diff --git a/README.md b/README.md
index 26fee9231c2ead67091dbc3c4a78023c5180b408..9df2e389f653a7a1965505eb042d72b38bffc767 100644
--- a/README.md
+++ b/README.md
@@ -1,9 +1,9 @@
 ---
 author: Alexandre Strube
-title: Getting Started with AI on Supercomputers
+title: Overview of AI distribution techniques
 ---
 
-This repo is specifically for the course described in [indico](https://indico3-jsc.fz-juelich.de/event/201)
+This repo is specifically for the course described in [indico](https://nxtaim.de/en/events-en/)
 
 ---
 
@@ -18,7 +18,7 @@ This repo is specifically for the course described in [indico](https://indico3-j
 Please, fork this thing! Use it! And submit merge requests!
 
 ## Authors and acknowledgment
-Alexandre Otto Strube, May 2024
+Alexandre Otto Strube, March 2025
 
 ## Certificate
 Human resources make them.
diff --git a/index.md b/index.md
index c5a5853da0c218e0839dfedd69d35bc67b55a2bf..dd2070467b34249df179465eb2985464fb0bb9e8 100644
--- a/index.md
+++ b/index.md
@@ -2,12 +2,12 @@
 author: Alexandre Strube
 title: Deep Learning on Supercomputers
 # subtitle: A primer in supercomputers`
-date: November 13, 2024
+date: March 13, 2025
 ---
 ## Resources:
 
-- [This document](https://strube1.pages.jsc.fz-juelich.de/2024-11-talk-intro-to-supercompting-jsc)
-- [Source code of this course](https://gitlab.jsc.fz-juelich.de/strube1/2024-11-talk-intro-to-supercompting-jsc)
+- [This document](https://strube1.pages.jsc.fz-juelich.de/2025-03-talk-nxtaim)
+- [Source code of this course](https://gitlab.jsc.fz-juelich.de/strube1/2025-03-talk-nxtaim)
 
 ![](images/Logo_FZ_Juelich_rgb_Schutzzone_transparent.svg)
 
@@ -20,10 +20,7 @@ date: November 13, 2024
 ![Alexandre Strube](pics/alex.jpg)
 ::::
 :::: {.col}
-![Ilya Zhukov](pics/ilya.jpg)
-::::
-:::: {.col}
-![Jolanta Zjupa](pics/jolanta.jpg)
+![Sabrina Benassou](pics/sabrina.jpg)
 ::::
 :::
 
@@ -37,7 +34,7 @@ date: November 13, 2024
     - on a mult-gpu, multi-node system
     - like a supercomputer 🤯
 - Important: This is an overview, _*NOT*_ a basic AI course!
-- We have [introductory courses on AI on supercomputers](https://www.fz-juelich.de/en/ias/jsc/news/events/training-courses/2024/ai-sc-4)
+- We have [introductory courses on AI on supercomputers](https://www.fz-juelich.de/en/ias/jsc/news/events/training-courses/2025/ai-sc-1)
 - ![](images/bringing-dl-workloads-2024-2-course.png)
 ![](images/Logo_FZ_Juelich_rgb_Schutzzone_transparent.svg)
 
@@ -47,21 +44,21 @@ date: November 13, 2024
 
 ### Please access it now, so you can follow along:
 
-[https://go.fzj.de/2024-11-talk-intro-to-supercomputing-jsc](https://go.fzj.de/2024-11-talk-intro-to-supercomputing-jsc)
+[https://go.fzj.de/2025-03-nxtaim](https://go.fzj.de/2025-03-nxtaim)
 
 ![](images/slides.png)
 
 ---
 
-## Git clone this repository
+<!-- ## Git clone this repository
 
 - All slides and source code
 - Connect to the supercomputer and do this:
 - ```bash
-git clone https://gitlab.jsc.fz-juelich.de/strube1/2024-11-talk-intro-to-supercompting-jsc.git
+git clone https://gitlab.jsc.fz-juelich.de/strube1/2025-03-talk-nxtaim.git
 ```
 
----
+--- -->
 
 ## Deep learning is...
 
@@ -369,6 +366,22 @@ git clone https://gitlab.jsc.fz-juelich.de/strube1/2024-11-talk-intro-to-superco
 
 ---
 
+## Fully Sharded Data Parallelism
+
+- Shards model parameters, optimizer states and gradients across DDP ranks.
+- Decompose the all-reduce operations in DDP into separate reduce-scatter and all-gather operations:
+- ![](images/FSDP-graph-2a.png.webp){ width=450px }
+
+---
+
+## Fully Sharded Data Parallelism
+
+- Reduces the memory footprint of each GPU
+- Increases the communication volume
+- Allows for massive scaling (100000+ GPUs)
+
+---
+
 ## Recap
 
 - Data parallelism:
@@ -386,18 +399,33 @@ git clone https://gitlab.jsc.fz-juelich.de/strube1/2024-11-talk-intro-to-superco
 
 ---
 
+## Recap
+
+- Pipelining:
+    - Split the model over multiple GPUs
+    - Each GPU does a part of the forward pass
+    - The gradients are averaged at the end
+- Pipelining, multi-node:
+    - Same, but gradients are averaged across nodes
+- Fully Sharded Data Parallelism:
+    - Split the model, optimizer states and gradients across DDP ranks
+    - Decompose the all-reduce operations in DDP into separate reduce-scatter and all-gather operations 
+    - Lower memory, higher communication volume
+        
+---
+
 ## Are we there yet?
 
 ![](images/are-we-there-yet-4.gif)
 
 ---
 
-## If you haven't done so, please access the slides to clone repository:
+## You can clone the repo yourself
 
 ![](images/slides.png)
 
 - ```bash
-git clone https://gitlab.jsc.fz-juelich.de/strube1/2024-11-talk-intro-to-supercompting-jsc.git
+git clone https://gitlab.jsc.fz-juelich.de/strube1/2025-03-talk-nxtaim.gif
 ```
 
 
@@ -518,7 +546,7 @@ learn.fine_tune(6)
 - Only add new requirements
 - [Link to gitlab repo](https://gitlab.jsc.fz-juelich.de/kesselheim1/sc_venv_template)
 - ```bash
-cd $HOME/2024-11-talk-intro-to-supercompting-jsc/src
+cd $HOME/2025-03-talk-nxtaim/src
 git clone https://gitlab.jsc.fz-juelich.de/kesselheim1/sc_venv_template.git
 ```
 - Add this to sc_venv_template/requirements.txt:
@@ -558,7 +586,7 @@ source sc_venv_template/activate.sh
 #SBATCH --partition=dc-gpu
 
 # Make sure we are on the right directory
-cd $HOME/2024-11-talk-intro-to-supercompting-jsc/src
+cd $HOME/2025-03-talk-nxtaim/src
 
 # This loads modules and python packages
 source sc_venv_template/activate.sh
@@ -579,7 +607,7 @@ time srun python serial.py
 ## Download dataset
 
 ```bash
-cd $HOME/2024-11-talk-intro-to-supercompting-jsc/src
+cd $HOME/2025-03-talk-nxtaim/src
 source sc_venv_template/activate.sh
 python serial.py
 
@@ -599,7 +627,7 @@ Epoch 1/1 : |-------------------------------------------------------------| 0.71
 ## Running it
 
 - ```bash
-cd $HOME/2024-11-talk-intro-to-supercompting-jsc/src
+cd $HOME/2025-03-talk-nxtaim/src
 sbatch serial.slurm
 ```
 - On Juwels Booster, should take about 5 minutes
@@ -669,7 +697,7 @@ with learn.distrib_ctx():
 
 ## Submission script: data parallel
 
-- Please check the course repository: [src/distrib.slurm](https://gitlab.jsc.fz-juelich.de/strube1/2024-11-talk-intro-to-supercompting-jsc/-/blob/main/src/distrib.slurm)
+- Please check the course repository: [src/distrib.slurm](https://gitlab.jsc.fz-juelich.de/strube1/2025-03-talk-nxtaim/-/blob/main/src/distrib.slurm)
 
 - Main differences: 
 
diff --git a/public/README.html b/public/README.html
index 35564c4a09f6e3d71ead3a2f64325a79fd5a62f4..c57a9c555ade5f35ce9ab0f6c68d38343ff0b3cf 100644
--- a/public/README.html
+++ b/public/README.html
@@ -4,7 +4,7 @@
   <meta charset="utf-8">
   <meta name="generator" content="pandoc">
   <meta name="author" content="Alexandre Strube">
-  <title>Getting Started with AI on Supercomputers</title>
+  <title>Overview of AI distribution techniques</title>
   <meta name="apple-mobile-web-app-capable" content="yes">
   <meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
   <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
@@ -160,14 +160,14 @@
     <div class="slides">
 
 <section id="title-slide">
-  <h1 class="title">Getting Started with AI on Supercomputers</h1>
+  <h1 class="title">Overview of AI distribution techniques</h1>
   <p class="author">Alexandre Strube</p>
 </section>
 
 <section class="slide level2">
 
 <p>This repo is specifically for the course described in <a
-href="https://indico3-jsc.fz-juelich.de/event/201">indico</a></p>
+href="https://nxtaim.de/en/events-en/">indico</a></p>
 </section>
 <section class="slide level2">
 
@@ -185,7 +185,7 @@ the self-contained HTML files.</li>
 </section>
 <section id="authors-and-acknowledgment" class="slide level2">
 <h2>Authors and acknowledgment</h2>
-<p>Alexandre Otto Strube, May 2024</p>
+<p>Alexandre Otto Strube, March 2025</p>
 </section>
 <section id="certificate" class="slide level2">
 <h2>Certificate</h2>
diff --git a/public/images/FSDP-graph-2a.png.webp b/public/images/FSDP-graph-2a.png.webp
new file mode 100644
index 0000000000000000000000000000000000000000..5015cd0698d6fe509f1d1fe1015c55b2712f8fa1
Binary files /dev/null and b/public/images/FSDP-graph-2a.png.webp differ
diff --git a/public/images/slides.png b/public/images/slides.png
index f50cc5c013ae4fcb841dc075014b5c2ce727e643..83d6d1525a43b8b2a81f29cc8bb5dc037b8d22f8 100644
Binary files a/public/images/slides.png and b/public/images/slides.png differ
diff --git a/public/index.html b/public/index.html
index a6e10a4b2331a33abb06cb1e3c8ff60b7da178a1..4f516436a1ef51c6f91b233edeb19cff0c38222a 100644
--- a/public/index.html
+++ b/public/index.html
@@ -4,7 +4,7 @@
   <meta charset="utf-8">
   <meta name="generator" content="pandoc">
   <meta name="author" content="Alexandre Strube">
-  <meta name="dcterms.date" content="2024-11-13">
+  <meta name="dcterms.date" content="2025-03-13">
   <title>Deep Learning on Supercomputers</title>
   <meta name="apple-mobile-web-app-capable" content="yes">
   <meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
@@ -227,17 +227,17 @@
 <section id="title-slide">
   <h1 class="title">Deep Learning on Supercomputers</h1>
   <p class="author">Alexandre Strube</p>
-  <p class="date">November 13, 2024</p>
+  <p class="date">March 13, 2025</p>
 </section>
 
 <section id="resources" class="slide level2">
 <h2>Resources:</h2>
 <ul>
 <li class="fragment"><a
-href="https://strube1.pages.jsc.fz-juelich.de/2024-11-talk-intro-to-supercompting-jsc">This
+href="https://strube1.pages.jsc.fz-juelich.de/2025-03-talk-nxtaim">This
 document</a></li>
 <li class="fragment"><a
-href="https://gitlab.jsc.fz-juelich.de/strube1/2024-11-talk-intro-to-supercompting-jsc">Source
+href="https://gitlab.jsc.fz-juelich.de/strube1/2025-03-talk-nxtaim">Source
 code of this course</a></li>
 </ul>
 <p><img
@@ -254,14 +254,8 @@ data-src="images/Logo_FZ_Juelich_rgb_Schutzzone_transparent.svg" /></p>
 </div>
 <div class="col">
 <figure>
-<img data-src="pics/ilya.jpg" alt="Ilya Zhukov" />
-<figcaption aria-hidden="true">Ilya Zhukov</figcaption>
-</figure>
-</div>
-<div class="col">
-<figure>
-<img data-src="pics/jolanta.jpg" alt="Jolanta Zjupa" />
-<figcaption aria-hidden="true">Jolanta Zjupa</figcaption>
+<img data-src="pics/sabrina.jpg" alt="Sabrina Benassou" />
+<figcaption aria-hidden="true">Sabrina Benassou</figcaption>
 </figure>
 </div>
 </div>
@@ -279,7 +273,7 @@ data-src="images/Logo_FZ_Juelich_rgb_Schutzzone_transparent.svg" /></p>
 <li class="fragment">Important: This is an overview,
 <em><em>NOT</em></em> a basic AI course!</li>
 <li class="fragment">We have <a
-href="https://www.fz-juelich.de/en/ias/jsc/news/events/training-courses/2024/ai-sc-4">introductory
+href="https://www.fz-juelich.de/en/ias/jsc/news/events/training-courses/2025/ai-sc-1">introductory
 courses on AI on supercomputers</a></li>
 <li class="fragment"><img
 data-src="images/bringing-dl-workloads-2024-2-course.png" /> <img
@@ -291,17 +285,20 @@ data-src="images/Logo_FZ_Juelich_rgb_Schutzzone_transparent.svg" /></li>
 <h3 id="please-access-it-now-so-you-can-follow-along">Please access it
 now, so you can follow along:</h3>
 <p><a
-href="https://go.fzj.de/2024-11-talk-intro-to-supercomputing-jsc">https://go.fzj.de/2024-11-talk-intro-to-supercomputing-jsc</a></p>
+href="https://go.fzj.de/2025-03-nxtaim">https://go.fzj.de/2025-03-nxtaim</a></p>
 <p><img data-src="images/slides.png" /></p>
 </section>
-<section id="git-clone-this-repository" class="slide level2">
-<h2>Git clone this repository</h2>
-<ul>
-<li class="fragment">All slides and source code</li>
-<li class="fragment">Connect to the supercomputer and do this:</li>
-<li class="fragment"><div class="sourceCode" id="cb1"><pre
-class="sourceCode bash"><code class="sourceCode bash"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">git</span> clone https://gitlab.jsc.fz-juelich.de/strube1/2024-11-talk-intro-to-supercompting-jsc.git</span></code></pre></div></li>
-</ul>
+<section class="slide level2">
+
+<!-- ## Git clone this repository
+
+- All slides and source code
+- Connect to the supercomputer and do this:
+- ```bash
+git clone https://gitlab.jsc.fz-juelich.de/strube1/2025-03-talk-nxtaim.git
+```
+
+--- -->
 </section>
 <section id="deep-learning-is" class="slide level2">
 <h2>Deep learning is…</h2>
@@ -574,6 +571,25 @@ gpus</li>
 <li class="fragment">One can even pipeline among nodes….</li>
 </ul>
 </section>
+<section id="fully-sharded-data-parallelism" class="slide level2">
+<h2>Fully Sharded Data Parallelism</h2>
+<ul>
+<li class="fragment">Shards model parameters, optimizer states and
+gradients across DDP ranks.</li>
+<li class="fragment">Decompose the all-reduce operations in DDP into
+separate reduce-scatter and all-gather operations:</li>
+<li class="fragment"><img data-src="images/FSDP-graph-2a.png.webp"
+width="450" /></li>
+</ul>
+</section>
+<section id="fully-sharded-data-parallelism-1" class="slide level2">
+<h2>Fully Sharded Data Parallelism</h2>
+<ul>
+<li class="fragment">Reduces the memory footprint of each GPU</li>
+<li class="fragment">Increases the communication volume</li>
+<li class="fragment">Allows for massive scaling (100000+ GPUs)</li>
+</ul>
+</section>
 <section id="recap" class="slide level2">
 <h2>Recap</h2>
 <ul>
@@ -599,19 +615,39 @@ gpus</li>
 </ul></li>
 </ul>
 </section>
+<section id="recap-1" class="slide level2">
+<h2>Recap</h2>
+<ul>
+<li class="fragment">Pipelining:
+<ul>
+<li class="fragment">Split the model over multiple GPUs</li>
+<li class="fragment">Each GPU does a part of the forward pass</li>
+<li class="fragment">The gradients are averaged at the end</li>
+</ul></li>
+<li class="fragment">Pipelining, multi-node:
+<ul>
+<li class="fragment">Same, but gradients are averaged across nodes</li>
+</ul></li>
+<li class="fragment">Fully Sharded Data Parallelism:
+<ul>
+<li class="fragment">Split the model, optimizer states and gradients
+across DDP ranks</li>
+<li class="fragment">Decompose the all-reduce operations in DDP into
+separate reduce-scatter and all-gather operations</li>
+<li class="fragment">Lower memory, higher communication volume</li>
+</ul></li>
+</ul>
+</section>
 <section id="are-we-there-yet-3" class="slide level2">
 <h2>Are we there yet?</h2>
 <p><img data-src="images/are-we-there-yet-4.gif" /></p>
 </section>
-<section
-id="if-you-havent-done-so-please-access-the-slides-to-clone-repository"
-class="slide level2">
-<h2>If you haven’t done so, please access the slides to clone
-repository:</h2>
+<section id="you-can-clone-the-repo-yourself" class="slide level2">
+<h2>You can clone the repo yourself</h2>
 <p><img data-src="images/slides.png" /></p>
 <ul>
-<li class="fragment"><div class="sourceCode" id="cb2"><pre
-class="sourceCode bash"><code class="sourceCode bash"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">git</span> clone https://gitlab.jsc.fz-juelich.de/strube1/2024-11-talk-intro-to-supercompting-jsc.git</span></code></pre></div></li>
+<li class="fragment"><div class="sourceCode" id="cb1"><pre
+class="sourceCode bash"><code class="sourceCode bash"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">git</span> clone https://gitlab.jsc.fz-juelich.de/strube1/2025-03-talk-nxtaim.gif</span></code></pre></div></li>
 </ul>
 </section>
 <section id="demo-time" class="slide level2">
@@ -626,12 +662,33 @@ node</li>
 </section>
 <section id="expected-imports" class="slide level2">
 <h2>Expected imports</h2>
+<div class="sourceCode" id="cb2"><pre
+class="sourceCode python"><code class="sourceCode python"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.vision.<span class="bu">all</span> <span class="im">import</span> <span class="op">*</span></span>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.distributed <span class="im">import</span> <span class="op">*</span></span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.vision.models.xresnet <span class="im">import</span> <span class="op">*</span></span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a></span></code></pre></div>
+</section>
+<section id="bringing-your-data-in" class="slide level2">
+<h2>Bringing your data in*</h2>
 <div class="sourceCode" id="cb3"><pre
 class="sourceCode python"><code class="sourceCode python"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.vision.<span class="bu">all</span> <span class="im">import</span> <span class="op">*</span></span>
 <span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.distributed <span class="im">import</span> <span class="op">*</span></span>
 <span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.vision.models.xresnet <span class="im">import</span> <span class="op">*</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="co"># DOWNLOADS DATASET - we need to do this on the login node</span></span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>path <span class="op">=</span> untar_data(URLs.IMAGEWOOF_320) </span>
 <span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a></span>
@@ -645,29 +702,29 @@ class="sourceCode python"><code class="sourceCode python"><span id="cb3-1"><a hr
 <span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a></span></code></pre></div>
 </section>
-<section id="bringing-your-data-in" class="slide level2">
-<h2>Bringing your data in*</h2>
+<section id="loading-your-data" class="slide level2">
+<h2>Loading your data</h2>
 <div class="sourceCode" id="cb4"><pre
 class="sourceCode python"><code class="sourceCode python"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.vision.<span class="bu">all</span> <span class="im">import</span> <span class="op">*</span></span>
 <span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.distributed <span class="im">import</span> <span class="op">*</span></span>
 <span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.vision.models.xresnet <span class="im">import</span> <span class="op">*</span></span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="co"># DOWNLOADS DATASET - we need to do this on the login node</span></span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>path <span class="op">=</span> untar_data(URLs.IMAGEWOOF_320) </span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>path <span class="op">=</span> untar_data(URLs.IMAGEWOOF_320)</span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>dls <span class="op">=</span> DataBlock(</span>
+<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>    blocks<span class="op">=</span>(ImageBlock, CategoryBlock),</span>
+<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>    splitter<span class="op">=</span>GrandparentSplitter(valid_name<span class="op">=</span><span class="st">&#39;val&#39;</span>),</span>
+<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a>    get_items<span class="op">=</span>get_image_files, get_y<span class="op">=</span>parent_label,</span>
+<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a>    item_tfms<span class="op">=</span>[RandomResizedCrop(<span class="dv">160</span>), FlipItem(<span class="fl">0.5</span>)],</span>
+<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a>    batch_tfms<span class="op">=</span>Normalize.from_stats(<span class="op">*</span>imagenet_stats)</span>
+<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a>).dataloaders(path, path<span class="op">=</span>path, bs<span class="op">=</span><span class="dv">64</span>)</span>
 <span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a></span></code></pre></div>
 </section>
-<section id="loading-your-data" class="slide level2">
-<h2>Loading your data</h2>
+<section id="single-gpu-code" class="slide level2">
+<h2>Single-gpu code</h2>
 <div class="sourceCode" id="cb5"><pre
 class="sourceCode python"><code class="sourceCode python"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.vision.<span class="bu">all</span> <span class="im">import</span> <span class="op">*</span></span>
 <span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.distributed <span class="im">import</span> <span class="op">*</span></span>
@@ -682,30 +739,9 @@ class="sourceCode python"><code class="sourceCode python"><span id="cb5-1"><a hr
 <span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a>    batch_tfms<span class="op">=</span>Normalize.from_stats(<span class="op">*</span>imagenet_stats)</span>
 <span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a>).dataloaders(path, path<span class="op">=</span>path, bs<span class="op">=</span><span class="dv">64</span>)</span>
 <span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a>learn <span class="op">=</span> Learner(dls, xresnet50(n_out<span class="op">=</span><span class="dv">10</span>), metrics<span class="op">=</span>[accuracy,top_k_accuracy]).to_fp16()</span>
 <span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a></span></code></pre></div>
-</section>
-<section id="single-gpu-code" class="slide level2">
-<h2>Single-gpu code</h2>
-<div class="sourceCode" id="cb6"><pre
-class="sourceCode python"><code class="sourceCode python"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.vision.<span class="bu">all</span> <span class="im">import</span> <span class="op">*</span></span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.distributed <span class="im">import</span> <span class="op">*</span></span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.vision.models.xresnet <span class="im">import</span> <span class="op">*</span></span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>path <span class="op">=</span> untar_data(URLs.IMAGEWOOF_320)</span>
-<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a>dls <span class="op">=</span> DataBlock(</span>
-<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a>    blocks<span class="op">=</span>(ImageBlock, CategoryBlock),</span>
-<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a>    splitter<span class="op">=</span>GrandparentSplitter(valid_name<span class="op">=</span><span class="st">&#39;val&#39;</span>),</span>
-<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a>    get_items<span class="op">=</span>get_image_files, get_y<span class="op">=</span>parent_label,</span>
-<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a>    item_tfms<span class="op">=</span>[RandomResizedCrop(<span class="dv">160</span>), FlipItem(<span class="fl">0.5</span>)],</span>
-<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a>    batch_tfms<span class="op">=</span>Normalize.from_stats(<span class="op">*</span>imagenet_stats)</span>
-<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a>).dataloaders(path, path<span class="op">=</span>path, bs<span class="op">=</span><span class="dv">64</span>)</span>
-<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a>learn <span class="op">=</span> Learner(dls, xresnet50(n_out<span class="op">=</span><span class="dv">10</span>), metrics<span class="op">=</span>[accuracy,top_k_accuracy]).to_fp16()</span>
-<span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a>learn.fine_tune(<span class="dv">6</span>)</span></code></pre></div>
+<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a>learn.fine_tune(<span class="dv">6</span>)</span></code></pre></div>
 </section>
 <section id="venv_template" class="slide level2">
 <h2>Venv_template</h2>
@@ -718,48 +754,48 @@ modules</li>
 <li class="fragment"><a
 href="https://gitlab.jsc.fz-juelich.de/kesselheim1/sc_venv_template">Link
 to gitlab repo</a></li>
-<li class="fragment"><div class="sourceCode" id="cb7"><pre
-class="sourceCode bash"><code class="sourceCode bash"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="bu">cd</span> <span class="va">$HOME</span>/2024-11-talk-intro-to-supercompting-jsc/src</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="fu">git</span> clone https://gitlab.jsc.fz-juelich.de/kesselheim1/sc_venv_template.git</span></code></pre></div></li>
+<li class="fragment"><div class="sourceCode" id="cb6"><pre
+class="sourceCode bash"><code class="sourceCode bash"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="bu">cd</span> <span class="va">$HOME</span>/2025-03-talk-nxtaim/src</span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="fu">git</span> clone https://gitlab.jsc.fz-juelich.de/kesselheim1/sc_venv_template.git</span></code></pre></div></li>
 <li class="fragment">Add this to sc_venv_template/requirements.txt:</li>
+<li class="fragment"><div class="sourceCode" id="cb7"><pre
+class="sourceCode python"><code class="sourceCode python"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Add here the pip packages you would like to install on this virtual environment / kernel</span></span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>pip</span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>fastai<span class="op">==</span><span class="fl">2.7.15</span></span>
+<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>scipy<span class="op">==</span><span class="fl">1.11.1</span></span>
+<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>matplotlib<span class="op">==</span><span class="fl">3.7.2</span></span>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>scikit<span class="op">-</span>learn<span class="op">==</span><span class="fl">1.3.1</span></span>
+<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>pandas<span class="op">==</span><span class="fl">2.0.3</span></span>
+<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>torch<span class="op">==</span><span class="fl">2.1.2</span></span>
+<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a>accelerate</span></code></pre></div></li>
 <li class="fragment"><div class="sourceCode" id="cb8"><pre
-class="sourceCode python"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Add here the pip packages you would like to install on this virtual environment / kernel</span></span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>pip</span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>fastai<span class="op">==</span><span class="fl">2.7.15</span></span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>scipy<span class="op">==</span><span class="fl">1.11.1</span></span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>matplotlib<span class="op">==</span><span class="fl">3.7.2</span></span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>scikit<span class="op">-</span>learn<span class="op">==</span><span class="fl">1.3.1</span></span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a>pandas<span class="op">==</span><span class="fl">2.0.3</span></span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>torch<span class="op">==</span><span class="fl">2.1.2</span></span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a>accelerate</span></code></pre></div></li>
-<li class="fragment"><div class="sourceCode" id="cb9"><pre
-class="sourceCode bash"><code class="sourceCode bash"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="ex">sc_venv_template/setup.sh</span></span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="bu">source</span> sc_venv_template/activate.sh</span></code></pre></div></li>
+class="sourceCode bash"><code class="sourceCode bash"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="ex">sc_venv_template/setup.sh</span></span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="bu">source</span> sc_venv_template/activate.sh</span></code></pre></div></li>
 <li class="fragment">Done! You installed everything you need</li>
 </ul>
 </section>
 <section id="submission-script" class="slide level2">
 <h2>Submission Script</h2>
-<div class="sourceCode" id="cb10"><pre
-class="sourceCode bash"><code class="sourceCode bash"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="co">#!/bin/bash</span></span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --account=training2436</span></span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --nodes=1</span></span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --job-name=ai-serial</span></span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --ntasks-per-node=1</span></span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --cpus-per-task=1</span></span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --output=out-serial.%j</span></span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --error=err-serial.%j</span></span>
-<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --time=00:40:00</span></span>
-<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --partition=dc-gpu</span></span>
-<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a><span class="co"># Make sure we are on the right directory</span></span>
-<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a><span class="bu">cd</span> <span class="va">$HOME</span>/2024-11-talk-intro-to-supercompting-jsc/src</span>
-<span id="cb10-14"><a href="#cb10-14" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-15"><a href="#cb10-15" aria-hidden="true" tabindex="-1"></a><span class="co"># This loads modules and python packages</span></span>
-<span id="cb10-16"><a href="#cb10-16" aria-hidden="true" tabindex="-1"></a><span class="bu">source</span> sc_venv_template/activate.sh</span>
-<span id="cb10-17"><a href="#cb10-17" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-18"><a href="#cb10-18" aria-hidden="true" tabindex="-1"></a><span class="co"># Run the demo</span></span>
-<span id="cb10-19"><a href="#cb10-19" aria-hidden="true" tabindex="-1"></a><span class="bu">time</span> srun python serial.py</span></code></pre></div>
+<div class="sourceCode" id="cb9"><pre
+class="sourceCode bash"><code class="sourceCode bash"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co">#!/bin/bash</span></span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --account=training2436</span></span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --nodes=1</span></span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --job-name=ai-serial</span></span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --ntasks-per-node=1</span></span>
+<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --cpus-per-task=1</span></span>
+<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --output=out-serial.%j</span></span>
+<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --error=err-serial.%j</span></span>
+<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --time=00:40:00</span></span>
+<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --partition=dc-gpu</span></span>
+<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a><span class="co"># Make sure we are on the right directory</span></span>
+<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a><span class="bu">cd</span> <span class="va">$HOME</span>/2025-03-talk-nxtaim/src</span>
+<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a><span class="co"># This loads modules and python packages</span></span>
+<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a><span class="bu">source</span> sc_venv_template/activate.sh</span>
+<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a><span class="co"># Run the demo</span></span>
+<span id="cb9-19"><a href="#cb9-19" aria-hidden="true" tabindex="-1"></a><span class="bu">time</span> srun python serial.py</span></code></pre></div>
 </section>
 <section id="download-dataset" class="slide level2">
 <h2>Download dataset</h2>
@@ -770,14 +806,14 @@ class="sourceCode bash"><code class="sourceCode bash"><span id="cb10-1"><a href=
 </section>
 <section id="download-dataset-1" class="slide level2">
 <h2>Download dataset</h2>
-<div class="sourceCode" id="cb11"><pre
-class="sourceCode bash"><code class="sourceCode bash"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="bu">cd</span> <span class="va">$HOME</span>/2024-11-talk-intro-to-supercompting-jsc/src</span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="bu">source</span> sc_venv_template/activate.sh</span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="ex">python</span> serial.py</span>
-<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a><span class="kw">(</span><span class="ex">Some</span> warnings<span class="kw">)</span></span>
-<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a><span class="ex">epoch</span>     train_loss  valid_loss  accuracy  top_k_accuracy  time    </span>
-<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a><span class="ex">Epoch</span> 1/1 : <span class="kw">|</span><span class="ex">-------------------------------------------------------------</span><span class="kw">|</span> <span class="ex">0.71%</span> [1/141 00:07<span class="op">&lt;</span>16:40]</span></code></pre></div>
+<div class="sourceCode" id="cb10"><pre
+class="sourceCode bash"><code class="sourceCode bash"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="bu">cd</span> <span class="va">$HOME</span>/2025-03-talk-nxtaim/src</span>
+<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a><span class="bu">source</span> sc_venv_template/activate.sh</span>
+<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="ex">python</span> serial.py</span>
+<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a><span class="kw">(</span><span class="ex">Some</span> warnings<span class="kw">)</span></span>
+<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a><span class="ex">epoch</span>     train_loss  valid_loss  accuracy  top_k_accuracy  time    </span>
+<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a><span class="ex">Epoch</span> 1/1 : <span class="kw">|</span><span class="ex">-------------------------------------------------------------</span><span class="kw">|</span> <span class="ex">0.71%</span> [1/141 00:07<span class="op">&lt;</span>16:40]</span></code></pre></div>
 <ul>
 <li class="fragment">It started training, on the login node’s CPUs
 (WRONG!!!)</li>
@@ -788,9 +824,9 @@ class="sourceCode bash"><code class="sourceCode bash"><span id="cb11-1"><a href=
 <section id="running-it" class="slide level2">
 <h2>Running it</h2>
 <ul>
-<li class="fragment"><div class="sourceCode" id="cb12"><pre
-class="sourceCode bash"><code class="sourceCode bash"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="bu">cd</span> <span class="va">$HOME</span>/2024-11-talk-intro-to-supercompting-jsc/src</span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a><span class="ex">sbatch</span> serial.slurm</span></code></pre></div></li>
+<li class="fragment"><div class="sourceCode" id="cb11"><pre
+class="sourceCode bash"><code class="sourceCode bash"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="bu">cd</span> <span class="va">$HOME</span>/2025-03-talk-nxtaim/src</span>
+<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="ex">sbatch</span> serial.slurm</span></code></pre></div></li>
 <li class="fragment">On Juwels Booster, should take about 5 minutes</li>
 <li class="fragment">On a cpu system this would take half a day</li>
 <li class="fragment">Check the out-serial-XXXXXX and err-serial-XXXXXX
@@ -806,78 +842,78 @@ differences</li>
 </section>
 <section id="data-parallel-4" class="slide level2">
 <h2>Data parallel</h2>
-<div class="sourceCode" id="cb13"><pre
-class="sourceCode python"><code class="sourceCode python"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.vision.<span class="bu">all</span> <span class="im">import</span> <span class="op">*</span></span>
-<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.distributed <span class="im">import</span> <span class="op">*</span></span>
-<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.vision.models.xresnet <span class="im">import</span> <span class="op">*</span></span>
-<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>path <span class="op">=</span> rank0_first(untar_data, URLs.IMAGEWOOF_320)</span>
-<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a>dls <span class="op">=</span> DataBlock(</span>
-<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a>    blocks<span class="op">=</span>(ImageBlock, CategoryBlock),</span>
-<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a>    splitter<span class="op">=</span>GrandparentSplitter(valid_name<span class="op">=</span><span class="st">&#39;val&#39;</span>),</span>
-<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a>    get_items<span class="op">=</span>get_image_files, get_y<span class="op">=</span>parent_label,</span>
-<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a>    item_tfms<span class="op">=</span>[RandomResizedCrop(<span class="dv">160</span>), FlipItem(<span class="fl">0.5</span>)],</span>
-<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a>    batch_tfms<span class="op">=</span>Normalize.from_stats(<span class="op">*</span>imagenet_stats)</span>
-<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a>).dataloaders(path, path<span class="op">=</span>path, bs<span class="op">=</span><span class="dv">64</span>)</span>
-<span id="cb13-13"><a href="#cb13-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-14"><a href="#cb13-14" aria-hidden="true" tabindex="-1"></a>learn <span class="op">=</span> Learner(dls, xresnet50(n_out<span class="op">=</span><span class="dv">10</span>), metrics<span class="op">=</span>[accuracy,top_k_accuracy]).to_fp16()</span>
-<span id="cb13-15"><a href="#cb13-15" aria-hidden="true" tabindex="-1"></a><span class="cf">with</span> learn.distrib_ctx():</span>
-<span id="cb13-16"><a href="#cb13-16" aria-hidden="true" tabindex="-1"></a>    learn.fine_tune(<span class="dv">6</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb12"><pre
+class="sourceCode python"><code class="sourceCode python"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.vision.<span class="bu">all</span> <span class="im">import</span> <span class="op">*</span></span>
+<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.distributed <span class="im">import</span> <span class="op">*</span></span>
+<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> fastai.vision.models.xresnet <span class="im">import</span> <span class="op">*</span></span>
+<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a>path <span class="op">=</span> rank0_first(untar_data, URLs.IMAGEWOOF_320)</span>
+<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a>dls <span class="op">=</span> DataBlock(</span>
+<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a>    blocks<span class="op">=</span>(ImageBlock, CategoryBlock),</span>
+<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a>    splitter<span class="op">=</span>GrandparentSplitter(valid_name<span class="op">=</span><span class="st">&#39;val&#39;</span>),</span>
+<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a>    get_items<span class="op">=</span>get_image_files, get_y<span class="op">=</span>parent_label,</span>
+<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a>    item_tfms<span class="op">=</span>[RandomResizedCrop(<span class="dv">160</span>), FlipItem(<span class="fl">0.5</span>)],</span>
+<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a>    batch_tfms<span class="op">=</span>Normalize.from_stats(<span class="op">*</span>imagenet_stats)</span>
+<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a>).dataloaders(path, path<span class="op">=</span>path, bs<span class="op">=</span><span class="dv">64</span>)</span>
+<span id="cb12-13"><a href="#cb12-13" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-14"><a href="#cb12-14" aria-hidden="true" tabindex="-1"></a>learn <span class="op">=</span> Learner(dls, xresnet50(n_out<span class="op">=</span><span class="dv">10</span>), metrics<span class="op">=</span>[accuracy,top_k_accuracy]).to_fp16()</span>
+<span id="cb12-15"><a href="#cb12-15" aria-hidden="true" tabindex="-1"></a><span class="cf">with</span> learn.distrib_ctx():</span>
+<span id="cb12-16"><a href="#cb12-16" aria-hidden="true" tabindex="-1"></a>    learn.fine_tune(<span class="dv">6</span>)</span></code></pre></div>
 </section>
 <section id="data-parallel-5" class="slide level2">
 <h2>Data Parallel</h2>
 <h3 id="what-changed">What changed?</h3>
 <p>It was</p>
-<div class="sourceCode" id="cb14"><pre
-class="sourceCode python"><code class="sourceCode python"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>path <span class="op">=</span> untar_data(URLs.IMAGEWOOF_320)</span></code></pre></div>
+<div class="sourceCode" id="cb13"><pre
+class="sourceCode python"><code class="sourceCode python"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>path <span class="op">=</span> untar_data(URLs.IMAGEWOOF_320)</span></code></pre></div>
 <p>Became</p>
-<div class="sourceCode" id="cb15"><pre
-class="sourceCode python"><code class="sourceCode python"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>path <span class="op">=</span> rank0_first(untar_data, URLs.IMAGEWOOF_320)</span></code></pre></div>
+<div class="sourceCode" id="cb14"><pre
+class="sourceCode python"><code class="sourceCode python"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>path <span class="op">=</span> rank0_first(untar_data, URLs.IMAGEWOOF_320)</span></code></pre></div>
 <p>It was</p>
-<div class="sourceCode" id="cb16"><pre
-class="sourceCode python"><code class="sourceCode python"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>learn.fine_tune(<span class="dv">6</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb15"><pre
+class="sourceCode python"><code class="sourceCode python"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>learn.fine_tune(<span class="dv">6</span>)</span></code></pre></div>
 <p>Became</p>
-<div class="sourceCode" id="cb17"><pre
-class="sourceCode python"><code class="sourceCode python"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="cf">with</span> learn.distrib_ctx():</span>
-<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a>    learn.fine_tune(<span class="dv">6</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb16"><pre
+class="sourceCode python"><code class="sourceCode python"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="cf">with</span> learn.distrib_ctx():</span>
+<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a>    learn.fine_tune(<span class="dv">6</span>)</span></code></pre></div>
 </section>
 <section id="submission-script-data-parallel" class="slide level2">
 <h2>Submission script: data parallel</h2>
 <ul>
 <li class="fragment"><p>Please check the course repository: <a
-href="https://gitlab.jsc.fz-juelich.de/strube1/2024-11-talk-intro-to-supercompting-jsc/-/blob/main/src/distrib.slurm">src/distrib.slurm</a></p></li>
+href="https://gitlab.jsc.fz-juelich.de/strube1/2025-03-talk-nxtaim/-/blob/main/src/distrib.slurm">src/distrib.slurm</a></p></li>
 <li class="fragment"><p>Main differences:</p></li>
-<li class="fragment"><div class="sourceCode" id="cb18"><pre
-class="sourceCode bash"><code class="sourceCode bash"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --cpus-per-task=48</span></span>
-<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --gres=gpu:4</span></span></code></pre></div></li>
+<li class="fragment"><div class="sourceCode" id="cb17"><pre
+class="sourceCode bash"><code class="sourceCode bash"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --cpus-per-task=48</span></span>
+<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a><span class="co">#SBATCH --gres=gpu:4</span></span></code></pre></div></li>
 </ul>
 </section>
 <section id="lets-check-the-outputs" class="slide level2">
 <h2>Let’s check the outputs!</h2>
 <h4 id="single-gpu">Single gpu:</h4>
+<div class="sourceCode" id="cb18"><pre
+class="sourceCode bash"><code class="sourceCode bash"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="ex">epoch</span>     train_loss  valid_loss  accuracy  top_k_accuracy  time    </span>
+<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a><span class="ex">0</span>         2.249933    2.152813    0.225757  0.750573        01:11                          </span>
+<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a><span class="ex">epoch</span>     train_loss  valid_loss  accuracy  top_k_accuracy  time    </span>
+<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a><span class="ex">0</span>         1.882008    1.895813    0.324510  0.832018        00:44                          </span>
+<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a><span class="ex">1</span>         1.837312    1.916380    0.374141  0.845253        00:44                          </span>
+<span id="cb18-6"><a href="#cb18-6" aria-hidden="true" tabindex="-1"></a><span class="ex">2</span>         1.717144    1.739026    0.378722  0.869941        00:43                          </span>
+<span id="cb18-7"><a href="#cb18-7" aria-hidden="true" tabindex="-1"></a><span class="ex">3</span>         1.594981    1.637526    0.417664  0.891575        00:44                          </span>
+<span id="cb18-8"><a href="#cb18-8" aria-hidden="true" tabindex="-1"></a><span class="ex">4</span>         1.460454    1.410519    0.507254  0.920336        00:44                          </span>
+<span id="cb18-9"><a href="#cb18-9" aria-hidden="true" tabindex="-1"></a><span class="ex">5</span>         1.389946    1.304924    0.538814  0.935862        00:43  </span>
+<span id="cb18-10"><a href="#cb18-10" aria-hidden="true" tabindex="-1"></a><span class="ex">real</span>    5m44.972s</span></code></pre></div>
+<h4 id="multi-gpu">Multi gpu:</h4>
 <div class="sourceCode" id="cb19"><pre
 class="sourceCode bash"><code class="sourceCode bash"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="ex">epoch</span>     train_loss  valid_loss  accuracy  top_k_accuracy  time    </span>
-<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a><span class="ex">0</span>         2.249933    2.152813    0.225757  0.750573        01:11                          </span>
+<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a><span class="ex">0</span>         2.201540    2.799354    0.202950  0.662513        00:09                        </span>
 <span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a><span class="ex">epoch</span>     train_loss  valid_loss  accuracy  top_k_accuracy  time    </span>
-<span id="cb19-4"><a href="#cb19-4" aria-hidden="true" tabindex="-1"></a><span class="ex">0</span>         1.882008    1.895813    0.324510  0.832018        00:44                          </span>
-<span id="cb19-5"><a href="#cb19-5" aria-hidden="true" tabindex="-1"></a><span class="ex">1</span>         1.837312    1.916380    0.374141  0.845253        00:44                          </span>
-<span id="cb19-6"><a href="#cb19-6" aria-hidden="true" tabindex="-1"></a><span class="ex">2</span>         1.717144    1.739026    0.378722  0.869941        00:43                          </span>
-<span id="cb19-7"><a href="#cb19-7" aria-hidden="true" tabindex="-1"></a><span class="ex">3</span>         1.594981    1.637526    0.417664  0.891575        00:44                          </span>
-<span id="cb19-8"><a href="#cb19-8" aria-hidden="true" tabindex="-1"></a><span class="ex">4</span>         1.460454    1.410519    0.507254  0.920336        00:44                          </span>
-<span id="cb19-9"><a href="#cb19-9" aria-hidden="true" tabindex="-1"></a><span class="ex">5</span>         1.389946    1.304924    0.538814  0.935862        00:43  </span>
-<span id="cb19-10"><a href="#cb19-10" aria-hidden="true" tabindex="-1"></a><span class="ex">real</span>    5m44.972s</span></code></pre></div>
-<h4 id="multi-gpu">Multi gpu:</h4>
-<div class="sourceCode" id="cb20"><pre
-class="sourceCode bash"><code class="sourceCode bash"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="ex">epoch</span>     train_loss  valid_loss  accuracy  top_k_accuracy  time    </span>
-<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a><span class="ex">0</span>         2.201540    2.799354    0.202950  0.662513        00:09                        </span>
-<span id="cb20-3"><a href="#cb20-3" aria-hidden="true" tabindex="-1"></a><span class="ex">epoch</span>     train_loss  valid_loss  accuracy  top_k_accuracy  time    </span>
-<span id="cb20-4"><a href="#cb20-4" aria-hidden="true" tabindex="-1"></a><span class="ex">0</span>         1.951004    2.059517    0.294761  0.781282        00:08                        </span>
-<span id="cb20-5"><a href="#cb20-5" aria-hidden="true" tabindex="-1"></a><span class="ex">1</span>         1.929561    1.999069    0.309512  0.792981        00:08                        </span>
-<span id="cb20-6"><a href="#cb20-6" aria-hidden="true" tabindex="-1"></a><span class="ex">2</span>         1.854629    1.962271    0.314344  0.840285        00:08                        </span>
-<span id="cb20-7"><a href="#cb20-7" aria-hidden="true" tabindex="-1"></a><span class="ex">3</span>         1.754019    1.687136    0.404883  0.872330        00:08                        </span>
-<span id="cb20-8"><a href="#cb20-8" aria-hidden="true" tabindex="-1"></a><span class="ex">4</span>         1.643759    1.499526    0.482706  0.906409        00:08                        </span>
-<span id="cb20-9"><a href="#cb20-9" aria-hidden="true" tabindex="-1"></a><span class="ex">5</span>         1.554356    1.450976    0.502798  0.914547        00:08  </span>
-<span id="cb20-10"><a href="#cb20-10" aria-hidden="true" tabindex="-1"></a><span class="ex">real</span>    1m19.979s</span></code></pre></div>
+<span id="cb19-4"><a href="#cb19-4" aria-hidden="true" tabindex="-1"></a><span class="ex">0</span>         1.951004    2.059517    0.294761  0.781282        00:08                        </span>
+<span id="cb19-5"><a href="#cb19-5" aria-hidden="true" tabindex="-1"></a><span class="ex">1</span>         1.929561    1.999069    0.309512  0.792981        00:08                        </span>
+<span id="cb19-6"><a href="#cb19-6" aria-hidden="true" tabindex="-1"></a><span class="ex">2</span>         1.854629    1.962271    0.314344  0.840285        00:08                        </span>
+<span id="cb19-7"><a href="#cb19-7" aria-hidden="true" tabindex="-1"></a><span class="ex">3</span>         1.754019    1.687136    0.404883  0.872330        00:08                        </span>
+<span id="cb19-8"><a href="#cb19-8" aria-hidden="true" tabindex="-1"></a><span class="ex">4</span>         1.643759    1.499526    0.482706  0.906409        00:08                        </span>
+<span id="cb19-9"><a href="#cb19-9" aria-hidden="true" tabindex="-1"></a><span class="ex">5</span>         1.554356    1.450976    0.502798  0.914547        00:08  </span>
+<span id="cb19-10"><a href="#cb19-10" aria-hidden="true" tabindex="-1"></a><span class="ex">real</span>    1m19.979s</span></code></pre></div>
 </section>
 <section id="some-insights" class="slide level2">
 <h2>Some insights</h2>
@@ -911,17 +947,17 @@ submission file!</li>
 <section id="multi-node-1" class="slide level2">
 <h2>Multi-node</h2>
 <ul>
-<li class="fragment"><div class="sourceCode" id="cb21"><pre
-class="sourceCode bash"><code class="sourceCode bash"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a><span class="ex">epoch</span>     train_loss  valid_loss  accuracy  top_k_accuracy  time    </span>
-<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a><span class="ex">0</span>         2.242036    2.192690    0.201728  0.681148        00:10                      </span>
-<span id="cb21-3"><a href="#cb21-3" aria-hidden="true" tabindex="-1"></a><span class="ex">epoch</span>     train_loss  valid_loss  accuracy  top_k_accuracy  time    </span>
-<span id="cb21-4"><a href="#cb21-4" aria-hidden="true" tabindex="-1"></a><span class="ex">0</span>         2.035004    2.084082    0.246189  0.748984        00:05                      </span>
-<span id="cb21-5"><a href="#cb21-5" aria-hidden="true" tabindex="-1"></a><span class="ex">1</span>         1.981432    2.054528    0.247205  0.764482        00:05                      </span>
-<span id="cb21-6"><a href="#cb21-6" aria-hidden="true" tabindex="-1"></a><span class="ex">2</span>         1.942930    1.918441    0.316057  0.821138        00:05                      </span>
-<span id="cb21-7"><a href="#cb21-7" aria-hidden="true" tabindex="-1"></a><span class="ex">3</span>         1.898426    1.832725    0.370173  0.839431        00:05                      </span>
-<span id="cb21-8"><a href="#cb21-8" aria-hidden="true" tabindex="-1"></a><span class="ex">4</span>         1.859066    1.781805    0.375508  0.858740        00:05                      </span>
-<span id="cb21-9"><a href="#cb21-9" aria-hidden="true" tabindex="-1"></a><span class="ex">5</span>         1.820968    1.743448    0.394055  0.864583        00:05</span>
-<span id="cb21-10"><a href="#cb21-10" aria-hidden="true" tabindex="-1"></a><span class="ex">real</span>    1m15.651s    </span></code></pre></div></li>
+<li class="fragment"><div class="sourceCode" id="cb20"><pre
+class="sourceCode bash"><code class="sourceCode bash"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="ex">epoch</span>     train_loss  valid_loss  accuracy  top_k_accuracy  time    </span>
+<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a><span class="ex">0</span>         2.242036    2.192690    0.201728  0.681148        00:10                      </span>
+<span id="cb20-3"><a href="#cb20-3" aria-hidden="true" tabindex="-1"></a><span class="ex">epoch</span>     train_loss  valid_loss  accuracy  top_k_accuracy  time    </span>
+<span id="cb20-4"><a href="#cb20-4" aria-hidden="true" tabindex="-1"></a><span class="ex">0</span>         2.035004    2.084082    0.246189  0.748984        00:05                      </span>
+<span id="cb20-5"><a href="#cb20-5" aria-hidden="true" tabindex="-1"></a><span class="ex">1</span>         1.981432    2.054528    0.247205  0.764482        00:05                      </span>
+<span id="cb20-6"><a href="#cb20-6" aria-hidden="true" tabindex="-1"></a><span class="ex">2</span>         1.942930    1.918441    0.316057  0.821138        00:05                      </span>
+<span id="cb20-7"><a href="#cb20-7" aria-hidden="true" tabindex="-1"></a><span class="ex">3</span>         1.898426    1.832725    0.370173  0.839431        00:05                      </span>
+<span id="cb20-8"><a href="#cb20-8" aria-hidden="true" tabindex="-1"></a><span class="ex">4</span>         1.859066    1.781805    0.375508  0.858740        00:05                      </span>
+<span id="cb20-9"><a href="#cb20-9" aria-hidden="true" tabindex="-1"></a><span class="ex">5</span>         1.820968    1.743448    0.394055  0.864583        00:05</span>
+<span id="cb20-10"><a href="#cb20-10" aria-hidden="true" tabindex="-1"></a><span class="ex">real</span>    1m15.651s    </span></code></pre></div></li>
 </ul>
 </section>
 <section id="some-insights-1" class="slide level2">
diff --git a/public/pics/sabrina.jpg b/public/pics/sabrina.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..6abef7c6fb045617c0f006f4f21c7d327873a283
Binary files /dev/null and b/public/pics/sabrina.jpg differ
diff --git a/src/distrib.slurm b/src/distrib.slurm
index 6ffdae464ff552ddc87c4a508d98ca01940bee07..9ef2f06da01fd4b01c4680a21c300b9b800cae49 100644
--- a/src/distrib.slurm
+++ b/src/distrib.slurm
@@ -1,5 +1,5 @@
 #!/bin/bash
-#SBATCH --account=training2436
+#SBATCH --account=SOME_ACCOUNT
 #SBATCH --nodes=1
 #SBATCH --job-name=ai-multi-gpu
 #SBATCH --ntasks-per-node=1
@@ -7,7 +7,7 @@
 #SBATCH --output=out-distrib.%j
 #SBATCH --error=err-distrib.%j
 #SBATCH --time=00:20:00
-#SBATCH --partition=dc-gpu
+#SBATCH --partition=dc-gpu # on JURECA
 #SBATCH --gres=gpu:4
 
 # Without this, srun does not inherit cpus-per-task from sbatch.
@@ -23,7 +23,7 @@ export MASTER_PORT=7010
 export GPUS_PER_NODE=4
 
 # Make sure we are on the right directory
-cd $HOME/2024-11-talk-intro-to-supercompting-jsc/src
+cd $HOME/2025-03-talk-nxtaim/src
 
 # This loads modules and python packages
 source sc_venv_template/activate.sh
diff --git a/src/serial.slurm b/src/serial.slurm
index 53ed5379db7c51cd2efdb3afdc4480cdcef726d4..0400182b5587d925bbdf8711eb67049bd05ac421 100644
--- a/src/serial.slurm
+++ b/src/serial.slurm
@@ -1,5 +1,5 @@
 #!/bin/bash
-#SBATCH --account=training2436
+#SBATCH --account=SOME_ACCOUNT
 #SBATCH --nodes=1
 #SBATCH --job-name=ai-serial
 #SBATCH --ntasks-per-node=1
@@ -7,11 +7,11 @@
 #SBATCH --output=out-serial.%j
 #SBATCH --error=err-serial.%j
 #SBATCH --time=00:40:00
-#SBATCH --partition=dc-gpu
+#SBATCH --partition=dc-gpu # on JURECA
 #SBATCH --gres=gpu:1
 
 # Make sure we are on the right directory
-cd $HOME/2024-11-talk-intro-to-supercompting-jsc/src
+cd $HOME/2025-03-talk-nxtaim/src
 
 # This loads modules and python packages
 source sc_venv_template/activate.sh