diff --git a/index.md b/index.md index 978cbc9306a723755142e4ab8d51b2454e5b7450..ab1fca4863407ca3318958b7eebfbeb181b3c249 100644 --- a/index.md +++ b/index.md @@ -47,7 +47,7 @@ date: December 4th, 2024 # Why, part 2 -- Projects like OpenGPT-X, TrustLLM and Laion need a place to run +- Projects like OpenGPT-X, TrustLLM need a place to run - The usual: we want to be ready when the time comes - The time is now! - TL;DR: BECAUSE WE CAN! 🚀 @@ -80,6 +80,7 @@ date: December 4th, 2024 - Web UI only - API usage wasn't recorded until we moved to a new host, devs still migrating +- Some healthy usage by tools e.g. B2DROP assistant: Around 400 requests/day (count as a single ip from B2DROP's server) --- @@ -139,23 +140,37 @@ date: December 4th, 2024 # Open Source -- Outside of Academia, the only one 100% open I am aware of is [OLMo](https://blog.allenai.org/hello-olmo-a-truly-open-llm-43f7e7359222) (I might be outdated) - - Has training code, weights and data, all open - German academia: [OpenGPT-X](https://opengpt-x.de/en/) + - Trained in Jülich and Dresden - For German businesses and academia - Yet unclear if training data will be open - EU: [TrustLLM](https://trustllm.eu/) - - Less emphasis on English + - Trained in Jülich + - "Trustworthy" LLM + - Says it will be fully open +- Laion from FZJ (and others) is also open source + - Provides datasets, audio, image, video, text encoder models + +--- + +## Open source + +- Outside of Academia, there's [OLMo](https://blog.allenai.org/hello-olmo-a-truly-open-llm-43f7e7359222) from AllenAI + - Has training code, weights and data, all open +- [Intellect-1](https://www.primeintellect.ai/blog/intellect-1-release) was trained collaboratively + - Up to 112 H100 GPUs simultaneously + - They claim overall compute utilization of 83% across continents and 96% when training only in the USA - Fully open --- # Non-transformer architectures -- Currently, Jamba 1.5 is the best one +- Last I checked, Jamba 1.5 was the best one - Performs well on benchmarks - What about real examples? - Some mathematical discussions about it being turing-complete (probably not) +- Other examples are Hymba from NVIDIA, Liquid from MIT --- @@ -193,9 +208,9 @@ date: December 4th, 2024 --- -# User demand is growing, we get more hardware +# User demand is growing, we need more hardware -- Currently around 1000+ unique users/day on the website +- Currently around 300+ unique users/day on the website - API usage is higher, growing and heavier --- @@ -303,6 +318,18 @@ date: December 4th, 2024 --- +## Vision for the (near) future + +- Blablador as an umbrella for inference +- Use cases: + - LLMs for science + - Nasa's Prithvi 3 (currently being trained here) + - ESA's upcomping model + - Health: Radiology with Aachen Uniklinik + - ... + - With privacy! + +--- ## Todo diff --git a/public/index.html b/public/index.html index 4d059ac398991d92a9a797f28575e2d7c634a4ea..f8fb30aa8d870a475c58ec6e3a101e7e8d4a43e8 100644 --- a/public/index.html +++ b/public/index.html @@ -283,8 +283,8 @@ target 🎯💨</li> <section id="why-part-2" class="slide level1"> <h1>Why, part 2</h1> <ul> -<li class="fragment">Projects like OpenGPT-X, TrustLLM and Laion need a -place to run</li> +<li class="fragment">Projects like OpenGPT-X, TrustLLM need a place to +run</li> <li class="fragment">The usual: we want to be ready when the time comes <ul> <li class="fragment">The time is now!</li> @@ -330,6 +330,8 @@ it, contact me!</em></strong></li> <li class="fragment">Web UI only</li> <li class="fragment">API usage wasn’t recorded until we moved to a new host, devs still migrating</li> +<li class="fragment">Some healthy usage by tools e.g. B2DROP assistant: +Around 400 requests/day (count as a single ip from B2DROP’s server)</li> </ul> </section> <section class="slide level1"> @@ -403,22 +405,43 @@ download the weights</li> <section id="open-source-1" class="slide level1"> <h1>Open Source</h1> <ul> -<li class="fragment">Outside of Academia, the only one 100% open I am -aware of is <a -href="https://blog.allenai.org/hello-olmo-a-truly-open-llm-43f7e7359222">OLMo</a> -(I might be outdated) -<ul> -<li class="fragment">Has training code, weights and data, all open</li> -</ul></li> <li class="fragment">German academia: <a href="https://opengpt-x.de/en/">OpenGPT-X</a> <ul> +<li class="fragment">Trained in Jülich and Dresden</li> <li class="fragment">For German businesses and academia</li> <li class="fragment">Yet unclear if training data will be open</li> </ul></li> <li class="fragment">EU: <a href="https://trustllm.eu/">TrustLLM</a> <ul> -<li class="fragment">Less emphasis on English</li> +<li class="fragment">Trained in Jülich</li> +<li class="fragment">“Trustworthy” LLM</li> +<li class="fragment">Says it will be fully open</li> +</ul></li> +<li class="fragment">Laion from FZJ (and others) is also open source +<ul> +<li class="fragment">Provides datasets, audio, image, video, text +encoder models</li> +</ul></li> +</ul> +</section> +<section class="slide level1"> + +<h2 id="open-source-2">Open source</h2> +<ul> +<li class="fragment">Outside of Academia, there’s <a +href="https://blog.allenai.org/hello-olmo-a-truly-open-llm-43f7e7359222">OLMo</a> +from AllenAI +<ul> +<li class="fragment">Has training code, weights and data, all open</li> +</ul></li> +<li class="fragment"><a +href="https://www.primeintellect.ai/blog/intellect-1-release">Intellect-1</a> +was trained collaboratively +<ul> +<li class="fragment">Up to 112 H100 GPUs simultaneously</li> +<li class="fragment">They claim overall compute utilization of 83% +across continents and 96% when training only in the USA</li> <li class="fragment">Fully open</li> </ul></li> </ul> @@ -426,11 +449,13 @@ href="https://opengpt-x.de/en/">OpenGPT-X</a> <section id="non-transformer-architectures" class="slide level1"> <h1>Non-transformer architectures</h1> <ul> -<li class="fragment">Currently, Jamba 1.5 is the best one</li> +<li class="fragment">Last I checked, Jamba 1.5 was the best one</li> <li class="fragment">Performs well on benchmarks</li> <li class="fragment">What about real examples?</li> <li class="fragment">Some mathematical discussions about it being turing-complete (probably not)</li> +<li class="fragment">Other examples are Hymba from NVIDIA, Liquid from +MIT</li> </ul> </section> <section id="eu-ai-act" class="slide level1"> @@ -480,11 +505,11 @@ make it harder for EU models to compete with US ones</li> <figcaption aria-hidden="true">Haicluster</figcaption> </figure> </section> -<section id="user-demand-is-growing-we-get-more-hardware" +<section id="user-demand-is-growing-we-need-more-hardware" class="slide level1"> -<h1>User demand is growing, we get more hardware</h1> +<h1>User demand is growing, we need more hardware</h1> <ul> -<li class="fragment">Currently around 1000+ unique users/day on the +<li class="fragment">Currently around 300+ unique users/day on the website</li> <li class="fragment">API usage is higher, growing and heavier</li> </ul> @@ -648,6 +673,23 @@ href="https://github.com/haesleinhuepf/bia-bob/blob/main/README.md">https://gith </section> <section class="slide level1"> +<h2 id="vision-for-the-near-future">Vision for the (near) future</h2> +<ul> +<li class="fragment">Blablador as an umbrella for inference</li> +<li class="fragment">Use cases: +<ul> +<li class="fragment">LLMs for science</li> +<li class="fragment">Nasa’s Prithvi 3 (currently being trained +here)</li> +<li class="fragment">ESA’s upcomping model</li> +<li class="fragment">Health: Radiology with Aachen Uniklinik</li> +<li class="fragment">…</li> +<li class="fragment">With privacy!</li> +</ul></li> +</ul> +</section> +<section class="slide level1"> + <h2 id="todo">Todo</h2> <ul> <li class="fragment">Multi-modal models (text+image, text+audio,