
PROGRAMMING IN C++
Jülich Supercomputing Centre
8 – 12 May 2023 Sandipan Mohanty Forschungszentrum Jülich, Germany

Member of the Helmholtz Association

Day 3

Member of the Helmholtz Association 8 – 12 May 2023 Slide 1

1 class Example {
2 double x{1.0};
3 auto operator()(unsigned long i) const -> double
4 {
5 auto ans {1.0};
6 while (i--) ans *= x;
7 return ans;
8 }
9 };

10 auto main() -> int
11 {
12 Example one;
13 one(5UL);
14 }

Spot the error!
We are accessing the non-constant member variable x in the const member function operator()

There are no constructors, so it should not be possible to construct an object of type Example in
main()

The operator() in this class is not accessible in main()
Nothing is wrong, this code is fine.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 2

1 class Example {
2 auto inspect(double x) -> bool;
3 auto inspect(const Example& e2) -> bool;
4 };
5 auto main() -> int
6 {
7 Example x, y;
8 double d{7.0};
9

10 x.inspect(d);
11 x.inspect(y);
12 }

Based on what you can see above, which variable in main() remained unchanged between lines 9 and 12?
1 x and y

2 Only y

3 y and d

4 Only d

Member of the Helmholtz Association 8 – 12 May 2023 Slide 3

Inheritance and class hierarchies

Member of the Helmholtz Association 8 – 12 May 2023 Slide 4

CLASS INHERITANCE
Analogy

Inherited traits: many properties shared among entities of
different related types
Each branch may add new properties
Seems like a good fit to different ideas we may want to
represent in code

Member of the Helmholtz Association 8 – 12 May 2023 Slide 5

CLASS INHERITANCE
1 struct Point {double X, Y;};
2 class Triangle {
3 public:
4 // Constructors etc., and then,
5 void translate();
6 void rotate(double byangle);
7 auto area() const -> double;
8 auto perimeter() const -> double;
9 private:

10 Point vertex[3];
11 };
12 class Quadilateral {
13 public:
14 void translate();
15 void rotate(double byangle);
16 auto area() const -> double;
17 auto perimeter() const -> double;
18 auto is_convex() const -> bool;
19 private:
20 Point vertex[4];
21 };

Geometrical figures
Many actions (e.g. translate and rotate) will involve identical
code
Properties like area and perimeter make sense for all,
but are better calculated differently for each type
There may also be new properties (is_convex) introduced
by a type

Member of the Helmholtz Association 8 – 12 May 2023 Slide 6

INHERITANCE: BASIC SYNTAX
1 class SomeBase {
2 public:
3 double f();
4 protected:
5 int i;
6 private:
7 int j;
8 };
9 class Derived : public SomeBase {

10 void haha() {
11 // can access f() and i
12 // can not access j
13 }
14 };
15 void elsewhere()
16 {
17 SomeBase a;
18 Derived b;
19 // Can call a.f(),
20 // but e.g., a.i = 0; is not allowed
21 }

Class members can be private , protected

or public

public members are accessible from everywhere

private members are for internal use in one
class
protected members can be seen by derived

classes

Member of the Helmholtz Association 8 – 12 May 2023 Slide 7

INHERITANCE
Inheriting class may add more data, but it retains
all the data of the base
The base class functions, if invoked, will see a base
class object
The derived class object is a base class object, but
with additional properties

Member of the Helmholtz Association 8 – 12 May 2023 Slide 8

INHERITANCE
A pointer to a derived class always points to an
address which also contains a valid base class
object.
baseptr=derivedptr is called "upcasting".

Always allowed.
Implicit downcasting is not allowed. Explicit
downcasting is possible with static_cast and
dynamic_cast

Member of the Helmholtz Association 8 – 12 May 2023 Slide 9

INHERITANCE
1 class Base {
2 public:
3 void f() { std::cout << "Base::f()\n"; }
4 protected:
5 int i{4};
6 };
7 class Derived : public Base {
8 int k{0};
9 public:

10 void g() { std::cout << "Derived::g()\n"; }
11 };
12 int main()
13 {
14 Derived b;
15 Base *ptr = &b;
16 ptr->g(); // Error!
17 static_cast<Derived *>(ptr)->g(); //OK
18 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 10

CLASS INHERITANCE
We want to write a program to

list the area of all the geometric objects
select the largest and smallest objects
draw

in our system.
A loop over a vector of them will be nice. But vector< ??? >

Object oriented languages like C++, Java, Python ... have a concept of "inheritance" for the classes, to
describe such conceptual relations between different types.
4 ways to solve this problem in C++ will be introduced at various points in this course

Member of the Helmholtz Association 8 – 12 May 2023 Slide 11

INHERITANCE WITH VIRTUAL FUNCTIONS
Abstract concept class “Shape”
Inherited classes add/change some
properties
and inherit other properties from “base”
class

A triangle is a polygon. A polygon is a shape. A circle is a shape.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 12

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS

1 class Shape {
2 public:
3 virtual ~Shape() = 0;
4 virtual void rotate(double) = 0;
5 virtual void translate(Point) = 0;
6 virtual auto area() const -> double = 0;
7 virtual auto perimeter() const -> double = 0;
8 };
9 class Circle : public Shape {

10 public:
11 Circle(); // and other constructors
12 ~Circle();
13 void rotate(double phi) {}
14 auto area() const -> double override
15 {
16 return pi * r * r;
17 }
18 private:
19 double r;
20 };

Circle is a derived class from base class Shape
A derived class inherits from its base(s), which are
indicated in the class declaration.
Functions marked as virtual in the base class
can be re-implemented in a derived class.

Note: In C++, member functions are not virtual by default.
Member of the Helmholtz Association 8 – 12 May 2023 Slide 13

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS

1 class Shape {
2 public:
3 virtual ~Shape() = 0;
4 virtual void rotate(double) = 0;
5 virtual void translate(Point) = 0;
6 virtual double area() const = 0;
7 virtual auto perimeter() const -> double = 0;
8 };
9 class Circle : public Shape {

10 public:
11 Circle(); // and other constructors
12 ~Circle();
13 void rotate(double phi) {}
14 auto area() const -> double override
15 {
16 return pi * r * r;
17 }
18 private:
19 double r;
20 };
21 Shape a; // Error!
22 Circle b; // ok.

A derived class inherits all member variables and
functions from its base.
virtual re-implemented in a derived class are

said to be "overriden", and ought to be marked
with override

A class with a pure virtual function (with " = 0" in
the declaration) is an abstract class. Objects of
that type can not be declared.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 14

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS
1 class Polygon : public Shape {
2 public:
3 auto perimeter() const -> double final
4 {
5 // return sum over sides
6 }
7 protected:
8 vector<Point> vertex;
9 int npt;

10 };
11 class Triangle : public Polygon {
12 public:
13 Triangle() : npt(3)
14 {
15 vertex.resize(3); // ok
16 }
17 auto area() const -> double override
18 {
19 // return sqrt(s*(s-a)*(s-b)*(s-c))
20 }
21 };

Syntax for inheritance
Triangle implements its own area() function,
but can not implement a perimeter() , as that
is declared as final in Polygon . This is done
if the implementation from the base class is good
enough for intended inheriting classes.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 15

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS
1 class Polygon : public Shape {
2 public:
3 auto perimeter() const -> double final
4 {
5 // return sum over sides
6 }
7 protected:
8 vector<Point> vertex;
9 int npt;

10 };
11 class Triangle : public Polygon {
12 public:
13 Triangle() : npt(3)
14 {
15 vertex.resize(3); // ok
16 }
17 auto area() -> double override // Error!!
18 {
19 // return sqrt(s*(s-a)*(s-b)*(s-c))
20 }
21 };

The keyword override ensures that the
compiler checks there is a corresponding base class
function to override.
Virtual functions can be re-implemented without
this keyword, but an accidental omission of a
const or an & can lead to really obscure

runtime errors.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 16

CLASS INHERITANCE WITH VIRTUAL FUNCTIONS

1 int main()
2 {
3 vector<std::unique_ptr<Shape>> shape;
4 shape.push_back(std::make_unique<Circle>(0.5, Point(3,7)));
5 shape.push_back(std::make_unique<Triangle>(Point(1,2), Point(3,3), Point(2.5,0)));
6 ...
7 for (size_t i = 0;i < shape.size(); ++i) {
8 std::cout << shape[i]->area() << '\n';
9 }

10 }

A pointer to a base class is allowed to point to an object of a derived class
Here, shape[0]->area() will call Circle::area() , shape[1]->area() will call
Triangle::area()

Member of the Helmholtz Association 8 – 12 May 2023 Slide 17

A LITTLE DEMO

Member of the Helmholtz Association 8 – 12 May 2023 Slide 18

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS
For classes with virtual functions, the compiler
inserts an invisible pointer member to the data and
additional book keeping code
There is a table of virtual functions for each derived
class, with entries pointing to function code
somewhere
The vptr pointer points to the vtable of that
particular class

Member of the Helmholtz Association 8 – 12 May 2023 Slide 19

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS

Member of the Helmholtz Association 8 – 12 May 2023 Slide 20

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS
Virtual function call proceeds by first finding the
right vtable, then the correct entry for the called
function, dereferencing that function pointer and
then executing the correct function body
Don’t make everything virtual! The overhead, with
modern machines and compilers, is not huge. But
abusing this feature will hurt performance

But if virtual functions offer the cleanest solution
with acceptable performance, don’t invent weird
things to avoid them!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 21

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS
Virtual function call proceeds by first finding the
right vtable, then the correct entry for the called
function, dereferencing that function pointer and
then executing the correct function body
Don’t make everything virtual! The overhead, with
modern machines and compilers, is not huge. But
abusing this feature will hurt performance

But if virtual functions offer the cleanest solution
with acceptable performance, don’t invent weird
things to avoid them!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 21

CALLING VIRTUAL FUNCTIONS: HOW IT WORKS
Virtual function call proceeds by first finding the
right vtable, then the correct entry for the called
function, dereferencing that function pointer and
then executing the correct function body
Don’t make everything virtual! The overhead, with
modern machines and compilers, is not huge. But
abusing this feature will hurt performance

But if virtual functions offer the cleanest solution
with acceptable performance, don’t invent weird
things to avoid them!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 21

CLASS INHERITANCE
Inherit or include as data member ?

1 class DNA {
2 ...
3 std::valarray<char> seq;
4 };
5 class Cell : public DNA ???
6 or
7 class Cell {
8 ...
9 DNA mydna;

10 };

A derived class extends the concept represented by
its base class in some way.
Although this extension might mean addition of
new data members,

B = A ⊕ newdata

does not necessarily mean the class for B should
inherit from the class for A

Member of the Helmholtz Association 8 – 12 May 2023 Slide 22

CLASS INHERITANCE
Inherit or include as data member ?

1 class DNA {
2 ...
3 std::valarray<char> seq;
4 };
5
6 class Cell : public DNA ???
7
8 or
9

10 class Cell {
11 ...
12 DNA mydna;
13 };
14

is vs has
A good guide to decide whether to inherit or
include is to ask whether the concept B contains an
object A, or whether any object of type B is also an
object of type A, like a monkey is a mammal, and a
triangle is a polygon.
is =⇒ inherit . has =⇒ include

Member of the Helmholtz Association 8 – 12 May 2023 Slide 23

CLASS INHERITANCE
Inheritance summary

Base classes to represent common properties of related types : e.g. all proteins are molecules, but all
molecules are not proteins. All triangles are polygons, but not all polygons are triangles.
Less code: often, only one or two properties need to be changed in an inherited class
Helps create reusable code
A base class may or may not be constructable (Polygon as opposed to Shape)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 24

CLASS DECORATIONS
More control over classes

Possible to initialise data in class declaration
Initialiser list constructors
Delegating constructors allowed
Inheriting constructors possible

1 class A {
2 int v[]{1, -1, -1, 1};
3 public:
4 A() = default;
5 A(std::initializer_list<int> &);
6 A(int i, int j, int k, int l)
7 {
8 v[0] = i;
9 v[1] = j;

10 v[2] = k;
11 v[3] = l;
12 }
13 //Delegate work to another constructor
14 A(int i, int j) : A(i, j, 0, 0) {}
15 };
16 class B : public A {
17 public:
18 // Inherit all constructors from A
19 using A::A;
20 B(string s);
21 };

Member of the Helmholtz Association 8 – 12 May 2023 Slide 25

MORE CONTROL OVER CLASSES
Explicit default , delete , override and
final

"Explicit is better than implicit"
More control over what the compiler does with the
class
Compiler errors better than hard to trace run-time
errors due to implicitly generated functions

1 class A {
2 // Automatically generated is ok
3 A() = default;
4 // Don't want to allow copy
5 A(const A &) = delete;
6 A & operator=(const A &) = delete;
7 // Instead, allow a move constructor
8 A(const A &&);
9 // Don't try to override this!

10 void getDrawPrimitives() final;
11 virtual void show(int i);
12 };
13 class B : public A
14 {
15 B() = default;
16 void show()override; //will be an error!
17 };
18

Member of the Helmholtz Association 8 – 12 May 2023 Slide 26

Exercise 1.1:
The directory exercises/geometry contains a set of files for the classes Point, Shape, Polygon, Circle,
Triangle, and Quadrilateral. In addition, there is a main.cc and a CMakeLists.txt . Observe the use of
the keywords like default , override , final etc. Familiarise yourself with

Implementation of inherited classes
Compiling multi-file projects
The use of base class pointer arrays to work with heterogeneous types of objects

mkdir build
cd build
CXX=g++ cmake ..
make

Member of the Helmholtz Association 8 – 12 May 2023 Slide 27

Using STL containers and algorithms

Member of the Helmholtz Association 8 – 12 May 2023 Slide 28

ALGORITHMS
1 // examples/strtrans.cc
2 #include <iostream>
3 #include <algorithm>
4 #include <string>
5 auto main() -> int {
6 std::string name;
7 std::cout << "What's your name ? ";
8 getline(std::cin, name);
9 auto bkpname {name};

10 std::transform(begin(name), end(name), begin(name), toupper);
11 std::cout << bkpname << " <--------> " << name << "\n";
12 }

What does this code do ?

std::transform transforms each element in an input range, and writes the results to an output range
using a given operation

Member of the Helmholtz Association 8 – 12 May 2023 Slide 29

ALGORITHMS
1 // examples/strtrans.cc
2 #include <iostream>
3 #include <algorithm>
4 #include <string>
5 auto main() -> int {
6 std::string name;
7 std::cout << "What's your name ? ";
8 getline(std::cin, name);
9 auto bkpname {name};

10 std::transform(begin(name), end(name), begin(name), toupper);
11 std::cout << bkpname << " <--------> " << name << "\n";
12 }

What does this code do ?
std::transform transforms each element in an input range, and writes the results to an output range

using a given operation

Member of the Helmholtz Association 8 – 12 May 2023 Slide 29

ALGORITHMS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <ranges>
5 #include <algorithm>
6 #include <string>
7 auto main(int argc, char* argv[]) -> int {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names);
16 //
17 //
18 //
19 //
20
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?

vector , string grow to accommodate any
new element added using push_back

sort sorts a range in increasing order
What is "increasing" order is decided by using the
operator < to compare elements of the sequence

Member of the Helmholtz Association 8 – 12 May 2023 Slide 30

ALGORITHMS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <ranges>
5 #include <algorithm>
6 #include <string>
7 auto main(int argc, char* argv[]) -> int {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names);
16 //
17 //
18 //
19 //
20
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?
vector , string grow to accommodate any

new element added using push_back

sort sorts a range in increasing order
What is "increasing" order is decided by using the
operator < to compare elements of the sequence

Member of the Helmholtz Association 8 – 12 May 2023 Slide 30

ALGORITHMS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <ranges>
5 #include <algorithm>
6 #include <string>
7 auto main(int argc, char* argv[]) -> int {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names);
16 //
17 //
18 //
19 //
20
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?
vector , string grow to accommodate any

new element added using push_back

sort sorts a range in increasing order

What is "increasing" order is decided by using the
operator < to compare elements of the sequence

Member of the Helmholtz Association 8 – 12 May 2023 Slide 30

ALGORITHMS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <ranges>
5 #include <algorithm>
6 #include <string>
7 auto main(int argc, char* argv[]) -> int {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names);
16 //
17 //
18 //
19 //
20
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?
vector , string grow to accommodate any

new element added using push_back

sort sorts a range in increasing order
What is "increasing" order is decided by using the
operator < to compare elements of the sequence

Member of the Helmholtz Association 8 – 12 May 2023 Slide 30

ALGORITHMS WITH LAMBDA FUNCTIONS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <ranges>
5 #include <algorithm>
6 #include <string>
7 auto main(int argc, char* argv[]) -> int {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names,
16 [](auto name1, auto name2) {
17 return name1 > name2;
18 }
19);
20
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?

We can give std::sort a comparison function
as the sorting criterion
This can be used to order the elements in lots of
different ways. Like sorting in decreasing order.
Or, sorting by the length of the strings ...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 31

ALGORITHMS WITH LAMBDA FUNCTIONS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <ranges>
5 #include <algorithm>
6 #include <string>
7 auto main(int argc, char* argv[]) -> int {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names,
16 [](auto name1, auto name2) {
17 return name1 > name2;
18 }
19);
20
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?
We can give std::sort a comparison function
as the sorting criterion

This can be used to order the elements in lots of
different ways. Like sorting in decreasing order.
Or, sorting by the length of the strings ...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 31

ALGORITHMS WITH LAMBDA FUNCTIONS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <ranges>
5 #include <algorithm>
6 #include <string>
7 auto main(int argc, char* argv[]) -> int {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names,
16 [](auto name1, auto name2) {
17 return name1 > name2;
18 }
19);
20
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?
We can give std::sort a comparison function
as the sorting criterion
This can be used to order the elements in lots of
different ways. Like sorting in decreasing order.

Or, sorting by the length of the strings ...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 31

ALGORITHMS WITH LAMBDA FUNCTIONS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <algorithm>
5 #include <string>
6 auto main(int argc, char* argv[]) -> int
7 {
8 std::vector<std::string> names;
9 std::ifstream input_file{argv[1]};

10 std::string name;
11 while (getline(input_file, name))
12 if (not name.empty())
13 names.push_back(name);
14
15 std::ranges::sort(names,
16 [](auto name1, auto name2) {
17 return name1.length() <
18 name2.length();
19 }
20);
21 for (auto n : names)
22 std::cout << n << "\n";
23 }

What does this code do ?
We can give std::sort a comparison function
as the sorting criterion
This can be used to order the elements in lots of
different ways. Like sorting in decreasing order.
Or, sorting by the length of the strings ...

Member of the Helmholtz Association 8 – 12 May 2023 Slide 31

ALGORITHMS WITH LAMBDA FUNCTIONS
1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <algorithm>
5 #include <string>
6 auto main(int argc, char* argv[]) -> int
7 {
8 using namespace std;
9 vector<std::string> names;

10 ifstream input_file{argv[1]};
11 string name;
12 while (getline(input_file, name))
13 if (not name.empty()) names.push_back(name);
14
15 sort(names.begin(), names.end(),
16 [](auto name1, auto name2) -> bool {
17 return name1.length() < name2.length();
18 }
19);
20
21 for (auto n : names) cout << n << "\n";
22 }

sort() needs a function comparing two elements
If we have such a function, we can pass its name
If we don’t, we can kind of write the content of the
function, as the argument to the function
sort()

These kind of functions, declared as shown are
called "lambda functions"
Notation resembles a mapping a, b, c... 7→ value
from some inputs to an output value, although
frequently we skip the trailing return type if the
return type is unambiguous

Member of the Helmholtz Association 8 – 12 May 2023 Slide 32

LAMDA FUNCTIONS
1 auto my_cmp(string_view n1, string_view n2)
2 -> int
3 {
4 return n1.length() < n2.length();
5 }
6
7 std::sort(names.begin(), names.end(), my_cmp);
8
9 std::sort(names.begin(), names.end(),

10 [](auto name1, auto name2) {
11 return name1.length() <
12 name2.length();
13 }
14);
15 }

1 double x{1.45};
2 //
3 //
4 //
5 //
6 //
7 y = sin(x);
8 //
9 y = sin(1.45);

10 //
11 //
12 //
13 //
14 //
15 //

By themselves, "nameless functions"
Passed as comparison or filtering criteria etc. to generic functions like sort , which can work with any
"callable object"

Member of the Helmholtz Association 8 – 12 May 2023 Slide 33

Exercise 1.2:
In the working directory for the course chapter, you will find a file with the often used "lorem ipsum" text. Write
a program that takes a text file, and finds all words shorter than 3 letters. If you need to use a lambda function,
copy one from one of the slides and modify its code. We will learn its exact syntax later!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 34

Function and class templates

Member of the Helmholtz Association 8 – 12 May 2023 Slide 35

FUNCTION OVERLOADING
1 auto power(int x, unsigned n) -> unsigned
2 {
3 ans = 1;
4 for (; n > 0; --n) ans *= x;
5 return ans;
6 }
7 auto power(double x, double y) -> double
8 {
9 return exp(y * log(x));

10 }

1 auto someother(double mu, double alpha,
2 int rank) -> double
3 {
4 double st=power(mu,alpha)*exp(-mu);
5
6 if (n_on_bits(power(rank,5))<8)
7 st=0;
8
9 return st;

10 }

When specialised strategies are needed to
accomplish the same task for different types

Static polymorphism: no virtual dispatch,
everything resolved at compilation time
But sometimes we need the opposite: same
operations to be performed on different kinds of
input

Member of the Helmholtz Association 8 – 12 May 2023 Slide 36

FUNCTION OVERLOADING
1 auto power(int x, unsigned n) -> unsigned
2 {
3 ans = 1;
4 for (; n > 0; --n) ans *= x;
5 return ans;
6 }
7 auto power(double x, double y) -> double
8 {
9 return exp(y * log(x));

10 }

1 auto someother(double mu, double alpha,
2 int rank) -> double
3 {
4 double st=power(mu,alpha)*exp(-mu);
5
6 if (n_on_bits(power(rank,5))<8)
7 st=0;
8
9 return st;

10 }

When specialised strategies are needed to
accomplish the same task for different types
Static polymorphism: no virtual dispatch,
everything resolved at compilation time

But sometimes we need the opposite: same
operations to be performed on different kinds of
input

Member of the Helmholtz Association 8 – 12 May 2023 Slide 36

FUNCTION OVERLOADING
1 void copy(int* start, int* end, int* start2)
2 {
3 for (; start != end; ++start, ++start2) {
4 *start2 = *start;
5 }
6 }
7 void copy(string* start, string* end,
8 string* start2)
9 {

10 for (; start != end; ++start, ++start2) {
11 *start2 = *start;
12 }
13 }
14 void copy(double* start, double* end,
15 double* start2)
16 {
17 for (; start != end; ++start, ++start2) {
18 *start2 = *start;
19 }
20 }
21 double a[10], b[10];
22 copy(a, a + 10, b);

When specialised strategies are needed to
accomplish the same task for different types
Static polymorphism: no virtual dispatch,
everything resolved at compilation time
But sometimes we need the opposite: same
operations to be performed on different kinds of
input

Member of the Helmholtz Association 8 – 12 May 2023 Slide 36

INTRODUCTION TO C++ TEMPLATES
1 void copy(int* start, int* end, int* start2)
2 {
3 for (; start != end; ++start, ++start2) {
4 *start2 = *start;
5 }
6 }
7 void copy(string* start, string* end,
8 string* start2)
9 {

10 for (; start != end; ++start, ++start2) {
11 *start2 = *start;
12 }
13 }
14 void copy(double* start, double* end,
15 double* start2)
16 {
17 for (; start != end; ++start, ++start2) {
18 *start2 = *start;
19 }
20 }
21 double a[10], b[10];
22 copy(a, a + 10, b);

Same operations on different types
Exactly the same high level code
Assigning a string to another may involve very
different low level operations compared to assigning
an integer to another. But once we have written
our string class, we may write the exact same code
for the string and integer versions of this kind of
operations!
Couldn’t we automate the process of writing the 3
variants shown, by perhaps, using a placeholder
type, and generating the right variant wherever
required ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 37

INTRODUCTION TO C++ TEMPLATES
Dear compiler, in the following, T is a placeholder!
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

Wouldn’t it be nice,
if we could write the function in terms of
some placeholder for the actual type ?

and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?
For the first point : Sure!
For the second point: the compiler already
knows those types based on the inputs at the
point of usage!
Test it!
examples/template_intro.cc

Member of the Helmholtz Association 8 – 12 May 2023 Slide 38

INTRODUCTION TO C++ TEMPLATES
Dear compiler, in the following, T is a placeholder!
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

double a[10], b[10];
copy<double>(a, a + 10, b);
string names[10], onames[10];
copy<string>(onames, onames + 10, names);

Wouldn’t it be nice,
if we could write the function in terms of
some placeholder for the actual type ?
and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?

For the first point : Sure!
For the second point: the compiler already
knows those types based on the inputs at the
point of usage!
Test it!
examples/template_intro.cc

Member of the Helmholtz Association 8 – 12 May 2023 Slide 38

INTRODUCTION TO C++ TEMPLATES
template <class T>
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

double a[10], b[10];
copy<double>(a, a + 10, b);
string names[10], onames[10];
copy<string>(onames, onames + 10, names);

Wouldn’t it be nice,
if we could write the function in terms of
some placeholder for the actual type ?
and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?
For the first point : Sure!

For the second point: the compiler already
knows those types based on the inputs at the
point of usage!
Test it!
examples/template_intro.cc

Member of the Helmholtz Association 8 – 12 May 2023 Slide 38

INTRODUCTION TO C++ TEMPLATES
template <class T>
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

double a[10], b[10];
copy(a, a + 10, b);
string names[10], onames[10];
copy(onames, onames + 10, names);

Wouldn’t it be nice,
if we could write the function in terms of
some placeholder for the actual type ?
and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?
For the first point : Sure!
For the second point: the compiler already
knows those types based on the inputs at the
point of usage!

Test it!
examples/template_intro.cc

Member of the Helmholtz Association 8 – 12 May 2023 Slide 38

INTRODUCTION TO C++ TEMPLATES
template <class T>
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

double a[10], b[10];
copy(a, a + 10, b);
string names[10], onames[10];
copy(onames, onames + 10, names);

Wouldn’t it be nice,
if we could write the function in terms of
some placeholder for the actual type ?
and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?
For the first point : Sure!
For the second point: the compiler already
knows those types based on the inputs at the
point of usage!
Test it!
examples/template_intro.cc

Member of the Helmholtz Association 8 – 12 May 2023 Slide 38

INTRODUCTION TO C++ TEMPLATES
template <class T>
void copy(T* start, T* end, T* start2)
{

for (; start != end; ++start, ++start2) {

*start2 = *start;
}

}

double a[10], b[10];
copy(a, a + 10, b);
string names[10], onames[10];
copy(onames, onames + 10, names);

Wouldn’t it be nice,
if we could write the function in terms of
some placeholder for the actual type ?
and when we need to use the function, we
indicate what to substitute in place of the
placeholder ?
For the first point : Sure!
For the second point: the compiler already
knows those types based on the inputs at the
point of usage!
Test it!
examples/template_intro.cc

Although we seemingly call a function we only wrote once, with different kinds of inputs, the compiler
sees these as calls to two different functions. No runtime decision is needed to find the function to call.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 38

TEMPLATES
Generic code The logic of the copy operation is quite simple. Given a pair of “iterators” (Behaviourally pointer
like entities: can be advanced along a sequence, can be dereferenced) first and last in an input sequence,
and a target location result in an output sequence, we want to:

Loop over the input sequence
For each position of the input iterator, copy the current element to the output iterator position
Increment the input and output iterators
Stop if the input iterator has reached last

Member of the Helmholtz Association 8 – 12 May 2023 Slide 39

A TEMPLATE FOR A GENERIC COPY OPERATION

1 template <class InputIterator, class OutputIterator>
2 OutputIterator copy(InputIterator first, InputIterator last, OutputIterator result)
3 {
4 while (first != last) *result++ = *first++;
5 return result;
6 }

C++ template notation
A template with which to generate code!
If you had iterators to two kinds of sequences, you could substitute them in the above template and have a
nice copy function!
The compiler does the necessary substitution when you try to use the function
The compiler needs access to the template source code at the point where it is trying to instantiate it!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 40

ORDERED PAIRS

1 struct double_pair
2 {
3 double first, second;
4 };
5 ...
6 double_pair coords[100];
7 ...
8 struct int_pair
9 {

10 int first, second;
11 };
12 ...
13 int_pair line_ranges[100];
14 ...
15 struct int_double_pair
16 {
17 // wait!
18 // can I make a template out of it?
19 };

Class templates
Classes can be templates too

Generated when the template is “instantiated”

1 template <class T, class U>
2 struct pair
3 {
4 T first;
5 U second;
6 };

Useful for creating many generic types

Member of the Helmholtz Association 8 – 12 May 2023 Slide 41

ORDERED PAIRS

1 pair<double,double> coords[100];
2 pair<int,int> line_ranges[100];
3 pair<int,double> whatever;

pair<int,double> , after the template
substitutions, becomes
struct pair<int, double>
{

int first;
double second;

};

Class templates
Classes can be templates too
Generated when the template is “instantiated”

1 template <class T, class U>
2 struct pair
3 {
4 T first;
5 U second;
6 };

Useful for creating many generic types

Member of the Helmholtz Association 8 – 12 May 2023 Slide 41

ORDERED PAIRS

1 pair<double,double> coords[100];
2 pair<int,int> line_ranges[100];
3 pair<int,double> whatever;

pair<int,double> , after the template
substitutions, becomes
struct pair<int, double>
{

int first;
double second;

};

Class templates
Classes can be templates too
Generated when the template is “instantiated”

1 template <class T, class U>
2 struct pair
3 {
4 T first;
5 U second;
6 };

Useful for creating many generic types

Member of the Helmholtz Association 8 – 12 May 2023 Slide 41

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...
The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements
The template captures the essential structure, and we don’t need to separately develop, debug or test these
parametrised types for every possible element type
No inheritance relationship between vectors of different types
No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association 8 – 12 May 2023 Slide 42

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...

The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements
The template captures the essential structure, and we don’t need to separately develop, debug or test these
parametrised types for every possible element type
No inheritance relationship between vectors of different types
No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association 8 – 12 May 2023 Slide 42

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...
The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements

The template captures the essential structure, and we don’t need to separately develop, debug or test these
parametrised types for every possible element type
No inheritance relationship between vectors of different types
No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association 8 – 12 May 2023 Slide 42

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...
The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements
The template captures the essential structure, and we don’t need to separately develop, debug or test these
parametrised types for every possible element type

No inheritance relationship between vectors of different types
No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association 8 – 12 May 2023 Slide 42

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...
The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements
The template captures the essential structure, and we don’t need to separately develop, debug or test these
parametrised types for every possible element type
No inheritance relationship between vectors of different types

No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association 8 – 12 May 2023 Slide 42

CLASS TEMPLATES YOU HAVE ALREADY SEEN...
std::vector<T> , std::array<T, N> , std::valarray<T> , std::map<K, V> ,
std::string ...

A vector means ...
The code required to write containers of int , double , complex_number or any other class type
will only differ by the type of the elements
The template captures the essential structure, and we don’t need to separately develop, debug or test these
parametrised types for every possible element type
No inheritance relationship between vectors of different types
No inheritance relationship required between entities which can be vector elements

Member of the Helmholtz Association 8 – 12 May 2023 Slide 42

VARIABLE TEMPLATES
1 template <class T> constexpr auto algocategory = 0;
2 template<> constexpr auto algocategory<int> = 1;
3 template<> constexpr auto algocategory<long> = 1;
4 template<> constexpr auto algocategory<int*> = 2;
5 template<> constexpr auto algocategory<long*> = 2;
6 template <class T>
7 auto proc(T x)
8 {

9 if constexpr (algocategory<T> == 2) {

10 std::cout << "Using method for category 2 \n";
11 } else if constexpr (algocategory<T> == 1) {

12 std::cout << "Using method for category 1 \n";
13 } else {
14 std::cout << "Using method for category 0 \n";
15 }
16 }

18 auto main() -> int
19 {
20 int v{7};
21 proc(1);
22 proc(1.);
23 proc(1L);
24 proc(v);
25 proc(&v);
26 }

Can be a static data member of a class
or a global variable parametrised by
template parameters
Can be used along with
compile time if statements to decide

between different algorithms

Member of the Helmholtz Association 8 – 12 May 2023 Slide 43

NOT A TEXT SUBSTITUTION ENGINE!
Template specialisation

1 template <class T>
2 class vector {
3 // implementation of a general
4 // vector for any type T
5 };
6 template <>
7 class vector<bool> {
8 // Store the true false values
9 // in a compressed way, i.e.,

10 // 32 of them in a single int
11 };
12 void somewhere_else()
13 {
14 vector<bool> A;
15 // Uses the special implementation
16 }

Templates are defined to work with generic
template parameters
But special values of those parameters, which
should be treated differently, can be specified using
"template specialisations" as shown
If a matching specialisation is found, it is preferred
over the general template

1 template <class A, class B>
2 constexpr auto are_same = false;
3 template <class A>
4 constexpr auto are_same<A, A> = true;
5 static_assert(are_same<int, long>); // Fails
6 using Integer = int;
7 static_assert(are_same<int, Integer>); // Passes

Member of the Helmholtz Association 8 – 12 May 2023 Slide 44

NOT A TEXT SUBSTITUTION ENGINE!
Recursion and integer arithmetic

1 template <unsigned N> constexpr unsigned fact = N * fact<N-1>;
2 template <> constexpr unsigned fact<0> = 1U;
3 static_assert(fact<7> == 5040)

Templates support recursive instantiation
Combined with specialisation to terminate recursion
Recursion and specialisation can be used to emulate “loop” like calculations via tail-recursion

Exercise 1.3:
The example source file examples/no_textsub.cc demonstrates recursion and specialisation in templates, and
uses static_assert to verify that the compiler does the arithmetic.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 45

NOT A TEXT SUBSTITUTION ENGINE!
Because: SFINAE

1 template <bool Cond, class T> struct enable_if {};
2 template <class T> struct enable_if<true, T> { using type = T; }
3
4 template <class T>
5 auto func(T x) -> enable_if<sizeof(T) == 8UL, T>::type {
6 //impl1
7 }
8 template <class T>
9 auto func(T x) -> enable_if<sizeof(T) != 8UL, T>::type {

10 //impl2
11 }

Substitution Failure Is Not An Error
If substituting a template parameter results in incomplete or invalid function declarations, that overload is
ignored.
The compiler simply tries to find another template with the same name that might match
If it can’t find any, then you have an error

Member of the Helmholtz Association 8 – 12 May 2023 Slide 46

NOT A TEXT SUBSTITUTION ENGINE!
Because: concepts

1 template <class T>
2 auto func(T x) -> T requires (sizeof(T) == 8UL) {
3 //impl1
4 }
5 template <class T>
6 auto func(T x) -> T requires (sizeof(T) != 8UL) {
7 //impl2
8 }

Different implementations can be provided requiring different properties of the input type
Before C++20, this sort of selection was done using std::enable_if . Now, concepts provide a far
cleaner alternative.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 47

ONE CLASS TEMPLATE IN DETAIL
Initialiser list constructors

The darray class we saw earlier in some examples represents a dynamic array, like the std::vector .
It is a good example to illustrate more about class templates

We want to be able to initialise our darray<T> like this:
darray<double> D(400, 0.);
darray<string> S{"A", "B", "C"};
darray<int> I{1, 2, 3, 4, 5};

And then we want to be able to use it as follows...
for (auto i = 0UL; i < D.size(); ++i) {

D[i] = i * i;
std::cout << D[i] << "\n";

}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 48

ONE CLASS TEMPLATE IN DETAIL
Initialiser list constructors

The darray class we saw earlier in some examples represents a dynamic array, like the std::vector .
It is a good example to illustrate more about class templates
We want to be able to initialise our darray<T> like this:
darray<double> D(400, 0.);
darray<string> S{"A", "B", "C"};
darray<int> I{1, 2, 3, 4, 5};

And then we want to be able to use it as follows...
for (auto i = 0UL; i < D.size(); ++i) {

D[i] = i * i;
std::cout << D[i] << "\n";

}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 48

ONE CLASS TEMPLATE IN DETAIL
Initialiser list constructors

The darray class we saw earlier in some examples represents a dynamic array, like the std::vector .
It is a good example to illustrate more about class templates
We want to be able to initialise our darray<T> like this:
darray<double> D(400, 0.);
darray<string> S{"A", "B", "C"};
darray<int> I{1, 2, 3, 4, 5};

And then we want to be able to use it as follows...
for (auto i = 0UL; i < D.size(); ++i) {

D[i] = i * i;
std::cout << D[i] << "\n";

}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 48

ONE CLASS TEMPLATE IN DETAIL
Initialiser list constructors

Making it into a template and writing many of the special functions is easy.
template <class T>
class darray {

std::unique_ptr<T[]> dat;
size_t sz{};

public:
darray() = default;
~darray() = default;
darray(const darray& other);
darray(darray&&) noexcept = default;
darray& operator=(const darray& other);
darray& operator=(darray&&) noexcept = default;

};

Using the unique_ptr to manage the heap allocation/deallocation means we don’t need to do anything
special for default constructor, destructor and the move operations. Only copy needs to be carefully
implemented!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 49

ONE CLASS TEMPLATE IN DETAIL
Initialiser list constructors

To initialise our darray<T> like this:

1 darray<string> S{"A", "B", "C"};
2 darray<int> I{1, 2, 3, 4, 5};

we need an initializer_list constructor

1 darray(initializer_list<T> l) {
2 arr = std::make_unique<T[]>(l.size());
3 for (auto i{0UL}; auto&& el : l) arr[i++] = el;
4 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 50

A DYNAMIC ARRAY CLASS TEMPLATE
1 template <class T>
2 class darray {
3 public:
4 auto operator[](size_t i) const -> T { return arr[i]; }
5 auto operator[](size_t i) -> T& { return arr[i]; }
6 };

Two versions of the [] operator for
read-only and read/write access

Use const qualifier in any member
function which does not change the
object

Member of the Helmholtz Association 8 – 12 May 2023 Slide 51

A DYNAMIC ARRAY CLASS TEMPLATE
1 template <class T>
2 class darray {
3 public:
4 auto operator[](size_t i) const -> T { return arr[i]; }
5 auto operator[](size_t i) -> T& { return arr[i]; }
6 };

Two versions of the [] operator for
read-only and read/write access
Use const qualifier in any member
function which does not change the
object

Member of the Helmholtz Association 8 – 12 May 2023 Slide 51

TYPE DEDUCTIONS
Template parameters can be type names or compile
time constant values of different types.
Until C++20, non-type template parameters were
limited to integral types. Now, a lot of other types
are allowed.

Can be used to specify compile time constant sizes
but also give you a peculiar kind of “ function ” in
effect
Old uses of template integer arithmetic are by now
obsolete. constexpr functions constitute a
vastly superior alternative.
But, type-deductions remain an important use for
template meta-programs

1 template <class T, int N>
2 struct my_array {
3 T data[N];
4 };

Member of the Helmholtz Association 8 – 12 May 2023 Slide 52

TYPE DEDUCTIONS
Template parameters can be type names or compile
time constant values of different types.
Until C++20, non-type template parameters were
limited to integral types. Now, a lot of other types
are allowed.
Can be used to specify compile time constant sizes

but also give you a peculiar kind of “ function ” in
effect
Old uses of template integer arithmetic are by now
obsolete. constexpr functions constitute a
vastly superior alternative.
But, type-deductions remain an important use for
template meta-programs

1 template <class T, int N>
2 struct my_array {
3 T data[N];
4 };

1 template <class T,
2 int nrows, int ncols>
3 struct my_matrix {
4 T data[nrows*ncols];
5 };

Member of the Helmholtz Association 8 – 12 May 2023 Slide 52

TYPE DEDUCTIONS
Template parameters can be type names or compile
time constant values of different types.
Until C++20, non-type template parameters were
limited to integral types. Now, a lot of other types
are allowed.
Can be used to specify compile time constant sizes
but also give you a peculiar kind of “ function ” in
effect
Old uses of template integer arithmetic are by now
obsolete. constexpr functions constitute a
vastly superior alternative.
But, type-deductions remain an important use for
template meta-programs

1 template <class T, int N>
2 struct my_array {
3 T data[N];
4 };

1 template <class T,
2 int nrows, int ncols>
3 struct my_matrix {
4 T data[nrows*ncols];
5 };

1 template <int i, int j>
2 struct mult {
3 static const int value=i*j;
4 };
5 ...
6 my_array< mult<19,21>::value > vals;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 52

EVALUATE DEPENDENT TYPES
Suppose we want to implement a template function

1 template <class T> U f(T a);

such that when T is a non-pointer type, U should take the value T. But if T is itself a pointer, U is the type
obtained by dereferencing the pointer

We could use a template function to "compute" the type U like this:

1 template <class T> struct remove_pointer { using type = T; };
2 template <class T> struct remove_pointer<T*> { using type = T; };

We can then declare the function as:

1 template <class InputType>
2 auto f(InputType a) -> remove_pointer<InputType>::type ;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 53

EVALUATE DEPENDENT TYPES
Suppose we want to implement a template function

1 template <class T> U f(T a);

such that when T is a non-pointer type, U should take the value T. But if T is itself a pointer, U is the type
obtained by dereferencing the pointer
We could use a template function to "compute" the type U like this:

1 template <class T> struct remove_pointer { using type = T; };
2 template <class T> struct remove_pointer<T*> { using type = T; };

We can then declare the function as:

1 template <class InputType>
2 auto f(InputType a) -> remove_pointer<InputType>::type ;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 53

EVALUATE DEPENDENT TYPES
Suppose we want to implement a template function

1 template <class T> U f(T a);

such that when T is a non-pointer type, U should take the value T. But if T is itself a pointer, U is the type
obtained by dereferencing the pointer
We could use a template function to "compute" the type U like this:

1 template <class T> struct remove_pointer { using type = T; };
2 template <class T> struct remove_pointer<T*> { using type = T; };

We can then declare the function as:

1 template <class InputType>
2 auto f(InputType a) -> remove_pointer<InputType>::type ;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 53

TYPE FUNCTIONS
Compute properties of types
Compute dependent types
Typically used with convenient alias template
declarations for the dependent type or the
constant value

1 template <class T1, class T2>
2 std::is_same<T1,T2>::value
3
4 template <class T>
5 std::is_integral<T>::value
6
7 template <class T>
8 std::make_signed<T>::type
9

10 template <class T>
11 std::remove_reference<T>::type
12
13 template <class T>
14 using remove_reference_t =

15 typename remove_reference<T>::type;
16
17 template <class T>
18 inline constexpr bool is_integral_v =

19 std::is_integral<T>::value;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 54

STATIC_ASSERT WITH TYPE TRAITS
1 #include <iostream>
2 #include <type_traits>
3 template < class T, class U>
4 auto some_calc(T x, U y)
5 {
6 static_assert(std::is_convertible_v<T, U>,
7 "The type of the argument x must be convertible to type U");
8 // ...
9 }

10 auto main() -> int
11 {
12 some_calc(4.0, "target"); //Compiler error!
13 ...
14 }

Use static_assert and type_traits in combination with constexpr

Exercise 1.4: static_assert2.cc

Member of the Helmholtz Association 8 – 12 May 2023 Slide 55

TYPETRAITS
Unary predicates

is_integral_v<T> : T is an integer type

is_const_v<T> : has a const qualifier

is_class_v<T> : struct or class

is_pointer_v<T> : Pointer type

is_abstract_v<T> : Abstract class with at least one pure virtual function

is_copy_constructible_v<T> : Class allows copy construction

is_same_v<T1,T2> : T1 and T2 are the same types

is_base_of_v<T,D> : T is base class of D

is_convertible_v<T,T2> : T is convertible to T2

Member of the Helmholtz Association 8 – 12 May 2023 Slide 56

FORWARDING REFERENCES
1 template <class T>
2 auto wrapperfunc(T&& t)
3 {
4 other(std::forward<T>(t));
5 }
6 auto main() -> int
7 {
8 std::string x{"Solar"};
9 std::string y{"System"};

10 wrapperfunc(x);
11 wrapperfunc(x + " " + y);
12 }

Function argument written as if it were an R-value
reference to a cv-unqualified template parameter

If wrapperfunc is called with a constant
L-value, T is deduced to be a constant L-value
reference, and other receives a constant L-value
reference
If wrapperfunc is called with an L-value, T is
deduced to be an L-value reference, and other
receives an L-value reference
If the input is an R-value, then T is inferred to be
a plain type, and forward ensures that other
receives an R-value reference

Member of the Helmholtz Association 8 – 12 May 2023 Slide 57

Constrained templates

Member of the Helmholtz Association 8 – 12 May 2023 Slide 58

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading
We can

Member of the Helmholtz Association 8 – 12 May 2023 Slide 59

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading
We can

Member of the Helmholtz Association 8 – 12 May 2023 Slide 59

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?

Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading
We can

Member of the Helmholtz Association 8 – 12 May 2023 Slide 59

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading
We can

Member of the Helmholtz Association 8 – 12 May 2023 Slide 59

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading

We can

Member of the Helmholtz Association 8 – 12 May 2023 Slide 59

CONSTRAINED TEMPLATES
We created overloaded functions so that different strategies can be employed for different input types
auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

We have function templates, so that the same strategy can be applied to different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two function templates, both looking like the above, but one is
automatically selected whenever T is an integral type and the other whenever T is a floating point type ?
Some way to impose requirements on permissible matches for the template parameters. Something like:
template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

If we could do that, we can combine the generality of templates with the selectiveness of function
overloading
We can

Member of the Helmholtz Association 8 – 12 May 2023 Slide 59

CONCEPTS
Named requirements on template parameters

concept s are named requirements on template parameters, such as floating_point ,
contiguous_range

If MyAPI is a concept , and T is a type, MyAPI<T> evaluates at compile time to either true or false.

Concepts can be combined using conjunctions (&&) and disjunctions (||) to make other concepts.

A requires clause introduces a constraint on a template type
A suitably designed set of concepts can greatly improve readability of template code

Member of the Helmholtz Association 8 – 12 May 2023 Slide 60

CREATING CONCEPTS
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements as shown in the last two
examples.

The requires expression can contain a parameter
list and a brace enclosed sequence of requirements,
which can be:

type requirements, e.g., typename T::value_type;
simple requirements as shown on the left
compound requirements with optional return type
constraints, e.g.,
{ A[0UL] } -> convertible_to<int>;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 61

CREATING CONCEPTS
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements as shown in the last two
examples.

The requires expression can contain a parameter
list and a brace enclosed sequence of requirements,
which can be:

type requirements, e.g., typename T::value_type;
simple requirements as shown on the left
compound requirements with optional return type
constraints, e.g.,
{ A[0UL] } -> convertible_to<int>;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 61

CREATING CONCEPTS
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

template <class T>
concept Addable = requires (T a, T b) {

{ a + b };
};
template <class T>
concept Indexable = requires(T A) {

{ A[0UL] };
};

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements as shown in the last two
examples.

The requires expression can contain a parameter
list and a brace enclosed sequence of requirements,
which can be:

type requirements, e.g., typename T::value_type;
simple requirements as shown on the left
compound requirements with optional return type
constraints, e.g.,
{ A[0UL] } -> convertible_to<int>;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 61

CREATING CONCEPTS
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

template <class T>
concept Addable = requires (T a, T b) {

{ a + b };
};
template <class T>
concept Indexable = requires(T A) {

{ A[0UL] };
};

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements as shown in the last two
examples.
The requires expression can contain a parameter
list and a brace enclosed sequence of requirements,
which can be:

type requirements, e.g., typename T::value_type;
simple requirements as shown on the left
compound requirements with optional return type
constraints, e.g.,
{ A[0UL] } -> convertible_to<int>;

Member of the Helmholtz Association 8 – 12 May 2023 Slide 61

USING CONCEPTS
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function
parameter parentheses
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association 8 – 12 May 2023 Slide 62

USING CONCEPTS
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function
parameter parentheses
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association 8 – 12 May 2023 Slide 62

USING CONCEPTS
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function
parameter parentheses
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association 8 – 12 May 2023 Slide 62

USING CONCEPTS
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function
parameter parentheses
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association 8 – 12 May 2023 Slide 62

USING CONCEPTS
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function
parameter parentheses
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association 8 – 12 May 2023 Slide 62

USING CONCEPTS
1 template <class T>
2 auto sqr(const T& x) { return x * x; }

Because of syntax introduced for functions with
constrained templates in C++20, we have a new
way to write fully unconstrained function
templates...

Functions with auto in their parameter list are
implicitly function templates

Exercise 1.5:
The program examples/gcd_w_concepts.cc shows a very small concept definition and its use in a function
calculating the greatest common divisor of two integers.

Exercise 1.6:
The series of programs examples/generic_func1.cc through generic_func4.cc shows some trivial functions
implemented with templates with and without constraints. The files contain plenty of comments explaining the
rationale and use of concepts.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 63

USING CONCEPTS
1
2 auto sqr(const auto& x) { return x * x; }

Because of syntax introduced for functions with
constrained templates in C++20, we have a new
way to write fully unconstrained function
templates...
Functions with auto in their parameter list are
implicitly function templates

Exercise 1.7:
The program examples/gcd_w_concepts.cc shows a very small concept definition and its use in a function
calculating the greatest common divisor of two integers.

Exercise 1.8:
The series of programs examples/generic_func1.cc through generic_func4.cc shows some trivial functions
implemented with templates with and without constraints. The files contain plenty of comments explaining the
rationale and use of concepts.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 63

USING CONCEPTS
1
2 auto sqr(const auto& x) { return x * x; }

Because of syntax introduced for functions with
constrained templates in C++20, we have a new
way to write fully unconstrained function
templates...
Functions with auto in their parameter list are
implicitly function templates

Exercise 1.9:
The program examples/gcd_w_concepts.cc shows a very small concept definition and its use in a function
calculating the greatest common divisor of two integers.

Exercise 1.10:
The series of programs examples/generic_func1.cc through generic_func4.cc shows some trivial functions
implemented with templates with and without constraints. The files contain plenty of comments explaining the
rationale and use of concepts.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 63

USING CONCEPTS
1
2 auto sqr(const auto& x) { return x * x; }

Because of syntax introduced for functions with
constrained templates in C++20, we have a new
way to write fully unconstrained function
templates...
Functions with auto in their parameter list are
implicitly function templates

Exercise 1.11:
The program examples/gcd_w_concepts.cc shows a very small concept definition and its use in a function
calculating the greatest common divisor of two integers.

Exercise 1.12:
The series of programs examples/generic_func1.cc through generic_func4.cc shows some trivial functions
implemented with templates with and without constraints. The files contain plenty of comments explaining the
rationale and use of concepts.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 63

OVERLOADING BASED ON CONCEPTS
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4
5
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9

10
11
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration.

The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 8 – 12 May 2023 Slide 64

OVERLOADING BASED ON CONCEPTS
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration.
The compiler can choose between different versions
of a function based on concepts

The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 8 – 12 May 2023 Slide 64

OVERLOADING BASED ON CONCEPTS
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration.
The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”

During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 8 – 12 May 2023 Slide 64

OVERLOADING BASED ON CONCEPTS
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration.
The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.

Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 8 – 12 May 2023 Slide 64

OVERLOADING BASED ON CONCEPTS
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration.
The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships

Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 8 – 12 May 2023 Slide 64

OVERLOADING BASED ON CONCEPTS
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration.
The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.

Entirely compile time mechanism

Member of the Helmholtz Association 8 – 12 May 2023 Slide 64

OVERLOADING BASED ON CONCEPTS
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration.
The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 8 – 12 May 2023 Slide 64

Exercise 1.13:
Check how you can use concepts to implement alternative versions of a function based on properties of the input
parameters! The program examples/overload_w_concepts.cc contains the code just shown. Can you
add another overload that is picked if the input type is an array? This means, if X is the input parameter,
X[i] is syntactically valid for unsigned integer i . The array version should be picked up if the input is a
vector , array , etc. , but also string . How would you prevent the string and C-style strings

picking the array version?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 65

PREDEFINED USEFUL CONCEPTS
Many concepts useful in building our own concepts are available in the standard library header <concepts> .

same_as

convertible_to

signed_ingegral , unsigned_integral

floating_point

assignable_from

swappable , swappable_with

derived_from

move_constructible ,
copy_constructible

invocable

predicate

relation

Member of the Helmholtz Association 8 – 12 May 2023 Slide 66

CONCEPTS: SUMMARY

Member of the Helmholtz Association 8 – 12 May 2023 Slide 67

Lambda Functions

Member of the Helmholtz Association 8 – 12 May 2023 Slide 68

FUNCTION LIKE ENTITIES
In C++, there are a few different constructs which can be used in a context requiring a “function”
Functions in all varieties constitute one category (inline or not, constexpr or not, virtual or
not ...)
Classes may overload the function call operator operator() to give us another type of callable object
Lambda functions are similar, language provided entities

1 class Wave {
2 double A, ome, pha;
3 public:
4 auto operator()(double t) -> double
5 {
6 return A * sin(ome * t + pha);
7 }
8 };
9 void elsewhere()

10 {
11 Wave W{1.0, 0.15, 0.9};
12 for (auto i = 0; i < 100; ++i) {
13 std::cout << i << W(i) << "\n";
14 }
15 }

Member of the Helmholtz Association 8 – 12 May 2023 Slide 69

LAMBDA FUNCTIONS
Locally defined callable entities
Uses

Effective use of STL
Initialisation of const
Concurrency
New loop styles

Like a function object defined on the spot
Fine grained control over the visibility of the
variables in the surrounding scope

1 sort(begin(v), end(v), [](auto x, auto y) {
2 return x > y;
3 });
4
5 const auto inp_file = []{
6 string resourcefl;
7 cout << "resource file : ";
8 cin >> resourcefl;
9 return resourcefl;

10 }();
11 tbb::parallel_for(0, 1000000, [](int i){
12 // process element i
13 });

Member of the Helmholtz Association 8 – 12 May 2023 Slide 70

LAMBDA FUNCTIONS
Function
auto sqr(double x) -> double
{

return x * x;
}

Lambda expression
auto lsqr = [](double x) -> double
{

return x * x;
};

Normal C++ functions can not be defined in block scope
Lambda expressions are expressions, which when evaluated yield callable entities. Like 29 is an expression,
which when evaluated yields 512.
Such callable entities can be created in global as well as block scope

Member of the Helmholtz Association 8 – 12 May 2023 Slide 71

LAMBDA FUNCTIONS
Function
auto sqr(double x) -> double
{

return x * x;
}

Lambda expression
auto lsqr = [](double x) -> double
{

return x * x;
};

The lambda expression contains information which is used to make the callable entity: such as, expected
input, output and the body(“recipe”).
Unlike normal functions, which have names, these callable entities themselves are nameless, but named
variables can be constructed out of them, if desired. Those named variables can then be used like functions.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 71

LAMBDA FUNCTIONS
Function
auto sqr(double x) -> double
{

return x * x;
}

Lambda expression
auto lsqr = [](double x) -> double
{

return x * x;
};

The lambda expression contains information which is used to make the callable entity: such as, expected
input, output and the body(“recipe”).
Unlike normal functions, which have names, these callable entities themselves are nameless, but named
variables can be constructed out of them, if desired. Those named variables can then be used like functions.

std::vector X{0.1, 0.2, 0.3, 0.4};
auto sqsum = 0.;
for (auto i = 0UL; i < X.size(); ++i) {

sqsum += sqr(X[i]);
}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 71

LAMBDA FUNCTIONS
Function
auto sqr(double x) -> double
{

return x * x;
}

Lambda expression
auto lsqr = [](double x) -> double
{

return x * x;
};

The lambda expression contains information which is used to make the callable entity: such as, expected
input, output and the body(“recipe”).
Unlike normal functions, which have names, these callable entities themselves are nameless, but named
variables can be constructed out of them, if desired. Those named variables can then be used like functions.

std::vector X{0.1, 0.2, 0.3, 0.4};
auto sqsum = 0.;
for (auto i = 0UL; i < X.size(); ++i) {

sqsum += lsqr(X[i]);
}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 71

LAMBDA FUNCTIONS
template <Callable F>
auto aggregate(const std::vector<double>& inp, F f) -> double
{

auto s{0.};
for (auto i = 0UL; i < inp.size(); ++i) { s += f(inp[i]); }
return s;

}

Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values

Named callable entities can be used when available.
Often it is more convenient to pass a lambda expression, and let the higher order function create the
callable entity it needs!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 72

LAMBDA FUNCTIONS
template <Callable F>
auto aggregate(const std::vector<double>& inp, F f) -> double
{

auto s{0.};
for (auto i = 0UL; i < X.size(); ++i) { s += f(X[i]); }
return s;

}
// ...
std::vector X{0.1, 0.2, 0.3, 0.4};
auto sqsum = aggregate(X, sqr);

Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values
Named callable entities can be used when available.

Often it is more convenient to pass a lambda expression, and let the higher order function create the
callable entity it needs!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 72

LAMBDA FUNCTIONS
template <Callable F>
auto aggregate(const std::vector<double>& inp, F f) -> double
{

auto s{0.};
for (auto i = 0UL; i < X.size(); ++i) { s += f(X[i]); }
return s;

}
// ...
std::vector X{0.1, 0.2, 0.3, 0.4};
auto sqsum = aggregate(X, lsqr);

Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values
Named callable entities can be used when available.

Often it is more convenient to pass a lambda expression, and let the higher order function create the
callable entity it needs!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 72

LAMBDA FUNCTIONS
template <Callable F>
auto aggregate(const std::vector<double>& inp, F f) -> double
{

auto s{0.};
for (auto i = 0UL; i < X.size(); ++i) { s += f(X[i]); }
return s;

}
// ...
std::vector X{0.1, 0.2, 0.3, 0.4};
auto sqsum = aggregate(X, [](double x) -> double { return x * x; });

Typical use: arguments to higher order functions. Function parameter that specifies an operation to be
performed on a value or (as in this case) a range of values
Named callable entities can be used when available.
Often it is more convenient to pass a lambda expression, and let the higher order function create the
callable entity it needs!

Member of the Helmholtz Association 8 – 12 May 2023 Slide 72

LAMBDA FUNCTIONS WITH ALGORITHMS
std::for_each is a higher order function, similar to this:

template <class InputIterator, class UnaryFunction>
void for_each(InputIterator start, InputIterator end, UnaryFunction f)
{

for (auto it = start; it != end; ++it) f(*it);
}

What do the following lines do ?

1 std::vector X{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
2 for_each(X.begin(), X.end(), [](int& elem){ elem = elem * elem; });
3 for_each(X.begin(), X.end(), [](int& elem){ elem -= 100; });
4 for_each(X.begin(), X.end(), [](int elem){ std::cout << elem << "\n"; });

Member of the Helmholtz Association 8 – 12 May 2023 Slide 73

LAMBDA FUNCTIONS WITH ALGORITHMS
std::for_each is a higher order function, similar to this:

template <class InputIterator, class UnaryFunction>
void for_each(InputIterator start, InputIterator end, UnaryFunction f)
{

for (auto it = start; it != end; ++it) f(*it);
}

What do the following lines do ?

1 std::vector X{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
2 for_each(X.begin(), X.end(), [](int& elem){ elem = elem * elem; });
3 for_each(X.begin(), X.end(), [](int& elem){ elem -= 100; });
4 for_each(X.begin(), X.end(), [](int elem){ std::cout << elem << "\n"; });

Member of the Helmholtz Association 8 – 12 May 2023 Slide 73

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 74

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 74

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 74

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 74

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 74

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

template <class InputIt, class OutputIt,
class UnaryFunction>

void transform(InputIt start, InputIt end,
OutputIt out,
UnaryFunction f)

{
for (; start != end; ++start, ++out)

*out = f(*start);
}

Member of the Helmholtz Association 8 – 12 May 2023 Slide 74

LAMBDA FUNCTIONS WITH ALGORITHMS
std::transform is a higher order function, slightly

for general than std::for_each . It has a few
overloads. One of them is similar to this:

What do the following lines do ?

1 std::vector X{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
2 std::vector<int> Y;
3 transform(X.begin(), X.end(), std::back_inserter(Y),
4 [](int elem){ return elem * elem; });

Member of the Helmholtz Association 8 – 12 May 2023 Slide 74

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

LAMBDA FUNCTIONS WITH ALGORITHMS
std::copy_if Conditionally copies elements from a source

sequence to a destination sequence:

What do the following lines do ?

1 std::vector X{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
2 std::vector<int> Y;
3 copy_if(X.begin(), X.end(), std::back_inserter(Y),
4 [](int elem){ return elem % 3 == 0; });

Member of the Helmholtz Association 8 – 12 May 2023 Slide 75

Exercise 1.14:
Use the notebook lambda_practice_0.ipynb to quickly practice writing a few small lambdas and using them
with a few standard library algorithms.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 76

CAPTURE BRACKETS
Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

Copy to w all positive elements
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

Copy to w all elements larger than a user specified value
This does not work
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w),

[lim](int i){ return i > lim; });
// Lambda function "captures" lim, and lim is now visible inside the lambda

Member of the Helmholtz Association 8 – 12 May 2023 Slide 77

CAPTURE BRACKETS
Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

Copy to w all positive elements
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

Copy to w all elements larger than a user specified value
This does not work
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w),

[lim](int i){ return i > lim; });
// Lambda function "captures" lim, and lim is now visible inside the lambda

Member of the Helmholtz Association 8 – 12 May 2023 Slide 77

CAPTURE BRACKETS
Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

Copy to w all positive elements
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

Copy to w all elements larger than a user specified value

This does not work
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w),

[lim](int i){ return i > lim; });
// Lambda function "captures" lim, and lim is now visible inside the lambda

Member of the Helmholtz Association 8 – 12 May 2023 Slide 77

CAPTURE BRACKETS
Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

Copy to w all positive elements
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

Copy to w all elements larger than a user specified value
This does not work
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w),

[lim](int i){ return i > lim; });
// Lambda function "captures" lim, and lim is now visible inside the lambda

Member of the Helmholtz Association 8 – 12 May 2023 Slide 77

CAPTURE BRACKETS
Suppose we want to transfer some elements from one vector to another

std::vector<int> v{1, -1, 9, 3, 4, -7, 3, -2}, w;

Copy to w all positive elements
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i>0; });

Copy to w all elements larger than a user specified value
This does not work
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w), [](int i){ return i > lim ; });
// Lambda function has its own scope , and lim is not visible

A way to make the lambda selectively aware of chosen variables in its context:
std::cin >> lim;
copy_if(v.begin(), v.end(), back_inserter(w),

[lim](int i){ return i > lim; });
// Lambda function "captures" lim, and lim is now visible inside the lambda

Member of the Helmholtz Association 8 – 12 May 2023 Slide 77

LAMBDA EXPRESSIONS: SYNTAX

[capture] <templatepars> (arguments) lambda-specifiers { body }

Variables in the body of a lambda function are either passed as function arguments or "captured", or are
global variables
Function arguments field is optional if empty. e.g. [&cc]{ return cc++; }

The lambda-specifiers field can contain a variety of things: Keywords mutable , constexpr or
consteval , exception specifiers, attributes, the return type, and any requires clauses. All of these

are optional.
The return type is optional if there is one return statement. e.g.
[a,b,c](int i) mutable { return a*i*i + b*i + c; }

The optional keyword mutable can be used to create lambdas with state
auto can be used to declare the formal input parameters of the lambda (since C++14)

Template parameters can be optionally provided where shown (since C++20)

Member of the Helmholtz Association 8 – 12 May 2023 Slide 78

EXPLICIT TEMPLATE PARAMETERS FOR LAMBDA
FUNCTIONS

1 // examples/saxpy_2.cc
2 // includes ...
3 auto main() -> int {
4 const std::vector inp1 { 1., 2., 3., 4., 5. };
5 const std::vector inp2 { 9., 8., 7., 6., 5. };
6 std::vector outp(inp1.size(), 0.);
7
8 auto saxpy = [] <class T, class T_in, class T_out>

9 (T a, const T_in& x, const T_in& y, T_out& z) {
10 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
11 [a](T X, T Y){ return a * X + Y; });
12 };
13
14 std::ostream_iterator<double> cout { std::cout, "\n" };
15 saxpy(10., inp1, inp2, outp);
16 copy(outp.begin(), outp.end(), cout);
17 }

For normal function templates, we could easily express relationships among the types of different parameters.
With C++20, we can do that for generic lambdas.
Member of the Helmholtz Association 8 – 12 May 2023 Slide 79

LAMBDA CAPTURE SYNTAX I
[capture]<templatepars> (arguments) lambda-specifiers { body }

[](int a, int b) -> bool { return a > b;} : Capture nothing. Work only with the
arguments passed, or global objects.
[=](int a) -> bool {return a > somevar;} : Capture everything needed by value.

[&](int a){somevar += a;} : Capture everything needed by reference.

[=,&somevar](int a){ somevar += max(a,othervar); } : somevar by reference, but
everything else as value.
[a,&b]{ f(a,b); } : a by value, b by reference.

[a=std::move(b)]{ f(a,b); } : Init capture. Create a variable a with the initializer given in the
capture brackets. It is as if there were an implicit auto before the a .

Member of the Helmholtz Association 8 – 12 May 2023 Slide 80

Exercise 1.15:
The program lambda_captures.cc (alternatively, notebook lambda_practice_1.ipynb) declares a variable
of the Vbose type (with all constructors, assignment operators etc. written to print messages), and then
defines a lambda function. By changing the capture type, and the changing between using and not using the
Vbose value inside the lambda function, try to understand, from the output, the circumstances under which

the captured variables are copied into the lambda. In the cases where you see a copy, where does the copy take
place ? At the point of declaration of the lambda or at the point of use ?

Member of the Helmholtz Association 8 – 12 May 2023 Slide 81

LAMBDA FUNCTIONS: CAPTURES
Imagine there is a variable int p=5 defined previously

We can “capture” p by value and use it inside our lambda
auto L = [p](int i){ std::cout << i*3 + p; };
L(3); // result : prints out 14
auto M = [p](int i){ p = i*3; }; // syntax error! p is read-only!

We can capture p by value (make a copy), but use the mutable keyword, to let the lambda function
change its local copy of p

auto M = [p](int i) mutable { return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) <<" "; std::cout << p <<"\n";
// result : prints out "8 14 5"

We can capture p by reference and modify it
auto M = [&p](int i){ return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) << " "; std::cout << p << "\n";
// result : prints out "8 14 14"

Member of the Helmholtz Association 8 – 12 May 2023 Slide 82

LAMBDA FUNCTIONS: CAPTURES
Imagine there is a variable int p=5 defined previously
We can “capture” p by value and use it inside our lambda

auto L = [p](int i){ std::cout << i*3 + p; };
L(3); // result : prints out 14
auto M = [p](int i){ p = i*3; }; // syntax error! p is read-only!

We can capture p by value (make a copy), but use the mutable keyword, to let the lambda function
change its local copy of p

auto M = [p](int i) mutable { return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) <<" "; std::cout << p <<"\n";
// result : prints out "8 14 5"

We can capture p by reference and modify it
auto M = [&p](int i){ return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) << " "; std::cout << p << "\n";
// result : prints out "8 14 14"

Member of the Helmholtz Association 8 – 12 May 2023 Slide 82

LAMBDA FUNCTIONS: CAPTURES
Imagine there is a variable int p=5 defined previously
We can “capture” p by value and use it inside our lambda

auto L = [p](int i){ std::cout << i*3 + p; };
L(3); // result : prints out 14
auto M = [p](int i){ p = i*3; }; // syntax error! p is read-only!

We can capture p by value (make a copy), but use the mutable keyword, to let the lambda function
change its local copy of p

auto M = [p](int i) mutable { return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) <<" "; std::cout << p <<"\n";
// result : prints out "8 14 5"

We can capture p by reference and modify it
auto M = [&p](int i){ return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) << " "; std::cout << p << "\n";
// result : prints out "8 14 14"

Member of the Helmholtz Association 8 – 12 May 2023 Slide 82

LAMBDA FUNCTIONS: CAPTURES
Imagine there is a variable int p=5 defined previously
We can “capture” p by value and use it inside our lambda

auto L = [p](int i){ std::cout << i*3 + p; };
L(3); // result : prints out 14
auto M = [p](int i){ p = i*3; }; // syntax error! p is read-only!

We can capture p by value (make a copy), but use the mutable keyword, to let the lambda function
change its local copy of p

auto M = [p](int i) mutable { return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) <<" "; std::cout << p <<"\n";
// result : prints out "8 14 5"

We can capture p by reference and modify it
auto M = [&p](int i){ return p += i*3; };
std::cout << M(1) << " "; std::cout << M(2) << " "; std::cout << p << "\n";
// result : prints out "8 14 14"

Member of the Helmholtz Association 8 – 12 May 2023 Slide 82

NO DEFAULT CAPTURE!

[] Capture nothing
[=] Capture used by value (copy)
[=,&x] Capture used by value, except x by reference
[&] Capture used by reference
[&,x] Capture used by reference, except x by value
[a=init] Init capture

A lambda with empty capture brackets is like a local function, and can be assigned to a regular function
pointer. It is not aware of identifiers defined previously in its context
When you use a (non-global) variable defined outside the lambda in the lambda, you have to capture it

Member of the Helmholtz Association 8 – 12 May 2023 Slide 83

STATEFUL LAMBDAS
Mutable lambdas have "state", and remember any changes to the values captured by value
Combined with "init capture", gives us interesting generator functions

1 vector<int> v, w;
2 generate_n(back_inserter(v), 100, [i=0]() mutable {
3 ++i;
4 return i*i;
5 });
6 // v = [1, 4, 9, 16 ...]
7 generate_n(back_inserter(w), 50, [i=0, j=1]() mutable {
8 i = std::exchange(j, j+i); // exchange(a,b) sets a to b and returns the old value of a
9 return i;

10 });
11 // See the videos on Fibonacci sequence on the
12 // YouTube channel "C++ Weekly" by Jason Turner
13 // w = [1, 1, 2, 3, 5, 8, 11 ...]

Exercise 1.16:
The program mutable_lambda.cc shows the use of mutable lambdas for sequence initialisation.

Member of the Helmholtz Association 8 – 12 May 2023 Slide 84

	Day 3
	Inheritance and class hierarchies
	Class inheritance
	Inheritance with virtual functions
	override, final etc.

	Using STL containers and algorithms
	Function and class templates
	C++ function templates
	Class templates
	Variable templates
	A detailed look at one class template
	Type calculations
	Static assertions with type traits
	Forwarding references

	Constrained templates
	Lambda Functions
	Motivation
	Syntax

