
PROGRAMMING IN C++
Jülich Supercomputing Centre
8 – 12 May 2023 Sandipan Mohanty Forschungszentrum Jülich, Germany

Member of the Helmholtz Association

Day 5

Member of the Helmholtz Association 8 – 12 May 2023 Slide 1

Type erasure

Member of the Helmholtz Association 8 – 12 May 2023 Slide 2

TYPE ERASURE TECHNIQUE
1 auto f(int i) -> PolyVal;
2 void elsewhere() {
3 std::vector<PolyVal> v;
4 v.push_back(1);
5 v.push_back(2.0);
6 v.push_back("Green"s);
7
8 for (auto&& elem : v) {
9 func1(elem);

10 }
11 PolyVal X = f(i);
12 }

Polymorphic behaviour attained using a class
hierarchy and virtual functions...

is extensible by simply inheriting from the Base
type and overriding the virtual functions
But, it has “reference symantics”, so that we can
not return those polymorphic objects by value
from functions
Built in types can not be accommodated into the
same hierarchy

variant provides a solution to the two problems
above, but we need to commit to a fixed number of
polymorphic types in the problem, from the outset
std::any is a library provided facility for type

erasure

Member of the Helmholtz Association 8 – 12 May 2023 Slide 3

TYPE ERASURE TECHNIQUE
1 void func1(int x);
2 void func1(double x);
3 void func1(std::string x);
4 auto f(int i) -> PolyVal;
5 void elsewhere() {
6 std::vector<PolyVal> v;
7 v.push_back(1);
8 v.push_back(2.0);
9 v.push_back("Green"s);

10
11 for (auto&& elem : v) {
12 func1(elem);
13 }
14 PolyVal X{3.141};
15 // func1(X) should go to func1(double)
16 X = PolyVal{"some string"s};
17 // func1(X) should now go to func1(string)
18 X = f(i);
19 // func1(X) should redirect according to what
20 // polymorphic value f happens to return
21 }

We want a type PolyVal , so that we can store
different types of entities in it
A uniform container of PolyVal should be able
to hold values of different types
When a certain instance is used, it should still be
able to behave according to the value it is currently
holding.
We should be able to copy a PolyVal object
using normal copy construction or copy assignment
in such a way that the copy of a PolyVal storing
a Triangle would still behave as a Triangle

Member of the Helmholtz Association 8 – 12 May 2023 Slide 4

TYPE ERASURE TECHNIQUE
1 class PolyVal {
2 struct Internal {
3 virtual ~Internal() noexcept = default;
4 virtual auto clone() const -> std::unique_ptr<Internal> = 0;
5 virtual void func1_() const = 0;
6 };
7 template <class T>
8 struct Wrapped : public Internal // continued...
9

10 public:
11 template <class T>
12 PolyVal(const T& var) : ptr{ std::make_unique<Wrapped<T>>(var) } {}
13 PolyVal(const PolyVal& other) : ptr { other.ptr->clone() } {}
14 private:
15 std::unique_ptr<Internal> ptr;
16 };

Make a normal class with an internal class with virtual functions defining the desired interface, and another
internal wrapper class template deriving from the internal base
Give the outer class one template constructor (unrestrained here to isolate the TE technique)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 5

TYPE ERASURE TECHNIQUE
1 class PolyVal {
2 struct Internal {
3 virtual ~Internal() noexcept = default;
4 virtual auto clone() const -> std::unique_ptr<Internal> = 0;
5 virtual void func1_() const = 0;
6 };
7 template <class T>
8 struct Wrapped : public Internal // continued...
9

10 public:
11 template <class T>
12 PolyVal(const T& var) : ptr{ std::make_unique<Wrapped<T>>(var) } {}
13 PolyVal(const PolyVal& other) : ptr { other.ptr->clone() } {}
14 private:
15 std::unique_ptr<Internal> ptr;
16 };

Let the class contain a smart pointer to this base, but initialize that member using a class template which
inherits from the internal base.
Implement a copy constructor for PolyVal by using a virtual clone() function for the internal class
Use the template constructor to create a wrapped object containing a copy of the input parameter

Member of the Helmholtz Association 8 – 12 May 2023 Slide 5

TYPE ERASURE TECHNIQUE
1 class PolyVal {
2 template <class T>
3 struct Wrapped : public Internal {
4 Wrapped(T ex) : obj{ex} {}
5 ~Wrapped() noexcept override {}
6 auto clone() const -> std::unique_ptr<Internal> override
7 {
8 return std::make_unique<Wrapped>(obj);
9 }

10 void func1_() const override { func1(obj); }
11 T obj;
12 };
13 };

The internal wrapper should store an object of the template parameter type
It should provide copy, clone etc.
It should redirect function calls in our original requirement to free functions

Member of the Helmholtz Association 8 – 12 May 2023 Slide 6

TYPE ERASURE TECHNIQUE
1 class PolyVal {
2 template <class T>
3 struct Wrapped : public Internal {
4 Wrapped(T ex) : obj{ex} {}
5 ~Wrapped() noexcept override {}
6 auto clone() const -> std::unique_ptr<Internal> override
7 {
8 return std::make_unique<Wrapped>(obj);
9 }

10 void func1_() const override { func1(obj); }
11 T obj;
12 };
13 };

As long as those free functions exist for a type F , it will be possible to create objects of PolyVal type
from type F

Member of the Helmholtz Association 8 – 12 May 2023 Slide 6

Exercise 1.1:
examples/TE/PolyVal.cc contains the code corresponding to the slides shown here. Verify that we achieve our

purpose of having a copyable object preserving polymorphic behaviour. Add a function func1() (processing a
new type) into the mix, and extend the existing setup.

Exercise 1.2:
Sequences of objects with polymorphic behaviour is a frequently occuring programming problem. We have seen
one example before, with a vector of unique_ptr<Shape> , filled with newly created instances of types
inheritted from Shape , such as Circle , Triangle etc. The problem can be solved in many alternative
ways. examples/polymorphic contains 4 subdirectories with different approaches to the geometric object
example. (i) Inherittance with virtual functions (ii) std::variant with visitors (iii) Using std::any (iv)
Custom type erasure.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 7

VALARRAY
1 #include <valarray>
2
3 void varray_ops()
4 {
5 std::valarray V1(0., 1000000UL);
6 std::valarray<double> V2;
7 v2.resize(1000000UL, 0.);
8 auto x = exp(-V1 * V1) * sin(V2);
9 if (x.sum() < 100.0) {

10 //
11 }
12 }

Another dynamic array type
Mostly intended for numeric operations
Expression template based whole array math
operations
Algorithms through std::begin(v) etc.,
instead of own member functions
Bizarre constructor with different convention
compared to any other container in the STL.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 8

NUMERIC ALGORITHMS
1 #include <numeric>
2
3 using std::reduce;
4 using std::transform_reduce;
5
6 auto res = reduce(v.begin(), v.end());
7 auto res = reduce(v.begin(), v.end(), init);
8 auto res = reduce(v.begin(), v.end(),
9 init, std::plus<double>{});

10 auto res = transform_reduce(
11 u.begin(), u.end(),
12 v.begin(), init);
13 auto res = transform_reduce(
14 u.begin(), u.end(),
15 v.begin(), init, reduce_op, transf_op);
16 auto res = transform_reduce(

17 std::execution::par,

18 u.begin(), u.end(),
19 v.begin(), init, reduce_op, transf_op);

Algorithms focused on numeric calculations are in
the numeric header

Given b , e as iterators in a range V ,
reduce(b, e) :

∑e
i=b Vi

transform_reduce(b, e, f) :
∑e

i=b f (Vi)

adjacent_difference(b, e) :
{Vb, (Vb+1 − Vb), (Vb+2 − Vb+1), . . . }
Parallel versions also in the library
To run the numeric operations in parallel,
use the parallel execution policy

Member of the Helmholtz Association 8 – 12 May 2023 Slide 9

SPAN
1 using std::span;
2 using std::transform_reduce;
3 using std::plus;
4 using std::multiplies;
5 auto compute(span<const double> u,
6 span<const double> v) -> double
7 {
8 return transform_reduce(
9 u.begin(), u.end(),

10 v.begin(), 0., plus<double>{},
11 multiplies<double>{});
12 }
13
14 void elsewhere(double* x, double* y,
15 unsigned N)
16 {
17 return compute(span(x, N), span(y, N));
18 }

Non-owning view type for a contiguous range
No memory management
Numeric operations can often be expressed in terms
of existing arrays in memory, irrespective of how
they got there and who cleans up after they expire
span is designed to be that input for such

functions
Cheap to copy: essentially a pointer and a size
STL container like interface

Exercise 1.3:
examples/spans is a directory containing the compute

function as shown here. Notice how this function is used
directly using C++ array types as arguments instead of
spans, and indirectly when we only have pointers.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 10

RANGES
1 std::vector v{ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
2 // before std::ranges we did this...
3 std::reverse(v.begin(), v.end());
4 std::rotate(v.begin(), v.begin() + 3, v.end());
5 std::sort(v.begin(), v.end());

1 std::vector v{ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
2 namespace sr = std::ranges;
3 sr::reverse(v);
4 sr::rotate(v, v.begin() + 3);
5 sr::sort(v);

The <ranges> header defines a set of algorithms taking “ranges” as inputs instead of pairs of iterators

A range is a concept : something with sr::begin() , which returns an entity which can be used
to iterate over the elements, and sr::end() which returns a sentinel which is equality comparable with
an iterator, and indicates when the iteration should stop.
sr::sized_range : the range knows its size in constant time

input_range , output_range etc. based on the iterator types

borrowed_range : a type such that its iterators can be returned without the danger of dangling.

view is a range with constant time copy/move/assignment

Member of the Helmholtz Association 8 – 12 May 2023 Slide 11

USING RANGES FROM STD OR FROM RANGE-V3
1 // cxx220ranges
2 #include <version>
3 #ifdef __cpp_lib_ranges
4 #include<ranges>
5 namespace sr = std::ranges;
6 namespace sv = sr::views;
7 #elif __has_include (<range/v3/all.hpp>)
8 #include<range/v3/all.hpp>
9 namespace sr = ranges;

10 namespace sv = sr::views;
11 #warning Using ranges-v3 3rd party library
12 #else
13 #error No suitable header for C++20 ranges was found!
14 #endif

The C++20 <ranges> library is based on the
open source range-v3 library. Parts of the
range-v3 library were adopted for C++20,

more might be added in C++23.
Even if the standard library shipping with some
compilers do not have many features of
<ranges> , one can start using them, with a

redirecting header, which makes use of another
standard library feature
Including <version> results in the definition of
library feature test macros, which can be used to
choose between different header files

Our examples are actually written using a redirecting header as shown here. Compilation with GCC uses
the compiler’s own version. Compilation with Clang uses the range-v3 version.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 12

FUN WITH RANGES AND VIEWS
1 // examples/ranges0.cc
2 #include <ranges>
3 #include
4 auto sum(std::ranges::input_range auto&& seq) {
5 std::iter_value_t<decltype(seq)> ans{};
6 for (auto x : seq) ans += x;
7 return ans;
8 }
9 auto main() -> int

10 {
11 //using various namespaces;
12 cout << "vector : " << sum(vector({ 9,8,7,2 })) << "\n";
13 cout << "list : " << sum(list({ 9,8,7,2 })) << "\n";
14 cout << "valarray : " << sum(valarray({ 9,8,7,2 })) << "\n";
15 cout << "array : "
16 << sum(array<int,4>({ 9,8,7,2 })) << "\n";
17 cout << "array : "
18 << sum(array<string, 4>({ "9"s,"8"s,"7"s,"2"s })) << "\n";
19 int A[]{1,2,3};
20 cout << "span(built-in array) : " << sum(span(A)) << "\n";
21 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 13

FUN WITH RANGES AND VIEWS
The ranges library gives us many useful concepts describing sequences of objects.

The function template sum in examples/ranges0.cc accepts any input range, i.e., some entity whose
iterators satisfy the requirements of an input_iterator .
Notice how we obtain the value type of the range
Many STL algorithms have range versions in C++20. They are functions like sum taking various kinds
of ranges as input.
The range concept is defined in terms of

the existence of an iterator type and a sentinel type.
the iterator should behave like an iterator, e.g., allow ++it *it etc.
it should be possible to compare the iterators with other iterators or with a sentinel for equality.
A begin() function returning an iterator and an end() function returning a sentinel

Member of the Helmholtz Association 8 – 12 May 2023 Slide 14

FUN WITH RANGES AND VIEWS
1 // examples/iota.cc
2 #include <ranges>
3 #include <iostream>
4 auto main() -> int {
5 namespace sv = std::views;
6 for (auto i : sv::iota(1UL)) {
7 if ((i+1) % 10000UL == 0UL) {
8 std::cout << i << ' ';
9 if ((i+1) % 100000UL == 0UL)

10 std::cout << '\n';
11 if (i >= 100000000UL) break;
12 }
13 }
14 }

All containers are ranges, but not all ranges are
containers
std::string_view is a perfectly fine range.

Has iterators with the right properties. Has
begin() and end() functions. It does not

own the contents, but “ownership” is not part of
the idea of a range.
We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota(integer) gives us an

infinite sequence of integers starting at a given
value.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 15

FUN WITH RANGES AND VIEWS
1 // examples/iota.cc
2 #include <ranges>
3 #include <iostream>
4 auto main() -> int {
5 namespace sv = std::views;
6 for (auto i : sv::iota(1UL)) {
7 if ((i+1) % 10000UL == 0UL) {
8 std::cout << i << ' ';
9 if ((i+1) % 100000UL == 0UL)

10 std::cout << '\n';
11 if (i >= 100000000UL) break;
12 }
13 }
14 }

All containers are ranges, but not all ranges are
containers
std::string_view is a perfectly fine range.

Has iterators with the right properties. Has
begin() and end() functions. It does not

own the contents, but “ownership” is not part of
the idea of a range.
We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota(integer) gives us an

infinite sequence of integers starting at a given
value.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 15

FUN WITH RANGES AND VIEWS
1 // examples/iota.cc
2 #include <ranges>
3 #include <iostream>
4 auto main() -> int {
5 namespace sv = std::views;
6 for (auto i : sv::iota(1UL)) {
7 if ((i+1) % 10000UL == 0UL) {
8 std::cout << i << ' ';
9 if ((i+1) % 100000UL == 0UL)

10 std::cout << '\n';
11 if (i >= 100000000UL) break;
12 }
13 }
14 }

All containers are ranges, but not all ranges are
containers
std::string_view is a perfectly fine range.

Has iterators with the right properties. Has
begin() and end() functions. It does not

own the contents, but “ownership” is not part of
the idea of a range.
We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota(integer) gives us an

infinite sequence of integers starting at a given
value.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 15

FUN WITH RANGES AND VIEWS
All containers are ranges, but not all ranges are
containers
std::string_view is a perfectly fine range.

Has iterators with the right properties. Has
begin() and end() functions. It does not

own the contents, but “ownership” is not part of
the idea of a range.
We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota(integer) gives us an

infinite sequence of integers starting at a given
value.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 15

FUN WITH RANGES AND VIEWS
1 #include <ranges>
2 #include <iostream>
3 auto main() -> int {
4 namespace sv = std::views;
5 for (auto i : sv::iota(1UL)) {

6 if ((i+1) % 10000UL == 0UL) {
7 std::cout << i << ' ';
8 if ((i+1) % 100000UL == 0UL)
9 std::cout << '\n';

10 if (i >= 100000000UL) break;
11 }
12 }
13 }

All containers are ranges, but not all ranges are
containers
std::string_view is a perfectly fine range.

Has iterators with the right properties. Has
begin() and end() functions. It does not

own the contents, but “ownership” is not part of
the idea of a range.
We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota(integer) gives us an

infinite sequence of integers starting at a given
value.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 15

BORROWED RANGES
1 // examples/dangling0.cc
2 auto get_vec() {
3 std::vector v{ 2, 4, -1, 8, 0, 9 };
4 return v;
5 }
6 auto main() -> int {
7 auto v = get_vec();
8 auto iter = std::min_element(v.begin(),
9 v.end());

10 std::cout << "Minimum " << *iter << "\n";
11 }

The min_element function finds the minimum
element in a range and returns an iterator

The version from the ranges library takes only a
range
It may be tempting to directly feed the output from
a function to the algorithm. But, we would receive
an iterator to a container that is already destructed,
i.e., a dangling iterator. Dereferencing should
therefore lead to a SEGFAULT.
In reality, what happes is this!

Example from a CPPCon 2020 talk by Tristan Brindle.
Link.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 16

https://www.youtube.com/watch?v=d_E-VLyUnzc

BORROWED RANGES
1 // examples/dangling0.cc
2 auto get_vec() {
3 std::vector v{ 2, 4, -1, 8, 0, 9 };
4 return v;
5 }
6 auto main() -> int {
7 auto v = get_vec();
8 auto iter = sr::min_element(v);
9

10 std::cout << "Minimum " << *iter << "\n";
11 }

The min_element function finds the minimum
element in a range and returns an iterator
The version from the ranges library takes only a
range

It may be tempting to directly feed the output from
a function to the algorithm. But, we would receive
an iterator to a container that is already destructed,
i.e., a dangling iterator. Dereferencing should
therefore lead to a SEGFAULT.
In reality, what happes is this!

Example from a CPPCon 2020 talk by Tristan Brindle.
Link.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 16

https://www.youtube.com/watch?v=d_E-VLyUnzc

BORROWED RANGES
1 // examples/dangling0.cc
2 auto get_vec() {
3 std::vector v{ 2, 4, -1, 8, 0, 9 };
4 return v;
5 }
6 auto main() -> int {
7
8 auto iter = sr::min_element(get_vec());
9

10 std::cout << "Minimum " << *iter << "\n";
11 }

The min_element function finds the minimum
element in a range and returns an iterator
The version from the ranges library takes only a
range
It may be tempting to directly feed the output from
a function to the algorithm. But, we would receive
an iterator to a container that is already destructed,
i.e., a dangling iterator. Dereferencing should
therefore lead to a SEGFAULT.

In reality, what happes is this!

Example from a CPPCon 2020 talk by Tristan Brindle.
Link.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 16

https://www.youtube.com/watch?v=d_E-VLyUnzc

BORROWED RANGES
1 // examples/dangling0.cc
2 auto get_vec() {
3 std::vector v{ 2, 4, -1, 8, 0, 9 };
4 return v;
5 }
6 auto main() -> int {
7
8 auto iter = sr::min_element(get_vec());
9

10 std::cout << "Minimum " << *iter << "\n";
11 }

The min_element function finds the minimum
element in a range and returns an iterator
The version from the ranges library takes only a
range
It may be tempting to directly feed the output from
a function to the algorithm. But, we would receive
an iterator to a container that is already destructed,
i.e., a dangling iterator. Dereferencing should
therefore lead to a SEGFAULT.
In reality, what happes is this!

Example from a CPPCon 2020 talk by Tristan Brindle.
Link.

error: no match for ‘operator*’ (operand type is 'std::ranges::dangling')
19 | std::cout << "Minimum value is " << *iter << "\n";

Member of the Helmholtz Association 8 – 12 May 2023 Slide 16

https://www.youtube.com/watch?v=d_E-VLyUnzc

BORROWED RANGES
1 // examples/dangling0.cc
2 auto get_vec() {
3 std::vector v{ 2, 4, -1, 8, 0, 9 };
4 return v;
5 }
6 auto main() -> int {
7
8 auto iter = sr::min_element(get_vec());
9

10 std::cout << "Minimum " << *iter << "\n";
11 }

The ranges algorithms are written with overloads
such that when you pass an R-value reference of a
container as input, the output type is
ranges::dangling , an empty struct with

no operations defined.
iter here will be deduced to be of type
ranges::dangling , and hence *iter leads

to that insightful error message.

error: no match for ‘operator*’ (operand type is 'std::ranges::dangling')
19 | std::cout << "Minimum value is " << *iter << "\n";

When the input was an L-value reference, the algorithm returning the iterator returned a valid iterator.
Therefore: valid use cases work painlessly, and invalid ones result in actionable insights from the compiler!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 17

BORROWED RANGES
1 // examples/dangling1.cc
2 static std::vector u{2, 3, 4, -1, 9};
3 static std::vector v{3, 1, 4, 1, 5};
4 auto get_vec(int c) -> std::span<int> {
5 return { (c % 2 == 0) ? u : v };
6 }
7 auto main(int argc, char* argv[]) -> int {
8 auto iter = sr::min_element(get_vec(argc));
9 // iter is valid, even if its parent span

10 // has expired.
11 std::cout << "Minimum " << *iter << "\n";
12 }

Sometimes, an iterator can point to a valid element
even when the “container” (imposter) has been
destructed. span , string_view etc. do not
own the elements in their range.
No harm in returning real iterators of these objects,
even if they are R-values. Even in this case, there is
no danger of dangling.
A borrowed_range is a range so that its
iterators can be returned from a function without
the danger of dangling, i.e.,
it is an L-value reference or
has been explicitly certified to be a borrowed range .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 18

BORROWED RANGES
1 // examples/dangling1.cc
2 static std::vector u{2, 3, 4, -1, 9};
3 static std::vector v{3, 1, 4, 1, 5};
4 auto get_vec(int c) -> std::span<int> {
5 return { (c % 2 == 0) ? u : v };
6 }
7 auto main(int argc, char* argv[]) -> int {
8 auto iter = sr::min_element(get_vec(argc));
9 // iter is valid, even if its parent span

10 // has expired.
11 std::cout << "Minimum " << *iter << "\n";
12 }

Sometimes, an iterator can point to a valid element
even when the “container” (imposter) has been
destructed. span , string_view etc. do not
own the elements in their range.
No harm in returning real iterators of these objects,
even if they are R-values. Even in this case, there is
no danger of dangling.
A borrowed_range is a range so that its
iterators can be returned from a function without
the danger of dangling, i.e.,
it is an L-value reference or
has been explicitly certified to be a borrowed range .

template <class T>
concept borrowed_range = range<T> &&

(is_lvalue_reference_v<T> || enable_borrowed_range<remove_cvref_t<T>>)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 18

VIEW ADAPTORS
1 namespace sv = std::views;
2 std::vector v{1,2,3,4,5};
3 auto v3 = sv::take(v, 3);
4 // v3 is some sort of object so
5 // that it represents the first
6 // 3 elements of v. It does not
7 // own anything, and has constant
8 // time copy/move etc. It's a view.
9

10 // sv::take() is a view adaptor

A view is a range with constant time copy, move
etc. Think string_view

A view adaptor is a function object, which takes a
“viewable” range as an input and constructs a view
out of it. viewable is defined as “either a
borrowed_range or already a view.

View adaptors in the <ranges> library have very
interesting properties, and make some new ways of
coding possible.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 19

VIEW ADAPTORS
Adaptor(Viewable) -> View
Viewable | Adaptor -> View
V | A1 | A2 | A3 ... -> View

Adaptor(Viewable, Args...) -> View
Adaptor(Args...)(Viewable) -> View
Viewable | Adaptor(Args...) -> View

A view itself is trivially viewable.
Since a view adaptor produces a view, successive
applications of such adaptors makes sense.
If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.
For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 20

VIEW ADAPTORS
Adaptor(Viewable) -> View
Viewable | Adaptor -> View
V | A1 | A2 | A3 ... -> View

Adaptor(Viewable, Args...) -> View
Adaptor(Args...)(Viewable) -> View
Viewable | Adaptor(Args...) -> View

A view itself is trivially viewable.
Since a view adaptor produces a view, successive
applications of such adaptors makes sense.
If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.
For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 20

VIEW ADAPTORS
Adaptor(Viewable) -> View
Viewable | Adaptor -> View
V | A1 | A2 | A3 ... -> View

Adaptor(Viewable, Args...) -> View
Adaptor(Args...)(Viewable) -> View
Viewable | Adaptor(Args...) -> View

A view itself is trivially viewable.
Since a view adaptor produces a view, successive
applications of such adaptors makes sense.
If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.
For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 20

VIEW ADAPTORS
Adaptor(Viewable) -> View
Viewable | Adaptor -> View
V | A1 | A2 | A3 ... -> View

Adaptor(Viewable, Args...) -> View
Adaptor(Args...)(Viewable) -> View
Viewable | Adaptor(Args...) -> View

A view itself is trivially viewable.
Since a view adaptor produces a view, successive
applications of such adaptors makes sense.
If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.
For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 20

VIEW ADAPTORS
Adaptor(Viewable) -> View
Viewable | Adaptor -> View
V | A1 | A2 | A3 ... -> View

Adaptor(Viewable, Args...) -> View
Adaptor(Args...)(Viewable) -> View
Viewable | Adaptor(Args...) -> View

A view itself is trivially viewable.
Since a view adaptor produces a view, successive
applications of such adaptors makes sense.
If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.
For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

So what are we going to do with this ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 20

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ nπ

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 21

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.

Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}

R1 = T10R0 = T (n 7→ nπ
N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 21

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)

Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ nπ

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 21

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range

If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ nπ

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 21

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example

Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ nπ

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 21

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ nπ

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 21

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ nπ

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Member of the Helmholtz Association 8 – 12 May 2023 Slide 21

VIEW ADAPTORS

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Command line of Linux, Mac OS ...

Small utilities. Each program does one thing, and does it well.
There is a way to chain them together with the pipe
Overall usefulness of the tool set is amplified exponentially!
What about writing something similar in C++ ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 22

VIEW ADAPTORS

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Command line of Linux, Mac OS ...
Small utilities. Each program does one thing, and does it well.

There is a way to chain them together with the pipe
Overall usefulness of the tool set is amplified exponentially!
What about writing something similar in C++ ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 22

VIEW ADAPTORS

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Command line of Linux, Mac OS ...
Small utilities. Each program does one thing, and does it well.
There is a way to chain them together with the pipe

Overall usefulness of the tool set is amplified exponentially!
What about writing something similar in C++ ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 22

VIEW ADAPTORS

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Command line of Linux, Mac OS ...
Small utilities. Each program does one thing, and does it well.
There is a way to chain them together with the pipe
Overall usefulness of the tool set is amplified exponentially!

What about writing something similar in C++ ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 22

VIEW ADAPTORS

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Command line of Linux, Mac OS ...
Small utilities. Each program does one thing, and does it well.
There is a way to chain them together with the pipe
Overall usefulness of the tool set is amplified exponentially!
What about writing something similar in C++ ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 22

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000. R0 = iota(0, N)

Map the integer range to real numbers in the range [0, 2π), i.e., perform the transformation n 7→ 2πn
N over

the range: R1 = R0 | transform([](int n) -> double { return 2*pi*n/N; })

Perform the transformation x 7→ sin2(x) + cos2(x) − 1 over the resulting rangeR2 = R1 | transform([](double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

If absolute value of any of the values in the result exceeds ϵ, we have found a counter example
if (any_of(R2, [](auto x){return fabs(x) > eps;})) ...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 23

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000. R0 = iota(0, N)

Map the integer range to real numbers in the range [0, 2π), i.e., perform the transformation n 7→ 2πn
N over

the range: R1 = R0 | transform([](int n) -> double { return 2*pi*n/N; })

Perform the transformation x 7→ sin2(x) + cos2(x) − 1 over the resulting rangeR2 = R1 | transform([](double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

If absolute value of any of the values in the result exceeds ϵ, we have found a counter example
if (any_of(R2, [](auto x){return fabs(x) > eps;})) ...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 23

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000. R0 = iota(0, N)

Map the integer range to real numbers in the range [0, 2π), i.e., perform the transformation n 7→ 2πn
N over

the range: R1 = R0 | transform([](int n) -> double { return 2*pi*n/N; })

Perform the transformation x 7→ sin2(x) + cos2(x) − 1 over the resulting rangeR2 = R1 | transform([](double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

If absolute value of any of the values in the result exceeds ϵ, we have found a counter example
if (any_of(R2, [](auto x){return fabs(x) > eps;})) ...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 23

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000. R0 = iota(0, N)

Map the integer range to real numbers in the range [0, 2π), i.e., perform the transformation n 7→ 2πn
N over

the range: R1 = R0 | transform([](int n) -> double { return 2*pi*n/N; })

Perform the transformation x 7→ sin2(x) + cos2(x) − 1 over the resulting rangeR2 = R1 | transform([](double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

If absolute value of any of the values in the result exceeds ϵ, we have found a counter example
if (any_of(R2, [](auto x){return fabs(x) > eps;})) ...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 23

VIEW ADAPTORS
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000. R0 = iota(0, N)

Map the integer range to real numbers in the range [0, 2π), i.e., perform the transformation n 7→ 2πn
N over

the range: R1 = R0 | transform([](int n) -> double { return 2*pi*n/N; })

Perform the transformation x 7→ sin2(x) + cos2(x) − 1 over the resulting rangeR2 = R1 | transform([](double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

If absolute value of any of the values in the result exceeds ϵ, we have found a counter example
if (any_of(R2, [](auto x){return fabs(x) > eps;})) ...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 23

VIEW ADAPTORS
1 auto main() -> int {
2 namespace sr = std::ranges;
3 namespace sv = std::views;
4 const auto pi = std::acos(-1);
5 constexpr auto npoints = 10'000'00UL;
6 constexpr auto eps = 100 * std::numeric_limits<double>::epsilon();
7 auto to_0_2pi = [=](size_t idx) -> double {
8 return std::lerp(0., 2*pi, idx * 1.0 / npoints);
9 };

10 auto x_to_fx = [](double x) -> double {
11 return sin(x) * sin(x) + cos(x) * cos(x) - 1.0;
12 };
13 auto is_bad = [=](double x){ return std::fabs(x) > eps; };
14
15 auto res = sv::iota(0UL, npoints) | sv::transform(to_0_2pi)
16 | sv::transform(x_to_fx);
17 if (sr::any_of(res, is_bad)) {
18 std::cerr << "The relation does not hold.\n";
19 } else {
20 std::cout << "The relation holds for all inputs\n";
21 }
22 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 24

VIEW ADAPTORS
The job of each small transform in the previous example was small, simple, easily verified for correctness.

The view adaptors allow us to chain them to produce a resulting range
Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.
No operation is done on any range when we create the variable res above.

When we try to access an element of the range in the any_of algorithm, one element is taken on the fly
out of the starting range, fed through the pipeline and catered to any_of

any_of does not process the range beyond what is necessary to establish its truth value. The remaining
elements in the result array are never calculated.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 25

VIEW ADAPTORS
The job of each small transform in the previous example was small, simple, easily verified for correctness.
The view adaptors allow us to chain them to produce a resulting range

Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.
No operation is done on any range when we create the variable res above.

When we try to access an element of the range in the any_of algorithm, one element is taken on the fly
out of the starting range, fed through the pipeline and catered to any_of

any_of does not process the range beyond what is necessary to establish its truth value. The remaining
elements in the result array are never calculated.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 25

VIEW ADAPTORS
The job of each small transform in the previous example was small, simple, easily verified for correctness.
The view adaptors allow us to chain them to produce a resulting range
Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.

No operation is done on any range when we create the variable res above.

When we try to access an element of the range in the any_of algorithm, one element is taken on the fly
out of the starting range, fed through the pipeline and catered to any_of

any_of does not process the range beyond what is necessary to establish its truth value. The remaining
elements in the result array are never calculated.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 25

VIEW ADAPTORS
The job of each small transform in the previous example was small, simple, easily verified for correctness.
The view adaptors allow us to chain them to produce a resulting range
Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.
No operation is done on any range when we create the variable res above.

When we try to access an element of the range in the any_of algorithm, one element is taken on the fly
out of the starting range, fed through the pipeline and catered to any_of

any_of does not process the range beyond what is necessary to establish its truth value. The remaining
elements in the result array are never calculated.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 25

VIEW ADAPTORS
The job of each small transform in the previous example was small, simple, easily verified for correctness.
The view adaptors allow us to chain them to produce a resulting range
Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.
No operation is done on any range when we create the variable res above.

When we try to access an element of the range in the any_of algorithm, one element is taken on the fly
out of the starting range, fed through the pipeline and catered to any_of

any_of does not process the range beyond what is necessary to establish its truth value. The remaining
elements in the result array are never calculated.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 25

VIEW ADAPTORS
The job of each small transform in the previous example was small, simple, easily verified for correctness.
The view adaptors allow us to chain them to produce a resulting range
Algorithms like std::range::any_of work on ranges, so they can work on the views resulting from
chained view adaptors.
No operation is done on any range when we create the variable res above.

When we try to access an element of the range in the any_of algorithm, one element is taken on the fly
out of the starting range, fed through the pipeline and catered to any_of

any_of does not process the range beyond what is necessary to establish its truth value. The remaining
elements in the result array are never calculated.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 25

Exercise 1.4:
The code used for the demonstration of view adaptors is examples/trig_views.cc . Build this code with GCC
and Clang. If the version of your compiler does not have a usable <ranges> header, we can use a redirecting
header <cxx20ranges> examples. When the compiler implements the ranges library, it includes <ranges> .
Otherwise, it tries to include equivalent headers from the rangev3 library. It also defines alias namespaces
sr and sv for std::ranges and std::std::views . To compile, you would need to have the

location of this redirecting header in your include path:

g++ -std=c++20 -I course_home/local/include trig_views.cc
./a.out

clang++ -std=c++20 -stdlib=libc++ -I course_home/local/include trig_views.cc
./a.out

Member of the Helmholtz Association 8 – 12 May 2023 Slide 26

Exercise 1.5:
The trigonometric relation we used is true, so not all possibilities are explored. In
examples/trig_views2.cc there is another program trying to verify the bogus claim sin2(x) < 0.99. It’s

mostly true, but sometimes it isn’t, so that our if and else branches both have work to do. The lambdas in
this program have been rigged to print messages before returning. Convince yourself of the following:

The output from the lambdas come out staggered, which means that the program does not process the
entire range for the first transform and then again for the second ...
Processing stops at the first instance where any_of gets a true answer.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 27

VIEW ADAPTORS

1 // examples/gerund.cc
2 using itertype = std::istream_iterator<std::string>;
3 std::ifstream fin { argv[1] };
4 auto gerund = [](std::string_view w) { return w.ends_with("ing"); };
5 auto in = sr::istream_view<std::string>(fin);
6 std::cout << (in | sv::filter(gerund)) << "\n";
7

sr::istream_view<T> creates an (input) iterable range from an input stream. Each element of this
range is of the type T .

sv::filter is a view adaptor, which when applied to a range, produces another containing only the
elements satisfying a given condition
In the above, std::cout is shown writing out a range. This works via a separate header file included in
gerund.cc called range_output.hh , which is provided to you with the course material. Ranges in

C++20 are not automatically streamable to the standard output.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 28

VIEW ADAPTORS
A program to print the alphabetically first and last word entered on the command line, excluding the program
name.

1 // examples/views_and_span.cc
2 auto main(int argc, char* argv[]) -> int
3 {
4 if (argc < 2) return 1;
5 namespace sr = std::ranges;
6 namespace sv = std::views;
7
8 std::span args(argv, argc);
9 auto str = [](auto cstr) -> std::string_view { return cstr; };

10 auto [mn, mx] = sr::minmax(args | sv::drop(1) | sv::transform(str));
11
12 std::cout << "Alphabetically first = " << mn << " last = " << mx << "\n";
13 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 29

FORMATTED OUTPUT
1 for (auto i = 0UL; i < 100UL; ++i) {
2 std::cout << "i = " << i
3 << ", E_1 = " << cos(i * wn)
4 << ", E_2 = " << sin(i * wn)
5 << "\n";
6 }

i = 5, E_1 = 0.55557, E_2 = 0.83147
i = 6, E_1 = 0.382683, E_2 = 0.92388
i = 7, E_1 = 0.19509, E_2 = 0.980785
i = 8, E_1 = 6.12323e-17, E_2 = 1
i = 9, E_1 = -0.19509, E_2 = 0.980785
i = 10, E_1 = -0.382683, E_2 = 0.92388
i = 11, E_1 = -0.55557, E_2 = 0.83147

While convenient and type safe and extensible, the
interface of ostream objects like std::cout
isn’t by itself conducive to regular well-formatted
output

C printf often has a simpler path towards
visually uniform columnar output, although it is
neither type safe nor extensible
C++ <iomanip> header allows formatting with
a great deal of control, but has a verbose and
inconsistent syntax
C++20 introduced the <format> header, which
introduces Python like string formatting
Based on the open source fmt library.
Elegant. Safe. Fast. Extensible.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 30

FORMATTED OUTPUT
1 for (auto i = 0UL; i < 100UL; ++i) {
2 std::cout << "i = " << i
3 << ", E_1 = " << cos(i * wn)
4 << ", E_2 = " << sin(i * wn)
5 << "\n";
6 }

i = 5, E_1 = 0.55557, E_2 = 0.83147
i = 6, E_1 = 0.382683, E_2 = 0.92388
i = 7, E_1 = 0.19509, E_2 = 0.980785
i = 8, E_1 = 6.12323e-17, E_2 = 1
i = 9, E_1 = -0.19509, E_2 = 0.980785
i = 10, E_1 = -0.382683, E_2 = 0.92388
i = 11, E_1 = -0.55557, E_2 = 0.83147

While convenient and type safe and extensible, the
interface of ostream objects like std::cout
isn’t by itself conducive to regular well-formatted
output
C printf often has a simpler path towards
visually uniform columnar output, although it is
neither type safe nor extensible
C++ <iomanip> header allows formatting with
a great deal of control, but has a verbose and
inconsistent syntax

C++20 introduced the <format> header, which
introduces Python like string formatting
Based on the open source fmt library.
Elegant. Safe. Fast. Extensible.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 30

FORMATTED OUTPUT
1 for (auto i = 0UL; i < 100UL; ++i) {
2 std::cout << fmt::format(
3 "i = {:>4d}, E_1 = {:< 12.8f}, "
4 "E_2 = {:< 12.8f}\n",
5 i, cos(i * wn), sin(i * wn));
6 }

i = 5, E_1 = 0.55557023 , E_2 = 0.83146961
i = 6, E_1 = 0.38268343 , E_2 = 0.92387953
i = 7, E_1 = 0.19509032 , E_2 = 0.98078528
i = 8, E_1 = 0.00000000 , E_2 = 1.00000000
i = 9, E_1 = -0.19509032 , E_2 = 0.98078528
i = 10, E_1 = -0.38268343 , E_2 = 0.92387953
i = 11, E_1 = -0.55557023 , E_2 = 0.83146961

While convenient and type safe and extensible, the
interface of ostream objects like std::cout
isn’t by itself conducive to regular well-formatted
output
C printf often has a simpler path towards
visually uniform columnar output, although it is
neither type safe nor extensible
C++ <iomanip> header allows formatting with
a great deal of control, but has a verbose and
inconsistent syntax
C++20 introduced the <format> header, which
introduces Python like string formatting
Based on the open source fmt library.

Elegant. Safe. Fast. Extensible.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 30

FORMATTED OUTPUT
1 for (auto i = 0UL; i < 100UL; ++i) {
2 std::cout << fmt::format(
3 "i = {:>4d}, E_1 = {:< 12.8f}, "
4 "E_2 = {:< 12.8f}\n",
5 i, cos(i * wn), sin(i * wn));
6 }

i = 5, E_1 = 0.55557023 , E_2 = 0.83146961
i = 6, E_1 = 0.38268343 , E_2 = 0.92387953
i = 7, E_1 = 0.19509032 , E_2 = 0.98078528
i = 8, E_1 = 0.00000000 , E_2 = 1.00000000
i = 9, E_1 = -0.19509032 , E_2 = 0.98078528
i = 10, E_1 = -0.38268343 , E_2 = 0.92387953
i = 11, E_1 = -0.55557023 , E_2 = 0.83146961

Perfectly aligned, as all numeric output should be.

While convenient and type safe and extensible, the
interface of ostream objects like std::cout
isn’t by itself conducive to regular well-formatted
output
C printf often has a simpler path towards
visually uniform columnar output, although it is
neither type safe nor extensible
C++ <iomanip> header allows formatting with
a great deal of control, but has a verbose and
inconsistent syntax
C++20 introduced the <format> header, which
introduces Python like string formatting
Based on the open source fmt library.
Elegant. Safe. Fast. Extensible.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 30

FORMATTED OUTPUT
1 // Example of a redirecting header
2 #include <version>
3 #ifdef __cpp_lib_format
4 #include <format>
5 using std::format;
6 #elif __has_include(<fmt/format.h>)
7 #define FMT_HEADER_ONLY
8 #include <fmt/core.h>
9 using fmt::format;

10 #else
11 #error No suitable header for C++20 format!
12 #endif

GCC 13 has an implementation. Our redirecting
header can help us work with clang as well.
We can use a redirecting header to use the fmt

library when the compiler does not have the library
feature
Code simplification and compilation (and runtime)
speed =⇒ useful to learn it. Eventually all
compilers will have it.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 31

FORMATTED OUTPUT
std::format("format string {}, {} etc.", args...) takes a compile time constant

format string and a parameter pack to produce a formatted output string
std::vformat can be used if the format string is not known at compilation time

If instead of receiving output as a newly created string, output into a container or string is desired,
std::format_to or std::format_to_n are available

The string contains python style placeholder braces to be filled with formatted values from the argument list
The braces can optionally contain id : spec descriptors. id is a 0 based index to choose an argument
from args... for that slot. spec controls how the value is to be written: width, precision, alignment,
padding, base of numerals etc. Details of the format specifiers can be found here!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 32

https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification

Exercise 1.6:
A simple example demonstrating the text formatting library of C++20 is in examples/format1.cc . When this
C++20 header is not available in the standard library implementation, we use headers from the fmt library
giving us approximately the same functionality. Although fmt is usually compiled to a static or shared library to
link, we define the macro FMT_HEADER_ONLY to pretend that we got everything from the standard library.

Exercise 1.7:
The program examples/word_count.cc is an improved version of the word counter program from day 4. Here we
clear any trailing non-alphabetic characters from strings read as words, e.g., treat "instance," as "instance". We
use the ranges algorithms to clean up the string. We then use the formatting library to write the histogram.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 33

REGULAR EXPRESSIONS USING C++20

1 constexpr ctll::fixed_string re{ R"xpr(^(https:|http:|www\.)\S*)xpr" };
2 auto urls_in_input = args | sv::drop(1)
3 | sv::transform([=](auto inp) { return str(inp); })
4 | sv::filter([re](auto inp) { return ctre::search<re>(inp); });
5 if (auto m = ctre::match<trx>(diststr); m) {
6 auto numstr = m.get<1>().to_string();
7 // and so on...
8 }

CTRE: "Compile time regular expressions", header only open source library
Regular expressions parsed at compile time.
Smaller binaries than std::regex

Syntax makes excellent use of C++20 features for intuitive handling of regular expressions
Compile time regex processing is possible, with great performance

Member of the Helmholtz Association 8 – 12 May 2023 Slide 34

REGULAR EXPRESSIONS USING CTRE

Exercise 1.8:
examples/dist.cc contains a rudimentary Distance class. Distances can be constructed by giving a value

with a unit. Overloaded literal operators allow writing code like auto d = 14.5_km; . It is possible to write
distances using std::cout , or read using std::cin . E.g.,

$ Enter distance: 13.99_cm
That is 0.1399_m

$ Enter distance: "23 km"
That is 23000_m

To read and interpret the input string in the correct units, we make use of regular expressions. Since these can be
known at when writing the source code, we use the CTRE library to process our regular expressions. The
example demonstrates many different topics explored during the course.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 35

Modules

Member of the Helmholtz Association 8 – 12 May 2023 Slide 36

A PREVIEW OF C++20 MODULES
Traditionally, C++ projects are organised into header and source files. As an example, consider a simple
saxpy program ...

1 #ifndef SAXPY_HH
2 #define SAXPY_HH
3 #include <algorithm>
4 #include
5 template <class T> concept Number = std::floating_point<T> or std::integral<T>;
6 template <class T> requires Number<T>
7 auto saxpy(T a, std::span<const T> x, std::span<const T> y, std::span<T> z){
8 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
9 [a](T X, T Y) { return a * X + Y; });

10 }
11 #endif

1 #include "saxpy.hh"
2 auto main() -> int {
3 //declarations
4 saxpy(10., {inp1}, {inp2}, {outp});
5 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 37

PROBLEMS WITH HEADER FILES
Headers contain declarations of functions, classes etc., and definitions of inline functions.
Source files contain implementations of other functions, such as main .
Since function templates and class templates have to be visible to the compiler at the point of instantiation,
these have traditionally lived in headers.
Standard library, TBB, Thrust, Eigen ... a lot of important C++ libraries consist of a lot of template code,
and therefore in header files.
The #include <abc> mechanism is essentially a copy-and-paste solution. The preprocessor inserts the
entire source of the headers in each source file that includes it, creating large translation units.
The same template code gets re-parsed over and over for every new tranlation unit.
If the headers contain expression templates, CRTP, metaprogramming repeated processing of the templates
is a waste of resources.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 38

MODULES
The module mechanism in C++20 offers a better organisation
All code, including template code can now reside in source files
Module source files will be processed once to produce “precompiled modules”, where the essential syntactic
information has been parsed and saved.
These compiled module interface (binary module interface) files are to be treated as caches generated
during the compilation process. There are absolutely no guarantees of them remaining compatible between
different versions of the same compiler, different machine configurations etc.
Any source import ing the module immediately has access to the precompiled syntax tree in the
precompiled module files. This leads to less overall work and faster compilation of individual translation units
Since a source file may export a module to be imported by another source in the same project, sources must
sometimes be compiled in a specific order. Automatically deducing this order is a difficult problem, and is
one of the reasons tools like CMake have taken this long to support C++ modules

Member of the Helmholtz Association 8 – 12 May 2023 Slide 39

USING MODULES
1 // examples/hello_m.cc
2 import <iostream>;
3
4 auto main() -> int
5 {
6 std::cout << "Hello, world!\n";
7 }

If a module is available, not much special needs to
be done to use it. import the module instead of
#include ing a header. Use the exported classes,

functions and variables from the module.
As of C++20, the standard library is not available
as a module. But standard library headers can be
imported as “header units”.

$ clang++ -std=c++20 -stdlib=libc++ -fmodules hello_m.cc
$./a.out
$ g++ -std=c++20 -fmodules-ts -xc++-system-header iostream
$ g++ -std=c++20 -fmodules-ts hello_m.cc
$./a.out
$

GCC requires that the header units needed are first generated in a separate explicit step.
If iostream had been the name of a module, we would have written import iostream; instead of
import <iostream>

Member of the Helmholtz Association 8 – 12 May 2023 Slide 40

USING MODULES

Exercise 1.9:
Convert a few of the example programs you have seen during the course to use modules syntax instead. At the
moment it means no more than replacing the #include lines with the corresponding import lines for the
standard library headers. The point is to get used to the extra compilation options you need with modules at the
moment. Use, for instance, the date time library functions like feb.cc and advent.cc from the day 4 examples.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 41

CREATING A MODULE (EXAMPLE)
1 // saxpy.hh
2 #ifndef SAXPY_HH
3 #define SAXPY_HH
4 #include <algorithm>
5 #include
6
7 template <class T>
8 concept Number = std::floating_point<T>
9 or std::integral<T>;

10 template <Number T>
11 auto saxpy(T a, std::span<const T> x,
12 std::span<const T> y,
13 std::span<T> z)
14 {
15 std::transform(x.begin(), x.end(),
16 y.begin(), z.begin(),
17 [a](T X, T Y) {
18 return a * X + Y;
19 });
20 }
21 #endif

A header file contains a function template saxpy ,
and a concept necessary to define that function

A source file, main.cc which includes the header
and uses the function

Member of the Helmholtz Association 8 – 12 May 2023 Slide 42

CREATING A MODULE (EXAMPLE)
1 // usesaxpy.cc
2 #include <iostream>
3 #include <array>
4 #include <vector>
5 #include
6 #include "saxpy.hh"
7
8 auto main() -> int
9 {

10 using namespace std;
11 const array inp1 { 1., 2., 3., 4., 5. };
12 const array inp2 { 9., 8., 7., 6., 5. };
13 vector outp(inp1.size(), 0.);
14
15 saxpy(10., {inp1}, {inp2}, {outp});
16 for (auto x : outp) cout << x << "\n";
17 cout << ":::::::::::::::::::::\n";
18 }

A header file contains a function template saxpy ,
and a concept necessary to define that function

A source file, main.cc which includes the header
and uses the function

Member of the Helmholtz Association 8 – 12 May 2023 Slide 43

CREATING A MODULE (EXAMPLE)
1 // saxpy.hh -> saxpy.ixx
2 #ifndef SAXPY_HH
3 #define SAXPY_HH
4 #include <algorithm>
5 #include
6
7 template <class T>
8 concept Number = std::floating_point<T>
9 or std::integral<T>;

10 template <Number T>
11 auto saxpy(T a, std::span<const T> x,
12 std::span<const T> y,
13 std::span<T> z)
14 {
15 std::transform(x.begin(), x.end(),
16 y.begin(), z.begin(),
17 [a](T X, T Y) {
18 return a * X + Y;
19 });
20 }
21 #endif

Make a module interface unit

Include guards are no longer required, since
importing a module does not transitively import
things used inside the module
A module interface unit is a file which
exports a module . The lines between the
module; and export module saxpy;

constitute the “global module fragment”, where
traditional #include statements can be used.

If you can get by with only import s, replace
#include lines with corresponding import

lines. Omit the module; line in this case.

Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 8 – 12 May 2023 Slide 44

CREATING A MODULE (EXAMPLE)
1 // saxpy.hh -> saxpy.ixx

2 #ifndef SAXPY_HH

3 #define SAXPY_HH

4 #include <algorithm>
5 #include
6
7 template <class T>
8 concept Number = std::floating_point<T>
9 or std::integral<T>;

10 template <Number T>
11 auto saxpy(T a, std::span<const T> x,
12 std::span<const T> y,
13 std::span<T> z)
14 {
15 std::transform(x.begin(), x.end(),
16 y.begin(), z.begin(),
17 [a](T X, T Y) {
18 return a * X + Y;
19 });
20 }

21 #endif

Make a module interface unit
Include guards are no longer required, since

importing a module does not transitively import
things used inside the module

A module interface unit is a file which
exports a module . The lines between the
module; and export module saxpy;

constitute the “global module fragment”, where
traditional #include statements can be used.

If you can get by with only import s, replace
#include lines with corresponding import

lines. Omit the module; line in this case.

Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 8 – 12 May 2023 Slide 44

CREATING A MODULE (EXAMPLE)
1 // saxpy.hh -> saxpy.ixx
2
3
4 #include <algorithm>
5 #include
6
7 template <class T>
8 concept Number = std::floating_point<T>
9 or std::integral<T>;

10 template <Number T>
11 auto saxpy(T a, std::span<const T> x,
12 std::span<const T> y,
13 std::span<T> z)
14 {
15 std::transform(x.begin(), x.end(),
16 y.begin(), z.begin(),
17 [a](T X, T Y) {
18 return a * X + Y;
19 });
20 }

Make a module interface unit
Include guards are no longer required, since

importing a module does not transitively import
things used inside the module

A module interface unit is a file which
exports a module . The lines between the
module; and export module saxpy;

constitute the “global module fragment”, where
traditional #include statements can be used.

If you can get by with only import s, replace
#include lines with corresponding import

lines. Omit the module; line in this case.

Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 8 – 12 May 2023 Slide 44

CREATING A MODULE (EXAMPLE)
1 // saxpy.hh -> saxpy.ixx

2 module;

3 #include <algorithm>
4 #include

5 export module saxpy;
6
7 template <class T>
8 concept Number = std::floating_point<T>
9 or std::integral<T>;

10 template <Number T>
11 auto saxpy(T a, std::span<const T> x,
12 std::span<const T> y,
13 std::span<T> z)
14 {
15 std::transform(x.begin(), x.end(),
16 y.begin(), z.begin(),
17 [a](T X, T Y) {
18 return a * X + Y;
19 });
20 }

Make a module interface unit
Include guards are no longer required, since

importing a module does not transitively import
things used inside the module
A module interface unit is a file which
exports a module . The lines between the
module; and export module saxpy;

constitute the “global module fragment”, where
traditional #include statements can be used.

If you can get by with only import s, replace
#include lines with corresponding import

lines. Omit the module; line in this case.

Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 8 – 12 May 2023 Slide 44

CREATING A MODULE (EXAMPLE)
1 // saxpy.hh -> saxpy.ixx
2
3 export module saxpy;

4 import <algorithm>;

5 import ;
6
7 template <class T>
8 concept Number = std::floating_point<T>
9 or std::integral<T>;

10 template <Number T>
11 auto saxpy(T a, std::span<const T> x,
12 std::span<const T> y,
13 std::span<T> z)
14 {
15 std::transform(x.begin(), x.end(),
16 y.begin(), z.begin(),
17 [a](T X, T Y) {
18 return a * X + Y;
19 });
20 }

Make a module interface unit
Include guards are no longer required, since

importing a module does not transitively import
things used inside the module
A module interface unit is a file which
exports a module . The lines between the
module; and export module saxpy;

constitute the “global module fragment”, where
traditional #include statements can be used.

If you can get by with only import s, replace
#include lines with corresponding import

lines. Omit the module; line in this case.

Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 8 – 12 May 2023 Slide 44

CREATING A MODULE (EXAMPLE)
1 // saxpy.hh -> saxpy.ixx
2
3 export module saxpy;

4 import <algorithm>;

5 import ;
6
7 template <class T>
8 concept Number = std::floating_point<T>
9 or std::integral<T>;

10 export template <Number T>

11 auto saxpy(T a, std::span<const T> x,
12 std::span<const T> y,
13 std::span<T> z)
14 {
15 std::transform(x.begin(), x.end(),
16 y.begin(), z.begin(),
17 [a](T X, T Y) {
18 return a * X + Y;
19 });
20 }

Make a module interface unit
Include guards are no longer required, since

importing a module does not transitively import
things used inside the module
A module interface unit is a file which
exports a module . The lines between the
module; and export module saxpy;

constitute the “global module fragment”, where
traditional #include statements can be used.

If you can get by with only import s, replace
#include lines with corresponding import

lines. Omit the module; line in this case.

Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 8 – 12 May 2023 Slide 44

CREATING A MODULE (EXAMPLE)
1 // usesaxpy.cc
2 #include <iostream>
3 #include <array>
4 #include <vector>
5 #include
6 #include "saxpy.hh"
7
8 auto main() -> int
9 {

10 using namespace std;
11 const array inp1 { 1., 2., 3., 4., 5. };
12 const array inp2 { 9., 8., 7., 6., 5. };
13 vector outp(inp1.size(), 0.);
14
15 saxpy(10., {inp1}, {inp2}, {outp});
16 for (auto x : outp) cout << x << "\n";
17 cout << ":::::::::::::::::::::\n";
18 }

Use your module

Replace #include lines with corresponding
import lines. Obs: import lines end with a

semi-colon!
When importing actual modules, rather than header
units, use the module name without angle
brackets or quotes
Importing saxpy here, only grants us access to
the explicitly exported function saxpy . Not other
functions, classes, concepts etc. defined in the
module saxpy , not any other module imported
in the module interface unit.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 45

CREATING A MODULE (EXAMPLE)
1 // usesaxpy.cc

2 import <iostream>;

3 import <array>;

4 import <vector>;

5 import ;

6 #include "saxpy.hh"
7
8 auto main() -> int
9 {

10 using namespace std;
11 const array inp1 { 1., 2., 3., 4., 5. };
12 const array inp2 { 9., 8., 7., 6., 5. };
13 vector outp(inp1.size(), 0.);
14
15 saxpy(10., {inp1}, {inp2}, {outp});
16 for (auto x : outp) cout << x << "\n";
17 cout << ":::::::::::::::::::::\n";
18 }

Use your module
Replace #include lines with corresponding
import lines. Obs: import lines end with a

semi-colon!

When importing actual modules, rather than header
units, use the module name without angle
brackets or quotes
Importing saxpy here, only grants us access to
the explicitly exported function saxpy . Not other
functions, classes, concepts etc. defined in the
module saxpy , not any other module imported
in the module interface unit.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 45

CREATING A MODULE (EXAMPLE)
1 // usesaxpy.cc

2 import <iostream>;

3 import <array>;

4 import <vector>;

5 import ;

6 import saxpy;
7
8 auto main() -> int
9 {

10 using namespace std;
11 const array inp1 { 1., 2., 3., 4., 5. };
12 const array inp2 { 9., 8., 7., 6., 5. };
13 vector outp(inp1.size(), 0.);
14
15 saxpy(10., {inp1}, {inp2}, {outp});
16 for (auto x : outp) cout << x << "\n";
17 cout << ":::::::::::::::::::::\n";
18 }

Use your module
Replace #include lines with corresponding
import lines. Obs: import lines end with a

semi-colon!
When importing actual modules, rather than header
units, use the module name without angle
brackets or quotes

Importing saxpy here, only grants us access to
the explicitly exported function saxpy . Not other
functions, classes, concepts etc. defined in the
module saxpy , not any other module imported
in the module interface unit.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 45

CREATING A MODULE (EXAMPLE)
1 // usesaxpy.cc

2 import <iostream>;

3 import <array>;

4 import <vector>;

5 import ;

6 import saxpy;
7
8 auto main() -> int
9 {

10 using namespace std;
11 const array inp1 { 1., 2., 3., 4., 5. };
12 const array inp2 { 9., 8., 7., 6., 5. };
13 vector outp(inp1.size(), 0.);
14
15 saxpy(10., {inp1}, {inp2}, {outp});
16 for (auto x : outp) cout << x << "\n";
17 cout << ":::::::::::::::::::::\n";
18 }

Use your module
Replace #include lines with corresponding
import lines. Obs: import lines end with a

semi-colon!
When importing actual modules, rather than header
units, use the module name without angle
brackets or quotes
Importing saxpy here, only grants us access to
the explicitly exported function saxpy . Not other
functions, classes, concepts etc. defined in the
module saxpy , not any other module imported
in the module interface unit.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 45

COMPILATION OF PROJECTS WITH MODULES
Different compilers require different (sets of) options
GCC:

Auto-detects if a file is a module interface unit (exports a module), and generates the CMI as well as an object
file together.
No special file extension required for module interface units(Just .cc , .cpp , . . . like regular source files).
Requires that standard library header units needed by the project are explicitly generated
Does not recognise module interface file extensions used by other compilers (.ixx , .ccm etc.)
Still rather crashy in May 2023, especially if multiple standard library headers are in use.

Clang:
Provides standard library header units.
Comparatively stable for module based code.
Lots of command line options required
Different options to translate module interfaces depending on file extensions!

– .ccm or .cppm : --precompile

– .ixx : --precompile -xc++-module

– .cc or .cpp : -Xclang -emit-module-interface

Separate generation of object file required
Module partitions not implemented

Member of the Helmholtz Association 8 – 12 May 2023 Slide 46

Exercise 1.10:
Versions of the saxpy program written using header files and then modules can be found in the
examples/modules/saxpy/ . The recipe for building is described in the README.md files in the respective

sub-folders. Familiarize yourself with the process of building applications with modules. Experiment by writing a
new inline function in the module interface file without exporting it. Try to call that function from main .
Check again after exporting it in the module.

Exercise 1.11:
As a more complicated example, we have in examples/modules/2_any the second version of our container with
polymorphic geometrical objects. The header and source files for each class Point , Circle etc have been
rewritten for modules. Compare the two versions, build them, run them. The recipes for building are in the
README.md files.

Exercise 1.12:
Each of the above exercise directories contains a CMakeLists.txt file. We demonstrate the use of the
experimental support for modules in CMake using the combination Clang-16 and Ninja 1.11 to build these simple
projects. Test it, and try using it for a different example from the course.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 47

Closing remarks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 48

C++ “GENES”

Overloading

Static typing

Stack execution model

Scoping rules

Generic programmingResource management

Const(ant) correctness

Program organisation

Member of the Helmholtz Association 8 – 12 May 2023 Slide 49

CLOSING REMARKS
Most examples were simply demo code to show you
how it works

To really internalise the ideas, you have to solve
those or similar problems yourself
Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up
Rapidly evolving language
en.cppreference.com
isocpp.org
YouTube channel: Jason Turner’s C++ weekly
YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

en.cppreference.com
isocpp.org

CLOSING REMARKS
Most examples were simply demo code to show you
how it works
To really internalise the ideas, you have to solve
those or similar problems yourself

Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up
Rapidly evolving language
en.cppreference.com
isocpp.org
YouTube channel: Jason Turner’s C++ weekly
YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

en.cppreference.com
isocpp.org

CLOSING REMARKS
Most examples were simply demo code to show you
how it works
To really internalise the ideas, you have to solve
those or similar problems yourself
Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up

Rapidly evolving language
en.cppreference.com
isocpp.org
YouTube channel: Jason Turner’s C++ weekly
YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

en.cppreference.com
isocpp.org

CLOSING REMARKS
Most examples were simply demo code to show you
how it works
To really internalise the ideas, you have to solve
those or similar problems yourself
Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up
Rapidly evolving language

en.cppreference.com
isocpp.org
YouTube channel: Jason Turner’s C++ weekly
YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

en.cppreference.com
isocpp.org

CLOSING REMARKS
Most examples were simply demo code to show you
how it works
To really internalise the ideas, you have to solve
those or similar problems yourself
Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up
Rapidly evolving language
en.cppreference.com

isocpp.org
YouTube channel: Jason Turner’s C++ weekly
YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

en.cppreference.com
isocpp.org

CLOSING REMARKS
Most examples were simply demo code to show you
how it works
To really internalise the ideas, you have to solve
those or similar problems yourself
Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up
Rapidly evolving language
en.cppreference.com
isocpp.org

YouTube channel: Jason Turner’s C++ weekly
YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

en.cppreference.com
isocpp.org

CLOSING REMARKS
Most examples were simply demo code to show you
how it works
To really internalise the ideas, you have to solve
those or similar problems yourself
Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up
Rapidly evolving language
en.cppreference.com
isocpp.org
YouTube channel: Jason Turner’s C++ weekly

YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

en.cppreference.com
isocpp.org

CLOSING REMARKS
Most examples were simply demo code to show you
how it works
To really internalise the ideas, you have to solve
those or similar problems yourself
Information summarised for you, so that you hear it
once, and then hopefully when you need it, you will
remember having heard about a feature, and then
look it up
Rapidly evolving language
en.cppreference.com
isocpp.org
YouTube channel: Jason Turner’s C++ weekly
YouTube channel: CppCon conference talks

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

en.cppreference.com
isocpp.org

SOME USEFUL NON-STANDARD LIBRARIES
Lyra command line processing

CTRE Compile time regular expressions

xtensor (the entire xtensor-stack) : C++ SIMD wrappers, numpy style multi-dimensional array
operations...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 51

XTENSOR: MULTI-DIMENSIONAL ARRAYS WITH
LAZY EVALUATION

1 np.linspace(0., 2., 10)
2 np.logspace(1., 10., 4)
3 np.zeros(10, 10)
4 A[1,2]
5 A.flat(4)
6 A[:,3]
7 A[:3, 3:]
8 np.vectorize(f)
9 A[A > 1.0]

10 A[[1,2], [0,1]]
11 np.random.rand(100,200)
12 np.random.shuffle(A)
13 np.where(a < 0, a , b)
14 np.load_txt(file, delim)
15 np.linalg.svd(a)
16 np.linalg.eig(a)

1 xt::linspace<double>(0., 2., 10UL);
2 xt::logspace<double>(2., 10., 4UL);
3 xt::zeros<double>({10UL, 10UL});
4 A(1,2);
5 A[4];
6 xt::col(A, 3) or xt::view(A, xt::all, 3);
7 xt::view(A, xt::range(_, 3), xt::range(3,_));
8 xt::vectorize(f);
9 xt::filter(A, A > 1.0);

10 xt::index_view(A, {{1,2}, {0,1}});
11 xt::random::rand<double>({100, 200});
12 xt::random::shuffle(A);
13 xt::where(A < 0, A, B);
14 xt::load_csv<double>(stream);
15 xt::linalg::svd(A);
16 xt::linalg::eig(A);

Syntax modelled after python numpy
Sometimes more lazy evaluations

Member of the Helmholtz Association 8 – 12 May 2023 Slide 52

1 #include <xtensor/xtensor.hpp>
2 #include <xtensor/xarray.hpp>
3 #include <xtensor/xio.hpp>
4 #include <xtensor/xrandom.hpp>
5 #include <xtensor-blas/xlinalg.hpp>
6 #include <iostream>
7
8 auto main() -> int
9 {

10 auto R = xt::random::rand<double>({4, 4});
11 auto eigs = xt::linalg::eigvals(R);
12 std::cout << R << "\n\n";
13 std::cout << eigs << "\n";
14 }

Exercise 1.13:
The short program examples/xt0.cc demonstrates
using xtensor with eigen value evaluation. The
linear algebra functionality in xtensor is currently
handled by an external project xtensor-blas ,
which offloads some of the work to a blas library. To
build the program, set the include path to include
headers from “xtensor-stack”, i.e., xtl , xtensor ,
xsimd , xtensor-io and xtensor-blas . They

can be given a common installation prefix. For includes,
use $swhome/include and for linking,
-L $swhome/lib64 -lopenblas -lpthread -lgfortran

Member of the Helmholtz Association 8 – 12 May 2023 Slide 53

LYRA: COMMAND LINE PROCESSING

1 auto cli = lyra::help(showhelp)
2 | lyra::opt(N, "N_samples")["-N"]["--number-of-samples"]
3 ("The number of samples you want to generate")
4 | lyra::opt(mean, "mu")["-m"]["--mean"]("The mean of the distribution")
5 | lyra::opt(stdv, "sigma")["-s"]["--standard-deviation"]("Standard deviation");
6
7 auto cli_good = cli.parse({ argc, argv });
8
9 if (not cli_good) {

10 std::cerr << "Error in command line: " << cli_good.errorMessage() << "\n";
11 return 1;
12 }
13
14 if (showhelp or argc == 1) {
15 std::cout << cli;
16 return 0;
17 }
18

Member of the Helmholtz Association 8 – 12 May 2023 Slide 54

CTRE: COMPILE TIME REGULAR EXPRESSIONS

1 constexpr ctll::fixed_string re{ R"xpr(^(https:|http:|www\.)\S*)xpr" };
2
3 auto urls_in_input = args | sv::drop(1)
4 | sv::transform([=](auto inp) { return str(inp); })
5 | sv::filter([re](auto inp) { return ctre::search<re>(inp); });
6

Regular expressions parsed at compile time.
Smaller binaries than std::regex

Member of the Helmholtz Association 8 – 12 May 2023 Slide 55

	Day 5
	Type erasure
	More from the STL
	Ranges
	Text formatting

	Modules
	Closing remarks
	xtensor

