- N

PROGRAMMING IN C++
Jiilich Supercomputing Centre

8 — 12 May 2023 | Sandipan Mohanty | Forschungszentrum Jiilich, Germany

@) JULICH
Member of the Helmholtz Association J Forschungszentrum

Day 1

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 1 Forschungszentrum

ELEGANT AND EFFICIENT ABSTRACTIONS

Software development challenges C++ provides ...
= Handle increasingly more complex problems = Direct mapping of built in operations and
= Rich set of concepts with which to imagine types to hardware
what can be done = Powerful and efficient abstraction mechanisms
= Collaborative development = Multiparadigm programming: Procedural,

object oriented, generic and functional
programming

= Long term maintainability

= Do all of the above, and yet deliver code that
runs as fast as possible

IJ JULICH

Member of the Helmholtz Association 8 - 12 May 2023 Slide 2 Forschungszentrum

C++

= General purpose: no specialization to specific usage areas

= No mandatory simplification that precludes a direct expert level use of hardware resources
= Leave no room for a lower level language

= You don't pay for features you don't use

= Express

= ideas directly in code

= simple ideas with simple code

= independent ideas independently in code
= relationships among ideas directly in code

= Combine ideas expressed in code freely

Member of the Helmholtz Association 8 - 12 May 2023 Slide 3 Forschungszentrum

l) JULICH

C++4+ “GENES”

J JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 4 Forschungszentrum

LEARNING C++ IN 2023

= “Why, when there are easier, safer languages around?”

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 5 J Forschungszentrum

LEARNING C++ IN 2023

= “Why, when there are easier, safer languages around?”

= |sn't Al going to write all our programs from now on?

IJ JULICH

Member of the Helmholtz Association 8 - 12 May 2023 Slide 5 Forschungszentrum

File Edit View History Bo

® | @ Destructor not

@ https://chat.openai.com/

Arch Linux Forun ult Crap DPersonal Djlich

+ Newchat

Today

[Destructor not calledo Z [

2 Upgrade to Plus

B sandipan.mohanty@tut:

omputing ©

- e

pdate: Todes.

Compiler Explorer B Coron:

mp O Homepages FZ) < Jupyter

eaching DManuals O New

Show me an example of a C++ code where the destructor of a block scope automatic
variable is not called when the variable goes out of scope.

In C++, the destructor of an automatic variable within a block scope is automatically called

when the variable goes out of scope.
lOne such scenario is when an exception is thrown before the

variable goes out of scope. Here's an example:

py code

std: :cout <s std::end;

0O €

places, or facts. C

IGPT Mar 23 Version

naccurate information about people,

Free Research Preview. ChatGPT may produc

®

Dother Bookmarks

File Edit View History Bo
Dother Bookmarks

mp O Homepag Talks | Q¢ 6 BBBOFZ) Jupyter)

o

nal Djdlich ©Computing rch Dteaching DManuals O New:

+ Newchat

Today

[Destructor not calledo Z [

0 €
Example obj;

std:

laces, or facts. C

naccurate information about people, p

2 Upgrade to Plus

ChatGPT may produc

Free Research Previe

B sandipanmohanty@tut:

File Edit View History Bo

o

https://chat.openai.com/

nal Djdlich ©Computing mp O Homepag s| oQ FZ) < Jupyter mpiler Explorer Bl Dother Bookmarks

+ Newchat

Today

[Destructor not calledo Z [

Inthe above code, the “Example" class has a constructor and a destructor. The “foo() -
function throws a " st

runtime_error” exception before the “obj " variable goes out of
scope. As a result, the destructor of “obj " is not called, and you won't see the "Destructor
called” message in the output. Instead, the exception is caught in the “main() " function.

Please note that this is just one example where the destructor of an automatic variable may
not be called. In general, it is best to rely on destructors to clean up resources and ensure
proper cleanup even in the presence of exceptions.

G Regenerate response v

2 Upgrade to Plus jam

B sandipanmohantyatut Free Research reviow. ChalGPT may produc

naccurate information about people, p

laces, or facts. C

Help

https://chat.openai.com/ . ©

ult Crap DPersonal Djlich) C s | OQ 6 BBBOFZ) Jupyter)

Compiler Explorer B Corona-Update: Todes.
New chat

. u What compiler did you use to compile and run this code?

B Destructor not called o

As an Al language model, | don't have direct access to a specific compiler to compile and run
code. However, the code provided is standard C++ code and should work with any modern
C++ compller.

You can use popular C++ compilers such as:

* GCC (GNU Compiler Collection): https://gcc.gnu.org/

* Clang: https://clang.livm.org/
* Microsoft Visual C++: https://vis io.microsoft.

These compilers are widely used and support the C++ language standard.

To compile and run the code, you can save it into a file with a *.cpp extension (eg.,
“example.cpp"), and then use the appropriate compiler command to compile it. For
example, with GCC, you can use the following command in the terminal:

£) copycode

g++ example.cpp -0 example

G Regenerate response

2 Upgrade toPlus [new] Send a message.

® sandipan.mohanty@tuta... Free Research Preview. ChatGPT may produce inaccurate information about people, places, of facts. ChatGPT Mar 23 v

Dother Bookmarks

File Edit View History Bo
® | @ Destructor not
@
Arch Linux Forun

+ Newchat

Today

[Destructor not calledo Z [

2 Upgrade to Plus

8 sandipanmohanty@tut

- e

pdate: Todes.

Compiler Explorer B Coron:

mp O Homepages ©BBE@FZ) Jupyter]

tanuals © New:

eaching

nal Djdlich ©Computing

u None of those compilers produce the effect you claimed. The "Destructor called” message is
printed before the "Exception occurred” message, in every case.

You are correct, and | apologize for the mistake in my previous response. The destructor of
an object with automatic storage duration is guaranteed to be called when it goes out of

scope, regardless of whether an exception is thrown or not.

Here's the corrected code:
) copycode

Example() {
std::cout <<

~Example() {

information about people, places, or facts. ChatGPT Mar 23 Ve

ChatGPT may produc

Free Research Previ

®

Dother Bookmarks

File Edit View History

® | @ Destructor not

@

Arch Linux Forun nal Djdlich ©Computing mp O Homepag s FZ) < Jupyter mpiler Explorer Bl . Dother Bookmarks
+ Newchat

Today

[Destructor not calledo Z [

std::zuntime_error& e) {

<< e.what() << std::endl;

When you compile and run this code, you will see that the "Destructor called” message is

indeed printed before the “Exception occurred" message. The output will be:

Tuctor
Destructor
Exception occurred

G Regenerate response

2 Upgrade to Plus

laces, or facts. C

ChatGPT may produc

B sendipanmohanty@tut Free Research Previe naccurate information about people

File Edit View History Bo

https://chat.openai.com/

nal Djdlich ©Computing s|oq FZ) < Jupyter mpiler Explorer Bl . Dother Bookmarks
+ Newchat

Today

[Destructor not calledo Z [

When you compile and run this code, you will see that the "Destructor called" message is
indeed printed before the "Exception occurred” message. The output will be:

sal
Constructor

Destructor

Exception occurred

1 apologize for the confusion caused by my previous response. Thank you for bringing it to
my attention, and | appreciate your understanding.

G Regenerate response

2 Upgrade to Plus jam

laces, or facts. C

ChatGPT may produc

B sendipanmohanty@tut Free Research Previe naccurate information about people

USING Al LANGUAGE MODELS AS A PART OF
LEARNING

= Many answers are good, which is very impressive! And it is getting better.

Member of the Helmholtz Association 8 - 12 May 2023 Slide 7 J Forschungszentru

USING Al LANGUAGE MODELS AS A PART OF
LEARNING

= Many answers are good, which is very impressive! And it is getting better.

= Many are also plain wrong. Not surprising, considering that the internet is full of bad code examples and
demonstrably false but religiously held convictions about C++-. And the Al trains on that. Unfortunately,
even nonsensical answers are delivered with good grammar and authoritative language.

Forschungszentrum

IJ JULICH

Member of the Helmholtz Association 8 - 12 May 2023 Slide 7

USING Al LANGUAGE MODELS AS A PART OF
LEARNING

= Many answers are good, which is very impressive! And it is getting better.

= Many are also plain wrong. Not surprising, considering that the internet is full of bad code examples and
demonstrably false but religiously held convictions about C++-. And the Al trains on that. Unfortunately,
even nonsensical answers are delivered with good grammar and authoritative language.

= An experienced developer can, perhaps, use something like chatgpt as a glorified auto-complete plugin.
When the Al goes astray, the developer can ignore the suggestion from the language engine and fix the code.

IJ JULICH

Forschungszentrum

Member of the Helmholtz Association 8 - 12 May 2023 Slide 7

USING Al LANGUAGE MODELS AS A PART OF
LEARNING

= Many answers are good, which is very impressive! And it is getting better.

= Many are also plain wrong. Not surprising, considering that the internet is full of bad code examples and
demonstrably false but religiously held convictions about C++-. And the Al trains on that. Unfortunately,
even nonsensical answers are delivered with good grammar and authoritative language.

= An experienced developer can, perhaps, use something like chatgpt as a glorified auto-complete plugin.
When the Al goes astray, the developer can ignore the suggestion from the language engine and fix the code.

= When learning, you need to steer clear, and develop your foundations yourself.

IJ JULICH

Member of the Helmholtz Association 8 - 12 May 2023 Slide 7 Forschungszentrum

LEARNING C++

= |t takes time.

= |t takes caution!

= There is an astonishing amount of misinformation about the language on the internet, some outdated, some
were never true...

= Strong foundations in the building blocks of the language, will help you filter out incorrect information.

IJ JULICH

Member of the Helmholtz Association 8 - 12 May 2023 Slide 8 Forschungszentrum

LEARNING C++

= |t takes time.
= |t takes caution!

= There is an astonishing amount of misinformation about the language on the internet, some outdated, some
were never true...

= Strong foundations in the building blocks of the language, will help you filter out incorrect information.

= Scientific method: conduct your own “experiments” to test ideas

IJ JULICH

Member of the Helmholtz Association 8 - 12 May 2023 Slide 8 Forschungszentrum

LEARNING C++

It takes time.

It takes caution!

There is an astonishing amount of misinformation about the language on the internet, some outdated, some
were never true...

Strong foundations in the building blocks of the language, will help you filter out incorrect information.

Scientific method: conduct your own “experiments” to test ideas

Self-study over a much longer period

Collaborative projects with good senior programmers

Curiosity about an evolving language

IJ JULICH

Member of the Helmholtz Association 8 - 12 May 2023 Slide 8 Forschungszentrum

LEARNING C++

It takes time.

It takes caution!

There is an astonishing amount of misinformation about the language on the internet, some outdated, some
were never true...

Strong foundations in the building blocks of the language, will help you filter out incorrect information.

Scientific method: conduct your own “experiments” to test ideas

Self-study over a much longer period

Collaborative projects with good senior programmers

Curiosity about an evolving language
Two kinds of challenges: How can | do this ? What can | do with this ?

@) JULICH
8 - 12 May 2023 Slide 8 J Forschungszentrum

Member of the Helmholtz Association

LEARNING C++

= |t takes time.
= |t takes caution!

= There is an astonishing amount of misinformation about the language on the internet, some outdated, some
were never true...

= Strong foundations in the building blocks of the language, will help you filter out incorrect information.

= Scientific method: conduct your own “experiments” to test ideas

Self-study over a much longer period

= Collaborative projects with good senior programmers

Curiosity about an evolving language
= Two kinds of challenges: How can | do this ? What can | do with this ?

Goals for this course: emphasis on fundamentals, a tour of what exists, methods to facilitate continued

learning
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 8 J Forschungszentrum

C++ IN MAY 2023

= Current standard with stable implementations:
CH++17.

Latest standard approved by the ISO C++
committee: C++20

= All language features and almost all library features

of C4++17 are available in the two major open
source compilers: GCC and Clang.

= Some C++4-20 features are still not satisfactorily
implemented, but available implementations are
adequate for learning and testing

Microsoft's MSVC compiler is currently the

compiler with more implemented C++20 features

than any other compiler

© W N U W N

xarray<double> rt
= load_csv<double> (fin, '\t');
rt -= mean(rt, 0.);

xarray<double> cross =
linalg: :dot (transpose(rt), rt);

auto [lambda, v] = linalg::eig(cross);

= Easier, cleaner and more efficient language

= Elegant syntax, without compromising speed or
safety

Summary of compiler support for different language library features for different C++ standards can be looked
up at cppreference.com

Member of the Helmholtz Association 8 - 12 May 2023

l) JULICH

Slide 9 Forschungszentrum

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support

C++ IN MAY 2023

= Current standard with stable implementations:
CH++17.

Latest standard approved by the ISO C++

using namespace std::chrono;
using Date = year_month_day;

1
2
3
committee: C++20 4 year Y { asked_year.value_or (current_year())};
5
= All language features and almost all library features 6 Date s4 { Y / December / Sunday[4] };
of C++17 are available in the two major open 7 Date s3 { Y / December / Sunday[3] };
) 8 Date xmas { Y / December / 25d };
source compllers: GCC and Clang- 9 Date lastadv { s4 >= xmas ? s3 : s4 };
= Some C++4-20 features are still not satisfactorily
implemented, but available implementations are = Easier, cleaner and more efficient language
adequate for learning and testing = Elegant syntax, without compromising speed or
= Microsoft’'s MSVC compiler is currently the safety

compiler with more implemented C++20 features
than any other compiler

Summary of compiler support for different language library features for different C++ standards can be looked
up at cppreference.com

IJ JULICH

Member of the Helmholtz Association 8 - 12 May 2023 Slide 9 Forschungszentrum

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support

COMPILER SUPPORT FOR C++ STANDARDS

= Check the latest status of compiler support for C++11, C++14, C4++17, C4++20 etc by following this link.

= Open source GCC and Clang compilers held the edge in providing access to the latest language features. For
C++20, their support in open source compilers is still patchy, although steadily improving. It's usually
better to use as new a version as possible

= Since version 11.x, GCC uses C4++17 as its default.

= Clang makes the default standard a CMake configuration option, but is very often built with C+498 as the
default. In any case, there is usually an option to explicitly specify the standard we want to use with a
command line option, such as —std=c++17 or —-std=c++20 .

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 10 Forschungszentrum

https://en.cppreference.com/w/cpp/compiler_support

COURSE CONTENT
= Language fundamentals

= Basic structure of a program

= Types, values and variables

= Mutability controls

= Statements, blocks

= Branches, loops

= Exceptions and C++ control flow
= Functions and lambda expressions

= Scope

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 11 Forschungszentrum

COURSE CONTENT
= Language fundamentals

= Small applications using C++ standard library facilities

= Strings
= Containers and algorithms
= Input/Output

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 11 Forschungszentrum

COURSE CONTENT
= Language fundamentals

= Small applications using C++ standard library facilities
s C++ classes in detail

= Detailed syntax explanation

= RAII

= Operator overloading

= Invariants

= Inheritance and virtual dispatch
= SOLID principles

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 11 Forschungszentrum

COURSE CONTENT
= Language fundamentals

Small applications using C++ standard library facilities
s C++ classes in detail
= C++ templates

= Function, class and variable templates

= Constrained templates using
concepts

= Variadic templates

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 11 Forschungszentrum

COURSE CONTENT
= Language fundamentals

Small applications using C++ standard library facilities
s C++ classes in detail
= C++ templates

= |terator based design of containers
= Containers and algorithms

= Standard template library in detail " Ranges
= Date and time

= Random numbers
= Smart pointers

= Text formatting

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 11 Forschungszentrum

COURSE CONTENT
= Language fundamentals

Small applications using C++ standard library facilities
s C++ classes in detail
= C++ templates

= Open source libraries enabling the use of
some C+-+20 features before they are
implemented in compilers

= Standard template library in detail « Better regular expressions

= Some useful open source C++ libraries

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 11 Forschungszentrum

COURSE CONTENT
= Language fundamentals

Small applications using C+4-+ standard library facilities
= C++ classes in detail = Modules
s C++ templates

= Standard template library in detail
= Some useful open source C++ libraries

= Program organisation: expected changes

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 11 Forschungszentrum

GETTING STARTED

Set up course room access...

= Your login id in the course room is cxx?? , where 27 is the serial number for your name in the attendance
sheet, e.g., cxx01, cxx02 ... The passwords will be given to you in the class room. Note it down.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 12 Forschungszentrum

https://gitlab.version.fz-juelich.de/sdlbio-courses/programming-in-cxx-2023

GETTING STARTED

Set up course room access...

= Your login id in the course room is cxx?? , where 27 is the serial number for your name in the attendance
sheet, e.g., cxx01, cxx02 ... The passwords will be given to you in the class room. Note it down.

= Open a JupyterLab session on JupyterJSC. Follow the instructions in the everyday.pdf file to set up
your working area (it's just one command to run!)

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 12 Forschungszentrum

https://gitlab.version.fz-juelich.de/sdlbio-courses/programming-in-cxx-2023

GETTING STARTED

Set up course room access...

= Your login id in the course room is cxx?? , where 27 is the serial number for your name in the attendance
sheet, e.g., cxx01, cxx02 ... The passwords will be given to you in the class room. Note it down.

= Open a JupyterLab session on JupyterJSC. Follow the instructions in the everyday.pdf file to set up
your working area (it's just one command to run!)

= Draw attention if you have difficulties

Member of the Helmholtz Association 8 — 12 May 2023

.
' 4) JULICH
Slide 12 Forschungszentrum

https://gitlab.version.fz-juelich.de/sdlbio-courses/programming-in-cxx-2023

GETTING STARTED

Set up course room access...

= Your login id in the course room is cxx?? , where 27 is the serial number for your name in the attendance
sheet, e.g., cxx01, cxx02 ... The passwords will be given to you in the class room. Note it down.

= Open a JupyterLab session on JupyterJSC. Follow the instructions in the everyday.pdf file to set up
your working area (it's just one command to run!)

= Draw attention if you have difficulties

= Examples and exercises:

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 12 J Forschungszentrum

https://gitlab.version.fz-juelich.de/sdlbio-courses/programming-in-cxx-2023

GETTING STARTED

Set up course room access...

Your login id in the course room is cxx2? , where 22 is the serial number for your name in the attendance
sheet, e.g., cxx01, cxx02 ... The passwords will be given to you in the class room. Note it down.

= Open a JupyterLab session on JupyterJSC. Follow the instructions in the everyday.pdf file to set up
your working area (it's just one command to run!)

= Draw attention if you have difficulties
= Examples and exercises:

s Class room: vscode , gtcreator and kdevelop and eclipse are all installed. Pick any IDE or just use
the terminal with vim to edit.

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 12 J Forschungszentrum

https://gitlab.version.fz-juelich.de/sdlbio-courses/programming-in-cxx-2023

GETTING STARTED

Set up course room access...

Your login id in the course room is cxx2? , where 22 is the serial number for your name in the attendance
sheet, e.g., cxx01, cxx02 ... The passwords will be given to you in the class room. Note it down.

= Open a JupyterLab session on JupyterJSC. Follow the instructions in the everyday.pdf file to set up
your working area (it's just one command to run!)
= Draw attention if you have difficulties

= Examples and exercises:

s Class room: vscode , gtcreator and kdevelop and eclipse are all installed. Pick any IDE or just use
the terminal with vim to edit.
= JupyterLab: Start a cxx17 kernel.

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 12 J Forschungszentrum

https://gitlab.version.fz-juelich.de/sdlbio-courses/programming-in-cxx-2023

GETTING STARTED

Set up course room access...

= Your login id in the course room is cxx?? , where 27 is the serial number for your name in the attendance
sheet, e.g., cxx01, cxx02 ... The passwords will be given to you in the class room. Note it down.

= Open a JupyterLab session on JupyterJSC. Follow the instructions in the everyday.pdf file to set up
your working area (it's just one command to run!)
= Draw attention if you have difficulties
= Examples and exercises:
s Class room: vscode , gtcreator and kdevelop and eclipse are all installed. Pick any IDE or just use
the terminal with vim to edit.

= JupyterLab: Start a cxx17 kernel.
= Your own computer: Download course material from JSC gitlab server and use your favourite tools.

Member of the Helmholtz Association 8 — 12 May 2023 Slide 12 Forschungszentrum

IJ JULICH

https://gitlab.version.fz-juelich.de/sdlbio-courses/programming-in-cxx-2023

Fundamentals

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 13 J Forschungszentrum

A COMPILED LANGUAGE

Program: Step by step recipe for performing a computational
task

Expressed using precise deterministic rules in human readable
programming languages

Source code is translated to the machine language by the

1 //

2 #11

3 auto main ()

4 {

5 std::cout<<"Hello, world!\n";
6 }

g++ —-std=c++20 hello.cc
./a.out

clang++ —-std=c++20 hello.cc
./a.out

compiler
= The compiler enforces rules of the language
L]

Rules enable accurate expression of intent

= The compiler performs analysis of syntax tree, optimisation
passes, automatic discovery of shortcuts

= Same observable effects as the source code, but not necessarily

cppint
>>> std::cout <<
>>> quit

"Hello, world!\n";

doing everything exactly as you say.

Member of the Helmholtz Association

JULICH

Slide 14 J Forschungszentrum

8 — 12 May 2023

@ comple xploer — el risiox

x [& compilergioer % |+

cocae @ ipegodbaarg

Voo

g noe =

COMPILER [a4q ~ | more~ Watch C++ Weekly to learn new C++
—+ EXPLORER features

Sponsors

intel. PC-lint

Share ~ M Other ~ J{ Policies ¥ J

C++ source #1 X O X | x86-64 clang (trunk) (Editor #1, Compiler #1) C++ X o X

A~ @ +- v B »

1 auto sum_upto(unsigned num) -> unsigned
Av
2 {
3 auto ans{ou 1
4 for (auto i = OU; i < num; ++i) { 2
5 ans += i; 3
6 3 _ 4
7 return ans; 5
8 3 6
9 7
8
9
10
11
12
13

x86-64 clang (trunk)

LA 4

.LBBO_1:

a +

sum_upto(unsigned int):

test
je
lea
lea
imul
shr
lea
add
ret

ret

v

2~

K4

edi,

©® -03 B

edi

.LBBO_1

eax,
ecx,
rex,
rex

eax,
eax,

eax,

[rdi - 1]
[rdi - 2]
rax

[rex + rdi]
=il

eax

C B Output (0/0) x86-64 clang (trunk) i -cached (117148) ~238 lines filtered il

Member of the Helmholtz Association 8 — 12 May 2023

Slide 15

JULICH

Forschungszentrum

THE COMPILATION PROCESS

| Header 3 I Header 4 |

NN

Source 1

Header 5

Source 2

Preprocessor

T.U.2

Object file 1 Object file 2

Executable

Member of the Helmholtz Association 8 — 12 May 2023 Slide 16

/)

JULICH

Forschungszentrum

COMMAND LINE ARGUMENTS

= In the argc, argv form of main, the command

line is broken into a sequence of character strings 1 // examples/hello xyz.cc
2 #include <iostream>
and passed as the array argv 3 auto main(int argc, char xargv([]) -> int
= The name of the program is the first string in this * {
. . 5 std::cout<<"Hello, ";
list, argv[0] . Therefore argc is never 0. 6 if (argc > 1)
7 std::cout <<argv[l]<< "!\n";
8 else
9 std::cout<<"world!\n";

10 }
11 g++ main.cpp && ./a.out rain clouds

Exercise 1.1:

Open the example examples/hello_xyz.cc in a text editor or IDE. Familiarise yourself with the process of
compiling and running simple programs. Run this program with different command line options. Alternatively,
open http://coliru.stacked-crooked.com/, copy and paste the above program and run it with some
command line options!

lJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 17 Forschungszentrum

http://coliru.stacked-crooked.com/

THE MAIN() FUNCTION

= All C++ programs must contain a unique main () function

= All executable code is contained either in main () , or in functions invoked directly or indirectly from
main ()

= The return value for main () is canonically an integer. A value 0 means successful completion, any other
value means errors. UNIX based operating systems make use of this.

= In a C++ main function, the return 0; atthe end of main () can be omitted.

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 18 Forschungszentrum

FUNCTION CALL TREE

auto main() -> int auto f(int i) () -> int auto hll (int i) () —-> int auto h211 (int i)
{ { { -> int
auto N = 10; return (i » 1) %$12; return i * 1i; {
if (£(N) < g(N)) | } } return -i;
hl(N); auto g(int i) () -> int auto h2l(int i) () -> int }
} else { { {
h2 (N); return i $ 12; return i + h211(i);
} } }
} auto hl (int i) () —> int

{
return hll (i);
}
auto h2(int i) () —-> int
{
return h21 (i);

}
= Every function contains control flow regulating keywords or expressions.

= Some of the expressions may be function calls which will cause instructions in that other function to be
executed

= The execution tree starts at the main function

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Forschungszentrum

Slide 19

o B N

CODE LEGIBILITY

double foo (double x, int i)
{
double y=1;

if (i>0) |

for (int 3=0;3<i;++3) {
y *= %;

}

} else if (i<0) {

for (int j=0;3>i;--3) {
vy /= %

+}

return y;

}

Member of the Helmholtz Association

8 — 12 May 2023

= Human brains are not made for searching { and } in dense text

Slide 20

/)

JULICH

Forschungszentrum

STYLE

double foo (double x,

{
double y = 1;
if (i > 0) {
for (int j =
y *= Xj
}
} else if (i <
for (int j =
y /= %
}
}

return y;

int 1)

{

= Indenting code clarifies the logic
= Misplaced brackets, braces etc. are easier to detect
= 4-5 |levels of nesting is sometimes unavoidable

= Recommendation: indent with 2-4 spaces and be consistent!

Member of the Helmholtz Association

IJ JULICH

8 — 12 May 2023 Slide 21 Forschungszentrum

STYLE

double foo (double x,

{
double y = 1;
if (i > 0) {
for (int j =
y *= Xj
}
} else if (i <
for (int j
y /= %
}
}

return y;

int 1)

= Use a consistent convention for braces ({ and }).

= Use a tool like clang-format to clean up formatting before
committing code to your version control system

= The utility cf included with your course material (Usage:
cf sourcefile.cc) formats code using clang-format with
the WebKit style.

= Set up your editor to indent automatically! In Qt creator, set
up auto indentation with “clang format” by going to Tools
—Options —Beautifier.

= These are for the human reader (most often, yourself!). Be nice to yourself, and write code that is easy on

the eye!

Member of the Helmholtz Association

@) JULICH
8 — 12 May 2023 Slide 22 J Forschungszentrum

READ C4+

// examples/hello_ga.cc
#include <string>
#include <iostream>

auto main() -> int
{
std::string name;
std::cout << "What's your name ? ";
std::cin >> name;
std::cout << "Hello, " << name << "\n";

=
O © 0 N0 aRe W N

What does this code do ? What if you answer with a name with multiple parts ? Replace the line where we read
in to the variable name with getline (std::cin, name); , and repeat. If you run the program from
your IDE, you may have to adjust your “run” settings (Qt creator: Projects —Build and run —Run : “run in
terminal”).

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 23 Forschungszentrum

WRITE A VERY SIMPLE FUNCTION...

1 // examples/min_of_three.cc

2 #include <iostream>

3 auto min_of_three(int a, int b, int c) -> int
4 {

5 // recipe needed!

6 return a;

7 }

8 auto main() -> int

9 {

10 int i = 0, j =0, k = 0;

11 std::cout << "Enter i, j and k: ";

12 std::cin >> 1 >> j >> k;

13 std::cout << "The smallest of the three is " << min_of_three(i, j, k) << "\n";
14 }

Fill in the code in examples/min_of_three.cc so that the function returns the smallest of the 3 input values.

IJ JULICH

Forschungszentrum

Member of the Helmholtz Association 8 — 12 May 2023 Slide 24

WRITE A VERY SIMPLE FUNCTION...

1 // examples/midpt.cc

2 #include <iostream>

3 auto mid(int a, int b) -> int

4 {

5 // recipe needed!

6 return a;

7 }

8 auto main() -> int

9 {

10 int 1 = 0, J = 0;

11 std::cout << "Enter i, j: ";

12 std::cin >> 1 >> j;

13 std::cout << "A number half way between " << i << " and " << j
14 << " is " << mid(i, j) << "\n";
15 }

Fill in the code necessary in examples/midpt.cc so that the function returns a value half way between the two
inputs, for small integers.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 25 Forschungszentrum

DATA TYPES

NewTab_ SplitView -
build : bash x modules : bash fig : bash

() courseroom
cxx@zam2706: cppint
>>> std::cout << 13 / 2 << "\n";
6
>>> std::cout << 13.0 / 2.0 << "\n";
6.5
>>> std::cout << 13.0 / 2 << "\n";
6.5
>>> std::cout << 13 / 2. << "\n";
6.5

>>> D

Paste Find Edit Current Profile

examples : binforms.g x Book: bash (courseroom

(courseroom °
cxx@zam2706: python3

Python 3.6.15 (default, Sep 23 2021, 15:41:43) [GCC] on linux

Type "help", "copyright", "credits" or "license" for more informa
tion.

>>> 13 / 2

6.5

>>> 13 // 2

6
>>> I

)

= Since 13 and 2 are integers, 13 / 2 means integer division in C++. 13 % 2 would return the

remainder of the integer division

= Arithmetic operations between values of identical built in types produce the same type of output

= The meaning of operations on values depends on the type of the values

Member of the Helmholtz Association

8 — 12 May 2023

l) JULICH

Slide 26 Forschungszentrum

DATA TYPES

= A digital computer stores and processes information in binary bits

= Bit representation of even the simplest entities like integers or floating point numbers is a matter of
convention; compare

1 int i=1;
2 float i =

= Symantic meanings associated with a collection of bits is not inherrent to the bits, but is imparted by the
type associated with those bits

= Small differences in the text representation of numbers like 1 or 1. might translate to much bigger
differences for the processor

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 27 Forschungszentrum

TYPES, VARIABLES AND DECLARATIONS

[I N

auto force (double ml, double m2,
-> double
{
const auto G{ 6.67408e-11 };

return G * ml » m2 / (rl2 =

double rl12)

rl2);

// 0l1d style, but sti
unsigned long x = 0;
string name{"Maple"};
vector<int> v{l, 2, 3,
tuple<int, int,

-

complex<double> z{0.5,

(o I S

string> R{0, O,

)

ine

4, 5)i
nAY;
0.6};

A "type" defines the possible values and operations for an object

= An "object" is some memory holding a value of a certain type

= A "value" is bits interpreted according to a certain type

= A "variable" is a named object

= A "declaration" is a statement introducing a name into the program

= Statically typed: types of all created variables are known at compilation time.

A variable can not change its type.

Member of the Helmholtz Association

8 — 12 May 2023 Slide 28

JULICH

Forschungszentrum

/)

NewTab_ SplitView -
build : bash modules : bash x fig: bash
() courseroom

cxx@zam2706: cppint
>>> int k = 1;
>>> std::cout << typeid(k).name() << "\n";
i
>>> double x = 4.3;
>>> std::cout << typeid(x).name() << "\n";
d
>>> k =
>>> std::cout << k << "\n";
4
>>> std::cout << typeid(k).name() << "\n";

i
>>> D

Paste Find Edit Current Profile
examples : binforms.g Book : bash x () courseroom
() courseroom °
Ccxx@zam2706: python3
Python 3.6.15 (default, Sep 23 2021, 15:41:43) [GCC] on linux

Type "help", "copyright", "credits" or "license" for more informa
tion.
>>> Kk =1

>>> type(k)
<class 'int'>
>>> x = 4.3
>>> type(x)
<class 'float'>

>>> Kk = X
>>> print(k)
4.3

>>> type (k)
<class 'float'>

>>> I

NewTab_ Split View v c Paste Find Edit Current Profile

build : bash modules : bash fig: bash examples : binforms.g Book : bash (courseroom
() courseroom ° () courseroom °

cxx@zam2706: cppint Ccxx@zam2706: python3

>>> $#include <valarray>$ Python 3.6.15 (default, Sep 23 2021, 15:41:43) [GCC] on linux

>>> std::valarray A{1, 2, 3, 4, 5}; Type "help", "copyright", "credits" or "license" for more informa

>>> for (auto x: A) std::cout << x << "\n"; tion.

1 >>> import numpy as np

2 >>> A = np.array([1, 2, 3, 4, 5])

3 >>> for x in A:

4 print(x)

5 .

>>> A = 2; 1

>>> for (auto x: A) std::cout << x << "\n"; 2

2 3

2 4

2 5

2 >>> A =2

2 >>> for x in A:

>>> ... print(x)

>>> .

>>> Traceback (most recent call last):

>>> File "<stdin>", line 1, in <module>

>>> TypeError: 'int' object is not iterable

>>> >>> I

>>>

>>>

>>>

>>>

>>>

|>>> D

BUILT IN AND USER DEFINED TYPES

Built in types

= Types like char, bool, int, float , double are known as fundamental types

= Fundamental types are implicitly inter-converted when required

= Arithmetic operations +, —, %, /, as well as comparisons <, >, <=, >=, ==, | = are defined for the
fundamental types, and mapped directly to low level instructions
= Like in many languages, = is assignment where as == is equality comparison

Note how variables are "initialized" to sensible values when they are declared

Class types

= Additional types can be introduced to a program using keywords class , struct, enum and
enum class , and much less commonly union

= Behaviour of a user defined type is programmable

Member of the Helmholtz Association

@) JULICH

Forschungszentrum

INITIALIZATION

= Both int i = 23 and int i{ 23 } are valid initializations

= The newer curly bracket form should be preferred, as it does not allow "narrowing" initialisation:
int i{ 2.3 }; // Compiler error

= The curly bracket form can also be used to initialise C4++ collections:

1 std::list<double> masses{0.511, 938.28, 939.57};
2 std::vector<int> scores{667, 1}; // w
3 std::vector<int> lows (250, 0) ; // v

= In rare cases, initialization requires () for disambiguation

= Since C++17, standard container types use a new language feature called “class template argument
deduction” (CTAD) to infer the element type from the initialiser expression

= Variables can be declared anywhere in the program. Avoid declaring a variable until you have something
meaningful to store in it

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 31 J Forschungszentrum

INITIALIZATION

= Both int i = 23 and int i{ 23 } are valid initializations

= The newer curly bracket form should be preferred, as it does not allow "narrowing" initialisation:
int i{ 2.3 }; // Compiler error

= The curly bracket form can also be used to initialise C4++ collections:

1 std::1list masses{0.511, 938.7
2 std: :vector scores{667,1};
3 std::vector lows (250, 0) ;

= In rare cases, initialization requires () for disambiguation

= Since C++17, standard container types use a new language feature called “class template argument
deduction” (CTAD) to infer the element type from the initialiser expression

= Variables can be declared anywhere in the program. Avoid declaring a variable until you have something
meaningful to store in it

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 31 Forschungszentrum

THE UNIFORM INITIALISATION SYNTAX

© W N U W N

= Variables can be initialised at the point of

int I{20}; declaration with a suitable value enclosed in {}
// define integer I and set it to 20

string nat{"Germany"}; = Historical note: Pre-C++11, only the = and ()
// define and initialise a string . | d di he lef |
double a[4] (1., 22.1, 19.3, 14.1}; notations (also demonstrated in the left panel) were
// arrays have the same syntax available. Initialising non trivial collections was not
tuple<int, int,double> x{0, 0, 3.14}; allowed

// So do tuples
list<string> L{"abc", "def", "ghi"};
// and lists, vectors etc

double m = with '='
// is ok for 1 al ut ...
int k = 5.3; // Allowed, although the

// integer k stores 5, and not 5.3

int j{5.3}; // Helpful compiler error.
int i{}; // i=0

vector<int> u{4, 0}; // u={4, 0}
vector<int> v (4, 0); // v={0, 0, 0, 0}

Member of the Helmholtz Association 8 — 12 May 2023 Slide 32

= Recommendation: Use {} initialisation syntax as your default. A few exceptional situations requiring the

() or = syntax can be seen in the left panel.

IJ JULICH

Forschungszentrum

THE KEYWORDS AUTO

auto sqgr(int x) -> int { return x » x; }
auto main() -> int {
char oldchoice{'u'}, choice{'y'};
size_t i = 20'000'000;
//group digits for readability!
double electron_mass{ 0.511 };
int mes(6]{33, 22, 34, 0, 89, 3};
bool flag{ true };
decltype (i) 3j{ 9 };
auto positron_mass =
auto f = sqr; // Without "auto", f
// be declared 11

electron_mass;
can

e this:

//int (*f) (int) = &sqr;

std::cout << f(j) << '\n';

auto muon_mass{ 105.6583745 };

// If somefunc() returns

// tuple<string, int, double>
auto [name, nspinstates, lifetime]

= somefunc (serno) ;

Member of the Helmholtz Association

8 — 12 May 2023

AND DECLTYPE

= The keyword auto can be used to declare a

variable as auto x{initializer} or

auto x =

initializer .

initializer .

The variable is then
created with the type and value of the

= The keyword decltype can be used to say

'same type as that one"

= Since C4++17, new names can be bound to
components of a tuple, as shown

Slide 33

/)

JULICH

Forschungszentrum

N N

USING LITERALS WITH PRECISE TYPES

= What are the types of the variables declared here?

auto age = 7;

auto pi = 3.141592653589793;
auto energy = 0;

auto city = "Barcelona";

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 34 J Forschungszentrum

N N

USING LITERALS WITH PRECISE TYPES

= What are the types of the variables declared here?

auto age = 7; . .
auto pi — 3.141592653589793; = How can we make sure that age is unsigned,
auto energy = 0; pi and energy are double precision, and
auto city = "Barcelona";
city isa string?
Member of the Helmholtz Association 8 — 12 May 2023 Slide 34 J Forschungszentrum

=
H O © WO O R W

Member of the Helmholtz Association

USING LITERALS WITH

auto age = 7U;

auto pi = 3.141592653589793;

auto energy = 0.;

using namespace std::string_ literals;
auto city = "Barcelona's;

auto bigpositive = 0UL;

auto fort_real = 0.0F;

// With proper user defined functions

auto Tl = 300_Kelvin;
auto T2 = 100_Celcius;
auto dist = 4.5_KM + 6.3_Miles;

8 — 12 May 2023

PRECISE TYPES

= What are the types of the variables declared here?

= How can we make sure that age is unsigned,
pi and energy are double precision, and
city isa string?

= Writing literals with precise types is a good habit,
i.e., 0. rather than 0 if you mean a floating
point value, OU rather than 0 if you mean an
unsigned value. ..

IJ JULICH

Slide 34 Forschungszentrum

=
H O © WO O R W

USING LITERALS WITH PRECISE TYPES

= What are the types of the variables declared here?

auto age = 7U; . .
auto pi — 3.141592653589793; = How can we make sure that age is unsigned,
auto energy = 0.; . . pi and energy are double precision, and
using namespace std::string_ literals;
auto city = "Barcelona's; city is a String ?
auto bigpositive = 0UL; . . .) .)
auto fort_real = 0.0F; = Writing literals with precise types is a good habit,
// With proper user defined func i.e., 0. ratherthan 0 if you mean a floating
auto Tl = 300_Kelvin; i .
auto T2 = 100_Celcius; point value, OU rather than 0 if you mean an
auto dist = 4.5_KM + 6.3_Miles; unsigned value. ..
= C++ allows you to make new literals for user
defined types
Member of the Helmholtz Association 8 - 12 May 2023 Slide 34 J Forschungszentrum

=
H O © WO O R W

L T
© W N W

C++4+ STANDARD LIBRARY STRINGS

#1
std::string fullname;

std::string name{"Albert"};

using namespace std::string_ literals;
auto surname{"Einstein"s};
//Concatenation and assignment

fullname = name + " " + surname;

clude <string>

//Comparison

if (name == "Godzilla") run();

std::cout << fullname << '"\n';

i < fullname.size(); ++i)

"§') blah +=

for (size_t i = 0;
if (fullname[i] >
}
std::cout << "Substring after last z is "
<< name.substr(
name.find_last_of('z'));

Member of the Helmholtz Association 8 — 12 May 2023

fullname[i];

{

String of characters

Knows its size (see example)
Allocates and frees memory as needed
Simple syntax for assignment (=),

concatenation(+), comparison (<, ==, >)

The namespace std::string_literals
defines the necessary functions to write literals
which are interpreted as std::string instead
of raw character arrays

IJ JULICH

Slide 35 Forschungszentrum

CONVERTING TO AND FROM STRINGS

1 std::cout << "integer : " << std::to_string(i) << '\n';
2 tot += std::stod(line); // String-to-double

= The standard library string class provides functions to inter-convert with variables of type int ,
double

Test example usage of string <+ number conversions in examples/to_string.cc and examples/stoX.cc

Member of the Helmholtz Association 8 — 12 May 2023 Slide 36 Forschungszentrum

9 JULICH

=
H O © WO O R W

STD::STRING_VIEW

std::string_view viewse{"Norrsken"};
using namespace std::string view_literals;
auto viewen{"Northern lights"sv};
auto proc(std::string_view inp) -> bool
{
if (inp.ends_with("et")) {
if (inp.substr(0UL, 3UL) == blah)
//
}
}
Member of the Helmholtz Association 8 - 12 May 2023

Lightweight entity similar to std::string .
Does not own its content.

"View" over an existing array of characters, either
in a string or in a character literal or a plain
character array

Does not own any data, does not try to do any
memory manangement

Can be compared like (and with) std::string
objects

Can not grow (no memory management!), but can
shrink

Cheap to pass to functions by value

Has its own literal definitions in the namespace
std::string _view_literals

l) JULICH

Slide 37 Forschungszentrum

RAW STRING LITERALS

// Instead of ...

string message{"The tag \"\\maketitle\" is unexpected here."};
// You can write ...

string message{R" (The tag "\maketitle" is unexpected here.)"};

= Can contain line breaks, '\' characters without escaping them, like the tripple quote strings in Python

= Very useful with regular expressions

= Starts with R" (and ends with) "

= More general form R"delim(text)delim"

The file examples/rawstring.cc illustrates raw strings in use. The file examples/rawl.cc has a
small program printing a message about using the continuation character '\’ at the end of the line to continue
the input. Modify using raw string literals.

UJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 38 Forschungszentrum

BLOCKS

= A C++ statement is a step in the recipe of the program

= either declaring a new symbol for later use, expressing a computation or some other action on pre-declared
symbols

= Blocks are groups of statements enclosed by a pair of braces.

// begin : block 1

[B N A

// begin 2
auto x = * pi/180);
* pi/180);
9 }
10
11 } // end : block 1
12 } // end : block 0
@) JULICH
Member of the Helmholtz Association 8 - 12 May 2023 Slide 39 J Forschungszentrum

SCOPE OF VARIABLE NAMES

auto find_root () —-> double
{
for (int i = 0; 1 < N; ++1) {
//counter i defined only in this "for" loop.
}
double newval = 0; // This is ok.
for (int i = 0; 1 < N; ++1) {
// The counter 1 here is a different entity
if (newval < 5) {
string fl{"small.dat"};
// do something
}
newval=...;
cout << fl << '\n'; // Error!
}
int f1 = 42; // ok, but shadowed below
if (auto fl = filename; val < 5) { // C++17
// fl is available here
} else {
// fl is also available here
}
}

Member of the Helmholtz Association

8 — 12 May 2023

= A variable declaration creates a variable

= The scope of a variable is the lines of code where a
variable can be accessed (unless shadowed)

= A scope is:

= For variables declared in a block, bounded by {

and

} , the lines from the point of declaration till the }

= A loop or a function body
= Both if and else parts of an if

/)

Slide 40

statement

JULICH

Forschungszentrum

AW N

N o

10
11
12
13

Member of the Helmholtz Association

void example ()
{
std::string moon{"Titan"};
std::string name = moon;
std::cout << name;
{
std::cout << name;
int name{10};
name = name - 3;

std::cout << name;
}

std::cout << name ;

8 — 12 May 2023

SCOPE OF VARIABLE NAMES

= A variable declaration creates a variable

= The scope of a variable is the lines of code where a

variable can be accessed (unless shadowed)
= A scope is:

= For variables declared in a block, bounded by

} , the lines from the point of declaration till the

= A loop or a function body

{

and
}

= Both if and else parts of an if statement

= Variables defined in a block exist from the point of
declaration till the end of the scope. After that, the

name may be reused.

= A nested child block may define a new variable with a
name already in use. The new variable is then said to

“shadow” the existing one. The

visibility of the outer variable can then be
discontinuous.

JULICH

Slide 40 J Forschungszentrum

© 0N oA W N

o e e
w N = O

SCOPE OF VARIABLE NAMES

= Type attached to a name at any point in a C++

// Somewhere in a function ... program can a|Ways be determined by the
auto imp = imp_calc(); examining scopes and declarations, without
condition_holds) { X n:”n”:]g p n rat n.’ wi u
tions considering the path taken at runtime to reach that
point

{ = To deduce the type of entity the symbol imp
represents in line 7, you have to look upwards from
that point to the nearest declaration for that name.

Nothing that happens in the loop can change this
deduction

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 41 Forschungszentrum

SCOPE OF VARIABLE NAMES

= Type attached to a name at any point in a C++
program can always be determined by the

Python code (pyscope2.py). I

badly written code to illus e possible
dangers of dynamic variable scope. examining scopes and declarations, without
import sys . . .
v W R considering the path taken at runtime to reach that
if _ name__ == main] X

if len(sys.argv) > 1: point

N = int (sys.argv[1]) To ded h £ . h bol i
Ailems = |0 deduce the type of entity the symbol imp

N =5 represents in line 7, you have to look upwards from
that point to the nearest declaration for that name.

def (n) :
if n > 1: = Nothing that happens in the loop can change this
return n x* fact(n-1) .
N — deduction

while N > 0:

print (fact (N))
if N % 4 == 0:

fact = N » (N - 1) / 2
N =N -1

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 41 Forschungszentrum

=
H O © WO O R W

o
w N

SCOPE OF VARIABLE NAMES

= Type attached to a name at any point in a C++
// Somewhere in a function ... program can a|Ways be determined by the
auto imp = imp_calc(); .. d decl ti ith t
while (some. condition holds) examining scopes and declarations, withou
// ca tions considering the path taken at runtime to reach that

point

{ = To deduce the type of entity the symbol imp
represents in line 7, you have to look upwards from
that point to the nearest declaration for that name.

Nothing that happens in the loop can change this
deduction

Properties of symbols in C++ can always be
deduced by a purely spatial analysis in the space of
source lines.

Static typing and C++ scoping rules ensure that
we don't have to perform a space-time analysis

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 41 Forschungszentrum

-

© W N oUW N

[I B S
ok W N R O

CONSTANTS

auto G = 6.674e-11 ;
auto pi 3.141592653589793 ;
auto ml = 1.0el0, m2 = 1.0e4;
auto r = 10;
std::cout << "Force = "
<< -G » ml » m2 / (r = r)
<< "\n"; // great!
G =G+ 1;
std::cout << "Force = "
<< -G » ml » m2 / (r = r)
<< "\n"; // wrong!
for (auto i = 0; 1 < 360; ++pi) {
std::cout << sin(i = pi / 180);
}
Member of the Helmholtz Association 8 - 12 May 2023 Slide 42

9

= Some entities we need in computations should
not be able to change

JULICH

Forschungszentrum

CONSTANTS

auto G = 6.674e-11 ;

auto pi = 3.141592653589793 ;
auto ml = 1.0el0, m2 = 1.0e4;
auto r = 10;

std::cout << "Force = "
<< -G #* ml » m2 / (r * r)
<< "\n"; // great!

G =G+ 1;

std::cout << "Force = "
<< -G * ml » m2 / (r = r)
<< "\n"; // wrong!

for (auto i = 0; i < 360; ++pi

{

std::cout << sin(i = pi / 180);

Member of the Helmholtz Association

8 — 12 May 2023

= Some entities we need in computations should
not be able to change
= Simple typos might lead to horribly incorrect (if

we are lucky) or subtly incorrect results which can
go unnoticed for a long time

IJ JULICH

Slide 42 Forschungszentrum

-

© W N oUW N

[I B S
ok W N R O

CONSTANTS

auto

auto

auto
auto
std:

G =
std:

for

const G = 6.674e-11 ;
const pi = 3.141592653589793 ;
ml = 1.0el0, m2 = 1.0e4;
r = 10;
:cout << "Force ="
<< -G * ml » m2 / (r * r)
<< "\n"; // great!
G + 1;
:cout << "Force ="
<< -G # ml » m2 / (r % r)
<< "\n"; // wrong!
(auto 1 = 0; i < 360; ++pi) {

std::cout << sin(i = pi / 180);

Member of the Helmholtz Association

8 — 12 May 2023

= Some entities we need in computations should

not be able to change

= Simple typos might lead to horribly incorrect (if

we are lucky) or subtly incorrect results which can

go unnoticed for a long time

= The const qualifier in C++ is used to mark

variables as constants

Slide 42

/)

JULICH

Forschungszentrum

-

BowoN

© N o wu

CONSTANTS

auto const G = 6.674e-11 ;

auto const pi = 3.141592653589793 ;
auto ml = 1.0el0, m2 = 1.0e4;
auto r = 10;
std::cout << "Force = "
<< -G * ml » m2 / (r * r)
<< "\n"; // great!
G=G+ 1; // compi
std::cout << "Force = "
<< -G *# ml * m2 / (r * r)
<< "\n"; // wr

for (auto i = 0; 1

Member of the Helmholtz Association 8 — 12 May 2023

Some entities we need in computations should
not be able to change

Simple typos might lead to horribly incorrect (if
we are lucky) or subtly incorrect results which can
go unnoticed for a long time
The const qualifier in C4++ is used to mark
variables as constants

Attempting to modify a const qualified variable
is a compiler error, so that we can not proceed
without fixing these errors

IJ JULICH

Slide 42 Forschungszentrum

-

BowoN

© N o wu

CONSTANTS

auto

auto

auto
auto
std:

G =
std:

for

const G = 6.674e-11 ;
const pi = 3.141592653589793 ;
ml = 1.0el0, m2 = 1.0e4;
r = 10;
:cout << "Force ="
<< -G » ml » m2 / (r * r)
<< "\n"; // great!
G + 1; // compiler error!
:cout << "Force "

<< -G * ml
<< H\nn;

* m2 / (r * r)
// wr

Member of the Helmholtz Association

8 — 12 May 2023

Some entities we need in computations should
not be able to change

Simple typos might lead to horribly incorrect (if
we are lucky) or subtly incorrect results which can
go unnoticed for a long time

The const qualifier in C4++ is used to mark
variables as constants

Attempting to modify a const qualified variable
is a compiler error, so that we can not proceed
without fixing these errors

In general fewer mutable variables makes code
easier to debug, so that making a habit of first
making all new variables const and then
consciously relaxing the qualifier for some is now
considered good practice.

l) JULICH

Slide 42 Forschungszentrum

CONSTANTS

1 auto ask_user () —-> double
2 {
3 double tmp{};
4 std::cout << "Enter RO: ";
5 std::cin >> tmp;
6 return tmp;
7 }
8 void elsewhere ()
9 {
10 const auto r = ask_user(); // OK
11 r =r « r; // Not OK
12 }
Member of the Helmholtz Association 8 - 12 May 2023

const does not mean compile time constant.
Just that the variable will not be changed post

initialisation.

Slide 43

9

JULICH

Forschungszentrum

-

© 0N ok W N

I B R
o LA W N O

CONSTANTS

constexpr auto G = 6.674e-11 ;

constexpr auto pi = 3.141592653589793 ;
auto ml = 1.0el0, m2 = 1.0e4;

auto r = 10;

std::cout << "Force = "

<< -G » ml » m2 / (r = r)
<< "\n"; // great!

G =G + 1; Compiler error
std::cout << "Force = "
<< -G # ml » m2 / (r * r)
<< "\n"; // wrong!
for (auto i = 0; 1 < 360; ++pi) {
// Compil error!
std: : sin(i = pi / 180);
}
Member of the Helmholtz Association 8 - 12 May 2023

= const does not mean compile time constant.
Just that the variable will not be changed post
initialisation.

= For variables known to be compile time constants,
one could use constexpr

IJ JULICH

Slide 43 Forschungszentrum

-

© 0N ok W N

I B R
o LA W N O

CONSTANTS

constexpr auto G 6.674e-11 ;

constexpr auto pi
auto ml 1.0el0,

auto r = 10;

std: :cout << "Force
<< =G » ml « m2 /

<< "\n"; // great!
G + 1; Compiler error
:cout << "Force
<< -G + ml * m2 /

<< "\n"; // wrong!

m2

1.0e4;

- n

(r = r)

G
std:

_n

(r = 1)

for (auto i 0; i < 360;
// Cc r error!

std::cout << sin (i

++pi) |

3.141592653589793 ;

= const does not mean compile time constant.

Just that the variable will not be changed post

initialisation.

= For variables known to be compile time constants,
one could use constexpr

= The compiler may use the value of such variables to
produce better code

x pi / 180);

Member of the Helmholtz Association

JULICH

8 — 12 May 2023 Slide 43 J Forschungszentrum

=
H O ©®NO O R W

I
© N O U W N

BRANCHES/SELECTIONS

if (condition) {
// code
} else if (another condition) {
// code
} else {
//code
}
switch (enumarable) {
case 1:
// code
break;
case 2:
// code
break;
default:
// code
Vi
x =N>10 2 1.0 : 0.0;

Member of the Helmholtz Association 8 — 12 May 2023

= The if and switch constructs can be used to
select between different alternatives at execution
time.

= Conditional assignments are frequently written with
the ternary operator as shown

IJ JULICH

Slide 44 Forschungszentrum

=
H O ©®NO O R W

o e e
SIS)

16

LOOPS

for (initialisation; condition; increment) {
// Loop body
}
for (int 1 = 0; 1 < N; ++i) s += al[il;
while (condition) {}
while (T > tO0) {}
do {} while (condition);
do {
} while (ch == 'y');
for (variable collection) {}
for (int 1 {1,2,3}) £(1);
for (int 1 = 0; 1 < N; ++1i) {
if (a[i] < cutoff) s+=alil;
else break;
}
for (std::string s names) {

if (s.size() > 10) {

longnames.push_back (s) ;
continue;

Member of the Helmholtz Association 8 — 12 May 2023

Execute a block of code repeatedly

Loop counter for the for loop can and should
usually be declared in the loop head

The break keyword in a loop immediately stops
the loop and jumps to the code following it

The continue keyword skips all remaining
statements in the current iteration, and continues
in the loop

IJ JULICH

Slide 45 Forschungszentrum

Write a program to print the command line arguments in the reverse order.

Exercise 1.8:
Write a function to check if a given number is a prime number. Fill in the relevant lines in

examples/check_prime.cc .

Exercise 1.9:
Let x is a positive real number, and r its square root, i.e., x = r?. For any number y between 1 and x, z = X is

\ |

another such number. z and y are on opposite sides of r. In fact, iterating riy1 = %(r,— + rﬁl) for any starting ro
between 1 and x, creates a series gradually approaching r. Use this to write your own function to calculate the
square root of a real number! Verify the answer by using C++ standard library square root function,

std: :sqgrt .

9 JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 46 Forschungszentrum

[I N

REFERENCES

= Variable declaration: create object with initial value,

const auto x{5.0}; and attach a name tag (reference) to it
const double y{6.0};

// different entities wi values
auto x2{ x }; // Obs:
double y2{ vy };

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 47 Forschungszentrum

[I N

REFERENCES

= Variable declaration: create object with initial value,

const auto x{5.0}; and attach a name tag (reference) to it
const double y{6.0}; . . o
= |f a variable name is used to initialise a new one,
// different cntit-ics wit values auto x2 {X} , the new variable WI” have the
auto x2{ x }; // Obs: x2 st! | b b diff .
double y2{ v }: same value, but will be a different entity
Member of the Helmholtz Association 8 — 12 May 2023 Slide 47 J Forschungszentrum

© 0N oW N

-
o

REFERENCES

= Variable declaration: create object with initial value,

const auto x{5.0}; and attach a name tag (reference) to it
const double y{6.0}; . . o
= |f a variable name is used to initialise a new one,

// different cntit-ics wit values auto x2 {X} , the new variable will have the
auto x2{ x }; // Obs: x2 st! | b b diff .
double y2{ y }; same value, but will be a different entity
I } » = |t is possible to “attach another name tag” to an
// add onal references for the same object o)
const autos xr{ x }; existing variable.
const doubles yr{ y };

Member of the Helmholtz Association 8 — 12 May 2023 Slide 47 J Forschungszentrum

© 0N oW N

-
o

REFERENCES

const auto x{5.0};
const double y{6.0};

// different enti

auto x2{ x }; // O
double y2{ vy };

// add ional references for the same ob
const auto& xr{ x };
const doubles yr{ y };

Member of the Helmholtz Association 8 — 12 May 2023

Variable declaration: create object with initial value,
and attach a name tag (reference) to it

If a variable name is used to initialise a new one,
auto x2{x} , the new variable will have the
same value, but will be a different entity

It is possible to “attach another name tag” to an
existing variable.

Since the new names are not independent objects,
they can't have greater modification privileges
compared to the original variable name

IJ JULICH

Slide 47 Forschungszentrum

© 0N oW N

-
o

REFERENCES

const auto x{5.0};
const double y{6.0};

// different enti

auto x2{ x }; // O
double y2{ vy };

// add ional references for the same ob
const auto& xr{ x };
const doubles yr{ y };

Member of the Helmholtz Association 8 — 12 May 2023

Variable declaration: create object with initial value,
and attach a name tag (reference) to it

If a variable name is used to initialise a new one,
auto x2{x} , the new variable will have the
same value, but will be a different entity

It is possible to “attach another name tag” to an
existing variable.

Since the new names are not independent objects,
they can't have greater modification privileges
compared to the original variable name

xr and yr here are constant “L-value
references” (entities allowed on the left side of an
= sign) of type double

IJ JULICH

Slide 47 Forschungszentrum

© 0N oW N

-
o

REFERENCES

const auto x{5.0};
const double y{6.0};

// different

auto x2{ x };
double y2{ y };

// add references for the same ob
const auto& xr{ x };

const doubles yr{ y };

Member of the Helmholtz Association 8 — 12 May 2023

Variable declaration: create object with initial value,
and attach a name tag (reference) to it

If a variable name is used to initialise a new one,
auto x2{x} , the new variable will have the
same value, but will be a different entity

It is possible to “attach another name tag” to an
existing variable.

Since the new names are not independent objects,
they can't have greater modification privileges
compared to the original variable name

xr and yr here are constant “L-value
references” (entities allowed on the left side of an
= sign) of type double

References are important for information exchange
with functions

l) JULICH

Slide 47 Forschungszentrum

© 0N oA W N

POINTERS
A N S I >0

0123456789 A

= A pointer is a built in type to store the memory

int i(5}; address of objects, with its own different arithmetic
intx iptr{s&i}; // iptr points at i

Lo 1, rules

i+ 1;

std::cout << xiptr ; // 6 = For a variable X, its memory address is &X

(xiptr) = 0;
std::cout << i ; // 0
ints iref{i}; // iref "refers" to i
iref = 4;

std::cout << i ; // 4

= If iptr is a pointer, =iptr is the object it is pointing at

= Adding 1 to the pointer iptr shifts it by sizeof (typeofi) bytes in memory
= A reference is effectively another name for the same object
= When in use, a reference appears as if it were a regular variable

Forschungszentrum

l) JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 48

POINTERS

Member of the Helmholtz Association 8 — 12 May 2023 Slide 49

Imagine computer memory as a long sequence of ‘ | | | |X| | | || I “ ‘&X is4
bytes where information is stored 01234567829 A

Imagine all the bytes being numbered like houses in
a very long street

= int»* is different from doublex , charx and
An int object in a program would be stored

even unsigned intx or const int»
somewhere, and occupy 4 bytes, the address of its &

first byte is called the address of the integer. If the = For any given type T, if sizeof(T) == n,
integer object has a name x , it's address can be pointers of that type jump n bytes when we add 1
found as &x to them

If multiple int objects are stored next to each n bytes

other, with no gaps, address of the integer coming F————

after x is sizeof (x) bytes after &x p[0] p[1] p[2] p[3] pl4] p[5]
The address of an object of any type T , can be $ * $ ﬁ f *

stored in variables of type T» , pointersto T . p p+1 p+2 p+3 p+4 p+5

IJ JULICH

Forschungszentrum

POINTERS

= If p isa pointertoan T, xp is a reference to T . This process of getting a reference out of a pointer is
called “dereferencing”.

= If T is aclass type, and p is a pointer to T , members for the current object p is pointing to can be
accessed as p—>member or (xp) .member

= If x isoftype T, &x isof type Tx . This implies that the pointer for a const object is also const
qualified

= In some ways references behave like fixed, automatically dereferenced pointers. But pointers are themselves
object types. They themselves have addresses and sizes. They can be stored in arrays. References can not
be.

= If p is a pointer holding the address of an element of an array of type T, p+1l, p+2 ... are the
subsequent elements.

= (p+2) is synonymous with p[2] , *(p+1l) with p[1l] and, *~p with p[0] .

= p is the same location as &p[0]

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 50 Forschungszentrum

POINTERS

int A[10]{0, 2, 1, O, 3, 1, 1, 0, 0, 1};

int wi{};
for (int 1 = 0; i < 10; ++i) w += A[i];
What does this code do ?]
Member of the Helmholtz Association 8 — 12 May 2023 Slide 51 J Forschungszentrum

POINTERS

int A[10]{0, 2, 1, O, 3, 1, 1, 0, 0, 1};

int wi{};
for (int i = 0; i < 10; ++i) w += = (A+i);
What does this code do ?]
Member of the Helmholtz Association 8 — 12 May 2023 Slide 51 J Forschungszentrum

POINTERS

int A[10]{0, 2, 1, O, 3, 1, 1, 0, 0, 1};

int wi{};

for (intx p{A}; p !'= A + 10; ++p) w += xp;
[What does this code do ?]
Member of the Helmholtz Association 8 — 12 May 2023 Slide 51 J Forschungszentrum

POINTERS

int A[101{(0, 2, 1, O, 3, 1, 1, 0, 0, 1};

int wi{};

intx start{A};

int+ stop{A + 10};

for (intw p{start}; p != stop; ++p) {

W += *p;
}
What does this code do ?]

Member of the Helmholtz Association 8 — 12 May 2023 Slide 51 J Forschungszentrum

POINTERS

int A[10]{0, 2, 1, O, 3, 1, 1, 0, 0, 1}%};
int wi{};

intx start{A};

int+ stop{A + 10};

for (; start != stop; ++start) w += xstart;
What does this code do ?]
Member of the Helmholtz Association 8 — 12 May 2023 Slide 51 J Forschungszentrum

POINTERS

auto whatisit (int+ start, intx stop) —-> int

{
int w{};
for (; start != stop; ++start) w += *start;
return w;

What does this code do ?]

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 51 Forschungszentrum

POINTERS

void whatisit (intx start, intx stop, intx start2)

{

for (; start != stop; ++start, ++start2) xstart2 = xstart;
}
[What does this code do ?]
Member of the Helmholtz Association 8 — 12 May 2023 Slide 51 J Forschungszentrum

Exercise 1.10:

The basic concepts of the language are explained using a series of Jupyter notebooks in the folder notebooks in
the course materials. Depending on your previous knowledge, you may need to focus on different topics. The
notebooks are full of explanatory text. Work through the note books Fundamentals_1.ipynb , and
Fundamentals_2.ipynb , before we continue. Ask any topic that you find unclear and needs an explanation.

9 JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 52 Forschungszentrum

=
H O © WO O R W

I o
© N O U W N

FUNCTIONS

auto function_name (parameters) -> return_type

body

auto sin(double x) -> double

{

// Somehow
return answer;

}
auto main() —-> int
{
constexpr double pi{3.141592653589793};
for (int i = 0; i < 100; ++i) {
std::cout << i * pi / 100
<< sin(i * pi / 100) << "\n";
}

std::cout << sin("pi") << "\n"; //Error!

Member of the Helmholtz Association

8 — 12 May 2023

To the first approximation, all executable code is in
functions

In order to execute the code in a function, we “call”
the function

main is a special function. When you run a
program, the OS, the debugger or IDE, calls
main . The code in main may call other functions,
which call even more functions and so on, till all
work in main is done

A function can receive some data as input and
manipulate the information provided in its input,
and “return” some information as its output

The input to a function comes through its
arguments, and the output is called its return value.

IJ JULICH

Slide 53 Forschungszentrum

=
H O ©®NO O AW

I
© N O U W N

Member of the Helmholtz Association

FUNCTIONS: SYNTAX

// 0ld syntax

bool py (int i, int j, int k); // prototype
int hola(int i, int j) // de i
{

int ans{0};

if (pythag(i,J,23)) |
// A prototype or definition must be
// visible in the
// at the point of usage
ans=42;

translation unit

}

return ans;

}

on of pythag. Not that old syntax
auto pythag(int i, int j, int k) —-> bool
{
// code
}

8 — 12 May 2023

© W N U W

=
= o

= A function prototype introduces a name as a
function, its return type as well as its parameters

= The type of the arguments must match or be
implicitly convertible to the corresponding type in
the function parameter list

auto max (double x, double y, double z)

—> double
{

if (y > x) x = y;

if (z > x) x = z;

return x;
}
auto main(int argc, char * argv[]) > int
{

std::cout << max(l., 2., 3.) << '\n';
}

IJ JULICH

Slide 54 Forschungszentrum

Exercise 1.11:

Write a function to tell if a quadratic equation of the form ax® + bx + ¢ = 0 has real number roots. The function
should take 3 arguments of type double , and return either true or false.

Exercise 1.12:
Finish the program examples/gcd.cc so that it computes and prints the greatest common divisor of two
integers. The following algorithm (attributed to Euclid!) achieves it :

Input numbers : smaller , larger
remainder = larger mod smaller
larger = smaller

smaller = remainder

if smaller is not 0, go back to 2.

DBEEE

larger is the answer you are looking for

Note: There is a function std::gcd(nl,n2) since C++17, but we are not using it for this exercise.

9 JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 55 Forschungszentrum

=

H O © WO oE W

FUNCTIONS AT RUN TIME

main()

RP:0S

x:3.14159265...
i:4

auto sin(double x) -> int {
// Somehow calculate sin of x

return answer;

}

auto main() -> int {
double x{3.141592653589793};

for (int 1 =

0; i < 100; ++1i)

std::cout << i % x / 100

<< sin(i * x / 100)

{

<<"\n";

Member of the Helmholtz Association

8 — 12 May 2023

When a function is called, e.g., when we write

f (valuel,value2,value3) for a function f
declared as

ret_type f(typel x, type2 y, type3 z) :

= A "workbook" in memory called a stack frame is
created for the call

= The local variables x, y, z are created, as if
using instructions typel x{valuel} ,
type2 y{value2} , type3 z{value3} .

= A return address is stored.

= The actual body of the function is executed

= When the function concludes, execution continues
at the stored return address, and the stack frame is
destroyed

lJ JULICH

Slide 56 Forschungszentrum

© W N U W N

[
=)

RECURSION

B SP=<in someother()> RP=<...>

auto factorial (unsigned int n) -> unsigned int
{

int u = n; // u: Unnecessary

if (n > 1) return n * factorial(n - 1);

else return 1;
}
auto someother() —-> int
{

factorial (4);

Member of the Helmholtz Association

8 — 12 May 2023

= A function calling itself

= Each level of "recursion" has its own stack frame

IJ JULICH

Slide 57 Forschungszentrum

© W N O AW N e

[
o

RECURSION

B SP=<in factorial() > n=4 u=4 RP=<9>
B SP=<in someother()> RP=<...>

auto factorial (unsigned int n) -> unsigned int
{

int u = n; // u: Unnecessary

if (n > 1) return n * factorial(n - 1);

else return 1;

}
auto someother () -> int
{

factorial (4);

}

Member of the Helmholtz Association

8 — 12 May 2023

= A function calling itself
= Each level of "recursion" has its own stack frame

= Function parameters are copied to the stack frame

IJ JULICH

Slide 57 Forschungszentrum

© W N O AW N e

[
o

RECURSION

B SP=<in factorial()> n=3 u=3 RP=<4>
B SP=<in factorial()> n=4 u=4 RP=<9>
B SP=<in someother()> RP=<...>

auto factorial (unsigned int n)

{

> unsigned int

int u = n; // u: Unnecessary
if (n > 1) return n » factorial(n - 1);
else return 1;
}
auto someother() -> int
{
factorial (4);

}

Member of the Helmholtz Association 8 — 12 May 2023

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame

Local variables at different levels of recursion live in
their own stack frames, and do not interfere

IJ JULICH

Slide 57 Forschungszentrum

© W N O AW N e

[
o

RECURSION

SP=<in factorial()> n=2 u=2 RP=<4>
SP=<in factorial()> n=3 u=3 RP=<4> = Each level of "recursion" has its own stack frame
SP=<in factorial() > n=4 u=4 RP=<9>
SP=<in someother()> RP=<...>

= A function calling itself

= Function parameters are copied to the stack frame

= Local variables at different levels of recursion live in

auto factorial (unsigned int n) -> unsigned int their own stack frames, and do not interfere
{

int u = n; // u: Unnecessary
if (n > 1) return n » factorial(n - 1);
else return 1;
}
auto someother() -> int
{
factorial (4);

}

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 57 Forschungszentrum

© W N O AW N e

[
o

RECURSION

B SP=<in factorial()> n=1 u=1 RP=<4> . . .

B SP=<in factorial()> n=2 u=2 RP=<4> = A function calllng itself

B SP=<in factorial()> n=3 u=3 RP=<4> = Each level of "recursion" has its own stack frame
B SP=<in factorial()> n=4 u=4 RP=<9>

|

SP—<in someother()> RP=< .. > = Function parameters are copied to the stack frame

= Local variables at different levels of recursion live in

auto factorial (unsigned int n) -> unsigned int their own stack frames, and do not interfere
{

int u = n; // u: Unnecessary

if (n > 1) return n * factorial(n - 1);

else return 1;

}
auto someother () -> int
{

factorial (4);

}

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 57 Forschungszentrum

© W N O AW N e

[
o

RECURSION

SP=<in factorial()> n=2 u=2 RP=<4>
SP=<in factorial()> n=3 u=3 RP=<4> = Each level of "recursion" has its own stack frame
SP=<in factorial() > n=4 u=4 RP=<9>
SP=<in someother()> RP=<...>

= A function calling itself

= Function parameters are copied to the stack frame

= Local variables at different levels of recursion live in

auto factorial (unsigned int n) -> unsigned int their own stack frames, and do not interfere
{

int u = n; // u: Unnecessary
if (n > 1) return n » factorial(n - 1);
else return 1;
}
auto someother() -> int
{
factorial (4);

}

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 57 Forschungszentrum

© W N O AW N e

[
o

RECURSION

B SP=<in factorial()> n=3 u=3 RP=<4>
B SP=<in factorial()> n=4 u=4 RP=<9>
B SP=<in someother()> RP=<...>

auto factorial (unsigned int n)

{

> unsigned int

int u = n; // u: Unnecessary
if (n > 1) return n » factorial(n - 1);
else return 1;
}
auto someother() -> int
{
factorial (4);

}

Member of the Helmholtz Association 8 — 12 May 2023

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame

Local variables at different levels of recursion live in
their own stack frames, and do not interfere

IJ JULICH

Slide 57 Forschungszentrum

© W N O AW N e

[
o

RECURSION

B SP=<in factorial() > n=4 u=4 RP=<9>
B SP=<in someother()> RP=<...>

auto factorial (unsigned int n)

{

int u = n; // u: Ur

ecessary

> unsigned int

if (n > 1) return n * factorial(n - 1);

else return 1;

}
auto someother () -> int
{

factorial (4);

}

Member of the Helmholtz Association

8 — 12 May 2023

A function calling itself
Each level of "recursion" has its own stack frame
Function parameters are copied to the stack frame

Local variables at different levels of recursion live in
their own stack frames, and do not interfere

IJ JULICH

Slide 57 Forschungszentrum

Exercise 1.13:

The tower of Hanoi is a mathematical puzzle with three towers and a set
of disks of increasing sizes. In the beginning, all the disks are at one
tower. In each step, a disk can be moved from one tower to another,
with the rule that a larger disk must never be placed over a smaller one.
The example examples/hanoi.cc solves the puzzle for a given
input number of disks, using a recursive algorithm. Test the code and
verify the solution.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 58 Forschungszentrum

© 0N oA W N

Member of the Helmholtz Association

void somefunc ()

{
static int ncalls=0;
++ncalls;

// code —--> something unexpected
std::cerr << "Encountered unexpected"
<< "situation in the " << ncalls

<< "th call to " << __func__ << "\n";

8 — 12 May 2023

STATIC VARIABLES IN FUNCTIONS

= Private to the function, but survive from call to

call.

= |nitialisation only done on first call.

= Aside: The built in macro ___func___ always

stores the name of the function

/)

JULICH

Forschungszentrum

© 0N OO AW N e

-
o

FUNCTION OVERLOADING

auto power (int x, unsigned n) -> unsigned 1 auto someother (double mu, double alpha,
{ 2 int rank) -> double
ans = 1; 3 {
for (; n > 0; --n) ans *= x; 4 double st=power (mu,alpha) *exp (-mu) ;
return ans; 5
} 6 if (n_on_bits (power (rank,5))<8)
auto power (double x, double y) -> double 7 st=0;
{ 8
return exp(y » log(x)); 9 return st;
} 10 }
= The same function name can be used for different functions if the parameter list is different
= Function name and the types of its parameters are combined to create an "internal" name for a function.
That name must be unique
= |t is not allowed for two functions to have the same name and parameters and differ only in the return value
= Make as many functions as you need with the same name, if the number or types of the input parameters
are different. Just make sure the names tell you symantically what they do, without having to look at the
implementation. E.g., good names: max , min, power , bad names: do_stuff , unnecessary names
power_d_d, power_i_u ‘ JUL'CH
Member of the Helmholtz Association 8 - 12 May 2023 Slide 60 J Forschungszentrum

© 0N OO AW N e

-
o

FUNCTION OVERLOADING

auto power (int x, unsigned n) -> unsigned 1 auto someother (double mu, double alpha,
{ 2 int rank) -> double
ans = 1; 3 {
for (; n > 0; --n) ans *= x; 4 double st=power (mu,alpha) *exp (-mu) ;
return ans; 5
} 6 if (n_on_bits (power (rank,5))<8)
auto power (double x, double y) -> double 7 st=0;
{ 8
return exp(y » log(x)); 9 return st;
} 10 }

"

= The group of functions with the same name, differing in their input parameter list, is called an “overload set

= |t is useful to assign meaning to these overload sets, and think in terms of them. The individual functions
inside an overload set are details depending on things like whether an input is an integer or a double.

= The compiler to find the correct match from the overload set. This kind of polymorphic behaviour costs
nothing at run time.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 60 Forschungszentrum

USER DEFINED TYPES AND OPERATOR
OVERLOADING

= struct or class introduce new types to a program.

© 0N U AW N

A I i 1 =0; }; . .
struct Atomld { int va ! We leave details for later, but for now, just observe how
struct MolId { int val = 0; }; . R | i
we bring a new category of variables like int or
void display_info (AtomId i) double in to existence
{
// show atom r = We can create variables of the new type, pass them to
} .
void display info(MolId i) functions as arguments ...
{ = Functions can be overloaded with user defined types
}
void elsewhere ()
{
MolId j = select_a_molecule();
for (AtomId i; i.val < ; ++i.val) {
if (i == j) { // Compiler error!
//
}
}
) .o
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 61 Forschungszentrum

© 0N U AW N

Member of the Helmholtz Association

struct AtomId { int val = 0; };
struct MolId { int val = 0; };

void display_info (AtomId i)
{

// show atom r
}
void display_info (MolId i)

void elsewhere ()

{

MolId j = select_a_molecule();
for (AtomId i; i.val < ; ++i.val) {
if (1 == j) { // Compiler error!
//

}

8 — 12 May 2023

N o oA W N

USER DEFINED TYPES AND OPERATOR
OVERLOADING

struct or class introduce new types to a program.
We leave details for later, but for now, just observe how
we bring a new category of variables like int or

double

We can create variables of the new type, pass them to
functions as arguments ...

in to existence

Functions can be overloaded with user defined types

Operators can be overloaded with user defined types

struct minutes { int i = 0; };
auto operator+ (minutes ml, minutes m2)

{

—> minutes

return { (ml.i m2.i) % 60} ;
}
// elsewhere with 1 and j of type minutes
auto k = 1 + J;
@) JULICH
Slide 61 J Forschungszentrum

AW N e

INLINE FUNCTIONS

auto sqgr (double x) -> double

{

}

inline auto sqgr (double x) -> double

{

return x * x;

}

return x * x;

AW N =

To eliminate overhead when a function is called, request the compiler to insert the entire function body
where it is called, preserving the function call symantics

Once a function is inlined, the calling function can be further optimised as if it was one function

Small frequently called functions are usual candidates

Compiler may or may not actually insert code inline, but any function marked inline is exempt from the “one
definition rule”

Different popular use: define the entire function (even if it is large) in the header file, as identical inline
objects in multiple translation units are allowed. (E.g. header only libraries)

@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 62 J Forschungszentrum

INLINE FUNCTIONS

&

= Compiler Explorer x|\
C' @ Secure | https:/godbolt.org

COMPILER
EXPLORER

Editor Diff View More~

Ci+ source #1 x

A

ENC ISR

12

Hsavelload + Add new..~ Gt

#include <cmath>
auto f(double x, double y)

{
}

return (sin(x) > cos(x) ? x : y);

int main(int arge, char *argv[])

{

double x=43.0, y=9.2;
if (argc > 4) y = -38.6;
if (f(x,y) < 10) return 3; else return o;

SamdiipEn
* @ * 0 & €

Share~ Other~

¥86-64 clang 5.0.0 (Editor #1, Compiler #1) C++ x o
x86-64 clang 5.0.0 ~ | -std=c++14 -O3 -march=native
A~ mo010 I 0 Iw s l w\l] WLibraries 4 Add new...v
1 f(double, double): # @f(double, double) =
2 sub rsp, 56
3 vmovaps xmmword ptr [rsp + 32], xmml # 16-byte Spill
4 vmovaps xmmword ptr [rsp + 16], xmm@ # 16-byte Spill
5 call sin
6 vmovsd qword ptr [rsp + 8], xmm@ # 8-byte Spill
7 vmovapd xmme, xmmword ptr [rsp + 16] # 16-byte Reload
& call cos
9 vempltsd xmmo, xmmo, qword ptr [rsp + 8] # 8-byte Folded Re
10 vmovapd xmmi, xmmword ptr [rsp + 32] # 16-byte Reload
11 vblendvpd xmmo, xmmi, xmmword ptr [rsp + 16], xmmo # 16-byt
12 add rsp, 56
13 ret
14 main: # @main
15 mov eax, 3
16 ret
Aouput (010) | clang version 5.0.0 (tags/RELEASE_500/final 312636) - 1272ms (1392268) 2

= No assembly is generated unless the function is used
= Large files with lots of inline functions may slow down compilation, but the compiled machine code is not

necessarily larger

Member of the Helmholtz Association 8 — 12 May 2023

| 9

JULICH

Forschungszentrum

INLINE FUNCTIONS

& Compiler Explorer

< C' | @& Secure | https://godbolt.org @ * 0D &
COMPILER
Editor Diff View More~ Share~ Other~
EXPLORER
C+ source #1 x o X86-64 clang 5.0.0 (Editor #1, Compiler #1) C++ x o
A~ Msavelload < Add new.v CH+ ~ | x86-64 clang 5.0.0 ~ | _std=c++14 -O3 -march=native
1 #include <cmath>
2 inline puto f(double x, double y) —| A~ i) | [[l W Libraries f| add new.v _
5 1 main: # @main
4 return (sin(x) > cos(x) ? x : y); 2 mov eax, 3
5 3 ret
6
7 int main(int arge, char *argv[])
8 {
9 double x=43.0, y=9.2;
10 if (arge > 4) y = -38.6;
11 if (f(x,y) < 10) return 3; else return 0;
12}
Aouput (0/0) |clang version 5.0.0 (tags/RELEASE_500/final 312636) - 1293ms (1337218) 57

= No assembly is generated unless the function is used
= Large files with lots of inline functions may slow down compilation, but the compiled machine code is not

JULICH

Slide 63 Forschungszentrum

necessarily larger

Member of the Helmholtz Association 8 — 12 May 2023

ANOTHER USE OF INLINE

= At each point in code, when we refer to the name of a variable, function, class, template, concept etc., it
must be unambiguous

= One definition rule (ODR): Only one definition of any such entity is allowed in any translation unit

= Only one definition of an entity is allowed to appear in the entire program including the sources and any
linked libraries

Variables and functions declared as inline can appear in multiple translation units. These multiple
incarnations are regarded as the same entity by the linker.

Functions and variables (in global scope) defined in headers can be labeled as inline so that multiple
instances in different translation units do not conflict

General function templates are automatically inline

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 64 Forschungszentrum

AUTO RETURN TYPE FOR FUNCTIONS

= Since C4+14, automatic type deduction can be
used for function return values

= Return type ambiguity will be a compiler error in

such situations

» decltype (auto)
for the return type, along with the different type
deduction rules which apply for

decltype (auto) (Later!)

Member of the Helmholtz Association 8 — 12 May 2023

can also be used like auto

[I S

auto greet (std::string nm)

{

for (auto& c: nm) c = std::toupper(c);
std::cout << nm << std::endl;
return nm.size() > 10;

IJ JULICH

Slide 65 Forschungszentrum

=
H O © XN U W N

[
S

LAMBDA FUNCTIONS

void onefunc (double inp) -> double

{

const auto x{ inp };

auto anotherfunc (double in) —-> double
{
return in * in;

}

x = inp x anotherfunc(x);
return x;

Member of the Helmholtz Association 8 — 12 May 2023

= In C4++, ordinary functions can not be defined

locally in block scope

Slide 66

/)

JULICH

Forschungszentrum

S NERC- R R

10
11
12

LAMBDA FUNCTIONS

= In C4++, ordinary functions can not be defined

void onefunc (double inp) -> double)
{ locally in block scope
const auto x{ inp };
= That is the role of lambda functions
auto anotherfunc = [] (double in) -> double
{
return in * in;
}oi
x = inp % anotherfunc (x);
return x;
}
Member of the Helmholtz Association 8 - 12 May 2023 Slide 66 J Forschungszentrum

S NERC- R R

10
11
12

LAMBDA FUNCTIONS

void onefunc (double inp) -> double)
{ locally in block scope
const auto x{ inp };
= That is the role of lambda functions
auto anotherfunc = [] (double in) -> double
(= Introduced using lamba expressions
return in * in;
b
x = inp % anotherfunc (x);
return x;

Member of the Helmholtz Association 8 — 12 May 2023 Slide 66 J

= In C4++, ordinary functions can not be defined

JULICH

Forschungszentrum

LAMBDA FUNCTIONS

void onefunc (double inp) -> double
(const auto x{ inp };
auto anotherfunc = [X] (double in) -> double
{ return in % in * sin(x);
bi
x = inp * anotherfunc(x);
return x;

Member of the Helmholtz Association 8 — 12 May 2023

In C++, ordinary functions can not be defined
locally in block scope

That is the role of lambda functions

Introduced using lamba expressions

The starting square brackets are called “capture
brackets”, and they can make in-scope variables
visible inside the lambda. We can choose how
much of its environment is visible inside the lambda

IJ JULICH

Slide 66 Forschungszentrum

CONSTEXPR AND CONSTEVAL FUNCTIONS

{

}

{

}

constexpr auto cube (unsigned u)

return u * u * u;

consteval auto cube2 (unsigned u)

return u * u * u;

void elsewhere (unsigned inp)

{

std::array<int, cube(10) > A;
constexpr auto myvar = cube (99U) ;

auto myvar2 = cube (inp) ;

std::array<int, cube2(10) > B;
constexpr auto myvar = cube2(99U) ;

auto myvar2 = | cube2 (inp) ;

Member of the Helmholtz Association

8 — 12 May 2023

= A function can be declared constexpr or

consteval . Both versions make them available
for use at compilation time, to initialise
constexpr variables or in contexts where only
compile time constants are allowed

constexpr functions can be called with values
not known at compilation time, in which case they
behave as ordinary functions

It is a compiler error to call a consteval
function with arguments with values not known at
compilation time. consteval functions are
called “immediate functions”

IJ JULICH

Slide 67 Forschungszentrum

=
H O ©®NO oA W

L~ B
[N R N)

C++ NAMESPACE S

// Somewhere in the header iostream

namespace std {
ostream cout;

}

// In your program

#include <iostream>

auto main() -> int

{

using namespace std;

cout << func << "\n";

int cout = 0;

for (cout=0; cout<5; ++cout)
std::cout << "Counter

= A namespace is a named context in which
variables, functions etc. are defined.

= The symbol :: is called the scope resolution
operator.

= using namespace blah imports all

names declared inside the namespace blah
to the current scope.

<< cout << '\n';

// Above, plain cout 1is an integer,
// but std::cout is an output stream
// The syntax to refer to a name

// defined inside a namespace 1is:

// namespace_name::identifier_name

Member of the Helmholtz Association

IJ JULICH

8 — 12 May 2023 Slide 68 Forschungszentrum

NAMESPACES

= Same name in different namespaces do not

1 /(examples/namespaces.cc result in a name clash
2 clude <iostream>
3 using namespace std; = Functions defined inside namespaces need to be
4 namespace UnitedKingdom { accessed using the same scope rules as variables
5 string London{"Big city"};
6 void load_slang() {...}
7 }
8 namespace UnitedStates ({
9 string London{"Small town in Kentucky"};
10 void load_slang () {...}
11 }
12 auto main () > int
13 {
14 using namespace UnitedKingdom;
15 cout << London << '\n';
16 cout << UnitedStates::London << '\n';
17 }
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 69 J Forschungszentrum

=
H O ©®NO O R W

[B~ R
SIS N)

Member of the Helmholtz Association

//examples/namespaces2.cc

e <iostream>
namespace UnitedKingdom {
std::string London{"Big city"};
}
namespace UnitedStates ({
namespace KY ({
std::string London{" in Kentucky"};
}
namespace OH {
std::string London{" in Ohio"};
}
}
// With C++17
namespace mylibrary: :onefeature {
auto solve(int i) -> double;

}
auto main() -> int
{
namespace USOH=UnitedStates: :0H;
std::cout << "London is "
<< USOH::London <<'\n';
}

8 — 12 May 2023

C++ NAMESPACES: FINAL COMMENTS

= namespace s can be nested. Since C++17,
direct nested declarations are allowed.

= Long namespace names can be given aliases
= Tipl: Don't indiscriminately put
using namespace ... tags, especially in
headers. Use them in tight scopes instead.

Alternatively, define short aliases to long namespace
names wherever you need to repeat them

= Tip2: The purpose of namespace s is to avoid
name clashes. Not taxonomy!

IJ JULICH

Slide 70 Forschungszentrum

© 0N oA W N

-
o

ENUMERATIONS

enum color { red, green, blue };
//
color c{green};
//
switch (c) {
case red : do_stuffl(); break;
case green : do_stuff2(); break;
case blue:
default: do_stuff3();
Vi
= Internally represented as (and convertible to) an integer
= All type information is lost upon conversion into an integer
Member of the Helmholtz Association 8 - 12 May 2023

Slide 71

/)

= A type whose instances can take a few different
values (e.g., directions on the screen, colours,
supported output modes ...)

= Less error prone than using integers with ad hoc
rules like, "1 means red, 2 means green ...

u

JULICH

Forschungszentrum

SCOPED ENUMERATIONS

Member of the Helmholtz Association

Defined with enum class

Must always be fully qualified when used:
traffic_light::red etc.

In C++420, we can enable one specific
enum class in a scope by using the

using enum XYZ; declaration.

No automatic conversion to int .

Possible to use the same name, e.g., green, in
two different scoped enums.

8 — 12 May 2023

© W N O W N

e e
N O U A W N O

enum class color { red, green,
enum class traffic light {
red, yellow, green

blue };

Vi
bool should_brake (traffic_light c);

if (should_brake (blue))
//Syntax error!
if (state == traffic_light::yellow) ...;

apply_brakes();

auto respond(traffic_light L) {
using enum traffic_ light;
switch (L) {
case red: {
Y72
}

JULICH

J Forschungszentrum

Slide 72

INPUT AND OUTPUT WITH IOSTREAM

= To read user input into variable x , simply write std::cin >> x;

= To read into variables x, y, z, name and count

std::cin >> x >> y >> z >> name >> count;
= std::cin will infer the type of input from the type of variable being read.

= For printing things on screen the direction for the arrows is towards std: :cout :

std::cout << x << y << z << name << count << '\n';

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 73 Forschungszentrum

READING AND WRITING FILES

= Declare your own source/sink objects, which will have properties like std::cout or std::cin

1 #1 de <fstream>

2 std::ifstream fin{"inputfile"};

3 // Or, std::ifstream fin; and later, fin.open ("input
4

std::ofstream fout{"outputfile"};

= Use them like std::cout or std::cin

1 double x,y,z;
2 int i;
3 std::string s;
4 fin >> x >> y >> z >> i >> s;
5 fout << x << y << z << 1 << s << '\n';
@) JULICH
Member of the Helmholtz Association 8 — 12 May 2023 Slide 74 J Forschungszentrum

STRING STREAMS

= ostringstream is an output stream for output

auto report (float -> std::strin . .
; port (x) +ng into a string.
= istringstream is an input stream to read
Lt to be values from a string.
// a string, p S to be = Same usage syntax as cout and cin
// processed further elsewhere.
std::ostringstream ost;
ost << "f(x) returned " << a <<"\n";
10 ost << "g(x) returned " << b <<"\n";
return ost.str();
}
@) JULICH
Member of the Helmholtz Association 8 - 12 May 2023 Slide 75 J Forschungszentrum

STREAM INPUT IN A LOOP

std::ifstream fin{"somefile.dat"};
double x;
while (fin >> x) {
// while it is possible to read a new
// value for x, do something.
}
std::string line;
while (getline(fin, line)) {
// while it is possible to read a
// line of input, do something

=
H O ©®NO O R WN

}
ifstream fin{ argv([1l] };
for (auto it = istream_iterator<int>(fin);
it != istream_iterator<int>{};
++it) |
std: :cout << "Token

e
SIS N)

" << xit << "\n";

[
-

Exercise 1.14: Strings and 1/0O

Write a program to find the largest word in a plain text document.

Member of the Helmholtz Association 8 — 12 May 2023

= Each of the 3 input stream types introduced here
works as a boolean in conditionals or loop
conditions.

= Loop ends when there is no more valid input

= We can even pretend they are sequences with
"iterators" to their start and end

JULICH

J Forschungszentrum

Slide 76

SIS SV U

<

10
11
12
13
14
15
16
17
18
19
20

EXAMPLE PROGRAMS USING FILE 10

1espace

auto main (int argc,

{

std::string line

while (getline(std::cin,

if (line.emp
bool sp{true
for (auto c

sp =
} else {
sp =
std:
}
}

std::cout <<

.CcC
charx

7

ty ()
bi

argv(])

> int

line)) {

continue;

line)
if (isspace(c))
if (not sp)

true;

false;

:cout

"\n";

<<

Ci

std::cout <<

Member of the Helmholtz Association

8 — 12 May 2023

Replace instances of multiple consecutive white space
characters with a single TAB character

= Often needed to clean up data files formatted to
look good to human eyes for processing with tools
which rely on consistent spacing.

= The program here uses the standard input and

output, but can be used to process actual data files
like this:

cat datafile | onespace.ex > datafile.cln

= Observe how we process the file by lines

= The continue instruction means "skip the rest of
the body of this loop and proceed directly to

the evaluation of loop continuation ".

l) JULICH

Slide 77 Forschungszentrum

=
H O © WO O R W

L~ B
[N R N)

EXAMPLE PROGRAMS USING FILE 10

// examples/numsort.cc
#include <iostream>
#include <string>
#include <fstream>
#include <filesystem>
#include <vector>
#include <sstream>

namespace fs = std::filesystem;

auto as_lines(fs::path file) ->
std: :vector<std::string>

{
std::ifstream fin{ file };
std::string line;
std::vector<std::string> lines;
while (getline(fin, line))

lines.push_back (line);

return lines;

}

auto main (int argc, charx argv([]) -> int

{

Member of the Helmholtz Association 8 — 12 May 2023

22 if (argc !'= 2) {

23 std::cerr << "Usage:\n"

24 << argv[0] << " filename\n";
25 return 1;

26 }

27 auto content = as_lines(argv([1l]);

28 std: :sort (content.begin(), content.end(),
29 [] (auto 11, auto 12) {

30 std::istringstream istrl{ 11 };
31 std::istringstream istr2{ 12 };
32 auto x1{0.}, x2{0.};

33 istrl >> x1;

34 istr2 >> x2;

35 return x1 < x2;

36 }

37)i

38 for (std::string_view line : content) {
39 std::cout << line << "\n";

40 }

41 }

Numerically sort an input file.

JULICH

Slide 78 Forschungszentrum

#include <what is necessary>

auto main() -> int

{
const std::vector v{1l, 2, 3, 4, 5};
const auto tot{0};
for (const auto el : v) tot += el;
std::cout << tot << "\n";

e B N

Which of the following is true ?

v can not be a const as we are looping through its contents
B tot can not be a const as we are adding to it in the loop
el can not be a const as it is obviously meant to change through the sequence

B All of the above

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 79 Forschungszentrum

Exercise 1.15:

What is the largest number in the Fibonacci sequence which can be represented as a 64 bit integer? How many
numbers of the sequence can be represented in 64 bits or less? Write a C++ program to find out. Start from
examples/fibonacci.cc, and insert your code where indicated.

9 JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 80 Forschungszentrum

Exercise 1.16:

Work through the notebooks Functions.ipynb and BlocksScopesNamespaces.ipynb and ask any topic that you
find unclear and needs an explanation.

IJ JULICH

Member of the Helmholtz Association 8 — 12 May 2023 Slide 81 Forschungszentrum

	Fundamentals
	Notes on legibility
	Types and variable declarations
	Branches and selections
	Loop constructs
	Functions
	Namespaces
	Enumerations
	Input and Output

