholtz Association

8 — 12 May 2023

Class templates

= Classes can be templates too

Slide 41

/)

JULICH

Forschungszentrum

ORDERED PAIRS

Class templates

= Classes can be templates too

1 pair<double,double> coords[100]; = Generated when the template is “instantiated”

2 pair<int,int> line_ranges[100];
3 pair<int,double> whatever;

template <class T, class U>
struct pair

{

pair<int,double> , after the template

substitutions, becomes T first;

U second;

o C A W N e

struct pair<int, double>
{

}i

int first;
double second;
bi

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 41 Forschungszentrum

ORDERED PAIRS

1 pair<double,double> coords([100];
2 pair<int,int> line_ranges[100];
3 pair<int,double> whatever;

pair<int,double> , after the template
substitutions, becomes

struct pair<int, double>
{

int first;

double second;
bi

Member of the Helmholtz Association 8 — 12 May 2023

Class templates

= Classes can be templates too

= Generated when the template is “instantiated”

o C A W N e

template <class T, class U>
struct pair
{
T first;
U second;
bi

Useful for creating many generic types

IJ JULICH

Slide 41 Forschungszentrum

CLASS TEMPLATES YOU HAVE ALREADY SEEN...

» std::vector<T>, std::array<T, N>, std::valarray<T>, std::map<K, V>,

std::string ...

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 42 J Forschungszentrum

CLASS TEMPLATES YOU HAVE ALREADY SEEN...

» std::vector<T>, std::array<T, N>, std::valarray<T>, std::map<K, V>,
std::string ...
smAvectormeans ... LITTTTTTTTTTTTITTTTITTITTTITTTITTITITIT]

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 42 J Forschungszentrum

CLASS TEMPLATES YOU HAVE ALREADY SEEN...

» std::vector<T>, std::array<T, N>, std::valarray<T>, std::map<K, V>,
std::string ...
smAvectormeans ... LITTTTTTTTTTTTITTTTITTITTTITTTITTITITIT]

= The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 42 Forschungszentrum

CLASS TEMPLATES YOU HAVE ALREADY SEEN...

» std::vector<T>, std::array<T, N>, std::valarray<T>, std::map<K, V>,
std::string
smAvectormeans ... LITTTTTTTTTTTTITTTTITTITTTITTTITTITITIT]

= The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements

= The template captures the essential structure, and we don’t need to separately develop, debug or test these
parametrised types for every possible element type

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 42 Forschungszentrum

CLASS TEMPLATES YOU HAVE ALREADY SEEN...

» std::vector<T>, std::array<T, N>, std::valarray<T>, std::map<K, V>,

std::string

= Avectormeans ... LT T TTTTTTITITITITITTITTITITTITITITIT]

= The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements

= The template captures the essential structure, and we don’t need to separately develop, debug or test these
parametrised types for every possible element type

= No inheritance relationship between vectors of different types

@ » JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 42 J

Forschungszentrum

CLASS TEMPLATES YOU HAVE ALREADY SEEN...

» std::vector<T>, std::array<T, N>, std::valarray<T>, std::map<K, V>,
std::string
smAvectormeans ... LITTTTTTTTTTTTITTTTITTITTTITTTITTITITIT]

= The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements

= The template captures the essential structure, and we don’t need to separately develop, debug or test these
parametrised types for every possible element type

= No inheritance relationship between vectors of different types

= No inheritance relationship required between entities which can be vector elements

@ » JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 42 J

Forschungszentrum

VARIABLE TEMPLATES

1 template <class T> constexpr auto algocategory = 0; 18 auto main() -> int

2 template<> constexpr auto algocategory<int> = 1; 19 {

3 template<> constexpr auto algocategory<long> = 1; 20 int v{7};

4 template<> constexpr auto algocategory<intx> = 2; 21 proc(l);

5 template<> constexpr auto algocategory<long*> = 2; 22 proc(l.);

6 template <class T> 23 proc (1L);

7 auto proc(T x) 24 proc (v);

8 { 25 proc (&v);

9 if constexpr (algocategory<T> == 2) { 26 }

10 std::cout << "Using method for category 2 \n";

1 } else if constexpr (algocategory<T> == 1) { = Can be a static data member of a class
12 std::cout << "Using method for category 1 \n"; or a global variable parametrised by
13 } else {

14 std::cout << "Using method for category 0 \n"; template parameters

15 } } = Can be used along with

16

compile time if statements to decide

Member of the Helmholtz Association

between different algorithms

IJ JULICH

8 — 12 May 2023 Slide 43 Forschungszentrum

=
O © WO oA W N

NOT A TEXT SUBSTITUTION ENGINE!

Template specialisation

template <class T>

class vector {
// implementation of a general
// vector for any type T

Vi
template <>
class vector<bool> {
// Store the true false values
// in a compressed way, i.e.,
// 32 of them in a single int
i
void somewhere_else ()
{
vector<bool> A;
// Uses the special implementation

Member of the Helmholtz Association 8 — 12 May 2023

N o U AW N e

= Templates are defined to work with generic
template parameters

= But special values of those parameters, which
should be treated differently, can be specified using
"template specialisations" as shown

= If a matching specialisation is found, it is preferred
over the general template

template <class A, class B>

constexpr auto are_same = false;
template <class A>
constexpr auto are_same<A, A> = true;

static_assert (are_same<int, // Fails
using Integer = int;

static_assert (are_same<int,

long>) ;

Integer>); // Passes

IJ JULICH

Slide 44 Forschungszentrum

NOT A TEXT SUBSTITUTION ENGINE!

Recursion and integer arithmetic

1 template <unsigned N> constexpr unsigned fact = N * fact<N-1>;
2 template <> constexpr unsigned fact<0> = 1U;
3 static_assert (fact<7> == 5040)

= Templates support recursive instantiation
= Combined with specialisation to terminate recursion

= Recursion and specialisation can be used to emulate “loop” like calculations via tail-recursion

The example source file examples/no_textsub.cc demonstrates recursion and specialisation in templates, and
uses static_assert to verify that the compiler does the arithmetic.

UJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Forschungszentrum

Slide 45

NOT A TEXT SUBSTITUTION ENGINE!

Because: SFINAE

1 template <bool Cond, class T> struct enable_if {};

2 template <class T> struct enable_ if<true, T> { using type = T; }
3

4 template <class T>

5 auto func(T x) -> enable_if<sizeof(T) == 8UL, T>::type {
6 //impll

7 }

8 template <class T>

9 auto func(T x) > enable_if<sizeof (T) != 8UL, T>::type ({
10 //impl2

11 }

= Substitution Failure Is Not An Error

= |f substituting a template parameter results in incomplete or invalid function declarations, that overload is
ignored.

= The compiler simply tries to find another template with the same name that might match

= |f it can't find any, then you have an error

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 46 Forschungszentrum

NOT A TEXT SUBSTITUTION ENGINE!

Because: concepts

1 template <class T>

2 auto func(T x) -> T requires (sizeof(T) == 8UL) {
3 //impll

4 }

5 template <class T>

6 auto func(T x) -> T requires (sizeof(T) != 8UL) {
7 //impl2

8

}

Different implementations can be provided requiring different properties of the input type

Before C++4-20, this sort of selection was done using std::enable_if . Now, concepts provide a far
cleaner alternative.

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 47 J Forschungszentrum

ONE CLASS TEMPLATE IN DETAIL

Initialiser list constructors

= The darray class we saw earlier in some examples represents a dynamic array, like the std::vector .
It is a good example to illustrate more about class templates

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 48 J Forschungszentrum

ONE CLASS TEMPLATE IN DETAIL

Initialiser list constructors

= The darray class we saw earlier in some examples represents a dynamic array, like the std::vector .
It is a good example to illustrate more about class templates
= We want to be able to initialise our darray<T> like this:

darray<double> D (400, 0.);
darray<string> S{"A", "B", "C"};
darray<int> I{1, 2, 3, 4, 5};

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 48 Forschungszentrum

ONE CLASS TEMPLATE IN DETAIL

Initialiser list constructors

= The darray class we saw earlier in some examples represents a dynamic array, like the std::vector .
It is a good example to illustrate more about class templates
= We want to be able to initialise our darray<T> like this:

darray<double> D (400, 0.);
darray<string> S{"A", "B", "C"};
darray<int> I{1, 2, 3, 4, 5};

= And then we want to be able to use it as follows...
for (auto 1 = 0UL; 1 < D.size(); ++1i) {
D[i] = i * i;
std::cout << D[i] << "\n";

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 48 Forschungszentrum

ONE CLASS TEMPLATE IN DETAIL

Initialiser list constructors

= Making it into a template and writing many of the special functions is easy.

template <class T>

class darray {
std::unique_ptr<T[]> dat;
size_t sz{};

public:
darray () = default;
~darray () = default;

darray (const darray& other);
darray(darray&&) noexcept = default;
darrayé& operator=(const darrayé& other);
darrays& operator=(darray&s&) noexcept = default;
i
= Using the unique_ptr to manage the heap allocation/deallocation means we don’t need to do anything
special for default constructor, destructor and the move operations. Only copy needs to be carefully

implemented!

Forschungszentrum

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 49

ONE CLASS TEMPLATE IN DETAIL

Initialiser list constructors

= To initialise our darray<T> like this:

1 darray<string> S{"A", "B", "C"};
2 darray<int> I{1, 2, 3, 4, 5};

we need an initializer__list constructor

1 darray (initializer_ 1list<T> 1) {
2 arr = std::make_unique<T[]>(l.size());
3 for (auto i{0UL}; auto&s& el : 1) arr[i++] = el;
4 }
Member of the Helmholtz Association 8 - 12 May 2023 Slide 50 J

JULICH

Forschungszentrum

A DYNAMIC ARRAY CLASS TEMPLATE

I template <class T> = Two versions of the [] operator for
2 class darray { read-only and read/write access

3 public:

4 auto operator(] (size_t i) const -> T { return arr[i]; }

5 auto operator[] (size_t i) -> T& { return arr[i]; }

6 i

Member of the Helmholtz Association 8 - 12 May 2023 Slide 51 J Forschungszentrum

A DYNAMIC ARRAY CLASS TEMPLATE

I template <class T> = Two versions of the [] operator for
2 class darray { read-only and read/write access
3 public: .
4 auto operator(] (size_t i) const -> T { return arr[i]; } » Use const quallfler In any member
5 auto operator[] (size_t i) -> T& { return arr[i]; } function which does not change the
6 i .
object
Member of the Helmholtz Association 8 - 12 May 2023 Slide 51 J Forschungszentrum

TYPE DEDUCTIONS

= Template parameters can be type names or compile
time constant values of different types.

1 template <class T, int N>
2 struct my_array {
. T datal[N];
= Until C+4-20, non-type template parameters were i . atalnl
limited to integral types. Now, a lot of other types

are allowed.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 52 Forschungszentrum

TYPE DEDUCTIONS

= Template parameters can be type names or compile

R X 1 template <class T, int N>
time constant values of different types. 2 struct my array
. 3 T datal[N];
= Until C+4-20, non-type template parameters were , . !
limited to integral types. Now, a lot of other types
are allowed. 1 template <class T,
. . . . 2 int nrows, int ncols>
= Can be used to specify compile time constant sizes | _. .. my_matrix {
4 T data[nrows*ncols];
5 bi

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 52 Forschungszentrum

TYPE DEDUCTIONS

Member of the Helmholtz Association

Template parameters can be type names or compile
time constant values of different types.

Until C+4-20, non-type template parameters were
limited to integral types. Now, a lot of other types
are allowed.

Can be used to specify compile time constant sizes

but also give you a peculiar kind of " function " in
effect

Old uses of template integer arithmetic are by now
obsolete. constexpr functions constitute a
vastly superior alternative.

But, type-deductions remain an important use for
template meta-programs

8 — 12 May 2023

SISO VR AW e

AW N o=

o«

template <class T, int N>
struct my_ array {
T data[N];

bi

<class T,
int nrows,
struct my matrix ({

T data[nrows*ncols];

template
int ncols>

}i

template <int i,
struct mult {
static const int value=ixj;

int j>

}i

my_array< mult<19,21>::value > vals;

JULICH

J Forschungszentrum

Slide 52

EVALUATE DEPENDENT TYPES

= Suppose we want to implement a template function

1 template <class T> U f(T a);

such that when T is a non-pointer type, U should take the value T. But if T is itself a pointer, U is the type
obtained by dereferencing the pointer

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 53 Forschungszentrum

EVALUATE DEPENDENT TYPES

= Suppose we want to implement a template function

1 template <class T> U f(T a);

such that when T is a non-pointer type, U should take the value T. But if T is itself a pointer, U is the type
obtained by dereferencing the pointer

= We could use a template function to "compute" the type U like this:

1 template <class T> struct remove_pointer { using type = T; };
2 template <class T> struct remove_pointer<Tx> { using type = T; };

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 53 Forschungszentrum

EVALUATE DEPENDENT TYPES

= Suppose we want to implement a template function

1 template <class T> U f(T a);

such that when T is a non-pointer type, U should take the value T. But if T is itself a pointer, U is the type
obtained by dereferencing the pointer

= We could use a template function to "compute" the type U like this:

1 template <class T> struct remove_pointer { using type = T; };
2 template <class T> struct remove_pointer<Tx> { using type = T; };

= We can then declare the function as:

1 template <class InputType>
2 auto f (InputType a) —-> remove_pointer<InputType>::type ;

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 53 Forschungszentrum

TYPE FUNCTIONS

= Compute properties of types
= Compute dependent types

= Typically used with convenient alias template
declarations for the dependent type or the

constant value

Member of the Helmholtz Association 8 — 12 May 2023

© W N O W

e e e e e e
© 0 NGk W N O

template <class T1l, class T2>
std::is_same<T1l,T2>::value

template <class T>
std::is_integral<T>::value

template <class T>
std::make_signed<T>::type

template <class T>
std: :remove_reference<T>: :type

template <class T>
using remove_reference_t =
typename remove_reference<T>::type;

template <class T>
inline constexpr bool is_integral v =
std::is_integral<T>::value;

IJ JULICH

Slide 54 Forschungszentrum

STATIC_ASSERT WITH TYPE TRAITS

1 #include <iostream>

2 #include <type_ traits>

3 template < class T, class U>

4 auto some_calc(T x, U y)

5 {

6 static_assert (std::is_convertible_v<T, U>,
7 "The type of the argument x must be convertible to type U");
s //

9 }

10 auto main() -> int

11 {

12 some_calc (4.0, "target"); //Compiler error!
13

14 }

= Use static_assert and type_traits in combination with constexpr

Exercise 1.4: static__assert2.cc
@) JULICH

Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023 Slide 55

TYPETRAITS

= is_integral_v<T> : T is an integer type

= is_const_v<T> : hasa const qualifier

= is_class_v<T> : struct or class

= is_pointer_v<T> : Pointer type

= is_abstract_v<T> : Abstract class with at least one pure virtual function
= is_copy_constructible_v<T> : Class allows copy construction

= is_same_v<T1l,T2> : T1 and T2 are the same types

= is_base_of_v<T,D> : T is base class of D

= is_convertible_v<T,T2> : T is convertibleto T2

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 56 Forschungszentrum

=
H O © WO O R W

-
S

FORWARDING REFERENCES

template <class T>
auto wrapperfunc(T&& t)
{
other (std::forward<T>(t));
}
auto main() —-> int
{
std::string x{"Solar"};
std::string y{"System"};
wrapperfunc (x) ;
wrapperfunc(x +

non

+y)i

Member of the Helmholtz Association 8 — 12 May 2023

Function argument written as if it were an R-value
reference to a cv-unqualified template parameter

If wrapperfunc is called with a constant
L-value, T is deduced to be a constant L-value

reference, and other receives a constant L-value
reference

If wrapperfunc is called with an L-value, T is
deduced to be an L-value reference, and other
receives an L-value reference

If the input is an R-value, then T is inferred to be

a plain type, and forward ensures that other
receives an R-value reference

l) JULICH

Slide 57 Forschungszentrum

Constrained templates

Member of the Helmholtz Association 8 — 12 May 2023 Slide 58 J Forschungszentrum

CONSTRAINED TEMPLATES

= We created overloaded functions so that different strategies can be employed for different input types

auto power (double x, double y) -> double ;
auto power (double x, int i) -> double ;

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 59 Forschungszentrum

CONSTRAINED TEMPLATES

= We created overloaded functions so that different strategies can be employed for different input types

auto power (double x, double y) -> double ;
auto power (double x, int i) -> double ;

= We have function templates, so that the same strategy can be applied to different types, e.g.,

template <class T> auto power (double x, T i) -> double ;

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 59 Forschungszentrum

CONSTRAINED TEMPLATES

= We created overloaded functions so that different strategies can be employed for different input types

auto power (double x, double y) -> double ;
auto power (double x, int i) -> double ;

= We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power (double x, T i) -> double ;

= Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 59 Forschungszentrum

CONSTRAINED TEMPLATES

= We created overloaded functions so that different strategies can be employed for different input types

auto power (double x, double y) -> double ;
auto power (double x, int i) -> double ;

= We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power (double x, T i) -> double ;

= Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
= Some way to impose requirements on permissible matches for the template parameters. Something like:

template <class T> auto power (double x, T i) -> double requires floating_point<T>;
template <class T> auto power (double x, T i) -> double requires integer<T>;

Member of the Helmholtz Association 8 — 12 May 2023 Slide 59 Forschungszentrum

IJ JULICH

CONSTRAINED TEMPLATES

= We created overloaded functions so that different strategies can be employed for different input types

auto power (double x, double y) -> double ;
auto power (double x, int i) -> double ;

= We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power (double x, T i) -> double ;

= Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
= Some way to impose requirements on permissible matches for the template parameters. Something like:

template <class T> auto power (double x, T i) -> double requires floating_point<T>;
template <class T> auto power (double x, T i) -> double requires integer<T>;

= |f we could do that, we can combine the generality of templates with the selectiveness of function
overloading

Forschungszentrum

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 59

CONSTRAINED TEMPLATES

= We created overloaded functions so that different strategies can be employed for different input types

auto power (double x, double y) -> double ;
auto power (double x, int i) -> double ;

= We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power (double x, T i) -> double ;

= Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?

= Some way to impose requirements on permissible matches for the template parameters. Something like:

template <class T> auto power (double x, T i) -> double requires floating_point<T>;
template <class T> auto power (double x, T i) -> double requires integer<T>;

= |f we could do that, we can combine the generality of templates with the selectiveness of function
overloading

= We can

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 59 Forschungszentrum

CONCEPTS

Named requirements on template parameters

= concept s are named requirements on template parameters, such as floating_point ,

contiguous_range
= If MyAPTI isa concept,and T isatype, MyAPI<T> evaluates at compile time to either true or false.
= Concepts can be combined using conjunctions (&&) and disjunctions (| |) to make other concepts.

= A requires clause introduces a constraint on a template type

A suitably designed set of concepts can greatly improve readability of template code

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 60 Forschungszentrum

CREATING CONCEPTS

= Out of a simple type_traits style boolean

template <template-pars>
P P p expression

concept conceptname = constraint_expr;

= Combine with logical operators to create more

complex requirements
template <class T>

concept Integer = std::is_integral v<T>; = The requires expression allows creation of
template -class D, class B~ syntactic requirements as shown in the last two
concept Derived = std::is_base_of<B, D>;

examples.

class Counters;

template <class T>

concept Integer_ish = Integer<T> ||
Derived<T,Counters>;

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 61 Forschungszentrum

CREATING CONCEPTS

= Out of a simple type_traits style boolean

template <template-pars> .
P P pa . expression
concept conceptname = constraint_expr;

= Combine with logical operators to create more
complex requirements

template <class T>
concept Integer = std::is_integral v<T>; = The requires expression allows creation of

template <class D, class B~ syntactic requirements as shown in the last two
concept Derived = std::is_base_of<B, D>;
examples.

class Counters;

template <class T>

concept Integer_ish = Integer<T> ||
Derived<T,Counters>;

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 61 Forschungszentrum

CREATING CONCEPTS

template <template-pars>
concept conceptname = constraint_expr;

template <class T>

concept Integer = std::is_integral_v<T>;
template <class D, class B>

concept Derived = std::is_base_of<B, D>;

class Counters;

template <class T>

concept Integer_ish = Integer<T> ||
Derived<T,Counters>;

template <class T>

concept Addable = requires (T a, T b) {
{a+bl;

Vi

template <class T>

concept Indexable = requires (T A) {
{ A[OUL] };

Vi

Member of the Helmholtz Association 8 — 12 May 2023

= Out of a simple type_traits style boolean
expression

= Combine with logical operators to create more
complex requirements

= The requires expression allows creation of
syntactic requirements as shown in the last two
examples.

IJ JULICH

Slide 61 Forschungszentrum

CREATING CONCEPTS

= Out of a simple type_traits style boolean

t late <t late- > i
emplate emplate-pars expression

concept conceptname = constraint_expr;

= Combine with logical operators to create more

cemplate -class T- complex requirements

concept Integer = std::is_integral v<T>; = The requires expression allows creation of
template <class D, class B> syntactic requirements as shown in the last two
concept Derived std::1is_base_of<B, D>;
examples.
class Counters; = The requires expression can contain a parameter
template <class T> . .
L list and a brace enclosed sequence of requirements,
concept Integer_ish = Integer<T> | h_ h b
Derived<T, Counters>; which can be

= type requirements, e.g., typename T::value_type;

EEmpIae <Enass B = simple requirements as shown on the left

concept Addable = requires (T a, T b) {

Ca+b); = compound requirements with optional return type
- ! constraints, e.g.,
template <class T> { A[OUL] } —> convertible_to<int>;

concept Indexable = requires(T A) {
{ A[OUL] };
Vi

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 61 Forschungszentrum

USING CONCEPTS

template <class T>

requires Integer_ish<T>

auto categ0(T&& i, double x) —> T;
template <class T>

auto categl (T&& i, double x) > T

requires Integer_ish<T>;

template <Integer_ish T>

auto categ2(T&& i, double x) —> T;

void erase (Integer_ish autoss& 1)

Member of the Helmholtz Association

To constrain template parameters, one can

= place a requires clause immediately after the
template parameter list

= place a requires clause after the function
parameter parentheses

= Use the concept name in place of class or
typename in the template parameter list

= Use ConceptName auto in the function
parameter list

IJ JULICH

8 — 12 May 2023 Slide 62 Forschungszentrum

USING CONCEPTS

template <class T>

requires Integer_ish<T>

auto categ0(T&& i, double x) —> T;
template <class T>

auto categl (T&& i, double x) —> T

requires Integer_ish<T>;

template <Integer_ish T>

auto categ2 (T&& i, double x) > T;

void erase (Integer_ish autos&s& 1)

Member of the Helmholtz Association

8 — 12 May 2023

To constrain template parameters, one can

= place a requires clause immediately after the

template parameter list

= place a requires clause after the function

parameter parentheses

= Use the concept name in place of class or

typename in the template parameter list

= Use ConceptName auto in the function

parameter list

Slide 62

/)

JULICH

Forschungszentrum

USING CONCEPTS

To constrain template parameters, one can
template <class T>

requires Integer_ish<T> = place a requires clause immediately after the

auto categ0(T&& i, double x) —> T; template parameter list

template <class T> bl g I fter the f ti

auto categl (T&s i, double x) -> T place a requires clause arter € runction
requires Integer_ish<T>; parameter parentheses

template <Integer_ ish T>

= Use the concept name in place of class or
auto categ2 (T&& i, double x) —> T;

typename in the template parameter list
void erase (Integer_ish autos&s& 1)

= Use ConceptName auto in the function
parameter list

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 62 Forschungszentrum

USING CONCEPTS

template <class T>

requires Integer_ish<T>

auto categ0(T&& i, double x) —> T;
template <class T>

auto categl (Ts& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>

auto categ2 (T&& i, double x) > T;

void erase (Integer_ish autos&s& 1i)

Member of the Helmholtz Association

8 — 12 May 2023

To constrain template parameters, one can

= place a requires clause immediately after the

template parameter list

= place a requires clause after the function

parameter parentheses

= Use the concept name in place of class or

typename in the template parameter list

= Use ConceptName auto in the function

parameter list

Slide 62

/)

JULICH

Forschungszentrum

USING CONCEPTS

template <class T>

requires Integer_ish<T>

auto categ0(T&& i, double x) —> T;
template <class T>

auto categl (Ts& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>

auto categ2 (T&& i, double x) > T;

void erase (Integer_ish autos&s& 1i)

Member of the Helmholtz Association

To constrain template parameters, one can

= place a requires clause immediately after the
template parameter list

= place a requires clause after the function
parameter parentheses

= Use the concept name in place of class or
typename in the template parameter list

= Use ConceptName auto in the function
parameter list

IJ JULICH

8 — 12 May 2023 Slide 62 Forschungszentrum

1

USING CONCEPTS

= Because of syntax introduced for functions with
template <class T> constrained templates in C++420, we have a new
auto sqgr(const T& x) { return x » x; } . . .

way to write fully unconstrained function
templates...

IJ JULICH

Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023 Slide 63

USING CONCEPTS

= Because of syntax introduced for functions with
1 constrained templates in C++420, we have a new
2 auto sgr (const autos x) { return x * x; } . . .

way to write fully unconstrained function
templates...

= Functions with auto in their parameter list are
implicitly function templates

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 63 J Forschungszentrum

USING CONCEPTS

= Because of syntax introduced for functions with
1 constrained templates in C++420, we have a new
2 auto sgr (const autos x) { return x * x; } . . .

way to write fully unconstrained function
templates...

= Functions with auto in their parameter list are
implicitly function templates

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 63 J Forschungszentrum

USING CONCEPTS

= Because of syntax introduced for functions with
constrained templates in C++420, we have a new
way to write fully unconstrained function
templates...

-

2 auto sgr(const autos& x) { return x *» x; }

= Functions with auto in their parameter list are
implicitly function templates

Exercise 1.11:

The program examples/gcd_w_concepts.cc shows a very small concept definition and its use in a function
calculating the greatest common divisor of two integers.

Exercise 1.12:

The series of programs examples/generic_funcl.cc through generic_func4.cc shows some trivial functions
implemented with templates with and without constraints. The files contain plenty of comments explaining the
rationale and use of concepts.

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 63 J Forschungszentrum

OVERLOADING BASED ON CONCEPTS

= Constraints on template parameters are not just

=
H O © WO O A WN

I o
© N O U W N

template <class N> “documentation” or decoration.
concept Number = std::floating_point<N>
or std::integral<N>;
void proc (Number auto&s x) {
std::cout << "Called proc for numbers";
}
auto main () > int {
proc(-1);
proc (88UL) ;
prou("OllS 999 88199 9119725 3");
proc (3 1)
prok,(”Ethty"s) ;
}
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 64 J Forschungszentrum

=
H O ©®NO O AW

I
© N O U W N

OVERLOADING BASED ON CONCEPTS

= Constraints on template parameters are not just

template <class N> “documentation” or decoration.
concept Number = std::floating_point<N> . . .
or std::integral<N>; = The compiler can choose between different versions
template <class N> of a function based on concepts
concept NotNumber = not Number<N>;
void proc (Number auto&s x) {
std::cout << "Called proc for numbers";
}
void proc (NotNumber auto&s x) {
std::cout << "Called proc for non-numbers";
}
auto main () > int {
proc(-1);
proc (88UL) ;
proc("0118 999 88199 9119725 3");
proc(3.141);
proc ("eighty"s);
}
Member of the Helmholtz Association 8 - 12 May 2023 Slide 64 J Forschungszentrum

=
H O ©®NO O AW

I
© N O U W N

Member of the Helmholtz Association

template <class N>
concept Number = std::floating_point<N>
or std::integral<N>;
template <class N>
concept NotNumber not Number<N>;
void proc (Number auto&s x) {
std::cout << "Called proc for numbers";

}
void proc (NotNumber auto&s x) {

std::cout << "Called proc for non-numbers";

}

auto main () > int {
proc(-1);
proc (88UL) ;
proc("0118 999 88199 9119725 3");

proc
proc

3.141);

(
(
(
("eighty"s);

8 — 12 May 2023

OVERLOADING BASED ON CONCEPTS

= Constraints on template parameters are not just
“documentation” or decoration.

of a function based on concepts

= The version of a function chosen depends on
properties of the input types, rather than their
identities. “It's not who you are underneath, it's
what you (can) do that defines you."

JULICH

@) J0
Slide 64 J Forschungszentrum

The compiler can choose between different versions

=
H O ©®NO O AW

I
© N O U W N

Member of the Helmholtz Association

template <class N>
concept Number std::floating_point<N>
or std::integral<N>;
template <class N>
concept NotNumber = not Number<N>;
void proc (Number auto&s x) {
std::cout << "Called proc for numbers";

}
void proc (NotNumber auto&s x) {

std::cout << "Called proc for non-numbers";

}

auto main () > int {
proc(-1);
proc (88UL) ;
proc("0118 999 88199 9119725 3");

proc

proc

3.141);

(
(
(
("eighty"s);

8 — 12 May 2023

OVERLOADING BASED ON CONCEPTS

Constraints on template parameters are not just
“documentation” or decoration.

The compiler can choose between different versions
of a function based on concepts

The version of a function chosen depends on
properties of the input types, rather than their
identities. “It's not who you are underneath, it's
what you (can) do that defines you."

During overload resolution, in case multiple

matches are found, the most constrained overload
is chosen.

IJ JULICH

Slide 64 Forschungszentrum

=
H O ©®NO O AW

I
© N O U W N

Member of the Helmholtz Association

template <class N>
concept Number = std::floating_point<N>
or std::integral<N>;

template <class N>
concept NotNumber = not Number<N>;
void proc (Number auto&s x) {

std::cout << "Called proc for numbers";
}
void proc (NotNumber auto&s x) {

std::cout << "Called proc for non-numbers";

}

auto main () > int {
proc(-1);
proc (88UL) ;
proc("0118 999 88199 9119725 3");

(

(
proc(3.141);
proc ("eighty"s);

8 — 12 May 2023

OVERLOADING BASED ON CONCEPTS

Constraints on template parameters are not just
“documentation” or decoration.

The compiler can choose between different versions
of a function based on concepts

The version of a function chosen depends on
properties of the input types, rather than their
identities. “It's not who you are underneath, it's
what you (can) do that defines you."

During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.

Not based on any inheritance relationships

IJ JULICH

Slide 64 Forschungszentrum

=
H O ©®NO O AW

I
© N O U W N

Member of the Helmholtz Association

template <class N>
concept Number = std::floating_point<N>
or std::integral<N>;

template <class N>
concept NotNumber = not Number<N>;
void proc (Number auto&s x) {

std::cout << "Called proc for numbers";
}
void proc (NotNumber auto&s x) {

std::cout << "Called proc for non-numbers";

}

auto main () > int {
proc(-1);
proc (88UL) ;
proc("0118 999 88199 9119725 3");

(

(
proc(3.141);
proc ("eighty"s);

8 — 12 May 2023

OVERLOADING BASED ON CONCEPTS

Constraints on template parameters are not just
“documentation” or decoration.

The compiler can choose between different versions
of a function based on concepts

The version of a function chosen depends on
properties of the input types, rather than their
identities. “It's not who you are underneath, it's
what you (can) do that defines you."

During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.

Not based on any inheritance relationships

Not a “quack like a duck, or bust” approach either.

IJ JULICH

Slide 64 Forschungszentrum

=
H O ©®NO O AW

I
© N O U W N

Member of the Helmholtz Association

template <class N>
concept Number = std::floating_point<N>
or std::integral<N>;
template <class N>
concept NotNumber = not Number<N>;
void proc (Number auto&s x) {
std::cout << "Called proc for numbers";

}
void proc (NotNumber auto&s x) {

std::cout << "Called proc for non-numbers";

}

auto main () > int {
proc(-1);
proc (88UL) ;
proc("0118 999 88199 9119725 3");

(

(
proc(3.141);
proc ("eighty"s);

8 — 12 May 2023

OVERLOADING BASED ON CONCEPTS

Constraints on template parameters are not just
“documentation” or decoration.

The compiler can choose between different versions
of a function based on concepts

The version of a function chosen depends on
properties of the input types, rather than their
identities. “It's not who you are underneath, it's
what you (can) do that defines you."

During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.

Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.

Entirely compile time mechanism

IJ JULICH

Slide 64 Forschungszentrum

Exercise 1.13:
Check how you can use concepts to implement alternative versions of a function based on properties of the input
parameters! The program examples/overload_w_concepts.cc contains the code just shown. Can you
add another overload that is picked if the input type is an array? This means, if X is the input parameter,
X[1i] is syntactically valid for unsigned integer i . The array version should be picked up if the input is a
vector, array, etc. , but also string . How would you prevent the string and C-style strings
picking the array version?

lJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 65 Forschungszentrum

PREDEFINED USEFUL CONCEPTS

Many concepts useful in building our own concepts are available in the standard library header <concepts> .

" same_as s derived_from

= convertible_to = move_constructible,
= signed_ingegral, unsigned_integral copy_constructible
= floating point = invocable

= assignable_from = predicate

= swappable, swappable_with » relation

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 66 Forschungszentrum

CONCEPTS: SUMMARY

f(those who can fly)
X
E&i_j! = f(runners)
‘@ f(swimmers)

Member of the Helmholtz Association 8 — 12 May 2023 Slide 67 J Forschungszentru

Lambda Functions

Member of the Helmholtz Association 8 — 12 May 2023 Slide 68 J Forschungszentrum

FUNCTION LIKE ENTITIES

= In C4++, there are a few different constructs which can be used in a context requiring a “function”
= Functions in all varieties constitute one category (inline or not, constexpr or not, virtual or

not ...)

Lambda functions are similar, language provided entities

Classes may overload the function call operator operator ()

to give us another type of callable object

class Wave {

double A, ome, pha;

public:

auto operator () (double t) -> double

{
return A * sin(ome % t + pha);
}
Vi
9 void elsewhere ()
10 {

0N oG A W N

11 Wave W{l1.0, 0.15, 0.9};
12 for (auto i = 0; 1 < 100; ++1i) {
13 std::cout << i << W(i) << "\n";

Member of the Helmholtz Association 8 — 12 May 2023

IJ JULICH

Forschungszentrum

LAMBDA FUNCTIONS

= Locally defined callable entities

= Uses 1 sort (begin(v), end(v), [](auto x, auto y) {
. 2 return x > y;
= Effective use of STL 3 1)
= Initialisation of const 4
= Concurrency 5 const auto inp_file = []{
= New loop styles 6 string resourcefl;
.) . . 7 cout << "resource file : ";
= Like a function object defined on the spot s cin >> resourcefl;
. . T 9 return f1;
= Fine grained control over the visibility of the DO
i
variables in the surrounding scope 11 tbb::parallel_for (0, 1000000, [] (int i){
12 // process element
13 i
Member of the Helmholtz Association 8 — 12 May 2023 Slide 70 J Forschungszentrum

LAMBDA FUNCTIONS
Lambda expression

Function
auto sqgr (double x) —-> double auto lsqr = [] (double x) —-> double
{

{
return x * X; return x * Xx;
bi

= Normal C++4 functions can not be defined in block scope
= Lambda expressions are expressions, which when evaluated yield callable entities. Like 2° is an expression,

which when evaluated yields 512.
= Such callable entities can be created in global as well as block scope

Forschungszentrum

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 71

LAMBDA FUNCTIONS

Function Lambda expression

auto sqgr (double x) —-> double auto lsgr = [] (double x) —-> double
{

{
return x * Xx; return x * x;
}

bi

= The lambda expression contains information which is used to make the callable entity: such as, expected
input, output and the body(“recipe”).

= Unlike normal functions, which have names, these callable entities themselves are nameless, but named
variables can be constructed out of them, if desired. Those named variables can then be used like functions

@ » JULICH
Member of the Helmholtz Association 8 - 12 May 2023 J

Slide 71 Forschungszentrum

LAMBDA FUNCTIONS

Function Lambda expression
auto sqgr (double x) —-> double auto lsgr = [] (double x) —-> double
{ {
return x * Xx; return x * x;
} bi

= The lambda expression contains information which is used to make the callable entity: such as, expected
input, output and the body(“recipe”).

= Unlike normal functions, which have names, these callable entities themselves are nameless, but named
variables can be constructed out of them, if desired. Those named variables can then be used like functions.

std::vector X{0.1, 0.2, 0.3, 0.4};

auto sgsum = 0.;

for (auto i = 0UL; i < X.size(); ++1i) {
sgsum += sqgr (X[1i]);

@ » JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 71 J

Forschungszentrum

LAMBDA FUNCTIONS

Function Lambda expression
auto sqgr (double x) —-> double auto lsgr = [] (double x) —-> double
{ {
return x * Xx; return x * x;
} bi

= The lambda expression contains information which is used to make the callable entity: such as, expected
input, output and the body(“recipe”).

= Unlike normal functions, which have names, these callable entities themselves are nameless, but named
variables can be constructed out of them, if desired. Those named variables can then be used like functions.

std::vector X{0.1, 0.2, 0.3, 0.4};

auto sgsum = 0.;

for (auto i = 0UL; i < X.size(); ++1i) {
sgsum += lsqgr (X[i]);

@ » JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 71 J

Forschungszentrum

LAMBDA FUNCTIONS

template <Callable F>

auto aggregate (const std::vector<double>& inp, F f) -> double

{
auto s{0.};
for (auto 1 = 0UL; 1 < inp.size(); ++1i) { s += f£(inp[i]); }
return s;

}

= Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 72 Forschungszentrum

LAMBDA FUNCTIONS

template <Callable F>
auto aggregate (const std::vector<double>& inp,

{

F f) -> double

auto s{0.};
for (auto 1 = 0UL; i < X.size(); ++i) { s += £(X[i]); }

return s;

}
//
std::vector X{0.1, 0.2, 0.3, 0.4};

auto sgsum = aggregate (X, sqr);
= Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values

= Named callable entities can be used when available.

IJ JULICH

Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023 Slide 72

LAMBDA FUNCTIONS

template <Callable F>
auto aggregate (const std::vector<double>& inp,

{

F f) -> double

auto s{0.};
for (auto 1 = 0UL; i < X.size(); ++i) { s += £(X[i]); }

return s;

}

//

std::vector X{0.1, 0.2, 0.3, 0.4};
auto sgsum = aggregate (X, lsqgr);

= Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values

= Named callable entities can be used when available.

IJ JULICH

Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023 Slide 72

LAMBDA FUNCTIONS

template <Callable F>
auto aggregate (const std::vector<double>& inp, F f) -> double
{
auto s{0.};
for (auto 1 = 0UL; i < X.size(); ++i) { s += £(X[i]); }
return s;
}
//
std::vector X{0.1, 0.2, 0.3, 0.4};
auto sgsum = aggregate (X, [] (double x) -> double { return x *» x; });

= Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values
= Named callable entities can be used when available.

= Often it is more convenient to pass a lambda expression, and let the higher order function create the
callable entity it needs!

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 72 Forschungszentrum

LAMBDA FUNCTIONS WITH ALGORITHMS

std::for_each is a higher order function, similar to this:

template <class InputlIterator, class UnaryFunction>

void for_each(InputlIterator start, InputlIterator end, UnaryFunction f)
{

for (auto it = start; it != end; ++it) £ (*xit);
}

@ » JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 73 J

Forschungszentrum

LAMBDA FUNCTIONS WITH ALGORITHMS

std::for_each is a higher order function, similar to this:

template <class InputlIterator, class UnaryFunction>
void for_each(InputlIterator start, InputlIterator end, UnaryFunction f)

{

for (auto it = start; it != end; ++it) £ (*xit);
}
What do the following lines do ?
1 std::vector X{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
2 for_each(X.begin(), X.end(), [] (ints& elem){ elem = elem » elem; });
3 for_each(X.begin(), X.end(), [](int& elem){ elem -= 100; });
4 for_each(X.begin(), X.end(), [](int elem){ std::cout << elem << "\n"; });

@ » JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 73 J

Forschungszentrum

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :transform is a higher order function, slightly

O -

for general than std: :.fOJ.f_.eaCh . IF has a few 3 OO0 s
overloads. One of them is similar to this: £
n "
g
?
O OOO QO oestnaten
Member of the Helmholtz Association 8 — 12 May 2023 Slide 74 J Forschungszentrum

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

*dest = f(*src);

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 74 Forschungszentrum

LAMBDA FUNCTIONS WITH ALGORITHMS

:transform is a higher order function, slightly

P

O0QOO0 ==

std:
for general than std::for_each . It has a few
overloads. One of them is similar to this:

*dest = f(*src);

elelelelor"

dest

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 74 Forschungszentrum

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :transform is a higher order function, slightly ’L

for general than std::for_each . It has a few =
overloads. One of them is similar to this: é 00O Q O e
n "
g
O O O ? O Destination
@) JULICH
Slide 74 Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

LAMBDA FUNCTIONS WITH ALGORITHMS

8

std: :transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this: 0000 Q souee
T

*dest = f(*src);

elelelelor"

dest ——»

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 74 Forschungszentrum

LAMBDA FUNCTIONS WITH ALGORITHMS

std::transform is a higher order function, slightly template <class InputIt, class OutputIt

for general than std::for_each . It has a few class UnaryFunction>

overloads. One of them is similar to this: void transform(InputlIt start, Inputlt end,
’ : OutputIt out,

UnaryFunction f)

for (; start != end; ++start, ++out)
~out = f (xstart);

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 74 Forschungszentrum

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

[What do the following lines do ?]
1 std::vector X{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
2 std::vector<int> Y;
3 transform(X.begin(), X.end(), std::back_inserter(Y),
4 [1(int elem){ return elem * elem; });

Member of the Helmholtz Association 8 — 12 May 2023 Slide 74

/)

JULICH

Forschungszentrum

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :copy_if Conditionally copies elements from a source g
sequence to a destination sequence: 5 l
7
*
n O O O O O Source
@
[
o
*
0
g O O O O O Destination
E
=
7
3
Slide 75 J Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :copy_if Conditionally copies elements from a source g
sequence to a destination sequence: /L

o
"
*
Helolelole ™
85 =
o Y=
°
*
°
Nelolelolor"
E
=
g
©
@) JULICH
Slide 75 J Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :copy_if Conditionally copies elements from a source g
sequence to a destination sequence: 5 l
7
*
n @ O O O O Source
@
[
o
*
0
g O O O O O Destination
E
=
@
L]
Slide 75 J Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :copy_if Conditionally copies elements from a source g
sequence to a destination sequence: 5 l
7
*
n O O O O O Source
@
[
o
*
0
g O O O O O Destination
E
=
@
L]
Slide 75 J Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :copy_if Conditionally copies elements from a source g
sequence to a destination sequence: ’L

o
"
*
! O0000 s
- h—"
2 —
o
*
T
Nelolololor"
E
= 1
g
el
@) JULICH
Slide 75 J Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :copy_if Conditionally copies elements from a source g
sequence to a destination sequence: 5 l
7
*
n O O O O O Source
@
[
o
*
0
g O O O O O Destination
E
=
@
L]
Slide 75 J Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :copy_if Conditionally copies elements from a source g
sequence to a destination sequence: 5 l
7
*
n O O O O O Source
@
[
o
*
0
g O O O O O Destination
E
=
@
s
Slide 75 J Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

LAMBDA FUNCTIONS WITH ALGORITHMS

<]
@

-

std: :copy_if Conditionally copies elements from a source
sequence to a destination sequence:

o
"
*
> 00000 =
7 =
[0} Y
°
*
°
Nelolelolor"
E
=
g
©
@) JULICH
Slide 75 J Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :copy_if Conditionally copies elements from a source g
sequence to a destination sequence: 5 l
7
*
n O O O O O Source
@
[
o
*
0
g O O O O O Destination
E
=
@
s
Slide 75 J Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :copy_if Conditionally copies elements from a source

src

sequence to a destination sequence: 5 i
P
Helelolelon™
@
(D
o
*
0
g O O O O O Destination
E
=
D
L]
Slide 75 J Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :copy_if Conditionally copies elements from a source
sequence to a destination sequence:

2
7

Iy

o
"
*
> 00000 e
7 =
[0} Y
°
*
°
Nelolelolor"
E
: 1
g
©
@) JULICH
Slide 75 J Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :copy_if Conditionally copies elements from a source

src

sequence to a destination sequence: 5 i
P
L O00@O s
@
(D
o
*
0
g O O O O O Destination
E
=
D
L]
Slide 75 J Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :copy_if Conditionally copies elements from a source g
sequence to a destination sequence: 5 i
7
*
n O O O O O Source
@
[
o
*
0
g O O O O O Destination
E
=
D
L]
Slide 75 J Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :copy_if Conditionally copies elements from a source g
sequence to a destination sequence: - ,-L

0000 ==

*src

if (f(*src)) *dest

OO0 CI) O Q) oesnain

dest

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 75 J Forschungszentrum

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :copy_if Conditionally copies elements from a source g
sequence to a destination sequence: 5 i
7
*
n O O O O O Source
@
[
o
*
0
g O O O O O Destination
E
=
D
L]
Slide 75 J Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

LAMBDA FUNCTIONS WITH ALGORITHMS

std: :copy_if Conditionally copies elements from a source g
sequence to a destination sequence: 5 i
7
*
. OO00O0OO s
[What do the following lines do ?] B
2
2
g O O O O O Destination
RS
1 std::vector X{9, 8, 7, 6, 5, 4, 3, 2, 1, 0}; =
2 std::vector<int> Y; -
3 copy_if (X.begin(), X.end(), std::back_inserter(Y), §
4 [](int elem){ return elem % 3 == 0; });
Slide 75 J Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023

Exercise 1.14:

Use the notebook 1ambda_practice 0.ipynb to quickly practice writing a few small lambdas and using them
with a few standard library algorithms.

Member of the Helmholtz Association 8 — 12 May 2023 Slide 76 Forschungszentrum

IJ JULICH

CAPTURE BRACKETS

= Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 77 Forschungszentrum

CAPTURE BRACKETS

= Suppose we want to transfer some elements from one vector to another
std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

= Copy to w all positive elements
copy_if (v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 77 Forschungszentrum

CAPTURE BRACKETS

= Suppose we want to transfer some elements from one vector to another
std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

s Copy to w all positive elements
copy_if (v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

= Copy to w all elements larger than a user specified value

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 77 Forschungszentrum

CAPTURE BRACKETS

= Suppose we want to transfer some elements from one vector to another
std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

= Copy to w all positive elements
copy_if (v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

= Copy to w all elements larger than a user specified value

= This does not work
std::cin >> lim;
copy_if (v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 77 Forschungszentrum

CAPTURE BRACKETS

= Suppose we want to transfer some elements from one vector to another
std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

= Copy to w all positive elements
copy_if (v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });
= Copy to w all elements larger than a user specified value
= This does not work
std::cin >> lim;
copy_if (v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

= A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if (v.begin(), v.end(), back_inserter (w),
[lim] (int i) { return i > lim; });
// Lambda function "captures" 1im, and lim is now visible inside the lambda

@ » JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 77 J

Forschungszentrum

LAMBDA EXPRESSIONS: SYNTAX

[capture] <templatepars> (arguments) lambda-specifiers { body }

= Variables in the body of a lambda function are either passed as function arguments or "captured", or are
global variables

= Function arguments field is optional if empty. e.g. [&cc]{ return cc++; }

= The lambda-specifiers field can contain a variety of things: Keywords mutable , constexpr or

consteval , exception specifiers, attributes, the return type, and any requires clauses. All of these
are optional.

= The return type is optional if there is one return statement. e.g.
[a,b,c] (int i) mutable { return axixi + b*i + c; }
= The optional keyword mutable can be used to create lambdas with state
= auto can be used to declare the formal input parameters of the lambda (since C++14)
= Template parameters can be optionally provided where shown (since C++20)

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 78 Forschungszentrum

EXPLICIT TEMPLATE PARAMETERS FOR LAMBDA

FUNCTIONS

1 // examples/saxpy_2.cc

2 // in e

3 auto main() -> int {

4 const std::vector inpl { 1., 2., 3., 4., 5. };

5 const std::vector inp2 { 9., 8., 7., 6., 5. };

6 std::vector outp(inpl.size(), 0.);

7

8 auto saxpy = [] <class T, class T_in, class T_out>

9 (T a, const T_in& x, const T_in& y, T_out& z) {
10 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
11 [a] (T X, T Y){ return a X + Y; });

12 }i

13

14 std::ostream_iterator<double> cout { std::cout, "\n" };

15 saxpy (10., inpl, inp2, outp);

16 copy (outp.begin(), outp.end(), cout);

17 }

For normal function templates, we could easily express relationships among the types of diffewt parappeters.

With C++420, we can do that for generic lambdas.

Member of the Helmholtz Association 8 — 12 May 2023

JULICH

Slide 79 Forschungszentrum

LAMBDA CAPTURE SYNTAX |

[capture]<templatepars> (arguments) lambda-specifiers { body }

= [](int a, int b) —-> bool { return a > b;} : Capture nothing. Work only with the
arguments passed, or global objects.

= [=](int a) -> bool {return a > somevar;} : Capture everything needed by value.
= [&] (int a) {somevar += a;} : Capture everything needed by reference.

= [=,&somevar] (int a){ somevar += max(a,othervar); } : somevar by reference, but
everything else as value.

= [a,&b]l{ f(a,b); } : a byvalue, b by reference.

= [a=std::move(b)]1{ f(a,b); } : Init capture. Create a variable a with the initializer given in the
capture brackets. It is as if there were an implicit auto before the a .

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 80 Forschungszentrum

Exercise 1.15:
The program lambda_captures.cc (alternatively, notebook 1ambda_practice_1.ipynb) declares a variable
of the Vbose type (with all constructors, assignment operators etc. written to print messages), and then
defines a lambda function. By changing the capture type, and the changing between using and not using the
Vbose value inside the lambda function, try to understand, from the output, the circumstances under which
the captured variables are copied into the lambda. In the cases where you see a copy, where does the copy take
place ? At the point of declaration of the lambda or at the point of use ?

@) JULICH
8 — 12 May 2023 Slide 81 J Forschungszentrum

Member of the Helmholtz Association

LAMBDA FUNCTIONS: CAPTURES

= Imagine there is a variable int p=5 defined previously

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 82 J Forschungszentrum

LAMBDA FUNCTIONS: CAPTURES

= Imagine there is a variable int p=5 defined previously

= We can “capture” p by value and use it inside our lambda
auto L = [p] (int 1i){ std::cout << i*3 + p; };

L(3); // result : prints out 14
auto M = [pl(int 1){ p = i%3; }; // syntax error! p is read-only!

Forschungszentrum

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 82

LAMBDA FUNCTIONS: CAPTURES

= Imagine there is a variable int p=5 defined previously

= We can “capture” p by value and use it inside our lambda

auto L = [p](int 1i){ std::cout << i*3 + p; };
L(3); // result : prints out 14

auto M = [pl(int 1){ p = i%3; }; // syntax error! p is read-only!

= We can capture p by value (make a copy), but use the mutable keyword, to let the lambda function

change its local copy of p
auto M = [p] (int i) mutable { return p += ix3; };

std::cout << M(1l) << " "; std::cout << M(2) <<" ";

// result : prints out "8 14 5"

Member of the Helmholtz Association 8 — 12 May 2023

std::cout << p <<"\n";

Slide 82

/)

JULICH

Forschungszentrum

LAMBDA FUNCTIONS: CAPTURES

= Imagine there is a variable int p=5 defined previously

= We can “capture” p by value and use it inside our lambda
auto L = [p] (int 1i){ std::cout << i*3 + p; };

L(3); // result : prints out 14

auto M = [pl(int 1){ p = i%3; }; // syntax error! p is read-only!

= We can capture p by value (make a copy), but use the mutable keyword, to let the lambda function
change its local copy of p

auto M = [p] (int i) mutable { return p += ix3; };

std::cout << M(l) << " "; std::cout << M(2) <<" "; std::cout << p <<"\n";
// result : prints out "8 14 5"

= We can capture p by reference and modify it

auto M = [&p] (int 1i){ return p += ix3; };
std::cout << M(l) << " "; std::cout << M(2) << " "; std::cout << p << "\n";
// result : prints out "8 14 14"
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 82 J Forschungszentrum

NO DEFAULT CAPTURE!

Capture nothing

[

[=1 Capture used by value (copy)

[=, &x] Capture used by value, except x by reference
[&] Capture used by reference

[&, %] Capture used by reference, except x by value
[a=init] Init capture

= A lambda with empty capture brackets is like a local function, and can be assigned to a regular function
pointer. It is not aware of identifiers defined previously in its context

= When you use a (non-global) variable defined outside the lambda in the lambda, you have to capture it

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 83 Forschungszentrum

STATEFUL LAMBDAS

= Mutable lambdas have "state", and remember any changes to the values captured by value
= Combined with "init capture", gives us interesting generator functions

1 vector<int> v, w;

2 generate_n (back_inserter(v), 100, [i=0] () mutable {

3 ++1i;

4 return ixi;

5 1)

6 // v=1[1, 4, 9, 16 ...]

7 generate_n (back_inserter(w), 50, [i=0, J=1]() mutable {
8 i = std::exchange(j, j+i); // exchange(a,b) sets a to b and returns the old value of a
9 return i;

10 })

11 // See the videos on Fibonacci sequence on the

12 // YouTube channel "C++ Weekly" by Jason Turner

=
w

// w=1[1, 1, 2, 3, 5, 8, 11 ...]

Exercise 1.16:

The program mutable_lambda.cc shows the use of mutable lambdas for sequence initialisation.

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023 Slide 84

	Day 3
	Inheritance and class hierarchies
	Class inheritance
	Inheritance with virtual functions
	override, final etc.

	Using STL containers and algorithms
	Function and class templates
	C++ function templates
	Class templates
	Variable templates
	A detailed look at one class template
	Type calculations
	Static assertions with type traits
	Forwarding references

	Constrained templates
	Lambda Functions
	Motivation
	Syntax

